Kenneth Kuttler

Linear
Algebra III

Advanced topics

i L
i ‘ g .- g .'-r'-. r-'al N
A » Y
o | v ;
| ¥ Y ! .
gy
I i 4 - b
: i red B
| | BE
| | R |
..l. I -
- ’
-~ ok
*
=
p

| \HHHM /f i



KENNETH KUTTLER

LINEAR ALGEBRA III
ADVANCED TOPICS



Linear Algebra Ill: Advanced topics

2" edition

© 2019 Kenneth Kuttler & bookboon.com
ISBN 978-87-403-3165-3

Download free eBooks at bookboon.com


http://bookboon.com

LINEAR ALGEBRA ll1I CONTENTS

CONTENTS

13 Norms 327
13.1 The p Norms 333
13.2 The Condition Number 335
13.3 The Spectral Radius 337
13.4 Series And Sequences Of Linear Operators 340
13.5 Iterative Methods For Linear Systems 345
13.6  Theory Of Convergence 350
13.7 Exercises 354
14 Numerical Methods, Eigenvalues 362
14.1 The Power Method For Eigenvalues 362
14.2  The QR Algorithm 377
14.3 Exercises 392
A Matrix Calculator On The Web 394
A1 Use Of Matrix Calculator On Web 394

v
Technical training on
WHAT you negsiy N you need it

nical and engine‘ering
have extensive OIL & GAS
iring staff and ENGINEERING

have trained people in organisati TS 0cH
Motors, Shell, Siemens, BHP and

! ELECTRONICS

AUTOMATION &
PROCESS CONTROL

customisable to the technical and enginee
covered. Our workshops are all comprehe
experiences with ample time given to pract MECHANICAL
demonstrations. We communicate well to e at Workshop content ENGINEERING
and timing match the knowledge, skills, an

INDUSTRIAL

We run onsite training all year round and DATA COMMS
your premises or a venue of your choice

o ELECTRICAL

For a no obligation proposal, c POWER

at o

Phone: +61 8 9321 1702
Email: training@idc-online.com TECHNOLOGIES
Website: www.idc-online.com

Download free eBooks at bookboon.com

Click on the ad to read more

iv



http://s.bookboon.com/mitas
http://www.idc-online.com/onsite/

D.1
D.2
D.3
D.4
D.5
D.6
D.7

E.1
E.2

F.1
F.2
F3
F4

Positive Matrices
Functions Of Matrices

Differential Equations

Theory Of Ordinary Differential Equations
Linear Systems

Local Solutions

First Order Linear Systems

Geometric Theory Of Autonomous Systems
General Geometric Theory

The Stable Manifold

Compactness And Completeness
The Nested Interval Lemma

Convergent Sequences, Sequential Compactness

Some Topics Flavored With Linear Algebra
The Symmetric Polynomial Theorem

The Fundamental Theorem Of Algebra
Transcendental Numbers

More On Algebraic Field Extensions
Bibliography

Index

Download free eBooks at bookboon.com

395

404

409
409
410
411
414
422
426
427

434
434
434

437
437
440
443
452

458

459



Chapter 13

Norms

In this chapter, X and Y are finite dimensional vector spaces which have a norm. The
following is a definition.

Definition 13.0.1 A linear space X is a normed linear space if there is a norm defined on
X, ||| satisfying
[1x|]| >0, ||x|| =0 if and only if x =0,

[+ yll <[]l +[lvll
[lex]] = [ef 1|

whenever ¢ is a scalar. A set, U C X, a normed linear space is open if for every p € U,
there exists & > 0 such that

B(p,0)={x:|lx —p|| <0} CU.

Thus, a set is open if every point of the set is an interior point. Also, lim,_, ., X,= X means
lim,, o0 ||Xn — X|| = 0. This is written sometimes as X, — X.

Note first that
[x[| =[x —y +yll < [lx =yl + llyll

SO
=l = llyll < llx = yll-
Similarly
Iyl = lIxl < lx =yl
and so

Il =yl < lx =yl (13.1)

To begin with recall the Cauchy Schwarz inequality which is stated here for convenience
in terms of the inner product space, C".

Theorem 13.0.2 The following inequality holds for a; and b; € C.

" n 1/2 " 1/2
Zaibi§<2|ai|2> <Z|bi|2> : (13.2)

=1 i=1

Let X be a finite dimensional normed linear space with norm ||-|| where the field of
scalars is denoted by F and is understood to be either R or C. Let {vy,---,v, } be a basis
for X. If x € X, denote by x; the i*" component of x with respect to this basis. Thus

n
X = E T;Vi.
i=1

Definition 13.0.3 For x € X and {vy, -+ ,v,} a basis, define a new norm by

" 1/2
(z w) |
=1

x|
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where

i=1

Similarly, for'y € Y with basis {wy, -+ , W}, and y; its components with respect to this

basis,
m 1/2
lyl = (Z |in2>
i=1

For A e L(X,Y), the space of linear mappings from X to'Y,
[|Al| = sup{|Ax]| : |x| < 1}. (13.3)

The first thing to show is that the two norms, ||-|| and |-|, are equivalent. This means
the conclusion of the following theorem holds.

Theorem 13.0.4 Let (X, ||-||) be a finite dimensional normed linear space and let |-| be
described above relative to a given basis, {v1,--- ,v,}. Then || is a norm and there exist
constants 6, A > 0 independent of x such that

5 x| < x| <A|Jx]. (13.4)

Proof: All of the above properties of a norm are obvious except the second, the triangle
inequality. To establish this inequality, use the Cauchy Schwarz inequality to write

Sl il < el ) il +2Re > 247,
i=1 z:nl 11/:21 ) 1;:1
< xP+lylP+2 (me) <Z|yi|2>

i=1 i=1

x +y|?

A

2 2 2
= X[T+lyl" 2]yl = (x[ +]y])

and this proves the second property above.
It remains to show the equivalence of the two norms. By the Cauchy Schwarz inequality
again,

1|

2
S o] < 3 ol il < I (zm )
=1 =1 =1

= 5! x| .

This proves the first half of the inequality.
Suppose the second half of the inequality is not valid. Then there exists a sequence
x* € X such that
X" > k||x*]], k=1,2,--.

Then define .
E_— =
YT
It follows
y* =1 [y > k[ly*]]- (13.5)

Letting yf be the components of y* with respect to the given basis, it follows the vector

is a unit vector in F". By the Heine Borel theorem, there exists a subsequence, still denoted
by k such that

(yfa 7yfz) - (y17"’ ,yn)~
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It follows from 13.5 and this that for

n
y = Z YiVi,
i=1

0= Jim lvFll =

n n
Z yivi Z Yivi
i=1 i=1
but not all the y; equal zero. The last equation follows easily from 13.1 and

n n n n
D outvil| =D wivi Do =) vil <D v —willvil
i=1 i=1 i=1 i=1

This contradicts the assumption that {vi,---,v,} is a basis and proves the second half of
the inequality. W

<

Definition 13.0.5 Let (X, ||||) be a normed linear space and let {x,}.. | be a sequence of
vectors. Then this is called a Cauchy sequence if for all € > 0 there exists N such that if
m,n > N, then

[|zn — zml|| < e.

This is written more briefly as

lim ||z, —2zm||=0.
m,n— o0
Definition 13.0.6 A normed linear space, (X,||||) is called a Banach space if it is com-
plete. This means that, whenever, {x,} is a Cauchy sequence there exists a unique x € X
such that limy,_,o ||x — x5, || = 0.

Corollary 13.0.7 If (X,||]|) is a finite dimensional normed linear space with the field of
scalars F = C or R, then (X, ||||) is a Banach space.

Proof: Let {x*} be a Cauchy sequence. Then letting the components of x* with respect
to the given basis be

xlf) P "/Efl’
it follows from Theorem 13.0.4, that
k k
(331, ’ ’xn)
is a Cauchy sequence in F"™ and so
(:U’f7 ,x’;) = (z1,-+- ,zp,) € F™.

Thus, letting x = Y _." | x;v;, it follows from the equivalence of the two norms shown above
that

lim ‘Xk — x’ = lim ka — XH =0.1
k— o0 k— o0

Corollary 13.0.8 Suppose X is a finite dimensional linear space with the field of scalars
either C or R and ||-|| and |||-||| are two norms on X. Then there exist positive constants, &
and A, independent of x € X such that

Sl < [l < Afx]].
Thus any two norms are equivalent.

This is very important because it shows that all questions of convergence can be consid-
ered relative to any norm with the same outcome.
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Proof: Let {vy,---,v,} be a basis for X and let |-| be the norm taken with respect to
this basis which was described earlier. Then by Theorem 13.0.4, there are positive constants
61,41, 02, As, all independent of x €X such that

S |11 < el < A [l 6 [[x]] < x| < Axflx]].

Then A A A
1 1A2
52\HXI|I<IXI<A1HXII<*I | <

and so 5 A
2
~ H\XIII <[l < IH ]| .

Definition 13.0.9 Let X and Y be normed linear spaces with norms |||| and ||-||y re-
spectively. Then L (X,Y) denotes the space of linear transformations, called bounded linear
transformations, mapping X to'Y which have the property that

1Al = sup {[|Az|ly  [|=[|x <1} < oo
Then ||A]| is referred to as the operator norm of the bounded linear transformation A.

It is an easy exercise to verify that ||-|| is a norm on £ (X,Y") and it is always the case
that
Az, < [[All ||l x -

Furthermore, you should verify that you can replace < 1 with = 1 in the definition. Thus
Al = sup {[[Azlly : [Jz|lx =1}

Theorem 13.0.10 Let X and Y be finite dimensional normed linear spaces of dimension
n and m respectively and denote by ||-|| the norm on either X orY. Then if A is any linear
function mapping X to Y, then A € L(X,Y) and (L(X,Y),||||) is a complete normed
linear space of dimension nm with

[[Ax|| < [JA[ [[x]] -
Alsoif Ae L(X,Y) and B € L(Y,Z) where X,Y,Z are normed linear spaces,
IBA| < |1BI |l

Proof: It is necessary to show the norm defined on linear transformations really is a
norm. Again the first and third properties listed above for norms are obvious. It remains to
show the second and verify ||A|| < co. Letting {vy,---,v,} be a basis and |-| defined with
respect to this basis as above, there exist constants J, A > 0 such that

S[Ix| < x| < Allx]].

Then,
A+ Bl = sup{||(A + B) (x)|| : [|x|| < 1}

< sup{[[Ax]] : [[x[| <1} + sup{||Bx|| : [[x]| <1} = [|A[| + [| B| -

Next consider the claim that ||A|| < co. This follows from

(Zm vz> Z zil ||A (vi)|

n 1/2 1/2
< [x| (ZIA(VZ-HQ) <A|IXI|<Z [A(va)ll ) < 0.
i=1

3

1A (x
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" 9 1/2
Thus [|4]] < A (S0, [[A(W)IF)

Next consider the assertion about the dimension of £ (X,Y). It follows from Theorem
8.2.3. By Corollary 13.0.7 (£ (X,Y),||:]|) is complete. If x # 0,
1

[l

X

Ax —_

-+

]s||A|

Consider the last claim.

IBA|| = sup [[B(A(x))|| <[B] Sup [Az|| =B [lA] =

lzll<1

Note by Corollary 13.0.8 you can define a norm any way desired on any finite dimensional
linear space which has the field of scalars R or C and any other way of defining a norm on
this space yields an equivalent norm. Thus, it doesn’t much matter as far as notions of
convergence are concerned which norm is used for a finite dimensional space. In particular
in the space of m x n matrices, you can use the operator norm defined above, or some
other way of giving this space a norm. A popular choice for a norm is the Frobenius norm
discussed earlier but reviewed here.

Definition 13.0.11 Make the space of m xn matrices into a inner product space by defining
(A, B) = trace (AB™).
Another way of describing a norm for an n x n matrix is as follows.

Definition 13.0.12 Let A be an m x n matriz. Define the spectral norm of A, written as
4]l to be

max{)\l/2 : A is an eigenvalue of A*A} .

That is, the largest singular value of A. (Note the eigenvalues of A* A are all positive because
if A*Ax = X\x, then

Ax|® = A (x,x) = (4" Ax, x) = (Ax,4x) > 0.)

Actually, this is nothing new. It turns out that ||-||, is nothing more than the operator
norm for A taken with respect to the usual Euclidean norm,

n 1/2
x| = (Z kal2> -
k=1

Proposition 13.0.13 The following holds.
Al = sup {[Ax] : [x] = 1} = [[A]].
Proof: Note that A*A is Hermitian and so by Corollary 12.3.4,
4], = max {(A"Ax, %)+ x| = 1} = max { (4x,4%)"/7 : |x| = 1}
max {|Ax]| : |x| = 1} = ||A]|. @

Here is another proof of this proposition. Recall there are unitary matrices of the right
o 0
size U,V such that A = U 0 0 V* where the matrix on the inside is as described

in the section on the singular value decomposition. Then since unitary matrices preserve

norms,
vl © %) v vl 7 9 )vx
00 00

[[A[| = sup = sup
[x|<1 [V*x|<1
c 0 o 0
= sup |U y| = sup yl=01=||A
yl<1 (0 0) yl<1 (0 0) v= 1Al
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LINEAR ALGEBRA Il NORMS

This completes the alternate proof.

From now on, ||A]|, will mean either the operator norm of A taken with respect to the
usual Euclidean norm or the largest singular value of A, whichever is most convenient.

An interesting application of the notion of equivalent norms on R™ is the process of
giving a norm on a finite Cartesian product of normed linear spaces.

Definition 13.0.14 Let X;, i =1,--- ,n be normed linear spaces with norms, ||-||, . For

n

X = (21, - ,mn)EHXi

i=1
define 0 : T]"_, X; — R™ by
0(x) = (llzally s llznll,)
Then if |||| is any norm on R™, define a norm on []_, X;, also denoted by ||-|| by
x| = [16x]] -
The following theorem follows immediately from Corollary 13.0.8.

Theorem 13.0.15 Let X; and ||-||, be given in the above definition and consider the norms
on [7_, X; described there in terms of norms on R™. Then any two of these norms on
[T, X, obtained in this way are equivalent.

For example, define

n
Ix[ly = |l
=1

||X||ooEmaX{|xi|7i:17"'an}a
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I ]OIHEd MITAS because for Engineers and Geoscientists

I wanted real responsibility www.discovermitas.com

Th
(X L Y O T % e

LLir mrs B B s BPE

Month 16

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen

& solve problems

Download free eBooks at bookboon.com
332

Click on the ad to read more



http://oticon.com/
http://s.bookboon.com/mitas

or
n 1/2
2
(Il = (leil )
i=1

and all three are equivalent norms on []!, X;.

13.1 The p Norms

In addition to ||-||; and |[|-||,, mentioned above, it is common to consider the so called p
norms for x € C".

Definition 13.1.1 Let x € C". Then define for p > 1,

n 1/p
IIxll,, = <Z |33i|p>
i=1

The following inequality is called Holder’s inequality.
Proposition 13.1.2 For x,y € C™,

n n p s on 1/p'
Slalu < () (L)
i=1 i=1 i=1
The proof will depend on the following lemma.

Lemma 13.1.3 Ifa,b> 0 and p’ is defined by % + 1% =1, then

Proof of the Proposition: If x or y equals the zero vector there is nothing to
prove. Therefore, assume they are both nonzero. Let A = (3}, |xi|p)1/17 and B =

’ 1/17/
(Zil”) ™ . Then using Lemma 13.1.3,

il [yl U\ 1 ()"
ZAB_ZP A +p’ B

i=1

11
Il ==

and so
n n 1/p n 1/p’
Slalul < a5 = (3 (z |y) -
i=1 i=1 i=1

Theorem 13.1.4 The p norms do indeed satisfy the axioms of a norm.

Proof: It is obvious that [|-[|, does indeed satisfy most of the norm axioms. The only
one that is not clear is the triangle inequality. To save notation write [|-[| in place of |||,
in what follows. Note also that 1% = p — 1. Then using the Holder inequality,

n

Z|$z +yil”

i=1

Ix+yll”

n

n
-1 -1
S lwi vyl ] + >l vl il

i=1 i=1

IA

n

n
P P
= E |zs + il P |i] + E |25 4 il * |yl

i=1 i=1
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IN

n 1/p’ n 1/p n 1/p
(Zm +yi|p) (Zw) . (zwm)
=1 =1 =1

I+ 1”7 (Ixll, + llyl, )

so dividing by ||x + Y||p/p/ , it follows

%+ y1I” 1%+ y 1|77 = lx + | < [Ix]], + [yl

(p—ﬁ:p(l—p%) :p%:l.).l
It only remains to prove Lemma 13.1.3.
Proof of the lemma: Let p’ = ¢ to save on notation and consider the following picture:

: /
b
/:ct”1

t=qgd71
t
a
a b P q
a b
ab < / Pt —|—/ 28 e = — + —.
0 0 p q

Note equality occurs when a? = b1.
Alternate proof of the lemma: For a,b > 0, let b be fixed and

1 1
fla)==-a? +=bT—ab, t >0
p q

If b =0, it is clear that f (a) > 0 for all a. Then assume b > 0. It is clear since p > 1 that
lim, 00 f (a) = oo.

fila)=a"" =b

This is negative for small a and then eventually is positive. Consider the minimum value of
f which must occur at @ > 0 thanks to the observation that the function is initially strictly
decreasing. At this point,

0=f(a)=a?' —b=alP/D _p
and so a? = b? at the point where this function has a minimum. Thus at this value of a,

1 1
f(a)==a? + —a? —aa? ' =aP —a? =0
q

Hence f (a) > 0 for all @ > 0 and this proves the inequality. Equality occurs when a? = b?.
|

Now [|A[[, may be considered as the operator norm of A taken with respect to |[-[|,. In
the case when p = 2, this is just the spectral norm. There is an easy estimate for |\A||p in
terms of the entries of A.

Theorem 13.1.5 The following holds.

a/p\ V4

1AL, < [ D0 | D0 1Al
Bo\
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Proof: Let |[x]|, < 1andlet A= (aj,--- ,a,) where the aj, are the columns of A. Then

Ax = (2}; xkak>

and so by Holder’s inequality,

IIAXIIPE‘

E Trag
k

<> el [laxll, <
P k

a/p\ V4

< (Zk: ml”) " (%:IWIIZ) " < Zk: zj:|Ajk|p u

13.2 The Condition Number

Let A € £L(X,X) be a linear transformation where X is a finite dimensional vector space
and consider the problem Az = b where it is assumed there is a unique solution to this
problem. How does the solution change if A is changed a little bit and if b is changed a
little bit? This is clearly an interesting question because you often do not know A and b
exactly. If a small change in these quantities results in a large change in the solution, x,
then it seems clear this would be undesirable. In what follows ||-|| when applied to a linear
transformation will always refer to the operator norm. Recall the following property of the
operator norm in Theorem 13.0.10.

www.job.oticon.dk O‘l'ICOI'\
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Lemma 13.2.1 Let A,B € L (X, X) where X is a normed vector space as above. Then for
||-|| denoting the operator norm,

IIABI| < [[A[l[|BI] -

Lemma 13.2.2 Let A,B € L(X,X),A™! € L(X,X), and suppose ||B|| < 1/||A7].
Then (A+B)~", (I + A*IB)f1 exists and

|+ a7B) 7| <= [jaB|) " (13.6)
1
|ca+ 57| < fla- H‘W’ (13.7)
The above formula makes sense because ||A71B|| < 1.
Proof: By Lemma 13.0.10,
147 B[ < [[A7H[1IBIl < [[A7] =1 (13.8)

[[ A=
Then from the triangle inequality,
I+ A7B)al| > llall~[|ABa]
> lz|| - |[ATBl| [l = (1= [[A7"B]]) |||

It follows that I + A™'B is one to one because from 13.8, 1 — ||[A™*B|| > 0. Thus if
(I+A7'B)z =0, then = 0. Thus I + A~'B is also onto, taking a basis to a basis. Then
a generic y € X is of the form y = (I + AilB) x and the above shows that

|(r+a7B) "yl < (1= []ABI) "y

which verifies 13.6. Thus (A+ B) = A (I + A™'B) is one to one and this with Lemma
13.0.10 implies 13.7. A

Proposition 13.2.3 Suppose A is invertible, b # 0, Ax = b, and (A + B)x1 = by where
IBI| < 1/||A7||. Then

ool JAAL (b, 151)
el = 1-TA-'BI

] 1Al

Proof: This follows from the above lemma.

-1

Hxl_x” B H(I-I—A_lB) A_lbl—A_le
] |A="0]|

- 1 A0 — (I+ A7'B) A™1b||
= 1- A 1B [ A=To|

_ 1 A" (b = 0)| +[|[A~"BA Y]

= 1-[|A1B]| [A=T0|]
|4~ ( 151 — b )

< + |[|B

S 1o pag) a8

because A7'b/||A71b]| is a unit vector. Now multiply and divide by [|A[|. Then
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A~ 1Al ( 161 — b ||B|>
= 1 [AB] A A=) " [A]

A7 ]A - B
< Al (nbl bl | ||)_ .
L= A=TBI ol 114]

This shows that the number, ||A~!||[|A]|, controls how sensitive the relative change in
the solution of Ax = b is to small changes in A and b. This number is called the condition
number. It is bad when this number is large because a small relative change in b, for example
could yield a large relative change in z.

Recall that for A an n x n matrix, [|A||, = o1 where o, is the largest singular value. The
largest singular value of A~! is therefore, 1/0,, where o, is the smallest singular value of A.
Therefore, the condition number reduces to o1 /0, the ratio of the largest to the smallest
singular value of A provided the norm is the usual Euclidean norm.

13.3 The Spectral Radius

Even though it is in general impractical to compute the Jordan form, its existence is all that
is needed in order to prove an important theorem about something which is relatively easy
to compute. This is the spectral radius of a matrix.

Definition 13.3.1 Define o (A) to be the eigenvalues of A. Also,
p(A) = max(]\| : A € 7 (4))
The number, p(A) is known as the spectral radius of A.
Recall the following symbols and their meaning.

lim sup a,, lim inf a,
n—00 n—00

They are respectively the largest and smallest limit points of the sequence {a,,} where +o00
is allowed in the case where the sequence is unbounded. They are also defined as

lim sup a,, = lim (sup{ax:k>n}),
n—00 n—co

im i = i i k> .

hmnlggo an nl;rr;o (inf {a : k > n})

Thus, the limit of the sequence exists if and only if these are both equal to the same real
number. Also note that the

Lemma 13.3.2 Let J be a p X p Jordan matriz

J1

Js

where each Jy, is of the form
Jp = A\ + Ng

in which Ny is a nilpotent matriz having zeros down the main diagonal and ones down the
super diagonal. Then

lim |]J7]|Y" = p

n—oo

where p = max {|\g|,k =1,...,n}. Here the norm is the operator norm.
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LINEAR ALGEBRA ll1I NORMS

Proof: Consider one of the blocks, |A\;| < p. Here Jj is p x p.

Then

1
—Ji
p

| Z( )H vy Rl L 139)

Now there are p numbers HN ,é || so you could pick the largest, C. Also

] e

so 13.9 is dominated by
RV

The ratio or root test shows that this converges to 0 as n — oo.
What happens when |[A\;| = p?

1 L S|
—J =" + Nigh—i—
o=y () v

where |w| = 1.

1
— I <1+n"C
pn
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where C' = max {||N}||,i=1,---,p,k=1...,s} >% L. Thus

i=1 7"

1 1 < 1
— I < = JH < s(1+nPC —sn”C’(—l—l)
o ™ 1 ; (B4l ( ) 0

and so

1/n
1. 1/n . 1 1/n 1
-1 JrM < /M (nPC — 1) =1
p 1mnsglo)o|| I < im sup s (nPC) s, +

lim sup ||J7)*/"

n—oo

<p
Next let x be an eigenvector for A, |A| = p and let ||x|| = 1. Then
pt =" x| = (1] < [T

and so
p< |l

Hence
p > lim sup [|J7|V" He

n— oo

>lim inf ||J*||7" >p W
n— oo

The following theorem is due to Gelfand around 1941.

Theorem 13.3.3 (Gelfand) Let A be a complex p X p matriz. Then if p is the absolute
value of its largest eigenvalue,
Tim_ |47 = .

Here ||-|| is any norm on L (C™,C™).

Proof: First assume ||| is the operator norm with respect to the usual Euclidean metric
on C". Then letting J denote the Jordan form of A, S~'AS = J, it follows from Lemma
13.3.2

lim sup HA"||1/" = lim sup ||SJ”S*1H1/n < lim sup (HSH HS71|| ||J”H)1/n
n—oo n—oo n—oo
. _ i 1/n

< lim sup (||S]] [STHIT) " = p

Letting A be the largest eigenvalue of A, |A| = p, and Ax = Ax where ||x|| =1,
[A™| > [|A"x]| = p"

and so

lim inf [|A"|"" > p > lim sup ||A™|""

n—00 n—o00
s nyl/m _ g nyl/m _ g nyl/n _

If follows that liminf,, . ||A"||/" = limsup,,_, o [|A"||""" = lim, 00 ||A™]] " = p.

Now by equivalence of norms, if |||-||| is any other norm for the set of complex p x p
matrices, there exist constants d, A such that

S [[A"| < [[]A™|I] < AflA™]

Then
Fm A < AT < AV AT

The limits exist and equal p for the ends of the above inequality. Hence, by the squeezing
—1; ny||1/n
theorem, p = lim, . |||4A"]|]"". B

9 -1 2
Example 13.3.4 Consider —2 8 4 |. Estimate the absolute value of the largest
1 1 8
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etgenvalue.

A laborious computation reveals the eigenvalues are 5, and 10. Therefore, the right

answer in this case is 10. Consider HA7||1/7 where the norm is obtained by taking the
maximum of all the absolute values of the entries. Thus

9 -1 2 ! 8015625 —1984375 3968750
-2 8 4 =1 —-3968750 6031250 7937500
1 1 8 1984 375 1984375 6031 250

and taking the seventh root of the largest entry gives

p(A) ~ 8015625'/7 = 9.688951 236 71.

Of course the interest lies primarily in matrices for which the exact roots to the characteristic
equation are not known and in the theoretical significance.

13.4 Series And Sequences Of Linear Operators

Before beginning this discussion, it is necessary to define what is meant by convergence in
L(X,Y).

Definition 13.4.1 Let {A},., be a sequence in L (X,Y) where X,Y are finite dimen-
sional normed linear spaces. Then lim,,_, o, A = A if for every € > 0 there exists N such
that if n > N, then

[|[A—A,| <e.

Here the norm refers to any of the norms defined on L(X,Y). By Corollary 13.0.8 and
Theorem 8.2.3 it doesn’t matter which one is used. Define the symbol for an infinite sum in

the usual way. Thus
> = Jim 3 A
k=1 k=1

Lemma 13.4.2 Suppose {Ay}ro, is a sequence in L(X,Y) where X,Y are finite dimen-
sional normed linear spaces. Then if

o)
D AR < oo,
k=1

It follows that
> A (13.10)

k=1

exists (converges). In words, absolute convergence implies convergence. Also,

Soan <3 4yl
k=1 k=1

Proof: For p <m <n,

> A= Ak <) A
k=1 k=1 k=p

and so for p large enough, this term on the right in the above inequality is less than €. Since
€ is arbitrary, this shows the partial sums of 13.10 are a Cauchy sequence. Therefore by
Corollary 13.0.7 it follows that these partial sums converge. As to the last claim,
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n

> A

k=1

<D NARI <D 1A
k=1 k=1

Therefore, passing to the limit,

<3 A m
k=1

Why is this last step justified? (Recall the triangle inequality |||Al — || B]|| < ||A — B]|. )

Now here is a useful result for differential equations.

Theorem 13.4.3 Let X be a finite dimensional inner product space and let A € L(X,X).

Define
> tkAk‘
k=0

Then the series converges for each t € R. Also

k— 1Ak
P’ (t) = lim (Hh § t
h—0
k=1

Also A® (t) = ® (t) A and for all t,® (£)® (—t) =1 so ® (1) " =

understood that A° = I in the above formula.)
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Proof: First consider the claim about convergence.
oo
k=

so it converges by Lemma 13.4.2.

t’fAk

e3¢} k k
L IALT — jegray
< Z k! =¢ <0
k=0

SU+h) —(l) 1S (t+m)" =) ar
h - Ez:: k!
1 & t+0h)’“hA (4 Oph)E A
e

this by the mean value theorem. Note that the series converges thanks to Lemma 13.4.2.
Here 6; € (0,1). Thus

> ((t +0xh)" 7 - tk‘1> Ak

P (t +h — 1"~ 1Ak
— (k— 1)

k—

—~

k=1 k=1

o0 ((k 1) (t 4 TR Gkh> A¥ o ((t + rRbh) ak) AF
=12 (k—1)! = Al kz:; (k—2)!

k=1

t+hk2Ak2
<|h¢j£: || | D 2* || ”A“2::|h‘eﬂﬂ#{hDHAHHA“2

so letting |h| < 1, this is no larger than |h| e(t+DI4I || A]|>. Hence the desired limit is valid.
It is obvious that A® (¢t) = @ (¢) A. Also the formula shows that

o' (1) = A (t

)=
Now consider the claim about ® (—t). The above computation shows that &' (—t) =
A® (—t) and so 4 (®(—t)) = —®'(—t) = —A®(—t). Now let z,y be two vectors in X.
Consider

B(t)A, ®(0)=1.

(@ (=) @ () z,y) x
Then this equals (z,y) when ¢ = 0. Take its derivative.

(=2 (=) @ () + @ (1) (1)) z,y) x
= (A2 (=)@ (1) + & (=1) AQ (1)) 2, y)
= (07y)X'::0

Hence this scalar valued function equals a constant and so the constant must be (z,y) y
Hence for all z,y,(® (—t)® (t)z —x,y)y = 0 for all z,y and this is so in particular for
y=®(—t) P (t) x — x which shows that & (—¢t)® (¢t) =1. &

As a special case, suppose A € C and consider

N A
k!
k=0
where t € R. In this case, A; = tklj!‘k (C,C). Then the
following corollary is of great interest.
Corollary 13.4.4 Let
N R AR L R AR
fH=Y =1
k! k!
k=0 k=1
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Then this function is a well defined complex valued function and furthermore, it satisfies the
initial value problem,
y' =My, y(0)=1
Furthermore, if A = a + ib,
[f1(t) = e

Proof: The first part is a special case of the above theorem. Note that for f (¢) =

u (t) +iv (t), both u,v are differentiable. This is because
T R ey |
2’ 2

Then from the differential equation,
(a+1b) (u+iv) = u' + v

and equating real and imaginary parts,
v =au—bv, v = av + bu.

Then a short computation shows

(u® + UQ)/ = 2uu’ 4 200" = 2u (au — bv) + 2v (av + bu) = 2a (u* + v?)

(w”+v%) (0) = f*(0) =1

Now in general, if

y =cy, y(0) =1,

with ¢ real it follows y (t) = e“*. To see this,

Yy —cy=0
and so, multiplying both sides by e~ you get
d —ct
— (ye =0
7 ve™)
and so ye~ " equals a constant which must be 1 because of the initial condition y (0) = 1.
Thus

(u2 + "UQ) (t) _ e2at

and taking square roots yields the desired conclusion. l

Definition 13.4.5 The function in Corollary 13.4.4 given by that power series is denoted
as
exp (At) or e,
The next lemma is normally discussed in advanced calculus courses but is proved here
for the convenience of the reader. It is known as the root test.

