

 AIRLINE RESERVATION SYSTEM

 A Project Report of Project - 1

 Submitted By

 ANJALI MANDOLIYA
 (1713104023)

 In partial fulfilment for the award of the degree
 of

 BACHELOR IN COMPUTER APPLICATION

 SCHOOL OF COMPUTER SCIENCE & ENGINEERING

 Under the Supervision of

 Mr. SHUBHAM KUMAR
 Assistant Professor

 May 2020

SCHOOL OF COMPUTER SCIENCE & ENGINEERING

 BONAFIDE CERTIFICATE

Certified that this project report “ AIRLINE RESERVATION
SYSTEM ” is the bonafide work of “ ANJALI
MANDOLIYA (1713104023) ” who carried out the project
work under my supervision.

SIGNATURE OF HEAD SIGNATURE OF
SUPERVISOR
 Dr. AVNEESH KUMAR, Mr. SHUBHAM KUMAR,
 PhD (CS) M-TECH
Associate Professor, Assistant Professor
School of Computing Science & Engineering School of Computing Science &
 Engineering

 ABSTRACT

Airline reservation System may be a processed system accustomed store and
retrieve data and conduct transactions associated with air. The project is aimed at
exposing the relevancy and importance of Airline Reservation Systems.It is
projected towards enhancing the link between customers and airline agencies
through the utilization of ARSs, and thereby creating it convenient for the
customers to book the flights as once they need such they'll utilize this software to
form reservations. An airline reservation system is an element of the supposed
traveller service systems, that are applications supporting the direct contact with
the traveller. ARS eventually evolved into the pc reservations system. A computer
reservation system is employed for the reservations of a selected airline and
interfaces with a world distribution system that supports travel agencies and
alternative distribution channels in creating reservations for many major airlines
during a single system. Today all persons are busy with their schedule and nobody
has time to create a trip for holidays with their family. And this Airline Reservation
method is extremely difficult to grasp generally. However we tend to provide an
answer for that Problem. This system provides a facility to quick access to
customers and real-time users. they'll simply be connected through it and simply
three steps. there's no requirement for any kind of Agent. we tend to give all this
facility in one project “Airline Reservation System”.

 TABLE OF CONTENT

 Abstract 7

List of Tables 8

List of Figures 8

1. Introduction 9

2. Overview of Proposed system 10

 2.1 Exiting System 10

 2.2 Proposed System 11

3. System Analysis 12

 3.1 Front End 12

 3.2 Back End 30

 3.3 Modules 34

4. System Design 36

 4.1 UML 37

 4.1.1 Class Diagram 37

 4.1.2 Activity Diagram 37

 4.1.3 Sequence Diagram 37

 4.1.4 Use Case Diagram 38

 4.1.5 Collaboration Diagram 38

 4.1.6 Data Flow 39

4.2 Data Dictionary 43

 4.2.1 Introduction 43

 4.2.2 Data Dictionary 43

5. Implementation 49

6. Experimental Results 60

7. Testing 67

7.1 Introduction 67

7.2 Type of Testing 67

 7.2.1 Unit Testing 68

 7.2.2 Integrated Testing 68

 7.2.3 Recovery Testing 68

 7.2.4 Security Testing 68

 7.2.5 Performance Testing 69

 7.2.6 White-box Testing 69

8. Conclusion 70

9. References 71

 LIST OF TABLES

S no. Title Page no
1 ProjectSchedule 14

2 ProjectTable 25

3 RiskTable 35

 LIST OF FIGURES

S NO TITLE PAGE NO.

1 USE CASE 40

2 Activity 50

 INTRODUCTION

Airline reservation systems were first introduced in the late 1950s as relatively

simple standalone systems to control flight inventory, maintain flight schedules,

seat assignments and aircraft loading. The modern airline reservation system is a

comprehensive suite of products to provide a system that assists with a variety of

airline management tasks and service customer needs from the time of initial

reservation through completion of the flight. One of the most common modes of

travel is traveling by air. Customers who wish to travel by air nowadays have a

wide variety of airlines and a range of timings to choose from. Nowadays

competition is so fierce between airlines that there are lot of discounts and a lot of

luxuries given to customers that will give an edge to that particular airline. The

World Wide Web has become tremendously popular over the last four years, and

currently most of the airlines have made provision for online reservation of their

flights. The Internet has become a major resource for people looking for making

reservations online without the hassle of meeting travel agents. My Project intends

to serve these purposes. It intends to check all the available airline databases and

return a string of results, which can help them in their travel plans. The objective of

this project is to create an airline reservation system where a traveler can request

all flight information as per their journey dates. They can get information regarding

time, cost, etc all at the same time and place. When the customer calls the Counter

Assistant for his/her travel needs, the counter assistant will enter the customer's

details (flight requirements) in the system. The system displays all the available

airlines, schedules and prices. This system would help the airline to better serve its

customers by catering to their needs. The site would use a Database to hold this

information as well as the latest pricing and availability information for the

airlines.

 2.OVERVIEW OF THE PROJECT:
The main purpose of this software is to reduce the manual errors involved in the

airline reservation process and make it convenient for the customers to book the

flights as when they require such that they can utilize this software to make

reservations, modify reservations or cancel a particular reservation. The name of

the software is “AIRLINE RESERVATION SYSTEM”. This software provides

options for viewing different flights available with different timings for a particular

date and provides customers with the facility to book a ticket, modify or cancel a

particular reservation but it does not provide the customers with details of cost of

the ticket and it does not allow the customer to modify a particular part of his

reservation and he/she can modify all details.

2.1 EXISTING SYSTEM:

The effectiveness of the system depends on the way in which the data is organized

.In the existing system, much of the data is entered manually and it can be very

time consuming. When records are accessed frequently, managing such records

becomes difficult. Therefore organizing data becomes difficult. The major

limitations are:

• Modifications are complicated

• Much time consuming

• Error prone

• Unauthorized access of data

2.2 PROPOSED SYSTEM:

The proposed system is better and more efficient than existing

System by keeping in mind all the drawbacks of the present system to provide a

permanent to them.

The primary aim of the new system is to speed up the transactions. User

friendliness is another peculiarity of the proposed system. Messages are displayed

in message boxes to make the system user friendly. The main Advantage of the

proposed system is the reduction in labor as it will be possible so search the details

of various places. Every record is checked for completeness and accuracy and then

it is entered into the database. The comments and valid messages are provided to

get away redundant data. Another important feature of the proposed system is the

data security provided by the system. The main objectives of the proposed system

are:

• Complex functions are done automatically

• Processing time can be minimized

• Simple and easy to manage

• Chances of errors reduced

• Faster and more accurate than the existing system

• Easy for handling reports

The proposed system is complete software for the Airline Reservation System,

Which is more efficient, reliable, faster and accurate for processing.

 3. SYSTEM ANALYSIS:

3.1 FRONT END (JAVA)

Overview of Java:

Java is a powerful but lean object oriented programming language. It has generated

a lot of excitement because it makes it possible to program for Internet by creating

applets, programs that can be embedded in web page. The context of an applet is

limited only by one's imagination. Applets can be just little decorations to liven up

web page, or they can be serious applications like word processors or spreadsheet.

But Java is more than a programming language for writing applets. It is becoming

so popular that many people believe it will become a standard language for both

general purposes and Internet programming.

Java from C++:

Java builds on the strength of C++. It has taken the best features of C++ and

discarded the more problematic and error prone parts. To this, it has added garbage

collection (automatic memory management), multi threading (the capacity for one

program to do more than one thing at a time) and security capabilities. The result is

that Java is simple, elegant, powerful and easy to use.

Java is actually a platform consisting of three components:

• Java Programming Language.

• Java library of classes and interfaces.

• Java virtual Machine.

But Java is more than a programming language for writing applets. It is becoming

so popular that many people believe it will become a standard language for both

general purpose and Internet programming.

Components of Java:

Java is actually a platform consisting of three components:

• Java Programming Language.

