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 Abstract 

Learning-based traffic control algorithms have recently been explored as an 

alternative to existing traffic control logics. The reinforcement learning (RL) 

algorithm is being spotlighted in the field of adaptive traffic signal control. However, 

no report has described the implementation of a RLbased algorithm in an actual 

intersection. Most previous RL studies adopted conventional traffic parameters such 

as delays and queue lengths to represent a traffic state, which cannot be exactly 

measured on-site in real-time. Furthermore, the traffic parameters cannot fully 

account for the complexity of an actual traffic 

 state. The present study suggests a novel artificial intelligence that uses only video 

images of an intersection to represent its traffic state rather than using handcrafted 

features. In simulation experiments using a real intersection, consecutive aerial video 

frames fully addressed the traffic state of an independent 4-legged intersection, and 

an imagebased RL model outperformed both the actual operation of fixed signals and 

a fully actuated operation. 
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Introduction 

An adaptive traffic signal control (ATSC) depends upon logic that ranges from the 

simplest example wherein green lights are assigned for each movement on a longest-

queue-first basis to the most complex signal control system that depends on optimal 

control theory. Learning-based ATSC has recently emerged as an alternative to the 

existing ATSCs, and the reinforcement-learning (RL) algorithm is receiving the 

greatest share of the spotlight after it was used to solve many difficult dynamic 

problems. A RL agent can control traffic signals for a single intersection or a group 

of intersections in real-time by continuously improving its control performance. In 

addition, the RL-based model can be trained by self-generating data examples, unlike 

many supervised learning technologies that require a predetermined set of training 

data. Several studies (Abdulhai and Kattan, 2003; Bazzan and Klgl, 2014; Bazzan, 

2009; Liu, 2007; Mannion et al., 2015) have reviewed the application of RL to solve 

traffic signal control problems, and have concluded that RL-based traffic control 

performs better in simulations involving various traffic control circumstances, when 

compared with the existing traffic control schemes. These studies also concluded that 

the RL technology will dominate traffic control in the near future. However, the 

reality is that intersection controllers with an RL-based algorithm are rarely found in 

the real world, despite a plethora of related studies based on simulation experiments. 

The reason is two-fold. First, recognizing traffic states is a key to the communication 

between an RL agent and its surrounding environment. Such communication allows 

an agent to take the optimal action continuously (see the next section). Almost all 

previous RL studies have adopted conventional traffic parameters such as delays and 

queue lengths to represent the entire traffic state (El-Tantawy et al., 2014; Abdoos et 

al., 2011; Abdoos at al., 2014; Abdulhai et al., 2003; Arel et al., 2010; Bakker et al., 

2010; Jin and Ma, 2015; and Isa, 2006). The noted exceptions are the few studies that 
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have used vehicular positions from cellular automata simulation (Wiering, 2000; 

Khamis and Gomaa, 2014). However, both the traffic parameters and the vehicle 

position data cannot be accurately measured on-site in real-time under existing traffic 

surveillance systems. Installation of these models into the real world must wait until 

some form of vehicle-to-junction communication is available. However, a world 

where every vehicle will be equipped with an onboard unit for this type of 

communication is not expected any time soon. The reality is that the existing RL-

based traffic control models make sense only for virtual simulation environments, 

although they chose real intersections as the target site for simulation.  

Second, even if an accurate measure of the traffic parameters were possible, there 

remains the more fundamental question of whether known traffic parameters such as 

delays, queue lengths, throughput, travel time, etc., can fully account for a complex 

traffic state. Most researchers might believe that the conventional list of traffic 

parameters can fully represent a real traffic state. However, the reality is that much 

information beyond what the conventional parameters can explain has long been 

ignored in traffic engineering.   

Recently, the recognition of computer vision has met with great success (Krizhevsky 

et al.,2012; Simonyan and Zisserman, 2014; and Szegedy et al., 2015). Deep-

learning-based algorithms have outperformed, in part, the human ability to recognize 

human faces, animals, and objects.  

