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Analytic Aids Introduction

Introduction

This is the eight book of examples from the Theory of Probability. In general, this topic is not my
favourite, but thanks to my former colleague, Ole Jgrsboe, I somehow managed to get an idea of what
it is all about. We shall, however, in this volume deal with some topics which are closer to my own
mathematical fields.

The prerequisites for the topics can e.g. be found in the Ventus: Calculus 2 series and the Ventus:
Complex Function Theory series, and all the previous Ventus: Probability c1-c6.

Unfortunately errors cannot be avoided in a first edition of a work of this type. However, the author
has tried to put them on a minimum, hoping that the reader will meet with sympathy the errors
which do occur in the text.

Leif Mejlbro
27th October 2014
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Analytic Aids 1. Generating functions; background

1 Generating functions; background

1.1 Definition of the generating function of a discrete random variable

The generating functions are used as analytic aids of random variables which only have values in Ny,
e.g. binomial distributed or Poisson distributed random variables.

In general, a generating function of a sequence of real numbers (ak)zig is a function of the type

+oo
A(s) = Zak s*, for |s| < p,
k=0

provided that the series has a non-empty interval of convergence | — g, o[, 0 > 0.

Since a generating function is defined as a convergent power series, the reader is referred to the Ventus:
Calculus 3 series, and also possibly the Ventus: Complex Function Theory series concerning the theory
behind. We shall here only mention the most necessary properties, because we assume everywhere
that A(s) is defined for |s|o.

A generating function A(s) is always of class C°°(] — g, 0[). One may always differentiate A(s) term
by term in the interval of convergence,

“+o0
A (s) = Z E(k—1)---(k—n+1ags®™™", for s €] — p, 0.
k=n

We have in particular

- An) (0)
ol

A(”)(O) =nl-a,, le a, for every n € Ny.
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Analytic Aids 1. Generating functions; background

Furthermore, we shall need the well-known

Theorem 1.1 Abel’s theorem. If the convergence radius o0 > 0 is finite, and the series 22':) ar 0°
is convergent, then

+oo
Z ar 0" = lim A(s).
k=0 e

In the applications all elements of the sequence are typically bounded. We mention:

1) If |ag| < M for every k € Ny, then
—+o0
A(s) = Zak s* convergent for s €] — g, o[, where ¢ > 1.
k=0

This means that A(s) is defined and a C'* function in at least the interval | — 1, 1], possibly in a
larger one.

2) If aj, > 0 for every k € Ng, and 3/ aj, = 1, then A(s) is a C* function in ] — 1, 1], and it follows
from Abel’s theorem that A(s) can be extended continuously to the closed interval [—1,1].
This observation will be important in the applications her, because the sequence (ax) below is
chosen as a sequence (px) of probabilities, and the assumptions are fulfilled for such an extension.

If X is a discrete random variable of values in Ny and of the probabilities
pr = P{X =k}, for k € Ny,

then we define the generating function of X as the function P : [0,1] — R, which is given by

+oo
P(s)=F {SX} = Zpk Sk
k=0

The reason for introducing the generating function of a discrete random variable X is that it is
often easier to find P(s) than the probabilities themselves. Then we obtain the probabilities as the
coefficients of the series expansion of P(s) from 0.

1.2 Some generating functions of random variables

We shall everywhere in the following assume that p €]0,1] and ¢ := 1 —p, and u > 0.
1) If X is Bernoulli distributed, B(1,p), then

p=1l-p=q and p1 =P, and P(s)=1+p(s—1).

2) If X is binomially distributed, B(n,p), then

PE = ( Z )pkq"_’ﬂ and  P(s) = {1+p(s —1)}".
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Analytic Aids 1. Generating functions; background

3) If X is geometrically distributed, Pas(1,p), then

_ S
pr=p¢""', and  P(s)= lp :
.

4) If X is negative binomially distributed, NB(k, p), then

pr = (-1)* ( _,f >p”q'“, and  P(s) = {1 _pqs}n-

5) If X is Pascal distributed, Pas(r, p), then

_ k-1 r k—r _ ps "
pk—<rl)pq , and P(s)—{lqs}.

6) If X is Poisson distributed, P(u), then

k
Pr = % e M, and P(s) = exp(u(s — 1)).

1.3 Computation of moments

Let X be a random variable of values in Ny and with a generating function P(s), which is continuous
in [0,1] (and C*° in the interior of this interval).

The random variable X has a mean, if and only the derivative P’(1) := lim,_,;_ P’(s) exists and is
finite. When this is the case, then

E{X} = P'(1).

The random variable X has a wariance, if and only if P"”(1) := lims_,;_ P"(s) exists and is finite.
When this is the case, then

V{X}=P'1)+P(1) - {P'(1)}".

In general, the n-th moment E {X"} exists, if and only if P (1) := lim,_,;_ P")(s) exists and is
finite.

1.4 Distribution of sums of mutually independent random variables

If X7, Xo, ..., X,, are mutually independent discrete random variables with corresponding generating
functions P;(s), Ps(s), ..., P,(s), then the generating function of the sum
n
Y, =Y X;
i=1
is given by

Py (s) = H Pi(s), for s € [0,1].
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Analytic Aids 1. Generating functions; background

1.5 Computation of probabilities

Let X be a discrete random variable with its generating function given by the series expansion
“+o0
P(s) = Z prs”.
k=1

Then the probabilities are given by

(k)
PAX =k} —pp= T k!(o).

A slightly more sophisticated case is given by a sequence of mutually independent identically dis-
tributed discrete random variables X,, with a given generating function F'(s). Let N be another
discrete random variable of values in Ny, which is independent of all the X,,. We denote the generat-
ing function for N by G(s).

The generating function H(s) of the sum

Yn =X1+Xo+ -4+ Xn,
where the number of summands N is also a random variable, is then given by the composition

Py, (s) == H(s) = G(F(s)).

Notice that if follows from H'(s) = G'(F(s)) - F'(s), that
E{¥y} = B{N}- B{X;}.

1.6 Convergence in distribution

Theorem 1.2 The continuity theorem. Let X, be a sequence of discrete random variables of
values in Ng, where

Pk = P{X, =k}, forneN and k € Ny,

and
—+oo
P,(s) ::an,ksk7 for s €10,1] ogn € N.
k=0

Then
lim pnr =px for every k € Ny,
— 400

n

if and only if

+oo
111_{1 P, (s) = P(s) (: Zpk sk> for all s € [0,1].
k=0

If furthermore,
lir{l P(s) =1,

then P(s) is the generating function of some random variable X, and the sequence (X,,) converges in
distribution towards X.

9
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Analytic Aids 2. The Laplace transformation; background

2 The Laplace transformation; background

2.1 Definition of the Laplace transformation

The Laplace transformation is applied when the random variable X only has values in [0, +00[, thus
it is non-negative.

The Laplace transform of a non-negative random variable X is defined as the function L : [0, +00[ — R,
which is given by

L(\) == E{e**}.
The most important special results are:

1) If the non-negative random variable X is discrete with P {z;} = p;, for all z; > 0, then

L(\) = Zpi e AT for A > 0.

2) If the non-negative random variable X is continuous with the frequency f(x), (which is 0 for
x < 0), then

L(\) = /O+OO e f(x) da for A > 0.

We also write in this case L{f}(\).
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Analytic Aids 2. The Laplace transformation; background

In general, the following hold for the Laplace transform of a non-negative random variable:

1) We have for every A > 0,

0<L(A) <1,  with L(0) = 1.

2) If A > 0, then L(\) is of class C* and the n-th derivative is given by

S e Mipy, when X is discrete,
(-1 L) =
f0+°° 2" e M f(x) dw, when X is continuous.

Assume that the non-negative random variable X has the Laplace transform Lx(\), and let a, b > 0
be non-negative constants. Then the random variable

Y =aX +0b

is again non-negative, and its Laplace transform Ly () is, expressed by Lx()), given by

Ly(A\) =FE {eiA(aXH’)} =e M Lx(a)).

Theorem 2.1 Inversion formula. If X is a non-negative random variable with the distribution
function F(z) and the Laplace transform L(\), then we have at every point of continuity of F(x),

(Az]

\W\k

where [Axz] denotes the integer part of the real number Ax. This result implies that a distribution is
uniquely determined by its Laplace transform.

Concerning other inversion formula the reader is e.g. referred to the Ventus: Complex Function Theory
series.

2.2 Some Laplace transforms of random variables

1) If X is x?(n) distributed of the frequency

f(z) = Wm”ﬂl exp (75) x>0,

then its Laplace transform is given by

n

LX(A):{Q/\1+1}§'
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Analytic Aids 2. The Laplace transformation; background

1
2) If X is exponentially distributed, T’ (1, —>7 a > 1, of the frequency
a

fl@)=ae for z > 0,

then its Laplace transform is given by

_a
T A+a’

Lx(A)

3) If X is Erlang distributed, T'(n, ) of frequency

1 1

— " exp(—f), forneN, a>0and z >0,
(n—1lam !

then its Laplace transform is given by

Lx() = {a/\1+ 1}”.

4) If X is Gamma distributed, T'(u, ), with the frequency

1
W 1 exp <_§) for u, « > 0 and = > 0,

then its Laplace transform is given by

Lx(V) = {OZ/\1+ l}u'

2.3 Computation of moments

Theorem 2.2 If X is a non-negative random variable with the Laplace transform L(X), then the n-th
moment E{X"} exists, if and only if L(\) is n times continuously differentiable at 0. In this case we
have

E{X"} = (=1)"L™(0).
In particular, if L(\) is twice continuously differentiable at 0, then

E{X}=-L'(0), and  E{X*}=L"(0).

2.4 Distribution of sums of mutually independent random variables

Theorem 2.3 Let X1, ..., X, be non-negative, mutually independent random variable with the cor-
responding Laplace transforms L1(\), ... L,(\). Let

1 1
Yn_;Xi and Zn_gyn_E;Xi.
Then
Ly()\):ﬁL(/\) and Ly (V) =Ly (2 :ﬁL A
n 3 ) n n n 7 n

12
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Analytic Aids 2. The Laplace transformation; background

If in particular X; and X5 are independent non-negative random variables of the frequencies f(x) and
g(x), resp., then it is well-known that the frequency of Xy + X3 is given by a convolution integral,

—+oo
(f % g)(x) = /_ F(B)g(n — 1) dt.

In this case we get the well-known result,

L{f*g} = L{f} - L{g}.

Theorem 2.4 Let X, be a sequence of non-negative, mutually independent and identically distributed
random variables with the common Laplace transform L(X). Furthermore, let N be a random variable
of values in Ng and with the generating function P(s), where N is independent of all the X,,.

Then Yy := X1+ -+ + Xy has the Laplace transform

Lyy (A) = P(L())).

2.5 Convergence in distribution

Theorem 2.5 Let (X,,) be a sequence of non-negative random variables of the Laplace transforms
L, ().

1) If the sequence (X,,) converges in distribution towards a non-negative random variable X with the
Laplace transform L(X), then

lim L,(A) =L\ for every XA > 0.

n—-+4oo

2) If
L(A\):= lim L,(\)

n—-+oo

exists for every A > 0, and if L(\) is continuous at 0, then L(X) is the Laplace transform of some
random variable X, and the sequence (X,,) converges in distribution towards X .
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3 Characteristic functions; background

3.1 Definition of characteristic functions

The characteristic function of any random variable X is the function k : R — C, which is defined by
k(w) = E {e“X}.
We have in particular:

1) If X has a discrete distribution, P {X = x;} = p;, then

k(w) = ijeiwwj.

2) If X has its values in N, then X has also a generating function P(s), and we have the following
connection between the characteristic function and the generating function,

+00
k(w) = Zpk (ei“)lC =P (ev).
k=0
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Analytic Aids 3. Characteristic functions; background

3) Finally, if X has a continuous distribution with the frequency f(x), then

Mw)/+we“?ﬂ@d%

—0o0

which is known from Calculus as one of the possible definition of the Fourier transform of f(x),
cf. e.g. Ventus: the Complex Function Theory series.

Since the characteristic function may be considered as the Fourier transform of X in some sense, all
the usual properties of the Fourier transform are also valid for the characteristic function:

1) For every w € R,

|k(w)] <1, in particular, £(0) = 1.

2) By complex conjugation,

k(w) = k(—w) for ever w € R.

3) The characteristic function k(w) of a random variable X is uniformly continuous on all of R.

4) If kx(w) is the characteristic function of X, and a, b € R are constants, then the characteristic
function of Y := a XS + b is given by

ky(w)=F {ei“’(aXer)} = e kx (aw).

Theorem 3.1 Inversion formula

1) Let X be a random variable of distribution function F(x) and characteristic function k(w). If
F(x) is continuous at both x1 and xo (where x1 < x2), then

1 A —jwxq _ ,—twxTy
Flag) = Fla) =50 Jim [ S k) do.

— lim
2T A—+oco _A 1w
In other words em a distribution is uniquely determined by its characteristic function.

2) We now assume that the characteristic function k(w) of X is absolutely integrable, i.e.
+oo
/ le(w)] dw < +o.

Then X has a continuous distribution, and the frequency f(x) of X is given by

+oo
f(z) ! / e k(w) dw.

:% .

In practice this inversion formula is the most convenient.
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Analytic Aids 3. Characteristic functions; background

3.2 Characteristic functions for some random variables

1) If X is a Cauchy distributed random variable, C(a,b), a, b > 0, of frequency

b
LG R T By

for x € R,

then it has the characteristic function
k(w) =exp(iaw — |w|).
2) If X is a x?(n) distributed random variable, n € N of frequency

1 x
= an/2-1 (__) f
x exp or x > 0,
d (g) 2/ ?

then its characteristic function is given by

F(w) = {1 —12iw }"/2.