• Java Library of classes and interfaces.

• Java Virtual Machine.

Java is Object Oriented:

The Java programming language is object oriented, which makes program design

focus on what you are dealing with rather than on how you are going to do

something. This makes it more useful for programming in sophisticated projects

because one can break the things down into understandable components.

Reusability of these components is another big benefit.

Object oriented languages use the paradigm of classes. In simple terms, a class

includes both the data and the functions to operate on that data. Object is an

instance of the class that forms the actual run time entity of the class.

Encapsulation of code and data makes it possible to make the changes in code

without breaking other programs that use that code.

Java includes inheritance, or the ability to derive new classes from an existing class

referred to as the parent class. A subclass can add new data members to those

inherited form the parent class. As far as methods are concerned, the subclass can

reuse the inherited methods as it is, change them, and its own new methods.

Java’s exciting features are:

• Ease in code correction.

• Garbage collection.

• Absence of pointers.

• Java is extensible.

• Java is secure.

• Java is robust.

• Java is multithreading.

• Simplicity.

Library Classes:

The Java platform includes an extensive class library so that programmers

can use already existing classes, as it is, create subclasses to modify existing

classes or implement interfaces and augment the capabilities of classes.

Classes contain data members i.e. fields and functions i.e. methods. In classes

fields may be either variable or constant, and methods are fully implemented.

Interfaces:

Interfaces are also merely like classes. Interfaces also contain data members and

functions. But the main difference is that in an interface, fields must be constants,

and methods are just prototypes with no implementations. The prototype give the

method signature (the return type, the function name and the number of parameters

with the type for each parameter), but the programmer must supply

implementation. To use an interface, a programmer defines a class, declares that

implements the interfaces, and then implements all the methods in that interface as

the class.

The methods are implemented in a way that is appropriate for the class in which

the methods are being used. Interface let one add functionality to a class and give a

great deal of flexibility in doing it. In other words interfaces provide most of the

advantages of multiple inheritances without its disadvantages.

Packages:

A package is a collection of related java classes and interfaces. The following list,

gives examples of some java packages and what they cover.

JAVA.IO- Classes that manage reading data from input streams and writing data to

the output streams.

JAVA.AWT- Classes that manage user interface components such as windows,

dialog boxes, buttons, check boxes, lists, menus, scrollbars, and text fields; the

‘AWT’ stands Abstract Window Toolkit.

JAVA.APPLET- The applet class, which provides the ability to write applets, this

package also includes several interfaces that connect an applet to its document and

to resources for playing audio.

JAVA.AWT.EVENT- GUIs are event driven; it means they generate events when

the user of the program interacts with the GUI.

JAVAX.SWING- This package enables the user to create interfaces which perform

the GUI operations.

JAVA.SQL- The JDBC API, classes and interfaces that access databases and send

SQL. In Java, packages serve as the basis for building other packages.

The Java Platform Builds in Security in Four Ways:

The way memory is allocated and laid out: In java an object's location in memory

is not determined until the runtime, as opposed to C and C++, where the compiler

makes memory layout decisions. As a result, a programmer cannot look at a class

definition and figures out how it might be laid out in memory. Also since Java has

no pointers, a programmer cannot forge pointers to memory.

The way incoming code is checked. The java virtual machine doesn’t trust any

incoming code and subjects it to what is called ByteCode verification. The byte

code verifier, part of the virtual machine, checks that

• The format of incoming code is correct

• Incoming code doesn’t forge pointers

• It doesn’t violate access restrictions

• It access objects as what they are

The way classes are loaded. The java bytecode loader, another Part of the

virtual machine, checks whether classes loaded during program execution are

local or from across a network. Imported classes cannot be substituted for built

in classes cannot accidentally reference classes brought in over a network.

The way access is restricted for entrusted code. The java security manager allows

users to restrict entrusted java applets so that they cannot access the local network,

local files and other resources.

What is JDBC?

• JDBC is a java TM API for executing SQL statements.

• It consists of a set of classes and interfaces written in the java

programming language that makes it easy to send SQL statements to

virtually any relational databases.

• JDBC (Java Database Connectivity) is a front end tool for connecting

servers to ODBC in that respect.

• JDBC is essentially a low-level application programming interface. It

is called a low-level API since any data manipulation, storage and retrieval

has to be done by the program itself. Some tools which provide a

higher-level abstraction of, expected shortly.

The combination of java and JDBC lets a programmer write it once and run it

anywhere.

Requirements to use JDBC:

• To use JDBC we need a basic knowledge of databases and SQL.

• We need the jdk1.1 (Java Development Kit 1.1 available Java Soft’s

website) or a version of java since jdk1.1 and above come bundled with

JDBC software.

• A back-end database engine for which a JDBC driver is available.

When JDBC drivers are not available JDBC-ODBC bridge drivers are used

to access the database through ODBC.

• Back-end is not needed when JDBC driver is capable of storing and

retrieving the data itself, or if JDBC-ODBC bridge and the ODBC driver

can be used to store and retrieve the information.

What does JDBC do?

JDBC makes it possible to do three things.

• Establishes the connection to database

• Send SQL statements

• Process the results.

JDBC is a low-level API and a base for Higher-level API. JDBC is a low-level

interface, which means that it is used to invoke SQL commands directly. It works

very well in this capacity and is easier to use than others to build higher-level

interfaces and tools. A higher level interface such as JDBC. There are two kinds of

higher-level APIs. • An embedded SQL for java and

• A direct mapping of relational database tables to java classes.

Java’s Magic: The Byte Code

The key that allows java to solve both the security and the portability problems just

described is that the output of a java compiler is not executable code. Rather, it is

Byte code. Byte code is a highly optimized set of instructions designed to be

executed by the java run-time system, which is called the Java Virtual Machine

(JVM). That is, in its standard form, the JVM is an interpreter for Byte code. This

may come as a bit of a surprise.

Translating a java program into Bytecode helps make it easier to run a program in

a wide variety of environments. The reason is straight forward; only the JVM

needs to be implemented for each platform. Once the run-time package exists for a

given system, any java program can run on it. Remember, although the details of

the JVM will differ from platform to platform, all interrupt the same Java Byte

Code.

JDBC Drivers:

The JDBC API found in the java.sql package, consists only of a few concrete

classes. Much of the API is distributed as database-neutral interface classes that

specify behavior without providing any implementation. The actual

implementations are provided by third-party vendors.

An individual database system is accessed via a specific JDBC driver that

implements the java.sql.Driver interface. Drivers exist for nearly all popular

RDBMS systems, though few are available for free. Sun bundles a free

JDBC-ODBC bridge driver with the JDK to allow access to standard ODBC data

sources, such as a Microsoft Access Database.

However, Sun advises against using the bridge driver for anything other than

development and very limited deployment. Servlet developers in particular should

need this warning because any problem in the JDBC-ODBC bridge driver’s native

code section can crash the entire server, not just your servlets.

JDBC drivers are available for most database platforms, from a number of vendors

and in a number of different flavors. There are four driver categories:

Type1-JDBC-ODBC Bridge Driver

Type1 drivers use a bridge technology to connect a java client to an ODBC

database service. Sun’s JDBC-ODBC bridge is the most common Type1 driver.

These drivers are implemented using native code.

Type2- Native-API Partly-Java Driver

Type2 drivers wrap this layer of java and database-specific native code libraries.

For Oracle databases, the native libraries might be based on OCI (Oracle Call

Interface) libraries, which were originally designed for C/C++ programmers.

Because Type2 drivers are implemented using native code, in some cases they

have better performance than their all-Java counterparts. They add an element of

risk; however, because a defect in a driver’s native code section can crash the

entire server.

Type3- Net-Protocol All-Java Driver

Type3 drivers communicate via a generic network protocol to a piece of custom

middleware. The middleware components might use any type of driver to provide

the actual database access. WebLogic’s Tengah product line is an example. These

drivers are all java, which makes them useful for applet deployment and safe for

servlet deployment.

