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 1. ABSTRACT  
The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-

driven unconditional generative image modeling. I expose and analyze several of its 

characteristic artifacts, and propose changes in both model architecture and training 

methods to address them. In particular, i redesign generator normalization, revisit 

progressive growing, and regularize the generator to encourage good conditioning 

in the mapping from latent vectors to images. In addition to improving image quality, 

this path length regularizer yields the additional benefit that the generator becomes 

significantly easier to invert. This makes it possible to reliably detect if an image is 

generated by a particular network. I furthermore visualize how well the generator 

utilizes its output resolution, and identify a capacity problem, motivating us to train 

larger models for additional quality improvements. Overall, our improved model 

redefines the state of the art in unconditional image modeling, both in terms of 

existing distribution quality metrics as well as perceived image quality.   
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2.INTRODUCTION 

 

GAN is an unsupervised deep learning algorithm where we have a 
GeneratorpittedagainstanadversarialnetworkcalledDiscriminator.Generator,ge neratescounterfeitcurrency. 
Discriminators are a team of cops trying to detect counterfeit currency. Counterfeiters and cops both are trying to beat 
each other at their game.Both Generator and Discriminator will be multi-layer perceptrons(MLP)  

GAN  

Generator’s objective will be to generate data that is very similar to the training data. Data generated from 
Generator should be indistinguishable from the real data.Discriminator takes two sets of input, one input comes 
from the training dataset(real data) and the other input is the dataset generated by Generator.GAN will use the 
MNIST data and identify the latent feature representation for generating digits. At the end we will see how the 
Generators are able to generate real-looking MNIST digits. 

 

 

 

2.1 Text to Image Synthesis 

One of the most common and challenging problems in Natural Language Processing and Computer 
Vision is that of image captioning: given an image, a text description of the image must be 
produced. Text to image synthesis is the reverse problem: given a text description, an image which 
matches that description must be generated. 
From a high-level perspective, these problems are not different from language translation 
problems. In the same way similar semantics can be encoded in two different languages, images 
and text are two different “languages” to encode related information. 
Nevertheless, these problems are entirely different because text-image or image-text conversions 
are highly multimodal problems. If one tries to translate a simple sentence such as “This is a 
beautiful red flower” to French, then there are not many sentences which could be valid 
translations. If one tries to produce a mental image of this description, there is a large number of 
possible images which would match this description. Though this multimodal behaviour is also 
present in image captioning problems, there the problem is made easier by the fact that language 
is mostly sequential. This structure is exploited by conditioning the generation of new words on 
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the previous (already generated) words. Because of this, text to image synthesis is a harder problem 
than image captioning. 
The generation of images from natural language has many possible applications in the future once 
the technology is ready for commercial applications. People could create customised furniture for 
their home by merely describing it to a computer instead of spending many hours searching for the 
desired design. Content creators could produce content in tighter collaboration with a machine 
using natural language.  
 
Datasets 

 
The publicly available datasets used in this report are the Oxford-102 flowers dataset [25] and the 
Caltech CUB-200 birds dataset [35]. These two datasets are the ones which are usually used for 
research on text to image synthesis. Oxford-102 contains 8,192 images from 102 categories of 
flowers. The CUB-200 dataset includes 11,788 pictures of 200 types of birds. These datasets 
include only photos, but no descriptions. Nevertheless, I used the publicly available captions 
collected by Reed et al.[28] for these datasets using Amazon Mechanical Turk. Each of the images 
has five descriptions. They are at least ten words in length, they do not describe the background, 
and they do not mention the species of the flower or bird (Figure 1.1). 

 

Figure 1.1: A sample from the Oxford-102 dataset (left) and CUB-200 dataset (right), together with one of their 
associated descriptions collected by Reed et al. [28] 

Because the number of images is small, I perform data augmentation. I apply random cropping 
and random left-right flipping of the images. I split the datasets into train and test datasets such 
that they contain disjoint classes of images. The datasets are summarised in Table 1.1. 
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The report is focused on the flowers dataset for practical reasons detailed in Chapter 5 where I 
discuss this decision. Nevertheless, a small number of experiments were run on the birds dataset 
as well. 

Dataset/Number of images Train Test Total 
Flowers 7,034 1,155 8,192 
Augmented flowers 
(256x256) 

675,264 110,880 786,432 

Birds 8,855 2,933 11,788 
Augmented birds 
(256x256) 

850,080 281,568 1,131,648 

Table 1.1: Summary statistics of the datasets. 

2.2 Generative Models 

The task of text to image synthesis perfectly fits the description of the problem generative models 
attempt to solve. The current best text to image results are obtained by Generative Adversarial 
Networks (GANs), a particular type of generative model. Before introducing GANs, generative 
models are briefly explained in the next few paragraphs. 

Before defining them, I will introduce the necessary notation. Consider a dataset X = {x(1),...,x(m)} 
composed of m samples where x(i) is a vector. In the particular case of this report, x(i) is an image 
encoded as a vector of pixel values. The dataset is produced by sampling the images from an 
unknown data generating distribution Pr, where r stands for real. One could think of the data 
generating distribution as the hidden distribution of the Universe which describes a particular 
phenomenon. A generative model is a model which learns to generate samples from a distribution 
Pg which estimates Pr. The model distribution, Pg, is a hypothesis about the true data distribution 
Pr. 

Most generative models explicitly learn a distribution Pg by maximising the expected log-
likelihood EX∼Pr log(Pg(x|θ)) with respect to θ, the parameters of the model. Intuitively, maximum 
likelihood learning is equivalent to putting more probability mass around the regions of X with 
more examples from X and less around the regions with fewer examples. It can be shown that the 
log-likelihood maximisation is equivalent to minimising the Kullback-Leibler divergence 

 assuming Pr and Pg are densities. One of the valuable properties of 
this approach is that no knowledge of the unknown Pr is needed because the expectation can be 
approximated with enough samples according to the weak law of large numbers. 
Generative Adversarial Networks (GANs) [9] are another type of generative model which takes a 
different approach based on game theory. The way they work and how they compare to other 
models is explained in the next section. 
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2.3 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) solve most of the shortcomings of the already existent 
generative models: 

• The quality of the images generated by GANs is better than the one of the other models. 

• GANs do not need to learn an explicit density Pg which for complex distributions might not 
even exist as it will later be seen. 

• GANs can generate samples efficiently and in parallel. For example, they can generate an 
image in parallel rather than pixel by pixel. 

• GANs are flexible, both regarding the loss functions and the topology of the network which 
generates samples. 

• When GANs converge, Pg = Pr. This equality does not hold for other types of models which 
contain a biased estimator in the loss they optimise. 

Nevertheless, these improvements come at the expense of two new significant problems: the 
instability during training and the lack of any indication of convergence. GAN training is relatively 
stable on specific architectures and for carefully chosen hyper-parameters, but this is far from 
ideal. Progress has been made to address these critical issues which I will discuss in Chapter 3. 

 

Figure 1.2: High-level view of the GAN framework. The generator produces synthetic images. The discriminator 
takes images as input and outputs the probability it assigns to the image of being real. A common analogy is 
that of an art forger (the generator) which tries to forge paintings and an art investigator (the discriminator) 
which tries to detect imitations. 

The GAN framework is based on a game played by two entities: the discriminator (also called the 
critic) and the generator. Informally, the game can be described as follows. The generator produces 
images and tries to trick the discriminator that the generated images are real. The discriminator, 
given an image, seeks to determine if the image is real or synthetic. The intuition is that by 
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continuously playing this game, both players will get better which means that the generator will 
learn to generate realistic images (Figure 1.2). 

I will now show how this intuition can be modelled mathematically. Let X be a dataset of samples 
x(i) belonging to a compact metric set X such as the space of images [−1,1]n. The discriminator 
learns a parametric function Dω : X → [0,1] which takes as input an image x and outputs the 
probability it assigns to the image of being real. Let Z be the range of a random vector Z with a 
simple and fixed distribution such as pZ = N(0,I). The generator learns a parametric function Gθ : 
Z → X which maps the states of the random vector Z to the states of a random vector X. The states 
of X ∼ Pg correspond to the images the generator creates. Thus, the generator learns to map a 
vector of noise to images. 

