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Chapter 7

Vector Spaces And Fields

7.1 Vector Space Axioms

It is time to consider the idea of a Vector space.

Definition 7.1.1 A vector space is an Abelian group of “vectors” satisfying the axioms of
an Abelian group,

v +w = w + v,

the commutative law of addition,

(v +w) + z = v+(w + z) ,

the associative law for addition,
v + 0 = v,

the existence of an additive identity,

v+(−v) = 0,

the existence of an additive inverse, along with a field of “scalars”, F which are allowed to
multiply the vectors according to the following rules. (The Greek letters denote scalars.)

α (v +w) = αv+αw, (7.1)

(α+ β)v =αv+βv, (7.2)

α (βv) = αβ (v) , (7.3)

1v = v. (7.4)

The field of scalars is usually R or C and the vector space will be called real or complex
depending on whether the field is R or C. However, other fields are also possible. For
example, one could use the field of rational numbers or even the field of the integers mod p
for p a prime. A vector space is also called a linear space.

For example, Rn with the usual conventions is an example of a real vector space and Cn

is an example of a complex vector space. Up to now, the discussion has been for Rn or Cn

and all that is taking place is an increase in generality and abstraction.
There are many examples of vector spaces.
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Example 7.1.2 Let Ω be a nonempty set and let V consist of all functions defined on Ω
which have values in some field F. The vector operations are defined as follows.

(f + g) (x) = f (x) + g (x)

(αf) (x) = αf (x)

Then it is routine to verify that V with these operations is a vector space.

Note that Fn actually fits in to this framework. You consider the set Ω to be {1, 2, · · · , n}
and then the mappings from Ω to F give the elements of Fn. Thus a typical vector can be
considered as a function.

Example 7.1.3 Generalize the above example by letting V denote all functions defined on
Ω which have values in a vector space W which has field of scalars F. The definitions of
scalar multiplication and vector addition are identical to those of the above example.

7.2 Subspaces And Bases

7.2.1 Basic Definitions

Definition 7.2.1 If {v1, · · · ,vn} ⊆ V, a vector space, then

span (v1, · · · ,vn) ≡

{
n∑

i=1

αivi : αi ∈ F

}
.

A subset, W ⊆ V is said to be a subspace if it is also a vector space with the same field of
scalars. Thus W ⊆ V for W nonempty is a subspace if ax+ by ∈ W whenever a, b ∈ F and
x, y ∈ W. The span of a set of vectors as just described is an example of a subspace.

Example 7.2.2 Consider the real valued functions defined on an interval [a, b]. A subspace
is the set of continuous real valued functions defined on the interval. Another subspace is
the set of polynomials of degree no more than 4.

Definition 7.2.3 If {v1, · · · ,vn} ⊆ V, the set of vectors is linearly independent if

n∑
i=1

αivi = 0

implies
α1 = · · · = αn = 0

and {v1, · · · ,vn} is called a basis for V if

span (v1, · · · ,vn) = V

and {v1, · · · ,vn} is linearly independent. The set of vectors is linearly dependent if it is not
linearly independent.

7.2.2 A Fundamental Theorem

The next theorem is called the exchange theorem. It is very important that you understand
this theorem. It is so important that I have given several proofs of it. Some amount to the
same thing, just worded differently.
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Theorem 7.2.4 Let {x1, · · · ,xr} be a linearly independent set of vectors such that each xi

is in the span{y1, · · · ,ys} . Then r ≤ s.

Proof 1: Define span{y1, · · · ,ys} ≡ V, it follows there exist scalars c1, · · · , cs such
that

x1 =

s∑
i=1

ciyi. (7.5)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · · ,xr} which equals zero.

Say ck ̸= 0. Then solve 7.5 for yk and obtain

yk ∈ span


x1,

s-1 vectors here� �� �
y1, · · · ,yk−1,yk+1, · · · ,ys


 .

Define {z1, · · · , zs−1} by

{z1, · · · , zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span {x1, z1, · · · , zs−1} = V because if v ∈ V, there exist constants c1, · · · , cs
such that

v =
s−1∑
i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · · , zs−1}
to obtain v ∈ span {x1, z1, · · · , zs−1} . The vector yk, in the list {y1, · · · ,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · · ,ys} .

Now suppose that r > s and that span {x1, · · · ,xl, z1, · · · , zp} = V where the vectors,
z1, · · · , zp are each taken from the set, {y1, · · · ,ys} and l+ p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l+1 ≤ r. Therefore, xl+1

is a vector not in the list, {x1, · · · ,xl} and since span {x1, · · · ,xl, z1, · · · , zp} = V there
exist scalars ci and dj such that

xl+1 =

l∑
i=1

cixi +

p∑
j=1

djzj . (7.6)

Now not all the dj can equal zero because if this were so, it would follow that {x1, · · · ,xr}
would be a linearly dependent set because one of the vectors would equal a linear combination
of the others. Therefore, (7.6) can be solved for one of the zi, say zk, in terms of xl+1 and
the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span


x1, · · ·xl,xl+1,

p-1 vectors here� �� �
z1, · · · zk−1, zk+1, · · · , zp


 = V.

Continue this way, eventually obtaining

span (x1, · · · ,xs) = V.
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But then xr ∈ span {x1, · · · ,xs} contrary to the assumption that {x1, · · · ,xr} is linearly
independent. Therefore, r ≤ s as claimed.

Proof 2: Let

xk =

s∑
j=1

ajkyj

If r > s, then the matrix A = (ajk) has more columns than rows. By Corollary 4.3.9
one of these columns is a linear combination of the others. This implies there exist scalars
c1, · · · , cr, not all zero such that

r∑
k=1

ajkck = 0, j = 1, · · · , r

Then
r∑

k=1

ckxk =

r∑
k=1

ck

s∑
j=1

ajkyj =

s∑
j=1

(
r∑

k=1

ckajk

)
yj = 0

which contradicts the assumption that {x1, · · · ,xr} is linearly independent. Hence r ≤ s.
Proof 3: Suppose r > s. Let zk denote a vector of {y1, · · · ,ys} . Thus there exists j as

small as possible such that

span (y1, · · · ,ys) = span (x1, · · · ,xm, z1, · · · , zj)

where m+ j = s. It is given that m = 0, corresponding to no vectors of {x1, · · · ,xm} and
j = s, corresponding to all the yk results in the above equation holding. If j > 0 then m < s
and so

xm+1 =

m∑
k=1

akxk +

j∑
i=1

bizi

Not all the bi can equal 0 and so you can solve for one of them in terms of xm+1,xm, · · · ,x1,
and the other zk. Therefore, there exists

{z1, · · · , zj−1} ⊆ {y1, · · · ,ys}

such that
span (y1, · · · ,ys) = span (x1, · · · ,xm+1, z1, · · · , zj−1)

contradicting the choice of j. Hence j = 0 and

span (y1, · · · ,ys) = span (x1, · · · ,xs)

It follows that
xs+1 ∈ span (x1, · · · ,xs)

contrary to the assumption the xk are linearly independent. Therefore, r ≤ s as claimed. �

Corollary 7.2.5 If {u1, · · · ,um} and {v1, · · · ,vn} are two bases for V, then m = n.

Proof: By Theorem 7.2.4, m ≤ n and n ≤ m. �

Definition 7.2.6 A vector space V is of dimension n if it has a basis consisting of n vectors.
This is well defined thanks to Corollary 7.2.5. It is always assumed here that n < ∞ and in
this case, such a vector space is said to be finite dimensional.
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Example 7.2.7 Consider the polynomials defined on R of degree no more than 3, denoted
here as P3. Then show that a basis for P3 is

{
1, x, x2, x3

}
. Here xk symbolizes the function

x �→ xk.

It is obvious that the span of the given vectors yields P3. Why is this set of vectors
linearly independent? Suppose

c0 + c1x+ c2x
2 + c3x

3 = 0

where 0 is the zero function which maps everything to 0. Then you could differentiate three
times and obtain the following equations

c1 + 2c2x+ 3c3x
2 = 0

2c2 + 6c3x = 0

6c3 = 0

Now this implies c3 = 0. Then from the equations above the bottom one, you find in
succession that c2 = 0, c1 = 0, c0 = 0.

There is a somewhat interesting theorem about linear independence of smooth functions
(those having plenty of derivatives) which I will show now. It is often used in differential
equations.

Definition 7.2.8 Let f1, · · · , fn be smooth functions defined on an interval [a, b] . The
Wronskian of these functions is defined as follows.

W (f1, · · · , fn) (x) ≡

����������

f1 (x) f2 (x) · · · fn (x)

f ′
1 (x) f ′

2 (x) · · · f ′
n (x)

...
...

...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

����������

Note that to get from one row to the next, you just differentiate everything in that row. The
notation f (k) (x) denotes the kth derivative.

With this definition, the following is the theorem. The interesting theorem involving the
Wronskian has to do with the situation where the functions are solutions of a differential
equation. Then much more can be said and it is much more interesting than the following
theorem.

Theorem 7.2.9 Let {f1, · · · , fn} be smooth functions defined on [a, b] . Then they are lin-
early independent if there exists some point t ∈ [a, b] where W (f1, · · · , fn) (t) ̸= 0.

Proof: Form the linear combination of these vectors (functions) and suppose it equals
0. Thus

a1f1 + a2f2 + · · ·+ anfn = 0

The question you must answer is whether this requires each aj to equal zero. If they all
must equal 0, then this means these vectors (functions) are independent. This is what it
means to be linearly independent.

Differentiate the above equation n− 1 times yielding the equations



a1f1 + a2f2 + · · ·+ anfn = 0

a1f
′
1 + a2f

′
2 + · · ·+ anf

′
n = 0

...

a1f
(n−1)
1 + a2f

(n−1)
2 + · · ·+ anf

(n−1)
n = 0
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Now plug in t. Then the above yields




f1 (t) f2 (t) · · · fn (t)

f ′
1 (t) f ′

2 (t) · · · f ′
n (t)

...
...

...

f
(n−1)
1 (t) f

(n−1)
2 (t) · · · f

(n−1)
n (t)







a1

a2
...

an




=




0

0
...

0




Since the determinant of the matrix on the left is assumed to be nonzero, it follows this
matrix has an inverse and so the only solution to the above system of equations is to have
each ak = 0. �

Here is a useful lemma.

Lemma 7.2.10 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and that
d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk},

v = −
k∑

i=1

(ci
d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · · ,uk} implies each ci = 0 also. �

Given a spanning set, you can delete vectors till you end up with a basis. Given a linearly
independent set, you can add vectors till you get a basis. This is what the following theorem
is about, weeding and planting.

Theorem 7.2.11 If V = span (u1, · · · ,un) then some subset of {u1, · · · ,un} is a basis for
V. Also, if {u1, · · · ,uk} ⊆ V is linearly independent and the vector space is finite dimen-
sional, then the set, {u1, · · · ,uk}, can be enlarged to obtain a basis of V.

Proof: Let
S = {E ⊆ {u1, · · · ,un} such that span (E) = V }.

For E ∈ S, let |E| denote the number of elements of E. Let

m ≡ min{|E| such that E ∈ S}.

Thus there exist vectors
{v1, · · · ,vm} ⊆ {u1, · · · ,un}

such that
span (v1, · · · ,vm) = V

and m is as small as possible for this to happen. If this set is linearly independent, it follows
it is a basis for V and the theorem is proved. On the other hand, if the set is not linearly
independent, then there exist scalars

c1, · · · , cm

such that

0 =
m∑
i=1

civi
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and not all the ci are equal to zero. Suppose ck ̸= 0. Then the vector, vk may be solved for
in terms of the other vectors. Consequently,

V = span (v1, · · · ,vk−1,vk+1, · · · ,vm)

contradicting the definition of m. This proves the first part of the theorem.
To obtain the second part, begin with {u1, · · · ,uk} and suppose a basis for V is

{v1, · · · ,vn} .

If
span (u1, · · · ,uk) = V,

then k = n. If not, there exists a vector,

uk+1 /∈ span (u1, · · · ,uk) .

Then by Lemma 7.2.10, {u1, · · · ,uk,uk+1} is also linearly independent. Continue adding
vectors in this way until n linearly independent vectors have been obtained. Then

span (u1, · · · ,un) = V

because if it did not do so, there would exist un+1 as just described and {u1, · · · ,un+1}
would be a linearly independent set of vectors having n+1 elements even though {v1, · · · ,vn}
is a basis. This would contradict Theorem 7.2.4. Therefore, this list is a basis. �

7.2.3 The Basis Of A Subspace

Every subspace of a finite dimensional vector space is a span of some vectors and in fact it
has a basis. This is the content of the next theorem.

Theorem 7.2.12 Let V be a nonzero subspace of a finite dimensional vector space W of
dimension n. Then V has a basis with no more than n vectors.

Proof: Let v1 ∈ V where v1 ̸= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 7.2.10 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} ̸= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem, Theorem 7.2.4. �

7.3 Lots Of Fields

7.3.1 Irreducible Polynomials

I mentioned earlier that most things hold for arbitrary fields. However, I have not bothered
to give any examples of other fields. This is the point of this section. It also turns out that
showing the algebraic numbers are a field can be understood using vector space concepts
and it gives a very convincing application of the abstract theory presented earlier in this
chapter.

Here I will give some basic algebra relating to polynomials. This is interesting for its
own sake but also provides the basis for constructing many different kinds of fields. The
first is the Euclidean algorithm for polynomials.
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Definition 7.3.1 A polynomial is an expression of the form p (λ) =
∑n

k=0 akλ
k where as

usual λ0 is defined to equal 1. Two polynomials are said to be equal if their corresponding
coefficients are the same. Thus, in particular, p (λ) = 0 means each of the ak = 0. An
element of the field λ is said to be a root of the polynomial if p (λ) = 0 in the sense that
when you plug in λ into the formula and do the indicated operations, you get 0. The degree
of a nonzero polynomial is the highest exponent appearing on λ. The degree of the zero
polynomial p (λ) = 0 is not defined. A polynomial of degree n is monic if the coefficient of
λn is 1. In any case, this coefficient is called the leading coefficient.

Example 7.3.2 Consider the polynomial p (λ) = λ2+λ where the coefficients are in Z2. Is
this polynomial equal to 0? Not according to the above definition, because its coefficients are
not all equal to 0. However, p (1) = p (0) = 0 so it sends every element of Z2 to 0. Note the
distinction between saying it sends everything in the field to 0 with having the polynomial be
the zero polynomial.

The fundamental result is the division theorem for polynomials. It is Lemma 1.10.10 on
Page 27. We state it here for convenience.

Lemma 7.3.3 Let f (λ) and g (λ) ̸= 0 be polynomials. Then there exists a polynomial, q (λ)
such that

f (λ) = q (λ) g (λ) + r (λ)

where the degree of r (λ) is less than the degree of g (λ) or r (λ) = 0. These polynomials
q (λ) and r (λ) are unique.

In what follows, the coefficients of polynomials are in F, a field of scalars which is
completely arbitrary. Think R if you need an example.

Definition 7.3.4 A polynomial f is said to divide a polynomial g if g (λ) = f (λ) r (λ) for
some polynomial r (λ). Let {ϕi (λ)} be a finite set of polynomials. The greatest common
divisor will be the monic polynomial q (λ) such that q (λ) divides each ϕi (λ) and if p (λ)
divides each ϕi (λ) , then p (λ) divides q (λ) . The finite set of polynomials {ϕi} is said to be
relatively prime if their greatest common divisor is 1. A polynomial f (λ) is irreducible if
there is no polynomial with coefficients in F which divides it except nonzero scalar multiples
of f (λ) and constants. In other words, it is not possible to write f (λ) = a (λ) b (λ) where
each of a (λ) , b (λ) have degree less than the degree of f (λ).

Proposition 7.3.5 The greatest common divisor is unique.

Proof: Suppose both q (λ) and q′ (λ) work. Then q (λ) divides q′ (λ) and the other way
around and so

q′ (λ) = q (λ) l (λ) , q (λ) = l′ (λ) q′ (λ)

Therefore, the two must have the same degree. Hence l′ (λ) , l (λ) are both constants. How-
ever, this constant must be 1 because both q (λ) and q′ (λ) are monic. �

Theorem 7.3.6 Let ψ (λ) be the greatest common divisor of {ϕi (λ)} , not all of which are
zero polynomials. Then there exist polynomials ri (λ) such that

ψ (λ) =

p∑
i=1

ri (λ)ϕi (λ) .

Furthermore, ψ (λ) is the monic polynomial of smallest degree which can be written in the
above form.
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Theorem 7.3.6 Let ψ (λ) be the greatest common divisor of {ϕi (λ)} , not all of which are
zero polynomials. Then there exist polynomials ri (λ) such that
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Proof: Let S denote the set of monic polynomials which are of the form

p∑
i=1

ri (λ)ϕi (λ)

where ri (λ) is a polynomial. Then S ̸= ∅ because some ϕi (λ) ̸= 0. Then let the ri be chosen
such that the degree of the expression

∑p
i=1 ri (λ)ϕi (λ) is as small as possible. Letting ψ (λ)

equal this sum, it remains to verify it is the greatest common divisor. First, does it divide
each ϕi (λ)? Suppose it fails to divide ϕ1 (λ) . Then by Lemma 7.3.3

ϕ1 (λ) = ψ (λ) l (λ) + r (λ)

where degree of r (λ) is less than that of ψ (λ). Then dividing r (λ) by the leading coefficient
if necessary and denoting the result by ψ1 (λ) , it follows the degree of ψ1 (λ) is less than
the degree of ψ (λ) and ψ1 (λ) equals

ψ1 (λ) = (ϕ1 (λ)− ψ (λ) l (λ)) a

=

(
ϕ1 (λ)−

p∑
i=1

ri (λ)ϕi (λ) l (λ)

)
a

=

(
(1− r1 (λ))ϕ1 (λ) +

p∑
i=2

(−ri (λ) l (λ))ϕi (λ)

)
a

for a suitable a ∈ F. This is one of the polynomials in S. Therefore, ψ (λ) does not have
the smallest degree after all because the degree of ψ1 (λ) is smaller. This is a contradiction.
Therefore, ψ (λ) divides ϕ1 (λ) . Similarly it divides all the other ϕi (λ).

If p (λ) divides all the ϕi (λ) , then it divides ψ (λ) because of the formula for ψ (λ) which
equals

∑p
i=1 ri (λ)ϕi (λ) . �

Lemma 7.3.7 Suppose ϕ (λ) and ψ (λ) are monic polynomials which are irreducible and
not equal. Then they are relatively prime.

Proof: Suppose η (λ) is a nonconstant polynomial. If η (λ) divides ϕ (λ) , then since
ϕ (λ) is irreducible, η (λ) equals aϕ (λ) for some a ∈ F. If η (λ) divides ψ (λ) then it must
be of the form bψ (λ) for some b ∈ F and so it follows

ψ (λ) =
a

b
ϕ (λ)

but both ψ (λ) and ϕ (λ) are monic polynomials which implies a = b and so ψ (λ) = ϕ (λ).
This is assumed not to happen. It follows the only polynomials which divide both ψ (λ)
and ϕ (λ) are constants and so the two polynomials are relatively prime. Thus a polynomial
which divides them both must be a constant, and if it is monic, then it must be 1. Thus 1
is the greatest common divisor. �

Lemma 7.3.8 Let ψ (λ) be an irreducible monic polynomial not equal to 1 which divides

p∏
i=1

ϕi (λ)
ki , ki a positive integer,

where each ϕi (λ) is an irreducible monic polynomial not equal to 1. Then ψ (λ) equals some
ϕi (λ) .
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Proof : Say ψ (λ) l (λ) =
∏p

i=1 ϕi (λ)
ki . Suppose ψ (λ) ̸= ϕi (λ) for all i. Then by Lemma

7.3.7, there exist polynomials mi (λ) , ni (λ) such that

1 = ψ (λ)mi (λ) + ϕi (λ)ni (λ)

ϕi (λ)ni (λ) = 1− ψ (λ)mi (λ)

Hence,

ψ (λ)n (λ) ≡ ψ (λ) l (λ)

p∏
i=1

ni (λ)
ki =

p∏
i=1

(ni (λ)ϕi (λ))
ki

=

p∏
i=1

(1− ψ (λ)mi (λ))
ki = 1 + g (λ)ψ (λ)

for a polynomial g (λ). Thus
1 = ψ (λ) (n (λ)− g (λ))

which is impossible because ψ (λ) is not equal to 1. �
Now here is a simple lemma about canceling monic polynomials.

Lemma 7.3.9 Suppose p (λ) is a monic polynomial and q (λ) is a polynomial such that

p (λ) q (λ) = 0.

Then q (λ) = 0. Also if
p (λ) q1 (λ) = p (λ) q2 (λ)

then q1 (λ) = q2 (λ) .

Proof: Let

p (λ) =
k∑

j=1

pjλ
j , q (λ) =

n∑
i=1

qiλ
i, pk = 1.

Then the product equals
k∑

j=1

n∑
i=1

pjqiλ
i+j .

Then look at those terms involving λk+n. This is pkqnλ
k+n and is given to be 0. Since

pk = 1, it follows qn = 0. Thus
k∑

j=1

n−1∑
i=1

pjqiλ
i+j = 0.

Then consider the term involving λn−1+k and conclude that since pk = 1, it follows qn−1 = 0.
Continuing this way, each qi = 0. This proves the first part. The second follows from

p (λ) (q1 (λ)− q2 (λ)) = 0. �

The following is the analog of the fundamental theorem of arithmetic for polynomials.

Theorem 7.3.10 Let f (λ) be a nonconstant polynomial with coefficients in F. Then there
is some a ∈ F such that f (λ) = a

∏n
i=1 ϕi (λ) where ϕi (λ) is an irreducible nonconstant

monic polynomial and repeats are allowed. Furthermore, this factorization is unique in the
sense that any two of these factorizations have the same nonconstant factors in the product,
possibly in different order and the same constant a.
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Then consider the term involving λn−1+k and conclude that since pk = 1, it follows qn−1 = 0.
Continuing this way, each qi = 0. This proves the first part. The second follows from

p (λ) (q1 (λ)− q2 (λ)) = 0. �

The following is the analog of the fundamental theorem of arithmetic for polynomials.

Theorem 7.3.10 Let f (λ) be a nonconstant polynomial with coefficients in F. Then there
is some a ∈ F such that f (λ) = a

∏n
i=1 ϕi (λ) where ϕi (λ) is an irreducible nonconstant

monic polynomial and repeats are allowed. Furthermore, this factorization is unique in the
sense that any two of these factorizations have the same nonconstant factors in the product,
possibly in different order and the same constant a.
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Proof: That such a factorization exists is obvious. If f (λ) is irreducible, you are done.
Factor out the leading coefficient. If not, then f (λ) = aϕ1 (λ)ϕ2 (λ) where these are monic
polynomials. Continue doing this with the ϕi and eventually arrive at a factorization of the
desired form.

It remains to argue the factorization is unique except for order of the factors. Suppose

a

n∏
i=1

ϕi (λ) = b

m∏
i=1

ψi (λ)

where the ϕi (λ) and the ψi (λ) are all irreducible monic nonconstant polynomials and a, b ∈
F. If n > m, then by Lemma 7.3.8, each ψi (λ) equals one of the ϕj (λ) . By the above
cancellation lemma, Lemma 7.3.9, you can cancel all these ψi (λ) with appropriate ϕj (λ)
and obtain a contradiction because the resulting polynomials on either side would have
different degrees. Similarly, it cannot happen that n < m. It follows n = m and the two
products consist of the same polynomials. Then it follows a = b. �

The following corollary will be well used. This corollary seems rather believable but does
require a proof.

Corollary 7.3.11 Let q (λ) =
∏p

i=1 ϕi (λ)
ki where the ki are positive integers and the ϕi (λ)

are irreducible monic polynomials. Suppose also that p (λ) is a monic polynomial which
divides q (λ) . Then

p (λ) =

p∏
i=1

ϕi (λ)
ri

where ri is a nonnegative integer no larger than ki.

Proof: Using Theorem 7.3.10, let p (λ) = b
∏s

i=1 ψi (λ)
ri where the ψi (λ) are each

irreducible and monic and b ∈ F. Since p (λ) is monic, b = 1. Then there exists a polynomial
g (λ) such that

p (λ) g (λ) = g (λ)

s∏
i=1

ψi (λ)
ri =

p∏
i=1

ϕi (λ)
ki

Hence g (λ) must be monic. Therefore,

p (λ) g (λ) =

p(λ)� �� �
s∏

i=1

ψi (λ)
ri

l∏
j=1

ηj (λ) =

p∏
i=1

ϕi (λ)
ki

for ηj monic and irreducible. By uniqueness, each ψi equals one of the ϕj (λ) and the same
holding true of the ηi (λ). Therefore, p (λ) is of the desired form. �

7.3.2 Polynomials And Fields

When you have a polynomial like x2 − 3 which has no rational roots, it turns out you can
enlarge the field of rational numbers to obtain a larger field such that this polynomial does
have roots in this larger field. I am going to discuss a systematic way to do this. It will
turn out that for any polynomial with coefficients in any field, there always exists a possibly
larger field such that the polynomial has roots in this larger field. This book has mainly
featured the field of real or complex numbers but this procedure will show how to obtain
many other fields which could be used in most of what was presented earlier in the book.
Here is an important idea concerning equivalence relations which I hope is familiar.
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Definition 7.3.12 Let S be a set. The symbol, ∼ is called an equivalence relation on S if
it satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 7.3.13 [x] denotes the set of all elements of S which are equivalent to x and
[x] is called the equivalence class determined by x or just the equivalence class of x.

Also recall the notion of equivalence classes.

Theorem 7.3.14 Let ∼ be an equivalence class defined on a set, S and let H denote the
set of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either
x ∼ y and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.

Definition 7.3.15 Let F be a field, for example the rational numbers, and denote by F [x]
the polynomials having coefficients in F. Suppose p (x) is a polynomial. Let a (x) ∼ b (x)
(a (x) is similar to b (x)) when

a (x)− b (x) = k (x) p (x)

for some polynomial k (x) .

Proposition 7.3.16 In the above definition, ∼ is an equivalence relation.

Proof: First of all, note that a (x) ∼ a (x) because their difference equals 0p (x) . If
a (x) ∼ b (x) , then a (x) − b (x) = k (x) p (x) for some k (x) . But then b (x) − a (x) =
−k (x) p (x) and so b (x) ∼ a (x). Next suppose a (x) ∼ b (x) and b (x) ∼ c (x) . Then
a (x) − b (x) = k (x) p (x) for some polynomial k (x) and also b (x) − c (x) = l (x) p (x) for
some polynomial l (x) . Then

a (x)− c (x) = a (x)− b (x) + b (x)− c (x)

= k (x) p (x) + l (x) p (x) = (l (x) + k (x)) p (x)

and so a (x) ∼ c (x) and this shows the transitive law. �
With this proposition, here is another definition which essentially describes the elements

of the new field. It will eventually be necessary to assume the polynomial p (x) in the above
definition is irreducible so I will begin assuming this.

Definition 7.3.17 Let F be a field and let p (x) ∈ F [x] be a monic irreducible polynomial of
degree greater than 0. Thus there is no polynomial having coefficients in F which divides p (x)
except for itself and constants, and its leading coefficient is 1. For the similarity relation
defined in Definition 7.3.15, define the following operations on the equivalence classes. [a (x)]
is an equivalence class means that it is the set of all polynomials which are similar to a (x).

[a (x)] + [b (x)] ≡ [a (x) + b (x)]

[a (x)] [b (x)] ≡ [a (x) b (x)]

This collection of equivalence classes is sometimes denoted by F [x] / (p (x)).

Proposition 7.3.18 In the situation of Definition 7.3.17 where p (x) is a monic irreducible
polynomial, the following are valid.
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Proof: That such a factorization exists is obvious. If f (λ) is irreducible, you are done.
Factor out the leading coefficient. If not, then f (λ) = aϕ1 (λ)ϕ2 (λ) where these are monic
polynomials. Continue doing this with the ϕi and eventually arrive at a factorization of the
desired form.

It remains to argue the factorization is unique except for order of the factors. Suppose
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where the ϕi (λ) and the ψi (λ) are all irreducible monic nonconstant polynomials and a, b ∈
F. If n > m, then by Lemma 7.3.8, each ψi (λ) equals one of the ϕj (λ) . By the above
cancellation lemma, Lemma 7.3.9, you can cancel all these ψi (λ) with appropriate ϕj (λ)
and obtain a contradiction because the resulting polynomials on either side would have
different degrees. Similarly, it cannot happen that n < m. It follows n = m and the two
products consist of the same polynomials. Then it follows a = b. �

The following corollary will be well used. This corollary seems rather believable but does
require a proof.

Corollary 7.3.11 Let q (λ) =
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Proof: Using Theorem 7.3.10, let p (λ) = b
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ri where the ψi (λ) are each

irreducible and monic and b ∈ F. Since p (λ) is monic, b = 1. Then there exists a polynomial
g (λ) such that

p (λ) g (λ) = g (λ)

s∏
i=1

ψi (λ)
ri =

p∏
i=1

ϕi (λ)
ki

Hence g (λ) must be monic. Therefore,
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j=1

ηj (λ) =
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for ηj monic and irreducible. By uniqueness, each ψi equals one of the ϕj (λ) and the same
holding true of the ηi (λ). Therefore, p (λ) is of the desired form. �

7.3.2 Polynomials And Fields

When you have a polynomial like x2 − 3 which has no rational roots, it turns out you can
enlarge the field of rational numbers to obtain a larger field such that this polynomial does
have roots in this larger field. I am going to discuss a systematic way to do this. It will
turn out that for any polynomial with coefficients in any field, there always exists a possibly
larger field such that the polynomial has roots in this larger field. This book has mainly
featured the field of real or complex numbers but this procedure will show how to obtain
many other fields which could be used in most of what was presented earlier in the book.
Here is an important idea concerning equivalence relations which I hope is familiar.
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Definition 7.3.12 Let S be a set. The symbol, ∼ is called an equivalence relation on S if
it satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 7.3.13 [x] denotes the set of all elements of S which are equivalent to x and
[x] is called the equivalence class determined by x or just the equivalence class of x.

Also recall the notion of equivalence classes.

Theorem 7.3.14 Let ∼ be an equivalence class defined on a set, S and let H denote the
set of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either
x ∼ y and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.

Definition 7.3.15 Let F be a field, for example the rational numbers, and denote by F [x]
the polynomials having coefficients in F. Suppose p (x) is a polynomial. Let a (x) ∼ b (x)
(a (x) is similar to b (x)) when

a (x)− b (x) = k (x) p (x)

for some polynomial k (x) .

Proposition 7.3.16 In the above definition, ∼ is an equivalence relation.

Proof: First of all, note that a (x) ∼ a (x) because their difference equals 0p (x) . If
a (x) ∼ b (x) , then a (x) − b (x) = k (x) p (x) for some k (x) . But then b (x) − a (x) =
−k (x) p (x) and so b (x) ∼ a (x). Next suppose a (x) ∼ b (x) and b (x) ∼ c (x) . Then
a (x) − b (x) = k (x) p (x) for some polynomial k (x) and also b (x) − c (x) = l (x) p (x) for
some polynomial l (x) . Then

a (x)− c (x) = a (x)− b (x) + b (x)− c (x)

= k (x) p (x) + l (x) p (x) = (l (x) + k (x)) p (x)

and so a (x) ∼ c (x) and this shows the transitive law. �
With this proposition, here is another definition which essentially describes the elements

of the new field. It will eventually be necessary to assume the polynomial p (x) in the above
definition is irreducible so I will begin assuming this.

Definition 7.3.17 Let F be a field and let p (x) ∈ F [x] be a monic irreducible polynomial of
degree greater than 0. Thus there is no polynomial having coefficients in F which divides p (x)
except for itself and constants, and its leading coefficient is 1. For the similarity relation
defined in Definition 7.3.15, define the following operations on the equivalence classes. [a (x)]
is an equivalence class means that it is the set of all polynomials which are similar to a (x).

[a (x)] + [b (x)] ≡ [a (x) + b (x)]

[a (x)] [b (x)] ≡ [a (x) b (x)]

This collection of equivalence classes is sometimes denoted by F [x] / (p (x)).

Proposition 7.3.18 In the situation of Definition 7.3.17 where p (x) is a monic irreducible
polynomial, the following are valid.
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1. p (x) and q (x) are relatively prime for any q (x) ∈ F [x] which is not a multiple of
p (x).

2. The definitions of addition and multiplication are well defined.

3. If a, b ∈ F and [a] = [b] , then a = b. Thus F can be considered a subset of F [x] / (p (x)) .

4. F [x] / (p (x)) is a field in which the polynomial p (x) has a root.

5. F [x] / (p (x)) is a vector space with field of scalars F and its dimension is m where m
is the degree of the irreducible polynomial p (x).

Proof: First consider the claim about p (x) , q (x) being relatively prime. If ψ (x) is the
greatest common divisor, it follows ψ (x) is either equal to p (x) or 1. If it is p (x) , then
q (x) is a multiple of p (x) which does not happen. If it is 1, then by definition, the two
polynomials are relatively prime.

To show the operations are well defined, suppose

[a (x)] = [a′ (x)] , [b (x)] = [b′ (x)]

It is necessary to show
[a (x) + b (x)] = [a′ (x) + b′ (x)]

[a (x) b (x)] = [a′ (x) b′ (x)]

Consider the second of the two.

a′ (x) b′ (x)− a (x) b (x)

= a′ (x) b′ (x)− a (x) b′ (x) + a (x) b′ (x)− a (x) b (x)

= b′ (x) (a′ (x)− a (x)) + a (x) (b′ (x)− b (x))

Now by assumption (a′ (x)− a (x)) is a multiple of p (x) as is (b′ (x)− b (x)) , so the above
is a multiple of p (x) and by definition this shows [a (x) b (x)] = [a′ (x) b′ (x)]. The case for
addition is similar.

Now suppose [a] = [b] . This means a− b = k (x) p (x) for some polynomial k (x) . Then
k (x) must equal 0 since otherwise the two polynomials a − b and k (x) p (x) could not be
equal because they would have different degree.

It is clear that the axioms of a field are satisfied except for the one which says that non
zero elements of the field have a multiplicative inverse. Let [q (x)] ∈ F [x] / (p (x)) where
[q (x)] ̸= [0] . Then q (x) is not a multiple of p (x) and so by the first part, q (x) , p (x) are
relatively prime. Thus there exist n (x) ,m (x) such that

1 = n (x) q (x) +m (x) p (x)

Hence
[1] = [1− n (x) p (x)] = [n (x) q (x)] = [n (x)] [q (x)]

which shows that [q (x)]
−1

= [n (x)] . Thus this is a field. The polynomial has a root in this
field because if

p (x) = xm + am−1x
m−1 + · · ·+ a1x+ a0,

[0] = [p (x)] = [x]
m
+ [am−1] [x]

m−1
+ · · ·+ [a1] [x] + [a0]

Thus [x] is a root of this polynomial in the field F [x] / (p (x)).204 CHAPTER 7. VECTOR SPACES AND FIELDS

Consider the last claim. Let f (x) ∈ F [x] / (p (x)) . Thus [f (x)] is a typical thing in
F [x] / (p (x)). Then from the division algorithm,

f (x) = p (x) q (x) + r (x)

where r (x) is either 0 or has degree less than the degree of p (x) . Thus

[r (x)] = [f (x)− p (x) q (x)] = [f (x)]

but clearly [r (x)] ∈ span
(
[1] , · · · , [x]m−1

)
. Thus span

(
[1] , · · · , [x]m−1

)
= F [x] / (p (x)).

Then
{
[1] , · · · , [x]m−1

}
is a basis if these vectors are linearly independent. Suppose then

that
m−1∑
i=0

ci [x]
i
=

[
m−1∑
i=0

cix
i

]
= 0

Then you would need to have p (x) /
∑m−1

i=0 cix
i which is impossible unless each ci = 0

because p (x) has degree m. �
From the above theorem, it makes perfect sense to write b rather than [b] if b ∈ F. Then

with this convention,
[bϕ (x)] = [b] [ϕ (x)] = b [ϕ (x)] .

This shows how to enlarge a field to get a new one in which the polynomial has a root.
By using a succession of such enlargements, called field extensions, there will exist a field
in which the given polynomial can be factored into a product of polynomials having degree
one. The field you obtain in this process of enlarging in which the given polynomial factors
in terms of linear factors is called a splitting field.

Remark 7.3.19 The polynomials consisting of all polynomial multiples of p (x) , denoted
by (p (x)) is called an ideal. An ideal I is a subset of the commutative ring (Here the ring
is F [x] .) with unity consisting of all polynomials which is itself a ring and which has the
property that whenever f (x) ∈ F [x] , and g (x) ∈ I, f (x) g (x) ∈ I. In this case, you could
argue that (p (x)) is an ideal and that the only ideal containing it is itself or the entire ring
F [x]. This is called a maximal ideal.

Example 7.3.20 The polynomial x2 − 2 is irreducible in Q [x] . This is because if x2 − 2 =
p (x) q (x) where p (x) , q (x) both have degree less than 2, then they both have degree 1. Hence
you would have x2 − 2 = (x+ a) (x+ b) which requires that a + b = 0 so this factorization
is of the form (x− a) (x+ a) and now you need to have a =

√
2 /∈ Q. Now Q [x] /

(
x2 − 2

)
is of the form a + b [x] where a, b ∈ Q and [x]

2 − 2 = 0. Thus one can regard [x] as
√
2.

Q [x] /
(
x2 − 2

)
is of the form a+ b

√
2.

In the above example,
[
x2 + x

]
is not zero because it is not a multiple of x2 − 2. What

is
[
x2 + x

]−1
? You know that the two polynomials are relatively prime and so there exists

n (x) ,m (x) such that
1 = n (x)

(
x2 − 2

)
+m (x)

(
x2 + x

)

Thus [m (x)] =
[
x2 + x

]−1
. How could you find these polynomials? First of all, it suffices

to consider only n (x) and m (x) having degree less than 2.

1 = (ax+ b)
(
x2 − 2

)
+ (cx+ d)

(
x2 + x

)

1 = ax3 − 2b+ bx2 + cx2 + cx3 + dx2 − 2ax+ dx
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Consider the last claim. Let f (x) ∈ F [x] / (p (x)) . Thus [f (x)] is a typical thing in
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where r (x) is either 0 or has degree less than the degree of p (x) . Thus
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(
[1] , · · · , [x]m−1

)
. Thus span

(
[1] , · · · , [x]m−1

)
= F [x] / (p (x)).

Then
{
[1] , · · · , [x]m−1

}
is a basis if these vectors are linearly independent. Suppose then

that
m−1∑
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i
=

[
m−1∑
i=0

cix
i

]
= 0

Then you would need to have p (x) /
∑m−1

i=0 cix
i which is impossible unless each ci = 0

because p (x) has degree m. �
From the above theorem, it makes perfect sense to write b rather than [b] if b ∈ F. Then

with this convention,
[bϕ (x)] = [b] [ϕ (x)] = b [ϕ (x)] .

This shows how to enlarge a field to get a new one in which the polynomial has a root.
By using a succession of such enlargements, called field extensions, there will exist a field
in which the given polynomial can be factored into a product of polynomials having degree
one. The field you obtain in this process of enlarging in which the given polynomial factors
in terms of linear factors is called a splitting field.

Remark 7.3.19 The polynomials consisting of all polynomial multiples of p (x) , denoted
by (p (x)) is called an ideal. An ideal I is a subset of the commutative ring (Here the ring
is F [x] .) with unity consisting of all polynomials which is itself a ring and which has the
property that whenever f (x) ∈ F [x] , and g (x) ∈ I, f (x) g (x) ∈ I. In this case, you could
argue that (p (x)) is an ideal and that the only ideal containing it is itself or the entire ring
F [x]. This is called a maximal ideal.

Example 7.3.20 The polynomial x2 − 2 is irreducible in Q [x] . This is because if x2 − 2 =
p (x) q (x) where p (x) , q (x) both have degree less than 2, then they both have degree 1. Hence
you would have x2 − 2 = (x+ a) (x+ b) which requires that a + b = 0 so this factorization
is of the form (x− a) (x+ a) and now you need to have a =

√
2 /∈ Q. Now Q [x] /

(
x2 − 2

)
is of the form a + b [x] where a, b ∈ Q and [x]

2 − 2 = 0. Thus one can regard [x] as
√
2.

Q [x] /
(
x2 − 2

)
is of the form a+ b

√
2.

In the above example,
[
x2 + x

]
is not zero because it is not a multiple of x2 − 2. What

is
[
x2 + x

]−1
? You know that the two polynomials are relatively prime and so there exists

n (x) ,m (x) such that
1 = n (x)

(
x2 − 2

)
+m (x)

(
x2 + x

)

Thus [m (x)] =
[
x2 + x

]−1
. How could you find these polynomials? First of all, it suffices

to consider only n (x) and m (x) having degree less than 2.

1 = (ax+ b)
(
x2 − 2

)
+ (cx+ d)

(
x2 + x

)
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Now you solve the resulting system of equations.

a =
1

2
, b = −1

2
, c = −1

2
, d = 1

Then the desired inverse is
[
− 1

2x+ 1
]
. To check,

(
−1

2
x+ 1

)(
x2 + x

)
− 1 = −1

2
(x− 1)

(
x2 − 2

)

Thus
[
− 1

2x+ 1
] [
x2 + x

]
− [1] = [0].

The above is an example of something general described in the following definition.

Definition 7.3.21 Let F ⊆ K be two fields. Then clearly K is also a vector space over
F. Then also, K is called a finite field extension of F if the dimension of this vector space,
denoted by [K : F ] is finite.

There are some easy things to observe about this.

Proposition 7.3.22 Let F ⊆ K ⊆ L be fields. Then [L : F ] = [L : K] [K : F ].

Proof: Let {li}ni=1 be a basis for L over K and let {kj}mj=1 be a basis of K over F . Then
if l ∈ L, there exist unique scalars xi in K such that

l =

n∑
i=1

xili

Now xi ∈ K so there exist fji such that

xi =

m∑
j=1

fjikj

Then it follows that

l =
n∑

i=1

m∑
j=1

fjikj li

It follows that {kj li} is a spanning set. If

n∑
i=1

m∑
j=1

fjikj li = 0

Then, since the li are independent, it follows that

m∑
j=1

fjikj = 0

and since {kj} is independent, each fji = 0 for each j for a given arbitrary i. Therefore,
{kj li} is a basis. �

Note that if p (x) were not irreducible, then you could find a field extension G containing
a root of p (x) such that [G : F] ≤ n. You could do this by working with an irreducible factor
of p (x).
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− [1] = [0].

The above is an example of something general described in the following definition.

Definition 7.3.21 Let F ⊆ K be two fields. Then clearly K is also a vector space over
F. Then also, K is called a finite field extension of F if the dimension of this vector space,
denoted by [K : F ] is finite.

There are some easy things to observe about this.

Proposition 7.3.22 Let F ⊆ K ⊆ L be fields. Then [L : F ] = [L : K] [K : F ].

Proof: Let {li}ni=1 be a basis for L over K and let {kj}mj=1 be a basis of K over F . Then
if l ∈ L, there exist unique scalars xi in K such that

l =

n∑
i=1

xili

Now xi ∈ K so there exist fji such that

xi =

m∑
j=1

fjikj

Then it follows that

l =

n∑
i=1

m∑
j=1

fjikj li

It follows that {kj li} is a spanning set. If

n∑
i=1

m∑
j=1

fjikj li = 0

Then, since the li are independent, it follows that

m∑
j=1

fjikj = 0

and since {kj} is independent, each fji = 0 for each j for a given arbitrary i. Therefore,
{kj li} is a basis. �

Note that if p (x) were not irreducible, then you could find a field extension G containing
a root of p (x) such that [G : F] ≤ n. You could do this by working with an irreducible factor
of p (x).
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Theorem 7.3.23 Let p (x) = xn+an−1x
n−1+· · ·+a1x+a0 be a polynomial with coefficients

in a field of scalars F. There exists a larger field G and {z1, · · · , zn} contained in G, listed
according to multiplicity, such that

p (x) =

n∏
i=1

(x− zi)

This larger field is called a splitting field. Furthermore,

[G : F] ≤ n!

Proof: From Proposition 7.3.18, there exists a field F1 such that p (x) has a root, z1
(= [x] if p is irreducible.) Then by the Euclidean algorithm

p (x) = (x− z1) q1 (x) + r

where r ∈ F1. Since p (z1) = 0, this requires r = 0. Now do the same for q1 (x) that was
done for p (x) , enlarging the field to F2 if necessary, such that in this new field

q1 (x) = (x− z2) q2 (x) .

and so
p (x) = (x− z1) (x− z2) q2 (x)

After n such extensions, you will have obtained the necessary field G.
Finally consider the claim about dimension. By Proposition 7.3.18, there is a larger field

G1 such that p (x) has a root a1 in G1 and [G1 : F] ≤ n. Then

p (x) = (x− a1) q (x)

Continue this way until the polynomial equals the product of linear factors. Then by
Proposition 7.3.22 applied multiple times, [G : F] ≤ n!. �

Example 7.3.24 The polynomial x2 + 1 is irreducible in R [x] , polynomials having real
coefficients. To see this is the case, suppose ψ (x) divides x2 + 1. Then

x2 + 1 = ψ (x) q (x)

If the degree of ψ (x) is less than 2, then it must be either a constant or of the form ax+ b.
In the latter case, −b/a must be a zero of the right side, hence of the left but x2 + 1 has no
real zeros. Therefore, the degree of ψ (x) must be two and q (x) must be a constant. Thus
the only polynomial which divides x2 + 1 are constants and multiples of x2 + 1. Therefore,
this shows x2 +1 is irreducible. Find the inverse of

[
x2 + x+ 1

]
in the space of equivalence

classes, R/
(
x2 + 1

)
.

You can solve this with partial fractions.

1

(x2 + 1) (x2 + x+ 1)
= − x

x2 + 1
+

x+ 1

x2 + x+ 1

and so
1 = (−x)

(
x2 + x+ 1

)
+ (x+ 1)

(
x2 + 1

)

which implies
1 ∼ (−x)

(
x2 + x+ 1

)

and so the inverse is [−x] .
The following proposition is interesting. It was essentially proved above but to emphasize

it, here it is again.
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a =
1

2
, b = −1

2
, c = −1

2
, d = 1

Then the desired inverse is
[
− 1

2x+ 1
]
. To check,

(
−1

2
x+ 1

)(
x2 + x

)
− 1 = −1

2
(x− 1)

(
x2 − 2

)

Thus
[
− 1

2x+ 1
] [
x2 + x

]
− [1] = [0].

The above is an example of something general described in the following definition.

Definition 7.3.21 Let F ⊆ K be two fields. Then clearly K is also a vector space over
F. Then also, K is called a finite field extension of F if the dimension of this vector space,
denoted by [K : F ] is finite.

There are some easy things to observe about this.

Proposition 7.3.22 Let F ⊆ K ⊆ L be fields. Then [L : F ] = [L : K] [K : F ].

Proof: Let {li}ni=1 be a basis for L over K and let {kj}mj=1 be a basis of K over F . Then
if l ∈ L, there exist unique scalars xi in K such that

l =

n∑
i=1

xili

Now xi ∈ K so there exist fji such that

xi =

m∑
j=1

fjikj

Then it follows that

l =
n∑

i=1

m∑
j=1

fjikj li

It follows that {kj li} is a spanning set. If

n∑
i=1

m∑
j=1

fjikj li = 0

Then, since the li are independent, it follows that

m∑
j=1

fjikj = 0

and since {kj} is independent, each fji = 0 for each j for a given arbitrary i. Therefore,
{kj li} is a basis. �

Note that if p (x) were not irreducible, then you could find a field extension G containing
a root of p (x) such that [G : F] ≤ n. You could do this by working with an irreducible factor
of p (x).
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Proposition 7.3.25 Suppose p (x) ∈ F [x] is irreducible and has degree n. Then every
element of G = F [x] / (p (x)) is of the form [0] or [r (x)] where the degree of r (x) is less
than n.

Proof: This follows right away from the Euclidean algorithm for polynomials. If k (x)
has degree larger than n− 1, then

k (x) = q (x) p (x) + r (x)

where r (x) is either equal to 0 or has degree less than n. Hence

[k (x)] = [r (x)] . �

Example 7.3.26 In the situation of the above example, find [ax+ b]
−1

assuming a2+ b2 ̸=
0. Note this includes all cases of interest thanks to the above proposition.

You can do it with partial fractions as above.

1

(x2 + 1) (ax+ b)
=

b− ax

(a2 + b2) (x2 + 1)
+

a2

(a2 + b2) (ax+ b)

and so

1 =
1

a2 + b2
(b− ax) (ax+ b) +

a2

(a2 + b2)

(
x2 + 1

)

Thus
1

a2 + b2
(b− ax) (ax+ b) ∼ 1

and so

[ax+ b]
−1

=
[(b− ax)]

a2 + b2
=

b− a [x]

a2 + b2

You might find it interesting to recall that (ai+ b)
−1

= b−ai
a2+b2 .

7.3.3 The Algebraic Numbers

Each polynomial having coefficients in a field F has a splitting field. Consider the case of all
polynomials p (x) having coefficients in a field F ⊆ G and consider all roots which are also
in G. The theory of vector spaces is very useful in the study of these algebraic numbers.
Here is a definition.

Definition 7.3.27 The algebraic numbers A are those numbers which are in G and also
roots of some polynomial p (x) having coefficients in F. The minimal polynomial of a ∈ A
is defined to be the monic polynomial p (x) having smallest degree such that p (a) = 0.

The next theorem is on the uniqueness of the minimal polynomial.

Theorem 7.3.28 Let a ∈ A. Then there exists a unique monic irreducible polynomial p (x)
having coefficients in F such that p (a) = 0. This polynomial is the minimal polynomial.

Proof: Let p (x) be a monic polynomial having smallest degree such that p (a) = 0.
Then p (x) is irreducible because if not, there would exist a polynomial having smaller
degree which has a as a root. Now suppose q (x) is monic with smallest degree such that
q (a) = 0. Then

q (x) = p (x) l (x) + r (x)

where if r (x) ̸= 0, then it has smaller degree than p (x). But in this case, the equation
implies r (a) = 0 which contradicts the choice of p (x). Hence r (x) = 0 and so, since q (x)
has smallest degree, l (x) = 1 showing that p (x) = q (x). �
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Theorem 7.3.23 Let p (x) = xn+an−1x
n−1+· · ·+a1x+a0 be a polynomial with coefficients

in a field of scalars F. There exists a larger field G and {z1, · · · , zn} contained in G, listed
according to multiplicity, such that

p (x) =

n∏
i=1

(x− zi)

This larger field is called a splitting field. Furthermore,

[G : F] ≤ n!

Proof: From Proposition 7.3.18, there exists a field F1 such that p (x) has a root, z1
(= [x] if p is irreducible.) Then by the Euclidean algorithm

p (x) = (x− z1) q1 (x) + r

where r ∈ F1. Since p (z1) = 0, this requires r = 0. Now do the same for q1 (x) that was
done for p (x) , enlarging the field to F2 if necessary, such that in this new field

q1 (x) = (x− z2) q2 (x) .

and so
p (x) = (x− z1) (x− z2) q2 (x)

After n such extensions, you will have obtained the necessary field G.
Finally consider the claim about dimension. By Proposition 7.3.18, there is a larger field

G1 such that p (x) has a root a1 in G1 and [G1 : F] ≤ n. Then

p (x) = (x− a1) q (x)

Continue this way until the polynomial equals the product of linear factors. Then by
Proposition 7.3.22 applied multiple times, [G : F] ≤ n!. �

Example 7.3.24 The polynomial x2 + 1 is irreducible in R [x] , polynomials having real
coefficients. To see this is the case, suppose ψ (x) divides x2 + 1. Then

x2 + 1 = ψ (x) q (x)

If the degree of ψ (x) is less than 2, then it must be either a constant or of the form ax+ b.
In the latter case, −b/a must be a zero of the right side, hence of the left but x2 + 1 has no
real zeros. Therefore, the degree of ψ (x) must be two and q (x) must be a constant. Thus
the only polynomial which divides x2 + 1 are constants and multiples of x2 + 1. Therefore,
this shows x2 +1 is irreducible. Find the inverse of

[
x2 + x+ 1

]
in the space of equivalence

classes, R/
(
x2 + 1

)
.

You can solve this with partial fractions.

1

(x2 + 1) (x2 + x+ 1)
= − x

x2 + 1
+

x+ 1

x2 + x+ 1

and so
1 = (−x)

(
x2 + x+ 1

)
+ (x+ 1)

(
x2 + 1

)

which implies
1 ∼ (−x)

(
x2 + x+ 1

)

and so the inverse is [−x] .
The following proposition is interesting. It was essentially proved above but to emphasize

it, here it is again.
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Definition 7.3.29 For a an algebraic number, let deg (a) denote the degree of the minimal
polynomial of a.

Also, here is another definition.

Definition 7.3.30 Let a1, · · · , am be in A. A polynomial in {a1, · · · , am} will be an ex-
pression of the form ∑

k1···kn

ak1···kna
k1
1 · · · akn

n

where the ak1···kn
are in F, each kj is a nonnegative integer, and all but finitely many of the

ak1···kn
equal zero. The collection of such polynomials will be denoted by

F [a1, · · · , am] .

Now notice that for a an algebraic number, F [a] is a vector space with field of scalars F.
Similarly, for {a1, · · · , am} algebraic numbers, F [a1, · · · , am] is a vector space with field of
scalars F. The following fundamental proposition is important.

Proposition 7.3.31 Let {a1, · · · , am} be algebraic numbers. Then

dimF [a1, · · · , am] ≤
m∏
j=1

deg (aj)

and for an algebraic number a,
dimF [a] = deg (a)

Every element of F [a1, · · · , am] is in A and F [a1, · · · , am] is a field.

Proof: Let the minimal polynomial of a be

p (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

If q (a) ∈ F [a] , then
q (x) = p (x) l (x) + r (x)

where r (x) has degree less than the degree of p (x) if it is not zero. Hence q (a) = r (a).
Thus F [a] is spanned by {

1, a, a2, · · · , an−1
}

Since p (x) has smallest degree of all polynomials which have a as a root, the above set is
also linearly independent. This proves the second claim.

Now consider the first claim. By definition, F [a1, · · · , am] is obtained from all linear

combinations of products of
{
ak1
1 , ak2

2 , · · · , akn
n

}
where the ki are nonnegative integers. From

the first part, it suffices to consider only kj ≤ deg (aj). Therefore, there exists a spanning
set for F [a1, · · · , am] which has

m∏
i=1

deg (ai)

entries. By Theorem 7.2.4 this proves the first claim.
Finally consider the last claim. Let g (a1, · · · , am) be a polynomial in {a1, · · · , am} in

F [a1, · · · , am]. Since

dimF [a1, · · · , am] ≡ p ≤
m∏
j=1

deg (aj) < ∞,
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Definition 7.3.29 For a an algebraic number, let deg (a) denote the degree of the minimal
polynomial of a.

Also, here is another definition.

Definition 7.3.30 Let a1, · · · , am be in A. A polynomial in {a1, · · · , am} will be an ex-
pression of the form ∑

k1···kn

ak1···kna
k1
1 · · · akn

n

where the ak1···kn
are in F, each kj is a nonnegative integer, and all but finitely many of the

ak1···kn
equal zero. The collection of such polynomials will be denoted by

F [a1, · · · , am] .

Now notice that for a an algebraic number, F [a] is a vector space with field of scalars F.
Similarly, for {a1, · · · , am} algebraic numbers, F [a1, · · · , am] is a vector space with field of
scalars F. The following fundamental proposition is important.

Proposition 7.3.31 Let {a1, · · · , am} be algebraic numbers. Then

dimF [a1, · · · , am] ≤
m∏
j=1

deg (aj)

and for an algebraic number a,
dimF [a] = deg (a)

Every element of F [a1, · · · , am] is in A and F [a1, · · · , am] is a field.

Proof: Let the minimal polynomial of a be

p (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

If q (a) ∈ F [a] , then
q (x) = p (x) l (x) + r (x)

where r (x) has degree less than the degree of p (x) if it is not zero. Hence q (a) = r (a).
Thus F [a] is spanned by {

1, a, a2, · · · , an−1
}

Since p (x) has smallest degree of all polynomials which have a as a root, the above set is
also linearly independent. This proves the second claim.

Now consider the first claim. By definition, F [a1, · · · , am] is obtained from all linear

combinations of products of
{
ak1
1 , ak2

2 , · · · , akn
n

}
where the ki are nonnegative integers. From

the first part, it suffices to consider only kj ≤ deg (aj). Therefore, there exists a spanning
set for F [a1, · · · , am] which has

m∏
i=1

deg (ai)

entries. By Theorem 7.2.4 this proves the first claim.
Finally consider the last claim. Let g (a1, · · · , am) be a polynomial in {a1, · · · , am} in

F [a1, · · · , am]. Since

dimF [a1, · · · , am] ≡ p ≤
m∏
j=1

deg (aj) < ∞,
7.3. LOTS OF FIELDS 209

it follows
1, g (a1, · · · , am) , g (a1, · · · , am)

2
, · · · , g (a1, · · · , am)

p

are dependent. It follows g (a1, · · · , am) is the root of some polynomial having coefficients
in F. Thus everything in F [a1, · · · , am] is algebraic. Why is F [a1, · · · , am] a field? Let
g (a1, · · · , am) be as just mentioned. Then it has a minimal polynomial,

p (x) = xq + aq−1x
q−1 + · · ·+ a1x+ a0

where the ai ∈ F. Then a0 ̸= 0 or else the polynomial would not be minimal. Therefore,

g (a1, · · · , am)
(
g (a1, · · · , am)

q−1
+ aq−1g (a1, · · · , am)

q−2
+ · · ·+ a1

)
= −a0

and so the multiplicative inverse for g (a1, · · · , am) is

g (a1, · · · , am)
q−1

+ aq−1g (a1, · · · , am)
q−2

+ · · ·+ a1
−a0

∈ F [a1, · · · , am] .

