APPENDIX 1

=~ GALGOTIAS
ool b L B

Credit Card Fraud Detection with Machine Learning

A Project Report of Capstone Project - 2

Submitted by

VISHAL THAKUR

(1613101842/16SCSE101251)
in partial fulfillment for the award of the degree

of
Bachelor of Technology
IN
Computer Science and Engineering
SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
Under the Supervision of
Dr. Kuldeep Singh Kaswan
Professor

APRIL / MAY- 2020

APPENDIX 2

GALGOTIAS
UNIVERSITY

SCHOOL OF COMPUTING AND SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “Credit Card Fraud Detection with Machine Learning” is the

bonafide work of “VISHAL THAKUR (1613101842)” who carried out the project work under my

supervision.

SIGNATURE OF HEAD SIGNATURE OF SUPERVISOR

Dr. MUNISH SHABARWAL, Dr. KULDEEP SINGH KASWAN

Professor & Dean, Professor,

School of Computing Science & School of Computing Science &

Engineering Engineering

APPENDIX 3

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
1. Abstract 5
2. Introduction 6
2.1 Overall Description 6
3 Methodology Adopted 7
3.1 Importing The Dataset 7
3.2 Data Exploration 7-10
33 Data Manipulation 10-12
3.4 Data Modeling 12-13
3.5 Fitting Logistic Regression Model 13-18
3.6 Fitting a Decision Tree Model 18-19
3.7 Artificial Neural Network 19-21
3.8 Gradient Boosting (GSM) 21-25
4. Software Specification Requirement 25
4.1 Software Requirements 25
4.2 Hardware Requirements 25
5. Future Work 25

10.

Problem Statement

Observations

Acknowledgement

Conclusion

References

25-26

26

26

26

27

Abstract

Credit cards play a very important role in today's economy. It becomes an unavoidable
part of household, business and global activities. Although using credit cards provides enormous
benefits when used carefully and responsibly, significant credit and financial damages may be
caused by fraudulent activities. Many techniques have been proposed to confront the growth in
credit card fraud. However, all of these techniques have the same goal of avoiding credit card
fraud; each one has its own drawbacks, advantages and characteristics. The advantages and
disadvantages of fraud detection methods are enumerated and compared.Furthermore, a
classification of mentioned techniques into two main fraud detection approaches, namely,
misuses (supervised) and anomaly detection (unsupervised) is presented. Again, a classification
of techniques is proposed based on capability to process the numerical and categorical datasets.
Different datasets used in literature are then described and grouped into real and synthesized data
and the effective and common attributes are extracted for further usage.Moreover, evaluation
employed criterions in literature are collected and discussed.Consequently, open issues for credit

card fraud detection are explained as guidelines for new researchers.

1. Introduction

Credit card fraud detection has drawn a lot of research interest and a number of techniques, with
special emphasis on neural networks, data mining and distributed data mining have been
suggested. Ghosh and Reilly[1] have proposed credit card fraud detection with a neural network.
They have built a detection system, which is trained on a large sample of labeled credit card
account transactions. These transactions contain example fraud cases due to lost cards, stolen
cards, application fraud, counterfeit fraud, mail-order fraud, and non-received issue (NRI) fraud.
Recently, Syeda et al. [2] have used parallel granular neural networks (PGNNs) for improving
the speed of data mining and knowledge discovery process in credit card fraud detection. A
complete system has been implemented for this purpose. Stolfo et al. [3] suggest a credit card
fraud detection system (FDS) using meta learning techniques to learn models of fraudulent credit
card transactions. Meta learning is a general strategy that provides a means for combining and
integrating a number of separately built classifiers or models. A Meta classifier is thus trained on
the correlation of the predictions of the base classifiers. The same group has also worked on a
cost-based model for fraud and intrusion detection. They use Java agents for Meta learning
(JAM), which is a distributed data mining system for credit card fraud detection A number of
important performance metrics like True Positive—False Positive (TP-FP) spread and accuracy
have been defined by them. Alekerov et al. [4] present CARDWATCH, a database mining
system used for credit card fraud detection. The system, based on a neural learning module,

provides an interface to a variety of commercial databases.