3) If X is double exponentially distributed with frequency

a
flx) = B e—alel, for x € R, where the parameter a > 0,

then its characteristic function is given by

2

k(w) =

a2 + w?2 :
. . . 1 .
4) If X is exponentially distributed, T (1, — ), a > 0, with frequency
a

f(z) =ae for x > 0,

then its characteristic function is given by

a

k(w) =

a—iw’
5) If X is Erlang distributed, I'(n, ), where n € N and « > 0, with frequency

i exp (—f)
[ S 6 7
(n—1lan

fz) =

for z > 0,

then its characteristic function is

v = { =)
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Analytic Aids 3. Characteristic functions; background

6) If X is Gamma distributed, I'(u, o), where u, o > 0, with frequency

s exp <—£>
«Q

forz >0
C(p)ar 7 ’

fx) =

then its characteristic function is given by

k(w) = { 1 —1iaw }M ’

7) If X is normally distributed (or Gaufian distributed), N(u, 02), i1 € R and o > 0, with frequency

1 (z — p)?
exp| ——— |, for x € R,
V2ro? ( 20

then its characteristic function is given by

2 2
k(w) = exp (i,uw— U; )

8) If X is rectangularly distributed, U(a,b), where a < b, with frequency

flz) = for a <z <b,

then its characteristic function is given by
eiwb _ eiwa

3.3 Computation of moments

Let X be a random variable with the characteristic function k(w). If the n-th moment exists, then
k(w) is a C* function, and

EM(0) =" E{X"}.
In particular,

K'(0)=iE{X} and k’(0)=-E{X°}.
We get in the special cases,

1) If X is discretely distributed and E {|X|"} < 400, then k(w) is a C™ function, and

kM (w) =i Z z exp (iwz;) p;.
J

2) If X is continuously distributed with frequency f(x) and characteristic function

W)= [ e

17
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Analytic Aids 3. Characteristic functions; background

and if furthermore,
+oo
E{XI") :/ 2" f(z) dz < +oo,
then k(w) is a C™ function, and we get by differentiation of the integrand that
+o0 )
k™ (w) = z"/ " ™" f(x) dw.

— 00

3.4 Distribution of sums of mutually independent random variables

Let X1, ..., X, be mutually independent random variables, with their corresponding characteristic
functions k1 (w), ..., kn(w). We introduce the random variables

1 1 «
Y, ::in and Zn:EYn:EZXi.
3 =1
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Analytic Aids 3. Characteristic functions; background

3.5 Convergence in distribution

Let (X,,) be a sequence of random variables with the corresponding characteristic functions k,, (w).

1) Necessary condition. If the sequence (X,,) converges in distribution towards the random vari-
able X of characteristic function k(w), then

lim k,(w) = k(w) for every w € R.

n—-+o0o

2) Sufficient condition. If

E(w)= lim k,(w)

n—-+o0o

exists for every w € R, and if also k(w) is continuous at 0, then k(w) is the characteristic function
of some random variable X, and the sequence (X,,) converges in distribution towards X.

19
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4 Generating functions
Example 4.1 Let X be geometrically distributed,
(1) P{X =k} =pg""', keN,

where p >0,g>0andp+qg=1.
Find the generating function of X.
Let X1, Xo, ..., X, be mutually independent, all of distribution given by (1), and let

Y, =X1+Xo+---+ X,
Find the generating function of Y,, and prove that Y, has the distribution

P{YT:k}:(ﬁ_i>pqu_r, k=r,r+1,....

It follows by insertion that

Px(s)=E{s} = qu"ilsn =ps Z(qs)"71 =1 fsqs’ s € [0,1].
n=1 n=1

The generating function Q,(s) for Y, = X; + Xo +---+ X, is

s bs " T —s ror . - m,m _m
Q.(s) = J[Px.(s) = (1 > =p's"(1—qs) " =p's" ) ( )(—1) q"'s
, —qs m
i=1 m=0
o . T"_m_l rmer'r'ioo n—1 r n—r_r
= E_O< m >pqs —E_(r_1>pq s for s € [0,1].
Since also

Qr(s) =Y _ P{Y, =n}s",
we conclude that

P{YT:n}:(Z_i)prq"_T, n=r,r+1,....

20
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Analytic Aids 4. Generating functions

Example 4.2 Given a random wvariable X of values in Ng of the probabilities pr, = P{X = k},
k € Ny, and with the generating function P(s). We put q;, = P{X >k}, k € Ny, and

Q(s) =Y _q"s",  selo1].
k=0

Prove that
1-P
Q(s) = 1=Pls) for s €0, 1].
1—s
We have
oo oo k
gp=P{X>k}= > P{X=n}= > p.=1-) pn
n=k+1 n=k+1 n=0
Thus if s € [0, 1], then
%) e} o k oo oo
1
_ k __ k k __ k
OIED ST SIUES 35 B NRES o) gpe
k=0 k=0 k=0n=0 n=0 k=n
1 o0

5" 1 > 1— P(s)
1—s ;pn 1—s l—s{ nz_;)pns} 1—s

=0

Example 4.3 We throw a coin, where the probability of obtaining head in a throw is p, where p €10, 1].
We let the random variable X denote the number of throws until we get the results head—tail in the
given succession (thus we have X = n, if the pair head—tail occurs for the first time in the experiments
of numbers n — 1 and n).

Find the generating function of X and use it to find the mean and variance of X. For which value of
p is the mean smallest?

1
Ifn=2,3,... and p # E,then

P{X=n} = P{X;= head,i=1,..., X,, = tail}
+P{X; = tail,X; = head,i=2,...,n—1, X,, = tail}
+P{X; = tail, j =1,2; X; = head, 1 =3,...,n—1, X,, = tail}
+---+P{X;=tail, j=1,...,n—2; X,_1 = head, X,, = tail}
= p"H(1=p)+ (1 =pp" 2L —p)+ (1 -p)*p"*(1 - p)
A (L=p)"?p(1 —p)

S Y R o =

=1 j=1
- n—1 n—1
el p P —=(1-p)
= ]_— . = ]_
p"(1—p) 7 p(1 —p) o1
p
p(1—

= WD ), nemyi

21
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Analytic Aids 4. Generating functions

1
Ifp= 3 then we get instead
—/1\"7 /1 n-1
r-n=3(3) () -
j=1

1
which can also be obtained by taking the limit in the result above for p # 3

1 1
We have to split into the two cases 1. p = 3 and 2. p # 5

1
1) Ifp= 3 then the generating function becomes

P(s) = ;nz—nlsn:(%)21;”(%)”_1:(92.(1_15)2:(2i5>
2

2 2 4 4
— 1) =—" - % 41 f 9.
(2—5 > (2 —s)? 25" or s €[0,2]

1
2) If p€]0,1] and p # 50 e get instead

P = Y= {p“(lp)“}s"p;;j?s{ﬂps)”z(lp)"s"}

n=2 n n=1

- p(l_p)~8{ ps (1—-p)s }:p(l—p)_s{

=1
1 1
1—ps 1—(1-p)s

2p—1 1—ps 1—(1—p)s 2p— 1
_ 1-p ps _p (-p)s
2p—1 1—ps 2p—1 1—(1-p)s
_1-p 1 1—»p p 1 n p
- 2%p—1 1-ps 2p—1 2p—1 1—(1—-p)s 2p—1
1— 1 1
- 14 p p

2p—1 1—ps 2p—1 1—(1—p)s’

1 1
for s € [O,min{, H
p 1=p

In both cases P (1) exists for all n. It follows from
E{X}=P/(1) and V{X}=P'(1)+P'(1)-{P'(1)}?
that

1
1) Ifp= 2 then

22
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and

Lo 2 8
P(s) = (2—s)* (2—s)3

hence
E{X}= P'(l) =4,
and

V{X}=P'(1)+P(1)—{P (1)} ) =16+4—16 = 4.

1
2) If pel0,1[, p # 3 then

;o (=pp 1 1
Pl =5 {(1—ps)2_{1—(1—P)3}2}7
hence
_ (=pp 1 ! S P__2°P
BUXY = 5 {(1p)2_{1(1p)}2}_2p1{1p_ g }
1 2p —1 1

2p—1 (1-pp pl-p)

23
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Analytic Aids 4. Generating functions

Furthermore,
2(1 —p)p p 1—p
P// — _
B =51 \T—pp U=(-psP )
thus

vixh = 2192—1{(1%7)2(lsz)Q}+p(11—p)p2(1l—p)2

_ 2 { D +1—p}{ D _1—p}+ 1 B 1
2p—1\1-p p l-p p p(1—p) p*(1-p)?

A4p> —dp+2+p—p°—1 3p*—3p+1 pP+(1—p)® p 1—p

p*(1 —p)? - p(l-p?  pP(1-p?  (1-p? p?

Now, p(1 — p) has its maximum for p = % (corresponding to E{X} = 4), so p = % gives the
minimum of the mean, which one also intuitively would expect.
An ALTERNATIVE solution which uses quite another idea, is the following: Put
prn, = P{HT occurs in the experiments of numbers n — 1 and n},
fn = P{HT occurs for the first time in the experiments of numbers n — 1 and n}.
Then
(2) Pn = foPn—2 + f3pn—3 + -+ + fa—2p2 + fa.

We introduce the generating functions

(o] (o] 2

n n S
P(s)=> pus"=pqy s Pa T s €[0,1],
n=2 n=2

F(s) = fus".
n=2

When (2) is multiplied by s™, and we sum with respect to n, we get alternatively

[e%s) [e’e) n—2 o) [e’e) [e%s)
P(s) = stn:Z{kapn_k}s"+2fns”22fk{ > pn_ksnk}sk—FF(s)
n=2 n=2 \ k=2 n=2 k=2 n=k+2
= Y fust P(s)+ F(s) = F(s){P(s) + 1},
k=2
and we derive that
P 1 1 1-—
Fis) = %:1_P(s)+1:1_ 2 =1 32+1S s
S —
pq +1 pq
1—s
B 1—s i s—1
(1= ps)(1—qs) pq( _1) (é_})
p q
1
-1 1_1
SIS INR ) O N -
o 1 1 1 1 1 1
pg |t 1 11 1 1
p q p q D q
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By differentiation,

1 1
1]t 1 g " 1
Fls) = —{Z . - :
(=) pg |1 1 <8_1>2 1.1 (8_1)2
q p p a P q
_ 1 1—p 1 1—g¢q 1
p—q)| »p ( 1)2 q ( 1)2
s— = 55— -
p q
B pq { 1 1 }
p—q |l (1-ps)2 (1-gs)?)’
hence
E{X) = F(1) = P {i_i}:ﬂ.ﬂzi:#
p—q le® p? p—q p?’¢¢  pg  p(l—p)

1
Now, p(1 — p) is largest for p = 3 where E{X} is smallest, corresponding to E{X} = 4.

Furthermore,
2p 2q
F"(s) = pq { _ })
)= g (TP~ (g
SO
2 2 2 4 4 2 _ 2
)y = M {_13?__3}: LI ek S '
p—ql¢ p P’¢> p—q p*—q
2 o o 2{(p+a9)?—2pq}  2(1-2pq)
= p2q2'(p +q)— D2 -T2
and
2—4pg = pq 1 1—3pq
o / / 2 _ _
V{X}=F"'(1)+ F'(1) = {F'(1)}* = + — =55

P2q? P?¢®>  p’q p?q

which can be reduced to the other possible descriptions

b
2

+

q
p?  (1-p)?  p?

)
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Example 4.4 1) The distribution of a random variable X is given by

—

P{Xk}(l)’“( k)po‘qk, k € No,

where a« € Ry, p€]0,1[ and g =1—p. (Thus X € NB(a,p).) Prove that the generating function
of the random variable X is given by

P(s)=p*(1—qs)™",  s€[0,1],
and use it to find the mean of X.
2) Let Xy and Xo be independent random variables
X1 € NB(ay,p), X2 € NB(az,p), ai,aseRy, pel0,1].
Find the distribution function of the random variable X1 + X5.

2
3) Let (Yy),—5 be a sequence of random variables, where Y, € NB <n,1 — —|. Prove that the
n

sequence (Yy) converges in distribution towards a random wvariable Y, and find the distribution
function of Y.

4) Compute P{Y >4} (8 decimals).

1) The generating function for X for s € [0,1] is given by

P(s) = g:(—l)k ( 72 )paqksk =p” 3 ( 7(]3; ) (—gs)* = (1—])7)“'

0 k=0

It follows from

aqp”
Pl(s) = —"—
(#) (1 —gs)ott’
that
_oprqy L agqp® ap®q g
E{X}ip(]')i (l_q)a-',-l - pa+1 7Oép

2) Since X; and X5 are independent, the generated function for X; + X, is given by

D a1 P a2 p a1 +ao
P = . =
X1, (8) {1—qs} {l—qs} {1—qs} ’

and we conclude that X7 + X5 € NB (a1 + aw, p), thus the distribution is given by

—Q] — Q2

P{X1+Xo=k}=(-1)* ( k >Pal+a2qk> k € Ny,

26
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3) The generating function P, (s) for Y, is according to 1. given by

3

Po(s) = < . 3) € _ o-20-9) _ p(g)

2 n —2s
(-3

Now, lim, 1 P(s) = €° = 1, so it follows from the continuity theorem that (V) converges in
distribution towards a random variable Y of generating function

3

o0 2n oo
P(s) = e 2079 = ¢72e%5 — 72 Z ol st = Z P{Y =n}s".
n=0 n=0

When we identify the coefficients of s™, we see that the distribution is given by
277,
P{Y:n}z—'e%, n € No,
n!

which we recognize as a Poisson distribution, Y € P(2).

4) Finally,
Py >4} = 1-P{Y=0-P{y=1}-P{y =2} - P{Y =3} — P{Y — 4}
4 2
= 1—e 231 +24+2+-+= =1—1%O.05265.
3 3 e2
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Example 4.5 Consider a random variable X with its distribution given by

1 a*

P{X:k}:e“—lﬁ’

k e N,

where a is a positive constant.

1. Find the generating function for X and find the mean of X.

Let X1 and Xo be independent random variables, both having the same distribution as X.
2. Find the generating function for X1 + X5, and then find the distribution of X1 + Xo.

The distribution of X is a truncated Poisson distribution.

1) The generating function P(s) is

> 1 X (as)fF e —1
Ps)=) PIX=ks'=2) S ="0
k=1 k=1 ’

It follows from

a eU.S
Pl(s) = ——
() et —1’
that
ae?
E{X)=P(s) = .
(X} =Pls) = =

2) Since X; and X are independent, both of the same distribution as X, the generating function is
given by
1

P(s) = Px,+x,(s) = Pi(s) - Pa(s) = (v —1)2

€ —-1), selo1l.

Then we perform a power expansion of those terms which contain s,

P(S) = - (62(18 _ 908 + 1) - - 1 {(2a)k B 2ak} Sk
(¢ —1)° (er — 1) k;@) k!
1 ©  _k [eS)
= o aw @Y P s
k=2 k=2

By identification of the coefficients it follows that X; + X5 has the distribution

1 ak
P{Xi+Xo=k}=—" — (2F -2 k=234, ....
{ 1+ X2 } (6‘171)2 k'( )a 3 Iy Ty

Remark 4.1 This result can - though it is very difficult — also be found in the traditional way by
computation and reduction of

k—1
P{X1+Xp=k} =) P{X;=i}-P{Xp=k—i}. 0

i=1
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Example 4.6 A random variable X has the values 0, 2, 4, ... of the probabilities
P{X =2k} =pq", k€N,
where p>0,g>0andp+qg=1.
1. Find the generating function for X.
2. Find, e.g. by applying the result of 1., the mean E{X}.
We define for every n € N a random variable Y,, by
Y,=X1+Xo+ -+ X,,
where the random variables X; are mutually independent and all of the same distribution as X .
3. Find the generating function forY,.