The other axioms of a field are obvious. �
Now from this proposition, it is easy to obtain the following interesting result about the

algebraic numbers.

Theorem 7.3.32 The algebraic numbers A, those roots of polynomials in F [x] which are
in G, are a field.

Proof: By definition, each a ∈ A has a minimal polynomial. Let a ̸= 0 be an algebraic
number and let p (x) be its minimal polynomial. Then p (x) is of the form

xn + an−1x
n−1 + · · ·+ a1x+ a0

where a0 ̸= 0. Otherwise p(x) would not have minimal degree. Then plugging in a yields

a

(
an−1 + an−1a

n−2 + · · ·+ a1
)
(−1)

a0
= 1.

and so a−1 =
(an−1+an−1a

n−2+···+a1)(−1)

a0
∈ F [a]. By the proposition, every element of F [a]

is in A and this shows that for every nonzero element of A, its inverse is also in A. What
about products and sums of things in A? Are they still in A? Yes. If a, b ∈ A, then both
a+ b and ab ∈ F [a, b] and from the proposition, each element of F [a, b] is in A. �

A typical example of what is of interest here is when the field F of scalars is Q, the
rational numbers and the field G is R. However, you can certainly conceive of many other
examples by considering the integers mod a prime, for example (See Problem 34 on Page
214 for example.) or any of the fields which occur as field extensions in the above.

There is a very interesting thing about F [a1 · · · an] in the case where F is infinite which
says that there exists a single algebraic γ such that F [a1 · · · an] = F [γ]. In other words,
every field extension of this sort is a simple field extension. I found this fact in an early
version of [5].

Proposition 7.3.33 There exists γ such that F [a1 · · · an] = F [γ].

Proof: To begin with, consider F [α, β]. Let γ = α+ λβ. Then by Proposition 7.3.31 γ
is an algebraic number and it is also clear

F [γ] ⊆ F [α, β]
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says that there exists a single algebraic γ such that F [a1 · · · an] = F [γ]. In other words,
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Definition 7.3.29 For a an algebraic number, let deg (a) denote the degree of the minimal
polynomial of a.

Also, here is another definition.

Definition 7.3.30 Let a1, · · · , am be in A. A polynomial in {a1, · · · , am} will be an ex-
pression of the form ∑

k1···kn

ak1···kna
k1
1 · · · akn

n

where the ak1···kn
are in F, each kj is a nonnegative integer, and all but finitely many of the

ak1···kn
equal zero. The collection of such polynomials will be denoted by

F [a1, · · · , am] .

Now notice that for a an algebraic number, F [a] is a vector space with field of scalars F.
Similarly, for {a1, · · · , am} algebraic numbers, F [a1, · · · , am] is a vector space with field of
scalars F. The following fundamental proposition is important.

Proposition 7.3.31 Let {a1, · · · , am} be algebraic numbers. Then

dimF [a1, · · · , am] ≤
m∏
j=1

deg (aj)

and for an algebraic number a,
dimF [a] = deg (a)

Every element of F [a1, · · · , am] is in A and F [a1, · · · , am] is a field.

Proof: Let the minimal polynomial of a be

p (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

If q (a) ∈ F [a] , then
q (x) = p (x) l (x) + r (x)

where r (x) has degree less than the degree of p (x) if it is not zero. Hence q (a) = r (a).
Thus F [a] is spanned by {

1, a, a2, · · · , an−1
}

Since p (x) has smallest degree of all polynomials which have a as a root, the above set is
also linearly independent. This proves the second claim.

Now consider the first claim. By definition, F [a1, · · · , am] is obtained from all linear

combinations of products of
{
ak1
1 , ak2

2 , · · · , akn
n

}
where the ki are nonnegative integers. From

the first part, it suffices to consider only kj ≤ deg (aj). Therefore, there exists a spanning
set for F [a1, · · · , am] which has

m∏
i=1

deg (ai)

entries. By Theorem 7.2.4 this proves the first claim.
Finally consider the last claim. Let g (a1, · · · , am) be a polynomial in {a1, · · · , am} in

F [a1, · · · , am]. Since

dimF [a1, · · · , am] ≡ p ≤
m∏
j=1

deg (aj) < ∞,
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I need to show the other inclusion. This will be done for a suitable choice of λ. To do this,
it suffices to verify that both α and β are in F [γ].

Let the minimal polynomials of α and β be f (x) and g (x) respectively. Let the distinct
roots of f (x) and g (x) be {α1, α2, · · · , αn} and {β1, β2, · · · , βm} respectively. These roots
are in a field which contains splitting fields of both f (x) and g (x). Let α = α1 and β = β1.
Now define

h (x) ≡ f (α+ λβ − λx) ≡ f (γ − λx)

so that h (β) = f (α) = 0. It follows (x− β) divides both h (x) and g (x). If (x− η) is a
different linear factor of both g (x) and h (x) then it must be

(
x− βj

)
for some βj for some

j > 1 because these are the only factors of g (x) . Therefore, this would require

0 = h
(
βj

)
= f

(
α1 + λβ1 − λβj

)

and so it would be the case that α1 + λβ1 − λβj = αk for some k. Hence

λ =
αk − α1

β1 − βj

Now there are finitely many quotients of the above form and if λ is chosen to not be any of
them, then the above cannot happen and so in this case, the only linear factor of both g (x)
and h (x) will be (x− β). Choose such a λ.

Let ϕ (x) be the minimal polynomial of β with respect to the field F [γ]. Then this
minimal polynomial must divide both h (x) and g (x) because h (β) = g (β) = 0. However,
the only factor these two have in common is x − β and so ϕ (x) = x − β which requires
β ∈ F [γ] . Now also α = γ − λβ and so α ∈ F [γ] also. Therefore, both α, β ∈ F [γ] which
forces F [α, β] ⊆ F [γ] . This proves the proposition in the case that n = 2. The general result
follows right away by observing that

F [a1 · · · an] = F [a1 · · · an−1] [an]

and using induction. �
When you have a field F, F (a) denotes the smallest field which contains both F and a.

When a is algebraic over F, it follows that F (a) = F [a] . The latter is easier to think about
because it just involves polynomials.

7.3.4 The Lindemannn Weierstrass Theorem And Vector Spaces

As another application of the abstract concept of vector spaces, there is an amazing theorem
due to Weierstrass and Lindemannn.

Theorem 7.3.34 Suppose a1, · · · , an are algebraic numbers, roots of a polynomial with
rational coefficients, and suppose α1, · · · , αn are distinct algebraic numbers. Then

n∑
i=1

aie
αi ̸= 0

In other words, the {eα1 , · · · , eαn} are independent as vectors with field of scalars equal to
the algebraic numbers.

There is a proof of this in the appendix. It is long and hard but only depends on
elementary considerations other than some algebra involving symmetric polynomials. See
Theorem F.3.5.
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it follows
1, g (a1, · · · , am) , g (a1, · · · , am)

2
, · · · , g (a1, · · · , am)

p

are dependent. It follows g (a1, · · · , am) is the root of some polynomial having coefficients
in F. Thus everything in F [a1, · · · , am] is algebraic. Why is F [a1, · · · , am] a field? Let
g (a1, · · · , am) be as just mentioned. Then it has a minimal polynomial,

p (x) = xq + aq−1x
q−1 + · · ·+ a1x+ a0

where the ai ∈ F. Then a0 ̸= 0 or else the polynomial would not be minimal. Therefore,

g (a1, · · · , am)
(
g (a1, · · · , am)

q−1
+ aq−1g (a1, · · · , am)

q−2
+ · · ·+ a1

)
= −a0

and so the multiplicative inverse for g (a1, · · · , am) is

g (a1, · · · , am)
q−1

+ aq−1g (a1, · · · , am)
q−2

+ · · ·+ a1
−a0

∈ F [a1, · · · , am] .

The other axioms of a field are obvious. �
Now from this proposition, it is easy to obtain the following interesting result about the

algebraic numbers.

Theorem 7.3.32 The algebraic numbers A, those roots of polynomials in F [x] which are
in G, are a field.

Proof: By definition, each a ∈ A has a minimal polynomial. Let a ̸= 0 be an algebraic
number and let p (x) be its minimal polynomial. Then p (x) is of the form

xn + an−1x
n−1 + · · ·+ a1x+ a0

where a0 ̸= 0. Otherwise p(x) would not have minimal degree. Then plugging in a yields

a

(
an−1 + an−1a

n−2 + · · ·+ a1
)
(−1)

a0
= 1.

and so a−1 =
(an−1+an−1a

n−2+···+a1)(−1)

a0
∈ F [a]. By the proposition, every element of F [a]

is in A and this shows that for every nonzero element of A, its inverse is also in A. What
about products and sums of things in A? Are they still in A? Yes. If a, b ∈ A, then both
a+ b and ab ∈ F [a, b] and from the proposition, each element of F [a, b] is in A. �

A typical example of what is of interest here is when the field F of scalars is Q, the
rational numbers and the field G is R. However, you can certainly conceive of many other
examples by considering the integers mod a prime, for example (See Problem 34 on Page
214 for example.) or any of the fields which occur as field extensions in the above.

There is a very interesting thing about F [a1 · · · an] in the case where F is infinite which
says that there exists a single algebraic γ such that F [a1 · · · an] = F [γ]. In other words,
every field extension of this sort is a simple field extension. I found this fact in an early
version of [5].

Proposition 7.3.33 There exists γ such that F [a1 · · · an] = F [γ].

Proof: To begin with, consider F [α, β]. Let γ = α+ λβ. Then by Proposition 7.3.31 γ
is an algebraic number and it is also clear

F [γ] ⊆ F [α, β]
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A number is transcendental, as opposed to algebraic, if it is not a root of a polynomial
which has integer (rational) coefficients. Most numbers are this way but it is hard to verify
that specific numbers are transcendental. That π is transcendental follows from

e0 + eiπ = 0.

By the above theorem, this could not happen if π were algebraic because then iπ would also
be algebraic. Recall these algebraic numbers form a field and i is clearly algebraic, being
a root of x2 + 1. This fact about π was first proved by Lindemannn in 1882 and then the
general theorem above was proved by Weierstrass in 1885. This fact that π is transcendental
solved an old problem called squaring the circle which was to construct a square with the
same area as a circle using a straight edge and compass. It can be shown that the fact π is
transcendental implies this problem is impossible.1

7.4 Exercises

1. Let H denote span







1

2

0


 ,




1

4

0


 ,




1

3

1


 ,




0

1

1





 . Find the dimension of H

and determine a basis.

2. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 = u1 = 0

}
. Is M a subspace? Explain.

3. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u1

}
. Is M a subspace? Explain.

4. Let w ∈ R4 and let M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0

}
. Is M a subspace?

Explain.

5. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : ui ≥ 0 for each i = 1, 2, 3, 4

}
. Is M a subspace?

Explain.

6. Let w,w1 be given vectors in R4 and define

M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0 and w1 · u = 0

}
.

Is M a subspace? Explain.

7. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

8. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Explain.

9. Suppose {x1, · · · ,xk} is a set of vectors from Fn. Show that 0 is in span (x1, · · · ,xk) .

10. Consider the vectors of the form






2t+ 3s

s− t

t+ s


 : s, t ∈ R




.

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace
and find its dimension.

1Gilbert, the librettist of the Savoy operas, may have heard about this great achievement. In Princess
Ida which opened in 1884 he has the following lines. “As for fashion they forswear it, so the say - so they
say; and the circle - they will square it some fine day some fine day.” Of course it had been proved impossible
to do this a couple of years before.
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I need to show the other inclusion. This will be done for a suitable choice of λ. To do this,
it suffices to verify that both α and β are in F [γ].

Let the minimal polynomials of α and β be f (x) and g (x) respectively. Let the distinct
roots of f (x) and g (x) be {α1, α2, · · · , αn} and {β1, β2, · · · , βm} respectively. These roots
are in a field which contains splitting fields of both f (x) and g (x). Let α = α1 and β = β1.
Now define

h (x) ≡ f (α+ λβ − λx) ≡ f (γ − λx)

so that h (β) = f (α) = 0. It follows (x− β) divides both h (x) and g (x). If (x− η) is a
different linear factor of both g (x) and h (x) then it must be

(
x− βj

)
for some βj for some

j > 1 because these are the only factors of g (x) . Therefore, this would require

0 = h
(
βj

)
= f

(
α1 + λβ1 − λβj

)

and so it would be the case that α1 + λβ1 − λβj = αk for some k. Hence

λ =
αk − α1

β1 − βj

Now there are finitely many quotients of the above form and if λ is chosen to not be any of
them, then the above cannot happen and so in this case, the only linear factor of both g (x)
and h (x) will be (x− β). Choose such a λ.

Let ϕ (x) be the minimal polynomial of β with respect to the field F [γ]. Then this
minimal polynomial must divide both h (x) and g (x) because h (β) = g (β) = 0. However,
the only factor these two have in common is x − β and so ϕ (x) = x − β which requires
β ∈ F [γ] . Now also α = γ − λβ and so α ∈ F [γ] also. Therefore, both α, β ∈ F [γ] which
forces F [α, β] ⊆ F [γ] . This proves the proposition in the case that n = 2. The general result
follows right away by observing that

F [a1 · · · an] = F [a1 · · · an−1] [an]

and using induction. �
When you have a field F, F (a) denotes the smallest field which contains both F and a.

When a is algebraic over F, it follows that F (a) = F [a] . The latter is easier to think about
because it just involves polynomials.

7.3.4 The Lindemannn Weierstrass Theorem And Vector Spaces

As another application of the abstract concept of vector spaces, there is an amazing theorem
due to Weierstrass and Lindemannn.

Theorem 7.3.34 Suppose a1, · · · , an are algebraic numbers, roots of a polynomial with
rational coefficients, and suppose α1, · · · , αn are distinct algebraic numbers. Then

n∑
i=1

aie
αi ̸= 0

In other words, the {eα1 , · · · , eαn} are independent as vectors with field of scalars equal to
the algebraic numbers.

There is a proof of this in the appendix. It is long and hard but only depends on
elementary considerations other than some algebra involving symmetric polynomials. See
Theorem F.3.5.
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11. Consider the vectors of the form







2t+ 3s+ u

s− t

t+ s

u


 : s, t, u ∈ R




.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

12. Consider the vectors of the form







2t+ u+ 1

t+ 3u

t+ s+ v

u


 : s, t, u, v ∈ R




.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

13. Let V denote the set of functions defined on [0, 1]. Vector addition is defined as
(f + g) (x) ≡ f (x) + g (x) and scalar multiplication is defined as (αf) (x) ≡ α (f (x)).
Verify V is a vector space. What is its dimension, finite or infinite? Justify your
answer.

14. Let V denote the set of polynomial functions defined on [0, 1]. Vector addition is
defined as (f + g) (x) ≡ f (x)+g (x) and scalar multiplication is defined as (αf) (x) ≡
α (f (x)). Verify V is a vector space. What is its dimension, finite or infinite? Justify
your answer.

15. Let V be the set of polynomials defined on R having degree no more than 4. Give a
basis for this vector space.

16. Let the vectors be of the form a + b
√
2 where a, b are rational numbers and let the

field of scalars be F = Q, the rational numbers. Show directly this is a vector space.
What is its dimension? What is a basis for this vector space?

17. Let V be a vector space with field of scalars F and suppose {v1, · · · ,vn} is a basis for
V . Now let W also be a vector space with field of scalars F. Let L : {v1, · · · ,vn} →
W be a function such that Lvj = wj . Explain how L can be extended to a linear
transformation mapping V to W in a unique way.

18. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be
concluded they span F5? Explain.

19. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.

20. Suppose V,W are subspaces of Fn. Show V ∩W defined to be all vectors which are in
both V and W is a subspace also.

21. Suppose V and W both have dimension equal to 7 and they are subspaces of a vector
space of dimension 10. What are the possibilities for the dimension of V ∩W? Hint:
Remember that a linear independent set can be extended to form a basis.
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be algebraic. Recall these algebraic numbers form a field and i is clearly algebraic, being
a root of x2 + 1. This fact about π was first proved by Lindemannn in 1882 and then the
general theorem above was proved by Weierstrass in 1885. This fact that π is transcendental
solved an old problem called squaring the circle which was to construct a square with the
same area as a circle using a straight edge and compass. It can be shown that the fact π is
transcendental implies this problem is impossible.1

7.4 Exercises

1. Let H denote span
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1

4

0
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1

3

1


 ,




0

1

1





 . Find the dimension of H

and determine a basis.

2. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 = u1 = 0

}
. Is M a subspace? Explain.

3. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u1

}
. Is M a subspace? Explain.

4. Let w ∈ R4 and let M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0

}
. Is M a subspace?

Explain.

5. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : ui ≥ 0 for each i = 1, 2, 3, 4

}
. Is M a subspace?

Explain.

6. Let w,w1 be given vectors in R4 and define

M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0 and w1 · u = 0

}
.

Is M a subspace? Explain.

7. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

8. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Explain.

9. Suppose {x1, · · · ,xk} is a set of vectors from Fn. Show that 0 is in span (x1, · · · ,xk) .

10. Consider the vectors of the form






2t+ 3s

s− t

t+ s


 : s, t ∈ R




.

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace
and find its dimension.

1Gilbert, the librettist of the Savoy operas, may have heard about this great achievement. In Princess
Ida which opened in 1884 he has the following lines. “As for fashion they forswear it, so the say - so they
say; and the circle - they will square it some fine day some fine day.” Of course it had been proved impossible
to do this a couple of years before.
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11. Consider the vectors of the form







2t+ 3s+ u

s− t

t+ s

u


 : s, t, u ∈ R




.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

12. Consider the vectors of the form








2t+ u+ 1

t+ 3u

t+ s+ v

u


 : s, t, u, v ∈ R




.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

13. Let V denote the set of functions defined on [0, 1]. Vector addition is defined as
(f + g) (x) ≡ f (x) + g (x) and scalar multiplication is defined as (αf) (x) ≡ α (f (x)).
Verify V is a vector space. What is its dimension, finite or infinite? Justify your
answer.

14. Let V denote the set of polynomial functions defined on [0, 1]. Vector addition is
defined as (f + g) (x) ≡ f (x)+g (x) and scalar multiplication is defined as (αf) (x) ≡
α (f (x)). Verify V is a vector space. What is its dimension, finite or infinite? Justify
your answer.

15. Let V be the set of polynomials defined on R having degree no more than 4. Give a
basis for this vector space.

16. Let the vectors be of the form a + b
√
2 where a, b are rational numbers and let the

field of scalars be F = Q, the rational numbers. Show directly this is a vector space.
What is its dimension? What is a basis for this vector space?

17. Let V be a vector space with field of scalars F and suppose {v1, · · · ,vn} is a basis for
V . Now let W also be a vector space with field of scalars F. Let L : {v1, · · · ,vn} →
W be a function such that Lvj = wj . Explain how L can be extended to a linear
transformation mapping V to W in a unique way.

18. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be
concluded they span F5? Explain.

19. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.

20. Suppose V,W are subspaces of Fn. Show V ∩W defined to be all vectors which are in
both V and W is a subspace also.

21. Suppose V and W both have dimension equal to 7 and they are subspaces of a vector
space of dimension 10. What are the possibilities for the dimension of V ∩W? Hint:
Remember that a linear independent set can be extended to form a basis.
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22. Suppose V has dimension p and W has dimension q and they are each contained in
a subspace, U which has dimension equal to n where n > max (p, q) . What are the
possibilities for the dimension of V ∩W? Hint: Remember that a linear independent
set can be extended to form a basis.

23. If b ̸= 0, can the solution set of Ax = b be a plane through the origin? Explain.

24. Suppose a system of equations has fewer equations than variables and you have found
a solution to this system of equations. Is it possible that your solution is the only one?
Explain.

25. Suppose a system of linear equations has a 2×4 augmented matrix and the last column
is a pivot column. Could the system of linear equations be consistent? Explain.

26. Suppose the coefficient matrix of a system of n equations with n variables has the
property that every column is a pivot column. Does it follow that the system of
equations must have a solution? If so, must the solution be unique? Explain.

27. Suppose there is a unique solution to a system of linear equations. What must be true
of the pivot columns in the augmented matrix.

28. State whether each of the following sets of data are possible for the matrix equation
Ax = b. If possible, describe the solution set. That is, tell whether there exists a
unique solution no solution or infinitely many solutions.

(a) A is a 5 × 6 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of four of the columns. Thus the columns are not independent.

(b) A is a 3× 4 matrix, rank (A) = 3 and rank (A|b) = 2.

(c) A is a 4 × 2 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of the columns and the columns must be independent.

(d) A is a 5 × 5 matrix, rank (A) = 4 and rank (A|b) = 5. Hint: This says b is not
in the span of the columns.

(e) A is a 4× 2 matrix, rank (A) = 2 and rank (A|b) = 2.

29. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns
in the row reduced echelon form for A.

30. Suppose A is an m×n matrix in which m ≥ n. Suppose also that the rank of A equals
n. Show that A is one to one. Hint: If not, there exists a vector, x such that Ax = 0,
and this implies at least one column of A is a linear combination of the others. Show
this would require the column rank to be less than n.

31. Explain why an n× n matrix A is both one to one and onto if and only if its rank is
n.

32. If you have not done this already, here it is again. It is a very important result.
Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .
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Explain.

25. Suppose a system of linear equations has a 2×4 augmented matrix and the last column
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property that every column is a pivot column. Does it follow that the system of
equations must have a solution? If so, must the solution be unique? Explain.

27. Suppose there is a unique solution to a system of linear equations. What must be true
of the pivot columns in the augmented matrix.

28. State whether each of the following sets of data are possible for the matrix equation
Ax = b. If possible, describe the solution set. That is, tell whether there exists a
unique solution no solution or infinitely many solutions.

(a) A is a 5 × 6 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of four of the columns. Thus the columns are not independent.

(b) A is a 3× 4 matrix, rank (A) = 3 and rank (A|b) = 2.

(c) A is a 4 × 2 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of the columns and the columns must be independent.

(d) A is a 5 × 5 matrix, rank (A) = 4 and rank (A|b) = 5. Hint: This says b is not
in the span of the columns.

(e) A is a 4× 2 matrix, rank (A) = 2 and rank (A|b) = 2.

29. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns
in the row reduced echelon form for A.

30. Suppose A is an m×n matrix in which m ≥ n. Suppose also that the rank of A equals
n. Show that A is one to one. Hint: If not, there exists a vector, x such that Ax = 0,
and this implies at least one column of A is a linear combination of the others. Show
this would require the column rank to be less than n.

31. Explain why an n× n matrix A is both one to one and onto if and only if its rank is
n.

32. If you have not done this already, here it is again. It is a very important result.
Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .
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Here is how you do this. Suppose ABx = 0. Then Bx ∈ ker (A) ∩ B (Fp) and so

Bx =
∑k

i=1 Bzi showing that

x−
k∑

i=1

zi ∈ ker (B) .

33. Recall that every positive integer can be factored into a product of primes in a unique
way. Show there must be infinitely many primes. Hint: Show that if you have any
finite set of primes and you multiply them and then add 1, the result cannot be
divisible by any of the primes in your finite set. This idea in the hint is due to Euclid
who lived about 300 B.C.

34. There are lots of fields. This will give an example of a finite field. Let Z denote the set
of integers. Thus Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }. Also let p be a prime number.
We will say that two integers, a, b are equivalent and write a ∼ b if a − b is divisible
by p. Thus they are equivalent if a − b = px for some integer x. First show that
a ∼ a. Next show that if a ∼ b then b ∼ a. Finally show that if a ∼ b and b ∼ c
then a ∼ c. For a an integer, denote by [a] the set of all integers which is equivalent
to a, the equivalence class of a. Show first that is suffices to consider only [a] for
a = 0, 1, 2, · · · , p− 1 and that for 0 ≤ a < b ≤ p− 1, [a] ̸= [b]. That is, [a] = [r] where
r ∈ {0, 1, 2, · · · , p− 1}. Thus there are exactly p of these equivalence classes. Hint:
Recall the Euclidean algorithm. For a > 0, a = mp+ r where r < p. Next define the
following operations.

[a] + [b] ≡ [a+ b]

[a] [b] ≡ [ab]

Show these operations are well defined. That is, if [a] = [a′] and [b] = [b′] , then
[a] + [b] = [a′] + [b′] with a similar conclusion holding for multiplication. Thus for
addition you need to verify [a+ b] = [a′ + b′] and for multiplication you need to verify
[ab] = [a′b′]. For example, if p = 5 you have [3] = [8] and [2] = [7] . Is [2× 3] = [8× 7]?
Is [2 + 3] = [8 + 7]? Clearly so in this example because when you subtract, the result
is divisible by 5. So why is this so in general? Now verify that {[0] , [1] , · · · , [p− 1]}
with these operations is a Field. This is called the integers modulo a prime and is
written Zp. Since there are infinitely many primes p, it follows there are infinitely
many of these finite fields. Hint: Most of the axioms are easy once you have shown
the operations are well defined. The only two which are tricky are the ones which
give the existence of the additive inverse and the multiplicative inverse. Of these, the
first is not hard. − [x] = [−x]. Since p is prime, there exist integers x, y such that
1 = px+ky and so 1−ky = px which says 1 ∼ ky and so [1] = [ky] . Now you finish the
argument. What is the multiplicative identity in this collection of equivalence classes?
Of course you could now consider field extensions based on these fields.

35. Suppose the field of scalars is Z2 described above. Show that

(
0 1

0 0

)(
0 0

1 0

)
−

(
0 0

1 0

)(
0 1

0 0

)
=

(
1 0

0 1

)

Thus the identity is a comutator. Compare this with Problem 50 on Page 187.

36. Suppose V is a vector space with field of scalars F. Let T ∈ L (V,W ) , the space of
linear transformations mapping V onto W where W is another vector space. Define
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Here is how you do this. Suppose ABx = 0. Then Bx ∈ ker (A) ∩ B (Fp) and so

Bx =
∑k

i=1 Bzi showing that

x−
k∑

i=1

zi ∈ ker (B) .

33. Recall that every positive integer can be factored into a product of primes in a unique
way. Show there must be infinitely many primes. Hint: Show that if you have any
finite set of primes and you multiply them and then add 1, the result cannot be
divisible by any of the primes in your finite set. This idea in the hint is due to Euclid
who lived about 300 B.C.

34. There are lots of fields. This will give an example of a finite field. Let Z denote the set
of integers. Thus Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }. Also let p be a prime number.
We will say that two integers, a, b are equivalent and write a ∼ b if a − b is divisible
by p. Thus they are equivalent if a − b = px for some integer x. First show that
a ∼ a. Next show that if a ∼ b then b ∼ a. Finally show that if a ∼ b and b ∼ c
then a ∼ c. For a an integer, denote by [a] the set of all integers which is equivalent
to a, the equivalence class of a. Show first that is suffices to consider only [a] for
a = 0, 1, 2, · · · , p− 1 and that for 0 ≤ a < b ≤ p− 1, [a] ̸= [b]. That is, [a] = [r] where
r ∈ {0, 1, 2, · · · , p− 1}. Thus there are exactly p of these equivalence classes. Hint:
Recall the Euclidean algorithm. For a > 0, a = mp+ r where r < p. Next define the
following operations.

[a] + [b] ≡ [a+ b]

[a] [b] ≡ [ab]

Show these operations are well defined. That is, if [a] = [a′] and [b] = [b′] , then
[a] + [b] = [a′] + [b′] with a similar conclusion holding for multiplication. Thus for
addition you need to verify [a+ b] = [a′ + b′] and for multiplication you need to verify
[ab] = [a′b′]. For example, if p = 5 you have [3] = [8] and [2] = [7] . Is [2× 3] = [8× 7]?
Is [2 + 3] = [8 + 7]? Clearly so in this example because when you subtract, the result
is divisible by 5. So why is this so in general? Now verify that {[0] , [1] , · · · , [p− 1]}
with these operations is a Field. This is called the integers modulo a prime and is
written Zp. Since there are infinitely many primes p, it follows there are infinitely
many of these finite fields. Hint: Most of the axioms are easy once you have shown
the operations are well defined. The only two which are tricky are the ones which
give the existence of the additive inverse and the multiplicative inverse. Of these, the
first is not hard. − [x] = [−x]. Since p is prime, there exist integers x, y such that
1 = px+ky and so 1−ky = px which says 1 ∼ ky and so [1] = [ky] . Now you finish the
argument. What is the multiplicative identity in this collection of equivalence classes?
Of course you could now consider field extensions based on these fields.

35. Suppose the field of scalars is Z2 described above. Show that

(
0 1

0 0

)(
0 0

1 0

)
−

(
0 0

1 0

)(
0 1

0 0

)
=

(
1 0

0 1

)

Thus the identity is a comutator. Compare this with Problem 50 on Page 187.

36. Suppose V is a vector space with field of scalars F. Let T ∈ L (V,W ) , the space of
linear transformations mapping V onto W where W is another vector space. Define
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an equivalence relation on V as follows. v ∼ w means v −w ∈ ker (T ) . Recall that
ker (T ) ≡ {v : Tv = 0}. Show this is an equivalence relation. Now for [v] an equiv-
alence class define T ′ [v] ≡ Tv. Show this is well defined. Also show that with the
operations

[v] + [w] ≡ [v +w]

α [v] ≡ [αv]

this set of equivalence classes, denoted by V/ ker (T ) is a vector space. Show next that
T ′ : V/ ker (T ) → W is one to one, linear, and onto. This new vector space, V/ ker (T )
is called a quotient space. Show its dimension equals the difference between the
dimension of V and the dimension of ker (T ).

37. Let V be an n dimensional vector space and let W be a subspace. Generalize the
above problem to define and give properties of V/W . What is its dimension? What
is a basis?

38. If F and G are two fields and F ⊆ G, can you consider G as a vector space with field
of scalars F? Explain.

39. Let A denote the real roots of polynomials in Q [x] . Show A can be considered a
vector space with field of scalars Q. What is the dimension of this vector space, finite
or infinite?

40. As mentioned, for distinct algebraic numbers αi, the complex numbers {eαi}ni=1 are
linearly independent over the field of scalars A where A denotes the algebraic numbers,
those which are roots of a polynomial having integer (rational) coefficients. What is
the dimension of the vector space C with field of scalars A, finite or infinite? If the
field of scalars were C instead of A, would this change? What if the field of scalars
were R?

41. Suppose F is a countable field and let A be the algebraic numbers, those numbers in
G which are roots of a polynomial in F [x]. Show A is also countable.

42. This problem is on partial fractions. Suppose you have

R (x) =
p (x)

q1 (x) · · · qm (x)
, degree of p (x) < degree of denominator.

where the polynomials qi (x) are relatively prime and all the polynomials p (x) and
qi (x) have coefficients in a field of scalars F. Thus there exist polynomials ai (x)
having coefficients in F such that

1 =

m∑
i=1

ai (x) qi (x)

Explain why

R (x) =
p (x)

∑m
i=1 ai (x) qi (x)

q1 (x) · · · qm (x)
=

m∑
i=1

ai (x) p (x)∏
j ̸=i qj (x)

Now continue doing this on each term in the above sum till finally you obtain an
expression of the form

m∑
i=1

bi (x)

qi (x)
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having coefficients in F such that
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Using the Euclidean algorithm for polynomials, explain why the above is of the form

M (x) +

m∑
i=1

ri (x)

qi (x)

where the degree of each ri (x) is less than the degree of qi (x) and M (x) is a poly-
nomial. Now argue that M (x) = 0. From this explain why the usual partial fractions
expansion of calculus must be true. You can use the fact that every polynomial having
real coefficients factors into a product of irreducible quadratic polynomials and linear
polynomials having real coefficients. This follows from the fundamental theorem of
algebra in the appendix.

43. Suppose {f1, · · · , fn} is an independent set of smooth functions defined on some inter-
val (a, b). Now let A be an invertible n×n matrix. Define new functions {g1, · · · , gn}
as follows. 


g1
...

gn


 = A




f1
...

fn




Is it the case that {g1, · · · , gn} is also independent? Explain why.

44. A number is transcendental if it is not the root of any nonzero polynomial with rational
coefficients. As mentioned, there are many known transcendental numbers. Suppose
α is a real transcendental number. Show that

{
1, α, α2, · · ·

}
is a linearly independent

set of real numbers if the field of scalars is the rational numbers.
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R (x) =
p (x)

q1 (x) · · · qm (x)
, degree of p (x) < degree of denominator.

where the polynomials qi (x) are relatively prime and all the polynomials p (x) and
qi (x) have coefficients in a field of scalars F. Thus there exist polynomials ai (x)
having coefficients in F such that

1 =

m∑
i=1

ai (x) qi (x)

Explain why

R (x) =
p (x)

∑m
i=1 ai (x) qi (x)

q1 (x) · · · qm (x)
=

m∑
i=1

ai (x) p (x)∏
j ̸=i qj (x)

Now continue doing this on each term in the above sum till finally you obtain an
expression of the form

m∑
i=1

bi (x)

qi (x)
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Chapter 8

Linear Transformations

8.1 Matrix Multiplication As A Linear Transformation

Definition 8.1.1 Let V and W be two finite dimensional vector spaces. A function, L
which maps V to W is called a linear transformation and written L ∈ L (V,W ) if for all
scalars α and β, and vectors v,w,

L (αv+βw) = αL (v) + βL (w) .

An example of a linear transformation is familiar matrix multiplication. Let A = (aij)
be an m× n matrix. Then an example of a linear transformation L : Fn → Fm is given by

(Lv)i ≡
n∑

j=1

aijvj .

Here

v ≡




v1
...

vn


 ∈ Fn.

8.2 L (V,W ) As A Vector Space

Definition 8.2.1 Given L,M ∈ L (V,W ) define a new element of L (V,W ) , denoted by
L+M according to the rule1

(L+M) v ≡ Lv +Mv.

For α a scalar and L ∈ L (V,W ) , define αL ∈ L (V,W ) by

αL (v) ≡ α (Lv) .

You should verify that all the axioms of a vector space hold for L (V,W ) with the
above definitions of vector addition and scalar multiplication. What about the dimension
of L (V,W )?

Before answering this question, here is a useful lemma. It gives a way to define linear
transformations and a way to tell when two of them are equal.

1Note that this is the standard way of defining the sum of two functions.
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Lemma 8.2.2 Let V and W be vector spaces and suppose {v1, · · · , vn} is a basis for V.
Then if L : V → W is given by Lvk = wk ∈ W and

L

(
n∑

k=1

akvk

)
≡

n∑
k=1

akLvk =

n∑
k=1

akwk

then L is well defined and is in L (V,W ) . Also, if L,M are two linear transformations such
that Lvk = Mvk for all k, then M = L.

Proof: L is well defined on V because, since {v1, · · · , vn} is a basis, there is exactly one
way to write a given vector of V as a linear combination. Next, observe that L is obviously
linear from the definition. If L,M are equal on the basis, then if

∑n
k=1 akvk is an arbitrary

vector of V,

L

(
n∑

k=1

akvk

)
=

n∑
k=1

akLvk =

n∑
k=1

akMvk = M

(
n∑

k=1

akvk

)

and so L = M because they give the same result for every vector in V . �
The message is that when you define a linear transformation, it suffices to tell what it

does to a basis.

Theorem 8.2.3 Let V and W be finite dimensional linear spaces of dimension n and m
respectively Then dim (L (V,W )) = mn.

Proof: Let two sets of bases be

{v1, · · · , vn} and {w1, · · · , wm}

for V and W respectively. Using Lemma 8.2.2, let wivj ∈ L (V,W ) be the linear transfor-
mation defined on the basis, {v1, · · · , vn}, by

wivk (vj) ≡ wiδjk

where δik = 1 if i = k and 0 if i ̸= k. I will show that L ∈ L (V,W ) is a linear combination
of these special linear transformations called dyadics.

Then let L ∈ L (V,W ). Since {w1, · · · , wm} is a basis, there exist constants, djk such
that

Lvr =
m∑
j=1

djrwj

Now consider the following sum of dyadics.

m∑
j=1

n∑
i=1

djiwjvi

Apply this to vr. This yields

m∑
j=1

n∑
i=1

djiwjvi (vr) =

m∑
j=1

n∑
i=1

djiwjδir =
m∑
j=1

djrwi = Lvr

Therefore, L =
∑m

j=1

∑n
i=1 djiwjvi showing the span of the dyadics is all of L (V,W ) .

Now consider whether these dyadics form a linearly independent set. Suppose

∑
i,k

dikwivk = 0.
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Are all the scalars dik equal to 0?

0 =
∑
i,k

dikwivk (vl) =

m∑
i=1

dilwi

and so, since {w1, · · · , wm} is a basis, dil = 0 for each i = 1, · · · ,m. Since l is arbitrary,
this shows dil = 0 for all i and l. Thus these linear transformations form a basis and this
shows that the dimension of L (V,W ) is mn as claimed because there are m choices for the
wi and n choices for the vj . �

8.3 The Matrix Of A Linear Transformation

Definition 8.3.1 In Theorem 8.2.3, the matrix of the linear transformation L ∈ L (V,W )
with respect to the ordered bases β ≡ {v1, · · · , vn} for V and γ ≡ {w1, · · · , wm} for W is
defined to be [L] where [L]ij = dij . Thus this matrix is defined by L =

∑
i,j [L]ij wivi. When

it is desired to feature the bases β, γ, this matrix will be denoted as [L]γβ . When there is
only one basis β, this is denoted as [L]β.

If V is an n dimensional vector space and β = {v1, · · · , vn} is a basis for V, there exists
a linear map

qβ : Fn → V

defined as

qβ (a) ≡
n∑

i=1

aivi

where

a =




a1
...

an


 =

n∑
i=1

aiei,

for ei the standard basis vectors for Fn consisting of
(

0 · · · 1 · · · 0
)T

. Thus the 1

is in the ith position and the other entries are 0. Conversely, if q : Fn → V is one to one,
onto, and linear, it must be of the form just described. Just let vi ≡ q (ei).

It is clear that q defined in this way, is one to one, onto, and linear. For v ∈ V, q−1
β (v)

is a vector in Fn called the component vector of v with respect to the basis {v1, · · · , vn}.

Proposition 8.3.2 The matrix of a linear transformation with respect to ordered bases β, γ
as described above is characterized by the requirement that multiplication of the components
of v by [L]γβ gives the components of Lv.

Proof: This happens because by definition, if v =
∑

i xivi, then

Lv =
∑
i

xiLvi ≡
∑
i

∑
j

[L]ji xiwj =
∑
j

∑
i

[L]ji xiwj

and so the jth component of Lv is
∑

i [L]ji xi, the jth component of the matrix times the
component vector of v. Could there be some other matrix which will do this? No, because if
such a matrix is M, then for any x , it follows from what was just shown that [L]x = Mx.
Hence [L] = M . �
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The above proposition shows that the following diagram determines the matrix of a
linear transformation. Here qβ and qγ are the maps defined above with reference to the
ordered bases, {v1, · · · , vn} and {w1, · · · , wm} respectively.

L

β = {v1, · · · , vn} V → W {w1, · · · , wm} = γ

qβ ↑ ◦ ↑ qγ

Fn → Fm

[L]γβ

(8.1)

In terms of this diagram, the matrix [L]γβ is the matrix chosen to make the diagram
“commute”. It may help to write the description of [L]γβ in the form

(
Lv1 · · · Lvn

)
=

(
w1 · · · wm

)
[L]γβ (8.2)

with the understanding that you do the multiplications in a formal manner just as you
would if everything were numbers. If this helps, use it. If it does not help, ignore it.

Example 8.3.3 Let
V ≡ { polynomials of degree 3 or less},

W ≡ { polynomials of degree 2 or less},

and L ≡ D where D is the differentiation operator. A basis for V is β =
{
1, x, x2, x3

}
and

a basis for W is γ = {1, x, x2}.

What is the matrix of this linear transformation with respect to this basis? Using 8.2,

(
0 1 2x 3x2

)
=

(
1 x x2

)
[D]γβ .

It follows from this that the first column of [D]γβ is




0

0

0




The next three columns of [D]γβ are




1

0

0


 ,




0

2

0


 ,




0

0

3




and so

[D]γβ =




0 1 0 0

0 0 2 0

0 0 0 3


 .

Now consider the important case where V = Fn, W = Fm, and the basis chosen is the
standard basis of vectors ei described above.
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Now consider the important case where V = Fn, W = Fm, and the basis chosen is the
standard basis of vectors ei described above.

β = {e1, · · · , en} , γ = {e1, · · · , em}
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Let L be a linear transformation from Fn to Fm and let A be the matrix of the transformation
with respect to these bases. In this case the coordinate maps qβ and qγ are simply the
identity maps on Fn and Fm respectively, and can be accomplished by simply multiplying
by the appropriate sized identity matrix. The requirement that A is the matrix of the
transformation amounts to

Lb = Ab

What about the situation where different pairs of bases are chosen for V and W? How
are the two matrices with respect to these choices related? Consider the following diagram
which illustrates the situation.

Fn A2−→ Fm

qβ2
↓ ◦ qγ2

↓
V L−→ W

qβ1
↑ ◦ qγ1

↑
Fn A1−→ Fm

In this diagram qβi
and qγi

are coordinate maps as described above. From the diagram,

q−1
γ1

qγ2
A2q

−1
β2

qβ1
= A1,

where q−1
β2

qβ1
and q−1

γ1
qγ2

are one to one, onto, and linear maps which may be accomplished
by multiplication by a square matrix. Thus there exist matrices P,Q such that P : Fn → Fn

and Q : Fm → Fm are invertible and

PA2Q = A1.

Example 8.3.4 Let β ≡ {v1, · · · ,vn} and γ ≡ {w1, · · · ,wn} be two bases for V . Let L
be the linear transformation which maps vi to wi. Find [L]γβ . In case V = Fn and letting
δ = {e1, · · · , en} , the usual basis for Fn, find [L]δ.

Letting δij be the symbol which equals 1 if i = j and 0 if i ̸= j, it follows that L =∑
i,j δijwivj and so [L]γβ = I the identity matrix. For the second part, you must have

(
w1 · · · wn

)
=

(
v1 · · · vn

)
[L]δ

and so

[L]δ =
(

v1 · · · vn

)−1 (
w1 · · · wn

)

where
(

w1 · · · wn

)
is the n× n matrix having ith column equal to wi.

Definition 8.3.5 In the special case where V = W and only one basis is used for V = W,
this becomes

q−1
β1

qβ2
A2q

−1
β2

qβ1
= A1.

Letting S be the matrix of the linear transformation q−1
β2

qβ1
with respect to the standard basis

vectors in Fn,
S−1A2S = A1. (8.3)

When this occurs, A1 is said to be similar to A2 and A → S−1AS is called a similarity
transformation.

Recall the following.
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q−1
β1

qβ2
A2q

−1
β2

qβ1
= A1.

Letting S be the matrix of the linear transformation q−1
β2

qβ1
with respect to the standard basis

vectors in Fn,
S−1A2S = A1. (8.3)

When this occurs, A1 is said to be similar to A2 and A → S−1AS is called a similarity
transformation.
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Definition 8.3.6 Let S be a set. The symbol ∼ is called an equivalence relation on S if it
satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 8.3.7 [x] denotes the set of all elements of S which are equivalent to x and [x]
is called the equivalence class determined by x or just the equivalence class of x.

Also recall the notion of equivalence classes.

Theorem 8.3.8 Let ∼ be an equivalence class defined on a set S and let H denote the set
of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either x ∼ y
and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.

Theorem 8.3.9 In the vector space of n× n matrices, define

A ∼ B

if there exists an invertible matrix S such that

A = S−1BS.

Then ∼ is an equivalence relation and A ∼ B if and only if whenever V is an n dimensional
vector space, there exists L ∈ L (V, V ) and bases {v1, · · · , vn} and {w1, · · · , wn} such that
A is the matrix of L with respect to {v1, · · · , vn} and B is the matrix of L with respect to
{w1, · · · , wn}.

Proof: A ∼ A because S = I works in the definition. If A ∼ B , then B ∼ A, because

A = S−1BS

implies B = SAS−1. If A ∼ B and B ∼ C, then

A = S−1BS, B = T−1CT

and so
A = S−1T−1CTS = (TS)

−1
CTS

which implies A ∼ C. This verifies the first part of the conclusion.
Now let V be an n dimensional vector space, A ∼ B so A = S−1BS and pick a basis for

V,
β ≡ {v1, · · · , vn}.

Define L ∈ L (V, V ) by

Lvi ≡
∑
j

ajivj

where A = (aij) . Thus A is the matrix of the linear transformation L. Consider the diagram

Fn B−→ Fn

qγ ↓ ◦ qγ ↓
V L−→ V

qβ ↑ ◦ qβ ↑
Fn A−→ Fn
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where qγ is chosen to make the diagram commute. Thus we need S = q−1
γ qβ which requires

qγ = qβS
−1

Then it follows that B is the matrix of L with respect to the basis

{qγe1, · · · , qγen} ≡ {w1, · · · , wn}.

That is, A and B are matrices of the same linear transformation L. Conversely, sup-
pose whenever V is an n dimensional vector space, there exists L ∈ L (V, V ) and bases
{v1, · · · , vn} and {w1, · · · , wn} such that A is the matrix of L with respect to {v1, · · · , vn}
and B is the matrix of L with respect to {w1, · · · , wn}. Then it was shown above that
A ∼ B. �

What if the linear transformation consists of multiplication by a matrix A and you want
to find the matrix of this linear transformation with respect to another basis? Is there an
easy way to do it? The next proposition considers this.

Proposition 8.3.10 Let A be an m×n matrix and let L be the linear transformation which
is defined by

L

(
n∑

k=1

xkek

)
≡

n∑
k=1

(Aek)xk ≡
m∑
i=1

n∑
k=1

Aikxkei

In simple language, to find Lx, you multiply on the left of x by A. (A is the matrix of L
with respect to the standard basis.) Then the matrix M of this linear transformation with
respect to the bases β = {u1, · · · ,un} for Fn and γ = {w1, · · · ,wm} for Fm is given by

M =
(

w1 · · · wm

)−1

A
(

u1 · · · un

)

where
(

w1 · · · wm

)
is the m×m matrix which has wj as its jth column.

Proof: Consider the following diagram.

L

Fn → Fm

qβ ↑ ◦ ↑ qγ

Fn → Fm

M

Here the coordinate maps are defined in the usual way. Thus

qβ

(
x1 · · · xn

)T

≡
n∑

i=1

xiui.

Therefore, qβ can be considered the same as multiplication of a vector in Fn on the left by

the matrix
(

u1 · · · un

)
. Similar considerations apply to qγ . Thus it is desired to have

the following for an arbitrary x ∈ Fn.

A
(

u1 · · · un

)
x =

(
w1 · · · wn

)
Mx

Therefore, the conclusion of the proposition follows. �
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where qγ is chosen to make the diagram commute. Thus we need S = q−1
γ qβ which requires

qγ = qβS
−1

Then it follows that B is the matrix of L with respect to the basis

{qγe1, · · · , qγen} ≡ {w1, · · · , wn}.

That is, A and B are matrices of the same linear transformation L. Conversely, sup-
pose whenever V is an n dimensional vector space, there exists L ∈ L (V, V ) and bases
{v1, · · · , vn} and {w1, · · · , wn} such that A is the matrix of L with respect to {v1, · · · , vn}
and B is the matrix of L with respect to {w1, · · · , wn}. Then it was shown above that
A ∼ B. �

What if the linear transformation consists of multiplication by a matrix A and you want
to find the matrix of this linear transformation with respect to another basis? Is there an
easy way to do it? The next proposition considers this.

Proposition 8.3.10 Let A be an m×n matrix and let L be the linear transformation which
is defined by

L

(
n∑

k=1

xkek

)
≡

n∑
k=1

(Aek)xk ≡
m∑
i=1

n∑
k=1

Aikxkei

In simple language, to find Lx, you multiply on the left of x by A. (A is the matrix of L
with respect to the standard basis.) Then the matrix M of this linear transformation with
respect to the bases β = {u1, · · · ,un} for Fn and γ = {w1, · · · ,wm} for Fm is given by

M =
(

w1 · · · wm

)−1

A
(

u1 · · · un

)

where
(

w1 · · · wm

)
is the m×m matrix which has wj as its jth column.

Proof: Consider the following diagram.

L

Fn → Fm

qβ ↑ ◦ ↑ qγ

Fn → Fm

M

Here the coordinate maps are defined in the usual way. Thus

qβ

(
x1 · · · xn

)T

≡
n∑

i=1

xiui.

Therefore, qβ can be considered the same as multiplication of a vector in Fn on the left by

the matrix
(

u1 · · · un

)
. Similar considerations apply to qγ . Thus it is desired to have

the following for an arbitrary x ∈ Fn.

A
(

u1 · · · un

)
x =

(
w1 · · · wn

)
Mx
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In the special case where m = n and F = C or R and {u1, · · · ,un} is an orthonormal
basis and you want M , the matrix of L with respect to this new orthonormal basis, it follows
from the above that

M =
(

u1 · · · um

)∗
A
(

u1 · · · un

)
= U∗AU

where U is a unitary matrix. Thus matrices with respect to two orthonormal bases are
unitarily similar.

Definition 8.3.11 An n× n matrix A, is diagonalizable if there exists an invertible n× n
matrix S such that S−1AS = D, where D is a diagonal matrix. Thus D has zero entries
everywhere except on the main diagonal. Write diag (λ1 · · · , λn) to denote the diagonal
matrix having the λi down the main diagonal.

The following theorem is of great significance.

Theorem 8.3.12 Let A be an n×n matrix. Then A is diagonalizable if and only if Fn has
a basis of eigenvectors of A. In this case, S of Definition 8.3.11 consists of the n×n matrix
whose columns are the eigenvectors of A and D = diag (λ1, · · · , λn) .

Proof: Suppose first that Fn has a basis of eigenvectors, {v1, · · · ,vn} where Avi = λivi.

Then let S denote the matrix
(

v1 · · · vn

)
and let S−1 ≡




uT
1

...

uT
n


 where

uT
i vj = δij ≡

{
1 if i = j

0 if i ̸= j
.

S−1 exists because S has rank n. Then from block multiplication,

S−1AS =




uT
1

...

uT
n


 (Av1 · · ·Avn) =




uT
1

...

uT
n


 (λ1v1 · · ·λnvn)

=




λ1 0 · · · 0

0 λ2 0 · · ·
...

. . .
. . .

. . .

0 · · · 0 λn




= D.

Next suppose A is diagonalizable so S−1AS = D ≡ diag (λ1, · · · , λn) . Then the columns
of S form a basis because S−1 is given to exist. It only remains to verify that these

columns of S are eigenvectors. But letting S =
(

v1 · · · vn

)
, AS = SD and so(

Av1 · · · Avn

)
=

(
λ1v1 · · · λnvn

)
which shows that Avi = λivi. �

It makes sense to speak of the determinant of a linear transformation as described in the
following corollary.

Corollary 8.3.13 Let L ∈ L (V, V ) where V is an n dimensional vector space and let A be
the matrix of this linear transformation with respect to a basis on V. Then it is possible to
define

det (L) ≡ det (A) .
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Proof: Each choice of basis for V determines a matrix for L with respect to the basis.
If A and B are two such matrices, it follows from Theorem 8.3.9 that

A = S−1BS

and so
det (A) = det

(
S−1

)
det (B) det (S) .

But
1 = det (I) = det

(
S−1S

)
= det (S) det

(
S−1

)

and so
det (A) = det (B) �

Definition 8.3.14 Let A ∈ L (X,Y ) where X and Y are finite dimensional vector spaces.
Define rank (A) to equal the dimension of A (X) .

The following theorem explains how the rank of A is related to the rank of the matrix
of A.

Theorem 8.3.15 Let A ∈ L (X,Y ). Then rank (A) = rank (M) where M is the matrix of
A taken with respect to a pair of bases for the vector spaces X, and Y.

Proof: Recall the diagram which describes what is meant by the matrix of A. Here the
two bases are as indicated.

β = {v1, · · · , vn} X A−→ Y {w1, · · · , wm} = γ

qβ ↑ ◦ ↑ qγ

Fn M−→ Fm

Let {Ax1, · · · , Axr} be a basis for AX. Thus

{
qγMq−1

β x1, · · · , qγMq−1
β xr

}

is a basis for AX. It follows that

{
Mq−1

X x1, · · · ,Mq−1
X xr

}

is linearly independent and so rank (A) ≤ rank (M) . However, one could interchange the
roles of M and A in the above argument and thereby turn the inequality around. �

The following result is a summary of many concepts.

Theorem 8.3.16 Let L ∈ L (V, V ) where V is a finite dimensional vector space. Then the
following are equivalent.

1. L is one to one.

2. L maps a basis to a basis.

3. L is onto.

4. det (L) ̸= 0

5. If Lv = 0 then v = 0.
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Proof: Suppose first L is one to one and let β = {vi}ni=1 be a basis. Then if
∑n

i=1 ciLvi =
0 it follows L (

∑n
i=1 civi) = 0 which means that since L (0) = 0, and L is one to one, it must

be the case that
∑n

i=1 civi = 0. Since {vi} is a basis, each ci = 0 which shows {Lvi} is a
linearly independent set. Since there are n of these, it must be that this is a basis.

Now suppose 2.). Then letting {vi} be a basis, and y ∈ V, it follows from part 2.) that
there are constants, {ci} such that y =

∑n
i=1 ciLvi = L (

∑n
i=1 civi) . Thus L is onto. It has

been shown that 2.) implies 3.).
Now suppose 3.). Then the operation consisting of multiplication by the matrix of L, [L],

must be onto. However, the vectors in Fn so obtained, consist of linear combinations of the
columns of [L] . Therefore, the column rank of [L] is n. By Theorem 3.3.23 this equals the
determinant rank and so det ([L]) ≡ det (L) ̸= 0.

Now assume 4.) If Lv = 0 for some v ̸= 0, it follows that [L]x = 0 for some x ̸= 0.
Therefore, the columns of [L] are linearly dependent and so by Theorem 3.3.23, det ([L]) =
det (L) = 0 contrary to 4.). Therefore, 4.) implies 5.).

Now suppose 5.) and suppose Lv = Lw. Then L (v − w) = 0 and so by 5.), v − w = 0
showing that L is one to one. �

Also it is important to note that composition of linear transformations corresponds to
multiplication of the matrices. Consider the following diagram in which [A]γβ denotes the
matrix of A relative to the bases γ on Y and β on X, [B]δγ defined similarly.

X A−→ Y B−→ Z

qβ ↑ ◦ ↑ qγ ◦ ↑ qδ

Fn [A]γβ−−−→
Fm [B]δγ−−−→

Fp

where A and B are two linear transformations, A ∈ L (X,Y ) and B ∈ L (Y, Z) . Then
B ◦ A ∈ L (X,Z) and so it has a matrix with respect to bases given on X and Z, the
coordinate maps for these bases being qβ and qδ respectively. Then

B ◦A = qδ [B]δγ q
−1
γ qγ [A]γβ q

−1
β = qδ [B]δγ [A]γβ q

−1
β .

But this shows that [B]δγ [A]γβ plays the role of [B ◦A]δβ , the matrix of B ◦A. Hence the
matrix of B ◦ A equals the product of the two matrices [A]γβ and [B]δγ . Of course it is
interesting to note that although [B ◦A]δβ must be unique, the matrices, [A]γβ and [B]δγ
are not unique because they depend on γ, the basis chosen for Y .

Theorem 8.3.17 The matrix of the composition of linear transformations equals the prod-
uct of the matrices of these linear transformations.

8.3.1 Rotations About A Given Vector

As an application, I will consider the problem of rotating counter clockwise about a given
unit vector which is possibly not one of the unit vectors in coordinate directions. First
consider a pair of perpendicular unit vectors, u1 and u2 and the problem of rotating in the
counterclockwise direction about u3 where u3 = u1 × u2 so that u1,u2,u3 forms a right
handed orthogonal coordinate system. Thus the vector u3 is coming out of the page.

�

�

�

�

θ
θ
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u2
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Let T denote the desired rotation. Then

T (au1 + bu2 + cu3) = aTu1 + bTu2 + cTu3

= (a cos θ − b sin θ)u1 + (a sin θ + b cos θ)u2 + cu3.

Thus in terms of the basis γ ≡ {u1,u2,u3} , the matrix of this transformation is

[T ]γ ≡




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 .

I want to obtain the matrix of the transformation in terms of the usual basis β ≡ {e1, e2, e3}
because it is in terms of this basis that we usually deal with vectors. From Proposition 8.3.10,
if [T ]β is this matrix,




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




=
(

u1 u2 u3

)−1

[T ]β

(
u1 u2 u3

)

and so you can solve for [T ]β if you know the ui.
Recall why this is so.

R3 [T ]γ−−→
R3

qγ ↓ ◦ qγ ↓
R3 T−−→ R3

I ↑ ◦ I ↑
R3 [T ]β−−→

R3

The map qγ is accomplished by a multiplication on the left by
(

u1 u2 u3

)
. Thus

[T ]β = qγ [T ]γ q
−1
γ =

(
u1 u2 u3

)
[T ]γ

(
u1 u2 u3

)−1

.

Suppose the unit vector u3 about which the counterclockwise rotation takes place is
(a, b, c). Then I obtain vectors, u1 and u2 such that {u1,u2,u3} is a right handed orthonor-
mal system with u3 = (a, b, c) and then use the above result. It is of course somewhat
arbitrary how this is accomplished. I will assume however, that |c| ̸= 1 since otherwise you
are looking at either clockwise or counter clockwise rotation about the positive z axis and
this is a problem which has been dealt with earlier. (If c = −1, it amounts to clockwise
rotation about the positive z axis while if c = 1, it is counter clockwise rotation about the
positive z axis.)

