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Introduction

Introduction

This is the seventh book containing examples from the Theory of Complex Functions. In this volume
we shall apply the calculations or residues in computing special types of trigonometric integrals, some
types of improper integrals, including the computation of Cauchy’s principal value of an integral, and
the sum of some types of series. We shall of course assume some knowledge of the previous books and
the corresponding theory.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
19th June 2008
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1 Some practical formulæ in the applications of the calcula-
tion of residues

1.1 Trigonometric integrals

We have the following theorem:

Theorem 1.1 Given a function R(x, y) in two real variables in a domain of R2. If the formal
extension, given by

R

(

z2 − 1
2iz

,
z2 + 1

2z

)

,

is an analytic function in a domain Ω ⊆ C, which contains the unit circle |z| = 1, then

∫ 2π

0

R(sin θ, cos θ) dθ =
∮

|z|=1

R

(

z1 − 1
2iz

,
z2 + 1

2z

)

dz

iz
.

In most applications, R(sin θ, cos θ) is typically given as a “trigonometric rational function”, on which
the theorem can be applied, unless the denominator of the integrand is zero somewhere in the interval
[0, 2π].
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1.2 Improper integrals in general

We shall now turn to the improper integrals over the real axis. The general result is the following
extension of Cauchy’s residue theorem:

Theorem 1.2 Given an analytic function f : Ω → C on an open domain Ω which, apart from a finite
number of points z1, . . . , zn, all satisfying Im zj > 0, j = 1, . . . , n, contains the closed upper half
plane, i.e.

Ω ∪ {z1, . . . , zn} ⊃ {z ∈ C | Im z ≥ 0}.

If there exist constants R > 0, c > 0 and a > 1, such that we have the estimate,

|f(z)| ≤ c

|z|a , when both |z| ≥ R and Im z ≥ 0,

then the improper integral of f(x) along the X-axis is convergent, and the value is given by the following
residuum formula,

∫ +∞

−∞
f(x) dx = 2πi

∑

Im zj>0

res (f ; zj) = 2πi

n
∑

j=1

res (f ; zj) .

1.3 Improper integrals, where the integrand is a rational function

We have the following important special case, where f(z) is a rational function with no poles on the
real axis. When this is the case, the theorem above is reduced to the following:

Theorem 1.3 Given a rational function f(z) =
P (z)
Q(z)

without poles on the real axis. If the degree of

the denominator polynomial is at least 2 bigger than the degree of the numerator polynomial, then the
improper integral of f(x) along the real axis exists, and its value is given by a residuum formula,

∫ +∞

−∞
f(x) dx = 2πi

∑

Im zj>0

res (f ; zj) .

1.4 Improper integrals, where the integrand is a rational function time a
trigonometric function

If the integrand is a rational function time a trigonometric function, we even obtain a better result,
because the exponent of the denominator in the estimate can be chosen smaller:

Theorem 1.4 Assume that f : Ω → C is an analytic function on an open domain Ω, which, apart
from a finite number of points z1, . . . , zn, where all Im zj > 0, j = 1, . . . , n, contains all of the
closed upper half plane, i.e.

Ω ∪ {z1, . . . , zn} ⊃ {z ∈ C | Im z ≥ 0}.

If there exist constants R > 0, c > 0 and a > 0, such that we have the estimate

|f(z)| ≤ c

|z|a , if both |z| ≥ R and Im z ≥ 0,

5
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then the improper integral of f(x) eimx along the X-axis exists for every m > 0, and its value is given
by the following residuum formula,

∫ +∞

−∞
f(x) eimx dx = 2πi

∑

Im zj>0

res
(

f(z) eimz; zj

)

= 2πi
n

∑

j=1

res
(

f eimz; zj

)

.

In the special case, where f(z) is a rational function, we of course get a simpler result:

Theorem 1.5 Given f(z) =
P (z)
Q(z)

· eimz, where P (z) and Q(z) are polynomials. Assume that

1) the denominator Q(z) does not have zeros on the real axis,

2) the degree of the denominator is at least 1 bigger than the degree of the numerator,

3) the constant m is a real positive number.

Then the corresponding improper integral along the real axis is convergent and its value is given by a
residuum formula,

∫ +∞

−∞

P (x)
Q(x)

· eimx dx = 2πi
∑

Im zj>0

res
(

P (z)
Q(z)

· eimz; zj

)

.

The ungraceful assumption m > 0 above can be repared by the following:

Theorem 1.6 Assume that f(z) is analytic in C\{z1, . . . , zn}, where none of the isolated singularities
zj lies on the real axis.

If there exist positive constants R, a, c > 0, such that

|f(z)| <
c

|z|a , for |z| ≥ R,

then

∫ +∞

−∞
f(x) eixy dx =







2πi
∑

Im zj>0 res
(

f(z) eizy; zj

)

for y > 0,

−2πi
∑

Im zj<0 res
(

f(z) eizy; zj

)

for y < 0.

In the final theorem of this section we give some formulæ for improper integrals, containing either
cos mx or sinmx as a factor of the integrand. We may of course derive them from the theorem above,
but it would be more helpful, if they are stated separately:

6
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Theorem 1.7 Given a function f(z) which is analytic in an open domain Ω which – apart from a
finite number of points z1, . . . , zn, where Im zj > 0 – contains the closed upper half plane Im zj > 0.
Assume that f(x) ∈ R is real, if x ∈ R is real, and that there exist positive constants R, a, c > 0, such
that we have the estimate,

|f(z)| ≤ c

|z|a , for Im z ≥ 0 and |z| ≥ R.

Then the improper integrals
∫ +∞
−∞ f(x)

cos(mx)
sin(mx) dx are convergent for every m > 0 with the values

given by

∫ +∞

−∞
f(x) cos(mx) dx = Re







2πi
∑

Im zj>0

res
(

f(z) eimz; zj

)







,

and

∫ +∞

−∞
f(x) sin(mx) dx = Im







2πi
∑

Im zj>0

res
(

f(z) eimz; zj

)







,

respectively.

1.5 Cauchy’s principal value

If the integrand has a real singularity x0 ∈ R, it is still possible in some cases with the right interpre-
tation of the integral as a principal value, i.e.

v.p.
∫ +∞

−∞
f(x) dx := lim

ε→0+

{∫ x0−ε

−∞
+

∫ +∞

x0+ε

}

f(x) dx,

to find the value of this integral by some residuum formula.
Here v.p. (= “valeur principal”) indicates that the integral is defined in the sense given above where
one removes a symmetric interval around the singular point, and then go to the limit.

Using the definition above of the principal value of the integral we get

Theorem 1.8 Let f : Ω → C be an analytic function on an open domain Ω, where

Ω ⊇ {z ∈ C | Im z ≥ 0} \ {z1, . . . , zn} .

Assume that the singularities zj, which also lie on the real axis, all are simple poles.
If there exist constants R > 0, c > 0 and a > 1, such that we have the estimate

|f(z)| ≤ c

|z|a for Im z ≥ 0 and |z| ≥ R,

then Cauchy’s principal value v.p.
∫ +∞
−∞ f(x) dx exists, and its value is given by the following residuum

formula,

v.p.
∫ +∞

−∞
f(x) dx = 2πi

∑

Im zj>0

res (f ; zj) + πi
∑

Im zj=0

res (f ; zj) .

7
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This formula is easily remembered if one think of the real path of integration as “splitting” the
residuum into two equal halves, of which one half is attached to the upper half plane, and the other
half is attached to the lower half plane.

It is easy to extend the residuum formula for Cauchy’s principal value to the previous cases, in which
we also include a trigonometric factor in the integrand.

8
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1.6 Sum of some series

Finally, we mention a theorem with some residuum formulæ, which can be used to determine the sum
of special types of series,

Theorem 1.9 Let f : Ω → C be an analytic function in a domain of the type Ω = C \ {z1, . . . , zn},
where every zj /∈ Z.
If there exist constants R, c > 0 and a > 1, such that

|f(z)| ≤ c

|z|a| for |z| ≥ R,

then the series
∑+∞

n=−∞ f(n) is convergent with the sum

+∞
∑

n=−∞
f(n) = −π

n
∑

j=1

res (cot(πz) · f(z); zj) .

Furthermore, the alternating series
∑+∞

n=−∞(−1)n f(n) is also convergent. Its sum is given by

+∞
∑

n=−∞
(−1)nf(n) = −π

n
∑

j=1

res
(

f(z)
sin(πz)

; zj

)

.

9
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2 Trigonometric integrals

Example 2.1 Compute
∫ 2π

0
e2 cos θ dθ.

Here, the auxiliary function is given R(ξ, η) = e2η, in which ξ does not enter. The function

R

(

z2 − 1
2iz

,
z2 + 1

2z

)

= exp
(

z2 + 1
z

)

is analytic in C \ {0}, so
∫ 2π

0

e2 cos θ dθ =
∮

|z|=1

exp
(

z +
1
z

)

dz

iz
=

2πi

i
res

(

1
z

exp
(

z +
1
z

)

; 0
)

.

We note that both z = 0 and z = ∞ are essential singularities, so we are forced to determine the
Laurent series of the integrand in 0 < |z|. However, there is a shortcut here, because we shall only be
interested in the coefficient a−1. We see from

1
z

exp
(

z +
1
z

)

=
1
z

exp z · exp
1
z

=
1
z

+∞
∑

m=0

1
m!

zm
+∞
∑

n=0

1
n!

1
zn

, z �= 0,

that a−1 is obtained by a Cauchy multiplication as the coefficient, which corresponds to m = n, thus

∫ 2π

0

e2 cos θ dθ = 2π
+∞
∑

n=0

1
(n!)2

,

which can be shown to be equal to J0(2i), where J0(z) is the zeroth Bessel function.

Example 2.2 Compute
∫ 2π

0

dθ

2 + cos θ
.

This integral can of course be computed in the traditional real way (change to tan
θ

2
, where one of

course must be careful with the singularity at θ = π). We have in fact,
∫ 2π

0

δθ

2 + cos θ
=

∫ 2π

0

dθ

3 cos2
θ

2
+ sin2 θ

2

= 2·2
∫ π

2

0

dt

3 cos2 t + sin2 t
=

4
3

∫ +∞

0

du

1 +
1
3

u2

=
4
√

3
3

·π
2

=
2π√

3
.

If we instead apply the Complex Function Theory, then we have the following computation
∫ 2π

0

dθ

2 + cos θ
=

∮

|z|=1

1

2 +
z2 + 1

2z

dz

iz
=

∮

|z|=1

−2i
z2 + 4z + 1

dz

= (−2i) · 2πi res
(

1
z2 + 4z + 1

; −2 +
√

3
)

= 4π lim
z→−2+

√
3

1
z + 2 +

√
3

=
2π√

3
,

where we have applied that z2 + 4z + 1 has the roots −2 ±
√

3, of which only −2 +
√

3 lies inside
|z| = 1.

10
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Example 2.3 Prove that

(a)
∫ 2π

0

cos 2θ
5 − 3 cos θ

dθ =
π

18
, (b)

∫ 2π

0

cos 3θ
5 − 3 cos θ

dθ =
π

54
.

(a) We shall use the substitution z = eiθ, where in particular,

cos 2θ =
1
2

{

e2iθ + e−2iθ
}

=
1
2

{

z2 +
1
z2

}

.

Then

∫ 2π

0

cos 2θ
5 − 3 cos θ

dθ =
∮

|z|=1

1
2

{

z2 +
1
z2

}

5 − 3
2

{

z +
1
z

}

dz

iz
=

1
i

∮

|z|=1

z2 +
1
z2

−3z2 + 10z − 3
dz

= − 1
3i

∮

|z|=1

z4 + 1

z2

{

z2 − 10
3

z + 1
} dz = − 1

3i

∮

|z|=1

z4 + 1

z2

(

z − 1
3

)

(z − 3)
dz

=
2πi

−3i

{

res

(

z4 + 1
z2

(

z2 − 10
3 z + 1

) ; 0

)

+ res

(

z4 + 1
z2

(

z − 1
3

)

(z − 3)
;

1
3

)}

.

We obtain by Rule I,

res

(

z4 + 1
z2

(

z − 1
3

)

(z − 3)
;

1
3

)

=

1
34

+ 1

1
32

(

1
3
− 3

) =
82

3 · (−8)
= −41

12
,

and

res

(

z4 + 1
z2

(

z2 − 10
3 z + 1

) ; 0

)

=
1
1!

lim
z→0

d

dz

{

z4 + 1
z2 − 10

3 z + 1

}

= lim
z→0

{

4z3

z2 − 10
3 z + 1

−
(

z4 + 1
) (

2z − 10
3

)

(

z2 − 10
3 z + 1

)2

}

=
10
3

.

Finally, by insertion,
∫ 2π

0

cos 2θ
5 − 3 cos θ

dθ =
2πi

−3i

{

−41
12

+
10
3

}

= −2π
3

{−41 + 40
12

}

=
π

18
.

(b) For the substitution z = eiθ, where we see that in particular,

cos 3θ =
1
2

{

e3iθ + e−3iθ
}

=
1
2

{

z3 +
1
z3

}

,

11
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we get

∫ 2π

0

cos 3θ
5 − 3 cos θ

dθ =
∮

|z|=1

1
2

{

z3 +
1
z3

}

5 − 3
2

{

z + 1
z

}

dz

iz
= −

1
2
3i
2

∮

|z|=1

z3 +
1
z3

z2 − 10
3 z + 1

dz

= −2π
3

{

res
(

z6 + 1
z2 − 10

3 z + 1
· 1
z3

; 0
)

+ res

(

z6 + 1
z3

(

z − 1
3

)

(z − 3)
;

1
3

)}

.

Here,

res







z3 +
1
z3

(

z − 1
3

)

(z − 3)
;

1
3






=

1
33

+ 33

1
3
− 3

= − 730
9 · 8 =

365
36

,

12
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and

res







z3 +
1
z3

z2 − 10
3 z + 1

; 0






= res







1
z3

z2 − 10
3 z + 1

; 0







=
1
2!

lim
z→0

d2

dz2

{

1
z2 − 10

3 z + 1

}

=
1
2

lim
z→0

d

dz

{

− 2z − 10
3

(

z2 − 10
3 z + 1

)2

}

=
1
2

lim
z→0

{

− 2
(

z2 − 10
3 z + 1

)2 +
2

(

2z − 10
3

)2

(

z2 − 10
3 z + 1

)2

}

= −1 +
100
9

=
91
9

,

hence by insertion,
∫ 2π

0

cos 3θ
5 − 3 cos θ

dθ = −2π
3

{

−365
36

+
91
9

}

=
2π
3

· 364 − 364
36

=
π

3 · 18
=

π

54
.

Example 2.4 Prove that
∫ 2π

0

dθ

1 + a2 − 2a cos θ
=

2π
1 − a2

, for 0 < a < 1.

Find also the value, when a > 1.

We get by the substitution z = eiθ that

dθ =
dz

iz
and cos θ =

1
2

{

z +
1
z

}

,

thus
∫ 2π

0

dθ

1 + a2 − 2a cos θ
=

∮

|z|=1

1

1 + a2 −
(

z +
1
z

)

a

dz

iz
= −1

i

∮

|z|=1

dz

az2 − (1 + a2) z + a

=
i

a

∮

|z|=1

dz

z2 −
(

a +
1
a

)

z + 1
.

The integrand has the poles z = a and z =
1
a
. Of these, only z = a lies inside the circle |z| = 1, hence

∫ 2π

0

dθ

1 + a2 − 2a cos θ
=

i

a
· 2πi · res









1

z2 −
(

a +
1
a

)

z + 1
; a









= −2π
a

lim
z→1

1

z − 1
a

= −2π
a

· 1

a − 1
a

= − 2π
a2 − 1

=
2π

1 − a2
.

13
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If a > 1, then 0 <
1
a

< 1, and it follows from the above that

∫ 2π

0

dθ

1 + a2 − 2a cos θ
=

1
a2

∫ 2π

0

dθ

1 +
(

1
a

)2

− 2 · 1
a

cos θ

=
1
a2

· 2π

1 − 1
a2

=
2π

a2 − 1
.

Remark 2.1 We note that the case a < 0 gives the same values, only dependent on if |a| < 1 or
|a| > 1. Finally, the case a = 0 is trivial. ♦

Summing up,
∫ 2π

0

dθ

1 + a2 − 2a cos θ
=

2π
|1 − a2| , for a ∈ R \ {−1, 1}.

The integral is divergent, if a = ±1.

Example 2.5 Prove that if a > 1, then
∫ 2<pi

0

dt

a + sin t
=

2π√
a2 − 1

.

It follows from
∫ 2π

0

R(sin θ, cos θ) dθ =
∮

|z|=1

R

(

z2 − 1
2iz

,
z2 + 1

2z

)

dz

iz
,

that
∫ 2π

0

dt

a + sin t
=

∮

|z|=1

1

a +
z2 − 1
2iz

dz

iz
= 2

∮

|z|=1

1
z2 + 2i a z − 1

dz.

The function
1

z2 + 2i a z − 1
has the two simple poles

z = −i a ±
√

−a2 − 1.

Of these only z = i
{√

a2 − 1 − 1
}

lies inside the unit circle. Hence
∫ 2π

0

dt

a + sin t
= 2 · 2πi · res

(

1
z2 + 2i a z − 1

; i
{

√

a2 − 1 − 1
}

)

= 2 · 2πi lim
z→i{√a2−1−a}

1
z + i

√
a2 − 1 + i a

= 2 · 2πi · 1
2i
√

a2 − 1
=

2π√
a2 − 1

.

14
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Example 2.6 Compute
∫ 2π

0

cos(2 cos θ) dθ,

expressed as a sum
∑+∞

n=0 an.

Applying the substitution z = eiθ we get
∫ 2π

0

cos(2 cos θ) dθ =
∮

|z|=1

cos
(

z +
1
z

)

dz

iz
=

2πi

i
res

(

1
z

cos
(

z +
1
z

)

; 0
)

= 2π · res
(

1
z

cos
(

z +
1
z

)

; 0
)

.

It follows from

1
z

cos
(

z +
1
z

)

=
1
z
· 1
2

{

exp
(

i

{

z +
1
z

})

+ exp
(

−i

{

z +
1
z

})}

=
1
z
· 1
2

{

exp(i z) · exp
(

i

z

)

+ exp(−i z) · exp
(

− i

z

)}

=
1
z
· 1
2

{

+∞
∑

m=0

1
m!

imzm ·
+∞
∑

n=0

1
n!

in

zn
+

+∞
∑

m=0

1
m!

(−i)mzm ·
+∞
∑

n=0

1
n!

(−i)n · 1
zn

}

,

that the coefficient a−1 in the Laurent series expansion for

1
z

cos
(

z +
1
z

)

is determined by m = n, i.e.

a−1 =
1
2

+∞
∑

n=0

in

n!
· in

n!
+

1
2

+∞
∑

n=0

(−i)n

n!
· (−i)n

n!
=

+∞
∑

n=0

(−1)n

(n!)2
,

which can be shown to be equal to J0(2), where J0(z) is the zeroth Bessel function. Hence we conclude
that at

∫ 2π

0

cos(2 cos θ) dθ = 2π res
(

1
z

cos
(

z +
1
z

)

; 0
)

= 2πa−1 = 2π
+∞
∑

n=0

(−1)n

(n!)2
= 2π J0(2).
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Example 2.7 (a) Determine the Taylor series from z = 0 of

1

z2 −
(

a +
1
a

)

z + 1
, where 0 < a < 1,

in the form
∑+∞

p=0 apz
p.

Find the radius of convergence r of the series.

(b) Find the Laurent series of

f(z) =
zn + z−n

zn −
(

a +
1
a

)

z + 1
, n ∈ N, 0 < a < 1,

in the domain given by 0 < |z| < r, by using the result of (a), and then find the residuum of f at
the point z = 0.

(c) Compute

∫ 2π

0

cos(n v)
1 + a2 − 2a cos v

dv, n ∈ N, 0 < a < 1,

by transforming the integral into a line integral in the complex plane.

(a) First note that we have the factor expansion

z2 −
(

a +
1
a

)

z + 1 = (z − a)
(

z − 1
a

)

.

If |z| < a

(

<
1
a

)

, it follows by a decomposition and an application of the geometric series,

1

z2 −
(

a +
1
a

)

z + 1
=

1

(z − a)
(

z − 1
a

) =
1

a − 1
a

· 1
z − a

+
1

1
a
− a

· 1

z − 1
a

=
1

a − 1
a

· −1
a

· 1

1 − z

a

+
1

1
a
− a

· 1
(

−1
a

) · 1
1 − az

= − 1
a2 − 1

+∞
∑

p=0

(z

a

)p

− a2

1 − a2

+∞
∑

p=0

apzp =
1

1 − a2

{

+∞
∑

p=0

1
ap

zp −
+∞
∑

p=0

ap+2zp

}

=
+∞
∑

p=0

1
ap

· 1 − a2p+2

1 − a2
zp.

The radius of convergence is of course r = a, which e.g. follows from the fact that z = a is the
pole, which is closest to 0. We may also easily obtain this result by the criterion of roots.
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(b) If 0 < |z| < a and n ∈ N, then it follows from (a) that

f(z) =
zn + z−n

z2 −
(

a +
1
a

)

z + 1
=

(

zn + z−n
)

+∞
∑

p=0

1
ap

· 1 − a2p+2

1 − a2
zp

=
+∞
∑

p=0

1
ap

· 1 − a2p+2

1 − a2
zp+n +

+∞
∑

p=0

1
ap

· 1 − a2p+2

1 − a2
zp−n,

which we may reduce to the Laurent series

f(z) =
n+1
∑

p=−n

1
ap+n

· 1 − a2p+2+2n

1 − a2
zp +

+∞
∑

p=n

1
ap+n

·
(

a2n + 1
) (

1 − a2p+2
)

1 − a2
zp,

although this result is not much nicer.

We know that the residuum is given by p = −1, so

res(f ; 0) = a−1 =
1

an−1
· 1 − a2n

1 − a2
.
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(c) If we put z = eiv, then

cos nv =
1
2

{

einv + e−inv
}

and dv =
dz

iz
.

Then we get by insertion, reduction and an application of the residuum theorem (with the two
poles z = 0 and z = a inside the unit circle |z| = 1),

∫ 2π

0

cos(nv)
1 + a2 − 2a cos v

dv =
1
2

∮

|z|=1

zn + z−n

1 + a2 − a (z + z−1)
· dz

iz

=
1
2i

∮

|z|=1

1
−a

· zn + z−1

z2 −
(

a +
1
a

)

z + 1
dz = − 1

2ia
· 2πi {res(f ; 0) + res(f ; a)}

= −π

a











1
an−1

· 1 − a2n

1 − a2
+ lim

z→a

zn + z−n

z − 1
a











= −π











1
an

· 1 − a2n

1 − a2
+

1
a
· an + a−n

a − 1
a











= −π

{

1
an

· 1 − a2n

1 − a2
− 1

an
· a2n + 1

1 − a2

}

= − π

an
· 1 − a2n − a2n − 1

1 − a2
= 2π · an

1 − a2
.
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Example 2.8 Given the function

f(z) =
1 − ei2z

z2
.

(1) Prove that f has a simple pole at z = 0, so we have for z �= 0,

f(z) =
b1

z
+ g(z),

where g is an entire function, i.e. analytic in C.
Find the residuum b1.

Consider for r > 0 the half circle γr, given by the parametric description

γr(t) = r eit, 0 ≤ t ≤ π.

(2) Prove that
∫

γr

f(z) dz → b1π i for r → 0.

(3) Prove that
∫

γr

f(z) dz → 0 for r → +∞.

–1

0

1

2

3

–3 –2 –1 1 2 3

Figure 1: The curve Γε,R.

Let Γε,R = I + II + III + IV denote the simple, closed curve on the figure, where II = γR and
IV = −γε.

(4) Compute
∮

Γε,R

f(z) dz,

and prove the formula
∫ +∞

0

{

sinx

x

}2

dx =
π

2
.
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1) It follows from the Laurent series expansion

f(z) =
1
z2

{

1 − ei2z
}

=
1
z2

{

1 −
+∞
∑

n=0

in

n!
· 2n zn

}

=
1
z2

{

1 − 1 − 2iz +
+∞
∑

n=0

in

(n + 2)!
· 2n+2 zn+2

}

= −2i
z

+ 4
+∞
∑

n=0

in

(n + 2)!
· 2n · zn, |z| > 0,

that f has a simple pole at 0 and that

g(z) = 4
+∞
∑

n=0

in

(n + 2)!
· 2nzn, z ∈ C,

is an entire function, and that

res(f ; 0) = −2i = b1.

2) When we use the parametric description of the half circle, we get
∫

γr

f(z) dz =
∫

γr

{

−2i
z

+ g(z)
}

dz =
∫ π

0

{

− 2i
r eit

· i r eit

}

dt +
∫

γr

g(z) dz

= 2
∫ π

0

dt +
∫

γr

g(z) dz = 2π +
∫

γr

g(z) dz,

where 2π = −2i · iπ = b1 · iπ.

In particular, g(z) is continuous, so |g(z)| ≤ c for |z| ≤ 1. Therefore, if 0 < r < 1, then we get the
estimate

∣

∣

∣

∣

∫

γr

g(z) dz

∣

∣

∣

∣

≤ c · π r → 0 for r → 0 + .

It follows that

lim
r→0+

∫

γr

f(z) dz = b1πi = 2π.

3) Assume that r > 0 is large. It follows from

ei2z = exp(2ir · (cost + i sin t)) = exp(−2r sin t) exp(2ir cos t),

and r > 0 and 0 < t < π that −2r sin t < 0, hence
∣

∣ei2z
∣

∣ ≤ for z ∈ Γr.

This implies the estimate
∣

∣

∣

∣

∫

γr

f(z) dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ π

0

1 + 1
r2

· r dt

∣

∣

∣

∣

=
2π
r

→ 0 for r → +∞.
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4) Now, f(z) is analytic everywhere inside Γε,R, so it follows from Cauchy’s integral theorem that

0 =
∫

Γε,R

f(z) dz = −
∫

γε

f(z) dz +
∫ R

ε

1 − e2ix

x2
dx +

∫

γR

f(z) dz +
∫ −ε

−R

1 − e2ix

x2
dx.

Since cosine is an even function and sine is an odd function, it follows by the symmetry that

∫ R

ε

1 − e2ix

x2
dx +

∫ −ε

−R

1 − e2ix

x2
dx

=
∫ R

ε

1 − cos 2x
x2

dx −
∫ R

ε

sin 2x
x2

dx +
∫ −ε

−R

1 − cos 2x
x2

dx −
∫ −ε

−R

sin 2x
x2

dx

= 2
∫ R

ε

1 − cos 2x
x2

dx = 2
∫ R

ε

{

sinx

x

}2

dx.

Then by insertion and taking the limits ε → 0+ and R → +∞,

0 = −
∫

γε

f(z) dz +
∫

γR

f(z) dz + 2
∫ R

ε

{

sinx

x

}2

dx

→ −π + 0 + 2
∫ +∞

0

{

sinx

x

}2

dx.

This limit is of course also equal to 0, so by a rearrangement,

∫ +∞

0

{

sinx

x

}2

dx =
π

2
.
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3 Improper integrals in general

Example 3.1 Compute the improper integrals
∫ +∞

−∞

1
x2 + 1

exp
(

x

x2 + 1

)

cos
(

1
x2 + 1

)

dx, and
∫ +∞

−∞

1
x2 + 1

exp
(

x

x2 + 1

)

sin
(

1
x2 + 1

)

dx.

When we split into the real and the imaginary part, we get

1
x − i

=
x

x2 + 1
+ i

1
x2 + 1

,

so it is quite natural to consider the analytic function

f(z) =
1

z2 + 1
exp

(

1
z − i

)

, for z ∈ C \ {−i, i}.

Since
1

z − i
→ 0 for z → ∞, there clearly exists an R > 1, such that we have the estimate

|f(z)| ≤ 2
|z|2 for |z| ≥ R.

Then the assumptions of an application of the residuum formula are satisfies, so we conclude by the
linear transform w = z − i that

∫ +∞

−∞

1
x2 + 1

exp
(

x + i

x2 + 1

)

dx = 2πi · res
(

1
z2 + 1

exp
(

1
z − i

)

; i

)

= 2πi · res
(

1
w2 + 2iw

exp
(

1
w

)

; 0
)

.

Now, w0 = 0 is an essential singularity of the function

1
w2 + 2iw

exp
(

1
w

)

,

so in order to find the residuum we shall expand into a Laurent series from w0 = 0, then perform

a Cauchy multiplication and finally determine a−1 by collecting all the coefficients of
1
w

. When

0 < |w| < 2, we get

1
w

· 1
2i + w

· exp
1
w

=
1
2i

· 1
w

· 1

1 +
w

2i

· exp
1
w

=
1
2i

· 1
w

+∞
∑

m=0

{−w

2i

}m +∞
∑

n=0

1
n!

1
wn

.

Since we have separated the factor
1
w

, it follows that a−1 is equal to the constant term in the product
of the two series, i.e. m = n. Thus

a−1 =
1
2i

+∞
∑

n=0

1
n!

{

i

2

}n

=
1
2i

exp
(

i

2

)

=
1
2i

{

cos
1
2

+ i sin
1
2

}

,
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and we conclude that
∫ +∞

−∞

1
1 + x2

exp
(

x

x2 + 1

){

cos
(

1
x2 + 1

)

+ i sin
(

1
x2 + 1

)}

dx

=
∫ +∞

−∞

1
x2 + 1

exp
(

x + i

x2 + 1

)

dx = 2πia−1 = π

{

cos
1
2

+ i sin
1
2

}

.

When we separate the real and the imaginary parts, we get
∫ +∞

−∞

1
x2 + 1

exp
(

x

x2 + 1

)

cos
(

1
x2 + 1

)

dx = π · cos
1
2
,

and
∫ +∞

−∞

1
x2 + 1

exp
(

x

x2 + 1

)

sin
(

1
x2 + 1

)

dx = π · sin 1
2
.

Alternatively we may use that the function

g(w) =
1

w2 + 2iw
exp

(

1
w

)

=
1

w(w + 2i)
exp

(

1
w

)

is analytic in C \ {0,−2i}, so if we include the residuum at ∞, then the sum of the residues is zero.
Hence

∫ +∞

−∞

1
x2 + 1

exp
(

x + i

x2 + 1

)

dx = 2πi · res(g(w) ; 0) = −2πi{res(g(w) ; −2i) + res(g(w) ; ∞)}.

