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Mathematical Foundations of Probability Theory



Abstract. (English) In the footsteps of the book Measure

Theory and Integration By and For the Learner of our series
in Probability Theory and Statistics, we intended to devote
a special volume of the very probabilistic aspects of the first
cited theory. The book might have assigned the title : From
Measure Theory and Integration to Probability Theory. The
fundamental aspects of Probability Theory, as described by
the keywords and phrases below, are presented, not from ex-
periences as in the book A Course on Elementary Probability

Theory, but from a pure mathematical view based on Mea-
sure Theory. Such an approach places Probability Theory
in its natural frame of Functional Analysis and constitutes a
firm preparation to the study of Random Analysis and Sto-
chastic processes. At the same time, it offers a solid basis
towards Mathematical Statistics Theory. The book will be
continuously updated and improved on a yearly basis.
(Français)

Keywords. Measure Theory and Integration; Probabilistic
Terminology of Measure Theory and Applications; Probabil-
ity Theory Axiomatic; Fundamental Properties of Probabil-
ity Measures; Probability Laws of Random Vectors; Usual
Probability Laws review; Gaussian Vectors; Probability In-
equalities; Almost sure and in Probability Convergences; Weak
convergences; Convergence in Lp; Kolmogorov Theory on se-
quences of independent real-valued random variables; Cen-
tral Limit Theorem, Laws of Large Numbers, Berry-Essen
Approximation, Law of the iterated logarithm for real valued
independent random variables; Existence Theorem of Kol-
mogorov and Skorohod for Stochastic processes; Conditional
Expectations; First examples of stochastic process : Brown-
ian and Poisson Processes.

AMS 2010 Classification Subjects : 60-01; 60-02; 60-
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General Preface

This textbook is one of the elements of a series whose ambition is to
cover a broad part of Probability Theory and Statistics. These text-
books are intended to help learners and readers, of all levels, to train
themselves.

As well, they may constitute helpful documents for professors and
teachers for both courses and exercises. For more ambitious people,
they are only starting points towards more advanced and personalized
books. So, these textbooks are kindly put at the disposal of professors
and learners.

Our textbooks are classified into categories.

A series of introductory books for beginners. Books of this series
are usually destined to students of first year in universities and to any
individual wishing to have an initiation on the subject. They do not
require advanced mathematics. Books on elementary probability the-
ory (See Lo (2017a), for instance) and descriptive statistics are to be
put in that category. Books of that kind are usually introductions to
more advanced and mathematical versions of the same theory. Books
of the first kind also prepare the applications of those of the second.

A series of books oriented to applications. Students or researchers
in very related disciplines such as Health studies, Hydrology, Finance,
Economics, etc. may be in need of Probability Theory or Statistics.
They are not interested in these disciplines by themselves. Rather,
they need to apply their findings as tools to solve their specific prob-
lems. So, adapted books on Probability Theory and Statistics may be
composed to focus on the applications of such fields. A perfect example
concerns the need of mathematical statistics for economists who do not
necessarily have a good background in Measure Theory.

A series of specialized books on Probability theory and Sta-
tistics of high level. This series begins with a book on Measure

1



2 GENERAL PREFACE

Theory, a book on its probability theory version, and an introductory
book on topology. On that basis, we will have, as much as possible, a
coherent presentation of branches of Probability theory and Statistics.
We will try to have a self-contained approach, as much as possible, so
that anything we need will be in the series.

Finally, a series of research monographs closes this architecture.
This architecture should be so diversified and deep that the readers of
monograph booklets will find all needed theories and inputs in it.

We conclude by saying that, with only an undergraduate level, the
reader will open the door of anything in Probability theory and sta-
tistics with Measure Theory and integration. Once this course
validated, eventually combined with two solid courses on topology and
functional analysis, he will have all the means to get specialized in any
branch in these disciplines.

Our collaborators and former students are invited to make live this
trend and to develop it so that the center of Saint-Louis becomes or
continues to be a re-known mathematical school, especially in Proba-
bility Theory and Statistics.



Introduction

Mathematical Foundation of Probability Theory.

In the introduction to the book Measure Theory and Integration By
and For The Learner, we said :

Undoubtedly, Measure Theory and Integration is one of the most impor-
tant part of Modern Analysis, with Topology and Functional Analysis
for example. Indeed, Modern mathematics is based on functional anal-
ysis, which is a combination of the Theory of Measure and Integration,
and Topology.

The application of mathematics is very pronounced in many fields,
such as finance (through stochastic calculus), mathematical economics
(through stochastic calculus), econometrics [which is a contextualiza-
tion of statistical regression to economic problems], physic statistics.
Probability Theory and Statistics has become an important tool for the
analysis of biological phenomena and genetics modeling.

This quotation already stressed the important role played by Proba-
bility Theory in the application of Measure Theory. So, Probability
Theory seems to be one of the most celebrated extensions of Measure
Theory and Integration when it comes to apply it to real life problems.

Probability Theory itself may be presented as the result of modeling
of stochastic phenomena based on random experiences. This way is
illustrated in the element of this series : A Course on Elementary
Probability Theory.

But for theoretical purposes, it may be presented as a mathematical
theory, mainly based on Measure Theory and Integration, Topology
and Functional Analysis. This leads to impressive tools that reveal
themselves very powerful in dealing real-life problems.

3



4 INTRODUCTION

In this book, we tried to give the most common elements of the Theory
as direct rephrasing and adaptation of results Measure Theory accord-
ing to the following scenario.

Chapter 1 is devoted to a complete rephrasing of the Measure Theory
and Integration Terminology to that of Probability Theorem, moving
from a general measures to normed measures called Probability Mea-
sures.

Chapters 2, 3 and deal with a simple fact in Measure Theory and Inte-
gration, namely the image-measure, which becomes the most important
notion in Probability Theory and called under the name of Probability
Laws. Chapter 2 includes a wide range of characterizations for Prob-
ability Laws of Random vectors we might need in research problems
in Probability Theory and Mathematical Statistics. In particular, the
concept of independence is visited from various angles, which leads to
a significant number of important characterizations of it. In Chapter
3, usual and important probability Laws are given and reviewed in this
chapter in connection with the their generations described made in Lo
(2017a). Finally Chapter 3 presents the so important Gaussian random
vectors.

Chapter 5 is concerned with the theory of convergence of sequences
of (real-valued, mainly) random variables. The three types of Conver-
gence : Almost-sure, in Probability and in Lp.

It is important to notice the the book Weak Convergence (IA). Se-
quences of random vectors (See ?) has its place exactly here, within
the global frame of the series. Due to its importance and its size,
we preferred to devote a booklet of medium size (about two hundred
pages) to an introduction to weak convergence.

Because of the importance of Inequalities in Probability Theory, we
devote Chapter 6 to them. This chapter will continuously updated and
augmented on a yearly basis.

In Chapter 7, we presented the main results of the study of sequence
of independent random variables which occupied the researchers in a
great part of the 19th century. The laws that were studied are until
now the most important ones of the theory, although they are exented
to the non-independent cases nowadays. But there is no way to join the
current studies if the classical main tools and proofs are not mastered.
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We introduce to the Kolmogorov Strong Law of Large numbers, the
Central Limit Theorem, the Berry-Essen Approximation and the Law
of the Iterated Logarithm.

Chapter 8 uses the Radon-Nikodym Theorem to found the important
notion of Mathematical Expectation which is the main tool form mov-
ing to independent to dependent data.

Finally, Chapter 9 presents the Fundamental Theorem of Kolmogorov
which is considered as the foundation of Modern Probability Theory.
Versions of the Theorem are given, among them, the Skorohod Theo-
rem. This chapter is the bridge with the course on Stochastic processes.

The place of the book within the series.

While the book A Course on Elementary Probability Theory may read
at any level, the current one should no be read before the full exposi-
tion of Measure Theory and Integration (Lo (2017b) or a similar book).
Indeed, the latter book is cited in any couple of pages. The demonstra-
tions in that book are quoted in the current one. Without assuming
those demonstration, this textbook would have a very much greater
number of pages.

Reading the textbook ? is recommended after Chapter 5 of the current
book.

Now, this book combined with Lo et al. (2016) open the doors of many
other projects of textbooks, among whom we cite :

(a) Asymptotics of Sequences of Random Vectors

(b) Stochastic Processes

(c) Mathematical Statistics

(d) Random Measures

(e) Times Series

(f) etc.
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Consequently, the series will expand to those areas.



CHAPTER 1

An update of the Terminology from Measure

Theory to Probability Theory

1. Introduction

This course of Probability Theory is the natural continuation of the
one on Measure Theory and Integration. Its constitutes the very min-
imal basis for a fundamental course which enables to prepare for more
advanced courses on Probability Theory and Statistics, like Stochastic
Processes, Stochastic Calculus or to prepare specialized Mathematical
statistics, etc.

The book A Course on Elementary Probability Theory (Lo (2017a)) of
this series concentrated on discrete probability measures and focused on
random experiences, urn models, generation of random variables and
associated computations. The reader will not find such results here.
We recommend him to go back to this book or to similar ones which
directly deal with Probability Theory related to real experiences. This
textbook treats the mathematical aspects of Probability Theory, as a
branch of Measure Theory and Integration as exposed in Lo (2017b),
where the Measure Theory terminology can be found.

This course begins with new expressions and names of concepts intro-
duced in Measure Theory and Integration. Next, a specific orientation
will be taken to present the base of modern Probability Theory.

2. Probabilistic Terminology

2.1. Probability space.

A probability space is a measure space (Ω,A, m) where the measure
assigns the unity value to the whole space Ω, that is,

m(Ω) = 1.

7



8 1. FROM MEASURE THEORY TO PROBABILITY THEORY

Such a measure is called a probability measure. Probability measures
are generally denoted in blackboard font : P, Q, etc.

We begin with this definition :

Definition 1. Let (Ω,A) be a measurable space. The mapping

P : A → R

A →֒ P(A)

is a probability measure if and only if P is a measure and P(Ω) = 1,
that is :

(a) 0 ≤ P ≤ P(Ω) = 1.

(b) For any countable collection of measurable sets {An, n ≥ 0} ⊂ A,
pairwise disjoints, we have

P(
∑

n≥0

An) =
∑

n≥0

P(An).

We adopt a special terminology in Probability Theory.

(1) The whole space Ω is called universe.

(2) Measurable sets are called events. Singletons are elementary events
whenever they are measurable.

Example. Let us consider a random experience in which we toss two
dies and get the outcomes as the ordered pairs (i, j), where i and j are
respectively the number of the first and next the second face of the two
dies which come out. Here, the universe is Ω = {1, ..., 6}2. An ordered
pair {(i, j)} is an elementary event. As an other example, the event :
the sum of the faces is less or equal to 3 is exactly

A = {(1, 1), (1, 2), (2, 1)}.

(3) Contrary event. Since P(Ω) = 1, the probability of the complement
of an event A, also called the contrary event to A and denoted A, is
computed as

P(A) = 1− P(A).
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The previous facts form simple transitions from Measure Theory and
Integration terminology to that of Probability Theory. We are going
to continue to do the same in more elaborated transitions in the rest
of that chapter.

2.2. Properties of a Probability measure.

Probability measures inherit all the properties of a measure.

(P1) A probability measure is sub-additive, that is, for any countable
collection of events {An, n ≥ 0} ⊂ A, we have

P(
⋃

n≥0

An) ≤
∑

n≥0

P(An).

(P2) A probability measure P is non-decreasing, that is, for any ordered
pair of events (A,B) ∈ A2 such that A ⊂ B, we have

P(A) ≤ P(B)

and more generally for any ordered pair of events (A,B) ∈ A2, we have

P(B \ A) = P(B)− P(A ∩B).

(P3) A probability measure P is continuous below, that is, for any
non-decreasing sequence of events (An)n≥0 ⊂ A, we have

P(
⋃

n≥0

An) = lim
n→+∞

P(An),

and is continuous above, that is, for any non-increasing sequence of
events (An)n≥0 ⊂ A, we have

P(
⋂

n≥0

An) = lim
n→+∞

P(An)

The continuity above in Measure Theory requires that the values of
the measures of the An’s be finite for at least one integer n ≥ 0. Here,
we do not have to worry about this, since all P(An)’s are bounded by
one.
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2.3. Random variables.

Measurable mappings are called random variables. Hence, a mapping

(2.1) X : (Ω,A) → (E,B)
is a random variable, with respect to the σ-algebras A and B if and
only if it is measurable with respect to the same σ-algebras.

Probability law.

There is not a more important phrase in Probability Theory that Prob-
ability law. I dare say that the essence of probability Theory is finding
probability laws of random phenomena by intellectual means and the
essence of Statistical theory is the same but by means of inference from
observations or data.

Suppose that we have a probability measure P on the measurable space
(Ω,A) in Formula 2.1. We have the following definition.

Definition 2. The Probability law of the random variable X in
Formula 2.1 is the image-measure of P by X, denoted as PX , which is
a probability measure on E given by

B ∋ B 7→ PX(B) = P(X ∈ B). ♦

Such a simple object holds everything in Probability Theory.

Classification of random variables.

Although the space E in Formula (2.1) is arbitrary, the following cases
are usually and commonly studied :

(a) If E is R, endowed with the usual Borel σ-algebra, the random
variable is called a real random variables (rrv).

(b) If E is R
d
(d ∈ N∗), endowed with the usual Borel σ-algebra, X is

called a d-random vector or a random vector of dimension d, denoted
X = (X1, X2, ..., Xd)

t, where X t stands for the transpose of X .
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(c) More generally if E is of the form RT , where T is a non-empty set,
finite or countable infinite or non-countable infinite, X is simply called
a stochastic process. The σ-algebra on RT , which is considered as the
collections of mapping from T to R is constructed by using the funda-
mental theorem of Kolmogorov, which generally is stated in the first
chapter of a course on Stochastic processes, and which is extensively
stated in Chapter 9.

In the special case where T = N, X is a sequence of real random vari-
ables X = {X1, X2, ....}.

(d) If E is some metric space (S, d) endowed with the Borel σ-algebra
denoted as B(S), the term random variable is simply used although
some authors prefer using random element.

2.4. Mathematical Expectation.

It is very important to notice that, at the basic level, the mathemat-
ical expectation, and later the conditional mathematical expectation,
is defined for a real random variable.

(a) Mathematical expectation of rrvs’s.

Let X : (Ω,A,P)→ (R,B∞(R) be a real random variable. Its math-
ematical expectation with respect to the probability measure P or its
P-mathematical expectation, denoted by EP(X) is simply its integral
with respect to

P

whenever it exists and we denote :

EP(X) =

∫

Ω

X dP.

The full notation EP of the mathematical expectation reminds us to
which probability measure the mathematical expectation is relative to.
In many examples, it may be clear that all the mathematical expecta-
tions are relative to only one probability measure so that we may drop
the subscript and only write

E(X) =

∫

Ω

X dP.
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Also, the parentheses may also be removed and we write EX .

(b) Mathematical expectation of a function of an arbitrary
random variable.

For an arbitrary random variable as defined in Formula (2.1) and for
any real-valued measurable mapping

(2.2) h : (E,B) → (R,B∞(R),

the composite mapping

h(X) = h ◦X : (Ω,A,P)→ R

is a real random variable. We may define the mathematical expectation
of h(X) with respect to P by

Eh(X) =

∫

Ω

h(X) dP,

whenever the integral exists.

(c) Use of the probability law for computing the mathemati-
cal expectation.

We already know from the properties of image-measures (See page Lo
(2017b), Doc 04-01 Point (V)), that we may compute the mathematical
expectation of h(X), if it exists, by

(2.3) E(h(X)) =

∫

Ω

h dPX =

∫

Ω

h(x) dPX(x).

If X is itself a real random variable, its expectation, if it exists, is

(2.4) E(X) =

∫

R

x dPX(x).

(d) Mathematical expectation of a vector.

The notion of mathematical expectation may be extended to random
vectors by considering the vector of the mathematical expectations
of the coordinates. Let us consider the random vector X such that
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X t = (X1, X2, ..., Xd). The Mathematical vector expectation E(X) is
defined by

(E(X))t = (EX1,EX2, ...,EXd).

A similar extension can be operated for random matrices.

(e) Properties of the Mathematical expectation.

As an integral of real-valued measurable application, the mathematical
expectation inherits all the properties of integrals we already had in
Measure Theory. Here, we have to add that : constant real random
variables and bounded random variables have finite expectations. The
most important legacy to highlight is the following.

Theorem 1. On the class of all random variables with finite math-
ematical expectation denoted L1(Ω,A,P), the mathematical expectation
operator :

(a) is linear, that is for all (α, β) ∈ R2, for all (X, Y ) ∈ L1(Ω,A,P),

E(αX + βY ) = αE(X) + βE(Y ),

(b) is non-negative, that for all non-negative X random variable, we
have E(X) ≥ 0

(c) and satisfies for all non-negative X random variable : E(X) = 0 if
and only if X = 0, P-a.e.

(c) Besides, we have for all real-valued random variables X and Y
defined on (Ω,A),

(

|X| ≤ Y, Y ∈ L1(Ω,A,P)
)

⇒ X ∈ L1(Ω,A,P).

and

∣
∣
∣
∣

∫

X dP

∣
∣
∣
∣
≤
∫

|X| dP ≤
∫

Y dP.
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The first formula in the following Lemma is often used to comput-
ing the mathematical expectation of non-negative real-valued randoms
variables. We generalize with respect to the counting measure. For ex-
ample, this will render much comprehensible the proof the Kolmogorov
Theorem 17 (Chapter 7, page 228) on strong laws of large numbers.

Let us define, for a real-valued random variable X , its lower endpoint
lep(X) and the upper endpoint uep(X) respectively by

lep(X) = inf{t ∈ R, P(X ≤ t) > 0}, uep(X) = sup{t ∈ R, P(X ≤ t) < 1}.

This means that P(X ≤ t) = 0 for all t > uep(X) and similarly, we have
P(X ≤ t) = 0 for all t ≤ lep(X). Actually, we have uep(X) = ‖X‖∞ in
the L∞ space. The values space of X becomes VX = [lep(X), uep(X)].

We have :

Proposition 1. Let X be any real-valued and non negative random
variable, we have

E(X) =

∫ uep(X)

0

P(X > t)dt, (CF )

and

1 + E ([X ]+) =
∑

n∈[0, [uep(X)]+]

P(X ≥ n), (DF1)

where [x]+ (resp. [x]+) stands for the greatest (resp. smallest) integer
less or equal (resp. greater or equal) to x ∈ R. Also, for any a.s finite
real-valued random variable, we have

−1+
∑

n∈[0, [uep(X)]+]

P(|X| ≥ n) ≤ E|X| ≤
∑

n∈[0, [uep(X)]+]

P(|X| ≥ n). (DF2)

Since P(X > t) = 0 for all t > uep(X), extending the integration do-
main to +∞ does not effect the value of the integral.

Proof.

Proof of (CF). The function t 7→ P(X > t) is bounded and has at
most a countable number of discontinuity. So its improper Riemann
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integral is a Lebesgue’s one and we may apply the Tonelli’s Theorem
(See Chapter 8, Doc 07-01 in Lo (2017b)) at Line (L13) below as follows
:

∫ uep(X)

0

P(X > t)dt =

∫ uep(X)

0

P(X > t)dλ(t)

=

∫

(t∈]0,uep(X)])

(∫

VX

1(x>t) dPX(x)

)

dλ(t)

=

∫

(t∈]0,uep(X)])

1(x>t) dPX(x)dλ(t)

=

∫

VX

(∫

(t∈]0,uep(X)])

1(x>t)

)

dPX(x) (L13)

=

∫

VX

(∫ min(x,uep(X)

0

dλ(t)

)

dPX(x)

=

∫

VX

min(x, uep(X)dPX(x)

= E(min(X, uep(X))) = E(X),

since X ≤ uep(X) a.s.

Proof of (DF1). We use the counting measure ν on N and say

∑

n≥0, n≤[uep(X)]+

P(X ≥ n) =

∫

[0, [uep(X)]+]

P(X ≥ n) dν(n)

=

∫

[0, [uep(X)]+]

(∫

VX

1(x≥n) dPX(x)

)

dν(n) (L22)

= ı

∫

VX

(∫

[0, [uep(X)]+]

1(x≥n)dν(n)

)

dPX(x) (L23)

=

∫

VX

ν([0,max(x, [uep(X)]+)]) dPX(x) (L24)

=

∫ +∞

0

([

max(x, [uep(X)]+)

]

+

+ 1

)

dPX(x)

= E

([

max(X, [uep(X)]+)

]

+

)

+ 1.
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We conclude that
∑

n≥0, n≤[uep(X)]+

P(X ≥ n) = E[X ]+ + 1.

Proof of (DF2). The left-hand inequality is derived from (DF1)
when applied to non-negative random variabe |X|. To establish the
right-hand inequality, suppose that X is non-negative. Let us denote
An = (X ≥ n), n ≥ 0 with A0 = Ω clearly. We have for any n ≥ 1,
An−1 \ An) = (n − 1 ≤ X < n). If uep(X) = +∞, the sets ]n − 1, n],
n ≥ 1, form a partition of R+. If uep(X) if finite, the sets ]n − 1, n],
1 ≤ n ≤ N = [uep(X)]+ + 1 for a partition of [0, N ] which covers X
a.s.. So we have

∑

1≤n<N+1

(

An−1 \ An

)

= Ω.

By the Monotone Convergence Theorem when N = +∞, but by finite
additivity for N finite, we have

E(X) = E

(

X
∑

1≤n<N+1

1An−1\An

)

(L31)

=
∑

1≤n<N+1

E

(

X1An−1\An

)

=
∑

1≤n<N+1

E

(

X1(n−1≥|X|<n)

)

≤
∑

1≤n<N+1

nE

(

1(n−1≥X<n)

)

≤
∑

1≤n<N+1

n

(

P(An−1)− P(An)

)

(L35)

Suppose that N is infinite. By developing the last line, we have for

∑

1≤n≤k+1

n(P(An−1)− P(An)) =
∑

0≤n≤k

P(An)− (k + 1)P(Ak+1)

≤
∑

0≤n≤k

P(An). (L42)
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By letting k → +∞ in Line (42) and by combining the results with
Lines (L31) and (L36), we get the inequality.

If N is finite, the last line is exactly

∑

0≤n≤N

P(An)−NP(AN ≤
∑

0≤n≤N

P(An),

and hence, is less or equal to
∑

0≤n≤[uep(X)]+
P(An) and we conclude

that

E(X) ≤
∑

0≤n≤[uep(X)]+

P(An).

To get the right-hand inequality in (DF2), we just apply the last for-
mula to |X|. �

An easy example. Suppose that X is Bernoulli random variable
with P(X = 1) = 1 − P(X = 0) = p, 0 < p < 1. We have E(X) = p,
uep(X) = 1, [uep(X)]+ = 1, P(A0) = 1, P(A1) = p and we exactly
have

∑

0≤n≤[uep(X)]+

P(An) = 1 + p = E(X) + 1.

2.5. Almost-sure events.

In Measure Theory, we have studied null-sets and the notion of almost-
everywhere (a.e) properties. In the context of probability theory, for
any null-set N , we have

P(N) = 1− P(N) = 1.

So, the complement of any null-set is an almost-sure (a.s.) event. Then,
a random property P holds a.s. if and only if

P({ω ∈ Ω, P(ω) true }) = 1.

An almost-everywhere (a.e.) property is simply called an almost-sure
(a.s.) property. Let us recall some properties of a.e. properties.
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(P1) If A is an a.e. event and if the event B is contained A, then B is
an a.s. event.

(P2) A countable union of a.s. events is an a.s. event.

(P3) If each assertion of a countable family of assertions holds a.s.,
then all the assertions of the family hold simultaneously a.s.

2.6. Convergences of real-valued random variables.

We may also rephrase the convergence results in Measure Theory as
follows.

(a) Almost-sure convergence.

Let X and Xn, n ≥ 0, be random variables defined on the probability
space (Ω,A,P). The sequence (Xn)n≥0 converges to X almost-surely,
denoted

Xn → X, a.s.,

as n→ +∞ if and only if (Xn)n≥0 converges to X a.e., that is

P({ω ∈ Ω, Xn(ω)→ X(ω)}) = 1.

(b) Convergence in Probability.

The convergence in measure becomes the convergence in Probability.
Let X be an a.s.-finite real random variable and (Xn)n≥0 be a sequence
of a.e.-finite real random variables. We say that (Xn)n≥0 converges to
X in probability, denoted

Xn
P−→ X,

if and only if, for any ε > 0,

R(|Xn −X| > ε)→ 0 as n→ +∞.

We remind that the a.s. limit and the limit in probability are a.s.
unique.
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We re-conduct the comparison result from Measure Theory.

(c) Comparison between these two Convergence types.

Let X be an a.s.-finite real random variable and (Xn)n≥0 be a sequence
of a.e. finite real random variables. Then we have the following impli-
cations, where all the unspecified limits are done as n→ +∞ .

(1) If Xn → X , a.s., then Xn
P−→ X .

(2) If Xn
P−→ X , then there exists a sub-sequence (Xnk

)k≥0 of (Xn)n≥0

such that Xnk
→ X , a.s., as k → +∞.

Later, we will complete the comparison theorem by adding the conver-
gence in the space

Lp = {X ∈ L0, E |X|p <∞}, p ≥ 1.

The weak convergence also will be quoted here while its study is done
in Lo et al. (2016).

3. Independence

The notion of independence is extremely important in Probability The-
ory and its applications. The main reason that the theory, in its earlier
stages, has been hugely developed in the frame of independent random
variables. Besides, a considerable number methods of handling depen-
dent random variables are still generalizations of techniques used in
the independence frame. In some dependence studies, it is possible to
express the dependence from known functions of independent objects.
In others, approximations based on how the dependence is near the
independence are used.

So, mastering the independence notion and related techniques is very
important. In the elementary book (Lo (2017a)), we introduced the
independence of events in the following way :

Definition. Let A1, A2, . . . , An be events in a probability space
(Ω,P(Ω),P). We have the following definitions.
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(A) The events A1, A2, . . . , An−1 and An are pairwise independent
if and only if

P(Ai ∩ Aj) = P(Ai) P(Aj), for all 1 ≤ i 6= j ≤ n.

(B) The events A1, A2, . . ., An−1 and An are mutually independent if
and only if for any subset {i1,i2,..., ik} of {1, 2, ..., n}, with 2 ≤ k ≤ n,
we have

P(Ai1 ∩ Ai2 ∩ ... ∩ Aik) = P(Ai1) P(Ai2)...P(Aik).

(C) Finally, the events A1, A2, . . ., An−1 and An fulfills the global
factorization formula if and only if

P(A1 ∩ A2 ∩ ... ∩ An) = P(A1) P(A2)...P(An).

We showed with examples that none two definitions from the three def-
initions (A), (B) and (C) are equivalence. It is important to know that,
without any further specification, independence refers to Definition (B).

Measure Theory and Integration (MTI) gives the nicest and most per-
fect way to deal with the notion of independence and, by the way, with
the notion of dependence with copulas.

3.1. Independence of random variables.

Let X1, ..., Xn be n random variables defined on the same probability
space

Xi (Ω,A,P) 7→ (Ei,Bi).

Let (X1, ..., Xn) be a the n-tuple defined by

(X1, ..., Xn)
t : (Ω,A) 7→ (E,B)

where E = Π1≤i≤nEi is the product space of the Ei’s endowed with
the product σ-algebra, B = ⊗1≤i≤nBi. On each (Ei,Bi), we have the
probability law PXi

of Xi.

Each of the PXi
’s is called a marginal probability law of (X1, ..., Xn)

t.

On (E,B), we have the following product probability measure

PX1 ⊗ ...⊗ PXn
,

characterized on the semi-algebra

S = {Π1≤i≤n Ai, Ai ∈ Bi}
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of measurable rectangles by

(3.1) PX1 ⊗ ...⊗ PXn

(
∏

1≤i≤n

Ai) =
∏

1≤i≤n

PXi
(Ai

)

.

Now, we have two probability measures

PX1 ⊗ ...⊗ PXn

that is the product probability measure of the marginal probability
measures and the probability law

P(X1,...,Xn)(B) = P((X1, ..., Xn) ∈ B).

of the n-tuple (X1, ..., Xn) on (E,B), with is the image-measure of P
by (X1, ..., Xn). The latter probability measure is called the joint prob-
ability measure.

By the λ-π Lemma (See Lo (2017b), Exercise 11 of Doc 04-02, Part
VI, page 228), these two probability measures are equal whenever they
agree on the semi-algebra S.

Now, we may give the most general definition of the independence of
random variables :

Definition 3. The random variables X1, ..., and Xn are indepen-
dent if and only if the joint probability law P(X1,...,Xn) of the vector
(X1, ..., Xn) is the product measure of its marginal probability laws PXi

,
that is :

For any Bi ∈ Bi, 1 ≤ i ≤ n,

(3.2) P(X1 ∈ B1, X2 ∈ B2, ..., Xn ∈ Bn) =
∏

1≤i≤n

PXi
(Bi).

For an ordered pair of random variables, the two random variables

X : (Ω,A) 7→ (E,B)
and

Y (Ω,A) 7→ (F,G)
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are independent if and only if A ∈ B et B∈ G,
P(X ∈ B, Y ∈ G) = P(X ∈ A)× P(Y ∈ B).

Important Remark. The independence is defined for random vari-
ables defined on the same probability space. The space in which they
take values may differ.

Formula (3.2) may be rephrased by means of measurable functions in
place of measurable subsets. We have

Theorem 2. The random variables X1, ..., and Xn are independent
if and only if, for all non-negative and measurable real-valued functions
hi : (Ei,Bi) 7→ R, we have

(3.3) E

(
∏

1≤i≤n

hi(Xi)

)

=
∏

1≤i≤n

E(hi(Xi)).

Proof.

We have to show the equivalence between Formulas (3.2) and (3.3). Let
us begin to suppose that Formula (3.3) holds. Let us prove Formula
(3.2). Let Ai ∈ B and set hi = 1Ai

. Each hi is non-negative and
measurable. Further

hi(Xi) = 1Ai
(X) = 1(Xi∈Ai).

and then

(3.4) E(hi(Xi)) = E(1(Xi∈Ai)) = P(Xi ∈ Ai).

As well, we have
∏

1≤i≤n

hi(Xi) =
∏

1≤i≤n

1(Xi∈Ai) = 1(X1∈A1,...,Xn∈An)

and then

E(
∏

1≤i≤n

hi(Xi)) = E(1(X1∈A1,...,Xn∈An))(3.5)

= P(X1 ∈ A1, ..., Xn ∈ An).

By putting together (3.4) and (3.5), we get (3.2).
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Now, assume that (3.2) holds. Let hi : (Ei,Bi) 7→ R be measurable
functions. Set

E

(
∏

1≤i≤n

hi(Xi)

)

= E(h(X1, ..., Xn)),

where h(x1, ..., xn) = h1(x1)h2(x2)...hn(xn). The equality between the
joint probability law and the product margin probability measures leads
to

E(h(X1, ..., Xn)) =

∫

h(x1, ..., xn) dP(X1,...,Xn)(h(x1, ..., xn)

=

∫

h(x1, ..., xn) d {PX1 ⊗ ...⊗ PXn
} (x1, ..., xn).

From there, we apply Fubini’s theorem,

E(h(X1, ..., Xn))

=

∫

Ω1

dPX1(x1)

∫

Ω2

dPX2(x2)

∫

...

... dPXn−1(xn−1)

∫

h(x1, ..., xn) dPXn
(x1)

=

∫

Ω1

dPX1(x1)

∫

Ω2

dPX2(x2)

∫

...dPXn−1(xn−1)

∫

h1(x1)h2(x2)...hn(xn) dPXn
(x1)

=

∫

Ω1

h1(x1) dPX1(x1)

∫

Ω2

h2(x2) dPX2(x2)...

∫

Ωn

.hn(xn) dPXn
(x1)

=
∏

1≤i≤n

∫

Ωi

hi(xi) dPXi
(xi) =

∏

1≤i≤n

∫

Ωi

hi(Xi) dP

=
∏

1≤i≤n

E(hi(Xi)). �

This demonstration says that we have independence if and only if
Formula (3.3) holds for all measurable functions hi : (Ei,Bi) 7→ R,
PXi

-integrable or simply for all measurable and bounded functions
hi : (Ei,Bi) 7→ R or for all non-negative measurable functions hi,
i ∈ {1, ..., n}.

Let us come back to independence of events.
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3.2. Independence of events.

Independence of events is obtained from independence of random vari-
ables.

(a) Simple case of two events.

We say that two events A ∈ A and B ∈ A are independent if and
only if the random variables 1A and 1B are independent, that is, for all
hi : R→ R (i=1,2) non-negative and measurable

(3.6) Eh1(1A)h2(1B) = Eh1(1A)Eh2(1B)

As a direct consequence, we have for hi(x) = x, that Formula 3.6
implies that

E(1A1B) = E(1AB) = E(1A)E(1B),

that is

(3.7) P(AB) = P(A)× P(B).

Now, we are going to prove that (3.7), in its turn, implies (3.6). First,
let us show that (3.7) implies

(3.8) P(AcB) = P(Ac)× P(B),

(3.9) P(ABc) = P(A)× P(Bc)

and

(3.10) P(AcBc) = P(Ac)× P(Bc).

Assume that (3.7). Since,

B = AB + AcB,

we have

P(B) = P(AB) + P(AcB) = P(A)P(B) + P(AcB).

Then

P(AcB) = P(B)− P(A)P(B) = P(B)(1− P(A)) = P(Ac)P(B).
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Hence (3.8) holds. And (3.9) is derived in the same manner by ex-
changing the role of A and B. Now, to prove (3.10), remark that

AcBc = (A ∪ B)c = (ABc + AcB + AB)c.

Then, we get

P(AcBc) = 1− P(ABc)− P(AcB)− P(AB)

= 1− P(A)P(Bc)− P(Ac)P(B)− P(A)P(B)

= 1− P(A)− P(Ac)P(B)

= 1− P(A)− P(Ac)(1− P(Bc))

= 1− P(A)− P(Ac) + P(Ac)P(Bc)

= P(Ac)P(Bc).

Hence (3.10) holds.

Finally, let us show that Formula (3.7) ensures Formula (3.6). Consider
two non-negative and measurable mappings hi : R → R, (i=1,2). We
have

h1(1A) = h1(1)1A + h1(0)1Ac

and

h2(1B) = h2(1)1B + h2(0)1Bc .

As well, we have

h1(1A)h2(1B) = h1(1)h2(1)1AB + h1(1)h2(0)1ABc

+ h1(0)h2(1)1AcB + h1(0)h2(0)1AcBc .

Then, we have

E(h1(1A)) = h1(1)P(A) + h1(0)P(A
c)

and

E(h2(1B)) = h2(1)P(B) + h2(0)P(B
c).