Type4- Native-Protocol All-Java Driver

Type4 drivers are the most direct of the lot. Written entirely in java, Type4 drivers

understand database-specific networking protocols and can access the database

directly without any additional software.

A list of currently available JDBC drivers can be found at

Getting a Connection

The first step in using a JDBC driver to get a database connection involves loading

the specified driver class into the application’s JVM. This makes the driver

available later, when we need it for opening the connection. An easy way to load

the driver class is to use the Class.forName () method:

Class.forName (“sun.jdbc.odbc_JdbcOdbcDriver”):

When the driver is loaded to memory, it registers itself with the

java.sql.DriverManager class to open a connection to a given database, where the

database is specified by a specially formatted URL. The method used to open the

connection is DriverManager.GetConnection (). It returns a class that implements

the java.sql.Connection interface:

A JDBC URL identifies an individual database in a driver-specific manner.

Different drivers may need different information in the URL to specify the host

database.

JDBC URLs usually begin with jdbc:sub protocol:subname during the call to get

Connection(), the Driver Manager object asks each registered driver if it recognizes

the URL. If a driver says yes, the driver manager uses that driver to create the

connection object. Here is a snippet of code a servlet might use to load its database

driver with the JDBC-ODBC Bridge and create an initial connection:

SERVLETS:

What are Java servlets?

Servlets are Java technology’s answer to CGI programming. They are

programs that run on a Web server and build Web pages. Building Web pages on

the fly is useful (and commonly done) for a number of reasons:

The Web page is based on data submitted by the user.

For example the results pages from search engines are generated this way, and

programs that process orders for E-com sites do this as well.

The data changes frequently.

For example, a weather-report or news headlines page might build the page

dynamically, perhaps returning a previously built page if it is still up to date.

The Web pages uses information from corporate databases

or other such sources.

For example, you would use this for making a web page at On-line stores that lists

current prices and number of items in stock.

What are the Advantages of Servlets Over “Traditional” CGI?

Java servlets are more efficient, easier to use, more powerful, more portable, and

cheaper than traditional CGI and than many alternative CGI-like technologies.

• Efficient:

With traditional CGI, a new process is started for each HTTP request. If the CGI

process does a relatively fast operation, the overhead of starting the process can

dominate the execution time.

With servlets, the Java Virtual Machine stays up, and each request is handled by a

lightweight Java Thread, not a heavyweight operating system process. Similarly, in

traditional CGI, if there are N simultaneous requests to the same CGI program,

then the code for the CGI program is loaded into memory n times. With servlets,

however, there are N threads but only a single copy of the servlet class. Servlets

also have more alternatives than regular CGI programs for optimizations such as

caching previous computations, keeping database connections open, and the like.

• Convenient:

Hey, you already know Java. Why learn Perl too? Besides the convenience of

being able to use a familiar language, servlets have an extension infrastructure for

automatically parsing and decoding HTML form data, reading and setting HTTP

headers, handling cookies, tracking sessions, and many other such utilities.

• Powerful:

Java servlets let you easily do several things that are difficult or impossible with

regular CGI. For one thing, servlets can talk directly to the Web server (regular

CGI programs can’t). This simplifies operations that need to look up images and

other data stored in standard places. Servlets can also share data among each other,

making useful things like database connection pools easy to implement. They can

also maintain information from request to request, simplifying things like session

tracking and caching of previous computations.

• Portable:

Servlets are written in java and follow a well-standardized API. Consequently,

servlets return for, I-Planet Enterprise Server can run virtually unchanged on

Apache, Microsoft IIS, or Web Star. Servlets are supported directly or via plug-in

on almost every major Web Server.

• Inexpensive:

There are a number of free or very inexpensive Web servers available that are good

for “personal” use or low-level Web sites. However, with the major exception of

Apache, which is free, most commercial-quality Web servers are relatively

expensive. Nevertheless, once you have a Web server, no matter the cost server,

adding servlet support to it (if it doesn’t come preconfigured to support servlets) is

generally free or cheap.

What is JSP?

Java Server Pages (JSP) is a technology that lets you mix regular, static HTML

with dynamically-generated HTML. Many Web pages that are built by CGI

programs are mostly static, with the dynamic part limited to a few small locations.

But most CGI variations, including servlets, make you generate the entire page via

your program, even though most of it is always the same. JSP lets you create the

two parts separately. Here’s an example:

What are the Advantages of JSP?

• Vs. Active Server Pages (ASP):

ASP is a similar technology from Microsoft. The advantages of JSP are twofold.

First, the dynamic part is written in Java not in Visual Basic or other MS-specific

language. So it is more powerful and easier to use. Second, it portable to other

operating systems and non-Microsoft web servers.

• Vs. Pure Servlets:

JSP doesn’t give you anything that you couldn’t in principle do with a servlet. But

it is more convenient to write (and to modify!) regular HTML than to have a zillion

println statements that generate the HTML. Plus, by separating the look from the

content you can put different people on different tasks: your Web page design

experts can build the HTML, leaving places for your servlet programmers to insert

the dynamic content.

• Vs. Server-Side Includes (SSI):

SSI is a widely-supported technology for including externally-defined pieces into a

static Web page. JSP is better because it lets you use servlets instead of a separate

program to generate that dynamic part. Besides, SSI is really only intended for

simple inclusions, not for “real” programs that use form data, make database

connections, and the like.

• Vs. JavaScript:

JavaScript can generate HTML dynamically on the client. This is a useful capability, but

only handles situations where the dynamic information is based on the client’s environment.

With the exception of cookies, HTTP and form submission data is not available to

JavaScript. And, since it runs on the client, JavaScript can’t access server-side resources

like databases, catalogs, pricing information, and the like.

• Vs. Static HTML:

Regular, HTML, of course, cannot contain dynamic information. JSP is so easy

and convenient that it is quite feasible to argue HTML pages that only benefit

marginally by the insertion of small amounts of dynamic data. Previously, the cost

of using dynamic data would preclude its use in all but the most valuable instances.

Basic Servlet Structure:

Here’s the outline of a basic servlet that handles GET requests. GET requests, for

those unfamiliar with HTTP, are requests made by browsers when the types in a

URL on the address line, follows a link from a web page, or makes an HTML form

that does not specify a METHOD. Servlets can also very easily handle POST

requests, which are generated when someone creates an HTML form that specifies

METHOD=”POST”.

Import java.io.*;

Import javax.servlet.*;

Import javax.servlet.http.*;

Public class SomeServlets extends HttpServlet {

Public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException.IOException {

//Use “request” to read incoming HTTP headers (e.g. cookies)

//and HTML form data (e.g. data the user entered and submitted)
//Use “response” to specify the HTTP response line and

headers // (e.g. specifying the content type, setting

cookies).

printWriter out=response.getWriter ();

//Use “out” to send content to browser

}

To be a servlet, a class should extend HttpServlet and override doGet or doPost (or

both), depending on whether the data is being sent by GET or by POST. These

methods take two arguments: an httpServletRequest and an HttpServletResponse.

The HttpServletRequest has methods that let you find out about incoming

information such as FORM data, HTTP request headers, and the like. The

HttpServletResponse has methods that lets you specify the HTTP response line

(200,404, etc.), response headers (ContentType, Set-Cookies, etc.), and, most

importantly, lets you obtain a PrintWriter used to send output back to the client.

For simple servlets, most of the effort is println statements that generate the desired

page. Note that doGet and doPost throw two exceptions, so you are required to

include them in the declaration. Also note that you have to import classes in java.io

(for printWriter, etc.), javax.servlet (for HttpServlet, etc.), and javax.servlet.http

(for HttpServletRequest and HttpServletResponse). Finally, note that doGet and

doPost are called by the service method, and sometimes you may want to override

service directly, e.g. for a servlet that handles both GET and POST request.