The easiest way to define and analyse the game is as a zero-sum game where Dω and Gθ are the 
strategies of the two players. Such a game can be described by a value function V (D,G) which in 
this case represents the payoff of the discriminator. The discriminator wants to maximise V while 
the generator wishes to minimise it. The payoff described by V must be proportional to the ability 
of D to distinguish between real and fake samples. 
The value function from equation 1.1 which was originally proposed in [9] comes as a natural 
choice. 

 V (D,G) = EX∼Pr[log(D(x))] + EZ∼pZ[log(1 − D(G(z)))] (1.1) 

On the one hand, note that V (D,G) becomes higher when the discriminator can distinguish between 
real and fake samples. On the other hand, V becomes lower when the generator is performing well, 
and the critic cannot distinguish well between real and fake samples. 

 

Figure 1.3: The Nash Equilibrium corresponds to a saddle point in space where V is at a minimum 
with respect to θ and at a maximum with respect to ω. Neither of the networks has any interest to 
change their parameters. 
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The difference from maximum likelihood models is that samples generated by the generator have 

an implicit distribution Pg determined by the particular value of θ. Pg cannot be explicitly 

evaluated. The discriminator forces the generator to bring Pg close to Pr. 

Zero-sum games are minimax games so the optimal parameters of the generator can be described 
as in Equation 1.2. 

θ∗ = argminmaxV (D,G) (1.2) θ ω 

The solution of the minimax optimisation is a Nash Equilibrium (Figure 1.3). Theorem 1.3.1 
describes the exciting properties of the equilibrium for non-parametric functions. The theorem 
confirms the intuition that as the two players play this game, the generator will improve at 
producing realistic samples. 

Theorem 1.3.1. The Nash equilibrium of the (non-parametric) GAN game occurs when: 

1. The strategy of the discriminator is  

2. The strategy G of the generator makes Pg = Pr. 

For completeness, I offer a slightly different and more detailed proof than the one from [9] in 
appendix A. I encourage the reader to go through it. Note that when the equilibrium is reached,

. The interpretation of Theorem 1.3.1 is that, at the end of the learning process, the generator 
learned Pr and the discriminator is not able to distinguish between real and synthetic data, so its 

best strategy is to output  for any input it receives. At equilibrium, the discriminator has a payoff 
of −log(4) and the generator log(4), respectively. 

In practice, the generator does not minimise V (D,G). This would be equivalent to minimising 
EZ∼pZ[log(1 − Dω(Gθ(z)))], but the function log(1 − Dω(Gθ(z))) has saturating gradient when the 
discriminator is performing well and the function approaches log(1). This makes it difficult for the 
generator to improve when it is not performing well. Instead, the generator is minimising LG from 
1.3 whose gradient saturates only when the generator is already performing well. The loss LD of 
the critic is also included in 1.3. 

LG = −EZ∼Pz[log(Dω(Gθ(z))) 
(1.3) 

LD = −EX∼Pr[log(Dω(x))] − EZ∼pZ[log(1 − Dω(Gθ(z)))] 
With this generator loss function, the game is no longer a zero-sum game. Nevertheless, this loss 
works better in practice. 
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Based on the min-max expression 1.2, one might expect that the discriminator is trained until 
optimality for a fixed generator, the generator is trained afterwards, and the process repeats. This 
approach does not work for reasons which will become clear in Section 3.1.1. In practice, the 
networks are trained alternatively, for only one step each. 

2.3.1 Conditional Generative Adversarial Networks 

The original GAN paper [9] describes how one can trivially turn GANs into a conditional 
generative model. To generate data conditioned on some condition vector c, c is appended to both 
the generator and the discriminator in any of their layers. The networks will learn to adapt and 
adjust their parameters to these additional inputs. 

 

Figure 1.4: Probabilistic graphical model view of regular GANs (left) and conditional GANs 
(right). 
Conditional GANs can also be seen from the perspective of a probabilistic graphical model (Figure 
1.4). In the case of regular GANs, the noise Z influences the observable X. For conditional GANs, 
both Z and C influence X. In the particular case of text to image synthesis, the states c of C are 
vectors encoding a text description. How this encoding of a sentence into a vector is computed can 
vary, and it is discussed in Section 1.1. 

2.3.2 Text Embeddings 

The text descriptions must be vectorised before they can be used in any model. These 
vectorisations are commonly referred to as text embeddings. Text embedding models were not the 
focus of this work, and that is why the already computed vectorisations by Reed et al. [28] are 
used. Other state of the art models [29, 37] use the same embeddings and their usage makes 
comparisons between models easier. 
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Figure 1.5: The char-CNN-RNN encoder maps images to a common embedding space. Images 
and descriptions which match are closer to each other. Here the embedding space is R2 to make 
visualisation easier. In practice, the preprocessed descriptions are in R1024. 

The text embeddings are computed using the char-CNN-RNN encoder proposed in [28]. The 
encoder maps the images and the captions to a common embedding space such that images and 
descriptions which match are mapped to vectors with a high inner product. 
For this mapping, a Convolutional Neural Network (CNN) processes the images, and a hybrid 
Convolutional-Recurrent Neural Network (RNN) transforms the text descriptions (Figure 1.5). 
A common alternative is Skip-Thought Vectors [20] which is a pure language-based model. The 
model maps sentences with similar syntax and semantics to similar vectors. Nevertheless, the char-
CNN-RNN encoder is better suited for vision tasks as it uses the corresponding images of the 
descriptions as well. The embeddings are similar to the convolutional features of the images they 
correspond to, which makes them visually discriminative. This property reflects in a better 
performance when the embeddings are employed inside convolutional networks.  
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3. Model and Designing of Project 

In this chapter, I first discuss in Section 2.1 the technical details of my implementation. Then, in 
Sections 2.2 and 2.3 I present in depth the state of the art models introduced by September 2017. 
Section 2.4 briefly mentions other state of the art models which have been proposed since I started 
this project. 

3.1 Method 

All the images included in this report generated by the described models are produced by my 
implementation of these models. All the models which are discussed are implemented in python 
3.6 using the GPU version of TensorFlow [1]. 
TensorFlow is an open-source library developed by researchers from Google Brain and designed 
for high performance numerical and scientific computations. It is one of the most widely used 
libraries for machine learning research. TensorFlow offers both low level and high-level APIs 
which make development flexible and allow fast iteration. Moreover, TensorFlow makes use of 
the capabilities of modern GPUs for parallel computations to execute operations on tensors 
efficiently. 
I run all the experiments on a Nvidia 1080Ti which I acquired for the scope of this project. 

3.2 GAN-CLS (Conditional Latent Space) 

Reed et al. [29] were the first to propose a solution with promising results for the problem of text 
to image synthesis. The problem can be divided into two main subproblems: finding a visually 
discriminative representation for the text descriptions and using this representation to generate 
realistic images. 
In Section 1.3.2 I briefly described how good representations for the text descriptions could be 
computed using the char-CNN-RNN encoder proposed in [28]. In section 1.3.1 I also explained 
how Conditional GANs could be used to generate images conditioned on some vector c. GAN-
CLS puts these two ideas together. 



16 
 

 

Figure 2.1: Architecture of the customised GAN-CLS. Two fully connected layers compress the 
text embedding φ(t) and append it both in the generator and the discriminator. In the discriminator, 
the compressed embeddings are spatially replicated (duplicated) before being appended in depth. 

The functions G(z) and D(x) encountered in regular GANs become in the context of conditional 
GANs, G(z,φ(t)) and D(x,φ(t)), where φ : Σ∗ → RNφ is the char-CNN-RNN encoder, Σ is the 
alphabet of the text descriptions, t is a text description treated as a vector of characters and Nφ is 
the number of dimensions of the embedding. The text embedding φ(t) is used as the conditional 
vector c. 
Before reading further, the reader is encouraged to have a look at Appendix B which includes a 
brief introduction to deep learning and explains the terms used to describe the architecture of the 
models. 

3.2.1 Model Architecture 

GAN-CLS uses a deep convolutional architecture for both the generator and the discriminator, 
similar to DC-GAN (Deep Convolutional-GAN) [27]. 

