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Preface

This is a book on linear algebra and matrix theory. While it is self contained, it will work
best for those who have already had some exposure to linear algebra. It is also assumed that
the reader has had calculus. Some optional topics require more analysis than this, however.

I think that the subject of linear algebra is likely the most significant topic discussed in
undergraduate mathematics courses. Part of the reason for this is its usefulness in unifying
so many different topics. Linear algebra is essential in analysis, applied math, and even in
theoretical mathematics. This is the point of view of this book, more than a presentation
of linear algebra for its own sake. This is why there are numerous applications, some fairly
unusual.

This book features an ugly, elementary, and complete treatment of determinants early
in the book. Thus it might be considered as Linear algebra done wrong. I have done this
because of the usefulness of determinants. However, all major topics are also presented in
an alternative manner which is independent of determinants.

The book has an introduction to various numerical methods used in linear algebra.
This is done because of the interesting nature of these methods. The presentation here
emphasizes the reasons why they work. It does not discuss many important numerical
considerations necessary to use the methods effectively. These considerations are found in
numerical analysis texts.

In the exercises, you may occasionally see ↑ at the beginning. This means you ought to
have a look at the exercise above it. Some exercises develop a topic sequentially. There are
also a few exercises which appear more than once in the book. I have done this deliberately
because I think that these illustrate exceptionally important topics and because some people
don’t read the whole book from start to finish but instead jump in to the middle somewhere.
There is one on a theorem of Sylvester which appears no fewer than 3 times. Then it is also
proved in the text. There are multiple proofs of the Cayley Hamilton theorem, some in the
exercises. Some exercises also are included for the sake of emphasizing something which has
been done in the preceding chapter.

9
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Chapter 1

Preliminaries

1.1 Sets And Set Notation

A set is just a collection of things called elements. For example {1, 2, 3, 8} would be a set
consisting of the elements 1,2,3, and 8. To indicate that 3 is an element of {1, 2, 3, 8} , it is
customary to write 3 ∈ {1, 2, 3, 8} . 9 /∈ {1, 2, 3, 8} means 9 is not an element of {1, 2, 3, 8} .
Sometimes a rule specifies a set. For example you could specify a set as all integers larger
than 2. This would be written as S = {x ∈ Z : x > 2} . This notation says: the set of all
integers, x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B, then A is
a subset of B. For example, {1, 2, 3, 8} is a subset of {1, 2, 3, 4, 5, 8} , in symbols, {1, 2, 3, 8} ⊆
{1, 2, 3, 4, 5, 8} . It is sometimes said that “A is contained in B” or even “B contains A”.
The same statement about the two sets may also be written as {1, 2, 3, 4, 5, 8} ⊇ {1, 2, 3, 8}.

The union of two sets is the set consisting of everything which is an element of at least
one of the sets, A or B. As an example of the union of two sets {1, 2, 3, 8} ∪ {3, 4, 7, 8} =
{1, 2, 3, 4, 7, 8} because these numbers are those which are in at least one of the two sets. In
general

A ∪B ≡ {x : x ∈ A or x ∈ B} .

Be sure you understand that something which is in both A and B is in the union. It is not
an exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets.
Thus {1, 2, 3, 8} ∩ {3, 4, 7, 8} = {3, 8} because 3 and 8 are those elements the two sets have
in common. In general,

A ∩B ≡ {x : x ∈ A and x ∈ B} .

The symbol [a, b] where a and b are real numbers, denotes the set of real numbers x,
such that a ≤ x ≤ b and [a, b) denotes the set of real numbers such that a ≤ x < b. (a, b)
consists of the set of real numbers x such that a < x < b and (a, b] indicates the set of
numbers x such that a < x ≤ b. [a,∞) means the set of all numbers x such that x ≥ a and
(−∞, a] means the set of all real numbers which are less than or equal to a. These sorts of
sets of real numbers are called intervals. The two points a and b are called endpoints of the
interval. Other intervals such as (−∞, b) are defined by analogy to what was just explained.
In general, the curved parenthesis indicates the end point it sits next to is not included
while the square parenthesis indicates this end point is included. The reason that there
will always be a curved parenthesis next to ∞ or −∞ is that these are not real numbers.
Therefore, they cannot be included in any set of real numbers.

11
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A special set which needs to be given a name is the empty set also called the null set,
denoted by ∅. Thus ∅ is defined as the set which has no elements in it. Mathematicians like
to say the empty set is a subset of every set. The reason they say this is that if it were not
so, there would have to exist a set A, such that ∅ has something in it which is not in A.
However, ∅ has nothing in it and so the least intellectual discomfort is achieved by saying
∅ ⊆ A.

If A and B are two sets, A \ B denotes the set of things which are in A but not in B.
Thus

A \B ≡ {x ∈ A : x /∈ B} .

Set notation is used whenever convenient.

1.2 Functions

The concept of a function is that of something which gives a unique output for a given input.

Definition 1.2.1 Consider two sets, D and R along with a rule which assigns a unique
element of R to every element of D. This rule is called a function and it is denoted by a
letter such as f. Given x ∈ D, f (x) is the name of the thing in R which results from doing
f to x. Then D is called the domain of f. In order to specify that D pertains to f , the
notation D (f) may be used. The set R is sometimes called the range of f. These days it
is referred to as the codomain. The set of all elements of R which are of the form f (x)
for some x ∈ D is therefore, a subset of R. This is sometimes referred to as the image of
f . When this set equals R, the function f is said to be onto, also surjective. If whenever
x ̸= y it follows f (x) ̸= f (y), the function is called one to one. , also injective It is
common notation to write f : D �→ R to denote the situation just described in this definition
where f is a function defined on a domain D which has values in a codomain R. Sometimes

you may also see something like D
f�→ R to denote the same thing.

1.3 The Number Line And Algebra Of The Real Num-
bers

Next, consider the real numbers, denoted by R, as a line extending infinitely far in both
directions. In this book, the notation, ≡ indicates something is being defined. Thus the
integers are defined as

Z ≡{· · · − 1, 0, 1, · · · } ,

the natural numbers,
N ≡ {1, 2, · · · }

and the rational numbers, defined as the numbers which are the quotient of two integers.

Q ≡
{m

n
such that m,n ∈ Z, n ̸= 0

}

are each subsets of R as indicated in the following picture.

0

1/2

1 2 3 4−1−2−3−4
��
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As shown in the picture, 1
2 is half way between the number 0 and the number, 1. By

analogy, you can see where to place all the other rational numbers. It is assumed that R has
the following algebra properties, listed here as a collection of assertions called axioms. These
properties will not be proved which is why they are called axioms rather than theorems. In
general, axioms are statements which are regarded as true. Often these are things which
are “self evident” either from experience or from some sort of intuition but this does not
have to be the case.

Axiom 1.3.1 x+ y = y + x, (commutative law for addition)

Axiom 1.3.2 x+ 0 = x, (additive identity).

Axiom 1.3.3 For each x ∈ R, there exists −x ∈ R such that x + (−x) = 0, (existence of
additive inverse).

Axiom 1.3.4 (x+ y) + z = x+ (y + z) , (associative law for addition).

Axiom 1.3.5 xy = yx, (commutative law for multiplication).

Axiom 1.3.6 (xy) z = x (yz) , (associative law for multiplication).

Axiom 1.3.7 1x = x, (multiplicative identity).

Axiom 1.3.8 For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multiplica-
tive inverse).

Axiom 1.3.9 x (y + z) = xy + xz.(distributive law).

These axioms are known as the field axioms and any set (there are many others besides
R) which has two such operations satisfying the above axioms is called a field. Division and
subtraction are defined in the usual way by x− y ≡ x+ (−y) and x/y ≡ x

(
y−1

)
.

Here is a little proposition which derives some familiar facts.

Proposition 1.3.10 0 and 1 are unique. Also −x is unique and x−1 is unique. Further-
more, 0x = x0 = 0 and −x = (−1)x.

Proof: Suppose 0′ is another additive identity. Then

0′ = 0′ + 0 = 0.

Thus 0 is unique. Say 1′ is another multiplicative identity. Then

1 = 1′1 = 1′.

Now suppose y acts like the additive inverse of x. Then

−x = (−x) + 0 = (−x) + (x+ y) = (−x+ x) + y = y

Finally,
0x = (0 + 0)x = 0x+ 0x

and so
0 = − (0x) + 0x = − (0x) + (0x+ 0x) = (− (0x) + 0x) + 0x = 0x

Finally
x+ (−1)x = (1 + (−1))x = 0x = 0

and so by uniqueness of the additive inverse, (−1)x = −x. �

Download free eBooks at bookboon.com



LINEAR ALGEBRA I Preliminaries

13

1.3. THE NUMBER LINE AND ALGEBRA OF THE REAL NUMBERS 13

As shown in the picture, 1
2 is half way between the number 0 and the number, 1. By

analogy, you can see where to place all the other rational numbers. It is assumed that R has
the following algebra properties, listed here as a collection of assertions called axioms. These
properties will not be proved which is why they are called axioms rather than theorems. In
general, axioms are statements which are regarded as true. Often these are things which
are “self evident” either from experience or from some sort of intuition but this does not
have to be the case.

Axiom 1.3.1 x+ y = y + x, (commutative law for addition)

Axiom 1.3.2 x+ 0 = x, (additive identity).

Axiom 1.3.3 For each x ∈ R, there exists −x ∈ R such that x + (−x) = 0, (existence of
additive inverse).

Axiom 1.3.4 (x+ y) + z = x+ (y + z) , (associative law for addition).

Axiom 1.3.5 xy = yx, (commutative law for multiplication).

Axiom 1.3.6 (xy) z = x (yz) , (associative law for multiplication).

Axiom 1.3.7 1x = x, (multiplicative identity).

Axiom 1.3.8 For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multiplica-
tive inverse).

Axiom 1.3.9 x (y + z) = xy + xz.(distributive law).

These axioms are known as the field axioms and any set (there are many others besides
R) which has two such operations satisfying the above axioms is called a field. Division and
subtraction are defined in the usual way by x− y ≡ x+ (−y) and x/y ≡ x

(
y−1

)
.

Here is a little proposition which derives some familiar facts.

Proposition 1.3.10 0 and 1 are unique. Also −x is unique and x−1 is unique. Further-
more, 0x = x0 = 0 and −x = (−1)x.

Proof: Suppose 0′ is another additive identity. Then

0′ = 0′ + 0 = 0.

Thus 0 is unique. Say 1′ is another multiplicative identity. Then

1 = 1′1 = 1′.

Now suppose y acts like the additive inverse of x. Then

−x = (−x) + 0 = (−x) + (x+ y) = (−x+ x) + y = y

Finally,
0x = (0 + 0)x = 0x+ 0x

and so
0 = − (0x) + 0x = − (0x) + (0x+ 0x) = (− (0x) + 0x) + 0x = 0x

Finally
x+ (−1)x = (1 + (−1))x = 0x = 0

and so by uniqueness of the additive inverse, (−1)x = −x. �
14 CHAPTER 1. PRELIMINARIES

1.4 Ordered fields

The real numbers R are an example of an ordered field. More generally, here is a definition.

Definition 1.4.1 Let F be a field. It is an ordered field if there exists an order, < which
satisfies

1. For any x ̸= y, either x < y or y < x.

2. If x < y and either z < w or z = w, then, x+ z < y + w.

3. If 0 < x, 0 < y, then xy > 0.

With this definition, the familiar properties of order can be proved. The following
proposition lists many of these familiar properties. The relation ‘a > b’ has the same
meaning as ‘b < a’.

Proposition 1.4.2 The following are obtained.

1. If x < y and y < z, then x < z.

2. If x > 0 and y > 0, then x+ y > 0.

3. If x > 0, then −x < 0.

4. If x ̸= 0, either x or −x is > 0.

5. If x < y, then −x > −y.

6. If x ̸= 0, then x2 > 0.

7. If 0 < x < y then x−1 > y−1.

Proof: First consider 1, called the transitive law. Suppose that x < y and y < z. Then
from the axioms, x+ y < y + z and so, adding −y to both sides, it follows

x < z

Next consider 2. Suppose x > 0 and y > 0. Then from 2,

0 = 0 + 0 < x+ y.

Next consider 3. It is assumed x > 0 so

0 = −x+ x > 0 + (−x) = −x

Now consider 4. If x < 0, then

0 = x+ (−x) < 0 + (−x) = −x.

Consider the 5. Since x < y, it follows from 2

0 = x+ (−x) < y + (−x)

and so by 4 and Proposition 1.3.10,

(−1) (y + (−x)) < 0
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Also from Proposition 1.3.10 (−1) (−x) = − (−x) = x and so

−y + x < 0.

Hence
−y < −x.

Consider 6. If x > 0, there is nothing to show. It follows from the definition. If x < 0,
then by 4, −x > 0 and so by Proposition 1.3.10 and the definition of the order,

(−x)
2
= (−1) (−1)x2 > 0

By this proposition again, (−1) (−1) = − (−1) = 1 and so x2 > 0 as claimed. Note that
1 > 0 because it equals 12.

Finally, consider 7. First, if x > 0 then if x−1 < 0, it would follow (−1)x−1 > 0 and so
x (−1)x−1 = (−1) 1 = −1 > 0. However, this would require

0 > 1 = 12 > 0

from what was just shown. Therefore, x−1 > 0. Now the assumption implies y+(−1)x > 0
and so multiplying by x−1,

yx−1 + (−1)xx−1 = yx−1 + (−1) > 0

Now multiply by y−1, which by the above satisfies y−1 > 0, to obtain

x−1 + (−1) y−1 > 0

and so
x−1 > y−1. �

In an ordered field the symbols ≤ and ≥ have the usual meanings. Thus a ≤ b means
a < b or else a = b, etc.

1.5 The Complex Numbers

Just as a real number should be considered as a point on the line, a complex number is
considered a point in the plane which can be identified in the usual way using the Cartesian
coordinates of the point. Thus (a, b) identifies a point whose x coordinate is a and whose
y coordinate is b. In dealing with complex numbers, such a point is written as a + ib and
multiplication and addition are defined in the most obvious way subject to the convention
that i2 = −1. Thus,

(a+ ib) + (c+ id) = (a+ c) + i (b+ d)

and
(a+ ib) (c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i (bc+ ad) .

Every non zero complex number, a+ib, with a2+b2 ̸= 0, has a unique multiplicative inverse.

1

a+ ib
=

a− ib

a2 + b2
=

a

a2 + b2
− i

b

a2 + b2
.

You should prove the following theorem.

Theorem 1.5.1 The complex numbers with multiplication and addition defined as above
form a field satisfying all the field axioms listed on Page 13.
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Note that if x+ iy is a complex number, it can be written as

x+ iy =
√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)

Now

(
x√

x2+y2
, y√

x2+y2

)
is a point on the unit circle and so there exists a unique θ ∈ [0, 2π)

such that this ordered pair equals (cos θ, sin θ) . Letting r =
√

x2 + y2, it follows that the
complex number can be written in the form

x+ iy = r (cos θ + i sin θ)

This is called the polar form of the complex number.
The field of complex numbers is denoted as C. An important construction regarding

complex numbers is the complex conjugate denoted by a horizontal line above the number.
It is defined as follows.

a+ ib ≡ a− ib.

What it does is reflect a given complex number across the x axis. Algebraically, the following
formula is easy to obtain. (

a+ ib
)
(a+ ib) = a2 + b2.

Definition 1.5.2 Define the absolute value of a complex number as follows.

|a+ ib| ≡
√
a2 + b2.

Thus, denoting by z the complex number, z = a+ ib,

|z| = (zz)
1/2

.

With this definition, it is important to note the following. Be sure to verify this. It is
not too hard but you need to do it.

Remark 1.5.3 : Let z = a+ ib and w = c+ id. Then |z − w| =
√
(a− c)

2
+ (b− d)

2
. Thus

the distance between the point in the plane determined by the ordered pair, (a, b) and the
ordered pair (c, d) equals |z − w| where z and w are as just described.

For example, consider the distance between (2, 5) and (1, 8) . From the distance formula

this distance equals

√
(2− 1)

2
+ (5− 8)

2
=

√
10. On the other hand, letting z = 2+ i5 and

w = 1+ i8, z−w = 1− i3 and so (z − w) (z − w) = (1− i3) (1 + i3) = 10 so |z − w| =
√
10,

the same thing obtained with the distance formula.
Complex numbers, are often written in the so called polar form which is described next.

Suppose x+ iy is a complex number. Then

x+ iy =
√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
.

Now note that (
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2
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and so (
x√

x2 + y2
,

y√
x2 + y2

)

is a point on the unit circle. Therefore, there exists a unique angle, θ ∈ [0, 2π) such that

cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

.

The polar form of the complex number is then

r (cos θ + i sin θ)

where θ is this angle just described and r =
√
x2 + y2.

A fundamental identity is the formula of De Moivre which follows.

Theorem 1.5.4 Let r > 0 be given. Then if n is a positive integer,

[r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) .

Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

[r (cos t+ i sin t)]
n+1

= [r (cos t+ i sin t)]
n
[r (cos t+ i sin t)]

which by induction equals

= rn+1 (cosnt+ i sinnt) (cos t+ i sin t)

= rn+1 ((cosnt cos t− sinnt sin t) + i (sinnt cos t+ cosnt sin t))

= rn+1 (cos (n+ 1) t+ i sin (n+ 1) t)

by the formulas for the cosine and sine of the sum of two angles. �

Corollary 1.5.5 Let z be a non zero complex number. Then there are always exactly k kth

roots of z in C.

Proof: Let z = x + iy and let z = |z| (cos t+ i sin t) be the polar form of the complex
number. By De Moivre’s theorem, a complex number,

r (cosα+ i sinα) ,

is a kth root of z if and only if

rk (cos kα+ i sin kα) = |z| (cos t+ i sin t) .

This requires rk = |z| and so r = |z|1/k and also both cos (kα) = cos t and sin (kα) = sin t.
This can only happen if

kα = t+ 2lπ

for l an integer. Thus

α =
t+ 2lπ

k
, l ∈ Z

and so the kth roots of z are of the form

|z|1/k
(
cos

(
t+ 2lπ

k

)
+ i sin

(
t+ 2lπ

k

))
, l ∈ Z.

Since the cosine and sine are periodic of period 2π, there are exactly k distinct numbers
which result from this formula. �
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and so (
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x2 + y2

)

is a point on the unit circle. Therefore, there exists a unique angle, θ ∈ [0, 2π) such that

cos θ =
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x2 + y2
, sin θ =

y√
x2 + y2

.

The polar form of the complex number is then

r (cos θ + i sin θ)

where θ is this angle just described and r =
√
x2 + y2.
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Theorem 1.5.4 Let r > 0 be given. Then if n is a positive integer,

[r (cos t+ i sin t)]
n
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Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

[r (cos t+ i sin t)]
n+1
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n
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which by induction equals
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= rn+1 ((cosnt cos t− sinnt sin t) + i (sinnt cos t+ cosnt sin t))

= rn+1 (cos (n+ 1) t+ i sin (n+ 1) t)

by the formulas for the cosine and sine of the sum of two angles. �

Corollary 1.5.5 Let z be a non zero complex number. Then there are always exactly k kth

roots of z in C.

Proof: Let z = x + iy and let z = |z| (cos t+ i sin t) be the polar form of the complex
number. By De Moivre’s theorem, a complex number,

r (cosα+ i sinα) ,

is a kth root of z if and only if

rk (cos kα+ i sin kα) = |z| (cos t+ i sin t) .

This requires rk = |z| and so r = |z|1/k and also both cos (kα) = cos t and sin (kα) = sin t.
This can only happen if

kα = t+ 2lπ

for l an integer. Thus

α =
t+ 2lπ

k
, l ∈ Z

and so the kth roots of z are of the form

|z|1/k
(
cos

(
t+ 2lπ

k

)
+ i sin

(
t+ 2lπ

k

))
, l ∈ Z.

Since the cosine and sine are periodic of period 2π, there are exactly k distinct numbers
which result from this formula. �18 CHAPTER 1. PRELIMINARIES

Example 1.5.6 Find the three cube roots of i.

First note that i = 1
(
cos

(
π
2

)
+ i sin

(
π
2

))
. Using the formula in the proof of the above

corollary, the cube roots of i are

1

(
cos

(
(π/2) + 2lπ

3

)
+ i sin

(
(π/2) + 2lπ

3

))

where l = 0, 1, 2. Therefore, the roots are

cos
(π
6

)
+ i sin

(π
6

)
, cos

(
5

6
π

)
+ i sin

(
5

6
π

)
,

and

cos

(
3

2
π

)
+ i sin

(
3

2
π

)
.

Thus the cube roots of i are
√
3
2 + i

(
1
2

)
, −

√
3

2 + i
(
1
2

)
, and −i.

The ability to find kth roots can also be used to factor some polynomials.

Example 1.5.7 Factor the polynomial x3 − 27.

First find the cube roots of 27. By the above procedure using De Moivre’s theorem,

these cube roots are 3, 3
(

−1
2 + i

√
3
2

)
, and 3

(
−1
2 − i

√
3
2

)
. Therefore, x3 + 27 =

(x− 3)

(
x− 3

(
−1

2
+ i

√
3

2

))(
x− 3

(
−1

2
− i

√
3

2

))
.

Note also
(
x− 3

(
−1
2 + i

√
3
2

))(
x− 3

(
−1
2 − i

√
3
2

))
= x2 + 3x+ 9 and so

x3 − 27 = (x− 3)
(
x2 + 3x+ 9

)

where the quadratic polynomial, x2 + 3x + 9 cannot be factored without using complex
numbers.

The real and complex numbers both are fields satisfying the axioms on Page 13 and it is
usually one of these two fields which is used in linear algebra. The numbers are often called
scalars. However, it turns out that all algebraic notions work for any field and there are
many others. For this reason, I will often refer to the field of scalars as F although F will
usually be either the real or complex numbers. If there is any doubt, assume it is the field
of complex numbers which is meant.

1.6 The Fundamental Theorem Of Algebra

The reason the complex numbers are so significant in linear algebra is that they are alge-
braically complete. This means that every polynomial

∑n
k=0 akz

k, n ≥ 1, an ̸= 0, having
coefficients ak in C has a root in in C. I will give next a simple explanation of why it is
reasonable to believe in this theorem followed by a legitimate proof. The first completely
correct proof of this theorem was given in 1806 by Argand although Gauss is often credited
with proving it earlier and many others worked on it in the 1700’s.

Theorem 1.6.1 Let p (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 where each ak is a complex
number and an ̸= 0, n ≥ 1. Then there exists w ∈ C such that p (w) = 0.
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= x2 + 3x+ 9 and so

x3 − 27 = (x− 3)
(
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)

where the quadratic polynomial, x2 + 3x + 9 cannot be factored without using complex
numbers.

The real and complex numbers both are fields satisfying the axioms on Page 13 and it is
usually one of these two fields which is used in linear algebra. The numbers are often called
scalars. However, it turns out that all algebraic notions work for any field and there are
many others. For this reason, I will often refer to the field of scalars as F although F will
usually be either the real or complex numbers. If there is any doubt, assume it is the field
of complex numbers which is meant.

1.6 The Fundamental Theorem Of Algebra

The reason the complex numbers are so significant in linear algebra is that they are alge-
braically complete. This means that every polynomial

∑n
k=0 akz

k, n ≥ 1, an ̸= 0, having
coefficients ak in C has a root in in C. I will give next a simple explanation of why it is
reasonable to believe in this theorem followed by a legitimate proof. The first completely
correct proof of this theorem was given in 1806 by Argand although Gauss is often credited
with proving it earlier and many others worked on it in the 1700’s.

Theorem 1.6.1 Let p (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 where each ak is a complex
number and an ̸= 0, n ≥ 1. Then there exists w ∈ C such that p (w) = 0.
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To begin with, here is the informal explanation. Dividing by the leading coefficient an,
there is no loss of generality in assuming that the polynomial is of the form

p (z) = zn + an−1z
n−1 + · · ·+ a1z + a0

If a0 = 0, there is nothing to prove because p (0) = 0. Therefore, assume a0 ̸= 0. From
the polar form of a complex number z, it can be written as |z| (cos θ + i sin θ). Thus, by
DeMoivre’s theorem,

zn = |z|n (cos (nθ) + i sin (nθ))

It follows that zn is some point on the circle of radius |z|n
Denote by Cr the circle of radius r in the complex plane which is centered at 0. Then

if r is sufficiently large and |z| = r, the term zn is far larger than the rest of the polyno-
mial. It is on the circle of radius |z|n while the other terms are on circles of fixed mul-

tiples of |z|k for k ≤ n − 1. Thus, for r large enough, Ar = {p (z) : z ∈ Cr} describes
a closed curve which misses the inside of some circle having 0 as its center. It won’t
be as simple as suggested in the following picture, but it will be a closed curve thanks
to De Moivre’s theorem and the observation that the cosine and sine are periodic. Now
shrink r. Eventually, for r small enough, the non constant terms are negligible and so Ar

is a curve which is contained in some circle centered at a0 which has 0 on the outside.

0

Ar r largea0
Ar

r small

Thus it is reasonable to believe that for some r dur-
ing this shrinking process, the set Ar must hit 0. It
follows that p (z) = 0 for some z.

For example, consider the polynomial x3+x+1+i.
It has no real zeros. However, you could let z =

r (cos t+ i sin t) and insert this into the polynomial. Thus you would want to find a point
where

(r (cos t+ i sin t))
3
+ r (cos t+ i sin t) + 1 + i = 0 + 0i

Expanding this expression on the left to write it in terms of real and imaginary parts, you
get on the left

r3 cos3 t− 3r3 cos t sin2 t+ r cos t+ 1 + i
(
3r3 cos2 t sin t− r3 sin3 t+ r sin t+ 1

)

Thus you need to have both the real and imaginary parts equal to 0. In other words, you
need to have (0, 0) =

(
r3 cos3 t− 3r3 cos t sin2 t+ r cos t+ 1, 3r3 cos2 t sin t− r3 sin3 t+ r sin t+ 1

)

for some value of r and t. First here is a graph of this parametric function of t for t ∈ [0, 2π]
on the left, when r = 4. Note how the graph misses the origin 0 + i0. In fact, the closed
curve is in the exterior of a circle which has the point 0 + i0 on its inside.
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Next is the graph when r = .5. Note how the closed curve is included in a circle which
has 0+ i0 on its outside. As you shrink r you get closed curves. At first, these closed curves
enclose 0 + i0 and later, they exclude 0 + i0. Thus one of them should pass through this
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where
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get on the left
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(
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Thus you need to have both the real and imaginary parts equal to 0. In other words, you
need to have (0, 0) =
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point. In fact, consider the curve which results when r = 1. 386 which is the graph on the
right. Note how for this value of r the curve passes through the point 0+ i0. Thus for some
t, 1.386 (cos t+ i sin t) is a solution of the equation p (z) = 0 or very close to one.

Now here is a short rigorous proof for those who have studied analysis.
Proof: Suppose the nonconstant polynomial p (z) = a0 + a1z + · · ·+ anz

n, an ̸= 0, has
no zero in C. Since lim|z|→∞ |p (z)| = ∞, there is a z0 with

|p (z0)| = min
z∈C

|p (z)| > 0

Then let q (z) = p(z+z0)
p(z0)

. This is also a polynomial which has no zeros and the minimum of

|q (z)| is 1 and occurs at z = 0. Since q (0) = 1, it follows q (z) = 1 + akz
k + r (z) where

r (z) consists of higher order terms. Here ak is the first coefficient which is nonzero. Choose
a sequence, zn → 0, such that akz

k
n < 0. For example, let −akz

k
n = (1/n). Then

|q (zn)| =
��1 + akz

k + r (z)
�� ≤ 1− 1/n+ |r (zn)| = 1 + akz

k
n + |r (zn)| < 1

for all n large enough because |r (zn)| is small compared with
��akzkn

�� since it involves higher
order terms. This is a contradiction. �

1.7 Exercises

1. Let z = 5 + i9. Find z−1.

2. Let z = 2 + i7 and let w = 3− i8. Find zw, z + w, z2, and w/z.

3. Give the complete solution to x4 + 16 = 0.

4. Graph the complex cube roots of −8 in the complex plane. Do the same for the four
fourth roots of −16.

5. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

6. De Moivre’s theorem says [r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) for n a positive

integer. Does this formula continue to hold for all integers, n, even negative integers?
Explain.

7. You already know formulas for cos (x+ y) and sin (x+ y) and these were used to prove
De Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for sin (5x)
and one for cos (5x). Hint: Use the binomial theorem.

8. If z and w are two complex numbers and the polar form of z involves the angle θ while
the polar form of w involves the angle ϕ, show that in the polar form for zw the angle
involved is θ + ϕ. Also, show that in the polar form of a complex number, z, r = |z| .

9. Factor x3 + 8 as a product of linear factors.

10. Write x3 + 27 in the form (x+ 3)
(
x2 + ax+ b

)
where x2 + ax+ b cannot be factored

any more using only real numbers.

11. Completely factor x4 + 16 as a product of linear factors.

12. Factor x4 + 16 as the product of two quadratic polynomials each of which cannot be
factored further without using complex numbers.
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point. In fact, consider the curve which results when r = 1. 386 which is the graph on the
right. Note how for this value of r the curve passes through the point 0+ i0. Thus for some
t, 1.386 (cos t+ i sin t) is a solution of the equation p (z) = 0 or very close to one.

Now here is a short rigorous proof for those who have studied analysis.
Proof: Suppose the nonconstant polynomial p (z) = a0 + a1z + · · ·+ anz

n, an ̸= 0, has
no zero in C. Since lim|z|→∞ |p (z)| = ∞, there is a z0 with

|p (z0)| = min
z∈C

|p (z)| > 0

Then let q (z) = p(z+z0)
p(z0)

. This is also a polynomial which has no zeros and the minimum of

|q (z)| is 1 and occurs at z = 0. Since q (0) = 1, it follows q (z) = 1 + akz
k + r (z) where

r (z) consists of higher order terms. Here ak is the first coefficient which is nonzero. Choose
a sequence, zn → 0, such that akz

k
n < 0. For example, let −akz

k
n = (1/n). Then

|q (zn)| =
��1 + akz

k + r (z)
�� ≤ 1− 1/n+ |r (zn)| = 1 + akz

k
n + |r (zn)| < 1

for all n large enough because |r (zn)| is small compared with
��akzkn

�� since it involves higher
order terms. This is a contradiction. �

1.7 Exercises

1. Let z = 5 + i9. Find z−1.

2. Let z = 2 + i7 and let w = 3− i8. Find zw, z + w, z2, and w/z.

3. Give the complete solution to x4 + 16 = 0.

4. Graph the complex cube roots of −8 in the complex plane. Do the same for the four
fourth roots of −16.

5. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

6. De Moivre’s theorem says [r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) for n a positive

integer. Does this formula continue to hold for all integers, n, even negative integers?
Explain.

7. You already know formulas for cos (x+ y) and sin (x+ y) and these were used to prove
De Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for sin (5x)
and one for cos (5x). Hint: Use the binomial theorem.

8. If z and w are two complex numbers and the polar form of z involves the angle θ while
the polar form of w involves the angle ϕ, show that in the polar form for zw the angle
involved is θ + ϕ. Also, show that in the polar form of a complex number, z, r = |z| .

9. Factor x3 + 8 as a product of linear factors.

10. Write x3 + 27 in the form (x+ 3)
(
x2 + ax+ b

)
where x2 + ax+ b cannot be factored

any more using only real numbers.

11. Completely factor x4 + 16 as a product of linear factors.

12. Factor x4 + 16 as the product of two quadratic polynomials each of which cannot be
factored further without using complex numbers.
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13. If z, w are complex numbers prove zw = zw and then show by induction that z1 · · · zm =
z1 · · · zm. Also verify that

∑m
k=1 zk =

∑m
k=1 zk. In words this says the conjugate of a

product equals the product of the conjugates and the conjugate of a sum equals the
sum of the conjugates.

14. Suppose p (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 where all the ak are real numbers.
Suppose also that p (z) = 0 for some z ∈ C. Show it follows that p (z) = 0 also.

15. I claim that 1 = −1. Here is why: −1 = i2 =
√
−1

√
−1 =

√
(−1)

2
=

√
1 = 1. This

is clearly a remarkable result but is there something wrong with it? If so, what is
wrong?

16. De Moivre’s theorem is really a grand thing. I plan to use it now for rational exponents,
not just integers.

1 = 1(1/4) = (cos 2π + i sin 2π)
1/4

= cos (π/2) + i sin (π/2) = i.

Therefore, squaring both sides it follows 1 = −1 as in the previous problem. What
does this tell you about De Moivre’s theorem? Is there a profound difference between
raising numbers to integer powers and raising numbers to non integer powers?

17. Show that C cannot be considered an ordered field. Hint: Consider i2 = −1. Recall
that 1 > 0 by Proposition 1.4.2.

18. Say a + ib < x + iy if a < x or if a = x, then b < y. This is called the lexicographic
order. Show that any two different complex numbers can be compared with this order.
What goes wrong in terms of the other requirements for an ordered field.

19. With the order of Problem 18, consider for n ∈ N the complex number 1 − 1
n . Show

that with the lexicographic order just described, each of 1− in is an upper bound to
all these numbers. Therefore, this is a set which is “bounded above” but has no least
upper bound with respect to the lexicographic order on C.

1.8 Completeness of R
Recall the following important definition from calculus, completeness of R.

Definition 1.8.1 A non empty set, S ⊆ R is bounded above (below) if there exists x ∈ R
such that x ≥ (≤) s for all s ∈ S. If S is a nonempty set in R which is bounded above,
then a number, l which has the property that l is an upper bound and that every other upper
bound is no smaller than l is called a least upper bound, l.u.b. (S) or often sup (S) . If S is a
nonempty set bounded below, define the greatest lower bound, g.l.b. (S) or inf (S) similarly.
Thus g is the g.l.b. (S) means g is a lower bound for S and it is the largest of all lower
bounds. If S is a nonempty subset of R which is not bounded above, this information is
expressed by saying sup (S) = +∞ and if S is not bounded below, inf (S) = −∞.

Every existence theorem in calculus depends on some form of the completeness axiom.

Axiom 1.8.2 (completeness) Every nonempty set of real numbers which is bounded above
has a least upper bound and every nonempty set of real numbers which is bounded below has
a greatest lower bound.

It is this axiom which distinguishes Calculus from Algebra. A fundamental result about
sup and inf is the following.
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Proposition 1.8.3 Let S be a nonempty set and suppose sup (S) exists. Then for every
δ > 0,

S ∩ (sup (S)− δ, sup (S)] ̸= ∅.

If inf (S) exists, then for every δ > 0,

S ∩ [inf (S) , inf (S) + δ) ̸= ∅.

Proof: Consider the first claim. If the indicated set equals ∅, then sup (S) − δ is an
upper bound for S which is smaller than sup (S) , contrary to the definition of sup (S) as
the least upper bound. In the second claim, if the indicated set equals ∅, then inf (S) + δ
would be a lower bound which is larger than inf (S) contrary to the definition of inf (S). �

1.9 Well Ordering And Archimedean Property

Definition 1.9.1 A set is well ordered if every nonempty subset S, contains a smallest
element z having the property that z ≤ x for all x ∈ S.

Axiom 1.9.2 Any set of integers larger than a given number is well ordered.

In particular, the natural numbers defined as

N ≡{1, 2, · · · }

is well ordered.
The above axiom implies the principle of mathematical induction.

Theorem 1.9.3 (Mathematical induction) A set S ⊆ Z, having the property that a ∈ S
and n+ 1 ∈ S whenever n ∈ S contains all integers x ∈ Z such that x ≥ a.

Proof: Let T ≡ ([a,∞) ∩ Z) \ S. Thus T consists of all integers larger than or equal
to a which are not in S. The theorem will be proved if T = ∅. If T ̸= ∅ then by the well
ordering principle, there would have to exist a smallest element of T, denoted as b. It must
be the case that b > a since by definition, a /∈ T. Then the integer, b− 1 ≥ a and b− 1 /∈ S
because if b − 1 ∈ S, then b − 1 + 1 = b ∈ S by the assumed property of S. Therefore,
b− 1 ∈ ([a,∞) ∩ Z) \ S = T which contradicts the choice of b as the smallest element of T.
(b− 1 is smaller.) Since a contradiction is obtained by assuming T ̸= ∅, it must be the case
that T = ∅ and this says that everything in [a,∞) ∩ Z is also in S. �

Example 1.9.4 Show that for all n ∈ N, 1
2 · 3

4 · · ·
2n−1
2n < 1√

2n+1
.

If n = 1 this reduces to the statement that 1
2 < 1√

3
which is obviously true. Suppose

then that the inequality holds for n. Then

1

2
· 3
4
· · · 2n− 1

2n
· 2n+ 1

2n+ 2
<

1√
2n+ 1

2n+ 1

2n+ 2
=

√
2n+ 1

2n+ 2
.

The theorem will be proved if this last expression is less than 1√
2n+3

. This happens if and

only if (
1√

2n+ 3

)2

=
1

2n+ 3
>

2n+ 1

(2n+ 2)
2

which occurs if and only if (2n+ 2)
2
> (2n+ 3) (2n+ 1) and this is clearly true which may

be seen from expanding both sides. This proves the inequality.
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Definition 1.9.5 The Archimedean property states that whenever x ∈ R, and a > 0, there
exists n ∈ N such that na > x.

Proposition 1.9.6 R has the Archimedean property.

Proof: Suppose it is not true. Then there exists x ∈ R and a > 0 such that na ≤ x
for all n ∈ N. Let S = {na : n ∈ N} . By assumption, this is bounded above by x. By
completeness, it has a least upper bound y. By Proposition 1.8.3 there exists n ∈ N such
that

y − a < na ≤ y.

Then y = y − a+ a < na+ a = (n+ 1) a ≤ y, a contradiction. �

Theorem 1.9.7 Suppose x < y and y − x > 1. Then there exists an integer l ∈ Z, such
that x < l < y. If x is an integer, there is no integer y satisfying x < y < x+ 1.

Proof: Let x be the smallest positive integer. Not surprisingly, x = 1 but this can be
proved. If x < 1 then x2 < x contradicting the assertion that x is the smallest natural
number. Therefore, 1 is the smallest natural number. This shows there is no integer, y,
satisfying x < y < x+ 1 since otherwise, you could subtract x and conclude 0 < y − x < 1
for some integer y − x.

Now suppose y − x > 1 and let

S ≡ {w ∈ N : w ≥ y} .

The set S is nonempty by the Archimedean property. Let k be the smallest element of S.
Therefore, k − 1 < y. Either k − 1 ≤ x or k − 1 > x. If k − 1 ≤ x, then

y − x ≤ y − (k − 1) =

≤0︷ ︸︸ ︷
y − k + 1 ≤ 1

contrary to the assumption that y − x > 1. Therefore, x < k − 1 < y. Let l = k − 1. �
It is the next theorem which gives the density of the rational numbers. This means that

for any real number, there exists a rational number arbitrarily close to it.

Theorem 1.9.8 If x < y then there exists a rational number r such that x < r < y.

Proof: Let n ∈ N be large enough that

n (y − x) > 1.

Thus (y − x) added to itself n times is larger than 1. Therefore,

n (y − x) = ny + n (−x) = ny − nx > 1.

It follows from Theorem 1.9.7 there exists m ∈ Z such that

nx < m < ny

and so take r = m/n. �

Definition 1.9.9 A set S ⊆ R is dense in R if whenever a < b, S ∩ (a, b) ̸= ∅.

Thus the above theorem says Q is “dense” in R.
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Theorem 1.9.10 Suppose 0 < a and let b ≥ 0. Then there exists a unique integer p and
real number r such that 0 ≤ r < a and b = pa+ r.

Proof: Let S ≡ {n ∈ N : an > b} . By the Archimedean property this set is nonempty.
Let p + 1 be the smallest element of S. Then pa ≤ b because p + 1 is the smallest in S.
Therefore,

r ≡ b− pa ≥ 0.

If r ≥ a then b − pa ≥ a and so b ≥ (p+ 1) a contradicting p + 1 ∈ S. Therefore, r < a as
desired.

To verify uniqueness of p and r, suppose pi and ri, i = 1, 2, both work and r2 > r1. Then
a little algebra shows

p1 − p2 =
r2 − r1

a
∈ (0, 1) .

Thus p1 − p2 is an integer between 0 and 1, contradicting Theorem 1.9.7. The case that
r1 > r2 cannot occur either by similar reasoning. Thus r1 = r2 and it follows that p1 = p2.
�

This theorem is called the Euclidean algorithm when a and b are integers.

1.10 Division

First recall Theorem 1.9.10, the Euclidean algorithm.

Theorem 1.10.1 Suppose 0 < a and let b ≥ 0. Then there exists a unique integer p and
real number r such that 0 ≤ r < a and b = pa+ r.

The following definition describes what is meant by a prime number and also what is
meant by the word “divides”.

Definition 1.10.2 The number, a divides the number, b if in Theorem 1.9.10, r = 0. That
is there is zero remainder. The notation for this is a|b, read a divides b and a is called a
factor of b. A prime number is one which has the property that the only numbers which
divide it are itself and 1. The greatest common divisor of two positive integers, m,n is that
number, p which has the property that p divides both m and n and also if q divides both m
and n, then q divides p. Two integers are relatively prime if their greatest common divisor
is one. The greatest common divisor of m and n is denoted as (m,n) .

There is a phenomenal and amazing theorem which relates the greatest common divisor
to the smallest number in a certain set. Suppose m,n are two positive integers. Then if x, y
are integers, so is xm+ yn. Consider all integers which are of this form. Some are positive
such as 1m + 1n and some are not. The set S in the following theorem consists of exactly
those integers of this form which are positive. Then the greatest common divisor of m and
n will be the smallest number in S. This is what the following theorem says.

Theorem 1.10.3 Let m,n be two positive integers and define

S ≡ {xm+ yn ∈ N : x, y ∈ Z } .

Then the smallest number in S is the greatest common divisor, denoted by (m,n) .
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The following definition describes what is meant by a prime number and also what is
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Definition 1.10.2 The number, a divides the number, b if in Theorem 1.9.10, r = 0. That
is there is zero remainder. The notation for this is a|b, read a divides b and a is called a
factor of b. A prime number is one which has the property that the only numbers which
divide it are itself and 1. The greatest common divisor of two positive integers, m,n is that
number, p which has the property that p divides both m and n and also if q divides both m
and n, then q divides p. Two integers are relatively prime if their greatest common divisor
is one. The greatest common divisor of m and n is denoted as (m,n) .

There is a phenomenal and amazing theorem which relates the greatest common divisor
to the smallest number in a certain set. Suppose m,n are two positive integers. Then if x, y
are integers, so is xm+ yn. Consider all integers which are of this form. Some are positive
such as 1m + 1n and some are not. The set S in the following theorem consists of exactly
those integers of this form which are positive. Then the greatest common divisor of m and
n will be the smallest number in S. This is what the following theorem says.

Theorem 1.10.3 Let m,n be two positive integers and define

S ≡ {xm+ yn ∈ N : x, y ∈ Z } .

Then the smallest number in S is the greatest common divisor, denoted by (m,n) .
1.10. DIVISION 25

Proof: First note that both m and n are in S so it is a nonempty set of positive integers.
By well ordering, there is a smallest element of S, called p = x0m+ y0n. Either p divides m
or it does not. If p does not divide m, then by Theorem 1.9.10,

m = pq + r

where 0 < r < p. Thus m = (x0m+ y0n) q + r and so, solving for r,

r = m (1− x0) + (−y0q)n ∈ S.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Similarly
p|n.

Now suppose q divides both m and n. Then m = qx and n = qy for integers, x and y.
Therefore,

p = mx0 + ny0 = x0qx+ y0qy = q (x0x+ y0y)

showing q|p. Therefore, p = (m,n) . �
There is a relatively simple algorithm for finding (m,n) which will be discussed now.

Suppose 0 < m < n where m,n are integers. Also suppose the greatest common divisor is
(m,n) = d. Then by the Euclidean algorithm, there exist integers q, r such that

n = qm+ r, r < m (1.1)

Now d divides n and m so there are numbers k, l such that dk = m, dl = n. From the above
equation,

r = n− qm = dl − qdk = d (l − qk)

Thus d divides both m and r. If k divides both m and r, then from the equation of 1.1 it
follows k also divides n. Therefore, k divides d by the definition of the greatest common
divisor. Thus d is the greatest common divisor of m and r but m+ r < m+ n. This yields
another pair of positive integers for which d is still the greatest common divisor but the
sum of these integers is strictly smaller than the sum of the first two. Now you can do the
same thing to these integers. Eventually the process must end because the sum gets strictly
smaller each time it is done. It ends when there are not two positive integers produced.
That is, one is a multiple of the other. At this point, the greatest common divisor is the
smaller of the two numbers.

Procedure 1.10.4 To find the greatest common divisor of m,n where 0 < m < n, replace
the pair {m,n} with {m, r} where n = qm + r for r < m. This new pair of numbers has
the same greatest common divisor. Do the process to this pair and continue doing this till
you obtain a pair of numbers where one is a multiple of the other. Then the smaller is the
sought for greatest common divisor.

Example 1.10.5 Find the greatest common divisor of 165 and 385.

Use the Euclidean algorithm to write

385 = 2 (165) + 55

Thus the next two numbers are 55 and 165. Then

165 = 3× 55

and so the greatest common divisor of the first two numbers is 55.
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Proof: First note that both m and n are in S so it is a nonempty set of positive integers.
By well ordering, there is a smallest element of S, called p = x0m+ y0n. Either p divides m
or it does not. If p does not divide m, then by Theorem 1.9.10,

m = pq + r

where 0 < r < p. Thus m = (x0m+ y0n) q + r and so, solving for r,

r = m (1− x0) + (−y0q)n ∈ S.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Similarly
p|n.

Now suppose q divides both m and n. Then m = qx and n = qy for integers, x and y.
Therefore,

p = mx0 + ny0 = x0qx+ y0qy = q (x0x+ y0y)

showing q|p. Therefore, p = (m,n) . �
There is a relatively simple algorithm for finding (m,n) which will be discussed now.

Suppose 0 < m < n where m,n are integers. Also suppose the greatest common divisor is
(m,n) = d. Then by the Euclidean algorithm, there exist integers q, r such that

n = qm+ r, r < m (1.1)

Now d divides n and m so there are numbers k, l such that dk = m, dl = n. From the above
equation,

r = n− qm = dl − qdk = d (l − qk)

Thus d divides both m and r. If k divides both m and r, then from the equation of 1.1 it
follows k also divides n. Therefore, k divides d by the definition of the greatest common
divisor. Thus d is the greatest common divisor of m and r but m+ r < m+ n. This yields
another pair of positive integers for which d is still the greatest common divisor but the
sum of these integers is strictly smaller than the sum of the first two. Now you can do the
same thing to these integers. Eventually the process must end because the sum gets strictly
smaller each time it is done. It ends when there are not two positive integers produced.
That is, one is a multiple of the other. At this point, the greatest common divisor is the
smaller of the two numbers.

Procedure 1.10.4 To find the greatest common divisor of m,n where 0 < m < n, replace
the pair {m,n} with {m, r} where n = qm + r for r < m. This new pair of numbers has
the same greatest common divisor. Do the process to this pair and continue doing this till
you obtain a pair of numbers where one is a multiple of the other. Then the smaller is the
sought for greatest common divisor.

Example 1.10.5 Find the greatest common divisor of 165 and 385.

Use the Euclidean algorithm to write

385 = 2 (165) + 55

Thus the next two numbers are 55 and 165. Then

165 = 3× 55

and so the greatest common divisor of the first two numbers is 55.
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Proof: First note that both m and n are in S so it is a nonempty set of positive integers.
By well ordering, there is a smallest element of S, called p = x0m+ y0n. Either p divides m
or it does not. If p does not divide m, then by Theorem 1.9.10,

m = pq + r

where 0 < r < p. Thus m = (x0m+ y0n) q + r and so, solving for r,

r = m (1− x0) + (−y0q)n ∈ S.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Similarly
p|n.

Now suppose q divides both m and n. Then m = qx and n = qy for integers, x and y.
Therefore,

p = mx0 + ny0 = x0qx+ y0qy = q (x0x+ y0y)

showing q|p. Therefore, p = (m,n) . �
There is a relatively simple algorithm for finding (m,n) which will be discussed now.

Suppose 0 < m < n where m,n are integers. Also suppose the greatest common divisor is
(m,n) = d. Then by the Euclidean algorithm, there exist integers q, r such that

n = qm+ r, r < m (1.1)

Now d divides n and m so there are numbers k, l such that dk = m, dl = n. From the above
equation,

r = n− qm = dl − qdk = d (l − qk)

Thus d divides both m and r. If k divides both m and r, then from the equation of 1.1 it
follows k also divides n. Therefore, k divides d by the definition of the greatest common
divisor. Thus d is the greatest common divisor of m and r but m+ r < m+ n. This yields
another pair of positive integers for which d is still the greatest common divisor but the
sum of these integers is strictly smaller than the sum of the first two. Now you can do the
same thing to these integers. Eventually the process must end because the sum gets strictly
smaller each time it is done. It ends when there are not two positive integers produced.
That is, one is a multiple of the other. At this point, the greatest common divisor is the
smaller of the two numbers.

Procedure 1.10.4 To find the greatest common divisor of m,n where 0 < m < n, replace
the pair {m,n} with {m, r} where n = qm + r for r < m. This new pair of numbers has
the same greatest common divisor. Do the process to this pair and continue doing this till
you obtain a pair of numbers where one is a multiple of the other. Then the smaller is the
sought for greatest common divisor.

Example 1.10.5 Find the greatest common divisor of 165 and 385.

Use the Euclidean algorithm to write

385 = 2 (165) + 55

Thus the next two numbers are 55 and 165. Then

165 = 3× 55

and so the greatest common divisor of the first two numbers is 55.
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Example 1.10.6 Find the greatest common divisor of 1237 and 4322.

Use the Euclidean algorithm

4322 = 3 (1237) + 611

Now the two new numbers are 1237,611. Then

1237 = 2 (611) + 15

The two new numbers are 15,611. Then

611 = 40 (15) + 11

The two new numbers are 15,11. Then

15 = 1 (11) + 4

The two new numbers are 11,4
2 (4) + 3

The two new numbers are 4, 3. Then

4 = 1 (3) + 1

The two new numbers are 3, 1. Then

3 = 3× 1

and so 1 is the greatest common divisor. Of course you could see this right away when the
two new numbers were 15 and 11. Recall the process delivers numbers which have the same
greatest common divisor.

This amazing theorem will now be used to prove a fundamental property of prime num-
bers which leads to the fundamental theorem of arithmetic, the major theorem which says
every integer can be factored as a product of primes.

Theorem 1.10.7 If p is a prime and p|ab then either p|a or p|b.

Proof: Suppose p does not divide a. Then since p is prime, the only factors of p are 1
and p so follows (p, a) = 1 and therefore, there exists integers, x and y such that

1 = ax+ yp.

Multiplying this equation by b yields

b = abx+ ybp.

Since p|ab, ab = pz for some integer z. Therefore,

b = abx+ ybp = pzx+ ybp = p (xz + yb)

and this shows p divides b. �

Theorem 1.10.8 (Fundamental theorem of arithmetic) Let a ∈ N\ {1}. Then a =
∏n

i=1 pi
where pi are all prime numbers. Furthermore, this prime factorization is unique except for
the order of the factors.
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The two new numbers are 11,4
2 (4) + 3

The two new numbers are 4, 3. Then

4 = 1 (3) + 1

The two new numbers are 3, 1. Then

3 = 3× 1

and so 1 is the greatest common divisor. Of course you could see this right away when the
two new numbers were 15 and 11. Recall the process delivers numbers which have the same
greatest common divisor.

This amazing theorem will now be used to prove a fundamental property of prime num-
bers which leads to the fundamental theorem of arithmetic, the major theorem which says
every integer can be factored as a product of primes.

Theorem 1.10.7 If p is a prime and p|ab then either p|a or p|b.

Proof: Suppose p does not divide a. Then since p is prime, the only factors of p are 1
and p so follows (p, a) = 1 and therefore, there exists integers, x and y such that

1 = ax+ yp.

Multiplying this equation by b yields

b = abx+ ybp.

Since p|ab, ab = pz for some integer z. Therefore,

b = abx+ ybp = pzx+ ybp = p (xz + yb)

and this shows p divides b. �

Theorem 1.10.8 (Fundamental theorem of arithmetic) Let a ∈ N\ {1}. Then a =
∏n

i=1 pi
where pi are all prime numbers. Furthermore, this prime factorization is unique except for
the order of the factors.
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Proof: If a equals a prime number, the prime factorization clearly exists. In particular
the prime factorization exists for the prime number 2. Assume this theorem is true for all
a ≤ n− 1. If n is a prime, then it has a prime factorization. On the other hand, if n is not
a prime, then there exist two integers k and m such that n = km where each of k and m
are less than n. Therefore, each of these is no larger than n− 1 and consequently, each has
a prime factorization. Thus so does n. It remains to argue the prime factorization is unique
except for order of the factors.

Suppose
n∏

i=1

pi =

m∏
j=1

qj

where the pi and qj are all prime, there is no way to reorder the qk such that m = n and
pi = qi for all i, and n + m is the smallest positive integer such that this happens. Then
by Theorem 1.10.7, p1|qj for some j. Since these are prime numbers this requires p1 = qj .
Reordering if necessary it can be assumed that qj = q1. Then dividing both sides by p1 = q1,

n−1∏
i=1

pi+1 =

m−1∏
j=1

qj+1.

Since n+m was as small as possible for the theorem to fail, it follows that n− 1 = m− 1
and the prime numbers, q2, · · · , qm can be reordered in such a way that pk = qk for all
k = 2, · · · , n. Hence pi = qi for all i because it was already argued that p1 = q1, and this
results in a contradiction. �

There is a similar division result for polynomials. This will be discussed more intensively
later. For now, here is a definition and the division theorem.

Definition 1.10.9 A polynomial is an expression of the form anλ
n+an−1λ

n−1+· · ·+a1λ+
a0, an ̸= 0 where the ai come from a field of scalars. Two polynomials are equal means that
the coefficients match for each power of λ. The degree of a polynomial is the largest
power of λ. Thus the degree of the above polynomial is n. Addition of polynomials is defined
in the usual way as is multiplication of two polynomials. The leading term in the above
polynomial is anλ

n. The coefficient of the leading term is called the leading coefficient. It
is called a monic polynomial if an = 1.

Lemma 1.10.10 Let f (λ) and g (λ) ̸= 0 be polynomials. Then there exist polynomials,
q (λ) and r (λ) such that

f (λ) = q (λ) g (λ) + r (λ)

where the degree of r (λ) is less than the degree of g (λ) or r (λ) = 0. These polynomials
q (λ) and r (λ) are unique.

Proof: Suppose that f (λ)− q (λ) g (λ) is never equal to 0 for any q (λ). If it is, then the
conclusion follows. Now suppose

r (λ) = f (λ)− q (λ) g (λ)

and the degree of r (λ) is m ≥ n where n is the degree of g (λ). Say the leading term of

r (λ) is bλm while the leading term of g (λ) is b̂λn. Then letting a = b/b̂ , aλm−ng (λ) has
the same leading term as r (λ). Thus the degree of r1 (λ) ≡ r (λ) − aλm−ng (λ) is no more
than m− 1. Then

r1 (λ) = f (λ)−
(
q (λ) g (λ) + aλm−ng (λ)

)
= f (λ)−




q1(λ)� �� �
q (λ) + aλm−n


 g (λ)
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Denote by S the set of polynomials f (λ)−g (λ) l (λ) . Out of all these polynomials, there
exists one which has smallest degree r (λ). Let this take place when l (λ) = q (λ). Then by
the above argument, the degree of r (λ) is less than the degree of g (λ). Otherwise, there is
one which has smaller degree. Thus f (λ) = g (λ) q (λ) + r (λ).

As to uniqueness, if you have r (λ) , r̂ (λ) , q (λ) , q̂ (λ) which work, then you would have

(q̂ (λ)− q (λ)) g (λ) = r (λ)− r̂ (λ)

Now if the polynomial on the right is not zero, then neither is the one on the left. Hence this
would involve two polynomials which are equal although their degrees are different. This is
impossible. Hence r (λ) = r̂ (λ) and so, matching coefficients implies that q̂ (λ) = q (λ). �

1.11 Systems Of Equations

Sometimes it is necessary to solve systems of equations. For example the problem could be
to find x and y such that

x+ y = 7 and 2x− y = 8. (1.2)

The set of ordered pairs, (x, y) which solve both equations is called the solution set. For
example, you can see that (5, 2) = (x, y) is a solution to the above system. To solve this,
note that the solution set does not change if any equation is replaced by a non zero multiple
of itself. It also does not change if one equation is replaced by itself added to a multiple
of the other equation. For example, x and y solve the above system if and only if x and y
solve the system

x+ y = 7,

−3y=−6︷ ︸︸ ︷
2x− y + (−2) (x+ y) = 8 + (−2) (7). (1.3)

The second equation was replaced by −2 times the first equation added to the second. Thus
the solution is y = 2, from −3y = −6 and now, knowing y = 2, it follows from the other
equation that x+ 2 = 7 and so x = 5.

Why exactly does the replacement of one equation with a multiple of another added to
it not change the solution set? The two equations of 1.2 are of the form

E1 = f1, E2 = f2 (1.4)

where E1 and E2 are expressions involving the variables. The claim is that if a is a number,
then 1.4 has the same solution set as

E1 = f1, E2 + aE1 = f2 + af1. (1.5)

Why is this?
If (x, y) solves 1.4 then it solves the first equation in 1.5. Also, it satisfies aE1 = af1

and so, since it also solves E2 = f2 it must solve the second equation in 1.5. If (x, y) solves
1.5 then it solves the first equation of 1.4. Also aE1 = af1 and it is given that the second
equation of 1.5 is verified. Therefore, E2 = f2 and it follows (x, y) is a solution of the second
equation in 1.4. This shows the solutions to 1.4 and 1.5 are exactly the same which means
they have the same solution set. Of course the same reasoning applies with no change if
there are many more variables than two and many more equations than two. It is still the
case that when one equation is replaced with a multiple of another one added to itself, the
solution set of the whole system does not change.

The other thing which does not change the solution set of a system of equations consists
of listing the equations in a different order. Here is another example.
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Denote by S the set of polynomials f (λ)−g (λ) l (λ) . Out of all these polynomials, there
exists one which has smallest degree r (λ). Let this take place when l (λ) = q (λ). Then by
the above argument, the degree of r (λ) is less than the degree of g (λ). Otherwise, there is
one which has smaller degree. Thus f (λ) = g (λ) q (λ) + r (λ).

As to uniqueness, if you have r (λ) , r̂ (λ) , q (λ) , q̂ (λ) which work, then you would have

(q̂ (λ)− q (λ)) g (λ) = r (λ)− r̂ (λ)

Now if the polynomial on the right is not zero, then neither is the one on the left. Hence this
would involve two polynomials which are equal although their degrees are different. This is
impossible. Hence r (λ) = r̂ (λ) and so, matching coefficients implies that q̂ (λ) = q (λ). �

1.11 Systems Of Equations

Sometimes it is necessary to solve systems of equations. For example the problem could be
to find x and y such that

x+ y = 7 and 2x− y = 8. (1.2)

The set of ordered pairs, (x, y) which solve both equations is called the solution set. For
example, you can see that (5, 2) = (x, y) is a solution to the above system. To solve this,
note that the solution set does not change if any equation is replaced by a non zero multiple
of itself. It also does not change if one equation is replaced by itself added to a multiple
of the other equation. For example, x and y solve the above system if and only if x and y
solve the system

x+ y = 7,

−3y=−6︷ ︸︸ ︷
2x− y + (−2) (x+ y) = 8 + (−2) (7). (1.3)

The second equation was replaced by −2 times the first equation added to the second. Thus
the solution is y = 2, from −3y = −6 and now, knowing y = 2, it follows from the other
equation that x+ 2 = 7 and so x = 5.

Why exactly does the replacement of one equation with a multiple of another added to
it not change the solution set? The two equations of 1.2 are of the form

E1 = f1, E2 = f2 (1.4)

where E1 and E2 are expressions involving the variables. The claim is that if a is a number,
then 1.4 has the same solution set as

E1 = f1, E2 + aE1 = f2 + af1. (1.5)

Why is this?
If (x, y) solves 1.4 then it solves the first equation in 1.5. Also, it satisfies aE1 = af1

and so, since it also solves E2 = f2 it must solve the second equation in 1.5. If (x, y) solves
1.5 then it solves the first equation of 1.4. Also aE1 = af1 and it is given that the second
equation of 1.5 is verified. Therefore, E2 = f2 and it follows (x, y) is a solution of the second
equation in 1.4. This shows the solutions to 1.4 and 1.5 are exactly the same which means
they have the same solution set. Of course the same reasoning applies with no change if
there are many more variables than two and many more equations than two. It is still the
case that when one equation is replaced with a multiple of another one added to itself, the
solution set of the whole system does not change.

The other thing which does not change the solution set of a system of equations consists
of listing the equations in a different order. Here is another example.
1.11. SYSTEMS OF EQUATIONS 29

Example 1.11.1 Find the solutions to the system,

x+ 3y + 6z = 25

2x+ 7y + 14z = 58

2y + 5z = 19

(1.6)

To solve this system replace the second equation by (−2) times the first equation added
to the second. This yields. the system

x+ 3y + 6z = 25

y + 2z = 8

2y + 5z = 19

(1.7)

Now take (−2) times the second and add to the third. More precisely, replace the third
equation with (−2) times the second added to the third. This yields the system

x+ 3y + 6z = 25

y + 2z = 8

z = 3

(1.8)

At this point, you can tell what the solution is. This system has the same solution as the
original system and in the above, z = 3. Then using this in the second equation, it follows
y + 6 = 8 and so y = 2. Now using this in the top equation yields x + 6 + 18 = 25 and so
x = 1.

This process is not really much different from what you have always done in solving a
single equation. For example, suppose you wanted to solve 2x + 5 = 3x − 6. You did the
same thing to both sides of the equation thus preserving the solution set until you obtained
an equation which was simple enough to give the answer. In this case, you would add −2x
to both sides and then add 6 to both sides. This yields x = 11.

In 1.8 you could have continued as follows. Add (−2) times the bottom equation to the
middle and then add (−6) times the bottom to the top. This yields

x+ 3y = 19

y = 6

z = 3

Now add (−3) times the second to the top. This yields the equations

x = 1, y = 6, z = 3,

a system which has the same solution set as the original system.
It is foolish to write the variables every time you do these operations. It is easier to

write the system 1.6 as the following “augmented matrix”



1 3 6 25

2 7 14 58

0 2 5 19


 .

It has exactly the same information as the original system but here it is understood there is

an x column,




1

2

0


 , a y column,




3

7

2


 and a z column,




6

14

5


 . The rows correspond
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original system and in the above, z = 3. Then using this in the second equation, it follows
y + 6 = 8 and so y = 2. Now using this in the top equation yields x + 6 + 18 = 25 and so
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This process is not really much different from what you have always done in solving a
single equation. For example, suppose you wanted to solve 2x + 5 = 3x − 6. You did the
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an equation which was simple enough to give the answer. In this case, you would add −2x
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Now add (−3) times the second to the top. This yields the equations
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a system which has the same solution set as the original system.
It is foolish to write the variables every time you do these operations. It is easier to

write the system 1.6 as the following “augmented matrix”
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
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to the equations in the system. Thus the top row in the augmented matrix corresponds to
the equation,

x+ 3y + 6z = 25.

Now when you replace an equation with a multiple of another equation added to itself, you
are just taking a row of this augmented matrix and replacing it with a multiple of another
row added to it. Thus the first step in solving 1.6 would be to take (−2) times the first row
of the augmented matrix above and add it to the second row,




1 3 6 25

0 1 2 8

0 2 5 19


 .

Note how this corresponds to 1.7. Next take (−2) times the second row and add to the
third, 


1 3 6 25

0 1 2 8

0 0 1 3




which is the same as 1.8. You get the idea I hope. Write the system as an augmented matrix
and follow the procedure of either switching rows, multiplying a row by a non zero number,
or replacing a row by a multiple of another row added to it. Each of these operations leaves
the solution set unchanged. These operations are called row operations.

Definition 1.11.2 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

It is important to observe that any row operation can be “undone” by another inverse
row operation. For example, if r1, r2 are two rows, and r2 is replaced with r′2 = αr1 + r2
using row operation 3, then you could get back to where you started by replacing the row r′2
with −α times r1 and adding to r′2. In the case of operation 2, you would simply multiply
the row that was changed by the inverse of the scalar which multiplied it in the first place,
and in the case of row operation 1, you would just make the same switch again and you
would be back to where you started. In each case, the row operation which undoes what
was done is called the inverse row operation.

Example 1.11.3 Give the complete solution to the system of equations, 5x+10y−7z = −2,
2x+ 4y − 3z = −1, and 3x+ 6y + 5z = 9.

The augmented matrix for this system is



2 4 −3 −1

5 10 −7 −2

3 6 5 9




Multiply the second row by 2, the first row by 5, and then take (−1) times the first row and
add to the second. Then multiply the first row by 1/5. This yields




2 4 −3 −1

0 0 1 1

3 6 5 9



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to the equations in the system. Thus the top row in the augmented matrix corresponds to
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

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
 .
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

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2x+ 4y − 3z = −1, and 3x+ 6y + 5z = 9.

The augmented matrix for this system is
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


Multiply the second row by 2, the first row by 5, and then take (−1) times the first row and
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3 6 5 9
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Now, combining some row operations, take (−3) times the first row and add this to 2 times
the last row and replace the last row with this. This yields.




2 4 −3 −1

0 0 1 1

0 0 1 21


 .

Putting in the variables, the last two rows say z = 1 and z = 21. This is impossible so
the last system of equations determined by the above augmented matrix has no solution.
However, it has the same solution set as the first system of equations. This shows there is no
solution to the three given equations. When this happens, the system is called inconsistent.

This should not be surprising that something like this can take place. It can even happen
for one equation in one variable. Consider for example, x = x+1. There is clearly no solution
to this.

Example 1.11.4 Give the complete solution to the system of equations, 3x − y − 5z = 9,
y − 10z = 0, and −2x+ y = −6.

The augmented matrix of this system is




3 −1 −5 9

0 1 −10 0

−2 1 0 −6




Replace the last row with 2 times the top row added to 3 times the bottom row. This gives




3 −1 −5 9

0 1 −10 0

0 1 −10 0




Next take −1 times the middle row and add to the bottom.



3 −1 −5 9

0 1 −10 0

0 0 0 0




Take the middle row and add to the top and then divide the top row which results by 3.




1 0 −5 3

0 1 −10 0

0 0 0 0


 .

This says y = 10z and x = 3 + 5z. Apparently z can equal any number. Therefore, the
solution set of this system is x = 3 + 5t, y = 10t, and z = t where t is completely arbitrary.
The system has an infinite set of solutions and this is a good description of the solutions.
This is what it is all about, finding the solutions to the system.

Definition 1.11.5 Since z = t where t is arbitrary, the variable z is called a free variable.

The phenomenon of an infinite solution set occurs in equations having only one variable
also. For example, consider the equation x = x. It doesn’t matter what x equals.
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Putting in the variables, the last two rows say z = 1 and z = 21. This is impossible so
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However, it has the same solution set as the first system of equations. This shows there is no
solution to the three given equations. When this happens, the system is called inconsistent.

This should not be surprising that something like this can take place. It can even happen
for one equation in one variable. Consider for example, x = x+1. There is clearly no solution
to this.

Example 1.11.4 Give the complete solution to the system of equations, 3x − y − 5z = 9,
y − 10z = 0, and −2x+ y = −6.

The augmented matrix of this system is


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
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
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Next take −1 times the middle row and add to the bottom.

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3 −1 −5 9

0 1 −10 0
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
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Take the middle row and add to the top and then divide the top row which results by 3.




1 0 −5 3

0 1 −10 0

0 0 0 0


 .

This says y = 10z and x = 3 + 5z. Apparently z can equal any number. Therefore, the
solution set of this system is x = 3 + 5t, y = 10t, and z = t where t is completely arbitrary.
The system has an infinite set of solutions and this is a good description of the solutions.
This is what it is all about, finding the solutions to the system.

Definition 1.11.5 Since z = t where t is arbitrary, the variable z is called a free variable.

The phenomenon of an infinite solution set occurs in equations having only one variable
also. For example, consider the equation x = x. It doesn’t matter what x equals.
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Definition 1.11.6 A system of linear equations is a list of equations,
n∑

j=1

aijxj = fj , i = 1, 2, 3, · · · ,m

where aij are numbers, fj is a number, and it is desired to find (x1, · · · , xn) solving each of
the equations listed.

As illustrated above, such a system of linear equations may have a unique solution, no
solution, or infinitely many solutions. It turns out these are the only three cases which can
occur for linear systems. Furthermore, you do exactly the same things to solve any linear
system. You write the augmented matrix and do row operations until you get a simpler
system in which it is possible to see the solution. All is based on the observation that the
row operations do not change the solution set. You can have more equations than variables,
fewer equations than variables, etc. It doesn’t matter. You always set up the augmented
matrix and go to work on it. These things are all the same.

Example 1.11.7 Give the complete solution to the system of equations, −41x+15y = 168,
109x− 40y = −447, −3x+ y = 12, and 2x+ z = −1.

The augmented matrix is



−41 15 0 168

109 −40 0 −447

−3 1 0 12

2 0 1 −1


 .

To solve this multiply the top row by 109, the second row by 41, add the top row to the
second row, and multiply the top row by 1/109. Note how this process combined several
row operations. This yields 



−41 15 0 168

0 −5 0 −15

−3 1 0 12

2 0 1 −1


 .

Next take 2 times the third row and replace the fourth row by this added to 3 times the
fourth row. Then take (−41) times the third row and replace the first row by this added to
3 times the first row. Then switch the third and the first rows. This yields




123 −41 0 −492

0 −5 0 −15

0 4 0 12

0 2 3 21


 .

Take −1/2 times the third row and add to the bottom row. Then take 5 times the third
row and add to four times the second. Finally take 41 times the third row and add to 4
times the top row. This yields




492 0 0 −1476

0 0 0 0

0 4 0 12

0 0 3 15




It follows x = −1476
492 = −3, y = 3 and z = 5.

You should practice solving systems of equations. Here are some exercises.
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Next take 2 times the third row and replace the fourth row by this added to 3 times the
fourth row. Then take (−41) times the third row and replace the first row by this added to
3 times the first row. Then switch the third and the first rows. This yields


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
 .

Take −1/2 times the third row and add to the bottom row. Then take 5 times the third
row and add to four times the second. Finally take 41 times the third row and add to 4
times the top row. This yields



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0 0 0 0
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


It follows x = −1476
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1.12 Exercises

1. Give the complete solution to the system of equations, 3x − y + 4z = 6, y + 8z = 0,
and −2x+ y = −4.

2. Give the complete solution to the system of equations, x+3y+3z = 3, 3x+2y+z = 9,
and −4x+ z = −9.

3. Consider the system −5x + 2y − z = 0 and −5x − 2y − z = 0. Both equations equal
zero and so −5x + 2y − z = −5x − 2y − z which is equivalent to y = 0. Thus x and
z can equal anything. But when x = 1, z = −4, and y = 0 are plugged in to the
equations, it doesn’t work. Why?

4. Give the complete solution to the system of equations, x+2y+6z = 5, 3x+2y+6z = 7
,−4x+ 5y + 15z = −7.

5. Give the complete solution to the system of equations

x+ 2y + 3z = 5, 3x+ 2y + z = 7,

−4x+ 5y + z = −7, x+ 3z = 5.

6. Give the complete solution of the system of equations,

x+ 2y + 3z = 5, 3x+ 2y + 2z = 7

−4x+ 5y + 5z = −7, x = 5

7. Give the complete solution of the system of equations

x+ y + 3z = 2, 3x− y + 5z = 6

−4x+ 9y + z = −8, x+ 5y + 7z = 2

8. Determine a such that there are infinitely many solutions and then find them. Next
determine a such that there are no solutions. Finally determine which values of a
correspond to a unique solution. The system of equations for the unknown variables
x, y, z is

3za2 − 3a+ x+ y + 1 = 0

3x− a− y + z
(
a2 + 4

)
− 5 = 0

za2 − a− 4x+ 9y + 9 = 0

9. Find the solutions to the following system of equations for x, y, z, w.

y + z = 2, z + w = 0, y − 4z − 5w = 2, 2y + z − w = 4

10. Find all solutions to the following equations.

x+ y + z = 2, z + w = 0,

2x+ 2y + z − w = 4, x+ y − 4z − 5z = 2
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1.13 Fn

The notation, Cn refers to the collection of ordered lists of n complex numbers. Since every
real number is also a complex number, this simply generalizes the usual notion of Rn, the
collection of all ordered lists of n real numbers. In order to avoid worrying about whether
it is real or complex numbers which are being referred to, the symbol F will be used. If it is
not clear, always pick C. More generally, Fn refers to the ordered lists of n elements of Fn.

Definition 1.13.1 Define Fn ≡ {(x1, · · · , xn) : xj ∈ F for j = 1, · · · , n} . (x1, · · · , xn) =
(y1, · · · , yn) if and only if for all j = 1, · · · , n, xj = yj . When (x1, · · · , xn) ∈ Fn, it is
conventional to denote (x1, · · · , xn) by the single bold face letter x. The numbers xj are
called the coordinates. The set

{(0, · · · , 0, t, 0, · · · , 0) : t ∈ F}

for t in the ith slot is called the ith coordinate axis. The point 0 ≡ (0, · · · , 0) is called the
origin.

Thus (1, 2, 4i) ∈ F3 and (2, 1, 4i) ∈ F3 but (1, 2, 4i) ̸= (2, 1, 4i) because, even though the
same numbers are involved, they don’t match up. In particular, the first entries are not
equal.

1.14 Algebra in Fn

There are two algebraic operations done with elements of Fn. One is addition and the other
is multiplication by numbers, called scalars. In the case of Cn the scalars are complex
numbers while in the case of Rn the only allowed scalars are real numbers. Thus, the scalars
always come from F in either case.

Definition 1.14.1 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined by

ax = a (x1, · · · , xn) ≡ (ax1, · · · , axn) . (1.9)

This is known as scalar multiplication. If x,y ∈ Fn then x+ y ∈ Fn and is defined by

x+ y = (x1, · · · , xn) + (y1, · · · , yn)
≡ (x1 + y1, · · · , xn + yn) (1.10)

With this definition, the algebraic properties satisfy the conclusions of the following
theorem.

Theorem 1.14.2 For v,w ∈ Fn and α, β scalars, (real numbers), the following hold.

v +w = w + v, (1.11)

the commutative law of addition,

(v +w) + z = v+(w + z) , (1.12)

the associative law for addition,
v + 0 = v, (1.13)

the existence of an additive identity,

v+(−v) = 0, (1.14)
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the existence of an additive inverse, Also

α (v +w) = αv+αw, (1.15)

(α+ β)v =αv+βv, (1.16)

α (βv) = αβ (v) , (1.17)

1v = v. (1.18)

In the above 0 = (0, · · · , 0).

You should verify that these properties all hold. As usual subtraction is defined as
x− y ≡ x+(−y) . The conclusions of the above theorem are called the vector space axioms.