Given a sequence of random variables (Z,),._,, where for every n € N the random variable Z, has
the same distribution as Y, corresponding to

1 1

p 2n’ q 2n

4. Prove, e.g. by applying the result of 3. that the sequence (Z,) converges in distribution towards a
a random variable Z, and find the distribution of Z.

5. Is it true that E{Z,} — E{Z} forn — c0?

1) The generating function is

Px(s)Zquks%sz(qf)k:l_pﬁ for s € [0,1].
k=0 k=0

2) Tt follows from

2qps

Pi) = e

that

2pqg  2q

ALTERNATIVELY we get by the traditional computation that

- - 2pq _ 2q

EB{X} =Y 2kpe" =2pq) k¢"' =3 ==
k=1 k=1

3) The generating function for V,, = >"1 | X is

2
Py, = {PX(S)}TL — (1 _pq82> for s € [07 1]-
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1
4) f weputp=1— —, q= o then Z, has according to 3. the generating function
n

2n

a n
Since (1 + —) — e for n — oo, we get
n

()

where the limit function is continuous. This means that (Z,,) converges in distribution towards a
random variable Z, the generating function of which is given by

Py(s) = exp (; (s 1)) .

We get by expanding this function into a power series that

Py(s) = % exp (% 52) = % go% (%)ks%‘

It follows that Z has the distribution

= exp (% (32—1)>, for n — oo,

1 /1\* 1

Z 1
thus 3 is Poisson distributed with parameter 3

5) From
1
9.
E{Z,} =n- 27{ = i — 1=F{Z} forn— oo,
1— — -
2n 2n

follows that the answer is “yes”.
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Example 4.7 A random wvariable U, which is not causally distributed, has its distribution given by
P{U:k}:pk, k € Ny,

and its generating function is

:Zpksk, s €[0,1].
k=0

The random variable Uy has its distribution given by

P{U =0}=0, P{U;=k}= 1f’<po, keN.

1. Prove that Uy has its generating function Pi(s) given by

P(s) — po

Pis) = 1 —po

) s €[0,1].
We assume that the number of persons per household residential neighbourhood is a random variable
X with its distribution given by

3k
k(e —1)’

(a truncated Poisson distribution).

P{X =k} = k€N,

2. Compute, e.g. by using the result of 1., the generating function for X. Compute also the mean of
X.

X
1
Let the random variable Y be given by Y = (§> .

3. Compute, e.g. by using the result of 2., the mean and variance of Y.

The heat consumption Z per quarter per house (measured in m® district heating water) is assumed to
depend of the number of persons in the house in the following way:

Z = 200{1 - (%)X} =200(1-Y).

4. Compute the mean and the dispersion of Z. The answers should be given with 2 decimals.

1) A direct computation gives

Pi(s) =Y sk = {Zpks —po} Plo) = o
k

— 1 —=po 1—p0 LI —po
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2) Also here be direct computation,

1
e3 —1

X 635_1
e3—1°

1
7 (39)

hE

Px(S) =

>
Il

1

ALTERNATIVELY we can apply 1., though this is far more difficult, because one first have to realize

that we shall choose

1 3k
— k € Ny,

Pe=3 g
with

P(s) = 371,

Then we shall check that these candidates of the probabilities are added up to 1, and then prove

that
Pk
P{U, =k} = , keN,
U1 =k} =1 -
and finally insert
63(571) _e 3 e3s — 1
Pi(s) = Px(s) = 1—e3 -1
The mean is
3e3s 3e3
{X} (1) L?’_ll—l pa— 3+33_1 3.15719
32
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3) We get by the definition,

e —1

E{s*} = Px(s) = 35—

X
1 1
where we obtain the mean of Y = <§) by putting s = 37 thus

E{Y}—E{G)X} = o (g) - = ! ~ 0,18243.

2 e3—1 <3>
exp 3 +1
Analogously,
3
1\ 2% 1\~ 1 P (Z>_1
27 _ = _ = _ Yo\
so=e{(5) J=e{(5) = (3) - oo
hence
2
3
exp (Z) -1 exp <g) -1
V{Y}= ——3— - " ~ 0.02525.

4) The mean of Z is obtained by a direct computation,
E{Z} =200 E{Y'} = 163.514.
The corresponding dispersion is

s =/V{Z} =200,/V{Y} = 31.7786.
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Example 4.8 Let X1, Xs, ... be mutually independent random variables, all of distribution given by
P{X;=k}=pd"", keN,

where p>0,g>0andp+qg=1.
Furthermore, let N be a random variable, which is independent of the X; and which has its distribution
given by

an

—e
n!

P{N=n}=—e¢""  neN,,

where a is a positive constant.

1. Find the generating function P(s) for the random variable X .

2. Find the generating function for the random variable . ; X;, n € N.
3. Find the generating function for the random variable N.

We introduce another random variable Y by
B Y=X1+Xo+ -+ Xn,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (3) is itself a random variable (for N =0 we interpret (3) asY =0).

4. Prove that the random variable Y has its generating function Py (s) given by

-1
Py (s) = exp (al(s—iqs))’ 0<s<1.

HINT: One may use that
P{Y =0} = P{N =0},

P{Y=k}=) P{N=n} -P{X1+Xo+ - +X,=k}, keN

n=1

5. Compute the mean E{Y}.

1) The generating function for X is

o0 o0
_ _ s
P(s) =Y pg"'s" =ps) (gs)*" se0,1].
k=1 k=1

2) The generating function for y ", X; is

P.(s) = P(s)" = (1p8qs> ) s€0,1] ogn eN.
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3) The generating function for N is
Q(S) _ Z Cl_ e g™ — e—l e — ea(s—l).

4) Now,
P{Y =0} =P{N=0}=e"9,

so the generating function for Yy is

Py(s) = P{Y =0}+> P{y=k}s"
k=1
= e“JrZ( P{J\f—n}.P{X1+X2+..-+Xn—k})s’c
k=1 \m=1
= e“+Z(ZP{X1+X2+~--+Xn:k}s’“>
n=1 \k=1

= 3PV =0} (Pals) = Q(P(s))

- o(:25) —ew (o2 1))

ps—1+gs a(s —1)
= eXp|la———— | =exp .
1—gs 1—gs

5) It follows from

R =Pl a{ 2 A

1—gs (1—gs)?
that the mean is
1

BV} =P()=Py(1) ar g = Ii‘j.
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Example 4.9 Let X1, X5, ... be mutually independent random variables, all of distribution given by

11 /2\"

P{Xi:k}zﬁ'g<§) , ke N.
Furthermore, let N be a random variable, which is independent of the X; and Poisson distributed with
parameter a = In 9.
1. Find the mean of X;.
2. Find the generating function for the random variable X .
3. Find the generating function for the random variable Y | X;, n € N.
4. Find the generating function for the random variable N.

Introduce another random variable Y by
4 Y=X1+Xo+ -+ Xn,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (4) also is a random variable (for N =0 we interpret (4) asY =0).

5. Find the generating function for Y, and then prove that'Y is negative binomially distributed.
HINT: One may use that

P{Y =0} = P{N =0},
P{Y:k}:iP{N:n}-P{X1+X2+~-~+Xn:k}, keN.

6. Find the mean of Y.
1) The mean is

2
[ee] k _

1 1/2 13 1 2
FiX{}\=— = = = .9 _—__ _._.
X} 1n3;k k(3> n3 ., 2 In3 3

Wl |~
—
B
w

2) The generating function for X; is

11 /2\ . 1 &1/28\" 1 1 1 3
PXI(S)_EZE<§> s _EZE(§> BT B —mln(g_zs>~

k=1 k=1

3) Since the X; are mutually independent, we get

Po(s) = {Px, (5)}" = {é In <%) }n
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4) Since N € P(In9), we obtain the generating function either by using a table or by the computation

= (In9)" I 1 1
PN(S):Z(H ) e—lngsnzgz_(slng)n:§€sln9:95—1.

5) First compute

P{Y =0} = P{N =0} = % [= Py(0)].

37
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This implies that the generating function for Y is

Py(s) = $+ip{yzk}sk=$+§:ip{z\z:n}-P{X1+--~+Xn:k}s’“
k=1 k=1n=1
= %—&—ZP{N:n}-ZP{ZCi:k}sk:é+ZP{N:n}~(PX1(s))”
n=1 k=1 =1 n=1
3 n_ e 5 (e Lo (3 )Y
= S POV = (P )" = Py (P = 5 3 (0 (575, ))
1 2
- leplom ()2t L ) s
9 p<21<3—23>> 9/ 2y {1 2 (-
(1-5+)

1
which according to the table corresponds to Y € NB (2, §>

6) We get by using a table,

1
'3
E{Y}:2-T:4.
3
ALTERNATIVELY,
1 2 1 4 1
P! —_.9-. - @ __.
(1——8) (1——3)
hence
4 1
E{Y}=P/(1)= —- =4.
V}=P) =5
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Example 4.10 The number N of a certain type of accidents in a given time interval is assumed to
be Poisson distributed of parameter a, and the number of wounded persons in the i-th accident is
supposed to be a random variable X; of the distribution

(5) P{Xi=k}=(1-qq",  keNy,

where 0 < ¢ < 1. We assume that the X; are mutually independent and all independent of the random
variable N.

1. Find the generating function for N.

2. Find the generating function for X; and the generating function for >, X;, n € N.
The total number of wounded persons is a random variable Y given by

6) Y=X1+Xo+ -+ Xn,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (6) is itself a random variable.

3. Find the generating function for' Y, and find the mean E{Y}.
Given a sequence of random variables (Yn)zo:l, where for each n € N the random variable Y, has the

same distribution as'Y above, corresponding to a =mn and q = 3
n

4. Find the generating function for Y,, and prove that the sequence (Y,) converges in distribution
towards a random variable Z.

5. Find the distribution of Z.

1) If N € P(a), then

n

P{N =n} = a—'e’“, n € Np,
n!
and its generating function is
Py (s) = exp(a(s — 1)).

2) The generating function for X; is

Px,(s) =Y (1—q)¢"s" =(1-q)> (gs 17(]5
k=0 k=0

The generating function for >, X; is given by

1—¢g\"
PEZL=1 X'i(s) = <1 —qs)

3) Since all the random variables are mutually independent, the generating function for ¥ = X; +
X5+ -4+ Xy is given by

Py(s) = Py (Px.(s)) = exp (a (11__qq5 _ 1)) = exp (aq 18__;8> )
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4) The generating function for Y,, is given by

1 s—1 1 s—1
PYn(S):eXp n%l_—i = exp gl_i
3n 3n

When n — oo we see that

Py, (5) = P(s) = exp ( - 1) .

Since lims_,1— P(s) = 1, we conclude that P(s) is the generating function for some random variable
Z, thus

P2 (s) = exp (3;1) |

1 1
5) Tt follows immediately from 4. that Z € P (5) is Poisson distributed with parameter a = 3

Example 4.11 Let X1, X2, X3, ... be mutually independent random variables, all of distribution
given by
P{X;=k}=pi(1—-p)*', keN,  hvorp €]0,1],

and let N be a random variable, which is independent of all the X;-erne, and which has its distribution
given by

P{N=n}=p,(1—p)""', neN, pyel01]f
1. Find the generating function Px,(s) for X1 and the generating function Py(s) for N.

2. Find the generating function for the random variable Y ., X;, n € N.

Introduce another random variable Y by
(7) Y:X1+X2+"'+XN7

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (7) is itself a random variable.

3. Find the generating function for'Y, and then prove that'Y is geometrically distributed.

4. Find mean and variance of Y.

1) We get either by using a table or by a simple computation that

() =3 m (=p) s = pus S {1 —p) )T = g S se DL
k=1 k=1 b1
We get analogously,
p2s
P = f 0,1].
N (s) = —pa)s or s € [0,1]
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2) The generating function for Y 7", X; is

(Px(3))" = (L)S) se o]

1—(1—]?1

3) The generating function for Y is

p1s
- B P2 - m B P1P2s
Py(s) = PN(PXl(S))l—(l—pg)-%1_(1_p1)8_(1_p2>p18
(p1p2) s
TR TE— s € [0,1].

This is the generating function for a geometric distribution of parameter p1ps, so Y is geometrically
distributed.

4) From Y being geometrically distributed of parameter p;ps it follows that

1 1-
BE{Y}=— and V{v}=-_D21I2

pP1p2 (p1p2>2 .
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Remark 4.2 The distribution of Y may also be found without using the generating function. In fact,

P{Y =k} =

k
> P{N=n} -P{X1+Xo+ -+ X, =k}

n=1

Since X1 + Xy + -+ X,, € Pas(n,p1), we get

P{Y =k}

k
n— k—1 n —-n
= Yma-p(62] )ata-mt
n=1

= pp2(1—p)"! zk: (
(

= pip2 (1 — pl)kfl
=0

= pip2 (1 —]91)1671 {1 +

k— k—
= pipe {1 —p1+p1 —pipa} = (papa) - (1 —pap2)™ 7,

and we have given an ALTERNATIVE PROOF of the claim that Y is geometrically distributed of param-

eter p1po. UJ
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Example 4.12 1. Let U be a random variable with values only in Ng, and let V- = 3U. Prove the
following connection between the generating functions of U and V,

Py(s) = Py (s%), 0<s<l.
Let the random variable X have its distribution given by
P{X =3k} =p(1 —p)F1, k€N,
where p s a constant, 0 < p < 1.

2. Prove, e.g. by using the result of 1. that X has the generating function

I
1 (1—-p)s3’

and then find the Laplace transform Lx(X) of X.

pX(S) 0§S§17

, ... of the

)

S|w
S|l
S|©

A sequence of random wvariables (Xn)f;l is defined by X, taking the values

probabilities

3k 1 1\
P{X,="b=—(1-— ., keN.
{ n} 3n< Sn) <

3. Find the Laplace transform Lx, (\) of the random variable X, .

4. Prove that the sequence (X,,) converges in distribution towards some random variable Y, and find
the distribution function of Y.

