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Linear Algebra Examples c-3 Introduction

Introduction

Here we collect all tables of contents of all the books on mathematics I have written so far for the publisher.
In the rst list the topics are grouped according to their headlines, so the reader quickly can get an idea of
where to search for a given topic.In order not to make the titles too long I have in the numbering added

a for a compendium
b for practical solution procedures (standard methods etc.)
¢ for examples.

The ideal situation would of course be that all major topics were supplied with all three forms of books, but
this would be too much for a single man to write within a limited time.

After the rst short review follows a more detailed review of the contents of each book. Only Linear Algebra
has been supplied with a short index. The plan in the future is also to make indices of every other book as
well, possibly supplied by an index of all books. This cannot be done for obvious reasons during the rst
couple of years, because this work is very big, indeed.

It is my hope that the present list can help the reader to navigate through this rather big collection of books.

Finally, since this list from time to time will be updated, one should always check when this introduction has
been signed. If a mathematical topic is not on this list, it still could be published, so the reader should also
check for possible new books, which have not been included in this list yet.

Unfortunately errors cannot be avoided in a rst edition of a work of this type. However, the author has tried
to put them on a minimum, hoping that the reader will meet with sympathy the errors which do occur in the
text.

Leif Mejlbro
5th October 2014
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Linear Algebra Examples c-3 1. The eigenvalue problem

1 The eigenvalue problem

Example 1.1 Find the eigenvalues and the corresponding eigenvectors of the following matriz

1 -1 -1
1 -1 0
1 0 -1

The equation of eigenvalues is

1-A -1 -1 _
0 = 1 —-1-A 0 o
1 0 —1-a]|
1 0 1-A -1
‘1 —(1+ ) _(HA)‘ 1 —(1+\)
= —(1+N{1+M-1+1}=-A+D{N\+1}.
The complex eigenvalues are A = —1, 7, —1.
If A = —1, then we get the matrix of coefficients
2 -1 -1
A-)X=|1 0 0
1 0 0
An element of the kernel is (0,1, —1), so (0,1, —1) is an eigenvector corresponding to A = —1.

When A\ =i, we get the following matrix of coefficients

1—1 -1 -1 ~
A-) = 1 —1—1 0 Rllle—(l—i)Rzg

1 0 —1—1 RQ::R27R3

0 -1 1

0 —-1—4 143 .

10 1) RemB-(40R

0 -1 1

0 0 0

1 0 —1-—3

An element x of the kernel satisfies z1 = (1 + i)z3 and x5 = x3, hence an eigenvector corresponding
toA=1dis (14+14,1,1).

Since the matrix is real, an eigenvector corresponding to A = —i is found by complex conjugation, i.e.
the eigenvector is (1 — ,1, 1), corresponding to A = —i.

The proof of the latter claim is easy. In fact, if we conjugate

1+
A-—i| 1 =0,
1

6
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Linear Algebra Examples c-3 1. The eigenvalue problem

we obtain
(A +4I) 1 =0,
and the claim follows.
Example 1.2 Find the eigenvalue and the corresponding eigenvectors of the following matriz
2—47 0 i

0 1—1 0
] 0 2—1

The equation of the eigenvalues is

92—\ 0 i

0 = 0 1—i—A 0
i 0 2—i—\

. 92—\ i
= (1-i=X) i 2 -\

1—i—=N{(2—-i-))?2—i%}
= (1—i—A(2=\)(2-2i-)\),

hence the three eigenvalues are Ay =2, Ao =1 — 4 and A3 =2 — 24.

7
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Linear Algebra Examples c-3 1. The eigenvalue problem

Since the matrix is complex, the conjugation argument of EXAMPLE 1.1 cannot be applied.

For A1 = 2, we get the matrix of coefficients

—1 0 7 1 0 -1
A - )= 0 —1—2 0 ~ 0 1 01,
) 0 —1 0 0 0

corresponding to e.g. the eigenvector (1,0,1).

If Ao =1 — 14, we get the matrix of coefficients

<. O =
o O O
= O .

corresponding to e.g. the eigenvector (0,1,0).

If A3 =2 — 24, we get the matrix of coefficients

1 0 =
0 —1+4: 0 |,
7 0 1

corresponding to e.g. the eigenvector (1,0, —1).

Example 1.3 Find the eigenvalues and the corresponding eigenvectors of the following matrixz

5 6 —10 7
-5 —4 9 —6
-3 -2 6 —4
-3 =3 7 =5

If one shall compute an (n X n) determinant, where n > 4, and one does not have MAPLE or any
similar programme at hand, one should follow the following strategy: One should only perform the
simplest row or column operations, such that one obtains at least some zeros in the determinant. Then
expand after a row or a column which contains as many zeros as possible. The new subdeterminants
of order (n — 1) x (n — 1) are then treated separately. This procedure is recommended in order to
minimize the errors and maximize the simplicity of the determinant.

8
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Linear Algebra Examples c-3 1. The eigenvalue problem

The equation of the eigenvalues is

5—\ 6 -10 7
_ _ *5 74 — )\ 9 *6 R1 = R1 =+ R2
0 = A=MI=1 3 5" 6.\ 4 | Ry—Ry-Rs
-3 -3 75—\
A 2-2) -1 1
B -5 —4-—\ 9 -6
- 0 1 “A—1 142X
-3 -3 7 —5— A\
B -\ -1 1 A 2-A 1
1; - =5 9 —6 |—(A+1)| =5 —4—-X -6
3 -3 7 —5-—2\ -3 -3 —5-2)
A 2—-) -1
—A+1)| =5 —4—-Xx 9
-3 -3 7
CALCULATIONS:
-\ -1 1
-5 9 -6 = OANA+5)—18—35+27 — 42X+ 5(A +5)
-3 7 —5—2\
= 9A? 445\ — 26 — 42\ + 5\ + 25
= N8 -1=(A+1)ON-1),
A 22— 1
-5 —(A+4) —6 = “AA+4)A+5)—18(A—2)+15—3(\+4)
-3 -3 —(A+5)

+18A +5(A +5)(A —2)
= A2+ 9X+20) — 18\ + 36+ 15 — 3\ — 12
+18\ 4+ 5(A\% 4+ 3\ — 10)
= A3 — 922 — 20\ — 3\ + 39+ 5X% + 15\ — 50
= -\ —4X\? -8\ —11,

A 02— -1

5 —(A+4) 9| = TAAN+4)+2T(A—2) —15+3(A+4) —27TA —35(\ — 2)
-3 -3 7

A2 4+ 28\ 427\ — 54 — 15+ 3\ + 12 — 27 — 35\ + 70
TAZ — 4\ + 13.

Hence by insertion
0 = |A=)\|
—AF DN =1 = A3 =42 —8A — 11+ 7A% —4)\ + 13}
A+ D{=A*+32% =31+ 1}
= A+DIN =343 -1} =+ 1A -1)%

9
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Linear Algebra Examples c-3 1. The eigenvalue problem

Remark 1.1 In my original draft I used some very sophisticated row and column operations which
made the calculations much shorter. Unfortunately, this method was not very instructive, so I chose
instead to use this longer, though also more standardized method. ¢

The eigenvalues are A = 1 of the algebraic multiplicity 3 and A = —1 of the algebraic multiplicity 1.

Whenever the algebraic multiplicity as here by A = 1 is bigger than 1, one should always be very careful
with the calculations, because the geometric multiplicity is not necessarily equal to the algebraic
multiplicity. If A = 1 we reduce the matrix of coeflicients in the following way

4 6 —10 7 ~
-5 =5 9 —6 Ry =R+ Ry
-3 -2 5 —4 R3 = R3 — R4
-3 -3 7 —6 R4 = 3R2 — 5R4

0 0 —8 192 R2 = R2 — 5R1
1 -1 1 -1 ~
0o —-10 14 -11 _ Ri:=Ri+Rs
0 1 -2 2 T Ry = R4
0 0 -8 12 R3 .= Ry + 10R3
1 0 -1 1
R
0 O —8 19 R4 = R4/4—R3/3
1 0 -1 1 N

1 -2 2

0 Ry —R1+R3/2
00 2 3 R Ry + R,
00 0 0 2o Al
100 —3
01 0 -1
00 2 -3
0 0 O 0

The rank is 3, thus the kernel (= the eigenspace corresponding to A = 1) is of dimension 4 — 3 = 1.
The geometric multiplicity is 1 < 3 = the algebraic multiplicity .

The conditions of obtaining a zero vector are

1 3
5 L4, T2 = T4, T3 = 5 T4,

=5 2

hence we see by choosing 24 = 2 that an eigenvector is (1,2, 3,2) and that all eigenvectors correspond-
ing to A = 1 is a scalar multiple of this vector.

10
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Linear Algebra Examples c-3 1. The eigenvalue problem

If A = —1, the matrix of coefficients is reduced to
6 6 —10 7 6 6 —10 7
-5 -3 9 —6 -5 -3 9 —6
A= 3 5 ¢ —4 ~ 0 1 0 0
-3 -3 7 —3 -3 7T —4
6 0 —10 7 1
-5 0 9 —6 75 0 9 —6
~ o1 o0 0]~ 0 0
-3 0 7T —4 —3 0 7T —4
10 -1 1 1 o0 3
0 0 4 -1 01 0 0
“lo1 o o] oo 1 -1
0 0 4 -1 0 0 0 0

of rank 3. An element the kernel (= the eigenvector of A = —1) fulfils

3 1
1 = —— T4, 3?2207 .’13321.%4.

Choosing x4 = 4, we get the eigenvector (—3,0,1,4).

11
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Linear Algebra Examples c-3 1. The eigenvalue problem

Example 1.4 Find the eigenvalue and the corresponding eigenvectors of the following matriz

-1 -1 -6 3

1 -2 -3 0
-1 1 0 1
-1 -1 -5 3

The equation of the eigenvalues is

—1-A -1 -6 3 A+1 1 6 -3
_ _ 1 —2—X -3 0] -1 A+2 3 0
0 - A=A = -1 1 =) 1] 1 -1 A -1
-1 -1 -5 3—-2\ 1 1 5 A—3
A A+3 9 -3
= -1 X+2 3 0
+Ry 0 A1 A+3 -1
0 A+3 8 A-=3
A+3 3 0 A+3 9 -3
= AMA+1 A+3 =1 |+ AX+1 X+3 -1
A+3 8 A-3 A+3 8 A-3
CALCULATIONS:
A2 30 A2 30 Aarzos 0
A+1 A+3 -1 |=| -1 X -1 |= 0 Ais
A+3 8 A-—3 1 5 A—3
A—4
A -1 3 0
_(/\+2)‘A+5 >\—4‘+‘>\+5 >\4’
=(A+2)(A2 =4+ A+5)+3(A—4)
=A+2)(AN2=3X+5)+31—12
=X =322 450 +202 —6A+ 10+ 3\ — 12
=N -2 2= -1)(\+2),
and
A+3 9 -3 A 9 -3 1 9 -3
A4+1 A+3 -1 |=| X A+3 -1 |=Xl1 X+3 -1
A+3 8 A-3 20 8 A-3 2 8 A-3
1 0 -3
A—6 2
=A0 X=6 2 _)\‘ 10 A+3’

0 —10 A+3
=M\ =6)(A+3) +20} = A{\? — 3\ — 18 4 20}
=AM =32 +2} = XA -1)(A—2).

12
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Linear Algebra Examples c-3 1. The eigenvalue problem

We get by insertion

0 = |A-A\]
= AMA-DMH+AXA -1\ -2)
AA=DA2+ N =2A2A = 1) (A +1).
The eigenvalues are A = 0 (algebraic multiplicity 2) and A = £1 (each of algebraic multiplicity 1).

If A =0, the matrix of coefficients is reduced to

-1 -1 —6 3 0 -3 -9 3
1 =2 =3 0 ~ 1 =2 =3 0
A= 4 0 1 +R, 0 -1 -3 1
-1 -1 -5 3 0 0 10
1 -2 -3 0 1 =2 0 0
o 1 3 -1 0 1 0 -1
0o 0 1 0 0 01 0
0 0 0 0 0 00 0
1 00 -2
01 0 -1
001 o0
000 0

The rank is 3, hence the kernel (= the eigenspace corresponding to A = 0) has dimension 4 —3 =1 <
2 = the algebraic multiplicity. We may choose the eigenvector (2, 1,0, 1).

If A =1, then the matrix of coefficients is reduces to

-2 -1 -6 3 ~ 0o -7 —12 3
A\ = 1 -3 -3 0 Ry :=R; +2Rs 1 -3 -3 0
o -1 1 -1 1 Rs3:= R3s+ Ry 0 -2 —4 1
-1 -1 -5 2 Ry :=Rs+ Ry 0 —4 -8 2
1 -3 -3 0 1 -3 -3 0
0 2 4 -1 0 2 4 -1
0o 7 12 -3 0 1 0 0
0O 0 0 0 0O 0 0 0
1 0 -3 0
N 0 1 0 0
00 4 -1
00 0 0
If x lies in the kernel, then
x1 = 3x3, xz2 =0, x4 = 4x3,
and an eigenvector is e.g. (3,0, 1,4).
13
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1. The eigenvalue problem

-1
-1

0
-2

—6
-3
—2
-8

If A = —1, the matrix of coefficients is reduced to
0O -1 -6 3 N 0
A—)\IZ 1 -1 73 O R3 Z:R2+R3 O
-1 1 1 1 R, — Ry, + R 0
-1 -1 -5 4 S W)
~ 1 0 3 -3 ~
Rl = R2 — Rl 0 1 6 —3 R1 = Rl + 3R3
Ry := —R; 0 0 -2 1 Ry := Ry + 3R3
R4 = R4 - 2R1 0 0 4 =2 R4 = R4 + 2R3

The rank is 3, thus the kernel = the eigenspace of A = —1 has dimension 4 —

kernel must fulfil
T = 3x3, zo =0, T4 = 213,

hence an eigenvector is (3,0, 1, 2).

3
0
-1

S

o oo

0
1
0
0
3:

-3 0
0 0
-2 1
0 0

1. A vector in the

14
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1. The eigenvalue problem

Summing up we get:

Eigenvalue 0 with the eigenvector (2,1,0,1).

Eigenvalue 1 with the eigenvector (3,0, 1,4).

Eigenvalue —1 with the eigenvector (3,0, 1,2).

The space has 4 dimensions, however, modulo a scalar factor there are only three eigenvectors.

The eigenvalue 0 has the algebraic multiplicity 2 and the geometric multiplicity 1.

Example 1.5 A linear map f : R* — R* is in the usual basis given by the matriz

1 0 2 -1
0 1 4 =2
A= 2 -1 0 1
2 -1 -1 2

Find the eigenvalues and the eigenvectors of f.

The equation of the eigenvalues is

1-x 0 2 -1
0 1-XA 4 -2
0 = [A-X=] | 1 O 1
2 -1 -1 2-X
1I-X 0 2 -1
B 0 1-X 4 —2
- 0 0 1-XA A—1
2 -1 -1 2-2X
11—\ 4 -2
= (1-=XN] 0 1-X A—1]-2[1-2)
-1 -1 2=
11—\ 4 =2
= (1-X)% 0 I =1 [ +2(1-))>2
-1 -1 2-X
1-X 4 2
= (1-XN% o 10 |—=2(1-))>2
-1 -1 1-X
_ 2| 1=XA 2 2
= (=N 7 020N

= (1-NN{1-N?+2-2}=(A-1D™%

-1
-2

1-X2 x-1

It follows that A = 1 is the only eigenvalue and its algebraic multiplicity is 4.

Download free eBooks at bookboon.com
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Linear Algebra Examples c-3 1. The eigenvalue problem

Then we reduce the matrix of coefficients,

0 0 2 -1 Ry :=Rs3
0 4 =2 R2 Z:Rl

0
A= 2 -1 -1 1 Rs:= Ry — 2R,
2 -1 -1 1 R4Z:R3—R4
2 -1 -1 1 2 -1 1 0
0 0 2 -1 ~ 0 0 2 —1
“lo o 0 0| RR=Ri+Ry, | 0 0 0 0
0 0 0 0 0 00 0

The rank is 2, hence the kernel = the eigenspace has dimension 2. A vector in the kernel satisfies with
r9 = 2s and x3 = 2t as the chosen parameters,

2r1 —To +x3 =221 —25+2t=0 and 2x3— x4 =4t — x4 =0,
hence

r1=85—1, wxy=2s, wx3=2 x4 =41,
and whence.

x = (s —t,2s,2t,4t) = 5(1,2,0,0) + t(—1,0,2,4).

Two linearly independent eigenvectors which span the eigenspace corresponding to the eigenvalue
A =1, are e.g.

(1,2,0,0) and (—1,0,2,4).

It follows again that the algebraic multiplicity is bigger that the geometric multiplicity .

Example 1.6 A linear map f : R? — R3 maps
(1a2a 1) - (172a1)7 (2,1,0) - (_4’ _270)’ (17171) - (0)070)

Find the determinant of reduction, the trace of the matriz and the determinant of the matriz.
(HINT: It is not necessary explicitly to find the matriz of the map).

It follows from the given that

(1,2,1) is an eigenvector corresponding to the eigenvalue 1,

(2,1,0) if an eigenvector corresponding to the eigenvalue —2,

(1,1,1) is an eigenvector corresponding to the eigenvalue 0.
The dimension of R? is 3, and there are 3 different eigenvalues, hence they must all have multiplicity
1. This means that the determinant of reduction = the characteristic polynomial is

(1=N(=2=20-X) == 2AA=1DA+2) = —(A3+ 212 —2)) = -3 — A%+ 2]\,
The trace of the matrix is the sum of the eigenvalues
trA=1-240=-1.

The determinant of the matrix is obtained by putting A = 0 into the characteristic polynomial, thus
the value is 0.

16
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Example 1.7 A linear map f : R? — R3 is given by the matriz equation

Y1 1 4 0 Iy
Y2 = 0 4 5 i)
Y3 4 3 4 I3

Prove that A =9 is an eigenvalue of f, and find the corresponding eigenvectors.

The easiest way is to prove that A — 91 has rank < 3. Then by reduction,

-8 4 0 ~ -8 4 0
A-9I = 0 -5 5 R2 = —R2/5 0 1 -1
4 3 =5 R3 := Ry + R3 4 =2 0

~ 2 -1 0

Rl = R3/2 0 1 -1

R3 = R1 + 2R3 0 0 0

The rank is 2 < 3, thus A = 9 is an eigenvalue with the eigenspace of dimension 1. An eigenvector x
satisfies

21 = x5 and o = T3,
thus (1,2,2) is an eigenvector corresponding to A = 9.
Example 1.8 Assume that two (n X n) matrices A and B have n linearly independent vectors as
common eigenvectors. Prove that

AB = BA.

We get
V'AV=A, and V!BV =A,,

where the columns of V are the common eigenvectors for A and B, and A; and As are diagonal
matrices, thus

A1As = AgA.
Then

AA; = (VT'AV) (VT'BV) =V (AB)V
= AA; = (V'BV)(V'AV) = V' (BA)V,

hence AB = BA.

17
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Example 1.9 Let f denote the linear map of R3 into R3, which in the usual basis of R has the
matric

1 -1 -2
A=10 1 0
0 1 3

Find the eigenvalues and the corresponding eigenvectors of f.
Find also the vectors x € R3, for which f(x) = x.

The eigenvalues are given by

1—A -1 -2
0 = det(A—A)=| 0 1-x 0
0 1 3—A
1-A 0
= =[S0 e e

hence the eigenvalues are A = 1 (algebraic multiplicity 2) and A = 3.

18
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If A =1, then the matrix of coefficients is reduced to

0 -1 -2 01 2
A-I=1| 0 0 0]~ 00O
0 1 2 0 0 0

of rank 1, and the kernel has the dimension 2. It follows immediately that the kernel = the eigenspace
of A = 1is spanned by (1,0,0) and (0,2, —1), which therefore are two linearly independent eigenvectors
corresponding to A = 1.

If A = 3, then the matrix of coefficients is reduced to

-2 -1 -2 -2 0 -2 1 01
A-3I= 0 -2 0]~ 0 1 O]~ 010
0 1 0 0 0 0 0 0 0

The rank is 2, so the kernel = the eigenspace of A = 3 has dimension 3 —2 = 1. An eigenvector is e.g.
(1,0,-1).

All solutions of f(x) = x form the eigenspace corresponding to A = 1. This eigenspace was generated
by the vectors (1,0,0) and (0,2, —1), hence the set of solutions is

{s(1,0,0) + (0,2, 1) | s, t € R} = {(s,2t,—t) | s, t € R}.

Example 1.10 A linear map f : R? — R3 is given by the matriz equation

Y1 1 0 0 T
Y2 = 0 1 0 X2
Y3 0 -1 1 I3

Find the eigenvalues and the corresponding eigenvectors of the map f.

Since we have a lower triangular matrix, the eigenvalues are the diagonal elements, i.e. A = 1 is the
only eigenvalue, and it has the algebraic multiplicity 3.

