
1

TRAFFIC MANAGEMENT WITH AI
(ARTIFICIAL INTELLIGENCE)

A Project Report of Capstone Project - 2

Submitted by

ANKIT KUMAR

(1613101142)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING SCIENCE

Under the Supervision of

Mr. Dhruv Kumar, Asst. Prof

May/June - 2020

2

SCHOOL OF COMPUTING AND SCIENCE AND
ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “ TRAFFIC MANAGEMENT WITH AI” is the

bonafide work of “ ANKIT KUMAR (1613101142)” who carried out the project

work under my supervision.

SIGNATURE OF HEAD

 SIGNATURE OF SUPERVISOR

Dr. MUNISH SHABARWAL,

PhD (Management), PhD (CS)

Professor & Dean,

School of Computing Science &

Engineering

Mr. Dhruv Kumar,

M.Tech.,

Asst. Professor

School of Computing Science &

Engineering

3

TABLE OF CONTENTS

CHAPTER
NO.

TITLE P.NO.

 ABSTRACT

 LIST OF TABLES

 LIST OF FIGURES

1. INTRODUCTION

2. REINFORCEMENT LEARNING AND A

CONVOLUTIONAL NEURAL NETWORK

3. REINFORCEMENT LEARNING FOR TRAFFIC

SIGNAL CONTROL

4. SIMULATION DESIGN

5. SIMULATION RESULTS

6. CONCLUSION

4

 Abstract

Learning-based traffic control algorithms have recently been explored as an

alternative to existing traffic control logics. The reinforcement learning (RL)

algorithm is being spotlighted in the field of adaptive traffic signal control. However,

no report has described the implementation of a RLbased algorithm in an actual

intersection. Most previous RL studies adopted conventional traffic parameters such

as delays and queue lengths to represent a traffic state, which cannot be exactly

measured on-site in real-time. Furthermore, the traffic parameters cannot fully

account for the complexity of an actual traffic

 state. The present study suggests a novel artificial intelligence that uses only video

images of an intersection to represent its traffic state rather than using handcrafted

features. In simulation experiments using a real intersection, consecutive aerial video

frames fully addressed the traffic state of an independent 4-legged intersection, and

an imagebased RL model outperformed both the actual operation of fixed signals and

a fully actuated operation.

5

List of tables

1. Model specifications

a. Hyper-parameters of the rL model

b. Hyper-parameter of deep CNN

2. Structure of the fully actuated signal operation

a. Applied parameters

b. Detector locations

c. Minimum and maximum green times

3. Traffic state vs. Q-function

6

List of figures

1. MDP for traffic signal control at an intersection

2. Counting vehicle in urban arterial

3. Simulation architecture

4. Test-bed images

5. The structure of deep CNN for Q-function approximation

6. Trend of average Q-function values according to simulaation time

7. Convergence of the algorithm w.r.t the chosen indices

8. RL Main Logic

7

Introduction

An adaptive traffic signal control (ATSC) depends upon logic that ranges from the

simplest example wherein green lights are assigned for each movement on a longest-

queue-first basis to the most complex signal control system that depends on optimal

control theory. Learning-based ATSC has recently emerged as an alternative to the

existing ATSCs, and the reinforcement-learning (RL) algorithm is receiving the

greatest share of the spotlight after it was used to solve many difficult dynamic

problems. A RL agent can control traffic signals for a single intersection or a group

of intersections in real-time by continuously improving its control performance. In

addition, the RL-based model can be trained by self-generating data examples, unlike

many supervised learning technologies that require a predetermined set of training

data. Several studies (Abdulhai and Kattan, 2003; Bazzan and Klgl, 2014; Bazzan,

2009; Liu, 2007; Mannion et al., 2015) have reviewed the application of RL to solve

traffic signal control problems, and have concluded that RL-based traffic control

performs better in simulations involving various traffic control circumstances, when

compared with the existing traffic control schemes. These studies also concluded that

the RL technology will dominate traffic control in the near future. However, the

reality is that intersection controllers with an RL-based algorithm are rarely found in

the real world, despite a plethora of related studies based on simulation experiments.