1) By the definition,
(o)
Py(s) =Y _ P{U =k}s".
k=0
From V = 3U follows that

Py (s) = i P{V =3U =35} 5% = iP{U =k} s =Py (s?).
k=0 k=0

2) Let Y € Pas(1,p) be geometrically distributed. Then

ps ps
P = = .
v (s) 1—gqs 1—(1-p)s

From X =3Y and 1. we get

__»
C1—-(1—-p)s3’

The Laplace transform of X is

Z P{X _ Sk} e—3k:>\ _ Zp(]- o O)k—le—Bk/\
k=1 k=1

Lx(A)

o0 —3A
—-3x —3a k-t pe
= p- E 1-— = .
ne k=1 {( P } 1—(1—p)e3
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1
3) We derive the Laplace transform of X, from the Laplace transform of X by putting p = n and
n

A
by replacing A by o thus

1 3A 1
% exp —; 3_
L = = n .
X () 1 3\ 3X 1
1—(1——)exp|—— exp|+— ) -1+ —
3n n n 3n
4) Now,
A 1 3x 1 1 1
— -1+ —=14+—+ — - —-14+—=—/(1 A — —
exp< ) +3, +—+ €(n> t3 =3 (1+9X\) + €<n)
SO
1 1
Lx,(A\) = - = Lz(N),
" 1

1
where Z € T <1, §) is exponentially distributed, thus (X,) converges in distribution towards

1
ZeT (1,2
r (1)
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Example 4.13 A football team shall play 5 tournament matches. The coach judges that in each
2 1
match there is the probability = for victory, = for defeat, and = for draw, and that the outcome of a

match does not influence on the probabilities of the following matches.

A wictory gives 2 points, a draw gives 1 point, and a defeat gives 0 point.

Let the random variable X indicate the number of victories in the 5 matches, and let Y indicate the
number of obtained points in the 5 matches. Then we can also write

5 5
X = Z X; and Y = Z Y;,
i=1 =1
where
1, if victory in match number 1,
X; =
0, otherwise,
and
2, if victory in match number i,
Y, = 1, if draw in match number i,
0, if defeat in match number i.

1) Compute P{X =k}, k=0, 1, 2, 3, 4, 5, and the mean E{X}.
2) Find the mean and variance of Y.

3) Compute P{Y = 10}.

4) Compute P{Y = 8}.

5) Find the generating function for Y;, and then find (use a pocket calculator) the generating function

Compute also the probabilities P{Y =k}, k=0, 1, 2, ..., 10.

6) In the Danish tournament league a victory gives 3 points, a draw gives 1 point, and a defeat gives
0 point. Let Z denote the number of obtained points in the 5 matches (all other assumptions are
chosen as the same as above). Then Z can as value have all integers between 0 and 15, with one
exception (which one?). Find all the probabilities by using generating functions in the same way
as in 5..

2
1) Since X € B (5, S) is binomially distributed, we get

k 5—k
2
pk:P{X:k}:(2)<g) (g) ’ k:07172a3a4757
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We get more explicitly,
3\ °
Po‘(z)
4
2 /(3
P1—5'g(g>
2 3
2 3
=10-( =2 2
neo-(5) (5).
2 3
=10-( =2 2
n=0-(5) (5)
3
2 3
:5- —_ 4._
P4 (5) 5

_ 2y
Ps = 5
The mean is

2

2) The mean of Y; is

243
© 31257

_ 810162
T 3125 625
1080 _ 216
2125 625
_ om0 14
T 3125 625
_ 20 48
T 3125 625
32

T 3125°

2 2
E{Y;}=2-2+1- 402 =1 fori=1...5

1
5
and since
2 1
E{Yy?\=4.-241.-
(rp=teng
the variances are
9 4
Vi{vi=2-12= 2.

Now the Y; are mutually independent, so it follows that

E{Y} :iE{y;}=5 and V{Y}:iV{Yi} =4

i=1

3) If Y = 10, then the team must have won all 5 matches, thus

P{Y =10} = P{X =5} = (5)5 =

i=1

2 32

4) The case Y = 8 occurs if either we have 4 victories and 1 defeat, or 3 victories and 2 draws. Hence

P{Y:8}:5-<§)4-

2. (5 2\° (1\* _5:2°+10.2°
5 3)\5) \5)

T 3125 625
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5) From

2 1 q 2
= — = — an = —
Po 57 p1 5 D2 57

follows that the generating function for each Y; is given by

This implies that the generating function for ¥ = Zle Y; is given by (either by using a pocket
calculator or MAPLE)

2 12\’
P = 5= (24242 =
v (8) a(s) (5 s°+ z 5+ 5)
L2 g0, 16 5 48 o T2 o 1 o 561 o 1 T2
3125 625 625 625 625 3125 625 625
48 16 32
s+ .

625 625 3125

It follows that P{Y = k} is the coefficient of s*.

6) Clearly, P{Z = 14} = 0. In fact, 5 victories gives 15 points, and the second best result is described
by 4 victories and 1 draw, corresponding to k =4-3+1-1=13.
In this new case the generating function for each Z; is given by

where we have replaced s2 by s3.
Thus the generating function for Z = Zle Z; is given by

2 1 2\°
Pi(s) = b<s>5—(gs3+gs+g)
32 s 16 ;5 32 4, 16 ,, 64 ., T2 18
f— 0 —_— —_— —_— —_—
3125° T e tem® ten® Temd Tem® Temd
LA +£ LA s 66 4 8 5 16 5,16 0 32
625 125 3125° " 625° 125 625° 625 ° ' 3125’

which can also be written in the following way, in which it is easier to evaluate the magnitudes of
the coefficients,

Py(s) = 5% {325'® + 80s"® + 160s'* + 80s'! + 320s'°

+360s” + 240s°® + 490s” + 400s° + 2415° +330s" + 200s” + 80s” + 80s + 32} .

Since P{Z = k} is the coefficient of s* in Pz(s), we conclude that under the given assumptions
there is the biggest chance for obtaining 7 points,

490 98

P{Z=T7}= = .
{ = 3125 625
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5 The Laplace transformation
Example 5.1 Let X be exponentially distributed of the frequency
ae %, z > 0,
0, x <0.

Find Lx(X\), and use it to find E{X} and V{X}.

We first note that

Lx(\) = / ae e N dy = a/ e~ AT gy —
0 0

A+a

Hence

EC0) = L Wheo = |- (~prap) | — B

and

E{XQ})[LS’AA)]A_O:[ 2 L_OZQG 2

(A+a)3
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from which

2 1 1
_ 2 2 _ _
V{X}_E{X }_(E{X}) T2 2 a2
in accordance with previous results.
Example 5.2 Let X1, Xo, ... be mutually independent random variables, where X is Gamma dis-

tributed with form parameter k and scale parameter 1, thus Xy, € I'(k,1), k € N. Define

n

Ynzz:Xk and Z, = %Ym neN.
k=1
1) Find the means E{Y,} and E{Z,}.
2) Find the Laplace transform of Yy, and the Laplace transform of Z,,.
3) Prove, e.g. by using the result of 2., that the sequence (Z,)..., converges in distribution towards a

random variable Z, and find the distribution function of Z.

We get from X, € I'(k, 1) that

E{X;} =k and ka(A)(Ly.

1) The means are

E{Y,} =) E{Xp}=) k= %n(n—kl),
k=1

k=1

1 n+1 1 1
E{Zn}zﬁE{Yn}: =

2n 2 2n
2) From

YneF<§:1k,1> :F(@,l),

follows that

n(n+1)
Ly )= (—) °
() = <1+/\>
ALTERNATIVELY,
n n k n(nt1)
LW =TT =1I(+++) = (=5)
" P * i WL+ A 1+

thus the same result.
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A
Since Lz, (M) is obtained from Ly, (A) by replacing A by 3 e get

A 1
LZH()\) - LYn <—2> - —”("+1)
n A —5
(1+3)
3) Since the denominator converges for n — oo,

n? n %
A A A NN A

we get

n(n+1)
2

A
Lz, (M) — exp <—2) =Lz(\) for n — oo,

so (Z,) converges in distribution towards a causally distributed random variable Z with the dis-
tribution function

0 for z

Fz(Z) =

<1
2
1
1 for z > —.
2
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Example 5.3 A random wvariable Z has the values 1, 2, ... with the probabilities

1 g
P Z=k}=—— —
{ } Inp k’
where p >0, g >0 and p+q=1. We say that Z has a logarithmic distribution.
1. Find the Laplace transform Lz(\) of Z.

2. Find the mean of the random variable Z.

We consider a sequence of random wvariables (Xn)fbozz, where X,, has the values 1, 2, ... of the
probabilities
1 q*
P{X, =k} =- -
{ } Inp, k

1
where ¢, = — and pp, + ¢, = 1.
n

3. Prove that the sequence (X,,) converges in distribution towards a random variable X, and find the
distribution function of X.

1) The Laplace transform is

= 1 =q¢" _ [ (qe’A)n In (1 —ge™?)
= P{Z = An = —— — An = —— = .
nz::l { n}e 1npn§::1 n € lnan::1 n Inp
2) By a straightforward computation,
1, ¢ 1 q q
E{Z}=—— £ L .
{2} = Inp kz:: ko lnp 1—¢q plnp
ALTERNATIVELY,
1 qe_’\ 1 q q
B{Zy=-L,0)=—— |-L | =- . 9 __ .
{z} z(0) Inp Lqek})\ o lnp 1—g¢q plnp
3) It follows from 1. that
1
_ L=
I N Gt )
Lx, (N = o = 7 .
In(1- -
! < k)
. 1
For every fixed A > 0 we get by I’'Hospital’s rule, where we put x = =
DY
In (1 - = e)‘) e
. k . ln(lf:cef)‘) 1 _geN N
PN T TN T Ty T 1
ol 1—xz
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If A= 0, then Lx, = e for every k, so

for A >0,
Lx(\) =
1 for A =0,

and Lx () exists for all A > 0, and it is continuous at A = 0. This implies that (X,,) converges

in distribution towards some random variable X, which has the Laplace transform Ly ()\) = e™*,
from which we conclude that X is causally distributed with a = 1, thus P{X =1} = 1.
Example 5.4 A random variable X has the values 1, 2, ... of the probabilities
P{X =k} =pg" !, hvorp >0,qg>0,p+q=1.
1. Find the Laplace transform of X.
1 2
We consider a sequence of random variables (Xn)zozl, where X, has the values —, —, ... of the
n n
probabilities
k—1
P{anﬁ}:g(l—g) ,  keN
n n n

(here a €10, 1] is a constant).
2. Prove that the mean of X,, does not depend on n.
3. Find the Laplace transform of X,,.

4. Prove that the sequence (X,) converges in distribution towards a random variable Y, and find the
distribution function of Y.

1. The Laplace transform is

oo [o.¢] — —
LX(A)ZZfMpCJ"*lZSZ(qe’A)n:g q-e i pe
n=1

2. and 3. The Laplace transform of X, is

b = Sew (8 208 S e (2 0-))
é
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hence

which is independent of n.

4. Tt follows by I"'Hospital’s rule that

a A
. . Eexp n . aze
nlLH;oLX"()\) - nh—>n<io a A :71:12%1—(1—az)6*>‘”3
1—(1——>exp <——> '
AT _ Ngpe A 11—z a
li =ali = =Ly (A
i axlgb)\(lfaz)+a Ata (Y,

e—0 N1 —ax)e ™ +ae A

1
and we get by using a table that Y € " (17 —) is exponentially distributed. This proves that (X,,)
a

converges in distribution towards Y.
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Example 5.5 A random variable X has the values 1, 2, ... of the probabilities

.P{)(:]f}:(k_l)'eia7 ng,

where a is some positive constant.
1. Find the Laplace transform of X.
2. Find the mean of X.

We consider a sequence of random variables (Y,),,, where for each n € N the random variable Y,
has its distribution given by

_ k _ (2n)k_1 —2n

3. Find the Laplace transform of Yy,.

4. Prove, e.g. by using the result of 3., that the sequence (Yn);":’=1 converges in distribution towards a
random variable Y, and find the distribution function of Y.

5. Is it true that E{Y,} — E{Y} forn — co?

1) The Laplace transform of X is

o~ A e Ak a-X A
Lx(\) = Z(k—l)!e e =e""¢ Zg(e ) =e ~exp (ae™?)
k=1 k=0
= exp(—a—)\—l—ae_/\):exp(a(e_/\— )—)\), A>0
2) The mean is
E{X}_ik Clk—l —a __ _—a s k+1 k_ —a i ak +il k _ —a( +1) a __ +1
—k:1 (=] e =e 2 4 =e 2 =1 2 @ (=¢ “(atl)e” = a+l.

ALTERNATIVELY,
Ly(N) = (-1-—ae ) exp(—a—A+ae ™),
s,

E{X}=-Lx(0)=1+a.

3) The Laplace transform of X,, with a = 2n is

Lx (A;a = 2n> = exp (—2n — A+ 2n exp (—i>) = exp (271 {exp <—i> — 1} — )\> .
2n 2n 2n

Since X,, = 2nY,,, the Laplace transform of Y,, is given by

-, (2) wen (i fen (- 2) 1) 2). azo
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4) It follows from

A XA (A A
Ly,(A) = exr><2n{1—%+%s<%)—1}_%>

= exp()\+)\€<2i)i)ﬂe)‘ for n — oo,
n

that Y, L, Y, where Y has the distribution function

1 for y > 1,

Fy(y) =
0 for y < 1.

5) Since
E{V} = — @n+1) =14+ — — 1= B{Y}
= — = _— > =
" 2n 2n ’

we conclude that the answer is “yes”.

Example 5.6 A random variable X has the values 1, 3, 5, ... of probabilities
P{X =2k +1} = p(1 — p)*, k € Ny,

where p is a constant, 0 < p < 1.

1. Find the Laplace transform Lx(X) of the random variable X .

2. Find the mean of the random variable X.
3
n

S| ot

of the

SN

We consider a sequence of random variables (X,,) " where X, has the values

n=1 ’ s AR

probabilities

k
plx, 22HL_ L LY N,
n 2n 2n

3. Find the Laplace transform Lx, (\) of the random variable X, .

4. Find the mean of the random variable X, .

5. Prove that the sequence (X,) converges in distribution towards a random variable Y, and find the
distribution function of Y.

1) The Laplace transform is

Lx(N) = Y pl—p)fexp(-A@k+1)) =pe Y {(1 - pe >}
k=0 k=0

pe? pet

1-(1=ple? e —(1-p)
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2) The mean is

B{X} = ) (@k+1p(-pF=2p1-p)> k(1-p)* " +p> (1-p"*
k=0 k=1 k=0
= 2p(1—p) ! + !
S T (e} ER A T
_ 21’(12—1’) p_yl-p 2
p p p p
ALTERNATIVELY,
A 92 6)‘
Lie(\) = Lx(\) - pe - L :
I {e”ﬂp) = (1-p)p
thus
2p 2
E{X}:—L’X(O):—1+P=]§—l.

