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Introduction

Introduction

This is the eight book of examples from the Theory of Probability. In general, this topic is not my
favourite, but thanks to my former colleague, Ole Jørsboe, I somehow managed to get an idea of what
it is all about. We shall, however, in this volume deal with some topics which are closer to my own
mathematical fields.

The prerequisites for the topics can e.g. be found in the Ventus: Calculus 2 series and the Ventus:
Complex Function Theory series, and all the previous Ventus: Probability c1-c6.

Unfortunately errors cannot be avoided in a first edition of a work of this type. However, the author
has tried to put them on a minimum, hoping that the reader will meet with sympathy the errors
which do occur in the text.

Leif Mejlbro
27th October 2009
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1. Generating functions; background

1 Generating functions; background

1.1 Definition of the generating function of a discrete random variable

The generating functions are used as analytic aids of random variables which only have values in N0,
e.g. binomial distributed or Poisson distributed random variables.

In general, a generating function of a sequence of real numbers (ak)+∞
k=0 is a function of the type

A(s) :=
+∞
∑

k=0

ak sk, for |s| < �,

provided that the series has a non-empty interval of convergence ] − �, �[, � > 0.

Since a generating function is defined as a convergent power series, the reader is referred to the Ventus:
Calculus 3 series, and also possibly the Ventus: Complex Function Theory series concerning the theory
behind. We shall here only mention the most necessary properties, because we assume everywhere
that A(s) is defined for |s|�.

A generating function A(s) is always of class C∞(] − �, �[). One may always differentiate A(s) term
by term in the interval of convergence,

A(n)(s) =
+∞
∑

k=n

k(k − 1) · · · (k − n + 1)aksk−n, for s ∈ ] − �, �[.

We have in particular

A(n)(0) = n! · an, i.e. an =
A(n)(0)

n!
for every n ∈ N0.

4
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1. Generating functions; background

Furthermore, we shall need the well-known

Theorem 1.1 Abel’s theorem. If the convergence radius � > 0 is finite, and the series
∑+∞

k=0 ak �k

is convergent, then

+∞
∑

k=0

ak �k = lim
s→�−

A(s).

In the applications all elements of the sequence are typically bounded. We mention:

1) If |ak| ≤ M for every k ∈ N0, then

A(s) =
+∞
∑

k=0

ak sk convergent for s ∈ ] − �, �[, where � ≥ 1.

This means that A(s) is defined and a C∞ function in at least the interval ] − 1, 1[, possibly in a
larger one.

2) If ak ≥ 0 for every k ∈ N0, and
∑+∞

k=0 ak = 1, then A(s) is a C∞ function in ]− 1, 1[, and it follows
from Abel’s theorem that A(s) can be extended continuously to the closed interval [−1, 1].
This observation will be important in the applications her, because the sequence (ak) below is
chosen as a sequence (pk) of probabilities, and the assumptions are fulfilled for such an extension.

If X is a discrete random variable of values in N0 and of the probabilities

pk = P{X = k}, for k ∈ N0,

then we define the generating function of X as the function P : [0, 1] → R, which is given by

P (s) = E
{

sX
}

:=
+∞
∑

k=0

pk sk.

The reason for introducing the generating function of a discrete random variable X is that it is
often easier to find P (s) than the probabilities themselves. Then we obtain the probabilities as the
coefficients of the series expansion of P (s) from 0.

1.2 Some generating functions of random variables

We shall everywhere in the following assume that p ∈ ]0, 1[ and q := 1 − p, and µ > 0.

1) If X is Bernoulli distributed, B(1, p), then

p0 = 1 − p = q and p1 = p, and P (s) = 1 + p(s − 1).

2) If X is binomially distributed, B(n, p), then

pk =
(

n
k

)

pkqn−k, and P (s) = {1 + p(s − 1)}n.

5
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1. Generating functions; background

3) If X is geometrically distributed, Pas(1, p), then

pk = pqk−1, and P (s) =
ps

1 − qs
.

4) If X is negative binomially distributed, NB(κ, p), then

pk = (−1)k

(

−κ
k

)

pκqk, and P (s) =
{

p

1 − qs

}κ

.

5) If X is Pascal distributed, Pas(r, p), then

pk =
(

k − 1
r − 1

)

prqk−r, and P (s) =
{

ps

1 − qs

}r

.

6) If X is Poisson distributed, P (µ), then

pk =
µk

k!
e−µ, and P (s) = exp(µ(s − 1)).

1.3 Computation of moments

Let X be a random variable of values in N0 and with a generating function P (s), which is continuous
in [0, 1] (and C∞ in the interior of this interval).

The random variable X has a mean, if and only the derivative P ′(1) := lims→1− P ′(s) exists and is
finite. When this is the case, then

E{X} = P ′(1).

The random variable X has a variance, if and only if P ′′(1) := lims→1− P ′′(s) exists and is finite.
When this is the case, then

V {X} = P ′′(1) + P ′(1) − {P ′(1)}2
.

In general, the n-th moment E {Xn} exists, if and only if P (n)(1) := lims→1− P (n)(s) exists and is
finite.

1.4 Distribution of sums of mutually independent random variables

If X1, X2, . . . , Xn are mutually independent discrete random variables with corresponding generating
functions P1(s), P2(s), . . . , Pn(s), then the generating function of the sum

Yn :=
n

∑

i=1

Xi

is given by

PYn
(s) =

n
∏

i=1

Pi(s), for s ∈ [0, 1].

6
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1. Generating functions; background

1.5 Computation of probabilities

Let X be a discrete random variable with its generating function given by the series expansion

P (s) =
+∞
∑

k=1

pksk.

Then the probabilities are given by

P{X = k} = pk =
P (k)(0)

k!
.

A slightly more sophisticated case is given by a sequence of mutually independent identically dis-
tributed discrete random variables Xn with a given generating function F (s). Let N be another
discrete random variable of values in N0, which is independent of all the Xn. We denote the generat-
ing function for N by G(s).
The generating function H(s) of the sum

YN := X1 + X2 + · · · + XN ,

where the number of summands N is also a random variable, is then given by the composition

PYN
(s) := H(s) = G(F (s)).

Notice that if follows from H ′(s) = G′(F (s)) · F ′(s), that

E {YN} = E{N} · E {X1} .

1.6 Convergence in distribution

Theorem 1.2 The continuity theorem. Let Xn be a sequence of discrete random variables of
values in N0, where

pn,k := P {Xn = k} , for n ∈ N and k ∈ N0,

and

Pn(s) :=
+∞
∑

k=0

pn,k sk, for s ∈ [0, 1] og n ∈ N.

Then

lim
n→+∞

pn,k = pk for every k ∈ N0,

if and only if

lim
n→+∞

Pn(s) = P (s)

(

=
+∞
∑

k=0

pk sk

)

for all s ∈ [0, 1[.

If furthermore,

lim
s→1−

P (s) = 1,

then P (s) is the generating function of some random variable X, and the sequence (Xn) converges in
distribution towards X.

7
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2. The Laplace transformation; background

2 The Laplace transformation; background

2.1 Definition of the Laplace transformation

The Laplace transformation is applied when the random variable X only has values in [0,+∞[, thus
it is non-negative.

The Laplace transform of a non-negative random variable X is defined as the function L : [0,+∞[→ R,
which is given by

L(λ) := E
{

e−λX
}

.

The most important special results are:

1) If the non-negative random variable X is discrete with P {xi} = pi, for all xi ≥ 0, then

L(λ) :=
∑

i

pi e−λ xi , for λ ≥ 0.

2) If the non-negative random variable X is continuous with the frequency f(x), (which is 0 for
x < 0), then

L(λ) :=
∫ +∞

0

e−λx f(x) dx for λ ≥ 0.

We also write in this case L{f}(λ).

8
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2. The Laplace transformation; background

In general, the following hold for the Laplace transform of a non-negative random variable:

1) We have for every λ ≥ 0,

0 < L(λ) ≤ 1, with L(0) = 1.

2) If λ > 0, then L(λ) is of class C∞ and the n-th derivative is given by

(−1)nL(n)(λ) =







∑

i xn
i e−λxi pi, when X is discrete,

∫ +∞
0

xn e−λx f(x) dx, when X is continuous.

Assume that the non-negative random variable X has the Laplace transform LX(λ), and let a, b ≥ 0
be non-negative constants. Then the random variable

Y := aX + b

is again non-negative, and its Laplace transform LY (λ) is, expressed by LX(λ), given by

LY (λ) = E
{

e−λ(aX+b)
}

= e−λb LX(aλ).

Theorem 2.1 Inversion formula. If X is a non-negative random variable with the distribution
function F (x) and the Laplace transform L(λ), then we have at every point of continuity of F (x),

F (x) = lim
λ→+∞

[λx]
∑

k=0

(−λ)k

k!
L(k)(λ),

where [λx] denotes the integer part of the real number λx. This result implies that a distribution is
uniquely determined by its Laplace transform.

Concerning other inversion formulæ the reader is e.g. referred to the Ventus: Complex Function Theory
series.

2.2 Some Laplace transforms of random variables

1) If X is χ2(n) distributed of the frequency

f(x) =
1

Γ
(n

2

)

2n/2
xn/2−1 exp

(

−x

2

)

. x > 0,

then its Laplace transform is given by

LX(λ) =
{

1
2λ + 1

}

n

2
.

9
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2. The Laplace transformation; background

2) If X is exponentially distributed, Γ
(

1 ,
1
a

)

, a > 1, of the frequency

f(x) = a e−ax for x > 0,

then its Laplace transform is given by

LX(λ) =
a

λ + a
.

3) If X is Erlang distributed, Γ(n, α) of frequency

1
(n − 1)!αn

xn−1 exp
(

−x

α

)

, for n ∈ N, α > 0 and x > 0,

then its Laplace transform is given by

LX(λ) =
{

1
αλ + 1

}n

.

4) If X is Gamma distributed, Γ(µ, α), with the frequency

1
Γ(µ)αµ

xµ−1 exp
(

−x

α

)

for µ, α > 0 and x > 0,

then its Laplace transform is given by

LX(λ) =
{

1
αλ + 1

}µ

.

2.3 Computation of moments

Theorem 2.2 If X is a non-negative random variable with the Laplace transform L(λ), then the n-th
moment E {Xn} exists, if and only if L(λ) is n times continuously differentiable at 0. In this case we
have

E {Xn} = (−1)nL(n)(0).

In particular, if L(λ) is twice continuously differentiable at 0, then

E{X} = −L′(0), and E
{

X2
}

= L′′(0).

2.4 Distribution of sums of mutually independent random variables

Theorem 2.3 Let X1, . . . , Xn be non-negative, mutually independent random variable with the cor-
responding Laplace transforms L1(λ), . . . Ln(λ). Let

Yn =
n

∑

i=1

Xi and Zn =
1
n

Yn =
1
n

n
∑

i=1

Xi.

Then

LYn
(λ) =

n
∏

i=1

Li(λ), and LZn
(λ) = LYn

(

λ

n

)

=
n

∏

i=1

Li

(

λ

n

)

.

10
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2. The Laplace transformation; background

If in particular X1 and X2 are independent non-negative random variables of the frequencies f(x) and
g(x), resp., then it is well-known that the frequency of X1 + X2 is given by a convolution integral,

(f � g)(x) =
∫ +∞

−∞
f(t)g(x − t) dt.

In this case we get the well-known result,

L{f � g} = L{f} · L{g}.

Theorem 2.4 Let Xn be a sequence of non-negative, mutually independent and identically distributed
random variables with the common Laplace transform L(λ). Furthermore, let N be a random variable
of values in N0 and with the generating function P (s), where N is independent of all the Xn.
Then YN := X1 + · · · + XN has the Laplace transform

LYN
(λ) = P (L(λ)).

2.5 Convergence in distribution

Theorem 2.5 Let (Xn) be a sequence of non-negative random variables of the Laplace transforms
Ln(λ).

1) If the sequence (Xn) converges in distribution towards a non-negative random variable X with the
Laplace transform L(λ), then

lim
n→+∞

Ln(λ) = L(λ) for every λ ≥ 0.

2) If

L(λ) := lim
n→+∞

Ln(λ)

exists for every λ ≥ 0, and if L(λ) is continuous at 0, then L(λ) is the Laplace transform of some
random variable X, and the sequence (Xn) converges in distribution towards X.

11
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3. Characteristic functions; background

3 Characteristic functions; background

3.1 Definition of characteristic functions

The characteristic function of any random variable X is the function k : R → C, which is defined by

k(ω) := E
{

eiωX
}

.

We have in particular:

1) If X has a discrete distribution, P {X = xj} = pj , then

k(ω) =
∑

i

pje
iωxj .

2) If X has its values in N0, then X has also a generating function P (s), and we have the following
connection between the characteristic function and the generating function,

k(ω) =
+∞
∑

k=0

pk

(

eiω
)k

= P
(

eiω
)

.

12
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3. Characteristic functions; background

3) Finally, if X has a continuous distribution with the frequency f(x), then

k(ω) =
∫ +∞

−∞
eiωx f(x) dx,

which is known from Calculus as one of the possible definition of the Fourier transform of f(x),
cf. e.g. Ventus: the Complex Function Theory series.

Since the characteristic function may be considered as the Fourier transform of X in some sense, all
the usual properties of the Fourier transform are also valid for the characteristic function:

1) For every ω ∈ R,

|k(ω)| ≤ 1, in particular, k(0) = 1.

2) By complex conjugation,

k(ω) = k(−ω) for ever ω ∈ R.

3) The characteristic function k(ω) of a random variable X is uniformly continuous on all of R.

4) If kX(ω) is the characteristic function of X, and a, b ∈ R are constants, then the characteristic
function of Y := aXS + b is given by

kY (ω) = E
{

eiω(aX+b)
}

= eiωb kX(aω).

Theorem 3.1 Inversion formula

1) Let X be a random variable of distribution function F (x) and characteristic function k(ω). If
F (x) is continuous at both x1 and x2 (where x1 < x2), then

F (x2) − F (x1) =
1
2π

lim
A→+∞

∫ A

−A

e−iωx1 − e−iωx2

iω
k(ω) dω.

In other words em a distribution is uniquely determined by its characteristic function.

2) We now assume that the characteristic function k(ω) of X is absolutely integrable, i.e.

∫ +∞

−∞
|k(ω)| dω < +∞.

Then X has a continuous distribution, and the frequency f(x) of X is given by

f(x) =
1
2π

∫ +∞

−∞
e−iωx k(ω) dω.

In practice this inversion formula is the most convenient.

13
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3. Characteristic functions; background

3.2 Characteristic functions for some random variables

1) If X is a Cauchy distributed random variable, C(a, b), a, b > 0, of frequency

f(x) =
b

π {b2 + (x − a)2} for x ∈ R,

then it has the characteristic function

k(ω) = exp(i a ω − |ω|).

2) If X is a χ2(n) distributed random variable, n ∈ N of frequency

1

Γ
(n

2

)

2n/2
xn/2−1 exp

(

−x

2

)

for x > 0,

then its characteristic function is given by

k(ω) =
{

1
1 − 2iω

}n/2

.

3) If X is double exponentially distributed with frequency

f(x) =
a

2
e−a|x|, for x ∈ R, where the parameter a > 0,

then its characteristic function is given by

k(ω) =
a2

a2 + ω2
.

4) If X is exponentially distributed, Γ
(

1 ,
1
a

)

, a > 0, with frequency

f(x) = a e−ax for x > 0,

then its characteristic function is given by

k(ω) =
a

a − iω
.

5) If X is Erlang distributed, Γ(n, α), where n ∈ N and α > 0, with frequency

f(x) =
xn−1 exp

(

−x

α

)

(n − 1)!αn
for x > 0,

then its characteristic function is

k(ω) =
{

1
1 − iαω

}n

.

14
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3. Characteristic functions; background

6) If X is Gamma distributed, Γ(µ, α), where µ, α > 0, with frequency

f(x) =
xµ−1 exp

(

−x

α

)

Γ(µ)αµ
, for x > 0,

then its characteristic function is given by

k(ω) =
{

1
1 − iαω

}µ

.

7) If X is normally distributed (or Gaußian distributed), N
(

µ , σ2
)

, µ ∈ R and σ > 0, with frequency

1√
2πσ2

exp
(

− (x − µ)2

2σ2

)

, for x ∈ R,

then its characteristic function is given by

k(ω) = exp
(

iµω − σ2ω2

2

)

.

8) If X is rectangularly distributed, U(a, b), where a < b, with frequency

f(x) =
1

b − a
for a < x < b,

then its characteristic function is given by

k(ω) =
eiωb − eiωa

iω(b − a)
.

3.3 Computation of moments

Let X be a random variable with the characteristic function k(ω). If the n-th moment exists, then
k(ω) is a Cω function, and

k(n)(0) = in E {Xn} .

In particular,

k′(0) = i E{X} and k′′(0) = −E
{

X2
}

.

We get in the special cases,

1) If X is discretely distributed and E {|X|n} < +∞, then k(ω) is a Cn function, and

k(n)(ω) = in
∑

j

xn
j exp (iωxj) pj .

2) If X is continuously distributed with frequency f(x) and characteristic function

k(ω) =
∫ +∞

−∞
eiωx f(x) dx,

15
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3. Characteristic functions; background

and if furthermore,

E {|X|n} =
∫ +∞

−∞
|x|n f(x) dx < +∞,

then k(ω) is a Cn function, and we get by differentiation of the integrand that

k(n)(ω) = in
∫ +∞

−∞
xn eiωx f(x) dx.

3.4 Distribution of sums of mutually independent random variables

Let X1, . . . , Xn be mutually independent random variables, with their corresponding characteristic
functions k1(ω), . . . , kn(ω). We introduce the random variables

Yn :=
n

∑

i=1

Xi and Zn =
1
n

Yn =
1
n

n
∑

i=1

Xi.

The characteristic functions of Yn and Zn are given by

kYn
(ω) =

n
∏

i=1

ki(ω) and kZn
(ω) =

n
∏

i=1

ki

(ω

n

)

.

16
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3. Characteristic functions; background

3.5 Convergence in distribution

Let (Xn) be a sequence of random variables with the corresponding characteristic functions kn(ω).

1) Necessary condition. If the sequence (Xn) converges in distribution towards the random vari-
able X of characteristic function k(ω), then

lim
n→+∞

kn(ω) = k(ω) for every ω ∈ R.

2) Sufficient condition. If

k(ω) = lim
n→+∞

kn(ω)

exists for every ω ∈ R, and if also k(ω) is continuous at 0, then k(ω) is the characteristic function
of some random variable X, and the sequence (Xn) converges in distribution towards X.

17
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4. Generating functions

4 Generating functions

Example 4.1 Let X be geometrically distributed,

(1) P{X = k} = pqk−1, k ∈ N,

where p > 0, q > 0 and p + q = 1.
Find the generating function of X.
Let X1, X2, . . . , Xr be mutually independent, all of distribution given by (1), and let

Yr = X1 + X2 + · · · + Xr.

Find the generating function of Yr, and prove that Yr has the distribution

P {Yr = k} =
(

k − 1
r − 1

)

prqk−r, k = r, r + 1, . . . .

It follows by insertion that

PX(s) = E
{

sX
}

=
∞
∑

n=1

pqn−1sn = ps
∞
∑

n=1

(qs)n−1 =
ps

1 − qs
, s ∈ [0, 1].