Definition 13.4.6 For {a,} any sequence of real numbers

lim sup a, = lim (sup{ay: k > n})
n— o0 n—00
Similarly

lim nlggc ap, = nh_}n;o (inf {ay : kK > n})

In case Ayis an increasing (decreasing) sequence which is unbounded above (below) then it
is understood that lim,, o, A, = 0o (—00) respectively. Thus either of limsup or liminf can
equal +0o0 or —oo. Howewver, the important thing about these is that unlike the limit, these
always exist.

It is convenient to think of these as the largest point which is the limit of some sub-
sequence of {a,} and the smallest point which is the limit of some subsequence of {a,}
respectively. Thus lim,,_,, a, exists and equals some point of [—o0, c0] if and only if the
two are equal.
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Lemma 13.4.7 Let {a,} be a sequence of nonnegative terms and let

r = lim sup all)/p.
p—00
Then if r < 1, it follows the series, Y ., , ar converges and if v > 1, then a, fails to converge
to 0 so the series diverges. If A is an n X n matriz and

r = lim sup ||A?||*/? (13.11)
p—00

then if r > 1, then > =, AF fails to converge and if r < 1 then the series converges. Note
that the series converges when the spectral radius is less than one and diverges if the spectral
radius is larger than one. In fact, limsup,_, ||Ap||1/p = lim, ||Ap||1/p from Theorem
13.8.3.

Proof: Suppose r < 1. Then there exists N such that if p > N,
a;/ P<R

where r < R < 1. Therefore, for all such p, a, < RP and so by comparison with the
geometric series, > RP, it follows >~ % | a, converges.
Next suppose r > 1. Then letting 1 < R < r, it follows there are infinitely many values
of p at which
R < all/ p

which implies kP < a,, showing that a, cannot converge to 0 and so the series cannot
converge either.

To see the last claim, if r > 1, then || AP|| fails to converge to 0 and so {} ;" Ak}::o

is not a Cauchy sequence. Hence Y oy AF = limy,, o0 Doy A”

cannot exist. If r < 1, then
for all n large enough, ||A”||1/" < r < 1 for some r so [|A™|| < r". Hence ), [|A™|| converges
and so by Lemma 13.4.2, it follows that Y -, AF also converges. W

Now denote by o (A)” the collection of all numbers of the form \” where A € o (4).
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Lemma 13.4.8 0 (AP) =c (A ={\’: A€o (A)}.

Proof: In dealing with o (AP), it suffices to deal with o (JP) where J is the Jordan form
of A because JP and AP are similar. Thus if A € o (AP), then A € o (JP) and so A = «
where « is one of the entries on the main diagonal of JP. These entries are of the form AP
where A € 0 (A). Thus A € o (A)” and this shows o (AP) C o (A4)".

Now take o € o (A) and consider o?.

aPl — AP = (ap_lf—i— c+aAPT? 4 Ap_l) (al — A)

and so oI — AP fails to be one to one which shows that a? € o (AP) which shows that
(AP Co(AP). 1

13.5 Iterative Methods For Linear Systems

Consider the problem of solving the equation
Ax=Db (13.12)

where A is an n X n matrix. In many applications, the matrix A is huge and composed
mainly of zeros. For such matrices, the method of Gauss elimination (row operations) is
not a good way to solve the system because the row operations can destroy the zeros and
storing all those zeros takes a lot of room in a computer. These systems are called sparse.
To solve them, it is common to use an iterative technique. I am following the treatment
given to this subject by Nobel and Daniel [21].

Definition 13.5.1 The Jacobi iterative technique, also called the method of simultaneous
corrections is defined as follows. Let x' be an initial vector, say the zero vector or some
other vector. The method generates a succession of vectors, x2,x3,x%,--- and hopefully this
sequence of vectors will converge to the solution to 13.12. The vectors in this list are called
iterates and they are obtained according to the following procedure. Letting A = (a;j),

aiix:“ = — Z aijmg + b;. (13.13)
J#i
In terms of matrices, letting
A =
The iterates are defined as
* 0 - 0 x’{“ 0 = * zf by
+1 r
0 = 5 * 0 Ty b
= - . + (13.14)
0 *
0 --- 0 =« artt « - % 0 x" b,

The matrix on the left in 13.14 is obtained by retaining the main diagonal of A and
setting every other entry equal to zero. The matrix on the right in 13.14 is obtained from A
by setting every diagonal entry equal to zero and retaining all the other entries unchanged.
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Example 13.5.2 Use the Jacobi method to solve the system

3100 T 1
1 410 o || 2
02 5 1 zs || 3
00 2 4 T4 4

Of course this is solved most easily using row reductions. The Jacobi method is use-
ful when the matrix is very large. This example is just to illustrate how the method
works. First lets solve it using row operations. The exact solution from row reduction

: 6 11 8 25 ol : " :
is ( 55 39 55 59 ), which in terms of decimals is approximately equal to

(0.207 0.379 0.276 0.862 )T.

In terms of the matrices, the Jacobi iteration is of the form

3000 ai 1 00 xf 1
0400 it 1010 b 2
0050 7 o2 01 R
00 0 4 ah ! 0020 A 4

Multiplying by the inverse of the matrix on the left, 'this iteration reduces to

aitt 0 3 00 al 3
r+1 1 1 r 1
IQ 1 0 1 0 .172 5
: = — + | : 13.15
xytt 0 2 0 1 xh 3 ( )
aytt 00 % 0 zh 1
T
Now iterate this starting with x' = ( 00 0O )
Thus
1 1 1
0L oo 0 : i
o _| 3030 0 3 || 3
X = 0 2 o 1 0 3 | =] 3
5 5 5 5
00 3 0 0 1 1
Then
X2
——
1 1 1
0 i 0 0 3 3 .166
1 1 1 1
s__ |z 0 70 3 2 | _| -26
X = 0 2 o 1 s |t 35 | = 9
5 5 5 5 :
00 %+ 0 1 1 7
Continuing this way one finally gets
Xo
0 2 0 0 197 3 .216
1
6 | 1 0 10 .351 L1 | 386
T 0 2 o 1} 2566 | | 2 || 205
5 5 : 5 :
00 3 0 .822 1 .871

You can keep going like this. Recall the solution is approximately equal to

T
(0.206 0.379  0.275 0.862)

You certainly would not compute the invese in solving a large system. This is just to show you how the
method works for this simple example. You would use the first description in terms of indices.
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so you see that with no care at all and only 6 iterations, an approximate solution has been
obtained which is not too far off from the actual solution.

Definition 13.5.3 The Gauss Seidel method, also called the method of successive correc-
tions is given as follows. For A = (a;;), the iterates for the problem Ax =b are obtained
according to the formula

Z aijZE;Jrl = — Z a,‘j.’E; + b;. (1316)
j=1 j=it1
In terms of matrices, letting
* e *
A =
* e *
The iterates are defined as
* 0 o 0 x;+1 0 * * 1”1" by
r4+1 . . r
x % Ty 0 0 R D) ba
=— . + . (13.17)
0 . T : :

In words, you set every entry in the original matrix which is strictly above the main
diagonal equal to zero to obtain the matrix on the left. To get the matrix on the right,
you set every entry of A which is on or below the main diagonal equal to zero. Using the
iteration procedure of 13.16 directly, the Gauss Seidel method makes use of the very latest
information which is available at that stage of the computation.

The following example is the same as the example used to illustrate the Jacobi method.

i I
l How will people travel in the future, and
| how will goods be transported? What re-

sources will we use, and how many will
we need? The passenger and freight traf-
fic sector is developing rapidly, and we

provide the impetus for innovation and
movement. We develop components and
systems for internal combustion engines
that operate more cleanly and more ef-
ficiently than ever before. We are also
pushing forward technologies that are
bringing hybrid vehicles and alternative
drivesinto a new dimension — for private,
corporate, and public use. The challeng-
—— : = es are great. We deliverthe solutions and

—

offer challenging jobs.
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Example 13.5.4 Use the Gauss Seidel method to solve the system

31 00 1 1
1 410 re | ] 2
02 5 1 s || 3
0 0 2 4 T4 4
In terms of matrices, this procedure is
3000 a 0100 xf 1
1 400 ahtto| 00 10 zp || 2
0250 st 0001 B 3
00 2 4 aht 0000 A 4
Multiplying by the inverse of the matrix on the left? this yields
it o 5 0 0 ] :
aptt o 0 -5 3+ o0 7 |, o
r+1 | T 1 1 1 r 13
s 0 35 1% 5 T3 30
r+ 1 1 1 r 47
Ty 0 %6 2 ~10 4 0
As before, I will be totally unoriginal in the choice of x!. Let it equal the zero vector.

Therefore, x% = ( 3 & 5 )T. Now
>
—
0 % 0 0 % % .194
S |0 -5 1 0 15—2 N wo| | 343
0 % -5 3 2 32 .306
0 - & 3 -1 ar 4 .846
Continuing this way,
o % 0 0 .194 3 .219
a0 -L L 0 .343 | _ | -36875
0 % _% % 306 % .2833
0 - & % -5 .846 a .858 35
and so
0o % 0 0 219 : .21042
o |0 -L L0 .36875 w | _ | -37657
0 & & 1 L2833 5 L2777
0 -& % -5 .858 35 & .86115

This is fairly close to the answer. You could continue doing these iterates and it appears
they converge to the solution. Now consider the following example.

Example 13.5.5 Use the Gauss Seidel method to solve the system

1400 T 1
1 410 x| | 2
02 5 1 z3 | | 3
00 2 4 T4 4

2As in the case of the Jacobi iteration, the computer would not do this. It would use the iteration
procedure in terms of the entries of the matrix directly. Otherwise all benefit to using this method is lost.
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The exact solution is given by doing row operations on the augmented matrix. When this
is done the solution is seen to be ( 6.0 —1.25 1.0 0.5 ) .The Gauss Seidel iterations
are of the form

1 000 xh 0400 ] 1
1400 aptto 0010 b 2
0250 7 | oo o0 1 |7 s
00 2 4 ay ! 00 00 zh 4

and so, multiplying by the inverse of the matrix on the left, the iteration reduces to the
following in terms of matrix multiplication.

0 4 0 0 1

0o -1 1 0 1

= D [
5 10 5 2

0 -1 1 _1 3

5 20 10 1

T
This time, I will pick an initial vector close to the answer. Let x! = ( 6 —-1 1 1

2
This is very close to the answer. Now lets see what the Gauss Seidel iteration does to it.

0 4 0 0 6 1 5.0
o -1 1L 0 -1 L -1.0
x? =~ 2 g 1 11 =
1 1 1 1 3
0 =5 3 ~1 3 1 .55

It appears that it moved the initial guess far from the solution even though you started
with one which was initially close to the solution. This is discouraging. However, you can’t
expect the method to work well after only one iteration. Unfortunately, if you do multiple
iterations, the iterates never seem to get close to the actual solution. Why is the process
which worked so well in the other examples not working here? A better question might be:
Why does either process ever work at all?

Both iterative procedures for solving

Ax=Db (13.18)

are of the form
Bx™l = —Cx"+b

where A = B + C. In the Jacobi procedure, the matrix C' was obtained by setting the
diagonal of A equal to zero and leaving all other entries the same while the matrix B was
obtained by making every entry of A equal to zero other than the diagonal entries which are
left unchanged. In the Gauss Seidel procedure, the matrix B was obtained from A by making
every entry strictly above the main diagonal equal to zero and leaving the others unchanged,
and C' was obtained from A by making every entry on or below the main diagonal equal to
zero and leaving the others unchanged. Thus in the Jacobi procedure, B is a diagonal matrix
while in the Gauss Seidel procedure, B is lower triangular. Using matrices to explicitly solve
for the iterates, yields

x"t = -B7'Cx" + B~ 'b. (13.19)

This is what you would never have the computer do but this is what will allow the statement
of a theorem which gives the condition for convergence of these and all other similar methods.
Recall the definition of the spectral radius of M, p (M), in Definition 13.3.1 on Page 337.
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Theorem 13.5.6 Suppose p (B_IC) < 1. Then the iterates in 13.19 converge to the unique
solution of 13.18.

I will prove this theorem in the next section. The proof depends on analysis which should
not be surprising because it involves a statement about convergence of sequences.

What is an easy to verify sufficient condition which will imply the above holds? It is easy
to give one in the case of the Jacobi method. Suppose the matrix A is diagonally dominant.

That is |ai;| > >, |ai;| . Then B would be the diagonal matrix consisting of the entries
a;;- You need to find the size of A\ where

B 'Cx = \x

Thus you need
AB-C)x=0

Now if |[A| > 1, then the matrix AB — C' is diagonally dominant and so this matrix will be
invertible so A is not an eigenvalue. Hence the only eigenvalues have absolute value less
than 1.

You might try a similar argument in the case of the Gauss Seidel method.

13.6 Theory Of Convergence

Definition 13.6.1 A normed vector space, E with norm ||-|| is called a Banach space if it
is also complete. This means that every Cauchy sequence converges. Recall that a sequence
{xn}zozl is a Cauchy sequence if for every e > 0 there exists N such that whenever m,n > N,

||z — zm|| <e.
Thus whenever {x,} is a Cauchy sequence, there exists x such that

lim ||l — z,|| =0.
n— o0
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Example 13.6.2 Let E be a Banach space and let Q) be a nonempty subset of a normed
linear space F. Let B (Q; E) denote those functions f for which

1Al = sup {|[f (@)l : 2 € Q} < o0
Denote by BC (; E) the set of functions in B (; E) which are also continuous.

Lemma 13.6.3 The above ||-|| is a norm on B (2 E). The subspace BC (Q); E) with the
given norm is a Banach space.

Proof: It is obvious ||-|| is a norm. It only remains to verify BC (2; E) is complete. Let
{fn} be a Cauchy sequence. Since ||f, — fm| = 0 as m,n — oo, it follows that {f, (z)} is
a Cauchy sequence in F for each z. Let f (x) = lim, 00 frn (2). Then for any = € Q.

o (@) = fm (@)l < |[fn = full <€

whenever m,n are large enough, say as large as N. For n > N, let m — oco. Then passing
to the limit, it follows that for all z,

[fn (2) = F (2)llg <€
and so for all x,
If @)llg <e+llfn@lg <e+ il
It follows that ||f|| < [|fnll + € and ||f — fol < e.
It remains to verify that f is continuous.

1f @) =fWle < IIf @) = fa@lg+1fa @) = fo@lle+I1Fn @) = F@)le

< 207~ Fall 4 1 )~ Ol < 2+ ()~ o ()5

for all n large enough. Now pick such an n. By continuity, the last term is less than £ if
|z — y|| is small enough. Hence f is continuous as well. B

The most familiar example of a Banach space is F". The following lemma is of great
importance so it is stated in general.

Lemma 13.6.4 Suppose T : E — E where E is a Banach space with norm |-|. Also suppose
|Tx — Ty| <r|x —y| (13.20)
for some r € (0,1). Then there exists a unique fized point, x € E such that
Tx = x. (13.21)
Letting x' € E, this fized point x, is the limit of the sequence of iterates,
xh Txt T2 - (13.22)

1

In addition to this, there is a mice estimate which tells how close x* is to x in terms of

things which can be computed.

|x! —x| < x! = Tx'|. (13.23)

1—r

Proof: This follows easily when it is shown that the above sequence, {Tkxl}zil is a
Cauchy sequence. Note that

|T2x1 fo1| <r |Tx1 7x1| .

Suppose
[ TFx! — TF x| <P Tx! = x| (13.24)
Then
Thtlgl _ Tkxl‘ < 7 ‘Tkxl _ Tk—1X1|
< prh—l |Tx1 —xl‘ =k |Tx1 —x!.
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By induction, this shows that for all £ > 2, 13.24 is valid. Now let kK > > N.

k—1 k—1
Thx! — Tlx1| = Z (Tj“x1 - zjl) < Z ‘Tijl — Tix!
j=l j=l
k—1 N
< er ’Tx1 —x1| < |Tx1 —xl‘ T
j=N

which converges to 0 as N — oo. Therefore, this is a Cauchy sequence so it must converge
to x € E. Then

x = lim TFx! = lim T¢**'x' = T lim T*x! = Tx.
k— oo k— o0 k— o0

This shows the existence of the fixed point. To show it is unique, suppose there were
another one, y. Then
x—yl=[Tx=Ty| <rlx—y]|

and so x =y.
It remains to verify the estimate.

|x17x| < |x17Tx1|+’Tx17x|:}xlfo1’+|Tx17Tx
< |x17Tx1|+r‘x17x|

and solving the inequality for |x1 - x| gives the estimate desired. B
The following corollary is what will be used to prove the convergence condition for the
various iterative procedures.

Corollary 13.6.5 Suppose T : E — E, for some constant C
Tx —Ty| < Clx—yl,
for allx,y € E, and for some N € N,
’TNX—TNy| <rlx-yl,

for all x,y € E where r € (0,1). Then there exists a unique fized point for T and it is still
the limit of the sequence, {Tkxl} for any choice of x".

Proof: From Lemma 13.6.4 there exists a unique fixed point for 7% denoted here as x.
Therefore, TVx = x. Now doing T to both sides,

TNTx = Tx.

By uniqueness, Tx = x because the above equation shows T'x is a fixed point of TV and
there is only one fixed point of TV. In fact, there is only one fixed point of T because a
fixed point of T' is automatically a fixed point of TV.

It remains to show T*x! — x, the unique fixed point of TV. If this does not happen,
there exists € > 0 and a subsequence, still denoted by T* such that

|T’“x1 -x|>e
Now k = jixN + rp where rp, € {0,--- ,N —1} and ji is a positive integer such that
limg 00 jk = 00. Then there exists a single r € {0,--- , N — 1} such that for infinitely
many k, 7, = r. Taking a further subsequence, still denoted by T* it follows

TNt — x| > e (13.25)

However,
TIeN+r b — prpieNyl s Try = x
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and this contradicts 13.25. B

Theorem 13.6.6 Suppose p (B_lC') < 1. Then the iterates in 13.19 converge to the unique
solution of 13.18.

Proof: Consider the iterates in 13.19. Let Tx = B~1Cx + B~ 'b. Then

k

|Tkx—Tky} = ’(BilC) X — (BflC)ky’ < H(B%C’)kH |x —y]|.

Here ||-|| refers to any of the operator norms. It doesn’t matter which one you pick because
they are all equivalent. I am writing the proof to indicate the operator norm taken with
respect to the usual norm on E. Since p (B_lC’) < 1, it follows from Gelfand’s theorem,
Theorem 13.3.3 on Page 338, there exists N such that if k > N, then for some r'/* < 1,

1/k
H(B*lC)kH/ <r'/F <l

Consequently,
|TNX—TNy} <rlx-yl.

Also |Tx — Ty| < HB_lCH |x —y| and so Corollary 13.6.5 applies and gives the conclusion
of this theorem. W
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13.7 Exercises

1.

10.

Solve the system

41 1 z 1
1 5 2 y | =1 2
02 6 z 3

using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

. Solve the system

41 1 x 1
1 7 2 y | =1 2
02 4 z 3

using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

. Solve the system

5 1 1 T 1
1 7 2 y | =1 2
0 2 4 z 3

using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

If you are considering a system of the form Ax = b and A~! does not exist, will either
the Gauss Seidel or Jacobi methods work? Explain. What does this indicate about
finding eigenvectors for a given eigenvalue?

For ||x||, = max{|z;|:j=1,2,---,n}, the parallelogram identity does not hold.
Explain.

. A norm |[|]| is said to be strictly convex if whenever ||z|| = ||y||,z # y, it follows
Tty
22| < el =l

Show the norm |-| which comes from an inner product is strictly convex.

. A norm ||-|| is said to be uniformly convex if whenever ||z,||,||y.|| are equal to 1 for

all n € N and lim, o0 ||Zn + yn|| = 2, it follows lim, o0 ||2n — yn|] = 0. Show the
norm |-| coming from an inner product is always uniformly convex. Also show that
uniform convexity implies strict convexity which is defined in Problem 6.

. Suppose A : C* — C™ is a one to one and onto matrix. Define

[Ix|| = [Ax].

Show this is a norm.

. If X is a finite dimensional normed vector space and A, B € L(X,X) such that

||B|| < [|A]l, can it be concluded that ||A~'B|| < 17

Let X be a vector space with a norm ||-|| and let V' = span (vq,- - ,vy,) be a finite
dimensional subspace of X such that {v1,--- , v} is a basis for V. Show V is a closed
subspace of X. This means that if w,, — w and each w,, € V, then so is w. Next show
that if w ¢V,

dist (w, V) =inf {||lw —v||:v €V} >0
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11.

12.

13.

14.

15.

16.

is a continuous function of w and
|dist (w, V') — dist (w1, V)] < [Jw1 — w||

Next show that if w ¢ V| there exists z such that ||z|| = 1 and dist (z,V) > 1/2. For
those who know some advanced calculus, show that if X is an infinite dimensional
vector space having norm ||-||, then the closed unit ball in X cannot be compact.
Thus closed and bounded is never compact in an infinite dimensional normed vector
space.

Suppose p(A) < 1 for A € L(V,V) where V is a p dimensional vector space having
a norm ||-]|. You can use RP or C? if you like. Show there exists a new norm |||
such that with respect to this new norm, |||A||| < 1 where |||A||| denotes the operator
norm of A taken with respect to this new norm on V',

[ A[]] = sup {[|[Ax][] : [|]x][| < 1}
Hint: You know from Gelfand’s theorem that
|A"|M" < r <1

provided n is large enough, this operator norm taken with respect to ||-||. Show there
exists 0 < A < 1 such that n
— | <1
(5)

You can do this by arguing the eigenvalues of A/\ are the scalars /A where 1 € o (A).
Now let Z, denote the nonnegative integers.
n
x||| = sup ||—x
Il = sup || 5

First show this is actually a norm. Next explain why

n+1
[I1Ax[|] = A sup < A

—) X
1
nesy >\n+

Establish a similar result to Problem 11 without using Gelfand’s theorem. Use an
argument which depends directly on the Jordan form or a modification of it.

Using Problem 11 give an easier proof of Theorem 13.6.6 without having to use Corol-
lary 13.6.5. It would suffice to use a different norm of this problem and the contraction
mapping principle of Lemma 13.6.4.

A matrix A is diagonally dominant if |a;| > 37, |a;;|. Show that the Gauss Seidel
method converges if A is diagonally dominant.

Suppose f(A) = >"7° a, A" converges if |A| < R. Show that if p (4) < R where A is
an n X n matrix, then

oo
F(A) =) a,A"
n=0

converges in £ (F™,F"). Hint: Use Gelfand’s theorem and the root test.
Referring to Corollary 13.4.4, for A = a + ib show

exp (\t) = e (cos (bt) + isin (bt)) .
Hint: Let y (t) = exp (M) and let z (t) = e~ %y (¢). Show

24?2 =0, 2(0) = 1,2 (0) = ib.
Now letting z = u + iv where u, v are real valued, show

W +b*u = 0, u(0)=1,4/(0)=0
" + b0 = 0, v(0)=0,v"(0)=b.
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Next show u (t) = cos (bt) and v (t) = sin (bt) work in the above and that there is at
most one solution to

w” + b*w = 0w (0) = a,w’ (0) = B.
Thus 2 (t) = cos (bt) + isin (bt) and so y (t) = e* (cos (bt) + isin (bt)). To show there

is at most one solution to the above problem, suppose you have two, wy, ws. Subtract
them. Let f = w; — wy. Thus

fl/ 4 b2 f =0
and f is real valued. Multiply both sides by f’ and conclude

d (M L)
E( 5 +b27>_0

Thus the expression in parenthesis is constant. Explain why this constant must equal
0.

17. Let A € £ (R"™,R™). Show the following power series converges in £ (R™, R").

>tk Ak
k!

U (t) =
k=0
This was done in the chapter. Go over it and be sure you understand it. This is
how you can define exp (tA). Next show that ¥’ (t) = AU (¢), ¥ (0) = I. Next let

()= 10y w. Show each ® (t), ¥ (t) each commute with A. Next show that
® (t) U (t) = I for all t. Finally, solve the initial value problem

x'=Ax+f, x(0) =xo

o™
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18.

19.

20.

in terms of ® and W. This yields most of the substance of a typical differential
equations course.

In Problem 17 ¥ (¢) is defined by the given series. Denote by exp (to (A)) the numbers
exp (tA) where A € o (A). Show exp (to (4)) = o (¥ (¢)). This is like Lemma 13.4.8.
Letting J be the Jordan canonical form for A, explain why

> Lk k 1k
U(t) = tA _szis—

k=

and you note that in J*, the diagonal entries are of the form A for A an eigenvalue
of A. Also J =D + N where N is nilpotent and commutes with D. Argue then that

=tk Jk

k!
k=0

At

is an upper triangular matrix which has on the diagonal the expressions e where

A € 0 (A). Thus conclude

o (¥ (1) C exp (to (4))
Next take et* € exp (to (A)) and argue it must be in o (¥ (¢)). You can do this as
follows:

Sy LI >tk
A _ _ _ v k _ \k
V) -t = k! k:!I_Zk!(A AI)
k=0 k=0 k=0
[e%e) tk k—1
= Zj Ak IN | (A=)
k=0

Now you need to argue

00 tk k—1
Do ATV
k=0 k! j=1

converges to something in £ (R™,R™). To do this, use the ratio test and Lemma 13.4.2
after first using the triangle inequality. Since A € o (A), ¥ (¢) — e!*I is not one to one
and so this establishes the other inclusion. You fill in the details. This theorem is a
special case of theorems which go by the name “spectral mapping theorem”.

Suppose VU (t) € L (V, W) where V, W are finite dimensional inner product spaces and
t — W (t) is continuous for ¢ € [a, b]: For every ¢ > 0 there there exists 6 > 0 such that
if |s —t| < § then ||¥ (¢t) — ¥ (s)|| < e. Show ¢ — (U (¢) v, w) is continuous. Here it is
the inner product in W. Also define what it means for ¢t — ¥ (¢) v to be continuous
and show this is continuous. Do it all for differentiable in place of continuous. Next
show ¢ — || (¢)|] is continuous.

If z (t) € W, a finite dimensional inner product space, what does it mean for ¢ — z (t)
to be continuous or differentiable? If z is continuous, define

/abz(t)dteW

<w, /abz(t) dt) z/ab (w, 2 (1)) dt.

Show that this definition is well defined and furthermore the triangle inequality,

S/ab|z(t) dt

as follows.

t) dt
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21.

22.

23.

and fundamental theorem of calculus,

(Z(/atz(s)ds> — ()

hold along with any other interesting properties of integrals which are true.

For V, W two inner product spaces, define

/b\If(t)dteﬁ(V,W)

b
<w, / U (1) dt (v)>

Show this is well defined and does indeed give f: U (t)dt € L(V,W). Also show the

triangle inequality
b
/ U (t)dt

where ||-|| is the operator norm and verify the fundamental theorem of calculus holds.

as follows.

b
/ (w0, T (1) v) dt.

b
g/ 1 (1)) dt

!

(/at\Il(s)ds> =T ().

Also verify the usual properties of integrals continue to hold such as the fact the

integral is linear and
b c c
/ \I/(t)dt+/ ‘Il(t)dt:/ U (t)dt
a b a

and similar things. Hint: On showing the triangle inequality, it will help if you use
the fact that

lwly, = sup |(w,v)].
jol<1

You should show this also.

Prove Gronwall’s inequality. Suppose « (t) > 0 and for all ¢ € [0, 7],

¢
u (t) < ug —|—/ Ku(s)ds.
0
where K is some nonnegative constant. Then
u (t) < ugeft.

Hint: w(t) = fot u(s)ds. Then using the fundamental theorem of calculus, w (t)
satisfies the following.

u(t) — Kw(t) =w'(t) — Kw (t) < ug, w(0) =0.

Now use the usual techniques you saw in an introductory differential equations class.
Multiply both sides of the above inequality by e *?* and note the resulting left side is
now a total derivative. Integrate both sides from 0 to t and see what you have got. If
you have problems, look ahead in the book. This inequality is proved later in Theorem
D.4.3.

With Gronwall’s inequality and the integral defined in Problem 21 with its properties
listed there, prove there is at most one solution to the initial value problem

y' = Ay, y (0) = yo.
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Hint: If there are two solutions, subtract them and call the result z. Then
z' = Az, z(0) = 0.
It follows .
z(t) = O—|—/0 Az (s)ds
and so :
|z (8)]] < /O [A[ ]z (s)]| ds
Now consider Gronwall’s inequality of Problem 22.

24. Suppose A is a matrix which has the property that whenever p € o (4), Rep < 0.
Consider the initial value problem

y = Ay,y (0) = yo.

The existence and uniqueness of a solution to this equation has been established above
in preceding problems, Problem 17 to 23. Show that in this case where the real parts
of the eigenvalues are all negative, the solution to the initial value problem satisfies

lim y (t) = 0.

t—o0

Hint: A nice way to approach this problem is to show you can reduce it to the
consideration of the initial value problem

z' = Jez, z(0) = 2o

vu---v---v----v---vu---v---vv--vv--vv---v---ov--vv--vv--ovv--vv-cvv-cov-coAlcateluLUcent 0
www.alcatel-lucent.com/careers
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25.

26.

27.

where J. is the modified Jordan canonical form where instead of ones down the main
diagonal, there are e down the main diagonal (Problem 19). Then

z =Dz + N,z

where D is the diagonal matrix obtained from the eigenvalues of A and N, is a nilpotent
matrix commuting with D which is very small provided € is chosen very small. Now
let U (¢) be the solution of
V' =-DU, ¥ (0)=1

described earlier as

> (—1)F ¢k Dk

DT

k=0

Thus ¥ (t) commutes with D and N.. Tell why. Next argue
(¥ (t)z) = ¥ (t) Nea (1)

and integrate from 0 to ¢. Then

U (t)z(t) —zo = /0 U (s) Nez (s) ds.

It follows .
W (#)z (1) < ||z0||—|—/0 [[Ne[| [[¥ (s) z (s)]] ds.

It follows from Gronwall’s inequality
1 () 2 (6)]] < [[zo]| e ™=II

Now look closely at the form of W (¢) to get an estimate which is interesting. Explain
why
ekt 0

()=
0 eHnt

and now observe that if € is chosen small enough, || V|| is so small that each component
of z (t) converges to 0.

Using Problem 24 show that if A is a matrix having the real parts of all eigenvalues
less than 0 then if
U (t)=A¥(t), ¥(0)=1
it follows
lim ¥ (¢) = 0.

t—o00

Hint: Consider the columns of ¥ (¢)?
Let ¥ (t) be a fundamental matrix satisfying
U (t) = AV (), ¥ (0) =1.

Show ¥ (t)" = ¥ (nt) . Hint: Subtract and show the difference satisfies ®' = A®, & (0) =
0. Use uniqueness.

