
Image-based Face detection

A Report for the Final Evaluation

Submitted by

Ashutosh Mishra
(1613107017 / 16SCSE107036)

in partial fulfillment for the award of the degree

of

Bachelor of Technology

In

Computer Science and Engineering With Specialization of Cloud
Computing and Virtualization

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Mr. Shubham Kumar

APRIL / MAY - 2020

TABLE OF CONTENTS

1. Abstract

2. Introduction

3. Existing System

4. Proposed system

5. Implementation

6. Result

7. Conclusion

8. References

Abstract

Image recognition from image or image may be a popular topic in biometrics research. Many
public places have surveillance cameras for image capture and these cameras have their
significant value for security properties. it's widely acknowledged that the image
detection/recognition have played a important role in closed-circuit television due to it’s need
the object’s cooperation. the particular pros of image based identification over other
biometrics are uniqueness and acceptable. As image can be a dynamic object having high
degree of variability in its appearance, that creates image detection/recognition a difficult
problem in computer vision. during this field, accuracy and speed of identification may be a
main issue.

The goal of this research paper is to process various image detection/recognition and
recognition methods, provide complete talks about and algorithm for image based image
detection/recognition and recognition with higher accuracy, better response rate as an initial
step for image surveillance. talks about and algorithm is supported performed tests on various
image rich databases in terms of subjects, pose, emotions, race and lightweight.

Introduction :

The goal of this article is to provide an easier human-machine interaction routine when user
authentication is needed through face detection and recognition. With the aid of a regular web
camera, a machine is able to detect and recognize a person’s face; a custom login screen with
the ability to filter user access based on the users’ facial features will be developed. The
objectives of this thesis are to provide a set of detection algorithms that can be packaged in an
easily portable framework among the different processor architectures we see in machines
(computers) today. These algorithms must provide at least a 95% successful recognition rate,
out of which less than 3% of the detected faces are false positive is processed to crop and
extract the person’s face for easier recognition. Face Recognition where that detected and
processed face is compared to a database of known faces, to decide who that person is.

Since 2002, face detection can be performed fairly easily and reliably with Intel’s open
source framework called OpenCV . This framework has an inbuilt Face Detector that works in
roughly 90-95% of clear photos of a person looking forward at the camera. However,
detecting a person’s face when that person is viewed from an angle is usually harder,
sometimes requiring 3D Head Pose Estimation. Also, lack of proper brightness of an image
can greatly increase the difficulty of detecting a face, or increased contrast in shadows on the
face, or maybe the picture is blurry, or the person is wearing glasses, etc. Face recognition
however is much less reliable than face detection, with an accuracy of 30-70% in general.
Face recognition has been a strong field of research since the 1990s, but is still a far way away
from a reliable method of user authentication. More and more techniques are being developed
each year.

The Eigenface technique is considered the simplest method of accurate face recognition, but
many other (much more complicated) methods or combinations of multiple methods are
slightly more accurate. OpenCV was started at Intel in 1999 by Gary Bradski for the purposes
of accelerating research in and commercial applications of computer vision in the world and,
for Intel, creating a demand for ever more powerful computers by such applications. Vadim
Pisarevsky joined Gary to manage Intel's Russian software OpenCV team. Over time the
OpenCV team moved on to other companies and other Research. Several of the original team
eventually ended up working in robotics and found their way to Willow Garage. In 2008,
Willow Garage saw the need to rapidly advance robotic perception capabilities in an open way
that leverages the entire research Eigenfaces is considered the simplest method of

accurate face recognition, but many other (much more complicated) methods or combinations
of multiple methods are slightly more accurate.

Most resources on face recognition are for basic Neural Networks, which usually don't work
as well as Eigenfaces does. And unfortunately there are only some basic explanations for
better type of face recognition than Eigenfaces, such as recognition from video and other
techniques at the Face Recognition Homepage or 3D Face Recognition Wikipedia page and
Active Appearance Models page . But for other techniques, you should read some recent
computer vision research papers from CVPR and other computer vision conferences. Most
computer vision or machine vision conferences include new advances in face detection and
face recognition that give slightly better accuracy. So for example you can look for the
CVPR10 and CVPR09 conferences .