Compiling and Installing the Servlet:

Note that the specific details for installing servlets vary from web server to web

server. Please refer to your web server documentation for definitive directions. The

online examples are running on Java Web Server (JWS) 2.0, where servlets are

expected to be in a directory called Servlets in the JWS installation hierarchy.

However, I placed this servlet in a separate package (hall) to avoid conflicts with

other servlets on this server. You will want to be the same if you are using a web

server that is used by other people and doesn’t have a good infrastructure for

“virtual servers” to prevent these conflicts automatically.

If you’ve never used packages before, there are two ways to compile classes that

are in packages.

One way is to set your CLASSPATH to point to the directory above the actually

containing servlets. You can then compile normally from within the directory. For

example, if your base directory is C:\JavaWebServer\servlets and your package

name (and thus subdirectory name) is hall, and were on windows, you’d do:

DOS> set CLASSPATH=C: \JavaWebServlets; %CLASSPATH%

DOS> cd C:\JavaWebServer\servlets\hall

DOS> javac yourServlet.java

The first path, setting the CLASSPATH, you probably want to do permanently,

rather than each time you start a new DOS window. On Windows 95/98 you’d

typically put the “set CLASSPATH=…….” Statement in your autoexec.bat file

somewhere after the line that set the CLASSPATH to point to servlet.jar and

jsp.jar. On Windows NT, you’d go to the Start menu, select settings, select Control

panel, select system, select Environment, then enter the variable and value. Note

also that if your package were of the form name1.name2.name3 rather than simply

name1 as here, you’d still have the CLASSPATH point to the top level directory of

your package hierarchy (the one contain name1).

A Second way to compile classes that are in packages is to go to the directory

above the one containing your servlets, and then do “javac

directory\YourServlet.java” (UNIX; note the forward slash). For example, suppose

again that your base directory is C:\JavaWebServer\Servlets and your package

name (and thus subdirectory name) is hall, and you were on Windows. In that case,

you’d do the following:

DOS> cd C:\JavaWeb Server\Servlets

DOS> javac hall\Yourservlet.java

Note that, on Windows, most JDK 1.1 versions of javac require a backslash, not a

forward slash, after the directory name. This is fixed in JDK 1.1, many servlet

authors stick with JDK 1.1.for portability.

Finally, another advanced option is to keep the source code in a location distinct

from the .class files, and use javac’s “-d” option to install them in the location the

web server expects.

Running the Servlet:

With the Java web Server, servlets are placed in the servlets directory within the

main JWS installation directory, and are invoked via

http://host/servlet/ServletName. Note that the directory is servlets, plural, while the

URL refers to servlet, singular. Since this example was placed in the hall package,

it would be invoked via http://host/servlet/hall.Helloworld. Other Web servers may

have slightly different conventions on where to install servlets and how to invoke

them. Most servers also let you define aliases for servlets. So that a servlet can be

invoked via http://host/anypath/any-file.html. The process for doing this is

completely server specific: check your server`s documentation for details.

A Servlet that generates HTML Most servlets generate HTML, not plain text as in

the previous example. To do that, you need two additional steps: tell the browser

that you are sending back HTML, and modify the println statements to build a

legal Web page. The first step is done by setting the Content-Type response

header. In general, headers can be set via the setHeader method of

HttpServletResponse, but setting the content type is such a common task that there

is also a special Setcontenttype method just for this purpose. Note that you need to

set response headers before actually returning any of the content via the

Printwriter. Here`s an example:

Maintenance Release of the Java Servlet 2.5 Specification:

http://host/servlet/ServletName
http://host/servlet/ServletName
http://host/servlet/ServletName
http://host/servlet/hall.Helloworld
http://host/servlet/hall.Helloworld
http://host/servlet/hall.Helloworld
http://host/any-path/any-file.html
http://host/any-path/any-file.html
http://host/any-path/any-file.html

Download the maintenance release of the Java Servlet Specification, version 2.5.

This version of Java Servlet technology.
Is included in the EE5 platform: Web Tier to go with Java EE5:

A Look at Resource Injection Read about the support for annotations by Java Web

tier technologies and how they can simplify access to resources, environment data,

and life-cycle control.

Form Processing Servlet:

 This section shows how to

• Process form data

• Manage persistent data

• Use init parameters

The next Servlet that we are going to write provides a user interface to a mailing

list through HTML forms. A user should be able to enter an email address in a text

field and press a button to subscribe to the list or another button to unsubscribe.

The Servlet consists of two major parts:

• Data management

• Client interaction.

Data management:

The data management is rather straight-forward for an experienced Java

Programmer. We use a java.lang.Vector object which contains the email addresses

as Strings. Since a Servlet ca has data which persists between requests we load the

address list only once, when the Servlet is initialized, and save it every time it has

been changed by a request. An alternative approach would be keeping the list in

memory while the Servlet is active and writing it to disk in the destroy method.

This would avoid the overhead of saving the address list after every change but is

less fail-safe. If for some reason the address file can`t be written to disk or the

server crashes and cannot destroy the Servlet, all changes to the list will be lost

even though the users who submitted the requests to change the list received

positive responses.

In init we first call super.init(config) to leave the ServletConfig management to the

super class (HttpServlet),then we get the name of the address file from an init

parameter(which is set up in the Web Server configuration). If the parameter is not

available the Servlet throws a javax.servlet.UnavailableException (a subclass of

javax.servletException) which indicates that a Servlet is temporarily (if a duration

is specified) or permanently (as in this case) unavailable. Finally, the init method

destabilizes the address file or creates an empty Vector if the address file does not

exist yet. All exceptions that occur during the reserialization are transformed into

Unavailable Exceptions.

The methods subscribe and unsubscribe are used to (un-)subscribe an address.

They save the address list if it was modified by calling save () and return a Boolean

success value. Note that these methods are both synchronized (on the Servlet

object)to ensure the integrity of the address list, both, in memory and on disk.

The save method serializes the address list to the address file on disk which can be

read again by init when the Servlet is restarted.

Client interaction:

The client interaction is handled by two of the standard HttpServlet methods,

doGet and doPost.

• The doGet method replies to GET requests by sending an HTML

page which contains the list of the currently subscribe or unsubscribe an

address:

• The response content type is again set to text/html and the response is

marked as not cacheable to proxy servers and clients (because it is

dynamically created) by setting an HTTP header “pragma:no-cache”. The

form asks the client to use the POST method for submitting form data.

• Here is a typical output by this method:

• The doPost method receives the submitted form data, updates the

address list and sends back a confirmation page:

Finally a confirmation page is sent with the usual method. Req.getRequestURI () is

used to get the URI of the Servlet for a link back to the main page (which is created

by doGet).

As usual, the Servlet extends javax.http.servlet.HttpServlet and overrides

getServletInfo to provide a short notice. At last, here is the full source code of the

ListManagerServlet.

3.2 BACK END (ORACLE)

Executing SQL Queries:

 To really use a database, we need to have some way to execute queries. The

simplest way to execute a query is to use the java.sql.Statement class. Statement

objects are never instantiated directly; instead, a program calls the

createStatement() method of Connection to obtain a new Statement object:

Statement stmt=con.crea:Statement();

A query that returns data can be executed using the executeQuery () method of

Statement and returns a java.sql.ResultSet that encapsulates the retrieved data:

ResultSet rs-stmt.executeQuery(“SELECT * FROM CUSTOMERS”);

You can think of a ResultSet object as a representation of the query result returned

one row at a time. You use the next() method of ResultSet to move from row to

row. The ResultSet interface also boasts a multitude of methods designed for

retrieving data from the current row. The getString () and getObject ()methods are

among the most frequently used for retrieving column values:

while(rs.next()) {
String event=rs.getString(“even”);

Object count=(Integer)rs.getObject(“count”);

}

You should know that the ResultSet is linked to its parent Statement. Therefore, if

a Statement is closed or used to execute another query, any related ResultSet

objects are closed automatically.