In the generator, a noise vector z of dimension 128, is sampled from N(0,I). The text t is passed 
through the function φ and the output φ(t) is then compressed to dimension 128 using a fully 
connected layer with a leaky ReLU activation. The result is then concatenated with the noise vector 
z. The concatenated vector is transformed with a linear projection and then passed through a series 
of deconvolutions with leaky ReLU activations until a final tensor with dimension 64×64×3 is 
obtained. The values of the tensor are passed through a tanh activation to bring the pixel values in 
the range [−1,1]. 
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In the discriminator, the input image is passed through a series of convolutional layers. When the 
spatial resolution becomes 4×4, the text embeddings are compressed to a vector with 128 
dimensions using a fully connected layer with leaky ReLU activations as in the generator. These 
compressed embeddings are then spatially replicated and concatenated in depth to the 
convolutional features of the network. The concatenated tensor is then passed through more 
convolutions until a scalar is obtained. To this scalar, a sigmoid activation function is applied to 
bring the value of the scalar in the range [0,1] which corresponds to a valid probability. 
The focus of the GAN-CLS paper is not on the details of the architecture of the discriminator and 
the generator. Thus, to obtain better results, I deviated slightly from the DC-GAN architecture, 
and I added one residual layer [11] in the discriminator and two residual layers in the generator. 
These modifications increase the capacity of the networks and lead to more visually pleasant 
images. Figure 2.1 shows the architecture of the customised GAN-CLS. 

3.2.2 Adapting GAN Loss to Text-Image Matching 

The GAN-CLS critic has a slightly different loss function from the one presented in Equation 1.3. 
The goal of the modification is to better enforce the text-image matching by making the 
discriminator to be text-image matching aware. The critic cost function from Equation 2.1 is used. 

  (2.1) 

where Pr−mat is the joint distribution of image and text embeddings which match, Pr−mis is the 
joint distribution of image and text embeddings which mismatch, Pge is the joint distribution of 
generated images and the text embeddings they were generated from and e = φ(t) is a text 
embedding. In this way, the discriminator has a double functionality: distinguishing real and fake 
images but also distinguishing between the text-image pairs which match and those which 
mismatch. 
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Figure 2.2: Samples generated from text descriptions from the test dataset. For each text 
description, the model generates multiple samples, each using a different input noise vector. As it 
can be seen the model ignores the input noise and the resulting images are extremely similar. The 
disappearance of the stochastic behaviour is a current research problem in Conditional GANs. 
3.2.3 Training 

Adam optimiser [18] is used for training. Adam maintains a separate learning rate for each of the 
parameters of the model and uses a moving average of the first and second moment of the gradients 
in the computation of the parameter update. The usage of the gradient statistics makes the 
algorithm robust to gradient scaling and well suited for problems with noisy gradients such as this 
one. The parameters β1 and β2 control the decay rate of these moving averages. The learning rate 
is set to 0.0002 for both networks, β1 = 0.5 and β2 = 0.9. The model is trained for a total of 600 
epochs with a batch size of 64. 

3.2.4 Results 

Figure 2.2 shows samples generated for the flowers dataset. All the shown samples are produced 
from descriptions from the test dataset. 

 

Figure 2.3: Interpolations in the conditional embedding space while maintaining the noise vector 
constant. The top description for each image corresponds to the image on the left and the bottom 
description corresponds to the image on the right. The images in between are generated from 
interpolations between these two descriptions. 

A common way to test that the models learns the visual semantics of the text descriptions and it 
does not merely memorise the description-image mappings is to generate images G(z,(1 − t)e1 + 
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te2) from interpolations between two text embeddings e1 and e2 where t is increased from 0 to 1. If 
the model works, these transitions should be smooth. 
Figure 2.3 shows images produced by GAN-CLS from such interpolations. 

3.3 Stacked GANs 

One would rarely see an artist producing a painting in full detail directly from the first attempt. By 
analogy, this is how GAN-CLS described in section 2.2 generates images. These architectures do 
not usually scale up well to higher resolutions. It would be desired 

 

Figure 2.4: Illustration of a simplified 2D conditional space before augmentation (left) and after 
adding two different augmentation strategies (middle and right). The image captioning system 
from [6] fills the embedding space with synthetic captions (middle). The conditional augmentation 
from StackGAN [37] ensures a smooth conditional manifold by sampling from a Gaussian 
distribution for each text embedding (right) 

to have a network architecture which is closer to the analogy of a painter who starts with the main 
shapes, colours, textures and then gradually adds details. 
StackGAN [37] is such an architecture, and it uses two GANs. The first GAN, called Stage I, 
generates images from captions at a lower resolution of 64×64 in a similar manner to GAN-CLS. 
The second GAN, called Stage II, has a generator which takes as input the image generated by the 
Stage I generator and produces a higher resolution 256×256 image with more fine-grained details 
and better text-image matching. 

3.3.1 Text Embedding Augmentation 

Besides this generation of images at multiple scales, the StackGAN paper proposes the 
augmentation of the conditional space. Because the number of text embeddings is small, they cover 
tiny, sparse regions in the embedding space clustered around their corresponding images. The 
model hardly understands the visual semantics of the embeddings at test time because these 
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embeddings are usually far in the embedding space from the ones seen in training. Moreover, the 
low number of embeddings is likely to cause the model to overfit. 
Dong et al. [6] have also independently recognised this problem. They propose an image 
captioning system to fill the embedding space. Nevertheless, this is far from an ideal solution. The 
curse of dimensionality takes effect, and it is unfeasible to fill the space in such a manner. 
Moreover, the image captioning system adds significant computational costs. 
StackGAN uses another approach inspired by another generative model, Variational Autoencoders 
(VAE) [19]. For a given text embedding φ(t), augmented embeddings can be sampled from a 
distribution N(µ(φ(t)),Cov(φ(t)). As in VAEs, to ensure that the conditional space remains smooth 
and the model does not overfit, a regularisation term enforces a standard normal distribution over 
the normal distributions of the embeddings. The regularisation term with hyper-parameter ρ 
(Equality 2.2) consists of the KL divergence between the normal distribution of the embeddings 
and the standard normal 

 

Figure 2.5: The VAE reparametrisation trick. The network learns µ and σ and uses a sampled  to 
compute an augmented embedding. The associated sampling noise causes improved image 
variation as the model generates different images for different samples of the same embedding. 

distribution. 

 LG = −EX∼Pg,T∼Pr[log(D(x)) + ρKL(N(0,I) k N(µ(φ(t)),Σ(φ(t)))], (2.2) 

The reparametrisation trick from VAEs is used to perform the sampling. With this trick, the 
network has the independence to learn the mean µ and the standard deviation σ of the embedding. 
For an embedding e = φ(t), a fully connected layer with leaky ReLU activations computes µ and 
another computes σ and the sampled vector eˆ is obtained as shown in Equation 2.3 (Figure 2.5). 

 eˆ = µ + σ ◦  , where ) and ◦ is element-wise multiplication (2.3) 
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3.3.2 Model Architecture 

Figure 2.6 shows the full architecture of StackGAN. The architecture of the Stage I generator is 
identical to the one of the customised GAN-CLS (described in Section 2.2.1) with the addition of 
the conditioning augmentation (CA) module previously discussed. 

The Stage II generator starts by down-sampling the input 64×64 image until it reaches a spatial 
resolution of 4×4. To this 4×4 block, the corresponding augmented text embedding is concatenated 
in depth to improve the text-image matching of Stage I. The concatenated block is passed through 
three residual layers and then up-sampled until a final tensor of 256×256×3 is obtained. In the end, 
tanh activation is applied to bring the output in [−1,1]. 
The Stage I discriminator is identical to the customised GAN-CLS discriminator previously 
discussed. The Stage II discriminator is also similar, with the exception that more down-sampling 
convolutional layers are used to accommodate for the higher resolution of the input. 
As in the paper, ReLU activations are used for the generator and leaky ReLU activations for the 
discriminator. Batch normalisation is applied both in the generator and the discriminator. 

 

Figure 2.6: The architecture of StackGAN. The architecture of Stage I is identical to the customised 
GAN-CLS presented in the previous section. The Stage II generator takes as input and fine-tunes 
the image generated by Stage I. The generators of both stages use the augmented embeddings. 