Since
0 0 0
A-I=|0 0 0
0 -1 0

has the rank 1, the eigenspace has dimension 3 — 1 = 2, and it is e.g. spanned by the eigenvectors
(1,0,0) and (0,0,1).

19
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Example 1.11 Find the eigenvalues and all eigenvectors of the matrix

A =

S O N
O =~ O
~N O W

Does there exist a proper column v € R3¥!, such that Av = 2v?

We infer the eigenvalues from the equation

—2-X 0 3
0 = det(A—\)= 0 4-Xx 0 (/\4)‘
—6 0 7-X
—A={A? = 5N =144+ 18} = —(A — 4){\? — 5\ + 4}
= —A=HO0 -1 -4 =-N-1)(A—4)>~%

A+2 =3
6 A=T

The eigenvalues are A = 1, and A = 4 (of algebraic multiplicity 2).

If A =1, then the matrix of coefficients is reduced to
-3 0 3 1 0 1
A-1= 0 3 0 ~ 01 0
-6 0 6 0 0 O
The rank is 2, so the eigenspace has dimension 3 — 2 = 1, generated by the eigenvector (1,0, —1).
If A =4, then the matrix of coefficients is reduced to
-6 0 3 2 0 —1
A 41 = 000 ]|~O0O0 O
-6 0 3 00 O

The rank is 1, so the dimension of the eigenspace is 3 — 1 = 2. Two linearly independent eigenvectors
are

(1,0,2) and (0,1,0).

The answer is “no”. Because if it was true, then A = 2 would be an eigenvalue, which A\ = 2 is not.

20

Download free eBooks at bookboon.com



Linear Algebra Examples c-3 1. The eigenvalue problem

Example 1.12 Let f : R® — R3 be the linear map, which in the usual basis of R3 is determined by
the matriz

3 4 4
A= 6 6 6
-6 -7 -7

1. Prove that the vectors vi = (1,0,—1), vo = (0,1, —1) and vz = (1,2, —2) are eigenvectors of f,
and find the corresponding eigenvalues.

2. Prove that f(R?) = span{vy,vs}.

1. We get by insertion,

3 4 4 1 -1
Av, = 6 6 6 0 = 0 = —vy, eigenvalue — 1;
-6 -7 -7 -1 1
3 4 4 0 0
Av, = 6 6 6 1 =| 0 | =0vy, eigenvalue 0;
-6 -7 -7 -1 0
3 4 4 1 3
Av; = 6 6 6 2 = 6 =3vs, eigenvalue 3.
-6 -7 -7 -2 —6

2. Since vi, v, and v3 belong to different eigenvalues, they are linearly independent, so we conclude
that v1, va, v3 form a basis of R®. Then we conclude from

flavi + Bva +yv3) = —avy + 3yvs,

that f(R®) = span{vy,v3} of dimension 2.

Example 1.13 Let f : R3 — R? be the linear map, which in the usual basis of R? has the matriz

2 0 -3
F=| 05 0
4 0 9

1. Find all eigenvalues and all the corresponding eigenvectors for f.

2. Check if there exists a basis for R3, such that the matriz of f with respect to this basis is a
diagonal matriz.

1. We find the eigenvalues from the equation

2-X 0 -3
0 = det(F-X[)=| 0 5-X 0 :—()\—5)’
4 0 9-X
= —(A=5){\? —11A+a8+12} = —(A = 5)(A\? — 11X + 30)
—(A=5)%(\—6).

A—2 3
-4 A-9

21
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The eigenvalues are A = 5 (algebraic multiplicity 2) and A = 6.

If A =5, then the matrix of coefficients is reduced to

-3 0 -3 1 0 1
A-5I= 0 0 O]~ 00O
4 0 4 0 0 0

The rank is 1, hence the kernel = the the eigenspace is of dimension 2. Two linearly independent
eigenvectors are e.g. (1,0, —1) and (0,1,0).

If A = 6, then the matrix of coefficients is reduced to

-4 0 -3 4 0 3
A —-6I= 0 -1 O]~ 010
4 0 3 0 0 O

It follows that e.g. (3,0,—4) is a corresponding eigenvector.

2. Since we have 3(= dim R3) linearly independent eigenvectors, these must form a basis for R3,
and the matrix with respect to (1,0, —1), (0,1,0), (3,0,—4) is the diagonal matrix

5 0 0
0 5 0
0 0 6

22
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Example 1.14 Given the matrices

2 1 3 -1
A= 1 2 =3 where a € R, and v = 1
1 -1 a 1

1. Prove that 3 is an eigenvalue of A for every a, and find for every a its geometric multiplicity.

2. Find a, such that v is an eigenvector of A, and prove that A can be diagonalized for such an a.

1. Let A = 3. We reduce

-1 1 3 1 -1 -3
A-)XN=A-3I= 1 -1 -3 |~1 0 0 a
1 -1 a-3 0 0 0

If @ # 0, then the rank is 2 < 3, thus A = 3 is an eigenvalue of geometric multiplicity 3 —2 = 1.
An eigenvector is e.g. (1,1,0).

If @ = 0, then the rank is 1 < 3, hence A = 3 is an eigenvalue of the geometric multiplicity
3 — 1 =2 Two linearly independent eigenvectors are e.g. (3,0,1) and (0,3, —1).

2. We compute

2 1 3 -1 2 2
Av = 1 2 -3 1 = -2 =-2v= -2
1 -1 a 1 a—2 -2

for @ = 0, in which case we have the three linearly independent eigenvectors:
(3,0,1) and (0,3, 1) for A =3,

(-1,1,1) for A = —2.
Then A can be diagonalized for a = 0.
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1. The eigenvalue problem

Example 1.15 Prove that the matrices

2 2 1 2 1 -1
A= 1 3 1 and B = 0 2 -1
1 2 2 -3 -2 3

have the same characteristic polynomial, and yet they are not similar.

We compute

2— A\ 2 1 2— A\ 2 1
det(A—AD)=| 1 3-x 1 |=| 1 3-x 1
1 2 2— A 0 A—1 1-—-2MX
2—A 2 1 2— A\ 3 1
—1-N| 1 3-x1|=@1-X| 1 4-x 1
0 -1 1 0 0 1
2—A 3
—a-n] 270 2 | mae - 0o 0 -3
= (1= =6A+5}=-A-1)A-1)(\A—5)
(- 1P 5),
and
2— A\ 1 -1 2— A 0 -1
detB-M)=| 0 2-XA -1 |=| 0 1-x -1
-3 -2 3= -3 1=-X 3=\
2—X 0 -1 2—X 0 -1
—(1-N] 0 1 -1 |=1-n] 0 1 o0
-3 1 3= -3 1 4-X
2— A 1
a-» 235 T | ma-me-a0-0 -3
(- 1P -5,

hence A and B have the same characteristic polynomial.

If they are not similar, then A = 1, which has the algebraic multiplicity 2, must have different geometric

multiplicity for A and B.

We reduce for A =1,

1 21 1 21
A-1I= 1 2 1 ~1 0 0 O
1 2 1 0 0 O
and
1 1 -1 1 0 0
B-1I= 0 1 -1 ~1 0 1 -1
-3 =2 2 0 0 0

Since A —1I has rank 1, and B — I has rank 2, the matrices A and B cannot be similar.
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1. The eigenvalue problem

Example 1.16 Check if any of the following matrices are similar:

3

A=| -4

-1
2
D=|1
0

-3 -1 0 3 110
6 |, B= 22 5|, c=(011],
5 -1 0 2 10 1

A necessary (though not sufficient) condition of similarity is that the characteristic polynomials are
identical. We therefore compute

det(A — AI)

det(B — AI)

det(C — AI)

3-x 1 -3 B 3-X A-2 -3
-4 —2-X 6 - -4 2-X 6
-1 1 5o | ESES 0 5-A
3-X2 -1 -3 7
2-XN| -4 1 6 -
10 5.y | Bi=RiTR
~(A+1) 0 3 B
=2 4 1 6 :-(A—Q)‘AT1 A35‘
“1 0 —(A—5)
—(A=2)(N?—4r+2),
—-1-Xx 0 3
2 2-X -5 :(2—)\)’_0‘:{1) _(;’_2)‘
-1 0 2—2A
Ao=3 | 5
()\2)‘1 )\_2‘()\2)()\ A+,
1-Xx 1 -
0 1-Xx 1 -
1 0 12 R :=R;+ Ry + R3
1-Xx 1 0
2-X 2—X 2-2)
1 0 1-2X
1-Ax 1 0 1-A 1 0
2-N] 1 1 1 |=-A=2) x 0 1
10 1-2X 10 1-2X
A1 A -1
(A_2)‘1 1—)\‘_ (A_2)‘1 /\—1‘
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2-\ 0 0 1—x 1
det(D — \I) = 1 1-x 1 :(2—/\)’ o 3_A‘
0 -1 3-)
_ A-1 -1 | 5
= -(A-2)| 7, )\_3’()\2)()\ 4N +4)
= —-(A-2)°
Summing up we have

det(A—AI) = —(A—2)(\>—4rx+2),

det(B—AI) = —(A—2)(\2—A+1),

det(C—AI) = —(A—2) (A2 =A+1),

det(D - M) = —(\A—2)3%

The only possibility of similarity is between B and C, because they have the same characteristic
polynomial. This has the complex eigenvalues

1 4 1
2 -+ -3 - — =3
’ 2 + 2 V3, 2 2 V3
which each has the algebraic, hence also the geometric, multiplicity 1, both B and C can be diag-
onalized in the complex domain with the same diagonal matrix A, thus B and C must be similar.
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Example 1.17 Given the matriz

1 0 0 0
a 1 0 0
A= b ¢ 2 0
b ¢ 2 0
a B v 2

Find a necessary and sufficient condition for that A can be diagonalized.

Clearly, the eigenvalues A = 1 and A = 2 have both the algebraic multiplicity 2.

If =1, then
0 0 00
a 0 0 0
A-T= c ¢ 10
a [ v 2

The latter two rows are clearly linearly independent (they are both # 0 and the latter two coordinates
can only be brought to disappear by trivial linear combinations) and the can not produce the second
row, unless a = 0, thus the rank can only be 2, if a = 0.

Thus, a necessary condition is that a = 0. We therefore put a = 0 and then find for A = 2 that

-1 0 0 0 1 000
0 -1 0 0 01 0 0
A-2d= b c 00| ]l o0oo0oo0o0
a [ v 0 0 0 v O

The rank is 2, if and only if v = 0.

Hence, a necessary condition for that A can be diagonalized is that both a = 0 and v = 0.
Conversely, if both ¢ = 0 and v = 0, then the same argument as above shows that for the matrix

1 000
0100_bI 0
b ¢ 2 0 |7 D) |

a B
a B 0 2

both eigenvalues, A = 1 and A = 2 have the geometric multiplicity 2, and the matrix can be diagonal-
ized.

Hence, the necessary and sufficient condition for that A can be diagonalized is that a = 0 and v = 0.
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Example 1.18 Given the matriz

3 -7 9
A= 2 -4 2
-1 2 -5

1. Prove that A = —2 is a triple root of the characteristic polynomial.

2. Find all eigenvectors of A, and explain why A cannot be diagonalized.
3. Given a linear map f : R3 — R3 with respect to the usual basis by the matriz equation

v = Ax.

We consider in R3 the subspace U, which is spanned by the vectors u; = (2,0, —1) and uy =
(0,4,3).

Prove that f(U) =U.

1. The characteristic polynomial is

3-X -7 9 3-X —(A+4)  A+6
det((A —\I) = 2 —4-2) 2 = 2 —-(A+2) 0
-1 25— 1 1 —(A+4)
-0+ At6 | 3-X  A+6
= 1 oy | T oy

—2{(A+4)°=A+6)} —A+2){(A=3)(A+4)+ A +6}
—2{XN+7A+10} — (A +2) {N\*+2)1 -6}
—2A+2)(A+5) = (A+2) {\*+21 -6}
—(A+2) {2 + 10+ A + 21— 6}

—(A+2) (N2 +4A+4} = —(A+2)(A +2)?

= —(A+2)°%

It follows that A = —2 is a triple root of the characteristic polynomial, hence A = —2 is the only
eigenvalue (of algebraic multiplicity 3).

2. We get by reduction,

~

5 =7 9
. - Rl = —R3
Atz =0 272 2 Re=moion,
R3 = R1 + 5R3
1 -2 3 1 0 -1
~ 0 2 —4 ~ 01 -2 ],
0 3 —6 0 0 0

thus the rank is 2. This proves that A = —2 has the geometric multiplicity 3 —2 =1 < 3 = the
algebraic multiplicity. It follows that A cannot be diagonalized.
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1. The eigenvalue problem

3. We compute

9 0 -1
2 4 | = —10
-5 3 -7

We infer from
( o

2 5 0 1 5
0 —5 4 _—EU1—§U.2,
-1 3
that f(uy), f(u2) € U, so f(U) CU.
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1 -5

— 1
’ 51 ’=1(15+1)=4¢0,

it follows that f(u;) and f(us) are linearly independent, so they span U. Finally, it follows by
the linearity that f(U) =U.

Example 1.19 Let a linear map f : R® — R3 be given by its matric

0 1 -1
A=1| -1 -3 3
-1 -1 0

with respect to the usual basis of R3.

1. Find the eigenvalues and the corresponding eigenvectors of f. Fxplain why A is not similar to
a diagonal matriz.

2. Let by = (—1,1,1). Find all vectors by € R3, which satisfy the equation

f(bs) = by — by.

3. Prove that there exists a basis (b1, ba,b3) of R3, such that f in this basis has the matrix

-1 1 0
0o -1 1|,
0 0 -1

and find such a basis.

(HINT: Use as the first two basis vectors by and by from 2.)

1. We compute the characteristic polynomial,

—A 1 ~1
det(A—X) = | -1 —(A+3) 3
-1 -1 =)

= “AA+3)=3-1+(A+3)—A-3)
= A+3)(1 -2 —4)—4

= —(A+D{A=1)(A+3) +4}

= —A+D{N+2+1)=—-(A+1)?

hence A = —1 is the only eigenvalue (of algebraic multiplicity 3).

We infer from the reduction

1 1 -1 1 1 -1 1 01
A+I=| -1 -2 3 ]~ 0 -1 2 |1~ 0 -1 2
-1 -1 1 0 0 0 0 0 0

30

Download free eBooks at bookboon.com



Linear Algebra Examples c-3 1. The eigenvalue problem

that the eigenspace has the dimension 1, thus A = —1 has the geometric multiplicity 1 < 3 =
the algebraic multiplicity. This shows that A is not similar to a diagonal matrix.

An eigenvector corresponding to A = —1 must satisfy
r1+23=0 and — a9+ 2z3=0,
e.g. (—1,2,1) = by.
2. The equation f(bs) = by — by is of course equivalent to the equation
(A +TI)by = by,

the corresponding homogeneous equation of which has the solutions & - b;.

We are only missing a particular solution, so we reduce,

1 1 -1] -1
(A+I|by) = -1 -2 3 2
-1 -1 1 1
1 10 1 0
~ 0 —1 01 -2 | -1
0 0 0 O 0
One particular solution is (of course) by = (0, — , thus the complete solution is
0 -1
-1 | +k 2 1, ke R.
0 1
3. Choosing b; = (—1,2,1) and by = (0, —1,0), we get
f(b1) =—b; and f(b2) =b; — by,
which is taking care of the first two columns of the matrix.
Finally, we shall choose bz, such that
f(b3) = by — bs,
ie. (A +I)bg = bs. We reduce
1 1 -1 0
(A+1I|by) = -1 -2 3| -1
-1 -1 1 0
1 1 -1 0 1 0 1] -1
= 0 -1 2| -1 |~ 0 1 =2 1
0 0 O 0 00 O 0
Hence
r1+x3=—1 and x5 —2x3=1.
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If we choose 9 = 1, then z3 = 0 and x; = —1, thus
bs = (—1,1,0).
CHECK:
1 1 -1 -1 0
(A+1I)bg = -1 =2 3 1 1= -1 | =by,
-1 -1 1 0 0

and f(bs) = bs — bs as required. ¢

We may choose the basis

by =(-1,2,1), by =(0,-1,0), bs=(-1,1,0).

Example 1.20 Let f denote the linear map of R? into R3, which in the usual basis of R3 is given by
the matriz

5 1 -1
A=| -4 1 2
4 0 -1

1. Find all eigenvalues and the corresponding eigenvectors of f.

2. Does there exist another basis of R?, such that the matriz of f with respect to this new basis is
a diagonal matrix?

3. Let vy = (1,—1,1) and vo = (1,—2,2). Find a vector vs, such that
f(v3) =va+vs,
and prove that (v1,va,v3) form a basis of R3.

4. Find the matriz of f with respect to the basis (vi,va,Vv3).

1. We first compute

5-x 1 -1
det(A—AI) = | —4 1-X 2
40 —1-2A
1 5o 1
= 4)1—)\ 2‘_““)' 4 1—)\‘

4241 =N = A+ D{(A =1\ —5) +4}

—4A=3) = A+ 1D{N\* - 6)+9}

—4A=3) = (A +1) (A —3)?
—A=3){A+1DA=3)+4}=-A-3){\2—2A+1}
= —(A=1)2*0\-3).
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We infer that the eigenvalues are A = 1 (of multiplicity 2) and A = 3.

If A =1, then by reduction

4 1 -1
A-)XX = A-I=| 4 0 2 |~
4 0 -2

S O =
O = =

2
oo

10
11
0 0
The rank is 2, hence the eigenspace has the dimension 3—2 = 1. An eigenvector is (1, —2,2) = vs.

If A = 3, then by reduction

2 1 -1 2 1 -1
A-)XN = A-3I=| -4 -2 2 |~ 1 0 -1
4 0 —4 0 0 0
1 1 0
~ 1 0 -1
0 0 0
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One eigenvector is e.g. (1,—1,1) = v;.

2. Now, A = 1 has the algebraic multiplicity 2 and the geometric multiplicity 1. Hence there does
not exist another basis, such that the matrix of f is a diagonal matrix.

3. We now write the equation as (A — I)vs = vo. Then the corresponding homogeneous equation
has the solution k - vo, so we just have to find a particular solution. We reduce

41 -1 | 1 41 -1 1
(A-1|vy) = 40 2|-2]~[01 1] -1
40 -2 2 00 0] 0

4.0 -2 =2

~ 01 1] -1

00 O 0
We see that we can choose vz = (0,0, —1).

It follows from

1 1 0 1 1
det{v1 Vo Vg} = -1 -2 0 :—’ 1 9 ‘
1 2 -1
11
- ’1 2 “17&0’

that {vi, v, v3} form a basis of R3.

34

Download free eBooks at bookboon.com



Linear Algebra Examples c-3 1. The eigenvalue problem

4. Then it follows from

f(vi) =3vi, f(v2) =va, [f(vs)=va+vs,

that the matrix of the map with respect to the basis {vy, va, v3} is given by

O O W
O = O
=]

Example 1.21 Given the matrices

M(“ b) and A =
c d

o 2 OO
QU o O O
S O o
o o= O

where a, b, ¢, d are constants.

1. Prove that if x = < z > € C?*! is an eigenvector of M corresponding to the eigenvalue X,
x
Y
x

and if p satisfies p? = \, then € C**! is an eigenvector of A corresponding to the

HY
etgenvalue L.

2. In particular, let

12
M= 1)

and let f : C* — C* be the linear map, which with respect to the usual basis is given by the
matriz A, corresponding to M. Find the eigenvalues and the eigenvectors of f.

3. Find a basis (b1,ba, bz, by) of C*, such that the matriz of f with respect to this basis is a
diagonal matriz, and find this diagonal matriz.

T
1. When we put z = y , then
7%
1y
00 1 0 x Ux x
_ 10001 y || o my | _ 7
Az = a b 00 pr | T x| TH| g | T
c d 00 Hy Ay By
and the claim is proved.
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2. The characteristic polynomial of M is

@dM—AD:‘12A 1EA‘:Q—1Y—?:4A+DQ—3L
thus the eigenvalues are A = —1 and A = 3.
If A= —1, then

2 2
MM_(22>,

. . x 1
hence an eigenvector is Y =\ _1 )

If A\ = 3, then

-2 2
M—M—( 2_2)

)-(1)

We now apply 1. We get from i2 = —1 that p = 4. Then it follows that u = 7 is an eigenvalue

hence an eigenvector is (

< R

1 1
with the eigenvector _1 , and g = —1 is an eigenvalue with the eigenvector __
—1 i
1
1
Analogously, ;1 = /3 is an eigenvalue with the eigenvector VK and 4 = —/3 is an
V3
1
. . . 1
eigenvalue with the eigenvector 3
-3
3. If we choose
bl :(13_172.’_7;)3 f(bl):Zbla
b2 = (17_1a_iai)7 f(b2) :_ib%
b3:(1717\/§7\/§)7 f(b3)*\/§b37
b4: (Lla_ 3a_\/§a f(b4) :—\/§b47

then the matrix of the map with respect to this basis becomes the following diagonal matrix

0
—1

0
0

ano

o O O .
|
%ooo
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Example 1.22 Let (r,s) denote a pair of numbers, where s is bigger than r, and r is one of the
numbers 1, 2, 8, and s is one of the numbers 2, 3, 4. Let A denote the matriz, which we get when we
in the matrixz

1 0 00
01 0 0
0 010
0 0 0 2

replace the zero of row number r and of column number s by the cypher 1. For which (r,s) can A be
diagonalized?

