

 PLAGIRISM CHECKER

 A Report for the Evaluation 3 of Project 2

 Submitted by :-

KRISHNA KUMAR

 (1613101340 / 16SCSE101603)

in partial fulfillment for the award of the degree

of

Bachelor of Technology

IN

 Computer Science and Engineering

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

 Dr.P.sasikumar , M.Tech., Ph.D.,

Professor

APRIL / MAY- 2020

 Table of Content

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

1. Abstract

 1

2. Introduction

 2

3. Existing system 5

4. Proposed system

 8

5. Implementation or architecture diagrams

 12

6. Output / Result / Screenshot

 14

7. Conclusion/Future Enhancement

 16

Abstract

The number of students following programming courses is steadily increasing at the same time

as access to computers and networks is readily available. There is a Signiant minority of

students who for a variety of reasons take advantage of the available technology and illicitly

copy other students programming assignments and attempt to disguise their deception.

Software that can help tutors to detect plagiarism is therefore of immense assistance in

detecting and so helping to prevent such abuse. We design new and ancient algorithm for a

basis to such software. Our algorithm is simple to implement, and provides very ancient means

to detect plagiarized programs.

Introduction

Description

Assessment of programming courses typically involves students writing programs, either

individually or in teams, which are then marked against criteria such as correctness and style.

Unfortunately, it is very easy for students to exchange copies of code they have written. A

student who has produced working code may be tempted to allow a colleague to copy and edit

their program. This is discouraged, and is likely to be regarded as a serious disciplinary open.

However, it is easy for a lecturer to fail to detect plagiarism, especially when class sizes are

measured in hundreds of students. We have developed algorithm for detecting instances of

possible plagiarism.

Purpose

One of the reasons to use a plagiarism checker is that this software highlights the content that

is exact. In other words, you can see for yourself what sentences or words are verbatim what

the original author wrote.

Plagiarism detection software also gives percentages of similarity. Many universities use

plagiarism software like Turnitin to check papers for plagiarism. When students and

instructors use this software to check papers, a similarity percentage is given. A university

will have a standard percentage rate that is acceptable to them. Students must remain at that

percentage rate or lower for their papers to be satisfactory in regard to similarity.

Plagiarism checker software offers you proof that you have not plagiarized. Printing out or

saving an electronic copy of your plagiarism checker report can be proof to your instructor or

university that your content is original. Some instructors will ask for a copy of this report,

others will not. Keeping a copy for your records in either case can offer you protection

Motivation and Scope

Plagiarism has become very common in educational institutions. Students copy without any

hesitation other students‟ assignments, both text and source code, to complete their work in

time or to complete their work in a better way. Many students seldom care to put their time

and effort into doing the assignments on their own when it is far simpler and effortless to

copy from someone else. However, it is necessary to differentiate the original work from

plagiarized work.

There is an alarming rise in plagiarism due to the widespread use of internet. Internet is an

enormously huge repository of information which can be accessed easily from almost

anywhere. This has made it very difficult to control plagiarism. Since the

task of manually detecting plagiarism in a large document database is very tedious and time-

consuming, efforts are continuously being made to automate the process.

There exist many different plagiarism detection techniques and numerous tools based on

these techniques. There are two main categories of techniques for source code plagiarism

detection: attribute-counting-based and structure-based comparison. Attribute-counting-based

techniques consider the number of occurrences of different attributes in a file following

certain criteria and different similarity measures are used to obtain the similarity between

files. Structure-based techniques derive information on program structure and obtain

similarity scores based on this information. Section 1.4 gives a brief overview of the various

plagiarism detection techniques.

Attribute-counting algorithms are simple to implement and execute faster. Structure-based

methods, on the other hand, are more reliable since they gather details of program structure

for comparison of programs. However, structure-based methods are computationally

expensive. Hence, the aim of this research is to develop a new strategy which combines the

advantages of both the categories.

Functional requirements:-

Enable teachers to detect plagiarism and cheating in student submitted assignments. The system

reads the submitted assignments and enters them to the algorithm to find the degree of

similarity between them. Viewing visually aided cheating (similarity) reports. Teachers can

display cheating (plagiarism) report, which contains all submitted assignments and the

percentage of similarity of each assignment with others. System is capable of displaying file

content comparisons that have similarities. The system can automatically send alerts to students

detected cheating or plagiarism action, in the form of SMS alerts.

Non-Functional requirements:-

Compability. System should be compatible and can be integrated with Moodle because it will

be added as new feature to Moodle. Easy to use. Teachers will interact with the system to

generate plagiarism report through a userfriendly graphical user interface. Furthermore, the

generated reports will contain both textual and visual (bars, charts, etc.) representation for the

results.