If the real parts of the eigenvalues of A are all negative, show that for every positive
L,
lim ¥ (nt) =0.

n—oo

Hint: Pick Re (o (A4)) < —A < 0 and use Problem 18 about the spectrum of W (¢)
and Gelfand’s theorem for the spectral radius along with Problem 26 to argue that
H\IJ (nt) /e_)‘”tH < 1 for all n large enough.
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28. Let H be a Hermitian matrix. (H = H*). Show that f = > (if!)n is unitary.

n=0

29. Show the converse of the above exercise. If V is unitary, then V = e# for some H
Hermitian.

30. If U is unitary and does not have —1 as an eigenvalue so that (I + U )_1 exists, show
that
H=i(I-U)I+U)""

is Hermitian. Then, verify that

U=I+iH)(I—iH)™".

31. Suppose that A € L(V,V) where V is a normed linear space. Also suppose that
[lA]] < 1 where this refers to the operator norm on A. Verify that

(I—A)"'= im
1=0

This is called the Neumann series. Suppose now that you only know the algebraic
condition p (4) < 1. Is it still the case that the Neumann series converges to (I — A)™"?
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Chapter 14

Numerical Methods,
Eigenvalues

14.1 The Power Method For Eigenvalues

This chapter discusses numerical methods for finding eigenvalues. However, to do this
correctly, you must include numerical analysis considerations which are distinct from linear
algebra. The purpose of this chapter is to give an introduction to some numerical methods
without leaving the context of linear algebra. In addition, some examples are given which
make use of computer algebra systems. For a more thorough discussion, you should see
books on numerical methods in linear algebra like some listed in the references.

Let A be a complex p X p matrix and suppose that it has distinct eigenvalues

{Alv"' )Aﬂl}

and that [A1] > |\g| for all k. Also let the Jordan form of A be

J1

Im

with J; an m; X m; matrix.
Jp = Al + N

where N;* # 0 but NJ* ™' = 0. Also let
P lAP=J, A=PJP7 L.

Now fix x € FP. Take Ax and let s; be the entry of the vector Ax which has largest
absolute value. Thus Ax/s; is a vector y; which has a component of 1 and every other

entry of this vector has magnitude no larger than 1. If the scalars {s1,---,s,—1} and
vectors {y1, -+ ,¥n—1} have been obtained, let y,, = Ay, _1/s, where s, is the entry of
Ay,,_1 which has largest absolute value. Thus
AAy, A"
y, = S0Yn=2 x (14.1)
SpSn—1 SpnSn—1"'"S1
JT
1 -1
= P P 'x
SnSn—1"""S1
I
—n 1N
" AT
= — _p P 'x (14.2)
SnSn—1"""S1
A JR
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Consider one of the blocks in the Jordan form. First consider the k** of these blocks,
k > 1. It equals

Tk

—n Jn n —n\n—1i p\Tt
AT :Z<i))\1 APTING

i=0
which clearly converges to 0 as n — oo since |A1| > |Agx|. An application of the ratio test or
root test for each term in the sum will show this. When k£ = 1, this block is

1

AR =T = Y (’;) ATTATTINT = (;‘1) AN + e]

=0

where lim,,_,., e, = 0 because it is a sum of bounded matrices which are multiplied by
(")/(T"l) This quotient converges to 0 as n — oo because ¢ < r1. It follows that 14.2 is of

7
the form

Yn = 7>\? (n)P ( AN e 0 > P 'x Eixf <n>Wn
SnSn—1-"-81 \"1 0 E, SnSn—1---81 \ri

where E,, — 0,e,, — 0. Let (P_lx)m1 denote the first my entries of the vector P~ 1x.

Unless a very unlucky choice for x was picked, it will follow that (P‘lx)m1 ¢ ker (N7).
Then for large n, y, is close to the vector

n —TlN’I‘l n
7)\1 (n)P< M i 0 )P‘lxz/\l <n>wzz750
SnSn—1-"°51 \I'1 0 0 SnSn—1-°°""S1 \I't

However, this is an eigenvector because

A—X T
———— [ \{"'N]* 0
(A—)\ll)w:P(J—)qI)P_lP< ! 0 ! 0 )P—1x=
Ny A TUNT
P PP P 'x
Jm — M1 0
—T1 1
_op MMM 0 by g
0 0

Recall NT 171 — 0. Now you could recover an approximation to the eigenvalue as follows.

(Ayn, yn) _ (Az,z)

Gryn) - @z M

Here ~ means “approximately equal”. However, there is a more convenient way to identify
the eigenvalue in terms of the scaling factors sy.

)\’IL
Sp 81 \T'1 oo

Pick the largest nonzero entry of w, w;. Then for large n, it is also likely the case that
the largest entry of w, will be in the I*" position because w,, is close to w. From the

construction,
AT n AT n
— Wy =18 ——— wy
Sp 81\ Sp 81\

In other words, for large n
A'I’L
A S <n> ~ 1/w
Sn 81\
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Therefore, for large n,

AT (n) N At (n + 1)
Snpro 81\ Sn+18n - 51 1

<n>/<n + 1) !
T1 1 Sp+1
But lim,, (T"I)/(":l) =1 and so, for large n it must be the case that A\; &~ sp,41.

This has proved the following theorem which justifies the power method.

and so

Theorem 14.1.1 Let A be a complex p X p matriz such that the eigenvalues are
{)‘17 >‘2a e 7>\T}
with [A1] > || for all j # 1. Then for x a given vector, let

| ax

y1 =
S1

where s1 s an entry of Ax which has the largest absolute value. If the scalars {s1,--+ ,Sn—1}
and vectors {y1, -+ ,¥n—1} have been obtained, let

— AYn—l
= —Sn

Yn

where s, is the entry of Ay,_1 which has largest absolute value. Then it is probably the
case that {s,} will converge to \y and {y,} will converge to an eigenvector associated with
A1. If it doesn’t, you picked an incredibly inauspicious initial vector x.
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In summary, here is the procedure.
Finding the largest eigenvalue with its eigenvector.

1. Start with a vector, u; which you hope is not unlucky.

2. If uy is known,
Auk

Sk+1

Ugy1 =

where si41 is the entry of Aug which has largest absolute value.

3. When the scaling factors sy are not changing much, sx41 will be close to the eigenvalue
and ug41 will be close to an eigenvector.

4. Check your answer to see if it worked well. If things don’t work well, try another u;.
You were miraculously unlucky in your choice.

5 —-14 11
Example 14.1.2 Find the largest eigenvalue of A = -4 4 -4
3 6 -3

You can begin with u;=(1,---, 1)T and apply the above procedure. However, you can

accelerate the process if you begin with A™u; and then divide by the largest entry to get
the first approximate eigenvector. Thus

20
5 —14 11 1 2.5558 x 102!
-4 4 -4 1 | =] —=1.2779 x 102!
3 6 -3 1 —3.6562 x 1015

Divide by the largest entry to obtain a good aproximation.

2.5558 x 102! . 1.0
_ 21 - _

L2779 x 107 | o 0.5
~3.6562 x 10'° ~1.4306 x 10~°

Now begin with this one.

5 —14 11 1.0 12. 000
-4 4  —4 —0.5 = —6.0000
3 6 -3 —1.4306 x 1076 4.2918 x 106

Divide by 12 to get the next iterate.

12.000 ) 1.0
—6.0000 — = -0.5
4.2918 x 106 3.5765 x 10~7

Another iteration will reveal that the scaling factor is still 12. Thus this is an approxi-
mate eigenvalue. In fact, it is the largest eigenvalue and the corresponding eigenvector

is( 1.0 —-05 0 ) . The process has worked very well.

14.1.1 The Shifted Inverse Power Method

This method can find various eigenvalues and eigenvectors. It is a significant generalization
of the above simple procedure and yields very good results. One can find complex eigenvalues
using this method. The situation is this: You have a number « which is close to A, some
eigenvalue of an n x n matrix A. You don’t know A but you know that « is closer to A
than to any other eigenvalue. Your problem is to find both A and an eigenvector which goes
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with A. Another way to look at this is to start with « and seek the eigenvalue A, which is
closest to « along with an eigenvector associated with A. If « is an eigenvalue of A, then
you have what you want. Therefore, I will always assume « is not an eigenvalue of A and
so (A — o)™ " exists. The method is based on the following lemma.

Lemma 14.1.3 Let {)‘k}zzl be the eigenvalues of A. If xi is an eigenvector of A for the
eigenvalue Ny, then xy is an eigenvector for (A —od) ™"

1 .
o Conversely, if

corresponding to the eigenvalue

1
A—a«

(A—al) 'y = y (14.3)
andy # 0, then Ay = \y.
Proof: Let A\, and x; be as described in the statement of the lemma. Then
(A—al)x, = (A —a)x
and so

1
)\kfa

x, = (A— 04])_1 Xf.

Suppose 14.3. Then y zﬁ [Ay — ayy]. Solving for Ay leads to Ay = \y. B

Now assume « is closer to A than to any other eigenvalue. Then the magnitude of ﬁ
is greater than the magnitude of all the other eigenvalues of (A4 — ol )71. Therefore, the
power method applied to (A — OzI)71 will yield ﬁ You end up with s,41 ~ —— and

A—a
solve for .

14.1.2 The Explicit Description Of The Method

Here is how you use this method to find the eigenvalue closest to a and the
corresponding eigenvector.

1. Find (A—al)™ ",
2. Pick u;. If you are not phenomenally unlucky, the iterations will converge.

3. If ui has been obtained,
(A—al) ' u,

Sk+1

Upr1 =

where s41 is the entry of (4 — af )_1 u; which has largest absolute value.

4. When the scaling factors, si are not changing much and the u are not changing much,
find the approximation to the eigenvalue by solving

1
-«

Sk+1 = N

for A. The eigenvector is approximated by ug1.

5. Check your work by multiplying by the original matrix to see how well what you have
found works.

Thus this amounts to the power method for the matrix (A — OJ)_1 but you are free to
pick a.

5 —-14 11
Example 14.1.4 Find the eigenvalue of A = -4 4 -4 which is closest to —7.
3 6 -3

Also find an eigenvector which goes with this eigenvalue.
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In this case the eigenvalues are —6,0, and 12 so the correct answer is —6 for the
eigenvalue. Then from the above procedure, I will start with an initial vector, u; =

T
( 1 11 ) . Then I must solve the following equation.

5 —-14 11 1 0 0 1
-4 4 -4 |+71 0 1 0 y | =11
3 6 -3 0 0 1 z 1

Simplifying the matrix on the left, I must solve

12 -14 11 T 1
-4 11 -4 =11
3 6 4 z 1

and then divide by the entry which has largest absolute value to obtain

1.0
Ug = .184
—.76
Now solve
12 —-14 11 T 1.0
-4 11 -4 y | = 184
3 6 4 z —.76
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and divide by the largest entry, 1.0515 to get

1.0
uz = .0266
—.97061
Solve
12 —-14 11 T 1.0
-4 11 -4 y | = .0266
3 6 4 z —.97061
and divide by the largest entry, 1.01 to get
1.0
uys=| 3.8454 x 1073
—.996 04

These scaling factors are pretty close after these few iterations. Therefore, the predicted
eigenvalue is obtained by solving the following for A.

1
—— =1.01
A+T7
which gives A = —6.01. You see this is pretty close. In this case the eigenvalue closest to

—7 was —6.
How would you know what to start with for an initial guess? You might apply Ger-
schgorin’s theorem. However, sometimes you can begin with a better estimate.

Example 14.1.5 Consider the symmetric matrix A = . Find the middle

W N =
== N
N = W

eigenvalue and an eigenvector which goes with it.

Since A is symmetric, it follows it has three real eigenvalues which are solutions to

p(A)

1
det | A O
0

o = O

0 1 2
0l—-121
1 3 4

N B~ W

= N4\ -24\—-17=0

If you use your graphing calculator to graph this polynomial, you find there is an eigenvalue
somewhere between —.9 and —.8 and that this is the middle eigenvalue. Of course you could
zoom in and find it very accurately without much trouble but what about the eigenvector
which goes with it? If you try to solve

1 00 1 2 3 x 0
(-8l o 10 |—-|214 y | =1 o
00 1 3.4 2 2 0

there will be only the zero solution because the matrix on the left will be invertible and the
same will be true if you replace —.8 with a better approximation like —.86 or —.855. This is
because all these are only approximations to the eigenvalue and so the matrix in the above
is nonsingular for all of these. Therefore, you will only get the zero solution and

Eigenvectors are never equal to zero!
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However, there exists such an eigenvector and you can find it using the shifted inverse power
method. Pick @ = —.855. Then you solve

1 2 3 1 00 x 1
2 1 4 |+85] 0 1 0 y | =11
3 4 2 0 0 1 z 1
or in other words,
1.855 2.0 3.0 x 1
2.0 1.855 4.0 y |=11
3.0 4.0 2.855 z 1

and after finding the solution, divide by the largest entry —67.944, to obtain

1.0
uz = | —.58921
—.23044
After a couple more iterations, you obtain
1.0
ug = | —.58777 (14.4)
—.22714

Then doing it again, the scaling factor is —513.42 and the next iterate is

1.0
ug = | —.58778
—.22714

Clearly the uj are not changing much. This suggests an approximate eigenvector for this
eigenvalue which is close to —.855 is the above us and an eigenvalue is obtained by solving

1
———— = —513.42
A+ .855 513.42,
which yields A = —0.856 95 Lets check this.
1 2 3 1.0 —0.856 98
2 1 4 —.b8778 0.503 66
3 4 2 —.22714 0.1946
1.0 —0.856 95
—0.85695 | —.58777 0.503 69
—.22714 0.19465

Thus the vector of 14.4 is very close to the desired eigenvector, just as —. 8569 is very close
to the desired eigenvalue. For practical purposes, I have found both the eigenvector and the
eigenvalue.

Example 14.1.6 Find the eigenvalues and eigenvectors of the matrix A =

W NN

1 3
11
2 1

This is only a 3x3 matrix and so it is not hard to estimate the eigenvalues. Just get
the characteristic equation, graph it using a calculator and zoom in to find the eigenvalues.
If you do this, you find there is an eigenvalue near —1.2, one near —.4, and one near 5.5.
(The characteristic equation is 2 + 8\ + 4X* — X\* = 0.) Of course I have no idea what the
eigenvectors are.
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Lets first try to find the eigenvector and a better approximation for the eigenvalue near

—1.2. In this case, let a = —1.2. Then

—25.357143 —33.928571

(A—al)™ ' = 12.5

23.214286  30.357143

50.0
—25.0
—45.0

As before, it helps to get things started if you raise to a power and then go from the

approximate eigenvector obtained.

—25.357143 —33.928571  50.0
12.5 17.5 -25.0
23.214286  30.357143 —45.0

Then the next iterate will be

—92.2956 x 101!
1.1291 x 101!
2.0865 x 10!

1

Next iterate:

—25.357143 —33.928571  50.0
12.5 17.5 —25.0
23.214 286 30.357143 —45.0

Brain power
. .y

¢

Plug into The Power of Knowle‘ngineering.
Visit,us/atOniv. ski.com/knowledgess

—2.2956 x 1011

—2.2956 x 1011
1.1291 x 101!
2.0865 x 1011

1.0
—0.49185
—0.908 91

—54.115

—0.49185 | = 26.615
—0.908 91 49.184
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Divide by largest entry

—54.115 1 1.0
49.184 —0.908 88

You can see the vector didn’t change much and so the next scaling factor will not be much
different than this one. Hence you need to solve for A

1
= —54.115
A+1.2

Then A = —1.2185 is an approximate eigenvalue and

1.0
—0.49182
—0.908 88

is an approximate eigenvector. How well does it work?

2 1 3 1.0 ~1.2185
2 1 1 —0.49182 | = 0.5993
32 1 —0.908 88 1.1075
1.0 ~1.2185

(-1.2185) | —0.49182 | = 0.599 28
—0.90888 1.1075

You can see that for practical purposes, this has found the eigenvalue closest to —1.2185
and the corresponding eigenvector.

The other eigenvectors and eigenvalues can be found similarly. In the case of —.4, you
could let & = —.4 and then

8.0645161 x 10-2 —9.2741935 6.4516129
(A—al) ' = —.40322581 11.370968  —7.2580645
.403225 81 3.6290323 —2.7419355

Following the procedure of the power method, you find that after about 5 iterations, the
scaling factor is 9. 7573139, they are not changing much, and

—. 7812248
U5 = 1.0
.264 936 88

Thus the approximate eigenvalue is

L =9.7573139

A+ 4
which shows A = —.297512 78 is an approximation to the eigenvalue near .4. How well does
it work?
2 1 3 —.7812248 23236104
2 1 1 1.0 = | —.29751272
3 21 . 264936 88 —.07873752
—.7812248 .232424 36
—.29751278 1.0 = —.29751278
.264 936 88 —7.8822108 x 1072

Download free eBooks at bookboon.com



It works pretty well. For practical purposes, the eigenvalue and eigenvector have now been
found. If you want better accuracy, you could just continue iterating. One can find the
eigenvector corresponding to the eigenvalue nearest 5.5 the same way.

14.1.3 Complex Eigenvalues

What about complex eigenvalues? If your matrix is real, you won’t see these by graphing
the characteristic equation on your calculator. Will the shifted inverse power method find
these eigenvalues and their associated eigenvectors? The answer is yes. However, for a real
matrix, you must pick a to be complex. This is because the eigenvalues occur in conjugate
pairs so if you don’t pick it complex, it will be the same distance between any conjugate
pair of complex numbers and so nothing in the above argument for convergence implies you
will get convergence to a complex number. Also, the process of iteration will yield only real
vectors and scalars.

Example 14.1.7 Find the complex eigenvalues and corresponding eigenvectors for the ma-

triz
5 -8 6
1 0 0
0O 1 0

Here the characteristic equation is A*> — 5A% + 8\ — 6 = 0. One solution is A = 3. The
other two are 144 and 1 — 4. I will apply the process to o = i to find the eigenvalue closest
to <.

—.02—.14¢ 1.244 .68 —.84+.12¢
(A—al) "= —144+.02i .68—.24i .12+ .84
02+ .14¢ —.24—.68; .84+ .88i

Then let u; = (1,1, 1)T for lack of any insight into anything better.

20
—-02—-.147 1.244 .68 —.84+.12¢ 1
—.14+.02¢ .68—.24¢ A2+ .84 1
02+.147 —.24—- .68 .84+ .88 1

—0.40000 + 0.8¢
= 0.20000 + 0.62
0.40000 + 0.2z

Now divide by the largest entry to get the next iterate. This yields for an approximate
eigenvector approximately

—0.40000 + 0.8¢ ] 1.0
0.40000 + 0.2¢ —0.57
Now leaving off extremely small terms,
—02—-.147 1.244.68: —.84+ .12 1.0
—.14+.02¢ .68—.24¢ .12 4 .84¢ 0.5—-05: | =
02+ .14¢ —.24— .68 .84+ .88 —0.5¢
1.0
0.5 —-0.5¢
—0.5¢
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so it appears that an eigenvector is the above and an eigenvalue can be obtained by solving

ﬁ =1, s0A=1+1
The method has successfully found the complex eigenvalue closest to 7 as well as the eigen-
vector. Note that I used essentially 20 iterations of the method.
This illustrates an interesting topic which leads to many related topics. If you have a
polynomial, 2* + az3 + bxz? + cx + d, you can consider it as the characteristic polynomial of
a certain matrix, called a companion matrix. In this case,

—a —-b —c —d

The above example was just a companion matrix for A* — 5A% + 8\ — 6. You can see the
pattern which will enable you to obtain a companion matrix for any polynomial of the form
A"+ al/\"_1 4+ an_1\ + a,. This illustrates that one way to find the complex zeros
of a polynomial is to use the shifted inverse power method on a companion matrix for the
polynomial. Doubtless there are better ways but this does illustrate how impressive this
procedure is. Do you have a better way?

Note that the shifted inverse power method is a way you can begin with something close
but not equal to an eigenvalue and end up with something close to an eigenvector.

(]
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14.1.4 Rayleigh Quotients And Estimates for Eigenvalues

There are many specialized results concerning the eigenvalues and eigenvectors for Hermitian
matrices. Recall a matrix A is Hermitian if A = A* where A* means to take the transpose
of the conjugate of A. In the case of a real matrix, Hermitian reduces to symmetric. Recall

also that for x € F™,
n
2 2
x| =x"x = Jayl*
=1

Recall the following corollary found on Page 168 which is stated here for convenience.

Corollary 14.1.8 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors.

Thus for {x;},_, this orthonormal basis,

" lifi=y
X;Xj =0 = e
0ifi+#j

For x € F"", x # 0, the Rayleigh quotient is defined by

Now let the eigenvalues of A be A\; < Ag < -++ < A\, and Axy, = A\pxy where {x;},_, is
the above orthonormal basis of eigenvectors mentioned in the corollary. Then if x is an
arbitrary vector, there exist constants, a; such that

n
X = E a;X;.
i=1

Also,

n

n n

2 _ j— * _ — * . — 5 _ 2

‘X| = a;X; a;X; = a;a;X; X5 = ;@055 = |CL1| .
i=1 j=1 i ij

i=1

Therefore,

x* Ax (Z?:l aixf) (Z?:l aj)‘jxj) _ Zij Eiaj)\jxij

2 = 2 2
|X| Z?:l ‘al| Z?:l ‘al|
@A S fag
= 2 = 2
iz ladl iz ladl
In other words, the Rayleigh quotient is always between the largest and the smallest eigenval-
ues of A. When x = x,,, the Rayleigh quotient equals the largest eigenvalue and when x = x;

the Rayleigh quotient equals the smallest eigenvalue. Suppose you calculate a Rayleigh quo-
tient. How close is it to some eigenvalue?

S [)\1, )\n] .

Theorem 14.1.9 Let x # 0 and form the Rayleigh quotient,
x* Ax

1|”

Il
2

Then there exists an eigenvalue of A, denoted here by Ay such that

Ax —
IAq—qléi‘ x|, (14.5)

]
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Proof: Let x = Y_}'_; apxy, where {x;},_, is the orthonormal basis of eigenvectors.
[Ax — gx|* = (Ax — qx)" (Ax — gx)

= (Z AR ARXE — qakxk> (Z AR ARX) — qakxk>

k=1 k=1

j=1 k=1

= 1Y\ —9ax; (Z (A —q) aka)

=Y 0 - 0 v - D
7,k

= lal* v — )’
k=1

Now pick the eigenvalue A\, which is closest to q. Then

n n

[Ax = gx* =D Jarl* O = 0)* = (g = @)* Y lanl* = (g — @) x|

k=1 k=1
which implies 14.5. B
1 2 3
Example 14.1.10 Consider the symmetric matric A= | 2 2 1 |. Let x=(1,1, 1)T .
3 1 4
How close is the Rayleigh quotient to some eigenvalue of A? Find the eigenvector and eigen-

value to several decimal places.

Everything is real and so there is no need to worry about taking conjugates. Therefore,
the Rayleigh quotient is

1 2 3 1
(111) 2 21 1
3 1 4 1 19
3 )

According to the above theorem, there is some eigenvalue of this matrix A, such that

1 2 3
2 21
3 1 4

l_;’_ 42_|_ 5)2
- o (i/)ﬁ ) —1.2472

Could you find this eigenvalue and associated eigenvector? Of course you could. This is
what the shifted inverse power method is all about.

Solve
1 2 3 1 0 0 1
19
2 2 1 -3 0 1 0 y | = 1
3 1 4 0 0 1 z 1
In other words solve
-2 2 3 1
13 _
2 -3 1 = 1
7
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and divide by the entry which is largest, 3.8707, to get

.699 25
u, = | .49389
1.0
Now solve
-5 2 3 x .699 25
2 - y | =] -49389
3 1 -1 2 1.0

3
and divide by the largest entry, 2.9979 to get

71473
.52263

Now solve

92263
1.0

16
— 1 ) .71473
_3
3

and divide by the largest entry, 3.0454, to get

L7137
.52056
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Solve

-2 2 3 x 7137
2 -8B 1 y | = 52056
31 -1 z 1.0

3
and divide by the largest entry, 3.0421 to get

L71378
us — .52073
1.0

You can see these scaling factors are not changing much. The predicted eigenvalue is then
about

1 19
30121 + 3= 6.662 1.
How close is this?
1 2 3 .71378 4.7552
2 2 1 .52073 = 3.469
3 1 4 1.0 6.6621
while
.71378 4.7553
6.6621 | .52073 | = | 3.4692
1.0 6.6621

You see that for practical purposes, this has found the eigenvalue and an eigenvector.

14.2 The QR Algorithm

14.2.1 Basic Properties And Definition

Recall the theorem about the QR factorization in Theorem 5.7.5. It says that given an nxn
real matrix A, there exists a real orthogonal matrix @) and an upper triangular matrix R such
that A = QR and that this factorization can be accomplished by a systematic procedure.
One such procedure was given in proving this theorem.

Theorem 14.2.1 Let A be an m X n complex matriz. Then there exists a unitary Q@ and
R, where R is all zero below the main diagonal (R;; = 0if i > j) such that A = QR.

Proof: This is obvious if m = 1.

(a1 an)Z(l)(al an)

Suppose true for m — 1 and let
Az(al S ay ), A ismxn

There exists @1 a unitary matrix such that @i (a;/|a;|) = e in case a; # 0. Thus
Q1a; = |aj|e;. If a; =0, let Q1 = I. Thus

a b
Q1A=<0 A1>

where A; is (m — 1) x (n —1). If n = 1, this obtains

Q1A=<g>7 A=QT<§>7 let @ = Q7.
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That which is desired is obtained. So assume n > 1. By induction, there exists @) an
(m — 1) x (n — 1) unitary matrix such that @A, = R', R}; = 0if i > j. Then

1 0 a b
(0@ )or=(5 5 )-r

Since the product of unitary matrices is unitary, there exists @ unitary such that Q*A = R
andso A=QR. H » »
The QR algorithm is described in the following definition.

Definition 14.2.2 The QR algorithm is the following. In the description of this algorithm,
Q is unitary and R is upper triangular having nonnegative entries on the main diagonal.
Starting with A an n X n matriz, form

Ay=A=Q1Ry (14.6)
Then
A = RiQq. (14.7)
In general given
Ay = RiQp, (14.8)
obtain Apy1 by
A = Q1 Rr+1, App1 = Ri1Qrt1 (14.9)

This algorithm was proposed by Francis in 1961. The sequence {Ax} is the desired
sequence of iterates. Now with the above definition of the algorithm, here are its properties.
The next lemma shows each of the Ay, is unitarily similar to A and the amazing thing about
this algorithm is that often it becomes increasingly easy to find the eigenvalues of the Ag.

Lemma 14.2.3 Let A be an n xn matriz and let the Q. and Ry be as described in the algo-
rithm. Then each Ay, is unitarily similar to A and denoting by Q™) the product Q1Qs - - - Qs
and R*) the product R Ri_1 -+ Ry, it follows that

AF — Q) g)
(The matriz on the left is A raised to the k" power.)

A=QWA,Q"* A, =QR*AQ™.

Proof: From the algorithm, Ry = Ag11Qj,, and so

Ap = Qri1Rieq1 = Qri1Ap1Qp

Now iterating this, it follows
Ap—1 = QrArQr = QrQrt1Ak+1Q 411 @
Ap—o = Qro1Ap—1Q%_1 = Qr-1QrQr+1 Ak +1Q% 11 Q1 Qi1

etc. Thus, after £ — 2 more iterations,
A= Q(k+1)Ak+1Q(k+l)*

The product of unitary matrices is unitary and so this proves the first claim of the lemma.
Now consider the part about A*. From the algorithm, this is clearly true for k = 1.
(A = QR) Suppose then that

AF =Q1Qs - QpRiRy—1 - Ry

What was just shown indicated

A=@Q1Q2 Qri1Ar1Qr 1 Q- QY

and now from the algorithm, Ax41 = Ri+1Qk+1 and so

A=0Q1Q2 Qry1Riy1 Q1 Q11 Qr - Q1
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Then
AR = AAF =
A
Q1Q2 - Qri1 R 1Qr1 Qi1 Qk - Q1Q1 -+ QrRp Ry -+ Ry
=Q1Q2- Q1R RpRy—1 - Ry = QFHYREHD m

Here is another very interesting lemma.

Lemma 14.2.4 Suppose Q%) Q are unitary and Ry, is upper triangular such that the di-
agonal entries on Ry are all positive and

Q = lim Q™R
k—o0
Then
lim Q™) =Q, lim Ry, = 1.
k—o0

k—o0

Also the QR factorization of A is unique whenever A~ exists.

Proof: Let
Q = (qla’” 7qn)7 Q(k) = (q]fa 7qi€;)

where the q are the columns. Also denote by rfj the ijt" entry of Ry. Thus

™ *
Q(k)Rk: - (qllca e 7q]rcz)
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It follows
k _k
1191 — d1

and so
k kE _k
1= |7’11Q1| —1
Therefore,
q]f — q1-
Next consider the second column.
rioal + 55a5 = qa
Taking the inner product of both sides with q¥ it follows
lim r’f2 = lim (q2 q’f) =(q2-q1)=0.
k—o0 k—o0
Therefore,
lim 7“52‘]]2c =q2
k—o00

and since 75, > 0, it follows as in the first part that r5, — 1. Hence
lim 01’2C = Q2.
k— o0

Continuing this way, it follows

lim 7} =0

k—o0
for all i # j and

. E_ : k_
kli{go i =h klggo 94 = Y-
Thus Ry, — I and Q%) — Q. This proves the first part of the lemma.
The second part follows immediately. If QR = Q'R’ = A where A~! exists, then

QQ=R(R)"’

and I need to show both sides of the above are equal to I. The left side of the above is
unitary and the right side is upper triangular having positive entries on the diagonal. This
is because the inverse of such an upper triangular matrix having positive entries on the
main diagonal is still upper triangular having positive entries on the main diagonal and
the product of two such upper triangular matrices gives another of the same form having
positive entries on the main diagonal. Suppose then that @ = R where @ is unitary and R
is upper triangular having positive entries on the main diagonal. Let Q; = @ and Ry = R.
It follows
IR, - R=Q

and so from the first part, Ry — I but Ry = R and so R = I. Thus applying this to
Q*Q' =R (R’)f1 yields both sides equal 7. B

A case of all this is of great interest. Suppose A has a largest eigenvalue A\ which is
real. Then A™ is of the form (A"_lal, e 7A"‘lan) and so likely each of these columns
will be pointing roughly in the direction of an eigenvector of A which corresponds to this
eigenvalue. Then when you do the QR factorization of this, it follows from the fact that R
is upper triangular, that the first column of @ will be a multiple of A" 'a; and so will end
up being roughly parallel to the eigenvector desired. Also this will require the entries below
the top in the first column of 4,, = Q7 AQ will all be small because they will be of the form
al' Aq; = A\qF'q1 = 0. Therefore, A4,, will be of the form

(23
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where e is small. It follows that A" will be close to A and q; will be close to an eigenvector for
A. Then if you like, you could do the same thing with the matrix B to obtain approximations
for the other eigenvalues. Finally, you could use the shifted inverse power method to get
more exact solutions.

14.2.2 The Case Of Real Eigenvalues

With these lemmas, it is possible to prove that for the QR algorithm and certain conditions,
the sequence Ay converges pointwise to an upper triangular matrix having the eigenvalues
of A down the diagonal. I will assume all the matrices are real here.