1.15 Exercises

1. Verify all the properties 1.11-1.18.

2. Compute 5 (1, 2 + 3i, 3,−2) + 6 (2− i, 1,−2, 7) .

3. Draw a picture of the points in R2 which are determined by the following ordered
pairs.

(a) (1, 2)

(b) (−2,−2)

(c) (−2, 3)

(d) (2,−5)

4. Does it make sense to write (1, 2) + (2, 3, 1)? Explain.

5. Draw a picture of the points in R3 which are determined by the following ordered
triples. If you have trouble drawing this, describe it in words.

(a) (1, 2, 0)

(b) (−2,−2, 1)

(c) (−2, 3,−2)

1.16 The Inner Product In Fn

When F = R or C, there is something called an inner product. In case of R it is also called
the dot product. This is also often referred to as the scalar product.

Definition 1.16.1 Let a,b ∈ Fn define a · b as

a · b ≡
n∑

k=1

akbk.

This will also be denoted as (a,b). Often it is also denoted as ⟨a,b⟩. The notation with the
dot is more usually used when the field is R.
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With this definition, there are several important properties satisfied by the inner product.
In the statement of these properties, α and β will denote scalars and a,b, c will denote
vectors or in other words, points in Fn.

Proposition 1.16.2 The inner product satisfies the following properties.

a · b =b · a (1.19)

a · a ≥ 0 and equals zero if and only if a = 0 (1.20)

(αa+ βb) · c =α (a · c) + β (b · c) (1.21)

c · (αa+ βb) = α (c · a) + β (c · b) (1.22)

|a|2 = a · a (1.23)

You should verify these properties. Also be sure you understand that 1.22 follows from
the first three and is therefore redundant. It is listed here for the sake of convenience.

Example 1.16.3 Find (1, 2, 0,−1) · (0, i, 2, 3) .

This equals 0 + 2 (−i) + 0 +−3 = −3− 2i
The Cauchy Schwarz inequality takes the following form in terms of the inner product.

I will prove it using only the above axioms for the inner product.

Theorem 1.16.4 The inner product satisfies the inequality

|a · b| ≤ |a| |b| . (1.24)

Furthermore equality is obtained if and only if one of a or b is a scalar multiple of the other.

Proof: First define θ ∈ C such that

θ (a · b) = |a · b| , |θ| = 1,

and define a function of t ∈ R

f (t) = (a+ tθb) · (a+ tθb) .

Then by 1.20, f (t) ≥ 0 for all t ∈ R. Also from 1.21,1.22,1.19, and 1.23

f (t) = a · (a+ tθb) + tθb · (a+ tθb)

= a · a+ tθ (a · b) + tθ (b · a) + t2 |θ|2 b · b

= |a|2 + 2tRe θ (a · b) + |b|2 t2 = |a|2 + 2t |a · b|+ |b|2 t2

Now if |b|2 = 0 it must be the case that a · b = 0 because otherwise, you could pick large
negative values of t and violate f (t) ≥ 0. Therefore, in this case, the Cauchy Schwarz
inequality holds. In the case that |b| ̸= 0, y = f (t) is a polynomial which opens up and
therefore, if it is always nonnegative, its graph is like that illustrated in the following picture
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With this definition, there are several important properties satisfied by the inner product.
In the statement of these properties, α and β will denote scalars and a,b, c will denote
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the first three and is therefore redundant. It is listed here for the sake of convenience.

Example 1.16.3 Find (1, 2, 0,−1) · (0, i, 2, 3) .

This equals 0 + 2 (−i) + 0 +−3 = −3− 2i
The Cauchy Schwarz inequality takes the following form in terms of the inner product.

I will prove it using only the above axioms for the inner product.

Theorem 1.16.4 The inner product satisfies the inequality

|a · b| ≤ |a| |b| . (1.24)

Furthermore equality is obtained if and only if one of a or b is a scalar multiple of the other.

Proof: First define θ ∈ C such that

θ (a · b) = |a · b| , |θ| = 1,

and define a function of t ∈ R

f (t) = (a+ tθb) · (a+ tθb) .

Then by 1.20, f (t) ≥ 0 for all t ∈ R. Also from 1.21,1.22,1.19, and 1.23

f (t) = a · (a+ tθb) + tθb · (a+ tθb)

= a · a+ tθ (a · b) + tθ (b · a) + t2 |θ|2 b · b

= |a|2 + 2tRe θ (a · b) + |b|2 t2 = |a|2 + 2t |a · b|+ |b|2 t2

Now if |b|2 = 0 it must be the case that a · b = 0 because otherwise, you could pick large
negative values of t and violate f (t) ≥ 0. Therefore, in this case, the Cauchy Schwarz
inequality holds. In the case that |b| ̸= 0, y = f (t) is a polynomial which opens up and
therefore, if it is always nonnegative, its graph is like that illustrated in the following picture
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With this definition, there are several important properties satisfied by the inner product.
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= |a|2 + 2tRe θ (a · b) + |b|2 t2 = |a|2 + 2t |a · b|+ |b|2 t2

Now if |b|2 = 0 it must be the case that a · b = 0 because otherwise, you could pick large
negative values of t and violate f (t) ≥ 0. Therefore, in this case, the Cauchy Schwarz
inequality holds. In the case that |b| ̸= 0, y = f (t) is a polynomial which opens up and
therefore, if it is always nonnegative, its graph is like that illustrated in the following picture1.16. THE INNER PRODUCT IN FN 37

t t

Then the quadratic formula requires that

The discriminant︷ ︸︸ ︷
4 |a · b|2 − 4 |a|2 |b|2 ≤ 0

since otherwise the function, f (t) would have two
real zeros and would necessarily have a graph which dips below the t axis. This proves 1.24.

It is clear from the axioms of the inner product that equality holds in 1.24 whenever one
of the vectors is a scalar multiple of the other. It only remains to verify this is the only way
equality can occur. If either vector equals zero, then equality is obtained in 1.24 so it can be
assumed both vectors are non zero. Then if equality is achieved, it follows f (t) has exactly
one real zero because the discriminant vanishes. Therefore, for some value of t, a+ tθb = 0
showing that a is a multiple of b. �

You should note that the entire argument was based only on the properties of the inner
product listed in 1.19 - 1.23. This means that whenever something satisfies these properties,
the Cauchy Schwarz inequality holds. There are many other instances of these properties
besides vectors in Fn. Also note that 1.24 holds if 1.20 is simplified to a · a ≥ 0.

The Cauchy Schwarz inequality allows a proof of the triangle inequality for distances in
Fn in much the same way as the triangle inequality for the absolute value.

Theorem 1.16.5 (Triangle inequality) For a,b ∈ Fn

|a+ b| ≤ |a|+ |b| (1.25)

and equality holds if and only if one of the vectors is a nonnegative scalar multiple of the
other. Also

||a| − |b|| ≤ |a− b| (1.26)

Proof : By properties of the inner product and the Cauchy Schwarz inequality,

|a+ b|2 = (a+ b) · (a+ b) = (a · a) + (a · b) + (b · a) + (b · b)

= |a|2 + 2Re (a · b) + |b|2 ≤ |a|2 + 2 |a · b|+ |b|2

≤ |a|2 + 2 |a| |b|+ |b|2 = (|a|+ |b|)2 .

Taking square roots of both sides you obtain 1.25.
It remains to consider when equality occurs. If either vector equals zero, then that

vector equals zero times the other vector and the claim about when equality occurs is
verified. Therefore, it can be assumed both vectors are nonzero. To get equality in the
second inequality above, Theorem 1.16.4 implies one of the vectors must be a multiple of
the other. Say b = αa. Also, to get equality in the first inequality, (a · b) must be a
nonnegative real number. Thus

0 ≤ (a · b) = (a·αa) = α |a|2 .

Therefore, α must be a real number which is nonnegative.
To get the other form of the triangle inequality,

a = a− b+ b

so
|a| = |a− b+ b| ≤ |a− b|+ |b| .
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It remains to consider when equality occurs. If either vector equals zero, then that

vector equals zero times the other vector and the claim about when equality occurs is
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Therefore,
|a| − |b| ≤ |a− b| (1.27)

Similarly,
|b| − |a| ≤ |b− a| = |a− b| . (1.28)

It follows from 1.27 and 1.28 that 1.26 holds. This is because ||a| − |b|| equals the left side
of either 1.27 or 1.28 and either way, ||a| − |b|| ≤ |a− b| . �

1.17 What Is Linear Algebra?

The above preliminary considerations form the necessary scaffolding upon which linear al-
gebra is built. Linear algebra is the study of a certain algebraic structure called a vector
space described in a special case in Theorem 1.14.2 and in more generality below along with
special functions known as linear transformations. These linear transformations preserve
certain algebraic properties.

A good argument could be made that linear algebra is the most useful subject in all
of mathematics and that it exceeds even courses like calculus in its significance. It is used
extensively in applied mathematics and engineering. Continuum mechanics, for example,
makes use of topics from linear algebra in defining things like the strain and in determining
appropriate constitutive laws. It is fundamental in the study of statistics. For example,
principal component analysis is really based on the singular value decomposition discussed
in this book. It is also fundamental in pure mathematics areas like number theory, functional
analysis, geometric measure theory, and differential geometry. Even calculus cannot be
correctly understood without it. For example, the derivative of a function of many variables
is an example of a linear transformation, and this is the way it must be understood as soon
as you consider functions of more than one variable.

1.18 Exercises

1. Show that (a · b) = 1
4

[
|a+ b|2 − |a− b|2

]
.

2. Prove from the axioms of the inner product the parallelogram identity, |a+ b|2 +

|a− b|2 = 2 |a|2 + 2 |b|2 .

3. For a,b ∈ Rn, define a · b ≡
∑n

k=1 βkakbk where βk > 0 for each k. Show this satisfies
the axioms of the inner product. What does the Cauchy Schwarz inequality say in
this case.

4. In Problem 3 above, suppose you only know βk ≥ 0. Does the Cauchy Schwarz in-
equality still hold? If so, prove it.

5. Let f, g be continuous functions and define f · g ≡
∫ 1

0
f (t) g (t)dt. Show this satisfies

the axioms of a inner product if you think of continuous functions in the place of a
vector in Fn. What does the Cauchy Schwarz inequality say in this case?

6. Show that if f is a real valued continuous function,
(∫ b

a
f (t) dt

)2

≤ (b− a)
∫ b

a
f (t)

2
dt.
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Chapter 2

Linear Transformations

2.1 Matrices

You have now solved systems of equations by writing them in terms of an augmented matrix
and then doing row operations on this augmented matrix. It turns out that such rectangular
arrays of numbers are important from many other different points of view. Numbers are
also called scalars. In general, scalars are just elements of some field. However, in the first
part of this book, the field will typically be either the real numbers or the complex numbers.

A matrix is a rectangular array of numbers. Several of them are referred to as matrices.
For example, here is a matrix. 


1 2 3 4

5 2 8 7

6 −9 1 2




This matrix is a 3 × 4 matrix because there are three rows and four columns. The first

row is (1 2 3 4) , the second row is (5 2 8 7) and so forth. The first column is




1

5

6


 . The

convention in dealing with matrices is to always list the rows first and then the columns.
Also, you can remember the columns are like columns in a Greek temple. They stand up
right while the rows just lie there like rows made by a tractor in a plowed field. Elements of
the matrix are identified according to position in the matrix. For example, 8 is in position
2, 3 because it is in the second row and the third column. You might remember that you
always list the rows before the columns by using the phraseRowman Catholic. The symbol,
(aij) refers to a matrix in which the i denotes the row and the j denotes the column. Using
this notation on the above matrix, a23 = 8, a32 = −9, a12 = 2, etc.

There are various operations which are done on matrices. They can sometimes be added,
multiplied by a scalar and sometimes multiplied. To illustrate scalar multiplication, consider
the following example.

3




1 2 3 4

5 2 8 7

6 −9 1 2


 =




3 6 9 12

15 6 24 21

18 −27 3 6


 .

The new matrix is obtained by multiplying every entry of the original matrix by the given
scalar. If A is an m× n matrix −A is defined to equal (−1)A.

39

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://www.nidostudentliving.com/Bookboon


LINEAR ALGEBRA I Linear Transformations

42

Chapter 2

Linear Transformations
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the matrix are identified according to position in the matrix. For example, 8 is in position
2, 3 because it is in the second row and the third column. You might remember that you
always list the rows before the columns by using the phraseRowman Catholic. The symbol,
(aij) refers to a matrix in which the i denotes the row and the j denotes the column. Using
this notation on the above matrix, a23 = 8, a32 = −9, a12 = 2, etc.

There are various operations which are done on matrices. They can sometimes be added,
multiplied by a scalar and sometimes multiplied. To illustrate scalar multiplication, consider
the following example.
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
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The new matrix is obtained by multiplying every entry of the original matrix by the given
scalar. If A is an m× n matrix −A is defined to equal (−1)A.
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Two matrices which are the same size can be added. When this is done, the result is the
matrix which is obtained by adding corresponding entries. Thus




1 2

3 4

5 2


+




−1 4

2 8

6 −4


 =




0 6

5 12

11 −2


 .

Two matrices are equal exactly when they are the same size and the corresponding entries
are identical. Thus 


0 0

0 0

0 0


 ̸=

(
0 0

0 0

)

because they are different sizes. As noted above, you write (cij) for the matrix C whose
ijth entry is cij . In doing arithmetic with matrices you must define what happens in terms
of the cij sometimes called the entries of the matrix or the components of the matrix.

The above discussion stated for general matrices is given in the following definition.

Definition 2.1.1 Let A = (aij) and B = (bij) be two m × n matrices. Then A + B = C
where

C = (cij)

for cij = aij + bij . Also if x is a scalar,

xA = (cij)

where cij = xaij . The number Aij will typically refer to the ijth entry of the matrix A. The
zero matrix, denoted by 0 will be the matrix consisting of all zeros.

Do not be upset by the use of the subscripts, ij. The expression cij = aij + bij is just
saying that you add corresponding entries to get the result of summing two matrices as
discussed above.

Note that there are 2 × 3 zero matrices, 3 × 4 zero matrices, etc. In fact for every size
there is a zero matrix.

With this definition, the following properties are all obvious but you should verify all of
these properties are valid for A, B, and C, m× n matrices and 0 an m× n zero matrix,

A+B = B +A, (2.1)

the commutative law of addition,

(A+B) + C = A+ (B + C) , (2.2)

the associative law for addition,
A+ 0 = A, (2.3)

the existence of an additive identity,

A+ (−A) = 0, (2.4)

the existence of an additive inverse. Also, for α, β scalars, the following also hold.

α (A+B) = αA+ αB, (2.5)

(α+ β)A = αA+ βA, (2.6)

Download free eBooks at bookboon.com



LINEAR ALGEBRA I Linear Transformations

43

40 CHAPTER 2. LINEAR TRANSFORMATIONS
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zero matrix, denoted by 0 will be the matrix consisting of all zeros.

Do not be upset by the use of the subscripts, ij. The expression cij = aij + bij is just
saying that you add corresponding entries to get the result of summing two matrices as
discussed above.

Note that there are 2 × 3 zero matrices, 3 × 4 zero matrices, etc. In fact for every size
there is a zero matrix.

With this definition, the following properties are all obvious but you should verify all of
these properties are valid for A, B, and C, m× n matrices and 0 an m× n zero matrix,

A+B = B +A, (2.1)

the commutative law of addition,

(A+B) + C = A+ (B + C) , (2.2)

the associative law for addition,
A+ 0 = A, (2.3)

the existence of an additive identity,

A+ (−A) = 0, (2.4)

the existence of an additive inverse. Also, for α, β scalars, the following also hold.

α (A+B) = αA+ αB, (2.5)

(α+ β)A = αA+ βA, (2.6)
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α (βA) = αβ (A) , (2.7)

1A = A. (2.8)

The above properties, 2.1 - 2.8 are known as the vector space axioms and the fact that
the m×n matrices satisfy these axioms is what is meant by saying this set of matrices with
addition and scalar multiplication as defined above forms a vector space.

Definition 2.1.2 Matrices which are n × 1 or 1 × n are especially called vectors and are
often denoted by a bold letter. Thus

x =




x1

...

xn




is an n × 1 matrix also called a column vector while a 1 × n matrix of the form (x1 · · ·xn)
is referred to as a row vector.

All the above is fine, but the real reason for considering matrices is that they can be
multiplied. This is where things quit being banal.

First consider the problem of multiplying an m × n matrix by an n × 1 column vector.
Consider the following example

(
1 2 3

4 5 6

)


7

8

9


 =?

It equals

7

(
1

4

)
+ 8

(
2

5

)
+ 9

(
3

6

)

Thus it is what is called a linear combination of the columns. These will be discussed
more later. Motivated by this example, here is the definition of how to multiply an m × n
matrix by an n× 1 matrix (vector).

Definition 2.1.3 Let A = Aij be an m× n matrix and let v be an n× 1 matrix,

v =




v1
...

vn


 , A = (a1, · · · ,an)

where ai is an m× 1 vector. Then Av, written as

(
a1 · · · an

)



v1
...

vn


 ,

is the m× 1 column vector which equals the following linear combination of the columns.

v1a1 + v2a2 + · · ·+ vnan ≡
n∑

j=1

vjaj (2.9)Download free eBooks at bookboon.com
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If the jth column of A is 


A1j

A2j

...

Amj




then 2.9 takes the form

v1




A11

A21

...

Am1




+ v2




A12

A22

...

Am2




+ · · ·+ vn




A1n

A2n

...

Amn




Thus the ith entry of Av is
∑n

j=1 Aijvj . Note that multiplication by an m× n matrix takes
an n× 1 matrix, and produces an m× 1 matrix (vector).

Here is another example.

Example 2.1.4 Compute



1 2 1 3

0 2 1 −2

2 1 4 1







1

2

0

1


 .

First of all, this is of the form (3× 4) (4× 1) and so the result should be a (3× 1) .
Note how the inside numbers cancel. To get the entry in the second row and first and only
column, compute

4∑
k=1

a2kvk = a21v1 + a22v2 + a23v3 + a24v4

= 0× 1 + 2× 2 + 1× 0 + (−2)× 1 = 2.

You should do the rest of the problem and verify




1 2 1 3

0 2 1 −2

2 1 4 1







1

2

0

1


 =




8

2

5


 .

With this done, the next task is to multiply an m × n matrix times an n × p matrix.
Before doing so, the following may be helpful.

(m×
these must match

n̂) (n× p ) = m× p

If the two middle numbers don’t match, you can’t multiply the matrices!

Definition 2.1.5 Let A be an m × n matrix and let B be an n × p matrix. Then B is of
the form

B = (b1, · · · ,bp)
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If the jth column of A is 


A1j

A2j

...

Amj




then 2.9 takes the form

v1




A11

A21

...

Am1




+ v2




A12

A22

...

Am2




+ · · ·+ vn




A1n

A2n

...

Amn




Thus the ith entry of Av is
∑n

j=1 Aijvj . Note that multiplication by an m× n matrix takes
an n× 1 matrix, and produces an m× 1 matrix (vector).

Here is another example.

Example 2.1.4 Compute



1 2 1 3

0 2 1 −2

2 1 4 1







1

2

0

1


 .

First of all, this is of the form (3× 4) (4× 1) and so the result should be a (3× 1) .
Note how the inside numbers cancel. To get the entry in the second row and first and only
column, compute

4∑
k=1

a2kvk = a21v1 + a22v2 + a23v3 + a24v4

= 0× 1 + 2× 2 + 1× 0 + (−2)× 1 = 2.

You should do the rest of the problem and verify




1 2 1 3

0 2 1 −2

2 1 4 1







1

2

0

1


 =




8

2

5


 .

With this done, the next task is to multiply an m × n matrix times an n × p matrix.
Before doing so, the following may be helpful.

(m×
these must match

n̂) (n× p ) = m× p

If the two middle numbers don’t match, you can’t multiply the matrices!

Definition 2.1.5 Let A be an m × n matrix and let B be an n × p matrix. Then B is of
the form

B = (b1, · · · ,bp)
2.1. MATRICES 43

where bk is an n× 1 matrix. Then an m× p matrix AB is defined as follows:

AB ≡ (Ab1, · · · , Abp) (2.10)

where Abk is an m× 1 matrix. Hence AB as just defined is an m× p matrix. For example,

Example 2.1.6 Multiply the following.

(
1 2 1

0 2 1

)


1 2 0

0 3 1

−2 1 1




The first thing you need to check before doing anything else is whether it is possible to
do the multiplication. The first matrix is a 2×3 and the second matrix is a 3×3. Therefore,
is it possible to multiply these matrices. According to the above discussion it should be a
2× 3 matrix of the form




First column� �� �
(

1 2 1

0 2 1

)


1

0

−2


,

Second column� �� �
(

1 2 1

0 2 1

)


2

3

1


,

Third column� �� �
(

1 2 1

0 2 1

)


0

1

1







You know how to multiply a matrix times a vector and so you do so to obtain each of the
three columns. Thus

(
1 2 1

0 2 1

)


1 2 0

0 3 1

−2 1 1


 =

(
−1 9 3

−2 7 3

)
.

Here is another example.

Example 2.1.7 Multiply the following.




1 2 0

0 3 1

−2 1 1




(
1 2 1

0 2 1

)

First check if it is possible. This is of the form (3× 3) (2× 3) . The inside numbers do not
match and so you can’t do this multiplication. This means that anything you write will be
absolute nonsense because it is impossible to multiply these matrices in this order. Aren’t
they the same two matrices considered in the previous example? Yes they are. It is just
that here they are in a different order. This shows something you must always remember
about matrix multiplication.

Order Matters!

Matrix multiplication is not commutative. This is very different than multiplication of
numbers!
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where bk is an n× 1 matrix. Then an m× p matrix AB is defined as follows:

AB ≡ (Ab1, · · · , Abp) (2.10)

where Abk is an m× 1 matrix. Hence AB as just defined is an m× p matrix. For example,

Example 2.1.6 Multiply the following.

(
1 2 1

0 2 1

)


1 2 0

0 3 1

−2 1 1




The first thing you need to check before doing anything else is whether it is possible to
do the multiplication. The first matrix is a 2×3 and the second matrix is a 3×3. Therefore,
is it possible to multiply these matrices. According to the above discussion it should be a
2× 3 matrix of the form




First column� �� �
(

1 2 1

0 2 1

)


1

0

−2


,

Second column� �� �
(

1 2 1

0 2 1

)


2

3

1


,

Third column� �� �
(

1 2 1

0 2 1

)


0

1

1







You know how to multiply a matrix times a vector and so you do so to obtain each of the
three columns. Thus

(
1 2 1

0 2 1

)


1 2 0

0 3 1

−2 1 1


 =

(
−1 9 3

−2 7 3

)
.

Here is another example.

Example 2.1.7 Multiply the following.




1 2 0

0 3 1

−2 1 1




(
1 2 1

0 2 1

)

First check if it is possible. This is of the form (3× 3) (2× 3) . The inside numbers do not
match and so you can’t do this multiplication. This means that anything you write will be
absolute nonsense because it is impossible to multiply these matrices in this order. Aren’t
they the same two matrices considered in the previous example? Yes they are. It is just
that here they are in a different order. This shows something you must always remember
about matrix multiplication.

Order Matters!

Matrix multiplication is not commutative. This is very different than multiplication of
numbers!44 CHAPTER 2. LINEAR TRANSFORMATIONS

2.1.1 The ijth Entry Of A Product

It is important to describe matrix multiplication in terms of entries of the matrices. What
is the ijth entry of AB? It would be the ith entry of the jth column of AB. Thus it would
be the ith entry of Abj . Now

bj =




B1j

...

Bnj




and from the above definition, the ith entry is

n∑
k=1

AikBkj . (2.11)

In terms of pictures of the matrix, you are doing




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...

Am1 Am2 · · · Amn







B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

...

Bn1 Bn2 · · · Bnp




Then as explained above, the jth column is of the form




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...

Am1 Am2 · · · Amn







B1j

B2j

...

Bnj




which is a m× 1 matrix or column vector which equals




A11

A21

...

Am1




B1j +




A12

A22

...

Am2




B2j + · · ·+




A1n

A2n

...

Amn




Bnj .

The ith entry of this m× 1 matrix is

Ai1B1j +Ai2B2j + · · ·+AinBnj =

m∑
k=1

AikBkj .

This shows the following definition for matrix multiplication in terms of the ijth entries of
the product harmonizes with Definition 2.1.3.

This motivates the definition for matrix multiplication which identifies the ijth entries
of the product.

Definition 2.1.8 Let A = (Aij) be an m× n matrix and let B = (Bij) be an n× p matrix.
Then AB is an m× p matrix and

(AB)ij =

n∑
k=1

AikBkj . (2.12)
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2.1.1 The ijth Entry Of A Product

It is important to describe matrix multiplication in terms of entries of the matrices. What
is the ijth entry of AB? It would be the ith entry of the jth column of AB. Thus it would
be the ith entry of Abj . Now

bj =




B1j

...

Bnj




and from the above definition, the ith entry is

n∑
k=1

AikBkj . (2.11)

In terms of pictures of the matrix, you are doing




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...

Am1 Am2 · · · Amn







B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

...

Bn1 Bn2 · · · Bnp




Then as explained above, the jth column is of the form




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...

Am1 Am2 · · · Amn







B1j

B2j

...

Bnj




which is a m× 1 matrix or column vector which equals




A11

A21

...

Am1




B1j +




A12

A22

...

Am2




B2j + · · ·+




A1n

A2n

...

Amn




Bnj .

The ith entry of this m× 1 matrix is

Ai1B1j +Ai2B2j + · · ·+AinBnj =

m∑
k=1

AikBkj .

This shows the following definition for matrix multiplication in terms of the ijth entries of
the product harmonizes with Definition 2.1.3.

This motivates the definition for matrix multiplication which identifies the ijth entries
of the product.

Definition 2.1.8 Let A = (Aij) be an m× n matrix and let B = (Bij) be an n× p matrix.
Then AB is an m× p matrix and

(AB)ij =
n∑

k=1

AikBkj . (2.12)2.1. MATRICES 45

Two matrices, A and B are said to be conformable in a particular order if they can be
multiplied in that order. Thus if A is an r × s matrix and B is a s × p then A and B are
conformable in the order AB. The above formula for (AB)ij says that it equals the ith row

of A times the jth column of B.

Example 2.1.9 Multiply if possible




1 2

3 1

2 6




(
2 3 1

7 6 2

)
.

First check to see if this is possible. It is of the form (3× 2) (2× 3) and since the inside
numbers match, it must be possible to do this and the result should be a 3× 3 matrix. The
answer is of the form







1 2

3 1

2 6




(
2

7

)
,




1 2

3 1

2 6




(
3

6

)
,




1 2

3 1

2 6




(
1

2

)


where the commas separate the columns in the resulting product. Thus the above product
equals 


16 15 5

13 15 5

46 42 14


 ,

a 3× 3 matrix as desired. In terms of the ijth entries and the above definition, the entry in
the third row and second column of the product should equal

∑
j

a3kbk2 = a31b12 + a32b22 = 2× 3 + 6× 6 = 42.

You should try a few more such examples to verify the above definition in terms of the ijth

entries works for other entries.

Example 2.1.10 Multiply if possible




1 2

3 1

2 6







2 3 1

7 6 2

0 0 0


 .

This is not possible because it is of the form (3× 2) (3× 3) and the middle numbers
don’t match.

Example 2.1.11 Multiply if possible




2 3 1

7 6 2

0 0 0







1 2

3 1

2 6


 .

This is possible because in this case it is of the form (3× 3) (3× 2) and the middle
numbers do match. When the multiplication is done it equals




13 13

29 32

0 0


 .

Check this and be sure you come up with the same answer.
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Two matrices, A and B are said to be conformable in a particular order if they can be
multiplied in that order. Thus if A is an r × s matrix and B is a s × p then A and B are
conformable in the order AB. The above formula for (AB)ij says that it equals the ith row

of A times the jth column of B.

Example 2.1.9 Multiply if possible




1 2

3 1

2 6




(
2 3 1

7 6 2

)
.

First check to see if this is possible. It is of the form (3× 2) (2× 3) and since the inside
numbers match, it must be possible to do this and the result should be a 3× 3 matrix. The
answer is of the form







1 2

3 1

2 6




(
2

7

)
,




1 2

3 1

2 6




(
3

6

)
,




1 2

3 1

2 6




(
1

2

)


where the commas separate the columns in the resulting product. Thus the above product
equals 


16 15 5

13 15 5

46 42 14


 ,

a 3× 3 matrix as desired. In terms of the ijth entries and the above definition, the entry in
the third row and second column of the product should equal

∑
j

a3kbk2 = a31b12 + a32b22 = 2× 3 + 6× 6 = 42.

You should try a few more such examples to verify the above definition in terms of the ijth

entries works for other entries.

Example 2.1.10 Multiply if possible




1 2

3 1

2 6







2 3 1

7 6 2

0 0 0


 .

This is not possible because it is of the form (3× 2) (3× 3) and the middle numbers
don’t match.

Example 2.1.11 Multiply if possible




2 3 1

7 6 2

0 0 0







1 2

3 1

2 6


 .

This is possible because in this case it is of the form (3× 3) (3× 2) and the middle
numbers do match. When the multiplication is done it equals




13 13

29 32

0 0


 .

Check this and be sure you come up with the same answer.
46 CHAPTER 2. LINEAR TRANSFORMATIONS

Example 2.1.12 Multiply if possible




1

2

1




(
1 2 1 0

)
.

In this case you are trying to do (3× 1) (1× 4) . The inside numbers match so you can
do it. Verify 


1

2

1




(
1 2 1 0

)
=




1 2 1 0

2 4 2 0

1 2 1 0




2.1.2 Digraphs

Consider the following graph illustrated in the picture.

1 2

3

There are three locations in this graph, labelled 1,2, and 3. The directed lines represent
a way of going from one location to another. Thus there is one way to go from location 1
to location 1. There is one way to go from location 1 to location 3. It is not possible to go
from location 2 to location 3 although it is possible to go from location 3 to location 2. Lets
refer to moving along one of these directed lines as a step. The following 3 × 3 matrix is
a numerical way of writing the above graph. This is sometimes called a digraph, short for
directed graph. 


1 1 1

1 0 0

1 1 0




Thus aij , the entry in the ith row and jth column represents the number of ways to go from
location i to location j in one step.

Problem: Find the number of ways to go from i to j using exactly k steps.
Denote the answer to the above problem by akij . We don’t know what it is right now

unless k = 1 when it equals aij described above. However, if we did know what it was, we
could find ak+1

ij as follows.

ak+1
ij =

∑
r

akirarj

This is because if you go from i to j in k + 1 steps, you first go from i to r in k steps and
then for each of these ways there are arj ways to go from there to j. Thus akirarj gives
the number of ways to go from i to j in k + 1 steps such that the kth step leaves you at
location r. Adding these gives the above sum. Now you recognize this as the ijth entry of
the product of two matrices. Thus

a2ij =
∑
r

airarj , a3ij =
∑
r

a2irarj
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Example 2.1.12 Multiply if possible




1

2

1




(
1 2 1 0

)
.

In this case you are trying to do (3× 1) (1× 4) . The inside numbers match so you can
do it. Verify 


1

2

1




(
1 2 1 0

)
=




1 2 1 0

2 4 2 0

1 2 1 0




2.1.2 Digraphs

Consider the following graph illustrated in the picture.

1 2

3

There are three locations in this graph, labelled 1,2, and 3. The directed lines represent
a way of going from one location to another. Thus there is one way to go from location 1
to location 1. There is one way to go from location 1 to location 3. It is not possible to go
from location 2 to location 3 although it is possible to go from location 3 to location 2. Lets
refer to moving along one of these directed lines as a step. The following 3 × 3 matrix is
a numerical way of writing the above graph. This is sometimes called a digraph, short for
directed graph. 


1 1 1

1 0 0

1 1 0




Thus aij , the entry in the ith row and jth column represents the number of ways to go from
location i to location j in one step.

Problem: Find the number of ways to go from i to j using exactly k steps.
Denote the answer to the above problem by akij . We don’t know what it is right now

unless k = 1 when it equals aij described above. However, if we did know what it was, we
could find ak+1

ij as follows.

ak+1
ij =

∑
r

akirarj

This is because if you go from i to j in k + 1 steps, you first go from i to r in k steps and
then for each of these ways there are arj ways to go from there to j. Thus akirarj gives
the number of ways to go from i to j in k + 1 steps such that the kth step leaves you at
location r. Adding these gives the above sum. Now you recognize this as the ijth entry of
the product of two matrices. Thus

a2ij =
∑
r

airarj , a3ij =
∑
r

a2irarj2.1. MATRICES 47

and so forth. From the above definition of matrix multiplication, this shows that if A is the
matrix associated with the directed graph as above, then akij is just the ijth entry of Ak

where Ak is just what you would think it should be, A multiplied by itself k times.
Thus in the above example, to find the number of ways of going from 1 to 3 in two steps

you would take that matrix and multiply it by itself and then take the entry in the first row
and third column. Thus 


1 1 1

1 0 0

1 1 0




2

=




3 2 1

1 1 1

2 1 1




and you see there is exactly one way to go from 1 to 3 in two steps. You can easily see this
is true from looking at the graph also. Note there are three ways to go from 1 to 1 in 2
steps. Can you find them from the graph? What would you do if you wanted to consider 5
steps? 


1 1 1

1 0 0

1 1 0




5

=




28 19 13

13 9 6

19 13 9




There are 19 ways to go from 1 to 2 in five steps. Do you think you could list them all by
looking at the graph? I don’t think you could do it without wasting a lot of time.

Of course there is nothing sacred about having only three locations. Everything works
just as well with any number of locations. In general if you have n locations, you would
need to use a n× n matrix.

Example 2.1.13 Consider the following directed graph.

1 2

3 4

Write the matrix which is associated with this directed graph and find the number of ways
to go from 2 to 4 in three steps.

Here you need to use a 4×4 matrix. The one you need is




0 1 1 0

1 0 0 0

1 1 0 1

0 1 0 1




Then to find the answer, you just need to multiply this matrix by itself three times and look
at the entry in the second row and fourth column.




0 1 1 0

1 0 0 0

1 1 0 1

0 1 0 1




3

=




1 3 2 1

2 1 0 1

3 3 1 2

1 2 1 1



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steps? 


1 1 1

1 0 0

1 1 0




5

=




28 19 13

13 9 6

19 13 9




There are 19 ways to go from 1 to 2 in five steps. Do you think you could list them all by
looking at the graph? I don’t think you could do it without wasting a lot of time.

Of course there is nothing sacred about having only three locations. Everything works
just as well with any number of locations. In general if you have n locations, you would
need to use a n× n matrix.

Example 2.1.13 Consider the following directed graph.

1 2

3 4

Write the matrix which is associated with this directed graph and find the number of ways
to go from 2 to 4 in three steps.

Here you need to use a 4×4 matrix. The one you need is


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0 1 1 0

1 0 0 0
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


Then to find the answer, you just need to multiply this matrix by itself three times and look
at the entry in the second row and fourth column.




0 1 1 0
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0 1 0 1



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and so forth. From the above definition of matrix multiplication, this shows that if A is the
matrix associated with the directed graph as above, then akij is just the ijth entry of Ak

where Ak is just what you would think it should be, A multiplied by itself k times.
Thus in the above example, to find the number of ways of going from 1 to 3 in two steps

you would take that matrix and multiply it by itself and then take the entry in the first row
and third column. Thus 


1 1 1

1 0 0

1 1 0




2

=




3 2 1

1 1 1

2 1 1




and you see there is exactly one way to go from 1 to 3 in two steps. You can easily see this
is true from looking at the graph also. Note there are three ways to go from 1 to 1 in 2
steps. Can you find them from the graph? What would you do if you wanted to consider 5
steps? 


1 1 1

1 0 0

1 1 0




5

=




28 19 13

13 9 6

19 13 9




There are 19 ways to go from 1 to 2 in five steps. Do you think you could list them all by
looking at the graph? I don’t think you could do it without wasting a lot of time.

Of course there is nothing sacred about having only three locations. Everything works
just as well with any number of locations. In general if you have n locations, you would
need to use a n× n matrix.

Example 2.1.13 Consider the following directed graph.

1 2

3 4

Write the matrix which is associated with this directed graph and find the number of ways
to go from 2 to 4 in three steps.

Here you need to use a 4×4 matrix. The one you need is




0 1 1 0

1 0 0 0

1 1 0 1

0 1 0 1




Then to find the answer, you just need to multiply this matrix by itself three times and look
at the entry in the second row and fourth column.




0 1 1 0

1 0 0 0

1 1 0 1

0 1 0 1




3

=




1 3 2 1

2 1 0 1

3 3 1 2

1 2 1 1



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There is exactly one way to go from 2 to 4 in three steps.
How many ways would there be of going from 2 to 4 in five steps?




0 1 1 0

1 0 0 0

1 1 0 1

0 1 0 1




5

=




5 9 5 4

5 4 1 3

9 10 4 6

4 6 3 3




There are three ways. Note there are 10 ways to go from 3 to 2 in five steps.
This is an interesting application of the concept of the ijth entry of the product matrices.

2.1.3 Properties Of Matrix Multiplication

As pointed out above, sometimes it is possible to multiply matrices in one order but not
in the other order. What if it makes sense to multiply them in either order? Will they be
equal then?

Example 2.1.14 Compare

(
1 2

3 4

)(
0 1

1 0

)
and

(
0 1

1 0

)(
1 2

3 4

)
.

The first product is

(
1 2

3 4

)(
0 1

1 0

)
=

(
2 1

4 3

)
,

the second product is (
0 1

1 0

)(
1 2

3 4

)
=

(
3 4

1 2

)
,

and you see these are not equal. Therefore, you cannot conclude that AB = BA for matrix
multiplication. However, there are some properties which do hold.

Proposition 2.1.15 If all multiplications and additions make sense, the following hold for
matrices, A,B,C and a, b scalars.

A (aB + bC) = a (AB) + b (AC) (2.13)

(B + C)A = BA+ CA (2.14)

A (BC) = (AB)C (2.15)

Proof: Using the above definition of matrix multiplication,

(A (aB + bC))ij =
∑
k

Aik (aB + bC)kj

=
∑
k

Aik (aBkj + bCkj)

= a
∑
k

AikBkj + b
∑
k

AikCkj

= a (AB)ij + b (AC)ij
= (a (AB) + b (AC))ij
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showing that A (B + C) = AB +AC as claimed. Formula 2.14 is entirely similar.
Consider 2.15, the associative law of multiplication. Before reading this, review the

definition of matrix multiplication in terms of entries of the matrices.

(A (BC))ij =
∑
k

Aik (BC)kj

=
∑
k

Aik

∑
l

BklClj

=
∑
l

(AB)il Clj

= ((AB)C)ij .�

Another important operation on matrices is that of taking the transpose. The following
example shows what is meant by this operation, denoted by placing a T as an exponent on
the matrix. 


1 1 + 2i

3 1

2 6




T

=

(
1 3 2

1 + 2i 1 6

)

What happened? The first column became the first row and the second column became
the second row. Thus the 3 × 2 matrix became a 2 × 3 matrix. The number 3 was in the
second row and the first column and it ended up in the first row and second column. This
motivates the following definition of the transpose of a matrix.

Definition 2.1.16 Let A be an m × n matrix. Then AT denotes the n ×m matrix which
is defined as follows. (

AT
)
ij
= Aji

The transpose of a matrix has the following important property.

Lemma 2.1.17 Let A be an m× n matrix and let B be a n× p matrix. Then

(AB)
T
= BTAT (2.16)

and if α and β are scalars,

(αA+ βB)
T
= αAT + βBT (2.17)

Proof: From the definition,

(
(AB)

T
)
ij

= (AB)ji

=
∑
k

AjkBki

=
∑
k

(
BT

)
ik

(
AT

)
kj

=
(
BTAT

)
ij

2.17 is left as an exercise. �

Definition 2.1.18 An n × n matrix A is said to be symmetric if A = AT . It is said to be
skew symmetric if AT = −A.
50 CHAPTER 2. LINEAR TRANSFORMATIONS

Example 2.1.19 Let

A =




2 1 3

1 5 −3

3 −3 7


 .

Then A is symmetric.

Example 2.1.20 Let

A =




0 1 3

−1 0 2

−3 −2 0




Then A is skew symmetric.

There is a special matrix called I and defined by

Iij = δij

where δij is the Kronecker symbol defined by

δij =

{
1 if i = j

0 if i ̸= j

It is called the identity matrix because it is a multiplicative identity in the following sense.

Lemma 2.1.21 Suppose A is an m× n matrix and In is the n× n identity matrix. Then
AIn = A. If Im is the m×m identity matrix, it also follows that ImA = A.

Proof:

(AIn)ij =
∑
k

Aikδkj

= Aij

and so AIn = A. The other case is left as an exercise for you.

Definition 2.1.22 An n × n matrix A has an inverse A−1 if and only if there exists a
matrix, denoted as A−1 such that AA−1 = A−1A = I where I = (δij) for

δij ≡

{
1 if i = j

0 if i ̸= j

Such a matrix is called invertible.

If it acts like an inverse, then it is the inverse. This is the message of the following
proposition.

Proposition 2.1.23 Suppose AB = BA = I. Then B = A−1.

Proof: From the definition B is an inverse for A. Could there be another one B′?

B′ = B′I = B′ (AB) = (B′A)B = IB = B.

Thus, the inverse, if it exists, is unique. �
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Example 2.1.19 Let
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There is a special matrix called I and defined by

Iij = δij

where δij is the Kronecker symbol defined by

δij =

{
1 if i = j

0 if i ̸= j

It is called the identity matrix because it is a multiplicative identity in the following sense.

Lemma 2.1.21 Suppose A is an m× n matrix and In is the n× n identity matrix. Then
AIn = A. If Im is the m×m identity matrix, it also follows that ImA = A.

Proof:

(AIn)ij =
∑
k

Aikδkj

= Aij

and so AIn = A. The other case is left as an exercise for you.

Definition 2.1.22 An n × n matrix A has an inverse A−1 if and only if there exists a
matrix, denoted as A−1 such that AA−1 = A−1A = I where I = (δij) for

δij ≡

{
1 if i = j

0 if i ̸= j

Such a matrix is called invertible.

If it acts like an inverse, then it is the inverse. This is the message of the following
proposition.

Proposition 2.1.23 Suppose AB = BA = I. Then B = A−1.

Proof: From the definition B is an inverse for A. Could there be another one B′?

B′ = B′I = B′ (AB) = (B′A)B = IB = B.

Thus, the inverse, if it exists, is unique. �
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Example 2.1.19 Let

A =




2 1 3

1 5 −3

3 −3 7


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Then A is symmetric.

Example 2.1.20 Let

A =




0 1 3

−1 0 2

−3 −2 0




Then A is skew symmetric.

There is a special matrix called I and defined by

Iij = δij

where δij is the Kronecker symbol defined by

δij =

{
1 if i = j

0 if i ̸= j

It is called the identity matrix because it is a multiplicative identity in the following sense.

Lemma 2.1.21 Suppose A is an m× n matrix and In is the n× n identity matrix. Then
AIn = A. If Im is the m×m identity matrix, it also follows that ImA = A.

Proof:

(AIn)ij =
∑
k

Aikδkj

= Aij

and so AIn = A. The other case is left as an exercise for you.

Definition 2.1.22 An n × n matrix A has an inverse A−1 if and only if there exists a
matrix, denoted as A−1 such that AA−1 = A−1A = I where I = (δij) for

δij ≡

{
1 if i = j

0 if i ̸= j

Such a matrix is called invertible.

If it acts like an inverse, then it is the inverse. This is the message of the following
proposition.

Proposition 2.1.23 Suppose AB = BA = I. Then B = A−1.

Proof: From the definition B is an inverse for A. Could there be another one B′?

B′ = B′I = B′ (AB) = (B′A)B = IB = B.

Thus, the inverse, if it exists, is unique. �2.1. MATRICES 51

2.1.4 Finding The Inverse Of A Matrix

A little later a formula is given for the inverse of a matrix. However, it is not a good way
to find the inverse for a matrix. There is a much easier way and it is this which is presented
here. It is also important to note that not all matrices have inverses.

Example 2.1.24 Let A =

(
1 1

1 1

)
. Does A have an inverse?

One might think A would have an inverse because it does not equal zero. However,

(
1 1

1 1

)(
−1

1

)
=

(
0

0

)

and if A−1 existed, this could not happen because you could multiply on the left by the
inverse A and conclude the vector (−1, 1)

T
= (0, 0)

T
. Thus the answer is that A does not

have an inverse.
Suppose you want to find B such that AB = I. Let

B =
(

b1 · · · bn

)

Also the ith column of I is

ei =
(

0 · · · 0 1 0 · · · 0
)T

Thus, if AB = I, bi, the i
th column of B must satisfy the equation Abi = ei. The augmented

matrix for finding bi is (A|ei) . Thus, by doing row operations till A becomes I, you end up
with (I|bi) where bi is the solution to Abi = ei. Now the same sequence of row operations
works regardless of the right side of the agumented matrix (A|ei) and so you can save trouble
by simply doing the following.

(A|I) row operations→ (I|B)

and the ith column of B is bi, the solution to Abi = ei. Thus AB = I.
This is the reason for the following simple procedure for finding the inverse of a matrix.

This procedure is called the Gauss Jordan procedure. It produces the inverse if the matrix
has one. Actually, it produces the right inverse.

Procedure 2.1.25 Suppose A is an n × n matrix. To find A−1 if it exists, form the
augmented n× 2n matrix,

(A|I)

and then do row operations until you obtain an n× 2n matrix of the form

(I|B) (2.18)

if possible. When this has been done, B = A−1. The matrix A has an inverse exactly when
it is possible to do row operations and end up with one like 2.18.

As described above, the following is a description of what you have just done.

A
RqRq−1···R1→ I

I
RqRq−1···R1→ B
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to find the inverse for a matrix. There is a much easier way and it is this which is presented
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and if A−1 existed, this could not happen because you could multiply on the left by the
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. Thus the answer is that A does not

have an inverse.
Suppose you want to find B such that AB = I. Let

B =
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b1 · · · bn

)

Also the ith column of I is

ei =
(

0 · · · 0 1 0 · · · 0
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Thus, if AB = I, bi, the i
th column of B must satisfy the equation Abi = ei. The augmented

matrix for finding bi is (A|ei) . Thus, by doing row operations till A becomes I, you end up
with (I|bi) where bi is the solution to Abi = ei. Now the same sequence of row operations
works regardless of the right side of the agumented matrix (A|ei) and so you can save trouble
by simply doing the following.

(A|I) row operations→ (I|B)

and the ith column of B is bi, the solution to Abi = ei. Thus AB = I.
This is the reason for the following simple procedure for finding the inverse of a matrix.

This procedure is called the Gauss Jordan procedure. It produces the inverse if the matrix
has one. Actually, it produces the right inverse.

Procedure 2.1.25 Suppose A is an n × n matrix. To find A−1 if it exists, form the
augmented n× 2n matrix,

(A|I)

and then do row operations until you obtain an n× 2n matrix of the form

(I|B) (2.18)

if possible. When this has been done, B = A−1. The matrix A has an inverse exactly when
it is possible to do row operations and end up with one like 2.18.

As described above, the following is a description of what you have just done.
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52 CHAPTER 2. LINEAR TRANSFORMATIONS

where those Ri sympolize row operations. It follows that you could undo what you did by
doing the inverse of these row operations in the opposite order. Thus

I
R−1

1 ···R−1
q−1R

−1
q→ A

B
R−1

1 ···R−1
q−1R

−1
q→ I

Here R−1 is the row operation which undoes the row operation R. Therefore, if you form
(B|I) and do the inverse of the row operations which produced I from A in the reverse
order, you would obtain (I|A) . By the same reasoning above, it follows that A is a right
inverse of B and so BA = I also. It follows from Proposition 2.1.23 that B = A−1. Thus
the procedure produces the inverse whenever it works.

If it is possible to do row operations and end up with A
row operations→ I, then the above

argument shows that A has an inverse. Conversely, if A has an inverse, can it be found by
the above procedure? In this case there exists a unique solution x to the equation Ax = y.
In fact it is just x = Ix = A−1y. Thus in terms of augmented matrices, you would expect
to obtain

(A|y) →
(
I|A−1y

)

That is, you would expect to be able to do row operations to A and end up with I.
The details will be explained fully when a more careful discussion is given which is based

on more fundamental considerations. For now, it suffices to observe that whenever the above
procedure works, it finds the inverse.

Example 2.1.26 Let A =




1 0 1

1 −1 1

1 1 −1


. Find A−1.

Form the augmented matrix



1 0 1 1 0 0

1 −1 1 0 1 0

1 1 −1 0 0 1


 .

Now do row operations until the n×n matrix on the left becomes the identity matrix. This
yields after some computations,




1 0 0 0 1
2

1
2

0 1 0 1 −1 0

0 0 1 1 − 1
2 − 1

2




and so the inverse of A is the matrix on the right,



0 1
2

1
2

1 −1 0

1 − 1
2 − 1

2


 .

Checking the answer is easy. Just multiply the matrices and see if it works.



1 0 1

1 −1 1

1 1 −1







0 1
2

1
2

1 −1 0

1 − 1
2 − 1

2


 =




1 0 0

0 1 0

0 0 1


 .

Always check your answer because if you are like some of us, you will usually have made a
mistake.
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where those Ri sympolize row operations. It follows that you could undo what you did by
doing the inverse of these row operations in the opposite order. Thus

I
R−1

1 ···R−1
q−1R

−1
q→ A

B
R−1

1 ···R−1
q−1R

−1
q→ I

Here R−1 is the row operation which undoes the row operation R. Therefore, if you form
(B|I) and do the inverse of the row operations which produced I from A in the reverse
order, you would obtain (I|A) . By the same reasoning above, it follows that A is a right
inverse of B and so BA = I also. It follows from Proposition 2.1.23 that B = A−1. Thus
the procedure produces the inverse whenever it works.

If it is possible to do row operations and end up with A
row operations→ I, then the above

argument shows that A has an inverse. Conversely, if A has an inverse, can it be found by
the above procedure? In this case there exists a unique solution x to the equation Ax = y.
In fact it is just x = Ix = A−1y. Thus in terms of augmented matrices, you would expect
to obtain

(A|y) →
(
I|A−1y

)

That is, you would expect to be able to do row operations to A and end up with I.
The details will be explained fully when a more careful discussion is given which is based

on more fundamental considerations. For now, it suffices to observe that whenever the above
procedure works, it finds the inverse.

Example 2.1.26 Let A =




1 0 1

1 −1 1

1 1 −1


. Find A−1.

Form the augmented matrix



1 0 1 1 0 0

1 −1 1 0 1 0

1 1 −1 0 0 1


 .

Now do row operations until the n×n matrix on the left becomes the identity matrix. This
yields after some computations,




1 0 0 0 1
2

1
2

0 1 0 1 −1 0

0 0 1 1 − 1
2 − 1

2




and so the inverse of A is the matrix on the right,



0 1
2

1
2

1 −1 0

1 − 1
2 − 1

2


 .

Checking the answer is easy. Just multiply the matrices and see if it works.



1 0 1

1 −1 1

1 1 −1







0 1
2

1
2

1 −1 0

1 − 1
2 − 1

2


 =




1 0 0

0 1 0

0 0 1


 .

Always check your answer because if you are like some of us, you will usually have made a
mistake.
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Example 2.1.27 Let A =




1 2 2

1 0 2

3 1 −1


. Find A−1.

Set up the augmented matrix (A|I)



1 2 2 1 0 0

1 0 2 0 1 0

3 1 −1 0 0 1




Next take (−1) times the first row and add to the second followed by (−3) times the first
row added to the last. This yields




1 2 2 1 0 0

0 −2 0 −1 1 0

0 −5 −7 −3 0 1


 .

Then take 5 times the second row and add to −2 times the last row.




1 2 2 1 0 0

0 −10 0 −5 5 0

0 0 14 1 5 −2




Next take the last row and add to (−7) times the top row. This yields




−7 −14 0 −6 5 −2

0 −10 0 −5 5 0

0 0 14 1 5 −2


 .

Now take (−7/5) times the second row and add to the top.




−7 0 0 1 −2 −2

0 −10 0 −5 5 0

0 0 14 1 5 −2


 .

Finally divide the top row by −7, the second row by -10 and the bottom row by 14 which
yields 


1 0 0 −1

7
2
7

2
7

0 1 0 1
2 − 1

2 0

0 0 1 1
14

5
14 − 1

7


 .

Therefore, the inverse is 


− 1
7

2
7

2
7

1
2 − 1

2 0
1
14

5
14 − 1

7




Example 2.1.28 Let A =




1 2 2

1 0 2

2 2 4


. Find A−1.
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Example 2.1.27 Let A =




1 2 2

1 0 2

3 1 −1


. Find A−1.

Set up the augmented matrix (A|I)



1 2 2 1 0 0

1 0 2 0 1 0

3 1 −1 0 0 1




Next take (−1) times the first row and add to the second followed by (−3) times the first
row added to the last. This yields




1 2 2 1 0 0

0 −2 0 −1 1 0

0 −5 −7 −3 0 1


 .

Then take 5 times the second row and add to −2 times the last row.




1 2 2 1 0 0

0 −10 0 −5 5 0

0 0 14 1 5 −2




Next take the last row and add to (−7) times the top row. This yields




−7 −14 0 −6 5 −2

0 −10 0 −5 5 0

0 0 14 1 5 −2


 .

Now take (−7/5) times the second row and add to the top.




−7 0 0 1 −2 −2

0 −10 0 −5 5 0

0 0 14 1 5 −2


 .

Finally divide the top row by −7, the second row by -10 and the bottom row by 14 which
yields 


1 0 0 − 1

7
2
7

2
7

0 1 0 1
2 − 1

2 0

0 0 1 1
14

5
14 − 1

7


 .

Therefore, the inverse is 


− 1
7

2
7

2
7

1
2 − 1

2 0
1
14

5
14 − 1

7




Example 2.1.28 Let A =




1 2 2

1 0 2

2 2 4


. Find A−1.
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Write the augmented matrix (A|I)



1 2 2 1 0 0

1 0 2 0 1 0

2 2 4 0 0 1




and proceed to do row operations attempting to obtain
(
I|A−1

)
. Take (−1) times the top

row and add to the second. Then take (−2) times the top row and add to the bottom.




1 2 2 1 0 0

0 −2 0 −1 1 0

0 −2 0 −2 0 1




Next add (−1) times the second row to the bottom row.




1 2 2 1 0 0

0 −2 0 −1 1 0

0 0 0 −1 −1 1




At this point, you can see there will be no inverse because you have obtained a row of zeros
in the left half of the augmented matrix (A|I) . Thus there will be no way to obtain I on
the left. In other words, the three systems of equations you must solve to find the inverse
have no solution. In particular, there is no solution for the first column of A−1 which must
solve

A




x

y

z


 =




1

0

0




because a sequence of row operations leads to the impossible equation, 0x+ 0y + 0z = −1.

2.2 Exercises

1. In 2.1 - 2.8 describe −A and 0.

2. Let A be an n×nmatrix. Show A equals the sum of a symmetric and a skew symmetric
matrix.

3. Show every skew symmetric matrix has all zeros down the main diagonal. The main
diagonal consists of every entry of the matrix which is of the form aii. It runs from
the upper left down to the lower right.

4. Using only the properties 2.1 - 2.8 show −A is unique.

5. Using only the properties 2.1 - 2.8 show 0 is unique.

6. Using only the properties 2.1 - 2.8 show 0A = 0. Here the 0 on the left is the scalar 0
and the 0 on the right is the zero for m× n matrices.

7. Using only the properties 2.1 - 2.8 and previous problems show (−1)A = −A.

8. Prove 2.17.

9. Prove that ImA = A where A is an m× n matrix.
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Write the augmented matrix (A|I)



1 2 2 1 0 0

1 0 2 0 1 0

2 2 4 0 0 1




and proceed to do row operations attempting to obtain
(
I|A−1

)
. Take (−1) times the top

row and add to the second. Then take (−2) times the top row and add to the bottom.




1 2 2 1 0 0

0 −2 0 −1 1 0

0 −2 0 −2 0 1




Next add (−1) times the second row to the bottom row.




1 2 2 1 0 0

0 −2 0 −1 1 0

0 0 0 −1 −1 1




At this point, you can see there will be no inverse because you have obtained a row of zeros
in the left half of the augmented matrix (A|I) . Thus there will be no way to obtain I on
the left. In other words, the three systems of equations you must solve to find the inverse
have no solution. In particular, there is no solution for the first column of A−1 which must
solve

A




x

y

z


 =




1

0

0




because a sequence of row operations leads to the impossible equation, 0x+ 0y + 0z = −1.

2.2 Exercises

1. In 2.1 - 2.8 describe −A and 0.

2. Let A be an n×nmatrix. Show A equals the sum of a symmetric and a skew symmetric
matrix.

3. Show every skew symmetric matrix has all zeros down the main diagonal. The main
diagonal consists of every entry of the matrix which is of the form aii. It runs from
the upper left down to the lower right.

4. Using only the properties 2.1 - 2.8 show −A is unique.

5. Using only the properties 2.1 - 2.8 show 0 is unique.

6. Using only the properties 2.1 - 2.8 show 0A = 0. Here the 0 on the left is the scalar 0
and the 0 on the right is the zero for m× n matrices.

7. Using only the properties 2.1 - 2.8 and previous problems show (−1)A = −A.

8. Prove 2.17.

9. Prove that ImA = A where A is an m× n matrix.
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10. Let A and be a real m × n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)Rm =(
x,ATy

)
Rn where (·, ·)Rk denotes the dot product in Rk.

11. Use the result of Problem 10 to verify directly that (AB)
T
= BTAT without making

any reference to subscripts.

12. Let x =(−1,−1, 1) and y =(0, 1, 2) . Find xTy and xyT if possible.

13. Give an example of matrices, A,B,C such that B ̸= C, A ̸= 0, and yet AB = AC.

14. Let A =




1 1

−2 −1

1 2


, B =

(
1 −1 −2

2 1 −2

)
, and C =




1 1 −3

−1 2 0

−3 −1 0


 . Find

if possible the following products. AB,BA,AC,CA,CB,BC.

15. Consider the following digraph.

1 2

3 4

Write the matrix associated with this digraph and find the number of ways to go from
3 to 4 in three steps.

16. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and
AB = I, then B = A−1.

17. Show (AB)
−1

= B−1A−1.

18. Show that if A is an invertible n× n matrix, then so is AT and
(
AT

)−1
=

(
A−1

)T
.

19. Show that if A is an n×n invertible matrix and x is a n× 1 matrix such that Ax = b
for b an n× 1 matrix, then x = A−1b.

20. Give an example of a matrix A such that A2 = I and yet A ̸= I and A ̸= −I.

21. Give an example of matrices, A,B such that neither A nor B equals zero and yet
AB = 0.

22. Write




x1 − x2 + 2x3

2x3 + x1

3x3

3x4 + 3x2 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

23. Give another example other than the one given in this section of two square matrices,
A and B such that AB ̸= BA.

24. Suppose A and B are square matrices of the same size. Which of the following are
correct?

(a) (A−B)
2
= A2 − 2AB +B2
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10. Let A and be a real m × n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)Rm =(
x,ATy

)
Rn where (·, ·)Rk denotes the dot product in Rk.

11. Use the result of Problem 10 to verify directly that (AB)
T
= BTAT without making

any reference to subscripts.

12. Let x =(−1,−1, 1) and y =(0, 1, 2) . Find xTy and xyT if possible.

13. Give an example of matrices, A,B,C such that B ̸= C, A ̸= 0, and yet AB = AC.

14. Let A =




1 1

−2 −1

1 2


, B =

(
1 −1 −2

2 1 −2

)
, and C =




1 1 −3

−1 2 0

−3 −1 0


 . Find

if possible the following products. AB,BA,AC,CA,CB,BC.

15. Consider the following digraph.

1 2

3 4

Write the matrix associated with this digraph and find the number of ways to go from
3 to 4 in three steps.

16. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and
AB = I, then B = A−1.

17. Show (AB)
−1

= B−1A−1.

18. Show that if A is an invertible n× n matrix, then so is AT and
(
AT

)−1
=

(
A−1

)T
.

19. Show that if A is an n×n invertible matrix and x is a n× 1 matrix such that Ax = b
for b an n× 1 matrix, then x = A−1b.

20. Give an example of a matrix A such that A2 = I and yet A ̸= I and A ̸= −I.

21. Give an example of matrices, A,B such that neither A nor B equals zero and yet
AB = 0.

22. Write




x1 − x2 + 2x3

2x3 + x1

3x3

3x4 + 3x2 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

23. Give another example other than the one given in this section of two square matrices,
A and B such that AB ̸= BA.

24. Suppose A and B are square matrices of the same size. Which of the following are
correct?

(a) (A−B)
2
= A2 − 2AB +B2
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(b) (AB)
2
= A2B2

(c) (A+B)
2
= A2 + 2AB +B2

(d) (A+B)
2
= A2 +AB +BA+B2

(e) A2B2 = A (AB)B

(f) (A+B)
3
= A3 + 3A2B + 3AB2 +B3

(g) (A+B) (A−B) = A2 −B2

(h) None of the above. They are all wrong.

(i) All of the above. They are all right.

25. Let A =

(
−1 −1

3 3

)
. Find all 2× 2 matrices, B such that AB = 0.

26. Prove that if A−1 exists and Ax = 0 then x = 0.

27. Let

A =




1 2 3

2 1 4

1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

28. Let

A =




1 0 3

2 3 4

1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

29. Let

A =




1 2 3

2 1 4

4 5 10


 .

Find A−1 if possible. If A−1 does not exist, determine why.

30. Let

A =




1 2 0 2

1 1 2 0

2 1 −3 2

1 2 1 2




Find A−1 if possible. If A−1 does not exist, determine why.

2.3 Linear Transformations

By 2.13, if A is an m× n matrix, then for v,u vectors in Fn and a, b scalars,

A




∈Fn

� �� �
au+ bv


 = aAu+ bAv ∈ Fm (2.19)

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book  
is made with 
SetaPDF

http://s.bookboon.com/Setasign


LINEAR ALGEBRA I Linear Transformations

60

56 CHAPTER 2. LINEAR TRANSFORMATIONS

(b) (AB)
2
= A2B2

(c) (A+B)
2
= A2 + 2AB +B2

(d) (A+B)
2
= A2 +AB +BA+B2

(e) A2B2 = A (AB)B

(f) (A+B)
3
= A3 + 3A2B + 3AB2 +B3

(g) (A+B) (A−B) = A2 −B2

(h) None of the above. They are all wrong.

(i) All of the above. They are all right.

25. Let A =

(
−1 −1

3 3

)
. Find all 2× 2 matrices, B such that AB = 0.

26. Prove that if A−1 exists and Ax = 0 then x = 0.

27. Let

A =




1 2 3

2 1 4

1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

28. Let

A =




1 0 3

2 3 4

1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

29. Let

A =




1 2 3

2 1 4

4 5 10


 .

Find A−1 if possible. If A−1 does not exist, determine why.

30. Let

A =




1 2 0 2

1 1 2 0

2 1 −3 2

1 2 1 2




Find A−1 if possible. If A−1 does not exist, determine why.

2.3 Linear Transformations

By 2.13, if A is an m× n matrix, then for v,u vectors in Fn and a, b scalars,

A




∈Fn

� �� �
au+ bv


 = aAu+ bAv ∈ Fm (2.19)
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Definition 2.3.1 A function, A : Fn → Fm is called a linear transformation if for all
u,v ∈ Fn and a, b scalars, 2.19 holds.

From 2.19, matrix multiplication defines a linear transformation as just defined. It
turns out this is the only type of linear transformation available. Thus if A is a linear
transformation from Fn to Fm, there is always a matrix which produces A. Before showing
this, here is a simple definition.

Definition 2.3.2 A vector, ei ∈ Fn is defined as follows:

ei ≡




0
...

1
...

0




,

where the 1 is in the ith position and there are zeros everywhere else. Thus

ei = (0, · · · , 0, 1, 0, · · · , 0)T .

Of course the ei for a particular value of i in Fn would be different than the ei for that
same value of i in Fm for m ̸= n. One of them is longer than the other. However, which one
is meant will be determined by the context in which they occur.

These vectors have a significant property.

Lemma 2.3.3 Let v ∈ Fn. Thus v is a list of numbers arranged vertically, v1, · · · , vn. Then

eTi v = vi. (2.20)

Also, if A is an m× n matrix, then letting ei ∈ Fm and ej ∈ Fn,

eTi Aej = Aij (2.21)

Proof: First note that eTi is a 1 × n matrix and v is an n × 1 matrix so the above
multiplication in 2.20 makes perfect sense. It equals

(0, · · · , 1, · · · 0)




v1
...

vi
...

vn




= vi

as claimed.
Consider 2.21. From the definition of matrix multiplication, and noting that (ej)k = δkj

eTi Aej = eTi




∑
k A1k (ej)k

...∑
k Aik (ej)k

...∑
k Amk (ej)k




= eTi




A1j

...

Aij

...

Amj




= Aij

by the first part of the lemma. �
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Definition 2.3.1 A function, A : Fn → Fm is called a linear transformation if for all
u,v ∈ Fn and a, b scalars, 2.19 holds.

From 2.19, matrix multiplication defines a linear transformation as just defined. It
turns out this is the only type of linear transformation available. Thus if A is a linear
transformation from Fn to Fm, there is always a matrix which produces A. Before showing
this, here is a simple definition.

Definition 2.3.2 A vector, ei ∈ Fn is defined as follows:

ei ≡




0
...

1
...

0




,

where the 1 is in the ith position and there are zeros everywhere else. Thus

ei = (0, · · · , 0, 1, 0, · · · , 0)T .

Of course the ei for a particular value of i in Fn would be different than the ei for that
same value of i in Fm for m ̸= n. One of them is longer than the other. However, which one
is meant will be determined by the context in which they occur.

These vectors have a significant property.

Lemma 2.3.3 Let v ∈ Fn. Thus v is a list of numbers arranged vertically, v1, · · · , vn. Then

eTi v = vi. (2.20)

Also, if A is an m× n matrix, then letting ei ∈ Fm and ej ∈ Fn,

eTi Aej = Aij (2.21)

Proof: First note that eTi is a 1 × n matrix and v is an n × 1 matrix so the above
multiplication in 2.20 makes perfect sense. It equals

(0, · · · , 1, · · · 0)




v1
...

vi
...

vn




= vi

as claimed.
Consider 2.21. From the definition of matrix multiplication, and noting that (ej)k = δkj

eTi Aej = eTi




∑
k A1k (ej)k

...∑
k Aik (ej)k

...∑
k Amk (ej)k




= eTi




A1j

...

Aij

...

Amj




= Aij

by the first part of the lemma. �58 CHAPTER 2. LINEAR TRANSFORMATIONS

Theorem 2.3.4 Let L : Fn → Fm be a linear transformation. Then there exists a unique
m× n matrix A such that

Ax = Lx

for all x ∈ Fn. The ikth entry of this matrix is given by

eTi Lek (2.22)

Stated in another way, the kth column of A equals Lek.

Proof: By the lemma,

(Lx)i = eTi Lx = eTi
∑
k

xkLek =
∑
k

(
eTi Lek

)
xk.

Let Aik = eTi Lek, to prove the existence part of the theorem.
To verify uniqueness, suppose Bx = Ax = Lx for all x ∈ Fn. Then in particular, this is

true for x = ej and then multiply on the left by eTi to obtain

Bij = eTi Bej = eTi Aej = Aij

showing A = B. �

Corollary 2.3.5 A linear transformation, L : Fn → Fm is completely determined by the
vectors {Le1, · · · , Len} .

Proof: This follows immediately from the above theorem. The unique matrix determin-
ing the linear transformation which is given in 2.22 depends only on these vectors. �

For a different proof of this theorem and corollary, see the following section.
This theorem shows that any linear transformation defined on Fn can always be consid-

ered as matrix multiplication. Therefore, the terms “linear transformation” and “matrix”
are often used interchangeably. For example, to say that a matrix is one to one, means the
linear transformation determined by the matrix is one to one.

Example 2.3.6 Find the linear transformation, L : R2 → R2 which has the property that

Le1 =

(
2

1

)
and Le2 =

(
1

3

)
. From the above theorem and corollary, this linear trans-

formation is that determined by matrix multiplication by the matrix

(
2 1

1 3

)
.

2.4 Some Geometrically Defined Linear Transformations

If T is any linear transformation which maps Fn to Fm, there is always an m × n matrix
A ≡ [T ] with the property that

Ax = Tx (2.23)

for all x ∈ Fn. What is the form of A? Suppose T : Fn → Fm is a linear transformation
and you want to find the matrix defined by this linear transformation as described in 2.23.
Then if x ∈ Fn it follows

x =
n∑

i=1

xiei
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Theorem 2.3.4 Let L : Fn → Fm be a linear transformation. Then there exists a unique
m× n matrix A such that

Ax = Lx

for all x ∈ Fn. The ikth entry of this matrix is given by

eTi Lek (2.22)

Stated in another way, the kth column of A equals Lek.

Proof: By the lemma,

(Lx)i = eTi Lx = eTi
∑
k

xkLek =
∑
k

(
eTi Lek

)
xk.

Let Aik = eTi Lek, to prove the existence part of the theorem.
To verify uniqueness, suppose Bx = Ax = Lx for all x ∈ Fn. Then in particular, this is

true for x = ej and then multiply on the left by eTi to obtain

Bij = eTi Bej = eTi Aej = Aij

showing A = B. �

Corollary 2.3.5 A linear transformation, L : Fn → Fm is completely determined by the
vectors {Le1, · · · , Len} .

Proof: This follows immediately from the above theorem. The unique matrix determin-
ing the linear transformation which is given in 2.22 depends only on these vectors. �

For a different proof of this theorem and corollary, see the following section.
This theorem shows that any linear transformation defined on Fn can always be consid-

ered as matrix multiplication. Therefore, the terms “linear transformation” and “matrix”
are often used interchangeably. For example, to say that a matrix is one to one, means the
linear transformation determined by the matrix is one to one.

Example 2.3.6 Find the linear transformation, L : R2 → R2 which has the property that

Le1 =

(
2

1

)
and Le2 =

(
1

3

)
. From the above theorem and corollary, this linear trans-

formation is that determined by matrix multiplication by the matrix

(
2 1

1 3

)
.

2.4 Some Geometrically Defined Linear Transformations

If T is any linear transformation which maps Fn to Fm, there is always an m × n matrix
A ≡ [T ] with the property that

Ax = Tx (2.23)

for all x ∈ Fn. What is the form of A? Suppose T : Fn → Fm is a linear transformation
and you want to find the matrix defined by this linear transformation as described in 2.23.
Then if x ∈ Fn it follows

x =
n∑

i=1

xiei
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Theorem 2.3.4 Let L : Fn → Fm be a linear transformation. Then there exists a unique
m× n matrix A such that

Ax = Lx

for all x ∈ Fn. The ikth entry of this matrix is given by

eTi Lek (2.22)

Stated in another way, the kth column of A equals Lek.

Proof: By the lemma,

(Lx)i = eTi Lx = eTi
∑
k

xkLek =
∑
k

(
eTi Lek

)
xk.

Let Aik = eTi Lek, to prove the existence part of the theorem.
To verify uniqueness, suppose Bx = Ax = Lx for all x ∈ Fn. Then in particular, this is

true for x = ej and then multiply on the left by eTi to obtain

Bij = eTi Bej = eTi Aej = Aij

showing A = B. �

Corollary 2.3.5 A linear transformation, L : Fn → Fm is completely determined by the
vectors {Le1, · · · , Len} .

Proof: This follows immediately from the above theorem. The unique matrix determin-
ing the linear transformation which is given in 2.22 depends only on these vectors. �

For a different proof of this theorem and corollary, see the following section.
This theorem shows that any linear transformation defined on Fn can always be consid-

ered as matrix multiplication. Therefore, the terms “linear transformation” and “matrix”
are often used interchangeably. For example, to say that a matrix is one to one, means the
linear transformation determined by the matrix is one to one.

Example 2.3.6 Find the linear transformation, L : R2 → R2 which has the property that

Le1 =

(
2

1

)
and Le2 =

(
1

3

)
. From the above theorem and corollary, this linear trans-

formation is that determined by matrix multiplication by the matrix

(
2 1

1 3

)
.

2.4 Some Geometrically Defined Linear Transformations

If T is any linear transformation which maps Fn to Fm, there is always an m × n matrix
A ≡ [T ] with the property that

Ax = Tx (2.23)

for all x ∈ Fn. What is the form of A? Suppose T : Fn → Fm is a linear transformation
and you want to find the matrix defined by this linear transformation as described in 2.23.
Then if x ∈ Fn it follows

x =
n∑

i=1

xiei2.4. SOME GEOMETRICALLY DEFINED LINEAR TRANSFORMATIONS 59

where ei is the vector which has zeros in every slot but the ith and a 1 in this slot. Then
since T is linear,

Tx =

n∑
i=1

xiT (ei)

=




| |
T (e1) · · · T (en)

| |







x1

...

xn


 ≡ A




x1

...

xn




and so you see that the matrix desired is obtained from letting the ith column equal T (ei) .
This proves the existence part of the following theorem.

Theorem 2.4.1 Let T be a linear transformation from Fn to Fm. Then the matrix A sat-
isfying 2.23 is given by 


| |

T (e1) · · · T (en)

| |




where Tei is the ith column of A.

Proof: It remains to verify uniqueness. However, if A is a matrix which works, A =(
a1 · · · an

)
, then Tei ≡ Aei = ai and so the matrix is of the form claimed above. �

Example 2.4.2 Determine the matrix for the transformation mapping R2 to R2 which
consists of rotating every vector counter clockwise through an angle of θ.

Let e1 ≡

(
1

0

)
and e2 ≡

(
0

1

)
. These identify the geometric vectors which point

along the positive x axis and positive y axis as shown.

�

�

e1

e2

From Theorem 2.4.1, you only need to find Te1 and Te2, the first being the first column
of the desired matrix A and the second being the second column. From drawing a picture
and doing a little geometry, you see that

Te1 =

(
cos θ

sin θ

)
, Te2 =

(
− sin θ

cos θ

)
.

Therefore, from Theorem 2.4.1,

A =

(
cos θ − sin θ

sin θ cos θ

)

Example 2.4.3 Find the matrix of the linear transformation which is obtained by first
rotating all vectors through an angle of ϕ and then through an angle θ. Thus you want the
linear transformation which rotates all angles through an angle of θ + ϕ.

Download free eBooks at bookboon.com



LINEAR ALGEBRA I Linear Transformations

64

2.4. SOME GEOMETRICALLY DEFINED LINEAR TRANSFORMATIONS 59

where ei is the vector which has zeros in every slot but the ith and a 1 in this slot. Then
since T is linear,

Tx =

n∑
i=1

xiT (ei)

=




| |
T (e1) · · · T (en)

| |







x1

...

xn


 ≡ A




x1

...

xn




and so you see that the matrix desired is obtained from letting the ith column equal T (ei) .
This proves the existence part of the following theorem.

Theorem 2.4.1 Let T be a linear transformation from Fn to Fm. Then the matrix A sat-
isfying 2.23 is given by 


| |

T (e1) · · · T (en)

| |




where Tei is the ith column of A.