The reason is two-fold. First, recognizing traffic states is a key to the communication

between an RL agent and its surrounding environment. Such communication allows

an agent to take the optimal action continuously (see the next section). Almost all

previous RL studies have adopted conventional traffic parameters such as delays and

queue lengths to represent the entire traffic state (El-Tantawy et al., 2014; Abdoos et

al., 2011; Abdoos at al., 2014; Abdulhai et al., 2003; Arel et al., 2010; Bakker et al.,

2010; Jin and Ma, 2015; and Isa, 2006). The noted exceptions are the few studies that

8

have used vehicular positions from cellular automata simulation (Wiering, 2000;

Khamis and Gomaa, 2014). However, both the traffic parameters and the vehicle

position data cannot be accurately measured on-site in real-time under existing traffic

surveillance systems. Installation of these models into the real world must wait until

some form of vehicle-to-junction communication is available. However, a world

where every vehicle will be equipped with an onboard unit for this type of

communication is not expected any time soon. The reality is that the existing RL-

based traffic control models make sense only for virtual simulation environments,

although they chose real intersections as the target site for simulation.

Second, even if an accurate measure of the traffic parameters were possible, there

remains the more fundamental question of whether known traffic parameters such as

delays, queue lengths, throughput, travel time, etc., can fully account for a complex

traffic state. Most researchers might believe that the conventional list of traffic

parameters can fully represent a real traffic state. However, the reality is that much

information beyond what the conventional parameters can explain has long been

ignored in traffic engineering.

Recently, the recognition of computer vision has met with great success (Krizhevsky

et al.,2012; Simonyan and Zisserman, 2014; and Szegedy et al., 2015). Deep-

learning-based algorithms have outperformed, in part, the human ability to recognize

human faces, animals, and objects.

The present study began with an expectation that a deep-learning model could be

successful in recognizing traffic states, which should be much less complex than

distinguishing human faces or recognizing medical CT images. The present study

suggests a novel RL-based traffic control methodology that represents both traffic

states and rewards based solely on aerial images of an intersection. To control traffic

lights, the present study utilized cutting edge technology that combines a RL learning

model with a deep convolutional neural network (CNN). This combination is being

9

regarded as a main breakthrough for the future of artificial intelligence (Silver,

2015). The present study is organized as follows. The next section introduces the

basics of RL-based control problems and a deep-learning model to illustrate the

states of an environment. The third section explains how to set up an RL-based

traffic signal controller for a 4-legged intersection. Results from simulation

experiments include comparisons with both an actual fixed-signal operation and a

fully-actuated operation, which are summarized in the fourth section. The last section

draws conclusions and suggests further studies to apply the present methodology to

the real world of traffic control.

10

Reinforcement learning and a convolutional neural network

The Markov decision process (MDP) is the target problem to be solved by RL. The

MDP represents a mechanism wherein an agent takes an action continuously by

following an optimal policy to maximize its expected future reward, while interacting

with the environment affected by the action. The expected future reward is a function

of both the current traffic state and the action taken under the state, which is called a

Q-function, and more specifically represents an action-value function.

Q(st,at) = E[rt+1,xt+2,y
2rt+3+…|st,at] (1)

where, st is the state of an environment at a time interval t, at is an action that is taken

at a time interval t, rt+1is a reward after taking at , x is a discount rate for future

rewards, Q() denotes the Q-function, and [] E is an expectation symbol.

 The most important point in a MDP is how an agent perceives the state of the

environment that surrounds it. Most researchers have abstracted the state of an

environment by using only a few handcrafted features. Recently, Mnih et al. (2015)

proposed a revolutionary method to force an agent to recognize the state of an

environment by applying a RL algorithm to the playing of several classic video

games. That study provided an agent with only raw video images at a pixel level to

represent a game state without offering any other features or any other rules for

playing the game. The raw image frames were just an input for a deep convolutional

neural network (CNN). A deep CNN model was set up to approximate the Q-

function from input images. The proposed Q-learning algorithm, a RL algorithm

utilizing Q-function updates (Baird, 1995), falls into the category of “model-free”

and “off-policy” learning algorithms. “Model-free” means that the transition

probabilities between states are unknown in the MDP to be solved, and “off-policy”

refers to learning about a greedy policy (a=arg max Q(St+1,a`|w)) along with a

random selection at a certain exploration rate. On the other hand, “on-policy”

learning algorithms such as SARSA and SARSA (lemda) require the next action to

11

be chosen from a given policy. Namely, Q-learning algorithm updates the action-

value function regardless of the current action, but with respect to the action that

maximizes the value of the next state-action pair, while SARSA learns the value of

the state-action function on the basis of the performed action (Corazza and Sangalli,

2015). However, when an agent always chooses the best action, these two algorithms

converge to the same solution.

The present study adopted a Q-learning algorithm in accordance with Minh (2015)

that has shown great success in implementing classic computer games. The details of

Q-learning procedures will be addressed in the next section. The loss function of a Q-

learning algorithm that can be minimized can be expressed in a very simple least-

square form as in Eq. (2). When the loss function is minimized, the Bellman equation

holds. Thus, the Q-learning algorithm converges to the condition of a Bellman

equation.