We also have

Eh1(1A)h2(1B) = h1(1)h2(1)P(A)P(B) + h1(1)h2(0)P(A)P(B
c)
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+h1(0)h2(1)P(A
c)P(B) + h1(0)h2(0)P(A

c)P(Bc).

By comparing the three last formulas, we indeed obtain that

Eh1(1A)h2(1B) = Eh1(1A)Eh2(1B).

The previous developments lead to the definition (and theorem).

Definition 4. (Definition-Theorem). The events A and B are
independent if and only if 1A and 1B are independent if and only if

(3.11) P =(AB) = P(A)× P(B).

(b) Case of an arbitrary finite number k ≥ 2 of events.

Let us extend this definition to an arbitrary number k of events and
compare it with the definition (B) in the preliminary remarks of this
section.

Let Ai, 1 ≤ i ≤ k, be k events and hi : R→ R, (i = 1, ..., k), be k non-
negative and measurable mappings. The events Ai are independent if
and only if the mappings 1Ai

, 1 ≤ i ≤ k, are independent if and only if
for all measurable finite mappings hi, 1 ≤ i ≤ k, we have

(3.12) E(
∏

1≤i≤k

hi(1Ai
)) =

∏

1≤i≤k

E(hi(1Ai
)).

Let us put for each s-tuple of non-negative integers 1 ≤ i1 ≤ i2 ≤ ... ≤
is ≤ k, 1 ≤ s ≤ k,

hij (x) = x, j = 1, ..., s

and

hi(x) = 1 for i /∈ {i1, i2, ..., is}.

Hence, by Formula (3.12), we get for any subset {i1,i2,..., ik} of {1, 2, ..., n},
with 2 ≤ k ≤ n

(3.13) P(
⋂

1≤j≤s

Aij ) =
∏

1≤j≤s

P(Aij).

This is Definition (B) in the preliminary remarks of this section. By the
way, it is also a generalization of Formula (3.7) for two events ensem-
bles. We may, here again, use straightforward computations similar to
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those done for the case k ≥ 2, to show that Formula 3.13 also implies
Formula 3.12. This leads to the definition below.

Definition 5. (Definition-Theorem) The events Ai, 1 ≤ i ≤ k,
are independent if and only if the mappings 1Ai

are independent if and
only if for each s-tuple 1 ≤ i1 ≤ i2 ≤ ... ≤ is ≤ k, of non-negative
integers,

(3.14) P

(
⋂

1≤j≤s

Aij

)

=
∏

1≤j≤s

P(Aij ).

(c) An interesting remark.

A useful by-product of Formula (3.12) is that if {Ai, 1 ≤ i ≤ n}, is a
collection of independent events, then any elements of any collection of
events {Bi, 1 ≤ i ≤ n}, with Bi = Ai or Bi = Ac

i , are also independent.

To see this, it is enough to establish Formula (B). But for any {i1,i2,..., ik}
of {1, 2, ..., n}, with 2 ≤ k ≤ n, we make take hij (x) = x if Bij = Aij

or hij (x) = 1 − x if Bij = Ac
ij

for j = 1, ..., k and hi(x) = 1 for

i /∈ {i1, ..., ik} in Formula 3.12 and use the independence of the Ai’s.

We get, for {i1,i2,..., ik} ⊂ {1, 2, ..., n}, with 2 ≤ k ≤ n, that

P(
⋂

1≤j≤s

Bij ) =
∏

1≤j≤s

P(Bij). �

3.3. Transformation of independent random variables.

Consider the independent random variables

Xi : (Ω,A,P) 7→ (Ei,Bi),

i = 1, ..., n and gi : (Ei,Bi) 7→ (Fi, Fi), n measurable mappings.

Then, the random variables gi(Xi) are also independent.

Indeed, if hi : Fi → R, 1 ≤ i ≤ n, are measurable and bounded
real-valued mappings, then the hi(gi) are also real-valued bounded and
measurable mappings. Hence, the hi(gi(Xi))’s are P-integrable. By
independence of the Xi, we get
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E(
∏

1≤i≤n

hi ◦ gi(Xi)) =
∏

1≤i≤n

E(hi ◦ gi(Xi)),

and this proves the independence of the hi ◦ gi(Xi)’s. We have the
proposition :

Proposition 2. Measurable transformations of independent ran-
dom variables are independent

3.4. Family of independent random variables. .

Consider a family of random variables

Xt (Ω,A,P) 7→ (Et,Bt), (t ∈ T ).

This family {Xt, t ∈ T} may be finite, infinite and countable or infi-
nite and non countable. It is said that the random variables of this
family are independent if and only the random variables in any finite
sub-family of the family are independent, that is, for any subfamily
{t1, t2, ..., tp} ⊂ T , 2 ≤ p < +∞, the mappings Xt1 , Xt2 , ..., Xtp are
independent.

The coherence of this definition will be a consequence of the Kolmgorov
Theorem.

4. Pointcarré and Bonferroni Formulas

Poincarré or Inclusion-exclusion Formula.

In Lo (2017b), we already proved these following formulas for subsets
A1, ..., An of Ω, n ≥ 2 :

1⋃
(1≤j≤j Aj)

=
∑

1≤j≤n

1Aj
+

n∑

r=2

(−1)r+1
∑

1≤i1<...<tr≤n

1Ai1
...Air

(4.1)

and
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(4.2)

Card(
⋃

1≤j≤n

Aj) =
∑

1≤j≤n

Card(Aj)+

n∑

r=2

(−1)r+1
∑

1≤i1<...<tr≤n

Card(Ai1...Air).

In the cited book, Formula (4.1) is proved and very similar techniques
may be repeated to have Formula (4.2). The same techniques also lead
the formula

(4.3) P(
⋃

1≤j≤n

Aj) =
∑

1≤j≤n

P(Aj)+

n∑

r=2

(−1)r+1
∑

1≤i1<...<tr≤n

P(Ai1 ...Air),

if A1, ..., An are events.

These three formula are different versions of the Pointcarré’s Formula,
also called Inclusion-Exclusion Formula.

Bonferroni’s Inequality.

Let A1, ..., An be measurable subsets of Ω, n ≥ 2. Define

α0 =
∑

1≤j≤n

P(Aj)

α1 = α0 −
∑

1≤i1<t2≤n

P(Ai1Ai2)

α2 = α1 +
∑

1≤i1<...<t3≤n

P(Ai1 ...Ai3)

· · · = · · ·
αr = αr−1 + (−1)r+1

∑

1≤i1<...<tr≤n

P(Ai1...Air)

· · · = · · ·
αr = αr−1 + (−1)n+1P(A1A2A3...An)

Let p = n mod 2, that is n = 2p + 1 + h, h ∈ {0, 1}. We have the
Bonferroni’s inequalities : if n is odd,

α2k+1 ≤ P

(
⋃

1≤j≤n

An

)

≤ α2k, k = 0, ..., p (BF1)
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and if n is even,

α2k+1 ≤ P

(
⋃

1≤j≤n

Aj

)

≤ α2k, k = 0, ..., p− 1. (BF2)

We may easily extend this formula to cardinalities in the following
way. Suppose the Ai’s are finite subsets of Ω and one of them at least
is non-empty. Denote by M the cardinality of Ω0 =

⋃

1≤j≤nAn. Hence

P(Ω0) ∋ A 7→ P(A) =
1

M
Card(A),

is a probability measure and the Bonferroni inequalities hold. By mul-
tiplying the formulas by M , we get

β2k+1 ≤ Card

(
⋃

1≤j≤n

An

)

≤ α2k, p = 0, 1, ...

where the sequence (βs)0≤s≤n is defined sequentially by

β0 =
∑

1≤j≤n

Card(Aj)

and for r > 0,

βr = αr−1 + (−1)r+1
∑

1≤i1<...<tr≤n

Card(Ai1...Air).

The extension has been made in the case where one of Ai’s is non-
empty. To finish, we remark that all inequalities hold as equalities of
null terms if all the sets Ai’s are empty.

Remark also that for 0 < s ≤ n, we have

αs =
∑

1≤j≤n

P(Aj) +

s∑

r=2

(−1)r+1
∑

1≤i1<...<tr≤n

P(Ai1 ...Air)

and

βs =
∑

1≤j≤n

Card(Aj) +
s∑

r=2

(−1)r+1
∑

1≤i1<...<tr≤n

Card(Ai1 ...Air).



CHAPTER 2

Random Variables in Rd, d ≥ 1

This chapter will focus on the basic important results of Probability
Theory concerning random vectors. Most of the properties exposed
here and relative to discrete real random variables are already given
and proved in the textbook Lo (2017a) of this series. The new features
are the extensions of those results to vectors and the treatment of the
whole thing as applications of the contents of Measure Theory and in-
tegration.

Three important results of Measure Theory and Integration, namely
Lp spaces, Lebesgue-stieljes measures and Radon-Nokodym’s Theorem
are extensively used.

First, we will begin with specific results for real random variables.

1. A review of Important Results for Real Random variables

First, let us recall inequalities already established in Measure Theory.
Next, we will introduce the new and important Jensen’s one and give
some of its applications.

Remarkable inequalities.

The first three inequalities are results of Measure Theory and Integra-
tion (See Chapter 10 in Lo (2017b)).

(1) Hölder Inequality. Let p > 1 and q > 1 be two conjugated
positive rel numbers, that is, 1/p+ 1/q = 1 and let

X, Y : (Ω,A,P) 7→ R

be two random variables X ∈ Lp and Y ∈ Lq. Then XY is integrable
and we have

31
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|E(XY )| ≤ ‖X‖p × ‖Y ‖q ,

where for each p ≥ 1, ‖X‖p = (inf |X|p)1/p.

(2) Cauchy-Schwartz’s Inequality. For p = q = 2, the Hölder
inequality becomes the Cauchy-Schwartz one :

|E(XY )| ≤ ‖X‖2 × ‖Y ‖2 .

(3) Minskowski’s Inequality. Let p ≥ 1 (including p = +∞). If X
and Y are in Lp, then we have

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p .

(4) Cp Inequality. Let p ∈ [1,+∞[. If X and Y are in Lp, then for
Cp = 2p−1, we have

‖X + Y ‖pp ≤ Cp(‖X‖pp + ‖Y ‖pp).

(5) Jensen’s Inequality.

(a) Statement and proof of the inequality.

Proposition 3. (Jensen’s inequality). Let φ be a convex function
defined from a closed interval I of R to R. Let X be a rrv with values
in I such that E(X) is finite. Then E(X) ∈ I and

φ(E(X)) ≤ E(φ(X)).

Proof. Here, our proof mainly follows the lines of the one in Parthasarathy
(2005).

Suppose that the hypotheses hold with 0 ∈ I and φ(0) = 0. That
E(X) ∈ I is obvious. First, let us assume that I is a compact interval,
that is, I = [a, b], with a and b finite and a < b. A convex function
has left-hand and right-hand derivatives and then, is continuous (See
Exercise 6 on Doc 03-09 of Chapter 4, page 191). Thus, φ is uniformly
continuous on I. For ε > 0, there exists δ > 0 such that

(1.1) |x− y| ≤ δ ⇒ |φ(x)− φ(y)| ≤ ε.
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We may cover I with a finite number of disjoint intervals Ej (1 ≤ j ≤
k), of diameters not greater than δ. By using the Choice’s Axiom, let
us pick one xj in each Ej. Let µ be a une probability measure on I.
We have

∣
∣
∣
∣
∣

∫

I

φ(x) dµ−
∑

1≤j≤k

φ(xj)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

1≤j≤k

∫

Ej

φ(x) dµ−
∑

1≤j≤k

φ(xj) µ(Ej)

∣
∣
∣
∣
∣
(J02)

=

∣
∣
∣
∣
∣

∑

1≤j≤k

∫

Ej

φ(x) dµ−
∑

1≤j≤k

∫

Ej

φ(xj) dµ

∣
∣
∣
∣
∣

≤
∑

1≤j≤k

∫

Ej

|φ(x)− φ(xj)| dµ ≤
∑

1≤j≤k

εµ(Ej) ≤ ε.

We also have

∣
∣
∣
∣
∣

∫

I

x dµ−
∑

1≤j≤k

xj µ(Ej)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

1≤j≤k

∫

Ej

x dµ−
∑

1≤j≤k

xj µ(Ej)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

1≤j≤k

∫

Ej

x dµ−
∑

1≤j≤k

∫

Ej

xj

∣
∣
∣
∣
∣

≤
∑

1≤j≤k

∫

Ej

|x− xj | dµ

≤
∑

1≤j≤k

δ µ(Ej) ≤ δ.

Then, by uniform continuity, we get

(1.2)

∣
∣
∣
∣
∣
φ

(∫

I

xdµ

)

− φ
(
∑

1≤j≤k

xjµ(Ej)

)∣
∣
∣
∣
∣
≤ ε.

By applying the convexity of φ, we have

φ

(∫

I

x dµ

)

≤ ε+ φ

(
∑

1≤j≤k

xj µ(Ej)

)

≤ ε+
∑

1≤j≤k

φ(xj) µ(Ej).

By applying Formula (J02) to last term of the right-hand side, we have
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φ‘

(∫

I

x dµ

)

≤ 2ε+

∫

I

φ(x) dµ,

for any ε > 0. This implies

(1.3) φ

(∫

I

x dµ

)

≤
∫

I

φ(x) dµ.

Now let I be arbitrary and µ be a probability measure on R. Put,
for each n ≥ 1, In = [an, bn] with (an, bn) → (−∞,+∞) as n → ∞
and µ(In) > 0 for large values of n. Let us consider the probability
measures µn on In defined by

µn(A) = µ(A)/µ(In), A ⊂ In.

Let us apply the inequality (1.3) to have

φ

(∫

In

x dµn

)

≤
∫

In

φ(x) dµn.

But, by the Monotone Convergence Theorem, we get

∫

x dµ = lim
n↑∞

∫

In

x dµ = lim
n↑∞

µ(In)

∫

In

x dµn

and

lim
n↑∞

µ(In)

∫

In

φ(x) dµn =

∫

φ(x) dµ.
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By using the continuity of φ, and the the Monotone Convergence The-
orem, and the fact that

∫
xdµ exists, we conclude by

φ

(∫

I

xdµ

)

= lim
n→∞

φ(

∫

In

x dµ)

= lim
n→∞

φ(µ(In)

∫

In

x dµn)

= lim
n→∞

φ(µ(In)

∫

In

x dµn + (1− µ(In))× 0)

≤ lim
n→∞

µ(In) φ

(∫

In

x dµn

)

+ (1− µ(In)) φ(0) (By convexity)

≤ lim
n→∞

µ(In) φ

(∫

In

xdµn

)

≤ lim
n→∞

µ(In) φ

(∫

In

xdµn

)

= lim
n→∞

µ(In)

∫

In

φ(x) dµn (Since φ(0) = 0)

=

∫

φ(x) dµ. (J03)

The proof above is valid for any probability measure on R. Since X
is integrable, X is a.e. finite and hence the support of PX is a subset
of R. Hence, by applying (J3) to PX , we have the Jensen’s inequality
with the restrictions 0 ∈ I, φ(0) = 0. We remove them as follows :

If 0 /∈ I, we may enlarge I to contains 0 without any change of the
inequality. If φ(0) 6= 0, we may still apply the inequality to the convex
function ψ(x) = φ(x)−φ(0) which satisfies ψ(0) = 0 and get the result.

(b) Some applications of the Jensen’s Inequality.

The following stunning results on Lp hold when the measure is a prob-
ability measure. They do not hold in general.

(b1) Ordering the spaces Lp.

Let 1 < p < q, p finite but q ∈ [1,+∞]. Let X ∈ Lq. Then X ∈ Lp

and

‖X‖p ≤ ‖X‖q .
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For q = +∞, the inequality holds for any finite measure.

Proof. We consider two cases.

Case q finite. Set g1(x) = xp, g2(x) = xq. Then the function g2 ◦
g−1
1 (x) = xq/p is convex on (0,+∞) since its second derivative is non-
negative on (0,+∞). Let us set X = g−1

1 (Y ). In order to stay on
(0,+∞), put Z = |X| and take Z = g−1

1 (Y ), Y ∈ (0,+∞). The
application of Jensen’s Inequality leads to

g2 ◦ g−1
1 (E(Y )) ≤ E(g2 ◦ g−1

1 (Y )).

Then we have
g−1
1 (E(Y )) ≤ g−1

2 (E(g2 ◦ g−1
1 (Y )),

that is
g−1
1 (E(g1(Z)) ≤ g−1

2 (E(g2(Z)).

This is exactly :
‖X‖p ≤ ‖X‖q .

Case q = +∞. By definition, X ∈ L∞ means that the set

{M ∈ [0,+∞[, |X| ≤M, P− a.e}
*is not empty and the infimum of that set is ‖X‖∞. But for any
0 ≤ M < +∞ such that |X| ≤ M , P-a.e. By taking the power and
integrating, we get that

(∫

|X|p dP
)1/p

≤M.

By taking the minimum of those values M , we get ‖X‖p ≤ ‖X‖∞.

Conclusion. If we have two real and finite numbers p and q such that
1 ≤ p ≤ q, we have the following ordering for Lp spaces associated to
a probability measure :

L∞ ⊂ Lq ⊂ Lp ⊂ L1.

(b2) Limit of the sequence of Lp-norm.

We have
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‖X‖p ր ‖X‖∞ as pր +∞. (LN)

Proof. If ‖X‖p0 = +∞ for some p0 ≥ 1, the results of Point (b2)
above imply that ‖X‖∞ = +∞ and ‖X‖p = +∞ for all p ≥ p0 and
the Formula (LN) holds.

Now suppose that ‖X‖p < +∞ for all p ≥ 1. By definition, ‖X‖∞ =
+∞ if the set

{M ∈ [0,+∞[, |X| ≤M, P− a.e}
is empty and is its infimum in the either case. In both cases, we
have P(|X| > c) > 0 for all c < ‖X‖∞ (as a consequence of the
infimum). We get the following inequalities, which first exploit the
relation : |X| ≤ ‖X‖∞, a.e.. Taking the powers in that inequality and
integrating yield, for c < ‖X‖∞,

‖X‖∞ ≥
(∫

|X|p dP
)1/p

≥
(∫

(|X|≥c)

|X|p dP
)1/p

≥ c

(

P(|X| ≥ c)

)1/p

.

By letting first p→ +∞, we get

c ≤ lim inf
p→+∞

‖X‖p ≤ lim sup
p→+∞

‖X‖p ≤ ‖X‖∞.

By finally letting cր ‖X‖∞, we get the desired result.

2. Moments of Real Random Variables

(a) Definition of the moments.

The moments play a significant role in Probability Theory and in Sta-
tistical estimation. In the sequel, X and Y are two rrv ’s, X1, X2, ...
and Y1, Y2 are finite sequences of rrv ’s, α1, α2, ... and β1, β2 are finite
sequences of real numbers.

Let us define the following parameters, whenever the concerned expres-
sions make sense.

(a1) Non centered moments of order k ≥ 1 :
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mk(X) = E |X|k ,

which always exists as the integral of a non-negative random variable.

(a2) Centered Moment of order k ≥ 1.

µk(X) = E |X −m1|k ,

which is defined if If m1(X) = EX exists and is finite.

(b) Focus on the centered moment of order 2.

(b1) Definition.

If EX exists and is finite, the centered moment of second order

µ2(X) = E

(

X − E(X)

)2

,

is called the variance of X . Throughout the textbook, we will use the
notations

µ2(X) =: Var(X) =: σ2
X .

The number σX = Var(X)1/2 is called the standard deviation of X .

(b2) Covariance between X and Y .

If EX and EY exist and are finite, we may define the covariance be-
tween X and Y by

Cov(X, Y ) = E

(

(X − E(X))((Y− E(Y ))

)

.

Warning. It is important to know that the expectation operator is
used in the Measure Theory and Integration frame, that is, Eh(X)
exists and is finite if and only if E|h(X)| is finite. Later, when using
Radon-Nikodym derivatives and replacing Lebesgue integrals by Rie-
mann integrals, one should always remember this fact.
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Warning. From now on, we implicitly assume the existence and the
finiteness of the first moments of the concerned real random variables
when using the variance or the covariance.

(b3) Expansions of the variance and covariance.

By expanding the formulas of the variance and the covariance and by
using the linearity of the integral, we get, whenever the expressions
make sense, that

Var(X) = E(X2)− E(X)2,

(In other words, the variance is the difference between the non centered
moment of order 2 and the square of the expectation), and

Cov(X, Y ) = E(XY )− E(X)E(Y ).

(b4) Two basic inequalities based on the expectation and the
variance.

The two first moments, when they exist, are basic tools in Statistical
estimation. In turn, two famous inequalities are based on them. The
first is the :

Markov’s inequality : For any random variable X , we have for any
λ > 0

P(|X| > λ) ≤ E |X|
λ

.

(See Exercise 6 in Doc 05-02 in Chapter 6 in Lo (2017b)). Next we
have the :

Tchebychev’s inequality : If X −E(X) is defined a.e., then for any
λ > 0,

P(|X − E(X)| > λ) ≤ Var(X)

λ2
.

This inequality is derived by applying the Markov’s inequality to |X −
E(X)| and by remarking that (|X−E(X)| > λ) = ((X−E(X))2 > λ2),
for any λ > 0.
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(c) Remarkable properties on variances and covariances.

Whenever the expressions make sense, we have the following properties.

(P1) Var(X) = 0 if and only if X = (X) a.s.

(P2) For all λ > 0, Var(λX) = λ2Var(X)

(P3) We have

Var(
∑

1≤i≤k

αiXi) =
∑

1≤i≤k

Var(Xi)α
2
i + 2

∑

i<j

Cov(Xi, Yj)αiαj.

(P4) We also have

Cov

(
∑

1≤i≤k

αiXi),
∑

1≤i≤ℓ

βiYi)) =
∑

1≤i≤k

∑

1≤j≤ℓ

Cov(Xi, Yj)αiβj .

(P5)] If X and Y are independent, then Cov(X, Y ) = 0.

(P6) Si X1, ..., Xk are pairwise independent, then

Var(
∑

1≤i≤k

αiXi) =
∑

1≤i≤k

Var(Xi)α
2
i .

(P7) If none of σX and σY is null, then the coefficient

ρXY =
Cov(X, Y )

σXσY
,

is called the linear correlation coefficient between X and Y and satisfies

|ρXY | ≤ 1.

Proofs or comments. Most of these formulas are proved in the text-
book Lo (2017a) of this series. Nevertheless we are going to make
comments of the proofs at the light of Measure Theory and Integration
and prove some of them.

(P1) We suppose that E(X) exists and is finite. We have Y = (X −
E(X))2 ≥ 0 and Var(X) = EY . Hence, Var(X) = 0 if and only if
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Y = 0 a.e. �

(P2) This is a direct application of the linearity of the integral as re-
called in Theorem 1. �

(P3) This formula uses (P2) and the following the identity :

(
∑

1≤i≤k

ai

)2

=
∑

1≤i≤k

a2i + 2
∑

i<j

aiaj ,

where ai, 1 ≤ i ≤ k, are real and finite numbers. Developing the
variance and applying this alongside the linearity of the mathematical
expectation together lead to the result. �

(P4) This formula uses the following identity

(
∑

1≤i≤k

ai

)(
∑

1≤i≤ℓ

bi

)

=
∑

1≤i≤k

∑

1≤j≤ℓ

aibj ,

where the ai, 1 ≤ i ≤ k, and the bi, 1 ≤ i ≤ ℓ, are real and finite
numbers. By developing the covariance and applying this alongside
the linearity of the mathematical expectation lead to the result. �

(P5) Suppose that X and Y are independent. Since X and Y are real
random variables, Theorem 3.3 implies that : E(XY ) = E(X)E(Y ) by.
Hence, by Point (b3) above, we get

Cov(X, Y ) = E(XY )− E(X)E(Y ) = E(X)E(Y )− E(X)E(Y ) = 0.�

(P6) If the Xi’s are pairwise independent, the covariances in the for-
mula in (P3) vanish and we have the desired result. �

(P7) By applying the Cauchy-Schwartz inequality to X−E(X) and to
Y − E(Y ), that is the Hőlder inequality for p = q = 2, we get

|Cov(X, Y )| ≤ σXσY .

If none of σX and σY is zero, we get |ρXY | ≤ 1. �
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3. Cumulative distribution functions

An important question in Probability Theory is to have parameters or
functions which characterize probability laws. In Mathematical Statis-
tics, these characteristics may be used in statistical tests. For example,
if X is a real value random variable having finite moments of all orders,
that is : for all k ≥ 1, E|X|k < +∞. Does the sequence (E|X|k)k≥1

characterize the probability law PX? This problem, named after the
moment problem, will be addressed in a coming book.

The first determining function comes from the Lebesgue-Stieljes mea-
sure studied in Chapter 11 in Lo (2017b). We will use the results of
that chapter without any further recall.

(a) The cumulative distribution function of a real-random
variable.

Let X : (Ω,A,P) 7→ R be a random real-valued random variable. Its
probability law PX satisfies :

∀x ∈ R, PX(]−∞, x]) < +∞.

Hence, the function

R ∋ x 7→ FX(x) = PX(]−∞, x]),

is a distribution function and PX is the unique probability-measure
such that

∀(a, b) ∈ R2 such that a ≤ b, PX(]a, b]) = FX(b)− FX(a).

Before we go further, let us give a more convenient form of FX by
writing for any x ∈ R,

FX(x) = PX(]−∞, x]) = P(X−1(]−∞, x]))
= P({ω ∈ Ω, X(ω) ≤ x}) = P(X ≤ x).

Now, we may summarize the results of the Lebesgue-Stieljes measure
in the context of probability Theory.
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Definition. For any real-valued random variable X : (Ω,A,P) 7→ R,
the function defined by

R ∋7→ FX(x) = P(X ≤ x),

is called the cumulative distribution (cdf) function of X .

It has the two sets of important properties.

(b) Properties of FX .

(1) It assigns non-negative lengths to intervals, that is

∀(a, b) ∈ R2 such that a ≤ b, ∆a,bF = FX(b)− FX(a) ≥ 0.

(2) It is right-continuous at any point t ∈ R.

(3) F (−∞) = limx→−∞ F (x) = 0 and F (+∞) = limx→+∞ F (x) = 1.

Warning. Point (1) means, in the case of one-dimension, that FX is
non-decreasing. So, it happens that the two notions of non-negativity of
lengths by F and non-drecreasingness of F coincide in dimension one.
However, we will see that this is not the case in higher dimensions, and
that non-decreasingness is not enough to have a cdf.

(c) Characterization.

The cdf is a characteristic function of the probability law of a random
variable with values in R from the following fact, as seen Chapter 11
in Lo (2017b) of this series :

There exists a one-to-one correspondence between the class of Proba-
bility Lebesgue-Stieljes measures PF on R and the class of cfd’s FP on
R according the relations

(

∀x ∈ R, FP(x) = P(]−∞, x])
)

,

(

∀(a, b) ∈ (R) , a ≤ b, PF (]a, b]) = ∆a,bF

)

The cdf is a characteristic function of the probability law of random
variables. The means that two random real variable X and Y with the
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same distribution function have the same probability law.

(d) How Can we Define a Random Variable Associated to a
Cdf .

Let us transform the properties in Point (b) into a definition.

(d1) Definition. A function F : R → [0, 1] is cdf if and only if con-
ditions (1), (2) and (3) of Point (b) above are fulfilled.

Once we know that F is (cdf ), can you produce a random variable
X : (Ω,A,P) 7→ R such that FX = X? meaning : can we construct a
probability space (Ω,A,P) holding a random variable such that for all
x ∈ R, F (x) = P(X ≤ x)?

This is the simplest form the Kolmogorov construction. A solution is
the following.

(d2) A Simple form of Kolmogorov construction.

Since F is a cdf, we may define the Lebesgue-Stieljes measure P on
(R,B(R) defined by

P(]y, x]) = ∆y,xF = F (x)− F (y), −∞ < y < x < +∞. (LS11)

By Conditions (3) in the definition of a cdf in Point (b) above, P is
normed and hence, is a probability measure. By letting y ↓ −∞ in
(LS1), we get

∀x ∈ R), F (x) = P(]−∞, x]). (LS12)

Now take Ω = R, A = B(R) and let X : (Ω,A,P) 7→ R be the identity
function

∀ω ∈ Ω, X(ω) = ω.

It is clear that X is a random variable and we have for x ∈ R, we have

FX(x) = P({ω ∈ R, X(ω) ≤ x})
= P({ω ∈ R, ω ≤ x})
= P(]−∞, x) = F (x),
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where we used (LS12). We conclude the X admits F as a cdf.

Warning. This construction may be very abstract at a first reading.
If you feel confused with it, we may skip it and wait a further reading
to catch it.

(e) Decomposition of cdf in discrete and continuous parts.

Let F be a cdf on R and let us denote by PF the associated Lebesgue-
measure. We already know from Measure Theory that : x ∈ R is a
continuity point of F if and only if

PF ({x}) = F (x)− F (x− 0) = 0, (CC)

where for each x ∈ R

F (x+) ≡ F (x+ 0) = lim
hց0

F (x+ h)

and

F (x−) ≡ F (x− 0) = lim
hց0

F (x+ h)

are the right-limit hand and the the left-limit hand of F (◦) at x, when-
ever they exist. In the present case, they do because of the monotonic-
ity of F .

So, a cdf is continuous if and only if Formula (CC) holds for each
x ∈ R. In the general case, we are able to decompose the cdf into two
non-negative distributions functions Fc and Fd, where Fc is continuous
and Fd is discrete in a sense we will define. As a reminder, a distri-
bution function (df ) on R is a function satisfying only Conditions (1)
and (2) in Point (b) above.

Let us define a discrete df Fd on R as a function such that there exists
a countable number of distinct real numbers D = {xj, j ∈ J}, J ⊂ N

and a family of finite and positive real numbers (pj)j∈J such that

∀x ∈ R, Fd(x) =
∑

xj≤x,j∈J
pj < +∞. (DDF1)

Let ν be the discrete measure D defined by
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∀(y, x) ∈ R2such that y ≤ x, ν(]y, x]) =
∑

xj∈]y,x],j∈J
pj < +∞. (DDF2)

By combining (DDF1) and (DDF2), we see thatFd a discrete df is a df

of a counting measure which is finite on bounded above intervals. It
follows that for each j ∈ J ,

ν({xj}) = Fd(xj)− Fd(xj − 0) = pj > 0.

This implies that a discrete df is never continuous at all points. We
still may call D the support of Fd by extension of the support of ν.

We know that F , as a non-decreasing function, has at most a count-
able number of discontinuity points. Let us denote the set of those
discontinuity points by D = {xj, j ∈ J}, J ⊂ N and put pj =
F (xj) − F (xj − 0) > 0. Going Back to Measure Theory (see Solu-
tion of Exercise 1, Doc 03-06, Chapter 4 in Lo (2017b) of this series),
we have that

∀(y, x) ∈ R2such that y ≤ x,
∑

xj∈]y,x],j∈J
F (xj)−F (xj−0) ≤ F (x)−F (y).

By letting y ↓ −∞, we have

∀x ∈ R, Fd(x) =
∑

xj≤x,j∈J
pj ≤ F (x) < +∞.

Besides, the set discontinuity points of Fd isD since discontinuity points
x of Fd must satisfy ν({x}) > 0.

Next, let us define Fc = F − Fd. It is clear that Fc is right-continuous
and non-negative. Let us prove that Fc is continuous. By the devel-
opments above, Fc is continuous outside D and for each j ∈ J , we
have

Fc(xj)− Fc(xj − 0) =

(

F (xj)− F (xj − 0)

)

−
(

Fd(xj)− Fd(xj − 0)

)

= pj − pj = 0.
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It remains to show Fc is a df by establishing that : it assigns to intervals
non-negative lengths. For each x ∈ R, h > 0, we have

∆x,x+hFc =

(

F (x+ h)− F (x)
)

−
(

Fd(x+ h)− Fd(x)

)

.

But, by definition Fd(x + h) − Fd(x) is the sum of the jumps of F
at discontinuity points in ]x, x + h]. We already know (otherwise,
get help from a simple drawing) that this sum of jumps is less than
F (x + h + 0) − F (x) which is F (x + h) − F (x) by right-continuity of
F . Hence for all x ∈ R, for all h > 0, ∆x,x+hFc ≥ 0. In total, F is a df.

We get the desired decomposition : F = Fc + Fd. Suppose that we
have another alike decomposition F = F ∗

c + F ∗
d . Since the functions

are bounded, we get Fc − F ∗
c = F ∗

d − Fd. Let us denote by D and D∗

and by px and p∗x the supports and the discontinuity jumps (at x) of
Fd and F ∗

d respectively.

If the supports are not equal, thus for x ∈ D∆D∗, F ∗
d − Fd is discon-

tinuous at x.

If D = D∗ and px 6= p∗x, the discontinuity jump of F ∗
d − Fd at x is

p∗x − px > 0.

Since none of the two last conclusions is acceptable, we get that the
equation Fc − F ∗

c = F ∗
d − Fd implies that F ∗

d and Fd have the same
support and the same discontinuity jumps, and hence are equal and
then so are F ∗

c and Fc.

We get the following important result.

Proposition. A cdf F is decomposable into the addition of two non-
negative distribution functions (df ) Fc and Fd, where Fc is continuous
and Fd is discrete and Fc(−∞) = Fd(−∞) = 0. The decomposition is
unique.

Warning. Such a result is still true for a df but the condition Fc(−∞) =
Fd(−∞) = 0 is not necessarily true.
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NB. We did not yet treat the probability density existence and its use
for real random variables. This will be done in the next section which
is concerned with random vectors.

4. Random variables on R
d
or Random Vectors

(a) Introduction.

Random vectors are generalizations of real random variables. A random
vector of dimension d ≥ 1 is a random variable

X : (Ω,A,P) 7→ (R
d
,B∞(R

d
).

with values in R
d
.

Important Remarks. In general, it is possible to have
(

R
d
,B∞

(

R
d
))

as the set of values of random vectors, especially when we are concerned
with general probability laws. But, the most common tools which are
used for the study of random vectors such as the cumulative random
vectors, the characteristic functions, the absolute probability density
function are used for finite component random vectors with values in
(
Rd,B(Rd

)
.

Throughout this section, we use a random vector with d components
as follows. Let

X =









X1

X2

· · ·
Xd−1

Xd









From Measure Theory, we know that X is a random variable if and
only if each Xi, 1 ≤ i ≤ d, is a real random variable.

If d = 1, the random vector becomes a real random variable, abbrevi-
ated (rrv).

Notation. To save space, we will rather use the transpose opera-
tor and write X t = (X1, X2, · · · , Xd) or X = (X1, X2, · · · , Xd)

t. Let
(Y1, Y2, · · · , Xd)

t another be d-random vector and two other random
vectors (Z1, Z2, · · · , Zr)

t and (T1, T2, · · · , Ts)t of dimensions r ≥ 1 and
s ≥ 1, all of them being defined on (Ω,A,P).
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Matrix Notation. To prepare computations on the matrices, let us
denote any real matrix A of r ≥ 1 lines and s ≥ 1 columns in the form
A = (aij)1≤i≤r, 1≤j≤s, where the lowercase letter a is used to denote the
elements of the matrix whose name is the uppercase letter A. As well,
we will use the notation (A)ij = aij , 1 ≤ i ≤ r, 1 ≤ j ≤ s.