The present study began with an expectation that a deep-learning model could be 

successful in recognizing traffic states, which should be much less complex than 

distinguishing human faces or recognizing medical CT images. The present study 

suggests a novel RL-based traffic control methodology that represents both traffic 

states and rewards based solely on aerial images of an intersection. To control traffic 

lights, the present study utilized cutting edge technology that combines a RL learning 

model with a deep convolutional neural network (CNN). This combination is being 
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regarded as a main breakthrough for the future of artificial intelligence (Silver, 

2015). The present study is organized as follows. The next section introduces the 

basics of RL-based control problems and a deep-learning model to illustrate the 

states of an environment. The third section explains how to set up an RL-based 

traffic signal controller for a 4-legged intersection. Results from simulation 

experiments include comparisons with both an actual fixed-signal operation and a 

fully-actuated operation, which are summarized in the fourth section. The last section 

draws conclusions and suggests further studies to apply the present methodology to 

the real world of traffic control. 
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Reinforcement learning and a convolutional neural network  

The Markov decision process (MDP) is the target problem to be solved by RL. The 

MDP represents a mechanism wherein an agent takes an action continuously by 

following an optimal policy to maximize its expected future reward, while interacting 

with the environment affected by the action. The expected future reward is a function 

of both the current traffic state and the action taken under the state, which is called a 

Q-function, and more specifically represents an action-value function. 

Q(st,at) = E[rt+1,xt+2,y
2rt+3+…|st,at] (1)  

where, st is the state of an environment at a time interval t, at is an action that is taken 

at a time interval t, rt+1is a reward after taking at , x is a discount rate for future 

rewards, Q() denotes the Q-function, and [] E is an expectation symbol. 

 The most important point in a MDP is how an agent perceives the state of the 

environment that surrounds it. Most researchers have abstracted the state of an 

environment by using only a few handcrafted features. Recently, Mnih et al. (2015) 

proposed a revolutionary method to force an agent to recognize the state of an 

environment by applying a RL algorithm to the playing of several classic video 

games. That study provided an agent with only raw video images at a pixel level to 

represent a game state without offering any other features or any other rules for 

playing the game. The raw image frames were just an input for a deep convolutional 

neural network (CNN). A deep CNN model was set up to approximate the Q-

function from input images. The proposed Q-learning algorithm, a RL algorithm 

utilizing Q-function updates (Baird, 1995), falls into the category of “model-free” 

and “off-policy” learning algorithms. “Model-free” means that the transition 

probabilities between states are unknown in the MDP to be solved, and “off-policy” 

refers to learning about a greedy policy (a=arg max Q(St+1,a`|w)) along with a 

random selection at a certain exploration rate. On the other hand, “on-policy” 

learning algorithms such as SARSA and SARSA ( lemda ) require the next action to 
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be chosen from a given policy. Namely, Q-learning algorithm updates the action-

value function regardless of the current action, but with respect to the action that 

maximizes the value of the next state-action pair, while SARSA learns the value of 

the state-action function on the basis of the performed action (Corazza and Sangalli, 

2015). However, when an agent always chooses the best action, these two algorithms 

converge to the same solution.   

The present study adopted a Q-learning algorithm in accordance with Minh (2015) 

that has shown great success in implementing classic computer games. The details of 

Q-learning procedures will be addressed in the next section. The loss function of a Q-

learning algorithm that can be minimized can be expressed in a very simple least-

square form as in Eq. (2). When the loss function is minimized, the Bellman equation 

holds. Thus, the Q-learning algorithm converges to the condition of a Bellman 

equation.  

  L(w)=E[(rt+1+ymax Q(st+1,a`|w) - Q(st+1,a`|w))2] (2) 

where,Q(s,a|w) denotes an approximated Q-function, and, thus, w is a set of weight 

parameters that are necessary in order to parametrize the original Q-function.        