1

0
You can verify quickly that the algorithm will return this matrix for each k. The problem
here is that, although the matrix has the two eigenvalues —1, 1, they have the same absolute
value. The QR algorithm works in somewhat the same way as the power method, exploiting
differences in the size of the eigenvalues.

If A has all real eigenvalues and you are interested in finding these eigenvalues along
with the corresponding eigenvectors, you could always consider A + AI instead where A is
sufficiently large and positive that A+ AI has all positive eigenvalues. (Recall Gerschgorin’s
theorem.) Then if y is an eigenvalue of A + A\I with

This convergence won’t always happen. Consider for example the matrix

(A+A)x =px

then
Ax=(p—A)x

so to find the eigenvalues of A you just subtract A from the eigenvalues of A + A\I. Thus
there is no loss of generality in assuming at the outset that the eigenvalues of A are all
positive. Here is the theorem. It involves a technical condition which will often hold. The
proof presented here follows [27] and is a special case of that presented in this reference.

Before giving the proof, note that the product of upper triangular matrices is upper
triangular. If they both have positive entries on the main diagonal so will the product.
Furthermore, the inverse of an upper triangular matrix is upper triangular. I will use these
simple facts without much comment whenever convenient.

Theorem 14.2.5 Let A be a real matrix having eigenvalues

AM>A>--> AN, >0

and let
A=S8DS™! (14.10)

where

0 An

and suppose S™' has an LU factorization. Then the matrices Ay in the QR algorithm
described above converge to an upper triangular matriz T’ having the eigenvalues of A,
A, A\n descending on the main diagonal. The matrices Q%) converge to Q', an orthog-
onal matrix which equals Q except for possibly having some columns multiplied by —1 for Q
the unitary part of the QR factorization of S,

5 =QR,

and
lim A, =T = QTAQ’
k— o0
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Proof: From Lemma 14.2.3
AR = QWRM = gpkg—1 (14.11)

Let S = QR where this is just a QR factorization which is known to exist and let S~ = LU
which is assumed to exist. Thus

QWR® = QRD*LU (14.12)
and so
QWR® = QRD*LU = QRD*LD~*D*U
That matrix in the middle, D* LD~* satisfics

(DFLD™F), = AfLijA; " for j <, 0if j > .

P

Thus for j < i the expression converges to 0 because A; > \; when this happens. When
i = j it reduces to 1. Thus the matrix in the middle is of the form I + Ej where E;, — 0.
Then it follows

Ak = QWRM = QR (I + E;,) D*U

=Q (I + RExR™') RD*U = Q (I + F};) RD*U

where I}, — 0. Then let I + Fj, = Qi Ry where this is another QR factorization. Then it
reduces to

QWR® = QQ,R.RD*U

This looks really interesting because by Lemma 14.2.4 Q — I and Ry — I because
QxR = (I + Fy) — 1. So it follows QQy is an orthogonal matrix converging to ) while
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RL,RD*U (R(k)) o

is upper triangular, being the product of upper triangular matrices. Unfortunately, it is not
known that the diagonal entries of this matrix are nonnegative because of the U. Let A be
just like the identity matrix but having some of the ones replaced with —1 in such a way

that AU is an upper triangular matrix having positive diagonal entries. Note A? = I and
also A commutes with a diagonal matrix. Thus

QWR™ = QQiRyRD*A’U = QQy R, RAD" (AU)
At this point, one does some inspired massaging to write the above in the form
QQx (AD¥) [(AD*) ™" ReRAD"| (AU)

= Q(Qxh) D" [(AD*) ™" RyRAD*| (AU)

EGk

= Q(QxA) D* [(AD’“)_I RkRAD’“} (AV)

Now I claim the middle matrix in [-] is upper triangular and has all positive entries on the
diagonal. This is because it is an upper triangular matrix which is similar to the upper
triangular matrix RiR and so it has the same eigenvalues (diagonal entries) as RxR. Thus

the matrix G, = D* [(AD’“)_1 RkRADk} (AU) is upper triangular and has all positive
entries on the diagonal. Multiply on the right by G;l to get
QWRWG ! = QQiA = Q'

where @' is essentially equal to @ but might have some of the columns multiplied by —1.
This is because @ — I and so QA — A. Now by Lemma 14.2.4, it follows

QW - @', RPG ' - 1.

It remains to verify A converges to an upper triangular matrix. Recall that from 14.11
and the definition below this (S = QR)

A=SDS™' = (QR)D(QR)"' = QRDR™'Q" = QTQ"

Where T is an upper triangular matrix. This is because it is the product of upper triangular
matrices R, D, R~'. Thus QT AQ = T. If you replace Q with @’ in the above, it still results
in an upper triangular matrix 7" having the same diagonal entries as T. This is because

T=QTAQ = (Q/A)T A(Q'AN) = AQTAQ'A
and considering the ii*" entry yields

QTAQ ZA” 'TAQ p Mo = Nig Ay (QITAQ/)M = (Q/TAQ,)M

Recall from Lemma 14.2.3, 4, = QWTAQ®). Thus taking a limit and using the first
part,
A =QWTAQW - QTAQ =T'. 1

An easy case is for A symmetric. Recall Corollary 6.4.13. By this corollary, there exists
an orthogonal (real unitary) matrix @ such that

QTAQ =D

where D is diagonal having the eigenvalues on the main diagonal decreasing in size from the
upper left corner to the lower right.
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Corollary 14.2.6 Let A be a real symmetric n X n matriz having eigenvalues
M>X>--> )\, >0

and let Q be defined by
QDQT = A, D=QTAQ, (14.13)

where Q is orthogonal and D is a diagonal matriz having the eigenvalues on the main
diagonal decreasing in size from the upper left corner to the lower right. Let QT have an
LU factorization. Then in the QR algorithm, the matrices Q%) converge to Q' where Q' is
the same as Q except having some columns multiplied by (—1). Thus the columns of Q' are
eitgenvectors of A. The matrices Ay converge to D.

Proof: This follows from Theorem 14.2.5. Here S = Q,S~! = Q. Thus
Q=5=QR
and R = I. By Theorem 14.2.5 and Lemma 14.2.3,
A= QWTAQW - QTAQ = QTAQ = D.

because formula 14.13 is unaffected by replacing @ with @’. B

When using the QR algorithm, it is not necessary to check technical condition about
S~! having an LU factorization. The algorithm delivers a sequence of matrices which are
similar to the original one. If that sequence converges to an upper triangular matrix, then
the algorithm worked. Furthermore, the technical condition is sufficient but not necessary.
The algorithm will work even without the technical condition.

Example 14.2.7 Find the eigenvalues and eigenvectors of the matrix

5 1
A= 1 3
1 2

— N

It is a symmetric matrix but other than that, I just pulled it out of the air. By Lemma
14.2.3 it follows Ay = QWTAQ®). And so to get to the answer quickly I could have the
computer raise A to a power and then take the QR factorization of what results to get the
kth iteration using the above formula. Lets pick k = 10.

5 1 1 4.2273 x 107 2.5959 x 107 1.8611 x 107
1 3 2 =] 2.5959 x 107 1.6072 x 107 1.1506 x 107
1 2 1 1.8611 x 107 1.1506 x 107 8.2396 x 10°

Now take QR factorization of this. The computer will do that also.
This yields

79785 —.59912 —6.6943 x 1072

.48995  .70912 —.50706

.35126 .37176 .85931

5.2083 x 107 3.2627 x 107 2.338 x 107
0 1.2172 x 10° 71946.
0 0 277.03
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Next it follows

79785 —.59912 —6.6943 x 1072

A = 48995  .70912 —. 50706
.36126 .37176 .85931
5 1 1 79785 —.59912 —6.6943 x 1072
1 3 2 .48995 . 70912 —. 50706
1 21 .35126 .37176 .85931

and this equals

6.0571 3.698 x 10~3 3.4346 x 107°
3.698 x 1073 3.2008 —4.0643 x 1074
3.4346 x 107° —4.0643 x 1074 —.2579

By Gerschgorin’s theorem, the eigenvalues are pretty close to the diagonal entries of the
above matrix. Note I didn’t use the theorem, just Lemma 14.2.3 and Gerschgorin’s theorem
to verify the eigenvalues are close to the above numbers. The eigenvectors are close to

.79785 —.59912 —6.6943 x 102
48995 |, .70912 , —.50706
.35126 .37176 .85931
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Lets check one of these.

5 1 1 100 79785
132 |-60571[ 0 1 0 148995
121 00 1 35126
~2.1972 % 1073 0

= 2.5439x 1073 |~ [ 0
1.3931 x 1073 0

Now lets see how well the smallest approximate eigenvalue and eigenvector works.

5 1 1 1 00 —6.6943 x 1072
1 3 2 |—(=2579)( 0 1 —.50706
1 21 0 0 1 .859 31
2.704 x 1074 0
=| —2.7377x107* |~ ]| 0O
—1.3695 x 1074 0

For practical purposes, this has found the eigenvalues and eigenvectors.

14.2.3 The QR Algorithm In The General Case

In the case where A has distinct positive eigenvalues it was shown above that under reason-
able conditions related to a certain matrix having an LU factorization the QR algorithm
produces a sequence of matrices { A;} which converges to an upper triangular matrix. What
if A is just an n xn matrix having possibly complex eigenvalues but A is nondefective? What
happens with the QR algorithm in this case? The short answer to this question is that the
Ay, of the algorithm typically cannot converge. However, this does not mean the algo-
rithm is not useful in finding eigenvalues. It turns out the sequence of matrices { Ay} have
the appearance of a block upper triangular matrix for large k in the sense that the entries
below the blocks on the main diagonal are small. Then looking at these blocks gives a way
to approximate the eigenvalues. An important example of the concept of a block triangular
matrix is the real Schur form for a matrix discussed in Theorem 6.4.7 but the concept as
described here allows for any size block centered on the diagonal.

First it is important to note a simple fact about unitary diagonal matrices. In what
follows A will denote a unitary matrix which is also a diagonal matrix. These matrices
are just the identity matrix with some of the ones replaced with a number of the form e*
for some 6. The important property of multiplication of any matrix by A on either side
is that it leaves all the zero entries the same and also preserves the absolute values of the
other entries. Thus a block triangular matrix multiplied by A on either side is still block
triangular. If the matrix is close to being block triangular this property of being close to a
block triangular matrix is also preserved by multiplying on either side by A. Other patterns
depending only on the size of the absolute value occurring in the matrix are also preserved
by multiplying on either side by A. In other words, in looking for a pattern in a matrix,
multiplication by A is irrelevant.

Now let A be an n X n matrix having real or complex entries. By Lemma 14.2.3 and the
assumption that A is nondefective, there exists an invertible S,

Ak = QWRM = gpkg—1 (14.14)
where
A1 0
D prm—
0 An
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and by rearranging the columns of S, D can be made such that
Al = [Ae] = = |An
Assume S~! has an LU factorization. Then
AF = SD*LU = SD*LD~*D*U.
Consider the matrix in the middle, D LD~*. The ij*" entry is of the form
ANLgA* i j <
(DFLD™%), =4 1ifi=j
0if 7 >4
and these all converge to 0 whenever |X;| < |);|. Thus
DFLD™* = (L + Ey)

where Lj is a lower triangular matrix which has all ones down the diagonal and some

subdiagonal terms of the form
ML ATF (14.15)

379

for which |\;| = |\;| while E}, — 0. (Note the entries of Lj, are all bounded independent of
k but some may fail to converge.) Then

Q(k)R(k) = S (Ly +Ek)DkU

Let
SLr = QrRy (14.16)
where this is the QR factorization of SLj. Then
QWR®™ = (QnRy+ SEy)DFU
= Qi (I+QiSER,") Ry DU
= Qn(I+ Fy)R,D*U

where Fy, — 0. Let I + Fy = Q}R},. Then QW) R®*) = Q) R, Ry D*U. By Lemma 14.2.4
Q) — I and R}, — I. (14.17)

Now let Ay, be a diagonal unitary matrix which has the property that A; D*U is an upper
triangular matrix which has all the diagonal entries positive. Then

QW R® = Q.04 Ay (ALRLRiAy) ALDFU

That matrix in the middle has all positive diagonal entries because it is itself an upper
triangular matrix, being the product of such, and is similar to the matrix R} R which is
upper triangular with positive diagonal entries. By Lemma 14.2.4 again, this time using the
uniqueness assertion,

Q™ = QuQi Ay, R® = (AIR,RiAy) AL DU

Note the term QyQj A must be real because the algorithm gives all Q) as real matrices.
By 14.17 it follows that for k large enough Q) ~ Qi A, where ~ means the two matrices
are close. Recall A, = QMTAQ®™) and so for large k,

A = (QrAr)" A(QrAy) = AQLAQKA

As noted above, the form of A;Q;AQrAy in terms of which entries are large and small is
not affected by the presence of Ay and Aj. Thus, in considering what form this is in, it
suffices to consider Q; AQy.

This could get pretty complicated but I will consider the case where
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if |)\z| = |)\i+1|; then ‘)\i+2| < |>\¢+1| . (].4].8)

This is typical of the situation where the eigenvalues are all distinct and the matrix A is real
so the eigenvalues occur as conjugate pairs. Then in this case, Ly above is lower triangular
with some nonzero terms on the diagonal right below the main diagonal but zeros everywhere
else. Thus maybe (LIC)SJFLS # 0 Recall 14.16 which implies

Qr = SLy R, (14.19)

where R;l is upper triangular. Also recall from the definition of S in 14.14, it follows that
S71AS = D. Thus the columns of S are eigenvectors of A, the i** being an eigenvector for
Ai. Now from the form of Ly, it follows LkR,Zl is a block upper triangular matrix denoted
by Tp and so Qr = STg. It follows from the above construction in 14.15 and the given
assumption on the sizes of the eigenvalues, there are finitely many 2 x 2 blocks centered
on the main diagonal along with possibly some diagonal entries. Therefore, for large k the
matrix A, = QWTAQ®) is approximately of the same form as that of

QrAQy =Tg'S ' ASTE =T5'DTg

which is a block upper triangular matrix. As explained above, multiplication by the various
diagonal unitary matrices does not affect this form. Therefore, for large k, Ay is approxi-
mately a block upper triangular matrix.

How would this change if the above assumption on the size of the eigenvalues were relaxed
but the matrix was still nondefective with appropriate matrices having an LU factorization
as above? It would mean the blocks on the diagonal would be larger. This immediately
makes the problem more cumbersome to deal with. However, in the case that the eigenvalues
of A are distinct, the above situation really is typical of what occurs and in any case can be
quickly reduced to this case.
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To see this, suppose condition 14.18 is violated and A;, - -, A; 4, are complex eigenvalues
having nonzero imaginary parts such that each has the same absolute value but they are all
distinct. Then let ¢ > 0 and consider the matrix A+pl. Thus the corresponding eigenvalues
of A+ pul are N\j+pu, -+, Ajyp+ p. A short computation shows |\; + pf, -+, |Ajyp + pf are
all distinct and so the above situation of 14.18 is obtained. Of course, if there are repeated
eigenvalues, it may not be possible to reduce to the case above and you would end up with
large blocks on the main diagonal which could be difficult to deal with.

So how do you identify the eigenvalues? You know Ay and behold that it is close to a
block upper triangular matrix T5. You know Ay is also similar to A. Therefore, Tf; has
eigenvalues which are close to the eigenvalues of A, and hence those of A provided k is
sufficiently large. See Theorem 6.9.2 which depends on complex analysis or the exercise on
Page 187 which gives another way to see this. Thus you find the eigenvalues of this block
triangular matrix T; and assert that these are good approximations of the eigenvalues of
Ay and hence to those of A. How do you find the eigenvalues of a block triangular matrix?
This is easy from Lemma 6.4.6. Say

By - %
0 B,
Then forming Al — T}, and taking the determinant, it follows from Lemma 6.4.6 this equals

j=1

and so all you have to do is take the union of the eigenvalues for each B;. In the case
emphasized here this is very easy because these blocks are just 2 x 2 matrices.

How do you identify approximate eigenvectors from this? First try to find the approx-
imate eigenvectors for Aj. Pick an approximate eigenvalue A, an exact eigenvalue for 7.
Then find v solving Thv = Av. It follows since T is close to Ay that Axv = Av and so

QWAQWTy = Apv ~ Av

Hence
AQWTy = ANQW Ty

and so Q" Tv is an approximation to the eigenvector which goes with the eigenvalue of A
which is close to .

Example 14.2.8 Here is a matriz.

3 2 1
-2 0 -1
-2 -2 0

It happens that the eigenvalues of this matriz are 1,1414,1—14. Lets apply the QR algorithm
as if the eigenvalues were not known.

Applying the QR algorithm to this matrix yields the following sequence of matrices.

1.2353 1.9412 4.3657
A= —.39215 1.5425 5.3886 x 1072
—.16169 —.18864 .22222
9.1772 x 1072 .63089 —2.0398
Ajg = —2.8556 1.9082 —3.1043

1.0786 x 1072 3.4614 x 10~* 1.0
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At this point the bottom two terms on the left part of the bottom row are both very
small so it appears the real eigenvalue is near 1.0. The complex eigenvalues are obtained

from solving
1 1772 %1072 .
det [ 0\ [ 91772x10 63089 —0
0 1 —2.8556 1.9082

A=1.0-.98828¢, 1.0+ .98828;

This yields

Example 14.2.9 The equation z* + 234422 +2—2 = 0 has exactly two real solutions. You
can see this by graphing it. However, the rational root theorem from algebra shows neither
of these solutions are rational. Also, graphing it does not yield any information about the
complex solutions. Lets use the QR algorithm to approzimate all the solutions, real and
complez.

A matrix whose characteristic polynomial is the given polynomial is

-1 -4 -1 2
1 0 0 0
0 1 0 0
0 0 10

Using the QR algorithm yields the following sequence of iterates for Ay

299999 —2.5927 —1.7588 —1.2978
2.1213 —-1.7778 —1.6042 —.99415

Al ==
0 34246  —.32749 —.91799
0 0 —.44659  .10526
—.83412 —4.1682 —1.939 —.7783
Ay — 1.05 .14514 2171 2.5474 x 1072
0 4.0264 x 1074 —.85029 —.61608
0 0 —1.8263 x 102 .53939

Now this is similar to A and the eigenvalues are close to the eigenvalues obtained from
the two blocks on the diagonal,

—.83412 —4.1682 —.85029 —.61608
1.05 .14514 "\ —1.8263x10"%2 .53939

since 4.026 4 x 10~ is small. After routine computations involving the quadratic formula,
these are seen to be

—. 85834, .54744, —.34449 —2.0339¢, —. 34449 + 2.033 94

When these are plugged in to the polynomial equation, you see that each is close to being
a solution of the equation.

It seems like most of the attention to the QR algorithm has to do with finding ways
to get it to “converge” faster. Great and marvelous are the clever tricks which have been
proposed to do this but my intent is to present the basic ideas, not to go in to the numerous
refinements of this algorithm. However, there is one thing which is usually done. It involves
reducing to the case of an upper Hessenberg matrix which is one which is zero below the
main sub diagonal. Every matrix is unitarily similar to one of these.
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Let A be an invertible n x n matrix. Let @} be a unitary matrix

2
- >ies laji] a
0
ol o= =
Qan1 0 0
The vector Q) is multiplying is just the bottom n — 1 entries of the first column of A. Then
let @1 be
10
0 @
It follows
air a2 - Qip
1 0 a 1 0
Q1AQ] = AQi=| . *
0 @ : Al 0 @
0
* % *
a
oA
0

EXPERIENCE THE POWEH
FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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Now let @Y, be the n — 2 x n — 2 matrix which does to the first column of A; the same
sort of thing that the n — 1 x n — 1 matrix Q] did to the first column of A. Let

(1 o0
QQ:(O Qé)

where I is the 2 x 2 identity. Then applying block multiplication,

Q21 AQTQ; = | 0 =
. Ay

0 0
where As is now an n — 2 X n — 2 matrix. Continuing this way you eventually get a unitary
matrix @ which is a product of those discussed above such that

QAQT = 0 * «
. . *
0 0 * %

This matrix equals zero below the subdiagonal. It is called an upper Hessenberg matrix.
It happens that in the QR algorithm, if Ay, is upper Hessenberg, so is Ax41. To see this,
note that the matrix is upper Hessenberg means that A;; = 0 whenever ¢ — j > 2.

Apy1 = R Qg
where Ar = QrRy. Therefore as shown before,
Agy1 = R AR}

Let the ij'" entry of Ay be af;. Then if i —j > 2

n J
k+1 k-1
Ay = E , E :%%qrqy‘

p=i q=1
It is given that a’;q = 0 whenever p — ¢ > 2. However, from the above sum,
p—q=i—j=2

and so the sum equals 0.

Since upper Hessenberg matrices stay that way in the algorithm and it is closer to
being upper triangular, it is reasonable to suppose the QR algorithm will yield good results
more quickly for this upper Hessenberg matrix than for the original matrix. This would be
especially true if the matrix is good sized. The other important thing to observe is that,
starting with an upper Hessenberg matrix, the algorithm will restrict the size of the blocks
which occur to being 2 x 2 blocks which are easy to deal with. These blocks allow you to
identify the complex roots.

14.3 Exercises

In these exercises which call for a computation, don’t waste time on them unless you use a
computer or calculator which can raise matrices to powers and take QR factorizations.

1. In Example 14.1.10 an eigenvalue was found correct to several decimal places along
with an eigenvector. Find the other eigenvalues along with their eigenvectors.
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10.

11.
12.

3
. Find the eigenvalues and eigenvectors of the matrix A = 2
1

. Find the eigenvalues and eigenvectors of the matrix A =

. Find the eigenvalues and eigenvectors of the matrix A =

. Find the eigenvalues and eigenvectors of the matrix A =

1
3 numerically.
2

o W o= N

In this case the exact eigenvalues are £1/3,6. Compare with the exact answers.

3 21

2 5 3 | numerically.
1 3 2

The exact eigenvalues are 2,4 + /15,4 — v/15. Compare your numerical results with

the exact values. Is it much fun to compute the exact eigenvectors?

0 2 1

2 5 3 numerically.
1 3 2

I don’t know the exact eigenvalues in this case. Check your answers by multiplying

your numerically computed eigenvectors by the matrix.

0 2 1

2 0 3 | numerically.

1 3 2

I don’t know the exact eigenvalues in this case. Check your answers by multiplying
your numerically computed eigenvectors by the matrix.

3 2 3
Consider the matrix A = | 2 1 4 | and the vector (1,1,1)" . Find the shortest
340

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

1
Consider the matrix A = | 2 )T. Find the shortest
1

= = N

1
4 | and the vector (1,1,1
5

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

3 2 3
Consider the matrix A=| 2 6 4 and the vector (1,1,1)" . Find the shortest
3 4 -3

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

Using Gerschgorin’s theorem, find upper and lower bounds for the eigenvalues of A =
3 2 3
2 6 4
3 4 -3

Tell how to find a matrix whose characteristic polynomial is a given monic polynomial.
This is called a companion matrix. Find the roots of the polynomial 2% + 722 4+ 3z + 7.

Find the roots to 2* + 323 4+ 422 + 2 + 1. It has two complex roots.

Suppose A is a real symmetric matrix and the technique of reducing to an upper
Hessenberg matrix is followed. Show the resulting upper Hessenberg matrix is actually
equal to 0 on the top as well as the bottom.

Download free eBooks at bookboon.com



LINEAR ALGEBRA ll1I MATRIX CALCULATOR ON THE WEB

Appendix A

Matrix Calculator On The Web

A.1 Use Of Matrix Calculator On Web

There is a really nice service on the web which will do all of these things very easily. It is
www.bluebit.gr/matrix-calculator/ To get to it, you can use the address or google matrix
calculator.

When you go to this site, you enter a matrix row by row, placing a space between each
number. When you come to the end of a row, you press enter on the keyboard to start the
next row. After entering the matrix, you select what you want it to do. You will see that it
also solves systems of equations.
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Appendix B

Positive Matrices

Earlier theorems about Markov matrices were presented. These were matrices in which all
the entries were nonnegative and either the columns or the rows added to 1. It turns out
that many of the theorems presented can be generalized to positive matrices. When this is
done, the resulting theory is mainly due to Perron and Frobenius. I will give an introduction
to this theory here following Karlin and Taylor [19].

Definition B.0.1 For A a matriz or vector, the notation, A >> 0 will mean every entry
of A is positive. By A > 0 is meant that every entry is nonnegative and at least one is
positive. By A > 0 is meant that every entry is nonnegative. Thus the matrix or vector
consisting only of zeros is > 0. An expression like A >> B will mean A — B >> 0 with
similar modifications for > and >.
For the sake of this section only, define the following for x = (x1,- - ,xn)T, a vector.
x| = (e, leal)”

Thus |x| is the vector which results by replacing each entry of X with its absolute value'.
Also define for x € C",
l1xl[, =D lex] -
k

Lemma B.0.2 Let A >> 0 and let x > 0. Then Ax >> 0.
Proof: (Ax); =3 ; A;jz; > 0 because all the 4;; > 0 and at least one z; > 0.
Lemma B.0.3 Let A >> 0. Define

S={\: Ax > Ix for some x >> 0},

and let
K = {x > 0 such that ||x||; = 1}.
Now define
S1={\: Ax > Ax for some x € K}.
Then

sup (5) = sup (51) .

Proof: Let A € S. Then there exists x >> 0 such that Ax > Ax. Consider y = x/||x]|, .
Then ||y||; = 1 and Ay > Ay. Therefore, A € S; and so S C S;. Therefore, sup (S) <
sup (51) -

Now let A € S;. Then there exists x > 0 such that |[x||; = 1 so x > 0 and Ax > Ax.
Letting y = Ax, it follows from Lemma B.0.2 that Ay >> Ay and y >> 0. Thus A € S
and so S7 C S which shows that sup (S1) < sup(S). B

This lemma is significant because the set, {x > 0 such that ||x||; =1} = K is a compact
set in R™. Define

Ao = sup (S) = sup (S1). (2.1)

The following theorem is due to Perron.

IThis notation is just about the most abominable thing imaginable because it is the same notation but
entirely different meaning than the norm. However, it saves space in the presentation of this theory of
positive matrices and avoids the use of new symbols. Please forget about it when you leave this section.

Download free eBooks at bookboon.com



Theorem B.0.4 Let A >> 0 be an n X n matriz and let Ao be given in 2.1. Then

1. Mg > 0 and there exists xg>> 0 such that Axg = \gXg S0 Ag is an eigenvalue for A.
2. If Ax = ux where x # 0, and p # Xo. Then |p] < Ag.

3. The eigenspace for Ao has dimension 1.

Proof: To see \g > 0, consider the vector, e = (1,--- 71)T. Then
(de); =Y Ai;; >0
J

and so \g is at least as large as

m_in E Aij .
T .
J

Let {\;} be an increasing sequence of numbers from S; converging to Ag. Letting xj be
the vector from K which occurs in the definition of S7, these vectors are in a compact set.
Therefore, there exists a subsequence, still denoted by xj such that x; — x¢o € K and
Ak — Ag- Then passing to the limit,

Axg > AoXg, Xg > 0.

If Axg > A\oXo, then letting y = Axg, it follows from Lemma B.0.2 that Ay >> Aoy and
y >> 0. But this contradicts the definition of Ag as the supremum of the elements of S
because since Ay >> Agy, it follows Ay >> (Ao +¢)y for € a small positive number.
Therefore, Axg = A\gXg. It remains to verify that xq >> 0. But this follows immediately
from
0< ZAij:COj = (AXO)Z‘ = )\01’01'.
J

This proves 1.

Next suppose Ax = ux and x # 0 and g # Ao. Then |Ax| = |p||x|. But this implies
Alx| > || |x|. (See the above abominable definition of |x].)

Case 1: |x| # x and |x| # —x.

In this case, A|x| > |Ax| = |u||x| and letting y = Alx]|, it follows y >> 0 and
Ay >>|u|y which shows Ay >> (|u| +¢)y for sufficiently small positive & and verifies
|,LL| < )\0.

Case 2: |[x|=xor |x| = —x

In this case, the entries of x are all real and have the same sign. Therefore, A |x| =
|Ax| = |p||x|. Now let y =|x|/|[x[|,. Then Ay = |u|y and so |u| € Si showing that

|| < Xo. But also, the fact the entries of x all have the same sign shows p = |u| and so
€ Sy. Since p # Ag, it must be that u = |u| < Ag. This proves 2.
It remains to verify 3. Suppose then that Ay = A\gy and for all scalars o, axg # y. Then

ARey = AgRey, Almy = AgImy.

If Rey = a1xg and Imy = aox( for real numbers, a;,then y = (a1 +ias)x¢ and it is
assumed this does not happen. Therefore, either

tRey # xg for all t € R

or
tImy # xq for all t € R.

Assume the first holds. Then varying t € R, there exists a value of ¢ such that xqg+tRey > 0
but it is not the case that xo+tRey >> 0. Then A (xg + tRey) >> 0 by Lemma B.0.2. But
this implies Ag (xp + t Reyy) >> 0 which is a contradiction. Hence there exist real numbers,
a1 and as such that Rey = ai1xp and Imy = asxg showing that y = (a; + ias) xo. This
proves 3.
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It is possible to obtain a simple corollary to the above theorem.

Corollary B.0.5 If A > 0 and A™ >> 0 for some m € N, then all the conclusions of the
above theorem hold.

Proof: There exists p, > 0 such that A™yo = pgyo for yo >> 0 by Theorem B.0.4 and
po =sup {p: A™x > px for some x € K}.
Let A" = po. Then
(A=) (A" 4 XN A™ 2 4 4 AT ) yo = (A" = M\ 1) yo =0

and so letting xg = (Am*1 F XA 244 )\8‘_1[) Yo, it follows xg >> 0 and Axy =
)\0X0.

Suppose now that Ax = ux for x # 0 and p # A\g. Suppose |p| > Ag. Multiplying both
sides by A, it follows A™x = p™x and |u™| = |u|™ > A\ = py and so from Theorem B.0.4,
since |p™| > pg, and p™ is an eigenvalue of A™, it follows that ™ = p,. But by Theorem
B.0.4 again, this implies x = ¢y for some scalar, ¢ and hence Ayy = pyq. Since yo >> 0,
it follows p > 0 and so u = Ag, a contradiction. Therefore, |u| < Ag.

Finally, if Ax = Agx, then A™x = A{'x and so x = ¢y for some scalar, c. Consequently,

(AP XA™ 2 4 AT ) x = (AT XA T AT ) o

= CXp.

Hence
mAp T x = exq
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which shows the dimension of the eigenspace for Ag is one. l
The following corollary is an extremely interesting convergence result involving the pow-
ers of positive matrices.

Corollary B.0.6 Let A > 0 and A™ >> 0 for some m € N. Then for Ay given in 2.1,

m
there exists a rank one matriz P such that lim,,_, H ()\%) — PH =0.

Proof: Considering A”, and the fact that A and AT have the same eigenvalues, Corollary
B.0.5 implies the existence of a vector, v >> 0 such that

ATv = \yv.