It s € {2,3}, then it is easily seen that A = 1 has algebraic multiplicity 3 and geometric multiplicity
2, hence A cannot be diagonalized in this case.

If s =4, then we reduce

00 0 %
0 0 0 «
A-T= 00 0 x|
00 01

where the x denotes that we on such a place may have either 0 or 1 and that precisely one of the
* takes on the value 1. Then A — I has rank 1, and the geometric multiplicity = 3 = the algebraic
multiplicity, i.e. A can be diagonalized if s =4 and r € {1, 2, 3}.

Example 1.23 Given the matrices

7T -2 2 2 -2
A= 1 4 2 |, vi= 1 and vg = 0
-1 2 4 0 1

1. Prove that vy and vo are linearly independent eigenvectors of A.
2. Find all the eigenvalues and all the corresponding eigenvectors of A.
8. Find a regular matriz V and a diagonal matriz A, such that

V~IAV = A.

1. Clearly, vi and vy are linearly independent. Then

7T =2 2 2 12 2
Av; = 1 4 2 1 = 6 =61 1 = 6vy,
-1 2 4 0 0 0
and
7T =2 2 -2 —-12 -2
Avy = 1 4 2 0 = 0 =6 0 = 6vy,
-1 2 4 1 6 1

hence v; and v, are linearly independent eigenvectors corresponding to the same eigenvalue
A =6.
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2. When we compute the characteristic polynomial we can apply that we already know that (A—6)?
is a factor of this polynomial,

T\ =2 2 6-X 0 6-2)\

det(A — \I) = 1 4-X 2 |=| 0 6-X 6-2A\
~1 2 4-A -1 2 4-)

10 1 10 1

= 6-XN% 01 1 |=X=62%01 1

~1 2 4-2) 0 2 5-)\

= A=6*5-X-2)=(\-3)(A—6)>

The eigenvalue A\ = 6 has according to 1) the two linearly independent eigenvectors vi = (2,1,0)
and vo = (—2,0,1).

If A =3, we reduce

4 -2 2 1 1 2
A-) = 1 1 2 |~ 0 3 3
-1 2 1 0 6 6

11 2 1 01

~ 01 1 |~f(0T11

0 0 O 0 0 O

We may choose the eigenvector (1,1, —1) = vs.
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3. Since A = diag(6,6,3), and V, then

2 =2 1
V= (Vl Vo Vg) = 1 0 1
0 1 -1

Remark 1.2 For the sake of completeness we add the reduction

2 -2 1]l1 00 1 0 1/l0 10
(VII) = 1 0 1/010}|~[0 1 =110 01
0 1 —-1]0 0 1 0 -2 -1]1 -2 0
10 1]0 10 10 1 01 0
~ 01 =110 01 ]~]01 -1 0 0 1
00 =3|1 —2 2 00 1] -3 2 -2
1 0 0 11 2
i3 3
SO U B B B N
00 1]-35 3 —3
thus
11 2
v 1 it o
13 3
3 3 3

Example 1.24 Let f : R3 — R? be the linear map, which in the usual basis of R has the matriz
3 -1 1
A=| 7 -5 1
6 —6 2

1. Prove that vi = (0,1,1) is an eigenvalue of f, and check if 2 is an eigenvalue of f.

2. Prove that vi = (0,1,1), vo = (1,1,0) and ez = (0,0,1) form a basis of R®, and find the matriz
of [ with respect to the basis (vi,Va,€2).

1. By insertion,

3 -1 1 0 0 0
Avi=1| 7 -5 1 1 | =1 -4 | =—4| 1 | =—4vy,
6 —6 2 1 —4 1
hence v, is an eigenvector corresponding to the eigenvalue A = —4.

Then by reduction,

1 -1 1 0 0 1
A-2I=7 -7 1 |~ O 0 0
6 —6 0 1 -1 0

which is of rank 2. Hence A = 2 is an eigenvalue, and a corresponding eigenvector is (1,1,0) = vs.
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2. From
0 1 0
avi+pPBvo+yes=al| 1 | +8( 1 |+ 0 | =0,
1 0 1

follows successively that 3 =0, « = 0 and v = 0, and (v1, Vs, e3) form a basis of R?.

It follows from

3 -1 1 0 1 1 0
fles)y=1 7 =5 1 0 |=|1]=(11]+2]| 0 | =vy+2es,
6 —6 2 1 2 0 1

that the matrix of the map with respect to (vi,vs,e3) is

-4 0 0
0 21
0 0 2
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Example 1.25 Given the matriz

A =

==
o = O
N = O

1. Find all eigenvalues and all corresponding eigenvectors of A.

2. Find a regular matrix V and a diagonal matriz A, such that

V7IAV = A.

1. If we expand after the first row, then

I-x 0 0
det(A-XI)=| 1 1-X 1 |=(01-=-XN?*2-)),
1 0 2-A

and the eigenvalues are A = 1 (multiplicity 2) and A = 2.

If A =1, then we get by reduction

0 00 1 01
A-XN=A-I=(101]~1000
1 01 0 0 0

of rank 1, so the eigenspace has dimension 3 — 1 = 2 with the linearly independent eigenvectors

vi = (1,0,-1) and vo = (0, 1,0).
If A = 2, then we get by reduction
-1 0 0 1 0 O
A-)XN=A-2I= 1 -1 1 |~|0 1 -1
1 0 0 0 0 O

of rank 2, hence the eigenspace has dimension 3 — 2 = 1, and an eigenvector is vs = (0,1, 1).

2. It is immediately seen that

1 0 0
V:(Vl Va v3): 01 1 and A =
-1 0 1

O O =
o = O

N O O
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Example 1.26 The linear map f : R? — R3 is in the usual basis of R? given by the matric

™ e e

16 —-13 -2
A= 18 —-15 -2
—24 24 4

Compute tr A.
Prove that (1,2,—4) is an eigenvector of f, and find the corresponding eigenvalue.
Prove that 3 is an eigenvalue of f, and find a proper corresponding eigenvector.

Ezplain why A can be diagonalized and find a diagonal matriz, which is similar to A.

The trace is equal to the sum of the diagonal elements,

spor A=16—-15+4=25.

We get by putting vy = (1,2, —4),
16 —-13 -2 1 16 —26 +8
Av, = 18 —15 -2 2 = 18 —30+8
—24 24 4 —4 —24 448 — 16
-2 1
= | 4 ]==2| 2]=-2v,
8 —4

hence v; is an eigenvector corresponding to the eigenvalue —2.

‘We reduce
13 —13 -2 —-35 35 0 1 -1 0
A-)XN=A-3I= 18 —-18 -2 ~ -30 30 0 ~ 0 0 1
—24 24 1 -24 24 1 0 0 0

of rank 2, thus the eigenspace has dimension 3 — 2 = 1, and an eigenvector is e.g. vo = (1, 1,0).
Using that A1 + Ao + A3 = tr A, we get
)\3: tI‘A—)\l—)\2:5—(—2)—3=4.

The three different eigenvalues are all of multiplicity 1, hence A is similar to a diagonal matrix

-2 0 0
A= 0 3 0
0 0 4

ADDITION. For the sake of completeness we reduce

12 —-13 -2 —-12 13 2 0 1 2
A-I=A-4= 18 19 -2 | ~ 6 -6 0 |~ 1 -1 0
—24 24 0 1 -1 0 0 0 0
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of rank 2, hence the eigenspace has dimension 3 — 2 = 1, and an eigenvector is e.g. vy = (2,2, —1),
and

1 1 2
V= (Vl Vo V3) = 2 1 2
-4 0 -1
Example 1.27 Given the matriz
-2 -5 -3
A= —2a—4 —-5a—2 —3a-—2

)

4a+8 10a+6 6a+5
where a is any real number.
1. Find the trace of A.
2. Prove that 0 is an eigenvalue of A.

3. It is given that 1 is an eigenvalue of A.

Prove that a is an eigenvalue of A.

4. Find all a € R, for which A can be diagonalized.

1. The trace is

M+X+A3=trA=-2—-5a—2+6a+5=a+1.

2. We reduce
-2 -5 -3
A = —2a—4 —-ba—2 —-3a-—2
4a+8 10a+6 6a—+5
-2 -5 -3 -2 -5 -3
~ —2a—4 —-ba—2 —-3a-—2 ~ —4 -2 =2
0 2 1 0 2 1
-2 1 0 4 0 1
0 2 1 0 0 0

The rank is 2, so the eigenspace has dimension 3—2 = 1, and an eigenvector is e.g. vy = (1,2, —4),
and /\1 =0.

3. Remark 1.3 We first check that Ay =1 is an eigenvalue. Then by a reduction,

-3 -5 -3 -3 -5 =3
A-1= —2a—4 —-5a—3 —3a-—2 ~ a—4 -3 -2
4a+8 10a+6 6a+4 0 0 0
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of rank 2, hence Ay = 1 is an eigenvalue. It follows that

-5 -3
% e

hence the rank is 2 for every choice of a, i.e. the eigenspace has always dimension 1.

If Ao =1 is an eigenvalue, then it follows from 1) that
/\3: trAf/\lf)\QZ(CL‘Fl)*O*l:a,
and the last eigenvalue is A3 = a.

4. If a = 0 or a = 1, then a is a double root in the characteristic polynomial. According to
the remark above, the geometric multiplicity is always 1 for A = 1, and since the geometric
multiplicity also is 1 for A = 0 by the reduction of 1), we conclude that the matrix cannot be
diagonalized for a = 0 or for a = 1.

On the other hand, if @ # 0 and a # 1, then the three eigenvalues {0,1,a} are all different and
all of multiplicity 1, and we can diagonalize the matrix in this case.
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Example 1.28 Given the real matrices

1 a—1 O 1 2 -2
A=[1 -1 0 and B=1| 0 +a 0 |, wherea>D0.
0 o0 1 0 0 —va

1. Find for every a > 0 all eigenvalues of A. Indicate for each of the eigenvalues its algebraic and
geometric multiplicity .

2. For which a > 0 is A similar to a diagonal matriz? Find for each of these a a diagonal matriz,
which is similar to A.

8. Prove that A and B have the same characteristic polynomial.

4. Find all a > 0, for which A is similar to B.

1. We first compute the characteristic polynomial,

1-X a-1 0
det(A — AI) = 1 —1-X 0 |[=@1-Xx)
0 0 1-2A

= —A-D{NP-1-a+1}=-(A-1{-a}
= - DO VOO +Va).

The eigenvalues are {1,+/a, —/a}.

1-X a-1
1 —-1-A

If a ¢ {0,1}, then both the algebraic and the geometric multiplicity are 1 for each of the
eigenvalues. In particular, A can be diagonalized, if a ¢ {0,1}.

If a = 0, then the eigenvalue A = 0 has algebraic multiplicity 2.

It follows from the reduction

1 -1 0 1 -1 0
A=|1 -1 0 |~ O 0 0
0 0 1 0 0 1

that the rank is 2, hence the geometric multiplicity is 1. Since the algebraic and the geometric
multiplicity are not identical, on cannot diagonalize A for a = 0.

If a =1, then A =1 is an eigenvalue of algebraic multiplicity 2. It follows from the reduction
0 00
A-I=|1 -2 0
0 00

that the rank is 1, hence the geometric multiplicity is 2. Thus we can in this case diagonalize
A.

Summing up we get
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(a) a>0,a#1.
The eigenvalues are {1,+/a, —+/a}, are all of algebraic and geometric multiplicity 1.

(b) a=0.
The eigenvalues are A1 = 1 of algebraic and geometric multiplicity 1, and Ay = 0 of algebraic
multiplicity 2 and geometric multiplicity 1.

(¢c) a=1.
The eigenvalues are Ay = —1 of algebraic and geometric multiplicity 1, and Ay = 1 of
algebraic and geometric multiplicity 2.

2. Since the algebraic and geometric multiplicities are identical for a > 0, and not for a = 0, the
matrix is similar to a diagonal matrix

)

SO =

0 0
Va 0

0 —va
if and only if @ > 0.

3. Now, B is an upper triangular matrix, hence the characteristic polynomial of B is
det(B — AI) = —(A — 1)(A — Va)(A + Va) = det(A — AI),
and the claim is proved.

4. If a ¢ {0,1}, then B can be diagonalized, so B is similar to the matrix of 2), and thus also
similar to A for a ¢ {0,1}.

If a = 0, then
1 2 -2
B=10 0 0
0 0 0

of rank 2. Since A for a = 0 has rank 1, the two matrices are not similar for a = 0.

If a=1and A =1, then
0 2 -2
B-)XI=| 00 0
0 0 -2

of rank 2, and since A — Al for a = 1 and A = 1 has rank 1, they are not similar for a = 1.

The matrices A and B are similar for a > 0, a # 1.
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Example 1.29 Given for every a € R the matrix
_f 2a+1 —-1-1
A= < 20+2 —a-—2 )
1. Prove that a is an eigenvalue of A.

2. Find all eigenvalues and eigenvectors of A.

3. Explain why A can be diagonalized for every a € R, and find a diagonal matriz A and a reqular
matriz 'V, such that A = V1AV,

4. Find first A, and then A4,

1. We get by a reduction,
aca= (gt L)~ (r )
of rank at most 1 < 2, hence a is an eigenvalue of A.
2. Since
Mtl=a+d=trA=2a+1)—a—2=a-1,
the second eigenvalue is Ao = —1.

If a # —1, then we have the two simple eigenvalues {a, —1}, where an eigenvector corresponding
to ais (1,1).

If Ay = —1, we have the reduction
[ 2+2 —a-1 2 -1
A= Al= ( 20+2 —a—1 ) - ( 0 0 )
and a corresponding eigenvector is (1, 2).
If a = —1, then
-1 0
A=(0 1)
is already diagonalized, and we have the two linearly independent eigenvectors (1,0) and (0, 1).

3. We have in 2) proved for every a € R that A has two linearly independent eigenvectors. Since
the dimension is 2, we can always diagonalize A, and A is similar to

a 0
A_(O 1>7 a e R

If a # —1, then

47

Download free eBooks at bookboon.com



Linear Algebra Examples c-3 1. The eigenvalue problem

For a = —1er

(10N o1
vo (1) v

4. Obviously,
14 14
14 _ a 0 o a 0
A _< 0 (—1)14)_< 0 1>'
Ifa=—1, then A* =AM =1.
If a # —1, then
A = (VAVTH™
1 a* 0 2 -1
2 0 1 -1 1
1
2

201t —1 —a™+1
214t -2 —aq¥4+2 )

Il
/N
— =

I
7 N
Q
=
NS
7 N
\

— N
|

—_ =

N~
I

We note that lim,_,_; A" =1
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Example 1.30 Given the matriz

0 -1 0
A= a a+1 a—2 |, where a € R.
0 0 2

1. Find for every a all eigenvalues and the corresponding eigenvectors of A.

2. Find all a, for which A is similar to a diagonal matriz, and find for each of these a a diagonal
matriz which is similar to A, and also a reqular matriz, which diagonalizes A to the indicated
diagonal matriz.

1. The characteristic polynomial is

o 0 .
det(A — AI) = (1) 1+(1)—)\ g:/?\ =—-(A—-2) 0 atl—2

= —-A=2{N—(a+Dr+a}=-A-1D)A-2)A—a),
thus the eigenvalues are A\; = 1, Ao = 2 and A3 = a.

If A =1, then we get by reduction (no matter the choice of a),

-1 -1 0 1 1 0
A-1I= a a a—=2 |~ 0 00
0 0 1 0 01

of rank 2 with the eigenvector (1, —1,0).

If A = 2, then by reduction

-2 -1 0 —2 -1 0
A -2 = a a—1 a—2 ~ a—2 a—2 a—2
0 0 0 0 0 0

of at most rank 2.

If a # 2, then the rank is 2, and the eigenspace has dimension 3 — 2 = 1. An eigenvector is e.g.

(1,-2,1).
If a = 2, then
-2 -1 0 0 0 0
A-21= 2 1 0] ~12 10
0 00 0 00

of rank 1, thus the eigenspace has dimension 2. Two linearly independent eigenvectors are e.g.
(1,-2,0) and (0,0,1).
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If a ¢ {1,2}, then we get by reduction

—a -1 0 a 1 0
A —al = a 1 a—2 ~ 0 0 O
0 0 2—a 0 0 1

of rank 2, thus the eigenspace has dimension 3 — 2 = 1. An eigenvector is e.g. (1, —a,0).

2. Tt follows from 1) that the algebraic and the geometric multiplicities are equal for a # 1, while
they are differfent for a = 1, where A = 1 has algebraic multiplicity 2 and geometric multiplicity
1.

Hence, the matrix A is similar to
100
A=| 0 2 0 for a # 1.
0 0 a

If a ¢ {1,2}, then we diagonalize A by

1 1 1
V= (Vl Vo Vg) = -1 -2 -—a
0 1 0
If a = 2, we diagonalize A by
1 1 0
V= (Vl Vo Vg) = -1 -2 0
0 01

Example 1.31 Given the matriz
17 —18
A= ( 9 -10 ) ’
1. Find a diagonal matriz A and a reqular matriz 'V, such that

A=V1AV.

2. Find a matriz D, such that D® = A, and then find a matriz C, such that C*> = A.

1. The characteristic polynomial is

det(A —AI) = A — spor A-A+detA=)—-7\-38
A=8)(A+1).
The eigenvalues are A\; = —1 and Ay = 8.
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We infer from

18 —18 1 -1
A_M_(g 9)”(0 0)’

that v; = (1,1) is an eigenvector corresponding to A\; =

Since

9 —18 1 -2
AAQI(g —18)N(0 0)’

—1.

then v = (2,1) is an eigenvector corresponding to A = 8.

It follows that

(-1 0 (11 -1
A—< 0 8) and V_<1 2>medV —<

where A = V71AV.

2. We can obviously choose

o (1)

If we put

Example 1.32 Given the matrices

0 -1
A= 2 3
0 0

N OO

1 0 0
and D = 0 2 0
0 0 2

Prove that A and D are similar.

We note that D is a diagonal matrix with the characteristic polynomial

—(A=1)(A=2)2
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The characteristic polynomial of A is

. | 0 -\ -1 0
det(A—A) = | 2 3-A 0 |=|2-A 2-XA 0
0 0 2—A 0 0 2— A

SCEEE I EREIPEE R

thus the same characteristic polynomial as for D.

If A =2, then
-2 -1 0 2 10
A-21= 2 1 0]~ 00O
0 00 0 0 0

of rank 1, hence the geometric multiplicity is 3 — 1 = 2 = the algebraic multiplicity.

If A = 1, then the geometric and the algebraic multiplicities are trivially equal. Consequently, A is
similar to a diagonal matrix, i.e. to D.
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Example 1.33 Let f : R3 — R? be the linear map, which in the usual basis of R? has the matriz

0 2 -1
A= -4 5 -1
-4 3 1

It is further given that the vectors
b, = (1a272)7 by = (Oalal)v b3: (03132)
form a basis of R3
1. Prove that the matriz
2 10
B=|0 2 1
0 0 2

is the matriz of f with respect to the basis (b, by, bs) i R3.

2. Find the eigenvalues of f.

1. We get by insertion

0 2 -1 1 0+4-2 2

Ab;, = —4 5 -1 2 = —44+10—-2 = 4 =2by,
—4 3 1 2 —44+6+2 4
0 2 -1 0 1 1 0

Ab, = —4 5 -1 1 1=14]1=(2|+2] 1 | =by+by,
—4 3 1 1 4 2 1
0 2 -1 0 0 0 0

Ab; = -4 5 -1 1L |=3]|=|1/]+2[ 1 ] =ba+2bs,
—4 3 1 2 5 1 2

thus the matrix is
210
B=|0 21
0 0 2
2. We have trivially, det(B — A\I) = —(\ — 2)3, hence A\ = 2 is the only eigenvalue of algebraic

multiplicity 3. It follows from the structure of B that the geometric multiplicity is only 1, and
that by is an eigenvector.
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2 Systems of differential equations

Example 2.1 1. Solve the system of differential equations

d.Tl
dxg

2. Find the solution, which satisfies the initial conditions

.’171(0) = 1, 332(0) = 10.

1. The corresponding matrix is

13
a=(i3)

of the characteristic polynomial
1-A 3

4 5—-A
= M-6A-T=A+1)\-17).

det(A — M) = ‘ ‘:)\2—6>\+5—12

The eigenvalues are A = —1 with the eigenvector (3, —2), and A = 7 with the eigenvector (1, 2).

The complete solution is

zi(t) \ [ 3e7t €™ a1
xo(t) )\ —et 27 c2 )’
where ¢; and ¢y are arbitrary constants.