 

Figure 2.7: Samples generated by Stage I of StackGAN. 
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3.3.3 Training 

StackGAN uses the same discriminator loss function as the one in 1.3 and the generator loss from 
2.2. 
For training, I used the Adam optimiser with a learning rate of 0.0002 for both networks, β1 = 0.5 
and β2 = 0.9. I trained each of the stages for 600 epochs using a batch size of 64 for Stage I and a 
batch size of 32 for Stage II. When training Stage II, the parameters of Stage I are no longer trained. 
The learning rate is halved every 100 epochs as recommended in the paper. 

3.3.4 Results 

Figure 2.7 shows samples generated by Stage I and Figure 2.9 includes samples created by Stage 
II . The stochastic behaviour introduced by the augmentation of the text embeddings reflects in the 
higher image diversity of the generated images. Conditional interpolations for Stage I and Stage II 
are shown in Figures 2.8 and 2.10. Figure 2.11 shows the images produced by the two stages for 
the same descriptions. Images generated by StackGAN on the birds dataset are included in 
Appendix D. 

 

Figure 2.8: Samples generated by Stage I of StackGAN from text embedding interpolations. 
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Figure 2.9: Samples generated by Stage II of StackGAN. 

3.4 Other Models 

Other two state of the art models have been proposed since the start of this project: StackGAN-v2 
[38], and more recently, AttnGAN [36] developed by Microsoft Research in collaboration with 
other universities. StackGAN-v2, as the name suggests, is an improved version of StackGAN 
which uses multiple generators and discriminators in a tree-like structure. AttnGAN consists of an 
architecture similar to StackGAN-v2, but with an attention model [4, 23] on top of it. The attention 
model replicates the human attention mechanism and allows the network to focus on a single word 
from a sentence or a specific region of the image at a time. This ensures a granular image-word 
matching and not just a sentence level matching as it is the case with the other models discussed 
in this work. 

 

Figure 2.10: Samples generated by Stage II of StackGAN from text embedding interpolations. 
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Figure 2.11: Images generated by Stage I (first row) and Stage II (second row) for the same text 
descriptions (one for each column). Stage II fine-tunes the images generated by Stage I. 

4.Research 

In this chapter, I propose new models which try to address some of the current research problems. 
In Section 3.1 I propose Wasserstein GAN-CLS, a conditional Wasserstein GAN based on the 
recently introduced Wasserstein distance which offers convergence and stability guarantees. This 
model uses a novel loss function which achieves the text-image conditioning using a Wasserstein 
distance. In Section 3.2 I propose a conditional Progressive GAN inspired from [17] which learns 
to generate images at iteratively increasing scale, and I show how the conditional Wasserstein loss 
improves this model. 

4.1 Wasserstein GAN-CLS 

This section is more mathematical, in line with the firm theoretical arguments behind Wasserstein 
GANs. Additional explanations are included in Appendix C. 

The main problem of GANs is their instability during training. Perhaps counterintuitively, as the 
discriminator becomes better, the generator’s updates get worse. Arjovsky et al.[2] show that this 
problem is related to how the distances d(Pr,Pg), which GANs commonly optimise, behave when 
the support of Pr and Pg are disjoint or lie on low dimensional manifolds. When that is the case, a 
perfect discriminator which separates them always exists. As the discriminator approaches 
optimality, the gradient of the generator becomes unstable if the generator uses the loss function 
LG from 1.3. 
In many situations, it is likely that the two distributions lie on low dimensional manifolds. In the 
case of natural images, there is substantial evidence that the support of Pr lies on a low dimensional 
manifold [24]. Moreover, Arjovsky et al. [2] prove that this is the case with Pg in the case of 
GANs. Thus, the choice of the distance d(Pr,Pg) is crucial. One would like this function to be 
continuous and provide non-vanishing gradients that can be used for backpropagation even when 
this situation occurs. 
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Maximum likelihood models implicitly optimise KL(Pr k Pg) (which is not a distance in the formal 
sense). GANs implicitly optimise the Jensen-Shannon divergence JS(Pr k Pg), as shown in the 
proof of Theorem 1.3.1 from Appendix A. Both of them are problematic. A simple example of two 
distributions whose supports are parallel lines [2] shows not only that these divergences (and 
others) are not differentiable, but they are not even continuous. In the next section, I discuss the 
Wasserstein distance which was proposed as a better choice for d(Pr,Pg). 

4.1.1 Wasserstein GAN 

The Wasserstein distance, also known as the Earth Mover’s (EM) distance, is theoretically 
proposed and analysed in GANs for the first time in [2]. In [3] it is shown in practice that a GAN 
which optimises the Wasserstein distance offers convergence and stability guarantees while 
producing good looking and more diverse images. This distance is given in Equation 
3.1. 

 ], (3.1) 

where Π(Pr,Pg) is the set of joint distributions which have Pr and Pg as marginals and γX,Y (x,y) ∈ 
Π(Pr,Pg) is one such distribution (see Figure 3.1 for an intuitive explanation). 

 

Figure 3.1: A better intuition for the Wasserstein distance can be developed by analysing a small 
discrete case. Given two discrete distributions Pr and Pg, the Earth Mover’s distance is the cost of 
the optimal plan to transport blocks of Pg to obtain Pr (or the other way around). A transport plan 
is optimal if it has minimum effort. The effort is proportional to the size of the blocks which are 
moved and the distance on which they have to be moved. 

Of course, computing the Wasserstein distance in the form 3.1 is intractable. Nevertheless, its dual 
form is tractable. This form is given by the Kantorovich-Rubinstein duality [34] presented in 
Equation 3.2. 

 )], (3.2) 
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where the supremum is taken over the set of functions f : X → R which are 1-Lipschitz continuous 
(explained in Appendix C). Instead of optimising relation 3.2 in function space, it can be optimised 
in the space of parametric functions using a neural network Dω : X → R. Equality 3.2 can be 
rewritten as: 

 )] (3.3) 
The only question which remains is how to enforce the Lipschitz constraint. It was originally 
suggested [3] to keep the weights ω ∈ W, where W is a compact space such as W = [0.01,0.01]Nw 

and Nw is the number of weights. Keeping the weights in such a small range indirectly constraints 
the rate of growth of the function which remains K-Lipschitz continuous over the course of 
training. The exact value of K depends only on the choice of W and is independent of the values 
of ω. Nevertheless, this does not fully solve the problem because the small weights diminish the 
capacity of the neural network and also cause the training time to increase. A better solution was 
proposed [10] which softens the constraint by appending it to the loss function as a regularisation 
term. 

 

Figure 3.2: Linear interpolation of a point from the dataset and a generated image. The gradient 
penalty ensures that the gradient norm remains close to one for such points between the two 
distributions. 

It can be shown that a differentiable function is 1-Lipschitz if and only if its gradient norm is at 
most one almost everywhere. This motivates the loss function from Equation 3.4 which adds a 
gradient penalty (LGP ) to penalise the network when the gradient norm goes far from one. 

LD = EX∼Pg[D(x)] − EX∼Pr[D(x)] + λLGP 
 2 (3.4) 
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= EX∼Pg[D(x)] − EX∼Pr[D(x)] + λEXˆ∼PXˆ[(k∇D(xˆ)k − 1) ], 

where xˆ is a linear interpolation between a real and generated image: xˆ = tG(z)+(1−t)x and t is 
sampled from U[0,1]. The model uses these interpolations because it is intractable to enforce the 
gradient constraint over the whole space X. Instead, it is enforced only over the region between 
the two manifolds of the two distributions (Figure 3.2). 
On the one hand, the discriminator is trained to better approximate the Wasserstein distance. The 
generator, on the other hand, tries to minimise W(Pr,Pg), so the loss function from 3.5 is employed. 

 LG = −EX∼Pg[D(x)], (3.5) 
4.1.2 Conditioning Wasserstein GAN 

The loss function 3.4 makes the discriminator distinguish between real and fake samples, but for 
text to image synthesis, it must also be text-image matching aware. By making the discriminator 
to also approximate W(P(x,e)r−mat

,P(x,e)r−mis) between the joint distributions of matching and 
mismatching text-image pairs, the discriminator becomes matching aware. Based on this insight, 
I propose the loss function from 3.6 for the discriminator. 

LD = {E(X,E)∼Pge[D(x,e)] − E(X,E)∼Pr−mat[D(x,e)]} 

+ α{E(X,E)∼Pr−mis[D(x,e)] − E(X,E)∼Pr−mat[D(x,e)]} 
(3.6) 

= E(X,E)∼Pge[D(x,e)] + αE(X,E)∼Pr−mis[D(x,e)] 
− (1 + α)E(X,E)∼Pr−mat[D(x,e)] + λLLP 

where the parameter α controls the level of text-image matching. 