The generating function Qr(s) for Yr = X1 + X2 + · · · + Xr is

Qr(s) =
r

∏

i=1

PXi
(s) =

(

ps

1 − qs

)r

= prsr(1 − qs)−s = prsr
∞
∑

m=0

(

−r
m

)

(−1)mqmsm

=
∞
∑

m=0

(

r + m − 1
m

)

prqmsm+r =
∞
∑

n=r

(

n − 1
r − 1

)

prqn−rsr for s ∈ [0, 1].

Since also

Qr(s) =
∑

n

P {Yr = n} sn,

we conclude that

P {Yr = n} =
(

n − 1
r − 1

)

prqn−r, n = r, r + 1, . . . .

18
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4. Generating functions

Example 4.2 Given a random variable X of values in N0 of the probabilities pk = P{X = k},
k ∈ N0, and with the generating function P (s). We put qk = P{X > k}, k ∈ N0, and

Q(s) =
∞
∑

k=0

qksk, s ∈ [0, 1[.

Prove that

Q(s) =
1 − P (s)

1 − s
for s ∈ [0, 1[.

We have

qk = P{X > k} =
∞
∑

n=k+1

P{X = n} =
∞
∑

n=k+1

pn = 1 −
k

∑

n=0

pn.

Thus if s ∈ [0, 1[, then

Q(s) =
∞
∑

k=0

qksk =
∞
∑

k=0

sk −
∞
∑

k=0

k
∑

n=0

pnsk =
1

1 − s
−

∞
∑

n=0

∞
∑

k=n

pnsk

=
1

1 − s
−

∞
∑

n=0

pn · sn

1 − s
=

1
1 − s

{

1 −
∞
∑

n=0

pnsn

}

=
1 − P (s)

1 − s
.

Example 4.3 We throw a coin, where the probability of obtaining head in a throw is p, where p ∈ ]0, 1[.
We let the random variable X denote the number of throws until we get the results head–tail in the
given succession (thus we have X = n, if the pair head–tail occurs for the first time in the experiments
of numbers n − 1 and n).
Find the generating function of X and use it to find the mean and variance of X. For which value of
p is the mean smallest?

If n = 2, 3, . . . and p �= 1
2
, then

P{X = n} = P {Xi = head, i = 1, . . . , Xn = tail}
+P {X1 = tail,Xi = head, i = 2, . . . , n − 1, Xn = tail}
+P {Xj = tail, j = 1, 2; Xi = head, i = 3, . . . , n − 1, Xn = tail}
+ · · · + P {Xj = tail, j = 1, . . . , n − 2; Xn−1 = head, Xn = tail}

= pn−1(1 − p) + (1 − p)pn−2(1 − p) + (1 − p)2pn−3(1 − p)
· · · + (1 − p)n−2p(1 − p)

=
n−1
∑

j=1

pn−j(1 − p)j = pn−1(1 − p)
n−1
∑

j=1

{

1 − p

p

}j−1

= pn−1(1 − p) ·
1 −

(

1 − p

p

)n−1

1 − 1 − p

p

= p(1 − p) · pn−1 − (1 − p)n−1

2p − 1

=
p(1 − p)
2p − 1

{

pn−1 − (1 − p)n−1
}

, n ∈ N \ {1}.
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If p =
1
2

then we get instead

P{X = n} =
n−1
∑

j=1

(

1
2

)n−j (

1
2

)j

=
n − 1
2n

,

which can also be obtained by taking the limit in the result above for p �= 1
2
.

We have to split into the two cases 1. p =
1
2

and 2. p �= 1
2
.

1) If p =
1
2
, then the generating function becomes

P (s) =
∞
∑

n=2

n − 1
2n

sn =
(s

2

)2 ∞
∑

n=1

n
(s

2

)n−1

=
(s

2

)2

· 1
(

1 − s

2

)2 =
(

s

2 − s

)2

=
(

2
2 − s

− 1
)2

=
4

(2 − s)2
− 4

2 − s
+ 1 for s ∈ [0, 2[.

2) If p ∈ ]0, 1[ and p �= 1
2
, we get instead

P (s) =
∞
∑

n=2

p(1 − p)
2p − 1

{

pn−1 − (1 − p)n−1
}

sn =
p(1 − p)
2p − 1

· s
{ ∞

∑

n=1

(ps)n −
∞
∑

n=1

(1 − p)nsn

}

=
p(1 − p)
2p − 1

· s
{

ps

1 − ps
− (1 − p)s

1 − (1 − p)s

}

=
p(1 − p)
2p − 1

· s
{

1
1 − ps

− 1
1 − (1 − p)s

}

=
1 − p

2p − 1
· ps

1 − ps
− p

2p − 1
· (1 − p)s
1 − (1 − p)s

=
1 − p

2p − 1
· 1
1 − ps

− 1 − p

2p − 1
· − p

2p − 1
· 1
1 − (1 − p)s

+
p

2p − 1

= 1 +
1 − p

2p − 1
· 1
1 − ps

− p

2p − 1
· 1
1 − (1 − p)s

,

for s ∈
[

0,min
{

1
p

,
1

1 − p

}]

.

In both cases P (n)(1) exists for all n. It follows from

E{X} = P ′(1) and V {X} = P ′′(1) + P ′(1) − {P ′(1)}2,

that

1) If p =
1
2
, then

P ′(s) =
8

(2 − s)3
− 4

(2 − s)2
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and

P ′′(s) =
24

(2 − s)4
− 8

(2 − s)3
,

hence

E{X} = P ′(1) = 4,

and

V {X} = P ′′(1) + P ′(1) − {P ′(1)}2 = 16 + 4 − 16 = 4.

2) If p ∈ ]0, 1[, p �= 1
2
, then

P ′(s) =
(1 − p)p
2p − 1

{

1
(1 − ps)2

− 1
{1 − (1 − p)s}2

}

,

hence

E{X} =
(1 − p)p
2p − 1

{

1
(1 − p)2

− 1
{1 − (1 − p)}2

}

=
1

2p − 1

{

p

1 − p
− 1 − p

p

}

=
1

2p − 1
· 2p − 1
(1 − p)p

=
1

p(1 − p)
.
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Furthermore,

P ′′(s) =
2(1 − p)p
2p − 1

{

p

(1 − ps)3
− 1 − p

{1 − (1 − p)s}3

}

,

thus

V {X} =
2

2p − 1

{

(

p

1 − p

)2

−
(

1 − p

p

)2
}

+
1

p(1 − p)
− 1

p2(1 − p)2

=
2

2p − 1

{

p

1 − p
+

1 − p

p

}{

p

1 − p
− 1 − p

p

}

+
1

p(1 − p)
− 1

p2(1 − p)2

=
4p2 − 4p + 2 + p − p2 − 1

p2(1 − p)2
=

3p2 − 3p + 1
p2(1 − p)2

=
p3 + (1 − p)3

p2(1 − p)2
=

p

(1 − p)2
+

1 − p

p2
.

Now, p(1 − p) has its maximum for p =
1
2

(corresponding to E{X} = 4), so p =
1
2

gives the
minimum of the mean, which one also intuitively would expect.

An alternative solution which uses quite another idea, is the following: Put

pn = P{HT occurs in the experiments of numbers n − 1 and n},
fn = P{HT occurs for the first time in the experiments of numbers n − 1 and n}.

Then

(2) pn = f2pn−2 + f3pn−3 + · · · + fn−2p2 + fn.

We introduce the generating functions

P (s) =
∞
∑

n=2

pnsn = pq

∞
∑

n=2

snpq · s2

1 − s
, s ∈ [0, 1],

F (s) =
∞
∑

n=2

fnsn.

When (2) is multiplied by sn, and we sum with respect to n, we get alternatively

P (s) =
∞
∑

n=2

pnsn =
∞
∑

n=2

{

n−2
∑

k=2

fkpn−k

}

sn +
∞
∑

n=2

fnsn =
∞
∑

k=2

fk

{ ∞
∑

n=k+2

pn−ksn−k

}

sk + F (s)

=
∞
∑

k=2

fksk · P (s) + F (s) = F (s){P (s) + 1},

and we derive that

F (s) =
P (s)

P (s) + 1
= 1 − 1

P (s) + 1
= 1 − 1

pq
s2

1 − s
+ 1

= 1 − 1 − s

pqs2 + 1 − s

= 1 − 1 − s

(1 − ps)(1 − qs)
= 1 +

1
pq

s − 1
(

s − 1
p

)(

s − 1
q

)

= 1 +
1
pq















1
p
− 1

1
p
− 1

q

· 1

s − 1
p

+

1
q
− 1

1
q
− 1

p

· 1

s − 1
q















.

22

Download free eBooks at bookboon.com



Analytic Aids

 
25 

4. Generating functions

By differentiation,

F ′(s) =
1
pq



















1
p
− 1

1
q
− 1

p

· 1
(

s − 1
p

)2 −

1
q
− 1

1
q
− 1

p

· 1
(

s − 1
q

)2



















=
1

p − q



















1 − p

p
· 1
(

s − 1
p

)2 − 1 − q

q
· 1
(

s − 1
q

)2



















=
pq

p − q

{

1
(1 − ps)2

− 1
(1 − qs)2

}

,

hence

E{X} = F ′(1) =
pq

p − q

{

1
q2

− 1
p2

}

=
pq

p − q
· p2 − q2

p2q2
=

1
pq

=
1

p(1 − p)
.

Now, p(1 − p) is largest for p =
1
2
, where E{X} is smallest, corresponding to E{X} = 4.

Furthermore,

F ′′(s) =
pq

p − q

{

2p
(1 − ps)3

− 2q
(1 − qs)3

}

,

so

F ′′(1) =
pq

p − q

{

2p
q3

− 2q
p3

}

=
2

p2q2
· p4 − q4

p − q
· p2 − q2

p2 − q2

=
2

p2q2
·
(

p2 + q2
)

=
2

{

(p + q)2 − 2pq
}

p2q2
=

2(1 − 2pq)
p2q2

,

and

V {X} = F ′′(1) + F ′(1) − {F ′(1)}2 =
2 − 4pq

p2q2
+

pq

p2q2
− 1

p2q2
=

1 − 3pq

p2q2
,

which can be reduced to the other possible descriptions

p

q2
+

q

p2
=

p

(1 − p)2
+

1 − p

p2
.
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Example 4.4 1) The distribution of a random variable X is given by

P{X = k} = (−1)k

(

−α
k

)

pαqk, k ∈ N0,

where α ∈ R+, p ∈ ]0, 1[ and q = 1− p. (Thus X ∈ NB(α, p).) Prove that the generating function
of the random variable X is given by

P (s) = pα(1 − qs)−α, s ∈ [0, 1],

and use it to find the mean of X.

2) Let X1 and X2 be independent random variables

X1 ∈ NB (α1, p) , X2 ∈ NB (α2, p) , α1, α2 ∈ R+, p ∈ ]0, 1[.

Find the distribution function of the random variable X1 + X2.

3) Let (Yn)∞n=3 be a sequence of random variables, where Yn ∈ NB

(

n, 1 − 2
n

)

. Prove that the

sequence (Yn) converges in distribution towards a random variable Y , and find the distribution
function of Y .

4) Compute P{Y > 4} (3 decimals).

1) The generating function for X for s ∈ [0, 1] is given by

P (s) =
∞
∑

k=0

(−1)k

(

−α
k

)

pαqksk = pα
∞
∑

k=0

(

−α
k

)

(−qs)k =
pα

(1 − qs)α
.

It follows from

P ′(s) =
α q pα

(1 − qs)α+1
,

that

E{X} = P ′(1) =
α q pα

(1 − q)α+1
=

α pαq

pα+1
= α · q

p
.

2) Since X1 and X2 are independent, the generated function for X1 + X2 is given by

PX1+X2(s) =
{

p

1 − qs

}α1

·
{

p

1 − qs

}α2

=
{

p

1 − qs

}α1+α2

,

and we conclude that X1 + X2 ∈ NB (α1 + α2, p), thus the distribution is given by

P {X1 + X2 = k} = (−1)k

(

−α1 − α2

k

)

pα1+α2qk, k ∈ N0,
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3) The generating function Pn(s) for Yn is according to 1. given by

Pn(s) =

(

1 − 2
n

)n

(

1 − 2
n

s

)n → e−2

e−2s
= e−2(1−s) = P (s) for n → ∞.

Now, lims→1− P (s) = e0 = 1, so it follows from the continuity theorem that (Yn) converges in
distribution towards a random variable Y of generating function

P (s) = e−2(1−s) = e−2e2s = e−2
∞
∑

n=0

2n

n!
sn =

∞
∑

n=0

P{Y = n} sn.

When we identify the coefficients of sn, we see that the distribution is given by

P{Y = n} =
2n

n!
e−2, n ∈ N0,

which we recognize as a Poisson distribution, Y ∈ P (2).

4) Finally,

P{Y > 4} = 1 − P{Y = 0} − P{Y = 1} − P{Y = 2} − P{Y = 3} − P{Y − 4}

= 1 − e−2

{

1 + 2 + 2 +
4
3

+
2
3

}

= 1 − 7
e2

≈ 0.05265.
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Example 4.5 Consider a random variable X with its distribution given by

P{X = k} =
1

ea − 1
ak

k!
, k ∈ N,

where a is a positive constant.

1. Find the generating function for X and find the mean of X.

Let X1 and X2 be independent random variables, both having the same distribution as X.

2. Find the generating function for X1 + X2, and then find the distribution of X1 + X2.

The distribution of X is a truncated Poisson distribution.

1) The generating function P (s) is

P (s) =
∞
∑

k=1

P{X = k} sk =
1

ea − 1

∞
∑

k=1

(as)k

k!
=

eas − 1
ea − 1

.

It follows from

P ′(s) =
a eas

ea − 1
,

that

E{X} = P ′(s) =
a ea

ea − 1
.

2) Since X1 and X2 are independent, both of the same distribution as X, the generating function is
given by

P (s) = PX1+X2(s) = P1(s) · P2(s) =
1

(ea − 1)2
(eas − 1) , s ∈ [0, 1].

Then we perform a power expansion of those terms which contain s,

P (s) =
1

(ea − 1)2
(

e2as − 2 eas + 1
)

=
1

(ea − 1)2

∞
∑

k=1(2)

1
k!

{

(2a)k − 2ak
}

sk

=
1

(ea − 1)2

∞
∑

k=2

ak

k!
(

2k − 2
)

sk =
∞
∑

k=2

P {X1 + X2 = k} sk.

By identification of the coefficients it follows that X1 + X2 has the distribution

P {X1 + X2 = k} =
1

(ea − 1)2
ak

k!
(

2k − 2
)

, k = 2, 3, 4, . . . .

Remark 4.1 This result can - though it is very difficult – also be found in the traditional way by
computation and reduction of

P {X1 + X2 = k} =
k−1
∑

i=1

P {X1 = i} · P {X2 = k − i} . ♦

26

Download free eBooks at bookboon.com



Analytic Aids

 
29 

4. Generating functions

Example 4.6 A random variable X has the values 0, 2, 4, . . . of the probabilities

P{X = 2k} = p qk, k ∈ N0,

where p > 0, q > 0 and p + q = 1.

1. Find the generating function for X.

2. Find, e.g. by applying the result of 1., the mean E{X}.

We define for every n ∈ N a random variable Yn by

Yn = X1 + X2 + · · · + Xn,

where the random variables Xi are mutually independent and all of the same distribution as X.

3. Find the generating function for Yn.

Given a sequence of random variables (Zn)∞n=1, where for every n ∈ N the random variable Zn has
the same distribution as Yn corresponding to

p = 1 − 1
2n

, q =
1
2n

.

4. Prove, e.g. by applying the result of 3. that the sequence (Zn) converges in distribution towards a
a random variable Z, and find the distribution of Z.

5. Is it true that E {Zn} → E{Z} for n → ∞?

1) The generating function is

PX(s) =
∞
∑

k=0

p qks2k = p
∞
∑

k=0

(

q s2
)k

=
p

1 − qs2
for s ∈ [0, 1].

2) It follows from

P ′
X(s) =

2qps

(1 − qs2)2
,

that

E{X} = P ′
X(1) =

2pq

p2
=

2q
p

.

Alternatively we get by the traditional computation that

E{X} =
∞
∑

k=1

2kpqk = 2pq

∞
∑

k=1

kqk−1 =
2pq

p2
=

2q
p

.

3) The generating function for Yn =
∑n

i=1 Xi is

PYn
= {PX(s)}n =

(

p

1 − qs2

)2

for s ∈ [0, 1].
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4) If we put p = 1 − 1
2n

, q =
1
2n

, then Zn has according to 3. the generating function

PZn
(s) =

(

1 − 1
2n

)n

(

1 − s2

2n

)n .

Since
(

1 +
a

n

)n

→ ea for n → ∞, we get

PZn
(s) →

exp
(

−1
2

)

exp
(

−s2

2

) = exp
(

1
2

(

s2 − 1
)

)

, for n → ∞,

where the limit function is continuous. This means that (Zn) converges in distribution towards a
random variable Z, the generating function of which is given by

PZ(s) = exp
(

1
2

(

s2 − 1
)

)

.

We get by expanding this function into a power series that

PZ(s) =
1√
e

exp
(

1
2

s2

)

=
1√
e

∞
∑

k=0

1
k!

(

1
2

)k

s2k.

It follows that Z has the distribution

P{Z = 2k} =
1
k!

(

1
2

)k 1√
e

for k ∈ N0,

thus
Z

2
is Poisson distributed with parameter

1
2
.

5) From

E {Zn} = n ·
2 · 1

2n

1 − 1
2n

=
1

1 − 1
2n

→ 1 = E{Z} for n → ∞,

follows that the answer is “yes”.
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Example 4.7 A random variable U , which is not causally distributed, has its distribution given by

P{U = k} = pk, k ∈ N0,

and its generating function is

P (s) =
∞
∑

k=0

pksk, s ∈ [0, 1].

The random variable U1 has its distribution given by

P {U1 = 0} = 0, P {U1 = k} =
pk

1 − p0
, k ∈ N.

1. Prove that U1 has its generating function P1(s) given by

P1(s) =
P (s) − p0

1 − p0
, s ∈ [0, 1].

We assume that the number of persons per household residential neighbourhood is a random variable
X with its distribution given by

P{X = k} =
3k

k! (e3 − 1)
, k ∈ N,

(a truncated Poisson distribution).

2. Compute, e.g. by using the result of 1., the generating function for X. Compute also the mean of
X.

Let the random variable Y be given by Y =
(

1
2

)X

.

3. Compute, e.g. by using the result of 2., the mean and variance of Y .

The heat consumption Z per quarter per house (measured in m3 district heating water) is assumed to
depend of the number of persons in the house in the following way:

Z = 200

{

1 −
(

1
2

)X
}

= 200(1 − Y ).

4. Compute the mean and the dispersion of Z. The answers should be given with 2 decimals.

1) A direct computation gives

P1(s) =
∞
∑

k=1

pk

1 − p0
sk =

1
1 − p0

{ ∞
∑

k=0

pksk − p0

}

=
P (s) − p0

1 − p0
.
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2) Also here be direct computation,

PX(s) =
1

e3 − 1

∞
∑

k=1

1
k!

(3s)k =
e3s − 1
e3 − 1

.

Alternatively we can apply 1., though this is far more difficult, because one first have to realize
that we shall choose

pk =
1
e3

· 3k

k!
, k ∈ N0,

with

P (s) = e3(s−1).

