
1

 SKIN DISEASE DETECTION SYSTEM

 A Report for the Evaluation 3 of Project 2

Submitted by

HIMANSHU

 (1613101291/16SCSE101298)

in partial fulfillment for the award of the

degree of

Bachelor of Technology

IN

Computer Science and

Engineering

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Ms. Kamakshi Gupta, Assistant

Professor (SCSE)

APRIL / MAY- 2020

2

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

1. Abstract 3

2. Introduction 4

3. Existing System 5

4. Proposed system 6

5. Implementation or architecture diagrams 7

6. Output / Result / Screenshot 21

7. Conclusion/Future Enhancement 23

8. References 24

3

ABSTRACT

The practical increase of interest in intelligent technologies has caused a rapid

development of all activities in terms of sensors and automatic mechanisms for smart

operations. The implementations concentrate on technologies which avoid unnecessary

actions on user side while examining health conditions. One of important aspects is the

constant inspection of the skin health due to possible diseases such as melanomas that can

develop under excessive influence of the sunlight. Our proposed system will help in

identifying skin diseases and also help us in providing proper precautions.

Skin diseases are among the most common health problems worldwide. In this article we

proposed a method that uses computer vision based techniques to detect various kinds of

dermatological skin diseases. We have used different types of image processing

algorithms for feature extraction and feed forward artificial neural network for training

and testing purpose. The system works on two phases- first pre-process the colour skin

images to extract significant features and later identifies the diseases.

4

INTRODUCTION

Skin is the largest organ present in the human body. Skin disease doesn’t just affect the

skin. It can have a huge impact on a person’s day-to-day life, crush self- confidence,

restrict their movement, and lead to depression and even ruin relationships. So it is

needed to take skin disease seriously. Skin diseases are very common among people of

all age groups. In 2019 with prevalence rate of 10 percent, the population affected across

India from skin disease was estimated at nearly 15.1 crore.

(i) Overall Description:

Skin disease diagnosis is very essential in earlier stage in order to prevent and

control them. The proposed software takes input a skin image and based on

CNN algorithm it classifies skin into (1) Healthy (2) Bacterial Disease And also

provide Remedies based on the classified disease.

(ii) Purpose:

The skin infections impact the people directly. The skin disease become the

important factor which causes significant reduction in the health and self-

confidence. The detection and classification of disease is important task in skin

disease detection, here we proposed a novel method of the using the CNN

algorithm for the detection and classification of the disease.

(iii) Motivations and Scope:

 Skin diseases are most common form of infections occurring in people of all

ages. As the costs of dermatologists to monitor every patient is very high, there

is a need for a computerized system to evaluate patient’s risk of skin disease

using images of their skin lesions. Skin is the largest organ present in the human

body. Skin disease doesn’t just affect the skin. It can have a huge impact on a

person’s day-to-day life, crush self- confidence, restrict their movement, and

lead to depression.

5

EXISTING SYSTEM

1. In the paper “Survey of Texture Based Feature Extraction for Skin Disease

Detection” by Seema Kolkur, D.R. Kalbande, an approach of texture based feature

extraction for detection of skin diseases has been presented to resolve issues. In

statistical texture analysis, texture features are computed from the statistical

distribution of observed combinations of intensities at specified positions relative

to each other in the image. According to the number of intensity points (pixels) in

each combination, statistics are classified into first-order, second-order and higher-

order statistics. GLCM method is a way of extracting second order statistical

texture features. Third and higher order textures consider the relationships among

three or more pixels. These are theoretically possible but not commonly

implemented due to calculation time and interpretation difficulty. In this paper,

work on texture based features derived from GLCM matrix used for the detection

of skin diseases is discussed and consolidated.

2. In the paper “Detection of Malignant Skin Diseases Based on the Lesion

Segmentation” by Jyothilakshmi K. K, Jeeva J. B, a novel technique to

automatically detect the malignancy of skin diseases using conventional camera

images is proposed. The procedure used would be of great advantage to the

dermatologists as a pre-screening system for early diagnosis in situations where

the dermoscopes are not accessible. This algorithm mainly aims at an early

diagnosis of the malignant diseases since they can be cured if detected early. The

proposed method works on color images by taking the HSV component and

preprocessing was performed. A robust segmentation procedure is performed for

the accurate detection of the lesion. For detection purpose, the morphological

features like asymmetry, border irregularity, color variation and diameter are used.