Then let u3 = (a, b, c) and u2 ≡ 1√
a2+b2

(b,−a, 0) . This one is perpendicular to u3. If

{u1,u2,u3} is to be a right hand system it is necessary to have

u1 = u2 × u3 =
1√

(a2 + b2) (a2 + b2 + c2)

(
−ac,−bc, a2 + b2

)

Now recall that u3 is a unit vector and so the above equals

1√
(a2 + b2)

(
−ac,−bc, a2 + b2

)
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Then from the above, A is given by




−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c







cos θ − sin θ 0

sin θ cos θ 0

0 0 1







−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c




−1

Of course the matrix is an orthogonal matrix so it is easy to take the inverse by simply
taking the transpose. Then doing the computation and then some simplification yields

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ c2 +
(
1− c2

)
cos θ


 . (8.4)

With this, it is clear how to rotate clockwise about the unit vector, (a, b, c) . Just rotate
counter clockwise through an angle of −θ. Thus the matrix for this clockwise rotation is just

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ) + c sin θ ac (1− cos θ)− b sin θ

ab (1− cos θ)− c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ) + a sin θ

ac (1− cos θ) + b sin θ bc (1− cos θ)− a sin θ c2 +
(
1− c2

)
cos θ


 .

In deriving 8.4 it was assumed that c ̸= ±1 but even in this case, it gives the correct
answer. Suppose for example that c = 1 so you are rotating in the counter clockwise
direction about the positive z axis. Then a, b are both equal to zero and 8.4 reduces to 2.24.

8.3.2 The Euler Angles

An important application of the above theory is to the Euler angles, important in the
mechanics of rotating bodies. Lagrange studied these things back in the 1700’s. To describe
the Euler angles consider the following picture in which x1, x2 and x3 are the usual coordinate
axes fixed in space and the axes labeled with a superscript denote other coordinate axes.
Here is the picture.
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1

x2

x1
2
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x2
3
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1 = x2
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x2
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x2
3 = x3
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x2
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x3
1

x2
2

x3
2

We obtain ϕ by rotating counter clockwise about the fixed x3 axis. Thus this rotation
has the matrix 


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 ≡ M1 (ϕ)

Next rotate counter clockwise about the x1
1 axis which results from the first rotation through

an angle of θ. Thus it is desired to rotate counter clockwise through an angle θ about the
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Then from the above, A is given by
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b
√
a2 + b2 0 c
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−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c




−1
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We obtain ϕ by rotating counter clockwise about the fixed x3 axis. Thus this rotation
has the matrix 


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 ≡ M1 (ϕ)

Next rotate counter clockwise about the x1
1 axis which results from the first rotation through

an angle of θ. Thus it is desired to rotate counter clockwise through an angle θ about the
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Then from the above, A is given by




−ac√
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b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c







cos θ − sin θ 0

sin θ cos θ 0

0 0 1







−ac√
(a2+b2)

b√
a2+b2

a

−bc√
(a2+b2)

−a√
a2+b2

b
√
a2 + b2 0 c




−1
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We obtain ϕ by rotating counter clockwise about the fixed x3 axis. Thus this rotation
has the matrix 


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 ≡ M1 (ϕ)

Next rotate counter clockwise about the x1
1 axis which results from the first rotation through

an angle of θ. Thus it is desired to rotate counter clockwise through an angle θ about the

8.3. THE MATRIX OF A LINEAR TRANSFORMATION 229

unit vector 


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1







1

0

0


 =




cosϕ

sinϕ

0


 .

Therefore, in 8.4, a = cosϕ, b = sinϕ, and c = 0. It follows the matrix of this transformation
with respect to the usual basis is




cos2 ϕ+ sin2 ϕ cos θ cosϕ sinϕ (1− cos θ) sinϕ sin θ

cosϕ sinϕ (1− cos θ) sin2 ϕ+ cos2 ϕ cos θ − cosϕ sin θ

− sinϕ sin θ cosϕ sin θ cos θ


 ≡ M2 (ϕ, θ)

Finally, we rotate counter clockwise about the positive x2
3 axis by ψ. The vector in the

positive x1
3 axis is the same as the vector in the fixed x3 axis. Thus the unit vector in the

positive direction of the x2
3 axis is




cos2 ϕ+ sin2 ϕ cos θ cosϕ sinϕ (1− cos θ) sinϕ sin θ

cosϕ sinϕ (1− cos θ) sin2 ϕ+ cos2 ϕ cos θ − cosϕ sin θ

− sinϕ sin θ cosϕ sin θ cos θ







1

0

0




=




cos2 ϕ+ sin2 ϕ cos θ

cosϕ sinϕ (1− cos θ)

− sinϕ sin θ


 =




cos2 ϕ+ sin2 ϕ cos θ

cosϕ sinϕ (1− cos θ)

− sinϕ sin θ




and it is desired to rotate counter clockwise through an angle of ψ about this vector. Thus,
in this case,

a = cos2 ϕ+ sin2 ϕ cos θ, b = cosϕ sinϕ (1− cos θ) , c = − sinϕ sin θ.

and you could substitute in to the formula of Theorem 8.4 and obtain a matrix which rep-
resents the linear transformation obtained by rotating counter clockwise about the positive
x2
3 axis, M3 (ϕ, θ, ψ) . Then what would be the matrix with respect to the usual basis for the

linear transformation which is obtained as a composition of the three just described? By
Theorem 8.3.17, this matrix equals the product of these three,

M3 (ϕ, θ, ψ)M2 (ϕ, θ)M1 (ϕ) .

I leave the details to you. There are procedures due to Lagrange which will allow you to
write differential equations for the Euler angles in a rotating body. To give an idea how
these angles apply, consider the following picture.
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x1

x2

x3

� ψ

x3(t)

ϕ

line of nodes

θ

This is as far as I will go on this topic. The point is, it is possible to give a systematic
description in terms of matrix multiplication of a very elaborate geometrical description of
a composition of linear transformations. You see from the picture it is possible to describe
the motion of the spinning top shown in terms of these Euler angles.

8.4 Eigenvalues And Eigenvectors Of Linear Transfor-
mations

Let V be a finite dimensional vector space. For example, it could be a subspace of Cnor Rn.
Also suppose A ∈ L (V, V ) .

Definition 8.4.1 The characteristic polynomial of A is defined as q (λ) ≡ det (λI −A) .
The zeros of q (λ) in F are called the eigenvalues of A.

Lemma 8.4.2 When λ is an eigenvalue of A which is also in F, the field of scalars, then
there exists v ̸= 0 such that Av = λv.

Proof: This follows from Theorem 8.3.16. Since λ ∈ F,

λI −A ∈ L (V, V )

and since it has zero determinant, it is not one to one. �
The following lemma gives the existence of something called the minimal polynomial.

Lemma 8.4.3 Let A ∈ L (V, V ) where V is a finite dimensional vector space of dimension
n with arbitrary field of scalars. Then there exists a unique polynomial of the form

p (λ) = λm + cm−1λ
m−1 + · · ·+ c1λ+ c0

such that p (A) = 0 and m is as small as possible for this to occur.

Proof: Consider the linear transformations, I, A,A2, · · · , An2

. There are n2+1 of these
transformations and so by Theorem 8.2.3 the set is linearly dependent. Thus there exist
constants, ci ∈ F such that

c0I +

n2∑
k=1

ckA
k = 0.8.5. EXERCISES 231

This implies there exists a polynomial, q (λ) which has the property that q (A) = 0. In fact,

one example is q (λ) ≡ c0 +
∑n2

k=1 ckλ
k. Dividing by the leading term, it can be assumed

this polynomial is of the form λm + cm−1λ
m−1 + · · ·+ c1λ+ c0, a monic polynomial. Now

consider all such monic polynomials, q such that q (A) = 0 and pick the one which has the
smallest degree m. This is called the minimal polynomial and will be denoted here by p (λ) .
If there were two minimal polynomials, the one just found and another,

λm + dm−1λ
m−1 + · · ·+ d1λ+ d0.

Then subtracting these would give the following polynomial,

�q (λ) = (dm−1 − cm−1)λ
m−1 + · · ·+ (d1 − c1)λ+ d0 − c0

Since �q (A) = 0, this requires each dk = ck since otherwise you could divide by dk−ck where
k is the largest one which is nonzero. Thus the choice of m would be contradicted. �

Theorem 8.4.4 Let V be a nonzero finite dimensional vector space of dimension n with
the field of scalars equal to F. Suppose A ∈ L (V, V ) and for p (λ) the minimal polynomial
defined above, let µ ∈ F be a zero of this polynomial. Then there exists v ̸= 0,v ∈ V such
that

Av = µv.

If F = C, then A always has an eigenvector and eigenvalue. Furthermore, if {λ1, · · · , λm}
are the zeros of p (λ) in F, these are exactly the eigenvalues of A for which there exists an
eigenvector in V.

Proof: Suppose first µ is a zero of p (λ) . Since p (µ) = 0, it follows

p (λ) = (λ− µ) k (λ)

where k (λ) is a polynomial having coefficients in F. Since p has minimal degree, k (A) ̸= 0
and so there exists a vector, u ̸= 0 such that k (A)u ≡ v ̸= 0. But then

(A− µI) v = (A− µI) k (A) (u) = 0.

The next claim about the existence of an eigenvalue follows from the fundamental theo-
rem of algebra and what was just shown.

It has been shown that every zero of p (λ) is an eigenvalue which has an eigenvector in
V . Now suppose µ is an eigenvalue which has an eigenvector in V so that Av = µv for some
v ∈ V, v ̸= 0. Does it follow µ is a zero of p (λ)?

0 = p (A) v = p (µ) v

and so µ is indeed a zero of p (λ). �
In summary, the theorem says that the eigenvalues which have eigenvectors in V are

exactly the zeros of the minimal polynomial which are in the field of scalars F.

8.5 Exercises

1. If A,B, and C are each n× n matrices and ABC is invertible, why are each of A,B,
and C invertible?

2. Give an example of a 3 × 2 matrix with the property that the linear transformation
determined by this matrix is one to one but not onto.
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This implies there exists a polynomial, q (λ) which has the property that q (A) = 0. In fact,

one example is q (λ) ≡ c0 +
∑n2

k=1 ckλ
k. Dividing by the leading term, it can be assumed

this polynomial is of the form λm + cm−1λ
m−1 + · · ·+ c1λ+ c0, a monic polynomial. Now

consider all such monic polynomials, q such that q (A) = 0 and pick the one which has the
smallest degree m. This is called the minimal polynomial and will be denoted here by p (λ) .
If there were two minimal polynomials, the one just found and another,

λm + dm−1λ
m−1 + · · ·+ d1λ+ d0.

Then subtracting these would give the following polynomial,

�q (λ) = (dm−1 − cm−1)λ
m−1 + · · ·+ (d1 − c1)λ+ d0 − c0

Since �q (A) = 0, this requires each dk = ck since otherwise you could divide by dk−ck where
k is the largest one which is nonzero. Thus the choice of m would be contradicted. �

Theorem 8.4.4 Let V be a nonzero finite dimensional vector space of dimension n with
the field of scalars equal to F. Suppose A ∈ L (V, V ) and for p (λ) the minimal polynomial
defined above, let µ ∈ F be a zero of this polynomial. Then there exists v ̸= 0,v ∈ V such
that

Av = µv.

If F = C, then A always has an eigenvector and eigenvalue. Furthermore, if {λ1, · · · , λm}
are the zeros of p (λ) in F, these are exactly the eigenvalues of A for which there exists an
eigenvector in V.

Proof: Suppose first µ is a zero of p (λ) . Since p (µ) = 0, it follows

p (λ) = (λ− µ) k (λ)

where k (λ) is a polynomial having coefficients in F. Since p has minimal degree, k (A) ̸= 0
and so there exists a vector, u ̸= 0 such that k (A)u ≡ v ̸= 0. But then

(A− µI) v = (A− µI) k (A) (u) = 0.

The next claim about the existence of an eigenvalue follows from the fundamental theo-
rem of algebra and what was just shown.

It has been shown that every zero of p (λ) is an eigenvalue which has an eigenvector in
V . Now suppose µ is an eigenvalue which has an eigenvector in V so that Av = µv for some
v ∈ V, v ̸= 0. Does it follow µ is a zero of p (λ)?

0 = p (A) v = p (µ) v

and so µ is indeed a zero of p (λ). �
In summary, the theorem says that the eigenvalues which have eigenvectors in V are

exactly the zeros of the minimal polynomial which are in the field of scalars F.

8.5 Exercises

1. If A,B, and C are each n× n matrices and ABC is invertible, why are each of A,B,
and C invertible?

2. Give an example of a 3 × 2 matrix with the property that the linear transformation
determined by this matrix is one to one but not onto.
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3. Explain why Ax = 0 always has a solution whenever A is a linear transformation.

4. Review problem: Suppose det (A− λI) = 0. Show using Theorem 3.1.15 there exists
x ̸= 0 such that (A− λI)x = 0.

5. How does the minimal polynomial of an algebraic number relate to the minimal poly-
nomial of a linear transformation? Can an algebraic number be thought of as a linear
transformation? How?

6. Recall the fact from algebra that if p (λ) and q (λ) are polynomials, then there exists
l (λ) , a polynomial such that

q (λ) = p (λ) l (λ) + r (λ)

where the degree of r (λ) is less than the degree of p (λ) or else r (λ) = 0. With this in
mind, why must the minimal polynomial always divide the characteristic polynomial?
That is, why does there always exist a polynomial l (λ) such that p (λ) l (λ) = q (λ)?
Can you give conditions which imply the minimal polynomial equals the characteristic
polynomial? Go ahead and use the Cayley Hamilton theorem.

7. In the following examples, a linear transformation, T is given by specifying its action
on a basis β. Find its matrix with respect to this basis.

(a) T

(
1

2

)
= 2

(
1

2

)
+ 1

(
−1

1

)
, T

(
−1

1

)
=

(
−1

1

)

(b) T

(
0

1

)
= 2

(
0

1

)
+ 1

(
−1

1

)
, T

(
−1

1

)
=

(
0

1

)

(c) T

(
1

0

)
= 2

(
1

2

)
+ 1

(
1

0

)
, T

(
1

2

)
= 1

(
1

0

)
−

(
1

2

)

8. Let β = {u1, · · · ,un} be a basis for Fn and let T : Fn → Fn be defined as follows.

T

(
n∑

k=1

akuk

)
=

n∑
k=1

akbkuk

First show that T is a linear transformation. Next show that the matrix of T with
respect to this basis, [T ]β is 


b1

. . .

bn




Show that the above definition is equivalent to simply specifying T on the basis vectors
of β by

T (uk) = bkuk.

9. ↑In the situation of the above problem, let γ = {e1, · · · , en} be the standard basis for
Fn where ek is the vector which has 1 in the kth entry and zeros elsewhere. Show that
[T ]γ = (

u1 · · · un

)
[T ]β

(
u1 · · · un

)−1

(8.5)
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Show that the above definition is equivalent to simply specifying T on the basis vectors
of β by

T (uk) = bkuk.

9. ↑In the situation of the above problem, let γ = {e1, · · · , en} be the standard basis for
Fn where ek is the vector which has 1 in the kth entry and zeros elsewhere. Show that
[T ]γ = (

u1 · · · un

)
[T ]β

(
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10. ↑Generalize the above problem to the situation where T is given by specifying its
action on the vectors of a basis β = {u1, · · · ,un} as follows.

Tuk =

n∑
j=1

ajkuj .

Letting A = (aij) , verify that for γ = {e1, · · · , en} , 8.5 still holds and that [T ]β = A.

11. Let P3 denote the set of real polynomials of degree no more than 3, defined on an
interval [a, b]. Show that P3 is a subspace of the vector space of all functions defined
on this interval. Show that a basis for P3 is

{
1, x, x2, x3

}
. Now let D denote the

differentiation operator which sends a function to its derivative. Show D is a linear
transformation which sends P3 to P3. Find the matrix of this linear transformation
with respect to the given basis.

12. Generalize the above problem to Pn, the space of polynomials of degree no more than
n with basis {1, x, · · · , xn} .

13. In the situation of the above problem, let the linear transformation be T = D2 + 1,
defined as Tf = f ′′ + f. Find the matrix of this linear transformation with respect to
the given basis {1, x, · · · , xn}. Write it down for n = 4.

14. In calculus, the following situation is encountered. There exists a vector valued func-
tion f :U → Rm where U is an open subset of Rn. Such a function is said to have
a derivative or to be differentiable at x ∈ U if there exists a linear transformation
T : Rn → Rm such that

lim
v→0

|f (x+ v)− f (x)− Tv|
|v|

= 0.

First show that this linear transformation, if it exists, must be unique. Next show
that for β = {e1, · · · , en} , , the standard basis, the kth column of [T ]β is

∂f

∂xk
(x) .

Actually, the result of this problem is a well kept secret. People typically don’t see
this in calculus. It is seen for the first time in advanced calculus if then.

15. Recall that A is similar to B if there exists a matrix P such that A = P−1BP. Show
that if A and B are similar, then they have the same determinant. Give an example
of two matrices which are not similar but have the same determinant.

16. Suppose A ∈ L (V,W ) where dim (V ) > dim (W ) . Show ker (A) ̸= {0}. That is, show
there exist nonzero vectors v ∈ V such that Av = 0.

17. A vector v is in the convex hull of a nonempty set S if there are finitely many vectors
of S, {v1, · · · ,vm} and nonnegative scalars {t1, · · · , tm} such that

v =
m∑

k=1

tkvk,

m∑
k=1

tk = 1.

Such a linear combination is called a convex combination. Suppose now that S ⊆ V,
a vector space of dimension n. Show that if v =

∑m
k=1 tkvk is a vector in the convex
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k=1 tkvk is a vector in the convex

234 CHAPTER 8. LINEAR TRANSFORMATIONS

hull for m > n+ 1, then there exist other scalars {t′k} such that

v =
m−1∑
k=1

t′kvk.

Thus every vector in the convex hull of S can be obtained as a convex combination
of at most n + 1 points of S. This incredible result is in Rudin [24]. Hint: Consider
L : Rm → V × R defined by

L (a) ≡

(
m∑

k=1

akvk,

m∑
k=1

ak

)

Explain why ker (L) ̸= {0} . Next, letting a ∈ ker (L) \ {0} and λ ∈ R, note that
λa ∈ ker (L) . Thus for all λ ∈ R,

v =
m∑

k=1

(tk + λak)vk.

Now vary λ till some tk + λak = 0 for some ak ̸= 0.

18. For those who know about compactness, use Problem 17 to show that if S ⊆ Rn and
S is compact, then so is its convex hull.

19. Suppose Ax = b has a solution. Explain why the solution is unique precisely when
Ax = 0 has only the trivial (zero) solution.

20. Let A be an n × n matrix of elements of F. There are two cases. In the first case,
F contains a splitting field of pA (λ) so that p (λ) factors into a product of linear
polynomials having coefficients in F. It is the second case which is of interest here
where pA (λ) does not factor into linear factors having coefficients in F. Let G be a
splitting field of pA (λ) and let qA (λ) be the minimal polynomial of A with respect
to the field G. Explain why qA (λ) must divide pA (λ). Now why must qA (λ) factor
completely into linear factors?

21. In Lemma 8.2.2 verify that L is linear.
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Chapter 9

Canonical Forms

9.1 A Theorem Of Sylvester, Direct Sums

The notation is defined as follows.

Definition 9.1.1 Let L ∈ L (V,W ) . Then ker (L) ≡ {v ∈ V : Lv = 0} .

Lemma 9.1.2 Whenever L ∈ L (V,W ) , ker (L) is a subspace.

Proof: If a, b are scalars and v,w are in ker (L) , then

L (av + bw) = aL (v) + bL (w) = 0 + 0 = 0 �

Suppose now that A ∈ L (V,W ) and B ∈ L (W,U) where V,W,U are all finite dimen-
sional vector spaces. Then it is interesting to consider ker (BA). The following theorem of
Sylvester is a very useful and important result.

Theorem 9.1.3 Let A ∈ L (V,W ) and B ∈ L (W,U) where V,W,U are all vector spaces
over a field F. Suppose also that ker (A) and A (ker (BA)) are finite dimensional subspaces.
Then

dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .

Equality holds if and only if A (ker (BA)) = ker (B).

Proof: If x ∈ ker (BA) , then Ax ∈ ker (B) and so A (ker (BA)) ⊆ ker (B) . The following
picture may help.

ker(B)

A(ker(BA))

ker(BA)

ker(A) �A

Now let {x1, · · · , xn} be a basis of ker (A) and let {Ay1, · · · , Aym} be a basis for
A (ker (BA)) . Take any z ∈ ker (BA) . Then Az =

∑m
i=1 aiAyi and so

A

(
z −

m∑
i=1

aiyi

)
= 0
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which means z −
∑m

i=1 aiyi ∈ ker (A) and so there are scalars bi such that

z −
m∑
i=1

aiyi =

n∑
j=1

bixi.

It follows span (x1, · · · , xn, y1, · · · , ym) ⊇ ker (BA) and so by the first part, (See the picture.)

dim (ker (BA)) ≤ n+m ≤ dim (ker (A)) + dim (ker (B))

Now {x1, · · · , xn, y1, · · · , ym} is linearly independent because if

∑
i

aixi +
∑
j

bjyj = 0

then you could do A to both sides and conclude that
∑

j bjAyj = 0 which requires that each
bj = 0. Then it follows that each ai = 0 also because it implies

∑
i aixi = 0. Thus

{x1, · · · , xn, y1, · · · , ym}

is a basis for ker (BA). Then A (ker (BA)) = ker (B) if and only if m = dim (ker (B)) if and
only if

dim (ker (BA)) = m+ n = dim (ker (B)) + dim (ker (A)) . �
Of course this result holds for any finite product of linear transformations by induc-

tion. One way this is quite useful is in the case where you have a finite product of linear
transformations

∏l
i=1 Li all in L (V, V ) . Then

dim

(
ker

l∏
i=1

Li

)
≤

l∑
i=1

dim (kerLi) .

Definition 9.1.4 Let {Vi}ri=1 be subspaces of V. Then

r∑
i=1

Vi ≡ V1 + · · ·+ Vr

denotes all sums of the form
∑r

i=1 vi where vi ∈ Vi. If whenever

r∑
i=1

vi = 0, vi ∈ Vi, (9.1)

it follows that vi = 0 for each i, then a special notation is used to denote
∑r

i=1 Vi. This
notation is

V1 ⊕ · · · ⊕ Vr,

and it is called a direct sum of subspaces.

Now here is a useful lemma which is likely already understood.

Lemma 9.1.5 Let L ∈ L (V,W ) where V,W are n dimensional vector spaces. Then L is
one to one, if and only if L is also onto. In fact, if {v1, · · · , vn} is a basis, then so is
{Lv1, · · · , Lvn}.
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V1 ⊕ · · · ⊕ Vr,
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Now here is a useful lemma which is likely already understood.
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Proof: Let {v1, · · · , vn} be a basis for V . Then I claim that {Lv1, · · · , Lvn} is a basis
for W . First of all, I show {Lv1, · · · , Lvn} is linearly independent. Suppose

n∑
k=1

ckLvk = 0.

Then

L

(
n∑

k=1

ckvk

)
= 0

and since L is one to one, it follows

n∑
k=1

ckvk = 0

which implies each ck = 0. Therefore, {Lv1, · · · , Lvn} is linearly independent. If there
exists w not in the span of these vectors, then by Lemma 7.2.10, {Lv1, · · · , Lvn, w} would
be independent and this contradicts the exchange theorem, Theorem 7.2.4 because it would
be a linearly independent set having more vectors than the spanning set {v1, · · · , vn} .

Conversely, suppose L is onto. Then there exists a basis for W which is of the form
{Lv1, · · · , Lvn} . It follows that {v1, · · · , vn} is linearly independent. Hence it is a basis for
V by similar reasoning to the above. Then if Lx = 0, it follows that there are scalars ci
such that x =

∑
i civi and consequently 0 = Lx =

∑
i ciLvi. Therefore, each ci = 0 and so

x = 0 also. Thus L is one to one. �

Lemma 9.1.6 If V = V1⊕· · ·⊕Vr and if βi =
{
vi1, · · · , vimi

}
is a basis for Vi, then a basis

for V is {β1, · · · , βr}. Thus

dim (V ) =
r∑

i=1

dim (Vi) .

Proof: Suppose
∑r

i=1

∑mi

j=1 cijv
i
j = 0. then since it is a direct sum, it follows for each i,

mi∑
j=1

cijv
i
j = 0

and now since
{
vi1, · · · , vimi

}
is a basis, each cij = 0. �

Here is a fundamental lemma.

Lemma 9.1.7 Let Li be in L (V, V ) and suppose for i ̸= j, LiLj = LjLi and also Li is one
to one on ker (Lj) whenever i ̸= j. Then

ker

(
p∏

i=1

Li

)
= ker (L1)⊕+ · · ·+⊕ ker (Lp)

Here
∏p

i=1 Li is the product of all the linear transformations.

Proof : Note that since the operators commute, Lj : ker (Li) → ker (Li). Here is why.
If Liy = 0 so that y ∈ ker (Li) , then

LiLjy = LjLiy = Lj0 = 0
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and so Lj : ker (Li) �→ ker (Li). Next observe that it is obvious that, since the operators
commute,

p∑
i=1

ker (Lp) ⊆ ker

(
p∏

i=1

Li

)

Next, why is
∑

i ker (Lp) = ker (L1)⊕ · · · ⊕ ker (Lp)? Suppose

p∑
i=1

vi = 0, vi ∈ ker (Li) ,

but some vi ̸= 0. Then do
∏

j ̸=i Lj to both sides. Since the linear transformations commute,
this results in ∏

j ̸=i

Lj (vi) = 0

which contradicts the assumption that these Lj are one to one on ker (Li) and the observation
that they map ker (Li) to ker (Li). Thus if

∑
i

vi = 0, vi ∈ ker (Li)

then each vi = 0. It follows that

ker (L1)⊕+ · · ·+⊕ ker (Lp) ⊆ ker

(
p∏

i=1

Li

)
(*)

From Sylvester’s theorem and the observation about direct sums in Lemma 9.1.6,

p∑
i=1

dim (ker (Li)) = dim (ker (L1)⊕+ · · ·+⊕ ker (Lp))

≤ dim

(
ker

(
p∏

i=1

Li

))
≤

p∑
i=1

dim (ker (Li))

which implies all these are equal. Now in general, ifW is a subspace of V, a finite dimensional
vector space and the two have the same dimension, then W = V . This is because W has
a basis and if v is not in the span of this basis, then v adjoined to the basis of W would
be a linearly independent set so the dimension of V would then be strictly larger than the
dimension of W . It follows from * that

ker (L1)⊕+ · · ·+⊕ ker (Lp) = ker

(
p∏

i=1

Li

)
�

9.2 Direct Sums, Block Diagonal Matrices

Let V be a finite dimensional vector space with field of scalars F. Here I will make no
assumption on F. Also suppose A ∈ L (V, V ) .

Recall Lemma 8.4.3 which gives the existence of the minimal polynomial for a linear
transformation A. This is the monic polynomial p which has smallest possible degree such
that p(A) = 0. It is stated again for convenience.
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Lemma 9.2.1 Let A ∈ L (V, V ) where V is a finite dimensional vector space of dimension
n with field of scalars F. Then there exists a unique monic polynomial of the form

p (λ) = λm + cm−1λ
m−1 + · · ·+ c1λ+ c0

such that p (A) = 0 and m is as small as possible for this to occur.

Now it is time to consider the notion of a direct sum of subspaces. Recall you can
always assert the existence of a factorization of the minimal polynomial into a product of
irreducible polynomials. This fact will now be used to show how to obtain such a direct
sum of subspaces.

Definition 9.2.2 For A ∈ L (V, V ) where dim (V ) = n, suppose the minimal polynomial is

p (λ) =

q∏
k=1

(ϕk(λ))
rk

where the polynomials ϕk have coefficients in F and are irreducible. Now define the gener-
alized eigenspaces

Vk ≡ ker ((ϕk (A))
rk)

Note that if one of these polynomials (ϕk(λ))
rk is a monic linear polynomial, then the gen-

eralized eigenspace would be an eigenspace.

Theorem 9.2.3 In the context of Definition 9.2.2,

V = V1 ⊕ · · · ⊕ Vq (9.2)

and each Vk is A invariant, meaning A (Vk) ⊆ Vk. ϕl (A) is one to one on each Vk for k ̸= l.
If βi =

{
vi1, · · · , vimi

}
is a basis for Vi, then

{
β1, β2, · · · , βq

}
is a basis for V.

Proof: It is clear Vk is a subspace which is A invariant because A commutes with
ϕk (A)

mk . It is clear the operators ϕk (A)
rk commute. Thus if v ∈ Vk,

ϕk (A)
rk ϕl (A)

rl v = ϕl (A)
rl ϕk (A)

rk v = ϕl (A)
rl 0 = 0

and so ϕl (A)
rl : Vk → Vk.

I claim ϕl (A) is one to one on Vk whenever k ̸= l. The two polynomials ϕl (λ) and
ϕk (λ)

rk are relatively prime so there exist polynomials m (λ) , n (λ) such that

m (λ)ϕl (λ) + n (λ)ϕk (λ)
rk = 1

It follows that the sum of all coefficients of λ raised to a positive power are zero and the
constant term on the left is 1. Therefore, using the convention A0 = I it follows

m (A)ϕl (A) + n (A)ϕk (A)
rk = I

If v ∈ Vk, then from the above,

m (A)ϕl (A) v + n (A)ϕk (A)
rk v = v

Since v is in Vk, it follows by definition,

m (A)ϕl (A) v = v

and so ϕl (A) v ̸= 0 unless v = 0. Thus ϕl (A) and hence ϕl (A)
rl is one to one on Vk for

every k ̸= l. By Lemma 9.1.7 and the fact that ker (
∏q

k=1 ϕk (λ)
rk) = V, 9.2 is obtained.

The claim about the bases follows from Lemma 9.1.6. �
You could consider the restriction of A to Vk. It turns out that this restriction has

minimal polynomial equal to ϕk (λ)
mk .
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m (A)ϕl (A) v + n (A)ϕk (A)
rk v = v
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Corollary 9.2.4 Let the minimal polynomial of A be p (λ) =
∏q

k=1 ϕk (λ)
mk where each ϕk

is irreducible. Let Vk = ker (ϕ (A)
mk) . Then

V1 ⊕ · · · ⊕ Vq = V

and letting Ak denote the restriction of A to Vk, it follows the minimal polynomial of Ak is
ϕk (λ)

mk .

Proof: Recall the direct sum, V1 ⊕ · · · ⊕ Vq = V where Vk = ker (ϕk (A)
mk) for p (λ) =∏q

k=1 ϕk (λ)
mk the minimal polynomial for A where the ϕk (λ) are all irreducible. Thus each

Vk is invariant with respect to A. What is the minimal polynomial of Ak, the restriction of
A to Vk? First note that ϕk (Ak)

mk (Vk) = {0} by definition. Thus if η (λ) is the minimal
polynomial for Ak then it must divide ϕk (λ)

mk and so by Corollary 7.3.11 η (λ) = ϕk (λ)
rk

where rk ≤ mk. Could rk < mk? No, this is not possible because then p (λ) would fail
to be the minimal polynomial for A. You could substitute for the term ϕk (λ)

mk in the
factorization of p (λ) with ϕk (λ)

rk and the resulting polynomial p′ would satisfy p′ (A) = 0.
Here is why. From Theorem 9.2.3, a typical x ∈ V is of the form

q∑
i=1

vi, vi ∈ Vi

Then since all the factors commute,

p′ (A)

(
q∑

i=1

vi

)
=

q∏
i̸=k

ϕi (A)
mi ϕk (A)

rk

(
q∑

i=1

vi

)

For j ̸= k

q∏
i̸=k

ϕi (A)
mi ϕk (A)

rk vj =

q∏
i̸=k,j

ϕi (A)
mi ϕk (A)

rk ϕj (A)
mj vj = 0

If j = k,
q∏

i̸=k

ϕi (A)
mi ϕk (A)

rk vk = 0

which shows p′ (λ) is a monic polynomial having smaller degree than p (λ) such that p′ (A) =
0. Thus the minimal polynomial for Ak is ϕk (λ)

mk as claimed. �
How does Theorem 9.2.3 relate to matrices?

Theorem 9.2.5 Suppose V is a vector space with field of scalars F and A ∈ L (V, V ).
Suppose also

V = V1 ⊕ · · · ⊕ Vq

where each Vk is A invariant. (AVk ⊆ Vk) Also let βk be an ordered basis for Vk and let Ak

denote the restriction of A to Vk. Letting Mk denote the matrix of Ak with respect to this
basis, it follows the matrix of A with respect to the basis

{
β1, · · · , βq

}
is




M1 0
. . .

0 Mq
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vi, vi ∈ Vi
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i=1

vi

)
=
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i̸=k

ϕi (A)
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rk

(
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i=1

vi

)
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which shows p′ (λ) is a monic polynomial having smaller degree than p (λ) such that p′ (A) =
0. Thus the minimal polynomial for Ak is ϕk (λ)

mk as claimed. �
How does Theorem 9.2.3 relate to matrices?

Theorem 9.2.5 Suppose V is a vector space with field of scalars F and A ∈ L (V, V ).
Suppose also

V = V1 ⊕ · · · ⊕ Vq

where each Vk is A invariant. (AVk ⊆ Vk) Also let βk be an ordered basis for Vk and let Ak

denote the restriction of A to Vk. Letting Mk denote the matrix of Ak with respect to this
basis, it follows the matrix of A with respect to the basis

{
β1, · · · , βq

}
is




M1 0
. . .

0 Mq
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Proof: Let β denote the ordered basis
{
β1, · · · , βq

}
, |βk| being the number of vectors

in βk. Let qk : F|βk| → Vk be the usual map such that the following diagram commutes.

Ak

Vk → Vk

qk ↑ ◦ ↑ qk

F|βk| → F|βk|

Mk

Thus Akqk = qkM
k. Then if q is the map from Fn to V corresponding to the ordered basis

β just described,

q
(

0 · · · x · · · 0
)T

= qkx,

where x occupies the positions between
∑k−1

i=1 |βi| + 1 and
∑k

i=1 |βi|. Then M will be the
matrix of A with respect to β if and only if a similar diagram to the above commutes.
Thus it is required that Aq = qM . However, from the description of q just made, and the
invariance of each Vk,

Aq




0
...

x
...

0




= Akqkx = qkM
kx = q




M1 0
. . .

Mk

. . .

0 Mq







0
...

x
...

0




It follows that the above block diagonal matrix is the matrix of A with respect to the given
ordered basis. �

An examination of the proof of the above theorem yields the following corollary.

Corollary 9.2.6 If any βk in the above consists of eigenvectors, then Mk is a diagonal
matrix having the corresponding eigenvalues down the diagonal.

It follows that it would be interesting to consider special bases for the vector spaces in
the direct sum. This leads to the Jordan form or more generally other canonical forms such
as the rational canonical form.

9.3 Cyclic Sets

It was shown above that for A ∈ L (V, V ) for V a finite dimensional vector space over the
field of scalars F, there exists a direct sum decomposition

V = V1 ⊕ · · · ⊕ Vq

where
Vk = ker (ϕk (A)

mk)

and ϕk (λ) is an irreducible polynomial. Here the minimal polynomial of A was

q∏
k=1

ϕk (λ)
mk

Next I will consider the problem of finding a basis for Vk such that the matrix of A
restricted to Vk assumes various forms.
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Definition 9.3.1 Letting x ̸= 0 denote by βx the vectors
{
x,Ax,A2x, · · · , Am−1x

}
where

m is the smallest such that Amx ∈ span
(
x, · · · , Am−1x

)
. This is called an A cyclic set.

The vectors which result are also called a Krylov sequence. For such a sequence of vectors,
|βx| ≡ m.

The first thing to notice is that such a Krylov sequence is always linearly independent.

Lemma 9.3.2 Let βx =
{
x,Ax,A2x, · · · , Am−1x

}
, x ̸= 0 where m is the smallest such

that Amx ∈ span
(
x, · · · , Am−1x

)
. Then

{
x,Ax,A2x, · · · , Am−1x

}
is linearly independent.

Proof: Suppose that there are scalars ak, not all zero such that

m−1∑
k=0

akA
kx = 0

Then letting ar be the last nonzero scalar in the sum, you can divide by ar and solve for
Arx as a linear combination of the Ajx for j < r ≤ m − 1 contrary to the definition of m.
�

Now here is a nice lemma which has been pretty much discussed earlier.

Lemma 9.3.3 Suppose W is a subspace of V where V is a finite dimensional vector space
and L ∈ L (V, V ) and suppose LW = LV. Then V = W + ker (L).

Proof: Let a basis for LV = LW be {Lw1, · · · , Lwm} , wi ∈ W . Then let y ∈ V. Thus
Ly =

∑m
i=1 ciLwi and so

L




=z� �� �
y −

m∑
i=1

ciwi


 ≡ Lz = 0

It follows that z ∈ ker (L) and so y =
∑m

i=1 ciwi + z ∈ W + ker (L). �
For more on the next lemma and the following theorem, see Hofman and Kunze [15]. I

am following the presentation in Friedberg Insel and Spence [10]. See also Herstein [14] for
a different approach to canonical forms. To help organize the ideas in the lemma, here is a
diagram.

ker(ϕ(A)m)

W
v1, ..., vs

U ⊆ ker(ϕ(A))

βx1
, βx2

, ..., βxp

Lemma 9.3.4 Let W be an A invariant (AW ⊆ W ) subspace of ker (ϕ (A)
m
) for m a pos-

itive integer where ϕ (λ) is an irreducible monic polynomial of degree d. Let U be an A
invariant subspace of ker (ϕ (A)) .

If {v1, · · · , vs} is a basis for W then if x ∈ U \W,

{v1, · · · , vs, βx}
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Definition 9.3.1 Letting x ̸= 0 denote by βx the vectors
{
x,Ax,A2x, · · · , Am−1x

}
where

m is the smallest such that Amx ∈ span
(
x, · · · , Am−1x

)
. This is called an A cyclic set.

The vectors which result are also called a Krylov sequence. For such a sequence of vectors,
|βx| ≡ m.

The first thing to notice is that such a Krylov sequence is always linearly independent.

Lemma 9.3.2 Let βx =
{
x,Ax,A2x, · · · , Am−1x

}
, x ̸= 0 where m is the smallest such

that Amx ∈ span
(
x, · · · , Am−1x

)
. Then

{
x,Ax,A2x, · · · , Am−1x

}
is linearly independent.

Proof: Suppose that there are scalars ak, not all zero such that

m−1∑
k=0

akA
kx = 0

Then letting ar be the last nonzero scalar in the sum, you can divide by ar and solve for
Arx as a linear combination of the Ajx for j < r ≤ m − 1 contrary to the definition of m.
�

Now here is a nice lemma which has been pretty much discussed earlier.

Lemma 9.3.3 Suppose W is a subspace of V where V is a finite dimensional vector space
and L ∈ L (V, V ) and suppose LW = LV. Then V = W + ker (L).

Proof: Let a basis for LV = LW be {Lw1, · · · , Lwm} , wi ∈ W . Then let y ∈ V. Thus
Ly =

∑m
i=1 ciLwi and so

L




=z� �� �
y −

m∑
i=1

ciwi


 ≡ Lz = 0

It follows that z ∈ ker (L) and so y =
∑m

i=1 ciwi + z ∈ W + ker (L). �
For more on the next lemma and the following theorem, see Hofman and Kunze [15]. I

am following the presentation in Friedberg Insel and Spence [10]. See also Herstein [14] for
a different approach to canonical forms. To help organize the ideas in the lemma, here is a
diagram.

ker(ϕ(A)m)

W
v1, ..., vs

U ⊆ ker(ϕ(A))

βx1
, βx2

, ..., βxp

Lemma 9.3.4 Let W be an A invariant (AW ⊆ W ) subspace of ker (ϕ (A)
m
) for m a pos-

itive integer where ϕ (λ) is an irreducible monic polynomial of degree d. Let U be an A
invariant subspace of ker (ϕ (A)) .

If {v1, · · · , vs} is a basis for W then if x ∈ U \W,

{v1, · · · , vs, βx}
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is linearly independent.
There exist vectors x1, · · · , xp each in U such that

{
v1, · · · , vs, βx1

, · · · , βxp

}

is a basis for
U +W.

Also, if x ∈ ker (ϕ (A)
m
) , |βx| = kd where k ≤ m. Here |βx| is the length of βx, the degree of

the monic polynomial η (λ) satisfying η (A)x = 0 with η (λ) having smallest possible degree.

Proof: Claim: If x ∈ kerϕ (A) , and |βx| denotes the length of βx, then |βx| = d the
degree of the irreducible polynomial ϕ(λ) and so

βx =
{
x,Ax,A2x, · · · , Ad−1x

}

also span (βx) is A invariant, A (span (βx)) ⊆ span (βx).
Proof of the claim: Let m = |βx| . That is, there exists monic η (λ) of degree m and

η (A)x = 0 with m is as small as possible for this to happen. Then from the usual process of
division of polynomials, there exist l (λ) , r (λ) such that r (λ) = 0 or else has smaller degree
than that of η (λ) such that

ϕ (λ) = η (λ) l (λ) + r (λ)

If deg (r (λ)) < deg (η (λ)) , then the equation implies 0 = ϕ (A)x = r (A)x and so m was
incorrectly chosen. Hence r (λ) = 0 and so if l (λ) ̸= 1, then η (λ) divides ϕ (λ) contrary
to the assumption that ϕ (λ) is irreducible. Hence l (λ) = 1 and η (λ) = ϕ (λ) . The claim
about span (βx) is obvious because Adx ∈ span (βx). This shows the claim.

Suppose now x ∈ U \W where U ⊆ ker (ϕ (A)). Consider

{v1, · · · , vs, βx} .

Is this set of vectors independent? Suppose

s∑
i=1

aivi +

d∑
j=1

djA
j−1x = 0.

If z ≡
∑d

j=1 djA
j−1x, then z ∈ W ∩ span

(
x,Ax, · · · , Ad−1x

)
. Then also for each m ≤ d−1,

Amz ∈ W ∩ span
(
x,Ax, · · · , Ad−1x

)

because W, span
(
x,Ax, · · · , Ad−1x

)
are A invariant. Therefore,

span
(
z,Az, · · · , Ad−1z

)
⊆ W ∩ span

(
x,Ax, · · · , Ad−1x

)

⊆ span
(
x,Ax, · · · , Ad−1x

)
(9.3)

Suppose z ̸= 0. Then from the Lemma 9.3.2 above,
{
z,Az, · · · , Ad−1z

}
must be linearly

independent. Therefore,

d = dim
(
span

(
z,Az, · · · , Ad−1z

))
≤ dim

(
W ∩ span

(
x,Ax, · · · , Ad−1x

))

≤ dim
(
span

(
x,Ax, · · · , Ad−1x

))
= d

Thus
W ∩ span

(
x,Ax, · · · , Ad−1x

)
= span

(
x,Ax, · · · , Ad−1x

)244 CHAPTER 9. CANONICAL FORMS

which would require x ∈ W but this is assumed not to take place. Hence z = 0 and so
the linear independence of the {v1, · · · , vs} implies each ai = 0. Then the linear indepen-
dence of

{
x,Ax, · · · , Ad−1x

}
, which follows from Lemma 9.3.2, shows each dj = 0. Thus{

v1, · · · , vs, x, Ax, · · · , Ad−1x
}
is linearly independent as claimed.

Let x ∈ U \ W ⊆ ker (ϕ (A)) . Then it was just shown that {v1, · · · , vs, βx} is linearly
independent. Let W1 be given by

y ∈ span (v1, · · · , vs, βx) ≡ W1

Then W1 is A invariant. If W1 equals U +W, then you are done. If not, let W1 play the
role of W and pick x1 ∈ U \W1 and repeat the argument. Continue till

span
(
v1, · · · , vs, βx1

, · · · , βxn

)
= U +W

The process stops because ker (ϕ (A)
m
) is finite dimensional.

Finally, letting x ∈ ker (ϕ (A)
m
) , there is a monic polynomial η (λ) such that η (A)x = 0

and η (λ) is of smallest possible degree, which degree equals |βx| . Then

ϕ (λ)
m

= η (λ) l (λ) + r (λ)

If deg (r (λ)) < deg (η (λ)) , then r (A)x = 0 and η (λ) was incorrectly chosen. Hence

r (λ) = 0 and so η (λ) must divide ϕ (λ)
m
. Hence by Corollary 7.3.11 η (λ) = ϕ (λ)

k
where

k ≤ m. Thus |βx| = kd = deg (η (λ)). �
With this preparation, here is the main result about a basis V where A ∈ L (V, V ) and the

minimal polynomial for A is ϕ (A)
m

for ϕ (λ) irreducible an irreducible monic polynomial.
There is a very interesting generalization of this theorem in [15] which pertains to the
existence of complementary subspaces. For an outline of this generalization, see Problem 9
on Page 293.

Theorem 9.3.5 Suppose A ∈ L (V, V ) for V some finite dimensional vector space. Then

for each k ∈ N, there exists a cyclic basis for ker
(
ϕ (A)

k
)

which is one of the form β ={
βx1

, · · · , βxp

}
or ker

(
ϕ (A)

k
)

= {0}. Note that if ker (ϕ (A)) ̸= {0} , then the same is

true for all ker
(
ϕ (A)

k
)
, k ∈ N.

Proof: If k = 1, you can use Lemma 9.3.4 and let W = {0} and U = ker (ϕ (A))
to obtain the cyclic basis. Suppose then that the theorem is true for m − 1,m − 1 ≥ 1

meaning that for any finite dimensional vector space V and A ∈ L (V, V ) , ker
(
ϕ (A)

k
)
has

a cyclic basis for all k ≤ m − 1. Consider a new vector space ϕ (A) ker (ϕ (A)
m
) ≡ V̂ in

place of V and the restriction of A to V̂ which we will call Â. Then Â ∈ L
(
V̂ , V̂

)
. It

follows ϕ (A)
m−1

(ϕ (A) ker (ϕ (A)
m
)) = ϕ (A)

m−1
V̂ = 0 and since ϕ (λ) is irreducible, the

minimum polynomial of Â on V̂ is ϕ
(
Â
)k

for some k ≤ m − 1. Thus ker

(
ϕ
(
Â
)k

)
≡

{
v ∈ V̂ : ϕ

(
Â
)k

v = 0

}
. Since k ≤ m − 1 the cyclic basis in V̂ exists by induction. If

k = 0, then you would have V̂ = {0} and {0} = ϕ (A) ker (ϕ (A)
m
) ⊇ ker (ϕ (A)) so nothing

is of any interest because all of these spaces are {0}.
Let the cyclic basis for V̂ ≡ ϕ (A) ker (ϕ (A)

m
) be

{
βx1

, · · · , βxp

}
, xi ∈ ϕ (A) ker (ϕ (A)

m
) .

Let xi = ϕ (A) yi, yi ∈ ker (ϕ (A)
m
). Consider

{
βy1

, · · · , βyp

}
, yi ∈ ker (ϕ (A)

m
) . Are these
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which would require x ∈ W but this is assumed not to take place. Hence z = 0 and so
the linear independence of the {v1, · · · , vs} implies each ai = 0. Then the linear indepen-
dence of

{
x,Ax, · · · , Ad−1x

}
, which follows from Lemma 9.3.2, shows each dj = 0. Thus{

v1, · · · , vs, x, Ax, · · · , Ad−1x
}
is linearly independent as claimed.

Let x ∈ U \ W ⊆ ker (ϕ (A)) . Then it was just shown that {v1, · · · , vs, βx} is linearly
independent. Let W1 be given by

y ∈ span (v1, · · · , vs, βx) ≡ W1

Then W1 is A invariant. If W1 equals U +W, then you are done. If not, let W1 play the
role of W and pick x1 ∈ U \W1 and repeat the argument. Continue till

span
(
v1, · · · , vs, βx1

, · · · , βxn

)
= U +W

The process stops because ker (ϕ (A)
m
) is finite dimensional.

Finally, letting x ∈ ker (ϕ (A)
m
) , there is a monic polynomial η (λ) such that η (A)x = 0

and η (λ) is of smallest possible degree, which degree equals |βx| . Then

ϕ (λ)
m

= η (λ) l (λ) + r (λ)

If deg (r (λ)) < deg (η (λ)) , then r (A)x = 0 and η (λ) was incorrectly chosen. Hence

r (λ) = 0 and so η (λ) must divide ϕ (λ)
m
. Hence by Corollary 7.3.11 η (λ) = ϕ (λ)

k
where

k ≤ m. Thus |βx| = kd = deg (η (λ)). �
With this preparation, here is the main result about a basis V where A ∈ L (V, V ) and the

minimal polynomial for A is ϕ (A)
m

for ϕ (λ) irreducible an irreducible monic polynomial.
There is a very interesting generalization of this theorem in [15] which pertains to the
existence of complementary subspaces. For an outline of this generalization, see Problem 9
on Page 293.

Theorem 9.3.5 Suppose A ∈ L (V, V ) for V some finite dimensional vector space. Then

for each k ∈ N, there exists a cyclic basis for ker
(
ϕ (A)

k
)

which is one of the form β ={
βx1

, · · · , βxp

}
or ker

(
ϕ (A)

k
)

= {0}. Note that if ker (ϕ (A)) ̸= {0} , then the same is

true for all ker
(
ϕ (A)

k
)
, k ∈ N.

Proof: If k = 1, you can use Lemma 9.3.4 and let W = {0} and U = ker (ϕ (A))
to obtain the cyclic basis. Suppose then that the theorem is true for m − 1,m − 1 ≥ 1

meaning that for any finite dimensional vector space V and A ∈ L (V, V ) , ker
(
ϕ (A)

k
)
has

a cyclic basis for all k ≤ m − 1. Consider a new vector space ϕ (A) ker (ϕ (A)
m
) ≡ V̂ in

place of V and the restriction of A to V̂ which we will call Â. Then Â ∈ L
(
V̂ , V̂

)
. It

follows ϕ (A)
m−1

(ϕ (A) ker (ϕ (A)
m
)) = ϕ (A)

m−1
V̂ = 0 and since ϕ (λ) is irreducible, the

minimum polynomial of Â on V̂ is ϕ
(
Â
)k

for some k ≤ m − 1. Thus ker

(
ϕ
(
Â
)k

)
≡

{
v ∈ V̂ : ϕ

(
Â
)k

v = 0

}
. Since k ≤ m − 1 the cyclic basis in V̂ exists by induction. If

k = 0, then you would have V̂ = {0} and {0} = ϕ (A) ker (ϕ (A)
m
) ⊇ ker (ϕ (A)) so nothing

is of any interest because all of these spaces are {0}.
Let the cyclic basis for V̂ ≡ ϕ (A) ker (ϕ (A)

m
) be

{
βx1

, · · · , βxp

}
, xi ∈ ϕ (A) ker (ϕ (A)

m
) .

Let xi = ϕ (A) yi, yi ∈ ker (ϕ (A)
m
). Consider

{
βy1

, · · · , βyp

}
, yi ∈ ker (ϕ (A)

m
) . Are these
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vectors independent? Suppose

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1yi ≡

p∑
i=1

fi (A) yi (9.4)

If the sum involved xi in place of yi, then something could be said because
{
βx1

, · · · , βxp

}

is a basis.
Do ϕ (A) to both sides to obtain

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1xi ≡

p∑
i=1

fi

(
Â
)
xi

Now fi

(
Â
)
xi = 0 for each i since fi

(
Â
)
xi ∈ span

(
βxi

)
and as just mentioned,

{
βx1

, · · · , βxp

}

is a basis. Let ηi (λ) be the monic polynomial of smallest degree such that ηi

(
Â
)
xi = 0.

Then
fi (λ) = ηi (λ) l (λ) + r (λ)

where r (λ) = 0 or else it has smaller degree than ηi (λ) . However, the equation then

shows that r
(
Â
)
xi = 0 which would contradict the choice of ηi (λ). Thus r (λ) = 0 and

ηi (λ) divides fi (λ). Also, ϕ
(
Â
)m−1

xi = ϕ
(
Â
)m−1

ϕ (A) yi = 0 and so ηi (λ) must divide

ϕ (λ)
m−1

. From Corollary 7.3.11, it follows that, since ϕ (λ) is irreducible, ηi (λ) = ϕ (λ)
r
for

some r ≤ m− 1. Thus ϕ (λ) divides ηi (λ) which divides fi (λ). Hence fi (λ) = ϕ (λ) gi (λ)!
Now

0 =

p∑
i=1

fi (A) yi =

p∑
i=1

gi (A)ϕ (A) yi =

p∑
i=1

gi

(
Â
)
xi.

By the same reasoning just given, since gi

(
Â
)
xi ∈ span

(
βxi

)
, it follows that each gi

(
Â
)
xi =

0. Therefore,

fi (A) yi = gi

(
Â
)
ϕ (A) yi = gi

(
Â
)
xi = 0.

Therefore,

fi (A) yi =

∣∣∣βyj

∣∣∣∑
j=1

aijA
j−1yi = 0

and by independence of the βyi
, this implies aij = 0 for each j for each i.

Next, it follows from the definition that ϕ (A) (ker (ϕ (A)
m
)) = span

(
βx1

, · · · , βxp

)
.

Now
W ≡ span

(
βy1

, · · · , βyp

)
⊆ ker (ϕ (A)

m
)

because each yi ∈ ker (ϕ (A)
m
). Then from the above description of

{
βx1

, · · · , βxp

}
as a

cyclic basis for ϕ (A) (ker (ϕ (A)
m
)) ,

ϕ (A) (ker (ϕ (A)
m
)) = span

(
βx1

, · · · , βxp

)
⊆ ϕ (A) span

(
βy1

, · · · , βyp

)

≡ ϕ (A) (W ) ⊆ ϕ (A) ker (ϕ (A)
m
)
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vectors independent? Suppose

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1yi ≡

p∑
i=1

fi (A) yi (9.4)

If the sum involved xi in place of yi, then something could be said because
{
βx1

, · · · , βxp

}

is a basis.
Do ϕ (A) to both sides to obtain

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1xi ≡

p∑
i=1

fi

(
Â
)
xi

Now fi

(
Â
)
xi = 0 for each i since fi

(
Â
)
xi ∈ span

(
βxi

)
and as just mentioned,

{
βx1

, · · · , βxp

}

is a basis. Let ηi (λ) be the monic polynomial of smallest degree such that ηi

(
Â
)
xi = 0.

Then
fi (λ) = ηi (λ) l (λ) + r (λ)

where r (λ) = 0 or else it has smaller degree than ηi (λ) . However, the equation then

shows that r
(
Â
)
xi = 0 which would contradict the choice of ηi (λ). Thus r (λ) = 0 and

ηi (λ) divides fi (λ). Also, ϕ
(
Â
)m−1

xi = ϕ
(
Â
)m−1

ϕ (A) yi = 0 and so ηi (λ) must divide

ϕ (λ)
m−1

. From Corollary 7.3.11, it follows that, since ϕ (λ) is irreducible, ηi (λ) = ϕ (λ)
r
for

some r ≤ m− 1. Thus ϕ (λ) divides ηi (λ) which divides fi (λ). Hence fi (λ) = ϕ (λ) gi (λ)!
Now

0 =

p∑
i=1

fi (A) yi =

p∑
i=1

gi (A)ϕ (A) yi =

p∑
i=1

gi

(
Â
)
xi.

By the same reasoning just given, since gi

(
Â
)
xi ∈ span

(
βxi

)
, it follows that each gi

(
Â
)
xi =

0. Therefore,

fi (A) yi = gi

(
Â
)
ϕ (A) yi = gi

(
Â
)
xi = 0.

Therefore,

fi (A) yi =

∣∣∣βyj

∣∣∣∑
j=1

aijA
j−1yi = 0

and by independence of the βyi
, this implies aij = 0 for each j for each i.

Next, it follows from the definition that ϕ (A) (ker (ϕ (A)
m
)) = span

(
βx1

, · · · , βxp

)
.

Now
W ≡ span

(
βy1

, · · · , βyp

)
⊆ ker (ϕ (A)

m
)

because each yi ∈ ker (ϕ (A)
m
). Then from the above description of

{
βx1

, · · · , βxp

}
as a

cyclic basis for ϕ (A) (ker (ϕ (A)
m
)) ,

ϕ (A) (ker (ϕ (A)
m
)) = span

(
βx1

, · · · , βxp

)
⊆ ϕ (A) span

(
βy1

, · · · , βyp

)

≡ ϕ (A) (W ) ⊆ ϕ (A) ker (ϕ (A)
m
)
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vectors independent? Suppose

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1yi ≡

p∑
i=1

fi (A) yi (9.4)

If the sum involved xi in place of yi, then something could be said because
{
βx1

, · · · , βxp

}

is a basis.
Do ϕ (A) to both sides to obtain

0 =

p∑
i=1

|βyi
|∑

j=1

aijA
j−1xi ≡

p∑
i=1

fi

(
Â
)
xi

Now fi

(
Â
)
xi = 0 for each i since fi

(
Â
)
xi ∈ span

(
βxi

)
and as just mentioned,

{
βx1

, · · · , βxp

}

is a basis. Let ηi (λ) be the monic polynomial of smallest degree such that ηi

(
Â
)
xi = 0.

Then
fi (λ) = ηi (λ) l (λ) + r (λ)

where r (λ) = 0 or else it has smaller degree than ηi (λ) . However, the equation then

shows that r
(
Â
)
xi = 0 which would contradict the choice of ηi (λ). Thus r (λ) = 0 and

ηi (λ) divides fi (λ). Also, ϕ
(
Â
)m−1

xi = ϕ
(
Â
)m−1

ϕ (A) yi = 0 and so ηi (λ) must divide

ϕ (λ)
m−1

. From Corollary 7.3.11, it follows that, since ϕ (λ) is irreducible, ηi (λ) = ϕ (λ)
r
for

some r ≤ m− 1. Thus ϕ (λ) divides ηi (λ) which divides fi (λ). Hence fi (λ) = ϕ (λ) gi (λ)!
Now

0 =

p∑
i=1

fi (A) yi =

p∑
i=1

gi (A)ϕ (A) yi =

p∑
i=1

gi

(
Â
)
xi.