Then we shall check that these candidates of the probabilities are added up to 1, and then prove
that

P {U1 = k} =
pk

1 − p0
, k ∈ N,

and finally insert

P1(s) = PX(s) =
e3(s−1) − e−3

1 − e−3
=

e3s − 1
e3 − 1

.

The mean is

E{X} = P (1) =
[

3e3s

e3 − 1

]

s=1

=
3e3

e3 − 1
= 3 +

3
33 − 1

≈ 3.15719.
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3) We get by the definition,

E
{

sX
}

= PX(s) =
e3s − 1
e3 − 1

,

where we obtain the mean of Y =
(

1
2

)X

by putting s =
1
2
, thus

E{Y } = E

{

(

1
2

)X
}

=
exp

(

3
2

)

− 1

e3 − 1
=

1

exp
(

3
2

)

+ 1
≈ 0, 18243.

Analogously,

E
{

Y 2
}

= E

{

(

1
2

)2X
}

= E

{

(

1
4

)X
}

= PX

(

1
4

)

=
exp

(

3
4

)

− 1

e3 − 1
,

hence

V {Y } =
exp

(

3
4

)

− 1

e3 − 1
−















exp
(

3
2

)

− 1

e3 − 1















2

≈ 0.02525.

4) The mean of Z is obtained by a direct computation,

E{Z} = 200E{Y } = 163.514.

The corresponding dispersion is

s =
√

V {Z} = 200
√

V {Y } = 31.7786.
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Example 4.8 Let X1, X2, . . . be mutually independent random variables, all of distribution given by

P {Xi = k} = p qk−1, k ∈ N,

where p > 0, q > 0 and p + q = 1.
Furthermore, let N be a random variable, which is independent of the Xi and which has its distribution
given by

P{N = n} =
an

n!
e−a, n ∈ N0,

where a is a positive constant.

1. Find the generating function P (s) for the random variable X1.

2. Find the generating function for the random variable
∑n

i=1 Xi, n ∈ N.

3. Find the generating function for the random variable N .

We introduce another random variable Y by

(3) Y = X1 + X2 + · · · + XN ,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (3) is itself a random variable (for N = 0 we interpret (3) as Y = 0).

4. Prove that the random variable Y has its generating function PY (s) given by

PY (s) = exp
(

a(s − 1)
1 − qs

)

, 0 ≤ s ≤ 1.

Hint: One may use that

P{Y = 0} = P{N = 0},

P{Y = k} =
∞
∑

n=1

P{N = n} · P {X1 + X2 + · · · + Xn = k} , k ∈ N.

5. Compute the mean E{Y }.

1) The generating function for X1 is

P (s) =
∞
∑

k=1

pqk−1sk = ps

∞
∑

k=1

(qs)k−1 =
ps

1 − qs
, s ∈ [0, 1].

2) The generating function for
∑n

i=1 Xi is

Pn(s) = P (s)n =
(

ps

1 − qs

)n

, s ∈ [0, 1] og n ∈ N.
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3) The generating function for N is

Q(s) =
∞
∑

n=0

an

n!
e−asn = e−1 · eas = ea(s−1).

4) Now,

P{Y = 0} = P{N = 0} = e−a,

so the generating function for YN is

PY (s) = P{Y = 0} +
∞
∑

k=1

P{Y = k} sk

= e−a +
∞
∑

k=1

( ∞
∑

m=1

P{N = n} · P {X1 + X2 + · · · + Xn = k}
)

sk

= e−a +
∞
∑

n=1

( ∞
∑

k=1

P {X1 + X2 + · · · + Xn = k} sk

)

=
∞
∑

n=0

P{N = n} (Pn(s)) = Q(P (s))

= Q

(

ps

1 − qs

)

= exp
(

a

{

ps

1 − qs
− 1

})

= exp
(

a
ps − 1 + qs

1 − qs

)

= exp
(

a(s − 1)
1 − qs

)

.

5) It follows from

P ′
Y (s) = PY (s) · a

{

1
1 − qs

+
q(s − 1)
(1 − qs)2

}

,

that the mean is

E{Y } = P ′
Y (1) = PY (1) · a · 1

1 − q
=

a

p
.
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Example 4.9 Let X1, X2, . . . be mutually independent random variables, all of distribution given by

P {Xi = k} =
1

ln 3
· 1
k

(

2
3

)k

, k ∈ N.

Furthermore, let N be a random variable, which is independent of the Xi and Poisson distributed with
parameter a = ln 9.

1. Find the mean of X1.

2. Find the generating function for the random variable X1.

3. Find the generating function for the random variable
∑n

i=1 Xi, n ∈ N.

4. Find the generating function for the random variable N .

Introduce another random variable Y by

(4) Y = X1 + X2 + · · · + XN ,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (4) also is a random variable (for N = 0 we interpret (4) as Y = 0).

5. Find the generating function for Y , and then prove that Y is negative binomially distributed.
Hint: One may use that

P{Y = 0} = P{N = 0},

P{Y = k} =
∞
∑

n=1

P{N = n} · P {X1 + X2 + · · · + Xn = k} , k ∈ N.

6. Find the mean of Y .

1) The mean is

E {X1} =
1

ln 3

∞
∑

k=1

k · 1
k

(

2
3

)k

=
1

ln 3
·

2
3

1 − 2
3

=
1

ln 3
· 2
3
· 1

1
3

=
2

ln 3
.

2) The generating function for X1 is

PX1(s) =
1

ln 3

∞
∑

k=1

1
k

(

2
3

)k

sk =
1

ln 3

∞
∑

k=1

1
k

(

2s
3

)k

=
1

ln 3
ln







1

1 − 2s
3






=

1
ln 3

ln
(

3
3 − 2s

)

.

3) Since the Xi are mutually independent, we get

Pn(s) = {PX1(s)}
n =

{

1
ln 3

ln
(

3
3 − 2s

)}n

.
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4) Since N ∈ P (ln 9), we obtain the generating function either by using a table or by the computation

PN (s) =
∞
∑

n=0

(ln 9)n

n!
e− ln 9sn =

1
9

∞
∑

n=0

1
n!

(s ln 9)n =
1
9

es ln 9 = 9s−1.

5) First compute

P{Y = 0} = P{N = 0} =
1
9

[= PN (0)].
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This implies that the generating function for Y is

PY (s) =
1
9

+
∞
∑

k=1

P{Y = k}sk =
1
9

+
∞
∑

k=1

∞
∑

n=1

P{N = n} · P {X1 + · · · + Xn = k} sk

=
1
9

+
∞
∑

n=1

P{N = n} ·
∞
∑

k=1

P

{

n
∑

i=1

Ci = k

}

sk =
1
9

+
∞
∑

n=1

P{N = n} · (PX1(s))
n

=
∞
∑

n=0

P{N = n} (PX1(s))
n = PN (PX1(s)) =

1
9

∞
∑

n=0

1
n!

(

ln 9 · 1
ln 3

ln
(

3
3 − 2s

))n

=
1
9

exp
(

2 ln
(

3
3 − 2s

))

=
1
9

1
(

1 − 2
3

s

)2 =











1
3

1 − 2
3

s











2

,

which according to the table corresponds to Y ∈ NB

(

2,
1
3

)

.

6) We get by using a table,

E{Y } = 2 ·
1 − 1

3
1
3

= 4.

Alternatively,

P ′
Y (s) =

1
9
· 22

3
· 1
(

1 − 2
3

s

)3 =
4
27

· 1
(

1 − 2
3

s

)3 ,

hence

E{Y } = P ′
Y (1) =

4
27

· 1
(

1
3

)3 = 4.
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Example 4.10 The number N of a certain type of accidents in a given time interval is assumed to
be Poisson distributed of parameter a, and the number of wounded persons in the i-th accident is
supposed to be a random variable Xi of the distribution

(5) P {Xi = k} = (1 − q)qk, k ∈ N0,

where 0 < q < 1. We assume that the Xi are mutually independent and all independent of the random
variable N .

1. Find the generating function for N .

2. Find the generating function for Xi and the generating function for
∑n

i=1 Xi, n ∈ N.

The total number of wounded persons is a random variable Y given by

(6) Y = X1 + X2 + · · · + XN ,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (6) is itself a random variable.

3. Find the generating function for Y , and find the mean E{Y }.
Given a sequence of random variables (Yn)∞n=1, where for each n ∈ N the random variable Yn has the

same distribution as Y above, corresponding to a = n and q =
1
3n

.

4. Find the generating function for Yn, and prove that the sequence (Yn) converges in distribution
towards a random variable Z.

5. Find the distribution of Z.

1) If N ∈ P (a), then

P{N = n} =
an

n!
e−a, n ∈ N0,

and its generating function is

PN (s) = exp(a(s − 1)).

2) The generating function for Xi is

PXi
(s) =

∞
∑

k=0

(1 − q)qksk = (1 − q)
∞
∑

k=0

(qs)k =
1 − q

1 − qs
.

The generating function for
∑n

i=1 Xi is given by

PPn
i=1 Xi

(s) =
(

1 − q

1 − qs

)n

.

3) Since all the random variables are mutually independent, the generating function for Y = X1 +
X2 + · · · + XN is given by

PY (s) = PN (PXi
(s)) = exp

(

a

(

1 − q

1 − qs
− 1

))

= exp
(

aq
s − 1
1 − qs

)

.

37

Download free eBooks at bookboon.com



Analytic Aids

 
40 

4. Generating functions

4) The generating function for Yn is given by

PYn
(s) = exp



n · 1
3n

· s − 1

1 − s

3n



 = exp





1
3
· s − 1

1 − s

3n



 .

When n → ∞ we see that

PYn
(s) → P (s) = exp

(

s − 1
3

)

.

Since lims→1− P (s) = 1, we conclude that P (s) is the generating function for some random variable
Z, thus

PZ(s) = exp
(

s − 1
3

)

.

5) It follows immediately from 4. that Z ∈ P

(

1
3

)

is Poisson distributed with parameter a =
1
3
.

Example 4.11 Let X1, X2, X3, . . . be mutually independent random variables, all of distribution
given by

P {Xi = k} = p1 (1 − p1)
k−1

, k ∈ N, hvor p1 ∈ ]0, 1[,

and let N be a random variable, which is independent of all the Xi-erne, and which has its distribution
given by

P{N = n} = p2 (1 − p1)
n−1

, n ∈ N, p2 ∈ ]0, 1[.

1. Find the generating function PX1(s) for X1 and the generating function PN (s) for N .

2. Find the generating function for the random variable
∑n

i=1 Xi, n ∈ N.

Introduce another random variable Y by

(7) Y = X1 + X2 + · · · + XN ,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (7) is itself a random variable.

3. Find the generating function for Y , and then prove that Y is geometrically distributed.

4. Find mean and variance of Y .

1) We get either by using a table or by a simple computation that

PX1(s) =
∞
∑

k=1

p1 (1 − p1)
k−1

sk = p1s ·
∞
∑

k=1

{(1 − p1) s}k−1 =
p1s

1 − (1 − p1) s
, s ∈ [0, 1].

We get analogously,

PN (s) =
p2s

1 − (1 − p2) s
for s ∈ [0, 1].
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2) The generating function for
∑n

i=1 Xi is

(PX1(s))
n =

(

p1s

1 − (1 − p1) s

)n

, s ∈ [0, 1].

3) The generating function for Y is

PY (s) = PN (PX1(s)) =
p2 ·

p1s

1 − (1 − p1) s

1 − (1 − p2) ·
p1s

1 − (1 − p1) s

=
p1p2s

1 − (1 − p1) s − (1 − p2) p1s

=
(p1p2) s

1 − (1 − p1p2) s
, s ∈ [0, 1].

This is the generating function for a geometric distribution of parameter p1p2, so Y is geometrically
distributed.

4) From Y being geometrically distributed of parameter p1p2 it follows that

E{Y } =
1

p1p2
and V {Y } =

1 − p1p2

(p1p2)
2 .
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Remark 4.2 The distribution of Y may also be found without using the generating function. In fact,

P{Y = k} =
k

∑

n=1

P{N = n} · P {X1 + X2 + · · · + Xn = k} .

Since X1 + X2 + · · · + Xn ∈ Pas (n, p1), we get

P{Y = k} =
k

∑

n=1

p2 (1 − p2)
n−1

(

k − 1
n − 1

)

pn
1 (1 − p1)

k−n

= p1p2 (1 − p1)
k−1

k
∑

n=1

(

k − 1
n − 1

){

p1

(

1 − p2

1 − p1

)}n−1

= p1p2 (1 − p1)
k−1

k−1
∑

�=0

(

k − 1
�

){

p1 (1 − p2)
1 − p1

}�

= p1p2 (1 − p1)
k−1

{

1 +
p1 (1 − p2)

1 − p1

}k−1

= p1p2 {1 − p1 + p1 − p1p2}k−1 = (p1p2) · (1 − p1p2)
k−1

,

and we have given an alternative proof of the claim that Y is geometrically distributed of param-
eter p1p2. �
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Example 4.12 1. Let U be a random variable with values only in N0, and let V = 3U . Prove the
following connection between the generating functions of U and V ,

PV (s) = PU

(

s3
)

, 0 ≤ s ≤ 1.

Let the random variable X have its distribution given by

P{X = 3k} = p(1 − p)k−1, k ∈ N,

where p is a constant, 0 < p < 1.

2. Prove, e.g. by using the result of 1. that X has the generating function

pX(s) =
ps3

1 − (1 − p)s3
, 0 ≤ s ≤ 1,

and then find the Laplace transform LX(λ) of X.

A sequence of random variables (Xn)∞n=1 is defined by Xn taking the values
3
n

,
6
n

,
9
n

, . . . of the
probabilities

P

{

Xn =
3k
n

}

=
1
3n

(

1 − 1
3n

)k−1

, k ∈ N.

3. Find the Laplace transform LXn
(λ) of the random variable Xn.

4. Prove that the sequence (Xn) converges in distribution towards some random variable Y , and find
the distribution function of Y .

1) By the definition,

PU (s) =
∞
∑

k=0

P{U = k} sk.

From V = 3U follows that

PV (s) =
∞
∑

k=0

P{V = 3U = 3s} s3k =
∞
∑

k=0

P{U = k} s3k = PU

(

s3
)

.

2) Let Y ∈ Pas(1, p) be geometrically distributed. Then

PY (s) =
ps

1 − qs
=

ps

1 − (1 − p)s
.

From X = 3Y and 1. we get

PX(s) =
ps3

1 − (1 − p)s3
.

The Laplace transform of X is

LX(λ) =
∞
∑

k=1

P{X = 3k} e−3kλ =
∞
∑

k=1

p(1 − o)k−1e−3kλ

= p · e−3λ
∞
∑

k=1

{

(1 − p)e−3λ
}k−1

=
p e−3λ

1 − (1 − p)e−3λ
.
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3) We derive the Laplace transform of Xn from the Laplace transform of X by putting p =
1
3n

and

by replacing λ by
λ

n
, thus

LXn
(λ) =

1
3n

exp
(

−3λ
n

)

1 −
(

1 − 1
3n

)

exp
(

−3λ
n

) =

1
3n

exp
(

+
3λ
n

)

− 1 +
1
3n

.

4) Now,

exp
(

3λ
n

)

− 1 +
1
3n

= 1 +
3λ
n

+
1
n

ε

(

1
n

)

− 1 +
1
3n

=
1
3n

(1 + 9λ) +
1
n

ε

(

1
n

)

,

so

LXn
(λ) =

1

1 + 9λ + ε

(

1
n

) → 1
1 + 9λ

= LZ(λ),

where Z ∈ Γ
(

1,
1
9

)

is exponentially distributed, thus (Xn) converges in distribution towards

Z ∈ Γ
(

1,
1
9

)

.
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Example 4.13 A football team shall play 5 tournament matches. The coach judges that in each

match there is the probability
2
5

for victory,
2
5

for defeat, and
1
5

for draw, and that the outcome of a
match does not influence on the probabilities of the following matches.
A victory gives 2 points, a draw gives 1 point, and a defeat gives 0 point.
Let the random variable X indicate the number of victories in the 5 matches, and let Y indicate the
number of obtained points in the 5 matches. Then we can also write

X =
5

∑

i=1

Xi and Y =
5

∑

i=1

Yi,

where

Xi =







1, if victory in match number i,

0, otherwise,

and

Yi =























2, if victory in match number i,

1, if draw in match number i,

0, if defeat in match number i.

1) Compute P{X = k}, k = 0, 1, 2, 3, 4, 5, and the mean E{X}.

2) Find the mean and variance of Y .

3) Compute P{Y = 10}.

4) Compute P{Y = 8}.

5) Find the generating function for Yi, and then find (use a pocket calculator) the generating function
for

Y =
5

∑

i=1

Yi.

Compute also the probabilities P{Y = k}, k = 0, 1, 2, . . . , 10.

6) In the Danish tournament league a victory gives 3 points, a draw gives 1 point, and a defeat gives
0 point. Let Z denote the number of obtained points in the 5 matches (all other assumptions are
chosen as the same as above). Then Z can as value have all integers between 0 and 15, with one
exception (which one?). Find all the probabilities by using generating functions in the same way
as in 5..

1) Since X ∈ B

(

5,
2
5

)

is binomially distributed, we get

pk = P{X = k} =
(

5
k

)(

2
5

)k (

3
5

)5−k

, k = 0, 1, 2, 3, 4, 5,
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We get more explicitly,

p0 =
(

3
4

)5

=
243
3125

,

p1 = 5 · 2
5

(

3
5

)4

=
810
3125

=
162
625

,

p2 = 10 ·
(

2
5

)2 (

3
5

)3

=
1080
2125

=
216
625

,

p3 = 10 ·
(

2
5

)3 (

3
5

)2

=
720
3125

=
144
625

,

p4 = 5 ·
(

2
5

)3

4 · 3
5

=
240
3125

=
48
625

,

p5 =
(

2
5

)5

=
32

3125
.

The mean is

E{X} = 5 · 2
5

= 2.

2) The mean of Yi is

E {Yi} = 2 · 2
5

+ 1 · 1
5

+ 0 · 2
5

= 1 for i = 1, . . . , 5,

and since

E
{

Y 2
i

}

= 4 · 2
5

+ 1 · 1
5

+ 0 · 2
5

=
9
5

for i = 1, . . . , 5,

the variances are

V {Yi} =
9
5
− 12 =

4
5
.

Now the Yi are mutually independent, so it follows that

E{Y } =
5

∑

i=1

E {Yi} = 5 and V {Y } =
5

∑

i=1

V {Yi} = 4.

3) If Y = 10, then the team must have won all 5 matches, thus

P{Y = 10} = P{X = 5} =
(

2
5

)5

=
32

3125
.

4) The case Y = 8 occurs if either we have 4 victories and 1 defeat, or 3 victories and 2 draws. Hence

P{Y = 8} = 5 ·
(

2
5

)4

· 2
5

+
(

5
3

)(

2
5

)3 (

1
5

)2

=
5 · 25 + 10 · 23

55
=

240
3125

=
48
625

.
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5) From

p0 =
2
5
, p1 =

1
5

and p2 =
2
5
,

follows that the generating function for each Yi is given by

a(s) =
2
5

s2 +
1
5

s +
2
5

=
1
5

(

2s2 + s + 2
)

.