These extracted features help to identify the malignant lesions from the non-

malignant

6

PROPOSED SYSTEM

Skin Disease Detection System is a computer based technology that use computer vision

for taking input of various skin diseases like eczema, melanoma etc. Here we have used

technologies like image processing for enhancing our input image by eliminating unwanted

or noisy data. Our proposed system will work on the CNN based classification for

classifying the input. This system contributes in describing and understanding a CNN

(Convolutional Neural Network) classification based technique through which we can cure

and detect skin diseases efficiently at lower cost. We are using a CNN based classification

as it takes less number of data nodes and weights for transferring data.

 This is how a simple artificial neural net-

 work looks.

 This is how a CNN looks.

7

Implementation or architecture diagrams

Code for the user interface:

import tkinter as tk

from tkinter.filedialog import askopenfilename

import shutil

import os

import sys

from PIL import Image, ImageTk

window = tk.Tk()

window.title("Skin Disease Detection System")

window.geometry("500x510")

window.configure(background ="lightgreen")

title = tk.Label(text="Click below to choose picture for testing disease....", background =

"lightgreen", fg="Brown", font=("", 15))

title.grid()

def acne():

 window.destroy()

 window1 = tk.Tk()

 window1.title("Skin Disease Detection System")

8

 window1.geometry("500x510")

 window1.configure(background="lightgreen")

 def exit():

 window1.destroy()

 rem = "The remedies for acne are:\n\n "

 remedies = tk.Label(text=rem, background="lightgreen",

 fg="Brown", font=("", 15))

 remedies.grid(column=0, row=7, padx=10, pady=10)

 rem1 = "Take vitamin A derivative. \n Apply Benzoyl Peroxide on the infected part

regularly."

 remedies1 = tk.Label(text=rem1, background="lightgreen",

 fg="Black", font=("", 12))

 remedies1.grid(column=0, row=8, padx=10, pady=10)

 button = tk.Button(text="Exit", command=exit)

 button.grid(column=0, row=9, padx=20, pady=20)

 window1.mainloop()

def melanoma():

 window.destroy()

 window1 = tk.Tk()

 window1.title("Skin Disease Detection System")

9

 window1.geometry("650x510")

 window1.configure(background="lightgreen")

 def exit():

 window1.destroy()

 rem = "The remedies for melanoma are: "

 remedies = tk.Label(text=rem, background="lightgreen",

 fg="Brown", font=("", 15))

 remedies.grid(column=0, row=7, padx=10, pady=10)

 rem1 = " Take anti virul drug. \n Immunotherapy. \n Consult to a dermatologist"

 remedies1 = tk.Label(text=rem1, background="lightgreen",

 fg="Black", font=("", 12))

 remedies1.grid(column=0, row=8, padx=10, pady=10)

 button = tk.Button(text="Exit", command=exit)

 button.grid(column=0, row=9, padx=20, pady=20)

 window1.mainloop()

def eczema():

 window.destroy()

 window1 = tk.Tk()

 window1.title("Skin Disease Detection System")

 window1.geometry("520x510")

 window1.configure(background="lightgreen")

10

 def exit():

 window1.destroy()

 rem = "The remedies for eczema are: "

 remedies = tk.Label(text=rem, background="lightgreen",

 fg="Brown", font=("", 15))

 remedies.grid(column=0, row=7, padx=10, pady=10)

 rem1 = " Apply Coal tar extract for preventing irritation. \n Consult to a

dermatologist."

 remedies1 = tk.Label(text=rem1, background="lightgreen",

 fg="Black", font=("", 12))

 remedies1.grid(column=0, row=8, padx=10, pady=10)

 button = tk.Button(text="Exit", command=exit)

 button.grid(column=0, row=9, padx=20, pady=20)

 window1.mainloop()

def analysis():

 import cv2

 import numpy as np

 import os

 from random import shuffle

 from tqdm import

 verify_dir = 'testpicture'

11

 IMG_SIZE = 50

 LR = 1e-3

 MODEL_NAME = 'healthyvsunhealthy-{}-{}.model'.format(LR, '2conv-basic')

 def process_verify_data():

 verifying_data = []

 for img in tqdm(os.listdir(verify_dir)):

 path = os.path.join(verify_dir, img)

 img_num = img.split('.')[0]

 img = cv2.imread(path, cv2.IMREAD_COLOR)

 img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))

 verifying_data.append([np.array(img), img_num])

 np.save('verify_data.npy', verifying_data)

 return verifying_data

 verify_data = process_verify_data()

 #verify_data = np.load('verify_data.npy')

 import tflearn

 from tflearn.layers.conv import conv_2d, max_pool_2d

 from tflearn.layers.core import input_data, dropout, fully_connected

 from tflearn.layers.estimator import regression

 import tensorflow as tf

 tf.reset_default_graph()

 convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 3], name='input')