By the same reasoning just given, since gi

(
Â
)
xi ∈ span

(
βxi

)
, it follows that each gi

(
Â
)
xi =

0. Therefore,

fi (A) yi = gi

(
Â
)
ϕ (A) yi = gi

(
Â
)
xi = 0.

Therefore,

fi (A) yi =

∣∣∣βyj

∣∣∣∑
j=1

aijA
j−1yi = 0

and by independence of the βyi
, this implies aij = 0 for each j for each i.

Next, it follows from the definition that ϕ (A) (ker (ϕ (A)
m
)) = span

(
βx1

, · · · , βxp

)
.

Now
W ≡ span

(
βy1

, · · · , βyp

)
⊆ ker (ϕ (A)

m
)

because each yi ∈ ker (ϕ (A)
m
). Then from the above description of

{
βx1

, · · · , βxp

}
as a

cyclic basis for ϕ (A) (ker (ϕ (A)
m
)) ,

ϕ (A) (ker (ϕ (A)
m
)) = span

(
βx1

, · · · , βxp

)
⊆ ϕ (A) span

(
βy1

, · · · , βyp

)

≡ ϕ (A) (W ) ⊆ ϕ (A) ker (ϕ (A)
m
)
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To see the first inclusion,

Arxq = Arϕ (A) yq = ϕ (A)Aryq ∈ ϕ (A) span
(
βyq

)
⊆ ϕ (A) span

(
βy1

, · · · , βyp

)

It follows from Lemma 9.3.3 that ker (ϕ (A)
m
) = W + ker (ϕ (A)) . From Lemma 9.3.4 W +

ker (ϕ (A)) has a basis of the form
{
βy1

, · · · , βyp
, βz1 , · · · , βzs

}
. �

9.4 Nilpotent Transformations

Definition 9.4.1 Let V be a vector space over the field of scalars F. Then N ∈ L (V, V ) is
called nilpotent if for some m, it follows that Nm = 0.

The following lemma contains some significant observations about nilpotent transforma-
tions.

Lemma 9.4.2 Suppose Nkx ̸= 0. Then
{
x,Nx, · · · , Nkx

}
is linearly independent. Also,

the minimal polynomial of N is λm where m is the first such that Nm = 0.

Proof: Suppose
∑k

i=0 ciN
ix = 0 where not all ci = 0. There exists l such that

k ≤ l < m and N l+1x = 0 but N lx ̸= 0. Then multiply both sides by N l to conclude that
c0 = 0. Next multiply both sides by N l−1 to conclude that c1 = 0 and continue this way to
obtain that all the ci = 0.

Next consider the claim that λm is the minimal polynomial. If p (λ) is the minimal
polynomial, then by the division algorithm,

λm = p (λ) l (λ) + r (λ)

where the degree of r (λ) is less than that of p (λ) or else r (λ) = 0. The above implies
0 = 0 + r (N) contrary to p (λ) being minimal. Hence r (λ) = 0 and so p (λ) divides λm.
Hence p (λ) = λk for k ≤ m. But if k < m, this would contradict the definition of m as
being the smallest such that Nm = 0. �

For such a nilpotent transformation, let
{
βx1

, · · · , βxq

}
be a basis for ker (Nm) = V

where these βxi
are cyclic. This basis exists thanks to Theorem 9.3.5. Note that you can

have |βx| < m because it is possible for Nkx = 0 without Nk = 0. Thus

V = span
(
βx1

)
⊕ · · · ⊕ span

(
βxq

)
,

each of these subspaces in the above direct sum being N invariant. For x one of the xk,
consider βx given by

x,Nx,N2x, · · · , Nr−1x

where Nrx is in the span of the above vectors. Then by the above lemma, Nrx = 0.
By Theorem 9.2.5, the matrix of N with respect to the above basis is the block diagonal

matrix 


M1 0
. . .

0 Mq




where Mk denotes the matrix of N restricted to span
(
βxk

)
. In computing this matrix, I

will order βxk
as follows: (

Nrk−1xk, · · · , xk

)
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Also the cyclic sets βx1
, βx2

, · · · , βxq
will be ordered according to length, the length of βxi

being at least as large as the length of βxi+1
,
��βxk

�� ≡ rk. Then since Nrkxk = 0, it is now

easy to find Mk. Using the procedure mentioned above for determining the matrix of a
linear transformation, (

0 Nrk−1xk · · · Nxk

)
=

(
Nrk−1xk Nrk−2xk · · · xk

)




0 1 0

0 0
. . .

...
...

. . . 1

0 0 · · · 0




Thus the matrix Mk is the rk×rk matrix which has ones down the super diagonal and zeros
elsewhere. The following convenient notation will be used.

Definition 9.4.3 Jk (α) is a Jordan block if it is a k × k matrix of the form

Jk (α) =




α 1 0

0
. . .

. . .
...

. . .
. . . 1

0 · · · 0 α




In words, there is an unbroken string of ones down the super diagonal and the number α
filling every space on the main diagonal with zeros everywhere else.

Then with this definition and the above discussion, the following proposition has been
proved.

Proposition 9.4.4 Let N ∈ L (W,W ) be nilpotent,

Nm = 0

for some m ∈ N. Here W is a p dimensional vector space with field of scalars F. Then there
exists a basis for W such that the matrix of N with respect to this basis is of the form

J =




Jr1 (0) 0

Jr2 (0)
. . .

0 Jrs (0)




(9.5)

where r1 ≥ r2 ≥ · · · ≥ rs ≥ 1 and
∑s

i=1 ri = p. In the above, the Jrj (0) is called a Jordan
block of size rj × rj with 0 down the main diagonal.

Observation 9.4.5 Observe that Jr (0)
r
= 0 but Jr (0)

r−1 ̸= 0.

In fact, the matrix of the above proposition is unique.

Corollary 9.4.6 Let J, J ′ both be matrices of the nilpotent linear transformation N ∈
L (W,W ) which are of the form described in Proposition 9.4.4. Then J = J ′. In fact,
if the rank of Jk equals the rank of J ′k for all nonnegative integers k, then J = J ′.
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Proof: Since J and J ′ are similar, it follows that for each k an integer, Jk and J ′k are
similar. Hence, for each k, these matrices have the same rank. Now suppose J ̸= J ′. Note
first that

Jr (0)
r
= 0, Jr (0)

r−1 ̸= 0.

Denote the blocks of J as Jrk (0) and the blocks of J ′ as Jr′k (0). Let k be the first such that
Jrk (0) ̸= Jr′k (0). Suppose that rk > r′k. By block multiplication and the above observation,

it follows that the two matrices Jrk−1 and J ′rk−1 are respectively of the forms



Mr1 0
. . .

Mrk

∗
. . .

0 ∗




,




Mr′1
0

. . .

Mr′k

0
. . .

0 0




where Mrj = Mr′j
for j ≤ k−1 but Mr′k

is a zero r′k×r′k matrix while Mrk is a larger matrix
which is not equal to 0. For example, Mrk could look like

Mrk =




0 · · · 1
. . .

...

0 0




Thus there are more pivot columns in Jrk−1 than in (J ′)
rk−1

, contradicting the requirement
that Jk and J ′k have the same rank. �

9.5 The Jordan Canonical Form

The Jordan canonical form has to do with the case where the minimal polynomial of A ∈
L (V, V ) splits. Thus there exist λk in the field of scalars such that the minimal polynomial
of A is of the form

p (λ) =
r∏

k=1

(λ− λk)
mk

Recall the following which follows from Theorem 8.4.4.

Proposition 9.5.1 Let the minimal polynomial of A ∈ L (V, V ) be given by

p (λ) =

r∏
k=1

(λ− λk)
mk

Then the eigenvalues of A are {λ1, · · · , λr}.

It follows from Corollary 9.2.3 that

V = ker (A− λ1I)
m1 ⊕ · · · ⊕ ker (A− λrI)

mr

≡ V1 ⊕ · · · ⊕ Vr

where I denotes the identity linear transformation. Without loss of generality, let the
dimensions of the Vk be decreasing from left to right. These Vk are called the generalized
eigenspaces.
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To see the first inclusion,

Arxq = Arϕ (A) yq = ϕ (A)Aryq ∈ ϕ (A) span
(
βyq

)
⊆ ϕ (A) span

(
βy1

, · · · , βyp

)

It follows from Lemma 9.3.3 that ker (ϕ (A)
m
) = W + ker (ϕ (A)) . From Lemma 9.3.4 W +

ker (ϕ (A)) has a basis of the form
{
βy1

, · · · , βyp
, βz1 , · · · , βzs

}
. �

9.4 Nilpotent Transformations

Definition 9.4.1 Let V be a vector space over the field of scalars F. Then N ∈ L (V, V ) is
called nilpotent if for some m, it follows that Nm = 0.

The following lemma contains some significant observations about nilpotent transforma-
tions.

Lemma 9.4.2 Suppose Nkx ̸= 0. Then
{
x,Nx, · · · , Nkx

}
is linearly independent. Also,

the minimal polynomial of N is λm where m is the first such that Nm = 0.

Proof: Suppose
∑k

i=0 ciN
ix = 0 where not all ci = 0. There exists l such that

k ≤ l < m and N l+1x = 0 but N lx ̸= 0. Then multiply both sides by N l to conclude that
c0 = 0. Next multiply both sides by N l−1 to conclude that c1 = 0 and continue this way to
obtain that all the ci = 0.

Next consider the claim that λm is the minimal polynomial. If p (λ) is the minimal
polynomial, then by the division algorithm,

λm = p (λ) l (λ) + r (λ)

where the degree of r (λ) is less than that of p (λ) or else r (λ) = 0. The above implies
0 = 0 + r (N) contrary to p (λ) being minimal. Hence r (λ) = 0 and so p (λ) divides λm.
Hence p (λ) = λk for k ≤ m. But if k < m, this would contradict the definition of m as
being the smallest such that Nm = 0. �

For such a nilpotent transformation, let
{
βx1

, · · · , βxq

}
be a basis for ker (Nm) = V

where these βxi
are cyclic. This basis exists thanks to Theorem 9.3.5. Note that you can

have |βx| < m because it is possible for Nkx = 0 without Nk = 0. Thus

V = span
(
βx1

)
⊕ · · · ⊕ span

(
βxq

)
,

each of these subspaces in the above direct sum being N invariant. For x one of the xk,
consider βx given by

x,Nx,N2x, · · · , Nr−1x

where Nrx is in the span of the above vectors. Then by the above lemma, Nrx = 0.
By Theorem 9.2.5, the matrix of N with respect to the above basis is the block diagonal

matrix 


M1 0
. . .

0 Mq




where Mk denotes the matrix of N restricted to span
(
βxk

)
. In computing this matrix, I

will order βxk
as follows: (

Nrk−1xk, · · · , xk

)
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Proof: Since J and J ′ are similar, it follows that for each k an integer, Jk and J ′k are
similar. Hence, for each k, these matrices have the same rank. Now suppose J ̸= J ′. Note
first that

Jr (0)
r
= 0, Jr (0)

r−1 ̸= 0.

Denote the blocks of J as Jrk (0) and the blocks of J ′ as Jr′k (0). Let k be the first such that
Jrk (0) ̸= Jr′k (0). Suppose that rk > r′k. By block multiplication and the above observation,

it follows that the two matrices Jrk−1 and J ′rk−1 are respectively of the forms



Mr1 0
. . .

Mrk

∗
. . .

0 ∗




,




Mr′1
0

. . .

Mr′k

0
. . .

0 0




where Mrj = Mr′j
for j ≤ k−1 but Mr′k

is a zero r′k×r′k matrix while Mrk is a larger matrix
which is not equal to 0. For example, Mrk could look like

Mrk =




0 · · · 1
. . .

...

0 0




Thus there are more pivot columns in Jrk−1 than in (J ′)
rk−1

, contradicting the requirement
that Jk and J ′k have the same rank. �

9.5 The Jordan Canonical Form

The Jordan canonical form has to do with the case where the minimal polynomial of A ∈
L (V, V ) splits. Thus there exist λk in the field of scalars such that the minimal polynomial
of A is of the form

p (λ) =
r∏

k=1

(λ− λk)
mk

Recall the following which follows from Theorem 8.4.4.

Proposition 9.5.1 Let the minimal polynomial of A ∈ L (V, V ) be given by

p (λ) =

r∏
k=1

(λ− λk)
mk

Then the eigenvalues of A are {λ1, · · · , λr}.

It follows from Corollary 9.2.3 that

V = ker (A− λ1I)
m1 ⊕ · · · ⊕ ker (A− λrI)

mr

≡ V1 ⊕ · · · ⊕ Vr

where I denotes the identity linear transformation. Without loss of generality, let the
dimensions of the Vk be decreasing from left to right. These Vk are called the generalized
eigenspaces.
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Proof: Since J and J ′ are similar, it follows that for each k an integer, Jk and J ′k are
similar. Hence, for each k, these matrices have the same rank. Now suppose J ̸= J ′. Note
first that

Jr (0)
r
= 0, Jr (0)

r−1 ̸= 0.

Denote the blocks of J as Jrk (0) and the blocks of J ′ as Jr′k (0). Let k be the first such that
Jrk (0) ̸= Jr′k (0). Suppose that rk > r′k. By block multiplication and the above observation,

it follows that the two matrices Jrk−1 and J ′rk−1 are respectively of the forms



Mr1 0
. . .

Mrk

∗
. . .

0 ∗




,




Mr′1
0

. . .

Mr′k

0
. . .

0 0




where Mrj = Mr′j
for j ≤ k−1 but Mr′k

is a zero r′k×r′k matrix while Mrk is a larger matrix
which is not equal to 0. For example, Mrk could look like

Mrk =




0 · · · 1
. . .

...

0 0




Thus there are more pivot columns in Jrk−1 than in (J ′)
rk−1

, contradicting the requirement
that Jk and J ′k have the same rank. �

9.5 The Jordan Canonical Form

The Jordan canonical form has to do with the case where the minimal polynomial of A ∈
L (V, V ) splits. Thus there exist λk in the field of scalars such that the minimal polynomial
of A is of the form

p (λ) =

r∏
k=1

(λ− λk)
mk

Recall the following which follows from Theorem 8.4.4.

Proposition 9.5.1 Let the minimal polynomial of A ∈ L (V, V ) be given by

p (λ) =

r∏
k=1

(λ− λk)
mk

Then the eigenvalues of A are {λ1, · · · , λr}.

It follows from Corollary 9.2.3 that

V = ker (A− λ1I)
m1 ⊕ · · · ⊕ ker (A− λrI)

mr

≡ V1 ⊕ · · · ⊕ Vr

where I denotes the identity linear transformation. Without loss of generality, let the
dimensions of the Vk be decreasing from left to right. These Vk are called the generalized
eigenspaces.
9.5. THE JORDAN CANONICAL FORM 249

It follows from the definition of Vk that (A− λkI) is nilpotent on Vk and clearly each
Vk is A invariant. Therefore from Proposition 9.4.4, and letting Ak denote the restriction
of A to Vk, there exists an ordered basis for Vk, βk such that with respect to this basis, the
matrix of (Ak − λkI) is of the form given in that proposition, denoted here by Jk. What is
the matrix of Ak with respect to βk? Letting {b1, · · · , br} = βk,

Akbj = (Ak − λkI) bj + λkIbj ≡
∑
s

Jk
sjbs +

∑
s

λkδsjbs =
∑
s

(
Jk
sj + λkδsj

)
bs

and so the matrix of Ak with respect to this basis is Jk+λkI where I is the identity matrix.
Therefore, with respect to the ordered basis {β1, · · · , βr} the matrix of A is in Jordan

canonical form. This means the matrix is of the form



J (λ1) 0
. . .

0 J (λr)


 (9.6)

where J (λk) is an mk ×mk matrix of the form




Jk1
(λk) 0

Jk2
(λk)

. . .

0 Jkr
(λk)




(9.7)

where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = mk. Here Jk (λ) is a k× k Jordan block of the
form 



λ 1 0

0 λ
. . .

. . .
. . . 1

0 0 λ




(9.8)

This proves the existence part of the following fundamental theorem.
Note that if any of the βk consists of eigenvectors, then the corresponding Jordan block

will consist of a diagonal matrix having λk down the main diagonal. This corresponds to
mk = 1. The vectors which are in ker (A− λkI)

mk which are not in ker (A− λkI) are called
generalized eigenvectors.

The following is the main result on the Jordan canonical form.

Theorem 9.5.2 Let V be an n dimensional vector space with field of scalars C or some
other field such that the minimal polynomial of A ∈ L (V, V ) completely factors into powers
of linear factors. Then there exists a unique Jordan canonical form for A as described in
9.6 - 9.8, where uniqueness is in the sense that any two have the same number and size of
Jordan blocks.

Proof: It only remains to verify uniqueness. Suppose there are two, J and J ′. Then these
are matrices of A with respect to possibly different bases and so they are similar. Therefore,
they have the same minimal polynomials and the generalized eigenspaces have the same
dimension. Thus the size of the matrices J (λk) and J ′ (λk) defined by the dimension of
these generalized eigenspaces, also corresponding to the algebraic multiplicity of λk, must
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It follows from the definition of Vk that (A− λkI) is nilpotent on Vk and clearly each
Vk is A invariant. Therefore from Proposition 9.4.4, and letting Ak denote the restriction
of A to Vk, there exists an ordered basis for Vk, βk such that with respect to this basis, the
matrix of (Ak − λkI) is of the form given in that proposition, denoted here by Jk. What is
the matrix of Ak with respect to βk? Letting {b1, · · · , br} = βk,

Akbj = (Ak − λkI) bj + λkIbj ≡
∑
s

Jk
sjbs +

∑
s

λkδsjbs =
∑
s

(
Jk
sj + λkδsj

)
bs

and so the matrix of Ak with respect to this basis is Jk+λkI where I is the identity matrix.
Therefore, with respect to the ordered basis {β1, · · · , βr} the matrix of A is in Jordan

canonical form. This means the matrix is of the form



J (λ1) 0
. . .

0 J (λr)


 (9.6)

where J (λk) is an mk ×mk matrix of the form




Jk1
(λk) 0

Jk2
(λk)

. . .

0 Jkr
(λk)




(9.7)

where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = mk. Here Jk (λ) is a k× k Jordan block of the
form 



λ 1 0

0 λ
. . .

. . .
. . . 1

0 0 λ




(9.8)

This proves the existence part of the following fundamental theorem.
Note that if any of the βk consists of eigenvectors, then the corresponding Jordan block

will consist of a diagonal matrix having λk down the main diagonal. This corresponds to
mk = 1. The vectors which are in ker (A− λkI)

mk which are not in ker (A− λkI) are called
generalized eigenvectors.

The following is the main result on the Jordan canonical form.

Theorem 9.5.2 Let V be an n dimensional vector space with field of scalars C or some
other field such that the minimal polynomial of A ∈ L (V, V ) completely factors into powers
of linear factors. Then there exists a unique Jordan canonical form for A as described in
9.6 - 9.8, where uniqueness is in the sense that any two have the same number and size of
Jordan blocks.

Proof: It only remains to verify uniqueness. Suppose there are two, J and J ′. Then these
are matrices of A with respect to possibly different bases and so they are similar. Therefore,
they have the same minimal polynomials and the generalized eigenspaces have the same
dimension. Thus the size of the matrices J (λk) and J ′ (λk) defined by the dimension of
these generalized eigenspaces, also corresponding to the algebraic multiplicity of λk, must
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be the same. Therefore, they comprise the same set of positive integers. Thus listing the
eigenvalues in the same order, corresponding blocks J (λk) , J

′ (λk) are the same size.
It remains to show that J (λk) and J ′ (λk) are not just the same size but also are the

same up to order of the Jordan blocks running down their respective diagonals. It is only
necessary to worry about the number and size of the Jordan blocks making up J (λk) and
J ′ (λk) . Since J, J ′ are similar, so are J − λkI and J ′ − λkI.

Thus the following two matrices are similar

A ≡




J (λ1)− λkI 0
. . .

J (λk)− λkI
. . .

0 J (λr)− λkI




B ≡




J ′ (λ1)− λkI 0
. . .

J ′ (λk)− λkI
. . .

0 J ′ (λr)− λkI




and consequently, rank
(
Ak

)
= rank

(
Bk

)
for all k ∈ N. Also, both J (λj) − λkI and

J ′ (λj)−λkI are one to one for every λj ̸= λk. Since all the blocks in both of these matrices
are one to one except the blocks J ′ (λk)−λkI, J (λk)−λkI, it follows that this requires the
two sequences of numbers {rank ((J (λk)− λkI)

m
)}∞m=1 and

{
rank

(
(J ′ (λk)− λkI)

m)}∞
m=1

must be the same.
Then

J (λk)− λkI ≡




Jk1 (0) 0

Jk2 (0)
. . .

0 Jkr
(0)




and a similar formula holds for J ′ (λk)

J ′ (λk)− λkI ≡




Jl1 (0) 0

Jl2 (0)
. . .

0 Jlp (0)




and it is required to verify that p = r and that the same blocks occur in both. Without
loss of generality, let the blocks be arranged according to size with the largest on upper left
corner falling to smallest in lower right. Now the desired conclusion follows from Corollary
9.4.6. �

Note that if any of the generalized eigenspaces ker (A− λkI)
mk has a basis of eigen-

vectors, then it would be possible to use this basis and obtain a diagonal matrix in the
block corresponding to λk. By uniqueness, this is the block corresponding to the eigenvalue
λk. Thus when this happens, the block in the Jordan canonical form corresponding to λk

is just the diagonal matrix having λk down the diagonal and there are no generalized
eigenvectors.
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be the same. Therefore, they comprise the same set of positive integers. Thus listing the
eigenvalues in the same order, corresponding blocks J (λk) , J

′ (λk) are the same size.
It remains to show that J (λk) and J ′ (λk) are not just the same size but also are the

same up to order of the Jordan blocks running down their respective diagonals. It is only
necessary to worry about the number and size of the Jordan blocks making up J (λk) and
J ′ (λk) . Since J, J ′ are similar, so are J − λkI and J ′ − λkI.

Thus the following two matrices are similar

A ≡




J (λ1)− λkI 0
. . .

J (λk)− λkI
. . .

0 J (λr)− λkI




B ≡




J ′ (λ1)− λkI 0
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and consequently, rank
(
Ak

)
= rank

(
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)
for all k ∈ N. Also, both J (λj) − λkI and

J ′ (λj)−λkI are one to one for every λj ̸= λk. Since all the blocks in both of these matrices
are one to one except the blocks J ′ (λk)−λkI, J (λk)−λkI, it follows that this requires the
two sequences of numbers {rank ((J (λk)− λkI)

m
)}∞m=1 and

{
rank

(
(J ′ (λk)− λkI)

m)}∞
m=1

must be the same.
Then

J (λk)− λkI ≡




Jk1 (0) 0

Jk2 (0)
. . .

0 Jkr
(0)




and a similar formula holds for J ′ (λk)

J ′ (λk)− λkI ≡




Jl1 (0) 0

Jl2 (0)
. . .

0 Jlp (0)




and it is required to verify that p = r and that the same blocks occur in both. Without
loss of generality, let the blocks be arranged according to size with the largest on upper left
corner falling to smallest in lower right. Now the desired conclusion follows from Corollary
9.4.6. �

Note that if any of the generalized eigenspaces ker (A− λkI)
mk has a basis of eigen-

vectors, then it would be possible to use this basis and obtain a diagonal matrix in the
block corresponding to λk. By uniqueness, this is the block corresponding to the eigenvalue
λk. Thus when this happens, the block in the Jordan canonical form corresponding to λk

is just the diagonal matrix having λk down the diagonal and there are no generalized
eigenvectors.
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The Jordan canonical form is very significant when you try to understand powers of a
matrix. There exists an n× n matrix S1 such that

A = S−1JS.

Therefore, A2 = S−1JSS−1JS = S−1J2S and continuing this way, it follows

Ak = S−1JkS.

where J is given in the above corollary. Consider Jk. By block multiplication,

Jk =




Jk
1 0

. . .

0 Jk
r


 .

The matrix Js is an ms ×ms matrix which is of the form

Js = D +N

for D a multiple of the identity and N an upper triangular matrix with zeros down the
main diagonal. Thus Nms = 0. Now since D is just a multiple of the identity, it follows
that DN = ND. Therefore, the usual binomial theorem may be applied and this yields the
following equations for k ≥ ms.

Jk
s = (D +N)

k
=

k∑
j=0

(
k

j

)
Dk−jN j

=

ms∑
j=0

(
k

j

)
Dk−jN j , (9.9)

the third equation holding because Nms = 0. Thus Jk
s is of the form

Jk
s =




αk · · · ∗
...

. . .
...

0 · · · αk


 .

Lemma 9.5.3 Suppose J is of the form Js, a Jordan block where the constant α, on the
main diagonal is less than one in absolute value. Then

lim
k→∞

(
Jk

)
ij
= 0.

Proof: From 9.9, it follows that for large k, and j ≤ ms,
(
k

j

)
≤ k (k − 1) · · · (k −ms + 1)

ms!
.

Therefore, letting C be the largest value of
���(N j

)
pq

��� for 0 ≤ j ≤ ms,

���(Jk
)
pq

��� ≤ msC

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

1The S here is written as S−1 in the corollary.
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which converges to zero as k → ∞. This is most easily seen by applying the ratio test to
the series

∞∑
k=ms

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

and then noting that if a series converges, then the kth term converges to zero. �

9.6 Exercises

1. In the discussion of Nilpotent transformations, it was asserted that if two n×nmatrices
A,B are similar, then Ak is also similar to Bk. Why is this so? If two matrices are
similar, why must they have the same rank?

2. If A,B are both invertible, then they are both row equivalent to the identity matrix.
Are they necessarily similar? Explain.

3. Suppose you have two nilpotent matrices A,B and Ak and Bk both have the same
rank for all k ≥ 1. Does it follow that A,B are similar? What if it is not known that
A,B are nilpotent? Does it follow then?

4. When we say a polynomial equals zero, we mean that all the coefficients equal 0. If we
assign a different meaning to it which says that a polynomial p (λ) equals zero when
it is the zero function, (p (λ) = 0 for every λ ∈ F.) does this amount to the same
thing? Is there any difference in the two definitions for ordinary fields like Q? Hint:
Consider for the field of scalars Z2, the integers mod 2 and consider p (λ) = λ2 + λ.

5. Let A ∈ L (V, V ) where V is a finite dimensional vector space with field of scalars F.
Let p (λ) be the minimal polynomial and suppose ϕ (λ) is any nonzero polynomial such
that ϕ (A) is not one to one and ϕ (λ) has smallest possible degree such that ϕ (A) is
nonzero and not one to one. Show ϕ (λ) must divide p (λ).

6. Let A ∈ L (V, V ) where V is a finite dimensional vector space with field of scalars F.
Let p (λ) be the minimal polynomial and suppose ϕ (λ) is an irreducible polynomial
with the property that ϕ (A)x = 0 for some specific x ̸= 0. Show that ϕ (λ) must
divide p (λ) . Hint: First write p (λ) = ϕ (λ) g (λ) + r (λ) where r (λ) is either 0 or
has degree smaller than the degree of ϕ (λ). If r (λ) = 0 you are done. Suppose it is
not 0. Let η (λ) be the monic polynomial of smallest degree with the property that
η (A)x = 0. Now use the Euclidean algorithm to divide ϕ (λ) by η (λ) . Contradict the
irreducibility of ϕ (λ) .

7. Suppose A is a linear transformation and let the characteristic polynomial be

det (λI −A) =

q∏
j=1

ϕj (λ)
nj

where the ϕj (λ) are irreducible. Explain using Corollary 7.3.11 why the irreducible
factors of the minimal polynomial are ϕj (λ) and why the minimal polynomial is of
the form

∏q
j=1 ϕj (λ)

rj where rj ≤ nj . You can use the Cayley Hamilton theorem if
you like.

8. Let

A =




1 0 0

0 0 −1

0 1 0
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Find the minimal polynomial for A.

9. Suppose A is an n × n matrix and let v be a vector. Consider the A cyclic set of
vectors

{
v, Av, · · · , Am−1v

}
where this is an independent set of vectors but Amv is

a linear combination of the preceding vectors in the list. Show how to obtain a monic
polynomial of smallest degree, m, ϕv (λ) such that

ϕv (A)v = 0

Now let {w1, · · · ,wn} be a basis and let ϕ (λ) be the least common multiple of the
ϕwk

(λ) . Explain why this must be the minimal polynomial of A. Give a reasonably
easy algorithm for computing ϕv (λ).

10. Here is a matrix. 


−7 −1 −1

−21 −3 −3

70 10 10




Using the process of Problem 9 find the minimal polynomial of this matrix. It turns
out the characteristic polynomial is λ3.

11. Find the minimal polynomial for

A =




1 2 3

2 1 4

−3 2 1




by the above technique. Is what you found also the characteristic polynomial?

12. Let A be an n × n matrix with field of scalars C. Letting λ be an eigenvalue, show
the dimension of the eigenspace equals the number of Jordan blocks in the Jordan
canonical form which are associated with λ. Recall the eigenspace is ker (λI −A) .

13. For any n × n matrix, why is the dimension of the eigenspace always less than or
equal to the algebraic multiplicity of the eigenvalue as a root of the characteristic
equation? Hint: Note the algebraic multiplicity is the size of the appropriate block
in the Jordan form.

14. Give an example of two nilpotent matrices which are not similar but have the same
minimal polynomial if possible.

15. Use the existence of the Jordan canonical form for a linear transformation whose
minimal polynomial factors completely to give a proof of the Cayley Hamilton theorem
which is valid for any field of scalars. Hint: First assume the minimal polynomial
factors completely into linear factors. If this does not happen, consider a splitting field
of the minimal polynomial. Then consider the minimal polynomial with respect to
this larger field. How will the two minimal polynomials be related? Show the minimal
polynomial always divides the characteristic polynomial.

16. Here is a matrix. Find its Jordan canonical form by directly finding the eigenvectors
and generalized eigenvectors based on these to find a basis which will yield the Jordan
form. The eigenvalues are 1 and 2.




−3 −2 5 3

−1 0 1 2

−4 −3 6 4

−1 −1 1 3
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Why is it typically impossible to find the Jordan canonical form?

17. People like to consider the solutions of first order linear systems of equations which
are of the form

x′ (t) = Ax (t)

where here A is an n × n matrix. From the theorem on the Jordan canonical form,
there exist S and S−1 such that A = SJS−1 where J is a Jordan form. Define
y (t) ≡ S−1x (t) . Show y′ = Jy. Now suppose Ψ (t) is an n×n matrix whose columns
are solutions of the above differential equation. Thus

Ψ′ = AΨ

Now let Φ be defined by SΦS−1 = Ψ. Show

Φ′ = JΦ.

18. In the above Problem show that

det (Ψ)
′
= trace (A) det (Ψ)

and so
det (Ψ (t)) = Cetrace(A)t

This is called Abel’s formula and det (Ψ (t)) is called the Wronskian. Hint: Show it
suffices to consider

Φ′ = JΦ

and establish the formula for Φ. Next let

Φ =




ϕ1

...

ϕn




where the ϕj are the rows of Φ. Then explain why

det (Φ)
′
=

n∑
i=1

det (Φi) (9.10)

where Φi is the same as Φ except the ith row is replaced with ϕ′
i instead of the row

ϕi. Now from the form of J,
Φ′ = DΦ+NΦ

where N has all nonzero entries above the main diagonal. Explain why

ϕ′
i (t) = λiϕi (t) + aiϕi+1 (t)

Now use this in the formula for the derivative of the Wronskian given in 9.10 and use
properties of determinants to obtain

det (Φ)
′
=

n∑
i=1

λi det (Φ) .

Obtain Abel’s formula
det (Φ) = Cetrace(A)t

and so the Wronskian detΦ either vanishes identically or never.
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Why is it typically impossible to find the Jordan canonical form?
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there exist S and S−1 such that A = SJS−1 where J is a Jordan form. Define
y (t) ≡ S−1x (t) . Show y′ = Jy. Now suppose Ψ (t) is an n×n matrix whose columns
are solutions of the above differential equation. Thus
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Now let Φ be defined by SΦS−1 = Ψ. Show
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′
= trace (A) det (Ψ)

and so
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This is called Abel’s formula and det (Ψ (t)) is called the Wronskian. Hint: Show it
suffices to consider

Φ′ = JΦ

and establish the formula for Φ. Next let

Φ =




ϕ1

...

ϕn




where the ϕj are the rows of Φ. Then explain why

det (Φ)
′
=

n∑
i=1

det (Φi) (9.10)

where Φi is the same as Φ except the ith row is replaced with ϕ′
i instead of the row

ϕi. Now from the form of J,
Φ′ = DΦ+NΦ

where N has all nonzero entries above the main diagonal. Explain why

ϕ′
i (t) = λiϕi (t) + aiϕi+1 (t)

Now use this in the formula for the derivative of the Wronskian given in 9.10 and use
properties of determinants to obtain

det (Φ)
′
=

n∑
i=1

λi det (Φ) .

Obtain Abel’s formula
det (Φ) = Cetrace(A)t

and so the Wronskian detΦ either vanishes identically or never.
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19. Let A be an n× n matrix and let J be its Jordan canonical form. Recall J is a block
diagonal matrix having blocks Jk (λ) down the diagonal. Each of these blocks is of
the form

Jk (λ) =




λ 1 0

λ
. . .

. . . 1

0 λ




Now for ε > 0 given, let the diagonal matrix Dε be given by

Dε =




1 0

ε
. . .

0 εk−1




Show that D−1
ε Jk (λ)Dε has the same form as Jk (λ) but instead of ones down the

super diagonal, there is ε down the super diagonal. That is Jk (λ) is replaced with




λ ε 0

λ
. . .

. . . ε

0 λ




Now show that for A an n×n matrix, it is similar to one which is just like the Jordan
canonical form except instead of the blocks having 1 down the super diagonal, it has
ε.

20. Let A be in L (V, V ) and suppose that Apx ̸= 0 for some x ̸= 0. Show that Apek ̸= 0
for some ek ∈ {e1, · · · , en} , a basis for V . If you have a matrix which is nilpotent,
(Am = 0 for some m) will it always be possible to find its Jordan form? Describe how
to do it if this is the case. Hint: First explain why all the eigenvalues are 0. Then
consider the way the Jordan form for nilpotent transformations was constructed in the
above.

21. Suppose A is an n×n matrix and that it has n distinct eigenvalues. How do the mini-
mal polynomial and characteristic polynomials compare? Determine other conditions
based on the Jordan Canonical form which will cause the minimal and characteristic
polynomials to be different.

22. Suppose A is a 3× 3 matrix and it has at least two distinct eigenvalues. Is it possible
that the minimal polynomial is different than the characteristic polynomial?

23. If A is an n×n matrix of entries from a field of scalars and if the minimal polynomial
of A splits over this field of scalars, does it follow that the characteristic polynomial
of A also splits? Explain why or why not.

24. Show that if two n × n matrices A,B are similar, then they have the same minimal
polynomial and also that if this minimal polynomial is of the form p (λ) =

∏s
i=1 ϕi (λ)

ri

where the ϕi (λ) are irreducible and monic, then ker (ϕi (A)
ri) and ker (ϕi (B)

ri) have
the same dimension. Why is this so? This was what was responsible for the blocks
corresponding to an eigenvalue being of the same size.
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canonical form except instead of the blocks having 1 down the super diagonal, it has
ε.

20. Let A be in L (V, V ) and suppose that Apx ̸= 0 for some x ̸= 0. Show that Apek ̸= 0
for some ek ∈ {e1, · · · , en} , a basis for V . If you have a matrix which is nilpotent,
(Am = 0 for some m) will it always be possible to find its Jordan form? Describe how
to do it if this is the case. Hint: First explain why all the eigenvalues are 0. Then
consider the way the Jordan form for nilpotent transformations was constructed in the
above.

21. Suppose A is an n×n matrix and that it has n distinct eigenvalues. How do the mini-
mal polynomial and characteristic polynomials compare? Determine other conditions
based on the Jordan Canonical form which will cause the minimal and characteristic
polynomials to be different.

22. Suppose A is a 3× 3 matrix and it has at least two distinct eigenvalues. Is it possible
that the minimal polynomial is different than the characteristic polynomial?

23. If A is an n×n matrix of entries from a field of scalars and if the minimal polynomial
of A splits over this field of scalars, does it follow that the characteristic polynomial
of A also splits? Explain why or why not.

24. Show that if two n × n matrices A,B are similar, then they have the same minimal
polynomial and also that if this minimal polynomial is of the form p (λ) =

∏s
i=1 ϕi (λ)

ri

where the ϕi (λ) are irreducible and monic, then ker (ϕi (A)
ri) and ker (ϕi (B)

ri) have
the same dimension. Why is this so? This was what was responsible for the blocks
corresponding to an eigenvalue being of the same size.

256 CHAPTER 9. CANONICAL FORMS

25. Show that a given complex n× n matrix is non defective (diagonalizable) if and only
if the minimal polynomial has no repeated roots.

26. Describe a straight forward way to determine the minimal polynomial of an n × n
matrix using row operations. Next show that if p (λ) and p′ (λ) are relatively prime,
then p (λ) has no repeated roots. With the above problem, explain how this gives a
way to determine whether a matrix is non defective.

27. In Theorem 9.3.5 show that each cyclic set βx is associated with a monic polyno-
mial ηx (λ) such that ηx (A) (x) = 0 and this polynomial has smallest possible degree
such that this happens. Show that the cyclic sets βxi

can be arranged such that
ηxi+1

(λ) /ηxi
(λ).

28. Show that if A is a complex n×n matrix, then A and AT are similar. Hint: Consider
a Jordan block. Note that


0 0 1

0 1 0

1 0 0







λ 1 0

0 λ 1

0 0 λ







0 0 1

0 1 0

1 0 0


 =




λ 0 0

1 λ 0

0 1 λ




29. Let A be a linear transformation defined on a finite dimensional vector space V . Let

the minimal polynomial be
∏q

i=1 ϕi (λ)
mi and let

(
βi
vi
1
, · · · , βi

vi
ri

)
be the cyclic sets

such that
{
βi
vi
1
, · · · , βi

vi
ri

}
is a basis for ker (ϕi (A)

mi). Let v =
∑

i

∑
j v

i
j . Now let

q (λ) be any polynomial and suppose that

q (A) v = 0

Show that it follows q (A) = 0. Hint: First consider the special case where a basis for
V is

{
x,Ax, · · · , An−1x

}
and q (A)x = 0.

9.7 The Rational Canonical Form∗

Here one has the minimal polynomial in the form
∏q

k=1 ϕ (λ)
mk where ϕ (λ) is an irreducible

monic polynomial. It is not necessarily the case that ϕ (λ) is a linear factor. Thus this case
is completely general and includes the situation where the field is arbitrary. In particular, it
includes the case where the field of scalars is, for example, the rational numbers. This may
be partly why it is called the rational canonical form. As you know, the rational numbers
are notorious for not having roots to polynomial equations which have integer or rational
coefficients.

This canonical form is due to Frobenius. I am following the presentation given in [10]
and there are more details given in this reference. Another good source which has additional
results is [15].

Here is a definition of the concept of a companion matrix.

Definition 9.7.1 Let

q (λ) = a0 + a1λ+ · · ·+ an−1λ
n−1 + λn

be a monic polynomial. The companion matrix of q (λ) , denoted as C (q (λ)) is the matrix



0 · · · 0 −a0

1 0 −a1
. . .

. . .
...

0 1 −an−1
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then p (λ) has no repeated roots. With the above problem, explain how this gives a
way to determine whether a matrix is non defective.

27. In Theorem 9.3.5 show that each cyclic set βx is associated with a monic polyno-
mial ηx (λ) such that ηx (A) (x) = 0 and this polynomial has smallest possible degree
such that this happens. Show that the cyclic sets βxi

can be arranged such that
ηxi+1
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(λ).

28. Show that if A is a complex n×n matrix, then A and AT are similar. Hint: Consider
a Jordan block. Note that
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29. Let A be a linear transformation defined on a finite dimensional vector space V . Let

the minimal polynomial be
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such that
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is a basis for ker (ϕi (A)

mi). Let v =
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q (λ) be any polynomial and suppose that
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Show that it follows q (A) = 0. Hint: First consider the special case where a basis for
V is
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x,Ax, · · · , An−1x
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and q (A)x = 0.

9.7 The Rational Canonical Form∗

Here one has the minimal polynomial in the form
∏q

k=1 ϕ (λ)
mk where ϕ (λ) is an irreducible

monic polynomial. It is not necessarily the case that ϕ (λ) is a linear factor. Thus this case
is completely general and includes the situation where the field is arbitrary. In particular, it
includes the case where the field of scalars is, for example, the rational numbers. This may
be partly why it is called the rational canonical form. As you know, the rational numbers
are notorious for not having roots to polynomial equations which have integer or rational
coefficients.

This canonical form is due to Frobenius. I am following the presentation given in [10]
and there are more details given in this reference. Another good source which has additional
results is [15].

Here is a definition of the concept of a companion matrix.

Definition 9.7.1 Let

q (λ) = a0 + a1λ+ · · ·+ an−1λ
n−1 + λn

be a monic polynomial. The companion matrix of q (λ) , denoted as C (q (λ)) is the matrix



0 · · · 0 −a0

1 0 −a1
. . .
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...

0 1 −an−1
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25. Show that a given complex n× n matrix is non defective (diagonalizable) if and only
if the minimal polynomial has no repeated roots.

26. Describe a straight forward way to determine the minimal polynomial of an n × n
matrix using row operations. Next show that if p (λ) and p′ (λ) are relatively prime,
then p (λ) has no repeated roots. With the above problem, explain how this gives a
way to determine whether a matrix is non defective.

27. In Theorem 9.3.5 show that each cyclic set βx is associated with a monic polyno-
mial ηx (λ) such that ηx (A) (x) = 0 and this polynomial has smallest possible degree
such that this happens. Show that the cyclic sets βxi

can be arranged such that
ηxi+1

(λ) /ηxi
(λ).

28. Show that if A is a complex n×n matrix, then A and AT are similar. Hint: Consider
a Jordan block. Note that


0 0 1

0 1 0

1 0 0







λ 1 0

0 λ 1

0 0 λ







0 0 1

0 1 0

1 0 0


 =




λ 0 0

1 λ 0

0 1 λ




29. Let A be a linear transformation defined on a finite dimensional vector space V . Let

the minimal polynomial be
∏q

i=1 ϕi (λ)
mi and let

(
βi
vi
1
, · · · , βi

vi
ri

)
be the cyclic sets

such that
{
βi
vi
1
, · · · , βi

vi
ri

}
is a basis for ker (ϕi (A)

mi). Let v =
∑

i

∑
j v

i
j . Now let

q (λ) be any polynomial and suppose that

q (A) v = 0

Show that it follows q (A) = 0. Hint: First consider the special case where a basis for
V is

{
x,Ax, · · · , An−1x

}
and q (A)x = 0.

9.7 The Rational Canonical Form∗

Here one has the minimal polynomial in the form
∏q

k=1 ϕ (λ)
mk where ϕ (λ) is an irreducible

monic polynomial. It is not necessarily the case that ϕ (λ) is a linear factor. Thus this case
is completely general and includes the situation where the field is arbitrary. In particular, it
includes the case where the field of scalars is, for example, the rational numbers. This may
be partly why it is called the rational canonical form. As you know, the rational numbers
are notorious for not having roots to polynomial equations which have integer or rational
coefficients.

This canonical form is due to Frobenius. I am following the presentation given in [10]
and there are more details given in this reference. Another good source which has additional
results is [15].

Here is a definition of the concept of a companion matrix.

Definition 9.7.1 Let

q (λ) = a0 + a1λ+ · · ·+ an−1λ
n−1 + λn

be a monic polynomial. The companion matrix of q (λ) , denoted as C (q (λ)) is the matrix



0 · · · 0 −a0

1 0 −a1
. . .

. . .
...

0 1 −an−1
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Proposition 9.7.2 Let q (λ) be a polynomial and let C (q (λ)) be its companion matrix.
Then q (C (q (λ))) = 0.

Proof: Write C instead of C (q (λ)) for short. Note that

Ce1 = e2, Ce2 = e3, · · · , Cen−1 = en

Thus
ek = Ck−1e1, k = 1, · · · , n (9.11)

and so it follows {
e1, Ce1, C

2e1, · · · , Cn−1e1
}

(9.12)

are linearly independent. Hence these form a basis for Fn. Now note that Cen is given by

Cen = −a0e1 − a1e2 − · · · − an−1en

and from 9.11 this implies

Cne1 = −a0e1 − a1Ce1 − · · · − an−1C
n−1e1

and so q (C) e1 = 0. Now since 9.12 is a basis, every vector of Fn is of the form k (C) e1 for
some polynomial k (λ). Therefore, if v ∈ Fn,

q (C)v = q (C) k (C) e1 = k (C) q (C) e1 = 0

which shows q (C) = 0. �
The following theorem is on the existence of the rational canonical form.

Theorem 9.7.3 Let A ∈ L (V, V ) where V is a vector space with field of scalars F and
minimal polynomial

∏q
i=1 ϕi (λ)

mi where each ϕi (λ) is irreducible and monic. Letting Vk ≡
ker (ϕk (λ)

mk) , it follows
V = V1 ⊕ · · · ⊕ Vq

where each Vk is A invariant. Letting Bk denote a basis for Vk and Mk the matrix of the
restriction of A to Vk, it follows that the matrix of A with respect to the basis {B1, · · · , Bq}
is the block diagonal matrix of the form




M1 0
. . .

0 Mq


 (9.13)

If Bk is given as
{
βv1 , · · · , βvs

}
as described in Theorem 9.3.5 where each βvj is an A cyclic

set of vectors, then the matrix Mk is of the form

Mk =




C (ϕk (λ)
r1) 0

. . .

0 C (ϕk (λ)
rs)


 (9.14)

where the A cyclic sets of vectors may be arranged in order such that the positive integers rj
satisfy r1 ≥ · · · ≥ rs and C (ϕk (λ)

rj ) is the companion matrix of the polynomial ϕk (λ)
rj .
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Proof: By Theorem 9.2.5 the matrix of A with respect to {B1, · · · , Bq} is of the form
given in 9.13. Now by Theorem 9.3.5 the basis Bk may be chosen in the form

{
βv1 , · · · , βvs

}
where each βvk

is an A cyclic set of vectors and also it can be assumed the lengths of these
βvk

are decreasing. Thus

Vk = span
(
βv1

)
⊕ · · · ⊕ span

(
βvs

)

and it only remains to consider the matrix of A restricted to span
(
βvk

)
. Then you can

apply Theorem 9.2.5 to get the result in 9.14. Say

βvk
= vk, Avk, · · · , Ad−1vk

where η (A) vk = 0 and the degree of η (λ) is d, the smallest degree such that this is so, η being
a monic polynomial. Then η (λ) must divide ϕk (λ)

mk . By Corollary 7.3.11, η (λ) = ϕk (λ)
rk

where rk ≤ mk. It remains to consider the matrix of A restricted to span
(
βvk

)
. Say

η (λ) = ϕk (λ)
rk = a0 + a1λ+ · · ·+ ad−1λ

d−1 + λd

Thus, since η (A) vk = 0,

Advk = −a0vk − a1Avk − · · · − ad−1A
d−1vk

Recall the formalism for finding the matrix of A restricted to this invariant subspace.

(
Avk A2vk A3vk · · · −a0vk − a1Avk − · · · − ad−1A

d−1vk

)
=

(
vk Avk A2vk · · · Ad−1vk

)




0 0 0 · · · −a0

1 0 −a1

0 1
. . .

...
. . .

. . . 0 −ad−2

0 0 1 −ad−1




Thus the matrix of the transformation is the above. This is the companion matrix of
ϕk (λ)

rk = η (λ). In other words, C = C (ϕk (λ)
rk) and so Mk has the form claimed in the

theorem. �

9.8 Uniqueness

Given A ∈ L (V, V ) where V is a vector space having field of scalars F, the above shows
there exists a rational canonical form for A. Could A have more than one rational canonical
form? Recall the definition of an A cyclic set. For convenience, here it is again.

Definition 9.8.1 Letting x ̸= 0 denote by βx the vectors
{
x,Ax,A2x, · · · , Am−1x

}
where

m is the smallest such that Amx ∈ span
(
x, · · · , Am−1x

)
.

The following proposition ties these A cyclic sets to polynomials. It is just a review of
ideas used above to prove existence.

Proposition 9.8.2 Let x ̸= 0 and consider
{
x,Ax,A2x, · · · , Am−1x

}
. Then this is an A

cyclic set if and only if there exists a monic polynomial η (λ) such that η (A)x = 0 and
among all such polynomials ψ (λ) satisfying ψ (A)x = 0, η (λ) has the smallest degree.
If V = ker (ϕ (λ)

m
) where ϕ (λ) is monic and irreducible, then for some positive integer

p ≤ m, η (λ) = ϕ (λ)
p
.9.8. UNIQUENESS 259

The following is the main consideration for proving uniqueness. It will depend on what
was already shown for the Jordan canonical form. This will apply to the nilpotent matrix
ϕ (A).

Lemma 9.8.3 Let V be a vector space and A ∈ L (V, V ) has minimal polynomial ϕ (λ)
m

where ϕ (λ) is irreducible and has degree d. Let the basis for V consist of
{
βv1 , · · · , βvs

}
where βvk

is A cyclic as described above and the rational canonical form for A is the matrix

taken with respect to this basis. Then letting
��βvk

�� denote the number of vectors in βvk
, it

follows there is only one possible set of numbers
��βvk

��.
Proof: Say βvj is associated with the polynomial ϕ (λ)

pj . Thus, as described above���βvj

��� equals pjd. Consider the following table which comes from the A cyclic set

{
vj , Avj , · · · , Ad−1vj , · · · , Apjd−1vj

}

αj
0 αj

1 αj
2 · · · αj

d−1

vj Avj A2vj · · · Ad−1vj

ϕ (A) vj ϕ (A)Avj ϕ (A)A2vj · · · ϕ (A)Ad−1vj
...

...
...

...

ϕ (A)
pj−1

vj ϕ (A)
pj−1

Avj ϕ (A)
pj−1

A2vj · · · ϕ (A)
pj−1

Ad−1vj

In the above, αj
k signifies the vectors below it in the kth column. None of these vectors

below the top row are equal to 0 because the degree of ϕ (λ)
pj−1

λd−1 is dpj − 1, which is
less than pjd and the smallest degree of a nonzero polynomial sending vj to 0 is pjd. Also,
each of these vectors is in the span of βvj and there are dpj of them, just as there are dpj
vectors in βvj

.

Claim: The vectors
{
αj
0, · · · , α

j
d−1

}
are linearly independent.

Proof of claim: Suppose

d−1∑
i=0

pj−1∑
k=0

cikϕ (A)
k
Aivj = 0

Then multiplying both sides by ϕ (A)
pj−1

this yields

d−1∑
i=0

ci0ϕ (A)
pj−1

Aivj = 0

this is because if k ≥ 1, you have a typical term of the form

cikϕ (A)
pj−1

ϕ (A)
k
Aivj = Aiϕ (A)

k−1
cikϕ (A)

pj vj = 0

Now if any of the ci0 is nonzero this would imply there exists a polynomial having degree
smaller than pjd which sends vj to 0. In fact, the polynomial would have degree d−1+pj−1.
Since this does not happen, it follows each ci0 = 0. Thus

d−1∑
i=0

pj−1∑
k=1

cikϕ (A)
k
Aivj = 0
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The following is the main consideration for proving uniqueness. It will depend on what
was already shown for the Jordan canonical form. This will apply to the nilpotent matrix
ϕ (A).
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where ϕ (λ) is irreducible and has degree d. Let the basis for V consist of
{
βv1 , · · · , βvs

}
where βvk

is A cyclic as described above and the rational canonical form for A is the matrix

taken with respect to this basis. Then letting
��βvk

�� denote the number of vectors in βvk
, it

follows there is only one possible set of numbers
��βvk

��.
Proof: Say βvj is associated with the polynomial ϕ (λ)

pj . Thus, as described above���βvj

��� equals pjd. Consider the following table which comes from the A cyclic set
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}
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Avj ϕ (A)
pj−1

A2vj · · · ϕ (A)
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In the above, αj
k signifies the vectors below it in the kth column. None of these vectors

below the top row are equal to 0 because the degree of ϕ (λ)
pj−1

λd−1 is dpj − 1, which is
less than pjd and the smallest degree of a nonzero polynomial sending vj to 0 is pjd. Also,
each of these vectors is in the span of βvj and there are dpj of them, just as there are dpj
vectors in βvj .

Claim: The vectors
{
αj
0, · · · , α

j
d−1

}
are linearly independent.

Proof of claim: Suppose

d−1∑
i=0

pj−1∑
k=0

cikϕ (A)
k
Aivj = 0

Then multiplying both sides by ϕ (A)
pj−1

this yields

d−1∑
i=0

ci0ϕ (A)
pj−1

Aivj = 0

this is because if k ≥ 1, you have a typical term of the form

cikϕ (A)
pj−1

ϕ (A)
k
Aivj = Aiϕ (A)

k−1
cikϕ (A)

pj vj = 0

Now if any of the ci0 is nonzero this would imply there exists a polynomial having degree
smaller than pjd which sends vj to 0. In fact, the polynomial would have degree d−1+pj−1.
Since this does not happen, it follows each ci0 = 0. Thus

d−1∑
i=0

pj−1∑
k=1

cikϕ (A)
k
Aivj = 0
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The following is the main consideration for proving uniqueness. It will depend on what
was already shown for the Jordan canonical form. This will apply to the nilpotent matrix
ϕ (A).

Lemma 9.8.3 Let V be a vector space and A ∈ L (V, V ) has minimal polynomial ϕ (λ)
m

where ϕ (λ) is irreducible and has degree d. Let the basis for V consist of
{
βv1 , · · · , βvs

}
where βvk

is A cyclic as described above and the rational canonical form for A is the matrix

taken with respect to this basis. Then letting
��βvk

�� denote the number of vectors in βvk
, it

follows there is only one possible set of numbers
��βvk

��.
Proof: Say βvj is associated with the polynomial ϕ (λ)

pj . Thus, as described above���βvj

��� equals pjd. Consider the following table which comes from the A cyclic set

{
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}
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In the above, αj
k signifies the vectors below it in the kth column. None of these vectors

below the top row are equal to 0 because the degree of ϕ (λ)
pj−1

λd−1 is dpj − 1, which is
less than pjd and the smallest degree of a nonzero polynomial sending vj to 0 is pjd. Also,
each of these vectors is in the span of βvj and there are dpj of them, just as there are dpj
vectors in βvj .

Claim: The vectors
{
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0, · · · , α

j
d−1

}
are linearly independent.

Proof of claim: Suppose

d−1∑
i=0

pj−1∑
k=0

cikϕ (A)
k
Aivj = 0

Then multiplying both sides by ϕ (A)
pj−1

this yields

d−1∑
i=0

ci0ϕ (A)
pj−1

Aivj = 0

this is because if k ≥ 1, you have a typical term of the form

cikϕ (A)
pj−1

ϕ (A)
k
Aivj = Aiϕ (A)

k−1
cikϕ (A)

pj vj = 0

Now if any of the ci0 is nonzero this would imply there exists a polynomial having degree
smaller than pjd which sends vj to 0. In fact, the polynomial would have degree d−1+pj−1.
Since this does not happen, it follows each ci0 = 0. Thus

d−1∑
i=0

pj−1∑
k=1

cikϕ (A)
k
Aivj = 0260 CHAPTER 9. CANONICAL FORMS

Now multiply both sides by ϕ (A)
pj−2

and do a similar argument to assert that ci1 = 0 for
each i. Continuing this way, all the cik = 0 and this proves the claim.

Thus the vectors
{
αj
0, · · · , α

j
d−1

}
are linearly independent and there are pjd =

���βvj

���
of them. Therefore, they form a basis for span

(
βvj

)
. Also note that if you list the

columns in reverse order starting from the bottom and going toward the top, the vectors{
αj
0, · · · , α

j
d−1

}
yield Jordan blocks in the matrix of ϕ (A). Hence, considering all these vec-

tors
{
αj
0, · · · , α

j
d−1

}s

j=1
, each listed in the reverse order, the matrix of ϕ (A) with respect

to this basis of V is in Jordan canonical form. See Proposition 9.4.4 and Theorem 9.5.2 on
existence and uniqueness for the Jordan form. This Jordan form is unique up to order of

the blocks. For a given j
{
αj
0, · · · , α

j
d−1

}
yields d Jordan blocks of size pj for ϕ (A). The

size and number of Jordan blocks of ϕ (A) depends only on ϕ (A) , hence only on A. Once
A is determined, ϕ (A) is determined and hence the number and size of Jordan blocks is
determined, so the exponents pj are determined and this shows the lengths of the βvj , pjd
are also determined. �

Note that if the pj are known, then so is the rational canonical form because it comes
from blocks which are companion matrices of the polynomials ϕ (λ)

pj . Now here is the main
result.

Theorem 9.8.4 Let V be a vector space having field of scalars F and let A ∈ L (V, V ).
Then the rational canonical form of A is unique up to order of the blocks.

Proof: Let the minimal polynomial of A be
∏q

k=1 ϕk (λ)
mk . Then recall from Corollary

9.2.3
V = V1 ⊕ · · · ⊕ Vq

where Vk = ker (ϕk (A)
mk) . Also recall from Corollary 9.2.4 that the minimal polynomial

of the restriction of A to Vk is ϕk (λ)
mk . Now apply Lemma 9.8.3 to A restricted to Vk. �

In the case where two n × n matrices M,N are similar, recall this is equivalent to the
two being matrices of the same linear transformation taken with respect to two different
bases. Hence each are similar to the same rational canonical form.

Example 9.8.5 Here is a matrix.

A =




5 −2 1

2 10 −2

9 0 9




Find a similarity transformation which will produce the rational canonical form for A.