This implies that the generating function for Y =
∑5

i=1 Yi is given by (either by using a pocket
calculator or MAPLE)

PY (s) = a(s)5 =
(

2
5

s2 +
1
5

s +
2
5

)5

=
32

3125
s10 +

16
625

s9 +
48
625

s8 +
72
625

s7 +
114
625

s6 +
561
3125

s5 +
114
625

s4 +
72
625

s3

+
48
625

s2 +
16
625

s +
32

3125
.

It follows that P{Y = k} is the coefficient of sk.

6) Clearly, P{Z = 14} = 0. In fact, 5 victories gives 15 points, and the second best result is described
by 4 victories and 1 draw, corresponding to k = 4 · 3 + 1 · 1 = 13.
In this new case the generating function for each Zi is given by

b(s) =
2
5

s3 +
1
5

s +
2
5

=
1
5

(

2s3 + s + 2
)

,

where we have replaced s2 by s3.
Thus the generating function for Z =

∑5
i=1 Zi is given by

PZ(s) = b(s)5 =
(

2
5

s3 +
1
5

s +
2
5

)5

=
32

3125
s15 + 0 · s14 +

16
625

s13 +
32
625

s12 +
16
625

s11 +
64
625

s10 +
72
625

s9 +
48
625

s8

+
98
625

s7 +
16
125

s6 +
241
3125

s5 +
66
625

s4 +
8

125
s3 +

16
625

s20
16
625

s +
32

3125
,

which can also be written in the following way, in which it is easier to evaluate the magnitudes of
the coefficients,

PZ(s) =
1

3125
{

32s15 + 80s13 + 160s12 + 80s11 + 320s10

+360s9 + 240s8 + 490s7 + 400s6 + 241s5 +330s4 + 200s3 + 80s2 + 80s + 32
}

.

Since P{Z = k} is the coefficient of sk in PZ(s), we conclude that under the given assumptions
there is the biggest chance for obtaining 7 points,

P{Z = 7} =
490
3125

=
98
625

.
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5 The Laplace transformation

Example 5.1 Let X be exponentially distributed of the frequency

f(x) =







a e−ax, x > 0,

0, x ≤ 0.

Find LX(λ), and use it to find E{X} and V {X}.

We first note that

LX(λ) =
∫ ∞

0

a e−axe−λx dx = a

∫ ∞

0

e−(λ+a)x dx =
a

λ + a
.

Hence

E{X} = [−L′
X(λ)]λ=0 =

[

−
(

− a

(λ + a)2

)]

λ=0

=
a

a2
=

1
a
,

and

E
{

X2
}

) [L′′
X(λ)]λ=0 =

[

2a
(λ + a)3

]

λ=0

=
2a
a3

=
2
a2

,
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from which

V {X} = E
{

X2
}

− (E{X})2 =
2
a2

− 1
a2

=
1
a2

,

in accordance with previous results.

Example 5.2 Let X1, X2, . . . be mutually independent random variables, where Xk is Gamma dis-
tributed with form parameter k and scale parameter 1, thus Xk ∈ Γ(k, 1), k ∈ N. Define

Yn =
n

∑

k=1

Xk and Zn =
1
n2

Yn, n ∈ N.

1) Find the means E {Yn} and E {Zn}.

2) Find the Laplace transform of Yn and the Laplace transform of Zn.

3) Prove, e.g. by using the result of 2., that the sequence (Zn)∞n=1 converges in distribution towards a
random variable Z, and find the distribution function of Z.

We get from Xk ∈ Γ(k, 1) that

E {Xk} = k and LXk
(λ) =

(

1
1 + λ

)k

.

1) The means are

E {Yn} =
n

∑

k=1

E {Xk} =
n

∑

k=1

k =
1
2

n(n + 1),

E {Zn} =
1
n2

E {Yn} =
n + 1
2n

=
1
2

+
1
2n

.

2) From

Yn ∈ Γ

(

n
∑

k=1

k , 1

)

= Γ
(

n(n + 1)
2

, 1
)

,

follows that

LYn
(λ) =

(

1
1 + λ

)

n(n+1)
2

.

Alternatively,

LYn
(λ) =

n
∏

k=1

LXk
(λ) =

n
∏

k=1

(

1
1 + λ

)k

=
(

1
1 + λ

)

n(n+1)
2

,

thus the same result.
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Since LZn
(λ) is obtained from LYn

(λ) by replacing λ by
λ

n2
, we get

LZn
(λ) = LYn

(

λ

n2

)

=
1

(

1 +
λ

n2

)

n(n+1)
2

.

3) Since the denominator converges for n → ∞,

(

1 +
λ

n2

)

n(n+1)
2

=

{

(

1 +
λ

n2

)n2

·
(

1 +
λ

n2

)n
}

1
2

→
(

eλ · 1
)

1
2 = exp

(

λ

2

)

for n → ∞,

we get

LZn
(λ) → exp

(

−λ

2

)

= LZ(λ) for n → ∞,

so (Zn) converges in distribution towards a causally distributed random variable Z with the dis-
tribution function

FZ(z) =















0 for z <
1
2
,

1 for z ≥ 1
2
.
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Example 5.3 A random variable Z has the values 1, 2, . . . with the probabilities

P{Z = k} = − 1
ln p

· qk

k
,

where p > 0, q > 0 and p + q = 1. We say that Z has a logarithmic distribution.

1. Find the Laplace transform LZ(λ) of Z.

2. Find the mean of the random variable Z.

We consider a sequence of random variables (Xn)∞n=2, where Xn has the values 1, 2, . . . of the
probabilities

P {Xn = k} = − 1
ln pn

· qk
n

k
,

where qn =
1
n

and pn + qn = 1.

3. Prove that the sequence (Xn) converges in distribution towards a random variable X, and find the
distribution function of X.

1) The Laplace transform is

LZ(λ) =
∞
∑

n=1

P{Z = n}eλn = − 1
ln p

∞
∑

n=1

qn

n
e−λn = − 1

ln p

∞
∑

n=1

(

qe−λ
)n

n
=

ln
(

1 − qe−λ
)

ln p
.

2) By a straightforward computation,

E{Z} = − 1
ln p

∞
∑

k=1

k · qk

k
= − 1

ln p
· q

1 − q
= − q

p ln p
.

Alternatively,

E{Z} = −L′
Z(0) = − 1

ln p
·
[

qe−λ

1 − qe−λ

]

λ=0

= − 1
ln p

· q

1 − q
= − q

p ln p
.

3) It follows from 1. that

LXk
(λ) =

ln
(

1 − qke−λ
)

ln pk
=

ln
(

1 − 1
k

e−λ

)

ln
(

1 − 1
k

) .

For every fixed λ > 0 we get by l’Hospital’s rule, where we put x =
1
k

,

lim
k→∞

LXk
(λ) = lim

k→∞

ln
(

1 − 1
k

e−λ

)

ln
(

1 − 1
k

) = lim
x→0

ln
(

1 − x e−λ
)

ln(1 − x)
= lim

x→0

−e−λ

1 − x e−λ

− 1
1 − x

= e−λ.
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If λ = 0, then LXk
= e−0 for every k, so

LX(λ) =







for λ > 0,

1 for λ = 0,

and LX(λ) exists for all λ ≥ 0, and it is continuous at λ = 0. This implies that (Xn) converges
in distribution towards some random variable X, which has the Laplace transform LX(λ) = e−λ,
from which we conclude that X is causally distributed with a = 1, thus P{X = 1} = 1.

Example 5.4 A random variable X has the values 1, 2, . . . of the probabilities

P{X = k} = pqk−1, hvor p > 0, q > 0, p + q = 1.

1. Find the Laplace transform of X.

We consider a sequence of random variables (Xn)∞n=1, where Xn has the values
1
n

,
2
n

, . . . of the
probabilities

P

{

Xn =
k

n

}

=
a

n

(

1 − a

n

)k−1

, k ∈ N

(here a ∈ ]0, 1[ is a constant).

2. Prove that the mean of Xn does not depend on n.

3. Find the Laplace transform of Xn.

4. Prove that the sequence (Xn) converges in distribution towards a random variable Y , and find the
distribution function of Y .

1. The Laplace transform is

LX(λ) =
∞
∑

n=1

e−λnpqn−1 =
p

q

∞
∑

n=1

(

qe−λ
)n

=
p

q
· q · e−λ

1 − qe−λ
=

p e−λ

1 − qe−λ
.

2. and 3. The Laplace transform of Xn is

LX(λ) =
∞
∑

n=1

exp
(

−λ
k

n

)

· a

n

(

1 − a

n

)k−1

=
a
n

1 − a
n

∞
∑

k=1

{

exp
(

−λ

n

(

1 − a

n

)

)}k

=
a
k

1 − a
n

·

(

1 − a

n

)

exp
(

−λ

n

)

1 −
(

1 − a

n

)

exp
(

−λ

n

) =

a

n
exp

(

−λ

n

)

1 − λ
(

1 − a

n

)

exp
(

−λ

n

)

=

a

n

1 − a

n

· 1

1 −
(

1 − a

n

)

exp
(

−−λ

n

) −
a

n

1 − a

n

,

50

Download free eBooks at bookboon.com



Analytic Aids

 
53 

5. the Laplace transformation

hence

E {Xn} = −L′
Xn

(0) = −
a

n

1 − a

n

·

(

1 − a

n

)

·
(

− 1
n

)

exp
(

−λ

n

)

{

1 −
(

1 − a

n

)

exp
(

−λ

n

)}2











λ=0

=

a

n

1 − a

n

·

(

1 − a

n

)

· 1
n

(a

n

)2 =
1
a
,

which is independent of n.

4. It follows by l’Hospital’s rule that

lim
n→∞

LXn
(λ) = lim

n→∞

a

n
exp

(

−λ

n

)

1 −
(

1 − a

n

)

exp
(

−λ

n

) = lim
x→0

ax e−λx

1 − (1 − ax)e−λx

= a lim
x→0

e−λx − λx e−λx

λ(1 − ax)e−λx + a e−λx
= a lim

x→0

1 − λx

λ(1 − ax) + a
=

a

λ + a
= LY (λ),

and we get by using a table that Y ∈ Γ
(

1,
1
a

)

is exponentially distributed. This proves that (Xn)

converges in distribution towards Y .
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Example 5.5 A random variable X has the values 1, 2, . . . of the probabilities

P{X = k} =
ak−1

(k − 1)!
e−a, k ∈ N,

where a is some positive constant.

1. Find the Laplace transform of X.

2. Find the mean of X.

We consider a sequence of random variables (Yn)∞n=1, where for each n ∈ N the random variable Yn

has its distribution given by

P

{

Yn =
k

2n

}

=
(2n)k−1

(k − 1)!
e−2n, k ∈ N.

3. Find the Laplace transform of Yn.

4. Prove, e.g. by using the result of 3., that the sequence (Yn)∞n=1 converges in distribution towards a
random variable Y , and find the distribution function of Y .

5. Is it true that E {Yn} → E{Y } for n → ∞?

1) The Laplace transform of X is

LX(λ) =
∞
∑

k=1

ak−1

(k − 1)!
e−a · e−λk = e−a · e−λ

∞
∑

k=0

ak

k!
(

e−λ
)k

= e−a−λ · exp
(

a e−λ
)

= exp
(

−a − λ + a e−λ
)

= exp
(

a
(

e−λ − 1
)

− λ
)

, λ ≥ 0.

2) The mean is

E{X} =
∞
∑

k=1

k· ak−1

(k − 1)!
e−a = e−a

∞
∑

k=0

k + 1
k!

ak = e−a

{ ∞
∑

k=1

ak

(k − 1)!
+

∞
∑

k=0

1
k!

ak

}

= e−a(a+1)ea = a+1.

Alternatively,

L′
X(λ) =

(

−1 − a e−λ
)

exp
(

−a − λ + a e−λ
)

,

s̊a

E{X} = −L′
X(0) = 1 + a.

3) The Laplace transform of Xn with a = 2n is

LX

(

λ

2n
; a = 2n

)

= exp
(

−2n − λ + 2n exp
(

− λ

2n

))

= exp
(

2n
{

exp
(

− λ

2n

)

− 1
}

− λ

)

.

Since Xn = 2nYn, the Laplace transform of Yn is given by

LYn
(λ) = LXn

(

λ

2n

)

= exp
(

2n
{

exp
(

− λ

2n

)

− 1
}

− λ

2n

)

, λ ≥ 0.
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4) It follows from

LYn
(λ) = exp

(

2n
{

1 − λ

2n
+

λ

2n
ε

(

λ

2n

)

− 1
}

− λ

2n

)

= exp
(

−λ + λ ε

(

λ

2n

)

− λ

2n

)

→ e−λ for n → ∞,

that Yn
D−→ Y , where Y has the distribution function

FY (y) =







1 for y ≥ 1,

0 for y < 1.

5) Since

E {Yn} =
1
2n

(2n + 1) = 1 +
1
2n

→ 1 = E{Y },

we conclude that the answer is “yes”.

Example 5.6 A random variable X has the values 1, 3, 5, . . . of probabilities

P{X = 2k + 1} = p(1 − p)k, k ∈ N0,

where p is a constant, 0 < p < 1.

1. Find the Laplace transform LX(λ) of the random variable X.

2. Find the mean of the random variable X.

We consider a sequence of random variables (Xn)∞n=1 , where Xn has the values
1
n

,
3
n

,
5
n

, . . . of the
probabilities

P

{

Xn =
2k + 1

n

}

=
1
2n

(

1 − 1
2n

)k

, k ∈ N0.

3. Find the Laplace transform LXn
(λ) of the random variable Xn.

4. Find the mean of the random variable Xn.

5. Prove that the sequence (Xn) converges in distribution towards a random variable Y , and find the
distribution function of Y .

1) The Laplace transform is

LX(λ) =
∞
∑

k=0

p(1 − p)k exp(−λ(2k + 1)) = p e−λ
∞
∑

k=0

{

(1 − p)e−2λ
}k

=
p e−λ

1 − (1 − p)e−2λ
=

p eλ

e2λ − (1 − p)
.
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2) The mean is

E{X} =
∞
∑

k=0

(2k + 1)p(1 − p)k = 2p(1 − p)
∞
∑

k=1

k(1 − p)k−1 + p

∞
∑

k=0

(1 − p)k

= 2p(1 − p) · 1
{1 − (1 − p)}2

+ p · 1
1 − (1 − p)

=
2p(1 − p)

p2
+

p

p
= 2

1 − p

p
+ 1 =

2
p
− 1.

Alternatively,

L′
X(λ) = LX(λ) ·

{

p eλ

e2λ − (1 − p)
− 2p eλ

{e2λ − (1 − p)}2

}

,

thus

E{X} = −L′
X(0) = −1 +

2p
p2

=
2
p
− 1.

3) If we put p =
1
2n

, then we get LXn
(λ) from LX(λ) by replacing λ by

λ

n
, thus

LXn
(λ) = LX

(

λ

n

)

=

1
2n

exp
(

λ

n

)

exp
(

2λ
n

)

−
(

1 − 1
2n

) =
exp

(

λ

n

)

2n
{

exp
(

2λ
n

)

− 1
}

+ 1
.

4) It follows from

L′
Xn

(λ) =
1
n

mLXn
(λ) −

exp
(

λ

n

)

{

2n
(

exp
(

2λ
n

)

− 1
)

+ 1
}2 · 2n · 2

n
,

that

E {Xn} = −L′
Xn

(0) = − 1
n

+ 4 = 4 − 1
n

.

Alternatively,

E {Xn} =
∞
∑

k=0

2k + 1
n

· 1
2n

(

1 − 1
2n

)k

=
1
n2

(

1 − 1
2n

) ∞
∑

k=1

k

(

1 − 1
2n

)k−1

+
1
n
· 1
2n

∞
∑

k=0

(

1 − 1
2n

)k

=
1
n2

(

1 − 1
2n

)

· 1
{

1 −
(

1 − 1
2n

)}2 +
1

2n2
· 1

1 −
(

1 − 1
2n

)

=
1
n2

(

1 − 1
2n

)

· 1
(

1
2n

)2 +
1

2n2
· 1

1
2n

= 4
(

1 − 1
2n

)

+
1
n

= 4 − 1
n

.
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5) It follows from

2n
{

exp
(

2λ
n

)

− 1
}

+ 1 = 2n
{

1 +
2λ
n

+
2λ
n

ε

(

2λ
n

)

− 1
}

+ 1 = 1 + 4λ + 4λ ε

(

2λ
n

)

,

that

LXn
(λ) =

exp
(

λ

n

)

2n
{

exp
(

2λ
n

)

− 1
}

+ 1
=

exp
(

λ

n

)

1 + 4λ + 4λ ε

(

2λ
n

) → 1
1 + 4λ

for n → ∞.

Now,
1

1 + 4λ
is continuous for λ ∈ [0,∞[. Hence (Xn) converges in distribution towards a random

variable Y , where LY (λ) =
1

1 + 4λ
corresponds to Y ∈ Γ(1, 4), i.e. an exponential distribution of

frequency

fY (y) =











1
4

exp
(

−y

4

)

for y > 0,

0 for y ≤ 0.
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Example 5.7 The random variables X1, X2 and X3 are assumed to be mutually independent and
each of them following a rectangular distribution over the interval ]0, 1[.
Let X denote the random variable

X = X1 + X2 + X3.

1) Find the mean and variance of the random variable X.
Hint: Find first the frequency of X1 + X2.

2) Find the Laplace transform L(λ) of the random variable X, and prove that

L(λ) = 1 − 3
2

λ +
5
4

λ2 + λ2ε(λ).

1) We conclude from

E {X1} = E {X2} = E {X3} =
1
2
,

that

E{X} = E {X1} + E {X2} + E {X3} =
3
2
.

Since

V {X1} = V {X2} = V {X3} =
1
12

,

and X1, X2 and X3 are mutually independent, we get

V {X} = V {X1} + V {X2} + V {X3} = 3 · 1
12

=
1
4
.

0

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2

Figure 1: The graph of g(y).
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2) The frequency g(y) of Y = X1 + X2 is 0 for y /∈ ]0, 2[. If 0 < y < 2, then

g(y) =
∫ y

0

f(y − s)f(s) ds.

Hence, for 0 < y < 1,

g(y) =
∫ y

0

f(y − s)f(s) ds =
∫ y

0

1 · 1 ds = y.

If 1 ≤ y < 2, then we get instead

g(y) =
∫ y

0

f(y − s)f(s) ds =
∫ 1

y−1

1 · 1 ds = 2 − y.

Summing up, the frequency of Y = X1 + X2 is given by

g(y) =























y for y ]0, 1[,

2 − y for y ∈ [1, 2[

0 otherwise.

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.5 1 1.5 2 2.5 3

Figure 2: The graph of h(x).

The frequency h(x) of X = X1 + X2 + X3 = Y + X3 is 0 for x /∈ ]0, 3[.
If 0 < x < 3, then

h(x) =
∫ x

0

g(s)f(x − s) ds =
∫ x

0

g(x − s)f(s) ds.