2. We get for t = 0 that

(o )=(22)(8)=(n)
(—g ;‘110) ~ (—; 2“%))”((1) 2’
! \

where

11
32

1 3] 11 1 0| -1
1| 4 11 4 )°

hence ¢; = —1 and ¢s = 4, corresponding to the solution

zi(t) \ _ [ 3et e -1\ [ —3e '+ 4e™
xo(t) )\ —2e7t 2e7 4 )7\ 2e7t48" )¢
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Example 2.2 1. Solve the systems of differential equations
d.]?l

Cﬁ—t(t) = da(b) + w3(t),
C;tz(t) = 2x1(t) + x2(t)
3y = —22.(b) +  w3(t).

dt

2. Find the solution, which satisfies the initial conditions

1. The corresponding matrix

4 0 1
A= -2 1 0
-2 0 1

has the characteristic polynomial

4—X 0 1
det(A —\I) = -2 1-X 0 :—()\—1)’
2 0 1-2\
= —A=D{A =1 =4)+2}=—-A—=1D{\* —5)X+6}
~A=1DA=2)(A—3).

4— ) 1
-2 1-2A

The simple eigenvalues are A =1, 2, 3.

If A =1, then vi = (0,1,0) is trivially an eigenvector.

If A\ =2, then
2 0 1 2 01
A-MN=| -2 -1 0]|~|210],
-2 0 -1 0 00
hence vo = (1,—2,—2) is an eigenvector.
If A = 3, the
1 0 1 1 0 1
A - )= -2 =2 0 ~ 11 0 |,
-2 0 -2 0 00
hence vy = (1,—1,1) is an eigenvector.
The complete solution is
x1(t) 0 e e3t c1
2o(t) | = | e —2e* et c |,
x3(t) 0 —2e%t —e3t c3
where ¢y, co, c3 are arbitrary constants.
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2. If we put t = 0, then

x1(0) 0 1 1 c1 -1
w0 | =11 -2 -1 e | = 1
33‘3(0) 0 -2 1 C3 0

It follows from the reductions

0 1 1 -1 0 1 1 -1 1 0 0 1
1 -2 -1 1L |~ 10 o0 1 |]~[0 10 —%
0 -2 1 0 0 2 -1 0 00 1| -3
1 2 .
that ¢ =1, co = —= and ¢c3 = —3 hence we get the solution
x1(t) 0 1 et 1 e3t
za(t) | = € | - 3 —2e* | — 3 —et
x3(t) 0 —2e~2 —e3t
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Example 2.3 Solve the system of differential equations

d
% = 41 (t) + 222(t) + 223(t),
d
% = 22 (t) + 4dxo(t) + 2x3(t),
d
% = 221 () + 2xo(t) + das(t).

The corresponding matrix is

4 2 2
A= 2 4 2
2 2 4

Remark 2.1 If we add the three equations, then we immediately get

%{xl(m) +x2(t) — x3(t)} = 8{w1(t) + x2(t) + x3()},

and analogously by a subtraction,

%{wl(t) —xa(t)} = 221 (t) = 229(t) = 2{z:1 () — 22(1)},

and

S {alt) — ws(t)) = 2a(t) — 23() = 2ma(t) — 23(0).

These equations are immediately solved, thus we could by this nonstandard observation save us a lot

of trouble. ¢

The characteristic polynomial is

4— X 2 2 2—X 2= 0
det(A —\I) = 2 4— ) 2 = 0 2—X A-=2
2 2 4—-A 2 2 4—- A
-1 1 0 -1 1 0
= A=2?% 0 -1 1 [=(\=-2?2 0 -1 1
2 2 4-A 0 4 4-2X
N N AL S S| CY S
*7(7) 4 4-—) __(_){__}
= —(A=2*\-38).
The eigenvalues are A = 8 and A = 2 (of multiplicity 2), which we also found in the remark above.
If A =8, then
—4 2 2 -2 1 1
A—-81 = 2 —4 2 | ~ 1 -2 1
2 2 —4 1 1 -2
0 3 -3 1 1 =2
1 1 -2 0 0 0
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and we conclude that an eigenvector may be chosen as e.g. (1,1,1).

If A =2, then
2 2 2 1 1 1
A-2I=| 2 2 2 |~| 0 0 O
2 2 2 0 0 0

of rank 1. Two linearly independent vectors are e.g. (1,—1,0) and (1,0, —1).

The complete solution is

21(1) St Q2 2 o
xo(t) = eS8t —e?t 0 o
x3(t) 8t 0 —e* 3
1 1 1
= et 1 + et -1 + c3 et 0 ,
1 0 -1

where ¢y, co, c3 are arbitrary constants.

Example 2.4 1. Find all complex solutions of the system of differential equations
dl’l
cﬁt

X2

&,
rn

(t) = 3xzi(t) + xao(t) + 3Bxs(t),
(t) = 3$1(t) + 31’2(t) =+ Ig(t),

(t) = —zi(t) + 223(1).

2. Find all real solutions of the system of differential equations.

1. The corresponding matrix
31 3
A= 3 3 1
-1 0 2

has the characteristic polynomial

3-x 1 3
det(A —AI) = 3 3-x 1
-1 0 2-2x
13 3-x 1
- ‘3—)\ 1‘(’\2)‘ 3 3—)\‘

—14+3B-X)—-\A=-2{(A-3)*-3}
~A=2)A=3)2+3B-A+A1-2) -1
= —(A=2)(A—3)*+2.
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It follows by insertion of A = 4 that det(A — 4I) = 0, thus A = 4 is an eigenvalue. Hence, the
factor (A — 4) can be isolated. Then

—det(A—XI) = (A—2)(A—3)%—
= A—4)(A—3)2 +2()\ 3)% —
= A=4A-3)2+20\— 4)()\—2)
= A=H{(r-3)*+2(A-2)}
= A=D{DN?—6A+9+2)\—4} = A —4){\?* -4\ +5}
= A=4)A—-2-0)(A—2+1).

The three complex roots are

A =4, Ay =241, A3 =2 —1.

If Ay =4, then
-1 1 3 1 0 2 1 0 2
A—-)\I= 3 -1 1 ] ~10 1 5|~ 01 5],
-1 0 -2 0 -1 -5 0 0 0
and an eigenvector is (2,5, —1).
If A\o =2+ 14, then
1—14 1 3 2 14+¢ 3+3
A—-—XI = 3 1—4 1 ~ 3 1—3 1
-1 0 —1 -1 0 —1
1 0 i 10 i
~ 0 1+¢ 3+1 ~1 0 2 4-2i
0 1—7 1-—3¢ 0 2 4—-2
10 i
~ 0 1 2—4
0 0 O
A complex eigenvector is e.g. vo = (—i,—2 + 4, 1).
Now, A is real, hence by a complex conjugation,
AV, = Avy = Ayvy = Ao V3,
proving that A3 = A = 2 — i is an eigenvalue and that
vy =vy = (i,—2—1,1)
is a corresponding eigenvector.
All complex solutions are then
z1(t) 2t —i e+t ie2=0t 1
za(t) | = Be® (=2414)ePTIt (=2 —i)e—Dt Ca
z5(t) _edt e(2Fi)t e(2—i)t cs
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2. Since
—i g2+t ' —i{cost +i sint}
(=2 + i)ePHit = ¥ | (=2+i){cost+isint}
e(2+i)t cost + i sint

sint — ¢ cost
= e? | —2cost —sint +i{cost — 2sint}
cost + ¢ sint

esint —e?t cost
= —(2cost +sint)e? | +i | e*{cost—2sint} |,
e cost e*sint
all the real solutions are
x1(t) 2ett —e?tsint —e?t 1
zo(t) | = | bBett —e?(2cost +sint) e?(cost — 2sint) e |,
x3(t) —ett e?t cost e?sint c3
where c¢1, c3, c3 are arbitrary constants.
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3 Euclidean vector space

Example 3.1 Given in space the usual rectangular coordinate system. Find all a € R for which the
vector of coordinates (a,2a,3a?) is perpendicular to the vector of the coordinates (1,—1,a).

The condition is that the inner product of the two vectors is 0, so we compute

0 = (a,2a,3a%) -(1,-1,a) = a{l — 2 + 3a*}
1 1
= a(3a®*-1)=3a(a—- — a—l——).
= =30 (o= 75) (o4 35
The possible values are a = 0 [where (a,2a,3a?) = (0,0,0), and by convention we say that 0 is

perpendicular to any other vector] and

a=+t—.

Example 3.2 In an usual rectangular coordinate system in the space are given the vectors a, b and ¢
of the coordinates (1,3,—1), (0,2,4) and (2,1,—1), resp.. Find k € R, such that the vector d + kb is
perpendicular to the vector C.

The condition is

-

0 = (@+kb)-é=a-é+kb-¢
= (1,3,—1)~(2,1,—1)+k(0,2,4)-(2,1,—1)
= 243+1+k{0+2—4} =62k,

thus k = 3, corresponding to

a+kb=(1,3,—1)+3(0,2,4) = (1,9,11).

Example 3.3 Let the vectors d and b be given by their coordinates (3,1,2) and (4,—8,1) resp. with
respect to the basis vectors in an usual rectangular coordinate system of positive orientation.

The vector @ is split into a contribution along the straight line given by the vector b and a contribution
i a plane which is perpendicular to this vector.

Find the coordinates of the components of the vector.

First notice that

b= 2+ (—8)2+12=16+ 64+ 1=V8l =09,

thus

oy
I
Sl

O =
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is a unit vector in the direction of b. Then the projection of @ onto the line given by b is determined
@0¢ = (@ = {(31,2) (4 -8 1D}4,-8,1)
a e)e - 81 - 81 ) ) ) ) ) )

1 2
= —{12— 2}(4,-8,1) = —(4,-8,1
81{ 8+ }(’ 7) 27(’ 7)

_ (8 _16 2
o\ 27 2797 )°

and a perpendicular vector is of course

8 16 2 73 43 52
a—(a. — 1 2 - 97 or o = 977977 97 ’
a—(a-e)e=(31,2) (27’ 27’ 27) (27’ 27’ 27>

Example 3.4 Given in the space a coordinate system (O;dy,ds, ds), where |d1| =1, |da2] =2, |d3| =3
and £(dz2,d3) = Z(d3,d1) = Z(a@1,dz) = 60°. Given in this coordinate system the vectors d and b with
the coordinates (a1, as,as) and (by, by, bs), respectively.

Find the scalar product a - b of the two vectors.

First notice that if i # j, then

- = S = T 1. .

G; - @j = |Gy - ;] cos(£(Gs, @j)) = |l - |G5| cos 5 = Sds] - 1.
Hence,

a- g = {alc_il + agds + a36_1:3} . {blc_i1 + body + b351:3}

L2 5 S o

= a1bi|d1]" 4 a1bedy - ag + a1bsdy - ds
N 2 N
—|—a2b1a2 -ap + a2b2|a2| + a2b3a2 - as

- - - - 12
+agbla3 -ay + 0,31)20,3 - a2 + a3bg‘a3|

11 3 by
= (0,1 a9 ag) 1 4 3 bg
339 bs

Then notice that the element at place number (7, 5) in the matric is @, - @;, thus is general

dy-dy dy-dp dp-as
a-b= (0,1 a12 ag) (3:2 '61 62 52 626_1:3
301 3:az2 asz-as

We note that this matrix is always symmetric, because the inner product is symmetric.
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Example 3.5 Consider in the vector space Po(R) of all real polynomials of at most degree 2 with the
scalar product

(P,Q) = / P(z)Q(x) dx, where P(z), Q(z) € P2(R).

-1
Find the angles between the vectors below in Py(R):

Pi(z) =1, Py(x) =z, Py(z)=1-=z.

It follows from

1PL? = [, 12 de =2, 1Pl = v2,

371
1 T 2 2
P = fyaas = | 5] =3 17 = /2,
372
1 2 U 8 2
IR = 0 - o = =[] =3 jml =22
0

and

1 22 1

pr) = [ 1de- {2} =0 =[Py - | Bsl| cos(£(Py, P»)),
1 _1

(P, Ps) = (1,1—z)=|Pi|* — (P, P12) =2 = ||Py| - | Ps|| cos(£(Py, Ps)),
1 x2 x3 ! 2

(P2, P3) = / r-(l-x)de= |- ——| =—5 =[P [P cos(L(P,P3)),
. > 3], 3
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that
cos(Z(Py, Py)) = 0, dvs. Z(Py,Py) = g
COS(Z(Pl,Pg, dvs. Z(Phpg) I,
2 2\/7 6
2 1 2
cos(Z(Py, P3)) = -~ =1 dvs. L(Py, Py) = g

a 2 ’
\/7.2\/5 3 23 ’
3 3

Example 3.6 Let C°(I) be the vector space of all continuous and real functions defined on I = [0; 27].

1. Prove that (f,g) = 027r f(t)g(t)dt is a scalar product, for f, g € C°(I).
2. Write down explicitly the Cauchy-Schwarz inequality in this case

3. Let U be the subspace of C°(I), consisting of all linear combinations

NE

(ay cos kt + by, sin kt)

>
Il

0

for fized n. Prove that the functions

1 1 . 1
cost — smt cosnt, — sinnt

form an orthonormal basis of U.

4. Find the length

Z (ay, cos kt + by, sin kt)
k=0

1. Obviously,

2w

(f.9) = ; f(t)g(t)dt

is bilinear, and (f, g) = (g, f). Finally,

(£, 1) = ; f() dt > 0,

and if f(tp) # 0 for some tg € [0,27], then if follows from the continuity that f(¢) # 0 in a
neighbourhood of t(, hence f(¢)? > 0 in the same neighbourhood, i.e. (f, f) > 0.

)
Therefore, if (f, f) =0, then f(t) =0
)

Thus we have proved that (f,g) is a scalar product.
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2. The Cauchy-Schwarz inequality

(Ll < FI- Ngll,

is here written

27 27 27
0 f(t)g(t)dt‘é\/ / f(t)th'\/ / g(t)? dt.

3. Then compute

<1 1> ! /zﬂlzdt%1
V2r\2r (v2m)? Jo 2r

and

LI kt LI kt L /% in? kt dt
—= Sln —= Sln = — Sin
VT VT 7 Jo

1 2 1 oy )
= — §{sm kt + cos kt}dt
0

7r
2
:l/ ldtzlz L(:oskt,icoskt , k=1,...,n,
™ Jo 2 ﬁ ﬁ

and the vectors are all unit vectors.

It follows from the trigonometric formulse
sin(A+ B) =sin A - cos B + cos A - sin B,
sin(A — B) =sin A - cos B — cos A - sin B,

by addition and division by 2 that
sin A - cos B = %{sin(A +b) +sin(A — B)}.

If we put A = kt and B = mt, k # m, then

L kt ! t ! /Qﬂ in kt tdt
——= sinkt, —= cosmt ) = — sin kt - cosm
vas VT 7 Jo

1 2m
— {sin(k + m)t + sin(k — m)t}dt

:27T 0
1] -1 1 o
=5 [k+m cos(k—i—m)t—kim cos(k —m)t ) =0,

and

1 1 1 [
<\/—7_T sin kt, ﬁ cos kt> = ;/0 sin kt - cos kt dt

2m
. 1 n
= % ; sin 2kt dt = m[— COS Zk't]g = O7
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and we have orthogonality, if we take the scalar product between a sinus-vector and a cosinus-
vector.

Analogously, we get from the trigonometric formulae
cos(A — B) =cosA-cos B+sinA -sin B,

cos(A+ B) =cosA-cos B —sin A -sin B,
that

1
cos A -cos B = E{cos(A — B) +cos(A+ B)},

1
sinA-sin B = §{COS(A — B) —cos(A+ B)}.
Choose A = kt and B = mt, where k # m. Then

1 1 1 [
<ﬁ cos kt, ﬁ cosmt> = ;/0 cos kt - cosmt dt

1 27

=5 {cos(k — m)t + cos(k +m)t} dt
T Jo

L[l e myt sG] =0
5 | Sin m T S m ;=0

and

1 1 1 [
<ﬁ sin kt, ﬁ sinmt> = ;/0 sin kt - sinmt dt

1 27
=5 {cos(k — m)t — cos(k +m)t} dt

T Jo
1 L sin(k — m)t — ! sin(k +m)t " =0
27 lk—m k+m 0

and we have proved that
Lt 1
Vor' Jw NG

form an orthonormal basis of U.

1 .
cosnt, — sinnt

NG

cost, sint, ..

1
G

4. The length is

Z (ay cos kt + by, sin kt)
k=0

=Vm- |23+ {a} +2}.

k=1

1 2 cos kt sin kt
(ao\/%) —Tﬂ-l-];\/%{ak'—‘f‘bk' }H
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Example 3.7 Let p1, a2, ..., v, be an orthonormal basis of a subspace U of an Euclidean vector
space V', and let a1, as, ..., a, be scalars.

1. Choosing f €V and p =Y ;_, axpr € U, prove Parseval’s equation

1f = @l® = 17+ D (ak — e)® =Y ey

k=1 k=1

n

where ¢ denotes the scalar product of f and ¢y,.

(The numbers ¢, are called the Fourier coefficients of f ).

2. Prove that infcy || f — || happens if a1 =c¢1, ..., an = cp.
(The method of the least squares).

3. Prove Bessel’s inequality:

doa <

n
k=1

1. We get by a computation

If = ¢ll? (f—o. f =0y = IFII” = 2(f,0) + llel?

n n
||f2—2<f,zam> Y
k=1 k=1
n n n n
23 S 2 a2 -3
k=1 k=1 k=1 k=1

n

AP+ (an —en)® =Y e

k=1 k=1

2. It follows from the equation of 1) that ¢ € U only occurs in the Y ;_, (ax — ¢;) > 0. This term
is smallest, when ap = ¢, k =1, ..., n, hence

0 < inf —o|* = 2_ 2.
_weUllf el = IIfl ;k

3. Bessel’s inequality follows from a rearrangement of the inequality of 2).
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Example 3.8 Given the matriz

5 1 1
A=1|1 5 —1
1 -1 5

1. Find the eigenvalues and corresponding eigenvectors of A.
2. A bilinear function g : R? x R? — R is in the usual basis of R? given by the equation

Y1
9(x,y) = (21 22 x3)A Y2
Y3

Prove that g is a scalar product, and prove that the vectors (1,0,0) and (1,—4, —1) are orthogonal
with respect to this scalar product.

3. Find a basis of R3, which is orthogonal with respect to this scalar product.

1. The characteristic polynomial is
5-x 1 1
det(A —\I) = 1 5-Xx -1
1 -1 5-X
= B=MN*—1-1-(G-N)=06-X)—(5-2A)
= (5-XN?=356-)) -2
= —{(A=5)3-3\=5)+2}
= —{A=52-A=52+A=-5)?-(\=5)—2(\—5)+2}
= —{(A=5)—1H{OA =5+ (A -5) -2}
= —(A=6{(A=-5)+2H{(r-5) -1}
= —(A=6)* (A =3).

The eigenvalues are A =3 > 0 and A = 6 > 0 (of multiplicity 2).

If A = 3, then we reduce

2 1 1 1 2 -1 1 2 -1
A-)N = 1 2 -1 ~ 1 -1 2 ~ 0 3 -3
1 -1 2 0 0 0 0 0 0
1 2 -1 1 1 0
~ 01 -1 ~ 01 -1 ,
0 0 0 0 0 0
and an eigenvector is eg. (1,—1,—1).
If A =6, we reduce
-1 1 1 1 -1 -1
A- )= 1 -1 -1 ~ 0 0 0
1 -1 -1 0 0 0
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Download free eBooks at bookboon.com



Linear Algebra Examples c-3

3. Euclidean vector space

Two linearly independent eigenvectors are e.g.
(1,1,0) and (1,0,1).
2. Clearly, g is bilinear , and it follows from AT = A that
g(y.x) =yTAx = (x"ATy)" = xTAy = g(x.y),
thus g is symmetric .

Finally, A is similar to

A:

S O w
o OO
SO O

which has positive elements in the diagonal, so
9(x,%x) = 0.

If g(x,x) =0, then x = 0.

Thus, we have proved that g(x,y) is a scalar product.
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It follows from

5 01 1 1
aoo| 1 5 -1 4 | =5-4-1=0,
1 -1 5 ~1

that the vectors (1,0,0) and (1, —4,—1) are orthogonal with respect to this scalar product.

3. Here we have several possibilities, because we may start from both 1) and 2), and then of course
also approach the solution quite differently.

From 1) we get the eigenvectors
(1,-1,1) for A = 3,

(1,1,0) and (1,0,1) for A = 6.

Eigenvectors corresponding to different eigenvalues are orthogonal, which can also be seen from

5 1 1 1

@ -11f1 5 —1 1 | =6(1,-1,1)-(1,1,0) =0,
1 -1 5 0
5 1 1 1

1 -11)|1 5 -1 0 | =6(1,-1,1)-(1,0,1) =0,
1 -1 5 1

where - denotes the usual inner product.