The minimal polynomial is λ3 − 24λ2 + 180λ− 432. Why? This factors as

(λ− 6)
2
(λ− 12)

Thus Q3 is the direct sum of ker
(
(A− 6I)

2
)
and ker (A− 12I) . Consider the first of these.

You see easily that this is

y




1

1

0


+ z




−1

0

1


 , y, z ∈ Q.

Download free eBooks at bookboon.com



LINEAR ALGEBRA II CanoniCal Forms

265

260 CHAPTER 9. CANONICAL FORMS

Now multiply both sides by ϕ (A)
pj−2

and do a similar argument to assert that ci1 = 0 for
each i. Continuing this way, all the cik = 0 and this proves the claim.

Thus the vectors
{
αj
0, · · · , α

j
d−1

}
are linearly independent and there are pjd =

���βvj

���
of them. Therefore, they form a basis for span

(
βvj

)
. Also note that if you list the

columns in reverse order starting from the bottom and going toward the top, the vectors{
αj
0, · · · , α

j
d−1

}
yield Jordan blocks in the matrix of ϕ (A). Hence, considering all these vec-

tors
{
αj
0, · · · , α

j
d−1

}s

j=1
, each listed in the reverse order, the matrix of ϕ (A) with respect

to this basis of V is in Jordan canonical form. See Proposition 9.4.4 and Theorem 9.5.2 on
existence and uniqueness for the Jordan form. This Jordan form is unique up to order of

the blocks. For a given j
{
αj
0, · · · , α

j
d−1

}
yields d Jordan blocks of size pj for ϕ (A). The

size and number of Jordan blocks of ϕ (A) depends only on ϕ (A) , hence only on A. Once
A is determined, ϕ (A) is determined and hence the number and size of Jordan blocks is
determined, so the exponents pj are determined and this shows the lengths of the βvj , pjd
are also determined. �

Note that if the pj are known, then so is the rational canonical form because it comes
from blocks which are companion matrices of the polynomials ϕ (λ)

pj . Now here is the main
result.

Theorem 9.8.4 Let V be a vector space having field of scalars F and let A ∈ L (V, V ).
Then the rational canonical form of A is unique up to order of the blocks.

Proof: Let the minimal polynomial of A be
∏q

k=1 ϕk (λ)
mk . Then recall from Corollary

9.2.3
V = V1 ⊕ · · · ⊕ Vq

where Vk = ker (ϕk (A)
mk) . Also recall from Corollary 9.2.4 that the minimal polynomial

of the restriction of A to Vk is ϕk (λ)
mk . Now apply Lemma 9.8.3 to A restricted to Vk. �

In the case where two n × n matrices M,N are similar, recall this is equivalent to the
two being matrices of the same linear transformation taken with respect to two different
bases. Hence each are similar to the same rational canonical form.

Example 9.8.5 Here is a matrix.

A =




5 −2 1

2 10 −2

9 0 9




Find a similarity transformation which will produce the rational canonical form for A.

The minimal polynomial is λ3 − 24λ2 + 180λ− 432. Why? This factors as

(λ− 6)
2
(λ− 12)

Thus Q3 is the direct sum of ker
(
(A− 6I)

2
)
and ker (A− 12I) . Consider the first of these.

You see easily that this is

y




1

1

0


+ z




−1

0

1


 , y, z ∈ Q.
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What about the length of A cyclic sets? It turns out it doesn’t matter much. You can start
with either of these and get a cycle of length 2. Lets pick the second one. This leads to the
cycle 


−1

0

1


 ,




−4

−4

0


 = A




−1

0

1


 ,




−12

−48

−36


 = A2




−1

0

1




where the last of the three is a linear combination of the first two. Take the first two as
the first two columns of S. To get the third, you need a cycle of length 1 corresponding to

ker (A− 12I) . This yields the eigenvector
(

1 −2 3
)T

. Thus

S =




−1 −4 1

0 −4 −2

1 0 3




Now using Proposition 8.3.10, the Rational canonical form for A should be




−1 −4 1

0 −4 −2

1 0 3




−1 


5 −2 1

2 10 −2

9 0 9







−1 −4 1

0 −4 −2

1 0 3


 =




0 −36 0

1 12 0

0 0 12




Example 9.8.6 Here is a matrix.

A =




12 −3 −19 −14 8

−4 1 1 6 −4

4 5 5 −2 4

0 −5 −5 2 0

−4 3 11 6 0




Find a basis such that if S is the matrix which has these vectors as columns S−1AS is in
rational canonical form assuming the field of scalars is Q.

First it is necessary to find the minimal polynomial. Of course you can find the character-
istic polynomial and then take away factors till you find the minimal polynomial. However,
there is a much better way which is described in the exercises. Leaving out this detail, the
minimal polynomial is

λ3 − 12λ2 + 64λ− 128

This polynomial factors as

(λ− 4)
(
λ2 − 8λ+ 32

)
≡ ϕ1 (λ)ϕ2 (λ)

where the second factor is irreducible over Q. Consider ϕ2 (λ) first. Messy computations
yield

ker (ϕ2 (A)) = a




−1

1

0

0

0




+ b




−1

0

1

0

0




+ c




−1

0

0

1

0




+ d




−2

0

0

0

1




.
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What about the length of A cyclic sets? It turns out it doesn’t matter much. You can start
with either of these and get a cycle of length 2. Lets pick the second one. This leads to the
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1




where the last of the three is a linear combination of the first two. Take the first two as
the first two columns of S. To get the third, you need a cycle of length 1 corresponding to

ker (A− 12I) . This yields the eigenvector
(

1 −2 3
)T

. Thus

S =




−1 −4 1

0 −4 −2

1 0 3




Now using Proposition 8.3.10, the Rational canonical form for A should be




−1 −4 1

0 −4 −2

1 0 3




−1 


5 −2 1

2 10 −2

9 0 9







−1 −4 1

0 −4 −2

1 0 3


 =




0 −36 0

1 12 0

0 0 12




Example 9.8.6 Here is a matrix.

A =




12 −3 −19 −14 8

−4 1 1 6 −4

4 5 5 −2 4

0 −5 −5 2 0

−4 3 11 6 0




Find a basis such that if S is the matrix which has these vectors as columns S−1AS is in
rational canonical form assuming the field of scalars is Q.

First it is necessary to find the minimal polynomial. Of course you can find the character-
istic polynomial and then take away factors till you find the minimal polynomial. However,
there is a much better way which is described in the exercises. Leaving out this detail, the
minimal polynomial is

λ3 − 12λ2 + 64λ− 128

This polynomial factors as

(λ− 4)
(
λ2 − 8λ+ 32

)
≡ ϕ1 (λ)ϕ2 (λ)

where the second factor is irreducible over Q. Consider ϕ2 (λ) first. Messy computations
yield

ker (ϕ2 (A)) = a




−1

1

0

0

0




+ b




−1

0

1

0

0




+ c




−1

0

0

1

0




+ d




−2

0

0

0

1




.
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Now start with one of these basis vectors and look for an A cycle. Picking the first one, you
obtain the cycle 



−1

1

0

0

0




,




−15

5

1

−5

7




because the next vector involving A2 yields a vector which is in the span of the above two.
You check this by making the vectors the columns of a matrix and finding the row reduced
echelon form. Clearly this cycle does not span ker (ϕ2 (A)) , so look for another cycle. Begin
with a vector which is not in the span of these two. The last one works well. Thus another
A cycle is 



−2

0

0

0

1




,




−16

4

−4

0

8




It follows a basis for ker (ϕ2 (A)) is






−2

0

0

0

1




,




−16

4

−4

0

8




,




−1

1

0

0

0




,




−15

5

1

−5

7







Finally consider a cycle coming from ker (ϕ1 (A)). This amounts to nothing more than
finding an eigenvector for A corresponding to the eigenvalue 4. An eigenvector is

(
−1 0 0 0 1

)T

Now the desired matrix for the similarity transformation is

S ≡




−2 −16 −1 −15 −1

0 4 1 5 0

0 −4 0 1 0

0 0 0 −5 0

1 8 0 7 1




Then doing the computations, you get

S−1AS =




0 −32 0 0 0

1 8 0 0 0

0 0 0 −32 0

0 0 1 8 0

0 0 0 0 4




and you see this is in rational canonical form, the two 2×2 blocks being companion matrices
for the polynomial λ2−8λ+32 and the 1×1 block being a companion matrix for λ−4. Note
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Now start with one of these basis vectors and look for an A cycle. Picking the first one, you
obtain the cycle 



−1

1

0

0

0




,




−15

5

1

−5

7




because the next vector involving A2 yields a vector which is in the span of the above two.
You check this by making the vectors the columns of a matrix and finding the row reduced
echelon form. Clearly this cycle does not span ker (ϕ2 (A)) , so look for another cycle. Begin
with a vector which is not in the span of these two. The last one works well. Thus another
A cycle is 



−2

0

0

0

1




,




−16

4

−4

0

8




It follows a basis for ker (ϕ2 (A)) is







−2

0

0

0

1




,




−16

4

−4

0

8




,




−1

1

0

0

0




,




−15

5

1

−5

7








Finally consider a cycle coming from ker (ϕ1 (A)). This amounts to nothing more than
finding an eigenvector for A corresponding to the eigenvalue 4. An eigenvector is

(
−1 0 0 0 1

)T

Now the desired matrix for the similarity transformation is

S ≡




−2 −16 −1 −15 −1

0 4 1 5 0

0 −4 0 1 0

0 0 0 −5 0

1 8 0 7 1




Then doing the computations, you get

S−1AS =




0 −32 0 0 0

1 8 0 0 0

0 0 0 −32 0

0 0 1 8 0

0 0 0 0 4




and you see this is in rational canonical form, the two 2×2 blocks being companion matrices
for the polynomial λ2−8λ+32 and the 1×1 block being a companion matrix for λ−4. Note

9.9. EXERCISES 263

that you could have written this without finding a similarity transformation to produce it.
This follows from the above theory which gave the existence of the rational canonical form.

Obviously there is a lot more which could be considered about rational canonical forms.
Just begin with a strange field and start investigating what can be said. One can also derive
more systematic methods for finding the rational canonical form. The advantage of this is
you don’t need to find the eigenvalues in order to compute the rational canonical form and
it can often be computed for this reason, unlike the Jordan form. The uniqueness of this
rational canonical form can be used to determine whether two matrices consisting of entries
in some field are similar.

9.9 Exercises

1. Suppose A is a linear transformation and let the characteristic polynomial be

det (λI −A) =

q∏
j=1

ϕj (λ)
nj

where the ϕj (λ) are irreducible. Explain using Corollary 7.3.11 why the irreducible
factors of the minimal polynomial are ϕj (λ) and why the minimal polynomial is of
the form

∏q
j=1 ϕj (λ)

rj where rj ≤ nj . You can use the Cayley Hamilton theorem if
you like.

2. Find the minimal polynomial for

A =




1 2 3

2 1 4

−3 2 1




by the above technique assuming the field of scalars is the rational numbers. Is what
you found also the characteristic polynomial?

3. Show, using the rational root theorem, the minimal polynomial for A in the above
problem is irreducible with respect to Q. Letting the field of scalars be Q find the
rational canonical form and a similarity transformation which will produce it.

4. Letting the field of scalars be Q, find the rational canonical form for the matrix




1 2 1 −1

2 3 0 2

1 3 2 4

1 2 1 2




5. Let A : Q3 → Q3 be linear. Suppose the minimal polynomial is (λ− 2)
(
λ2 + 2λ+ 7

)
.

Find the rational canonical form. Can you give generalizations of this rather simple
problem to other situations?

6. Find the rational canonical form with respect to the field of scalars equal to Q for the
matrix

A =




0 0 1

1 0 −1

0 1 1
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more systematic methods for finding the rational canonical form. The advantage of this is
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in some field are similar.
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the form
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3. Show, using the rational root theorem, the minimal polynomial for A in the above
problem is irreducible with respect to Q. Letting the field of scalars be Q find the
rational canonical form and a similarity transformation which will produce it.

4. Letting the field of scalars be Q, find the rational canonical form for the matrix




1 2 1 −1
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5. Let A : Q3 → Q3 be linear. Suppose the minimal polynomial is (λ− 2)
(
λ2 + 2λ+ 7

)
.
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6. Find the rational canonical form with respect to the field of scalars equal to Q for the
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A =
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1 0 −1
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Observe that this particular matrix is already a companion matrix of λ3 − λ2 + λ− 1.
Then find the rational canonical form if the field of scalars equals C or Q+ iQ.

7. Let q (λ) be a polynomial and C its companion matrix. Show the characteristic and
minimal polynomial of C are the same and both equal q (λ).

8. ↑Use the existence of the rational canonical form to give a proof of the Cayley Hamilton
theorem valid for any field, even fields like the integers mod p for p a prime. The earlier
proof based on determinants was fine for fields like Q or R where you could let λ → ∞
but it is not clear the same result holds in general.

9. Suppose you have two n×n matrices A,B whose entries are in a field F and suppose G
is an extension of F. For example, you could have F = Q and G = C. Suppose A and
B are similar with respect to the field G. Can it be concluded that they are similar
with respect to the field F? Hint: First show that the two have the same minimal
polynomial over F. Next consider the proof of Lemma 9.8.3 and show that they have
the same rational canonical form with respect to F.
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Chapter 10

Markov Processes

10.1 Regular Markov Matrices

The existence of the Jordan form is the basis for the proof of limit theorems for certain
kinds of matrices called Markov matrices.

Definition 10.1.1 An n × n matrix A = (aij) , is a Markov matrix if aij ≥ 0 for all i, j
and ∑

i

aij = 1.

It may also be called a stochastic matrix or a transition matrix. A Markov or stochastic
matrix is called regular if some power of A has all entries strictly positive. A vector v ∈ Rn,
is a steady state if Av = v.

Lemma 10.1.2 The property of being a stochastic matrix is preserved by taking products.
It is also true if the sum is of the form

∑
j aij = 1.

Proof: Suppose the sum over a row equals 1 for A and B. Then letting the entries be
denoted by (aij) and (bij) respectively and the entries of AB by (cij),

∑
i

cij =
∑
i

∑
k

aikbkj =
∑
k

∑
i

aikbkj =
∑
k

bkj = 1

It is obvious that when the product is taken, if each aij , bij ≥ 0, then the same will be
true of sums of products of these numbers. Similar reasoning works for the assumption that∑

j aij = 1. �
The following theorem is convenient for showing the existence of limits.

Theorem 10.1.3 Let A be a real p× p matrix having the properties

1. aij ≥ 0

2. Either
∑p

i=1 aij = 1 or
∑p

j=1 aij = 1.

3. The distinct eigenvalues of A are {1, λ2, . . . , λm} where each |λj | < 1.

Then limn→∞ An = A∞ exists in the sense that limn→∞ anij = a∞ij , the ijth entry A∞.

Here anij denotes the ijth entry of An. Also, if λ = 1 has algebraic multiplicity r, then
the Jordan block corresponding to λ = 1 is just the r × r identity.
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Chapter 10

Markov Processes

10.1 Regular Markov Matrices

The existence of the Jordan form is the basis for the proof of limit theorems for certain
kinds of matrices called Markov matrices.

Definition 10.1.1 An n × n matrix A = (aij) , is a Markov matrix if aij ≥ 0 for all i, j
and ∑

i

aij = 1.

It may also be called a stochastic matrix or a transition matrix. A Markov or stochastic
matrix is called regular if some power of A has all entries strictly positive. A vector v ∈ Rn,
is a steady state if Av = v.

Lemma 10.1.2 The property of being a stochastic matrix is preserved by taking products.
It is also true if the sum is of the form

∑
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Proof: Suppose the sum over a row equals 1 for A and B. Then letting the entries be
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∑
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∑
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It is obvious that when the product is taken, if each aij , bij ≥ 0, then the same will be
true of sums of products of these numbers. Similar reasoning works for the assumption that∑

j aij = 1. �
The following theorem is convenient for showing the existence of limits.

Theorem 10.1.3 Let A be a real p× p matrix having the properties

1. aij ≥ 0

2. Either
∑p

i=1 aij = 1 or
∑p

j=1 aij = 1.

3. The distinct eigenvalues of A are {1, λ2, . . . , λm} where each |λj | < 1.

Then limn→∞ An = A∞ exists in the sense that limn→∞ anij = a∞ij , the ijth entry A∞.

Here anij denotes the ijth entry of An. Also, if λ = 1 has algebraic multiplicity r, then
the Jordan block corresponding to λ = 1 is just the r × r identity.
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Proof. By the existence of the Jordan form forA, it follows that there exists an invertible
matrix P such that

P−1AP =




I +N

Jr2 (λ2)
. . .

Jrm (λm)




= J

where I is r × r for r the multiplicity of the eigenvalue 1 and N is a nilpotent matrix for
which Nr = 0. I will show that because of Condition 2, N = 0.

First of all,
Jri (λi) = λiI +Ni

where Ni satisfies N
ri
i = 0 for some ri > 0. It is clear that Ni (λiI) = (λiI)N and so

(Jri (λi))
n
=

n∑
k=0

(
n

k

)
Nkλn−k

i =

r∑
k=0

(
n

k

)
Nkλn−k

i

which converges to 0 due to the assumption that |λi| < 1. There are finitely many terms
and a typical one is a matrix whose entries are no larger than an expression of the form

|λi|n−k
Ckn (n− 1) · · · (n− k + 1) ≤ Ck |λi|n−k

nk

which converges to 0 because, by the root test, the series
∑∞

n=1 |λi|n−k
nk converges. Thus

for each i = 2, . . . , p,
lim

n→∞
(Jri (λi))

n
= 0.

By Condition 2, if anij denotes the ijth entry of An, then either

p∑
i=1

anij = 1 or

p∑
j=1

anij = 1, anij ≥ 0.

This follows from Lemma 10.1.2. It is obvious each anij ≥ 0, and so the entries of An must
be bounded independent of n.

It follows easily from

n times� �� �
P−1APP−1APP−1AP · · ·P−1AP = P−1AnP

that
P−1AnP = Jn (10.1)

Hence Jn must also have bounded entries as n → ∞. However, this requirement is incom-
patible with an assumption that N ̸= 0.

If N ̸= 0, then Ns ̸= 0 but Ns+1 = 0 for some 1 ≤ s ≤ r. Then

(I +N)
n
= I +

s∑
k=1

(
n

k

)
Nk

One of the entries of Ns is nonzero by the definition of s. Let this entry be ns
ij . Then this

implies that one of the entries of (I +N)
n
is of the form

(
n
s

)
ns
ij . This entry dominates the

ijth entries of
(
n
k

)
Nk for all k < s because

lim
n→∞

(
n

s

)
/

(
n

k

)
= ∞
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Therefore, the entries of (I +N)
n
cannot all be bounded. From block multiplication,

P−1AnP =




(I +N)
n

(Jr2 (λ2))
n

. . .

(Jrm (λm))
n




and this is a contradiction because entries are bounded on the left and unbounded on the
right.

Since N = 0, the above equation implies limn→∞ An exists and equals

P




I

0
. . .

0




P−1 �

Are there examples which will cause the eigenvalue condition of this theorem to hold?
The following lemma gives such a condition. It turns out that if aij > 0, not just ≥ 0, then
the eigenvalue condition of the above theorem is valid.

Lemma 10.1.4 Suppose A = (aij) is a stochastic matrix. Then λ = 1 is an eigenvalue. If
aij > 0 for all i, j, then if µ is an eigenvalue of A, either |µ| < 1 or µ = 1.

Proof: First consider the claim that 1 is an eigenvalue. By definition,

∑
i

1aij = 1

and so ATv = v where v =
(

1 · · · 1
)T

. Since A,AT have the same eigenvalues, this

shows 1 is an eigenvalue. Suppose then that µ is an eigenvalue. Is |µ| < 1 or µ = 1? Let v
be an eigenvector for AT and let |vi| be the largest of the |vj | .

µvi =
∑
j

ajivj

and now multiply both sides by µvi to obtain

|µ|2 |vi|2 =
∑
j

ajivjµvi =
∑
j

aji Re (vjµvi)

≤
∑
j

aji |vi|2 |µ| = |µ| |vi|2

Therefore, |µ| ≤ 1. If |µ| = 1, then equality must hold in the above, and so vjviµ must
be real and nonnegative for each j. In particular, this holds for j = i which shows µ is real
and nonnegative. Thus, in this case, µ = 1 because µ̄ = µ is nonnegative and equal to 1.
The only other case is where |µ| < 1. �

Lemma 10.1.5 Let A be any Markov matrix and let v be a vector having all its components
non negative with

∑
i vi = c. Then if w = Av, it follows that wi ≥ 0 for all i and

∑
i wi = c.
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Proof: From the definition of w,

wi ≡
∑
j

aijvj ≥ 0.

Also ∑
i

wi =
∑
i

∑
j

aijvj =
∑
j

∑
i

aijvj =
∑
j

vj = c. �

The following theorem about limits is now easy to obtain.

Theorem 10.1.6 Suppose A is a Markov matrix in which aij > 0 for all i, j and suppose
w is a vector. Then for each i,

lim
k→∞

(
Akw

)
i
= vi

where Av = v. In words, Akw always converges to a steady state. In addition to this, if
the vector w satisfies wi ≥ 0 for all i and

∑
i wi = c, then the vector v will also satisfy the

conditions, vi ≥ 0,
∑

i vi = c.

Proof: By Lemma 10.1.4, since each aij > 0, the eigenvalues are either 1 or have absolute
value less than 1. Therefore, the claimed limit exists by Theorem 10.1.3. The assertion that
the components are nonnegative and sum to c follows from Lemma 10.1.5. That Av = v
follows from

v = lim
n→∞

Anw = lim
n→∞

An+1w = A lim
n→∞

Anw = Av. �

It is not hard to generalize the conclusion of this theorem to regular Markov processes.

Corollary 10.1.7 Suppose A is a regular Markov matrix, one for which the entries of Ak

are all positive for some k, and suppose w is a vector. Then for each i,

lim
n→∞

(Anw)i = vi

where Av = v. In words, Anw always converges to a steady state. In addition to this, if
the vector w satisfies wi ≥ 0 for all i and

∑
i wi = c, Then the vector v will also satisfy the

conditions vi ≥ 0,
∑

i vi = c.

Proof: Let the entries of Ak be all positive for some k. Now suppose that aij ≥ 0 for
all i, j and A = (aij) is a Markov matrix. Then if B = (bij) is a Markov matrix with bij > 0
for all ij, it follows that BA is a Markov matrix which has strictly positive entries. This is
because the ijth entry of BA is ∑

k

bikakj > 0,

Thus, from Lemma 10.1.4, Ak has an eigenvalue equal to 1 for all k sufficiently large, and
all the other eigenvalues have absolute value strictly less than 1. The same must be true of
A. If v ̸= 0 and Av = λv and |λ| = 1, then Akv = λkv and so, by Lemma 10.1.4, λm = 1
if m ≥ k. Thus

1 = λk+1 = λkλ = λ

By Theorem 10.1.3, limn→∞ Anw exists. The rest follows as in Theorem 10.1.6. �
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are all positive for some k, and suppose w is a vector. Then for each i,
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Proof: Let the entries of Ak be all positive for some k. Now suppose that aij ≥ 0 for
all i, j and A = (aij) is a Markov matrix. Then if B = (bij) is a Markov matrix with bij > 0
for all ij, it follows that BA is a Markov matrix which has strictly positive entries. This is
because the ijth entry of BA is ∑

k

bikakj > 0,

Thus, from Lemma 10.1.4, Ak has an eigenvalue equal to 1 for all k sufficiently large, and
all the other eigenvalues have absolute value strictly less than 1. The same must be true of
A. If v ̸= 0 and Av = λv and |λ| = 1, then Akv = λkv and so, by Lemma 10.1.4, λm = 1
if m ≥ k. Thus

1 = λk+1 = λkλ = λ

By Theorem 10.1.3, limn→∞ Anw exists. The rest follows as in Theorem 10.1.6. �
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10.2 Migration Matrices

Definition 10.2.1 Let n locations be denoted by the numbers 1, 2, · · · , n. Also suppose it is
the case that each year aij denotes the proportion of residents in location j which move to
location i. Also suppose no one escapes or emigrates from without these n locations. This last
assumption requires

∑
i aij = 1. Thus (aij) is a Markov matrix referred to as a migration

matrix.

If v =(x1, · · · , xn)
T
where xi is the population of location i at a given instant, you obtain

the population of location i one year later by computing
∑

j aijxj = (Av)i . Therefore, the

population of location i after k years is
(
Akv

)
i
. Furthermore, Corollary 10.1.7 can be used

to predict in the case where A is regular what the long time population will be for the given
locations.

As an example of the above, consider the case where n = 3 and the migration matrix is
of the form 


.6 0 .1

.2 .8 0

.2 .2 .9


 .

Now 


.6 0 .1

.2 .8 0

.2 .2 .9




2

=




. 38 .0 2 . 15

. 28 . 64 .0 2

. 34 . 34 . 83




and so the Markov matrix is regular. Therefore,
(
Akv

)
i
will converge to the ith component

of a steady state. It follows the steady state can be obtained from solving the system

. 6x+ . 1z = x

. 2x+ . 8y = y

. 2x+ . 2y + . 9z = z

along with the stipulation that the sum of x, y, and z must equal the constant value present
at the beginning of the process. The solution to this system is

{y = x, z = 4x, x = x} .

If the total population at the beginning is 150,000, then you solve the following system

y = x, z = 4x, x+ y + z = 150000

whose solution is easily seen to be {x = 25 000, z = 100 000, y = 25 000} . Thus, after a long
time there would be about four times as many people in the third location as in either of
the other two.

10.3 Absorbing States

There is a different kind of Markov process containing so called absorbing states which result
in transition matrices which are not regular. However, Theorem 10.1.3 may still apply. One
such example is the Gambler’s ruin problem. There is a total amount of money denoted by
b. The Gambler starts with an amount j > 0 and gambles till he either loses everything or
gains everything. He does this by playing a game in which he wins with probability p and
loses with probability q. When he wins, the amount of money he has increases by 1 and

Download free eBooks at bookboon.com



LINEAR ALGEBRA II markoV proCesses

274

10.2. MIGRATION MATRICES 269

10.2 Migration Matrices

Definition 10.2.1 Let n locations be denoted by the numbers 1, 2, · · · , n. Also suppose it is
the case that each year aij denotes the proportion of residents in location j which move to
location i. Also suppose no one escapes or emigrates from without these n locations. This last
assumption requires

∑
i aij = 1. Thus (aij) is a Markov matrix referred to as a migration

matrix.

If v =(x1, · · · , xn)
T
where xi is the population of location i at a given instant, you obtain

the population of location i one year later by computing
∑

j aijxj = (Av)i . Therefore, the

population of location i after k years is
(
Akv

)
i
. Furthermore, Corollary 10.1.7 can be used

to predict in the case where A is regular what the long time population will be for the given
locations.

As an example of the above, consider the case where n = 3 and the migration matrix is
of the form 


.6 0 .1

.2 .8 0

.2 .2 .9


 .

Now 


.6 0 .1

.2 .8 0

.2 .2 .9




2

=




. 38 .0 2 . 15

. 28 . 64 .0 2

. 34 . 34 . 83




and so the Markov matrix is regular. Therefore,
(
Akv

)
i
will converge to the ith component

of a steady state. It follows the steady state can be obtained from solving the system

. 6x+ . 1z = x

. 2x+ . 8y = y

. 2x+ . 2y + . 9z = z

along with the stipulation that the sum of x, y, and z must equal the constant value present
at the beginning of the process. The solution to this system is

{y = x, z = 4x, x = x} .

If the total population at the beginning is 150,000, then you solve the following system

y = x, z = 4x, x+ y + z = 150000

whose solution is easily seen to be {x = 25 000, z = 100 000, y = 25 000} . Thus, after a long
time there would be about four times as many people in the third location as in either of
the other two.

10.3 Absorbing States

There is a different kind of Markov process containing so called absorbing states which result
in transition matrices which are not regular. However, Theorem 10.1.3 may still apply. One
such example is the Gambler’s ruin problem. There is a total amount of money denoted by
b. The Gambler starts with an amount j > 0 and gambles till he either loses everything or
gains everything. He does this by playing a game in which he wins with probability p and
loses with probability q. When he wins, the amount of money he has increases by 1 and

270 CHAPTER 10. MARKOV PROCESSES

when he loses, the amount of money he has decreases by 1. Thus the states are the integers
from 0 to b. Let pij denote the probability that the gambler has i at the end of a game
given that he had j at the beginning. Let pnij denote the probability that the gambler has i
after n games given that he had j initially. Thus

pn+1
ij =

∑
k

pikp
n
kj ,

and so pnij is the ijth entry of Pn where P is the transition matrix. The above description
indicates that this transition probability matrix is of the form

P =




1 q 0 · · · 0

0 0
. . . 0

0 p
. . . q

...
...

. . . 0 0

0 · · · 0 p 1




(10.2)

The absorbing states are 0 and b. In the first, the gambler has lost everything and hence
has nothing else to gamble, so the process stops. In the second, he has won everything and
there is nothing else to gain, so again the process stops.

Consider the eigenvalues of this matrix.

Lemma 10.3.1 Let p, q > 0 and p+ q = 1. Then the eigenvalues of




0 q 0 · · · 0

p 0 q · · · 0

0 p 0
. . .

...
... 0

. . .
. . . q

0
... 0 p 0




have absolute value less than 1.

Proof: By Gerschgorin’s theorem, (See Page 175) if λ is an eigenvalue, then |λ| ≤ 1.
Now suppose v is an eigenvector for λ. Then

Av =




qv2

pv1 + qv3
...

pvn−2 + qvn

pvn−1




= λ




v1

v2
...

vn−1

vn




.

Suppose |λ| = 1. Let vk be the first nonzero entry. Then

qvk+1 = λvk

and so |vk+1| > |vk|. If {|vj |}mj=k is increasing for some m > k, then

p |vm−1|+ q |vm| ≥ |pvm−2 + qvm| = |λvm−1| = |vm−1|
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and so q |vm| ≥ q |vm−1| . Thus by induction, the sequence is increasing. Hence |vn| ≥
|vn−1| > 0. However, the last line states that p |vn−1| = |vn| which requires that |vn−1| >
|vn| , a contradiction. �

Now consider the eigenvalues of 10.2. For P given there,

P − λI =




1− λ q 0 · · · 0

0 −λ
. . . 0

0 p
. . . q

...
...

. . . −λ 0

0 · · · 0 p 1− λ




and so, expanding the determinant of the matrix along the first column and then along the
last column yields

(1− λ)
2
det




−λ q

p
. . .

. . .

. . . −λ q

p −λ




.

The roots of the polynomial after (1− λ)
2
have absolute value less than 1 because they are

just the eigenvalues of a matrix of the sort in Lemma 10.3.1. It follows that the conditions
of Theorem 10.1.3 apply and therefore, limn→∞ Pn exists. �

Of course, the above transition matrix, models many other kinds of problems. It is called
a Markov process with two absorbing states, sometimes a random walk with two absorbing
states.

It is interesting to find the probability that the gambler loses all his money. This is given
by limn→∞ pn0j .From the transition matrix for the gambler’s ruin problem, it follows that

pn0j =
∑
k

pn−1
0k pkj = qpn−1

0(j−1) + ppn−1
0(j+1)for j ∈ [1, b− 1] ,

pn00 = 1, and pn0b = 0.

Assume here that p ̸= q. Now it was shown above that limn→∞ pn0j exists. Denote by Pj

this limit. Then the above becomes much simpler if written as

Pj = qPj−1 + pPj+1 for j ∈ [1, b− 1] , (10.3)

P0 = 1 and Pb = 0. (10.4)

It is only required to find a solution to the above difference equation with boundary con-
ditions. To do this, look for a solution in the form Pj = rjand use the difference equation
with boundary conditions to find the correct values of r. Thus you need

rj = qrj−1 + prj+1

and so to find r you need to have pr2 − r + q = 0, and so the solutions for r are r =

1

2p

(
1 +

√
1− 4pq

)
,

1

2p

(
1−

√
1− 4pq

)

Now √
1− 4pq =

√
1− 4p (1− p) =

√
1− 4p+ 4p2 = 1− 2p.
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. . . 0 0
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The absorbing states are 0 and b. In the first, the gambler has lost everything and hence
has nothing else to gamble, so the process stops. In the second, he has won everything and
there is nothing else to gain, so again the process stops.

Consider the eigenvalues of this matrix.
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0 p 0
. . .

...
... 0

. . .
. . . q

0
... 0 p 0




have absolute value less than 1.

Proof: By Gerschgorin’s theorem, (See Page 175) if λ is an eigenvalue, then |λ| ≤ 1.
Now suppose v is an eigenvector for λ. Then
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qv2

pv1 + qv3
...

pvn−2 + qvn

pvn−1




= λ




v1

v2
...

vn−1

vn




.

Suppose |λ| = 1. Let vk be the first nonzero entry. Then

qvk+1 = λvk

and so |vk+1| > |vk|. If {|vj |}mj=k is increasing for some m > k, then

p |vm−1|+ q |vm| ≥ |pvm−2 + qvm| = |λvm−1| = |vm−1|
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and so q |vm| ≥ q |vm−1| . Thus by induction, the sequence is increasing. Hence |vn| ≥
|vn−1| > 0. However, the last line states that p |vn−1| = |vn| which requires that |vn−1| >
|vn| , a contradiction. �

Now consider the eigenvalues of 10.2. For P given there,

P − λI =




1− λ q 0 · · · 0

0 −λ
. . . 0

0 p
. . . q

...
...

. . . −λ 0

0 · · · 0 p 1− λ




and so, expanding the determinant of the matrix along the first column and then along the
last column yields

(1− λ)
2
det




−λ q

p
. . .

. . .

. . . −λ q

p −λ




.

The roots of the polynomial after (1− λ)
2
have absolute value less than 1 because they are

just the eigenvalues of a matrix of the sort in Lemma 10.3.1. It follows that the conditions
of Theorem 10.1.3 apply and therefore, limn→∞ Pn exists. �

Of course, the above transition matrix, models many other kinds of problems. It is called
a Markov process with two absorbing states, sometimes a random walk with two absorbing
states.

It is interesting to find the probability that the gambler loses all his money. This is given
by limn→∞ pn0j .From the transition matrix for the gambler’s ruin problem, it follows that

pn0j =
∑
k

pn−1
0k pkj = qpn−1

0(j−1) + ppn−1
0(j+1)for j ∈ [1, b− 1] ,

pn00 = 1, and pn0b = 0.

Assume here that p ̸= q. Now it was shown above that limn→∞ pn0j exists. Denote by Pj

this limit. Then the above becomes much simpler if written as

Pj = qPj−1 + pPj+1 for j ∈ [1, b− 1] , (10.3)

P0 = 1 and Pb = 0. (10.4)

It is only required to find a solution to the above difference equation with boundary con-
ditions. To do this, look for a solution in the form Pj = rjand use the difference equation
with boundary conditions to find the correct values of r. Thus you need

rj = qrj−1 + prj+1

and so to find r you need to have pr2 − r + q = 0, and so the solutions for r are r =

1

2p

(
1 +

√
1− 4pq

)
,

1

2p

(
1−

√
1− 4pq

)

Now √
1− 4pq =

√
1− 4p (1− p) =

√
1− 4p+ 4p2 = 1− 2p.
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Thus the two values of r simplify to

1

2p
(1 + 1− 2p) =

q

p
,

1

2p
(1− (1− 2p)) = 1

Therefore, for any choice of Ci, i = 1, 2,

C1 + C2

(
q

p

)j

will solve the difference equation. Now choose C1, C2 to satisfy the boundary conditions
10.4. Thus you need to have

C1 + C2 = 1, C1 + C2

(
q

p

)b

= 0

It follows that

C2 =
pb

pb − qb
, C1 =

qb

qb − pb

Thus Pj =

qb

qb − pb
+

pb

pb − qb

(
q

p

)j

=
qb

qb − pb
− pb−jqj

qb − pb
=

qj
(
qb−j − pb−j

)
qb − pb

To find the solution in the case of a fair game, one could take the limp→1/2 of the above
solution. Taking this limit, you get

Pj =
b− j

b
.

You could also verify directly in the case where p = q = 1/2 in 10.3 and 10.4 that Pj = 1
and Pj = j are two solutions to the difference equation and proceeding as before.

10.4 Exercises

1. Suppose the migration matrix for three locations is




.5 0 .3

.3 .8 0

.2 .2 .7


 .

Find a comparison for the populations in the three locations after a long time.

2. Show that if
∑

i aij = 1, then if A = (aij) , then the sum of the entries of Av equals
the sum of the entries of v. Thus it does not matter whether aij ≥ 0 for this to be so.

3. If A satisfies the conditions of the above problem, can it be concluded that limn→∞ An

exists?

4. Give an example of a non regular Markov matrix which has an eigenvalue equal to
−1.

5. Show that when a Markov matrix is non defective, all of the above theory can be proved
very easily. In particular, prove the theorem about the existence of limn→∞ An if the
eigenvalues are either 1 or have absolute value less than 1.
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6. Find a formula for An where

A =




5
2 − 1

2 0 −1

5 0 0 −4
7
2 − 1

2
1
2 − 5

2
7
2 − 1

2 0 −2




Does limn→∞ An exist? Note that all the rows sum to 1. Hint: This matrix is similar
to a diagonal matrix. The eigenvalues are 1,−1, 1

2 ,
1
2 .

7. Find a formula for An where

A =




2 − 1
2

1
2 −1

4 0 1 −4
5
2 − 1

2 1 −2

3 − 1
2

1
2 −2




Note that the rows sum to 1 in this matrix also. Hint: This matrix is not similar
to a diagonal matrix but you can find the Jordan form and consider this in order to
obtain a formula for this product. The eigenvalues are 1,−1, 1

2 ,
1
2 .

8. Find limn→∞ An if it exists for the matrix

A =




1
2 − 1

2 − 1
2 0

− 1
2

1
2 − 1

2 0
1
2

1
2

3
2 0

3
2

3
2

3
2 1




The eigenvalues are 1
2 , 1, 1, 1.

9. Give an example of a matrix A which has eigenvalues which are either equal to 1,−1,
or have absolute value strictly less than 1 but which has the property that limn→∞ An

does not exist.

10. If A is an n× n matrix such that all the eigenvalues have absolute value less than 1,
show limn→∞ An = 0.

11. Find an example of a 3 × 3 matrix A such that limn→∞ An does not exist but
limr→∞ A5r does exist.

12. If A is a Markov matrix and B is similar to A, does it follow that B is also a Markov
matrix?

13. In Theorem 10.1.3 suppose everything is unchanged except that you assume either∑
j aij ≤ 1 or

∑
i aij ≤ 1. Would the same conclusion be valid? What if you don’t

insist that each aij ≥ 0? Would the conclusion hold in this case?

14. Let V be an n dimensional vector space and let x ∈ V and x ̸= 0. Consider βx ≡
x, Ax, · · · ,Am−1x where

Amx ∈ span
(
x,Ax, · · · ,Am−1x

)

and m is the smallest such that the above inclusion in the span takes place. Show
that

{
x,Ax, · · · ,Am−1x

}
must be linearly independent. Next suppose {v1, · · · ,vn}

Download free eBooks at bookboon.com



LINEAR ALGEBRA II markoV proCesses

278278

10.4. EXERCISES 273

6. Find a formula for An where

A =




5
2 − 1

2 0 −1

5 0 0 −4
7
2 − 1

2
1
2 − 5

2
7
2 − 1

2 0 −2




Does limn→∞ An exist? Note that all the rows sum to 1. Hint: This matrix is similar
to a diagonal matrix. The eigenvalues are 1,−1, 1

2 ,
1
2 .

7. Find a formula for An where

A =




2 − 1
2

1
2 −1

4 0 1 −4
5
2 − 1

2 1 −2

3 − 1
2

1
2 −2




Note that the rows sum to 1 in this matrix also. Hint: This matrix is not similar
to a diagonal matrix but you can find the Jordan form and consider this in order to
obtain a formula for this product. The eigenvalues are 1,−1, 1

2 ,
1
2 .

8. Find limn→∞ An if it exists for the matrix

A =




1
2 − 1

2 − 1
2 0

− 1
2

1
2 − 1

2 0
1
2

1
2

3
2 0

3
2

3
2

3
2 1




The eigenvalues are 1
2 , 1, 1, 1.

9. Give an example of a matrix A which has eigenvalues which are either equal to 1,−1,
or have absolute value strictly less than 1 but which has the property that limn→∞ An

does not exist.

10. If A is an n× n matrix such that all the eigenvalues have absolute value less than 1,
show limn→∞ An = 0.

11. Find an example of a 3 × 3 matrix A such that limn→∞ An does not exist but
limr→∞ A5r does exist.

12. If A is a Markov matrix and B is similar to A, does it follow that B is also a Markov
matrix?

13. In Theorem 10.1.3 suppose everything is unchanged except that you assume either∑
j aij ≤ 1 or

∑
i aij ≤ 1. Would the same conclusion be valid? What if you don’t

insist that each aij ≥ 0? Would the conclusion hold in this case?

14. Let V be an n dimensional vector space and let x ∈ V and x ̸= 0. Consider βx ≡
x, Ax, · · · ,Am−1x where

Amx ∈ span
(
x,Ax, · · · ,Am−1x

)

and m is the smallest such that the above inclusion in the span takes place. Show
that

{
x,Ax, · · · ,Am−1x

}
must be linearly independent. Next suppose {v1, · · · ,vn}

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

��������������	
��	�
�����
�����
�

���������������������	
�����	��
��
����������
�������	
��	�����
���
��������
�
��������
��
���
�������
	�����	�
������������
������������������
�����������
	�����	

���
�������
	�����	�
�����
���
����
�������	
�������	��	�
���
��
���		�	

���
����������
��
�
	�	�������
������
�
����
���������
���
���������

�	�
�	
��
�������	
	�
��
���������������	
��
������� �


http://s.bookboon.com/ChalmersINTL2016


LINEAR ALGEBRA II markoV proCesses

279

10.4. EXERCISES 273

6. Find a formula for An where

A =




5
2 − 1

2 0 −1

5 0 0 −4
7
2 − 1

2
1
2 − 5

2
7
2 − 1

2 0 −2




Does limn→∞ An exist? Note that all the rows sum to 1. Hint: This matrix is similar
to a diagonal matrix. The eigenvalues are 1,−1, 1

2 ,
1
2 .

7. Find a formula for An where

A =




2 − 1
2

1
2 −1

4 0 1 −4
5
2 − 1

2 1 −2

3 − 1
2

1
2 −2




Note that the rows sum to 1 in this matrix also. Hint: This matrix is not similar
to a diagonal matrix but you can find the Jordan form and consider this in order to
obtain a formula for this product. The eigenvalues are 1,−1, 1

2 ,
1
2 .

8. Find limn→∞ An if it exists for the matrix

A =




1
2 − 1

2 − 1
2 0

− 1
2

1
2 − 1

2 0
1
2

1
2

3
2 0

3
2

3
2

3
2 1




The eigenvalues are 1
2 , 1, 1, 1.

9. Give an example of a matrix A which has eigenvalues which are either equal to 1,−1,
or have absolute value strictly less than 1 but which has the property that limn→∞ An

does not exist.

10. If A is an n× n matrix such that all the eigenvalues have absolute value less than 1,
show limn→∞ An = 0.

11. Find an example of a 3 × 3 matrix A such that limn→∞ An does not exist but
limr→∞ A5r does exist.

12. If A is a Markov matrix and B is similar to A, does it follow that B is also a Markov
matrix?

13. In Theorem 10.1.3 suppose everything is unchanged except that you assume either∑
j aij ≤ 1 or

∑
i aij ≤ 1. Would the same conclusion be valid? What if you don’t

insist that each aij ≥ 0? Would the conclusion hold in this case?

14. Let V be an n dimensional vector space and let x ∈ V and x ̸= 0. Consider βx ≡
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274 CHAPTER 10. MARKOV PROCESSES

is a basis for V . Consider βvi
as just discussed, having length mi. Thus Amivi is a

linearly combination of vi,Avi, · · · ,Am−1vi for m as small as possible. Let pvi
(λ) be

the monic polynomial which expresses this linear combination. Thus pvi
(A)vi = 0

and the degree of pvi
(λ) is as small as possible for this to take place. Show that the

minimal polynomial for A must be the monic polynomial which is the least common
multiple of these polynomials pvi (λ).

15. If A is a complex Hermitian n×n matrix which has all eigenvalues nonnegative, show
that there exists a complex Hermitian matrix B such that BB = A.

16. ↑Suppose A,B are n× n real Hermitian matrices and they both have all nonnegative
eigenvalues. Show that det (A+B) ≥ det (A)+det (B). Hint: Use the above problem
and the Cauchy Binet theorem. Let P 2 = A,Q2 = B where P,Q are Hermitian and
nonnegative. Then

A+B =
(

P Q
)(

P

Q

)
.

17. Suppose B =

(
α c∗

b A

)
is an (n+ 1)× (n+ 1) Hermitian nonnegative matrix where

α is a scalar and A is n × n. Show that α must be real, c = b, and A = A∗, A is
nonnegative, and that if α = 0, then b = 0. Otherwise, α > 0.

18. ↑If A is an n× n complex Hermitian and nonnegative matrix, show that there exists
an upper triangular matrix B such that B∗B = A. Hint: Prove this by induction. It
is obviously true if n = 1. Now if you have an (n+ 1)× (n+ 1) Hermitian nonnegative

matrix, then from the above problem, it is of the form

(
α2 αb∗

αb A

)
, α real.

19. ↑ Suppose A is a nonnegative Hermitian matrix (all eigenvalues are nonnegative) which
is partitioned as

A =

(
A11 A12

A21 A22

)

where A11, A22 are square matrices. Show that det (A) ≤ det (A11) det (A22). Hint:
Use the above problem to factor A getting

A =

(
B∗

11 0∗

B∗
12 B∗

22

)(
B11 B12

0 B22

)

Next argue that A11 = B∗
11B11, A22 = B∗

12B12 +B∗
22B22. Use the Cauchy Binet theo-

rem to argue that det (A22) = det (B∗
12B12 +B∗

22B22) ≥ det (B∗
22B22) . Then explain

why

det (A) = det (B∗
11) det (B

∗
22) det (B11) det (B22)

= det (B∗
11B11) det (B

∗
22B22)

20. ↑ Prove the inequality of Hadamard. If A is a Hermitian matrix which is nonnegative
(all eigenvalues are nonnegative), then det (A) ≤

∏
i Aii.
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Chapter 11

Inner Product Spaces

11.1 General Theory

It is assumed here that the field of scalars is either R or C. The usual example of an inner
product space is Cn or Rn as described earlier. However, there are many other inner product
spaces and the topic is of such importance that it seems appropriate to discuss the general
theory of these spaces.

Definition 11.1.1 A vector space X is said to be a normed linear space if there exists a
function, denoted by |·| : X → [0,∞) which satisfies the following axioms.

1. |x| ≥ 0 for all x ∈ X, and |x| = 0 if and only if x = 0.

2. |ax| = |a| |x| for all a ∈ F.

3. |x+ y| ≤ |x|+ |y| .

This function |·| is called a norm.

The notation ||x|| is also often used. Not all norms are created equal. There are many
geometric properties which they may or may not possess. There is also a concept called an
inner product which is discussed next. It turns out that the best norms come from an inner
product.

Definition 11.1.2 A mapping (·, ·) : V × V → F is called an inner product if it satisfies
the following axioms.

1. (x, y) = (y, x).

2. (x, x) ≥ 0 for all x ∈ V and equals zero if and only if x = 0.

3. (ax+ by, z) = a (x, z) + b (y, z) whenever a, b ∈ F.

Note that 2 and 3 imply (x, ay + bz) = a(x, y) + b(x, z).
Then a norm is given by

(x, x)
1/2 ≡ |x| .

It remains to verify this really is a norm.

Definition 11.1.3 A normed linear space in which the norm comes from an inner product
as just described is called an inner product space.
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Example 11.1.4 Let V = Cn with the inner product given by

(x,y) ≡
n∑

k=1

xkyk.

This is an example of a complex inner product space already discussed.

Example 11.1.5 Let V = Rn,

(x,y) = x · y ≡
n∑

j=1

xjyj .

This is an example of a real inner product space.

Example 11.1.6 Let V be any finite dimensional vector space and let {v1, · · · , vn} be a
basis. Decree that

(vi, vj) ≡ δij ≡

{
1 if i = j

0 if i ̸= j

and define the inner product by

(x, y) ≡
n∑

i=1

xiyi

where

x =
n∑

i=1

xivi, y =

n∑
i=1

yivi.

The above is well defined because {v1, · · · , vn} is a basis. Thus the components xi

associated with any given x ∈ V are uniquely determined.
This example shows there is no loss of generality when studying finite dimensional vector

spaces with field of scalars R or C in assuming the vector space is actually an inner product
space. The following theorem was presented earlier with slightly different notation.

Theorem 11.1.7 (Cauchy Schwarz) In any inner product space

|(x, y)| ≤ |x||y|.

where |x| ≡ (x, x)
1/2

.

Proof: Let ω ∈ C, |ω| = 1, and ω(x, y) = |(x, y)| = Re(x, yω). Let

F (t) = (x+ tyω, x+ tωy).

Then from the axioms of the inner product,

F (t) = |x|2 + 2tRe(x, ωy) + t2|y|2 ≥ 0.

This yields
|x|2 + 2t|(x, y)|+ t2|y|2 ≥ 0.

If |y| = 0, then the inequality requires that |(x, y)| = 0 since otherwise, you could pick large
negative t and contradict the inequality. If |y| > 0, it follows from the quadratic formula
that

4|(x, y)|2 − 4|x|2|y|2 ≤ 0. �
Earlier it was claimed that the inner product defines a norm. In this next proposition

this claim is proved.
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associated with any given x ∈ V are uniquely determined.
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|(x, y)| ≤ |x||y|.

where |x| ≡ (x, x)
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.

Proof: Let ω ∈ C, |ω| = 1, and ω(x, y) = |(x, y)| = Re(x, yω). Let

F (t) = (x+ tyω, x+ tωy).

Then from the axioms of the inner product,

F (t) = |x|2 + 2tRe(x, ωy) + t2|y|2 ≥ 0.

This yields
|x|2 + 2t|(x, y)|+ t2|y|2 ≥ 0.

If |y| = 0, then the inequality requires that |(x, y)| = 0 since otherwise, you could pick large
negative t and contradict the inequality. If |y| > 0, it follows from the quadratic formula
that

4|(x, y)|2 − 4|x|2|y|2 ≤ 0. �
Earlier it was claimed that the inner product defines a norm. In this next proposition

this claim is proved.
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Proposition 11.1.8 For an inner product space, |x| ≡ (x, x)
1/2

does specify a norm.

Proof: All the axioms are obvious except the triangle inequality. To verify this,

|x+ y|2 ≡ (x+ y, x+ y) ≡ |x|2 + |y|2 + 2Re (x, y)

≤ |x|2 + |y|2 + 2 |(x, y)|
≤ |x|2 + |y|2 + 2 |x| |y| = (|x|+ |y|)2. �

The best norms of all are those which come from an inner product because of the following
identity which is known as the parallelogram identity.

Proposition 11.1.9 If (V, (·, ·)) is an inner product space then for |x| ≡ (x, x)
1/2

, the
following identity holds.

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 .

It turns out that the validity of this identity is equivalent to the existence of an inner
product which determines the norm as described above. These sorts of considerations are
topics for more advanced courses on functional analysis.

Definition 11.1.10 A basis for an inner product space, {u1, · · · , un} is an orthonormal
basis if

(uk, uj) = δkj ≡

{
1 if k = j

0 if k ̸= j
.

Note that if a list of vectors satisfies the above condition for being an orthonormal set,
then the list of vectors is automatically linearly independent. To see this, suppose

n∑
j=1

cjuj = 0

Then taking the inner product of both sides with uk,

0 =
n∑

j=1

cj (uj , uk) =

n∑
j=1

cjδjk = ck.

11.2 The Gram Schmidt Process

Lemma 11.2.1 Let X be an inner product space and let {x1, · · · , xn} be linearly indepen-
dent. Then there exists an orthonormal basis for X, {u1, · · · , un} which has the property
that for each k ≤ n, span(x1, · · · , xk) = span (u1, · · · , uk) .

Proof: Let u1 ≡ x1/ |x1| . Thus for k = 1, span (u1) = span (x1) and {u1} is an
orthonormal set. Now suppose for some k < n, u1, · · · , uk have been chosen such that
(uj , ul) = δjl and span (x1, · · · , xk) = span (u1, · · · , uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1, uj)uj���xk+1 −

∑k
j=1 (xk+1, uj)uj

���
, (11.1)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · · , xk) = span (u1, · · · , uk)
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Thus by induction,

uk+1 ∈ span (u1, · · · , uk, xk+1) = span (x1, · · · , xk, xk+1) .

Also, xk+1 ∈ span (u1, · · · , uk, uk+1) which is seen easily by solving 11.1 for xk+1 and it
follows

span (x1, · · · , xk, xk+1) = span (u1, · · · , uk, uk+1) .

If l ≤ k,

(uk+1, ul) = C


(xk+1, ul)−

k∑
j=1

(xk+1, uj) (uj , ul)




= C


(xk+1, ul)−

k∑
j=1

(xk+1, uj) δlj




= C ((xk+1, ul)− (xk+1, ul)) = 0.

The vectors, {uj}nj=1 , generated in this way are therefore an orthonormal basis because
each vector has unit length. �

The process by which these vectors were generated is called the Gram Schmidt process.
The following corollary is obtained from the above process.

Corollary 11.2.2 Let X be a finite dimensional inner product space of dimension n whose
basis is {u1, · · · , uk, xk+1, · · · , xn} . Then if {u1, · · · , uk} is orthonormal, then the Gram
Schmidt process applied to the given list of vectors in order leaves {u1, · · · , uk} unchanged.

Lemma 11.2.3 Suppose {uj}nj=1 is an orthonormal basis for an inner product space X.
Then for all x ∈ X,

x =

n∑
j=1

(x, uj)uj .

Proof: Since {uj}nj=1 is a basis, there exist unique scalars {αi} such that

x =

n∑
j=1

αjuj

It only remains to identify αk. From the properties of the inner product,

(x, uk) =

n∑
j=1

αj (uj , uk) =

n∑
j=1

αjδjk = αk �

The following theorem is of fundamental importance. First note that a subspace of an
inner product space is also an inner product space because you can use the same inner
product.

Theorem 11.2.4 Let M be a finite dimensional subspace of X, an inner product space and
let {ei}mi=1 be an orthonormal basis for M . Then if y ∈ X and w ∈ M,

|y − w|2 = inf
{
|y − z|2 : z ∈ M

}
(11.2)

if and only if
(y − w, z) = 0 (11.3)
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for all z ∈ M. Furthermore,

w =

m∑
i=1

(y, xi)xi (11.4)

is the unique element of M which has this property. It is called the orthogonal projection.

Proof: First we show that if 11.3, then 11.2. Let z ∈ M be arbitrary. Then

|y − z|2 = |y − w + (w − z)|2

= (y − w + (w − z) , y − w + (w − z))

= |y − w|2 + |z − w|2 + 2Re (y − w,w − z)

The last term is given to be 0 and so

|y − z|2 = |y − w|2 + |z − w|2

which verifies 11.2.
Next suppose 11.2. Is it true that 11.3 follows? Let z ∈ M be arbitrary and let |θ| =

1, θ̄ (x− w,w − z) = |(x− w,w − z)|. Then let

p (t) ≡ |x− w + tθ (w − z)|2 = |x− w|2 + 2Re (x− w, tθ (w − z)) + t2 |w − z|2

= |x− w|2 + 2Re tθ̄ (x− w, (w − z)) + t2 |w − z|2

= |x− w|2 + 2t |(x− w, (w − z))|+ t2 |w − z|2

Then p has a minimum when t = 0 and so p′ (0) = 2 |(x− w, (w − z))| = 0 which shows
11.3. This proves the first part of the theorem since z is arbitrary.

It only remains to verify that w given in 11.4 satisfies 11.3 and is the only point of M
which does so.

First, could there be two minimizers? Say w1, w2 both work. Then by the above char-
acterization of minimizers,

(x− w1, w1 − w2) = 0

(x− w2, w1 − w2) = 0

Subtracting gives (w1 − w2, w1 − w2) = 0. Hence the minimizer is unique.
Finally, it remains to show that the given formula works. Letting {e1, · · · , em} be an

orthonormal basis for M, such a thing existing by the Gramm Schmidt process,
(
x−

m∑
i=1

(x, ei) ei, ek

)
= (x, ek)−

m∑
i=1

(x, ei) (ei, ek)

= (x, ek)−
m∑
i=1

(x, ei) δik

= (x, ek)− (x, ek) = 0

Since this inner product equals 0 for arbitrary ek, it follows that
(
x−

m∑
i=1

(x, ei) ei, z

)
= 0

for every z ∈ M because each such z is a linear combination of the ei. Hence
∑m

i=1 (x, ei) ei
is the unique minimizer. �
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= |x− w|2 + 2Re tθ̄ (x− w, (w − z)) + t2 |w − z|2

= |x− w|2 + 2t |(x− w, (w − z))|+ t2 |w − z|2

Then p has a minimum when t = 0 and so p′ (0) = 2 |(x− w, (w − z))| = 0 which shows
11.3. This proves the first part of the theorem since z is arbitrary.

It only remains to verify that w given in 11.4 satisfies 11.3 and is the only point of M
which does so.