A matrix of r lines and s columns is called a (r × s)-matrix, a square
matrix with r lines and r columns is a r-matrix and a vector of r com-
ponents is a d-vector.

The s columns of a matrix A are elements of Rr and are denoted by
A1, A2, ..., As. The r lines of the matrix A are (1×s)-matrices denoted
A1, ...,Ar, that is A

t
1, ...,A

t
r belong to Rs.

So, for 1 ≤ j ≤ s, Aj = (a1j , a2j , · · · , arj)t and for 1 ≤ i ≤ r,
Ai = (ai1, ai2, · · · , ais).

We also have A = [A1, A2, ..., Ad] and At = [At
1, A

t
2, ..., A

t
p].

Introduce the scalar product in Rs in the following way. Let x and y
be two elements Rs with xt = (x1, · · · , xs) and yt = (y1, · · · , ys).

We define the scalar product < x, y > of x and y as the matrix product
of the (1 × s)-matrix xt by the (s × 1)-matrix y which results in the
real number

< x, y > = xty =

s∑

i=1

xiyi.

With the above notation, the matrix operations may be written in the
following way.

If (1) Sum of matrices of same dimensions. If A = (aij)1≤i≤r, 1≤j≤s and
B = (bij)1≤i≤r, 1≤j≤s are two (r× s)-matrix, then A+B is the (r× s)-
matrix : A+B = (aij+bij)1≤i≤r, 1≤j≤s, that is : (A+B)ij = (A)ij+(B)ij
for 1 ≤ i ≤ r, 1 ≤ j ≤ s.

If (2) Multiplication by a scalar. If λ is a real number and if A =
(aij)1≤i≤r, 1≤j≤s, then λA is the (r×s)-matrix : λA = (λaij)1≤i≤r, 1≤j≤s,
that is :(λA)ij = λ(A)ij for 1 ≤ i ≤ r, 1 ≤ j ≤ s.
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If (3) Product of Matrices. If A = (aij)1≤i≤r, 1≤j≤s andB = (bij)1≤i≤s, 1≤j≤q

such that the number of columns of A (the first matrix) is equal to the
number of lines of B (the second of the second matrix), the product
matrix AB is a (r, q)-matrix defined by

AB = (AiB
j)1≤i≤r, 1≤j≤q, (PM1)

that is, for 1 ≤ i ≤ r, 1 ≤ j ≤ q,

(AB)ij = (AiB
j) =

d∑

k=1

aikbkj . (MP2)

(b) Variance-covariance and Covariance Matrices.

(b1) Definition of Variance-covariance and Covariance Matrices.

We suppose that the components of our random vectors have finite
second moments. We may define

(i) the mathematical expectation vector E(X) of X ∈ Rd by the
vector

E(X)t = (E(X1),E(X2), · · · ,E(Xd)),

(ii) the covariance matrix Cov(X, Y ) between X ∈ Rd and Z ∈ Rr

by the (d× r)-matrix

Cov(X, Y ) = ΣXY = E

(

(X − E(X))(Z − E(Z))t
)

,

in an other notation

Cov(X, Y ) = ΣXY =

(

E(Xi − E(Xi))(Zj − E(Zj))

)

1≤i≤d, 1≤j≤r

,

(iii) the variance-covariance matrix Var(Y ) of X ∈ Rd by the
(d× d)-matrix
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Var(X) = ΣX = E

(

(X − E(X))(X − E(X))t
)

=

(

E(Xi − E(Xi))E(Xj − E(Xj))

)

1≤j≤d, 1≤j≤d

. �

Let us explain more the second definition. The matrix

(X − E(X))(Z − E(Z))t

is the product of the (d× 1)-matrix X − E(X), with

(X − E(X))t = (X1 − E(X1), X2 − E(X2), · · · , Xd − E(Xd)),

by the (1× r)-matrix with

(Z − E(Z))t = (Z1 − E(Z1), Z2 − E(Z2), · · · , Xr − E(Zr)).

The (ij)-element of the product matrix, for 1 ≤ i ≤ d, 1 ≤ j ≤ r, is

(Xi − E(Xi))(Zj − E(Zj)).

By taking the mathematical expectations of those elements, we get the
matrix of covariances

Cov(X, Y ) =

(

Cov(Xi, Yj)

)

1≤i≤d, 1≤j≤r

For X = Z (and then d = r), we have

Var(X) ≡ Cov(X,X) =

(

Cov(Xi, Xj)

)

1≤i≤d, 1≤j≤d

.

We have the following properties.

(b2) Properties.

Before we state the properties, it is useful to recall that linear mappings
from Rd to Rr are of the form

Rd ∋ X 7→ AX ∈ Rr,
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where A is a (r×d)-matrix of real scalars. Such mappings are continu-
ous (uniformly continuous, actually) and then measurable with respect
to the usual σ-algebras on Rd and Rp.

Here are the main properties of the defined parameters.

(P1) For any λ ∈ R,

E(λX) = λE(X).

(P2) For two random vectors X and Y of the same dimension d, AX ∈
Rp and

E(X + Y ) = E(X) + E(Y ).

(P3) For any (p× d)-matrix A and any d-random vector X ,

E(AX) = AE(X) ∈ Rp.

(P4) For any d-random vector X and any s-random vector Z,

Cov(X,Z) = Cov(Z,X)t.

(P5) For any (p × d)-matrix A, any (q × s)-matrix B, any d-random
vector X and any s-random vector Z,

Cov(AX,BZ) = ACov(X,Z)Bt,

which is a (p, q)-matrix.

Proofs.

We are just going to give the proof of (P3) and (P4) to show how work
the computations here.

Proof of (P3). The i-th element of the column vector AX of Rp, for
1 ≤ i ≤ p, is

(AX)i = AiX =
∑

1≤j≤d

aijXj

and its real mathematical expectation, is
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E(AX)i =
∑

1≤j≤d

aijE(Xj).

But the right-hand member is, for 1 ≤ i ≤ p, the i-th element of
the column vector AE(X). Since E(AX) and AE(X) have the same
components, we get

E(AX) = AE(X). �

Proof of (P5). We have

Cov(AX,BZ) = P
(
(AX − E(AX))(BZ − E(BZ))t

)
. (COV 1)

By (P5), we have

(AX − E(AX))(BX − E(BZ)) = A(X − E(X))(B(Z − E(Z)))t

= A

(

(X − E(X))(Z − E(Z))t
)

Bt.

Let us denote C = (X − E(X))(Z − E(Z))t. We already know that

cij =

(

(Xi − E(Xi))(Zj − E(Zj))

)

, (i, j) ∈ {1, ..., d}2.

Let us fix (i, j) ∈ {1, ..., p} × {1, ..., q}. The ij-element of the (p, q)-
matrix ACBt is

(ACBt)ij = (AC)i(B
t)j.

But the elements of i-th line of AC are {AiC
1, A2C

2, ..., AiC
p} and the

column (Bt)j contains the elements of the j-th line of B, that is bj1,
bj2, ...,bjs. We get
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(ACBt)ij =
∑

1≤k leqs

(

(AC)i

)

k

(

(Bt)j
)

k

=
∑

1≤k ≤s

(

AiC
k

)

bjk

=
∑

1≤k ≤s

∑

1≤p ≤p

aih(Xh − E(Xh))(Zk − E(Zk))bjk. (COV 2)

Hence, by applying Formula (COV1), the ij-element of Cov(AX,BZ)
is

E

(

(ACBt)ij

)

=
∑

1≤k ≤s

∑

1≤p ≤p

aihCov(Xh, Zk)bjk. (COV 3)

Actually we have proved that for any (p×d)-matrix A, for any (d×s)-
matrix and for any (q×)-matrix, the ij-element of ACBt is given by

∑

1≤k ≤s

∑

1≤p ≤p

aihchkbjk. (ACBT )

When applying this to Formula (COV2), we surely have that

Cov(AX,BZ) = ACov(X,Z)Bt.

(b3) Focus on the Variance-covariance matrix.

(P6) Let A be a (p× d)-matrix and X be a d-random vector. We have

ΣAX = AΣXA
t.

(P7) The Variance-covariance matrix ΣX ofX ∈ Rd is a positive matrix
as a quadratic form, that is :

∀u ∈ Rd, uΣXu
t ≥ 0.

If ΣX is invertible, then it is definite-positive that is

∀u ∈ Rd \ {0}d, uΣXu
t > 0.
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(P8) ΣX is symmetrical and there exists an orthogonal d-matrix T such
that TΣXT

t is a diagonal matrix

TσXT
t = diag(δ1, δ2, ..., δd),

with non-negative eigen-values δj ≥ 0, 1 ≤ j ≤ d. Besides we have the
following facts :

(P8a) The columns of T are eigen-vectors of ΣX respectively associated
the eigen-values δj ≥ 0, 1 ≤ j ≤ d respectively.

(P8b) The columns, as well as the lines, of T form an orthonormal
basis of Rd.

(P8c) T−1 = T .

(P8d) The number of positive eigen-values is the rank of ΣX and ΣX

is invertible if and only all the eigen-values are positive.

(P8e) The determinant of ΣX is given by

|ΣX | ≡ det(ΣX) =

d∏

j=1

δj.

Proofs. Property (P6) is a consequence of (P5) for A = B. Formula
(P8) and its elements are simple reminders of Linear algebra and diago-
nalization of symmetrical matrices. The needed reminders are gathered
in Subsection 2 in Section 10. The only point to show is (P7). And by
(P5), we have for any u ∈ Rd

uΣXu
t = uE

(

(X − E(X))(X − E(X))t
)

ut

= E

(

u(X − E(X))(X − E(X))tut
)

.

But u(X − E(X))(X − E(X))tut =

(

u(X − E(X)

)(

u(X − E(X))

)t

.

Since u(X − E(X)) is d-vector, we have
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(

u(X − E(X)

)(

u(X − E(X))

)t

= ‖u(X − E(X)‖2 ≥ 0.

Hence uσXu
t ≥ 0. �.

(c) Cumulative Distribution Functions.

The presentation of cdf ’s on Rd follows that lines we already used for
cdf ’s on R. But the notations are heavier.

Let us recall the notion of volume we already introduced in Chapter
11 in Lo (2017b).

(c1) Notion of Volume of cuboids by F .

Simple case. Let us begin by the case d = 2. Consider a rectangle

]a, b] =]a1, b1]×]a2, b2] =
2∏

i=1

]ai, bi],

for a = (a1, a2) ≤ b = (b1, b2) meaning ai ≤ bi, 1 ≤ i ≤ 2. The volume
of ]a, b] by F is denoted

∆F (a, b) = F (b1, b2)− F (b1, a2)− F (a1, b2) + F (a1, a2).

Remark. In the sequel we will use both notations ∆a,bF and ∆F (a, b)
equivalently. The function ∆F (a, b) is obtained according to the fol-
lowing rule :

Rule of forming ∆F (a, b). First consider F (b1, b2) the value of the
distribution function at the right endpoint b = (b1, b2) of the interval
]a, b]. Next proceed to the replacements of each bi by ai by replacing
exactly one of them, next two of them etc., and add each value of F at
the formed points, with a sign plus (+) if the number of replacements
is even and with a sign minus (−) if the number of replacements is odd.

We also may use a compact formula. Let ε = (ε1, ε2) ∈ {0, 1}2. We
have four elements in {0, 1}2 : (0, 0), (1, 0), (0, 1), (1, 1). Consider a
particular εi = 0 or 1, we have
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bi + εi(ai − bi) =
{
bi if εi = 0
ai if εi = 1

.

So, in
F (b1 + ε1(a1 − b1), b1 + ε2(a2 − b2)),

the number of replacements of the bi’s by the corresponding ai is the
number of the coordinates of ε = (ε1, ε2) which are equal to the unity
1. Clearly, the number of replacements is

s(ε) = ε1 + ε2 =
2∑

i=1

εi

We way rephrase the Rule of forming ∆F (a, b) into this formula

∆F (a, b) =
∑

ε=(ε1,ε2)∈{0,1}
(−1)s(ε)F (b1 + ε1(a1 − b1), b1 + ε2(a2 − b2)).

We may be more compact by defining the product of vectors as the
vector of the products of coordinates as

(x, y) ∗ (X, Y ) = (x1X1, ..., ydYd), d = 2.

The formula becomes

∆F (a, b) =
∑

ε∈{0,1}
(−1)s(ε)F (b+ ε ∗ (a− b)).

Once the procedure is understood for d = 2, we may proceed to the
general case.

General case, d ≥ 1.

Let a = (a1, ..., ad) ≤ b = (b1, ..., bd) two points of Rd. The volume of
the cuboid

]a, b] =
d∏

i=1

]ai, bi],

by F , is defined by
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∆F (a, b) =
∑

ε=(ε1,...,εd)∈{0,1}k
(−1)s(ε)F (b1+ε1(a1−b1), ..., bd+εk(ad−bd))

or
∆F (a, b) =

∑

ε∈{0,1}d
(−1)s(ε)F (b+ ε ∗ (a− b)).

Similarly to the case d = 2, we have the

General rule of forming ∆F (a, b). ∆F (a, b) in formed as follows.
First consider F (b1, b2, ..., bd) the value of F at right endpoint b =
(b1, b2, ..., bd) of the interval ]a, b]. Next proceed to the replacement of
each bi by ai by replacing exactly one of them, next two of them etc.,
and add the each value of F at these points with a sign plus (+) if
the number of replacements is even and with a sign minus (−) if the
number of replacements is odd.

(c2) Cumulative Distribution Function.

In this part, we study finite components vectors.

Definition. For any real-valued random variable X : (Ω,A,P) 7→ Rd,
the function defined by

Rd ∋ x 7→ FX(x) = P(X ≤ x),

where xt = (x1, ..., xd) and

FX(x1, ..., xd) = P(X1 ≤ x1, X2 ≤ x2, ..., Xd ≤ xd) = PX

( d∏

i=1

]−∞, xi]
)

.

is called the cumulative distribution (cdf) function of X .

It has the two sets of important properties.

Properties of FX .

(1) It assigns non-negative volumes to cuboids, that is
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∀(a, b) ∈ (Rd)2 such that a ≤ b, ∆a,bF ≥ 0.

(2) It is right-continuous at any point t ∈ Rd, that is,

FX(t
(n)) ↓ Fm(t)

as

(t(n) ↓ t)⇔ (∀1 ≤ i ≤ d, t
(n)
i ↓ ti).

(3) FX satisfies the limit conditions :

Condition (3-i)

lim
∃i,1≤i≤k,ti→−∞

FX(t1, ..., tk) = 0

and Condition(3-ii)

lim
∀i,1≤i≤k,ti→+∞

FX(t1, ..., tk) = 1.

As we did in one dimension, we have :

Definition. A function F : Rd → [0, 1] is cdf if and only if Conditions
(1), (2) and (3) above hold.

(c3) Characterization.

The cdf is a characteristic function of the probability law of random
variables of Rd from the following fact, as seen in Chapter 11 in Lo
(2017b) of this series :

There exists a one-to-one correspondence between the class of Probabil-
ity Lebesgue-Stieljes measures PF on Rd and the class of cfd’s FP on
Rd according the relations

∀x ∈ Rd, FP(x) = P(]−∞, x])
and

∀(a, b) ∈
(
Rd
)
, a ≤ b, PF (]a, b]) = ∆a,bF.
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This implies that two d-random vectors X and Y having the same dis-
tribution function have the same probability law.

(c4) Joint cdf ’s and marginal cdf ’s.

Let us begin by the sample case where d = 2. Let X : (Ω,A,P)→ R2

be a random coupe, with X t = (X1, X2). We have,

(X1 ≤ x) = X−1
1 (]−∞, x]) = X−1

1 (]−∞, x]) ∩X−1
1 (]−∞,+∞])

= lim
y↑+∞

X−1
1 (]−∞, x]) ∩X−1

2 (]−∞, y]) = lim
y↑+∞

(X1 ≤ x,X2 ≤ y)

and by applying the Monotone Convergence Theorem, we have

∀x ∈ R, FX1(x) = P(X1 ≤ x)

= lim
y↑+∞

P(X1 ≤ x,X2 ≤ y) = lim
y↑+∞

F(X1,X2)(x, y).

We write, for each x ∈ R,

FX1(x) = F(X1,X2)(x,+∞).

The same thing could be done for the X2. We may now introduce the
following terminology.

Definition. F(X1,X2) is called the joint cdf of the ordered pair (X1, X2).
FX1 and FX2 are called the marginal cfd’s of the couple. The marginal
cdf ’s may be computed directly but they also may be derived from the
joint cdf by

FX1(x1) = F(X1,X2)(x1,+∞) and FX2(x2) = F(X1,X2)(+∞, x2), (x1, x2) ∈ R2.

The extension to higher dimensions is straightforward. LetX : (Ω,A,P)→
Rd be a random vector with X t = (X1, ..., Xd).

(i) Each marginal cdf FXi
, 1 ≤ i ≤ d, is obtained from the joint cdf

FX =: F(X1,...,Xd) by

FXi
(xi) = F(X1,...,Xd)



+∞, ...,+∞, xi
︸︷︷︸

i−th argument

,+∞, ...,+∞



 , xi ∈ R,
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or

FXi
(xi) = lim

(∀j∈{1,...,d}\{i}, xj↑+∞)
F(X1,...,Xd)(x1, ..., xd), xi ∈ R.

(ii) Let (Xi1 , ..., Xir)
t be a sub-vector of X with 1 ≤ r < d, 1 ≤ i1 <

i2 < ... < ir). Denote I = {i1, ..., ir}, the marginal cfd of (Xi1 , ..., Xir)
is given by

F(Xi1
,...,Xir) (xi1 , ..., xir) = lim

∀j∈{1,...,d}\I, xj↑+∞
F(X1,...,Xd)(x1, ..., xd), (xi1 , ..., xir) ∈ Rr.

(iii) Let X(1) = (X1, ..., Xr)
t and X(2) = (Xr+1, ..., Xb)

t be two sub-
vectors which partition X into consecutive blocs. The marginal cdf ’s
of X(1) and X(2) are respectively given by

FX(1)(x) = F(X1,...,Xd)



x,+∞, ...,+∞
︸ ︷︷ ︸

(d−r) times



 , x ∈ Rr

and

FX(2)(y) = F(X1,...,Xd)



+∞, ...,+∞
︸ ︷︷ ︸

r times

, y



 , y ∈ Rd−r.

After this series of notation, we have this important theorem concerning
a new characterization of the independence.

Theorem 3. Let X : (Ω,A,P)→ Rd be a random vector. Let us
adopt the notation above. The following equivalences hold.

(i) The margins Xi, 1 ≤ i ≤ d are independent if and only if the joint
cdf of X is factorized in the following way :

∀(x1, ..., xd) ∈ Rd, F(X1,...,Xd)(x1, ..., xd) =

d∏

j=1

FXi
(xi). (FLM01)

(i) The two marginal vectors X(1) and X(2) are independent if and only
if the joint cdf of X is factorized in the following way : for (x(1), x2)) ∈
Rd, we have
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F(X1,...,Xd)(x
(1), x2)) = FX(1)(x(1))FX(2)(x(2)). (FLM02)

Proof. This important characterization follows as a simple result of
Measure Theory and Integration. The proof of the two points are very
similar. So, we only give the proof of the first one.

Suppose that the components of X are independent. By Theorem 9 in
Section 3 in Chapter 1, we have for any (x1, ..., xd) ∈ Rd,

F(X1,...,Xd)(x1, ..., xd) = P(X1 ≤ x1, ..., Xd ≤ xd) = E

( d∏

j=1

1]−∞,xj](Xj)

)

=

d∏

j=1

E

(

1]−∞,xj](Xj)

)

=

d∏

j=1

FXj
(xj).

Conversely, if Formula (FLM01) holds, the Factorization Formula (FACT02)
in Part (10.03) in Doc 10-01 in Chapter 11 in Lo (2017b) of this series,
we have : for any a = (a1, ..., ak) ≤ b = (b1, ..., bk),

∆a,bFX =
∏

1≤i≤k

(FXi
(bi)− FXi

(ai)).

By using the Lebesgue-Stieljes measures and exploiting the product
measure properties, we have for any (a, b) ∈ R2, a ≤ b,

PX(]a, b]) =
∏

1≤i≤k

PXi
(]ai, bi]) =

(

⊗d
j=1 PXi

)

(]a, b]).

So the probability measures PX and ⊗d
j=1PXi

coincide on the π-system

of rectangles of the form ]a, b] which generates B(Rd). Hence they sim-
ply coincide. Thus the components of X are independent.

One handles the second point similarly by using Formula (FACT05)
in the referred book at the same part, in the same document and the
same section.

(c5) How Can we Define a Random Variable Associated to a
Cdf .
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As on R, the Kolmogorov construction on Rd, d ≥ 2, is easy to perform.

For any cdf F on Rd, we may define the Lebesgue-Stieljes measure P

on (R
d
,B∞(R

d
) defined by

P(]y, x]) = ∆y,xF, (y, x) ∈ (Rd)2, y ≤ x. (LS21)

Now take Ω = Rd, A = B(Rd) and let X : (Ω,A,P) 7→ Rd be the
identity function

∀ω ∈ Ω, X(ω) = ω.

Thus we have :

∀x ∈ Rd, F (x) = P(]−∞, x]). (LS22)

Particular case. In may situations, the above construction is stated
as following : let n ≥ 1 and F1, F2, ...., Fn be n cdf ’s respectively
defined on Rdi , di ≥ 1. Can we construct a probability space (Ω,A,P)
holding n independent random vectors X1, ..., Xn such that for any
1 ≤ i ≤ n, FXi

= Fi.

The answer is yes. It suffices to apply the current result to the cdf F
defined on Rd, with d = d1 + ...+ dn and defined as follows :

∀(x1, ..., xn)t
d∏

j=1

Rdj , F (x1, ..., xn) =

d∏

j=

Fj(xj).

Using Formula (FACT05) in Part (10.03) in Doc 10-01 in Chapter 11
in Lo (2017b) of this series, we see that F is a cdf. We may consider
the identity function on Rd as above, form X1 by taking the first d1
components, X2 by the next d2 components, ..., Xd by the last dn com-
ponents. These subvectors are independent and respectively have the
cdf ’s F1, ..., Fn.
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5. Probability Laws and Probability Density Functions of
Random vectors

Throughout this section we deal with random vectors, like the d-random
vector (d ≥ 1)

X : (Ω,A,P) 7→ (R
d
,B∞(R

d
),

with X t = (X1, X2, · · · , Xd).

A- Classification of Random vectors.

(a) Discrete Probability Laws.

Definition. The random variable X is said to be discrete if it takes at
most a countable number of values in R denoted VX = {x(j), j ∈ J},
∅ 6= J ⊂ N.

NB. On R, we denote the values taken by such a random variable by
sub-scripted sequences xj , j ∈ J . In Rd, d ≥ 2, we use super-scripted
sequences in the form x(j), j ∈ J , to avoid confusions with notation of
components or powers.

Next, we give a set of facts from which we will make a conclusion on
how to work with such random variables.

We already know fromMeasure Theory thatX is measurable (Se Chap-
ter 4, Doc 08-03, Criterion 4) if and only if

∀j ∈ J, (X = x(j)) ∈ A.
Besides, we have for any B ∈ B∞(R

d
),

(X ∈ B) =
∑

j∈J,x(j)∈B
(X = x(j)). (DD01)

Now, we clearly have

∑

j∈J
P(X = x(j)) = 1. (DD02)

From (DD01), the probability law PX of X is given by
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PX(B) =
∑

j∈J,x(j)∈B
P(X = x(j)), (DD03)

for any B ∈ B∞(R
d
). Let us denote the function defined on VX by

VX ∈ x 7→ fX(x) = PX({x}) = P(X = x(j)).

Next, let us consider the counting measure ν on Rd with support VX .
Formulas (DD02) and (DD03) imply that

∫

fX dν = 1. (RD01)

and for any B ∈ B∞(R
d
), we have

∫

B

dPX =

∫

B

fX dν. (RD02)

We conclude that fX is the Radon-Nikodym derivative of PX with
respect to the σ-finite measure ν. Formula (RD02) may be written in
the form

∫

hdPX =

∫

hfX dν. (RD03)

where h = 1B. By using the four steps method of the integral con-
struction, Formula (RD03) becomes valid whenever Eh(X) =

∫
h dPX

make senses.

We may conclude as follows.

Discrete Probability Laws.

If X is discrete, that is, it takes a countable number of values in R
d

denoted VX = {x(j), j ∈ J}, its probability law PX is also said to be
discrete. It has a probability density function pdf with respect to the
counting measure on Rd supported by VX and defined by

fX(x) = P(X = x), x ∈ R
d
,

which satisfies
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fX(x
(j)) = P(X = x(j)) for j ∈ J and fX(x) = 0 for x /∈ VX .

As a general rule, integrating any measurable function h : B∞(R
d
) →

B∞(R) with respect to the probability law PX is performed through
the pdf fX in the Discrete Integral Formula

Eh(X) =

∫

hfXdν =
∑

j∈J
h(xj)fX(x

(j)). (DIF1)

which becomes for h = 1B, B ∈ B∞(R
d
),

PX(B) = P(X ∈ B) =
∑

j∈J,x(j)

fX(x
(j)).(DIF2)

Some authors name pdf ’s with respect to counting measures as mass
pdf’s. For theoretical purposes, they are Radon-Nikodym derivatives.

(b) Absolutely Continuous Probability Laws.

(b1) Lebesgue Measure on Rd.

We already have on R
d
the σ-finite Lebesgue measures λd, which is the

unique measure defined by the values

λd

(
∏

i=1

2]ai, bi]

)

=
d∏

i=1

(bi − ai), (LM01)

for any points a = (a1, ..., ad)
t ≤ b = (b1, ..., bd)

t of Rd. This formula
also implies

λd

( d∏

i=1

]ai, bi]

)

=
d∏

i=1

λ1(]ai, bi]), (LM02)

Let us make some Measure Theory reminders. Formula (LM02) ensures
that λd is the product measure of the Lebesgue measure λ1 = λ, that
is

λd = λ⊗d.
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Hence, we may use Fubini’s Theorm for integrating a measurable func-

tion function h : B∞(R
d
)→ B∞(R) through the formula

∫

hdλd =

∫

dλ(x1)

∫

....

∫

dλ(xd−1)

∫

h(x1, ..., xd)fX(x1, ..., xd)dλ(xd),

when applicable (for example, when h is non-negative or h is inte-
grable).

(b2) Definition.

The probability Law PX is said to be absolutely continuous if it is con-
tinuous with respect to λd. By extension, the random variable itself is
said to be absolutely continuous.

NB. It is important to notice that the phrase absolutely continu-
ous is specifically related to the continuity with respect to Lebesgue
measure.

In the rest of this Point (b), we suppose thatX is absolutely continuous.

(b3) Absolutely Continuous pdf ’s.

By Radon-Nikodym’s Theorem, there exists a Radon-Nikodym deriv-

ative denoted fX such that for any B ∈ B∞(R
d
),

∫

B

dPX =

∫

B

fX dλd.

The function fX satisfies

fX ≥ 0 and

∫

R

fX dλd = 1.

Such a function is called a pdf with respect to the Lebesgue measure.
Finally, we may conclude as follows.

As a general rule, integrating any measurable function h : Rd → R

with respect to the probability law PX , which is absolutely continuous,
is performed through the pdf fX with the Absolute Continuity Integral
Formula
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Eh(X) =

∫

hfX dλd. (ACIF )

Since λd is the product of the Lebesgue measure on R d times, we may
use Fubini’s Theorem when applicable to have

Eh(X) =

∫

dλ1(x1)

∫

....

∫

dλ1(xd−1)

∫

h(x1, ..., xd)fX(x1, ..., xd)dλ1(xd).

In particular, the cdf of X becomes

FX(x) =

∫

−∞
xddλ(x1)

∫

−∞
x2

....

∫

−∞
xd−1dλ(xd−1)

∫

−∞
xdh(x1, ..., xd)fX(x1, ..., xd)dλ(xd)

for any x = (x1, ..., xd)
t ∈ Rd.

(b4) Criterion for Absolute Continuity from the Cdf.

In practical computations, a great deal of Lebesgue integrals on R are
Riemann integrals. Even integrals with respect to the multidimensional
Lebesgue Measure can be multiple Riemann ones. But we have to be
careful for each specific case (See Points (b5) and (b6) below).

Let be given the dcf FX of a random vector, the absolute continuity of
X would give for any x ∈ Rd

FX(x) =

∫ x1

−∞
dλ(x1)

∫ x2

−∞
dλ(x2)...dλ(xd−1)

∫ xk

−∞
fX(x1, ..., xd) dλ(xd). (AC01)

If fX is locally bounded and locally Riemann integrable (LLBRI), we
have

fX(x1, x2, ..., xk) =
∂kFX(x1, x2, ..., xk)

∂x1∂x2...∂xx
, (AC02)

λd-a.e.. (See Points (b5) and (b6) below for a more detailed explana-
tion of LLBRI functions and for a proof).
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From a computational point of view, the above Formula quickly helps
to find the pdf, if it exists.

(b5) Cautions to be taken when replacing Lebesgue integral
by Riemann ones.

Let us consider that we are on R and let X be a real random variable
with an absolutely pdf f . For any measurable function h from R to R,
the expectation

E(h(X)) =

∫

R

h(x)f(x) dλ(x), (EL)

is defined with respect to the Lebesgue measure. It happens that for
computation such an integral, we lean to use the improper Riemann
integral

E(h(X)) =

∫ +∞

−∞
h(x)f(x) dx. (ER)

Although this works for a lot of cases, we cannot use the just mentioned
formula without a minimum of care, since in Riemann integration we
may have that

∫

R
h(x)f(x) dx is finite and

∫

R
|f(x)| dx infinite, a situ-

ation that cannot occur with Lebesgue integration.

We may use the results of Doc 06-07 in Chapter 7 in Lo (2017b) of this
series to recommend the following general rule that we will follow in
this book.

Let us suppose that the function hf is LLBRI (implying that hf is
λ-a.e. continuous on R). We have :

(a) If E(h(X)) exists and is finite, then Formula (ER) holds as an
improper Riemann integral (as an application of the Dominated Con-
vergence Theorem), that is

E(h(X)) = lim
n→+∞

∫ bn

an

h(x)f(x) dx, (ER02)
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for any sequence (an, bn)n≥0 such that (an, bn) → (−∞, +∞) as n →
+∞. In such a case, we may chose a particular alike sequence to com-
pute E(h(X)).

To check whether E(h(X)) is finite, we may directly use Riemann in-
tegrals (which are based on the Monotone Convergence Theorem)

E(h−(X)) =

∫ +∞

−∞
(hf)+(x)f(x) dx (ENPa)

and

E(h−(X)) =

∫ +∞

−∞
(hf)−(x)f(x) dx, (ENPb)

and apply the classical Riemann integrability criteria.

(b) If the Riemann improper integral of |hf | exists and is finite, then
the Lebesgue integral of hf exists (by using the Monotone Convergence
Theorem on the positive and negative parts) and Formula (ER) holds.

(c) Even if E(h(X)) exists and is infinite, Formula (ER) still holds, by
using the Monotone Convergence Theorem on the positive and nega-
tive parts and exploiting Formula (ENP).

Finally, such results are easily extended in dimension d ≥ 2, because
of the Fubini’s integration formula.

(b6) Back to Formula (AC01).

Dimension one. If f is LLBRI, we surely have that f is λ-a.e. con-
tinuous and we may treat the integrals

∫ x

−∞ fX(t) dλ(t) as a Riemann
ones. By the known results for indefinite Riemann integrals, we have

(

∀x ∈ R, FX(x) =

∫ x

−∞
fX(t) dλ(t)

)

⇔ dFX

dx
= fX λ− a.e..

Remark that the constant resulting in the solution of the differential
equation in the right-hand assertion is zero because of FX(−∞) = 0.
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Dimension d ≥ 2. Let d = 2 for example. Let fX be LLBRI. By
Fubini’s theorem,

∀(x, y) ∈ R2, FX(x, y) =

∫ x

−∞
dλ(s)

(∫ y

−∞
fX(s, t) dλ(t)

)

.

The function,

t→
∫ y

−∞
fX(s, t) dλ(t)

is bounded (by the unity) and continuous. By, returning back to Rie-
mann integrals, we have

∀(x, y) ∈ R2,
∂FX(x, y)

∂x
=

∫ y

−∞
fX(x, t) dλ(t).

By applying the results for dimension one to the partial function fX(x, t),
for x fixed, which is (LBLI), we get

∀(x, y) ∈ R2,
∂2FX(x, y)

∂y∂x
=

∫ y

−∞
fX(x, t) λ− a.e.

The order of derivation may be inverted as in the Fubini’s Theorem.

The general case d ≥ 2 is handled by induction. �

(c) General case.

Let us be cautious! Later, we will be concerned by practical computa-
tions and applications of this theory. We will mostly deal with discrete
or absolutely continuous random variables. But, we should be aware
that these kind of probability laws form only a small part of all the
possibilities, as we are going to see it.

By the Lebesgue Decomposition Theorem (Doc 08-01, Part III, Point
(05-06), Chapter 9), there exists a unique decomposition of PX into an
absolutely continuous measure φac, associated to a non-negative Radon-

Nikodym fr,X and λd-singular measure φs, that is, for any B ∈ B∞(R
d
),

PX(B) =

∫

B

fr,X dλd + φs(B).
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The λ-singularity of φs means that there exists a λd-null set N such

that for all B ∈ B∞(R
d
),

φs(B) = φs(B ∩N)

Suppose that none of φs and φs is the null measure. If N is countable
that is N may be written as N = {x(j), j ∈ J}, ∅ 6= J ⊂ N, the measure

is discrete and for any B ∈ B∞(R
d
), we have

φs(B) =
∑

j∈J
fd,X(x

(j)),

where

fd,X(x
(j)) = φs(x

(j)), j ∈ J.

We have 0 < a = φac(R
d
), b = φs(R

d
) ≤ 1, and a + b = 1. Let us

denoting by ν the counting measure with support N . Then f
(1)
X =

fr,X/a is an absolutely continuous pdf and f
(2)
X = fd,X/b is a discrete

pdf and we have for all B ∈ B∞(R
d
),

PX(B) = a

∫

B

f
(1)
X dλd + (a− 1)

∫

B

f
(2)
X dν.

Hence, PX is mixture of two probability laws, the first being absolutely
continuous and the second being discrete.

We may be more precise in dimension one.