Handling SQL Exceptions:

DBPhoneLookup encloses most of its code in a try/catch block. This block catches

two exceptions: ClassNotFoundException and SQLException. The former is

thrown by the Class.forName() method when the JDBC driver class can not be

loaded. The latter is thrown by any JDBC method that has a problem.

SQLException objects are just like any other exception type, with the additional

feature that they can chain. The SQLException class defines an extra method,

getNextException(), that allows the exception to encapsulate additional Exception

objects. We didn’t bother with this feature in the previous example, but here’s how

to use it:

Catch(SQLException e) {

out.println(e.getMessage());

while((e=e.getNextException())!=null) {

out.println(e.getMessage());

}

}

This code displays the message from the first exception and then loops through all

the remaining exceptions, outputting the error message associated with each one.

In practice, the first exception will generally include the most relevant information.

Results in Detail:

Before we continue, we should take a closer look at the ResultSet interface and

related ResultSetMetaData interface. In Example9-1, we knew what our query

looked like, and we knew what we expected to get back, so we formatted the

output appropriately. But, if we want to display the results of a query in an HTML

table, it would nice to have some Java code that builds the table automatically from

the ResultSet rather than having to write the same loop-and-display code over and

over. As an added bonus, this kind of code makes it possible to change the contents

of the table simply by changing the query.

The ResultSetMetaData interface provides a way for a program to learn about the

underlying structure of a query result on the fly. We can use it to build an object

that dynamically generates an HTML table from a ResultSet, as shown in

Example9-2. Many Java HTML generation tools have a similar capability.

Handling Null Fields:

Handling null database values with JDBC can be a little tricky(A database field

can be set to null to indicate that no value is present, in much the same way that a

Java object can be set to null). A method that does not return an object, like

getInt(),has no way of indicating whether a column is null or whether it contains

actual information. (Some drivers return a string that contains the text “null” when

getString() is called on a null column!) any special value like -1, might be a

legitimate value. Therefore, JDBC includes the wasNull() method in ResultSet,

which returns true or false depending on whether the last column read was a true

database null. This means that you must read data from the ResultSet into a

variable, call was Null (), and proceed accordingly. It’s not pretty, but it works.

Here’s an example:

int age=rs.getInt(“age”);

if(!rs.wasNull())

out.println(“Age:”+age); Another

way to check for null values is to

use the getObject() method. If a

column is null, getObject()

always returns null. Compare this

to the getString() method that has

been known, in some

implementations, to return the

empty string if a column is null.

Using getObject() eliminates the need to call wasNull() and leads to simpler code.

Updating the Database:

Most database-enabled web sites need to do more than just perform dueries. When

a client submits an order or provides some kind of information, the data needs to be

entered into the database. When you know you’re executing a SQL UPDATE,

INSERT, or DELETE statement and you know you don’t except a ResultSet, you

can use the executeUpdate() method of statement. It returns a count that indicates

the number of rows modified by the statement. It’s used like this:

int count= stmt.executeUpdate(“DELETE FROM CUSTOMERS WHERE

CUSTOMER_ID=5”)

If you are executing SQL, that may return either a ResultSet or a count (say, if

you’re handling user-submitted SQL or building generic data-handling classes),

use the generic execute() method of statement. It returns a Boolean whose value is

true if the SQL statement produced one or more ResultSet objects or false if it

resulted in an update count:

boolean b=stmt.execute(sql);

The getResultSet() and getUpdateCount() method of statement provide access to

the results of the execute() method.

Using Prepared Statements:

A prepared statement object is like a regular statement object, in that it can be used

to execute SQL statements. The important difference is that the SQL in a

PreparedStatement is precompiled by the database for faster execution. Once a

PreparedStatemant has been compiled, it can still be customized by adjusting

predefined parameters. Prepared statements are useful in applications that have to

run the same general SQL command over and over.

Use the preparedStatement (String) method of connection to create preparedStatement

objects. Use the? Character as a placeholder for values to be substituted later. For

example:

PreparedStatement pstmt = con.preparedStatement

(“INSERT INTO ORDERS (ORDER_ID, CUSTOMER_ID.TOTAL) VALUES
(?,?,?)”);

INSERT INTO MUSKETEERS (NAME) VALUES (‘John d’Artangan’)

As you see, the string terminates twice. One solution is to manually replace the

single quote’ with two single quotes”, the Oracle escape sequence for one single

quote. This solution, requires you to escape every character that your database

treats as special—not an easy task and not consistent with writing

platform-independent code. A far better solution is to use a preparedStatement and

pass the string using its setString() method, as shown below. The

preparedStatement automatically escapes the string as necessary for your database:

PreparedStatement pstmt = con.preparedStatement

(“INSERT INTO MUSKETEERS (NAME) VALUES (?)”) ;

Pstmt.setString (1,”John d’Artagan”);

Pstmt.executeUpdate ();

3.2 MODULES:

There are 5 modules in this project.

• Administrator Module.

• Reservation Agent Module.

• Passenger Module.

• Payment.

• Cancellation.
 MODULES EXPLANATION:

• Administrator Module.

Enables the administrator to perform all administrative functions and manage

inventory over LAN or the Internet. The administrator can define or modify

routes, fares schedules and assign or deny access for qualified travel agents and

other authorized users.

• Reservation Agent Module.

Allows the airlines reservation agents to make and modify reservation on the LAN

or over the internet. The reservation agents could be stationed at any airline office

location.

• Passenger Module.

This module enables online customers to make reservations, views their bookings,

make special service requests and define their preferences over the web.

• Payment.

Provides the airline with the ability to set up various travel agents and give them

reservations capabilities over the Internet. The travel agents are able to display and

offer discounted fares to passengers.

• Cancellation.

The system should allow the user to cancel the existing booking. In this

cancellation very helpful in all the travelers.

4. SYSTEM DESIGN:

4.1 UML DIAGRAMS:

The Unified Modified Language prescribes a standard set of diagrams and

notations for modeling object oriented systems, and describe the underlying

semantics of what these diagrams and symbols mean. Whereas there has been to

this point many notations and methods used for object-oriented design, now there

is a single notation for modelers to learn.

UML can be used to model different kinds of systems: software systems, hardware

systems, and real-world organizations. UML offers nine diagrams in which to

model systems:

 • Use Case diagram for modeling the business processes

 • Sequence diagram for modeling message passing between objects

 • Collaboration diagram for modeling object interactions

 • State diagram for modeling the behavior of objects in the system

 • Activity diagram for modeling the behavior of Use Cases,Objects, or Ope

 • Class diagram for modeling the static structure of classes in the system

 • Object diagram for modeling the static structure of objects in

 • Component diagram for modeling components

 • Deployment diagram for modeling distribution of the system.

UML is a consolidation of many of the most used object-oriented notations and

concepts. It began as a consolidation of the work of Grady Booch, James

Rumbaugh, and Ivar Jacobson, creators of three of the most popular

object-oriented methodologies.

In 1996, the Object Management Group(OMG), a standards body for the

objectoriented community, issued a request for proposal for a standard

object-oriented analysis notation and semantic meta model. UML, version 1.0, was

proposed as an answer to this submission in January of 1997. There were five other

rival submissions. During the course of 1997, all six submitters united their work

and presented to OMG a revised UML document, called UML version 1.1. This

document was approved by the OMG in November 1997. The OMG calls this

document OMG UML version 1.1. The OMG is currently in the process of

performing a technical.

4.1.1 CLASS DIAGRAMS:

The class diagram is the main static analysis and design diagram for a system. In it,

the class structure of the system is specified, with relationships between classes

and inheritance structures. During analysis of the system, the diagram is developed

with an eye for an ideal solution. During design, the same diagram is used, and

modified to conform to implementation details.

4.1.2 ACTIVITY DIAGRAMS:

The Activity Diagram is a multi-purpose process flow diagram that is used to

model behavior of the system. Activity Diagram can be used to model a Use Case,

or a class, or a complicated method. An Activity Diagram can show parallel

processing. This is important when using Activity Diagram to model business

processes, some of which can be performed in parallel, and for modeling multiple

threads in concurrent programs.