 L(w)=E[(rt+1+ymax Q(st+1,a`|w) - Q(st+1,a`|w))2] (2)

where,Q(s,a|w) denotes an approximated Q-function, and, thus, w is a set of weight

parameters that are necessary in order to parametrize the original Q-function.

The stochastic gradient descent (SGD) algorithm is known to work well for

minimizing the loss function. A SGD algorithm is different from the general

gradient-descent algorithm in that it repeatedly updates parameters of the objective

function by using a gradient that is computed based on either a single example or a

subset of samples (=mini-batch). It is well known that repeating the update of weight

parameters based on a gradient derived from a single training example (or mini-batch

sample) guarantees reaching the global minimum if a large amount of training

examples is available and they are reshuffled for every epoch. A SGD algorithm is

the best fit to minimize the loss function of a MDP problem with an incumbent pair

ymax Q(st+1,a`|w) at each time interval, regarding the pair as a single example of both

feature and label. That is, the algorithm made it unnecessary to evaluate the objective

12

function [Eq. (2)], which requires computing the average of (rt+1+ymax Q(st+1,a`|w) -

Q(st+1,a`|w))2 across all possible combinations of < st ,at, rt+1,st=1 >.

Unfortunately, a Q-learning algorithm does not always guarantee convergence to a

global minimum when the Q-function is approximated by a nonlinear function, and,

instead, is more likely to be stuck in a local minimum. This instability stems from the

fact that consecutive states of a MDP are likely to be correlated in nature, which

might violate the condition of a SGD that requires a random order of data examples.

An RL-based algorithm has the advantage of receiving training examples

automatically as the algorithm is running. On the other hand, there is a drawback

whereby the examples cannot be reshuffled in advance. Another cause of the

instability is the correlations between the action-values and the target values. To

tackle these problems, the present study adopted three effective measures proposed

by Mnih et al. (2015).

First, the target Q-function was separated from the main Q-function to be updated.

Weight parameters of the target Q-function were not updated at every time interval,

but were fixed until they could be updated on a long-term basis. When updating the

target Q-function, the weights were set identical to those of the main Q-function at

that time interval. Thus, in Eq. (3), weight parameters of the target Q-function were

fixed values rather than determinant variables:

L(w)=E[(rt+1+ymax Q(st+1,a`|w) - Q(st,at|w))2] (3)

 where w_ is the weight parameter of the target Q-function to be updated on a long-

term basis.

Second, rather than immediately utilizing the state-transition data < st ,at, rt+1,st=1 >.

acquired at each time interval, the data were added to a replay memory with a

predefined size. At every time interval, a certain number of state-transition examples

were chosen randomly from the replay memory to update the weights. Therefore, the

algorithm could avert a correlation between consecutive environmental states. The

13

last tip for guaranteeing the convergence of the algorithm was to confine the reward

value to either +1 or -1, which prevented the objective function value from either

diverging or oscillating.

An RL algorithm with a deep CNN model will include several hyper-parameters that

affect the control performance. These hyper-parameters include the number of

convolution layers, the number of filters for each convolution layer, the filter and

stride size for each convolution layer, the number of hidden layers next to the last

convolution layer, and the number of nodes (=neurons) within each non-convolution

layer. In the present study, the hyper-parameters of a deep CNN were not determined

in a rigorous manner such as the use of a grid search, because of the burden of

computing time. Instead, these were chosen on a trial-and-error basis. The starting

point to determine the hyper-parameters was to refer to those used by Mnih et al.

(2015). In addition, a useful trick was adopted for saving computation time. The

output layer of the CNN had the same number of nodes as the number of available

actions, so that a single feed-forward evaluation of a CNN simultaneously

determined the Q-function values for all actions. In this way, there was no need to

establish a separate CNN for each action

14

Reinforcement learning for traffic signal control

 All previous trials to employ RL to control traffic lights overlooked the possibility of

losing state information, when representing a traffic state with only a few traffic

parameters such as traffic flow, delay, and queue length. Another problem arose

when it became apparent that although these traffic parameters could sufficiently

account for a traffic state, it was impossible to perfectly measure them using current

surveillance systems. In the present study, these two problems necessitated the use of

raw video shoots to represent a traffic state. A deep CNN was adopted to

approximate the Q-function

of an RL-based traffic

signal control, which was

based solely on the video

images of an intersection.

Fig. 1 shows a MDP that

was applied to the control

of traffic lights at an

intersection.