Note that another regularisation term (LLP ), different from LGP , is used to enforce the Lipschitz 
constraint. A potential problem of this loss function is that it can take values with a high magnitude 
on some datasets or architectures. Because nothing minimises 

W(Pr−mat,Pr−mis) as it is the case with W(Pr−mat,Pge) which is being minimised by the generator, 
W(Pr−mat

,Pr−mis) can theoretically take very high values. High values of this distance can damage 
the gradient penalty term whose proportion in the loss function will become so small that the 
gradient norm will get out of control. Theoretically, this can be fixed by simply increasing λ, but 
the regularisation of WGAN-GP from 3.4 (LGP ) is not so robust [26] to changes in the values of 
the parameter λ. To address this, I use instead the regularisation term recently proposed in [26] 
which is called LLP (LP - Lipschitz Penalty). This term which does not penalise gradient norms less 
than one allows for larger values of λ without harming the model. Moreover, empirical and 
theoretical evidence [26] shows that, under this softer regularisation term, convergence is faster 
and more stable. LLP is given by: 
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LLP = E(Xˆ,E)∼Pη[max(0,k∇xˆD(x¯,e)k − 1)2 + max(0,k∇eD(xˆ,e)k − 1)2] (3.7) where I use Pη to 

denote the joint distribution of image text pairs (xˆ,e). xˆ = tG(z,e) + (1 − t)x is a linear interpolation 

with t sampled from U(0,1) and e is a matching text embedding of the image x. Note that because 

D(xˆ,e) is also a function of the text embeddings e in this case, the Lipschitz constraint needs to be 

enforced with respect to the input e as well, not only xˆ, hence the second term of the summation. 

Regarding the generator, I use the same cost function as the one in 3.5 with the addition of the text 
augmentation loss which softly maintains the standard normal distribution over the conditional 
latent space as described in Section 1.3.2. Thus, the loss of the generator is: 

 LG = −E(X,E)∼Pg[D(x,e)] + ET∼Pr[ρKL(N(0,I) k N(µ(φ(t)),Σ(φ(t)))] (3.8) 
4.1.3 Architecture 

To make comparisons simpler, I keep the architecture of the generator identical to that of Stage I 
of StackGAN. In the case of the discriminator, I remove the batch normalisation for the gradient 
penalty to work. The gradient penalty assumes a unique gradient for each sample, and this 
assumption no longer holds in the presence of batch normalisation [10]. 
Because, when the Wasserstein distance is used, the discriminator no longer needs to be crippled 
to keep the training balanced, I add one more convolutional layer in the discriminator after the text 
embedding concatenation, and I use the same number of convolutional filters as in the generator. 

4.1.4 Training 

In the case of Wasserstein GANs, the closer the discriminator gets to optimality for a fixed G, the 
better the approximation of W(Pr−mat,Pge) and W(Pr−mat,Pr−mis) is. The generator’s updates will 
also be better. That is why the discriminator is trained for ncritic times for every generator update, 
where ncritic is a hyper-parameter to be set at training time. A common value is ncritic = 5. 
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Figure 3.3: Samples generated by WGAN-CLS from the same text descriptions but different noise 
vectors 

For faster training, I take a slightly different approach by setting ncritic = 1 in conjunction with the 
usage of the Two-Timescale Update Rule (TTUR) [15]. TTUR refers to the usage of two different 
learning rates for the generator and the discriminator, which guarantees that the networks will 
reach a local Nash equilibrium. The convergence under TTUR is shown to be faster and the quality 
of the images higher than in the case of the classic method of training. Thus, I use the Adam 
optimiser again with a learning rate of 0.0003 for the critic and 0.0001 for the generator. In the 
case of the other parameters of Adam, I use β1 = 0 and β2 = 0.99 for both the generator and the 
discriminator. The generator regularisation parameter ρ is set to 10, λLP = 150 and α = 1. The 
training is performed for 120,000 steps with a batch size of 64. 
4.1.5 Results 

Figure 3.3 shows samples generated by the Conditional Wasserstein GAN. Figure 3.4 shows 
images generated from interpolations in the conditional space. 

 

Figure 3.4: Samples generated by the Conditional Wasserstein GAN from interpolations between 
two text embeddings. 

I subjectively assess that the quality of the generated images is comparable to the one of GAN-
CLS and Stage I of StackGAN. My subjective evaluation is also confirmed by the Inception Scores 
of the models which are given in Chapter 4. 



30 
 

4.2 Conditional Progressively Growing GANs 

In this section, I show how the recently introduced Progressive Growing GAN (PGGAN) [17] can 
be turned into a conditional model for text to image synthesis. Moreover, I show how the 
Wasserstein critic loss I proposed in the previous section can improve this conditional model. 

4.2.1 Architecture and Training 

Because the training of this model is tightly integrated with its architecture, I treat them together 
in this section rather than separately. 

The generator starts by concatenating a noise vector z with an augmented embedding e. This 
concatenated vector is then projected into a tensor of dimension 4×4×512 which is then followed 
by two more convolutional layers with a filter size of 3×3. Together, they constitute the first stage 
of the generator. The output of this stage is supplied as input to a stack of other stages, all separated 
by a nearest neighbour upsampling layer which upscales by a factor of two. All the generator stages 
excepting the first are composed of two convolutional layers with a kernel size of 3x3. In the end, 
the output tensor is 
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Figure 3.5: Stages of the conditional PGGAN: (Top) First stage of the generator, (middle) First 
stage of the discriminator, (bottom left) the architecture of the other stages of the generator, 
(bottom right) the architecture of the other stages of the discriminator. 

passed through two more convolutional layers called the “toRGB” module which outputs the actual 
RGB image. 
The discriminator starts with a convolutional layer which produces a first set of convolutional 
features without affecting the spatial resolution. This layer is denoted as the “fromRGB” module. 
These features are given as input to a stack of stages which again are added step by step as training 
progresses concurrently with the generator stages. All stages have two convolutional layers, 
symmetric to the ones of the generator. The only exception is the first stage where the compressed 
embeddings are concatenated in depth to the input features of that stage similarly to the previous 
GANs. The concatenated block is processed by two more convolutional layers followed by a fully 
connected layer which produces the scalar discriminator output. The discriminator stages are 
separated by an average pooling layer which reduces the resolution by a factor of two. Figure 3.5 
shows the structure of all the stages. 
The novelty of the model consists in the way the networks transform during training. The first 
stages of both networks are trained first using images of 4×4 in resolution. Then the second stage 
is introduced concurrently for the discriminator and the generator as 

 

Figure 3.6: Three consecutive training phases for the conditional PGGAN: the transition phase of 
an arbitrary N + 1 stage (top), the stabilisation phase of the same stage (middle), the transition 
phase of stage N +2. The parameter α is linearly increased from zero to one during the transition 
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phase. At the end of the transition phase when α = 1, the new stages are fully attached to the 
previous stages. Next, the networks stabilise in their new configuration during the stabilisation 
phase. After the new stages are stabilised, the transition phase of the next stage begins. 

a residual layer with an associated weight α = 0 to avoid perturbing the network. This stage doubles 
the resolution to 8×8. The addition of any new stage starts with a transition phase. During a 
transition phase, α linearly increases to one, and the model smoothly learns to adapt to the new 
stages and the enlarged image size. This weight has the effect of interpolating between the scaled 
output of the previous stage and the output of the new stage in the case of the generator. For the 
critic, it is an interpolation of the inputs. When the transition phase is over, a stabilisation phase 
follows to stabilise the network in its new configuration with α = 1. Each transition and stabilisation 
phase lasts until the discriminator sees 600,000 real images and 600,000 generated images. This 
process of iteratively adding stages repeats until the desired resolution is reached or as longs as the 
GPU memory and the resolution of the images in the dataset allow it. When scaling up to a new 
stage, all the stages are trained, including the previous ones. The training process is also shown 
and further explained in Figure 3.6. More details are given in Appendix E. 
As shown in [17], this method of training is significantly faster than training the complete network 
from scratch because the majority of the training time is spent at the lower stages. 
4.2.2 The Need for a Stable Loss Function 

This architecture and unusual method of training do not work with any loss function given the 
instability of GANs. The PGGAN paper [17] empirically shows PGGAN working with a least 
squares loss and a Wasserstein distance loss. While the least squares loss [22] is empirically known 
to be more stable than the classic GAN loss, the Wasserstein loss has technical reasons behind 
which guarantee its stability. 
For the least squares loss, as with the Wasserstein loss, the discriminator no longer outputs a 
probability, but an arbitrary real number. The generator and the discriminator optimise for making 
this real number close to some predefined labels a,b,c. The general form of the least squares loss 
is as follows: 

LD = EX∼Pr[(D(x) − b)2] + EX∼Pg[(D(x) − a)2] 
(3.9) 

LG = EX∼Pg[(D(x) − c)2] 
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Figure 3.7: Samples generated by the Conditional Least Squares PGGAN. 