We shall now split the investigation into the cases of the three intervals ]0, 1[, [1, 2[ and [2, 3[.

a) If x ∈ ]0, 1[, then

h(x) =
∫ x

0

g(x − s) · 1 ds =
∫ x

0

(x − s) ds =
[

−1
2

(x − s)2
]x

s=0

=
x2

2
.
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b) If x ∈ [1, 2[, then

h(x) =
∫ x

0

g(x − s)f(s) ds =
∫ 1

0

g(x − s) · 1 ds

=
∫ x−1

0

g(x − s) ds +
∫ 1

x−1

g(x − s) ds

=
∫ x−1

0

{2 − (x − s)} ds +
∫ 1

x−1

(x − s) ds

=
[

1
2

(2 − x + s)2
]x−1

s=0

+
[

−1
2

(x − s)2
]2

s=x−1

=
1
2

{

(2 − x + x − 1)2 − (2 − x)2 + (x − x + 1)2 − (x − 1)2
}

=
1
2

{

1 − (x − s)2 + 1 − (x − 1)2
}

=
1
2

{

2 − x2 + 4x − 4 − x2 + 2x − 1
}

=
1
2

{

−2x2 + 6x − 3
}

=
3
4
−

(

x − 3
2

)2

.

c) If x ∈ [2, 3[, then

h(x) =
∫ x

0

g(x − s)f(s) ds =
∫ 1

0

g(x − s) · 1 ds =
∫ x

x−1

g(t) dt =
∫ 2

x−1

g(t) dt

=
∫ 2

x−1

(2 − t) dt =
[

−1
2

(2 − t)2
]2

x−1

=
1
2

(2 − x + 1)2

2
=

1
2

(3 − x)2.

Summing up, the frequency h(x) of X is given by

h(x) =



























































1
2

x2 for x ∈ ]0, 1[,

3
4
−

(

x − 3
2

)2

for x ∈ [1, 2[,

1
2

(3 − x)2 for x ∈ [2, 3[,

0 otherwise.

3) When λ ≥ 0 and i = 1, 2, 3, then

LXi
(λ) =

∫ ∞

0

e−λtf(t) dt =
∫ 1

0

e−λt dt =
[

− 1
λ

e−λt

]1

0

=
1 − e−λ

λ
.
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Since X1, X2 and X3 are mutually independent, we get

LX(λ) =
(

1 − e−λ

λ

)3

=
1
λ3

{

1 −
∞
∑

n=0

(−1)n

n!
λn

}3

=

{

1
λ

∞
∑

n=1

(−1)n+1

n!
λn

}3

=

{ ∞
∑

n=1

(−1)n−1

n!
λn−1

}3

=

{ ∞
∑

n=0

(−1)n

(n + 1)!
λn

}3

=
{

1 − λ

2
+

λ2

6
+ λ2ε(λ)

}3

=
{

1 +
λ4

4
− λ +

λ2

3
+ λ2ε(λ)

}

·
{

1 − λ

2
+

λ2

6
+ λ2ε(λ)

}

=
{

1 − λ +
7
12

λ2 + λ2ε(λ)
}

·
{

1 − λ

2
+

λ2

6
+ λ2ε(λ)

}

= 1 −
(

1
2

+ 1
)

λ +
(

1
6

+
1
2

+
7
12

)

λ2 + λ2ε(λ) = 1 − 3
2

λ +
2 + 6 + 7

12
λ2 + λ2ε(λ)

= 1 − 3
2

λ +
5
4

λ2 + λ2ε(λ).
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Example 5.8 A random variable Y has the frequency

f(y) =







a2y e−ay, y ≥ 0

0, y < 0,

where a is a positive constant.

1. Find the Laplace transform LY (λ) of the random variable Y .

2. Find the mean of the random variable Y .

A random variable Y has the values 0, 1, 2, 3, . . . of the probabilities

P{X = k} = (k + 1)p2qk,

where p > 0, q > 0, p + q = 1.

3. Find the Laplace transform LX(λ) of X.

Find the mean of X.

A sequence of random variables (Xn) is given by Xn having the values 0,
1
n

,
2
n

, . . . of the probabilities

P

{

Xn =
k

n

}

= (k + 1)
(a

n

)2 (

1 − a

n

)k

,

where a is a constant, 0 < a < 1.

5. Find the Laplace transform of Xn.

6. Find the mean of the random variable Xn.

7. Prove that the sequence (Xn) converges in distribution towards a random variable Y (as defined
above).

8. Prove that E {Xn} → E{Y } for n → ∞.

1) If λ ≥ 0, then

LY (λ) =
∫ ∞

0

a2y e−aye−λy dy =
a2

(λ + a)2

∫ ∞

0

(a + λ)2y e−(a+λy) dy =
a2

(λ + a)2
=

1
(

1 +
λ

a

)2 .

2) The mean is

E{Y } = −L′
Y (0) = − −2

(

1 +
λ

a

)3 · 1
a











λ=0

=
2
a
.

60

Download free eBooks at bookboon.com



Analytic Aids

 
63 

5. the Laplace transformation

3) If λ ≥ 0, then

LX(λ) =
∞
∑

n=0

e−λn(n + 1)p2qn =
∞
∑

n=0

(n + 1)p2
(

q e−λ
)n

=
p2

(1 − q e−λ)2
.

4) The mean is

E{X} = −L′
X(0) = − lim

λ→0

−2p2

(1 − q e−λ)3
·
(

−q e−λ
)

· (−1) =
2p2q

(1 − q)3
= 2

q

p
.

5) If Xn, then

LXn
(λ) =

∞
∑

k=0

exp
(

−λ
k

n

)

(k + 1)
(a

n

)2 (

1 − a

n

)k

=

(a

n

)2

{

1 − exp
(

−λ

n

)

(

1 − a

n

)

}2 .

6) The mean is

E {Xn} = −L′
Xn

(0) = − lim
λ→0

(a

n

)2

· (−2)
−

(

1 − a

n

)

exp
(

−λ

n

)

·
(

− 1
n

)

{

1 − exp
(

−λ

n

)

(

1 − a

n

)

}3

=
(a

n

)2

· 2
{

1 −
(

1 − a

n

)}3 ·
(

1 − a

n

)

· 1
n

=
2
n
·
1 − a

n
a

n

=
2
a
− 2

n
.

7) We get by a rearrangement,

LXn
(λ) =

(a

n

)2

{

1 − exp
(

−λ

n

)

(

1 − a

n

)

}2 =
a2

{

n − exp
(

−λ

n

)

(n − a)
}2 ,

where

n − exp
(

−λ

n

)

· (n − a) = n

{

1 − exp
(

−λ

n

)}

+ a · exp
(

−λ

n

)

= n

(

1 −
{

1 − λ

n
+

λ

n
ε

(

λ

n

)})

+ a exp
(

−λ

n

)

= λ + n · λ

n
ε

(

λ

n

)

+ a · exp
(

−λ

n

)

→ λ + a for n → ∞.

Hence

lim
n→∞

LXn
(λ) =

a2

(λ + a)2
= LY (λ).

Since LY (λ) is continuous at 0, it follows that {Xn} converges in distribution towards Y .
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8) The claim follows trivially from

lim
n→∞

E {Xn} = 2 lim
n→∞

1
a

(

1 − a

n

)

=
2
a

= E{Y }.

Example 5.9 A random variable X has the frequency

fX(x) =







a e−ax, x ≥ 0,

0, x < 0,

where a is a positive constant.

1) Find for every n ∈ N the mean E {Xn}.

2) Find the Laplace transform LX(λ) of X and show that it is given by

LX(λ) = 1 − λ

a
−

(

λ

a

)2

−
(

λ

a

)3

+
(

λ

a

)4

+ λ4ε(λ).

3) A random variable Y is given by U = kX, where k is a positive constant. Find the distribution
function of Y .

4) Let U and V be independent random variables of the frequencies

fU (u) =







2a e−2au, u ≥ 0,

0, u < 0,
fV (v) =







3a e−3av, v ≥ 0,

0, v < 0.

The random variable Z is given by Z = 2U + 3V .
Find the frequency of Z.

1) We get by a straightforward computation,

E {Xn} =
∫ ∞

0

axne−ax dx =
1
an

∫ ∞

0

tne−n dt =
n!
an

.

2) If λ ≥ 0, then

LX(λ) =
∫ ∞

0

a e−axe−λx dx = a

∫ ∞

0

e−(a+λ)x dx =
a

a + λ
=

1

1 +
λ

a

.

If 0 ≤ λ < a, then

LX(λ) =
1

1 +
λ

a

= 1 − λ

a
+

(

λ

a

)2

−
(

λ

a

)3

+
(

λ

a

)4

+ λ4ε(λ).
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3) The distribution of Y for y > 0 is given by

P{Y ≤ y} = P{kX ≤ y} =
{

X ≤ y

k

}

=
∫

y
k

0

a a−ax dx = 1 − exp
(

−a

k
y
)

,

hence the frequency is

fY (y) =



















a

k
exp

(

−a

k
y
)

for y ≥ 0,

0
for y < 0.

4) It follows from 3. that 2U has the frequency fX(u), and that 3V has the frequency fX(v). (In the
former case k = 2, and in the latter case k = 3).

This means that 2U , 3V ∈ Γ
(

1,
1
a

)

, so

Z = 2U + 3V ∈ Γ
(

1 + 1,
1
a

)

= Γ
(

2,
1
a

)

,
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and the frequency of Z is given by

fZ(z) =







a2z e−az for z > 0,

0 for z ≤ 0.

Example 5.10 Given a sequence of random variables (Xn)∞n=1, where Xn has the distribution func-
tion

Fn(x) =































0 for x < 0,

n2x2 for 0 ≤ x ≤ 1
n

,

1 for x >
1
n

1) Find for every n ∈ N the mean E {Xn} and variance V {Xn}.

2) Prove that the sequence (Xn) converges in probability towards a random variable X, and find the
distribution function of X.

3) Find the Laplace transform Ln(λ) of the random variable Xn.
Is the sequence of functions (Ln(λ)) convergent?

4) Find the distribution function of Yn = X2
n.

5) Assuming that the random variables X1 and X2 are independent, we shall find the frequency of the
random variable Z = X1 + X2.

1) The frequencies are obtained by differentiation,

fn(x) =































0 for x ≤ 0,

2n2x for 0 < x <
1
n

,

0 for x ≥ 1
n

,

hence

E {Xn} =
∫ 1

n

0

2n2x2 dx = 2n2

[

x3

3

]
1
n

0

=
2
3n

,

and

E
{

X2
n

}

=
∫ 1

n

0

2n2x3 dx = 2n2

[

x4

4

]
1
n

0

=
1

2n2
,

whence

V {Xn} = E
{

X2
n

}

− (E {Xn}) =
1

2n2
− 4

9n2
=

1
18n2

.

64

Download free eBooks at bookboon.com



Analytic Aids

 
67 

5. the Laplace transformation

2) If x ≤ 0, then of course Fn(x) = 0 → 0 for n → ∞.

If x > 0, then there is an N , such that x >
1
n

for every n ≥ N , thus Fn(x) = 1 for n ≥ N , and

Fn(x) → 1 for n → ∞. We conclude that (Fn(x)) converges in distribution towards the causal
distribution

F (x) =







0 for x ≤ 0,

1 for x > 1.

3) If λ > 0, then

Ln(λ) =
∫ ∞

0

e−λxfn(x) dx = 2n2

∫ 1
n

0

e−λxx dx = 2n2
[

−x

λ
e−λx

]
1
n

0
+

2n2

λ

∫ 1
n

0

e−λx dx

= −2n2 · 1
λn

· exp
(

−λ

n

)

+
2n2

λ

[

− 1
λ

e−λx

]
1
n

0

= −2n
λ

exp
(

−λ

n

)

+
2n2

λ2

(

1 − exp
(

−λ

n

))

.

Then by a series expansion,

Ln(λ) = −2n
λ

{

1 − λ

n
+

1
2!

λ2

n2
+

λ2

n2
ε

(

λ

n

)}

+
2n2

λ2

{

1 −
(

1 − λ

n
+

1
2
· λ2

n2
+

λ2

n2
ε

(

λ

n

))}

= −2n
λ

+ 2 − λ

n
+

λ

n
ε

(

λ

n

)

+
2n
λ

− 1 + 2 ε

(

λ

n

)

= 1 − λ

n
+ ε1

(

λ

n

)

,

and we conclude that Ln(λ) → 1 for λ → 0+ and n → ∞.

4) If y > 0, then

P {Yn ≤ y} = P
{

(Xn)2 ≤ y
}

= P {Xn ≤ √
y} = Fn (

√
y) ,

hence

P {Yn ≤ y} =































0 for y ≤ 0,

n2y for 0 ≤ y ≤ 1
n2

,

1 for y >
1
n2

.

5) We first note that

fZ(z) =
∫ ∞

0

f1(x)f2(z − x) dx =
∫ 1

0

2x · f2(z − x) dx.

If fZ(z) �= 0, then z − x ∈
[

0,
1
2

]

, thus x ∈ [0, 1] ∩
[

z − 1
2
, z

]

.

In particular, fZ(z) = 0 if either z ≤ 0 or z ≥ 3
2
.
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If z ∈
[

0,
1
2

]

, then

fZ(z) =
∫ z

0

2x · 2 · 4 · (z − x) dx = 16
∫ z

0

(

zx − x2
)

dx

= 16
[

z · x2

2
− x3

3

]z

x=0

= 16
(

z3

2
− z3

3

)

=
8
3

z3.

If z ∈
[

1
2
, 1

]

, then

fZ(z) =
∫ z

z− 1
2

16
(

zx − x2
)

dx = 16
[

z · x2

2
− x3

3

]z

z− 1
2

=
8
3

z3 − 8
(

z − 1
2

)2

z +
16
3

(

z − 1
2

)3

=
8
3

z3 − 8z3 + 8z2 − 2z +
16
3

z3 − 8z2 + 4z − 2
3

= 2z − 2
3
.

Finally, if z ∈
[

1,
3
2

]

, then

fZ(z = =
∫ 1

z− 1
2

16
(

zx − x2
)

dx = 16
[

z
x2

2
− x3

3

]1

z− 1
2

= 16
(

1
2

z − 1
3

)

− 16

[

z

2

(

z − 1
2

)2

− 1
3

(

z − 1
2

)3
]

= 8z − 16
3

− 8z3 + 8z2 − 2z +
16
3

z3 − 8z2 + 4z − 2
3

= −8
3

z3 + 10z − 6.

Summing up,

fZ(z) =































































8
3

z3 for z ∈
[

0,
1
2

]

,

2z − 2
3

for z ∈
[

1
2
, 1

]

,

−8
3

z3 + 10z − 6 for z ∈
[

1,
3
2

]

,

0 otherwise.
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Example 5.11 Let X1, X2, . . . be mutually independent and identically distributed random variables
of values in [0,∞[, and let L(λ) denote the Laplace transform of Xi.
Let N be a random variable, independent of all the Xi-erne and of values in N0, and let P (s) be the
generating function of N .
Let the random variable YN be given by

YN = X1 + X2 + · · · + XN

(where the number of random variables on the right hand side is itself a random variable).

1. Prove that YN has the Laplace transform LYN
(λ) given by

LYN
(λ) = P (L(λ)), λ ≥ 0.

Assume in particular that all Xi are exponentially distributed of parameter a, and let N be Poisson
distributed of parameter b.

2. Find in this special case LYN
(λ), and the mean and variance of YN .

3. Find also in this special case the distribution function of Y .

1) We apply

P {YN ≤ y} =
∞
∑

n=0

P{N = n} · P {Yn ≤ y} .(8)

Then

LYN
(λ) =

∫ ∞

0

e−λy d

dy
P {YN ≤ y} dy =

∫ ∞

0

e−λy
∞
∑

n=0

P{N = n} · d

dy
P {Yn ≤ y} dy

=
∞
∑

n=0

P{N = n}
∫ ∞

0

e−λyfn(y) dy =
∞
∑

n=0

P{N = n}
(∫ ∞

0

e−λyf(y) dy

)n

=
∞
∑

n=0

P{N = n} (L(λ))n = P (L(λ)).

2) When Xi ∈ Γ
(

1,
1
a

)

, then

L(λ) =
a

λ + a
.

When N ∈ P (b), then

P (s) = exp(b{s − 1}).

Then it follows from 1. that

LYN
(λ) = P (L(λ)) = exp

(

b

(

a

λ + a
− 1

))

= exp
(

−b · λ

λ + a

)

.
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Since

L′
YN

(λ) = − ba

(λ + a)2
exp

(

−b · λ

λ + a

)

,

we get

E{X} = −K ′
YN

(0) =
ba

a2
=

b

a
.

From

L′′
YN

(λ) =
(

ba

(λ + a)2

)2

exp
(

−b · λ

λ + a

)

+
2ba

(λ + a)3
exp

(

−b · λ

λ + a

)

,

follows that

E
{

X2
}

= L′′
YN

(0) =
b2

a2
+

2b
a2

,

and we conclude that

V {X} =
2b
a2

.

3) This question is underhand, because one is led to consider LYN
(λ), which does not give easy

computation. We shall instead apply that if y > 0, then

G(y) = P{Y ≤ y} = P{N = 0} +
∞
∑

k=1

P{N = k} · P {X1 + · · · + Xk ≤ y} .
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We see that G(y) has a jump at y = 0 of the size

P{N = 0} = e−b,

and that G(y) for y > 0 is differentiable with the derivative

G′(y) = fYn
(y) =

∞
∑

n=1

P{N = n} · fYn
(y).

Since N ∈ P (b), we get

P{N = n} =
bn

n!
e−b.

Since

Yn =
n

∑

j=1

Xj ∈ Γ
(

n,
1
a

)

,

we get

fYn
(y) =

an

(n − 1)!
yn−1e−ay.

Hence, Y has a jump at y = 0 of the size e−b, and if y > 0, then

G′(y) = fYN
(y) =

∞
∑

n=1

bn

n!
e−b · an

(n − 1)!
yne−ay.
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Example 5.12 Let X1, X2, X3, . . . be mutually independent random variables, all of the distribution
given by

P {Xi = k} =
ak

k!
e−a, k ∈ N0; i ∈ N

(here a is a positive constant).
Let N be another random variable, which is independent of all the Xi and which has its distribution
given by

P{N = n} = p qn−1, n ∈ N,

where p > 0, q > 0, p + q = 1.

1. Find the Laplace transform L(λ) of the random variable X1.

2. Find the Laplace transform of the random variable
∑n

i=1 Xi, n ∈ N.

3. Find the generating function P (s) of the random variable N .

We introduce another random variable Y by

(9) Y = X1 + X2 + · · · + XN ,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (9) is also a random variable.

4. Prove that the random variable Y has its Laplace transform LY (λ) given by the composite function

LY (λ) = P (L(λ)),

and find explicitly LY (λ).
Hint: One may use that we have for k ∈ N0,

P{Y = k} =
∞
∑

n=1

P{N = n} · P {X1 + X2 + · · · + Xn = k} .

5. Compute the mean E{Y }.

1) The Laplace transform of X1 ∈ P (a) is given by

L(λ) =
∞
∑

k=0

ak

k!
e−a · e−kλ = e−a

∞
∑

k=0

1
k!

(

a e−λ
)k

=
exp

(

a e−λ
)

exp(a)
= exp

(

a
{

e−λ − 1
})

.

2) The Laplace transform of
∑n

i=1 Xi is given by

{L(λ)}n = exp
(

na
{

e−λ − 1
})

.
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3) The generating function for N ∈ Pas(1, p) is found by means of a table,

P (s) =
ps

1 − qs
.

Alternatively,

P (s) = p
∞
∑

n=1

qn−1sn = ps
∞
∑

n=1

(qs)n−1 =
ps

1 − qs
.