Here, −2i is a simple pole, so by Rule Ia,

− res(g(w) ; −2i) = − lim
z→−2i

1
w

· exp
(

1
w

)

=
1
2i

exp
(

i

2

)

.

Furthermore, limw→∞ exp
(

1
w

)

= exp 0 = 1, so w = ∞ is a zero of order 2 of

g(w) =
1

w2
· 1

1 +
2i
w

· exp
(

1
w

)

,

and it follows from Rule IV that

res(g(w) ; ∞) = 0.

Then by insertion,
∫ +∞

−∞

1
x2 + 1

· exp
(

x + i

x2 + 1

)

dx = 2πi · res(g(w) ; ,∞) =
2πi

2i
· exp

(

i

2

)

= π

{

cos
1
2

+ i sin
1
2

}

,

and the results follow as above by separating the real and the imaginary parts.
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Example 3.2 Assume that x > 0. Find the limit value

lim
A→+∞

∫ A

−A

(

1
t + ix

− 1
t − ix

)

dt.

Here we get without using Complex Function Theory,

lim
A→+∞

∫ A

−A

(

1
t + ix

− 1
t − ix

)

dt = lim
A→+∞

∫ A

−A

t − ix − t − ix

t2 + x2
dt

= lim
A→+∞

{

−2ix
∫ A

−A

dt

t2 + x2

}

= −2i lim
A→+∞

[

Arctan
(

t

x

)]A

−A

= −2iπ.
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Example 3.3 Let a ∈ R be a constant. Prove that the integral

I(a) =
∫ +∞

−∞
e−(x+ia)2dx

is independent of a.
Hint: We may assume that a ∈ R+. Denote by C the rectangle of the corners −b, b, b + ia and
−b + ia. Show that

∮

C

exp
(

−z2
)

dz = 0.

Then prove that
∣

∣

∣

∣

∫ a

0

e−(b+iy)2dy

∣

∣

∣

∣

≤ e−b2
∫ a

0

ey2
dy.

By letting b → +∞, prove that I(a) = I(0).

–0.5

0

0.5

1

1.5

–2 –1 1 2

Figure 2: Example of one of the curves C. Here, a = 1 and b = 2.

Clearly, we may assume that a > 0, because we otherwise might consider an analogous curve in the
lower half plane.
Now exp

(

−z2
)

is analytic in C, so
∮

C

exp
(

−z2
)

dz = 0.

We estimate the line integrals along the vertical lines by
∣

∣

∣

∣

∫ a

0

e−(±b+iy)2dy

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ a

0

e−b2∓2ibu+y2
dy

∣

∣

∣

∣

≤ e−b2
∫ a

0

ey2
dy → 0 for b → +∞.

Since
∮

C

e−z2
dz =

∫ b

−b

e−x2
dx + i

∫ −(b+iy)2

0

dy −
∫ b

−b

e−(x+ia)2dx − i

∫ a

0

e−(−b+iy)2dy = 0,
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and since
∫ +∞
−∞ e−x2

dx is an improper convergent integral, it follows by taking the limit b → +∞ that

I(a) =
∫ +∞

−∞
e−(x+ia)2dx =

∫ +∞

−∞
e−x2

dx = I(0).

Note that we also have

I(−a) = I(a) = I(0) = I(0).

Example 3.4 Compute

I(0) =
∫ +∞

+∞
e−x2

dx.

Hint: Use that

{I(0)}2 =
∫ +∞

−∞
e−x2

dx

∫ +∞

−∞
e−y2

dy =
∫ ∫

R2
e−(x2+y2)dx dy.

Then use polar coordinates.

Since e−(x2+y2) > 0 for every (x, y) ∈ R2, and since the function is continuous, all the transforms
below are legal, if only the improper plane integral exists. (The only thing which may go wrong is
that the value could be +∞). Hence,

I(0)2 =
∫ +∞

−∞
e−x2

dx ·
∫ +∞

−∞
e−y2

dy =
∫ ∫

R2
e−(x2+y2)dx dy

=
∫ 2π

0

∫ +∞

0

e−r2
r dr dθ = 2π ·

[

1
2

e−r2
]+∞

0

= π,

and thus

I(0) =
√

π. ♦

Example 3.5 Integrate the function eiz2
by using Cauchy’s theorem along a triangle of corners 0, a

and a(1 + i), where a > 0. Prove that the integral along the path from a to a(1 + i) tends to 0 for
a → +∞, and then prove that

∫ +∞

0

eix2
dx =

∫ +∞

0

cos
(

x2
)

dx + i

∫ +∞

0

sin
(

x2
)

dx =
1 + i√

2

∫ +∞

0

e−x2
dx.

The integrand is analytic, so it follows from Cauchy’s theorem that

0 =
∫ a

0

eix2
dx +

∫ a

0

ei(a+it)2i dt −
∫ a

0

ei(1+i)2t2(1 + i) dt.
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0

0.2

0.4

0.6

0.8

1

–0.5 0.5 1 1.5

Figure 3: The curve C when a = 1.

We first consider

I2 =
∫ a

0

ei(a+it)2i dt.

Here we get the estimate

|I2| =
∣

∣

∣

∣

∫ a

0

ei(a2−t2)e−2ati dt

∣

∣

∣

∣

≤
∫ a

0

e−2at dt =
1 − e−2a2

2a
<

1
2a

.

It follows immediately that

∫ a(1+i)

0

eiz2
dz → 0 for a → +∞.

Then we introduce the substitution u = t
√

2 into the latter integral,

I3 =
∫ a

0

ei(1+i)2t2(1 + i) dt.

We get here

I3 =
∫ a

0

ei(1+i)2t2(1 + i) dt = (1 + i)
∫ a

0

e−2t2dt =
1 + i√

2

∫ a
√

2

0

e−u2
du

→ 1 + i√
2

∫ +∞

0

e−x2
dx for a → +∞.

We finally conclude that the first integral I1 is also convergent for a → +∞, and
∫ +∞

0

eix2
dx =

∫ +∞

0

cos
(

x2
)

dx + i

∫ +∞

0

sin
(

x2
)

dx =
1 + i√

2

∫ +∞

0

e−x2
dx.
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Remark 3.1 If we use the result of Example 3.4, it follows by the symmetry that
∫ +∞

0

eix2
dx =

1 + i√
2

·
√

π

2
,

hence
∫ +∞

0

cos
(

x2
)

dx =
∫ +∞

0

sin
(

x2
)

dx =
1
2

√

π

2
. ♦

28

Improper integrals in general

Download free eBooks at bookboon.com



Complex Funktions Examples c-7

  

32  

Example 3.6 1) Find the domain of analyticity of the function

f(z) =
Log z

z2 − 1
.

Explain why f has a removable singularity at z = 1.

2) Let Cr,R denote the simple, closed curve on the figure, where

0 < r < R < +∞.

–0.2

0.2

0.4

0.6

0.8

1

1.2

–0.2 0.2 0.4 0.6 0.8 1 1.2

Compute the line integral

(1)
∮

Cr,R

f(z) dz.

3) Show that the improper integral
∫ +∞

0

lnx

x2 − 1
dx

is convergent, and then find its value, e.g. by letting r → 0+ and R → +∞ in (1).

1) Clearly, f is defined and analytic, when

z ∈ C \ (R− ∪ {0, 1}) ,

and the singularity at z = 1 is at most a simple pole,

f(z) =
Log z

z2 − 1
=

res(f ; 1)
z − 1

+
+∞
∑

n=0

an(z − 1)n, 0 < |z − 1| < 1.

But since

res(f(f ; 1) = lim
z→1

Log z

z + 1
=

Log 1
2

= 0,
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it follows that the Laurent series of f from z = 1 is a power series, so the singularity at z = 1 is
removable.

Alternatively, both the numerator and the denominator are 0 for z = 1, so we get by l’Hospital’s
rule that

lim
z→1

f(z) = lim
z→1

Log z

z2 − 1
= lim

z→1

1
z
2z

=
1
2
,

so the singularity is removable, and we may consider

f(z) =



















Log z

z2 − 1
, x ∈ C \ (R− ∪ {0, 1}) ,

1
2
, z = 1,

as an analytic function in C \ (R− ∪ {0}).

Alternatively it follows by a series expansion of

Log z = Log(1 + (z − 1)) for 0 < |z − 1| < 1,

that

f(z) =
Log z

z2 − 1
=

1
z + 1

· 1
z − 1

+∞
∑

n=1

(−1)n+1

n
· (z − 1)n =

1
z + 1

+∞
∑

n=0

(−1)n

n + 1
(z − 1)n.

Here
1

z + 1
is continuous in all of the disc |z − 1| < 1, so we conclude again that z = 1 is a

removable singularity and that f can be analytically extended to z = 1 by putting

f(1) :=
1

1 + 1

{

1
1 + 0

+ 0
}

=
1
2
.

–0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

–0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 4: The path of integration Cr,R with the removable singularity at z = 1.
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2) Since we may consider f as an analytic function in C \ (R− ∪ {0}), we conclude from Cauchy’s
integral theorem that

(2)
∮

Cr,R

f(z) dz = 0.

3) When we restrict the analytic function to R+, we get a continuous function
lnx

x2 − 1
, supplied by

the value
1
2

at x = 1. Since we only have lnx = 0 for x = 1, we see that x = 1 is the only possiple

zero. However, the value is here
1
2

> 0, so we conclude by the continuity that
lnx

x2 − 1
is positive

(and continuous) for x ∈ R+. Then we have the splitting

∫ +∞

0

lnx

x2 − 1
dx =

∫ 1
2

0

lnx

x2 − 1
dx +

∫ 2

1
2

lnx

x2 − 1
dx +

∫ +∞

2

lnx

x2 − 1
dx.

The estimate

0 <

∫ 1
2

0

lnx

x2 − 1
dx ≤ 1

∣

∣

∣

∣

1
4
− 1

∣

∣

∣

∣

∫ 1
2

0

| ln x| dx =
4
3

∫ 1
2

0

(− ln x) dx

=
4
3

[−x lnx + x]
1
2
0+ =

4
3
· 1
2

(1 + ln 2) =
2
3

(1 + ln 2) < +∞,

implies that the first integral exists.

It was mentioned above that we could consider
lnx

x2 − 1
as a continuous function in the closed

bounded interval
[

1
2 , 2

]

, from which we conclude that the second integral also is convergent.

Finally, it follows from the magnitudes of the functions, when x → +∞ that there exists a constant
C > 0, such that

0 <

∫ +∞

2

lnx

x2 − 1
dx < C

∫ +∞

2

1
x

3
2

dx = C
√

2 < +∞,

and we conclude that the last integral also is convergent.

Summing up we have proved that the improper integral
∫ +∞
0

lnx

x2 − 1
dx is convergent.

When we expand (2), then

0 =
∫ R

r

lnx

x2 − 1
dx +

∫ π
2

0

Log
(

R eiθ
)

R2e2iθ − 1
· R i eiθ dθ −

∫ R

r

Log(it)
(it)2 − 1

· i dt −
∫ π

2

0

Log
(

r eiθ
)

r2e2iθ − 1
r i eiθ dθ

=
∫ R

r

lnx

x2 − 1
dx + i

∫ R

r

ln t + i
π

2
1 + t2

dt + i

∫ π
2

0

lnR + iθ

R2e2iθ − 1
· R eiθ dθ + i

∫ π
2

0

ln r + iθ

1 − r2e2iθ
· r eiθ dθ,
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hence by a rearrangement,

∫ R

r

lnx

x2 − 1
dx + i

∫ R

r

ln t

1 + t2
dt

=
π

2

∫ R

r

dt

1 + t2
− i

∫ π
2

0

lnR + iθ

R2e2iθ − 1
· R eiθ dθ − i

∫ π
2

0

ln r + iθ

1 − r2e2iθ
· r eiθ dθ.

By taking the limits r → 0+ and R → +∞ on each of the terms on the right hand side we get

lim
r→0+

lim
R→+∞

π

2

∫ R

r

dt

1 + t2
=

π

2

∫ +∞

0

dt

1 + t2
=

π

2
· π

2
=

π2

4
,

and
∣

∣

∣

∣

∣

i

∫ π
2

0

lnR + iθ

R2e2iθ − 1
· R eiθ dθ

∣

∣

∣

∣

∣

≤
∫ π

2

0

lnR + π
2

R2 − 1
· R dθ

=
π

2
· R

(

lnR + π
2

)

R2 − 1
→ 0 for R → +∞,
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and
∣

∣

∣

∣

∣

i

∫ π
2

0

ln r + iθ

1 − r2
e2iθ dθ

∣

∣

∣

∣

∣

≤ π

2
· r

(

| ln r| + π
2

)

1 − r2
→ 0 for r → 0+,

respectively. Hence, by summing up,
∫ +∞

0

lnx

x2 − 1
dx + i

∫ +∞

0

ln t

t2 + 1
dt =

π2

4
.

Finally, by separating the real and the imaginary parts,
∫ +∞

0

lnx

x2 − 1
dx =

x2

4
og

∫ +∞

0

lnx

x2 + 1
dx = 0.
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Example 3.7 Given the function

f(z) =
ez

1 + e4z
.

(1) Find all the isolated singularities of f in C.
Determine the type of each of them and their residuum.

Given for each r1 > 0 and r2 > 0 the closed curve

γr1,r2 = Ir1,r2 + IIr2 + IIIr1,r2 + IVr1

(cf. the figure), which form the boundary of the domain

Ar1,r2 = {z ∈ C | −r1 < Re(z) < r2 and 0 < Im(z) < π}.

–2

2

4

6

–10 –5 5 10

Figure 5: The curve γr1,r2 with the direction given on Ir1,r2 = [−r1, r2] and IIIr1,r2 .

(2) Prove that

∮

γr1,r2

f(z) dz =
√

2
2

π.

(3) Prove that the line integrals along the vertical curves IIr2 and IVr1 tend to 0 for r2 and r1 tending
to +∞.

(4) Find

∫ +∞

−∞

ex

1 + e4x
dx.

1) Since ez �= 0 for every z ∈ C, the singularities are determined by

e4z = −1 = ei(π+2pπ), p ∈ Z,
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so the isolated singularities are

zp = i
{π

4
+ p · π

2

}

, p ∈ Z.

We see from

d

dz

{

e4z + 1
}

|z=zp
= 4 e4zp = −4 �= 0,

that these singularities are all simple poles with the residues

res (f ; zp) =
1
−4

exp
(

i
{π

4
+ p

π

2

})

= −
√

2
8

(1 + i) · exp
(

i
π

2
· p

)

, p ∈ Z.

2) We have inside the curve γr1,r2 only the two poles z0 and z1, hence by Cauchy’s residuum theorem,

∮

γr1,r2

ez

1 + e4z
dz = 2πi {res (f ; z0) + res (f ; z1)} = 2πi

{

−
√

2
8

(1 + i)(1 + i)

}

= 2πi ·
(

−
√

2
8

)

· 2i =
√

2
2

π =
π√
2
.

3) We may choose the parametric descriptions of the vertical paths of integration in the form
z(t) = r + it, t ∈ [0, π], where either r = r2 or r = −r1.
If r = r2 > 0, then we get the estimate

∣

∣

∣

∣

∣

∫

IIr2

f(z) dz

∣

∣

∣

∣

∣

≤
∫ π

0

∣

∣

∣

∣

er2+it

1 + e4r2+4it

∣

∣

∣

∣

dt ≤ π · er2

er2 − 1
→ 0 for r2 → +∞.

If r = −r1 < 0, then we get instead
∣

∣

∣

∣

∣

∫

IVr1

f(z) dz

∣

∣

∣

∣

∣

≤
∫ π

0

∣

∣

∣

∣

e−r1+it

1 + e−4r1+4it

∣

∣

∣

∣

dt ≤ π · e−r1

1 − e−4r1
→ 0 for r1 → +∞.

4) Finally,
∫

Ir1,r2

f(z) dz =
∫ r2

−r1

ex

1 + e4x
dx,

and
∫

IIIr1,r2

f(z) dz =
∫ −r1

r2

ex eiπ

1 + e4xei4π
dx =

∫ r2

−r1

ex

1 + e4x
dx.

It follows from (2) and (3) that
√

2
2

π = lim
r1, r2→+∞

∮

γr1,r2

f(z) dz = 2
∫ +∞

−∞

ex

1 + e4x
dx,

hence
∫ +∞

−∞

ex

1 + e4x
dx =

√
2

4
π.
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Remark 3.2 It is possible to find the value of the improper integral (which clearly is convergent)
without using the calculus of residues. First we get by the substitution t = ex,

∫ +∞

−∞

ex

1 + e4x
dx =

∫ +∞

0

dt

1 + t4
.

Then we decompose the integrand in the following way,

1
1 + t4

=
1

(t4 + 2t2 + 1) − 2t2
=

1

(t2 + 1)2 −
(√

2 t
)2 =

1
(

t2 +
√

2 t + 1
) (

t2 −
√

2 t + 1
)

=
at + b

t2 +
√

2 t + 1
+

ct + d

t2 −
√

2 t + 1
,

hence

1 = (at+b)
(

t2−
√

2t+1
)

+ (ct+d)
(

t2+
√

2t+1
)

= (a+c)t3+(−
√

2a+b+
√

2c+d)t2+(a−
√

2b+c+
√

2d)t+(b+d).

We get a + c = 0, i.e. c = −a, and b + d = 1, so

−2
√

2 a + 1 = 0 and −
√

2 b +
√

2 d = 0.

It follows that

a =
1

2
√

2
= −c and b = d =

1
2
,

thus

1
1 + t4

=
1

4
√

2
· 2t +

√
2

t2 +
√

2 t + 1
+

1
4
· 1
t2 +

√
2 t + 1

− 1
4
√

2
· 2t −

√
2

t2 −
√

2 t + 1
+

1
4
· 1
t2 −

√
2 t + 1

.

Finally, we get the primitive

∫

{

2t +
√

2
t2 +

√
2 t + 1

− 2t +
√

2
t2 −

√
2 t + 1

}

dt = ln

(

t2 +
√

2 t + 1
t2 −

√
2 t + 1

)

→ 0,

for t → 0+, and for t → +∞. We therefore conclude that
∫ +∞

−∞

ex

1 + e4x
dx =

∫ +∞

0

dt

1 + t4
=

1
4

∫ +∞

0

{

1
t2 +

√
2 t + 1

+
1

t2 −
√

2 t + 1

}

dt

=
1
4

∫ +∞

0



















1
(

t +
1√
2

)2

+
1
2

+
1

(

t − 1√
2

)2

+
1
2



















dt

=
√

2
4

[

Arctan
(√

2 t + 1
)

+ Arctan
(√

2 t − 1
)]∞

0

=
√

2
4

{π

2
+

π

2
− π

4
+

π

4

}

=
√

2π

4
. ♦
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Example 3.8 Denote by A the domain

A = C \ {z ∈ C | Re(z) = 0 and Im(z) ≤ 0},

and denote by
√

z the branch of the square root which is analytic in A, and which is equal to the usual
real square root on the positive real axis R+.
Furthermore, let

Γr,R = Ir,R + IIR + IIIr,R + IVr for 0 < r < 1 < R,

denote the simple closed curve on the figure.

–0.5

0

0.5

1

1.5

2

2.5

–2 –1 1 2

Figure 6: The closed curve Γr,R med Ir,R = [r,R] and the circular arc IIR with a direction, (and
IIIr,R and IVr follow in a natural way). The pole i of f(z) is indicated inside Γr,R.

Put

f(z) =
1√

z (z2 + 1)
.

1) Prove that
∮

Γr,R

f(z) dz =
π√
2

(1 − i).

2) Prove that the integrals of f along the half circles IIR and IVr tend to 0 when R tends to ∞, and
r tends to 0.

3) Prove that the integral

∫ +∞

0

1√
x (x2 + 1)

dx

is convergent and find its value.
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1) The only singularity of f(z) inside Γr,R is the simple pole z = i, so it follows by Cauchy’s residuum
theorem that

∮

Γr,R

f(z) dz = 2πi res
(

1√
z (z2 + 1)

, i

)

= 2πi lim
z→i

1√
z · 2z = 2πi · 1

1 + i√
2

· 2i

= π · 1 − i√
2

=
π√
2

(1 − i).

2) We estimate the integral along the curve IVr of the parametric description z(t) = r ei(π−t), t ∈ [0, π]
and 0 < r < 1, by

∣

∣

∣

∣

∫

IVr

1√
z (z2 + 1)

dz

∣

∣

∣

∣

≤
∫ π

0

r dt√
r · (1 − r2)

=
π
√

r

1 − r2
→ 0 for r → +∞.

Along med IIR we choose the parametric description z(t) = R · eit, t ∈ [0, π], R > 1, and then get
the estimate

∣

∣

∣

∣

∫

IIR

1√
z (z2 + 1)

dz

∣

∣

∣

∣

≤
∫ π

0

R√
R · (R2 − 1)

dt =
π
√

R

R2 − 1
→ 0 for R → +∞.
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3) We obtain along IIIr,R,

∫

IIIr,R

dz√
z (z2 + 1)

=
1
i

∫ −r

−R

dx
√

|x| (x2 + 1)
=

1
i

∫ R

r

dx√
x (x2 + 1)

= −i

∫ R

r

dx√
x (x2 + 1)

.

Taking the limits r → 0+ and R → +∞ and applying the results of (1) and (2) we get

(1 − i)
∫ +∞

0

dx√
x (x2 + 1)

=
π√
2

(1 − i),

hence
∫ +∞

0

dx√
x (x2 + 1)

=
π√
2
.

Alternatively we may change the variable to t =
√

x, x = t2, t ∈ R+,

∫ +∞

0

dx√
x (x2 + 1)

= 2
∫ +∞

0

dt

t4 + 1
.

Then we decompose in the following way,

1
1 + t4

=
1

(t4 + 2t2 + 1) − 2t2
=

1

(t2 + 1)2 −
(√

2 t
)2 =

1
(

t2 +
√

2 t + 1
) (

t2 −
√

2 t + 1
)

=
at + b

t2 +
√

2 t + 1
+

ct + d

t2 −
√

2 t + 1
,

hence

1 = (at+b)
(

t2−
√

2t+1
)

+ (ct+d)
(

t2+
√

2t+1
)

= (a+c)t3+(−
√

2a+b+
√

2c+d)t2+(a−
√

2b+c+
√

2d)t+(b+d).

We get a + c = 0, thus c = −a, and b + d = 1, so

−2
√

2 a + 1 = 0 and −
√

2 b +
√

2 d = 0.

Then

a =
1

2
√

2
= −c and b = d =

1
2
,

and

1
1 + t4

=
1

4
√

2
· 2t +

√
2

t2 +
√

2 t + 1
+

1
4
· 1
t2 +

√
2 t + 1

− 1
4
√

2
· 2t −

√
2

t2 −
√

2 t + 1
+

1
4
· 1
t2 −

√
2 t + 1

.

Finally, we see that the primitive is given by

∫

{

2t +
√

2
t2 +

√
2 t + 1

− 2t +
√

2
t2 −

√
2 t + 1

}

dt = ln

(

t2 +
√

2 t + 1
t2 −

√
2 t + 1

)

→ 0,
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for t → 0+, and for t → +∞. We therefore conclude that
∫ +∞

0

1√
x (x2 + 1)

dx = 2
∫ +∞

0

dt

1 + t4
=

1
2

∫ +∞

0

{

1
t2 +

√
2 t + 1

+
1

t2 −
√

2 t + 1

}

dt

=
1
2

∫ +∞

0



















1
(

t +
1√
2

)2

+
1
2

+
1

(

t − 1√
2

)2

+
1
2



















dt

=
√

2
2

[

Arctan
(√

2 t + 1
)

+ Arctan
(√

2 t − 1
)]∞

0

=
√

2
2

{π

2
+

π

2
− π

4
+

π

4

}

=
√

2π

2
.
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4 Improper integral, where the integrand is a rational func-
tion

Example 4.1 Find the value of the improper integral
∫ +∞

−∞

dx

x4 + 1
.

1) It is possible to compute the integral by a real decomposition; but this is not an easy method. We
shall here shortly sketch it in order to demonstrate the difficulties connected with it: By “adding
something and then subtracting it again, followed by factorizing the difference of two squares” we
get

x4 = x4 + 2x2 + 1 − 2x2 =
{

x2 + 1
}2 −

{√
2x

}2

=
{

x2 +
√

2x + 1
}{

x2 −
√

2x + 1
}

.

We conclude that there exist real constants A, B, C and D ∈ R, such that

1
x4 + 1

=
1

{x2 + 1}2 −
{√

2x
}2

=
{

x2 +
√

2x + 1
} {

x2 −
√

2x + 1
}

=
Ax + B

x2 +
√

2x + 1
+

Cx + D

x2 −
√

2x + 1
.

Then by the usual decomposition,

A =
1

2
√

2
, B =

1
2
, C = − 1

2
√

2
, D =

1
2
,

and we find a primitive of
1

x4 + 1
in the usual way.

2) A variant of the method of decomposition above is to note that all four poles zj are simple, so

1
z4 + 1

=
res (f ; z1)

z − z1
+

res (f ; z2)
z − z2

+
res (f ; z3)

z − z3
+

res (f ; z4)
z − z4

,

where

res (f ; zj) =
1

4z3
0

=
z0

4z4
0

= −1
4

zj ,

by Rule II. We see that the zj are complex (they occur in complex conjugated pairs), so the terms
shall afterwards be paired together in the same way, before we find the real primitives.

3) Finally, we show that it is much easier to use the residuum formula. We shall first check the
assumptions. The integrand is a rational function with a zero of order 4 at ∞ and no pole on
the real axis. This implies that the improper integral is convergent and we can find it value by

computing the residues of the poles in the upper half plane. The four simple poles are exp
(

ipπ

4

)

,

p = 1, 3, 5, 7, of which only

exp
(

iπ

4

)

=
1 + i√

2
og exp

(

3iπ
4

)

=
−1 + i√

2
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lies in the upper half plane.

If we as above use Rule II with A(z) = 1 and B(z) = z4 + 1, where B′(z) = 4z3, then we get for
any of the poles z0 that

res (f ; z0) =
A (z0)
B′ (z0)

=
1

4z3
0

=
z0

4z4
0

= −1
4

z0,

because z4
0 = −1 for all of them.

Then by the residuum formula,
∫ +∞

−∞

dx

x4 + 1
= 2πi

{

res
(

1
z4 + 1

;
1 + i√

2

)

+ res
(

1
z4 + 1

;
−1 + i√

2

)}

= 2πi ·
{

−1
4

}{

1 + i√
2

+
−1 + i√

2

}

= −2πi

4
· 2i√

2
=

π√
2
.

Example 4.2 The improper integral
∫ +∞
−∞

x

x2 + 1
dx is not convergent. Discuss what happens if one

nevertheless use the residuum formula.

The only singularity of the analytic extension of the integrand in the upper half plane is the simple
pole at z0 = i. Here we have

res
(

z

z2 + 1
; i

)

= lim
z→i

z

2z
=

1
2
,

so if we unconsciously put this into the residuum formula, then

“
∫ +∞

−∞

x

x2 + 1
dx = 2πi · res

(

z

z2 + 1
; i

)

= πi ”.

This is of course not true, because if we could attach the improper integral a value (it is not convergent,
so one should at least use “Cauchy’s principal value” in order just to get a little sense into this
expression), and then it is obvious that a possible value should be reel and not at all imaginary.
The example shows that residuum formulæ formally often can be applied in cases, in which their
assumptions are not fulfilled. If so, they will usually give a wrong result.

Example 4.3 Compute

(a)
∫ +∞

−∞

dx

(1 + x2)2
, (b)

∫ +∞

−∞

x2

(1 + x2)2
dx, (c)

∫ +∞

−∞

dx

(1 + x2)3
.

(a) The integrand has a zero of fourth order at ∞, and since
(

1 + x2
)2 �= 0 for every x ∈ R, the

integral is convergent. The integrand has the two double poles ±i, of which only +i lies in the
upper half plane, so

∫ +∞

−∞

dx

(1 + x2)2
= 2πi · res

(

1
(1 + z2)2

; i

)

= 2πi · 1
1!

lim
z→i

d

dz

{

1
(z + i)2

}

= 2πi lim
z→i

−2
(z + i)3

=
−4πi

(2i)3
=

π

2
.
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(b) The difference of degrees is 2 where the denominator is dominating, and the integrand has only
the singularities ±i (double poles, which do not lie on R). Hence, the integral exists and

∫ +∞

−∞

x2

(1 + x2)2
dx = 2πi · res

(

z2

(z2 + 1)2
; i

)

= 2πi · 1
1!

lim
z→i

d

dz

{

z2

(z + i)2

}

= 2πi lim
z→i

{

2z
(z + i)2

− 2z2

(z + i)3

}

= 2πi

{

2i
(2i)3

− 2i2

(2i)3

}

= −π

{

(2i)2

(2i)2
− 1

2
(2i)3

(2i)3

}

=
π

2
.

Alternatively, we of course also have

x2

(1 + x2)2
=

x2 + 1 − 1
(1 + x2)2

=
1

1 + x2
− 1

(1 + x2)2
,

and then it follows from (a) that
∫ +∞

−∞

x2

(1 + x2)2
dx =

∫ +∞

−∞

1
1 + x2

dx −
∫ +∞

−∞

1
(1 + x2)2

dx = π − π

2
=

π

2
.

(c) The integrand has a zero of order 6 at ∞ and no singularity on the x-axis, and poles of order 3
at z = ±i. Hence,

∫ +∞

−∞

dx

(1 + x2)2
= 2πi · res

(

1
(z2 + 1)3

; i

)

= 2πi · 1
2!

lim
z→i

d2

dz2

{

1
(z + i)3

}

= πi lim
z→i

d

dz

{ −3
(z + i)4

}

= πi lim
z→i

(−3)(−4)
(z + i)5

=
12πi

(2i)5
=

12πi

32i
=

3π
8

.

Example 4.4 Prove that

(a)
∫ +∞

−∞

x2

x4 + 1
dx =

π
√

2
2

, (b)
∫ +∞

−∞

x − 1
x5 − 1

dx =
4π
5

sin
2π
5

.

(a) The integrand
x2

x4 + 1
has a zero of second order at ∞, and no singularity on the x-axis. The

poles in the upper half plane,

z1 =
1 + i√

2
and z2 =

−1 + i√
2

,

are both simple with z1 · z2 = −1, so
∫ +∞

−∞

x2

x4 + 1
dx = 2πi

{

res
(

z2

z4 + 1
; z1

)

+ res
(

z2

z4 + 1
; z2

)}

= 2πi

{

lim
z→z1

z2

4z3
+ lim

z→z2

z2

4z3

)

=
2πi

4

(

1
z1

+
1
z2

)

= −πi

2
(z1 + z2)

= −π

2

{

1 + i√
2

+
−1 + i√

2

}

= −πi

2
· 2i√

2
=

π√
2

=
π
√

2
2

.
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(b) First we note that we have a removable singularity at x = 1, because

lim
x→1

x − 1
x5 − 1

= lim
x→1

1
5x4

=
1
5

either by l’Hospital’s rule, or by a simple division,

x − 1
x5 − 1

=
1

x4 + x3 + x2 + x + 1
→ 1

5
for x → 1.

