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Random variables I Introduction

Introduction

This is the second book of examples from the Theory of Probability. This topic is not my favourite,
however, thanks to my former colleague, Ole Jarsboe, I somehow managed to get an idea of what it is
all about. The way I have treated the topic will often diverge from the more professional treatment.
On the other hand, it will probably also be closer to the way of thinking which is more common among
many readers, because I also had to start from scratch.

The topic itself, Random Variables, is so big that I have felt it necessary to divide it into three books,
of which this is the first one. We shall here deal with the basic stuff, i.e. frequencies and distribution
functions in 1 and 2 dimensions, functions of random variables and inequalities between random
variables, as well as means and variances.

The prerequisites for the topics can e.g. be found in the Ventus: Calculus 2 series, so I shall refer the
reader to these books, concerning e.g. plane integrals.

Unfortunately errors cannot be avoided in a first edition of a work of this type. However, the author
has tried to put them on a minimum, hoping that the reader will meet with sympathy the errors
which do occur in the text.

Leif Mejlbro
25th October 2014
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Random variables I 1. Some theoratical results

1 Some theoretical results

The abstract (and precise) definition of a random variable X is that X is a real function on 2, where
the triple (2, F, P) is a probability field, such that

{weQ|X(w)<z}eF for every = € R.

This definition leads to the concept of a distribution function for the random variable X, which is the
function F': R — R, which is defined by

F(z) = P{X <z} (= P{lweQ| X(w) <x}),

where the latter expression is the mathematically precise definition which, however, for obvious reasons
everywhere in the following will be replaced by the former expression.

A distribution function for a random variable X has the following properties:

0<F(z)<1 for every x € R.

The function F' is weakly increasing, i.e. F(z) < F(y) for z < y.

lim,— oo F(z) =0 and lim, 400 F(z) = 1.

The function F is continuous from the right, i.e. limj,_ oy F(z + h) = F(x) for every z € R.
One may in some cases be interested in giving a crude description of the behaviour of the distribution

function. We define a median of a random variable X with the distribution function F'(z) as a real
number a = (X) € R, for which

P{X <a} > and P{X >a} >

NSRS
N |

Expressed by means of the distribution function it follows that a € R is a median, if

1

F(Q)Z§

DN | =

and F(a—) = hli%l Fx+h) <

In general we define a p-quantile, p €10, 1[, of the random variable as a number a, € R, for which
P{X <ap}>p and P{X >ap}>1-p,
which can also be expressed by

F(ap)>p and F(ap—) <p.

If the random variable X only has a finite or a countable number of values, x1, z2, ..., we call it
discrete, and we say that X has a discrete distribution.

A very special case occurs when X only has one value. In this case we say that X is causally distributed,
or that X is constant.
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Random variables I 1. Some theoratical results

The random variable X is called continuous, if its distribution function F'(x) can be written as an
integral of the form

x
F(x) = / f(w) du, z €R,
—0o0
where f is a nonnegative integrable function. In this case we also say that X has a continuous

distribution, and the integrand f : R — R is called a frequency of the random variable X .

Let again (Q, F, P) be a given probability field. Let us consider two random variables X and Y, which
are both defined on 2. We may consider the pair (X,Y') as a 2-dimensional random variable, which
implies that we then shall make precise the extensions of the previous concepts for a single random
variable.

We say that the simultaneous distribution, or just the distribution, of (X,Y") is known, if we know
P{(X,Y) € A} for every Borel set A C R?,

When the simultaneous distribution of (X,Y) is known, we define the marginal distributions of X
and Y by

Px(B)=P{X € B} .= P{(X,Y) € BxR}, where B C R is a Borel set,

Py(B)=P{Y € B} := P{(X,Y) e Rx B}, where B C R is a Borel set.

Notice that we can always find the marginal distributions from the simultaneous distribution, while it
is far from always possible to find the simultaneous distribution from the marginal distributions. We
now introduce
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Random variables I 1. Some theoratical results

The simultaneous distribution function of the 2-dimensional random variable (X,Y") is defined as the
function F : R? — R, given by

F(z,y)=P{X <z ANY <y}
We have
o If (x,y) € R? then 0 < F(x,y) < 1.

o If x € R is kept fixed, then F(x,y) is a weakly increasing function in y, which is continuous from
the right and which satisfies the condition lim,_._ F(z,y) = 0.

If y € R is kept fixed, then F(z,y) is a weakly increasing function in z, which is continuous from
the right and which satisfies the condition lim,_, o F(z,y) = 0.

When both z and y tend towards infinity, then

lim F(z,y) =1.

T, y—+0o0

If x1, x2, y1, yo € R satisfy z1 < x5 and y; < ys, then
F(z2,y2) — F (21,y2) — F (22,51) + F (21,92) > 0.

Given the simultaneous distribution function F'(z,y) of (X,Y’) we can find the distribution functions
of X and Y by the formulee

Fx(z) = F(z,+00) = ygr}raoo F(x,y), for z € R,

Fy(z) = F(+oo,y) = lim F(z,y), foryeR.

The 2-dimensional random variable (X,Y") is called discrete, or that it has a discrete distribution, if
both X and Y are discrete.

The 2-dimensional random variable (X,Y") is called continuous, or we say that it has a continuous
distribution, if there exists a nonnegative integrable function (a frequency) f : R? — R, such that the
distribution function F'(x,y) can be written in the form

F(z,y) = /; {/: ft,u) du} dt, for (z,y) € R

In this case we can find the function f(z,y) at the differentiability points of F(z,y) by the formula

0%F(x,
fla,y) = —6x(§yy) :

It should now be obvious why one should know something about the theory of integration in more
variables, cf. e.g. the Ventus: Calculus 2 series.

We note that if f(z,y) is a frequency of the continuous 2-dimensional random variable (X,Y), then X

and Y are both continuous 1-dimensional random variables, and we get their (marginal) frequencies
by

+o00
fx(x) = / f(z,y) dy, for v € R,

—00
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Random variables I 1. Some theoratical results

and

+oo
fy(y) = / f(z,y)dz, for y € R.

— 00

It was mentioned above that one far from always can find the simultaneous distribution function from
the marginal distribution function. It is, however, possible in the case when the two random variables
X and Y are independent.

Let the two random variables X and Y be defined on the same probability field (Q, F, P). We say
that X and Y are independent, if for all pairs of Borel sets A, B C R,

P{Xe€eAANY eB}=P{X e A} - P{Y € B},

which can also be put in the simpler form
F(z,y) = Fx(z) - Fy(y) for every (z,y) € R?.

If X and Y are not independent, then we of course say that they are dependent.

In two special cases we can obtain more information of independent random variables:

If the 2-dimensional random variable (X,Y) is discrete, then X and Y are independent, if
hij = fi-g; for every i and j.

Here, f; denotes the probabilities of X, and g; the probabilities of Y.

If the 2-dimensional random variable (X,Y) is continuous, then X and Y are independent, if their
frequencies satisfy

flzy) = fx(z) - fy(y) almost everywhere.

The concept “almost everywhere” is rarely given a precise definition in books on applied mathematics.
Roughly speaking it means that the relation above holds outside a set in R? of area zero, a so-called
null set. The common examples of null sets are either finite or countable sets. There exists, however,
also non-countable null sets. Simple examples are graphs of any (piecewise) C'l-curve.

Concerning maps of random variables we have the following very important results,

Theorem 1.1 Let X and Y be independent random variables. Let ¢ : R — R and ¥ : R — R be
given functions. Then p(X) and Y(Y') are again independent random variables.

If X is a continuous random variable of the frequency I, then we have the following important theorem,
where it should be pointed out that one always shall check all assumptions in order to be able to
conclude that the result holds:

9
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Random variables I 1. Some theoratical results

Theorem 1.2 Given a continuous random variable X of frequency f.
1) Let I be an open interval, such that P{X € I} = 1.
2) Let 7 : I — J be a bijective map of I onto an open interval J.

3) Furthermore, assume that 7 is differentiable with a continuous derivative 7/, which satisfies

') #£0  forallex € l.

Under the assumptions above Y := 7(X) is also a continuous random variable, and its frequency g(y)
s given by

)], fory e J,

0, otherwise.

We note that if just one of the assumptions above is mot fulfilled, then we shall instead find the
distribution function G(y) of Y := 7(X) by the general formula

G(y) = P{r(X) €] oo, yl} = P{X € 7°7'(] = o0, y])} ,

1

where 7°~1 = 77! denotes the inverse set map.

Note also that if the assumptions of the theorem are all satisfied, then 7 is necessarily monotone.

At a first glance it may be strange that we at this early stage introduce 2-dimensional random variables.
The reason is that by applying the simultaneous distribution for (X,Y") it is fairly easy to define the
elementary operations of calculus between X and Y. Thus we have the following general result for a
continuous 2-dimensional random variable.

Theorem 1.3 Let (X,Y) be a continuous random variable of the frequency h(z,y).

The frequency of the sum X +Y is k1(z) = fjof h(z,z — ) dz.
The frequency of the difference X —Y 1is ka(z) = fj;f hz,z — z)dx.

. +oo z 1
The frequency of the product X - Y 1is ks(z) = ["_h (m, ;) . Tl dz.
The frequency of the quotient X/Y is ky(2) = fj;: h(zz, x) - |z|dz.

Notice that one must be very careful by computing the product and the quotient, because the corre-
sponding integrals are improper.

If we furthermore assume that X and Y are independent, and f(x) is a frequency of X, and ¢(y) is a
frequency of Y, then we get an even better result:

10
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Random variables I 1. Some theoratical results

Theorem 1.4 Let X and Y be continuous and independent random variables with the frequencies
f(x) and g(y), resp..

The frequency of the sum X +Y is ki(z) = fj:; f(z)g(z — z) dz.
The frequency of the difference X —Y is ko(z) = fj;; f(@)g(z — 2) dx.
. +oo z 1
The frequency of the product X - Y is ks(z) = f_oo flx)g (—) . ﬂ dx.
x/ |z
The frequency of the quotient X/Y is ky = fj;o f(zz)g(x) - |z| da.

Let X and Y be independent random variables with the distribution functions F'x and Fy, resp.. We
introduce two random variables by

U :=max{X,Y} and V :i=min{X,Y},

the distribution functions of which are denoted by Fy and Fy, resp.. Then these are given by
Fy(u) = Fx(u) - Fy(u) for u € R,

and
Fy(v)=1—(1—-Fx(v))-(1 - Fy(v)) for v € R.

These formulee are general, provided only that X and Y are independent.

11
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Random variables I 1. Some theoratical results

If X and Y are continuous and independent, then the frequencies of U and V' are given by
fu(u) = Fx(u) - fy(u) + fx(u) - Fy(u),  foru€R,
and
fr(v) =1 —Fx(v)) - fy(v) + fx(v) - (1 = Fy(v)), for v € R,
where we note that we shall apply both the frequencies and the distribution functions of X and Y.

The results above can also be extended to bijective maps ¢ = (@1, 2) : R? — R?, or subsets of R?.
We shall need the Jacobian of ¢, introduced in e.g. the Ventus: Calculus 2 series.

It is important here to define the notation and the variables in the most convenient way. We start
by assuming that D is an open domain in the (21 z3) plane, and that D is an open domain in the
(y1, y2) plane. Then let ¢ = (@1, @2) be a bijective map of D onto D with the inverse 7 = ¢!, i.e.
the opposite of what one probably would expect: N

e=(p1,¢2):D—D,  with (z1,22) =9y, y2)-

The corresponding Jacobian is defined by

91 Opa
J _ 8(1'1 , x2) _ ayl ayl
R T
oy1 0y2

where the independent variables (yi, y2) are in the “denominators”. Then recall the Theorem of
transform of plane integrals, cf. e.g. the Ventus: Calculus 2 series: If h : D — R is an integrable
function, where D C R? is given as above, then for every (measurable) subset A C D,

8(1‘1,332)
h(xy, x9) dridry = h(x1, z3) | ——=
[ e desdes = [ o) Kiwrs

dy1dys.

Of course, this formula is not mathematically correct; but it shows intuitively what is going on:
Roughly speaking we “delete the y-s”. The correct mathematical formula is of course the well-known

/ h(z1, x2) deidey = / (o1 (Y1, y2) 5 w2 (Y1, y2)) - ‘Jw (y1, y2)‘ dydys,
A p=1(A) .

although experience shows that it in practice is more confusing then helping the reader.
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Random variables I 1. Some theoratical results

Theorem 1.5 Let (X1, X2) be a continuous 2-dimensional random variable with the frequency h (z1, z2).
Let D CR? be an open domain, such that

P{(X,, X2) e D} =1.

Let 7 : D — D bea bijective map of D onto another open domain D, and let p = (1, p2) =

771, where we assume that v, and 2 _have continuous partial derivatives and that the corresponding
Jacobian is different from 0 in all of D.

Then the 2-dimensional random variable
(Y1, Ys) =7(X1, Xo) = (1 (X1, X2) , 2 (X1, X2))
has the frequency k (y1, y2), given by

0 (1, x2)
8(y1 ) yQ)

3 fOT’ (.%JJZ)GD»

h(e1(y1s y2) 5 w2 (Y1, y2)) - ’
k(yi,y2) =

0, otherwise

We have previously introduced the concept conditional probability. We shall now introduce a similar
concept, namely the conditional distribution.

If X and Y are discrete, we define the conditional distribution of X for given Y = y; by

P{X=x|Y =y} = = —,
{ ¢ o} PLY =y;} 9j
It follows that for fixed j we have that P{X =z, | Y =y;} indeed is a distribution. We note in
particular that we have the law of the total probability

P{X:xi}:ZP{X:xi|Y:yj}~P{Y:yj}.

Analogously we define for two continuous random variables X and Y the conditional distribution
function of X for given Y =y by

JE o flu,y) du
Ty () 7

Note that the conditional distribution function is not defined at points in which fy (y) = 0.

P{X<z|Y=y}= forudsat, at fy (y) > 0.

The corresponding frequency is

provided that fy(y) = 0.

We shall use the convention that “0 times undefined = 0”. Then we get the Law of total probability,

+o0 +too
/ fx ) fy(y)dy = / Fa,y)dy = fx (o).

— 00 —0o0

We now introduce the mean, or expectation of a random variable, provided that it exists.
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Random variables I 1. Some theoratical results

1) Let X be a discrete random variable with the possible values {z;} and the corresponding proba-
bilities p; = P {X = z;}. The mean, or expectation, of X is defined by

E{X}:= Zﬂfz‘pz’,

provided that the series is absolutely convergent. If this is not the case, the mean does not exists.

2) Let X be a continuous random variable with the frequency f(x). We define the mean, or expectation
of X by

+o00
B{X} = / x f(z) dr,

— 0o

provided that the integral is absolutely convergent. If this is not the case, the mean does not exist.

If the random variable X only has nonnegative values, i.e. the image of X is contained in [0, +o00],
and the mean exists, then the mean is given by

E{X}= /0+00 P{X > z}dx.

Concerning maps of random variables, means are transformed according to the theorem below, pro-
vided that the given expressions are absolutely convergent.

Theorem 1.6 Let the random variable Y = ¢(X) be a function of X.
1) If X is a discrete random variable with the possible values {x;} of corresponding probabilities

p; = P{X = x;}, then the mean of Y = p(X) is given by
E{p(X)} =) ¢ (z:)pi,

provided that the series is absolutely convergent.
2) If X is a continuous random variable with the frequency f(x), then the mean of Y = o(X) is
given by
+oo

E{p(X)} = / (@) g(z) dz,

—00

provided that the integral is absolutely convergent.

Assume that X is a random variable of mean p. We add the following concepts, where k € N:

The k-th moment, E {X”“} .

The k-th absolute moment, E{|X|*}.

The k-th central moment, E{(X —p)k}.

The k-th absolute central moment, E{|X —pl*}.

The variance, i.e. the second central moment, VIX}=E{(X —p)?},
14
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Random variables I 1. Some theoratical results

provided that the defining series or integrals are absolutely convergent. In particular, the variance is
very important. We mention

Theorem 1.7 Let X be a random variable of mean E{X} = p and variance V{X}. Then

E{(X —¢)?} = V{X} + (u— ¢)? Jor every ¢ € R,
V{X}=E{X?} - (B{X})? Jor ¢ =0,

E{aX +b}=aFE{X}+b for every a, b € R,
V{aX +b} = a®>V{X} for every a, b € R.

It is not always an easy task to compute the distribution function of a random variable. We have the
following result which gives an estimate of the probability that a random variable X differs more than
some given a > 0 from the mean E{X}.

Theorem 1.8 (Cebyéev’s inequality). If the random variable X has the mean p and the variance
o2, then we have for every a > 0,
o2
P{IX —pl 2 a} < —.

If we here put a = ko, we get the equivalent statement

1
P{,u—ka<X<,u+ka}Zl—p.

15
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These concepts are then generalized to 2-dimensional random variables. Thus,
Theorem 1.9 Let Z = p(X,Y) be a function of the 2-dimensional random variable (X,Y).
1) If (X,Y) is discrete, then the mean of Z = ¢(X,Y) is given by

B{o(X,Y)} =) @i, y)  P{X =2 AY =y},

4]
provided that the series is absolutely convergent.

2) If (X,Y) is continuous, then the mean of Z = p(X,Y) is given by

E{p(X,Y)} = /R2 o(z,y) f(x,y) dzdy,

provided that the integral is absolutely convergent.

It is easily proved that if (X,Y") is a 2-dimensional random variable, and ¢(z,y) = ¢1(z) + @2(y),
then

E{o1(X) +92(Y)} = E{e1(X)} + E{pa(Y)},
provided that E {1(X)} and E {2(Y)} exists. In particular,
E{X+Y}=B{X}+E{Y).

If we furthermore assume that X and Y are independent and choose ¢(z,y) = ¢1(x) - ¢2(y), then also

E{p1(X) - 02(Y)} = E{pi(X)} - E{pa(Y)},

provided that F {p1(X)} and E {¢2(Y)} exists. In particular we get under the assumptions above
that

B{X .Y} = B{X} E{v},
and
E{(X - E{X})- (Y - E{Y})} =0.

These formule are easily generalized to n random variables. We have e.g.

E {ZX} => E{Xi},
i=1 i=1
provided that all means F {X;} exist.

If two random variables X and Y are not independent, we shall find a measure of how much they
“depend” on each other. This measure is described by the correlation, which we now introduce.

Consider a 2-dimensional random variable (X,Y"), where

B{X} = pux, B{Y} = uy, V{X}=0% >0, V{Y} =0} >0,

16
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all exist. We define the covariance between X and Y, denoted by Cov(X,Y), as
Cov(X,Y) == E{(X —px) - (Y — py)}.
We define the correlation between X and Y, denoted by o(X,Y), as

o(X,v) = SVEY)

ox 0y

Theorem 1.10 Let X and Y be two random variables, where
E{X}=ux, E{Y}=py, V{X}=0%>0, V{Y}=o0}>0,

all exist. Then

Cov(X,Y) =0, if X and Y are independent,

Cov(X,Y)=FE{X-Y} - E{X} - E{Y},

|Cov(X,Y)| <ox -0y,

Cov(X,Y) = Cov(Y, X),

V{IX+Y}=V{X}+V{Y}+2Cov(X,Y),

VIX+Y}=V{X}+V{Y}, if X andY are independent,

o(X,Y) =0, if X andY are independent,

o X, X) =1, o(X,-X) = -1, lo(X,Y)| < 1.
Let Z be another random variable, for which the mean and the variance both exist- Then
Cov(aX +bY,Z) =aCov(X,Z)+bCov(Y, Z), for every a, b € R,
and if U =aX +band V =cY 4+ d, where a > 0 and ¢ > 0, then
o(U, V) =p(aX +b,cY +d) = o(X,Y).

Two independent random variables are always non-correlated, while two non-correlated random vari-
ables are not necessarily independent.

By the obvious generalization,

j=2i=1

If all X1, X, ..., X,, are independent of each other, this is of course reduced to
v {ZXZ} => V{Xi}.
i=1 i=1

Finally we mention the various types of convergence which are natural in connection with sequences
of random variables. We consider a sequence X, of random variables, defined on the same probability
field (Q, F, P).