The stochastic gradient descent (SGD) algorithm is known to work well for 

minimizing the loss function. A SGD algorithm is different from the general 

gradient-descent algorithm in that it repeatedly updates parameters of the objective 

function by using a gradient that is computed based on either a single example or a 

subset of samples (=mini-batch). It is well known that repeating the update of weight 

parameters based on a gradient derived from a single training example (or mini-batch 

sample) guarantees reaching the global minimum if a large amount of training 

examples is available and they are reshuffled for every epoch. A SGD algorithm is 

the best fit to minimize the loss function of a MDP problem with an incumbent pair 

ymax Q(st+1,a`|w) at each time interval, regarding the pair as a single example of both 

feature and label. That is, the algorithm made it unnecessary to evaluate the objective 
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function [Eq. (2)], which requires computing the average of (rt+1+ymax Q(st+1,a`|w) - 

Q(st+1,a`|w))2 across all possible combinations of < st ,at, rt+1,st=1 >.  

Unfortunately, a Q-learning algorithm does not always guarantee convergence to a 

global minimum when the Q-function is approximated by a nonlinear function, and, 

instead, is more likely to be stuck in a local minimum. This instability stems from the 

fact that consecutive states of a MDP are likely to be correlated in nature, which 

might violate the condition of a SGD that requires a random order of data examples. 

An RL-based algorithm has the advantage of receiving training examples 

automatically as the algorithm is running. On the other hand, there is a drawback 

whereby the examples cannot be reshuffled in advance. Another cause of the 

instability is the correlations between the action-values and the target values. To 

tackle these problems, the present study adopted three effective measures proposed 

by Mnih et al. (2015).   

First, the target Q-function was separated from the main Q-function to be updated. 

Weight parameters of the target Q-function were not updated at every time interval, 

but were fixed until they could be updated on a long-term basis. When updating the 

target Q-function, the weights were set identical to those of the main Q-function at 

that time interval. Thus, in Eq. (3), weight parameters of the target Q-function were 

fixed values rather than determinant variables:  

L(w)=E[(rt+1+ymax Q(st+1,a`|w) - Q(st,at|w))2] (3) 

 where w_ is the weight parameter of the target Q-function to be updated on a long-

term basis.      

Second, rather than immediately utilizing the state-transition data < st ,at, rt+1,st=1 >.  

acquired at each time interval, the data were added to a replay memory with a 

predefined size. At every time interval, a certain number of state-transition examples 

were chosen randomly from the replay memory to update the weights. Therefore, the 

algorithm could avert a correlation between consecutive environmental states. The 
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last tip for guaranteeing the convergence of the algorithm was to confine the reward 

value to either +1 or -1, which prevented the objective function value from either 

diverging or oscillating.  

An RL algorithm with a deep CNN model will include several hyper-parameters that 

affect the control performance. These hyper-parameters include the number of 

convolution layers, the number of filters for each convolution layer, the filter and 

stride size for each convolution layer, the number of hidden layers next to the last 

convolution layer, and the number of nodes (=neurons) within each non-convolution 

layer. In the present study, the hyper-parameters of a deep CNN were not determined 

in a rigorous manner such as the use of a grid search, because of the burden of 

computing time. Instead, these were chosen on a trial-and-error basis. The starting 

point to determine the hyper-parameters was to refer to those used by Mnih et al. 

(2015). In addition, a useful trick was adopted for saving computation time. The 

output layer of the CNN had the same number of nodes as the number of available 

actions, so that a single feed-forward evaluation of a CNN simultaneously 

determined the Q-function values for all actions. In this way, there was no need to 

establish a separate CNN for each action 

 

 

 

 

 

 

 

 

 



14 
 

Reinforcement learning for traffic signal control 

 All previous trials to employ RL to control traffic lights overlooked the possibility of 

losing state information, when representing a traffic state with only a few traffic 

parameters such as traffic flow, delay, and queue length. Another problem arose 

when it became apparent that although these traffic parameters could sufficiently 

account for a traffic state, it was impossible to perfectly measure them using current 

surveillance systems. In the present study, these two problems necessitated the use of 

raw video shoots to represent a traffic state. A deep CNN was adopted to 

approximate the Q-function 

of an RL-based traffic 

signal control, which was 

based solely on the video 

images of an intersection.  

