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ABSTRACT 

CHAPTER 1 

 
 

When plants and crops are affected by pests it affects the agricultural production of the 

country. Usually farmers or experts observe the plants with naked eye for detection and 

identification of disease. But this method can be time processing, expensive and inaccurate. 

Automatic detection using image processing techniques provide fast and accurate results. 

This paper is concerned with a new approach to the development of plant disease recognition 

model, based on leaf image classification, by the use of deep convolutional networks. 

Advances in computer vision present an opportunity to expand and enhance the practice of 

precise plant protection and extend the market of computer vision applications in the field of 

precision agriculture. Novel way of training and the methodology used facilitate a quick and 

easy system implementation in practice. All essential steps required for implementing this 

disease recognition model will be fully described throughout the paper, starting from 

gathering images in order to create a database, assessed by agricultural experts, a deep 

learning framework to perform the deep CNN training. This method paper is a new approach 

in detecting plant diseases using the deep convolutional neural network trained and fine- 

tuned to fit accurately to the database of a plant’s leaves that was gathered independently 

for diverse plant diseases. The advance and novelty of the developed model lie in its 

simplicity; healthy leaves and background images are in line with other classes, enabling the 

model to distinguish between diseased leaves and healthy ones or from the environment by 

using CNN. 



 

CHAPTER 2 
 

 

INTRODUCTION 

 
The problem of efficient plant disease protection is closely related to the problems of 

sustainable agriculture Inexperienced pesticide usage can cause the development of long- 

term resistance of the pathogens, severely reducing the ability to fight back. Timely and 

accurate diagnosis of plant diseases is one of the pillars of precision agriculture. It is crucial to 

prevent unnecessary waste of financial and other resources, thus achieving healthier 

production in this changing environment, appropriate and timely disease identification 

including early prevention has never been more important. There are several ways to detect 

plant pathologies. Some diseases do not have any visible symptoms, or the effect becomes 

noticeable too late to act, and in those situations, a sophisticated analysis is obligatory. 

However, most diseases generate some kind of manifestation in the visible spectrum, so the 

naked eye examination of a trained professional is the prime technique adopted in practice 

for plant disease detection. In order to achieve accurate plant disease diagnostics a plant 

pathologist should possess good observation skills so that one can identify characteristic 

symptoms. Variations in symptoms indicated by diseased plants may lead to an improper 

diagnosis since amateur gardeners and hobbyists could have more difficulties determining it 

than a professional plant pathologist. An automated system designed to help identify plant 

diseases by the plant’s appearance and visual symptoms could be of great help to amateurs 

in the gardening process and also trained professionals as a verification system in disease 

diagnostics. 



Traditionally, identification of plant diseases has relied on human annotation by visual 

inspection. Nowadays, it is combined or substituted with various technologies such as 

immunoassays (e.g., enzyme-linked immunosorbent assay, ELISA) and PCR or RNA-seq to 

detect pathogen-specific antigens or oligonucleotides, respectively. Moreover, recent 

technical advances and dramatic cost reductions in the field of digital image acquisition have 

allowed the introduction of an array of image-based diagnosis methods at a practical level. 

However, as the acquired image encloses condensed information that is extremely difficult 

for the computer to process, it requires a pre-processing step to extract a certain feature (e.g., 

color and shape) that is manually predefined by experts. In such situations, deep learning is 

typically used because it allows the computer to autonomously learn the most suitable 

feature without human intervention. An initial attempt to use deep learning for image-based 

plant disease diagnosis was reported in 2016, where the trained model was able to classify 

14 crops and 26 diseases with an accuracy of 99.35% against optical images. Since then, 

successive generations of deep-learning-based disease diagnosis in various crops have been 

reported. 

Among various network architectures used in deep learning, convolutional neural networks 

(CNN) are widely used in image recognition. 