Also let xg denote the vector such that Axy = Agxo with x¢o >> 0. First note that XOTV >0
because both these vectors have all entries positive. Therefore, v may be scaled such that

vixg=xtv=1. (2.2)
Define
P = xovT.
Thanks to 2.2,
A A A
)\—OP =xovl =P, P ()\0> = xov7’ <)\0> =xov!l = P, (2.3)
and
P? = xovTxovT =vlxy = P. (2.4)
Therefore,

AN\ 2
= — - P.
<A0>
Continuing this way, using 2.3 repeatedly, it follows

(@) -

The eigenvalues of (ﬁ) — P are of interest because it is powers of this matrix which

m
determine the convergence of (%) to P. Therefore, let © be a nonzero eigenvalue of this

(2)-#)x-

for x # 0, and p # 0. Applying P to both sides and using the second formula of 2.3 yields

matrix. Thus

A
0=(P-P)x= (P <A) —P2>x:pr.
0
But since Px = 0, it follows from 2.6 that
Ax = Agux

which implies Agu is an eigenvalue of A. Therefore, by Corollary B.0.5 it follows that either
Aot = Ao in which case u =1, or Ag |u| < Ao which implies || < 1. But if 4 = 1, then x is
a multiple of xg and 2.6 would yield

(2)-r)=
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which says xg — xov’X¢ = X and so by 2.2, xg = 0 contrary to the property that xq >> 0.
Therefore, || < 1 and so this has shown that the absolute values of all eigenvalues of

()\%) — P are less than 1. By Gelfand’s theorem, Theorem 13.3.3, it follows

(G-

whenever m is large enough. Now by 2.5 this yields

I8 A =

whenever m is large enough. It follows

A m
li — —P||=0
o3 H (/\0> H
as claimed.

What about the case when A > 0 but maybe it is not the case that A >> 07 As before,

1/m
<r<l1

K = {x > 0 such that ||x||, =1}.

Now define
S1 ={A: Ax > Ax for some x € K}

and
Ao = sup (S1) (2.7)

Theorem B.0.7 Let A > 0 and let \g be defined in 2.7. Then there exists xg > 0 such
that AX() = )\0X0.

Proof: Let E consist of the matrix which has a one in every entry. Then from Theorem
B.0.4 it follows there exists x5 >> 0, ||x5||; = 1, such that (A + 0F) x5 = Aosxs where

Aos =sup{A: (A+JE)x > Ax for some x € K} .

Now if o < 9
{A: (A4 aFE)x > Ax for some x € K} C

{A: (A4 0F)x > Ax for some x € K}

and so A\gs > Aoga because Ags is the sup of the second set and \g, is the sup of the first. It
follows the limit, A\; = lims_, o+ Aos exists. Taking a subsequence and using the compactness
of K, there exists a subsequence, still denoted by § such that as § — 0, x5 — x € K.
Therefore,

Ax = \x

and so, in particular, Ax > A\;x and so A\; < Ag. But also, if A < Ag,
Ax < Ax < (A+0E)x

showing that Ags > A for all such A\. But then A\gs > A\¢ also. Hence A\; > Ao, showing these
two numbers are the same. Hence Ax = A\ox. B

If A™ >> 0 for some m and A > 0, it follows that the dimension of the eigenspace for
Ao is one and that the absolute value of every other eigenvalue of A is less than \g. If it is
only assumed that A > 0, not necessarily >> 0, this is no longer true. However, there is
something which is very interesting which can be said. First here is an interesting lemma.
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Lemma B.0.8 Let M be a matrix of the form

(e
v-(3 1)

where A is an v X r matric and C is an (n—r) X (n—1r) matriz. Then det (M) =
det (A)det (B) and o (M) =0 (A)Uo (C).

or

Proof: To verify the claim about the determinants, note

A 0Y) (A0 I 0
B cCc) \o1I B C
det 40 = det A0 det Lo .
B C 0 I B C
But it is clear from the method of Laplace expansion that

det(A O)zdetA
0 I

Therefore,
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and from the multilinear properties of the determinant and row operations that

det L0 = det ro =detC.
B C 0o C

The case where M is upper block triangular is similar.
This immediately implies o (M) = o (A) Uo (C).

Theorem B.0.9 Let A > 0 and let \g be given in 2.7. If X is an eigenvalue for A such
that [\| = Ao, then A/Xg is a root of unity. Thus (A\/Xo)" =1 for some m € N.

Proof: Applying Theorem B.0.7 to AT, there exists v > 0 such that A”v = \gv. In
the first part of the argument it is assumed v >> 0. Now suppose Ax = Ax,x # 0 and that
[A| = Ao. Then

Alx| = A [x] = Ao x|

and it follows that if A |x| > |A||x|, then since v >> 0,
Ao (Va |X|) < (V7A ‘XD = (ATV’ |XD = Ao (V7 |XD )

a contradiction. Therefore,
Alx| = Mo |x]- (2.8)

It follows that

D A = Xolxil =Y Aijlaj]
i j

and so the complex numbers,
Ay, Ay,

must have the same argument for every k,j because equality holds in the triangle in-
equality. Therefore, there exists a complex number, p; such that

Aijzj = p Aij |z (2.9)

and so, letting r € N,
Aijaipy = p;Aig || p.
Summing on j yields
> Aijaih = > Aujla| 1. (2.10)
J J

Also, summing 2.9 on j and using that A is an eigenvalue for x, it follows from 2.8 that

/\ZZ?Z' = ZAijZ‘j = H; ZA'U |l‘]| = p,i/\o |.§Cz| . (2.11)
j -

J

From 2.10 and 2.11,

ro_ B 0,
ZAijxj:“j = MiZAZJ |xj‘uj

J J
see 2.11

—~
= MiZAijMﬂij;_l
J
A —_
= (1)
J
)\ r—1
= ()\0>;Aijxjuj
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Now from 2.10 with r replaced by r — 1, this equals

A o A o
b <>\o)ZAU sl ™ = <>\o)ZAii“j1‘j|”j ’
J J
)\ 2
2 (A Ayt 2,
i <)\0) ZJ: 35k

Continuing this way,
A\ K
§ r k E r—k
Aijxj,“/j = My <)\0> Aijl'jﬂl/j
J J

and eventually, this shows
T s A "
DAy = b > Ay
J J

= () rewd)

r+1
and this says (%) is an eigenvalue for (%) with the eigenvector being

(1, )"

2 3 4
Now recall that r € N was arbitrary and so this has shown that (%0) , (%) , (%) o

are each eigenvalues of (%) which has only finitely many and hence this sequence must

repeat. Therefore, (%0) is a root of unity as claimed. This proves the theorem in the case

that v >> 0.
Now it is necessary to consider the case where v > 0 but it is not the case that v >> 0.
Then in this case, there exists a permutation matrix P such that

U1
Pv = Ur = u =vi
0 0
0
Then
Aov = ATv = AT Pv,.
Therefore,

)\0V1 = PATPV1 = GV1

Now P? = I because it is a permutation matrix. Therefore, the matrix G = PATP and A
are similar. Consequently, they have the same eigenvalues and it suffices from now on to
consider the matrix G rather than A. Then

()=o) (s

where My is r x r and My is (n —r) X (n — r) . It follows from block multiplication and the
assumption that A and hence G are > 0 that

G:AB.
0 C
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Now let A be an eigenvalue of G such that |[A| = Ag. Then from Lemma B.0.8, either
A€o (A") or A € 0(C). Suppose without loss of generality that A € o (A’). Since A’ > 0
it has a largest positive eigenvalue X; which is obtained from 2.7. Thus Ay < Ag but A
being an eigenvalue of A’, has its absolute value bounded by Ay and so Ag = |A| < A\j < Ao
showing that A\g € o (A’). Now if there exists v >> 0 such that A’Tv = \gv, then the first
part of this proof applies to the matrix A and so (A/\g) is a root of unity. If such a vector,
v does not exist, then let A’ play the role of A in the above argument and reduce to the

consideration of
G/ _ A// B/
0o

where G’ is similar to A’ and A\, \g € o (A”). Stop if A"Tv = \gv for some v >> 0.
Otherwise, decompose A” similar to the above and add another prime. Continuing this way
you must eventually obtain the situation where (A"’ )T v = AoV for some v >> 0. Indeed,
this happens no later than when A" is a 1 x 1 matrix. H
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Appendix C

Functions Of Matrices

The existence of the Jordan form also makes it possible to define various functions of ma-
trices. Suppose

=3 (3.1)
n=0

for all |[A| < R. There is a formula for f(A) = > 7 ;a, A" which makes sense whenever
p(A) < R. Thus you can speak of sin (A) or e for A an n x n matrix. To begin with, define

P
frN) =) an\"
n=0

so for k < P
P
[P0 = Y anne (n =k )N
- Y, (Z) IR (3.2)
n=k
Thus

(k) P

P ()‘) n n—k

o > an (k>A (3.3)
n=~k

To begin with consider f (Jp, (A)) where J,, (A) is an m x m Jordan block. Thus J,, (A\) =

D + N where N™ =0 and N commutes with D. Therefore, letting P > m

P P n n -
S andm N =D an <k>Dn N

n=0 n=0 k=0

_ S zlj: an <Z) Dk, (3.4)

From 3.3 this equals

m—1 (k) (k)
S diag< OV <A>> 55)

where for k =0,--- ,m—1, define diag;, (a1, - ,am—x) the m x m matrix which equals zero
everywhere except on the k*" super diagonal where this diagonal is filled with the numbers,
{a1, -+ ,am—} from the upper left to the lower right. With no subscript, it is just the
diagonal matrices having the indicated entries. Thus in 4 x 4 matrices, diag, (1,2) would
be the matrix

o O O O
o O O O
o O O
S O N O
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Then from 3.5 and 3.2,

P m—1 () (k)
Y (V" = Y diags (fP S Pk!()\)>'
n=0

Therefore, 320 anJm (A)" =

’ (2) A (m—1) A
fP (A) fPl(!A) fP2!( ) U f}()m—lg! )
fo(n) L5 :
fP ()\) . f;f;‘()\) (36)
O BO
1!
0 fr(A)

Now let A be an n x n matrix with p(A) < R where R is given above. Then the Jordan

form of A is of the form
J1 0

Ja
J = . (3.7)
0 J,
where Ji, = Jp, (M) is an my x my, Jordan block and A = S~1JS. Then, letting P > my

for all &,
P P
> ap AT =51 "a,J"S,
n=0 n=0
and because of block multiplication of matrices,
o n i 0
P .
> 0,
n=0 .
0 Yo an

P .
and from 3.6 ), _, a,J}' converges as P — 0o to the my, x mj, matrix

/ (2 (m—1)
POy et B Sy
0 flw e :
0 0 f ()\k) T f(2>2(!>\k-) (38)
: . . )
! 1!
0 0 0 fOw)

There is no convergence problem because |[A| < R for all A € ¢ (A4). This has proved the
following theorem.

Theorem C.0.1 Let f be given by 3.1 and suppose p(A) < R where R is the radius of
convergence of the power series in 3.1. Then the series,

i an A" (3.9)
k=0
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converges in the space L (F™,F™) with respect to any of the norms on this space and further-
more,

Yo an ¥ 0
S a,An =57 - S
k=0 -

0 2z andy’

where Yo7 anJi is an my X my, matriz of the form given in 3.8 where A = S~'JS and
the Jordan form of A, J is given by 3.7. Therefore, you can define f (A) by the series in
3.9.

Here is a simple example.

1 0 -1
Example C.0.2 Find sin (A) where A = L1 )
-1 2 1 4

4 1 -1 1 2 0 -2 -1
r 0 -1 1 1 -4 -2 -1
0 -1 1 -1 ] [ o o -2 1
-1 2 1 4 -1 4 4 2
4000 3 5 0 3
0210 i -3 0 -%
00 21 o ¥ - :
000 2 o ¢+ 1 1
Then from the above theorem sin (J) is given by
4 0 0 O sind 0 0 0
. 0 210 0 sin2 cos2 =sn2
sin =
00 21 0 0 sin2 cos2
0 0 0 2 0 0 0 sin 2
Therefore, sin (A) =
2 0 -2 -1 sind 0 0 0 i L 0 3
1 -4 -2 -1 0 sin2 cos2 =52 i -2 0 -3 Y
0 0 -2 1 0 0 sin2 cos2 o L+ -1 19
-1 4 4 2 0 0 0 sin2 o & 1 1
where the columns of M are as follows from left to right,
sin 4 sin4 —sin2 — cos 2 —cos 2
1sind — Jsin2 1sind + 2sin2 — 2 cos2 sin 2
0 ’ —cos 2 "| sin2—cos2
—%sin4+%sin2 —%sin4—%sin2+3cos2 cos2 —sin2

sin4 —sin2 — cos 2
%sin4+ %sin2—2cos2
—cos 2

—%sin4+ %sin2—|—3c0s2
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Perhaps this isn’t the first thing you would think of. Of course the ability to get this nice
closed form description of sin (A) was dependent on being able to find the Jordan form along
with a similarity transformation which will yield the Jordan form.

The following corollary is known as the spectral mapping theorem.

Corollary C.0.3 Let A be an n X n matriz and let p (A) < R where for |\ < R,

FO) =D anA™
n=0
Then f (A) is also an n x n matriz and furthermore, o (f (A)) = f (0 (4)). Thus the eigen-
values of f (A) are exactly the numbers f (X) where X is an eigenvalue of A. Furthermore,
the algebraic multiplicity of f (X) coincides with the algebraic multiplicity of \.

All of these things can be generalized to linear transformations defined on infinite di-
mensional spaces and when this is done the main tool is the Dunford integral along with
the methods of complex analysis. It is good to see it done for finite dimensional situations
first because it gives an idea of what is possible. Actually, some of the most interesting
functions in applications do not come in the above form as a power series expanded about
0. One example of this situation has already been encountered in the proof of the right
polar decomposition with the square root of an Hermitian transformation which had all
nonnegative eigenvalues. Another example is that of taking the positive part of an Hermi-
tian matrix. This is important in some physical models where something may depend on
the positive part of the strain which is a symmetric real matrix. Obviously there is no way
to consider this as a power series expanded about 0 because the function f (r) = % is not
even differentiable at 0. Therefore, a totally different approach must be considered. First
the notion of a positive part is defined.
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Definition C.0.4 Let A be an Hermitian matrixz. Thus it suffices to consider A as an
element of L(F™,F™) according to the usual notion of matriz multiplication. Then there
exists an orthonormal basis of eigenvectors, {uy, - ,u,} such that

A=) Ny o,
j=1
for \; the eigenvalues of A, all real. Define
At = Z A u; @ u,
j=1

where AT = |)‘|2+)‘.

This gives us a nice definition of what is meant but it turns out to be very important in
the applications to determine how this function depends on the choice of symmetric matrix
A. The following addresses this question.

Theorem C.0.5 If A, B be Hermitian matrices, then for |-| the Frobenius norm,
|AT - B*| <|A-B].

Proof: Let A =}, A\;v; ®@v; and let B = . u;w; ® w; where {v;} and {w;} are
orthonormal bases of eigenvectors.
2

’A+—B+|2:trace Z)\fvi@)vi—z,ujwj ow; | =
- :

J

trace | » ()\;r)Qvi RVit Y (uj)Q W, @ W,

i J

=D N (Wi Vi) vi @ wy = DN (Vi W) W5 @ v
4,J 4,J
Since the trace of v; ® w; is (v;,w;), a fact which follows from (v;, w;) being the only
possibly nonzero eigenvalue,

=N 20 () 2 A i) (3.10)

.3

Since these are orthonormal bases,
2 2
Dol w)F =1= " [(vi,w;)|
i J
and so 3.10 equals

=330+ ()" —2x7w ) v w) P

Similarly,

A=B* =303 (07 + (1) = 2, ) | (vin w)I

Now it is easy to check that (\;) + (uj)z —2X\ip; > ()\;r)2 + (,u;")2 -2\ pf. .
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Appendix D

Differential Equations

D.1 Theory Of Ordinary Differential Equations

First are some analytical preliminaries which are easy consequences of some of the consid-
erations presented earlier. These things have to do with existence and uniqueness of the
initial value problem

x' =f(t,x),x(c) =xo

Suppose that £ : [a,b] x F" — F™ satisfies the following two conditions.
If (t,x) —f(t,x1)] < K|x—x1], (4.1)

f is continuous. (4.2)

The first of these conditions is known as a Lipschitz condition.

Lemma D.1.1 Suppose x : [a,b] — F™ is a continuous function and ¢ € [a,b]. Then x is a
solution to the initial value problem,

x' =f(t,x), x(c) =% (4.3)

if and only if x is a solution to the integral equation,

x (t) = %o —|—/ f(s,x(s))ds. (4.4)

Proof: If x solves 4.4, then since f is continuous, we may apply the fundamental theorem
of calculus to differentiate both sides and obtain x’ (¢) = f (¢,x (¢)) . Also, letting t = ¢ on
both sides, gives x (¢) = xg. Conversely, if x is a solution of the initial value problem, we
may integrate both sides from ¢ to ¢ to see that x solves 4.4. B

Theorem D.1.2 Let f satisfy 4.1 and 4.2. Then there exists a unique solution to the initial
value problem, 4.3 on the interval [a,b].

Proof: Let |[x||, = sup {e* [x (¢)| : ¢t € [a,b]} . Then this norm is equivalent to the usual
norm on BC ([a, b] ,F™) described in Example 13.6.2. This means that for ||-|| the norm given
there, there exist constants § and A such that

[y & < [Ix[| < Alx]]
for all x € BC ([a, b] ,F™) . In fact, you can take § = e*® and A = e’ in case A\ > 0 with the

two reversed in case A < 0. Thus BC ([a,b],F") is a Banach space with this norm, ||-[|,.
Then let F : BC ([a,b] ,F") — BC ([a,b] ,F") be defined by

t
Fx(t) =xo —|—/ f(s,x(s))ds.
Let A < 0. It follows

M |Fx () - Fy (¢)]

IN

N / £ (5, % () — £ (s,y (5))] s

IN

¢
/ KM% |x (s) —y (s)| eds
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If ¢ > ¢, this is no larger than

t
s 1
Hx—ﬂh/IQ“t)wénx—ﬂbﬁT
t N K
< Iyl [ KOs < x =yl o
a

If t < ¢, this equals
/ Ker =) x () —y (s)| eMds
t

which is no larger than

K
I =yl e =
A A
Therefore, it is always the case that
_a K
[1Fx = Fylly < |l =yl e

Al

If | A| is chosen larger than K elM(®=%) this implies F is a contraction mapping on BC ([a, b] ,F") .
Therefore, there exists a unique fixed point. With Lemma D.1.1 this proves the theorem. W
D.2 Linear Systems

As an example of the above theorem, consider for ¢ € [a, b] the system

X' =At)x(t) +g(t), x(c) = %o (4.5)

Click here

to learn more /8

| ¥V 4
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where A (t) is an n x n matrix whose entries are continuous functions of ¢, (a;; (t)) and
g (t) is a vector whose components are continuous functions of ¢ satisfies the conditions
of Theorem D.1.2 with f(t,x) = A(t)x + g (t). To see this, let x = (21, , )"
x1 = (11, @1n)" . Then letting M = max {|a;; (t)| : t € [a,b] 4,7 <n},

and

£ (8, x) — £ (£, x1)| = [A () (x —x1)]

o\ 1/2 o\ 1/2
n n
= [ DD ai; () (- 21) <M z: }:L%‘*$u|
i=1 [j=1 i=1 \j=1
1/2 1/2
n n
<M ZnZ|xj—x1j\2 =Mn Z|xj—x1j\2 =Mnl|x —x1].

i=1  j=1 j

Therefore, let K = Mn. This proves

Theorem D.2.1 Let A(t) be a continuous nx n matriz and let g (t) be a continuous vector
fort € [a,b] and let ¢ € [a,b] and xo € F™. Then there exists a unique solution to 4.5 valid
fort e la,b].

This includes more examples of linear equations than are typically encountered in an
entire differential equations course.

D.3 Local Solutions

Lemma D.3.1 Let D (x9,7) = {x € F": |x — x¢| < r} and suppose U is an open set con-
taining D (xq,7) such that f : U — F" is C1 (U) . (Recall this means all partial derivatives of

2 (2))

forz € D(xq,1), it follows that for all x,y € D (xq,7),
f(x)—f(y)| < Kx-yl|.

Proof: Let x,y € D (xg,7) and consider the line segment joining these two points,
x+t (y — x) for t € [0,1]. Letting h (¢) = f (x+t (y — x)) for ¢t € [0,1], then

f(y)—f(x):h(l)—h(O):/O h' (t) dt.

Also, by the chain rule,

n

Z

—x)) (yi — i) -

Therefore,
£ (y) —f(x)| =

/0 Zaxl (x+t (y —x)) (yi — i) dt

=1

[xls

f
o ekt (v =)l =l

n
M2|yi—$i|§Mn|X—Y‘-.
i=1

IA
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Now consider the map, P which maps all of R™ to D (xq,r) given as follows. For
x € D (x9,7), Px =x. For x ¢D (x0,7), Px will be the closest point in D (xq,7) to x. Such
a closest point exists because D (xg,r) is a closed and bounded set. Taking f (y) = |y — x|,
it follows f is a continuous function defined on D (xg,r) which must achieve its minimum
value by the extreme value theorem from calculus.

X

/Px

Lemma D.3.2 For any pair of points, x,y € F*| |Px — Py| < |x—y|.

Proof: The above picture suggests the geometry of what is going on. Letting z €
D (x¢,7), it follows that for all ¢ € [0,1],

x — Px|* < |x— (Px + t (z—Px))[?

= [x—Px|* + 2tRe ((x — Px) - (Px — 2z)) + t*|z2— Px/|?

Hence
2 Re ((x — Px) - (Px—2)) +t?|z—Px|> >0

and this can only happen if

Re((x— Px)-(Px—12)) >0

Therefore,

(AVARYS

and so
Re(x — Px—(y — Py)) - (Px—Py) >0

which implies
Re(x—y) - (Px— Py) > |Px— Py|2

Then using the Cauchy Schwarz inequality it follows
x -yl > |Px—Py|.

|
With this here is the local existence and uniqueness theorem.

Theorem D.3.3 Let [a,b] be a closed interval and let U be an open subset of F™. Let
f:]a,b] x U — F" be continuous and suppose that for each t € [a,b], the map x _>88ch1- (t,x)
is continuous. Also let xg € U and ¢ € [a,b]. Then there exists an interval, I C [a,b] such
that c € I and there exists a unique solution to the initial value problem,

x' =f(t,x), x(c) =x¢ (4.6)
valid fort € 1.

Proof: Consider the following picture.
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D(xo, r).

The large dotted circle represents U and the little solid circle represents D (xg,r) as
indicated. Here r is so small that D (xg,7) is contained in U as shown. Now let P denote
the projection map defined above. Consider the initial value problem

x' =f(t,Px), x(c) = xo. (4.7)

From Lemma D.3.1 and the continuity of x —>8‘9—; (t,x), there exists a constant, K such
that if x,y € D (xq,7), then |f (¢,x) —f(t,y)| < K |x —y]| for all ¢ € [a,b]. Therefore, by
Lemma D.3.2

If (¢, Px) —f(t,Py)| < K|Px—Py|< K|x—y]|.

It follows from Theorem D.1.2 that 4.7 has a unique solution valid for ¢ € [a,b]. Since x
is continuous, it follows that there exists an interval, I containing ¢ such that for ¢ € I,
x (t) € D (%9, r) . Therefore, for these values of ¢, f (¢, Px) = f (¢, x) and so there is a unique
solution to 4.6 on /. A

Now suppose f has the property that for every R > 0 there exists a constant, K such

that for all x,x, € B (0, R),

If (t,x) —f(t,x1)] < Kg|x —x1]. (4.8)
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Corollary D.3.4 Let f satisfy 4.8 and suppose also that (t,x) — f(t,x) is continuous.
Suppose now that Xo is given and there exists an estimate of the form |x (t)| < R for all
t €10,T) where T < co on the local solution to

x' =f(t,x), x(0) = xo. (4.9)

Then there exists a unique solution to the initial value problem, 4.9 valid on [0,T).

Proof: Replace f (¢,x) with f (¢, Px) where P is the projection onto B (0, R). Then by
Theorem D.1.2 there exists a unique solution to the system

x' =f(t,Px), x(0) = x

valid on [0, T3] for every T1 < T. Therefore, the above system has a unique solution on [0,7’)
and from the estimate, Px = x. B

D.4 First Order Linear Systems

Here is a discussion of linear systems of the form
x' = Ax +f(t)

where A is a constant n X n matrix and f is a vector valued function having all entries
continuous. Of course the existence theory is a very special case of the general considerations
above but I will give a self contained presentation based on elementary first order scalar
differential equations and linear algebra.

Definition D.4.1 Suppose t — M (t) is a matriz valued function of t. Thus M (t) =
(myj (t)) . Then define
M (t) = (mgj ().

In words, the derivative of M (t) is the matriz whose entries consist of the derivatives of the
entries of M (t) . Integrals of matrices are defined the same way. Thus

/a”Mm Gim ( /ab iy (1) dt) |

In words, the integral of M (t) is the matriz obtained by replacing each entry of M (t) by the
integral of that entry.

With this definition, it is easy to prove the following theorem.

Theorem D.4.2 Suppose M (t) and N (t) are matrices for which M (t) N (t) makes sense.
Then if M’ (t) and N'(t) both exist, it follows that

(M (t)N (t)) = M' (t) N (t) + M (t) N’ ().
Proof:

(MO N@)), = (MON©),) = (Zwmwm)
k

!/

= Y (M @) N (B + M 1y (N (0))

k

Z (M (t)/>ik N (t); +M (1), (N (t)/)kj

k
= (MAN@+ME)N' (1), ®

In the study of differential equations, one of the most important theorems is Gronwall’s
inequality which is next.
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Theorem D.4.3 Suppose u (t) > 0 and for all t € [0,T7],

t
u (t) < ug +/ Ku (s)ds. (4.10)
0
where K is some nonnegative constant. Then
u (t) < upelt. (4.11)

Proof: Let w(t) = f(f u(s)ds. Then using the fundamental theorem of calculus, 4.10
w (t) satisfies the following.

u(t) — Kw(t) =w' (t) = Kw (t) < ug, w(0) = 0. (4.12)
Multiply both sides of this inequality by e ** and using the product rule and the chain
rule,
d
e K (W' (t) — Kw (1)) = pr (e Xtw (1)) < uge &

Integrating this from 0 to t,

t e—tK -1
e Kl (1) < uo/ e Ksds =g (—) .
0 K

Now multiply through by e®?* to obtain
—tK __ 1
w (t) < ug (eK> et = —% + %eﬂ(.
Therefore, 4.12 implies

u(t) <wug+ K (—% + %eﬂ() = uget.

|
With Gronwall’s inequality, here is a theorem on uniqueness of solutions to the initial
value problem,
x' = Ax+f(t), x(a) = xq, (4.13)

in which A is an n X n matrix and f is a continuous function having values in C".
Theorem D.4.4 Suppose x and'y satisfy 4.15. Then x(t) =y (¢) for all t.
Proof: Let z (t) =x(t+a) —y (t + a). Then for ¢t > 0,
z' = Az, z(0) = 0. (4.14)

Note that for K = max {|a;;|} , where A = (a;;),

_ ET N 2
(Az,2)| = %:aijzjzi SK%:|zi||zj|§K%: <2+; =nK |z|°.

(For  and y real numbers, zy < %2 + % because this is equivalent to saying (z — y)* > 0.)
Similarly, |(z,4z)| < nK |z|2 .Thus,

|(z,A2)|, |(Az,2)| < nK |z|*. (4.15)

Now multiplying 4.14 by z and observing that

© (1) = (.2) 4 () = (Az2) + (5,49),
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it follows from 4.15 and the observation that z (0) = 0,
¢
1z (t)]” < / onK |z (s)|* ds
0

and so by Gronwall’s inequality, |z (¢)|° = 0 for all ¢ > 0. Thus,

for all t > a.
Now let w(t) =x(a—t) —y(a—t) for t > 0. Then W’ (t) = (—A)w (¢) and you can
repeat the argument which was just given to conclude that x (t) =y (¢) for all t < a. R

Definition D.4.5 Let A be an n X n matriz. We say ® (t) is a fundamental matriz for A
if
' (t) = Ad(t), ®(0) =1, (4.16)

and ® (t) " exists for all t € R.

Why should anyone care about a fundamental matrix? The reason is that such a matrix
valued function makes possible a convenient description of the solution of the initial value

problem,
x = Ax+f(t), x(0) = xo, (4.17)

on the interval, [0,7T]. First consider the special case where n = 1. This is the first order

linear differential equation,
Y= +g, 7(0) =0, (4.18)

where ¢ is a continuous scalar valued function. First consider the case where g = 0.
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Lemma D.4.6 There exists a unique solution to the initial value problem,
r' =\, 7(0) =1, (4.19)
and the solution for A = a + b is given by
7 (t) = e (cosbt + isinbt) . (4.20)

This solution to the initial value problem is denoted as e*. (If X is real, e* as defined here
reduces to the usual exponential function so there is no contradiction between this and earlier
notation seen in calculus.)

Proof: From the uniqueness theorem presented above, Theorem D.4.4, applied to the
case where n = 1, there can be no more than one solution to the initial value problem,
4.19. Therefore, it only remains to verify 4.20 is a solution to 4.19. However, this is an easy
calculus exercise. B

Note the differential equation in 4.19 says

d

7 (e/\t) = et (4.21)

With this lemma, it becomes possible to easily solve the case in which g # 0.

Theorem D.4.7 There exists a unique solution to 4.18 and this solution is given by the
formula,

t
r(t) = eMro + eM/ e Mg (s)ds. (4.22)
0

Proof: By the uniqueness theorem, Theorem D.4.4, there is no more than one solution.
It only remains to verify that 4.22 is a solution. But 7 (0) = e*'ry + fOO e g (s)ds = rg
and so the initial condition is satisfied. Next differentiate this expression to verify the
differential equation is also satisfied. Using 4.21, the product rule and the fundamental
theorem of calculus,

t
' (t) = e Mrg + )\e’\t/ e Mg (s)ds+eMe Mg (t) = r(t)+g(t). A
0

Now consider the question of finding a fundamental matrix for A. When this is done,
it will be easy to give a formula for the general solution to 4.17 known as the variation of
constants formula, arguably the most important result in differential equations.

The next theorem gives a formula for the fundamental matrix 4.16. It is known as
Putzer’s method [1],[22].

Theorem D.4.8 Let A be an n X n matriz whose eigenvalues are {1, -+, \p} listed ac-
cording to multiplicity as roots of the characteristic equation. Define

k
Pe(A)=[[A-2uD), B(A) =1,

m=1

and let the scalar valued functions, ry, (t) be defined as the solutions to the following initial
value problem

7o (1) 0 70 (0) 0
(1) A1 () + 7o (2) r1(0) 1
r(t) | = Ao (t) + 11 (1) | 0 [=| o0
rh (t) AnTn (t) —|— Tr_1 (t) T (0) O
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Note the system amounts to a list of single first order linear differential equations. Now

define
n—1
)= rrar () Pi (A).
k=0

Then
O (1) = Ad (), ®(0) = 1. (4.23)

Furthermore, if ® (t) is a solution to 4.23 for all t, then it follows ® (t)~" exists for all t
and ® (t) is the unique fundamental matriz for A.