There is no other singularity on R than the removable singularity at z = 1, and the integrand has
a zero of order 4 at ∞. We therefore conclude that the improper integral is convergent. The poles
in the upper half plane,

z1 = exp
(

2iπ
5

)

and z2 = exp
(

4iπ
5

)

,
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are both simple, so the value of the improper integral is

∫ +∞

−∞

x − 1
x5 − 1

dx = 2πi

{

res
(

z − 1
z5 − 1

; z1

)

+ res
(

z − 1
z5 − 1

; z2

)}

= 2πi

{

lim
z→z1

z − 1
5z4

+ lim
z→z2

z − 1
5z4

}

=
2πi

5

{

lim
z→z1

z2 − z

z5
+ lim

z→z2

z2 − z

z5

}

=
2πi

5
{

z2
1 − z1 + z2

2 − z2

}

=
2πi

5

{

exp
(

4iπ
5

)

− exp
(

2iπ
5

)

+ exp
(

8iπ
5

)

− exp
(

4iπ
5

)}

=
2πi

5

{

exp
(

−2πi

5

)

− exp
(

2πi

5

)}

=
2πi

5
·
{

−2i sin
2π
5

}

=
4π
5

sin
2π
5

.

Remark 4.1 Since

cos
π

5
=

1 +
√

5
4

and sin
π

5
=

√

10 − 2
√

5
4

,

it follows by insertion that

∫ +∞

−∞

x − 1
x5 − 1

dx =
4π
5

· 2 sin
π

5
· cos

π

5
=

π

10
·
(

1 +
√

5
)

·
√

10 − 2
√

5

=
π

10

√

10 + 8
√

5 =
π

5

√

10 + 2
√

5.

Example 4.5 Compute

(a)
∫ +∞

−∞

dx

(x2 + 1)n , n ∈ N, (b)
∫ +∞

0

x2 + 1
x2 + 1

dx.

In both cases we see that the improper integrals are convergent (the denominator is dominating, and
the difference of the degrees is at least 2, and we have no singularity on the real axis R), so the values
can be found by means of the residues in the upper half plane.

(a) Since z = i is an n-tuple pole, we find

∫ +∞

−∞

dx

(x2 + 1)n = 2πi · res
(

1
(z2 + 1)n ; i

)

= 2πi · 1
(n − 1)!

lim
z→i

dn−1

dzn−1

{

(z + i)−n
}

=
2πi

(n − 1)!
(−n)(−n − 1) · · · (−2n + 2) lim

z→i

1
(z + i)2n−1

= 2πi · (−1)n−1 · (2n − 2)!
(n − 1)!(n − 1)!

· 1
22n−1

· 1
i2n

=
π

22n−2

(

2n − 2
n − 1

)

.

(b) If z0 is one of the simple poles, then z4
0 = −1, so the residuum is given by

res
(

z2 + 1
z4 + 1

; z0

)

=
z2
0 + 1
4z3

0

= −z0

4
(

z2
0 + 1

)

.
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Then by using the symmetry, (the integrand is an even function),

∫ +∞

0

x2

x4 + 1
dx =

1
2

∫ +∞

−∞

x2 + 1
x4 + 1

dx

= πi

{

res
(

z2 + 1
z4 + 1

; exp
(

i
π

4

)

)

+ res
(

z2 + 1
z4 + 1

; exp
(

i
3π
4

))}

= −πi

4

{

exp
(

i
π

4

) (

exp
(

i
π

2

)

+ 1
)

+ exp
(

i
3π
4

)(

exp
(

i
3π
2

)

+ 1
)}

= − πi

4
√

2
{(1 + i)(1 + i) + (−1 + i)(1 − i)} = − πi

4
√

2
{2i − (−2i)} = −4i · πi

4
√

2
=

π√
2
.

Remark 4.2 It is possible, though far from easy to compute the value of the integral by only
using the known real methods of integration from Calculus, i.e. by a decomposition. We shall here
only sketch the method.
If we only can factorize the denominator, the rest is standard, though still difficult. The trick is
here the usual one: Add something and then subtract it again,

x4 + 1 = x4 + 2x2 + 1 − 2x2 =
(

x2 + 1
)2 − (

√
2x)2 =

(

x2 +
√

2x + 1
) (

x2 −
√

2x + 1
)

.

Now we have written the denominator as a product of polynomials of degree 2, so we can in principle
decompose and then compute the integral. However, the factorization of the denominator shows
that this will be fairly difficult to carry through in practice. ♦

Example 4.6 Compute

(a)
∫ +∞

−∞

dx

1 + x6
, (b)

∫ +∞

−∞

x2

1 + x6
dx.

The denominator is dominating with at least 4 degrees in the exponent, and there are no poles on the
x-axis. Therefore, both improper integrals are convergent, and we can compute them by a residuum
formula.

(a) The integrand
1

1 + z6
has in the upper half plane the three simple poles

exp
(

i
π

6

)

, exp
(

i
π

2

)

= i, exp
(

i
5π
6

)

.

Let z0 be anyone of these poles. Then in particular z6
0 = −1, and it follows that

res
(

1
1 + z6

; z0

)

=
1

6z5
0

=
z0

6z6
0

= −1
6

z0.

By insertion;

∫ +∞

−∞

dx

1 + x6
= 2πi

{

res
(

1
1 + z6

; exp
(

i
π

6

)

)

+ res
(

1
1 + z6

; i

)

+ res
(

1
1 + z6

exp
(

i
5π
6

))}

= −2πi

6

{

exp
(

i
π

6

)

+ i + exp
(

i
5π
6

)}

= −πi

3

{

2i sin
π

6
+ i

}

=
2π
3

.
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Remark 4.3 The denominator can be factorized in the following way

1 + x6 =
(

1 + x2
) (

x4 − x2 + 1
)

=
(

1 + x2
) (

x4 + 2x3 + 1 − 3x2
)

=
(

x2 + 1
)

(

(

x2 + 1
)2 − (

√
3x)2

)

=
(

x2 + 1
)

(

x2 +
√

3x + 1
) (

x2 −
√

3x + 1
)

,

so we can in principle decompose the integrand and then integrate in the usual way known from
Calculus. However, the coefficients clearly show that this will be very difficult to carry through. ♦

(b) Here we must not forget what we learned in the “kindergarten”:

∫ +∞

−∞

x2

1 + x6
dx =

1
3

∫ +∞

−∞

d
(

x3
)

1 + (x3)2
=

1
3

[

Arctan
(

x3
)]+∞

−∞ =
π

3
.

Alternatively (and this time far more difficult) we see that we have the same simple poles as
in (a), and then we get by the general expression of the residuum at the pole z0, where z6

0 = −1,

res
(

z2

1 + z6
; z0

)

=
z2
0

6z5
0

=
z3
0

6z6
0

= −1
6

z3
0 ,
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hence
∫ +∞

−∞

x2

1 + x6
dx = 2πi

{

res
(

z2

1 + z6
; exp

(

i
π

6

)

)

+res
(

z2

1 + z6
; i

)

+res
(

z2

1 + z6
; exp

(

i
5π
6

))}

= −2πi

6

{

exp
(

i
π

2

)

+ i3 + exp
(

i
5π
2

)}

= −πi

3
{i − i + i} =

π

3
.

Example 4.7 Compute
∫ +∞
−∞

dx

1 + x8
.

The function
1

1 + z8
has a zero of order 8 at ∞ and no singularity on the real axis. Hence the improper

integral is convergent, and its value can be found by the residues at the poles in the upper half plane.
All poles are simple, and we have in the upper plane the four poles

z1 = exp
(

i
π

8

)

, z2 = exp
(

i
3π
8

)

, z3 = exp
(

i
5π
8

)

, z4 = exp
(

i
7π
8

)

.

We have for every pole zk that z9
k = −1, so

res
(

1
1 + z8

; zk

)

=
1

8z7
k

= −1
8

z7.

Then by the residuum formula,
∫ +∞

−∞

dx

1 + x8
= 2πi

(

−1
8

)

· {z1 + z2 + z3 + z4} = −2πi

8
· 2i

{

sin
π

8
+ sin

3π
8

}

=
π

2
· 2 sin

π

4
· cos

π

8

=
π

2

√
2 ·

√

1 + cos π
4

2
=

π

2

√

1 +
1√
2
.

Alternatively, it is possible to decompose. Here, we shall only show how one factorizes the denom-
inator 1 + x8:

1 + x8 =
(

x8 + 2x4 + 1
)

− 2x4 =
(

x4 + 1
)2 −

(√
2 · x2

)2

=
(

x4 +
√

2x2 + 1
) (

x4 −
√

2x2 + 1
)

=
{

(

x4 + 2x2 + 1
)

− (2 −
√

2)x2
}{

(

x4 + 2x2 + 1
)

−
(

2 +
√

2
)

x2
}

=

{

(

x2 + 1
)2 −

(√

2 −
√

2 · x
)2

}{

(

x2 + 1
)2 −

(√

2 +
√

2x

)2
}

=
(

x2+
√

2−
√

2x+1
) (

x2−
√

2−
√

2x+1
) (

x2+
√

2+
√

2x+1
) (

x2−
√

2+
√

2x+1
)

.

Obviously, the following decomposition becomes very difficult, although it can in principle be carried
through.
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Example 4.8 Compute

(a)
∫ +∞

−∞

x dx

(x2 + 4x + 13)2
, (b)

∫ +∞

0

x2dx

(x2 + a2)2
, a ∈ R+.

(a) It follows from

x2 + 4x + 13 = (x + 2)2 + 32,

that the integrand has the double poles −2 ± 3i, which do not lie on the real axis. The difference
of the degrees is 3 with the denominator dominating, so the integral exists, and the value can be
expressed by the residuum at z = −2 + 3i:

∫ +∞

−∞

x dx

(x2 + 4x + 13)2
= 2πi · res

(

z

(z2 + 4z + 13)2
; −2 + 3i

)

=
2π
1!

lim
z→−2+3i

d

dz

{

z

(z + 2 + 3i)2

}

= 2πi lim
z→−2+3i

{

1
(z + 2 + 2i)2

− 2z
(z + 2 + 3i)3

}

= 2πi

{

1
(6i)2

− 2(−2 + 2i)
(6i)3

}

=
2πi

(6i)3
{6i + 4 − 6i} = − π

27
.

(b) Here we have the double poles ±i a /∈ R, and since the difference in degrees is 2 with the denom-
inator dominating, it follows by the symmetry that

∫ +∞

0

x2

(x2 + a2)2
dx =

1
2

∫ +∞

−∞

x2

(x2 + a2)2
dx = πi · res

(

z2

(z2 + a2)2
; i a

)

= πi lim
z→i a

d

dz

{

z2

(z + i a)2

}

= πi lim
z→i a

{

2z
(z + i a)2

− 2z2

(z + i a)3

}

= πi

{

2i a

(2i a)2
− 2(i a)2

(2i a)3

}

=
π

2a

{

(2i a)2

(2i a)2
− 1

2
(2i a)3

(2i a)3

}

=
π

4a
.

Example 4.9 Compute

(a)
∫ +∞

−∞

x2 − x + 2
x4 + 10x2 + 9

dx, (b)
∫ +∞

0

x2 − 1
x4 + 5x2 + 4

dx.

(a) The integrand
z2 − z + 2

x4 + 10x2 + 9
has a zero of second order at ∞ and its poles are given by

z2 = −5 ±
√

25 − 9 = −5 ± 4,

i.e. the simple poles are

3i, −3i, i and − i.
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None of these lies on the x-axis. Since f(z) is analytic outside the poles and since we have the
estimate

|f(z)| ≤ C

|z|2 for |z| ≥ 4 og Im(z) ≥ 0,

we conclude that
∫ +∞

−∞

x2 − x + 2
x4 + 10x2 + 9

dx = 2πi {res(f ; i) + res(f ; 3i)}

= 2π
{

lim
z→i

z2 − z + 2
(z + i) (z2 + 9)

+ lim
z→3i

z2 − z + 2
(z2 + 1) (z + 3i)

}

= 2πi

{−1 − i + 2
2i · 8 +

−9 − 3i + 2
−8 · 6i

}

=
π

24
{3 − 3i + 9 + 31 − 2} =

5π
12

.

Alternatively, one may apply the traditional real method of integration, by using that we have
proved that the integral exists. In particular,

∫ +∞

−∞

−x dx

x4 + 10x2 + 9
= 0,

because the integrand is an odd function. Then

∫ +∞

−∞

x2 − x + 2
x4 + 10x2 + 9

dx =
∫ +∞

−∞

x2 + 2
(x2 + 9) (x2 + 1)

dx =
1
8

∫ +∞

−∞

dx

x2 + 1
+

7
8

∫ +∞

−∞

dx

x2 + 9

= π

{

1
8

+
7

3 · 8

}

=
10π
24

=
5π
12

.

(b) The difference of the degrees is 2 where the denominator is dominating, and the denominator
is furthermore positive for every real x. Hence, the improper integral is convergent. Since the
integrand is an even function, it follows by the symmetry, followed by an application of the residuum
formula that

∫ +∞

0

x2 − 1
x4 + 5x2 + 4

dx =
1
2

∫ +∞

−∞

x2 − 1
(x2 + 4) (x2 + 1)

dx = πi {res(f ; i) + res(f ; 2i)}

= πi

{

lim
z→i

z2 − 1
(z2 + 4) (z + i)

+ lim
z→2i

z2 − 1
(z2 + 1) (z + 2i)

}

= πi

{ −2
3 · 2i +

−5
(−3) · 4i

}

= π

{

5
12

− 1
3

}

=
π

12
.

Alternatively we decompose:

∫ +∞

0

x2 − 1
x4 + 5x2 + 4

dx =
∫ +∞

0

x2 − 1
(x2 + 4) (x2 + 1)

dx = −2
3

∫ +∞

0

dx

x2 + 1
+

5
3

∫ +∞

0

dx

x2 + 4

=
[

−2
3

Arctan x +
1
2
· 5
3

Arctan
(x

2

)

]+∞

0

=
(

5
6
− 2

3

)

π

2
=

π

12
.
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Example 4.10 Compute

(a)
∫ +∞

−∞

dx

x2 + x + 1
, (b)

∫ +∞

−∞

dx

(x2 + 1) (x2 + 4)
.

(a) The integrand
1

z2 + z + 1
has a zero of second order at ∞ and the poles

z = −1
2
± i

√
3

2
/∈ R.

Hence, the improper integral exists, and we may find its value by means of the residuum at

−1
2

+ i

√
3

2
, i.e. at the pole in the upper half plane:

∫ +∞

−∞

dx

x2 + x + 1
= 2πi · res

(

1
z2 + z + 1

; −1
2

+ i

√
3

2

)

= 2πi lim
z→− 1

2+i
√

3
2

1
2z + 1

= 2πi · 1
−1 + i

√
3 + 1

=
2πi

i
√

3
=

2π√
3
.
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Alternatively, the traditional computation gives

∫ +∞

−∞

dx

x2 + x + 1
=

∫ +∞

−∞

dx
(

x +
1
2

)2

+
3
4

=
1

√

3
4









Arctan









x +
1
2

√

3
4

















+∞

−∞

=
π

√

3
4

=
2π√

3
.

(b) The integrand
1

(z2 + 1) (z2 + 4)
has a zero of order 4 at ∞ and the simple poles ±i and ±2i /∈ R.

Hence, the improper integral exists, and its value can be found by means of the residues at the
poles in the upper half plane. We get

∫ +∞

−∞

dx

(x2 + 1) (x2 + 4)
= 2πi

{

res
(

1
(z2+1) (z2+4)

; i

)

+res
(

1
(z2+1) (z2+4)

; 2i
)}

= 2πi

{

1
2i · 3 +

1
(−3)4i

}

= π

{

1
3
− 1

6

}

=
π

6
.

Alternatively,

∫ +∞

−∞

dx

(x2 + 1) (x2 + 4)
=

1
3

∫ +∞

−∞

dx

x2 + 1
− 1

3

∫ +∞

−∞

dx

x2 + 4
=

1
3

[

Arctan x − 1
2

Arctan
x

2

]+∞

−∞

=
1
3

{

π − π

2

}

=
π

6
.

Example 4.11 Compute

(a)
∫ +∞

−∞

dx

x2 + 2x + 2
, (b)

∫ +∞

−∞

dx

(x2 + 1) (x2 + 2x + 2)
.

(a) Here
1

z2 + 2z + 2
has a zero of second order at ∞ and simple poles at z = −1 ± i /∈ R. Hence,

the improper integral is convergent, and its value can be found by a residuum formula. However,
the easiest method here is actually the traditional one,

∫ +∞

−∞

dx

x2 + 2x + 2
=

∫ +∞

−∞

dx

(x + 1)2 + 1
= [Arctan(x + 1)]+∞

−∞ = π.

For comparison we get by the calculus of residues,

∫ +∞

−∞

dx

x2 + 2x + 2
= 2πi · res

(

1
z2 + 2z + 2

; −1 + i

)

= 2πi lim
z→−1+i

1
z + 1 + i

=
2πi

−1 + i + 1 + i
=

2πi

2i
= π.
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(b) The integrand has a zero of order 4 at ∞, and the simple poles ±i, −1 ± i /∈ R, so we conclude
that the improper integral is convergent, and its value is given by

∫ +∞

−∞

dx

(x2 + 1) (x2 + 2x + 2)

= 2πi

{

res
(

1
(z2 + 1) (z2 + 2z + 2)

; i

)

+ res
(

1
(z2 + 1) (z2 + 2z + 2)

; −1i
)}

= 2πi

{

1
2i

· 1
−1 + 2i + 2

+
1

{(−1 + i)2 + 1} · 2i

}

= π

{

1
1 + 2i

+
1

1 − 2i

}

= π · 1 − 2i + 1 + 2i
1 + 4

=
2π
5

.

Example 4.12 1) Explain why the improper integral
∫ +∞

−∞

x2dx

(x2 + 1) (x2 + 4)

is convergent, and find its value.

2) Compute the complex line integral
∮

|z|=3

z2dz

(z2 + 1)2 (z2 + 4)
.

1) The integrand is a rational function with a zero of order 4 at ∞ and with no poles on the real axis.
The poles are z = ±i (double poles) and z = ±2i (simple poles), so the integral is convergent, and
its value can be found by a residuum formula,

∫ +∞

−∞

x2dx

(x2 + 1) (x2 + 4)
= 2πi

{

res

(

z2

(z2 + 1)2 (z2 + 4)
; i

)

+ res

(

z2

(z2 + 1)2 (z2 + 4)
; 2i

)}

.

Here we get straight away,

res

(

z2

(z2 + 1)2 (z2 + 4)
; i

)

=
1
1!

lim
z→i

d

dz

{

z2

(z + i)2 (z2 + 4)

}

lim
z→i

{

2z
(z+i)2 (z2+4)

− 2z2

(z+i)3 (z2+4)
− z2 · 2z

(z+i)2 (z2+4)2

}

=
2i

(2i)3 · 3 − −2
(2i)3 · 3 − (−1) · 2i

(2i)232
= − 2i

4 · 3 +
2i

8 · 3 − 2i
9 · 4

=
i

36
(−6 + 3 − 2) = − 5i

36
,

and

res

(

z2

(z2 + 1)2 (z2 + 4)
; 2i

)

= lim
z→2i

z2

(z2 + 1)2 (z + 2i)
=

−4
(−3)2 · 4i =

4i
36

,
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so by insertion,
∫ +∞

−∞

x2dx

(x2 + 1)2 (x2 + 4)
= 2πi

{

− 5i
36

+
4i
36

}

= 2π · 1
36

=
π

18
.

Alternatively, we may first decompose to get

u

(u + 1)2(u + 4)
=

A

u + 4
+

B

n + 1
+

C

(u + 1)2
.

Here we immediately get

A =
−4

(−3)2
= −4

9
and C =

−1
3

= −1
3
.

Then by insertion, rearrangement and reduction,

B

u + 1
=

u

(u + 1)2(u + 4)
+

4
9

1
u + 4

+
1
3

1
(u + 1)2

=
1
9
· 1
(u + 1)2(u + 4)

{

9u + 4(u + 1)2 + 3(u + 4)
}

=
1
9
· 1
(u + 1)2(u + 4)

{

4(u + 1)2 + 12(u + 1)
}

=
4
9
· u + 1 + 3
(u + 1)(u + 4)

=
4
9
· 1
u + 1

.

Then put u = x2 to get
∫ +∞

−∞

x2

(x2 + 1)2 (x2 + 4)
dx

= −4
9

∫ +∞

−∞

dx

x2 + 4
+

4
9

∫ +∞

−∞

dx

x2 + 1
− 1

3

∫ +∞

−∞

dx

(x2 + 1)2

= −4
9
· 1
2

[

Arctan
(x

2

)]+∞

−∞
+

4
9

[Arctan x]+∞
−∞ − 1

3

∫ +∞

−∞

dx

(x2 + 1)2

=
2π
9

− 1
3

∫ +∞

−∞

dx

(x2 + 1)2
.

We can now compute the integral
∫ +∞

−∞

dx

(x2 + 1)2

in a number of ways:

a) We get by the calculus of residues,
∫ +∞

−∞

dx

(x2 + 1)2
= 2πi · res

(

1
(z2 + 1)2

; i

)

= 2πi · 1
1!

lim
z→i

d

dz

{

1
(z + i)2

}

= 2πi lim
z→i

{

− 2
(z + i)3

}

= 2πi ·
(

− 2
(2i)3

)

=
2πi · (−2i)

8
=

π

2
.
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b) Alternatively, we get by a partial integration
∫ +∞

−∞

dx

x2 + 1
=

[

x

x2 + 1

]+∞

−∞
+

∫ +∞

−∞

2x · x
(x2 + 1)2

dx =
∫ +∞

−∞

2
(

x2 + 1
)

− 2

(x2 + 1)2
dx

= 2
∫ +∞

−∞

dx

x2 + 1
− 2

∫ +∞

−∞

dx

(x2 + 1)2
,

and then by a rearrangement,
∫ +∞

−∞

dx

(x2 + 1)2
=

1
2

∫ +∞

−∞

dx

x2 + 1
=

π

2
.

Finally, by insertion,
∫ +∞

−∞

x2

(x2 + 1)2 (x2 + 4)
dx =

2π
9

− π

6
=

π

18
(4 − 3) =

π

18
.

2) Since all pole lie inside |z| = 3, and since we have a zero of order 4 at ∞, we get by changing the
direction on the path of integration,

∮

|z|=3

z2dz

(z2 + 1)2 (z2 + 4)
= −

∮ �

|z|=3

z2dz

(z2 + 1)2 (z2 + 4)
= −2π i · res

(

z2

(z2 + 1) (z2 + 4)
; ∞

)

= 0.
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Example 4.13 1) Find all complex solutions of the equation

z4 + 5z2 + 4 = 0.

2) Prove that the improper integral

∫ +∞

0

2x2 − 1
x4 + 5x2 + 4

dx

is convergent, and find its value

1) We get by the factorization

0 = z4 + 5z2 + 4 =
(

z2 + 1
) (

z2 + 4
)

,

the four roots

i, −i, 2i, −2i.

2) The integrand is a rational function with no pole on the x-axis and with a zero of second order
at ∞. Hence, the improper integral is convergent. Since the integrand is even it follows by a
reflection and the residues at the singularities i and 2i in the upper half plane that

∫ +∞

0

2x2 − 1
x4 + 5x2 + 4

dx =
1
2

∫ +∞

−∞

2x2 − 1
x4 + 5x2 + 4

dx

=
2πi

2

{

res
(

2z2 − 1
z4 + 5z2 + 4

; i

)

+ res
(

2z2 − 1
z4 + 5z2 + 4

; 2i
)}

= πi

{

lim
z→i

2z2 − 1
4z3 + 10z

+ lim
z→2i

2z2 − 1
4z3 + 10z

}

= πi

{

1
i
· −2 − 1
−4 + 10

+
1
2i

· −8 − 1
−16 + 10

}

= π

{

−1
2

+
9
16

}

=
π

4
.

Alternatively, the traditional method of decomposition gives that

2x2 − 1
x4 + 5x2 + 4

=
2x2 − 1

(x2 + 1) (x2 + 4)
= − 1

x2 + 1
+

3
x2 + 4

,

hence
∫ +∞

0

2z2 − 1
x4 + 5x2 + 4

dx = −
∫ +∞

0

1
x2 + 1

dx +
∫ +∞

0

3
x2 + 4

dx = −π

2
+

3
2
· π

2
=

π

4
.
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Example 4.14 Prove that the improper integral
∫ +∞

−∞

1 + x2

1 + x4
dx

is convergent, and find its value.

We estimate the integrand for |x| > 1 in the following way,

0 < g(x) :=
1 + x2

1 + x4
=

1
x2

1 +
(

1
x

)2

1 +
(

1
x

)4 <
2
x2

.

Since the improper integral
∫ +∞
1

1
x2

dx is convergent, the given integral is also convergent.

–1

–0.5

0.5

1

–2 –1 1 2

Figure 7: The curve CR for R > 1 and the singularities ± 1√
2
± i√

2
.

We can now find the value of the improper integral as a Cauchy principal value via the residuum
theorem.
The denominator has the simple poles at the points

zp = exp
(

i
π

4
+ p

π

2

)

, p ∈ {0, 1, 2, 3},

where the former two lie inside the circle of integration CR. We get by a small computation

res (g(z); zp) =
1 + z2

p

4z3
p

= −1
4

zp

(

1 + z2
p

)

=



















−1
4
· 1 + i√

2
(1 + i), p = 0,

−1
4
· −1 + i√

2
(1 − i), p = 1.

Both residues are − i

2
√

2
, so

2πi · −i√
2

=
∮

CR

g(z) dz =
∫ R

−R

g(z) dz +
∫ R

0

g
(

R eit
)

· i R eiθ dθ, R > 1.
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If R > 2, then we have the following estimate on CR,

∣

∣g
(

R eiθ
)∣

∣ =
1

R2
·

∣

∣

∣

∣

1 +
1

R2
e−2it

∣

∣

∣

∣

∣

∣

∣

∣

1 +
1

R4
e−4it

∣

∣

∣

∣

≤ 1
R2

·
1 +

1
R2

1 − 1
R4

<
1

R2
·

5
4
15
16

.

It follows easily that the line integral along the circular arc tends to zero, when R → +∞, so we
finally get by taking this limit,

∫ +∞

−∞

1 + x2

1 + x4
dx = π

√
2.
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Example 4.15 Given the function

f(z) =
1

z3 + 1
,

and for every R > 1 the closed curve γR = I + II + III (see the figure), enclosing the domain

UR =
{

z = r eit

∣

∣

∣

∣

0 < r < R and 0 < t <
2π
3

}

.

Figure 8: The curve γR = I + II + III, enclosing UR. Here, I = [0, R] is an interval on the x-axis, II
is the circular arc, and III is the oblique line.

1) Find
∫

γR

f dz.

2) Prove that the line integral along the circular arc II tends towards 0, when R tends towards +∞.

3) Prove that
∫ +∞

0

1
x3 + 1

dx =
2π

3
√

3
.

1) The function f(z) =
1

z3 + 1
has the simple poles

z1 = −1, z2 = exp
(

−i
π

3

)

, z3 = exp
(

i
π

3

)

.

If R > 1, then only z3 = exp
(

i
π

3

)

lies inside γR, so it follows by the residuum theorem that

∮

γR

f(z) dz = 2πi · res (f ; z3) = 2πi · 1
3z2

3

=
2πi

3
· z3

z3
3

= −2πi

3
exp

(

i
π

3

)

= −2πi

3

{

1
2

+ i

√
3

2

}

=
π

3

{√
3 − i

}

.
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2) We get along II the estimate
∣

∣

∣

∣

∫

II

dz

z3 + 1

∣

∣

∣

∣

≤ 1
R3 − 1

· 2π
3

R → 0 for R → +∞.

3) Along III we choose the parametric description

(R − r) exp
(

i
2π
3

)

, r ∈ [0, R],

so

∫

III

f(z) dz =
∫ R

0

− exp
(

i
2π
3

)

1 + (R − r)3 exp(2πi)
dr = − exp

(

i
2π
3

) ∫ R

0

dx

x3 + 1
.

Then by insertion and the limit R → +∞,

π

3
(
√

3 − i) = lim
R→+∞

∮

γR

f(z) dz = 0 +
{

1 − exp
(

i
2π
3

)} ∫ +∞

0

dx

x3 + 1

=

{

3
2
− i

√
3

2

}

∫ +∞

0

dx

x3 + 1
=

√
3

2
(
√

3 − i)
∫ +∞

0

dx

x3 + 1
,

so by a rearrangement,
∫ +∞

0

dx

x3 + 1
=

2π
3
√

3
.

Remark 4.4 The integral can in fact also be computed by more elementary methods. We get by a
decomposition,

1
x3 + 1

=
1

(x + 1) (x2 − x + 1)
=

1
3

1
x + 1

+
1
3
· 3 − x2 + x − 1
(x2 − x + 1) (x + 1)

=
1
3

1
x + 1

− 1
3
· x − 2
x2 − x + 1

=
1
3
· 1
x + 1

− 1
3
·

(

x − 1
2

)

− 3
2

(

x − 1
2

)2

+
3
4

,

hence
∫ +∞

0

dx

x3 + 1
=

1
3

∫ +∞

0

dx

x + 1
− 1

6

∫ +∞

0

2x − 1
x2 − x + 1

dx +
1
2

∫ +∞

0

dx
(

x − 1
2

)2

+
3
4

=
1
6

[

ln
(

x2 + 2x + 1
x2 − x + 1

)]+∞

0

+
1
2
· 2√

3

[

Arctan

(

x − 1
2√

3
2

)]+∞

0

= 0 +
1√
3

{

π

2
+ Arctan

(

1√
3

)}

=
1√
3

{π

2
+

π

6

}

=
2π

3
√

3
. ♦.
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Example 4.16 Given the function

f(z) =
z2

z4 + z2 + 1
.

1) Find all isolated singularities of f in C, and specify their types.