 
 

 
Plant disease has long been one of the major threats to food security because it dramatically 

reduces the crop yield and compromises its quality. Accurate and precise diagnosis of diseases 

has been a significant challenge. Timely and accurate diagnosis of plant diseases is one of the 

pillars of precision agriculture. It is crucial to prevent unnecessary waste of financial and other 



resources, thus achieving healthier production in this changing environment, appropriate and 

timely disease identification including early prevention has never been more important. 

 
 

 
An automated system designed to help identify plant diseases by the plant’s appearance and 

visual symptoms could be of great help to amateurs in the gardening process and also trained 

professionals as a verification system in disease diagnostics. 

Timely and accurate diagnosis of plant diseases is one of the pillars of precision agriculture. It 

is crucial to prevent unnecessary waste of financial and other resources, thus achieving 

healthier production in this changing environment, appropriate and timely disease 

identification including early prevention has never been more important. 

Some diseases do not have any visible symptoms, or the effect becomes noticeable too late 

to act, and in those situations, a sophisticated analysis is obligatory. 

However, most diseases generate some kind of manifestation in the visible spectrum, so the 

naked eye examination of a trained professional is the prime technique adopted in practice 

for plant disease detection. 

In order to achieve accurate plant disease diagnostics a plant pathologist should possess good 

observation skills so that one can identify characteristic symptoms. 



CHAPTER 3 
 

 

EXISTING SYSTEM 
 
 
 

Traditionally, identification of plant diseases has relied on human annotation by visual 

inspection. Numerous procedures are currently in use for plant disease detection applying 

computer vision. One of them is disease detection by extracting colour feature as authors in [17] 

have presented. In addition, plant disease detection could be achieved by extracting shape 

features method. There are some approaches which apply the feed-forward back propagation of 

neural networks consisting of one input, one output, and one hidden layer for the needs of 

identifying the species of leaf, pest, or disease. Also, detection and differentiation of plant 

diseases can be achieved using Support Vector Machine algorithms. This technique was 

implemented for sugar beet diseases, where, depending on the type and stage of disease, the 

classification accuracy was between 65% and 90%. 

Likewise, there are methods that combine the feature extraction and Neural Network Ensemble 

(NNE) for plant disease recognition. Through training a definite number of neural networks and 

combining their results after that, NNE offers a better generalization of learning ability. Such 

method was implemented only for recognizing tea leaf diseases with final testing accuracy of 

91%. 

Another approach based on leaf images and using ANNs as a technique for an automatic detection 

and classification of plant diseases was used in conjunction with K-means as a clustering 

procedure. ANN consisted of 10 hidden layers. The number of outputs was 6 which was the 

number of classes representing five diseases along with the case of a healthy leaf. On average, the 

accuracy of classification using this approach was 94.67%. 



Nowadays, it is combined or substituted with various technologies such as immunoassays 

(e.g., enzyme-linked immunosorbent assay, ELISA) and PCR or RNA-seq to detect pathogen- 

specific antigens or oligonucleotides, respectively. Moreover, recent technical advances and 

dramatic cost reductions in the field of digital image acquisition have allowed the introduction 

of an array of image-based diagnosis methods at a practical level. However, as the acquired 

image encloses condensed information that is extremely difficult for the computer to process, 

it requires a pre-processing step to extract a certain feature (e.g., colour and shape) that is 

manually predefined by experts. 

 
 

 
In such situations, deep learning is typically used because it allows the computer to 

autonomously learn the most suitable feature without human intervention. An initial attempt 

to use deep learning for image-based plant disease diagnosis was reported in 2016, where 

the trained model was able to classify 14 crops and 26 diseases with an accuracy of 99.35% 

against optical images. Since then, successive generations of deep-learning-based disease 

diagnosis in various crops have been reported. 



CHAPTER 4 
 

 

PROPOSED SYSTEM 

 
Plant Disease Detection Model 

 
An automated system designed to help identify plant diseases by the plant’s appearance and 

visual symptoms could be of great help to amateurs in the gardening process and also trained 

professionals as a verification system in disease diagnostics. 