1 A
3) If we put p = o then we get Lx, (A\) from Lx (M) by replacing A by —, thus
n n

Lm() ()
pew=i (3) = (22%) (-2) e (Z) )

4) Tt follows from

exp@)
1 n 2
L'x (A\) = —mLx,(\) — o 5 2n - -
{Zn (exp (—> — 1> + 1}
n
that
E{X,} =Ly (0)=— L 4a—ua_1t
e N o n
ALTERNATIVELY,
00 k
2k+1 1 1
E n = — 1 = —
X} Z n 2n( 2n>
k=0
0o k—1 0 k
1 1 1 1 1 1
= —(1-— 1— — E— 1— —
n2< 2n)2k< 2 ) n 2n2< 2n)
k=1 k=0
1 1 1 1 . 1 1
2 2n { ( 1)}2 2n?2 ( 1>
- (1-L 1—(1-—
m 2n
1 1 1 1 1 1 1 1
= = (1——)- — =4(1- — —=4-— -
n2< 2n> 1\2 2n2 1 ( 2n>+n n
(%) 2n
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5) It follows from

2\ 202X\ [2A 2
2n{exp<—) 1}+12n{1+—+—5<—> 1}+11+4>\+4)\s<—>,
n n n n n

that

B ) ol)

= = —
2\ 2\

2n{exp(—>1}+1 1+4/\+4>\5<—> L4
n n

for n — oo.

1
Now, T is continuous for A € [0, 00[. Hence (X,,) converges in distribution towards a random
variable Y, where Ly () = T corresponds to Y € I'(1,4), i.e. an exponential distribution of
frequency
1
1 exp (—%) for y > 0,
fr(y) =
0 for y < 0.
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Example 5.7 The random variables X1, Xo and X3 are assumed to be mutually independent and
each of them following a rectangular distribution over the interval ]0,1].
Let X denote the random variable

X =X1+ X2+ Xs.

1) Find the mean and variance of the random variable X .
HINT: Find first the frequency of X1 + Xo.

2) Find the Laplace transform L(\) of the random variable X, and prove that

3. 5
L(A):1—§)\+Z>\2+>\25()\).

1) We conclude from
1
E{Xi} = E{Xs} = E{Xs} = o,

that

E{X} = E{X1} + E{Xo} + E{X3} g
Since

VX)) =V (X} =V (X} = 5,

and X1, X5 and X3 are mutually independent, we get

V{X}=V{X1}+V{X2}+V{X3}:3-% _ i

0 05 i 15 2

Figure 1: The graph of g(y).
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2) The frequency g(y) of Y = X1 + X5 is 0 for y ¢]0,2[. If 0 < y < 2, then

9(y) = /Oy fly—s)f(s)ds.

Hence, for 0 < y < 1,

g(y):/Oyf(y—s)f(s)ds:/oyl-ldszy-

If 1 <y < 2, then we get instead

g(y)Z/Oyf(y—s)f(s)ds:/_ll-1d8=2—y-

Summing up, the frequency of Y = X; + X5 is given by

Yy for y]0,1],
gly) =4 2—y forye[l,2]
0 otherwise.

Figure 2: The graph of h(x).

The frequency h(x) of X = X7 + Xo+ X3 =Y + X3 is 0 for = ¢]0, 3[.

If 0 < x < 3, then

) = | " g(s) f(w — 5) ds = / "yl - 5)1(s) ds.

We shall now split the investigation into the cases of the three intervals |0, 1], [1, 2] and [2, 3][.

a) If z €]0, 1], then
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b) If z € [1,2[, then

/Oxg@—s)f(s)ds:/olg(x—s)-1ds

/Ox_lg(x—s)ds—k/:_lg(x—s)ds

/Om_1{2—(x—s)}ds+/: (& — 5) ds

—1

h(x)

2

- froee] e e

= %{(2_x+$_1)2_(2_$)2+($—x+1)2—(a:—1)2}
= %{1—(x—s)2—|—1—(x—1)2}

= %{2—x2+4x—4—z2+2m—1}:%{—2x2—|—6x—3}
_ g_(x_g)?

x 1 T 2
hz) = / g(x—s)f(s)dSZ/ g(x—s)-lds-/ g(t)dtz/ g(t)dt
0 0 r—1 r—1
2 2 N 2
- [ eona= [—1(2_@2} SR R
x—1 z—1 2 2
Summing up, the frequency h(z) of X is given by
L 5
—x for z €]0,1],
2
2
§<x§> for z € [1, 2],
h(z) = 4 2
1 2
3 3—x) for x € [2,3],
0 otherwise.

3) When A >0 and ¢ =1, 2, 3, then

o0 1 1 1 1_@_)\
L = [CeNpwa= [ ear- [__e—kt] _ |
0 0 A
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Since X1, X9 and X3 are mutually independent, we get

(1_A€A>3_i{

Lx(A)

n=0
n

0 3 3
n A )\2 9
{n_l } {Z( } :{1—§+€+As(/\)}
F

{1+%4—>\+—+A2 (A)}O{

{1—/\+—>\2+/\2 }{1 % % )\25(/\)}

1 1 2
1—(5 >A+(6+ +1)A2+A2 (A )—1—;A+ﬂk2+sz(k)

2 12

3. 5
1= 2A+ 2224+ 2%(N).
A TN N
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Example 5.8 A random variable Y has the frequency

a*ye™™,  y>0

fly) =
0, y <0,

where a is a positive constant.
1. Find the Laplace transform Ly (\) of the random variable Y.
2. Find the mean of the random variable Y .

A random variable Y has the values 0, 1, 2, 3, ... of the probabilities
P{X =k} = (k+1)p°¢",
where p >0,q>0,p+qg=1.
3. Find the Laplace transform Lx(\) of X.
Find the mean of X.

2
—, ... of the probabilities
n

J

S|

A sequence of random variables (X,,) is given by X,, having the values 0,

k 2 k
P{Xn: —} = (k+1) (9) (1— 9) ,
n n n
where a 1s a constant, 0 < a < 1.
5. Find the Laplace transform of X,.

6. Find the mean of the random variable X,,.

7. Prove that the sequence (X,) converges in distribution towards a random variable Y (as defined
above).

8. Prove that E{X,} — E{Y} for n — oc.

1) If A >0, then

2

Lv () = > 2. —ay —)\yd _ a /OO +)\2 —(a-‘r)\y)d — —
Y( ) A aye € Yy (A+CL)2 0 (CL ) ye Y

2) The mean is

BV} =-Lh(0)= — g o] =

62

Download free eBooks at bookboon.com



Analytic Aids

5. the Laplace transformation

3) If A >0, then

o0 o0 2
—An n -2\ " p
LX()\):ZG A (n 4+ 1)p%q :Z(n+1)p2 (qe )‘) - — =
n=0 n=0 (1—(]6 )
4) The mean is
. —2p° _ 2p°q q
B{X}=—Ly(0)=—lim — L . (—ge ) (1) = __94
() = 25O =~ i o (0o (D = s =2

5) If X,,, then

L, () =3 exp (A5 wen (2 (-9 =
k=0
6) The mean is

E{Xn} =

{00

7) We get by a rearrangement,

N

for n — oo.

Hence
a2
nh—>ngo Lx, (M) = EYFIE =Ly (\).

Since Ly (\) is continuous at 0, it follows that {X,,} converges in distribution towards Y.
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8) The claim follows trivially from

lim E{X,} =2 lim (1 - %) ~ 2 _ By

n— oo n—oo a

Example 5.9 A random variable X has the frequency

0, r <0,
where a is a positive constant.
1) Find for every n € N the mean E{X"}.

2) Find the Laplace transform Lx(X) of X and show that it is given by

Lx(\)=1- 2 - (2)2 - <2>3+ <2>4+)\4€()\).

3) A random variable Y is given by U = kX, where k is a positive constant. Find the distribution
function of Y.

4) Let U and V be independent random variables of the frequencies

Qe 2% 4 >0, 3ae 3% ¢ >0,

fu(u) = fv(v) =

0) u<0) 0, v < 0.

The random variable Z is given by Z = 2U + 3V.
Find the frequency of Z.

1) We get by a straightforward computation,

e _ 1 [~ _ n!
E{X"}= ax"e”dr = — theT"dt = —.
0 a Jo a"

2) If A > 0, then

> —ax ,—Ax > —(a+N)zx a 1
Lx(\) = ae e Mdr=a e dzx = =——.
0 0 a+ A 14 A
a

If 0 < A < a, then
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3) The distribution of Y for y > 0 is given by

P{Yﬁy}:P{kXﬁy}Z{XS%}Z/O%Ga_azdle—exp(—%y),

hence the frequency is

% exp (—% y) for y > 0,

Iy(y) = 0

for y < 0.

4) Tt follows from 3. that 2U has the frequency fx(u), and that 3V has the frequency fx(v). (In the
former case k = 2, and in the latter case k = 3).

This means that 2U, 3V € T’ <1, 1), SO
a

1 1
Z:2U+3Ver(1+1,—>:r<2,—),
a a
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and the frequency of Z is given by

a’z e % for z > 0,

fz(2) =
0 for 2 <0.

Example 5.10 Given a sequence of random variables (X,,),—_,, where X,, has the distribution func-
tion

0 for x <0,

F,(z) = n2z? for0<z <

S|

1
1 forxz > —
n
1) Find for every n € N the mean E{X,} and variance V {X,}.

2) Prove that the sequence (X,,) converges in probability towards a random variable X, and find the
distribution function of X.

3) Find the Laplace transform L, (\) of the random variable X,,.
Is the sequence of functions (L, (\)) convergent?

4) Find the distribution function of Y, = X2.

5) Assuming that the random variables X1 and Xo are independent, we shall find the frequency of the
random variable Z = X1 + Xs.

1) The frequencies are obtained by differentiation,

0 for x <0,
2n? for 0 < <l
Folz) = nex or T o
1
0 for x > —,
n

hence

-

- 3 % 2
E{X,}= / 2n?z? dx = 2n® [%] = —
0

0 3n’
and
1 4 % 1
E{x2} = ["omfPde =202 |2 | =~
{n}/onxxn402n2,
whence
1 4 1
VIX,}=E{X2\—(E{X,}))=— — — = .
(X} { ”} (B{Xn}) 2n2  9n?  18n2
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2) If = <0, then of course F,(x) =0 — 0 for n — cc.
1
If > 0, then there is an N, such that 2 > — for every n > N, thus F,(z) = 1 for n > N, and

n
F,(z) — 1 for n — oo. We conclude that (F),(x)) converges in distribution towards the causal
distribution

0 for x <0,
F(z) =
1 for x > 1.

3) If A > 0, then

Ln(N)

Il
c\
8
|
>
g
o
&
SN—
jsW
S
|
)
S
[\v]
N
3|
®
>
g
S
jsW
=2
|
)
3
[\v]
L—
|
>
g
| I
)
3
3
|
>
g
IS H
=2

I

[
[\)
3
[NV}

>~
;a|H
a
k]
ko)

|
| >
N———
+
[N}
oE
[\v}

[
>l =
|

>

8
| I— |
< 3
[l

|
[N}
>3
D
]
ko)
/T\
3>
N———
+
[N}
%|E,
7 N
—

|

a
i
o}
/|\
|
N———
N———

Then by a series expansion,

2n AT AZ N /A 2n? A1 A% A2 A
L = o222 (2 G 5T AT AT AT (e
() )\{ n+2!n2+n2€(n>}+)\2{ ( n 2 n2+n2€(n>)}
2 2
= Iy AL (AN o (Mo m A (D),
A non n A n n n
and we conclude that L, (A) — 1 for A — 0+ and n — co.

4) If y > 0, then

P{Y, <y} = P{(X)* Sy} = P{X0 < Vi) = Fu (V).
hence

0 for y <0,

) 1
Py, <y}={ ny foldl<sy<—>

n?’
1
1 fory > —.
n

5) We first note that

2 = [ a)fate ) ds = /01 2 fole — o) di

1 1
If f7(2)#0, then z —z € [0,5}, thus z € [0,1] N [z— 572]
3
In particular, fz(z) = 0 if either z <0 or z > 3
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If z € [0, %], then

fz(z) = /2x~2'4 (z—z)dx =16 (22 — 2%) da
0 0
e 2 23 8
= 1 - =16(=—-"")==23
6% 2 3L_o 6<2 3) :

z 2 x3 .
fz(z) = /Z_%IG(zx—xQ) dr =16 [z ?_EL;
2 3
8 4 1 16 1
8 16 2 2
= 523—8234—82'2—22—|—323—8z2—|—4z—g:2z—§.

Finally, if z € {1, ;] , then

1 ) 23 1
/Z_%16(zx—x)dx=16[ —3}

oo g) e [i () 53]

16
82—?—82' + 822 —22—1—?2 — 822 +4z—3

fz(z =

_1
2

8 3
= — 10z — 6.
3z + 10z
Summing up,
8 [ 1]
523 for z € -O7 5-,
2 (1]
2z—§ for z € 571 ,

8 3
_§Z3+102—6 for z € 175 )

0 otherwise.
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Example 5.11 Let X1, X5, ... be mutually independent and identically distributed random variables
of values in [0,00[, and let L(\) denote the Laplace transform of X;.

Let N be a random variable, independent of all the X;-erne and of values in Ny, and let P(s) be the
generating function of N.

Let the random variable Yy be given by

Yn=X1+Xo+ -+ Xpn
(where the number of random variables on the right hand side is itself a random variable).
1. Prove that Yn has the Laplace transform Ly, (\) given by
Ly, (\) = P(L(X)), A>0.

Assume in particular that all X; are exponentially distributed of parameter a, and let N be Poisson
distributed of parameter b.

2. Find in this special case Ly, (\), and the mean and variance of Yy .

3. Find also in this special case the distribution function of Y .

1) We apply

(8) P{Yy <y} =) P{N=n} P{Y,<y}.

n=0

Then

Ly,y(A) = /0 6*Ayd—yP{YN§y}dy:/o 6’AyZP{N:n}'d—yP{Yn§y}dy

n=0

_ g;p{N:n}/oweAyfn(y)dy:TiP{N:”} (/Oooekyf(y)dy>n

= Y P{N =n}(LW)" = P(L(\).

1
2) When X; €T <1, —>, then
a

_a
A +a’

When N € P(b), then
P(s) = exp(b{s — 1}).

Then it follows from 1. that

Ly, (\) = P(L(\)) = exp (b(}\ia _1)> = exp (—b- Aia).

L)
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Since
ba A
/ _ _h.
YN()\)_ ()\+a)2 eXp( b )\+a>a
we get
ba b

From

v ba \° A 2ba A
YN()\)_<(A+a)2 P\ 3 ) T o PPN )

follows that

b 2b
E{X2}:L’{/N(O):ﬁ =

and we conclude that

vixy=2

a?