First, could there be two minimizers? Say w1, w2 both work. Then by the above char-
acterization of minimizers,

(x− w1, w1 − w2) = 0

(x− w2, w1 − w2) = 0

Subtracting gives (w1 − w2, w1 − w2) = 0. Hence the minimizer is unique.
Finally, it remains to show that the given formula works. Letting {e1, · · · , em} be an

orthonormal basis for M, such a thing existing by the Gramm Schmidt process,
(
x−

m∑
i=1

(x, ei) ei, ek

)
= (x, ek)−

m∑
i=1

(x, ei) (ei, ek)

= (x, ek)−
m∑
i=1

(x, ei) δik

= (x, ek)− (x, ek) = 0

Since this inner product equals 0 for arbitrary ek, it follows that
(
x−

m∑
i=1

(x, ei) ei, z

)
= 0

for every z ∈ M because each such z is a linear combination of the ei. Hence
∑m

i=1 (x, ei) ei
is the unique minimizer. �
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Example 11.2.5 Consider X equal to the continuous functions defined on [−π, π] and let
the inner product be given by ∫ π

−π

f (x) g (x)dx

It is left to the reader to verify that this is an inner product. Letting ek be the function
x → 1√

2π
eikx, define

M ≡ span
(
{ek}nk=−n

)
.

Then you can verify that

(ek, em) =

∫ π

−π

(
1√
2π

e−ikx

)(
1√
2π

emix

)
dx =

1

2π

∫ π

−π

ei(m−k)x = δkm

then for a given function f ∈ X, the function from M which is closest to f in this inner
product norm is

g =

n∑
k=−n

(f, ek) ek

In this case (f, ek) =
1√
2π

∫ π

−π
f (x) eikxdx. These are the Fourier coefficients. The above is

the nth partial sum of the Fourier series.

To show how this kind of thing approximates a given function, let f (x) = x2. Let

M = span

({
1√
2π

e−ikx
}3

k=−3

)
. Then, doing the computations, you find the closest point

is of the form

1

3

√
2π

5
2

(
1√
2π

)
+

3∑
k=1

(
(−1)

k
2

k2

)
√
2
√
π

1√
2π

e−ikx +

3∑
k=1

(
(−1)

k
2

k2

)
√
2
√
π

1√
2π

eikx

and now simplify to get

1

3
π2 +

3∑
k=1

(−1)
k

(
4

k2

)
cos kx

Then a graph of this along with the graph of y = x2 is given below. In this graph, the dashed
graph is of y = x2 and the solid line is the graph of the above Fourier series approximation.

If we had taken the partial sum up to n much bigger, it would have been
very hard to distinguish between the graph of the partial sum of the
Fourier series and the graph of the function it is approximating. This
is in contrast to approximation by Taylor series in which you only get
approximation at a point of a function and its derivatives. These are
very close near the point of interest but typically fail to approximate
the function on the entire interval.

11.3 Riesz Representation Theorem

The next theorem is one of the most important results in the theory of inner product spaces.
It is called the Riesz representation theorem.

Theorem 11.3.1 Let f ∈ L (X,F) where X is an inner product space of dimension n.
Then there exists a unique z ∈ X such that for all x ∈ X,

f (x) = (x, z) .
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Fourier series and the graph of the function it is approximating. This
is in contrast to approximation by Taylor series in which you only get
approximation at a point of a function and its derivatives. These are
very close near the point of interest but typically fail to approximate
the function on the entire interval.

11.3 Riesz Representation Theorem

The next theorem is one of the most important results in the theory of inner product spaces.
It is called the Riesz representation theorem.

Theorem 11.3.1 Let f ∈ L (X,F) where X is an inner product space of dimension n.
Then there exists a unique z ∈ X such that for all x ∈ X,

f (x) = (x, z) .
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Proof: First I will verify uniqueness. Suppose zj works for j = 1, 2. Then for all x ∈ X,

0 = f (x)− f (x) = (x, z1 − z2)

and so z1 = z2.
It remains to verify existence. By Lemma 11.2.1, there exists an orthonormal basis,

{uj}nj=1 . If there is such a z, then you would need f (uj) = (uj , z) and so you would need

f (uj) = (z, uj) . Also you must have z =
∑

i (z, uj)uj . Therefore, define

z ≡
n∑

j=1

f (uj)uj .

Then using Lemma 11.2.3,

(x, z) =


x,

n∑
j=1

f (uj)uj


 =

n∑
j=1

f (uj) (x, uj)

= f




n∑
j=1

(x, uj)uj


 = f (x) . �

Corollary 11.3.2 Let A ∈ L (X,Y ) where X and Y are two inner product spaces of finite
dimension. Then there exists a unique A∗ ∈ L (Y,X) such that

(Ax, y)Y = (x,A∗y)X (11.5)

for all x ∈ X and y ∈ Y. The following formula holds

(αA+ βB)
∗
= αA∗ + βB∗

Proof: Let fy ∈ L (X,F) be defined as

fy (x) ≡ (Ax, y)Y .

Then by the Riesz representation theorem, there exists a unique element of X, A∗ (y) such
that

(Ax, y)Y = (x,A∗ (y))X .

It only remains to verify that A∗ is linear. Let a and b be scalars. Then for all x ∈ X,

(x,A∗ (ay1 + by2))X ≡ (Ax, (ay1 + by2))Y

≡ a (Ax, y1) + b (Ax, y2) ≡

a (x,A∗ (y1)) + b (x,A∗ (y2)) = (x, aA∗ (y1) + bA∗ (y2)) .

Since this holds for every x, it follows

A∗ (ay1 + by2) = aA∗ (y1) + bA∗ (y2)

which shows A∗ is linear as claimed.
Consider the last assertion that ∗ is conjugate linear.

(
x, (αA+ βB)

∗
y
)
≡ ((αA+ βB)x, y)
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= α (Ax, y) + β (Bx, y) = α (x,A∗y) + β (x,B∗y)

= (x, αA∗y) +
(
x, βA∗y

)
=

(
x,

(
αA∗ + βA∗) y) .

Since x is arbitrary,
(αA+ βB)

∗
y =

(
αA∗ + βA∗) y

and since this is true for all y,

(αA+ βB)
∗
= αA∗ + βA∗. �

Definition 11.3.3 The linear map, A∗ is called the adjoint of A. In the case when A : X →
X and A = A∗, A is called a self adjoint map. Such a map is also called Hermitian.

Theorem 11.3.4 Let M be an m × n matrix. Then M∗ =
(
M

)T
in words, the transpose

of the conjugate of M is equal to the adjoint.

Proof: Using the definition of the inner product in Cn,

(Mx,y) = (x,M∗y) ≡
∑
i

xi

∑
j

(M∗)ij yj =
∑
i,j

(M∗)ijyjxi.

Also
(Mx,y) =

∑
j

∑
i

Mjiyjxi.

Since x,y are arbitrary vectors, it follows that Mji = (M∗)ij and so, taking conjugates of
both sides,

M∗
ij = Mji �

The next theorem is interesting. You have a p dimensional subspace of Fn where F = R
or C. Of course this might be “slanted”. However, there is a linear transformation Q which
preserves distances which maps this subspace to Fp.

Theorem 11.3.5 Suppose V is a subspace of Fn having dimension p ≤ n. Then there exists
a Q ∈ L (Fn,Fn) such that

QV ⊆ span (e1, · · · , ep)

and |Qx| = |x| for all x. Also
Q∗Q = QQ∗ = I.

Proof: By Lemma 11.2.1 there exists an orthonormal basis for V, {vi}pi=1 . By using the
Gram Schmidt process this may be extended to an orthonormal basis of the whole space
Fn,

{v1, · · · ,vp,vp+1, · · · ,vn} .

Now define Q ∈ L (Fn,Fn) by Q (vi) ≡ ei and extend linearly. If
∑n

i=1 xivi is an arbitrary
element of Fn,

�����Q
(

n∑
i=1

xivi

)�����
2

=

�����
n∑

i=1

xiei

�����
2

=

n∑
i=1

|xi|2 =

�����
n∑

i=1

xivi

�����
2

.

It remains to verify that Q∗Q = QQ∗ = I. To do so, let x,y ∈ Fn. Then let ω be a complex
number such that |ω| = 1, ω (x,Q∗Qy − y) = |(x,Q∗Qy − y)|.

(Q (ωx+ y) , Q (ωx+ y)) = (ωx+ y, ωx+ y) .
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The next theorem is interesting. You have a p dimensional subspace of Fn where F = R
or C. Of course this might be “slanted”. However, there is a linear transformation Q which
preserves distances which maps this subspace to Fp.

Theorem 11.3.5 Suppose V is a subspace of Fn having dimension p ≤ n. Then there exists
a Q ∈ L (Fn,Fn) such that

QV ⊆ span (e1, · · · , ep)

and |Qx| = |x| for all x. Also
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Proof: By Lemma 11.2.1 there exists an orthonormal basis for V, {vi}pi=1 . By using the
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Fn,
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Now define Q ∈ L (Fn,Fn) by Q (vi) ≡ ei and extend linearly. If
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i=1 xivi is an arbitrary
element of Fn,

�����Q
(
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xiei

�����
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=
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�����
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It remains to verify that Q∗Q = QQ∗ = I. To do so, let x,y ∈ Fn. Then let ω be a complex
number such that |ω| = 1, ω (x,Q∗Qy − y) = |(x,Q∗Qy − y)|.

(Q (ωx+ y) , Q (ωx+ y)) = (ωx+ y, ωx+ y) .
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Thus
|Qx|2 + |Qy|2 + 2Reω (Qx,Qy) = |x|2 + |y|2 + 2Reω (x,y)

and since Q preserves norms, it follows that for all x,y ∈ Fn,

Reω (Qx,Qy) = Reω (x,Q∗Qy) = ωRe (x,y) .

Thus
0 = Reω ((x,Q∗Qy)− (x,y)) = Reω (x, Q∗Qy − y) = |(x,Q∗Qy − y)|

Re (x,Q∗Qy − y) = 0 (11.6)

for all x,y. Letting x = Q∗Qy − y, it follows Q∗Qy = y. Similarly QQ∗ = I. �
Note that is is actually shown that QV = span (e1, · · · , ep) and that in case p = n one

obtains that a linear transformation which maps an orthonormal basis to an orthonormal
basis is unitary.

11.4 The Tensor Product Of Two Vectors

Definition 11.4.1 Let X and Y be inner product spaces and let x ∈ X and y ∈ Y. Define
the tensor product of these two vectors, y ⊗ x, an element of L (X,Y ) by

y ⊗ x (u) ≡ y (u, x)X .

This is also called a rank one transformation because the image of this transformation is
contained in the span of the vector, y.

The verification that this is a linear map is left to you. Be sure to verify this! The
following lemma has some of the most important properties of this linear transformation.

Lemma 11.4.2 Let X,Y, Z be inner product spaces. Then for α a scalar,

(α (y ⊗ x))
∗
= αx⊗ y (11.7)

(z ⊗ y1) (y2 ⊗ x) = (y2, y1) z ⊗ x (11.8)

Proof: Let u ∈ X and v ∈ Y. Then

(α (y ⊗ x)u, v) = (α (u, x) y, v) = α (u, x) (y, v)

and
(u, αx⊗ y (v)) = (u, α (v, y)x) = α (y, v) (u, x) .

Therefore, this verifies 11.7.
To verify 11.8, let u ∈ X.

(z ⊗ y1) (y2 ⊗ x) (u) = (u, x) (z ⊗ y1) (y2) = (u, x) (y2, y1) z

and
(y2, y1) z ⊗ x (u) = (y2, y1) (u, x) z.

Since the two linear transformations on both sides of 11.8 give the same answer for every
u ∈ X, it follows the two transformations are the same. �

Definition 11.4.3 Let X,Y be two vector spaces. Then define for A,B ∈ L (X,Y ) and
α ∈ F, new elements of L (X,Y ) denoted by A+B and αA as follows.

(A+B) (x) ≡ Ax+Bx, (αA)x ≡ α (Ax) .
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Theorem 11.4.4 Let X and Y be finite dimensional inner product spaces. Then L (X,Y )
is a vector space with the above definition of what it means to multiply by a scalar and add.
Let {v1, · · · , vn} be an orthonormal basis for X and {w1, · · · , wm} be an orthonormal basis
for Y. Then a basis for L (X,Y ) is

{wj ⊗ vi : i = 1, · · · , n, j = 1, · · · ,m} .

Proof: It is obvious that L (X,Y ) is a vector space. It remains to verify the given set
is a basis. Consider the following:



A−

∑
k,l

(Avk, wl)wl ⊗ vk


 vp, wr


 = (Avp, wr)−

∑
k,l

(Avk, wl) (vp, vk) (wl, wr)

= (Avp, wr)−
∑
k,l

(Avk, wl) δpkδrl = (Avp, wr)− (Avp, wr) = 0.

Letting A−
∑

k,l (Avk, wl)wl⊗vk = B, this shows that Bvp = 0 since wr is an arbitrary
element of the basis for Y. Since vp is an arbitrary element of the basis for X, it follows
B = 0 as hoped. This has shown {wj ⊗ vi : i = 1, · · · , n, j = 1, · · · ,m} spans L (X,Y ) .

It only remains to verify the wj ⊗ vi are linearly independent. Suppose then that
∑
i,j

cijwj ⊗ vi = 0

Then do both sides to vs. By definition this gives

0 =
∑
i,j

cijwj (vs, vi) =
∑
i,j

cijwjδsi =
∑
j

csjwj

Now the vectors {w1, · · · , wm} are independent because it is an orthonormal set and so the
above requires csj = 0 for each j. Since s was arbitrary, this shows the linear transformations,
{wj ⊗ vi} form a linearly independent set. �

Note this shows the dimension of L (X,Y ) = nm. The theorem is also of enormous
importance because it shows you can always consider an arbitrary linear transformation as
a sum of rank one transformations whose properties are easily understood. The following
theorem is also of great interest.

Theorem 11.4.5 Let A =
∑

i,j cijwi⊗vj ∈ L (X,Y ) where as before, the vectors, {wi} are
an orthonormal basis for Y and the vectors, {vj} are an orthonormal basis for X. Then if
the matrix of A has entries Mij , it follows that Mij = cij .

Proof: Recall
Avi ≡

∑
k

Mkiwk

Also

Avi =
∑
k,j

ckjwk ⊗ vj (vi) =
∑
k,j

ckjwk (vi, vj)

=
∑
k,j

ckjwkδij =
∑
k

ckiwk

Therefore, ∑
k

Mkiwk =
∑
k

ckiwk

and so Mki = cki for all k. This happens for each i. �
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11.5 Least Squares

A common problem in experimental work is to find a straight line which approximates as
well as possible a collection of points in the plane {(xi, yi)}pi=1. The usual way of dealing
with these problems is by the method of least squares and it turns out that all these sorts
of approximation problems can be reduced to Ax = b where the problem is to find the best
x for solving this equation even when there is no solution.

Lemma 11.5.1 Let V and W be finite dimensional inner product spaces and let A : V → W
be linear. For each y ∈ W there exists x ∈ V such that

|Ax− y| ≤ |Ax1 − y|

for all x1 ∈ V. Also, x ∈ V is a solution to this minimization problem if and only if x is a
solution to the equation, A∗Ax = A∗y.

Proof: By Theorem 11.2.4 on Page 278 there exists a point, Ax0, in the finite dimen-
sional subspace, A (V ) , of W such that for all x ∈ V, |Ax− y|2 ≥ |Ax0 − y|2 . Also, from
this theorem, this happens if and only if Ax0 − y is perpendicular to every Ax ∈ A (V ) .
Therefore, the solution is characterized by (Ax0 − y,Ax) = 0 for all x ∈ V which is the
same as saying (A∗Ax0 −A∗y, x) = 0 for all x ∈ V. In other words the solution is obtained
by solving A∗Ax0 = A∗y for x0. �

Consider the problem of finding the least squares regression line in statistics. Suppose
you have given points in the plane, {(xi, yi)}ni=1 and you would like to find constants m
and b such that the line y = mx + b goes through all these points. Of course this will be
impossible in general. Therefore, try to find m, b such that you do the best you can to solve
the system 


y1
...

yn


 =




x1 1
...

...

xn 1




(
m

b

)

which is of the form y = Ax. In other words try to make

��������
A

(
m

b

)
−




y1
...

yn




��������

2

as small

as possible. According to what was just shown, it is desired to solve the following for m and
b.

A∗A

(
m

b

)
= A∗




y1
...

yn


 .

Since A∗ = AT in this case,

( ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

)(
m

b

)
=

( ∑n
i=1 xiyi∑n
i=1 yi

)

Solving this system of equations for m and b,

m =
− (

∑n
i=1 xi) (

∑n
i=1 yi) + (

∑n
i=1 xiyi)n

(
∑n

i=1 x
2
i )n− (

∑n
i=1 xi)

2
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and

b =
− (

∑n
i=1 xi)

∑n
i=1 xiyi + (

∑n
i=1 yi)

∑n
i=1 x

2
i

(
∑n

i=1 x
2
i )n− (

∑n
i=1 xi)

2 .

One could clearly do a least squares fit for curves of the form y = ax2 + bx + c in the
same way. In this case you solve as well as possible for a, b, and c the system




x2
1 x1 1
...

...
...

x2
n xn 1







a

b

c


 =




y1
...

yn




using the same techniques.

11.6 Fredholm Alternative Again

The best context in which to study the Fredholm alternative is in inner product spaces.
This is done here.

Definition 11.6.1 Let S be a subset of an inner product space, X. Define

S⊥ ≡ {x ∈ X : (x, s) = 0 for all s ∈ S} .

The following theorem also follows from the above lemma. It is sometimes called the
Fredholm alternative.

Theorem 11.6.2 Let A : V → W where A is linear and V and W are inner product spaces.
Then A (V ) = ker (A∗)

⊥
.

Proof: Let y = Ax so y ∈ A (V ) . Then if A∗z = 0,

(y, z) = (Ax, z) = (x,A∗z) = 0

showing that y ∈ ker (A∗)
⊥
. Thus A (V ) ⊆ ker (A∗)

⊥
.

Now suppose y ∈ ker (A∗)
⊥
. Does there exists x such that Ax = y? Since this might

not be immediately clear, take the least squares solution to the problem. Thus let x be a
solution to A∗Ax = A∗y. It follows A∗ (y −Ax) = 0 and so y−Ax ∈ ker (A∗) which implies
from the assumption about y that (y −Ax, y) = 0. Also, since Ax is the closest point to
y in A (V ) , Theorem 11.2.4 on Page 278 implies that (y −Ax,Ax1) = 0 for all x1 ∈ V.

In particular this is true for x1 = x and so 0 = (y −Ax, y) −
=0� �� �

(y −Ax,Ax) = |y −Ax|2 ,
showing that y = Ax. Thus A (V ) ⊇ ker (A∗)

⊥
. �

Corollary 11.6.3 Let A, V, and W be as described above. If the only solution to A∗y = 0
is y = 0, then A is onto W.

Proof: If the only solution to A∗y = 0 is y = 0, then ker (A∗) = {0} and so every vector

from W is contained in ker (A∗)
⊥

and by the above theorem, this shows A (V ) = W . �
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and

b =
− (

∑n
i=1 xi)

∑n
i=1 xiyi + (

∑n
i=1 yi)

∑n
i=1 x

2
i

(
∑n

i=1 x
2
i )n− (

∑n
i=1 xi)

2 .

One could clearly do a least squares fit for curves of the form y = ax2 + bx + c in the
same way. In this case you solve as well as possible for a, b, and c the system




x2
1 x1 1
...

...
...

x2
n xn 1







a

b

c


 =




y1
...

yn




using the same techniques.

11.6 Fredholm Alternative Again

The best context in which to study the Fredholm alternative is in inner product spaces.
This is done here.

Definition 11.6.1 Let S be a subset of an inner product space, X. Define

S⊥ ≡ {x ∈ X : (x, s) = 0 for all s ∈ S} .

The following theorem also follows from the above lemma. It is sometimes called the
Fredholm alternative.

Theorem 11.6.2 Let A : V → W where A is linear and V and W are inner product spaces.
Then A (V ) = ker (A∗)

⊥
.

Proof: Let y = Ax so y ∈ A (V ) . Then if A∗z = 0,

(y, z) = (Ax, z) = (x,A∗z) = 0

showing that y ∈ ker (A∗)
⊥
. Thus A (V ) ⊆ ker (A∗)

⊥
.

Now suppose y ∈ ker (A∗)
⊥
. Does there exists x such that Ax = y? Since this might
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11.7 Exercises

1. Find the best solution to the system

x+ 2y = 6

2x− y = 5

3x+ 2y = 0

2. Find an orthonormal basis for R3, {w1,w2,w3} given that w1 is a multiple of the
vector (1, 1, 2).

3. Suppose A = AT is a symmetric real n× n matrix which has all positive eigenvalues.
Define

(x,y) ≡ (Ax,y) .

Show this is an inner product on Rn. What does the Cauchy Schwarz inequality say
in this case?

4. Let ||x||∞ ≡ max {|xj | : j = 1, 2, · · · , n} . Show this is a norm on Cn. Here

x =
(

x1 · · · xn

)T

.

Show
||x||∞ ≤ |x| ≡ (x,x)

1/2

where the above is the usual inner product on Cn.

5. Let ||x||1 ≡
∑n

j=1 |xj | .Show this is a norm on Cn. Here x =
(

x1 · · · xn

)T

. Show

||x||1 ≥ |x| ≡ (x,x)
1/2

where the above is the usual inner product on Cn. Show there cannot exist an inner
product such that this norm comes from the inner product as described above for
inner product spaces.

6. Show that if ||·|| is any norm on any vector space, then |||x|| − ||y||| ≤ ||x− y|| .

7. Relax the assumptions in the axioms for the inner product. Change the axiom about
(x, x) ≥ 0 and equals 0 if and only if x = 0 to simply read (x, x) ≥ 0. Show the Cauchy

Schwarz inequality still holds in the following form. |(x, y)| ≤ (x, x)
1/2

(y, y)
1/2

.

8. Let H be an inner product space and let {uk}nk=1 be an orthonormal basis for H.
Show

(x, y) =
n∑

k=1

(x, uk) (y, uk).

9. Let the vector space V consist of real polynomials of degree no larger than 3. Thus a
typical vector is a polynomial of the form a+ bx+ cx2 + dx3. For p, q ∈ V define the

inner product, (p, q) ≡
∫ 1

0
p (x) q (x) dx. Show this is indeed an inner product. Then

state the Cauchy Schwarz inequality in terms of this inner product. Show
{
1, x, x2, x3

}
is a basis for V . Finally, find an orthonormal basis for V. This is an example of some
orthonormal polynomials.
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10. Let Pn denote the polynomials of degree no larger than n− 1 which are defined on an
interval [a, b] . Let {x1, · · · , xn} be n distinct points in [a, b] . Now define for p, q ∈ Pn,

(p, q) ≡
n∑

j=1

p (xj) q (xj)

Show this yields an inner product on Pn. Hint: Most of the axioms are obvious. The
one which says (p, p) = 0 if and only if p = 0 is the only interesting one. To verify this
one, note that a nonzero polynomial of degree no more than n− 1 has at most n− 1
zeros.

11. Let C ([0, 1]) denote the vector space of continuous real valued functions defined on
[0, 1]. Let the inner product be given as

(f, g) ≡
∫ 1

0

f (x) g (x) dx

Show this is an inner product. Also let V be the subspace described in Problem 9.
Using the result of this problem, find the vector in V which is closest to x4.

12. A regular Sturm Liouville problem involves the differential equation, for an un-
known function of x which is denoted here by y,

(p (x) y′)
′
+ (λq (x) + r (x)) y = 0, x ∈ [a, b]

and it is assumed that p (t) , q (t) > 0 for any t ∈ [a, b] and also there are boundary
conditions,

C1y (a) + C2y
′ (a) = 0

C3y (b) + C4y
′ (b) = 0

where
C2

1 + C2
2 > 0, and C2

3 + C2
4 > 0.

There is an immense theory connected to these important problems. The constant, λ
is called an eigenvalue. Show that if y is a solution to the above problem corresponding
to λ = λ1 and if z is a solution corresponding to λ = λ2 ̸= λ1, then

∫ b

a

q (x) y (x) z (x) dx = 0. (11.9)

and this defines an inner product. Hint: Do something like this:

(p (x) y′)
′
z + (λ1q (x) + r (x)) yz = 0,

(p (x) z′)
′
y + (λ2q (x) + r (x)) zy = 0.

Now subtract and either use integration by parts or show

(p (x) y′)
′
z − (p (x) z′)

′
y = ((p (x) y′) z − (p (x) z′) y)

′

and then integrate. Use the boundary conditions to show that y′ (a) z (a)−z′ (a) y (a) =
0 and y′ (b) z (b)−z′ (b) y (b) = 0. The formula, 11.9 is called an orthogonality relation.
It turns out there are typically infinitely many eigenvalues and it is interesting to write
given functions as an infinite series of these “eigenfunctions”.
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and it is assumed that p (t) , q (t) > 0 for any t ∈ [a, b] and also there are boundary
conditions,

C1y (a) + C2y
′ (a) = 0

C3y (b) + C4y
′ (b) = 0

where
C2

1 + C2
2 > 0, and C2

3 + C2
4 > 0.

There is an immense theory connected to these important problems. The constant, λ
is called an eigenvalue. Show that if y is a solution to the above problem corresponding
to λ = λ1 and if z is a solution corresponding to λ = λ2 ̸= λ1, then

∫ b

a

q (x) y (x) z (x) dx = 0. (11.9)

and this defines an inner product. Hint: Do something like this:

(p (x) y′)
′
z + (λ1q (x) + r (x)) yz = 0,

(p (x) z′)
′
y + (λ2q (x) + r (x)) zy = 0.

Now subtract and either use integration by parts or show

(p (x) y′)
′
z − (p (x) z′)

′
y = ((p (x) y′) z − (p (x) z′) y)

′

and then integrate. Use the boundary conditions to show that y′ (a) z (a)−z′ (a) y (a) =
0 and y′ (b) z (b)−z′ (b) y (b) = 0. The formula, 11.9 is called an orthogonality relation.
It turns out there are typically infinitely many eigenvalues and it is interesting to write
given functions as an infinite series of these “eigenfunctions”.

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Do you like cars? Would you like to be a part of a successful brand?
As a constructer at ŠKODA AUTO you will put great things in motion. Things that will 
ease everyday lives of people all around Send us your CV. We will give it an entirely 
new new dimension.

Send us your CV on
www.employerforlife.com

WE WILL TURN YOUR CV 
INTO AN OPPORTUNITY 

OF A LIFETIME

WE WILL TURN YOUR CV 
INTO AN OPPORTUNITY 

OF A LIFETIME

http://s.bookboon.com/skoda-eng


LINEAR ALGEBRA II inner produCt spaCes

295

11.7. EXERCISES 289

13. Consider the continuous functions defined on [0, π] , C ([0, π]) . Show (f, g) ≡
∫ π

0
fgdx

is an inner product on this vector space. Show the functions
{√

2
π sin (nx)

}∞

n=1
are

an orthonormal set. What does this mean about the dimension of the vector space

C ([0, π])? Now let VN = span
(√

2
π sin (x) , · · · ,

√
2
π sin (Nx)

)
. For f ∈ C ([0, π]) find

a formula for the vector in VN which is closest to f with respect to the norm determined
from the above inner product. This is called the N th partial sum of the Fourier series
of f . An important problem is to determine whether and in what way this Fourier
series converges to the function f . The norm which comes from this inner product is
sometimes called the mean square norm.

14. Consider the subspace V ≡ ker (A) where

A =




1 4 −1 −1

2 1 2 3

4 9 0 1

5 6 3 4




Find an orthonormal basis for V. Hint: You might first find a basis and then use the
Gram Schmidt procedure.

15. The Gram Schmidt process starts with a basis for a subspace {v1, · · · , vn} and pro-
duces an orthonormal basis for the same subspace {u1, · · · , un} such that

span (v1, · · · , vk) = span (u1, · · · , uk)

for each k. Show that in the case of Rm the QR factorization does the same thing.
More specifically, if

A =
(

v1 · · · vn

)

and if
A = QR ≡

(
q1 · · · qn

)
R

then the vectors {q1, · · · ,qn} is an orthonormal set of vectors and for each k,

span (q1, · · · ,qk) = span (v1, · · · ,vk)

16. Verify the parallelogram identify for any inner product space,

|x+ y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 .

Why is it called the parallelogram identity?

17. Let H be an inner product space and let K ⊆ H be a nonempty convex subset. This
means that if k1, k2 ∈ K, then the line segment consisting of points of the form

tk1 + (1− t) k2 for t ∈ [0, 1]

is also contained in K. Suppose for each x ∈ H, there exists Px defined to be a point
of K closest to x. Show that Px is unique so that P actually is a map. Hint: Suppose
z1 and z2 both work as closest points. Consider the midpoint, (z1 + z2) /2 and use the
parallelogram identity of Problem 16 in an auspicious manner.
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18. In the situation of Problem 17 suppose K is a closed convex subset and that H
is complete. This means every Cauchy sequence converges. Recall from calculus a
sequence {kn} is a Cauchy sequence if for every ε > 0 there exists Nε such that
whenever m,n > Nε, it follows |km − kn| < ε. Let {kn} be a sequence of points of K
such that

lim
n→∞

|x− kn| = inf {|x− k| : k ∈ K}

This is called a minimizing sequence. Show there exists a unique k ∈ K such that
limn→∞ |kn − k| and that k = Px. That is, there exists a well defined projection map
onto the convex subset of H. Hint: Use the parallelogram identity in an auspicious
manner to show {kn} is a Cauchy sequence which must therefore converge. Since K
is closed it follows this will converge to something in K which is the desired vector.

19. LetH be an inner product space which is also complete and let P denote the projection
map onto a convex closed subset, K. Show this projection map is characterized by
the inequality

Re (k − Px, x− Px) ≤ 0

for all k ∈ K. That is, a point z ∈ K equals Px if and only if the above variational
inequality holds. This is what that inequality is called. This is because k is allowed
to vary and the inequality continues to hold for all k ∈ K.

20. Using Problem 19 and Problems 17 - 18 show the projection map, P onto a closed
convex subset is Lipschitz continuous with Lipschitz constant 1. That is

|Px− Py| ≤ |x− y|

21. Give an example of two vectors in R4 or R3 x,y and a subspace V such that x · y = 0
but Px·Py ̸= 0 where P denotes the projection map which sends x to its closest point
on V .

22. Suppose you are given the data, (1, 2) , (2, 4) , (3, 8) , (0, 0) . Find the linear regression
line using the formulas derived above. Then graph the given data along with your
regression line.

23. Generalize the least squares procedure to the situation in which data is given and you
desire to fit it with an expression of the form y = af (x)+bg (x)+c where the problem
would be to find a, b and c in order to minimize the error. Could this be generalized
to higher dimensions? How about more functions?

24. Let A ∈ L (X,Y ) where X and Y are finite dimensional vector spaces with the dimen-
sion of X equal to n. Define rank (A) ≡ dim (A (X)) and nullity(A) ≡ dim (ker (A)) .
Show that nullity(A) + rank (A) = dim (X) . Hint: Let {xi}ri=1 be a basis for ker (A)

and let {xi}ri=1 ∪ {yi}n−r
i=1 be a basis for X. Then show that {Ayi}n−r

i=1 is linearly
independent and spans AX.

25. Let A be an m×n matrix. Show the column rank of A equals the column rank of A∗A.
Next verify column rank of A∗A is no larger than column rank of A∗. Next justify the
following inequality to conclude the column rank of A equals the column rank of A∗.

rank (A) = rank (A∗A) ≤ rank (A∗) ≤

= rank (AA∗) ≤ rank (A) .

Hint: Start with an orthonormal basis, {Axj}rj=1 of A (Fn) and verify {A∗Axj}rj=1

is a basis for A∗A (Fn) .
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26. Let A be a real m × n matrix and let A = QR be the QR factorization with Q
orthogonal and R upper triangular. Show that there exists a solution x to the equation

RTRx = RTQTb

and that this solution is also a least squares solution defined above such that ATAx =
ATb.

11.8 The Determinant And Volume

The determinant is the essential algebraic tool which provides a way to give a unified treat-
ment of the concept of p dimensional volume of a parallelepiped in RM . Here is the definition
of what is meant by such a thing.

Definition 11.8.1 Let u1, · · · ,up be vectors in RM ,M ≥ p. The parallelepiped determined
by these vectors will be denoted by P (u1, · · · ,up) and it is defined as

P (u1, · · · ,up) ≡




p∑
j=1

sjuj : sj ∈ [0, 1]


 = UQ, Q = [0, 1]

p

where U =
(

u1 · · · up

)
.The volume of this parallelepiped is defined as

volume of P (u1, · · · ,up) ≡ v (P (u1, · · · ,up)) ≡ (det (G))
1/2

.

where Gij = ui · uj. This G = UTU is called the metric tensor. If the vectors ui are
dependent, this definition will give the volume to be 0.

First lets observe the last assertion is true. Say ui =
∑

j ̸=i αjuj . Then the ith row of
G is a linear combination of the other rows using the scalars αj and so from the properties
of the determinant, the determinant of this matrix is indeed zero as it should be. Indeed,
ui · uk =

∑
j ̸=i αjuj · uk .

A parallelepiped is a sort of a squashed box. Here is a picture which shows

�

�

�
P

up

�

w

θ

P = P (u1, · · · ,up−1)

the relationship between P (u1, · · · ,up−1) and
P (u1, · · · ,up). In a sense, we can define the volume
any way desired, but if it is to be reasonable, the
following relationship must hold. The appropriate
definition of the volume of P (u1, · · · ,up) in terms of
P (u1, · · · ,up−1) is v (P (u1, · · · ,up)) =

|up ·w| v (P (u1, · · · ,up−1)) (11.10)

where w is any unit vector perpendicular to each of
u1, · · · ,up−1. Note |up ·w| = |up| |cos θ| from the

geometric meaning of the dot product. In the case where p = 1, the parallelepiped P (v)

consists of the single vector and the one dimensional volume should be |v| =
(
vTv

)1/2
=

(v · v)1/2. Now having made this definition, I will show that det (G)
1/2

is the appropriate
definition of v (P (u1, · · · ,up)) for every p.

As just pointed out, this is the only reasonable definition of volume in the case of one
vector. The next theorem shows that it is the only reasonable definition of volume of a
parallelepiped in the case of p vectors because 11.10 holds.
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Theorem 11.8.2 If we desire 11.10 to hold for any w perpendicular to each ui, then we
obtain the definition of 11.8.1 for v (P (u1, · · · ,up)) in terms of determinants.

Proof: So assume we want 11.10 to hold. Suppose the determinant formula holds
for P (u1, · · · ,up−1). It is necessary to show that if w is a unit vector perpendicular to

each u1, · · · ,up−1 then |up ·w| v (P (u1, · · · ,up−1)) reduces to det (G)
1/2

. By the Gram
Schmidt procedure there is (w1, · · · ,wp) an orthonormal basis for span (u1, · · · ,up) such
that span (w1, · · · ,wk) = span (u1, · · · ,uk) for each k ≤ p. We can pick wp = w the given
unit vector perpendicular to each ui. First note that since {wk}pk=1 is an orthonormal basis
for span (u1, · · · ,up) ,

uj =

p∑
k=1

(uj ·wk)wk, uj · ui =

p∑
k=1

(uj ·wk) (ui ·wk)

Therefore, the ijth entry of the p× p matrix UTU is just

(
UTU

)
ij
=

p∑
r=1

(ui ·wr) (wr · uj)

which is the product of a p×p matrix M whose rjth entry is wr ·uj with its transpose. The
vector wp is a unit vector perpendicular to each uj for j ≤ p− 1 so wp · uj = 0 if j < p.

Now consider the vector

N ≡ det




w1 · · · wp−1 wp

u1 ·w1 · · · u1 ·wp−1
=0

u1 ·wp

...
...

...

up−1 ·w1 · · · up−1 ·wp−1
=0

up−1 ·wp




which results from formally expanding along the top row. Note you would get the same
thing expanding along the last column because as just noted, the last column on the right
is 0 except for the top entry, so every cofactor A1k for the 1kth position is ± a determinant
which has a column of zeros. Thus N is a multiple of wp. Hence, for j < p,N · uj = 0.
From what was just discussed and induction, v (P (u1, · · · ,up−1)) = ±A1p = N ·wp. Also
N · up equals

det




up ·w1 · · · up ·wp−1 up ·wp

u1 ·w1 · · · u1 ·wp−1
=0

u1 ·wp

...
...

...

up−1 ·w1 · · · up−1 ·wp−1
=0

up−1 ·wp




= ± det (M)

Thus from induction and expanding along the last column,

|up ·wp| v (P (u1, · · · ,up−1)) = |N · up| = det
(
MTM

)1/2

= det
(
UTU

)1/2
= det (G)

1/2
.

Now wp = w the unit vector perpendicular to each uj for j ≤ p − 1. Thus if 11.10, then
the claimed determinant identity holds. �

The theorem shows that the only reasonable definition of p dimensional volume of a
parallelepiped is the one given in the above definition. Recall that these vectors are in RM .
What is the role of RM? It is just to provide an inner product. That is its only function. If

p = M, then det
(
UTU

)
= det

(
UT

)
det (U) = det (U)

2
and so det (G)

1/2
= |det (U)|.
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Therefore, the ijth entry of the p× p matrix UTU is just

(
UTU

)
ij
=

p∑
r=1

(ui ·wr) (wr · uj)

which is the product of a p×p matrix M whose rjth entry is wr ·uj with its transpose. The
vector wp is a unit vector perpendicular to each uj for j ≤ p− 1 so wp · uj = 0 if j < p.

Now consider the vector

N ≡ det




w1 · · · wp−1 wp

u1 ·w1 · · · u1 ·wp−1
=0

u1 ·wp

...
...

...

up−1 ·w1 · · · up−1 ·wp−1
=0

up−1 ·wp




which results from formally expanding along the top row. Note you would get the same
thing expanding along the last column because as just noted, the last column on the right
is 0 except for the top entry, so every cofactor A1k for the 1kth position is ± a determinant
which has a column of zeros. Thus N is a multiple of wp. Hence, for j < p,N · uj = 0.
From what was just discussed and induction, v (P (u1, · · · ,up−1)) = ±A1p = N ·wp. Also
N · up equals

det




up ·w1 · · · up ·wp−1 up ·wp

u1 ·w1 · · · u1 ·wp−1
=0

u1 ·wp

...
...

...

up−1 ·w1 · · · up−1 ·wp−1
=0

up−1 ·wp




= ± det (M)

Thus from induction and expanding along the last column,

|up ·wp| v (P (u1, · · · ,up−1)) = |N · up| = det
(
MTM

)1/2

= det
(
UTU

)1/2
= det (G)

1/2
.

Now wp = w the unit vector perpendicular to each uj for j ≤ p − 1. Thus if 11.10, then
the claimed determinant identity holds. �

The theorem shows that the only reasonable definition of p dimensional volume of a
parallelepiped is the one given in the above definition. Recall that these vectors are in RM .
What is the role of RM? It is just to provide an inner product. That is its only function. If

p = M, then det
(
UTU

)
= det

(
UT

)
det (U) = det (U)

2
and so det (G)

1/2
= |det (U)|.
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11.9 Exercises

1. Here are three vectors in R4 : (1, 2, 0, 3)
T
, (2, 1,−3, 2)

T
, (0, 0, 1, 2)

T
. Find the three

dimensional volume of the parallelepiped determined by these three vectors.

2. Here are two vectors in R4 : (1, 2, 0, 3)
T
, (2, 1,−3, 2)

T
. Find the volume of the paral-

lelepiped determined by these two vectors.

3. Here are three vectors in R2 : (1, 2)
T
, (2, 1)

T
, (0, 1)

T
. Find the three dimensional

volume of the parallelepiped determined by these three vectors. Recall that from the
above theorem, this should equal 0.

4. Find the equation of the plane through the three points (1, 2, 3) , (2,−3, 1) , (1, 1, 7) .

5. Let T map a vector space V to itself. Explain why T is one to one if and only if T is
onto. It is in the text, but do it again in your own words.

6. ↑Let all matrices be complex with complex field of scalars and let A be an n×n matrix
and B a m×m matrix while X will be an n×m matrix. The problem is to consider
solutions to Sylvester’s equation. Solve the following equation for X

AX −XB = C

where C is an arbitrary n×m matrix. Show there exists a unique solution if and only
if σ (A)∩ σ (B) = ∅. Hint: If q (λ) is a polynomial, show first that if AX −XB = 0,
then q (A)X − Xq (B) = 0. Next define the linear map T which maps the n × m
matrices to the n×m matrices as follows.

TX ≡ AX −XB

Show that the only solution to TX = 0 is X = 0 so that T is one to one if and only if
σ (A)∩σ (B) = ∅. Do this by using the first part for q (λ) the characteristic polynomial

for B and then use the Cayley Hamilton theorem. Explain why q (A)
−1

exists if and
only if the condition σ (A) ∩ σ (B) = ∅.

7. Recall the Binet Cauchy theorem, Theorem 3.3.14. What is the geometric meaning of
the Binet Cauchy theorem?

8. For W a subspace of V, W is said to have a complementary subspace [15] W ′ if
W ⊕ W ′ = V. Suppose that both W,W ′ are invariant with respect to A ∈ L (V, V ).
Show that for any polynomial f (λ) , if f (A)x ∈ W, then there exists w ∈ W such
that f (A)x = f (A)w. A subspace W is called A admissible if it is A invariant and
the condition of this problem holds.

9. ↑ Return to Theorem 9.3.5 about the existence of a basis β =
{
βx1

, · · · , βxp

}
for V

where A ∈ L (V, V ) . Adapt the statement and proof to show that if W is A admissible,
then it has a complementary subspace which is also A invariant. Hint:

The modified version of the theorem is: Suppose A ∈ L (V, V ) and the minimal poly-
nomial of A is ϕ (λ)

m
where ϕ (λ) is a monic irreducible polynomial. Also suppose

that W is an A admissible subspace. Then there exists a basis for V which is of

the form β =
{
βx1

, · · · , βxp
, v1, · · · , vm

}
where {v1, · · · , vm} is a basis of W . Thus

span
(
βx1

, · · · , βxp

)
is the A invariant complementary subspace for W . You may want

to use the fact that ϕ (A) (V ) ∩W = ϕ (A) (W ) which follows easily because W is A
admissible. Then use this fact to show that ϕ (A) (W ) is also A admissible.
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10. Let U,H be finite dimensional inner product spaces. (More generally, complete inner
product spaces.) Let A be a linear map from U to H. Thus AU is a subspace of
H. For g ∈ AU, define A−1g to be the unique element of {x : Ax = g} which is
closest to 0. Then define (h,g)AU ≡

(
A−1g, A−1h

)
U
. Show that this is a well defined

inner product. Let U,H be finite dimensional inner product spaces. (More generally,
complete inner product spaces.) Let A be a linear map from U to H. Thus AU is a
subspace of H. For g ∈ AU, define A−1g to be the unique element of {x : Ax = g}
which is closest to 0. Then define (h,g)AU ≡

(
A−1g, A−1h

)
U
. Show that this is a

well defined inner product and that if A is one to one, then ∥h∥AU =
��A−1h

��
U

and
∥Ax∥AU = ∥x∥U .
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Chapter 12

Self Adjoint Operators

12.1 Simultaneous Diagonalization

Recall the following definition of what it means for a matrix to be diagonalizable.

Definition 12.1.1 Let A be an n× n matrix. It is said to be diagonalizable if there exists
an invertible matrix S such that

S−1AS = D

where D is a diagonal matrix.

Also, here is a useful observation.

Observation 12.1.2 If A is an n×n matrix and AS = SD for D a diagonal matrix, then
each column of S is an eigenvector or else it is the zero vector. This follows from observing
that for sk the kth column of S and from the way we multiply matrices,

Ask = λksk

It is sometimes interesting to consider the problem of finding a single similarity trans-
formation which will diagonalize all the matrices in some set.

Lemma 12.1.3 Let A be an n×n matrix and let B be an m×m matrix. Denote by C the
matrix

C ≡

(
A 0

0 B

)
.

Then C is diagonalizable if and only if both A and B are diagonalizable.

Proof: Suppose S−1
A ASA = DA and S−1

B BSB = DB where DA and DB are diagonal

matrices. You should use block multiplication to verify that S ≡

(
SA 0

0 SB

)
is such that

S−1CS = DC , a diagonal matrix.
Conversely, suppose C is diagonalized by S = (s1, · · · , sn+m) . Thus S has columns si.

For each of these columns, write in the form

si =

(
xi

yi

)

295
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where xi ∈ Fn and where yi ∈ Fm. The result is

S =

(
S11 S12

S21 S22

)

where S11 is an n×n matrix and S22 is an m×m matrix. Then there is a diagonal matrix,
D1 being n× n and D2 m×m such that

D = diag (λ1, · · · , λn+m) =

(
D1 0

0 D2

)

such that
(

A 0

0 B

)(
S11 S12

S21 S22

)

=

(
S11 S12

S21 S22

)(
D1 0

0 D2

)

Hence by block multiplication

AS11 = S11D1, BS22 = S22D2

BS21 = S21D1, AS12 = S12D2

It follows each of the xi is an eigenvector of A or else is the zero vector and that each of the
yi is an eigenvector of B or is the zero vector. If there are n linearly independent xi, then
A is diagonalizable by Theorem 8.3.12 on Page 8.3.12.

The row rank of the matrix (x1, · · · ,xn+m) must be n because if this is not so, the rank
of S would be less than n+m which would mean S−1 does not exist. Therefore, since the
column rank equals the row rank, this matrix has column rank equal to n and this means
there are n linearly independent eigenvectors of A implying that A is diagonalizable. Similar
reasoning applies to B. �

The following corollary follows from the same type of argument as the above.

Corollary 12.1.4 Let Ak be an nk × nk matrix and let C denote the block diagonal
(

r∑
k=1

nk

)
×

(
r∑

k=1

nk

)

matrix given below.

C ≡




A1 0
. . .

0 Ar


 .

Then C is diagonalizable if and only if each Ak is diagonalizable.

Definition 12.1.5 A set, F of n×n matrices is said to be simultaneously diagonalizable if
and only if there exists a single invertible matrix S such that for every A ∈ F , S−1AS = DA

where DA is a diagonal matrix. F is a commuting family of matrices if whenever A,B ∈ F ,
AB = BA.

Lemma 12.1.6 If F is a set of n×n matrices which is simultaneously diagonalizable, then
F is a commuting family of matrices.
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where xi ∈ Fn and where yi ∈ Fm. The result is

S =

(
S11 S12

S21 S22

)

where S11 is an n×n matrix and S22 is an m×m matrix. Then there is a diagonal matrix,
D1 being n× n and D2 m×m such that

D = diag (λ1, · · · , λn+m) =

(
D1 0

0 D2

)

such that
(

A 0

0 B

)(
S11 S12

S21 S22

)

=

(
S11 S12

S21 S22

)(
D1 0

0 D2

)

Hence by block multiplication

AS11 = S11D1, BS22 = S22D2

BS21 = S21D1, AS12 = S12D2

It follows each of the xi is an eigenvector of A or else is the zero vector and that each of the
yi is an eigenvector of B or is the zero vector. If there are n linearly independent xi, then
A is diagonalizable by Theorem 8.3.12 on Page 8.3.12.

The row rank of the matrix (x1, · · · ,xn+m) must be n because if this is not so, the rank
of S would be less than n+m which would mean S−1 does not exist. Therefore, since the
column rank equals the row rank, this matrix has column rank equal to n and this means
there are n linearly independent eigenvectors of A implying that A is diagonalizable. Similar
reasoning applies to B. �

The following corollary follows from the same type of argument as the above.

Corollary 12.1.4 Let Ak be an nk × nk matrix and let C denote the block diagonal
(

r∑
k=1

nk

)
×

(
r∑

k=1

nk

)

matrix given below.

C ≡




A1 0
. . .

0 Ar


 .

Then C is diagonalizable if and only if each Ak is diagonalizable.

Definition 12.1.5 A set, F of n×n matrices is said to be simultaneously diagonalizable if
and only if there exists a single invertible matrix S such that for every A ∈ F , S−1AS = DA

where DA is a diagonal matrix. F is a commuting family of matrices if whenever A,B ∈ F ,
AB = BA.

Lemma 12.1.6 If F is a set of n×n matrices which is simultaneously diagonalizable, then
F is a commuting family of matrices.12.1. SIMULTANEOUS DIAGONALIZATION 297

Proof: Let A,B ∈ F and let S be a matrix which has the property that S−1AS is a
diagonal matrix for all A ∈ F . Then S−1AS = DA and S−1BS = DB where DA and DB

are diagonal matrices. Since diagonal matrices commute,

AB = SDAS
−1SDBS

−1 = SDADBS
−1

= SDBDAS
−1 = SDBS

−1SDAS
−1 = BA.

Lemma 12.1.7 Let D be a diagonal matrix of the form

D ≡




λ1In1
0 · · · 0

0 λ2In2

. . .
...

...
. . .

. . . 0

0 · · · 0 λrInr




, (12.1)

where Ini
denotes the ni × ni identity matrix and λi ̸= λj for i ̸= j and suppose B is a

matrix which commutes with D. Then B is a block diagonal matrix of the form

B =




B1 0 · · · 0

0 B2
. . .

...
...

. . .
. . . 0

0 · · · 0 Br




(12.2)

where Bi is an ni × ni matrix.

Proof: Let B = (Bij) where Bii = Bi a block matrix as above in 12.2.




B11 B12 · · · B1r

B21 B22
. . . B2r

...
. . .

. . .
...

Br1 Br2 · · · Brr




Then by block multiplication, since B is given to commute with D,

λjBij = λiBij

Therefore, if i ̸= j, Bij = 0. �

Lemma 12.1.8 Let F denote a commuting family of n× n matrices such that each A ∈ F
is diagonalizable. Then F is simultaneously diagonalizable.

Proof: First note that if every matrix in F has only one eigenvalue, there is nothing to
prove. This is because for A such a matrix,

S−1AS = λI

and so
A = λI

Thus all the matrices in F are diagonal matrices and you could pick any S to diagonalize
them all. Therefore, without loss of generality, assume some matrix in F has more than one
eigenvalue.
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Proof: Let A,B ∈ F and let S be a matrix which has the property that S−1AS is a
diagonal matrix for all A ∈ F . Then S−1AS = DA and S−1BS = DB where DA and DB

are diagonal matrices. Since diagonal matrices commute,

AB = SDAS
−1SDBS

−1 = SDADBS
−1

= SDBDAS
−1 = SDBS

−1SDAS
−1 = BA.

Lemma 12.1.7 Let D be a diagonal matrix of the form

D ≡




λ1In1
0 · · · 0

0 λ2In2

. . .
...

...
. . .

. . . 0

0 · · · 0 λrInr




, (12.1)

where Ini
denotes the ni × ni identity matrix and λi ̸= λj for i ̸= j and suppose B is a

matrix which commutes with D. Then B is a block diagonal matrix of the form

B =




B1 0 · · · 0

0 B2
. . .

...
...

. . .
. . . 0

0 · · · 0 Br




(12.2)

where Bi is an ni × ni matrix.

Proof: Let B = (Bij) where Bii = Bi a block matrix as above in 12.2.




B11 B12 · · · B1r

B21 B22
. . . B2r

...
. . .

. . .
...

Br1 Br2 · · · Brr




Then by block multiplication, since B is given to commute with D,

λjBij = λiBij

Therefore, if i ̸= j, Bij = 0. �

Lemma 12.1.8 Let F denote a commuting family of n× n matrices such that each A ∈ F
is diagonalizable. Then F is simultaneously diagonalizable.

Proof: First note that if every matrix in F has only one eigenvalue, there is nothing to
prove. This is because for A such a matrix,

S−1AS = λI

and so
A = λI

Thus all the matrices in F are diagonal matrices and you could pick any S to diagonalize
them all. Therefore, without loss of generality, assume some matrix in F has more than one
eigenvalue.
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Proof: Let A,B ∈ F and let S be a matrix which has the property that S−1AS is a
diagonal matrix for all A ∈ F . Then S−1AS = DA and S−1BS = DB where DA and DB

are diagonal matrices. Since diagonal matrices commute,

AB = SDAS
−1SDBS

−1 = SDADBS
−1

= SDBDAS
−1 = SDBS

−1SDAS
−1 = BA.

Lemma 12.1.7 Let D be a diagonal matrix of the form

D ≡




λ1In1
0 · · · 0

0 λ2In2

. . .
...

...
. . .

. . . 0

0 · · · 0 λrInr




, (12.1)

where Ini
denotes the ni × ni identity matrix and λi ̸= λj for i ̸= j and suppose B is a

matrix which commutes with D. Then B is a block diagonal matrix of the form

B =




B1 0 · · · 0

0 B2
. . .

...
...

. . .
. . . 0

0 · · · 0 Br




(12.2)

where Bi is an ni × ni matrix.

Proof: Let B = (Bij) where Bii = Bi a block matrix as above in 12.2.




B11 B12 · · · B1r

B21 B22
. . . B2r

...
. . .

. . .
...

Br1 Br2 · · · Brr




Then by block multiplication, since B is given to commute with D,

λjBij = λiBij

Therefore, if i ̸= j, Bij = 0. �

Lemma 12.1.8 Let F denote a commuting family of n× n matrices such that each A ∈ F
is diagonalizable. Then F is simultaneously diagonalizable.

Proof: First note that if every matrix in F has only one eigenvalue, there is nothing to
prove. This is because for A such a matrix,

S−1AS = λI

and so
A = λI

Thus all the matrices in F are diagonal matrices and you could pick any S to diagonalize
them all. Therefore, without loss of generality, assume some matrix in F has more than one
eigenvalue.
298 CHAPTER 12. SELF ADJOINT OPERATORS

The significant part of the lemma is proved by induction on n. If n = 1, there is nothing
to prove because all the 1 × 1 matrices are already diagonal matrices. Suppose then that
the theorem is true for all k ≤ n − 1 where n ≥ 2 and let F be a commuting family of
diagonalizable n × n matrices. Pick A ∈ F which has more than one eigenvalue and let
S be an invertible matrix such that S−1AS = D where D is of the form given in 12.1.
By permuting the columns of S there is no loss of generality in assuming D has this form.
Now denote by �F the collection of matrices,

{
S−1CS : C ∈ F

}
. Note �F features the single

matrix S.
It follows easily that �F is also a commuting family of diagonalizable matrices. By Lemma

12.1.7 every B ∈ �F is a block diagonal matrix of the form given in 12.2 because each of these
commutes with D described above as S−1AS and so by block multiplication, the diagonal
blocks Bi corresponding to different B ∈ �F commute.

By Corollary 12.1.4 each of these blocks is diagonalizable. This is because B is known to
be so. Therefore, by induction, since all the blocks are no larger than n−1×n−1 thanks to
the assumption that A has more than one eigenvalue, there exist invertible ni×ni matrices,
Ti such that T−1

i BiTi is a diagonal matrix whenever Bi is one of the matrices making up

the block diagonal of any B ∈ �F . It follows that for T defined by

T ≡




T1 0 · · · 0

0 T2
. . .

...
...

. . .
. . . 0

0 · · · 0 Tr




,

then T−1BT = a diagonal matrix for every B ∈ �F including D. Consider ST. It follows
that for all C ∈ F ,

T−1

something in F̃� �� �
S−1CS T = (ST )

−1
C (ST ) = a diagonal matrix. �

Theorem 12.1.9 Let F denote a family of matrices which are diagonalizable. Then F is
simultaneously diagonalizable if and only if F is a commuting family.

Proof: If F is a commuting family, it follows from Lemma 12.1.8 that it is simultaneously
diagonalizable. If it is simultaneously diagonalizable, then it follows from Lemma 12.1.6 that
it is a commuting family. �

12.2 Schur’s Theorem

Recall that for a linear transformation, L ∈ L (V, V ) for V a finite dimensional inner product
space, it could be represented in the form

L =
∑
ij

lijvi ⊗ vj

where {v1, · · · ,vn} is an orthonormal basis. Of course different bases will yield different
matrices, (lij) . Schur’s theorem gives the existence of a basis in an inner product space such
that (lij) is particularly simple.

Definition 12.2.1 Let L ∈ L (V, V ) where V is a vector space. Then a subspace U of V is
L invariant if L (U) ⊆ U.
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The significant part of the lemma is proved by induction on n. If n = 1, there is nothing
to prove because all the 1 × 1 matrices are already diagonal matrices. Suppose then that
the theorem is true for all k ≤ n − 1 where n ≥ 2 and let F be a commuting family of
diagonalizable n × n matrices. Pick A ∈ F which has more than one eigenvalue and let
S be an invertible matrix such that S−1AS = D where D is of the form given in 12.1.
By permuting the columns of S there is no loss of generality in assuming D has this form.
Now denote by �F the collection of matrices,

{
S−1CS : C ∈ F

}
. Note �F features the single

matrix S.
It follows easily that �F is also a commuting family of diagonalizable matrices. By Lemma

12.1.7 every B ∈ �F is a block diagonal matrix of the form given in 12.2 because each of these
commutes with D described above as S−1AS and so by block multiplication, the diagonal
blocks Bi corresponding to different B ∈ �F commute.

By Corollary 12.1.4 each of these blocks is diagonalizable. This is because B is known to
be so. Therefore, by induction, since all the blocks are no larger than n−1×n−1 thanks to
the assumption that A has more than one eigenvalue, there exist invertible ni×ni matrices,
Ti such that T−1

i BiTi is a diagonal matrix whenever Bi is one of the matrices making up

the block diagonal of any B ∈ �F . It follows that for T defined by

T ≡




T1 0 · · · 0

0 T2
. . .

...
...

. . .
. . . 0

0 · · · 0 Tr




,

then T−1BT = a diagonal matrix for every B ∈ �F including D. Consider ST. It follows
that for all C ∈ F ,

T−1

something in F̃� �� �
S−1CS T = (ST )

−1
C (ST ) = a diagonal matrix. �

Theorem 12.1.9 Let F denote a family of matrices which are diagonalizable. Then F is
simultaneously diagonalizable if and only if F is a commuting family.

Proof: If F is a commuting family, it follows from Lemma 12.1.8 that it is simultaneously
diagonalizable. If it is simultaneously diagonalizable, then it follows from Lemma 12.1.6 that
it is a commuting family. �

12.2 Schur’s Theorem

Recall that for a linear transformation, L ∈ L (V, V ) for V a finite dimensional inner product
space, it could be represented in the form

L =
∑
ij

lijvi ⊗ vj

where {v1, · · · ,vn} is an orthonormal basis. Of course different bases will yield different
matrices, (lij) . Schur’s theorem gives the existence of a basis in an inner product space such
that (lij) is particularly simple.