More detailed decomposition on R. We already saw that a real
cdf Fmay be decomposed into two df ’s :

F = Fc + Fd,

where Fc is continuous and Fd is discrete. Surely, the Lebesgue-Stieljes
measure associated with Fd, denoted by φd, is discrete. The Lebesgue-
Stieljes measure associated with Fc, denoted by φc, may decomposed
as above into

φc = φac + φs
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where φac is absolutely continuous and φs is singular. Since Fc(−∞) =
Fd(−∞) = 0, we may go back to the df ’s to have :

F = Fac + Fc + Fd,

where Fac is df of measure absolutely continuous, Fd is a discrete df

and Fc is a continuous and, unless it is equal to the null measure, is
neither discrete nor absolutely continuous.

This fact is obvious since Fc is continuous and cannot be discrete. Also,
it is singular and cannot be absolutely continuous.

We have the following conclusion.

Position of any probability law with respect to the Lebesgue
measure. Any probability law is a mixture of an absolutely continuous
probability measure Pac,X , associated to a pdf fac,X , a discrete distri-
bution probability measure Pd,X , which is a λ-singular measure Pd,X

which has a countable strict support Vd,X and of a λ-singular probabil-
ity measure Pc,X which has a non-countable λ-null set support, respec-
tively associated to p1 ≥ 0, p2 ≥ 0 and p2 ≥ 0, with p1 + p2 + p3 = 1,
such that

PX = p1Pac,X + p2Pd,X + p3Pc,X.

The probability measures are respectively associated to the df ’s Fac,
Fd, Fc so that we have

FX = Fac + Fd + Fc,

dFac(x)

dx
= fac,X , λ− a.e,

Vd,X is the set of discontinuity points of F , and Fc is continuous but
not λ-a.e. differentiable.

By strict countable support of Pd,X , we mean a support such that for
any point x in, we have Pd,X({x}) > 0.

Warning. If the decomposition has more that one term, the corre-
sponding functions among Fac, Fd and Fc are not cdf ’s but only df ’s.
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(b7) Marginal Probability Density functions.

Let us begin, as usual, by the simple case where d = 2. Let X :
(Ω,A,P) → R2 be a random couple, with X t = (X1, X2). Let us
suppose that X has a pdf f(X1,X1) with respect to a σ-finite product
measure m = m1 ⊗ m2 on R2. Let us show that each Xi, i ∈ {1, 2},
has a pdf with respect to m. We have, for any Borel set B,

P(X1 ∈ B) = P((X1, X2) ∈ B × R)

=

∫

1B×Rf(X1,X2)(x, y) dm(x, y)

=

∫

B

(∫

R

f(X1,X2)(x, y) dm2(y)

)

dm1(x).

By definition, the function

fX1(x) =

∫

R

f(X1,X1)(x, y) dm2(y), m− a.e in x ∈ R,

is the pdf of X with respect of m1, named as the marginal pdf of X1.
We could do the same for X2. We may conclude as follows.

Definition. Suppose that the random order pair X t = (X1, X2) has a
pdf f(X1,X1) with respect to a σ-finite product measure m = m1⊗m2 on
R2. Then each Xi, i ∈ {1, 2}, has the marginal pdf ’s fXi

with respect
to mi, and

fX1(x) =

∫

R

f(X1,X2)(x, y) dm2(y), m1 − a.e. ∈ x ∈ R

and

fX2(x) =

∫

R

f(X1,X2)(x, y) dm1(x), m2 − a.e. ∈ x ∈ R.

The extension to higher dimensions is straightforward. LetX : (Ω,A,P)→
Rd be a random vector with X t = (X1, ..., Xd). Suppose that X has a
pdf f(X1,...,Xd) with respect to a σ-finite product measure m = ⊗d

j=1mj .

(i) Then each Xj, j ∈ {1, d}, has the marginal pdf ’s fXj
with respect

to mj given mi-a.e., for x ∈ R, by
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fXj
(x) =

∫

Rd−1

f(X1,...,Xd)(x1, ..., xd) d

(

⊗i≤i≤d, i 6=jmi

)

(x1, ..., xj−1, xj+1, ..., xd).

(ii) Let (Xi1 , ..., Xir)
t be a sub-vector of X with 1 ≤ r < d, 1 ≤ i1 <

i2 < ... < ir). Denote I = {i1, ..., ir}, the marginal pdf of (Xi1 , ..., Xir)
with respect to m = ⊗r

i=1mij is given for (x1, ..., xr) ∈ Rr by

f(Xi1
,...,Xir)(x1, ..., xr) =

∫

Rd−r

f(X1,...,Xd)(x1, ..., xd) d

(

⊗1 i≤d, i/∈I mi

)

(xj ,  ∈ {1, ..., n} \ I).

Let X(1) = (X1, ..., Xr)
t and X(2) = (Xr+1, ..., Xb)

t be two sub-vectors
which partition X into two consecutive blocs. Then X(1) and X(2) have
the pdf fX(1) and fX(2) with respect to ⊗r

j=1mj and m = ⊗d
j=r+1mj

respectively, and given for x ∈ Rr by

fX(1)(x) =

∫

Rd−r

f(X1,...,Xd)(x1, ..., xd) d

(

⊗r+1≤i≤d mi

)

(xr+1, ..., xd),

and for x ∈ Rd−r by

fX(2)(x) =

∫

Rr

f(X1,...,Xd)(x1, ..., xd) d

(

⊗1≤i≤r mi

)

(x1, ..., xr).

After this series of notations, we have this important theorem for char-
acterizing the independence.

Theorem 4. Let X : (Ω,A,P)→ Rd be a random vector. Let us
adopt the notation above. Suppose that we are given a σ-finite product
measure m = ⊗d

j=1mj on Rd, and X has a pdf fX with respect to m.
We have the following facts.

(i) The margins Xi, 1 ≤ i ≤ d are independent if and only if the joint
pdf of X is factorized in the following way :

∀(x1, ..., xd) ∈ Rd, f(X1,...,Xd)(x1, ..., xd) =

d∏

j=1

fXi
(xi), m.a.e. (DLM01)
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(i) The two marginal vectors X(1) and X(2) are independent if and
only if the joint pdf of X is factorized in the following way : for all
(x(1), x2)) ∈ Rd,

f(X1,...,Xd)(x
(1), x2)) = fX(1)(x(1))fX(2)(x(2)), m.a.e. (FLM02)

Proof. It will be enough to prove the first point, the proof of the
second being very similar. Suppose that the Xi are independent. It
follows that for any Borel rectangle B = B1 × ...×Bd, we have

P(X ∈ B) =

∫

B

fX(x) dm(x)

= P(X1 ∈ B1, ..., Xd ∈ Bd)

=

d∏

j=1

P(Xj ∈ Bj)

=
d∏

j=1

∫

Bj

fXj
(xi) dmj(xj)

=

∫

B1×...×Bd

( d∏

j=1

fXj
(xi)

)

dm(x)

Thus the two finite measures

B 7→
∫

B

fX(x) dm(x) and B 7→
∫

B

( d∏

j=1

fXj
(xi)

)

dm(x)

coincide on a π-system generating the whole σ-algebra. Thus, they
coincide. Finally, we get two finite indefinite integrals with respect to
the same σ-finite measure m. By the Radon-Nikodym Theorem, the
two Radon-Nikodym derivatives are equal m-a.e.

Suppose now that Formula (DLM01) holds. Thanks to Fubini’s The-
orem, we readily get the factorization of the joint cdf and get the
independence through Theorem 3.
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6. Characteristic functions

After the cdf ’s, are going to see a second kind of characterization func-
tion for probability laws.

I - Definition and first properties.

It is important to say that, in this section, we only deal with finite com-
ponents random vectors with values in spaces Rd, d ≥ 1, endowed with
the Borel σ-algebra B(Rd) = B(R)⊗d which is the product σ-algebra of
B(R) d times.

(a) Characteristic function.

Definition 6. For any random variable X : (Ω,A,P) 7→ Rd, the
function

u 7→ φX(u) = E(ei<X,u>),

is called the characteristic function of X. Here, i is the complex number
with positive imaginary part such that i2 = −1.
This function always exists since we interpret the integral in the fol-
lowing way

E(ei<X,u>) = E(cos < X, u >) + i E(sin < X, u >),

which is defined since the integrated real and imaginary parts are
bounded.

The role played by the characteristic function in Probability Theory
may also be played by a few number of functions called moment gen-
erating functions. These functions do not always exist, and if they do,
they may be defined only on a part of Rd. The most used of them is
defined as follows.

(a) Moment Generated Function (mgf ).

The following function

u 7→ ϕX(u) = E(e<X,u>), u ∈ Rd,
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when defined on a domain D of Rd containing the null vector as an
interior point, is called the moment generating function (mfg) of X .

If ϕX exists on some domain D to which zero is interior, we will prefer
it to ΦX(u), to avoid to use the complex number i involved in ΦX .
Non-mathematician users of Probability Theory would like this.

Besides, we may find the characteristic function by using the moment
generating functions as follows :

ΦX(u) = ϕX(iu), u ∈ Rd.

The characteristic function has these two immediate properties.

Proposition 4. For all u ∈ Rd,

‖φX(u)‖ ≤ 1 = ‖φX(0)‖ .

Besides φX(u) is uniformly continuous at any point u ∈ Rd.

This proposition is easy to prove. In particular, the second point is an
immediate application to the Dominated Convergence Theorem.

Here are the :

II - Main properties of the characteristic function.

Theorem 5. We have the following facts.

(a) Let X be a random variable with value in Rd, A a (k × d)-matrix
of real scalars, B a vector of Rk. Then the characteristic function of
Y = AX +B ∈ Rk is given,

Rk ∋ u 7→ φY (u) = e<B,u>φX(A
tu), u ∈ Rk.

(b) Let X and Y be two independent random variables with values in
Rd, defined on the same probability space. The for any u ∈ Rd, we have

φX+Y (u) = φX(u) × φY (u).

(c) Let X and Y be two random variables respectively with values in
Rd and in Rk and defined on the same probability measure. If the
random variables X and Y are independent, then for any u ∈ Rd and
for v ∈ Rk, we have

(6.1) φ(X,Y )(u, v) = φX(u)× φY (v).
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Let us make some remarks before we give the proof of the theorem. In
Part A, Section 3, Chapter 6, the characterization (c) was stated and
quoted as (CI4), and admitted without proof. Here, the proof will be
based on a characterization of product measure.

Point (c) provides a characterization of the independence between X
and Y . But the decomposition in Point (b) is not enough to ensure the
independence. You may consult counter-examples book of Stayonov
(1987) or the monograph Lo (2017a) of this series, Part A, Section 3,
Chapter 6, where is reported a counter-example from Stayonov (1987).

Proof of Theorem 5.

Point (a). By definition, we have < AX + B, u >= t(AX + B)u =
tX(ATu) +BTu. Hence,

φAX+B(u) = E(e
tX(Atu)+Btu) = e<B,u> × E(e<X,Atu))

= e<B,u>φX(A
tu).

Point (b). Let X and Y be independent. We may form X + Y since
they both have their values in Rd, and they are defined on the same
probability space. We have for any u ∈ Rd,

φX+Y (u) = E
(
e<X+Y,u>

)
= E

(
e<X,u>e<Y,u>

)
= E

(
e<X,u)

)
×E

(
e<Y,u)

)
.

Point (c). Let X and Y be two independent random variables with
values in Rd and Rk. Let u and v be two respectively elements of Rd

and Rk. We have

<

(
X
Y

)

,

(
u
v

)

>=< X, u > + < Y, v > .

Then

φ(X,Y )(u, v) = E

(

exp <

(
X
Y

)

,

(
u
v

)

>

)

= E
(
e<X,u>+<Y,v>) = E(e<X,u>)E(e<Y,v>

)

= φX(u)× φY (v).

The proof is over. �.
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Now, we want to move to next very important other characterization.
When d = 1, we have an explicit inversion formula which expresses the
cdf of a probability law on Rd by means of its characteristic function.
The characterization of a probability law on R by its characteristic
function follows from this inversion formula.

But when d > 1, things are more complicated and we may need a
non-standard version of the Theorem of Stone-Weierstrass Theorem.
In that case a more general characterization of probability measures in
metric spaces may be useful. So we begin with general characteriza-
tions.

III - Characterization of a probability law on a metric space.

Let us suppose that we are working on a metric space (E, ρ) endowed
with the metric ρ. We are going to use the class Cb(E) of real-valued
continuous and bounded functions defined on E. Let us begin by re-
minding that, by the λ-π Lemma (See Lo (2017b), Exercise 11 of Doc
04-02, Part VI, page 228), the class of open sets O is a determining
class of probability measures since it is a π-system, containing E and
generating B(E), that is, for two probability measures Pj (j ∈ {1, 2})
on (E,B(E)), we have

(6.2) (P1 = P2)⇔ (∀G ∈ O, P1(G) = P2(G)).

Actually, this characterization can be extended to integrals of f ∈
Cb(E). For this, we need the following tool.

Lemma 1. Let G be a non-empty open in E. There exists a non-
decreasing sequence of functions (fm)m≥1 such that :

(1) for each m ≥ 1, fm is a Lipschitz function of coefficient m and

0 ≤ fm ≤ 1G.

and fm = 0 on ∂G and

(2) we have

fm ↑ 1G, as m ↑ +∞.
The proof is given in the Appendix Chapter 10 in Lemma 15 (page 330).
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This lemma may be used to get the following characterization : for two
probability measures Pj (j ∈ {1, 2}) on (E,B(E)), we have

(6.3) (P1 = P2)⇔
(

∀f ∈ Cb(E),

∫

f dP1 =

∫

f dP2

)

.

To establish this, we only need to show the indirect implication. Sup-
pose that right-hand assertion holds. For any G ∈ O, we consider the
the sequence (fm)n≥1 in Lemma 1 and we have

∀m ≥ 1,

∫

fm dP1 =

∫

fm dP2.

By letting m ↑ +∞ and by applying the Monotone Convergence The-
orem, we get P1(G) = P2(G). Since this holds for any G ∈ O, we get
P1 = P2 by Formula .

IV - Characterization of a probability law on Rd by its char-
acteristic function.

We are going to prove that characteristic functions also determine prob-
ability laws on Rd.

Theorem 6. Let X and Y be two random variables with values
in Rd. Their characteristic functions coincide on Rd if and only if do
their probability laws on B(Rd), that is

ΦX = ΦY ⇔ PX = PY .

Proof. We are going to use an approximation based on a version of
the theorem of Stone-Weierstrass. Let us begin by reminding that the
class of intervals of Rd

Id = {]a, b[=
d∏

j=1

]aj, bj [, a ≤ b, (a, b) ∈
(
Rd
)2}

is a π-system, contains E = Rd and generates B
(
Rd
)
. By the the λ-π

Lemma, it constitutes a determining class for probability measures.

FixG =]a, b[ with aj < bj , for all 1 ≤ j ≤ d. For any j ∈ {1, · · · , d} and
consider the sequence (fj,m)m≥0 ⊂ Cb(R

d) constructed for Gj =]aj , bj[
in Lemma 1. The numbers fj,m(aj) and fj,m(aj) are zero. So the
functions
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fm(x) =

d∏

j=1

fj,m(xj), x = (x1, ..., xd)
t ∈ Rd, m ≥ 1,

vanish on the border ∂G of G since

∂G = {x ∈ G, ∃j ∈ {1, · · · , d}, xj = aj or xj = bj}
It becomes clear that for any probability measure L on (Rd,B(Rd)), we
have

∀]a, b[∈ Id, fm ↑ 1]a,b[ and
∫

fm dL ↑ L(]a, b[), as m ↑ +∞.

We may seize the opportunity to state a new characterization of prob-
ability measures of Rd. Let Cb,0(R

d) be the class of functions f for
which there exists ]a, b[∈ Id such that 0 ≤ f ≤ 1 and f = 0 outside
]a, b[. We get that :

For two probability measures Pj (j ∈ {1, 2}) on (Rd,B(Rd)) :

(6.4) (P1 = P2)⇔
(

∀f ∈ Cb,0(R
d),

∫

f dP1 =

∫

f dP2

)

.

Now fix f ∈ Cb,0(R
d) associated with [a, b]. Let ε ∈]0, 1[ . Fix r > 0

and Kr = [−r, r]d. We choose r such that

(6.5) − r ≤ min(a1, ..., ad) and r ≥ max(b1, ..., bd)

and

(6.6) PX(K
c
r) + PY (K

c
r) ≤

ε

2(2 + ε)
.

Now consider the class H of finite linear combinations of functions of
the form

(6.7)
d∏

j=1

exp

(

injπxj/r

)

,

where nj ∈ Z is a constant and i is the normed complex of angle π/2
and let Hr be the class of the restrictions hr of elements h ∈ H on
Kr = [−r, r]d.
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It is clear that Hr is a sub-algebra of Cb(Kr) with the following prop-
erties.

(a) for each h ∈ H, the uniform norm of h on Rd is equal to the uniform
norm of h on Kr, that is

‖f‖∞ = sup
x∈Rd

|h(x)| = sup
x∈Kr

|h(x)| = ‖f‖Kr
.

This comes from that remark that h is a finite linear combination of
functions of the form in Formula 6.7 above and each factor exp (injπxj/r)
is a 2r-periodic function.

(b)Hr separates the points ofKr\∂Kr and separates points ofKr\∂Kr

from points of ∂Kr. Indeed, if x and y are two points in Kr, at the
exception where both of them are edge points of Kr of the form

(x, y) ∈ {(s1, ..., sd) ∈ Kr, ∀j ∈ {1, ..., d}, sj = r or sj = r}2,
there exists j0 ∈ {1, · · · , d} such that 0 < |xj0 − yj0| < 2r that is
|(xj0 − yj0)/r| < 2 and the function

hr(x) = exp(iπxj0/r)

separates x and y since hr(x) = hr(y) would imply exp(iπ(xj0−xj0)/r) =
1, which in term would imply xj0 −xj0 = 2ℓr, ℓ ∈ Z. The only possible
value of ℓ would be zero and this is impossible since xj0 − yj0 6= 0.

(c) For all the points in t ∈ ∂Kr, the function g(t) ≡ 0 ∈ Hr converges
to f(t) = 0.

(d) Hr contains all the constant functions.

We may then apply Corollary 2 in Lo (2018b) (Corollary 4 in the
appendix, page 330) to get that : there exists hr ∈ Hr such that

(6.8) ‖f − hr‖Kr
≤ ε/4.

and by Point (a) above (using also that the norm of f ∈ Cb,0 less or
equal to 1), we have

(6.9) ‖h‖∞ = ‖hr‖Kr] ≤ ‖f‖∞ + ε/4 ≤ 1 + ε.
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Now, y the assumption of equality of the characteristic functions, we
have

E(h(X)) = E(h(Y )).

We have have

E(f(X))− E(f(Y )) =

(∫

f dPX −
∫

h dPX

)

+

(∫

h dPX −
∫

h dPY

)

+

(∫

h dPY −
∫

f dPY

)

=

(∫

f dPX −
∫

h dPX

)

+

(∫

h dPY −
∫

f dPY

)

.

The first term satisfies

E

∣
∣
∣
∣

∫

f dPX −
∫

hr dPX

∣
∣
∣
∣
≤

∫

Kr]

|f − hr| dPX(6.10)

+

∫

Kc
r

|f − h| dPX

≤ ε/4 + (‖f‖+ ‖h‖)PX(K
c
r),

≤ ε/4 + (2 + ε)PX(K
c
r),

where we used Formulas 6.8 and 6.9.

By treating the second term in the same manner, we also get

(6.11) E

∣
∣
∣
∣

∫

f dPY −
∫

hdPY

∣
∣
∣
∣
≤ ε/4 + (2 + ε)PY (K

c
r).

By putting together Formulas (6.10) and (6.11) and by remembering
Formulas (6.5) and (6.6), we get

|E(f(X))− E(f(Y ))| ≤ ε/2 + (2 + ε)(PX(K
c
r) + PY (K

c
r)) ≤ ε.

for any ε ∈]0, 1[. So, for all f ∈ Cb,0(R
d),

∫

fdPX =

∫

fdPY .

We close the proof by applying Formula (6.4) above.
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V - Inversion Formula on R and applications.

Here, we consider the characteristic function of a Lebesgue-Stieljes
measures on R, not necessarily a probability measure. After the proof
of the following proposition, we will get another characterization of
probability laws by characteristic functions by means of cdf ’s. Let us
begin to state the

Proposition 5. Let F be an arbitrary distribution function. Let

Φ(x) =

∫

exp(itx) dλF (x), x ∈ R,

where λF denotes the Lebesgue-Stieljes measure associated with F . Set
for two reals numbers a and b such that a < b,

(6.12) JU =: JU(a, b) =
1

2π

∫ U

−U

e−iau − e−ibu

iu
ΦX(u) du.

(a) Then, we have, as U → +∞, JU converges to

F (b−)− F (a) + 1

2

(

FX(a)− F (a−) + F (b)− F (b−)
)

).(6.13)

(b) If a and b are continuity points of F , then

F (b)− F (a) = lim
U→+∞

JU .(6.14)

If F is absolutely continuous, that is there exists a measurable λ-a.e.
finite function f such that for x ∈ R,

(6.15) F (x) =

∫ x

−∞
f(t)d(x),

then, we have λ-a.e.,

f(x) =
1

2π

∫ +∞

−∞
e−ixuΦ(u) du.
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Proof. Recall Dirichlet’s Formula
∫ 0

−∞

sin x

x
dx =

∫ +∞

0

sin x

x
dx

= lim
b→+∞

∫ b

0

sin x

x
dx = π/2,

which can be proved, for example, using complex integration based on
residues. We deduce from it that the numbers

∫ b

a

sin x

x
dx =

∫ 0

a

sin x

x
dx+

∫ b

0

sin x

x
dx, a ≤ 0 ≤ b

are uniformly bounded in a and b, say by M . By using Fubini’s theo-
rem, we have

JU =
1

2π

∫ U

−U

e−iau − e−ibu

iu

(∫

eiuxdPX(x)

)

du

=

∫

dPX(dx)×
1

2π

∫ U

−U

e−i(a−x)u − e−i(b−x)u

iu
du

=

∫

J(U, x) dPX(x),

where

J(U, x) =
1

2π

∫ U

−U

e−i(a−x)u − e−i(b−x)u

iu
du

=
1

2πi

∫ U

−U

cos(u(a− x))− cos(u(b− x))
u

du

+
1

2π

∫ U

−U

sin(u(b− x))− sin(u(a− x))
u

du.

But, we also have

∫ U

−U

cos(u(a− x))− cos(u(b− x))
u

du = 0.

Since the integrated functions are odd and the integration is operated
on a symmetrical compact interval with respect to zero. We get
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J(U, x) =
1

2π

∫ U

−U

sin(u(b− x))− sin(u(a− x))
u

du

=
1

2π

∫ U(b−x)

−U(b−x)

sin v

v
dv − 1

2π

∫ U(a−x)

−U(a−x)

sin v

v
dv.

Thus, J(U, x) uniformly bounded bounded by M/π. Next by consider-
ing the position of x with respect of the interval (a, b) and by handling
accordingly the signs of (b − x) and (a − x), we easily arrive at the
following set of implications :

(x < a or x > b)⇒ J(U, x)→ 0 as U → +∞,
(x = a or x = b)⇒ J(U, x)→ 1/2 as U → +∞

(a < x < b)⇒ J(U, x)→ 1 as U → +∞.

Then

J(U, x)→ 1]a,b[ +
1

2
1{a} +

1

2
1{b}.

From there, we apply the Fatou-Lebesgue Theorem to get

JU →
∫ (

1]a,b[ +
1

2
1{a} +

1

2
1{b}

)

dPX(x)

= F (b−)− F (a) + 1

2

(

F (a)− F (a−) + F (b)− F (b−)
)

.

This proves Point (a). �

Point (b) If a and b are continuity points of F , the limit in (6.13) re-
duces to F (b)− F (a). �

Point (c) Now, from (6.14), we deduce that F is continuous and next,
the derivative of F at x is f(x) when f is continuous. But a measurable
function that is integrable is λ-a.e. continuous. So,

dF (x)

dx
= f(x), λ− a.e.

Also, by (6.14), we have for all h > 0,
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(6.16)
F (a+ h)− F (a)

h
= lim

U→+∞

1

2π

∫ U

−U

e−iau − e−i(a+h)u

ihu
ΦX(u) du.

Then for any a ∈ R,

f(a) = lim
h→0

F (a+ h)− F (b)
h

=
1

2π
lim
h→0

lim
U→+∞

∫ U

−U

e−iau − e−i(a+h)u

ihu
Φ(u) du

=
1

2π
lim

U→+∞
lim
h→0

∫ U

−U

e−iau − e−i(a+h)u

ihu
Φ(u) du

=
1

2π
lim

U→+∞

∫ U

−U

lim
h→0

e−iau − e−i(a+h)u

ihu
Φ(u) du;

where the exchange between integration and differentiation in the last
line is allowed by the use the Fatou-Lebesgue theorem based on the
fact that the integrated function is bounded by the unity which is in-
tegrable on (−U, U), U fixed.

So, we arrive at

f(a) =
1

2π
lim

U→+∞

∫ U

−U

lim
h→0

e−iau − e−i(a+h)u

ihu
Φ(u) du

=
1

2π
lim

U→+∞

∫ U

−U

e−iauΦ(u) du

=
1

2π

∫ +∞

−∞
e−iauΦ(u) du.

λ-a.e. �

Application.

Now, let us use this to prove Theorem 6 for k = 1.

Let X and Y be two rrv ’s with equal characteristic functions. By
(6.14), their distribution functions FX and FY are equal on the set
DX,Y of continuity points of both FX and FY . The complement of
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that set is at most countable. So, for x ∈ DX,Y fixed, we may find a
sequence of numbers (xn)n≥0 such that

(xn)n≥0 ⊂ D, such that xn → x as n ↑ +∞.

So, we will have for any n ≥ 0

FX(x)− FX(an) = FY (x)− FY (an).

By letting n→ +∞, we get for all x ∈ DX,Y

FX(x) = FY (x).

For any x ∈ R, we also can can find monotone sequence (xn)n≥0 such
that

(xn)n≥0 ⊂ D, such that xn ↓ x as n ↑ +∞.

By right-continuity at x of FX and FY , we have

FX(x) = lim
n↑+∞

FX(xn) = lim
n↑+∞

FY (xn) = FY (xn).

Conclusion FX = FX . Thus by the first characterization, X and Y
have the same probability law.�

IV - A characterization of independence.

We are going to see that Point (c) of Theorem 5 is a rule for indepen-
dence because of Theorem 6. We have

Theorem 7. Let X and Y be two random variables respectively
with values in Rd and in Rk and defined on the same probability mea-
sure. The random variables X and Y are independent if and only if
for any u ∈ Rd and for v ∈ Rk, we have

(6.17) φ(X,Y )(u, v) = φX(u)× φY (v)

Proof. We need only to prove that (6.17) implies independence of X
and Y . Suppose that (6.17) holds. It is clear that the left-hand member
of (6.17) is the characteristic function of the product measure PX⊗PY .
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Since the characteristic functions of the probability laws P(X,Y ) and
PX ⊗ PY coincide, we get

P(X,Y ) = PX ⊗ PY ,

which is the definition of the independence between X and Y . �

V - Characteristic functions and moments for rrv .

We are going to see how to find the moments from the characteristic
function in the following. Let us write

ΦX(u) =

∫

eiuxdPX(x), u ∈ R.

The function

g(u, x) = cos(ux) + i sin(ux) = eiux

is differentiable with respect to u and its derivative is

g′(u, x) = ix(cos(ux) + i sin ux)) = ixeiux.

It is bounded by Y (x) = |x|. The integral of this function Y (x) is the
mathematical expectation of X , that is,

∫

Y (x)dPX(x) =

∫

|x| dPX(X) = E |X| .

Suppose that the mathematical expectation is finite. Then, by the
Dominated Convergence Theorem (See Point 06.14 in Doc 06.14, Chap-
ter 7, in Lo (2017b) of this series), we may exchange integration and
differentiation. The method may be repeated by a second differentia-
tion and so forth. We conclude this quick discussion in

Proposition 6. If E(X) exists and is finite, then the function
u 7→ φX(u) is differentiable and we have

φ′
X(u) =

∫

ixeiuxdPX(x).

And we have

i× E(X) = φ′
X(0).
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More generally, if for k ≥ 1, E |X|k exists and is finite, then the func-
tion u 7→ φX(u) is differentiable k times with

φ
(k)
X (u) = ik

∫

xkeiuxdPX(x)

and

EXk = −ik φ
(k)
X (0).

7. Convolution, Change of variables and other properties

I - Convolution product of probability density functions on R.

Let X and Y be two real-valued random variables which are defined on
the same probability space (Ω,A,P) and mutually independent. Set
Z = X + Y . By definition, the probability law of Z is called the
convolution product of the probability laws of PX and of PY , denoted
as

(7.1) PZ = PX ∗ PY .

Now, suppose that X and Y have probability density functions fX and
fY with respect to the Lebesgue measure λ. Then Z has an absolutely
probability density function fZ denoted as

fX+Y = fX ∗ fY .

We have the following

Proposition 7. Let X and Y be to real-valued and independent
random variables, defined on the same probability measure (Ω,A,P),
and admitting the probability density functions fX and fY with respect
to a σ-finite product measure ν = ν1 ⊗ ν2. Then Z has a pdf fZ which
has the two following to expressions :

fX ∗ fY (z) =
∫

R

fX(z − x) fY (x) dλ(x).
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Proof. Assume the hypotheses of the proposition hold. Let us use the
joint probability law of (X, Y ) to have

FZ(z) = P(X + Y ≤ x) =

∫

(x+y≤z)

dP(X,Y )(x, y).

Since X and Y are independent, we have

P(X,Y ) = PX ⊗ PY .

We may apply Fubini’s Theorem to get

FZ(z) =

∫

(x+ y)dP(X,Y )(x, y) =

∫

dPX(x)

∫

y≤z−x

dPY (y)

=

∫

fX(x)dν1(y)

(∫

y≤z−x

fY (y) dν2(y)

)

.

We recall the the Lebesgue measure is invariant by translation. Let us
make the change variable u = y + x, to have

FZ(z) =

∫

fX(x) dx

(∫

u≤z

fY (u− x) du
)

=

∫

fX(x) dx

(∫ z

−∞
fY (u− x) du

)

.

Let us use again the Fubini’s Theorem to get

FZ(z) =

∫ ∫ z

−∞
fY (u−x) fX(x) dx dy =

∫ z

−∞

(∫

fY (u− x) fX(x) dx
)

du.

Taking the differentiation with respect to z, we get

fZ(z) =

∫

fY (z − x) fX(x) dx.

For such a formula for discrete random variables, the reader is referred
Lo (2017a) of this series, Formula (3.24), Part D, Section 3, Chapter 6.

II - Change of Variable by Diffeomorphisms and Introduction
to the Gauss Random variables.
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(a) Recall of the Change of Variable Formula for Riemann In-
tegrals on Rd (See Valiron (1946), page 275, for double integration).

Suppose we have the following Riemann integral on Rd,

I =

∫

D

f(x1, x2, · · · , xd) dx1dx2 · · · dxd,

whereD is a domain ofRd. We will write for short with xt = (x1, x2, · · · , xd),

I =

∫

D

f(x) dx.

Suppose that we have a diffeomorphism h from an other domain ∆ of
Rk to D. This means that the function

h : ∆ 7→ D

(a) is a bijection (one-to-one mapping).

(b) h and its inverse function g = h−1 have continuous partial deriva-
tives (meaning that they are both of class C1).

Let us write h as :

D ∋ x = h(y)←→ y ∈ ∆.

The components of h are denoted by hi :

xi = hi(y) = hi(y1, ..., yd).

The d-square matrix of elements

∂xi
∂yj

=
hi(y1, ..., yd)

∂yj

written also as

M(h) =

[(
∂xi
∂yj

)

ij

]

.

is called the Jacobian matrix of the transformation. The absolute value
of its determinant is called the Jacobian coefficient of the change of
variable. We way write it as
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J(h, y) = det

([(
∂xi
∂yj

)

ij

])

.

The change of variable formula is the following

I =

∫

∆

f(h(y)) |J(h, y)| dy.

We replace x by h(y), the domain D by ∆, but we multiply the inte-
grated function by the Jacobian coefficient (depending on y).

(b) An example leading to the Gaussian probability Law.

Let us give a classical example. Suppose we want to compute

I =

∫

[0,+∞[×[0,+∞[

e−(x2+y2)dx dy.

Let us the polar coordinates of (x, y) in (R+)
2 :

{
x = r cos θ
y = r sin θ

with

(x, y) ∈ D = [0,+∞[×[0,+∞[←→ (r, θ) ∈ [0,+∞[×[0, π/2].

The Jacobian coefficient of the transformation is

J(r, θ) =

∣
∣
∣
∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣
∣
∣
∣
=

∣
∣
∣
∣

cos θ −r sin θ
sin θ r cos θ

∣
∣
∣
∣
= r cos2 θ + r sin2 θ = r.

We apply the change of variable formula to have

I =

∫

[0,+∞[×[0,π/2]

re−r2dr dθ =

∫

[0,π/2]

dθ

∫

[0,+∞[

re−r2dr =
π

4
.

By the Fubini’s Formula, we have

I =

∫

[0,+∞[

e−x2

dx

∫

[0,+∞[

e−y2dy = (

∫ +∞

0

e−u2

du)2.

Then, we have
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∫ +∞

0

e−u2

du =

√
π

2
.

Finally, by a new change of variable, where we take the evenness of the
function u 7→ exp(−u2/2), leads to

1√
2π

∫ +∞

−∞
e−u2/2du = 1.

This is a probability density function. Compare this with the lengthy
proof in Section 5, Chapter 7, in Lo (2017a) of this series.

Let us apply this Formula to finding new density functions.

(c) Finding a probability density function by change of vari-
ables.

Let X be a random variable in Rd of probability density function fX
with respect to the Lebesgue measure on Rk, still denoted by λk(x) =
dx. Suppose that D is the support of X . Let

h : ∆ 7→ D

be a diffeomorphism and

Y = h−1(X)

be another random vector. Then, the probability density function of
Y exists and is given by

fY (y) = fX(h(y)) |J(h)| 1∆(y). (CV F )

This follows from an immediate application of the variable change for-
mula. Let B be a borel set of Rd, we have

∫

x∈h(B)

fX(x) dx =

∫

h−1(x)∈B
fX(x) dx.

Let us apply the variable change formula as follows :
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P(Y ∈ B) =

∫

y∈B
fX(h(y)) 1∆(y) |J(h, y)| dy

=

∫

B

{fX(h(y)) 1∆(y) |J(h, y)|} dy.

We deduce from this that

fY (y) = fX(h(y)) 1∆(y) |J(h, y)|

is the probability density function of Y .

In Mathematical Statistics, this tool is extensively used, especially for
Gaussian random variables.

(d) Important example.

This example is important for two reasons. First, we will have to ap-
ply many of the techniques used in the this chapter and secondly, the
object of the example is the starting point of the study of stable laws.