2) Prove by using the calculus of residues that the improper integral

∫ +∞

0

x2

x4 + x2 + 1
dx

is convergent of the value
π

2
√

3
.

One may use that f(x) is an even function.

1) First note that
(

z2 − 1
) (

z4 + z2 + 1
)

= z6 − 1 = 0

for

z = exp
(

i
pπ

3

)

, p ∈ Z.

When we again remove the roots z = ±1 of the auxiliary factor z2 − 1, we see that the simple
poles are

exp
(

i
π

3

)

=
1
2

+ i

√
3

2
, exp

(

i
2π
3

)

= −1
2

+ i

√
3

2
,

exp
(

−i
π

3

)

=
1
2
− i

√
3

2
, exp

(

−i
2π
3

)

= −1
2
− i

√
3

2
.

2) Since we have a zero of second degree at ∞, and since we do not have any pole on the x-axis, we
conclude that the improper integral is convergent. The integrand is even, so we get by an extended
residuum theorem that

∫ +∞

0

x2

x4 + x2 + 1
dx =

1
2

∫ +∞

−∞

x2

x4 + x2 + 1
dx

= πi

{

res
(

f(z) ; exp
(

i
π

3

))

+ res
(

f(z) ; exp
(

i
2π
3

))}

,

because exp
(

i
π

3

)

and exp
(

i
2π
3

)

are the only singularities in the upper half plane.

Using the rearrangement

f(z) =
z2

z4 + z2 + 1
=

z2
(

z2 − 1
)

z6 − 1
,
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we get

res
(

f(z) ; exp
(

i
π

3

))

=

[

z2
(

z2 − 1
)

6z5

]

z=exp(i π
3 )

=
1
6
· exp(iπ) ·

{

exp
(

2iπ
3

)

− 1
}

= −1
6

{

−1
2

+ i
3
2
− 1

}

=
1
12

{3 − i
√

3},

and

res
(

f(z) ; exp
(

i
2π
3

))

=

[

z2
(

z2 − 1
)

6z5

]

z=exp(i 2π
3 )

=
1
6
· 1 ·

{

exp
(

4iπ
3

)

− 1
}

= −1
6

{

−1
2
− i

3
2
− 1

}

=
1
12

{−3 − i
√

3},

hence by insertion,
∫ +∞

0

x2

x4 + x2 + 1
dx =

πi

12
· (−2i

√
3) =

π
√

3
6

=
π

2
√

3
.
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Remark 4.5 Since

z4 + z2 + 1 = z4 + 2z2 + 1 − z2 =
(

z2 + 1
)2 − z2 =

(

z2 + z + 1
) (

z2 − z + 1
)

,

it is of course also possible – though not quite easy – to use the method of decomposition. This variant
is left to the reader as an exercise. ♦

Example 4.17 Given the function

f(z) =
z2

z4 + 1
,

and for every R > 1 a positively oriented curve

ΓR = IR + IIR + IIIR,

(cf. the figure), which surrounds the domain

UR =
{

z = r eit
∣

∣

∣ 0 < r < R og 0 < t <
π

2

}

.

–0.5

0

0.5

1

1.5

2

–0.5 0.5 1 1.5 2

Figure 9: The curve ΓR, starting with IR = [0, R] on the x-axis and with the singularity exp
(

i
π

4

)

inside the curve.

1) Prove that
∮

ΓR

f(z) dz =
π

2
√

2
(1 + i).

2) Show that the line integral along the circular arc IIR tends towards 0 for R tending towards +∞,
and find the value of

∫ +∞

0

x2

x4 + 1
dx.
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1) The function f(z) has the four simple poles

zp = exp
(

i
{π

4
+ p

π

2

})

, p ∈ {0, 1, 2, 3}.

Of these only

z0 = exp
(

i
π

4

)

=
1√
2

(1 + i)

lies inside ΓR, when R > 1. Then by Cauchy’s residuum theorem,
∮

ΓR

f(z) dz = 2πi res
(

z2

z4 + 1
; z0

)

= 2πi · z2
0

4z3
0

=
πi

2
· 1
z0

= i · π

2
·
√

2
1 + i

=
π√
2
· i(1 − i)

2
=

π

2
√

2
(1 + i).

2) We use along the circular arc IIR the parametric description z(t) = R eit, t ∈
[

0 ,
π

2

]

, so we get
the estimate for R > 1,

∣

∣

∣

∣

∫

IIR

z2

z4 + 1
dz

∣

∣

∣

∣

≤
∫ π

2

0

R2

R4 − 1
· R dt =

π

2
· 1

R − 1
R3

→ 0

when R → +∞.

Finally, we use along IIIR on the imaginary axis the parametric description z(t) = (R − t)i,
t ∈ [0, R], giving

∫

IIIR

z2

z4 + 1
dz =

∫ R

0

(R − t)2i2

(R − t)4i4 + 1
· (−i)dt = i

∫ R

0

t2

t4 + 1
dt.

Then by (1) we get by insertion and taking the limit R → +∞,

π

2
√

2
(1 + i) = (1 + i)

∫ +∞

0

x2

x4 + 1
dx,

hence
∫ +∞

0

x2

x4 + 1
dx =

π

2
√

2
.

Alternatively, we get by a decomposition,

x2

x4 + 1
=

x2

x4 + 2x2 + 1 − 2x2
=

x2

(x2 + 1)2 −
(√

2x
)2 =

x2

(

x2 +
√

2x + 1
) (

x2 −
√

2x + 1
)

=
ax + b

(

x2 +
√

2x + 1
) +

cx + d
(

x2 −
√

2x + 1
) ,

thus

x2 = (ax + b)
(

x2 −
√

2x + 1
)

+ (cx + d)
(

x2 +
√

2x + 1
)

= (a+c)x3+(b−
√

2a+d+
√

2c)x2+(a−
√

2b+c+
√

2d)x+b+d.
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By identifying the coefficients we clearly obtain that

a + c = 0 and b + d = 0,

so

√
2 (−a + c) = 1, thus c = −a =

1√
2
,

and b = d = 0. Hence

x2

x4 + 1
=

1
2
√

2

{

x

x2 −
√

2x + 1
− x

x2 +
√

2x + 1

}

=
1

4
√

2

{

2x −
√

2
x2 −

√
2x + 1

+
√

2
x2 −

√
2x + 1

− 2x +
√

2
x2 +

√
2x + 1

+
√

2
x2 +

√
2x + 1

}

=
1

4
√

2

{

2x −
√

2
x2 −

√
2x + 1

− 2x +
√

2
x2 +

√
2x + 1

}

+
1
4



















1
(

x − 1√
2

)2

+
1
2

+
1

(

x +
1√
2

)2

+
1
2



















.

Clearly, the improper integral
∫ +∞
0

x2

x4 + 1
dx is convergent, and

∫ +∞

0

x2

x4 + 1
dx =

1
2

∫ +∞

−∞

x2

x4 + 1
dx

=
1
2

lim
R→+∞

1
4
√

2

∫ R

−R

{

2x −
√

2
x2 −

√
2x + 1

− 2x +
√

2
x2 +

√
2x + 1

}

dx

+
1
2
· 1
4

[√
2Arctan

(√
2x − 1

)

+
√

2 Arctan
(√

2x + 1
)]+∞

−∞

=
1

8
√

2
lim

R→+∞

[

ln

(

x2 −
√

2x + 1
x2 +

√
2x + 1

)]R

−R

+
1

4
√

2
· (π + π) = 0 +

π

2
√

2
=

π√
2
.
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Example 4.18 Given the rational function

f(z) =
z2 + z + 1
z4 + z2 + 1

.

1) Find all the isolated singularities of f in C, and specify their types.

2) Prove by calculus of residues that

p.v.

∫ +∞

−∞

x2 + x + 1
x4 + x2 + 1

dx =
2π√

3
.

1) First variant. If z �= ±1, then

z2 + z + 1
z4 + z2 + 1

=
(z + 1)(z − 1)

(

z2 + z + 1
)

(z2 − 1) (z4 + z2 + 1)
= (z + 1) · z3 − 1

z6 − 1
=

z + 1
z3 + 1

=
1

z2 − z + 1
,

and the simple poles are

z1 =
1
2

+ i

√
3

2
and z2 =

1
2
− i

√
3

2
.
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Second variant. Obviously, z = ±1 are not poles. Now,
(

z2 − 1
) (

z4 + z2 + 1
)

= z6 − 1 = 0

for

z = exp
(

i
pπ

3

)

, for p ∈ {0, 1, 2, 3, 4, 5},

and since we shall remove p = 0 and p = 3, because they stem from the auxiliary factor z2 − 1,
the singularities are

z̃1 = exp
(

i
π

3

)

=
1
2

+ i

√
3

2
,

z̃2 = exp
(

i
2π
3

)

= −1
2

+ i

√
3

2
,

z̃4 = exp
(

i
4π
3

)

= −1
2
− i

√
3

2
,

z̃5 = exp
(

i
5π
3

)

=
1
2
− i

√
3

2
.

Each one of these is at most a simple pole, and they could even be removable singularities.

Analogously,

(z − 1)
(

z2 + z + 1
)

= z3 − 1,

so since z = 1 is a “false” singularity coming from the auxiliary factor z − 1, the numerator
has the roots

z̃2 = −1
2

+ i

√
3

2
, and z̃4 = −1

2
+ i

√
3

2
,

which will cancel the same zeros in the denominator. Thus

z̃2 = −1
2

+ i

√
3

2
, and z̃4 = −1

2
+ i

sqrt3
2

,

are removable singularities, while

z̃1 =
1
2

+ i

√
3

2
, and z̃5 =

1
2
− i

√
3

2
,

are simple poles.

2) The integrand is defined on R, and since the integrand has a zero of order 2 at ∞, the improper
integral is convergent, and we do not need the notation “p.v.” (= “principal value”). The improper
integral can be computed in a number of ways.

First method. By a simple integration (without using the calculus of residues) it follows from
the first solution above that

∫ +∞

−∞

x2 + x + 1
x4 + x2 + 1

dx =
∫ +∞

−∞

dx

x2 − x + 1
=

∫ +∞

−∞

dx
(

x − 1
2

)2

+
2
3

=
2√
3]

[

Arctan
(

2√
3

(

x − 1
2

))]+∞

−∞
=

2π√
3
.
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Second method. We shall in the calculus of residues use that only z1 =
1
2

+ i

√
3

2
= exp

(

i
π

3

)

lies in the upper half plane and that z3
1 = −1. Then

∫ +∞

−∞

x2 + x + 1
x4 + x2 + 1

dx = 2πi res
(

z + 1
z3 + 1

; z1

)

= 2πi

{

z1 + 1
3z2

1

}

=
2πi

3
· z2

1 + z1

z3
1

= −2πi

3
{z̃2 + z̃1} = −2πi

3
·
(

2 · i
√

3
2

)

=
2π√

3
.

Third method. Calculus of residues without a reformulation gives the following difficult compu-
tations,

∫ +∞

−∞

x2 + x + 1
x4 + x2 + 1

dx = 2πi res
(

z2 + z + 1
z4 + z2 + 1

; z1

)

= 2πi

{

z2
1 + z1 + 1
4z3

1 + 2z1

}

= 2πi

{

z̃2 + z̃1 + 1
4z̃3 + 2z̃1

}

= 2πi























(

−1
2

+ i

√
3

2

)

+

(

1
2

+ i

√
3

2

)

+ 1

4(−1) + 2

(

1
2

+ i

√
3

2

)























= 2πi · 1 + i
√

3
−4 + 1 + i

√
3

=
2πi√

3
· 1 + i

√
3

−
√

3 + i

=
2π√

3
· i −

√
3

−
√

3 + i
=

2π√
3
.
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5 Improper integrals, where the integrand is a rational func-
tion times a trigonometric function

Example 5.1 The transfer function of a RC-filter is given by

f(z) =
1

1 + 2π iRC z
.

Find the corresponding answer.

The corresponding answer is given by the improper integral

h(t) =
∫ +∞

−∞
f(x) e2πixt dt =

1
2πiRC

∫ +∞

−∞

1

x − i

2πRC

ei2πxt dx.

Here, z1 =
i

2πRC
is the only pole of the corresponding analytic function

f(z) =
1

2πiRC
· 1

z − i

2πRC

,

and it is obvious that there exist constants k, and r >
1

2πRC
, such that we have the estimate

|f(z)| <
k

|z| for |z| > r.

Since f(z) does not have any singularity in the lower half plane, we conclude from the corresponding
residuum formula, which here is empty that

h(t) =
∫ +∞

−∞
f(x) e2πixt dx =

1
2πiRC

∫ +∞

−∞

1

x − i

2πRC

ei2πxt dx = 0 for t < 0.

If instead t > 0, then, since we have already checked the assumptions of the validity of the residuum
formula,

h(t) =
∫ +∞

−∞
f(x) e2πixt =

2πi

2πiRC
res







ei2πzt

z − i

2πRC

;
i

2πRC






=

1
RC

· exp
(

− t

RC

)

.
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Example 5.2 Compute the improper integrals
∫ +∞

−∞

x cos x

x2 + 1
dx og

∫ +∞

−∞

x sinx

x2 + 1
dx.

Here we must consider the analytic function

z eiz

z2 + 1
, for z �= ±i,

instead of
z cos z

z2 + 1
and

z sin z

z2 + 1
. Clearly, the rational function

z

z2 + 1
has a zero of first order at ∞ and

no pole on the X-axis, so the assumptions of the residuum formula are fulfilled. Since m = 1 > 0, the
pole z = i in the upper half plane is the only relevant singularity. Hence by the residuum formula,

∫ +∞

−∞

x eix

x2 + 1
dx = 2πi · res

(

z eiz

z2 + 1
; i

)

= 2πi · i ei·i

i + i
=

πi

e
.

Then by separating into the real and the imaginary parts,
∫ +∞

−∞

x cos x

x2 + 1
dx = 0 og

∫ +∞

−∞

x sinx

x2 + 1
dx =

π

e
.

Example 5.3 Compute

(a)
∫ +∞

−∞

x sinx

x2 + 9
dx, (b)

∫ +∞

0

cos π x

x4 + 4
dx.

(a) Here
x

x2 + 9
is a rational function of real coefficients and with a zero of first order at ∞. The

denominator does not have real zeros and
∣

∣

∣

∣

z

z2 + 9

∣

∣

∣

∣

≤ C

|z| for |z| ≥ 4,

so we conclude that the improper integral is convergent. Using that

sinx = Im
(

ei·1·x)

,

where 1 > 0, it follows by the residuum formula that

∫ +∞

−∞

x sinx

x2 + 9
dx = Im

{

2πi · res
(

z ei z

z2 + 9
; 3i

)}

= 2π Re
{

lim
z→3i

z eiz

z + 3i

}

= 2π Re
{

3i e−3

3i + 3i

}

= 2π · 3 e−3

6
=

π

e3
.
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(b) Here
1

z4 + 1
has a zero of fourth order at ∞ and no poles on the x-axis. Hence, the integral is

convergent. Since
cosπx

x4 + 4
is an even function, it follows by the symmetry and a residuum formula

that
∫ +∞

0

cos πx

x4 + 4
dx =

1
2

∫ +∞

−∞

cos πx

x4 + 4
dx =

1
2

(Re)
{∫ +∞

−∞

eiπx

x4 + 4
dx

}

= πi

{

res
(

eiπz

z4 + 4
; 1 + i

)

+ res
(

eiπz

z4 + 4
; −1 + i

)}

= πi

{

[

eiπz

4z3

]

z=1+i

+
[

eiπz

4z3

]

z=−1+i

}

= πi

{

[

z eiπz

4z4

]

z=1+i

+
[

z eiπ z

4z4

]

z?−1+i

}

=
πi

4 · (−4)
·
{

(1 + i)eπ(−1+i) + (−1 + i)eπ(−1−i)
}

=
πi

16
e−π · 2i = −1

8
π e−π.

Example 5.4 Compute

(a)
∫ +∞

0

cosx

(1 + x2)3
dx, (b)

∫ +∞

−∞

cosx

(1 + x2) (4 + x2)
dx.

(a) We see that
1

(1 + x2)3
has a zero or order 6 at ∞ and no real pole. Hence the improper integral

exists. The integrand is an even function, so by the symmetry, followed by an application of a
residuum formula,

∫ +∞

0

cosx

(1 + x2)3
dx =

1
2

(Re)
∫ +∞

−∞

eix

(1 + x2)3
dx = πi · res

(

eiz

(1 + z2)3
; i

)

= πi · 1
2!

lim
z→i

d2

dz2

{

eiz

(z + i)3

}

=
πi

2
lim
z→i

d

dz

{

i eiz

(z + i)3
− 3 eiz

(z + i)4

}

=
πi

2
lim
z→i

{ −eiz

(z + i)3
− 6i eiz

(z + i)4
+

12 eiz

(z + i)5

}

=
πi

2

{

− e−1

(2i)3
− 6i e−1

(2i)4
+ 12 · e−1

(2i)5

}

=
2πi

4(2i)5
· 1
e

{

−(2i)2 − 6i · (2i) + 12
}

=
π

4 · 24 e
{4 + 12 + 12} =

7π
16 e

.

(b) We get by a decomposition that

1
(1 + x2) (4 + x2)

=
1
3
· 1
x2 + 1

− 1
3
· 1
x2 + 4

,

so it follows immediately that the integral is convergent. Then by the residuum formula,
∫ +∞

−∞

cos x

(1 + x2) (4 + x2)
dx =

1
3

∫ +∞

−∞

cos x

x2 + 1
dx − 1

3

∫ +∞

−∞

cos x

x2 + 4
dx

=
1
3

Re
{

2πi · res
(

eiz

z2 + 1
; i

)}

− 1
3

Re
{

2πi · res
(

eiz

z2 + 4
; 2i

)}

=
1
3

Re
{

2πi · e−1

2i

}

− 1
3

Re
{

2πi · e−2

4i

}

=
1
3
· π

e
− 1

3
· 1
2e2

=
π

6e2
(2e − 1).
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Example 5.5 Prove that
∫ +∞

−∞

cosx

1 + x2
dx =

∫ +∞

−∞

cosx

(1 + x2)2
dx =

π

e
.

Clearly, both integrals are convergent, and we can apply the residuum formula. Thus
∫ +∞

−∞

cosx

1 + x2
dx = Re

{∫ +∞

−∞

eix

x2 + 1
dx

}

= Re
{

2πi · res
(

eiz

z2 + 1
; i

)}

= 2π Re
{

i · e−1

2i

}

=
π

e
,

and
∫ +∞

−∞

cos x

(1 + x2)2
dx = Re

{

∫ +∞

−∞

eix

(x2 + 1)2
dx

}

= Re

{

2πi · res
(

eiz

(z2 + 1)2
; i

)}

= 2π Re
{

i · 1
1!

lim
z→i

d

dz

(

eiz

(z + i)2

)}

= 2π Re
{

i

[

i eiz

(z + i)2
− 2 eiz

(z + i)3

]

z=i

}

= 2π Re
{

i

(

i e−1

(2i)2
− 2e−1

(2i)3

)}

= 2π Re
{

e−1

4
− 2 e−1

8i2

}

=
2π
e

·
(

1
4

+
1
4

)

=
π

e
.
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Example 5.6 Compute

(a)
∫ +∞

−∞

x cos x

x2 − 2x + 10
dx, (b)

∫ +∞

−∞

x sinx

x2 − 2x + 10
dx.

It follows from
∫ +∞

−∞

x eox

x2 − 2x + 10
dx =

∫ +∞

−∞

x cosx

x2 − 2x + 10
dx + i

∫ +∞

−∞

x sinx

x2 − 2x + 10
dx,

that it suffices to prove that
∫ +∞

−∞

x eix

x2 − 2x + 10
dx

exists and to find the value of this integral.

We see that
z

z2 − 2z + 10
has a first order zero at ∞ and simple poles at z = 1 ± 3i /∈ R, hence the

improper integral exists. Since m = 1 > 0, we can compute the integral by a residuum formula,
∫ +∞

−∞

x eix

x2 − 2x + 10
dx = 2πi · res

(

z eiz

z2 − 2z + 10
; 1 + 3i

)

= 2πi lim
z→1+3i

z eiz

z − 1 + 3i

= 2πi · (1 + 3i)ei(1+3i)

6i
=

π

3
(1 + 3i)e−3{cos 1 + i sin 1}.

Then by a separation into the real and the imaginary part,

(a)
∫ +∞

−∞

x cos x

x2 − 2x + 10
dx =

π

3e3
(cos 1 − 3 sin 1),

(b)
∫ +∞

−∞

x sinx

x2 − 2x + 10
dx =

π

3e3
(3 cos 1 + sin 1).

Example 5.7 Compute

(a)
∫ +∞

−∞

x sinx

x2 + 4x + 20
dx, (b)

∫ +∞

−∞

dx

1 + x2
.

(a) The function
z

z2 + 4z + 20
has a zero of first order at ∞. The poles are

−2 ± 4i /∈ R,

so by a residuum formula,
∫ +∞

−∞

x sinx

x2 + 4x + 20
dx = Im

{∫ +∞

−∞

x eix

x2 + 4x + 20
dx

}

= Im
{

2πi · res
(

z eiz

z2 + 4z + 20
; −2 + 4i

)}

= 2π · Im
{

i · lim
z→−2+4i

z eiz

z + 2 + 4i

}

= 2π · Im
{

i · (−2 + 4i)ei(−2+4i)

8i

}

=
π

2 e4
(2 cos 2 + sin 2).
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(b) We have of course,

∫ +∞

−∞

dx

1 + x2
= [Arctan ]+∞

−∞ = π.

Alternatively, it follows by a residuum formula that
∫ +∞

−∞

dx

1 + x2
= 2πi · res

(

1
1 + z2

; i

)

= 2πi lim
z→i

1
z + i

=
2πi

2i
= π.

Example 5.8 Prove that
∫ +∞

−∞

cosx

coshx
dx =

π

cosh
π

2

.

Hint: Integrate the function
cos z

cosh z
along a rectangle with the corners −R, R, R + πi and −R + πi,

and let R → +∞.

0

1

2

3

4

–4 –2 2 4

Figure 10: The curve Cπ with the singularity z0 = i
π

2
inside Cπ.

We shall use the hint, so we call the curve CR. It follows from

cosh z = 0 for z = i
π

2
+ i pπ, p ∈ Z,

that z = i
π

2
is the only singularity (a simple pole) lying inside CR for every R > 0. Hence by Cauchy’s

integral formula

∮

CR

cos z

cosh z
dz = 2πi · res

( cos z

cosh z
; i

π

2

)

= 2πi ·
cos

(

i
π

2

)

sinh
(

i
π

2

) = 2πi ·
cosh

π

2
i sin

π

2

= 2π cosh
π

2
.
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On the other hand,
∮

CR

cos z

cosh z
dz =

∫ R

−R

cos x

coshx
dx −

∫ R

−R

cos(x + iπ)
cosh(x + iπ)

dx

+i

∫ π

0

cos(R + iy)
cosh(R + iy)

dy − i

∫ π

0

cos(−R + iy)
cosh(−R + iy)

dy.

We first note that

−
∫ R

−R

cos(x + iπ)
cosh(x + iπ)

dx = −
∫ R

−R

cos x · coshπ − i sinx · sinhπ

coshx · cosπ + i sinhx · sinπ
dx

= coshπ

∫ R

−R

cosx

coshx
dx − i sinhπ

∫ R

−R

sinx

coshx
dx

= coshπ ·
∫ R

−R

cosx

coshx
dx + 0,

because the latter integral has an odd integrand. Summing up we get for the first two terms,
∫ R

−R

cos x

coshx
dx −

∫ R

−R

cos(x + iπ)
cosh(x + iπ)

dx = (1 + coshπ)
∫ R

−R

cos x

coshx
dx.

Clearly, this integral is convergent for R → +∞, because the numerator of the integrand is bounded,
and its denominator tends exponentially towards 0 by the limits x → ±∞. We only have to show
that the contributions from the vertical axes tend to zero for R → +∞. It follows from

cos(R + iy)
cosh(R + iy)

=
cosR · cosh y − i sinR · sinh y

coshR · cos y + i sinhR · sin y
,

when 0 ≤ y ≤ π that
∣

∣

∣

∣

cos(R + iy)
cosh(R + iy)

∣

∣

∣

∣

2

=
cos2 R · cosh2 y + sin2 R · sinh2 y

cosh2 R · cos2 y + sinh2 R · sin2 y
=

cos2 R + sinh2 y

sinh2 R + cos2 y

≤ 1 + sinh2 π

sinh2 R
=

cosh2 π

sinh2 R
.

The length of the path of integration is π, so we conclude that
∣

∣

∣

∣

∫ π

0

cos(R + iy)
cosh(R + iy)

dy

∣

∣

∣

∣

≤ π · coshπ

sinhR
→ 0 for R → +∞.

Since also
∣

∣

∣

∣

cos(−R + iy)
cosh(−R + iy)

∣

∣

∣

∣

≤ coshπ

sinhR
,

it follows in the same way that the latter integral tends to 0 for R → +∞. Summing up we get by
this limit,

(1 + coshπ)
∫ +∞

−∞

cos x

coshx
dx = 2π cosh

π

2
,

and since

1 + coshπ = 1 +
{

2 cosh2 π

2
− 1

}

= 2 cosh2 π

2
,
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we finally get that

∫ +∞

−∞

cosx

coshx
dx =

2π cosh
π

2
2 cosh2 π

2

=
π

cosh
π

2

.

Example 5.9 Compute

(a)
∫ +∞

−∞

cos x

x2 + 4
, (b)

∫ +∞

−∞

sin 2x
x2 + x + 1

dx.

The denominator is in both cases a polynomial of degree grad 2 without zeros on the x-axis. The
numerators are purely trigonometric, so we get by a residuum formula,

(a)

∫ +∞

−∞

cos x

x2 + 4
dx = (Re)

∫ +∞

−∞

eix

x2 + 4
dx = 2πi · res

(

eiz

z2 + 4
; 2i

)

=
ei·2i

4i
· 2πi =

π

2e2
.
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(b)

∫ +∞

−∞

sin 2x
x2 + x + 1

dx = Im
{∫ +∞

−∞

e2ix

x2 + x + 1
dx

}

= Im

{

2πi · res
(

e2iz

z2 + z + 1
; −1

2
+ i

√
3

2

)}

= Re

{

2π lim
z→− 1

2+i
√

3
2

e2iz

2z + 1

}

= Re

{

2π · ei(−1+i
√

3)

−1 + i
√

3 + 1

}

= Re
{

2π√
3

(−i)e−
√

3−i

}

= − 2π√
3

e−
√

3 sin 1.

Example 5.10 Compute

(a)
∫ +∞

0

x3 sinx

x4 + 1
dx, (b)

∫ +∞

0

x2 cos 3x
(x2 + 1)2

dx.

The integrands are in both cases even functions, so they may be extended by symmetry to all of R.
Furthermore, the difference of degrees of the numerator and the denominator of the rational function
of the integrands is at least 1, where the denominators are dominating, so the integrals are convergent,
and we can find their values by a residuum formula.

(a) The zeros of the denominator are determined by z4 + 1 = 0, so

z = ± 1√
2
± i

1√
2
,

and we get

∫ +∞

0

x3 sinx

x4 + 1
dx =

1
2

∫ +∞

−∞

x3 sinx

x4 + 1
dx =

1
2

Im
{∫ +∞

−∞

x3eix

x4 + 1
dx

}

=
1
2

Im
{

2πi

[

res
(

z3eiz

z4 + 1
;

1√
2

+
i√
2

)

+ res
(

z3eiz

z4 + 1
; − 1√

2
+

i√
2

)]}

.

Let z0 be any pole. Then z4
0 = −1, and

res
(

z3eiz

z4 + 1
; z0

)

=
z3
0eiz0

4z3
0

=
1
4

eiz0 ,

hence by insertion,

∫ +∞

0

x3 sinx

x4 + 1
dx = π Im

{

i · 1
4

exp
(

i

(

1√
2

+
i√
2

))

+ i · 1
4

exp
(

i

(

− 1√
2

+
i√
2

))}

=
π

2
Im

{

i · exp
(

− 1√
2

)

· 1
2
·
{

exp
(

i√
2

)

exp
(

− i√
2

)}}

=
π

2
exp

(

− 1√
2

)

cos
(

1√
2

)

.
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(b) Here z = i is a double pole. It lies in the upper half plane, so we start by computing its residuum:

res

(

z3e3iz

(z2 + 1)2
; i

)

=
1
1!

lim
z→i

d

dz

{

z2e3iz

(z + i)2

}

= lim
z→i

{

2ze3iz

(z + i)2
+

3iz2e3iz

(z + i)2
− 2z2e3iz

(z + i)3

}

=
2i e−3

(2i)2
+

3i(−1)e−3

(2i)2
− 2(−1)e−3

(2i)3
=

e−3

8

{

−4i + 6i − 2(−1)
−i

}

= i · 1
2e3

.

Then by the symmetry and the residuum formula,
∫ +∞

0

x2 cos 3x
(x2 + 1)2

dx =
1
2

∫ +∞

−∞

x2 cos 3x
(x2 + 1)2

dx =
1
2

Re

{

∫ +∞

−∞

x2e3ix

(x2 + 1)2
dx

}

=
1
2

Re

{

2πi · res
(

z2e3iz

(z2 + 1)2
; i

)}

=
1
2

Re
{

2πi · i · 1
2e3

}

= − π

2e3
.

Example 5.11 Compute

(a)
∫ +∞

0

x sinx

(x2 + 1) (x2 + 4)
dx, (b)

∫ +∞

−∞

sinx

x2 + 4x + 5
dx.

In both cases the integrand satisfies the assumptions for the application of the residuum formula.

(a) First we get by a decomposition,

1
(x2 + 1) (x2 + 4)

=
1
3

1
x2 + 1

− 1
3

1
x2 + 4

.

The integrand is even, so by the symmetry, followed by an application of the residuum formula,
∫ +∞

0

x sinx

(x2 + 1) (x2 + 4)
dx =

1
2

∫ +∞

−∞

x sinx

(x2 + 1) (x2 + 4)
dx

=
1
6

∫ +∞

−∞

x sinx

x2 + 1
dx − 1

6

∫ +∞

−∞

x sinx

x2 + 4
dx

=
1
6

Im
{

2πi · res
(

z eiz

z2 + 1
; i

)}

− 1
6

Im
{

2πi · res
(

z eiz

z2 + 4
; 2i

)}

=
π

3
Re

{

res
(

z eiz

z2 + 1
; i

)

− res
(

z eiz

z2 + 4
; 2i

)}

=
π

3
Re

{

i ei·i

i + i
− i · 2i ei·2i

2i + 2i

}

=
π

3
Re

{

e−1

2
− e−2

2

}

=
π

6

(

1
e
− 1

e2

)

=
π

6e2
(e − 1).