Fig. 1 shows a MDP that 

was applied to the control 

of traffic lights at an 

intersection.  

An artificial agent in 

charge of traffic signal 

control executed an action at the beginning of every time interval, interacting with 

the environment, so that the expectation of the discounted sum of future rewards 

would be maximized. In other words, the agent chose a signal phase at every time 

interval in an expectation that the intersection would be cleared in the future. The 

number of waiting and approaching vehicles (WAVEs) could be an appropriate index 

to derive an immediate reward where delay-related indices are not available. The best 

reward of an action (signal phase) taken would be a decrease in the maximum 

number of WAVEs across all lanes of an intersection, which would be a more 
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comprehensive measure than a decrease in the maximum queue length since the latter 

considers only stopped vehicles. The present study adopted a decrease in the 

maximum number of WAVEs as the reward.  

An artificial agent in charge of traffic signal control was assumed to change signal 

phases according to the reward (=reduction in the maximum number of WAVEs) and 

the traffic state (=images of the intersection). The agent got the reward value of +1 if 

the maximum number of WAVEs across every movement at the beginning of the 

current time interval was smaller than that at the beginning of the previous time 

interval, whereas it was given a reward value of -1 if the maximum number of 

WAVEs at the beginning of the current time interval was larger than that at the 

beginning of the previous time interval. The reward value was set at 0 if there was no 

change in the maximum number of WAVEs. Although measuring the number of 

WAVEs or the queue lengths is not trivial in the real world, almost every study of 

RL-based traffic signal control has overlooked this difficulty. Of course, the queue 

length can be measured if the existing image processing tools use the background 

subtraction method (Milla et al., 2013), but it is not easy to measure the number of 

WAVEs using only simple images without predefined rules. A deep CNN can be re-

adopted to estimate the WAVE number. Of course, this involved a large amount of 

intersection photos labeled with the number of WAVEs. It should be noted that since 

this supervised learning is conducted offline it does not place a burden on the main 

RL learning procedure. The CNN model to count vehicles was totally independent of 

the other CNN model that parametrized the Q-function within a RL algorithm for 

traffic signal control.  

Prior to preparing the present study, the author was able to count vehicles on an 

urban road based solely on simple photos (Chung and Sohn, 2017). In this preceding 

work, labels were manually attached to photos of a 145 m-long approach to a real 

intersection located in Seoul. Fig. 2 shows two representative photos of the 
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intersection approach. 4,632 photos were chosen for a test, and the remaining photos 

were used to train a deep CNN model. As a result of the test, the XY-plot of 

observed and estimated values seems very promising [see Fig. 2 (c)]. The mean 

absolute error (MAE) was only 1.57 vehicles across the test dataset, although there 

were many occlusions. In particular, it was surprising that vehicles behind trees or 

traffic signs were counted properly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is apparent that the proposed vehicle counting model can be successfully 

incorporated with RL-based traffic control models in the real world. However, for 

brevity the WAVE number was directly extracted from a traffic simulator to compute 

the immediate reward in this study. A RLbased learning algorithm for traffic control 

takes a long time to reach a stable condition. While training the model in the real 
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world, drivers might experience a very long queue due to random exploration. 

Apparently, they do not expect this type of imposition. It should be noted that this 

unexpected delay occurs not only for the present model, but also for every traffic 

signal control model that depends on a RL-based learning algorithm. A plausible way 

to circumvent this problem is to fine-tune a model using a reliable traffic simulator 

before installing it in a real intersection.   
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Fig8 shows the entire procedure of a RL-based traffic signal control based on 

simulation. Details of the simulation environment and the hyper-parameters will be 

described in the next section. When selecting the next signal phase (=action), 

exploration is inevitable to allow a model to self-learn through experience. A phase 

was chosen randomly with a predefined probability (= e ). Otherwise, the phase that 

had the maximum Q-function value was selected with the probability of 1e . This is 

called the e -greedy choice of an action. For the present study, the exploration 

probability varied as time passed. At the initial stage, the probability was set as a 

value close to 1 so that a sufficient number of trial-and-error trials could be explored, 

while the probability converged to 0 after a sufficient number of iterations [see Table 

1 (a)].  