Development requirements:-

• Hardware resources:- Personal Computer (PC), for server application. - LAN or WAN,

used to connect a computer server with client computer. - Modem for SMS Gateway

connection.

• Software resources:- Plagiarism detection system to integrate into the virtual classroom

platform. Moodle is a Web-based applications using PHP programming language, and

database applications using MySQL,so it is a system built using the PHP programming

and MySQL database. As for the SMS Gateway can be integrated into Moodle, used

Ozeki NG.

Existing system :-

Existing syetem use RAVIN KARP algorithm for pattern searching that is slow and very

time conjuming compare to the algorithm we are using in our project that is KMP.

Knuth–Morris–Pratt string-searching algorithm (or KMP algorithm) searches for

occurrences of a "word" W within a main "text string" S by employing the observation that

when a mismatch occurs, the word itself embodies sufficient information to determine where

the next match could begin, thus bypassing re-examination of previously matched characters.

and sentiment analysis use cases. Naive Bayes Algorithm can be built using Gaussian,

Multinomial and Bernoulli distribution. This algorithm is scalable and easy to implement for

the large data set.

Naive:-

Naive Bayes Algorithm is one of the popular classification machine learning algorithms that

helps to classify the data based upon the conditional probability values computation. It

implements the Bayes theorem for the computation and used class levels represented as

feature values or vectors of predictors for classification problems. This algorithm is a good fit

for real-time prediction, multi-class prediction, recommendation system, text classification,

and sentiment analysis use cases. Naive Bayes Algorithm can be built using Gaussian,

Multinomial and Bernoulli distribution. This algorithm is scalable and easy to implement for

the large data set.

RABIN KARP:-

Proposed model:-

LCS (LONGEST COMMON SUBSEQUENCE)

LCS Problem Statement: Given two sequences, find the length of longest subsequence

present in both of them. A subsequence is a sequence that appears in the same relative order,

but not necessarily contiguous. For example, “abc”, “abg”, “bdf”, “aeg”, ‘”acefg”, .. etc are

subsequences of “abcdefg”.

In order to find out the complexity of brute force approach, we need to first know the number

of possible different subsequences of a string with length n, i.e., find the number of

subsequences with lengths ranging from 1, 2,. .n -1. Recall from theory of permutation and

combination that number of combinations with 1 element are nC1. Number of combinations

with 2 elements are nC2 and so forth and so on. We know that nC0 + nC1 + nC2 + … nCn = 2n.

So a string of length n has 2n-1 different possible subsequences since we do not consider the

subsequence with length 0. This implies that the time complexity of the brute force approach

will be O (n * 2n). Note that it takes O(n) time to check if a subsequence is common to both

the strings. This time complexity can be improved using dynamic programming.

KMP (KNUTH-MORRIS-PRAT):-

 Knuth–Morris–Pratt string-searching algorithm (or KMP algorithm) searches for

occurrences of a "word" W within a main "text string" S by employing the observation that

when a mismatch occurs, the word itself embodies sufficient information to determine where

the next match could begin, thus bypassing re-examination of previously matched characters.

and sentiment analysis use cases. Naive Bayes Algorithm can be built using Gaussian,

Multinomial and Bernoulli distribution. This algorithm is scalable and easy to implement for

the large data set.

Screenshots :-

System Architecture:

• Use-Case Diagram

• Class Diagram

Conclusion

The conclusion of the design and implementation of plagiarism detection system on the

programming task in a virtual classroom is that software plagiarism detection systems that are

designed and tested can make or process any of the following.

• Plagiarism detection systems programming tasks in a virtual classroom with Moodle

allows the lecturer to know the existence of similarities among students that if the task

is done manually requires considerable effort, especially when the number of students

attending is quite a lot.

• Plagiarism detection systems programming tasks in a virtual classroom with Moodle

is able to show the percentage of similarity in student assignment, whether the

similarity between the two files as well as similarities between one file into many

files.

• In addition to show the percentage of similarity detection results, the system was able

to show details of the contents of the detected files have similarities.

• System of alerts that are designed in this thesis, to address its students with a more

efficient in terms of time, so that students can receive alerts/information as soon as the

detection process is completed. Constraints faced in making the application of

plagiarism detection system on the programming task in a virtual classroom with

Moodle is on the submission of detail resemblance of the detected content file,

because the submission of this information must go through the file attachment

facility cannot be done on medium SMS.

	Computer Science and Engineering