An artificial agent in

charge of traffic signal

control executed an action at the beginning of every time interval, interacting with

the environment, so that the expectation of the discounted sum of future rewards

would be maximized. In other words, the agent chose a signal phase at every time

interval in an expectation that the intersection would be cleared in the future. The

number of waiting and approaching vehicles (WAVEs) could be an appropriate index

to derive an immediate reward where delay-related indices are not available. The best

reward of an action (signal phase) taken would be a decrease in the maximum

number of WAVEs across all lanes of an intersection, which would be a more

15

comprehensive measure than a decrease in the maximum queue length since the latter

considers only stopped vehicles. The present study adopted a decrease in the

maximum number of WAVEs as the reward.

An artificial agent in charge of traffic signal control was assumed to change signal

phases according to the reward (=reduction in the maximum number of WAVEs) and

the traffic state (=images of the intersection). The agent got the reward value of +1 if

the maximum number of WAVEs across every movement at the beginning of the

current time interval was smaller than that at the beginning of the previous time

interval, whereas it was given a reward value of -1 if the maximum number of

WAVEs at the beginning of the current time interval was larger than that at the

beginning of the previous time interval. The reward value was set at 0 if there was no

change in the maximum number of WAVEs. Although measuring the number of

WAVEs or the queue lengths is not trivial in the real world, almost every study of

RL-based traffic signal control has overlooked this difficulty. Of course, the queue

length can be measured if the existing image processing tools use the background

subtraction method (Milla et al., 2013), but it is not easy to measure the number of

WAVEs using only simple images without predefined rules. A deep CNN can be re-

adopted to estimate the WAVE number. Of course, this involved a large amount of

intersection photos labeled with the number of WAVEs. It should be noted that since

this supervised learning is conducted offline it does not place a burden on the main

RL learning procedure. The CNN model to count vehicles was totally independent of

the other CNN model that parametrized the Q-function within a RL algorithm for

traffic signal control.

Prior to preparing the present study, the author was able to count vehicles on an

urban road based solely on simple photos (Chung and Sohn, 2017). In this preceding

work, labels were manually attached to photos of a 145 m-long approach to a real

intersection located in Seoul. Fig. 2 shows two representative photos of the

16

intersection approach. 4,632 photos were chosen for a test, and the remaining photos

were used to train a deep CNN model. As a result of the test, the XY-plot of

observed and estimated values seems very promising [see Fig. 2 (c)]. The mean

absolute error (MAE) was only 1.57 vehicles across the test dataset, although there

were many occlusions. In particular, it was surprising that vehicles behind trees or

traffic signs were counted properly.

It is apparent that the proposed vehicle counting model can be successfully

incorporated with RL-based traffic control models in the real world. However, for

brevity the WAVE number was directly extracted from a traffic simulator to compute

the immediate reward in this study. A RLbased learning algorithm for traffic control

takes a long time to reach a stable condition. While training the model in the real

17

world, drivers might experience a very long queue due to random exploration.

Apparently, they do not expect this type of imposition. It should be noted that this

unexpected delay occurs not only for the present model, but also for every traffic

signal control model that depends on a RL-based learning algorithm. A plausible way

to circumvent this problem is to fine-tune a model using a reliable traffic simulator

before installing it in a real intersection.

18

Fig8 shows the entire procedure of a RL-based traffic signal control based on

simulation. Details of the simulation environment and the hyper-parameters will be

described in the next section. When selecting the next signal phase (=action),

exploration is inevitable to allow a model to self-learn through experience. A phase

was chosen randomly with a predefined probability (= e). Otherwise, the phase that

had the maximum Q-function value was selected with the probability of 1e . This is

called the e -greedy choice of an action. For the present study, the exploration

probability varied as time passed. At the initial stage, the probability was set as a

value close to 1 so that a sufficient number of trial-and-error trials could be explored,

while the probability converged to 0 after a sufficient number of iterations [see Table

1 (a)].

Table 1. Model specifications

(a) Hyper-parameters of the RL model

Hyper-

parameter Description Applied value

N Number of episodes 50

Simulation time step

0.2 second

Tmax Simulation period for each episode 20,000 seconds

T Time interval 20 seconds

19

T

a Amber time 3 seconds

max Initial probability of exploration

1.

0

min

Final probability of exploration

0.