17
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1) We say that X,, converges in probability towards a random variable X on the probability field
(Q,F,P),if

P{X,—X|>e}—0 for n — +o0,
for every fixed € > 0.
2) We say that X,, converges in probability towards a constant ¢, if every fixed € > 0,

P{|X,—¢c>e}—0 for n — +o0.

3) If each X,, has the distribution function F,, and X has the distribution function F', we say that
the sequence X,, of random variables converges in distribution towards X, if at every point of
continuity x of F(x),

lim F,(z) = F(x).

n—-+4oo

Finally, we mention the following theorems which are connected with these concepts of convergence.
The first one resembles Cebysev’s inequality.

Theorem 1.11 (The weak law of large numbers). Let X,, be a sequence of independent random
variables, all defined on (Q, F, P), and assume that they all have the same mean and variance,

E{X;}=pn and Vi{X;} =%

Then for every fived € > 0,
N
s o

A slightly different version of the weak law of large numbers is the following

>5}—>0 for n — +oo.

Theorem 1.12 If X,, is a sequence of independent identical distributed random variables, defined
on (Q,F,P) where E{X;} = p, (notice that we do not assume the existence of the variance), then
for every fized e > 0,

1 n
P{E;Xi—u

We have concerning convergence in distribution,

25}—>0 forn — +oo.

Theorem 1.13 (Helly-Bray’s lemma). Assume that the sequence X,, of random variables con-
verges in distribution towards the random variable X, and assume that there are real constants a and
b, such that

Pla<X,<b}=1 for every n € N.

If ¢ is a continuous function on the interval [a,b], then
Jm E{p(Xa)} = E{e(X)}.

In particular,

lim E{X,} and lim V{X,}=V{X}.

n—-+4oo n—-+o0o

18
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Finally, the following theorem gives us the relationship between the two concepts of convergence:

Theorem 1.14 1) If X,, converges in probability towards X, then X,, also converges in distribution
towards X .

2) If X,, converges in distribution towards a constant ¢, then X,, also converges in probability towards
the constant c.

19
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Random variables I 2. Simple introduction examples

2 Simple introducing examples

Example 2.1 A motorist shall pass 4 traffic lights. We assume that at each of the traffic lights there
1s the probability p that he must stop. There is furthermore such a long distance between the traffic
signals that there is no synchronization between them. Let X be the random variable, which indicates

1
the number of stops. Find the distribution of X. Sketch in the case p = 3 the corresponding diagram.
LetY have the value k, if the first stop is at signal number k, k=1, 2, 3, 4. Is Y a random variable?

In this case the model is given by the binomial distribution X € B(4,p), thus

P{X =k} = ( : >pk(1—p)4—k, k=0,1,2, 3, 4.

We define here a “success” as a stop (what we otherwise would not consider as a success).

0.35

0.37

0.25

0.2

0.15+

0.14

0.05

Figure 1: The diagram, for p = %

1
We get in particular For p = 2
P{X =k} = 4 N’ k=0,1,2 3,4
{ - }7 k 5 ) =Y, 1, 4,9, 4
thus
1 4 1 6 3
Po=P4 = 5> b1 =Dp3 = b2 ~

16 16 4 16 8
If the first stop is at signal number k, the car has not stopped earlier, so

P{Y =k} =(1-p)"'p, k=1,2234
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Then
4 4
S P{y=k}=> pl-pft=1-(1-p*<1, nirp<l.
k=1 k=1

Since the sum is not equal to 1, we conclude that Y is not a random variable.

The reason why Y is not a random variable, is that we have in the setup forgotten the possibility of
“no stops at all” of the probability (1 —p)*. If we add this value to Y for this event (where one e.g.

arbitrarily could let it correspond to the event Y = 72), then Y becomes a random variable. A more

reasonable definition would of course be Y = 5. However, there is nothing wrong in choosing Y = 2.

Example 2.2 A random variable X can have the possible values 1, 2, ... of the probabilities

k
P{X:k}:A%, keN  (whereq€]0, 1[).

Find the constant A.

We put p =1 — g. Since
> P{X=k}=1,
k=1

it follows from the series of logarithm that
k

NP egt oA ) S g am
1f;P{ka}fA;kf A{ Zk} Aln(l q)fAlnp.

k=1

1 1
From — > 1 follows that In — > 0, hence
p p

A== ﬁ
P
and thus
P{X:k}:L, keN.
k|In(1 —q)|

21
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3 Frequencies and distribution functions in 1 dimension
Example 3.1 Check if the function

%—k‘w, x € [0,6],

fx) =

0 otherwise,

s a frequency for some k.

If f(x) is a frequency, then the following two conditions must be fulfilled:

1) f(z) >0 for every x € R,
2) [ flx)de=1.

. . 1 1
By putting = 6 into (1) we get 3~ 6k > 0, thus k < 1o

A computation of (2) gives

6 6
1 1 1
1:/ — —kxy dr= —l'__kl'Q :3_18k>
) 12 272",

hence
~3-1

k _— =

1>
18 9

1
12°

The two requirements can never be satisfied simultaneously, so f(z) is not a frequency for any k € R.

Example 3.2 Find k, such that
ka? (1—2%), x€l0,1],
flz) =
0, otherwise,
s a frequency of a random wvariable, and sketch the function.

Find the median of X.

Obviously, f(x) > 0. Then by an integration,

12 3 ! 2 5 11
/Ox (1—:v)dm:/0 (:C —:E)dm:§—6:6.

If we choose k = 6, then f(x) becomes a frequency, thus

622 (1 — %) = 622 — 62° for z € [0, 1],

fx) =

0 otherwise.
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2
Since f(0) = f(1) =0, and f’(z) = 122 — 302* = 0 for z = i/g ~ 0,74, we have a (global) maximum

2
18 [/2\3
— | = ~ 1.95.
s (2)

2 2
The function f is increasing in ] 0, i/g l and decreasing in ] Y 3 l

The distribution function F(z) is in the interval [0, 1] given by
Fx) = / ft)dt = / {6t — 6t°} dt =22 — ab.
0 0

1
The median is given as the x €]0, 1], for which F(z) = 3 thus

1 1 1
21}3—1'6:5, or x6—2m3+1:§, i.e. (x3—1)2:§.
3 2 . . .
We get z° =1+ - However, since x €]0, 1], we can only use the sign —, and the median is (here

uniquely determined by)

sf, V2
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It is possible to apply MAPLE, e-g. by:
> f:=x->6%x"2x(1-x"3);
f =z — 622 (1—953)

> plot(£,0..1,color=black);

1.59

0.57

> F:=int(f(x),x=0..t);
F =%+ 23
> fsolve(2*t~3-t"5 = 1/2,t=0..1);
6641045243
> solve(2%t~3-t"6 = 1/2,t);
%(8+4\/§)1/3,—i(8+4\/§)”3,
—3(8 +4V2)1/3 — 31\/5(8 +4v2)1/3, %(8 —4v/2)1/3,
—i(s NG AN i[ﬁ(s _4V2)3, _i(s _42)B 31\/5(8 _4v/2)l/
> 1/2%(8-4*sqrt(2))~(1/3); # this is the median

%(8 — 4v/2)1/3

> F1:=x->2%x"3-x"6;

Fl:=2— 22— 25

24
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3. Frequencies and distribution functions in 1 dimension

0.87

0.6

0.4+

0.29

02 0.4 06 08 1

> plot(F1,0..1,color=black);

The former figure shows the graph of the frequency, and the latter figure shows the graph of the
distribution function. Notice the difference between using fsolve or solve.

With the exception of the sketches of the graphs we see that it is easy to perform the same computations
without using MAPLE. Furthermore, the MAPLE program is also less transparent then an explanation

in plain words.
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3. Frequencies and distribution functions in 1 dimension

Example 3.3 A random variable X has the frequency

b

C(z — a), agxga;_ ,

@) =93 c@p-ua), “;nggh
0, otherwise.

Find the constant C and the distribution function.

Compute
a+b 2a+0b
2

<X<

P{X§ and P{ <

a+2b

b

This distribution is called the triangular distribution over |a, b|.

Figure 2: The graph of the frequency f.

1) By considering the graph we immediately get

b—a b—a
5 -(b—a)zC{ 5

1:/Oo f(x)dac:%-C

L,

because the integral can be interpreted as the area of a triangle. Then

b
2) Whena <z < % the distribution function is given by

- fev-ae-cl2 -3

) omar=2(i=)

26
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If instead GT—H) < x <b, then

o - e et ([
- %+§(bfa) {(b;a> _(b_x)2}2%+%_2<2:2)2
— 1—2(2:2)2.

Summing up we get

0, for z < a,
2
r—a a+b
<—
2(1)@) , fora < x 5
F(z) = ,
b—x a+b
1-2 fi <
(ba) , or > < x <b,
1, for z > 0.

Figure 3: The distribution function for a = —1 and b = 1.

3) By considering the graph (or by insertion of x‘”b) we get
p X§a+b _F a+b :1.
2 2 2
Another consideration of the graph gives
b—a)?
2 b 2b 2 b 4
ploitl o x0T op(20EP) g 5.9 ] 3 o2l
3 3 3 b—a 9 9
27
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Random variables I 3. Frequencies and distribution functions in 1 dimension

Example 3.4 Prove for some choice of the constant k that the function
f(z) =k-e o2 x € R,

s the frequency of a random variable X .
Find the distribution function of X, and compute P{—1 < X <3} and P{X > 0}.
Find the median of X.

Obviously, f(z) is continuous, and f(z) > 0, when k > 0. The remaining condition of a frequency is
that ffooo f(z)dx = 1. Then by a computation,

o] 2 o
/ fz)dx =k {/ e 2dx + / e~ (@2 dx} = 2k,
—00 —00 2

1
which is equal to 1 for k = 3"

0.57

0.4+

0.37

0.1

-1 0 1 2 3 4 5

Figure 4: The graph of the frequency f. (NB Different scales on the axes).

The random variable X has the frequency

1
fx) = 3 e~le=2l, z eR.

Now
! 1 t—2 1 r—2
ft)ydt = 3¢ dt:§e for x < 2,
d

an
T 2 T
1 1 1 1
t)dt = ~et2dt gt = — 4o — s e
/_Oof() /_0026 +/2 e 2—|— 5 5¢

1
= 1- 3 e (@2 for x > 2,
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so the distribution function becomes

— e 2, for z < 2,

1
1-— 3 e~ (#=2), for x > 2.

0.84

0.6

0.4

0.2+

Figure 5: The graph of the distribution function F.
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Finally,

1 1
P{-1<X<3}=F@B)-F(-1)=1- 3 et — 3 e ® ~0.79,

and

1
P{X>0}=1-F(0)=1- 56_2z0.93.
: 1. . . . .
Since F'(2) = 3 it is obvious that 2 is the median of X.

Example 3.5 Prove that the function

kx exp <%x2> , x>0,
flz) =

0, x <0,

for some choice of the constant k, can be considered as the frequency of a random variable X .
Find the distribution function F of X.

Sketch the graph of the function f and of the function F.

Find the median of X.

0 05 1 15 2 25 3

Figure 6: The graph of the frequency f.

1) If £ > 0, then f(x) > 0. The requirement for f(z) being a frequency is then reduced to

o0 o0 1 o0
1=/ f(x)dﬂf:k/ x-eXp<——ar2> dxzk/ e “du=k,
oo 0 2 o
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1
where we have used the substitution u = 3 x? with du = x dz. Consequently, k = 1, and

T exp <—;x2) , x>0,
flx) =

0, x < 0.

0.8

0.67

0.4

0.2

Figure 7: The graph of the distribution functions F.

1
2) If > 0, we use the substitution u = = t? to obtain

2

T T 1 i1a . B 1
F(x):/o f(t)dt:/o texp<—2t2) dt:/o e du—l—exp<—2x2).

Hence, the distribution function of X is

1
1—exp <—§x2> , for x>0,
F(z) =

0, for x < 0.

3) Cousider the previous figures. We see that f(x) has a maximum for x = and a turning point

1
\/E?
for F(z) at the same point.

4) The median is found from the equation

1 1 1
F(z)=1—exp <—§$2) = > i.e. exp (5332) =2,

1
thus 3 22 =1n2, and hence

(X) =V2In2~ 1.1774.
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Example 3.6 Prove that the function

) e (5)) e

0, z <0,

fx) =

where b and 0 are positive constants, is the frequency of a random variable X, and find the distribution
function of it.

Prove that P{X < 0} does not depend on b.

This distribution s called a Weibull distribution.

Clearly, f(x) > 0.

We get for z > 0 by the substitution,
b
t t
s=5 followed by u = s’ = (5> ,

that

Flz) = /Omg (g)b_lexp <— {g}b> dt = /0% bt exp (—s%) ds

_ /O(g)bexp(u)dulexp<{§}b)H1 for z — oc.

We conclude that

1 —exp (—{%}b), x>0,

0, <0,

F(z) =

is the distribution function of a random variable X with f(z) as its frequency.

It follows by insertion that

P{X <0} = F(0) =1 —exp (—{Z}) .

is independent of b.
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Example 3.7 A patient arrives to a doctor’s waiting room. The probability is p, where p €]0,1],
that he will be treated immediately; but if he does mot, the probability that he must wait longer than

the time x is equal to e~ %", where a is some positive constant. Find the distribution function of the
random variable X, which indicates the waiting time.

1) If the patient is treated immediately, then the waiting time is X = 0, thus
P{X =0} =p.
2) The probability that the patient must wait more than z, z > 0, is
P{X > z} = P{pt. must wait} - P{waiting time > x | pt. must wait} = (1 — p)e™**,
hence

P{X<z}=1-P{X>z}=1-(1-ple .

33

Download free eBooks at bookboon.com



Random variables I 3. Frequencies and distribution functions in 1 dimension

0.87
0.64
0.44

0.24

1 05 0 05 1 15 2 25

1
Figure 8: The graph of the distribution function F'(xz) when a =1 and p = 3

3) The distribution function F'(z) = P{X < z} is here
0, r <0,
F(z) =
1-(1—-p)e?, x> 0.

The distribution of X is of mized type, i.e. it is neither discrete nor continuous.
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4 Frequencies and distributions functions, 2 dimensions

Example 4.1 Let X and Y be independent random variables with the frequencies
fl@y=xze™, x>0, gly)=eY, y>0,

(both frequencies are otherwise 0).

Find the frequency of X +Y.
Find the mean E{X}, E{Y'} og E{X +Y}.

The frequency of X 4+ Y is given by the convolution integral

v = [ " f@) gz — ) d.

This expression is only > 0, when z > 0. We have furthermore the constraints z —x > 0 and = > 0,
so the convolution integral is reduced to

4 4 z 1
k(z) = / f@) gz —x)de = / ze e T gy = efz/ rdr == z2%e 7,
0 0 0 2

and k(z) =0 for z < 0.
The means are

E{X} = [Jaf@)de=[a%e ™ =2,
E{Y} = [yl dy= [Cyevdy=1,
E{X+Y} = [Fzk(z)dz= %fooo 22e *dz = 3.

Remark 4.1 Here we are given that
o0
/ 2"e " dx = n! for n € Np.
0

This formula is easily proved by induction. When n = 0, it is trivial. In general we get by a partial
integration and the assumption above of the induction,

/0 " e dy = [—xme*x];o +(n+ 1)/0 2"e Tdr=(n+1)n!=(n+ 1)}

and the claim follows. ¢
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Example 4.2 Check if the function

1_67($+y)7 X 2 Oa ZIZO,
F(z,y) =
0, otherwise,

18 a distribution function of a 2-dimensional random variable.

Since F' € C* (Ry x Ry), we have

O°F = —e~@) <0 for (z,y) € Ry xR
axay ) + +
so F' cannot be a distribution function. In fact, if so then
O*F
= 0
fz,y) 920y (<0)

should be a frequency, which is not possible, because frequencies are never negative.
ALTERNATIVELY we prove that one of the necessary conditions is not fulfilled. Choose

r1=y1 =1 og To=ys=14+a, a>0.
Then

F(l+a,14+a) - F(L,1+a)—F1+a,1)+ F(1,1) = e-(He) _ o= (2420) 4 o=(Fa) _ =2

=e? {26_”‘ —e 2 1} =—e 2 (1 — e_“)2 <0,

and not > 0, as it should be.

Example 4.3 Prove that the function

ze Wt 2 >0,y >0,

fz,y) =

0, otherwise,

is a frequency of a 2-dimensional random variable (X,Y).

Find the frequencies and the distribution functions of the random variables X and Y, and find the
medians of these two distributions.

Check if the random variables X and Y are independent.

Clearly, f(x,y) > 0 for every (z,y), and f is continuous, with the exception of the positive part of
the z-axis.

1) If > 0 is kept fixed, it follows by a vertical integration,

oo

fx(@)=e" / re Wdy=e ",
y=0

and fx(z) =0 for x <0.
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Figure 9: The graph of the frequency f(z,y).

2) If y > 0is kept fixed, we get by a horizontal integration, where we use the substitution z = z(y+1),
etc.,

1

— = —2(y+1) gy =
frt) = [ wem o ay =
and fy(y) =0 for y <0.

3) It follows from

o o0 1
e Tdx =1, possibl / ——dy =1},
/0 [ Y o (y+1)2 Y

that f(z,y) is a frequency of a 2-dimensional random variable (X,Y"), and that X and Y have the
marginal frequencies fx(z) and fy (y), given in (1) and (2), resp..
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4) The marginal distribution functions are

z 1—e*, forz >0,
Fx(.’ﬂ):/ fx(t)dt:
—oo 0, for z <0,
and
Iy
Yy - 1 - 17
Fel)= [ fma=q Vv
o 0.

5) Medians:

1 1
a) Fx(z) = 5= 1—e®fore ™= 2 hence z = (X) =1n2.

1 1 1 1
b) Fy(y)=§= —mform=§,
6) Since
fx (@) fr(y) = ﬁ #ze "W = f(z,y)

X and Y are not independent.

thus y = (V) =1

for xz, y > 0,

Example 4.4 A 2-dimensional random variable (X,Y) has the frequency

czy, 0<z<y<l,

f(x,y) =

0, otherwise.

Find the constant c. Find the frequencies and the distribution function of the random variables X and
Y. Check if the random variables X and Y are independent. Finally, find the distribution function of

the 2-dimensional random variable (X,Y).

1) If ¢ > 0, then f(z,y) > 0. It follows from

1 Yy 11 . c
1:0/ {/ xydz}dy—c/ — P dy = =,
0 0 0o 2 8

that ¢ = 8, hence the frequency is given by

8zy, O<r<y<l,

flz,y) =

0, otherwise.
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Figure 10: The graph of the frequency f(z,y) over 0 < z < y < 1.

Figure 11: The domain where f(z,y) > 0.
2) Clearly, fx(z) =0 for z ¢]0,1[. When x €]0, 1] it follows by a vertical integration that

1 y2 1
fx<:c>:/ 8wy dy — 8¢ M — 4o 40P,

hence the marginal frequency is
dr — 42, x €]0,1],
fx(@) =

0, otherwise.

When z €]0, 1], we get

Fx(z) = /j fx(t)dt = /Ow {4t — 4t*} dt = 22° — 2",
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thus the marginal distribution function is

0, z <0,
Fx(z)=1{ 222 —2* O<z<l,
1 z > 1.

)

Clearly, fy(y) =0 for y ¢]0,1[. If y €]0, 1[, we get by a horizontal integration that

y 21
fr(y) =/ 8rydr =8y | = | =4y’
0 2]
and the marginal frequency is

4y, y €]0,1],
fr(y) =

0, otherwise.

Then for y €10, 1],

/fy t)dt = /4t3dt:y4,

hence the marginal distribution function is

0, y<0,
FY(y): y4a ye]ovl[a
I, y=>1

3) Since fx(x)- fy(y) # f(z,y), we see that X and Y are not stochastically independent.