12

 convnet = conv_2d(convnet, 32, 3, activation='relu')

 convnet = max_pool_2d(convnet, 3)

 convnet = conv_2d(convnet, 64, 3, activation='relu')

 convnet = max_pool_2d(convnet, 3)

 convnet = conv_2d(convnet, 128, 3, activation='relu')

 convnet = max_pool_2d(convnet, 3)

 convnet = conv_2d(convnet, 32, 3, activation='relu')

 convnet = max_pool_2d(convnet, 3)

 convnet = conv_2d(convnet, 64, 3, activation='relu')

 convnet = max_pool_2d(convnet, 3)

 convnet = fully_connected(convnet, 1024, activation='relu')

 convnet = dropout(convnet, 0.8)

 convnet = fully_connected(convnet, 4, activation='softmax')

 convnet = regression(convnet, optimizer='adam', learning_rate=LR,

loss='categorical_crossentropy', name='targets')

 model = tflearn.DNN(convnet, tensorboard_dir='log')

 if os.path.exists('{}.meta'.format(MODEL_NAME)):

 model.load(MODEL_NAME)

 print('model loaded!')

13

 import matplotlib.pyplot as plt

 fig = plt.figure()

 for num, data in enumerate(verify_data):

 img_num = data[1]

 img_data = data[0]

 y = fig.add_subplot(3, 4, num + 1)

 orig = img_data

 data = img_data.reshape(IMG_SIZE, IMG_SIZE, 3)

 # model_out = model.predict([data])[0]

 model_out = model.predict([data])[0]

 if np.argmax(model_out) == 0:

 str_label = 'healthy'

 elif np.argmax(model_out) == 1:

 str_label = 'acne'

 elif np.argmax(model_out) == 2:

 str_label = 'melanoma'

 elif np.argmax(model_out) == 3:

 str_label = 'eczema'

 if str_label =='healthy':

 status ="HEALTHY"

14

 else:

 status = "UNHEALTHY"

 message = tk.Label(text='Status: '+status, background="lightgreen",

 fg="Brown", font=("", 15))

 message.grid(column=0, row=3, padx=10, pady=10)

 if str_label == 'acne':

 diseasename = "Acne "

 disease = tk.Label(text='Disease Name: ' + diseasename,

background="lightgreen",

 fg="Black", font=("", 15))

 disease.grid(column=0, row=4, padx=10, pady=10)

 r = tk.Label(text='Click below for remedies...', background="lightgreen",

fg="Brown", font=("", 15))

 r.grid(column=0, row=5, padx=10, pady=10)

 button3 = tk.Button(text="Remedies", command=bact)

 button3.grid(column=0, row=6, padx=10, pady=10)

 elif str_label == 'melanoma':

 diseasename = "Melanoma"

 disease = tk.Label(text='Disease Name: ' + diseasename,

background="lightgreen",

 fg="Black", font=("", 15))

 disease.grid(column=0, row=4, padx=10, pady=10)

 r = tk.Label(text='Click below for remedies...', background="lightgreen",

fg="Brown", font=("", 15))

 r.grid(column=0, row=5, padx=10, pady=10)

 button3 = tk.Button(text="Remedies", command=vir)

 button3.grid(column=0, row=6, padx=10, pady=10)

15

 elif str_label == 'eczema':

 diseasename = "Eczema "

 disease = tk.Label(text='Disease Name: ' + diseasename,

background="lightgreen",

 fg="Black", font=("", 15))

 disease.grid(column=0, row=4, padx=10, pady=10)

 r = tk.Label(text='Click below for remedies...', background="lightgreen",

fg="Brown", font=("", 15))

 r.grid(column=0, row=5, padx=10, pady=10)

 button3 = tk.Button(text="Remedies", command=latebl)

 button3.grid(column=0, row=6, padx=10, pady=10)

 else:

 r = tk.Label(text='skin is healthy', background="lightgreen", fg="Black",

 font=("", 15))

 r.grid(column=0, row=4, padx=10, pady=10)

 button = tk.Button(text="Exit", command=exit)

 button.grid(column=0, row=9, padx=20, pady=20)

def openphoto():

 dirPath = "testpicture"

 fileList = os.listdir(dirPath)

 for fileName in fileList:

 os.remove(dirPath + "/" + fileName)

 fileName = askopenfilename(initialdir='C:/Users/Downloads/images', title='Select

image for analysis ',

 filetypes=[('image files', '.jpg')])

 dst = "C:/Users/Desktop/plant_project/testpicture"

 shutil.copy(fileName, dst)