Proof: The first part of this follows from a computation. First note that by the Cay-
ley Hamilton theorem, P, (4) = 0 and ro(t) = 0. Also from the formula, if we define
H?n:l (A — A1) =T to correspond to the above definition, for all k > 1,

Py (A) = (A= \J) 1:[ A= MpI) = (A= M) Py (A)

Now for the computation:

n—1 n—1
() =D Thrr () P (A) = D (Aparian (8) + 72 (8)) P (A) =
=i k=0
n—1 n n—1
Z )\k+1rk+1 (t) Pk (A) + Z Tk (t) Pk (A) = Z >\k+171k+1 + Z 7"k+1 Pk+1 (A)
k=0 k=1 k=0
= Z Ae1Tht1 (¢ +Z Th1 (t) (A= Apgi D) Pr (A) = A Z Tht1 ( (A) = A2 (1)

That ® (0) = I follows from

n—1

0) =Y 71 (0) Py (A) =11 (0) Py (A) = 1.
k=0
It remains to verify that if 4.23 holds, then ® (£)™" exists for all ¢. To do so, consider
v # 0 and suppose for some tg, @ (o) v = 0. Let x (t) = @ (tg +t) v. Then
x' (t) = A® (to+t)v = Ax(t), x(0) = @ (ty) v = 0.

But also z (t) = 0 also satisfies

z' (t) = Az (t), z(0) =0,

and so by the theorem on uniqueness, it must be the case that z (¢t) = x (¢) for all ¢, showing
that ® (¢ 4+ tg) v = 0 for all ¢, and in particular for ¢ = —ty. Therefore,

@(—t0+t0)V:IV:0

and so v = 0, a contradiction. It follows that @ (¢) must be one to one for all ¢ and so,

® (t) " exists for all .
It only remains to verify the solution to 4.23 is unique. Suppose ¥ is another fundamental
matrix solving 4.23. Then letting v be an arbitrary vector,

z)=0()v,y(t) =¥ () v
both solve the initial value problem,

x' = Ax, x(0) = v,
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and so by the uniqueness theorem, z (t) = y (¢) for all ¢ showing that ® (¢)v = ¥ (¢) v for
all ¢. Since v is arbitrary, this shows that & (¢t) = ¥ (¢) for every ¢. B

It is useful to consider the differential equations for the r; for £ > 1. As noted above,
7o (t) = 0 and 7y (t) = eMt.

/
Tha1l = M4 1Thi1 + Thy The1 (0) = 0.

Thus .
T (t) = / eMer1 (=) () ds.
0
Therefore,
ot A1t _ S Aat
ro (t) = rat=s)rsgs & T
2() /0 YR

assuming Ay # .

Sometimes people define a fundamental matrix to be a matrix ® (¢) such that @' (¢) =
A® (t) and det (P (¢)) # 0 for all ¢. Thus this avoids the initial condition, ® (0) = I. The
next proposition has to do with this situation.

Proposition D.4.9 Suppose A is an n x n matriz and suppose ® (t) is an n x n matriz for

each t € R with the property that
O (1) = AD (). (4.24)

Then either ® (t)™" exists for allt € R or ® (t)™" fails to eist for all t € R.

Proof: Suppose ® (0) " exists and 4.24 holds. Let ¥ (£) = ® (1) ® (0)~" . Then ¥ (0) = [
and
V()= ()@ (0) ' =AD (1) D (0) " = AV (¢)

so by Theorem D.4.8, W (t) ™" exists for all ¢. Therefore, ® (£)~" also exists for all ¢.
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Next suppose ® (0)~" does not exist. I need to show ® (£)~" does not exist for any ¢.
Suppose then that ® (t)”" does exist. Then letW (t) = ® (to +t) ® (fo) ' . Then ¥ (0) =
I and ¥ = AV so by Theorem D.4.8 it follows W ()" exists for all ¢ and so for all
t,® (t+to) " must also exist, even for ¢ = —t which implies ® (0) ™" exists after all. B

The conclusion of this proposition is usually referred to as the Wronskian alternative and
another way to say it is that if 4.24 holds, then either det (® (t)) = 0 for all ¢ or det (P (t))
is never equal to 0. The Wronskian is the usual name of the function, t — det (® (¢)).

The following theorem gives the variation of constants formula,.

Theorem D.4.10 Let f be continuous on [0,T] and let A be an nxn matriz and xo a vector
in C". Then there exists a unique solution to 4.17, x, given by the variation of constants
formula,

x(t) = ® (t)xo + P (t) /O t ®(s)" £ (s)ds (4.25)

for ® (t) the fundamental matriz for A. Also, ® (t)”" = ® (—t) and ® (t + s) = @ (t) D (s)
for all t,s and the above variation of constants formula can also be written as

x (t) D (t)xo + /Ot O (t—s)f(s)ds (4.26)

= D(t)x0+ /0 O (s)f (t — s)ds (4.27)

Proof: From the uniqueness theorem there is at most one solution to 4.17. Therefore,
if 4.25 solves 4.17, the theorem is proved. The verification that the given formula works
is identical with the verification that the scalar formula given in Theorem D.4.7 solves the
initial value problem given there. ® (s)_1 is continuous because of the formula for the inverse
of a matrix in terms of the transpose of the cofactor matrix. Therefore, the integrand in
4.25 is continuous and the fundamental theorem of calculus applies. To verify the formula
for the inverse, fix s and consider x (t) = ® (s +t) v, and y (t) = ® (¢) D (s) v. Then

X (t)=A®(t+s)v=Ax(t), x(0)=d(s)v
Y (t) =A@ () @ (s) v = Ay (), y (0) = @ (s) v.

By the uniqueness theorem, x (t) = y (¢) for all ¢. Since s and v are arbitrary, this shows
D (t+s) = ®(t)®(s) for all t,s. Letting s = —t and using ® (0) = I verifies ® (£)”" =
D (—1).

Next, note that this also implies ® (t — s) ® (s) = ® (t) and so ® (t —s) = D (1) D (s) .
Therefore, this yields 4.26 and then 4.27follows from changing the variable. B

If & = A® and ® (t) " exists for all ¢, you should verify that the solution to the initial
value problem

x' = Ax +f, x(tg) = %o
is given by \
x (t) = @(t—to)xo-i-/ O (t—s)f(s)ds.
to

Theorem D.4.10 is general enough to include all constant coefficient linear differential
equations or any order. Thus it includes as a special case the main topics of an entire
elementary differential equations class. This is illustrated in the following example. One
can reduce an arbitrary linear differential equation to a first order system and then apply the

above theory to solve the problem. The next example is a differential equation of damped
vibration.
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Example D.4.11 The differential equation is y"” + 2y’ + 2y = cost and initial conditions,
y(0)=1 and y' (0) = 0.

To solve this equation, let 1 = y and 22 = 2} = . Then, writing this in terms of these
new variables, yields the following system.

xh + 229 + 2x1 = cost
) = x9

This system can be written in the above form as

() - (e ) (2)- (5 2)(2)- ()

and the initial condition is of the form

Now Py (A) = I. The eigenvalues are —1 + 4, —1 — ¢ and so

r=((5 %) e (00))- ()

Recall 7 (t) = 0 and 7y (t) = e(=1*+9t Then
= (=1—14)rg + e 1y (0) =0

and so ) )
e(flJrz)t _ 6(7171)t

ro (t) = 5 = e tsin (t)

Putzer’s method yields the fundamental matrix as

; 1 0 1—1 1
d(t) = e(—”l)t(() 1>+e_tsin(t)< _2Z _1_2,)

_ ( et (cos (t) + sin (£)) e~tsint )

—2e tsint et (cos (t) — sin (¢))

From variation of constants formula the desired solution is

T [ e " (cos(t) +sin(t)) e tsint 1
( T > )= ( —2¢ tsint et (cos (t) — sin (¢)) > ( 0 >
P [ e (cos(s) +sin(s)) e ®sins 0
+/O ( —2e ®sins e * (cos (s) — sin (s)) ) ( cos (t — s) )
[ e"(cos(t) +sin(t)) ¢ e~ ®sin (s) cos (t — s)
B ( —2e7tsint ) N /0 < e~ (cos s — sin s) cos (t — s) ) ds

[ e " (cos(t) +sin(t)) o
B —2e~tsint -

:< 3 (cost)e "+ Ze~tsint + & cost + Zsint )

(cost)e™ — 2e~'sint + Lcost + Zsint )

(cost)e™ + 2e~'sint + 2 cost — Lsint

[STCRS T

_Beo—tgint — 2 -t 2 _1lg
se”'sint — £ (cost)e™" + £ cost — g sint

Thus y (t) = z1 (t) = 2 (cost) et + Ze~'sint + L cost + Zsint.
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D.5 Geometric Theory Of Autonomous Systems

Here a sufficient condition is given for stability of a first order system. First of all, here is
a fundamental estimate for the entries of a fundamental matrix.

Lemma D.5.1 Let the functions, Ty be given in the statement of Theorem D.4.8 and sup-
pose that A is an n x n matriz whose eigenvalues are {A1, -+, \,}. Suppose that these
etgenvalues are ordered such that

Re (A1) <Re(A2) <--- <Re(My) <O0.

Then if 0 > —6 > Re(\,) is given, there exists a constant, C such that for each k =
07 17 N,
i (1)] < Ce™ (4.28)

for allt > 0.

Proof: This is obvious for r¢ (t) because it is identically equal to 0. From the definition
of the 74, 7] = A\y71,71 (0) = 1 and so 7y () = e** which implies

|7"1 (t)| < eRe()\l)t.
Suppose for some m > 1 there exists a constant, C,, such that
7k (1) < Cppt™eRem)t
for all K < m for all ¢ > 0. Then

Pt (8) = Ama1Tmar (8) + 7o (£) 5 Tmpr (0) =0

o™
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and so .
Tt (t) = e>‘"‘+1t/ e Amrisy(s)ds.
0

Then by the induction hypothesis,

IN

t
|7”m+1 (t)| eRe(Am+1)t / |€_>‘""+1S‘ CmSmeRe(Am)sds
0

t
< eRe()\m+1)t / s"C,e” Re(Am+1)seRe()\m)st
0

t
S eRe(AWL+1)t/ SmCmdS == Cfm tm+1€Re()\m'+1)t
0 m+1

It follows by induction there exists a constant, C' such that for all k < n,
|Tk (t)| < CtneRe(x\n)t

and this obviously implies the conclusion of the lemma.
The proof of the above lemma yields the following corollary.

Corollary D.5.2 Let the functions, ri be given in the statement of Theorem D.4.8 and
suppose that A is an n X n matriz whose eigenvalues are {A1, -+, A\n}. Suppose that these
etgenvalues are ordered such that

Re (M) <Re(A2) <--- <Re(M).
Then there exists a constant C' such that for all k < m
i (£)] < CtmeRem)t,
With the lemma, the following sloppy estimate is available for a fundamental matrix.

Theorem D.5.3 Let A be an n x n matriz and let ® (t) be the fundamental matriz for A.
That is,
O (t) = AdD(t), ®(0) = 1.

Suppose also the eigenvalues of A are {\1,- -, \,} where these eigenvalues are ordered such
that
Re (A1) <Re(A2) <--- <Re(\,) <0.
Then if 0 > —§ > Re (\y), is given, there exists a constant, C' such that ‘<I> ()] < Ce 0t
for allt > 0. Also
|® (1) x| < Cn3/2e™% |x]|. (4.29)

Proof: Let
M = max{‘Pk (A)ij

for all 14, j, k} .

Then from Putzer’s formula for @ (¢) and Lemma D.5.1, there exists a constant, C' such that

n—1
@ (1), <> cettu.
k=0
Let the new C be given by nCM. B
Next,

2
n

D )xP =D D iy (1)a; SZ D 1% (1) a5

n
i=1 \j=1 i=1 \j=1

n n
ZCe*‘St x| | =C%e 2t Z (n|x|)* = C?e=21p3 |x|?
1 \j=1

i=1

<

NE

(2

This proves 4.29 and completes the proof.
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Definition D.5.4 Let f : U — R™ where U is an open subset of R™ such that a € U and
f(a) = 0. A point, a where f (a) = 0 is called an equilibrium point. Then a is asymptotically
stable if for any € > 0 there exists v > 0 such that whenever |xg —a| < r and x (t) the
solution to the initial value problem,

x' =f(x), x(0) = xo,

it follows

tlggox(t) =a, [x(t)—al<e
A differential equation of the form x' = £ (x) is called autonomous as opposed to a nonau-
tonomous equation of the form x' = £ (t,x). The equilibrium point a is stable if for every
€ > 0 there exists 6 > 0 such that if |xo — a| < 4, then if x is the solution of

x' =f(x), x(0) = xo, (4.30)

then |x (t) —a| < e for allt > 0.

Obviously asymptotic stability implies stability.
An ordinary differential equation is called almost linear if it is of the form

x' = Ax + g (x)

where A is an n X n matrix and

lim w =0.

x—0 |X|

Now the stability of an equilibrium point of an autonomous system, x' = f (x) can

always be reduced to the consideration of the stability of O for an almost linear system.
Here is why. If you are considering the equilibrium point, a for x’ = f(x), you could
define a new variable, y by a+y = x. Then asymptotic stability would involve |y ()| <
and lim; o, y (t) = 0 while stability would only require |y (¢)] < €. Then since a is an
equilibrium point, y solves the following initial value problem.

y' =f(at+y)—f(a), y(0) = yo,

where yo = xg — a.
Let A = Df (a). Then from the definition of the derivative of a function,

y =Ay+g(y), y(0) =yo (4.31)
where
im 8 g
y—=0 [yl

Thus there is never any loss of generality in considering only the equilibrium point 0 for an
almost linear system.! Therefore, from now on I will only consider the case of almost linear
systems and the equilibrium point O.

Theorem D.5.5 Consider the almost linear system of equations,

x' = Ax + g (x) (4.32)
where
lim 8% _ g
x—0 |X|

and g is a C' function. Suppose that for all A an eigenvalue of A, Re\ < 0. Then 0 is
asymptotically stable.

IThis is no longer true when you study partial differential equations as ordinary differential equations in
infinite dimensional spaces.
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Proof: By Theorem D.5.3 there exist constants 6 > 0 and K such that for ® (¢) the
fundamental matrix for A,
|® (t) x| < Ke % |x].

Let € > 0 be given and let r be small enough that Kr < ¢ and for |x| < (K + 1) r, |g (x)| <
7 |x| where 7 is so small that Kn < §, and let |yo| < r. Then by the variation of constants
formula, the solution to 4.32, at least for small ¢ satisfies

y<t>=¢<t>yo+/0 D (t—s)g(y(s)) ds.

The following estimate holds.

t t
¥ (8)] < Ke % [yol + / Ke=3G=)y|y (s)|ds < Ke %t + / Ke™ 9y |y (s)| ds.
0 0

Therefore,
t
ot ly (1) < Kr +/ Kned® ly (s)|ds.
0

By Gronwall’s inequality,
%t ly ()| < Krefnt

and so
ly (1)] < KreKn=0t « co(Kn=0)t

v---v---v----v---vu---v---vv--vv--vv---v---ov--vv--vv--ovv--vv-cvv-cov-coAlcateluLUcent 0
www.alcatel-lucent.com/careers

','

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
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Therefore, |y (t)] < Kr < ¢ for all ¢ and so from Corollary D.3.4, the solution to 4.32 exists
for all ¢ > 0 and since Kn — § < 0,

lim |y (¢)| =0.1

t—o0

D.6 General Geometric Theory

Here I will consider the case where the matrix A has both positive and negative eigenvalues.
First here is a useful lemma.

Lemma D.6.1 Suppose A is an n X n matriz and there exists § > 0 such that
0<d<Re(A)<---<Re(\)

where {\1,--+ , A\n} are the eigenvalues of A, with possibly some repeated. Then there exists
a constant, C' such that for all t < 0,

(1) x| < Ce |x]
Proof: 1 want an estimate on the solutions to the system
O (t) = Ad(t), ®(0) = 1.
for t < 0. Let s = —t and let ¥ (s) = @ (¢). Then writing this in terms of ¥,
V' (s) =—AV (s), ¥(0) = 1.

Now the eigenvalues of —A have real parts less than —J because these eigenvalues are
obtained from the eigenvalues of A by multiplying by —1. Then by Theorem D.5.3 there
exists a constant, C such that for any x,

| (s) x| < Ce % |x]|.
Therefore, from the definition of W,
|® () x| < Ce® |x|.1
Here is another essential lemma which is found in Coddington and Levinson [6]

Lemma D.6.2 Let p; (t) be polynomials with complex coefficients and let
F) =Y pi(t)eM!
j=1

where m > 1, X; # A\, for j # k, and none of the p; (t) vanish identically. Let
oc=max(Re(A1), - ,Re(An)).
Then there exists a positive number, r and arbitrarily large positive values of t such that
e f ()] >
In particular, | f (t)| is unbounded.

Proof: Suppose the largest exponent of any of the p; is M and let \; = a; + ib;. First
assume each a; = 0. This is convenient because ¢ = 0 in this case and the largest of the
Re (\;) occurs in every A;.

Then arranging the above sum as a sum of decreasing powers of ¢,

F@&) =tMfar () + -+ +tf1 (1) + fo (1)
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Then )
M) =fu @) +0 (t>

where the last term means that tO (%) is bounded. Then

m
_ }: bt
= cje
j=1

It can’t be the case that all the ¢; are equal to 0 because then M would not be the highest
power exponent. Suppose ¢ # 0. Then

o1 M o—ibrt i(brb Y g4
Th—{noof/o Tt kidt = Zc] e KAt = ¢, # 0.

Letting r = | /2|, it follows [t~ f () e="*!| > r for arbitrarily large values of . Thus it
is also true that |f (t)| > r for arbitrarily large values of ¢.
Next consider the general case in which o is given above. Thus

)= D] pi0)e +g(h)

jiaj=o

where lim;_, g (t) = 0, g (t) being of the form Y _ p; (¢) (@~ F:)t where a5 —o < 0. Then
this reduces to the case above in which ¢ = 0. Therefore, there exists r > 0 such that

|e_"tf (t)‘ >

for arbitrarily large values of ¢. B
Next here is a Banach space which will be useful.

Lemma D.6.3 Fory > 0, let
E,={x€ BC([0,00),F") : t = "% (t) is also in BC ([0,00),F")}
and let the norm be given by
||, = sup {|e""x ()| : t € [0,00)}
Then E., is a Banach space.

Proof: Let {x;} be a Cauchy sequence in E.. Then since BC ([0, 00),F") is a Banach
space, there exists y € BC ([0, 00),F™) such that e"'xy, (t) converges uniformly on [0, 00) to
y (t). Therefore e "e¥'xy (t) = xy (t) converges uniformly to e 7'y (¢) on [0, 00). Define
x(t) =e 7y (t). Then y (t) = e”'x (t) and by definition,

|[xx — x|, = 0. W

D.7 The Stable Manifold

A_ 0
A= ( 0 A, ) (4.33)

where A_ and A, are square matrices of size k x k and (n — k) x (n — k) respectively. Also
assume A_ has eigenvalues whose real parts are all less than —a while A, has eigenvalues
whose real parts are all larger than a. Assume also that each of A_ and A, is upper
triangular.

Here assume
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Also, I will use the following convention. For v € F™,

()

where v_ consists of the first k£ entries of v.
Then from Theorem D.5.3 and Lemma D.6.1 the following lemma is obtained.

Lemma D.7.1 Let A be of the form given in 4.33 as explained above and let @ (t) and
O_ (t) be the fundamental matrices corresponding to Ay and A_ respectively. Then there
exist positive constants, o and vy such that

|®, (1) y| < Ce™ forallt <0 (4.34)

|®_ (t)y] < Ce™ @M for all t > 0. (4.35)

Also for any nonzero x € C*F,
|4 (t) x| is unbounded. (4.36)

Proof: The first two claims have been established already. It suffices to pick a and ~
such that — (a + ) is larger than all eigenvalues of A_ and « is smaller than all eigenvalues
of A;. It remains to verify 4.36. From the Putzer formula for &, (¢),

O, (H)x = i Trt1 () P (A)x
k=0
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where Py (A) = I. Now each r is a polynomial (possibly a constant) times an exponential.
This follows easily from the definition of the ry as solutions of the differential equations

T‘;€+1 = )\k+lrk+1 + k.
Now by assumption the eigenvalues have positive real parts so
o =max (Re(A1), - ,Re(Ap—k)) > 0.

It can also be assumed
Re(MA) > - >Re(An-k)

By Lemma D.6.2 it follows |® (¢) x| is unbounded. This follows because
n—1
Oy ()x=r1 ()X + > 11 (B) Yk, 71 (8) =M.
k=1

Since x # 0, it has a nonzero entry, say z,, # 0. Consider the m*" entry of the vector
®, (t)x. By this Lemma the m*" entry is unbounded and this is all it takes for x (t) to be
unbounded. W

Lemma D.7.2 Consider the initial value problem for the almost linear system
x' = Ax+ g (x), x(0) = xo,

where g is Ctand A is of the special form

Ao
0 A,

in which A_ is a k X k matriz which has eigenvalues for which the real parts are all negative
and Ay is a (n—k) x (n—k) matriz for which the real parts of all the eigenvalues are
positive. Then 0 is not stable. More precisely, there exists a set of points (a_, (a_)) for
a_ small such that for xq on this set,

lim x(t,%x0) =0

t—o0

and for xo not on this set, there exists a § > 0 such that |x (t,x0)| cannot remain less than
0 for all positive t.

Proof: Consider the initial value problem for the almost linear equation,

a4

xX =Ax+g(x), x(0)=a= ( a- )

Then by the variation of constants formula, a local solution has the form

B O_ (1) 0 a_
o = (57000 ) ()

L@ (t—s) 0
+/o ( 0 By (t—s) ) g (x(s,a))ds (4.37)
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Write x (t) for x (¢,a) for short. Let € > 0 be given and suppose ¢ is such that if |x| < d,
then |g1 (x)| < €|x|. Assume from now on that |a|] < §. Then suppose |x (t)| < ¢ for all
t > 0. Writing 4.37 differently yields

(ta) — (@_(t) 0 )( > (fo t—sg((s,a))ds)
’ 0 @, (t) a, 0

0
+< Jy @4 (t —5) g1 (x(s,a)) ds )

:<<I>_(t) 0 )(a_>+< (fq)_(t—s)g_(x(s,a))ds>
0 (I)_;,_(t) a+ 0

0
*( S @ (b= s) g (x(s,0)) ds — [7° @ (t— s) g (x(s,8)) ds )

These improper integrals converge thanks to the assumption that x is bounded and the
estimates 4.34 and 4.35. Continuing the rewriting,

(x_(t)> _ <(q) (ta_ + [, & (t—s)g_ (x(s,a))ds))

Oy (1) (ay + [~ @y (—5) g4 (x(s,a)) ds)

0
+< — [P (t—s) gt (x(s,a))ds >

It follows from Lemma D.7.1 that if |x (¢,a)| is bounded by ¢ as asserted, then it must be
the case that ai + fooo O, (—s)gy (x(s,a))ds = 0. Consequently, it must be the case that

B a_ [Fo_(t—s)g_ (x(s,a))ds
x(t)=®(t) ( > + ( fot B, (t—s) e, (x(s,a)) ds ) (4.38)

Letting ¢ — 0, this requires that for a solution to the initial value problem to exist and also
satisfy |x (t)| < ¢ for all ¢ > 0 it must be the case that

0= ( (s gy (x (s ) ds )

where x (t,a) is the solution of

x'=Ax+g(x), x(0) = ( _fo°°<1>+<—s)é+ (x(s,a))ds )

This is because in 4.38, if x is bounded by ¢ then the reverse steps show x is a solution of
the above differential equation and initial condition.

It follows if I can show that for all a_ sufficiently small and a = (a_, O)T, there exists a
solution to 4.38 x (s,a) on (0,00) for which |x (s,a)| < d, then I can define

(a) = — / T8, (—9)gs (x(s.0)) ds

and conclude that |x (t,x0)| < 0 for all ¢ > 0 if and only if xo = (a_, % (a_))" for some
sufficiently small a_.

Let C,a,~ be the constants of Lemma D.7.1. Let n be a small positive number such
that o )
n

—_ < —

o 6
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Note that g—zgi (0) = 0. Therefore, by Lemma D.3.1, there exists § > 0 such that if x|, |y| < 4,
then

lg(x) —g(y)| <nlx—yl|
and in particular,
g+ (x) —g+ (¥)| <nlx -y (4.39)

because each g—i (x) is very small. In particular, this implies

8- ()| <nlx[,lg+ X) <nlx].

9
plon

quy5<‘b<0a+13¢u—w»g<x@»ds>_

For x € E., defined in Lemma D.6.3 and |a_| <

[Z 0 (- 5) gy (x() ds
I need to find a fixed point of F. Letting ||x||. < J, and using the estimates of Lemma D.7.1,
¢
e Fx () < |- (t)a_|+ e”t/ Ce= @M=y |x ()| ds
0

+e”t/ Ce*t=)p|x (s)| ds
t

5 t
< eWtC%ef(‘”V)t + et |1x|[, C'n/o e~ (@FN(E=9) =75

oo
+e”t0n/ e =em 1 ds x|,
t
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5 t oo
< -+ 5C77/ e =) ds 4 C’né/ elatN(E=s) g
0 t

2
) 1 oC 1 C 20
< +5cn+”g5< +")<
2 a a4 «

2

3

Thus F' maps every x € E, having |[x||, < d to F'x where |[Fx][|, < =
Now let x,y € E, where |[x||,[[y[|, <d. Then

O Fx(t) - Fy (1) < " / B (t— )| ne™ e [x (s) — y (5)] ds

oo
et / B (t— )| ey x (s) — y (3)] ds
t

t o0
<Cn ||X - va (/0 e—(t=s) g + / e(a-&-'y)(t—s)ds)
t

11 207 1

<on=+—)|x- = x - Sx =yl -
<on(5+ ) Ix= il < 22wl < 5 I vl
It follows from Lemma 13.6.4, for each a_ such that |a_| < %,

to 4.38 in E,,.

there exists a unique solution

As pointed out earlier, if

b= [ e o) s (x(sa)ds
0
then for x (,%¢) the solution to the initial value problem

X = Ax +g(x), x(0) = xq

has the property that if xq is not of the form ( > , then |x (¢,%¢)| cannot be less

a_
P(a)
than § for all ¢ > 0.

On the other hand, if xg = for la_| < 2

¥(a_) 2

4.38 is the unique solution to the initial value problem

then x (¢,xg) ,the solution to

x' = Ax+ g (x), x(0) = xo.
and it was shown that ||x (-,x0)|[, < ¢ and so in fact,
X (£, xo)| < de™ 7"

showing that

tliglox(t,xo) =0.

]
The following theorem is the main result. It involves a use of linear algebra and the
above lemma.

Theorem D.7.3 Consider the initial value problem for the almost linear system
x' = Ax+g(x), x(0) = xo

in which g is C' and where at there are k < n eigenvalues of A which have negative real
parts and n — k eigenvalues of A which have positive real parts. Then 0 is not stable. More
precisely, there exists a set of points (a, v (a)) for a small and in a k dimensional subspace
such that for xqo on this set,

lim x(t,%x0) =0

t—o0

and for xo not on this set, there exists a § > 0 such that |x (t,x0)| cannot remain less than
6 for all positive t.
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Proof: This involves nothing more than a reduction to the situation of Lemma D.7.2.
From Theorem 9.5.2 on Page 9.5.2 A is similar to a matrix of the form described in Lemma

A0
0 Ay

!l __ A 0 —1
y—( 0 A+>y+g(5 y)

Now [x| = [S715x| < ||S7!||ly| and |y| = [SS~'y| < [IS]| [x| . Therefore,

D.7.2. Thus A= S} ( ) S. Letting y = Sx, it follows

1
mM <Ixl<||S7Y] Iyl

It follows all conclusions of Lemma D.7.2 are valid for this theorem. W

The set of points (a, 1) (a)) for a small is called the stable manifold. Much more can be
said about the stable manifold and you should look at a good differential equations book
for this.

. Develop the tools we need for Life Science
UPPSALA Masters Degree in Bioinformatics

UNIVERSITET

Bioinformatics is the
exciting field where biology,
computer science, and
mathematics meet.

We solve problems from
biology and medicine using
methods and tools from
computer science and
mathematics.

Read more about this and our other international masters degree programmes at www.uu.se/master

Download free eBooks at bookboon.com
433

Click on the ad to read more



http://www.come.ku.dk
http://www.uu.se/master

Appendix E

Compactness And Completeness

E.1 The Nested Interval Lemma

First, here is the one dimensional nested interval lemma.

Lemma E.1.1 Let I, = [ax, by be closed intervals, ay, < by, such that Ij, O Ip+1 for all k.
Then there exists a point ¢ which is contained in all these intervals. Iflimg_,o (b — ax) = 0,
then there is exactly one such point.

Proof: Note that the {ay} are an increasing sequence and that {bs} is a decreasing
sequence. Now note that if m < n, then

am < an < by

while if m > n,

It follows that a,, < b, for any pair m,n. Therefore, each b,, is an upper bound for all the
ap, and so if ¢ = sup {ay }, then for each n, it follows that ¢ < b,, and so for all, a,, < ¢ < b,
which shows that ¢ is in all of these intervals.

If the condition on the lengths of the intervals holds, then if ¢, ¢’ are in all the intervals,
then if they are not equal, then eventually, for large enough k, they cannot both be contained
in [ag, by| since eventually by, — ar < |¢ — ¢/|. This would be a contradiction. Hence ¢ = ¢'.
|

Definition E.1.2 The diameter of a set S, is defined as
diam (S) =sup{|x —y| : x,y € S}.

Thus diam (S) is just a careful description of what you would think of as the diameter.
It measures how stretched out the set is.
Here is a multidimensional version of the nested interval lemma.

Lemma E.1.3 Let I, = [[7_, [a¥,bF] = {x e R? : 2; € [aF,bF]} and suppose that for all
k=1,2,--
I, O Iy

Then there exists a point ¢ € RP which is an element of every Ij. If limg_, o diam (I) = 0,
then the point c is unique.

Proof: For each i = 1,--- ,p, [af,bﬂ B [af“,b?“] and so, by Lemma E.1.1, there
exists a point ¢; € [a¥,b¥] for all k. Then letting ¢ = (1, - , ;) it follows ¢ € I}, for all k.

177
If the condition on the diameters holds, then the lengths of the intervals limy_, o [af, bﬂ =0
and so by the same lemma, each ¢; is unique. Hence c¢ is unique. B

E.2 Convergent Sequences, Sequential Compactness

A mapping f : {k,k+ 1,k +2,---} = RP is called a sequence. We usually write it in the
form {a;} where it is understood that a; = f (j).
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Definition E.2.1 A sequence, {ay} is said to converge to a if for every e > 0 there exists
ne such that if n > ne, then |a—a,| < e. The usual notation for this is lim, . a, = a
although it is often written as a,, — a. A closed set K C R™ is one which has the property

oo

that if {kj}j:1 is a sequence of points of K which converges to x, then x € K.
One can also define a subsequence.

Definition E.2.2 {a,, } is a subsequence of {a,} ifn; <ng <---.
The following theorem says the limit, if it exists, is unique.