Let us consider two independent E(λ)-random variables X1 and X2,
λ > 0 on a same probability space (such a construction is achieved
through the Kolmogorov construction method) and let us set Xs =
X1 − X2. The pdf of Xs is the convolution product of fX1 and f−X2.
The pdf f−X0 is

f−X2(y) = λ exp(λy), y ≤ 0.

So, we have for all x ∈ R,

fXs
(x) = (fX1 ∗ f−X2) (x)

=

∫

fX1(x− y)f−X2(y) dy

= λ2
∫ (

exp(−λ(x− y))1(x−y≥0)

)(

exp(λy)1(y≤0)

)

dy

= λ2
∫ (

exp(−λ(x− y))1(y≤x)

)(

exp(λy)1(y≤0)

)

dy.

If x ≤ 0, we have
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fXs
(x) = λ2

∫

−∞
x exp(−λ(x− y)) exp(λy) dy

= λ2 exp(−λx)
∫

−∞
x exp(2λy) dy

= λ2 exp(−λx)
[
e2λy

2λ

]x

−∞

=
λ

2
exp(λx).

If x ≥ 0, we have

fXs
(x) = λ2

∫

−∞
0 exp(−λ(x− y)) exp(λy) dy

= λ2 exp(−λx)
∫ 0

−∞
exp(2λy) dy

=
λ

2
exp(−λx).

In total, we have

(7.2) fXs
(x) =

λ

2
exp(−λ|x|), x ∈ R.

Next, let us see an interesting application of the inversion formula. The
characteristic function of Xs is

ΦXs
(u) = ΦX1−X2(u) = ΦX1−X2(u)

= ΦX1(u)ΦX2(−u)
=

1

1− it/λ
1

1 + it/λ

which leads to

(7.3) ΦXs
(u) =

λ2

λ2 + u2
, u ∈ R.

Now let us apply the inversion formula to this characteristic function.
We have λ-a.e. for all x ∈ R
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λ

2
exp(−λ|x|) =

1

2π

∫

e−iuxΦXs
(u) du

=
1

2π

∫

e−iux λ2

λ2 + u2
du,

and by dividing both members by by (λ/2) we get

(7.4) exp(−λ|x|) =
∫

e−iux λ

π(λ2 + u2)
du,

and by replacing x by −x, we conclude that we have λ-a.e. for all
x ∈ R,

∫

eiux
λ

π(λ2 + u2)
du = exp(−λ|x|).

It happens that

fC(0,λ) =
λ

π(λ2 + u2)
, x ∈ R,

is the pdf of a Cauchy random variable of parameters 0 and λ > 0
(see Chapter 3, Section 2, 115). We just found the characteristic of a
Cauchy random variable, which is not easy to find by direct methods.

8. Copulas

The lines below should form a part of Section 8 which was devoted to
cdf ’s. But, nowadays, the notion of copula is central in Statistics the-
ory, although copulas are simply particular cdf ’s in Probability. So we
think that introducing to copulas in a section might serve for references.

A very recurrent source on copulas is Nelsen (2006). However, the
lines below will use the note of Lo (2018).

Definition A copula on Rd is a cdf C whose marginal cdf ’s defined
by, for 1 ≤ i ≤ d,

R ∋ s 7→ Ci(s) = C



+∞, ...,+∞, s
︸︷︷︸

i−th argument

,+∞, ...,+∞



 ,
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are all equal to the (0, 1)-uniform cdf which in turn is defined by

x 7→ x1[0,1[ + 1[1,+∞[,

and we may also write, for all s ∈ [0, 1],

(8.1) Ci(s) = C



1, ..., 1, s
︸︷︷︸

i−th argument

, 1, ..., 1



 = s.

The copula became very popular with following the important theorem
of Sklar (1959)

Theorem 8. For any cdf F on Rd, d ≥ 1, there exists a copula C
on Rd such that

(8.2) ∀x ∈ Rd, F (x) = C(F1(x), ..., Fd(x)).

This theorem is now among the most important tools in Statistics since
it allows to study the dependence between the components of a random
vector through the copula, meaning that the intrinsic dependence does
not depend on the margins.

We are going to provide a recent proof due to Lo (2018). Fortunately,
the tools we need are available in the current series, in particular in
Lo et al. (2016).

Proof of Sklar (1959)’s Theorem.

(A) - Complements. We first need some complements to the prop-
erties of the generalized inverse function given in Lo et al. (2016). Let
us begin by defining generalized functions. Let [a, b] and [c, d] be non-
empty intervals of R and let G : [a, b] 7→ [c, d] be a non-decreasing
mapping such that

c = inf
x∈[a,b]

G(x), (L11)

d = sup
x∈[a,b]

G(x). (L12)
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Since G is a mapping, this ensures that

a = inf{x ∈ R, G (x) > c}, (L13)

b = sup{x ∈ R, G (x) < d}. (L14)

If x = a or x = b is infinite, the value of G at that point is meant as
a limit. If [a, b] is bounded above or below in R, G is extensible on R

by taking G (x) = G (a+) for x ≤ a and G (x) = G (b− 0) for x ≥ b.
As a general rule, we may consider G simply as defined on R. In that
case, a = lep(G) and b = uep(G) are called lower end-point and upper
end-point of G.

The generalized inverse function of G is given by

∀u ∈ [lep(G), uep(G)], G−1 (u) = inf {x ∈ R, G (x) ≥ u} .

The properties of G−1 have been thoroughly studied, in particular in
Billinsgley (1968), Resnick (1987). The results we need in this paper
are gathered and proved in wcrv or in Lo et al. (2016b) (Chapter 4,
Section 1) and reminded as below.

Lemma 2. Let G be a non-decreasing right-continuous function with
the notation above. Then G−1 is left-continuous and we have

∀u ∈ [c, d], G(G−1(u)) ≥ u (A) and ∀x ∈ [a, b], G−1(G(x)) ≤ x (B)

and

(8.3) ∀x ∈ [lep(G), uep(G)], G−1(G(x) + 0) = x.

Proof. The proof of Formulas (A) and (B) are well-known and can be
found in the cited books above. Let us prove Formula (8.3) for any
x ∈ [a, b].

On one side, we start by the remark that G−1(G(x) + 0) is the limit
of G−1(G(x) + h) as h ց 0. But for any h > 0, G−1(G(x) + h) is the
infimum of the set of y ∈ [a, b] such that G(y) ≥ G(x) + h. Any these
y satisfies y ≥ x. Hence G−1(G(x) + 0) ≥ x.

On the other side G(x+h)ց G(x) by right-continuity of G, and by the
existence of the right-hand limit of the non-decreasing function G−1(◦),
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G−1(G(x + h)) ց G−1(G(x) + 0). Since G−1(G(x + h)) ≤ x + h by
Formula (B), we get that G−1(G(x) + 0) ≤ x as h ց 0. The proof is
complete. �

(B) - Proof of Sklar’s Theorem. Define for s = (s1, s2, · · · , sd) ∈
[0, 1]d,

(8.4) C(s) = F (F−1
1 (s1 + 0), F−1

2 (s2 + 0), · · · , F−1
d (sd + 0)).

It is immediate that C assigns non-negative volumes to cuboids of
[0, 1]d, since according to Condition (DF2), Formula (??) for C derives
from the same for F where the arguments are the form F−1

i (◦ + 0),
1 ≤ i ≤ d.

Also C is right-continuous since F is right-continuous as well as each
F−1
i (◦ + 0), 1 ≤ i ≤ d. By passing, this explains why we took the

right-limits because the F−1
i (◦)’s are left-continuous.

Finally, by combining Formulas (8.3) and (8.4), we get the conclusion
of Sklar in Formula (8.2). The proof is finished. �

9. Conclusion

(A) Back to independence of Random vectors.

Because of the importance of the notion of independence and since
several characterizations of the independence are scattered this chap-
ter and in Chapter 1, we think that a summary on this point may be
useful to to reader.

(1) The most general definition of a finite family of random variables is
given in Definition 3 (page 21). This definition covers all type of ran-
dom variables and uses the finite product measure. Random variables
of an infinite family are independent if and only if the elements each
finite sub(family are independence.

In this general case, Theorem (page 101) gives a general characteriza-
tion.
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(2) When we have a random real-valued vector in Rd, d ≤ 1, the inde-
pendence of the coordinates and the independence of sub-vectors are
characterized :

(2a) in Theorem 3 (page 61), using the cumulative distribution func-
tions,

(2b) in Theorem 7 (page 89), using the characteristic functions,

(2c) in Theorem 4 (page 75), using the probability density functions
with respect to the measure.

(B) General advices to determine probability laws.

Now, we have the means to characterize the usual probability laws by
their distribution functions or their characteristic functions. Its is also
important to know the parameters of the usual laws. In the next two
chapters, we will be dealing with them. Estimating these from data is
one of the most important purposes of Statistics.

In trying to find the probability laws, the following ideas may be useful.

(A) Using the convolution product to find the probability law of the
sum of two independent real-value random variables.

(B) Using the product of characteristic function to find the probability
law of the sum of two independent random variables of equal dimension.

(C) Finding the distribution function of the studied random variable
and differentiate it if possible, and try to identify a known probability
law.

(D) Directly finding the characteristic function of the studied random
variable and trying to identify a known probability law.

(E) Using the Change of Variable Formula to derive pdf ’s if applicable.

(F) In particular, the following easy stuff may be useful :
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A useful stuff. Suppose that two random elements X and Y , are
defined on the same probability space and take their values in the
same measure space (E,B, ν), which is endowed with a measure ν.
Suppose that X and Y have pdf ’s fX and fY with respect to ν and
that these two pdf ’s a common support V and have a common variable
part, meaning that there exist a non-negative function h : E → R and
constants C1 > 0 and C2 > 0 such that

∀x ∈ E, fX(x) = C1h(x) and fY (x) = C2h(x).

Then fX = fY , ν-a.s. and C1 = C2. ♦

The proof is obvious since

1 =

∫

V
fX dν = C1

∫

V
h dν =

∫

V
fX dν = C2

∫

V
h dν.

which leads to

C1 = C2 = 1/

(∫

V
h dν

)

.

Despite its simplicity, this stuff is often used and allows to get remark-
able Analysis formulas, some of them being extremely difficult, even
impossible, to establish by other methods.





CHAPTER 3

Usual Probability Laws

We begin to focus on real random variables. Later, we will focus on
Random vectors in Chapter 4.

Actually, the researchers have discovered a huge number of probability
laws. A number of dictionaries of probability laws exist (See for ex-
ample, Kotz et al. (199), which is composed of 13 volumes at least).
Meanwhile, people are still continuing to propose new probability laws
and their properties (see Okorie et al. (2017) for a recent example).

This chapter is just a quick introduction to this wide area. A short
list among the most common laws is given. Some others concern new
important probability laws (Skewed normal, hyperbolic, etc.).

I - Review of usual probability law on R.

We begin with discrete random variables. For such random variables,
the discrete integration formula is used to find the parameters and the
characteristic functions. This has already been done in the monograph
of Lo (2017a). We will not repeat the computations here.

1. Discrete probability laws

For each random variableX , the values set or support VX , the probabil-
ity density function with respect to the appropriate counting measure,
the characteristic function and/or the moment generating function and
the moments are given.

(1) Constant random variable X = a, a.s, a ∈ R.

X takes only one value, the value a.

Discrete probability density function on VX = {a} :

105
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VX = {a} and P(X = a) = 1.

Distribution function :

FX(x) = 1[a,+∞[, x ∈ R.

Characteristic function :

ΦX(u) = eiau, t ∈ R.

Moment generating function :

ϕX(u) = eau, t ∈ R.

Moments of order k ≥ 1

EXk = ak,E(X − a)k = 0.

A useful remark. A constant random variable is independent from
any other random variable defined on the same probability space. In-
deed let X = a and Y be another any other random variable defined on
the same probability space. The joint characteristic function of (X, Y )
is given by

Φ(X,Y )(u, v) = E exp(iXu+ iY v) = E

(

exp(iau) exp(iY v)

)

= exp(iau)E exp(iY v) = ΦX(u)ΦY (v),

for any (u, v) ∈ R2. By Theorem 7 in Chapter 2, X and Y are inde-
pendent.

(2) Uniform Random variable on {1, 2, ..., n}, n ≥ 1.

X ∼ U(1, 2, ..., n) takes each value in {1, 2, ..., n} with the same prob-
ability.

Discrete probability density function on VX = {1, 2, ..., n} :

P(X = k) = 1/n, k ∈ {1, ..., n}

Distribution function :
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F (x) =







0 if x < 1,
i−1
n

if i−1
n
≤ x < i

n
, 1 ≤ i ≤ n,

1 if x ≥ n.

Characteristic function :

ΦX(u) =
1

n

n∑

j=1

eiju, u ∈ R.

Moments of order k ≥ 1 :

EXk =
1

n

n∑

j=1

jk.

Mathematical expectation and variance :

E(X) =
n + 1

2
, Var(X) =

(n− 1)(n+ 1)(4n+ 3)

12
.

(3) Bernoulli Random Variable with parameter 0 < p < 1.

X ∼ B(p) takes two values : 1 (Success) and 0 (failure).

Discrete probability density function on VX = {0, 1} :

P(X = 1) = p = 1− P(X = 0).

Distribution function :

F (x) = 0× 1]−∞,0[ + p× 1[0,1[ + 1[1,+∞[, x ∈ R.

Characteristic function :

ΦX(u) = q + peiu, u ∈ R.

Moments of order k ≥ 1 :

EXk = p.

Mathematical expectation and variance :



108 3. USUAL PROBABILITY LAWS

E(X) = p, Var(X) = pq.

(4) Binomial random variable with parameters 0 < p < 1 and
n ≥ 1.

X ∼ B(n, p) takes its values in {0, 1, ..., n}.

Discrete probability density function on VX = {0, 1, ..., n} :

P(X = k) = Ck
n p

k(1− p)n−k, k = 0, ..., n.

Characteristic function. Since X is the sum of n independent Bernoulli
B(p) random variables, Point (b) and Theorem 5 and the value of the
characteristic function of a Bernoulli random variable, yield

ΦX(u) = (q + peiu)n, u ∈ R.

Mathematical expectation and variance :

E(X) = np, and V ar(X) = np(1− p).

The above parameters are computed by still using the decomposition
of Binomial random variable by into a sum of independent Bernoulli
random variables.

(5) Geometric Random Variable with parameter 0 < p < 1.

X ∼ G(p) takes its values in N.

Discrete probability density function on VX = N :

P(X = k) = p(1− p)k, k ∈ N.

Characteristic function :

ΦX(u) = p/(1− qeiu), u ∈ R.

Mathematical expectation and variance :

E(X) = q/p, V ar(X) = q/p2.
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(6) Negative Binomial Random Variable with parameters r ≥
1 and 0 < p < 1.

Xr ∼ BN(r, p) takes the values in {r, r + 1, ...}.

Discrete probability density function on VX = {r, r + 1, ...} :

P(X = k) = Cr−1
k−1p

k(1− p)r−k, k ≥ r.

Characteristic function. Since Xr is the sum of r independent Geomet-
ric G(p) random variables, Theorem and the value of the characteristic
function of a Bernoulli random variable, yield

ΦX(u) =
{
peiu/(1− qeiu

}r
, u < − log(1− p).

Mathematical expectation and variance :

E(X) = rq/p, V ar(X) = rq/p2.

(7) Poisson Random variable of parameter λ > 0.

X ∼ P(λ) takes its values in N.

Discrete probability density function on VX = N :

P(X = k) =
λk

k!
e−λ, k ≥ 0.

Characteristic function

ΦX(u) = exp(λ(eiu − 1)), u ∈ R.

Mathematical expectation and variance :

E(X) = V ar(X) = λ.

(8) Hyper-geometric Random Variable.

X ∼ H(N, θ, n) or H(N,M, n), 1 ≤ n ≤ N, 0 < θ < 1, θ = M/N,
takes its values in {0, 1, ..., min(n,M)}.

Discrete probability density function on VX = {0, 1, ..., min(n,M)} :
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(X = k) =
Ck

M × Cn−k
N−M

Cn
N

, k = 0, ...,min(n,M).

Characteristic function of no use.

Mathematical expectation and variance :

E(X) = rM/n, and V (X) = rM(n−M)(n− r)/{n2(n− 1)}.

(9) Logarithmic Random Variable.

X ∼ Log(p) takes its values in {1, 2, ...}.

Discrete probability density function on VX = {1, 2, ...} :

P(X = k) = −qk/(k log p), k ≥ 1.

Characteristic function :

ΦX(u) = log(1− qeiu)/ log(p), u ∈ R.

Moment Generating function :

ΦX(u) = log(1− qeu)/ log(p), u < − log(1− p).

Mathematical expectation and variance :

E(X) = −q/(p log(p)), V (X) = −q(q + log(p))/(p log(p)).
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2. Absolutely Continuous Probability Laws

For each random variable X , the support VX , the probability density
function with respect to the Lebesgue measure, the characteristic func-
tion and/or the moment generating function, the moments are given.
By definition, the support VX of X is given by

VX = {x ∈ R, fX(x) 6= 0}

We also have

P(X ∈ VX) = 1.

For any real-valued random variable, we may define

lep(F ) = inf{x, F (x) > 0}

and

uep(F ) = sup{x, F (x) < 1}.

where lep(F ) and uep(F ) respectively stand for lower end-point of F
and upper end-point of F . As a result we have

X ∈ [lep(F ), uep(F )], a.e.

The first examples given without computations are done in Lo (2017b).

(1) Continuous uniform Random variable on a bounded com-
pact set.

Let a and b be two real numbers such that a < b. X ∼ U(a, b).

Domain : VX = [a, b].

Absolutely continuous probability density function on VX = [a, b] :

fX(x) =
1

b− a1[a,b](x), x ∈ R.

Distribution function :
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FX(x) =







1 if x ≥ b,
(x− a)/(b− a) if a ≤ x ≤ b,

0 if x ≤ a.

Characteristic function :

ΦX(u) =
eibu − eiau
iu(b− a) , u ∈ R.

Moments of order k ≥ 1 :

EXk =
bk+1 − bk+1

(k + 1)(b− a) .

Mathematical expectation and variance :

E(X) = (a+ b)/2, et V ar(X) = (b− a)2/12.

(2) Exponential Random Variable of parameter b > 0.

X ∼ E(b) is supported on R+.

Absolutely continuous probability density function on VX = R+ :

fX(x) = be−bx1(x≥0).

Distribution function :

FX(x) = (1− e−bx)1(x≥0).

Characteristic function :

ΦX(u) = (1− iu/b)−1,

Moment Generating Function :

φX(u) = (1− u/b)−1, u < b.

Moments of order k ≥ 1

E(Xk) =
k!

λk
.
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Mathematical expectation and variance :

E(X) = 1/λ, V ar(X) = 1/λ2.

(3) Gamma Random variable with Parameter a > 0 and b > 0.

X ∼ γ(a, b) is defined ob R+.

Absolutely continuous probability density function on VX = R+ :

fX(x) =
ba

Γ(a)
xa−1e−bx1(x≥0)

with

Γ(a) =

∫ ∞

0

xa−1 e−x dx.

Characteristic function :

ΦX(u) = (1− iu/b)−a.

Moments of order k ≥ 1 :

E(Xk) =
1

bk

k∏

j=0

a + j.

Mathematical expectation and variance :

E(X) = a/b, V ar(X) = a/b2.

Be careful. Some authors, many of them in North America, take
γ(a, 1/b) as the gamma law. If you read somewhere that E(X) = ab
for X ∼ γ(a, b), be aware that in our definition we have X ∼ γ(a, 1/b).

(4) Symmetrized Exponential random variable with λ > 0.

X ∼ Es(λ) in defined on R.

From the non-negative random variable X , it is always possible to
define a symmetrized random variable Xs by considering two indepen-
dent E(λ)-random variables X1 and X2 on a same probability space
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(such a construction is achieved through the Kolmogorov construction
method) and by setting Xs = X1 −X2. Another way to define it is to
have an E(λ)-random variable X and a (0, 1)-uniform random variable
U independent of X and to set Xs = −X1(U≤0.5) +X1(U>0.5). We are
going to use the first method. It is clear thatXs is a symmetric random
variable. Further if X admits an absolutely continuous pdf, Xs has the
pdf

fXx
(x) =

1

2
fX(|x|), x ∈ R.

By applying this to the exponential random variable, a Symmetrized
Exponential random following X ∼ Es(λ) has the following pdf.

Absolutely continuous probability density function on VX = R :

fX(x) =
λ

2
exp(−λ|x|), x ∈ R.

Distribution function :

FX(x) =
1

2
eλx1(x<0) +

(

1− 1

2
e−λx

)

1(x≥0), x ∈ R.

Characteristic function : (See Formula 7, Chapter 2, page 98)

ΦX(u) = exp(−λ|u|), u ∈ R.

Mathematical expectation and variance :

EXs = 0 and Var(Xs) =
2

λ2
.

To justify the variance, we may remark that Xs = (X1− 1/λ)− (X2−
1/λ), that is, Xs = (X1 − E(X1)) − (X2 − E(X1 = 2)) and exploit
that Xs is the difference between two independent and centered ran-
dom variables.

Remark. For γ = 1, this law holds the name of Laplace random vari-
able.
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(5) Beta Random variables of parameter a > 0 and b > 0.

X ∼ B(a, b) is defined on (0, 1).

Absolutely continuous probability density function on VX :

fX(x) =
1

B(a, b)
xa−1(1− x)b−11(0,1)(x),

where

B(a, b) =

∫ 1

1

xa−1(1− x)b−1 dx.

Mathematical expectation and variance :

E(X) = a/(a + b) and V ar(X) = ab/[(a + b)2(a+ b+ 1)].

(6) Pareto Random Variable of parameter a > 0.

X ∼ Par(a, α), with parameters α > 0 and a ≥ 0, is supported by
]a,+∞].

Absolutely continuous probability density function on VX =]a,+∞[ :

fX(x) = αaαx−α−11(x>a).

(7) Cauchy random variable with λ > 0 and a ∈ R.

X ∼ C(a, λ) in defined on R.

Absolutely continuous probability density function on VX = R :

fX(x) =
λ

π(λ2 + (x− a)2) , x ∈ R.

Distribution function :

FX(x) =
1

π

(

arctan

(
x− a
λ

)

− π

2

)

, ∈ R.
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Characteristic function :

ΦX(u) = exp(iua− λ|u|), u ∈ R.

The mathematical expectation does not exist.

Proof. We have to prove that for a = 0 and λ = 1, Formula 2 gives a
pdf. Indeed, using that the primitive of (1+x2) is arctan x, the inverse
of the tangent function tanx, we have

∫ +∞

−∞

dx

π(1 + x2)
=

1

π
[arctanx]+∞

−∞ = 1.

Next, setting X = λZ + a, where Z follows a C(0, 1) law leads to the
general case in 2 by differentiating FZ(x) = FX((x− a)/λ), x ∈ R.

The expression of the characteristic function of a rrv Z following a
standard Cauchy law is given by Formula 7.4 (Chapter 2, page 98). By
the transform X = λZ + a, we have the general characteristic function
of a Cauchy distribution.

Finally, we have for a = 0 and λ = 1,

E(X+) =

∫ +∞

0

x

π(1 + x2)
dx = +∞,

and

E(X−) =

∫ 0

−∞

x

π(1 + x2)
dx = −∞,

and then E(X) is not defined. Concerning that point, we recommend
to go back to the remark concerning the caution to take while using
the improper Riemann integration at the place of the Lebesgue integral
(See Point (b5) in Section 5 in Chapter 2, page 69).

(8) Logistic Random Variable with parameters a ∈ R and b > 0.

X ∼ ℓ(a, b) is supported by the whole real line.

Absolutely continuous probability density function on VX = R :
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fX(x) = b−1e−(x−a)/b/(1 + e−(x−a)/b), x ∈ R.

Characteristic function :

ΦX(u) = eiauπb cosec(iπbu).

Mathematical expectation and variance :

E(X) = a;V (X) = b2π2/3.

(9) Weibull Random Variable with parameters a > 0 and b > 0.

X ∼W (a, b) is supported by R+.

Absolutely continuous probability density function on VX = R+ :

fX(x) = ab xb−1 exp(−ax−b)1(x>0).

Characteristic function :

ΦX(u) = a−iu/bΓ(1 + iu/b), u ∈ R.

Mathematical expectation and variance :

E(X) = (1/a)1/bΓ(1 + 1/b);V (X) = a−2/b(Γ(1 + 2/b)− Γ(1 + 1/b)).

(10) Gumbel Random Variable a ∈ R and b > 0.

X ∼ Gu(a, b) is supported by the whole line R.

Absolutely continuous probability density function on VX = R :

fX(x) = (u/b)e−u, with u = e−(x−a)/b.

Characteristic function :

ΦX(u) = eiuaΓ(1− ibu), u ∈ R.

Mathematical expectation and variance :
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E(X) = a + γb.

where γ = is the Euler’s number and

V ar(X) = π2b2/2.

(11) Double-exponential Random Variable with parameter
b > 0.

See Point (4) above.

X ∼ Ed(b) is defined on the whole real line.

Absolutely continuous probability density function on VX = R :

fX(x) =
b

2
exp(−b |x|), x ∈ R.

Characteristic function :

ΦX(u) = (1 + (u/b)2)−1, u ∈ R.

Moments of order k ≥ 1 :

Mathematical expectation and variance :

E(X) = 0, and V ar(X) = 2b−2.

(12) Gaussian Random Variable with parameters m ∈ R and
σ > 0. X ∼ N (m, σ2) is supported by the whole real line VX = R.

Absolutely continuous probability density function on VX = R :

fX(x) =
1√
2π

exp(−(x−m)2/σ2), x ∈ R.

Characteristic function :

ΦX(u) = e−um exp(−σ2u2/2).

Moments of order k ≥ 1.
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X

(
X −m
σ2

)

=
2k k!

(2k)
.

Mathematical expectation and variance :

E(X) = m, V ar(X) = σ2.

Because of its importance in the history of Probability Theory, as ex-
plained by its name of normal probability law, we will devote a special
study to it in Chapter 4.

(13) Chi-square Probability law of parameters d ≥ 1.

X ∼ χ2
d is supported by VX = R+.

Definition A Chi-square Probability law of d ≥ 1 degrees of freedom
is simply a Gamma law of parameters a = d/2 and b = 1/2, that is

χ2
d = γ(d/2, 1/2).

By reporting the results of γ-laws, we have the following facts.

Absolutely continuous probability density function on VX = R+ :

Absolutely continuous probability density function on VX = R+ :

fX(x) =
1

2d/2Γ(d/2)
x

d
2
−1e−

x
2 1(x≥0).

Characteristic function :

ΦX(u) = (1− i2u)−d/2.

Moments of order k ≥ 1.

E(Xk) =
1

2−k

k∏

j=0

(
d

2
+ j

)

.

Mathematical expectation and variance :

E(X) = d, V ar(X) = 2d.
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Important properties. Chi-square distributions are generated from
Gaussian random variables as follows.

Fact 1. If Z follows a standard Gaussian probability law, Z2 follows
a Chi-square law of one degree of freedom :

Z ∼ N (0, 1)⇒ Z2 ∼ χ2
1.

Proof. Suppose that Z ∼ N (0, 1) and put X = Z2. It is clear that
the domain of Y is VX = R+. For any y ≥ 0,

FX(x) = P(Z2 ≤ x)

= P(|Z| ≤ √x)
= P(Z ∈]−∞,√x]\]−∞,√x[)
= P(Z ≤ √x)− P(Z ≤ −√x).

Remind that Z has an even absolutely continuous pdf fZ . This implies
that P(Z = t) = 0 for any t ∈ R and we get for any y ≥ 0,

FY (x) = FZ(
√
x)− FZ(−

√
x).

By differentiating by x, we get the absolutely continuous pdf of X for
any any x ∈ VX

fX(x) =
1

2
√
x

(

fZ(
√
x) + fZ(−

√
x)

)

=
1√
x
fZ(
√
x),

which leads to

fX(x) =

(
1
2

)1/2

√
π
x1−1/2 exp(−x/2), x ∈ R+.

By comparing with the absolutely continuous pdf fχ1
2
of a Chi-square

probability law, we see that fχ1
2
and fX are two absolutely continuous

pdf ’s with the same support V and a common variable part

h(x) = x1−1/2 exp(−x/2), x ∈ V.

By the Easy Stuff remark in Section 9 in Chapter Section 9, it follows
that they are equal and by the way, we get the stunning equality
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Γ(1/2) =
√
π.

Fact 2. Let d ≥ 2. The convolution product of d Chi-square law of
one degree of freedom is a Chi-square law probability of d degrees of
freedom. In particular, if X1, ..., Xd are d independent real-valued
random variables, defined on the same probability space, identically
following a Chi-square law of one degree of freedom, we have

X2
1 + · · ·+X2

d =
∑

1≤i≤d

X2
i ∼ χ2

d.

Indeed, if X1, ..., Xd are independent and identically follow a Chi-
square law of one degree of freedom, the probability law X2

1 + · · ·+X2
d

is characterized by its characteristic function

ϕX2
1+···+X2

d
(t) =

d∏

j=1

= ϕXj
(t) = (1− 2it)d/2,

which establishes that X2
1 + · · ·+X2

d follows a χ2
d law.

(14) Around the Normal Variance Mixture class of random
variables

We are introducing some facts on this class of random variables which
are important tools in financial data statistical studies. We only pro-
vide some of their simple features, not dwelling in their deep relations.
It is expected to treat these random variables in completion of Chapter
later.

(a). A normal variance mixture is defined as follows :

X = µ+ σ
√
WZ, (NMV )

where Z is a standard random variable,W is a positive random variable
defined on the same space as Z and independent of Z, µ is a real number
(the mean of X) and σ is a positive random variable. Hence we have

E(X) = µ+ σE(
√
W )E(Z) = µ

and
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V(X) = σ2E(W 2)E(Z2) = σ2E(W 2).

The following distributions of W are generally used.

(b). The inverse gamma lawW = 1/Y ∼ Ig(α, β), where Y ∼ γ(α, β),
α > 0, β > 0.

Absolutely continuous probability density function on VX = R+ :

fW (x) =
βα

Γ(α)
x−α−1 exp(−β/x), x > 0.

Mathematical expectation and variance :

E(X) =
β

α− 1
for α > 1;Var(X) =

β2

(α− 1)2(α− 2)
for α > 2.

(c). The Generalized Inverse Gaussian (GIG) law : W ∼ Gig(a, b, c),
(a, b, c) ∈ R3

+.

Parameters domains :

b > 0 and c ≥ 0 if a < 0

b > 0 and c > 0 if a = 0

b ≥ 0 and c > 0 if a > 0.

Absolutely continuous probability density function on VX = R+ :

fW (x) =
b−a(bc)a

2Ka

(

(bc)1/2
)xa−1e−(cx+b/x)/2, x ∈ R.

Ka

(

(bc)1/2
)

=
b−a(bc)a

2

∫ +∞

0

xa−1e−(cx+b/x)/2dx.

This function, called a modified Bessel function, is not directly defined

in a simple argument, but on a composite argument (bc)1/2 and one
should pay a particular attention to the simultaneous domain of the
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parameters (a, b, c).

Mathematical expectation and variance :

E(X) =
β

α− 1
for α > 1;Var(X) =

β2

(α− 1)2(α− 2)
for α > 2.

(d). Student distribution of ν ≥ 1 degrees of freedom : X ∼ t(ν).

If in Formula (NMV), we take W as inverse Gamma random variable
Ig(ν/2, ν/2), where ν ≥ 1 is an integer, the pdf of X becomes :

for x ∈ VX = R :

f(x) =
Γ((ν + 1)/2)

σΓ(ν/2)(νπ)1/2

(

1 +
(x− µ)2/2

ν

)−(ν+1)/2

.

(e). Symmetric Generalized Hyperbolic distribution : X ∼ SGH(µ, a, b, c).

Parameters : µ ∈ R, a, b and c given in the Gig law presentation.

If, in Formula (NMV), we take W as the generalized inverse Gaussian
random variable Gig(a, b, c), the pdf of X becomes :

for x ∈ VX = R :

f(x) =
(ab)−a/2c1/2

σ(2π)1/2Ka ((bc)1/2)

Ka−1/2

(

(b+ c(x−mu)2/σ)1/2
)

(b+ c(x−mu)2/σ)1/4−a/2
.

(f). Generalized Hyperbolic distribution : X ∼ GH(µ, a, b, c).

The latter probability law is a particular case of the following model :

X = µ+ γW + σ
√
WZ, (GNMV )

for γ = 0. If γ is an arbitrary real number and we take W as a gener-
alized inverse Gaussian random variable Gig(a, b, c), the pdf of X is :

for x ∈ VX = R :
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f(x) = c
exp(γ(x− µ)/σ)Ka−1/2

(

(b+ σ−1(x−mu)2(c+ γ2/σ))
1/2
)

(b+ σ−1(x−mu)2(c+ γ2/σ))1/4−a/2
,

where

c =
(ab)−a/2cc(c+ γ2/σ)1/2−a

σ(2π)1/2Ka ((bc)1/2)
.

Comments. This part (14) was only an introduction to an interesting
modern and broad topic in Statistical studies in Finance. The multi-
variate version has also been developed.

(15) Probabiliy Laws of the Gaussian sample.

In Mathematical Statistics, the study Gaussian samples holds a special
place, at least at the beginning of the exposure of the theory. The
following probability laws play the major roles.

(a) The Chi-square probability law of n ≥ 1 degrees of freedom.

X ∼ χn
2 .

This law has been introduced in Point (13) above.

(b) The Student probability law of n ≥ 1 degrees of freedom.

X ∼ t(n) is defined on the whole real line.

Absolutely continuous probability density function on VX = R :

fX(x) =
Γ((n+ 1)/2)

(nπ)1/2Γ(n/2)

(

1 +
x2

n

)−(n+1)/2

Characteristic function. No explicit form.

Moments of order k ≥ 1 :

Mathematical expectation and variance :
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E(X) = 0, and V ar(X) =
n

n− 2
), n ≥ 3.

(c) The Fisher probability law of degrees of of freedom n ≥ 1 andm ≥ 1.

X ∼ F (n,m)) is defined on the positive real line.

Absolutely continuous probability density function on VX = R+ :

fX(x) =
nn/2mm/2Γ((n+m)/2)

Γ(n/2)Γ(m/2)

xn/2−1

(m+ nx)(n+m)/2
.

Characteristic function. No explicit form.

Mathematical expectation and variance :

E(X) =
m

m− 2
, m ≥ 3 and V ar(X) =

2m2(n +m− 2)

n(m− 2)2(m− 4)
, m ≥ 5.

We take this opportunity to propose an exercise which illustrate the
change of variable formula given in page 92 and which allows to find
the just given laws.
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Exercise 1. Let (X, Y ) be a 2-random vector with pdf f(X,Y ), on
its support D with respect to the Lebesgue measure on R2. Consider
the following transform

(x, y) 7→ h (x, y) = (x, x+ y) ∈ ∆,

that is :

{
U = X

V = X + Y

(a) Find the law of (U, V ) and their marginals law.