3) This question is underhand, because one is led to consider Ly, (\), which does not give easy
computation. We shall instead apply that if y > 0, then

G(y)=P{Ysy}=P{N=0}+§:P{N=k}-P{X1+~--+Xkgy}.
k=1

70

Download free eBooks at bookboon.com



Analytic Aids

5. the Laplace transformation

We see that G(y) has a jump at y = 0 of the size
P{N=0}=¢",

and that G(y) for y > 0 is differentiable with the derivative
G'(y) = fv.(y) = Y_P{N =n}-fv,(v).
n=1
Since N € P(b), we get

n

P{N =n} = e

H e
Since
" 1
Jj=1
we get

fYn (y) = (TL — 1)' Yy

Hence, Y has a jump at y = 0 of the size e~ ?, and if y > 0, then

ey L a

G'(y) = fyw(y) = Z e = 1) ye W,
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Example 5.12 Let X1, X2, X3, ... be mutually independent random variables, all of the distribution
given by

ak

P{Xi=k}="7c"  keNg ieN

(here a is a positive constant).
Let N be another random variable, which is independent of all the X; and which has its distribution
given by

P{N =n}=pq¢" ", n €N,
where p >0,q¢q>0,p+qg=1.
1. Find the Laplace transform L(X) of the random variable X, .
2. Find the Laplace transform of the random variable Y, X;, n € N.
3. Find the generating function P(s) of the random variable N.

We introduce another random variable Y by
(9) Y =X +Xo+--- + Xn,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side of (9) is also a random variable.

4. Prove that the random variable Y has its Laplace transform Ly (\) given by the composite function

and find explicitly Ly (X\).
HINT: One may use that we have for k € Ny,

P{Y:k:}:iP{N:n}-P{Xl+X2+--~+Xn:k}.

n=1

5. Compute the mean E{Y}.

1) The Laplace transform of X; € P(a) is given by

x  _k

L)) = % e eTh = ¢ Z kl (a e_A)k =
k=0 k=0 """

exp (a e_/\)

oxp(a) = exp (a {e_A — 1}) .

2) The Laplace transform of > , X; is given by

{L)}" =exp (na{e™* —1}).
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3) The generating function for N € Pas(1,p) is found by means of a table,

S
P(s) = 1 P -
ALTERNATIVELY,
) )
Plo)=p Y "t =ps 3 oas)" ! = T2

4) Tt follows from

P{Y:k}:iP{N:n}-P{X1+X2+---+Xn=k},

n=1
that
Ly(\) = iiP{N:n}wP{Xl—sz—km—an:k}-e’k’\
k=0n=1
= iP{N:n}iP{X1+X2+~-+Xn:k}e*”“
n=1 k=0
N PN b (LONT — _ peep(a(e 1))
= PN = (N = PO = 1
B.q.exp(a(ei)\—].))—l"‘l:]_?. 1 D
¢ l—g-exp(a(e?—1)) ¢ 1—q-exp(a(e—1)) ¢
5) Since
Ly (\) = . ! s-qgexp(a(e™ —1))ae?,

¢ {1—qexp(a(e>—1))}

the mean is

B{X}=-IL,(0) =% P _
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Example 5.13 Let X1, Xo, X3, ... be mutually independent random variables, all with the frequency

dre2®, z >0,

0, z <0.

Let N be another random variable, which is independent of all the X;, and which has its distribution
given by

1 n—1
P{Nzn}z%-(;l) ) n € N.

1. Find the Laplace transform L(X\) of the random wvariable X, .

2. Find the Laplace transform of the random variable Y, X;, n € N.
3. Find the generating function of the random variable N .

Then introduce a random variable Y by

(10) Y =X1 + Xo+ -+ Xy,

where N denotes the random variable introduced above, and where the number of random variables on
the right hand side in (10) also is a random variable.

4. Find the Laplace transform of Y and the mean E{X}.
5. Prove that the frequency of Y is given by

k{e v —e 3}, y >0,

g(y) =
0, y <0,

and find k.

1
1) Since X €T (2, §>7 get by using a table that

2

1 2 \*

Ly = _ <_> .
1
Taa A+2
2

ALTERNATIVELY,
o0 o0 4
. —2x —)\x o —(A+2)x —

2) Since the X; are mutually independent and identically distributed, the Laplace transform of
>, Xi, n €N, is given by

(L))" = (%2)
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]

>7 we get from a table that the generating function is

3) Since N € Pas (1,

ALTERNATIVELY,
3i """, 3si<s>n—1 38 3s
—_ — s = — — = .
442\4 4 =\4 1—-2 4-s

P(s) =

4) The Laplace transform of Y is given by (cf. e.g. the previous examples)

()
() = P =2 -
4_<)\+2)
3 3 1 3 1

T O+ D(A+3) 2A+1 2r+3
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Now,

Ly = -

so the mean is

5) Since g(y) is the frequency of some random variable Y, where

Ly/()\) = k/o {e*y — e*:’»y}e%y dy = k/o e~ (A Dy dy — k/o e~ (A +3)y dy
1

1
- k{/\+1_)\+3}

~ 3
has the same structure as Ly (\), we conclude from the uniqueness that Y =Y and that k = 2

3
and the frequency of Y is g(y) with k = 3

TEST:

/_Zg(y)dyzk/om{e—y_e—sy} dy:k{l—%}zgk:

3
for k = 2.
or k 5 O
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Example 5.14 Let X be a normally distributed random variable of mean 0 and variance 1.
1. Find the frequency and mean of X2.
2. Find the Laplace transform of X2.

Now let Xy, Xo, ... be mutually independent random variables, X; € N(0,1), and let aq, as, ... be
given constants, and define

Yn:Zasz, n € N.
k=1

3. Find the Laplace transform of Y,,.

4. Prove that the sequence {Y,} —, converges in distribution towards a random variable Y, if and
only if

lim E{Y,} < .

n—oo

By the assumption the frequency of X is given by

1 1,
)= exp| —=2x7), r eR.
o) = = oxp (52
1) The distribution function of Y = X2 is 0 for y <0.
If y > 0, then

P{X*<y}=P{-Vy<X <y} =@ (Vy) -2 (-vy) =22(/y) — L.

When y > 0, the corresponding frequency is found by differentiation,

F) =20 (VB) - 5= = = 0 (W) = = e (5 0]

2 2 = — — —Z 2
[wx exp( 2x>d33 Tﬂ/_(ﬁxd( exp( 23:))
{me ( 1952)}00 —i——l /Doe ( 1952) dr=0+1=1
_ X — X [ = = ].

P 2 —00 \/27T —00 P 2

2) Since X2 > 0, we can find its Laplace transform. If A > 0, then

Lx>(\) = /OOO \/%ﬂ_y exp <—%y) exp(—\y) dy = \/%_ﬂ/oooeXp (—% (A—F %) y) d(Vy)

The mean is

E{X?} =

sl- -
3 3

2 [ t2 1 20 +1 [ 1 5
- = — | dt= \/ = (22 +1
Nl exp( 5 2>\1+1>dt NS o /Ooexp< 2(/\4— )t>dt
1
V2T
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3) We get the Laplace transform of a X? = a'Y; from Lx()\) by replacing A by a), i.e.

1
V2ha+1

Now, the X} are mutually randomly independent, so

LaX?*(\) = Lx2(a)) =

n n 1
)\) = La X2 ()\) = LXz (ak)\) = = .
e =11 VI 5 20
4) We get by using the result of 1.,

n o0
E{Y,} =) aE{X;}=> a,
k=1 k=1
thus

lim E{Y,} = Zak.

n—oo

Then we get for A > 0,

n

H (1+2Xax) =Y In(1+2X\ax) = Y (2Aax + Aaxe (Aax))
k=1 k=1 k=1

where we by considering a graph can get more precisely that

<Y In(142xax) <D 22ax,
k=1

k=1
and
> In(1+2xax) ~ > 2\ay.
k=1 k=1

It follows from the equivalence of the two series that

H (1+2Xag) < oo, if and only if Zak<oo.
k=1 k=1

If therefore

lim E{Y,} < o0,

n—oo
then in particular lim,,_ s {—L’Yn ()\)} is convergent and continuous for A > 0, hence by rewriting

the expression, followed by a reduction, > ;- a; < co, which according to the above implies that

1
lim Ly (A\) =
n—oo Yn( ) \/HZo:l (1 —+ 2)\ &k)

is continuous for A > 0. Then (Y;,) converges in distribution towards a random variable Y.
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Conversely, if lim,, o, E {Y,,} = oo, then we get by the same argument that >, ; a; = oo implies
that [T;—, (1 +2Xax) = oo for A > 0, and of course 1 for A = 0, hence
1 for A =0,

n—oo

0 for A > 0,

corresponding to the zero function, which is not the Laplace transform of any random variable.
This shows that (X,,) does not converge in distribution.

Example 5.15 We say that a function ¢ :]0,00[ — R is completely monotone, if p is a C* function,
and

(=1)"™(X) > 0 for every n € Ny and every X > 0.

Prove that if X is a non-negative random variable, then the Laplace transform L(\) of X is completely
monotone.

Remark 5.1 Conversely, it can be proved that if ¢ :]0, 00[ — R is completely monotone, and

M—o+p(A) =1,

then ¢(A) is the Laplace transform of some random variable X.
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When X is non-negative, its Laplace transform exists, and

1) L) = Zoépz'e_mi, (discrete),
2) L(A) = [, e f(z)dz, (continuous),
3) L(\)=E{e?}, (in general).

Due to the exponential function and the law of magnitudes we may for A > 0 differentiate 1) under
the sum, 2) under the integral, and 3) under the symbol E, with respect to A\. Hence we get in general
[i.e. in case 3)] for A > 0 and n € Np,

(~D)"LM\) = \"E {X"e MY
Since X™e~*X > 0, the right hand side is always > 0, and the claim is proved.
Clearly,

o T —AX) _ —
L(0) = AIE&.L()\) = )\li)r(r)l_‘_E {e ™M} =E{1} =1,

and
0< L\ =E{e ™} <E{1}=1,
because 0 < e X < 1, nar X > 0.

A loose argument shows that the last claim follows from the fact, that if (—1)"@™(X\) > 0 for all
n € N, then we get in e.g. the continuous case that

o0
/ e_’\xx”f(x) dx >0 for all A > 0 and all n € Ny,
0

thus
2" f(x) >0 for all n € Ng and = > 0,

and hence f(z) > 0. Finally,

| rede = im o) =1
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Example 5.16 A random variable X has the values 2, 3, 4, ... of the probabilities
P{X =k} = (k- 1)p°(1—p)*2
where 0 < p < 1, thus X € Pas(2,p).

1. Find the generating function and the Laplace transform of X.
2. Find the mean of X.

Given a sequence of random variable (X,,),-,, where X, has the values , —, ... of the probabil-

34
n on

§|l\3

ities

k 1)° 1\"?
o=t -en () (-5)
3. Find the Laplace transform of X,.

4. Prove that the sequence (X,) converges in distribution towards a random wvariable Y, which is
Gamma distributed, and find its frequency of Y.

1) The generating function of X is given by

P(s) = ZP{X—k}S => (k=1)p*(1—p)*2s*
= k=2
— pQSQZ(k,_l) }k 2_])8226{ 1_ }Z 1
k=2
= p2s2. ! = ps : or s
AR ErnE {1—<1—p>s} ors € 0-1)

Then by a simple substitution,

== (= = ()

2) Here there are several possibilities, of which we indicate four:

First variant. It follows from

‘oon _ ps {1-(0-p)stp+p(l —p)s
PO=2 90 om0
that

E{X}:P’(l):2~1-§:%.
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Second variant. It follows from
-3
L'\ =p(-1){e = (1-p)} "€,
that
22 2
E{X}Y=-L'(0)= =2 ==.
{X} (0) 5

Third variant. By a straightforward computation,

k=2 k=2
S KDty 22
= PO MDD = =

2
Fourth variant. (The easiest one!) Since X € Pas(2, p), er have of course E{X} = —.
p

1
3) If we put p = 3 then nX, has the same distribution as X. Now, X, is obtained by diminishing

the values by a factor —, so X,, has the Laplace transform
n

1 2 1
_ 3n _
LX"()\){eA/"—(l—L)} - \ 2°
sn {3n <exp <—) — 1) + 1}
n
4) Tt follows from

G)=1+i+ae ()
exp(—|=1+—-—+—-¢e(—],
n non o \n
that

1 1 1
Lx,(A) =

{3” (% + %5 (%)) +1}2 ) {3>\+3)\5 (%) +1}2 JCERE

Clearly, the limit function is continuous, so it follows that the sequence (X,,) converges in distri-
bution towards Y, where Y has the Laplace transform

for A > 0.

1
Ly(A\) = —= A>0.
r() (BA+1)2 =
If Y € T'(u, @), then its Laplace transform is
1
(a4 1)»
Then by comparison a = 3 and p =2, s0 Y € I'(2,3), and Y has the frequency
1
§yexp<f%), y>07
fly) =
0, y<0.
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Example 5.17 A random variable X has the values 0, 2, 4, ... of the probabilities
P{X =2k} =p(1—p)*,  keN,,

where p is a constant, 0 < p < 1.

1. Find the Laplace transform Lx(\) of the random variable X .

2. Find the mean of the random variable X .

A sequence of random variables (X,,),._, is determined by that X,, has the values 0, , ... of the

)

4
n

SN

probabilities

k
2k 1 1
PiXy=—(=—1(1-—], k € Np.
{ n} 4n< 4n> 0

3. Find the Laplace transform Lx, (\) of the random variable X,,.
4. Find the mean of the random variable X,,.

5. Prove that the sequence (X,,) converges in distribution towards a random variable Y, and find the
distribution function of Y.

1) The Laplace transform is

Lx (M)

ZP{X — 2k} 6_2)\k — Zp(l _p>ke—2>\k
k=0 k=0

= -2k p
pkz_o{(l Pe = g e 20

2) The mean can be found in two ways:

a) By the usual definition,

00 e - 1 1 —p
B{X}=> 2kp(1—p)* =2p(1—p)Y k(1—p)" ' =2p(1-p) 5 =2—.
k=1 k=1 p p
b) By means of the Laplace transform,
2p(1 — 1-—
B{X}=—L(0) = [ P . -2(1—p)e_2A] _ 2 . P _yl=p
{1-(1—ple=2*} "0 D p

A
3) The Laplace transform of X, is obtained from the Laplace transform of X by replacing A by —,
n

1
and p by w
n

S A O e e e
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4) Since

() ()
fin (1o (22)) <o (22)]

we get the mean

B{X} = I} (0) = ﬁ{s_%} :8(1—%).

5) Then by a Taylor expansion, e! = 10t + t&(t), so it follows from 3. that

1 1
Lx,(\) = =

202X [2) A\ 2\ A
4n{11+—+—6<—>}+exp<2—> 8)\+8)\€(—)+exp<2—)
n n n n n n
1
SA+1

for n — oo.