(b) The poles are z = −2 ± i, of which only z0 = −2 + i lies in the upper half plane. Then by the
residuum formula,

∫ +∞

−∞

sinx

x2+4x+5
dx = Im

{

2πi res
(

eiz

(z+2+i)(z+2−i)
; −2 + i

)}

= Im
{

2πi · ei(−2+i)

−2 + i + 2 + i

}

(Im
{

π e−2i−1
}

= −π

e
sin 2.
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Example 5.12 Prove that
∫ +∞

−∞

eiax

x2 + 1
dx = π e−a for a ≥ 0.

The claim is trivial for a = 0, because
∫ +∞

−∞

1
x2 + 1

dx = [Arctan x]+∞
−∞ = π.

If a > 0, then the assumptions of using the residuum formula are satisfied, so
∫ +∞

−∞

eiax

x2 + 1
dx = 2πi · res

(

eiaz

z2 + 1
; i

)

= 2πi · ei a i

i + i
= π e−a.

Remark 5.1 If instead a < 0, then we get by a complex conjugation and an application of the first
result that

∫ +∞

−∞

eiax

x2 + 1
dx =

∫ +∞

−∞

e−iax

x2 + 1
dx = π e−(−a) = π ea = π e−|a|,

so we have in general that
∫ +∞

−∞

eiax

x2 + 1
dx = π e−|a|, a ∈ R. ♦

Example 5.13 Prove that
∫ +∞

−∞

cosx

x2 + a2
dx =

π e−a

a
for a > 0.

The conditions of convergence of the improper integrals and the legality of the application of the
residuum formula are fulfilled. Then by the symmetry,

∫ +∞

−∞

sinx

x2 + a2
dx = 0,

so
∫ +∞

−∞

cosx

x2 + a2
dx = (Re)

∫ ∞

−∞

eix

x2 + a2
dx = 2πi · res

(

eiz

z2 + a2
; i a

)

= 2πi · ei·ia

2ia
=

π e−a

a
.

79

Improper integrals, where the integrand is a rational function times ...

Download free eBooks at bookboon.com



Complex Funktions Examples c-7

  

83  

Example 5.14 Compute for a, b ∈ R+,

(a)
∫ +∞

−∞

x sin ax

x2 + b2
dx, (b)

∫ +∞

−∞

cos ax

x2 + b2
dx.

In both cases the conditions of convergence of the improper integrals and the application of a residuum
formula are fulfilled. Hence, because a, b > 0,

(a)

∫ +∞

−∞

x sin ax

x2 + b2
dx = Im

{∫ +∞

−∞

x eiax

x2 + b2
dx

}

= Im
{

2πi lim
x→ib

z eiaz

z + ib

}

= Im
{

2πi · ib e−ab

2ib

}

= π e−ab.

(b)

∫ +∞

−∞

cos ax

x2 + b2
dx = (Re)

∫ +∞

−∞

eiax

x2 + b2
dx = 2πi lim

z→ib

eiaz

z + ib
= 2π i · e−ab

2ib
=

π

b
e−ab.
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Example 5.15 Prove that the integral
∫ +∞

+∞

x sinx

1 + x4
dx

is convergent, and find its value.

We have an improper integral, where the integrand is a product of sinx and a real rational function
without poles on the x-axis and with a zero of third order at ∞. From this we conclude that the
integral is convergent, and its value is given by the residues at the poles in the upper half plane of the

function
z eiz

1 + z4
. We have more precisely,

∫ +∞

−∞

x sinx

1 + x4
dx = Im

{

2πi

[

res
(

z eiz

z4 + 1
;

1 + i√
2

)

+ res
(

z eiz

z4 + 1
;
−1 + i√

2

)]}

= 2π Re
{[

res
(

z eiz

z4 + 1
;

1 + i√
2

)

+ res
(

z eiz

z4 + 1
;
−1 + i√

2

)]}

= 2π Re

{

[

z eiz

4z3

]

1+i√
2

+
[

z eiz

4z3

]

−1+i√
2

}

= 2π Re

{

[

−z2

4
eiz

]

1+i√
2

+
[

−z2

4
eiz

]

−1+i√
2

}

= −π

2
Re

{

i exp
(

i

(

1 + i√
2

))

− i exp
(

i

(−1 + i√
2

))}

= −π

2
Re

(

i

{

exp
(

− 1√
2

)

· exp
(

i√
2

)

− exp
(

− 1√
2

)

· exp
(

− i√
2

)})

= −π

2
Re

(

i exp
(

− 1√
2

)

· 2i sin
1√
2

)

= π exp
(

− 1√
2

)

sin
(

1√
2

)

.

Example 5.16 Prove that
∫ +∞

−∞

cosx

1 + x4
dx = π exp

(

− 1√
2

)

sin
(

π

4
+

1√
2

)

.

We first note that the integrand f(x) = cos x · 1
1 + x4

does not have poles on the x-axis and that the

factor
1

1 + x4
has a zero of order 4 at ∞. Since

1
1 + x4

is a real rational function, we can obtain the

value of the integral by a residuum formula.
Now 1 + z4 = 0 for

z = exp
(

i
{π

4
+ p

π

2

})

, p ∈ Z,

so we get by the residuum formula,
∫ +∞

−∞

cosx

1 + x4
dx = Re

{
∫ +∞

−∞

eix

1 + x4
dx

}

= Re
(

2πi

{

res
(

eiz

1 + z4
; exp

(

i
π

4

)

)

+ res
(

eiz

1 + z4
; exp

(

i
3π
4

))})

.
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All poles z0 with z4
0 = −1 are simple, so by Rule II,

res
(

eiz

1 + z4
; z0

)

=
eiz0

4z3
0

=
z0e

iz0

4z4
0

= −1
4

z0 eiz0 .

Finally,

exp
(

i
π

4

)

=
1√
2

(1 + i) og exp
(

i
3π
4

)

=
1√
2

(−1 + i),

hence by insertion,
∫ +∞

−∞

cos x

1 + x4
dx = Re

[

2πi

(

−1
4

) {(

1√
2

+ i
1√
2

)

e
i 1√

2
− 1√

2 +
(

− 1√
2

+ i
1√
2

)

e
−i 1√

2
− 1√

2

}]

= Re






−πi

2
· e

− 1√
2
·

1√
2 · 1√

2

{

(1 + i)ei 1√
2 + (−1 + i)e−i 1√

2

}







= Re
[

− πi

2
√

2
e
− 1√

2

{(

e
i√
2 − e

− i√
2

)

+ i
(

e
i√
2 + e

− i√
2

)}

]

= Re
[

− πi

2
√

2
· e−

1√
2 ·

{

2i · sin 1√
2

+ i · 2 cos
1√
2

}]

= Re
[

π e
− 1√

2 ·
{

1√
2

sin
1√
2

+
1√
2
· cos

1√
2

}]

= π e
− 1√

2

{

sin
1√
2
· cos

π

4
+ cos

1√
2
· sin π

4

}

= π e
− 1√

2 sin
(

π

4
+

1√
2

)

.

Alternatively and slightly shorter,
∫ +∞

−∞

cosx

1 + x4
dx = Re

[

2πi

(

−1
4

)

{

ei π
4 · ei 1√

2
− 1√

2 + ei 3π
4 e

−i 1√
2
− 1√

2

}

]

= Re
[ π

2i
· e−

1√
2

{

ei π
4 e

i 1√
2 − e−i π

4 e
−i 1√

2

}]

= Re
[

π e
− 1√

2 · 1
2i

{

e
i
“

π
4 + 1√

2

”

− e
−i

“

π
4 + 1√

2

”
}]

= π e
− 1√

2 sin
(

π

4
+

1√
2

)

.
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Example 5.17 Prove that the improper integral

∫ +∞

−∞

sin
(

x +
π

4

)

(x2 + 1) (x2 + 4)
dx

is convergent. Then find the value of the integral.

Since

sin
(

x +
π

4

)

=
1√
2

(sin x + cos x),

and since
1

(x2 + 1) (x2 + 4)
is a real and even rational function with a zero of order 4 at ∞ and with

no pole on the x-axis, the improper integral is convergent, and we can find its value by a residuum
formula, where we use that the integral of an odd function over a symmetric interval is 0,

∫ +∞

−∞

sin
(

x +
π

4

)

(x2 + 1) (x2 + 4)
dx =

1√
2

{∫ +∞

−∞

sinx

(x2 + 1) (x2 + 4)
dx +

∫ +∞

−∞

cos x

(x2 + 1) (x2 + 4)
dx

}

= 0 +
1√
2

∫ +∞

−∞

cos x

(x2 + 1) (x2 + 4)
dx =

1√
2

(Re)
∫ +∞

−∞
eix

{

1
3
· 1
x2 + 1

− 1
3
· 1
x2 + 4

}

dx

=
2πi

3
√

2

{

res
(

eiz

z2 + 1
; i

)

− res
(

eiz

z2 + 4
; 2i

)}

=
2πi

3
√

2
·
{

e−1

2i
− e−2

4i

}

=
(2e − 1)π
6
√

2 · e2
.

Alternatively we may carry through the following computations,

∫ +∞

−∞

sin
(

x +
π

4

)

(x2 + 1) (x2 + 4)
dx = Im

∫ +∞

−∞

exp
(

i
(

x +
π

4

))

(x2 + 1) (x2 + 4)
dx

= Im

{

2πi

[

res

(

ei(z+ π
4 )

(z2+1) (z2+4)
; i

)

+ res

(

ei(z+ π
4 )

(z2+1) (z2+4)
; 2i

)]}

.

It follows from

res

(

ei(z+ π
4 )

(z2+1) (z2+4)
; i

)

= lim
z→i

ei(z+ π
4 )

(z+i) (z2+4)
=

ei(i+ π
4 )

2i · 3 =
e−1

6i
· ei π

4 ,

and

res

(

ei(z+ π
4 )

(z2+1) (z2+4)
; 2i

)

= lim
z→2i

ei(z+ π
4 )

(z2+1) (z + 2i)
=

ei(2i+ π
4 )

−3 · 4i =
−e−2

12i
· ei π

4 ,

that

∫ +∞

−∞

sin
(

x +
π

4

)

(x2 + 1) (x2 + 4)
dx = Im

{

2πi

(

e−1

6i
− e−2

12i

)

· 1 + i√
2

}

= Im
{

π · (2e − 1)
6e2

· 1 + i√
2

}

=
(2e − 1)π
6
√

2 · e2
.
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Example 5.18 Given the function

f(z) =
z2

z4 + 4
.

1) Find the singular points and their types in C ∪ {∞} for f(z).

2) Find the value of the following two complex line integrals,

(a)
∮

|z−4|=2

f(z) dz, (b)
∮

|z|=2

f(z) dz.

3) Prove for every ω > 0 that

∫ +∞

−∞

t2

t4 + 4
eiωt dt =

π

2
e−ω (cos ω − sinω).

–2

–1

0

1

2

–2 2 4 6

1) Clearly, z = ∞ is a removable singularity (a zero of second order).
The denominator z4 + 4 has the zeros

1 + i, −1 + i, −1 − i, 1 − i.

These are all simple pole of f(z).

2) a) Since there is no pole of f(z) inside the circle |z−4| = 2 (cf. the figure), it follows from Cauchy’s
integral theorem that

∮

|z−4|=2

f(z) dz = 0.

b) All singularities of f(z) lie inside the circle |z| = 2, and z = ∞ is a zero of second order. Hence,
by reversing the direction of the curve,

∮

|z|=2

f(z) dz = −
∮ �

|z|=2

f(z) dz = −2πi · res(f ;∞) = 0.
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Alternatively, the residuum in a general pole z0, for which z4
0 = −4, is given by

res
(

z2

z4 + 4
; z0

)

=
z2
0

4z3
0

=
1

4z0
,

so
∮

|z|=2

f(z) dz = 2πi

4
∑

n=1

res
(

z2

z4 + 4
; zn

)

= 2πi

{

1
1 + i

+
1

−1 + i
+

1
−1 − i

+
1

1 − i

}

= 2πi

{

1
1 + i

− 1
1 − i

− 1
1 + i

+
1

1 − i

}

= 0.

3) Since the integrand has a zero of order 2 at ∞, and since there are no real singularities, the
improper integral exists, and when ω > 0 its value can be found by the residues in the upper half
plane,

∫ +∞

+∞

t2

t4 + 4
eiωtdt = 2πi

{

res
(

z2

z4 + 4
eiωz ; 1 + i

)

+ res
(

z2

z4 + 4
eiωz ; −1 + i

)}

= 2πi

{

lim
z→1+i

z2eiωz

4z3
+ lim

z→−1+i

z2eiωz

4z3

}

=
2πi

4

{

eiω(1+i)

1 + i
+

eiω(−1+i)

−1 + i

}

=
π

2
·
{

1 − i

2
· e−ωeiω − 1 + i

2
· e−ωe−iω

}

=
πi

2
e−ω · 1

2
{

eiω − i eiω − e−iω − i e−iω
}

=
π

2
e−ω · i

{

eiω − e−iω

2i
· i − i · eiω + e−iω

2

}

=
π

2
e−ω · (cos ω − sinω).

85

Improper integrals, where the integrand is a rational function times ...

Download free eBooks at bookboon.com



Complex Funktions Examples c-7

  

89  

Example 5.19 (a) Given m > 0. Prove that the improper integral

(3)
∫ +∞

−∞

x2eimx

x4 + 6x2 + 25
dx

is convergent, and find its value.

(b) What is the value of the improper integral (3), when m < 0 instead?

(a) Clearly,
x2

x2 + 6x2 + 25
has a zero of order 2 at ∞, and the denominator is ≥ 25 for every x ∈ R.

Hence, the improper integral is convergent, even for every m ∈ R, and when m ≥ 0 we can find
the value by a residuum formula. When the denominator is put equal to zero,

z4 + 6z2 + 25 =
(

z2 + 5
)2 − (2z)2 = 0

we get

z2 = −3 ±
√

9 − 25 = −3 ± 4i = (±1 + 2i)2,

so we have four simple poles,

1 + 2i, −1 + 2i, 1 − 2i, −1 − 2i,

of which only the former two lie in the upper half plane. Hence, for m ≥ 0,
∫ +∞

−∞

x2 eimx

x4 + 6x2 + 25
dx = 2πi

{

res
(

z2eimz

z4 + 6z2 + 25
, 1 + 2i

)

+ res
(

z2eimz

z4 + 6z2 + 25
, −1 + 2i

)}

= 2πi

{

lim
z→1+2i

z2eimz

4z3 + 12z
+ lim

z→−1+2i

z2eimz

4z3 + 12z

}

=
2πi

4

{

lim
z→1+2i

z eimz

z2 + 3
+ lim

z→−1+2i

z eimz

z2 + 3

}

=
πi

2

{

(1 + 2i)eim(1+2i)

1 − 4 + 4i + 3
+

(−1 + 2i)eim(−1+2i)

1 − 4 − 4i + 3

}

=
πi

8
{

(1 + 2i)eim · e−2m − (−1 + 2i)e−im · e−2m
}

=
π

8
e−2m

{(

eim + e−im
)

+ 2i
(

eim − e−im
)}

=
π

8
e−2m {2 cosm + 2i · 2i sinm} =

π

4
e−2m {cos m − 2 sinm},

which is also true for m = 0, where
∫ +∞

−∞

x2

x4 + 6x2 + 25
dx =

π

4
.

(b) If m < 0, then we get by complex conjugation,
∫ +∞

−∞

x2eimx

x4 + 6x2 + 25
dx =

∫ +∞

−∞

x2ei|m|x

x4 + 6x2 + 25
dx =

π

4
· e−2|m| {cos |m| − 2 sin |m|},

where we have used the result from (a) with |m| instead of m.

Summing up we have for every m ∈ R,
∫ +∞

−∞

x2eimx

x4 + 6x2 + 25
dx =

π

4
· e−2|m| {cos |m| − 2 sin |m|}.
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Example 5.20 Find the Fourier transform of the function

f(x) =
x + 1

x2 + 2x + 2
,

i.e. compute

f̂(ξ) =
∫ +∞

−∞

x + 1
x2 + 2x + 2

e−ξx dx,

first for ξ < 0, and then for ξ > 0.

We see that

f(z) =
P (z)
Q(z)

=
z + 1

z2 + 1 + 2z + 2
=

z + 1
(z + 1)2 + 1

is a rational function, where

1) the polynomial Q(z) = (z + 1)2 + 1 of the denominator has the simple zeros z = −1 ± i, where
none of these is lying on the real axis;

2) the polynomial of the denominator is of 1 degree bigger than the polynomial of the numerator;

3) if ξ < 0, then m = −ξ > 0.

Hence, the conditions of convergence of the improper integral are satisfied for ξ < 0, and since −1 + i
is the only (simple) pole in the upper half plane, the value of the improper integral is given by a
residuum formula,

f̂(ξ) =
∫ +∞

−∞

x + 1
x2 + 2x + 2

e−iξx dx = 2πi · res
(

z + 1
(z + 1)2 + 1

· e−iξz ; −1 + i

)

= 2πi lim
z→−1+i

z + 1
2(z + 1)

· e−iξz = πi · e−iξ(−1+i) = πi · eξ(1+i), ξ < 0,

where we have applied Rule II.

Now P (z) and Q(z) have real coefficients, so if ξ > 0, then we get by complex conjugation,

f̂(ξ) =
∫ +∞

−∞

x + 1
x2 + 2x + 2

e−iξx dx =
∫ +∞

−∞

x + 1
x2 + 2x + 2

eiξx dx = πi · e−ξ(1+i) = −πi · eξ(−1+i).

Summing up,

f̂(ξ) =







πi · eξ(1+i) = πi · e−|ξ|(1+i) for ξ < 0,

−πi · eξ(−1+i) = −πi · e−|ξ|(1−i) for ξ > 0.

When ξ = 0, the integral does not converge.
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Remark 5.2 For ξ < 0 we have

f̂(ξ) = πi e−i|ξ|(1+i) = π e−|ξ| · i {cos |ξ| − i sin |ξ|} = π e−|ξ| {sin |ξ| + i cos |ξ|},

so by a complex conjugation when ξ > 0 we get all things considered,

f̂(ξ) =







π e−|ξ| {sin |ξ| + i cos |ξ|}, for ξ < 0,

π e−|ξ| {sin |ξ| − i cos |ξ|}, for ξ > 0.
♦

In a variant we may use the change of variable t = x + 1. Then we have the following calculation
for ξ < 0:

f̂(ξ) =
∫ +∞

−∞

x + 1
x2 + 2x + 2

e−iξx dx =
∫ +∞

−∞

t

t2 + 1
e−iξ(t−1) dt = eiξ

∫ +∞

−∞

t

t2 + 1
e−iξt dt

= 2πi · eiξ · res
(

z

z2 + 1
e−iξz ; i

)

= 2πi · eiξ
[ z

2z
· e−iξz

]

z=i
= πi · eiξ · eξ = πi e(1+i)ξ.
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Alternatively we may use for ξ > 0 another residuum formula, because the conditions of its use
are still valid. We get

f̂(ξ) =
∫ +∞

−∞

x + 1
x2 + 2x + 1

e−iξx dx = −2πi · res
(

z + 1
z2 + 2z + 2

e−iξz ; −1 − i

)

= −2πi lim
z→−1−i

{

z + 1
2z + 2

e−iξz

}

= −2πi lim
z→−1−i

{

1
2

e−iξz

}

= −πi e−iξ(−1−i) = −πi eξ(−1+i).

Example 5.21 Given the function f by

f(z) =
z eiz

(z2 + 1)2
.

1) Find the singularities and their type of f in C ∪ {∞}.

2) Compute the complex line integral
∮

CR

f(z) dz,

where CR denotes the simple closed curve, which consists of

the half circle z = R eiθ, 0 ≤ θ ≤ π, R > 1,

and

the interval [−R,R] on the real axis.

3) Prove that the improper integral

∫ +∞

0

x sinx

(x2 + 1)2
dx

is convergent, and compute its value.

1) Clearly, z = ±i are double poles. Furthermore, ∞ is an essential singularity. In fact, we have

f(−iy) → +∞ for y → +∞,

and also

f(x) → 0 for x → +∞,

so we can obtain at least two different limit values for z → ∞.
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2) We have only the singularity z = i lying inside CR, so we get by a residuum formula,

∮

CR

f(z) dz = 2πi · res
(

z eiz

(z2 + 1)2
; i

)

= 2πi lim
z→i

d

dz

{

z eiz

(z + i)2

}

= 2πi lim
z→i

{

eiz

(z + i)2
+

i z eiz

(z + i)2
− 2z eiz

(z + i)3

}

= 2πi

{

e−1

(2i)2
− e−1

(2i)2
− 2i e−1

(2i)3

}

=
πi

2e
.

3) Since we have a zero of order 3 at infinity, we get by taking the limit R → +∞ that

∫ +∞

−∞

x sinx

(x2 + 1)2
dx = Im

{

lim
R→+∞

∮

CR

f(z) dz

}

=
π

2e
.

Since the integrand is even, we finally get
∫ +∞

0

x sinx

(x2 + 1)2
dx =

π

4e
.
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Example 5.22 Given the function

f(z) =
z eiz

(z2 + 1)2
.

1) Find the singular points and their types of f in C.

2) Let x1, x2, y1 denote any positive real numbers where y1 > 1, and let γ = γx1,x2,y1 denote the
closed curve (run through in the positive sense), which surrounds the domain

Ax1,x2,y1 = {z ∈ C | −x1 < Re(z) < x2 and 0 < Im(z) < y1}.

Prove that
∮

γ

f(z) dz = i
π

2e
.

3) Prove that the improper integral
∫ +∞

0

x sinx

(x2 + 1)2
dx

is convergent and find its value.

1) The denominator has the two double zeros πi, and since the numerator is �= 0 in these points, we
conclude that ±i are double poles.

2) We see that +i is the only singularity inside γ, hence it follows by the residuum theorem that

∮

γ

f(z) dz = 2πi res

(

z eiz

(z2 + 1)2
; i

)

= 2πi lim
z→i

d

dz

(

z eiz

(z + i)2

)

= 2πi lim
z→i

{

eiz

(z + i)2
+

i z eiz

(z + i)2
− 2z eiz

(z + i)3

}

= 2π i e−1

{

1
(2i)2

+
i2

(2i)2
− 2i

(2i)3

}

=
2πi

e
· 1
4

= i
π

2e
.

3) It follows from

x

(x2 + 1)2
∼ 1

|x|3 for |x| large,

that the improper integral is convergent.

When we apply the parametric description z(t) = −x1 + it, 0 < t < y1, for one part of γ we here
get the estimate of the integrand,

|f(z)| =

∣

∣

∣

∣

∣

z eiz

(z2 + 1)2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

z

z2 + 1

∣

∣

∣

∣

· e−t

|z2+| ≤
|x1|

(

|x1|2 − 1
)2 e−t,

91

Improper integrals, where the integrand is a rational function times ...

Download free eBooks at bookboon.com



Complex Funktions Examples c-7

  

95  

and the line integral along this part of γ fulfils the estimate
∣

∣

∣

∣

∫ y1

0

f (−x1 + it) i dt

∣

∣

∣

∣

≤ |x1|
(

|x1|2 − 1
)2 → 0 for x1 → +∞.

Analogously we get
∣

∣

∣

∣

∫ y1

0

f (x2 + it) i dt

∣

∣

∣

∣

≤ |x2|
(

|x2|2 − 1
)2 → 0 for x2 → +∞.

Finally, we get for the curvilinear part by choosing the parametric description z(t) = t + iy1,
t ∈ [−x1, x2] [ that

|f(z)| =

∣

∣

∣

∣

∣

z(t)|
(z(t)2 + 1)2

∣

∣

∣

∣

∣

e−y1 ,

so the corresponding line integral is estimated by
∣

∣

∣

∣

∫ x2

−x1

f(z) dz

∣

∣

∣

∣

≤ constant · e−y1 → 0 for y1 → +∞.

Then by taking the limits x1 → +∞ and x2 → +∞ and y1 → +∞,
∫ +∞

−∞

x eix

(x2 + 1)2
dx = i

π

2e
.

We conclude from
∫ +∞

−∞

x eix

(x2 + 1)2
dx =

∫ +∞

−∞

x cosx

(x2 + 1)2
dx + i

∫ +∞

−∞

x sinx

(x2 + 1)2
dx = 2i

∫ +∞

0

x sinx

(x2 + 1)2
dx,

that
∫ +∞

0

x sinx

(x2 + 1)2
dx =

π

4e
.
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Example 5.23 Given the function

f(z) =
z eiz

(z2 + 4)2
.

Denote by Γ� = γ� + C+
� the simple closed curve run through in the positive direction, consisting of

γ�, the line segment [−�,+�] on the real axis and the half circle C+
� in the upper half plane of centrum

0 and radius �.

1) Find the isolated singularities and their types of f in C.

2) Prove for � > 2 that
∮

Γ�

f(z) dz = i
π

4e2
.

3) Prove that
∫

C+
�

f(z) dz → 0 as � → +∞.

4) Compute the improper integrals

p.v.

∫ +∞

−∞

x eix

(x2 + 4)2
dx og

∫ +∞

0

x sinx

(x2 + 4)2
dx.

–2

–1

0

1

2

3

–3 –2 –1 1 2 3

Figure 11: The closed path of integration C� and the two singularities ±2i.

1) The function f(z) has the two double poles ±2i.

2) When � > 2, only the double pole 2i lies inside Γ�. Hence by Cauchy’s residuum theorem,
∮

Γ�

f(z) dz = 2πi res

(

z eiz

(z2 + 4)2
; 2i

)

= 2πi · 1
1!

lim
z→2i

d

dz

{

z eiz

(z + 2i)2

}

= 2πi lim
z→2i

{

eiz

(z + 2i)2
+

i z eiz

(z + 2i)2
− 2z eiz

(z + 2i)3

}

= 2πi

{

e−2

(4i)2
+

i · 2i · e−2

(4i)2
− 4i · e−2

(4i)3

}

=
2πi

e2

{

− 1
16

+
1
8

+
1
16

}

= i
π

4e2
.
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3) A parametric description of C+
� may be chosen as z(t)� eit, t ∈ [0, π], so we get the following

estimate when � > 2,
∣

∣

∣

∣

∣

∫

C+
�

f(z) dz

∣

∣

∣

∣

∣

≤
∫ π

0

� | exp(i �{cos t + i sin t})|
(varrho2 − 4)2

· � dt =
�2

(�2 − 4)2

∫ π

0

exp(−� · sin t) dt

≤ π�2

(�2 − 4)2
→ 0 for � → +∞.

4) Both the improper integrals are trivially absolutely convergent, so it is not necessary to write
“p.v.” (= “principal value”) here.
It follows by a residuum formula, where we use the limits above,

∫ +∞

−∞

x eix

(x2 + 4)2
dx = lim

�→+∞

∮

Γ�

z eiz

(z2 + 4)2
dz = i · π

4e2
,

and then by a reflection argument,

∫ +∞

0

x sinx

(x2 + 4)2
dx =

1
2

∫ +∞

−∞

x sinx

(x2 + 4)2
dx =

1
2

Im

{

∫ +∞

−∞

x eix

(x2 + 4)2
dx

}

=
1
2

Im
{

i · π

4e2

}

=
π

8e2
.
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6 Improper integrals, where the integrand is a rational func-
tion times an exponential function

Example 6.1 Given a ∈ ]0, 1[, prove that

(a)
∫ +∞

−∞

eax

ex + 1
dx =

π

sinπa
, (b)

∫ +∞

−∞

cosh ax

coshx
dx =

π

cos
πa

2

.

Hint: Integrate the function
eaz

ez + 1
along a rectangle with the corners −R, R, R+2πi and −R+2πi,

and then let R → +∞. The integral of (b) is found analogously, but it can also be derived from (a).

0

2

4

6

–6 –4 –2 2 4 6

Figure 12: The curve C2π and the simple pole πi inside C2π.

(a) Since ez + 1 = 0 for z = πi + 2πi, p ∈ Z, it follows that z0 = πi is the only singularity inside CR

for R > 0, and this singularity is clearly a simple pole. Then we get by the residuum theorem,
∮

CR

eaz

ez + 1
dz = 2πi · res

(

eaz

ez + 1
; πi

)

= 2πi lim
z→πi

eaz

ez
= 2πi · 1

−1
· eaπi = −2πi eaπi.

On the other hand,

∮

CR

eaz

ez + 1
dz =

∫ R

−R

eax

ex + 1
dx+

∫ 2π

0

ea(R+iy)

eR+iy + 1
i dy+i

∫ −R

R

ea(x+2πi)

ex+2πi + 1
dx+

∫ 0

2π

ea(−R+iy)

e−R+iy + 1
i dy.

Using that 0 < a < 1, it follows by some trivial estimates (though with a different argument) that
the second and the fourth integral tend to 0 for R → +∞. Furthermore, by some trivial estimates,
each of the two remaining integrals converges for R → +∞, and we have

−2πi eaπi = lim
R→+∞

∮

CR

eaz

ez + 1
dz =

∫ +∞

−∞

eax

ex + 1
dx − ea·2πi

∫ +∞

−∞

eax

ex + 1
dx

=
(

1 − e2aπi
)

∫ +∞

−∞

eax

ex + 1
dx.

95

Improper integrals,, where the integrand is a rational function times ...

Download free eBooks at bookboon.com



Complex Funktions Examples c-7

  

99  

Finally, by a rearrangement,
∫ +∞

−∞

eax

ex + 1
dx =

2πi eaπi

e2aπi − 1
=

π
1
2i

(eaπi − e−aπi)
=

π

sinπa
.

(b) It follows from

cosh ax

coshx
=

eax + e−ax

ex + e−x
=

e(a+1)x + e(1−a)x

e2x + 1
=

exp
(

a + 1
2

2x
)

e2x + 1
+

exp
(

1 − a

2
2x

)

e2x + 1
,

and

0 <
1 + a

2
< 1 and 0 <

1 − a

2
< 1,

and (a) that

∫ +∞

−∞

cosh ax

coshx
dx =

1
2

∫ +∞

−∞

e
1
2 (a+1)t

et + 1
dt +

1
2

∫ +∞

−∞

e
1
2 (1−a)t

et + 1
dt =

1
2
· π

sin
(

a+1
2 π

) +
1
2
· π

sin
(

1−a
2 π

)

=
π

2

{

1
sin

(

π
2 + aπ

2

) +
1

sin
(

π
2 − aπ

2

)

}

=
π

2







1

cos
aπ

2

+
1

cos
(

−aπ

2

)







=
π

cos
πa

2

.
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Example 6.2 Prove that
∫ +∞

0

(ln x)2

1 + x2
dx =

π3

8

by using the path of integration sketched on the figure ant then let R → +∞ and δ → 0+.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

–1.5 –1 –0.5 0.5 1 1.5

Figure 13: The curve C√
2, 1

3
and the simple pole i.