Existed System

Over the past decade face detection and recognition have transcended from esoteric to popular
areas of research in computer vision and one of the better and successful applications of
image analysis and algorithm based understanding. Because of the intrinsic nature of the
problem, computer vision is not only a computer science area of research, but also the object
of neuroscientific and psychological studies also, mainly because of the general opinion that
advances in computer image processing and understanding research will provide insights into
how our brain work and vice-verse. A general statement of the face recognition problem (in
computer vision) can be formulated as follows: given still or video images of a scene, identify
or verify one or more persons in the scene using a stored database of faces.

Facial recognition generally involves two stages: Face Detection where a photo is searched to
find a face, then the image and commercial community and began actively supporting
OpenCV, with Gary and Vadim once again leading the effort. Intel's open-source computer-
vision library can greatly simplify computer vision programming. It includes advanced
capabilities - face detection, face tracking, face recognition, Kalman filtering, and a variety of
artificial intelligence (AI) methods - in ready-to use form. In addition, it provides many basic
computer-vision algorithms via its lower-level APIs. OpenCV has the advantage of being a
multi-platform framework; it supports both Windows and Linux, and more recently, Mac OS
X. OpenCV has so many capabilities it can seem overwhelming at first.

A good understanding of how these methods work is the key to getting good results when
using OpenCV. Fortunately, only a select few need to be known beforehand to get started.
OpenCV's functionality that will be used for facial recognition is contained within several
modules. Following is a short description of the key namespaces CXCORE namespace
contains basic data type definitions, linear algebra and statistics methods, the persistence
functions and the error handlers. Somewhat oddly, the graphics functions for drawing on
images are located here as well. CV namespace contains image processing and camera
calibration methods. The computational geometry functions are also located here. CVAUX
namespace is described in OpenCV's documentation as containing obsolete and experimental
code. However, the simplest interfaces for face recognition are in this module. The code
behind them is specialized for face recognition, and they're widely used for that purpose.

ML namespace contains machine learning interfaces. HighGUI namespace contains the basic
I/O interfaces and multi-platform windowing capabilities. CVCAM namespace contains
interfaces for video access through DirectX on 32- bit Windows platforms.OpenCV uses a
type of face detector called a Haar Cascade classifier. Given an image, which can come from a
file or from live video, the face detector examines each image location and classifies it as
"Face" or "Not Face." Classification assumes a fixed scale for the face, say 50x50 pixels.
Since faces in an image might be smaller or larger than this, the classifier runs over the image

several times, to search for faces across a range of scales. This may seem an enormous amount
of processing, but thanks to algorithmic tricks, explained in the sidebar, classification is very
fast, even when it's applied at several scales. The classifier uses data stored in an XML file to
decide how to classify each image location. The OpenCV download includes four flavors of
XML data for frontal face detection, and one for profile faces. It also includes three non-face
XML files - one for full body (pedestrian) detection, one for upper body, and one for lower
body.