Proof: It remains to verify uniqueness. However, if A is a matrix which works, A =(
a1 · · · an

)
, then Tei ≡ Aei = ai and so the matrix is of the form claimed above. �

Example 2.4.2 Determine the matrix for the transformation mapping R2 to R2 which
consists of rotating every vector counter clockwise through an angle of θ.

Let e1 ≡

(
1

0

)
and e2 ≡

(
0

1

)
. These identify the geometric vectors which point

along the positive x axis and positive y axis as shown.

�

�

e1

e2

From Theorem 2.4.1, you only need to find Te1 and Te2, the first being the first column
of the desired matrix A and the second being the second column. From drawing a picture
and doing a little geometry, you see that

Te1 =

(
cos θ

sin θ

)
, Te2 =

(
− sin θ

cos θ

)
.

Therefore, from Theorem 2.4.1,

A =

(
cos θ − sin θ

sin θ cos θ

)

Example 2.4.3 Find the matrix of the linear transformation which is obtained by first
rotating all vectors through an angle of ϕ and then through an angle θ. Thus you want the
linear transformation which rotates all angles through an angle of θ + ϕ.
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Let Tθ+ϕ denote the linear transformation which rotates every vector through an angle
of θ + ϕ. Then to get Tθ+ϕ, you could first do Tϕ and then do Tθ where Tϕ is the linear
transformation which rotates through an angle of ϕ and Tθ is the linear transformation
which rotates through an angle of θ. Denoting the corresponding matrices by Aθ+ϕ, Aϕ,
and Aθ, you must have for every x

Aθ+ϕx = Tθ+ϕx = TθTϕx = AθAϕx.

Consequently, you must have

Aθ+ϕ =

(
cos (θ + ϕ) − sin (θ + ϕ)

sin (θ + ϕ) cos (θ + ϕ)

)
= AθAϕ

=

(
cos θ − sin θ

sin θ cos θ

)(
cosϕ − sinϕ

sinϕ cosϕ

)
.

Therefore,
(

cos (θ + ϕ) − sin (θ + ϕ)

sin (θ + ϕ) cos (θ + ϕ)

)
=

(
cos θ cosϕ− sin θ sinϕ − cos θ sinϕ− sin θ cosϕ

sin θ cosϕ+ cos θ sinϕ cos θ cosϕ− sin θ sinϕ

)
.

Don’t these look familiar? They are the usual trig. identities for the sum of two angles
derived here using linear algebra concepts.

Example 2.4.4 Find the matrix of the linear transformation which rotates vectors in R3counterclockwise
about the positive z axis.

Let T be the name of this linear transformation. In this case, Te3 = e3, Te1 =
(cos θ, sin θ, 0)

T
, and Te2 = (− sin θ, cos θ, 0)

T
. Therefore, the matrix of this transformation

is just 


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 (2.24)

In Physics it is important to consider the work done by a force field on an object. This
involves the concept of projection onto a vector. Suppose you want to find the projection
of a vector, v onto the given vector, u, denoted by proju (v) This is done using the dot
product as follows.

proju (v) =
(v · u
u · u

)
u

Because of properties of the dot product, the map v → proju (v) is linear,

proju (αv+βw) =

(
αv+βw · u

u · u

)
u = α

(v · u
u · u

)
u+ β

(w · u
u · u

)
u

= α proju (v) + β proju (w) .

Example 2.4.5 Let the projection map be defined above and let u = (1, 2, 3)
T
. Find the

matrix of this linear transformation with respect to the usual basis.

You can find this matrix in the same way as in earlier examples. proju (ei) gives the ith

column of the desired matrix. Therefore, it is only necessary to find

proju (ei) ≡
( ei·u
u · u

)
u
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For the given vector in the example, this implies the columns of the desired matrix are

1

14




1

2

3


 ,

2

14




1

2

3


 ,

3

14




1

2

3


 .

Hence the matrix is

1

14




1 2 3

2 4 6

3 6 9


 .

Example 2.4.6 Find the matrix of the linear transformation which reflects all vectors in
R3 through the xz plane.

As illustrated above, you just need to find Tei where T is the name of the transformation.
But Te1 = e1, Te3 = e3, and Te2 = −e2 so the matrix is




1 0 0

0 −1 0

0 0 1


 .

Example 2.4.7 Find the matrix of the linear transformation which first rotates counter
clockwise about the positive z axis and then reflects through the xz plane.

This linear transformation is just the composition of two linear transformations having
matrices 


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 ,




1 0 0

0 −1 0

0 0 1




respectively. Thus the matrix desired is



1 0 0

0 −1 0

0 0 1







cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 =




cos θ − sin θ 0

− sin θ − cos θ 0

0 0 1


 .

2.5 The Null Space Of A Linear Transformation

The null space or kernel of a matrix or linear transformation is given in the following
definition. Essentially, it is just the set of all vectors which are sent to the zero vector by
the linear transformation.

Definition 2.5.1 Let L : Fn → Fm be a linear transformation and let its matrix be the
m × n matrix A. Then ker (L) ≡ {x ∈ Fn : Lx = 0} . Sometimes people also write this as
N (A) , the null space of A.

Then there is a fundamental result in the case where m < n. In this case, the matrix A
of the linear transformation looks like the following.
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For the given vector in the example, this implies the columns of the desired matrix are
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3


 ,

3

14




1

2

3


 .

Hence the matrix is

1

14




1 2 3

2 4 6

3 6 9


 .

Example 2.4.6 Find the matrix of the linear transformation which reflects all vectors in
R3 through the xz plane.

As illustrated above, you just need to find Tei where T is the name of the transformation.
But Te1 = e1, Te3 = e3, and Te2 = −e2 so the matrix is




1 0 0

0 −1 0

0 0 1


 .

Example 2.4.7 Find the matrix of the linear transformation which first rotates counter
clockwise about the positive z axis and then reflects through the xz plane.

This linear transformation is just the composition of two linear transformations having
matrices 


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 ,




1 0 0

0 −1 0

0 0 1




respectively. Thus the matrix desired is



1 0 0

0 −1 0

0 0 1







cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 =




cos θ − sin θ 0

− sin θ − cos θ 0

0 0 1


 .

2.5 The Null Space Of A Linear Transformation

The null space or kernel of a matrix or linear transformation is given in the following
definition. Essentially, it is just the set of all vectors which are sent to the zero vector by
the linear transformation.

Definition 2.5.1 Let L : Fn → Fm be a linear transformation and let its matrix be the
m × n matrix A. Then ker (L) ≡ {x ∈ Fn : Lx = 0} . Sometimes people also write this as
N (A) , the null space of A.

Then there is a fundamental result in the case where m < n. In this case, the matrix A
of the linear transformation looks like the following.
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Theorem 2.5.2 Let A be an m × n matrix where m < n. Then N (A) contains nonzero
vectors.

Proof: First consider the case where A is a 1× n matrix for n > 1. Say

A =
(

a1 · · · an

)

If a1 = 0, consider the vector x = e1. If a1 ̸= 0, let

x =




b

1
...

1




where b is chosen to satisfy the equation

a1b+

n∑
k=2

ak = 0

Suppose now that the theorem is true for any m × n matrix with n > m and consider an
(m× 1) × n matrix A where n > m + 1. If the first column of A is 0, then you could let
x = e1 as above. If the first column is not the zero vector, then by doing row operations,
the equation Ax = 0 can be reduced to the equivalent system

A1x = 0

where A1 is of the form

A1 =

(
1 aT

0 B

)

where B is an m × (n− 1) matrix. Since n > m + 1, it follows that (n− 1) > m and so
by induction, there exists a nonzero vector y ∈ Fn−1 such that By = 0. Then consider the
vector

x =

(
b

y

)

A1x has for its top entry the expression b + aTy. Letting B =




bT
1

...

bT
m


 , the ith entry of

A1x for i > 1 is of the form bT
i y = 0. Thus if b is chosen to satisfy the equation b+aTy = 0,

then A1x = 0.�

2.6 Subspaces And Spans

Definition 2.6.1 Let {x1, · · · ,xp} be vectors in Fn. A linear combination is any expression
of the form

p∑
i=1

cixi

where the ci are scalars. The set of all linear combinations of these vectors is called
span (x1, · · · ,xn) . A nonempty V ⊆ Fn, is is called a subspace if whenever α, β are scalars
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Theorem 2.5.2 Let A be an m × n matrix where m < n. Then N (A) contains nonzero
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Proof: First consider the case where A is a 1× n matrix for n > 1. Say

A =
(

a1 · · · an

)

If a1 = 0, consider the vector x = e1. If a1 ̸= 0, let

x =




b

1
...

1




where b is chosen to satisfy the equation

a1b+

n∑
k=2

ak = 0
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)
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and u and v are vectors of V, it follows αu + βv ∈ V . That is, it is “closed under the
algebraic operations of vector addition and scalar multiplication”. The empty set is never a
subspace by definition. A linear combination of vectors is said to be trivial if all the scalars
in the linear combination equal zero. A set of vectors is said to be linearly independent if
the only linear combination of these vectors which equals the zero vector is the trivial linear
combination. Thus {x1, · · · ,xn} is called linearly independent if whenever

p∑
k=1

ckxk = 0

it follows that all the scalars ck equal zero. A set of vectors, {x1, · · · ,xp} , is called linearly
dependent if it is not linearly independent. Thus the set of vectors is linearly dependent if
there exist scalars ci, i = 1, · · · , n, not all zero such that

∑p
k=1 ckxk = 0.

Proposition 2.6.2 Let V ⊆ Fn. Then V is a subspace if and only if it is a vector space
itself with respect to the same operations of scalar multiplication and vector addition.

Proof: Suppose first that V is a subspace. All algebraic properties involving scalar
multiplication and vector addition hold for V because these things hold for Fn. Is 0 ∈ V ? Yes
it is. This is because 0v ∈ V and 0v = 0. By assumption, for α a scalar and v ∈ V, αv ∈ V.
Therefore, −v = (−1)v ∈ V . Thus V has the additive identity and additive inverse. By
assumption, V is closed with respect to the two operations. Thus V is a vector space. If
V ⊆ Fn is a vector space, then by definition, if α, β are scalars and u,v vectors in V, it
follows that αv + βu ∈ V . �

Thus, from the above, subspaces of Fn are just subsets of Fn which are themselves vector
spaces.

Lemma 2.6.3 A set of vectors {x1, · · · ,xp} is linearly independent if and only if none of
the vectors can be obtained as a linear combination of the others.

Proof: Suppose first that {x1, · · · ,xp} is linearly independent. If xk =
∑

j ̸=k cjxj , then

0 = 1xk +
∑
j ̸=k

(−cj)xj ,

a nontrivial linear combination, contrary to assumption. This shows that if the set is linearly
independent, then none of the vectors is a linear combination of the others.

Now suppose no vector is a linear combination of the others. Is {x1, · · · ,xp} linearly
independent? If it is not, there exist scalars ci, not all zero such that

p∑
i=1

cixi = 0.

Say ck ̸= 0. Then you can solve for xk as

xk =
∑
j ̸=k

(−cj) /ckxj

contrary to assumption. �
The following is called the exchange theorem.

Theorem 2.6.4 (Exchange Theorem) Let {x1, · · · ,xr} be a linearly independent set of vec-
tors such that each xi is in span(y1, · · · ,ys) . Then r ≤ s.
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Say ck ̸= 0. Then you can solve for xk as
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(−cj) /ckxj

contrary to assumption. �
The following is called the exchange theorem.

Theorem 2.6.4 (Exchange Theorem) Let {x1, · · · ,xr} be a linearly independent set of vec-
tors such that each xi is in span(y1, · · · ,ys) . Then r ≤ s.
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Proof 1: Suppose not. Then r > s. By assumption, there exist scalars aji such that

xi =
s∑

j=1

ajiyj

The matrix whose jith entry is aji has more columns than rows. Therefore, by Theorem
2.5.2 there exists a nonzero vector b ∈ Fr such that Ab = 0. Thus

0 =

r∑
i=1

ajibi, each j.

Then
r∑

i=1

bixi =
r∑

i=1

bi

s∑
j=1

ajiyj =
s∑

j=1

(
r∑

i=1

ajibi

)
yj = 0

contradicting the assumption that {x1, · · · ,xr} is linearly independent.
Proof 2: Define span{y1, · · · ,ys} ≡ V, it follows there exist scalars c1, · · · , cs such

that

x1 =

s∑
i=1

ciyi. (2.25)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · · ,xr} which equals zero.

Say ck ̸= 0. Then solve 2.25 for yk and obtain

yk ∈ span


x1,

s-1 vectors here� �� �
y1, · · · ,yk−1,yk+1, · · · ,ys


 .

Define {z1, · · · , zs−1} by

{z1, · · · , zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span {x1, z1, · · · , zs−1} = V because if v ∈ V, there exist constants c1, · · · , cs
such that

v =
s−1∑
i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · · , zs−1}
to obtain v ∈ span {x1, z1, · · · , zs−1} . The vector yk, in the list {y1, · · · ,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · · ,ys} .

Now suppose that r > s and that span {x1, · · · ,xl, z1, · · · , zp} = V where the vectors,
z1, · · · , zp are each taken from the set, {y1, · · · ,ys} and l+ p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l+1 ≤ r. Therefore, xl+1

is a vector not in the list, {x1, · · · ,xl} and since span {x1, · · · ,xl, z1, · · · , zp} = V, there
exist scalars ci and dj such that

xl+1 =

l∑
i=1

cixi +

p∑
j=1

djzj . (2.26)
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Proof 1: Suppose not. Then r > s. By assumption, there exist scalars aji such that
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s∑
j=1

ajiyj

The matrix whose jith entry is aji has more columns than rows. Therefore, by Theorem
2.5.2 there exists a nonzero vector b ∈ Fr such that Ab = 0. Thus

0 =

r∑
i=1

ajibi, each j.

Then
r∑

i=1

bixi =

r∑
i=1

bi

s∑
j=1

ajiyj =

s∑
j=1

(
r∑

i=1

ajibi

)
yj = 0

contradicting the assumption that {x1, · · · ,xr} is linearly independent.
Proof 2: Define span{y1, · · · ,ys} ≡ V, it follows there exist scalars c1, · · · , cs such

that

x1 =

s∑
i=1

ciyi. (2.25)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · · ,xr} which equals zero.

Say ck ̸= 0. Then solve 2.25 for yk and obtain

yk ∈ span


x1,

s-1 vectors here� �� �
y1, · · · ,yk−1,yk+1, · · · ,ys


 .

Define {z1, · · · , zs−1} by

{z1, · · · , zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span {x1, z1, · · · , zs−1} = V because if v ∈ V, there exist constants c1, · · · , cs
such that

v =
s−1∑
i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · · , zs−1}
to obtain v ∈ span {x1, z1, · · · , zs−1} . The vector yk, in the list {y1, · · · ,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · · ,ys} .

Now suppose that r > s and that span {x1, · · · ,xl, z1, · · · , zp} = V where the vectors,
z1, · · · , zp are each taken from the set, {y1, · · · ,ys} and l+ p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l+1 ≤ r. Therefore, xl+1

is a vector not in the list, {x1, · · · ,xl} and since span {x1, · · · ,xl, z1, · · · , zp} = V, there
exist scalars ci and dj such that

xl+1 =

l∑
i=1

cixi +

p∑
j=1

djzj . (2.26)2.6. SUBSPACES AND SPANS 65

Now not all the dj can equal zero because if this were so, it would follow that {x1, · · · ,xr}
would be a linearly dependent set because one of the vectors would equal a linear combination
of the others. Therefore, 2.26 can be solved for one of the zi, say zk, in terms of xl+1 and
the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span


x1, · · ·xl,xl+1,

p-1 vectors here� �� �
z1, · · · zk−1, zk+1, · · · , zp


 = V.

Continue this way, eventually obtaining

span {x1, · · · ,xs} = V.

But then xr ∈ span {x1, · · · ,xs} contrary to the assumption that {x1, · · · ,xr} is linearly
independent. Therefore, r ≤ s as claimed.

Proof 3: Suppose r > s. Let zk denote a vector of {y1, · · · ,ys} . Thus there exists j as
small as possible such that

span (y1, · · · ,ys) = span (x1, · · · ,xm, z1, · · · , zj)

where m+ j = s. It is given that m = 0, corresponding to no vectors of {x1, · · · ,xm} and
j = s, corresponding to all the yk results in the above equation holding. If j > 0 then m < s
and so

xm+1 =

m∑
k=1

akxk +

j∑
i=1

bizi

Not all the bi can equal 0 and so you can solve for one of them in terms of xm+1,xm, · · · ,x1,
and the other zk. Therefore, there exists

{z1, · · · , zj−1} ⊆ {y1, · · · ,ys}

such that
span (y1, · · · ,ys) = span (x1, · · · ,xm+1, z1, · · · , zj−1)

contradicting the choice of j. Hence j = 0 and

span (y1, · · · ,ys) = span (x1, · · · ,xs)

It follows that
xs+1 ∈ span (x1, · · · ,xs)

contrary to the assumption the xk are linearly independent. Therefore, r ≤ s as claimed. �

Definition 2.6.5 A finite set of vectors, {x1, · · · ,xr} is a basis for Fn if span (x1, · · · ,xr) =
Fn and {x1, · · · ,xr} is linearly independent.

Corollary 2.6.6 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases1 of Fn. Then r = s = n.

Proof: From the exchange theorem, r ≤ s and s ≤ r. Now note the vectors,

ei =

1 is in the ith slot� �� �
(0, · · · , 0, 1, 0 · · · , 0)

for i = 1, 2, · · · , n are a basis for Fn. �
1This is the plural form of basis. We could say basiss but it would involve an inordinate amount of

hissing as in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.
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Fn and {x1, · · · ,xr} is linearly independent.
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Proof: From the exchange theorem, r ≤ s and s ≤ r. Now note the vectors,
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Lemma 2.6.7 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span (v1, · · · ,vr) is a sub-
space.

Proof: Suppose α, β are two scalars and let
∑r

k=1 ckvk and
∑r

k=1 dkvk are two elements
of V. What about

α
r∑

k=1

ckvk + β

r∑
k=1

dkvk?

Is it also in V ?

α

r∑
k=1

ckvk + β

r∑
k=1

dkvk =

r∑
k=1

(αck + βdk)vk ∈ V

so the answer is yes. �

Definition 2.6.8 A finite set of vectors, {x1, · · · ,xr} is a basis for a subspace V of Fn if
span (x1, · · · ,xr) = V and {x1, · · · ,xr} is linearly independent.

Corollary 2.6.9 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases for V . Then r = s.

Proof: From the exchange theorem, r ≤ s and s ≤ r. �

Definition 2.6.10 Let V be a subspace of Fn. Then dim (V ) read as the dimension of V
is the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace even has a basis.
In fact it does and this is in the next theorem. First, here is an interesting lemma.

Lemma 2.6.11 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and
that d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk},

v = −
k∑

i=1

(ci
d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · · ,uk} implies each ci = 0 also. �

Theorem 2.6.12 Let V be a nonzero subspace of Fn. Then V has a basis.

Proof: Let v1 ∈ V where v1 ̸= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 2.6.11 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} ̸= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem. �

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 2.6.13 Let V be a subspace of Fn and let {v1, · · · ,vr} be a linearly independent
set of vectors in V . Then either it is a basis for V or there exist vectors, vr+1, · · · ,vs such
that {v1, · · · ,vr,vr+1, · · · ,vs} is a basis for V.
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Lemma 2.6.7 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span (v1, · · · ,vr) is a sub-
space.

Proof: Suppose α, β are two scalars and let
∑r

k=1 ckvk and
∑r

k=1 dkvk are two elements
of V. What about

α
r∑

k=1

ckvk + β

r∑
k=1

dkvk?

Is it also in V ?

α

r∑
k=1

ckvk + β
r∑

k=1

dkvk =
r∑

k=1

(αck + βdk)vk ∈ V

so the answer is yes. �

Definition 2.6.8 A finite set of vectors, {x1, · · · ,xr} is a basis for a subspace V of Fn if
span (x1, · · · ,xr) = V and {x1, · · · ,xr} is linearly independent.

Corollary 2.6.9 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases for V . Then r = s.

Proof: From the exchange theorem, r ≤ s and s ≤ r. �

Definition 2.6.10 Let V be a subspace of Fn. Then dim (V ) read as the dimension of V
is the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace even has a basis.
In fact it does and this is in the next theorem. First, here is an interesting lemma.

Lemma 2.6.11 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and
that d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk},

v = −
k∑

i=1

(ci
d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · · ,uk} implies each ci = 0 also. �

Theorem 2.6.12 Let V be a nonzero subspace of Fn. Then V has a basis.

Proof: Let v1 ∈ V where v1 ̸= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 2.6.11 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} ̸= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem. �

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 2.6.13 Let V be a subspace of Fn and let {v1, · · · ,vr} be a linearly independent
set of vectors in V . Then either it is a basis for V or there exist vectors, vr+1, · · · ,vs such
that {v1, · · · ,vr,vr+1, · · · ,vs} is a basis for V.
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Lemma 2.6.7 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span (v1, · · · ,vr) is a sub-
space.

Proof: Suppose α, β are two scalars and let
∑r

k=1 ckvk and
∑r

k=1 dkvk are two elements
of V. What about

α
r∑

k=1

ckvk + β

r∑
k=1

dkvk?

Is it also in V ?

α

r∑
k=1

ckvk + β

r∑
k=1

dkvk =

r∑
k=1

(αck + βdk)vk ∈ V

so the answer is yes. �

Definition 2.6.8 A finite set of vectors, {x1, · · · ,xr} is a basis for a subspace V of Fn if
span (x1, · · · ,xr) = V and {x1, · · · ,xr} is linearly independent.

Corollary 2.6.9 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases for V . Then r = s.

Proof: From the exchange theorem, r ≤ s and s ≤ r. �

Definition 2.6.10 Let V be a subspace of Fn. Then dim (V ) read as the dimension of V
is the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace even has a basis.
In fact it does and this is in the next theorem. First, here is an interesting lemma.

Lemma 2.6.11 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and
that d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk},

v = −
k∑

i=1

(ci
d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · · ,uk} implies each ci = 0 also. �

Theorem 2.6.12 Let V be a nonzero subspace of Fn. Then V has a basis.

Proof: Let v1 ∈ V where v1 ̸= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 2.6.11 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} ̸= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem. �

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 2.6.13 Let V be a subspace of Fn and let {v1, · · · ,vr} be a linearly independent
set of vectors in V . Then either it is a basis for V or there exist vectors, vr+1, · · · ,vs such
that {v1, · · · ,vr,vr+1, · · · ,vs} is a basis for V.
2.7. AN APPLICATION TO MATRICES 67

Proof: This follows immediately from the proof of Theorem 2.6.12. You do exactly the
same argument except you start with {v1, · · · ,vr} rather than {v1}. �

It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 2.6.14 Let V be a subspace of Fn and suppose span (u1 · · · ,up) = V where
the ui are nonzero vectors. Then there exist vectors {v1 · · · ,vr} such that {v1 · · · ,vr} ⊆
{u1 · · · ,up} and {v1 · · · ,vr} is a basis for V .

Proof: Let r be the smallest positive integer with the property that for some set
{v1 · · · ,vr} ⊆ {u1 · · · ,up} ,

span (v1 · · · ,vr) = V.

Then r ≤ p and it must be the case that {v1 · · · ,vr} is linearly independent because if it
were not so, one of the vectors, say vk would be a linear combination of the others. But
then you could delete this vector from {v1 · · · ,vr} and the resulting list of r − 1 vectors
would still span V contrary to the definition of r. �

2.7 An Application To Matrices

The following is a theorem of major significance.

Theorem 2.7.1 Suppose A is an n × n matrix. Then A is one to one (injective) if and
only if A is onto (surjective). Also, if B is an n × n matrix and AB = I, then it follows
BA = I.

Proof: First suppose A is one to one. Consider the vectors, {Ae1, · · · , Aen} where ek
is the column vector which is all zeros except for a 1 in the kth position. This set of vectors
is linearly independent because if

n∑
k=1

ckAek = 0,

then since A is linear,

A

(
n∑

k=1

ckek

)
= 0

and since A is one to one, it follows

n∑
k=1

ckek = 0

which implies each ck = 0 because the ek are clearly linearly independent.
Therefore, {Ae1, · · · , Aen} must be a basis for Fn because if not there would exist a

vector, y /∈ span (Ae1, · · · , Aen) and then by Lemma 2.6.11, {Ae1, · · · , Aen,y} would be
an independent set of vectors having n+ 1 vectors in it, contrary to the exchange theorem.
It follows that for y ∈ Fn there exist constants, ci such that

y =

n∑
k=1

ckAek = A

(
n∑

k=1

ckek

)

showing that, since y was arbitrary, A is onto.
Next suppose A is onto. This means the span of the columns of A equals Fn. If these

columns are not linearly independent, then by Lemma 2.6.3 on Page 63, one of the columns
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is a linear combination of the others and so the span of the columns of A equals the span of
the n−1 other columns. This violates the exchange theorem because {e1, · · · , en} would be
a linearly independent set of vectors contained in the span of only n− 1 vectors. Therefore,
the columns of A must be independent and this is equivalent to saying that Ax = 0 if and
only if x = 0. This implies A is one to one because if Ax = Ay, then A (x− y) = 0 and so
x− y = 0.

Now suppose AB = I. Why is BA = I? Since AB = I it follows B is one to one since
otherwise, there would exist, x ̸= 0 such that Bx = 0 and then ABx = A0 = 0 ̸= Ix.
Therefore, from what was just shown, B is also onto. In addition to this, A must be one
to one because if Ay = 0, then y = Bx for some x and then x = ABx = Ay = 0 showing
y = 0. Now from what is given to be so, it follows (AB)A = A and so using the associative
law for matrix multiplication,

A (BA)−A = A (BA− I) = 0.

But this means (BA− I)x = 0 for all x since otherwise, A would not be one to one. Hence
BA = I as claimed. �

This theorem shows that if an n × n matrix B acts like an inverse when multiplied on
one side of A, it follows that B = A−1and it will act like an inverse on both sides of A.

The conclusion of this theorem pertains to square matrices only. For example, let

A =




1 0

0 1

1 0


 , B =

(
1 0 0

1 1 −1

)
(2.27)

Then

BA =

(
1 0

0 1

)

but

AB =




1 0 0

1 1 −1

1 0 0


 .

2.8 Matrices And Calculus

The study of moving coordinate systems gives a non trivial example of the usefulness of the
ideas involving linear transformations and matrices. To begin with, here is the concept of
the product rule extended to matrix multiplication.

Definition 2.8.1 Let A (t) be an m × n matrix. Say A (t) = (Aij (t)) . Suppose also that
Aij (t) is a differentiable function for all i, j. Then define A′ (t) ≡

(
A′

ij (t)
)
. That is, A′ (t)

is the matrix which consists of replacing each entry by its derivative. Such an m×n matrix
in which the entries are differentiable functions is called a differentiable matrix.

The next lemma is just a version of the product rule.

Lemma 2.8.2 Let A (t) be an m × n matrix and let B (t) be an n × p matrix with the
property that all the entries of these matrices are differentiable functions. Then

(A (t)B (t))
′
= A′ (t)B (t) +A (t)B′ (t) .

2.7. AN APPLICATION TO MATRICES 67

Proof: This follows immediately from the proof of Theorem 2.6.12. You do exactly the
same argument except you start with {v1, · · · ,vr} rather than {v1}. �

It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 2.6.14 Let V be a subspace of Fn and suppose span (u1 · · · ,up) = V where
the ui are nonzero vectors. Then there exist vectors {v1 · · · ,vr} such that {v1 · · · ,vr} ⊆
{u1 · · · ,up} and {v1 · · · ,vr} is a basis for V .

Proof: Let r be the smallest positive integer with the property that for some set
{v1 · · · ,vr} ⊆ {u1 · · · ,up} ,

span (v1 · · · ,vr) = V.

Then r ≤ p and it must be the case that {v1 · · · ,vr} is linearly independent because if it
were not so, one of the vectors, say vk would be a linear combination of the others. But
then you could delete this vector from {v1 · · · ,vr} and the resulting list of r − 1 vectors
would still span V contrary to the definition of r. �

2.7 An Application To Matrices

The following is a theorem of major significance.

Theorem 2.7.1 Suppose A is an n × n matrix. Then A is one to one (injective) if and
only if A is onto (surjective). Also, if B is an n × n matrix and AB = I, then it follows
BA = I.

Proof: First suppose A is one to one. Consider the vectors, {Ae1, · · · , Aen} where ek
is the column vector which is all zeros except for a 1 in the kth position. This set of vectors
is linearly independent because if

n∑
k=1

ckAek = 0,

then since A is linear,

A

(
n∑

k=1

ckek

)
= 0

and since A is one to one, it follows

n∑
k=1

ckek = 0

which implies each ck = 0 because the ek are clearly linearly independent.
Therefore, {Ae1, · · · , Aen} must be a basis for Fn because if not there would exist a

vector, y /∈ span (Ae1, · · · , Aen) and then by Lemma 2.6.11, {Ae1, · · · , Aen,y} would be
an independent set of vectors having n+ 1 vectors in it, contrary to the exchange theorem.
It follows that for y ∈ Fn there exist constants, ci such that

y =

n∑
k=1

ckAek = A

(
n∑

k=1

ckek

)

showing that, since y was arbitrary, A is onto.
Next suppose A is onto. This means the span of the columns of A equals Fn. If these

columns are not linearly independent, then by Lemma 2.6.3 on Page 63, one of the columns
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Proof: This is like the usual proof.

1

h
(A (t+ h)B (t+ h)−A (t)B (t)) =

1

h
(A (t+ h)B (t+ h)−A (t+ h)B (t)) +

1

h
(A (t+ h)B (t)−A (t)B (t))

= A (t+ h)
B (t+ h)−B (t)

h
+

A (t+ h)−A (t)

h
B (t)

and now, using the fact that the entries of the matrices are all differentiable, one can pass
to a limit in both sides as h → 0 and conclude that

(A (t)B (t))
′
= A′ (t)B (t) +A (t)B′ (t)�

2.8.1 The Coriolis Acceleration

Imagine a point on the surface of the earth. Now consider unit vectors, one pointing South,
one pointing East and one pointing directly away from the center of the earth.

�i

�k
�
j

Denote the first as i, the second as j, and the third as k. If you are standing on the earth
you will consider these vectors as fixed, but of course they are not. As the earth turns, they
change direction and so each is in reality a function of t. Nevertheless, it is with respect
to these apparently fixed vectors that you wish to understand acceleration, velocities, and
displacements.

In general, let i∗, j∗,k∗ be the usual fixed vectors in space and let i (t) , j (t) ,k (t) be an
orthonormal basis of vectors for each t, like the vectors described in the first paragraph.
It is assumed these vectors are C1 functions of t. Letting the positive x axis extend in the
direction of i (t) , the positive y axis extend in the direction of j (t), and the positive z axis
extend in the direction of k (t) , yields a moving coordinate system. Now let u be a vector
and let t0 be some reference time. For example you could let t0 = 0. Then define the
components of u with respect to these vectors, i, j,k at time t0 as

u ≡ u1i (t0) + u2j (t0) + u3k (t0) .

Let u (t) be defined as the vector which has the same components with respect to i, j,k but
at time t. Thus

u (t) ≡ u1i (t) + u2j (t) + u3k (t) .

and the vector has changed although the components have not.
This is exactly the situation in the case of the apparently fixed basis vectors on the earth

if u is a position vector from the given spot on the earth’s surface to a point regarded as
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Proof: This is like the usual proof.

1

h
(A (t+ h)B (t+ h)−A (t)B (t)) =

1

h
(A (t+ h)B (t+ h)−A (t+ h)B (t)) +

1

h
(A (t+ h)B (t)−A (t)B (t))

= A (t+ h)
B (t+ h)−B (t)

h
+

A (t+ h)−A (t)

h
B (t)

and now, using the fact that the entries of the matrices are all differentiable, one can pass
to a limit in both sides as h → 0 and conclude that

(A (t)B (t))′ = A′ (t)B (t) +A (t)B′ (t)�

2.8.1 The Coriolis Acceleration

Imagine a point on the surface of the earth. Now consider unit vectors, one pointing South,
one pointing East and one pointing directly away from the center of the earth.

�i

�k
�
j

Denote the first as i, the second as j, and the third as k. If you are standing on the earth
you will consider these vectors as fixed, but of course they are not. As the earth turns, they
change direction and so each is in reality a function of t. Nevertheless, it is with respect
to these apparently fixed vectors that you wish to understand acceleration, velocities, and
displacements.

In general, let i∗, j∗,k∗ be the usual fixed vectors in space and let i (t) , j (t) ,k (t) be an
orthonormal basis of vectors for each t, like the vectors described in the first paragraph.
It is assumed these vectors are C1 functions of t. Letting the positive x axis extend in the
direction of i (t) , the positive y axis extend in the direction of j (t), and the positive z axis
extend in the direction of k (t) , yields a moving coordinate system. Now let u be a vector
and let t0 be some reference time. For example you could let t0 = 0. Then define the
components of u with respect to these vectors, i, j,k at time t0 as

u ≡ u1i (t0) + u2j (t0) + u3k (t0) .

Let u (t) be defined as the vector which has the same components with respect to i, j,k but
at time t. Thus

u (t) ≡ u1i (t) + u2j (t) + u3k (t) .

and the vector has changed although the components have not.
This is exactly the situation in the case of the apparently fixed basis vectors on the earth

if u is a position vector from the given spot on the earth’s surface to a point regarded as
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fixed with the earth due to its keeping the same coordinates relative to the coordinate axes
which are fixed with the earth. Now define a linear transformation Q (t) mapping R3 to R3

by
Q (t)u ≡ u1i (t) + u2j (t) + u3k (t)

where
u ≡ u1i (t0) + u2j (t0) + u3k (t0)

Thus letting v be a vector defined in the same manner as u and α, β, scalars,

Q (t) (αu+ βv) ≡
(
αu1 + βv1

)
i (t) +

(
αu2 + βv2

)
j (t) +

(
αu3 + βv3

)
k (t)

=
(
αu1i (t) + αu2j (t) + αu3k (t)

)
+
(
βv1i (t) + βv2j (t) + βv3k (t)

)

= α
(
u1i (t) + u2j (t) + u3k (t)

)
+ β

(
v1i (t) + v2j (t) + v3k (t)

)

≡ αQ (t)u+ βQ (t)v

showing that Q (t) is a linear transformation. Also, Q (t) preserves all distances because,
since the vectors, i (t) , j (t) ,k (t) form an orthonormal set,

|Q (t)u| =

(
3∑

i=1

(
ui
)2
)1/2

= |u| .

Lemma 2.8.3 Suppose Q (t) is a real, differentiable n×n matrix which preserves distances.

Then Q (t)Q (t)
T
= Q (t)

T
Q (t) = I. Also, if u (t) ≡ Q (t)u, then there exists a vector, Ω (t)

such that
u′ (t) = Ω (t)× u (t) .

The symbol × refers to the cross product.

Proof: Recall that (z ·w) = 1
4

(
|z+w|2 − |z−w|2

)
. Therefore,

(Q (t)u·Q (t)w) =
1

4

(
|Q (t) (u+w)|2 − |Q (t) (u−w)|2

)

=
1

4

(
|u+w|2 − |u−w|2

)

= (u ·w) .

This implies (
Q (t)

T
Q (t)u ·w

)
= (u ·w)

for all u,w. Therefore, Q (t)
T
Q (t)u = u and so Q (t)

T
Q (t) = Q (t)Q (t)

T
= I. This proves

the first part of the lemma.
It follows from the product rule, Lemma 2.8.2 that

Q′ (t)Q (t)
T
+Q (t)Q′ (t)

T
= 0

and so

Q′ (t)Q (t)
T
= −

(
Q′ (t)Q (t)

T
)T

. (2.28)

From the definition, Q (t)u = u (t) ,

u′ (t) = Q′ (t)u =Q′ (t)

=u� �� �
Q (t)

T
u (t).
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fixed with the earth due to its keeping the same coordinates relative to the coordinate axes
which are fixed with the earth. Now define a linear transformation Q (t) mapping R3 to R3

by
Q (t)u ≡ u1i (t) + u2j (t) + u3k (t)

where
u ≡ u1i (t0) + u2j (t0) + u3k (t0)

Thus letting v be a vector defined in the same manner as u and α, β, scalars,

Q (t) (αu+ βv) ≡
(
αu1 + βv1

)
i (t) +

(
αu2 + βv2

)
j (t) +

(
αu3 + βv3

)
k (t)

=
(
αu1i (t) + αu2j (t) + αu3k (t)

)
+
(
βv1i (t) + βv2j (t) + βv3k (t)

)

= α
(
u1i (t) + u2j (t) + u3k (t)

)
+ β

(
v1i (t) + v2j (t) + v3k (t)

)

≡ αQ (t)u+ βQ (t)v

showing that Q (t) is a linear transformation. Also, Q (t) preserves all distances because,
since the vectors, i (t) , j (t) ,k (t) form an orthonormal set,

|Q (t)u| =

(
3∑

i=1

(
ui
)2
)1/2

= |u| .

Lemma 2.8.3 Suppose Q (t) is a real, differentiable n×n matrix which preserves distances.

Then Q (t)Q (t)
T
= Q (t)

T
Q (t) = I. Also, if u (t) ≡ Q (t)u, then there exists a vector, Ω (t)

such that
u′ (t) = Ω (t)× u (t) .

The symbol × refers to the cross product.

Proof: Recall that (z ·w) = 1
4

(
|z+w|2 − |z−w|2

)
. Therefore,

(Q (t)u·Q (t)w) =
1

4

(
|Q (t) (u+w)|2 − |Q (t) (u−w)|2

)

=
1

4

(
|u+w|2 − |u−w|2

)

= (u ·w) .

This implies (
Q (t)

T
Q (t)u ·w

)
= (u ·w)

for all u,w. Therefore, Q (t)
T
Q (t)u = u and so Q (t)

T
Q (t) = Q (t)Q (t)

T
= I. This proves

the first part of the lemma.
It follows from the product rule, Lemma 2.8.2 that

Q′ (t)Q (t)
T
+Q (t)Q′ (t)

T
= 0

and so

Q′ (t)Q (t)
T
= −

(
Q′ (t)Q (t)

T
)T

. (2.28)

From the definition, Q (t)u = u (t) ,

u′ (t) = Q′ (t)u =Q′ (t)

=u� �� �
Q (t)

T
u (t).2.8. MATRICES AND CALCULUS 71

Then writing the matrix of Q′ (t)Q (t)
T

with respect to fixed in space orthonormal basis
vectors, i∗, j∗,k∗, where these are the usual basis vectors for R3, it follows from 2.28 that
the matrix of Q′ (t)Q (t)

T
is of the form



0 −ω3 (t) ω2 (t)

ω3 (t) 0 −ω1 (t)

−ω2 (t) ω1 (t) 0




for some time dependent scalars ωi. Therefore,




u1

u2

u3




′

(t)=




0 −ω3 (t) ω2 (t)

ω3 (t) 0 −ω1 (t)

−ω2 (t) ω1 (t) 0







u1

u2

u3


 (t)

where the ui are the components of the vector u (t) in terms of the fixed vectors i∗, j∗,k∗.
Therefore,

u′ (t) = Ω (t)× u (t) = Q′ (t)Q (t)
T
u (t) (2.29)

where
Ω (t) = ω1 (t) i

∗+ω2 (t) j
∗+ω3 (t)k

∗.

because

Ω (t)× u (t) ≡

�������

i∗ j∗ k∗

w1 w2 w3

u1 u2 u3

�������
≡

i∗
(
w2u

3 − w3u
2
)
+ j∗

(
w3u

1 − w3
1

)
+ k∗ (w1u

2 − w2u
1
)
.

This proves the lemma and yields the existence part of the following theorem. �

Theorem 2.8.4 Let i (t) , j (t) ,k (t) be as described. Then there exists a unique vector Ω (t)
such that if u (t) is a vector whose components are constant with respect to i (t) , j (t) ,k (t) ,
then

u′ (t) = Ω (t)× u (t) .

Proof: It only remains to prove uniqueness. SupposeΩ1 also works. Then u (t) = Q (t)u
and so u′ (t) = Q′ (t)u and

Q′ (t)u = Ω×Q (t)u = Ω1 ×Q (t)u

for all u. Therefore,
(Ω−Ω1)×Q (t)u = 0

for all u and since Q (t) is one to one and onto, this implies (Ω−Ω1)×w = 0 for all w and
thus Ω−Ω1 = 0. �

Now let R (t) be a position vector and let

r (t) = R (t) + rB (t)

where
rB (t) ≡ x (t) i (t)+y (t) j (t)+z (t)k (t) .

�

�
�

R(t)

rB(t)

r(t)
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Then writing the matrix of Q′ (t)Q (t)
T

with respect to fixed in space orthonormal basis
vectors, i∗, j∗,k∗, where these are the usual basis vectors for R3, it follows from 2.28 that
the matrix of Q′ (t)Q (t)

T
is of the form



0 −ω3 (t) ω2 (t)

ω3 (t) 0 −ω1 (t)

−ω2 (t) ω1 (t) 0




for some time dependent scalars ωi. Therefore,




u1

u2

u3




′

(t)=




0 −ω3 (t) ω2 (t)

ω3 (t) 0 −ω1 (t)

−ω2 (t) ω1 (t) 0







u1

u2

u3


 (t)

where the ui are the components of the vector u (t) in terms of the fixed vectors i∗, j∗,k∗.
Therefore,

u′ (t) = Ω (t)× u (t) = Q′ (t)Q (t)
T
u (t) (2.29)

where
Ω (t) = ω1 (t) i

∗+ω2 (t) j
∗+ω3 (t)k

∗.

because

Ω (t)× u (t) ≡

�������

i∗ j∗ k∗

w1 w2 w3

u1 u2 u3

�������
≡

i∗
(
w2u

3 − w3u
2
)
+ j∗

(
w3u

1 − w3
1

)
+ k∗ (w1u

2 − w2u
1
)
.

This proves the lemma and yields the existence part of the following theorem. �

Theorem 2.8.4 Let i (t) , j (t) ,k (t) be as described. Then there exists a unique vector Ω (t)
such that if u (t) is a vector whose components are constant with respect to i (t) , j (t) ,k (t) ,
then

u′ (t) = Ω (t)× u (t) .

Proof: It only remains to prove uniqueness. SupposeΩ1 also works. Then u (t) = Q (t)u
and so u′ (t) = Q′ (t)u and

Q′ (t)u = Ω×Q (t)u = Ω1 ×Q (t)u

for all u. Therefore,
(Ω−Ω1)×Q (t)u = 0

for all u and since Q (t) is one to one and onto, this implies (Ω−Ω1)×w = 0 for all w and
thus Ω−Ω1 = 0. �

Now let R (t) be a position vector and let

r (t) = R (t) + rB (t)

where
rB (t) ≡ x (t) i (t)+y (t) j (t)+z (t)k (t) .

�

�
�

R(t)

rB(t)

r(t)72 CHAPTER 2. LINEAR TRANSFORMATIONS

In the example of the earth, R (t) is the position vector of a point p (t) on the earth’s
surface and rB (t) is the position vector of another point from p (t) , thus regarding p (t)
as the origin. rB (t) is the position vector of a point as perceived by the observer on the
earth with respect to the vectors he thinks of as fixed. Similarly, vB (t) and aB (t) will be
the velocity and acceleration relative to i (t) , j (t) ,k (t), and so vB = x′i + y′j + z′k and
aB = x′′i + y′′j + z′′k. Then

v ≡ r′ = R′ + x′i+ y′j+ z′k+xi′ + yj′ + zk′.

By , 2.29, if e ∈{i, j,k} , e′ = Ω× e because the components of these vectors with respect
to i, j,k are constant. Therefore,

xi′ + yj′ + zk′ = xΩ× i+ yΩ× j+ zΩ× k

= Ω× (xi+ yj+ zk)

and consequently,

v = R′ + x′i+ y′j+ z′k+Ω× rB = R′ + x′i+ y′j+ z′k+Ω× (xi+ yj+ zk) .

Now consider the acceleration. Quantities which are relative to the moving coordinate
system and quantities which are relative to a fixed coordinate system are distinguished by
using the subscript B on those relative to the moving coordinate system.

a = v′ = R′′ + x′′i+ y′′j+ z′′k+

Ω×vB︷ ︸︸ ︷
x′i′ + y′j′ + z′k′ + Ω′ × rB

+Ω×




vB︷ ︸︸ ︷
x′i+ y′j+ z′k+

Ω×rB(t)︷ ︸︸ ︷
xi′ + yj′ + zk′




= R′′ + aB +Ω′ × rB + 2Ω× vB +Ω× (Ω× rB) .

The acceleration aB is that perceived by an observer who is moving with the moving coor-
dinate system and for whom the moving coordinate system is fixed. The term Ω× (Ω× rB)
is called the centripetal acceleration. Solving for aB ,

aB = a−R′′ −Ω′ × rB − 2Ω× vB −Ω× (Ω× rB) . (2.30)

Here the term − (Ω× (Ω× rB)) is called the centrifugal acceleration, it being an acceleration
felt by the observer relative to the moving coordinate system which he regards as fixed, and
the term −2Ω× vB is called the Coriolis acceleration, an acceleration experienced by the
observer as he moves relative to the moving coordinate system. The mass multiplied by the
Coriolis acceleration defines the Coriolis force.

There is a ride found in some amusement parks in which the victims stand next to
a circular wall covered with a carpet or some rough material. Then the whole circular
room begins to revolve faster and faster. At some point, the bottom drops out and the
victims are held in place by friction. The force they feel is called centrifugal force and it
causes centrifugal acceleration. It is not necessary to move relative to coordinates fixed with
the revolving wall in order to feel this force and it is pretty predictable. However, if the
nauseated victim moves relative to the rotating wall, he will feel the effects of the Coriolis
force and this force is really strange. The difference between these forces is that the Coriolis
force is caused by movement relative to the moving coordinate system and the centrifugal
force is not.
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In the example of the earth, R (t) is the position vector of a point p (t) on the earth’s
surface and rB (t) is the position vector of another point from p (t) , thus regarding p (t)
as the origin. rB (t) is the position vector of a point as perceived by the observer on the
earth with respect to the vectors he thinks of as fixed. Similarly, vB (t) and aB (t) will be
the velocity and acceleration relative to i (t) , j (t) ,k (t), and so vB = x′i + y′j + z′k and
aB = x′′i + y′′j + z′′k. Then

v ≡ r′ = R′ + x′i+ y′j+ z′k+xi′ + yj′ + zk′.

By , 2.29, if e ∈{i, j,k} , e′ = Ω× e because the components of these vectors with respect
to i, j,k are constant. Therefore,

xi′ + yj′ + zk′ = xΩ× i+ yΩ× j+ zΩ× k

= Ω× (xi+ yj+ zk)

and consequently,

v = R′ + x′i+ y′j+ z′k+Ω× rB = R′ + x′i+ y′j+ z′k+Ω× (xi+ yj+ zk) .

Now consider the acceleration. Quantities which are relative to the moving coordinate
system and quantities which are relative to a fixed coordinate system are distinguished by
using the subscript B on those relative to the moving coordinate system.

a = v′ = R′′ + x′′i+ y′′j+ z′′k+

Ω×vB︷ ︸︸ ︷
x′i′ + y′j′ + z′k′ + Ω′ × rB

+Ω×




vB︷ ︸︸ ︷
x′i+ y′j+ z′k+

Ω×rB(t)︷ ︸︸ ︷
xi′ + yj′ + zk′




= R′′ + aB +Ω′ × rB + 2Ω× vB +Ω× (Ω× rB) .

The acceleration aB is that perceived by an observer who is moving with the moving coor-
dinate system and for whom the moving coordinate system is fixed. The term Ω× (Ω× rB)
is called the centripetal acceleration. Solving for aB ,

aB = a−R′′ −Ω′ × rB − 2Ω× vB −Ω× (Ω× rB) . (2.30)

Here the term − (Ω× (Ω× rB)) is called the centrifugal acceleration, it being an acceleration
felt by the observer relative to the moving coordinate system which he regards as fixed, and
the term −2Ω× vB is called the Coriolis acceleration, an acceleration experienced by the
observer as he moves relative to the moving coordinate system. The mass multiplied by the
Coriolis acceleration defines the Coriolis force.

There is a ride found in some amusement parks in which the victims stand next to
a circular wall covered with a carpet or some rough material. Then the whole circular
room begins to revolve faster and faster. At some point, the bottom drops out and the
victims are held in place by friction. The force they feel is called centrifugal force and it
causes centrifugal acceleration. It is not necessary to move relative to coordinates fixed with
the revolving wall in order to feel this force and it is pretty predictable. However, if the
nauseated victim moves relative to the rotating wall, he will feel the effects of the Coriolis
force and this force is really strange. The difference between these forces is that the Coriolis
force is caused by movement relative to the moving coordinate system and the centrifugal
force is not.2.8. MATRICES AND CALCULUS 73

2.8.2 The Coriolis Acceleration On The Rotating Earth

Now consider the earth. Let i∗, j∗,k∗, be the usual basis vectors fixed in space with k∗

pointing in the direction of the north pole from the center of the earth and let i, j,k be the
unit vectors described earlier with i pointing South, j pointing East, and k pointing away
from the center of the earth at some point of the rotating earth’s surface p. Letting R (t) be
the position vector of the point p, from the center of the earth, observe the coordinates of
R (t) are constant with respect to i (t) , j (t) ,k (t) . Also, since the earth rotates from West
to East and the speed of a point on the surface of the earth relative to an observer fixed in
space is ω |R| sinϕ where ω is the angular speed of the earth about an axis through the poles
and ϕ is the polar angle measured from the positive z axis down as in spherical coordinates.
It follows from the geometric definition of the cross product that

R′ = ωk∗ ×R

Therefore, the vector of Theorem 2.8.4 is Ω = ωk∗ and so

R′′ =

=0� �� �
Ω′ ×R+ Ω×R′ = Ω× (Ω×R)

since Ω does not depend on t. Formula 2.30 implies

aB = a−Ω× (Ω×R)− 2Ω× vB −Ω× (Ω× rB) . (2.31)

In this formula, you can totally ignore the term Ω× (Ω× rB) because it is so small when-
ever you are considering motion near some point on the earth’s surface. To see this, note

ω

seconds in a day� �� �
(24) (3600) = 2π, and so ω = 7.2722 × 10−5 in radians per second. If you are using

seconds to measure time and feet to measure distance, this term is therefore, no larger than

(
7.2722× 10−5

)2 |rB | .
Clearly this is not worth considering in the presence of the acceleration due to gravity which
is approximately 32 feet per second squared near the surface of the earth.

If the acceleration a is due to gravity, then

aB = a−Ω× (Ω×R)− 2Ω× vB =

≡g� �� �
−GM (R+ rB)

|R+ rB |3
−Ω× (Ω×R)− 2Ω× vB ≡ g − 2Ω× vB.

Note that
Ω× (Ω×R) = (Ω ·R)Ω− |Ω|2 R

and so g, the acceleration relative to the moving coordinate system on the earth is not
directed exactly toward the center of the earth except at the poles and at the equator,
although the components of acceleration which are in other directions are very small when
compared with the acceleration due to the force of gravity and are often neglected. There-
fore, if the only force acting on an object is due to gravity, the following formula describes
the acceleration relative to a coordinate system moving with the earth’s surface.

aB = g−2 (Ω× vB)
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2.8.2 The Coriolis Acceleration On The Rotating Earth

Now consider the earth. Let i∗, j∗,k∗, be the usual basis vectors fixed in space with k∗

pointing in the direction of the north pole from the center of the earth and let i, j,k be the
unit vectors described earlier with i pointing South, j pointing East, and k pointing away
from the center of the earth at some point of the rotating earth’s surface p. Letting R (t) be
the position vector of the point p, from the center of the earth, observe the coordinates of
R (t) are constant with respect to i (t) , j (t) ,k (t) . Also, since the earth rotates from West
to East and the speed of a point on the surface of the earth relative to an observer fixed in
space is ω |R| sinϕ where ω is the angular speed of the earth about an axis through the poles
and ϕ is the polar angle measured from the positive z axis down as in spherical coordinates.
It follows from the geometric definition of the cross product that

R′ = ωk∗ ×R

Therefore, the vector of Theorem 2.8.4 is Ω = ωk∗ and so

R′′ =

=0� �� �
Ω′ ×R+ Ω×R′ = Ω× (Ω×R)

since Ω does not depend on t. Formula 2.30 implies

aB = a−Ω× (Ω×R)− 2Ω× vB −Ω× (Ω× rB) . (2.31)

In this formula, you can totally ignore the term Ω× (Ω× rB) because it is so small when-
ever you are considering motion near some point on the earth’s surface. To see this, note

ω

seconds in a day� �� �
(24) (3600) = 2π, and so ω = 7.2722 × 10−5 in radians per second. If you are using

seconds to measure time and feet to measure distance, this term is therefore, no larger than

(
7.2722× 10−5

)2 |rB | .
Clearly this is not worth considering in the presence of the acceleration due to gravity which
is approximately 32 feet per second squared near the surface of the earth.

If the acceleration a is due to gravity, then

aB = a−Ω× (Ω×R)− 2Ω× vB =

≡g� �� �
−GM (R+ rB)

|R+ rB |3
−Ω× (Ω×R)− 2Ω× vB ≡ g − 2Ω× vB.

Note that
Ω× (Ω×R) = (Ω ·R)Ω− |Ω|2 R

and so g, the acceleration relative to the moving coordinate system on the earth is not
directed exactly toward the center of the earth except at the poles and at the equator,
although the components of acceleration which are in other directions are very small when
compared with the acceleration due to the force of gravity and are often neglected. There-
fore, if the only force acting on an object is due to gravity, the following formula describes
the acceleration relative to a coordinate system moving with the earth’s surface.

aB = g−2 (Ω× vB)
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While the vectorΩ is quite small, if the relative velocity, vB is large, the Coriolis acceleration
could be significant. This is described in terms of the vectors i (t) , j (t) ,k (t) next.

Letting (ρ, θ, ϕ) be the usual spherical coordinates of the point p (t) on the surface
taken with respect to i∗, j∗,k∗ the usual way with ϕ the polar angle, it follows the i∗, j∗,k∗

coordinates of this point are 


ρ sin (ϕ) cos (θ)

ρ sin (ϕ) sin (θ)

ρ cos (ϕ)


 .

It follows,
i =cos (ϕ) cos (θ) i∗ + cos (ϕ) sin (θ) j∗ − sin (ϕ)k∗

j = − sin (θ) i∗ + cos (θ) j∗ + 0k∗

and
k =sin (ϕ) cos (θ) i∗ + sin (ϕ) sin (θ) j∗ + cos (ϕ)k∗.

It is necessary to obtain k∗ in terms of the vectors, i, j,k. Thus the following equation
needs to be solved for a, b, c to find k∗ = ai+bj+ck

k∗

︷ ︸︸ ︷


0

0

1


 =




cos (ϕ) cos (θ) − sin (θ) sin (ϕ) cos (θ)

cos (ϕ) sin (θ) cos (θ) sin (ϕ) sin (θ)

− sin (ϕ) 0 cos (ϕ)







a

b

c


 (2.32)

The first column is i, the second is j and the third is k in the above matrix. The solution
is a = − sin (ϕ) , b = 0, and c = cos (ϕ) .

Now the Coriolis acceleration on the earth equals

2 (Ω× vB) = 2ω




k∗

︷ ︸︸ ︷
− sin (ϕ) i+0j+cos (ϕ)k


× (x′i+y′j+z′k) .

This equals
2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k] . (2.33)

Remember ϕ is fixed and pertains to the fixed point, p (t) on the earth’s surface. Therefore,
if the acceleration a is due to gravity,

aB = g−2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k]

where g = −GM(R+rB)

|R+rB |3 −Ω× (Ω×R) as explained above. The term Ω× (Ω×R) is pretty

small and so it will be neglected. However, the Coriolis force will not be neglected.

Example 2.8.5 Suppose a rock is dropped from a tall building. Where will it strike?

Assume a = −gk and the j component of aB is approximately

−2ω (x′ cosϕ+ z′ sinϕ) .

The dominant term in this expression is clearly the second one because x′ will be small.
Also, the i and k contributions will be very small. Therefore, the following equation is
descriptive of the situation.

aB = −gk−2z′ω sinϕj.

Download free eBooks at bookboon.com



LINEAR ALGEBRA I Linear Transformations

8080

74 CHAPTER 2. LINEAR TRANSFORMATIONS

While the vectorΩ is quite small, if the relative velocity, vB is large, the Coriolis acceleration
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
 .
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0

0

1


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
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



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a

b

c


 (2.32)

The first column is i, the second is j and the third is k in the above matrix. The solution
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
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
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−2ω (x′ cosϕ+ z′ sinϕ) .
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z′ = −gt approximately. Therefore, considering the j component, this is

2gtω sinϕ.

Two integrations give
(
ωgt3/3

)
sinϕ for the j component of the relative displacement at

time t.
This shows the rock does not fall directly towards the center of the earth as expected

but slightly to the east.

Example 2.8.6 In 1851 Foucault set a pendulum vibrating and observed the earth rotate
out from under it. It was a very long pendulum with a heavy weight at the end so that it
would vibrate for a long time without stopping2. This is what allowed him to observe the
earth rotate out from under it. Clearly such a pendulum will take 24 hours for the plane of
vibration to appear to make one complete revolution at the north pole. It is also reasonable
to expect that no such observed rotation would take place on the equator. Is it possible to
predict what will take place at various latitudes?

Using 2.33, in 2.31,
aB = a−Ω× (Ω×R)

−2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k] .

Neglecting the small term, Ω× (Ω×R) , this becomes

= −gk+T/m−2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k]

where T, the tension in the string of the pendulum, is directed towards the point at which
the pendulum is supported, and m is the mass of the pendulum bob. The pendulum can be
thought of as the position vector from (0, 0, l) to the surface of the sphere x2+y2+(z − l)

2
=

l2. Therefore,

T = −T
x

l
i−T

y

l
j+T

l − z

l
k

and consequently, the differential equations of relative motion are

x′′ = −T
x

ml
+ 2ωy′ cosϕ

y′′ = −T
y

ml
− 2ω (x′ cosϕ+ z′ sinϕ)

and

z′′ = T
l − z

ml
− g + 2ωy′ sinϕ.

If the vibrations of the pendulum are small so that for practical purposes, z′′ = z = 0, the
last equation may be solved for T to get

gm− 2ωy′ sin (ϕ)m = T.

Therefore, the first two equations become

x′′ = − (gm− 2ωmy′ sinϕ)
x

ml
+ 2ωy′ cosϕ

and
y′′ = − (gm− 2ωmy′ sinϕ)

y

ml
− 2ω (x′ cosϕ+ z′ sinϕ) .

2There is such a pendulum in the Eyring building at BYU and to keep people from touching it, there is
a little sign which says Warning! 1000 ohms.
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All terms of the form xy′ or y′y can be neglected because it is assumed x and y remain
small. Also, the pendulum is assumed to be long with a heavy weight so that x′ and y′ are
also small. With these simplifying assumptions, the equations of motion become

x′′ + g
x

l
= 2ωy′ cosϕ

and
y′′ + g

y

l
= −2ωx′ cosϕ.

These equations are of the form

x′′ + a2x = by′, y′′ + a2y = −bx′ (2.34)

where a2 = g
l and b = 2ω cosϕ. Then it is fairly tedious but routine to verify that for each

constant, c,

x = c sin

(
bt

2

)
sin

(√
b2 + 4a2

2
t

)
, y = c cos

(
bt

2

)
sin

(√
b2 + 4a2

2
t

)
(2.35)

yields a solution to 2.34 along with the initial conditions,

x (0) = 0, y (0) = 0, x′ (0) = 0, y′ (0) =
c
√
b2 + 4a2

2
. (2.36)

It is clear from experiments with the pendulum that the earth does indeed rotate out from
under it causing the plane of vibration of the pendulum to appear to rotate. The purpose
of this discussion is not to establish these self evident facts but to predict how long it takes
for the plane of vibration to make one revolution. Therefore, there will be some instant in
time at which the pendulum will be vibrating in a plane determined by k and j. (Recall
k points away from the center of the earth and j points East. ) At this instant in time,
defined as t = 0, the conditions of 2.36 will hold for some value of c and so the solution to
2.34 having these initial conditions will be those of 2.35 by uniqueness of the initial value
problem. Writing these solutions differently,

(
x (t)

y (t)

)
= c

(
sin

(
bt
2

)
cos

(
bt
2

)
)
sin

(√
b2 + 4a2

2
t

)

This is very interesting! The vector, c

(
sin

(
bt
2

)
cos

(
bt
2

)
)

always has magnitude equal to |c|

but its direction changes very slowly because b is very small. The plane of vibration is

determined by this vector and the vector k. The term sin
(√

b2+4a2

2 t
)
changes relatively fast

and takes values between −1 and 1. This is what describes the actual observed vibrations
of the pendulum. Thus the plane of vibration will have made one complete revolution when
t = T for

bT

2
≡ 2π.

Therefore, the time it takes for the earth to turn out from under the pendulum is

T =
4π

2ω cosϕ
=

2π

ω
secϕ.

Since ω is the angular speed of the rotating earth, it follows ω = 2π
24 = π

12 in radians per
hour. Therefore, the above formula implies

T = 24 secϕ.
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Therefore, the time it takes for the earth to turn out from under the pendulum is
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hour. Therefore, the above formula implies

T = 24 secϕ.
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I think this is really amazing. You could actually determine latitude, not by taking readings
with instruments using the North Star but by doing an experiment with a big pendulum.
You would set it vibrating, observe T in hours, and then solve the above equation for ϕ.
Also note the pendulum would not appear to change its plane of vibration at the equator
because limϕ→π/2 secϕ = ∞.

The Coriolis acceleration is also responsible for the phenomenon of the next example.

Example 2.8.7 It is known that low pressure areas rotate counterclockwise as seen from
above in the Northern hemisphere but clockwise in the Southern hemisphere. Why?

Neglect accelerations other than the Coriolis acceleration and the following acceleration
which comes from an assumption that the point p (t) is the location of the lowest pressure.

a = −a (rB) rB

where rB = r will denote the distance from the fixed point p (t) on the earth’s surface which
is also the lowest pressure point. Of course the situation could be more complicated but
this will suffice to explain the above question. Then the acceleration observed by a person
on the earth relative to the apparently fixed vectors, i,k, j, is

aB = −a (rB) (xi+yj+zk)− 2ω [−y′ cos (ϕ) i+(x′ cos (ϕ) + z′ sin (ϕ)) j− (y′ sin (ϕ)k)]

Therefore, one obtains some differential equations from aB = x′′i+ y′′j+ z′′k by matching
the components. These are

x′′ + a (rB)x = 2ωy′ cosϕ

y′′ + a (rB) y = −2ωx′ cosϕ− 2ωz′ sin (ϕ)

z′′ + a (rB) z = 2ωy′ sinϕ

Now remember, the vectors, i, j,k are fixed relative to the earth and so are constant vectors.
Therefore, from the properties of the determinant and the above differential equations,

(r′B × rB)
′
=

�������

i j k

x′ y′ z′

x y z

�������

′

=

�������

i j k

x′′ y′′ z′′

x y z

�������

=

�������

i j k

−a (rB)x+ 2ωy′ cosϕ −a (rB) y − 2ωx′ cosϕ− 2ωz′ sin (ϕ) −a (rB) z + 2ωy′ sinϕ

x y z

�������
Then the kth component of this cross product equals

ω cos (ϕ)
(
y2 + x2

)′
+ 2ωxz′ sin (ϕ) .

The first term will be negative because it is assumed p (t) is the location of low pressure
causing y2+x2 to be a decreasing function. If it is assumed there is not a substantial motion
in the k direction, so that z is fairly constant and the last term can be neglected, then the
kth component of (r′B × rB)

′
is negative provided ϕ ∈

(
0, π

2

)
and positive if ϕ ∈

(
π
2 , π

)
.

Beginning with a point at rest, this implies r′B ×rB = 0 initially and then the above implies
its kth component is negative in the upper hemisphere when ϕ < π/2 and positive in the
lower hemisphere when ϕ > π/2. Using the right hand and the geometric definition of the
cross product, this shows clockwise rotation in the lower hemisphere and counter clockwise
rotation in the upper hemisphere.

Note also that as ϕ gets close to π/2 near the equator, the above reasoning tends to
break down because cos (ϕ) becomes close to zero. Therefore, the motion towards the low
pressure has to be more pronounced in comparison with the motion in the k direction in
order to draw this conclusion.
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cross product, this shows clockwise rotation in the lower hemisphere and counter clockwise
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I think this is really amazing. You could actually determine latitude, not by taking readings
with instruments using the North Star but by doing an experiment with a big pendulum.
You would set it vibrating, observe T in hours, and then solve the above equation for ϕ.
Also note the pendulum would not appear to change its plane of vibration at the equator
because limϕ→π/2 secϕ = ∞.

The Coriolis acceleration is also responsible for the phenomenon of the next example.

Example 2.8.7 It is known that low pressure areas rotate counterclockwise as seen from
above in the Northern hemisphere but clockwise in the Southern hemisphere. Why?

Neglect accelerations other than the Coriolis acceleration and the following acceleration
which comes from an assumption that the point p (t) is the location of the lowest pressure.

a = −a (rB) rB

where rB = r will denote the distance from the fixed point p (t) on the earth’s surface which
is also the lowest pressure point. Of course the situation could be more complicated but
this will suffice to explain the above question. Then the acceleration observed by a person
on the earth relative to the apparently fixed vectors, i,k, j, is

aB = −a (rB) (xi+yj+zk)− 2ω [−y′ cos (ϕ) i+(x′ cos (ϕ) + z′ sin (ϕ)) j− (y′ sin (ϕ)k)]

Therefore, one obtains some differential equations from aB = x′′i+ y′′j+ z′′k by matching
the components. These are

x′′ + a (rB)x = 2ωy′ cosϕ

y′′ + a (rB) y = −2ωx′ cosϕ− 2ωz′ sin (ϕ)

z′′ + a (rB) z = 2ωy′ sinϕ

Now remember, the vectors, i, j,k are fixed relative to the earth and so are constant vectors.
Therefore, from the properties of the determinant and the above differential equations,
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=
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x′ y′ z′

x y z

�������

′

=

�������

i j k

x′′ y′′ z′′

x y z

�������

=

�������

i j k

−a (rB)x+ 2ωy′ cosϕ −a (rB) y − 2ωx′ cosϕ− 2ωz′ sin (ϕ) −a (rB) z + 2ωy′ sinϕ

x y z

�������
Then the kth component of this cross product equals

ω cos (ϕ)
(
y2 + x2

)′
+ 2ωxz′ sin (ϕ) .

The first term will be negative because it is assumed p (t) is the location of low pressure
causing y2+x2 to be a decreasing function. If it is assumed there is not a substantial motion
in the k direction, so that z is fairly constant and the last term can be neglected, then the
kth component of (r′B × rB)

′
is negative provided ϕ ∈

(
0, π

2

)
and positive if ϕ ∈

(
π
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)
.

Beginning with a point at rest, this implies r′B ×rB = 0 initially and then the above implies
its kth component is negative in the upper hemisphere when ϕ < π/2 and positive in the
lower hemisphere when ϕ > π/2. Using the right hand and the geometric definition of the
cross product, this shows clockwise rotation in the lower hemisphere and counter clockwise
rotation in the upper hemisphere.

Note also that as ϕ gets close to π/2 near the equator, the above reasoning tends to
break down because cos (ϕ) becomes close to zero. Therefore, the motion towards the low
pressure has to be more pronounced in comparison with the motion in the k direction in
order to draw this conclusion.
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2.9 Exercises

1. Show the map T : Rn → Rm defined by T (x) = Ax where A is an m× n matrix and
x is an m× 1 column vector is a linear transformation.

2. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3.

3. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4.

4. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of −π/3.

5. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3.

6. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/12. Hint: Note that π/12 = π/3− π/4.

7. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3 and then reflects across the x axis.

8. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3 and then reflects across the x axis.

9. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4 and then reflects across the x axis.

10. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/6 and then reflects across the x axis followed by a reflection across the
y axis.

11. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/4.

12. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4 and next reflects every vector across the x axis. Compare with the
above problem.

13. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/6.

14. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/6.

15. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

16. Find the matrix for proju (v) where u = (1,−2, 3)
T
.

17. Find the matrix for proju (v) where u = (1, 5, 3)
T
.

18. Find the matrix for proju (v) where u = (1, 0, 3)
T
.

19. Give an example of a 2 × 2 matrix A which has all its entries nonzero and satisfies
A2 = A. A matrix which satisfies A2 = A is called idempotent.
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11. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/4.
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an angle of π/4 and next reflects every vector across the x axis. Compare with the
above problem.

13. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/6.

14. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/6.

15. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

16. Find the matrix for proju (v) where u = (1,−2, 3)
T
.

17. Find the matrix for proju (v) where u = (1, 5, 3)
T
.

18. Find the matrix for proju (v) where u = (1, 0, 3)
T
.

19. Give an example of a 2 × 2 matrix A which has all its entries nonzero and satisfies
A2 = A. A matrix which satisfies A2 = A is called idempotent.
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20. Let A be an m × n matrix and let B be an n × m matrix where n < m. Show that
AB cannot have an inverse.

21. Find ker (A) for

A =




1 2 3 2 1

0 2 1 1 2

1 4 4 3 3

0 2 1 1 2


 .

Recall ker (A) is just the set of solutions to Ax = 0.

22. If A is a linear transformation, and Axp= b, show that the general solution to the
equation Ax = b is of the form xp+y where y ∈ ker (A). By this I mean to show that
whenever Az = b there exists y ∈ ker (A) such that xp + y = z. For the definition of
ker (A) see Problem 21.

23. Using Problem 21, find the general solution to the following linear system.




1 2 3 2 1

0 2 1 1 2

1 4 4 3 3

0 2 1 1 2







x1

x2

x3

x4

x5




=




11

7

18

7




24. Using Problem 21, find the general solution to the following linear system.




1 2 3 2 1

0 2 1 1 2

1 4 4 3 3

0 2 1 1 2







x1

x2

x3

x4

x5




=




6

7

13

7




25. Show that the function Tu defined by Tu (v) ≡ v − proju (v) is also a linear transfor-
mation.

26. If u = (1, 2, 3)
T
, as in Example 2.4.5 and Tu is given in the above problem, find the

matrix Au which satisfies Aux = Tu (x).

27. Let a be a fixed vector. The function Ta defined by Tav = a+ v has the effect of
translating all vectors by adding a. Show this is not a linear transformation. Explain
why it is not possible to realize Ta in R3 by multiplying by a 3× 3 matrix.

28. In spite of Problem 27 we can represent both translations and rotations by matrix
multiplication at the expense of using higher dimensions. This is done by the homo-
geneous coordinates. I will illustrate in R3 where most interest in this is found. For
each vector v = (v1, v2, v3)

T
, consider the vector in R4 (v1, v2, v3, 1)

T
. What happens

when you do 


1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1







v1

v2

v3

1


?
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Describe how to consider both rotations and translations all at once by forming ap-
propriate 4× 4 matrices.

29. You want to add
(

1 2 3
)
to every point in R3 and then rotate about the x axis

clockwise through the angle of 30◦. Find what happens to the point
(

1 1 1
)
.

30. You are given a linear transformation T : Fn → Fm and you know that

Tai = bi

where
(

a1 · · · an

)−1

exists. Show that the matrix A of T with respect to the

usual basis vectors (Ax = Tx) must be of the form

(
b1 · · · bm

)(
a1 · · · an

)−1

31. You have a linear transformation T and

T




1

2

−6


 =




5

1

3


 , T




−1

−1

5


 =




1

1

5




T




0

−1

2


 =




5

3

−2




Find the matrix of T . That is find A such that Tx = Ax.

32. You have a linear transformation T and

T




1

1

−8


 =




1

3

1


 , T




−1

0

6


 =




2

4

1




T




0

−1

3


 =




6

1

−1




Find the matrix of T . That is find A such that Tx = Ax.

33. You have a linear transformation T and

T




1

3

−7


 =




−3

1

3


 , T




−1

−2

6


 =




1

3

−3




T




0

−1

2


 =




5

3

−3




Find the matrix of T . That is find A such that Tx = Ax.
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34. You have a linear transformation T and

T




1

1

−7


 =




3

3

3


 , T




−1

0

6


 =




1

2

3




T




0

−1

2


 =




1

3

−1




Find the matrix of T . That is find A such that Tx = Ax.

35. You have a linear transformation T and

T




1

2

−18


 =




5

2

5


 , T




−1

−1

15


 =




3

3

5




T




0

−1

4


 =




2

5

−2




Find the matrix of T . That is find A such that Tx = Ax.

36. Suppose V is a subspace of Fn and T : V → Fp is a nonzero linear transformation.
Show that there exists a basis for Im (T ) ≡ T (V )

{Tv1, · · · , Tvm}

and that in this situation,
{v1, · · · ,vm}

is linearly independent.

37. ↑In the situation of Problem 36 where V is a subspace of Fn, show that there exists
{z1, · · · , zr} a basis for ker (T ) . (Recall Theorem 2.6.12. Since ker (T ) is a subspace,
it has a basis.) Now for an arbitrary Tv ∈ T (V ) , explain why

Tv = a1Tv1 + · · ·+ amTvm

and why this implies

v − (a1v1 + · · ·+ amvm) ∈ ker (T ) .

Then explain why V = span (v1, · · · ,vm, z1, · · · , zr) .

38. ↑In the situation of the above problem, show {v1, · · · ,vm, z1, · · · , zr} is a basis for V
and therefore, dim (V ) = dim (ker (T )) + dim (T (V )) .

39. ↑Let A be a linear transformation from V to W and let B be a linear transformation
from W to U where V,W,U are all subspaces of some Fp. Explain why

A (ker (BA)) ⊆ ker (B) , ker (A) ⊆ ker (BA) .
82 CHAPTER 2. LINEAR TRANSFORMATIONS

ker(B)

A(ker(BA))

ker(BA)

ker(A) �A

40. ↑Let {x1, · · · ,xn} be a basis of ker (A) and let {Ay1, · · · , Aym} be a basis ofA (ker (BA)).
Let z ∈ ker (BA) . Explain why

Az ∈ span {Ay1, · · · , Aym}

and why there exist scalars ai such that

A (z − (a1y1 + · · ·+ amym)) = 0

and why it follows z − (a1y1 + · · ·+ amym) ∈ span {x1, · · · ,xn}. Now explain why

ker (BA) ⊆ span {x1, · · · ,xn,y1, · · · ,ym}

and so
dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .

This important inequality is due to Sylvester. Show that equality holds if and only if
A(kerBA) = ker(B).

41. Generalize the result of the previous problem to any finite product of linear mappings.

42. If W ⊆ V for W,V two subspaces of Fn and if dim (W ) = dim (V ) , show W = V .

43. Let V be a subspace of Fnand let V1, · · · , Vm be subspaces, each contained in V . Then

V = V1 ⊕ · · · ⊕ Vm (2.37)

if every v ∈ V can be written in a unique way in the form

v = v1 + · · ·+ vm

where each vi ∈ Vi. This is called a direct sum. If this uniqueness condition does not
hold, then one writes

V = V1 + · · ·+ Vm

and this symbol means all vectors of the form

v1 + · · ·+ vm, vj ∈ Vj for each j.