Furthermore,
5 1 1 1
(1101 1 5 —1 0 | =6(1,1,0)-(1,0,1) = 6.
1 -1 5 1

The squares of the lengths are

1
1 -1 1A -1 =3-3=09,
1
and
1 1
(110A] 1 =6-2=12=(1 0 HA| 0 |,
0 1
hence

1
g(l, —1,1) is normed,

(1,1,0) normed,

1
2V/3
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and
1 1 1
1,0,1)— —(1L,1,0A | 1 | - ——=(1,1,0
( ) 2\/3( ) : 2\/5( )

1 1 1
= - -6 = — 2(1,1,0) = =(1,-1,2
(1,0,1) = 75 -6+ (1,1,0) = (1,0,1) = 5(1,1,0) = 3(1,~1,2)

is orthogonal onto both of them. This vector is an eigenvector corresponding to the eigenvalue
6, hence the square of the length of (1, —1,2) is given by

1
(I,-1,2)A [ -1 =6-{1+1+4} =36,
2
and an orthonormal basis is
1

1 1
=(1,-1,1), —=(1,1,0), =(1,-1,2).
5( ) 2\/3( ) ¢ )

If we instead apply 2), then we know that (1,0,0) and (1, —4, —1) are orthogonal. The squares
of the lengths are

1
(1,0,00A | 0 | =5,
0
and
5 1 1 1
(1,-4,-1) [ 1 5 —1 —4 | =(0,-18,0) - (1, —4, 1) = 72,
1 -1 5 -1

hence the normed basis vectors are

1
%(1,0,0) and  ——(1,—4,-1).

Any vector, which is perpendicular to these two vectors with respect to nA, must in the usual
Euclidean space be orthogonal to

(5,1,1) and (0,—18,0),
thus zo = 0 and z3 = —5x1.

The square of the length of (1,0, —5) is

5 01 1 1
(1,05 1 5 —1 0 | =(0,6,—24)-(1,0,—5) = 120,
1 -1 5 -5
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SO a unit vector is

L 1,0,-5)
2v/30

We obtain by this construction the orthonormal basen

1 1

1
—(1,0,0), —=(1,—4,—1), ———(1,0,—5).
=(1,0,0) 6\/5( ) ( )

24/30

Example 3.9 A real function g : R3*3 x R3*3 = R is given by
g(A,B) = trace(ATB).

Prove that g is a scalar product in R3*3.

Clearly, g is bilinear. Furthermore, it follows from
g(B,A) = trace(BTA) = trace((BTA)T) = trace(ATB) = g(A,B),

that g is symmetric .

72

Download free eBooks at bookboon.com



Linear Algebra Examples c-3 3. Euclidean vector space

Finally,
el ATAe; = (Ae;)T(Ae)) =cii >0

is the i-th diagonal element of AT A, so
3
g(A,A) = trace(ATA) = Zcii > 0.
i=1

If trace(AT A) = 0, then every c; = 0, hence Ae; =0, i =1, 2, 3. Since {e;, ez, e3} is a basis of R?,
we have Av = 0 for ever v € R3, i.e. A =0.

Thus we have proved that g is a scalar product.
Example 3.10 Consider the bilinear function g : Po(R) x Py(R) — R, given by

9(P,Q) = P(0)Q(0) + /O P'(2)Q'(z) da.

1. Find the matriz description of g with respect to the basis of monomials (1, x,2?).

2. Prove that g defines a scalar product in Pa(R).

1. Compute successively

gL, =1, g(Lz)=0, g(l,2*)=0,
1 1

g(x,:c):/ ldz =1, g(x,xQ):/ 1-2zdx =1,
0 0

1 1

4

g(x27332):/ 2m-2xdw=/ 4a* dr = —.
0 0 3

The corresponding matrix is

0

0
A= 1
1

OO =
W =

2. Since A is symmetric, we shall only prove that all eigenvalues are positive. The characteristic
polynomial is

_()\—1)’11>\ 1A’ _ _(A_1){(A_1)<A_§)_1}
= —()\—1){)\2—;/\—#%—1}

= (A1){A2;A+;}.

Ll

7 1
We infer that A = 1 and Ay + A3 = 3 > 0 and Mg - A3 = 3 > 0, thus all three eigenvalues are

positive, and g defines a scalar product in P2 (R).
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Remark 3.1 This is a proof in the spirit of Linear Algebra. A proof in Calculus would be given in
the following way:

Clearly, g is bilinear and symmetric, and

1
MRH:PmeAmemz&

Now, if g(P, P) = 0, then
1
P(0)=0 and / P'(x)*dr = 0.
0
It follows from the latter condition that P’(x) = 0, hence
P@):Pmy+/ P'(t)dt=0+0=0,
0

and we have proved that g defines a scalar product in Py(R) (and even in C°([0,1])). ¢

Example 3.11 Let the function g : R? x R? — R be given by

g9(x,y) = x1y1 + dxoys + T1y2 + Toy1,

where x = (x1,x2) andy = (y1,y2).

Prove that the function g defines a scalar product in R?.
In the following we equip R? with this scalar product.
Find the lengths of the vectors v and w given ny

v=1(21) and w=(-1,1).

Find the angle between the vectors v and w.

We write in matrix form

sxy) = o) (74 ) (1) =xTay.

The characteristic polynomial of A,

1—A 1

@MA—AD:‘ oy

‘—(A—nu—4y-y—v—5x+3
has the positive roots A1, Aa, because A\ + Ay = 5 and A1 - Ay = 3, (in fact,
1
A=212fw>m>

so the eigenvalues are positive, and thus g(x,y) is a scalar product.
Then

E=e (5 3 )(5)-eo(])-sre-r
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wP=cio(5 ) (1) =07 ) =2

so the lengths become
lol =2v3  and | = V3.
Finally,

g(v,w) = |l - [fw[ - cos(£(v, w)) = 6 cos(£(v,w))

(i D)()-en( )

1
cos(L(v,w)) =5, dvs. Z(v,w) = g

thus
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Example 3.12 A mapping g : R2 x R? — R is given by
9(x,y) = 4z1y1 — T1Y2 — T2y1 + 222y,

where x = (x1,22) and'y = (y1,y2).
Check, if g is a scalar product of R2.

The corresponding symmetric matrix is

Ao(a)

with its characteristic polynomial

4-x -1
-1 2-2A

= NX-6A+T7T=(1-3)?-2

det(A — \I) = ‘ ‘(A4)(/\2)1

and the two positive eigenvalues 3 £ /2. Hence we infer that g determines a scalar product in R2.

Example 3.13 A bilinear function g : R3 x R3 — R is given by

4 -1 0 Y1
g(x,y)=(z1 ©2 z3)| -1 3 0 v2 |,
0 0 7 s

where x = (1’171'2,1‘3) and Yy = (ylay27y3)'

1. Prove that the function g defines a scalar product in R3.

In the following we equip R® with this scalar product.
2. Find the lengths of v = (1,—1,1) and w = (—1,2,1), and find cos(£(v,w)).

3. Find a proper vector u, which is orthogonal to both v and w.

1. The matrix A is symmetric and has the characteristic polynomial

4-Xx -1 0
det(A—AM) = | -1 3-X 0 |=-O\=7{A—4)A—-3)—1}
0 0 7T—A

= —(A=7{\-7x+11}

—()\—7){()\—;>2+11—%}
—()\—7){()\—;)2—2}.

NG
2

All three roots, A\=7and A = = &+

N~

, are positive, so g(x,y) defines a scalar product in R3.
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2. We compute

4 -1 0 1 1
vi*=@,-1,1)| -1 3 0 1 | =G4 -1 | =16
0o 0 7 1 1
and
4 -1 0 -1 -1
[w|?=(-1,21){ -1 3 0 2 | =(-6,7.7) 2 |=27,
0o 0 7 1 1
hence
[vl=4 and  |lw| =3V3.
Furthermore,
g(v.w) = |Iv]| - [lw] - cos(£(v,w)) = 12v/3cos(£(v, w))
4 —1 O -1
= (1,-1,1) | -1 (5,—4,7) 2 | =—6,
0 1
hence
—6 V3
cos(ZL ,
S(L0v,w) = o=

and whence

Z(v,w = arccos <_§> .

. A proper vector, which is orthogonal to both v and w, must in the usual coordinates fulfil
(5, —4,7) -x =bx1 —4dxe + T3 = 0,

(=6,7,7) - x = —6x1 + Txg + Tx3 = 0.

We reduce
-4 7 N 5 —4 7 N 5 —4 7 N 1 0 7
77 11 —-11 0 1 -1 0 1 -1 0 /)°

5
—6
Hence a possible vector is (7,7, —1), and we get them all by taking scalar multiples of this one.
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Example 3.14 Let x = (z1,22) and y = (y1,y2) be any vectors in R2.
1. Prove that

9(x.y) = (01 x2)< 2 > ( n )

defines a scalar product g in R2.

2. Prove that the vectors
a; = (4, 7) and ag = (—6, 2)
are orthogonal with respect to this scalar product g.

3. Find an orthonormal basis of R? with respect to the scalar product g.

1. The matrix A is symmetric and its characteristic polynomial is

det(A—XI) = 2-N1-AN)—-1=X-3\+1
3\° 9 3\* 5
- (A2> v1-0 <)\2) 2
The eigenvalues are A = 3 + > > 0, from which follows that they are positive, thus g is a

scalar product .

2. It follows by insertion that

sana)=an (7 1) (75 )=an( ) =0

hence (4,7) and (—6,2) are orthogonal with respect to g.

3. It follows from

g(al,al):(4,7)( B ) ( . ) :(1,3)( ; ) — 2
g(a, as) = (—6,2)( _f *1 ) ( ’g ) - (—14,8)( ’g ) — 100,

that

and

laill = Vg(a1,a1) =5 and |az|| = v/g(az,a3) = 10.

An orthonormal basis is e.g.

1 4 7 1 6 2 31
—a; = |-, and —as=(——,—|=|—2,-].
la || 55 [[az| 10’ 10 55
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Example 3.15 Let X = (v1,72) and y = (y1,%2) be given vectors from R%. Let a scalar product in
R2 be given by

9(x,y) = (a1 xg)(‘; 3)(3;)

1. Find the length of e; = (1,0) with respect to the scalar product g.
2. Find every vector in R?, which is orthogonal to e, with respect to the scalar product g.

3. Find an orthonormal basis for R? with respect to the scalar product g.

Since A is symmetric with the characteristic polynomial
det(A —AI) = A—4)(A—9)—25=X2— 13\ +11
13\? 169 13\> 79
= - = - —"=(r==) -2
(og) =) -
which clearly has two real roots A1 and Ay, where A\; + Ao = 13 and Ay - Ay = 11, thus A\; > 0 and
A2 > 0, so g is a scalar product.

1. It follows by insertion that

glei,er) =4, sa [lel]| = v/ g(ei,e2) = 2.
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2. It follows from

4 5
serx) =0 (4 5 ) () =am+5m =0

for x = s(5,—4), s € R, that we have found every vector, which is orthogonal to (1,0) with
respect to g.

3. It follows from

oG-, =6.-0 (3§ ) (3 )=0-m( ] )-u

that

15, =) = V9((5,—4), (5, —4)) = 2V11.
Then an orthonormal basis for R? with respect to ¢ is

1 1
—(1,0 and — (5, —4).
5(1.0) 5o )

Example 3.16 Given in R? for every real a a bilinear function g, by
9a(x,y) = 102191 + a’z1y2 + 4x2y1 — 22y,
where x = (x1,22) and y = (y1,y2).
1. Find the matriz equation for g, with respect to the usual basis in R2.
Find the a, for which g, isn symmetric.

Prove that gq 1s a scalar product in R?, if and only if a = —2.

e e

Find the lenths of and the angle between the vectors u = (4,1) and v = (4,—3), when R? is
given the scalar product g_s.

1. It follows immediately that

wxy) =) (15 ) ().

2. The symmetry requires that a? = 4, so g, is symmetric for a = 2.

3. If a = 2 then we get the characteristic polynomial

det(A —AI) = (10— \)(—=4—A) — 16 = A\* — 6\ — 56
= (A—3)%-65.

Since v/65 > 3, it follows that A a negative eigenvalue, hence go is not a scalar product.
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ALTERNATIVELY, the product of the roots —56 is negative, so there is one positive and one
negative root. ¢

If a = —2, then we have the characteristic polynomial
det(A —XI) = (10—-N)(4—X\) =16 =)\* — 14\ + 24
= (A=2)(A—12).

The eigenvalues 2 and 12 are both positive, hence g_s is a scalar product.

4. Tt follows by a simple computation that

full = g-a(ww) = a0 (1 5 ) () 20§ ) =61

and

V% = g_a(v,v) = (4,—3) ( o > ( . > — (28,4) < _;1 ) — 100 = 102,

hence ||u|| = 14 and |v|| = 10.
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Finally,
ga(wv) = (4,1)( o ) ( . ) :(4,1)( “ ) 116
= l[ul - |lvllcos(£(u,v)) = 14 - 10 - cos(£(u, v)),
hence
cos(£L(u,v)) = 116 _ 29

T 140 35

and whence

29
V4 = s — | -
(u,v) = arccos (35>

Example 3.17 Let g : R? x R? — R be the bilinear function, which is given by

g(x,y) =x" Gy,

where

N O R

10

G=| 0 2

10

and where x and y also denote the coordinate matrices of x and y with respect to the usual basis of

R3, and where a is a real constant.

1. Prove that g is only a scalar product in the vector space R® for a = 1.

We choose in the following a = 1.

2. Prove that u = (4,1,—4) and v. = (¢,2,1) are orthogonal with respect to the scalar product g,
no matter the choice of c.

3. Find with respect to the scalar product g an orthogonal basis of R? consisting of the vectors u,
vo and v¢ for a convenient choice of c.

1. Since G is only symmetric for a = 1, this is the only possibility. Then we get the characteristic
polynomial:

det(Gy — AI)

Il
o
[N}

|
>

s}

|

|

—
>

I
DO

~

—(A—2){/\2—3/\+1}:—(/\—2){(/\—g>2—2}.

Since v/5 < 3, all eigenvalues are positive, thus g is a scalar product for a = 1.
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2. We get by a computation,

1 0 1 c c
g(u,v.) = (4,1,-4) 0 2 0 2 =(0,2,—4) 2 =4—-4=0,
1 0 2 1 1

and the claim is proved.

3. Since g(u,vg) =0 = g(u,v,), we shall only find ¢, such that

1 01 c c
0=g(vo,ve)=(0,2,1)1 0 2 0 2 1 =(1,42) 2 | =c+10.
1 0 2 1 a
This equation is fulfilled, if and only if ¢ = —10, hence an orthogonal basis is

u=(4,1,-4), vo=1(0,2,1), v_10=(-10,2,1).

Example 3.18 Let the vector space Po(R) be given the scalar product
o(P2),Q) = [ Ple)Q)de
—1
Given two orthogonal polynomials Py(x) = x and Py(z) = 2. Let
U = span{P;(x), Px(z)}.
1. Find an orthonormal basis of U.

2. Find the coordinates of P(x) = x — x? with respect to the orthonormal basis of U.

Remark 3.2 It follows from P;(z)Py(x) = = - #?> = 2 being an odd function that P;(z) = = and
Py(z) = 22 are orthogonal, thus

g(P1<:c)7P2(a:)>:/ e =0,

-1

1. Since

1 1
2 2
||P1||2=/ e =3 and ||p2||2:/ rar=?,
—1

we get e.g. an orthonormal basis of U by choosing

3 )
el(x):\/;~:1c and es(x) = 5-362.

2. Since

2 2
P(x)=x—2%= \/7~e1(;v) — \/7'62(1'),
3 5
. . . 2 2
the coordinates with respect to (e1,ez) are given by <\/; , —\/;> )
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Example 3.19 Denote by S a set of vectors in an Euclidean vector space V' (of finite dimension),
and let S+ denote the set of all vectors in V, which are orthogonal to any vector in S.

1. Prove that S* is a subspace of V.. Let U(S) denote the span of S,- Prove that
U(S) C St = (s,

2. If S also is a subspace, we call S+ the orthogonal complement of S. Prove in that case that

V=Sast and S =S+t

1. Let u, ve St and A € R.
Let g(-,-)denote the inner product of V. Then we get for every w € S that

g(w,u+Av) = g(w,u) + Ag(w,v) =0+ X-0=0,
which shows that u + Av € S+, thus St is a subspace of V.

Any element of the span U(S) can be written

u:Z)\kuk € U(S), whereuy € Sand A\, eR, k=1,...,n.
k=1

If ve St then

g(u,v) =g <Z )\kulmV) = Z Arg(ug, v) =0,
k=1 k=1

proving that u € S+, hence U(S) C S++.
2. Then assume that S is a subspace. Then U(S) = S, hence S C S+ according to 1).
It is obvious that if u € SN S+, then in particular,
[l = g(u,u) =0,
hence u = 0, and whence SN S+ = {0}.

The last claim follows from that since V' is an Euclidean space, we can choose an orthonormal
basis of S and supply it to an orthonormal basis of all of V. In this way we get a basis of S+,
hence V =S @ S+.

The same argument also gives
V=5testt=5ttast

Now, S = U(S) C S*++, and S and -+ have the same dimension (just count the elements of the
basis), hence S = S++.
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Example 3.20 Consider in R? the usual scalar product. Find an orthonormal basis of the space of
solutions of the homogeneous linear equation

T+ 9 + 23 =0.

The space of solutions is represented by a plane through 0 with the normal vector (1,1, 1), thus (1,1,1)
is perpendicular to all elements x in the space of solutions:

(1,1,1) - (x1, 22, 23) = &1 + w2 + 23 = 0.

Two linearly independent vectors, satisfying this requirement, can e.g. be chosen as

e =—(1,-1,0) and wuy=(1,0,-1),
1 \/5( ) 2 ( )

where we have normed e;. It follows from e; - us = — that

vy =uy — (e -uz)e; = (1,0,—1) — %(1,—170) = (1—%, L ,—1)
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is orthogonal on both (1,1,1) and e;. Then from

2 1 2 1 2 f 1 1 f
||V2|| = 1_5 + E +1=1-— 2+§+§+1:3— 2,

we get

1 L1 342 (2-v2 V2
2 = m(l_ﬁ’%’_l>: 7 ( > ’7"1>

4—v2,3V2+42,-6—2V2),

1
7L

and {ej, es} forms an orthonormal basis of the set of solutions.

Example 3.21 Consider the usual scalar product in R*.

Find an orthonormal basis of the subspace of R*, which is spanned by (1,0,2,2) and (2,—1,6,2).

It follows from
[(1,0,2,2)]2 =12 + 0%+ 22+ 22 =1+4+4=9 =32
that
1
€] = 3(1707272)

is a normed vector.

Now,
1
er-(2,—-1,6,2) = g{2+0+12+4} =6,

so an orthogonal vector is

U = (2a _17672) - {el : (2a —1,6,2)}61 = (27 _1a6a2) — bey
= (25 _17672) - (27074a 4) = (07 _172a _2)

We get from ||uz||? =1+4+4 =9 that

1 1
=uy=-(0,-1,2,-2
€3 3112 3(7 3 4y )

is an orthonormal vector of e, thus

1 1
{elyeQ} = {3(13())2;2), 5(07 71a27 2)}

is an orthonormal basis of the subspace.
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Example 3.22 Given in R3 the vectors x; = (1,2,2), x5 = (1,0,-2) and x3 = (0,—1,—2) and
v1=(1,1,0) and y2 = (2,3,2). Let U = span{xi,X2,X3}.

1. Find the dimension of U and a basis of U.
2. Find an orthonormal basis of U with respect to the usual scalar product in R3.

3. Show that span{yi,y2} =U.

1. Clearly, 2 < dimU < 3.

Now, x1 — X2 + 2x3 = 0, so dimU = 2, and a basis is e.g. {x,x2}, because these vectors are
linearly independent.

2. Then [|x;[|> =12 +22+22=9=3% so

1 1
€1 3X1 3( )4y )

is a normed vector. Furthermore,

(1,2,2) - (1,0,—-2) = %{1 —4} = -1,

W =

€1 X9 =

SO

1
Xo — (e1 . X2)€1 = (170, 72) — (761) = (1,0, *2) + g (1,2,2)
1 2
= —-(4,2,-4)=-(2,1,-2
32— =2 (21,-2)

lies in U and is orthogonal to e;. Then it followes by norming that

1 1 1
(eren) = {er 00— (o e} = {3 (1,22 321 -2
is an orthonormal basis of U.
3. It follows from
1 1
y1-€e1 = (1,1,0) . 5(1,272) = §{1+2+0} =1
and
1 1
yicer=(11,0)-5(21,-2) = {2+ 140} = 1,

and

yi—(yi-eer —(y1-e)es = y1—{e+es}
1
= (1,1,0)—§(l+2,2+1,2—2)

1
= (L1L0)-3(33,0=0,
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that y; lies in U.

It follows from

1 1
Y2 - €1 :(2a372)§(1,2>2) = §{2+6+4}:4a

1 1
ya- e =1(2,3,2)- §(2,1,—2) = §{4+3—4} =1,
and

Y2 — (y2-ei)er — (y2-ez)es =yo — {4e; +ea}
1 1
= (2,3,2) — 5(4+2,8+1,8-2) = (2,3,2) - 5(6,9,6) = 0,

that yo also lies in U. Since y; and ys clearly are linearly independent, we have span{yi,y2} =

U.