Let Log�z denote the branch of the logarithm, which is given by

Im{Log�z} ∈
]

−π

2
,

3π
2

]

,

i.e. we choose the branch of the logarithm, for which the branch cut lies along the negative imaginary
axis. Then

f(z) =
(Log�z)2

1 + z2

is analytic in the open upper half plane with the exception of the simple pole z = i. Therefore, if
R > 1 and δ < 1, and we denote the curve by CR,δ, then

∮

CR,δ

(Log�z)2

1 + z2
dz = 2πi · res

(

(Log�z)2

1 + z2
; i

)

= 2πi · (Log�i)
i + i

= π ·
(

i
π

2

)2

= −π3

4
,

which in particular shows that the value of the line integral is independent of R > 1 and δ < 1.

The curve CR,δ is composed of the interval [δ,R], the circular arc CR, the interval [−R,−δ] and the
circular arc Cδ (with obvious notations). If we put t = −x, then we get on the interval [−δ,−R],

∫ −δ

−R

(Log�x)2

1 + x2
dx =

∫ −δ

−R

ln |x| + iπ)2

1 + x2
dx =

∫ R

δ

(ln t + iπ)2

1 + t2
dt

=
∫ R

δ

(ln t)2

1 + t2
dt + 2iπ

∫ R

δ

ln t

1 + t2
dt − π2

∫ R

δ

1
1 + t2

dt.
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On the circular arc CR we put z = R eiθ, θ ∈ [0, π], and then

|Log�z|2 = | ln R + iθ|2 = (lnR)2 + θ2.

We get the following estimate
∣

∣

∣

∣

∣

∫

CR

(Log�z)2

1 + z2
dz

∣

∣

∣

∣

∣

≤ (lnR)2 + π2

R2 − 1
· πR → 0 for R → +∞.

Analogously we get the following estimate of the circular arc Cδ,
∣

∣

∣

∣

∣

∫

Cδ

(Log�z)2

1 + z2
dz

∣

∣

∣

∣

∣

≤ (ln δ)2 + π2

1 − δ2
· πδ → 0 for δ → 0+,

because

(ln δ)2 · δ =

(

ln
1
δ

)2

1
δ

→ 0 for
1
δ
→ +∞, i.e. for δ → 0 + .

Summing up we have for R > 1 and 0 < δ < 1,

−π3

4
=

∮

CR,δ

(Log�z)2

1 + z2
dz

=
∫ R

δ

(lnx)2

1 + x2
dx +

∫ R

δ

(ln t)2

1 + t2
dt + 2πi

∫ R

δ

ln t

1 + t2
dt

−π2

∫ R

δ

1
1 + t2

dt +
∫

CR

(Log�z)2

1 + z2
dz +

∫

Cδ

(Log�z)2

1 + z2
dz

= 2
∫ R

δ

(lnx)2

1 + x2
dx − π2

∫ R

δ

dt

1 + t2
+

∫

CR

(Log�z)2

1 + z2
dz

+
∫

Cδ

(Log�z)2

1 + z2
dz + 2iπ

∫ R

δ

ln t

1 + t2
dt.

Then by a rearrangement,

2
∫ R

δ

(lnx)2

1 + x2
dx = 2iπ

∫ R

δ

ln t

1 + t2
dt = π2

∫ R

δ

dt

1 + t2
− π2

4
−

∫

CR

(Log�z)2

1 + z2
dz −

∫

Cδ

(Log�z)2

1 + z2
dz.

Here the left hand side is separated in its real and imaginary part.
This equation now holds for every R > 1 and δ ∈ ]0, 1[. The right hand side has a limit value for
R → +∞ and δ → 0+, independent of each other,

π2 · π

2
− π3

4
− 0 − 0 =

π3

4
,

hence the limit value of the left hand side must also exist, and it is equal to
π3

4
. Hence by separating

into the real and the imaginary part we get
∫ +∞

0

(ln x)2

1 + x2
dx =

π3

8
og

∫ +∞

0

lnx

1 + x2
dx = 0.
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Example 6.3 (a) Given the function

F (z) =
1
z
· tanh

√
z√

z
=

1
z
· sinh

√
z√

z
· 1
cosh

√
z
.

Prove that F (z) is an analytic function in a domain

Ω = C \ {zn | n ∈ N0} ,

independent of the choice of the branch of the square root.

(b) Find the poles {zn | n ∈ N0} of F (z), as well as their orders.

(c) Let Cp, p ∈ N, denote the simple, closed curve in the z-plane, which is composed of the line
segment

z = 1 + it, |t| ≤
√

p4π4 − 1,

and the circular arc

Γp : |z| = p2π2, Re(z) ≤ 1.

Find for every fixed t ≥ 0 the value of the line integral

1
2πi

∮

Cp

ezt F (z) dz =
1

2πi

∮

Cp

ezt

z

tanh
√

z√
z

dz.

(d) Given that

| tanh w| ≤ 2 for w = pπ eiθ, θ ∈ R, p ∈ N,

prove that for every fixed t ≥ 0,

lim
p→+∞

∫

Γp

ezt

z
√

z
tanh

√
z dz = 0.

(e) Using that F (z) has an inverse Laplace transform given by

f(t) =
1

2πi

∫ 1+i∞

1−i∞
ezt F (z) dz =

1
2π

∫ +∞

−∞
e(1+i s)t F (1 + i s) ds, t ≥ 0,

where the integral is convergent, find f(t) expressed by a series and prove that this series is con-
vergent for every t ≥ 0.

(a) We use that (
√

z)2 = z, no matter the choice of the branch of the square root. Then by some
series expansions,

cosh
√

z =
+∞
∑

n=0

1
(2n)!

(√
z
)2n =

+∞
∑

n=0

1
(2n)!

zn

and

sinh
√

z√
z

=
1√
z

+∞
∑

n=0

1
(2n + 1)!

(√
z
)2n+1 =

1√
z

+∞
∑

n=0

1
(2n + 1)!

zn
√

z =
+∞
∑

n=0

1
(2n + 1)!

zn
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–10

–5

0

5

10

–10 –8 –6 –4 –2 2

Figure 14: The path of integration Cp for p = 1.

so we have indeed defined a analytic function, which is independent of the choice of the branch of
the square root. Notice in particular that

(4) lim
z→0

cosh
√

z = 1 and lim
z→0

sinh
√

z√
z

= 1.

We therefore conclude that

F (z) =
1
z

tanh
√

z√
z

=
1
z

sinh
√

z√
z

· 1
cosh

√
z

is analytic in a domain Ω, which does not contain z = 0 or the zeros of cosh
√

z.

(b) The zeros of cosh
√

z are found in the following way,

√
z = i

(π

2
+ pπ

)

, p ∈ Z,

thus

z = −
(π

2
+ pπ

)2

, p ∈ Z.

Then note that p and −p − 1, p ∈ N0 give the same z, so we can now replace Z by N0

When p is replaced by p − 1, then the singularities become

z0 = 0 and zp = −(2p − 1)2
π2

4
, p ∈ N.

Then we determine the order of zp, p ∈ N0. Since

F (z) =
1
z
· 1
cosh

√
z
· sinh

√
z√

z
,

we conclude from (4) that z0 = 0 is a simple pole.
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When

zp = −(2p − 1)2
π2

4
, p ∈ N,

we get

sinh√
zp

zp
√

zp
�= 0 og cosh

√
zp = 0,

and since

lim
z→zp

d

dz
cosh

√
z = lim

z→zp

sinh
√

z · 1
2
√

z
=

sinh√
zp

2√zp
�= 0,

we conclude that every zp is a simple pole.

(c) Using that zp = −
(

p − 1
2

)2

π2, it follows from Cauchy’s residuum theorem that

1
2πi

∮

Cp

ezt F (z) dz =
1

2πi

∮

Cp

ezt

z
· tanh

√
z√

z
dz =

p
∑

n=0

res
(

ezt F (z) ; zp

)

,

because only z0, z1, . . . , zp lie inside Cp.
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Then by Rule Ia,

res
(

ezt F (z) ; z0

)

= lim
z→0

ezt · sinh
√

z√
z

· 1
cosh

√
z

= 1 · 1 · 1
1

= 1,

where we again have used (4).

In the computation of

res
(

ezt F (z) ; zn

)

, n ∈ N,

we shall use Rule II, because zn is a simple pole. We put

A(z) =
ezt

z
· sinh

√
z√

z
and B(z) = cosh

√
z,

and get by Rule II,

res
(

ezt F (z) ; zn

)

=
A (zn)
B′ (zn)

= lim
z→zn

{

ezt

z
· sinh

√
z√

z

}

· 1

sinh
√

z · 1
2
√

z

= lim
z→zn

2 ezt

z
=

2
zn

eznt,

hence by insertion,

1
2πi

∮

Cp

ezt F (z) dz =
p

∑

n=0

res
(

ezt F (z) ; zn

)

= 1 +
p

∑

n=1

2
zn

eznt

= 1 − 8
π2

p
∑

n=1

1
(2n − 1)2

exp

(

−
{

n − 1
2

}2

π2t

)

.(5)

(d) If z ∈ Γp, then |z| = p2π2 and |√z| = pπ. According to the given formula,

(6)
∣

∣tanh
√

z
∣

∣ ≤ 2 for |z| = p2π2.

We have on Γp that Re(z) ≤ 1 and |z| = p2π2, so we get by (6) for every fixed t ≥ 0 the following
estimate,

∣

∣

∣

∣

∣

∫

Γp

ezt

z
√

z
tanh

√
z dz

∣

∣

∣

∣

∣

≤ max
z∈Γp

∣

∣

∣

∣

ezt

z
√

z
· tanh

√
z

∣

∣

∣

∣

· � (Γp) ≤
et·1

p3π3
· 2 · 2πp2π2

=
4 et

p
→ 0 for p → +∞,

thus

(7) lim
p∈N

p→+∞

∫

Γp

ezt

z
√

z
tanh

√
z dz = 0.

(e) We conclude from (5) that

1
2πi

∮

Cp

ezt F (z) dz =
1

2πi

∫ 1+i
√

p4π4−1

1−i
√

p4π4−1

ezt F (z) dz +
1

2πi

∫

Γp

ezt F (z) dz

= 1 − 8
π2

p
∑

n=1

1
(2n − 1)2

exp

(

−
{

n − 1
2

}2

π2t

)

,

102

Improper integrals,, where the integrand is a rational function times ...

Download free eBooks at bookboon.com



Complex Funktions Examples c-7

  

106  

hence by a rearrangement,

1
2πi

∫ 1+i
√

p4π4−1

1−i
√

p4π4−1

ezt F (z) dz = 1− 8
π2

p
∑

n=1

1
(2n−1)2

exp

(

−
{

p − 1
2

}2

π2t

)

− 1
2πi

∫

Γp

ezt F (z) dz.

Then by (7) by taking the limit p → +∞, p ∈ N,

(8) f(t) :=
1

2πi

∫ 1+i∞

1−i∞
ezt F (z) dz = 1 − 8

π2

+∞
∑

n=1

1
(2n − 1)2

exp

(

−
{

n − 1
2

}2

π2t

)

.

Clearly,

exp

(

−
{

n − 1
2

}2

π2t

)

≤ 1 for t ≥ 0 and n ∈ N,

so we have the estimate
∣

∣

∣

∣

∣

+∞
∑

n=1

1
(2n − 1)2

exp

(

−
{

n − 1
2

}2

π2t

)∣

∣

∣

∣

∣

≤
+∞
∑

n=1

1
(2n − 1)2

=
π2

8
,

and the series is absolutely and uniformly convergent for t ≥ 0.

Remark 6.1 This example is a simplified version of a problem connected with oil drilling in the
North Sea. One wanted to find the inverse Laplace transform of

F (z;λ, ω) =
1
z

tanh
√

ϕ(z)
√

ϕ(z)
,

where

ϕ(z) = ϕ(z;λ, ω) = z − ω

λ(z + ω)
,

and where λ and ω are two positive parameters, which are fixed by some practical measurements. The
principles for solving this original problem are the same as the simplified example presented here, but
one must admit that the computations are far more difficult that in this special case, where ϕ(z) = z.
♦

Remark 6.2 All though it is not required we shall here also prove (5), i.e.

(9) | tanh w| ≤ 2 for w = pπ · eiθ, θ ∈ R, p ∈ N.

We first introduce for p ∈ N a real auxiliary function ψp by

(10) ψp(θ) = cosh(2pπ · cos θ) + cos(2pπ · sin θ), θ ∈ R.

Then we prove that

(11) cos(2pπ · sin θ) ≥ 0 for Arcsin
(

1 − 1
4p

)

≤ |θ| ≤ π

2
.
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Since cos(−u) = cos u, we may assume in (11) that

θ ∈
[

Arcsin
(

1 − 1
4p

)

,
π

2

]

.

Since sin θ is increasing in this interval, we get

2pπ sin θ ∈
[

2pπ

(

1 − 1
4p

)

, 2pπ

]

=
[

2pπ − π

2
, 2pπ

]

,

and since cosu ≥ 0, when u = 2pπ sin θ ∈
[

2pπ − π

2
, 2pπ

]

, we have proved (11).

Then we prove that

(12) cosh(2pπ cos θ) ≥ cosh
(π

2

√

8p − 1
)

for |θ| ∈
[

0 , Arcsin
(

1 − 1
4p

)]

.

We may again assume that θ ∈
[

0 , Arcsin
(

1 − 1
4p

)]

, and using that cos θ is decreasing in this

interval, it follows that

cos θ ≥ cos
(

Arcsin
(

1 − 1
4p

))

= +

√

1 − sin2

(

Arcsin
(

1 − 1
4p

))

=

√

1 −
(

1 − 1
4p

)2

=

√

1 −
{

1 − 1
2p

+
1

16p2

}

=
√

8p − 1
4p

,

and since cosh is increasing in R+, we get

cos(2π cos θ) ≥ cosh
(

2pπ ·
√

8p − 1
4p

)

= cosh
(π

2

√

8p − 1
)

.

Now,

ψp(θ + π) = cosh(−2pπ cos θ) + cos(−2pπ sin θ) = ψp(θ),

and

cosh
(π

2

√

8p − 1
)

≥ 2 for alle p ∈ N,

so we conclude in general by (11) and (12) that

ψp(θ) = cosh(2pπ cos θ) + cos(2pπ sin θ) ≥











cosh 0 + 0 = 1,

cosh
(π

2
√

8p − 1
)

− 1 ≥ 1,

where at least one of the two estimates holds for any θ.
Summing up we have proved that

(13) ψp(θ) = cosh(2pπ cos θ) + cos(2pπ sin θ) ≥ 1.
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Then we use the definitions of the hyperbolic function of a complex variable,

| tanh w|2 =
| sinhw|2
| cosh w|2 =

cosh2 u − cos2 v

cosh2 u − sin2 v
= 1 − cos2 v − sin2 v

cosh2 u − 1
2 + 1

2 − sin2 v

= 1 − 2 cos 2v
(

2 cosh2 −1
)

+
(

1 − 2 sin2 v
) = 1 − 2 cos 2v

cosh 2u + cos 2v
.

Then put

w = pπ eiθ = pπ cos θ + i pπ sin θ = u + iv,

and apply (13) to get

∣

∣tanh
(

pπ eiθ
)∣

∣

2
= 1 − 2 cos(2pπ sin θ)

cosh(2pπ cos θ) + cos(2pπ sin θ)
≤ 1 +

2
ψp(θ)

≤ 3,

thus
∣

∣tanh
(

pπ eiθ
)∣

∣ ≤
√

3 (< 2),

and we have proved (9) with the even smaller constant
√

3. ♦
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Example 6.4 Compute
∫ +∞

−∞

1
x2 + 9

exp
(

x + 3i
x2 + 9

)

dx.

It follows from
z + 3i
z2 + 9

=
1

z − 3i
, that this function can be extended analytically to −3i, so we get the

estimate
∣

∣

∣

∣

z + 3i
z2 + 9

∣

∣

∣

∣

=
1

|z − 3i| ≤
4
|z| for |z| ≥ 4,

hence
∣

∣

∣

∣

exp
(

z + 3i
z2 + 9

)∣

∣

∣

∣

≤ exp
(

1
|z − 3i|

)

≤ exp
(

4
|z|

)

≤ e for |z| ≥ 4.

Then we estimate the integrand by
∣

∣

∣

∣

1
z2 + 9

exp
(

z + 3i
z2 + 9

)∣

∣

∣

∣

≤ k

|z|2 for |z| ≥ 4.

The singularities are z = ±3i, where none of them lies on the real axis. We conclude that the improper
integral is convergent and that its value can be found by a residuum formula,

∫ +∞

−∞

1
x2 + 9

exp
(

x + 3i
x2 + 9

)

dx = 2πi res
(

1
z2 + 9

exp
(

1
z − 3i

)

; 3i
)

.

The idea here is that the sum of the residues is 0. Since ∞ is a zero of second order, we have

res
(

1
z2 + 9

exp
(

1
z − 3i

)

;∞
)

= 0.

Now z = −3i is a simple pole, so

res
(

1
z2 + 9

exp
(

1
z − 3i

)

;−3i
)

=
1

−6i
exp

(

− 1
6i

)

=
i

6
exp

(

i

6

)

.

The sum of the residues is zero, so it follows from the above that

res
(

1
z2 + 9

exp
(

1
z − 3i

)

; 3i
)

= − i

6
exp

(

i

6

)

.

Finally, by insertion
∫ +∞

−∞

1
x2 + 9

exp
(

x + 3i
x2 + 9

)

dx = 2πi

{

− i

6
exp

(

i

6

)}

=
π

3
exp

(

i

6

)

.

Remark 6.3 We notice by separating the real and the imaginary part that it follows from this that
∫ +∞

−∞

1
x2 + 9

exp
(

x

x2 + 9

)

cos
(

3
x2 + 9

)

dx =
π

3
cos

1
6
,

∫ +∞

−∞

1
x2 + 9

exp
(

x

x2 + 9

)

sin
(

3
x2 + 9

)

dx =
π

3
sin

1
6
. ♦
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Alternatively one may compute the residuum at z = 3i directly.
We get by the change of variable w = z − 3i that

res
(

1
z2 + 9

exp
(

1
z − 3i

)

; 3i
)

= res
(

1
w(w + 6i)

exp
(

1
w

)

; 0
)

.

Here w0 = 0 is an essential singularity, so we must find the Laurent series expansion and find the

coefficient a−1 of
1
w

. When 0 < |w| < 6, then

1
w(w + 6i)

exp
(

1
w

)

=
1
w

· 1
6i

· 1

1 +
w

6i

+∞
∑

n=0

1
n!

1
wn

=
1
w

{

1
6i

+∞
∑

p=0

(−1)p
( w

6i

)p +∞
∑

n=0

1
n!

1
wn

}

.

It follows immediately that a−1 is the constant term inside the parenthesis, so a−1 is found by putting
p = n, thus

res
(

1
z2 + 9

exp
(

1
z − 3i

)

; 3i
)

=
1
6i

+∞
∑

n=0

(−1)n · 1
(6i)n

· 1
n!

=
1
6i

exp
(

− 1
6i

)

= − i

6
exp

(

i

6

)

,

and we get as previously that
∫ +∞

−∞

1
x2 + 9

exp
(

x + 3i
x2 + 9

)

dx =
π

3
exp

(

i

6

)

=
π

3

{

cos
1
6

+ i sin
1
6

}

.
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Example 6.5 Given the function

f(z) =
eiz

cosh z
, where cosh z =

ez + e−z

2
.

Define for every R > 0 the den simple closed curve

ΓR = Γ1
R + Γ2

R + Γ3
R + Γ4

R

which is the sides of the rectangle shown on the figure.

Figure 15: The curve ΓR is composed of the four straight line segments: Γ1
R = [−R,R] on the x-

axis, Γ2
R = R + i[0, π], parallel with the y-axis, Γ3

R = [−R,R] + iπ parallel with the x-axis, and
Γ4

R = −R + i[0, π] parallel with the y-axis, and with the given sense of direction.

1) Find all isolated singularities of f in C.
Determine for each of them its type and its residuum.

2) Prove that
∫

ΓR

f(z) dz = 2π exp
(

−π

2

)

.

3) Prove that the line integrals along Γ2
R and Γ4

R tend to 0 for R → +∞.
Hint: One may use that

| cosh(x + iy)| =
√

sinh2 x + cos2 y.

4) Prove that the improper integral

∫ +∞

0

cos x

coshx
dx

is convergent, and find its value.
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1) The numerator and the denominator are both analytic in all of C, and the numerator is �= 0
everywhere, so the singularities are given by the zeros of the denominator cosh z, i.e.

zp = i
{π

2
+ pπ

}

, p ∈ Z.

It follows from

d

dz
cosh zp = sinh zp �= 0, for alle p ∈ Z,

that they are all simple pole of f(z).

Finally,

res
(

f , i
{π

2
+ pπ

})

=
[

eiz

sinh z

]

z=zp

=
exp

(

−π

2
− pπ

)

i(−1)p

= (−1)p−1i exp
(

−
{π

2
+ pπ

})

, p ∈ Z.

2) For every R > 0 the curve ΓR surrounds only the singularity z0 = i
π

2
.

Then we use the residuum theorem,
∮

ΓR

f(z) dz = 2πi · res
(

f , i
π

2

)

= 2π · exp
(

−π

2

)

.

3) The vertical line segment Γ2
R (possibly Γ4

R) has e.g. the parametric description

z(t) = R + it, t ∈ [0, π],

so we obtain the estimate
∣

∣

∣

∣

∣

∫

Γ2
R

f(z) dz

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ π

0

ei(R+it)

cosh(R + it)
· i dt

∣

∣

∣

∣

≤
∫ π

0

e−t

| cosh(R + it)| dt.

From

| cosh(R + it)| =
√

sinh2 R + cos2 t ≥ | sinhR|,

we get the estimate
∣

∣

∣

∣

∣

∫

Γ2
R

f(z) dz

∣

∣

∣

∣

∣

≤
∫ π

0

1
| sinh R| dt =

π

| sinh R| → 0 for R → +∞.

We have only assumed in the argument above that R ∈ R, so we also have
∣

∣

∣

∣

∣

∫

Γ4
R

f(z) dz

∣

∣

∣

∣

∣

≤ π

| sinhR| → 0 for R → +∞.
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4) Now coshx ≥ 1 +
1
2

x2, so it follows from the estimate

∣

∣

∣

∣

∫ +∞

−∞

a cosx + b sinx

coshx
dx

∣

∣

∣

∣

≤
∫ +∞

−∞

C

1 + 1
2 x2

dx < +∞,

that the improper integral is convergent.

When we return to the complex problem, then we get by the symmetry that

∫

Γ1
R

f(z) dz =
∫ R

−R

eix

coshx
dx =

∫ R

−R

cos x + i sinx

coshx
dx =

∫ R

−R

cosx

coshx
dx,

and analogously,

∫

Γ3
R

f(z) dz =
∫ −R

+R

ei(x+iπ)

cosh(x + iπ)
dx = +e−π

∫ R

−R

cos x + i sinx

coshx
dx = e−π

∫ R

−R

cos x

coshx
dx,

because an integration of an odd function
(

her
sinx

coshx

)

over a symmetric interval [−R,R] is

always 0.

Then we get by taking the limit R → +∞ in (2),

2π exp
(

−π

2

)

= lim
R→+∞

∫ R

−R

cos x

coshx
dx =

(

1 + e−π
)

∫ +∞

−∞

cosx

coshx
dx,

so
cos x

coshx
being even, we get by a reflection argument that

∫ +∞

0

cos x

coshx
dx =

1
2

∫ +∞

−∞

cosx

coshx
dx =

2π exp
(

−π

2

)

2 (1 + e−π)
=

π

2
· 1

cosh
(π

2

) =
π exp

(

−π

2

)

1 + e−π
.
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7 Cauchy’s principal value

Example 7.1 Compute the (important) improper integral

∫ +∞

0

sinx

x
dx.

It is not possible directly to apply the analytic function
sin z

z
in the various solution formulæ, because

it does not fulfil any of the inequalities required for the legality of some relevant residuum formula.
Another problem is that we here only shall integrate along the positive real axis, i.e. not a “closed
curve” in C∗, and we cannot talk of a domain which is surrounded by the path of integration.

Instead we shall rewrite the integrand by means of Euler’s formulæ. In order to avoid the singularity
at the point 0 we shall integrate over an interval of the form [ε,R]. Then we get

∫ R

ε

sinx
dx =

1
2i

∫ R

ε

{

eix

x
− e−ix

x

}

dx =
1
2i

{

∫ R

ε

−
∫ −R

−ε

}

eix

x
dx =

1
2i

{

∫ −ε

−R

+
∫ R

ε

}

eix

x
dx.

If the right hand side has a limit value for ε → 0+ and R → +∞, then the limit of the left hand side
does also exist, and we have

∫ +∞

0

sinx

x
dx =

1
2i

vp.
∫ +∞

−∞

eix

x
dx.
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The analytic function
1
z

eiz has only the simple pole at z = 0, and this lies on the real axis, so it will
contribute to Cauchy’s principal value with the amount

πi res
(

eiz

z
; 0

)

= πi.

Since we have the structure
1
z

eiz =
1
z

eimz of the integrand, where m = 1 > 0 and
1
z

has a zero of first
order at ∞, taking the limit R → +∞ will not cause any problem, and we have checked the conditions
for the application of the residuum formula for Cauchy’s principal value. Finally, the integrand does
not have any other singularity that z = 0, so we conclude that

∫ +∞

0

sinx

x
dx =

1
2i

vp.
∫ +∞

−∞

eix

x
dx =

1
2i

· πi =
π

2
.

Example 7.2 Compute

vp.
∮

|z|=2

dz

2z2 + 3z − 2
.

–2

–1

0

1

2

–2 –1 1 2

Figure 16: The circle |z| = 2 with the evasive circular arc Γε around the point −2, and the singularity
1
2

inside the curve.

We first note that the denominator 2z2 + 3z − 2 is 0 for

z =
−3 ±

√
9 + 16

4
=

−3 ± 5
4

=











−2,

1
2
.

We see that the pole z = −2 lies on the path of integration, while the pole z =
1
2

lies inside the curve.
It follows by a decomposition that

1
2z2 + 3z − 2

=
1
2
· 1

(z + 2)
(

z − 1
2

) =
1
2
· 1

5
2

· 1

z − 1
2

+
1
2
· 1
(

−5
2

) · 1
z + 2

=
1
5
· 1

z − 1
2

− 1
5
· 1
z + 2

,
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and hence

vp.
∮

|z|=2

dz

2z2 + 3z − 2
= vp.

∮

|z|=2

1
5











1

z − 1
2

− 1
z + 2











=
1
5

∮

|z|=2

dz

z − 1
2

− 1
5

lim
ε→0

{∫

Cε+Γε

−
∫

Γε

1
z + 2

dz

}

,

where

Cε = {z ∈ C | |z| = 2, |z + 2| ≥ ε}

and

Γε = {z ∈ C | |z + 2| = ε, |z| ≤ 2}.

It follows from Cauchy’s integral theorem that
∫

Cε+Γε

dz

z + 2
= 0,

so we get the following reduced expression

vp.
∮

|z|=2

dz

2z2 + 3z − 2
=

2πi

5
+ lim

ε→0+

1
5

∫

Γε

1
z + 2

dz.

We choose for Γε the following parametric description,

z = −2 + ε · eiθ for θ ∈ [Θ0(ε),Θ1(ε)] ,

where

Θ0(ε) → −π

2
and Θ1(ε) → +

π

2
for ε → 0,

and where the interval of the path of integration is run through in the opposite direction of the
direction of the plane. Then we get by insertion and taking the limit,

vp.
∮

|z|=2

dz

2z2 + 3z − 2
=

2πi

5
+

1
5

lim
ε→0+

∫ Θ2(ε)

Θ1(ε)

i ε eiθ dθ

ε eiθ
=

2πi

5
+

i

5
lim

ε→0+
{Θ0(ε) − Θ1(ε)}

=
2πi

5
+

i

5

{

−π

5
− π

2

}

=
2πi

5
− πi

5
=

πi

5
.

Example 7.3 Let C denote the square with the corners 1, i, −1, −i. Compute

vp.
∮

C

dz

z4 − 1
.

It is obvious that the corners of C are the poles of the integrand, so for given ε > 0 we define the
auxiliary curves

Cε = {z ∈ C | z ∈ C, |z − a| ≥ ε, a = 1, i, −1, −i}
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–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 17: The curves C and Cε with the arcs of evasion.

and

Γa,ε = {z ∈ C | |z − a| = ε, z inside C}, a = 1, i, −1, −i,

of positive direction. Then

vp.
∮

C

dz

z4 − 1
= lim

ε

dz

z4 − 1
= lim

ε







∫

Cε−Γ1,ε−Γi,ε−Γ−1,ε−Γ−i,ε

dz

z4 − 1
+

∑

a=1,i,−1,−i

∫

Γa,ε

dz

z4 − 1







= lim
ε→0

∑

a=1,i,−1,−i

∫

Γa,ε

dz

z4 − 1
.

By a decomposition,

1
z4 − 1

=
∑

a=1,i,−1,−i

res
(

1
z4 − 1

; a

)

· 1
z − a

=
1
4

∑

a=1,i,−1,−i

a

z − a
.

Then we use the parametric descriptions

Γa,ε : z = a + ε eiθ, θ ∈
[

Θ(a),Θ(a) +
π

2

]

, a = 1, i, −1, −i,

in order to get

vp.
∮

C

dz

z4 − 1
=

1
4

∑

a=1,i,−1,−i

a

∫

Γa,ε

dz

z − a
=

1
4

∑

a=1,i,−1,−i

a

∫ Θ(a)+ π
2

Θ(a)

ε i eiθ

ε eiθ
dθ

=
1
4

∑

a=1,i,−1,−i

a i · π

2
=

πi

8

∑

a=1,i,−1,−i

a = 0.
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Example 7.4 Compute

vp.
∫ +∞

−∞

dx

x (x2 + 1)
.