Show 2.37 is equivalent to saying that if

0 = v1 + · · ·+ vm, vj ∈ Vj for each j,

then each vj = 0. Next show that in the situation of 2.37, if βi =
{
ui
1, · · · , ui

mi

}
is a

basis for Vi, then {β1, · · · , βm} is a basis for V .

44. ↑Suppose you have finitely many linear mappings L1, L2, · · · , Lm which map V to V
where V is a subspace of Fn and suppose they commute. That is, LiLj = LjLi for all
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ker(B)

A(ker(BA))

ker(BA)

ker(A) �A

40. ↑Let {x1, · · · ,xn} be a basis of ker (A) and let {Ay1, · · · , Aym} be a basis ofA (ker (BA)).
Let z ∈ ker (BA) . Explain why

Az ∈ span {Ay1, · · · , Aym}

and why there exist scalars ai such that

A (z − (a1y1 + · · ·+ amym)) = 0

and why it follows z − (a1y1 + · · ·+ amym) ∈ span {x1, · · · ,xn}. Now explain why

ker (BA) ⊆ span {x1, · · · ,xn,y1, · · · ,ym}

and so
dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .

This important inequality is due to Sylvester. Show that equality holds if and only if
A(kerBA) = ker(B).

41. Generalize the result of the previous problem to any finite product of linear mappings.

42. If W ⊆ V for W,V two subspaces of Fn and if dim (W ) = dim (V ) , show W = V .

43. Let V be a subspace of Fnand let V1, · · · , Vm be subspaces, each contained in V . Then

V = V1 ⊕ · · · ⊕ Vm (2.37)

if every v ∈ V can be written in a unique way in the form

v = v1 + · · ·+ vm

where each vi ∈ Vi. This is called a direct sum. If this uniqueness condition does not
hold, then one writes

V = V1 + · · ·+ Vm

and this symbol means all vectors of the form

v1 + · · ·+ vm, vj ∈ Vj for each j.

Show 2.37 is equivalent to saying that if

0 = v1 + · · ·+ vm, vj ∈ Vj for each j,

then each vj = 0. Next show that in the situation of 2.37, if βi =
{
ui
1, · · · , ui

mi

}
is a

basis for Vi, then {β1, · · · , βm} is a basis for V .

44. ↑Suppose you have finitely many linear mappings L1, L2, · · · , Lm which map V to V
where V is a subspace of Fn and suppose they commute. That is, LiLj = LjLi for all

2.9. EXERCISES 83

i, j. Also suppose Lk is one to one on ker (Lj) whenever j ̸= k. Letting P denote the
product of these linear transformations, P = L1L2 · · ·Lm, first show

ker (L1) + · · ·+ ker (Lm) ⊆ ker (P )

Next show Lj : ker (Li) → ker (Li) . Then show

ker (L1) + · · ·+ ker (Lm) = ker (L1)⊕ · · · ⊕ ker (Lm) .

Using Sylvester’s theorem, and the result of Problem 42, show

ker (P ) = ker (L1)⊕ · · · ⊕ ker (Lm)

Hint: By Sylvester’s theorem and the above problem,

dim (ker (P )) ≤
∑
i

dim (ker (Li))

= dim (ker (L1)⊕ · · · ⊕ ker (Lm)) ≤ dim (ker (P ))

Now consider Problem 42.

45. Let M (Fn,Fn) denote the set of all n×n matrices having entries in F. With the usual
operations of matrix addition and scalar multiplications, explain why M (Fn,Fn) can

be considered as Fn2

. Give a basis for M (Fn,Fn) . If A ∈ M (Fn,Fn) , explain why
there exists a monic (leading coefficient equals 1) polynomial of the form

λk + ak−1λ
k−1 + · · ·+ a1λ+ a0

such that
Ak + ak−1A

k−1 + · · ·+ a1A+ a0I = 0

The minimal polynomial of A is the polynomial like the above, for which p (A) = 0
which has smallest degree. I will discuss the uniqueness of this polynomial later. Hint:
Consider the matrices I, A,A2, · · · , An2

. There are n2+1 of these matrices. Can they
be linearly independent? Now consider all polynomials and pick one of smallest degree
and then divide by the leading coefficient.

46. ↑Suppose the field of scalars is C and A is an n × n matrix. From the preceding
problem, and the fundamental theorem of algebra, this minimal polynomial factors

(λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λk)
rk

where rj is the algebraic multiplicity of λj , and the λj are distinct. Thus

(A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk = 0

and so, letting P = (A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk and Lj = (A− λjI)

rj

apply the result of Problem 44 to verify that

Cn = ker (L1)⊕ · · · ⊕ ker (Lk)

and that A : ker (Lj) → ker (Lj). In this context, ker (Lj) is called the generalized
eigenspace for λj . You need to verify the conditions of the result of this problem hold.
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Using Sylvester’s theorem, and the result of Problem 42, show
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such that
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which has smallest degree. I will discuss the uniqueness of this polynomial later. Hint:
Consider the matrices I, A,A2, · · · , An2

. There are n2+1 of these matrices. Can they
be linearly independent? Now consider all polynomials and pick one of smallest degree
and then divide by the leading coefficient.

46. ↑Suppose the field of scalars is C and A is an n × n matrix. From the preceding
problem, and the fundamental theorem of algebra, this minimal polynomial factors

(λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λk)
rk

where rj is the algebraic multiplicity of λj , and the λj are distinct. Thus

(A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk = 0

and so, letting P = (A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk and Lj = (A− λjI)

rj

apply the result of Problem 44 to verify that

Cn = ker (L1)⊕ · · · ⊕ ker (Lk)

and that A : ker (Lj) → ker (Lj). In this context, ker (Lj) is called the generalized
eigenspace for λj . You need to verify the conditions of the result of this problem hold.
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i, j. Also suppose Lk is one to one on ker (Lj) whenever j ̸= k. Letting P denote the
product of these linear transformations, P = L1L2 · · ·Lm, first show

ker (L1) + · · ·+ ker (Lm) ⊆ ker (P )

Next show Lj : ker (Li) → ker (Li) . Then show

ker (L1) + · · ·+ ker (Lm) = ker (L1)⊕ · · · ⊕ ker (Lm) .

Using Sylvester’s theorem, and the result of Problem 42, show

ker (P ) = ker (L1)⊕ · · · ⊕ ker (Lm)

Hint: By Sylvester’s theorem and the above problem,

dim (ker (P )) ≤
∑
i

dim (ker (Li))

= dim (ker (L1)⊕ · · · ⊕ ker (Lm)) ≤ dim (ker (P ))

Now consider Problem 42.

45. Let M (Fn,Fn) denote the set of all n×n matrices having entries in F. With the usual
operations of matrix addition and scalar multiplications, explain why M (Fn,Fn) can

be considered as Fn2

. Give a basis for M (Fn,Fn) . If A ∈ M (Fn,Fn) , explain why
there exists a monic (leading coefficient equals 1) polynomial of the form

λk + ak−1λ
k−1 + · · ·+ a1λ+ a0

such that
Ak + ak−1A

k−1 + · · ·+ a1A+ a0I = 0

The minimal polynomial of A is the polynomial like the above, for which p (A) = 0
which has smallest degree. I will discuss the uniqueness of this polynomial later. Hint:
Consider the matrices I, A,A2, · · · , An2

. There are n2+1 of these matrices. Can they
be linearly independent? Now consider all polynomials and pick one of smallest degree
and then divide by the leading coefficient.

46. ↑Suppose the field of scalars is C and A is an n × n matrix. From the preceding
problem, and the fundamental theorem of algebra, this minimal polynomial factors

(λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λk)
rk

where rj is the algebraic multiplicity of λj , and the λj are distinct. Thus

(A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk = 0

and so, letting P = (A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk and Lj = (A− λjI)

rj

apply the result of Problem 44 to verify that

Cn = ker (L1)⊕ · · · ⊕ ker (Lk)

and that A : ker (Lj) → ker (Lj). In this context, ker (Lj) is called the generalized
eigenspace for λj . You need to verify the conditions of the result of this problem hold.
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47. In the context of Problem 46, show there exists a nonzero vector x such that

(A− λjI)x = 0.

This is called an eigenvector and the λj is called an eigenvalue. Hint:There must exist
a vector y such that

(A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λjI)
rj−1 · · · (A− λkI)

rk y = z ̸= 0

Why? Now what happens if you do (A− λjI) to z?

48. Suppose Q (t) is an orthogonal matrix. This means Q (t) is a real n× n matrix which
satisfies

Q (t)Q (t)
T
= I

Suppose also the entries of Q (t) are differentiable. Show
(
QT

)′
= −QTQ′QT .

49. Remember the Coriolis force was 2Ω× vB where Ω was a particular vector which
came from the matrix Q (t) as described above. Show that

Q (t) =




i (t) · i (t0) j (t) · i (t0) k (t) · i (t0)
i (t) · j (t0) j (t) · j (t0) k (t) · j (t0)
i (t) · k (t0) j (t) · k (t0) k (t) · k (t0)


 .

There will be no Coriolis force exactly when Ω = 0 which corresponds to Q′ (t) = 0.
When will Q′ (t) = 0?

50. An illustration used in many beginning physics books is that of firing a rifle hori-
zontally and dropping an identical bullet from the same height above the perfectly
flat ground followed by an assertion that the two bullets will hit the ground at ex-
actly the same time. Is this true on the rotating earth assuming the experiment
takes place over a large perfectly flat field so the curvature of the earth is not an
issue? Explain. What other irregularities will occur? Recall the Coriolis acceleration
is 2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k] where k points away from the
center of the earth, j points East, and i points South.
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Chapter 3

Determinants

3.1 Basic Techniques And Properties

Let A be an n × n matrix. The determinant of A, denoted as det (A) is a number. If the
matrix is a 2×2 matrix, this number is very easy to find.

Definition 3.1.1 Let A =

(
a b

c d

)
. Then

det (A) ≡ ad− cb.

The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus

det

(
a b

c d

)
=

�����
a b

c d

����� .

Example 3.1.2 Find det

(
2 4

−1 6

)
.

From the definition this is just (2) (6)− (−1) (4) = 16.
Assuming the determinant has been defined for k × k matrices for k ≤ n − 1, it is now

time to define it for n× n matrices.

Definition 3.1.3 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix, cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1) × (n− 1) matrix which results, (This

is called the ijth minor of A. ) and then multiply this number by (−1)
i+j

. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

Now here is the definition of the determinant given recursively.

Theorem 3.1.4 Let A be an n× n matrix where n ≥ 2. Then

det (A) =

n∑
j=1

aij cof (A)ij =

n∑
i=1

aij cof (A)ij . (3.1)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.
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Note that for a n× n matrix, you will need n! terms to evaluate the determinant in this
way. If n = 10, this is 10! = 3, 628 , 800 terms. This is a lot of terms.

In addition to the difficulties just discussed, why is the determinant well defined? Why
should you get the same thing when you expand along any row or column? I think you
should regard this claim that you always get the same answer by picking any row or column
with considerable skepticism. It is incredible and not at all obvious. However, it requires
a little effort to establish it. This is done in the section on the theory of the determinant
which follows.

Notwithstanding the difficulties involved in using the method of Laplace expansion,
certain types of matrices are very easy to deal with.

Definition 3.1.5 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii, as shown.




∗ · · · ∗
. . .

...

0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

You should verify the following using the above theorem on Laplace expansion.

Corollary 3.1.6 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

Proof: The corollary is true if the matrix is one to one. Suppose it is n× n. Then the
matrix is of the form (

m11 a

0 M1

)

where M1 is (n− 1)×(n− 1) . Then expanding along the first row, you get m11 det (M1)+0.
Then use the induction hypothesis to obtain that det (M1) =

∏n
i=2 mii. �

Example 3.1.7 Let

A =




1 2 3 77

0 2 6 7

0 0 3 33.7

0 0 0 −1




Find det (A) .

From the above corollary, this is −6.
There are many properties satisfied by determinants. Some of the most important are

listed in the following theorem.

Theorem 3.1.8 If two rows or two columns in an n× n matrix A are switched, the deter-
minant of the resulting matrix equals (−1) times the determinant of the original matrix. If
A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = x det (A1) + y det (A2)
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Note that for a n× n matrix, you will need n! terms to evaluate the determinant in this
way. If n = 10, this is 10! = 3, 628 , 800 terms. This is a lot of terms.

In addition to the difficulties just discussed, why is the determinant well defined? Why
should you get the same thing when you expand along any row or column? I think you
should regard this claim that you always get the same answer by picking any row or column
with considerable skepticism. It is incredible and not at all obvious. However, it requires
a little effort to establish it. This is done in the section on the theory of the determinant
which follows.

Notwithstanding the difficulties involved in using the method of Laplace expansion,
certain types of matrices are very easy to deal with.

Definition 3.1.5 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii, as shown.




∗ · · · ∗
. . .

...

0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

You should verify the following using the above theorem on Laplace expansion.

Corollary 3.1.6 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

Proof: The corollary is true if the matrix is one to one. Suppose it is n× n. Then the
matrix is of the form (

m11 a

0 M1

)

where M1 is (n− 1)×(n− 1) . Then expanding along the first row, you get m11 det (M1)+0.
Then use the induction hypothesis to obtain that det (M1) =

∏n
i=2 mii. �

Example 3.1.7 Let

A =




1 2 3 77

0 2 6 7

0 0 3 33.7

0 0 0 −1




Find det (A) .

From the above corollary, this is −6.
There are many properties satisfied by determinants. Some of the most important are

listed in the following theorem.

Theorem 3.1.8 If two rows or two columns in an n× n matrix A are switched, the deter-
minant of the resulting matrix equals (−1) times the determinant of the original matrix. If
A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = x det (A1) + y det (A2)
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Note that for a n× n matrix, you will need n! terms to evaluate the determinant in this
way. If n = 10, this is 10! = 3, 628 , 800 terms. This is a lot of terms.

In addition to the difficulties just discussed, why is the determinant well defined? Why
should you get the same thing when you expand along any row or column? I think you
should regard this claim that you always get the same answer by picking any row or column
with considerable skepticism. It is incredible and not at all obvious. However, it requires
a little effort to establish it. This is done in the section on the theory of the determinant
which follows.

Notwithstanding the difficulties involved in using the method of Laplace expansion,
certain types of matrices are very easy to deal with.

Definition 3.1.5 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii, as shown.




∗ · · · ∗
. . .

...

0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

You should verify the following using the above theorem on Laplace expansion.

Corollary 3.1.6 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

Proof: The corollary is true if the matrix is one to one. Suppose it is n× n. Then the
matrix is of the form (

m11 a

0 M1

)

where M1 is (n− 1)×(n− 1) . Then expanding along the first row, you get m11 det (M1)+0.
Then use the induction hypothesis to obtain that det (M1) =

∏n
i=2 mii. �

Example 3.1.7 Let

A =




1 2 3 77

0 2 6 7

0 0 3 33.7

0 0 0 −1




Find det (A) .

From the above corollary, this is −6.
There are many properties satisfied by determinants. Some of the most important are

listed in the following theorem.

Theorem 3.1.8 If two rows or two columns in an n× n matrix A are switched, the deter-
minant of the resulting matrix equals (−1) times the determinant of the original matrix. If
A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = x det (A1) + y det (A2)
3.1. BASIC TECHNIQUES AND PROPERTIES 87

where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”. In addition
to this, if A and B are n× n matrices, then

det (AB) = det (A) det (B) ,

and if A is an n× n matrix, then

det (A) = det
(
AT

)
.

This theorem implies the following corollary which gives a way to find determinants. As
I pointed out above, the method of Laplace expansion will not be practical for any matrix
of large size.

Corollary 3.1.9 Let A be an n×n matrix and let B be the matrix obtained by replacing the
ith row (column) of A with the sum of the ith row (column) added to a multiple of another
row (column). Then det (A) = det (B) . If B is the matrix obtained from A be replacing the
ith row (column) of A by a times the ith row (column) then a det (A) = det (B) .

Here is an example which shows how to use this corollary to find a determinant.

Example 3.1.10 Find the determinant of the matrix




1 2 1

1 2 2

1 1 3




First take −1 times the first row and add to the second and the third. The resulting
matrix is 


1 2 1

0 0 1

0 −1 2




It has the same determinant as the original matrix. Next switch the bottom two rows to
get 


1 2 1

0 −1 2

0 0 1




It has determinant which is −1 times the determinant of the original matrix. Hence the
original matrix has determinant equal to 1.

The theorem about expanding a matrix along any row or column also provides a way to
give a formula for the inverse of a matrix. Recall the definition of the inverse of a matrix
in Definition 2.1.22 on Page 50. The following theorem gives a formula for the inverse of a
matrix. It is proved in the next section.

Theorem 3.1.11 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(
a−1
ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.
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where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”. In addition
to this, if A and B are n× n matrices, then

det (AB) = det (A) det (B) ,

and if A is an n× n matrix, then

det (A) = det
(
AT

)
.

This theorem implies the following corollary which gives a way to find determinants. As
I pointed out above, the method of Laplace expansion will not be practical for any matrix
of large size.

Corollary 3.1.9 Let A be an n×n matrix and let B be the matrix obtained by replacing the
ith row (column) of A with the sum of the ith row (column) added to a multiple of another
row (column). Then det (A) = det (B) . If B is the matrix obtained from A be replacing the
ith row (column) of A by a times the ith row (column) then a det (A) = det (B) .

Here is an example which shows how to use this corollary to find a determinant.

Example 3.1.10 Find the determinant of the matrix




1 2 1

1 2 2

1 1 3




First take −1 times the first row and add to the second and the third. The resulting
matrix is 


1 2 1

0 0 1

0 −1 2




It has the same determinant as the original matrix. Next switch the bottom two rows to
get 


1 2 1

0 −1 2

0 0 1




It has determinant which is −1 times the determinant of the original matrix. Hence the
original matrix has determinant equal to 1.

The theorem about expanding a matrix along any row or column also provides a way to
give a formula for the inverse of a matrix. Recall the definition of the inverse of a matrix
in Definition 2.1.22 on Page 50. The following theorem gives a formula for the inverse of a
matrix. It is proved in the next section.

Theorem 3.1.11 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(
a−1
ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.
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Theorem 3.1.11 says that to find the inverse, take the transpose of the cofactor matrix
and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

Example 3.1.12 Find the inverse of the matrix

A =




1 2 3

3 0 1

1 2 1




First find the determinant of this matrix. This is seen to be 12. The cofactor matrix of
A is 


−2 −2 6

4 −2 0

2 8 −6


 .

Each entry of A was replaced by its cofactor. Therefore, from the above theorem, the inverse
of A should equal

1

12




−2 −2 6

4 −2 0

2 8 −6




T

=




− 1
6

1
3

1
6

− 1
6 − 1

6
2
3

1
2 0 − 1

2


 .

This way of finding inverses is especially useful in the case where it is desired to find the
inverse of a matrix whose entries are functions.

Example 3.1.13 Suppose

A (t) =




et 0 0

0 cos t sin t

0 − sin t cos t




Find A (t)
−1

.

First note det (A (t)) = et. A routine computation using the above theorem shows that
this inverse is

1

et




1 0 0

0 et cos t et sin t

0 −et sin t et cos t




T

=




e−t 0 0

0 cos t − sin t

0 sin t cos t


 .

This formula for the inverse also implies a famous procedure known as Cramer’s rule.
Cramer’s rule gives a formula for the solutions, x, to a system of equations, Ax = y.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =

n∑
j=1

a−1
ij yj =

n∑
j=1

1

det (A)
cof (A)ji yj .
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By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det




∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Procedure 3.1.14 Suppose A is an n × n matrix and it is desired to solve the system
Ax = y,y = (y1, · · · , yn)T for x = (x1, · · · , xn)

T
. Then Cramer’s rule says

xi =
detAi

detA

where Ai is obtained from A by replacing the ith column of A with the column (y1, · · · , yn)T .

The following theorem is of fundamental importance and ties together many of the ideas
presented above. It is proved in the next section.

Theorem 3.1.15 Let A be an n× n matrix. Then the following are equivalent.

1. A is one to one.

2. A is onto.

3. det (A) ̸= 0.

3.2 Exercises

1. Find the determinants of the following matrices.

(a)




1 2 3

3 2 2

0 9 8


 (The answer is 31.)

(b)




4 3 2

1 7 8

3 −9 3


(The answer is 375.)

(c)




1 2 3 2

1 3 2 3

4 1 5 0

1 2 1 2


, (The answer is −2.)

2. If A−1 exist, what is the relationship between det (A) and det
(
A−1

)
. Explain your

answer.

3. Let A be an n × n matrix where n is odd. Suppose also that A is skew symmetric.
This means AT = −A. Show that det(A) = 0.
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By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det




∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Procedure 3.1.14 Suppose A is an n × n matrix and it is desired to solve the system
Ax = y,y = (y1, · · · , yn)T for x = (x1, · · · , xn)

T
. Then Cramer’s rule says

xi =
detAi

detA

where Ai is obtained from A by replacing the ith column of A with the column (y1, · · · , yn)T .

The following theorem is of fundamental importance and ties together many of the ideas
presented above. It is proved in the next section.

Theorem 3.1.15 Let A be an n× n matrix. Then the following are equivalent.

1. A is one to one.

2. A is onto.

3. det (A) ̸= 0.

3.2 Exercises

1. Find the determinants of the following matrices.

(a)




1 2 3

3 2 2

0 9 8


 (The answer is 31.)

(b)




4 3 2

1 7 8

3 −9 3


(The answer is 375.)

(c)




1 2 3 2

1 3 2 3

4 1 5 0

1 2 1 2


, (The answer is −2.)

2. If A−1 exist, what is the relationship between det (A) and det
(
A−1

)
. Explain your

answer.

3. Let A be an n × n matrix where n is odd. Suppose also that A is skew symmetric.
This means AT = −A. Show that det(A) = 0.
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4. Is it true that det (A+B) = det (A) + det (B)? If this is so, explain why it is so and
if it is not so, give a counter example.

5. Let A be an r×r matrix and suppose there are r−1 rows (columns) such that all rows
(columns) are linear combinations of these r − 1 rows (columns). Show det (A) = 0.

6. Show det (aA) = an det (A) where here A is an n× n matrix and a is a scalar.

7. Suppose A is an upper triangular matrix. Show that A−1 exists if and only if all
elements of the main diagonal are non zero. Is it true that A−1 will also be upper
triangular? Explain. Is everything the same for lower triangular matrices?

8. Let A and B be two n× n matrices. A ∼ B (A is similar to B) means there exists an
invertible matrix S such that A = S−1BS. Show that if A ∼ B, then B ∼ A. Show
also that A ∼ A and that if A ∼ B and B ∼ C, then A ∼ C.

9. In the context of Problem 8 show that if A ∼ B, then det (A) = det (B) .

10. Let A be an n× n matrix and let x be a nonzero vector such that Ax = λx for some
scalar, λ. When this occurs, the vector, x is called an eigenvector and the scalar, λ
is called an eigenvalue. It turns out that not every number is an eigenvalue. Only
certain ones are. Why? Hint: Show that if Ax = λx, then (λI −A)x = 0. Explain
why this shows that (λI −A) is not one to one and not onto. Now use Theorem 3.1.15
to argue det (λI −A) = 0. What sort of equation is this? How many solutions does it
have?

11. Suppose det (λI −A) = 0. Show using Theorem 3.1.15 there exists x ̸= 0 such that
(λI −A)x = 0.

12. Let F (t) = det

(
a (t) b (t)

c (t) d (t)

)
. Verify

F ′ (t) = det

(
a′ (t) b′ (t)

c (t) d (t)

)
+ det

(
a (t) b (t)

c′ (t) d′ (t)

)
.

Now suppose

F (t) = det




a (t) b (t) c (t)

d (t) e (t) f (t)

g (t) h (t) i (t)


 .

Use Laplace expansion and the first part to verify F ′ (t) =

det




a′ (t) b′ (t) c′ (t)

d (t) e (t) f (t)

g (t) h (t) i (t)


+ det




a (t) b (t) c (t)

d′ (t) e′ (t) f ′ (t)

g (t) h (t) i (t)




+det




a (t) b (t) c (t)

d (t) e (t) f (t)

g′ (t) h′ (t) i′ (t)


 .

Conjecture a general result valid for n × n matrices and explain why it will be true.
Can a similar thing be done with the columns?
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13. Use the formula for the inverse in terms of the cofactor matrix to find the inverse of
the matrix

A =




et 0 0

0 et cos t et sin t

0 et cos t− et sin t et cos t+ et sin t


 .

14. Let A be an r×r matrix and let B be an m×m matrix such that r+m = n. Consider
the following n× n block matrix

C =

(
A 0

D B

)
.

where the D is an m× r matrix, and the 0 is a r ×m matrix. Letting Ik denote the
k × k identity matrix, tell why

C =

(
A 0

D Im

)(
Ir 0

0 B

)
.

Now explain why det (C) = det (A) det (B) . Hint: Part of this will require an expla-
nation of why

det

(
A 0

D Im

)
= det (A) .

See Corollary 3.1.9.

15. Suppose Q is an orthogonal matrix. This means Q is a real n×n matrix which satisfies
QQT = I. Find the possible values for det (Q).

16. Suppose Q (t) is an orthogonal matrix. This means Q (t) is a real n× n matrix which

satisfies Q (t)Q (t)
T
= I Suppose Q (t) is continuous for t ∈ [a, b] , some interval. Also

suppose det (Q (t)) = 1. Show that it follows det (Q (t)) = 1 for all t ∈ [a, b].

3.3 The Mathematical Theory Of Determinants

It is easiest to give a different definition of the determinant which is clearly well defined
and then prove the one which involves Laplace expansion. Let (i1, · · · , in) be an ordered
list of numbers from {1, · · · , n} . This means the order is important so (1, 2, 3) and (2, 1, 3)
are different. There will be some repetition between this section and the earlier section on
determinants. The main purpose is to give all the missing proofs. Two books which give
a good introduction to determinants are Apostol [1] and Rudin [23]. A recent book which
also has a good introduction is Baker [3]

3.3.1 The Function sgn

The following Lemma will be essential in the definition of the determinant.

Lemma 3.3.1 There exists a function, sgnn which maps each ordered list of numbers from
{1, · · · , n} to one of the three numbers, 0, 1, or −1 which also has the following properties.

sgnn (1, · · · , n) = 1 (3.2)

sgnn (i1, · · · , p, · · · , q, · · · , in) = − sgnn (i1, · · · , q, · · · , p, · · · , in) (3.3)
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The following Lemma will be essential in the definition of the determinant.

Lemma 3.3.1 There exists a function, sgnn which maps each ordered list of numbers from
{1, · · · , n} to one of the three numbers, 0, 1, or −1 which also has the following properties.

sgnn (1, · · · , n) = 1 (3.2)
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In words, the second property states that if two of the numbers are switched, the value of the
function is multiplied by −1. Also, in the case where n > 1 and {i1, · · · , in} = {1, · · · , n} so
that every number from {1, · · · , n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) ≡

(−1)
n−θ

sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (3.4)

where n = iθ in the ordered list, (i1, · · · , in) .

Proof: Define sign (x) = 1 if x > 0,−1 if x < 0 and 0 if x = 0. If n = 1, there is only
one list and it is just the number 1. Thus one can define sgn1 (1) ≡ 1. For the general case
where n > 1, simply define

sgnn (i1, · · · , in) ≡ sign

(∏
r<s

(is − ir)

)

This delivers either −1, 1, or 0 by definition. What about the other claims? Suppose you
switch ip with iq where p < q so two numbers in the ordered list (i1, · · · , in) are switched.
Denote the new ordered list of numbers as (j1, · · · , jn) . Thus jp = iq and jq = ip and if
r /∈ {p, q} , jr = ir. See the following illustration

i1
1

i2
2 · · · ipp · · · iqq · · · inn

i1
1

i2
2 · · · iqp · · · ipq · · · inn

j1
1

j2
2 · · · jpp · · · jqq · · · jnn

Then

sgnn (j1, · · · , jn) ≡ sign

(∏
r<s

(js − jr)

)

= sign


 both p,q

(ip − iq)

one of p,q∏
p<j<q

(ij − iq)
∏

p<j<q

(ip − ij)

neither p nor q∏
r<s,r,s/∈{p,q}

(is − ir)




The last product consists of the product of terms which were in
∏

r<s (is − ir) while the
two products in the middle both introduce q − p − 1 minus signs. Thus their product is
positive. The first factor is of opposite sign to the iq− ip which occured in sgnn (i1, · · · , in) .
Therefore, this switch introduced a minus sign and

sgnn (j1, · · · , jn) = − sgnn (i1, · · · , in)

Now consider the last claim. In computing sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) there will
be the product of n− θ negative terms

(iθ+1 − n) · · · (in − n)

and the other terms in the product for computing sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) are
those which are required to compute sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) multiplied by terms
of the form (n− ij) which are nonnegative. It follows that

sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) = (−1)
n−θ

sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in)
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)
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∏
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neither p nor q∏
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


The last product consists of the product of terms which were in
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r<s (is − ir) while the
two products in the middle both introduce q − p − 1 minus signs. Thus their product is
positive. The first factor is of opposite sign to the iq− ip which occured in sgnn (i1, · · · , in) .
Therefore, this switch introduced a minus sign and

sgnn (j1, · · · , jn) = − sgnn (i1, · · · , in)

Now consider the last claim. In computing sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) there will
be the product of n− θ negative terms

(iθ+1 − n) · · · (in − n)

and the other terms in the product for computing sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) are
those which are required to compute sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) multiplied by terms
of the form (n− ij) which are nonnegative. It follows that
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It is obvious that if there are repeats in the list the function gives 0. �3.3. THE MATHEMATICAL THEORY OF DETERMINANTS 93

Lemma 3.3.2 Every ordered list of distinct numbers from {1, 2, · · · , n} can be obtained
from every other ordered list of distinct numbers by a finite number of switches. Also, sgnn
is unique.

Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n − 1
elements. Take two ordered lists of numbers, P1, P2. Make one switch in both to place n at
the end. Call the result Pn

1 and Pn
2 . Then using induction, there are finitely many switches

in Pn
1 so that it will coincide with Pn

2 . Now switch the n in what results to where it was in
P2.

To see sgnn is unique, if there exist two functions, f and g both satisfying 3.2 and 3.3,
you could start with f (1, · · · , n) = g (1, · · · , n) = 1 and applying the same sequence of
switches, eventually arrive at f (i1, · · · , in) = g (i1, · · · , in) . If any numbers are repeated,
then 3.3 gives both functions are equal to zero for that ordered list. �

Definition 3.3.3 When you have an ordered list of distinct numbers from {1, 2, · · · , n} ,
say

(i1, · · · , in) ,
this ordered list is called a permutation. The symbol for all such permutations is Sn. The
number sgnn (i1, · · · , in) is called the sign of the permutation.

A permutation can also be considered as a function from the set

{1, 2, · · · , n} to {1, 2, · · · , n}

as follows. Let f (k) = ik. Permutations are of fundamental importance in certain areas
of math. For example, it was by considering permutations that Galois was able to give a
criterion for solution of polynomial equations by radicals, but this is a different direction
than what is being attempted here.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.

3.3.2 The Definition Of The Determinant

Definition 3.3.4 Let f be a real valued function which has the set of ordered lists of numbers
from {1, · · · , n} as its domain. Define

∑
(k1,··· ,kn)

f (k1 · · · kn)

to be the sum of all the f (k1 · · · kn) for all possible choices of ordered lists (k1, · · · , kn) of
numbers of {1, · · · , n} . For example,

∑
(k1,k2)

f (k1, k2) = f (1, 2) + f (2, 1) + f (1, 1) + f (2, 2) .

Definition 3.3.5 Let (aij) = A denote an n × n matrix. The determinant of A, denoted
by det (A) is defined by

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · ankn

where the sum is taken over all ordered lists of numbers from {1, · · · , n}. Note it suffices to
take the sum over only those ordered lists in which there are no repeats because if there are,
sgn (k1, · · · , kn) = 0 and so that term contributes 0 to the sum.
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by det (A) is defined by

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · ankn

where the sum is taken over all ordered lists of numbers from {1, · · · , n}. Note it suffices to
take the sum over only those ordered lists in which there are no repeats because if there are,
sgn (k1, · · · , kn) = 0 and so that term contributes 0 to the sum.
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Let A be an n × n matrix A = (aij) and let (r1, · · · , rn) denote an ordered list of n
numbers from {1, · · · , n}. Let A (r1, · · · , rn) denote the matrix whose kth row is the rk row
of the matrix A. Thus

det (A (r1, · · · , rn)) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn (3.5)

and A (1, · · · , n) = A.

Proposition 3.3.6 Let (r1, · · · , rn) be an ordered list of numbers from {1, · · · , n}. Then

sgn (r1, · · · , rn) det (A) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn (3.6)

= det (A (r1, · · · , rn)) . (3.7)

Proof: Let (1, · · · , n) = (1, · · · , r, · · · s, · · · , n) so r < s.

det (A (1, · · · , r, · · · , s, · · · , n)) = (3.8)

∑
(k1,··· ,kn)

sgn (k1, · · · , kr, · · · , ks, · · · , kn) a1k1 · · · arkr · · · asks · · · ankn ,

and renaming the variables, calling ks, kr and kr, ks, this equals

=
∑

(k1,··· ,kn)

sgn (k1, · · · , ks, · · · , kr, · · · , kn) a1k1
· · · arks

· · · askr
· · · ankn

=
∑

(k1,··· ,kn)

− sgn


k1, · · · ,

These got switched� �� �
kr, · · · , ks , · · · , kn


 a1k1 · · · askr · · · arks · · · ankn

= − det (A (1, · · · , s, · · · , r, · · · , n)) . (3.9)

Consequently,

det (A (1, · · · , s, · · · , r, · · · , n)) = − det (A (1, · · · , r, · · · , s, · · · , n)) = − det (A)

Now letting A (1, · · · , s, · · · , r, · · · , n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det (A (r1, · · · , rn)) = (−1)
p
det (A)

where it took p switches to obtain(r1, · · · , rn) from (1, · · · , n). By Lemma 3.3.1, this implies

det (A (r1, · · · , rn)) = (−1)
p
det (A) = sgn (r1, · · · , rn) det (A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · , rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 3.8 -3.9 shows that det(A (r1, · · · , rn)) = 0 and also sgn (r1, · · · , rn) = 0 so the
formula holds in this case also. �

Observation 3.3.7 There are n! ordered lists of distinct numbers from {1, · · · , n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n− 1 choices for the second. Thus there are n (n− 1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · , n} as
stated in the observation.
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Let A be an n × n matrix A = (aij) and let (r1, · · · , rn) denote an ordered list of n
numbers from {1, · · · , n}. Let A (r1, · · · , rn) denote the matrix whose kth row is the rk row
of the matrix A. Thus

det (A (r1, · · · , rn)) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn (3.5)

and A (1, · · · , n) = A.

Proposition 3.3.6 Let (r1, · · · , rn) be an ordered list of numbers from {1, · · · , n}. Then
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sgn (k1, · · · , kr, · · · , ks, · · · , kn) a1k1 · · · arkr · · · asks · · · ankn ,

and renaming the variables, calling ks, kr and kr, ks, this equals

=
∑

(k1,··· ,kn)

sgn (k1, · · · , ks, · · · , kr, · · · , kn) a1k1
· · · arks

· · · askr
· · · ankn

=
∑

(k1,··· ,kn)

− sgn


k1, · · · ,

These got switched� �� �
kr, · · · , ks , · · · , kn


 a1k1 · · · askr · · · arks · · · ankn

= − det (A (1, · · · , s, · · · , r, · · · , n)) . (3.9)

Consequently,

det (A (1, · · · , s, · · · , r, · · · , n)) = − det (A (1, · · · , r, · · · , s, · · · , n)) = − det (A)

Now letting A (1, · · · , s, · · · , r, · · · , n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det (A (r1, · · · , rn)) = (−1)
p
det (A)

where it took p switches to obtain(r1, · · · , rn) from (1, · · · , n). By Lemma 3.3.1, this implies

det (A (r1, · · · , rn)) = (−1)
p
det (A) = sgn (r1, · · · , rn) det (A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · , rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 3.8 -3.9 shows that det(A (r1, · · · , rn)) = 0 and also sgn (r1, · · · , rn) = 0 so the
formula holds in this case also. �

Observation 3.3.7 There are n! ordered lists of distinct numbers from {1, · · · , n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n− 1 choices for the second. Thus there are n (n− 1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · , n} as
stated in the observation.
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Let A be an n × n matrix A = (aij) and let (r1, · · · , rn) denote an ordered list of n
numbers from {1, · · · , n}. Let A (r1, · · · , rn) denote the matrix whose kth row is the rk row
of the matrix A. Thus

det (A (r1, · · · , rn)) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn (3.5)

and A (1, · · · , n) = A.

Proposition 3.3.6 Let (r1, · · · , rn) be an ordered list of numbers from {1, · · · , n}. Then

sgn (r1, · · · , rn) det (A) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn (3.6)

= det (A (r1, · · · , rn)) . (3.7)

Proof: Let (1, · · · , n) = (1, · · · , r, · · · s, · · · , n) so r < s.

det (A (1, · · · , r, · · · , s, · · · , n)) = (3.8)

∑
(k1,··· ,kn)

sgn (k1, · · · , kr, · · · , ks, · · · , kn) a1k1 · · · arkr · · · asks · · · ankn ,

and renaming the variables, calling ks, kr and kr, ks, this equals

=
∑

(k1,··· ,kn)

sgn (k1, · · · , ks, · · · , kr, · · · , kn) a1k1
· · · arks

· · · askr
· · · ankn

=
∑

(k1,··· ,kn)

− sgn


k1, · · · ,

These got switched� �� �
kr, · · · , ks , · · · , kn


 a1k1 · · · askr · · · arks · · · ankn

= − det (A (1, · · · , s, · · · , r, · · · , n)) . (3.9)

Consequently,

det (A (1, · · · , s, · · · , r, · · · , n)) = − det (A (1, · · · , r, · · · , s, · · · , n)) = − det (A)

Now letting A (1, · · · , s, · · · , r, · · · , n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det (A (r1, · · · , rn)) = (−1)
p
det (A)

where it took p switches to obtain(r1, · · · , rn) from (1, · · · , n). By Lemma 3.3.1, this implies

det (A (r1, · · · , rn)) = (−1)
p
det (A) = sgn (r1, · · · , rn) det (A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · , rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 3.8 -3.9 shows that det(A (r1, · · · , rn)) = 0 and also sgn (r1, · · · , rn) = 0 so the
formula holds in this case also. �

Observation 3.3.7 There are n! ordered lists of distinct numbers from {1, · · · , n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n− 1 choices for the second. Thus there are n (n− 1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · , n} as
stated in the observation.
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3.3.3 A Symmetric Definition

With the above, it is possible to give a more symmetric description of the determinant from
which it will follow that det (A) = det

(
AT

)
.

Corollary 3.3.8 The following formula for det (A) is valid.

det (A) =
1

n!
·

∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1
· · · arnkn

. (3.10)

And also det
(
AT

)
= det (A) where AT is the transpose of A. (Recall that for AT =

(
aTij

)
,

aTij = aji.)

Proof: From Proposition 3.3.6, if the ri are distinct,

det (A) =
∑

(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1
· · · arnkn

.

Summing over all ordered lists, (r1, · · · , rn) where the ri are distinct, (If the ri are not
distinct, sgn (r1, · · · , rn) = 0 and so there is no contribution to the sum.)

n! det (A) =
∑

(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1
· · · arnkn

.

This proves the corollary since the formula gives the same number for A as it does for AT .
�
Corollary 3.3.9 If two rows or two columns in an n × n matrix A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original matrix.
If A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = x det (A1) + y det (A2)

where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”.

Proof: By Proposition 3.3.6 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 3.3.8 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det (A) = det
(
AT

)
= − det

(
AT

1

)
= − det (A1) .

If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det (A) = − det (A) and so det (A) = 0.

It remains to verify the last assertion.

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · (xarki + ybrki) · · · ankn

= x
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · arki

· · · ankn

+y
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · brki · · · ankn ≡ x det (A1) + y det (A2) .

The same is true of columns because det
(
AT

)
= det (A) and the rows of AT are the columns

of A. �
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3.3.4 Basic Properties Of The Determinant

Definition 3.3.10 A vector, w, is a linear combination of the vectors {v1, · · · ,vr} if
there exist scalars c1, · · · cr such that w =

∑r
k=1 ckvk. This is the same as saying w ∈

span (v1, · · · ,vr) .

The following corollary is also of great use.

Corollary 3.3.11 Suppose A is an n × n matrix and some column (row) is a linear com-
bination of r other columns (rows). Then det (A) = 0.

Proof: Let A =
(

a1 · · · an

)
be the columns of A and suppose the condition that

one column is a linear combination of r of the others is satisfied. Say ai =
∑

j ̸=i cjaj . Then
by Corollary 3.3.9, det(A) =

det
(

a1 · · ·
∑

j ̸=i cjaj · · · an

)
=

∑
j ̸=i

cj det
(

a1 · · · aj · · · an

)
= 0

because each of these determinants in the sum has two equal rows. �
Recall the following definition of matrix multiplication.

Definition 3.3.12 If A and B are n × n matrices, A = (aij) and B = (bij), AB = (cij)
where cij ≡

∑n
k=1 aikbkj .

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.

Theorem 3.3.13 Let A and B be n× n matrices. Then

det (AB) = det (A) det (B) .

Proof: Let cij be the ijth entry of AB. Then by Proposition 3.3.6,

det (AB) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) c1k1
· · · cnkn

=
∑

(k1,··· ,kn)

sgn (k1, · · · , kn)

(∑
r1

a1r1br1k1

)
· · ·

(∑
rn

anrnbrnkn

)

=
∑

(r1··· ,rn)

∑
(k1,··· ,kn)

sgn (k1, · · · , kn) br1k1
· · · brnkn

(a1r1 · · · anrn)

=
∑

(r1··· ,rn)

sgn (r1 · · · rn) a1r1 · · · anrn det (B) = det (A) det (B) .�

The Binet Cauchy formula is a generalization of the theorem which says the determinant
of a product is the product of the determinants. The situation is illustrated in the following
picture where A,B are matrices.
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Theorem 3.3.14 Let A be an n×m matrix with n ≥ m and let B be a m×n matrix. Also
let Ai

i = 1, · · · , C (n,m)

be the m×m submatrices of A which are obtained by deleting n−m rows and let Bi be the
m×m submatrices of B which are obtained by deleting corresponding n−m columns. Then

det (BA) =

C(n,m)∑
k=1

det (Bk) det (Ak)

Proof: This follows from a computation. By Corollary 3.3.8 on Page 95, det (BA) =

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) (BA)i1j1 (BA)i2j2 · · · (BA)imjm

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) ·

n∑
r1=1

Bi1r1Ar1j1

n∑
r2=1

Bi2r2Ar2j2 · · ·
n∑

rm=1

BimrmArmjm

Now denote by Ik one of the subsets of {1, · · · , n} which has m elements. Thus there are
C (n,m) of these.

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) ·

Bi1r1Ar1j1Bi2r2Ar2j2 · · ·BimrmArmjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

sgn (i1 · · · im)Bi1r1Bi2r2 · · ·Bimrm ·

∑
(j1···jm)

sgn (j1 · · · jm)Ar1j1Ar2j2 · · ·Armjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!
sgn (r1 · · · rm)

2
det (Bk) det (Ak) =

C(n,m)∑
k=1

det (Bk) det (Ak)

since there are m! ways of arranging the indices {r1, · · · , rm}. �

3.3.5 Expansion Using Cofactors

Lemma 3.3.15 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
or

(
A 0

∗ a

)
(3.11)

where a is a number and A is an (n− 1) × (n− 1) matrix and ∗ denotes either a column
or a row having length n − 1 and the 0 denotes either a column or a row of length n − 1
consisting entirely of zeros. Then det (M) = a det (A) .
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Theorem 3.3.14 Let A be an n×m matrix with n ≥ m and let B be a m×n matrix. Also
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i = 1, · · · , C (n,m)

be the m×m submatrices of A which are obtained by deleting n−m rows and let Bi be the
m×m submatrices of B which are obtained by deleting corresponding n−m columns. Then

det (BA) =

C(n,m)∑
k=1

det (Bk) det (Ak)

Proof: This follows from a computation. By Corollary 3.3.8 on Page 95, det (BA) =

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) (BA)i1j1 (BA)i2j2 · · · (BA)imjm

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) ·

n∑
r1=1

Bi1r1Ar1j1

n∑
r2=1

Bi2r2Ar2j2 · · ·
n∑

rm=1

BimrmArmjm

Now denote by Ik one of the subsets of {1, · · · , n} which has m elements. Thus there are
C (n,m) of these.

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) ·

Bi1r1Ar1j1Bi2r2Ar2j2 · · ·BimrmArmjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

sgn (i1 · · · im)Bi1r1Bi2r2 · · ·Bimrm ·

∑
(j1···jm)

sgn (j1 · · · jm)Ar1j1Ar2j2 · · ·Armjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!
sgn (r1 · · · rm)

2
det (Bk) det (Ak) =

C(n,m)∑
k=1

det (Bk) det (Ak)

since there are m! ways of arranging the indices {r1, · · · , rm}. �

3.3.5 Expansion Using Cofactors

Lemma 3.3.15 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
or

(
A 0

∗ a

)
(3.11)

where a is a number and A is an (n− 1) × (n− 1) matrix and ∗ denotes either a column
or a row having length n − 1 and the 0 denotes either a column or a row of length n − 1
consisting entirely of zeros. Then det (M) = a det (A) .

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 

  

 

                . 

http://s.bookboon.com/AlcatelLucent


LINEAR ALGEBRA I Determinants

105

3.3. THE MATHEMATICAL THEORY OF DETERMINANTS 97

Theorem 3.3.14 Let A be an n×m matrix with n ≥ m and let B be a m×n matrix. Also
let Ai

i = 1, · · · , C (n,m)

be the m×m submatrices of A which are obtained by deleting n−m rows and let Bi be the
m×m submatrices of B which are obtained by deleting corresponding n−m columns. Then

det (BA) =

C(n,m)∑
k=1

det (Bk) det (Ak)

Proof: This follows from a computation. By Corollary 3.3.8 on Page 95, det (BA) =

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) (BA)i1j1 (BA)i2j2 · · · (BA)imjm

1

m!

∑
(i1···im)

∑
(j1···jm)
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n∑
r1=1

Bi1r1Ar1j1

n∑
r2=1

Bi2r2Ar2j2 · · ·
n∑

rm=1

BimrmArmjm

Now denote by Ik one of the subsets of {1, · · · , n} which has m elements. Thus there are
C (n,m) of these.

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) ·

Bi1r1Ar1j1Bi2r2Ar2j2 · · ·BimrmArmjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

sgn (i1 · · · im)Bi1r1Bi2r2 · · ·Bimrm ·

∑
(j1···jm)

sgn (j1 · · · jm)Ar1j1Ar2j2 · · ·Armjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!
sgn (r1 · · · rm)

2
det (Bk) det (Ak) =

C(n,m)∑
k=1

det (Bk) det (Ak)

since there are m! ways of arranging the indices {r1, · · · , rm}. �

3.3.5 Expansion Using Cofactors

Lemma 3.3.15 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
or

(
A 0

∗ a

)
(3.11)

where a is a number and A is an (n− 1) × (n− 1) matrix and ∗ denotes either a column
or a row having length n − 1 and the 0 denotes either a column or a row of length n − 1
consisting entirely of zeros. Then det (M) = a det (A) .
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Proof: Denote M by (mij) . Thus in the first case, mnn = a and mni = 0 if i ̸= n while
in the second case, mnn = a and min = 0 if i ̸= n. From the definition of the determinant,

det (M) ≡
∑

(k1,··· ,kn)

sgnn (k1, · · · , kn)m1k1
· · ·mnkn

Letting θ denote the position of n in the ordered list, (k1, · · · , kn) then using the earlier
conventions used to prove Lemma 3.3.1, det (M) equals

∑
(k1,··· ,kn)

(−1)
n−θ

sgnn−1

(
k1, · · · , kθ−1,

θ

kθ+1, · · · ,
n−1

kn

)
m1k1 · · ·mnkn

Now suppose the second case. Then if kn ̸= n, the term involving mnkn
in the above

expression equals zero. Therefore, the only terms which survive are those for which θ = n
or in other words, those for which kn = n. Therefore, the above expression reduces to

a
∑

(k1,··· ,kn−1)

sgnn−1 (k1, · · · kn−1)m1k1
· · ·m(n−1)kn−1

= a det (A) .

To get the assertion in the first case, use Corollary 3.3.8 to write

det (M) = det
(
MT

)
= det

((
AT 0

∗ a

))
= a det

(
AT

)
= a det (A) .�

In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of a
determinant.

Definition 3.3.16 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1) × (n− 1) matrix which results, (This

is called the ijth minor of A. ) and then multiply this number by (−1)
i+j

. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outrageous
totally unjustified assertion was made that the same number would be obtained by expanding
the determinant along any row or column. The following theorem proves this assertion.

Theorem 3.3.17 Let A be an n× n matrix where n ≥ 2. Then

det (A) =
n∑

j=1

aij cof (A)ij =

n∑
i=1

aij cof (A)ij . (3.12)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · , ain) be the ith row of A. Let Bj be the matrix obtained from A by
leaving every row the same except the ith row which in Bj equals (0, · · · , 0, aij , 0, · · · , 0) .
Then by Corollary 3.3.9,

det (A) =

n∑
j=1

det (Bj)
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For example if

A =




a b c

d e f

h i j




and i = 2, then

B1 =




a b c

d 0 0

h i j


 , B2 =




a b c

0 e 0

h i j


 , B3 =




a b c

0 0 f

h i j




Denote by Aij the (n− 1)× (n− 1) matrix obtained by deleting the ith row and the jth

column of A. Thus cof (A)ij ≡ (−1)
i+j

det
(
Aij

)
. At this point, recall that from Proposition

3.3.6, when two rows or two columns in a matrix M, are switched, this results in multiplying
the determinant of the old matrix by−1 to get the determinant of the new matrix. Therefore,
by Lemma 3.3.15,

det (Bj) = (−1)
n−j

(−1)
n−i

det

((
Aij ∗
0 aij

))

= (−1)
i+j

det

((
Aij ∗
0 aij

))
= aij cof (A)ij .

Therefore,

det (A) =
n∑

j=1

aij cof (A)ij

which is the formula for expanding det (A) along the ith row. Also,

det (A) = det
(
AT

)
=

n∑
j=1

aTij cof
(
AT

)
ij
=

n∑
j=1

aji cof (A)ji

which is the formula for expanding det (A) along the ith column. �

3.3.6 A Formula For The Inverse

Note that this gives an easy way to write a formula for the inverse of an n×n matrix. Recall
the definition of the inverse of a matrix in Definition 2.1.22 on Page 50.

Theorem 3.3.18 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(
a−1
ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Proof: By Theorem 3.3.17 and letting (air) = A, if det (A) ̸= 0,

n∑
i=1

air cof (A)ir det(A)
−1 = det(A) det(A)−1 = 1.
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θ
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Now suppose the second case. Then if kn ̸= n, the term involving mnkn
in the above

expression equals zero. Therefore, the only terms which survive are those for which θ = n
or in other words, those for which kn = n. Therefore, the above expression reduces to
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∑
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In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of a
determinant.

Definition 3.3.16 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1) × (n− 1) matrix which results, (This

is called the ijth minor of A. ) and then multiply this number by (−1)
i+j

. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outrageous
totally unjustified assertion was made that the same number would be obtained by expanding
the determinant along any row or column. The following theorem proves this assertion.

Theorem 3.3.17 Let A be an n× n matrix where n ≥ 2. Then

det (A) =
n∑

j=1

aij cof (A)ij =

n∑
i=1

aij cof (A)ij . (3.12)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · , ain) be the ith row of A. Let Bj be the matrix obtained from A by
leaving every row the same except the ith row which in Bj equals (0, · · · , 0, aij , 0, · · · , 0) .
Then by Corollary 3.3.9,

det (A) =

n∑
j=1

det (Bj)
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Now in the matrix A, replace the kth column with the rth column and then expand along
the kth column. This yields for k ̸= r,

n∑
i=1

air cof (A)ik det(A)−1 = 0

because there are two equal columns by Corollary 3.3.9. Summarizing,

n∑
i=1

air cof (A)ik det (A)
−1

= δrk.

Using the other formula in Theorem 3.3.17, and similar reasoning,

n∑
j=1

arj cof (A)kj det (A)
−1

= δrk

This proves that if det (A) ̸= 0, then A−1 exists with A−1 =
(
a−1
ij

)
, where

a−1
ij = cof (A)ji det (A)

−1
.

Now suppose A−1 exists. Then by Theorem 3.3.13,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) ̸= 0. �
The next corollary points out that if an n×n matrix A has a right or a left inverse, then

it has an inverse.

Corollary 3.3.19 Let A be an n × n matrix and suppose there exists an n × n matrix B
such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n× n matrix
such that AC = I, then A−1 exists and A−1 = C.

Proof: Since BA = I, Theorem 3.3.13 implies detB detA = 1 and so detA ̸= 0.
Therefore from Theorem 3.3.18, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1

)
= BI = B.

The case where CA = I is handled similarly. �
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n× n matrices.
Theorem 3.3.18 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =

n∑
j=1

a−1
ij yj =

n∑
j=1

1

det (A)
cof (A)ji yj .
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Now in the matrix A, replace the kth column with the rth column and then expand along
the kth column. This yields for k ̸= r,

n∑
i=1

air cof (A)ik det(A)−1 = 0

because there are two equal columns by Corollary 3.3.9. Summarizing,

n∑
i=1

air cof (A)ik det (A)
−1

= δrk.

Using the other formula in Theorem 3.3.17, and similar reasoning,

n∑
j=1

arj cof (A)kj det (A)
−1

= δrk

This proves that if det (A) ̸= 0, then A−1 exists with A−1 =
(
a−1
ij

)
, where

a−1
ij = cof (A)ji det (A)

−1
.

Now suppose A−1 exists. Then by Theorem 3.3.13,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) ̸= 0. �
The next corollary points out that if an n×n matrix A has a right or a left inverse, then

it has an inverse.

Corollary 3.3.19 Let A be an n × n matrix and suppose there exists an n × n matrix B
such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n× n matrix
such that AC = I, then A−1 exists and A−1 = C.

Proof: Since BA = I, Theorem 3.3.13 implies detB detA = 1 and so detA ̸= 0.
Therefore from Theorem 3.3.18, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1

)
= BI = B.

The case where CA = I is handled similarly. �
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n× n matrices.
Theorem 3.3.18 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =

n∑
j=1

a−1
ij yj =

n∑
j=1

1

det (A)
cof (A)ji yj .3.3. THE MATHEMATICAL THEORY OF DETERMINANTS 101

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det




∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Definition 3.3.20 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii as shown.




∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

With this definition, here is a simple corollary of Theorem 3.3.17.

Corollary 3.3.21 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

3.3.7 Rank Of A Matrix

Definition 3.3.22 A submatrix of a matrix A is the rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m × n matrix. The determinant
rank of the matrix equals r where r is the largest number such that some r × r submatrix
of A has a non zero determinant. The row rank is defined to be the dimension of the span
of the rows. The column rank is defined to be the dimension of the span of the columns.

Theorem 3.3.23 If A, an m×n matrix has determinant rank r, then there exist r rows of
the matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (aij) equals r. Thus some r×r submatrix
has non zero determinant and there is no larger square submatrix which has non zero
determinant. Suppose such a submatrix is determined by the r columns whose indices are

j1 < · · · < jr

and the r rows whose indices are
i1 < · · · < ir

I want to show that every row is a linear combination of these rows. Consider the lth row
and let p be an index between 1 and n. Form the following (r + 1)× (r + 1) matrix




ai1j1 · · · ai1jr ai1p
...

...
...

airj1 · · · airjr airp

alj1 · · · aljr alp



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I want to show that every row is a linear combination of these rows. Consider the lth row
and let p be an index between 1 and n. Form the following (r + 1)× (r + 1) matrix
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
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Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth

row is one of the chosen ones. The above matrix has determinant 0. This is because if
p /∈ {j1, · · · , jr} then the above would be a submatrix of A which is too large to have non
zero determinant. On the other hand, if p ∈ {j1, · · · , jr} then the above matrix has two
columns which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let Ck denote the
cofactor associated with the entry aikp. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated
with alp. This is given to be nonzero, it being the determinant of the matrix r × r matrix
in the upper left corner. Thus

0 = alpC +

r∑
k=1

Ckaikp

which implies

alp =

r∑
k=1

−Ck

C
aikp ≡

r∑
k=1

mkaikp

Since this is true for every p and since mk does not depend on p, this has shown the lth row
is a linear combination of the i1, i2, · · · , ir rows. �

Corollary 3.3.24 The determinant rank equals the row rank.

Proof: From Theorem 3.3.23, every row is in the span of r rows where r is the deter-
minant rank. Therefore, the row rank (dimension of the span of the rows) is no larger than
the determinant rank. Could the row rank be smaller than the determinant rank? If so,
it follows from Theorem 3.3.23 that there exist p rows for p < r ≡ determinant rank, such
that the span of these p rows equals the row space. But then you could consider the r × r
sub matrix which determines the determinant rank and it would follow that each of these
rows would be in the span of the restrictions of the p rows just mentioned. By Theorem
2.6.4, the exchange theorem, the rows of this sub matrix would not be linearly independent
and so some row is a linear combination of the others. By Corollary 3.3.11 the determinant
would be 0, a contradiction. �

Corollary 3.3.25 If A has determinant rank r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 3.3.24,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A.
�

The following theorem is of fundamental importance and ties together many of the ideas
presented above.

Theorem 3.3.26 Let A be an n× n matrix. Then the following are equivalent.

1. det (A) = 0.

2. A,AT are not one to one.

3. A is not onto.
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Proof: Suppose det (A) = 0. Then the determinant rank of A = r < n. Therefore,
there exist r columns such that every other column is a linear combination of these columns
by Theorem 3.3.23. In particular, it follows that for some m, the mth column is a linear

combination of all the others. Thus letting A =
(

a1 · · · am · · · an

)
where the

columns are denoted by ai, there exists scalars αi such that

am =
∑
k ̸=m

αkak.

Now consider the column vector, x ≡
(

α1 · · · −1 · · · αn

)T

. Then

Ax = −am +
∑
k ̸=m

αkak = 0.

Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the
same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x ̸= 0 such that

ATx = 0.

Taking the transpose of both sides yields

xTA = 0T

where the 0T is a 1× n matrix or row vector. Now if Ay = x, then

|x|2 = xT (Ay) =
(
xTA

)
y = 0y = 0

contrary to x ̸= 0. Consequently there can be no y such that Ay = x and so A is not onto.
This shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det (A) ̸= 0 but then from Theorem 3.3.18
A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax = y. In fact
x = A−1y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.). �

Corollary 3.3.27 Let A be an n× n matrix. Then the following are equivalent.

1. det(A) ̸= 0.

2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.

3.3.8 Summary Of Determinants

In all the following A,B are n× n matrices

1. det (A) is a number.

2. det (A) is linear in each row and in each column.
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Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth

row is one of the chosen ones. The above matrix has determinant 0. This is because if
p /∈ {j1, · · · , jr} then the above would be a submatrix of A which is too large to have non
zero determinant. On the other hand, if p ∈ {j1, · · · , jr} then the above matrix has two
columns which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let Ck denote the
cofactor associated with the entry aikp. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated
with alp. This is given to be nonzero, it being the determinant of the matrix r × r matrix
in the upper left corner. Thus

0 = alpC +

r∑
k=1

Ckaikp

which implies

alp =
r∑

k=1

−Ck

C
aikp ≡

r∑
k=1

mkaikp

Since this is true for every p and since mk does not depend on p, this has shown the lth row
is a linear combination of the i1, i2, · · · , ir rows. �

Corollary 3.3.24 The determinant rank equals the row rank.

Proof: From Theorem 3.3.23, every row is in the span of r rows where r is the deter-
minant rank. Therefore, the row rank (dimension of the span of the rows) is no larger than
the determinant rank. Could the row rank be smaller than the determinant rank? If so,
it follows from Theorem 3.3.23 that there exist p rows for p < r ≡ determinant rank, such
that the span of these p rows equals the row space. But then you could consider the r × r
sub matrix which determines the determinant rank and it would follow that each of these
rows would be in the span of the restrictions of the p rows just mentioned. By Theorem
2.6.4, the exchange theorem, the rows of this sub matrix would not be linearly independent
and so some row is a linear combination of the others. By Corollary 3.3.11 the determinant
would be 0, a contradiction. �

Corollary 3.3.25 If A has determinant rank r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 3.3.24,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A.
�

The following theorem is of fundamental importance and ties together many of the ideas
presented above.

Theorem 3.3.26 Let A be an n× n matrix. Then the following are equivalent.

1. det (A) = 0.

2. A,AT are not one to one.

3. A is not onto.
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3. If you switch two rows or two columns, the determinant of the resulting matrix is −1
times the determinant of the unswitched matrix. (This and the previous one say

(a1 · · ·an) → det (a1 · · ·an)

is an alternating multilinear function or alternating tensor.

4. det (e1, · · · , en) = 1.

5. det (AB) = det (A) det (B)

6. det (A) can be expanded along any row or any column and the same result is obtained.

7. det (A) = det
(
AT

)

8. A−1 exists if and only if det (A) ̸= 0 and in this case

(
A−1

)
ij
=

1

det (A)
cof (A)ji (3.13)

9. Determinant rank, row rank and column rank are all the same number for any m× n
matrix.

3.4 The Cayley Hamilton Theorem

Definition 3.4.1 Let A be an n× n matrix. The characteristic polynomial is defined as

qA (t) ≡ det (tI −A)

and the solutions to qA (t) = 0 are called eigenvalues. For A a matrix and p (t) = tn +
an−1t

n−1 + · · ·+ a1t+ a0, denote by p (A) the matrix defined by

p (A) ≡ An + an−1A
n−1 + · · ·+ a1A+ a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by qA (t) = 0. It is one of the most important theorems in linear
algebra1. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 3.4.2 Suppose for all |λ| large enough,

A0 +A1λ+ · · ·+Amλm = 0,

where the Ai are n× n matrices. Then each Ai = 0.

Proof: Suppose some Ai ̸= 0. Let p be the largest index of those which are non zero.
Then multiply by λ−p.

A0λ
−p +A1λ

−p+1 + · · ·+Ap−1λ
−1 +Ap = 0

Now let λ → ∞. Thus Ap = 0 after all. Hence each Ai = 0. �
With the lemma, here is a simple corollary.

1A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some
time later and a proof was given by Frobenius in 1878.
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Proof: Suppose det (A) = 0. Then the determinant rank of A = r < n. Therefore,
there exist r columns such that every other column is a linear combination of these columns
by Theorem 3.3.23. In particular, it follows that for some m, the mth column is a linear

combination of all the others. Thus letting A =
(

a1 · · · am · · · an

)
where the

columns are denoted by ai, there exists scalars αi such that

am =
∑
k ̸=m

αkak.

Now consider the column vector, x ≡
(

α1 · · · −1 · · · αn

)T

. Then

Ax = −am +
∑
k ̸=m

αkak = 0.

Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the
same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x ̸= 0 such that

ATx = 0.

Taking the transpose of both sides yields

xTA = 0T

where the 0T is a 1× n matrix or row vector. Now if Ay = x, then

|x|2 = xT (Ay) =
(
xTA

)
y = 0y = 0

contrary to x ̸= 0. Consequently there can be no y such that Ay = x and so A is not onto.
This shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det (A) ̸= 0 but then from Theorem 3.3.18
A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax = y. In fact
x = A−1y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.). �

Corollary 3.3.27 Let A be an n× n matrix. Then the following are equivalent.

1. det(A) ̸= 0.

2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.

3.3.8 Summary Of Determinants

In all the following A,B are n× n matrices

1. det (A) is a number.

2. det (A) is linear in each row and in each column.
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3. If you switch two rows or two columns, the determinant of the resulting matrix is −1
times the determinant of the unswitched matrix. (This and the previous one say

(a1 · · ·an) → det (a1 · · ·an)

is an alternating multilinear function or alternating tensor.

4. det (e1, · · · , en) = 1.

5. det (AB) = det (A) det (B)

6. det (A) can be expanded along any row or any column and the same result is obtained.

7. det (A) = det
(
AT

)

8. A−1 exists if and only if det (A) ̸= 0 and in this case

(
A−1

)
ij
=

1

det (A)
cof (A)ji (3.13)

9. Determinant rank, row rank and column rank are all the same number for any m× n
matrix.

3.4 The Cayley Hamilton Theorem

Definition 3.4.1 Let A be an n× n matrix. The characteristic polynomial is defined as

qA (t) ≡ det (tI −A)

and the solutions to qA (t) = 0 are called eigenvalues. For A a matrix and p (t) = tn +
an−1t

n−1 + · · ·+ a1t+ a0, denote by p (A) the matrix defined by

p (A) ≡ An + an−1A
n−1 + · · ·+ a1A+ a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by qA (t) = 0. It is one of the most important theorems in linear
algebra1. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 3.4.2 Suppose for all |λ| large enough,

A0 +A1λ+ · · ·+Amλm = 0,

where the Ai are n× n matrices. Then each Ai = 0.

Proof: Suppose some Ai ̸= 0. Let p be the largest index of those which are non zero.
Then multiply by λ−p.

A0λ
−p +A1λ

−p+1 + · · ·+Ap−1λ
−1 +Ap = 0

Now let λ → ∞. Thus Ap = 0 after all. Hence each Ai = 0. �
With the lemma, here is a simple corollary.

1A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some
time later and a proof was given by Frobenius in 1878.
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9. Determinant rank, row rank and column rank are all the same number for any m× n
matrix.

3.4 The Cayley Hamilton Theorem

Definition 3.4.1 Let A be an n× n matrix. The characteristic polynomial is defined as
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The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by qA (t) = 0. It is one of the most important theorems in linear
algebra1. The proof in this section is not the most general proof, but works well when the
field of scalars is R or C. The following lemma will help with its proof.

Lemma 3.4.2 Suppose for all |λ| large enough,

A0 +A1λ+ · · ·+Amλm = 0,

where the Ai are n× n matrices. Then each Ai = 0.

Proof: Suppose some Ai ̸= 0. Let p be the largest index of those which are non zero.
Then multiply by λ−p.

A0λ
−p +A1λ

−p+1 + · · ·+Ap−1λ
−1 +Ap = 0

Now let λ → ∞. Thus Ap = 0 after all. Hence each Ai = 0. �
With the lemma, here is a simple corollary.

1A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some
time later and a proof was given by Frobenius in 1878.
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Corollary 3.4.3 Let Ai and Bi be n× n matrices and suppose

A0 +A1λ+ · · ·+Amλm = B0 +B1λ+ · · ·+Bmλm

for all |λ| large enough. Then Ai = Bi for all i. If Ai = Bi for each Ai, Bi then one can
substitute an n× n matrix M for λ and the identity will continue to hold.

Proof: Subtract and use the result of the lemma. The last claim is obvious by matching
terms. �

With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 3.4.4 Let A be an n×n matrix and let q (λ) ≡ det (λI −A) be the characteristic
polynomial. Then q (A) = 0.

Proof: Let C (λ) equal the transpose of the cofactor matrix of (λI −A) for |λ| large.
(If |λ| is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such

λ, (λI −A)
−1

exists.) Therefore, by Theorem 3.3.18

C (λ) = q (λ) (λI −A)
−1

.

Say
q (λ) = a0 + a1λ+ · · ·+ λn

Note that each entry in C (λ) is a polynomial in λ having degree no more than n − 1. For
example, you might have something like

C (λ) =




λ2 − 6λ+ 9 3− λ 0

2λ− 6 λ2 − 3λ 0

λ− 1 λ− 1 λ2 − 3λ+ 2




=




9 3 0

−6 0 0

−1 −1 2


+ λ




−6 −1 0

2 −3 0

1 1 −3


+ λ2




1 0 0

0 1 0

0 0 1




Therefore, collecting the terms in the general case,

C (λ) = C0 + C1λ+ · · ·+ Cn−1λ
n−1

for Cj some n× n matrix. Then

C (λ) (λI −A) =
(
C0 + C1λ+ · · ·+ Cn−1λ

n−1
)
(λI −A) = q (λ) I

Then multiplying out the middle term, it follows that for all |λ| sufficiently large,

a0I + a1Iλ+ · · ·+ Iλn = C0λ+ C1λ
2 + · · ·+ Cn−1λ

n

−
[
C0A+ C1Aλ+ · · ·+ Cn−1Aλn−1

]

= −C0A+ (C0 − C1A)λ+ (C1 − C2A)λ2 + · · ·+ (Cn−2 − Cn−1A)λn−1 + Cn−1λ
n

Then, using Corollary 3.4.3, one can replace λ on both sides with A. Then the right side is
seen to equal 0. Hence the left side, q (A) I is also equal to 0. �
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)
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Then multiplying out the middle term, it follows that for all |λ| sufficiently large,
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3.5 Block Multiplication Of Matrices

Consider the following problem
(

A B

C D

)(
E F

G H

)

You know how to do this. You get
(

AE +BG AF +BH

CE +DG CF +DH

)
.

Now what if instead of numbers, the entries, A,B,C,D,E, F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case? I will show below that this is true.

Suppose A is a matrix of the form

A =




A11 · · · A1m

...
. . .

...

Ar1 · · · Arm


 (3.14)

where Aij is a si × pj matrix where si is constant for j = 1, · · · ,m for each i = 1, · · · , r.
Such a matrix is called a block matrix, also a partitioned matrix. How do you get the
block Aij? Here is how for A an m× n matrix:

si×m� �� �(
0 Isi×si 0

)
A

n×pj� �� �


0

Ipj×pj

0


. (3.15)

In the block column matrix on the right, you need to have cj − 1 rows of zeros above the
small pj × pj identity matrix where the columns of A involved in Aij are cj , · · · , cj + pj − 1
and in the block row matrix on the left, you need to have ri − 1 columns of zeros to the left
of the si × si identity matrix where the rows of A involved in Aij are ri, · · · , ri + si. An
important observation to make is that the matrix on the right specifies columns to use in
the block and the one on the left specifies the rows used. Thus the block Aij in this case
is a matrix of size si × pj . There is no overlap between the blocks of A. Thus the identity
n× n identity matrix corresponding to multiplication on the right of A is of the form




Ip1×p1 0
. . .

0 Ipm×pm




where these little identity matrices don’t overlap. A similar conclusion follows from consid-
eration of the matrices Isi×si . Note that in 3.15 the matrix on the right is a block column
matrix for the above block diagonal matrix and the matrix on the left in 3.15 is a block row
matrix taken from a similar block diagonal matrix consisting of the Isi×si .

Next consider the question of multiplication of two block matrices. Let B,A be block
matrices of the form 


B11 · · · B1p

...
. . .

...

Br1 · · · Brp


 ,




A11 · · · A1m

...
. . .

...

Ap1 · · · Apm


 (3.16)
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3.5 Block Multiplication Of Matrices

Consider the following problem
(

A B

C D

)(
E F

G H

)

You know how to do this. You get
(

AE +BG AF +BH

CE +DG CF +DH

)
.

Now what if instead of numbers, the entries, A,B,C,D,E, F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case? I will show below that this is true.

Suppose A is a matrix of the form

A =




A11 · · · A1m

...
. . .

...

Ar1 · · · Arm


 (3.14)

where Aij is a si × pj matrix where si is constant for j = 1, · · · ,m for each i = 1, · · · , r.
Such a matrix is called a block matrix, also a partitioned matrix. How do you get the
block Aij? Here is how for A an m× n matrix:

si×m� �� �(
0 Isi×si 0

)
A

n×pj� �� �


0

Ipj×pj

0


. (3.15)

In the block column matrix on the right, you need to have cj − 1 rows of zeros above the
small pj × pj identity matrix where the columns of A involved in Aij are cj , · · · , cj + pj − 1
and in the block row matrix on the left, you need to have ri − 1 columns of zeros to the left
of the si × si identity matrix where the rows of A involved in Aij are ri, · · · , ri + si. An
important observation to make is that the matrix on the right specifies columns to use in
the block and the one on the left specifies the rows used. Thus the block Aij in this case
is a matrix of size si × pj . There is no overlap between the blocks of A. Thus the identity
n× n identity matrix corresponding to multiplication on the right of A is of the form




Ip1×p1 0
. . .

0 Ipm×pm




where these little identity matrices don’t overlap. A similar conclusion follows from consid-
eration of the matrices Isi×si . Note that in 3.15 the matrix on the right is a block column
matrix for the above block diagonal matrix and the matrix on the left in 3.15 is a block row
matrix taken from a similar block diagonal matrix consisting of the Isi×si .

Next consider the question of multiplication of two block matrices. Let B,A be block
matrices of the form 


B11 · · · B1p

...
. . .

...

Br1 · · · Brp


 ,




A11 · · · A1m

...
. . .

...

Ap1 · · · Apm


 (3.16)
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and that for all i, j, it makes sense to multiply BisAsj for all s ∈ {1, · · · , p}. (That is the
two matrices, Bis and Asj are conformable.) and that for fixed ij, it follows BisAsj is the
same size for each s so that it makes sense to write

∑
s BisAsj .

The following theorem says essentially that when you take the product of two matrices,
you can do it two ways. One way is to simply multiply them forming BA. The other way
is to partition both matrices, formally multiply the blocks to get another block matrix and
this one will be BA partitioned. Before presenting this theorem, here is a simple lemma
which is really a special case of the theorem.

Lemma 3.5.1 Consider the following product.



0

I

0




(
0 I 0

)

where the first is n×r and the second is r×n. The small identity matrix I is an r×r matrix
and there are l zero rows above I and l zero columns to the left of I in the right matrix.
Then the product of these matrices is a block matrix of the form




0 0 0

0 I 0

0 0 0




Proof: From the definition of the way you multiply matrices, the product is






0

I

0


0 · · ·




0

I

0


0




0

I

0


 e1 · · ·




0

I

0


 er




0

I

0


0 · · ·




0

I

0


0




which yields the claimed result. In the formula ej refers to the column vector of length r
which has a 1 in the jth position. �

Theorem 3.5.2 Let B be a q× p block matrix as in 3.16 and let A be a p× n block matrix
as in 3.16 such that Bis is conformable with Asj and each product, BisAsj for s = 1, · · · , p
is of the same size so they can be added. Then BA can be obtained as a block matrix such
that the ijth block is of the form ∑

s

BisAsj . (3.17)

Proof: From 3.15

BisAsj =
(

0 Iri×ri 0
)
B




0

Ips×ps

0




(
0 Ips×ps 0

)
A




0

Iqj×qj

0




where here it is assumed Bis is ri × ps and Asj is ps × qj . The product involves the sth

block in the ith row of blocks for B and the sth block in the jth column of A. Thus there
are the same number of rows above the Ips×ps as there are columns to the left of Ips×ps in
those two inside matrices. Then from Lemma 3.5.1




0

Ips×ps

0




(
0 Ips×ps

0
)
=




0 0 0

0 Ips×ps
0

0 0 0



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and that for all i, j, it makes sense to multiply BisAsj for all s ∈ {1, · · · , p}. (That is the
two matrices, Bis and Asj are conformable.) and that for fixed ij, it follows BisAsj is the
same size for each s so that it makes sense to write

∑
s BisAsj .