1

E

Decaying parameter of exploration

probability 400,000

D Size of replay memory

2,00

0

M Size of mini-batch sample 32

C Cycle for updating target Q-function 20,000 seconds

 (b) Hyper-parameters of deep CNN

Layer Hyper-parameters Applied value

Input layer Resolution of input image

 16

8

 168 (Black-and-

white)

20

 Number of input images for each time 1

 interval

1

s

t hidden layer Filter size 8 8

 Number of filters

1

6

 Stride size

(4,

4)

 Activation function

ReL

u

2nd hidden

layer Filter size 4 4

 Number of filters

3

2

 Stride size

(4,

4)

 Activation function

ReL

u

21

3

r

d

hidden

layer Filter size 3 3

 Number of filters

6

4

 Stride size

(1,

1)

 Activation function

ReL

u

4t

h

hidden

layer Number of nodes

51

2

 Activation function

ReL

u

Output layer Number of nodes 4

 Activation function Linear

A deep CNN was adopted as an approximation function for the original Q-function

of the proposed RL-based traffic control model. Each layer of the CNN was

rearranged with overlapping tiles to abstract localized characteristics of an image

(LeCun et al., 2015), which played a crucial role in converting images of traffic

22

states into an action-value. The network structure and application skill was dealt with

in this paper, as described in the next section.

23

Simulation design

 The proposed architecture for simulation experiments is shown in Fig. 3. The main

logic for an RLbased traffic signal control was coded by Python 2.7 with the library

Numpy for handling arrays efficiently. Theano, another library that is used to

facilitate computations with large-scale matrices on a graphical processing unit

(GPU), was running in the background. Keras, a deep-learning library that depends

on either Theano or Tensor-Flow, was adopted to train a CNN to approximate the Q-

function based on animation images. Instead of a real traffic operation, the present

study utilized Vissim, a commercial traffic simulator, as an environment. The library

WinCom was employed for the main program written in Python to interface with a

Vissim object model at the code level. Except for Vissim, the rest of the components

were all open-source libraries. This architecture was invented during the course of

the present study to conduct RL-based traffic control simulations.

A real intersection located in Seoul, Korea was chosen as a test-bed for the

simulation. Fig. 4 shows both a real photo and an animation image of the test-bed.

24

Complex backgrounds should be eliminated from real photos prior to being inputted

for the CNN model. Simple imageprocessing skills can accommodate this process

when adopting real photos in the future. Unfortunately, there is no traffic simulation

tool that provides an animation video in virtual reality. Most commercial simulation

tools provide simple animation, such as that seen in classic video games. In the

present study, a single image at the end of each time interval was used as a traffic

state for the interval. The actual 4-phase signal was applied to the simulation, but the

order of the phases was varied by the proposed algorithm. Of course, an amber time

was offered when signal phases were switched. If the same action is chosen

consecutively, the previous signal phase lasts until the next action is taken without

the amber time. In order to construct input traffic volumes, observed peak-hour

traffic volumes were altered by up to ± 30% to consider both non-peak traffic

conditions and non-recurrent perturbations. Input traffic volumes were changed every

2,000 seconds during an episode. Under the simulation conditions, the proposed RL-

based control algorithm changed the order and the duration of the signal phases.

Table 1 shows the hyper-parameters adopted in the simulation experiment for both

Qlearning and the CNN. The algorithm was trained for 20,000 simulation seconds (=

about 5 hours 30 minutes) for each episode. There were 50 episodes simulated for

training the model. Thus, the total simulation time was tantamount to 1,000,000

seconds. During the first 900,000 seconds, the exploration rate was gradually reduced

from 100 to 10%. The 10% rate was maintained during the remaining 100,000

seconds. Performance measures for the intersection operation were collected during

the last 100,000 seconds. The phase was selected every 20 seconds. The amber time

was applied whenever a signal phase changed, which was consistent with the actual

operation (=3 seconds) on the testbed. The mini-batch size was set at 32, which

equated to the number of transition examples from which a gradient was computed at

each time interval. Weight parameters of the main Q-function were updated at the

25

beginning of each episode. The random seed of traffic simulation was also altered at

the beginning of each episode.

The principle that a deep CNN approximates the main Q-function cannot be

intuitively described, but can be partially accounted for by introducing how it

extracts features from images and links them into the main Q-function value that

represents the mean cumulative reward in the future for each action. First, it was

necessary to set up the specifications of the deep CNN adopted in the present RL

model. The input layer corresponded to a 168*168 input image. The output layer had

4 nodes, each of which was required to correspond to each phase (=action). Besides

an input layer and an output layer, three convolutional hidden layers were included,

as listed in Table 1 (b). The first hidden layer had 16 8*8 filters. Each filter of the

first hidden layer extracted a specific feature while sliding through an input image

with a stride value of 4 in both horizontal and vertical directions. Basically, it is not

trivial to recognize which feature can be extracted by a specific filter. However, the

following example is plausible. The first filter would derive a rectangular feature that

represents a vehicle, regardless of where the vehicle resides in the image, and the

second filter would elicit a half-circle feature that represents a vehicle’s front and end

parts, and so on. The second hidden layer has 32 4*4*16 filters. Each filter of the

second hidden layer could extract more complex features form 16 different feature

matrices that filters of the first hidden layer have created. Continuously, filters of the

second hidden layer slide through feature matrices of the first hidden layer with the

predefined stride value. The third hidden layer has 64 3*3*32 filters, each of which

also extract a higher-level feature from the second hidden layer. The stride value that

filters of the third layer use is 1.