2. Methodology Adopted
2.1 Importing the Datasets

We are importing the datasets that contain transactions made by credit cards.
Code:

1. library(ranger)

2. library(caret)

3. library(data.table)

4. creditcard data<- read.csv("/home/dataflair/data/Credit Card/creditcard.csv")
Input Screenshot:

library(ranger)
library(caret)

Loading required package: lattice

library(data.table)
creditcard data <- read.csv("/home/dataflair/data/Credit Card/creditcard.csv")

2.2 Data Exploration

In this section of the fraud detection ML project, we will explore the data that is
contained in the creditcard datadataframe. We will proceed by displaying the
creditcard data using the head () function as well as the tail () function. We will then

proceed to explore the other components of this data frame.

Code:
1. dim(creditcard data)
2. head(creditcard data,6)

Output Screenshot:

dim(creditcard_data)

[1] 284807 31

head({creditcard data,6)

Time Vi V2 V3 v4 V5 Ve
1 @ -1.3598071 -0.07278117 2.5363467 1.3781552 -0.33832077 0.46238778
2 @ 1.1918571 0.26615071 0.1664801 0.4481541 0.06001765 -0.08236081
3 1 -1.3583541 -1.34016307 1.7732093 0.3797796 -0.50319813 1.80049938
4 1 -0.9662717 -0.18522601 1.7929933 -0.8632912 -0.01030888 1.24720317
5 2 -1.1582331 0.87773675 1.5487178 0.4038339 -0.40719338 0.09592146
6 2 -0.4259659 0.96052304 1.1411093 -0.1682521 0.42098688 -0.02972755
V7 ve Vo vie V1l Vviz
1 0.23959855 0.09869790 0.3637870 0.09079417 -0.5515995 -0.61780086
2 -0.07880298 0.08510165 -0.2554251 -0.16697441 1.6127267 1.86523531
#t 3 0.79146096 B0.24767579 -1.5146543 0.20764287 0.62450815 0.06608369
#H 4 0.23760894 8.37743587 -1.3870241 -0.85495192 -0.2264873 0.17822823
5 0.59294075 -0.27053268 0.8177393 0.753307443 -0.8228429 0.53819555
6 0.47620095 0.26031433 -0.5686714 -0.37140720 1.3412620 0.35989384

V13 V14 V15 vie V17 via

1 -0.9913898 -8.3111694 1.4681770 -0.4784005 0.20797124 0.82579058
2 0.4890950 -8.1437723 0.6355581 0.4639170 -0.11480466 -0.18336127
3 0.7172927 -0.1659459 2.345B640 -2.8900832 1.10996938 -0.12135931
4 0.5077569 -0.2879237 -0.6314181 -1.6596472 -0.68409279 1.96577580
5 1.3458516 -1.1196698 0.1751211 -0.4514492 -0.23703324 -0.03819479
6 -0.3580907 -8.1371337 0.5176168 0.4017259 -0.05813282 0.86865315

Code:
1. tail(creditcard data,6)

Output Screenshot:

#t
#it
##
##
#it
#it
#i#t
#it
##
#i#
#i
#i#
#it
#i
##
#it
#i
#it
#it
#i#t
#i#

B L=

tail({creditcard data,B)

284802
284803
284804
284805
284806
284807

284802
284803
284804
284805
284806
284807

284802
284803
284804
284805
284806
ZRARMT

Time

172785 a.
172786 -11.
172787 -60.
172788 L.
172788 -0.
172792 -60.

-8.
S
1.
3.
a.
-0.

@ KD

Code:

Ve
2359732
6068373
0584153
0312601
6237877
6496167

viz

.19891623
.71194079
.91580191

a.
-0.
-0.

06311886
962838614
A21512A5

V1
1283164 0.
8811179 18.
7327887 -8.
91956560 -8.
2404400 0.
5334125 -8.

v7
0.8127221
-4.9182154
0.0243297
-0.2968265
-0.68618080
1.5770063
Vi3
-8.5463289
-0.6892556
1.2147558
-8.1836987
-1.8420817
-A.1TRRAG29

table(creditcard_data$Class)

summary(creditcard data$ Amount)
names(creditcard_data)

var(creditcard_data$Amount)

Output Screenshot:

V2

V3

V4 V5

93186513 -0.5460121 -8.7450968 1.13831398
07178497 -9.8347835 -2.08666557 -5.36447278
05508049 2.0350297 -0.7385886 0.B86822940
30125385 -3.2496398 -8.5578281 2.63851512
53048251 0.7825102 0.6897992 -0.37796113
18973334 0.7833374 -0.5062712 -0.81254568

Va8

.3853340
.2048687
.7084172
.6791455
.4146504
V14
-0.73170658
4.62694203
-0.67514296
-0.51060184
0.44962444
-0.AR431R4T

-8.
-8.
1.