16

 load = Image.open(fileName)

 render = ImageTk.PhotoImage(load)

 img = tk.Label(image=render, height="250", width="500")

 img.image = render

 img.place(x=0, y=0)

 img.grid(column=0, row=1, padx=10, pady = 10)

 title.destroy()

 button1.destroy()

 button2 = tk.Button(text="Analyse Image", command=analysis)

 button2.grid(column=0, row=2, padx=10, pady = 10)

button1 = tk.Button(text="Get Photo", command = openphoto)

button1.grid(column=0, row=1, padx=10, pady = 10)

window.mainloop()

Code for the CNN classification model:

import cv2

import numpy as np

import os

from random import shuffle

from tqdm import tqdm

TRAIN_DIR = 'train/train'

TEST_DIR = 'test/test'

IMG_SIZE = 50

LR = 1e-3

17

MODEL_NAME = 'healthyvsunhealthy-{}-{}.model'.format(LR, '2conv-basic')

def label_img(img):

 word_label = img[0]

 if word_label == 'h': return [1,0,0,0]

 elif word_label == 'b': return [0,1,0,0]

 elif word_label == 'v': return [0,0,1,0]

 elif word_label == 'l': return [0,0,0,1]

def create_train_data():

 training_data = []

 for img in tqdm(os.listdir(TRAIN_DIR)):

 label = label_img(img)

 path = os.path.join(TRAIN_DIR,img)

 img = cv2.imread(path,cv2.IMREAD_COLOR)

 img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))

 training_data.append([np.array(img),np.array(label)])

 shuffle(training_data)

 np.save('train_data.npy', training_data)

 return training_data

def process_test_data():

 testing_data = []

 for img in tqdm(os.listdir(TEST_DIR)):

 path = os.path.join(TEST_DIR,img)

18

 img_num = img.split('.')[0]

 img = cv2.imread(path,cv2.IMREAD_COLOR)

 img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))

 testing_data.append([np.array(img), img_num])

 shuffle(testing_data)

 np.save('test_data.npy', testing_data)

 return testing_data

train_data = create_train_data()

If you have already created the dataset:

#train_data = np.load('train_data.npy')

import tflearn

from tflearn.layers.conv import conv_2d, max_pool_2d

from tflearn.layers.core import input_data, dropout, fully_connected

from tflearn.layers.estimator import regression

import tensorflow as tf

tf.reset_default_graph()

convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 3], name='input')

convnet = conv_2d(convnet, 32, 3, activation='relu')

convnet = max_pool_2d(convnet, 3)

convnet = conv_2d(convnet, 64, 3, activation='relu')

19

convnet = max_pool_2d(convnet, 3)

convnet = conv_2d(convnet, 128, 3, activation='relu')

convnet = max_pool_2d(convnet, 3)

convnet = conv_2d(convnet, 32, 3, activation='relu')

convnet = max_pool_2d(convnet, 3)

convnet = conv_2d(convnet, 64, 3, activation='relu')

convnet = max_pool_2d(convnet, 3)

convnet = fully_connected(convnet, 1024, activation='relu')

convnet = dropout(convnet, 0.8)

convnet = fully_connected(convnet, 4, activation='softmax')

convnet = regression(convnet, optimizer='adam', learning_rate=LR,

loss='categorical_crossentropy', name='targets')

model = tflearn.DNN(convnet, tensorboard_dir='log')

if os.path.exists('{}.meta'.format(MODEL_NAME)):

 model.load(MODEL_NAME)

 print('model loaded!')

train = train_data[:-500]

test = train_data[-500:]

20

X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,3)

Y = [i[1] for i in train]

test_x = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,3)

test_y = [i[1] for i in test]

model.fit({'input': X}, {'targets': Y}, n_epoch=8, validation_set=({'input': test_x},

{'targets': test_y}),

 snapshot_step=40, show_metric=True, run_id=MODEL_NAME)

model.save(MODEL_NAME)

Below is the diagrammatical representation of our proposed system:

Input Test

Images
Preprocessing

Convert To An

Array Of

Comparison

Input Test

Images Preprocessing
Training Model

Using CNN

CNN

Based

Classific

ation

Healthy

Defect

Display

Diseases

And

Remedies

21

RESULT

User Interface:

22

Result after the classification:

23

Conclusion:

Accurate detection of disease is a very important part of the medication and we

have taken this aspect very seriously that is why we have used CNN classification

model for the skin disease detection. Though the system depends on the quality of

the input image but we have tried to make the result more and more accurate. Image

processing has also played a vital role in the removal of irrelevant things from input

image which will help the CNN model to extract the feature from the images easily

that will lead to prepare training data set quickly.

24

References:

• Digital Image Processing 4th Edition Pearson Book By Gonzalez (2018).

• https://www.google.com

• https://www.geeksforgeeks.org/digital-image-processing/

• https://www.elprocus.com

• https://www.analyticsvidhya.com/blog/2014/12/image-processingpython-basics/