Theorem E.2.3 If a sequence, {a,} converges to a and to b then a =b.

Proof: There exists n. such that if n > n. then |a, —a| < § and if n > n., then

|]a, —b| < 5. Then pick such an n.

E €
la—b| < |a—a,|+|a, —b| < 54—5 =e.
Since ¢ is arbitrary, this proves the theorem. H
The following is the definition of a Cauchy sequence in RP.

Definition E.2.4 {a,} is a Cauchy sequence if for all € > 0, there exists n. such that
whenever n,m > ng, if follows that |a,—a,;,| < .

A sequence is Cauchy, means the terms are “bunching up to each other” as m,n get
large.

Theorem E.2.5 The set of terms in a Cauchy sequence in RP is bounded in the sense that
for alln, |a,| < M for some M < co.

Proof: Let ¢ =1 in the definition of a Cauchy sequence and let n > n;. Then from the
definition, |a, — a,,| < 1.It follows that for all n > nq,|a,| < 1+ |a,, | .Therefore, for all n,

ni

lan| <1+ |an,| +Z|ak|‘ u
k=1

Theorem E.2.6 If a sequence {a,} in RP converges, then the sequence is a Cauchy se-
quence. Also, if some subsequence of a Cauchy sequence converges, then the original se-
quence converges.

Proof: Let ¢ > 0 be given and suppose a,,— a. Then from the definition of convergence,
there exists n. such that if n > n., it follows that |a,—a| < § . Therefore, if m,n > n. +1,
it follows that

e €
la,—an,| <la,—al +|a—a,| < 3 + ;=¢

showing that, since € > 0 is arbitrary, {a,} is a Cauchy sequence. It remains to that the
last claim.

Suppose then that {a,} is a Cauchy sequence and a = limy_,o an, where {a,, },,
is a subsequence. Let ¢ > 0 be given. Then there exists K such that if k, > K, then
lap —a;| < §. Then if k > K, it follows nj, > K because ni,nz,ns,- - - is strictly increasing
as the subscript increases. Also, there exists K such that if & > K1, |a,, —a| < §. Then
letting n > max (K, K1), pick k > max (K, K1). Then

3

2:&

€
8= an| < Ja = an,| +[an, —an| < 5+
Therefore, the sequence converges. Bl

Definition E.2.7 A set K in RP is said to be sequentially compact if every sequence in
K has a subsequence which converges to a point of K.
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Theorem E.2.8 If [j = le [a;, b;] where a; < b;, then Iy is sequentially compact.

Proof: Let {a;},.,; C Iy and consider all sets of the form [[}_, [¢;,d;] where [¢;,d;]
equals either [ai, ’”'2" 7] or [¢;,d;] = [‘“’Tm,bi]. Thus there are 2P of these sets because

there are two choices for the i*" slot for i = 1,--- ,p. Also, if x and y are two points in one

_ 1/2
of these sets, |z; — y;| < 271 |b; — a;] where diam (Iy) = (Zle |b; — ai|2) ,

» 1/2 » 1/2
Ix—y| = (Z |2; — yi|2> <271 (Z |b; — ai|2> =2~ diam (Ip) .
i=1 i=1
In particular, since d = (dy,--- ,d,) and ¢ = (c1,- - , ¢p) are two such points,
» 1/2
D = (Z \d; — ci|2> < 271 diam (Iy)
i=1
Denote by {J1,- -, Jor } these sets determined above. Since the union of these sets equals

all of I = I, it follows that for some Ji, the sequence, {a;} is contained in Jj, for infinitely
many k. Let that one be called I;. Next do for I; what was done for Iy to get I, C I}
such that the diameter is half that of I; and I contains {a;} for infinitely many values
of k. Continue in this way obtaining a nested sequence {I;} such that I O Ijy;, and if
X,y € Iy, then |x —y| < 27%diam (I), and I,, contains {a;} for infinitely many values of
k for each n. Then by the nested interval lemma, there exists ¢ such that c is contained in
each I,. Pick a,, € I;. Next pick ns > n; such that a,, € I. If a,,,---,a,, have been
chosen, let a,,,,, € Iry1 and ngy1 > ng. This can be done because in the construction, I,
contains {ay} for infinitely many k. Thus the distance between a,, and c is no larger than
27k diam (Ip), and so limy_ o0 a,, =c € Iy. B

Corollary E.2.9 Let K be a closed and bounded set of points in RP. Then K is sequentially
compact.

Proof: Since K is closed and bounded, there exists a closed rectangle, [[}_; [ak, bx]
which contains K. Now let {x;} be a sequence of points in K. By Theorem E.2.8, there
exists a subsequence {x,, } such that x,, — x € [[%_; [ax,bx]. However, K is closed and
each x,, isin K soxec K. 1

Theorem E.2.10 FEvery Cauchy sequence in RP converges.

Proof: Let {a;} be a Cauchy sequence. By Theorem E.2.5, there is some box [7_; [a;, b;]
containing all the terms of {aj}. Therefore, by Theorem E.2.8, a subsequence converges to
a point of []%_, [ai, b;]. By Theorem E.2.6, the original sequence converges. Bl
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Appendix F

Some Topics Flavored With
Linear Algebra

F.1 The Symmetric Polynomial Theorem

First here is a definition of polynomials in many variables which have coefficients in a
commutative ring. A commutative ring would be a field except you don’t know that every
nonzero element has a multiplicative inverse. If you like, let these coefficients be in a field.
It is still interesting. A good example of a commutative ring is the integers. In particular,
every field is a commutative ring.

Definition F.1.1 Let k = (ky, ko, -+ , ky,) where each k; is a nonnegative integer. Let
k= ki
i
Polynomials of degree p in the variables x1,xs, -+ ,x, are expressions of the form
g(x17_r1;2,... 7xn) — Z akxi:l ...mf:ln
[k|<p

(]
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where each ay is in a commutative ring. If all axy = 0, the polynomial has no degree. Such
a polynomial is said to be symmetric if whenever o is a permutation of {1,2,--- ,n},

g (xo(l)axo(Z)v T 7$a(n)) =g (mlvx% T 7xn)

An example of a symmetric polynomial is

n
S1 (961,9627"' ,xn) = Zﬂﬁz
i=1

Another one is
Sp (T1, 22, ,Tn) = 2172+ Ty

Definition F.1.2 The elementary symmetric polynomial si (x1,22, - ,&n),k=1,---,n
1s the coefficient of (—1)k 2"k in the following polynomial.

(x—x1) (x —x2) - (x — )
=" — 512" st — £ s,
Thus

51:x1+1’2+...+xn

S9 = inxj, S3 = Z LiLljTky..y Sp = T1L2" " Tp
i<j i<j<k
Then the following result is the fundamental theorem in the subject. It is the symmetric
polynomial theorem. It says that these elementary symmetric polynomials are a lot like a
basis for the symmetric polynomials.

Theorem F.1.3 Let g (21,2, - ,xy) be a symmetric polynomial. Then g (1, T, - ,Ty)
equals a polynomial in the elementary symmetric functions.

k k
g (1,22, ,2n) = E aksyt syt
k

and the ax are unique.

Proof: If n = 1, it is obviously true because s; = x;. Suppose the theorem is true for
n—1and g (z1, 2, - ,x,) has degree d. Let

9/ (Il,l’27"' azn—l) 59@179327"' a‘rn—ho)

By induction, there are unique ay such that

i 1k tkp—1
g (Il,l'z,'“ ,xn—l) = Zaksl 1 Y
k

where s} is the corresponding symmetric polynomial which pertains to 1,2, -, Tn_1.
Note that

0 _ !

Sk ($17x27 o, Tp—1, ) - sk- (x171.27 e 7‘7;77,71)

Now consider

k kn—1 _

g (1, @9, ) = Y a5, = g (T, w2, T)
k

is a symmetric polynomial and it equals 0 when x,, equals 0. Since it is symmetric, it is also
0 whenever x; = 0. Therefore,

q($1,$2,"‘ ,l’n) = th ($1,$2,~~~ ,l’n)

and it follows that h (z1,292, - ,2,) is symmetric of degree no more than d — n and is
uniquely determined. Thus, if g (x1, 22, ,x,) is symmetric of degree d,

kn—
g (1, @9, ) = Y sy s, 3 A sph (w1, w2, Tn)
k
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where h has degree no more than d —n. Now apply the same argument to h (x1, 29, ,x,)
and continue, repeatedly obtaining a sequence of symmetric polynomials h;, of strictly de-
creasing degree, obtaining expressions of the form

k kn—1 _ky
g(x1, 20, ,xn) = E bisy' s, 0 Spm A+ Spha (21, T2, -+, Xn)
k

Eventually h,, must be a constant or zero. By induction, each step in the argument yields
uniqueness and so, the final sum of combinations of elementary symmetric functions is
uniquely determined.

Here is a very interesting result which I saw claimed in a paper by Steinberg and Redheffer
on Lindemannn’s theorem which follows from the above theorem.

Theorem F.1.4 Let oy, - ,a, be roots of the polynomial equation

p(z) = apz™ +ap_ 12" Pt ar+ag=0

where each a; is an integer. Then any symmetric polynomial in the quantities apay, - -+, anQy,
having integer coefficients is also an integer. Also any symmetric polynomial in the quanti-
ties aip, - -+ , oy having rational coefficients is a rational number.
Proof: Let f(x1, -+ ,2,) be the symmetric polynomial. Thus
f(x1, - ,2n) € Z[z1---xy,], the polynomials having integer coefficients

From Theorem F.1.3 it follows there are integers ag, ..., such that
f(xla"' axn) = Z akl"‘kn,p]fl "'prn
ki+-+kn,<m

where the p; are the elementary symmetric polynomials defined as the coefficients of

(x — )

n

J

Earlier we had them =+ these coefficients. Thus

f (anala T 7anan)
= > ke, (@noa,anag) it (anon, - anan)
Fatethn=d

Now the given polynomial p (z) is of the form

o [[ o —ap) = an (zpk (.- >>
j=1 k=0

= a2 +an_12" M+ +aix+ap
Thus, equating coefficients, a,py, (a1, , ) = a,_x. Multiply both sides by a*~!. Thus

k—1
Pi (Qna1, - An0y) = @y Gp_j

an integer. Therefore,

f (anala e 7anan)
k
= > kDY (@n0a, o) PR (a0, anon)
kit-+kn=d
and each pg (anai,- - ,apqy,) is an integer. Thus f(ajai,- - ,anq,) is an integer as
claimed. From this, it is obvious that f («1,--- ,ay,) is rational. Indeed,
k k
f(ala"' 7an): Z akl---knp]_l (Oél,"' 7a’n)"'pnn (ala"' 7an)
kit +kn=d
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Now multiply both sides by a,a2a3 ---a”, an integer. Then

anaiai"'QZf (ala"' 7an) = Z akl”-knp’lfl (anal7"' aanan)"'pﬁn (anala"' 7anan)
ki+--+kn=d

with the right side an integer. Thus f (a1, - ,«,) is rational. If the f had rational coef-

ficients, then mf would have integer coefficients for a suitable m and so mf (a1, -, )

would be rational which yields f (aq,--- , ;) is rational. B

F.2 The Fundamental Theorem Of Algebra

This is devoted to a mostly algebraic proof of the fundamental theorem of algebra. It
depends on the interesting results about symmetric polynomials which are presented above.
I found it on the Wikipedia article about the fundamental theorem of algebra. You google
“fundamental theorem of algebra” and go to the Wikipedia article. It gives several other
proofs in addition to this one. According to this article, the first completely correct proof
of this major theorem is due to Argand in 1806. Gauss and others did it earlier but their
arguments had gaps in them.

You can’t completely escape analysis when you prove this theorem. The necessary anal-
ysis is in the following lemma.

Lemma F.2.1 Suppose p(x) = 2™ + ap_12" "> + -+ + a12 + ag where n is odd and the
coefficients are real. Then p (x) has a real root.

Proof: This follows from the intermediate value theorem from calculus.
Next is an algebraic consideration. First recall some notation.

m
Hai =103 Qm
1=1

(]
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Recall a polynomial in {z1,---,2,} is symmetric only if it can be written as a sum of
elementary symmetric polynomials raised to various powers multiplied by constants.

The following is the main part of the theorem. In fact this is one version of the funda-
mental theorem of algebra which people studied earlier in the 1700’s.

Lemma F.2.2 Let p(z) = 2™ + ap_12" ' + -+ + a1z + ag be a polynomial with real coef-
ficients. Then it has a complex Toot.

Proof: It is possible to write
n=2"m

where m is odd. If n is odd, k = 0. If n is even, keep dividing by 2 until you are left with
an odd number. If & = 0 so that n is odd, it follows from Lemma F.2.1 that p (z) has a
real, hence complex root. The proof will be by induction on k, the case k = 0 being done.
Suppose then that it works for n = 2Ym where m is odd and [ < k — 1 and let n = 2Fm
where m is odd. Let {z1,---,2,} be the roots of the polynomial in a splitting field, the
existence of this field being given by the above proposition. Then

n

p@) =T =2) =3 (0 prtero szt (6.1)

k=0
where py, (21, -+ , z,) is the k*" elementary symmetric polynomial. Note this shows
ani =i (21, -, 20) (=1)¥, a real number. (6.2)

There is another polynomial which has coefficients which are sums of real numbers times
the pj raised to various powers and it is

q (v) = H (x — (7 + zj +tz25)), teR

1<i<j<n

I need to verify this is really the case for ¢; (x). When you switch any two of the z; in
q: (x) the polynomial does not change. Thus the coefficients of ¢; (z) must be symmetric
polynomials in the z; with real coefficients. Hence by Proposition F.1.3 these coefficients
are real polynomials in terms of the elementary symmetric polynomials pg. Thus by 6.2
the coefficients of ¢; (x) are real polynomials in terms of the ay of the original polynomial.
Recall these were all real. It follows, and this is what was wanted, that ¢; (z) has all real
coefficients.

Note that the degree of ¢; () is ( ; > because there are this number of ways to pick

i< joutof {1,---,n}. Now

( " ) A ("2* D _ gh-tm (2bm — 1)

= 2F=1 (0dd)
and so by induction, for each t € R, ¢; () has a complex root.
There must exist s # t such that for a single pair of indices 4, j, with ¢ < j,
(zi + 25 +tziz5) , (2 + 2j + sz:z5)

are both complex. Here is why. Let A (4, j) denote those t € R such that (z; + z; + tz;2;) is
complex. It was just shown that every ¢ € R must be in some A (,5). There are infinitely
many t € R and so some A (i,j) contains two of them.

Now for that t, s,

zi + 2z +1z25

S 2

zi + 25+ 8225 =
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where t # s and so by Cramer’s rule,

a t
b s
zi+ 25 = eC
1 ¢
1 s
and also
1 a
1 b
ZiZj = —F7 €c (C
1 ¢t
1 s

At this point, note that z;, z; are both solutions to the equation

1172 — (Zl +22)£E + 2129 = 0,
which from the above has complex coefficients. By the quadratic formula the z;, z; are both
complex. Thus the original polynomial has a complex root. B

With this lemma, it is easy to prove the fundamental theorem of algebra. The difference
between the lemma and this theorem is that in the theorem, the coefficients are only assumed
to be complex. What this means is that if you have any polynomial with complex coefficients
it has a complex root and so it is not irreducible. Hence the field extension is the same field.
Another way to say this is that for every complex polynomial there exists a factorization
into linear factors or in other words a splitting field for a complex polynomial is the field of
complex numbers.

Theorem F.2.3 Let p(r) = apz"™ +ap_12" 1 + -+ + a1z +ag be any complex polynomial,
n > l,a, # 0. Then it has a complex root. Furthermore, there exist complexr numbers
21, 5 2Zn Such that

p(z)=an [ (@ —2)
k=1

Proof: First suppose a,, = 1. Consider the polynomial ¢ (z) = p (z)p (Z)

(" + ap_12" '+ + a1z 4 ag) -

(2" +@p1z" " + - + a1z +ao)

This polynomial has real coefficients because the coefficient of ™ is of the form

m

§ amfk@

k=0

and the sum involves adding terms of the form
araj + aga; = aga; + axa; = apa; + axa;

so it is of the form of a complex number added to its conjugate. Hence ¢ (x) has real
coeflicients as claimed. Therefore, by by Lemma F.2.2 it has a complex root z. Hence either
p(z) =0or p(z) =0. Thus p (z) has a complex root.

Next suppose a,, # 0. Then simply divide by it and get a polynomial in which a,, = 1.
Denote this modified polynomial as ¢ (z). Then by what was just shown and the Euclidean
algorithm, there exists z; € C such that

q(x) = (z—-2)q ()
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where ¢; (z) has complex coefficients. Now do the same thing for ¢; (z) to obtain

q(z) = (v —21) (v — 22) g2 (2)

and continue this way. Thus

p(z) _ ﬁ(x_zj) -
j=1

Gp

F.3 Transcendental Numbers

Most numbers are like this. Here the algebraic numbers are those which are roots of a
polynomial equation having rational numbers as coefficients. By the fundamental theorem
of algebra, all these numbers are in C. There are only countably many of these algebraic
numbers, (Problem 41 on Page 215). Therefore, most numbers are transcendental. Never-
theless, it is very hard to prove that this or that number is transcendental. Probably the
most famous theorem about this is the Lindemannn Weierstrass theorem.

Theorem F.3.1 Let the a; be distinct nonzero algebraic numbers and let the a; be nonzero
algebraic numbers. Then
n
Z a; e #£0
i=1

I am following the interesting Wikepedia article on this subject. You can also look at the
book by Baker [4], Transcendental Number Theory, Cambridge University Press. There are
also many other treatments which you can find on the web including an interesting article
by Steinberg and Redheffer which appeared in about 1950 part of which I am following here.
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The proof makes use of the following identity. For f (z) a polynomial,

deg(f) deg(f

I(s)E/O e’ f(x)dx =e° Z 90 Z 9 (s (6.3)

where () denotes the j*" derivative. In this formula, s € C and the integral is defined in
the natural way as

/01 sf (ts)e*~tdt (6.4)

The identity follows from integration by parts.

1 1
/ sf(ts)es tdt = ses/ f(ts)e " dt
0 0

= ses[

e
= se° [—

1 —ts
(ts) |(1)+/0 es sf’(st)dt}

. f(3)+if(0)+/01 et f! (st) dt}

= e°f(0)— f(s) —|—/O seST f! (st) dt
= IO O+ [ e @

Continuing this way establishes the identity since at the right end looks just like what we

started with except with a derivative on the f.

Lemma F.3.2 If K and c are nonzero integers, and 31, ,B,, are the roots of a single
polynomial with integer coefficients,

Q(zx)=v™+--4u

where v,u # 0, then
K+c(eﬂ1 —|—-~-—|—e’6m) # 0.

Letting
p(M+VPOP (1) P 1
fly= )
(p—1)!
and I (s) be defined in terms of f (z) as above, it follows,
Jim ;uﬂ ) =
and

Z f(j) (0) = Pm+1)p 4 my (p)p
j=0

m n

SN 9 (B) =ma()p

i=1j=0

where m; (p) is some integer.

Proof: Let p be a large prime number. Then consider the polynomial f (x) of degree
n=pm-+p-—1,

oM HPQP () P!

A (p—1)!
From 6.3,
DA S EDSLTUS L
i=1 i=1 j=0 j=0
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n

= <K + 02 e&) Y 90 -K ZO FO0)=ed > 9 (8) (6.5)

=0 i=1j=0

Claim 1: lim, ,o ¢Y ., I(53;) =0.
Proof: This follows right away from the definition of T (ﬁ j) and the definition of f (z).

1
|I (ﬂj)| S/ |6]f (tﬂj) eﬁj*tﬁj|dt
0
1 |,U|(m—1)P ’Q (tﬁj) |Ptp_1 |/8j|p—1
S/O (p—1)

which clearly converges to 0. This proves the claim.
The next thing to consider is the term on the end in 6.5,

K3 190+ 3 19 (8,) (6.6)
j=0

i=1j=0

dt

The idea is to show that for large enough p it is always a nonzero integer. When this is
done, it can’t happen that K + ¢ ;- efi = 0 because if this were so, you would have a
very small number equal to an integer.

p(m+1)p (va™ 4 - +u)? 2p—1
(p—1)!
Then f7(0) = 0 unless j > p — 1 because otherwise, that #P~! term will result in some

z",r > 0 and everything is zero when you plug in x = 0. Now say j = p— 1. Then it is clear
that

fla) =

=1 (0) = uPy(m+1)p
So what if j > p — 1?7 Then by Liebniz formula,

. j d
O (R s e e

where the Stuff equals 0 when @ = 0. Thus f7(0) = pm; where m; is some integer
depending on the integer coefficients of the polynomial @ (x). Therefore,

n

359D (0) = o HPGE 4o (p) p (6.7)
j=0

where m (p) is some integer.
Now consider the other sum in 6.6,
e D I8
i=1 j=0
Also it follows that

o HVP (2 — By) (x = By) -+ (x — B,,))  aP~?
(p—1)!

it follows that for j < p, fU) (3;) = 0. This is because for such derivatives, each term will
have that product of the (z — ;) in it.

To get something non zero, the nonzero terms must involve at least p derivatives of the
expression

f(x) =

(@ =B1) (&= By) - (x = B))"
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since otherwise, when evaluated at any (3, the result would be 0.
Now say j > p. Then by Liebniz formula, f7 () is of the form

ot G () d ood
m;(7,)dmr(((w—ﬁl)(x—%)-~-(w—6m)))Wx '

pP(mAD)—2p+1 I ; )
- omm X ( ! ) (v = 08y) (0 = 0B) -+ (02— 08,,)) = (o)

Note that for r too small, the term will be zero when evaluated at any of the ;. You only
get something nonzero if r > p and so there will be a p! produced which will cancel with
the (p — 1)! to yield an extra p.

Now if you do the computations using the product rule and then replace x with 3, and
sum these over all v3,, you will get a symmetric polynomial in the quantities {vf3;, -+ ,v03,,}
and by Theorem F.1.4 this is an integer. To see this is symmetric note that switching
’U,B a’ ’Uﬁ b in

e ((vr— 81) vz~ 0By) -+ (0 — 05,,))

does not change anything. The other term is just v?~1 (p — 1) (p —2) -+ (p— j +r) 2P I ~1
or zero if j —r > p — 1. It follows that when adding these over i,

e > fVB)=Lw)p

i=1 j=0
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where L (p) is some integer. Therefore, 6.6 is of the form
KoP™ Du? +m (p)p+ L (p) p = KoP"™ P + M (p) p

for some integer M (p). Summarizing, it follows

#0
m m n

ey I(B) = (K +ey eBi> > F9D(0) + KoP" P + M (p)p
i=1 i=1 j=0

where the left side is very small whenever p is large enough. Let p be larger than max (K, v, u) .
Since p is prime, it follows that it cannot divide KvP("+Dy? and so the last two terms must
sum to a nonzero integer and so the equation 6.5 cannot hold unless

K—i—cZeBi #0 1
i=1

Note that this shows 7 is irrational. If 7 = k/m where k, m are integers, then both in
and —i7 are roots of the polynomial with integer coefficients,

m2z? 4 k?
which would require, from what was just shown that
0#2_'_62'77_'_6—1'77

which is not the case since the sum on the right equals 0
The following corollary follows from this.

Corollary F.3.3 Let K and ¢; fori=1,--- ,n be nonzero integers. For each k between 1
and n let {f (k);};"% be the roots of a polynomial with integer coefficients,

Qr (x) = vpa™ 4+ +uy,

where v, u, # 0. Then

e m2 My
K+ Z e’ Wi | 4 ¢ Z PR | .1, Z eBn);
Jj=1 j=1 j=1

Proof: Defining fi (z) and I (s) as in Lemma F.3.2, it follows from Lemma F.3.2 that
foreach k=1,--- ,n,

Mk g deg(fx)
Ckzlk (5(]@')1) = (Kk—l—CkZeﬁ(k)i) Z f
i=1

i=1
deg(fx) my, deg(fx)

S SRAUR SO SR
7=0 i=

This is exactly the same computation as in the beginning of that lemma except one adds
and subtracts K Zdeg(f’“) f(]) (0) rather than K Zdeg fi) f,gj) (0) where the K}, are chosen
such that their sum equals K. By Lemma F.3.2,

mg
Cszk (Kk +Ckzeﬁ(k) > ( (mp+1)p uP +Nkp>

i=1

—K; (Ul(cmk+1)p Py Nk-p) _ ckap
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and so

mi mi
o DI (B (R),) = (Kk teey, eﬁ““”) (el uf + Nip)
i=1 i=1
—Kkv,(cmk+1)pu£ + Mkp

for some integer M. By multiplying each @y (z) by a suitable constant depending on k,

it can be assumed without loss of generality that all the U,Tk+1U,k are equal to a constant

integer U. Then the above equals

ey T (B(k),) = (Kk +ck2eﬁ(’“>i) (UP + Nip)
i=1

i=1
—KkUp + Mkp
Adding these for all k gives

n my

chﬁfk (B(k),) =U" (KJFickzeﬁ(k)i) ~ KU” + Mp
k=1 =1

k=1 i=1

n mg
+  Nip <Kk +tew Y eﬁ(k)i> (6.8)

k=1 i=1

For large p it follows from Lemma F.3.2 that the left side is very small. If

K+ zn:ckikzeﬁ(k)i =0
k=1 i=1

then > ), i D>k ePR)i is an integer and so the last term in 6.8 is an integer times p. Thus
for large p it reduces to
small number = —KU? + Ip

where I is an integer. Picking prime p > max (U, K) it follows —KUP + Ip is a nonzero
integer and this contradicts the left side being a small number less than 1 in absolute value.
|

Next is an even more interesting Lemma which follows from the above corollary.

Lemma F.3.4 If by, b1, ,b, are non zero integers, and vy, - ,7,, are distinct algebraic
numbers, then
boe’° + bie’t + -+ be’n 75 0

Proof: Assume
boe"® +b1e’ + -+ b’ =0 (6.9)

Divide by €70 and letting K = by,
K +be®® 4. 4 pe™ =0 (6.10)

where a (k) = 5, — 7. These are still distinct algebraic numbers none of which is 0 thanks
to Theorem 7.3.32. Therefore, a (k) is a root of a polynomial

vEx ™ 4y (6.11)

having integer coefficients, vg,ur # 0. Recall algebraic numbers were defined as roots of
polynomial equations having rational coefficients. Just multiply by the denominators to get
one with integer coefficients. Let the roots of this polynomial equation be

{a(k)1>"' ao‘(k)mk}

Download free eBooks at bookboon.com



and suppose they are listed in such a way that o (k); = a (k). Letting i, be an integer in
{1,--- ,my} it follows from the assumption 6.9 that

11 (K +bye®Min 4 bye®@iz 4.y bnea(”%n) =0 (6.12)

(31, yin)
i €{l, ;my}

This is because one of the factors is the one occurring in 6.10 when i, = 1 for every k. The
product is taken over all distinct ordered lists (i1, - ,i,) where i is as indicated. Expand
this possibly huge product. This will yield something like the following.

K/ +Cl (65(1)1 4. +eﬁ(1)u(1)) +C2 <6ﬁ(2)1 —+ .. +eﬁ(2)u(2)> + -4

n (eﬂ(w)l T eﬁ<N>u<N>> —0 (6.13)

These integers ¢; come from products of the b; and K. The £ (¢) ; are the distinct exponents
which result. Note that a typical term in this product 6.12 would be something like

integer pQ

f_/\— P

KPby, - - bkn,pea (k1);, + o (k2)y, -+« (kn—p)in—p
the k, possibly not distinct and each iy € {1,--- ,m;, }. A given term in the sum of 6.13
corresponds to such a choice of {by,,- -+ ,bk,_, } which leads to Kby, ---by,_, times a sum
of exponentials like those just described. Since the product in 6.12 is taken over all choices
ir € {1,---,my}, it follows that if you switch a (r); and a(r);, two of the roots of the
polynomial

Urxmr+...+ur
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mentioned above, the result in 6.13 would be the same except for permuting the
6(8)1 aﬂ (5)2 s 7/8 (S)H(S) .

Thus a symmetric polynomial in
B (5)1 B (5)2 B (S)ﬂ(S)

is also a symmetric polynomial in the « (k);,c(k)y,---,a (k)
given 7, 8(r)y -+, B (r), are roots of the polynomial

- for each k. Thus for a

(0 =B @=B0)) (2= B

whose coefficients are symmetric polynomials in the S (r) j which is a symmetric polynomial
in the a (k)J ,j=1,--- ,my for each k. Letting g be one of these symmetric polynomials, a
coefficient of the above polynomial, and writing it in terms of the a (k); you would have

S Ay, e am)galn)y
li,ln

where A;,...;, is a symmetric polynomial in a (k);,j = 1,--- ,my, for each k < n —1. (It
is desired to show g is rational.) These coefficients are in the field (Proposition 7.3.31)
Q[A(1), -+ ,A(n—1)] where A (k) denotes

{a(k)17"' ,Oé(k)mk}

and so from Theorem F.1.3, the above symmetric polynomial is of the form

k k?nn
Z By by, D1 (a (n)1 yrr s (n)m“) ©Pmg, (a (n)1 y s (n)m“)
(k1 kmy,)
where By, ..., s a symmetric polynomial in o (k)] ,j=1,--- ,my for each k <n—1. Now

do for each By,...r,, what was just done for g featuring this time

mnp

{a(n—l)l,"' ,Oé(n_l)mn,l}

and continuing this way, it must be the case that eventually you have a sum of integer
multiples of products of elementary symmetric polynomials in « (k) jod =1 my, for
each k£ < n. By Theorem F.1.4, these are rational numbers. Therefore, each such g is
a rational number and so the j(r) ; are algebraic roots of a polynomial having rational
coefficients, hence also roots of one which has integer coefficients. Now 6.13 contradicts
Corollary F.3.3. B

Note this lemma is sufficient to prove Lindemann’s theorem that 7 is transcendental.
Here is why. If 7 is algebraic, then so is im and so from this lemma, e + €™ # 0 but this is
not the case because '™ = —1.

The next theorem is the main result, the Lindemannn Weierstrass theorem.