As shown in [22], when b − c = 1 and b − a = 2, minimising these cost functions is equivalent to 
minimising the Pearson X2 divergence between Pr + Pg and 2Pg. This justifies the choice of labels 
a = −1,b = 1,c = 0 which I use for my experiments. It is trivial to adapt this loss function to make 
the discriminator matching aware as follows: 

LD = E(X,E)∼Pr−mat[(D(x,e) − b)2] + E(X,E)∼Pge[(D(x,e) − a)2] 

 + E(X,E)∼Pr−mis[(D(x,e) − a)2] (3.10) 
LG = E(X,E)∼Pge[(D(x,e) − c)2] 

Now, the discriminator will push towards a not only the synthetic images but also images which 
do not match their description. 
Nevertheless, I find the least squares loss to be unstable when the network reached the high-
resolution stages, which is consistent with the findings from [17]. As in the paper, I introduce 
multiplicative Gaussian noise between the layers of the discriminator to eliminate the instability. 
This hack does not address the cause of the problem, which is the loss function. The Conditional 
Progressive Growing GAN is a perfect use case for 
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Figure 3.8: Samples generated by the Conditional Least Squares PGGAN from text embedding 
interpolations. 

the Wasserstein based loss I proposed in Section 3.1 because it is guaranteed to be stable. 
Results for both of these losses are discussed in the next section. 

4.2.3 Results 

Figure 3.7 includes 256×256 samples generated by the Conditional Least Squares PGGAN 
(CLSPGGAN). Figure 3.8 includes images generated by the same model from text embedding 
interpolations. Figures 3.9 and 3.10 include the equivalent images generated by the Conditional 
Wasserstein PGGAN (CWPGGAN) which use the Wasserstein loss I proposed in section 3.1. 

Images generated by CWPGGAN on the birds dataset are included in Appendix D. 

 

Figure 3.9: Samples generated by the Conditional Wasserstein PGGAN 
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Figures 3.11 and 3.12 show the images generated by each stage of Conditional PGGAN for the 
Least Squares loss and the Wasserstein loss respectively. 

 

Figure 3.10: Samples generated by the Conditional Wasserstein PGGAN from interpolations 
between two text embeddings. 

 

Figure 3.11: The image generated by each stage of the Least Squares Conditional PGGAN for the 
same text description. The images range from resolutions 4×4 to 256×256. Each stage doubles the 
resolution. 
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Figure 3.12: The image generated by each stage of the Wasserstein Conditional PGGAN for the 
same text description. The images range from resolutions 4×4 to 256×256. Each stage doubles the 
resolution. 

 

5. Evaluation and Comparision 
5.1 The Inception Score 

The evaluation of generative models is a current area of research. Because most generative models 
maximise the likelihood of the data, they are evaluated using the average loglikelihood as a metric. 
As previously discussed, GANs depart from this approach and thus perform better, but at the same 
time, this also makes their evaluation harder. A recently proposed way of evaluating GANs which 
generate images is the Inception Score [30]. 

The name of the score comes from Google’s Inception classifier [31] (Figure 4.1). Treating 
images as a random vector X and the image labels as a random variable Y , the Inception network 
produces a distribution PY |X where PY |X(y|x) is the probability assigned to image x to belong to 
class y. An Inception network is trained to produce such probabilities for the classes from the test 
dataset the GAN will be evaluated on. This assumes a dataset divided into classes. Then, the trained 
network classifies the images generated by the model being evaluated. The score is a function of 
the distribution of the predicted classes. There are two desired outcomes: 
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Figure 4.1: The architecture of the inception network (image taken from [31]). The bigger blue 
blocks are convolutions, the smaller blue blocks are fully connected layers, the red blocks are 
pooling layers, and the yellow blocks are softmax layers which convert the layer input values in a 
valid probability distribution. The two bottom branches which separate from the main part of the 
network are auxiliary classifiers, which are used for better gradient propagation. 

1. The object in any image x should be undoubtedly identifiable. In other words, the 
conditional distribution PY |X should have low entropy. 

2. All the generated images should be as diverse as possible. That is, the images should not 
belong to just a small subset of classes but all the classes in the dataset. Equivalently, the 
distribution PY should have high entropy. 

These two aspects motivate the form of the Inception Score from 4.1 because if they hold, then 
the KL divergence between the two mentioned distributions is high. The exponential function is 
used only for aesthetic reasons to bring the values of the score in a higher range of values. 

  (4.1) 

The Inception score was shown to correlate well with human evaluation of image quality [30]. 
This is the reason I chose not to conduct a human assessment for evaluating the models presented 
in this work. 

For training I use the Inception-V3 architecture [32], a variant of the architecture shown in 
Figure 4.1. Instead of fully training the network, I only fine tune it. I train only the “Logits” and 
“Mixed 7c” variable scopes and for the other layers, I use the publicly available weights trained 
on ImageNet [5]. This follows the approach from StackGAN [37]. For computing the Inception 
Score, I use a group of 50,000 generated images which are split randomly into ten equal sets as 
recommended in [30]. The inception score is computed for each of these sets and the mean value 
together with the standard deviation are reported. 

5.1.1 Evaluation of Text-Image Matching 

The Inception score in its default form measures only the image quality, but it can also be used as 
an implicit measure of text-image matching. The Inception network is trained on the test dataset 
which (very importantly) contains classes disjoint from those in the training dataset. The generated 
images which are evaluated are produced exclusively from text descriptions from the test dataset. 
Because the training and test datasets contain disjoint classes, neither the text descriptions nor the 
images from the test dataset (or similar ones) are seen by the model in training. To generate high 
Inception Scores, the model must create images similar to the ones from the test dataset. The only 
possibility for the model to do this is to learn the visual semantics of the text descriptions correctly 
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and to generate high-quality images which respect those descriptions. Thus, the reported 
Inception-Score is a measure of both image quality and text-image matching. The StackGAN paper 
[37] uses the same approach in its evaluation. 
5.2 Inception Score Results 

I include the Inception Score means and standard deviations for all models on the Oxford102 
flowers dataset in Table 4.1. The results show that the proposed Conditional Wasserstein GAN 
obtains comparable results to other state of the art models which produce 64×64 images while 
maintaining the same generator as Stage I of StackGAN. Moreover, the Conditional Wasserstein 
GAN achieves this score in conditions of guaranteed training stability which is very important. 
The proposed Conditional Progressive Growing GAN achieves a better score than the other models 
for both resolutions on the flowers dataset. Moreover, the model obtains the best score in 
combination with the Wasserstein loss I proposed in Section 3.1. 

Model Resolution Score 
Customised GAN-CLS 64×64 3.11 ± 0.03 
StackGAN Stage I 64×64 3.42 ± 0.02 
WGAN-CLS∗ 64×64 3.11 ± 0.02 
WGAN-CLS with 
TTUR∗ 

64×64 3.20 ± 0.01 

CLSPGGAN∗ 64×64 3.44 ± 0.04 
CWPGGAN∗ 64×64 3.70 ± 0.03 
StackGAN Stage II 256×256 3.71 ± 0.04 
CLSPGGAN∗ 256×256 3.76 ± 0.03 
CWPGGAN∗ 256×256 3.86 ± 0.02 

Table 4.1: Inception Scores for the Oxford-102 flowers dataset. Models marked with ∗ are the 
models proposed in this report. 