Proposed System

When image quality is taken into consideration, there is a plethora of factors that influence the
system’s accuracy. It is extremely important to apply various image pre-processing techniques
to standardize the images that you supply to a face recognition system. Most face recognition
algorithms are extremely sensitive to lighting conditions, so that if it was trained to recognize
a person when they are in a dark room, it probably won’t recognize them in a bright room, etc.
This problem is referred to as "lumination dependent", and there are also many other issues,
such as the face should also be in a very consistent position within the images (such as the
eyes being in the same pixel coordinates), consistent size, rotation angle, hair and makeup,
emotion (smiling, angry, etc), position of lights (to the left or above, etc). This is why it is so
important to use a good image pre-processing filters before You'll need to tell the classifier
where to find the data file you want it to use. The one I'll be using is called
haarcascade_frontalface_default.xml. In OpenCV version 1.0, it's located at
[OPENCV_ROOT]/data/haarcascades/haa rcascade_frontalface_default.xml where
[OPENCV_ROOT] is the path to your OpenCV installation. For example, if you're on
Windows XP, and you selected the default installation location, you'd use [OPENCV_ROOT]
= "C:/Program Files/OpenCV" (If you're working with an older, 16-bit version of Windows,
you'd use '\' as the directory separator, instead of '/'.) It's a good idea to locate the XML file
you want to use, and make sure your path to it is correct, before you code the rest of your
face-detection program. It is very easy to use a webcam stream as input to the face recognition
system instead of a file list. Basically you just need to grab frames from a camera instead of
from a file, and you run forever until the user wants to quit, instead of just running until the
file list has run out. Grabbing frames from a webcam can be implemented easily using
function

Implementation

Step 1: Using Cv2 for image capturing
1) import cv2, time
2) img = cv2.VideoCapture(0)
3) state , pix= img.read() #takes pixel value
4) print(state) # prints true or false
5) print(pix)
6) time.sleep(5)
7) cv2.imshow('my_image',pix) #to show image
8) cv2.imwrite('Myimage.jpg',pix)
9) cv2.waitKey(0) #used to close window here we have given 0 so if any key is pressed

so it will close window
10) img.release() #stop capturing
11) cv2.destroyAllWindows()
12) import cv2, time
13) img = cv2.VideoCapture(0)
14) a=0 #use this to check total frame capture
15) while(True):
16) a=a+1
17) state,pix=img.read()#takes pixel value

gray=cv2.cvtColor(pix,cv2.COLOR_BGR2GRAY)
18) cv2.imshow('my_image',pix) #to show image
19) key =cv2.waitKey(1) #used to close window here we have given 1 so defined key

is pressed so it will close window
20) Tf key ==ord('a'):
21) break
22) print(a)
23) img.release() #stop capturing
24) cv2.destroyAllWindows()
Step 2: Implementing the Face Detection algorithm
25) import cv2, time
26) imagepath= 'F:/Code/Python/Cognizance Internship/Data sets/IMG_9468.jpg' algopath

= 'F:/Code/Python/Cognizance Internship/Data
sets/haarcascade_frontalface_default.xml' #create the object for haar-cascade

27) facecascade = cv2.CascadeClassifier(algopath)
28) image =cv2.imread(imagepath)
29) image = cv2.resize(image,(800,800)) faces = facecascade.detectMultiScale(image ,

scaleFactor = 1.1 ,minNeighbors =5 ,minSize=(30,30),flags =
cv2.CASCADE_SCALE_IMAGE)

30) print(len(faces))
31) cv2.imshow('',image)
32) cv2.waitKey(0)
33) cv2.destroyAllWindows()
34) print (faces)
35) for (x,y,w,h) in faces :
36) cv2.rectangle(image , (x,y) , (x+w , y+h) ,(0,255,0),2)
37) print(faces)
38) cv2.imshow('',image)
39) cv2.waitKey(0)
40) cv2.destroyAllWindows()
Step 3: Face Recognition through web cam

41) import cv2, time
42) img = cv2.VideoCapture(0)
43) state , pix= img.read() #takes pixel value
44) print(state) # prints true or false
45) time.sleep(3)
46) cv2.imshow('my_image',pix) #to show image
47) cv2.imwrite('Myimage.jpg',pix)
48) cv2.waitKey(0) #used to close window here we have given 0 so if any key is pressed

so it will close window
49) img.release() #stop capturing
50) cv2.destroyAllWindows()
51) imagepath= 'F:/Code/Python/Cognizance Internship/Myimage.jpg'
52) algopath = 'F:/Code/Python/Cognizance Internship/Data

sets/haarcascade_frontalface_default.xml' #create the object for haar-
cascade facecascade = cv2.CascadeClassifier(algopath)