1
1.
A

V9

.1150929 -0.20840635 -0.
1.9144283 4.
0.5848000 -0.
0.4324548 -0.
0.3928867 -0.
0.4861795 -0.

V15
80803553
92445871
16493091

.32928351

96256312

.0847133346

vie Vil
6574221 0.644B8373
3561704 -1.5931053
9759261 -0.1501888
4847818 0.4116137
3991257 -1.9338488
9154266 -1.0404583
V16
0.5996281
1.1876406
-8.7117573

0.1487168
-0.6085771
-0.3IA7AR201

table(creditcard datasClass)

##
#i# 8 1
284315 492

summary (creditcard_datasAmount)

Min. 1st Qu. Median Mean 3rd Qu. Max.
@.08 5.60 22.88 88.35 77.17 25691.16

names(creditcard_data)

[1] "Time") i aEn) i b Va4 "ME" "vg"
[8] "v7*© "va" "vg" "viag* "Vii® "viz2" "vii®
[15] "vi4® "Vis" "V1ig" Vi7" "vig" T Ll
[22] "v21" 22" "W23" "W24" "M257 "V2e6" "wa2rr
[29] "vag" "Amount" "Class"

varlcreditcard_data$Amount)

[1] 62560.087

Code:
1. sd(creditcard data$Amount)

Output Screenshot:

sd(creditcard datasAmount)

[1] 258.1281

2.3 Data Manipulation

In this section of the R data science project, we will scale our data using the scale ()
function. We will apply this to the amount component of our creditcard data amount.

Scaling is also known as feature standardization. With the help of scaling, the data is

10

structured according to a specified range. Therefore, there are no extreme values in our

dataset that might interfere with the functioning of our model.

Code:
1. head(creditcard data)
Output Screenshot:

head(creditcard data)

#i Time V1 V2 V3 V4 V5 Vi
1 @ -1.3598071 -0.07278117 2.5363467 1.3781552 -0.33832077 0.46238778
2 @ 1.1918571 0.26615071 0.1664881 0.4481541 0.06801765 -0.082366881
3 1 -1.3583541 -1.340163087 1.7732093 ©.3797796 -0.50319813 1.80049938
#3# 4 1l -0.9662717 -0.18522601 1.7929933 -0.8632913 -0.01630888 1.24720317
5 2 -1.1582331 ©.87773675 1.5487178 0.4030339 -0.48719338 0.09592146
B 2 -9.4259659 0.96052304 1.1411893 -0.1682521 ©0.42098688 -0.02972755
#i V7 Ve Vo Vie V1l Viz
1 ©.23959855 ©.098697980 0.3637870 ©.89079417 -0.5515995 -0.61780086
2 -P.078B0298 ©.08518165 -0.2554251 -0.16697441 1.6127267 1.86523531
3 0.79146096 0.24767579 -1.5146543 ©.20764287 0.6245815 ©0.06608369
4 0.23768894 ©8.37743587 -1.3870241 -0.85495192 -0.2264873 0.17822823
5 0.59294075 -0.27053268 0.8177393 ©.75307443 -0.8228429 0.53819555
6 0.47620095 ©.26031433 -0.5686714 -0.37140720 1.3412620 0.359890384
V13 V14 V15 V16 V17 V18