Definition 12.2.1 Let L ∈ L (V, V ) where V is a vector space. Then a subspace U of V is
L invariant if L (U) ⊆ U.
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In what follows, F will be the field of scalars, usually C but maybe R.

Theorem 12.2.2 Let L ∈ L (H,H) for H a finite dimensional inner product space such
that the restriction of L∗to every L invariant subspace has its eigenvalues in F. Then there
exist constants, cij for i ≤ j and an orthonormal basis, {wi}ni=1 such that

L =
n∑

j=1

j∑
i=1

cijwi ⊗wj

The constants, cii are the eigenvalues of L. Thus the matrix whose ijth entry is cij is upper
triangular.

Proof: If dim (H) = 1, let H = span (w) where |w| = 1. Then Lw = kw for some k.
Then

L = kw ⊗w

because by definition, w ⊗w (w) = w. Therefore, the theorem holds if H is 1 dimensional.
Now suppose the theorem holds for n− 1 = dim (H) . Let wn be an eigenvector for L∗.

Dividing by its length, it can be assumed |wn| = 1. Say L∗wn = µwn. Using the Gram
Schmidt process, there exists an orthonormal basis for H of the form {v1, · · · ,vn−1,wn} .
Then

(Lvk,wn) = (vk, L
∗wn) = (vk, µwn) = 0,

which shows
L : H1 ≡ span (v1, · · · ,vn−1) → span (v1, · · · ,vn−1) .

Denote by L1 the restriction of L to H1. Since H1 has dimension n − 1, the induction
hypothesis yields an orthonormal basis, {w1, · · · ,wn−1} for H1 such that

L1 =

n−1∑
j=1

j∑
i=1

cijwi⊗wj . (12.3)

Then {w1, · · · ,wn} is an orthonormal basis for H because every vector in

span (v1, · · · ,vn−1)

has the property that its inner product with wn is 0 so in particular, this is true for the
vectors {w1, · · · ,wn−1}. Now define cin to be the scalars satisfying

Lwn ≡
n∑

i=1

cinwi (12.4)

and let

B ≡
n∑

j=1

j∑
i=1

cijwi⊗wj .

Then by 12.4,

Bwn =

n∑
j=1

j∑
i=1

cijwiδnj =

n∑
j=1

cinwi = Lwn.

If 1 ≤ k ≤ n− 1,

Bwk =

n∑
j=1

j∑
i=1

cijwiδkj =

k∑
i=1

cikwi
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while from 12.3,

Lwk = L1wk =

n−1∑
j=1

j∑
i=1

cijwiδjk =

k∑
i=1

cikwi.

Since L = B on the basis {w1, · · · ,wn} , it follows L = B.
It remains to verify the constants, ckk are the eigenvalues of L, solutions of the equation,

det (λI − L) = 0. However, the definition of det (λI − L) is the same as

det (λI − C)

where C is the upper triangular matrix which has cij for i ≤ j and zeros elsewhere. This
equals 0 if and only if λ is one of the diagonal entries, one of the ckk. �

Now with the above Schur’s theorem, the following diagonalization theorem comes very
easily. Recall the following definition.

Definition 12.2.3 Let L ∈ L (H,H) where H is a finite dimensional inner product space.
Then L is Hermitian if L∗ = L.

Theorem 12.2.4 Let L ∈ L (H,H) where H is an n dimensional inner product space. If
L is Hermitian, then all of its eigenvalues λk are real and there exists an orthonormal basis
of eigenvectors {wk} such that

L =
∑
k

λkwk⊗wk.

Proof: By Schur’s theorem, Theorem 12.2.2, there exist lij ∈ F such that

L =
n∑

j=1

j∑
i=1

lijwi⊗wj

Then by Lemma 11.4.2,

n∑
j=1

j∑
i=1

lijwi⊗wj = L = L∗ =

n∑
j=1

j∑
i=1

(lijwi⊗wj)
∗

=

n∑
j=1

j∑
i=1

lijwj⊗wi =

n∑
i=1

i∑
j=1

ljiwi⊗wj

By independence, if i = j, lii = lii and so these are all real. If i < j, it follows from
independence again that lij = 0 because the coefficients corresponding to i < j are all 0 on
the right side. Similarly if i > j, it follows lij = 0. Letting λk = lkk, this shows

L =
∑
k

λkwk ⊗wk

That each of these wk is an eigenvector corresponding to λk is obvious from the definition
of the tensor product. �

12.3 Spectral Theory Of Self Adjoint Operators

The following theorem is about the eigenvectors and eigenvalues of a self adjoint operator.
Such operators are also called Hermitian as in the case of matrices. The proof given gen-
eralizes to the situation of a compact self adjoint operator on a Hilbert space and leads to
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while from 12.3,
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j∑
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cijwiδjk =

k∑
i=1

cikwi.

Since L = B on the basis {w1, · · · ,wn} , it follows L = B.
It remains to verify the constants, ckk are the eigenvalues of L, solutions of the equation,

det (λI − L) = 0. However, the definition of det (λI − L) is the same as

det (λI − C)

where C is the upper triangular matrix which has cij for i ≤ j and zeros elsewhere. This
equals 0 if and only if λ is one of the diagonal entries, one of the ckk. �

Now with the above Schur’s theorem, the following diagonalization theorem comes very
easily. Recall the following definition.

Definition 12.2.3 Let L ∈ L (H,H) where H is a finite dimensional inner product space.
Then L is Hermitian if L∗ = L.

Theorem 12.2.4 Let L ∈ L (H,H) where H is an n dimensional inner product space. If
L is Hermitian, then all of its eigenvalues λk are real and there exists an orthonormal basis
of eigenvectors {wk} such that

L =
∑
k

λkwk⊗wk.

Proof: By Schur’s theorem, Theorem 12.2.2, there exist lij ∈ F such that

L =
n∑

j=1

j∑
i=1

lijwi⊗wj

Then by Lemma 11.4.2,

n∑
j=1

j∑
i=1

lijwi⊗wj = L = L∗ =

n∑
j=1

j∑
i=1

(lijwi⊗wj)
∗

=

n∑
j=1

j∑
i=1

lijwj⊗wi =

n∑
i=1

i∑
j=1

ljiwi⊗wj

By independence, if i = j, lii = lii and so these are all real. If i < j, it follows from
independence again that lij = 0 because the coefficients corresponding to i < j are all 0 on
the right side. Similarly if i > j, it follows lij = 0. Letting λk = lkk, this shows

L =
∑
k

λkwk ⊗wk

That each of these wk is an eigenvector corresponding to λk is obvious from the definition
of the tensor product. �

12.3 Spectral Theory Of Self Adjoint Operators

The following theorem is about the eigenvectors and eigenvalues of a self adjoint operator.
Such operators are also called Hermitian as in the case of matrices. The proof given gen-
eralizes to the situation of a compact self adjoint operator on a Hilbert space and leads to
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many very useful results. It is also a very elementary proof because it does not use the
fundamental theorem of algebra and it contains a way, very important in applications, of
finding the eigenvalues. This proof depends more directly on the methods of analysis than
the preceding material. Recall the following notation.

Definition 12.3.1 Let X be an inner product space and let S ⊆ X. Then

S⊥ ≡ {x ∈ X : (x, s) = 0 for all s ∈ S} .

Note that even if S is not a subspace, S⊥ is.

Theorem 12.3.2 Let A ∈ L (X,X) be self adjoint (Hermitian) where X is a finite dimen-
sional inner product space of dimension n. Thus A = A∗. Then there exists an orthonormal
basis of eigenvectors, {vj}nj=1 .

Proof: Consider (Ax, x) . This quantity is always a real number because

(Ax, x) = (x,Ax) = (x,A∗x) = (Ax, x)

thanks to the assumption that A is self adjoint. Now define

λ1 ≡ inf {(Ax, x) : |x| = 1, x ∈ X1 ≡ X} .

Claim: λ1 is finite and there exists v1 ∈ X with |v1| = 1 such that (Av1, v1) = λ1.
Proof of claim: Let {uj}nj=1 be an orthonormal basis for X and for x ∈ X, let (x1, · · · ,

xn) be defined as the components of the vector x. Thus,

x =
n∑

j=1

xjuj .

Since this is an orthonormal basis, it follows from the axioms of the inner product that

|x|2 =

n∑
j=1

|xj |2 .

Thus

(Ax, x) =




n∑
k=1

xkAuk,
∑
j=1

xjuj


 =

∑
k,j

xkxj (Auk, uj) ,

a real valued continuous function of (x1, · · · , xn) which is defined on the compact set

K ≡ {(x1, · · · , xn) ∈ Fn :

n∑
j=1

|xj |2 = 1}.

Therefore, it achieves its minimum from the extreme value theorem. Then define

v1 ≡
n∑

j=1

xjuj

where (x1, · · · , xn) is the point of K at which the above function achieves its minimum.
This proves the claim.
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xn) be defined as the components of the vector x. Thus,

x =
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Since this is an orthonormal basis, it follows from the axioms of the inner product that

|x|2 =

n∑
j=1

|xj |2 .

Thus

(Ax, x) =




n∑
k=1

xkAuk,
∑
j=1

xjuj


 =

∑
k,j

xkxj (Auk, uj) ,

a real valued continuous function of (x1, · · · , xn) which is defined on the compact set

K ≡ {(x1, · · · , xn) ∈ Fn :

n∑
j=1

|xj |2 = 1}.

Therefore, it achieves its minimum from the extreme value theorem. Then define

v1 ≡
n∑

j=1

xjuj

where (x1, · · · , xn) is the point of K at which the above function achieves its minimum.
This proves the claim.
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I claim that λ1 is an eigenvalue and v1 is an eigenvector. Letting w ∈ X1 ≡ X, the
function of the real variable, t, given by

f (t) ≡ (A (v1 + tw) , v1 + tw)

|v1 + tw|2
=

(Av1, v1) + 2tRe (Av1, w) + t2 (Aw,w)

|v1|2 + 2tRe (v1, w) + t2 |w|2

achieves its minimum when t = 0. Therefore, the derivative of this function evaluated at
t = 0 must equal zero. Using the quotient rule, this implies, since |v1| = 1 that

2Re (Av1, w) |v1|2 − 2Re (v1, w) (Av1, v1) = 2 (Re (Av1, w)− Re (v1, w)λ1) = 0.

Thus Re (Av1 − λ1v1, w) = 0 for all w ∈ X. This implies Av1 = λ1v1. To see this, let w ∈ X
be arbitrary and let θ be a complex number with |θ| = 1 and

|(Av1 − λ1v1, w)| = θ (Av1 − λ1v1, w) .

Then
|(Av1 − λ1v1, w)| = Re

(
Av1 − λ1v1, θw

)
= 0.

Since this holds for all w, Av1 = λ1v1.
Continuing with the proof of the theorem, let X2 ≡ {v1}⊥ . This is a closed subspace of

X and A : X2 → X2 because for x ∈ X2,

(Ax, v1) = (x,Av1) = λ1 (x, v1) = 0.

Let
λ2 ≡ inf {(Ax, x) : |x| = 1, x ∈ X2}

As before, there exists v2 ∈ X2 such that Av2 = λ2v2, λ1 ≤ λ2. Now let X3 ≡ {v1, v2}⊥

and continue in this way. As long as k < n, it will be the case that {v1, · · · , vk}⊥ ̸= {0}.
This is because for k < n these vectors cannot be a spanning set and so there exists some
w /∈ span (v1, · · · , vk) . Then letting z be the closest point to w from span (v1, · · · , vk) , it
follows that w − z ∈ {v1, · · · , vk}⊥. Thus there is an decreasing sequence of eigenvalues
{λk}nk=1 and a corresponding sequence of eigenvectors, {v1, · · · , vn} with this being an
orthonormal set. �

Contained in the proof of this theorem is the following important corollary.

Corollary 12.3.3 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
product space. Then all the eigenvalues are real and for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues
of A, there exists an orthonormal set of vectors {u1, · · · , un} for which

Auk = λkuk.

Furthermore,
λk ≡ inf {(Ax, x) : |x| = 1, x ∈ Xk}

where
Xk ≡ {u1, · · · , uk−1}⊥ , X1 ≡ X.

Corollary 12.3.4 Let A ∈ L (X,X) be self adjoint (Hermitian) where X is a finite dimen-
sional inner product space. Then the largest eigenvalue of A is given by

max {(Ax,x) : |x| = 1} (12.5)

and the minimum eigenvalue of A is given by

min {(Ax,x) : |x| = 1} . (12.6)
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follows that w − z ∈ {v1, · · · , vk}⊥. Thus there is an decreasing sequence of eigenvalues
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Contained in the proof of this theorem is the following important corollary.

Corollary 12.3.3 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
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of A, there exists an orthonormal set of vectors {u1, · · · , un} for which
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λk ≡ inf {(Ax, x) : |x| = 1, x ∈ Xk}

where
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Corollary 12.3.4 Let A ∈ L (X,X) be self adjoint (Hermitian) where X is a finite dimen-
sional inner product space. Then the largest eigenvalue of A is given by
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Proof: The proof of this is just like the proof of Theorem 12.3.2. Simply replace inf
with sup and obtain a decreasing list of eigenvalues. This establishes 12.5. The claim 12.6
follows from Theorem 12.3.2. �

Another important observation is found in the following corollary.

Corollary 12.3.5 Let A ∈ L (X,X) where A is self adjoint. Then A =
∑

i λivi⊗vi where
Avi = λivi and {vi}ni=1 is an orthonormal basis.

Proof : If vk is one of the orthonormal basis vectors, Avk = λkvk. Also,

∑
i

λivi ⊗ vi (vk) =
∑
i

λivi (vk, vi) =
∑
i

λiδikvi = λkvk.

Since the two linear transformations agree on a basis, it follows they must coincide. �
By Theorem 11.4.5 this says the matrix of A with respect to this basis {vi}ni=1 is the

diagonal matrix having the eigenvalues λ1, · · · , λn down the main diagonal.
The result of Courant and Fischer which follows resembles Corollary 12.3.3 but is more

useful because it does not depend on a knowledge of the eigenvectors.

Theorem 12.3.6 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal
vectors {u1, · · · , un} for which

Auk = λkuk.

Furthermore,

λk ≡ max
w1,··· ,wk−1

{
min

{
(Ax, x) : |x| = 1, x ∈ {w1, · · · , wk−1}⊥

}}
(12.7)

where if k = 1, {w1, · · · , wk−1}⊥ ≡ X.

Proof: From Theorem 12.3.2, there exist eigenvalues and eigenvectors with {u1, · · · , un}
orthonormal and λi ≤ λi+1.

(Ax, x) =

n∑
j=1

(Ax, uj) (x, uj) =

n∑
j=1

λj (x, uj) (uj , x) =

n∑
j=1

λj |(x, uj)|2

Recall that (z, w) =
∑

j (z, uj) (w, ui). Then let Y = {w1, · · · , wk−1}⊥

inf {(Ax, x) : |x| = 1, x ∈ Y } = inf




n∑
j=1

λj |(x, uj)|2 : |x| = 1, x ∈ Y




≤ inf




k∑
j=1

λj |(x, uj)|2 : |x| = 1, (x, uj) = 0 for j > k, and x ∈ Y


 . (12.8)

The reason this is so is that the infimum is taken over a smaller set. Therefore, the infimum
gets larger. Now 12.8 is no larger than

inf


λk

n∑
j=1

|(x, uj)|2 : |x| = 1, (x, uj) = 0 for j > k, and x ∈ Y


 ≤ λk
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Proof: The proof of this is just like the proof of Theorem 12.3.2. Simply replace inf
with sup and obtain a decreasing list of eigenvalues. This establishes 12.5. The claim 12.6
follows from Theorem 12.3.2. �

Another important observation is found in the following corollary.

Corollary 12.3.5 Let A ∈ L (X,X) where A is self adjoint. Then A =
∑

i λivi⊗vi where
Avi = λivi and {vi}ni=1 is an orthonormal basis.

Proof : If vk is one of the orthonormal basis vectors, Avk = λkvk. Also,

∑
i

λivi ⊗ vi (vk) =
∑
i

λivi (vk, vi) =
∑
i

λiδikvi = λkvk.

Since the two linear transformations agree on a basis, it follows they must coincide. �
By Theorem 11.4.5 this says the matrix of A with respect to this basis {vi}ni=1 is the

diagonal matrix having the eigenvalues λ1, · · · , λn down the main diagonal.
The result of Courant and Fischer which follows resembles Corollary 12.3.3 but is more

useful because it does not depend on a knowledge of the eigenvectors.

Theorem 12.3.6 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal
vectors {u1, · · · , un} for which

Auk = λkuk.

Furthermore,

λk ≡ max
w1,··· ,wk−1

{
min

{
(Ax, x) : |x| = 1, x ∈ {w1, · · · , wk−1}⊥

}}
(12.7)

where if k = 1, {w1, · · · , wk−1}⊥ ≡ X.

Proof: From Theorem 12.3.2, there exist eigenvalues and eigenvectors with {u1, · · · , un}
orthonormal and λi ≤ λi+1.

(Ax, x) =

n∑
j=1

(Ax, uj) (x, uj) =

n∑
j=1

λj (x, uj) (uj , x) =

n∑
j=1

λj |(x, uj)|2

Recall that (z, w) =
∑

j (z, uj) (w, ui). Then let Y = {w1, · · · , wk−1}⊥

inf {(Ax, x) : |x| = 1, x ∈ Y } = inf




n∑
j=1

λj |(x, uj)|2 : |x| = 1, x ∈ Y




≤ inf




k∑
j=1

λj |(x, uj)|2 : |x| = 1, (x, uj) = 0 for j > k, and x ∈ Y


 . (12.8)

The reason this is so is that the infimum is taken over a smaller set. Therefore, the infimum
gets larger. Now 12.8 is no larger than

inf


λk

n∑
j=1

|(x, uj)|2 : |x| = 1, (x, uj) = 0 for j > k, and x ∈ Y


 ≤ λk
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because since {u1, · · · , un} is an orthonormal basis, |x|2 =
∑n

j=1 |(x, uj)|2 . It follows, since
{w1, · · · , wk−1} is arbitrary,

sup
w1,··· ,wk−1

{
inf

{
(Ax, x) : |x| = 1, x ∈ {w1, · · · , wk−1}⊥

}}
≤ λk. (12.9)

Then from Corollary 12.3.3,

λk = inf
{
(Ax, x) : |x| = 1, x ∈ {u1, · · · , uk−1}⊥

}
≤

sup
w1,··· ,wk−1

{
inf

{
(Ax, x) : |x| = 1, x ∈ {w1, · · · , wk−1}⊥

}}
≤ λk

Hence these are all equal and this proves the theorem. �
The following corollary is immediate.

Corollary 12.3.7 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal
vectors {u1, · · · , un} for which

Auk = λkuk.

Furthermore,

λk ≡ max
w1,··· ,wk−1

{
min

{
(Ax, x)

|x|2
: x ̸= 0, x ∈ {w1, · · · , wk−1}⊥

}}
(12.10)

where if k = 1, {w1, · · · , wk−1}⊥ ≡ X.

Here is a version of this for which the roles of max and min are reversed.

Corollary 12.3.8 Let A ∈ L (X,X) be self adjoint where X is a finite dimensional inner
product space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal
vectors {u1, · · · , un} for which

Auk = λkuk.

Furthermore,

λk ≡ min
w1,··· ,wn−k

{
max

{
(Ax, x)

|x|2
: x ̸= 0, x ∈ {w1, · · · , wn−k}⊥

}}
(12.11)

where if k = n, {w1, · · · , wn−k}⊥ ≡ X.

12.4 Positive And Negative Linear Transformations

The notion of a positive definite or negative definite linear transformation is very important
in many applications. In particular it is used in versions of the second derivative test for
functions of many variables. Here the main interest is the case of a linear transformation
which is an n×n matrix but the theorem is stated and proved using a more general notation
because all these issues discussed here have interesting generalizations to functional analysis.

Definition 12.4.1 A self adjoint A ∈ L (X,X) , is positive definite if whenever x ̸= 0,
(Ax,x) > 0 and A is negative definite if for all x ̸= 0, (Ax,x) < 0. A is positive semidef-
inite or just nonnegative for short if for all x, (Ax,x) ≥ 0. A is negative semidefinite or
nonpositive for short if for all x, (Ax,x) ≤ 0.
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: x ̸= 0, x ∈ {w1, · · · , wn−k}⊥

}}
(12.11)

where if k = n, {w1, · · · , wn−k}⊥ ≡ X.

12.4 Positive And Negative Linear Transformations

The notion of a positive definite or negative definite linear transformation is very important
in many applications. In particular it is used in versions of the second derivative test for
functions of many variables. Here the main interest is the case of a linear transformation
which is an n×n matrix but the theorem is stated and proved using a more general notation
because all these issues discussed here have interesting generalizations to functional analysis.

Definition 12.4.1 A self adjoint A ∈ L (X,X) , is positive definite if whenever x ̸= 0,
(Ax,x) > 0 and A is negative definite if for all x ̸= 0, (Ax,x) < 0. A is positive semidef-
inite or just nonnegative for short if for all x, (Ax,x) ≥ 0. A is negative semidefinite or
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The following lemma is of fundamental importance in determining which linear trans-
formations are positive or negative definite.

Lemma 12.4.2 Let X be a finite dimensional inner product space. A self adjoint A ∈
L (X,X) is positive definite if and only if all its eigenvalues are positive and negative definite
if and only if all its eigenvalues are negative. It is positive semidefinite if all the eigenvalues
are nonnegative and it is negative semidefinite if all the eigenvalues are nonpositive.

Proof: Suppose first that A is positive definite and let λ be an eigenvalue. Then for x
an eigenvector corresponding to λ, λ (x,x) = (λx,x) = (Ax,x) > 0. Therefore, λ > 0 as
claimed.

Now suppose all the eigenvalues of A are positive. From Theorem 12.3.2 and Corollary
12.3.5, A =

∑n
i=1 λiui ⊗ ui where the λi are the positive eigenvalues and {ui} are an

orthonormal set of eigenvectors. Therefore, letting x ̸= 0,

(Ax,x) =

((
n∑

i=1

λiui ⊗ ui

)
x,x

)
=

(
n∑

i=1

λiui (x,ui) ,x

)

=

(
n∑

i=1

λi (x,ui) (ui,x)

)
=

n∑
i=1

λi |(ui,x)|2 > 0

because, since {ui} is an orthonormal basis, |x|2 =
∑n

i=1 |(ui,x)|2 .
To establish the claim about negative definite, it suffices to note that A is negative

definite if and only if −A is positive definite and the eigenvalues of A are (−1) times the
eigenvalues of −A. The claims about positive semidefinite and negative semidefinite are
obtained similarly. �

The next theorem is about a way to recognize whether a self adjoint n × n complex
matrix A is positive or negative definite without having to find the eigenvalues. In order
to state this theorem, here is some notation.

Definition 12.4.3 Let A be an n× n matrix. Denote by Ak the k × k matrix obtained by
deleting the k + 1, · · · , n columns and the k + 1, · · · , n rows from A. Thus An = A and Ak

is the k × k submatrix of A which occupies the upper left corner of A. The determinants of
these submatrices are called the principle minors.

The following theorem is proved in [8]. For the sake of simplicity, we state this for real
matrices since this is also where the main interest lies.

Theorem 12.4.4 Let A be a self adjoint n× n matrix. Then A is positive definite if and
only if det (Ak) > 0 for every k = 1, · · · , n.

Proof: This theorem is proved by induction on n. It is clearly true if n = 1. Suppose
then that it is true for n−1 where n ≥ 2. Since det (A) > 0, it follows that all the eigenvalues
are nonzero. Are they all positive? Suppose not. Then there is some even number of them
which are negative, even because the product of all the eigenvalues is known to be positive,
equaling det (A). Pick two, λ1 and λ2 and let Aui = λiui where ui ̸= 0 for i = 1, 2 and
(u1,u2) = 0. Now if y ≡ α1u1 + α2u2 is an element of span (u1,u2) , then since these are
eigenvalues and (u1,u2)Rn = 0, a short computation shows

(A (α1u1 + α2u2) , α1u1 + α2u2) = |α1|2 λ1 |u1|2 + |α2|2 λ2 |u2|2 < 0.

Now letting x ∈ Rn−1, x ̸= 0, the induction hypothesis implies

(
xT , 0

)
A

(
x

0

)
= xTAn−1x = (An−1x,x) > 0.
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The following lemma is of fundamental importance in determining which linear trans-
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L (X,X) is positive definite if and only if all its eigenvalues are positive and negative definite
if and only if all its eigenvalues are negative. It is positive semidefinite if all the eigenvalues
are nonnegative and it is negative semidefinite if all the eigenvalues are nonpositive.

Proof: Suppose first that A is positive definite and let λ be an eigenvalue. Then for x
an eigenvector corresponding to λ, λ (x,x) = (λx,x) = (Ax,x) > 0. Therefore, λ > 0 as
claimed.

Now suppose all the eigenvalues of A are positive. From Theorem 12.3.2 and Corollary
12.3.5, A =

∑n
i=1 λiui ⊗ ui where the λi are the positive eigenvalues and {ui} are an

orthonormal set of eigenvectors. Therefore, letting x ̸= 0,

(Ax,x) =

((
n∑

i=1
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)
x,x

)
=

(
n∑

i=1

λiui (x,ui) ,x

)

=

(
n∑

i=1

λi (x,ui) (ui,x)

)
=

n∑
i=1

λi |(ui,x)|2 > 0

because, since {ui} is an orthonormal basis, |x|2 =
∑n

i=1 |(ui,x)|2 .
To establish the claim about negative definite, it suffices to note that A is negative

definite if and only if −A is positive definite and the eigenvalues of A are (−1) times the
eigenvalues of −A. The claims about positive semidefinite and negative semidefinite are
obtained similarly. �

The next theorem is about a way to recognize whether a self adjoint n × n complex
matrix A is positive or negative definite without having to find the eigenvalues. In order
to state this theorem, here is some notation.

Definition 12.4.3 Let A be an n× n matrix. Denote by Ak the k × k matrix obtained by
deleting the k + 1, · · · , n columns and the k + 1, · · · , n rows from A. Thus An = A and Ak

is the k × k submatrix of A which occupies the upper left corner of A. The determinants of
these submatrices are called the principle minors.

The following theorem is proved in [8]. For the sake of simplicity, we state this for real
matrices since this is also where the main interest lies.

Theorem 12.4.4 Let A be a self adjoint n× n matrix. Then A is positive definite if and
only if det (Ak) > 0 for every k = 1, · · · , n.

Proof: This theorem is proved by induction on n. It is clearly true if n = 1. Suppose
then that it is true for n−1 where n ≥ 2. Since det (A) > 0, it follows that all the eigenvalues
are nonzero. Are they all positive? Suppose not. Then there is some even number of them
which are negative, even because the product of all the eigenvalues is known to be positive,
equaling det (A). Pick two, λ1 and λ2 and let Aui = λiui where ui ̸= 0 for i = 1, 2 and
(u1,u2) = 0. Now if y ≡ α1u1 + α2u2 is an element of span (u1,u2) , then since these are
eigenvalues and (u1,u2)Rn = 0, a short computation shows

(A (α1u1 + α2u2) , α1u1 + α2u2) = |α1|2 λ1 |u1|2 + |α2|2 λ2 |u2|2 < 0.

Now letting x ∈ Rn−1, x ̸= 0, the induction hypothesis implies

(
xT , 0

)
A

(
x

0

)
= xTAn−1x = (An−1x,x) > 0.
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The dimension of {z ∈ Rn : zn = 0} is n− 1 and the dimension of span (u1,u2) = 2 and so
there must be some nonzero x ∈ Rn which is in both of these subspaces of Rn. However,
the first computation would require that (Ax,x) < 0 while the second would require that
(Ax,x) > 0. This contradiction shows that all the eigenvalues must be positive. This proves
the if part of the theorem.

To show the converse, note that, as above, (Ax,x) = xTAx. Suppose that A is positive
definite. Then this is equivalent to having

xTAx ≥ δ ∥x∥2

Note that for x ∈ Rk,

(
xT 0

)
A

(
x

0

)
= xTAkx ≥ δ ∥x∥2

From Lemma 12.4.2, this implies that all the eigenvalues of Ak are positive. Hence from
Lemma 12.4.2, it follows that det (Ak) > 0, being the product of its eigenvalues. �

Corollary 12.4.5 Let A be a self adjoint n× n matrix. Then A is negative definite if and
only if det (Ak) (−1)

k
> 0 for every k = 1, · · · , n.

Proof: This is immediate from the above theorem by noting that, as in the proof of
Lemma 12.4.2, A is negative definite if and only if −A is positive definite. Therefore,
det (−Ak) > 0 for all k = 1, · · · , n, is equivalent to having A negative definite. However,

det (−Ak) = (−1)
k
det (Ak) . �

12.5 The Square Root

With the above theory, it is possible to take fractional powers of certain elements of L (X,X)
where X is a finite dimensional inner product space. I will give two treatments of this, the
first pertaining to the square root only and the second more generally pertaining to the kth

root of a self adjoint nonnegative matrix.

Theorem 12.5.1 Let A ∈ L (X,X) be self adjoint and nonnegative. Then there exists a
unique self adjoint nonnegative B ∈ L (X,X) such that B2 = A and B commutes with every
element of L (X,X) which commutes with A.

Proof: By Theorem 12.3.2, there exists an orthonormal basis of eigenvectors of A, say
{vi}ni=1 such that Avi = λivi. Therefore, by Theorem 12.2.4, A =

∑
i λivi ⊗ vi where each

λi ≥ 0.
Now by Lemma 12.4.2, each λi ≥ 0. Therefore, it makes sense to define

B ≡
∑
i

λ
1/2
i vi ⊗ vi.

It is easy to verify that

(vi ⊗ vi) (vj ⊗ vj) =

{
0 if i ̸= j

vi ⊗ vi if i = j
.

Therefore, a short computation verifies that B2 =
∑

i λivi ⊗ vi = A. If C commutes with
A, then for some cij ,

C =
∑
ij

cijvi ⊗ vj12.6. FRACTIONAL POWERS 307

and so since they commute,

∑
i,j,k

cijvi ⊗ vjλkvk ⊗ vk =
∑
i,j,k

cijλkδjkvi ⊗ vk =
∑
i,k

cikλkvi ⊗ vk

=
∑
i,j,k

cijλkvk ⊗ vkvi ⊗ vj =
∑
i,j,k

cijλkδkivk ⊗ vj =
∑
j,k

ckjλkvk ⊗ vj

=
∑
k,i

cikλivi ⊗ vk

Then by independence,
cikλi = cikλk

Therefore, cikλ
1/2
i = cikλ

1/2
k which amounts to saying that B also commutes with C. It is

clear that this operator is self adjoint. This proves existence.
Suppose B1 is another square root which is self adjoint, nonnegative and commutes with

every linear transformation which commutes with A. Since both B,B1 are nonnegative,

(B (B −B1)x, (B −B1)x) ≥ 0,

(B1 (B −B1)x, (B −B1)x) ≥ 0 (12.12)

Now, adding these together, and using the fact that the two commute,

((
B2 −B2

1

)
x, (B −B1)x

)
= ((A−A)x, (B −B1)x) = 0.

It follows that both inner products in 12.12 equal 0. Next use the existence part of this to
take the square root of B and B1 which is denoted by

√
B,

√
B1 respectively. Then

0 =
(√

B (B −B1)x,
√
B (B −B1)x

)

0 =
(√

B1 (B −B1)x,
√
B1 (B −B1)x

)

which implies
√
B (B −B1)x =

√
B1 (B −B1)x = 0. Thus also,

B (B −B1)x = B1 (B −B1)x = 0

Hence
0 = (B (B −B1)x−B1 (B −B1)x, x) = ((B −B1)x, (B −B1)x)

and so, since x is arbitrary, B1 = B. �

12.6 Fractional Powers

The main result is the following theorem.

Theorem 12.6.1 Let A be a self adjoint and nonnegative n × n matrix (all eigenvalues
are nonnegative) and let k be a positive integer. Then there exists a unique self adjoint
nonnegative matrix B such that Bk = A.
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and so since they commute,

∑
i,j,k

cijvi ⊗ vjλkvk ⊗ vk =
∑
i,j,k

cijλkδjkvi ⊗ vk =
∑
i,k

cikλkvi ⊗ vk

=
∑
i,j,k

cijλkvk ⊗ vkvi ⊗ vj =
∑
i,j,k

cijλkδkivk ⊗ vj =
∑
j,k

ckjλkvk ⊗ vj

=
∑
k,i

cikλivi ⊗ vk

Then by independence,
cikλi = cikλk

Therefore, cikλ
1/2
i = cikλ

1/2
k which amounts to saying that B also commutes with C. It is

clear that this operator is self adjoint. This proves existence.
Suppose B1 is another square root which is self adjoint, nonnegative and commutes with

every linear transformation which commutes with A. Since both B,B1 are nonnegative,

(B (B −B1)x, (B −B1)x) ≥ 0,

(B1 (B −B1)x, (B −B1)x) ≥ 0 (12.12)

Now, adding these together, and using the fact that the two commute,

((
B2 −B2

1

)
x, (B −B1)x

)
= ((A−A)x, (B −B1)x) = 0.

It follows that both inner products in 12.12 equal 0. Next use the existence part of this to
take the square root of B and B1 which is denoted by

√
B,

√
B1 respectively. Then

0 =
(√

B (B −B1)x,
√
B (B −B1)x

)

0 =
(√

B1 (B −B1)x,
√
B1 (B −B1)x

)

which implies
√
B (B −B1)x =

√
B1 (B −B1)x = 0. Thus also,

B (B −B1)x = B1 (B −B1)x = 0

Hence
0 = (B (B −B1)x−B1 (B −B1)x, x) = ((B −B1)x, (B −B1)x)

and so, since x is arbitrary, B1 = B. �

12.6 Fractional Powers

The main result is the following theorem.

Theorem 12.6.1 Let A be a self adjoint and nonnegative n × n matrix (all eigenvalues
are nonnegative) and let k be a positive integer. Then there exists a unique self adjoint
nonnegative matrix B such that Bk = A.
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Proof: By Theorem 12.3.2 or Corollary 6.4.12, there exists an orthonormal basis of
eigenvectors of A, say {vi}ni=1 such that Avi = λivi with each λi real. In particular, there
exists a unitary matrix U such that

U∗AU = D, A = UDU∗

where D has nonnegative diagonal entries. Define B in the obvious way.

B ≡ UD1/kU∗

Then it is clear that B is self adjoint and nonnegative. Also it is clear that Bk = A. What

of uniqueness? Let p (t) be a polynomial whose graph contains the ordered pairs
(
λi, λ

1/k
i

)

where the λi are the diagonal entries of D, the eigenvalues of A. Then

p (A) = UP (D)U∗ = UD1/kU∗ ≡ B

Suppose then that Ck = A and C is also self adjoint and nonnegative.

CB = Cp (A) = Cp
(
Ck

)
= p

(
Ck

)
C = p (A)C = BC

and so {B,C} is a commuting family of non defective matrices. By Theorem 12.1.9 this
family of matrices is simultaneously diagonalizable. Hence there exists a single S such that

S−1BS = DB , S−1CS = DC

Where DC , DB denote diagonal matrices. Hence, raising to the power k, it follows that

A = Bk = SDk
BS

−1, A = Ck = SDk
CS

−1

Hence
SDk

BS
−1 = SDk

CS
−1

and soDk
B = Dk

C . Since the entries of the two diagonal matrices are nonnegative, this implies
DB = DC and so S−1BS = S−1CS which shows B = C. �

A similar result holds for a general finite dimensional inner product space. See Problem
22 in the exercises.

12.7 Square Roots And Polar Decompositions

An application of Theorem 12.3.2, is the following fundamental result, important in geo-
metric measure theory and continuum mechanics. It is sometimes called the right polar
decomposition. The notation used is that which is seen in continuum mechanics, see for
example Gurtin [12]. Don’t confuse the U in this theorem with a unitary transformation.
It is not so. When the following theorem is applied in continuum mechanics, F is normally
the deformation gradient, the derivative of a nonlinear map from some subset of three di-
mensional space to three dimensional space. In this context, U is called the right Cauchy
Green strain tensor. It is a measure of how a body is stretched independent of rigid motions.
First, here is a simple lemma.

Lemma 12.7.1 Suppose R ∈ L (X,Y ) where X,Y are inner product spaces and R preserves
distances. Then R∗R = I.
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Proof: By Theorem 12.3.2 or Corollary 6.4.12, there exists an orthonormal basis of
eigenvectors of A, say {vi}ni=1 such that Avi = λivi with each λi real. In particular, there
exists a unitary matrix U such that

U∗AU = D, A = UDU∗

where D has nonnegative diagonal entries. Define B in the obvious way.

B ≡ UD1/kU∗

Then it is clear that B is self adjoint and nonnegative. Also it is clear that Bk = A. What

of uniqueness? Let p (t) be a polynomial whose graph contains the ordered pairs
(
λi, λ

1/k
i

)

where the λi are the diagonal entries of D, the eigenvalues of A. Then

p (A) = UP (D)U∗ = UD1/kU∗ ≡ B

Suppose then that Ck = A and C is also self adjoint and nonnegative.

CB = Cp (A) = Cp
(
Ck

)
= p

(
Ck

)
C = p (A)C = BC

and so {B,C} is a commuting family of non defective matrices. By Theorem 12.1.9 this
family of matrices is simultaneously diagonalizable. Hence there exists a single S such that

S−1BS = DB , S−1CS = DC

Where DC , DB denote diagonal matrices. Hence, raising to the power k, it follows that

A = Bk = SDk
BS

−1, A = Ck = SDk
CS

−1

Hence
SDk

BS
−1 = SDk

CS
−1

and so Dk
B = Dk

C . Since the entries of the two diagonal matrices are nonnegative, this implies
DB = DC and so S−1BS = S−1CS which shows B = C. �

A similar result holds for a general finite dimensional inner product space. See Problem
22 in the exercises.

12.7 Square Roots And Polar Decompositions

An application of Theorem 12.3.2, is the following fundamental result, important in geo-
metric measure theory and continuum mechanics. It is sometimes called the right polar
decomposition. The notation used is that which is seen in continuum mechanics, see for
example Gurtin [12]. Don’t confuse the U in this theorem with a unitary transformation.
It is not so. When the following theorem is applied in continuum mechanics, F is normally
the deformation gradient, the derivative of a nonlinear map from some subset of three di-
mensional space to three dimensional space. In this context, U is called the right Cauchy
Green strain tensor. It is a measure of how a body is stretched independent of rigid motions.
First, here is a simple lemma.

Lemma 12.7.1 Suppose R ∈ L (X,Y ) where X,Y are inner product spaces and R preserves
distances. Then R∗R = I.12.7. SQUARE ROOTS AND POLAR DECOMPOSITIONS 309

Proof: Since R preserves distances, |Ru| = |u| for every u. Let u,v be arbitrary vectors
in X and let θ ∈ C, |θ| = 1, and θ (R∗Ru− u,v) = |(R∗Ru− u,v)|. Therefore from the
axioms of the inner product,

|u|2 + |v|2 + 2Re θ (u,v) = |θu|2 + |v|2 + θ (u,v) + θ̄ (v,u)

= |θu+ v|2 = (R (θu+ v) , R (θu+ v))

= (Rθu,Rθu) + (Rv,Rv) + (Rθu, Rv) + (Rv, Rθu)

= |θu|2 + |v|2 + θ (R∗Ru,v) + θ̄ (v, R∗Ru)

= |u|2 + |v|2 + 2Re θ (R∗Ru,v)

and so for all u,v,

2Re θ (R∗Ru− u,v) = 2 |(R∗Ru− u,v)| = 0

Now let v = R∗Ru− u. It follows that R∗Ru− u = 0. �
The decomposition in the following is called the right polar decomposition.

Theorem 12.7.2 Let X be a inner product space of dimension n and let Y be a inner
product space of dimension m ≥ n and let F ∈ L (X,Y ). Then there exists R ∈ L (X,Y )
and U ∈ L (X,X) such that

F = RU, U = U∗, (U is Hermitian),

all eigenvalues of U are non negative,

U2 = F ∗F,R∗R = I,

and |Rx| = |x| .

Proof: (F ∗F )
∗
= F ∗F and so by Theorem 12.3.2, there is an orthonormal basis of

eigenvectors, {v1, · · · ,vn} such that

F ∗Fvi = λivi, F
∗F =

n∑
i=1

λivi ⊗ vi.

It is also clear that λi ≥ 0 because

λi (vi,vi) = (F ∗Fvi,vi) = (Fvi, Fvi) ≥ 0.

Let

U ≡
n∑

i=1

λ
1/2
i vi ⊗ vi.

Then U2 = F ∗F, U = U∗, and the eigenvalues of U,
{
λ
1/2
i

}n

i=1
are all non negative.

Let {Ux1, · · · , Uxr} be an orthonormal basis for U (X) . By the Gram Schmidt procedure
there exists an extension to an orthonormal basis for X,

{Ux1, · · · , Uxr,yr+1, · · · ,yn} .

Next note that {Fx1, · · · , Fxr} is also an orthonormal set of vectors in Y because

(Fxk, Fxj) = (F ∗Fxk,xj) =
(
U2xk,xj

)
= (Uxk, Uxj) = δjk.
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Proof: Since R preserves distances, |Ru| = |u| for every u. Let u,v be arbitrary vectors
in X and let θ ∈ C, |θ| = 1, and θ (R∗Ru− u,v) = |(R∗Ru− u,v)|. Therefore from the
axioms of the inner product,

|u|2 + |v|2 + 2Re θ (u,v) = |θu|2 + |v|2 + θ (u,v) + θ̄ (v,u)

= |θu+ v|2 = (R (θu+ v) , R (θu+ v))

= (Rθu,Rθu) + (Rv,Rv) + (Rθu, Rv) + (Rv, Rθu)

= |θu|2 + |v|2 + θ (R∗Ru,v) + θ̄ (v, R∗Ru)

= |u|2 + |v|2 + 2Re θ (R∗Ru,v)

and so for all u,v,

2Re θ (R∗Ru− u,v) = 2 |(R∗Ru− u,v)| = 0

Now let v = R∗Ru− u. It follows that R∗Ru− u = 0. �
The decomposition in the following is called the right polar decomposition.

Theorem 12.7.2 Let X be a inner product space of dimension n and let Y be a inner
product space of dimension m ≥ n and let F ∈ L (X,Y ). Then there exists R ∈ L (X,Y )
and U ∈ L (X,X) such that

F = RU, U = U∗, (U is Hermitian),

all eigenvalues of U are non negative,

U2 = F ∗F,R∗R = I,

and |Rx| = |x| .

Proof: (F ∗F )
∗
= F ∗F and so by Theorem 12.3.2, there is an orthonormal basis of

eigenvectors, {v1, · · · ,vn} such that

F ∗Fvi = λivi, F
∗F =

n∑
i=1

λivi ⊗ vi.

It is also clear that λi ≥ 0 because

λi (vi,vi) = (F ∗Fvi,vi) = (Fvi, Fvi) ≥ 0.

Let

U ≡
n∑

i=1

λ
1/2
i vi ⊗ vi.

Then U2 = F ∗F, U = U∗, and the eigenvalues of U,
{
λ
1/2
i

}n

i=1
are all non negative.

Let {Ux1, · · · , Uxr} be an orthonormal basis for U (X) . By the Gram Schmidt procedure
there exists an extension to an orthonormal basis for X,

{Ux1, · · · , Uxr,yr+1, · · · ,yn} .

Next note that {Fx1, · · · , Fxr} is also an orthonormal set of vectors in Y because

(Fxk, Fxj) = (F ∗Fxk,xj) =
(
U2xk,xj

)
= (Uxk, Uxj) = δjk.
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By the Gram Schmidt procedure, there exists an extension of {Fx1, · · · , Fxr} to an or-
thonormal basis for Y,

{Fx1, · · · , Fxr, zr+1, · · · , zm} .
Since m ≥ n, there are at least as many zk as there are yk. Now for x ∈ X, since

{Ux1, · · · , Uxr,yr+1, · · · ,yn}

is an orthonormal basis for X, there exist unique scalars

c1, · · · , cr, dr+1, · · · , dn

such that

x =
r∑

k=1

ckUxk +

n∑
k=r+1

dkyk

Define

Rx ≡
r∑

k=1

ckFxk +

n∑
k=r+1

dkzk (12.13)

Thus

|Rx|2 =

r∑
k=1

|ck|2 +
n∑

k=r+1

|dk|2 = |x|2 .

Therefore, by Lemma 12.7.1 R∗R = I.
Then also there exist unique scalars bk such that for a given x ∈ X,

Ux =
r∑

k=1

bkUxk (12.14)

and so from 12.13,

RUx =
r∑

k=1

bkFxk = F

(
r∑

k=1

bkxk

)

Is F (
∑r

k=1 bkxk) = F (x)?
(
F

(
r∑

k=1

bkxk

)
− F (x) , F

(
r∑

k=1

bkxk

)
− F (x)

)

=

(
(F ∗F )

(
r∑

k=1

bkxk − x

)
,

(
r∑

k=1

bkxk − x

))

=

(
U2

(
r∑

k=1

bkxk − x

)
,

(
r∑

k=1

bkxk − x

))

=

(
U

(
r∑

k=1

bkxk − x

)
, U

(
r∑

k=1

bkxk − x

))

=

(
r∑

k=1

bkUxk − Ux,

r∑
k=1

bkUxk − Ux

)
= 0

Because from 12.14, Ux =
∑r

k=1 bkUxk. Therefore, RUx = F (
∑r

k=1 bkxk) = F (x). �
The following corollary follows as a simple consequence of this theorem. It is called the

left polar decomposition.
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Corollary 12.7.3 Let F ∈ L (X,Y ) and suppose n ≥ m where X is a inner product space of
dimension n and Y is a inner product space of dimension m. Then there exists a Hermitian
U ∈ L (X,X) , and an element of L (X,Y ) , R, such that

F = UR, RR∗ = I.

Proof: Recall that L∗∗ = L and (ML)
∗

= L∗M∗. Now apply Theorem 12.7.2 to
F ∗ ∈ L (Y,X). Thus, F ∗ = R∗U where R∗ and U satisfy the conditions of that theorem.
Then F = UR and RR∗ = R∗∗R∗ = I. �

The following existence theorem for the polar decomposition of an element of L (X,X)
is a corollary.

Corollary 12.7.4 Let F ∈ L (X,X). Then there exists a Hermitian W ∈ L (X,X) , and
a unitary matrix Q such that F = WQ, and there exists a Hermitian U ∈ L (X,X) and a
unitary R, such that F = RU.

This corollary has a fascinating relation to the question whether a given linear transfor-
mation is normal. Recall that an n×n matrix A, is normal if AA∗ = A∗A. Retain the same
definition for an element of L (X,X) .

Theorem 12.7.5 Let F ∈ L (X,X) . Then F is normal if and only if in Corollary 12.7.4
RU = UR and QW = WQ.

Proof: I will prove the statement about RU = UR and leave the other part as an
exercise. First suppose that RU = UR and show F is normal. To begin with,

UR∗ = (RU)
∗
= (UR)

∗
= R∗U.

Therefore,

F ∗F = UR∗RU = U2

FF ∗ = RUUR∗ = URR∗U = U2

which shows F is normal.
Now suppose F is normal. Is RU = UR? Since F is normal,

FF ∗ = RUUR∗ = RU2R∗

and
F ∗F = UR∗RU = U2.

Therefore, RU2R∗ = U2, and both are nonnegative and self adjoint. Therefore, the square
roots of both sides must be equal by the uniqueness part of the theorem on fractional powers.
It follows that the square root of the first, RUR∗ must equal the square root of the second,
U. Therefore, RUR∗ = U and so RU = UR. This proves the theorem in one case. The other
case in which W and Q commute is left as an exercise. �

12.8 An Application To Statistics

A random vector is a function X : Ω → Rp where Ω is a probability space. This means
that there exists a σ algebra of measurable sets F and a probability measure P : F → [0, 1].
In practice, people often don’t worry too much about the underlying probability space and
instead pay more attention to the distribution measure of the random variable. For E a

312 CHAPTER 12. SELF ADJOINT OPERATORS

suitable subset of Rp, this measure gives the probability that X has values in E. There
are often excellent reasons for believing that a random vector is normally distributed. This
means that the probability that X has values in a set E is given by

∫

E

1

(2π)
p/2

det (Σ)
1/2

exp

(
−1

2
(x−m)

∗
Σ−1 (x−m)

)
dx

The expression in the integral is called the normal probability density function. There are
two parameters, m and Σ where m is called the mean and Σ is called the covariance matrix.
It is a symmetric matrix which has all real eigenvalues which are all positive. While it may
be reasonable to assume this is the distribution, in general, you won’t know m and Σ and
in order to use this formula to predict anything, you would need to know these quantities. I
am following a nice discussion given in Wikipedia which makes use of the existence of square
roots.

What people do to estimate these is to take n independent observations x1, · · · ,xn and
try to predict what m and Σ should be based on these observations. One criterion used for
making this determination is the method of maximum likelihood. In this method, you seek
to choose the two parameters in such a way as to maximize the likelihood which is given as

n∏
i=1

1

det (Σ)
1/2

exp

(
−1

2
(xi−m)

∗
Σ−1 (xi−m)

)
.

For convenience the term (2π)
p/2

was ignored. Maximizing the above is equivalent to max-
imizing the ln of the above. So taking ln,

n

2
ln
(
det

(
Σ−1

))
− 1

2

n∑
i=1

(xi−m)
∗
Σ−1 (xi−m)

Note that the above is a function of the entries of m. Take the partial derivative with
respect to ml. Since the matrix Σ−1 is symmetric this implies

n∑
i=1

∑
r

(xir −mr) Σ
−1
rl = 0 each l.

Written in terms of vectors,
n∑

i=1

(xi −m)
∗
Σ−1 = 0

and so, multiplying by Σ on the right and then taking adjoints, this yields

n∑
i=1

(xi −m) = 0, nm =

n∑
i=1

xi, m =
1

n

n∑
i=1

xi ≡ x̄.

Now that m is determined, it remains to find the best estimate for Σ. (xi−m)
∗
Σ−1 (xi−m)

is a scalar, so since trace (AB) = trace (BA) ,

(xi−m)
∗
Σ−1 (xi−m) = trace

(
(xi−m)

∗
Σ−1 (xi−m)

)

= trace
(
(xi−m) (xi−m)

∗
Σ−1

)
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Therefore, the thing to maximize is

n ln
(
det

(
Σ−1

))
−

n∑
i=1

trace
(
(xi−m) (xi−m)

∗
Σ−1

)

= n ln
(
det

(
Σ−1

))
− trace




S� �� �(
n∑

i=1

(xi−m) (xi−m)
∗

)
Σ−1




We assume that S has rank p. Thus it is a self adjoint matrix which has all positive eigen-
values. Therefore, from the property of the trace, the thing to maximize is

n ln
(
det

(
Σ−1

))
− trace

(
S1/2Σ−1S1/2

)

Now let B = S1/2Σ−1S1/2. Then B is positive and self adjoint also and so there ex-
ists U unitary such that B = U∗DU where D is the diagonal matrix having the positive
scalars λ1, · · · , λp down the main diagonal. Solving for Σ−1 in terms of B, this yields
S−1/2BS−1/2 = Σ−1 and so

ln
(
det

(
Σ−1

))
= ln

(
det

(
S−1/2

)
det (B) det

(
S−1/2

))
= ln

(
det

(
S−1

))
+ ln (det (B))

which yields
C (S) + n ln (det (B))− trace (B)

as the thing to maximize. Of course this yields

C (S) + n ln

(
p∏

i=1

λi

)
−

p∑
i=1

λi

= C (S) + n

p∑
i=1

ln (λi)−
p∑

i=1

λi

as the quantity to be maximized. To do this, take ∂/∂λk and set equal to 0. This yields
λk = n. Therefore, from the above, B = U∗nIU = nI. Also from the above,

B−1 =
1

n
I = S−1/2ΣS−1/2

and so

Σ =
1

n
S =

1

n

n∑
i=1

(xi −m) (xi −m)
∗

This has shown that the maximum likelihood estimates are

m = x̄ ≡ 1

n

n∑
i=1

xi, Σ =
1

n

n∑
i=1

(xi −m) (xi −m)
∗
.

12.9 The Singular Value Decomposition

In this section, A will be an m× n matrix. To begin with, here is a simple lemma.

Lemma 12.9.1 Let A be an m×n matrix. Then A∗A is self adjoint and all its eigenvalues
are nonnegative.

312 CHAPTER 12. SELF ADJOINT OPERATORS

suitable subset of Rp, this measure gives the probability that X has values in E. There
are often excellent reasons for believing that a random vector is normally distributed. This
means that the probability that X has values in a set E is given by

∫

E

1

(2π)
p/2

det (Σ)
1/2

exp

(
−1

2
(x−m)

∗
Σ−1 (x−m)

)
dx

The expression in the integral is called the normal probability density function. There are
two parameters, m and Σ where m is called the mean and Σ is called the covariance matrix.
It is a symmetric matrix which has all real eigenvalues which are all positive. While it may
be reasonable to assume this is the distribution, in general, you won’t know m and Σ and
in order to use this formula to predict anything, you would need to know these quantities. I
am following a nice discussion given in Wikipedia which makes use of the existence of square
roots.

What people do to estimate these is to take n independent observations x1, · · · ,xn and
try to predict what m and Σ should be based on these observations. One criterion used for
making this determination is the method of maximum likelihood. In this method, you seek
to choose the two parameters in such a way as to maximize the likelihood which is given as

n∏
i=1

1

det (Σ)
1/2

exp

(
−1

2
(xi−m)

∗
Σ−1 (xi−m)

)
.

For convenience the term (2π)
p/2

was ignored. Maximizing the above is equivalent to max-
imizing the ln of the above. So taking ln,

n

2
ln
(
det

(
Σ−1

))
− 1

2

n∑
i=1

(xi−m)
∗
Σ−1 (xi−m)

Note that the above is a function of the entries of m. Take the partial derivative with
respect to ml. Since the matrix Σ−1 is symmetric this implies

n∑
i=1

∑
r

(xir −mr) Σ
−1
rl = 0 each l.

Written in terms of vectors,
n∑

i=1

(xi −m)
∗
Σ−1 = 0

and so, multiplying by Σ on the right and then taking adjoints, this yields

n∑
i=1

(xi −m) = 0, nm =

n∑
i=1

xi, m =
1

n

n∑
i=1

xi ≡ x̄.

Now that m is determined, it remains to find the best estimate for Σ. (xi−m)
∗
Σ−1 (xi−m)

is a scalar, so since trace (AB) = trace (BA) ,

(xi−m)
∗
Σ−1 (xi−m) = trace

(
(xi−m)

∗
Σ−1 (xi−m)

)

= trace
(
(xi−m) (xi−m)

∗
Σ−1

)
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Therefore, the thing to maximize is

n ln
(
det

(
Σ−1

))
−

n∑
i=1

trace
(
(xi−m) (xi−m)

∗
Σ−1

)

= n ln
(
det

(
Σ−1

))
− trace




S� �� �(
n∑

i=1

(xi−m) (xi−m)
∗

)
Σ−1




We assume that S has rank p. Thus it is a self adjoint matrix which has all positive eigen-
values. Therefore, from the property of the trace, the thing to maximize is

n ln
(
det

(
Σ−1

))
− trace

(
S1/2Σ−1S1/2

)

Now let B = S1/2Σ−1S1/2. Then B is positive and self adjoint also and so there ex-
ists U unitary such that B = U∗DU where D is the diagonal matrix having the positive
scalars λ1, · · · , λp down the main diagonal. Solving for Σ−1 in terms of B, this yields
S−1/2BS−1/2 = Σ−1 and so

ln
(
det

(
Σ−1

))
= ln

(
det

(
S−1/2

)
det (B) det

(
S−1/2

))
= ln

(
det

(
S−1

))
+ ln (det (B))

which yields
C (S) + n ln (det (B))− trace (B)

as the thing to maximize. Of course this yields

C (S) + n ln

(
p∏

i=1

λi

)
−

p∑
i=1

λi

= C (S) + n

p∑
i=1

ln (λi)−
p∑

i=1

λi

as the quantity to be maximized. To do this, take ∂/∂λk and set equal to 0. This yields
λk = n. Therefore, from the above, B = U∗nIU = nI. Also from the above,

B−1 =
1

n
I = S−1/2ΣS−1/2

and so

Σ =
1

n
S =

1

n

n∑
i=1

(xi −m) (xi −m)
∗

This has shown that the maximum likelihood estimates are

m = x̄ ≡ 1

n

n∑
i=1

xi, Σ =
1

n

n∑
i=1

(xi −m) (xi −m)
∗
.

12.9 The Singular Value Decomposition

In this section, A will be an m× n matrix. To begin with, here is a simple lemma.