Table 1. Model specifications 

(a)  Hyper-parameters of the RL model 

 

Hyper-

parameter Description  Applied value 

         

N   Number of episodes 50    

         

  

Simulation time step 

 

0.2 second      

    

Tmax Simulation period for each episode  20,000 seconds 

       

T    Time interval  20 seconds 
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T

a  Amber time  3 seconds 

          

 

max Initial probability of exploration 

1.

0 

   

     

 

min 

Final probability of exploration 

0.

1    

         

       

E    

Decaying parameter of exploration 

probability 400,000 

       

D   Size of replay memory 

2,00

0  

        

M  Size of mini-batch sample 32    

      

C   Cycle for updating target Q-function  20,000 seconds 

           

   (b)  Hyper-parameters of deep CNN       

    

Layer Hyper-parameters  Applied value 

           

Input layer Resolution of input image 

 16

8 

 168 (Black-and-

white)   

           



20 
 

    Number of input images for each time  1     

    interval       

           

1 

s

t hidden layer Filter size  8  8  

          

    Number of filters  

1

6    

        

    Stride size  

(4, 

4)  

        

    Activation function  

ReL

u  

     

2nd hidden 

layer Filter size  4  4  

    Number of filters  

3

2    

        

    Stride size  

(4, 

4)  

        

    Activation function  

ReL

u  
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3 

r

d 

hidden 

layer Filter size  3  3  

          

    Number of filters  

6

4    

        

    Stride size  

(1, 

1)  

        

    Activation function  

ReL

u  

       

4t

h 

hidden 

layer Number of nodes  

51

2   

    Activation function  

ReL

u  

        

Output layer Number of nodes  4     

       

    Activation function  Linear 

           

 

A deep CNN was adopted as an approximation function for the original Q-function 

of the proposed RL-based traffic control model. Each layer of the CNN was 

rearranged with overlapping tiles to abstract localized characteristics of an image 

(LeCun et al., 2015), which played a crucial role in converting images of traffic 
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states into an action-value. The network structure and application skill was dealt with 

in this paper, as described in the next section.  
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Simulation design 

 The proposed architecture for simulation experiments is shown in Fig. 3. The main 

logic for an RLbased traffic signal control was coded by Python 2.7 with the library 

Numpy for handling arrays efficiently. Theano, another library that is used to 

facilitate computations with large-scale matrices on a graphical processing unit 

(GPU), was running in the background. Keras, a deep-learning library that depends 

on either Theano or Tensor-Flow, was adopted to train a CNN to approximate the Q-

function based on animation images. Instead of a real traffic operation, the present 

study utilized Vissim, a commercial traffic simulator, as an environment. The library 

WinCom was employed for the main program written in Python to interface with a 

Vissim object model at the code level. Except for Vissim, the rest of the components 

were all open-source libraries. This architecture was invented during the course of 

the present study to conduct RL-based traffic control simulations.  

A real intersection located in Seoul, Korea was chosen as a test-bed for the 

simulation. Fig. 4 shows both a real photo and an animation image of the test-bed. 
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Complex backgrounds should be eliminated from real photos prior to being inputted 

for the CNN model. Simple imageprocessing skills can accommodate this process 

when adopting real photos in the future. Unfortunately, there is no traffic simulation 

tool that provides an animation video in virtual reality. Most commercial simulation 

tools provide simple animation, such as that seen in classic video games. In the 

present study, a single image at the end of each time interval was used as a traffic 

state for the interval. The actual 4-phase signal was applied to the simulation, but the 

order of the phases was varied by the proposed algorithm. Of course, an amber time 

was offered when signal phases were switched. If the same action is chosen 

consecutively, the previous signal phase lasts until the next action is taken without 

the amber time. In order to construct input traffic volumes, observed peak-hour 

traffic volumes were altered by up to ± 30% to consider both non-peak traffic 

conditions and non-recurrent perturbations. Input traffic volumes were changed every 

2,000 seconds during an episode. Under the simulation conditions, the proposed RL-

based control algorithm changed the order and the duration of the signal phases.      