On the birds dataset, I run limited experiments for CWPGGAN and StackGAN (Appendix D). 
To quickly evaluate CWPGGAN against the other models, including the recently introduced 
StackGAN-v2 and AttnGAN, I used directly the scores given in the AttnGAN paper [36] for the 
birds dataset. The flowers dataset is not used in the paper. 

Thus, I computed the Inception score of CWPGGAN using the same (publicly available) 
Inception network used in the evaluation part of the AttnGAN paper. The score obtained by 
CWPGGAN, as well as the score of the other models, are given in Table 4.2. 

Model Resolution Score 
GAN-INT-
CLS 

64×64 2.88 ± 0.04 

CWPGGAN∗ 64×64 3.18 ± 0.03 
StackGAN 256×256 3.70 ± 0.04 
StackGAN-v2 256×256 3.82 ± 0.06 



39 
 

CWPGGAN∗ 256x356 4.09 ± 0.03 
AttnGAN 256×256 4.36 ± 0.04 

Table 4.2: Inception scores for the CUB-200-2011 birds dataset using the Inception network used 
for evaluation in [36]. The Inception scores of all models, excepting CWPGGAN, are taken 
directly from [36]. Models marked with ∗ are the models proposed in this report. 

CWPGGAN boosts by 7.07% the best Inception Score on the birds dataset of the models which 
use only the sentence-level visual semantics. Moreover, CWPGGAN has the second best Inception 
Score for 256×256 images out of all the existent state of the art models. The score of CWPGGAN 
and the quality of the images it produces is particularly impressive given the that it does not use 
any word-level visual semantics such as AttnGAN. This score is also achieved in conditions of 
guaranteed stability given by the proposed loss function in WGAN-CLS. Because AttnGAN is 
composed of a StackGAN-v2 with an attention model on top, these results are an indication for 
future research that CWPGGAN equipped with a similar attention model could produce even 
higher scores. 

The results also prove that the proposed Wasserstein loss makes possible the usage of 
innovative architectures and training techniques which would not work with the standard loss 
function used by the existent text to image models. 

5.3 Side by Side Comparison of the Models 

Figures 4.2, 4.3 and 4.4 show a side by side comparison of the models which generate images with 
resolution 64×64. Figures 4.5, 4.6 and 4.7 include a side by side comparison of the models which 
generate images with resolution 256×256. 
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Figure 4.2: Each row contains 64×64 images generated by a different model from the top text 
description. The order is: GAN-CLS (first row), WGAN-CLS (second row), StackGAN Stage I 
(third row), Conditional Least Squares PGGAN (forth row), Conditional Wasserstein PGGAN 
(fifth row). 

The lack of diversity of the images produced by GAN-CLS is evident. All the other models 
create a variety of images for the same text descriptions thanks to the condition 
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Figure 4.3: Each row contains 64×64 images generated by a different model from the top text 
description. The order is: GAN-CLS (first row), WGAN-CLS (second row), StackGAN Stage I 
(third row), CLSPGGAN (forth row), CWPGGAN (fifth row). 

augmentation module they are all equipped with. The quality of the images generated by WGAN-
CLS is subjectively better than the one of GAN-CLS and comparable to the one of Stage I of 
StackGAN. The CPGGANs (64×64) generate more structurally coherent images than the other 
models. The Wasserstein based CPGGAN generates even more diverse images, but the text-image 
matching of its images is slightly worse than the one of the other models. Figure 4.4, where 
CWPGGAN generates a few flowers which do not contain any shade of pink is one such example. 

The slightly worse text-image matching becomes more visible on the 256×256 version of 
CWPGGAN (see 4.7). Nevertheless, the images are subjectively better than the images of the other 
models, which is also confirmed by the Inception Score. Note that, in the case of 256×256 images, 
the CLSPGGAN generates slightly unrealistic textures (Figure 4.5) or images which lack local 
coherence (Figure 4.7). I believe this is due to the Gaussian noise hack which was used to fix its 
instability. 

To test that the models do not simply memorise the images from the dataset and that they 
produce new images, a nearest neighbour analysis is given in Figure 4.8 for 64×64 images and 
Figure 4.9 for 256×256 images. 
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A comparison between StackGAN and Conditional Wasserstein PGGAN is provided in 
Appendix D. 

 

Figure 4.4: Each row contains 64×64 images generated by a different model from the top text 
description. The order is: GAN-CLS (first row), WGAN-CLS (second row), StackGAN Stage I 
(third row), Conditional Least Squares PGGAN (forth row), Conditional Wasserstein PGGAN 
(fifth row). 
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Figure 4.5: Each row contains 256×256 images generated by a model from the top text description. 
The order is: StackGAN Stage II (first row), Conditional Least Squares PGGAN (second row), 
Conditional Wasserstein PGGAN (third row). 

 

Figure 4.6: Each row contains 256×256 images generated by a model from the top text description. 
The order is: StackGAN Stage II (first row), Conditional Least Squares PGGAN (second row), 
Conditional Wasserstein PGGAN (third row). 

 

Figure 4.7: Each row contains 256×256 images generated by a model from the top text description. 
The order is: StackGAN Stage II (first row), Conditional Least Squares PGGAN (second row), 
Conditional Wasserstein PGGAN (third row). 
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Figure 4.8: For each model, the first row contains 64×64 images produced by the model and the 
second row contains the nearest neighbour from the training dataset. 
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Figure 4.9: For each model, the first row contains 256×256 images produced by the model and the 
second row contains the nearest neighbor from the training dataset. 
 

6. Reflection and Conclusion 

This chapter contains a reflection on the planning and management of this project and ends with a 
conclusion of the present work. 

6.1 Planning and Management 

The plan of my project is divided into two main parts: 

1. The first part, covering the first semester, was concerned with background reading, the 
understanding of the existent state of the art models, the reproduction of their results and the 
identification of their limitations and consequently of possible directions of research. 

2. The second part, covering the second semester, was concerned with finding solutions for 
the identified research problems. 
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Milestone Planned 
Weeks 

Actual 
Weeks 

Background reading on GANs 1-4 1-4 
Reproduce GAN-CLS results [29] 5-6 5-7 
Reproduce StackGAN results [37] 7-10 7-11 
Reproduce I2T2I results [6] 11-13 - 
Implement Inception Score 
evaluation 

14 12 

Table 5.1: The milestones of the first part of the project. The plan is based on the weeks of the 
academic year. 

Table 5.1 includes the milestones for the first part of the project together with their timeline. 
Out of these milestones, I decided to skip the reproduction of the results of the I2T2I paper for two 
reasons. The StackGAN paper proposes a more elegant solution for textual data augmentation as 
discussed in Section 2.3.1. The implementation of an image captioning system would have 
required significantly more background reading in the area of language models which is vast. 
Instead, I decided to start the research part of the project earlier, before the start of the second 
semester. After the first semester, I identified three research directions summarised in Table 5.2. 

Research direction Planned 
Weeks 

Actual 
Weeks 

Stable Conditional GAN 15-20 13-21 
Conditional GAN operating on multiple 
resolutions 

21-25 21-26 

Explicit evaluation of text-image matching 26 26 
Table 5.2: The identified research directions for the second semester. The plan is based on weeks 
of the academic year. 

Out of these research directions, I obtained good results for the first two points on the list as 
described in Chapter 3. 

Due to the significant training time the presented models take and the limited computing 
resources (one Nvidia 1080Ti) I decided to focus my experiments on the flowers dataset and not 
on both the flowers and birds datasets as I originally intended. The focus on a slightly smaller and 
less complicated dataset such as Oxford-102 offered more time for testing ideas and rigorous 
evaluation. Nevertheless, I run a few experiments on the birds dataset, and the results can be found 
in Appendix D. 
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6.2 Conclusion 

In this work, I present Generative Adversarial Networks and their application in the problem of 
text to image synthesis. I explain how the current state of the art models work at the intersection 
between Computer Vision and Natural Language Models and I reproduce the results of the papers 
which introduce them. Moreover, I bring my contribution to the field by proposing a novel 
Conditional Wasserstein GAN (WGAN-CLS) which enables conditional generation of images 
with a stable training procedure. The images this model generates are comparable to the current 
state of the art models. I show how this conditional Wasserstein loss function can be used in a 
more advanced model: the proposed Conditional Progressive Growing GAN. Other classical GAN 
loss functions would not work on such a model because of their instability during training. I show 
that Conditional Progressive Growing GANs, with the novel conditional Wasserstein loss, produce 
better results than the current state of the art models which use only sentence-level visual 
semantics. 
 