 
 

 
Advances in computer vision present an opportunity to expand and enhance the practice of 

precise plant protection and extend the market of computer vision applications in the field of 

precision agriculture. 

Exploiting common digital image processing techniques such as colour analysis and 

thresholding will be used with the aim of detection and classification of plant diseases. 

 
 

 
The acquired image encloses condensed information that is extremely difficult for the 

computer to process, it requires a pre-processing step to extract a certain feature (e.g., colour 

and shape) that is manually predefined by experts. In such situations, deep learning is typically 

used because it allows the computer to autonomously learn the most suitable feature without 

human intervention. 



Among various network architectures used in deep learning, convolutional neural networks 

(CNN) are widely used in image recognition. 



Dataset Used 

 
The dataset that was used is the Plant Village dataset taken from Kaggle. 

 
 



CHAPTER 5 
 
 

IMPLEMENTATION 

 
Architectural Diagrams 

 
1. System Design 

 
System design shows the overall design of system. In this section we discuss in detail the 

design aspects of the system: 

1.1 System Diagram 
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IlitGE 



1.2 System Flowchart 
 

 



Source Code: 

 

 

 

import numpy as np 

import pickle 

import cv2 

from os import listdir 

 
from sklearn.preprocessing import LabelBinarizer 

from keras.models import Sequential 

from keras.layers.normalization import BatchNormalization 

from keras.layers.convolutional import Conv2D 

from keras.layers.convolutional import MaxPooling2D 

 
from keras.layers.core import Activation, Flatten, Dropout, Dense 

from keras import backend as K 

from keras.preprocessing.image import ImageDataGenerator 

from keras.optimizers import Adam 

from keras.preprocessing import image 

 
from keras.preprocessing.image import img_to_array 

from sklearn.preprocessing import MultiLabelBinarizer 

from sklearn.model_selection import train_test_split 



import matplotlib.pyplot as plt 

import tensorflow 

 

 
EPOCHS = 25 

INIT_LR = 1e-3 

BS = 32 

default_image_size = tuple((256, 256)) 

image_size = 0 

directory_root = '../input/plantvillage/' 

width=256 

height=256 

depth=3 

 

 
def convert_image_to_array(image_dir): 

try: 

image = cv2.imread(image_dir) 

if image is not None : 

image = cv2.resize(image, default_image_size) 

return img_to_array(image) 

else : 



return np.array([]) 

except Exception as e: 

print(f"Error : {e}") 

return None 

 

 
image_list, label_list = [], [] 

try: 

print("[INFO] Loading images ...") 

root_dir = listdir(directory_root) 

for directory in root_dir : 

# remove .DS_Store from list 

if directory == ".DS_Store" : 

root_dir.remove(directory) 

 

 
for plant_folder in root_dir : 

 
plant_disease_folder_list = listdir(f"{directory_root}/{plant_folder}") 

 

 

 
 

for disease_folder in plant_disease_folder_list : 

# remove .DS_Store from list 

if disease_folder == ".DS_Store" : 



plant_disease_folder_list.remove(disease_folder) 

 

 

 
 

for plant_disease_folder in plant_disease_folder_list: 

print(f"[INFO] Processing {plant_disease_folder} ...") 

plant_disease_image_list = 

 

listdir(f"{directory_root}/{plant_folder}/{plant_disease_folder}/") 

 

 

 
 

for single_plant_disease_image in plant_disease_image_list : 

if single_plant_disease_image == ".DS_Store" : 

plant_disease_image_list.remove(single_plant_disease_image) 

 

 

 
 

for image in plant_disease_image_list[:200]: 

 
image_directory = 

 

f"{directory_root}/{plant_folder}/{plant_disease_folder}/{image}" 

 
if image_directory.endswith(".jpg") == True or image_directory.endswith(".JPG") 

 

== True: 

 
image_list.append(convert_image_to_array(image_directory)) 

label_list.append(plant_disease_folder) 

print("[INFO] Image loading completed") 

except Exception as e: 



print(f"Error : {e}") 

 

 

 
 

image_size = len(image_list) 