The integrand

f(z) =
1

z (z2 + 1)

is a rational function, and we have the three simple poles 0, i and −i. Of these, only 0 lies on the real
axis, i.e. on the path of integration. Since

z3f(z) =
z3

z (z2 + 1)
→ 1 for z → ∞,

there exists an R > 1, such that
∣

∣

∣

∣

z3

z (z2 + 1)

∣

∣

∣

∣

≤ 2 for |z| ≥ R,

thus

(14)
∣

∣

∣

∣

1
z (z2 + 1)

∣

∣

∣

∣

≤ 2
|z|3 for |z| ≥ R.
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It follows that vp.
∫ +∞
−∞

dx

x (x2 + 1)
exists and that it can be computed by a residuum formula,

vp.
∫ +∞

−∞

dx

x (x2 + 1)
= 2πi res

(

1
z (z2 + 1)

; i

)

+ πi res
(

1
z (z2 + 1)

; 0
)

,

because z = i lies to the left of the path of integration seen in its direction, and because its weight
is 2πi, while the residuum at the pole z = 0 on the x-axis roughly speaking is halved with only part
going to the upper half plane and the other half to the lower half plane.

In the present case it suffices to convince oneself that the integral is convergent, because the integrand
is an odd function, so the only possible value is 0, i.e.

vp.
∫ +∞

−∞

dx

x (x2 + 1)
= 0.

For completeness we compute

res
(

1
z (z2 + 1)

; i

)

= lim
z→i

1
z
2z

=
1

2i2
= −1

2
, (regel II),

where P (z) =
1
z

and Q(z) = z2 + 1, and

res
(

1
z (z2 + 1)

; 0
)

= lim
z→0

1
z2 + 1

= 1, (regel Ia),

and we have (control),

vp.
∫ +∞

−∞

dx

x (x2 + 1)
= 2πi res

(

1
z (z2 + 1)

; i

)

+ πi res
(

1
z2 (z2 + 1)

; 0
)

= 2πi ·
(

−1
2

)

+ πi = 0.

Example 7.5 Compute

vp.
∫ +∞

−∞

dx

x (x3 + 1)
.

The integrand

f(z) =
1

z (z3 + 1)

is a rational function with a zero of fourth order at ∞. It is analytic in all of the complex plane except
for the simple poles

0, −1,
1
2

+ i

√
3

2
,

1
2

+ i

√
3

2
,
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–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

Figure 18: The four poles, of which two are lying on the path of integration, i.e. the real axis.

cf. the figure. We conclude from

z4f(z) =
z4

z (z3 + 1)
→ 1 for z → ∞,

that there exists an R > 0, such that
∣

∣z4f(z)
∣

∣ ≤ 2, dvs. |f(z)| ≤ 2
|z|4 for |z| ≥ R.

Now, a = 4 > 1, so Cauchy’s principal value exists. In fact, we have simple poles on the x-axis, and
a > 1 in (15). The value is given by the residuum formula

vp.
∫ +∞

−∞

dx

x (x3 + 1)
= 2πi res

(

1
z (z3 + 1)

;
1
2

+ i

√
3

2

)

+πi res
(

1
z (z3 + 1)

; 0
)

+ πi res
(

1
z (z3 + 1)

; −1
)

.

Then by Rule Ia,

res
(

1
z (z3 + 1)

; 0
)

= lim
z→0

1
z3 + 1

= 1.

The other two poles satisfy the equation z3
0 = −1. Putting

P (z) =
1
z

and Q(z) = z3 + 1,

then P (z) and Q(z) are analytic in a neighbourhood of z0, and since

1
z (z3 + 1)

=
P (z)
Q(z)

,

it follows from Rule II that

res
(

1
z (z3 + 1)

; z0

)

= res
(

P (z)
Q(z)

; z0

)

=
P (z0)
Q′ (z0)

=
1
z0

· 1
3z2

0

=
1
3
· 1
z3
0

= −1
3
.
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This is true for both z0 = −1 and for z0 =
1
2

+ i

√
3

2
, so it follows that at

vp.
∫ +∞

−∞

dx

x (x3 + 1)
= 2πi res

(

1
z (z3 + 1)

;
1
2

+ i

√
3

2

)

+πi res
(

1
z (z3 + 1)

; 0
)

+ πi res
(

1
z (z3 + 1)

; −1
)

= 2πi

(

−1
3

)

+ πi + πi

(

−1
3

)

= πi

(

−2
3

+ 1 − 1
3

)

= 0.

Note also that since the integrand is real, the result shall also be real.

Example 7.6 Compute

vp.
∫ +∞

−∞

dx

x6 − 1
.

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 19: The poles of the integrand. Two of these, ±1 lie on the path of integration.

The integrand f(z) =
1

z6 − 1
is a rational function with a zero of order 6 at ∞, i.e.

z6f(z) =
z6

z6 − 1
→ 1 for z → ∞.

Hence there exists an R > 0, such that

f(z)| =
∣

∣

∣

∣

1
z6 − 1

∣

∣

∣

∣

≤ 2
|z|6 for |z| ≥ R.

Since f(z) has only simple poler and da a = 6 > 1, it follows that Cauchy’s principal value exists and
is given by the following residuum formula,

vp.
∫ +∞

−∞

dx

x6 − 1
= 2πi

{

res

(

1
z6 − 1

;
1
2

+ i

√
3

2

)

+ res

(

1
z6 − 1

; −1
2

+ i

√
3

2

)}

+πi

{

res
(

1
z6 − 1

; 1
)

+ res
(

1
z6 − 1

; −1
)}

.
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If z6
0 = 1, then we have by Rule II,

res
(

1
z6 − 1

; z0

)

=
1

6z5
0

=
1
6

z0

z6
0

=
1
6

z0.

We can compute all four residues by this rule, so

vp.
∫ +∞

−∞

dx

x6 − 1
= 2πi

1
6

{(

1
2

+ i

√
3

2

)

+

(

−1
2

+ i

√
3

2

)}

+ πi · 1
6
{1 + (−1)}

= 2πi · 1
6
· i
√

3 + 0 = −2π
√

3
6

= − π√
3
.

As a very weak control we see that since the integrand is real, the result is also real.
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Example 7.7 1) Prove that the Cauchy principal value

K(a) = vp.
∫ +∞

−∞

ei a x − 1
x2

dx

exists for every real number a, and show that

K(a) = −π|a|.

2) Compute the integral
∫ +∞

−∞

cos ax − cos bx

x2
dx,

expressed by K(a) and K(b).

1) First note that the integrand

ei a z − 1
z2

has only the pole z = 0 (and ∞ as an essential singularity). The numerator has a zero of first
order at z = 0, hence z = 0 is a pole of first order. From

∣

∣ei a z
∣

∣ ≤ 1 for a ≥ 0 and Im(z) ≥ 0,
follows the estimate

∣

∣

∣

∣

ei a z − 1
z2

∣

∣

∣

∣

≤ 2
R2

for |z| ≥ R and Im(z) ≥ 0,

where we also have assumed that a ≥ 0. Thus the conditions of the existence of Cauchy’s principal
value are fulfilled for a ≥ 0, and it is given by a residuum formula,

K(a) = vp.
∫ +∞

−∞

ei a x − 1
x2

dx = πi · res
(

ei i a z − 1
z2

; 0
)

= π i · 1
1!

lim
z→0

d

dz

(

ei a z − 1
)

= π i lim
z→0

i a ei a z = −π a = −π|a|.

If a < 0, i.e. a = −|a|, we get by a complex conjugation and the result above that

K(a) = vp.
∫ +∞

−∞

ei a z − 1
x2

dx = vp.
∫ +∞

−∞

ei|a| − 1
x2

dx = K(|a|) = −π|a|.

Summing up,

K(a) = K(|a|) = vp.
∫ +∞

−∞

ei a x − 1
x2

dx = −π|a|, a ∈ R.

The result is real, so

K(a) = vp. Re
{∫ +∞

−∞

ei a x − 1
x2

dx

}

= vp.
∫ +∞

−∞

cos(ax) − 1
x2

dx

=
∫ +∞

−∞

cos(ax) − 1
x2

dx = −π|a|.
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The numerator cos(ax) − 1 has a zero of at least second order at 0, so the integrand
cos(ax) − 1

x2

has a removable singularity at x = 0, and we can remove “vp.” in front of the integral, and we
have the estimate

cos(ax) − 1
x2

≤ 2
x2

for |x| ≥ 1.

2) Clearly, the zero of the numerator at x = 0 has order 2, so the singularity at 0 is removable. Since
∣

∣

∣

∣

cos(ax) − cos(bx)
x2

∣

∣

∣

∣

≤ 2
x2

for x �= 0,

and the integrand is continuous with a continuous extension to 0, we conclude that the improper
integral exists and that it is given by

∫ +∞

−∞

cos(ax) − cos(bx)
x2

dx = lim
ε→0+

∫ −ε

−∞
+

∫ +∞

ε

cos(ax) − cos(bx)
x2

dx

= lim
ε→0+

∫ −ε

−∞
+

∫ +∞

ε

cos(ax) − 1
x2

dx − lim
ε→0+

∫ −ε

−∞
+

∫ +∞

ε

cos(bx) − 1
x2

dx

= vp.
∫ +∞

−∞

cos(ax) − 1
x2

dx − vp.
∫ +∞

−∞

cos(bx) − 1
x2

dx

=
∫ +∞

−∞

cos(ax) − 1
x2

dx −
∫ +∞

−∞

cos(bx) − 1
x2

dx

= K(a) − K(b) = −π(|a| − |b|) = π(|b| − |a|).

Example 7.8 1) Find the poles, their order and their residuum for the function

f(z) =
Log z

(z − 1)2(z − 2)(z − 3)
.

2) Use the calculus of residues to find Cauchy’s principal value of the integral

vp.
∫ +∞

−∞
f(x) dx,

and then compute the integral
∫ 0

−∞

dx

(x − 1)2(x − 2)(x − 3)
.

1) We have a branch cut along R− ∪ {0}, so it only makes sense to find the poles of the function
outside this half line. It follows immediately that z = 2 and z = 3 are simple poles. Furthermore,
(z− 1)2 has a zero of order 2, while Log z has a zero of order 1. Hence, z = 1 is also a simple pole.
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The residuum at z = 1 is computed by considering z = 1 as a pole of at most order 2,

res(f ; 1) =
1
1!

lim
z→1

d

dz

(

Log z

(z − 2)(z − 3)

)

= lim
z→1

{

Log z · d

dz

(

1
(z − 2)(z − 3)

)

+
1

z(z − 2)(z − 3)

}

= 0 +
1

1 · (1 − 2) · (1 − 3)
=

1
2
.

Then we get

res(f ; 2) =
Log 2

(2 − 1)2 · (2 − 3)
= − ln 2,

and

res(f ; 3) =
Log 3

(3 − 1)2 · (3 − 2)
=

1
4

ln 3.

1

2

3

4

–4 –2 2 4

Figure 20: The path of integration CR,ε = C4, 1
3
.

2) Choose the path of integration CR,ε as the one given on the figure, where 0 < ε < 1 < 3 < R. We
shall allow the path of integration to pass through the simple poles at z = 1, 2 and 3, and they
contribute to the integral with πi times their residues. We shall further assume that the part of
the path of integration which runs along the negative and real axis, actually lies in the upper half
plane above the branch cut. It follows from these assumptions that

∮

CR,ε

f(z) dz = π {res(f ; 1) + res(f ; 2) + res(f ; 3)} = πi

{

1
2
− ln 2 +

1
4

ln 3
}

.

We get the following estimate along the circular arc |z| = R, z = R eiθ, for R → ∞,
∣

∣

∣

∣

∫ π

θ=0

Log z

(z − 1)2(z − 2)(z − 3)
dz

∣

∣

∣

∣

≤ lnR + π

(R − 1)2(R − 2)(R − 3)
· π R → 0.

Along the circular arc |z| = ε, i.e. z = ε ei θ, we get the following estimate for ε → 0+,
∣

∣

∣

∣

∫ π

θ=0

Log z

(z − 1)2(z − 2)(z − 3)
dz

∣

∣

∣

∣

≤ | ln ε| + π

1 − ε)2(2 − ε)(3 − ε)
· πε

= π · ε | ln ε| + πε

(1 − ε)2
(2 − ε)(3 − ε) → 0,
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where we have used that ε| ln ε| → 0 for ε → 0+ due to the rules of magnitudes.

Hence we conclude by taking the limits ε → 0+ and R → +∞ that

vp.
∫ +∞

−∞
f(x) dx = π i

{

1
2
− ln 2 +

1
4

ln 3
}

.

This implies that

π i

{

1
2
− ln 2 +

1
4

ln 3
}

= lim
ε→0+

lim
R→+∞

{

∫ −ε

−R

Log x

(x − 1)2(x − 2)(x − 3)
dx +

∫ R

ε

Log x

(x − 1)2(x − 2)(x − 3)
dx

}

= lim
ε→0+

lim
R→+∞

{

∫ −ε

−R

+
∫ R

ε

ln |x|
(x − 1)2(x − 2)(x − 3)

dx + iπ

∫ −ε

−R

dx

(x − 1)2(x − 2)(x − 3)

}

.

Then by taking the imaginary part and then the limits,
∫ 0

−∞

dx

(x − 1)2(x + 2)(x − 3)
=

1
2
− ln 2 +

1
4

ln 3.
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As a check we see that the latter result can also be derived by a decomposition and a simple
integration. It follows from

1
(x − 1)2(x − 2)(x − 3)

=
1

(1 − 2)(1 − 3)
· 1
(x − 1)2

+
A

x − 1

+
1

(2 − 1)2(2 − 3)
· 1
x − 2

+
1

(3 − 1)2(3 − 2)
· 1
x − 3

=
1
2

1
(x − 1)2

+
A

x − 1
− 1

x − 2
+

1
4

1
x − 3

,

that

A

x − 1
− 1

x − 2
+

1
4

1
x − 3

=
1

(x − 1)2(x − 2)(x − 3)
− 1

2
· 1
(x − 1)2

=
2 − (x − 2)(x − 3)

2(x − 1)2(x − 2)(x − 3)

=
−(x − 1)(x − 3) + x − 3 + 2

2(x − 1)2(x − 2)(x − 3)
=

−x + 3 + 1
2(x − 1)(x − 2)(x − 3)

=
−x + 4

2(x − 1)(x − 2)(x − 3)

=
−1 + 4

2(1 − 2)(1 − 3)
· 1
x − 1

+
−2 + 4

2(2 − 1)(2 − 3)
· 1
x − 2

+
−3 + 4

2(3 − 1)(3 − 2)
· 1
x − 3

=
3
4
· 1
x − 1

− 1
x − 2

+
1
4
· 1
x − 3

,

hence A =
3
4
, and then by insertion and a usual integration,

∫ 0

−∞

dx

(x − 1)2(x − 2)(x − 3)
=

∫ 0

−∞

{

1
2

1
(x−1)2

+
3
4

1
x−1

− 1
x−2

+
1
4

1
x−3

}

dx

= lim
R→−∞

[

−1
2

1
x−1

+
3
4

ln |x−1|−ln |x−2| + 1
4

ln |x−3|
]0

R

= −1
2
· 1
(−1)

+ 0 − ln 2 +
1
4

ln 3 − lim
x→−∞

{

−1
2

1
x−1

+
1
4

ln
∣

∣

∣

∣

(x−1)3(x−3)
(x−2)4

∣

∣

∣

∣

}

=
1
2
− ln 2 +

1
4

ln 3,

in accordance with the previous result.
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Example 7.9 Compute

vp.
∫ +∞

−∞

ei x
√

π

x (x2 + π)
dx.

Then prove that the improper integral
∫ +∞

−∞

sin (
√

π x)
x (x2 + π)

dx

exists and find its value.

The integrand

f(z) =
ei z

√
π

z (z2 + π)

has the three singularities (they are all simple poles),

0, i
√

π, −i
√

π,

and it is analytic in any other point of C. If Im(z) ≥ 0, then
∣

∣

∣ei z
√

π
∣

∣

∣ ≤ 1, and since

∣

∣z3f(z)
∣

∣ =
∣

∣

∣ei z
√

π
∣

∣

∣ ·
∣

∣

∣

∣

z2

z2 + π

∣

∣

∣

∣

≤ C for |z| ≥ R and Im(z) ≥ 0,

where R >
√

π is fixed, we conclude that

(15) |f(z)| ≤ C

|z|3 for |z| ≥ R and Im(z) ≥ 0,

(note that we cannot here allow Im(z) < 0).

Remark 7.1 By a more careful analysis, which shall not be given here, one can show that one can
choose

C =
R2

R2 − π
,

because
∣

∣

∣

∣

z2

z2 + π

∣

∣

∣

∣

=
∣

∣

∣

∣

z2 + π − π

z2 + π

∣

∣

∣

∣

=
∣

∣

∣

∣

1 − π

z2 + π

∣

∣

∣

∣

=
∣

∣

∣

∣

π

z2 + π
− 1

∣

∣

∣

∣

is maximum for z = ±i R. ♦

The pole 0 on the real axis is simple, and we have a = 3 > 1 in (15). This implies that Cauchy’s
principal value exists and that it can be computed by a residuum formula,

vp.
∫ +∞

−∞

ei x
√

π

x (x2 + π)
dx = 2π i res

(

ei z
√

π

z (z2 + π)
; i

√
π

)

+ π i res

(

ei z
√

π

z (z2 + π)
; 0

)

= 2π i lim
z→i

√
π

ei z
√

π

z (z + i
√

π)
+ π i lim

z→0

ei z
√

π

z2 + π
=

2π e · e−π

−2π
+ π i · 1

π
= i ·

{

1 − e−π
}

.
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Now

lim
x→0

sin (
√

π x)
x (x2 + π)

=
1√
π

,

so we conclude that the integrand
sin (

√
π · x)

x (x2 + π)
is continuous, so

∫ +∞

−∞

∣

∣

∣

∣

sin (
√

π x)
x (x2 + π)

∣

∣

∣

∣

dx ≤
∫ 1

−1

∣

∣

∣

∣

sin (
√

π x)
x (x2 + π)

∣

∣

∣

∣

dx +
∫

|x|≥1

1
x2 + π

dx,

because we have for |x| ≥ 1,
∣

∣

∣

∣

sin (
√

π x)
x

∣

∣

∣

∣

≤ 1, x ∈ R.

It follows from the continuity that the former integral exists, and the latter integral is of Arctan type,
i.e. in particular convergent. Hence we conclude that the improper integral

∫ +∞

−∞

sin (
√

π x)
x (x2 + π)

dx

is convergent and that its value is given by

vp.
∫ +∞

−∞

sin (
√

π x)
x (x2 + π)

dx = lim
ε→0+

{∫ −ε

−∞
+

∫ +∞

ε

sin (
√

π x)
x (x2 + π)

dx

}

.

We have

i
{

1 − e−π
}

= vp.
∫ +∞

−∞

ei x
√

π

x (x2 + π)
dx = vp.

∫ +∞

−∞

cos (x
√

π) + i sin (x
√

π)
x (x2 + π)

dx(16)

= vp.
∫ +∞

−∞

cos (x
√

π)
x (x2 + π)

dx + i

∫ +∞

−∞

sin (x
√

π)
x (x2 + π)

dx = 0 + i

∫ +∞

−∞

sin (x
√

π)
x (x2 + π)

dx,

because “vp” is superfluous on the sine integral according to the above. If one wants to be particular
careful, then notice that we have by the definition,

vp.
∫ +∞

−∞

cos (x
√

π)
x (x2 + π)

dx = lim
ε→0+

(∫ −ε

−∞
+

∫ +∞

ε

)

cos (x
√

π)
x (x2 + π)

dx = 0,

because the integrand is an odd function in x, and because the improper integrals
∫ −ε

−∞ · · · dx and
∫ +∞

ε
· · · dx clearly exist.

Then we conclude from (16) that

∫ +∞

−∞

sin (x
√

π)
x (x2 + π)

dx = 1 − e−π.
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8 Sum of special types of series

Example 8.1 Find the sum of the series

+∞
∑

n=−∞

1
(

n − 1
2

)2 ,

and then derive the value of the important sum

+∞
∑

n=0

1
(2n + 1)2

.

Putting f(z) =
(

z − 1
2

)−2

, it is obvious that f(z) satisfies an estimate of the type |f(z)| ≤ c

|z|2

for |z| ≥ 1. Since z0 =
1
2

/∈ Z is the only pole, the conditions for the application of some residuum
formula are satisfied. The auxiliary function

g(z) :=
cot(πz)

(

z − 1
2

)2 , z �= 1
2
,
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has at most a double pole at z0 =
1
2
, so we may apply Rule I with q = 2. This gives

res











cot(πz)
(

z − 1
2

)2 ;
1
2











=
1

(2 − 1)!
lim
z→ 1

2

d

dz

{

(

z − 1
2

)2

g(z)

}

= lim
z→ 1

2

(

−
{

1 + cot2(πz)
}

π
)

= −π.

Finally, by insertion into the residuum formula for the sum of a series of this type,

+∞
∑

−∞

1
(

n − 1
2

)2 = −π · res











cot(πz)
(

z − 1
2

)2 ;
1
2











= π2.

It follows by a small rearrangement that

π2 =
+∞
∑

n=−∞

1
(

n − 1
2

)2 =
+∞
∑

n=1

1
(

n − 1
2

)2 +
+∞
∑

n=0

1
(

n +
1
2

)2 = 2
+∞
∑

n=0

4
(2n + 1)2

,

and then finally

+∞
∑

n=0

1
(2n + 1)2

=
π2

8
.

Remark 8.1 Since any number m ∈ Z can be written as

m = 2r(2n + 1), for uniquely determined r ∈ N0 and n ∈ N0,

and since the series
∑+∞

n=1

1
n2

is absolutely convergent, it is easy to derive that the sum is given by

+∞
∑

n=1

1
n2

=
+∞
∑

n=0

1
(2n + 1)2

+
1
22

+∞
∑

n=0

1
(2n + 1)2

+
1

(22)2

+∞
∑

n=0

1
(2n + 1)2

+ · · ·

=
{

1 +
1
4

+
1
42

+
1
43

+ · · ·
} +∞

∑

n=0

1
(2n + 1)2

=
1

1 − 1
4

· π2

8
=

π2

6
,

which is a very important result in the applications. ♦
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Example 8.2 Find for every given constant a > 0 the sum of the infinite series

+∞
∑

n=0

1
n2 + a2

.

We can obviously for e.g. |z| ≥ 1 find a constant c > 0, such that we have the estimate

|f(z)| =
∣

∣

∣

∣

1
z2 + a2

∣

∣

∣

∣

≤ c

|z|2 ,

which proves one of the assumptions. Since f(z) has only the two simple poles z = ±ia /∈ Z, the
other assumption for the application of the residuum formula is also fulfilled. Since cot(±iπa) �= 0, it
suffices to compute the residues

res
(

1
z2 + a2

; ia

)

=
1

2ia
and res

(

1
z2 + a2

; −ia

)

= − 1
2ia

.

Then we get by the residuum formula,

+∞
∑

n=−∞

1
n2 + a2

= −π

{

1
2ia

cot(iπa) − 1
2ia

cot(−iπa)
}

= − π

ia
· cos(iπa)

sin(iπa)
= − π

ia
· cosh(πa)
i · sinh(πa)

=
π

a
· coth(πa).

Thus

+∞
∑

n=0

1
n2 + a2

=
1

2a2
+

1
2

+∞
∑

n=−∞

1
n2 + a2

=
1

2a2
+

π

2a
coth(πa).

If a = 1, then we get in particular

+∞
∑

n=0

1
n2

=
1
2

+
π

2
coth π.

Example 8.3 Let a > 0 denote a constant. Find the sum of the alternating series

+∞
∑

n=0

(−1)n

n2 + a2
.

The underlying function f(z) =
1

z2 + a2
is the same as in Example 8.2, so we have already checked

the assumptions of the relevant residuum formula in Example 8.2. The only difference is that the
auxiliary factor cot(πz) has been replaced by 1/ sin(πz), so it follows immediately by insertion into
the residuum formula that

+∞
∑

n=−∞

(−1)n

n2 + a2
= −π

{

1
2ai

· 1
sin(iπa)

− 1
2ai

· 1
sin(−iπa)

}

= − π

ia
· 1
sin(iπa)

=
π

a
· 1
sinh(πa)

.
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Since

(−1)−n

(−n)2 + a2
=

(−1)n

n2 + a2
,

it easily follows that

+∞
∑

n=0

(−1)n

n2 + a2
=

1
2a2

+
1
2

+∞
∑

n=−∞

(−1)n

n2 + a2
=

1
2a2

+
π

2a
· 1
sinh(πa)

.

If in particular a = 1, then

+∞
∑

n=0

(−1)n

n2 + 1
=

1
2

+
π

2 sinh π
.

Remark 8.2 Even if one may use the theory to find the sum of many convergent series, where the
term has the structure of a rational function in n, one should not be misled to believe that this is true
for every series of this type. The simplest example is

+∞
∑

n=1

1
n3

(≈ 1, 202),

the exact value of which is still unknown. ♦

Example 8.4 Let a ∈ R+ \ N. Find the sum of the series

+∞
∑

n=0

1
n2 − a2

.

The degree of the denominator is precisely 2 larger than the degree of the numerator, so the series

+∞
∑

n=−∞

1
n2 − a2

is convergent when 2a /∈ N, and the value is given by

+∞
∑

n=−∞

1
n2 − a2

= 2
+∞
∑

n=0

1
n2 − a2

+
1
a2

= −π
k

∑

j=1

cot (ajπ) res (f ; aj)

= −π

{

cot(aπ) res
(

1
2
(z+a)(z−a) ; a

)

+ cot(−aπ) res
(

1
(z+a)(z −a)

; −a

)}

= −π

{

1
2a

cos(aπ) +
1

−2a
cos(−aπ)

}

= −π

a
cot(aπ),

hence by a rearrangement,

+∞
∑

n=0

1
n2 − a2

= − 1
2a2

− π

2a
cot(aπ).
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The expression (the series)

+∞
∑

n=0

1
n2 − a2

is continuous in a ∈ R+\N, so this formula also holds for a = p+
1
2
, p ∈ N0. Since cot

((

p +
1
2

)

π

)

=

0, p ∈ N0, we obtain in this case

+∞
∑

n=0

1

n2 −
(

p +
1
2

)2 = − 1

2
(

p +
1
2

)2 = − 1

2
(

p +
1
2

)2 = − 2
(2p + 1)2

, p ∈ N0.

Alternatively,

res
(

cot(az)
z2 − a2

; ±a

)

= 0 for a = p +
1
2
, p ∈ N0,

because the singularity is then removable.
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Example 8.5 Find the sum of the series

+∞
∑

n=0

1
n2 + 4n + 5

.

First we note that

n2 + 4n + 5 = (n + 2)2 + 1.

We use that
+∞
∑

n=0

1
n2 + 1

=
1
2

+
π

2
cothπ

is the sum of a known series, so by a small rearrangement,

+∞
∑

n=0

1
n2 + 4n + 5

=
+∞
∑

n=0

1
(n + 2)2 + 1

=
+∞
∑

n=2

1
n2 + 1

= −1 − 1
2

+
+∞
∑

n=0

1
n2 + 1

= −1 +
π

2
coth π.

Example 8.6 Find the sum of the series

+∞
∑

n=−∞

1
(n2 + 1) (2n + 1)

.

The polynomial of the denominator is of degree 3, and it does not have any zero in i Z. We therefore
conclude that the series is convergent, and its sum can be found by a residuum formula. The poles
are

i, −i, −1
2
,

thus
+∞
∑

n=−∞

1
(n2 + 1) (2n + 1)

= −π

{

cot(i π) · res
(

1
(z2 + 1) (2z + 1)

; i

)

+cot(−i π) · res
(

1
(z2 + 1) (2z + 1)

; −i

)

+res
(

cot(π z)
(z2 + 1) (2z + 1)

; −1
2

)}

= −π

{

cos(iπ)
sin(iπ)

1
(i+i)(2i+1)

+
cos(−iπ)
sin(−iπ)

1
(−i−i)(−2i+1)

+ 0
}

= −π

{

coshπ

sinhπ
· 1

i
· 1
2i(1+2i)

+
coshπ

sinhπ
· 1
(−i)

· 1
(−2i)(1−2i)

}

=
π

2
coth π ·

{

1
1 + 2i

+
1

1 − 2i

}

=
π

2
coth π · 1 + 2i + 1 − 2i

5
=

π

5
cothπ.
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Remark 8.3 The function
1

(z2 + 1) (2z + 1)
has a simple pole at z = −1

2
, so the auxiliary function

cot(πz)
(z2 + 1) (2z + 1)

has a removable singularity for z = −1
2
. This is in agreement with that the residuum

of the auxiliary function is 0 at z = −1
2
. ♦

Example 8.7 Find the sum of the series

+∞
∑

n=−∞

2n + 1
(n2 + 1) (3n + 1)

The corresponding analytic function is

f(z) =
1
3
· 2z + 1

(z2 + 1)
(

z +
1
3

) ,

which has a zero of second order at ∞, and the simple poles

a1 = −1
3
, a2 = i, a3 = −i,

where 2aj /∈ Z. It follows that the series is convergent with the sum

+∞
∑

n=−∞

2n + 1
(n2 + 1) (3n + 1)

= −π

{

cos
(

−π

3

)

res
(

f ; −1
3

)

+ cot(iπ)res(f ; i) + cot(−iπ)res(f ;−i)
}

.

Here,

res
(

f ; −1
3

)

=
1
3

[

2z + 1
z2 + 1

]

z=− 1
3

=
1
3
·
−2

3
+ 1

1
9

+ 1
=

1
10

,

res(f ; i) =
[

2z + 1
(z + i)(3z + 1)

]

z=i

=
2i + 1

2i(3i + 1)
=

−1 − 7i
20

,

res(f ;−i) =
[

2z + 1
(z − i)(3z + 1)

]

z=−i

=
−2i + 1

−2i(−3i + 1)
=

−1 + 7i
20

.

Finally,

cot(iπ) =
cos(iπ)
sin(iπ)

= −i
coshπ

sinhπ
= −i coth π,

and

cot(−iπ) = i cothπ,
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so the sum is
+∞
∑

n=−∞

2n + 1
(n2 + 1) (2n + 1)

= −π

{

− 1√
3
· 1
10

− i coth π ·
(−1 − 7i

20

)

+ i cothπ ·
(−1 + 7i

20

)}

= π

{

1
10
√

3
+ i coth π ·

(

− 7i
10

)}

=
π
√

3
30

+
7π
10

· cothπ.