The last hidden layer with 512 nodes was fully connected from the last convolutional

hidden layer, which was then linked to the output layer with 4 nodes. The nodes

within each convolutional hidden layer were activated by a rectified linear unit

26

(ReLu), while the last output nodes were activated linearly. The activation based on

ReLu was a great breakthrough for deep learning (Nair and Hinton, 2010). Fig. 5

depicts the structure of the proposed deep CNN. An “RMSprop” algorithm was

adopted to train the CNN with a learning rate of 0.00025. The details of this

algorithm are outlined by Dauphin et.

A CNN plays a key role in representing a traffic state as an input for the main Q-

function, and its hyper-parameters affect the overall performance of the overall RL

learning. The hyperparameters listed in Table 1 (b) were chosen on a trial-and-error

basis. The final hyper-parameters were determined after testing as many plausible

combinations of hyper-parameters as possible. The initial reference of the hyper-

parameters was selected from those adopted by Minh et al. (2015).

The computing environment of the present simulation was as follows. The computer

main memory was 128 GB. Python main logic and traffic simulation were

implemented on two CPUs with the following specifications: Intel Xeon(R) CPU E5-

2697 v2 @ 2.7GHz. There were 48 available CPU cores, which exceeded the

maximum number of cores (=32) that Vissim allows. The deep CNN was trained on

a single GPU. The GPU was a NVIDIA Quadro M6000 with a 12 GB GDDR5

memory. Ironically, a graphic accelerator was used to train the deep net, whereas the

animation was run on CPU cores. It should be noted that, without a GPU, training a

large-scale deep net cannot be conducted within a realistic window of computing

27

time. Under this computing environment, it took, on average, 48.36 minutes to run a

single episode. The total computation time for 50 episodes was tantamount to 40

hours and 20 minutes.

28

Simulation results

Simulation results were collected during the last 100,000 seconds with the

probability of exploration fixed at 10%. As shown in Fig. 6, the average Q-function

value across 4 phases converged to a certain value, although the trend was not

smooth. The solid line in Fig. 6 indicates the fitting result from the 6th order

polynomial function.

Three performance indices were recorded for each of the 10 time intervals (200

seconds): delay, vehicle throughput, and the maximum queue length across all lanes.

In addition to the convergence of the main Q-function value, Fig. 7 provides more

intuitive evidence of the convergence with respect to the three chosen performance

indices. Both the maximum number of WAVEs and the average delay converged as

the simulation time passed. In the initial stage of learning, both indices fluctuated

widely but became calm as the simulation time passed, which was the main reason

that simulation experiments preceded the field test. Regarding the vehicle

throughput, the variance was reduced considerably after learning, while the mean

value did not change. The solid line in Fig. 7 indicates the moving average of 100

previous time intervals.

29

The actual operation of the test-bed was used as a reference for comparison. The test-

bed was a 4-legged intersection operated by a fixed-signal plan. The cycle length was

140 seconds. Signal times were assigned to four different phases: 53(3), 23(3), 35(3),

and 17(3) seconds. The figures within parenthesis indicate an amber time. These

signal settings were determined based on observed traffic volumes according to the

30

capacity manual. A fully actuated signal operation scenario was also set up to be

compared with the proposed RL-based algorithm. Vissim APIs fully supported

establishing the scenario. The structure of the fully actuated signal scenario is

summarized in Table 2. For both the fixed and fully actuated operations, the same

traffic volumes were adopted as used in the RL-based simulation, which were altered

by up to ±30% from the real peak traffic volumes.

Table 2. Structure of the fully actuated signal

operation

(a) Applied parameters

Detector Length (m) 2

Loss time (sec) 4

Headway (sec) 2

Average vehicle length (m) 5.5

(b) Detector locations

 Direction

Distance from stop-line to

detector

 45m

31

 50m

 30m

 40m

 30m

35m

(c) Minimum and maximum green times

Phase

Minimum Max green (sec)

green (sec) (=Actual fixed signal)

(1)

18 53(3)

(2)

20 23(3)

(3) 22 35(3)

32

(4)

24 17(3)

33

Fig. 8 shows the three performance indices for the three signal control schemes: the

RL-based control, the actual fixed operation, and the fully actuated signal operation.