Remark 4.2 If in general the domain, in which the frequency f(x,y) > 0 is strictly positive, is not
a rectangle (possibly with infinite sides, so e.g. R x R is in this sense considered as a degenerated
rectangle), then the random variables X and Y are never stochastic independent. ¢

4) If z, y €]0, 1], then the distribution function is

Flz,y) = /Oy {/OI F(t,u) dt} du,

so0<t<z<1 and 0 <u <y <1 Furthermore, f(t,u) =8ty #0for 0 <t <wu <1, and 0
otherwise, so 0 < t < min{x, u}, and thus

y min{z,u} y y
F(z,y) = /0 {/0 8tudt} du = /0 4u - (min{z, u})? du = /0 4u - min {2*,v*} du.

Ifx>0, weget 0<u<y<z <1, hence min {xz,uz} = u?, and thus

y
F(:z:,y):/ 4u - u? du = y*.
0
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If 0 < x <y, then we get instead
Y Ed Y
F(z,y) = / 4u-min {2*,v*} du = / 4u® du —|—/ 4u x? du
0 0 T
= 2% 4227 (y2 - x2) = 22%y? — ot
Summing up the distribution function of the 2-dimensional random variable (X,Y) is

2x2y2—x4, 0<zx<y<1,

F(x,y): y47 OSySOC,
1, 1 < min{z,y},
0, otherwise.
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1.29 2*x"2-x"4 1

0.81 2°xh2"yh2-x 4

204 02’0 02 04 06 08 1 12 1.4

-0.2 x
0 0

Figure 12: The distribution function F(x,y) of Example 4.4.

Example 4.5 A 2-dimensional random variable (X,Y) has the frequency

ct?, O<z<y<l,

flx,y) =

0, otherwise.

1) Find the constant c.

4, Frequencies and distributions functions, 2 dimensions

2) Find the frequencies and the distribution functions of the random variables X and Y.

3) Find the simultaneous distribution function of the 2-dimensional random variable (X,Y).

1) If ¢ > 0, then obviously f(x,y) > 0. It follows from

1 Yy 1 c
1:c/ {/ ygdx}dy:c/ vy = -,
0 0 0 4

that if ¢ = 4, then

[ 42 0<z<y<],
fla,y) = { 0, otherwise,

is the frequency of the 2-dimensional random variable (X,Y).

2) By a wvertical integration, x €10, 1] fixed, we obtain the marginal frequency of X,

1
fX(x):/ 4y2dy:§ (1—:53),

QL >~

(1—a%), forze€]0,1],

0, otherwise.
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Random variables I

Figure 13: The graph of f(z,y).

y=X

038

06

04

02

0.8

0.4+

0.2

Figure 14: The domain 0 < z <y < 1.

When z €]0, 1], the marginal distribution function of X is given by

(1—t%) dt =

<t 1
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hence

0, <0,

Fx(x) = (4z—a*), O0<z<1,

Wl =

1, x> 1.

By a horizontal integration, y €0, 1] fixed, we get the marginal frequency of Y,

y
fr(v) =/ 4y* dx = 3y°,
0

hence

4y, y €]0,1],
fY(y) =

0, otherwise.

It follows immediately by an integration that the marginal distribution function is given by

0, y<0
Fy(y) =< y*, yelo,1],
1, y=>1

x.y

Figure 15: The five sub-domains for the distribution function.
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3) When the plane is divided into the five sub-domains I-V, it follows that
I F(z,y)=1forz>1andy>1.
II F(z,y)=0forz <0ory<0.
1
III F(z,y) = Fx(z) = 3 (4z —a*) for0 <z <1landy>1.

IV F(z,y) = Fy(y) =y* for 0 <y <1 and z > y.

V Only here we need some computations. We keep (z, y) fixed in domain V, thus 0 < x < y < 1, cf.

the figure. First take the inner integral [i.e. we first integrate vertically] and then horizontally.
Then we get

F(z,y) = Kf{lff@uﬁm}dhzém{lam%m}m

* 4 3 43 4 3 1 4
= S dt=— P —
A {3y 3 } 3™ T3

(dzy® — z*) for0 <z <y<l.

hence

F(m’y) =

W =
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Example 4.6 A 2-dimensional random variable (X,Y) has the frequency

cx, 0<y<22r<2,

flz,y) =

0, otherwise.
1) Find the constant c.
2) Find the marginal frequencies and the distribution functions of the random variables X and Y.

3) (A hard question). Find the simultaneous distribution function F(x,y) of the 2-dimensional ran-
dom variable (X,Y).
(The distribution function F(z,y) must be computed for every (x,y) € R?).

Figure 16: The graph of f(z,y), and its projection A, where f(z,y) > 0.

0.54

01702 04 06 08 1

X

Figure 17: The domain of integration A.
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1) By means of a plane integral we get the condition (cf. the figure)

1 2x 1
2
1:/f(x,y)d:zrdy:c/ x{/ ldy}dz—c/ 202dr =c- =.
A =0 y=0 0 3

3
Therefore, if we choose ¢ = 37 then f(x,y) > 0 everywhere, and its integral is 1, so the frequency
is

3
5:107 0<y <2z <2,
fl,y) =

0, otherwise.

2) The marginal frequencies are found to be

2

3

fX(x):/ z=xdy = 3z° for 0 < x < 1,
y=0 2

and
1 1
3 3 3 3
fy(y):/ —a:dx:[—xﬂ =42 for0<y<?2,
o=t 2 4 o=1 4 16
hence
322, 0<ax <1, §—311/2, 0<y<?2,
fx(@) = friy) =4 * 10

0, otherwise, 0, otherwise.

We find the remaining distribution functions by an integration:

0, z<0, 0, y<o,
3 3 1 3
Fx(l‘): T, OSI’SL FY(y): Zy_ﬁy7 O_y§27

3) (The hard question). We divide R? into the five domains I-V, cf. the figure.

Clearly,
F(z,y)=0 in domain I,
F(z,y) =1 in domain II.

In domain IIT (i.e. A) we get by first integrating horizontally, % < t < z, and then vertically,
O<u<y,

Yy z Yy 2
Flz,y) = g/o{lutﬁ}MZZ/o{ﬁ—%}du

_3 2 13y _32 13
T 1 %7“ 121‘]u_0_'4“ry 167
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x.y

Figure 18: The five domains of the distribution function.

We get in domain IV,

301,

ﬂaw:F@w:FHw:nyﬁy,

and in domain V,

1
F(z,y) = F(z,2z) = ZQ,’E?’ ~ 6 8zt (= Fx(z)) = 2°.

Summing up we obtain the distribution function

0, forz <0ory<0,
1, forz > 1 and y > 2,
§a;zy—iyg for0 <y <2z <2
Flz,y)=4 1 167 =Y =at=s
5 L fora>1 do<y<?2
—y— — or x an
4?} 16y7 = SY >4
23, fory>2rand 0 <z <1.
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Example 4.7 A 2-dimensional random variable (X,Y) has the frequency

cx, 0<zxz<1,0<y<1—uz,
flx,y) =

0, otherwise.
1) Find the constant c.
2) Find the frequencies and the distribution functions of the random variables X and Y.

3) Find the simultaneous distribution function of (X,Y).

Figure 19: The graph of the frequency f(z).

0.8+

0.6

0.4+

0.2+

Figure 20: The domain of integration of the frequency f(x).
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1) If ¢ > 0, then f(x,y) > 0. It follows from the condition

1 1—x 1
1 1 c
1= dy ¢ dz = —a?)de=c{-—2s=—
C/O {/0 xy} X CA (.’E {,C) i 0{2 3} 6,

that if ¢ = 6, then the frequency of (X,Y) is given by

61'7 0§$§170§Z/§1*f€7

f(x,y) =

0, otherwise.

g2 0 02" 04 06 08 1 12

Figure 21: The graph of the frequency fx(z) of X.
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2) Tt follows by a vertical integration, x €10, 1] fixed, that

1—x
fx(x):/ 6z dy = 6x — 62,
0

so the frequency of X is

6z — 622, x €]0,1],
fx(z) =

0, otherwise.

Figure 22: The distribution function Fx (z) of X.

254

0.5+

00527040608 1 12

X

Figure 23: The graph of the frequency fy (y).

A horizontal integration, y €10, 1] fixed, gives

1—y
fr(w) :/0 6xdmz3(lfy)2,
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hence the frequency of Y is
31-y)? 0<y<l,

0, otherwise.

0.8+

0.6+

0.2+

Figure 24: The distribution function Fy (y).

By an integration, for y €]0, 1] fixed,
y
Fy(y) = / 3(1—t)?dt=[-(1-1)?],=1—(1—y)® =3y —3y> +4°,
0

so the distribution function of Y is

0, y <0,
Fy(u)=4 1-(1-y)?* 0<y<l,
1, y=>1

3) If we divide the plane into the domains I-VI, it follows that

I Faz,y)=1forz>1andy > 1.

IT F(z,y)=0forz <0ory<O0.

III F(z,y) = Fx(z) =322 — 223 for 0 <2 < 1 and y > 1.
IV F(z,y)=Fy(y)=1-(1—y)3forz >1land 0 <y < 1.

52

Download free eBooks at bookboon.com



Random variables I 4, Frequencies and distributions functions, 2 dimensions

'

Figure 25: The domains I-VI.

Yy 0.84 \ Xy

0.6

0.4+

0.2+

Figure 26: The domain of integration in case V.

VitO<z<land1l—z<y<1. Then

F(z,y) = /Ol_y{/Oy(sudu}dtJr/:y{/Ol_twdu}dt

11—y x
/ 3y? dt + / (6t — 6t%) dt
0 1

)
= 3y°(L—y)+ [3° — 26
= 3y%(1—y)+322 — 2% —3(1 —y)? +2(1 —y)3
= 32 -2+ (1—y) {3y —3y° —3+3y+2— 4y +2y*}
3x2—2x3+(1—y)(—1+2y—y2)
= 322 - 223 — (1 —y)>
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VI Finally, if 0 <z <1and 0 <y <1—=x, then

@ oy
F(z,y) = / {/ 6t du} dt = 3x%y.
o o

Summing up we get

L for x > 1 and y > 1,
0, forx <0ory<0,
322 — 223, for0<z<landy>1,
F(x,y) = ‘
1—(1—y9)3, forr>1land 0 <y <1,
322 =228 — (1 —y)3, for0<z<landl-az<y<l,
322y, for0<zr<land0<y<1-z.
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Example 4.8 Let X, and X5 be independent and identically distributed random wvariables of the
frequencies

T, 0<x<?2,

0, otherwise,
and let the 2-dimensional random variable
(Y1,Ys) =7 (X1, Xo)
be given by

_X

Y1=X1X Y, = .
1 142, 2=y,

1
1. Compute the means E{X1} and E {?}
1

2. Compute the means of Y1 and for Ys.

The vector function T, given by

x1
T($1,$2)= T1T2, — |,

)
maps D =]0,2[ x |0, 2[ bijectively onto
D' ={(y1,42) €R* | 0 <1 < 4yz, yry2 < 4} .
3. Sketch D', and find the simultaneous frequency k (y1,y2) of (Y1,Y2).
4. Find the marginal frequencies of Y1 and Ys.
5. Are Y] and Yy independent?

1) It follows that

1 /2 17231 4
0

and

1 1 [
Ed—/(=< —dr =1.
{Xl} 2/0 z
2) Since X; and X are independent, we conclude from (1) that

B} =B} = BB E () = (3) =

3 9’
and
X, 1 4 4
E{iv ) =F{ 2\ pixV. Bl —b=".1=2.
{2} {Xg} X} {Xg} 3 3
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Figure 27: The domain D’ lies between the ys-axis, the hyperbola y1ys = 4 and the straight line
y1 = 4yo.

3) It follows from y; = z129 and yo = il that
T3

T1 = /Y192 and '1:2:1/&.
Y2

Hence the Jacobian becomes

l\/@ 1y
Ofayay) _| 2V0 2V 1(1+1>:—1
11 Y2 Y2 2y2

L1 [y 4
2 /y1y2 292\ v2

The simultaneous frequency of (X1, Xs) is

1
1 T1%2, for (z1,22) €]0,2[x]0,2],

9 (y1,y2)

g(x1,m2) f(z1) - f(22) =

0 otherwise,

so the simultaneous frequency of (Y7,Ys) is

1
3 z—l for (y1,y2) € D',
k (yla 3/2) = 2
0 otherwise.

4) The marginal frequency of Y7 for 0 < y; < 4 is given by
4
y1 [ 1 Y1 N 4 Y1
k == —dy, = = |1 w="In(— ) == (In4-1 ,
vy (Y1) ) /y41 ” Y2 3 [nyz}T 4 H<y1> 4 (In ny)
and = 0 otherwise.

The marginal frequency of Y5 for yo €]0, 1] is given by

1 e 1 5
Ky, (y2) = 8 /o y1dyr = 655 16y5 = yo.
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If instead ya €]1, 00|, then

4

1 va 1
ky, (y2 :_/ i dyr = —.
> (¥2) S e "
Summing up we get
4
Zil—lln(—>, 0 <y <4,
le (yl) = 9
0, otherwise,
and
Y2, for yo €10, 1],
1
k?yz (yz) = 35 for Y2 E]LOO[,
Ya
0, for yo < 0.

5) Since D’ is not a rectangular domain, we conclude that Y7 and Y3 cannot be independent.
There is clearly a trap here, because we get for (y1,y2) € D',

1 1
k(yuyz): g'yl'y—Qv

in which y; and ys apparently are separated.
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Example 4.9 Let

—~

X1,X5) be a 2-dimensional random variable of the frequency

(21 + 2z2) exp (— (21 + 22)), x1 > 0, x9,

N —

h (l‘hxg) =

0, otherwise.

1. Compute the marginal frequencies of X1 and Xs.

Then introduce the random variables Y1 and Ys by
Y = X1 + Xo, Yo = X7 — Xo.

2. Prove that Y1 are Yo non-correlated.

The vector function T given by
T(x1,22) = (1 + 22,21 — X2)

maps Ry x Ry bijectively onto
D' = {(y1,42) € R | |ya| < w1}

3. Compute the simultaneous frequency k (y1,y2) of (Y1,Y2).
4. Compute the marginal frequency of Y1, and find the mean of Y7.

5. Find the marginal frequency of Ys.

1) If 21 > 0, then

(xl + 1) e_ml7

N | =

1 o0
hx, (x1) = 3 e ™1 / (3316_”32 +.Z‘2€_m2) dre =
0

and hyx, (1) =0 for z; <O0.
Then by symmetry, X; and X5 have the same distribution, hence

1

5 (xa +1)e "2, for zo > 0,
h'Xz (3;‘2) =
0, for zo < 0.

2) It follows from (1) that V {X;} = V {Xz}, thus
Cov (Y17Y2) = Cov (Xl + XQ,Xl - X2) = V{Xl} - V{XQ} + Cov (X17X2) = O,

which shows that Y7 and Y5 are non-correlated.
NoOTICE that they are not independent, cf. (3), because the domain is not a rectangle parallel to
the coordinate axes.
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3) It follows from y; = x1 + z2 and yo = x1 — x2 that

1 1
=g (1 +u2) and  ®2 = 3 (y1 —v2),
so the Jacobian becomes
1 1
8 (.’El, .’EQ) 2 2 - 1
9 (y1,2) 11 2
2 2
Hence,
1
e v for [ya| <1,
k (yl7 ZJQ) =
0, otherwise.

4) The marginal frequency of Y7 is

1 _ Y1 1 B
v (1) = e v / dys = 5:9%6 v for y; >0,
—Y1

and fy, (y1) = 0 otherwise.
Since Y7 € I'(3,1) is gamma distributed, we get

E{vi}=3-1=2,

which can also be found directly from

[~ 3!
Bit=g [ gteran = =
2 Jo 2
5) If yo € R, then
fra (o) = = Ooy e dyy = [~ (i +1)e ] = L (ol + 1) el
2 4 iyl ! 17y ! lyal — 4 \192 :
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Example 4.10 Let (X1, X2) be a 2-dimensional random variable of the frequency

1
3 (z1 +1) e~ (@rte2) z1 >0, x>0,
h(xl,l‘g) =

0, otherwise.

1. Compute the marginal frequencies of X1 and X.
2. Compute the means of X1 and Xs.
We introduce the random variables Y1 and Ys by

Xs

Yi=X+X Yo=—"°""—.
1 1+ Xo, 2 X, 1 X,

The vector function T, given by

x
T (r1,22) = (1'1 + x2, 2 )7

T+ T2
maps Ry x Ry bijectively onto D' = R4 x]0,1].
3. Compute the simultaneous frequency k (y1,y2) of (Y1,Y2).
4. Compute the marginal frequencies of Y1 and Ys, and check if Y1 and Yy are independent.

5. Compute the means of Y1 and Ys.

1) Since h (z1,x2) has a nice factorization,

h (l.lva) = fX1 (xl) : fX2 (1’2) 5

where
1
fx (@) =4 2 Fxs (w2) =

and fx, (1) > 0 and fx, (x2) > 0, where

/OO fX1 (331) dry = 1, /Oo fX2 ($2) dxoy = 1,

we have

a) found the marginal frequencies,

b) and shown that X; and X5 are stochastically independent.

ALTERNATIVELY we compute for 1 > 0, resp. xg > 0,

> 1 > 1
fx, (x1) = / h(xy,29) dag = 5 (x1+1)e™™ / e "2 dxy = B (z1+1)e ™,
0 0
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and
oo 1 . 0o
e (332):/ h(x1,x2) d331:§€ 2/ (r1+1)
0 0
Here we have applied that

o0
/ 2"e T dx = n! for n € Ny.
0

2) The means are

B0 = [t (o) do =

oo
/ Toe T2dxy =
0

3) The transform formula is memorized by

and

E{X,} = /OOO T2 fx, (z2) drs

8 (l‘l,IEg)

dyq dys.
0 (y1,y2) Y1 a2

h(SUl,l‘Q) dl‘l diZ?g =k (yl,yg)

1 oo
/ (1 +21) e
0

e “ldry = e "2,

3

= -,

1
"oy = 5 (214 1)

=1
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This formula shows that the task is to find 1 and zo expressed by (y1,y2). It follows from
Y1 = T1 + 22, Y1 = 1 + Xa,

o that

b)
T+ T2

Y2 = Y1Yy2 = T2,
hence

rr=y1 (1 —y2),
T2 = Y1Y2-

Thus we get the weight function

0 (x1,x 1- —
M:’ e =y1 —y1y2 + y1y2 = y1 > 0,

0 (yl, yz) Y2 Y1

because D’ = Ry x |0, 1] is given.
In this domain we get the simultaneous frequency of (Y7, Y5),

(y1 =1y +1) e -y

1
k(y1,92) = h(n (1*yz),y1y2)~y1:§
1

= 5 (vi—yiy2+y1)e ¥ for (y1,y2) € D',

and k (y1,y2) = 0 otherwise.

4) The marginal frequencies of Y7 and Y3 are computed for y; > 0, resp. yo €0, 1[. (Otherwise they

are 0.)
' 1 ! 2 2
kv (1) = / k(yi,y2) dyo = 5 e / (v — vive + 1) dy2
y2=0 0
1 - 1 1 1 _
= 56 Y1 (y%_éy%+y1>:<1y%+§yl>e yl,
> L[>, 2
kYg (y2) = / k (y17 y?) dyl = 5 / (yl — y1y2 + yl) e_yl dyl
y1=0 0
1 3
2 ( Y2 + ) 2 Y2

Since k (y1,y2) # kv, (y1) - kv, (y2), we see that Y7 and Y5 are not independent.

5) The means are
5

E{Yl}:E{X1+X2}:E{X1}+E{X2}:;+1:§.

ALTERNATIVELY,
oo > /1 1 6 2 5
E{vi} = k dy, = —yi syl e Vidy = -+ S =<,
{ri} /Oyl vi (¥1) dyr /0 <4y1+2y1)e n=1+5=3

For Yy we get

E{Y}—/lk()d —/13 2) gy = 3 -1
2—0y2Y2y2 yz—o 2yz Ya y2—4 3712
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Example 4.11 Let (X,Y) be a 2-dimensional random variable of the frequency

e Y, for0 <z <y,

h(x,y) =
0, otherwise.

1) Find the marginal frequencies of the random variables X and Y .

2) Find the means E{X} and E{Y'} of the random variables X andY .

3) Find the variances V{X} and V{Y'} of the random variables X and Y.
4) Compute E{XY}, and then the correlation o(X,Y).