Table 1 shows the hyper-parameters adopted in the simulation experiment for both 

Qlearning and the CNN. The algorithm was trained for 20,000 simulation seconds (= 

about 5 hours 30 minutes) for each episode. There were 50 episodes simulated for 

training the model. Thus, the total simulation time was tantamount to 1,000,000 

seconds. During the first 900,000 seconds, the exploration rate was gradually reduced 

from 100 to 10%. The 10% rate was maintained during the remaining 100,000 

seconds. Performance measures for the intersection operation were collected during 

the last 100,000 seconds. The phase was selected every 20 seconds. The amber time 

was applied whenever a signal phase changed, which was consistent with the actual 

operation (=3 seconds) on the testbed. The mini-batch size was set at 32, which 

equated to the number of transition examples from which a gradient was computed at 

each time interval. Weight parameters of the main Q-function were updated at the 
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beginning of each episode. The random seed of traffic simulation was also altered at 

the beginning of each episode.  

The principle that a deep CNN approximates the main Q-function cannot be 

intuitively described, but can be partially accounted for by introducing how it 

extracts features from images and links them into the main Q-function value that 

represents the mean cumulative reward in the future for each action. First, it was 

necessary to set up the specifications of the deep CNN adopted in the present RL 

model. The input layer corresponded to a 168*168 input image. The output layer had 

4 nodes, each of which was required to correspond to each phase (=action). Besides 

an input layer and an output layer, three convolutional hidden layers were included, 

as listed in Table 1 (b). The first hidden layer had 16 8*8 filters. Each filter of the 

first hidden layer extracted a specific feature while sliding through an input image 

with a stride value of 4 in both horizontal and vertical directions. Basically, it is not 

trivial to recognize which feature can be extracted by a specific filter. However, the 

following example is plausible. The first filter would derive a rectangular feature that 

represents a vehicle, regardless of where the vehicle resides in the image, and the 

second filter would elicit a half-circle feature that represents a vehicle’s front and end 

parts, and so on. The second hidden layer has 32 4*4*16 filters. Each filter of the 

second hidden layer could extract more complex features form 16 different feature 

matrices that filters of the first hidden layer have created. Continuously, filters of the 

second hidden layer slide through feature matrices of the first hidden layer with the 

predefined stride value. The third hidden layer has 64 3*3*32 filters, each of which 

also extract a higher-level feature from the second hidden layer. The stride value that 

filters of the third layer use is 1.  

The last hidden layer with 512 nodes was fully connected from the last convolutional 

hidden layer, which was then linked to the output layer with 4 nodes. The nodes 

within each convolutional hidden layer were activated by a rectified linear unit 
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(ReLu), while the last output nodes were activated linearly. The activation based on 

ReLu was a great breakthrough for deep learning (Nair and Hinton, 2010). Fig. 5 

depicts the structure of the proposed deep CNN. An “RMSprop” algorithm was 

adopted to train the CNN with a learning rate of 0.00025. The details of this 

algorithm are outlined by Dauphin et.   

A CNN plays a key role in representing a traffic state as an input for the main Q-

function, and its hyper-parameters affect the overall performance of the overall RL 

learning. The hyperparameters listed in Table 1 (b) were chosen on a trial-and-error 

basis. The final hyper-parameters were determined after testing as many plausible 

combinations of hyper-parameters as possible. The initial reference of the hyper-

parameters was selected from those adopted by Minh et al. (2015).  