Lemma 12.9.1 Let A be an m×n matrix. Then A∗A is self adjoint and all its eigenvalues
are nonnegative.
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Therefore, the thing to maximize is

n ln
(
det

(
Σ−1

))
−

n∑
i=1

trace
(
(xi−m) (xi−m)

∗
Σ−1

)

= n ln
(
det

(
Σ−1

))
− trace




S� �� �(
n∑

i=1

(xi−m) (xi−m)
∗

)
Σ−1




We assume that S has rank p. Thus it is a self adjoint matrix which has all positive eigen-
values. Therefore, from the property of the trace, the thing to maximize is

n ln
(
det

(
Σ−1

))
− trace

(
S1/2Σ−1S1/2

)

Now let B = S1/2Σ−1S1/2. Then B is positive and self adjoint also and so there ex-
ists U unitary such that B = U∗DU where D is the diagonal matrix having the positive
scalars λ1, · · · , λp down the main diagonal. Solving for Σ−1 in terms of B, this yields
S−1/2BS−1/2 = Σ−1 and so

ln
(
det

(
Σ−1

))
= ln

(
det

(
S−1/2

)
det (B) det

(
S−1/2

))
= ln

(
det

(
S−1

))
+ ln (det (B))

which yields
C (S) + n ln (det (B))− trace (B)

as the thing to maximize. Of course this yields

C (S) + n ln

(
p∏

i=1

λi

)
−

p∑
i=1

λi

= C (S) + n

p∑
i=1

ln (λi)−
p∑

i=1

λi

as the quantity to be maximized. To do this, take ∂/∂λk and set equal to 0. This yields
λk = n. Therefore, from the above, B = U∗nIU = nI. Also from the above,

B−1 =
1

n
I = S−1/2ΣS−1/2

and so

Σ =
1

n
S =

1

n

n∑
i=1

(xi −m) (xi −m)
∗

This has shown that the maximum likelihood estimates are

m = x̄ ≡ 1

n

n∑
i=1

xi, Σ =
1

n

n∑
i=1

(xi −m) (xi −m)
∗
.

12.9 The Singular Value Decomposition

In this section, A will be an m× n matrix. To begin with, here is a simple lemma.

Lemma 12.9.1 Let A be an m×n matrix. Then A∗A is self adjoint and all its eigenvalues
are nonnegative.
314 CHAPTER 12. SELF ADJOINT OPERATORS

Proof: It is obvious that A∗A is self adjoint. Suppose A∗Ax = λx. Then λ |x|2 =
(λx,x) = (A∗Ax,x) = (Ax,Ax) ≥ 0. �

Definition 12.9.2 Let A be an m×n matrix. The singular values of A are the square roots
of the positive eigenvalues of A∗A.

With this definition and lemma here is the main theorem on the singular value decom-
position. In all that follows, I will write the following partitioned matrix

(
σ 0

0 0

)

where σ denotes an r × r diagonal matrix of the form




σ1 0
. . .

0 σk




and the bottom row of zero matrices in the partitioned matrix, as well as the right columns
of zero matrices are each of the right size so that the resulting matrix is m × n. Either
could vanish completely. However, I will write it in the above form. It is easy to make the
necessary adjustments in the other two cases.

Theorem 12.9.3 Let A be an m× n matrix. Then there exist unitary matrices, U and V
of the appropriate size such that

U∗AV =

(
σ 0

0 0

)

where σ is of the form

σ =




σ1 0
. . .

0 σk




for the σi the singular values of A, arranged in order of decreasing size.

Proof: By the above lemma and Theorem 12.3.2 there exists an orthonormal basis,
{vi}ni=1 for Fn such that A∗Avi = σ2

ivi where σ2
i > 0 for i = 1, · · · , k, (σi > 0) , and equals

zero if i > k. Let the eigenvalues σ2
i be arranged in decreasing order. It is desired to have

AV = U

(
σ 0

0 0

)

and so if U =
(

u1 · · · um

)
, one needs to have for j ≤ k, σjuj = Avj . Thus let

uj ≡ σ−1
j Avj , j ≤ k

Then for i, j ≤ k,

(ui,uj) = σ−1
j σ−1

i (Avi, Avj) = σ−1
j σ−1

i (A∗Avi,vj)

= σ−1
j σ−1

i σ2
i (vi,vj) = δij
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Now extend to an orthonormal basis of Fm, {u1, · · · ,uk,uk+1, · · · ,um} . If i > k,

(Avi, Avi) = (A∗Avi,vi) = 0 (vi,vi) = 0

so Avi = 0. Then for σ given as above in the statement of the theorem, it follows that

AV = U

(
σ 0

0 0

)
, U∗AV =

(
σ 0

0 0

)
�

The singular value decomposition has as an immediate corollary the following interesting
result.

Corollary 12.9.4 Let A be an m×n matrix. Then the rank of A and A∗equals the number
of singular values.

Proof: Since V and U are unitary, they are each one to one and onto and so it follows
that

rank (A) = rank (U∗AV ) = rank

(
σ 0

0 0

)
= number of singular values.

Also since U, V are unitary,

rank (A∗) = rank (V ∗A∗U) = rank
(
(U∗AV )

∗)

= rank

((
σ 0

0 0

)∗)
= number of singular values. �

12.10 Approximation In The Frobenius Norm

The Frobenius norm is one of many norms for a matrix. It is arguably the most obvious of
all norms. Here is its definition.

Definition 12.10.1 Let A be a complex m× n matrix. Then

||A||F ≡ (trace (AA∗))
1/2

Also this norm comes from the inner product

(A,B)F ≡ trace (AB∗)

Thus ||A||2F is easily seen to equal
∑

ij |aij |
2
so essentially, it treats the matrix as a vector

in Fm×n.

Lemma 12.10.2 Let A be an m× n complex matrix with singular matrix

Σ =

(
σ 0

0 0

)

with σ as defined above, U∗AV = Σ. Then

||Σ||2F = ||A||2F (12.15)

and the following hold for the Frobenius norm. If U, V are unitary and of the right size,

||UA||F = ||A||F , ||UAV ||F = ||A||F . (12.16)
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Proof: From the definition and letting U, V be unitary and of the right size,

||UA||2F ≡ trace (UAA∗U∗) = trace (U∗UAA∗) = trace (AA∗) = ||A||2F

Also,
||AV ||2F ≡ trace (AV V ∗A∗) = trace (AA∗) = ||A||2F .

It follows
∥Σ∥2F = ||U∗AV ||2F = ||AV ||2F = ||A||2F . �

Of course, this shows that

||A||2F =
∑
i

σ2
i ,

the sum of the squares of the singular values of A.
Why is the singular value decomposition important? It implies

A = U

(
σ 0

0 0

)
V ∗

where σ is the diagonal matrix having the singular values down the diagonal. Now sometimes
A is a huge matrix, 1000×2000 or something like that. This happens in applications to
situations where the entries of A describe a picture. What also happens is that most of the
singular values are very small. What if you deleted those which were very small, say for all
i ≥ l and got a new matrix

A′ ≡ U

(
σ′ 0

0 0

)
V ∗?

Then the entries of A′ would end up being close to the entries of A but there is much less
information to keep track of. This turns out to be very useful. More precisely, letting

σ =




σ1 0
. . .

0 σr


 , U∗AV =

(
σ 0

0 0

)
,

||A−A′||2F =

�����

�����U
(

σ − σ′ 0

0 0

)
V ∗

�����

�����
2

F

=

r∑
k=l+1

σ2
k

Thus A is approximated by A′ where A′ has rank l < r. In fact, it is also true that out
of all matrices of rank l, this A′ is the one which is closest to A in the Frobenius norm.
Thus A is approximated by A′ where A′ has rank l < r. In fact, it is also true that out of
all matrices of rank l, this A′ is the one which is closest to A in the Frobenius norm.

Here is roughly why this is so. Suppose B̃ approximates A =

(
σr×r 0

0 0

)
as well as

possible out of all matrices B̃ having rank no more than l < r the size of the matrix σr×r.
Suppose the rank of B̃ is l. Then obviously no column xj of B̃ in a basis for the column
space can have j > r since if so, the approximation of A could be improved by simply

making this column into a zero column. Therefore there are

(
r

l

)
choices for columns

for a basis for the column space of B̃. Suppose you pick the first l for instance. Thus the
first column of B̃ should be σ1e1 to make the approximation up to the first column as good
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Proof: From the definition and letting U, V be unitary and of the right size,
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Thus A is approximated by A′ where A′ has rank l < r. In fact, it is also true that out
of all matrices of rank l, this A′ is the one which is closest to A in the Frobenius norm.
Thus A is approximated by A′ where A′ has rank l < r. In fact, it is also true that out of
all matrices of rank l, this A′ is the one which is closest to A in the Frobenius norm.

Here is roughly why this is so. Suppose B̃ approximates A =

(
σr×r 0

0 0

)
as well as

possible out of all matrices B̃ having rank no more than l < r the size of the matrix σr×r.
Suppose the rank of B̃ is l. Then obviously no column xj of B̃ in a basis for the column
space can have j > r since if so, the approximation of A could be improved by simply

making this column into a zero column. Therefore there are

(
r

l

)
choices for columns

for a basis for the column space of B̃. Suppose you pick the first l for instance. Thus the
first column of B̃ should be σ1e1 to make the approximation up to the first column as good
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as possible. Now consider approximating as well as possible up to the first two columns.
Clearly the second column should be σ2e2 and in this way, the approximation up to the
first two columns is exact. Continue this way till the lth column. Then since B̃ has rank
l, all other columns should be zero columns since you cannot have a nonzero entry in any
diagonal position and keep the rank of B̃ only l. Then since it is desired to get the best
approximation of A you wouldn’t want any off diagonal nonzero terms either. The square
of the error in doing this, picking the first l columns as a basis would be

∑r
j=l+1 σ

2
j . On the

other hand, if you picked other columns than the first l in the basis for the column space
of B̃, you would have a larger error because you would include sums involving the larger
singular values. Thus letting σ′ denote the l × l upper left corner of σ, B̃ should be of the

form

(
σ′ 0

0 0

)
. For example,




3 0 0 0

0 2 0 0

0 0 1 0




is best approximated by the rank 2 matrix



3 0 0 0

0 2 0 0

0 0 0 0




Now suppose A is an m× n matrix. Let U, V be unitary and of the right size such that

U∗AV =

(
σr×r 0

0 0

)

Then suppose B approximates A as well as possible in the Frobenius norm. Then you would
want

∥A−B∥ = ∥U∗AV − U∗BV ∥ =

�����

(
σr×r 0

0 0

)
− U∗BV

�����
to be as small as possible. Therefore, from the above discussion, you should have

U∗BV =

(
σ′ 0

0 0

)
, B = U

(
σ′ 0

0 0

)
V ∗

whereas

A = U

(
σr×r 0

0 0

)
V ∗

12.11 Least Squares And Singular Value Decomposition

The singular value decomposition also has a very interesting connection to the problem of
least squares solutions. Recall that it was desired to find x such that |Ax− y| is as small as
possible. Lemma 11.5.1 shows that there is a solution to this problem which can be found by
solving the system A∗Ax = A∗y. Each x which solves this system solves the minimization
problem as was shown in the lemma just mentioned. Now consider this equation for the
solutions of the minimization problem in terms of the singular value decomposition.

A∗

� �� �
V

(
σ 0

0 0

)
U∗

A� �� �
U

(
σ 0

0 0

)
V ∗x =

A∗

� �� �
V

(
σ 0

0 0

)
U∗y.
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as possible. Now consider approximating as well as possible up to the first two columns.
Clearly the second column should be σ2e2 and in this way, the approximation up to the
first two columns is exact. Continue this way till the lth column. Then since B̃ has rank
l, all other columns should be zero columns since you cannot have a nonzero entry in any
diagonal position and keep the rank of B̃ only l. Then since it is desired to get the best
approximation of A you wouldn’t want any off diagonal nonzero terms either. The square
of the error in doing this, picking the first l columns as a basis would be

∑r
j=l+1 σ

2
j . On the

other hand, if you picked other columns than the first l in the basis for the column space
of B̃, you would have a larger error because you would include sums involving the larger
singular values. Thus letting σ′ denote the l × l upper left corner of σ, B̃ should be of the

form

(
σ′ 0

0 0

)
. For example,




3 0 0 0

0 2 0 0

0 0 1 0




is best approximated by the rank 2 matrix



3 0 0 0

0 2 0 0

0 0 0 0




Now suppose A is an m× n matrix. Let U, V be unitary and of the right size such that

U∗AV =

(
σr×r 0

0 0

)

Then suppose B approximates A as well as possible in the Frobenius norm. Then you would
want

∥A−B∥ = ∥U∗AV − U∗BV ∥ =

�����

(
σr×r 0

0 0

)
− U∗BV

�����
to be as small as possible. Therefore, from the above discussion, you should have

U∗BV =

(
σ′ 0

0 0

)
, B = U

(
σ′ 0

0 0

)
V ∗

whereas

A = U

(
σr×r 0

0 0

)
V ∗

12.11 Least Squares And Singular Value Decomposition

The singular value decomposition also has a very interesting connection to the problem of
least squares solutions. Recall that it was desired to find x such that |Ax− y| is as small as
possible. Lemma 11.5.1 shows that there is a solution to this problem which can be found by
solving the system A∗Ax = A∗y. Each x which solves this system solves the minimization
problem as was shown in the lemma just mentioned. Now consider this equation for the
solutions of the minimization problem in terms of the singular value decomposition.

A∗

� �� �
V

(
σ 0

0 0

)
U∗

A� �� �
U

(
σ 0

0 0

)
V ∗x =

A∗

� �� �
V

(
σ 0

0 0

)
U∗y.
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Therefore, this yields the following upon using block multiplication and multiplying on the
left by V ∗. (

σ2 0

0 0

)
V ∗x =

(
σ 0

0 0

)
U∗y. (12.17)

One solution to this equation which is very easy to spot is

x = V

(
σ−1 0

0 0

)
U∗y. (12.18)

12.12 The Moore Penrose Inverse

The particular solution of the least squares problem given in 12.18 is important enough that
it motivates the following definition.

Definition 12.12.1 Let A be an m × n matrix. Then the Moore Penrose inverse of A,
denoted by A+ is defined as

A+ ≡ V

(
σ−1 0

0 0

)
U∗.

Here

U∗AV =

(
σ 0

0 0

)

as above.

Thus A+y is a solution to the minimization problem to find x which minimizes |Ax− y| .
In fact, one can say more about this. In the following picture My denotes the set of least
squares solutions x such that A∗Ax = A∗y.

My

��

x

A+(y)

�

ker(A∗A)�

Then A+ (y) is as given in the picture.

Proposition 12.12.2 A+y is the solution to the problem of minimizing |Ax− y| for all x
which has smallest norm. Thus

��AA+y − y
�� ≤ |Ax− y| for all x

and if x1 satisfies |Ax1 − y| ≤ |Ax− y| for all x, then |A+y| ≤ |x1| .
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Therefore, this yields the following upon using block multiplication and multiplying on the
left by V ∗. (

σ2 0

0 0

)
V ∗x =

(
σ 0

0 0

)
U∗y. (12.17)

One solution to this equation which is very easy to spot is

x = V

(
σ−1 0

0 0

)
U∗y. (12.18)

12.12 The Moore Penrose Inverse

The particular solution of the least squares problem given in 12.18 is important enough that
it motivates the following definition.

Definition 12.12.1 Let A be an m × n matrix. Then the Moore Penrose inverse of A,
denoted by A+ is defined as

A+ ≡ V

(
σ−1 0

0 0

)
U∗.

Here

U∗AV =

(
σ 0

0 0

)

as above.

Thus A+y is a solution to the minimization problem to find x which minimizes |Ax− y| .
In fact, one can say more about this. In the following picture My denotes the set of least
squares solutions x such that A∗Ax = A∗y.

My

��

x

A+(y)

�

ker(A∗A)�

Then A+ (y) is as given in the picture.

Proposition 12.12.2 A+y is the solution to the problem of minimizing |Ax− y| for all x
which has smallest norm. Thus

��AA+y − y
�� ≤ |Ax− y| for all x

and if x1 satisfies |Ax1 − y| ≤ |Ax− y| for all x, then |A+y| ≤ |x1| .
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Proof: Consider x satisfying 12.17, equivalently A∗Ax =A∗y,

(
σ2 0

0 0

)
V ∗x =

(
σ 0

0 0

)
U∗y

which has smallest norm. This is equivalent to making |V ∗x| as small as possible because
V ∗ is unitary and so it preserves norms. For z a vector, denote by (z)k the vector in Fk

which consists of the first k entries of z. Then if x is a solution to 12.17
(

σ2 (V ∗x)k
0

)
=

(
σ (U∗y)k

0

)

and so (V ∗x)k = σ−1 (U∗y)k . Thus the first k entries of V ∗x are determined. In order to
make |V ∗x| as small as possible, the remaining n− k entries should equal zero. Therefore,

V ∗x =

(
(V ∗x)k

0

)
=

(
σ−1 (U∗y)k

0

)
=

(
σ−1 0

0 0

)
U∗y

and so

x = V

(
σ−1 0

0 0

)
U∗y ≡ A+y �

Lemma 12.12.3 The matrix A+ satisfies the following conditions.

AA+A = A, A+AA+ = A+, A+A and AA+ are Hermitian. (12.19)

Proof: This is routine. Recall

A = U

(
σ 0

0 0

)
V ∗

and

A+ = V

(
σ−1 0

0 0

)
U∗

so you just plug in and verify it works. �
A much more interesting observation is that A+ is characterized as being the unique

matrix which satisfies 12.19. This is the content of the following Theorem. The conditions
are sometimes called the Penrose conditions.

Theorem 12.12.4 Let A be an m × n matrix. Then a matrix A0, is the Moore Penrose
inverse of A if and only if A0 satisfies

AA0A = A, A0AA0 = A0, A0A and AA0 are Hermitian. (12.20)

Proof: From the above lemma, the Moore Penrose inverse satisfies 12.20. Suppose then
that A0 satisfies 12.20. It is necessary to verify that A0 = A+. Recall that from the singular
value decomposition, there exist unitary matrices, U and V such that

U∗AV = Σ ≡

(
σ 0

0 0

)
, A = UΣV ∗.
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Proof: Consider x satisfying 12.17, equivalently A∗Ax =A∗y,

(
σ2 0

0 0

)
V ∗x =

(
σ 0

0 0

)
U∗y

which has smallest norm. This is equivalent to making |V ∗x| as small as possible because
V ∗ is unitary and so it preserves norms. For z a vector, denote by (z)k the vector in Fk

which consists of the first k entries of z. Then if x is a solution to 12.17
(

σ2 (V ∗x)k
0

)
=

(
σ (U∗y)k

0

)

and so (V ∗x)k = σ−1 (U∗y)k . Thus the first k entries of V ∗x are determined. In order to
make |V ∗x| as small as possible, the remaining n− k entries should equal zero. Therefore,

V ∗x =

(
(V ∗x)k

0

)
=

(
σ−1 (U∗y)k

0

)
=

(
σ−1 0

0 0

)
U∗y

and so

x = V

(
σ−1 0

0 0

)
U∗y ≡ A+y �

Lemma 12.12.3 The matrix A+ satisfies the following conditions.

AA+A = A, A+AA+ = A+, A+A and AA+ are Hermitian. (12.19)

Proof: This is routine. Recall

A = U

(
σ 0

0 0

)
V ∗

and

A+ = V

(
σ−1 0

0 0

)
U∗

so you just plug in and verify it works. �
A much more interesting observation is that A+ is characterized as being the unique

matrix which satisfies 12.19. This is the content of the following Theorem. The conditions
are sometimes called the Penrose conditions.

Theorem 12.12.4 Let A be an m × n matrix. Then a matrix A0, is the Moore Penrose
inverse of A if and only if A0 satisfies

AA0A = A, A0AA0 = A0, A0A and AA0 are Hermitian. (12.20)

Proof: From the above lemma, the Moore Penrose inverse satisfies 12.20. Suppose then
that A0 satisfies 12.20. It is necessary to verify that A0 = A+. Recall that from the singular
value decomposition, there exist unitary matrices, U and V such that

U∗AV = Σ ≡

(
σ 0

0 0

)
, A = UΣV ∗.320 CHAPTER 12. SELF ADJOINT OPERATORS

Recall that

A+ = V

(
σ−1 0

0 0

)
U∗

Let

A0 = V

(
P Q

R S

)
U∗ (12.21)

where P is r × r, the same size as the diagonal matrix composed of the singular values on
the main diagonal.

Next use the first equation of 12.20 to write

A� �� �
UΣV ∗

A0� �� �
V

(
P Q

R S

)
U∗

A� �� �
UΣV ∗ =

A� �� �
UΣV ∗.

Then multiplying both sides on the left by U∗ and on the right by V,

(
σ 0

0 0

)(
P Q

R S

)(
σ 0

0 0

)
=

(
σPσ 0

0 0

)
=

(
σ 0

0 0

)
(12.22)

Therefore, P = σ−1. From the requirement that AA0 is Hermitian,

A� �� �
UΣV ∗

A0� �� �
V

(
P Q

R S

)
U∗ = U

(
σ 0

0 0

)(
P Q

R S

)
U∗

must be Hermitian. Therefore, it is necessary that

(
σ 0

0 0

)(
P Q

R S

)
=

(
σP σQ

0 0

)
=

(
I σQ

0 0

)

is Hermitian. Then (
I σQ

0 0

)
=

(
I 0

Q∗σ 0

)

and so Q = 0.
Next,

A0� �� �
V

(
P Q

R S

)
U∗

A� �� �
UΣV ∗ = V

(
Pσ 0

Rσ 0

)
V ∗ = V

(
I 0

Rσ 0

)
V ∗

is Hermitian. Therefore, also (
I 0

Rσ 0

)

is Hermitian. Thus R = 0 because
(

I 0

Rσ 0

)∗

=

(
I σ∗R∗

0 0

)
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Recall that

A+ = V

(
σ−1 0

0 0

)
U∗

Let

A0 = V

(
P Q

R S

)
U∗ (12.21)

where P is r × r, the same size as the diagonal matrix composed of the singular values on
the main diagonal.

Next use the first equation of 12.20 to write

A� �� �
UΣV ∗

A0� �� �
V

(
P Q

R S

)
U∗

A� �� �
UΣV ∗ =

A� �� �
UΣV ∗.

Then multiplying both sides on the left by U∗ and on the right by V,

(
σ 0

0 0

)(
P Q

R S

)(
σ 0

0 0

)
=

(
σPσ 0

0 0

)
=

(
σ 0

0 0

)
(12.22)

Therefore, P = σ−1. From the requirement that AA0 is Hermitian,

A� �� �
UΣV ∗

A0� �� �
V

(
P Q

R S

)
U∗ = U

(
σ 0

0 0

)(
P Q

R S

)
U∗

must be Hermitian. Therefore, it is necessary that

(
σ 0

0 0

)(
P Q

R S

)
=

(
σP σQ

0 0

)
=

(
I σQ

0 0

)

is Hermitian. Then (
I σQ

0 0

)
=

(
I 0

Q∗σ 0

)

and so Q = 0.
Next,

A0� �� �
V

(
P Q

R S

)
U∗

A� �� �
UΣV ∗ = V

(
Pσ 0

Rσ 0

)
V ∗ = V

(
I 0

Rσ 0

)
V ∗

is Hermitian. Therefore, also (
I 0

Rσ 0

)

is Hermitian. Thus R = 0 because
(

I 0

Rσ 0

)∗

=

(
I σ∗R∗

0 0

)
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which requires Rσ = 0. Now multiply on right by σ−1 to find that R = 0.
Use 12.21 and the second equation of 12.20 to write

A0� �� �
V

(
P Q

R S

)
U∗

A� �� �
UΣV ∗

A0� �� �
V

(
P Q

R S

)
U∗ =

A0� �� �
V

(
P Q

R S

)
U∗.

which implies (
P Q

R S

)(
σ 0

0 0

)(
P Q

R S

)
=

(
P Q

R S

)
.

This yields from the above in which is was shown that R,Q are both 0

(
σ−1 0

0 S

)(
σ 0

0 0

)(
σ−1 0

0 S

)
=

(
σ−1 0

0 0

)
(12.23)

=

(
σ−1 0

0 S

)
. (12.24)

Therefore, S = 0 also and so

V ∗A0U ≡

(
P Q

R S

)
=

(
σ−1 0

0 0

)

which says

A0 = V

(
σ−1 0

0 0

)
U∗ ≡ A+. �

The theorem is significant because there is no mention of eigenvalues or eigenvectors in
the characterization of the Moore Penrose inverse given in 12.20. It also shows immediately
that the Moore Penrose inverse is a generalization of the usual inverse. See Problem 3.

12.13 Exercises

1. Show (A∗)
∗
= A and (AB)

∗
= B∗A∗.

2. Prove Corollary 12.3.8.

3. Show that if A is an n× n matrix which has an inverse then A+ = A−1.

4. Using the singular value decomposition, show that for any square matrix A, it follows
that A∗A is unitarily similar to AA∗.

5. Let A,B be a m× n matrices. Define an inner product on the set of m× n matrices
by

(A,B)F ≡ trace (AB∗) .

Show this is an inner product satisfying all the inner product axioms. Recall for M an
n×n matrix, trace (M) ≡

∑n
i=1 Mii. The resulting norm, ||·||F is called the Frobenius

norm and it can be used to measure the distance between two matrices.

6. Let A be an m × n matrix. Show ||A||2F ≡ (A,A)F =
∑

j σ
2
j where the σj are the

singular values of A.
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which requires Rσ = 0. Now multiply on right by σ−1 to find that R = 0.
Use 12.21 and the second equation of 12.20 to write

A0� �� �
V

(
P Q

R S

)
U∗

A� �� �
UΣV ∗

A0� �� �
V

(
P Q

R S

)
U∗ =

A0� �� �
V

(
P Q

R S

)
U∗.

which implies (
P Q

R S

)(
σ 0

0 0

)(
P Q

R S

)
=

(
P Q

R S

)
.

This yields from the above in which is was shown that R,Q are both 0

(
σ−1 0

0 S

)(
σ 0

0 0

)(
σ−1 0

0 S

)
=

(
σ−1 0

0 0

)
(12.23)

=

(
σ−1 0

0 S

)
. (12.24)

Therefore, S = 0 also and so

V ∗A0U ≡

(
P Q

R S

)
=

(
σ−1 0

0 0

)

which says

A0 = V

(
σ−1 0

0 0

)
U∗ ≡ A+. �

The theorem is significant because there is no mention of eigenvalues or eigenvectors in
the characterization of the Moore Penrose inverse given in 12.20. It also shows immediately
that the Moore Penrose inverse is a generalization of the usual inverse. See Problem 3.

12.13 Exercises

1. Show (A∗)
∗
= A and (AB)

∗
= B∗A∗.

2. Prove Corollary 12.3.8.

3. Show that if A is an n× n matrix which has an inverse then A+ = A−1.

4. Using the singular value decomposition, show that for any square matrix A, it follows
that A∗A is unitarily similar to AA∗.

5. Let A,B be a m× n matrices. Define an inner product on the set of m× n matrices
by

(A,B)F ≡ trace (AB∗) .

Show this is an inner product satisfying all the inner product axioms. Recall for M an
n×n matrix, trace (M) ≡

∑n
i=1 Mii. The resulting norm, ||·||F is called the Frobenius

norm and it can be used to measure the distance between two matrices.

6. Let A be an m × n matrix. Show ||A||2F ≡ (A,A)F =
∑

j σ
2
j where the σj are the

singular values of A.
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which requires Rσ = 0. Now multiply on right by σ−1 to find that R = 0.
Use 12.21 and the second equation of 12.20 to write

A0� �� �
V

(
P Q

R S

)
U∗

A� �� �
UΣV ∗

A0� �� �
V

(
P Q

R S

)
U∗ =

A0� �� �
V

(
P Q

R S

)
U∗.

which implies (
P Q

R S

)(
σ 0

0 0

)(
P Q

R S

)
=

(
P Q

R S

)
.

This yields from the above in which is was shown that R,Q are both 0

(
σ−1 0

0 S

)(
σ 0

0 0

)(
σ−1 0

0 S

)
=

(
σ−1 0

0 0

)
(12.23)

=

(
σ−1 0

0 S

)
. (12.24)

Therefore, S = 0 also and so

V ∗A0U ≡

(
P Q

R S

)
=

(
σ−1 0

0 0

)

which says

A0 = V

(
σ−1 0

0 0

)
U∗ ≡ A+. �

The theorem is significant because there is no mention of eigenvalues or eigenvectors in
the characterization of the Moore Penrose inverse given in 12.20. It also shows immediately
that the Moore Penrose inverse is a generalization of the usual inverse. See Problem 3.

12.13 Exercises

1. Show (A∗)
∗
= A and (AB)

∗
= B∗A∗.

2. Prove Corollary 12.3.8.

3. Show that if A is an n× n matrix which has an inverse then A+ = A−1.

4. Using the singular value decomposition, show that for any square matrix A, it follows
that A∗A is unitarily similar to AA∗.

5. Let A,B be a m× n matrices. Define an inner product on the set of m× n matrices
by

(A,B)F ≡ trace (AB∗) .

Show this is an inner product satisfying all the inner product axioms. Recall for M an
n×n matrix, trace (M) ≡

∑n
i=1 Mii. The resulting norm, ||·||F is called the Frobenius

norm and it can be used to measure the distance between two matrices.

6. Let A be an m × n matrix. Show ||A||2F ≡ (A,A)F =
∑

j σ
2
j where the σj are the

singular values of A.
322 CHAPTER 12. SELF ADJOINT OPERATORS

7. If A is a general n × n matrix having possibly repeated eigenvalues, show there is a
sequence {Ak} of n × n matrices having distinct eigenvalues which has the property
that the ijth entry of Ak converges to the ijth entry of A for all ij. Hint: Use Schur’s
theorem.

8. Prove the Cayley Hamilton theorem as follows. First suppose A has a basis of eigen-
vectors {vk}nk=1 , Avk = λkvk. Let p (λ) be the characteristic polynomial. Show
p (A)vk = p (λk)vk = 0. Then since {vk} is a basis, it follows p (A)x = 0 for all
x and so p (A) = 0. Next in the general case, use Problem 7 to obtain a sequence {Ak}
of matrices whose entries converge to the entries of A such that Ak has n distinct
eigenvalues and therefore by Theorem 6.1.7 Ak has a basis of eigenvectors. There-
fore, from the first part and for pk (λ) the characteristic polynomial for Ak, it follows
pk (Ak) = 0. Now explain why and the sense in which limk→∞ pk (Ak) = p (A) .

9. Prove that Theorem 12.4.4 and Corollary 12.4.5 can be strengthened so that the
condition on the Ak is necessary as well as sufficient. Hint: Consider vectors of the

form

(
x

0

)
where x ∈ Fk.

10. Show directly that if A is an n× n matrix and A = A∗ (A is Hermitian) then all the
eigenvalues are real and eigenvectors can be assumed to be real and that eigenvectors
associated with distinct eigenvalues are orthogonal, (their inner product is zero).

11. Let v1, · · · ,vn be an orthonormal basis for Fn. Let Q be a matrix whose ith column
is vi. Show

Q∗Q = QQ∗ = I.

12. Show that an n × n matrix Q is unitary if and only if it preserves distances. This
means |Qv| = |v| . This was done in the text but you should try to do it for yourself.

13. Suppose {v1, · · · ,vn} and {w1, · · · ,wn} are two orthonormal bases for Fn and sup-
pose Q is an n × n matrix satisfying Qvi = wi. Then show Q is unitary. If |v| = 1,
show there is a unitary transformation which maps v to e1.

14. Finish the proof of Theorem 12.7.5.

15. Let A be a Hermitian matrix so A = A∗ and suppose all eigenvalues of A are larger
than δ2. Show

(Av,v) ≥ δ2 |v|2

Where here, the inner product is (v,u) ≡
∑n

j=1 vjuj .

16. The discrete Fourier transform maps Cn → Cn as follows.

F (x) = z where zk =
1√
n

n−1∑
j=0

e−i 2π
n jkxj .

Show that F−1 exists and is given by the formula

F−1 (z) = x where xj =
1√
n

n−1∑
j=0

ei
2π
n jkzk
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Here is one way to approach this problem. Note z = Ux where

U =
1√
n




e−i 2π
n 0·0 e−i 2π

n 1·0 e−i 2π
n 2·0 · · · e−i 2π

n (n−1)·0

e−i 2π
n 0·1 e−i 2π

n 1·1 e−i 2π
n 2·1 · · · e−i 2π

n (n−1)·1

e−i 2π
n 0·2 e−i 2π

n 1·2 e−i 2π
n 2·2 · · · e−i 2π

n (n−1)·2

...
...

...
...

e−i 2π
n 0·(n−1) e−i 2π

n 1·(n−1) e−i 2π
n 2·(n−1) · · · e−i 2π

n (n−1)·(n−1)




Now argue U is unitary and use this to establish the result. To show this verify
each row has length 1 and the inner product of two different rows gives 0. Now
Ukj = e−i 2π

n jk and so (U∗)kj = ei
2π
n jk.

17. Let f be a periodic function having period 2π. The Fourier series of f is an expression
of the form

∞∑
k=−∞

cke
ikx ≡ lim

n→∞

n∑
k=−n

cke
ikx

and the idea is to find ck such that the above sequence converges in some way to f . If

f (x) =
∞∑

k=−∞

cke
ikx

and you formally multiply both sides by e−imx and then integrate from 0 to 2π,
interchanging the integral with the sum without any concern for whether this makes
sense, show it is reasonable from this to expect

cm =
1

2π

∫ 2π

0

f (x) e−imxdx.

Now suppose you only know f (x) at equally spaced points 2πj/n for j = 0, 1, · · · , n.
Consider the Riemann sum for this integral obtained from using the left endpoint of
the subintervals determined from the partition

{
2π
n j

}n

j=0
. How does this compare with

the discrete Fourier transform? What happens as n → ∞ to this approximation?

18. Suppose A is a real 3 × 3 orthogonal matrix (Recall this means AAT = ATA = I. )
having determinant 1. Show it must have an eigenvalue equal to 1. Note this shows
there exists a vector x ̸= 0 such that Ax = x. Hint: Show first or recall that any
orthogonal matrix must preserve lengths. That is, |Ax| = |x| .

19. Let A be a complex m×n matrix. Using the description of the Moore Penrose inverse
in terms of the singular value decomposition, show that

lim
δ→0+

(A∗A+ δI)
−1

A∗ = A+

where the convergence happens in the Frobenius norm. Also verify, using the singular
value decomposition, that the inverse exists in the above formula. Observe that this
shows that the Moore Penrose inverse is unique.

20. Show that A+ = (A∗A)
+
A∗. Hint: You might use the description of A+ in terms of

the singular value decomposition.

21. In Theorem 12.6.1. Show that every matrix which commutes with A also commutes
with A1/k the unique nonnegative self adjoint kth root.
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22. Let X be a finite dimensional inner product space and let β = {u1, · · · , un} be an
orthonormal basis for X. Let A ∈ L (X,X) be self adjoint and nonnegative and
let M be its matrix with respect to the given orthonormal basis. Show that M is
nonnegative, self adjoint also. Use this to show that A has a unique nonnegative self
adjoint kth root.

23. Let A be a complex m × n matrix having singular value decomposition U∗AV =(
σ 0

0 0

)
as explained above, where σ is k × k. Show that

ker (A) = span (V ek+1, · · · , V en) ,

the last n− k columns of V .

24. The principal submatrices of an n × n matrix A are Ak where Ak consists those
entries which are in the first k rows and first k columns of A. Suppose A is a real
symmetric matrix and that x →⟨Ax,x⟩ is positive definite. This means that if x ̸= 0,
then ⟨Ax,x⟩ > 0. Show that each of the principal submatrices are positive definite.

Hint: Consider
(

xT 0
)
A

(
x

0

)
where x consists of k entries.

25. ↑Show that if A is a symmetric positive definite n× n real matrix, then A has an LU
factorization with the property that each entry on the main diagonal in U is positive.
Hint: This is pretty clear if A is 1×1. Assume true for (n− 1)× (n− 1). Then

A =

(
Â a

aT ann

)

Then as above, Â is positive definite. Thus it has an LU factorization with all positive
entries on the diagonal of U . Notice that, using block multiplication,

A =

(
LU a

aT ann

)
=

(
L 0

0 1

)(
U L−1a

aT ann

)

Now consider that matrix on the right. Argue that it is of the form L̃Ũ where Ũ
has all positive diagonal entries except possibly for the one in the nth row and nth

column. Now explain why det (A) > 0 and argue that in fact all diagonal entries of Ũ
are positive.

26. ↑Let A be a real symmetric n× n matrix and A = LU where L has all ones down the
diagonal and U has all positive entries down the main diagonal. Show that A = LDH
where L is lower triangular and H is upper triangular, each having all ones down the
diagonal and D a diagonal matrix having all positive entries down the main diagonal.
In fact, these are the diagonal entries of U .

27. ↑Show that if L,L1 are lower triangular with ones down the main diagonal and H,H1

are upper triangular with all ones down the main diagonal and D, D1 are diagonal
matrices having all positive diagonal entries, and if LDH = L1D1H1, then L =
L1, H = H1, D = D1. Hint: Explain why D−1

1 L−1
1 LD = H1H

−1. Then explain
why the right side is upper triangular and the left side is lower triangular. Conclude
these are both diagonal matrices. However, there are all ones down the diagonal in
the expression on the right. Hence H = H1. Do something similar to conclude that
L = L1 and then that D = D1.
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22. Let X be a finite dimensional inner product space and let β = {u1, · · · , un} be an
orthonormal basis for X. Let A ∈ L (X,X) be self adjoint and nonnegative and
let M be its matrix with respect to the given orthonormal basis. Show that M is
nonnegative, self adjoint also. Use this to show that A has a unique nonnegative self
adjoint kth root.

23. Let A be a complex m × n matrix having singular value decomposition U∗AV =(
σ 0

0 0

)
as explained above, where σ is k × k. Show that

ker (A) = span (V ek+1, · · · , V en) ,

the last n− k columns of V .

24. The principal submatrices of an n × n matrix A are Ak where Ak consists those
entries which are in the first k rows and first k columns of A. Suppose A is a real
symmetric matrix and that x →⟨Ax,x⟩ is positive definite. This means that if x ̸= 0,
then ⟨Ax,x⟩ > 0. Show that each of the principal submatrices are positive definite.

Hint: Consider
(

xT 0
)
A

(
x

0

)
where x consists of k entries.

25. ↑Show that if A is a symmetric positive definite n× n real matrix, then A has an LU
factorization with the property that each entry on the main diagonal in U is positive.
Hint: This is pretty clear if A is 1×1. Assume true for (n− 1)× (n− 1). Then

A =

(
Â a

aT ann

)

Then as above, Â is positive definite. Thus it has an LU factorization with all positive
entries on the diagonal of U . Notice that, using block multiplication,

A =

(
LU a

aT ann

)
=

(
L 0

0 1

)(
U L−1a

aT ann

)

Now consider that matrix on the right. Argue that it is of the form L̃Ũ where Ũ
has all positive diagonal entries except possibly for the one in the nth row and nth

column. Now explain why det (A) > 0 and argue that in fact all diagonal entries of Ũ
are positive.

26. ↑Let A be a real symmetric n× n matrix and A = LU where L has all ones down the
diagonal and U has all positive entries down the main diagonal. Show that A = LDH
where L is lower triangular and H is upper triangular, each having all ones down the
diagonal and D a diagonal matrix having all positive entries down the main diagonal.
In fact, these are the diagonal entries of U .

27. ↑Show that if L,L1 are lower triangular with ones down the main diagonal and H,H1

are upper triangular with all ones down the main diagonal and D, D1 are diagonal
matrices having all positive diagonal entries, and if LDH = L1D1H1, then L =
L1, H = H1, D = D1. Hint: Explain why D−1

1 L−1
1 LD = H1H

−1. Then explain
why the right side is upper triangular and the left side is lower triangular. Conclude
these are both diagonal matrices. However, there are all ones down the diagonal in
the expression on the right. Hence H = H1. Do something similar to conclude that
L = L1 and then that D = D1.
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22. Let X be a finite dimensional inner product space and let β = {u1, · · · , un} be an
orthonormal basis for X. Let A ∈ L (X,X) be self adjoint and nonnegative and
let M be its matrix with respect to the given orthonormal basis. Show that M is
nonnegative, self adjoint also. Use this to show that A has a unique nonnegative self
adjoint kth root.

23. Let A be a complex m × n matrix having singular value decomposition U∗AV =(
σ 0

0 0

)
as explained above, where σ is k × k. Show that

ker (A) = span (V ek+1, · · · , V en) ,

the last n− k columns of V .

24. The principal submatrices of an n × n matrix A are Ak where Ak consists those
entries which are in the first k rows and first k columns of A. Suppose A is a real
symmetric matrix and that x →⟨Ax,x⟩ is positive definite. This means that if x ̸= 0,
then ⟨Ax,x⟩ > 0. Show that each of the principal submatrices are positive definite.

Hint: Consider
(

xT 0
)
A

(
x

0

)
where x consists of k entries.

25. ↑Show that if A is a symmetric positive definite n× n real matrix, then A has an LU
factorization with the property that each entry on the main diagonal in U is positive.
Hint: This is pretty clear if A is 1×1. Assume true for (n− 1)× (n− 1). Then

A =

(
Â a

aT ann

)

Then as above, Â is positive definite. Thus it has an LU factorization with all positive
entries on the diagonal of U . Notice that, using block multiplication,

A =

(
LU a

aT ann

)
=

(
L 0

0 1

)(
U L−1a

aT ann

)

Now consider that matrix on the right. Argue that it is of the form L̃Ũ where Ũ
has all positive diagonal entries except possibly for the one in the nth row and nth

column. Now explain why det (A) > 0 and argue that in fact all diagonal entries of Ũ
are positive.

26. ↑Let A be a real symmetric n× n matrix and A = LU where L has all ones down the
diagonal and U has all positive entries down the main diagonal. Show that A = LDH
where L is lower triangular and H is upper triangular, each having all ones down the
diagonal and D a diagonal matrix having all positive entries down the main diagonal.
In fact, these are the diagonal entries of U .

27. ↑Show that if L,L1 are lower triangular with ones down the main diagonal and H,H1

are upper triangular with all ones down the main diagonal and D, D1 are diagonal
matrices having all positive diagonal entries, and if LDH = L1D1H1, then L =
L1, H = H1, D = D1. Hint: Explain why D−1

1 L−1
1 LD = H1H

−1. Then explain
why the right side is upper triangular and the left side is lower triangular. Conclude
these are both diagonal matrices. However, there are all ones down the diagonal in
the expression on the right. Hence H = H1. Do something similar to conclude that
L = L1 and then that D = D1.
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28. ↑Show that if A is a symmetric real matrix such that x → ⟨Ax,x⟩ is positive definite,
then there exists a lower triangular matrix L having all positive entries down the
diagonal such that A = LLT . Hint: From the above, A = LDH where L,H are
respectively lower and upper triangular having all ones down the diagonal and D is a
diagonal matrix having all positive entries. Then argue from the above problem and
symmetry of A that H = LT . Now modify L by making it equal to LD1/2. This is
called the Cholesky factorization.

29. Given F ∈ L (X,Y ) where X,Y are inner product spaces and dim (X) = n ≤ m =
dim (Y ) , there exists R,U such that U is nonnegative and Hermitian and R∗R = I
such that F = RU. Show that U is actually unique and that R is determined on
U (X) .
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INDEX
∩, 1
∪, 1
A close to B!eigenvalues, 135
A invariant, 184
Abel’s formula, 83, 197, 387, 462
absolute convergence!convergence, 268
adjugate, 63, 75
algebraic number!minimal polynomial, 159
algebraic numbers, 158
algebraic numbers!field, 160
almost linear, 333
almost linear system, 333
analytic function of matrix, 318
Archimedean property, 10
assymptotically stable, 333
augmented matrix, 16
autonomous, 333
Banach space, 259
basis, 45, 146
Binet Cauchy ! volumes, 230
Binet Cauchy formula, 71
block matrix, 79
block matrix!multiplication, 80
block multiplication, 79
bounded linear transformations, 259
Cauchy Schwarz inequality, 21, 215, 257
Cauchy sequence, 227, 258, 341, 485
Cayley Hamilton theorem, 78, 196, 205, 459, 471
centrifugal acceleration@centrifugal acceleration, 51
centripetal acceleration@centripetal acceleration, 51
characteristic and minimal polynomial, 179, 450
characteristic equation, 109
characteristic polynomial, 78, 177
characteristic value, 109
Cholesky factorization, 256, 499
codomain, 1
cofactor, 62, 73
column rank, 75, 89
commutative ring, 343
companion matrix, 199, 293

complete, 277
completeness axiom, 9
complex conjugate, 4
complex numbers!absolute value, 4
complex numbers!field, 4
complex numbers@complex numbers, 4
complex roots, 5
composition of linear transformations, 174
comutator, 144, 440
condition number, 265
conformable, 28
conjugate linear, 220
converge, 341
convex combination, 180, 453
convex hull, 180, 453
convex hull!compactness, 180, 453
coordinate axis, 19
coordinates, 19
Coriolis acceleration, 51
Coriolis acceleration@Coriolis acceleration!earth@

earth, 53
Coriolis force, 51
counting zeros, 135
Courant Fischer theorem, 238
Cramer’s rule, 64, 75
cyclic basis, 189
cyclic set, 187
damped vibration, 330
defective, 113
DeMoivre identity, 5
dense, 11
density of rationals, 11
determinant!block upper triangular matrix, 124, 384
determinant!definition, 68
determinant!estimate for Hermitian matrix, 214
determinant!expansion along a column, 62
determinant!expansion along a row, 62
determinant!expansion along row, column, 73
determinant!Hadamard inequality, 214
determinant!inverse of matrix, 63
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determinant!matrix inverse, 74
determinant!partial derivative, cofactor, 83, 388
determinant!permutation of rows, 69
determinant!product, 71
determinant!product of eigenvalues, 129
determinant!product of eigenvalules, 139, 427
determinant!row, column operations, 63, 70
determinant!summary of properties, 77
determinant!symmetric definition, 69
determinant!transpose, 69
diagonalizable, 172, 231
diagonalizable! minimal polynomial condition, 198, 

465
diagonalizable!basis of eigenvectors, 121, 421
diagonalization, 235
diameter, 340
differentiable matrix, 48
differential equations!first order systems, 141, 434
digraph, 29
dimension of vector space, 147
direct sum, 60, 182, 378
directed graph, 29
discrete Fourier transform, 254, 494
division of real numbers, 11
Dolittle’s method, 100
domain, 1
dot product, 20
dyadics, 167
dynamical system, 121, 423
eigenspace, 110, 184
eigenvalue, 61, 109, 380
eigenvalues, 78, 135, 177
eigenvalues!AB and BA, 81
eigenvector, 61, 109, 380
eigenvectors!distinct eigenvalues independence, 113
elementary matrices, 85
elementary symmetric polynomials, 343
empty set, 1
equality of mixed partial derivatives, 131
equilibrium point, 333
equivalence class, 154, 170
equivalence of norms, 259
equivalence relation, 154, 170

Euclidean algorithm, 11
exchange theorem, 44
existence of a fixed point, 278
field axioms, 2
field extension, 154
field extension!dimension, 156
field extension!finite, 156
field extensions, 156
field!ordered, 3
finite dimensional normed linear space!completeness, 

259
finite dimensional normed linear space!equivalence 

of norms, 259
Foucalt pendulum@Foucalt pendulum, 53
Fourier series, 226, 484
Fredholm alternative, 95, 224
free variable, 17
Frobenius norm, 248
Frobenius norm!singular value decomposition, 248
Frobenius! inner product, 143, 438
Frobinius norm, 253, 493
functions, 1
fundamental matrix, 327
fundamental theorem of algebra, 347
fundamental theorem of algebra ! plausibility argu-

ment, 7
fundamental theorem of algebra ! rigorous proof, 8
fundamental theorem of arithmetic, 13
Gauss Jordan method for inverses, 33
Gauss Seidel method, 273
Gelfand, 267
generalized eigenspace, 61, 380
generalized eigenspaces, 184, 192
generalized eigenvectors, 193
Gerschgorin’s theorem, 133
Gram Schmidt procedure, 108, 123, 216, 403
Gram Schmidt process, 216
Gramm Schmidt process, 123
greatest common divisor, 11, 150
greatest common divisor!characterization, 12
greatest lower bound, 9
Gronwall’s inequality, 283, 326, 509
Hermitian, 126
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Hermitian matrix! factorization, 213, 478
Hermitian matrix!positive part, 320
Hermitian matrix!positive part, Lipschitz continu-

ous, 320
Hermitian operator, 220
Hermitian operator!largest, smallest, eigenvalues, 

238
Hermitian operator!spectral representation, 235
Hermitian!orthonormal basis eigenvectors, 236
Hermitian!positive definite, 239
Hermitian!real eigenvalues, 127
Hessian matrix, 132
Holder’s inequality, 262
Householder matrix, 105
Householder!reflection, 106
idempotent, 57, 372
inconsistent, 17
initial value problem!existence, 321
initial value problem!global solutions, 325
initial value problem!linear system, 323
initial value problem!local solutions, existence, 

uniqueness, 324
initial value problem!uniqueness, 283, 321, 509
injective, 1
inner product, 20, 214
inner product space, 214
inner product space!adjoint operator, 219
inner product space!parallelogram identity, 215
inner product space!triangle inequality, 215
integers mod a prime, 165, 445
integral!operator valued function, 282, 508
integral!vector valued function, 282, 507
intersection, 1
intervals!notation, 1
invariant, 234
invariant subspaces!direct sum, block diagonal ma-

trix, 186
invariant!subspace, 184
inverses and determinants, 74
invertible, 33
invertible matrix!product of elementary matrices, 92
irreducible, 150
irreducible!relatively prime, 151

iterative methods!alternate proof of convergence, 
280, 503

iterative methods!convergence criterion, 276
iterative methods!diagonally dominant, 281, 503
iterative methods!proof of convergence, 279
Jocobi method, 272
Jordan block, 191, 193
Jordan canonical form!existence and uniqueness, 193
Jordan canonical form!powers of a matrix, 194
ker, 93
kernel, 42
kernel of a product!direct sum decomposition, 183
Krylov sequence, 187
Lagrange form of remainder, 131
Laplace expansion, 73
least squares, 98, 223, 398
least upper bound, 9
Lindemann Weierstrass theorem, 353
linear combination, 25, 43, 70
linear transformation, 38, 166
linear transformation!defined on a basis, 167
linear transformation!dimension of vector space, 167
linear transformation!existence of eigenvector, 178
linear transformation!kernel, 181
linear transformation!matrix, 39
linear transformation!minimal polynomial, 178
linear transformation!rotation, 40
linear transformations!a vector space, 167
linear transformations!commuting, 183
linear transformations!composition, matrices, 174
linear transformations!sum, 167, 221
linearly dependent, 43
linearly independent, 43, 145
linearly independent set!extend to basis, 149
Lipschitz condition, 321
LU factorization!justification for multiplier method, 

102
LU factorization!multiplier method, 99
LU factorization!solutions of linear systems, 100
main diagonal, 62
Markov matrix, 205
Markov matrix!limit, 208
Markov matrix!regular, 208
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Markov matrix!steady state, 205, 208
mathematical induction, 10
matrices!commuting, 233
matrices!notation, 24
matrices!transpose, 32
matrix, 23
matrix ! positive definite, 255, 497
matrix exponential, 281, 504
matrix multiplication!definition, 26
matrix multiplication!entries of the product, 28
matrix multiplication!not commutative, 27
matrix multiplication!properties, 31
matrix multiplication!vectors, 25
matrix of linear transformation!orthonormal bases, 

172
matrix!differentiation operator, 169
matrix!injective, 47
matrix!inverse, 32
matrix!left inverse, 75
matrix!lower triangular, 62, 75
matrix!Markov, 205
matrix!non defective, 126
matrix!normal, 126
matrix!polynomial, 84, 391
matrix!rank and existence of solutions, 94
matrix!rank and nullity, 93
matrix!right and left inverse, 47
matrix!right inverse, 75
matrix!right, left inverse, 74
matrix!row, column, determinant rank, 75
matrix!self adjoint, 121, 420
matrix!stochastic, 205
matrix!surjective, 47
matrix!symmetric, 119
matrix!symmetric, 418
matrix!unitary, 123
matrix!upper triangular, 62, 75
migration matrix, 209
minimal polynomial, 60, 177, 184, 379
minimal polynomial ! algebraic number, 158
minimal polynomial!eigenvalues, eigenvectors, 178
minimal polynomial!finding it, 196, 457
minimal polynomial!generalized eigenspaces, 184

minor, 62, 73
mixed partial derivatives, 130
Moore Penrose inverse, 251
Moore Penrose inverse!least squares, 251
Moore Penrose inverse!uniqueness, 255
moving coordinate system@moving coordinate sys-

tem, 49
moving coordinate system@moving coordinate 

system!acceleration @acceleration, 51
negative definite, 239
Neuman!series, 285, 512
nilpotent!block diagonal matrix, 191
nilpotent!Jordan form, uniqueness, 191
nilpotent!Jordan normal form, 191
non defective, 198, 465
nonnegative self adjoint!square root, 241
norm, 214
norm!strictly convex, 280, 500
norm!uniformly convex, 280, 500
normal, 245
normal!diagonalizable, 127
normal!non defective, 126
normed linear space, 214, 256
normed vector space, 214
norms!equivalent, 257
null and rank, 227, 487
null space, 42
nullity, 93
one to one, 1
onto, 1
operator norm, 259
orthogonal matrix, 61, 66, 105, 124, 380, 385
orthonormal basis, 215
orthonormal polynomials, 225, 482
p norms, 262
p norms!axioms of a norm, 263
parallelepiped!volume, 228
partitioned matrix, 79
Penrose conditions, 252
permutation, 68
permutation matrices, 85
permutation!even, 86
permutation!odd, 86
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perp, 94
Perron’s theorem, 311
pivot column, 91
PLU factorization, 101
PLU factorization!existence, 105
polar decomposition!left, 244
polar decomposition!right, 243
polar form complex number, 5
polynomial, 14, 150
polynomial ! leading coefficient, 150
polynomial ! leading term, 14
polynomial ! matrix coefficients, 84, 391
polynomial ! monic, 14, 150
polynomial!addition, 14
polynomial!degree, 14, 150
polynomial!divides, 150
polynomial!division, 14, 150
polynomial!equal, 150
polynomial!equality, 14
polynomial!greatest common divisor, 150
polynomial!greatest common divisor description, 

151
polynomial!greatest common divisor, uniqueness, 

151
polynomial!irreducible, 150
polynomial!irreducible factorization, 152
polynomial!multiplication, 14
polynomial!relatively prime, 150
polynomial!root, 150
polynomials!canceling, 152
polynomials!factorization, 152
positive definite matrix, 255, 497
positive definite!postitive eigenvalues, 239
positive definite!principle minors, 240
postitive definite, 239
power method, 287
prime number, 11
prime numbers!infinity of primes, 164, 445
principle directions, 115
principle minors, 240
product rule!matrices, 48
projection map!convex set, 227, 486
Putzer’s method, 328

QR algorithm, 138, 297, 425
QR algorithm! convergence, 300
QR algorithm!convergence theorem, 300
QR algorithm!non convergence, 138, 303
QR algorithm!nonconvergence, 426
QR factorization, 106
QR factorization!existence, 107
QR factorization!Gram Schmidt procedure, 108, 

403
quadratic form, 129
quotient space, 165, 446
quotient vector space, 165
range, 1
rank, 90
rank of a matrix, 75, 89
rank one transformation, 221
rank!number of pivot columns, 93
rational canonical form, 200
rational canonical form!uniqueness, 202
Rayleigh quotient, 294
Rayleigh quotient!how close?, 294
real numbers, 2
real Schur form, 124
regression line, 223
regular Sturm Liouville problem, 225, 483
relatively prime, 12
Riesz representation theorem, 219
right Cauchy Green strain tensor, 243
right polar decomposition, 243
row equivalelance!determination, 92
row equivalent, 91
row operations, 16, 85
row operations!inverse, 16
row operations!linear relations between columns, 89
row rank, 75, 89
row reduced echelon form!definition, 91
row reduced echelon form!examples, 91
row reduced echelon form!existence, 91
row reduced echelon form!uniqueness, 92
scalar product, 20
scalars, 6, 19, 23
Schur’s theorem, 123, 234
Schur’s theorem!inner product space, 234
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second derivative test, 133
self adjoint, 126, 220
self adjoint nonnegative!roots, 242
sequential compactness, 342
sequentially compact, 342
set notation, 0
sgn, 67
sgn!uniqueness, 68
shifted inverse power method, 288
shifted inverse power method!complex eigenvalues, 

292
sign of a permutation, 68
similar matrices, 65, 83, 170, 382, 387
similar!matrix and its transpose, 198, 466
similarity transformation, 170
simple field extension, 160
simultaneous corrections, 272
simultaneously diagonalizable, 232
simultaneously diagonalizable!commuting family, 

234
singular value decomposition, 247
singular values, 247
skew symmetric, 32, 119, 418
space of linear transformations!vector space, 221
span, 43, 70
spanning set!restricting to a basis, 149
spectral mapping theorem, 320
spectral norm, 261
spectral radius, 266, 267
spectrum, 109
splitting field, 157
stable, 333
stable manifold, 339
stochastic matrix, 205
subsequence, 341
subspace, 43, 145
subspace!basis, 46, 149
subspace!complementary, 231, 490
subspace!dimension, 46
subspace!invariant, 184
subspaces!direct sum, 182
subspaces!direct sum, basis, 183
substituting matrix into polynomial identity, 84, 391

surjective, 1
Sylvester, 60, 377
Sylvester! law of inertia, 142, 437
Sylvester!dimention of kernel of product, 181
Sylvester’s equation, 230, 489
symmetric, 32, 119, 418
symmetric polynomial theorem, 343
symmetric polynomials, 343
system of linear equations, 17
tensor product, 221
the space AU, 231
trace, 129
trace!AB and BA, 129
trace!sum of eigenvalues, 139, 427
transpose, 32
transpose!properties, 32
triangle inequality, 22
trivial, 43
union, 1
Unitary matrix! representation, 285
upper Hessenberg matrix, 307
Vandermonde determinant, 84, 390
variation of constants formula, 142, 329, 435
variational inequality, 227, 486
vector space axioms, 20
vector space!axioms, 25, 144
vector space!basis, 45
vector space!dimension, 46
vector space!examples, 145
vector!angular velocity, 49
vectors, 25
volume!parallelepiped, 228
well ordered, 10
Wronskian, 82, 142, 197, 329, 386, 435, 462
Wronskian alternative, 142, 329, 435
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