The queue length was measured at the beginning of each time interval, while the

remaining two indices were averaged across values during 10 time intervals. All

three mean values of the RL–based control during the last 100,000 seconds of

simulation outperformed those from the actual operation and the fullyactuated

operation. In particular, it was surprising that the average delay was reduced by more

than 23% when compared with the actual operation. The mean of the maximum

WAVE of the learning-based algorithm was also smaller than those of both the actual

34

and fully actuated operations by about 21 and 12%, respectively. The levels of

vehicle throughput during a particular time interval did not differ.

Contrary to the comparison of mean values, the maximum values in delay showed

quite different results. The maximum delay of the RL-based control was 1.86-fold

that of the maximum delay of the fully actuated operation and 1.55-fold that of the

maximum delay of the actual operation. For the RL-based control, however, the

frequency of encountering an extremely large delay was at most 3.4% when counting

the number of occurrences where a delay from the RLbased control exceeded the

maximum delay of fully-actuated operation (=39.5 sec). On the other hand, regarding

the WAVEs, the maximum value (15 veh) from the RL-based algorithm was almost

the same as those from both the actual and fully-actuated operations. The standard

deviation (2.0 veh) in the maximum number of WAVEs for the RL-based learning

algorithm was slightly smaller than that for the actual fixed operation (2.1 veh) and

that for the fully actuated operation (2.2 veh).

The fluctuations in delay stemmed from the fact that the present study set the reward

of the RL as reducing the maximum number of WAVEs instead of minimizing

vehicle delay. The proposed algorithm depended upon no delay-related measure

unlike many other previous RL studies that adopted the delay as a reward or a state.

In reality, the delay is only an imaginary index because it could not be measured

accurately in the field without an advanced communication-based surveillance

system. As mentioned earlier, this kind of surveillance system cannot prevail in the

foreseeable future.

 Deep-learning models have been criticized by many researchers as resembling a

black box. The present study largely depended on a deep CNN model, and will not

escape this criticism. The following explanation is intended to be a plausible answer

to such criticism. Although it is impossible to account for the intrinsic mechanism in

which the proposed deep CNN model was operating, some evidence can be provided

to show that the model recognized traffic states much as a human would. Table 3

35

Table 3. Traffic state vs. Q-function

Traffic state Phase Q-function

 3.00

 3.15

 4.24

 2.97

 2.98

 3.24

 2.92

 2.77

 3.50

 3.15

 2.99

36

 2.46

 2.69

 2.40

 2.74

 3.00

shows 4 typical cases of mapping between current traffic states and the

corresponding Q-function values estimated by the proposed deep CNN model.

According to the proposed model, the next phase was determined by the output node

that possessed the maximum Q-function value. According to the figure, the next

phase choice the Q-function made was consistent with human intuition.

37

Conclusions

This study is the first to adopt an image-based RL algorithm for traffic signal control.

All other previous attempts to use a RL-based signal control algorithm depended

upon the existing traffic parameters measured from detectors to represent a traffic

state. Apparently, a RL model based solely on images outperformed the actual and

fully actuated operations of an intersection in all three performance measures. The

average delay was reduced by more than 23% when compared with the actual

operation. The mean of the maximum WAVE of the learning-based algorithm was

also smaller than those of both the actual and fully actuated operations by about 21

and 12%, respectively. The levels of vehicle throughput during a particular time

interval did not differ.

Despite superiority, the average delay from the proposed model fluctuated more than

those from the other two reference operations. Finding hyper-parameters that will

guarantee stability in delays is inevitable with further study. After determining the

hyper-parameters that will guarantee stability in delays, the model should be trained

in the field by using real video over a test-bed intersection.

Furthermore, the present study has a limitation whereby it could be applied only to a

single independent intersection. New simulation experiments are currently under

construction to jointly control closely spaced intersections. If a single agent were

assumed, the present algorithm could be altered slightly to accommodate increases in

state input and actions. A multi-agent RL algorithm would require multiple deep

CNNs. The obstacle for both approaches would be the burden of computation time.

Multiple GPUs are now being tuned in parallel to overcome this problem.

The ultimate goal is an image-based artificial intelligence that can exceed that of

both humans and those of the existing advanced technologies. That goal is a distant

one, but this study has taken the first step.

38

References

1. Abdulhai, B., Kattan, L.: (2003) Reinforcement learning: Introduction to

theory and potential for transport applications. Canadian Journal of Civil

Engineering 30(6), 981–991.