Example 3.23 Consider the usual scalar product in R*, where are given the vectors
u(1,1,-1,-1),  uy=(1,-1,1,-1),
vi1(2,-2,-2,2), vy =(1,0,0,1).
Let U = span{uj,us} and V = span{vy,va}.
1. Prove that every vector of U is orthogonal on every vector in V.

2. Find an orthonormal basis (a1, a2,as,a4) of R%, such that a;, as € U and a3, a, € V.

1. By some straightforward computations,
u1-v1:2—2+2—220, u1-v2:1—1:0,

W vi=2+2-2-2=0, uy-vo=1-1=0.

This shows that u; L span{vi,vo} = V, and that v, L span{u;,us} = U, i = 1, 2, thus
ULlV.

1
2. Since |[uy||? =1+ 1+ 1+ 1 =4 =22, the normed vector is then a; = 5(1, 1,-1,-1).

It follows from

1
(1-1-14+1)=0 and [uy|?*=2,

UQ'31:§

1
that ag = 5(17 —1,1,—1). Hence a; and ay are orthonormal, and they are also perpendicular
to V.

1
Now, ||[v1]|? = 16 = 42, so the normed vector is a3 = 5(17 -1,-1,1).

88

Download free eBooks at bookboon.com



Linear Algebra Examples c-3 3. Euclidean vector space

Now,

1
V2'a3:§{1+1}:1

and
Uy = Vo — (V2 . 33)33 = Vg — as
1 1
(1,0,0,1) = =(1,-1,-1,1) = =(1,1,1,1)
2 2
where ||uz|]| = 1, so ag4 = uy, and an orthonormal basis of the wanted type is {a;,as,a3,a4}
given by

) ) )

1 1 1 1
—-(1,1,-1,-1), =(1,—-1,1,-1), =(1,—-1,—-1,1), =(1,1,1,1) » .
{30110 5010 5011 o]
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Example 3.24 Given the matriz

0 —a O a
a 0 a 0

A= 0 —a 0 —a |’ where a € R.
—a 0 a 0

Find a, such that A becomes orthogonal .

By the definition, A is orthogonal, if and only if its columns, considered as vectors in R form an
orthonormal basis.

1
A necessary condition is that a® + a? = 242 = 1, thus a = iﬁ'
1
On the other hand, if a = i\ﬁ’ then the columns are obviously mutually orthogonal and they are
1
all of the length 1, hence A is orthogonal for a = iﬁ.
Example 3.25 Given the matrix
Az( 0 a>’ where a € R.
—a 0

1. Prove that 1+ A is regular for every a, and find (I+ A)~*.
2. Compute B = (I— A)(I+ A)~, and check if B is orthogonal .

1. It follows from
I+A_(—clt Lll) where det(T+A)=1+a*#0,

that I+ A is regular. Its inverse is given by

1 1 —a 1
—1 — _
I4+A)" = T a? < o 1 ) T a2 (I-A).

2. By a small computation,

B

I-A)T+A)! (I—-A)?

T 1+a?
B 1 1-a?> —2a
B 1+ a2 2a 1—a? ’
The two columns are clearly orthogonal, and since
(1—-a®)?+ (20)> =1—-2a> + a* +4a®> =1+ 2a%> + a* = (1 + a?)?

is precisely the square of the denominator, B is orthogonal .
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Example 3.26 Given the usual scalar product in R*. A linear map f : R* — R* is defined by the
matrix

)

1
0
-1
1

O ==

1
-1
0
1

with respect to the usual basis of R*. Prove that one can choose an orthonormal basis of R*, such
that f in this orthonormal basis is described by a diagonal matriz. Find such a basis and the matriz
of the map with respect to this basis.

The matrix A is seen to be symmetric. We compute the characteristic polynomial

A 1 1 -1 I—X 1=X 1-X 1-2X
I -2 -1 1 0 1-X 0 1-2)
det(A=AD = | 1 5 .\ 1T 0 0 1-x 1-2
-1 1 1 =X -1 1 1 -\
111 1
4 w3 010 1
= =N 5 01 1
-1 1 1 =\
10 1 111
= 1-=X%*0 1 1|+@0-XN31 0 1
11 = 01 1
= -2 A-1-1+1-1-1}=AN-1>*0N+3),

hence the eigenvalues are A = —3 and A\ = 1 (of multiplicity 3).

Remark 3.3 We note that the sum of all four eigenvalues is —3 + 1 4+ 1+ 1 = 0, which is also equal
to the trace of A. This could have been exploited at an earlier stage, once we have noticed that A = 1
is a triple root, so we could avoid some of the reductions above. ¢

If A = —3, then we reduce

3 1 ~1 4 4 4 4 1111
1 3 -1 1 0 4 0 4 01 0 1
1 -1 3 1] ~ 004 4|7 0011
-1 1 1 3 -1 11 3 -1 1 1 3
111 1 1 00 —1
010 1 01 0 1
“loo1 1| loo1 1
0 2 2 4 000 0

of rank 3. Choosing x4 = 1, we get the eigenvector (1,—1,—1,1) corresponding to the eigenvalue
A = —3 of length V4 = 2.
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If A =1, then we get the reduction

-1 1 1 -1 11 1 -1
1 -1 -1 1 000 0
A - A= 1 -1 -1 1|~ 000 0
1 1 1 -1 000 0

of rank 1. Two orthogonal eigenvectors are e.g. (1,1,0,0) and (0,0, 1,1), both of length /2.

A linearly independent eigenvector is e.g. (0,1, —1,0). The vector

(0,1,-1,0) — (\2)2{(0,1,1,0) +(1,1,0,0)}(1,1,0,0)
_<§%)2{me—L0%(QOJ;UNQOJ,U

1 1
(0.1,-1,0) = 5(1,1,0,0) + 5(0,0,1,1)

1
“(0-140,2—-140,—2-0+1,0-0+1
2

1
—(-1,1,-1,1
S(-11-LD)

is then perpendicular to both of them, and it is obvious that the length is 1
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An orthonormal basis is {e1, ez, €3, e4}, where e.g.

1 1
e1 = —(1,1,0,0), es=—=(0,0,1,1),
1 \/5( ) 2 \/i( )
1 1
€3 = 5(_17 1a _17 1)7 €4 = 5(17_1a _171)

The corresponding matrix is

100 0
010 0
0 0 1 0
00 0 =3

Example 3.27 In R® we are given the vectors

a; = (0,1,2,2,0),a, = (1,1,4,0,0),a3 = (1,2,6,2,1) and a, = (—1,2,2,6, —1).

. Prove that a1, ay and az span a 3-dimensional subspace U in R®, and that ay € U, and write
ay as a linear combination of ai, as, as.

. Using the usual scalar product in R® (and hence in particular in U ), we shall prove that there
exists an orthonormal basis (q1,92,4q3) of U, such thalt qi is proportional to a;, and qs is
proportional to ag — ai. Find such a, expressed by ai, as, as.

. Let f: U — U be the linear map for which a; and as — ay are eigenvectors corresponding to the
eigenvalues Ay = 1 and Ao = —1, respectively, and such that f(az) = ay.

Find the representing matriz of f with respect to the basis (q1,9q2,4qs3). Show that [ is symmetric
and isometric.

. If AMay + dsas + Azaz = 0, then A3 = 0 because of the last coordinate. This implies that
A2 = 0 (second last coordinate) and then finally, Ay = 0. This proves that a;, ay, ag are linearly
independent, hence they span a 3-dimensional subspace U.

Then

as = (_13232367 _1) = _(172,6727 1) + (074787830)
= —ag+4a; =4a; —azecU.

. Since

lap? =1+4+4=9, dvs. |ai] =3,
1 1
we may choose q; = gal = 5(0, 1,2,2,0).

Then

a; —a; = (1,1,4,0,0) — (0,1,2,2,0) = (1,0,2,—2,0)
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has the length, and it is obvious that
a;-(aa—a)=0+0+4-44+0=0,
so a; and ag — aj are perpendicular to each other. We may therefore choos

1 1
qz = g(az —ay) = §(1a0,2,*2)~
We adjust as,

ag — {33 : Ch}ch - {a3 : QQ}QQ
1
=(1,2,6,2,1) — §{(1,2,672, 1) - (0, 1,2,2,0)}(0, 1,2,2,0)

1
—51(1,2,6,2.1) - (1,0,2,-2)}(1,0,2,-2,0)
1
= (1,2,6,2,1) = {0+2+12+4+040,1,2,2,0)

1
—1+0+12 -4+ 0}4(1,0,2,-2,0)

=(1,2,6,2,1) — 2(0,1,2,2,0) — (1,0,2,—2,0)
=(1-0-1,2-2-0,6-4-22-4+21-0-0)
= (0,0,0,0,1).

This is clearly a unit vector , q3((0,0,0,0,1).
If we instead use ay, as, a3, then

(0,0,0,0,1) =a3 —{asz - qi }q1 — {az - q2}q2

qs3
1 1
= az— 5{33 : 31}31 - 5{33 : (a2 - 31)}(32 - a1)
= az—2a; —(ag—a;)=—a; —az+as.
Summing up, we get

1 1
qi = gah qz = g(az —ay), q3z=—a; —ay+as.

3. Now,
f(a1) = ay, flaz —a1) = —(az — a1),
and by 1),
f(az) = a4 = 4a; — ag.
Expressed by q1, q2, q3 we first get

flar)=a1  and  f(q2) = —qa.
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From

a3 = qz+a;+a;=qs+(az—a)+2a
6q1 + 392 + g3,

and
ay =4a; —az = 12q; — {6q; + 392 + q3} = 6q1 — 3q2 — q3,

we get by the linearity that

flaz) = 6f(qi)+3f(az)+ f(as) = 6a: — 3aqz + f(qgs3)
= a4 =06q; — 392 — qs,

hence by reduction, f(q3) = —qs.

The matrix representing the map is now

1 0 0
0 -1 0
0o 0 -1

This is clearly symmetric (a diagonal matrix), and since its eigenvalues are +1, it is also isometric.
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Example 3.28 A linear map f : R* — R* is given by the matriz y = Ax, where

2 -1 0 -1
-1 2 -1 0
0 -1 2 -1
-1 0 —1 2

A =

is the matriz of f with respect to the usual basis in R*.
1. Show that the vectors
vi=(1,1,1,1),vo = (1,1,-1,-1),v3 = (1,—-1,1,—-1),v4 = (1,0, —1,0),
are eigenvectors of f, and find the corresponding eigenvalues.
2. Find all eigenvectors of f.

3. Using the usual scalar product in R*, find an orthonormal basis consisting of eigenvectors of f,
and then find the matriz of f in this basis.

1. By a small computation,

2 -1 0 -1
-1 2 -1 0
0 -1 2 -1
-1 0 —1 2

AV1 =

=0-vy,

—
o O OO

hence v; is an eigenvector corresponding to the eigenvalue A\; = 0.

Furthermore,
2 -1 0 -1 1 2
-1 2 -1 0 1 2
Ave=1 g 1 2 1 1| T 2 | T
-1 0 -1 2 -1 -2

hence vy is an eigenvector corresponding to the eigenvalue Ay = 2.

Then we get
2 -1 0 -1 1 4
-1 2 -1 0 -1 —4
Avs = 0 -1 2 -1 1|~ g | = Avs
-1 0 -1 2 -1 —4

S0 v3 is an eigenvector corresponding to A3 = 4.

Finally, r
2 -1 0 -1 1 2
-1 2 -1 0 0 0
Avi=1 g 1 2 1 1 [T 2 | T
-1 0 -1 2 0 0

S0 v4 is an eigenvector corresponding to Ay = 2.
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2. If Ay =0, then all eigenvectors are k-vy, k € R.

If A = A4 = 2 then all eigenvectors are kovo + k4vy, because clearly vo and vy are linearly
independent. An orthogonal basis of the eigenspace is e.g.

vo—vy=(0,1,0,—1) and wvy4=(1,0,—1,0).
If A3 = 4, then all eigenvectors are k - vg, k € R.

3. Since eigenvectors corresponding to different eigenvalues are orthogonal, an orthogonal basis
consisting of eigenvectors of f is given by

vi=(1,1,1,1), vy —vy =(0,1,0,—1),
vy = (1,0,—-1,0), vy = (1,—-1,1,-1).
Then by norming,
1 1 1

= —(1,1,1,1), = —(vo—v4) = —(0,1,0,—1),
a = 5 ), Q2 \/5(2 1) ﬁ( )

v =Lwo-10 N
- V4 = s Yy ) ) = sV3 =2 ) D) .
e \/54 \/5 R 2 3 2

The corresponding matrix is

0 0 0 0

o O O

2
0
0

O NN O

0
0
4

Example 3.29 Let vy, vo, ..., v, be an orthonormal basis of R™ in the usual scalar product, and
letv;,i=1, 2, ..., n, denote the column matriz, the elements of which are the coordinates of v; with
respect to the usual basis of R™. Let A1, Ao, ..., Ap be n given real numbers, and consider the matrix

A = Alvlvf + /\QVQVg 4+ )\nvnvz;.

1. Prove that A is symmetric and that vy, va, ..., vy, are eigenvectors of the linear map given by
the matriz A with the eigenvalues A1, Ao, ..., \n, respectively.

2. Using the result of 1), one shall construct a symmetric (3 x 3)-matriz A of the eigenvalues 1, 2
and 8 corresponding to the eigenvectors vy, vy and v with the coordinates

1 -1 1 2 2
v1:§ 2 1, V2:§ -1 and vz = — 2
2 2 —1
1. Clearly, A = A7, so A is symmetric.
Let Q denote then (n x n)-matrix, where the i-th column is given by v;. Since vq, va, ..., v,

form an orthonormal basis, we infer that Q is an orthogonal matrix, and it follows from the
structure that

A=QAQ!, dvs. QT 'AQ = A= diag{\i,...,\,}.

Then Aq, ..., A\, are the eigenvalues of A, and the column v; in Q is an eigenvector corresponding
to /\z
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2. We shall first check that vi, vo, v3 indeed form an orthonormal basis. It is, however, straight-
forward to see that

1
Vil = [lvall = llvsll = g\/§: 1,
and that Vi V; = 0 for 2 75]

Then we compute

L ! 1 1 -2 -2
vivli =2 2 |l(-122==( -2 4 4|,
179 9
2 -2 4 4
1 2 1 4 -2 4
vovli=—| -1 |2 -12)== -2 1 -2 |,
A I\ 4 2 4
2 1 4 4 -2
V3Vl = — 2 (22-1):5 4 4 -2 |,
-1 -2 -2 1
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hence
1 1 -2 -2 4 -2 4 4 4 -2
A = 9 -2 4 4 | +-= -2 1 -2 + — 4 4 -2
-2 4 4 4 -2 4 -2 =2 1
1 1+84+12 —-2—-4+12 —-248-06
= ) —2—4+12 4+4+2+12 4—-4-6
—24+8—-6 4—-4-6 4+843
1 21 6 0 1 7 2 0
0 -6 15 0 -2 5

Example 3.30 Let f : R® — R3? denote the linear map, given in the usual basis of R by the
symmetric matrix

3 1 -1
A= 1 3 -1
-1 -1 5)

1. Find the eigenvalues of f and an orthonormal basis (q1,q2,q3) of R3 (with respect to the usual
scalar product in R3) consisting of eigenvectors for f.

2. Let a bilinear function g : R? x R® — R be given in the usual basis of R3 by the equation

Y1
g(x,y) = (z1 2 23)A | v2
Y3

Prove that g is a scalar product, and show that the vectors q1, qz, qs are also mutually orthogonal
with respect to the scalar product g. Then find a basis of R3, which is orthonormal with respect
to the scalar product g.

1. The eigenvalues are the roots of the characteristic polynomial

3-2 1 -1 3-A 1 -1
det(A — M) = 1 3-X -1 |=| 1 3-)x -1
-1 -1 5-2A 3—A 3-X 3-2)

3-2 1 -1 4-x 2 -1

= B3=XN] 1 3-X —1[=@=XN| 2 4-x -1

1 1 1 0 0o 1

B=MN{(A—4? -2} =B - XN\ —2)(\—6).

(The difference between two squares).

The eigenvalues are A\ = 2, Ao = 3 and A3 = 6.
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If A1 = 2, then we get the reduction

3—A 1 —1 1 1 -1 1 1 -1
1 33— -1 = 1 1 -1 ~ 0 0 2
-1 -1 5-=A -1 -1 3 00 0
1 1 0
~ 0 0 1
0 00
An eigenvector is e.g. vi = (1,—1,0) with the normed eigenvector
_ i(l ~1,0)
q1 \/§ ) s V).
If Ao = 3, then we get analogously
3—A 1 —1 0 1 -1 01 -1
1 3—X2 -1 = 1 0 -1 ~ 1 0 -1
-1 -1 5-=A -1 -1 2 0 0 0
An eigenvector is e.g. vo = (1,1,1) with the normed eigenvector
1
- —_(1,1,1).
q2 \/g( )
If A3 =6, then
3—A 1 -1 -3 1 -1 1 1 1
1 33—\ -1 = 1 -3 -1 ~ 0 4 2
-1 -1 5= -1 -1 -1 0 —4 -2

An eigenvector is e.g. v4 = (1,1, —2) with the corresponding normed eigenvector

q3 = (1a1a_2)

Sl

Now, qi1, 92, q3 are normed eigenvectors corresponding to each its own eigenvalue, so

1 1 1
:71’—1707 :7171717 = =
a ( ), \/3( ), a3 7

form an orthonormal basis consisting of eigenvectors for f.
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2. Since A is symmetric, and A\; = 2, Ay = 3, A3 = 6 are all positive, g is a scalar product . An
orthogonal basis is still q1, q2, q3, while the norms have been changed:

glar,a1) =2a1l* =2, g(qz,q2) =3, glas q3) =6.

When we norm, we obtain the orthonormal basis with respect to g,

1 1 1 1
u = —qi = —(1,-1,0), us=—q» = —(1,1,1),
1 \/§CI1 2( ) 2 \/§Q2 3( )
1 1
= —q3 = -(1,1,-2).
us \/6(15 6(77 )

Example 3.31 Denote by f : R? — R3 the linear map which in the usual basis of R3 is given by the

matric
5 2 =2
A= 2 8 —4
-2 —4 8

1. Prove, using the usual scalar product in R3, that vi = (2,1,2), vo = (1,2,—1), v3 = (=2,2,1)
form a set of orthogonal eigenvectors for f, and then find all eigenvalues of f.

2. A function g : R? x R3 — R is in the usual basis of R> given by the equation

Y1
Q(XJ’) = (331 Z2 $3)A Y2
Ys

Prove that ¢ is a scalar product, and show that using this scalar product in R3, the angle between
2
es = (0,1,0) and e3 = (0,0,1) is g

1. We compute

) 2 =2 2 8
AV1 = 2 8 —4 1 = 4 = 4V1, )\1 = 4,
-2 -4 8 2 8
) 2 =2 1 13
AVQ = 2 8 —4 = 2 = 26 = 13V2, )\2 = ].37
-2 -4 8 -2 —26
) 2 =2 -2 -8
Av; = 2 8§ —4 2 | = 8 | =4vs, Az =4.
-2 -4 8 1 4

Since \; = A3 = 4, we shall only prove that vi; and v3 are orthogonal. This follows from
vi-vy=(2,1,2)-(=2,2,1) = —44+2+2=0,

and 1) is proved.
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2. Now, A is symmetric, and the eigenvalues A\; = A3 = 4 and A\ = 13 are all positive, hence g is
an inner product.

We have
5 2 -2 0
g(es,e2) = (0 1 0) 2 8 —4 1| =s,
-2 -4 8 0
5 2 -2 0
g(es,e3) =(0 0 1) 2 8 —4 0| =s,
-2 -4 8 1
and
) 2 =2 0
glez,e3) = (01 0) 2 8 —4 0| =-4
-2 -4 8 1
\/9(62762) : \/g(e3,e3) - cos(Z(ez, e3))
= 8cos(ZL(ez,€e3)),
hence
4 2
cos(£(ez,e3)) = 3T Ty dvs. Z(es,e3) = %
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Example 3.32 1. Prove that the determinant of order n,
b a 0 0 0 0 0
a b a O 0 0 0
0 a b a 0 0 0
0 0 a b 0 0 0
An = .
00 0O0 -+ b a0
00 0O0 -+ a b a
00 0O0 -+ 0 ad

satisfies the recursion formula

A, =bA,_ 1 —a®A,_ s, 1 >3

2. Find the eigenvalues of the matrix

2 -1 0 0
-1 2 -1 0

0

0

A 0 -1 2 -1 0
1

2

0o 0 -1 2 -
0 0 0 -1

3. Let f: R® — R® denote the linear map, which in the usual basis of R® is given by the matriz A.

Prove (with respect to the usual scalar product in R®) that there exists an orthonormal ’ basis
(q1, 92,493,494, 95) of R®, such that the matriz of f with respect to this basis is given by

1 00 0 0
020 0 0
00 3 0 0 ,
00 0 2+v3 0
00 0 0 23

and find qz .