The following theorem says essentially that when you take the product of two matrices,
you can do it two ways. One way is to simply multiply them forming BA. The other way
is to partition both matrices, formally multiply the blocks to get another block matrix and
this one will be BA partitioned. Before presenting this theorem, here is a simple lemma
which is really a special case of the theorem.

Lemma 3.5.1 Consider the following product.



0

I

0




(
0 I 0

)

where the first is n×r and the second is r×n. The small identity matrix I is an r×r matrix
and there are l zero rows above I and l zero columns to the left of I in the right matrix.
Then the product of these matrices is a block matrix of the form




0 0 0

0 I 0

0 0 0




Proof: From the definition of the way you multiply matrices, the product is






0

I

0


0 · · ·




0

I

0


0




0

I

0


 e1 · · ·




0

I

0


 er




0

I

0


0 · · ·




0

I

0


0




which yields the claimed result. In the formula ej refers to the column vector of length r
which has a 1 in the jth position. �

Theorem 3.5.2 Let B be a q× p block matrix as in 3.16 and let A be a p× n block matrix
as in 3.16 such that Bis is conformable with Asj and each product, BisAsj for s = 1, · · · , p
is of the same size so they can be added. Then BA can be obtained as a block matrix such
that the ijth block is of the form ∑

s

BisAsj . (3.17)

Proof: From 3.15

BisAsj =
(

0 Iri×ri 0
)
B




0

Ips×ps

0




(
0 Ips×ps 0

)
A




0

Iqj×qj

0




where here it is assumed Bis is ri × ps and Asj is ps × qj . The product involves the sth

block in the ith row of blocks for B and the sth block in the jth column of A. Thus there
are the same number of rows above the Ips×ps as there are columns to the left of Ips×ps in
those two inside matrices. Then from Lemma 3.5.1




0

Ips×ps

0




(
0 Ips×ps

0
)
=




0 0 0

0 Ips×ps
0

0 0 0



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Since the blocks of small identity matrices do not overlap,

∑
s




0 0 0

0 Ips×ps
0

0 0 0


 =




Ip1×p1
0

. . .

0 Ipp×pp


 = I

and so

∑
s

BisAsj =
∑
s

(
0 Iri×ri 0

)
B




0

Ips×ps

0




(
0 Ips×ps

0
)
A




0

Iqj×qj

0




=
(

0 Iri×ri 0
)
B
∑
s




0

Ips×ps

0




(
0 Ips×ps

0
)
A




0

Iqj×qj

0




=
(

0 Iri×ri 0
)
BIA




0

Iqj×qj

0


 =

(
0 Iri×ri 0

)
BA




0

Iqj×qj

0




which equals the ijth block of BA. Hence the ijth block of BA equals the formal multipli-
cation according to matrix multiplication,

∑
s BisAsj . �

Example 3.5.3 Let an n×n matrix have the form A =

(
a b

c P

)
where P is n−1×n−1.

Multiply it by B =

(
p q

r Q

)
where B is also an n× n matrix and Q is n− 1× n− 1.

You use block multiplication
(

a b

c P

)(
p q

r Q

)
=

(
ap+ br aq+ bQ

pc+ Pr cq+ PQ

)

Note that this all makes sense. For example, b = 1 × n − 1 and r = n − 1 × 1 so br is a
1× 1. Similar considerations apply to the other blocks.

Here is an interesting and significant application of block multiplication. In this theorem,
qM (t) denotes the characteristic polynomial, det (tI −M) . The zeros of this polynomial will
be shown later to be eigenvalues of the matrix M . First note that from block multiplication,
for the following block matrices consisting of square blocks of an appropriate size,

(
A 0

B C

)
=

(
A 0

B I

)(
I 0

0 C

)
so

det

(
A 0

B C

)
= det

(
A 0

B I

)
det

(
I 0

0 C

)
= det (A) det (C)

Theorem 3.5.4 Let A be an m×n matrix and let B be an n×m matrix for m ≤ n. Then

qBA (t) = tn−mqAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that BA has
n−m extra zero eigenvalues. Here qA (t) denotes the characteristic polynomial of the matrix
A.
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Since the blocks of small identity matrices do not overlap,

∑
s




0 0 0

0 Ips×ps
0

0 0 0


 =




Ip1×p1
0

. . .

0 Ipp×pp


 = I

and so

∑
s

BisAsj =
∑
s

(
0 Iri×ri 0

)
B




0

Ips×ps

0




(
0 Ips×ps

0
)
A




0

Iqj×qj

0




=
(

0 Iri×ri 0
)
B
∑
s




0

Ips×ps

0




(
0 Ips×ps

0
)
A




0

Iqj×qj

0




=
(

0 Iri×ri 0
)
BIA




0

Iqj×qj

0


 =

(
0 Iri×ri 0

)
BA




0

Iqj×qj

0




which equals the ijth block of BA. Hence the ijth block of BA equals the formal multipli-
cation according to matrix multiplication,

∑
s BisAsj . �

Example 3.5.3 Let an n×n matrix have the form A =

(
a b

c P

)
where P is n−1×n−1.

Multiply it by B =

(
p q

r Q

)
where B is also an n× n matrix and Q is n− 1× n− 1.

You use block multiplication
(

a b

c P

)(
p q

r Q

)
=

(
ap+ br aq+ bQ

pc+ Pr cq+ PQ

)

Note that this all makes sense. For example, b = 1 × n − 1 and r = n − 1 × 1 so br is a
1× 1. Similar considerations apply to the other blocks.

Here is an interesting and significant application of block multiplication. In this theorem,
qM (t) denotes the characteristic polynomial, det (tI −M) . The zeros of this polynomial will
be shown later to be eigenvalues of the matrix M . First note that from block multiplication,
for the following block matrices consisting of square blocks of an appropriate size,

(
A 0

B C

)
=

(
A 0

B I

)(
I 0

0 C

)
so

det

(
A 0

B C

)
= det

(
A 0

B I

)
det

(
I 0

0 C

)
= det (A) det (C)

Theorem 3.5.4 Let A be an m×n matrix and let B be an n×m matrix for m ≤ n. Then

qBA (t) = tn−mqAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that BA has
n−m extra zero eigenvalues. Here qA (t) denotes the characteristic polynomial of the matrix
A.
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Since the blocks of small identity matrices do not overlap,

∑
s




0 0 0

0 Ips×ps
0

0 0 0


 =




Ip1×p1
0

. . .

0 Ipp×pp


 = I

and so

∑
s

BisAsj =
∑
s

(
0 Iri×ri 0

)
B




0

Ips×ps

0




(
0 Ips×ps

0
)
A




0

Iqj×qj

0




=
(

0 Iri×ri 0
)
B
∑
s




0

Ips×ps

0




(
0 Ips×ps

0
)
A




0

Iqj×qj

0




=
(

0 Iri×ri 0
)
BIA




0

Iqj×qj

0


 =

(
0 Iri×ri 0

)
BA




0

Iqj×qj

0




which equals the ijth block of BA. Hence the ijth block of BA equals the formal multipli-
cation according to matrix multiplication,

∑
s BisAsj . �

Example 3.5.3 Let an n×n matrix have the form A =

(
a b

c P

)
where P is n−1×n−1.

Multiply it by B =

(
p q

r Q

)
where B is also an n× n matrix and Q is n− 1× n− 1.

You use block multiplication
(

a b

c P

)(
p q

r Q

)
=

(
ap+ br aq+ bQ

pc+ Pr cq+ PQ

)

Note that this all makes sense. For example, b = 1 × n − 1 and r = n − 1 × 1 so br is a
1× 1. Similar considerations apply to the other blocks.

Here is an interesting and significant application of block multiplication. In this theorem,
qM (t) denotes the characteristic polynomial, det (tI −M) . The zeros of this polynomial will
be shown later to be eigenvalues of the matrix M . First note that from block multiplication,
for the following block matrices consisting of square blocks of an appropriate size,

(
A 0

B C

)
=

(
A 0

B I

)(
I 0

0 C

)
so

det

(
A 0

B C

)
= det

(
A 0

B I

)
det

(
I 0

0 C

)
= det (A) det (C)

Theorem 3.5.4 Let A be an m×n matrix and let B be an n×m matrix for m ≤ n. Then

qBA (t) = tn−mqAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that BA has
n−m extra zero eigenvalues. Here qA (t) denotes the characteristic polynomial of the matrix
A.
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Proof: Use block multiplication to write

(
AB 0

B 0

)(
I A

0 I

)
=

(
AB ABA

B BA

)

(
I A

0 I

)(
0 0

B BA

)
=

(
AB ABA

B BA

)
.

(
I A

0 I

)(
0 0

B BA

)
=

(
AB 0

B 0

)(
I A

0 I

)

Therefore, (
I A

0 I

)−1 (
AB 0

B 0

)(
I A

0 I

)
=

(
0 0

B BA

)

Since the two matrices above are similar, it follows that

(
0m×m 0

B BA

)
,

(
AB 0

B 0n×n

)

have the same characteristic polynomials. See Problem 8 on Page 90. Thus

det

(
tIm×m 0

−B tI −BA

)
= det

(
tI −AB 0

−B tIn×n

)
(3.18)

Therefore,
tm det (tI −BA) = tn det (tI −AB) (3.19)

and so det (tI −BA) = qBA (t) = tn−m det (tI −AB) = tn−mqAB (t) . �

3.6 Exercises

1. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint:
Consider the n× n matrix A1 which is of the form

A1 ≡

(
A

0

)

where the 0 denotes an (n−m) × n matrix of zeros. Thus detA1 = 0 and so A1 is
not one to one. Now observe that A1x is the vector,

A1x =

(
Ax

0

)

which equals zero if and only if Ax = 0.

2. Let v1, · · · ,vn be vectors in Fn and let M (v1, · · · ,vn) denote the matrix whose ith

column equals vi. Define

d (v1, · · · ,vn) ≡ det (M (v1, · · · ,vn)) .
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Prove that d is linear in each variable, (multilinear), that

d (v1, · · · ,vi, · · · ,vj , · · · ,vn) = −d (v1, · · · ,vj , · · · ,vi, · · · ,vn) , (3.20)

and
d (e1, · · · , en) = 1 (3.21)

where here ej is the vector in Fn which has a zero in every position except the jth

position in which it has a one.

3. Suppose f : Fn × · · · × Fn → F satisfies 3.20 and 3.21 and is linear in each variable.
Show that f = d.

4. Show that if you replace a row (column) of an n × n matrix A with itself added to
some multiple of another row (column) then the new matrix has the same determinant
as the original one.

5. Use the result of Problem 4 to evaluate by hand the determinant

det




1 2 3 2

−6 3 2 3

5 2 2 3

3 4 6 4


 .

6. Find the inverse if it exists of the matrix



et cos t sin t

et − sin t cos t

et − cos t − sin t


 .

7. Let Ly = y(n) + an−1 (x) y
(n−1) + · · · + a1 (x) y

′ + a0 (x) y where the ai are given
continuous functions defined on an interval, (a, b) and y is some function which has n
derivatives so it makes sense to write Ly. Suppose Lyk = 0 for k = 1, 2, · · · , n. The
Wronskian of these functions, yi is defined as

W (y1, · · · , yn) (x) ≡ det




y1 (x) · · · yn (x)

y′1 (x) · · · y′n (x)
...

...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)




Show that for W (x) = W (y1, · · · , yn) (x) to save space,

W ′ (x) = det




y1 (x) · · · yn (x)
... · · ·

...

y
(n−2)
1 (x) y

(n−2)
n (x)

y
(n)
1 (x) · · · y

(n)
n (x)




.

Now use the differential equation, Ly = 0 which is satisfied by each of these functions,
yi and properties of determinants presented above to verify that W ′+an−1 (x)W = 0.
Give an explicit solution of this linear differential equation, Abel’s formula, and use
your answer to verify that the Wronskian of these solutions to the equation, Ly = 0
either vanishes identically on (a, b) or never.
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8. Two n × n matrices, A and B, are similar if B = S−1AS for some invertible n × n
matrix S. Show that if two matrices are similar, they have the same characteristic
polynomials. The characteristic polynomial of A is det (λI −A) .

9. Suppose the characteristic polynomial of an n× n matrix A is of the form

tn + an−1t
n−1 + · · ·+ a1t+ a0

and that a0 ̸= 0. Find a formula A−1 in terms of powers of the matrix A. Show that
A−1 exists if and only if a0 ̸= 0. In fact, show that a0 = (−1)

n
det (A) .

10. ↑Letting p (t) denote the characteristic polynomial of A, show that pε (t) ≡ p (t− ε)
is the characteristic polynomial of A + εI. Then show that if det (A) = 0, it follows
that det (A+ εI) ̸= 0 whenever |ε| is sufficiently small.

11. In constitutive modeling of the stress and strain tensors, one sometimes considers sums
of the form

∑∞
k=0 akA

k where A is a 3×3 matrix. Show using the Cayley Hamilton
theorem that if such a thing makes any sense, you can always obtain it as a finite sum
having no more than n terms.

12. Recall you can find the determinant from expanding along the jth column.

det (A) =
∑
i

Aij (cof (A))ij

Think of det (A) as a function of the entries, Aij . Explain why the ijth cofactor is
really just

∂ det (A)

∂Aij
.

13. Let U be an open set in Rn and let g :U → Rn be such that all the first partial
derivatives of all components of g exist and are continuous. Under these conditions
form the matrix Dg (x) given by

Dg (x)ij ≡
∂gi (x)

∂xj
≡ gi,j (x)

The best kept secret in calculus courses is that the linear transformation determined
by this matrix Dg (x) is called the derivative of g and is the correct generalization
of the concept of derivative of a function of one variable. Suppose the second partial
derivatives also exist and are continuous. Then show that

∑
j (cof (Dg))ij,j = 0.Hint:

First explain why
∑

i gi,k cof (Dg)ij = δjk det (Dg) . Next differentiate with respect to
xj and sum on j using the equality of mixed partial derivatives. Assume det (Dg) ̸= 0
to prove the identity in this special case. Then explain using Problem 10 why there
exists a sequence εk → 0 such that for gεk (x) ≡ g (x) + εkx, det (Dgεk) ̸= 0 and so
the identity holds for gεk . Then take a limit to get the desired result in general. This
is an extremely important identity which has surprising implications. One can build
degree theory on it for example. It also leads to simple proofs of the Brouwer fixed
point theorem from topology. See Evans [9] for example.
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The best kept secret in calculus courses is that the linear transformation determined
by this matrix Dg (x) is called the derivative of g and is the correct generalization
of the concept of derivative of a function of one variable. Suppose the second partial
derivatives also exist and are continuous. Then show that

∑
j (cof (Dg))ij,j = 0.Hint:

First explain why
∑

i gi,k cof (Dg)ij = δjk det (Dg) . Next differentiate with respect to
xj and sum on j using the equality of mixed partial derivatives. Assume det (Dg) ̸= 0
to prove the identity in this special case. Then explain using Problem 10 why there
exists a sequence εk → 0 such that for gεk (x) ≡ g (x) + εkx, det (Dgεk) ̸= 0 and so
the identity holds for gεk . Then take a limit to get the desired result in general. This
is an extremely important identity which has surprising implications. One can build
degree theory on it for example. It also leads to simple proofs of the Brouwer fixed
point theorem from topology. See Evans [9] for example.
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8. Two n × n matrices, A and B, are similar if B = S−1AS for some invertible n × n
matrix S. Show that if two matrices are similar, they have the same characteristic
polynomials. The characteristic polynomial of A is det (λI −A) .

9. Suppose the characteristic polynomial of an n× n matrix A is of the form

tn + an−1t
n−1 + · · ·+ a1t+ a0

and that a0 ̸= 0. Find a formula A−1 in terms of powers of the matrix A. Show that
A−1 exists if and only if a0 ̸= 0. In fact, show that a0 = (−1)

n
det (A) .

10. ↑Letting p (t) denote the characteristic polynomial of A, show that pε (t) ≡ p (t− ε)
is the characteristic polynomial of A + εI. Then show that if det (A) = 0, it follows
that det (A+ εI) ̸= 0 whenever |ε| is sufficiently small.

11. In constitutive modeling of the stress and strain tensors, one sometimes considers sums
of the form

∑∞
k=0 akA

k where A is a 3×3 matrix. Show using the Cayley Hamilton
theorem that if such a thing makes any sense, you can always obtain it as a finite sum
having no more than n terms.

12. Recall you can find the determinant from expanding along the jth column.

det (A) =
∑
i

Aij (cof (A))ij

Think of det (A) as a function of the entries, Aij . Explain why the ijth cofactor is
really just

∂ det (A)

∂Aij
.

13. Let U be an open set in Rn and let g :U → Rn be such that all the first partial
derivatives of all components of g exist and are continuous. Under these conditions
form the matrix Dg (x) given by

Dg (x)ij ≡
∂gi (x)

∂xj
≡ gi,j (x)

The best kept secret in calculus courses is that the linear transformation determined
by this matrix Dg (x) is called the derivative of g and is the correct generalization
of the concept of derivative of a function of one variable. Suppose the second partial
derivatives also exist and are continuous. Then show that

∑
j (cof (Dg))ij,j = 0.Hint:

First explain why
∑

i gi,k cof (Dg)ij = δjk det (Dg) . Next differentiate with respect to
xj and sum on j using the equality of mixed partial derivatives. Assume det (Dg) ̸= 0
to prove the identity in this special case. Then explain using Problem 10 why there
exists a sequence εk → 0 such that for gεk (x) ≡ g (x) + εkx, det (Dgεk) ̸= 0 and so
the identity holds for gεk . Then take a limit to get the desired result in general. This
is an extremely important identity which has surprising implications. One can build
degree theory on it for example. It also leads to simple proofs of the Brouwer fixed
point theorem from topology. See Evans [9] for example.
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14. A determinant of the form
���������������

1 1 · · · 1

a0 a1 · · · an

a20 a21 · · · a2n
...

...
...

an−1
0 an−1

1 · · · an−1
n

an0 an1 · · · ann

���������������

is called a Vandermonde determinant. Show it equals
∏

0≤i<j≤n (aj − ai). By this is
meant to take the product of all terms of the form (aj − ai) such that j > i. Hint:

Show it works if n = 1 so you are looking at

�����
1 1

a0 a1

����� . Then suppose it holds for

n − 1 and consider the case n. Consider the polynomial in t, p (t) which is obtained

from the above by replacing the last column with the column
(

1 t · · · tn
)T

.

Explain why p (aj) = 0 for i = 0, · · · , n − 1. Explain why p (t) = c
∏n−1

i=0 (t− ai) . Of
course c is the coefficient of tn. Find this coefficient from the above description of p (t)
and the induction hypothesis. Then plug in t = an and observe you have the formula
valid for n.

15. The example in this exercise was shown to me by Marc van Leeuwen and it helped to
correct a misleading proof of the Cayley Hamilton theorem presented in this chapter.
If p (λ) = q (λ) for all λ or for all λ large enough where p (λ) , q (λ) are polynomials
having matrix coefficients, then it is not necessarily the case that p (A) = q (A) for A
a matrix of an appropriate size. The proof in question read as though it was using
this incorrect argument. Let

E1 =

(
1 0

0 0

)
, E2 =

(
0 0

0 1

)
, N =

(
0 1

0 0

)

Show that for all λ, (λI + E1) (λI + E2) =
(
λ2 + λ

)
I = (λI + E2) (λI + E1) . How-

ever, (NI + E1) (NI + E2) ̸= (NI + E2) (NI + E1) . Explain why this can happen. In
the proof of the Cayley-Hamilton theorem given in the chapter, show that the matrix
A does commute with the matrices Ci in that argument. Hint: Multiply both sides
out with N in place of λ. Does N commute with Ei?

16. Explain how 3.19 follows from 3.18. Hint: If you have two real or complex polynomials
p (t) , q (t) of degree p and they are equal, for all t ̸= 0, then by continuity, they are
equal for all t. Also

(
tI 0

0 tI −BA

)
=

(
tI 0

0 I

)(
I 0

0 tI −BA

)

thus the determinant of the one on the left equals tm det (tI −BA) .

17. Explain why the proof of the Cayley-Hamilton theorem given in this chapter cannot
possibly hold for arbitrary fields of scalars.

18. Suppose A is m× n and B is n×m. Letting I be the identity of the appropriate size,
is it the case that det (I +AB) = det (I +BA)? Explain why or why not.
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from the above by replacing the last column with the column
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.

Explain why p (aj) = 0 for i = 0, · · · , n − 1. Explain why p (t) = c
∏n−1

i=0 (t− ai) . Of
course c is the coefficient of tn. Find this coefficient from the above description of p (t)
and the induction hypothesis. Then plug in t = an and observe you have the formula
valid for n.

15. The example in this exercise was shown to me by Marc van Leeuwen and it helped to
correct a misleading proof of the Cayley Hamilton theorem presented in this chapter.
If p (λ) = q (λ) for all λ or for all λ large enough where p (λ) , q (λ) are polynomials
having matrix coefficients, then it is not necessarily the case that p (A) = q (A) for A
a matrix of an appropriate size. The proof in question read as though it was using
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Show that for all λ, (λI + E1) (λI + E2) =
(
λ2 + λ

)
I = (λI + E2) (λI + E1) . How-

ever, (NI + E1) (NI + E2) ̸= (NI + E2) (NI + E1) . Explain why this can happen. In
the proof of the Cayley-Hamilton theorem given in the chapter, show that the matrix
A does commute with the matrices Ci in that argument. Hint: Multiply both sides
out with N in place of λ. Does N commute with Ei?

16. Explain how 3.19 follows from 3.18. Hint: If you have two real or complex polynomials
p (t) , q (t) of degree p and they are equal, for all t ̸= 0, then by continuity, they are
equal for all t. Also

(
tI 0

0 tI −BA

)
=

(
tI 0

0 I

)(
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)

thus the determinant of the one on the left equals tm det (tI −BA) .

17. Explain why the proof of the Cayley-Hamilton theorem given in this chapter cannot
possibly hold for arbitrary fields of scalars.

18. Suppose A is m× n and B is n×m. Letting I be the identity of the appropriate size,
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NNE and Pharmaplan have joined forces to create 
NNE Pharmaplan, the world’s leading engineering 
and consultancy company focused entirely on the 
pharma and biotech industries.

Inés Aréizaga Esteva (Spain), 25 years old
Education: Chemical Engineer

NNE Pharmaplan is the world’s leading engineering and consultancy company 
focused entirely on the pharma and biotech industries. We employ more than 
1500 people worldwide and offer global reach and local knowledge along with 
our all-encompassing list of services.                                    nnepharmaplan.com
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newcomer and make it clear to your colleagues what 
you are able to cope. The pharmaceutical fi eld is new 
to me. But busy as they are, most of my colleagues 
fi nd the time to teach me, and they also trust me. 
Even though it was a bit hard at fi rst, I can feel over 
time that I am beginning to be taken seriously and 
that my contribution is appreciated.
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Chapter 4

Row Operations

4.1 Elementary Matrices

The elementary matrices result from doing a row operation to the identity matrix.

Definition 4.1.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

The elementary matrices are given in the following definition.

Definition 4.1.2 The elementary matrices consist of those matrices which result by apply-
ing a row operation to an identity matrix. Those which involve switching rows of the identity
are called permutation matrices. More generally, if (i1, i2, · · · , in) is a permutation, a ma-
trix which has a 1 in the ik position in row k and zero in every other position of that row is
called a permutation matrix. Thus each permutation corresponds to a unique permutation
matrix.

As an example of why these elementary matrices are interesting, consider the following.




0 1 0

1 0 0

0 0 1







a b c d

x y z w

f g h i


 =




x y z w

a b c d

f g h i




A 3×4 matrix was multiplied on the left by an elementary matrix which was obtained from
row operation 1 applied to the identity matrix. This resulted in applying the operation 1
to the given matrix. This is what happens in general.

Now consider what these elementary matrices look like. First consider the one which
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involves switching row i and row j where i < j. This matrix is of the form




1 0
. . .

0 · · · 1
...

...

1 · · · 0
. . .

0 1




The two exceptional rows are shown. The ith row was the jth and the jth row was the ith

in the identity matrix. Now consider what this does to a column vector.




1 0
. . .

0 · · · 1
...

...

1 · · · 0
. . .

0 1







v1
...

vi
...

vj
...

vn




=




v1
...

vj
...

vi
...

vn




Now denote by P ij the elementary matrix which comes from the identity from switching
rows i and j. From what was just explained consider multiplication on the left by this
elementary matrix.

P ij




a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

aj1 aj2 · · · ajp
...

...
...

an1 an2 · · · anp




From the way you multiply matrices this is a matrix which has the indicated columns.




P ij




a11
...

ai1
...

aj1
...

an1




, P ij




a12
...

ai2
...

aj2
...

an2




, · · · , P ij




a1p
...

aip
...

ajp
...

anp






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involves switching row i and row j where i < j. This matrix is of the form
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1 0
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0 · · · 1
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1 · · · 0
. . .

0 1




The two exceptional rows are shown. The ith row was the jth and the jth row was the ith

in the identity matrix. Now consider what this does to a column vector.
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1 0
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0 · · · 1
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Now denote by P ij the elementary matrix which comes from the identity from switching
rows i and j. From what was just explained consider multiplication on the left by this
elementary matrix.

P ij




a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

aj1 aj2 · · · ajp
...

...
...

an1 an2 · · · anp



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

a1p
...

aip
...

ajp
...

anp






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=







a11
...

aj1
...

ai1
...

an1




,




a12
...

aj2
...

ai2
...

an2




, · · · ,




a1p
...

ajp
...

aip
...

anp







=




a11 a12 · · · a1p
...

...
...

aj1 aj2 · · · ajp
...

...
...

ai1 ai2 · · · aip
...

...
...

an1 an2 · · · anp




This has established the following lemma.

Lemma 4.1.3 Let P ij denote the elementary matrix which involves switching the ith and
the jth rows. Then

P ijA = B

where B is obtained from A by switching the ith and the jth rows.

As a consequence of the above lemma, if you have any permutation (i1, · · · , in), it
follows from Lemma 3.3.2 that the corresponding permutation matrix can be obtained by
multiplying finitely many permutation matrices, each of which switch only two rows. Now
every such permutation matrix in which only two rows are switched has determinant −1.
Therefore, the determinant of the permutation matrix for (i1, · · · , in) equals (−1)

p
where

the given permutation can be obtained by making p switches. Now p is not unique. There
are many ways to make switches and end up with a given permutation, but what this shows
is that the total number of switches is either always odd or always even. That is, you could
not obtain a given permutation by making 2m switches and 2k+1 switches. A permutation
is said to be even if p is even and odd if p is odd. This is an interesting result in abstract
algebra which is obtained very easily from a consideration of elementary matrices and of
course the theory of the determinant. Also, this shows that the composition of permutations
corresponds to the product of the corresponding permutation matrices.

To see permutations considered more directly in the context of group theory, you should
see a good abstract algebra book such as [18] or [14].

Next consider the row operation which involves multiplying the ith row by a nonzero
constant, c. The elementary matrix which results from applying this operation to the ith

row of the identity matrix is of the form



1 0
. . .

c
. . .

0 1



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=







a11
...

aj1
...

ai1
...

an1




,




a12
...

aj2
...

ai2
...

an2




, · · · ,




a1p
...

ajp
...

aip
...

anp







=




a11 a12 · · · a1p
...

...
...

aj1 aj2 · · · ajp
...

...
...

ai1 ai2 · · · aip
...

...
...

an1 an2 · · · anp




This has established the following lemma.

Lemma 4.1.3 Let P ij denote the elementary matrix which involves switching the ith and
the jth rows. Then

P ijA = B

where B is obtained from A by switching the ith and the jth rows.

As a consequence of the above lemma, if you have any permutation (i1, · · · , in), it
follows from Lemma 3.3.2 that the corresponding permutation matrix can be obtained by
multiplying finitely many permutation matrices, each of which switch only two rows. Now
every such permutation matrix in which only two rows are switched has determinant −1.
Therefore, the determinant of the permutation matrix for (i1, · · · , in) equals (−1)

p
where

the given permutation can be obtained by making p switches. Now p is not unique. There
are many ways to make switches and end up with a given permutation, but what this shows
is that the total number of switches is either always odd or always even. That is, you could
not obtain a given permutation by making 2m switches and 2k+1 switches. A permutation
is said to be even if p is even and odd if p is odd. This is an interesting result in abstract
algebra which is obtained very easily from a consideration of elementary matrices and of
course the theory of the determinant. Also, this shows that the composition of permutations
corresponds to the product of the corresponding permutation matrices.

To see permutations considered more directly in the context of group theory, you should
see a good abstract algebra book such as [18] or [14].

Next consider the row operation which involves multiplying the ith row by a nonzero
constant, c. The elementary matrix which results from applying this operation to the ith

row of the identity matrix is of the form



1 0
. . .

c
. . .

0 1



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Now consider what this does to a column vector.




1 0
. . .

c
. . .

0 1







v1
...

vi
...

vn




=




v1
...

cvi
...

vn




Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity
by the nonzero constant, c. Then from what was just discussed and the way matrices are
multiplied,

E (c, i)




a11 a12 · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · aip
...

...
...

an1 an2 · · · · · · anp




equals a matrix having the columns indicated below.

=



E (c, i)




a11
...

ai1
...

an1




, E (c, i)




a12
...

ai2
...

an2




, · · · , E (c, i)




a1p
...

aip
...

anp







=




a11 a12 · · · · · · a1p
...

...
...

cai1 cai2 · · · · · · caip
...

...
...

an1 an2 · · · · · · anp




This proves the following lemma.

Lemma 4.1.4 Let E (c, i) denote the elementary matrix corresponding to the row opera-
tion in which the ith row is multiplied by the nonzero constant, c. Thus E (c, i) involves
multiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Finally consider the third of these row operations. Denote byE (c× i+ j) the elementary
matrix which replaces the jth row with itself added to c times the ith row added to it. In

4.1. ELEMENTARY MATRICES 117

case i < j this will be of the form




1 0
. . .

1
...

. . .

c · · · 1
. . .

0 1




Now consider what this does to a column vector.



1 0
. . .

1
...

. . .

c · · · 1
. . .

0 1







v1
...

vi
...

vj
...

vn




=




v1
...

vi
...

cvi + vj
...

vn




Now from this and the way matrices are multiplied,

E (c× i+ j)




a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

aj2 aj2 · · · · · · · · · · · · ajp
...

...
...

an1 an2 · · · · · · · · · · · · anp




equals a matrix of the following form having the indicated columns.




E (c× i+ j)




a11
...

ai1
...

aj2
...

an1




, E (c× i+ j)




a12
...

ai2
...

aj2
...

an2




, · · ·E (c× i+ j)




a1p
...

aip
...

ajp
...

anp






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case i < j this will be of the form




1 0
. . .

1
...

. . .

c · · · 1
. . .

0 1




Now consider what this does to a column vector.



1 0
. . .

1
...

. . .

c · · · 1
. . .

0 1







v1
...

vi
...

vj
...

vn




=




v1
...

vi
...

cvi + vj
...

vn




Now from this and the way matrices are multiplied,

E (c× i+ j)




a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

aj2 aj2 · · · · · · · · · · · · ajp
...

...
...

an1 an2 · · · · · · · · · · · · anp




equals a matrix of the following form having the indicated columns.




E (c× i+ j)




a11
...

ai1
...

aj2
...

an1




, E (c× i+ j)




a12
...

ai2
...

aj2
...

an2




, · · ·E (c× i+ j)




a1p
...

aip
...

ajp
...

anp






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=




a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

aj2 + cai1 aj2 + cai2 · · · ajp + caip
...

...
...

an1 an2 · · · anp




The case where i > j is handled similarly. This proves the following lemma.

Lemma 4.1.5 Let E (c× i+ j) denote the elementary matrix obtained from I by replacing
the jth row with c times the ith row added to it. Then

E (c× i+ j)A = B

where B is obtained from A by replacing the jth row of A with itself added to c times the
ith row of A.

The next theorem is the main result.

Theorem 4.1.6 To perform any of the three row operations on a matrix A it suffices to do
the row operation on the identity matrix obtaining an elementary matrix E and then take
the product, EA. Furthermore, each elementary matrix is invertible and its inverse is an
elementary matrix.

Proof: The first part of this theorem has been proved in Lemmas 4.1.3 - 4.1.5. It
only remains to verify the claim about the inverses. Consider first the elementary matrices
corresponding to row operation of type three.

E (−c× i+ j)E (c× i+ j) = I

This follows because the first matrix takes c times row i in the identity and adds it to row j.
When multiplied on the left by E (−c× i+ j) it follows from the first part of this theorem
that you take the ith row of E (c× i+ j) which coincides with the ith row of I since that
row was not changed, multiply it by −c and add to the jth row of E (c× i+ j) which was
the jth row of I added to c times the ith row of I. Thus E (−c× i+ j) multiplied on the
left, undoes the row operation which resulted in E (c× i+ j). The same argument applied
to the product

E (c× i+ j)E (−c× i+ j)

replacing c with −c in the argument yields that this product is also equal to I. Therefore,
E (c× i+ j)

−1
= E (−c× i+ j) .

Similar reasoning shows that for E (c, i) the elementary matrix which comes from mul-
tiplying the ith row by the nonzero constant, c,

E (c, i)
−1

= E
(
c−1, i

)
.

Finally, consider P ij which involves switching the ith and the jth rows.

P ijP ij = I

because by the first part of this theorem, multiplying on the left by P ij switches the ith

and jth rows of P ij which was obtained from switching the ith and jth rows of the identity.
First you switch them to get P ij and then you multiply on the left by P ij which switches

these rows again and restores the identity matrix. Thus
(
P ij

)−1
= P ij . �
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=




a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

aj2 + cai1 aj2 + cai2 · · · ajp + caip
...

...
...

an1 an2 · · · anp




The case where i > j is handled similarly. This proves the following lemma.

Lemma 4.1.5 Let E (c× i+ j) denote the elementary matrix obtained from I by replacing
the jth row with c times the ith row added to it. Then

E (c× i+ j)A = B

where B is obtained from A by replacing the jth row of A with itself added to c times the
ith row of A.

The next theorem is the main result.

Theorem 4.1.6 To perform any of the three row operations on a matrix A it suffices to do
the row operation on the identity matrix obtaining an elementary matrix E and then take
the product, EA. Furthermore, each elementary matrix is invertible and its inverse is an
elementary matrix.

Proof: The first part of this theorem has been proved in Lemmas 4.1.3 - 4.1.5. It
only remains to verify the claim about the inverses. Consider first the elementary matrices
corresponding to row operation of type three.

E (−c× i+ j)E (c× i+ j) = I

This follows because the first matrix takes c times row i in the identity and adds it to row j.
When multiplied on the left by E (−c× i+ j) it follows from the first part of this theorem
that you take the ith row of E (c× i+ j) which coincides with the ith row of I since that
row was not changed, multiply it by −c and add to the jth row of E (c× i+ j) which was
the jth row of I added to c times the ith row of I. Thus E (−c× i+ j) multiplied on the
left, undoes the row operation which resulted in E (c× i+ j). The same argument applied
to the product

E (c× i+ j)E (−c× i+ j)

replacing c with −c in the argument yields that this product is also equal to I. Therefore,
E (c× i+ j)

−1
= E (−c× i+ j) .

Similar reasoning shows that for E (c, i) the elementary matrix which comes from mul-
tiplying the ith row by the nonzero constant, c,

E (c, i)
−1

= E
(
c−1, i

)
.

Finally, consider P ij which involves switching the ith and the jth rows.

P ijP ij = I

because by the first part of this theorem, multiplying on the left by P ij switches the ith

and jth rows of P ij which was obtained from switching the ith and jth rows of the identity.
First you switch them to get P ij and then you multiply on the left by P ij which switches

these rows again and restores the identity matrix. Thus
(
P ij

)−1
= P ij . �
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=




a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

aj2 + cai1 aj2 + cai2 · · · ajp + caip
...

...
...

an1 an2 · · · anp




The case where i > j is handled similarly. This proves the following lemma.

Lemma 4.1.5 Let E (c× i+ j) denote the elementary matrix obtained from I by replacing
the jth row with c times the ith row added to it. Then

E (c× i+ j)A = B

where B is obtained from A by replacing the jth row of A with itself added to c times the
ith row of A.

The next theorem is the main result.

Theorem 4.1.6 To perform any of the three row operations on a matrix A it suffices to do
the row operation on the identity matrix obtaining an elementary matrix E and then take
the product, EA. Furthermore, each elementary matrix is invertible and its inverse is an
elementary matrix.

Proof: The first part of this theorem has been proved in Lemmas 4.1.3 - 4.1.5. It
only remains to verify the claim about the inverses. Consider first the elementary matrices
corresponding to row operation of type three.

E (−c× i+ j)E (c× i+ j) = I

This follows because the first matrix takes c times row i in the identity and adds it to row j.
When multiplied on the left by E (−c× i+ j) it follows from the first part of this theorem
that you take the ith row of E (c× i+ j) which coincides with the ith row of I since that
row was not changed, multiply it by −c and add to the jth row of E (c× i+ j) which was
the jth row of I added to c times the ith row of I. Thus E (−c× i+ j) multiplied on the
left, undoes the row operation which resulted in E (c× i+ j). The same argument applied
to the product

E (c× i+ j)E (−c× i+ j)

replacing c with −c in the argument yields that this product is also equal to I. Therefore,
E (c× i+ j)

−1
= E (−c× i+ j) .

Similar reasoning shows that for E (c, i) the elementary matrix which comes from mul-
tiplying the ith row by the nonzero constant, c,

E (c, i)
−1

= E
(
c−1, i

)
.

Finally, consider P ij which involves switching the ith and the jth rows.

P ijP ij = I

because by the first part of this theorem, multiplying on the left by P ij switches the ith

and jth rows of P ij which was obtained from switching the ith and jth rows of the identity.
First you switch them to get P ij and then you multiply on the left by P ij which switches

these rows again and restores the identity matrix. Thus
(
P ij

)−1
= P ij . �4.2. THE RANK OF A MATRIX 119

4.2 The Rank Of A Matrix

Recall the following definition of rank of a matrix.

Definition 4.2.1 A submatrix of a matrix A is the rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m × n matrix. The determinant
rank of the matrix equals r where r is the largest number such that some r × r submatrix
of A has a non zero determinant. The row rank is defined to be the dimension of the span
of the rows. The column rank is defined to be the dimension of the span of the columns.
The rank of A is denoted as rank (A).

The following theorem is proved in the section on the theory of the determinant and is
restated here for convenience.

Theorem 4.2.2 Let A be an m× n matrix. Then the row rank, column rank and determi-
nant rank are all the same.

So how do you find the rank? It turns out that row operations are the key to the practical
computation of the rank of a matrix.

In rough terms, the following lemma states that linear relationships between columns
in a matrix are preserved by row operations.

Lemma 4.2.3 Let B and A be two m × n matrices and suppose B results from a row
operation applied to A. Then the kth column of B is a linear combination of the i1, · · · , ir
columns of B if and only if the kth column of A is a linear combination of the i1, · · · , ir
columns of A. Furthermore, the scalars in the linear combination are the same. (The linear
relationship between the kth column of A and the i1, · · · , ir columns of A is the same as the
linear relationship between the kth column of B and the i1, · · · , ir columns of B.)

Proof: Let A equal the following matrix in which the ak are the columns
(

a1 a2 · · · an

)

and let B equal the following matrix in which the columns are given by the bk

(
b1 b2 · · · bn

)

Then by Theorem 4.1.6 on Page 118 bk = Eak where E is an elementary matrix. Suppose
then that one of the columns of A is a linear combination of some other columns of A. Say

ak =
∑
r∈S

crar.

Then multiplying by E,

bk = Eak =
∑
r∈S

crEar =
∑
r∈S

crbr.�

Corollary 4.2.4 Let A and B be two m× n matrices such that B is obtained by applying
a row operation to A. Then the two matrices have the same rank.

Proof: Lemma 4.2.3 says the linear relationships are the same between the columns of
A and those of B. Therefore, the column rank of the two matrices is the same. �

This suggests that to find the rank of a matrix, one should do row operations until a
matrix is obtained in which its rank is obvious.
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Example 4.2.5 Find the rank of the following matrix and identify columns whose linear
combinations yield all the other columns.




1 2 1 3 2

1 3 6 0 2

3 7 8 6 6


 (4.1)

Take (−1) times the first row and add to the second and then take (−3) times the first
row and add to the third. This yields




1 2 1 3 2

0 1 5 −3 0

0 1 5 −3 0




By the above corollary, this matrix has the same rank as the first matrix. Now take (−1)
times the second row and add to the third row and then −2 times the second added to the
first yielding 


1 0 −9 9 2

0 1 5 −3 0

0 0 0 0 0




At this point it is clear the rank is 2. This is because every column is in the span of the
first two and these first two columns are linearly independent.

Example 4.2.6 Find the rank of the following matrix and identify columns whose linear
combinations yield all the other columns.




1 2 1 3 2

1 2 6 0 2

3 6 8 6 6


 (4.2)

Take (−1) times the first row and add to the second and then take (−3) times the first
row and add to the last row. This yields




1 2 1 3 2

0 0 5 −3 0

0 0 5 −3 0




Now multiply the second row by 1/5 and add 5 times it to the last row.



1 2 1 3 2

0 0 1 −3/5 0

0 0 0 0 0




Add (−1) times the second row to the first.



1 2 0 18/5 2

0 0 1 −3/5 0

0 0 0 0 0


 (4.3)

It is now clear the rank of this matrix is 2 because the first and third columns form a
basis for the column space.

The matrix 4.3 is the row reduced echelon form for the matrix 4.2.
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4.3 The Row Reduced Echelon Form

The following definition is for the row reduced echelon form of a matrix.

Definition 4.3.1 Let ei denote the column vector which has all zero entries except for the
ith slot which is one. An m×n matrix is said to be in row reduced echelon form if, in viewing
successive columns from left to right, the first nonzero column encountered is e1 and if you
have encountered e1, e2, · · · , ek, the next column is either ek+1 or is a linear combination
of the vectors, e1, e2, · · · , ek.

For example, here are some matrices which are in row reduced echelon form.




0 1 3 0 3

0 0 0 1 5

0 0 0 0 0


 ,




1 0 3 −11 0

0 1 4 4 0

0 0 0 0 1


 .

Theorem 4.3.2 Let A be an m × n matrix. Then A has a row reduced echelon form
determined by a simple process.

Proof: Viewing the columns of A from left to right take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row of
A. Now divide this new top row by the value of this nonzero entry to get a 1 in this position
and then use row operations to make all entries below this entry equal to zero. Thus the
first nonzero column is now e1. Denote the resulting matrix by A1. Consider the submatrix
of A1 to the right of this column and below the first row. Do exactly the same thing for it
that was done for A. This time the e1 will refer to Fm−1. Use this 1 and row operations
to zero out every entry above it in the rows of A1. Call the resulting matrix A2. Thus A2

satisfies the conditions of the above definition up to the column just encountered. Continue
this way till every column has been dealt with and the result must be in row reduced echelon
form. �

Definition 4.3.3 The first pivot column of A is the first nonzero column of A. The next
pivot column is the first column after this which is not a linear combination of the columns to
its left. The third pivot column is the next column after this which is not a linear combination
of those columns to its left, and so forth. Thus by Lemma 4.2.3 if a pivot column occurs
as the jth column from the left, it follows that in the row reduced echelon form there will be
one of the ek as the jth column.

There are three choices for row operations at each step in the above theorem. A natural
question is whether the same row reduced echelon matrix always results in the end from
following the above algorithm applied in any way. The next corollary says this is the case.

Definition 4.3.4 Two matrices are said to be row equivalent if one can be obtained from
the other by a sequence of row operations.

Since every row operation can be obtained by multiplication on the left by an elementary
matrix and since each of these elementary matrices has an inverse which is also an elementary
matrix, it follows that row equivalence is a similarity relation. Thus one can classify matrices
according to which similarity class they are in. Later in the book, another more profound
way of classifying matrices will be presented.
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4.3 The Row Reduced Echelon Form

The following definition is for the row reduced echelon form of a matrix.

Definition 4.3.1 Let ei denote the column vector which has all zero entries except for the
ith slot which is one. An m×n matrix is said to be in row reduced echelon form if, in viewing
successive columns from left to right, the first nonzero column encountered is e1 and if you
have encountered e1, e2, · · · , ek, the next column is either ek+1 or is a linear combination
of the vectors, e1, e2, · · · , ek.

For example, here are some matrices which are in row reduced echelon form.




0 1 3 0 3

0 0 0 1 5

0 0 0 0 0


 ,




1 0 3 −11 0

0 1 4 4 0

0 0 0 0 1


 .

Theorem 4.3.2 Let A be an m × n matrix. Then A has a row reduced echelon form
determined by a simple process.

Proof: Viewing the columns of A from left to right take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row of
A. Now divide this new top row by the value of this nonzero entry to get a 1 in this position
and then use row operations to make all entries below this entry equal to zero. Thus the
first nonzero column is now e1. Denote the resulting matrix by A1. Consider the submatrix
of A1 to the right of this column and below the first row. Do exactly the same thing for it
that was done for A. This time the e1 will refer to Fm−1. Use this 1 and row operations
to zero out every entry above it in the rows of A1. Call the resulting matrix A2. Thus A2

satisfies the conditions of the above definition up to the column just encountered. Continue
this way till every column has been dealt with and the result must be in row reduced echelon
form. �

Definition 4.3.3 The first pivot column of A is the first nonzero column of A. The next
pivot column is the first column after this which is not a linear combination of the columns to
its left. The third pivot column is the next column after this which is not a linear combination
of those columns to its left, and so forth. Thus by Lemma 4.2.3 if a pivot column occurs
as the jth column from the left, it follows that in the row reduced echelon form there will be
one of the ek as the jth column.

There are three choices for row operations at each step in the above theorem. A natural
question is whether the same row reduced echelon matrix always results in the end from
following the above algorithm applied in any way. The next corollary says this is the case.

Definition 4.3.4 Two matrices are said to be row equivalent if one can be obtained from
the other by a sequence of row operations.

Since every row operation can be obtained by multiplication on the left by an elementary
matrix and since each of these elementary matrices has an inverse which is also an elementary
matrix, it follows that row equivalence is a similarity relation. Thus one can classify matrices
according to which similarity class they are in. Later in the book, another more profound
way of classifying matrices will be presented.
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It has been shown above that every matrix is row equivalent to one which is in row
reduced echelon form. Note




x1

...

xn


 = x1e1 + · · ·+ xnen

so to say two column vectors are equal is to say they are the same linear combination of the
special vectors ej .

Thus the row reduced echelon form is completely determined by the positions of columns
which are not linear combinations of preceding columns (These become the ei vectors in
the row reduced echelon form.) and the scalars which are used in the linear combinations of
these special pivot columns to obtain the other columns. All of these considerations pertain
only to linear relations between the columns of the matrix, which by Lemma 4.2.3 are all
preserved. Therefore, there is only one row reduced echelon form for any given matrix. The
proof of the following corollary is just a more careful exposition of this simple idea.

Corollary 4.3.5 The row reduced echelon form is unique. That is if B,C are two matrices
in row reduced echelon form and both are row equivalent to A, then B = C.

Proof: Suppose B and C are both row reduced echelon forms for the matrix A. Then
they clearly have the same zero columns since row operations leave zero columns unchanged.
If B has the sequence e1, e2, · · · , er occurring for the first time in the positions, i1, i2, · · · , ir,
the description of the row reduced echelon form means that each of these columns is not a
linear combination of the preceding columns. Therefore, by Lemma 4.2.3, the same is true of
the columns in positions i1, i2, · · · , ir for C. It follows from the description of the row reduced
echelon form, that e1, · · · , er occur respectively for the first time in columns i1, i2, · · · , ir
for C. Thus B,C have the same columns in these positions. By Lemma 4.2.3, the other
columns in the two matrices are linear combinations, involving the same scalars, of the
columns in the i1, · · · , ik position. Thus each column of B is identical to the corresponding
column in C. �

The above corollary shows that you can determine whether two matrices are row equiv-
alent by simply checking their row reduced echelon forms. The matrices are row equivalent
if and only if they have the same row reduced echelon form.

The following corollary follows.

Corollary 4.3.6 Let A be an m× n matrix and let R denote the row reduced echelon form
obtained from A by row operations. Then there exists a sequence of elementary matrices,
E1, · · · , Ep such that

(EpEp−1 · · ·E1)A = R.

Proof: This follows from the fact that row operations are equivalent to multiplication
on the left by an elementary matrix. �

Corollary 4.3.7 Let A be an invertible n × n matrix. Then A equals a finite product of
elementary matrices.

Proof: Since A−1 is given to exist, it follows A must have rank n because by Theorem
3.3.18 det(A) ̸= 0 which says the determinant rank and hence the column rank of A is n
and so the row reduced echelon form of A is I because the columns of A form a linearly
independent set. Therefore, by Corollary 4.3.6 there is a sequence of elementary matrices,
E1, · · · , Ep such that

(EpEp−1 · · ·E1)A = I.
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It has been shown above that every matrix is row equivalent to one which is in row
reduced echelon form. Note




x1

...

xn


 = x1e1 + · · ·+ xnen

so to say two column vectors are equal is to say they are the same linear combination of the
special vectors ej .

Thus the row reduced echelon form is completely determined by the positions of columns
which are not linear combinations of preceding columns (These become the ei vectors in
the row reduced echelon form.) and the scalars which are used in the linear combinations of
these special pivot columns to obtain the other columns. All of these considerations pertain
only to linear relations between the columns of the matrix, which by Lemma 4.2.3 are all
preserved. Therefore, there is only one row reduced echelon form for any given matrix. The
proof of the following corollary is just a more careful exposition of this simple idea.

Corollary 4.3.5 The row reduced echelon form is unique. That is if B,C are two matrices
in row reduced echelon form and both are row equivalent to A, then B = C.

Proof: Suppose B and C are both row reduced echelon forms for the matrix A. Then
they clearly have the same zero columns since row operations leave zero columns unchanged.
If B has the sequence e1, e2, · · · , er occurring for the first time in the positions, i1, i2, · · · , ir,
the description of the row reduced echelon form means that each of these columns is not a
linear combination of the preceding columns. Therefore, by Lemma 4.2.3, the same is true of
the columns in positions i1, i2, · · · , ir for C. It follows from the description of the row reduced
echelon form, that e1, · · · , er occur respectively for the first time in columns i1, i2, · · · , ir
for C. Thus B,C have the same columns in these positions. By Lemma 4.2.3, the other
columns in the two matrices are linear combinations, involving the same scalars, of the
columns in the i1, · · · , ik position. Thus each column of B is identical to the corresponding
column in C. �

The above corollary shows that you can determine whether two matrices are row equiv-
alent by simply checking their row reduced echelon forms. The matrices are row equivalent
if and only if they have the same row reduced echelon form.

The following corollary follows.

Corollary 4.3.6 Let A be an m× n matrix and let R denote the row reduced echelon form
obtained from A by row operations. Then there exists a sequence of elementary matrices,
E1, · · · , Ep such that

(EpEp−1 · · ·E1)A = R.

Proof: This follows from the fact that row operations are equivalent to multiplication
on the left by an elementary matrix. �

Corollary 4.3.7 Let A be an invertible n × n matrix. Then A equals a finite product of
elementary matrices.

Proof: Since A−1 is given to exist, it follows A must have rank n because by Theorem
3.3.18 det(A) ̸= 0 which says the determinant rank and hence the column rank of A is n
and so the row reduced echelon form of A is I because the columns of A form a linearly
independent set. Therefore, by Corollary 4.3.6 there is a sequence of elementary matrices,
E1, · · · , Ep such that

(EpEp−1 · · ·E1)A = I.
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But now multiply on the left on both sides by E−1
p then by E−1

p−1 and then by E−1
p−2 etc.

until you get
A = E−1

1 E−1
2 · · ·E−1

p−1E
−1
p

and by Theorem 4.1.6 each of these in this product is an elementary matrix. �

Corollary 4.3.8 The rank of a matrix equals the number of nonzero pivot columns. Fur-
thermore, every column is contained in the span of the pivot columns.

Proof: Write the row reduced echelon form for the matrix. From Corollary 4.2.4 this
row reduced matrix has the same rank as the original matrix. Deleting all the zero rows
and all the columns in the row reduced echelon form which do not correspond to a pivot
column, yields an r× r identity submatrix in which r is the number of pivot columns. Thus
the rank is at least r.

From Lemma 4.2.3 every column of A is a linear combination of the pivot columns since
this is true by definition for the row reduced echelon form. Therefore, the rank is no more
than r. �

Here is a fundamental observation related to the above.

Corollary 4.3.9 Suppose A is an m×n matrix and that m < n. That is, the number of rows
is less than the number of columns. Then one of the columns of A is a linear combination
of the preceding columns of A.

Proof: Since m < n, not all the columns of A can be pivot columns. That is, in the
row reduced echelon form say ei occurs for the first time at ri where r1 < r2 < · · · < rp
where p ≤ m. It follows since m < n, there exists some column in the row reduced echelon
form which is a linear combination of the preceding columns. By Lemma 4.2.3 the same is
true of the columns of A. �

Definition 4.3.10 Let A be an m×n matrix having rank, r. Then the nullity of A is defined
to be n− r. Also define ker (A) ≡ {x ∈ Fn : Ax = 0} . This is also denoted as N (A) .

Observation 4.3.11 Note that ker (A) is a subspace because if a, b are scalars and x,y are
vectors in ker (A), then

A (ax+ by) = aAx+ bAy = 0+ 0 = 0

Recall that the dimension of the column space of a matrix equals its rank and since the
column space is just A (Fn) , the rank is just the dimension of A (Fn). The next theorem
shows that the nullity equals the dimension of ker (A).

Theorem 4.3.12 Let A be an m× n matrix. Then rank (A) + dim (ker (A)) = n..

Proof: Since ker (A) is a subspace, there exists a basis for ker (A) , {x1, · · · ,xk} . Also
let {Ay1, · · · , Ayl} be a basis for A (Fn). Let u ∈ Fn. Then there exist unique scalars ci
such that

Au =
l∑

i=1

ciAyi

It follows that

A

(
u−

l∑
i=1

ciyi

)
= 0
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But now multiply on the left on both sides by E−1
p then by E−1

p−1 and then by E−1
p−2 etc.

until you get
A = E−1

1 E−1
2 · · ·E−1

p−1E
−1
p

and by Theorem 4.1.6 each of these in this product is an elementary matrix. �

Corollary 4.3.8 The rank of a matrix equals the number of nonzero pivot columns. Fur-
thermore, every column is contained in the span of the pivot columns.

Proof: Write the row reduced echelon form for the matrix. From Corollary 4.2.4 this
row reduced matrix has the same rank as the original matrix. Deleting all the zero rows
and all the columns in the row reduced echelon form which do not correspond to a pivot
column, yields an r× r identity submatrix in which r is the number of pivot columns. Thus
the rank is at least r.

From Lemma 4.2.3 every column of A is a linear combination of the pivot columns since
this is true by definition for the row reduced echelon form. Therefore, the rank is no more
than r. �

Here is a fundamental observation related to the above.

Corollary 4.3.9 Suppose A is an m×n matrix and that m < n. That is, the number of rows
is less than the number of columns. Then one of the columns of A is a linear combination
of the preceding columns of A.

Proof: Since m < n, not all the columns of A can be pivot columns. That is, in the
row reduced echelon form say ei occurs for the first time at ri where r1 < r2 < · · · < rp
where p ≤ m. It follows since m < n, there exists some column in the row reduced echelon
form which is a linear combination of the preceding columns. By Lemma 4.2.3 the same is
true of the columns of A. �

Definition 4.3.10 Let A be an m×n matrix having rank, r. Then the nullity of A is defined
to be n− r. Also define ker (A) ≡ {x ∈ Fn : Ax = 0} . This is also denoted as N (A) .

Observation 4.3.11 Note that ker (A) is a subspace because if a, b are scalars and x,y are
vectors in ker (A), then

A (ax+ by) = aAx+ bAy = 0+ 0 = 0

Recall that the dimension of the column space of a matrix equals its rank and since the
column space is just A (Fn) , the rank is just the dimension of A (Fn). The next theorem
shows that the nullity equals the dimension of ker (A).

Theorem 4.3.12 Let A be an m× n matrix. Then rank (A) + dim (ker (A)) = n..

Proof: Since ker (A) is a subspace, there exists a basis for ker (A) , {x1, · · · ,xk} . Also
let {Ay1, · · · , Ayl} be a basis for A (Fn). Let u ∈ Fn. Then there exist unique scalars ci
such that

Au =
l∑

i=1

ciAyi

It follows that

A

(
u−

l∑
i=1

ciyi

)
= 0124 CHAPTER 4. ROW OPERATIONS

and so the vector in parenthesis is in ker (A). Thus there exist unique bj such that

u =

l∑
i=1

ciyi +

k∑
j=1

bjxj

Since u was arbitrary, this shows {x1, · · · ,xk,y1, · · · ,yl} spans Fn. If these vectors are
independent, then they will form a basis and the claimed equation will be obtained. Suppose
then that

l∑
i=1

ciyi +

k∑
j=1

bjxj = 0

Apply A to both sides. This yields

l∑
i=1

ciAyi = 0

and so each ci = 0. Then the independence of the xj imply each bj = 0. �

4.4 Rank And Existence Of Solutions To Linear Sys-
tems

Consider the linear system of equations,

Ax = b (4.4)

where A is an m× n matrix, x is a n× 1 column vector, and b is an m× 1 column vector.
Suppose

A =
(

a1 · · · an

)

where the ak denote the columns of A. Then x = (x1, · · · , xn)
T
is a solution of the system

4.4, if and only if
x1a1 + · · ·+ xnan = b

which says that b is a vector in span (a1, · · · ,an) . This shows that there exists a solution
to the system, 4.4 if and only if b is contained in span (a1, · · · ,an) . In words, there is a
solution to 4.4 if and only if b is in the column space of A. In terms of rank, the following
proposition describes the situation.

Proposition 4.4.1 Let A be an m× n matrix and let b be an m× 1 column vector. Then
there exists a solution to 4.4 if and only if

rank
(

A | b
)
= rank (A) . (4.5)

Proof: Place
(

A | b
)
and A in row reduced echelon form, respectively B and C. If

the above condition on rank is true, then both B and C have the same number of nonzero
rows. In particular, you cannot have a row of the form

(
0 · · · 0 ⋆

)

where ⋆ ̸= 0 in B. Therefore, there will exist a solution to the system 4.4.
Conversely, suppose there exists a solution. This means there cannot be such a row in

B described above. Therefore, B and C must have the same number of zero rows and so
they have the same number of nonzero rows. Therefore, the rank of the two matrices in 4.5
is the same. �
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and so the vector in parenthesis is in ker (A). Thus there exist unique bj such that

u =

l∑
i=1

ciyi +

k∑
j=1

bjxj

Since u was arbitrary, this shows {x1, · · · ,xk,y1, · · · ,yl} spans Fn. If these vectors are
independent, then they will form a basis and the claimed equation will be obtained. Suppose
then that

l∑
i=1

ciyi +

k∑
j=1

bjxj = 0

Apply A to both sides. This yields

l∑
i=1

ciAyi = 0

and so each ci = 0. Then the independence of the xj imply each bj = 0. �

4.4 Rank And Existence Of Solutions To Linear Sys-
tems

Consider the linear system of equations,

Ax = b (4.4)

where A is an m× n matrix, x is a n× 1 column vector, and b is an m× 1 column vector.
Suppose

A =
(

a1 · · · an

)

where the ak denote the columns of A. Then x = (x1, · · · , xn)
T
is a solution of the system

4.4, if and only if
x1a1 + · · ·+ xnan = b

which says that b is a vector in span (a1, · · · ,an) . This shows that there exists a solution
to the system, 4.4 if and only if b is contained in span (a1, · · · ,an) . In words, there is a
solution to 4.4 if and only if b is in the column space of A. In terms of rank, the following
proposition describes the situation.

Proposition 4.4.1 Let A be an m× n matrix and let b be an m× 1 column vector. Then
there exists a solution to 4.4 if and only if

rank
(

A | b
)
= rank (A) . (4.5)

Proof: Place
(

A | b
)
and A in row reduced echelon form, respectively B and C. If

the above condition on rank is true, then both B and C have the same number of nonzero
rows. In particular, you cannot have a row of the form

(
0 · · · 0 ⋆

)

where ⋆ ̸= 0 in B. Therefore, there will exist a solution to the system 4.4.
Conversely, suppose there exists a solution. This means there cannot be such a row in

B described above. Therefore, B and C must have the same number of zero rows and so
they have the same number of nonzero rows. Therefore, the rank of the two matrices in 4.5
is the same. �4.5. FREDHOLM ALTERNATIVE 125

4.5 Fredholm Alternative

There is a very useful version of Proposition 4.4.1 known as the Fredholm alternative.
I will only present this for the case of real matrices here. Later a much more elegant and
general approach is presented which allows for the general case of complex matrices.

The following definition is used to state the Fredholm alternative.

Definition 4.5.1 Let S ⊆ Rm. Then S⊥ ≡ {z ∈ Rm : z · s = 0 for every s ∈ S} . The funny
exponent, ⊥ is called “perp”.

Now note

ker
(
AT

)
≡

{
z : AT z = 0

}
=

{
z :

m∑
k=1

zkak = 0

}

Lemma 4.5.2 Let A be a real m× n matrix, let x ∈ Rn and y ∈ Rm. Then

(Ax · y) =
(
x·ATy

)

Proof: This follows right away from the definition of the inner product and matrix
multiplication.

(Ax · y) =
∑
k,l

Aklxlyk =
∑
k,l

(
AT

)
lk
xlyk =

(
x ·ATy

)
. �

Now it is time to state the Fredholm alternative. The first version of this is the following
theorem.

Theorem 4.5.3 Let A be a real m× n matrix and let b ∈ Rm. There exists a solution, x

to the equation Ax = b if and only if b ∈ ker
(
AT

)⊥
.

Proof: First suppose b ∈ ker
(
AT

)⊥
. Then this says that if ATx = 0, it follows that

b · x = xTb = 0. In other words, taking the transpose, if

xTA = 0, then xTb = 0.

Thus, if P is a product of elementary matrices such that PA is in row reduced echelon form,
then if PA has a row of zeros, in the kth position, obtained from the kth row of P times A,
then there is also a zero in the kth position of Pb. This is because the kth position in Pb is

just the kth row of P times b. Thus the row reduced echelon forms of A and
(

A | b
)

have the same number of zero rows. Thus rank
(

A | b
)
= rank (A). By Proposition

4.4.1, there exists a solution x to the system Ax = b. It remains to prove the converse.
Let z ∈ ker

(
AT

)
and suppose Ax = b. I need to verify b · z = 0. By Lemma 4.5.2,

b · z = Ax · z = x ·AT z = x · 0 = 0 �

This implies the following corollary which is also called the Fredholm alternative. The
“alternative” becomes more clear in this corollary.

Corollary 4.5.4 Let A be an m× n matrix. Then A maps Rn onto Rm if and only if the
only solution to ATx = 0 is x = 0.
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4.5. FREDHOLM ALTERNATIVE 125

4.5 Fredholm Alternative

There is a very useful version of Proposition 4.4.1 known as the Fredholm alternative.
I will only present this for the case of real matrices here. Later a much more elegant and
general approach is presented which allows for the general case of complex matrices.

The following definition is used to state the Fredholm alternative.

Definition 4.5.1 Let S ⊆ Rm. Then S⊥ ≡ {z ∈ Rm : z · s = 0 for every s ∈ S} . The funny
exponent, ⊥ is called “perp”.

Now note

ker
(
AT

)
≡

{
z : AT z = 0

}
=

{
z :

m∑
k=1

zkak = 0

}

Lemma 4.5.2 Let A be a real m× n matrix, let x ∈ Rn and y ∈ Rm. Then

(Ax · y) =
(
x·ATy

)

Proof: This follows right away from the definition of the inner product and matrix
multiplication.

(Ax · y) =
∑
k,l

Aklxlyk =
∑
k,l

(
AT

)
lk
xlyk =

(
x ·ATy

)
. �

Now it is time to state the Fredholm alternative. The first version of this is the following
theorem.

Theorem 4.5.3 Let A be a real m× n matrix and let b ∈ Rm. There exists a solution, x

to the equation Ax = b if and only if b ∈ ker
(
AT

)⊥
.

Proof: First suppose b ∈ ker
(
AT

)⊥
. Then this says that if ATx = 0, it follows that

b · x = xTb = 0. In other words, taking the transpose, if

xTA = 0, then xTb = 0.

Thus, if P is a product of elementary matrices such that PA is in row reduced echelon form,
then if PA has a row of zeros, in the kth position, obtained from the kth row of P times A,
then there is also a zero in the kth position of Pb. This is because the kth position in Pb is

just the kth row of P times b. Thus the row reduced echelon forms of A and
(

A | b
)

have the same number of zero rows. Thus rank
(

A | b
)
= rank (A). By Proposition

4.4.1, there exists a solution x to the system Ax = b. It remains to prove the converse.
Let z ∈ ker

(
AT

)
and suppose Ax = b. I need to verify b · z = 0. By Lemma 4.5.2,

b · z = Ax · z = x ·AT z = x · 0 = 0 �

This implies the following corollary which is also called the Fredholm alternative. The
“alternative” becomes more clear in this corollary.

Corollary 4.5.4 Let A be an m× n matrix. Then A maps Rn onto Rm if and only if the
only solution to ATx = 0 is x = 0.
126 CHAPTER 4. ROW OPERATIONS

Proof: If the only solution toATx = 0 is x = 0, then ker
(
AT

)
= {0} and so ker

(
AT

)⊥
=

Rm because every b ∈ Rm has the property that b · 0 = 0. Therefore, Ax = b has a solu-

tion for any b ∈ Rm because the b for which there is a solution are those in ker
(
AT

)⊥
by

Theorem 4.5.3. In other words, A maps Rn onto Rm.

Conversely if A is onto, then by Theorem 4.5.3 every b ∈ Rm is in ker
(
AT

)⊥
and so if

ATx = 0, then b · x = 0 for every b. In particular, this holds for b = x. Hence if ATx = 0,
then x = 0. �

Here is an amusing example.

Example 4.5.5 Let A be an m× n matrix in which m > n. Then A cannot map onto Rm.

The reason for this is that AT is an n×m where m > n and so in the augmented matrix

(
AT |0

)

there must be some free variables. Thus there exists a nonzero vector x such that ATx = 0.

4.6 Exercises

1. Let {u1, · · · ,un} be vectors in Rn. The parallelepiped determined by these vectors
P (u1, · · · ,un) is defined as

P (u1, · · · ,un) ≡

{
n∑

k=1

tkuk : tk ∈ [0, 1] for all k

}
.

Now let A be an n× n matrix. Show that

{Ax : x ∈ P (u1, · · · ,un)}

is also a parallelepiped.

2. In the context of Problem 1, draw P (e1, e2) where e1, e2 are the standard basis vectors
for R2. Thus e1 = (1, 0) , e2 = (0, 1) . Now suppose

E =

(
1 1

0 1

)

where E is the elementary matrix which takes the third row and adds to the first.
Draw

{Ex : x ∈ P (e1, e2)} .

In other words, draw the result of doing E to the vectors in P (e1, e2). Next draw the
results of doing the other elementary matrices to P (e1, e2).

3. In the context of Problem 1, either draw or describe the result of doing elementary
matrices to P (e1, e2, e3). Describe geometrically the conclusion of Corollary 4.3.7.

4. Consider a permutation of {1, 2, · · · , n}. This is an ordered list of numbers taken from
this list with no repeats, {i1, i2, · · · , in}. Define the permutation matrix P (i1, i2, · · · , in)
as the matrix which is obtained from the identity matrix by placing the jth column
of I as the ithj column of P (i1, i2, · · · , in) . Thus the 1 in the ithj column of this per-

mutation matrix occurs in the jth slot. What does this permutation matrix do to the
column vector (1, 2, · · · , n)T ?
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Proof: If the only solution toATx = 0 is x = 0, then ker
(
AT

)
= {0} and so ker

(
AT

)⊥
=

Rm because every b ∈ Rm has the property that b · 0 = 0. Therefore, Ax = b has a solu-

tion for any b ∈ Rm because the b for which there is a solution are those in ker
(
AT

)⊥
by

Theorem 4.5.3. In other words, A maps Rn onto Rm.

Conversely if A is onto, then by Theorem 4.5.3 every b ∈ Rm is in ker
(
AT

)⊥
and so if

ATx = 0, then b · x = 0 for every b. In particular, this holds for b = x. Hence if ATx = 0,
then x = 0. �

Here is an amusing example.

Example 4.5.5 Let A be an m× n matrix in which m > n. Then A cannot map onto Rm.

The reason for this is that AT is an n×m where m > n and so in the augmented matrix

(
AT |0

)

there must be some free variables. Thus there exists a nonzero vector x such that ATx = 0.

4.6 Exercises

1. Let {u1, · · · ,un} be vectors in Rn. The parallelepiped determined by these vectors
P (u1, · · · ,un) is defined as

P (u1, · · · ,un) ≡

{
n∑

k=1

tkuk : tk ∈ [0, 1] for all k

}
.

Now let A be an n× n matrix. Show that

{Ax : x ∈ P (u1, · · · ,un)}

is also a parallelepiped.

2. In the context of Problem 1, draw P (e1, e2) where e1, e2 are the standard basis vectors
for R2. Thus e1 = (1, 0) , e2 = (0, 1) . Now suppose

E =

(
1 1

0 1

)

where E is the elementary matrix which takes the third row and adds to the first.
Draw

{Ex : x ∈ P (e1, e2)} .

In other words, draw the result of doing E to the vectors in P (e1, e2). Next draw the
results of doing the other elementary matrices to P (e1, e2).

3. In the context of Problem 1, either draw or describe the result of doing elementary
matrices to P (e1, e2, e3). Describe geometrically the conclusion of Corollary 4.3.7.

4. Consider a permutation of {1, 2, · · · , n}. This is an ordered list of numbers taken from
this list with no repeats, {i1, i2, · · · , in}. Define the permutation matrix P (i1, i2, · · · , in)
as the matrix which is obtained from the identity matrix by placing the jth column
of I as the ithj column of P (i1, i2, · · · , in) . Thus the 1 in the ithj column of this per-

mutation matrix occurs in the jth slot. What does this permutation matrix do to the
column vector (1, 2, · · · , n)T ?
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5. ↑Consider the 3 × 3 permutation matrices. List all of them and then determine the
dimension of their span. Recall that you can consider an m× n matrix as something
in Fnm.

6. Determine which matrices are in row reduced echelon form.

(a)

(
1 2 0

0 1 7

)

(b)




1 0 0 0

0 0 1 2

0 0 0 0




(c)




1 1 0 0 0 5

0 0 1 2 0 4

0 0 0 0 1 3




7. Row reduce the following matrices to obtain the row reduced echelon form. List the
pivot columns in the original matrix.

(a)




1 2 0 3

2 1 2 2

1 1 0 3




(b)




1 2 3

2 1 −2

3 0 0

3 2 1




(c)




1 2 1 3

−3 2 1 0

3 2 1 1




8. Find the rank and nullity of the following matrices. If the rank is r, identify r columns
in the original matrix which have the property that every other column may be
written as a linear combination of these.

(a)




0 1 0 2 1 2 2

0 3 2 12 1 6 8

0 1 1 5 0 2 3

0 2 1 7 0 3 4




(b)




0 1 0 2 0 1 0

0 3 2 6 0 5 4

0 1 1 2 0 2 2

0 2 1 4 0 3 2




(c)




0 1 0 2 1 1 2

0 3 2 6 1 5 1

0 1 1 2 0 2 1

0 2 1 4 0 3 1




Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://s.bookboon.com/Gaiteye


LINEAR ALGEBRA I Row Operations

137

4.6. EXERCISES 127

5. ↑Consider the 3 × 3 permutation matrices. List all of them and then determine the
dimension of their span. Recall that you can consider an m× n matrix as something
in Fnm.

6. Determine which matrices are in row reduced echelon form.

(a)

(
1 2 0

0 1 7

)

(b)




1 0 0 0

0 0 1 2

0 0 0 0




(c)




1 1 0 0 0 5

0 0 1 2 0 4

0 0 0 0 1 3




7. Row reduce the following matrices to obtain the row reduced echelon form. List the
pivot columns in the original matrix.

(a)




1 2 0 3

2 1 2 2

1 1 0 3




(b)




1 2 3

2 1 −2

3 0 0

3 2 1




(c)




1 2 1 3

−3 2 1 0

3 2 1 1




8. Find the rank and nullity of the following matrices. If the rank is r, identify r columns
in the original matrix which have the property that every other column may be
written as a linear combination of these.

(a)




0 1 0 2 1 2 2

0 3 2 12 1 6 8

0 1 1 5 0 2 3

0 2 1 7 0 3 4




(b)




0 1 0 2 0 1 0

0 3 2 6 0 5 4

0 1 1 2 0 2 2

0 2 1 4 0 3 2




(c)




0 1 0 2 1 1 2

0 3 2 6 1 5 1

0 1 1 2 0 2 1

0 2 1 4 0 3 1



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9. Find the rank of the following matrices. If the rank is r, identify r columns in the
original matrix which have the property that every other column may be written
as a linear combination of these. Also find a basis for the row and column spaces of
the matrices.

(a)




1 2 0

3 2 1

2 1 0

0 2 1




(b)




1 0 0

4 1 1

2 1 0

0 2 0




(c)




0 1 0 2 1 2 2

0 3 2 12 1 6 8

0 1 1 5 0 2 3

0 2 1 7 0 3 4




(d)




0 1 0 2 0 1 0

0 3 2 6 0 5 4

0 1 1 2 0 2 2

0 2 1 4 0 3 2




(e)




0 1 0 2 1 1 2

0 3 2 6 1 5 1

0 1 1 2 0 2 1

0 2 1 4 0 3 1




10. Suppose A is an m × n matrix. Explain why the rank of A is always no larger than
min (m,n) .

11. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns
in the row reduced echelon form for A.

12. Suppose A is an m × n matrix and that m > n. Show there exists b ∈ Fm such that
there is no solution to the equation

Ax = b.

13. Suppose A is an m × n matrix in which m ≥ n. Suppose also that the rank of A
equals n. Show that A is one to one. Hint: If not, there exists a vector, x ̸= 0 such
that Ax = 0, and this implies at least one column of A is a linear combination of the
others. Show this would require the column rank to be less than n.

14. Explain why an n× n matrix A is both one to one and onto if and only if its rank is
n.

15. Suppose A is an m × n matrix and {w1, · · · ,wk} is a linearly independent set of
vectors in A (Fn) ⊆ Fm. Suppose also that Azi = wi. Show that {z1, · · · , zk} is also
linearly independent.
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16. Show rank (A+B) ≤ rank (A) + rank (B).

17. Suppose A is an m × n matrix, m ≥ n and the columns of A are independent. Sup-
pose also that {z1, · · · , zk} is a linearly independent set of vectors in Fn. Show that
{Az1, · · · , Azk} is linearly independent.

18. Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .

19. Let m < n and let A be an m× n matrix. Show that A is not one to one.

20. Let A be an m× n real matrix and let b ∈ Rm. Show there exists a solution, x to the
system

ATAx = ATb

Next show that if x,x1 are two solutions, then Ax = Ax1. Hint: First show that(
ATA

)T
= ATA. Next show if x ∈ ker

(
ATA

)
, then Ax = 0. Finally apply the Fred-

holm alternative. Show ATb ∈ ker(ATA)⊥. This will give existence of a solution.

21. Show that in the context of Problem 20 that if x is the solution there, then |b−Ax| ≤
|b−Ay| for every y. Thus Ax is the point of A (Rn) which is closest to b of every
point in A (Rn). This is a solution to the least squares problem.

22. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point in span







1

0

2

3


 ,




0

1

3

2





 which

is closest to the given point.

23. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point on the plane described by x+2y−

4z + 4w = 0 which is closest to the given point.

24. Suppose A,B are two invertible n× n matrices. Show there exists a sequence of row
operations which when done to A yield B. Hint: Recall that every invertible matrix
is a product of elementary matrices.

25. If A is invertible and n× n and B is n× p, show that AB has the same null space as
B and also the same rank as B.

26. Here are two matrices in row reduced echelon form

A =




1 0 1

0 1 1

0 0 0


 , B =




1 0 0

0 1 1

0 0 0




Does there exist a sequence of row operations which when done to A will yield B?
Explain.
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16. Show rank (A+B) ≤ rank (A) + rank (B).

17. Suppose A is an m × n matrix, m ≥ n and the columns of A are independent. Sup-
pose also that {z1, · · · , zk} is a linearly independent set of vectors in Fn. Show that
{Az1, · · · , Azk} is linearly independent.

18. Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .

19. Let m < n and let A be an m× n matrix. Show that A is not one to one.

20. Let A be an m× n real matrix and let b ∈ Rm. Show there exists a solution, x to the
system

ATAx = ATb

Next show that if x,x1 are two solutions, then Ax = Ax1. Hint: First show that(
ATA

)T
= ATA. Next show if x ∈ ker

(
ATA

)
, then Ax = 0. Finally apply the Fred-

holm alternative. Show ATb ∈ ker(ATA)⊥. This will give existence of a solution.

21. Show that in the context of Problem 20 that if x is the solution there, then |b−Ax| ≤
|b−Ay| for every y. Thus Ax is the point of A (Rn) which is closest to b of every
point in A (Rn). This is a solution to the least squares problem.

22. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point in span







1

0

2

3


 ,




0

1

3

2





 which

is closest to the given point.

23. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point on the plane described by x+2y−

4z + 4w = 0 which is closest to the given point.

24. Suppose A,B are two invertible n× n matrices. Show there exists a sequence of row
operations which when done to A yield B. Hint: Recall that every invertible matrix
is a product of elementary matrices.

25. If A is invertible and n× n and B is n× p, show that AB has the same null space as
B and also the same rank as B.

26. Here are two matrices in row reduced echelon form

A =




1 0 1

0 1 1

0 0 0


 , B =




1 0 0

0 1 1

0 0 0




Does there exist a sequence of row operations which when done to A will yield B?
Explain.
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16. Show rank (A+B) ≤ rank (A) + rank (B).

17. Suppose A is an m × n matrix, m ≥ n and the columns of A are independent. Sup-
pose also that {z1, · · · , zk} is a linearly independent set of vectors in Fn. Show that
{Az1, · · · , Azk} is linearly independent.

18. Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .

19. Let m < n and let A be an m× n matrix. Show that A is not one to one.

20. Let A be an m× n real matrix and let b ∈ Rm. Show there exists a solution, x to the
system

ATAx = ATb

Next show that if x,x1 are two solutions, then Ax = Ax1. Hint: First show that(
ATA

)T
= ATA. Next show if x ∈ ker

(
ATA

)
, then Ax = 0. Finally apply the Fred-

holm alternative. Show ATb ∈ ker(ATA)⊥. This will give existence of a solution.

21. Show that in the context of Problem 20 that if x is the solution there, then |b−Ax| ≤
|b−Ay| for every y. Thus Ax is the point of A (Rn) which is closest to b of every
point in A (Rn). This is a solution to the least squares problem.

22. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point in span







1

0

2

3


 ,




0

1

3

2





 which

is closest to the given point.

23. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point on the plane described by x+2y−

4z + 4w = 0 which is closest to the given point.

24. Suppose A,B are two invertible n× n matrices. Show there exists a sequence of row
operations which when done to A yield B. Hint: Recall that every invertible matrix
is a product of elementary matrices.

25. If A is invertible and n× n and B is n× p, show that AB has the same null space as
B and also the same rank as B.

26. Here are two matrices in row reduced echelon form

A =




1 0 1

0 1 1

0 0 0


 , B =




1 0 0

0 1 1

0 0 0




Does there exist a sequence of row operations which when done to A will yield B?
Explain.
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27. Is it true that an upper triagular matrix has rank equal to the number of nonzero
entries down the main diagonal?

28. Let {v1, · · · ,vn−1} be vectors in Fn. Describe a systematic way to obtain a vector vn

which is perpendicular to each of these vectors. Hint: You might consider something
like this

det




e1 e2 · · · en

v11 v12 · · · v1n
...

...
...

v(n−1)1 v(n−1)2 · · · v(n−1)n




where vij is the jth entry of the vector vi. This is a lot like the cross product.

29. Let A be an m × n matrix. Then ker (A) is a subspace of Fn. Is it true that every
subspace of Fn is the kernel or null space of some matrix? Prove or disprove.

30. Let A be an n×n matrix and let P ij be the permutation matrix which switches the ith

and jth rows of the identity. Show that P ijAP ij produces a matrix which is similar
to A which switches the ith and jth entries on the main diagonal.

31. Recall the procedure for finding the inverse of a matrix on Page 51. It was shown that
the procedure, when it works, finds the inverse of the matrix. Show that whenever
the matrix has an inverse, the procedure works.

32. If EA = B where E is invertible, show that A and B have the same linear relationships
among their columns.

33. You could define column operations by analogy to row operations. That is, you
switch two columns, multiply a column by a nonzero scalar, or add a scalar multiple
of a column to another column. Let E be one of these column operations applied to
the identity matrix. Show that AE produces the column operation on A which was
used to define E.
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Chapter 5

Some Factorizations

5.1 LU Factorization

An LU factorization of a matrix involves writing the given matrix as the product of a
lower triangular matrix which has the main diagonal consisting entirely of ones, L, and an
upper triangular matrix U in the indicated order. The L goes with “lower” and the U with
“upper”. It turns out many matrices can be written in this way and when this is possible,
people get excited about slick ways of solving the system of equations, Ax = y. The method
lacks generality but is of interest just the same.

Example 5.1.1 Can you write

(
0 1

1 0

)
in the form LU as just described?

To do so you would need

(
1 0

x 1

)(
a b

0 c

)
=

(
a b

xa xb+ c

)
=

(
0 1

1 0

)
.

Therefore, b = 1 and a = 0. Also, from the bottom rows, xa = 1 which can’t happen and
have a = 0. Therefore, you can’t write this matrix in the form LU. It has no LU factorization.
This is what I mean above by saying the method lacks generality.

Which matrices have an LU factorization? It turns out it is those whose row reduced
echelon form can be achieved without switching rows and which only involve row operations
of type 3 in which row j is replaced with a multiple of row i added to row j for i < j.

5.2 Finding An LU Factorization

There is a convenient procedure for finding an LU factorization. It turns out that it is
only necessary to keep track of the multipliers which are used to row reduce to upper
triangular form. This procedure is described in the following examples and is called the
multiplier method. It is due to Dolittle.

Example 5.2.1 Find an LU factorization for A =




1 2 3

2 1 −4

1 5 2



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Write the matrix next to the identity matrix as shown.




1 0 0

0 1 0

0 0 1







1 2 3

2 1 −4

1 5 2


 .

The process involves doing row operations to the matrix on the right while simultaneously
updating successive columns of the matrix on the left. First take −2 times the first row and
add to the second in the matrix on the right.




1 0 0

2 1 0

0 0 1







1 2 3

0 −3 −10

1 5 2




Note the method for updating the matrix on the left. The 2 in the second entry of the first
column is there because −2 times the first row of A added to the second row of A produced
a 0. Now replace the third row in the matrix on the right by −1 times the first row added
to the third. Thus the next step is




1 0 0

2 1 0

1 0 1







1 2 3

0 −3 −10

0 3 −1




Finally, add the second row to the bottom row and make the following changes




1 0 0

2 1 0

1 −1 1







1 2 3

0 −3 −10

0 0 −11


 .

At this point, stop because the matrix on the right is upper triangular. An LU factorization
is the above.

The justification for this gimmick will be given later.

Example 5.2.2 Find an LU factorization for A =




1 2 1 2 1

2 0 2 1 1

2 3 1 3 2

1 0 1 1 2


 .

This time everything is done at once for a whole column. This saves trouble. First
multiply the first row by (−1) and then add to the last row. Next take (−2) times the first
and add to the second and then (−2) times the first and add to the third.




1 0 0 0

2 1 0 0

2 0 1 0

1 0 0 1







1 2 1 2 1

0 −4 0 −3 −1

0 −1 −1 −1 0

0 −2 0 −1 1


 .

This finishes the first column of L and the first column of U. Now take − (1/4) times the
second row in the matrix on the right and add to the third followed by − (1/2) times the
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Write the matrix next to the identity matrix as shown.




1 0 0

0 1 0

0 0 1







1 2 3

2 1 −4

1 5 2


 .

The process involves doing row operations to the matrix on the right while simultaneously
updating successive columns of the matrix on the left. First take −2 times the first row and
add to the second in the matrix on the right.




1 0 0

2 1 0

0 0 1







1 2 3

0 −3 −10

1 5 2




Note the method for updating the matrix on the left. The 2 in the second entry of the first
column is there because −2 times the first row of A added to the second row of A produced
a 0. Now replace the third row in the matrix on the right by −1 times the first row added
to the third. Thus the next step is




1 0 0

2 1 0

1 0 1







1 2 3

0 −3 −10

0 3 −1




Finally, add the second row to the bottom row and make the following changes




1 0 0

2 1 0

1 −1 1







1 2 3

0 −3 −10

0 0 −11


 .

At this point, stop because the matrix on the right is upper triangular. An LU factorization
is the above.

The justification for this gimmick will be given later.

Example 5.2.2 Find an LU factorization for A =




1 2 1 2 1

2 0 2 1 1

2 3 1 3 2

1 0 1 1 2


 .

This time everything is done at once for a whole column. This saves trouble. First
multiply the first row by (−1) and then add to the last row. Next take (−2) times the first
and add to the second and then (−2) times the first and add to the third.




1 0 0 0

2 1 0 0

2 0 1 0

1 0 0 1







1 2 1 2 1

0 −4 0 −3 −1

0 −1 −1 −1 0

0 −2 0 −1 1


 .

This finishes the first column of L and the first column of U. Now take − (1/4) times the
second row in the matrix on the right and add to the third followed by − (1/2) times the
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Write the matrix next to the identity matrix as shown.




1 0 0

0 1 0

0 0 1







1 2 3

2 1 −4

1 5 2


 .

The process involves doing row operations to the matrix on the right while simultaneously
updating successive columns of the matrix on the left. First take −2 times the first row and
add to the second in the matrix on the right.




1 0 0

2 1 0

0 0 1







1 2 3

0 −3 −10

1 5 2




Note the method for updating the matrix on the left. The 2 in the second entry of the first
column is there because −2 times the first row of A added to the second row of A produced
a 0. Now replace the third row in the matrix on the right by −1 times the first row added
to the third. Thus the next step is




1 0 0

2 1 0

1 0 1







1 2 3

0 −3 −10

0 3 −1




Finally, add the second row to the bottom row and make the following changes




1 0 0

2 1 0

1 −1 1







1 2 3

0 −3 −10

0 0 −11


 .

At this point, stop because the matrix on the right is upper triangular. An LU factorization
is the above.

The justification for this gimmick will be given later.

Example 5.2.2 Find an LU factorization for A =




1 2 1 2 1

2 0 2 1 1

2 3 1 3 2

1 0 1 1 2


 .

This time everything is done at once for a whole column. This saves trouble. First
multiply the first row by (−1) and then add to the last row. Next take (−2) times the first
and add to the second and then (−2) times the first and add to the third.




1 0 0 0

2 1 0 0

2 0 1 0

1 0 0 1







1 2 1 2 1

0 −4 0 −3 −1

0 −1 −1 −1 0

0 −2 0 −1 1


 .

This finishes the first column of L and the first column of U. Now take − (1/4) times the
second row in the matrix on the right and add to the third followed by − (1/2) times the
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second added to the last.



1 0 0 0

2 1 0 0

2 1/4 1 0

1 1/2 0 1







1 2 1 2 1

0 −4 0 −3 −1

0 0 −1 −1/4 1/4

0 0 0 1/2 3/2




This finishes the second column of L as well as the second column of U . Since the matrix
on the right is upper triangular, stop. The LU factorization has now been obtained. This
technique is called Dolittle’s method. ��

This process is entirely typical of the general case. The matrix U is just the first upper
triangular matrix you come to in your quest for the row reduced echelon form using only
the row operation which involves replacing a row by itself added to a multiple of another
row. The matrix L is what you get by updating the identity matrix as illustrated above.

You should note that for a square matrix, the number of row operations necessary to
reduce to LU form is about half the number needed to place the matrix in row reduced
echelon form. This is why an LU factorization is of interest in solving systems of equations.

5.3 Solving Linear Systems Using An LU Factorization

The reason people care about the LU factorization is it allows the quick solution of systems
of equations. Here is an example.

Example 5.3.1 Suppose you want to find the solutions to




1 2 3 2

4 3 1 1

1 2 3 0







x

y

z

w


 =




1

2

3


 .

Of course one way is to write the augmented matrix and grind away. However, this
involves more row operations than the computation of an LU factorization and it turns out
that an LU factorization can give the solution quickly. Here is how. The following is an LU
factorization for the matrix.




1 2 3 2

4 3 1 1

1 2 3 0


 =




1 0 0

4 1 0

1 0 1







1 2 3 2

0 −5 −11 −7

0 0 0 −2


 .

Let Ux = y and consider Ly = b where in this case, b =(1, 2, 3)
T
. Thus




1 0 0

4 1 0

1 0 1







y1

y2

y3


 =




1

2

3




which yields very quickly that y =




1

−2

2


 . Now you can find x by solving Ux = y. ThusDownload free eBooks at bookboon.com
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second added to the last.



1 0 0 0

2 1 0 0

2 1/4 1 0

1 1/2 0 1







1 2 1 2 1

0 −4 0 −3 −1

0 0 −1 −1/4 1/4

0 0 0 1/2 3/2




This finishes the second column of L as well as the second column of U . Since the matrix
on the right is upper triangular, stop. The LU factorization has now been obtained. This
technique is called Dolittle’s method. ��

This process is entirely typical of the general case. The matrix U is just the first upper
triangular matrix you come to in your quest for the row reduced echelon form using only
the row operation which involves replacing a row by itself added to a multiple of another
row. The matrix L is what you get by updating the identity matrix as illustrated above.

You should note that for a square matrix, the number of row operations necessary to
reduce to LU form is about half the number needed to place the matrix in row reduced
echelon form. This is why an LU factorization is of interest in solving systems of equations.

5.3 Solving Linear Systems Using An LU Factorization

The reason people care about the LU factorization is it allows the quick solution of systems
of equations. Here is an example.

Example 5.3.1 Suppose you want to find the solutions to




1 2 3 2

4 3 1 1

1 2 3 0







x

y

z

w


 =




1

2

3


 .

Of course one way is to write the augmented matrix and grind away. However, this
involves more row operations than the computation of an LU factorization and it turns out
that an LU factorization can give the solution quickly. Here is how. The following is an LU
factorization for the matrix.




1 2 3 2

4 3 1 1

1 2 3 0


 =




1 0 0

4 1 0

1 0 1







1 2 3 2

0 −5 −11 −7

0 0 0 −2


 .

Let Ux = y and consider Ly = b where in this case, b =(1, 2, 3)
T
. Thus




1 0 0

4 1 0

1 0 1







y1

y2

y3


 =




1

2

3




which yields very quickly that y =




1

−2

2


 . Now you can find x by solving Ux = y. Thus134 CHAPTER 5. SOME FACTORIZATIONS

in this case,



1 2 3 2

0 −5 −11 −7

0 0 0 −2







x

y

z

w


 =




1

−2

2




which yields

x =




−3
5 + 7

5 t
9
5 − 11

5 t

t

−1


 , t ∈ R.

Work this out by hand and you will see the advantage of working only with triangular
matrices.

It may seem like a trivial thing but it is used because it cuts down on the number of
operations involved in finding a solution to a system of equations enough that it makes a
difference for large systems.

5.4 The PLU Factorization

As indicated above, some matrices don’t have an LU factorization. Here is an example.

M =




1 2 3 2

1 2 3 0

4 3 1 1


 (5.1)

In this case, there is another factorization which is useful called a PLU factorization. Here
P is a permutation matrix.

Example 5.4.1 Find a PLU factorization for the above matrix in 5.1.

Proceed as before trying to find the row echelon form of the matrix. First add −1 times
the first row to the second row and then add −4 times the first to the third. This yields




1 0 0

1 1 0

4 0 1







1 2 3 2

0 0 0 −2

0 −5 −11 −7




There is no way to do only row operations involving replacing a row with itself added to a
multiple of another row to the second matrix in such a way as to obtain an upper triangular
matrix. Therefore, consider M with the bottom two rows switched.

M ′ =




1 2 3 2

4 3 1 1

1 2 3 0


 .

Now try again with this matrix. First take −1 times the first row and add to the bottom
row and then take −4 times the first row and add to the second row. This yields




1 0 0

4 1 0

1 0 1







1 2 3 2

0 −5 −11 −7

0 0 0 −2



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in this case,



1 2 3 2

0 −5 −11 −7

0 0 0 −2







x

y

z

w


 =




1

−2

2




which yields

x =




−3
5 + 7

5 t
9
5 − 11

5 t

t

−1


 , t ∈ R.

Work this out by hand and you will see the advantage of working only with triangular
matrices.

It may seem like a trivial thing but it is used because it cuts down on the number of
operations involved in finding a solution to a system of equations enough that it makes a
difference for large systems.

5.4 The PLU Factorization

As indicated above, some matrices don’t have an LU factorization. Here is an example.

M =




1 2 3 2

1 2 3 0

4 3 1 1


 (5.1)

In this case, there is another factorization which is useful called a PLU factorization. Here
P is a permutation matrix.

Example 5.4.1 Find a PLU factorization for the above matrix in 5.1.

Proceed as before trying to find the row echelon form of the matrix. First add −1 times
the first row to the second row and then add −4 times the first to the third. This yields




1 0 0

1 1 0

4 0 1







1 2 3 2

0 0 0 −2

0 −5 −11 −7




There is no way to do only row operations involving replacing a row with itself added to a
multiple of another row to the second matrix in such a way as to obtain an upper triangular
matrix. Therefore, consider M with the bottom two rows switched.

M ′ =




1 2 3 2

4 3 1 1

1 2 3 0


 .

Now try again with this matrix. First take −1 times the first row and add to the bottom
row and then take −4 times the first row and add to the second row. This yields




1 0 0

4 1 0

1 0 1







1 2 3 2

0 −5 −11 −7

0 0 0 −2



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The second matrix is upper triangular and so the LU factorization of the matrix M ′ is




1 0 0

4 1 0

1 0 1







1 2 3 2

0 −5 −11 −7

0 0 0 −2


 .

Thus M ′ = PM = LU where L and U are given above. Therefore, M = P 2M = PLU and
so 


1 2 3 2

1 2 3 0

4 3 1 1


 =




1 0 0

0 0 1

0 1 0







1 0 0

4 1 0

1 0 1







1 2 3 2

0 −5 −11 −7

0 0 0 −2




This process can always be followed and so there always exists a PLU factorization of a
given matrix even though there isn’t always an LU factorization.

Example 5.4.2 Use a PLU factorization of M ≡




1 2 3 2

1 2 3 0

4 3 1 1


 to solve the system

Mx = b where b =(1, 2, 3)
T
.

Let Ux = y and consider PLy = b. In other words, solve,




1 0 0

0 0 1

0 1 0







1 0 0

4 1 0

1 0 1







y1

y2

y3


 =




1

2

3


 .

Then multiplying both sides by P gives




1 0 0

4 1 0

1 0 1







y1

y2

y3


 =




1

3

2




and so

y =




y1

y2

y3


 =




1

−1

1


 .

Now Ux = y and so it only remains to solve




1 2 3 2

0 −5 −11 −7

0 0 0 −2







x1

x2

x3

x4


 =




1

−1

1




which yields 


x1

x2

x3

x4


 =




1
5 + 7

5 t
9
10 − 11

5 t

t

− 1
2


 : t ∈ R.
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The second matrix is upper triangular and so the LU factorization of the matrix M ′ is




1 0 0

4 1 0

1 0 1







1 2 3 2

0 −5 −11 −7

0 0 0 −2


 .

Thus M ′ = PM = LU where L and U are given above. Therefore, M = P 2M = PLU and
so 


1 2 3 2

1 2 3 0

4 3 1 1


 =




1 0 0

0 0 1

0 1 0







1 0 0

4 1 0

1 0 1







1 2 3 2

0 −5 −11 −7

0 0 0 −2




This process can always be followed and so there always exists a PLU factorization of a
given matrix even though there isn’t always an LU factorization.

Example 5.4.2 Use a PLU factorization of M ≡




1 2 3 2

1 2 3 0

4 3 1 1


 to solve the system

Mx = b where b =(1, 2, 3)
T
.

Let Ux = y and consider PLy = b. In other words, solve,




1 0 0

0 0 1

0 1 0







1 0 0

4 1 0

1 0 1







y1

y2

y3


 =




1

2

3


 .

Then multiplying both sides by P gives




1 0 0

4 1 0

1 0 1







y1

y2

y3


 =




1

3

2




and so

y =




y1

y2

y3


 =




1

−1

1


 .

Now Ux = y and so it only remains to solve




1 2 3 2

0 −5 −11 −7

0 0 0 −2







x1

x2

x3

x4


 =




1

−1

1




which yields 


x1

x2

x3

x4


 =




1
5 + 7

5 t
9
10 − 11

5 t

t

− 1
2


 : t ∈ R.
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5.5 Justification For The Multiplier Method

Why does the multiplier method work for finding an LU factorization? Suppose A is a
matrix which has the property that the row reduced echelon form for A may be achieved
using only the row operations which involve replacing a row with itself added to a multiple
of another row. It is not ever necessary to switch rows. Thus every row which is replaced
using this row operation in obtaining the echelon form may be modified by using a row
which is above it. Furthermore, in the multiplier method for finding the LU factorization,
we zero out the elements below the pivot entry in first column and then the next and so on
when scanning from the left. In terms of elementary matrices, this means the row operations
used to reduce A to upper triangular form correspond to multiplication on the left by lower
triangular matrices having all ones down the main diagonal and the sequence of elementary
matrices which row reduces A has the property that in scanning the list of elementary
matrices from the right to the left, this list consists of several matrices which involve only
changes from the identity in the first column, then several which involve only changes from
the identity in the second column and so forth. More precisely, Ep · · ·E1A = U where U is
upper triangular, Ek having all zeros below the main diagonal except for a single column.

Therefore, A =

Will be L︷ ︸︸ ︷
E−1

1 · · ·E−1
p−1E

−1
p U. You multiply the inverses in the reverse order. Now each

of the E−1
i is also lower triangular with 1 down the main diagonal. Therefore their product

has this property. Recall also that if Ei equals the identity matrix except for having an a
in a single column somewhere below the main diagonal, E−1

i is obtained by replacing the a
in Ei with −a, thus explaining why we replace with −1 times the multiplier in computing
L. In the case where A is a 3×m matrix, E−1

1 · · ·E−1
p−1E

−1
p is of the form




1 0 0

a 1 0

0 0 1







1 0 0

0 1 0

b 0 1







1 0 0

0 1 0

0 c 1


 =




1 0 0

a 1 0

b c 1


 .

Note that scanning from left to right, the first two in the product involve changes in the
identity only in the first column while in the third matrix, the change is only in the second.
If the entries in the first column had been zeroed out in a different order, the following
would have resulted.




1 0 0

0 1 0

b 0 1







1 0 0

a 1 0

0 0 1







1 0 0

0 1 0

0 c 1


 =




1 0 0

a 1 0

b c 1




However, it is important to be working from the left to the right, one column at a time.
A similar observation holds in any dimension. Multiplying the elementary matrices which

involve a change only in the jth column you obtain A equal to an upper triangular, n×m
matrix U which is multiplied by a sequence of lower triangular matrices on its left which is
of the following form, in which the aij are negatives of multipliers used in row reducing to
an upper triangular matrix.




1 0 · · · 0

a11 1
...

...
. . . 0

a1,n−1 0 · · · 1







1 0 · · · 0

0 1
...

...
...

. . . 0

0 a2,n−2 · · · 1




· · ·




1 0 · · · 0

0 1
...

...
. . . 0

0 · · · an,n−1 1



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5.5 Justification For The Multiplier Method

Why does the multiplier method work for finding an LU factorization? Suppose A is a
matrix which has the property that the row reduced echelon form for A may be achieved
using only the row operations which involve replacing a row with itself added to a multiple
of another row. It is not ever necessary to switch rows. Thus every row which is replaced
using this row operation in obtaining the echelon form may be modified by using a row
which is above it. Furthermore, in the multiplier method for finding the LU factorization,
we zero out the elements below the pivot entry in first column and then the next and so on
when scanning from the left. In terms of elementary matrices, this means the row operations
used to reduce A to upper triangular form correspond to multiplication on the left by lower
triangular matrices having all ones down the main diagonal and the sequence of elementary
matrices which row reduces A has the property that in scanning the list of elementary
matrices from the right to the left, this list consists of several matrices which involve only
changes from the identity in the first column, then several which involve only changes from
the identity in the second column and so forth. More precisely, Ep · · ·E1A = U where U is
upper triangular, Ek having all zeros below the main diagonal except for a single column.

Therefore, A =

Will be L︷ ︸︸ ︷
E−1

1 · · ·E−1
p−1E

−1
p U. You multiply the inverses in the reverse order. Now each

of the E−1
i is also lower triangular with 1 down the main diagonal. Therefore their product

has this property. Recall also that if Ei equals the identity matrix except for having an a
in a single column somewhere below the main diagonal, E−1

i is obtained by replacing the a
in Ei with −a, thus explaining why we replace with −1 times the multiplier in computing
L. In the case where A is a 3×m matrix, E−1

1 · · ·E−1
p−1E

−1
p is of the form




1 0 0

a 1 0

0 0 1







1 0 0

0 1 0

b 0 1







1 0 0

0 1 0

0 c 1


 =




1 0 0

a 1 0

b c 1


 .

Note that scanning from left to right, the first two in the product involve changes in the
identity only in the first column while in the third matrix, the change is only in the second.
If the entries in the first column had been zeroed out in a different order, the following
would have resulted.




1 0 0

0 1 0

b 0 1







1 0 0

a 1 0

0 0 1







1 0 0

0 1 0

0 c 1


 =




1 0 0

a 1 0

b c 1




However, it is important to be working from the left to the right, one column at a time.
A similar observation holds in any dimension. Multiplying the elementary matrices which

involve a change only in the jth column you obtain A equal to an upper triangular, n×m
matrix U which is multiplied by a sequence of lower triangular matrices on its left which is
of the following form, in which the aij are negatives of multipliers used in row reducing to
an upper triangular matrix.




1 0 · · · 0

a11 1
...

...
. . . 0

a1,n−1 0 · · · 1







1 0 · · · 0

0 1
...

...
...

. . . 0

0 a2,n−2 · · · 1




· · ·




1 0 · · · 0

0 1
...

...
. . . 0

0 · · · an,n−1 1



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From the matrix multiplication, this product equals



1

a11 1
...

. . .

a1,n−1 · · · an,n−1 1




Notice how the end result of the matrix multiplication made no change in the aij . It just
filled in the empty spaces with the aij which occurred in one of the matrices in the product.
This is why, in computing L, it is sufficient to begin with the left column and work column
by column toward the right, replacing entries with the negative of the multiplier used in the
row operation which produces a zero in that entry.

5.6 Existence For The PLU Factorization

Here I will consider an invertible n × n matrix and show that such a matrix always has
a PLU factorization. More general matrices could also be considered but this is all I will
present.

Let A be such an invertible matrix and consider the first column of A. If A11 ̸= 0, use
this to zero out everything below it. The entry A11 is called the pivot. Thus in this case
there is a lower triangular matrix L1 which has all ones on the diagonal such that

L1P1A =

(
∗ ∗
0 A1

)
(5.2)

Here P1 = I. In case A11 = 0, let r be such that Ar1 ̸= 0 and r is the first entry for which
this happens. In this case, let P1 be the permutation matrix which switches the first row
and the rth row. Then as before, there exists a lower triangular matrix L1 which has all
ones on the diagonal such that 5.2 holds in this case also. In the first column, this L1 has
zeros between the first row and the rth row.

Go to A1. Following the same procedure as above, there exists a lower triangular matrix
and permutation matrix L′

2, P
′
2 such that

L′
2P

′
2A1 =

(
∗ ∗
0 A2

)

Let

L2 =

(
1 0

0 L′
2

)
, P2 =

(
1 0

0 P ′
2

)

Then using block multiplication, Theorem 3.5.2,
(

1 0

0 L′
2

)(
1 0

0 P ′
2

)(
∗ ∗
0 A1

)
=

=

(
1 0

0 L′
2

)(
∗ ∗
0 P ′

2A1

)
=

(
∗ ∗
0 L′

2P
′
2A1

)




∗ · · · ∗
0 ∗ ∗
0 0 A2


 = L2P2L1P1A
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From the matrix multiplication, this product equals



1

a11 1
...

. . .

a1,n−1 · · · an,n−1 1




Notice how the end result of the matrix multiplication made no change in the aij . It just
filled in the empty spaces with the aij which occurred in one of the matrices in the product.
This is why, in computing L, it is sufficient to begin with the left column and work column
by column toward the right, replacing entries with the negative of the multiplier used in the
row operation which produces a zero in that entry.

5.6 Existence For The PLU Factorization

Here I will consider an invertible n × n matrix and show that such a matrix always has
a PLU factorization. More general matrices could also be considered but this is all I will
present.

Let A be such an invertible matrix and consider the first column of A. If A11 ̸= 0, use
this to zero out everything below it. The entry A11 is called the pivot. Thus in this case
there is a lower triangular matrix L1 which has all ones on the diagonal such that

L1P1A =

(
∗ ∗
0 A1

)
(5.2)

Here P1 = I. In case A11 = 0, let r be such that Ar1 ̸= 0 and r is the first entry for which
this happens. In this case, let P1 be the permutation matrix which switches the first row
and the rth row. Then as before, there exists a lower triangular matrix L1 which has all
ones on the diagonal such that 5.2 holds in this case also. In the first column, this L1 has
zeros between the first row and the rth row.

Go to A1. Following the same procedure as above, there exists a lower triangular matrix
and permutation matrix L′

2, P
′
2 such that

L′
2P

′
2A1 =

(
∗ ∗
0 A2

)

Let

L2 =

(
1 0

0 L′
2

)
, P2 =

(
1 0

0 P ′
2

)

Then using block multiplication, Theorem 3.5.2,
(

1 0

0 L′
2

)(
1 0

0 P ′
2

)(
∗ ∗
0 A1

)
=

=

(
1 0

0 L′
2

)(
∗ ∗
0 P ′

2A1

)
=

(
∗ ∗
0 L′

2P
′
2A1

)




∗ · · · ∗
0 ∗ ∗
0 0 A2


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and L2 has all the subdiagonal entries equal to 0 except possibly some nonzero entries in
the second column starting with position r2 where P2 switches rows r2 and 2. Continuing
this way, it follows there are lower triangular matrices Lj having all ones down the diagonal
and permutation matrices Pi which switch only two rows such that

Ln−1Pn−1Ln−2Pn−2Ln−3 · · ·L2P2L1P1A = U (5.3)

where U is upper triangular. The matrix Lj has all zeros below the main diagonal except
for the jth column and even in this column it has zeros between position j and rj where Pj

switches rows j and rj . Of course in the case where no switching is necessary, you could get
all nonzero entries below the main diagonal in the jth column for Lj .

The fact that Lj is the identity except for the jth column means that each Pk for k > j
almost commutes with Lj . Say Pk switches the kth and the qth rows for q ≥ k > j. When
you place Pk on the right of Lj it just switches the kth and the qth columns and leaves the
jth column unchanged. Therefore, the same result as placing Pk on the left of Lj can be
obtained by placing Pk on the right of Lj and modifying Lj by switching the kth and the qth

entries in the jth column. (Note this could possibly interchange a 0 for something nonzero.)
It follows from 5.3 there exists P, the product of permutation matrices, P = Pn−1 · · ·P1

each of which switches two rows, and L a lower triangular matrix having all ones on the
main diagonal, L = L′

n−1 · · ·L′
2L

′
1, where the L

′
j are obtained as just described by moving a

succession of Pk from the left to the right of Lj and modifying the jth column as indicated,
such that

LPA = U.

Then
A = PTL−1U

It is customary to write this more simply as

A = PLU

where L is an upper triangular matrix having all ones on the diagonal and P is a permutation
matrix consisting of P1 · · ·Pn−1 as described above. This proves the following theorem.

Theorem 5.6.1 Let A be any invertible n × n matrix. Then there exists a permutation
matrix P and a lower triangular matrix L having all ones on the main diagonal and an
upper triangular matrix U such that

A = PLU

5.7 The QR Factorization

As pointed out above, the LU factorization is not a mathematically respectable thing be-
cause it does not always exist. There is another factorization which does always exist. Much
more can be said about it than I will say here. At this time, I will only deal with real ma-
trices and so the inner product will be the usual real dot product. Letting A be an m × n
real matrix and letting (·, ·) denote the usual real inner product,

(Ax,y) =
∑
i

(Ax)i yi =
∑
i

∑
j

Aijxjyi =
∑
j

∑
i

(
AT

)
ji
yixj

=
∑
j

(
ATy

)
j
xj =

(
x,ATy

)

Thus, when you take the matrix across the comma, you replace with a transpose.
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and L2 has all the subdiagonal entries equal to 0 except possibly some nonzero entries in
the second column starting with position r2 where P2 switches rows r2 and 2. Continuing
this way, it follows there are lower triangular matrices Lj having all ones down the diagonal
and permutation matrices Pi which switch only two rows such that

Ln−1Pn−1Ln−2Pn−2Ln−3 · · ·L2P2L1P1A = U (5.3)

where U is upper triangular. The matrix Lj has all zeros below the main diagonal except
for the jth column and even in this column it has zeros between position j and rj where Pj

switches rows j and rj . Of course in the case where no switching is necessary, you could get
all nonzero entries below the main diagonal in the jth column for Lj .

The fact that Lj is the identity except for the jth column means that each Pk for k > j
almost commutes with Lj . Say Pk switches the kth and the qth rows for q ≥ k > j. When
you place Pk on the right of Lj it just switches the kth and the qth columns and leaves the
jth column unchanged. Therefore, the same result as placing Pk on the left of Lj can be
obtained by placing Pk on the right of Lj and modifying Lj by switching the kth and the qth

entries in the jth column. (Note this could possibly interchange a 0 for something nonzero.)
It follows from 5.3 there exists P, the product of permutation matrices, P = Pn−1 · · ·P1

each of which switches two rows, and L a lower triangular matrix having all ones on the
main diagonal, L = L′

n−1 · · ·L′
2L

′
1, where the L

′
j are obtained as just described by moving a

succession of Pk from the left to the right of Lj and modifying the jth column as indicated,
such that

LPA = U.

Then
A = PTL−1U

It is customary to write this more simply as

A = PLU

where L is an upper triangular matrix having all ones on the diagonal and P is a permutation
matrix consisting of P1 · · ·Pn−1 as described above. This proves the following theorem.

Theorem 5.6.1 Let A be any invertible n × n matrix. Then there exists a permutation
matrix P and a lower triangular matrix L having all ones on the main diagonal and an
upper triangular matrix U such that

A = PLU

5.7 The QR Factorization

As pointed out above, the LU factorization is not a mathematically respectable thing be-
cause it does not always exist. There is another factorization which does always exist. Much
more can be said about it than I will say here. At this time, I will only deal with real ma-
trices and so the inner product will be the usual real dot product. Letting A be an m × n
real matrix and letting (·, ·) denote the usual real inner product,

(Ax,y) =
∑
i

(Ax)i yi =
∑
i

∑
j

Aijxjyi =
∑
j

∑
i

(
AT

)
ji
yixj

=
∑
j

(
ATy

)
j
xj =

(
x,ATy

)

Thus, when you take the matrix across the comma, you replace with a transpose.
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Definition 5.7.1 An n× n real matrix Q is called an orthogonal matrix if

QQT = QTQ = I.

Thus an orthogonal matrix is one whose inverse is equal to its transpose.

From the above observation,

|Qx|2 = (Qx, Qx) =
(
x,QTQx

)
= (x,Ix) = (x,x) = |x|2

This shows that orthogonal transformations preserve distances. Conversely you can also
show that if you have a matrix which does preserve distances, then it must be orthogonal.

Example 5.7.2 One of the most important examples of an orthogonal matrix is the so
called Householder matrix. You have v a unit vector and you form the matrix

I − 2vvT

This is an orthogonal matrix which is also symmetric. To see this, you use the rules of
matrix operations.

(
I − 2vvT

)T
= IT −

(
2vvT

)T

= I − 2vvT

so it is symmetric. Now to show it is orthogonal,
(
I − 2vvT

) (
I − 2vvT

)
= I − 2vvT − 2vvT + 4vvTvvT

= I − 4vvT + 4vvT = I

because vTv = v · v = |v|2 = 1. Therefore, this is an example of an orthogonal matrix.

Consider the following problem.

Problem 5.7.3 Given two vectors x,y such that |x| = |y| ̸= 0 but x ̸= y and you want an
orthogonal matrix Q such that Qx = y and Qy = x. The thing which works is the House-
holder matrix

Q ≡ I − 2
x− y

|x− y|2
(x− y)

T

Here is why this works.

Q (x− y) = (x− y)− 2
x− y

|x− y|2
(x− y)

T
(x− y)

= (x− y)− 2
x− y

|x− y|2
|x− y|2 = y − x

Q (x+ y) = (x+ y)− 2
x− y

|x− y|2
(x− y)

T
(x+ y)

= (x+ y)− 2
x− y

|x− y|2
((x− y) · (x+ y))

= (x+ y)− 2
x− y

|x− y|2
(
|x|2 − |y|2

)
= x+ y

Hence

Qx+Qy = x+ y

Qx−Qy = y − x

Adding these equations, 2Qx = 2y and subtracting them yields 2Qy = 2x.
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QQT = QTQ = I.

Thus an orthogonal matrix is one whose inverse is equal to its transpose.

From the above observation,

|Qx|2 = (Qx, Qx) =
(
x,QTQx

)
= (x,Ix) = (x,x) = |x|2

This shows that orthogonal transformations preserve distances. Conversely you can also
show that if you have a matrix which does preserve distances, then it must be orthogonal.

Example 5.7.2 One of the most important examples of an orthogonal matrix is the so
called Householder matrix. You have v a unit vector and you form the matrix

I − 2vvT

This is an orthogonal matrix which is also symmetric. To see this, you use the rules of
matrix operations.

(
I − 2vvT

)T
= IT −

(
2vvT

)T

= I − 2vvT

so it is symmetric. Now to show it is orthogonal,
(
I − 2vvT

) (
I − 2vvT

)
= I − 2vvT − 2vvT + 4vvTvvT

= I − 4vvT + 4vvT = I

because vTv = v · v = |v|2 = 1. Therefore, this is an example of an orthogonal matrix.

Consider the following problem.

Problem 5.7.3 Given two vectors x,y such that |x| = |y| ̸= 0 but x ̸= y and you want an
orthogonal matrix Q such that Qx = y and Qy = x. The thing which works is the House-
holder matrix

Q ≡ I − 2
x− y

|x− y|2
(x− y)

T

Here is why this works.

Q (x− y) = (x− y)− 2
x− y

|x− y|2
(x− y)

T
(x− y)

= (x− y)− 2
x− y

|x− y|2
|x− y|2 = y − x

Q (x+ y) = (x+ y)− 2
x− y

|x− y|2
(x− y)

T
(x+ y)

= (x+ y)− 2
x− y

|x− y|2
((x− y) · (x+ y))

= (x+ y)− 2
x− y

|x− y|2
(
|x|2 − |y|2

)
= x+ y

Hence

Qx+Qy = x+ y

Qx−Qy = y − x

Adding these equations, 2Qx = 2y and subtracting them yields 2Qy = 2x.
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A picture of the geometric significance follows.

x

y

The orthogonal matrix Q reflects across the dotted line taking x to y and y to x.

Definition 5.7.4 Let A be an m×n matrix. Then a QR factorization of A consists of two
matrices, Q orthogonal and R upper triangular (right triangular) having all the entries on
the main diagonal nonnegative such that A = QR.

With the solution to this simple problem, here is how to obtain a QR factorization for
any matrix A. Let

A = (a1,a2, · · · ,an)

where the ai are the columns. If a1 = 0, let Q1 = I. If a1 ̸= 0, let

b ≡




|a1|
0
...

0




and form the Householder matrix

Q1 ≡ I − 2
(a1 − b)

|a1 − b|2
(a1 − b)

T

As in the above problem Q1a1 = b and so

Q1A =

(
|a1| ∗
0 A2

)

where A2 is a m−1×n−1 matrix. Now find in the same way as was just done a m−1×m−1
matrix �Q2 such that

�Q2A2 =

(
∗ ∗
0 A3

)

Let

Q2 ≡

(
1 0

0 �Q2

)
.

Then

Q2Q1A =

(
1 0

0 �Q2

)(
|a1| ∗
0 A2

)

=




|a1| ∗ ∗
... ∗ ∗
0 0 A3



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A picture of the geometric significance follows.

x

y

The orthogonal matrix Q reflects across the dotted line taking x to y and y to x.

Definition 5.7.4 Let A be an m×n matrix. Then a QR factorization of A consists of two
matrices, Q orthogonal and R upper triangular (right triangular) having all the entries on
the main diagonal nonnegative such that A = QR.

With the solution to this simple problem, here is how to obtain a QR factorization for
any matrix A. Let

A = (a1,a2, · · · ,an)

where the ai are the columns. If a1 = 0, let Q1 = I. If a1 ̸= 0, let

b ≡




|a1|
0
...

0




and form the Householder matrix

Q1 ≡ I − 2
(a1 − b)

|a1 − b|2
(a1 − b)

T

As in the above problem Q1a1 = b and so

Q1A =

(
|a1| ∗
0 A2

)

where A2 is a m−1×n−1 matrix. Now find in the same way as was just done a m−1×m−1
matrix �Q2 such that

�Q2A2 =

(
∗ ∗
0 A3

)

Let

Q2 ≡

(
1 0

0 �Q2

)
.

Then

Q2Q1A =

(
1 0

0 �Q2

)(
|a1| ∗
0 A2

)

=




|a1| ∗ ∗
... ∗ ∗
0 0 A3



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A picture of the geometric significance follows.

x

y

The orthogonal matrix Q reflects across the dotted line taking x to y and y to x.

Definition 5.7.4 Let A be an m×n matrix. Then a QR factorization of A consists of two
matrices, Q orthogonal and R upper triangular (right triangular) having all the entries on
the main diagonal nonnegative such that A = QR.

With the solution to this simple problem, here is how to obtain a QR factorization for
any matrix A. Let

A = (a1,a2, · · · ,an)

where the ai are the columns. If a1 = 0, let Q1 = I. If a1 ̸= 0, let

b ≡




|a1|
0
...

0




and form the Householder matrix

Q1 ≡ I − 2
(a1 − b)

|a1 − b|2
(a1 − b)

T

As in the above problem Q1a1 = b and so

Q1A =

(
|a1| ∗
0 A2

)

where A2 is a m−1×n−1 matrix. Now find in the same way as was just done a m−1×m−1
matrix �Q2 such that

�Q2A2 =

(
∗ ∗
0 A3

)

Let

Q2 ≡

(
1 0

0 �Q2

)
.

Then

Q2Q1A =

(
1 0

0 �Q2

)(
|a1| ∗
0 A2

)

=




|a1| ∗ ∗
... ∗ ∗
0 0 A3



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Continuing this way until the result is upper triangular, you get a sequence of orthogonal
matrices QpQp−1 · · ·Q1 such that

QpQp−1 · · ·Q1A = R (5.4)

where R is upper triangular.
Now if Q1 and Q2 are orthogonal, then from properties of matrix multiplication,

Q1Q2 (Q1Q2)
T
= Q1Q2Q

T
2 Q

T
1 = Q1IQ

T
1 = I

and similarly
(Q1Q2)

T
Q1Q2 = I.

Thus the product of orthogonal matrices is orthogonal. Also the transpose of an orthogonal
matrix is orthogonal directly from the definition. Therefore, from 5.4

A = (QpQp−1 · · ·Q1)
T
R ≡ QR.

This proves the following theorem.

Theorem 5.7.5 Let A be any real m × n matrix. Then there exists an orthogonal matrix
Q and an upper triangular matrix R having nonnegative entries on the main diagonal such
that

A = QR

and this factorization can be accomplished in a systematic manner.

� �
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
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2 1 3
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
 .
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1 2 3 2

1 3 2 1
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
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
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6. Is there only one LU factorization for a given matrix? Hint: Consider the equation

(
0 1

0 1

)
=

(
1 0

1 1

)(
0 1

0 0

)
.

7. Here is a matrix and an LU factorization of it.

A =




1 2 5 0

1 1 4 9

0 1 2 5


 =




1 0 0

1 1 0

0 −1 1







1 2 5 0

0 −1 −1 9

0 0 1 14




Use this factorization to solve the system of equations

Ax =




1

2

3




8. Find a QR factorization for the matrix




1 2 1

3 −2 1

1 0 2




9. Find a QR factorization for the matrix




1 2 1 0

3 0 1 1

1 0 2 1




10. If you had a QR factorization, A = QR, describe how you could use it to solve the
equation Ax = b.

11. If Q is an orthogonal matrix, show the columns are an orthonormal set. That is show
that for

Q =
(

q1 · · · qn

)

it follows that qi · qj = δij . Also show that any orthonormal set of vectors is linearly
independent.

12. Show you can’t expect uniqueness for QR factorizations. Consider




0 0 0

0 0 1

0 0 1




and verify this equals




0 1 0
1
2

√
2 0 1

2

√
2

1
2

√
2 0 − 1

2

√
2







0 0
√
2

0 0 0

0 0 0



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and also 


1 0 0

0 1 0

0 0 1







0 0 0

0 0 1

0 0 1


 .

Using Definition 5.7.4, can it be concluded that if A is an invertible matrix it will
follow there is only one QR factorization?

13. Suppose {a1, · · · ,an} are linearly independent vectors in Rn and let

A =
(

a1 · · · an

)

Form a QR factorization for A.

(
a1 · · · an

)
=

(
q1 · · · qn

)



r11 r12 · · · r1n

0 r22 · · · r2n
...

. . .

0 0 · · · rnn




Show that for each k ≤ n,

span (a1, · · · ,ak) = span (q1, · · · ,qk)

Prove that every subspace of Rn has an orthonormal basis. The procedure just de-
scribed is similar to the Gram Schmidt procedure which will be presented later.

14. Suppose QnRn converges to an orthogonal matrix Q where Qn is orthogonal and Rn

is upper triangular having all positive entries on the diagonal. Show that then Qn

converges to Q and Rn converges to the identity.
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Chapter 6

Spectral Theory

Spectral Theory refers to the study of eigenvalues and eigenvectors of a matrix. It is of
fundamental importance in many areas. Row operations will no longer be such a useful tool
in this subject.

6.1 Eigenvalues And Eigenvectors Of A Matrix

The field of scalars in spectral theory is best taken to equal C although I will sometimes
refer to it as F when it could be either C or R.

Definition 6.1.1 Let M be an n× n matrix and let x ∈ Cn be a nonzero vector for which

Mx = λx (6.1)

for some scalar, λ. Then x is called an eigenvector and λ is called an eigenvalue (charac-
teristic value) of the matrix M.

Eigenvectors are never equal to zero!

The set of all eigenvalues of an n× n matrix M, is denoted by σ (M) and is referred to as
the spectrum of M.

Eigenvectors are vectors which are shrunk, stretched or reflected upon multiplication by
a matrix. How can they be identified? Suppose x satisfies 6.1. Then

(λI −M)x = 0

for some x ̸= 0. Therefore, the matrix M − λI cannot have an inverse and so by Theorem
3.3.18

det (λI −M) = 0. (6.2)

In other words, λmust be a zero of the characteristic polynomial. SinceM is an n×nmatrix,
it follows from the theorem on expanding a matrix by its cofactor that this is a polynomial
equation of degree n. As such, it has a solution, λ ∈ C. Is it actually an eigenvalue? The
answer is yes and this follows from Theorem 3.3.26 on Page 102. Since det (λI −M) = 0
the matrix λI −M cannot be one to one and so there exists a nonzero vector, x such that
(λI −M)x = 0. This proves the following corollary.

Corollary 6.1.2 Let M be an n×n matrix and det (M − λI) = 0. Then there exists x ∈ Cn

such that (M − λI)x = 0.
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As an example, consider the following.

Example 6.1.3 Find the eigenvalues and eigenvectors for the matrix

A =




5 −10 −5

2 14 2

−4 −8 6


 .

You first need to identify the eigenvalues. Recall this requires the solution of the equation

det


λ




1 0 0

0 1 0

0 0 1


−




5 −10 −5

2 14 2

−4 −8 6





 = 0

When you expand this determinant, you find the equation is

(λ− 5)
(
λ2 − 20λ+ 100

)
= 0

and so the eigenvalues are
5, 10, 10.

I have listed 10 twice because it is a zero of multiplicity two due to

λ2 − 20λ+ 100 = (λ− 10)
2
.

Having found the eigenvalues, it only remains to find the eigenvectors. First find the
eigenvectors for λ = 5. As explained above, this requires you to solve the equation,


5




1 0 0

0 1 0

0 0 1


−




5 −10 −5

2 14 2

−4 −8 6










x

y

z


 =




0

0

0


 .

That is you need to find the solution to




0 10 5

−2 −9 −2

4 8 −1







x

y

z


 =




0

0

0




By now this is an old problem. You set up the augmented matrix and row reduce to get the
solution. Thus the matrix you must row reduce is




0 10 5 0

−2 −9 −2 0

4 8 −1 0


 . (6.3)

The reduced row echelon form is



1 0 −5
4 0

0 1 1
2 0

0 0 0 0



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0

0
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By now this is an old problem. You set up the augmented matrix and row reduce to get the
solution. Thus the matrix you must row reduce is




0 10 5 0

−2 −9 −2 0

4 8 −1 0


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The reduced row echelon form is
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1 0 − 5
4 0
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and so the solution is any vector of the form




5
4z
−1
2 z

z


 = z




5
4
−1
2

1




where z ∈ F. You would obtain the same collection of vectors if you replaced z with 4z.
Thus a simpler description for the solutions to this system of equations whose augmented
matrix is in 6.3 is

z




5

−2

4


 (6.4)

where z ∈ F. Now you need to remember that you can’t take z = 0 because this would
result in the zero vector and

Eigenvectors are never equal to zero!

Other than this value, every other choice of z in 6.4 results in an eigenvector. It is a good
idea to check your work! To do so, I will take the original matrix and multiply by this vector
and see if I get 5 times this vector.




5 −10 −5

2 14 2

−4 −8 6







5

−2

4


 =




25

−10

20


 = 5




5

−2

4




so it appears this is correct. Always check your work on these problems if you care about
getting the answer right.

The variable, z is called a free variable or sometimes a parameter. The set of vectors in
6.4 is called the eigenspace and it equals ker (λI −A) . You should observe that in this case
the eigenspace has dimension 1 because there is one vector which spans the eigenspace. In
general, you obtain the solution from the row echelon form and the number of different free
variables gives you the dimension of the eigenspace. Just remember that not every vector
in the eigenspace is an eigenvector. The vector, 0 is not an eigenvector although it is in the
eigenspace because

Eigenvectors are never equal to zero!

Next consider the eigenvectors for λ = 10. These vectors are solutions to the equation,


10




1 0 0

0 1 0

0 0 1


−




5 −10 −5

2 14 2

−4 −8 6










x

y

z


 =




0

0

0




That is you must find the solutions to




5 10 5

−2 −4 −2

4 8 4







x

y

z


 =




0

0

0



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and so the solution is any vector of the form




5
4z
−1
2 z

z


 = z




5
4
−1
2

1




where z ∈ F. You would obtain the same collection of vectors if you replaced z with 4z.
Thus a simpler description for the solutions to this system of equations whose augmented
matrix is in 6.3 is

z




5

−2

4


 (6.4)

where z ∈ F. Now you need to remember that you can’t take z = 0 because this would
result in the zero vector and

Eigenvectors are never equal to zero!

Other than this value, every other choice of z in 6.4 results in an eigenvector. It is a good
idea to check your work! To do so, I will take the original matrix and multiply by this vector
and see if I get 5 times this vector.




5 −10 −5

2 14 2

−4 −8 6







5

−2

4


 =




25

−10

20


 = 5




5

−2

4




so it appears this is correct. Always check your work on these problems if you care about
getting the answer right.

The variable, z is called a free variable or sometimes a parameter. The set of vectors in
6.4 is called the eigenspace and it equals ker (λI −A) . You should observe that in this case
the eigenspace has dimension 1 because there is one vector which spans the eigenspace. In
general, you obtain the solution from the row echelon form and the number of different free
variables gives you the dimension of the eigenspace. Just remember that not every vector
in the eigenspace is an eigenvector. The vector, 0 is not an eigenvector although it is in the
eigenspace because

Eigenvectors are never equal to zero!

Next consider the eigenvectors for λ = 10. These vectors are solutions to the equation,


10




1 0 0

0 1 0

0 0 1


−




5 −10 −5

2 14 2

−4 −8 6










x

y

z


 =




0

0

0




That is you must find the solutions to




5 10 5

−2 −4 −2

4 8 4







x

y

z


 =




0

0

0



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which reduces to consideration of the augmented matrix




5 10 5 0

−2 −4 −2 0

4 8 4 0




The row reduced echelon form for this matrix is



1 2 1 0

0 0 0 0

0 0 0 0




and so the eigenvectors are of the form




−2y − z

y

z


 = y




−2

1

0


+ z




−1

0

1


 .

You can’t pick z and y both equal to zero because this would result in the zero vector and

Eigenvectors are never equal to zero!

However, every other choice of z and y does result in an eigenvector for the eigenvalue
λ = 10. As in the case for λ = 5 you should check your work if you care about getting it
right. 


5 −10 −5

2 14 2

−4 −8 6







−1

0

1


 =




−10

0

10


 = 10




−1

0

1




so it worked. The other vector will also work. Check it.
The above example shows how to find eigenvectors and eigenvalues algebraically. You

may have noticed it is a bit long. Sometimes students try to first row reduce the matrix
before looking for eigenvalues. This is a terrible idea because row operations destroy the
value of the eigenvalues. The eigenvalue problem is really not about row operations. A
general rule to remember about the eigenvalue problem is this.

If it is not long and hard it is usually wrong!

The eigenvalue problem is the hardest problem in algebra and people still do research on
ways to find eigenvalues. Now if you are so fortunate as to find the eigenvalues as in the
above example, then finding the eigenvectors does reduce to row operations and this part
of the problem is easy. However, finding the eigenvalues is anything but easy because for
an n × n matrix, it involves solving a polynomial equation of degree n and none of us are
very good at doing this. If you only find a good approximation to the eigenvalue, it won’t
work. It either is or is not an eigenvalue and if it is not, the only solution to the equation,
(λI −M)x = 0 will be the zero solution as explained above and

Eigenvectors are never equal to zero!

Here is another example.
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Example 6.1.4 Let

A =




2 2 −2

1 3 −1

−1 1 1




First find the eigenvalues.

det


λ




1 0 0

0 1 0

0 0 1


−




2 2 −2

1 3 −1

−1 1 1





 = 0

This is λ3 − 6λ2 + 8λ = 0 and the solutions are 0, 2, and 4.

0 Can be an Eigenvalue!

Now find the eigenvectors. For λ = 0 the augmented matrix for finding the solutions is



2 2 −2 0

1 3 −1 0

−1 1 1 0




and the row reduced echelon form is



1 0 −1 0

0 1 0 0

0 0 0 0




Therefore, the eigenvectors are of the form

z




1

0

1




where z ̸= 0.
Next find the eigenvectors for λ = 2. The augmented matrix for the system of equations

needed to find these eigenvectors is



0 −2 2 0

−1 −1 1 0

1 −1 1 0




and the row reduced echelon form is



1 0 0 0

0 1 −1 0

0 0 0 0




and so the eigenvectors are of the form

z




0

1

1



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where z ̸= 0.
Finally find the eigenvectors for λ = 4. The augmented matrix for the system of equations

needed to find these eigenvectors is




2 −2 2 0

−1 1 1 0

1 −1 3 0




and the row reduced echelon form is



1 −1 0 0

0 0 1 0

0 0 0 0


 .

Therefore, the eigenvectors are of the form

y




1

1

0




where y ̸= 0.

Example 6.1.5 Let

A =




2 −2 −1

−2 −1 −2

14 25 14


 .

Find the eigenvectors and eigenvalues.

In this case the eigenvalues are 3, 6, 6 where I have listed 6 twice because it is a zero of
algebraic multiplicity two, the characteristic equation being

(λ− 3) (λ− 6)
2
= 0.

It remains to find the eigenvectors for these eigenvalues. First consider the eigenvectors for
λ = 3. You must solve


3




1 0 0

0 1 0

0 0 1


−




2 −2 −1

−2 −1 −2

14 25 14










x

y

z


 =




0

0

0


 .

Using routine row operations, the eigenvectors are nonzero vectors of the form




z

−z

z


 = z




1

−1

1




Next consider the eigenvectors for λ = 6. This requires you to solve


6




1 0 0

0 1 0

0 0 1


−




2 −2 −1

−2 −1 −2

14 25 14










x

y

z


 =




0

0

0



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where z ̸= 0.
Finally find the eigenvectors for λ = 4. The augmented matrix for the system of equations

needed to find these eigenvectors is




2 −2 2 0

−1 1 1 0

1 −1 3 0




and the row reduced echelon form is



1 −1 0 0

0 0 1 0

0 0 0 0


 .

Therefore, the eigenvectors are of the form

y




1

1

0




where y ̸= 0.

Example 6.1.5 Let

A =




2 −2 −1

−2 −1 −2

14 25 14


 .

Find the eigenvectors and eigenvalues.

In this case the eigenvalues are 3, 6, 6 where I have listed 6 twice because it is a zero of
algebraic multiplicity two, the characteristic equation being

(λ− 3) (λ− 6)
2
= 0.

It remains to find the eigenvectors for these eigenvalues. First consider the eigenvectors for
λ = 3. You must solve


3




1 0 0

0 1 0

0 0 1


−




2 −2 −1

−2 −1 −2

14 25 14










x

y

z


 =




0

0

0


 .

Using routine row operations, the eigenvectors are nonzero vectors of the form




z

−z

z


 = z




1

−1

1




Next consider the eigenvectors for λ = 6. This requires you to solve


6




1 0 0

0 1 0

0 0 1


−




2 −2 −1

−2 −1 −2

14 25 14










x

y

z


 =




0

0

0



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where z ̸= 0.
Finally find the eigenvectors for λ = 4. The augmented matrix for the system of equations

needed to find these eigenvectors is




2 −2 2 0

−1 1 1 0

1 −1 3 0




and the row reduced echelon form is



1 −1 0 0

0 0 1 0

0 0 0 0


 .

Therefore, the eigenvectors are of the form

y




1

1

0




where y ̸= 0.

Example 6.1.5 Let

A =




2 −2 −1

−2 −1 −2

14 25 14


 .

Find the eigenvectors and eigenvalues.

In this case the eigenvalues are 3, 6, 6 where I have listed 6 twice because it is a zero of
algebraic multiplicity two, the characteristic equation being

(λ− 3) (λ− 6)
2
= 0.

It remains to find the eigenvectors for these eigenvalues. First consider the eigenvectors for
λ = 3. You must solve


3




1 0 0

0 1 0

0 0 1


−




2 −2 −1

−2 −1 −2

14 25 14










x

y

z


 =




0

0

0


 .

Using routine row operations, the eigenvectors are nonzero vectors of the form




z

−z

z


 = z




1

−1

1




Next consider the eigenvectors for λ = 6. This requires you to solve


6




1 0 0

0 1 0

0 0 1


−




2 −2 −1

−2 −1 −2

14 25 14










x

y

z


 =




0

0

0



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and using the usual procedures yields the eigenvectors for λ = 6 are of the form

z




− 1
8

− 1
4

1




or written more simply,

z




−1

−2

8




where z ∈ F.
Note that in this example the eigenspace for the eigenvalue λ = 6 is of dimension 1

because there is only one parameter which can be chosen. However, this eigenvalue is of
multiplicity two as a root to the characteristic equation.

Definition 6.1.6 If A is an n× n matrix with the property that some eigenvalue has alge-
braic multiplicity as a root of the characteristic equation which is greater than the dimension
of the eigenspace associated with this eigenvalue, then the matrix is called defective.

There may be repeated roots to the characteristic equation, 6.2 and it is not known
whether the dimension of the eigenspace equals the multiplicity of the eigenvalue. However,
the following theorem is available.

Theorem 6.1.7 Suppose Mvi = λivi, i = 1, · · · , r , vi ̸= 0, and that if i ̸= j, then λi ̸= λj.
Then the set of eigenvectors, {v1, · · · ,vr} is linearly independent.

Proof. Suppose the claim of the lemma is not true. Then there exists a subset of this
set of vectors

{w1, · · · ,wr} ⊆ {v1, · · · ,vk}

such that
r∑

j=1

cjwj = 0 (6.5)

where each cj ̸= 0. Say Mwj = µjwj where

{µ1, · · · , µr} ⊆ {λ1, · · · , λk} ,

the µj being distinct eigenvalues of M . Out of all such subsets, let this one be such that r
is as small as possible. Then necessarily, r > 1 because otherwise, c1w1 = 0 which would
imply w1 = 0, which is not allowed for eigenvectors.

Now apply M to both sides of 6.5.

r∑
j=1

cjµjwj = 0. (6.6)

Next pick µk ̸= 0 and multiply both sides of 6.5 by µk. Such a µk exists because r > 1.
Thus

r∑
j=1

cjµkwj = 0 (6.7)
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and using the usual procedures yields the eigenvectors for λ = 6 are of the form

z




− 1
8

− 1
4

1




or written more simply,

z




−1

−2

8




where z ∈ F.
Note that in this example the eigenspace for the eigenvalue λ = 6 is of dimension 1

because there is only one parameter which can be chosen. However, this eigenvalue is of
multiplicity two as a root to the characteristic equation.

Definition 6.1.6 If A is an n× n matrix with the property that some eigenvalue has alge-
braic multiplicity as a root of the characteristic equation which is greater than the dimension
of the eigenspace associated with this eigenvalue, then the matrix is called defective.

There may be repeated roots to the characteristic equation, 6.2 and it is not known
whether the dimension of the eigenspace equals the multiplicity of the eigenvalue. However,
the following theorem is available.

Theorem 6.1.7 Suppose Mvi = λivi, i = 1, · · · , r , vi ̸= 0, and that if i ̸= j, then λi ̸= λj.
Then the set of eigenvectors, {v1, · · · ,vr} is linearly independent.

Proof. Suppose the claim of the lemma is not true. Then there exists a subset of this
set of vectors

{w1, · · · ,wr} ⊆ {v1, · · · ,vk}

such that
r∑

j=1

cjwj = 0 (6.5)

where each cj ̸= 0. Say Mwj = µjwj where

{µ1, · · · , µr} ⊆ {λ1, · · · , λk} ,

the µj being distinct eigenvalues of M . Out of all such subsets, let this one be such that r
is as small as possible. Then necessarily, r > 1 because otherwise, c1w1 = 0 which would
imply w1 = 0, which is not allowed for eigenvectors.

Now apply M to both sides of 6.5.

r∑
j=1

cjµjwj = 0. (6.6)

Next pick µk ̸= 0 and multiply both sides of 6.5 by µk. Such a µk exists because r > 1.
Thus

r∑
j=1

cjµkwj = 0 (6.7)152 CHAPTER 6. SPECTRAL THEORY

Subtract the sum in 6.7 from the sum in 6.6 to obtain

r∑
j=1

cj
(
µk − µj

)
wj = 0

Now one of the constants cj
(
µk − µj

)
equals 0, when j = k. Therefore, r was not as small

as possible after all. �
In words, this theorem says that eigenvectors associated with distinct eigenvalues are

linearly independent.
Sometimes you have to consider eigenvalues which are complex numbers. This occurs in

differential equations for example. You do these problems exactly the same way as you do
the ones in which the eigenvalues are real. Here is an example.

Example 6.1.8 Find the eigenvalues and eigenvectors of the matrix

A =




1 0 0

0 2 −1

0 1 2


 .

You need to find the eigenvalues. Solve

det


λ




1 0 0

0 1 0

0 0 1


−




1 0 0

0 2 −1

0 1 2





 = 0.

This reduces to (λ− 1)
(
λ2 − 4λ+ 5

)
= 0. The solutions are λ = 1, λ = 2 + i, λ = 2− i.

There is nothing new about finding the eigenvectors for λ = 1 so consider the eigenvalue
λ = 2 + i. You need to solve


(2 + i)




1 0 0

0 1 0

0 0 1


−




1 0 0

0 2 −1

0 1 2










x

y

z


 =




0

0

0




In other words, you must consider the augmented matrix




1 + i 0 0 0

0 i 1 0

0 −1 i 0




for the solution. Divide the top row by (1 + i) and then take −i times the second row and
add to the bottom. This yields 


1 0 0 0

0 i 1 0

0 0 0 0




Now multiply the second row by −i to obtain




1 0 0 0

0 1 −i 0

0 0 0 0



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Subtract the sum in 6.7 from the sum in 6.6 to obtain

r∑
j=1

cj
(
µk − µj

)
wj = 0

Now one of the constants cj
(
µk − µj

)
equals 0, when j = k. Therefore, r was not as small

as possible after all. �
In words, this theorem says that eigenvectors associated with distinct eigenvalues are

linearly independent.
Sometimes you have to consider eigenvalues which are complex numbers. This occurs in

differential equations for example. You do these problems exactly the same way as you do
the ones in which the eigenvalues are real. Here is an example.

Example 6.1.8 Find the eigenvalues and eigenvectors of the matrix

A =




1 0 0

0 2 −1

0 1 2


 .

You need to find the eigenvalues. Solve

det


λ




1 0 0

0 1 0

0 0 1


−




1 0 0

0 2 −1

0 1 2





 = 0.

This reduces to (λ− 1)
(
λ2 − 4λ+ 5

)
= 0. The solutions are λ = 1, λ = 2 + i, λ = 2− i.

There is nothing new about finding the eigenvectors for λ = 1 so consider the eigenvalue
λ = 2 + i. You need to solve


(2 + i)




1 0 0

0 1 0

0 0 1


−




1 0 0

0 2 −1

0 1 2










x

y

z


 =




0

0

0




In other words, you must consider the augmented matrix




1 + i 0 0 0

0 i 1 0

0 −1 i 0




for the solution. Divide the top row by (1 + i) and then take −i times the second row and
add to the bottom. This yields 


1 0 0 0

0 i 1 0

0 0 0 0




Now multiply the second row by −i to obtain




1 0 0 0

0 1 −i 0

0 0 0 0



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Therefore, the eigenvectors are of the form

z




0

i

1


 .

You should find the eigenvectors for λ = 2− i. These are

z




0

−i

1


 .

As usual, if you want to get it right you had better check it.




1 0 0

0 2 −1

0 1 2







0

−i

1


 =




0

−1− 2i

2− i


 = (2− i)




0

−i

1




so it worked.

6.2 Some Applications Of Eigenvalues And Eigenvec-
tors

Recall that n× n matrices can be considered as linear transformations. If F is a 3× 3 real
matrix having positive determinant, it can be shown that F = RU where R is a rotation
matrix and U is a symmetric real matrix having positive eigenvalues. An application of
this wonderful result, known to mathematicians as the right polar decomposition, is to
continuum mechanics where a chunk of material is identified with a set of points in three
dimensional space.

The linear transformation, F in this context is called the deformation gradient and
it describes the local deformation of the material. Thus it is possible to consider this
deformation in terms of two processes, one which distorts the material and the other which
just rotates it. It is the matrix U which is responsible for stretching and compressing. This
is why in continuum mechanics, the stress is often taken to depend on U which is known in
this context as the right Cauchy Green strain tensor. This process of writing a matrix as a
product of two such matrices, one of which preserves distance and the other which distorts
is also important in applications to geometric measure theory an interesting field of study
in mathematics and to the study of quadratic forms which occur in many applications such
as statistics. Here I am emphasizing the application to mechanics in which the eigenvectors
of U determine the principle directions, those directions in which the material is stretched
or compressed to the maximum extent.

Example 6.2.1 Find the principle directions determined by the matrix




29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44




The eigenvalues are 3, 1, and 1
2 .
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Therefore, the eigenvectors are of the form

z




0

i

1


 .

You should find the eigenvectors for λ = 2− i. These are

z




0

−i

1


 .

As usual, if you want to get it right you had better check it.




1 0 0

0 2 −1

0 1 2







0

−i

1


 =




0

−1− 2i

2− i


 = (2− i)




0

−i

1




so it worked.

6.2 Some Applications Of Eigenvalues And Eigenvec-
tors

Recall that n× n matrices can be considered as linear transformations. If F is a 3× 3 real
matrix having positive determinant, it can be shown that F = RU where R is a rotation
matrix and U is a symmetric real matrix having positive eigenvalues. An application of
this wonderful result, known to mathematicians as the right polar decomposition, is to
continuum mechanics where a chunk of material is identified with a set of points in three
dimensional space.

The linear transformation, F in this context is called the deformation gradient and
it describes the local deformation of the material. Thus it is possible to consider this
deformation in terms of two processes, one which distorts the material and the other which
just rotates it. It is the matrix U which is responsible for stretching and compressing. This
is why in continuum mechanics, the stress is often taken to depend on U which is known in
this context as the right Cauchy Green strain tensor. This process of writing a matrix as a
product of two such matrices, one of which preserves distance and the other which distorts
is also important in applications to geometric measure theory an interesting field of study
in mathematics and to the study of quadratic forms which occur in many applications such
as statistics. Here I am emphasizing the application to mechanics in which the eigenvectors
of U determine the principle directions, those directions in which the material is stretched
or compressed to the maximum extent.

Example 6.2.1 Find the principle directions determined by the matrix




29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44




The eigenvalues are 3, 1, and 1
2 .
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It is nice to be given the eigenvalues. The largest eigenvalue is 3 which means that in
the direction determined by the eigenvector associated with 3 the stretch is three times as
large. The smallest eigenvalue is 1/2 and so in the direction determined by the eigenvector
for 1/2 the material is compressed, becoming locally half as long. It remains to find these
directions. First consider the eigenvector for 3. It is necessary to solve


3




1 0 0

0 1 0

0 0 1


−




29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44










x

y

z


 =




0

0

0




Thus the augmented matrix for this system of equations is




4
11 − 6

11 − 6
11 0

− 6
11

91
44 − 19

44 0

− 6
11 − 19

44
91
44 0




The row reduced echelon form is



1 0 −3 0

0 1 −1 0

0 0 0 0




and so the principle direction for the eigenvalue 3 in which the material is stretched to the
maximum extent is 


3

1

1


 .

A direction vector in this direction is



3/
√
11

1/
√
11

1/
√
11


 .

You should show that the direction in which the material is compressed the most is in the
direction 


0

−1/
√
2

1/
√
2




Note this is meaningful information which you would have a hard time finding without
the theory of eigenvectors and eigenvalues.

Another application is to the problem of finding solutions to systems of differential
equations. It turns out that vibrating systems involving masses and springs can be studied
in the form

x′′ = Ax (6.8)

where A is a real symmetric n × n matrix which has nonpositive eigenvalues. This is
analogous to the case of the scalar equation for undamped oscillation, x′′ + ω2x = 0. The
main difference is that here the scalar ω2 is replaced with the matrix −A. Consider the
problem of finding solutions to 6.8. You look for a solution which is in the form

x (t) = veλt (6.9)

Download free eBooks at bookboon.com



LINEAR ALGEBRA I Spectral Theory

165

154 CHAPTER 6. SPECTRAL THEORY

It is nice to be given the eigenvalues. The largest eigenvalue is 3 which means that in
the direction determined by the eigenvector associated with 3 the stretch is three times as
large. The smallest eigenvalue is 1/2 and so in the direction determined by the eigenvector
for 1/2 the material is compressed, becoming locally half as long. It remains to find these
directions. First consider the eigenvector for 3. It is necessary to solve


3




1 0 0

0 1 0

0 0 1


−




29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44










x

y

z


 =




0

0

0




Thus the augmented matrix for this system of equations is




4
11 − 6

11 − 6
11 0

− 6
11

91
44 − 19

44 0

− 6
11 − 19

44
91
44 0




The row reduced echelon form is



1 0 −3 0

0 1 −1 0

0 0 0 0




and so the principle direction for the eigenvalue 3 in which the material is stretched to the
maximum extent is 


3

1

1


 .

A direction vector in this direction is



3/
√
11

1/
√
11

1/
√
11


 .

You should show that the direction in which the material is compressed the most is in the
direction 


0

−1/
√
2

1/
√
2




Note this is meaningful information which you would have a hard time finding without
the theory of eigenvectors and eigenvalues.

Another application is to the problem of finding solutions to systems of differential
equations. It turns out that vibrating systems involving masses and springs can be studied
in the form

x′′ = Ax (6.8)

where A is a real symmetric n × n matrix which has nonpositive eigenvalues. This is
analogous to the case of the scalar equation for undamped oscillation, x′′ + ω2x = 0. The
main difference is that here the scalar ω2 is replaced with the matrix −A. Consider the
problem of finding solutions to 6.8. You look for a solution which is in the form

x (t) = veλt (6.9)
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and substitute this into 6.8. Thus

x′′ = vλ2eλt = eλtAv

and so
λ2v = Av.

Therefore, λ2 needs to be an eigenvalue of A and v needs to be an eigenvector. Since A
has nonpositive eigenvalues, λ2 = −a2 and so λ = ±ia where −a2 is an eigenvalue of A.
Corresponding to this you obtain solutions of the form

x (t) = v cos (at) ,v sin (at) .

Note these solutions oscillate because of the cos (at) and sin (at) in the solutions. Here is
an example.

Example 6.2.2 Find oscillatory solutions to the system of differential equations, x′′ = Ax
where

A =




− 5
3 − 1

3 − 1
3

− 1
3 − 13

6
5
6

− 1
3

5
6 − 13

6


 .

The eigenvalues are −1,−2, and −3.