4) It follows from

P{Y = k} =
∞
∑

n=1

P{N = n} · P {X1 + X2 + · · · + Xn = k} ,

that

LY (λ) =
∞
∑

k=0

∞
∑

n=1

P{N = n} · P {X1 + X2 + · · · + Xn = k} · e−kλ

=
∞
∑

n=1

P{N = n}
∞
∑

k=0

P {X1 + X2 + · · · + Xn = k} e−λk

=
∞
∑

n=1

P{N = n} · (L(λ))n = P (L(λ)) =
p · exp

(

a
(

e−λ − 1
))

1 − q · exp (a (e−λ − 1))

=
p

q
· q · exp

(

a
(

e−λ − 1
))

− 1 + 1
1 − q · exp (a (e−λ − 1))

=
p

q
· 1
1 − q · exp (a (e−λ − 1))

− p

q
.

5) Since

L′
Y (λ) = −p

q
· 1

{1 − q exp (a (e−λ − 1))}2 · q exp
(

a
(

e−λ − 1
))

· a e−λ,

the mean is

E{X} = −L′
Y (0) =

pa

(1 − q)2
=

pa

p2
=

a

p
.
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Example 5.13 Let X1, X2, X3, . . . be mutually independent random variables, all with the frequency

f(x) =







4x e−2x, x > 0,

0, x ≤ 0.

Let N be another random variable, which is independent of all the Xi, and which has its distribution
given by

P{N = n} =
3
4
·
(

1
4

)n−1

, n ∈ N.

1. Find the Laplace transform L(λ) of the random variable X1.

2. Find the Laplace transform of the random variable
∑n

i=1 Xi, n ∈ N.

3. Find the generating function of the random variable N .

Then introduce a random variable Y by

(10) Y = X1 + X2 + · · · + XN ,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side in (10) also is a random variable.

4. Find the Laplace transform of Y and the mean E{X}.

5. Prove that the frequency of Y is given by

g(y) =







k
{

e−y − e−3y
}

, y > 0,

0, y ≤ 0,

and find k.

1) Since X ∈ Γ
(

2,
1
2

)

, get by using a table that

L(λ) =











1
1
2

λ + 1











2

=
(

2
λ + 2

)2

.

Alternatively,

L(λ) =
∫ ∞

0

4x e−2xe−λx dx = 4
∫ ∞

0

x e−(λ+2)x dx =
4

(λ + 2)2
.

2) Since the Xi are mutually independent and identically distributed, the Laplace transform of
∑n

i=1 Xi, n ∈ N, is given by

(L(λ))n =
(

2
λ + 2

)2n

.
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3) Since N ∈ Pas
(

1,
3
4

)

, we get from a table that the generating function is

P (s) =
3
4 s

1 − 1
4 s

=
3s

4 − s
.

Alternatively,

P (s) =
3
4

∞
∑

n=1

(

1
4

)n−1

sn =
3s
4

∞
∑

n=1

(s

4

)n−1

=
3s
4

1 − s
4

=
3s

4 − s
.

4) The Laplace transform of Y is given by (cf. e.g. the previous examples)

LY (λ) = P (L(λ)) =
3

(

2
λ + 2

)2

4 −
(

2
λ + 2

)2 =
12

4(λ + 2)2 − 4

=
3

(λ + 1)(λ + 3)
=

3
2

1
λ + 1

− 3
2

1
λ + 3

.
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Now,

L′
Y (λ) = −3

2
· 1
(λ + 1)2

+
3
2
· 1
(λ + 3)2

,

so the mean is

E{X} = −L′
Y (0) =

3
2
− 3

2
· 1
9

=
3
2
− 1

6
=

4
3
.

5) Since g(y) is the frequency of some random variable Ỹ , where

LỸ (λ) = k

∫ ∞

0

{

e−y − e−3y
}

e−2y dy = k

∫ ∞

0

e−(λ+1)y dy − k

∫ ∞

0

e−(λ+3)y dy

= k

{

1
λ + 1

− 1
λ + 3

}

has the same structure as LY (λ), we conclude from the uniqueness that Y = Ỹ and that k =
3
2
,

and the frequency of Y is g(y) with k =
3
2
.

Test:
∫ ∞

−∞
g(y) dy = k

∫ ∞

0

{

e−y − e−3y
}

dy = k

{

1 − 1
3

}

=
2
3

k = 1

for k =
3
2
. ♦
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Example 5.14 Let X be a normally distributed random variable of mean 0 and variance 1.

1. Find the frequency and mean of X2.

2. Find the Laplace transform of X2.

Now let X1, X2, . . . be mutually independent random variables, Xi ∈ N(0, 1), and let a1, a2, . . . be
given constants, and define

Yn =
n

∑

k=1

akX2
k , n ∈ N.

3. Find the Laplace transform of Yn.

4. Prove that the sequence {Yn}∞n=1 converges in distribution towards a random variable Y , if and
only if

lim
n→∞

E {Yn} < ∞.

By the assumption the frequency of X is given by

ϕ(x) =
1√
2π

exp
(

−1
2

x2

)

, x ∈ R.

1) The distribution function of Y = X2 is 0 for y ≤ 0.
If y > 0, then

P
{

X2 ≤ y
}

= P {−√
y ≤ X ≤ √

y} = Φ(
√

y) − Φ(−√
y) = 2Φ (

√
y) − 1.

When y > 0, the corresponding frequency is found by differentiation,

f(y) = 2Φ′ (
√

y) · 1
2
√

y
=

1√
y

ϕ (
√

y) =
1√
2πy

exp
(

−1
2

y

)

.

The mean is

E
{

X2
}

=
1√
2π

∫ ∞

−∞
x2 exp

(

−1
2

x2

)

dx =
1√
2π

∫ ∞

x=−∞
xd

(

− exp
(

−1
2

x2

))

=
1√
2π

[

−x exp
(

−1
2

x2

)]∞

−∞
+

1√
2π

∫ ∞

−∞
exp

(

−1
2

x2

)

dx = 0 + 1 = 1.

2) Since X2 ≥ 0, we can find its Laplace transform. If λ ≥ 0, then

LX2(λ) =
∫ ∞

0

1√
2πy

exp
(

−1
2

y

)

exp(−λy) dy =
2√
2π

∫ ∞

0

exp
(

−1
2

(

λ +
1
2

)

y

)

d (
√

y)

=
2√
2π

∫ ∞

0

exp

(

−1
2
· t2

1
2λ+1

)

dt =
1√

2λ + 1

√

2λ + 1
2π

∫ ∞

−∞
exp

(

−1
2

(2λ + 1)t2
)

dt

=
1√

2λ + 1
.
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3) We get the Laplace transform of aX2 = aY1 from LX(λ) by replacing λ by aλ, i.e.

LaX2(λ) = LX2(aλ) =
1√

2λa + 1
.

Now, the Xk are mutually randomly independent, so

LYn
(λ) =

n
∏

k=1

LakX2
k
(λ) =

n
∏

k=1

LX2 (akλ) =
1

√
∏n

k=1 (1 + 2λak)
.

4) We get by using the result of 1.,

E {Yn} =
n

∑

k=1

akE
{

X2
k

}

=
∞
∑

k=1

ak,

thus

lim
n→∞

E {Yn} =
∞
∑

k=1

ak.

Then we get for λ ≥ 0,

ln
n

∏

k=1

(1 + 2λak) =
n

∑

k=1

ln (1 + 2λak) =
n

∑

k=1

(2λak + λakε (λak)) ,

where we by considering a graph can get more precisely that

0 ≤
n

∑

k=1

ln (1 + 2λak) ≤
n

∑

k=1

2λak,

and
∞
∑

k=1

ln (1 + 2λak) ∼
∞
∑

k=1

2λak.

It follows from the equivalence of the two series that

1 ≤
∞
∏

k=1

(1 + 2λak) < ∞, if and only if
∞
∑

k=1

ak < ∞.

If therefore

lim
n→∞

E {Yn} < ∞,

then in particular limn→∞
{

−L′
Yn

(λ)
}

is convergent and continuous for λ ≥ 0, hence by rewriting
the expression, followed by a reduction,

∑∞
k=1 ak < ∞, which according to the above implies that

lim
n→∞

LYn
(λ) =

1
√

∏∞
k=1 (1 + 2λak)

is continuous for λ ≥ 0. Then (Yn) converges in distribution towards a random variable Y .
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Conversely, if limn→∞ E {Yn} = ∞, then we get by the same argument that
∑∞

k=1 ak = ∞ implies
that

∏∞
k=1 (1 + 2λak) = ∞ for λ > 0, and of course 1 for λ = 0, hence

lim
n→∞

LYn
(λ) =







1 for λ = 0,

0 for λ > 0,

corresponding to the zero function, which is not the Laplace transform of any random variable.
This shows that (Xn) does not converge in distribution.

Example 5.15 We say that a function ϕ : ]0,∞[→ R is completely monotone, if ϕ is a C∞ function,
and

(−1)nϕ(n)(λ) ≥ 0 for every n ∈ N0 and every λ > 0.

Prove that if X is a non-negative random variable, then the Laplace transform L(λ) of X is completely
monotone.

Remark 5.1 Conversely, it can be proved that if ϕ : ]0,∞[→ R is completely monotone, and

λλ→0+ϕ(λ) = 1,

then ϕ(λ) is the Laplace transform of some random variable X.
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When X is non-negative, its Laplace transform exists, and

1) L(λ) =
∑

i pie
−λxi , (discrete),

2) L(λ) =
∫ ∞
0

e−λx f(x) dx, (continuous),
3) L(λ) = E

{

e−λx
}

, (in general).

Due to the exponential function and the law of magnitudes we may for λ > 0 differentiate 1) under
the sum, 2) under the integral, and 3) under the symbol E, with respect to λ. Hence we get in general
[i.e. in case 3)] for λ > 0 and n ∈ N0,

(−1)nL(n)(λ) = λnE
{

Xne−λX
}

.

Since Xne−λX ≥ 0, the right hand side is always ≥ 0, and the claim is proved.

Clearly,

L(0) = lim
λ→0+

L(λ) = lim
λ→0+

E
{

e−λX
}

= E{1} = 1,

and

0 < L(λ) = E
{

e−λX
}

≤ E{1} = 1,

because 0 ≤ e−λX ≤ 1, n̊ar X ≥ 0.

A loose argument shows that the last claim follows from the fact, that if (−1)nϕ(n)(λ) ≥ 0 for all
n ∈ N, then we get in e.g. the continuous case that

∫ ∞

0

e−λxxnf(x) dx ≥ 0 for all λ > 0 and all n ∈ N0,

thus

xnf(x) ≥ 0 for all n ∈ N0 and x ≥ 0,

and hence f(x) ≥ 0. Finally,
∫ ∞

0

f(x) dx = lim
λ→0+

ϕ(λ) = 1.
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Example 5.16 A random variable X has the values 2, 3, 4, . . . of the probabilities

P{X = k} = (k − 1)p2(1 − p)k−2,

where 0 < p < 1, thus X ∈ Pas(2, p).

1. Find the generating function and the Laplace transform of X.

2. Find the mean of X.

Given a sequence of random variable (Xn)∞n=1, where Xn has the values
2
n

,
3
n

,
4
n

, . . . of the probabil-
ities

P

{

Xn =
k

n

}

= (k − 1)
(

1
3n

)2 (

1 − 1
3n

)k−2

.

3. Find the Laplace transform of Xn.

4. Prove that the sequence (Xn) converges in distribution towards a random variable Y , which is
Gamma distributed, and find its frequency of Y .

1) The generating function of X is given by

P (s) =
∞
∑

k=2

P{X = k}sk =
∞
∑

k=2

(k − 1)p2(1 − p)k−2sk

= p2s2
∞
∑

k=2

(k − 1){(1 − p)s}k−2 = p2s2
∞
∑

�=1

�{(1 − p)s}�−1

= p2s2 · 1
{1 − (1 − p)s}2

=
{

ps

1 − (1 − p)s

}2

for s ∈ [0, 1].

Then by a simple substitution,

L(λ) = P
(

e−λ
)

=
{

p e−λ

1 − (1 − p)e−λ

}2

=
{

p

eλ − (1 − p)

}2

.

2) Here there are several possibilities, of which we indicate four:

First variant. It follows from

P ′(s) = 2 · ps

1 − (1 − p)s
· {1 − (1 − p)s}p + p(1 − p)s

{1 − (1 − p)s}2
,

that

E{X} = P ′(1) = 2 · 1 · p

p2
=

2
p
.
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Second variant. It follows from

L′(λ) = p2(−1)
{

eλ − (1 − p)
}−3 · eλ,

that

E{X} = −L′(0) =
2p2

p3
=

2
p
.

Third variant. By a straightforward computation,

E{X} =
∞
∑

k=2

k P{X = k} =
∞
∑

k=2

k(k − 1)p2(1 − p)k−2

= p2
∞
∑

k=2

k(k − 1)(1 − p)k−2 = p2 ·
2

{1 − (1 − p)}3
=

2
p
.

Fourth variant. (The easiest one!) Since X ∈ Pas(2, p), er have of course E{X} =
2
p
.

3) If we put p =
1
3n

, then nXn has the same distribution as X. Now, Xn is obtained by diminishing

the values by a factor
1
n

, so Xn has the Laplace transform

LXn
(λ) =

{

1
3n

eλ/n −
(

1 − 1
3n

)

}2

=
1

{

3n
(

exp
(

λ

n

)

− 1
)

+ 1
}2 .

4) It follows from

exp
(

λ

n

)

= 1 +
λ

n
+

λ

n
ε

(

λ

n

)

,

that

LXn
(λ) =

1
{

3n
(

λ

n
+

λ

n
ε

(

λ

n

))

+ 1
}2 =

1
{

3λ + 3λ ε

(

λ

n

)

+ 1
}2 → 1

(3λ + 1)2
for λ ≥ 0.

Clearly, the limit function is continuous, so it follows that the sequence (Xn) converges in distri-
bution towards Y , where Y has the Laplace transform

LY (λ) =
1

(3λ + 1)2
, λ ≥ 0.

If Y ∈ Γ(µ, α), then its Laplace transform is

1
(αλ + 1)µ

.

Then by comparison α = 3 and µ = 2, so Y ∈ Γ(2, 3), and Y has the frequency

f(y) =











1
9

y exp
(

−y

3

)

, y > 0,

0, y ≤ 0.
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Example 5.17 A random variable X has the values 0, 2, 4, . . . of the probabilities

P{X = 2k} = p(1 − p)k, k ∈ N0,

where p is a constant, 0 < p < 1.

1. Find the Laplace transform LX(λ) of the random variable X.

2. Find the mean of the random variable X.

A sequence of random variables (Xn)∞n=1 is determined by that Xn has the values 0,
2
n

,
4
n

, . . . of the
probabilities

P

{

Xn =
2k
n

}

=
1
4n

(

1 − 1
4n

)k

, k ∈ N0.

3. Find the Laplace transform LXn
(λ) of the random variable Xn.

4. Find the mean of the random variable Xn.

5. Prove that the sequence (Xn) converges in distribution towards a random variable Y , and find the
distribution function of Y .

1) The Laplace transform is

LX(λ) =
∞
∑

k=0

P{X = 2k} e−2λk =
∞
∑

k=0

p(1 − p)ke−2λk

= p
∞
∑

k=0

{

(1 − p)e−2λ
}k

=
p

1 − (1 − p)e−2λ
, λ ≥ 0.

2) The mean can be found in two ways:

a) By the usual definition,

E{X} =
∞
∑

k=1

2kp(1 − p)k = 2p(1 − p)
∞
∑

k=1

k(1 − p)k−1 = 2p(1 − p)
1
p2

= 2
1 − p

p
.

b) By means of the Laplace transform,

E{X} = −L′
X(0) =

[

p

{1 − (1 − p)e−2λ}2 · 2(1 − p)e−2λ

]

λ=0

=
2p(1 − p)

p2
= 2

1 − p

p
.

3) The Laplace transform of Xn is obtained from the Laplace transform of X by replacing λ by
λ

n
,

and p by
1
4n

,

LXn
(λ)=

1
4n

1−
(

1− 1
4n

)

exp
(

−2
λ

n

) =
1

4n
(

1−exp
(

−2λ
n

))

+exp
(

−2
λ

n

) .
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4) Since

−L′
Xn

(λ) =
8 exp

(

−2λ
n

)

− 2
n

exp
(

−2λ
n

)

{

4n
(

1 − exp
(

−2
λ

n

))

+ exp
(

−2
λ

n

)}2 ,

we get the mean

E{X} = −L′
Xn

(0) =
1

{0 + 1}2
·
{

8 − 2
n

}

= 8
(

1 − 1
4n

)

.

5) Then by a Taylor expansion, et = 10t + t ε(t), so it follows from 3. that

LXn
(λ) =

1

4n
{

1 − 1 +
2λ
n

+
2λ
n

ε

(

2λ
n

)}

+ exp
(

−2
λ

n

) =
1

8λ + 8λ ε

(

2λ
n

)

+ exp
(

−2
λ

n

)

→ 1
8λ + 1

for n → ∞.

Since
1

8λ + 1
is continuous, this shows that (Xn) converges in distribution towards a random

variable Y , where the Laplace transform of Y is LY (λ) =
1

8λ + 1
, hence

Y ∈ Γ(1, 8).

Thus the frequency of Y is

fY (y) =











1
8

exp
(

−y

8

)

, y > 0,

0, y ≤ 0,

so we have obtained an exponential distribution.
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6 The characteristic function

Example 6.1 Find the characteristic function for a random variable, which is Poisson distributed of
mean a.

It follows from

P{X = k} =
ak

k!
e−a, k ∈ N0,

that the characteristic function for X is given by

k(ω) =
∞
∑

k=0

eiωk ak

k!
e−a = e−a

∞
∑

k=0

1
k!

{

a eiω
}k

= e−a exp
(

a eiω
)

= exp
(

a
(

eiω − 1
))

.
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Example 6.2 Let X have the frequency

f(x) =







1 − |x|, |x| < 1,

0, |x| ≥ 1.

Find the characteristic function for X.

Let X1 and X2 be independent random variables, which are rectangularly distributed over
]

−1
2
,
1
2

[

.

Prove that X has the same distribution as X1 + X2,

1) by a straightforward computation of the frequency of X1 + X2,

2) by using characteristic functions.

The characteristic function for ω �= 0 is

k(ω) =
∫ ∞

−∞
eiωtf(t) dt =

∫ 1

−1

{cos ωx + i sinωx}(1 − |x|) dx = 2
∫ 1

0

cos ωx · (1 − |x|) dx

= 2
[

1
ω

(1 − x) sinωx

]1

0

+
2
ω

∫ 1

0

sinωxdx =
2
ω

[

−cosωx

ω

]1

0
=

2
ω2

(1 − cosω).

If ω = 0, then k(0) = 1.

1) The frequency for both X1 and X2 is given by

f(t) =















1 for t ∈
]

−1
2
,
1
2

[

,

0 otherwise,

hence the frequency of X1 + X2 is given by

g(s) =
∫ ∞

−∞
f(t)f(s − t) dt =

∫ 1
2

− 1
2

f(s − t) dt.

If s /∈ ] − 1, 0[, then g(s) = 0.
If s ∈ ] − 1, 0], then

g(s) =
∫ 1

2

− 1
2

f(s − t) dt =
∫ s+ 1

2

− 1
2

1 dt = s + 1 = 1 − |s|.