 

 

 
 

label_binarizer = LabelBinarizer() 

 
image_labels = label_binarizer.fit_transform(label_list) 

pickle.dump(label_binarizer,open('label_transform.pkl', 'wb')) 

n_classes = len(label_binarizer.classes_) 

 

 
print(label_binarizer.classes_) 

 

 

 
 

np_image_list = np.array(image_list, dtype=np.float16) / 225.0 

 

 

 
 

print("[INFO] Spliting data to train, test") 

 
x_train, x_test, y_train, y_test = train_test_split(np_image_list, image_labels, test_size=0.2, 

random_state = 42) 

 

 
 

aug = ImageDataGenerator( 

rotation_range=25, width_shift_range=0.1, 

height_shift_range=0.1, shear_range=0.2, 



zoom_range=0.2,horizontal_flip=True, 

fill_mode="nearest") 

 

 
model = Sequential() 

 
inputShape = (height, width, depth) 

chanDim = -1 

if K.image_data_format() == "channels_first": 

inputShape = (depth, height, width) 

chanDim = 1 

model.add(Conv2D(32, (3, 3), padding="same",input_shape=inputShape)) 

model.add(Activation("relu")) 

model.add(BatchNormalization(axis=chanDim)) 

model.add(MaxPooling2D(pool_size=(3, 3))) 

model.add(Dropout(0.25)) 

model.add(Conv2D(64, (3, 3), padding="same")) 

model.add(Activation("relu")) 

model.add(BatchNormalization(axis=chanDim)) 

model.add(Conv2D(64, (3, 3), padding="same")) 

model.add(Activation("relu")) 

model.add(BatchNormalization(axis=chanDim)) 



model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.25)) 

model.add(Conv2D(128, (3, 3), padding="same")) 

model.add(Activation("relu")) 

model.add(BatchNormalization(axis=chanDim)) 

model.add(Conv2D(128, (3, 3), padding="same")) 

model.add(Activation("relu")) 

model.add(BatchNormalization(axis=chanDim)) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.25)) 

model.add(Flatten()) 

model.add(Dense(1024)) 

model.add(Activation("relu")) 

model.add(BatchNormalization()) 

model.add(Dropout(0.5)) 

model.add(Dense(n_classes)) 

model.add(Activation("softmax")) 

 

 
opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS) 

# distribution 



model.compile(loss="binary_crossentropy", optimizer=opt,metrics=["accuracy"]) 

# train the network 

print("[INFO] training network...") 

 

 

 
 

history = model.fit_generator( 

aug.flow(x_train, y_train, batch_size=BS), 

validation_data=(x_test, y_test), 

steps_per_epoch=len(x_train) // BS, 

epochs=EPOCHS, verbose=1 

) 

 

 

 
 

acc = history.history['acc'] 

 
val_acc = history.history['val_acc'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

epochs = range(1, len(acc) + 1) 

#Train and validation accuracy 

plt.plot(epochs, acc, 'b', label='Training accurarcy') 

plt.plot(epochs, val_acc, 'r', label='Validation accurarcy') 

plt.title('Training and Validation accurarcy') 



plt.legend() 

 

 

 
 

plt.figure() 

 
#Train and validation loss 

 
plt.plot(epochs, loss, 'b', label='Training loss') 

plt.plot(epochs, val_loss, 'r', label='Validation loss') 

plt.title('Training and Validation loss') 

plt.legend() 

plt.show() 

 

 
print("[INFO] Calculating model accuracy") 

scores = model.evaluate(x_test, y_test) 

print(f"Test Accuracy: {scores[1]*100}") 

 

 
# save the model to disk 

print("[INFO] Saving model...") 

pickle.dump(model,open('cnn_model.pkl', 'wb')) 



2. Phases in Plant Disease Detection 

 
2.1 Image pre-processing and labelling 

 
Pre-processing images commonly involves removing low-frequency background noise, 

normalizing the intensity of the individual particle’s images, removing reflections, and 

masking portions of images. Image preprocessing is the technique of enhancing data. 