7.Algorithm,Result and Benefit of the Project 

7.1             Notions of Deep Learning 

The goal of this chapter is to explain some of the Deep Learning notions and terminology used 
throughout this report. On the one hand, these notions are very commonly used and cannot be 
avoided. On the other hand, describing them in the body of the report would distract the reader 
from the main ideas. 

7.1.1 Neural Networks 

Neural Networks can be viewed as universal parametric function approximators. A function f : A 
→ B can be approximated by a parametric function fθ : A → B where θ are the parameters of the 
network. A key idea in deep learning is that learning complicated functions can be done by using 
the composition of multiple but simple non linear functions. The stack of layers of a network is a 

composition of such functions. Assuming fθ has n layers, these can be denoted by . 

Then,  
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7.1.2 Backpropagation 

In order to approximate f, a loss function L which describes how far the approximation fθ is from f 
is used. The approximation can be improved by decreasing L. The minimisation of L offers a way 
to adjust the parameters θ to improve the approximation. This process is called back-propagation. 

For any parameter θi of the network, the partial derivative can be computed using the 
(multivariate) chain rule. For this partial derivative to exist, it is required that the functions each 
layer implements are differentiable (almost everywhere). Thus, the parameters can be updated 

using the following procedure:  where α is the learning rate. The minus sign is 
introduced because the parameter must be moved in the opposite direction of the sign of the 
derivative to approach the minimum of L. 

Most often, mini-batch gradient descent is used. The network does not take as input a single 
example, but rather a batch of samples and the loss is computed with respect to this batch. When 
the parameter update is performed, it is calculated using the average derivative of that parameter 
where the average is taken over all the examples in the minibatch. Thus, bigger mini-batches help 
reduce the variance of the updates but introduce additional computational cost at the same time. 
7.1.3 Activation Functions 

 

 

 (c) Rectified Linear Unit (d) Leaky Rectified Linear Unit 

Figure B.1: The commonly used activation functions. Softmax is not depicted it here because it is 
a multivariate vector valued function and it is harder to visualise. 

(i) 
Usually,) where gθ is a simple (linear) function followed by a non 

linearity h(x). h(x) is called an activation function. Without the activation functions, the network 
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would not gain any additional capacity because the composition of multiple linear functions is still 
a linear function. In other words, multiple linear layers stacked together have the same capacity as 
a network with a single linear layer. 

The activation functions (Figure B.1) commonly used in practice and in this report are: 

• The sigmoid function . It is also called the logistic function. It can be used to 
bring a variable in the range [0,1]. 

• The hyperbolic tangent activation function tanh(x) = 2σ(2x) − 1 is a re-scaled sigmoid 
which brings the values in the range [−1,1]. It is generally used when generating images to 
bring the values of the pixels in the range [−1,1]. 

• The softmax function takes as input a vector x and outputs a vector ξ(x) whose values are 
in range [0,1] and sum up to one. It is usually used in classifiers to obtain a valid probability 

distribution over the classes some input could belong to. It is defined as  

• A very popular and simple activation is the Rectified Linear Unit: ReLU(x) = max(0,x) 
[13]. It is used in the intermediate layers to introduce non linearity in the model. Because for 
x > 0 the derivative is constant and non-zero, this activation prevents the gradient from 
saturating. 
• A generalisation of ReLUs are Leaky ReLUs lReLU(x) = max(kx,x) where k ∈ [0,1] is 
usually close to 0. k = 0.2 is a common value. 

7.2 Normalisation Techniques 

7.2.1 Batch Normalisation 

Batch Normalisation [16] is a widely used technique for speeding up the learning and improving 
the performance of deep learning models. Ideally, it is desired that the input to a model to be 
whitened, to have zero mean and unit variance. Whitening the data was shown decades ago [21] 
to improve the speed of the training. Nevertheless, for deep learning, it is not enough because 
between layers inputs which are not normalised appear. A layer could supply to the next layer 
inputs with high variance and a mean far from zero. This phenomenon is called internal covariance 
shift. The fix is to whiten the data given as input to every layer using the batch statistics as in 
Equation B.1. 

  and yi = γxˆi + β (B.1) 
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Here, xi is an activation for the ith example in the minibatch and ˆxi is its whitened version. µ 
and σ2 are the mean and variance of that activation over the entire batch. The trainable parameters 
γ and β, ensure that this transformation is also able to represent the identity transform. They act as 
denormalisation parameters and can reverse the whitening if needed. 

Batch normalisation is based on the assumption that the batch statistics approximate the dataset 
statistics. Thus, the disadvantage of batch normalisation is that for small batch sizes the 
approximation is not so good and the performance drops. For more details, please check [16]. 

GANs are empirically known to be more stable on architectures which use batch normalisation 
in the generator and the discriminator. 

7.2.2 Layer Normalisation 

Layer normalisation performs the same type of whitening as batch normalisation with the 
exception that the normalisation is performed over all the hidden units in a layer and not by using 
the mini-batch statistics. 

Because this normalisation technique is independent of the size of the mini-batch, it has the 
advantage that it does not impose a lower bound on the batch size. Nevertheless, layer 
normalisation brings only marginal improvements in convolutional layers and is better suited for 
Recurrent Neural Networks and fully connected layers. 
7.3 Convolutional Layers 

Convolutional Layers are the building block of Convolutional Neural Networks. They operate on 
third order tensors, or informally, a 3D array of values and produce as output another 3D array 
(not necessarily with the same dimensions). Images are one such tensor with dimensions width × 
height × 3 in the case of RGB images. Convolutional layers are composed of a number f of filters 
which can be adjusted. A filter has a reduced spatial resolution such as 3x3, and its depth is always 
equal to the depth of the input tensors. Each filter is convoluted with regions of the input tensor 
by sliding it across the width and height of the tensor. The result of each such convolution 
operation is a scalar. After sliding the filter over the spatial dimensions of the tensor, the output 
scalars form together a matrix. Each of the f filters produces one such matrix. All these matrices 
stacked together form the output tensor. Convolutional layers also have other parameters besides 
the number of filters and the size of the filter. One of them is the stride which determines by how 
many units the filter is moved in each direction during sliding. Another one is the amount of zero 
padding which refers to padding the borders of the input tensor with zeros. These four hyper-
parameters: the number of filters, the filter size, the stride and the amount of zero padding are used 
to manipulate the exact shape of the output tensor (Figure B.2). 
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Figure B.2: A convolutional filter with padding, stride one and filter size of 3x3. Image is taken 
from [7]. 

Each of the filters of a convolutional layer tries to learn a useful visual feature such various 
types of edges. The filters from the deeper levels of the network recognise more complex structures 
from the input image. 

Convolutional layers can reduce or maintain the spatial resolution of the input tensor. 
Nevertheless, sometimes a reverse operation is needed to perform upsampling. A deconvolutional 
layer does precisely that. Deconvolutional layers can be thought of (and inefficiently implemented) 
as regular convolutional layers with the exception that the input pixels are moved apart, and zeros 
are inserted between them (see Figure B.3). 

For more details on convolutional layers and their arithmetic, please consult [7]. 

 

Figure B.3: The transposed convolution operation (also called deconvolution) performing 
upsampling. The resolution of the output (5x5) is higher than the one of the input (3x3). Image is 
taken from [7]. 

7.4 Residual Layers 

A good rule of thumb in deep learning is that more layers do not always translate to better 
performance. In fact, only increasing the depth of deep learning models has been shown to cause 
a decrease in the performance of the network [12]. 
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Figure B.4: A residual layer with two intermediate convolutional layers. The curved arrow 
represents the identity skip connection. The output of the two layers F(x) and the input x are 
added at the end. An activation functions is applied after the addition. 

Residual Layers [12] have eliminated this problem and led to better results. Figure B.4 shows 
the architecture of a residual layer. In this architecture, the network has to learn a function F with 
respect to the identity mapping, rather than the zero mapping. This approach has two advantages: 

1. If the identity mapping is needed, the network can easily represent it by setting the value 
of the two intermediate weight layers to zero. 

The shortest path from any layer to the output layer is short 
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