53) image =cv2.imread(imagepath)
54) image = cv2.resize(image,(800,800))
55) faces = facecascade.detectMultiScale(image , scaleFactor =

1.1 ,minNeighbors =5 ,minSize=(30,30),flags =
cv2.CASCADE_SCALE_IMAGE)

56) print(len(faces))
57) for (x,y,w,h) in faces :
58) cv2.rectangle(image , (x,y) , (x+w , y+h) ,(0,255,0),2)
59) print(faces)
60) cv2.imshow('',image)
61) cv2.waitKey(0)
62) cv2.destroyAllWindows()

Result

In this currentwork we developed the system to process the image detection/recognition and
recognition methods which are toked as to be a bench mark. Some methods performed
consistently over different well arranged datasets whereas other methods behave very
randomly however supported average experimental results performance is evaluated, five well
arranged datasets been used for this purpose. image detection/recognition and recognition
method’s result summery is provided in table 1 and table 2 respectively whereas well
arranged datasets summery is provided in table 3. In this currentsystem Haar-like [7] have
may features reported relatively well but it's much false detection/recognition than Local
binary patterns [8] which might be consider being a future add surveillance to scale back false
detection/recognition in Haar-like [7] have may features and for the popularity part gabor
[11] is reported well as it’s qualities overcomes well arranged datasets complexity.

References

[1] image Recognition Data, University of Essex, UK, image 94,
http://cswww.essex.ac.uk/mv/all images/images94.html.

[2] image Recognition Data, University of Essex, UK, image 95,
http://cswww.essex.ac.uk/mv/all images/images95.html.

[3] image Recognition Data, University of Essex, UK, image 96,
http://cswww.essex.ac.uk/mv/all images/images96.html.

[4] image Recognition Data, University of Essex, UK, Grimace,
http://cswww.essex.ac.uk/mv/all images/grimace.html.

[5] Psychological Image sets at Stirling (PICS), Pain Expressions, http://pics.psych.stir.ac.
uk/2D_image_sets.htm.

[6] K. T. Talele, S. Kadam, A. Tikare, Efficient image detection/recognition using Adaboost,
“IJCA Proc on International Conference in Computational Intelligence”, 2012.

[7] T. Mita, T. Kaneko, O. Hori, Joint Haar-like have may features for image
detection/recognition, “Proceedings of the Tenth IEEE International Conference
on Computer Vision”, 1550-5499/05 ©2005 IEEE.

[8] T. Ahonen, A. Hadid, M. Peitikainen, image recognition with local binary patterns.
“In Proc. of European Conference of Computer Vision”, 2004.

[9] M. A. Turk and A.P. Pentland, image recognition using eigenimages, “Proceedings of
the IEEE”, 586-591, 1991.

[10] J Lu, K. N. Plataniotis, A. N. Venetsanopoulos, image recognition using LDA-
based algorithms, “IEEE Neural Networks Transaction”, 2003.

[11] L. Wiskott, M. Fellous, N. Krger, and C. Malsburg, image recognition by elastic bunch
graph matching, “IEEE Trans”, on PAMI, 19:775–779, 1997.

[12] I. Kukenys, B. McCane, it it always supportsVector Machines for Human image
detection/recognition, “Proceedings of the New Zealand Computer Science
Research Student Conference”, 2008.

[13] M. M. Abdelwahab, S. A. Aly, I. Yousry, Efficient Web-Based Facial Recognition
System Employing 2DHistogram of Oriented Gradients, arXiv:1202.2449v1 [cs.CV].

[14] W. Zhao, R. chellappa, P. J. Phillips, image recognition: A literature survey,
“ACM Computing Surveys (CSUR)”, December 2003.

[15] G. L. Marcialis, F. Roli, Chapter: Fusion of image Recognition Algorithms for
image-Based Surveillance Systems, Department of Electrical and Electronic
Engineering-Univ- ersity of Cagliari- Italy.

[16] A. Suman, Automated image recognition: Applications within law enforcement.
Market and technology review, “NPIA”, 2006.