4.1.3 SEQUENCE DIAGRAM:
The Sequence diagram is one of the most effective diagrams to model object

interactions in a system. A Sequence diagram is modeled for every Use Case.

Whereas the Use Case diagram enables modeling of a business view of the

scenario, the Sequence diagram contains implementation details of the scenario,

including the objects and classes that are used to implement the scenario, and

messages passed between the objects.

4.1.4 USE CASE DIAGRAM:

Use Case modeling is the simplest and most effective technique for modeling

system requirements from a user’s perspective. Use Cases are used to model how a

system or business currently works, or how the users wish it to work. It is not

really an object-oriented approach; it is really a form of process modeling. It is,

however, an excellent way to lead into object-oriented analysis of systems. Use

Cases are generally the starting point of object-oriented analysis with UML. The

Use Case model consists of actors and Use Cases. Actors represent users and other

systems that interact with the system. They are drawn as stick figures. They

actually represent a type of user, not an instance of a user. Use Cases represent the

behavior of the system, scenario that the system goes through in response to

stimuli from an actor. They are drawn as Ellipses.

Each Use Case is documented by a description of the scenario. The description can

be written in textual form or in a step-by-step format. Each Use Case can also be

defined by other properties, such as the pre- and post conditions of the scenario –

conditions that exist before the scenario begins, and conditions that exist after the

scenario completes.

4.1.5 COLLABORATION DIAGRAM:

The Collaboration Diagram presents an alternate to the Sequence Diagram for

modeling interactions between objects in the system. Whereas in the Sequence

Diagram the focus is on the chronological sequence of the scenario being modeled,

in the Collaboration Diagram the focus is on understanding all of the effects on a

given object during a scenario.

Objects are connected by links, each link representing an instance of an association

between the respective classes involved. The link shows messages sent between the

objects, the type of message passed, and the visibility of objects to each other.

DATA FLOW DIAGRAM: Fig No.: CLASS DIAGRAM

Fig No: ACTIVITY DIAGRAM

4.1 DATA DICTIONARY:

4.1.1 INTRODUCTION:

DICTIONARY The logical characteristics of current system data stores including

Name, Address, Flight code, Source, Destination, Airline code, Flight code, Credit

card number, Payment amount etc identifies process where the data are used and

where immediate access to information required, Serves as the basis for identifying

database requirements during system design.

Uses of Data Dictionary:

• To manage the details in large systems.

• To communicate a common meaning for all system elements.

• To document the features of the system.

• To facilities analysis of the details in order to evaluate characteristics and

determine where system changes should be made.

• To locate errors and omissions in the system.

4.1.2 DATA DICTIONARY:

1. Cancellation.

This table is used to store the cancel details.

Field name Description Data type Size
Constraints
cancelid Cancellation id int 10 PRIMARY KEY reservation Reservation id int 10 FOREIGN

KEY cancelationdate Date of Cancellation date NOT NULL refund money Money to be

refundable decimal 10,0 NOT NULL

2. Classes

This table is used to store the class details.

Field name Description Data type Size
constraints
Classid Id of the class int 10 PRIMARY KEY flightcode - int 10 FOREIGN KEY classcode

- varchar 50 NOT NULL classname Name of the class varchar 50 NOT NULL
Fare - decimal 10,0 NOT NULL totalclassseat Total seats in a class int 10 NOT NULL

3. Flight days

 This table is used to store the flight day’s details

4. Flight details

 This table is used to store the flight details.

Field name Description Data type Size constraints flightcode Code of the flight int 10
PRIMARY KEY airlinecode Code of the airlines varchar 100 NOT NULL flightname Name of
the flight varchar 100 NOT NULL source Starting place of the varchar 100 NOT NULL

This table is used to store the login details

This table is used to store the mail details

Field name Description Data type Size
constraints

mailid Users mail id int 10
PRIMARY KEY
Touser Destination of the mail varchar 250 FOREIGN KEY fromuser By whom the mail is
sent varchar 250 FOREIGN KEY Subject Subject of the mail varchar 250 NOT NULL
message Message to be sent text NOT NULL

7. New User

This table is used to store the new user details.

Field name Description Data type Size
constraints

Userid Users id int 10
PRIMARY KEY

Firstname First name of the user varchar 250 NOT NULL lastname Last name of the user

varchar 250 NOT NULL middlename Middle name of the user varchar

250 NOT NULL mobileno Mobile number int 10 NOT NULL Dob

Date of birth date NOT NULL address - varchar

250 NOT NULL City - varchar 250 NOT NULL State

- varchar 250 NOT NULL country - varchar

250 NOT NULL emailid Mail id varchar 250 NOT NULL password

- varchar 250 NOT NULL usertype Type of the user

varchar 250 NOT NULL username Name of the user varchar

250 UNIQUE KEY

8. Passenger

This table is used to store passenger details.

Field name Description Data type Size constraints passenger no Number of the Int 10
PRIMARY KEY

passengers

flightcode Code of the flight Int 10
FOREIGN KEY
Dob Date of birth Date NOT NULL address - varchar 250 NOT NULL nationality

- varchar 250 NOT NULL Name Name of the user varchar 250 NOT NULL Gender
- varchar 250 NOT NULL phoneno Phone number varchar 250 NOT NULL emailid

Mail id varchar 250 NOT NULL passportno Passport number Int 10 NOT NULL reservationid
Reservation id Int 10 FOREIGN KEY

9. Payment

This table is used to store payment details

Field name Description Data type Size
constraints

paymentid - Int 10 PRIMARY KEY checkno Checking number Int 10 NOT NULL
creditcardno - Int 10 NOT NULL paidamount - decimal 10,0 NOT NULL
paymentdate - date NOT NULL passengerno - Int 10 NOT NULL

10. Reservation

This table is used to store reservation details.This table is used to store reserve check
details Field name Description Data type Size constraints reservation Reservation id
number Int 10 PRIMARY KEY username Name of the user Varchar 250 Password
Password to login Varchar 250

5. IMPLEMENTATION:

modules of this project consist of

1)Main Menu

2)Reservation

3) Ticket

4)waiting

5)Warning

6)Confirmed

7)Create

8)Login

9)Message Box

10)Project

Main Menu

import java.awt.*;
import
java.awt.event.*;
public class MainMenu extends Frame implements ActionListener {
MenuBar mbar;
Menu m1,m2,m3;
MenuItem m1_1,m1_2,m2_1,m2_2,m2_3,m3_1;
public MainMenu() {
mbar = new
MenuBar();
setMenuBar(mbar);
m1=new
Menu("Bookings");
mbar.add(m1);
m1_1 = new MenuItem("Reservation");
m1.add(m1_1);
m1_2 = new
MenuItem("Cancellation");
m1.add(m1_2); m2=new
Menu("Reports"); mbar.add(m2);
m2_1 = new MenuItem("Confirmed
Passengers"); m2.add(m2_1); m2_2 = new
MenuItem("Waiting"); m2.add(m2_2);
m2_3 = new MenuItem("Daily Collection Report");
m2.add(m2_3);
m3=new
Menu("Close");
mbar.add(m3);
m3_1 = new
MenuItem("Close"
); m3.add(m3_1);
m1_1.addActionLi
stener(this);
m1_2.addActionLi

stener(this);
m2_1.addActionLi
stener(this);
m2_2.addActionLi
stener(this);
m2_3.addActionLi
stener(this);
m3_1.addActionLi
stener(this);
addWindowListen
er(new M());
}
public void actionPerformed(ActionEvent
ae) { i f(ae.getSource()==m1_1) {
Reservation r = new Reservation();
r.setSize(400,400);
r.setVisible(true);
r.setTitle("Reservation
Screen"); }
if(ae.getSource()==m1_2) {
Cancellation c = new
Cancellation();
c.setSize(400,400);
c.setVisible(true
c.setTitle("Cancellation
Screen"); }
if(ae.getSource()==m2_1) {
Confirmed cr = new
Confirmed();
cr.setSize(400,400);
cr.setVisible(true);
cr.setTitle("Confirmed Passengers List");
}
if(ae.getSource()==m
2_2) { Waiting wr =
new Waiting();
wr.setSize(400,400);
wr.setVisible(true);
wr.setTitle("Waiting List");
} if(ae.getSource()==m2_3) {
Collection dcr = new
Collection();
dcr.setSize(400,400);

