
1

 Improving Accuracy of StyleGAN2

A Project Report of Capstone Project - 2

Submitted by

 PRANAV SINGH

(1613105073)

In partial fulfilment for the award of the degree

Of

BACHELOR OF TECHNOLOGY

IN
COMPUTER SCIENCE AND ENGINEERING WITH SPECIALIZATION

OF CLOUD COMPUTING AND VIRTUALIZATION

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Under the supervision of

Mr. Dinesh Kumar Baghel

ASSOCIATE PROFESSOR

APRIL/MAY-2020

2

 SCHOOL OF COMPUTING SCIENCE AND

 ENGINEERING

 BONAFIDE CERTIFICATE
Certified that this project report “Improving Accuracy of StyleGAN2” is the
bonafide work of “PRANAV SINGH (1613105073)” who carried out the project
work under my supervision.

SIGNATURE OF HEAD SIGNATURE OF SUPERVISOR

Dr. MUNISH SHABARWAL, Mr.Dinesh Kumar Baghel,

Professor & Dean, Associate Professor,

School of Computing Science School of Computing Science
& Engineering & Engineering

3

 1. ABSTRACT
The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-

driven unconditional generative image modeling. I expose and analyze several of its

characteristic artifacts, and propose changes in both model architecture and training

methods to address them. In particular, i redesign generator normalization, revisit

progressive growing, and regularize the generator to encourage good conditioning

in the mapping from latent vectors to images. In addition to improving image quality,

this path length regularizer yields the additional benefit that the generator becomes

significantly easier to invert. This makes it possible to reliably detect if an image is

generated by a particular network. I furthermore visualize how well the generator

utilizes its output resolution, and identify a capacity problem, motivating us to train

larger models for additional quality improvements. Overall, our improved model

redefines the state of the art in unconditional image modeling, both in terms of

existing distribution quality metrics as well as perceived image quality.

4

 TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO

 1. Abstract 3

 2. Introduction 7

 2.1 Text to Image 7-8

 2.2 Generative Models 9

 2.3 GAN 10

 2.3.1 Conditional GANs 11-13

 2.3.2 Text Embedding 13-14

 3. Module and Designing of project 15

 3.1 Methods 15

 3.2 CLS-GAN 15-16

 3.2.1 Model Architecture 16-17

 3.2.2 Adapting GAN Design 17-18

 3.2.3 Training 18

 3.2.4 Results 18-19

 3.3 Stacked GAN 19

 3.3.1 Text 19-20

 3.3.2 Architecture 21

 3.3.3 Training 22

 3.3.4 Results 22

 3.4 Other Models 23

5

4. Research 24

 4.1 Wasserstein GAN-CLS 24-25

 4.1.1 Wasserstein GAN 25-27

 4.1.2 Conditioning Wasserstein GAN 27-28

 4.1.3 Architecture 28

 4.1.4 Training 28-29

 4.1.5 Results 29

 4.2 Conditional Progressively Growing GANs 30

 4.2.1 Architecture and Training 30-32

 4.2.2 The Need for a Stable Loss Function 32-34

 4.2.3 Results 34-36

5. Evaluation and Comparisons 36

 5.1 The Inception Score 36

 5.1.1 Evaluation of Text-Image Matching 37-38

 5.2 Inception Score Results 38-39

 5.3 Side by Side Comparison of the Models 39-44

6 Reaction and Conclusion 45

 6.1 Planning and Management 45-46
 6.2 Conclusion 47

6

7. Algorithm, Result and Benefit of the project 47

 7.1 Notions of Deep Learning 47

 7.1.1 Neural Networks 47

 7.1.2 Backpropagation 48

 7.1.3 Activation Functions 48-49

 7.2 Normalization Techniques 49

 7.2.1 Batch Normalization 49-50

 7.2.2 Layer Normalization 50

 7.3 Convolutional Layers 50-51

 7.4 Residual Layers 51-52

 7.4 Conclusion 52

8. References 52

7

2.INTRODUCTION

GAN is an unsupervised deep learning algorithm where we have a
GeneratorpittedagainstanadversarialnetworkcalledDiscriminator.Generator,ge neratescounterfeitcurrency.
Discriminators are a team of cops trying to detect counterfeit currency. Counterfeiters and cops both are trying to beat
each other at their game.Both Generator and Discriminator will be multi-layer perceptrons(MLP)

GAN

Generator’s objective will be to generate data that is very similar to the training data. Data generated from
Generator should be indistinguishable from the real data.Discriminator takes two sets of input, one input comes
from the training dataset(real data) and the other input is the dataset generated by Generator.GAN will use the
MNIST data and identify the latent feature representation for generating digits. At the end we will see how the
Generators are able to generate real-looking MNIST digits.

2.1 Text to Image Synthesis

One of the most common and challenging problems in Natural Language Processing and Computer
Vision is that of image captioning: given an image, a text description of the image must be
produced. Text to image synthesis is the reverse problem: given a text description, an image which
matches that description must be generated.
From a high-level perspective, these problems are not different from language translation
problems. In the same way similar semantics can be encoded in two different languages, images
and text are two different “languages” to encode related information.
Nevertheless, these problems are entirely different because text-image or image-text conversions
are highly multimodal problems. If one tries to translate a simple sentence such as “This is a
beautiful red flower” to French, then there are not many sentences which could be valid
translations. If one tries to produce a mental image of this description, there is a large number of
possible images which would match this description. Though this multimodal behaviour is also
present in image captioning problems, there the problem is made easier by the fact that language
is mostly sequential. This structure is exploited by conditioning the generation of new words on

8

the previous (already generated) words. Because of this, text to image synthesis is a harder problem
than image captioning.
The generation of images from natural language has many possible applications in the future once
the technology is ready for commercial applications. People could create customised furniture for
their home by merely describing it to a computer instead of spending many hours searching for the
desired design. Content creators could produce content in tighter collaboration with a machine
using natural language.

Datasets

The publicly available datasets used in this report are the Oxford-102 flowers dataset [25] and the
Caltech CUB-200 birds dataset [35]. These two datasets are the ones which are usually used for
research on text to image synthesis. Oxford-102 contains 8,192 images from 102 categories of
flowers. The CUB-200 dataset includes 11,788 pictures of 200 types of birds. These datasets
include only photos, but no descriptions. Nevertheless, I used the publicly available captions
collected by Reed et al.[28] for these datasets using Amazon Mechanical Turk. Each of the images
has five descriptions. They are at least ten words in length, they do not describe the background,
and they do not mention the species of the flower or bird (Figure 1.1).

Figure 1.1: A sample from the Oxford-102 dataset (left) and CUB-200 dataset (right), together with one of their
associated descriptions collected by Reed et al. [28]

Because the number of images is small, I perform data augmentation. I apply random cropping
and random left-right flipping of the images. I split the datasets into train and test datasets such
that they contain disjoint classes of images. The datasets are summarised in Table 1.1.

9

The report is focused on the flowers dataset for practical reasons detailed in Chapter 5 where I
discuss this decision. Nevertheless, a small number of experiments were run on the birds dataset
as well.

Dataset/Number of images Train Test Total
Flowers 7,034 1,155 8,192
Augmented flowers
(256x256)

675,264 110,880 786,432

Birds 8,855 2,933 11,788
Augmented birds
(256x256)

850,080 281,568 1,131,648

Table 1.1: Summary statistics of the datasets.

2.2 Generative Models

The task of text to image synthesis perfectly fits the description of the problem generative models
attempt to solve. The current best text to image results are obtained by Generative Adversarial
Networks (GANs), a particular type of generative model. Before introducing GANs, generative
models are briefly explained in the next few paragraphs.

Before defining them, I will introduce the necessary notation. Consider a dataset X = {x(1),...,x(m)}
composed of m samples where x(i) is a vector. In the particular case of this report, x(i) is an image
encoded as a vector of pixel values. The dataset is produced by sampling the images from an
unknown data generating distribution Pr, where r stands for real. One could think of the data
generating distribution as the hidden distribution of the Universe which describes a particular
phenomenon. A generative model is a model which learns to generate samples from a distribution
Pg which estimates Pr. The model distribution, Pg, is a hypothesis about the true data distribution
Pr.

Most generative models explicitly learn a distribution Pg by maximising the expected log-
likelihood EX∼Pr log(Pg(x|θ)) with respect to θ, the parameters of the model. Intuitively, maximum
likelihood learning is equivalent to putting more probability mass around the regions of X with
more examples from X and less around the regions with fewer examples. It can be shown that the
log-likelihood maximisation is equivalent to minimising the Kullback-Leibler divergence

 assuming Pr and Pg are densities. One of the valuable properties of
this approach is that no knowledge of the unknown Pr is needed because the expectation can be
approximated with enough samples according to the weak law of large numbers.
Generative Adversarial Networks (GANs) [9] are another type of generative model which takes a
different approach based on game theory. The way they work and how they compare to other
models is explained in the next section.

10

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) solve most of the shortcomings of the already existent
generative models:

• The quality of the images generated by GANs is better than the one of the other models.

• GANs do not need to learn an explicit density Pg which for complex distributions might not
even exist as it will later be seen.

• GANs can generate samples efficiently and in parallel. For example, they can generate an
image in parallel rather than pixel by pixel.

• GANs are flexible, both regarding the loss functions and the topology of the network which
generates samples.

• When GANs converge, Pg = Pr. This equality does not hold for other types of models which
contain a biased estimator in the loss they optimise.

Nevertheless, these improvements come at the expense of two new significant problems: the
instability during training and the lack of any indication of convergence. GAN training is relatively
stable on specific architectures and for carefully chosen hyper-parameters, but this is far from
ideal. Progress has been made to address these critical issues which I will discuss in Chapter 3.

Figure 1.2: High-level view of the GAN framework. The generator produces synthetic images. The discriminator
takes images as input and outputs the probability it assigns to the image of being real. A common analogy is
that of an art forger (the generator) which tries to forge paintings and an art investigator (the discriminator)
which tries to detect imitations.

The GAN framework is based on a game played by two entities: the discriminator (also called the
critic) and the generator. Informally, the game can be described as follows. The generator produces
images and tries to trick the discriminator that the generated images are real. The discriminator,
given an image, seeks to determine if the image is real or synthetic. The intuition is that by

11

continuously playing this game, both players will get better which means that the generator will
learn to generate realistic images (Figure 1.2).

I will now show how this intuition can be modelled mathematically. Let X be a dataset of samples
x(i) belonging to a compact metric set X such as the space of images [−1,1]n. The discriminator
learns a parametric function Dω : X → [0,1] which takes as input an image x and outputs the
probability it assigns to the image of being real. Let Z be the range of a random vector Z with a
simple and fixed distribution such as pZ = N(0,I). The generator learns a parametric function Gθ :
Z → X which maps the states of the random vector Z to the states of a random vector X. The states
of X ∼ Pg correspond to the images the generator creates. Thus, the generator learns to map a
vector of noise to images.

The easiest way to define and analyse the game is as a zero-sum game where Dω and Gθ are the
strategies of the two players. Such a game can be described by a value function V (D,G) which in
this case represents the payoff of the discriminator. The discriminator wants to maximise V while
the generator wishes to minimise it. The payoff described by V must be proportional to the ability
of D to distinguish between real and fake samples.
The value function from equation 1.1 which was originally proposed in [9] comes as a natural
choice.

 V (D,G) = EX∼Pr[log(D(x))] + EZ∼pZ[log(1 − D(G(z)))] (1.1)

On the one hand, note that V (D,G) becomes higher when the discriminator can distinguish between
real and fake samples. On the other hand, V becomes lower when the generator is performing well,
and the critic cannot distinguish well between real and fake samples.

Figure 1.3: The Nash Equilibrium corresponds to a saddle point in space where V is at a minimum
with respect to θ and at a maximum with respect to ω. Neither of the networks has any interest to
change their parameters.

12

The difference from maximum likelihood models is that samples generated by the generator have

an implicit distribution Pg determined by the particular value of θ. Pg cannot be explicitly

evaluated. The discriminator forces the generator to bring Pg close to Pr.

Zero-sum games are minimax games so the optimal parameters of the generator can be described
as in Equation 1.2.

θ∗ = argminmaxV (D,G) (1.2) θ ω

The solution of the minimax optimisation is a Nash Equilibrium (Figure 1.3). Theorem 1.3.1
describes the exciting properties of the equilibrium for non-parametric functions. The theorem
confirms the intuition that as the two players play this game, the generator will improve at
producing realistic samples.

Theorem 1.3.1. The Nash equilibrium of the (non-parametric) GAN game occurs when:

1. The strategy of the discriminator is

2. The strategy G of the generator makes Pg = Pr.

For completeness, I offer a slightly different and more detailed proof than the one from [9] in
appendix A. I encourage the reader to go through it. Note that when the equilibrium is reached,

. The interpretation of Theorem 1.3.1 is that, at the end of the learning process, the generator
learned Pr and the discriminator is not able to distinguish between real and synthetic data, so its

best strategy is to output for any input it receives. At equilibrium, the discriminator has a payoff
of −log(4) and the generator log(4), respectively.

In practice, the generator does not minimise V (D,G). This would be equivalent to minimising
EZ∼pZ[log(1 − Dω(Gθ(z)))], but the function log(1 − Dω(Gθ(z))) has saturating gradient when the
discriminator is performing well and the function approaches log(1). This makes it difficult for the
generator to improve when it is not performing well. Instead, the generator is minimising LG from
1.3 whose gradient saturates only when the generator is already performing well. The loss LD of
the critic is also included in 1.3.

LG = −EZ∼Pz[log(Dω(Gθ(z)))
(1.3)

LD = −EX∼Pr[log(Dω(x))] − EZ∼pZ[log(1 − Dω(Gθ(z)))]
With this generator loss function, the game is no longer a zero-sum game. Nevertheless, this loss
works better in practice.

13

Based on the min-max expression 1.2, one might expect that the discriminator is trained until
optimality for a fixed generator, the generator is trained afterwards, and the process repeats. This
approach does not work for reasons which will become clear in Section 3.1.1. In practice, the
networks are trained alternatively, for only one step each.

2.3.1 Conditional Generative Adversarial Networks

The original GAN paper [9] describes how one can trivially turn GANs into a conditional
generative model. To generate data conditioned on some condition vector c, c is appended to both
the generator and the discriminator in any of their layers. The networks will learn to adapt and
adjust their parameters to these additional inputs.

Figure 1.4: Probabilistic graphical model view of regular GANs (left) and conditional GANs
(right).
Conditional GANs can also be seen from the perspective of a probabilistic graphical model (Figure
1.4). In the case of regular GANs, the noise Z influences the observable X. For conditional GANs,
both Z and C influence X. In the particular case of text to image synthesis, the states c of C are
vectors encoding a text description. How this encoding of a sentence into a vector is computed can
vary, and it is discussed in Section 1.1.

2.3.2 Text Embeddings

The text descriptions must be vectorised before they can be used in any model. These
vectorisations are commonly referred to as text embeddings. Text embedding models were not the
focus of this work, and that is why the already computed vectorisations by Reed et al. [28] are
used. Other state of the art models [29, 37] use the same embeddings and their usage makes
comparisons between models easier.

14

Figure 1.5: The char-CNN-RNN encoder maps images to a common embedding space. Images
and descriptions which match are closer to each other. Here the embedding space is R2 to make
visualisation easier. In practice, the preprocessed descriptions are in R1024.

The text embeddings are computed using the char-CNN-RNN encoder proposed in [28]. The
encoder maps the images and the captions to a common embedding space such that images and
descriptions which match are mapped to vectors with a high inner product.
For this mapping, a Convolutional Neural Network (CNN) processes the images, and a hybrid
Convolutional-Recurrent Neural Network (RNN) transforms the text descriptions (Figure 1.5).
A common alternative is Skip-Thought Vectors [20] which is a pure language-based model. The
model maps sentences with similar syntax and semantics to similar vectors. Nevertheless, the char-
CNN-RNN encoder is better suited for vision tasks as it uses the corresponding images of the
descriptions as well. The embeddings are similar to the convolutional features of the images they
correspond to, which makes them visually discriminative. This property reflects in a better
performance when the embeddings are employed inside convolutional networks.

15

3. Model and Designing of Project

In this chapter, I first discuss in Section 2.1 the technical details of my implementation. Then, in
Sections 2.2 and 2.3 I present in depth the state of the art models introduced by September 2017.
Section 2.4 briefly mentions other state of the art models which have been proposed since I started
this project.

3.1 Method

All the images included in this report generated by the described models are produced by my
implementation of these models. All the models which are discussed are implemented in python
3.6 using the GPU version of TensorFlow [1].
TensorFlow is an open-source library developed by researchers from Google Brain and designed
for high performance numerical and scientific computations. It is one of the most widely used
libraries for machine learning research. TensorFlow offers both low level and high-level APIs
which make development flexible and allow fast iteration. Moreover, TensorFlow makes use of
the capabilities of modern GPUs for parallel computations to execute operations on tensors
efficiently.
I run all the experiments on a Nvidia 1080Ti which I acquired for the scope of this project.

3.2 GAN-CLS (Conditional Latent Space)

Reed et al. [29] were the first to propose a solution with promising results for the problem of text
to image synthesis. The problem can be divided into two main subproblems: finding a visually
discriminative representation for the text descriptions and using this representation to generate
realistic images.
In Section 1.3.2 I briefly described how good representations for the text descriptions could be
computed using the char-CNN-RNN encoder proposed in [28]. In section 1.3.1 I also explained
how Conditional GANs could be used to generate images conditioned on some vector c. GAN-
CLS puts these two ideas together.

16

Figure 2.1: Architecture of the customised GAN-CLS. Two fully connected layers compress the
text embedding φ(t) and append it both in the generator and the discriminator. In the discriminator,
the compressed embeddings are spatially replicated (duplicated) before being appended in depth.

The functions G(z) and D(x) encountered in regular GANs become in the context of conditional
GANs, G(z,φ(t)) and D(x,φ(t)), where φ : Σ∗ → RNφ is the char-CNN-RNN encoder, Σ is the
alphabet of the text descriptions, t is a text description treated as a vector of characters and Nφ is
the number of dimensions of the embedding. The text embedding φ(t) is used as the conditional
vector c.
Before reading further, the reader is encouraged to have a look at Appendix B which includes a
brief introduction to deep learning and explains the terms used to describe the architecture of the
models.

3.2.1 Model Architecture

GAN-CLS uses a deep convolutional architecture for both the generator and the discriminator,
similar to DC-GAN (Deep Convolutional-GAN) [27].

In the generator, a noise vector z of dimension 128, is sampled from N(0,I). The text t is passed
through the function φ and the output φ(t) is then compressed to dimension 128 using a fully
connected layer with a leaky ReLU activation. The result is then concatenated with the noise vector
z. The concatenated vector is transformed with a linear projection and then passed through a series
of deconvolutions with leaky ReLU activations until a final tensor with dimension 64×64×3 is
obtained. The values of the tensor are passed through a tanh activation to bring the pixel values in
the range [−1,1].

17

In the discriminator, the input image is passed through a series of convolutional layers. When the
spatial resolution becomes 4×4, the text embeddings are compressed to a vector with 128
dimensions using a fully connected layer with leaky ReLU activations as in the generator. These
compressed embeddings are then spatially replicated and concatenated in depth to the
convolutional features of the network. The concatenated tensor is then passed through more
convolutions until a scalar is obtained. To this scalar, a sigmoid activation function is applied to
bring the value of the scalar in the range [0,1] which corresponds to a valid probability.
The focus of the GAN-CLS paper is not on the details of the architecture of the discriminator and
the generator. Thus, to obtain better results, I deviated slightly from the DC-GAN architecture,
and I added one residual layer [11] in the discriminator and two residual layers in the generator.
These modifications increase the capacity of the networks and lead to more visually pleasant
images. Figure 2.1 shows the architecture of the customised GAN-CLS.

3.2.2 Adapting GAN Loss to Text-Image Matching

The GAN-CLS critic has a slightly different loss function from the one presented in Equation 1.3.
The goal of the modification is to better enforce the text-image matching by making the
discriminator to be text-image matching aware. The critic cost function from Equation 2.1 is used.

 (2.1)

where Pr−mat is the joint distribution of image and text embeddings which match, Pr−mis is the
joint distribution of image and text embeddings which mismatch, Pge is the joint distribution of
generated images and the text embeddings they were generated from and e = φ(t) is a text
embedding. In this way, the discriminator has a double functionality: distinguishing real and fake
images but also distinguishing between the text-image pairs which match and those which
mismatch.

18

Figure 2.2: Samples generated from text descriptions from the test dataset. For each text
description, the model generates multiple samples, each using a different input noise vector. As it
can be seen the model ignores the input noise and the resulting images are extremely similar. The
disappearance of the stochastic behaviour is a current research problem in Conditional GANs.
3.2.3 Training

Adam optimiser [18] is used for training. Adam maintains a separate learning rate for each of the
parameters of the model and uses a moving average of the first and second moment of the gradients
in the computation of the parameter update. The usage of the gradient statistics makes the
algorithm robust to gradient scaling and well suited for problems with noisy gradients such as this
one. The parameters β1 and β2 control the decay rate of these moving averages. The learning rate
is set to 0.0002 for both networks, β1 = 0.5 and β2 = 0.9. The model is trained for a total of 600
epochs with a batch size of 64.

3.2.4 Results

Figure 2.2 shows samples generated for the flowers dataset. All the shown samples are produced
from descriptions from the test dataset.

Figure 2.3: Interpolations in the conditional embedding space while maintaining the noise vector
constant. The top description for each image corresponds to the image on the left and the bottom
description corresponds to the image on the right. The images in between are generated from
interpolations between these two descriptions.

A common way to test that the models learns the visual semantics of the text descriptions and it
does not merely memorise the description-image mappings is to generate images G(z,(1 − t)e1 +

19

te2) from interpolations between two text embeddings e1 and e2 where t is increased from 0 to 1. If
the model works, these transitions should be smooth.
Figure 2.3 shows images produced by GAN-CLS from such interpolations.

3.3 Stacked GANs

One would rarely see an artist producing a painting in full detail directly from the first attempt. By
analogy, this is how GAN-CLS described in section 2.2 generates images. These architectures do
not usually scale up well to higher resolutions. It would be desired

Figure 2.4: Illustration of a simplified 2D conditional space before augmentation (left) and after
adding two different augmentation strategies (middle and right). The image captioning system
from [6] fills the embedding space with synthetic captions (middle). The conditional augmentation
from StackGAN [37] ensures a smooth conditional manifold by sampling from a Gaussian
distribution for each text embedding (right)

to have a network architecture which is closer to the analogy of a painter who starts with the main
shapes, colours, textures and then gradually adds details.
StackGAN [37] is such an architecture, and it uses two GANs. The first GAN, called Stage I,
generates images from captions at a lower resolution of 64×64 in a similar manner to GAN-CLS.
The second GAN, called Stage II, has a generator which takes as input the image generated by the
Stage I generator and produces a higher resolution 256×256 image with more fine-grained details
and better text-image matching.

3.3.1 Text Embedding Augmentation

Besides this generation of images at multiple scales, the StackGAN paper proposes the
augmentation of the conditional space. Because the number of text embeddings is small, they cover
tiny, sparse regions in the embedding space clustered around their corresponding images. The
model hardly understands the visual semantics of the embeddings at test time because these

20

embeddings are usually far in the embedding space from the ones seen in training. Moreover, the
low number of embeddings is likely to cause the model to overfit.
Dong et al. [6] have also independently recognised this problem. They propose an image
captioning system to fill the embedding space. Nevertheless, this is far from an ideal solution. The
curse of dimensionality takes effect, and it is unfeasible to fill the space in such a manner.
Moreover, the image captioning system adds significant computational costs.
StackGAN uses another approach inspired by another generative model, Variational Autoencoders
(VAE) [19]. For a given text embedding φ(t), augmented embeddings can be sampled from a
distribution N(µ(φ(t)),Cov(φ(t)). As in VAEs, to ensure that the conditional space remains smooth
and the model does not overfit, a regularisation term enforces a standard normal distribution over
the normal distributions of the embeddings. The regularisation term with hyper-parameter ρ
(Equality 2.2) consists of the KL divergence between the normal distribution of the embeddings
and the standard normal

Figure 2.5: The VAE reparametrisation trick. The network learns µ and σ and uses a sampled to
compute an augmented embedding. The associated sampling noise causes improved image
variation as the model generates different images for different samples of the same embedding.

distribution.

 LG = −EX∼Pg,T∼Pr[log(D(x)) + ρKL(N(0,I) k N(µ(φ(t)),Σ(φ(t)))], (2.2)

The reparametrisation trick from VAEs is used to perform the sampling. With this trick, the
network has the independence to learn the mean µ and the standard deviation σ of the embedding.
For an embedding e = φ(t), a fully connected layer with leaky ReLU activations computes µ and
another computes σ and the sampled vector eˆ is obtained as shown in Equation 2.3 (Figure 2.5).

 eˆ = µ + σ ◦ , where) and ◦ is element-wise multiplication (2.3)

21

3.3.2 Model Architecture

Figure 2.6 shows the full architecture of StackGAN. The architecture of the Stage I generator is
identical to the one of the customised GAN-CLS (described in Section 2.2.1) with the addition of
the conditioning augmentation (CA) module previously discussed.

The Stage II generator starts by down-sampling the input 64×64 image until it reaches a spatial
resolution of 4×4. To this 4×4 block, the corresponding augmented text embedding is concatenated
in depth to improve the text-image matching of Stage I. The concatenated block is passed through
three residual layers and then up-sampled until a final tensor of 256×256×3 is obtained. In the end,
tanh activation is applied to bring the output in [−1,1].
The Stage I discriminator is identical to the customised GAN-CLS discriminator previously
discussed. The Stage II discriminator is also similar, with the exception that more down-sampling
convolutional layers are used to accommodate for the higher resolution of the input.
As in the paper, ReLU activations are used for the generator and leaky ReLU activations for the
discriminator. Batch normalisation is applied both in the generator and the discriminator.

Figure 2.6: The architecture of StackGAN. The architecture of Stage I is identical to the customised
GAN-CLS presented in the previous section. The Stage II generator takes as input and fine-tunes
the image generated by Stage I. The generators of both stages use the augmented embeddings.

Figure 2.7: Samples generated by Stage I of StackGAN.

22

3.3.3 Training

StackGAN uses the same discriminator loss function as the one in 1.3 and the generator loss from
2.2.
For training, I used the Adam optimiser with a learning rate of 0.0002 for both networks, β1 = 0.5
and β2 = 0.9. I trained each of the stages for 600 epochs using a batch size of 64 for Stage I and a
batch size of 32 for Stage II. When training Stage II, the parameters of Stage I are no longer trained.
The learning rate is halved every 100 epochs as recommended in the paper.

3.3.4 Results

Figure 2.7 shows samples generated by Stage I and Figure 2.9 includes samples created by Stage
II . The stochastic behaviour introduced by the augmentation of the text embeddings reflects in the
higher image diversity of the generated images. Conditional interpolations for Stage I and Stage II
are shown in Figures 2.8 and 2.10. Figure 2.11 shows the images produced by the two stages for
the same descriptions. Images generated by StackGAN on the birds dataset are included in
Appendix D.

Figure 2.8: Samples generated by Stage I of StackGAN from text embedding interpolations.

23

Figure 2.9: Samples generated by Stage II of StackGAN.

3.4 Other Models

Other two state of the art models have been proposed since the start of this project: StackGAN-v2
[38], and more recently, AttnGAN [36] developed by Microsoft Research in collaboration with
other universities. StackGAN-v2, as the name suggests, is an improved version of StackGAN
which uses multiple generators and discriminators in a tree-like structure. AttnGAN consists of an
architecture similar to StackGAN-v2, but with an attention model [4, 23] on top of it. The attention
model replicates the human attention mechanism and allows the network to focus on a single word
from a sentence or a specific region of the image at a time. This ensures a granular image-word
matching and not just a sentence level matching as it is the case with the other models discussed
in this work.

Figure 2.10: Samples generated by Stage II of StackGAN from text embedding interpolations.

24

Figure 2.11: Images generated by Stage I (first row) and Stage II (second row) for the same text
descriptions (one for each column). Stage II fine-tunes the images generated by Stage I.

4.Research

In this chapter, I propose new models which try to address some of the current research problems.
In Section 3.1 I propose Wasserstein GAN-CLS, a conditional Wasserstein GAN based on the
recently introduced Wasserstein distance which offers convergence and stability guarantees. This
model uses a novel loss function which achieves the text-image conditioning using a Wasserstein
distance. In Section 3.2 I propose a conditional Progressive GAN inspired from [17] which learns
to generate images at iteratively increasing scale, and I show how the conditional Wasserstein loss
improves this model.

4.1 Wasserstein GAN-CLS

This section is more mathematical, in line with the firm theoretical arguments behind Wasserstein
GANs. Additional explanations are included in Appendix C.

The main problem of GANs is their instability during training. Perhaps counterintuitively, as the
discriminator becomes better, the generator’s updates get worse. Arjovsky et al.[2] show that this
problem is related to how the distances d(Pr,Pg), which GANs commonly optimise, behave when
the support of Pr and Pg are disjoint or lie on low dimensional manifolds. When that is the case, a
perfect discriminator which separates them always exists. As the discriminator approaches
optimality, the gradient of the generator becomes unstable if the generator uses the loss function
LG from 1.3.
In many situations, it is likely that the two distributions lie on low dimensional manifolds. In the
case of natural images, there is substantial evidence that the support of Pr lies on a low dimensional
manifold [24]. Moreover, Arjovsky et al. [2] prove that this is the case with Pg in the case of
GANs. Thus, the choice of the distance d(Pr,Pg) is crucial. One would like this function to be
continuous and provide non-vanishing gradients that can be used for backpropagation even when
this situation occurs.

25

Maximum likelihood models implicitly optimise KL(Pr k Pg) (which is not a distance in the formal
sense). GANs implicitly optimise the Jensen-Shannon divergence JS(Pr k Pg), as shown in the
proof of Theorem 1.3.1 from Appendix A. Both of them are problematic. A simple example of two
distributions whose supports are parallel lines [2] shows not only that these divergences (and
others) are not differentiable, but they are not even continuous. In the next section, I discuss the
Wasserstein distance which was proposed as a better choice for d(Pr,Pg).

4.1.1 Wasserstein GAN

The Wasserstein distance, also known as the Earth Mover’s (EM) distance, is theoretically
proposed and analysed in GANs for the first time in [2]. In [3] it is shown in practice that a GAN
which optimises the Wasserstein distance offers convergence and stability guarantees while
producing good looking and more diverse images. This distance is given in Equation
3.1.

], (3.1)

where Π(Pr,Pg) is the set of joint distributions which have Pr and Pg as marginals and γX,Y (x,y) ∈
Π(Pr,Pg) is one such distribution (see Figure 3.1 for an intuitive explanation).

Figure 3.1: A better intuition for the Wasserstein distance can be developed by analysing a small
discrete case. Given two discrete distributions Pr and Pg, the Earth Mover’s distance is the cost of
the optimal plan to transport blocks of Pg to obtain Pr (or the other way around). A transport plan
is optimal if it has minimum effort. The effort is proportional to the size of the blocks which are
moved and the distance on which they have to be moved.

Of course, computing the Wasserstein distance in the form 3.1 is intractable. Nevertheless, its dual
form is tractable. This form is given by the Kantorovich-Rubinstein duality [34] presented in
Equation 3.2.

)], (3.2)

26

where the supremum is taken over the set of functions f : X → R which are 1-Lipschitz continuous
(explained in Appendix C). Instead of optimising relation 3.2 in function space, it can be optimised
in the space of parametric functions using a neural network Dω : X → R. Equality 3.2 can be
rewritten as:

)] (3.3)
The only question which remains is how to enforce the Lipschitz constraint. It was originally
suggested [3] to keep the weights ω ∈ W, where W is a compact space such as W = [0.01,0.01]Nw

and Nw is the number of weights. Keeping the weights in such a small range indirectly constraints
the rate of growth of the function which remains K-Lipschitz continuous over the course of
training. The exact value of K depends only on the choice of W and is independent of the values
of ω. Nevertheless, this does not fully solve the problem because the small weights diminish the
capacity of the neural network and also cause the training time to increase. A better solution was
proposed [10] which softens the constraint by appending it to the loss function as a regularisation
term.

Figure 3.2: Linear interpolation of a point from the dataset and a generated image. The gradient
penalty ensures that the gradient norm remains close to one for such points between the two
distributions.

It can be shown that a differentiable function is 1-Lipschitz if and only if its gradient norm is at
most one almost everywhere. This motivates the loss function from Equation 3.4 which adds a
gradient penalty (LGP) to penalise the network when the gradient norm goes far from one.

LD = EX∼Pg[D(x)] − EX∼Pr[D(x)] + λLGP
 2 (3.4)

27

= EX∼Pg[D(x)] − EX∼Pr[D(x)] + λEXˆ∼PXˆ[(k∇D(xˆ)k − 1)],

where xˆ is a linear interpolation between a real and generated image: xˆ = tG(z)+(1−t)x and t is
sampled from U[0,1]. The model uses these interpolations because it is intractable to enforce the
gradient constraint over the whole space X. Instead, it is enforced only over the region between
the two manifolds of the two distributions (Figure 3.2).
On the one hand, the discriminator is trained to better approximate the Wasserstein distance. The
generator, on the other hand, tries to minimise W(Pr,Pg), so the loss function from 3.5 is employed.

 LG = −EX∼Pg[D(x)], (3.5)
4.1.2 Conditioning Wasserstein GAN

The loss function 3.4 makes the discriminator distinguish between real and fake samples, but for
text to image synthesis, it must also be text-image matching aware. By making the discriminator
to also approximate W(P(x,e)r−mat

,P(x,e)r−mis) between the joint distributions of matching and
mismatching text-image pairs, the discriminator becomes matching aware. Based on this insight,
I propose the loss function from 3.6 for the discriminator.

LD = {E(X,E)∼Pge[D(x,e)] − E(X,E)∼Pr−mat[D(x,e)]}

+ α{E(X,E)∼Pr−mis[D(x,e)] − E(X,E)∼Pr−mat[D(x,e)]}
(3.6)

= E(X,E)∼Pge[D(x,e)] + αE(X,E)∼Pr−mis[D(x,e)]
− (1 + α)E(X,E)∼Pr−mat[D(x,e)] + λLLP

where the parameter α controls the level of text-image matching.

Note that another regularisation term (LLP), different from LGP , is used to enforce the Lipschitz
constraint. A potential problem of this loss function is that it can take values with a high magnitude
on some datasets or architectures. Because nothing minimises

W(Pr−mat,Pr−mis) as it is the case with W(Pr−mat,Pge) which is being minimised by the generator,
W(Pr−mat

,Pr−mis) can theoretically take very high values. High values of this distance can damage
the gradient penalty term whose proportion in the loss function will become so small that the
gradient norm will get out of control. Theoretically, this can be fixed by simply increasing λ, but
the regularisation of WGAN-GP from 3.4 (LGP) is not so robust [26] to changes in the values of
the parameter λ. To address this, I use instead the regularisation term recently proposed in [26]
which is called LLP (LP - Lipschitz Penalty). This term which does not penalise gradient norms less
than one allows for larger values of λ without harming the model. Moreover, empirical and
theoretical evidence [26] shows that, under this softer regularisation term, convergence is faster
and more stable. LLP is given by:

28

LLP = E(Xˆ,E)∼Pη[max(0,k∇xˆD(x¯,e)k − 1)2 + max(0,k∇eD(xˆ,e)k − 1)2] (3.7) where I use Pη to

denote the joint distribution of image text pairs (xˆ,e). xˆ = tG(z,e) + (1 − t)x is a linear interpolation

with t sampled from U(0,1) and e is a matching text embedding of the image x. Note that because

D(xˆ,e) is also a function of the text embeddings e in this case, the Lipschitz constraint needs to be

enforced with respect to the input e as well, not only xˆ, hence the second term of the summation.

Regarding the generator, I use the same cost function as the one in 3.5 with the addition of the text
augmentation loss which softly maintains the standard normal distribution over the conditional
latent space as described in Section 1.3.2. Thus, the loss of the generator is:

 LG = −E(X,E)∼Pg[D(x,e)] + ET∼Pr[ρKL(N(0,I) k N(µ(φ(t)),Σ(φ(t)))] (3.8)
4.1.3 Architecture

To make comparisons simpler, I keep the architecture of the generator identical to that of Stage I
of StackGAN. In the case of the discriminator, I remove the batch normalisation for the gradient
penalty to work. The gradient penalty assumes a unique gradient for each sample, and this
assumption no longer holds in the presence of batch normalisation [10].
Because, when the Wasserstein distance is used, the discriminator no longer needs to be crippled
to keep the training balanced, I add one more convolutional layer in the discriminator after the text
embedding concatenation, and I use the same number of convolutional filters as in the generator.

4.1.4 Training

In the case of Wasserstein GANs, the closer the discriminator gets to optimality for a fixed G, the
better the approximation of W(Pr−mat,Pge) and W(Pr−mat,Pr−mis) is. The generator’s updates will
also be better. That is why the discriminator is trained for ncritic times for every generator update,
where ncritic is a hyper-parameter to be set at training time. A common value is ncritic = 5.

29

Figure 3.3: Samples generated by WGAN-CLS from the same text descriptions but different noise
vectors

For faster training, I take a slightly different approach by setting ncritic = 1 in conjunction with the
usage of the Two-Timescale Update Rule (TTUR) [15]. TTUR refers to the usage of two different
learning rates for the generator and the discriminator, which guarantees that the networks will
reach a local Nash equilibrium. The convergence under TTUR is shown to be faster and the quality
of the images higher than in the case of the classic method of training. Thus, I use the Adam
optimiser again with a learning rate of 0.0003 for the critic and 0.0001 for the generator. In the
case of the other parameters of Adam, I use β1 = 0 and β2 = 0.99 for both the generator and the
discriminator. The generator regularisation parameter ρ is set to 10, λLP = 150 and α = 1. The
training is performed for 120,000 steps with a batch size of 64.
4.1.5 Results

Figure 3.3 shows samples generated by the Conditional Wasserstein GAN. Figure 3.4 shows
images generated from interpolations in the conditional space.

Figure 3.4: Samples generated by the Conditional Wasserstein GAN from interpolations between
two text embeddings.

I subjectively assess that the quality of the generated images is comparable to the one of GAN-
CLS and Stage I of StackGAN. My subjective evaluation is also confirmed by the Inception Scores
of the models which are given in Chapter 4.

30

4.2 Conditional Progressively Growing GANs

In this section, I show how the recently introduced Progressive Growing GAN (PGGAN) [17] can
be turned into a conditional model for text to image synthesis. Moreover, I show how the
Wasserstein critic loss I proposed in the previous section can improve this conditional model.

4.2.1 Architecture and Training

Because the training of this model is tightly integrated with its architecture, I treat them together
in this section rather than separately.

The generator starts by concatenating a noise vector z with an augmented embedding e. This
concatenated vector is then projected into a tensor of dimension 4×4×512 which is then followed
by two more convolutional layers with a filter size of 3×3. Together, they constitute the first stage
of the generator. The output of this stage is supplied as input to a stack of other stages, all separated
by a nearest neighbour upsampling layer which upscales by a factor of two. All the generator stages
excepting the first are composed of two convolutional layers with a kernel size of 3x3. In the end,
the output tensor is

31

Figure 3.5: Stages of the conditional PGGAN: (Top) First stage of the generator, (middle) First
stage of the discriminator, (bottom left) the architecture of the other stages of the generator,
(bottom right) the architecture of the other stages of the discriminator.

passed through two more convolutional layers called the “toRGB” module which outputs the actual
RGB image.
The discriminator starts with a convolutional layer which produces a first set of convolutional
features without affecting the spatial resolution. This layer is denoted as the “fromRGB” module.
These features are given as input to a stack of stages which again are added step by step as training
progresses concurrently with the generator stages. All stages have two convolutional layers,
symmetric to the ones of the generator. The only exception is the first stage where the compressed
embeddings are concatenated in depth to the input features of that stage similarly to the previous
GANs. The concatenated block is processed by two more convolutional layers followed by a fully
connected layer which produces the scalar discriminator output. The discriminator stages are
separated by an average pooling layer which reduces the resolution by a factor of two. Figure 3.5
shows the structure of all the stages.
The novelty of the model consists in the way the networks transform during training. The first
stages of both networks are trained first using images of 4×4 in resolution. Then the second stage
is introduced concurrently for the discriminator and the generator as

Figure 3.6: Three consecutive training phases for the conditional PGGAN: the transition phase of
an arbitrary N + 1 stage (top), the stabilisation phase of the same stage (middle), the transition
phase of stage N +2. The parameter α is linearly increased from zero to one during the transition

32

phase. At the end of the transition phase when α = 1, the new stages are fully attached to the
previous stages. Next, the networks stabilise in their new configuration during the stabilisation
phase. After the new stages are stabilised, the transition phase of the next stage begins.

a residual layer with an associated weight α = 0 to avoid perturbing the network. This stage doubles
the resolution to 8×8. The addition of any new stage starts with a transition phase. During a
transition phase, α linearly increases to one, and the model smoothly learns to adapt to the new
stages and the enlarged image size. This weight has the effect of interpolating between the scaled
output of the previous stage and the output of the new stage in the case of the generator. For the
critic, it is an interpolation of the inputs. When the transition phase is over, a stabilisation phase
follows to stabilise the network in its new configuration with α = 1. Each transition and stabilisation
phase lasts until the discriminator sees 600,000 real images and 600,000 generated images. This
process of iteratively adding stages repeats until the desired resolution is reached or as longs as the
GPU memory and the resolution of the images in the dataset allow it. When scaling up to a new
stage, all the stages are trained, including the previous ones. The training process is also shown
and further explained in Figure 3.6. More details are given in Appendix E.
As shown in [17], this method of training is significantly faster than training the complete network
from scratch because the majority of the training time is spent at the lower stages.
4.2.2 The Need for a Stable Loss Function

This architecture and unusual method of training do not work with any loss function given the
instability of GANs. The PGGAN paper [17] empirically shows PGGAN working with a least
squares loss and a Wasserstein distance loss. While the least squares loss [22] is empirically known
to be more stable than the classic GAN loss, the Wasserstein loss has technical reasons behind
which guarantee its stability.
For the least squares loss, as with the Wasserstein loss, the discriminator no longer outputs a
probability, but an arbitrary real number. The generator and the discriminator optimise for making
this real number close to some predefined labels a,b,c. The general form of the least squares loss
is as follows:

LD = EX∼Pr[(D(x) − b)2] + EX∼Pg[(D(x) − a)2]
(3.9)

LG = EX∼Pg[(D(x) − c)2]

33

Figure 3.7: Samples generated by the Conditional Least Squares PGGAN.

As shown in [22], when b − c = 1 and b − a = 2, minimising these cost functions is equivalent to
minimising the Pearson X2 divergence between Pr + Pg and 2Pg. This justifies the choice of labels
a = −1,b = 1,c = 0 which I use for my experiments. It is trivial to adapt this loss function to make
the discriminator matching aware as follows:

LD = E(X,E)∼Pr−mat[(D(x,e) − b)2] + E(X,E)∼Pge[(D(x,e) − a)2]

 + E(X,E)∼Pr−mis[(D(x,e) − a)2] (3.10)
LG = E(X,E)∼Pge[(D(x,e) − c)2]

Now, the discriminator will push towards a not only the synthetic images but also images which
do not match their description.
Nevertheless, I find the least squares loss to be unstable when the network reached the high-
resolution stages, which is consistent with the findings from [17]. As in the paper, I introduce
multiplicative Gaussian noise between the layers of the discriminator to eliminate the instability.
This hack does not address the cause of the problem, which is the loss function. The Conditional
Progressive Growing GAN is a perfect use case for

34

Figure 3.8: Samples generated by the Conditional Least Squares PGGAN from text embedding
interpolations.

the Wasserstein based loss I proposed in Section 3.1 because it is guaranteed to be stable.
Results for both of these losses are discussed in the next section.

4.2.3 Results

Figure 3.7 includes 256×256 samples generated by the Conditional Least Squares PGGAN
(CLSPGGAN). Figure 3.8 includes images generated by the same model from text embedding
interpolations. Figures 3.9 and 3.10 include the equivalent images generated by the Conditional
Wasserstein PGGAN (CWPGGAN) which use the Wasserstein loss I proposed in section 3.1.

Images generated by CWPGGAN on the birds dataset are included in Appendix D.

Figure 3.9: Samples generated by the Conditional Wasserstein PGGAN

35

Figures 3.11 and 3.12 show the images generated by each stage of Conditional PGGAN for the
Least Squares loss and the Wasserstein loss respectively.

Figure 3.10: Samples generated by the Conditional Wasserstein PGGAN from interpolations
between two text embeddings.

Figure 3.11: The image generated by each stage of the Least Squares Conditional PGGAN for the
same text description. The images range from resolutions 4×4 to 256×256. Each stage doubles the
resolution.

36

Figure 3.12: The image generated by each stage of the Wasserstein Conditional PGGAN for the
same text description. The images range from resolutions 4×4 to 256×256. Each stage doubles the
resolution.

5. Evaluation and Comparision
5.1 The Inception Score

The evaluation of generative models is a current area of research. Because most generative models
maximise the likelihood of the data, they are evaluated using the average loglikelihood as a metric.
As previously discussed, GANs depart from this approach and thus perform better, but at the same
time, this also makes their evaluation harder. A recently proposed way of evaluating GANs which
generate images is the Inception Score [30].

The name of the score comes from Google’s Inception classifier [31] (Figure 4.1). Treating
images as a random vector X and the image labels as a random variable Y , the Inception network
produces a distribution PY |X where PY |X(y|x) is the probability assigned to image x to belong to
class y. An Inception network is trained to produce such probabilities for the classes from the test
dataset the GAN will be evaluated on. This assumes a dataset divided into classes. Then, the trained
network classifies the images generated by the model being evaluated. The score is a function of
the distribution of the predicted classes. There are two desired outcomes:

37

Figure 4.1: The architecture of the inception network (image taken from [31]). The bigger blue
blocks are convolutions, the smaller blue blocks are fully connected layers, the red blocks are
pooling layers, and the yellow blocks are softmax layers which convert the layer input values in a
valid probability distribution. The two bottom branches which separate from the main part of the
network are auxiliary classifiers, which are used for better gradient propagation.

1. The object in any image x should be undoubtedly identifiable. In other words, the
conditional distribution PY |X should have low entropy.

2. All the generated images should be as diverse as possible. That is, the images should not
belong to just a small subset of classes but all the classes in the dataset. Equivalently, the
distribution PY should have high entropy.

These two aspects motivate the form of the Inception Score from 4.1 because if they hold, then
the KL divergence between the two mentioned distributions is high. The exponential function is
used only for aesthetic reasons to bring the values of the score in a higher range of values.

 (4.1)

The Inception score was shown to correlate well with human evaluation of image quality [30].
This is the reason I chose not to conduct a human assessment for evaluating the models presented
in this work.

For training I use the Inception-V3 architecture [32], a variant of the architecture shown in
Figure 4.1. Instead of fully training the network, I only fine tune it. I train only the “Logits” and
“Mixed 7c” variable scopes and for the other layers, I use the publicly available weights trained
on ImageNet [5]. This follows the approach from StackGAN [37]. For computing the Inception
Score, I use a group of 50,000 generated images which are split randomly into ten equal sets as
recommended in [30]. The inception score is computed for each of these sets and the mean value
together with the standard deviation are reported.

5.1.1 Evaluation of Text-Image Matching

The Inception score in its default form measures only the image quality, but it can also be used as
an implicit measure of text-image matching. The Inception network is trained on the test dataset
which (very importantly) contains classes disjoint from those in the training dataset. The generated
images which are evaluated are produced exclusively from text descriptions from the test dataset.
Because the training and test datasets contain disjoint classes, neither the text descriptions nor the
images from the test dataset (or similar ones) are seen by the model in training. To generate high
Inception Scores, the model must create images similar to the ones from the test dataset. The only
possibility for the model to do this is to learn the visual semantics of the text descriptions correctly

38

and to generate high-quality images which respect those descriptions. Thus, the reported
Inception-Score is a measure of both image quality and text-image matching. The StackGAN paper
[37] uses the same approach in its evaluation.
5.2 Inception Score Results

I include the Inception Score means and standard deviations for all models on the Oxford102
flowers dataset in Table 4.1. The results show that the proposed Conditional Wasserstein GAN
obtains comparable results to other state of the art models which produce 64×64 images while
maintaining the same generator as Stage I of StackGAN. Moreover, the Conditional Wasserstein
GAN achieves this score in conditions of guaranteed training stability which is very important.
The proposed Conditional Progressive Growing GAN achieves a better score than the other models
for both resolutions on the flowers dataset. Moreover, the model obtains the best score in
combination with the Wasserstein loss I proposed in Section 3.1.

Model Resolution Score
Customised GAN-CLS 64×64 3.11 ± 0.03
StackGAN Stage I 64×64 3.42 ± 0.02
WGAN-CLS∗ 64×64 3.11 ± 0.02
WGAN-CLS with
TTUR∗

64×64 3.20 ± 0.01

CLSPGGAN∗ 64×64 3.44 ± 0.04
CWPGGAN∗ 64×64 3.70 ± 0.03
StackGAN Stage II 256×256 3.71 ± 0.04
CLSPGGAN∗ 256×256 3.76 ± 0.03
CWPGGAN∗ 256×256 3.86 ± 0.02

Table 4.1: Inception Scores for the Oxford-102 flowers dataset. Models marked with ∗ are the
models proposed in this report.

On the birds dataset, I run limited experiments for CWPGGAN and StackGAN (Appendix D).
To quickly evaluate CWPGGAN against the other models, including the recently introduced
StackGAN-v2 and AttnGAN, I used directly the scores given in the AttnGAN paper [36] for the
birds dataset. The flowers dataset is not used in the paper.

Thus, I computed the Inception score of CWPGGAN using the same (publicly available)
Inception network used in the evaluation part of the AttnGAN paper. The score obtained by
CWPGGAN, as well as the score of the other models, are given in Table 4.2.

Model Resolution Score
GAN-INT-
CLS

64×64 2.88 ± 0.04

CWPGGAN∗ 64×64 3.18 ± 0.03
StackGAN 256×256 3.70 ± 0.04
StackGAN-v2 256×256 3.82 ± 0.06

39

CWPGGAN∗ 256x356 4.09 ± 0.03
AttnGAN 256×256 4.36 ± 0.04

Table 4.2: Inception scores for the CUB-200-2011 birds dataset using the Inception network used
for evaluation in [36]. The Inception scores of all models, excepting CWPGGAN, are taken
directly from [36]. Models marked with ∗ are the models proposed in this report.

CWPGGAN boosts by 7.07% the best Inception Score on the birds dataset of the models which
use only the sentence-level visual semantics. Moreover, CWPGGAN has the second best Inception
Score for 256×256 images out of all the existent state of the art models. The score of CWPGGAN
and the quality of the images it produces is particularly impressive given the that it does not use
any word-level visual semantics such as AttnGAN. This score is also achieved in conditions of
guaranteed stability given by the proposed loss function in WGAN-CLS. Because AttnGAN is
composed of a StackGAN-v2 with an attention model on top, these results are an indication for
future research that CWPGGAN equipped with a similar attention model could produce even
higher scores.

The results also prove that the proposed Wasserstein loss makes possible the usage of
innovative architectures and training techniques which would not work with the standard loss
function used by the existent text to image models.

5.3 Side by Side Comparison of the Models

Figures 4.2, 4.3 and 4.4 show a side by side comparison of the models which generate images with
resolution 64×64. Figures 4.5, 4.6 and 4.7 include a side by side comparison of the models which
generate images with resolution 256×256.

40

Figure 4.2: Each row contains 64×64 images generated by a different model from the top text
description. The order is: GAN-CLS (first row), WGAN-CLS (second row), StackGAN Stage I
(third row), Conditional Least Squares PGGAN (forth row), Conditional Wasserstein PGGAN
(fifth row).

The lack of diversity of the images produced by GAN-CLS is evident. All the other models
create a variety of images for the same text descriptions thanks to the condition

41

Figure 4.3: Each row contains 64×64 images generated by a different model from the top text
description. The order is: GAN-CLS (first row), WGAN-CLS (second row), StackGAN Stage I
(third row), CLSPGGAN (forth row), CWPGGAN (fifth row).

augmentation module they are all equipped with. The quality of the images generated by WGAN-
CLS is subjectively better than the one of GAN-CLS and comparable to the one of Stage I of
StackGAN. The CPGGANs (64×64) generate more structurally coherent images than the other
models. The Wasserstein based CPGGAN generates even more diverse images, but the text-image
matching of its images is slightly worse than the one of the other models. Figure 4.4, where
CWPGGAN generates a few flowers which do not contain any shade of pink is one such example.

The slightly worse text-image matching becomes more visible on the 256×256 version of
CWPGGAN (see 4.7). Nevertheless, the images are subjectively better than the images of the other
models, which is also confirmed by the Inception Score. Note that, in the case of 256×256 images,
the CLSPGGAN generates slightly unrealistic textures (Figure 4.5) or images which lack local
coherence (Figure 4.7). I believe this is due to the Gaussian noise hack which was used to fix its
instability.

To test that the models do not simply memorise the images from the dataset and that they
produce new images, a nearest neighbour analysis is given in Figure 4.8 for 64×64 images and
Figure 4.9 for 256×256 images.

42

A comparison between StackGAN and Conditional Wasserstein PGGAN is provided in
Appendix D.

Figure 4.4: Each row contains 64×64 images generated by a different model from the top text
description. The order is: GAN-CLS (first row), WGAN-CLS (second row), StackGAN Stage I
(third row), Conditional Least Squares PGGAN (forth row), Conditional Wasserstein PGGAN
(fifth row).

43

Figure 4.5: Each row contains 256×256 images generated by a model from the top text description.
The order is: StackGAN Stage II (first row), Conditional Least Squares PGGAN (second row),
Conditional Wasserstein PGGAN (third row).

Figure 4.6: Each row contains 256×256 images generated by a model from the top text description.
The order is: StackGAN Stage II (first row), Conditional Least Squares PGGAN (second row),
Conditional Wasserstein PGGAN (third row).

Figure 4.7: Each row contains 256×256 images generated by a model from the top text description.
The order is: StackGAN Stage II (first row), Conditional Least Squares PGGAN (second row),
Conditional Wasserstein PGGAN (third row).

44

Figure 4.8: For each model, the first row contains 64×64 images produced by the model and the
second row contains the nearest neighbour from the training dataset.

45

Figure 4.9: For each model, the first row contains 256×256 images produced by the model and the
second row contains the nearest neighbor from the training dataset.

6. Reflection and Conclusion

This chapter contains a reflection on the planning and management of this project and ends with a
conclusion of the present work.

6.1 Planning and Management

The plan of my project is divided into two main parts:

1. The first part, covering the first semester, was concerned with background reading, the
understanding of the existent state of the art models, the reproduction of their results and the
identification of their limitations and consequently of possible directions of research.

2. The second part, covering the second semester, was concerned with finding solutions for
the identified research problems.

46

Milestone Planned
Weeks

Actual
Weeks

Background reading on GANs 1-4 1-4
Reproduce GAN-CLS results [29] 5-6 5-7
Reproduce StackGAN results [37] 7-10 7-11
Reproduce I2T2I results [6] 11-13 -
Implement Inception Score
evaluation

14 12

Table 5.1: The milestones of the first part of the project. The plan is based on the weeks of the
academic year.

Table 5.1 includes the milestones for the first part of the project together with their timeline.
Out of these milestones, I decided to skip the reproduction of the results of the I2T2I paper for two
reasons. The StackGAN paper proposes a more elegant solution for textual data augmentation as
discussed in Section 2.3.1. The implementation of an image captioning system would have
required significantly more background reading in the area of language models which is vast.
Instead, I decided to start the research part of the project earlier, before the start of the second
semester. After the first semester, I identified three research directions summarised in Table 5.2.

Research direction Planned
Weeks

Actual
Weeks

Stable Conditional GAN 15-20 13-21
Conditional GAN operating on multiple
resolutions

21-25 21-26

Explicit evaluation of text-image matching 26 26
Table 5.2: The identified research directions for the second semester. The plan is based on weeks
of the academic year.

Out of these research directions, I obtained good results for the first two points on the list as
described in Chapter 3.

Due to the significant training time the presented models take and the limited computing
resources (one Nvidia 1080Ti) I decided to focus my experiments on the flowers dataset and not
on both the flowers and birds datasets as I originally intended. The focus on a slightly smaller and
less complicated dataset such as Oxford-102 offered more time for testing ideas and rigorous
evaluation. Nevertheless, I run a few experiments on the birds dataset, and the results can be found
in Appendix D.

47

6.2 Conclusion

In this work, I present Generative Adversarial Networks and their application in the problem of
text to image synthesis. I explain how the current state of the art models work at the intersection
between Computer Vision and Natural Language Models and I reproduce the results of the papers
which introduce them. Moreover, I bring my contribution to the field by proposing a novel
Conditional Wasserstein GAN (WGAN-CLS) which enables conditional generation of images
with a stable training procedure. The images this model generates are comparable to the current
state of the art models. I show how this conditional Wasserstein loss function can be used in a
more advanced model: the proposed Conditional Progressive Growing GAN. Other classical GAN
loss functions would not work on such a model because of their instability during training. I show
that Conditional Progressive Growing GANs, with the novel conditional Wasserstein loss, produce
better results than the current state of the art models which use only sentence-level visual
semantics.

7.Algorithm,Result and Benefit of the Project

7.1 Notions of Deep Learning

The goal of this chapter is to explain some of the Deep Learning notions and terminology used
throughout this report. On the one hand, these notions are very commonly used and cannot be
avoided. On the other hand, describing them in the body of the report would distract the reader
from the main ideas.

7.1.1 Neural Networks

Neural Networks can be viewed as universal parametric function approximators. A function f : A
→ B can be approximated by a parametric function fθ : A → B where θ are the parameters of the
network. A key idea in deep learning is that learning complicated functions can be done by using
the composition of multiple but simple non linear functions. The stack of layers of a network is a

composition of such functions. Assuming fθ has n layers, these can be denoted by .

Then,

48

7.1.2 Backpropagation

In order to approximate f, a loss function L which describes how far the approximation fθ is from f
is used. The approximation can be improved by decreasing L. The minimisation of L offers a way
to adjust the parameters θ to improve the approximation. This process is called back-propagation.

For any parameter θi of the network, the partial derivative can be computed using the
(multivariate) chain rule. For this partial derivative to exist, it is required that the functions each
layer implements are differentiable (almost everywhere). Thus, the parameters can be updated

using the following procedure: where α is the learning rate. The minus sign is
introduced because the parameter must be moved in the opposite direction of the sign of the
derivative to approach the minimum of L.

Most often, mini-batch gradient descent is used. The network does not take as input a single
example, but rather a batch of samples and the loss is computed with respect to this batch. When
the parameter update is performed, it is calculated using the average derivative of that parameter
where the average is taken over all the examples in the minibatch. Thus, bigger mini-batches help
reduce the variance of the updates but introduce additional computational cost at the same time.
7.1.3 Activation Functions

 (c) Rectified Linear Unit (d) Leaky Rectified Linear Unit

Figure B.1: The commonly used activation functions. Softmax is not depicted it here because it is
a multivariate vector valued function and it is harder to visualise.

(i)
Usually,) where gθ is a simple (linear) function followed by a non

linearity h(x). h(x) is called an activation function. Without the activation functions, the network

− 4 − 2 0 2 4 0

0 . 5

1

x

Logisticsigmoid

− 4 − 2 0 2 4
− 1

0

1

x

Hyperbolictangent

a)Logisticsigmoid. (b)Hyperbolictangent. (

− 4 − 2 0 2 4

0

2

4

x

ReLU

− 4 − 2 0 2 4

0

2

4

x

LeakyReLU

49

would not gain any additional capacity because the composition of multiple linear functions is still
a linear function. In other words, multiple linear layers stacked together have the same capacity as
a network with a single linear layer.

The activation functions (Figure B.1) commonly used in practice and in this report are:

• The sigmoid function . It is also called the logistic function. It can be used to
bring a variable in the range [0,1].

• The hyperbolic tangent activation function tanh(x) = 2σ(2x) − 1 is a re-scaled sigmoid
which brings the values in the range [−1,1]. It is generally used when generating images to
bring the values of the pixels in the range [−1,1].

• The softmax function takes as input a vector x and outputs a vector ξ(x) whose values are
in range [0,1] and sum up to one. It is usually used in classifiers to obtain a valid probability

distribution over the classes some input could belong to. It is defined as

• A very popular and simple activation is the Rectified Linear Unit: ReLU(x) = max(0,x)
[13]. It is used in the intermediate layers to introduce non linearity in the model. Because for
x > 0 the derivative is constant and non-zero, this activation prevents the gradient from
saturating.
• A generalisation of ReLUs are Leaky ReLUs lReLU(x) = max(kx,x) where k ∈ [0,1] is
usually close to 0. k = 0.2 is a common value.

7.2 Normalisation Techniques

7.2.1 Batch Normalisation

Batch Normalisation [16] is a widely used technique for speeding up the learning and improving
the performance of deep learning models. Ideally, it is desired that the input to a model to be
whitened, to have zero mean and unit variance. Whitening the data was shown decades ago [21]
to improve the speed of the training. Nevertheless, for deep learning, it is not enough because
between layers inputs which are not normalised appear. A layer could supply to the next layer
inputs with high variance and a mean far from zero. This phenomenon is called internal covariance
shift. The fix is to whiten the data given as input to every layer using the batch statistics as in
Equation B.1.

 and yi = γxˆi + β (B.1)

50

Here, xi is an activation for the ith example in the minibatch and ˆxi is its whitened version. µ
and σ2 are the mean and variance of that activation over the entire batch. The trainable parameters
γ and β, ensure that this transformation is also able to represent the identity transform. They act as
denormalisation parameters and can reverse the whitening if needed.

Batch normalisation is based on the assumption that the batch statistics approximate the dataset
statistics. Thus, the disadvantage of batch normalisation is that for small batch sizes the
approximation is not so good and the performance drops. For more details, please check [16].

GANs are empirically known to be more stable on architectures which use batch normalisation
in the generator and the discriminator.

7.2.2 Layer Normalisation

Layer normalisation performs the same type of whitening as batch normalisation with the
exception that the normalisation is performed over all the hidden units in a layer and not by using
the mini-batch statistics.

Because this normalisation technique is independent of the size of the mini-batch, it has the
advantage that it does not impose a lower bound on the batch size. Nevertheless, layer
normalisation brings only marginal improvements in convolutional layers and is better suited for
Recurrent Neural Networks and fully connected layers.
7.3 Convolutional Layers

Convolutional Layers are the building block of Convolutional Neural Networks. They operate on
third order tensors, or informally, a 3D array of values and produce as output another 3D array
(not necessarily with the same dimensions). Images are one such tensor with dimensions width ×
height × 3 in the case of RGB images. Convolutional layers are composed of a number f of filters
which can be adjusted. A filter has a reduced spatial resolution such as 3x3, and its depth is always
equal to the depth of the input tensors. Each filter is convoluted with regions of the input tensor
by sliding it across the width and height of the tensor. The result of each such convolution
operation is a scalar. After sliding the filter over the spatial dimensions of the tensor, the output
scalars form together a matrix. Each of the f filters produces one such matrix. All these matrices
stacked together form the output tensor. Convolutional layers also have other parameters besides
the number of filters and the size of the filter. One of them is the stride which determines by how
many units the filter is moved in each direction during sliding. Another one is the amount of zero
padding which refers to padding the borders of the input tensor with zeros. These four hyper-
parameters: the number of filters, the filter size, the stride and the amount of zero padding are used
to manipulate the exact shape of the output tensor (Figure B.2).

51

Figure B.2: A convolutional filter with padding, stride one and filter size of 3x3. Image is taken
from [7].

Each of the filters of a convolutional layer tries to learn a useful visual feature such various
types of edges. The filters from the deeper levels of the network recognise more complex structures
from the input image.

Convolutional layers can reduce or maintain the spatial resolution of the input tensor.
Nevertheless, sometimes a reverse operation is needed to perform upsampling. A deconvolutional
layer does precisely that. Deconvolutional layers can be thought of (and inefficiently implemented)
as regular convolutional layers with the exception that the input pixels are moved apart, and zeros
are inserted between them (see Figure B.3).

For more details on convolutional layers and their arithmetic, please consult [7].

Figure B.3: The transposed convolution operation (also called deconvolution) performing
upsampling. The resolution of the output (5x5) is higher than the one of the input (3x3). Image is
taken from [7].

7.4 Residual Layers

A good rule of thumb in deep learning is that more layers do not always translate to better
performance. In fact, only increasing the depth of deep learning models has been shown to cause
a decrease in the performance of the network [12].

52

Figure B.4: A residual layer with two intermediate convolutional layers. The curved arrow
represents the identity skip connection. The output of the two layers F(x) and the input x are
added at the end. An activation functions is applied after the addition.

Residual Layers [12] have eliminated this problem and led to better results. Figure B.4 shows
the architecture of a residual layer. In this architecture, the network has to learn a function F with
respect to the identity mapping, rather than the zero mapping. This approach has two advantages:

1. If the identity mapping is needed, the network can easily represent it by setting the value
of the two intermediate weight layers to zero.

The shortest path from any layer to the output layer is short

8.References

[1]https://towardsdatascience.com/understanding-generative-adver sarial-networks-gans-
cd6e4651a29

[2]https://github.com/NVlabs/stylegan2https://medium.com/datadriv
eninvestor/generative-adversarial-network-gan-using-keras-ce1c0 5cfdfd3

 [3]Satinder Chopra, Rajive Kumar, and Kurt Marfurt. Seismic discontinuity attributes and sobel

filtering. pages 1624–1628, 08 2014.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

https://github.com/NVlabs/stylegan2https:/medium.com/datadriv%20eninvestor/generative-adversarial-network-gan-using-keras-ce1c0%205cfdfd3
https://github.com/NVlabs/stylegan2https:/medium.com/datadriv%20eninvestor/generative-adversarial-network-gan-using-keras-ce1c0%205cfdfd3

53

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

[5] Hiren Maniar, Srikanth Ryali, Mandar S. Kulkarni, and Aria Abubakar. Machine-learning

methods in geoscience, pages 4638–4642. 2018.

[6] J.P. Peçanha, A.M. Figueiredo, Geisa Faustino, E.A. Perez, Pedro Mario Silva, and Marcelo

Gattass. Minimal similarity accumulation attribute using dimensionality reduction with feature

extraction. 05 2016.

[7] Xinming Wu, Luming Liang, Yunzhi Shi, and Sergey Fomel. Faultseg3d: Using synthetic

data sets to train an end-to-end convolutional neural network for 3d seismic fault segmentation.

Geophysics, 84:IM35–IM45, 02 2019

	Improving Accuracy of StyleGAN2
	1. ABSTRACT
	CHAPTER NO. TITLE PAGE NO
	2. Introduction 7
	2.1 Text to Image Synthesis
	2.2 Generative Models
	2.3 Generative Adversarial Networks
	2.3.1 Conditional Generative Adversarial Networks
	2.3.2 Text Embeddings

	3. Model and Designing of Project
	3.1 Method
	3.2 GAN-CLS (Conditional Latent Space)
	3.2.1 Model Architecture
	3.2.2 Adapting GAN Loss to Text-Image Matching
	3.2.3 Training
	3.2.4 Results

	3.3 Stacked GANs
	3.3.1 Text Embedding Augmentation
	3.3.2 Model Architecture
	3.3.3 Training
	3.3.4 Results

	3.4 Other Models

	4.Research
	4.1 Wasserstein GAN-CLS
	4.1.1 Wasserstein GAN
	4.1.2 Conditioning Wasserstein GAN
	4.1.3 Architecture
	4.1.4 Training
	4.1.5 Results

	4.2 Conditional Progressively Growing GANs
	4.2.1 Architecture and Training
	4.2.2 The Need for a Stable Loss Function
	4.2.3 Results

	5. Evaluation and Comparision
	5.1 The Inception Score
	5.1.1 Evaluation of Text-Image Matching

	5.2 Inception Score Results
	5.3 Side by Side Comparison of the Models

	6. Reflection and Conclusion
	6.1 Planning and Management
	6.2 Conclusion

	7.1 Notions of Deep Learning
	7.1.1 Neural Networks
	7.1.2 Backpropagation
	7.1.3 Activation Functions

	7.2 Normalisation Techniques
	7.2.1 Batch Normalisation
	7.2.2 Layer Normalisation

	7.3 Convolutional Layers
	7.4 Residual Layers