5) Find the frequency of Z =X +Y.

1) The marginal frequency of X is

Ix(x) = / e Vdy=e" for z > 0,
y

=T

and fx(z) =0 for x < 0.
Analogously the marginal frequency of Y is given by

Y

fr(y) = / e Vdr=ye™V for y > 0,
=0

and fy(y) =0 for y <0.
Summing up we get

X eI(1,1) and Y eT(2,1).

2) Then
E{X} = / ve Cdr=[—(z+ 1)671;];0 =1,
0
and
E{Y} = / y-ye Ydy = / yle Vdy = [(ny — 2y — 2) efy}gc =2.
0 0
3) We first compute
E{X2} = /0 e " dr = [(—x2 —2x — 2) e_‘”}go =2
and
E{YQ} = / vy oye Vdy = / yle Vdy = 3! =6.
0 0
This gives us the variances

V{X} = E{X’}—(BE{X})?=2-1*=1,
V{Y} = E{Y?’}-(BE{Y})’=6-2"=2.
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4) By a reduction to a double integral we get

[eS) Yy oo
E{XY}://R2xyh(x,y)dxdy:/ 0{/ Oxdx}ye_ydy:/O gyBe_ydy:i’),
y=0 UJa=

or ALTERNATIVELY

/ x{/ ye Y dy} dx:/ x [f(erl)e*y]oo dy
=0 y=x =0 ¥

= / ((E26_$+5L’6_w) dr=2+1=3.
0

B{XY}

Then
Cov(X,Y)=FE{XY}-FE{X} E{Y}=3-2-1=1,
hence

Cov(X,Y 1 2

VVIXyviyy vi-2 2

5) The random variable Z = X + Y has its values in |0, 00[. If z > 0, then the frequency is given by

f22)= [ bz —a)ds,

—0o0

where the condition 0 < z < y = z — x is reformulated to

0<x<

NN IR

Hence, when z > 0,

f0) = [

SO

z

h(z,z —x)dx = /02 e F70) g = 7 {exp (%) — 1} = exp (—%) — exp(—2),

ol

exp (—=) —e(—2), for z > 0,
fz(2) = p( )

0, for z < 0.

ALTERNATIVELY we compute the distribution function of Z by the following double integral,

Fa(z) = /i{/z_ze_ydy} dwz/i{e‘“—e”_z}dm
e (D) e (e (3) 1) =1 et e ()
= {1-eo(-5)}

Hence,
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and fz(z) =0 for z < 0.

ADDITIONAL REMARK. Since

E{Z}/OOo {z exp (7%) 726%} dz=4—-1=3,

and

E{ZQ} = /OOo {22 exp (—g) — 226_2} dz=16—-2=14,
we get

V{Z}y=14-3>=5=V{X +Y}.
This gives

Cov(X,¥) = 5 (VX +Y} - V{X} - V{¥})= s 5-1-2} =1 ¢

N | =
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Example 4.12 A 2-dimensional random variable (X,Y') has the simultaneous frequency

1
flz,y) = 3% O<y<z<2 (and 0 otherwise).

1) Compute the marginal frequencies of X and Y.

2) Compute the marginal distribution functions of X and Y.
3) Find the means of X and Y.

4) Find the medians of X and Y.

1) The marginal frequencies:

a) For fixed z € [0, 2] we integrate with respect to y € [0, z], which gives

v 1
fX(iU)Z/ —rydy=-2°, 0<z<2,
=0 2 4

and fx(z) = 0 otherwise.

b) For fixed y € [0,2] we integrate with respect to = € [y, 2], which gives

2
1 1
fy(y)=/ —aydr=y—-y*, 0<y<2
oy 2 1

and fy(y) = 0 otherwise.

2) We get the distribution functions by integrating the frequencies,

0, <0,
L o4
Fx(z) = 1—6:17, 0<z<2,
1,
x> 2,
and
0, y <0,
Fy(y) = e 1 4 0 2
Y \Y 2y 16y, <y <Z
L y=>2.

S

Il
—
| =

8

(o3
[
[\v]

I
w
[N}

I
o] co

BE{X} = /OQ:CfX(x)da::/jim‘ld

2 2 1 8 8 16
B{Y} = /gyfy(y)dy=/0 <y2—1y4> dy=3-z=1
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4) The median of X is found from the equation

i.e. 2% =8, hence (X) = V/8.
The median of Y is found from the equation

i.e.
y* — 8y +8=0.

Since y? < 22 = 4, we get y2 =4 — /8, so

(V) =1/4— V8.
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Example 4.13 A rectangle has the edge lengths X, and Xo, where Xy, and X5 are independent
random variables, both of the frequency

32, 0<z<l,

0, otherwise.
1. Find the mean E{X;}.

2. Find the mean of the circumference of the rectangle, E {2X; + 2X2}, and the mean of the area of
the rectangle, E{X1X5}.

We introduce the random variables Y1 and Ys by

X1

Y1 =X1 X Y, = .
1 142, 27X,

The vector function T, given by

x1
T($1,$2)= 931962756— s

2
maps D =10, 1] x ]0, 1[ bijectively onto
D' = {(y1,92) €R* |0 <1 <o, y1y2 < 1}.
3. Sketch D' and find the simultaneous frequency k (y1,y2) for (Y1,Y2).

4. Compute the marginal frequencies of Y1 and Ys.
(This can be answerede with or without using (3)).

5. Are Y7 and Yy stochastically independent?

6. Find the mean and the median of Ya, and give an intuitive explanation of that the median is smaller
than the mean.

1) The mean is
1 3
E{Xl}:E{XQ}:/ 3a:3dx=1.
0

2) Since X; and X, are independent, we get
E{2X;+2X5} =4FE{X;} =3,

and

E{X,Xa} = E{X1}- E{X,} = (§>2 -9
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017072040.60.8 1 1.2

3) From
L1 = VU1y2 og

we get the Jacobian

_ 0
Voye

0 (1‘1, .IQ) 2 Y1 2 1
T ——— <0,
9 (y1,92) 1 11 2yo
2 Vyiy2 2y \/
and the simultaneous frequency for ( y2) € D', is given by
k(y1,92) = 3 (Vyiva =9. w1
Y1,Y2) = y1y2 2y2 Y1y2 - ” 2y2 =
and k (y1,y2) = 0 otherwise.
4) The marginal frequency of Yy for y; €]0, 1], is given by
9 1/1 dy2 9 < 1
k =—yi —= = —yi [Inyo]y =97 In — = —9y71
v ) =5 1/ n ol (Inyalyi = 9yi o yi Iy,
and 0 otherwise.
If y2 €]0, 1], then
Y2 3 3
k =_— Tdyn = —— s = - 3.
v. (42) = 5 /0 vidy =5 v = 5
If yo €]1,00], then
1
9 vz 1 3 1
ky, (y :7/ yidy = s— — =5,
v () 2 Jo VN T 2 3 2w
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hence
3
5 y3 for y2 €]0,1],
_ 31
ky, (yQ) = =z for yo 6]1700[,
2 Yo
0 otherwise.

5) Since D’ is not a rectangular domain, we conclude that Y7 and Y, are not independent.
ALTERNATIVELY we see that

k (y13y2) 7é le (yl) : kYz (y2) :

6) The mean of Y3 is

3 [t 3 [ dy 3 3 9
E{Yz}zi/o ygdy2+§/1 y—;ngrZ:g-
2

It follows from

'3, 1
P{Y, <1} = §y2dy2:§7
0

that the median is

(Yz) =1 < E{Ya}.
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Example 4.14 Let X; and X5 be independent random variables of the frequencies

rie ", x> 0,
fx, (21) =
Oa 1 < 07
and
9xoe 372, 2o >0,
fx, (x2) =
07 o < 0.

1. Find the means E{X1} and E{Xs}.
We introduce the random variables Y1 and Ys by

X1

Yi=X 3X Yo = —-+~——.
1 1+ 3X2, 2 X1 13X,

The vector function T, given by

T(x1,29) = (ml + 3xa, .leiilgxg) ,
maps Ry x Ry bijectively onto Ry x]0,1].
2. Compute the simultaneous frequency k (y1,y2) of (Y1,Y2).
. Compute the marginal frequencies of Y1 and Y.

3
4. Check if Y1 and Ys are stochastically independent.
5

. Compute the mean E{Ys2}, and prove that the median of Ys is equal to E{Ys}.

1) Since X; € I'(2,1), we have E{X;} =2-1=2.

1 1 2
Since X5 €' |2, - ), we have E{Xs} =2- - = —.
3 3 3
2) It follows from
T
=z, 43 d =
Y1 = 21 + 3x2 an p] o1+ 329
that
1 1
T1 = Y1Y2 and T2 =3 (y1 — 1) = e (1—y2).

The Jacobian becomes

Y2 Y1
9(z1,22) _ _ L <o
9 (y1,y2) L L 3 '
Z (1= _Z
3 ( yz) 3111
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The simultaneous frequency og (y1,y2) € Ry x]0,1[ is given by

1 1
k(y1,y2) = wyiyz-e %9 3y (1—yo)-e7rw2). 3
3. oY1 L 3 —Y1
= yroe " yp(l-g) = oyre o {6y (1-w2)},

and k (y1,y2) = 0 otherwise.
3) It follows immediately of the splitting of (2) that
1

6 yje v for y; > 0,
le (yl) =
0 otherwise,
and
6y2 (1 —y2) for 0 < yo < 1,
kYz (y2) =
0 otherwise,

hence Y7 € I'(4,1) is gamma distributed, and Y2 € Be(2,2) is beta distributed.

4) Tt follows from

k(yi,y2) = ky, (Y1) - ky, (y2),

that Y; and Y5> are independent.

1
5) By symmetry, the median is (Ys) = 2 and the mean is

2 1
E{Ys}=—— === (Y).
Mo} = 575 =5 = (1)
ALTERNATIVELY,

E{Y}G/l(yzyS)dy Y S P
2 o 2T 3 4 12 2
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Example 4.15 Let X; and X2 be independent random variables of the frequencies

e "1, x> 0,
fx, (21) =
0, T S Oa
and
Toe "2, T > 0,
fx, (x2) =
0, xTo < 0.

1
1. Find the means E{X1}, E{X2} and E {f}
2

We introduce the random variables Y1 and Ys by

Xy

Yi=X+X Yo = —.
1 1+ Xo, 2 X,

The vector function T, given by

X
T (r1,22) = (xl + T2, —1> ;
x2

maps Ry x Ry bijectively onto itself.
2. Find the simultaneous frequency k (y1,y2) of (Y1,Y2).

3. Find the marginal frequencies of Y1 and Ys.
(The question can be answered with or without use of the result of (2).)

4. Check if Y1 and Ys are independent.
5. Find the mean E {Y3}.
6. Find the median of Ys.

1. Since X; € T'(1,1) and X5 € T'(2,1), it follows immediately that
E{X;}=1 and E{Xy} =2.
ALTERNATIVELY,

oo oo
E{X}= / xie " dry =1 and E{Xs}= / a:%e_“ dry = 2! = 2.
0 0

Finally,

1 *1 >
E{—}:/ —~x26_"”2dx2:/ e~ "2 dxy = 1.
X5 0o T2 0
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2. We solve the equations y; = x1 + x2 and yo = —1, i.e. £1 = xaya, with respect to (x1,x2). By
T2

insertion,
Y1 = Zayo + 22 = 22 (1 +42), Le xg = L )
14 y9
hence
2, = Y1Y2 =y — Y1 and £y = Y1
1+yo T+ L+ys

The solution is unique, because y2 # —1. From (y1,y2) € Ry xR, follows that (z1,z2) € Ry xRy,
and vice versa, so 7 maps the domain R; x R, bijectively onto itself.

The Jacobian is

Y2 Y2
ey | LTY (w) 1 "
Yo ’ = =y +y)=———"—75 <0
(Y1, 92) 1 W (1+y2) (1+y2)

1+y (1—H/2)2
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Now, X7 and X» are independent, so the simultaneous frequency of (X7, X2) is given by

To e—(w1+$2), for 1 > 0 and x5 > 0,

f(ffl,xz) =

0, otherwise.

Thus the simultaneous frequency of (Y1,Y2) is

Y efyl.L:ly%e*yl. 2

—_— for y1 > 0 and yo > 0,
1+y2 1+y2)® 2 (1+y2)°

k(yla.yQ) =

and k (y1,y2) = 0 otherwise.
3. & 4. Tt follows from the splitting of (2) that

1
3 yie 1 for y; > 0,
le (yl) =
0, otherwise,
and
2
ﬁ for Yo > 0,
by () =4 102
0 otherwise.

It follows that Y7 and Y5 are independent.
Notice that Y7 € T'(3,1), and also by some elaboration that 2Ys € F(2,4).

3. ALTERNATIVELY it follows for y; > 0 that
1 Y1 1
k’Yl (yl) = / e—(yl—t) teetdt =e W / tdt = § y%e—m,
0 0

and ky, (y1) =0 for y; < 0.
If yo > 0, we get by a formula that
2! 2

ky, (y =/ e_y2t~te_y~tdt:/ e~ (Fv2)t gt = — = ;
v (42) | 1 | TR

and ky, (y2) = 0 for yo < 0.

5. Since X7 and X5 are independent, the mean is

X4 1
E{Y;}=FES —=FE{X;} - Eq{—,,=1-1=1.
{2} {Xz} ) {Xz}
ALTERNATIVELY,
9y o0 1 1
E{Ys} = / dy2—2/ - dya
o (1+w)° 0 (I+y2)° 1+
1 1 1 1
= 2 + 3 y —2(1——)—1.
T+y: 2 (1+y2) o 2

75

Download free eBooks at bookboon.com



Random variables I 4, Frequencies and distributions functions, 2 dimensions

ALTERNATIVELY, 2Y; € F'(2,4), so

__ne 4 _
E{2Y,} = 22 =2, hence E{Y;} =1

6. The distribution function of ys > 0 is given by

Y2 2 1 Yz 1
FYz(yz)Z/O mdt: [_m]o :1_m7

so the median is determined by

1 1

(1+y2)° 2
hence

(Vo) =v2-1.
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5 Functions of random variables, in general

Example 5.1 Let X, and X5 be random variables, and let Y1 = p1 (X1) and Yz = @2 (X3).
1) Assume that X1 and Xo are independent. Is it possible to conclude that Yy and Yy are independent?

2) Assume that X1 and Xy are dependent. Does it follow that Y1 and Yy are dependent?

1) The answer is ‘yes’. Let ¢~ 1(C) = {t | ¢(t) € C} denote the inverse set map. Then

P{p1(X1) € AN p2(X2) € B}
=P{X1 €97 (A) N X2 €9, (B)}
=P {Xl € <pf1(A)} -P {Xg € gp;l(B)) , because X, X, are independent
= P{p1(X1) € A} P{p2(X2) € B},
and we conclude that ¢ (X1) and s (X3) are stochastically independent.
2) The answer is ‘no’! It suffices to give an example. Let
1 (X1)=¢ and o (X32) = co

be constant maps. Then
1, ife; € Aand ¢ € B,

Plp1(X1) € AN p2(X2) € B} =
0, otherwise,

ZP{ClEA}-P{CQEB}ZP{(pl(Xl)EA}-P{@Q(XQ)GB},

proving that ¢ (X1) and ¢ (X3) are independent, no matter if X; and X, are independent or not.
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Example 5.2 A discrete random variable (X,Y') has its distribution given by the following table

Y\X[1 2 3
1 R S
s | ¥ 1 X

(f 411 12
3 |4 & 0

Find the marginal distributions of X and Y.
Compute P{X -Y is even}.

Compute P{X >Y}.

Are X and Y independent?

1) All probabilities are > 0, and their sum is 1, so the table describes a distribution.

Y\X[1 2 3]/
T T I 1I

s | R

¢ 1 123

e
fx |3 5 g1

We conclude from the table that the marginal distributions are

1 1 1
P{X=1}= -, P{X =2}=_, P{X =3} =,
3 2 6
and
1 1 1
PY =1} =, P{Y =2} =, P{Y =3} =-.
3 2 6
2) By a counting of the table we get
P{X -Yiseven} = P{X=2}+P{X=1AY=2}4+P{X=3AY =2}
o1, 1,13
26 2 4
3) We get in the same way
P{X>Y} = P{Y=1}+P{Y=2AX=2}

+P{Y =2ANX=3}+P{Y =3/ X=3}

B 1+1+1+0_8_2
T3 4 12 1203

4) The random variables X and Y are not independent. We have e.g.

PX=3AY=3=0 and P{X:3}-P{Y:3}:%;&0.
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Example 5.3 In a plane we draw two parallel lines {1 and €3 of the distance a. A needle of length
2b, where b < a, is thrown such that it falls randomly between the two lines in the following sense:

The midpoint of the needle has the distance X from {1, where X is rectangularly distributed over 0, af,
and the needle forms an angle Y with the two parallel lines, where Y is rectangularly distributed over
10, 7[. Finally, X and Y are independent.

1) Find a condition — expressed by X, Y, b — which describes that the needle intersects the line ¢;.

20 1
2) Prove that the probability that the needle intersects €1 is — - —.
a

Remark 5.1 This example is called Buffon’s needle problem, and it can be traced back to 1777, when

Georges-Louis Leclerc, count of Buffon, published a paper on the subject. If a needle is thrown at

26 1
random many times, then the fraction when the needle intersects £1, is approximately equal to — - —.
a

20 1

If this fraction is denoted by f, then we have the approximation m ~ — - —. Since then many people
a

have tried to find 7 in this way. In 1850 the astronomer Wolfe threw a needle 5000 times with the

2
values a = 45 mm, b = 36 mm. He obtained intersection in 2532 of the cases, hence f = ——. This

gives the approximation 3.160 of 7, which is quite fair. In 1901 Lazzarini published a paper with a far
better approximation of 7. He used a = 3 cm, b = 2,5 cm, the needle was thrown 3408 times, and he

5 3408
obtained intersection 1808 times. In this case we get the approximation 7 ~ 3 1808 — 3.1415919. ..,
which is astonishingly in agreement with 7 = 3.1415926. ... However, Lazzarini was extremely lucky

in getting his paper published. Some mathematicians have later pointed out the fairly strange number
3408 of throws, and they also noted that Lazzarini’s fraction can be reduced to 113’ which long has

been known as one of the very best rational approximations of . Therefore, mathematicians of today
are convinced that the paper was a swindle.
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1) It follows by the geometry that the needle intersects ¢1, if X < b-sinY.

2) We shall find P{X < b-sinY}. Since X is rectangularly distributed over ]0, a[, and Y is rectan-
gularly distributed over ]0, 7r[, we get

1 1
—, for z €]0,4q], —, fory €]0,n,
a
fx(a) = A=
0, otherwise, 0, otherwise.
Then
1 T b siny 1 T 2b 1
m™a y=0 =0 Ta y=0 a ™
ALTERNATIVELY,

P{X <b-sinY}=P{X —b-sinY <0},

so we can instead find the distribution function of Z = X —b-sinY.
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We shall, however, first find the distribution function G(y) of —b-sinY. This is given by
Gly)=P{-b-sinY <y} =P {sinY > —%} .
If y > 0, then G(y) = 1, and if y < —b, then G(y) = 0. Finally, if y €] — b,0[, then

Gly) = P {Arcsin (—%) <Y <7 — Arcsin (—%)}

= % {w — 2 Arcsin (—%)} =1+ %Arcsin (%) )

hence the frequency is

W) =G =- = 7= 77— YE|-b0]

and = 0 otherwise.

Since X and Y, and hence also X and —b sinY are independent, we conclude that Z = X —b sinY
has the frequency

:/j)o fx(s—x)g(x)dz, seR.

Thus, if b < a,

P{X <b-sinY} = P{Z<O}:/0 h(s) ds-/ {/ fx(s—x)g(x)d }ds

— 00

= / {/ fxs—x)ds}dx—/_oog(x){ _:fx()dS}dx
7rb/ \/7{ ﬁl oa]()ds}dx
%/0 W{ ; X[0,a] () ds}da:,

where x(o,)(s) = 1, if s € [0, a], and = 0 otherwise. Now,

a forx>a,

/ X[0,a)(8)ds = x, forx€][0,a],
0

0, forx <0,

so we get for b < a,

Y

/ NN 2 /
wab x ~ Tab 1—1y2
a 3

P{X <b-sinY}

dy
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which is the searched result.

Remark 5.2 If the needle is thrown a great number of times, then the relative frequency f that it

20 1
intersects ¢; will approximately be — - —, so we conclude that
a 7

26 1
T~ — - —.
a f
This formula has earlier been used in the attempt of experimentally to find 7, however, without great
success. The results have either been too poor, or one has cheated (like e.g. Lazzarini). ¢

Remark 5.3 One can also go through this example without the assumption that b < a; but in this
case the computations become really tough, because the curve x = b - siny then intersects the curve
z=a.
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6 Inequalities between two random variables

Example 6.1 Two persons A and B have the intension of meeting between 8 AM and 9 AM. Both A
and B arrive at the meeting place at a randomly chosen time between 8 AM and 9 AM. Furthermore,
they have agreed that none of them will wait in more than 10 minutes. Find the probability that they
meet.

If instead, A and B have agreed that A will wait 15 minutes for B, while B will wait 5 minutes for
A, what is then the probability that they meet?

HINT. The arrival times of A and B are rectangularly distributed.

Let X be the arrival time of A, and let Y be the arrival time of B. Then X and Y are indepen-
dent random variables, which are both rectangularly distributed over an interval of length 1 hour,
represented by the interval ]0, 1[.

Figure 28: The domain where the simultaneous frequency is 1.

The simultaneous frequency is

1, for (z,y) €]0,1[ x]0,1],
fx,y) =

0, otherwise.

Figure 29: The domain C is the diagonal strip.
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1 1
1) Since 10 minutes = — hour, the event corresponds to | X — Y| < 6 The probability is equal to

the area of C, hence

2
1 1(5 11
P{|X—Y|<6}—1—2-2<6> = 55 = 0-306.

Figure 30: The domain D is the translated diagonal strip.

1 1
2) The event corresponds to T <Y -X< T The probability is equal to the area of D on the
figure,

2 2
1/3 1 /11 101 43
1‘5(1) —5(5) =1 T om0

ALTERNATIVELY, (1) is solved in the following way:

P{meeting}
= P{A arrives first between 8°° and 8°°, and B at most 10 min. later}
+P{B arrives first between 8° and 8°°, and A at most 10 min. later}
+P{A and B both arrive between 8°° and 9°°}

51,51 11 1
6 6 66 6 6 36
ALTERNATIVELY, we find the frequency h(z) of Z = X — Y. Since f(z,y) = 1j9,12(x,y), we get

1
0

e8] 1
h(z) = / flz,z—z)dx = / Lo (2,2 — 2) do = / Lpo,1y(% — 2) du,
—oo 0
The integrand is only # 0, if z €]0,1[ and © — z €]0,1[, i.e. €]z, z + 1], thus for z €] — 1, 1], cf. the
figure.

(i) For z €] —1,0[ fas h(z) = [ d

r=z+1.
(ii) For z €]0,1[ fas h(z) = le dr=1-z.

(iii) If z ¢] — 1,0[, then h(z) = 0.
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02 04 06 08 /1

Figure 31: The domain of integration for h(z).

Then the task can be treated in the following way:

D
Plx-vicgf=r{-gez<gf=[ nere
/Oé(z+1)dz+/0é(1z)dz B(ZH)Q}; ~ B(lz)ﬂz
:;{1_ (2)2}‘;{(32—1}:1_(2)2_;
2)

b ere) [ o [l e o]

1
12

SO {E 0
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Example 6.2 Henry and John arrive independently of each other to a meeting point. Both Henry
and John arrive at randomly chosen times between 8 AM and 9 AM.

1) Find the probability that Henry arrives as the first one.
2) Find the probability that John arrives more than 10 minutes after Henry.
3) Find the probability that the difference between their arrival times is at most 5 minutes.

HiNT. The arrival times of Henry and John are rectangularly distributed.

Figure 32: The domain where the simultaneous distribution function is 1.

Let the random variable X denote Henry’s arrival time, and let the random variable Y denote John’s
arrival time. Since X and Y are independent and rectangularly distributed over e.g. |0, 1[, the simul-
taneous frequency is

L (z,y) €]0,1[x]0,1],

f(z,y)

0, otherwise,

and

/A flz,y)f(z,y)dedy = area(A), for A £10,1[ x]0,1].

1) By an area consideration we get

1
P{Henry arrives first} = P{X <Y} = the area of the upper triangle = 7

1
2) Since 10 minutes = 5 hour, we get in the same way

P{John arrives more that 10 min. after Henry}

2
1 1/5 25
=P {Y > X+ 6} = area of the upper triangle = 3 (6) =
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Figure 33: The domain given by X <Y is the upper triangle.

1
Figure 34: The domain given by ¥ > X + G is the upper triangle.

Figure 35: The domain where the difference is at most 5 minutes is represented by the domain around
the diagonal.
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1 1 1
3) Since 5 minutes = — hour, we get the condition D <X-Y< T2’ and the probability is again

obtained by an area consideration,

1
P{the difference is at most 5 min.} = P {|X -Y|< E}

1/11\* 23
- f the di Istrip =1-2--( —] =22,
area O € dlagonal strip B (12> 144
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Example 6.3 Two persons A and B arrive at a meeting point between 7 AM and 8 AM. Their
arrivals are independent of each other, and they both have a tendency of arriving at the end of the
interval which for convenience is put equal to ]0,1[. (We adjust the time at 7 AM).

The arrival time of A is denoted by X, and we assume that its frequency is

2¢, O<zxz<1,
flz) = { 0, otherwise,

while the arrival time of B is denoted by Y, and is also assumed to have the frequency

)2y, O<o <,
9(y) = { 0, otherwise,

A will at most wait 20 minutes for B, while B is a very impatient person who does not want to wait
at all.
Find the probability that the two persons meet.

0.8

0.6

Figure 36: The domain of integration is the diagonal strip.

Since X and Y are independent, the frequency of the 2-dimensional random variable (X,Y) is given
by

dey, O0<uz,y<l,
h(z,y) = f(z)g(y) =

0, otherwise,

1 1
Since 20 minutes = 3 hour, the task is to find P {X <Y <X+ 5}7 i.e. the integral of h(z,y) over
the diagonal strip on the figure.

2
The domain of integration is split at x = 3" Then by first integrating vertically (the inner integral,
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so z is kept fixed),

1 3 at3 ! !
P{Xngx—i——}:/ / dxy dy dx—i—/ {/ 4acydy}d1:
3 0 T % T

2 2 1
1
:/32x{(m+—) —a:Q}dx—F/ {21‘—23:3}dx
0 3 2
5 (4 2 1,1 T[4 1,13 1 4 8
_ 22ac:by 2 L o4l _|% 3 1 o T N L
/0 {3$+9x} T T : R 2 9 81
1
2

4 8+1 4+ 36—8_32+12+1 28
9 27 9 9 81 243 243 2 81
4 1 84 1 40 243—-80 163

o132 2432 9243 486 as6 " 3%

Example 6.4 According to their schedules, 2 trains A and B shall arrive to a station at the same
time on each their line. Train A shall stay at the station for 5 minutes, and train B for 4 minutes.

Howewver, the trains are very often delayed up to 20 minutes, so we assume that the arrival time of
train A is rectangularly distributed over [0,20] (measured in minutes), and the arrival time of train B
is also rectangularly distributed over [0,20]. The delay time is counted from the planned arrival time.

1) Find the probability that train A arrives before train B.
2) Find the probability that the two trains meet at the station.

3) Find the probability that train A arrives before train B and departs after train B.

Since the arrival time X of train A and the arrival time Y of train B are independent and both
rectangularly distributed over [0, 20], the simultaneous frequency of (X,Y) is

—, for 0 <z, y < 20,
flay) =4 400

0, otherwise.

1
1) Tt follows by an area consideration of weight 200 that
1
P{X <Y} = 3"

2) If the two trains meet at the station, then X —4 <Y < X +5, so (X,Y) lies in the diagonal strip.
Then by an area consideration,

1 1 1 1 225 256
P{X -4<Y <X+5 = m{2025»152§~162}m{40077}
I i
800 800
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Figure 37: The event X < Y is represented by the upper triangle.

Figure 38: The event X —4 <Y < X + 5 is represented by the diagonal strip.

Figure 39: The event X <Y < X + 1 is represented by the diagonal strip.

3) If A arrives before B, i.e. X <Y, and departs after B,i.e. X +5>Y +4, then X <Y < X + 1.
The probability can again be found by an area consideration,

1 1 /19\% 1 192
PIX<Y<X+1} = §_§.<%> :5{12_(%>}

1

2

19 19y 1 391 39
1+ =) (1-=) =222 ==
20 20) ~ 22020 800
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Example 6.5 Henry and Peter throw dices. Every minute (t = 1,2, 3, ...) Henry throws a dice

(probability % of getting a sixz), and Peter also throws another dice every minute. We define the
random variables X and Y by

X =k, if Henry obtains his first six in throw number k,

Y =k, if Peter obtains his first six in throw number k.
1. Find P{X =k}, k € N, and find the mean E{X}.
2. Find for every k € N the probability P{X =k AN Y =k}, and then find P{X =Y}.
3, Compute the two probabilities P{X <Y} and P{Y < X}.
4. We define a random variable Z by

Z =k, if Henry obtains his second siz in throw number k.
Find P{Z =k}, k=2,34,....

5. Find fork=2,38, 4, ...,

P{Z=kNY >k},

and then find the probability that Henry gets at least two sizes before Peter obtains his first six.

1
1) Since X (and also Y) is geometric distributed with p = g e get

1 5 k—1

2) Since X and Y are independent, we get for k£ € N that

P{IX=kAY=k}=P{X=k} P{Y=k}= {é <%)“}2 1 <§>k1

Then by a summation,

k=1 k=1 36 11— —

> 125\t 1 1 1

3) Clearly,
P{IX<Y}+P{Y <X}+P{X=Y}=1

It follows from the symmetry that P{X <Y} = P{Y < X}, so

P{X<Y}=P{Y <X} =

N =

(1—P{X:Y}):%(l—%>:i.
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ALTERNATIVELY,

P{X <Y} ZP{X_kAY>k} ZP{X_k} P{Y >k}

=1
*iw’“.&’tz@i RN
_k:16 6 _66: 36 11 117

4) The random variable Z can be written Z = X; + Xo, where X; and X5 are independent of the
same distribution as X. Then we get for k > 2,

Plz=h = ZP{X“Z} P{Xe=k—i} = Z (5>é<?)

6
R

1=
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ALTERNATIVELY, Z = k means that in the first kK — 1 throws we have obtained precisely one six,
and that we in the k-th throw get another six, hence

P{Z:k}:(k—l)-é<2>k_2-é:(k;—1)~%<g>k_2.

5) Here,
- 1 & 25\" 72 25
P{Z<Y} = ZP{Z:I{/\Y>I<:}:%Z(I€—1)<%> e
k=2 k=2
1 25 1 25
36 36 /11\2 121°
()
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7 Functions Y = f(X) of random variables

Example 7.1 Let X be rectangularly distributed over |0,a[, where a > 0. Find the distribution
function and the frequency of the random variable Y = X2 + X.

The frequency of X is

1
a, 0<zx<a,
flx) =

0, otherwise.

The function y = 7(z) = 22 + x maps |0, a| increasingly onto ]0, a+ a? [ The inverse map is

11 1

2 _
1Y

Then the frequency of Y is

! P! ! 0<y<a®+
a ) 1 o 144y’ ysa Ta
9y) = Vaty
0, otherwise,
and the distribution function G(y) = [Y_ g(u) du is
0, y <0,
_ 1 1 1 1 9
Gly)=4 -7 (y)—a{\/4+y 2}, 0<y<a’+a,
1, y>a’+a

ALTERNATIVELY, we get for y € ]0,a? + af,

G(y)ZP{YSy}ZP{XS—%+\/i+y}=2{\/i+y—%},

hence in the same interval,

B 11

oy L1
g(y)_G(y)_a 1 _a m
2 Z—&-y
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Example 7.2 A line segment of length 1 is randomly divided into two pieces of the lengths X and
1—X, where we assume that X is rectangularly distributed over the interval ]0,1[. We form a rectangle

1
of edge lengths X and 1 — X. Find the probability that the area of this rectangle is bigger than 3

The area of the rectangle is Y = X (1 — X). We shall find the probability that this expression is bigger
1
than —.
an ¢

Now

3

1
r(l—2)=—2?+2> -,

8
if and only if
1 2 1 2
Lo, L2
2 4 2 4

Since X is rectangularly distributed, we get

1, /2
1 V2 1 V2 RN V2
P__ _ X — _ = 1d = —.
{2 1= <2+4} /,ﬁ T

2

Remark 7.1 It is possible in general to find the distribution function of

Y = f(X)=X(1-X).

1
If0<y<Z,then

ren - el ofee i)

SO
0, y <0,
1-4/1—-4 0 L
Fy(y) = - - %Y, <y< 17
1
1 > =
) Y= 1
and
2y 1
ey vk 0<y< VRl
1-4 4
fr(y) = Y
0, otherwise.
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Note that the probability of Y = X (1 — X) being bigger than y is

1, for y <0,
1
P{Y>y}:1—Fy(y)= V1 —4y, forO<y<Z,
1
0 f > .
) ory=y
1
Ify:§weget
1 1 V2
PY>—-(=4/1—-=—.
{ >8} 2 2 0

Example 7.3 Let the random variable X be rectangularly distributed over the interval ] —g, g [ Find

the distribution functions and the frequencies of the random variables

Y =sin X, Z = cos X, U =tan X.

Since X is rectangularly distributed over } —g, g [, the frequency is given by

— forme}—z,z{,
0  otherwise.
1) Y =sinX.
If |y| < 1, then

1 1 1
P{Y <y} = P{X < Arcsin y} = — {Arcsin Y+ g} = — Arcsin y + 2’
T T
hence the distribution function of Y is

07 Yy S _17
1 ) 1
Fy(y) =< = Arcsin y + 3 —-1l<y<l,
™
L, y =1,
and the frequency is then obtained by a differentiation,
1
T -1l<y<1,
fy(y) = m Y
0, otherwise.

ALTERNATIVELY, we first find the frequency fy (y) of Y. Since y = sinz maps } 7%’ g [ increasingly

onto | — 1, 1[, it has an inverse map,

x=7"1y)= Arsiny with (771 (y) = ———.
1—y?
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Figure 40: The graph of z = cosz for v €] — 7,

SE

Since f (77'(y)) = =, we get that

— |

-l<y<l,

friy)=< TV 1-y*

0, otherwise.

and if —1 <y < 1, we get the distribution function

v 1 1
F =PlY < :/ R m— :[Arcsin ]
v(y)=P{Y <y} AT y=- Y

2) Z =cosX.
In this case, only z €]0, 1] is of interest. It follows by the symmetry — cf. the figure — that

Y 1 1
= — Arcsin y + —.
4.7 2

P{Z <z} = 2P{Arccosz§X< g}:l%{g— Arccosz}

2 2
1 — — Arccos z = — Arcsin z.
T T

Hence, the distribution function is

0, z <0,
2 .
Fz(2) = - Arcsin z, 0<z<1,
L, z =1,

from which we get the frequency by differentiation

2
—, 0<2z<1,
fZ(Z): 7T\/1*22
0, otherwise.

T
Since z = cosz is not monotonous in }75, 5 {, we cannot apply the usual argument.
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3) U =tan X.
If u € R, then
1 T 1 1
P{U <u} =P{X < Arctan u} = — {Arctan u+ 5} = — Arctan u + 2
7r 7r
hence
1 1 ) 1
Fy(u) = ;Arctan u+ 5 8 fu(u) = F;(u) = T ueR

ALTERNATIVELY, like in (1) it is possible to find the frequency of U, because u = 7(x) = tanz

T
maps } 53 [ increasingly onto R with the inverse map = 77! (u) = Arctan(u), where

_ 1
Tl 4

(r1) (w)

Then apply the standard formula.

The distribution of U is a Cauchy distribution.
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Example 7.4 Assume that the random variable X is rectangularly distributed over the interval |0, 7[.
Find the distribution functions and the frequencies of the random variables

1
Y:Y’ Z = cos X, U =sin X.

When X is rectangularly distributed over ]0, 7[, then

0 forx <O,

for x €10, 7],
fx(I) = and Fx(fﬂ) =
0 otherwise,

for x €]0, 7,

1  forz>m.

25

0.5

1
Figure 41: The graph of y = — in the interval |0, [.
x

1 1 1
1) The image of |0, 7[ by the map y = — is ] —,00 { If y > —, then we get the distribution function
x ™

3

FY(?J)ZP{YSy}=P{%Sy}—P{Xzi}—l—P{X<$}_1—i

Ty’
hence
1 1 1 1
1—— fory>—, — fory>—,
Y T Y T
Fy(y) = and  fy(y) =
1 1
0 for y < —, 0 for y < —.
T T

2) The image of |0,7[ by z =cosz is | — 1,1[. If z €] — 1, 1], then we get the distribution function

Fz(z) = P{Z<z}=P{cosX <z} =P{X > Arccos z}

1
1 - P{X < Arccos z} =1 — — Arccos z,
m
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-05-

Figure 42: The graph of z = cosx for z €]0, 7[.

hence
0, z < —1,
1
Fz(z)=¢ 1— —Arccos z, —1<z<l,
T
1, z > 1,
and
! ! 1<zl
—_— - z
T — 2’ )
fz(z) = L=
0, otherwise.

0 05 i 15 2 25 3

Figure 43: The graph of u = sinz for z €]0, 7[.
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3) The image of |0, 7[ by u =sinz is |0, 1[. If u €]0, 1], then we get the distribution function

Fy(u) = P{U<u}=P{sinX <u}
P{X < Arcsin u} + P{X > 7 — Arcsin u}
= P{X < Arcsinu} +1— P{X <7 — Arcsin u}

1 1 2
= 14 — Arcsin u — = {m — Arcsin u} = = Arcsin u,
T T T

hence
0, u <0,
2 .
Fy(u)=4¢ = Arcsinu, 0<u<l,
s
1, u>1,
and
2 1
- O<u<l,
— .2
folwy =4 TV
0, otherwise.

ALTERNATIVELY, we may apply the usual formula in (1) and (2), but not in (3), because sinus is not
a bijective onto the given interval.

If t(x) is a bijective transformation, and x = x(t) is the inverse, then we have in the form of differentials,

dzx

o7 | dt = Fr(t)dt.

fx () dv = fx (x(t))

Hence, we shall always find the inverse map = = x(¢).
1 71 : - 1

1) If x €]0, 7|, then y = — € | —,00|. The inverse map is given by x = —, thus
x ™ Yy

dr 1
dy y?

1
and we get for y > — that
™

Friy) = fx G) - ’—y—ﬂ

1
Ty

hence by an integration for y > —,
7r

100
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2) If z €]0,7[, then z = cosz €] — 1, 1] bijectively. The inverse is given by 2 = Arccos z, thus

dzx 1

= viea Y
If z €] —1,1], then
Fa(e) = firecos 2| - !
zZ) = Irccos z2) - |— = 5
7 X V1—22 V1 — 22

so if z €] — 1, 1], then we get by an integration that

1 1

- _1;.—1_<2d§:;

1 1
Fyz(z) [— Arccos ()7, = - {m — Arccos z} =1— - Arccos z.
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Example 7.5 Assume that the random variable X has the frequency

3 gcw< T

2 r< =

o’ 2’
f@y=¢ 1 7

o 2<96<7r,

0, otherwise.

Find the distribution function of X.
Then find the distribution functions and the frequencies of each of the random variables

Y ==

X Z = sin X.

Figure 44: The frequency f(x).

08
0.6
0.4
0.2
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1) If x <0, then F(z) = 0.
If0<x§z,thenF(x):3—$.
2 2m

3
In particular, F' (g) =7 hence for g <z<m,

s | 3 1 T 1 T
F :F(—) /—d _° _{ __}:_ .
() 2 +%27rx 1T \" Ty T e,

If x > 7, then F(x) = 1.
Summing up we get the distribution function

0, z <0,
3z T
i < =
9 O<x_2,
F(z) = .
T
S+, —<z<m,
2T o 2 STST
1, >

1 1
2) The interval |0, 7| is by y = — mapped bijectively onto ] —,00 [
T T

1
15t variant. If y > —, then we get the distribution function
™

R R R RS

_i for > —
o Y ’
1 1 f < <2
2 2my’ v=
0, for y < —

The frequency is obtained by a differentiation,

3 . - 2

2’]'(':[/2 7 y ']T’
_ 1 1 2
fr(y) = —7, for —<y<—,
2my? T 0

0, otherwise.
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1 d 1
ond yariant. Since 2 = — and @ _ ——5, it follows that
y dy Y
3 2
2 > 2
2my? Y=
1 1
fY(y)_FX<_>_2: L { l< <%
v/, ¥ 2my? TV
0 otherwise.

1
If y < —, then Fy(y) = 0.
T

1 2
We get for — <y < — that
T T

If y > —, then
2 v o3 1 1 3 17Y
F = B (= Y dnp==—4+ 2 |-Z
v = 5 () =g e ),
1.3 3 3
44 2my 21y

3) The function z = sinz is not bijective, so we cannot apply the usual theorem. Since the image of
10, 7[ by z = sinx is ]0, 1], we get for z €10, 1] that
Fz(z2) = P{Z<z}=P{sinX <z}
= P{X < Arcsin z} + P{X > 7 — Arcsin z}
= 1+ P{X < Arcsin z} — P{X <7 — Arcsin z}.

Since Arcsin z € }O, g [, we must have m— Arcsin z € }g,ﬂ'{. Then it follows from Fx(z) =
P{X <z}, found in (1) that

1 1 2
Fz(z) =1+ % Arcsin z — {— + — (m — Arcsin z)} = Arcsin z,

2 27
thus
0, for z <0,
2 .
Fz(z) = — Arcsin z, for0<z <1,
T
1, for z > 1,
and hence
1 L for0<z<1
R — or z
— 27 b
fay=4 T VIT#
0, otherwise.
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Example 7.6 The random variable X has the frequency

Find the frequencies of the random variables

Y =sinh X, Z = cosh X.

We first note that sinh : R; — R, and cosh : Ry —]1, +00[ are bijective and monotonous.

1) Y =sinh X. In this case, y = 7(z) = sinhx, © € R, hence

r=7"1y) = Arsinhy:ln(y—i— \/1—|—y2>7 y >0,

and
dx o r 1

It follows from the usual theorem that the frequency is given for y > 0 by

y > 0.

1 1 1

Ity g Vity ity

o) =F (W) | )] = (vt Vi?) |
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thus
1 . 1
y+VI+y? Ity

for y > 0,

9(y) =

0, otherwise.

2) Z = cosh X. In this case, z = 7(x) = coshx, x € Ry, thus

r=71"12z) = Arcoshzzln(er\/fol), z>1,

and
% = (Til(z)) = —. z> 1.

Applying the theorem we get for z > 1 the frequency

h(Z) _ f (7_—1(2)) X ‘(7—1)/ (Z)’ _ efln(erm) . 2217 - _ - \/122—71 . 2217 1’

hence
1 ! f > 1
. , or z ,
h(z) = zH+V22 -1 V22-1
0, otherwise.
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8 Functions of two random variables, f(X,Y)

Example 8.1 1) Let X and Y be independent random variables with their frequencies

k 1

Ty “ER fr () i1 €R

fx(x)

where k denotes some positive constant. Prove that X +Y has the frequency

E+1

= R.
{kri2+a2p  U€

g(z)

2) Let X1 and X5 be independent random variables of frequencies

ay
m(af +a3)’

a3z

1 €R,  fa(w2) = @t ad)
2 2

T9 € R,

fi(z1) =

where a1 and ay denote positive constants. Find by using the result of (1) the frequency of X1+ Xa.

3) Let Y1 and Yy be independent random variables of the frequencies

ai

g1(y1) = , 1 €R,
T {a% + (1 — b1)2}
a
g2(y2) = . 2 o 2 ER
W{az + (y2 — b2) }

where a1, as € Ry and by, by € R. Find by using the result of (2) the frequency of Y1 + Ys.

1) (The hard question). The frequency g(z) of X +Y is given by the convolution

1k L
9@ =5 k22 14 (t—x)2

A decomposition gives us the structure

k 1 a+bt  c+dt—x)

]_ . =
()k2+t2 1+ (t—2)2 Kk2+2 1+ (t—a)?

which has the integral

%Arctan (é) + cArctan(t — z) + g In (k2 +12) + g In {1+ (t—x)}.

The integral is clearly convergent, so d = —b, and the logarithmic terms disappear by taking the
limit.

We conclude that

o) =~ {2+,

™

where a = a(k,x) and ¢ = ¢(k,z) depend on both k and z.
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If we put d = —b into (1), then
k 1 a+ bt bx +c— bt

K242 1+ a2 —2xt+2 k2412 ' 1422 — 2xt + 2

hence
(2) k= (a+0bt) (1+2% -2z t+1°) + (k* + ) (bz + c — bt).
The constant term of this equation is
k= (1+x2)a+k2m-b+k‘26,
thus

(14+2%) Z+ke-btk-c=1
Since we want to find % + ¢, we rewrite this as

(3) (1+27) {%+c}+k¢w-b+ (k—1-2*)c=1

The coefficient of ¢ i (2) gives the equation
—2za+ (1+2%)b—k*b =0,

which is rewritten as

(4) —Qkx{% +c} +(14+2° = k*) b+2kz-c=0.

The coefficient of 2 in (2) implies the equation
a—xzb+c=0,

which is rewritten in the following way (cf. the above)
(5) k{%+c}—x.b+(1—k).c:o.

a
Summing up we obtain the following linear system of the three unknowns % + ¢, b and c,

(1+m2){%+c} + kx - b = (k—-1-2%)c = 1,
—2kx{%—|—c} + (1+x2—k2)b + 2kx - ¢ = 0,
k{%Jrc} - z-b + (1-ke = o0
Then by Cramer’s formula,
1 kx k—1—2?2
0 14+ 2%2—k2 2kx
@ 0 - 1-k
T 1=
k 1+ 22 kx k—1—2?
—2kzx 14 2% —k? 2kx
k —x 1—-%
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First compute the numerator

1422 — k2
—x

2kx
Lkl = (1—k) (1+2%) — (1 — k)k* + 2ka?
= 1+2%—k—ka®+2ka® - K> + &
= 2?(1+k)+(1—k)(1-k)

= (k+1){z?+ (k-1)}.

When the third column is replaced by the sum of the first and the third column we see that the

denominator is reduced to

1+ a2 kx k 1+ a2 — k2 2kx 0
—2kxr 14+z2—-k> 0 |= —2kx 1+22—-k% 0
k — 1 k —x 1
1+$2_k2 Qkx o 2 22 2 9
—2kx 1+22 —k? = (La? = F%)" + ke

= 2 +2% (22K +4k%) + k' —2k° + 1

— PP k=12 42 (P22 +2%k—1) + (B —1)°

= 22{®+(k-1)7}+2*(k+1)°+ (E+1)%(k— 1)
= {2+ (k-17}+(k+1)*{2*+ (k—1)%}
= {22+ (-1} {2+ (k+1)%}.
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Hence, if (z,y) # (0,1),

el k+D) {2+ k-2  k+1
R R U O R R RV R ek

@
k
which is extended by continuity to (z,k) = (0, 1).

Thus, the frequency is given by

1 ra 1 k+1
R R Fu (e

as required.

2) The frequency of X; + Xs is

a1ag & 1 1 t
= . dt = —
f(x) 2 /_OO a% ¥ 12 a% ¥ (t — $)2 ) u a17
as > 1 1 t
= F D) M 2 d -
PSS t 9 of t T ay
14+ — aytaj | ———
1 ay ai
ag
1 o 1 ar
- — / a1 ~du k=2 and (1),
T4aq 14+u <a2> < T ) al
il +(u——
ay aq
a9 1
_ 1 ay . 1 a1 + ao
= 5 s ==
et T 2
G ()
aq al
3) In this case we get the frequency
a1as > 1 1
gly) = / . dt u=t-—>by,
™ Josad +(t=b1)* a3+ (y—t—bo)’
a1as o 1 1
= 2 2 2’ 2 2 du
T Jooo 07 T U* a3+ (y—u—by —by)

aia9 1 1
= 5 / 5 53 5 du
T Jooo 01 T U a3+ (u—{y— by —b2})
aq —|—a2
(a1 +a2)? + (y — {b1 + b2})*’

2=

where we have applied (2).
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Example 8.2 Let X and Y be independent Cauchy distributed random variable of the frequencies

P —

= m, reR, fy(y)=

— . yeR
ri+y) Y

Prove that the random variable Z = XY has the frequency

2 Inlg|
fZ(Z)_ 2'22717

z€R,

(suitably modified for z = —1, 0, 1).
HINT: One may apply that
1 1 1 1

2
~1). ) = .
(Z ) 1+22 22122 1422 22+22

If z £ —1, 0, 1, then the frequency of Z = XY is given by

fz(2)

2/00 1 1 d
= = - adr
)y 1422 22422

R
™ Jo 1+u 224w

_ 1 m{ 1111 }m
2 Jo 22—-1 14u 22—-1 22+4u

1 1 I / 1 1 d

= = im — = u
2 22-1 A% Jy |1+u  22+uw

u+1

1 1 I 1 ! 1 2
= —. im <In —In( = = .
w2 22 -1 A—oo u+ 22 22 w2

/Oog(:c)g(z) 1da: 1/°° 1 1
2 dr= = 5 e
T R A A E

x

symmetry; then u = x°,

1
||

2

Since the exceptional set {—1,0,1} is a null set, we can choose fz(z) = 0, which is sufficient at these

points.
Note that

lim fZ(Z) = o0,
z—0

and that it follows by I"'Hospital’s rule that

1
S 2 11

2 Inlz] 2

= m =
22 -1 72 254122 72

Iim — = —.
z—+1 222 2

z—+1 7'('2
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Example 8.3 Let X and Y be independent random variables, both rectangularly distributed over the
interval 10, 1][.

1) Find the frequency of the random variable XY .

X
2) Find the frequency of the random variable v

3) Find P{Y > 2X}.

The two independent random variables X and Y have the same frequency,

1, z€]o,1],
flx) =

0, otherwise.

04 =02’ 0|03 04 06 08 1 12 14

x

Figure 45: The graph of the frequency g(s) of XY

1) Since the values of XY lie in ]0, 1[, the frequency is for s €]0, 1],

g(S)ZLiSf(x)f(z) %dx:/; idmz—lns,

=s
thus

—Ilns, 0<s<1,

9(s) =
0, otherwise.

X
2) Since the values of v lie in ]0, ool it follows by an application of a formula for s €10, oo that the

frequency is given by

h(s) = /000 f(sx) f(x)xde.

1

This expression is only # 0, if sz €]0,1[ and = €]0,1], hence if 0 < 2 < 1 and 0 < x < —. Then
s

we must split the investigation:
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0.8
0.6

y
0.4
Ozl

-0.2

Figure 46: The graph of the frequency h(s) of v

1
a) If 0 < s <1, then 1 < —, hence
s

! 1
h(s):/1~1~xd:c:f.
0 2

b) If 1 < s < o0, then instead

1
h(s) = dr = —.
(s) /0 zde =53
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Summing up we get

1
- 0<s<1,
2 5=
h(s) = 1
() @, 1<$<OO7
0, s <0.

0.8

0.6

04

Figure 47: The line y = 2z defines the upper triangle A, where y > 2z.

3) 15t variant. It follows from the geometry that

P{Y >2X} = area(A) =
2Ild

X 1
Yy 2

P{Y>2X}:P{—<—

An alternative solution is the following:

N

variant. It follows from (2) that

N =

1

5"

1
1

1) Since XY has its values lying in |0, 1], it follows from the figure that if s €10, 1[. then

1 1
P{XY < s} = areal(A):/ 1dx+/ fdac:sfslns,
0 s X

and the frequency is obtained by a differentiation,

—Ilns, 0<s<1,

g(s) =
0, otherwise.
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0.8

0.6

0.4

0.24

Figure 48: The curve xy = s defines the domain A.

Figure 49: The domain A lies above the line T s, 0<s< 1.
Y

0.8

0.6

0.4

0.2

Figure 50: The domain B lies above the line T s, 8> 1.
Y
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X
2) Tt follows that the values of v lie in 0, 00[. If s €]0, 1], then it follows from the first figure that

X 1
P{?Ss}:area(A)zﬁs, 0<s<1.
If s > 1, then it follows from the second figure that

1

X
P{?Ss}: area(B):l—%7 >

Finally, the frequency is obtained by a differentiation,
1

57 0<3<1,
h(s) = 1 1<s

2527 =7

0, s<0.

Example 8.4 Assume that X and Y are independent random variable, both attaining the values 1,
2, 3, 4, 5, 6. Assume that

fi=P{X=i, g=P{Y=i, i=1234,56.
1
It is well-known that if f; = g; = 6 1=1, 2, 8, 4, 5, 6, then the probabilities P{X +Y =k}, k =2,
3, ..., 12, are not all the same.

1
Prove that no matter how f; and g; are chosen, we can never obtain P{X +Y = k} = I for all
k=28 ... ,12

Assume that
1
P{X—i—Y:k‘}:ﬁ forall k =2,3,...,12.
If K =2, then

1
7= fig, hence f; > 0 and g; > 0.

If K =12, then

1
0= fe 96, hencer fg > 0 and g > 0.

If £ =7, then

1
= fog1 + {fs92 + fa95 + f394 + f295} + f1gs.

By subtracting the equation for k = 2 from the equation for k = 7, it follows by a rearrangement that

(f1 = f6) 91 = {f592 + fags + f3g94 + fag5} + f196 > 0,
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because {---} >0 and f1g¢ > 0. Since g1 > 0, we must have f; > fs.

If we subtract the equation for k£ = 12 from the equation for k = 7, then by a rearrangement.

(fe — f1) 96 = {f592 + fag3 + f394 + fag5} + feg1 >0
for similar reasons. We conclude that fg > fi.
These two claims cannot be simultaneously fulfilled, so the assumption must be wrong.

It even follows from the proof above that P{X +Y = 2}, P{X +Y =7} and P{X +Y = 12} can
never have the same value, thus we can get a stronger result.

ALTERNATIVELY we assume that we can choose the f; and the g; in such a way that the probabilities
are equal, i.e.

1
P{X+Y =k}=— k=2, ..., 12

11’

)

Then in particular,

1 1
P{X+Y:2}:f191:ﬁ and P{X+Y:12}:f6g6:ﬁ,

hence f191 = fsgs. This is reformulated in the following way

ﬁ_gﬁ_

fe g1
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Considering the case k = 7 we get

L g6 . fe 1 1
= = > = — — = — — .
T P{X+Y =7}> fig6 + fogn flgl{g1+f1} 11{m+x}

1 1

Since x + — > 1 (actually x + — > 2, when x > 0), this is not possible, and we have obtained a
x

contradiction, and the claim follows.

Example 8.5 Let the 2-dimensional random variable (X1, X5) have its frequency h (x1,x2) given by

1
—5 a3 <o
mr
h (I‘l, IEQ) =
0, otherwise,

(a uniform distribution over the disc % + 23 < r?).
Let the random variables Y1 and Yo be given by

XIZchOSYQ, X9 =Y;sinYs, 0<Yi<r, 0<Y;<2m.

Find the frequency of the 2-dimensional random variable (Y1,Y3), and find the marginal frequencies.
Are Y7 and Ys independent?

Remark 8.1 This clearly corresponds to the transformation between rectangular and polar coordi-
nates over a fixed disc. ¢

It follows that

x = (z1,72) = ©(y) = (y1 cosy2,y1 sinys), y1 € [0,7], y2 €[0,27].

The corresponding Jacobian is

81‘1 8%‘1
Oy1 Oy cosys —yi1sinys
= = yl Z O.
Ozy  Oxp sings 1 cosy
83/1 8y2
Hence,
Y1
m’ (ylayQ) € [077"} X [0727([7
k (y17 yz) =

0, otherwise.

The frequencies of the marginal distributions are then

2
0% %dyz =27 % = %7 y1 € [0,7],
fY1 (yl) =
0, otherwise,
120

Download free eBooks at bookboon.com



Random variables I 8. Functions of two random variables, f(X.Y)

and

Y2 € [0, 27‘&'[,
fY2 (yQ) = T
0, otherwise.

It follows immediately that

k (yl’yQ) = fY1 (yl) fyz (yQ) )

hence Y7 and Y5 are stochastically independent.

Example 8.6 Let the 2-dimensional random variable (X1, X2) have the frequency
1+ x2, for0<z <1og0<zy <1,
h(xy,zq) =
0, otherwise,
and let (Y1,Y2) = 7 (X1, X2) be given by
Yi= X, 4+ Xo, YYo= X
1) Prove that 7 maps 0,1[ x 10, 1] bijectively onto the domain
D' ={(y1,y2) €R*[0<yp < 1,92 <1 <ya2+1}.
2) Find the frequency k (y1,y2) of (Y1,Y2).

3) Find the marginal frequencies of Y1 and Ya.

Figure 51: The domain D’.
Since T (z1, 22) = (v1 + X2, x2), i.€.

Y1 = 21 + T2, Y2 = T2,
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1

it follows that the inverse map 77" exists,

T (1, y2) = (11 — y2,92)
thus
L1 =Y1 — Y2, T2 = Y2.
The conditions 0 < 1 < 1 and 0 < 22 < 1 can now be replaced by
O0<y; —y2 <1, 0<ys <1,
hence
Yo <y1 <y2+1 and 0<ys <1,
and we have proved that 7 maps ]0, 1[ x ]0, 1[ bijectively onto
D' ={(y1,y2) €R*[0<yo < 1,92 <y1 <y2+1}.
The Jacobian is then given by

0 , 1 -1
Jr (y1,y2) = M = ‘

=1.
8(y1,y2) 0 1 ’

Then (Y1,Y3) i D’ has the frequency

kE(yi,y2) =h(y1 — y2,92) - 1 =y,
thus

y1, forO0<ys<landy <y; <ys+1,

k(y1,y2) =
0, otherwise.

Figure 52: The graph of Fy, (y1).
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Marginal frequencies.
1) We get for Y7 by a vertical integration

a) If 0 <y; <1, then

Y1 Y1
fvi (y1) =/ k(y1,y2) dyz =/ y1 dys = y3.
y =

2=0 y2=0

b) If 1 <y < 2, then

1

1
fvi (y1) :/ k (y1,v2) dy2 =/
y2=y1—1 y2=y1—1

y1dys =1 (2—y1),
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hence summing up,

y% 0< Y1 S 17
) =3 n@C-yp)=1-wm-1°, 1<pn<2,
0, otherwise.

02 07702 04 06 08 1 12

0.2

Figure 53: The graph of fy, (y2).

2) For Y; it follows by a horizontal integration for 0 < yo < 1 that

ya2+1 y2+1 1 ) y2+1
Ive (y2) = / k(y1,y2) dyr :/ y1dyr = [— yl}
Y

1=Y2 Y1=y2 2 Y1=y2

1 2 21 1 _ 1
e+ =) =5 Gt 1=p s,

thus summing up

1
y2+§7 0<y2 < 17
frva (y2) =

0, otherwise.
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Example 8.7 Assume that the 2-dimensional random variable (X1, X2) has the frequency

2 exp (— (x1 + x2)), (z1,22) € D,
h(zy,22) =
0, otherwise.

where
D:{(xl,xg)eRQ|O<x2<x1<oo},
and let (Y1,Y2) = 7 (X1, X2) be given by
YVi=X1+Xs,  Ya=(X1—X5)2.
1) Prove that T maps D bijectively onto the domain
D' ={(y1,y2) €ER? |0 < y; <00,0<ys<yi}.
2) Find the frequency k (y1,y2) of (Y1,Y3).
3) Find the marginal frequencies of Y1 and Y.

4) Are Yy and Ys independent random variables?

0.8

0.6

04

0.2

Figure 54: The domain D lies between the X; axis and the line x5 = z;.

1) Tt follows from
y1=21+2x2 and yp= (951—962)2 og x1—x2>0
that
T1+ T2 =1 and 1 — T2 = +/y2,

hence

1 1
301:5{91-1—\/%} and $2=§{y1—@}~
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Figure 55: The domain D’ lies between the Y; axis and the parabola ys = 2.

Since (z1,2) is uniquely determined by (y1,y2), we conclude that 7 is bijective. The boundary
curve T = x1 is mapped into y2 = 0. The boundary curve 2 = 0 is mapped into y; = /y2, i.e.
Yo = y?, y1 > 0. Since x5 > 0 in D, we must have y; > VY2, thus 0 < yo < y7, and we have proved
that 7 maps D bijectively onto D’.

2) We next compute the Jacobian,

oz, Oz 1011
0 (x1,x2) By Oy2 B 2 AV _ 11 <0
9 (y1,92) dry Oy 1 11 4 VY2
Oy1  Oys 2 4yp

It follows from x; + 25 = y; that the frequency of (Y1,Y3) is given by

SRS S S g
e T T = =3 Or y17y2 b
4 ./ 2 ./
k(ylay2) = b2 b2
0, for (y1,y2) ¢ D’.

3) The marginal frequency of Y7 is obtained by a vertical integration,

1 yf e*yl 2
() = 3 N dys = e™¥ [y2lg! = e for yy >0,
0 2

and fy, (y1) =0 for y <O0.

The frequency of Y5 is obtained by a horizontal integration,

Fra (12) 1/Ooefy1d L, 0
Y, (Y2) = 3 Y1 =5 or ys >0,
’ 2 J gz VY2 2 VY2
and fy, (y2) = 0 for yo < 0.
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4) Since D’ is not a rectangle, it follows immediately that Y; and Y3 are not independent. It also
follows from

i (Y1) - fro (92) # (Y1, 92) -
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Example 8.8 Assume that X, and Xo are independent identically distributed random variables of
the frequency

re ¥, x>0,

0, otherwise.

1
1. Compute the means E{X1} and E {f}
1

2. Compute the probability P{X> > X1 }.
Define the random variables Y1 and Yy by

X1

1=X1+X Yo = —.

1 1+ Ao, 2 X,
It will without proof be given that the vector function T given by

T

T (xla'rQ) = (1’1 + X2, _>
)

maps Ry x Ry bijectively onto itself.
3. Find the simultaneous frequency k (y1,y2) of (Y1,Y3).

4. Find the marginal frequencies of Y1 and Ys.
(This question can be answered both with and without an application of the answer of question 3. ).

Check if Y1 and Yy are independent.
Compute the mean E {Ya2}.

Find, e.g. by an application of question 2., the median of Ys.

® N o

Give an intuitive explanation of why the median of Ys is smaller than the mean of Y.

1) The means are

e 1 *x
E{X,} = 22e T dr =2 and E{—}:/ —e *dr=1.
= | w1/ :

2) By the symmetry,

P{X2>X1}=P{X1>X2}: (P{X2>X1}+P{X1>X2}):%.

N | =

X
ALTERNATIVELY, the frequency of Y5 = fl is zero for yo < 0, and when yo > 0, then
2

fv, (y2) = /_00 f (yex) f(x) - |z|dx = /0<X> yoxe VT .xe " wdx

e 6
yz/ gl (tvaw gy — Y2 T / Betdt = —22 I
0 (1+y2)" Jo (1+y2)
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hence

X e ! 1 1
P{X,> X} = P{Yl<l}:/ %dy2:6/ . - b dy
2 0o (14+y9) o | (T+y2) (1+y2)

B 11 1 _ 3,23 2
2(1+y)® 3 (1+yp)’ 2228 1218
3 1 1
= ]_ —_ — _ = —
4 + 4 2
3) It follows from y; = x1 + 22 and yo = il that
T2
T1 = Y222 and y1 =21 + 22 = (y2 + 1) z2,
hence
Y1Yy2 Y1 Y1
T = =y — and Ty = .
RS . y2+1 2Tl
The Jacobian is
Y2 )
+1 1)2
d(x1,22) b2 (y2+1) . Y1 . Y1
caCatl: M - (gt = - 5 <0
0 (y1,v2) 1 W (y2+1) (Y2 +1)
v+l (gp+1)?
The simultaneous frequency of (X7, X5) is
T 29 e~ (#1+7T2) for z1 > 0 og x5 > 0,
g(xlva) =
0 otherwise,

hence the simultaneous frequency of (Y7,Y3) is 0 for 3 < 0 or yo < 0, and

Y1Y2 Y1 VL Y1

k() = e
( 1 2) y2+1 y2+1 (y2+1)4
3
= %24 e Y for y; > 0 and y > 0,
(y2 +1)
which also can be written

1 6

G yje v . ﬁ for y1 > 0 and yo > 0,
k(yi,y2) = b2

0 otherwise.

4) Tt follows from the rewriting of 3. (possibly by the second variant of 2.) that the marginal
frequencies are

1
6 yje v for y; > 0,
kY1 (yl) =

0 for y1 <0,
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6
% for yo > 0,
by () = { @2+ D)
0 for yo < 0.

5) Tt is obvious that Y7 and Y3 are independent because
k(y1,y2) = ky, (Y1) - ky, (y2) -

6) Since X; and X, are independent, the mean is

E{YQ}E{Q} E{X}- E{;2}2~12.

7) By question 2,

1 X
S=P{X,> X} =P{ZL <1t =P{Y, <1},
2 X

hence the median is (Ya) =

ALTERNATIVELY, Y5 has the distribution function

v2 6t vatl 6(u —1) vt 1
11 117wt 3 2 3 1
= 6|-z5+-> + SPR: Tl
2 u? 3 us

—1- - )
1 (2 +1)°  (2+1)° (y2 +1)°

1
If we put Ky, (y2) = 3 then

3ys +1 1
(y?ﬂfl)g: 2’ dvs. 6ys +2 = (y2 +1)°,
2

or
Yo +3y5 —3y2 —1=(y2— 1) (3 +4y2 +1) = 0.
The only positive solution is ys = 1, which is the median.

8) The mass of probability is divided into two equal parts by the median 1. However, the mass of
probability is scattered more to the right of 1 then to the left of 1. Thus, the mean must lie to the
right of 1.
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9 Means and moments of higher order

Example 9.1 Let X be a random variable of values in Ny. Prove that E{X} exists, if and only if

oo
> P{X >k} < o0,
k=0
and that in the affirmative case,

B{X} = ip{x > k}.

k=0

It is often easier to apply this formula by computation of means.

First note that a necessary and sufficient condition of the existence of E{X} and is equal to

E{X}=) nP{X=n}=)Y nP{X=n},

n=0 n=1

is that

o0
Z n P{X = n} is absolutely convergent.

n=1
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Since the terms are non-negative, this is equivalent with

o
ZnP{X =n} is (just) convergent.

n=1

If >°0° o P{X > k} is convergent, then by a (correct) interchanging of the order of summation (because
all terms are > 0),

SNP{X>k}=> > P{X=n}= ZZ_:P{X:n} =Y nP{X =n}=E{X}.
k=0 k=0n=k+1 n=1 k=0 n=1

If conversely F{X} exists, we just repeat the computations above in the reverse order.

Example 9.2 Two persons A and B play the following game:
They each throw two coins. The winner is he who gets most heads in a throw. The game is a draw,
if they obtain an equal number of heads.

1. What is the probability q that the game is a draw?
2. What is the probability pa that A wins?

If the game is a draw, the game is continued in the same way. One stops first time one of the two
players wins.

3. What is the probability that A wins in game number k?

4. Find the mean of the number of games.

B\A|TT TH HT HH

TT 0 1 1 1
TH -1 0 0 1
HT -1 0 0 1
HH -1 -1 -1 0

Table 1: If A wins, we write 1. If B wins, we write -1. In case of a draw we write 0.

1) We write 1 if A wins, and —1 if B wins. Finally, 0 means a draw. Tail is denoted by T, and head
by H. Since the 16 possibilities all have the same probability, we get by simply counting

6 3
= P{ad =—=-.
q {a draw} 6= 8
2) It follows from (1) and the symmetry of A and B that

5
P{A wins} = ps = pp = P{B wins} = T
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3) If A wins in game number k, then the first £ — 1 games must all have been draws, hence

k—1
3 5
P{A wins in the kth game} = ¢" 71 .py = <§> 16"

4) Let X denote the number of games. Then

P{X =k} = P{A wins in game number k} + P{B wins in game number k} =

(o

co| Ut

When |z| < 1, then

o) E ()

k=0

Using this result we get the mean

5, /3\"! 5 1 8
EX - = k‘ — = - — = —,
X} 8; (8) 8

o

Example 9.3 A box contains N balls of the numbers from 1 to N. Select at random n balls with
replacement. Let X, denote the random variable which indicates the largest selected number.
Find the distribution of X,,.

Find the mean E {X,}, and prove for large N that this mean is approzimately equal to N.

n
+1

Let X denote one selection at random of n numbers. Since all numbers have the same probability,
the distribution function is given by

FX(k:):P{ng}:%, k=1,2,..

Thus we derive the distribution function of X,,,

N.

*

FXn(k)—P{_rrllax ngkz}—(P{ng})"—<%) . k=1,2..., N,
Jj=1,..., n

hence

pe= P{X, =k} = PAX, <k}~ P{X, <k -1} = D"

The mean is

N 1 N N ) N
E{Xn} = kak:m anJrli Z k(kfl)n _ ~ {anJrl
k=1

k=1 k=1(=2)

1 1N71 ]C n
= — (NN N_1k"}=N<{1-— = - )
wo T ewf = 5 3 (5))
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1 RN\
Then notice that N iv:ll (N) can be interpreted as an approximating sum of the integral

1
fol " dr = n——f—l’ hence

N-1 n 1
1 k 1
— — —>/;v"dx:— for N — oo.
Nk:1 N 0 n+1

Then

1 1 1 n
E{Xn}_N{lﬁjLNg(N)}zn_’_lN for store N.

Example 9.4 Let X be a random variable of the distribution function F(x), the frequency f(x) and
the mean p. Prove that

/ {1-F }dx—/_oooF(x)dx.

It is given that [~ |a| f(z)dx < oo, and that

(6) u:/oo asf(x)da::/o mf(sc)dw—l—/oooxf(m)dx

—00 —00

Let A > 0. Then

/_OA:rf( Ydx =[x F(x) / F(z)dxe=AF(— / F(x

and

A A
/o x f(x)dz = [{F(z) — 1}]§ / {1-F(z)}de =—-A{1— (A)}—!—/O (1-F(z))dx.
Since

0<AF(— A/ f(z d:r</ |z| f(z)dx — 0 for A — oo,

we conclude that A F(—A) — 0 for A — oo. Since ffoo x f(x) dx is absolutely convergent, it follows
by taking the limit A — oo that

/Oooxf(x) dr = lim {AF(A) ~ /OA F(z) dx} . /Ooo F(z) dr.

Analogously,

OgA{l—F(A)}zA/OOf(x)dxg/Oo\x|f(a:)dx—>0 for A — o,
A A
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so when A — oo, we conclude in the same way that

/Oooxf(z)dx_A@m{—A{l— }+/{1— }d:c} /{1_ z)}dz,

where the integrals are even absolutely convergent.

Finally, by insertion into (6) we get

,u:/_ooomf(x)dx—i—/o xf dx—/ {1-F }dx—/_OOOF(x)d:r

as required.

ALTERNATIVELY, a more streamlined, though also more sophisticated method is the following. We
see that

/ [i-F }dw-Lo{/ iy dy}dm—/:of(w{Lioldx}dyz/omyf(y>dy,
- /_:F@)dx - /_w{ /yi_wf(y)dy}dwz /yi_oof(y){ Liy(—l)dx}dy

/0 y f(y)dy.

— 00

and
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By adding these two expressions, we formally obtain that

/Om{l—F(x)}dx_/o F(mmx:/ny(y)dy:u.

— 00 —

However, we have assumed that the mean exists, which implies that all the integrals above are abso-
lutely convergent, so the formal calculation is also real.

Example 9.5 Let X be an non-negative random variable of the distribution function F(x) and fre-
quency f(x). Prove that

W)ELW}zkAmx“%1—F@n¢u keN

(If the kth moment does not exist, then both the right hand side and the left hand side of (7) are equal
to c0.)

Find a similar formula, if the random variable X is non-positive.

REMARK. One can prove that formula (7) holds for every non-negative random variable X .

1) Assume that X is non-negative and that F {Xk} exists, i.e.
0< E{Xk} z/ a:kf(a:)dx < 00.
0

Let A > 0. Then by a partial integration,

A A
/ b flx)de = [2M{F(z) - 1}];)4 + k/ 21— F(x)} da
0 0

A
ﬂMQ—an+k/ 271 — F(z)} da.
0

Now fooo z¥ f(x) dr < oo, so we get the estimate

OSAk{lfF(A)}:Ak/ f(x)d:cg/ 2 f(x)de — 0 for A — oo.

A A

Then by taking the limit A — oo,

E{x*} = / b f(x) de = k/ 211 — F(z)} da.

0 0
It is trivial that
A A
/ ¥ f(x) de < k:/ 211 — F(2)} da,
0

0

so we infer that if E {X*} = oo, then k [ 2*~1{1 — F(z)} dz = oo.
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2) Then assume that X is non-positive and that E {X’“} exists, i.e.

0
O§|E{Xk}|:/ |z|* f (z) dz < oc.

If A> 0, then
0 k .k 0 0 k—1 L NNET(AY 0 k—1
[Ax f(@)de = [x F(x)]iA—k/iAx F(2)dz = —(—A)*F(— A) k/ 1P () da.

Since
—A —A
0§AkF(—A):Ak/ f(x)d:rg/ lz[¥f(x)dx — 0 for A — oo,

it follows by taking the limit that
0 0
) E{Xk} :/ xkf(x)da::—k/ VR (x) da.
Clearly,

0 0
/ ¥ f(x)de, (—A)FF(-A) og —k/ 2 UR () da

—A —A

have all the same sign. Hence,

0 0
’/ zk x| < ’k/ 2"V () dz| .
—A —A

Therefore, if E {X*} does not exist, then both integrals of (8) are divergent.

ALTERNATIVELY and more streamlined (and also more sophisticated), because one at first does not
care so much for the convergence of the integrals (this should of course be done at last), we have the
following proof:

When k € N, and X is non-negative of the distribution function F'(z) and the frequency f(x), then

k/ooo 21— F(z)}do = k/:ox’f—l{ y:f(y) dy} dx
:/:Oﬂy){/iokm’“ldx}dy:/owykf@)dy:E{X’“}.

Then notice that if the & moment does not exist, then all the integrals involved are divergent of the
value co. Since the integrand is non-negative, we can interchange the order of integration. Conversely,

if the £tH moment exists, then all the involved integrals are convergent with a non-negative integrand,
hence uniformly convergent, and all the computations are legal.

Then let X < 0 have the distribution function F(z) and the frequency f(z). Then for k € N,

wf =k [ w{ [ty as
:/y__oo f(y>{/x_y (=kat )dx} dy:/_oooykf(y)dyZE{Xk}-
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Thus we get in this case the formula
0
E{xF} = —k:/ 2" 1R (2) da.

We still have to remark that in the case of divergence the left hand side and the right hand side are
either both —oo or both +oo. It the kP moment exists, then all integrals are absolutely convergent.

Example 9.6 Let X and Y be non-negative random variables of distribution functions Fx and Fy,
means E{X} and E{Y} variances V{X} and V{Y'}.
The random variable X is said to be stochastically larger than'Y , if

Fx(x) < Fy(x) for all z € R.
1) If so, prove that E{Y} < E{X}.
2) Can one also conclude that V{Y} < V{X}?

1) Since X and Y are non-negative, it follows from Example 9.4 or Example 9.5 that

B{Y} = /OOO {1 - Fy(2)} do < /Ooo {1 - Fx(2)} de = E{X}.

Figure 56: Illustration of Fx(z) < Fy(z) in (2).

1
2) The answer is “no”! We construct a counterexample. Let a € ] -1 [, and let X be rectangularly
distributed over ]a,1[, and let Y be rectangularly distributed over ]0,a[. Then clearly X and Y
are non-negative, and Fx(x) < Fy (y), cf. the figure, hence X is stochastically larger than Y.
This is in agreement with

1
E{Y}:g< +a

= B{X).
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For the variances, however, we get

a?  (1-a)?

vivy=5 > S = vixy,

1
becausea>1—a>0f0r§<a<1.

Example 9.7 Let X be a random variable satisfying
E{X}=E{X*} =1

Find the distribution function of X.

Since

V{X}=E{X?} - (E{X})’=1-1=0,

it follows that X is a constant, and since E{X} = 1, we get X = 1. The distribution function is then

1 forzxz>1,
Fy(z) =
0 forz<l.
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Example 9.8 Let X be a random variable, for which the jth
Prove the following generalization of Chebyshev’s inequality:
For every a € Ry,

moment exists for some k € N\ {1}.

P{IX ~ B(X}| > a} < - B{|X - B{X}I"}

When E { X*} exists for some k € N\ {1}, then E { X7} exists for every j =1, ..., k. In fact, |2/ <1
for |z| <1, and |z’ < |z|* for |z| > 1, so

/ \x|jf(:r)dx§/ 1-f(x)dac+/ lz|* f(z) dz < oo.
—o {lz|<1} {lz]=1}

In particular, F{X} exists.

Then

B{|X - B{X}["} = / O; o~ B{X}*f(2) da > /{ ey, @) dr = X = B{XY > a),

and the inequality follows by a division by a”.

Example 9.9 Let X be a random variable.

1) Let g : R — R be an even, non-negative function, which is increasing on [0, 0o[. Prove that

P{|X|>a} < EAg(X)} for every a € Ry.

g(a)
2) Let g : R — R be a non-negative, increasing function. Prove that

P{X >a} < @ for every a € R.

(a)

We always assume that E{g(X)} exists.

In the main proof we assume that X is of continuous type, i.e.

B{g(X)} = / @) flx) dr

— 00

The similar proofs when X is either of discrete type or of mixed type are obtained by simple modifi-
cations of the main proof.

1) First by a splitting

P{X| > a} = P{X > a} + P{X < —a} = /OO f@)do+ [ fa)da.

According to the assumptions, g(z) > 0 and

g(a) < g(z) forx >a and g(—a)=g(a) < g(z) for z < —a,
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hence

—a

@) P(X| 2 a} = (o) [ T @y detg(—a) [ f)de

< / (@) fa) e + / o) f(e)de < / " g(@) f(x) dr = E{g(X)}.

If g(a) # 0, the result is obtained by a division by g(a) > 0.
2) Similarly,

(oo} o0

o(x) f(x) d < / o) f(z) dz = E{g(X)}.

— 00

s@PLX 2} = gla) [ @) dn < |

If g(a) # 0, the result follows by a division by g(a) > 0.

Example 9.10 A random variable X is assumed to have the mean u and the variance 0. Prove that
if a is a median of X, then

ja—pul <V2-0.

HINT. Apply Chebyshev’s inequality.

When a is a median, then

F(a) > and F(a—) <

N |
N =

One of the sets {x < a} and {z > a} must necessarily be contained in the set {|x — p| > |a — p|}, and

1 1
since P{X <a} > 3 and P{X >a} > 3 we get

]

1 ag
— < P{IX — > _ < — 7 )
5 = {| u\7|a M|}f |a P,ora;éu

Then by a rearrangement,
la—pl <V2-0.

If a = p, there is of course nothing to prove.
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Example 9.11 Let X be a random variable, for which all moments my = E {Xk} exist. We define
for k € N the th decreasing moment

mey = E{X(X - 1)(X =2)--- (X =k +1)}.
1) Find forn =1, 2, 3, the nth decreasing as a linear combination of the kth moments k <n.

2) Find forn =1, 2, 3, the nth moment as a linear combination of the kth decreasing moments for
k<n.