dcr.setVisible(true);
dcr.setTitle("Daily Collection
Report");
} if(ae.getSource()==m3_1) {
System.exit(0); }
}
/*public static void main(String
args[]) { MainMenu m = new
MainMenu(); m.setTitle("Main
Menu");
m.setSize(400,400);
m.setVisible(true); }*/ class M extends
WindowAdapter { public void
windowClosing(WindowEvent e) {
setVisible(false);
dispose();
}
}
}
Reservation Module

import java.awt.*;
import
java.awt.event.*;
public class Reservation extends Frame implements ActionListener {
Button b1,b2,b3;
Label l1,l2;
GridBagLayout gbl;
GridBagConstraints gbc;
Font f; Reservation() {
setBackground(Color.cyan); f = new
Font("TimesRoman",Font.BOLD,20);
gbl=new GridBagLayout(); gbc=new
GridBagConstraints(); setLayout(gbl);
b1=new Button("Check Availability");
b1.setFont(f);
b2=new Button(" Create Passenger ");
b2.setFont(f);
// b3=new Button(" Fare Teller ");
// b3.setFont(f); l1=
new Label(""); l2=
new Label("");
gbc.gridx=0;

gbc.gridy=0;
gbl.setConstraints(b
1,gbc); add(b1);
gbc.gridx=0;
gbc.gridy=4;
gbl.setConstraints(l
1,gbc); add(l1);
gbc.gridx=0;
gbc.gridy=8;
gbl.setConstraints(b
2,gbc); add(b2);
/* gbc.gridx=0; gbc.gridy=12;

gbl.setConstraints(l
2,gbc); add(l2);
gbc.gridx=0;
gbc.gridy=16;
gbl.setConstraints(b
3,gbc);
add(b3); */
b1.addActionListener(thi
s);
b2.addActionListener(thi
s); //
b3.addActionListener(thi
s);
addWindowListener(ne
w W());
}
public void actionPerformed(ActionEvent ae) {
if(ae.getSource()==b1) {
Check m = new
Check();
//setVisible(false);
m.setSize(400,400);
m.setVisible(true);
m.setTitle("Check Availability Screen");
} if(ae.getSource()==b2) {
Create v = new Create();
//setVisible(false);
v.setSize(400,500);
v.setVisible(true);
v.setTitle("Create Passenger Screen"); } /*

if(ae.getSource()==b3) { Fare f = new
Fare();
//setVisible(false);
 f.setSize(400,500);
 f.setVisible(true);
f.setTitle("Fare Teller Screen"); }
*/
} class W extends WindowAdapter {
public void
windowClosing(WindowEvent e) {
setVisible(false);
dispose();
}
}
}

Ticket Module

import java.sql.*;
import
java.awt.*;
import
java.awt.event.*;
public class Ticket extends Frame implements
ActionListener {
TextField t1;
Label l1;
Button b1;
GridBagLayout gbl;
GridBagConstraints gbc;
Connection con;
PreparedStatement ps;
Stateme
nt stmt;
ResultSe
t rs; int
count;
Font f;
Ticket() {
setBackground(Color.cy
an); t1 = new
TextField(20); l1 = new
Label("PNR NO ");

l1.setFont(f);
gbc.gridx=0;
gbc.gridy=0;
gbl.setConstraints(l1,gbc
); add(l1); gbc.gridx=0;
gbc.gridy=2;
gbl.setConstraints(t1,gbc
); add(t1);
addWindowListener(ne
w W());
}
public void actionPerformed(ActionEvent ae)
{
}
class W extends WindowAdapter
{
public void windowClosing(WindowEvent e)
{
setVisible(false);
dispose();
}
}
/* public static void main(String args[])
{
Ticket t = new Ticket();
t.setSize(400,500);
t.setVisible(true);
t.setTitle("Ticket Screen");
}*/
}
Waiting Module

import java.awt.*;
import
java.awt.event.*;
public class Waiting extends Frame {
Waiting() {
addWindowListener(new W());
}
class W extends WindowAdapter {
public void
windowClosing(WindowEvent e) {
setVisible(false);

//dispose();
System.exit(0);
}
}
}
Warning Module

import java.awt.*;
import
java.awt.event.*;
public class Warning extends Frame {
GridLayout g;
Button b1;
Label l;
Warning() {
g = new GridLayout(2,1,10,40);
setLayout(g);
l = new Label("Incorrect username or
password",Label.CENTER); b1 = new Button("Ok");
add(l); add(b1);
b1.addActionListener(new Y());
addWindowListener(new X()); } class Y
implements ActionListener { public void
actionPerformed(ActionEvent ae) {
if(ae.getSource()==b1) { //dispose();
System.exit(0);
}
}
}
class X extends WindowAdapter { public void windowClosing(WindowEvent e) {
setVisible(false);
dispose();
}
}
public Insets getInsets() { return
new Insets(40,40,40,40); } /*public
static void main(String args[]) {
Warning m = new Warning();
m.setTitle("Message Box");
m.setSize(300,200);
m.setVisible(true);
}*/
} Confirmed

Module

import java.awt.*; import
java.awt.event.*; public class
Confirmed extends Frame
{
Confir
med()
{
addWindowListener(new W());
}
class W extends WindowAdapter
{
public void windowClosing(WindowEvent e)
{
setVisible(false);
//dispose();
System.exit(0);
}
}
}

Creation Module

import java.awt.*; import
java.awt.event.*; public class
Confirmed extends Frame
{
Confir
med()
{
addWindowListener(new W());
}
class W extends WindowAdapter
{
public void windowClosing(WindowEvent e)
{
setVisible(false);
//dispose();
System.exit(0);
}
}

}

Login Module

import java.awt.*;
import
java.awt.event.*;
public class Login extends Frame implements ActionListener { String username =
"anu";
String password = "rag";
TextField t1,t2;
Label l1,l2,l3,l4,l5,l6;
Button b2,b3,b4;
GridBagLayout gbl;
GridBagConstraints gbc;
Font f1,f2;
public Login() { //setTitle("Login Screen");
//g = new GridLayout(4,2,0,60);
//setLayout(g);
setBackground(Color.cyan); f1 = new
Font("TimesRoman",Font.BOLD,20); f2
= new
Font("TimesRoman",Font.BOLD,15);
gbl=new GridBagLayout(); gbc=new
GridBagConstraints();
setLayout(gbl); l1 = new Label("Username",Label.CENTER);
l1.setFont(f1);
l2 = new
Label("Password",Label.CENTER);
l2.setFont(f1); l3 = new Label(""); l4 =
new Label(""); l5 = new Label(""); l6
= new Label(""); t1 = new
TextField(15); t2 = new TextField(15);
t2.setEchoChar('*');
//b1 = new Button("Change Login
Details"); b2 = new Button("Reset");
b2.setFont(f2); b3 = new
Button("Submit"); b3.setFont(f2); b4
= new Button("Close");
b4.setFont(f2);
gbc.gridx=0;
gbc.gridy=0;
gbl.setConstraints(l