1 -0.9913898 -0.3111694 1.4681770 -0.4704005 ©0.208797124 ©0.02579058

2 0.4890950 -0.1437723 ©0.6355581 0.4630170 -0.11480466 -0.18336127

3 0.7172927 -0.1659450 2.3458649 -2.8000832 1.18996938 -0.12135931

4 B.5077569 -0.2879237 -0.6314181 -1.9596472 -0.68409279 1.96577500

5 1.3458516 -1.1196698 0.1751211 -0.4514492 -0.237603324 -0.03819479

6 -0.3580907 -0.1371337 0©.5176168 0.4017259 -0.05813282 0.06865315

V19 V20 V21 V22 V23

1 0.48399296 0.25141210 -0.018306778 ©.277837576 -0.119473901

2 -0.14578304 -0.06008314 -0.225775248 -0.638671953 0.101288062

3 -2.26185718 0.52497973 0.247998153 0.771679402 0.98941226

4 -1.23262197 -0.20803778 -0.108300452 ©.005273597 -0.19932852

5 0.80348692 0.40854236 -0.009430697 0.798278495 -0.13745808

6 -0.03319379 0.08496767 -0.208253515 -0.550824796 -0.02639767

Code:

1. creditcard data§Amount=scale(creditcard data$ Amount)
2. NewData=creditcard datal[,-¢(1)]
3. head(NewData)

Output Screenshot:

11

creditcard_datasAmount=scale(creditcard_datasAmount)
NewData=creditcard datal,-c(1}]
head (NewData)

V1 V2 V3 V4 V5 Ve
1 -1.3598071 -0.87278117 2.5363467 1.3781552 -0.33832077 0.46238778
2 1.1918571 0.26615871 0.1664801 0.4481541 0.06001765 -0.88236081
3 -1.3583541 -1.34016307 1.7732093 0.3797796 -0.50319813 1.80049938
#f 4 -0.9662717 -0.18522601 1.7929933 -0.8632913 -0.01020888 1.24720317
5 -1.1582331 0.87773675 1.5487178 0.4030339 -0.40719338 0.089592146
6 -0.4259659 0.96052304 1.1411093 -0.1682521 0.42098688 -0.82972755
V7 ve Vo vie Vil viz
1 0.23959855 0.093697980 0.3637870 0.89079417 -0.5515995 -0.61780086
2 -0.07880298 ©.08510165 -0.2554251 -0.16697441 1.6127267 1.06523531
#f 3 0.79140096 0.24767579 -1.5146543 0.20764287 0©0.62450815 0.00608369
4 0.23760894 0.37743587 -1.3870241 -0.05495192 -0.2264873 0.17822823
5 0.59294075 -0.27053268 0.8177393 0.75307443 -0.8228429 0.53819555
6 0.47620095 0.26031433 -0.5686714 -0.37140720 1.3412620 ©0.35989384

#i# V13 V14 V15 Vie V17 Vvis

1 -0.9913898 -0.3111694 1.4681770 -0.4704005 0.20797124 0.82579858
2 0.4890950 -0.1437723 0.6355581 0.4639170 -0.11480466 -0.18336127
3 0.7172927 -0.1659459 2.3458640 -2.8900832 1.10996938 -0.12135931
4 0.5077569 -0.2879237 -0.6314181 -1.08596472 -0.68409279 1.96577500
5 1.3458516 -1.1196698 0.1751211 -0.4514492 -0.23703324 -0.083819479
6 -0.3580907 -0.1371337 0.5176168 0.4017259 -0.05813282 0.06865315

#i#t V19 v2e V21 V22 V23

1 0.40399296 0.25141210@ -0.018306778 0.277837576 -0.11047391

2 -0.14578304 -0.06908314 -0.225775248 -0.638671953 0.10128802

3 -2.2618571@ 0.52497973 0.247998153 0.771679482 ©0.90941226

4 -1.23262197 -0.20803778 -0.108300452 0.805273597 -0.19832052

5 0.80348692 0.48854236 -0.009430697 0.798278495 -0.13745808

6 -0.03319379 0.08496767 -0.208253515 -0.559824796 -0.02639767
2.4 Data Modeling
After we have standardized our entire dataset, we will split our dataset into training set as
well as test set with a split ratio of 0.80. This means that 80% of our data will be
attributed to the train_data whereas 20% will be attributed to the test data.
Code:

1. library(caTools)

2. set.seed(123)

3. data_sample = sample.split(NewData$Class,SplitRatio=0.80)

4. train_data = subset(NewData,data sample==TRUE)

5. test_data = subset(NewData,data_sample==FALSE)

6. dim(train_data)

12

7. dim(test data)

Output Screenshot:

library(caTools)

set.seed(123)

data _sample = sample.split(NewDatasClass,SplitRatio=0.88)
train_data = subset(NewData,data sample==TRUE)

test data = subset({NewData,data sample==FALSE)
dim(train_data)

[1] 227846 30

dim(test data)

#i# [1] 56961 30
Logistic_Model=glm(Class~.,test data, family=binomial())

Warning: glm.fit: fitted probabilities numerically @ or 1 occurred

summary (Logistic_Model)

##

Call:

glm(formula = Class ~ ., family = binomial(), data = test _data)
i

Deviance Residuals:

#a# Min 10 Median 30 Max

-4.9019 -0.0254 -0.8156 -0.0078 4.0877

2.5 Fitting Logistic Regression Model
In this section of credit card fraud detection project, we will fit our first model. We will
begin with logistic regression. A logistic regression is used for modeling the outcome

probability of a class such as pass/fail, positive/negative and in our case — fraud/not fraud.

Code:
1. Logistic Model=glm(Class~.,test data,family=binomial())
2. summary(Logistic Model)

13

Output Screenshot:

Logistic Model=glm(Class~.,test data, family=binomial(})

Warning: glm.fit: fitted probabilities numerically @ or 1 occurred

summary(Logistic_Meodel)

#i

Call:

glm(formula = Class ~ ., family = binomial(), data = test_data)
##

Deviance Residuals:

#at Min 10 Median 30 Max

-4.9019 -0.0254 -0.0156 -0.0078 4.0877

Code:
1. plot(Logistic Model)
Input Screenshot:
plot(Logistic_Model)

Output:

14

Residuals

Std. deviance resid.

Residuals vs Fitted

Q72758

COERERREDGENO

c

Output:

I I [
-10 0 10

Predicted values
glm(Class ~ .)

Normal Q-Q

727580

I I I
-2 0 2

Theoretical Quantiles
glm(Class ~ .)

15

20

Output:

Scale-Location

072758 1063

G

2.0

15

1.0

4JIStd. deviance resid.|

0.5

0.0

I T T I I T

-30 -20 -10 0 10 20

Predicted values
gim(Class ~ .)

Output:

Residuals vs Leverage

100 200
| |

0
|

Std. Pearson resid.

-100
|

-200
|

8

w‘- Cook's distance

T T | T 1
0.0 0.2 0.4 0.6 0.8

Leverage
glm(Class ~ .)

16

1.
2.
3.

=
##
==
#i
#i
##
##
##
=
##
==
==
=

In order to assess the performance of our model, we will delineate the ROC curve. ROC is also
known as Receiver Optimistic Characteristics. For this, we will first import the ROC package and

then plot our ROC curve to analyze its
Code:

library(pROC)

performance.

Ir.predict<- predict(Logistic Model,train_data, probability = TRUE)

auc.gbm = roc(test_data$Class, Ir.predict, plot = TRUE, col = "blue")

Output Screenshot:

Logistic Model=glm(Class~.,train data,family=binomial(})

summary (Logistic Model})

= binomial(), data =

30 Max

z value Pr(=|z])
-53.999 < 2e-16 ***
1.643 0.100332

Call:
glm(formula = Class ~ ., family
Deviance Residuals:
Min 10 Median
-4.6108 -0.0292 -0.0194 -0.0125 4.6021
Coefficients:
Estimate Std. Error
{(Intercept) -8.651305 0.160212
V1 0.072540 0.044144
V2 0.014818 0.059777

Output:

0.248 0.804220

17

train_data)

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Sensitivity

0.4

AN e

1.0

0.8

0.6

0.2

[| |
1.0 0.5 0.0

Specificity

2.6 Fitting a Decision Tree Model

In this section, we will implement a decision tree algorithm. Decision Trees to plot the
outcomes of a decision. These outcomes are basically a consequence through which we
can conclude as to what class the object belongs to. We will now implement our decision

tree model and will plot it using the rpart.plot() function.

Code:
library(rpart)

library(rpart.plot)

decisionTree_model<- rpart(Class ~ . , creditcard data, method = 'class')
predicted val<- predict(decisionTree model, creditcard data, type = 'class')
probability <- predict(decisionTree_model, creditcard data, type = 'prob')

rpart.plot(decisionTree_model)

Input Screenshot:

18

library(rpart)

library(rpart.plot)

decisionTree model =- rpart{Class ~ . , creditcard data, method = "class’')
predicted val =- predict({decisionTree model, creditcard data, type = 'class’)
probability =- predict(decisionTree model, creditcard data, type = 'prob')

rpart.plot(decisionTree model)

Output:
0
0.00
100%
V17 >=-2.8
1
0.76
0%
V14 >=.8.1 Vi2>=.2.2
0 1
0.00 0.82
100% 0%
—V14 >=-47 V14 >=-3.4
0 0 il
0.16 0.42 0.87
0% 0% 0%
—V10>=-138 V8 >=-0.39 V26 < -0.26
1 1
0.69 0.64
0% 0%
V16 >=2.8 V27 >=11
0 1 1 0 0 1 0 @t
0.02 0.88 0.89 0.06 0.26 0.91 0.12 0.95
0% 0% 0% 0% 0% 0% 0% 0%

2.7 Artificial Neural Network

Artificial Neural Networks are a type of machine learning algorithm that is modeled after
the human nervous system. The ANN models are able to learn the patterns using the
historical data and are able to perform classification on the input data. We import the
neuralnet package that would allow us to implement our ANNs. Then we proceeded to

plot it using the plot() function. Now, in the case of Artificial Neural Networks, there is a

19

range of values that is between 1 and 0. We set a threshold as 0.5, that is, values above

0.5 will correspond to 1 and the rest will be 0.

Code:
library(neuralnet)

ANN_model =neuralnet(Class~..train_data,linear.output=FALSE)
plot(ANN_model)

predANN=compute(ANN model,test data)
resultANN=pred ANNSnet.result

resultANN=ifelse(resultANN>0.5,1,0)

NSk =

Input Screenshot:

library(neuralnet)
ANN model =neuralnet (Class~.,train data,linear.output=FALSE)
plot (ANN_model)

predANN=compute (ANN model, test data)
resultANN=predANNSnet.result
resultANN=ifelse({resultANN=0.5,1,0)

Output:

20

V2 >

V3 =
Vi < i ok
V5 » t
V6 AR
V7 > LR
V8 A
VO > A
AL QN
VI - Ef‘«#
ViZ > V)
ViZ » ;
vI5 »

VAL >

Vi/ >

vig ———*

vIg »

V70 : AT
V21 >

W >
vz *

V27 »

V75 »

V726 >

V27 >
vz *
Amount i

L J

2.8 Gradient Boosting (GSM)

Gradient Boosting is a popular machine learning algorithm that is used to perform
classification and regression tasks. This model comprises of several underlying ensemble
models like weak decision trees. These decision trees combine together to form a strong

model of gradient boosting.

Code:
library(gbm, quietly=TRUE)

Get the time to train the GBM model
system.time(

model gbm<- gbm(Class ~ .

, distribution = "bernoulli"

, data = rbind(train_data, test_data)

, n.trees = 500

, interaction.depth = 3

A A A I

10. , n.minobsinnode = 100

21

11. , shrinkage = 0.01

12. , bag.fraction = 0.5

13. , train.fraction = nrow(train_data) / (nrow(train_data) + nrow(test data))
14.)

15.)

16. # Determine best iteration based on test data

17. gbm.iter = gbm.perf(model gbm, method = "test")

Input Screenshot:

library(gbm, quietly=TRUE)

Loaded gbm 2.1.5

system.timel
model gbm =- gbm(Class ~ .

, distribution = "bernoulli”
, data = rbind(train_data, test data)
, n.trees = 5080
, interaction.depth = 3
, n.minobsinnode = 1060
, shrinkage = 8.081
, bag.fraction = 0.5
, train.fraction = nrow(train data) / (nrow(train_data) + nrow(test data))

user system elapsed
345.78B1 0.144 345.971

gbm.iter = gbm.perf(model_gbm, method = "test")

Code:
model.influence = relative.influence(model gbm, n.trees = gbm.iter, sort. = TRUE)
#Plot the gbm model

plot(model gbm)

Input Screenshot:

model.influence = relative.influence(model gbm, n.trees = gbm.iter, sort. = TRUE)

plot(model gbm)
Output:

22

|

-8.20734

-8.20736

-8.20738

>
-8.20740

-8.20742

-8.20744

-8.20746

-50 -40 -30 -20 -10

Output:

23

0.012 0.014
| l

Bernoulli deviance
0.010
|

0.008

0.006
l

0 100 200 300 400 500

Iteration

Code:
1. # Plot and calculate AUC on test data
2. gbm_test = predict(model gbm, newdata = test data, n.trees = gbm.iter)

gbm_auc = roc(test_data$Class, gbm_test, plot = TRUE, col = "red")
Output Screenshot:

gbm_test = predict(medel gbm, newdata = test data, n.trees = gbm.iter]}
gbm_auc = roc(test datasClass, gbm test, plot = TRUE, col = "red")

Setting levels: control = 8, case = 1
Setting direction: controls = cases

Code:
1. print(gbm_ auc)

24

Output Screenshot:

print(gbm_auc)

w7

Call:

roc.default(response = test_data$Class, predictor = gbm_test, plot = TRUE, col = "red”)
##

Data: gbm_test in 56863 controls (test data$Class @) = 98 cases (test datasClass 1).

Area under the curve: 8.9555

3. Software Specification Requirement

3.1 Software Requirements:
e R-Studio
3.2 Hardware Requirements:

® Processor: Preferably 1.0 GHz or Greater.

e RAM : 2 GB or Greater.

4. Future Work - Fraud detection is a complex issue that requires a substantial amount of
planning before throwing machine learning algorithms at it. Nonetheless, it is also an application
of data science and machine learning for the good, which makes sure that the customer's money
is safe and not easily tampered with. Future work will include a comprehensive tuning of the
Random Forest algorithm I talked about earlier. Having a data set with non-anonymized features
would make this particularly interesting as outputting the feature importance would enable one to

see what specific factors are most important for detecting fraudulent transactions.

5. Problem Statement
The Credit Card Fraud Detection Problem includes modeling past credit card transactions with

the knowledge of the ones that turned out to be fraud. This model is then used to identify

25

whether a new transaction is fraudulent or not. Our aim here is to detect 100% of the fraudulent

transactions while minimizing the incorrect fraud classifications.

6. Observations-
The data set is highly skewed, consisting of 492 frauds in a total of 284,807 observations. This
resulted in only 0.172% fraud cases. This skewed set is justified by the low number of fraudulent
transactions.The dataset consists of numerical values from the 28 ‘Principal Component Analysis
(PCA)’ transformed features, namely V1 to V28. Furthermore, there is no metadata about the
original features provided, so pre-analysis or feature study could not be done.

e The ‘Time’ and ‘Amount’ features are not transformed data.

e There is no missing value in the dataset.

7. Acknowledgement-

I would like to acknowledge my guide Dr. Kuldeep Singh Kaswan for providing me the
necessary guidance and valuable support throughout this research project. Learning from their

knowledge helped me to become passionate about my research topic

8. Conclusion -

Concluding our R Data Science project, I learnt how to develop our credit card fraud detection
model using machine learning. I used a variety of ML algorithms to implement this model and
also plotted the respective performance curves for the models. I learnt how data can be analyzed

and visualized to discern fraudulent transactions from other types of data.

26

9. References-

1.

R. J. Bolton and D. J. Hand. Unsupervised profiling methods for fraud detection.
In conference of Credit Scoring and Credit Connol VII, Edinburgh. UK, Sept
5-7,2001.

KhyatiChaudhary, JyotiYadav, BhawnaMallick, —A review of Fraud Detection
Techniques: Credit Card ||, International Journal of Computer Applications (0975
— 8887) Volume 45— No.1, May 2012.

K. C. Cox, S. G. Eick, G. J. Wills, and R. J. Brachman. Visual data mining:
Recognizing telephone calling fraud.J Data Mining and Knowledge Discover,
1(2):22>231, 1997.

Hollman and Jaakko. PmbabilisticAppmaches to Fraud Detection, Licentiate's
thesis. Helsinki University of Technology, Department of Computer Science and
Engineering, 1999.

https://rpubs.com/slazien/fraud detection

27

https://rpubs.com/slazien/fraud_detection