The computing environment of the present simulation was as follows. The computer 

main memory was 128 GB. Python main logic and traffic simulation were 

implemented on two CPUs with the following specifications: Intel Xeon(R) CPU E5-

2697 v2 @ 2.7GHz. There were 48 available CPU cores, which exceeded the 

maximum number of cores (=32) that Vissim allows. The deep CNN was trained on 

a single GPU. The GPU was a NVIDIA Quadro M6000 with a 12 GB GDDR5 

memory. Ironically, a graphic accelerator was used to train the deep net, whereas the 

animation was run on CPU cores. It should be noted that, without a GPU, training a 

large-scale deep net cannot be conducted within a realistic window of computing 
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time. Under this computing environment, it took, on average, 48.36 minutes to run a 

single episode. The total computation time for 50 episodes was tantamount to 40 

hours and 20 minutes.   
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Simulation results  

Simulation results were collected during the last 100,000 seconds with the 

probability of exploration fixed at 10%. As shown in Fig. 6, the average Q-function 

value across 4 phases converged to a certain value, although the trend was not 

smooth. The solid line in Fig. 6 indicates the fitting result from the 6th order 

polynomial function.  

Three performance indices were recorded for each of the 10 time intervals (200 

seconds):  delay, vehicle throughput, and the maximum queue length across all lanes. 

In addition to the convergence of the main Q-function value, Fig. 7 provides more 

intuitive evidence of the convergence with respect to the three chosen performance 

indices. Both the maximum number of WAVEs and the average delay converged as 

the simulation time passed. In the initial stage of learning, both indices fluctuated 

widely but became calm as the simulation time passed, which was the main reason 

that simulation experiments preceded the field test. Regarding the vehicle 

throughput, the variance was reduced considerably after learning, while the mean 

value did not change. The solid line in Fig. 7 indicates the moving average of 100 

previous time intervals.     
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The actual operation of the test-bed was used as a reference for comparison. The test-

bed was a 4-legged intersection operated by a fixed-signal plan. The cycle length was 

140 seconds. Signal times were assigned to four different phases: 53(3), 23(3), 35(3), 

and 17(3) seconds. The figures within parenthesis indicate an amber time. These 

signal settings were determined based on observed traffic volumes according to the 
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capacity manual. A fully actuated signal operation scenario was also set up to be 

compared with the proposed RL-based algorithm. Vissim APIs fully supported 

establishing the scenario. The structure of the fully actuated signal scenario is 

summarized in Table 2. For both the fixed and fully actuated operations, the same 

traffic volumes were adopted as used in the RL-based simulation, which were altered 

by up to ±30% from the real peak traffic volumes. 

Table 2. Structure of the fully actuated signal 

operation  

(a)  Applied parameters  

   

Detector Length (m)  2 

   

Loss time (sec)  4 

   

Headway (sec)  2 

   

Average vehicle length (m)  5.5 

   

 

(b)  Detector locations 

 

   Direction 

Distance from stop-line to 

detector 

     

    45m 
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    50m 

     

    30m 

     

    40m 

     

    30m 

     

    

35m     

     

 

 

(c) Minimum and maximum green times 

 

Phase 

Minimum Max green (sec) 

green (sec) (=Actual fixed signal)  

   

(1) 

18 53(3) 

  

   

(2) 

20 23(3) 

  

   

(3) 22 35(3) 
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(4) 

24 17(3) 
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Fig. 8  shows the three performance indices for the three signal control schemes: the 

RL-based control, the actual fixed operation, and the fully actuated signal operation. 

The queue length was measured at the beginning of each time interval, while the 

remaining two indices were averaged across values during 10 time intervals. All 

three mean values of the RL–based control during the last 100,000 seconds of 

simulation outperformed those from the actual operation and the fullyactuated 

operation. In particular, it was surprising that the average delay was reduced by more 

than 23% when compared with the actual operation. The mean of the maximum 

WAVE of the learning-based algorithm was also smaller than those of both the actual 
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and fully actuated operations by about 21 and 12%, respectively. The levels of 

vehicle throughput during a particular time interval did not differ.       