If s ∈ ]0, 1[, then

g(s) =
∫ 1

2

− 1
2

f(s − t) dt =
∫ 1

2

s− 1
2

1 dt = 1 − s = 1 − |s|,

and the claim follows.
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2) If ω �= 0, then we get the characteristic function for Xi,

h(ω) =
∫ 1

2

− 1
2

eiωt dt =
1
iω

{

exp
(

i
ω

2

)

− exp
(

−i
ω

2

)}

=
2
ω

· 1
2i

{

exp
(

i
ω

2

)

− exp
(

−i
ω

2

)}

=
2
ω

sin
ω

2
.

Hence, the characteristic function for X1 + X2 is

{h(ω)}2 =
4
ω2

sin2 ω

2
=

4
ω2

· 1 − cos ω

2
=

2
ω2

(1 − cosω) = k(ω).

Since X and X1 + X2 have the same characteristic function, they are identical.

Example 6.3 Let X have the frequency

f(x) =
a

π (a2 + x2)
, x ∈ R,

where a is a positive constant.
Prove by applying the inversion formula that X has the characteristic function

k(ω) = e−a|ω|.

Then prove that if X1, X2, . . . , Xn are mutually independent all of the frequency f(x), then

Zn =
1
n

(X1 + · · · + Xn)

also has the frequency f(x).

When we apply the inversion formula on k(ω), we get

1
2π

∫ ∞

−∞
e−iωxe−a|ω| dω =

1
2π

∫ 0

−∞
e(a−ix)ω dω +

1
2π

∫ 0

−∞
e−(a+ix)ω dω

=
1
2π

[

e(a−ix)ω

a − ix

]0

−ω

+
1
2π

[

e−(a+ix)ω

a − ix

]∞

0

=
1
2π

(

1
a − ix

+
1

a + ix

)

=
1
2π

· a + ix + a − ix

a2 + x2
=

a

π (a2 + x2)
,

and the claim follows from the uniqueness of the characteristic function.

The characteristic function for

Yn =
1
n

(X1 + · · · + Xn)

is

kYn
(ω) =

n
∏

i=1

ki

(ω

n

)

=
n

∏

i=1

exp
(

−a
∣

∣

∣

ω

n

∣

∣

∣

)

= e−a|ω| = kX(ω),

showing that Yn has the same frequency as X.
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Example 6.4 Let X1, X2, . . . be mutually independent, identically distributed random variables all
of mean µ. Let

Zn =
1
n

(X1 + · · · + Xn) , n ∈ N.

Prove that the sequence (Zn) converges in distribution towards µ.

Given µ = E{X} exists, we must have the following

(11)
∫ ∞

−∞
|x| f(x) dx < ∞,

which shall be used later.
Let k(ω) denote the characteristic function for Xi. Then the characteristic function for Zn is given by

kn(ω) =
{

k
(ω

n

)}n

.

It follows from (11) that

k(ω) =
∫ ∞

−∞
eiωx d(x) dx and k′(ω) = i

∫ ∞

−∞
eiωx x f(x) dx

are both defined and bounded.
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It follows from

k(ω) = k(0) +
1
1!

k′(0)ω + ω ε(ω) = 1 + i µ · ω + ω ε(ω),

that

kn(ω) =
{

k
(ω

n

)}n

=
{

1 +
i µ ω

n
+

ω

n
ε
(ω

n

)

}n

=
(

1 +
1
n

{

i µ ω + ω ε
(ω

n

)}

)n

.

Hence, by taking the limit,

lim
n→∞

kn(ω) = ei µ ω,

which is the characteristic function for the causal distribution µ.
In particular, ei µ ω is continuous at ω = 0. Hence it follows that the sequence (Zn) converges in
distribution towards µ.

Example 6.5 Let X have the mean 0 and variance σ2.
Prove that

k(ω) = 1 − 1
2

σ2ω2 + ω2ε(ω) for ω → 0.

Then prove the following special case of the Central Limit Theorem:
Let X1, 2, . . . be mutually independent, identically distributed random variables of mean 0 and variance
σ2. Define

Zn =
1
2
σ
√

n (X1 + · · · + Xn) , n ∈ N.

Then for every z ∈ R,

P {Zn ≤ z} → Φ(z) for n → ∞.

We see that

k(ω) =
∫ ∞
−∞ eiωxf(x) dx,

k(′ω) =
∫ ∞
−∞ eiωxi x f(x) dx,

k′′(ω) = −
∫ ∞
−∞ x2eiωxf(x) dx,

are all absolutely convergent, and

k(0) = 1, k′(0) = i

∫ ∞

−∞
x f(x) dx = i µ = 0,

k′′(0) = −
∫ ∞

−∞
x2f(x) dx = −

∫ ∞

−∞
(x − µ)2f(x) dx = σ2,

hence by a Taylor expansion,

k(ω) = k(0) +
1
1!

k′(0)ω +
1
2!

k′′(0)ω2 + ω2ε(ω)

= 1 − σ2ω2

2
+ ω2ε(ω).
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The characteristic function kn(ω) for Zn is given by

kn(ω) = E
{

eiωZn
}

= E

{

exp

(

i ω
n

∑

k=1

1
σ
√

n
Xn

)}

=
n

∏

k=1

E

{

exp
(

i ω

σ
√

n
Xk

)}

=
(

E

{

exp
(

i ω

σ
√

n
X

)})n

,

where

E

{

exp
(

i ω

σ
√

n
X

)}

=
∫ ∞

−∞
exp

(

i ω
x

σ
√

n

)

f(x) dx = k

(

ω

σ
√

n

)

= 1 − σ2

2
ω2

σ2n
+

ω2

σ2n
ε

(

ω

σ
√

n

)

= 1 − 1
n
· ω2

2
+

ω2

σ2n
ε

(

ω

σ
√

n

)

.

Hence by insertion,

kn(ω) =
{

1 − σ2

2
ω2

σ2n
+

ω2

σ2n
ε

(

ω

σ
√

n

)

= 1 − 1
n
· ω2

2
+

ω2

σ2n
ε

(

ω

σ
√

n

)}n

→ exp
(

−ω2

2

)

for n → ∞.

Now, exp
(

−ω2

2

)

is the characteristic function for Φ(x), so we conclude that (Zn) converges in

distribution towards the normal distribution,

lim
n→∞

P {Zn ≤ x} = Φ(x).
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Example 6.6 1) A random variable X has the frequency

f(x) =
1

π (1 + x2)
, x ∈ R.

Prove by e.g. applying the inversion formula that X has the characteristic function

k(ω) = e−|ω|.

2) A random variable Y has the frequency

g(y) =
a

π (a2 + (y − b)2)
, y ∈ R,

where a > 0 and b ∈ R. Find the characteristic function for Y .

3) Let (Yj) be a sequence of mutually independent random variables, where each random variable Yj

has the frequency

gj(y) =
aj

π
(

a2
j + (y − bj)

2
) , y ∈ R,

where aj > 0 and bj ∈ R, and let Zn denote the random variable

Zn =
n

∑

j=1

Yj .

Find the characteristic function for Zn.

4) Find a necessary and sufficient condition, which the constants aj and bj must fulfil in order that
the sequence (Zn)∞n=1 converges in distribution. In case of convergence, find the limit distribution.

1) It follows by the inversion formula that

1
2π

∫ ∞

−∞
e−i ω xe−|ω| dω =

1
2π

∫ 0

−ω

e(1−ix)ω dω +
1
2π

∫ ∞

0

e−(1+ix)ω dω

=
1
2π

[

e(1−ix)ω

1 − ix

]0

−ω

+
1
2π

[

e−(1+ix)ω

−(1 + ix)

]∞

0

=
1
2π

{

1
1 − ix

+
1

1 + ix

}

=
1
2π

· 1 + ix + 1 − ix

1 + x2

1
π
· 1
1 + x2

= f(x).

This shows that k(ω) = e−|ω| is the characteristic function for

f(x) =
1
π
· 1
1 + x2

.

2) The characteristic function for Y is

kY (ω) =
∫ ∞

−∞
eiωy · 1

π
· a

a2 + (y − b)2
dy = eiωb

∫ ∞

−∞
eiωy · 1

π
· a

a2 + y2
dy

= eiωb

∫ ∞

−∞
ei a ω· 1a y · 1

π
· 1

1 +
(y

a

)2 d
(y

a

)

= eiω bk(aω) = eiω be−a|ω|.
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3) It follows from 2. that

kZn
(ω) =

n
∏

j=1

kYj
(ω) =

n
∏

j=1

ei ω bj · e−aj |ω| = exp



i ω

n
∑

j=1

bj



 · exp



−|ω|
n

∑

j=1

aj



 .

4) The sequence (Zn) converges min distribution if and only if limn→∞ kZn
(ω) is convergent for all

ω with a limit function h(ω), d which is continuous at 0.
Clearly, the only possible candidate is

h(ω) = exp

(

i ω

∞
∑

n=1

bn

)

· exp

(

−|ω|
∞
∑

n=1

an

)

.

It is in fact the limit function, if the right hand side is convergent for every ω ∈ R. This is fulfilled,
if and only if

(12)
∞
∑

n=1

an = a and
∞
∑

n=1

bn = b

are both convergent. When this is the case, then

h(ω) = ei ω be−a|ω| = kY (ω)

by 2..
This shows that (Zn) converges in distribution towards a random variable Y , if and only if the
series of (12) are convergent, and when this is the case, the frequency of Y is

fY (y) =
1
π
· a

a2 + (y − b)2
, y ∈ R.
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Example 6.7 Let X1, X2, . . . be mutually independent random variables. where

P
{

Xj =
√

j
}

= P
{

Xj = −
√

j
}

=
1
2
, j ∈ N,

and let

Zn =
1
n

n
∑

j=1

Xj , n ∈ N.

Prove that the sequence (Zn)∞n=1 converges in distribution, and find the limit distribution

1) either by applying the Central Limit Theorem;

2) or by computing limn→∞ kn(ω), where kn(ω) is the characteristic function for Zn.

Hint: Use that

cosx = 1 − x2

2
+

x4

24
+ x4 ε(x) for x → 0

and

− ln(1 − x) = x +
x2

2
+ x2 ε(x) for x → 0.

1) From E {Xj} = 0 follows that

E {Zn} =
1
n

n
∑

j=1

E {Xj} = 0,

and

s2
n = V {Zn} =

1
n2

n
∑

j=1

V {Xj} =
1
n2

n
∑

j=1

(

E
{

X2
j

}

− (E {Xj})2
)

=
1
n2

n
∑

j=1

E
{

X2
j

}

=
1
n2

n
∑

j=1

{

(

√

j
)2

· 1
2

+
(

−
√

j
)2

· 1
2

}

=
1
n2

n
∑

j=1

j =
1
n2

· 1
2

n(n + 1) =
1
2

n + 1
n

.

Now,

Zn − E {Zn}
sn

=
Zn

√

n + 1
n

=

√

2n
n + 1

· Zn,

so by the Central Limit Theorem,

lim
n→∞

P

{

Zn ≤ x

√

n + 1
2n

}

= Φ(x) for every x ∈ R.

We get from
√

n + 1
2n

→ 1√
2

for n → ∞ that

FZ(x) = lim
n→∞

P {Zn ≤ x} = Φ
(√

2 · x
)

,

hence Z =
1√
2

Y , where Y ∈ N(0, 1).
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2) It follows from

kZn
(ω) =

n
∏

j=1

E
{

exp
(

i
ω

n
Xj

)}

=
n

∏

j=1

{

1
2

exp
(

i
ω

n

√

j
)

+
1
2

exp
(

i
ω

n

(

−
√

j
))

}

=
n

∏

j=1

cos
(√

j

n
ω

)

,

by taking the logarithm and using the Taylor expansions given in the hint,

ln kZn
(ω) =

n
∑

j=1

ln
(

cos
(√

j

n
ω

))

=
n

∑

j=1

ln

{

1 − 1
2

(√
j · ω
n

)2

+
1
24

(√
j · ω
n

)4

+
(√

j · ω
n

)4

ε

(√
j · ω
n

)

}

=
n

∑

j=1

ln
{

1 − ω2

2
· j

n2
+

ω4

24
· j2

n4
+ ω4 · j2

n4
ε

(√
j · ω
n

)}

= −
n

∑

j=1

{(

ω2

2
· j

n2
− ω4

24
· j2

n4
+

ω4j2

n4
ε

(√
j ω

n

))

+
1
2

(

ω2

2
· j2

n4
− ω4

24
· j2

n4
+

ω4 j2

n4
ε

(

ω
√

j

n

))2

+
ω4j2

n4
ε

(

ω
√

j

n

)

}

= −
n

∑

j=1

ω2

2n2
· j +

ω4

24n4

n
∑

j=1

j2 +
1
n

ε

(

1
n

)

+
1
2

ω4

4n4

n
∑

j=1

j2 +
1
n

ε

(

1
n

)

= − ω2

2n2
· 1
2

n(n + 1) +
1
n

ε

(

1
n

)

= −ω2

4
+

1
n

ε

(

1
n

)

→ −1
2

(

ω√
2

)2

for n → ∞.

Hence,

kZn
(ω) → exp

(

−1
2

(

ω√
2

)2
)

for n → ∞.

If Y is normally distributed, then of course

kY (ω) = exp
(

−1
2

ω2

)

,

and thus

Z =
1√
2

Y ∈ N

(

0,
1√
2

)

.
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Example 6.8 A random variable X has the frequency

f(x) =















1
π
· 1 − cosx

x2
, x �= 0,

1
2π

, x = 0.

1. Prove by using the inversion formula that X has the characteristic function

k(ω) =







1 − |ω|, |ω| ≤ 1,

0, |ω| > 1.

2. Prove by e.g. using the result of 1. that X does not have a mean.

Let (Xn)∞n=1 be a sequence of random variables, where each Xn has the frequency

fn(x) = n f(nx) =















1
π

1 − cos nx

nx2
, x �= 0,

n

2π
, x = 0,

n ∈ N.

3. Find the characteristic function kn(ω) for Xn.

4. Show, e.g. by using the result of 3. that the sequence (Xn) converges in distribution towards a
random variable Y , and find the distribution function of Y .

1) According to the inversion formula we shall only prove that

1
2π

∫ ∞

−∞
e−i x ωk(ω) dω = f(x).

Now, 1 − |ω|, |ω| ≤ 1, is an even function, hence by insertion,

1
2π

∫ ∞

−∞
e−i x ωk(ω) dω =

1
2π

∫ 1

−1

e−i x ω(1 − |ω|) dx =
1
π

∫ 1

0

(1 − ω) cos ω xdω.

We find for x = 0,

1
π

∫ 1

0

(1 − ω) dω =
1
π

(

1 − 1
2

)

=
1
2π

= f(0).

If x �= 0, then we get by partial integration,

1
π

∫ 1

0

(1 − ω) cos ω xdx =
1
π

[

(1 − ω)
sinω x

x

]1

0

+
1

π x

∫ 1

0

sinω xdx =
1

π x

[

−cosω x

x

]1

0

=
1 − cos x

π x2
= f(x),

and the claim is proved.
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2) We know that if E{X} exists, then k(ω) is differentiable at 0.
Since, however, k(ω) is not differentiable at ω = 0, we conclude by contraposition that E{X} does
not exist, so we conclude that X does not have a mean.

3) Then by a simple transformation,

kn(ω) =
∫ ∞

−∞
ei ω xfn(x) dx =

∫ ∞

−ω

ei ω xf(nx)ndx =
∫ ∞

−∞
exp

(

i
ω

n
t
)

f(t) dt = k
(ω

n

)

=











1 −
∣

∣

∣

ω

n

∣

∣

∣
, |ω| ≤ n,

0, |ω| > n.

4) It follows from 3. that

lim
n→∞

kn(ω) = 1 = k0(ω) for ethvert ω ∈ R,

where k0(ω) ≡ 1 is the characteristic function for the causal distribution P{Y = 0} = 1.
Since k0(ω) = 1 is continuous, it follows that (Xn) converges in distribution towards the causal
distribution Y .
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Remark 6.1 In Distribution Theory , which is a mathematical discipline dealing with generalized
functions, one expresses this by (fn) → δ, where δ is Dirac’s δ “function”. ♦

Example 6.9 A random variable Y has the frequency

f(y) =
a

2
e−a|y|, y ∈ R,

where a > 0 is a positive constant.

1. Find the characteristic function for Y .

2. Find the mean and variance of Y .

A random variable X has the values ±1, ±2, . . . of the probabilities

P{X = k} = P{X = −k} =
1
2

p qk−1, k ∈ N,

where p > 0, q > 0, p + q = 1.

3. Prove that the characteristic function for X is given by

kX(ω) =
p(cos ω − q)

1 + q2 − 2q cosω
, ω ∈ R.

Then consider a sequence of random variables (Xn)<infty
n=1 , where Xn has the values ± 1

n
, ± 2

n
, . . . of

the probabilities

P

{

Xn =
k

n

}

= P

{

Xn = −k

n

}

=
1
2
· 1
3n

(

1 − 1
3n

)k−1

, k ∈ N.

4. Find by using the result of 3. the characteristic function kn(ω) for Xn.

5. Prove that the sequence (Xn) converges in in distribution towards a random variable Z, and find
the frequency of Z.

1) The characteristic function is

kY (ω) =
∫ ∞

−∞
ei ω y · a

2
· e−a|y| dy =

a

2

∫ 0

−∞
e(a+iω)y dy +

a

2

∫ ∞

0

e(−a+iω)y dy

=
a

2

[

e(a+i ω)y

a + i ω

]0

−ω

+
a

2

[

e(−a+i ω)y

−a + i ω

]∞

0

=
a

2

(

1
a + i ω

+
1

a − i ω

)

=
a2

a2 + ω2
.

2) By the symmetry, E{Y } = 0. The variance is then

V {Y } = E
{

Y 2
}

=
a

2

∫ ∞

−∞
y2e−a|y| dy =

1
a2

∫ ∞

0

t2e−t dt =
2!
a2

=
2
a2

.
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3) The characteristic function for X is

kX(ω) =
∞
∑

k=1

P{X = −k} · e−i k ω +
∞
∑

k=1

P{X = k} · ei k ω

=
p

2

∞
∑

k=1

qk−1 ·
(

e−i ω
)k

+
p

2

∞
∑

k=1

qk−1
(

ei ω
)k

=
p

2
e−i ω

∞
∑

k=1

(

q e−i ω
)k−1

+
p

2
ei ω

∞
∑

k=1

(

q ei ω
)k

=
p

2
· e−i ω

1 − q e−i ω
+

p

2
· ei ω

1 − q ei ω

= pRe
{

ei ω

1 − q ei ω
·
(

1 − q e−i ω

1 − q e−i ω

)}

= pRe
{

ei ω − q

1 − 2q cosω + q2

}

=
p(cos ω − 1)

1 + q2 − 2q cos ω
.

4) We put p =
1
3n

and q = 1− 1
3n

. The characteristic function for Xn is obtained by replacing ω by
ω

n
, thus

kn(ω) =

1
3n

(

cos
ω

n
− 1 +

1
3n

)

1 +
(

1 − 1
3n

)2

− 2
(

1 − 1
3n

)

cos
(ω

n

)

, n ∈ N.

