

 FACE RECOGNITION

A Report for the Evaluation 3 of Project 2

Submitted by

Ashwani Singh

(1613105026 / 16SCSE105051)

in partial fulfillment for the award of the degree

of

Bachelor of Technology

In

Computer Science and Engineering with Specialization of Cloud

Computing and Virtualization

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Ms. Indu Malik

APRIL / MAY - 2020

TABLE OF CONTENTS

1. Abstract

2. Introduction

3. Existing System

4. Proposed system

5. Implementation

6. Result

7. Conclusion

8. References

SCHOOL OF COMPUTING AND SCIENCE AND
ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “FACE RECOGNITION” is the bonafide

work of “ASHWANI SINGH(1613105026)” who carried out the project work

under my supervision.

SIGNATURE OF HEAD SIGNATURE OF SUPERVISIOR

DR. MUNISH SHABARWAL, MS. INDU MALIK
PhD(Management),PhD(CS) Professor

Professor & Dean, School of computing Science &
School of computing Science & Engineering

Engineering

Abstract:

A face recognition system is the biometric information processes, its applicability is simpler and

dealing range is larger than others, i.e.; iris, scanning fingerprint, signature, etc. At many public
places, they usually have surveillance cameras for video capture and these cameras have their

significant value for security purposes. It is widely acknowledged that face recognition has

played a crucial role in the surveillance system because it doesn’t need the object’s cooperation.
The actual advantages of face-based identification over the other biometrics are its uniqueness

and acceptance. Human face is a dynamic object with a high degree of variability in its

appearance which creates face detection a difficult problem in computer vision. The main issue
in this field in Identification is speed and accuracy.

The aim of this paper is to measure various face recognition methods and to provide an entire

solution for image based face recognition with higher accuracy, better response rate as an initial

step for video surveillance. The answer is predicated on the test performed which includes
various face rich databases in terms of pose, subject, emotions, and race.

Introduction:

In Face recognition lots of work is been done over the past few decade as it’s a best way for

person identification because it doesn’t require human cooperation in that order it became a

hot topic in biometrics. Since many methods are introduced for detection and recognition

which considered as a milestone. With the aid of a regular web camera, a machine is able to

detect and recognize a person’s face; a custom login screen with the ability to filter user

access based on the users’ facial features will be developed. The objectives of this thesis are to

provide a set of detection algorithms that can be packaged in an easily portable framework

among the different processor architectures we see in machines (computers) today. These

algorithms must provide at least a 95% successful recognition rate, out of which less than 3%

of the detected faces are false positive is processed to crop and extract the person’s face for

easier recognition. Face Recognition where that detected and processed face is compared to a

database of known faces, to decide who that person is.

Since 2002, face detection can be performed fairly easily and reliably with Intel’s open

source framework called OpenCV . This framework has an inbuilt Face Detector that works in

roughly 90-95% of clear photos of a person looking forward at the camera. However,

detecting a person’s face when that person is viewed from an angle is usually harder,

sometimes requiring 3D Head Pose Estimation. Also, lack of proper brightness of an image

can greatly increase the difficulty of detecting a face, or increased contrast in shadows on the

face, or maybe the picture is blurry, or the person is wearing glasses, etc. Face recognition

however is much less reliable than face detection, with an accuracy of 30-70% in general.

Face recognition has been a strong field of research since the 1990s, but is still a far way away

from a reliable method of user authentication. More and more techniques are being developed

each year.

The Eigenface technique is considered the simplest method of accurate face recognition, but

many other (much more complicated) methods or combinations of multiple methods are

slightly more accurate. OpenCV was started at Intel in 1999 by Gary Bradski for the purposes

of accelerating research in and commercial applications of computer vision in the world and,

for Intel, creating a demand for ever more powerful computers by such applications. Vadim

Pisarevsky joined Gary to manage Intel's Russian software OpenCV team. Over time the

OpenCV team moved on to other companies and other Research. Several of the original team

eventually ended up working in robotics and found their way to Willow Garage. In 2008,

Willow Garage saw the need to rapidly advance robotic perception capabilities in an open way

that leverages the entire research Eigenfaces is considered the simplest method of

accurate face recognition, but many other (much more complicated) methods or combinations

of multiple methods are slightly more accurate.