Theorem F.3.5 Suppose a(1),---,a(n) are nonzero algebraic numbers and suppose

are distinct algebraic numbers. Then
a(1) e +a(2)e*@ ... 4 a(n)e*™ £0
Proof: Suppose a (j) = a(j), is a root of the polynomial

v + + u;
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where v;,u; # 0. Let the roots of this polynomial be a (j),,--- ’a(j)mj~ Suppose to the
contrary that
a(1),e® 4+ (2), %@ + .- +a(n), ™ =0

Then consider the big product

H (a (1), W 4 q (2),, @t (n);. ea(")) (6.14)
(7;17... ’»L'n)
i €{1l,- ,my}
the product taken over all ordered lists (i1, - ,4,). This product equals
0 =01 4 byeP® ... 4 e (6.15)

where the 3 (j) are the distinct exponents which result. The (i) are clearly algebraic
because they are the sum of the « (¢). Since the product in 6.14 is taken for all ordered lists
as described above, it follows that for a given k.if a (k), is switched with a (k) , that is, two
of the roots of vyz™* + --- 4 uy are switched, then the product is unchanged and so 6.15

is also unchanged. Thus each b, is a symmetric polynomial in the a (k)] ,j=1,--- my for
each k. It follows . ‘
by, = Z Ajy g a ()] a(n)imn
(J1> " sdmn)
and this is symmetric in the {a(n),, - ,a } the coefficients Aj, ... ; ~ being in the
field (Proposition 7.3.31) Q[A (1 ) ( ] where A (k) denotes

and so from Theorem F.1.3,

bo= Y B o (an)am), ) prr (a(n),-aln), )

(G, sdmn)

my
where the Bj .. ;. are symmetric in {a (k:)J} for each k¥ < n — 1. Now doing to

Bj, ... .., what was just done to by and continuing this way, it follows by is a finite sum of

my
integers times elementary polynomials in the various {a (k) j} for £ < n. By Theorem
=1

F.1.4 this is a rational number. Thus by is a rational number. Multiplying by the product
of all the denominators, it follows there exist integers ¢; such that

0 = c1”M 4 06?4 ... 4 e

which contradicts Lemma F.3.4. B
This theorem is sufficient to show e is transcendental. If it were algebraic, then

ee” +(=1)e” £0

but this is not the case. If a # 1 is algebraic, then In (a) is transcendental. To see this, note
that
1@ 4 (~1)ae® =0

which cannot happen if In (a) is algebraic according to the above theorem. If a is algebraic
and sin (a) # 0, then sin (a) is transcendental because

1 . 1 .

Q—Z_em — Q—ie*m + (—1)sin(a) e’ =0
which cannot occur if sin (a) is algebraic. There are doubtless other examples of numbers
which are transcendental by this amazing theorem.
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F.4 More On Algebraic Field Extensions

The next few sections have to do with fields and field extensions. There are many linear
algebra techniques which are used in this discussion and it seems to me to be very interesting.
However, this is definitely far removed from my own expertise so there may be some parts of
this which are not too good. I am following various algebra books in putting this together.

Consider the notion of splitting fields. It is desired to show that any two are isomorphic,
meaning that there exists a one to one and onto mapping from one to the other which
preserves all the algebraic structure. To begin with, here is a theorem about extending
homomorphisms. [18]

Definition F.4.1 Suppose F.F are two fields and that f : F — F is a homomorphism. This
means that

fly)=Ff@) fy), fet+y) =f(x)+f(y)

An isomorphism is a homomorphism which is one to one and onto. A monomorphism is
a homomorphism which is one to one. An automorphism is an isomorphism of a single

field. Sometimes people use the symbol ~ to indicate something is an isomorphism. Then if

p(z) € Flz], say
() =3,
k=0
P (x) will be the polynomial in F [x] defined as

p(x) = Zf(ak) k.
k=0

I studied
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Also consider f as a homomorphism of F [z] and F [z] in the obvious way.

f(p(x)) =p(x)

It is clear that if f is an isomorphism of the two fields F,F, then it is also an isomorphism
of the commutative rings F [x] ,F [x] meaning that it is one to one and onto and preserves
the two operations of addition and multiplication.

The following is a nice theorem which will be useful.

Theorem F.4.2 Let F be a field and let r be algebraic over F. Let p(x) be the minimal
polynomial of r. Thus p(r) = 0 and p(x) is monic and no nonzero polynomial having
coefficients in F of smaller degree has r as a root. In particular, p (x) is irreducible over F.
Then define f :F[x] — F[r], the polynomials in r by

f (Z aixi> = Zairi
i=0 i=0
Then f is a homomorphism. Also, defining g : F [x] / (p (x)) by
9(lg(@)]) = f(q(x)) =q(r)

it follows that g is an isomorphism from the field F[x] / (p (z)) to F[r] .

Proof: First of all, consider why f is a homomorphism. The preservation of sums is
obvious. Consider products.

Z aixi Z bjxj = f Z aibj$i+j = Z aibjr”'ﬂ
¢ J ij ij
= D ar' ) byl =f (Z aﬂi) £ bia?
i J i j

Thus it is clear that f is a homomorphism.
First consider why ¢ is even well defined. If [¢ (z)] = [g1 ()], this means that

q1(z) —q(x) =p(z)l(v)

for some ! (x) € F [z]. Therefore,

fla(x) = [flg(@)+f(p()l(z))
= flg@)+ f(p(x)) f(l(x))
= q(r)+p)lr)=q(r)=fla(2))

Now from this, it is obvious that g is a homomorphism.

9([¢@]g @) = g(g@)q@)]) = fla@)q (@) =q()a(r)
g(lg@g(n (@) = a(r)aq(r)

Similarly, g preserves sums. Now why is g one to one? It suffices to show that if g ([¢ (z)]) = 0,
then [¢ ()] = 0. Suppose then that

Then

q(z) =p(@)l(z)+p(z)
where the degree of p (x) is less than the degree of p (x) or else p (z) = 0. If p(x) # 0, then
it follows that

p(r)=0
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and p () has smaller degree than that of p () which contradicts the definition of p (x) as
the minimal polynomial of r. Thus ¢ () = p(x)l(x) and so [¢(x)] = 0. Since p(z) is
irreducible, F [z] / (p(x)) is a field. It is clear that g is onto. Therefore, I [r] is a field also.
(This was shown earlier by different reasoning.) W

Here is a diagram of what the following theorem says.

Extending f to g

F —i> F
p(z) € Flx] EN p(z) €Flx
p(r) = ZZ:O agak  — ZZ:O f(ax) 2¥ = p(x)
p(r)=0 p(r)=0
F[r] %) F[r
r i T

The idea illustrated is the following question: For r algebraic over F and f an isomorphism
of F and F, when does there exist 7 algebraic over F and an isomorphism of F [r] and F [7]
which extends f7 This is the content of the following theorem.

Theorem F.4.3 Let f : F — F be an isomorphism and let r be algebraic over F with min-
imial polynomial p (x). Then the following are equivalent.

1. There exists T algebraic over F such that p (F) = 0 in which case p () is the minimal
polynomial of 7.

2. There exists g : F[r] — F[F] an isomorphism which extends f such that g(r) = 7. In
this case, there is only one such isomorphism.

Proof: 2.)=1.) Let g(r) = ¢ (¥) with g an isomorphism extending f,g(r) = g (7).
Then since it is an isomorphism,

0=g((r) =pg(r) =p() (*)

Define 3 as B ([k (z)]) = k (7) relative to this 7 = g (r) and let o : F[z]/ (p(z)) — F[r] be
the isomorphism mentioned in Theorem F.4.2 called g there, given by « ([k (z)]) = k (r).
Thus

Flr] £ F[a]/ (p(z)) 5 F 7]

Then if 8 is a well defined homomorphism, it follows that g must equal 8 o a~! because

Boa™l (k(r) =B (k@) =k =k(g(r) =g k().

This is because g is a homomorphism which takes r to 7. It only remains to verify that 3
is well defined.

Why is 3 well defined? Suppose [k (x)] = [k’ (z)] so that &k (x) — k' (z) =1 (z) p (x) . Then
since f is a homomorphism, it follows from * that

k(z) =K (2) =1(2)p(x) = k() — K (F) =1(7)p(F) =0

so B is indeed well defined. It is clear from the definition that 8 is a homomorphism.

1.)= 2.) Next suppose there exists 7 algebraic over F such that p () = 0. Why is p (z)
the minimal polynomial of #? Call it g(«). There is no loss of generality because f is an
isomorphism so the minimal polynomial can be written this way. Then S ([¢ (z)]) = q(F) =
0=p(7). Then p(x) = G (z) m (x) + R (x) where the degree of R (z) is less than the degree
of g (x) or equal to zero and so R (7) = 0 which is contrary to g (x) being minimal polynomial
for 7 unless R (z) = 0. Therefore, R (x) = 0. It follows that, since f is a isomorphism, we
have p () = g (z) m (z) contrary to p(z) being the minimal polynomial for r. Indeed, if
the degree of ¢ (z) is less than that of p(x), we have 0 = p(r) = ¢(r)m(r) and so one
of g (r),m(r) equals 0 contrary to p(x) having smallest possible degree for sending r to
0. Thus the degree of ¢ (z) is the same as the degree of p (z) and since both are monic by
definition, m (z) = 1. Hence p (x) = ¢ (x) and so p(x) = g ().
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Now let «, 8 be defined as above. It was shown above that § is a well defined homo-
morphism. It is also clear that § is onto. It only remains to verify that 3 is one to one and
when this is done, the isomorphism will be 80 a~!. Suppose 3 ([k (x)]) = k (¥) = 0. Does it
follow that [k ()] = 0? By assumption, p (¥) = 0 and also,

k(x)=p()l(x)+p(x) )

where the degree of p () is less than the degree of p(x) which is the same as the degree of
p(x) or else it equals 0. Tt follows that p(7) = 0 and this is a contradiction because p ()
is the minimal polynomial for # which was shown above. Hence k (x) = p ()1 (z) and since
f is an isomorphism, this says that k () = p (z) [ (z) and so [k (x)] = 0. Hence 3 is indeed
one to one and so an example of g would be Boa™!. Also Boa™ ! (r) =B ([z]) =7. A

What is the meaning of the above in simple terms? It says that the monomorphisms
from F [r] to a field K containing F correspond to the roots of p (x) in K. That is, for each
root of p (z), there is a monomorphism and for each monomorphism, there is a root. Also,
for each root 7 of p () in K, there is an isomorphism from F[r] to F [F]. Here p(z) is the
minimal polynomial for r.

Note that if p (x) is a monic irreducible polynomial, then it is the minimal polynomial
for each of its roots. Consider why this is. If r is a root of p(x), then let ¢ (z) be the
minimal polynomial for . Then

p(x) = q(@)k(z) + R(z)

where R () is 0 or else has smaller degree than ¢ (z). However, R (r) = 0 and this contradicts
¢ (z) being the minimal polynomial of r. Hence ¢ (z) divides p(x) or else k(z) = 1. The
latter possibility must be the case because p (z) is irreducible.

This is the situation which is about to be considered. It involves the splitting fields K, K
of p(z),p (z) where 7 is an isomorphism of F and F as described above. See [18]. Here is a
little diagram which describes what this theorem says.
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Definition F.4.4 The symbol [K : F] where K is a field extension of F means the dimension
of the vector space K with field of scalars F.

Theorem F.4.5 Let n be an isomorphism from F to F and let K = F[ry,--- ,r,], K =
F [y, , 7] be splitting fields of p(x) and p(x) respectively. Then there ewist at most
[K : F] isomorphisms (; : K — K which extend n. If {Fi,---,7n} are distinct, then there
exist exactly [K : F| isomorphisms of the above sort. In either case, the two splitting fields

are isomorphic with any of these (; serving as an isomorphism.

Proof: Suppose [K:F] = 1. Say a basis for K is {r}. Then {1,r} is dependent and so
there exist a,b € F, not both zero such that a + br = 0. Then it follows that r € F and so in
this case F = K. Then the isomorphism which extends 7 is just 7 itself and there is exactly
1 isomorphism.

Next suppose [K:F] > 1. Then p(x) has an irreducible factor over F of degree larger
than 1, ¢ (z). If not, you would have

p(x) =a" +ap1a" "+t an

and it would factor as
=(@x—r1) - (x—rp)

with each r; € F, so F = K contrary to [K: F] > 1.Without loss of generality, let the roots
of ¢ (z) in K be {ry, -+ ,7m}. Thus

1@ =I[@=r), p@=[[@-r)

Now ¢ () defined analogously top (x), also has degree at least 2. Furthermore, it divides
P (x) all of whose roots are in K. This is obvious because 7 is an isomorphism. You have

() q(z) =p(z) sol(z)q(z) =p(x).

Denote the roots of ¢ (z) in K as {7y, -- ,7,,} where they are counted according to multi-
plicity.

Then from Theorem F.4.3, there exist k¥ < m one to one homomorphisms (monomor-
phisms) ¢, mapping F [r1] to K = F[ry,--- ,7,], one for each distinct root of g (x) in K. If

the roots of p (z) are distinct, then this is sufficient to imply that the roots of g (z) are also
distinct, and k = m, the dimension of ¢ (x). Otherwise, maybe k& < m. (It is conceivable
that g (x) might have repeated roots in K.) Then

[K:F]=[K:TF[r]][F[r] : F]

and since the degree of ¢ (x) > 1 and ¢ () is irreducible, this shows that [F[r1] : F] =m > 1
and so
[K:F[r]] < [K:TF

Therefore, by induction, using Theorem F.4.3, each of these k < m = [F[r1] : F] one to one
homomorphisms extends to an isomorphism from K to K and for each of these ¢, there
are no more than [K : F[r1]] of these isomorphisms extending F. If the roots of p(z) are
distinct, then there are exactly m of these ¢; and for each, there are [K : F [r]] extensions.
Therefore, if the roots of p (x) are distinct, this has identified

[K:F[r]]m=[K:Fr]][F[r]:F] = [K:F]
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isomorphisms of K to K which agree with 1 on F. If the roots of p () are not distinct, then
maybe there are fewer than [K : F] extensions of 7.

Is this all of them? Suppose € is such an isomorphism of K and K. Then consider its
restriction to F[r;]. By Theorem F.4.3, this restriction must coincide with one of the (;
chosen earlier. Then by induction, ¢ is one of the extensions of the (; just mentioned. W

Definition F.4.6 Let K be a finite dimensional extension of a field F such that every el-
ement of K is algebraic over F, that is, each element of K is a root of some polynomial
in Flz]. Then K is called a normal extension if for every k € K all roots of the minimal
polynomial of k are contained in K.

So what are some ways to tell that a field is a normal extension? It turns out that if K
is a splitting field of f (x) € F[z], then K is a normal extension. I found this in [18]. This
is an amazing result.

Proposition F.4.7 Let K be a splitting field of f (x) € F[x]. ThenK is a normal extension.
In fact, if L is an intermediate field between F and K, then IL is also a normal extension of
F.

Proof: Let » € K be a root of g (x), an irreducible monic polynomial in F[z]. It is
required to show that every other root of g (x) is in K. Let the roots of g (z) in a splitting
field be {r1 = r,r2,--- ;7 }. Now g (z) is the minimal polynomial of r; over F because g (x)
is irreducible. Recall why this was. If p (z) is the minimal polynomial of r;,

g (@) =p(@)l(z)+r(z)

where r (z) either is 0 or it has degree less than the degree of p (z) . However, 7 (r;) = 0 and
this is impossible if p (z) is the minimal polynomial. Hence r (z) = 0 and now it follows
that g (x) was not irreducible unless [ (z) = 1.

By Theorem F.4.3, there exists an isomorphism »n of F[r{] and F [r;] which fixes F and
maps 1 to ;. Now K [rq] and K[r;] are splitting fields of f (x) over F [r1] and F [r;] respec-
tively. By Theorem F.4.5, the two fields K [r{] and K [r;] are isomorphic, the isomorphism,
¢ extending 1. Hence

K[ s K] = [K[ry] : K]

But 7 € K and so K[ri] = K. Therefore, K = K[r;] and so r; is also in K. Thus all the
roots of g () are actually in K. Consider the last assertion.

Suppose 7 = r; € L where the minimal polynomial for r is denoted by ¢ (x). Then
letting the roots of ¢ (z) in K be {r1, -+ ,rn}. By Theorem F.4.3 applied to the identity
map on L, there exists an isomorphism 6 : L [r1] — L [r;] which fixes L and takes r to r;.
But this implies that

1=[L[r]:L] = [L[r;]:L]

Hence r; € L also. Since r was an arbitrary element of L, this shows that L is normal. l

Definition F.4.8 When you haveF [ay, - -+ , am] with each a; algebraic so that F [ay,- -+ , am]

is a field, you could consider
m

f@ =114 @

where f; (x) is the minimal polynomial of a;. Then if K is a splitting field for f (x), this K
is called the normal closure. It is at least as large as F a1, -+ ,ar,] and it has the advantage
of being a normal extension.
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INDEX

N, 1

U, 1

A close to Bleigenvalues, 135

A invariant, 184

Abel’s formula, 83, 197, 387, 462

absolute convergence!convergence, 268

adjugate, 63, 75

algebraic number!minimal polynomial, 159
algebraic numbers, 158

algebraic numbers!field, 160

almost linear, 333

almost linear system, 333

analytic function of matrix, 318

Archimedean property, 10

assymptotically stable, 333

augmented matrix, 16

autonomous, 333

Banach space, 259

basis, 45, 146

Binet Cauchy ! volumes, 230

Binet Cauchy formula, 71

block matrix, 79

block matrix!multiplication, 80

block multiplication, 79

bounded linear transformations, 259

Cauchy Schwarz inequality, 21, 215, 257
Cauchy sequence, 227, 258, 341, 485

Cayley Hamilton theorem, 78, 196, 205, 459, 471
centrifugal acceleration@centrifugal acceleration, 51
centripetal acceleration@centripetal acceleration, 51
characteristic and minimal polynomial, 179, 450
characteristic equation, 109

characteristic polynomial, 78, 177

characteristic value, 109

Cholesky factorization, 256, 499

codomain, 1

cofactor, 62, 73

column rank, 75, 89

commutative ring, 343

companijon matrix, 199, 293

complete, 277

completeness axiom, 9

complex conjugate, 4

complex numberslabsolute value, 4

complex numbers!field, 4

complex numbers@complex numbers, 4

complex roots, 5

composition of linear transformations, 174

comutator, 144, 440

condition number, 265

conformable, 28

conjugate linear, 220

converge, 341

convex combination, 180, 453

convex hull, 180, 453

convex hulllcompactness, 180, 453

coordinate axis, 19

coordinates, 19

Coriolis acceleration, 51

Coriolis acceleration@Coriolis acceleration!earth@
earth, 53

Coriolis force, 51

counting zeros, 135

Courant Fischer theorem, 238

Cramer’s rule, 64, 75

cyclic basis, 189

cyclic set, 187

damped vibration, 330

defective, 113

DeMoivre identity, 5

dense, 11

density of rationals, 11

determinant!block upper triangular matrix, 124, 384

determinant!definition, 68

determinantlestimate for Hermitian matrix, 214

determinantlexpansion along a column, 62

determinantlexpansion along a row, 62

determinantlexpansion along row, column, 73

determinant/Hadamard inequality, 214

determinantlinverse of matrix, 63
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determinant!matrix inverse, 74

determinant!partial derivative, cofactor, 83, 388

determinant!permutation of rows, 69

determinant!product, 71

determinant!product of eigenvalues, 129

determinant!product of eigenvalules, 139, 427

determinant!row, column operations, 63, 70

determinant!summary of properties, 77

determinant!symmetric definition, 69

determinant!transpose, 69

diagonalizable, 172, 231

diagonalizable! minimal polynomial condition, 198,
465

diagonalizable!basis of eigenvectors, 121, 421

diagonalization, 235

diameter, 340

differentiable matrix, 48

differential equations!first order systems, 141, 434

digraph, 29

dimension of vector space, 147

direct sum, 60, 182, 378

directed graph, 29

discrete Fourier transform, 254, 494

division of real numbers, 11

Dolittle’s method, 100

domain, 1

dot product, 20

dyadics, 167

dynamical system, 121, 423

eigenspace, 110, 184

eigenvalue, 61, 109, 380

eigenvalues, 78, 135, 177

eigenvalues!AB and BA, 81

eigenvector, 61, 109, 380

eigenvectors!distinct eigenvalues independence, 113

elementary matrices, 85

elementary symmetric polynomials, 343

empty set, 1

equality of mixed partial derivatives, 131

equilibrium point, 333

equivalence class, 154, 170

equivalence of norms, 259

equivalence relation, 154, 170

Euclidean algorithm, 11

exchange theorem, 44

existence of a fixed point, 278

field axioms, 2

field extension, 154

field extension!dimension, 156

field extension'finite, 156

field extensions, 156

field!ordered, 3

finite dimensional normed linear spacelcompleteness,
259

finite dimensional normed linear spacelequivalence
of norms, 259

Foucalt pendulum@Foucalt pendulum, 53

Fourier series, 226, 484

Fredholm alternative, 95, 224

free variable, 17

Frobenius norm, 248

Frobenius norm!singular value decomposition, 248

Frobenius! inner product, 143, 438

Frobinius norm, 253, 493

functions, 1

fundamental matrix, 327

fundamental theorem of algebra, 347

fundamental theorem of algebra ! plausibility argu-
ment, 7

fundamental theorem of algebra ! rigorous proof, 8

fundamental theorem of arithmetic, 13

Gauss Jordan method for inverses, 33

Gauss Seidel method, 273

Gelfand, 267

generalized eigenspace, 61, 380

generalized eigenspaces, 184, 192

generalized eigenvectors, 193

Gerschgorin’s theorem, 133

Gram Schmidt procedure, 108, 123, 216, 403

Gram Schmidt process, 216

Gramm Schmidt process, 123

greatest common divisor, 11, 150

greatest common divisor!characterization, 12

greatest lower bound, 9

Gronwall’s inequality, 283, 326, 509

Hermitian, 126
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Hermitian matrix! factorization, 213, 478

Hermitian matrix!positive part, 320

Hermitian matrix!positive part, Lipschitz continu-
ous, 320

Hermitian operator, 220

Hermitian operator!largest, smallest, eigenvalues,
238

Hermitian operator!spectral representation, 235

Hermitian!orthonormal basis eigenvectors, 236

Hermitian!positive definite, 239

Hermitian!real eigenvalues, 127

Hessian matrix, 132

Holder’s inequality, 262

Householder matrix, 105

Householder!reflection, 106

idempotent, 57, 372

inconsistent, 17

initial value problem!existence, 321

initial value problem!global solutions, 325

initial value problem!linear system, 323

initial value problem!local solutions, existence,
uniqueness, 324

initial value problem!uniqueness, 283, 321, 509

injective, 1

inner product, 20, 214

inner product space, 214

inner product spaceladjoint operator, 219

inner product space!parallelogram identity, 215

inner product spaceltriangle inequality, 215

integers mod a prime, 165, 445

integralloperator valued function, 282, 508

integrallvector valued function, 282, 507

intersection, 1

intervals'notation, 1

invariant, 234

invariant subspaces!direct sum, block diagonal ma-
trix, 186

invariant!subspace, 184

inverses and determinants, 74

invertible, 33

invertible matrix!product of elementary matrices, 92

irreducible, 150

irreduciblelrelatively prime, 151

iterative methodslalternate proof of convergence,
280, 503

iterative methods!convergence criterion, 276

iterative methods!diagonally dominant, 281, 503

iterative methods!proof of convergence, 279

Jocobi method, 272

Jordan block, 191, 193

Jordan canonical form!existence and uniqueness, 193

Jordan canonical form!powers of a matrix, 194

ker, 93

kernel, 42

kernel of a product!direct sum decomposition, 183

Krylov sequence, 187

Lagrange form of remainder, 131

Laplace expansion, 73

least squares, 98, 223, 398

least upper bound, 9

Lindemann Weierstrass theorem, 353

linear combination, 25, 43, 70

linear transformation, 38, 166

linear transformation!defined on a basis, 167

linear transformation!dimension of vector space, 167

linear transformation!existence of eigenvector, 178

linear transformation'kernel, 181

linear transformation!matrix, 39

linear transformation!minimal polynomial, 178

linear transformation!rotation, 40

linear transformations!a vector space, 167

linear transformations!lcommuting, 183

linear transformations!composition, matrices, 174

linear transformations!sum, 167, 221

linearly dependent, 43

linearly independent, 43, 145

linearly independent setlextend to basis, 149

Lipschitz condition, 321

LU factorizationljustification for multiplier method,
102

LU factorization!multiplier method, 99

LU factorization!solutions of linear systems, 100

main diagonal, 62

Markov matrix, 205

Markov matrix!limit, 208

Markov matrix!regular, 208
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Markov matrix!steady state, 205, 208

mathematical induction, 10

matriceslcommuting, 233

matrices'notation, 24

matrices!transpose, 32

matrix, 23

matrix ! positive definite, 255, 497

matrix exponential, 281, 504

matrix multiplication!definition, 26

matrix multiplicationlentries of the product, 28

matrix multiplication!not commutative, 27

matrix multiplication!properties, 31

matrix multiplication!vectors, 25

matrix of linear transformation!orthonormal bases,
172

matrix!differentiation operator, 169

matrix!injective, 47

matrix!inverse, 32

matrix!left inverse, 75

matrix!lower triangular, 62, 75

matrix!Markov, 205

matrix!non defective, 126

matrix!normal, 126

matrix!polynomial, 84, 391

matrix'rank and existence of solutions, 94

matrix'rank and nullity, 93

matrix!right and left inverse, 47

matrix!right inverse, 75

matrix'right, left inverse, 74

matrix!row, column, determinant rank, 75

matrix!self adjoint, 121, 420

matrix!stochastic, 205

matrix!surjective, 47

matrix!symmetric, 119

matrix!symmetric, 418

matrix!unitary, 123

matrix!upper triangular, 62, 75

migration matrix, 209

minimal polynomial, 60, 177, 184, 379

minimal polynomial ! algebraic number, 158

minimal polynomialleigenvalues, eigenvectors, 178

minimal polynomial!finding it, 196, 457

minimal polynomial!generalized eigenspaces, 184

minor, 62, 73

mixed partial derivatives, 130

Moore Penrose inverse, 251

Moore Penrose inverse!least squares, 251

Moore Penrose inverseluniqueness, 255

moving coordinate system@moving coordinate sys-
tem, 49

moving coordinate system@moving coordinate
systemlacceleration @acceleration, 51

negative definite, 239

Neuman!series, 285, 512

nilpotent!block diagonal matrix, 191

nilpotent!Jordan form, uniqueness, 191

nilpotent!Jordan normal form, 191

non defective, 198, 465

nonnegative self adjoint!square root, 241

norm, 214

norm!strictly convex, 280, 500

norm!uniformly convex, 280, 500

normal, 245

normal!diagonalizable, 127

normal!non defective, 126

normed linear space, 214, 256

normed vector space, 214

normslequivalent, 257

null and rank, 227, 487

null space, 42

nullity, 93

one to one, 1

onto, 1

operator norm, 259

orthogonal matrix, 61, 66, 105, 124, 380, 385

orthonormal basis, 215

orthonormal polynomials, 225, 482

p norms, 262

p normslaxioms of a norm, 263

parallelepiped!volume, 228

partitioned matrix, 79

Penrose conditions, 252

permutation, 68

permutation matrices, 85

permutationleven, 86

permutation!odd, 86
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perp, 94

Perron’s theorem, 311

pivot column, 91

PLU factorization, 101

PLU factorizationlexistence, 105

polar decomposition!left, 244

polar decomposition!right, 243

polar form complex number, 5

polynomial, 14, 150

polynomial ! leading coefhicient, 150

polynomial ! leading term, 14

polynomial ! matrix coefficients, 84, 391

polynomial ! monic, 14, 150

polynomialladdition, 14

polynomialldegree, 14, 150

polynomialldivides, 150

polynomialldivision, 14, 150

polynomiallequal, 150

polynomiallequality, 14

polynomiallgreatest common divisor, 150

polynomiallgreatest common divisor description,
151

polynomiallgreatest common divisor, uniqueness,
151

polynomiallirreducible, 150

polynomiallirreducible factorization, 152

polynomial!multiplication, 14

polynomialrelatively prime, 150

polynomiallroot, 150

polynomials!canceling, 152

polynomials!factorization, 152

positive definite matrix, 255, 497

positive definite!postitive eigenvalues, 239

positive definite!principle minors, 240

postitive definite, 239

power method, 287

prime number, 11

prime numberslinfinity of primes, 164, 445

principle directions, 115

principle minors, 240

product rule!matrices, 48

projection map!convex set, 227, 486

Putzer’s method, 328

QR algorithm, 138, 297, 425

QR algorithm! convergence, 300

QR algorithm!convergence theorem, 300

QR algorithm!non convergence, 138, 303

QR algorithm!nonconvergence, 426

QR factorization, 106

QR factorizationlexistence, 107

QR factorization!Gram Schmidt procedure, 108,
403

quadratic form, 129

quotient space, 165, 446

quotient vector space, 165

range, 1

rank, 90

rank of a matrix, 75, 89

rank one transformation, 221

rank!number of pivot columns, 93

rational canonical form, 200

rational canonical form!uniqueness, 202

Rayleigh quotient, 294

Rayleigh quotientthow close?, 294

real numbers, 2

real Schur form, 124

regression line, 223

regular Sturm Liouville problem, 225, 483

relatively prime, 12

Riesz representation theorem, 219

right Cauchy Green strain tensor, 243

right polar decomposition, 243

row equivalelanceldetermination, 92

row equivalent, 91

row operations, 16, 85

row operationslinverse, 16

row operations!linear relations between columns, 89

row rank, 75, 89

row reduced echelon form!definition, 91

row reduced echelon form!examples, 91

row reduced echelon form!existence, 91

row reduced echelon form!uniqueness, 92

scalar product, 20

scalars, 6, 19, 23

Schur’s theorem, 123, 234

Schur’s theorem!inner product space, 234
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second derivative test, 133

self adjoint, 126, 220

self adjoint nonnegative!roots, 242

sequential compactness, 342

sequentially compact, 342

set notation, 0

sgn, 67

sgn'uniqueness, 68

shifted inverse power method, 288

shifted inverse power method!complex eigenvalues,
292

sign of a permutation, 68

similar matrices, 65, 83, 170, 382, 387

similar'matrix and its transpose, 198, 466

similarity transformation, 170

simple field extension, 160

simultaneous corrections, 272

simultaneously diagonalizable, 232

simultaneously diagonalizablelcommuting family,
234

singular value decomposition, 247

singular values, 247

skew symmetric, 32, 119, 418

space of linear transformations!vector space, 221

span, 43, 70

spanning setlrestricting to a basis, 149

spectral mapping theorem, 320

spectral norm, 261

spectral radius, 266, 267

spectrum, 109

splitting field, 157

stable, 333

stable manifold, 339

stochastic matrix, 205

subsequence, 341

subspace, 43, 145

subspacelbasis, 46, 149

subspacelcomplementary, 231, 490

subspaceldimension, 46

subspacelinvariant, 184

subspaces!direct sum, 182

subspaces!direct sum, basis, 183

substituting matrix into polynomial identity, 84, 391

surjective, 1

Sylvester, 60, 377

Sylvester! law of inertia, 142, 437
Sylvester!dimention of kernel of product, 181
Sylvester’s equation, 230, 489
symmetric, 32, 119, 418

symmetric polynomial theorem, 343
symmetric polynomials, 343

system of linear equations, 17

tensor product, 221

the space AU, 231

trace, 129

trace! AB and BA, 129

tracelsum of eigenvalues, 139, 427
transpose, 32

transpose!properties, 32

triangle inequality, 22

trivial, 43

union, 1

Unitary matrix! representation, 285
upper Hessenberg matrix, 307
Vandermonde determinant, 84, 390
variation of constants formula, 142, 329, 435
variational inequality, 227, 486
vector space axioms, 20

vector spacelaxioms, 25, 144

vector spacelbasis, 45

vector spaceldimension, 46

vector spacelexamples, 145
vectorlangular velocity, 49

vectors, 25

volume!parallelepiped, 228

well ordered, 10

Wronskian, 82, 142, 197, 329, 386, 435, 462
Wronskian alternative, 142, 329, 435
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