5) It follows by insertion of

cos
ω

n
= 1 − 1

2
· ω2

n2
+

ω2

n2
ε
(ω

n

)

,

that

kn(ω) =
1
3n

(

1− ω2

2n2 + ω2

n2 ε
(

ω
n

)

−1+ 1
3n

)

1+1− 2
3n + 1

9n2 −2
(

1− 1
3n

) (

1− ω2

n2 + ω2

2n2 ε
(

ω
n

)) =
1
3n

1
3n + 1

n ε
(

1
n

)

2− 2
3n + 1

9n2 −2+ 2
3n + ω2

n2 + ω2

n2 ε
(

ω
n

)

=
1

9n2
·

1 + ε

(

1
n

)

1
9n2

+
1
n2

ω2 +
ω2

n2
ε
(ω

n

)

=
1 + ε

(

1
n

)

1 + 9ω2 + ε
(ω

n

) ,

hence

lim
n→∞

kn(ω) =
1

1 + 9ω2
=

1
9

1
9

+ ω2

= ky(ω),

where Y is the random variable from 1., corresponding to a =
1
3
.

Since ky(ω) is continuous, (Xn) converges in distribution towards Y for a =
1
3
, thus

fY (y) =
1
6

exp
(

−|y|
3

)

, y ∈ R.
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Example 6.10 1. Let X be a random variable with the characteristic function k(ω).
Prove that the random varible Y = −X has the characteristic function

kY (ω) = k(ω).

Let X1 and X2 be independent random variables, both of the distribution given by

P {Xi = j} =
(

1
2

)j

, j ∈ N; i = 1, 2.

2. Find the characteristic function k1(ω) for X1.

3. Find the distribution of the random variable Z = X1 − X2.

4. Find, e.g. by using the result of 1., the characteristic function for Z.

Let Z1, Z2, . . . be mutually independent random variables, all of the same distribution as Z, and let

Un =
1√
n

n
∑

i=1

Zi, n ∈ N.

5. Prove e.g. by using characteristic functions that the sequence (Un)∞n=1 converges in distribution
towards a random variable U , and find the distribution function of U .

1) Since X is real, it immediately follows that

kY (ω) = E
{

ei ω Y
}

= E
{

e−i ω X
}

= E {ei ω X} = kX(ω).

Alternatively,

kY (ω) = E{cos(ωY ) + i sin(ωY )} = E{cos(−ωX) + i sin(−ωX)}
= E{cos(ωX) − i sin(ωX)} = kX(ω).

2) The characteristic function is

kX1(ω) =
∞
∑

j=1

(

1
2

)j

ei ω j =
ω

∑

j=1

(

ei ω

2

)j

=

1
2

ei ω

1 − 1
2

ei ω

=
ei ω

2 − ei ω
.

3) The distribution function is

FZ(z) = P {X1 − X2 ≤ z} =
∑∑

j−k≤[z]
P {X1 = j} · P {X2 = k}

=
∞
∑

k=max{1,1−[z]}

k+[z]
∑

j=1

(

1
2

)j

·
(

1
2

)k

=
∞
∑

k=max{1,1−[z]}

(

1
2

)k

·

1
2
−

(

1
2

)k+[z]+1

1 − 1
2

=
∞
∑

k=max{1,1−[z]}

{

(

1
2

)k

−
(

1
2

)2k+[z]
}

.
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If z < 0, then

FZ(z) =
∞
∑

k=1−[z]

{

(

1
2

)k

−
(

1
2

)2k+[z]
}

=
∞
∑

k=1

{

(

1
2

)k−[z]

−
(

1
2

)2k−[z]
}

=
(

1
2

)−[z] ∞
∑

k=1

{

(

1
2

)k

−
(

1
4

)k
}

=
(

1
2

)−[z] (

1 − 1
3

)

=
2
3

(

1
2

)−[z]

.

If z ≥ 0, then

FZ(z) =
∞
∑

k=1

{

(

1
2

)k

−
(

1
2

)2k+[z]
}

= 1 −
(

1
2

)[z] ∞
∑

k=1

(

1
4

)k

= 1 − 1
3

(

1
2

)[z]

.

Summing up,

FZ(z) =



























2
3

(

1
2

)−[z]

, hvis z < 0,

1 − 1
3

(

1
2

)[z]

, if z ≥ 0,

[z] integer part of z.
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Alternatively, Z = X1 − X2 is its values in R. By the symmetry,

P{Z = k} = P{Z = −k}.

If k ≥ 0, then

P{Z = k} = P{Z = −k} =
∞
∑

j=1

P {X1 = j + k} · P {X2 = j} =
∞
∑

j=1

(

1
2

)j+k (

1
2

)j

=
(

1
2

)k ∞
∑

j=1

(

1
4

)j

=
(

1
2

)k

·
1
4

1 − 1
4

=
1
3
·
(

1
2

)k

, k ∈ N0,

where we describe the distribution by the probabilities of the points.

4) It follows from 1. and 2. that

kZ(ω) =
ei ω

2 − ei ω
· e−i ω

2 − e−i ω
=

1
5 − 4 cos ω

.

Alternatively, kZ(ω) is computed in the following way,

kZ(ω) =
∞
∑

k=0

P{Z = k}eikω +
∞
∑

k=0

P{Z = −k}e−ikω =
1
3

∞
∑

k=0

(

1
2

eiω

)k

+
1
3

∞
∑

k=1

(

1
2

e−iω

)k

=
1
3











1

1 − 1
2

eiω

+

1
2

e−iω

1 − 1
2

e−iω











=
1
3
·
1 − 1

2
e−iω +

1
2

e−iω − 1
4

5
4
− cosω

=
1
4
· 1

5
4
− cos ω

=
1

5 − 4 cos ω
, ω ∈ R.

5) The characteristic function for Un is

kUn
(ω) =

(

kZ

(

ω√
n

))n

=
1

(

5 − 4 cos
ω√
n

)n .

We conclude from
(

5 − 4 cos
ω√
n

)n

=
(

5 − 4
{

1 − 1
2

ω2

n
+

1
n

ε

(

1
n

)})n

=
(

1 +
2ω2

n
+

1
n

ε

(

1
n

))n

,

that

kUn
(ω) → lim

n→∞

{

1 +
2ω2

n
+

1
n

ε

(

1
n

)}−n

= e−2ω2
= exp

(

−1
2

4ω2

)

.

We see that kU (ω) = exp
(

−1
2
· 4ω2

)

is continuous, hence U ∈ N(0, 4), and Un → U in distribu-

tion, where U ∈ N(0, 4) is normally distributed.
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Alternatively we may use that X1 and X2 are both geometrically distributed of variance 2,
hence the Zi have the variance 4. Then it follows from the Central Limit Theorem that

1
2

Un =
1

2
√

n

n
∑

i=1

Zn

for n → ∞ converges in distribution towards V ∈ N(0, 1).
Then

Un
D−→ U ∈ N(0, 4).

Example 6.11 Let X1 and X2 be independent random variables of distribution given by

P {X1 = j} = P {X2 = j} = p qj , j ∈ N0,

where p > 0, q > 0, p + q = 1, and let Y = X1 − X2.

1. Find the mean and variance of Y .

2. Find P{Y = j} for every j ∈ Z.

3. Find the characteristic function for X1 and the characteristic function for −X2, and thus this to
find the characteristic function for Y .

Given a sequence of random variables (Yn)∞n=1, where for each n ∈ N, the random variable Yn has a

distribution as Y corresponding to p =
1
2n

, q = 1 − 1
2n

. Let Zn =
1
n

Yn.

4. Prove, e.g. by using 3. that the sequence (Zn)∞n=1 converges in distribution towards a random
variable Z, and find distribution of Z.

1) Using that X1 and X2 are identically distributed and that both the mean and the variance exist,
we get

E{Y } = E {X1} − E {X2} = 0,

andd

V {Y } = 2V {X1} = 2E
{

X2
1

}

= 2E {X1 (X1 − 1)} + 2E {X1}

= 2
∞
∑

j=2

j(j − 1)p qj + 2
∞
∑

j=1

jpqj = 2pq2

(

1
1 − q

)2

+ 2pq · 1
1 − q

= 2
(

q2

p2
+

q

p

)

= 2
q

p2
(q + p) =

2q
p2

.

2) The probability is

P{Y = j} =
∑

�−k=j

�≥0, k≥0

P {X1 = �} · P {X2 = k} = p2
∑

�−k=j

�≥0, k≥0

qj · qk.

If j ≥ 0, then � = k + j, hence by the symmetry,

P{Y = j} = P{Y = −j} = p2
∞
∑

k=0

qk+j · qk = p2qj
∞
∑

k=0

(

q2
)k

=
p2 · qj

1 − q2
=

pqj

1 + q
.
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3) he characteristic function for X1 is

kX1(ω) =
∞
∑

k=0

P {X1 = k} ei k ω = p
∞
∑

k=0

qk
(

ei ω
)k

=
p

1 − q ei ω
.

The characteristic function for −X2 is

K−X2(ω) = kX1(−ω) =
p

1 − q e−i ω
.

The characteristic function for Y = X1 − X2 is

kY (ω) = kX1(ω) · k−X2(ω) =
p

1 − q ei ω
· p

1 − q e−i ω
=

p2

1 + q2 − 2q cosω
.

4) The characteristic function for Zn =
1
n

Yn is

kZn
(ω) =

(

1
2n

)2

1 +
(

− 1
2n

)2

− 2
(

1 − 1
2n

)

cos
(ω

n

)

=
1

4n2 + (2n − 1)2 − 4n(2n − 1) cos
(ω

n

) .

Using an expansion of the denominator we get

8n2 − 4n + 1 −
(

8n2 − 4n
)

(

1 − 1
2

ω2

n2
+

1
n2

ε

(

1
n

))

= 8n2 − 4n + 1 − 8n2 + 4n + 4ω2 − 2
ω2

n
+ ε

(

1
n

)

= 1 + 4ω2 + ε

(

1
n

)

,

hence

lim
n→∞

kZn
(ω) = lim

n→∞
1

1 + 4ω2 + ε

(

1
n

) =
1

1 + 4ω2
.

Since the double exponentially distributed random variable Z with a =
1
2

has the characteristic
function

kZ(ω) =

(

1
2

)2

(

1
2

)2

+ ω2

=
1

1 + 4ω2
,

we conclude that (Zn) converges in distribution towards Z.
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Example 6.12 A random variable X has the frequency

f(x) =



















1
π

sin2 x

x2
, x �= 0,

1
π

, x = 0.

1. Find the median of X.

It can be shown (shall not be proved) that X has the characteristic function

k(ω) =











1 − |ω|
2

, |ω| ≤ 2,

0, |ω| > 2.

2. Prove that X does not have a mean.

Let X1, X2, X3, . . . be mutually independent random variables, all of the same distribution as X. Let

Zn =
1
n

n
∑

j=1

Xj , n ∈ N.

3. Find the characteristic function for Zn.

4. Prove that the sequence (Zn)∞n=1 converges in distribution towards a random variable Z, and find
the distribution of Z.

5. Compute the probability P

{

−1
2

< Z <
1
2

}

.

1) It follows from f(−x) = f(x) that the median is 〈X〉 = 0.

2) Since k(ω) is not differentiable at ω = 0, the random variable X does not have a mean.

3) The characteristic function for Zn is

kZn
(ω) =

{

k
(ω

n

)}n

=















(

1 − |ω|
2n

)n

for |ω| ≤ 2n,

0 for |ω| > 2n.

4) Now, kZn
(ω) → exp

(

−|ω|
2

)

for n → ∞ and every fixed ω ∈ R. Since exp
(

−|ω|
2

)

is continuous,

(Zn) converges in distribution towards Z. Using a table we see that Z ∈ C

(

0,
1
2

)

is Cauchy

distributed of the frequency

fZ(z) =

1
2

π

(

1
4

+ z2

) =
2
π
· 1
1 + (2z)2

for z ∈ R.
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5) The probability is

P

{

−1
2

< Z <
1
2

}

=
2
π

∫ 1
2

− 1
2

dz

1 + (2z)2
=

1
π

∫ 1

−1

dt

1 + t2
=

2
π

[Arctan t]10 =
1
2
.

Example 6.13 We say that a random variable X has a symmetric distribution, if X and −X have
the same distribution.
Assume that X has the characteristic function kX(ω). Prove that −X has the characteristic function

k−X(ω) = kX(ω).

Prove that the characteristic function for X is a real function, is and only if X has a symmetric
distribution.

The first question is almost trivial,

k−X(ω) = E
{

e−i ω X
}

= E {ei ω X} = kX(ω).

1) If X has a symmetric distribution, then

k−X(ω) = kX(ω) = kX(ω),

and we conclude that kX(ω) is real.
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2) Conversely, if kX(ω) is real, then

k−X(ω) = kX(ω) = kX(ω),

from which follows that −X and X have the same characteristic function, and hence the same
distribution. This proves that X has a symmetric distribution.

Example 6.14 Prove that the characteristic function for the distribution given by

P{X = −n} = P{X = n} =
c

n2 lnn
, n = 2, 3, . . . ,

where

c ·
+∞
∑

n=2

1
n2 lnn

=
1
2
,

is of class C1.
Hint: The problem is to prove that the termwise differentiated series

−2c
∞
∑

n=2

sinnω

n lnn

is uniformly convergent on R. Show this by successively proving that

1)
∣

∣

∣

∣

∣

q
∑

n=p

sinnω

∣

∣

∣

∣

∣

≤ 1
∣

∣

∣sin
ω

2

∣

∣

∣

, ω �= 2mπ, p, q ∈ N, p < q.

2)
∣

∣

∣

∣

∣

N
∑

n=p

1
n

sinnω

∣

∣

∣

∣

∣

≤ π + 1, ω ∈ R, p, N ∈ N, p < N.

3)
∣

∣

∣

∣

∣

q
∑

n=p

sinnω

n
· 1
lnn

∣

∣

∣

∣

∣

≤ (π + 1) · 1
ln p

, ω ∈ R, p, q ∈ N, 2 ≤ p < q.

Here we shall also use Abel’s formula for partial summation, which is written

q
∑

n=p

anbn =
q−1
∑

n=p

An (bn − bn+1) + Aqbq, where An =
n

∑

k=p

ak.

Abel’s formula above is similar to partial integration; ’ here we use sums instead of integrals.

The claim follows easily from the estimate in 3., because the right hand side tends towards 0 for
p → ∞, independently of ω ∈ R.
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1) If p < q and ω �= 2mpi, then

q
∑

n=p

sinnω = Im
q

∑

n=p

ei n ω = Im
eo p ω − ei(q+1)ω

1 − ei ω

= Im
exp

(

i
(

q + 1
2

)

ω
)

− exp
(

i
(

p − 1
2

)

ω
)

1
2i

{

exp
(

i ω
2

)

− exp
(

−iω
2

)}

· 2i

=
1

2 sin ω
2

·
{

cos
(

p − 1
2

)

ω − cos
(

q +
1
2

)

ω

}

,

thus we get the estimate
∣

∣

∣

∣

∣

q
∑

n=p

sinnω

∣

∣

∣

∣

∣

≤ 1 + 1
2

∣

∣sin ω
2

∣

∣

=
1

∣

∣sin ω
2

∣

∣

for ω �= 2mπ, m ∈ Z.

Notice that the left hand side is 0 for ω = 2mπ, m ∈ Z.

2) Due to the periodicity it suffices to consider ω ∈ [−π, π]. Using that sinus is an odd function, it
follows that it even suffices to consider ω ∈ [0, π]. Finally, if follows from 1. that we can restrict
ourselves to ω ∈ ]0, ω0], where

ω0 = 2Arcsin
1

π + 1
.

Let N > p, and choose ωp =
π

p
. We group the terms in the following way,

N
∑

n=1

1
n

sin
(

n
π

p

)

=
k0−1
∑

k=0

(k+1)p
∑

n=kp+1

1
n

sin
(

n
π

p

)

+
N

∑

n=k0p+1

1
n

sin
(

n
π

p

)

,

where

k0 =
[

N − 1
p

]

denotes the integer part of (N − 1)/p. We note that the sequence (in k)




(k+1)p
∑

n=k+1

1
n

sin
(

n
π

p

)





is alternating and that the corresponding sequence of absolute values tends decressingly towards
0. Thus we get the following estimate,

∣

∣

∣

∣

∣

N
∑

n=p

1
n

sin
(

n
π

p

)

∣

∣

∣

∣

∣

≤
p

∑

n=1

1
n

sin
(

n
π

p

)

≤ 2
[ p
2 ]

∑

n=1

1
n

sin
(

n
π

p

)

01

≤ 2
[ p
2 ]

∑

n=1

1
n
· n π

p
+ 1 ≤ 2 · p

2
· π

p
+ 1 = π + 1.
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If
π

p + 1
< ω <

π

p
, then we estimate upwards by

sinnω < sin
(

n
π

p

)

for n ≤
[p

2

]

.

Hence
∣

∣

∣

∣

∣

N
∑

n=p

1
n

sinnω

∣

∣

∣

∣

∣

≤ π + 1, ω ∈ R, p, N ∈ N, p < N.

3) Let 2 ≤ p < q, and choose

an =
sinnω

n
with An =

n
∑

k=p

sin k ω

k
, |An| ≤ π1

according to 2.. Finally, choose bn =
1

lnn
. Then it follows by an application of Abelian summation

that

q
∑

n=p

sinnω

n
· 1
lnn

=
q−1
∑

n=p

An ·
(

1
lnn

− 1
ln(n + 1)

)

+ Aq ·
1

ln q
.

Thus we get the estimate

∣

∣

∣

∣

∣

q
∑

n=p

sinnω

n
· 1
lnn

∣

∣

∣

∣

∣

≤
q−1
∑

n=p

|An| ·
(

1
lnn

− 1
ln(n + 1)

)

+ |Aq| ·
1

ln q

≤ (π + 1)

{

q−1
∑

n=1

(

1
lnn

− 1
ln(n + 1)

)

+
1

ln q

}

=
π + 1
ln p

as required.
As mentioned above it then follows that the termwise differentiated series is uniformly convergent,
and the characteristic function is of class C1.
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Index

Abel’s formula for partial summation, 104
Abel’s theorem, 5

Bernoulli distribution, 5
binomial distribution, 4, 5, 43

Cauchy distribution, 14, 102
causal distribution, 48, 50, 65, 87, 94
Central Limit Theorem, 87, 91, 100
characteristic function, 12, 83
completely monotone function, 77
continuity theorem, 7
convergence in distribution, 11, 17, 49, 50, 52,

53, 60, 65, 75, 79, 81, 86, 88, 89, 91,
93, 95, 97, 100, 102

convergence in probability, 64

Dirac’s δ “function”, 95
double exponential distribution, 14, 101

Erlang distribution, 10, 14
exponential distribution, 10, 14, 42, 46, 51, 55,

67, 82

Fourier transform, 13

Gamma distribution, 10, 15, 47, 72, 79
Gaußian distribution, 15
generating function, 4, 5, 18
geometric distribution, 6, 18, 38, 41, 100

inversion formula, 9, 13, 85, 89, 93

Laplace transformation, 8, 46
logarithmic distribution, 49

mean, 6
moment, 6, 10, 15

negative binomial distribution, 6, 24, 34
normal distribution, 15, 75, 88, 91, 99

Pascal distribution, 6, 37, 40, 73, 79
Poisson distribution, 4, 6, 25, 28, 37, 34, 38,

67, 83

rectangular distribution, 15, 56, 84

symmetric distribution, 103

truncated Poisson distribution, 26, 29

variance, 6

χ2 distribution, 9, 14
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