Since is continuous, this shows that (X,) converges in distribution towards a random

1
T8A+ 1

1
8A+1
variable Y, where the Laplace transform of Y is Ly () hence

Y €T'(1,8).

Thus the frequency of Y is
exXp (7_) ’ Yy > Oa

0, y <0,

so we have obtained an exponential distribution.
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6 The characteristic function

Example 6.1 Find the characteristic function for a random variable, which is Poisson distributed of
mean a.

It follows from

k

a4 e k‘ENQ,

P{X:k}zﬁef,

that the characteristic function for X is given by

=L ak P | ok B ) .
k(w):kzzoe’“kﬁe “=e akZZOH {ae}" =e %exp (ae™) =exp(a(e™ —1)).
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Example 6.2 Let X have the frequency
11—z, |x| < 1,
0, |z| > 1.

Find the characteristic function for X.
11
Let X1 and Xo be independent random wvariables, which are rectangularly distributed over } 33 {

Prove that X has the same distribution as X, + Xa,
1) by a straightforward computation of the frequency of X1 + Xa,

2) by using characteristic functions.

The characteristic function for w # 0 is

o'} 1 1
kw) = / et f(t)dt = / {coswzx + i sinwz}(1 — |z]) dz = 2/ coswz - (1 — |z|) dz
—00 —1 0
1 1 1
= 2 [l (lx)sinwx} +z/ sinwx dr = 2 [7coswx] = %(1fcosw).
w o wJo w w lo w

If w =0, then £(0) = 1.

1) The frequency for both X; and X is given by
11

1 fOI‘tE:|—§,§|:,

ft) =

0 otherwise,

hence the frequency of X; + X5 is given by
o) = [ s -na= [ -0

If s ¢] —1,0[, then g(s) = 0.
If s €] —1,0], then

=

1
2

g(s):‘/_lf(s—t)dt:/_(%ﬁ1dt:s+1:1—|s|.

If s €]0,1[, then

gls) = Zf(s—t)dt:/z ldt=1-s=1—|s|,
-4 -3

and the claim follows.
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2) If w # 0, then we get the characteristic function for X,

hw) = /é1 et dt = % {exp (z g) — exp (—i %)}
—3
w
E.

2 1{ (w) ( _w>}_2 .
= w2 exXp | ? B exp 2 9 = o sin

Hence, the characteristic function for X; + X5 is

4 w 4 1—cosw 2
2 _ L2 W _ —
{h(w)}* = g sin’ o=~ 5 = (1 -cosw) = k(w).

Since X and X; + X2 have the same characteristic function, they are identical.

Example 6.3 Let X have the frequency

J@) = 5"

_ R
(a2+x2)’ T € KR,

where a 1s a positive constant.
Prove by applying the inversion formula that X has the characteristic function

E(w) = e,

Then prove that if X1, Xa, ..., X, are mutually independent all of the frequency f(x), then

1
anﬁ (X1 4+ -+ X,)

also has the frequency f(x).

When we apply the inversion formula on k(w), we get

L B — L o L A
- e~ wro—alw| g, — ela=@)w g, 4 e (atiz)w g ,
2 J_ o 2 J_ o 27 J_ o
1 e(afim)w 0 1 ef(aJri:v)w o0 1 1 1
= |/ +— | — = — + .
2r | a—iw |_, 27w a—1ir |, 2r \a—1ix a-+ix
_ 1 a+ix+a—i:1:_ a
27 a? + z2 - 7w (a? +22)’

and the claim follows from the uniqueness of the characteristic function.

The characteristic function for

1
Y”:E (X1 4+ X0
is

) = [Tk (2) = Teww (o |2]) = 71 = kxo),
i i=1

=1

showing that Y,, has the same frequency as X.
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Example 6.4 Let X1, Xs, ... be mutually independent, identically distributed random wvariables all
of mean u. Let
1
Zn:E(XlerJan), neN.

Prove that the sequence (Z,,) converges in distribution towards p.

Given p = E{X} exists, we must have the following

ay [ el £(a) de < oo,

which shall be used later.
Let k(w) denote the characteristic function for X;. Then the characteristic function for 7, is given by

o= {4 ()"

It follows from (11) that

oo

k(w) = /00 e“rd(z)dr and k'(w)= z/ e g f(x) dx

—00 —00

are both defined and bounded.
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It follows from

k(w) = k(0) +%k’(0)w+w5(w) A tipewtwe(w),

n

o= (@) = {1+ B2 2o () = (1 oo (9)))

Hence, by taking the limit,

lim ky,(w) =e'*v,

n—oo

which is the characteristic function for the causal distribution .
In particular, e*#“ is continuous at w = 0. Hence it follows that the sequence (Z,) converges in
distribution towards .

Example 6.5 Let X have the mean 0 and variance o2.

Prove that
1
klw)=1- 3 o2w? + wle(w) forw — 0.

Then prove the following special case of the Central Limit Theorem:
Let X1, o, ... be mutually independent, identically distributed random variables of mean 0 and variance

o?. Define

Zn:%U\/ﬁ(Xl—i—-“—i—Xn), ne€N.
Then for every z € R,

P{Z, <z} — ®(z) for n — oo.

We see that
k(w) = ffooo e? f(x) dx,
klw) = [7 e“viz f(z)d,
k"(w) [ fi’ooo Jizeiwmf(:zj) dr,
are all absolutely convergent, and

O = [ = [ @) e =

— 00 — 00

hence by a Taylor expansion,

H@) = KO+ 1 RO0)w+ o k(0w +uPe(w)

o2w?

= 1- + wle(w).
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The characteristic function k,,(w) for Z,, is given by

ba(w) = E{ew%n) = E{exp <Wzn: al—\/ﬁX"> } 1] E{exp (% Xk)}

where

iw ° .z w o? w? w? w
E{exp<a\/ﬁX>} = /Ooexp(zwm> f(x)d:c—k(m> —1—7%+%6(m>
2

Hence by insertion,

2
w
Now, exp | —— | is the characteristic function for ®(z), so we conclude that (Z,) converges in

distribution towards the normal distribution,

lim P{Z, <} = ®(x).

n—oo
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Example 6.6 1) A random variable X has the frequency

1
= __ ceR.
f(’l;‘) T (1 + .’172) z
Prove by e.g. applying the inversion formula that X has the characteristic function
E(w) =e 1,

2) A random wvariable Y has the frequency

ST Do)

where a > 0 and b € R. Find the characteristic function for Y.

y ER,

3) Let (Y;) be a sequence of mutually independent random variables, where each random variable Y
has the frequency

7r (a? +(y — bj)Q)

where a; > 0 and b; € R, and let Z,, denote the random variable

g](y) = ) (TS R;

n

Zn=>_Y;.

j=1
Find the characteristic function for Z,.

4) Find a necessary and sufficient condition, which the constants a; and b; must fulfil in order that
the sequence (Z,),-, converges in distribution. In case of convergence, find the limit distribution.

1) Tt follows by the inversion formula that

L[~ _, IR 1> :
- efzwa:ef|w| dw = _/ e(lfm;)w dw + — e*(l*‘r’bz)w dw
2 —o0 w 2 0

1 e(lfia:)w 0 1 67(1+ix)w b 1 1 1

— : t= || =t
27 {1—@;3}0) 27 [—(l+zx)]0 27r{1—wc 1+1x}

1 1+iwx+1—ixl 1

o 1+22 7 1+a2

This shows that k(w) = e~ |“l is the characteristic function for

1 1
T 1422

fx) =

2) The characteristic function for Y is

*° 1 a *° 1 a
k _ iwy._.id:iwb iwy._.id
v(@) /_ooe m a?+(y—0b)? = /_ooe T a?+y? Y
_ eiwb/oo eiaw-iy . l . 1 . d(g) _ eiwbk(aw) _ 6iwbefa\w\'
oo ™ 1+ y) a
a
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3) It follows from 2. that
kz (w)= Hij(w) = Hewbi cemlwl = exp inbj - exp —|w\Zaj
i=1 j=1 j=1 =1

4) The sequence (Z,,) converges min distribution if and only if lim, . kz, (w) is convergent for all
w with a limit function h(w), d which is continuous at 0.
Clearly, the only possible candidate is

h(w) = exp (iw Z bn> - exp (—w| Zan> .

It is in fact the limit function, if the right hand side is convergent for every w € R. This is fulfilled,
if and only if

o0 o0

(12) Zan:a and an:b

n=1 n=1

are both convergent. When this is the case, then
h(w) = etwbemall =k (w)

by 2..
This shows that (Z,) converges in distribution towards a random variable Y, if and only if the
series of (12) are convergent, and when this is the case, the frequency of Y is

a

1
fy(y) = - ’ my

yeR.
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Example 6.7 Let X1, X, ... be mutually independent random variables. where
- . 1 .
Pl =i =p{x = il =L jen
and let

1 n
Z,L:Ez;xj, neN.
J:

Prove that the sequence (Zn)io=1 converges in distribution, and find the limit distribution
1) either by applying the Central Limit Theorem;
2) or by computing lim,, o kn(w), where k,(w) is the characteristic function for Z,.

HiNT: Use that

1,2 4

X
=1 4+ 4 N
cos x 5 + 51 + x%e(x) forx—0

and

2
—ln(l—x):x—i—%—&—xzs(ac) for x — 0.

1) From E {X;} = 0 follows that

CIREES SIE S

and
si = V{Z”}_%iV{Xﬂ}—%i(E{Xf}—(E{Xj})Q)_%ig{sz}
- %n {(\/3>2 %+(\/j)2'%}%i]—z'—n(n+l)lnzl

Now,

In-E{Z} __Zn__ [20
Sn " Im+1 Vn+1 7V
V n

so by the Central Limit Theorem,

n— oo 2n

1
lim P{anx nt }—@(:c) for every z € R.

1
We get from % — ﬁ for n — oo that
Fy(z) = lim P{anx}:@(\/i.x),

1
hence Z = —Y, where Y € N(0,1).

V2
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2) It follows from

by taking the logarithm and using the Taylor expansions given in the hint,

i )= 30 (o ()

iy (02 g (52)  (42) (2]

1_w_2.l+w_4.£+w4.£5 m
2 n n

Hence,

kz. (@) — exp <—% (%)j for n — oo.

If Y is normally distributed, then of course

ky (w) = exp <—% w2> )

and thus

S

Z—ﬁY€N<O,%).
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Example 6.8 A random variable X has the frequency

1 1-—
—_ CQOSI7 1’7&07
™ X

flz) = .
— = 0.
27’ .

1. Prove by using the inversion formula that X has the characteristic function
e I I
0, lw] > 1.
2. Prove by e.g. using the result of 1. that X does not have a mean.

Let (Xn);:o:l be a sequence of random variables, where each X, has the frequency

1 1—-cosnx

2 ) 1'7&0,
™ nr
fn(@) = n f(nz) = neN.
n
— =0
27_(_7 z )

3. Find the characteristic function k,(w) for X,.

4. Show, e.g. by using the result of 3. that the sequence (X,,) converges in distribution towards a

random variable Y, and find the distribution function of Y.

1) According to the inversion formula we shall only prove that

1 o0
2 J_ o

e k(W) dw = f(x).

Now, 1 — |w]|, |w| < 1, is an even function, hence by insertion,
1 o 1

21 J_ o T

We find for x = 0,

fo-aen2-2) 4o

If x # 0, then we get by partial integration,

, 1 1
ek (w) dw = —/ et TY(1 = |w|) dx = —/ (1 - w)coswzdw.
21 )y 0

1 ! 1 1 1 1 1 1 1
—/ (1-w)coswzdr = -— [(1w) smwx} +—/ sinwzdr = — [7coswx}
Tr 0 s €T 0 m™aT 0 T T 0
1—cosz
- s f(x)a
and the claim is proved.
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2) We know that if E{X} exists, then k(w) is differentiable at 0.

Since, however, k(w) is not differentiable at w = 0, we conclude by contraposition that F{X} does
not exist, so we conclude that X does not have a mean.

3) Then by a simple transformation,
> Twx _ > Twx _ > LW _ w
kp(w) = /_Ooe fn(ac)dx—/_we f(nm)ndm—/_ooexp <1Et) f(t)dt—k:(—)

k‘f
n

S I
0, lw| > n.

4) It follows from 3. that

lim k,(w) =1 = ko(w) for ethvert w € R,
where ko(w) = 1 is the characteristic function for the causal distribution P{Y =0} = 1.

Since ko(w) = 1 is continuous, it follows that (X,,) converges in distribution towards the causal
distribution Y.
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Remark 6.1 In Distribution Theory, which is a mathematical discipline dealing with generalized
functions, one expresses this by (f,) — J, where § is Dirac’s § “function”. ¢

Example 6.9 A random variable Y has the frequency

a

fly) = B e=all, yeR,

where a > 0 is a positive constant.
1. Find the characteristic function for'Y .
2. Find the mean and variance of Y.

A random variable X has the values 1, +2, ... of the probabilities
1
P{X =k} =P{X =k} = qu’H, k€N,

where p >0,q¢>0,p+q=1.

3. Prove that the characteristic function for X is given by

plcosw — )
k = , eR.
x(w) 14+ ¢2 —2q cosw v
; 1 2
Then consider a sequence of random variables (Xn)flﬂfty, where X,, has the values +—, +—, ... of

the probabilities

k Kl 11 1\
P{X,=—(=P{Xpy=—(p=--—|1—— , k .
{ n} { n} 2 3n< 3n> €N

4. Find by using the result of 3. the characteristic function ky(w) for X,,.

5. Prove that the sequence (X,,) converges in in distribution towards a random variable Z, and find
the frequency of Z.

1) The characteristic function is

00 0 e}
/ PR % .e—a\y\ dy = g/_oo e(a-i—iw)y dy + %/ e(—a+iw)y dy

—o00 0
_a [elatiwy 0 L el-ativ 1™ g 1 N 1 _a?
2 la+iw ], 2| -—a+tiw]|, 2\atiw a—iw/) a®+w?

2) By the symmetry, E{Y'} = 0. The variance is then

ky (w)

2! 2

2 a OO 2 _—a 1 002_t !
V{Y}:E{Y}Zg/_ooye 'y‘dyZE/o t%e dt:a_2:;.
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3) The characteristic function for X is

kx(w) =

_ P i) ey _p et p e

- 9f 2 (a ; 2 1fqe*“’+2 1—geiv

— JRe etw (1—gqe” iw — pRe S _ p(cosw — 1)
1—gqgeiv \1—gqe v 1—2q cosw + ¢2 1+qg2—2gcosw’

1 1
4) We put p = 3 and ¢ =1— 3 The characteristic function for X, is obtained by replacing w by
n n

w
—, thus
n

1 w 1
—lcos——1+ —
Sn( n 3n>
i) = 1\’ 1 Wy
1 1——) —2(1—-— —
+( 3n> ( Sn) cos(n)

5) Tt follows by insertion of

n € N.