A. If n =1, then
my = E{X} =m.
B. If n =2, then
me) = E{X(X = 1)} = E{X?} - E{X} =my —m,
and hence
mo = Mm(2) + M(1)-
C. If n =3, then

mE = B{X(X-1)(X-2)}=FE{X?} -3B{X?} +2E{X}

= ms3 — 3m2 + 2m1,
and conversely,

mg = ms) + 3mo — Qm(l) = mys) + 3m(2) + mq).

Example 9.12 Let X be a random variable, for which all moments my = FE {X’“} exist. It is then
well-known that all the central moments

v =E {(X - ml)k} .
also exist.

1) Express forn =2, 3, 4, the nth central moment by the Eh moments for k <n.

2) Express forn =2, 8, 4, the nth moment by the kth central moments for k <mn and by m;.

A. If n =2, then
vy = E{(X —m1)2} =E{X?-2mi; X +mi} = my —mi,
and thus

2
mo = Vg + mj.
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B. If n = 3, then

v3 E{(X—m1)3}:E{X3—3m1X2+3m1X2+3m%X—m:{’}

= mgz—3mimeo + 2mif,
and thus
m3 = vy + 3my (v2 +mi) — 2mi = v3 + 3myvs + mi.
C. If n =4, then

E {(X - n1)4} = E{X* — 4m, X3 + 6m2X2 — 4m3X + m?}

Vg =
= my—4mims + Gmfmg — 3m‘11,
and thus
ms = v4+4m {’Ug + 3mive + m:{’} — 6m§ {’Ug + mf} + 3m‘1L

v4 + dmyvs + 6m§vg + m‘ll.
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Example 9.13 A real function ¢ defined on an open interval I is said to be convez, if for all a € T
there exists a real number c,, such that

o(z) — ¢la) > co(z — a) for every x € I
(if ¢ is differentiable at the point a, then c, = ¢'(a)).
Let X be a random variable, which only has values in the open interval I, and let ¢ : I — R be convex.

Assuming that both E{X} and E{x(X)} exist, prove Jensen’s inequality

E{p(X)} = o(E{X}).

1) Let us first check where the assumption of convexity can be applied. Hence, we insert as a test
any a € I,

E{p(X)} = pla) = E{p(X) — p(a)} = co E{X —a} = ca(E{X} — a).
2) Since E{X} € I, we get by choosing a = E{X},

E{p(X)} —p(E{X}) =20, ie. E{p(X)} > p(E{X}).
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10 Mean and variance in special cases
Example 10.1 A random variable X has the frequency
ae %, z > 0,
0, z <0,

where a 1s a positive constant.

Find the frequency of Y = X2, and find the mean and variance of Y.

The distribution function G(y) of Y = X2 is 0 for y < 0. If y > 0, then

Gly) = P{Y <yb=P{X’<y}=P{-y<X <y} =P{X <y}

VY
= / ae dr=1—e WY, for y > 0.
0
Thus, the corresponding frequency is

a
G'(y) = m exp (—a\/g) , for y > 0,

0, for y < 0.

g(y) =

Then the mean of Y is

> . 1> 2
E{Y}:E{X2}:/ :Eg-ae_‘”dm:—Q/ e tdt ==
0 0 a

a

The variance of Y is

viry = Bty meyt=n () - () = [Tatee e

1

o0
— e tgt — — == - = 27 "
a4 0

Example 10.2 Let X be rectangularly distributed over | — h, hl.

Compute for k € N the moments

E{X*}  and  E{|X|*}.

We first notice that

k I k I k h*
E{|X|*' = — dr = — do = )
{| | } 2h/7h|:c\ T h/o z” dx ]

Then by the symmetry,

E{X?+1} =, keNy, 2k+1odd,

4 4! 4 24 — 4 20
at  a* ot at at’
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and

2k 2k h2k
E{X*} = B{IX["} = o=

Example 10.3 Draw from the point (a,b), where b > 0, a line of the angle § with the line x = a,

s
here 0 }f—,—{.
where 0 € 59

The line intersects the x axis at a point of the abscissa X.

0.5

x

Assuming that ©(= v) is rectangularly distributed over } —g, g {, find the frequency of X.

Check if X has a mean.
The distribution of X is called a Cauchy distribution.

The relationship between the random variables X and © is

X — X -
tan© = 5 a’ ie. ©=7"1X)= Arctan 2 a’
[and X = 7(0) = a + b tan ©]. Since © has the frequency
1
-, —g << g,
fO =47
0, otherwise,
1 T . .
and 771 (x) € }—5, 5 [ for every x € R, we derive that the frequency of X is
do 1 1 1 b
-1
_ T il I 2= eR.
9(x) f(T (x)) dx T 1+(%)2 b w{b?+ (z—a)?} v
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It follows from

b r—a+a b 9 9 a T—a
/mg(sc)d:v— /mdx:%m{b +(x—a)}+;Arctan( ; ),

™

that
A
/ z-g(x)de — oo for A — oo, (improper integral),
0

so X has no mean.

ALTERNATIVELY,

1
|z| - g(x) ~ k- — for large z,

||

hence

| elgte)d = ox.

— 00

Example 10.4 A line segment of length 1 is divided randomly into two parts of lengths X and 1— X,
where we assume that X is rectangularly distributed over 10, 1].

Let Y denote the length of the smallest of the two line segments, and let Z denote the length of the
largest line segment.

1) Find the distribution of Y and the distribution of Z.

2) Find the mean and variance of Z.

1) The distribution function of X is

0, for z <0,
Fx(z) =<} =, for0 <z <1,
1, for x > 1.

1 1
Obviously, Y = min{X,1 — X} takes its values in ]O, 5] Iy e ]O, 5} , then

PIX<yorl-X<yp=P{0<X<y+P{l-y<X<1}=2y,

hence
1 fory> %,
2 for0<y< %,
Fy(y)=< 2y for0<y< %, and fy(y) =
0 otherwise.
0 fory <0,
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1 1
Analogously, Z = max{X,1 — X} takes its values in [57 1 [ If z € [57 1 [, then

Fz(z)=P{X<zand 1 - X<z} =P{1—-2<X<z}=22-1,

hence
1 for z > 1,
2 for % <z<1,
Fz(z)=4 22—1 fori<z<1l, and fz(z)=
0 otherwise.
0 for z < %,

2) Since Y is rectangularly distributed over ]O, % [, we get

2
1 1 1 1
. . 1
Now, Z is rectangularly distributed over } 2’ 1 {, SO
E{Z}—§ and V{Z} = Lot 2—i
4 12 \2) 48
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Example 10.5 A point A is chosen randomly in the unit square 10,1[ x ]0,1[. This means that if X
and Y denote the abscissa and the ordinate, resp., of the point A, then (X,Y) has the simultaneous
frequency
1, in J0,1[x]0,1],
flz,y) =

0, otherwise.

1) Find the probability of the event that the distance from A to a given edge of the square is < t.

2) Let U denote the distance from A to the closest edge of the square. Find the distribution function
and the frequency of U.

3) Find the mean and the variance of U.

0.8

0.67

0.2 + A

0 02 04 06 08 1

Valgt side

1) Obviously, the probability that the distance from A to e.g. ]0, 1] on the z axis, is < ¢t for 0 <t < 1,
hence, the corresponding random variable is rectangularly distributed over ]0, 1].

2) If U denotes the distance from A to the closest edge, then U has its values in ]0, 3[. If u €]0, 3],
then U < u, if and only if A lies in the unions of the domains between a dotted line and the closest
parallel edge, so by considering an area,

1
Fy(u)=1—(1-2u)?* =4 (u—u?) =4y — 4, O<u<§.

We conclude that the frequency is

1
fu(u) = F{,(u) = 4 — 8u, O<u< 3

and fy(u) = 0 otherwise.
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0.6

1-2u

0.4

1-2u

3) The mean is

W=

3 2 1 1 1
E{U}:/O u(4—8u)du=/0 (4u—8u)du—{2u2—§u3} =3-3§

Then compute

E{UQ} / (4—8u)d / (4u —8u)du— éu3—2u4§:1_l:i
0 3 o 6 8 24
so the variance is
1 1 1
E{U*} - (E =
iUy = {U } {U}) 24 36 72
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Example 10.6 The function f is for 0 <z <1 given by

1
=

while the function is equal to 0 for any other value of x.

1) Prove that f(x) is the frequency of a random variable X.
2) Find the mean and the variance of the random variable X .
3) Find the frequency of the random variable Y = VX.

4) Find the mean of the random variable Y.

The distribution of X is called the Arcussinus distribution.

1) Obviously, f(z) > 0 for every z € R. Then

[t = /m /%Wﬁy—_ / N

4

%\/1—(23/)2_; GVI-#

thus f(z) is the frequency of a random variable.

2 1t 1
dy = dt — [Arcsin t]l_l =1
7r

2) Since f(z) = 0 outside a bounded interval, all moments exist. In particular,

B(X) / faydo =L [ 22tz
= z f(z)de = — x
0 ™ 0 x — x?

1 [t d (x — ) / (@) dz = 0 + _

B VI — 22 do = -2’
which can also be seen graphically, because the graph of f(x) is clearly symmetric with respect to
the line z = %
Furthermore,

B{X(X 1)} = & ;% 7T/\/ 1= 2)dae.

Since the graph of the integrand /x(1 — z) is a half circle of centre (%, 0) and radius r = 1, we

have
2
1 1 1 1 1 1
E{X(X-1)}= - area{halveirkel, radius 5} =-_57 <§> =g
hence
, 1.1 3
E{X*} = B{X(X - )} + B{X} = 2 + 5 =%,
and
2
3 1 3 1 1
= 2 — 2:—— — = - — - = —
V{X}—E{X} (E{X}) 3 (2) 8 1%
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3) Since y = ¥ (x) = y/x is a bijective map v :]0,1[—]0, 1[, with the inverse z = ¢(z) = y?, where
d
% = 2y > 0, we conclude that the frequency of Y = VX is

vl = - =2 for y €]0,1
) — fle(y) - ¢'(y) A i or y €]0,1,

0,

otherwise,

corresponding to the distribution function

1, fory > 1,
2 .
G(y) = ¢ = Arcsin v, for y €10, 1],
0
0, for y < 0.

4) The mean of YV is

E{Y} =

2 [ty 2 12
2 461:_[_ 1fz}:_.
77/0 V1—y? V== YT x
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Example 10.7 1) Prove that the function

aa_bb (e’bx — 67‘”5) , for x>0,

fz) =
0, forz <0,

where a and b denote positive constants, a # b, can be considered as the frequency of a random
variable X.

2) Find the distribution function of the random variable X .
3) Find E{X} and V{X}, expressed by a and b .

4) Let a be a fized number. Prove for every fized x that

lim f(x) = g(),
where
a’xe ", for x>0,
g(x) =
0, for x < 0.

5) Prove that the function g(x) can be considered as a frequency of a random variable Y.

6) Finally, prove that E{X} — E{Y'} for b — a.

1) We may assume that a > b. Then f(z) > 0 for z € R, and

o ab [, _, _ ab (1 1 ab a-—b
= T _ azr = _ — — = . :1
/_Oof(x)dx afb/o e e hdu ab{b a} a—b ab ’

thus f(z) can be considered as a frequency.

2) The distribution function F'(x) of X is 0 for x < 0. If > 0, then

F(IL‘) _ a_b/ { —bt 7at}dt

—bx —azx 1 —azx —bx
= a—b{ ae % +be +afb}f1+—b(be faeb).

1 v 1 @
—bt —at _ —bt —at
{Ee +ae ]Oa_b[ae +be ]0

3) We get by a partial integration, or by means of the I' integral,

B{X} = /Oooxf(ac)dx— “bb/mx{e—br— ) da

a —

ab (1 ab (1 1
= — ¢ t’tdtf— tetdt — -
a—b{b2/ / N } a—b<b2 a2>

ab  a?—b? a—i—bil

a—b a2  ab a E’
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and
2 > 2 ab > 2 —bx —ax
E{X?} = / z°f(z)de = / 2? {e " —e "} da
0 a—>bJo

b (1 [ 1 [
- —/ t2e t dt — —/ t2e~t dt
a — b b3 0 a3 0

ab 272 72ab agfb?’i a? 4 ab+ b2
a—b\b a3

Ta—b  (ab)® (ab)?
Y ST
n a2  ab b2’
hence
11 1 12 1 11
_ A 2 _ [ T D R s W G T W
V{X} =E{X?} - (BE{X}) 2{a2+ab+b2} { +ab+b2} +

a? a?

4) Let > 0 and a > 0 be fixed. Then by e.g. 'Hospital’s rule,

. ab , _ _
lim (e br _ ¢ ‘“”)
b—aa—0>b
—bx —azx —bzx
e —e . —xe _
= ¢? lim = ¢? lim = q’xe 9.
b—a a—2b b—a —1

For = < 0 we get of course 0, thus

lim f(z) = g(x).

b—a

5) Obviously, g(x) > 0. Since

o0 oo oo
/ g(x) dx:az/ ze dr = / te tdt =1,
oo 0 0

it follows that g(z) is the frequency of a random variable Y.
6) the mean of YV is
E{Y}:/ xg(:c)d:t:a2/ x~;ve_“”dx:—/ tPe tdt = =,
—o0 0 a Jo a
It follows from (3) that

1 1 2
lim F{X} = li —+-)=-=FE{Y}.
b X} bﬂ<a+b) a vy
Remark 10.1 It is possible to give a simper solution. In fact, if X; and X5 are independent random
variables of the frequencies

ae " x>0, he b x>0,

fx, (x) = { 0, ’ 2 <0, and  fx,(z) = { 0, ’ z <0,
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then X = X7 + X5 has the frequency f(z), and

B{X} = E{Xi}+ B {Xz} = 1 + 1,

VIX}=V{X)+V (X} = 5+ 0

Example 10.8 Let X and Y be independent random variables with the distributions given by
P{X =k} =P{Y =k} =pd*,  keN,

wherep >0, ¢>0 andp+q=1.

1) Find the means E{X} and E{Y}.

2) Find the variances V{X} and V{Y'}.

3) Find P{X +Y =k}, k € Ng.

1) The means are

- - _ 1 Pq_ g
E{X}=E{Y}=) k-P{X=k} = kpd" =pg) k-¢" ' =pg- ===
k=0 k=1 k=1 (1-q) Pt P
Here we have used that by a partial differentiation with respect to ¢ €]0, 1] we obtain the important
expressions
1 = . d ( 1 > 1 = b1
— = q" and — = = k-q" .
1—gq ,;0 dg\1-q) (1-q)? ;

2) The variance is found by a smart rearrangement,

V{X}=E{X?} - (B{X})* = B{X(X - )} + E{X} - (E{X})?,

where
B{X(X-1)} = > k(k—1)P{X=k}=>Y k(k—1)pg®=pg*> k(k—1)¢">
k=2 k=2 k=2
d? Z‘” d? 1 2 2pq? ¢
2 k 2 2
= _— = —_— —_— = . = :2-—
P g2 {kzoq} m dq2{1q} PEa—gr ~ p?’
i.e.
2 2 2
¢ 9 ¢ ¢  q- qp+q) ¢
ViX\=vV{yl=o. L ;2 2 _ 4 18 _JWTH 9
{X} {Y} 2y 2 2 »?

E{X?} = i PP{X =k} = i k*pq”.

k=1 k=1
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Random variables I 10. Mean and variance in special cases

3) Since X and Y are independent, we get for k € Ny,

k k
PX+Y =k} = > P(X=iNY=k—i}=> P{X=i}-P{Y=k—i}
=0 =0
k ) k
= Y pg-pd" T =p7¢" ) 1= (k+1)p°¢", k € No.
=0 =0

Remark 10.2 The distribution of X is a reduced waiting time distribution. ¢
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Example 10.9 There are given two components in an instrument. The life times of the components,
Ty and Ty, are independent random variables, both of the frequency

ae %, t>0,
0, £<0,

where a 18 a positive constant.
We introduce the random variables X1, Xo and Yy by

X1 = min {ThTQ}, XQ = max{T17T2}7 Y2 == X2 - Xl-

Here, X, denotes the time until the first one of the components fails to function, and Xo indicates the
time until the second component also fails, while Yo is the time from the failure of the first component
until the failure of the second component.

1. Find the frequency and the mean of X;.
2. Find the mean of Y.

Let it be given without proof that (X1, X2) has the simultaneous frequency

2026~ a(@1+w2) 0< 21 <22
h = ’ se.
(1, 22) { 0, otherwise.

4. Find the simultaneous frequency of the 2-dimensional random variable (X1,Y5).
5. Find the frequency of Ys.

6. Check if the random variables X1 and Ys are independent.

1) We get for X3,
P{X1 >z} =P{Th >x1 ATy >z} =P{Ty, >z}  P{Th > x5} = e 221,
thus
P{X; <z} =1—e 20", x> 0,

and we see that X, is exponentially distributed with the frequency

Ix, = 2ae750m, 7 >0, and mean L
X 07 1 S O; 20,.
2) For X, we get
P{XQSIIZQ} = P{Tlgxz/\TQSIEQ}:P{TlSZEQ}P{TQSIQ}
= (]. - €_aw2)2 5 To > 07

so X3 has the frequency

fx, (x2) =2ae™ %2 (1 — e %") = 2ae” %2 — 2q ¢ 2**2 for z5 > 0,
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and

fx, (x2) =0 for o5 < 0.

THE MEAN is
oo oo

/ xofx, (x2) dxg = / {2a Toe %2 — 2q 172672(”‘,2} dxo
0 0

2 1 3

T 4 2 2

E{X,} =

ADDITIONAL. It is easy to find the mean of Xy from X; + Xo =17 4+ T, i.e.
1 3

E{XQ}ZE{T1}+E{T2}—E{X1}:%4_%_ -2

3) This is trivial, because

E{V:}=E{X) - E{Xi}= > — =~
4) The simultaneous frequency k (y1,y2) of
(Y1,Ys) = (X1, X2 — Xy)
can e.g. be found directly from a convenient formula with a =1, b=0,c=—1 and d = —1,

k ( ) _ h dyl - by2 —CY1 + ay2 . 1
Ly ad—bc = ad—be lad — b
= h(y1,y1+3y2) = 2q%e—(2y1+y2) for y1 > 0 og y2 > 0,

and

k(y1,y2) =0 otherwise.

This is also written
2ae Wi . g e Wz, for y; > 0 and yo > 0,

k(Y 2) = { 0, otherwise.
5) (and 6.) Tt follows immediately from 4. that Y7 (= X;) and Y3 are independent, and that Y5 has

the frequency

ae 2, y2 > 0,
hv, (y2) = { 0, yz <0.
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Index

Index
2-dimensional random variable, 5

almost everywhere, 7
Arcussinus distribution, 149

binomial distribution, 18
Buffon’s needle problem, 77

Cauchy distribution, 97, 111, 144
causal distribution, 4

Chebyshev’s inequality, 13, 138, 139
conditional distribution, 11
conditional distribution function, 11
conditional probability, 11
continuous distribution, 5, 6
continuous random variable, 5, 6
convergence in distribution, 16
convergence in probability, 16
convex function, 142

correlation, 15

covariance, 15

Cramer’s formula, 108

discrete distribution, 4, 6
discrete random variable, 4, 6
distribution function, 4, 20, 33

expectation, 11

fraud in Probability, 77
frequency, 5, 6, 20, 33

function of random variable, 75
function of random variables, 93

function of two random variables, 107

gamma distribution, 61
geometric distribution, 90

Helly-Bray’s lemma, 16

independent random variables, 7

inequality between random variables, 81

Jacobian, 10, 54
Jensen’s inequality, 142

law of total probability, 11

MAPLE, 22

marginal distribution, 5

marginal frequency, 6, 37, 54, 121
mean, 11, 129

median, 4, 21

moment, 12, 140, 143

moment of higher order, 129

null-set, 7

polar coordinates, 118
probability field, 4

quantile, 4

random variable, 4
rectangular coordinates, 118

rectangular distribution, 93, 95, 98, 112, 143,

144

simultaneous distribution, 5
simultaneous distribution function, 6
simultaneous frequency, 54

transformation theorem, 8

weak law of large numbers, 16
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