1,gbc); add(l1);
gbc.gridx=2;
gbc.gridy=0;
gbl.setConstraints(t
1,gbc); add(t1);
gbc.gridx=0;
gbc.gridy=2;
gbl.setConstraints(l
2,gbc); add(l2);
gbc.gridx=2;
gbc.gridy=2;
gbl.setConstraints(t
2,gbc); add(t2);
gbc.gridx=0;
gbc.gridy=4;
gbl.setConstraints(l
3,gbc); add(l3);
gbc.gridx=2;
gbc.gridy=4;
gbl.setConstraints(l
4,gbc); add(l4);
gbc.gridx=0;
gbc.gridy=6;
gbl.setConstraints(
b2,gbc); add(b2);
gbc.gridx=2;
gbc.gridy=6;
gbl.setConstraints(
b3,gbc); add(b3);
gbc.gridx=0;
gbc.gridy=8;
gbl.setConstraints(l
4,gbc); add(l4);
gbc.gridx=2;
gbc.gridy=8;
gbl.setConstraints(l
5,gbc); add(l5);
gbc.gridx=0;
gbc.gridy=10;
gbl.setConstraints(
b4,gbc); add(b4);
//add(l1);
//add(t1);
//add(l2);
//add(t2);

//add(b1);
//add(b2);
//add(b3);
//add(b4);
//b1.addActionListener(this);
b2.addActionListener(this);
b3.addActionListener(this);
b4.addActionListener(this); }
/*public Insets getInsets() { return new Insets(40,40,40,40); }*/
public void
actionPerformed(ActionEvent ae) {
if(ae.getSource()==b2) { t1.setText("");
t2.setText(""); } if(ae.getSource()==b4)
{ System.exit(0); }
if(ae.getSource()==b3)
{ if((t1.getText().equals(username))&&(t2.getText().equals(password))) {
MainMenu m = new MainMenu();
setVisible(false);
m.setSize(400,400);
m.setVisible(true);
m.setTitle("Main Menu"); }
else { //Warning w = new
Warning();
//w.setSize(300,200);
//w.setVisible(true);
//w.setTitle("Message Box");
MessageBox mb = new
MessageBox(this);
mb.setLocation(200,200);
mb.setVisible(true); } }
/*if(ae.getSource() == b1) {
Change c = new Change();
c.setSize(400,400);
c.setVisible(true);
c.setTitle("Screen for Changing Login Details"); }*/

MessageBox

import java.awt.*;
import
java.awt.event.*;
public class MessageBox extends Dialog implements ActionListener{

GridBagLayout gbl;
GridBagConstraints gbc;
FlowLayout F;
Button
b1; Label
l;
Font f1,f2;
MessageBox(Frame fm) {
super(fm,true);
setBackground(Color.cyan); f1 =
new Font("Times
Roman",Font.BOLD,20); f2 =
new Font("Times
Roman",Font.BOLD,15);
gbl=new GridBagLayout();
gbc=new GridBagConstraints();
setLayout(gbl);
l=new Label("Incorrect username or
password",Label.CENTER); l.setFont(f1); b1 = new
Button(" OK "); b1.setFont(f2); gbc.gridx=0; gbc.gridy=0;
gbl.setConstraints(l,gbc); add(l); gbc.gridx=0;
gbc.gridy=4; gbl.setConstraints(b1,gbc); add(b1);
setSize(350,200); setTitle("Message Box");
b1.addActionListener(this); addWindowListener(new
X());
} public void
actionPerformed(ActionEvent ae) {
if(ae.getSource()==b1) { setVisible(false);
dispose();
}
}
class X extends WindowAdapter { public void windowClosing(WindowEvent e) {
setVisible(false);
dispose(); }
}
}

Project Module

import java.awt.*;
import
java.awt.event.*;
public class Project extends Frame{public static void main(String args[]){

Login L = new Login();
L.setLocation(200,100);
L.setSize(300,300);
L.setVisible(true);
L.setTitle("Login Screen");
}
}

 RESULT

FIGURE 1: LOGIN PAGE & CHECK AVAILABILITY

FIGURE 2: BOOK FLIGHT

 7. TESTING:

7.1 Introduction:

System Development is a process of conceiving the specification specified in the

designing stage into source code. Careful study and observation about system

designing were made and accordingly the system was coded to convert from

designing to source code, where visual Basic as the frontend and OracleXE as the

backend. The System was developed such that it should be used for the future

enhancement.

All the modules of the system are combined and are put to operational use. This

means that the new and old system are run in the parallel for sometimes, errors are

identified and the corresponding errors are to be concerned to get the required

output.

The set of working programs and initialized tables are also provided for the easy

start of the user, in addition, system documentation is also provided, and all users

have been trained to use the system.

This creates two problems,

• The time lag between the cause and appearance of the problem.

• The effect of system errors on files and records within the system.

7.2 Types of testing:

7.2.1 Unit Testing:

Unit test is designed to ensure that the purpose for which it was designed for which

it was designed for is fulfilled. Each and every module was tested individually with

the test data and error messages were displayed for incorrect and sufficient entry

works. All validation was tested to correctness. Test data were fed in and results

were checked for the maintenance module, to ensure that all tables created

contained nothing but valid data. Referential integrity constraints specified as part

of the table definition was also tested.

7.2.2 Integration Testing:

In integration testing a system consisting of different modules is tested for

problems arising from component interaction. Integration testing should be

developed from the system specification. Firstly, a minimum configuration must be

integrated and tested. In my project I have done integration testing in a bottom up

fashion i.e. in this project I have started construction and testing with atomic

modules. After unit testing the modules are integrated one by one and then tested

the system for problems arising from component interaction.

7.2.3 Recovery Testing:

Many computer based systems must recover from faults and resume processing

within a pre-specified time. In some cases a system must be fault tolerant.ie

processing faults must not cause overall system function to cease. In these cases a

system failure must be corrected within a specified period of time or severe

economic damage will occur.

7.2.4 Security Testing:

Any computer-based system that manages sensitive information or causes action

that can improperly harm an individual is a tablet for improper or illegal

penetration Security testing attempts to verify that the protection mechanism built

into a system will, in fact, protect it from improper penetration . During security

testing, the tester plays the role of the individual who desires to penetrate the

system. The tester may attempt to acquire passwords through external clerical

means; may attack the system with custom software designed to break down any

defenses that have been constructed; may overwhelm the System.

7.2.5 Performance Testing:

For real time and embedded systems, software that provides required functions but

does not conform to performance requirements is unacceptable. Performance

testing is designed to test the run time performance of software within the context

of an integrated system. Performance testing occurs throughout all steps in the

testing process. Even at unit level, the performance of an individual module may

be accessed as white box test conducted. However, it is not until all system

elements are fully integrated that true performance of a system can be ascertained.

Performance Tests are sometimes coupled with stress testing and often require

other hardware and software implementation. It is often necessary to measure

Resource utilization .By incrementing a system the tester can uncover situations

that lead to degradation and possible system failure.

7.2.6 White Box Testing:

In white box testing knowing the internal working of the base, the test can be

conducted to ensure that internal operations are performed according to

specification and all internal components have been adequately exercised. In white

box testing logical paths through the software are tested by providing test cases

that exercise a specific set of conditions and loops. Using white-box testing

software developer can derive test case that

• Guarantee that all independent paths within a module have been exercised

at least once.

• Exercise all logical decisions on their true and false side.

• Exercise all loops at their boundaries and within their operational bound.

• Exercise internal data structure to ensure their validity.

 8. CONCLUSION:

The entire project has been developed and deployed as per the requirements stated

by the user, it is found to be bug free as per the testing standards that are

implemented. And by specification-untraced errors concentrated in the coming

versions, which are planned to be developed in near future.

Finally, we like to conclude that we put all our efforts throughout the development

of our project and tired to fulfill most of the requirements of the user.

 9. REFERENCE:
Websites

• http://www.google.com

• http://www.microsoft.com

• http://www.programmer2programmer.net

• http://www.codeproject.com

• http://www.slideshare.net

• http://www.1000projects.com

• http://www.firstload.com

http://www.google.com/
http://www.microsoft.com/
http://www.programmer2programmer.net/
http://www.codeproject.com/
http://www.slideshare.net/
http://www.1000projects.com/
http://www.firstload.com/