Example 8.8 Prove that

+∞
∑

n=0

(−1)n

(2n + 1)3
=

1
2

+∞
∑

−∞

(−1)n

(2n + 1)3
=

π3

32
.

When we split the sum and change the variable n = −m − 1, i.e. m = −n − 1, then

+∞
∑

n=−∞

(−1)n

(2n + 1)3
=

+∞
∑

n=0

(−1)n

(2n + 1)3
+

−1
∑

n=−∞

(−1)n

(2n + 1)3
=

+∞
∑

n=0

(−1)n

(2n + 1)3
+

+∞
∑

m=0

(−1)−m−1

(−2m − 2 + 1)3

=
+∞
∑

n=0

(−1)n

(2n + 1)3
+

+∞
∑

m=0

(−1)m−4

(2m + 1)3
= 2

+∞
∑

n=0

(−1)n

(2n + 1)3
,

and the first equality follows.

We have a triple pole at z = −1
2
, and the series is clearly convergent, so we obtain by a residuum

formula,

+∞
∑

n=−∞

(−1)n

(2n + 1)3
= −π res

(

1
(2z + 1)3 sin(πz)

; −1
2

)

.

A small rearrangement gives

1
(2z + 1)3 sinπz

=
1
8
· 1
(

z +
1
2

)3 · 1
sinπz

,

so
+∞
∑

n=−∞

(−1)n

(2n + 1)3
= −π

8
· 1
2!

lim
z→− 1

2

d2

dz2

(

1
sinπz

)

=
π

16
lim

z→− 1
2

π
d

dz

(

cos πz

sin2 πz

)

=
π2

16
lim

z→− 1
2

{

−π
sinπz

sin2 πz
− 2π · cos2 πz

sin3 πz

}

=
π2

16
·
{

− π

(−1)
− 2π · 0

}

=
π3

16
.

Summing up,

+∞
∑

n=0

(−1)n

(2n + 1)3
=

1
2

+∞
∑

n=−∞

(−1)n

(2n + 1)3
=

π3

32
.

134

Sum of special types of series

Download free eBooks at bookboon.com



Complex Funktions Examples c-7

  

138  

Example 8.9 Find

+∞
∑

n=0

(−1)n

(2n + 1)4
.

We see that z = −1
2

is a four-tuple pole of

f(z) =
1

(2z + 1)4
=

1
16

· 1
(

z +
1
2

)4 ,
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so the sum is computed by a residuum formula,

+∞
∑

n=0

(−1)n

(2n + 1)4
=

1
2

+∞
∑

n=−∞

(−1)n

(2n + 1)4
= −π

2
res











cot(πz)

16 ·
(

z +
1
2

)4 ; −1
2











= − π

32
res











cot(πz)
(

z +
1
2

)4 ; −1
2











= − π

32
· 1
3!

lim
z→− 1

2

d3

dz3
cot(πz)

= − π

6 · 32
lim

z→− 1
2

d2

dz2

{

−π · 1
sin2(πz)

}

=
π2

6 · 32
lim

z→− 1
2

{

−2π
d

dz

(

cos(πz)
sin3(πz)

)}

= −π3

96
lim

z→− 1
2

{

−π sin(πz)
sin3(πz)

− 3π · cos2(πz)
sin4(πz)

}

=
π4

96
.

Remark 8.4 It follows that
+∞
∑

n=1

1
n4

=
{

1 +
1
24

+
1
44

+
1
84

+
1

164
+ · · ·

} +∞
∑

n=0

(−1)n

(2n + 1)4
=

+∞
∑

j=0

(

1
24

)j +∞
∑

n=0

(−1)n

(2n + 1)4

=
1

1 − 1
24

· π4

96
=

16
15

· π4

96
=

π4

90
. ♦
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Example 8.10 Find the sum S of the series
+∞
∑

n=0

1
(

n +
1
2

)2 .

It is well-known that
+∞
∑

n=0

1
(2n + 1)2

=
π2

8
,

hence
+∞
∑

n=0

1
(

n +
1
2

)2 = 4
+∞
∑

n=0

1
(2n + 1)2

= 4 · π2

8
=

π2

2
.

Example 8.11 Prove that the series
+∞
∑

n=−∞

1
(

n − 1
4

) (

n − 3
4

)

is convergent.
Then find the sum of the series.
Finally, find

+∞
∑

n=1

1
(4n − 1)(4n − 3)

,

where we only sum over the positive integers.

Here,
(

n − 1
4

)(

n − 3
4

)

is a polynomial of second degree, which is not 0 for any n ∈ Z. Hence, the

series is convergent and the sum is given by a residuum formula,

+∞
∑

n=−∞

1
(

n − 1
4

) (

n − 3
4

) = −π















res









cot(πz)
(

z − 1
4

) (

z − 3
4

) ;
1
4









+ res









cot(πz)
(

z − 1
4

)(

z − 3
4

) ;
3
4























= −π











lim
z→ 1

4

cot(πz)

z − 3
4

+ lim
z→ 3

4

cot(πz)

z − 1
4











= −π











cot
π

4

−1
2

+
cot

3π
4

1
2











= −π(−2 − 2) = 4π.

Then we note that
0

∑

n=−∞

1
(4n − 1)(4n − 3)

=
+∞
∑

n=0

1
(−4n − 1)(−4n − 3)

=
+∞
∑

n=0

1
(4n + 3)(4n + 1)

=
+∞
∑

n=0

1
(4{n + 1} − 1)(4{n + 1} − 3)

=
+∞
∑

n=1

1
(4n − 1)(4n − 3)

,
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hence
+∞
∑

n=1

1
(4n − 1)(4n − 3)

=
1
2

+∞
∑

−∞

1
(4n − 1)(4n − 3)

=
1

2 · 4 · 4

+∞
∑

n=−∞

1
(

n − 1
4

)(

n − 1
4

) (

n − 3
4

) =
4π
32

=
π

8
.

Alternatively, use Leibniz’s series,

π

4
= Arctan 1 =

+∞
∑

n=0

(−1)n

2n + 1
,

where we have added parentheses in a convergent series, which is always possible without destroying
the convergence or the limit value. Then

π

4
=

+∞
∑

n=0

(−1)n

2n + 1
=

(

1
1
− 1

3

)

+
(

1
5
− 1

7

)

+
(

1
9
− 1

11

)

+ · · · +
(

1
4n − 3

− 1
4n − 1

)

+ · · ·

=
+∞
∑

n=1

(

1
4n − 3

− 1
4n − 1

)

=
+∞
∑

n=1

(4n − 1) − (4n − 3)
(4n − 1) · (4n − 3)

= 2
+∞
∑

n=1

1
(4n − 1)(4n − 3)

,

hence

+∞
∑

n=1

1
(4n − 1)(4n − 3)

=
π

8
.

Finally

+∞
∑

−∞

1
(

n − 1
4

)(

n − 3
4

) = 16
+∞
∑

n=−∞

1
(4n − 1)(4n − 3)

= 16 · 2
+∞
∑

n=1

1
(4n − 1)(4n − 3)

= 16 · 2 · π

8
= 4π.
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Example 8.12 Find the sum of the series

+∞
∑

n=−∞

1

n2 − 1
9

.

Also, find the sum of the series

+∞
∑

n=1

1
(3n)2 − 1

.

Let

f(z) =
P (z)
Q(z)

=
1

z2 − 1
9

where

P (z) = 1 and Q(z) = z2 − 1
9
.

The denominator has a degree which is 2 bigger than the degree of the numerator, and the zeros of

the denominator are z = ±1
3

/∈ Z. We conclude that the series is convergent, and that is sum can be
found by a residuum formula,

+∞
∑

n=−∞

1

n2 − 1
9

= −π











res







cot(πz)

z2 − 1
9

;
1
3






+ res







cot(πz)

z2 − 1
9

; −1
3

















= −π











cot
π

3
2
3

+
cot

(

−π

3

)

−2
3











= −3π
2

· 2 cot
π

3
= −π

√
3.

Then by a small rearrangement,

−π
√

3 =
+∞
∑

n=−∞

1

n2 − 1
9

= − 1
1
9

+ 2
+∞
∑

n=1

1

n2 − 1
9

= −9 + 18
+∞
∑

n=1

1
9n2 − 1

,

so

+∞
∑

n=1

1
(3n)2 − 1

=
+∞
∑

n=1

1
9n2 − 1

=
1
2
− π

√
3

18
≈ 0, 1977.

139

Sum of special types of series

Download free eBooks at bookboon.com



Complex Funktions Examples c-7

  

143  

Example 8.13 Given the function

f(z) =
2z2 + (2i − 1)z − i

(16z4 − 1) (z2 + 1)2
.

(a) Determine the singular points in C ∪ {∞} of f(z) and their types. Then find the residuum of
f(z) at z = ∞.

(b) Compute the complex line integral
∮

|z|=3

f(z) dz.

(c) Find the sum of the series

+∞
∑

n=1

1
16n4 − 1

.

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 21: The four simple zeros and the two double zeros of the denominator of f(z).

(a) The denominator
(

16z4 − 1
) (

z2 + 1
)2

=
(

4z2 + 1
) (

4z2 − 1
) (

z2 + 1
)2

is zero for z = ±i (double zeros), and for z = ±1
2

and z = ±1
2

i (simple zeros). The numerator
can be written

2z2 + (2i − 1)z − i = 2
(

z2 + iz
)

− (z + i) = (2z − 1)(z + i),

i.e. the numerator has the simple zeros z =
1
2

and z = −i. We therefore see that f(z) can be
reduced in the following way,

f(z) =
2z2 + (2i − 1)z − i

(16z4 − 1) (z2 + 1)2
=

(2z − 1)(z + i)
(4z2 + 1) (2z − 1)(2z + 1)(z + i)2(z − i)2

=
1

(2z + i)(2z − i)(2z + 1)(z + i)(z − i)2
.
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It follows that z = i is a double pole, that

z = −i, − i

2
,

i

2
, −1

2

are simple poles, and that z =
1
2

is a removable singularity. Finally, we have a zero of order 6 in
∞. In particular,

res(f ;∞) = 0.

(b) All finite singularities lie inside |z| = 3, so
∮

|z|=3

f(z) dz = −
∮ �

|z|=3

f(z) dz = −2πi res(f ;∞) = 0,

where
∮ � denotes a closed line integral with the opposite direction of the orientation of the plane,

i.e.
∮ � = −

∮

.
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(c) We have 16z4 − 1 = 0 for

z =
1
2
, −1

2
,

i

2
, − i

2
,

where none of the roots belongs to Z. Furthermore, we have a zero of order 4 at ∞, so the series
is convergent, and we can use a residuum formula,

+∞
∑

n=1

1
16n4 − 1

=
1
2

+∞
∑

n=−∞

1
16n4 − 1

− 1
2
· 1
16 · 04 − 1

=
1
2

+
1
32

+∞
∑

n=−∞

1

n4 −
(

1
2

)4

=
1
2
− π

32

3
∑

n=0

res











cot(πz)

z4 −
(

1
2

)4 ;
1
2

in











.

Then consider the function

cot(πz)

z4 −
(

1
2

)4 for zn =
1
2

in.

It follows that
1
2

and −1
2

are removable singularities, and since also

res











cot(πz)

z4 −
(

1
2

)4 ; zn











=
cot (πzn)

4z3
n

=
zn cot (πzn)

4z4
n

=
zn cot (πzn)

4 · 1
16

= 4 zn cot (πzn) ,

we find for zn = ± i

2
that

res











cot(πz)

z4 −
(

1
2

)4 ; ± i

2











= 4 · i

2
· cot

(

π
i

2

)

= 2i ·
cosh

π

2
sinh

π

2

= 2 coth
π

2
,

hence by insertion,

+∞
∑

n=1

1
16n4 − 1

=
1
2
− π

32

{

2 coth
π

2
+ 2 coth

π

2

}

=
1
2
− π

8
coth

π

2
≈ 0, 0718.
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Example 8.14 Given the function

g(z) =
f(z)

(z2 + 1)2
,

where f(z) is analytic in a neighbourhood of the points z = ±i. Furthermore, it is also given that

f(−i) = −f(i) �= 0, and f ′(−i) = f ′(i).

1) Show that g(z) has poles at the points z = ±i, and indicate in both cases the order of the pole.

2) Prove that

res(g(z); i) = res(g(z);−i).

3) Show that the series

+∞
∑

n=0

1
(n2 + 1)2

is convergent and find its sum.

1) The denominator
(

z2 + 1
)2 = (z−i)2(z+i)2 has the double roots ±i, and since f(−i) = −f(i) �= 0,

and f(z) is analytic in a neighbourhood of the points z = ±i, we conclude that

g(z) =
f(z)

(z2 + 1)2

has double poles at z = ±i.

2) Then we find that

res(g(z); i) =
1
1!

lim
z→i

d

dz

(

f(z)
(z + i)2

)

= lim
z→i

{

f ′(z)
(z + i)2

− 2
f(z)

(z + i)3

}

= −1
4

f ′(i) − i

4
f(i),

and

res(g(z);−i) =
1
1!

lim
z→−i

d

dz

(

f(z)
(z − i)2

)

= lim
z→−i

{

f ′(z)
(z − i)2

− 2
f(z)

(z − i)3

}

= −1
4

f ′(−i) − i

4
f(−i) = −1

4
f ′(i) − i

4
f(i) = res(g(z); i).

3) The poles of
1

(z2 + 1)2
are z = ±i (double poles), and none of them lies in Z. Since we have a

zero of order 4 > 1 at ∞, it follows that the series is convergent, and we can find the sum by a
residuum formula,

+∞
∑

n=−∞

1
(1 + n2)2

= −π

{

res

(

cot(πz)
(z2 + 1)2

; i

)

+ res

(

cot(πz)
(z2 + 1)2

; −i

)}

.
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If we put f(z) = cot(πz), then

f ′(z) = − 1
sin2(πz)

,

and

f(i) = cot(πi) = −i cothπ �= 0,

f(−i) = cot(−πi) = i cothπ = −f(i),

f ′(i) = − π

sin2(πi)
= − π

(i sinhπ)2
=

π

sinh2 π
= f ′(−i),

which is precisely the case of (1) and (2). Hence we get

+∞
∑

n=−∞

1
(1 + nn)2

= −π · 2 res

(

cot(πz)
(z2 + 1)2

; i

)

= −2π ·
(

−1
4

)

· {f ′(i) + i f(i)}

=
π

2

{

π

sinh2 π
+ i · (−i coth π)

}

=
π2

2
1

sinh2 π
+

π

2
coth π.
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Then finally,

+∞
∑

n=0

1
(1 + n2)2

=
1
2

{

+∞
∑

n=0

1
(1 + n2)2

+
0

∑

n=−∞

1
(1 + n2)2

}

=
1
2

{

+∞
∑

n=−∞

1
(1 + n2)2

+ 1

}

=
π2

4
· 1
sinh2 π

+
π

4
coth π +

1
2
.

Example 8.15 Prove that

f(t) =
+∞
∑

n=−∞

1
(πn + t)2

is convergent for every fixed t ∈ C \ {pπ | p ∈ Z}.
Then find f(t) for every t ∈ C \ {pπ | p ∈ Z}, expressed by elementary functions.

We define for every fixed t ∈ C \ {pπ | p ∈ Z}, i.e. for − t

π
/∈ Z, a function F (z; t) by

f(z; t) =
1

(πz + t)2
.

Then F (z; t) is analytic for z ∈ C \
{

− t

π

}

.

Since for z �= 0,

z2F (z; t) =
z2

(πz + t)2
=

1
π2







1

1 +
t

πz







2

→ 1
π2

for z → ∞,

we conclude that there exists a constant Rt for every c >
1
π2

, such that
∣

∣z2F (z; t)
∣

∣ ≤ c for |z| ≥ Rt,
i.e.

|F (z; t)| ≤ c

|z|2 for |z| ≥ Rt.

If − t

π
/∈ Z, then it follows directly that the series

f(t) =
+∞
∑

n=−∞

1
(πn + t)2
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is convergent, and we can find its sum by a residuum formula,

f(t) =
+∞
∑

n=−∞
F (n; t) = −π res

(

cot(πz)F (z; t) ; − t

π

)

= −π res
(

cot(πz)
(πz + t)2

; − t

π

)

= −π · 1
1!

lim
z→− t

π

d

dz

{

(

z +
t

π

)2

· cot(πz)
(πz + t)2

}

= − π

π2
lim

z→− t
π

d

dz
cot(πz) = − 1

π
lim

z→− t
π

{

− π

sin2(πz)

}

=
1

sin2(−t)
=

1
sin2 t

,

where we have applied Rule I with q = 2. Note that we shall use the factor
(

z +
t

π

)2

, and not

(πz + t)2, in the denominator. It is of course also possible directly to prove the convergence.

Example 8.16 (a) Prove that

f(t) =
+∞
∑

n=−∞

t

t2 − π2n2

is convergent for every fixed t ∈ C \ {pπ | p ∈ Z}.

(b) Express f(t) for every t ∈ C \ {pπ | p ∈ Z}, by elementary functions.

(c) Finally, find

g(t) =
+∞
∑

n=1

t

t2 − π2n2
, t ∈ C \ {pπ | p ∈ Z},

expressed by elementary functions.

(a) Since t2 − π2n2 �= 0 for every n ∈ Z, when t ∈ C \ {pπ | p ∈ Z}, it follows that
t

t2 − π2n2
is

defined for n ∈ Z. Furthermore,
∣

∣

∣

∣

t

t2 − π2n2

∣

∣

∣

∣

≤ |t|
n2

for |n| ≥ Nt,

so we conclude that
∣

∣

∣

∣

∣

+∞
∑

n=−∞

t

t2 − π2n2

∣

∣

∣

∣

∣

≤
+∞
∑

n=−∞

∣

∣

∣

∣

t

t2 − π2n2

∣

∣

∣

∣

≤
N

∑

n=−N

∣

∣

∣

∣

t

t2 − π2n2

∣

∣

∣

∣

+ 2
+∞
∑

n=N+1

|t|
n2

< +∞,

and we see that we could give a direct proof of the convergence.

Alternatively we check the assumptions of the residuum formula, because they at the same
time assures the convergence, and we also obtain the sum.
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Consider for every fixed t ∈ C \ {pπ | p ∈ Z} the function

F (z; t) =
t

t2 − π2z2
= − t

π2
· 1

z2 −
(

t

π

)2 .

This is analytic for z ∈ C \
{

t

π
; − t

π

}

. Since we have assumed that ± t

π
/∈ Z, and that F (z) is a

rational function with a zero of second order at ∞, there exist constants c >

∣

∣

∣

∣

t

π2

∣

∣

∣

∣

and T >

∣

∣

∣

∣

t

π

∣

∣

∣

∣

,

such that

|F (z; t)| ≤ c

|z|2 for |z| ≥ R,

and the conditions for the convergence and the residuum formula are fulfilled. Hence

+∞
∑

n=−∞
F (n; t) =

+∞
∑

−∞

t

t2 − π2n2
= f(t)

is convergent.

(b) Now, ± t

π
are at most simple poles, so we bet by the residuum formula and Rule II,

f(t) =
+∞
∑

n=−∞

t

t2 − π2n2
= −π



















res











− t

π2

cot(πz)

z2 −
(

t

π

)2 ;
t

π











+ res











− t

π2

cot(πz)

z2 −
(

t

π

)2 ; − t

π





























= −π ·
(

− t

π2

)

·
{

lim
z→ t

π

cot(πz)
2z

+ lim
z→− t

π

cot(πz)
2z

}

=
t

π
·















cot
(

π · t

π

)

2 · t

π

+
cot

(

π ·
(

− t

π

))

2 ·
(

− t

π

)















=
t

π
·
{ π

2t
· cot t +

π

2t
· cot t

}

= cot t,

and we have proved that

cot t =
+∞
∑

n=−∞

t

t2 − π2n2
, t ∈ C \ {pπ | p ∈ Z}.

(c) Since F (−z) = F (z), it follows from (b) for t ∈ C \ {pπ | p ∈ Z} that

g(t) =
+∞
∑

n=1

t

t2 − π2n2
=

1
2

+∞
∑

n=1

t

t2 − π2n2
+

1
2

−1
∑

n=−∞

t

t2 − π2n2

=
1
2

+∞
∑

n=−∞

t

t2 − π2n2
− 1

2
· t

t2 − π202
=

1
2

{

cot t − 1
t

}

.
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Example 8.17 Find the sum of the series

+∞
∑

n=−∞

1
n4 + 4

.

The corresponding analytic function

f(z) =
1

z4 + 4

has the simple poles {1 + i, −1 + i, −1 − i, 1 − i}, none of which lies in Z. Furthermore, f(z) is a
rational function with a zero of fourth order at ∞, hence the series is convergent, and its sum is given
by a residuum formula,

+∞
∑

n=−∞

1
z4 + 4

= −π
∑

z4
0=−4

res
(

cot(πz)
z4 + 4

; z0

)

.

Since z4
0 = −4 for every pole z0, it follows by Rule II that

res
(

cot(πz)
z4 + 4

; z0

)

= cot (πz0) res
(

1
z4 + 4

; z0

)

= cot (πz0) ·
1

4z3
0

=
z0

4z4
0

· cot (πz0)

= − 1
16

z0 cot (πz0) .
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Then by insertion,

+∞
∑

n=−∞

1
z4 + 4

= π
∑

z4
0=−4

res
(

cot(πz)
z4 + 4

; z0

)

=
π

16

∑

z4
0=−4

z0 cot (πz0)

=
π

16
{(1 + i) cot(π + iπ) + (1 − i) cot(π − iπ) + (−1 + i) cot(−π + iπ) + (−1 − i) cot(−π − iπ)}

=
π

16
{2(1 + i) cot(π + iπ) + 2(1 − i) cot(π − iπ)} =

π

8
{(1 + i) cot(iπ) + (1 − i) cot(−iπ)}

=
π

8
· 2i · coshπ

i sinhπ
=

π

4
· cothπ,

thus

+∞
∑

n=−∞

1
n4 + 4

=
π

4
· coth π.

Remark 8.5 In a variant we have the following estimates for e.g. |z| ≥ 2,

|f(z)| =
1

|z4 + 4| ≤
1

|z|4 − 4
=

1
|z|4 · 1

1 − 4
|z|4

≤ 1
|z|4 · 1

1 − 4
16

=
4
3
· 1
|z|4 ,

so in particular, C =
4
3

and a = 4 ≥ 2 for |z| ≥ 2. ♦

Example 8.18 Compute the sum of the series

+∞
∑

n=−∞

1
(

n +
1
3

) (

n +
2
3

) .

If we put

f(z) =
1

(

z +
1
3

) (

z +
2
3

) ,

then f(z) is analytic in C \
{

−1
3

, −2
3

}

, where −1
3
, −2

3
/∈ Z. Furthermore,

∣

∣z2f(z)
∣

∣ → 1 for z → ∞,
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so we have checked the conditions for the convergence of the series and the sum can be found by a
residuum formula. Hence,

+∞
∑

n=−∞

1
(

n+
1
3

) (

n+
2
3

) = −π















res









cot(πz)
(

z+
1
3

) (

z+
2
3

) ; −1
3









+res









cot(πz)
(

z+
1
3

)(

z+
2
3

) ; −2
3























= −π















cot
(

−π

3

)

−1
3

+
2
3

+
cot

(

−2π
3

)

−2
3

+
1
3















= −π











− cot
π

3
1
3

+
cot

π

3

−1
3











= π · 3 · 2 · cot
π

3

= π · 3 · 2 · 1√
3

= 2
√

3π,

where we have used that −1
3

and −2
3

are simple poles of f(z). Thus we have proved that

+∞
∑

−∞

1
(

n +
1
3

) (

n +
2
3

) = 2
√

3π.
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Example 8.19 1) Determine the singular points in C of f , defined by

(17) f(z) =
1

z2p (ez − 1)
, p ∈ N,

and find the residuum of f at every singular point.
Hint: When res(f(z); 0) shall be found one may without proof apply the following Taylor series
expansion

z

ez − 1
=

+∞
∑

b=0

Bn

n!
zn for |z| < 2π,

where the left hand side of the equality is replaced by 1 for z = 0.

2) Let Kn denote in the (x, y)-plane the boundary of the square

[−rn , rn] × [−rn , rn] , where rn = π + 2nπ, and n ∈ N.

Prove for every (fixed) p ∈ N that
∮

Kn

f(z) dz → 0 for n → +∞ on N,

where f is the function given by (17).

3) Apply Cauchy’s residuum theorem on the square with the boundary Kn and then apply the results
of (1) and (2) above, and the limit n → +∞ to prove that

+∞
∑

n=1

1
n2p

= (−1)p+1 (2π)2pB2p

2(2p)!
for every p ∈ N.

Prove also that B2, B4, . . . , B2p, . . . have alternating signs.

1) The singular points are z = 2i n π, n ∈ Z. Of these, z = 0 is a (2n + 1)-tuple pole, while all the
others are simple poles.

2) Putting rn = π + 2nπ we get the following estimates,

∣

∣

∣

∣

∮

Kn

dz

z2p (ez − 1)

∣

∣

∣

∣

≤
∫ rn

−rn

dy

|rn + iy|2p |ern+iy − 1|
+

∫ rn

−rn

dy

|−rn + iy|2p |e−rn+iy − 1|

+
∫ rn

−rn

dx

|x + irn|2p |ex+irn − 1|
+

∫ rn

−rn

dx

|x − irn|2p |ex−irn − 1|

≤ 2rn

|rn|2p · 1
2

+
2rn

|rn|2p · 1
2

+
2rn

|rn|2p +
2rn

|rn|2p =
1
2
r2p−1
n → 0

for n → +∞.
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3) Now, z = 2inπ is a simple pole for n ∈ Z \ {0}, so we have the following computation of the
residuum,

res(f(z); 2inπ) = lim
z→2inπ

1
z2p

1
d

dz
(ez − 1)

= lim
z→2iπ

1
z2p

· 1
ez

=
1

(2inπ)2p
= (−1)p 1

(2π)2p
· 1
n2p

.

Since

z

ez − 1
=

+∞
∑

n=0

Bn

n!
zn,

it follows by a division by z2p+1,

1
z2p (ez − 1)

=
+∞
∑

n=0

Bn

n!
z−n−2p−1.

We find the term
a−1

z
by choosing n = 2p, so

res(f(z); 0) = a−1 =
B2p

(2p)!
.

Then by Cauchy’s residuum theorem,

1
2πi

∮

Kn

f(z) dz =
n

∑

k=−n

res(f(z); 2ikπ) =
B2p

(2p)!
+ 2 · (−1)p · 1

(2π)2p

n
∑

k=1

1
k2p

,

hence by a rearrangement,

n
∑

k=1

1
k2p

=
(−1)p

2
· (2π)2p · 1

2πi

∮

Kn

f(z) dz + (−1)p+1 (2π)2pB2p

2(2p)!
, n ∈ N.

Since p ∈ N, the left hand side converges, when n → +∞. Then by (2) it follows from taking this
limit,

+∞
∑

n=1

1
n2p

= (−1)p+1 · (2π)2pB2p

2(2p)!
for every p ∈ N.

The left hand side is always positive, so the factor (−1)p+1 on the right hand side causes that

B2p







> 0 for p odd,

< 0 for p even,

and the sequence B2, B4, . . . , B2p, . . . has alternating sign.
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Example 8.20 Given the function

f(z) =
1

z2 sin z
.

1) Find all the isolated singularities in C of the function f , and determin the type for each of them.

2) Find in a neighbourhood of z0 = 0 the principal part of the Laurent series of f , i.e. that part of
the series which contains terms of the type

bn

zn
, n > 0.

(Hint. Use the Taylor series of sin z with z0 = 0 as expansion point).

3) Find the residues in the isolated singularities of f .

4) Denote by N a positive integer, and let CN denote the curve run through in a positive sense, which
is bounding the square

{

z = x + iy

∣

∣

∣

∣

x, y ∈
[

−
(

N +
1
2

)

π ,

(

N +
1
2

)

π

]}

.

Compute
∮

CN
f(z) dz.

5) When z = x + iy, then | sin z|2 = sin2 x + sinh2 y. It follows that

| sin z| ≥ | sinx| and | sin z| ≥ | sinh y|.

Prove that
∮

CN

f(z) dz → 0 for N → +∞.

6) Prove that

+∞
∑

n=1

(−1)n+1

n2
=

π2

12
.

1) We have poles at z = pπ, p ∈ Z. When p = 0, we see that the pole z = 0 is a triple pole; any other
pole is simple.

2) Now, f(z) is an odd function with the triple pole at z = 0, so the principal part must have the
structure

1
z2 sin z

=
a−3

z3
+

a−1

z
+ · · · ,

hence

1 = a−3 ·
sin z

z
+ a−1 · z sin z + terms of order > 3

= a−3 ·
{

1 − z2

6
+ · · ·

}

+ a−1

{

z2 − · · ·
}

+ · · ·

= a−3 +
{

a−1 −
1
6

a−3

}

z2 + · · · .
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Then it follows by the identity theorem that

a−3 = 1 og a−1 =
1
6
,

so the principal part is

1
z3

+
1
6

1
z
.

3) We have in the triple pole z0 = 0,

res
(

1
z2 sin z

; 0
)

= a−1 =
1
6
.

When zp = pπ, p ∈ Z \ {0}, the pole is simple, thus

res
(

1
z2 sin z

; pπ

)

= lim
z→pπ

1
z2

· 1
cos z

=
(−1)p

π2
· 1
p2

.
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Figure 22: The curve CN for N = 2 and the singularities inside.

4) Using Cauchy’s residuum theorem,

∮

CN

f(z) dz =
N

∑

p=−N

res(f(z); pπ) =
1
6

+
2
π2

N
∑

n=1

(−1)n

n2
.

5) Then we have the estimates
∣

∣

∣

∣

∣

∫

Γ′
N

dz

z2 sin z

∣

∣

∣

∣

∣

≤ (2N + 1) · 1
(

N +
1
2

)2

π2

→ 0 for N → +∞,

where Γ′
N is anyone of the vertical line segments of CN .

In instead Γ′′
N is one of the horizontal segments, then

∣

∣

∣

∣

∣

∫

Γ′′
N

dz

z2 sin z

∣

∣

∣

∣

∣

≤ (2N + 1) · 1
(

N +
1
2

)2

π2

· 1

sinh
(

N +
1
2

)

π

→ 0

for N → +∞.
Summing up we get

lim
N→+∞

∮

CN

f(z) dz =
1
6

+
2
π2

+∞
∑

n=1

(−1)n

n2
= 0.

Finally, by a rearrangement,

+∞
∑

n=1

(−1)n+1

n2
=

π2

12
.
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