According to the above, you can find solutions by looking for the eigenvectors. Consider
the eigenvectors for −3. The augmented matrix for finding the eigenvectors is




−4
3

1
3

1
3 0

1
3 − 5

6 − 5
6 0

1
3 − 5

6 − 5
6 0




and its row echelon form is 


1 0 0 0

0 1 1 0

0 0 0 0


 .

Therefore, the eigenvectors are of the form

v = z




0

−1

1


 .

It follows 


0

−1

1


 cos

(√
3t
)
,




0

−1

1


 sin

(√
3t
)

are both solutions to the system of differential equations. You can find other oscillatory
solutions in the same way by considering the other eigenvalues. You might try checking
these answers to verify they work.

This is just a special case of a procedure used in differential equations to obtain closed
form solutions to systems of differential equations using linear algebra. The overall philos-
ophy is to take one of the easiest problems in analysis and change it into the eigenvalue
problem which is the most difficult problem in algebra. However, when it works, it gives
precise solutions in terms of known functions.
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and substitute this into 6.8. Thus

x′′ = vλ2eλt = eλtAv

and so
λ2v = Av.

Therefore, λ2 needs to be an eigenvalue of A and v needs to be an eigenvector. Since A
has nonpositive eigenvalues, λ2 = −a2 and so λ = ±ia where −a2 is an eigenvalue of A.
Corresponding to this you obtain solutions of the form

x (t) = v cos (at) ,v sin (at) .

Note these solutions oscillate because of the cos (at) and sin (at) in the solutions. Here is
an example.

Example 6.2.2 Find oscillatory solutions to the system of differential equations, x′′ = Ax
where

A =




− 5
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3 − 1
3

− 1
3 − 13

6
5
6

− 1
3

5
6 − 13

6


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The eigenvalues are −1,−2, and −3.

According to the above, you can find solutions by looking for the eigenvectors. Consider
the eigenvectors for −3. The augmented matrix for finding the eigenvectors is
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3

1
3

1
3 0

1
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6 − 5
6 0
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6 − 5
6 0


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and its row echelon form is 
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1 0 0 0

0 1 1 0

0 0 0 0


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0
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1


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It follows 
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0
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1


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(√
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)
,




0

−1

1


 sin

(√
3t
)

are both solutions to the system of differential equations. You can find other oscillatory
solutions in the same way by considering the other eigenvalues. You might try checking
these answers to verify they work.

This is just a special case of a procedure used in differential equations to obtain closed
form solutions to systems of differential equations using linear algebra. The overall philos-
ophy is to take one of the easiest problems in analysis and change it into the eigenvalue
problem which is the most difficult problem in algebra. However, when it works, it gives
precise solutions in terms of known functions.
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6.3 Exercises

1. If A is the matrix of a linear transformation which rotates all vectors in R2 through
30◦, explain why A cannot have any real eigenvalues.

2. If A is an n×n matrix and c is a nonzero constant, compare the eigenvalues of A and
cA.

3. If A is an invertible n × n matrix, compare the eigenvalues of A and A−1. More
generally, for m an arbitrary integer, compare the eigenvalues of A and Am.

4. Let A,B be invertible n × n matrices which commute. That is, AB = BA. Suppose
x is an eigenvector of B. Show that then Ax must also be an eigenvector for B.

5. Suppose A is an n × n matrix and it satisfies Am = A for some m a positive integer
larger than 1. Show that if λ is an eigenvalue of A then |λ| equals either 0 or 1.

6. Show that if Ax = λx and Ay = λy, then whenever a, b are scalars,

A (ax+ by) = λ (ax+ by) .

Does this imply that ax+ by is an eigenvector? Explain.

7. Find the eigenvalues and eigenvectors of the matrix




−1 −1 7

−1 0 4

−1 −1 5


 . Determine

whether the matrix is defective.

8. Find the eigenvalues and eigenvectors of the matrix




−3 −7 19

−2 −1 8

−2 −3 10


 .Determine

whether the matrix is defective.

9. Find the eigenvalues and eigenvectors of the matrix




−7 −12 30

−3 −7 15

−3 −6 14


 .

10. Find the eigenvalues and eigenvectors of the matrix




7 −2 0

8 −1 0

−2 4 6


 . Determine

whether the matrix is defective.

11. Find the eigenvalues and eigenvectors of the matrix




3 −2 −1

0 5 1

0 2 4


 .

12. Find the eigenvalues and eigenvectors of the matrix




6 8 −23

4 5 −16

3 4 −12


. Determine

whether the matrix is defective.
6.3. EXERCISES 157

13. Find the eigenvalues and eigenvectors of the matrix




5 2 −5

12 3 −10

12 4 −11


 . Determine

whether the matrix is defective.

14. Find the eigenvalues and eigenvectors of the matrix




20 9 −18

6 5 −6

30 14 −27


 . Determine

whether the matrix is defective.

15. Find the eigenvalues and eigenvectors of the matrix




1 26 −17

4 −4 4

−9 −18 9


 . Determine

whether the matrix is defective.

16. Find the eigenvalues and eigenvectors of the matrix




3 −1 −2

11 3 −9

8 0 −6


 . Determine

whether the matrix is defective.

17. Find the eigenvalues and eigenvectors of the matrix




−2 1 2

−11 −2 9

−8 0 7


 . Determine

whether the matrix is defective.

18. Find the eigenvalues and eigenvectors of the matrix




2 1 −1

2 3 −2

2 2 −1


 .Determine whether

the matrix is defective.

19. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2

0 2 −2

2 0 2


 .

20. Find the eigenvalues and eigenvectors of the matrix




9 6 −3

0 6 0

−3 −6 9


 . Determine

whether the matrix is defective.

21. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2

0 2 −2

2 0 2


 . De-

termine whether the matrix is defective.

22. Find the complex eigenvalues and eigenvectors of the matrix




−4 2 0

2 −4 0

−2 2 −2


 .

Determine whether the matrix is defective.
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13. Find the eigenvalues and eigenvectors of the matrix




5 2 −5

12 3 −10

12 4 −11


 . Determine

whether the matrix is defective.

14. Find the eigenvalues and eigenvectors of the matrix




20 9 −18

6 5 −6

30 14 −27


 . Determine

whether the matrix is defective.

15. Find the eigenvalues and eigenvectors of the matrix




1 26 −17

4 −4 4

−9 −18 9


 . Determine

whether the matrix is defective.

16. Find the eigenvalues and eigenvectors of the matrix




3 −1 −2

11 3 −9

8 0 −6


 . Determine

whether the matrix is defective.

17. Find the eigenvalues and eigenvectors of the matrix




−2 1 2

−11 −2 9

−8 0 7


 . Determine

whether the matrix is defective.

18. Find the eigenvalues and eigenvectors of the matrix




2 1 −1

2 3 −2

2 2 −1


 .Determine whether

the matrix is defective.

19. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2

0 2 −2

2 0 2


 .

20. Find the eigenvalues and eigenvectors of the matrix




9 6 −3

0 6 0

−3 −6 9


 . Determine

whether the matrix is defective.

21. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2

0 2 −2

2 0 2


 . De-

termine whether the matrix is defective.

22. Find the complex eigenvalues and eigenvectors of the matrix




−4 2 0

2 −4 0

−2 2 −2


 .
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23. Find the complex eigenvalues and eigenvectors of the matrix




1 1 −6

7 −5 −6

−1 7 2


 .

Determine whether the matrix is defective.

24. Find the complex eigenvalues and eigenvectors of the matrix




4 2 0

−2 4 0

−2 2 6


 . Deter-

mine whether the matrix is defective.

25. Here is a matrix. 


1 a 0 0

0 1 b 0

0 0 2 c

0 0 0 2




Find values of a, b, c for which the matrix is defective and values of a, b, c for which it
is nondefective.

26. Here is a matrix. 


a 1 0

0 b 1

0 0 c




where a, b, c are numbers. Show this is sometimes defective depending on the choice
of a, b, c. What is an easy case which will ensure it is not defective?

27. Suppose A is an n×n matrix consisting entirely of real entries but a+ ib is a complex
eigenvalue having the eigenvector, x + iy. Here x and y are real vectors. Show that
then a − ib is also an eigenvalue with the eigenvector, x − iy. Hint: You should
remember that the conjugate of a product of complex numbers equals the product of
the conjugates. Here a+ ib is a complex number whose conjugate equals a− ib.

28. Recall an n×n matrix is said to be symmetric if it has all real entries and if A = AT .
Show the eigenvalues of a real symmetric matrix are real and for each eigenvalue, it
has a real eigenvector.

29. Recall an n × n matrix is said to be skew symmetric if it has all real entries and if
A = −AT . Show that any nonzero eigenvalues must be of the form ib where i2 = −1.
In words, the eigenvalues are either 0 or pure imaginary.

30. Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

31. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.

32. Suppose A is an n × n matrix having all real eigenvalues which are distinct. Show
there exists S such that S−1AS = D, a diagonal matrix. If

D =




λ1 0
. . .

0 λn



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23. Find the complex eigenvalues and eigenvectors of the matrix




1 1 −6

7 −5 −6

−1 7 2


 .

Determine whether the matrix is defective.

24. Find the complex eigenvalues and eigenvectors of the matrix




4 2 0

−2 4 0

−2 2 6


 . Deter-

mine whether the matrix is defective.

25. Here is a matrix. 


1 a 0 0

0 1 b 0

0 0 2 c

0 0 0 2




Find values of a, b, c for which the matrix is defective and values of a, b, c for which it
is nondefective.

26. Here is a matrix. 


a 1 0

0 b 1

0 0 c




where a, b, c are numbers. Show this is sometimes defective depending on the choice
of a, b, c. What is an easy case which will ensure it is not defective?

27. Suppose A is an n×n matrix consisting entirely of real entries but a+ ib is a complex
eigenvalue having the eigenvector, x + iy. Here x and y are real vectors. Show that
then a − ib is also an eigenvalue with the eigenvector, x − iy. Hint: You should
remember that the conjugate of a product of complex numbers equals the product of
the conjugates. Here a+ ib is a complex number whose conjugate equals a− ib.

28. Recall an n×n matrix is said to be symmetric if it has all real entries and if A = AT .
Show the eigenvalues of a real symmetric matrix are real and for each eigenvalue, it
has a real eigenvector.

29. Recall an n × n matrix is said to be skew symmetric if it has all real entries and if
A = −AT . Show that any nonzero eigenvalues must be of the form ib where i2 = −1.
In words, the eigenvalues are either 0 or pure imaginary.

30. Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

31. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.

32. Suppose A is an n × n matrix having all real eigenvalues which are distinct. Show
there exists S such that S−1AS = D, a diagonal matrix. If

D =




λ1 0
. . .

0 λn



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23. Find the complex eigenvalues and eigenvectors of the matrix




1 1 −6

7 −5 −6

−1 7 2


 .

Determine whether the matrix is defective.

24. Find the complex eigenvalues and eigenvectors of the matrix




4 2 0

−2 4 0

−2 2 6


 . Deter-

mine whether the matrix is defective.

25. Here is a matrix. 


1 a 0 0

0 1 b 0

0 0 2 c

0 0 0 2




Find values of a, b, c for which the matrix is defective and values of a, b, c for which it
is nondefective.

26. Here is a matrix. 


a 1 0

0 b 1

0 0 c




where a, b, c are numbers. Show this is sometimes defective depending on the choice
of a, b, c. What is an easy case which will ensure it is not defective?

27. Suppose A is an n×n matrix consisting entirely of real entries but a+ ib is a complex
eigenvalue having the eigenvector, x + iy. Here x and y are real vectors. Show that
then a − ib is also an eigenvalue with the eigenvector, x − iy. Hint: You should
remember that the conjugate of a product of complex numbers equals the product of
the conjugates. Here a+ ib is a complex number whose conjugate equals a− ib.

28. Recall an n×n matrix is said to be symmetric if it has all real entries and if A = AT .
Show the eigenvalues of a real symmetric matrix are real and for each eigenvalue, it
has a real eigenvector.

29. Recall an n × n matrix is said to be skew symmetric if it has all real entries and if
A = −AT . Show that any nonzero eigenvalues must be of the form ib where i2 = −1.
In words, the eigenvalues are either 0 or pure imaginary.

30. Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

31. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.

32. Suppose A is an n × n matrix having all real eigenvalues which are distinct. Show
there exists S such that S−1AS = D, a diagonal matrix. If

D =




λ1 0
. . .

0 λn




6.3. EXERCISES 159

define eD by

eD ≡




eλ1 0
. . .

0 eλn




and define
eA ≡ SeDS−1.

Next show that if A is as just described, so is tA where t is a real number and the
eigenvalues of At are tλk. If you differentiate a matrix of functions entry by entry so
that for the ijth entry of A′ (t) you get a′ij (t) where aij (t) is the ijth entry of A (t) ,
show

d

dt

(
eAt

)
= AeAt

Next show det
(
eAt

)
̸= 0. This is called the matrix exponential. Note I have only

defined it for the case where the eigenvalues of A are real, but the same procedure will
work even for complex eigenvalues. All you have to do is to define what is meant by

ea+ib.

33. Find the principle directions determined by the matrix




7
12 − 1

4
1
6

− 1
4

7
12 − 1

6
1
6 − 1

6
2
3


 . The

eigenvalues are 1
3 , 1, and

1
2 listed according to multiplicity.

34. Find the principle directions determined by the matrix


5
3 − 1

3 − 1
3

− 1
3

7
6

1
6

− 1
3

1
6

7
6


 The eigenvalues are 1, 2, and 1. What is the physical interpreta-

tion of the repeated eigenvalue?

35. Find oscillatory solutions to the system of differential equations, x′′ = Ax where A =


−3 −1 −1

−1 −2 0

−1 0 −2


 The eigenvalues are −1,−4, and −2.

36. Let A and B be n× n matrices and let the columns of B be

b1, · · · ,bn

and the rows of A are
aT1 , · · · ,aTn .

Show the columns of AB are
Ab1 · · ·Abn

and the rows of AB are
aT1 B · · ·aTnB.

37. Let M be an n × n matrix. Then define the adjoint of M , denoted by M∗ to be the
transpose of the conjugate of M. For example,

(
2 i

1 + i 3

)∗

=

(
2 1− i

−i 3

)
.
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A matrix M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix
are all real.

38. Let M be an n × n matrix and suppose x1, · · · ,xn are n eigenvectors which form a
linearly independent set. Form the matrix S by making the columns these vectors.
Show that S−1 exists and that S−1MS is a diagonal matrix (one having zeros every-
where except on the main diagonal) having the eigenvalues of M on the main diagonal.
When this can be done the matrix is said to be diagonalizable.

39. Show that a n×n matrix M is diagonalizable if and only if Fn has a basis of eigenvec-
tors. Hint: The first part is done in Problem 38. It only remains to show that if the
matrix can be diagonalized by some matrix S giving D = S−1MS for D a diagonal
matrix, then it has a basis of eigenvectors. Try using the columns of the matrix S.

40. Let

A =




1 2

3 4

2

0

0 1 3




and let

B =




0 1

1 1

2 1




MultiplyAB verifying the block multiplication formula. HereA11 =

(
1 2

3 4

)
, A12 =

(
2

0

)
, A21 =

(
0 1

)
and A22 = (3) .

41. Suppose A,B are n×n matrices and λ is a nonzero eigenvalue of AB. Show that then
it is also an eigenvalue of BA. Hint: Use the definition of what it means for λ to be
an eigenvalue. That is,

ABx = λx

where x ̸= 0. Maybe you should multiply both sides by B.

42. Using the above problem show that if A,B are n× n matrices, it is not possible that
AB − BA = aI for any a ̸= 0. Hint: First show that if A is a matrix, then the
eigenvalues of A− aI are λ− a where λ is an eigenvalue of A.

43. Consider the following matrix.

C =




0 · · · 0 −a0

1 0 −a1
. . .

. . .
...

0 1 −an−1




Show det (λI − C) = a0+λa1+ · · · an−1λ
n−1+λn. This matrix is called a companion

matrix for the given polynomial.
6.3. EXERCISES 161

44. A discreet dynamical system is of the form

x (k + 1) = Ax (k) , x (0) = x0

where A is an n× n matrix and x (k) is a vector in Rn. Show first that

x (k) = Akx0

for all k ≥ 1. If A is nondefective so that it has a basis of eigenvectors, {v1, · · · ,vn}
where

Avj = λjvj

you can write the initial condition x0 in a unique way as a linear combination of these
eigenvectors. Thus

x0 =

n∑
j=1

ajvj

Now explain why

x (k) =

n∑
j=1

ajA
kvj =

n∑
j=1

ajλ
k
jvj

which gives a formula for x (k) , the solution of the dynamical system.

45. Suppose A is an n × n matrix and let v be an eigenvector such that Av = λv. Also
suppose the characteristic polynomial of A is

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Explain why (
An + an−1A

n−1 + · · ·+ a1A+ a0I
)
v = 0

If A is nondefective, give a very easy proof of the Cayley Hamilton theorem based on
this. Recall this theorem says A satisfies its characteristic equation,

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

46. Suppose an n× n nondefective matrix A has only 1 and −1 as eigenvalues. Find A12.

47. Suppose the characteristic polynomial of an n×n matrix A is 1−λn. Find Amn where
m is an integer. Hint: Note first that A is nondefective. Why?

48. Sometimes sequences come in terms of a recursion formula. An example is the Fi-
bonacci sequence.

x0 = 1 = x1, xn+1 = xn + xn−1

Show this can be considered as a discreet dynamical system as follows.
(

xn+1

xn

)
=

(
1 1

1 0

)(
xn

xn−1

)
,

(
x1

x0

)
=

(
1

1

)

Now use the technique of Problem 44 to find a formula for xn.

49. Let A be an n× n matrix having characteristic polynomial

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Show that a0 = (−1)
n
det (A).
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44. A discreet dynamical system is of the form

x (k + 1) = Ax (k) , x (0) = x0

where A is an n× n matrix and x (k) is a vector in Rn. Show first that

x (k) = Akx0

for all k ≥ 1. If A is nondefective so that it has a basis of eigenvectors, {v1, · · · ,vn}
where

Avj = λjvj

you can write the initial condition x0 in a unique way as a linear combination of these
eigenvectors. Thus

x0 =

n∑
j=1

ajvj

Now explain why

x (k) =

n∑
j=1

ajA
kvj =

n∑
j=1

ajλ
k
jvj

which gives a formula for x (k) , the solution of the dynamical system.

45. Suppose A is an n × n matrix and let v be an eigenvector such that Av = λv. Also
suppose the characteristic polynomial of A is

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Explain why (
An + an−1A

n−1 + · · ·+ a1A+ a0I
)
v = 0

If A is nondefective, give a very easy proof of the Cayley Hamilton theorem based on
this. Recall this theorem says A satisfies its characteristic equation,

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

46. Suppose an n× n nondefective matrix A has only 1 and −1 as eigenvalues. Find A12.

47. Suppose the characteristic polynomial of an n×n matrix A is 1−λn. Find Amn where
m is an integer. Hint: Note first that A is nondefective. Why?

48. Sometimes sequences come in terms of a recursion formula. An example is the Fi-
bonacci sequence.

x0 = 1 = x1, xn+1 = xn + xn−1

Show this can be considered as a discreet dynamical system as follows.
(

xn+1

xn

)
=

(
1 1

1 0

)(
xn

xn−1

)
,

(
x1

x0

)
=

(
1

1

)

Now use the technique of Problem 44 to find a formula for xn.

49. Let A be an n× n matrix having characteristic polynomial

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Show that a0 = (−1)
n
det (A).
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44. A discreet dynamical system is of the form

x (k + 1) = Ax (k) , x (0) = x0

where A is an n× n matrix and x (k) is a vector in Rn. Show first that

x (k) = Akx0

for all k ≥ 1. If A is nondefective so that it has a basis of eigenvectors, {v1, · · · ,vn}
where

Avj = λjvj

you can write the initial condition x0 in a unique way as a linear combination of these
eigenvectors. Thus

x0 =

n∑
j=1

ajvj

Now explain why

x (k) =

n∑
j=1

ajA
kvj =

n∑
j=1

ajλ
k
jvj

which gives a formula for x (k) , the solution of the dynamical system.

45. Suppose A is an n × n matrix and let v be an eigenvector such that Av = λv. Also
suppose the characteristic polynomial of A is

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Explain why (
An + an−1A

n−1 + · · ·+ a1A+ a0I
)
v = 0

If A is nondefective, give a very easy proof of the Cayley Hamilton theorem based on
this. Recall this theorem says A satisfies its characteristic equation,

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

46. Suppose an n× n nondefective matrix A has only 1 and −1 as eigenvalues. Find A12.

47. Suppose the characteristic polynomial of an n×n matrix A is 1−λn. Find Amn where
m is an integer. Hint: Note first that A is nondefective. Why?

48. Sometimes sequences come in terms of a recursion formula. An example is the Fi-
bonacci sequence.

x0 = 1 = x1, xn+1 = xn + xn−1

Show this can be considered as a discreet dynamical system as follows.
(

xn+1

xn

)
=

(
1 1

1 0

)(
xn

xn−1

)
,

(
x1

x0

)
=

(
1

1

)

Now use the technique of Problem 44 to find a formula for xn.

49. Let A be an n× n matrix having characteristic polynomial

det (λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Show that a0 = (−1)
n
det (A).162 CHAPTER 6. SPECTRAL THEORY

6.4 Schur’s Theorem

Every matrix is related to an upper triangular matrix in a particularly significant way. This
is Schur’s theorem and it is the most important theorem in the spectral theory of matrices.

Lemma 6.4.1 Let {x1, · · · ,xn} be a basis for Fn. Then there exists an orthonormal ba-
sis for Fn, {u1, · · · ,un} which has the property that for each k ≤ n, span(x1, · · · ,xk) =
span (u1, · · · ,uk) .

Proof: Let {x1, · · · ,xn} be a basis for Fn. Let u1 ≡ x1/ |x1| . Thus for k = 1,
span (u1) = span (x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · · ,
uk have been chosen such that (uj · ul) = δjl and span (x1, · · · ,xk) = span (u1, · · · ,uk).
Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1 · uj)uj���xk+1 −

∑k
j=1 (xk+1 · uj)uj

���
, (6.10)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · · ,xk) = span (u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span (u1, · · · ,uk,xk+1) = span (x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span (u1, · · · ,uk,uk+1) which is seen easily by solving 6.10 for xk+1 and it
follows

span (x1, · · · ,xk,xk+1) = span (u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1 · ul) = C


(xk+1 · ul)−

k∑
j=1

(xk+1 · uj) (uj · ul)


 =

C


(xk+1 · ul)−

k∑
j=1

(xk+1 · uj) δlj


 = C ((xk+1 · ul)− (xk+1 · ul)) = 0.

The vectors, {uj}nj=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. �

The process by which these vectors were generated is called the Gram Schmidt process.
Here is a fundamental definition.

Definition 6.4.2 An n×n matrix U, is unitary if UU∗ = I = U∗U where U∗ is defined to
be the transpose of the conjugate of U.

Proposition 6.4.3 An n × n matrix is unitary if and only if the columns (rows) are an
orthonormal set.

Proof: This follows right away from the way we multiply matrices. If U is an n × n
complex matrix, then

(U∗U)ij = u∗
iuj = (ui,uj)

and the matrix is unitary if and only if this equals δij if and only if the columns are
orthonormal.

Note that if U is unitary, then so is UT . This is because

(
UT

)∗
UT ≡ (UT )

T
UT =

(
U
(
UT

))T

= (UU∗)
T
= IT = I

Thus an n× n matrix is unitary if and only if the rows are an orthonormal set. �
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6.4 Schur’s Theorem

Every matrix is related to an upper triangular matrix in a particularly significant way. This
is Schur’s theorem and it is the most important theorem in the spectral theory of matrices.

Lemma 6.4.1 Let {x1, · · · ,xn} be a basis for Fn. Then there exists an orthonormal ba-
sis for Fn, {u1, · · · ,un} which has the property that for each k ≤ n, span(x1, · · · ,xk) =
span (u1, · · · ,uk) .
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uk have been chosen such that (uj · ul) = δjl and span (x1, · · · ,xk) = span (u1, · · · ,uk).
Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1 · uj)uj���xk+1 −

∑k
j=1 (xk+1 · uj)uj

���
, (6.10)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · · ,xk) = span (u1, · · · ,uk)

Thus by induction,

uk+1 ∈ span (u1, · · · ,uk,xk+1) = span (x1, · · · ,xk,xk+1) .

Also, xk+1 ∈ span (u1, · · · ,uk,uk+1) which is seen easily by solving 6.10 for xk+1 and it
follows

span (x1, · · · ,xk,xk+1) = span (u1, · · · ,uk,uk+1) .

If l ≤ k,

(uk+1 · ul) = C


(xk+1 · ul)−

k∑
j=1

(xk+1 · uj) (uj · ul)


 =

C


(xk+1 · ul)−

k∑
j=1

(xk+1 · uj) δlj


 = C ((xk+1 · ul)− (xk+1 · ul)) = 0.

The vectors, {uj}nj=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. �

The process by which these vectors were generated is called the Gram Schmidt process.
Here is a fundamental definition.

Definition 6.4.2 An n×n matrix U, is unitary if UU∗ = I = U∗U where U∗ is defined to
be the transpose of the conjugate of U.

Proposition 6.4.3 An n × n matrix is unitary if and only if the columns (rows) are an
orthonormal set.

Proof: This follows right away from the way we multiply matrices. If U is an n × n
complex matrix, then

(U∗U)ij = u∗
iuj = (ui,uj)

and the matrix is unitary if and only if this equals δij if and only if the columns are
orthonormal.

Note that if U is unitary, then so is UT . This is because

(
UT

)∗
UT ≡ (UT )

T
UT =

(
U
(
UT

))T

= (UU∗)
T
= IT = I

Thus an n× n matrix is unitary if and only if the rows are an orthonormal set. �6.4. SCHUR’S THEOREM 163

Theorem 6.4.4 Let A be an n×n matrix. Then there exists a unitary matrix U such that

U∗AU = T, (6.11)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal
listed according to multiplicity as roots of the characteristic equation.

Proof: The theorem is clearly true if A is a 1 × 1 matrix. Just let U = 1 the 1 × 1
matrix which has 1 down the main diagonal and zeros elsewhere. Suppose it is true for
(n− 1)× (n− 1) matrices and let A be an n× n matrix. Then let v1 be a unit eigenvector
for A . Then there exists λ1 such that

Av1 = λ1v1, |v1| = 1.

Extend {v1} to a basis and then use Lemma 6.4.1 to obtain {v1, · · · ,vn}, an orthonormal
basis in Fn. Let U0 be a matrix whose ith column is vi. Then from the above, it follows U0

is unitary. Then U∗
0AU0 is of the form

B ≡

(
λ1 ∗
0 A1

)

where A1 is an n − 1 × n − 1 matrix. The above matrix B has the same eigenvalues as A.
Also note in case of an eigenvalue µ for B,

µ

(
a

x

)
= B

(
a

x

)
=

(
∗

A1x

)

so x is an eigenvector for A1 with the same eigenvalue µ. Now by induction there exists an
(n− 1)× (n− 1) unitary matrix �U1 such that

�U∗
1A1

�U1 = Tn−1,

an upper triangular matrix. Consider

U1 ≡

(
1 0

0 �U1

)

This is a unitary matrix and

U∗
1U

∗
0AU0U1 =

(
1 0

0 �U∗
1

)(
λ1 ∗
0 A1

)(
1 0

0 �U1

)
=

(
λ1 ∗
0 Tn−1

)
≡ T

where T is upper triangular. Then let U = U0U1. Since (U0U1)
∗
= U∗

1U
∗
0 , it follows A

is similar to T and that U0U1 is unitary. Hence A and T have the same characteristic
polynomials and since the eigenvalues of T are the diagonal entries listed according to
algebraic multiplicity, these are also the eigenvalues of A listed according to multiplicity. �

Corollary 6.4.5 Let A be a real n × n matrix having only real eigenvalues. Then there
exists a real orthogonal matrix Q and an upper triangular matrix T such that

QTAQ = T

and furthermore, if the eigenvalues of A are listed in decreasing order,

λ1 ≥ λ2 ≥ · · · ≥ λn
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0AU0 is of the form
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)
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=
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0 , it follows A

is similar to T and that U0U1 is unitary. Hence A and T have the same characteristic
polynomials and since the eigenvalues of T are the diagonal entries listed according to
algebraic multiplicity, these are also the eigenvalues of A listed according to multiplicity. �

Corollary 6.4.5 Let A be a real n × n matrix having only real eigenvalues. Then there
exists a real orthogonal matrix Q and an upper triangular matrix T such that

QTAQ = T

and furthermore, if the eigenvalues of A are listed in decreasing order,

λ1 ≥ λ2 ≥ · · · ≥ λn
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Q can be chosen such that T is of the form




λ1 ∗ · · · ∗

0 λ2
. . .

...
...

. . .
. . . ∗

0 · · · 0 λn




Proof: Repeat the above argument but pick a real eigenvector for the first step which
corresponds to λ1 as just described. Then use induction as above. Simply replace the word
“unitary” with the word “orthogonal”. �

As a simple consequence of the above theorem, here is an interesting lemma.

Lemma 6.4.6 Let A be of the form

A =




P1 · · · ∗
...

. . .
...

0 · · · Ps




where Pk is an mk ×mk matrix. Then

det (A) =
∏
k

det (Pk) .

Also, the eigenvalues of A consist of the union of the eigenvalues of the Pj.

Proof: Let Uk be an mk ×mk unitary matrix such that

U∗
kPkUk = Tk

where Tk is upper triangular. Then it follows that for

U ≡




U1 · · · 0
...

. . .
...

0 · · · Us


 , U∗ =




U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s




and also



U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s







P1 · · · ∗
...

. . .
...

0 · · · Ps







U1 · · · 0
...

. . .
...

0 · · · Us


 =




T1 · · · ∗
...

. . .
...

0 · · · Ts


 .

Therefore, since the determinant of an upper triangular matrix is the product of the diagonal
entries,

det (A) =
∏
k

det (Tk) =
∏
k

det (Pk) .

From the above formula, the eigenvalues of A consist of the eigenvalues of the upper trian-
gular matrices Tk, and each Tk has the same eigenvalues as Pk. �

What if A is a real matrix and you only want to consider real unitary matrices?
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Q can be chosen such that T is of the form
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0 λ2
. . .

...
...

. . .
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
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Proof: Repeat the above argument but pick a real eigenvector for the first step which
corresponds to λ1 as just described. Then use induction as above. Simply replace the word
“unitary” with the word “orthogonal”. �

As a simple consequence of the above theorem, here is an interesting lemma.

Lemma 6.4.6 Let A be of the form

A =




P1 · · · ∗
...

. . .
...

0 · · · Ps




where Pk is an mk ×mk matrix. Then

det (A) =
∏
k

det (Pk) .

Also, the eigenvalues of A consist of the union of the eigenvalues of the Pj.

Proof: Let Uk be an mk ×mk unitary matrix such that

U∗
kPkUk = Tk

where Tk is upper triangular. Then it follows that for

U ≡




U1 · · · 0
...

. . .
...

0 · · · Us


 , U∗ =




U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s


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and also



U∗
1 · · · 0
...

. . .
...

0 · · · U∗
s







P1 · · · ∗
...

. . .
...

0 · · · Ps







U1 · · · 0
...

. . .
...

0 · · · Us


 =




T1 · · · ∗
...

. . .
...

0 · · · Ts


 .

Therefore, since the determinant of an upper triangular matrix is the product of the diagonal
entries,

det (A) =
∏
k

det (Tk) =
∏
k

det (Pk) .

From the above formula, the eigenvalues of A consist of the eigenvalues of the upper trian-
gular matrices Tk, and each Tk has the same eigenvalues as Pk. �

What if A is a real matrix and you only want to consider real unitary matrices?
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Theorem 6.4.7 Let A be a real n×n matrix. Then there exists a real unitary (orthogonal)
matrix Q and a matrix T of the form

T =




P1 · · · ∗
. . .

...

0 Pr


 (6.12)

where Pi equals either a real 1 × 1 matrix or Pi equals a real 2 × 2 matrix having as its
eigenvalues a conjugate pair of eigenvalues of A such that QTAQ = T. The matrix T is
called the real Schur form of the matrix A. Recall that a real unitary matrix is also called
an orthogonal matrix.

Proof: Suppose
Av1 = λ1v1, |v1| = 1

where λ1 is real. Then let {v1, · · · ,vn} be an orthonormal basis of vectors in Rn. Let Q0

be a matrix whose ith column is vi. Then Q∗
0AQ0 is of the form




λ1 ∗ · · · ∗
0
... A1

0




where A1 is a real n− 1× n− 1 matrix. This is just like the proof of Theorem 6.4.4 up to
this point.

Now consider the case where λ1 = α + iβ where β ̸= 0. It follows since A is real that
v1 = z1 + iw1 and that v1 = z1 − iw1 is an eigenvector for the eigenvalue α − iβ. Here
z1 and w1 are real vectors. Since v1 and v1 are eigenvectors corresponding to distinct
eigenvalues, they form a linearly independent set. From this it follows that {z1,w1} is an
independent set of vectors in Cn, hence in Rn. Indeed,{v1,v1} is an independent set and
also span (v1,v1) = span (z1,w1) . Now using the Gram Schmidt theorem in Rn, there exists
{u1,u2} , an orthonormal set of real vectors such that span (u1,u2) = span (v1,v1). For
example,

u1 = z1/ |z1| , u2 =
|z1|2 w1 − (w1 · z1) z1���|z1|2 w1 − (w1 · z1) z1

���
Let {u1,u2, · · · ,un} be an orthonormal basis in Rn and let Q0 be a unitary matrix whose
ith column is ui so Q0 is a real orthogonal matrix. Then Auj are both in span (u1,u2) for
j = 1, 2 and so uT

kAuj = 0 whenever k ≥ 3. It follows that Q∗
0AQ0 is of the form

Q∗
0AQ0 =




∗ ∗ · · · ∗
∗ ∗
0
... A1

0




=

(
P1 ∗
0 A1

)

where A1 is now an n− 2× n− 2 matrix and P1 is a 2× 2 matrix. Now this is similar to A
and so two of its eigenvalues are α+ iβ and α− iβ.
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Now consider the case where λ1 = α + iβ where β ̸= 0. It follows since A is real that
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z1 and w1 are real vectors. Since v1 and v1 are eigenvectors corresponding to distinct
eigenvalues, they form a linearly independent set. From this it follows that {z1,w1} is an
independent set of vectors in Cn, hence in Rn. Indeed,{v1,v1} is an independent set and
also span (v1,v1) = span (z1,w1) . Now using the Gram Schmidt theorem in Rn, there exists
{u1,u2} , an orthonormal set of real vectors such that span (u1,u2) = span (v1,v1). For
example,
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|z1|2 w1 − (w1 · z1) z1���|z1|2 w1 − (w1 · z1) z1
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Let {u1,u2, · · · ,un} be an orthonormal basis in Rn and let Q0 be a unitary matrix whose
ith column is ui so Q0 is a real orthogonal matrix. Then Auj are both in span (u1,u2) for
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0
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P1 ∗
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where A1 is now an n− 2× n− 2 matrix and P1 is a 2× 2 matrix. Now this is similar to A
and so two of its eigenvalues are α+ iβ and α− iβ.
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Now find �Q1 an n − 2 × n − 2 matrix to put A1 in an appropriate form as above and
come up with A2 either an n− 4× n− 4 matrix or an n− 3× n− 3 matrix. Then the only
other difference is to let

Q1 =




1 0 0 · · · 0

0 1 0 · · · 0

0 0
...

... �Q1

0 0




thus putting a 2×2 identity matrix in the upper left corner rather than a one. Repeating this
process with the above modification for the case of a complex eigenvalue leads eventually
to 6.12 where Q is the product of real unitary matrices Qi above. When the block Pi is
2 × 2, its eigenvalues are a conjugate pair of eigenvalues of A and if it is 1 × 1 it is a real
eigenvalue of A.

Here is why this last claim is true

λI − T =




λI1 − P1 · · · ∗
. . .

...

0 λIr − Pr




where Ik is the 2× 2 identity matrix in the case that Pk is 2× 2 and is the number 1 in the
case where Pk is a 1× 1 matrix. Now by Lemma 6.4.6,

det (λI − T ) =

r∏
k=1

det (λIk − Pk) .

Therefore, λ is an eigenvalue of T if and only if it is an eigenvalue of some Pk. This proves
the theorem since the eigenvalues of T are the same as those of A including multiplicity
because they have the same characteristic polynomial due to the similarity of A and T. �

Of course there is a similar conclusion which says that the blocks can be ordered according
to order of the size of the eigenvalues.

Corollary 6.4.8 Let A be a real n× n matrix. Then there exists a real orthogonal matrix
Q and an upper triangular matrix T such that

QTAQ = T =




P1 · · · ∗
. . .

...

0 Pr




where Pi equals either a real 1 × 1 matrix or Pi equals a real 2 × 2 matrix having as its
eigenvalues a conjugate pair of eigenvalues of A. If Pk corresponds to the two eigenvalues
αk ± iβk ≡ σ (Pk) , Q can be chosen such that

|σ (P1)| ≥ |σ (P2)| ≥ · · ·

where

|σ (Pk)| ≡
√
α2
k + β2

k

The blocks, Pk can be arranged in any other order also.
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because they have the same characteristic polynomial due to the similarity of A and T. �

Of course there is a similar conclusion which says that the blocks can be ordered according
to order of the size of the eigenvalues.

Corollary 6.4.8 Let A be a real n× n matrix. Then there exists a real orthogonal matrix
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
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where Pi equals either a real 1 × 1 matrix or Pi equals a real 2 × 2 matrix having as its
eigenvalues a conjugate pair of eigenvalues of A. If Pk corresponds to the two eigenvalues
αk ± iβk ≡ σ (Pk) , Q can be chosen such that

|σ (P1)| ≥ |σ (P2)| ≥ · · ·

where

|σ (Pk)| ≡
√
α2
k + β2

k

The blocks, Pk can be arranged in any other order also.
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Definition 6.4.9 When a linear transformation A, mapping a linear space V to V has a
basis of eigenvectors, the linear transformation is called non defective. Otherwise it is called
defective. An n×n matrix A, is called normal if AA∗ = A∗A. An important class of normal
matrices is that of the Hermitian or self adjoint matrices. An n×n matrix A is self adjoint
or Hermitian if A = A∗.

You can check that an example of a normal matrix which is neither symmetric nor

Hermitian is

(
6i − (1 + i)

√
2

(1− i)
√
2 6i

)
.

The next lemma is the basis for concluding that every normal matrix is unitarily similar
to a diagonal matrix.

Lemma 6.4.10 If T is upper triangular and normal, then T is a diagonal matrix.

Proof: This is obviously true if T is 1 × 1. In fact, it can’t help being diagonal in this
case. Suppose then that the lemma is true for (n− 1) × (n− 1) matrices and let T be an
upper triangular normal n× n matrix. Thus T is of the form

T =

(
t11 a∗

0 T1

)
, T ∗ =

(
t11 0T

a T ∗
1

)

Then

TT ∗ =

(
t11 a∗

0 T1

)(
t11 0T

a T ∗
1

)
=

(
|t11|2 + a∗a a∗T ∗

1

T1a T1T
∗
1

)

T ∗T =

(
t11 0T

a T ∗
1

)(
t11 a∗

0 T1

)
=

(
|t11|2 t11a

∗

at11 aa∗ + T ∗
1 T1

)

Since these two matrices are equal, it follows a = 0. But now it follows that T ∗
1 T1 = T1T

∗
1

and so by induction T1 is a diagonal matrix D1. Therefore,

T =

(
t11 0T

0 D1

)

a diagonal matrix.
Now here is a proof which doesn’t involve block multiplication. Since T is normal,

T ∗T = TT ∗. Writing this in terms of components and using the description of the adjoint
as the transpose of the conjugate, yields the following for the ikth entry of T ∗T = TT ∗.

TT∗

� �� �∑
j

tijt
∗
jk =

∑
j

tijtkj =

T∗T� �� �∑
j

t∗ijtjk =
∑
j

tjitjk.

Now use the fact that T is upper triangular and let i = k = 1 to obtain the following from
the above. ∑

j

|t1j |2 =
∑
j

|tj1|2 = |t11|2

You see, tj1 = 0 unless j = 1 due to the assumption that T is upper triangular. This shows
T is of the form 



∗ 0 · · · 0

0 ∗ · · · ∗
...

. . .
. . .

...

0 · · · 0 ∗




.
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Definition 6.4.9 When a linear transformation A, mapping a linear space V to V has a
basis of eigenvectors, the linear transformation is called non defective. Otherwise it is called
defective. An n×n matrix A, is called normal if AA∗ = A∗A. An important class of normal
matrices is that of the Hermitian or self adjoint matrices. An n×n matrix A is self adjoint
or Hermitian if A = A∗.

You can check that an example of a normal matrix which is neither symmetric nor

Hermitian is

(
6i − (1 + i)

√
2

(1− i)
√
2 6i

)
.

The next lemma is the basis for concluding that every normal matrix is unitarily similar
to a diagonal matrix.

Lemma 6.4.10 If T is upper triangular and normal, then T is a diagonal matrix.

Proof: This is obviously true if T is 1 × 1. In fact, it can’t help being diagonal in this
case. Suppose then that the lemma is true for (n− 1) × (n− 1) matrices and let T be an
upper triangular normal n× n matrix. Thus T is of the form

T =

(
t11 a∗

0 T1

)
, T ∗ =

(
t11 0T

a T ∗
1

)

Then

TT ∗ =

(
t11 a∗

0 T1

)(
t11 0T

a T ∗
1

)
=

(
|t11|2 + a∗a a∗T ∗

1

T1a T1T
∗
1

)

T ∗T =

(
t11 0T

a T ∗
1

)(
t11 a∗

0 T1

)
=

(
|t11|2 t11a

∗

at11 aa∗ + T ∗
1 T1

)

Since these two matrices are equal, it follows a = 0. But now it follows that T ∗
1 T1 = T1T

∗
1

and so by induction T1 is a diagonal matrix D1. Therefore,

T =

(
t11 0T

0 D1

)

a diagonal matrix.
Now here is a proof which doesn’t involve block multiplication. Since T is normal,

T ∗T = TT ∗. Writing this in terms of components and using the description of the adjoint
as the transpose of the conjugate, yields the following for the ikth entry of T ∗T = TT ∗.

TT∗

� �� �∑
j

tijt
∗
jk =

∑
j

tijtkj =

T∗T� �� �∑
j

t∗ijtjk =
∑
j

tjitjk.

Now use the fact that T is upper triangular and let i = k = 1 to obtain the following from
the above. ∑

j

|t1j |2 =
∑
j

|tj1|2 = |t11|2

You see, tj1 = 0 unless j = 1 due to the assumption that T is upper triangular. This shows
T is of the form 



∗ 0 · · · 0

0 ∗ · · · ∗
...

. . .
. . .

...

0 · · · 0 ∗




.
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Now do the same thing only this time take i = k = 2 and use the result just established.
Thus, from the above, ∑

j

|t2j |2 =
∑
j

|tj2|2 = |t22|2 ,

showing that t2j = 0 if j > 2 which means T has the form




∗ 0 0 · · · 0

0 ∗ 0 · · · 0

0 0 ∗ · · · ∗
...

...
. . .

. . .
...

0 0 0 0 ∗




.

Next let i = k = 3 and obtain that T looks like a diagonal matrix in so far as the first 3
rows and columns are concerned. Continuing in this way, it follows T is a diagonal matrix.
�

Theorem 6.4.11 Let A be a normal matrix. Then there exists a unitary matrix U such
that U∗AU is a diagonal matrix. Also if A is normal and U is unitary, then U∗AU is also
normal.

Proof: From Theorem 6.4.4 there exists a unitary matrix U such that U∗AU equals
an upper triangular matrix. The theorem is now proved if it is shown that the property of
being normal is preserved under unitary similarity transformations. That is, verify that if
A is normal and if B = U∗AU, then B is also normal. But this is easy.

B∗B = U∗A∗UU∗AU = U∗A∗AU

= U∗AA∗U = U∗AUU∗A∗U = BB∗.

Therefore, U∗AU is a normal and upper triangular matrix and by Lemma 6.4.10 it must be
a diagonal matrix. �

The converse is also true. See Problem 9 below.

Corollary 6.4.12 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors. Also there exists a unitary U such that U∗AU = D, a
diagonal matrix whose diagonal is comprised of the eigenvalues of A. The columns of U are
the corresponding eigenvectors. By permuting the columns of U one can cause the diagonal
entries of D to occur in any desired order.

Proof: Since A is normal, there exists unitary, U such that U∗AU = D, a diagonal
matrix whose diagonal entries are the eigenvalues of A. Therefore, D∗ = U∗A∗U = U∗AU =
D showing D is real.

Finally, let

U =
(

u1 u2 · · · un

)

where the ui denote the columns of U and

D =




λ1 0
. . .

0 λn



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Now do the same thing only this time take i = k = 2 and use the result just established.
Thus, from the above, ∑

j

|t2j |2 =
∑
j

|tj2|2 = |t22|2 ,

showing that t2j = 0 if j > 2 which means T has the form




∗ 0 0 · · · 0

0 ∗ 0 · · · 0

0 0 ∗ · · · ∗
...

...
. . .

. . .
...

0 0 0 0 ∗




.

Next let i = k = 3 and obtain that T looks like a diagonal matrix in so far as the first 3
rows and columns are concerned. Continuing in this way, it follows T is a diagonal matrix.
�

Theorem 6.4.11 Let A be a normal matrix. Then there exists a unitary matrix U such
that U∗AU is a diagonal matrix. Also if A is normal and U is unitary, then U∗AU is also
normal.

Proof: From Theorem 6.4.4 there exists a unitary matrix U such that U∗AU equals
an upper triangular matrix. The theorem is now proved if it is shown that the property of
being normal is preserved under unitary similarity transformations. That is, verify that if
A is normal and if B = U∗AU, then B is also normal. But this is easy.

B∗B = U∗A∗UU∗AU = U∗A∗AU

= U∗AA∗U = U∗AUU∗A∗U = BB∗.

Therefore, U∗AU is a normal and upper triangular matrix and by Lemma 6.4.10 it must be
a diagonal matrix. �

The converse is also true. See Problem 9 below.

Corollary 6.4.12 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors. Also there exists a unitary U such that U∗AU = D, a
diagonal matrix whose diagonal is comprised of the eigenvalues of A. The columns of U are
the corresponding eigenvectors. By permuting the columns of U one can cause the diagonal
entries of D to occur in any desired order.

Proof: Since A is normal, there exists unitary, U such that U∗AU = D, a diagonal
matrix whose diagonal entries are the eigenvalues of A. Therefore, D∗ = U∗A∗U = U∗AU =
D showing D is real.

Finally, let

U =
(

u1 u2 · · · un

)

where the ui denote the columns of U and

D =




λ1 0
. . .

0 λn



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The equation, U∗AU = D implies

AU =
(

Au1 Au2 · · · Aun

)

= UD =
(

λ1u1 λ2u2 · · · λnun

)
(6.13)

where the entries denote the columns of AU and UD respectively. Therefore, Aui = λiui

and since the matrix is unitary, the ijth entry of U∗U equals δij and so

δij = u∗
iuj ≡ uj · ui.

This proves the corollary because it shows the vectors {ui} are orthonormal. Therefore, they
form a basis because every orthonormal set of vectors is linearly independent. It follows
from 6.13 that one can achieve any order for the λi by permuting the columns of U . �

Corollary 6.4.13 If A is a real symmetric matrix, then A is Hermitian and there exists
a real unitary (orthogonal) matrix U such that UTAU = D where D is a diagonal matrix
whose diagonal entries are the eigenvalues of A. By arranging the columns of U the diagonal
entries of D can be made to appear in any order.

Proof: It is clear that A = A∗ = AT . Thus A is real and all eigenvalues are real and it is
Hermitian. Now by Corollary 6.4.5, there is an orthogonal matrix U such that UTAU = T.
Since A is normal, so is T by Theorem 6.4.11. Hence by Lemma 6.4.10 T is a diagonal
matrix. Then it follows the diagonal entries are the eigenvalues of A and the columns of U
are the corresponding eigenvectors. Permuting these columns, one can cause the eigenvalues
to appear in any order on the diagonal. �

The converse for the above theorems about normal and Hermitian matrices is also true.
That is, the Hermitian matrices, (A = A∗) are exactly those for which there is a unitary U
such that U∗AU is a real diagonal matrix. The normal matrices are exactly those for which
there is a unitary U such that U∗AU is a diagonal matrix, maybe not real.

To summarize these types of matrices which have just been discussed, here is a little
diagram.

real symmetric

Hermitian

unitarily diagonalizable
real diagonal matrix

normal

unitarily diagonalizable

diagonalizable, nondefective

not diagonalizable with unitary matrix

6.5 Trace And Determinant

The determinant has already been discussed. It is also clear that if A = S−1BS so that
A,B are similar, then

det (A) = det
(
S−1

)
det (S) det (B) = det

(
S−1S

)
det (B)

= det (I) det (B) = det (B)
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The equation, U∗AU = D implies

AU =
(

Au1 Au2 · · · Aun

)

= UD =
(

λ1u1 λ2u2 · · · λnun

)
(6.13)

where the entries denote the columns of AU and UD respectively. Therefore, Aui = λiui

and since the matrix is unitary, the ijth entry of U∗U equals δij and so

δij = u∗
iuj ≡ uj · ui.

This proves the corollary because it shows the vectors {ui} are orthonormal. Therefore, they
form a basis because every orthonormal set of vectors is linearly independent. It follows
from 6.13 that one can achieve any order for the λi by permuting the columns of U . �

Corollary 6.4.13 If A is a real symmetric matrix, then A is Hermitian and there exists
a real unitary (orthogonal) matrix U such that UTAU = D where D is a diagonal matrix
whose diagonal entries are the eigenvalues of A. By arranging the columns of U the diagonal
entries of D can be made to appear in any order.

Proof: It is clear that A = A∗ = AT . Thus A is real and all eigenvalues are real and it is
Hermitian. Now by Corollary 6.4.5, there is an orthogonal matrix U such that UTAU = T.
Since A is normal, so is T by Theorem 6.4.11. Hence by Lemma 6.4.10 T is a diagonal
matrix. Then it follows the diagonal entries are the eigenvalues of A and the columns of U
are the corresponding eigenvectors. Permuting these columns, one can cause the eigenvalues
to appear in any order on the diagonal. �

The converse for the above theorems about normal and Hermitian matrices is also true.
That is, the Hermitian matrices, (A = A∗) are exactly those for which there is a unitary U
such that U∗AU is a real diagonal matrix. The normal matrices are exactly those for which
there is a unitary U such that U∗AU is a diagonal matrix, maybe not real.

To summarize these types of matrices which have just been discussed, here is a little
diagram.

real symmetric

Hermitian

unitarily diagonalizable
real diagonal matrix

normal

unitarily diagonalizable

diagonalizable, nondefective

not diagonalizable with unitary matrix

6.5 Trace And Determinant

The determinant has already been discussed. It is also clear that if A = S−1BS so that
A,B are similar, then

det (A) = det
(
S−1

)
det (S) det (B) = det

(
S−1S

)
det (B)

= det (I) det (B) = det (B)
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The trace is defined in the following definition.

Definition 6.5.1 Let A be an n× n matrix whose ijth entry is denoted as aij. Then

trace (A) ≡
∑
i

aii

In other words it is the sum of the entries down the main diagonal.

Theorem 6.5.2 Let A be an m× n matrix and let B be an n×m matrix. Then

trace (AB) = trace (BA) .

Also if B = S−1AS so that A,B are similar, then

trace (A) = trace (B) .

Proof:

trace (AB) ≡
∑
i

(∑
k

AikBki

)
=

∑
k

∑
i

BkiAik = trace (BA)

Therefore,

trace (B) = trace
(
S−1AS

)
= trace

(
ASS−1

)
= trace (A) . �

Theorem 6.5.3 Let A be an n×n matrix. Then trace (A) equals the sum of the eigenvalues
of A and det (A) equals the product of the eigenvalues of A.

This is proved using Schur’s theorem and is in Problem 17 below. Another important
property of the trace is in the following theorem.

6.6 Quadratic Forms

Definition 6.6.1 A quadratic form in three dimensions is an expression of the form

(
x y z

)
A




x

y

z


 (6.14)

where A is a 3× 3 symmetric matrix. In higher dimensions the idea is the same except you
use a larger symmetric matrix in place of A. In two dimensions A is a 2× 2 matrix.

For example, consider

(
x y z

)



3 −4 1

−4 0 −4

1 −4 3







x

y

z


 (6.15)

which equals 3x2−8xy+2xz−8yz+3z2. This is very awkward because of the mixed terms
such as −8xy. The idea is to pick different axes such that if x, y, z are taken with respect

6.7. SECOND DERIVATIVE TEST 171

to these axes, the quadratic form is much simpler. In other words, look for new variables,
x′, y′, and z′ and a unitary matrix U such that

U




x′

y′

z′


 =




x

y

z


 (6.16)

and if you write the quadratic form in terms of the primed variables, there will be no mixed
terms. Any symmetric real matrix is Hermitian and is therefore normal. From Corollary
6.4.13, it follows there exists a real unitary matrix U, (an orthogonal matrix) such that
UTAU = D a diagonal matrix. Thus in the quadratic form, 6.14

(
x y z

)
A




x

y

z


 =

(
x′ y′ z′

)
UTAU




x′

y′

z′




=
(

x′ y′ z′
)
D




x′

y′

z′




and in terms of these new variables, the quadratic form becomes

λ1 (x
′)
2
+ λ2 (y

′)
2
+ λ3 (z

′)
2

where D = diag (λ1, λ2, λ3) . Similar considerations apply equally well in any other dimen-
sion. For the given example,




− 1
2

√
2 0 1

2

√
2

1
6

√
6 1

3

√
6 1

6

√
6

1
3

√
3 − 1

3

√
3 1

3

√
3







3 −4 1

−4 0 −4

1 −4 3


 ·




− 1√
2

1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3


 =




2 0 0

0 −4 0

0 0 8




and so if the new variables are given by




− 1√
2

1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3







x′

y′

z′


 =




x

y

z


 ,

it follows that in terms of the new variables the quadratic form is 2 (x′)
2 − 4 (y′)

2
+ 8 (z′)

2
.

You can work other examples the same way.

6.7 Second Derivative Test

Under certain conditions the mixed partial derivatives will always be equal. This aston-
ishing fact was first observed by Euler around 1734. It is also called Clairaut’s theorem.
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to these axes, the quadratic form is much simpler. In other words, look for new variables,
x′, y′, and z′ and a unitary matrix U such that

U




x′

y′

z′


 =




x

y

z


 (6.16)

and if you write the quadratic form in terms of the primed variables, there will be no mixed
terms. Any symmetric real matrix is Hermitian and is therefore normal. From Corollary
6.4.13, it follows there exists a real unitary matrix U, (an orthogonal matrix) such that
UTAU = D a diagonal matrix. Thus in the quadratic form, 6.14

(
x y z

)
A




x

y

z


 =

(
x′ y′ z′

)
UTAU




x′

y′

z′




=
(

x′ y′ z′
)
D




x′

y′

z′




and in terms of these new variables, the quadratic form becomes

λ1 (x
′)
2
+ λ2 (y

′)
2
+ λ3 (z

′)
2

where D = diag (λ1, λ2, λ3) . Similar considerations apply equally well in any other dimen-
sion. For the given example,




− 1
2

√
2 0 1

2

√
2

1
6

√
6 1

3

√
6 1

6

√
6

1
3

√
3 − 1

3

√
3 1

3

√
3







3 −4 1

−4 0 −4

1 −4 3


 ·




− 1√
2

1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3


 =




2 0 0

0 −4 0

0 0 8




and so if the new variables are given by




− 1√
2

1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3







x′

y′

z′


 =




x

y

z


 ,

it follows that in terms of the new variables the quadratic form is 2 (x′)
2 − 4 (y′)

2
+ 8 (z′)

2
.

You can work other examples the same way.

6.7 Second Derivative Test

Under certain conditions the mixed partial derivatives will always be equal. This aston-
ishing fact was first observed by Euler around 1734. It is also called Clairaut’s theorem.
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Theorem 6.7.1 Suppose f : U ⊆ F2 → R where U is an open set on which fx, fy, fxy and
fyx exist. Then if fxy and fyx are continuous at the point (x, y) ∈ U , it follows

fxy (x, y) = fyx (x, y) .

Proof: Since U is open, there exists r > 0 such that B ((x, y) , r) ⊆ U. Now let |t| , |s| <
r/2, t, s real numbers and consider

∆ (s, t) ≡ 1

st
{

h(t)� �� �
f (x+ t, y + s)− f (x+ t, y)−

h(0)� �� �
(f (x, y + s)− f (x, y))}. (6.17)

Note that (x+ t, y + s) ∈ U because

|(x+ t, y + s)− (x, y)| = |(t, s)| =
(
t2 + s2

)1/2

≤
(
r2

4
+

r2

4

)1/2

=
r√
2
< r.

As implied above, h (t) ≡ f (x+ t, y + s)−f (x+ t, y). Therefore, by the mean value theorem
from calculus and the (one variable) chain rule,

∆ (s, t) =
1

st
(h (t)− h (0)) =

1

st
h′ (αt) t

=
1

s
(fx (x+ αt, y + s)− fx (x+ αt, y))

for some α ∈ (0, 1) . Applying the mean value theorem again,

∆ (s, t) = fxy (x+ αt, y + βs)

where α, β ∈ (0, 1).
If the terms f (x+ t, y) and f (x, y + s) are interchanged in 6.17, ∆ (s, t) is unchanged

and the above argument shows there exist γ, δ ∈ (0, 1) such that

∆ (s, t) = fyx (x+ γt, y + δs) .

Letting (s, t) → (0, 0) and using the continuity of fxy and fyx at (x, y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x, y) = fyx (x, y) . �

The following is obtained from the above by simply fixing all the variables except for the
two of interest.

Corollary 6.7.2 Suppose U is an open subset of Fn and f : U → R has the property
that for two indices, k, l, fxk

, fxl
, fxlxk

, and fxkxl
exist on U and fxkxl

and fxlxk
are both

continuous at x ∈ U. Then fxkxl
(x) = fxlxk

(x) .

Thus the theorem asserts that the mixed partial derivatives are equal at x if they are
defined near x and continuous at x.

Now recall the Taylor formula with the Lagrange form of the remainder. What follows
is a proof of this important result based on the mean value theorem or Rolle’s theorem.

Theorem 6.7.3 Suppose f has n + 1 derivatives on an interval, (a, b) and let c ∈ (a, b) .
Then if x ∈ (a, b) , there exists ξ between c and x such that

f (x) = f (c) +

n∑
k=1

f (k) (c)

k!
(x− c)

k
+

f (n+1) (ξ)

(n+ 1)!
(x− c)

n+1
.

(In this formula, the symbol
∑0

k=1 ak will denote the number 0.)
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Theorem 6.7.1 Suppose f : U ⊆ F2 → R where U is an open set on which fx, fy, fxy and
fyx exist. Then if fxy and fyx are continuous at the point (x, y) ∈ U , it follows

fxy (x, y) = fyx (x, y) .

Proof: Since U is open, there exists r > 0 such that B ((x, y) , r) ⊆ U. Now let |t| , |s| <
r/2, t, s real numbers and consider

∆ (s, t) ≡ 1

st
{

h(t)� �� �
f (x+ t, y + s)− f (x+ t, y)−

h(0)� �� �
(f (x, y + s)− f (x, y))}. (6.17)

Note that (x+ t, y + s) ∈ U because

|(x+ t, y + s)− (x, y)| = |(t, s)| =
(
t2 + s2

)1/2

≤
(
r2

4
+

r2

4

)1/2

=
r√
2
< r.

As implied above, h (t) ≡ f (x+ t, y + s)−f (x+ t, y). Therefore, by the mean value theorem
from calculus and the (one variable) chain rule,

∆ (s, t) =
1

st
(h (t)− h (0)) =

1

st
h′ (αt) t

=
1

s
(fx (x+ αt, y + s)− fx (x+ αt, y))

for some α ∈ (0, 1) . Applying the mean value theorem again,

∆ (s, t) = fxy (x+ αt, y + βs)

where α, β ∈ (0, 1).
If the terms f (x+ t, y) and f (x, y + s) are interchanged in 6.17, ∆ (s, t) is unchanged

and the above argument shows there exist γ, δ ∈ (0, 1) such that

∆ (s, t) = fyx (x+ γt, y + δs) .

Letting (s, t) → (0, 0) and using the continuity of fxy and fyx at (x, y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x, y) = fyx (x, y) . �

The following is obtained from the above by simply fixing all the variables except for the
two of interest.

Corollary 6.7.2 Suppose U is an open subset of Fn and f : U → R has the property
that for two indices, k, l, fxk

, fxl
, fxlxk

, and fxkxl
exist on U and fxkxl

and fxlxk
are both

continuous at x ∈ U. Then fxkxl
(x) = fxlxk

(x) .

Thus the theorem asserts that the mixed partial derivatives are equal at x if they are
defined near x and continuous at x.

Now recall the Taylor formula with the Lagrange form of the remainder. What follows
is a proof of this important result based on the mean value theorem or Rolle’s theorem.

Theorem 6.7.3 Suppose f has n + 1 derivatives on an interval, (a, b) and let c ∈ (a, b) .
Then if x ∈ (a, b) , there exists ξ between c and x such that

f (x) = f (c) +
n∑

k=1

f (k) (c)

k!
(x− c)

k
+

f (n+1) (ξ)

(n+ 1)!
(x− c)

n+1
.

(In this formula, the symbol
∑0

k=1 ak will denote the number 0.)
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Theorem 6.7.1 Suppose f : U ⊆ F2 → R where U is an open set on which fx, fy, fxy and
fyx exist. Then if fxy and fyx are continuous at the point (x, y) ∈ U , it follows

fxy (x, y) = fyx (x, y) .

Proof: Since U is open, there exists r > 0 such that B ((x, y) , r) ⊆ U. Now let |t| , |s| <
r/2, t, s real numbers and consider

∆ (s, t) ≡ 1

st
{

h(t)� �� �
f (x+ t, y + s)− f (x+ t, y)−

h(0)� �� �
(f (x, y + s)− f (x, y))}. (6.17)

Note that (x+ t, y + s) ∈ U because

|(x+ t, y + s)− (x, y)| = |(t, s)| =
(
t2 + s2

)1/2

≤
(
r2

4
+

r2

4

)1/2

=
r√
2
< r.

As implied above, h (t) ≡ f (x+ t, y + s)−f (x+ t, y). Therefore, by the mean value theorem
from calculus and the (one variable) chain rule,

∆ (s, t) =
1

st
(h (t)− h (0)) =

1

st
h′ (αt) t

=
1

s
(fx (x+ αt, y + s)− fx (x+ αt, y))

for some α ∈ (0, 1) . Applying the mean value theorem again,

∆ (s, t) = fxy (x+ αt, y + βs)

where α, β ∈ (0, 1).
If the terms f (x+ t, y) and f (x, y + s) are interchanged in 6.17, ∆ (s, t) is unchanged

and the above argument shows there exist γ, δ ∈ (0, 1) such that

∆ (s, t) = fyx (x+ γt, y + δs) .

Letting (s, t) → (0, 0) and using the continuity of fxy and fyx at (x, y) ,

lim
(s,t)→(0,0)

∆(s, t) = fxy (x, y) = fyx (x, y) . �

The following is obtained from the above by simply fixing all the variables except for the
two of interest.

Corollary 6.7.2 Suppose U is an open subset of Fn and f : U → R has the property
that for two indices, k, l, fxk

, fxl
, fxlxk

, and fxkxl
exist on U and fxkxl

and fxlxk
are both

continuous at x ∈ U. Then fxkxl
(x) = fxlxk

(x) .

Thus the theorem asserts that the mixed partial derivatives are equal at x if they are
defined near x and continuous at x.

Now recall the Taylor formula with the Lagrange form of the remainder. What follows
is a proof of this important result based on the mean value theorem or Rolle’s theorem.

Theorem 6.7.3 Suppose f has n + 1 derivatives on an interval, (a, b) and let c ∈ (a, b) .
Then if x ∈ (a, b) , there exists ξ between c and x such that

f (x) = f (c) +
n∑

k=1

f (k) (c)

k!
(x− c)

k
+

f (n+1) (ξ)

(n+ 1)!
(x− c)

n+1
.

(In this formula, the symbol
∑0

k=1 ak will denote the number 0.)
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Proof: It can be assumed x ̸= c because if x = c there is nothing to show. Then there
exists K such that

f (x)−

(
f (c) +

n∑
k=1

f (k) (c)

k!
(x− c)

k
+K (x− c)

n+1

)
= 0 (6.18)

In fact,

K =
−f (x) +

(
f (c) +

∑n
k=1

f(k)(c)
k! (x− c)

k
)

(x− c)
n+1 .

Now define F (t) for t in the closed interval determined by x and c by

F (t) ≡ f (x)−

(
f (t) +

n∑
k=1

f (k) (t)

k!
(x− t)

k
+K (x− t)

n+1

)
.

The c in 6.18 got replaced by t.
Therefore, F (c) = 0 by the way K was chosen and also F (x) = 0. By the mean value

theorem or Rolle’s theorem, there exists ξ between x and c such that F ′ (ξ) = 0. Therefore,

0 = f ′ (ξ) +

n∑
k=1

f (k+1) (ξ)

k!
(x− ξ)

k −
n∑

k=1

f (k) (ξ)

(k − 1)!
(x− ξ)

k−1 −K (n+ 1) (x− ξ)
n

= f ′ (ξ) +
n∑

k=1

f (k+1) (ξ)

k!
(x− ξ)

k −
n−1∑
k=0

f (k+1) (ξ)

k!
(x− ξ)

k −K (n+ 1) (x− ξ)
n

= f ′ (ξ) +
f (n+1) (ξ)

n!
(x− ξ)

n − f ′ (ξ)−K (n+ 1) (x− ξ)
n

=
f (n+1) (ξ)

n!
(x− ξ)

n −K (n+ 1) (x− ξ)
n

Then therefore,

K =
f (n+1) (ξ)

(n+ 1)!
�

The following is a special case and is what will be used.

Theorem 6.7.4 Let h : (−δ, 1 + δ) → R have m+1 derivatives. Then there exists t ∈ [0, 1]
such that

h (1) = h (0) +
m∑

k=1

h(k) (0)

k!
+

h(m+1) (t)

(m+ 1)!
.

Now let f : U → R where U ⊆ Rn and suppose f ∈ Cm (U) . Let x ∈ U and let r > 0 be
such that

B (x,r) ⊆ U.

Then for ||v|| < r, consider
f (x+tv)− f (x) ≡ h (t)

for t ∈ [0, 1] . Then by the chain rule,

h′ (t) =

n∑
k=1

∂f

∂xk
(x+ tv) vk, h′′ (t) =

n∑
k=1

n∑
j=1

∂2f

∂xj∂xk
(x+ tv) vkvj �

Then from the Taylor formula stopping at the second derivative, the following theorem can
be obtained.
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Theorem 6.7.5 Let f : U → R and let f ∈ C2 (U) . Then if

B (x,r) ⊆ U,

and ||v|| < r, there exists t ∈ (0, 1) such that.

f (x+ v) = f (x) +

n∑
k=1

∂f

∂xk
(x) vk +

1

2

n∑
k=1

n∑
j=1

∂2f

∂xj∂xk
(x+ tv) vkvj (6.19)

Definition 6.7.6 Define the following matrix.

Hij (x+tv) ≡ ∂2f (x+tv)

∂xj∂xi
.

It is called the Hessian matrix. From Corollary 6.7.2, this is a symmetric matrix. Then in
terms of this matrix, 6.19 can be written as

f (x+ v) = f (x) +
n∑

j=1

∂f

∂xj
(x) vk+

1

2
vTH (x+tv)v

Then this implies f (x+ v) =

f (x) +

n∑
j=1

∂f

∂xj
(x) vk+

1

2
vTH (x)v+

1

2

(
vT (H (x+tv)−H (x))v

)
. (6.20)

Using the above formula, here is the second derivative test.

Theorem 6.7.7 In the above situation, suppose fxj
(x) = 0 for each xj . Then if H (x) has

all positive eigenvalues, x is a local minimum for f . If H (x) has all negative eigenvalues,
then x is a local maximum. If H (x) has a positive eigenvalue, then there exists a direction
in which f has a local minimum at x, while if H (x) has a negative eigenvalue, there exists
a direction in which H (x) has a local maximum at x.

Proof: Since fxj
(x) = 0 for each xj , formula 6.20 implies

f (x+ v) = f (x)+
1

2
vTH (x)v+

1

2

(
vT (H (x+tv)−H (x))v

)

where H (x) is a symmetric matrix. Thus, by Corollary 6.4.12 H (x) has all real eigenvalues.
Suppose first that H (x) has all positive eigenvalues and that all are larger than δ2 > 0.
Then H (x) has an orthonormal basis of eigenvectors, {vi}ni=1 and if u is an arbitrary vector,
u =

∑n
j=1 ujvj where uj = u · vj . Thus

uTH (x)u =

(
n∑

k=1

ukv
T
k

)
H (x)




n∑
j=1

ujvj


 =

n∑
j=1

u2
jλj ≥ δ2

n∑
j=1

u2
j = δ2 |u|2 .

From 6.20 and the continuity of H, if v is small enough,

f (x+ v) ≥ f (x) +
1

2
δ2 |v|2 − 1

4
δ2 |v|2 = f (x) +

δ2

4
|v|2 .

This shows the first claim of the theorem. The second claim follows from similar reasoning.
Suppose H (x) has a positive eigenvalue λ2. Then let v be an eigenvector for this eigenvalue.
From 6.20,

f (x+tv) = f (x)+
1

2
t2vTH (x)v+

1

2
t2
(
vT (H (x+tv)−H (x))v

)6.8. THE ESTIMATION OF EIGENVALUES 175

which implies

f (x+tv) = f (x)+
1

2
t2λ2 |v|2 +1

2
t2
(
vT (H (x+tv)−H (x))v

)

≥ f (x)+
1

4
t2λ2 |v|2

whenever t is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. �

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

f1 (x, y) = x4 + y2, f2 (x, y) = −x4 + y2.

Then Dfi (0, 0) = 0 and for both functions, the Hessian matrix evaluated at (0, 0) equals
(

0 0

0 2

)

but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.

6.8 The Estimation Of Eigenvalues

There are ways to estimate the eigenvalues for matrices. The most famous is known as
Gerschgorin’s theorem. This theorem gives a rough idea where the eigenvalues are just from
looking at the matrix.

Theorem 6.8.1 Let A be an n× n matrix. Consider the n Gerschgorin discs defined as

Di ≡


λ ∈ C : |λ− aii| ≤

∑
j ̸=i

|aij |


 .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) .

Proof: Suppose Ax = λx where x ̸= 0. Then for A = (aij) , let |xk| ≥ |xj | for all xj .
Thus |xk| ̸= 0. ∑

j ̸=k

akjxj = (λ− akk)xk.

Then

|xk|
∑
j ̸=k

|akj | ≥
∑
j ̸=k

|akj | |xj | ≥

������
∑
j ̸=k

akjxj

������
= |λ− aii| |xk| .

Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc. �

Example 6.8.2 Here is a matrix. Estimate its eigenvalues.



2 1 1

3 5 0

0 1 9



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which implies

f (x+tv) = f (x)+
1

2
t2λ2 |v|2 +1

2
t2
(
vT (H (x+tv)−H (x))v

)

≥ f (x)+
1

4
t2λ2 |v|2

whenever t is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. �

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

f1 (x, y) = x4 + y2, f2 (x, y) = −x4 + y2.

Then Dfi (0, 0) = 0 and for both functions, the Hessian matrix evaluated at (0, 0) equals
(

0 0

0 2

)

but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.

6.8 The Estimation Of Eigenvalues

There are ways to estimate the eigenvalues for matrices. The most famous is known as
Gerschgorin’s theorem. This theorem gives a rough idea where the eigenvalues are just from
looking at the matrix.

Theorem 6.8.1 Let A be an n× n matrix. Consider the n Gerschgorin discs defined as

Di ≡


λ ∈ C : |λ− aii| ≤

∑
j ̸=i

|aij |


 .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) .

Proof: Suppose Ax = λx where x ̸= 0. Then for A = (aij) , let |xk| ≥ |xj | for all xj .
Thus |xk| ̸= 0. ∑

j ̸=k

akjxj = (λ− akk)xk.

Then

|xk|
∑
j ̸=k

|akj | ≥
∑
j ̸=k

|akj | |xj | ≥

������
∑
j ̸=k

akjxj

������
= |λ− aii| |xk| .

Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc. �

Example 6.8.2 Here is a matrix. Estimate its eigenvalues.



2 1 1

3 5 0

0 1 9



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which implies

f (x+tv) = f (x)+
1

2
t2λ2 |v|2 +1

2
t2
(
vT (H (x+tv)−H (x))v

)

≥ f (x)+
1

4
t2λ2 |v|2

whenever t is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. �

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

f1 (x, y) = x4 + y2, f2 (x, y) = −x4 + y2.

Then Dfi (0, 0) = 0 and for both functions, the Hessian matrix evaluated at (0, 0) equals
(

0 0

0 2

)

but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.

6.8 The Estimation Of Eigenvalues

There are ways to estimate the eigenvalues for matrices. The most famous is known as
Gerschgorin’s theorem. This theorem gives a rough idea where the eigenvalues are just from
looking at the matrix.

Theorem 6.8.1 Let A be an n× n matrix. Consider the n Gerschgorin discs defined as

Di ≡



λ ∈ C : |λ− aii| ≤

∑
j ̸=i

|aij |



 .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) .

Proof: Suppose Ax = λx where x ̸= 0. Then for A = (aij) , let |xk| ≥ |xj | for all xj .
Thus |xk| ̸= 0. ∑

j ̸=k

akjxj = (λ− akk)xk.

Then

|xk|
∑
j ̸=k

|akj | ≥
∑
j ̸=k

|akj | |xj | ≥

������
∑
j ̸=k

akjxj

������
= |λ− aii| |xk| .

Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc. �

Example 6.8.2 Here is a matrix. Estimate its eigenvalues.



2 1 1

3 5 0

0 1 9


176 CHAPTER 6. SPECTRAL THEORY

According to Gerschgorin’s theorem the eigenvalues are contained in the disks

D1 = {λ ∈ C : |λ− 2| ≤ 2} , D2 = {λ ∈ C : |λ− 5| ≤ 3} ,

D3 = {λ ∈ C : |λ− 9| ≤ 1}
It is important to observe that these disks are in the complex plane. In general this is the
case. If you want to find eigenvalues they will be complex numbers.

x

iy

2 5 9

So what are the values of the eigenvalues? In this case they are real. You can compute
them by graphing the characteristic polynomial, λ3 − 16λ2 + 70λ − 66 and then zoom-
ing in on the zeros. If you do this you find the solution is {λ = 1. 295 3} , {λ = 5. 590 5} ,
{λ = 9. 114 2} . Of course these are only approximations and so this information is useless
for finding eigenvectors. However, in many applications, it is the size of the eigenvalues
which is important and so these numerical values would be helpful for such applications. In
this case, you might think there is no real reason for Gerschgorin’s theorem. Why not just
compute the characteristic equation and graph and zoom? This is fine up to a point, but
what if the matrix was huge? Then it might be hard to find the characteristic polynomial.
Remember the difficulties in expanding a big matrix along a row or column. Also, what if
the eigenvalues were complex? You don’t see these by following this procedure. However,
Gerschgorin’s theorem will at least estimate them.