Furthermore, procedure of image preprocessing involves cropping of all the images manually, 

making the square around the leaves, in order to highlight the region of interest (plant leaves). 

During the phase of collecting the images for the dataset, images with smaller resolution and 

dimension less than 500 pixels were not considered as valid images for the dataset. In addition, 

only the images where the region of interest was in higher resolution were marked as eligible 

candidates for the dataset. In that way, it was ensured that images contain all the needed 

information for feature learning. Many resources can be found by searching across the Internet, 

but their relevance is often unreliable. In the interest of confirming the accuracy of classes in 

the dataset, initially grouped by a keywords search, agricultural experts examined leaf images 

and labeled all the images with appropriate disease acronym. As it is known, it is important to 

use accurately classified images for the training and validation dataset. Only in that way may 

an appropriate and reliable detecting model be developed. In this stage, duplicated images that 

were left after the initial iteration of gathering and grouping images into classes were removed 

from the dataset. 



2.2 Neural Network Training 
 
 

 
Training the deep convolutional neural network for making an image classification model from 

a dataset is proposed. Tensor Flow is an open source software library for numerical 

computation using data flow graphs. Nodes in the graph represent mathematical operations, 

while the graph edges represent the multidimensional data arrays (tensors) communicated 

between them. The flexible architecture allows you to deploy computation to one or more CPUs 

or GPUs in a desktop, server, or mobile device with a single API. Tensor Flow was originally 

developed by researchers and engineers working on the Google Brain Team within Google's 

Machine Intelligence research organization for the purposes of conducting machine learning 

and deep neural networks research, but the system is general enough to be applicable in a wide 

variety of other domains as well. In machine learning, a convolutional neural network is a type 

of feed-forward artificial neural network in which the connectivity pattern between its neurons 



is inspired by the organization of the animal visual cortex. Individual cortical neurons respond 

to stimuli in a restricted region of space known as the receptive field. The receptive fields of 

different neurons partially overlap such that they tile the visual field. The response of an 

individual neuron to stimuli within its receptive field can be approximated mathematically by 

a convolution operation. Convolutional networks were inspired by biological processes and are 

variations of multilayer perceptron designed to use minimal amounts of pre-processing. They 

have wide applications in image and video recognition, recommender systems and natural 

language processing. 

Main Steps to build a CNN (or) Conv net: 

 
Convolution Operation 

 
ReLU Layer (Rectified Linear Unit) 

Pooling Layer (Max Pooling) 

Flattening 

Fully Connected Layer 

Start Writing Code. 

1. Convolution is the first layer to extract features from the input image and it learns the 

relationship between features using kernel or filters with input images. 

2. ReLU Layer: ReLU stands for the Rectified Linear Unit for a non-linear operation. The 

output is ƒ(x) = max(0,x). we use this because to introduce the non-linearity to CNN. 

3. Pooling Layer: it is used to reduce the number of parameters by downsampling and retain 

only the valuable information to process further. There are types of Pooling: 

Max Pooling (Choose this). 



Average and Sum pooling. 

 
4. Flattening: we flatten our entire matrix into a vector like a vertical one. so, that it will be 

passed to the input layer. 

5. Fully Connected Layer: we pass our flatten vector into input Layer .we combined these 

features to create a model. Finally, we have an activation function such as softmax or sigmoid 

to classify the outputs. 

Convolutional neural networks (CNNs) consist of multiple layers of receptive fields. These are 

small neuron collections which process portions of the input image. The outputs of these 

collections are then tiled so that their input regions overlap, to obtain a higher-resolution 

representation of the original image; this is repeated for every such layer. Tiling allows CNNs 

to tolerate translation of the input image. Convolutional networks may include local or global 

pooling layers, which combine the outputs of neuron clusters. They also consist of various 

combinations of convolutional and fully connected layers, with point wise nonlinearity applied 

at the end of or after each layer. A convolution operation on small regions of input is introduced 

to reduce the number of free parameters and improve generalization .One major advantage of 

convolutional networks is the use of shared weight in convolutional layers, which means that 

the same filter (weights bank) is used for each pixel in the layer; this both reduces memory 

footprint and improves performance. The layer’s parameters are comprised of a set of learnable 

kernels which possess a small receptive field but extend through the full depth of the input 

volume. Rectified Linear Units (Re LU) are used as substitute for saturating nonlinearities. 

This activation function adaptively learns the parameters of rectifiers and improves accuracy 

at negligible extra computational cost. 

Deep CNN with Re LUs trains several times faster. This method is applied to the output of 

every convolutional and fully connected layer. In CNN, neurons within a hidden layer are 



segmented into “feature maps.” The neurons within a feature map share the same weight and 

bias. The neurons within the feature map search for the same feature. These neurons are unique 

since they are connected to different neurons in the lower layer. So, for the first hidden layer, 

neurons within a feature map will be connected to different regions of the input image. The 

hidden layer is segmented into feature maps where each neuron in a feature map looks for the 

same feature but at different positions of the input image. Basically, the feature map is the 

result of applying convolution across an image. The convolutional layer is the core building 

block of a CNN. The layer's parameters consist of a set of learnable filters (or kernels), which 

have a small receptive field, but extend through the full depth of the input volume. During the 

forward pass, each filter is convolved across the width and height of the input volume, 

computing the dot product between the entries of the filter and the input and producing a 2- 

dimensional activation map of that filter. As a result, the network learns filters that activate 

when it detects some specific type of feature at some spatial position in the input. Stacking the 

activation maps for all filters along the depth dimension forms the full output volume of the 

convolution layer. Every entry in the output volume can thus also be interpreted as an output 

of a neuron that looks at a small region in the input and shares parameters with neurons in the 

same activation map. When dealing with high-dimensional inputs such as images, it is 

impractical to connect neurons to all neurons in the previous volume because such network 

architecture does not take the spatial structure of the data into account. Convolutional networks 

exploit spatially local correlation by enforcing a local connectivity pattern between neurons of 

adjacent layers: each neuron is connected to only a small region of the input volume. The extent 

of this connectivity is a hyper parameter called the receptive field of the neuron. The 

connections are local in space (along width and height), but always extend along the entire 

depth of the input volume. Such architecture ensures that the learnt filters produce the strongest 



response to a spatially local input pattern. Three hyper parameters control the size of the output 

volume of the convolutional layer: the depth, stride and zero-padding. 



 



 



 



 
 

Visualization of features in trained classification model: (a) original image; (b) 

the first layer filters (c) the first layer output (d) the second layer filters; (e) the 

second layer output (f) the third layer output (g) the fourth layer output; (h) the 

fifth layer output 



 
 

Output layer images 



CHAPTER 6 
 

 

RESULT 

 
The results presented in this section are related to training with the whole database 

containing both original and augmented images. As it is known that convolutional networks 

are able to learn features when trained on larger datasets, results achieved when trained with 

only original images will not be explored. After fine-tuning the parameters of the network, an 

overall accuracy of 96.77% was achieved. Furthermore, the trained model was tested on each 

class individually. Test was performed on every image from the validation set. As suggested 

by good practice principles, achieved results should be compared with some other results. In 

addition, there are still no commercial solutions on the market, except those dealing with 

plant species recognition based on the leaf’s images. 
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CHAPTER 7 
 

 

CONCLUSION 

 
Plant Diseases are major food threats that should have to overcome before it leads to further 

loss of the entire field. But, often framers unable to distinguish between similar symptoms 

but ace different diseases. This will mislead to wrong or overdosage of fertilizers. 

In this project, an approach of using deep learning method was explored in order to 

automatically classify and detect plant diseases from leaf images. 

The complete procedure consists of collecting the images used for training and validation, 

image pre-processing and augmentation and finally the procedure of training the deep CNN 

and fine-tuning. Different tests were performed in order to check the performance of newly 

created model. 
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