(b) Precise the pdf of V if X and Y are independent.

(c) Application : Let X ∼ γ (α, b) and Y ∼ γ (β, b). Show that V =
X + Y ∼ γ (α + β, b).

Exercise 2. Let Let (X, Y ) be a 2-random vector with pdf f(X,Y )

with respect to the Lebesgue measure on R2. Consider the following
transfrom

(x, y) 7→ h (x, y) = (x/y, y) ,

that is

(X, Y ) 7→ (U, V ) = (X/Y, Y ) .

(a) Apply the general change of variable formula to write the pdf of
(X/Y, Y ) and deduce the marginal pdf of U = X/Y .

(b) Precise it for X and Y independent.

(c) In what follows, X and Y are independent. Precise the pdf of U
when X and Y are both standard Gaussian random variables. Identify
the found probability law.

(d) Let X be a standard Gaussian random variable and Y = Z1/2 the
square-root of a χ2

n random variable with n ≥ 1. Precise the pdf of

U = X/
√
Z. Begin to give the pdf of Y by using its cdf.

Deduce from this the probability law of

t(n) =

√
nX

Y
≡ N (0, 1)
√

χn
2/n
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where the term after the sign ≡ is a rephrasing of a ratio of two in-
dependent random variables : a N (0, 1) random variable by the square
root of a chi-square random variable divided by its number of freedom
degrees.

Conclude that a t(n)-random variable has the same law as the ratio of
two independent random variables : a N (0, 1) random variable by by
square root of a chi-square random variable divided by its number of
freedom degrees.

(e) Let X and Y be two independent random variable following Chi-
square laws of respective number of freedom degrees n ≥ 1 and m ≥ 1.
Precise the pdf of U = X/Y .

Deduce from this the probability law of

Fn,m =
(m

n

) X

Y
≡ χn

2/n

χm
2 /m

,

where the term after ≡ is a rephrasing of a ratio of two independent
random variables : a Chi-square random variable of number of freedom
degrees n ≥ 1 by a Chi-square random variable of number of freedom
degrees m ≥ 1.

Conclude that a Fisher random variable with numbers of freedom de-
grees n ≥ 1 and m ≥ 1 has the same probability law as a ratio of
two independent random variables : a Chi-square random variable of
number of freedom degrees n ≥ 1 by a Chi-square random variable of
number of freedom degrees m ≥ 1.

Solutions of Exercise 1. We have the transformation :

{
u = x

v = x+ y
⇔
{

x = u
y = −u+ v

The Jacobian matrix is :

J(u,v) =

(
1 0
−1 1

)

with determinantdet
(
J(u,v)

)
= 1. By the Change of variable formula,

we have

f(U,V ) (u, v) = f(X,Y ) (u,−u+ v) 1∆ (u, v) .
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The marginal laws are

fU (u) =

∫

Dv

f(U,V ) (u, v)dv? U ∈ VU
and

fV (v) =

∫

Du

f(U,V ) (u, v) du

=

∫

DU

f(X,Y ) (u,−u+ v) ID(U,V ) (u, v)du.

Question (b) We have

fV (v) = fX+Y (v) =

∫

fX (u) fY (v − u) du =

∫

fY (u) fX (v − u) du,

which is the convolution product between X and Y .

Question (c). We recall that

fX (x) =
bα

Γ (α)
xα−1e−bxIR+ (x)

and

fY (x) =
bβ

Γ (β)
xβ−1e−bxIR+ (x) .

We have

fX+Y (v) =
bα

Γ (α)

bβ

Γ (β)

∫ v

0

uα−1e−bu (v − u)β−1 e−b(v−u)du

=
bα+β

Γ (α) Γ (β)
× vα+β−2e−bv

∫ v

0

(u

v

)α−1 (

1− u

v

)β−1

du.

By taking the further change of variables x = u/v, we get

fX+Y (v) =

[
bα+β

Γ (α) Γ (β)

∫ 1

0

(x)α−1 (1− x)β−1 dx

]

×vα+β−2e−bvIR+ (v) .

Since X + Y has the same domain and the same variable part of a
γ(α + β, b), they have the same constant and then we have X + Y ∼
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γ(α+ β, b) and

bα+β

Γ (α + β)
=

bα+β

Γ (α) Γ (β)
× β (α, β)

with

B (α, β) =

∫ 1

0

(x)α−1 (1− x)β−1 dx =
Γ (α) Γ (β)

Γ (α+ β)
.

�

Solutions of Exercise 2.

Question (a). We have the transformation :

{
u = x

y

v = y
⇒
{
x = uv
y = v

)

The the Jacobian matrix is

J(u,v) =

(
v u
1 0

)

with determinant det
(
J(u,v)

)
= v. The pdf of (U, V ) becomes

f(X
Y
,Y ) (u, v) = f(X,Y ) (uv, v) |v| ID(X

Y
,Y ) (u, v) ,

and the marginal law of V = X/Y is

fX
Y
(u) =

∫

Dv

f(U,V ) (u, v)dv

=

∫

Dv

f(X,Y ) (uv, v) |v| ID(X
Y
,Y ) (u, v)dv (1) .

Question (b) If X and Y are independent, we have

fX
Y
(u) =

∫

Dv

f(U,V ) (u, v)dv

=

∫

(uv∈DX ,v∈DY )

fX (uv) fY (v) |v| dv.
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Question (c) Now if X and Y are standard Gaussian random variables,
we get

fX
Y
(u) =

1

2π

∫ ∞

−∞
e−

1
2
u2v2e−

1
2
v2 |v| dv

=
1

2π

∫ ∞

−∞
e−

1
2(u

2+1)v2 |v| dv

=
1

π

∫ ∞

0

ve−
1
2(u

2+1)v2dv

=
1

π

[

−e
− 1

2(u
2+1)v2

u2 + 1

]∞

0

=
1

π (u2 + 1)
,

which is the standard Cauchy probability law.

Question (d). The pdf of Y is easily derived from the relation

∀y ≥ 0, FY (y) = FZ(y
2)

which, after differentiation, gives

fY (y) = 2yfY1

(
y2
)
=

2
(
1
2

)n
2

Γ
(
n
2

) yn−1e−
1
2
y21R+ (y) .

From there, we have

fX
Y
(u) =

∫

fX (uv) fY (v) |v| dv

=
1√
2π

1

2
n
2
−1Γ

(
n
2

)

∫ ∞

0

vne−
1
2
u2v2e−

v2

2 dv.

Let us set

A =

∫ ∞

0

vne−
1
2
u2v2e−

v2

2 dv

=

∫ ∞

0

vne−
v2

2 (u2+1)dv ,

and make the change of variable t = v2

2
(u2 + 1). Then we have
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v =

√

2t

u2 + 1
=

√

2

u2 + 1
t
1
2

and

dv =
1

2

√

2

u2 + 1
t−

1
2dt(2.1)

=
1

2

√

2

u2 + 1
× 1

v
×
√

2

u2 + 1
dt(2.2)

=
dt

u2 + 1
× (u2 + 1)

1
2

√
2

t−
1
2 .(2.3)

Next, we have

A =

(
2

u2 + 1

)n
2 1

[2 (u2 + 1)]
1
2

∫ ∞

0

t
n+1
2

−1e−tdt

=
2

n
2

√
2 (u2 + 1)

n
2
+ 1

2

Γ

(
n + 1

2

)

,

which leads to

fX
Y
(u) =

1√
2π

1

2
n
2
−1Γ

(
n
2

) × 2
n
2

√
2 (u2 + 1)

n
2
+ 1

2

Γ

(
n + 1

2

)

=
Γ
(
n+1
2

)

√
πΓ
(
n
2

)
(
u2 + 1

)−n+1
2

Finally, by taking W =
√
nU =

√
nX/Y , the pdf of W is

f√
nX

Y

(u) =
Γ
(
n+1
2

)

√
nπΓ

(
n
2

)

(

1 +
u2

n

)(n+1)/2

.

Question (e). Using the right expressions for the Chi-square random
variable leads to
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fX
Y
(u) =

∫

fX (uv) fY (v) |v| dv

=

(
1
2

)n
2
(
1
2

)m
2

Γ
(
n
2

)
Γ
(
m
2

)

∫ ∞

0

(uv)
n
2
−1 e−

1
2
uvv

m
2
−1e−

1
2
vdv

=
u

n
2
−1

2
n+m

2 Γ
(
n
2

)
Γ
(
m
2

)

∫ ∞

0

v
n+m

2
−1e−

1
2
v(u+1)dv

=
u

n
2
−1

2
n+m

2 Γ
(
n
2

)
Γ
(
m
2

) ×
Γ
(
n+m
2

)

(u+ 1)
n+m

2

=
Γ
(
n+m
2

)

2
n+m

2 Γ
(
n
2

)
Γ
(
m
2

) × un
2
−1 × (u+ 1)−(

n+m
2 ) .

Now using the general rule faZ(t) = |a|−1fX(t/a) gives the pdf

fX(u) =
nn/2mm/2Γ((n+m)/2)

Γ(n/2)Γ(m/2)

un/2−1

(m+ nux)(n+m)/2
1(u≥0),

which is the pdf of a Fisher Fn,m random variable.



CHAPTER 4

An Introduction to Gauss Random Measures

This chapter focuses of Gaussian probability measures on R first
and next on Rd, d ≥ 2 exclusively. This is explained by the role of such
probability laws in the history of Probability Theory and its presence
in a great variety of sub-fields of Mathematics and in a considerable
number of Science domains. Knowing that law and its fundamental
properties is mandatory.

1. Gauss Probability Laws on R

(A) Standard Gauss Gauss Probability Law.

We already encounter the function

(1.1) f0,1(x) =
1√
2π

exp(−x2/2), x ∈ R.

and we proved that
∫

R
f0,1(x) dx = 1. We remark that f is locally

bounded and locally Riemann integrable (LLBRI). So, we may equiv-
alently consider the Riemann integral of f0,1 or its Lebesgue integral.
Without express notification, we will use Riemann integrals as long as
we stay in the case where these Riemann integrals are Lebesgue’s one.

Definition 7. A random variable X : (Ω,A,P) → R is said to
follow a standard normal or standard Gaussian probability law, or in
other words : X is a standard normal or standard Gaussian random
variable if and only if f0,1 is the pdf of X, that is the Radon-Nikodym
of PX with respect to the Lebesgue measure. Its strict support is the
whole real line R.

The historical derivation of such pdf in the earlier Wworks of de Moivre,
Laplace and Gauss (1732 - 1801) is stated in Loève (1997) and in Lo
(2017b) of this series.

133



134 4. AN INTRODUCTION TO GAUSS RANDOM MEASURES

The main properties of a standard normal random variable are the
following.

Theorem 9. If X is a standard normal random variable, then :

(1) E(X) = 0 and Var(X) = 1.

(2) X has finite moments of all orders and :

EX2k+1 = 0 and EX2k =
(2k)!

2kk!
, k ≥ 1,

and, in particular, its kurtosis parameter KX satisfies

KX =
E(X4)

E(X2)2
= 3.

(3) Its mgf is

ϕ(u) = exp(u2/2), u ∈ R

and its characteristic function is

Φ(u) = exp(−u2/2), u ∈ R.

(5) Its cdf

G(x) =
1√
2π

∫ x

−∞
exp(−u2/2) du, u ∈ R

admits the approximation, for x > 1,

C

{
1

x
− 1

x2

}

e−x2/2 ≤ 1−G(x) ≤ Ce−x2/2

x
,

where C = 1/
√
2π.

(6) The quantile function G−1(1− s) is expanded as s ↓ 0, according to

φ−1(1− s)

=

{

(2 log(1/s))1/2 − log 4π + log log(1/s)

2(2 log(1/s))1/2
+O((log log(1/s)2(log 1/s)−1/2))

}

.

and the derivative of G−1(1− s) is, as s ↓ 0,
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(

G−1(1− s)
)′

= (2 log(1/s))1/2 − log 4π + log log(1/s)

2(2 log(1/s))1/2

+O((log log(1/s)2(log 1/s)−1/2)).

(7) The following property holds. For each x ∈ R,

lim
n→+∞

G

(

(2 logn)1/2x+(2 logn)1/2− log 4π + log logn

2(2 logn)1/2

)n

= exp(−e−x).

For right now, we are only concerned with the three first Points. The
other points are related to the tail 1−G of a normal law. We will deal
with this in the monograph devoted to extreme value theory.

Proof of Theorem.

Points (1) and (2). Let k ≥ 0. By using Formula (ACIF) (See Section
5 in Chapter 2, page 67), we have

EX2k+1 =

∫

R

x2k+1f0,1(x) dλ(x).

The function |x|2k+1f0,1(x) is locally bounded and locally Riemann in-
tegrable. So, we may use the recommendations in Point (b) in Section
5 in Chapter 2 to get

∫

R

x2k+1f0,1(x) dλ(x) = lim
n→+∞

∫

[−n,n]

x2k+1f0,1(x) dx.

Now, Riemann integration techniques ensure that, for each n ≥ 1,
∫ n

−n
x2k+1f0,1(x) dx = 0 since the continuous function x2k+1f0,1(x) is

odd on the symmetrical interval [−n, n] with respect to zero. By
putting together all the previous facts, we have

EX2k+1 = 0.

For even order moments, we denote Ik = EX2k, k ≥ 0. We have I0 = 1.
For k ≥ 1, let us use Riemann integrals and integrations by parties.
We have
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Ik =
1√
2π

∫ +∞

−∞
x2k exp(−x2/2) dx =

1√
2π

∫ +∞

−∞
x2k−1

(

x exp(−x2/2)
)

dx

=
1√
2π

∫ +∞

−∞
x2k−1d

(

− exp(−x2/2)
)

=
1√
2π

[

− exp(−x2/2)
]+∞

−∞
+ (2k − 1)

1√
2π

∫ +∞

−∞
x2k−2 exp(−x2/2) dx

= (2k − 1)Ik−1.

We get by induction that

Ik = (2k−1)Ik−1 = (2k−1)(2k−3)Ik−3 = · · · = (2k−1)(2k−3)(2k−5) · · ·3I0.

Hence

Ik = (2k − 1)(2k − 3)(2k − 5) · · ·3.

By multiplying Ik by the even numbers (2k)(2k − 2) · · ·2 = 2kk! and
dividing it as well, we get the results.

(3) By still using Riemann integrals and using Formula (AC01) (See
page 68), we have for all u ∈ R

ϕ(u) = E(etX) =
1√
2π

∫ +∞

−∞
eux exp(−x2/2) dx

=
1√
2π

∫ +∞

−∞
exp

(
1

2

(

x2 − 2tu

))

dx

By using x2 − 2tu = (u− t)2 − u2, we get

ϕ(u) = exp(u2/2)

(∫ +∞

−∞
exp(−(x− u)2/2) dx

)

By using the change of variable y = u−1, we get that integral between
the parentheses is one, and the proof is finished. �

(B) Real Gauss Probability Laws.
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Now given a standard random variable Z, m a real number and σ > 0,
the random variable

X = σZ +m,

has the cdf, for x ∈ R,

FX(x) = P(σZ +m ≤ x) = P

(

Z ≤ x−m
σ

)

= FZ

(
x−m
σ

)

which, by differentiating the extreme members, leads to

fm,σ(x) =
dFX(x)

dx
=

1

σ

dFZ((x−m)/σ)

dx
,

for x ∈ R. Since the functions fm,σ and f0,1 are bounded and con-
tinuous, we may apply the recommendations of Point (b) [Section 5,
Chapter 2] to conclude that

fm,σ(x) =
1

σ
√
2π

exp

(

− (x−m)2

2

)

, x ∈ R. (RG)

is the absolute pdf of X . By using the properties of expectations and
variances and properties characteristic functions, we have :

EX = m and Var(X) = σ2,

ϕX(u) = exp(mu+ σ2u2/2), u ∈ R,

and

ΦX(u) = exp(imi− σ2u2/2), u ∈ R.

Before we conclude, we see that if σ = 0, X = m and its mgf is
exp(mu), which is of the form exp(mu + σ2u2/2) for σ = 0. We may
conclude as follows.

Definition - Proposition (DEF01).
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A real random variable is said to follow a Gaussian or normal prob-
ability law, denoted X ∼ N (m, σ2), if and only if its mgf is given
by

ϕX(u) = exp(mu+ σ2u2/2), u ∈ R, (RGM)

or, if and only of its, characteristic function given by

ΦX(u) = exp(imu − σ2u2/2), u ∈ R. (RGC)

If X is not degenerate, that is σ > 0, its absolutely continuous pdf is

fX =
1

σ
√
2π

exp

(

− (x−m)2

2

)

, x ∈ R. (RGD)

Its first parameters are

m = EX and σ2 = EX2.

♦.

(D) Some immediate properties.

(D1) Finite linear combination of independent real Gaussian
randoms.

Any linear combination of a finite number d ≥ 2 of independent ran-
dom variables X1, · · · , Xd with coefficient δ1, · · · , δd follows a normal
law. Precisely, if the Xi’s are independent and Xi ∼ N (mi, σ

2
i ),

1 ≤ i ≤ d, if we denote mt = (m1, ..., md), δ
t = (δ1, · · · , δd) and

Σ = diag(σ1, · · · , σd), we have

∑

1≤j≤d

δjXj ∼ N (mtδ, δtΣδ).

To see this, put

Y =
∑

1≤j≤d

δjXj

By the factorization property formula, we have for any u ∈ Rd,
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ΦY (u) = E exp

(
∑

1≤j≤d

uδjXj

)

= E exp

(
∏

1≤j≤d

uδjXj

)

=
∏

1≤j≤d

E exp(uδjXj)

=
∏

1≤j≤d

exp(imjδju− δ2jσ2
ju

2/2)

= exp

(

i〈m, δ〉u−
(

δtΣδ

)
u2

2

)

.

From there, we may conclude that Y follows a real random vector with
the given parameters.

(D2) Towards Gaussian Random Vectors.

Let us remain in the frame of the previous point (D1). Let X be the
vector defined by X t = (X1, · · · , Xd) with independent real Gaussian
Random variables with the given parameters. We have for any u ∈ Rd

with ut = (u1, ..., ud),

ΦX(u) = E exp i〈u, Z〉

= E exp

(
∑

1≤j≤d

ujXj

)

=
∏

1≤j≤d

E exp(uujXj)

=
∏

1≤j≤d

exp(imjuj − σ2
ju

2/2)

= exp

(

imtu− utΣu

2

)

.

By also using the same techniques for the mgf, we get that for any
u ∈ Rd with ut = (u1, ..., ud),

ϕX(u) = exp

(

〈m, u〉+ utΣu

2

)

.
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A random vector X whose components are independent and satisfy
Xi ∼ N (mj, σ

2
j ), 1 ≤ j ≤ d has the mgf

ϕX(u) = exp

(

〈m, u〉+ utΣu

2

)

. (RV 01)

for any for any u ∈ Rd, wheremt = (m1, ..., md) and Σ = diag(σ1, · · · , σd).
Besides, we have

EX = m and Var(X) = Σ.

This offers us a good transition to the introduction of Gaussian random
vectors.

2. Gauss Probability Law on Rd, Random Vectors

(A) Introduction and immediate properties.

In general, the study of random vectors relies so much on quadratic
forms and orthogonal matrices topic. We advice the reader to read at
least the definitions, theorems and propositions on the aforementioned
topic in Section 2 in the Appendix Chapter 10. Each time a property
on orthogonal matrices is quoted, it is supposed to be found in the
appendix in the aforementioned section.

The above formula (RV01) gave us a lead to the notion of Gaussian
random vectors. we have :

Definition 8. A random variable X : (Ω,A,P) → Rd, d ≥ 1,
is said to follow a d-multivariate Gaussian probability law, or in other
words : X is a d-Gaussian random vector if and only its mgf is defined
by

ϕX(u) = exp

(

〈m, u〉+ utΣu

2

)

, u ∈ R2, (RV 02)

where m is a d-vectors or real numbers and Σ is a symmetrical and
semi-positive d-matrix or real numbers, and we write X ∼ Nd(m,Σ).

By comparing with Formula (RV01), we immediately have :



2. GAUSS PROBABILITY LAW ON R
d, RANDOM VECTORS 141

Proposition 8. A random vectors with real-valued independent
Gaussian components is a Gaussian vector.

We also have the following properties.

Proposition 9. X admits the mgf in Formula (REV02), then we
have

E(X) = m and Var(X) = Σ.

Proof. We are going to construct a random vector Y which has the
mgf

exp

(

〈m, u〉+ utΣu

2

)

, u ∈ Rd. (RV 03)

and next use the characterization of the probability law by the mgf.
Since Σ is symmetrical and semi-positive, we may find an orthogonal
d-matrix T such that

TΣT t = diag(δ1, · · · , δd),

where δ1, · · · , δd are non-negative real numbers. By the Kolmogorov
Theorem as applied in Point (c5) in Section 5.2 in Chapter 2, we
may find a probability space (Ω,A,P) holding a d-random vector Z
whose components are centered independent real-valued Gaussian ran-
dom vectors with respective variances δj , 1 ≤ j ≤ d. Its follows
that Z is Gaussian and hence, by Formula (REV01), we have for
D = diag(δ1, · · · , δd), for u ∈ Rd,

ϕZ(u) = exp

(
utDu

2

)

.

Now let us set Y = m+ T tZ. We have

ϕY (u) = E exp

(

(m+ T tZ)tu

)

= exp(mtu)E exp

(

Zt(Tu)

)

= exp(mtu)E exp

(

〈Z, Tu〉
)

= exp(〈m, u〉) exp
(
utT tDTu

2

)
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But, by the properties of orthogonal matrices, we have TΣT t = D,
which implies that TΣT tDT = Σ. Thus we have

ϕY (u) = exp

(

〈m, u〉+ utΣu

2

)

, u ∈ Rd.

This a direct proof, based on the Kolmogorov construction, that the
function in Formula (REV03) is characteristic. An other method would
rely on the Bochner Theorem we do not mention here. At the end, we
have that Y ∼ Nd(m,Σ). By using the properties and expectation
vectors and variance-covariance properties seen in Chapter 2, we have

EY = E(m+ T tZ) = E(m) + T tE(Z) = m

and, since the constant vector m is independent from T tZ,

Var(Y ) = Var(m+ TZ) = Var(TZ) = T tDT = Σ.

We conclude as follows : for any random variable characterized by its
mdf given in Formula (REV02), its expectation vector and its variance-
covariance matrix are given as above. �

Important Remark. In the notation X ∼ Nd(m,Σ), m and Σ are
the respective expectation vector and the variance-covariance matrix
of X .

Let us now study other important properties of Gaussian vectors.

(B) - Linear transforms of Gaussian Vectors.

Proposition 10. The following assertions hold.

(a) Any finite-dimension linear transform of a Gaussian random vector
is a Gaussian random vector.

(b) Any linear combination of the components of a Gaussian random
vector is a real Gaussian random variable.

(c) If a random vector X : (Ω,A,P)→ Rd, d ≥ 1, follows a Nd(m,Σ)
probability law and if A is a (k × d)-matrix and B a k-vector, k ≥ 1,
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then AX +B follows a Nk(Am+B,AΣAt) probability law.

Proof. It is enough to prove Point (c). Suppose that the assumption
of that point hold. Thus Y = AX is k-random vector. By Point (a) of
Theorem 5 in Section 6 in Chapter 2, we have

ΦAX+B(v) = exp(Btv)ΦX(A
tv)

and combining this with Formula (RV02) gives, for any v ∈ Rk,

ϕAX+B(v) = exp(Btv)ΦX(A
tv)

= exp(Btv) exp

(

mt(Atv) +
vtAΣAtv

2

)

= exp

(

(B + Am)tv +
(Atv)tAΣ(Atv)

2

)

= exp

(

〈B + Am, v〉+ vt (AΣA) v)

2

)

. �.

This proves (c) which is a more precise form of (a). Point (c) is only
an application of Point (c) to a (d× 1)-matrix A.

Point (c) provides a new definition of Gaussian vectors given we al-
ready have the definition of a real-valued Gaussian random
variable. We have :

Definition - Proposition.

(a) (DEF01) Any d-random vector, d ≥ 2, is Gaussian if an only if any
linear combination of its components is a real-valued Gaussian random
variable.

(b) (DEF02) Given we already have the definition of a real-valued
Gaussian random variable, a d-random vector, d ≥ 2, is Gaussian if
any linear combination of its components is a real-valued Gaussian
random variable. ♦

Proof of Point (a). Let X : (Ω,A,P)→ Rd, d ≥ 2, be a random vec-
tor such that any linear combination of its components is a real-valued
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Gaussian random variable.

First, each component is Gaussian and hence is square integrable and
next, by Cauchy-Schwartz inequality, any product of two components is
integrable. Hence the expectation vectorm and the variance-covariance
matrix Σ of X have finite elements. Next, the characteristic function
of X is satisfies, for any u ∈ Rd.

ΦX(u) = E exp

(

iutX

)

= ΦutX(1), (RV 04)

where ΦutX is the characteristic of utX = u1X1 + · · ·+ udXd which is
supposed to be a real-valued normal random variable with parameters

E(utX) =
∑

1≤j≤d

ujXj = 〈u,m〉

and

Var(utX) = Var(
∑

1≤j≤d

ujXj)

=
∑

1≤j≤d

∑

1≤j≤d

Cov(Xi, Xj)uiuj

= utΣu.

Now using the characteristic function of a N (〈u,m〉, utΣu) allows to
conclude. �.

Some consequences.

(a) A sub-vector of a Gaussian Vector is a Gaussian vector since it is
a projection, then a finite-dimensional linear transform, of the vector.

(b) As particular cases of Point (a), components of a Gaussian vector
are Gaussian.

(c) A vector whose components are independent and Gaussian is
Gaussian.
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(c) But, in general, a vector whose components are Gaussian is not
necessarily Gaussian. Here is a general, using Sklar (1959)’s Theorem,
to construct counter-examples. As stated in Section 8 of Chapter 2,
for any random vector X of dimension d ≥ 1, the cdf FX of X satisfies

∀x ∈ Rd, FX(x) = C(FX,1(x), ..., FX,d(x)),

where C is a copula and FX,j stand for the individual marginal cdf ’s
and the copula is unique if the marginal cdf ’s are continuous. By
choosing the FX,j as cdf ’s of Gaussian random variables Xj , the vector
X = (X1, ..., Xd)

t has Gaussian components. But not any copula C
makes FX a cdf of Gaussian vector.

For example, for d = 2, by taking the least copula C(u, v) = max(u +
v − 1, 0), (u, v) ∈ [0, 1]2, Φ the cdf of a N (0, 1) random variable, a
random vector (X, Y )t associated with the cfd

∀x = (x, y)t ∈ R2, F (x) = max(Φ(x) + Φ(y)− 1, 0),

is not Gaussian but has Gaussian components.

(C) - Uncorrelated and Gaussian Component.

Let us begin to resume the result of this part by saying this : For a
Gaussian vector, uncorrelation and independence of its sub-vectors are
the same. Precisely we have :

Proposition 11. Let Y : (Ω,A,P) → Rr and Z : (Ω,A,P) →
Rs, r ≥ 1, s ≥ b, be a two random vectors such that X t = (Y t, Zt) is a
d-Gaussian vector, d = r + s. Suppose that Y and Z are uncorrelated,
that is, their covariance matrices are null matrices

Cov(Y, Z)Cov(Z, Y )t =

(

Cov(Yi, Zj

)

1≤i≤r, 1≤j≤s

= 0,

that is also

∀(u, j) ∈ {1, ..., r} × {1, ..., s}, Cov(Yi, Zj) = 0.

Then Z and Y and independent.



146 4. AN INTRODUCTION TO GAUSS RANDOM MEASURES

Proof.

Since X is Gaussian, its sub-vectors Z and Z are Gaussian and have
mgf functions

Rr ∋ v 7→ ϕY (v) = exp
(
mt

Y v + vtΣY v
)

(RV 05a)

and

Rs ∋ w 7→ ϕZ(w) = exp
(
mt

Zw + wtΣYw
)
, (RV 05b)

where mY and ΣY (resp. mZ and ΣZ) are the expectation vector and
the variance-covariance matrix of Y (resp. Z). The components of X
are Xi = Yi for 1 ≤ i ≤ r and Xi = Zi for r+ 1 ≤ i d. Suppose that Y
and X are uncorrelated. Denote also by mX and ΣX the expectation
vector and the variance-covariance matrix of X .

Thus for any v ∈ Rr, w ∈ Rr, we have by denoting ut = (vt, wt),
u ∈ Rd,

utΣXu =
∑

1≤i≤d, 1≤j≤d

Cov(Xi, Xj)

=
∑

1≤i≤r, 1≤j≤r

Cov(Xi, Xj) +
∑

r+1≤i≤r, r+1≤j≤d

(L2)

+
∑

1≤i≤r, r+1≤j≤d

Cov(Xi, Xj) +
∑

r+1≤i≤d, 1≤j≤s

(L3)

The covariances of Line (L3) are covariance between a component of
Y and another of Z and by hypothesis, the summation in that line is
zero. In the first term of Line (L2), the covariances are those between
components of Y and the second term contains those of components of
Z. We get

utΣXu = vtΣY v + wtΣYw

with the same notation, we have utmX = vtmY + vtmZ and, by taking
Formula (RV05) into account, we arrive at
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ϕX(u) = ϕ(Y,Z)(u, w) = exp

(

utmX +
utΣXu

2

)

= exp

(

vtmY + vtmZ +
vtΣY v + wtΣYw

2

)

= ϕY (v)ϕZ(w).

We finally have for any v ∈ Rr, w ∈ Rr,

ϕ(Y,Z)(u, w) = ϕY (v)ϕZ(w).

By Theorem 7 in Section 6 in Chapter 2, we conclude that Y and Z
are independent.

WARNING Gaussian Random vectors do not have the exclusivity of
such a property. To make it simple, this property holds for a random
ordered pair (X, Y ) if for example, for any (u, v) ∈ R2,

∣
∣
∣
∣
Φ(X,Y )(u, v)− ΦX(u)ΦY (v)

∣
∣
∣
∣
≤ hX,Y (n, u),

where hX,Y is a function satisfying hX,Y (0, 0) = 0.

Example : Associated random variables. A finite family of d
real random variables Xj : (Ω,A,P) → R, 1 ≤ j ≤ d is said to be
associated if and only for any pair(f, g) of bounded real-valued and
measurable functions functions defined on Rd both coordinate-wisely
non-decreasing, we have

Cov

(

f(X1, ..., Xd)g(X1, ..., Xd)

)

≥ 0.

Let us denote X t = (X1, ..., Xd) and let ΣX be the variance-covariance
matrix of X . If that sequence is associated, Newman and Wright
(1981) Theorem states that for any u ∈ Rd,

∣
∣
∣
∣
Φ(X1,...,Xd)(u)−

∏

1≤j≤d

ΦXj
(uj)

∣
∣
∣
∣
≤ 1

2

∑

1≤i≤d, 1≤j≤d

|uiuj|Cov(Xi, Xj).
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It is useful to know that the covariances Cov(Xi, Xj) are non-negative
for associated variables. Thus, associated and uncorrelated variables
are independent.

(D) - Density probability function of Gaussian Vectors with a
positive variance-covariance matrix.

Probability laws of Gaussian vectors with non-singular variance-covariance
matrix may be characterized by their absolute pdf. We have the fol-
lowing :

Proposition - Definition (DEF03).

(a) Let X : (Ω,A,P) → Rd, d ≥ 1, be Gaussian random vector
of expectation vector m and variance-covariance matrix Σ. If Σ is
invertible, then X has the pdf

det(Σ)−1/2

(2π)d/2
exp

(

− (x−m)tΣ−1(x−m)

2

)

, x ∈ Rd. x ∈ Rd. (RV D)

(b) (DEF03) A random vector X : (Ω,A,P) → Rd, d ≥ 1, whose
variance-covariance is invertible is a Gaussian vector if and only if it
admits the absolute density probability pdf (RVD) above.

Proof. We use the same techniques as in the proof of Proposition
9 and based on the Kolmogorov construction of a probability space
(Ω,A,P) holding a d-random vector Z whose components are centered
independent real-valued Gaussian random vectors having as variances
the eigen-values δj, 1 ≤ j ≤ d of Σ. Set D = diag(δ1, ..., δd). All those
eigen-value δj , 1 ≤ j ≤ d, are positive and

det(Σ) =
∏

1≤j≤d

δj .

We may use the pdf ’s of each Zj and make profit of their independence
to get the pdf of Z, which is for any x ∈ Rd,

fZ(z) =
∏

1≤j≤d

fZi
(zi) =

∏

1≤j≤d

1

(2πδj)
exp

(

−
∑

1≤j≤d

z2i
2δj

)

,
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which yields

fZ(z) =
det(Σ)−1/2

(2π)d/2
exp

(

− ztD−1z

2

)

, z ∈ Rd.

Now, let T be an orthogonal matrix such that TΣT t = D. Set Y =
T (Z+m), that is : Z = T tY −m, is a diffeomorphism which preserves
the whole domain Rd of Z and the Jacobian coefficient J(y) is the
determinant of T t which is ±1. The change of variable formula (CVF)
in Section 7 in Chapter 2 leads to

fY (y) = fY (T (z−m) =
det(Σ)−1/2

(2π)d/2
exp

(

− (y −m)T tD−1T (y −m)

2

)

,

where y ∈ Rd. Since T tD−1T = Σ−1, we conclude that

fY (y) =
det(Σ)−1/2

(2π)d/2
exp

(

− (y −m)Σ−1(y −m)

2

)

, y ∈ Rd.

By combining this with Proposition 9, we conclude that the non-
negative function given in formula (RVD) is an absolute pdf and is
the pdf of any random vector with the mgf given in Formula (RV02)
for a non-singular matrix Σ. �

Different definitions. We provided three definitions (DEF01), (DEF02)
and (DEF03) for Gaussian vectors. The first which is based of the char-
acteristic function or the mgf is the most general. The second suppose
we already have the definition a real Gaussian random variable. The
last assumes that the variance-covariance is invertible.

Remark. Another way to proceed for the last proof is to directly show
that the function given Formula (RVD) is a pdf and to compute its mgf

by using the orthogonal transform of Σ. By trying to do so, Formula
(UID) in Section 2 in Chapter 2 may be useful.

(E) Quadratic forms of Gaussian Vectors.

Let X ∼ Nd(m,Σ), d ≥ 1, be a d-dimensional Random Vector. We
have the following sample result.
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Proposition 12. If Σ is invertible, then the quadratic form (X −
m)tΣ−1(X − m) follows a Chi-square probability law of d degrees of
freedom, that is

(X −m)tΣ−1(X −m) ∼ χ2
d.

Proof. Suppose that X ∼ Nd(m,Σ) and Σ is invertible. Let T be an
orthogonal matrix such that

TΣT t = D = diag(δ1, ..., δd)

which entails

Σ−1 = T tD−1T.

Set Y = T (X − m). Thus Y is a Gaussian vector. Its variance-
covariance matrix is ΣY = TΣT t = D. Hence the components Y1, ...,
Yd are Gaussian and not correlated. Hence they are independent. By
Fact 2 in Point (11) on the Chi-square probability law in Section 2 in
Chapter 2, we have

Q =
∑

1≤j≤d

Y 2
j

δj
∼ χ2

d.

Since D−1 = diag(1/δ1, ..., 1/δd), we have

Q = Y tD1−Y = (X−m)tT tD1−T (X−m) = (X−m)tΣ−1(X−m) ∼ χ2
d.�



CHAPTER 5

Introduction to Convergences of Random

Variables

1. Introduction

The convergence of random variables, extended by the convergence of
their probability laws, is a wide field with quite a few number of sub-
fields. In Statistical terms, any kind of convergence theory of sequences
of random variables is classified in the asymptotic methods area.

We are going to introduce some specific types of convergence.

Let (Xn)n≥0 be a sequence of random elements with values in a Borel
space (E,B), where B is the σ-algebra generated by the class of open
set O, such that each Xn, n ≥ 0, is defined on some probability space
(Ωn,An,P

(n)).

Let also X∞ : (Ω∞,A∞,P(∞))→ (E,O) be some random element.

Notation. We will simply write X = X∞ if no confusion is possible.

Regularity Condition. At least we suppose that the topological
space (E,O) is separated ensuring that limits are unique and for se-
quences of any random elements X,Xn : (Ω,A,P) → (E,O), n ≥ 0,
we have

(Xn → X) ∈ A.
Now let us present some the following definitions for convergence of
random variables after the

Warning : In this textbook, only the convergences (A), (B) ,
(F) and (G) will be addressed, and they will studied on E = Rd.

(A) Almost-sure Convergence. Suppose that X∞ and all the ele-
ments of the sequence (Xn)n≥0 are defined on the same probability space

151
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(Ω,A,P).

The sequence (Xn)n≥0 converges almost-surely to X∞ and we denote

Xn → X∞, a.s. as n→ +∞,

if and only

P(Xn 9 X∞) = 0. (ASC)

(B) Convergence in Probability. Suppose that X∞ and all the ele-
ments of the sequence (Xn)n≥0 are defined on the same probability space
(Ω,A,P) and E is a normed real linear space and its norm is denoted
by ‖.‖.

The sequence (Xn)n≥0 converges in probability to X∞ and we denote

Xn
P−→ X∞, as n→ +∞,

if and only for any ε > 0

lim
n→+∞

P(‖Xn −X∞‖ > ε) = 0. (CP )

(C) General Convergence in Probability. Suppose that X∞ and
all the elements of the sequence (Xn)n≥0 are defined on the same prob-
ability space (Ω,A,P).

The sequence (Xn)n≥0 generally converges in probability to X∞ and
we denote

Xn
P(g)

−→ X∞, as n→ +∞,

if and only for any open set G ∈ E,

lim
n→+∞

P(X ∈ G, Xn /∈ G) = 0. (GCP )

(D) Complete Convergence. Suppose that X∞ and all the ele-
ments of the sequence (Xn)n≥0 are defined on the same probability space
(Ω,A,P) and E is a normed real linear space and its norm is denoted
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by ‖.‖.

The sequence (Xn)n≥0 completely converges to X∞ and we denote

Xn
c.c−→ X∞, as n→ +∞,

if and only for any ε > 0,

+∞∑

n

P(‖Xn −X∞‖ > ε) < +∞. (CC)

(E) Convergence in p-th moment, p > 0. Suppose that X∞ and all
the elements of the sequence (Xn)n≥0 are defined on the same probabil-
ity space (Ω,A,P) and E is a normed real linear space and its norm is
denoted by ‖.‖. Let r > 0.

The sequence (Xn)n≥0 converges to X∞ in the r-th moment and we
denote

X∞
mr

−→ X∞, as n→ +∞,

if and only for

lim
n→+∞

E‖Xn −X∞‖r = 0. (MR)

(F) Convergence in moment Lp, p ≥ 1. Suppose that X∞ and all
the elements of the sequence (Xn)n≥0 are real-valued mappings defined
on the same probability space (Ω,A,P) and belong all to Lp(Ω,A,P).

The sequence (Xn)n≥0 convergences to X∞ in Lp and we denote

X∞
Lp

−→ X∞, as n→ +∞,

if and only if

lim
n→+∞

E‖Xn −X∞‖p = 0. (CLP )

Important Remark. It is of the greatest importance to notice that
all the previous limits, the random variables X∞ and Xn, n ≥ 0, are
defined on the same probability space. This will not be the case in
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the next definition. Each random element may be defined on its own
probability space. We will come back to this remark after the definition.

(G) Weak Convergence in a metric space. Suppose E is a metric
space (E, d) endowed with the metric Borel σ-algebra. Denote by Cb(E)
the class of all real-valued, bounded and continuous functions defined
on E. Define the probability laws :

P∞ = P(∞)X−1
∞ , Pn = P(n)X−1

n , n ≥ 0.

The sequence (Xn)n≥0 weakly convergences to X∞ and we denote

X∞  X∞, as n→ +∞,

if and only for f ∈ Cb(E)

lim
n→+∞

∫

E

f dPn =

∫

E

f dP∞. (WC)

Remark. We effectively see that only the probability laws ofXn, n ≥ 0
and X∞ are concerned in Formula (WC), at the exclusion of the paths
{X∞(ω), ω ∈ Ω∞} and {Xn(ω), ω ∈ Ωn}, n ≥ 0. In general, a type
of convergence which ignores the domain of elements of the sequence
whose limit is considered, is called weak or vague.

As announced earlier, we are going to study convergences type (A),
(B) , (F) and (G) for sequences of random vectors in Rd, d ≥ 1. At
this step, the three remarks are should be made.

(a) Convergence (A) and (B) are already treated in the Mea-
sure Theory and Integration book. We will give easy extensions
only.

(b) Convergence (G) is treated in a separate monograph. At
this step of this course of probability theory, the weak convergence the-
ory for random vectors may be entirely treated. This is what we did
in Lo et al. (2016), as an element of the current series. The reason we
expose that theory in an independent textbook us that we want it to
be a first part of the exposition of Weak convergence embracing the
most general spaces, including, stochastic processes.
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The reader is free to read it as soon as he has completed the chapters 1
to 4 of this textbook. But, for coherence’s sake, we will give the needed
reminders to have a comprehensive comparison between the different
kinds of convergence.

(c) Space Lp. Convergence in Lp is simply a convergence in a normed
space Lp. We already know for the Measure Theory and Integration
book that this space is a Banach one.

(d) Convergences of real sequences. When dealing with random
vectors, a minimum prerequisite is to master the convergence theory
for non-random sequences of real number. This is why we always in-
clude a related appendix in our monographs dealing with it. In this
book, the reminder is exposed in Section 3 in the Appendix chapter 10.

After the previous remarks, we see that this chapter is rather a review
one with some additional points. In particular, the equi-continuity no-
tion will be introduced for the comparison between the convergence in
measure and the Lp-convergence.
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Part A : Convergences of real-valued random variables. .

2. Almost-sure Convergence, Convergence in probability

As recalled previously, such convergences have been studied in proba-
bility and Integration [Chapter 7 in Lo (2017b)]. We are just going to
report the results.

(a) Almost-everywhere convergence.

A sequence of random variables Xn)n≥1 defined from (Ω,A,P) to R

converges almost-surely to a random variable X : (Ω,A, m) 7−→ R and
we denote

Xn −→ f, a.s.,

if and only if
P(Xn 9 X) = 0.

If the elements of the sequences Xn are finie a.s., we have :

Characterization. A sequence of a.s. finite random variables (Xn)n≥1

defined from (Ω,A,P) to R converges almost-surely to a random vari-
ables X : (Ω,A, m) 7−→ R if and only if

P

(
⋂

k≥1

⋂

N≥1

⋃

n≥N

(|Xn − f | < 1/k)

)

= 0,

if and only if, for any k ≥ 1

P

(
⋃

N≥1

⋂

n≥N

(|Xn − f | < 1/k)

)

= 0

if and only if, for any ε > 0

P

(
⋃

N≥1

⋂

n≥N

(|Xn − f | ≥ ε)

)

= 0.

(b) Convergence in Probability.
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A sequence of a.s. finite random variables (Xn)n≥1 defined from
(Ω,A,P) to R converges in Probability with respect to the probabil-
ity measure P to an a.s finite random variable X : (Ω,A, m) 7−→ R,
denoted

Xn →P X

if and only for any ε > 0,

P(|Xn −X| > ε) −→ 0 as n −→ +∞.

Remark. The convergence in probability is only possible if the limit
f and the Xn’s are a.s. since we need to get the differences Xn − X .
The a.s. finiteness justifies this.

NB. It is important to notice that the inequality in (|Xn − X| > ε)
may be strict or not.

(c) - Properties of the a.s. convergence.

(c1) The a.s. limit is a.s. unique.

(c2) We have the following operations on a.s limits :

Let (Xn)n≥1 and (Yn)n≥1 be sequences of a.s. finite functions. Let a
and b be finite real numbers. Suppose that Xn → X a.s. and Yn → Y
a.s.. Let H(x, y) a continuous function of (x, y) ∈ D, where D is an
open set of R2. We have :

(1) aXn + bYn → aX + Y g a.s.

(2) XnYn → XY a.s

(3) If P(Y = 0) = 0 (that is Y is a.s nonzero), then

Xn/Yn → X/Y, a.s.

(4) If (Xn, Yn)n≥1 ⊂ D a.s. and (X, Y ) ∈ D a.s., then

H(Xn, Yn)→ H(X, Y ), a.s.

(d)- a.s. Cauchy sequences. If we deal with a.s. finite functions, it
is possible to consider Cauchy Theory on sequences of them. And we
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have the following definition and characterizations.

Definition. A sequence (Xn)n≥1 of a.s. finite functions is an P-a.s.
Cauchy sequence if and only if

P

(

Xp − Yq 9 0, as (p, q)→ (+∞,+∞)

)

= 0,

that is, the ω for which the real sequence (Xn(ω))n≥0 is a Cauchy se-
quence on R form an a.s. event.

Other expressions. A sequence (Xn)n≥1 of a.s. finite functions is an
P-a.s. Cauchy sequence :

if and only if for any k ≥ 1,

P

(
⋂

n≥1

⋃

p≥n

⋃

q≥n

(|fp − fq| > 1/k)

)

= 0

if and only if for any k ≥ 1,

P

(
⋂

n≥1

⋃

p≥0

(|fp+n −Xn| > 1/k)

)

= 0

if and only if for any ε > 0,

P

(
⋂

n≥1

⋃

p≥n

⋃

q≥n

(|fp − fq| > ε)

)

= 0

if and only if for any ε > 0,

P

(
⋂

n≥1

⋃

p≥0

(|Xp+n −Xn| > ε)

)

= 0

Property. Let (Xn)n≥1 be a sequence of a.s. finite functions.

(Xn)n≥1 is an P-a.s. Cauchy sequence if and only if (Xn)n≥1 converges
a.s. to an a.s. finite function.
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(e) - Properties of the convergence in probability.

(e1) The limit in probability is a.s. unique.

(e2) Operation on limits in Probability.

The operations of limits in probability are not simple as those for a.s.
limits. The secret is that such operations are related to weak conver-
gence. The concepts of tightness or boundedness are needed to handle
this. But we still have some general laws and complete results on op-
erations on constant and non-random limits.

Let Xn →P X and Yn → Y , a ∈ R. We have :

(1) In the general case where X and Y are random and a.s. finite, we
have :

(1a) Xn + Yn →P X + Y .

(2b) aXn →P aX

(2) - Finite and constant limits in probability.

Let X = A and Y = B be constant and non-random. we have

(2a) aXn + bYn →P aA+ bB.

(2b) XnYn →P AB.

(3c) If B 6= 0, then

Xn/Yn →P A/B.

(3d) If (Xn, Yn)n≥1 ⊂ D a.s. and (A,B) ∈ D, then

H(Xn, Yn)→P H(A,B).

(f) - Cauchy sequence in probability or mutually convergence
in probability.
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Here again, we deal with a.s. finite random variables and consider a
Cauchy Theory on sequences of them. And we have the following def-
inition and characterizations.

Definition. A sequence (Xn)n≥1 of a.s. random variables is a Cauchy
sequence in probability if and only if, for any ε,

P(|Xp −Xq| > ε)→ 0 as (p, q)→ (+∞,+∞).

Properties. Let (Xn)n≥1 be a sequence of a.s. random variables. We
have :

P1 (Xn)n≥1 is a Cauchy sequence in probability if and only if (Xn)n≥1

converges in probability to an a.s. random variable.

P2 If (Xn)n≥1 is a Cauchy sequence in probability, then (Xn)n≥1 pos-
sesses a subsequence (Xnk

)k≥1 and an a.s. random variable such that
f such that

Xnk
→ X a.s. as k → +∞,

and

Xn →P X as n→ +∞.

(g) - Comparison between a.e. convergence and convergence
in probability.

(1). If Xn → X a.s., then Xn →P f .

The reverse implication is not true. It is only true for a sub-sequence
as follows.

(2). Let Xn →P X . Then, there exists a sub-sequence (Xnk
)k≥1 of

(Xn)n≥1 converging a.s to X .

Terminology. Probability Theory results concerning a a.s. limit is
qualified as strong. Since such results imply versions with limits in
probability which are called weak.
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3. Convergence in Lp

We already know that Lp(Ω,A,P) is a Banach space, with for X ∈ Lp,

‖X‖p = (E(|X|p)1/p , p ∈ [1,∞[

and

‖X‖∞ = inf{M > 0, |X| ≤M, a.s.}, p = +∞.

In this section, we are going to compare Lp convergence and the a.s.

convergence or the convergence in probability.

We restrict ourselves to the case where p is finite.

(a) Immediate implications.

We have the following facts.

Proposition 13. (Xn)n ⊂ Lp and X ∈ Lp and let Xn
Lp

−→ X.
Then :

(i) Xn −→P X

and

(ii) ‖Xn‖p → ‖X‖p,

meaning that : the convergence in Lp implies the convergence in prob-
ability and the convergence of p-th absolute moments.

Proof. (Xn)n ⊂ Lp and X ∈ Lp and let Xn
Lp

−→ X .

Proof of Point (i). For any ε > 0 and by the Markov inequality, we
have

P(|Xn −X| > ε) = P(|Xn −X|p > εp) ≤ ‖Xn −X‖pp
ε

→ 0.

Thus the convergence in Lp implies the convergence in probability.
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Proof of Point (ii). This is immediate from the second triangle inequal-
ity

∣
∣
∣
∣
‖Xn‖p − ‖X‖p

∣
∣
∣
∣
≤ ‖Xn −X‖p → 0. �

On can the question : does one of Points (i) and (ii) implies the con-
vergence in Lp? We need the concepts of continuity of a sequence of
real random variables. Most of the materials used below comes from
Loève (1997).

(b) Continuity of a sequence of random variables.

We have already seen the notion of continuity for a real-valued σ-
additive application defined on the σ-algebra A with respect to the
probability measure P pertaining to the probability space (Ω,A,P),
which holds whenever as follows :

∀A ∈ A, P(A) = 0⇒ φ(A).

Such a definition may be extended to the situation where we replace
P(A) = 0 by a limit of the form :

φ(A)→ 0 as P(A)→ 0, (AC01)

which may be discretized in the form :

(

(Ap)p≥0 ⊂ A and P(Ap)→ 0

)

⇒
(

φ(Ap)→ 0

)

, (AC02)

where the limits are meant as p→ +∞.

Let φ = i = φX be an indefinite integral associated to the absolute
value of random variable X , that is

φX(A) =

∫

A

|X| dP, A ∈ B(R).

We denote B(X, c) = (|X| > c) for any c > 0 and introduce the
condition
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lim
c↑+∞

φX(B(X, c)) = 0,

that is

lim
c↑+∞

∫

(|X|>c)

|X| dP = 0. (CI)

Let us introduce the following :

Definitions.

(a) A random variable X ∈ R is P-absolutely continuous if and only if
Formula (AC01) holds.

(b) A random variable X ∈ R is P-continuously integrable if and only
if Formula (CI01) holds. ♦

We have the following first result.

Proposition 14. If X is integrable, then it is P-absolutely contin-
uous and P-continuously integrable.

Proof. Let X be integrable. Now, since (|X| > c) ↓ (|X| = +∞) as
c ↑ +∞, we get by the monotone convergence theorem (Do not forget
that any limit is achieved through a discretized form)

lim
c↑+∞

∫

(|X|>c)

X dP =

∫

(|X|=+∞)

X dP.

Since X in integrable, it is a.s. finite, that is P(|X| = +∞) = 0, which
leads to

∫

(|X|=+∞)
X dP since the indefinite integral of the integrable

random variable X is continuous with respect to P. Hence X is P-
continuous integrable.

Now, suppose that (Ap)p≥0 ⊂ A and P(Ap)→ 0 as p→ +∞. We have
for any c > 0, p ≥ 0,
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∫

Ap

|X| dP =

∫

Ap∩B(X,c)

|X| dP+

∫

Ap∩B(X,c)c
|X| dP

≤
∫

B(X,c)

|X| dP+ cP(Ap).

By letting p → +∞ first and next c ↑ +∞, we get Formula (AC02).
Hence X is P-absolutely continuous. �

Now we may extend the definitions above to a sequence of integrable
random variables by requiring that Formulas (AC02), page ?? or (CI01),
page ??, to hold uniformly. This gives :

Definitions.

(a) A sequence of integrable random variables (Xn)n≥0 ⊂ L1, is P-
uniformly and absolutely continuous (uac) if and only if

lim
P(A)→0

sup
n≥0

∫

A

|Xn| P = 0, (UAC1)

which is equivalent to

∀ε > 0, ∃η > 0, ∀A ∈ A,P(A) < η ⇒ ∀n ≥ 0,

∫

A

|Xn| dP < ε. (UAC2)

(b) A sequence of integrable random variables (Xn)n≥0 ⊂ L1, is P-
uniformly continuously integrable (uci) if and only if

lim
c↑+∞

sup
n≥0

,

∫

(|Xn|>c)

|Xn| P. (UCI)

. ♦

Example. As in Billinsgley (1968), let us consider a sequence of
random variables (Xn)n≥0 ⊂ L1+r, r > 0 such that

sup
n≥0

E|Xn|1+r = C < +∞.

Such a sequence is P-uci since for all c > 0,
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∫

(|Xn|>c)

|Xn| P =

∫

(|Xn|>c)

|Xn|1+r

|Xn|r
P ≤ c−rC,

and next

sup
n≥0

∫

(|Xn|>c)

|Xn| P ≤ c−rC → 0 as c ↑ +∞.

Unlike the situation where we had only one integrable random variable,
the two notions of P-uac and P-uci do not coincide for sequences. We
have :

Proposition 15. A sequence of integrable random variables (Xn)n≥0 ⊂
L1

(i) is P-uci

if and only if

(ii) it is P-uci and the sequence of integrals (E|Xn|)n≥0 is bounded. ♦

Proof. Let us consider a sequence of integrable random variables
(Xn)n≥0 ⊂ L1.

Let us suppose that is P-uci. Hence by definition, by the classical
results of limits in R, where

sup
c>0

sup
n≥0

∫

(|Xn|>c)

|Xn| P = C < +∞,

next, for any n ≥ 0, for any c0 > 0,

E|Xn| =
∫

(|Xn|>c)

|Xn| P+
∫

(|Xn|≤c)

|Xn| P ≤ C+ c0(|Xn| ≤ c) ≤ C+ c0,

and thus

sup
n≥0

E|Xn| ≤ C + c0 < +∞.
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Besides, if we are given (Ap)p≥0 ⊂ A and P(Ap) → 0 as p → +∞, we
have for any c > 0, p ≥ 0,

∫

Ap

|Xn| dP =

∫

Ap∩B(Xn,c)

|Xn| dP+

∫

Ap∩B(Xn,c)c
|Xn| dP

≤
∫

B(Xn,c)

|Xn| dP+ cP(Ap)

≤
∫

B(Xn,c)

|Xn| dP+ cP(Ap)

≤ sup
n≥0

∫

B(Xn,c)

|Xn| dP+ cP(Ap).

By letting p → +∞ first and next c ↑ +∞, we get Formula (UCA).
Hence the sequence P-uac.

Suppose now that the sequence is P-uac and the sequence of integrals
(E|Xn|)n≥0 is bounded. Put

sup
n≥0

E|Xn| = C < +∞.

By the Markov inequality, we have

sup
n≥0

P(|Xn| > c) ≤ sup
n≥0

E(|Xn|
c

≤ Cc−1. (MK)

Let us apply Formula (UAC2). Let ε > 0 and let η > 0 such that

P(A) < η ⇒ ∀n ≥ 0,

∫

A

|Xn| dP < ε. (MK1)

Let c0 > 0 such that Cc−1
0 < η/2. By Formula (MK) above we have

for all c ≤ c0, for all n ≥ 0, P(|Xn| > c) ≤ η/2 < η, and by Formula
(MK1),

∀n ≥ 0,

∫

|Xn|>c

|Xn| dP < ε

that is

∀c ≤ c0, sup
n≥0

∫

|Xn|>c

|Xn| dP ≤ ε.
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This means that the sequence is P-uci. �

Now, we are able to give the converse of Proposition 13.

Theorem 10. Let (Xn)n≥0 ⊂ Lp be e sequence of elements of Lp,
and X some random variable X ∈ R. We have :

(a) If Xn
Lp

−→ X, then X ∈ Lp.

(b) If If Xn
Lp

−→ X, then If Xn −→P X.

(c) Suppose that Xn −→P X and one of the three conditions holds.

(c1) The sequence (|Xn|p)n≥0 is P-uniformly and absolutely integrable.

(c2) The sequence (|Xn − X|p)n≥0 is P-uniformly and absolutely inte-
grable.

(c3) The sequence (|Xn|p)n≥0 is P-uniformly and continuously inte-
grable.

(c4) ‖Xn‖p → ‖X‖p < +∞.

Then Xn
Lp

−→ X.

(All the limits are meant when n→ +∞).

Proof of Theorem 10.

Proof of (a). First remark that the random variables |Xn−X| are a.s.
defined since the Xn’s are a.s. finite. Next, by Minkowski’s inequality,
for any n ≥ 0.

‖X‖p ≤ ‖Xn‖p + ‖Xn −X‖p

By Xn
Lp

−→ X , there exists n0 ≥ 0 such that ‖Xn −X‖p ≤ 1 and thus,
‖X‖p ≤ 1 + ‖Xn0‖p < +∞.

Proof of (b). It is done in Proposition 13.
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Proof of (c). Suppose that Xn −→P X .

Let (c1) hold. Let ε > 0. By Point (f) in Section 2, the sequence
(Xn)n≥0 is of Cauchy in probability. Hence for Br,s(ε) = (|Xr −Xs| >
(ε/2)1/p), we have

P(Br,s(ε))→ 0 as (r, s)→ (+∞,+∞). (LP1)

Since (c1) holds, we use Formula (UAC2) to find a value η > 0 such
that, for Cp = 2pp−1,

P(A) < η ⇒ ∀n ≥ 0,

∫

A

|Xn|p dP < (ε/2Cp). (LP2)

From Formula (LP1), we can find an integer r0 such that for any r ≥ r0,
for any s ≥ 0,

P(Br,r+s(ε)) < η.

Now, based on the previous facts and the Cp inequality, we have for all
r ≥ r0 and s ≥ 0,

∫

|Xr −Xr+s|p dP ≤
∫

Br,r+s(ε)

|Xr −Xr+s|p dP

+

∫

Br,s(ε)c
|Xr −Xr+s|p dP (L1)

≤ Cp

(∫

Br,r+s(δ)

|Xr|p +
∫

Br,r+s(δ)

|Xr+s|p
)

+ ε/2

≤ ε/2 + ε/2 = ε.

This implies that the sequence (Xn)n≥0 us a Cauchy sequence in Lp

and since Lp is a Banach space, it converges in Lp to Y . By Point (b),
we also have that Xn converges in Probability to Y . Thus X = Y a.s..
Finally ‖X−n−Y ‖p=‖X−n−X‖p → 0 and Xn converges to X in Lp.

Let (c2) hold. The same method may used again. The form of Br,s(ε)
does not change since X is dropped in the difference. When concluding
in Line (L1) in the last group of formulas, we use
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∫

Br,r+s(ε)

|Xr−Xr+s|p ≤
∫

Br,r+s(ε)

|Xr−X|p dP+
∫

Br,r+s(ε)

|Xr+s−X|p dP,

and the conclusion is made similarly.

Let (c3) hold. By Proposition 15, (c1) holds and we have the results.

Let (c4) hold. We are going to use the Young version of the Dominated
Convergence Theorem [YCDT] (See Lo (2017b), Chapter 7, Doc 06-02,
Point (06.07c)). We have

x|Xn −X|p ≤ Cp(|Xn|p + |X|p) = Yn.

Hence |Xn−X|p converges to zero in probability and is bounded, term
by term, by a sequence (Yn)n≥0 of non-negative and integrable random
variables such that :

(i) Yn converges to Y = 2Cp|X|p

and

(ii)
∫
Yn P convergences to

∫
Y P.

By the YDCT, we get the conclusion, that is ‖Xn − X‖pp =
∫
|Xn −

X|p dP→ 0 as n→ 0.

We still have to expose a simple review of weak convergence on R. But
we prefer stating it, for once, on Rd in the next part.
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Part B : Convergence of random vectors. .

4. A simple review on weak convergence

A general introduction of the theory of weak convergence is to be found
in Lo et al. (2016). The main fruits of that theory on Rd are summa-
rized below.

First of all, it is interesting that characteristic elements of probability
laws on Rd (cdf ’s, pdf ’s, mgf ’s, characteristic functions, etc.) still play
the major roles in weak convergence.

The main criteria for weak convergence are stated here :

Theorem 11. (A particular version of Portmanteau Theorem) Let
d be a positive integer. The sequence of random vectorsXn : (Ωn,An,P

(n)) 7→
(Rd,B(Rd)), ≥ 1, weakly converges to the random vector X : (Ω∞,A∞,P∞) 7→
(Rd,B(Rd)) if and only if one of these assertions holds.

(i) For any real-valued continuous and bounded function f defined on
Rd,

lim
n→+∞

Ef(Xn) = Ef(X).

(ii) For any open set G in Rd,

lim inf
n→+∞

Pn(Xn ∈ G) ≥ P∞(X ∈ G).

(iii) For any closed set F of Rd, we have

lim sup
n→+∞

Pn(Xn ∈ F ) ≤ P∞(X ∈ F ).

(iv) For any Borel set B of Rd that is PX-continuous, that is P∞(X ∈
∂B) = 0, we have

lim
n→+∞

Pn(Xn ∈ B) = PX(B) = P∞(X ∈ B).

(v) For any continuity point t = (t1, t2, ..., td) of FX , we have,

FXn
(t)→ FX(t) as n→ +∞.
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where for each n ≥ 1, FXn
is the distribution function of Xn and FX

that of X.

(vi) For any point u = (u1, u2, ..., ud) ∈ Rk,

ΦXn
(u) 7→ ΦX(u) as n→ +∞,

where for each n ≥ 1, ΦXn
is the characteristic function of Xn and ΦX

is that of X.

(c) If the moment functions ϕXn
exist on Bn, n ≥ 1 and ϕX exists on

B, where the Bn and B are neighborhoods of 0 and B∩n≥1, and if for
any x ∈ B,

ΨXn
(x)→ ΨX(x) as n→ +∞,

then Xn weakly converges to X.

The characteristic function as a tool of weak convergence is also used
through the following criteria.

Wold Criterion. The sequence {Xn, n ≥ 1} ⊂ Rd weakly converges
to X ∈ Rd, as n → +∞ if and only if for any a ∈ Rd, the sequence
{< a,Xn >, n ≥ 1} ⊂ R weakly converges to X ∈ R as n→ +∞.

We also have :

The Continuous mapping Theorem. Assume that the sequence
{Xn, n ≥ 1} ⊂ weakly converges to X ∈ Rd, as n→ +∞. Let k ≥ 1
and let f : Rd → Rd be a continuous function. Then {f(Xn), n ≥
1} ⊂ Rk weakly converges to f(X) ∈ Rk.

The pdf ’s may be used in the following way.

Proposition 16. These two assertions hold.

(A) Let Xn : (Ωn,An,P
(n)) 7→ (Rd,B(Rd)) be random vectors and

X : (Ω∞,A∞,P∞) 7→ (Rd,B(Rd)) another random vector, all of them
absolutely continuous with respect to the Lebesgue measure denoted as
λd. Denote fXn

the probability density function of Xn, n ≥ 1 and by
fX the probability density function of X. Suppose that we have
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fXn
→ fX , λk − a.e., as n→ +∞.

Then Xn weakly converges to X as n→ +∞.

(B) Let Xn : (Ωn,An,P
(n)) 7→ (Rd,B(Rd)) be discrete random vectors

and X : (Ω∞,A∞,P∞) 7→ (Rd,B(Rd)) another discrete random vector.
For each n, define Dn the countable support of Xn, that

P(n)(Xn ∈ Dn) = 1 and for each x ∈ Dn, P
(n)(Xn = x) 6= 0,

and D∞ the countable support of X. Set D = D∞ ∪ (∪n≥1Dn) and de-
note by ν as the counting measure on D. Then the probability densities
of the Xn and of X with respect to ν are defined on D by

fXn
(x) = P(n)(Xn = x), n ≥ 1, fX(x) = P(∞)(X = x), x ∈ D.

If

(∀x ∈ D), fXn
(x)→ fX(x),

then Xn weakly converges to X.

In summary, the weak convergence in Rd holds when the distribution
functions, the characteristic functions, the moment functions (if they
exist) or the probability density functions (if they exist) with respect to
the same measure ν, point-wisely converge to the distribution function,
or to the characteristic function or to moment function (if it exists),
or to the probability density function (if it exists) with respect to ν of
a probability measure in Rd. In the case of point-wise convergence of
the distribution functions, only matters the convergence for continuity
points of the limiting distribution functions.

In Chapter 1 in Lo et al. (2016), a number of direct applications are
given and a review of some classical weak convergence results are stated.
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5. Convergence in Probability and a.s. convergence on Rd

Let us denote by ‖.‖ one of the three equivalent usual norms on
Rd. Because of the continuity of the norm, ‖X‖ becomes a real-valued
random variable for any random vector. From this simple remark, we
may extend the a.s. convergence and the convergence in probability
on Rd in the following way.

Definitions.

Let X and (Xn)n≥0 be, respectively, a random vector and a sequence
of random vectors defined on the same on the same probability space

(Ω,A,P) with values R
d
. Let us denote by X

(j)
n the j-th component of

Xn for each 1 ≤ j ≤ d, n ≥ 1.

(a) The (Xn)n≥0 converges a.s. to X as n → +∞ if and only if, each

sequence of components (X
(j)
n )n≥0 converges to Xj as n→ +∞.

(b) Let X and the elements of sequences (Xn)n≥0 have a.s.-finite com-
ponents. Then (Xn)n≥0 converges a.s. to X if and only if

‖Xn −X‖ → 0, a.s. as n→ +∞.
(c) Let X and the elements of sequences (Xn)n≥0 have a.s.-finite com-
ponents. Then (Xn)n≥0 converges to X in probability if and only if

‖Xn −X‖ →P 0, as n→ +∞.
♦

For the coherence of the definition, we have to prove the equivalence
between Points (a) and (b) above in the case where the random vectors
have a.s. finite components. This is let as an easy exercise.

We have the following properties.

Proposition 17. Let X, Y , (Xn)n≥0 and (Yn)n≥0 be, respectively,
two random vectors and two sequences of random vectors defined on

the same on the same probability space (Ω,A,P) with values R
d
. Let

f : Rd → Rk be a continuous function. Finally let a and b tow real
numbers. The limits in the proposition are meant as n→ +∞.
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(1) If Xn → X, a.s, then Xn →P X.

(2) Let Xn → X, a.s and Yn → Y , a.s. Then, we have

(2a) aXn + bYn → aX + bY , a.s.

and

(2b) f(Xn)→ f(X), a.s.

(3) Let Xn →P X, and Yn →P Y . Then, we have

(3a) aXn + bYn →P aX + bY .

and, if X = A is a non-random constant vector, we have

(3b) f(Xn)→P f(A).

But in general, if f is a Lipschitz function, we have

(3c) f(X)→P f(X).

Proofs. By going back to the original versions on R for a.s. and con-
vergence in probability, all these results become easy to prove except
Points (3b) and (3c). But a proof of Point (2v) is given in the proof
of Lemma 8 in Lo et al. (2016) of this series. Point (3c) is proved as
follows.

Let Xn →P X and let f be a Lipschitz function associated to a coeffi-
cient ρ > 0, that is

∀(x, y) ∈ Rd, ‖f(x)− f(y)‖ ≤ ρ‖x− y‖.

Hence for any ε > 0,

(‖f(Xn)− f(X)‖ > ε) ⊂ (‖f(Xn)− f(X)‖ > ε/ρ)

and hence

P(‖f(Xn)− f(X)‖ > ε) ⊂ P(‖f(Xn)− f(X)‖ > ε/ρ)→ 0.
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Thus ‖f(Xn)− f(X)‖ →P 0. �

Immediate implications. Since projections are Lipschitz functions,
we get the if Xn →P X , then we also get the convergence in probability

component-wise, that is : each sequence of components (X
(j)
n )n≥0 con-

verges to Xj in probability. Conversely, the convergence in probability
implies the convergence if probability of the vectors. Indeed, take for
example

‖x‖ = max
1≤i d

|xi|, x = (x1, ..., xd)
t ∈ Rd.

We have, for each n ≥ 0,

(‖Xn −X‖ > ε) ⊂
⋃

1≤i d

(‖X(j)
n −Xj‖ > ε),

which leads, for each n ≥ 0, to

P(‖Xn −X‖ > ε) ≤
∑

1≤i d

P(‖X(j)
n −Xj‖ > ε).

Since d is fixed, the conclusion is obvious.

6. Comparison between convergence in probability and weak
convergence

This section is reduced to the statements of results concerning the com-
parison between the weak convergence and the convergence in proba-
bility.

We remember that in the definition of weak convergence, the elements
of the sequence (Xn)n≥0 may have their own probability spaces. So, in
general, the comparison with convergence in probability does not make
sense unless we are in the particular case where all the elements of the
sequence (Xn)n≥0 and the limit random variable X are defined on the
same probability space.

Before, we state the results, let us give this definition.
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Definition. Let (Xn)n≥0 and (Yn)n≥0 be two random vectors and two
sequences of random vectors defined on the same on the same proba-

bility space (Ω,A,P) with values R
d
.

They are equivalent in probability if and only if :

‖Xn − Yn‖ →P 0, as n→ +∞.

They are a.s. equivalent with respect to their a.s. convergence or
divergence if and only if

‖Xn − Yn‖ → 0 a.s., as n→ +∞. ♦

We have :

Proposition 18. Let X, Y , (Xn)n≥0 and (Yn)n≥0 be, respectively,
two random vectors and two sequences of random vectors defined on the

same on the same probability space (Ω,A,P) with values R
d
. We have :

(a) The convergence in probability implies the weak convergence, that
is :

If Xn →P X, that d Yn  c, then (Xn, Yn) (X, c).

(b) The weak convergence and convergence in probability to a constant
are equivalent, that is :

Xn −→P c as n→ +∞ if and only if Xn  c as n→ +∞.

(c) Two equivalent sequences in probability weakly converge to the same
limit if one of them does.

(d) (Slutsky’s Theorem) If Xn  X and Yn  c, then (Xn, Yn)  
(X, c).

(e) (Coordinate-wise convergence in probability)Xn −→P X and Yn −→P

Y if and only if (Xn, Yn) −→P (X, Y ).

The proofs of all these facts are given in Lo et al. (2016) of this series.
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A comment. We know that the result (e) does not holds in general for
the weak convergence. This means that the convergence in probability
implies the weak convergence but not the contrary.

The a.s. equivalence takes a special shape for partial sums. Let us
consider a sequence (Xn)n≥0 of real random variables defined on the
same on the same probability space (Ω,A,P). For a sequence of pos-
itive numbers (cn)n≥1, let us consider the truncated random variables

X
(t)
n = Xn1|Xn|≤cn, n ≥ 1, that is each X

(t)
n , n ≥ 1, remains unchanged

for |Xn| ≤ cn but vanishes otherwise. Let us form the the partial sums

Sn =
∑

1≤k≤nXn and S
(t)
n =

∑

1≤k≤nX
(t)
n , n ≥ 1.

Let (bn)n≥1 be a sequence of real numbers converging to +∞. We

are going to see that the a.s. equivalence between (S
(t)
n /bn)n≥1 and

(Sn/bn)n≥1 is controlled by the series
∑

n≥0

P(|Xn| > cn).

Indeed, since the event (Xk 6= X
(t)
k ) occurs only if (|Xk| ≥ ck), we have

P(Xn 6= X(t)
n , i.o) = lim

n↑+∞
P

(
⋃

k≥n

(Xk 6= X
(c)
k )

)

≤ lim
n↑+∞

∑

k≥n

P(|Xk| ≥ c).

So if the series
∑

n≥0 P(|Xn| > cn) is convergent, we have P(Xn 6=
X

(t)
n , i.o) which implies that there exists a null-set Ωc

0 such that for

any ω ∈ Ω0, we can find N(ω) such that for any n ≥ N(x), Xn = X
(t)
n

so that for n > N(ω),

∣
∣
∣
∣

Sn − S(t)
n

bn

∣
∣
∣
∣
=

1

bn
|SN(ω)

(t) − SN(ω)| → 0, as n→ +∞.

This proves the claim. �





CHAPTER 6

Inequalities in Probability Theory

Here, we are going to gather a number of some inequalities we may
encounter and use in Probability Theory. Some of them are already
known from the first chapters.

The reader may skip this chapter and comes back to it only when using,
later, an inequality which is is stated here and especially when he/she
wants to see the proof.

Unless an express specification is given, the random variables X , Y ,
Xi, Yi, i ≥ 1, which used below, are defined on the same probability
space (Ω,A,P).

Readers who want to read this chapter in the first place will need an
earlier introduction to the notion of conditional expectation right now,
instead of waiting Chapter 8 where this notion is studied.

1. Conditional Mathematical Expectation

We are going to use the Radon-Nikodym Theorem as stated in Doc
08-01 in Chapter 9 in Lo (2017b).

Let be given a sub-σ-algebra B of A, Y a measurable mapping from
(Ω,A) to a measurable space (E,F) and finally a measurable map-
ping h from (E,F) to R, endowed with the usual σ-algebra B∞(R).
We always suppose that h(Y ) is defined, and quasi-integrable, that is
: E(h(Y )+) or E(h(Y )−) is finite.

Now the mapping

B ∋ B 7→ φB(B) =

∫

B

h(Y ) dP

179
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is σ-additive and is continuous with respect to P. By the Radon-
Nikodym Theorem as recalled earlier, φB possesses a Radon-Nikodym
derivative with respect to P, we denoted as

dφB
dP

=: E(h(Y )/B).

By the properties of Radon-Nikodym derivatives (please, visit again
the aforementioned source if needed), we may define.

Definition If the mathematical of expectation h(Y ) exists, the condi-
tional mathematical expectation of h(Y ) denoted as

E(h(Y )/B),

is the P.a.s unique real-valued and B-measurable random variable such
that

∀B ∈ B,
∫

B

h(Y ) dP =

∫

B

E(h(Y )/B) dP. (CE01)

Moreover, E(h(Y )/B) is a.s. finite if h(Y ) is integrable. ♦

Extension of the Definition. By putting Z = 1B in (CE01), and
by using the classical three steps method of Measure Theory and In-
tegration, we easily get that when E|h(Y )| < +∞, Formula (CE01) is
equivalent to any one of the two following others :

(a) For any non-negative and B-measurable random variable Z,

∫

Zh(Y ) dP =

∫

ZE(h(Y )/B) dP. (CE02) ♦

(b) For any B-measurable and integrable random variable Z,

∫

Zh(Y ) dP =

∫

ZE(h(Y )/B) dP. (CE02) ♦

In the extent of this chapter, we will directly utilize (CE02) as a defi-
nition each time we need it.

The following exercises will be proved in Chapter 8 as properties of the
mathematical expectation.
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Exercise. Show that the following properties.

(1) If X is a real-valued and quasi-integrable random variable, then

E

(

E(X)/B)
)

= E(X).

(2) IfX is a real-valued and quasi-integrable random variable B-measurable,
then

E(X)/B) = X. a.s.

(3) Let X be a real-valued and quasi-integrable random variable in-
dependent of B in the following sense : for all real-valued and quasi-
integrable random variable Z B-measurable,

E(ZX) = E(Z)E(X).

Then, we have
E(X)/B) = E(X)). a.s.

(4) If X is a real-valued and quasi-integrable random variable indepen-
dent B and if Z is a real-valued, quasi-integrable and B-measurable
random variable, we have

E(ZX)/B) = ZE(X)/B).

(5) If X and Y are real-valued random variables both non-negative or
both integrable, then

E

(

(X + Y )/B
)

= E(X/B) + E(Y/B). ♦

2. Recall of already known inequalities

.
(1) Inequality of Markov. If X ≥ 0, then for all x > 0,

P(X ≥ x) ≤ 1

x
. ♦

(2) Inequality of Chebychev. If E(X) exists and X − E(X) is a.s.
defined, then for all x > 0,
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P(|X − E(X)| > x) ≤ E(X − E(X))2

x2
. ♦

These two inequalities are particular forms of the following one.

(3) Basic Inequality. (As in Loève (1997)) Let X be any real-valued
random variable and g be a non-null, non-decreasing and non-negative
mapping from R to R. Then for any a ∈ R, we have

Eg(X)− g(a)
‖g(X = ‖∞

≤ P(X ≥ a) ≤ Eg(X)

g(a)
. (BI01)

If, in addition, g is even or if g satisfies

∀a ≥ 0, g(max(−a, a)) ≥ g(a), (AI01)

Eg(X)− g(a)
‖g(X = ‖∞

≤ P(|X| ≥ a) ≤ Eg(X)

g(a)
. (BI02) ♦

Proof of Formula (BI01). The mathematical expectation E(g(X))
exists since g is of constant sign. By using the same method of estab-
lishing the Markov inequality, we have

Eg(X) ≥
∫

X≥a

dP ≥ g(a)P(X ≥ a), (BI03)

where we used the non-decreasingness of g. So, we get the right-hand
inequality of Formula (BI01) even if g(a) = 0. We also gave

∫

X≥a

dP ≤ ‖g(X = ‖∞P(|X| ≥ a)

and

∫

X<a

dP ≤ g(a)P(|X| < a) ≤ g(a)

and by these formulas,

Eg(X) =

∫

X≥a

g(X) dP+

∫

X<a

g(X) dE

= ‖g(X = ‖∞P(|X| ≥ a) + g(a),
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that is

Eg(X) ≤ ‖g(X = ‖∞P(|X| ≥ a) + g(a),

which gives the left-and inequality in Formula (BI01) even if ‖g(X =
‖∞ = +∞ (it cannot be zero by assumption). �

Proof of Formula (BI02). Since P(X ≤ a) ≤ P(|X− ≤ a), we pnly
have to justify the right-hand inequality of (BI02). But we may use the
simple remark that X ≥ max(−a, a) on (|X| ≥ a) to modify (BI03) as
follows

Eg(X) ≥
∫

|X|≥a

dP ≥ g(max(−a, a))P(|X| ≥ a), (BI04)

So, using Assumption (AI01) - which holds if g is even - allows to con-
clude. �

(4) Hölder Inequality. Let p > 1 and q > 1 be two conjugated
positive rel numbers, that is, 1/p+ 1/q = 1 and let

X, Y : (Ω,A,P) 7→ R ,

be two random variables X ∈ Lp and Y ∈ Lq. Then XY is integrable
and we have

|E(XY )| ≤ ‖X‖p × ‖Y ‖q ,

where for each p ≥ 1, ‖X‖p = (E(|X|p)1/p.

(5) Cauchy-Schwartz’s Inequality. For p = q = 2, the Hölder
inequality becomes the Cauchy-Schwartz one :

|E(XY )| ≤ ‖X‖2 × ‖Y ‖2 .

(6) Minskowski’s Inequality. Let p ≥ 1 (including p = +∞). If X
and Y are in Lp, then we have

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p .

(7) Cp Inequality. Let p ∈ [1,+∞[. If X and Y are in Lp, then for
Cp = 2p−1, we have

‖X + Y ‖pp ≤ Cp(‖X‖pp + ‖Y ‖pp).
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(8) Ordering the spaces Lp, p ≥ 1.

Let 1 < p < q, p finite but q ∈ [1,+∞]. Let X ∈ Lq. Then X ∈ Lp

and

‖X‖p ≤ ‖X‖q ≤ ‖X‖+∞ .

(9) Jensen’s Inequality.

Let φ be a convex function defined from a closed interval I of R to
R. Let X be a rrv with values in I such that E(X) is finite. Then
E(X) ∈ I and

φ(E(X)) ≤ E(φ(X)).

(10) Inequality for two convex functions a random variable.
Let gi, i ∈ {1, 2} be two finite real-valued convex and increasing func-
tions (then invertible function as increasing and continuous functions)
such that g2 is convex in g1 meaning that g2g

−1
1 is convex. For any

real-valued random variable X such that X and g1(X) are integrable,
we have

g−1
1 (E(g1(Z)) ≤ g−1

2 (E(g2(Z)).

(11) Bonferroni’s Inequality.

Let A1, ..., An be measurable subsets of Ω, n ≥ 2. Define

α0 =
∑

1≤j≤n

P(Aj)

α1 = α0 −
∑

1≤i1<t2≤n

P(Ai1Ai2)

α2 = α1 +
∑

1≤i1<...<t3≤n

P(Ai1 ...Ai3)

· · · = · · ·
αr = αr−1 + (−1)r+1

∑

1≤i1<...<tr≤n

P(Ai1...Air)

· · · = · · ·
αr = αr−1 + (−1)n+1P(A1A2A3...An).
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Let p = n mod 2, that is n = 2p + 1 + h, h ∈ {0, 1}. We have the
Bonferroni’s inequalities : if n is odd,

α2k+1 ≤ P

(
⋃

1≤j≤n

An

)

≤ α2k, k = 0, ..., p (BF1)

and if n is even,

α2k+1 ≤ P

(
⋃

1≤j≤n

Aj

)

≤ α2k, k = 0, ..., p− 1. (BF2)

3. Series of Inequalities

(12) Order relations for conditional expectations. Let X and
Y be two real-valued random variables such that X ≤ Y . Let B be a
σ-sub-algebra of A. Then, whenever the expressions in the two sides
make sense and are finite, we have

E(X/B) ≤ E(Y/B) a.s. (CE03)

Besides, the conditional expectation is a contracting operator in the fol-
lowing sense : for any real-valued and quasi-integrable random variable
X , we have

|E(X/B)| ≤ E(|X|/B). (CE04) ♦

Proof. Suppose that all the assumptions hold. We have for all B ∈ B,
∫

B

E(X/B) dP =

∫

B

X dP ≤
∫

B

Y =

∫

B

E(Y/B) dP

Take an arbitrary ε > 0 and set B(ε) = (E(X/B > E(Y/B) + ε). It it
sure that B0 ∈ B and we have

∫

B(ε)

E(X/B) dP ≥
(∫

B(ε)

E(Y/B) + ε

)

dP

≥
(∫

B(ε)

E(Y/B) dP
)

+ εP(B(ε)).
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The two last formulas cannot hold together unless P(B(ε)) = 0 for all
ε > 0. By the Monotone convergence Theorem, we get that P(E(X/B >
E(Y/B) = 0, which proves Inequality (CE03). To prove Inequality
(CE04), we apply (CE03) and Point (4) in the exercise in Section 1 to
X ≤ |X| = X+ +X− and to −X ≤ |X| = X+ +X−, we get

|E(X/B)| = max(−E(X/B),E(X/B)
= max(E(−X/B),E(X/B) ≤ E(|X|/B).

(13) Jensen’s Inequality for Conditional Mathematical Expec-
tations. Let B be a σ-sub-algebra of A. Let φ be a convex function
defined from a closed interval I of R to R. Let X be a rrv with values
in I such that E(X) is finite. Then E(X) ∈ I and

φ(E(X/B)) ≤ E(φ(X)/B).
Proof. It will be given on Chapter 8, Theorem 23 (See page 290) �

(14) Kolmogorov’s Theorem for sums independent random
variables.

Let X1, ..., Xn be independent centered and square integrable random
variables. We denote Var(Xi) = σ2

i , 1 ≤ i ≤ n. Let c be a non-random
number (possibly infinite) satisfying

sup
1≤k≤n

|Xk| ≤ c a.s.

Denote the partial sums by

S0 = 0, Sk =
k∑

i=1

Xi, k ≥ 1 and s0 = 0, s2k =
k∑

i=1

σ2
i .

We have the double inequality, for any ε

1− (ε+ c)2

s2n
≤ P(max(|S1|, |S2|, ..., |Sn|) ≥ ε) ≤ ε−2s2n. (KM01)

Proof. We follow the proof in Loève (1997). Let ε > 0 and put

A0 = Ω, A1 = (|S1| < ε), Ak = (|S1| < ε, ..., |Sk| < ε), k ≥ 2.
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We easily see that the sequence (Ak)1≤k≤n is non-increasing and we
have

B2 = A1 \ A2 = (|S1| < ε, |S2| ≥ ε),

Bk = Ak−1 \ Ak = (|S1| < ε, ..., |Sk−1| < ε, |Sk| ≥ ε), k ≥ 3.

We also have

Ac
n =

∑

1≤k≤n

Bk.

To see this quickly, say that Ac
n = ∪1≤k≤nCk, where Ck = (|Sk| ≥ ε).

We are now accustomed to how rendering a union into a sum of sets
since the course of Measure Theory and Integration by taking D1 = C1,
D2 = Cc

1 ∩ C2, Dk = Cc
1 ∩ ... ∩ Cc

k−1Ck, k ≥ 3 to have

⋃

1≤k≤n

Ck =
∑

1≤k≤n

Dk.

We have just to check that the Dk’s are exactly the Bk’s. In the coming
developments, we repeatedly use the fact that an indication function
is equal to any of its positive power. Now, for any 1 ≤ k ≤ n, we
may see that Sk1Bk

is independent of Sn − Sk (even when k=n with
Sn − Sk = 0). Reminding that the Sk’s are centered, we have

∫

Bk

S2
n dP = E(Sn1Bk

)2

= E

(

Sk1Bk
+ (Sn − Sk)1Bk

)

= E(Sk1Bk
)2 + E((Sn − Sk)1Bk

)2 + 2E((Sk1Bk
)(Sn − Sk)) (L02)

= E(Sk1Bk
)2 + E((Sn − Sk)1Bk

)2 (L03)

≥ E(Sk1Bk
)2 ≥ ε2P.(Bk).

Line (L3) derives from Line (L2) by the fact that (Sk1Bk
) and (Sn−Sk)

are independent and Sn − Sk is centered. Hence, we get for each 1 ≤
k ≤ n,

∫

Bk

S2
n dP ≥ ε2P(Bk).
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By summing both sides over k ∈ {1, ..., k} and by using the decompo-
sition of Ac

n into the Bk’s, we get

∫

Ac
n

S2
n dP ≥ ε2P(An).

which, by the simple remark that

k∑

i=1

σ2
i = s2n =

∫

S2
n dP

leads to

k∑

i=1

σ2
i ≥ ε2P(An),

which is the right-side inequality in Formula (KM01).

To prove the left-side inequality, let us start by remarking that for
2 ≤ k ≤ n,

Sk1Ak−1
= Sk−11Ak−1

+Xk1Ak−1
= Sk1Ak

+ Sk1Bk
.

Now, on one side, we have

E(Sk−11Ak−1
+Xk1Ak−1

)2 = E(Sk−11Ak−1
)2

+ E(Xk1Ak−1
)2 + 2E((Sk−11Ak−1

)Xk) (L11)

= E(Sk−11Ak−1
)2 + E(Xk1Ak−1

)2 (L12)

= E(Sk−11Ak−1
)2 + σ2

kP(Ak−1). (L13)

Line (L12) derives from Line (L11) since Sk−11Ak−1
and Xk are inde-

pendent and Xk is centered. Line (L13) derives from Line (L12) since
X2

k is independent of 1Ak−1
.

On the other side, we have

E(Sk1Ak
+ Sk1Bk

)2 = E(Sk1Ak
)2 + E(Sk1Bk

)2 + 2E((SkSk)(1Ak
1Bk

))

= E(Sk1Ak
)2 + E(Sk1Bk

)2,
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since the sets Ak and Bk are disjoint [recall that Bk = Ak−1 \ Ak =
Ak−1 ∩Ac

k ⊂ Ac
k].

We get for 2 ≤ k ≤ n,

E(Sk−11Ak−1
)2 + σ2

kP(Ak−1) = E(Sk1Ak
)2 + E(Sk1Bk

)2. (KM02)

But the expression Sk1Bk
, which is used in last term in the right-hand

member in Formula (KM02) is bounded as follows

|Sk1Bk
| ≤ |Sk−11Bk

|+ |Xk1Bk
| ≤ (ε+ c)1Bk

.

Hence the last term in the right-hand member in Formula (KM02) itself
is bounded as follows

E(Sk1Bk
)2 ≤ (ε+ c)2P(Bk).

Further, we may bound below the last term in the left-hand member
in Formula (KM02) by s2kP(An), to get for 2 ≤ k ≤ n

E(Sk−11Ak−1
)2 + σ2

kP(An) ≤ E(Sk1Ak
)2 + (ε+ c)2P(Bk). (KM03)

Now, we may sum over k ∈ {2, ..., n} in both sides to get in the left-
hand side

n−1∑

k=1

E(Sk1Ak
)2 +

n∑

k=2

σ2
kP(An) (KM03a)

and in the right-hand side, by rigorously handling the ranges of sum-
mation and by using the decomposition of An’s into the Bk’s, we have

n∑

k=1

E(Sk1Ak
)2 − E(S11A1)

2 + (ε+ c)2P(Ac
n \B1)

=

n∑

k=1

E(Sk1Ak
)2 − E(S11A1)

2 + (ε+ c)2(P(Ac
n)− P(B1))

≤
n∑

k=1

E(Sk1Ak
)2 − E(S11A1)

2 + (ε+ c)2P(Ac
n)− (ε+ c)2P(B1). (KM03b))
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By moving the first term in (KM03a) to the right-hand member in
(KM03) and by moving the terms in (KM03b) which are preceded by a
minus sign to the left-hand member in (KM03) and by reminding that
B1 = Ac and S1 = X1, we get

a+
n∑

k=2

σ2
kP(An) ≤ E(Sn1An

)2 + (ε+ c)2P(Ac
n), (KM03c)

where

a = E(X11A1)
2 + (ε+ c)2P(Ac

1).

But, since |X1| ≤ c, we have

σ2
1 = E(X2

1 ) = E(X11A1)
2 + E(X11Ac

1
)2

≤ E(X11A1)
2 + c2P(Ac

1)

≤ E(X11A1)
2 + (ε+ c)2P(Ac

1) = a.

Since s21P(An) ≤ s21 ≤ a, we may bound below a by s21P(An) in Formula
(KM03c) to set

(
n∑

k=1

σ2
k

)

P(An) ≤ E(Sn1An
)2 + (ε+ c)2P(Ac

n)

≤ ε2P(An) + (ε+ c)2P(Ac
n)

≤ (ε+ c)2P(An) + (ε+ c)2P(Ac
n) = (ε+ c)2,

which implies

(
n∑

k=1

σ2
k

)

(1− P(Ac
n)) ≤ (ε+ c)2,

and hence

P(Ac
n) ≥ 1− (ε+ c)2

∑n
k=1 σ

2
k

,
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which is the first inequality in Formula (KM01). The proof is complete
now. �

(15) Maximal inequality for sub-martingales.

Let X1, ..., Xn be rel-valued integrable random variables. Let us con-
sider the following sub-σ-algebras : for 1 ≤ k ≤ n,

Bk = σ({X−1
j (B), 1 ≤ j ≤ k, B ∈ B∞(R)}).

In clear, each Bk is the smallest σ-algebra rendering measurable the
mapping Xj , 1 ≤ j ≤ k. It is also clear that (Bk)1≤k≤n is an non-
decreasing sequence of sub-σ-algebras of A.

Definition. The sequence (Xk)1≤k≤n is a martingale if and only if

∀1 ≤ k1 ≤ k2 ≤ n, ∀A ∈ Bk1),
∫

A

Xk2 dP =

∫

A

Xk1 dP,

and is a sub-martingale if and only if

∀1 ≤ k1 ≤ k2 ≤ n, ∀A ∈ Bk1),
∫

A

Xk2 dP ≥
∫

A

Xk1 dP. ♦.

Let us adopt the notations given in Inequality (11).

If (Xk)1≤k≤n is a sub-martingale, we have

P(max(X1, X2, ..., Xn) ≤ ε) ≤ ε−1E(Xn).(IM01)

Proof. It is clear that

C = (max(X1, X2, ..., Xn) ≥ ε) =
⋃

1≤k≤n

(Xj ≥ ε) =
∑

1≤k≤n

Ck,

with

C1 = (X1 ≥ ε), C2 = (X1 < ε,X2 ≥ ε), Ck = (X1 < ε, ..., Xk−1 < ε,Xk ≥ ε), k ≥ 3.

We remark that Ck ∈ Bℓ, for all 1 ≤ k ≤ n, k ≤ ℓ. We have



192 6. INEQUALITIES IN PROBABILITY THEORY

E(Xn) =

∫

Xn dP ≥
∫

X

Xn dP (L51)

=
∑

1≤k≤n

∫

Ck

Xn dP

≥
∑

1≤k≤n

∫

Ck

Xk dP (L53)

≥
∑

1≤k≤n

εP(Ck) (L54)

= ε
∑

1≤k≤n

P(Ck) = εP(C). (L55)

In Line (53), we applied the definition of a sub-martingale. In Line
(L54), we applied that Xk ≥ ε on Ck. Finally, the combination of
Lines (L51) and (L55) gives

P(C) ≤ ε−1E(Xn),

which is Formula (MT01). �

(16) - Kolmogorov’s Exponential bounds.

Let us fix an integer n such that n ≥ 1. Suppose that we have n
independent and centered random variables on the same probability
space, as previously, which is a.s. bounded. As usual Sn is the partial
sum at time n with variance s2n. We fix n such that sn > 0. Define

c = max
1≤k≤n

Xk

sn
< +∞.

The following double inequality which is proved in Point (A1) in Chap-
ter 10, Section 5 (page 360) will be instrumental in our proofs :

∀t ∈ R+, e
t(1−t) ≤ 1 + t ≤ et. (EB1)

Now, let us begin by the following Lemma, which is part, of the body
of exponential bounds.
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Lemma 3. Let X be a centered random variable which is bounded,
in absolute value, by c < +∞. Let us denote EX2 = σ2. Then for any
t > 0 such that tc ≤ 1, we have

EetX < exp

(
t2σ2

2

(

1 +
tc

2

))

(EB2)

and

EetX > exp

(
t2σ2

2
(1− tc))

)

. (EB3)

Proof of Lemma 3. We begin to remark that the mgf t 7→ EetX

admits an infinite expansion on the whole real line of the form

EetX = 1 +
t2

2!
EX2 +

t3

3!
EX3 + . . . .

For t > 0 and tc ≤ 1, we have EX2+ℓ ≤ σ2cℓ for ℓ > 0. Hence

EetX = 1 +
t2σ2

2

(

1 + 2

(
tc

3!
+

(tc)2

4!
+ . . .

))

= 1 +
t2σ2

2

(
∑

k≥3

(
(tc)k−2

k!

)

.

Hence, by using the left inequality in Formula (EB1), we have

EetX−
(

1 +
(t2σ2

2

(

1 +
tc

2

)

≤ t2σ2

(

2
∑

k≥3

(
(tc)k−3

k!
− tc

2

)

= 2t2(tc)σ2

(
∑

k≥3

(
(tc)k−3

k!
− 1

4

)

≤ 2t2(tc)σ2

(
∑

k≥3

(
1

k!
− 1

4

)

(L23)

≤ 2t2(tc)σ2(e− 7/4) ≤ 0,

where we used tc ≤ 1 in Line (L23). Hence



194 6. INEQUALITIES IN PROBABILITY THEORY

EetX ≤
(

1 +
(t2σ2

2

(

1 +
tc

2

)

≤ exp

(
t2σ2

2

(

1 +
tc

2

))

,

which proves Formula (EB2).

To prove the left-hand inequality, we remark that EX2+ℓ ≥ σ2(−c)ℓ for
ℓ > 0, we also have

EetX ≥ 1 +
t2σ2

2

(

1 + 2

(−tc
3!

+
(−tc)2
4!

+ . . .

))

≥ 1 +
t2σ2

2

(

1− 2

(
tc

3!
− (tc)2

4!
+ . . .

))

The same method, word by word, leads to

EetX ≥ −2t2(tc)σ2(e− 7/4) ≥ 0

and next, by using the right inequality in Formula (EB1), we get

EetX ≥
(

1 +
(t2σ2

2

(

1− tc

2

)

≥ exp

(
(t2σ2

2
(1− tc)

)

,

which establishes Formula (EB3). �

Here the first result concerning the exponential bounds.

Theorem 12. Let us use the same notations as in Lemma 3. Then
the assertions below hold true, for any ε > 0, for any n ≥ 1.

(i) for cε ≤ 1,

P

(

Sn > εsn)

)

< exp

(

− ε2

2

(

1− εc

2

))

.

(ii) and for cε > 1,

P

(

Sn > εsn)

)

< exp

(

− ε2

4c

)

.
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Proof of Theorem 12. To make the notation shorter, we put S = Sn

and sn = s and some times S∗ = S/s. Now let us apply Formulas
(EB2) and (EB3) in Lemma 3 in the following way : for t > 0 and
tc ≤ 1, and since

E exp(tS∗) =
∏

1≤k≤n

E exp(tXk/s),

we have
∏

1≤k≤n

exp

(
(t2σ2

k

2s2
(1− tc)

)

< E exp(tS∗)
∏

1≤k≤n

exp

(
(t2σ2

k

2s2

(

1 +
tc

2

))

This obviously leads to

exp

(
(t2

2
(1− tc)

)

< E exp(tS∗)

exp

(
(t2

2

(

1 +
tc

2

))

. (DE)

From this, we are able to handle both Points (i) or (ii).

For (i), we may apply the the Markov inequality and left-hand inequal-
ity in Formula (DE) above to t > 0, ε 0 such that cε ≤ 1 and tc ≤ 1,
to get

P (S∗ > ε) = P (exp(tS∗) > exp(tε))

≤ exp(−tε)E exp(tS∗)

≤ exp

(

− tε(t
2

2

(

1 +
tc

2

))

. (L23)

We point out that the condition tc ≤ 1 intervenes only in the conclusion
in Line (L23). Taking t = ε in in Line (L23) (which is possible since
both conditions tc ≤ 1 and εc ≤ 1 hold) leads to

P (S∗ > ε) < exp

(

− ε2 + ε2

2

(

1 +
εc

2

))

= exp

(

− ε2

2

(

1− εc

2

))

,
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which is the announced result for Point (i).

To prove Point (ii), let cε > 1, we use the value t = 1/c (here again,
the condition tc ≤ 1 holds) to get

P (S∗ > ε) < exp

(

− ε

c
+

1

2c2

(

1 +
1

2

))

= exp

(

− ε

4c

)

,

which is the announced result for Point (ii). �

Finally, the coming exponential bound is very important when dealing
with the Law of iterated logarithm (LIL). We have :

Theorem 13. Let us use the same notation as in Lemma 3.

Let us fix 0 < α < 1/4, we set β = 2
√
α and

γ =
1 + 2α+ β2/2

(1− β)2 − 1 > 0.

Then there exists t(α) large enough such that for c(α) small enough,

that is c(α) < α/t and 8c(α)t(α) ≤ 1 such that for ε = t(α)(1−2
√

(α))
we have

P

(

Sn > εsn)

)

< exp

(

− ε2

4c
(1 + γ)

)

.♦

Proof of Theorem 13. The proof is so really technical that some au-
thors like Gutt (2005) omitted and explained : this one is no pleasure
to prove it. He referred to Stout (1974).

Here, we will follow the lines of the proof in Loève (1997). However,
the presentation and the ordering of the arguments have been signifi-
cantly improved.

From Formula (DE), we may fix 0 < α = t0c < 1 so that for all t ≤ t0,
we have

E exp(tS∗) > exp

(
t2

2
(1− α)

)

. (EB4)
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The principle of all the proof is to fix first t > 0, as large as necessary,
and to choose c so that the desired conclusions hold. Then, let us
choose α such that 2

√
α < 1. Put

(i) β = 2
√
α,

We have

(ii) γ =
1 + 2α + β2/2

(1− β)2 =
(1 + β)2 + 2β + 1

2(1− β) − 1 > 0.

The positivity of γ is clear since 0 < β < 1 and γ > 0. We first choose
0 < α < 1/4 which guarantees that 1 + β < 2. Formula (EB4) shows
that when α is fixed, the following conditions make sense : For t large
enough, we have

(iii)

(

8t2 exp

(

− αt2

4
)

))

< 1/4, (ii) EetS
∗
> 8,

(iv)
1

4
EetS

∗
> 2 and (v)

1

4t2
exp

(
t2

2
α

)

> 1.

We choose a value t > 0 satisfying points (iii), (iv), (v). Next we
suppose that

(vi) c < α/t (vii) 8tc ≤ 1 and (viii) c ≤ 4t/(1− β).

Once these conditions are set, we may proceed to the proof. First of
all, Formula (EB4) is justified by condition (vi). Put q(x) = P(S∗ >
x). By Formula (CF), in Chapter 1, page 14, we have, for t > and
Z = exp(tS∗),

E(Z) =

∫ +∞

0

P(Z > t)dt, (EB5)
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We get

E(exp(tS∗) =

∫ +∞

0

P(exp(tS∗ > y)dy

=

∫ +∞

0

P

(

S∗ >
log y

t

)

dy

=

∫ +∞

0

q

(
log y

t

)

dy

= t

∫ +∞

−∞
etxq(x)dx (L44)

Now we split the integral in Line (L44) above by decomposing the
integration domain I =] −∞,+∞[ using the intervals I1 =] −∞, 0],
I2 =]0, (1 − β)], I3 =]t(1 − β), t(1 + β)], I4 =]t(1 + β), 8t], and I5 =
]8t,+∞[, that is

I = I1 + I2 + I3 + I4 + I5.

Let us name the integrals over Ii by Ji, i ∈ {1, ..., 5}, respectively

Let us begin by J5. Let s ∈ I5. We have for 0 ≤ xc ≥ 1, by Formula
(DE) and by Condition (vii)

q(x) < exp
(

− x

4c

)

< exp(−2tx),

where we use 1/(4c) = 2t/(8tc) ≥ 2t. If xc < 1, we apply again Formula
(DE) and use 1− xc/2 ≥ 1/2 in the middle member, to get

q(x) < exp

(

− x2

2

(

1− xc

2

))

< exp
(

− x

4c

)

< exp(−2tx)

We get

J5 = t

∫ tan

8t

etxq(x)dx ≤
∫ +∞

8t

etx exp(−2tx)dx <≤
∫ +∞

0

e−txdx = 1.

Since q is a bounded by one, we have

J1 = J5 = t

∫ 0

−∞
etxq(x)dx = t

∫ +∞

0

e−txq(x)dx ≤ t

∫ +∞

0

e−txdx = 1.



3. SERIES OF INEQUALITIES 199

Now we handle J2 and J4 by using a maximization argument. On I4
and I4, we have x ≤ 0 and xc ≤ 8tc < 1. From Point (ii) of Theorem
12, and by using again xc ≤ 8tc in the second inequality below, we
arrive at

etxq(x) < exp

(

tx− x2

2

(

1− xc

2

))

≤ exp

(

tx− x2

2
(1− 4tc)

)

≡ g(x),

where we remind that 4tc < 1/4. On R+, g
′(x) = t − x(1 − 4tc) and

thus g attains its maximum at x0 = t/(1− 4tc).

Where lies x0? x0 > t(1 − β) is equivalent to −β/(1 − β) < 4tc which
is true. As well x0 ≤ t(1 + β) is equivalent to Condition (viii). Thus
x0 ∈ J3. Hence on I2 =]0, (1 − β)], g is non-decreasing and thus, for
x ∈ I2,

g(x) = g(t(1− β)) = t2(1− β)− t2(1− β)2
2

(1− 4tc)

= (1− β)
(

t2 − t2

2
(1− β) + t2

2
8tc

1− β
2

)

=
t2

2
(1− β)

(

2− (1− β) + 1− β
2

)

(we used Condition (iii)

=
t2

2
(1− β)

(

(1 + β) +
(1− β)

2

)

=
t2

2

(

1− β2 +
(1− β)2

2

)

=
t2

2

(

(1− β2/2)− 1

2
(1 + 2β)

)

.

It follows that

J2 = t

∫ t(1−β)

0

eg(x)dx ≤ t

∫ (1+β)

0

eg(t(1−β))dx

≤ t2(1− β) exp
(

(1− β2/2)− 1

2
(1 + 2β)

)

.

As well on I4 =]t(1+β), 8t] or on I∗4 =]t(1+β), tan], g is non-decreasing
and we have for x ