

a» GALGOTIAS
@ UNIVERSITY

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

MULTIPLE OBJECT DETECTION SYSTEM

A Project Report of Capstone Project - 2

Submitted by
DHRUYV JAIN

(1613101258)

in partial fulfilment for the award of the

degree of

BACHELOR OF TECHNOLOGY
IN
COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of
Mr. MUKESH KUMAR JHA,
Assistant Professor

APRIL / MAY- 2020

SCHOOL OF COMPUTING AND SCIENCE AND
ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “MULTIPLE OBJECT DETECTION
SYSTEM?” is the bonafide work of “DHRUV_JAIN(1613101258)” who carried out

the project work under my supervision.

SIGNATURE OF HEAD SIGNATURE OF SUPERVISOR
Dr. MUNISH SHABARWAL, Mr. MUKESH KUMAR JHA,

PhD (Management), PhD (CS) Assistant Professor

Professor & Dean, School of Computing Science &

School of Computing Science & Engineering

Engineering

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
ABSTRACT il
LIST OF FIGURES v
1 INTRODUCTION 1
1.1 Overall Description
1 1.2 Purpose
3 1.3 Hardware Requirements
4 1.4 Software and Library
Requirements 4 1.5 Applications and Future
Scope 4 1.5.1 Optical Character
Recognition 4 1.5.2 Self-Driving Cars
5 1.5.3 Tracking
Objects 5 1.5.4 Digital
Watermarking 6 1.5.5 Medical
Imaging 6 1.5.6
Automated CCTV 7
2 LITERATURE REVIEW 7
2.1 Object Detection
7 2.2 Preprocessing
8 2.3 Feature Extraction
8 2.4 Background Subtraction
8
3 IMPLEMENTATION AND CONCLUSION 10
3.1 Implementation
10 3.1.1 COCO Model
10 3.1.1.1 Importing
TensorFlow and10 making the
hardware type to GPU.
3.1.1.2
Installing basic required 10
pycocotools.
3.1.1.3 Installing Keras 11
3.1.1.4 Cloning to Mask-RCNN. 11
3.1.1.5 Downloading the weights. 11

with 12

code for Object 12

12

3.1.1.6 Code to detect and segment

object.

11

3.1.1.7 Creating model and loading 11
weights.
3.1.1.8 Providing class name

indexes.

3.1.1.9 Running the
Detection.
3.1.1.100utput
3.1.2 YOLO

Model 13 3.1.2.1
Cloning the Darknet 13
3.1.2.2 Installing CUDA and 13
OpenCV.
3.1.2.3 Importing TensorFlow 13
3.1.2.4 Loading YOLO Weights 14
3.1.2.5 Specifying a particular 14
image.
3.1.2.6 Performing Code 14
3.1.2.7 Output.
14 3.1.3 Processing a Video
15 3.1.3.1 Download the
video 15 3.1.3.2 Check whether
video is 15
downloaded or not.
3.1.3.3 Import required libraries 15

3.1.3.4 Apply Mask,Load Weight 15
and specify the Classes.

3.1.3.5 Save each frame of a video 16
3.1.3.6 Download output video. 16
3.2 Conclusion 17
4 REFERENCES 18

FIGURE NO.

O 0 9 N W bk~ W N -

|\ I NG T NS T NG T N T N T S T T T e e S e
nNn A WD = O O 0NN N R WD = O

LIST OF FIGURES

TITLE

Bicycle with Bounding Boxes
OCR

Self-Driving Cars
Tracking Objects

Medical Imaging
TensorFlow and GPU
Pycoctools

Keras

Mask-RCNN

COCO Weights

Loading weights and Creating Model
Object Detection

Output

Darknet

CUDA and OpenCV
TensorFlow

YOLO Weights

Image Specification
Output

Download video

Configure

Libraries

Specify Class

Saving each frame of video

Output

PAGE NO.

AN LN W AW

ABSTRACT
Object detection is one of the major aspect in computer environment. It is highly
used for detecting faces, vehicle, pedestrian, security, self-driving cars, retina scan,
brain scan and many more. We are using highly accurate object detection-
algorithms and methods like R-CNN, Faster-RCNN, COCO model and YOLO
(You Only Look Once). We are using several packages in this process like
TensorFlow, OpenCV, Darknet, CUDA. We can recognize and detect each and
every object in an image with the help of the region highlighted as rectangular
boxes and assign a name tag to the object. In object detection dataset plays a very
crucial role as we have to train data i.e in object detection we perform two
operations on the data that are training data and testing data. So in the training
phase we see what type of object is there in the data and then we highlight the data
with the help of rectangular boxes. After that we test whether we have trained the
data accurately or not. Object detection is not only implied on images but we can
also use it for detecting objects in a video. One of the most burning example in
todays world is face lock in smartphones. It also uses the same concept of

detection. It detects the retina and then work accordingly on the face lock.

1. INTRODUCTION

1.1. Overall Description

Object recognition is to describe a collection of related computer vision tasks that
involve activities like identifying objects in digital photographs. Image
classification involves activities such as predicting the class of one object in an
image. Object localization is refers to identifying the location of one or more
objects in an image and drawing an abounding box around their extent. Object
detection does the work of combines these two tasks and localizes and classifies
one or more objects in an image. When a user or practitioner refers to the term
“object recognition®, they often mean “object detection®. It may be challenging for
beginners to distinguish between different related computer vision tasks.

So, we can distinguish between these three computer vision tasks with this
example:

Image Classification: This is done by Predict the type or class of an object in an
image.

Input: An image which consists of a single object, such as a photograph.

Output: A class label (e.g. one or more integers that are mapped to class labels).

Object Localization: This is done through, Locate the presence of objects in an
image and indicate their location with a bounding box.
Input: An image which consists of one or more objects, such as a photograph.

Output: One or more bounding boxes (e.g. defined by a point, width, and height).

Object Detection: This is done through, Locate the presence of objects with a
bounding box and types or classes of the located objects in an image.
Input: An image which consists of one or more objects, such as a photograph.

Output: One or more bounding boxes (e.g. defined by a point, width, and height),

and a class label for each bounding box.

One of the further extension to this breakdown of computer vision tasks is object
segmentation, also called “object instance segmentation” or “semantic
segmentation,” where instances of recognized objects are indicated by highlighting
the specific pixels of the object instead of a coarse bounding box.

For example, image classification is simply straight forward, but the differences
between object localization and object detection can be confusing, especially when
all three tasks may be just as equally referred to as object recognition.

Humans can detect and identify objects present in an image. The human visual
system 1is fast and accurate and can also perform complex tasks like identifying
multiple objects and detect obstacles with little conscious thought. The availability
of large sets of data, faster GPUs, and better algorithms, we can now easily train
computers to detect and classify multiple objects within an image with high
accuracy. We need to understand terms such as object detection, object
localization, loss function for object detection and localization, and finally explore
an object detection algorithm known as “You only look once” (YOLO) and also on

COCO model.

Object recognition refers to a collection of related tasks for identifying objects in
digital photographs. Region-based Convolutional Neural Networks, or R-CNNgs, is
a family of techniques for addressing object localization and recognition tasks,
designed for model performance. You Only Look Once, or YOLO is known as the
second family of techniques for object recognition designed for speed and real-
time use. Firstly we have used a COCO model data set i.e. Common Object in
Context, by Microsoft. It is a large-scale object detection, segmentation, and

captioning dataset.

1.2. Purpose

The aim of object detection is to detect all instances of objects from a known class,
such as people, cars or faces in an image. Generally, only a small number of
instances of the object are present in the image, but there is a very large number of
possible locations and scales at which they can occur and that need to somehow be
explored. Each detection of the image is reported with some form of pose
information. This is as simple as the location of the object, a location and scale, or
the extent of the object defined in terms of a bounding box. For example for face
detection in a face detector may compute the locations of the eyes, nose and
mouth, in addition to the bounding box of the face. An example of a bicycle
detection in an image that specifies the locations of certain parts is shown in Fig. 1.
The pose can also be defined by a three-dimensional transformation specifying the
location of the object relative to the camera. Object detection systems always
construct a model for an object class from a set of training examples. In the case of
a fixed rigid object in an image, only one example may be needed, but more
generally multiple training examples are necessary to capture certain aspects of

class variability.

Fig.1 Bicycle with Bounding Boxes

1.3. Hardware Requirements

® Processor - 13

e RAM-4GB

® Memory -5 GB
1.4. Software and Library Requirements

e Python 3.7.2

® Google colab

¢ TensorFlow

e CUDA

® Darknet

® OpenCV

¢ (COCO Dataset & YOLO Weights
1.5. Applications and Future Scope
1.5.1. Optical Character Recognition
Optical character recognition or optical character reader, often abbreviated as
OCR, is the mechanical or electronic conversion of images of typed, handwritten
or printed text into machine-encoded text, whether from a scanned document, a
photo of a document, a scene-photo (for example the text on signs and billboards in
a landscape photo) or from subtitle text superimposed on an image, we are

extracting characters from the image or video.

= I, .
339-KBJ
339/KBJ

Fig. 2 OCR

1.5.2. Self-Driving Cars

One of the best examples of why you need object detection is for autonomous
driving is In order for a car to decide what to do in next step whether accelerate,
apply brakes or turn, it needs to know where all the objects are around the car and
what those objects are That requires object detection and we would essentially
train the car to detect known set of objects such as cars, pedestrians, traffic lights,

road signs, bicycles,motorcycles, etc.

Fig. 3 Self-Driving Cars
1.5.3. Tracking Objects

Object detection system is also used in tracking the objects, for example tracking a
ball during a football match, tracking movement of a cricket bat, tracking a person
in a video. Object tracking has a variety of uses, some of which are surveillance

and security, traffic monitoring, video communication, robot vision and animation.

Fig. 4 Tracking Objects
1.5.4. Digital Watermarking

A digital watermark is a kind of marker covertly embedded in a noise-tolerant
signal such as audio, video or image data. It is typically used to identify ownership
of the copyright of such signal. "Watermarking" is the process of hiding digital
information in a carrier signal; the hidden information should, but does not need to,
contain a relation to the carrier signal. Digital watermarking may be used for a
wide range of applications such as Copyright protection, Source tracking (different
recipients get differently watermarked content), Broadcast monitoring (television
news often contains watermarked video from international agencies), Video
authentication, Software crippling on screencasting and video editing software
programs, ID card security, Fraud and Tamper detection, Content management on

social networks.
1.5.5. Medical Imaging

Medical image processing tools are playing an increasingly important role in
assisting the clinicians in diagnosis, therapy planning and image-guided
interventions. Accurate, robust and fast tracking of deformable anatomical objects

such as the heart, is a crucial task in medical image analysis.

Fig. 5 Medical Imaging

1.5.6. Automated CCTV

Surveillance is an integral part of security and patrol. Recent advances in computer
vision technology have lead to the development of various automatic surveillance
systems, however their effectiveness is adversely affected by many factors and
they are not completely reliable. This study investigated the potential of automated
surveillance system to reduce the CCTV operator workload in both detection and

tracking activities.

Normally CCTV is Running every time, so we need large size of memory system
to store the recorded video. By using object detection system we can automate
CCTV in such a way that if some objects are detected then only recording is going
to start. Using this we can decrease the repeatedly recording same image frames,
which increases the memory efficiency. We can decrease the memory requirement

by using this object detection system.
2. LITERATURE REVIEW
2.1. Object Detection

Object detection 1s an important task, yet challenging vision task. It is a critical
part of many applications such as image search, image auto-annotation and scene
understanding, object tracking. Moving object tracking of video image sequences
was one of the most important subjects in computer vision. It had already been
applied in many computer vision fields, such as smart video surveillance (Arun
Hampapur 2005), artificial intelligence, military guidance, safety detection and
robot navigation, medical and biological application. In recent years, a number of
successful single-object tracking system appeared, but in the presence of several
objects, object detection becomes difficult and when objects are fully or partially
occluded, they are obtruded from the human vision which further increases the

problem of detection. Decreasing illumination and acquisition angle. The proposed

7

MLP based object tracking system is made robust by an optimum selection of
unique features and also by implementing the Adaboost strong classification
method.

2.2. Preprocessing

As the name suggest a level before processing. It is same as editing a photo. Before
we post our photo we apply effects on that so in the same way preprocessing
works. It improves the quality of the image by reducing noise and unwanted
features and enhancing those features that are important for that image. It also
resizes an image and make it to 448%*448 size thereby managing the contrast and
brightness of the image. It makes the image ready for feature extraction there by
normalizing it for better fitting. In mathematical terms preprocessing can be
achieved by removing or subtracting the mean value of image intensity and
dividing it by standard deviation.

2.3. Feature Extraction

As the name suggests extracting the features. It is same as data mining. As in data
mining we take only that data which is important for us means with which we can
solve most problems. In the same way feature extraction works , in this we extract
those features of the image which are important for our process there by ignoring
rest of the features. One of the technique used for feature extraction is edge
detection. Feature extraction also helps in reducing the size if the image which is
very useful in case of big sized images.

2.4. Background Subtraction

The background subtraction method by Horprasert et al (1999), was able to cope
with local illumination changes, such as shadows and highlights, even globe
illumination changes. In this method, the background model was statistically
modelled on each pixel. Computational colour mode, include the brightness

distortion and the chromaticity distortion which was used to distinguish shading

8

background from the ordinary background or moving foreground objects. The
background and foreground subtraction method used the following approach. A
pixel was modelled by a 4-tuple [Ei, si, ai, bi], where Ei- a vector with expected
colour value, si - a vector with the standard deviation of colour value, ai - the
variation of the brightness distortion and bi was the variation of the chromaticity
distortion of the ith pixel. In the next step, the difference between the background
image and the current image was evaluated. Each pixel was finally classified into
four categories: original 8 background, shaded background or shadow, highlighted
background and moving foreground object. Liyuan Li et al (2003), contributed a
method for detecting foreground objects in non-stationary complex environments
containing moving background objects. A Bayes decision rule was used for
classification of background and foreground changes based on inter-frame colour
co-occurrence statistics. An approach to store and fast retrieve colour cooccurrence
statistics was also established. In this method, foreground objects were detected in
two steps. First, both the foreground and the background changes are extracted
using background subtraction and temporal differencing. The frequent background
changes were then recognized using the Bayes decision rule based on the learned
colour co-occurrence statistics. Both short-term and long term strategies to learn
the frequent background changes were used. An algorithm focused on obtaining
the stationary foreground regions as said by Alvaro Bayona et al (2010), which
was useful for applications like the detection of abandoned/stolen objects and
parked vehicles. This algorithm mainly used two steps. Firstly, a sub-sampling
scheme based on background subtraction techniques was implemented to obtain
stationary foreground regions. This detects foreground changes at different time
instants in the same pixel locations. This was done by using a Gaussian distribution

function. Secondly, some modifications were introduced on this base algorithm

such as thresh holding the previously computed subtraction. The main purpose of

this algorithm was reducing the amount of stationary foreground detected.

3. IMPLEMENTATION AND CONCLUSION

3.1. Implementation

3.1.1. COCO Model

3.1.1.1. Importing TensorFlow and making the hardware type to GPU.

[]

Cs

import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:8":
raise SystembError(GPU device not found')
print({ Found GPU at: {}'.format(device name))

The default version of TensorFlow in Colab will scon switch tc
We recommend you upgrade now or ensure your notebook w

Found GPU at: /device:GPU:@

Fig. 6 TensorFlow and GPU

3.1.1.2. Installing basic required pycocotools

Ipip install Cython

Requirement already satisfied: Cython in susrsloc

Ed=

sample data

rgit clone https: ./ github_comfwaleadkascoco
Cloning into "~ coco” - . .

remote: Enumera ting objects: Sea, done.

remote: Total 994 (delta @), reused @ (delta &2 .
Receiving objects: 186% (9004,/9684), 16 .39 MiIiB | 26
Resolwving deltas: 180% (539,539, done.

L I

coco sample_data

Ipip install -U setuptools

Ipip install -U wheel

Emake install -€C cocosPyithonalRT

Fig. 7 Pycocotools

3.1.1.3. Installing Keras

10

[1 !pip install "keras==2.1.8" --force-reinstall

Fig. 8 Keras

3.1.1.4. Cloning to Mask-RCNN.

[1 !git clone https://github.com/matterport/Mask RCHM

[+ Cloning into "Mask_RCHNN® ...
remote: Enumerating objects: 956, done.
remote: Total 956 (delta @), reused 8 (delta @), pack-reused 956
Receiving objects: 186% (956/956), 111.84 MiB | 42.48 MiB/s, done.
Resolving deltas: 188% (569/569), done.

Fig. 9 Mask-RCNN
3.1.1.5. Downloading the weights.

[1 import os
os.chdir("./Mask_RCNN")
lgit checkout 555128ee89%a3l144ceff8%208b5b2cf46c321288¢C
lwget https://github.com/matterport/Mask RCHNN/releases/download/v2.8/mask_rcnn_coco.hs

Fig. 10 COCO Weights

3.1.1.6. Code to detect and segment object.

3.1.1.7. Creating model and loading weights.

[1 # Create model cbject in inference mode.

model = modellib.MaskRCHN({mode="inference”, model dir=MODEL_DIR, config=config)

Load weights trained on MS-COCO
model.load_ weights(COCO_MODEL_PATH, by name=True)

Fig. 11 Loading weights and Creating Model

3.1.1.8. Providing class name with indexes.

3.1.1.9. Running the code for Object Detection.

11

[1 # Load a random image from the images folder

import os
file_names = next(os.walk({IMAGE_DIR))}[2]

image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))}

Run detection
results = model.detect([image], werbose=1)

Visualize results

r = results[e]

visualize.display instances(image, r['rois"], r['masks"], r['class_ids'],
class_names, r['scores'])

Fig. 12 Object Detection

3.1.1.10. Output:-

airplane 0.997
[

dirplansf 97—

dirplane.

pirplans™0:920

Fig. 13 Output

3.1.2. YOLO Model

3.1.2.1. Cloning the Darknet.

12

lgit clone https://github.com/AlexeyAB/darknet

Fig. 14 Darknet

3.1.2.2. Installing CUDA and OpenCV.

'fusr/flocal/cudasbin/nvecc

--version
lapt-get install libopencwv-dewv
#cd darknet
s
Ised -i "s/OPENCV=8/0PENCV=1/g " Makefile
I'sed -i '"s/GPU=2/GPU=1/g' Makefile
Ils
#cd LS
Ils

Fig. 15 CUDA and OpenCV

3.1.2.3. Importing TensorFlow.

import tensorflow as tf
device name =

tf.test.gpu device name()
print{device_name)

Fig. 16 TensorFlow

3.1.2.4. Loading YOLO Weights.

!wget https://pjreddie.com/media/files/yolov3.weights

Fig. 17 YOLO Weights

13

3.1.2.5. Specifying a particular image.

!./darknet detect cfg/yolov3.cfg yolov3.weights data/person.jpg

Fig. 18 Image Specification

3.1.2.6. Performing Code.

3.1.2.7. Output.

Fig. 19 Output

3.1.3. Processing a Video

3.1.3.1. Download the video

[1 !mkdir wideos
#lwget https://motchallenge.net/movies/MOT17-13.mp4 -P ./videos
'wget https://github.com/Tony687/blog_statics/releases/download/vl.@/trailerl.mp4 -P ./wvideos

14

Fig. 20 Download video

3.1.3.2. Check whether video is downloaded or not

[1 !1s ./videos

Fig. 21 Configure

3.1.3.3. Import required libraries

import cv2
import numpy as np

Fig. 22 Libraries

3.1.3.4. Apply mask , Load Weights and specify the Classes.

model . load__weights{(COCO_ _MODEL_PATH, by name=Truwue)

class__mames = [
TBG T L, " person” ., "bicwcle " . fcar "motorcycle” Tairplane ",
"bus " . "train® , "Truck ® L, "boat " ., "traffFic light".
"Fire hwdrant” ., "stop sign” . "parking metaer” "bench . "bird "
focat "t o, "dog " . "horsas " "sheep” ., tCow ", "elephant' , "bear " ,
fzebra”t . "girafife” . "backpack " . "umbrella ” . "handbag” . Ttie t L
"suilitcasea" , "Frisbes" "skis ", " snowboard ", "sports ball" ,
Tkite " . "baseball bat . "baseball glowe " "skateboard”
" surfboard” . "tennis racket” "bottle " . "wine glass” ., fcup t oL
"fFork" , "knife " , " spoon” "bowl " "bananma " , fapple ",
"sandwich” _ foranges " o, "broccoli ", "carrot "hot dog”® . "pizza” .
"domnut " , "cake ", "chair" , "couch ® , "potted plant”®, "bed " ,
"dining table” ., "toilet ", Bl = VA "laptop” . Tmouse ", "remote ",
"keyboard” . 'cell phone” , "microwawve " . "owern ", "toaster " ,
"sinmkt . "refrigerator ” . " boolk * "clock ” ., Twase ", "scissors
"teddy bear ", "hair drier" , "toothbrush

1

Fig. 23 Specifying Class

3.1.3.5. Save each frame of a video.

C» B.jpg 1?9:jpg 25?.jpg 335.jpg 413.jpg 492.jpg S?B.jpg 649:jpg ?2?.jpg
1ee.jpg 17.7jpg 258.jpg 336.jpg 414.jpg 493.jpg 571.jpg 64.jpg T28.jpg
181.jpg 18@.jpg 259.jpg 337.jpg 415.jpg 494.jpg 572.jpg 658.jpg 729.jpg
182.jpg 181.jpg 25.jpg 338.jpg 416.jpg 495.jpg 573.jpg 651.jpg 72.jpg
183.jpg 182.jpg 268.jpg 339.jpg 417.jpg 496.jpg 574.jpg 652.jpg 73@.jpg
184.jpg 183.jpg 261.jpg 33.jpg 418.jpg 497.jpg 575.jpg 653.jpg 731.jpg
185.jpg 184.jpg 262.jpg 348.jpg 419.jpg 49B.jpg 576.jpg 654.jpg 732.jpg
196.jpg 185.jpg 263.jpg 341.jpg 41.j?g 499:jpg 5??.jpg 655.jpg ?33.jpg
19?.qu 186.qu 264.qu 342.qu 428.qu 49:Jpg 5?8.qu 656.1pg ?34.qu
198.1pg 18?.qu 265.qu 343.qu 421.qu 4.]pg 5?9:jpg 65?.1pg ?35.qu
199:]pg 188.qu 266.qu 344.qu 422.qu SBB.qu 5?.]Pg 658.1pg ?36.qu
19.]9g 189:jpg 26?.qu 345.qu 423.qu 591.qu SSB.Jpg 659:]pg ?3?.qu
11@.jpg 18.jpg 268.jpg 346.jpg 424.jpg 582.jpg 581.jpg 65.jpg 738.7jpg
111.jpg 19@.jpg 269.jpg 347.jpg 425.jpg 563.jpg 582.jpg 668.jpg 739.jpg
112.jpg 191.jpg 26.jpg 348.jpg 426.jpg 5e4.jpg 583.jpg 661.jpg 73.jpg
113.jpg 192.jpg 2708.jpg 349.jpg 427.jpg 505.jpg 584.jpg 662.jpg 740.jpg
114.jpg 193.jpg 271.jpg 34.jpg 428.jpg 566.jpg 585.jpg 663.jpg 741.jpg
115.jpg 194.jpg 272.jpg 358.jpg 429.jpg 5687.jpg 586.jpg 664.jpg 742.jpg
116.jpg 195.jpg 273.jpg 351.jpg 42.jpg GSe8.jpg 587.jpg 665.jpg 743.jpg
117.jpg 196.jpg 274.jpg 352.jpg 430.jpg 5089.jpg 588.jpg 666.jpg 744.jpg
118.jpg 19?.jpg 2?5.jpg 353.jpg 431.jpg Se.jeg 589:jpg 66?.jpg ?45.jpg
119.jpg 198.jpg 276.jpg 354.jpg 432.jpg GS18.jpg 58.jpg 668.jpg 746.7jpg
11.j9g 199:jpg 2??.jpg 355.jpg 433.jpg Sil.jpg 599.jpg 669:jpg ?4?.jpg
128.1pg 19:Jpg 2?8.qu 356.qu 434.qu 512.qu 591.qu 66.j?g ?48.qu
121.jpg 1.jpg 279.jpg 357.jpg 435.jpg G513.jpg 592.jpg 679.jpg T749.jpg

Fig. 24 Saving each frame of video

3.1.3.6. Download output video.

[] from google.colab import files
files.download(' videos/out2.mpd")

Fig. 25 Output

3.2. Conclusion

COCO Model and YOLO Model are very easy to understand and work on. Once
you understand the concept of object detection then the whole process becomes
very simple and then you only have to focus on the steps to be taken for making it
possible in real life. Here pertained dataset plays a very crucial role in Object
Detection as they make our work easy , because creating your own data set is a
very tedious task or you can say an another project because we have to apply
various features on that like first of all collecting the images then distinguishing
them in testing and training phase , then classifying each image and much more.
One thing is also noticed is that we can create this project on hardware also and if
possible we will try to create our own dataset and then perform this operation on
real time images. And also when compared with other detection system we
observed that The system which we have created is far more efficient and better
than RCNN because RCNN detect object only on the basis of bounding boxes
means it create a large number of bounding boxes there by making the task more
tedious as it uses selective search and detect the object with different window
sizes. For example if RCNN is making 1000 bounding boxes for a task to complete

then our system will create 100 to do the same task.

4. REFERENCES

17

[1] Sandeep Kumar, Aman Balyan, Manvi Chawla. “Object Detection and
Recognition in Images”. In [JEDR,2017.

[2] Khushboo Khurana, Reetu Awasthi. “Techniques for Object Recognition in
Images and Multi-Object Detection”. International Journal of Advanced Research
in Computer Engineering & Technology (IJARCET), Volume 2, Issue 4, April
2013.

[3] Mukesh Tiwari, “A Review of Detection and Tracking of Object from Image
and Video Sequences”. International Journal of Computational Intelligence

Research, Volume 13, Number 5 (2017).

[4] Kanimozhi S, Gayathri G, Mala T, “Multiple Real-time object identification
using Single shot Multi-Box detection”. Second International Conference on

Computational Intelligence in Data Science(ICCIDS-2019).

[5] R. Girshick. “Fast r-cnn”, In Proceedings of the IEEE International Conference

on Computer Vision, pages 1440-1448, 2015.

[6] Hideaki Yanagisawa, Takuro Yamashita, Hiroshi Watanabe, “A Study on
Object Detection Method from Manga Images using CNN”, In IEEE, 2018.

[7] C. H. Kung, C. M. Kung, J. P. Wang, “Instrumentation and Measurement
Technology Conference - IMTC 2007Warsaw, Poland, May 1-3, 2007.

[8] G. Li, R. Zeng, and L. Lin, "Moving Target Detection in Video Monitoring
System", Intelligent Control and Automation, 2006. WCICA 2006. The Sixth
World Congress on, vol. 2, pp. 9778 - 9781,21-23 June 2006.

[9] Juan M. Shchez, Xavier Binefa, John R. Kender, “MULTIPLE FEATURE
TEMPORAL MODELS FOR OBJECT DETECTION IN VIDEO”, In IEEE,2002.

18

[10] Souhail Guennouni, Anass Mansouri, Ali Ahaitouf, “Multiple Object
Detection using OpenCV on an Embedded Platform”, In IEEE, 2014.

19

	SIGNATURE OF HEAD
	Professor & Dean,
	Assistant Professor