Contrary to the comparison of mean values, the maximum values in delay showed 

quite different results. The maximum delay of the RL-based control was 1.86-fold 

that of the maximum delay of the fully actuated operation and 1.55-fold that of the 

maximum delay of the actual operation. For the RL-based control, however, the 

frequency of encountering an extremely large delay was at most 3.4% when counting 

the number of occurrences where a delay from the RLbased control exceeded the 

maximum delay of fully-actuated operation (=39.5 sec). On the other hand, regarding 

the WAVEs, the maximum value (15 veh) from the RL-based algorithm was almost 

the same as those from both the actual and fully-actuated operations. The standard 

deviation (2.0 veh) in the maximum number of WAVEs for the RL-based learning 

algorithm was slightly smaller than that for the actual fixed operation (2.1 veh) and 

that for the fully actuated operation (2.2 veh).       

The fluctuations in delay stemmed from the fact that the present study set the reward 

of the RL as reducing the maximum number of WAVEs instead of minimizing 

vehicle delay. The proposed algorithm depended upon no delay-related measure 

unlike many other previous RL studies that adopted the delay as a reward or a state. 

In reality, the delay is only an imaginary index because it could not be measured 

accurately in the field without an advanced communication-based surveillance 

system. As mentioned earlier, this kind of surveillance system cannot prevail in the 

foreseeable future.   

 Deep-learning models have been criticized by many researchers as resembling a 

black box. The present study largely depended on a deep CNN model, and will not 

escape this criticism. The following explanation is intended to be a plausible answer 

to such criticism. Although it is impossible to account for the intrinsic mechanism in 

which the proposed deep CNN model was operating, some evidence can be provided 

to show that the model recognized traffic states much as a human would. Table 3  
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Table 3. Traffic state vs. Q-function 

 

Traffic state Phase Q-function 

   

  3.00 

   

  3.15 

   

  4.24 

   

  2.97 

   

  2.98 

   

  3.24 

   

  2.92 

   

  2.77 

   

  3.50 

   

  3.15 

   

  2.99 
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  2.46 

   

  2.69 

   

  2.40 

   

  2.74 

   

  3.00 

   

  

shows 4 typical cases of mapping between current traffic states and the 

corresponding Q-function values estimated by the proposed deep CNN model. 

According to the proposed model, the next phase was determined by the output node 

that possessed the maximum Q-function value. According to the figure, the next 

phase choice the Q-function made was consistent with human intuition.     
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Conclusions  

This study is the first to adopt an image-based RL algorithm for traffic signal control. 

All other previous attempts to use a RL-based signal control algorithm depended 

upon the existing traffic parameters measured from detectors to represent a traffic 

state. Apparently, a RL model based solely on images outperformed the actual and 

fully actuated operations of an intersection in all three performance measures. The 

average delay was reduced by more than 23% when compared with the actual 

operation. The mean of the maximum WAVE of the learning-based algorithm was 

also smaller than those of both the actual and fully actuated operations by about 21 

and 12%, respectively. The levels of vehicle throughput during a particular time 

interval did not differ.      

Despite superiority, the average delay from the proposed model fluctuated more than 

those from the other two reference operations. Finding hyper-parameters that will 

guarantee stability in delays is inevitable with further study. After determining the 

hyper-parameters that will guarantee stability in delays, the model should be trained 

in the field by using real video over a test-bed intersection.   

Furthermore, the present study has a limitation whereby it could be applied only to a 

single independent intersection. New simulation experiments are currently under 

construction to jointly control closely spaced intersections. If a single agent were 

assumed, the present algorithm could be altered slightly to accommodate increases in 

state input and actions. A multi-agent RL algorithm would require multiple deep 

CNNs. The obstacle for both approaches would be the burden of computation time. 

Multiple GPUs are now being tuned in parallel to overcome this problem.  

The ultimate goal is an image-based artificial intelligence that can exceed that of 

both humans and those of the existing advanced technologies. That goal is a distant 

one, but this study has taken the first step.  
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