Most resources on face recognition are for basic Neural Networks, which usually don't work

as well as Eigenfaces does. And unfortunately there are only some basic explanations for

better type of face recognition than Eigenfaces, such as recognition from video and other

techniques at the Face Recognition Homepage or 3D Face Recognition Wikipedia page and

Active Appearance Models page . But for other techniques, you should read some recent

computer vision research papers from CVPR and other computer vision conferences. Most

computer vision or machine vision conferences include new advances in face detection and

face recognition that give slightly better accuracy. So for example you can look for the

CVPR10 and CVPR09 conferences .

Existed System

Over the past decade face detection and recognition have transcended from esoteric to popular

areas of research in computer vision and one of the better and successful applications of

image analysis and algorithm based understanding. Because of the intrinsic nature of the

problem, computer vision is not only a computer science area of research, but also the object

of neuroscientific and psychological studies also, mainly because of the general opinion that

advances in computer image processing and understanding research will provide insights into

how our brain work and vice-verse. A general statement of the face recognition problem (in

computer vision) can be formulated as follows: given still or video images of a scene, identify

or verify one or more persons in the scene using a stored database of faces.

Facial recognition generally involves two stages: Face Detection where a photo is searched to

find a face, then the image and commercial community and began actively supporting

OpenCV, with Gary and Vadim once again leading the effort. Intel's open-source computer-

vision library can greatly simplify computer vision programming. It includes advanced

capabilities - face detection, face tracking, face recognition, Kalman filtering, and a variety of

artificial intelligence (AI) methods - in ready-to use form. In addition, it provides many basic

computer-vision algorithms via its lower-level APIs. OpenCV has the advantage of being a

multi-platform framework; it supports both Windows and Linux, and more recently, Mac OS

X. OpenCV has so many capabilities it can seem overwhelming at first.

A good understanding of how these methods work is the key to getting good results when

using OpenCV. Fortunately, only a select few need to be known beforehand to get started.

OpenCV's functionality that will be used for facial recognition is contained within several

modules. Following is a short description of the key namespaces CXCORE namespace

contains basic data type definitions, linear algebra and statistics methods, the persistence

functions and the error handlers. Somewhat oddly, the graphics functions for drawing on

images are located here as well. CV namespace contains image processing and camera

calibration methods. The computational geometry functions are also located here. CVAUX

namespace is described in OpenCV's documentation as containing obsolete and experimental

code. However, the simplest interfaces for face recognition are in this module. The code

behind them is specialized for face recognition, and they're widely used for that purpose.

ML namespace contains machine learning interfaces. HighGUI namespace contains the basic

I/O interfaces and multi-platform windowing capabilities. CVCAM namespace contains

interfaces for video access through DirectX on 32- bit Windows platforms.OpenCV uses a

type of face detector called a Haar Cascade classifier. Given an image, which can come from a

file or from live video, the face detector examines each image location and classifies it as

"Face" or "Not Face." Classification assumes a fixed scale for the face, say 50x50 pixels.

Since faces in an image might be smaller or larger than this, the classifier runs over the image

several times, to search for faces across a range of scales. This may seem an enormous amount

of processing, but thanks to algorithmic tricks, explained in the sidebar, classification is very

fast, even when it's applied at several scales. The classifier uses data stored in an XML file to

decide how to classify each image location. The OpenCV download includes four flavors of

XML data for frontal face detection, and one for profile faces. It also includes three non-face

XML files - one for full body (pedestrian) detection, one for upper body, and one for lower

body.

Proposed System

When image quality is taken into consideration, there is a plethora of factors that influence the

system’s accuracy. It is extremely important to apply various image pre-processing techniques

to standardize the images that you supply to a face recognition system. Most face recognition
algorithms are extremely sensitive to lighting conditions, so that if it was trained to recognize

a person when they are in a dark room, it probably won’t recognize them in a bright room, etc.