6.9 Advanced Theorems

More can be said but this requires some theory from complex variables1. The following is a
fundamental theorem about counting zeros.

Theorem 6.9.1 Let U be a region and let γ : [a, b] → U be closed, continuous, bounded
variation, and the winding number, n (γ, z) = 0 for all z /∈ U. Suppose also that f is
analytic on U having zeros a1, · · · , am where the zeros are repeated according to multiplicity,
and suppose that none of these zeros are on γ ([a, b]) . Then

1

2πi

∫

γ

f ′ (z)

f (z)
dz =

m∑
k=1

n (γ, ak) .

Proof: It is given that f (z) =
∏m

j=1 (z − aj) g (z) where g (z) ̸= 0 on U. Hence using
the product rule,

f ′ (z)

f (z)
=

m∑
j=1

1

z − aj
+

g′ (z)

g (z)

where g′(z)
g(z) is analytic on U and so

1

2πi

∫

γ

f ′ (z)

f (z)
dz =

m∑
j=1

n (γ, aj) +
1

2πi

∫

γ

g′ (z)

g (z)
dz =

m∑
j=1

n (γ, aj) . �

1If you haven’t studied the theory of a complex variable, you should skip this section because you won’t
understand any of it.
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1
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1If you haven’t studied the theory of a complex variable, you should skip this section because you won’t
understand any of it.
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variation, and the winding number, n (γ, z) = 0 for all z /∈ U. Suppose also that f is
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and suppose that none of these zeros are on γ ([a, b]) . Then
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Proof: It is given that f (z) =
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j=1 (z − aj) g (z) where g (z) ̸= 0 on U. Hence using
the product rule,

f ′ (z)

f (z)
=

m∑
j=1

1

z − aj
+

g′ (z)

g (z)

where g′(z)
g(z) is analytic on U and so

1

2πi

∫

γ

f ′ (z)

f (z)
dz =
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n (γ, aj) +
1
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∫
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m∑
j=1

n (γ, aj) . �

1If you haven’t studied the theory of a complex variable, you should skip this section because you won’t
understand any of it.
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Now let A be an n × n matrix. Recall that the eigenvalues of A are given by the zeros
of the polynomial, pA (z) = det (zI −A) where I is the n × n identity. You can argue
that small changes in A will produce small changes in pA (z) and p′A (z) . Let γk denote a
very small closed circle which winds around zk, one of the eigenvalues of A, in the counter
clockwise direction so that n (γk, zk) = 1. This circle is to enclose only zk and is to have no
other eigenvalue on it. Then apply Theorem 6.9.1. According to this theorem

1

2πi

∫

γ

p′A (z)

pA (z)
dz

is always an integer equal to the multiplicity of zk as a root of pA (t) . Therefore, small
changes in A result in no change to the above contour integral because it must be an integer
and small changes in A result in small changes in the integral. Therefore whenever B is close
enough to A, the two matrices have the same number of zeros inside γk, the zeros being
counted according to multiplicity. By making the radius of the small circle equal to ε where
ε is less than the minimum distance between any two distinct eigenvalues of A, this shows
that if B is close enough to A, every eigenvalue of B is closer than ε to some eigenvalue of
A. �

Theorem 6.9.2 If λ is an eigenvalue of A, then if all the entries of B are close enough to
the corresponding entries of A, some eigenvalue of B will be within ε of λ.

Consider the situation that A (t) is an n×n matrix and that t → A (t) is continuous for
t ∈ [0, 1] .

Lemma 6.9.3 Let λ (t) ∈ σ (A (t)) for t < 1 and let Σt = ∪s≥tσ (A (s)) . Also let Kt be the
connected component of λ (t) in Σt. Then there exists η > 0 such that Kt ∩σ (A (s)) ̸= ∅ for
all s ∈ [t, t+ η] .

Proof: Denote by D (λ (t) , δ) the disc centered at λ (t) having radius δ > 0, with other
occurrences of this notation being defined similarly. Thus

D (λ (t) , δ) ≡ {z ∈ C : |λ (t)− z| ≤ δ} .

Suppose δ > 0 is small enough that λ (t) is the only element of σ (A (t)) contained in
D (λ (t) , δ) and that pA(t) has no zeroes on the boundary of this disc. Then by continuity, and
the above discussion and theorem, there exists η > 0, t+ η < 1, such that for s ∈ [t, t+ η] ,
pA(s) also has no zeroes on the boundary of this disc and A (s) has the same number
of eigenvalues, counted according to multiplicity, in the disc as A (t) . Thus σ (A (s)) ∩
D (λ (t) , δ) ̸= ∅ for all s ∈ [t, t+ η] . Now let

H =
∪

s∈[t,t+η]

σ (A (s)) ∩D (λ (t) , δ) .

It will be shown that H is connected. Suppose not. Then H = P ∪ Q where P,Q are
separated and λ (t) ∈ P. Let s0 ≡ inf {s : λ (s) ∈ Q for some λ (s) ∈ σ (A (s))} . There exists
λ (s0) ∈ σ (A (s0)) ∩ D (λ (t) , δ) . If λ (s0) /∈ Q, then from the above discussion there are
λ (s) ∈ σ (A (s))∩Q for s > s0 arbitrarily close to λ (s0) . Therefore, λ (s0) ∈ Q which shows
that s0 > t because λ (t) is the only element of σ (A (t)) in D (λ (t) , δ) and λ (t) ∈ P. Now
let sn ↑ s0. Then λ (sn) ∈ P for any λ (sn) ∈ σ (A (sn))∩D (λ (t) , δ) and also it follows from
the above discussion that for some choice of sn → s0, λ (sn) → λ (s0) which contradicts P
and Q separated and nonempty. Since P is nonempty, this shows Q = ∅. Therefore, H is
connected as claimed. But Kt ⊇ H and so Kt ∩ σ (A (s)) ̸= ∅ for all s ∈ [t, t+ η] . �
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Theorem 6.9.4 Suppose A (t) is an n × n matrix and that t → A (t) is continuous for
t ∈ [0, 1] . Let λ (0) ∈ σ (A (0)) and define Σ ≡ ∪t∈[0,1]σ (A (t)) . Let Kλ(0) = K0 denote the
connected component of λ (0) in Σ. Then K0 ∩ σ (A (t)) ̸= ∅ for all t ∈ [0, 1] .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) ̸= ∅ for all s ∈ [0, t]} . Then 0 ∈ S. Let t0 =
sup (S) . Say σ (A (t0)) = λ1 (t0) , · · · , λr (t0) .

Claim: At least one of these is a limit point of K0 and consequently must be in K0

which shows that S has a last point. Why is this claim true? Let sn ↑ t0 so sn ∈ S.
Now let the discs, D (λi (t0) , δ) , i = 1, · · · , r be disjoint with pA(t0) having no zeroes on γi

the boundary of D (λi (t0) , δ) . Then for n large enough it follows from Theorem 6.9.1 and
the discussion following it that σ (A (sn)) is contained in ∪r

i=1D (λi (t0) , δ). It follows that
K0 ∩ (σ (A (t0)) +D (0, δ)) ̸= ∅ for all δ small enough. This requires at least one of the
λi (t0) to be in K0. Therefore, t0 ∈ S and S has a last point.

Now by Lemma 6.9.3, if t0 < 1, then K0 ∪Kt would be a strictly larger connected set
containing λ (0) . (The reason this would be strictly larger is that K0 ∩ σ (A (s)) = ∅ for
some s ∈ (t, t+ η) while Kt ∩ σ (A (s)) ̸= ∅ for all s ∈ [t, t+ η].) Therefore, t0 = 1. �

Corollary 6.9.5 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains an eigenvalue of A. Also, if there are n disjoint Gerschgorin
discs, then each one contains an eigenvalue of A.

Proof: Denote by A (t) the matrix
(
atij

)
where if i ̸= j, atij = taij and atii = aii. Thus to

get A (t) multiply all non diagonal terms by t. Let t ∈ [0, 1] . Then A (0) = diag (a11, · · · , ann)
and A (1) = A. Furthermore, the map, t → A (t) is continuous. Denote by Dt

j the Ger-

schgorin disc obtained from the jth row for the matrix A (t). Then it is clear that Dt
j ⊆ Dj

the jth Gerschgorin disc for A. It follows aii is the eigenvalue for A (0) which is contained
in the disc, consisting of the single point aii which is contained in Di. Letting K be the
connected component in Σ for Σ defined in Theorem 6.9.4 which is determined by aii, Ger-
schgorin’s theorem implies that K ∩ σ (A (t)) ⊆ ∪n

j=1D
t
j ⊆ ∪n

j=1Dj = Di ∪ (∪j ̸=iDj) and
also, since K is connected, there are not points of K in both Di and (∪j ̸=iDj) . Since at least
one point of K is in Di,(aii), it follows all of K must be contained in Di. Now by Theorem
6.9.4 this shows there are points of K ∩ σ (A) in Di. The last assertion follows immediately.
�

This can be improved even more. This involves the following lemma.

Lemma 6.9.6 In the situation of Theorem 6.9.4 suppose λ (0) = K0 ∩ σ (A (0)) and that
λ (0) is a simple root of the characteristic equation of A (0). Then for all t ∈ [0, 1] ,

σ (A (t)) ∩K0 = λ (t)

where λ (t) is a simple root of the characteristic equation of A (t) .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) = λ (s) , a simple eigenvalue for all s ∈ [0, t]} .
Then 0 ∈ S so it is nonempty. Let t0 = sup (S) and suppose λ1 ̸= λ2 are two elements of
σ (A (t0))∩K0. Then choosing η > 0 small enough, and lettingDi be disjoint discs containing
λi respectively, similar arguments to those of Lemma 6.9.3 can be used to conclude

Hi ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩Di

is a connected and nonempty set for i = 1, 2 which would require that Hi ⊆ K0. But
then there would be two different eigenvalues of A (s) contained in K0, contrary to the
definition of t0. Therefore, there is at most one eigenvalue λ (t0) ∈ K0 ∩ σ (A (t0)) . Could
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Theorem 6.9.4 Suppose A (t) is an n × n matrix and that t → A (t) is continuous for
t ∈ [0, 1] . Let λ (0) ∈ σ (A (0)) and define Σ ≡ ∪t∈[0,1]σ (A (t)) . Let Kλ(0) = K0 denote the
connected component of λ (0) in Σ. Then K0 ∩ σ (A (t)) ̸= ∅ for all t ∈ [0, 1] .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) ̸= ∅ for all s ∈ [0, t]} . Then 0 ∈ S. Let t0 =
sup (S) . Say σ (A (t0)) = λ1 (t0) , · · · , λr (t0) .

Claim: At least one of these is a limit point of K0 and consequently must be in K0

which shows that S has a last point. Why is this claim true? Let sn ↑ t0 so sn ∈ S.
Now let the discs, D (λi (t0) , δ) , i = 1, · · · , r be disjoint with pA(t0) having no zeroes on γi

the boundary of D (λi (t0) , δ) . Then for n large enough it follows from Theorem 6.9.1 and
the discussion following it that σ (A (sn)) is contained in ∪r

i=1D (λi (t0) , δ). It follows that
K0 ∩ (σ (A (t0)) +D (0, δ)) ̸= ∅ for all δ small enough. This requires at least one of the
λi (t0) to be in K0. Therefore, t0 ∈ S and S has a last point.

Now by Lemma 6.9.3, if t0 < 1, then K0 ∪Kt would be a strictly larger connected set
containing λ (0) . (The reason this would be strictly larger is that K0 ∩ σ (A (s)) = ∅ for
some s ∈ (t, t+ η) while Kt ∩ σ (A (s)) ̸= ∅ for all s ∈ [t, t+ η].) Therefore, t0 = 1. �

Corollary 6.9.5 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains an eigenvalue of A. Also, if there are n disjoint Gerschgorin
discs, then each one contains an eigenvalue of A.

Proof: Denote by A (t) the matrix
(
atij

)
where if i ̸= j, atij = taij and atii = aii. Thus to

get A (t) multiply all non diagonal terms by t. Let t ∈ [0, 1] . Then A (0) = diag (a11, · · · , ann)
and A (1) = A. Furthermore, the map, t → A (t) is continuous. Denote by Dt

j the Ger-

schgorin disc obtained from the jth row for the matrix A (t). Then it is clear that Dt
j ⊆ Dj

the jth Gerschgorin disc for A. It follows aii is the eigenvalue for A (0) which is contained
in the disc, consisting of the single point aii which is contained in Di. Letting K be the
connected component in Σ for Σ defined in Theorem 6.9.4 which is determined by aii, Ger-
schgorin’s theorem implies that K ∩ σ (A (t)) ⊆ ∪n

j=1D
t
j ⊆ ∪n

j=1Dj = Di ∪ (∪j ̸=iDj) and
also, since K is connected, there are not points of K in both Di and (∪j ̸=iDj) . Since at least
one point of K is in Di,(aii), it follows all of K must be contained in Di. Now by Theorem
6.9.4 this shows there are points of K ∩ σ (A) in Di. The last assertion follows immediately.
�

This can be improved even more. This involves the following lemma.

Lemma 6.9.6 In the situation of Theorem 6.9.4 suppose λ (0) = K0 ∩ σ (A (0)) and that
λ (0) is a simple root of the characteristic equation of A (0). Then for all t ∈ [0, 1] ,

σ (A (t)) ∩K0 = λ (t)

where λ (t) is a simple root of the characteristic equation of A (t) .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) = λ (s) , a simple eigenvalue for all s ∈ [0, t]} .
Then 0 ∈ S so it is nonempty. Let t0 = sup (S) and suppose λ1 ̸= λ2 are two elements of
σ (A (t0))∩K0. Then choosing η > 0 small enough, and lettingDi be disjoint discs containing
λi respectively, similar arguments to those of Lemma 6.9.3 can be used to conclude

Hi ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩Di

is a connected and nonempty set for i = 1, 2 which would require that Hi ⊆ K0. But
then there would be two different eigenvalues of A (s) contained in K0, contrary to the
definition of t0. Therefore, there is at most one eigenvalue λ (t0) ∈ K0 ∩ σ (A (t0)) . Could
it be a repeated root of the characteristic equation? Suppose λ (t0) is a repeated root of
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the characteristic equation. As before, choose a small disc, D centered at λ (t0) and η small
enough that

H ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩D

is a nonempty connected set containing either multiple eigenvalues of A (s) or else a single
repeated root to the characteristic equation of A (s) . But since H is connected and contains
λ (t0) it must be contained in K0 which contradicts the condition for s ∈ S for all these
s ∈ [t0 − η, t0] . Therefore, t0 ∈ S as hoped. If t0 < 1, there exists a small disc centered
at λ (t0) and η > 0 such that for all s ∈ [t0, t0 + η] , A (s) has only simple eigenvalues in
D and the only eigenvalues of A (s) which could be in K0 are in D. (This last assertion
follows from noting that λ (t0) is the only eigenvalue of A (t0) in K0 and so the others are
at a positive distance from K0. For s close enough to t0, the eigenvalues of A (s) are either
close to these eigenvalues of A (t0) at a positive distance from K0 or they are close to the
eigenvalue λ (t0) in which case it can be assumed they are in D.) But this shows that t0 is
not really an upper bound to S. Therefore, t0 = 1 and the lemma is proved. �

With this lemma, the conclusion of the above corollary can be sharpened.

Corollary 6.9.7 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains exactly one eigenvalue of A and this eigenvalue is a simple
root to the characteristic polynomial of A.

Proof: In the proof of Corollary 6.9.5, note that aii is a simple root of A (0) since
otherwise the ith Gerschgorin disc would not be disjoint from the others. Also, K, the
connected component determined by aii must be contained in Di because it is connected
and by Gerschgorin’s theorem above, K ∩ σ (A (t)) must be contained in the union of the
Gerschgorin discs. Since all the other eigenvalues of A (0) , the ajj , are outside Di, it follows
that K ∩ σ (A (0)) = aii. Therefore, by Lemma 6.9.6, K ∩ σ (A (1)) = K ∩ σ (A) consists of
a single simple eigenvalue. �

Example 6.9.8 Consider the matrix




5 1 0

1 1 1

0 1 0




The Gerschgorin discs are D (5, 1) , D (1, 2) , and D (0, 1) . Observe D (5, 1) is disjoint
from the other discs. Therefore, there should be an eigenvalue in D (5, 1) . The actual
eigenvalues are not easy to find. They are the roots of the characteristic equation, t3−6t2+
3t+ 5 = 0. The numerical values of these are −. 669 66, 1. 423 1, and 5. 246 55, verifying the
predictions of Gerschgorin’s theorem.

6.10 Exercises

1. Explain why it is typically impossible to compute the upper triangular matrix whose
existence is guaranteed by Schur’s theorem.

2. Now recall the QR factorization of Theorem 5.7.5 on Page 141. The QR algorithm
is a technique which does compute the upper triangular matrix in Schur’s theorem.
There is much more to the QR algorithm than will be presented here. In fact, what
I am about to show you is not the way it is done in practice. One first obtains what
is called a Hessenburg matrix for which the algorithm will work better. However,
the idea is as follows. Start with A an n × n matrix having real eigenvalues. Form
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the idea is as follows. Start with A an n × n matrix having real eigenvalues. Form
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A = QR where Q is orthogonal and R is upper triangular. (Right triangular.) This
can be done using the technique of Theorem 5.7.5 using Householder matrices. Next
take A1 ≡ RQ. Show that A = QA1Q

T . In other words these two matrices, A,A1 are
similar. Explain why they have the same eigenvalues. Continue by letting A1 play the
role of A. Thus the algorithm is of the form An = QRn and An+1 = Rn+1Q. Explain
why A = QnAnQ

T
n for some Qn orthogonal. Thus An is a sequence of matrices each

similar to A. The remarkable thing is that often these matrices converge to an upper
triangular matrix T and A = QTQT for some orthogonal matrix, the limit of the Qn

where the limit means the entries converge. Then the process computes the upper
triangular Schur form of the matrix A. Thus the eigenvalues of A appear on the
diagonal of T. You will see approximately what these are as the process continues.

3. ↑Try the QR algorithm on (
−1 −2

6 6

)

which has eigenvalues 3 and 2. I suggest you use a computer algebra system to do the
computations.

4. ↑Now try the QR algorithm on (
0 −1

2 0

)

Show that the algorithm cannot converge for this example. Hint: Try a few iterations
of the algorithm. Use a computer algebra system if you like.

5. ↑Show the two matrices A ≡

(
0 −1

4 0

)
and B ≡

(
0 −2

2 0

)
are similar; that

is there exists a matrix S such that A = S−1BS but there is no orthogonal matrix
Q such that QTBQ = A. Show the QR algorithm does converge for the matrix B
although it fails to do so for A.

6. Let F be an m× n matrix. Show that F ∗F has all real eigenvalues and furthermore,
they are all nonnegative.

7. If A is a real n×n matrix and λ is a complex eigenvalue λ = a+ ib, b ̸= 0, of A having
eigenvector z+ iw, show that w ̸= 0.

8. Suppose A = QTDQ where Q is an orthogonal matrix and all the matrices are real.
Also D is a diagonal matrix. Show that A must be symmetric.

9. Suppose A is an n× n matrix and there exists a unitary matrix U such that

A = U∗DU

where D is a diagonal matrix. Explain why A must be normal.

10. If A is Hermitian, show that det (A) must be real.

11. Show that every unitary matrix preserves distance. That is, if U is unitary,

|Ux| = |x| .

12. Show that if a matrix does preserve distances, then it must be unitary.
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13. ↑Show that a complex normal matrix A is unitary if and only if its eigenvalues have
magnitude equal to 1.

14. Suppose A is an n× n matrix which is diagonally dominant. Recall this means

∑
j ̸=i

|aij | < |aii|

show A−1 must exist.

15. Give some disks in the complex plane whose union contains all the eigenvalues of the
matrix 


1 + 2i 4 2

0 i 3

5 6 7




16. Show a square matrix is invertible if and only if it has no zero eigenvalues.

17. Using Schur’s theorem, show the trace of an n × n matrix equals the sum of the
eigenvalues and the determinant of an n×n matrix is the product of the eigenvalues.

18. Using Schur’s theorem, show that if A is any complex n×n matrix having eigenvalues
{λi} listed according to multiplicity, then

∑
i,j |Aij |2 ≥

∑n
i=1 |λi|2. Show that equality

holds if and only if A is normal. This inequality is called Schur’s inequality. [20]

19. Here is a matrix. 


1234 6 5 3

0 −654 9 123

98 123 10, 000 11

56 78 98 400




I know this matrix has an inverse before doing any computations. How do I know?

20. Show the critical points of the following function are

(0,−3, 0) , (2,−3, 0) , and

(
1,−3,−1

3

)

and classify them as local minima, local maxima or saddle points.

f (x, y, z) = − 3
2x

4 + 6x3 − 6x2 + zx2 − 2zx− 2y2 − 12y − 18− 3
2z

2.

21. Here is a function of three variables.

f (x, y, z) = 13x2 + 2xy + 8xz + 13y2 + 8yz + 10z2

change the variables so that in the new variables there are no mixed terms, terms
involving xy, yz etc. Two eigenvalues are 12 and 18.

22. Here is a function of three variables.

f (x, y, z) = 2x2 − 4x+ 2 + 9yx− 9y − 3zx+ 3z + 5y2 − 9zy − 7z2

change the variables so that in the new variables there are no mixed terms, terms
involving xy, yz etc. The eigenvalues of the matrix which you will work with are
− 17

2 , 19
2 ,−1.
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23. Here is a function of three variables.

f (x, y, z) = −x2 + 2xy + 2xz − y2 + 2yz − z2 + x

change the variables so that in the new variables there are no mixed terms, terms
involving xy, yz etc.

24. Show the critical points of the function,

f (x, y, z) = −2yx2 − 6yx− 4zx2 − 12zx+ y2 + 2yz.

are points of the form,

(x, y, z) =
(
t, 2t2 + 6t,−t2 − 3t

)

for t ∈ R and classify them as local minima, local maxima or saddle points.

25. Show the critical points of the function

f (x, y, z) =
1

2
x4 − 4x3 + 8x2 − 3zx2 + 12zx+ 2y2 + 4y + 2 +

1

2
z2.

are (0,−1, 0) , (4,−1, 0) , and (2,−1,−12) and classify them as local minima, local
maxima or saddle points.

26. Let f (x, y) = 3x4 − 24x2 + 48 − yx2 + 4y. Find and classify the critical points using
the second derivative test.

27. Let f (x, y) = 3x4− 5x2+2− y2x2+ y2. Find and classify the critical points using the
second derivative test.

28. Let f (x, y) = 5x4 − 7x2 − 2− 3y2x2 +11y2 − 4y4. Find and classify the critical points
using the second derivative test.

29. Let f (x, y, z) = −2x4 − 3yx2 + 3x2 + 5x2z + 3y2 − 6y + 3− 3zy + 3z + z2. Find and
classify the critical points using the second derivative test.

30. Let f (x, y, z) = 3yx2 − 3x2 − x2z − y2 + 2y − 1 + 3zy − 3z − 3z2. Find and classify
the critical points using the second derivative test.

31. Let Q be orthogonal. Find the possible values of det (Q) .

32. Let U be unitary. Find the possible values of det (U) .

33. If a matrix is nonzero can it have only zero for eigenvalues?

34. A matrix A is called nilpotent if Ak = 0 for some positive integer k. Suppose A is a
nilpotent matrix. Show it has only 0 for an eigenvalue.

35. If A is a nonzero nilpotent matrix, show it must be defective.

36. Suppose A is a nondefective n × n matrix and its eigenvalues are all either 0 or 1.
Show A2 = A. Could you say anything interesting if the eigenvalues were all either
0,1,or −1? By DeMoivre’s theorem, an nth root of unity is of the form

(
cos

(
2kπ

n

)
+ i sin

(
2kπ

n

))

Could you generalize the sort of thing just described to get An = A? Hint: Since A
is nondefective, there exists S such that S−1AS = D where D is a diagonal matrix.
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the critical points using the second derivative test.

31. Let Q be orthogonal. Find the possible values of det (Q) .

32. Let U be unitary. Find the possible values of det (U) .

33. If a matrix is nonzero can it have only zero for eigenvalues?

34. A matrix A is called nilpotent if Ak = 0 for some positive integer k. Suppose A is a
nilpotent matrix. Show it has only 0 for an eigenvalue.
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0,1,or −1? By DeMoivre’s theorem, an nth root of unity is of the form

(
cos

(
2kπ

n

)
+ i sin

(
2kπ

n

))

Could you generalize the sort of thing just described to get An = A? Hint: Since A
is nondefective, there exists S such that S−1AS = D where D is a diagonal matrix.
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37. This and the following problems will present most of a differential equations course.
Most of the explanations are given. You fill in any details needed. To begin with,
consider the scalar initial value problem

y′ = ay, y (t0) = y0

When a is real, show the unique solution to this problem is y = y0e
a(t−t0). Next

suppose
y′ = (a+ ib) y, y (t0) = y0 (6.21)

where y (t) = u (t) + iv (t) . Show there exists a unique solution and it is given by
y (t) =

y0e
a(t−t0) (cos b (t− t0) + i sin b (t− t0)) ≡ e(a+ib)(t−t0)y0. (6.22)

Next show that for a real or complex there exists a unique solution to the initial value
problem

y′ = ay + f, y (t0) = y0

and it is given by

y (t) = ea(t−t0)y0 + eat
∫ t

t0

e−asf (s) ds.

Hint: For the first part write as y′ − ay = 0 and multiply both sides by e−at. Then
explain why you get

d

dt

(
e−aty (t)

)
= 0, y (t0) = 0.

Now you finish the argument. To show uniqueness in the second part, suppose

y′ = (a+ ib) y, y (t0) = 0

and verify this requires y (t) = 0. To do this, note

y′ = (a− ib) y, y (t0) = 0

and that |y|2 (t0) = 0 and

d

dt
|y (t)|2 = y′ (t) y (t) + y′ (t) y (t)

= (a+ ib) y (t) y (t) + (a− ib) y (t) y (t) = 2a |y (t)|2 .

Thus from the first part |y (t)|2 = 0e−2at = 0. Finally observe by a simple computation
that 6.21 is solved by 6.22. For the last part, write the equation as

y′ − ay = f

and multiply both sides by e−at and then integrate from t0 to t using the initial
condition.

38. Now consider A an n×n matrix. By Schur’s theorem there exists unitary Q such that

Q−1AQ = T

where T is upper triangular. Now consider the first order initial value problem

x′ = Ax, x (t0) = x0.
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37. This and the following problems will present most of a differential equations course.
Most of the explanations are given. You fill in any details needed. To begin with,
consider the scalar initial value problem

y′ = ay, y (t0) = y0

When a is real, show the unique solution to this problem is y = y0e
a(t−t0). Next

suppose
y′ = (a+ ib) y, y (t0) = y0 (6.21)

where y (t) = u (t) + iv (t) . Show there exists a unique solution and it is given by
y (t) =

y0e
a(t−t0) (cos b (t− t0) + i sin b (t− t0)) ≡ e(a+ib)(t−t0)y0. (6.22)

Next show that for a real or complex there exists a unique solution to the initial value
problem

y′ = ay + f, y (t0) = y0

and it is given by

y (t) = ea(t−t0)y0 + eat
∫ t

t0

e−asf (s) ds.

Hint: For the first part write as y′ − ay = 0 and multiply both sides by e−at. Then
explain why you get

d

dt

(
e−aty (t)

)
= 0, y (t0) = 0.

Now you finish the argument. To show uniqueness in the second part, suppose

y′ = (a+ ib) y, y (t0) = 0

and verify this requires y (t) = 0. To do this, note

y′ = (a− ib) y, y (t0) = 0

and that |y|2 (t0) = 0 and

d

dt
|y (t)|2 = y′ (t) y (t) + y′ (t) y (t)

= (a+ ib) y (t) y (t) + (a− ib) y (t) y (t) = 2a |y (t)|2 .

Thus from the first part |y (t)|2 = 0e−2at = 0. Finally observe by a simple computation
that 6.21 is solved by 6.22. For the last part, write the equation as

y′ − ay = f

and multiply both sides by e−at and then integrate from t0 to t using the initial
condition.

38. Now consider A an n×n matrix. By Schur’s theorem there exists unitary Q such that

Q−1AQ = T

where T is upper triangular. Now consider the first order initial value problem

x′ = Ax, x (t0) = x0.
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37. This and the following problems will present most of a differential equations course.
Most of the explanations are given. You fill in any details needed. To begin with,
consider the scalar initial value problem

y′ = ay, y (t0) = y0

When a is real, show the unique solution to this problem is y = y0e
a(t−t0). Next

suppose
y′ = (a+ ib) y, y (t0) = y0 (6.21)

where y (t) = u (t) + iv (t) . Show there exists a unique solution and it is given by
y (t) =

y0e
a(t−t0) (cos b (t− t0) + i sin b (t− t0)) ≡ e(a+ib)(t−t0)y0. (6.22)

Next show that for a real or complex there exists a unique solution to the initial value
problem

y′ = ay + f, y (t0) = y0

and it is given by

y (t) = ea(t−t0)y0 + eat
∫ t

t0

e−asf (s) ds.

Hint: For the first part write as y′ − ay = 0 and multiply both sides by e−at. Then
explain why you get

d

dt

(
e−aty (t)

)
= 0, y (t0) = 0.

Now you finish the argument. To show uniqueness in the second part, suppose

y′ = (a+ ib) y, y (t0) = 0

and verify this requires y (t) = 0. To do this, note

y′ = (a− ib) y, y (t0) = 0

and that |y|2 (t0) = 0 and

d

dt
|y (t)|2 = y′ (t) y (t) + y′ (t) y (t)

= (a+ ib) y (t) y (t) + (a− ib) y (t) y (t) = 2a |y (t)|2 .

Thus from the first part |y (t)|2 = 0e−2at = 0. Finally observe by a simple computation
that 6.21 is solved by 6.22. For the last part, write the equation as

y′ − ay = f

and multiply both sides by e−at and then integrate from t0 to t using the initial
condition.

38. Now consider A an n×n matrix. By Schur’s theorem there exists unitary Q such that

Q−1AQ = T

where T is upper triangular. Now consider the first order initial value problem

x′ = Ax, x (t0) = x0.
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Show there exists a unique solution to this first order system. Hint: Let y = Q−1x
and so the system becomes

y′ = Ty, y (t0) = Q−1x0 (6.23)

Now letting y =(y1, · · · , yn)T , the bottom equation becomes

y′n = tnnyn, yn (t0) =
(
Q−1x0

)
n
.

Then use the solution you get in this to get the solution to the initial value problem
which occurs one level up, namely

y′n−1 = t(n−1)(n−1)yn−1 + t(n−1)nyn, yn−1 (t0) =
(
Q−1x0

)
n−1

Continue doing this to obtain a unique solution to 6.23.

39. Now suppose Φ (t) is an n× n matrix of the form

Φ (t) =
(

x1 (t) · · · xn (t)
)

(6.24)

where
x′
k (t) = Axk (t) .

Explain why
Φ′ (t) = AΦ(t)

if and only if Φ (t) is given in the form of 6.24. Also explain why if c ∈ Fn,y (t) ≡ Φ(t) c
solves the equation y′ (t) = Ay (t) .

40. In the above problem, consider the question whether all solutions to

x′ = Ax (6.25)

are obtained in the form Φ (t) c for some choice of c ∈ Fn. In other words, is the
general solution to this equation Φ (t) c for c ∈ Fn? Prove the following theorem using
linear algebra.

Theorem 6.10.1 Suppose Φ(t) is an n × n matrix which satisfies Φ′ (t) = AΦ(t) .

Then the general solution to 6.25 is Φ(t) c if and only if Φ(t)
−1

exists for some t.

Furthermore, if Φ′ (t) = AΦ(t) , then either Φ(t)
−1

exists for all t or Φ(t)
−1

never
exists for any t.

(det (Φ (t)) is called the Wronskian and this theorem is sometimes called the Wronskian
alternative.)

Hint: Suppose first the general solution is of the form Φ (t) c where c is an arbitrary

constant vector in Fn. You need to verify Φ (t)
−1

exists for some t. In fact, show

Φ (t)
−1

exists for every t. Suppose then that Φ (t0)
−1

does not exist. Explain why
there exists c ∈ Fn such that there is no solution x to the equation c = Φ(t0)x. By
the existence part of Problem 38 there exists a solution to

x′ = Ax, x (t0) = c

but this cannot be in the form Φ (t) c. Thus for every t, Φ (t)
−1

exists. Next suppose

for some t0,Φ(t0)
−1

exists. Let z′ = Az and choose c such that

z (t0) = Φ (t0) cDownload free eBooks at bookboon.com
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Show there exists a unique solution to this first order system. Hint: Let y = Q−1x
and so the system becomes

y′ = Ty, y (t0) = Q−1x0 (6.23)

Now letting y =(y1, · · · , yn)T , the bottom equation becomes

y′n = tnnyn, yn (t0) =
(
Q−1x0

)
n
.

Then use the solution you get in this to get the solution to the initial value problem
which occurs one level up, namely

y′n−1 = t(n−1)(n−1)yn−1 + t(n−1)nyn, yn−1 (t0) =
(
Q−1x0

)
n−1

Continue doing this to obtain a unique solution to 6.23.

39. Now suppose Φ (t) is an n× n matrix of the form

Φ (t) =
(

x1 (t) · · · xn (t)
)

(6.24)

where
x′
k (t) = Axk (t) .

Explain why
Φ′ (t) = AΦ(t)

if and only if Φ (t) is given in the form of 6.24. Also explain why if c ∈ Fn,y (t) ≡ Φ(t) c
solves the equation y′ (t) = Ay (t) .

40. In the above problem, consider the question whether all solutions to

x′ = Ax (6.25)

are obtained in the form Φ (t) c for some choice of c ∈ Fn. In other words, is the
general solution to this equation Φ (t) c for c ∈ Fn? Prove the following theorem using
linear algebra.

Theorem 6.10.1 Suppose Φ(t) is an n × n matrix which satisfies Φ′ (t) = AΦ(t) .

Then the general solution to 6.25 is Φ(t) c if and only if Φ(t)
−1

exists for some t.

Furthermore, if Φ′ (t) = AΦ(t) , then either Φ(t)
−1

exists for all t or Φ(t)
−1

never
exists for any t.

(det (Φ (t)) is called the Wronskian and this theorem is sometimes called the Wronskian
alternative.)

Hint: Suppose first the general solution is of the form Φ (t) c where c is an arbitrary

constant vector in Fn. You need to verify Φ (t)
−1

exists for some t. In fact, show

Φ (t)
−1

exists for every t. Suppose then that Φ (t0)
−1

does not exist. Explain why
there exists c ∈ Fn such that there is no solution x to the equation c = Φ(t0)x. By
the existence part of Problem 38 there exists a solution to

x′ = Ax, x (t0) = c

but this cannot be in the form Φ (t) c. Thus for every t, Φ (t)
−1

exists. Next suppose

for some t0,Φ(t0)
−1

exists. Let z′ = Az and choose c such that

z (t0) = Φ (t0) c
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Then both z (t) ,Φ(t) c solve

x′ = Ax, x (t0) = z (t0)

Apply uniqueness to conclude z = Φ(t) c. Finally, consider that Φ (t) c for c ∈ Fn

either is the general solution or it is not the general solution. If it is, then Φ (t)
−1

exists for all t. If it is not, then Φ (t)
−1

cannot exist for any t from what was just
shown.

41. Let Φ′ (t) = AΦ(t) . Then Φ (t) is called a fundamental matrix if Φ (t)
−1

exists for all
t. Show there exists a unique solution to the equation

x′ = Ax+ f , x (t0) = x0 (6.26)

and it is given by the formula

x (t) = Φ (t) Φ (t0)
−1

x0 +Φ(t)

∫ t

t0

Φ(s)
−1

f (s) ds

Now these few problems have done virtually everything of significance in an entire un-
dergraduate differential equations course, illustrating the superiority of linear algebra.
The above formula is called the variation of constants formula.

Hint: Uniquenss is easy. If x1,x2 are two solutions then let u (t) = x1 (t)−x2 (t) and
argue u′ = Au, u (t0) = 0. Then use Problem 38. To verify there exists a solution, you
could just differentiate the above formula using the fundamental theorem of calculus
and verify it works. Another way is to assume the solution in the form

x (t) = Φ (t) c (t)

and find c (t) to make it all work out. This is called the method of variation of
parameters.

42. Show there exists a special Φ such that Φ′ (t) = AΦ(t) , Φ(0) = I, and suppose

Φ (t)
−1

exists for all t. Show using uniqueness that

Φ (−t) = Φ (t)
−1

and that for all t, s ∈ R
Φ(t+ s) = Φ (t) Φ (s)

Explain why with this special Φ, the solution to 6.26 can be written as

x (t) = Φ (t− t0)x0 +

∫ t

t0

Φ(t− s) f (s) ds.

Hint: Let Φ (t) be such that the jth column is xj (t) where

x′
j = Axj , xj (0) = ej .

Use uniqueness as required.

43. You can see more on this problem and the next one in the latest version of Horn
and Johnson, [17]. Two n × n matrices A,B are said to be congruent if there is an
invertible P such that

B = PAP ∗
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Let A be a Hermitian matrix. Thus it has all real eigenvalues. Let n+ be the number
of positive eigenvalues, n−, the number of negative eigenvalues and n0 the number of
zero eigenvalues. For k a positive integer, let Ik denote the k × k identity matrix and
Ok the k×k zero matrix. Then the inertia matrix of A is the following block diagonal
n× n matrix. 


In+

In−

On0




Show that A is congruent to its inertia matrix. Next show that congruence is an equiv-
alence relation on the set of Hermitian matrices. Finally, show that if two Hermitian
matrices have the same inertia matrix, then they must be congruent. Hint: First
recall that there is a unitary matrix, U such that

U∗AU =




Dn+

Dn−

On0




where the Dn+
is a diagonal matrix having the positive eigenvalues of A, Dn− being

defined similarly. Now let
��Dn−

�� denote the diagonal matrix which replaces each entry
of Dn− with its absolute value. Consider the two diagonal matrices

D = D∗ =




D
−1/2
n+ ��Dn−

��−1/2

In0




Now consider D∗U∗AUD.

44. Show that if A,B are two congruent Hermitian matrices, then they have the same
inertia matrix. Hint: Let A = SBS∗ where S is invertible. Show that A,B have the
same rank and this implies that they are each unitarily similar to a diagonal matrix
which has the same number of zero entries on the main diagonal. Therefore, letting
VA be the span of the eigenvectors associated with positive eigenvalues of A and VB

being defined similarly, it suffices to show that these have the same dimensions. Show
that (Ax,x) > 0 for all x ∈ VA. Next consider S∗VA. For x ∈ VA, explain why

(BS∗x,S∗x) =
(
S−1A (S∗)

−1
S∗x,S∗x

)

=
(
S−1Ax,S∗x

)
=

(
Ax,

(
S−1

)∗
S∗x

)
= (Ax,x) > 0

Next explain why this shows that S∗VA is a subspace of VB and so the dimension of VB

is at least as large as the dimension of VA. Hence there are at least as many positive
eigenvalues for B as there are for A. Switching A,B you can turn the inequality
around. Thus the two have the same inertia matrix.

45. Let A be an m×n matrix. Then if you unraveled it, you could consider it as a vector
in Cnm. The Frobenius inner product on the vector space of m×n matrices is defined
as

(A,B) ≡ trace (AB∗)

Show that this really does satisfy the axioms of an inner product space and that it
also amounts to nothing more than considering m× n matrices as vectors in Cnm.
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Let A be a Hermitian matrix. Thus it has all real eigenvalues. Let n+ be the number
of positive eigenvalues, n−, the number of negative eigenvalues and n0 the number of
zero eigenvalues. For k a positive integer, let Ik denote the k × k identity matrix and
Ok the k×k zero matrix. Then the inertia matrix of A is the following block diagonal
n× n matrix. 


In+

In−

On0




Show that A is congruent to its inertia matrix. Next show that congruence is an equiv-
alence relation on the set of Hermitian matrices. Finally, show that if two Hermitian
matrices have the same inertia matrix, then they must be congruent. Hint: First
recall that there is a unitary matrix, U such that

U∗AU =




Dn+

Dn−

On0




where the Dn+
is a diagonal matrix having the positive eigenvalues of A, Dn− being

defined similarly. Now let
��Dn−

�� denote the diagonal matrix which replaces each entry
of Dn− with its absolute value. Consider the two diagonal matrices

D = D∗ =




D
−1/2
n+ ��Dn−

��−1/2

In0




Now consider D∗U∗AUD.

44. Show that if A,B are two congruent Hermitian matrices, then they have the same
inertia matrix. Hint: Let A = SBS∗ where S is invertible. Show that A,B have the
same rank and this implies that they are each unitarily similar to a diagonal matrix
which has the same number of zero entries on the main diagonal. Therefore, letting
VA be the span of the eigenvectors associated with positive eigenvalues of A and VB

being defined similarly, it suffices to show that these have the same dimensions. Show
that (Ax,x) > 0 for all x ∈ VA. Next consider S∗VA. For x ∈ VA, explain why

(BS∗x,S∗x) =
(
S−1A (S∗)

−1
S∗x,S∗x

)

=
(
S−1Ax,S∗x

)
=

(
Ax,

(
S−1

)∗
S∗x

)
= (Ax,x) > 0

Next explain why this shows that S∗VA is a subspace of VB and so the dimension of VB

is at least as large as the dimension of VA. Hence there are at least as many positive
eigenvalues for B as there are for A. Switching A,B you can turn the inequality
around. Thus the two have the same inertia matrix.

45. Let A be an m×n matrix. Then if you unraveled it, you could consider it as a vector
in Cnm. The Frobenius inner product on the vector space of m×n matrices is defined
as

(A,B) ≡ trace (AB∗)

Show that this really does satisfy the axioms of an inner product space and that it
also amounts to nothing more than considering m× n matrices as vectors in Cnm.
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46. ↑Consider the n × n unitary matrices. Show that whenever U is such a matrix, it
follows that

|U |Cnn =
√
n

Next explain why if {Uk} is any sequence of unitary matrices, there exists a subse-
quence {Ukm}∞m=1 such that limm→∞ Ukm = U where U is unitary. Here the limit
takes place in the sense that the entries of Ukm converge to the corresponding entries
of U .

47. ↑Let A,B be two n× n matrices. Denote by σ (A) the set of eigenvalues of A. Define

dist (σ (A) , σ (B)) = max
λ∈σ(A)

min {|λ− µ| : µ ∈ σ (B)}

Explain why dist (σ (A) , σ (B)) is small if and only if every eigenvalue of A is close
to some eigenvalue of B. Now prove the following theorem using the above problem
and Schur’s theorem. This theorem says roughly that if A is close to B then the
eigenvalues of A are close to those of B in the sense that every eigenvalue of A is close
to an eigenvalue of B.

Theorem 6.10.2 Suppose limk→∞ Ak = A. Then

lim
k→∞

dist (σ (Ak) , σ (A)) = 0

48. Let A =

(
a b

c d

)
be a 2 × 2 matrix which is not a multiple of the identity. Show

that A is similar to a 2 × 2 matrix which has at least one diagonal entry equal to 0.
Hint: First note that there exists a vector a such that Aa is not a multiple of a. Then
consider

B =
(

a Aa
)−1

A
(

a Aa
)

Show B has a zero on the main diagonal.

49. ↑ Let A be a complex n×n matrix which has trace equal to 0. Show that A is similar
to a matrix which has all zeros on the main diagonal. Hint: Use Problem 30 on
Page 130 to argue that you can say that a given matrix is similar to one which has
the diagonal entries permuted in any order desired. Then use the above problem and
block multiplication to show that if the A has k nonzero entries, then it is similar to
a matrix which has k− 1 nonzero entries. Finally, when A is similar to one which has
at most one nonzero entry, this one must also be zero because of the condition on the
trace.

50. ↑An n × n matrix X is a comutator if there are n × n matrices A,B such that X =
AB − BA. Show that the trace of any comutator is 0. Next show that if a complex
matrix X has trace equal to 0, then it is in fact a comutator. Hint: Use the above
problem to show that it suffices to consider X having all zero entries on the main
diagonal. Then define

A =




1 0

2
. . .

0 n




, Bij =

{
Xij

i−j if i ̸= j

0 if i = j
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46. ↑Consider the n × n unitary matrices. Show that whenever U is such a matrix, it
follows that

|U |Cnn =
√
n

Next explain why if {Uk} is any sequence of unitary matrices, there exists a subse-
quence {Ukm}∞m=1 such that limm→∞ Ukm = U where U is unitary. Here the limit
takes place in the sense that the entries of Ukm converge to the corresponding entries
of U .

47. ↑Let A,B be two n× n matrices. Denote by σ (A) the set of eigenvalues of A. Define

dist (σ (A) , σ (B)) = max
λ∈σ(A)

min {|λ− µ| : µ ∈ σ (B)}

Explain why dist (σ (A) , σ (B)) is small if and only if every eigenvalue of A is close
to some eigenvalue of B. Now prove the following theorem using the above problem
and Schur’s theorem. This theorem says roughly that if A is close to B then the
eigenvalues of A are close to those of B in the sense that every eigenvalue of A is close
to an eigenvalue of B.

Theorem 6.10.2 Suppose limk→∞ Ak = A. Then

lim
k→∞

dist (σ (Ak) , σ (A)) = 0

48. Let A =

(
a b

c d

)
be a 2 × 2 matrix which is not a multiple of the identity. Show

that A is similar to a 2 × 2 matrix which has at least one diagonal entry equal to 0.
Hint: First note that there exists a vector a such that Aa is not a multiple of a. Then
consider

B =
(

a Aa
)−1

A
(

a Aa
)

Show B has a zero on the main diagonal.

49. ↑ Let A be a complex n×n matrix which has trace equal to 0. Show that A is similar
to a matrix which has all zeros on the main diagonal. Hint: Use Problem 30 on
Page 130 to argue that you can say that a given matrix is similar to one which has
the diagonal entries permuted in any order desired. Then use the above problem and
block multiplication to show that if the A has k nonzero entries, then it is similar to
a matrix which has k− 1 nonzero entries. Finally, when A is similar to one which has
at most one nonzero entry, this one must also be zero because of the condition on the
trace.

50. ↑An n × n matrix X is a comutator if there are n × n matrices A,B such that X =
AB − BA. Show that the trace of any comutator is 0. Next show that if a complex
matrix X has trace equal to 0, then it is in fact a comutator. Hint: Use the above
problem to show that it suffices to consider X having all zero entries on the main
diagonal. Then define

A =




1 0

2
. . .

0 n




, Bij =

{
Xij

i−j if i ̸= j

0 if i = j
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6.11 Cauchy’s Interlacing Theorem for Eigenvalues

Recall that every Hermitian matrix has all real eigenvalues. The Cauchy interlacing theorem
compares the location of the eigenvalues of a Hermitian matrix with the eigenvalues of a
principal submatrix. It is an extremely interesting theorem.

Theorem 6.11.1 Let A be a Hermitian n× n matrix and let

A =

(
a y∗

y B

)

where B is (n− 1) × (n− 1) . Let the eigenvalues of B be µ1 ≤ µ2 ≤ · · · ≤ µn−1. Then if
the eigenvalues of A are λ1 ≤ λ2 ≤ · · · ≤ λn, it follows that λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤
µn−1 ≤ λn.

Proof: First note that B is Hermitian because

A∗ =

(
a y∗

y B∗

)
= A =

(
a y∗

y B

)

It is easiest to consider the case where strict inequality holds for the eigenvalues for B.
There exists U unitary, depending on B such that U∗BU = D where

D =




µ1 0
. . .

0 µn−1




Now let {εk} be a decreasing sequence of very small positive numbers converging to 0 and
let Bk be defined by

U∗BkU = Dk, Dk ≡




µ1 + εk 0

µ2 + 2εk
. . .

0 µn−1 + (n− 1) εk




where U is the above unitary matrix. Thus the eigenvalues of Bk, µ̂1 < · · · < µ̂n−1 are
strictly increasing and µ̂j ≡ µj + jεk. Let Ak be given by

Ak =

(
a y∗

y Bk

)

Then
(

1 0∗

0 U∗

)
Ak

(
1 0∗

0 U

)
=

(
1 0∗

0 U∗

)(
a y∗

y Bk

)(
1 0∗

0 U

)

=

(
a y∗

U∗y U∗Bk

)(
1 0∗

0 U

)
=

(
a y∗U

U∗y Dk

)

We can replace y with yk such that limk→∞ yk = y but zk ≡ U∗yk has the property that
each component of zk is nonzero. This will probably take place automatically but if not,
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Recall that every Hermitian matrix has all real eigenvalues. The Cauchy interlacing theorem
compares the location of the eigenvalues of a Hermitian matrix with the eigenvalues of a
principal submatrix. It is an extremely interesting theorem.

Theorem 6.11.1 Let A be a Hermitian n× n matrix and let

A =

(
a y∗

y B

)

where B is (n− 1) × (n− 1) . Let the eigenvalues of B be µ1 ≤ µ2 ≤ · · · ≤ µn−1. Then if
the eigenvalues of A are λ1 ≤ λ2 ≤ · · · ≤ λn, it follows that λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤
µn−1 ≤ λn.

Proof: First note that B is Hermitian because

A∗ =

(
a y∗

y B∗

)
= A =

(
a y∗

y B

)

It is easiest to consider the case where strict inequality holds for the eigenvalues for B.
There exists U unitary, depending on B such that U∗BU = D where

D =




µ1 0
. . .

0 µn−1




Now let {εk} be a decreasing sequence of very small positive numbers converging to 0 and
let Bk be defined by

U∗BkU = Dk, Dk ≡




µ1 + εk 0

µ2 + 2εk
. . .

0 µn−1 + (n− 1) εk




where U is the above unitary matrix. Thus the eigenvalues of Bk, µ̂1 < · · · < µ̂n−1 are
strictly increasing and µ̂j ≡ µj + jεk. Let Ak be given by

Ak =

(
a y∗

y Bk

)

Then
(

1 0∗

0 U∗

)
Ak

(
1 0∗

0 U

)
=

(
1 0∗

0 U∗

)(
a y∗

y Bk

)(
1 0∗

0 U

)

=

(
a y∗

U∗y U∗Bk

)(
1 0∗

0 U

)
=

(
a y∗U

U∗y Dk

)

We can replace y with yk such that limk→∞ yk = y but zk ≡ U∗yk has the property that
each component of zk is nonzero. This will probably take place automatically but if not,
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make the change. This makes a change in Ak but still limk→∞ Ak = A. The main part of
this argument which follows has to do with fixed k.

Expanding det (λI −Ak) along the top row, the characteristic polynomial for Ak is then

q (λ) = (λ− a)
n−1∏
i=1

(λ− µ̂i)−
n−1∑
i=2

|zi|2 (λ− µ̂1) · · · ̂(λ− µ̂i) · · ·
(
λ− µ̂n−1

)
(6.27)

where ̂(λ− µ̂i) indicates that this factor is omitted from the product
∏n−1

i=1 (λ− µ̂i) . To see
why this is so, consider the case where Bk is 3× 3. In this case, you would have

(
1 0T

0 U∗

)
(λI −Ak)

(
1 0T

0 U

)
=




λ− a z1 z2 z3

z1 λ− µ̂1 0 0

z2 0 λ− µ̂2 0

z3 0 0 λ− µ̂3




In general, you would have an n × n matrix on the right with the same appearance. Then
expanding as indicated, the determinant is

(λ− a)
3∏

i=1

(λ− µ̂i)− z1 det




z1 0 0

z2 λ− µ̂2 0

z3 0 λ− µ̂3




+z2 det




z1 λ− µ̂1 0

z2 0 0

z3 0 λ− µ̂3


− z3 det




z1 λ− µ̂1 0

z2 0 λ− µ̂2

z3 0 0




= (λ− a)
3∏

i=1

(λ− µ̂i)−

(
|z1|2 (λ− µ̂2) (λ− µ̂3) + |z2|2 (λ− µ̂1) (λ− µ̂3)

+ |z3|2 (λ− µ̂1) (λ− µ̂2)

)

Notice how, when you expand the 3× 3 determinants along the first column, you have only
one non-zero term and the sign is adjusted to give the above claim. Clearly, it works the
same for any size matrix. Since the µ̂i are strictly increasing in i, it follows from 6.27 that
q (µ̂i) q

(
µ̂i+1

)
≤ 0. However, since each |zi| ̸= 0, none of the q (µ̂i) can equal 0 and so

q (µ̂i) q
(
µ̂i+1

)
< 0. Hence, from the intermediate value theorem of calculus, there is a root

of q (λ) in each of the disjoint open intervals
(
µ̂i, µ̂i+1

)
. There are n − 2 of these intervals

and so this accounts for n−2 roots of q (λ). What of q (µ̂1)? Its sign is the same as (−1)
n−3

and q
(
µ̂n−1

)
< 0 . Therefore, there is a root to q (λ) which is larger than µ̂n−1. Indeed,

limλ→∞ q (λ) = ∞ so there exists a root of q (λ) strictly larger than µ̂n−1. This accounts
for n − 1 roots of q (λ) . Now consider q (µ̂1) . Suppose first that n is odd. Then you have
q (µ̂1) > 0. Hence, there is a root of q (λ) which is no larger than µ̂1 because in this case,
limλ→−∞ q (λ) = −∞. If n is even, then q (µ̂1) < 0 and so there is a root of q (λ) which
is smaller than µ̂1 because in this case, limλ→−∞ q (λ) = ∞. This accounts for all roots of
q (λ). Hence, if the roots of q (λ) are λ1 ≤ λ2 ≤ · · · ≤ λn, it follows that

λ1 < µ̂1 < λ2 < µ̂2 < · · · < µ̂n−1 < λn

To get the complete result, simply take the limit as k → ∞. Then limk→∞ µ̂k = µk and
Ak → A and so the eigenvalues of Ak converge to the corresponding eigenvalues of A (See
Problem 47 on Page 187), and so, passing to the limit, gives the desired result in which it
may be necessary to replace < with ≤. �
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make the change. This makes a change in Ak but still limk→∞ Ak = A. The main part of
this argument which follows has to do with fixed k.

Expanding det (λI −Ak) along the top row, the characteristic polynomial for Ak is then

q (λ) = (λ− a)
n−1∏
i=1

(λ− µ̂i)−
n−1∑
i=2

|zi|2 (λ− µ̂1) · · · ̂(λ− µ̂i) · · ·
(
λ− µ̂n−1

)
(6.27)

where ̂(λ− µ̂i) indicates that this factor is omitted from the product
∏n−1

i=1 (λ− µ̂i) . To see
why this is so, consider the case where Bk is 3× 3. In this case, you would have

(
1 0T

0 U∗

)
(λI −Ak)

(
1 0T

0 U

)
=




λ− a z1 z2 z3

z1 λ− µ̂1 0 0

z2 0 λ− µ̂2 0

z3 0 0 λ− µ̂3




In general, you would have an n × n matrix on the right with the same appearance. Then
expanding as indicated, the determinant is

(λ− a)
3∏

i=1

(λ− µ̂i)− z1 det




z1 0 0

z2 λ− µ̂2 0

z3 0 λ− µ̂3




+z2 det




z1 λ− µ̂1 0

z2 0 0

z3 0 λ− µ̂3


− z3 det




z1 λ− µ̂1 0

z2 0 λ− µ̂2

z3 0 0




= (λ− a)
3∏

i=1

(λ− µ̂i)−

(
|z1|2 (λ− µ̂2) (λ− µ̂3) + |z2|2 (λ− µ̂1) (λ− µ̂3)

+ |z3|2 (λ− µ̂1) (λ− µ̂2)

)

Notice how, when you expand the 3× 3 determinants along the first column, you have only
one non-zero term and the sign is adjusted to give the above claim. Clearly, it works the
same for any size matrix. Since the µ̂i are strictly increasing in i, it follows from 6.27 that
q (µ̂i) q

(
µ̂i+1

)
≤ 0. However, since each |zi| ̸= 0, none of the q (µ̂i) can equal 0 and so

q (µ̂i) q
(
µ̂i+1

)
< 0. Hence, from the intermediate value theorem of calculus, there is a root

of q (λ) in each of the disjoint open intervals
(
µ̂i, µ̂i+1

)
. There are n − 2 of these intervals

and so this accounts for n−2 roots of q (λ). What of q (µ̂1)? Its sign is the same as (−1)
n−3

and q
(
µ̂n−1

)
< 0 . Therefore, there is a root to q (λ) which is larger than µ̂n−1. Indeed,

limλ→∞ q (λ) = ∞ so there exists a root of q (λ) strictly larger than µ̂n−1. This accounts
for n − 1 roots of q (λ) . Now consider q (µ̂1) . Suppose first that n is odd. Then you have
q (µ̂1) > 0. Hence, there is a root of q (λ) which is no larger than µ̂1 because in this case,
limλ→−∞ q (λ) = −∞. If n is even, then q (µ̂1) < 0 and so there is a root of q (λ) which
is smaller than µ̂1 because in this case, limλ→−∞ q (λ) = ∞. This accounts for all roots of
q (λ). Hence, if the roots of q (λ) are λ1 ≤ λ2 ≤ · · · ≤ λn, it follows that

λ1 < µ̂1 < λ2 < µ̂2 < · · · < µ̂n−1 < λn

To get the complete result, simply take the limit as k → ∞. Then limk→∞ µ̂k = µk and
Ak → A and so the eigenvalues of Ak converge to the corresponding eigenvalues of A (See
Problem 47 on Page 187), and so, passing to the limit, gives the desired result in which it
may be necessary to replace < with ≤. �190 CHAPTER 6. SPECTRAL THEORY

Definition 6.11.2 Let A be an n × n matrix. An (n− r) × (n− r) matrix is called a
principal submatrix of A if it is obtained by deleting from A the rows i1, i2, · · · , ir and the
columns i1, i2, · · · , ir.

Now the Cauchy interlacing theorem is really the following corollary.

Corollary 6.11.3 Let A be an n × n Hermitian matrix and let B be an (n− 1) × (n− 1)
principal submatrix. Then the interlacing inequality holds λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤
µn−1 ≤ λn where the µi are the eigenvalues of B listed in increasing order and the λi are
the eigenvalues of A listed in increasing order.

Proof: Suppose B is obtained from A by deleting the ith row and the ith column. Then
let P be the permutation matrix which switches the ith row with the first row. It is an
orthogonal matrix and so its inverse is its transpose. The transpose switches the ith column

with the first column. See Problem 33 on Page 130. Thus PAPT =

(
a y∗

y B

)
and it

follows that the result of the multiplication is indeed as shown, a Hermitian matrix because
P, PT are orthogonal matrices. Now the conclusion of the corollary follows from Theorem
6.11.1. �

Download free eBooks at bookboon.com



LINEAR ALGEBRA I Spectral Theory

204204

190 CHAPTER 6. SPECTRAL THEORY
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columns i1, i2, · · · , ir.

Now the Cauchy interlacing theorem is really the following corollary.

Corollary 6.11.3 Let A be an n × n Hermitian matrix and let B be an (n− 1) × (n− 1)
principal submatrix. Then the interlacing inequality holds λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤
µn−1 ≤ λn where the µi are the eigenvalues of B listed in increasing order and the λi are
the eigenvalues of A listed in increasing order.

Proof: Suppose B is obtained from A by deleting the ith row and the ith column. Then
let P be the permutation matrix which switches the ith row with the first row. It is an
orthogonal matrix and so its inverse is its transpose. The transpose switches the ith column

with the first column. See Problem 33 on Page 130. Thus PAPT =

(
a y∗

y B

)
and it

follows that the result of the multiplication is indeed as shown, a Hermitian matrix because
P, PT are orthogonal matrices. Now the conclusion of the corollary follows from Theorem
6.11.1. �
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∪, 1
A close to B!eigenvalues, 135
A invariant, 184
Abel’s formula, 83, 197, 387, 462
absolute convergence!convergence, 268
adjugate, 63, 75
algebraic number!minimal polynomial, 159
algebraic numbers, 158
algebraic numbers!field, 160
almost linear, 333
almost linear system, 333
analytic function of matrix, 318
Archimedean property, 10
assymptotically stable, 333
augmented matrix, 16
autonomous, 333
Banach space, 259
basis, 45, 146
Binet Cauchy ! volumes, 230
Binet Cauchy formula, 71
block matrix, 79
block matrix!multiplication, 80
block multiplication, 79
bounded linear transformations, 259
Cauchy Schwarz inequality, 21, 215, 257
Cauchy sequence, 227, 258, 341, 485
Cayley Hamilton theorem, 78, 196, 205, 459, 471
centrifugal acceleration@centrifugal acceleration, 51
centripetal acceleration@centripetal acceleration, 51
characteristic and minimal polynomial, 179, 450
characteristic equation, 109
characteristic polynomial, 78, 177
characteristic value, 109
Cholesky factorization, 256, 499
codomain, 1
cofactor, 62, 73
column rank, 75, 89
commutative ring, 343
companion matrix, 199, 293

complete, 277
completeness axiom, 9
complex conjugate, 4
complex numbers!absolute value, 4
complex numbers!field, 4
complex numbers@complex numbers, 4
complex roots, 5
composition of linear transformations, 174
comutator, 144, 440
condition number, 265
conformable, 28
conjugate linear, 220
converge, 341
convex combination, 180, 453
convex hull, 180, 453
convex hull!compactness, 180, 453
coordinate axis, 19
coordinates, 19
Coriolis acceleration, 51
Coriolis acceleration@Coriolis acceleration!earth@

earth, 53
Coriolis force, 51
counting zeros, 135
Courant Fischer theorem, 238
Cramer’s rule, 64, 75
cyclic basis, 189
cyclic set, 187
damped vibration, 330
defective, 113
DeMoivre identity, 5
dense, 11
density of rationals, 11
determinant!block upper triangular matrix, 124, 384
determinant!definition, 68
determinant!estimate for Hermitian matrix, 214
determinant!expansion along a column, 62
determinant!expansion along a row, 62
determinant!expansion along row, column, 73
determinant!Hadamard inequality, 214
determinant!inverse of matrix, 63
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determinant!matrix inverse, 74
determinant!partial derivative, cofactor, 83, 388
determinant!permutation of rows, 69
determinant!product, 71
determinant!product of eigenvalues, 129
determinant!product of eigenvalules, 139, 427
determinant!row, column operations, 63, 70
determinant!summary of properties, 77
determinant!symmetric definition, 69
determinant!transpose, 69
diagonalizable, 172, 231
diagonalizable! minimal polynomial condition, 198, 

465
diagonalizable!basis of eigenvectors, 121, 421
diagonalization, 235
diameter, 340
differentiable matrix, 48
differential equations!first order systems, 141, 434
digraph, 29
dimension of vector space, 147
direct sum, 60, 182, 378
directed graph, 29
discrete Fourier transform, 254, 494
division of real numbers, 11
Dolittle’s method, 100
domain, 1
dot product, 20
dyadics, 167
dynamical system, 121, 423
eigenspace, 110, 184
eigenvalue, 61, 109, 380
eigenvalues, 78, 135, 177
eigenvalues!AB and BA, 81
eigenvector, 61, 109, 380
eigenvectors!distinct eigenvalues independence, 113
elementary matrices, 85
elementary symmetric polynomials, 343
empty set, 1
equality of mixed partial derivatives, 131
equilibrium point, 333
equivalence class, 154, 170
equivalence of norms, 259
equivalence relation, 154, 170

Euclidean algorithm, 11
exchange theorem, 44
existence of a fixed point, 278
field axioms, 2
field extension, 154
field extension!dimension, 156
field extension!finite, 156
field extensions, 156
field!ordered, 3
finite dimensional normed linear space!completeness, 

259
finite dimensional normed linear space!equivalence 

of norms, 259
Foucalt pendulum@Foucalt pendulum, 53
Fourier series, 226, 484
Fredholm alternative, 95, 224
free variable, 17
Frobenius norm, 248
Frobenius norm!singular value decomposition, 248
Frobenius! inner product, 143, 438
Frobinius norm, 253, 493
functions, 1
fundamental matrix, 327
fundamental theorem of algebra, 347
fundamental theorem of algebra ! plausibility argu-

ment, 7
fundamental theorem of algebra ! rigorous proof, 8
fundamental theorem of arithmetic, 13
Gauss Jordan method for inverses, 33
Gauss Seidel method, 273
Gelfand, 267
generalized eigenspace, 61, 380
generalized eigenspaces, 184, 192
generalized eigenvectors, 193
Gerschgorin’s theorem, 133
Gram Schmidt procedure, 108, 123, 216, 403
Gram Schmidt process, 216
Gramm Schmidt process, 123
greatest common divisor, 11, 150
greatest common divisor!characterization, 12
greatest lower bound, 9
Gronwall’s inequality, 283, 326, 509
Hermitian, 126
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Hermitian matrix! factorization, 213, 478
Hermitian matrix!positive part, 320
Hermitian matrix!positive part, Lipschitz continu-

ous, 320
Hermitian operator, 220
Hermitian operator!largest, smallest, eigenvalues, 

238
Hermitian operator!spectral representation, 235
Hermitian!orthonormal basis eigenvectors, 236
Hermitian!positive definite, 239
Hermitian!real eigenvalues, 127
Hessian matrix, 132
Holder’s inequality, 262
Householder matrix, 105
Householder!reflection, 106
idempotent, 57, 372
inconsistent, 17
initial value problem!existence, 321
initial value problem!global solutions, 325
initial value problem!linear system, 323
initial value problem!local solutions, existence, 

uniqueness, 324
initial value problem!uniqueness, 283, 321, 509
injective, 1
inner product, 20, 214
inner product space, 214
inner product space!adjoint operator, 219
inner product space!parallelogram identity, 215
inner product space!triangle inequality, 215
integers mod a prime, 165, 445
integral!operator valued function, 282, 508
integral!vector valued function, 282, 507
intersection, 1
intervals!notation, 1
invariant, 234
invariant subspaces!direct sum, block diagonal ma-

trix, 186
invariant!subspace, 184
inverses and determinants, 74
invertible, 33
invertible matrix!product of elementary matrices, 92
irreducible, 150
irreducible!relatively prime, 151

iterative methods!alternate proof of convergence, 
280, 503

iterative methods!convergence criterion, 276
iterative methods!diagonally dominant, 281, 503
iterative methods!proof of convergence, 279
Jocobi method, 272
Jordan block, 191, 193
Jordan canonical form!existence and uniqueness, 193
Jordan canonical form!powers of a matrix, 194
ker, 93
kernel, 42
kernel of a product!direct sum decomposition, 183
Krylov sequence, 187
Lagrange form of remainder, 131
Laplace expansion, 73
least squares, 98, 223, 398
least upper bound, 9
Lindemann Weierstrass theorem, 353
linear combination, 25, 43, 70
linear transformation, 38, 166
linear transformation!defined on a basis, 167
linear transformation!dimension of vector space, 167
linear transformation!existence of eigenvector, 178
linear transformation!kernel, 181
linear transformation!matrix, 39
linear transformation!minimal polynomial, 178
linear transformation!rotation, 40
linear transformations!a vector space, 167
linear transformations!commuting, 183
linear transformations!composition, matrices, 174
linear transformations!sum, 167, 221
linearly dependent, 43
linearly independent, 43, 145
linearly independent set!extend to basis, 149
Lipschitz condition, 321
LU factorization!justification for multiplier method, 

102
LU factorization!multiplier method, 99
LU factorization!solutions of linear systems, 100
main diagonal, 62
Markov matrix, 205
Markov matrix!limit, 208
Markov matrix!regular, 208
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Markov matrix!steady state, 205, 208
mathematical induction, 10
matrices!commuting, 233
matrices!notation, 24
matrices!transpose, 32
matrix, 23
matrix ! positive definite, 255, 497
matrix exponential, 281, 504
matrix multiplication!definition, 26
matrix multiplication!entries of the product, 28
matrix multiplication!not commutative, 27
matrix multiplication!properties, 31
matrix multiplication!vectors, 25
matrix of linear transformation!orthonormal bases, 

172
matrix!differentiation operator, 169
matrix!injective, 47
matrix!inverse, 32
matrix!left inverse, 75
matrix!lower triangular, 62, 75
matrix!Markov, 205
matrix!non defective, 126
matrix!normal, 126
matrix!polynomial, 84, 391
matrix!rank and existence of solutions, 94
matrix!rank and nullity, 93
matrix!right and left inverse, 47
matrix!right inverse, 75
matrix!right, left inverse, 74
matrix!row, column, determinant rank, 75
matrix!self adjoint, 121, 420
matrix!stochastic, 205
matrix!surjective, 47
matrix!symmetric, 119
matrix!symmetric, 418
matrix!unitary, 123
matrix!upper triangular, 62, 75
migration matrix, 209
minimal polynomial, 60, 177, 184, 379
minimal polynomial ! algebraic number, 158
minimal polynomial!eigenvalues, eigenvectors, 178
minimal polynomial!finding it, 196, 457
minimal polynomial!generalized eigenspaces, 184

minor, 62, 73
mixed partial derivatives, 130
Moore Penrose inverse, 251
Moore Penrose inverse!least squares, 251
Moore Penrose inverse!uniqueness, 255
moving coordinate system@moving coordinate sys-

tem, 49
moving coordinate system@moving coordinate 

system!acceleration @acceleration, 51
negative definite, 239
Neuman!series, 285, 512
nilpotent!block diagonal matrix, 191
nilpotent!Jordan form, uniqueness, 191
nilpotent!Jordan normal form, 191
non defective, 198, 465
nonnegative self adjoint!square root, 241
norm, 214
norm!strictly convex, 280, 500
norm!uniformly convex, 280, 500
normal, 245
normal!diagonalizable, 127
normal!non defective, 126
normed linear space, 214, 256
normed vector space, 214
norms!equivalent, 257
null and rank, 227, 487
null space, 42
nullity, 93
one to one, 1
onto, 1
operator norm, 259
orthogonal matrix, 61, 66, 105, 124, 380, 385
orthonormal basis, 215
orthonormal polynomials, 225, 482
p norms, 262
p norms!axioms of a norm, 263
parallelepiped!volume, 228
partitioned matrix, 79
Penrose conditions, 252
permutation, 68
permutation matrices, 85
permutation!even, 86
permutation!odd, 86
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perp, 94
Perron’s theorem, 311
pivot column, 91
PLU factorization, 101
PLU factorization!existence, 105
polar decomposition!left, 244
polar decomposition!right, 243
polar form complex number, 5
polynomial, 14, 150
polynomial ! leading coefficient, 150
polynomial ! leading term, 14
polynomial ! matrix coefficients, 84, 391
polynomial ! monic, 14, 150
polynomial!addition, 14
polynomial!degree, 14, 150
polynomial!divides, 150
polynomial!division, 14, 150
polynomial!equal, 150
polynomial!equality, 14
polynomial!greatest common divisor, 150
polynomial!greatest common divisor description, 

151
polynomial!greatest common divisor, uniqueness, 

151
polynomial!irreducible, 150
polynomial!irreducible factorization, 152
polynomial!multiplication, 14
polynomial!relatively prime, 150
polynomial!root, 150
polynomials!canceling, 152
polynomials!factorization, 152
positive definite matrix, 255, 497
positive definite!postitive eigenvalues, 239
positive definite!principle minors, 240
postitive definite, 239
power method, 287
prime number, 11
prime numbers!infinity of primes, 164, 445
principle directions, 115
principle minors, 240
product rule!matrices, 48
projection map!convex set, 227, 486
Putzer’s method, 328

QR algorithm, 138, 297, 425
QR algorithm! convergence, 300
QR algorithm!convergence theorem, 300
QR algorithm!non convergence, 138, 303
QR algorithm!nonconvergence, 426
QR factorization, 106
QR factorization!existence, 107
QR factorization!Gram Schmidt procedure, 108, 

403
quadratic form, 129
quotient space, 165, 446
quotient vector space, 165
range, 1
rank, 90
rank of a matrix, 75, 89
rank one transformation, 221
rank!number of pivot columns, 93
rational canonical form, 200
rational canonical form!uniqueness, 202
Rayleigh quotient, 294
Rayleigh quotient!how close?, 294
real numbers, 2
real Schur form, 124
regression line, 223
regular Sturm Liouville problem, 225, 483
relatively prime, 12
Riesz representation theorem, 219
right Cauchy Green strain tensor, 243
right polar decomposition, 243
row equivalelance!determination, 92
row equivalent, 91
row operations, 16, 85
row operations!inverse, 16
row operations!linear relations between columns, 89
row rank, 75, 89
row reduced echelon form!definition, 91
row reduced echelon form!examples, 91
row reduced echelon form!existence, 91
row reduced echelon form!uniqueness, 92
scalar product, 20
scalars, 6, 19, 23
Schur’s theorem, 123, 234
Schur’s theorem!inner product space, 234
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second derivative test, 133
self adjoint, 126, 220
self adjoint nonnegative!roots, 242
sequential compactness, 342
sequentially compact, 342
set notation, 0
sgn, 67
sgn!uniqueness, 68
shifted inverse power method, 288
shifted inverse power method!complex eigenvalues, 

292
sign of a permutation, 68
similar matrices, 65, 83, 170, 382, 387
similar!matrix and its transpose, 198, 466
similarity transformation, 170
simple field extension, 160
simultaneous corrections, 272
simultaneously diagonalizable, 232
simultaneously diagonalizable!commuting family, 

234
singular value decomposition, 247
singular values, 247
skew symmetric, 32, 119, 418
space of linear transformations!vector space, 221
span, 43, 70
spanning set!restricting to a basis, 149
spectral mapping theorem, 320
spectral norm, 261
spectral radius, 266, 267
spectrum, 109
splitting field, 157
stable, 333
stable manifold, 339
stochastic matrix, 205
subsequence, 341
subspace, 43, 145
subspace!basis, 46, 149
subspace!complementary, 231, 490
subspace!dimension, 46
subspace!invariant, 184
subspaces!direct sum, 182
subspaces!direct sum, basis, 183
substituting matrix into polynomial identity, 84, 391

surjective, 1
Sylvester, 60, 377
Sylvester! law of inertia, 142, 437
Sylvester!dimention of kernel of product, 181
Sylvester’s equation, 230, 489
symmetric, 32, 119, 418
symmetric polynomial theorem, 343
symmetric polynomials, 343
system of linear equations, 17
tensor product, 221
the space AU, 231
trace, 129
trace!AB and BA, 129
trace!sum of eigenvalues, 139, 427
transpose, 32
transpose!properties, 32
triangle inequality, 22
trivial, 43
union, 1
Unitary matrix! representation, 285
upper Hessenberg matrix, 307
Vandermonde determinant, 84, 390
variation of constants formula, 142, 329, 435
variational inequality, 227, 486
vector space axioms, 20
vector space!axioms, 25, 144
vector space!basis, 45
vector space!dimension, 46
vector space!examples, 145
vector!angular velocity, 49
vectors, 25
volume!parallelepiped, 228
well ordered, 10
Wronskian, 82, 142, 197, 329, 386, 435, 462
Wronskian alternative, 142, 329, 435
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