4. A bilinear function g : R? x R> — R is in the usual basis of R® given by

Ys

5. Prove that g is a scalar product, and find the set of vectors which in this scalar product are
perpendicular to the vector (1,1,1,1,1).
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1. When we start by expanding the first column, and then expand the first row, we get

b a 0 0 0 0 a 0 0 0 0 0
a b a 0 0 O a b a 0 0 0
0 b 0 0 0 0 b 0 0 0
A = |10 A z
000 -+ b a O 0 0 0 b a 0
000 -+ a b a 000 -+ a b a
000 -+ 0 a b 00 0 --- 0 a b
= bAnfl - a2An727

where we of course must assume that n > 3.
Then notice that

Ay =

Z =b% — a2 and A; =b.

a
b

2. The eigenvalues are the roots of the determinant

2—-Xx -1 0 0 0
-1 2-Xx -1 0 0
det(A — M) = A5 = 0 -1 2-X -1 0
0 0 -1 2-X -1
0 0 0 -1 2-2A
of the type of 1) where b =2 — X and a = —1. Then according to the recursion formula,
A5 = bA4 — a2A3 = b{bAg - CLQAQ} — CL3

(b — a®)Az — a?bAy = (b* — a®){bAy — a® A1} — a*bA,
(U ){b(b2 a®) — a®b} — a®b(b* — a®)
= (0° - a®)b(b? - 3a?)
(b—a)(b+ a)b(b — V3a)(b+ V3a)
2-A+1D)2-A=1D2=-N2-A+V3)(2-)-V3)
= —A=DA=2)A=3) A —{2+V3)H(A—{2—-V3)}).

The eigenvalues are

M=1d=2XA=3 X =2+V3)=2—3.

3. The matrix A has five simple eigenvalues (the diagonal elements of the new matrix). Therefore,
if we choose normed eigenvectors as basis qz, ..., 5, we obtain the matrix.
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If Ay =1, then

2—X -1 0 0 0 1 -1 0 0 0
-1 2-Xx -1 0 0 -1 1 -1 0 0
0 -1 2-Xx -1 0 = o -1 1 -1 0
0 0 -1 2-Xx -1 0 -1 1 -1
0 0 0 -1 2-=-X 0 0 0o -1 1
0 0 1 0 0
-1 0 0 -1 0
~ 0 -1 0 0 -1
0 0 -1 0 0
0 0 0 -1 1

0 0 1 0 0

1 0 0 1 0

~ 0 1 0 0 1

000 -1 1

0 0 0 0 0

An eigenvector is e.g. (1,1,0,—1,—1) of length v/4 = 2, thus

1
qr = 5(1, 1,0,—1,-1).
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4. Since A is symmetric with only positive eigenvalues, g is a scalar product. If x is perpendicular
to (1,1,1,1,1), then

2 —1 0 0 0 T
-1 2 -1 0 0 Ta
0 = (1,1,1,1,1) 0 -1 2 -1 0 T3
0 0 -1 2 -1 T4
0 0 0 -1 2 Ts
T
T2
= (1,0,0,0,1) | z3 | ==x1+ xs.
T4
Ts

The solutions are

04(1,0,070, 71) + 6(07 1707070) + 7(0707 1707 0) + 6(07 Oa Oa 13 O)

Example 3.33 Given two linear maps f : R3 — R? and g : RS — R® with the matrices, resp.,

1 -9 7 0 0 0
-9 27 -9 0 0 0
=7 7 -9 11 0 0 0

A=| -9 27 -9 and B =
- o 11 o 0 o0 11 -9 7
0 0 0 -9 27 -9
0O 0 0 7 -9 11

(with respect to the usual basis of R® and RS, resp.).
1. Prove that vi = (1,1,1) is an eigenvector of f, and find the corresponding eigenvalue \i.

2. Prove that wy = (1,-2,1,0,0,0) and wo = (0,0,0,1,1,1) are both eigenvectors of g, and find
the corresponding eigenvalues p1 and ps.

Find (e.g. by using the results of 1 and 2) every eigenvalue of f.
Find all eigenvectors of f.

Find all eigenvectors of for g.

S G e

Explain that the matriz B can be diagonalized, and find an orthonormal basis of RS, where the
matriz of g is a diagonal matriz A, and find A.

Notice the structure
A O
a(30)

We infer from this that if x is an eigenvector of A corresponding to the eigenvalue A, then both (x, 0)
and (0,x) are eigenvectors of B corresponding to the same eigenvalue. Here we have put 0 = (0,0, 0).
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1. It follows by insertion that

11-9+7 9
Avi=| —94+271—-9 | = 9 | =9v,,
7-0+11 9

so vy = (1,1,1) is an eigenvector with the corresponding eigenvalue Ay = 9.

2. It follows from the remark in the beginning of this example that wo = (0,v7) is an eigenvector
of B corresponding to the eigenvalue pus = Ay = 9.

If we put vo = (1,—2,1), then

11 -9 7 1 11+184+7 36
Avo=1[ -9 27 -9 -1 | =1 -9-54-9 | =| —-72 | =36vgy,
7 -9 11 1 7T+18+11 36

S0 Vo is an eigenvector of A corresponding to the eigenvalue 36, thus wy; = (vg,0) is by the
introductory remark an eigenvector of B with the eigenvalue ps = 36.

3. Since A1 + Ay + A3 = trace A, we get

A3 = trace A— A\ — A =114+274+11-9—-36 =49 — 45 =4.

4. Tt follows by inspection from

7 -9 7 7 -9 7 1 -7 1
A-XI= -9 23 -9 |~| -2 14 2 |~| 7 =9 7|,
7 =9 7 0 0 0 0 0 0

that vs = (1,0, —1) is an eigenvector corresponding to Az = 4.

If f, then the eigenvalues and there corresponding eigenvectors are
A1 =09, and vy =(1,1,1),

A2 =236, and vo=(1,-2,1),
A3 =4, and vy =(1,0,-1).

5. According to the introductory remark we get analogously for g that

1 =X =36 med w;=1(1,-2,1,0,0,0) and ws=(0,0,0,1,—-2,1),
=X =9 med wy=(1,1,1,0,0,0) and wy=(0,0,0,1,1,1),
us=A3=4 med ws=(1,0,-1,0,0,0) and wg=(0,0,0,1,0,—1)

Notice that all the chosen eigenvectors are orthogonal.
The eigenvectors corresponding to 1 = 36 are the linear combinations of w; and ws.

Analogously for the other eigenvalues. It will in each case be sufficient to indicate two linearly
independent eigenvectors.
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6. Since all eigenvectors in 5) are orthogonal, we shall only norm these eigenvectors:

1 1
=36 med =—(1,-2,1,0,0,0) and = —(0,0,0,,1,-2,1),
M1 d1 \{(—3( ) q2 \{6( )
=9 med =—(1,1,1,0,0,0 and =—(0,0,0,1,1,1),
H2 Sk \{g( ) q4 \{g( )
=4 med =—(1,0,—-1,0,0,0) and = —(0,0,0,1,0,-1).
H3 a5 \/5( ) g6 \/§( )
We get in this basis,
36 0 0 0 0 O
0 36 0 0 0 O
. 0 0 90 00
A = diag{36,36,9,9,4,4} = 0o 0090 0l
0 0 0 0 4 0
0 0 0 0 0 4

Example 3.34 A linear map f : R* — R* is in the usual basis described by the matriz

2 —1 1 -1
1 2 1 -1
A=l 1 19 1
1 -1 1 2

Given also the vectors vi = (1,1,—1,1) and vo = (1,0,1,0).

1. Prove that vi and vy are eigenvectors for f and find their corresponding eigenvalues A1 and As.
Then find all eigenvectors corresponding to A1 and Ag.

2. Find an orthogonal matriz Q, such that A = QT AQ is a diagonal matriz, and find A.

1. It follows by insertion that

9 -1 1 —1 1 9_1-1-1 -1
Av | 121 -1 1| | —-1+42-1-1 -1
V1= 1 1 2 -1 1T 141-1+41 1 | TV

1 -1 1 2 1 1-1-1+2 -1
and
9 -1 1 -1 1 3
1 21 -1 0 0
Avy = 1 1 2 1 N ER R
-1 -1 1 2 0 0

hence A\ = —1 and Ay = 3.
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Now
3 -1 1 -1 1 1 3 1 11 3 1
1 3 1 -1 0 -4 -8 —4 0000
A-Ml= 1 13 1710 4 4 of|7lo110
-1 -1 1 3 0 0 4 4 00 1 1

is of rank 3, so kv are the only eigenvectors corresponding to the eigenvalue Aj.

Since

-1 -1 1 -1
1 -1 1 -1
A—dol= 1 1 -1 1|~

-1 -1 1 -1

oS o o
o O O
S o o
S o o

is of rank 1, the eigenspace has dimension 4—1 = 3. We have already been given the eigenvector
vy = (1,0,1,0), and we see by inspection that v5 = (0,1,1,0) and v4 = (0,0,1,1) are two
linearly independent eigenvectors.

The complete set of eigenvectors corresponding to Ay = 3 is span{vsa, vs, v4}.

2. From |v{| = v/4 = 2 follows by taking the norm,

1
q1 = 5(17 17 _1a 1)

Then

1 1
— vy =—(1,0,1,0).

q2 = ”V2 5
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We compute

vi—(vs-q)qa = (0,1,1,0) —) (0,1,1,0) - (1,0,1,0)} (1,0,1,0)

%

= (0,1,1,0)— = (1,0,1,0) =

*—‘/—\

1,2,1,0
2( 77)

[\V]

Now, [[(=1,2,1,0)[> =1+441=6, so

L
%—\E

Finally,

-1,2,1,0).

vy —(Va-d2)g2 — (Va-q3) Q3
1
= (Oa07 17 1) - 5{(0505 17 1) : (1707 170)} (1707 170)

fé{(o, 0,1,1)-(-1,2,1,0)} (-1,2,1,0)

1 1
6{(0707&6) - (3303330) - (71727 170)} = 6 (*27 *27236)
=—=-(1,1,-1,-3).
As ||(1,1,-1,-3)| = VI + 1T+ 1+ 9 = V12 = 2V/3, we choose
= i(l 1,-1,-3)
q4 2\/3 s 4y ’ .

Since q1, g2, g3, g4 is an orthonormal basis consisting of eigenvectors, we get

‘ -

o S-Skl
5

5

Q={a1 a2 a3 q4} =

NI— N N[ N =
S o5k
O N oN

o

el

and

SO O
O O W o
O w oo
Ww o OO
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Example 3.35 Consider the vector space R® with the usual scalar product. Given of a linear sym-
metric map f: R? — R? that

o f(4,—-1,-8)=(-4,1,8),

o (1,—1,4) is an eigenvector for f, corresponding to the eigenvalue —1,

e and 2 is an eigenvalue of f.

1. Show that (4,—1,—8) x (1,—1,4) is an eigenvector of f corresponding to the eigenvalue 2.

2. Find an orthonormal basis of R3 consisting of eigenvectors of f, and find the matriz of f with
respect to this basis.

1. We infer from the given that (4,—1,—8) and (1,—1,4) are linearly independent eigenvector
corresponding to the eigenvalue \; = —1, so this eigenspace has at least dimension 2. Now, the
eigenspace corresponding to Ay = 2, is of at least dimension 1, and since the sum of these lower
bounds of the dimensions is 3, we conclude that

e the eigenspace corresponding to the eigenvalue A\; = —1 is precisely of dimension 2,
e the eigenspace corresponding to the eigenvalue \y = 2 is precisely of dimension 1.
Since (4,—1,—8) and (1, —1,4) are linearly independent,
€ €2 €3
(4,-1,-8) x (1,-1,4)=| 4 -1 -8 |=(-12,24,-3) =-3(4,8,1)
1 -1 4

is a proper vector, which is perpendicular to the eigenspace corresponding to A\; = —1. Since
there is “no space” for other possibilities, this vector product must belong to the eigenspace
corresponding to Ao = 2, because it is also orthogonal to the eigenspace corresponding to A;.
Hence, (4,8,1) is a (generating) eigenvector of the eigenspace corresponding to Ao = 2.

2. Now, ||(4,—-1,-8)|| =16 — 1+ 64 = v/81 = 9, so we choose

1
= (4,-1,8).

0h:9

Since
1
(1,-1,4) — @{(1, -1,4)-(4,—1,-8)}(4,—1,-8)
1 1
= (1 -1,4) = {4+ 1-32}(4,-1,8) = (1, -1, 4) + 5 (4,-1,-8)
1 1
= g{(& _3a 12) + (4a _17 _8)} = g (7a _474)7
where ||(7,—4,4)||? =49 + 16 + 16 = 81 = 9%, we choose
L —aa
qz2 = 9 ) )

as an eigenvector of A1, which is perpendicular to q;.
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Finally, ||(4,8,1)|| = v/16 + 64 + 1 =9, and since (4,8, 1) is orthogonal to q; and gz, we choose

1

Summing up we get the orthonormal basis consisting of

1 1 1
= (4. —1.— =_(7,-4,4 =-(4,8,1
q1 9( ) ) 8)5 q2 9(75 ) )7 q3 9( 787 )a
and the matrix of f in this basis is
-1 0 0
A= 0 -1 0
0o 0 2
Example 3.36 Given the symmetric matrices
1 -1 2 2 -1 -1
A= -1 1 2 and B=1[ -1 2 -1
2 2 =2 -1 -1 2

1. Prove that the characteristic polynomial of A has a simple root and a double root.

Find a proper eigenvector vy corresponding to the simple root.

2. Prove that the characteristic polynomial of B also has a simple root and a double root.

Find a proper eigenvector vo corresponding to the simple root.
3. Prove that vivy =0 (i.e. vi and vo are orthogonal).

4. Find by e.g. applying the results of 1), 2) and 3) above an orthogonal matriz Q, which reduces
both A and B to the diagonal form. Indicate the results of both Q ' AQ and Q~'BQ.

1. We compute the characteristic polynomial of A,

1-x -1 2 2-X 2—X 2-)
det(A—M)=| -1 1-XA 2 |[=| -1 1-x 2

2 2 —2-2) 2 2 —2-2A

11 1 10 0
= 2-N]-1 1-x 2 |=@-XN|-1 2-x 3

2 2 —2-2) 2 0 —4-2A

—(A =22\ +4).

It follows immediately that Ay = —4 is a simple eigenvalue, and that Ao = 2 is an eigenvalue of
multiplicity 2.
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We infer from

5 —1 2 1 -5 =2
A-)\I = -1 5 2 |~ -1 5 2
2 2 2 1 1 1
1 1 1 1 -1 0
~ 021 )~[0 211,
0 0 0 0 0 0
that we can choose an eigenvector corresponding to A\ = —4 as e.g. vi = (1,1, -2).
2. We compute the characteristic e polynomial of B,
2—p -1 -1 o ey R ¥
det(B—puI) = -1 2—-p -1 |=|-1 2—p -1
-1 -1 2—pu -1 -1 2—pu
1 1 1 1 0 0
= —u|l -1 2—p =1 |=—p| -1 3—pun 0
-1 -1 2-upu -1 0 3—u

= —ulp—3)°

We see that we get a simple root u; = 0 and a double root pus = 3.
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It follows from

2 -1 -1 2 -1 -1 2 -1 -1
B-uI=B=| -1 2 -1 ~1 3 =3 0O |~ 1 -1 01,
-1 -1 2 0 0 0 0 0 0

that an eigenvector can be chosen as vo = (1,1, 1).
3. Clearly,
vive=(1,1,-2)-(1,1,1) =14+1-2=0,
sa vy and vo er orthogonal e.

4. Then notice that the matrices are symmetric, so we can in both cases write R? as a direct sum
of orthogonal eigenspaces.

If A, then v; the eigenspace corresponding to A; = —4. The vector v is perpendicular to this
eigenspace, so vo must be an eigenvector corresponding to the eigenvalue Ay = 2. Since vi X vy
is perpendicular to both v; and vy, and Ay = 2 is a double root, it follows that vi x vy is an
eigenvector corresponding to Ay = 2. We compute

€ €2 €3
vixve=|1 1 =2 ]=(3,-3,0)=3(1,-1,0).
1 1 1

For A har vi, at eigenspace mene udspzndes af

1

qi = % (1,1,-2) for \; = —4,

and

1 1
=—(1,1,1) and q3 = —= (1,—1,0 for Ay = 2,
q2 \/g( ) a3 \/5( ) 2

where q1, q2, q3 er en orthonormal basis.

Concerning B, the eigenspaces are spanned by
1
q2 = _(1a1a1) for M1 :Ov

V3

and

1 1
— —_(1,1,-2) and q3 = — (1,—1,0)  for us = 3,
q1 \/6( ) qs3 \/5( ) M2

where we as before conclude that both q; and q3 must lie in the eigenspace corresponding to
p2 = 3.

We may now choose the orthogonal matrix as

1 1 1
V6oVE 2
1 1 1
Q= (a1 q2 q3) = @ @ V2
% v
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Using this matrix we obtain the transformed matrices

-4 0 0 3 0 0
Q'AQ = 0 2 0] andQ'BQ=|0 0 0
0 0 2 0 0 3

Example 3.37 Let A, P, ; € R"*", where P, s is an elementary permutation matriz.
1. Prove that B = P, (AP, , is similar to A.
2. Describe in words how B is obtained from A.

3. Ezxploit the above together with Sylvester’s theorem to find the number of positive and negative
eigenvalues of the symmetric e matrix

01 3
A= 11 2
3 2 4

. . . _ 1 _ —1
1. This is obvious, because P, s = P, =P, .

2. We see that B is obtained from A by first interchange the r-th and the s-th row, and then
interchange the r-th and the s-th column in the result [or vice versa].

3. In order to be able to perform an elementary Gauf} elimination it will be convenient to have the
number 1 on the place number (1,1). Since we have the number 1 on place number (2,2), we
first apply P12 as described above,

0 1 3 1 1 2
A= (112 Rl:RQ(é1§>51:SQ 10 3
3 2 4 2 3 4
1 1 2 1 1 2
0 1 0 0 0 1
and then it follows from Sylvester’s theorem that we have two positive and one negative eigen-
value of A.
ALTERNATIVELY,
= 1 3
det(A — \I) = 11— 2
3 2 4— )\
= “AA-1DA=-49)+6+6+9N—-1)+(N—4)+4X
= A BN AN+ 124 9A -9+ A —4+4)
= A 45N+ 10N —1=—{)\* -5\ —10A+ 1} .
Since A1 - Ao - A3 = —1, and all the roots are real, we have 1 or 3 negative roots.

Since A1 + Ao + A3 = 5 > 0, we have at least one, and hence two positive roots.
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Example 3.38 Given for every a € R the symmetric matriz

a
0

1
A= 2
a -3

S W N

1. Find the LU-factorization of A.

2. Use this LU-factorization to find for every a € R the number (counted by multiplicity) of positive
eigenvalues of A, of negative eigenvalues of A, and — if necessary — the multiplicity of the
eigenvalue 0 for A.

1. By an elementary Gauf} elimination,

1 2 a 1 2 a
A = 2 3 0 ~ 0o -1 —2a
a 0 -3 0 —2a —-3—a?
1 2 a
~ 0 —1 —2a =1,
0 0 3a¢2-3
where
1 0 O
L= 2 1 0
a 2a 1

was implicitly derived above.

CHECK:
1 0 O 1 2 a 1 2 a
LU = 2 1 0 0 -1 —2a = 2 3 0 1. O
a 2a 1 0 0 3a®2-3 a 0 -3

2. According to Sylvester’s theorem we have at least 1 positive and at least 1 negative eigenvalue.
The correct numbers are determined by the signs of 3a? — 3 = 3(a? — 1).
(a) If |a| < 1, then we have 1 positive and 2 negative eigenvalues-
(b) If @ = £1, then we have 1 positive and 1 negative eigenvalue, and 0.

(¢) If |a|] > 1, then we have 2 positive and 1 negative eigenvalue.
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Example 3.39 Given the symmetric matric

1 2 —a
A= 2 8 0 , a € R.
—a 0 6a?

1. Find a lower triangular unit matriz L and an upper triangular matriz U, such thatl A = LU.

2. Find a lower triangular unit matriz L and a diagonal matriz D, such that A = LDLT .

1. We get by an elementary Gauf} elimination

1 2 -—-a 1 2 —a 1 2 -—a
A= 2 8 0 ~ 0 4 2a ~ 0 4 2a =T,
—a 0 6a? 0 2a b5a? 0 0 4a?
where
1 0 O
L= 2 1 0
—a 5 1
is implicitly found in the computations.
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CHECK:
; (1) 8 1 2 —-a 1 2 —a
LU = 2 1 0 0 4 2a = 2 8 0 O
o 0 0 4a? —a 0 6a?
—a 3 ].

1 00 10 0 1 2 —a
A=LU=LDL"=( 2 1 0 04 0 01 ¢
—a 5 1 0 0 4a? 0 0 1
CHECK:
10 0 1 2 —a 1 2 —a
DL =0 4 0 01 ¢ |=(04 20 |=U
0 0 4a? 00 1 0 0 4a?