This problem is referred to as "lumination dependent", and there are also many other issues,

such as the face should also be in a very consistent position within the images (such as the
eyes being in the same pixel coordinates), consistent size, rotation angle, hair and makeup,

emotion (smiling, angry, etc), position of lights (to the left or above, etc). This is why it is so

important to use a good image pre-processing filters before You'll need to tell the classifier
where to find the data file you want it to use. The one I'll be using is called

haarcascade_frontalface_default.xml. In OpenCV version 1.0, it's located at
[OPENCV_ROOT]/data/haarcascades/haa rcascade_frontalface_default.xml where

[OPENCV_ROOT] is the path to your OpenCV installation. For example, if you're on
Windows XP, and you selected the default installation location, you'd use [OPENCV_ROOT]
= "C:/Program Files/OpenCV" (If you're working with an older, 16-bit version of Windows,

you'd use '\' as the directory separator, instead of '/'.) It's a good idea to locate the XML file

you want to use, and make sure your path to it is correct, before you code the rest of your

face-detection program. It is very easy to use a webcam stream as input to the face recognition

system instead of a file list. Basically you just need to grab frames from a camera instead of

from a file, and you run forever until the user wants to quit, instead of just running until the

file list has run out. Grabbing frames from a webcam can be implemented easily using

function

Implementation

Step 1: Using Cv2 for image capturing
1) import cv2, time

2) img = cv2.VideoCapture(0)
3) state , pix= img.read() #takes pixel value
4) print(state) # prints true or false
5) print(pix)

6) time.sleep(5)

7) cv2.imshow('my_image',pix) #to show image
8) cv2.imwrite('Myimage.jpg',pix)
9) cv2.waitKey(0) #used to close window here we have given 0 so if any key is pressed so

it will close window
10) img.release() #stop capturing

11) cv2.destroyAllWindows()
12) import cv2, time
13) img = cv2.VideoCapture(0)
14) a=0 #use this to check total frame capture

15) while(True):
16) a=a+1

17) state,pix=img.read()#takes pixel value
gray=cv2.cvtColor(pix,cv2.COLOR_BGR2GRAY)

18) cv2.imshow('my_image',pix) #to show image

19) key =cv2.waitKey(1) #used to close window here we have given 1 so defined key

is pressed so it will close window
20) Tf key ==ord('a'):
21) break
22) print(a)

23) img.release() #stop capturing
24) cv2.destroyAllWindows()

Step 2: Implementing the Face Detection algorithm
25) import cv2, time

26) imagepath= 'F:/Code/Python/Cognizance Internship/Data sets/IMG_9468.jpg' algopath
= 'F:/Code/Python/Cognizance Internship/Data

sets/haarcascade_frontalface_default.xml' #create the object for haar-cascade

27) facecascade = cv2.CascadeClassifier(algopath)
28) image =cv2.imread(imagepath)

29) image = cv2.resize(image,(800,800)) faces = facecascade.detectMultiScale(image ,
scaleFactor = 1.1 ,minNeighbors =5 ,minSize=(30,30),flags =

cv2.CASCADE_SCALE_IMAGE)

30) print(len(faces))
31) cv2.imshow('',image)
32) cv2.waitKey(0)
33) cv2.destroyAllWindows()

34) print (faces)

35) for (x,y,w,h) in faces :
36) cv2.rectangle(image , (x,y) , (x+w , y+h) ,(0,255,0),2)
37) print(faces)

38) cv2.imshow('',image)
39) cv2.waitKey(0)
40) cv2.destroyAllWindows()

Step 3: Face Recognition through web cam

41) import cv2, time
42) img = cv2.VideoCapture(0)

43) state , pix= img.read() #takes pixel value

44) print(state) # prints true or false
45) time.sleep(3)
46) cv2.imshow('my_image',pix) #to show image
47) cv2.imwrite('Myimage.jpg',pix)

48) cv2.waitKey(0) #used to close window here we have given 0 so if any key is pressed so

it will close window
49) img.release() #stop capturing

50) cv2.destroyAllWindows()
51) imagepath= 'F:/Code/Python/Cognizance Internship/Myimage.jpg'
52) algopath = 'F:/Code/Python/Cognizance Internship/Data

sets/haarcascade_frontalface_default.xml' #create the object for haar-

cascade facecascade = cv2.CascadeClassifier(algopath)
53) image =cv2.imread(imagepath)
54) image = cv2.resize(image,(800,800))
55) faces = facecascade.detectMultiScale(image , scaleFactor = 1.1 ,minNeighbors

=5 ,minSize=(30,30),flags = cv2.CASCADE_SCALE_IMAGE)
56) print(len(faces))

57) for (x,y,w,h) in faces :
58) cv2.rectangle(image , (x,y) , (x+w , y+h) ,(0,255,0),2)
59) print(faces)
60) cv2.imshow('',image)

61) cv2.waitKey(0)
62) cv2.destroyAllWindows()

Result

In this currentwork we developed the system to process the image detection/recognition and

recognition methods which are toked as to be a bench mark. Some methods performed

consistently over different well arranged datasets whereas other methods behave very

randomly however supported average experimental results performance is evaluated, five well

arranged datasets been used for this purpose. image detection/recognition and recognition

method’s result summery is provided in table 1 and table 2 respectively whereas well

arranged datasets summery is provided in table 3. In this currentsystem Haar-like [7] have

may features reported relatively well but it's much false detection/recognition than Local

binary patterns [8] which might be consider being a future add surveillance to scale back false

detection/recognition in Haar-like [7] have may features and for the popularity part gabor
[11] is reported well as it’s qualities overcomes well arranged datasets complexity.

References

[1] image Recognition Data, University of Essex, UK, image

94, http://cswww.essex.ac.uk/mv/all images/images94.html.

[2] image Recognition Data, University of Essex, UK, image
95, http://cswww.essex.ac.uk/mv/all images/images95.html.

[3] image Recognition Data, University of Essex, UK, image
96, http://cswww.essex.ac.uk/mv/all images/images96.html.

[4] image Recognition Data, University of Essex, UK, Grimace,

http://cswww.essex.ac.uk/mv/all images/grimace.html.

[5] Psychological Image sets at Stirling (PICS), Pain Expressions, http://pics.psych.stir.ac.

uk/2D_image_sets.htm.
[6] K. T. Talele, S. Kadam, A. Tikare, Efficient image detection/recognition using Adaboost,

“IJCA Proc on International Conference in Computational Intelligence”, 2012.

[7] T. Mita, T. Kaneko, O. Hori, Joint Haar-like have may features for image
detection/recognition, “Proceedings of the Tenth IEEE International Conference on

Computer Vision”, 1550-5499/05 ©2005 IEEE.
[8] T. Ahonen, A. Hadid, M. Peitikainen, image recognition with local binary patterns. “In

Proc. of European Conference of Computer Vision”, 2004.
[9] M. A. Turk and A.P. Pentland, image recognition using eigenimages, “Proceedings of

the IEEE”, 586-591, 1991.
[10] J Lu, K. N. Plataniotis, A. N. Venetsanopoulos, image recognition using LDA-

based algorithms, “IEEE Neural Networks Transaction”, 2003.
[11] L. Wiskott, M. Fellous, N. Krger, and C. Malsburg, image recognition by elastic bunch

graph matching, “IEEE Trans”, on PAMI, 19:775–779, 1997.
[12] I. Kukenys, B. McCane, it it always supportsVector Machines for Human image

detection/recognition, “Proceedings of the New Zealand Computer Science
Research Student Conference”, 2008.

[13] M. M. Abdelwahab, S. A. Aly, I. Yousry, Efficient Web-Based Facial Recognition
System Employing 2DHistogram of Oriented Gradients, arXiv:1202.2449v1 [cs.CV].

[14] W. Zhao, R. chellappa, P. J. Phillips, image recognition: A literature survey,
“ACM Computing Surveys (CSUR)”, December 2003.

[15] G. L. Marcialis, F. Roli, Chapter: Fusion of image Recognition Algorithms for
image-Based Surveillance Systems, Department of Electrical and Electronic

Engineering-Univ- ersity of Cagliari- Italy.
[16] A. Suman, Automated image recognition: Applications within law enforcement.

Market and technology review, “NPIA”, 2006.

	SIGNATURE OF HEAD SIGNATURE OF SUPERVISIOR
	School of computing Science & Engineering Engineering