. 1 w?  Ww? (w)
cos—=1—=-+-—+—¢(—
2 w2 T2\
that
1 w w? w 1
k() %(1 znﬁnfzé’(z)*l*%) £ +1c(d)
n W = -
Itl-gtge—2(1-g;) (I-%+gme(¥)) 3n2-Z4ga -2+ +o+%e(2)
1
1+€(—) 1+€(—>
_ 1 n n
o2 1 1 w? w Wy’
2+_2 2+_2€(_) 1+9w2+€(g>
9 n n n
hence
1
lim_ k() = —— )
im k,(w)= = =k, (w),
n—oo 14+ 9w? %+w2 Y

1
where Y is the random variable from 1., corresponding to a = 3

1
Since ky(w) is continuous, (X,,) converges in distribution towards Y for a = 3 thus

fr(y) = é exp (—M> , y € R.
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Example 6.10 1. Let X be a random variable with the characteristic function k(w).

Prove that the random varible Y = —X has the characteristic function
ky (w) = k(w).
Let X1 and X5 be independent random variables, both of the distribution given by
1 J
P{X,=j} = (§> . jeEN: i=1,2

2. Find the characteristic function ki(w) for X;.
3. Find the distribution of the random variable Z = X7 — Xs.
4. Find, e.g. by using the result of 1., the characteristic function for Z.

Let Zy, Zs, ... be mutually independent random variables, all of the same distribution as Z, and let

1 n
U,=—S Z, neN
i

5. Prove e.g. by using characteristic functions that the sequence (U, )r., converges in distribution
towards a random variable U, and find the distribution function of U.

1) Since X is real, it immediately follows that

ky(w)=E{e“Y} =E{e"*X} = E{e“X} = kx(w).
ALTERNATIVELY,

ky(w) = E{cos(wY)+isin(wY)} = E{cos(—wX) +i sin(—wX)}

= FE{cos(wX) —isin(wX)} = kx(w).

2) The characteristic function is

—_

Tw

o0 1 j' ) w eiw J 56 eiw
_ - twyj _ - _ _
=3 (3) @ =3 (7) = Hr o=t

j=1 j=1 —etw

3) The distribution function is

Fz(2) P{X;—X,<z}= ZZjikSMP{Xl =j}-P{Xy, =k}

1
S ST AN 1L
B , 2 2) 2 1
k=max{1,1-[z]} j=L1 k=max{1,1—[z]} 1-—

IR Ot

k=max{1,1—
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Analytic Aids
If 2 < 0, then
o 1 k 1 2k+[z] 00 1 k—[z] 1 2k—[z]
o = 10O -E00
k=1—[z] k=1
AN A RS R 1\ ¥ 1y 2/1\ "
MO OROINONEHES
k=1
If z > 0, then

- E{C -0 )05

1

Summing up,

hvis z < 0,

Wl N
N
N —
N—
|
X

[2] integer part of z.

if z>0,
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ALTERNATIVELY, Z = X; — X5 is its values in R. By the symmetry,
P{Z =k} = P{Z = —k}.
If £ > 0, then

P{Z—k} = P{Z:_k}:ip{xl:j—i—k}.P{Xz:j}:i(%)Hk<%>J‘

j=1 j=1
k j k 1 k
1\ "= (1 1 1 1 /1
() 20)-0C) s Q) wem
Jj=1 1—-
4
where we describe the distribution by the probabilities of the points.
4) Tt follows from 1. and 2. that

erv e

T 9 _¢iw 2_e-iw 5—_4cosw

—tw 1

kz(w)

ALTERNATIVELY, kz(w) is computed in the following way,

k=0 k=0 k=1
1 —iw 1 —iw 1 —iw 1
1) 2° IR L L SIS S
= 3 ~t T (T3 5 -1’5
1— —ew 1——ew — —CcosSw — — CcoSw
2 2 4 4

71 eR
= s w .

5 —4cosw

5) The characteristic function for U, is
w " 1
k =lkz | — = .
o (o(E) ity
We conclude from

(s-tem ) = (s a {13 L (DY) = (124 2 (1))

that

w? 1 1\ 7" 1
ky, (w) — lim {1+L+—€<—>} :e—2w2:exp (—54(4}2).

n—oo n n n

1
We see that ky(w) = exp <§ -4w? | is continuous, hence U € N(0,4), and U,, — U in distribu-
tion, where U € N(0,4) is normally distributed.
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ALTERNATIVELY we may use that X; and Xy are both geometrically distributed of variance 2,
hence the Z; have the variance 4. Then it follows from the Central Limit Theorem that

1 1 <&
“U,=——= Z,
2 Qﬁ;

for n — oo converges in distribution towards V € N(0,1).
Then

U, 25U e N(0,4).

Example 6.11 Let X, and X5 be independent random variables of distribution given by
P{X)=j}=P{X;=j}=p¢,  jEN,

where p>0,¢g>0,p+qg=1, andletY = X; — Xo.

1. Find the mean and variance of Y.

2. Find P{Y = j} for every j € Z.

3. Find the characteristic function for X1 and the characteristic function for —Xs, and thus this to
find the characteristic function forY .

Given a sequence of random variables (V)"

ey, where for each n € N, the random variable Y,, has a

1 1
distribution as 'Y correspondingtop=—,q=1— —. Let Z, = —Y,.
2n 2n n

4. Prove, e.g. by using 3. that the sequence (Z,),~, converges in distribution towards a random
variable Z, and find distribution of Z.

1) Using that X; and X5 are identically distributed and that both the mean and the variance exist,
we get

E{Y}=FE{Xi} - E{X2} =0,
andd
V{Y} = 2V{X1}=2E{X{} =2E{X; (X1 — 1)} +2E{Xy}
(e . e} ) 1 2 1 q2 7
= 2) j0~Vpd +2)_jpe’ = 2¢’ (ﬁ) +2pq-1—q=2(p+—)
Jj=2 j=1

q 2

2) The probability is

P{Y=jt= > P{X;=0 -P{Xo=k}=p" > ¢-q"
050120 050120
If j > 0, then ¢ = k + j, hence by the symmetry,
2

o0 0 g y
P{Y = i = PIY = —j} = p2 N gkti . gk — 240 b _P¢ _ P
{Y=j}=P{ jt=p gfoq ¢ =pq kgio(q) I 114
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3) he characteristic function for X, is

le(CU) = ZP{Xl = k}eikw :pzqk (eiw)k = ﬁ
k=0 k=0

The characteristic function for — X5 is

p

K_x,(w) = kx,(-w) = T_geio

The characteristic function for Y = X; — Xo is
N S p?
1—geiv 1—qgeiv 1+4+¢g2—2gcosw’

ky (w) = kx, (w) - k—x,(w)

1
4) The characteristic function for Z,, = — Y, is
n

() ] 1
14+ _ b _9 1_i cos (£ 4n? 4+ (2n —1)2 —4n(2n — 1) cos | —
() 23 =) B)

2n n

kz,(w) =

Using an expansion of the denominator we get

1w? 1 1
8n2—4n+1—(8n2—4n) (1_§ﬁ+_€(_))

n? n

2 1 1
=8n2—4n+1—8n2+4n+4w2—2w—+5<—) :1+4w2+5(—>,
n n n

hence
1 1
lim kz, (w) = lim = .
n—oo n— 1 2
1+4w2+5<—) LHdw

1
Since the double exponentially distributed random variable Z with a = > has the characteristic

function

kz(w) = (%> !

1\ 2 T 11402
(5) et

we conclude that (Z,,) converges in distribution towards Z.
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Example 6.12 A random variable X has the frequency

2

1 si
_blnzx’ 240,
T T
fz) =
1
-, z = 0.
7r

1. Find the median of X.

It can be shown (shall not be proved) that X has the characteristic function

e

hw) = ?
0, lw] > 2.

2. Prove that X does not have a mean.

Let X1, Xa, X3, ... be mutually independent random variables, all of the same distribution as X. Let

7, = X;, neN.

1

n

J

3. Find the characteristic function for Z,.

4. Prove that the sequence (Zn)ff=1 converges in distribution towards a random variable Z, and find
the distribution of Z.

1 1
5. Compute the probability P {—5 < Z< 5}

1) Tt follows from f(—z) = f(z) that the median is (X) = 0.
2) Since k(w) is not differentiable at w = 0, the random variable X does not have a mean.

3) The characteristic function for Z,, is

gl

bz, @) = {k (2)}" = (-

n

) for |w| < 2n,

0 for |w| > 2n.

|wl

4) Now, kz, (w) — exp <7> for n — oo and every fixed w € R. Since exp (%) is continuous,

1
(Z,,) converges in distribution towards Z. Using a table we see that Z € C <O, 5) is Cauchy
distributed of the frequency

1
5 2 1
= = —. £ R.
fz(2) (1 2) T T @ or z €
T - +z
4
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5) The probability is

1
1 1 2 [z dz 1 [t at 2 1
Pl <zt _2 - = = [Arctan ]} = =.
{2< <2} 7r/_ 1+ (22)2 7r/_11+t2 7 [Arctan t]o = 5

Example 6.13 We say that a random variable X has a symmetric distribution, if X and —X have
the same distribution.

Assume that X has the characteristic function kx (w). Prove that —X has the characteristic function

k_x(w) = kx(w).

Prove that the characteristic function for X is a real function, is and only if X has a symmetric
distribution.

The first question is almost trivial,

k_x(w) = E{e_i‘”X} = E{etvX} = kx(w).

1) If X has a symmetric distribution, then

k_X(w) = kx(w) = kx(w),

and we conclude that kx (w) is real.
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2) Conversely, if kx (w) is real, then

k_X(L«J) = kx(w) = kx(w),

from which follows that —X and X have the same characteristic function, and hence the same
distribution. This proves that X has a symmetric distribution.

Example 6.14 Prove that the characteristic function for the distribution given by

c

P{X:—n}:P{X:n}: TL:2737...,

nZlnn’

where
+oo
1 1
© Z n2lnn 2’
n=2

is of class C*.
HINT: The problem is to prove that the termwise differentiated series

= sinnw
—2c g
nlnn
n=2

s uniformly convergent on R. Show this by successively proving that

1)

1
Sﬁa w#2mﬂ-7 p,qu, p<gq.
S —

2

q
E sinnw
n=p

2)
N

1.
E — sinnw
n

n=p

<n+1l, weR, p,NeN, p<N.

3)

q

Z sinnw 1
n Inn
n=p

1
S(ﬂ'—i-l)-m, weR, pgeN, 2<p<yq.

Here we shall also use Abel’s formula for partial summation, which is written

q a—1 n
Z anby, = Z Ay, (bn - bn+1) + AqbQ’ where A, = Z k-
n=p n=p k=p

Abel’s formula above is similar to partial integration; ’ here we use sums instead of integrals.

The claim follows easily from the estimate in 3., because the right hand side tends towards 0 for
p — 00, independently of w € R.
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1) If p < ¢ and w # 2m pi, then

q q . i

g simnw = Im g e"Y=Im —M
1—ew

n=p n=p

Il
[N}

©w

E —
|
—
o

)
N
=3

|

N |
~
S

I

@)

o

9]
N
(=)
+

| =
~_
€
——

< 1_+1 = _1 forw#2mm, meZ.
2’8111— }sm%‘

Notice that the left hand side is 0 for w = 2m 7w, m € Z.

Due to the periodicity it suffices to consider w € [—m, «w]. Using that sinus is an odd function, it
follows that it even suffices to consider w € [0, 7]. Finally, if follows from 1. that we can restrict

ourselves to w € |0,wy], where

wo = 2 Arcsin

T+1

Let N > p, and choose w;, = T We group the terms in the following way,
p

N1 ko—1 (k+1)p N 1
Eia()-E X il £ i

k=0 n=kp+1 n=kop+1

where

-5

denotes the integer part of (N — 1)/p. We note that the sequence (in k)

(k+1)p
1 . ™
3 _»ﬁn(n_)
n=k+1 n p

is alternating and that the corresponding sequence of absolute values tends decressingly towards

0. Thus we get the following estimate,

< $ha(n) <

n
HMW
3

o (23)
S Lo (a7
n:pn p n=1

[171'
< 2y —eno 15200

n=1 p

wl*@
ﬁlﬂ

()

+1=7n+1.
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I " <w< z, then we estimate upwards by
p+1 p
sinnw < sin (n z) for n < [1—)} .
P 2
Hence
N
Z—Sinnw <7+1, weR, p,NeN, p<N.
n:pn
Let 2 < p < ¢, and choose
sinn w - blnkw
an = — with Z . A <7l

k=p

according to 2.. Finally, choose b,

that
-1
sinnw 1 < 1 1 1
_— = ATL. _— A - —_
Z n Inn Z: <lnn ln(n—|—1)>+ 7 Ing
n=p n=p

Thus we get the estimate

q .
Zsmnw 1
n Inn

n=p

T+ 1
Inp

INA
+
=

{"Z <lnn ﬁ) +ﬁ} -

as required.

1
= Then it follows by an application of Abelian summation
nn

As mentioned above it then follows that the termwise differentiated series is uniformly convergent,

and the characteristic function is of class C.
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Abel’s theorem, 5
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Cauchy distribution, 14, 102

causal distribution, 48, 50, 65, 87, 94

Central Limit Theorem, 87, 91, 100

characteristic function, 12, 83

completely monotone function, 77

continuity theorem, 7

convergence in distribution, 11, 17, 49, 50, 52,
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93, 95, 97, 100, 102

convergence in probability, 64

Dirac’s § “function”, 95
double exponential distribution, 14, 101

Erlang distribution, 10, 14
exponential distribution, 10, 14, 42, 46, 51, 55,
67, 82

Fourier transform, 13

Gamma distribution, 10, 15, 47, 72, 79
Gauflian distribution, 15

generating function, 4, 5, 18

geometric distribution, 6, 18, 38, 41, 100

inversion formula, 9, 13, 85, 89, 93

Laplace transformation, 8, 46
logarithmic distribution, 49

mean, 6
moment, 6, 10, 15

negative binomial distribution, 6, 24, 34
normal distribution, 15, 75, 88, 91, 99

Pascal distribution, 6, 37, 40, 73, 79

Poisson distribution, 4, 6, 25, 28, 37, 34, 38,
67, 83

rectangular distribution, 15, 56, 84

symmetric distribution, 103

109

Download free eBooks at bookboon.com