118

Download free eBooks at bookboon.com



Linear Algebra Examples c-3 3. Euclidean vector space

Example 3.40 Given in an ordinary rectangular coordinate system of positive orientation XY Z in
space three planes o, B and v by the equations

a: r+y—2z=0,

B: 2r —y+ (3a—4)z =3,

v ay —z =1,
where a € R.

1. Find all a, for which the planes o, 8 and 7y have

(a) precisely one point in common,
(b) a straight line in common,

(¢) no point in common,

and find in case 1a) the coordinates of the common point.

In the remaining part of the example we put a = 1.

2. Prove that o, 8 and v pairwise intersect each other, and find a parametric descriptions of the
intersection lines

bop=aNB, Lloy=aNy and Llgy=pFN7.
Prove that the intersection lines are parallel, and find the distance between L5 and £g..

3. The planes o, B and v form a prismatic tube of the edges Lng, Loy and {g.

Find the three angles between the planes inside the tube.

1. The corresponding inhomogeneous system of equation is in matrix form

1 1 -2 x 0
2 -1 3a-—14 y | =1 3
0 a -1 z 1
By reduction,
1 1 —2 0 1 1 =210
(A|b) = 2 -1 3a—4|3 |~ 0 =3 3a| 3
0 e -1 1 0 1 -1]1
11 =2 0 1 0 a—2 1
~ 01 —a| -1 ]~ 01 -—a -1
0 a -1 1 0 0 a2—1 | a+1

(a) If a # %1, then the rank of the matrix of coefficients is 3, so we have precisely one common
point of the planes. By a further reduction it follows that the common point is given by

( L ! ! )— ! (1,1,1) for a # +£1.

a—1"a—-1"a-1 a—1
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(b) If a = —1, then both the matrix of coefficients and the total matrix have rank 2, and the
planes have a line in common.

(¢) If @ = 1, then the matrix of coefficients has rank 2 and the total matrix has rank 3, and we
have no solution, so the three planes have no point in common.

If we put a = 1, then
a: z + y — 2z = 0, 1 1 =2

B: 2z — y — =z med 2 -1 -1
v y — z = 1, 0o 1 -1

I
w

2. For anN 8 we reduce
1 1 =210 1 1 -2
2 -1 —-11{3 0o -3 3
1 0 -1
0 _

1 -1
hence, by using z as parameter,
r=z+1 and y=z—1.
The line is described by

log: (s+1,s—1,5)=(1,-1,0) +s(1,1,1), seR.

For o Ny we reduce
<1 1 —2‘0>N(1 0 —1'1)
01 —-1]1 01 -1 1)
Using z as parameter we get
x=z-—1 and y==z+1
The line is described by

loy: (s—1,s+1,5)=(-1,1,0) +s(1,1,1), s eR.

For BN~ we reduce

2 -1 -1 3 2 0 -21] 4 1 0 -1 2
0 1 -11]1 01 —-111 01 —-1/1)/)"
Using z as parameter we get

r=z+2 and y=z+1.
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The line is described by

lgy: (s+2,s+1,8)=(2,1,0)+s(1,1,1), seR.
Since the direction of all three lines is given by the vector (1,1,1), the three lines are parallel.
Now,

log:  (1,-1,0) +s(1,1,1), s € R,

lgy: (2,1,0) +1¢(1,1,1), teR.
We first find s € R, such that

(1,—1,0) + s(1,1,1) — (2,1,0)
is perpendicular to (1,1,1), thus

0=(1,1,1)-{(1,-1,0) + s(1,1,1) — (2,1,0)} = 3s — 3.
If s =1, then (2,0,1) is a point on £,g, hence

(2,0,1) — (2,1,0) = (0,-1,1)

is perpendicular to the direction (1,1,1) of the two lines.

The length v/2 of this vector is the distance between Lo and £g,.
3. Now,
B: 2x—y—z=3, thus (2,-1,-1) - (x,y,2) = 3,
loy : (—1,1,0+4) + s(1,1,1), s €R.

1
A normed normal vector og § is qg = —=(2,—1,—1).

V6

The line through the point (—1,1,0) on ¢, in the direction qg has the parametric description

(z,y,2) = (—1,1,0) 2,-1,-1), seR.

+ i(

V6
We shall find s, such that this point lies in 3, because |s| is then the searched length (because
qp is normed and perpendicular to 3).

The condition is

B3=2r—y—z=-2-1+-—(A+1+1)=-3+sV6,

V6

thus s = /6.
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4. We first compute the distance between {5 and /., where
log: (1,-1,0)+s(1,1,1), seR,

lo : (=1,1,0)+¢(1,1,1), teR.

It is immediately seen that (1,—1,0) — (—=1,1,0) = 2(1,—1,0) is perpendicular to the direction
(1,1,1) of the lines, hence the distance between them is 2v/2 = /8.

It is left to the reader to sketch the corresponding triangle which is perpendicular to the direction
(1,1,1). If the edges are symbolized by «, § and <, corresponding to each of the planes, then
the height from ¢~ to 3 is of length V6. The edge from § is of length v/2, and the edge from
a is of length V/8. Since

(V2)? + (V6)? =8 = (VB)?,

the triangle must necessarily be right-angled, so the edge from ~ is equal to the height onto 3,
i.e. of length V6.
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The remaining part of the example is concerned with finding the angles in a right-angled triangle.
We conclude from

V2. 1 o N VSR

—=cos— and —— = — =cos—,

2v2 2 3 22 2 6

that

e the angle between the planes o and 3 is g,

e the angle between the planes o and + is g

e the angle between [ and 7y is g

Example 3.41 Given in an ordinary rectangular coordinate system XY Z in space of positive orien-
tation a sphere of the equation

24y 422 —4r—6y—224+13=0
and the line £ of the parametric description
(z,y,2) = (3,4,0) +¢(1,0, 1), t eR.
1. Find the coordinates of the centrum C' of the sphere, and find the radius r of the sphere.
2. Find the distance between £ and the centrum C' of the sphere.

3. The sphere is now illuminated by a parallel bundle of light rays, of of the vector of direction
(L 07 71) ‘
Find an equation of the contour of the shadow, which the sphere produces on the XY -plane, and
give a name of this contour.

1. It follows by some manipulations that

0 = 22+ +22—4da—6y—22+13
{27 —dr+4 -4} +{y* —6y+9—9} +{* —22+1—-1} +13
= (z-22%+@w-32*+(>-1)*-4-9-1+13

(=22 +(y—3)>2*+(z—-1)>2 -1,

from which we obtain the equation of the sphere
(-2 +(@y—37°+(—-1)*%*=1?
of centrum C : (2,3,1) and radius 1.

2. We shall first find the vector from C' to the point on £, which is perpendicular to £. The condition
is
0 = {(3,4,0)+1¢(1,0,—-1)—(2,3,1)}-(1,0,—1)
= 3-2+4+1+4+2=2+2t
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which is fulfilled for ¢ = —1. Then the vector is

(1,1,1) — (1,0,—1) = (0,1,0).

The distance between C' and ¢ is equal to the length 1 of this vector.

3. We note that £ is a line from the parallel bundle, which at the same time is tangent to the sphere
at the point (2,4,1).

By a reflection in C' we obtain the point (2,2, 1), which is projected into (3,2,0), hence the
centre of the projection is (3, 3,0), and the half axis in the direction of the Y-axis has length 1.

1
In order to find the second half axis we notice that E(l7 0, 1) is a unit vector, which is perpen-

dicular to both (1,0,—1) and (0, 1,0), where the latter vector is not changed by the projection.
Then the second half axis (which is in parallel to the X-axis) is derived from the projection of

1 1
2,3,1) — —(1,0,1) and (2,3,1) + —(1,0,1).
(2,3,1) \/5( ) (2,3,1) \/5( )
This means that we shall find s and ¢, such that the Z-coordinates become 0 (the images by the
projection). Hence
1 1
s=1—— and t=14—7,

V2 V2

and the two points are
1

1
NG —(1,0,-1) = (3—v/2,3,0)

(2,3,1) NG

(1,0,1) + (1,0, —-1) —
and

1 1
(2,3,1) + ﬁa,o, 1)+ (1,0,—1) + ﬁ(l,o, —-1) = (3+2,3,0).

The centrum of the ellipse is (3,3), one of the half axis has length v/2, the other 1, so the limit
curve of the shadow has the equation

%(x—3)2+(y—3)2 =1.

The shadow itself is the set

{(x,y) e R? | (z —3)* +2(y — 3)* §2}.
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4 Quadratic forms

Example 4.1 Find a reducing orthogonal substitution of the quadratic form
1. 2£C1£L'2 + 2£C344;

2. x% + x% + xg + .Z'Z — 2x129 + 62123 — 4x104 — 4223 + 6T2T4 — 24324

1. It follows that

01 0 O
1 0 0 O
K(I17I2,$3,I4) = XT 00 0 1 X,
0 0 1 0
hence
01 0 O
1 0 0 0 B 0
A= 0 0 0 1 _<O B)’
0 01 0
where

0 1
s(0 1)
If v is an eigenvector of B, then (v, 0) and (0, v) are orthogonal eigenvectors of A corresponding
to the same eigenvalue.

The characteristic polynomial of B is

det(B — MI) = ’ _1’\ —1/\ ’ =AM —1=AN-1)\+1),
hence the eigenvalues are A\; with e.g. the eigenvector (1,1), and Ay = —1 with e.g. the eigen-

vector (1,—1), both of length /2.

A reducing orthogonal substitution is given by

10 1 0 10 0 O
1 10 -1 0 01 0 O
Q=701 o 1| ™A= o0 1 o0
01 0 -1 00 0 -1
2. Here,
1 -1 3 -2
K(I1,$2,$3,.’E4) = XT ! N s X,

3 -2 1 -1
-2 3 -1 1
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hence

1 -1 3 -2
-1 1 -2 3
3 -2 1 -1
-2 3 -1 1

A=

The characteristic polynomial is

1-A -1 3 -2 1—X 1-X 1-X 1-2
-1 1-x -2 3 0 2-X —2-X 3-2A
det(A=AD=1 o o 1\ -1 |7| 1 1 A A
—2 3 -1 1-] —2 3 ~1  1-2A
11 1 1 11 1 1
02—\ —2-X 3-2) 02—\ —2—-X 3-2X
U T TS GRS U € S RS B W
2 3 1 1-2X 0 5 1 3
2-X —2-)\ 3-2A 2-X 0 5
=A-1DOX\+1D| o0 1 1 |[=(\-1)] 0 1 1
5 1 3-2X 5 1 3-X
2-X 0 5
=\-nl 0o 1 1 =(A2—1>’2EA 25/\‘
5 0 2-A

=N -D{A-22-5t=A-1DA+1D)A\+3)(A=T7),
thus the eigenvalues are \y = =3, Ao = —1, Ag =1 and \y = 7.

If Ay = =3, then

4 -1 3 -2 4 4 4 4 11 1 1
-1 4 -2 3 05 16 05 16
A-nl = 3 -2 4 -1 |7 11 331710022
2 3 -1 4 2 3 —1 4 05 16
11 1 1 1 100
o los 16| fo0o101
00 1 1 00 1 1
00 00 0000

An eigenvector is e.g. vi = (1,-1,—1,1) of length v/1+ 1+ 1+ 1 = 2. Hence a normed eigen-

vector is

== (1,-1,-1,1).

DO | =
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If Ay = —1, then

2 -1 3 -2 2 2 2 2

-1 2 -2 3 0 3 -1 4
A-dl = 3 2 2 -1 |~ 11 11

2 3 -1 2 2 3 -1 2

11 11 11 11

0 3 -1 4 0 3 —1 4

05 1 4 01 0 1

00 00 00 00

10 10

00 -1 1

01 0 1

00 00

An eigenvector is e.g. vo = (1,1, —1,—1), which is of length
[vol| = VI+1+1+1+=2.

Thus a normed eigenvector is

q2 = (1717_17_1)

N =
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If A3 =1, then
0 -1 3 -2 00 0 O
-1 0 -2 3 01 -3 2
A=Al = 3 -2 0 -1 1 1 -1 -1
-2 3 -1 0 -2 3 -1 0
11 -1 -1 1 1 -1 -1
N 05 -3 2] |01 -3 2
01 -3 2 01 0 -1
00 0 O 00 0 0
10 -1 0
01 0 -1
00 -1 1
00 0 0

We see that eigenvector v = (1,1, 1,1) is an eigenvector of length 2, so a normed eigenvector is

1
q2 = 5 (171,171)
If Ay =7, then
-6 -1 3 -2 1 1 1 1
-1 -6 -2 3 0 -5 -9 —4
A-Ml = 3 -2 —6 -1 1 1 =7 =7
-2 3 -1 —6 -2 3 -1 —6
1 1 1 1 1 1 1 1
0 5 1 —4 0 5 1 —4
0 -5 -9 —4 0 1 1 0
0 0 1 1 0 0 1 1
1 1 0 0
01 1 0
0 0 1 1
00 0 O

An eigenvector is e.g. (1,—1,1,—1) of length 2, hence a normed eigenvector is

(1,-1,1,-1).

| =

q4 =

A reducing orthogonal substitution is given by

1 11 1 -3 0 00
-1 11 -1 . . 0 -1 0 0
Q=- 1 1 1 E and vi har A = 0 01 0
1 -1 1 -1 0 0 0 7
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Example 4.2 Prove that the two quadratic forms
(1) 62 + 5y + 72% — 42y
and
(2)  Tx? +6y* + 527 + dyz + day
can be reduced to the same quadratic form
ax? +byi + cz} (a <b<c),

and find for each of these forms an orthogonal substitution, which carries out this reduction. Then
find an orthogonal substitution, which carries the quadratic form (2) into (1).

The matrix A corresponding to (1) is

6 0 0
A= 0 5 —2V/2
0 —2v2 7
with the characteristic polynomial
6— A\ 0 0
5—-\ —2V2
det(A — \I) = 0 5-X —=2V2 |=(6-)) Cov3 T

0 —2v2 7-2)\
= —A=6{(A=5)A=T) =8 =—(A—6)(A\2 — 12X+ 27)
= —(A=6){(A=6)2=3*F=—-(A=3)(A—6)(A—09).

The matrix B corresponding to (2) is
7 20
B= 2 6 2
0 2 5

and its characteristic polynomial is

7oA 20
det(B-A) = | 2 6-\ 2
0 2 5-2A
6-) 2 2 0
= (7_”’ 2 5>\’_2‘2 5>\’

(7= XN{(A=6)(A—5) —4} +4(\ —5)
(A =6){N\ =122 +35 -8} = —(A=3)(A = 6)(A - 9).

In both cases we get the simple roots 3, 6, 9, hence we can reduce to the quadratic form

327 + 6y} + 927
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If Ay = 3, then we get for A that

3 0 0 3
A-X\I=1]0 2 22 | ~| 0
0 —2v2 4 0

0
1
0
An eigenvector is e.g. v1,.4 = (0, V2, 2,1) of length V/3. Then by norming,

If Ay = 3, then we get for B,

0
G
0

210
~ 0 1 1
0 0 O
An eigenvector is e.g. vi p = (1,—2,2) of length v/1 +4 + 4 = 3. Then by norming,

1
Z(1,-2,2).

q1,B = 3(

If Ay = 6, then we get for A that

0 0 0
A-XI=| 0 -1 -—2V2
+ —2v2 1
A normed eigenvector is
Q2,4 = (17 07 O)

If Ay = 6, then we get for B,

1 2 0 1 0 1
B-XI=|2 0 2 ~1 0 2 -1
0 2 -1 0 0 0

An eigenvector is e.g. vo p = (2,—1,—2) of length v/4 + 1 + 4 = 3. Then by norming,

1
q2,B = g (27 713 72)

If A3 =9, then we get for A that

-3 0 0 1 0 0
A—)\I= 0 -4 =22 |~ 0 v2 1
0 —2v2 =2 0 0 O
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An eigenvector is e.g. v3 4 = (0,1, —+/2) of length v/3. Then by norming,
_{, \/T \/5
@.a=|014/3 5

If A3 =9, then we get for B that

-2 2 0 1 -1 0
B \I= 2 -3 2 |~ 0 -1 2
0 2 —4 0 0 0

An eigenvector is e.g. vs g = (2,2,1) of length 3. Hence a normed eigenvector is given by

1
q3,B = § (27 27 ]-)

‘We have
3 0 0
A=|0 6 0 |=Q%AQ, =QLBQ;,
0 0 9
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where

Qa=(d1,4 92,4 Qg3,4) =

Q‘&‘ o
Wi | Wi
o (e
ﬁ‘&‘ o
W=
Wl

and

QoI DI DL | =

Qs = (q1,B 92,8 93,B) =

WO N
[SM L[ SV )

Since Q;‘l = QY it follows that

A =Q.Q5BQ,Q% = (Q4Q%5) B (Q.Q%)" .
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The transformation is uniquely determined by

Q4Q; =

e

— o O =
Se
O O =

. 1 —2 2
- 2 —1 -1
3V3 ) 2 2 1
. 2 ~1 1
= — [ 24v2 2-2V2 1+2V2
3VB3\ 1 92 9_9/3 2-3

Example 4.3 Given the symmetric matrix

2 =2 1
A= -2 5 =2
1 -2 2

1. Reduce the quadratic form
x

(z y 2)A| v
z

to a form Ale + )\gy% + /\32%, where \1 > Ao > A3, and find a proper orthogonal substitution,
which carries out this reduction.

2. Find all pairs (p,q), for which

(A —pI)(A —qI)=0.

1. We compute the characteristic polynomial,

2\ =2 1 1—X 1—=X 1-=2)\
det(A-X[)=| —2 5-X -2 |=| -2 5-X =2
1 -2 2-2A 1 -2  2-)
11 1 11 0
=(1-N| -2 5-X =2 |=(1-=XN] -2 5-X =2
1 -2 2-2 1 =2 1=
=(1-))? L 1 =(1=-XN%0B6-X+2
_( - ) —2 55—\ _( - )( - +)
=-A=7(A=-1)~%

The roots are \{ =7 > XAy =1= X3 = 1.
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If Ay =7, then
-5 =2 1 1 1 1 1 1 1 1 0 -1
-2 =2 -2 |~ 1 -2 -5 |~ 012 |]~(01 2
1 -2 -5 -4 —4 —4 0 0 0 00 O

An eigenvector is e.g. vi = (1,—2,1) of length ||v{|| = /1 +4 + 1 = v/6. Then by norming

1

q = 7 (1,-2,1).

If )\2 = Ag = ]., then

1 -2 1 1 -2 1
-2 4 -2 |~ 0 0 0
1 -2 1 0 0 0

Two linearly independent, though not orthogonal eigenvectors are e.g. vo = (1,1,1) of length
V2| = v/3, and v3 = (2,1,0), where we using the Gram-Schmidt method reduce to

1 3
V3 — (V3 ! V2) WVQ = (2a 1a0) - § (17 1a 1) = (1707_1)a

which is orthogonal to va. We therefore choose
1 1

- —_(1,1,1) and — —(1,0,—1).

The orthogonal substitution, which is defined by the matrix

1 1 1
Q=@ @2 as=)=|( ~5 5 0 ;

1 1 1

V6 V3 V2

reduces the quadratic form to

7o} +yi + 2

2. Let
7 0 0
B = 01 0
0 0 1
Then

(B —pD)(B —¢lI) =0,
if and only if (p,q) € {(7,1),(1,7)}.

Since A can be derived from B by an orthogonal substitution, we have

(A - pI)(A - qI) =0 if and only if (p7 Q) € {(73 1)7 (17 7)}
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Example 4.4 Given the symmetric matrix

1 2 —3a
A= 2 5 —4a
—3a —4a 13a

, where a € R.

1. Find a lower triangular unit matriz L and an upper triangular matriz U, such that A = LU.

2. Find all a, for which A is positive definite.

1. By a simple Gauf} reduction,

1 2 —3a 1 2 —3a
A = 2 5 —4a ~ 0 1 2a
—-3a —4a 13a 0 2a —9a%>+13a
1 2 —3a
~ 0 1 2a
0 0 —13a®+13a
hence
1 2 —3a 1 0 0
U= 0 1 2a and L= 2 1 0
0 0 —13a(a—1) —3a 2a 1

2. Now, A is positive definite, if all diagonal elements of U are positive, so the condition becomes
0<a<l.
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orthogonal matrix, 89

orthogonal vectors, 75

orthogonality, 65

orthonormal basis, 66, 82, 85, 90, 96, 102

Parseval’s equation, 66
permutation matrix, 114
projection, 61, 123

quadratic form, 124, 132

reducing orthogonal substitution, 124

scalar product, 61-63, 67, 72, 73, 75, 77-79, 81,
82, 84-87, 90, 95, 98, 100, 102, 110

scalar product , 71, 75, 92, 96

similar matrices, 23, 24, 29, 114

span, 83

Sylvester’s theorem, 114

system of differential equations, 53, 54, 56, 57

trace, 15, 41, 42, 71, 90
triangular matrix, 18, 45, 116, 134
trigonometric formulse, 64

vector product, 110
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