2. Abdoos, M., Mozayani, N., Bazzan, A.: (2011) Traffic light control in non-

stationary environments based on multi agent q-learning. In: Intelligent

Transportation Systems (ITSC), 2011 14th International IEEE Conference on,

pp. 1580–1585

3. Abdoos, M., Mozayani, N., Bazzan, A.: (2014) Hierarchical control of traffic

signals using q-learning with tile coding. Applied Intelligence 40(2), 201–213.

4. Abdulhai, B., Pringle, R., Karakoulas, G.: (2003) Reinforcement learning for

true adaptive traffic signal control. Journal of Transportation Engineering

129(3), 278–285.

5. Arel, I., Liu, C., Urbanik, T., Kohls, A.: (2010) Reinforcement learning-based

multi-agent system for network traffic signal control. Intelligent Transport

Systems, IET 4(2), 128–135

6. Baird., L. (1995) Residual algorithms: Reinforcement learning with function

approximation. ICML, pages 30–37

39

7. Bakker, B., Whiteson, S., Kester, L., Groen, F.: (2010) Traffic light control by

multiagent reinforcement learning systems. In: R. Babuka, F. Groen (eds.)

Interactive Collaborative Information Systems, Studies in Computational

Intelligence, vol. 281, pp. 475–510. Springer Berlin Heidelberg

8. Bazzan, A.L.C., Klgl, F.: (2014) A review on agent-based technology for

traffic and transportation. The Knowledge Engineering Review 29, 375–403.

9. Bazzan, A.L.C.: (2009) Opportunities for multiagent systems and multiagent

reinforcement learning in traffic control. Autonomous Agents and Multi-Agent

Systems 18(3), 342–375.

10. Boureau, Y.L., Ponce, J. and LeCun, Y. (2010) A Theoretical Analysis of

Feature Pooling in Visual Recognition. In International Conference on

Machine Learning

11. Chung, J. and Sohn, K. (2017) Image-based learning to measure traffic density

using a deep convolutional neural network (CNN), IEEE Transactions on

Intelligent Transport

12. Ciresan, D., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J. (2011)

Flexible, High Performance Convolutional Neural Networks for Image

Classification, Proceedings of the TwentySecond international joint conference

on Artificial Intelligence-Volume Volume 2: 1237–1242.

13. Corazza, M., & Sangalli, A. (2015). Q-Learning and SARSA: a comparison

between two intelligent stochastic control approaches for financial trading.

40

University Ca'Foscari of Venice, Dept. of Economics Research Paper Series

No, 15.

14. Dauphin, Y. N., de Vries, H., Chung, J., & Bengio, Y. (2015). RMSProp and

equilibrated adaptive learning rates for non-convex optimization. arXiv

preprint arXiv:1502.04390.

15. El-Tantawy, S., Abdulhai, B., & Abdelgawad, H. (2014). Design of

reinforcement learning parameters for seamless application of adaptive traffic

signal control. Journal of Intelligent Transportation Systems, 18(3), 227-245.

16. Isa, J., Kooij, J., Koppejan, R., Kuijer, L.: (2006) Reinforcement learning of

traffic light controllers adapting to accidents. In: Design and Organisation of

Autonomous Systems

17. Jin, J., & Ma, X. (2015). Adaptive group-based signal control by

reinforcement learning. Transportation Research Procedia, 10, 207-216.

18. Khamis, M. A., & Gomaa, W. (2014). Adaptive multi-objective reinforcement

learning with hybrid exploration for traffic signal control based on cooperative

multi-agent framework. Engineering Applications of Artificial Intelligence, 29,

134-151.

19. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems (pp. 1097-1105).

41

20. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,

521(7553), 436-444. Liu, Z.: (2007) A survey of intelligence methods in urban

traffic signal control. IJCSNS International Journal of Computer Science and

Network Security 7(7)

21. Mannion, P., Duggan, J., & Howley, E. (2015). An experimental review of

reinforcement learning algorithms for adaptive traffic signal control.

Autonomic Road Transport Support Systems.

22. Milla, J. M., Toral, S. L., Vargas, M., & Barrero, F. J. (2013). Dual-rate

background subtraction approach for estimating traffic queue parameters in

urban scenes. IET Intelligent Transport Systems, 7(1), 122-130.

23. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.,A., Veness, J., Bellemare,

M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S.,

Beattie, C., Sadik, A., Antonoglou, I., King H., D. Kumaran, D., Wierstra, D.,

Legg, S., and Petersen, S. (2015). Human-level control through deep

reinforcement learning. Nature, 518(7540), 529-533.

24. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th International Conference on

Machine Learning (ICML-10) (pp. 807-814).

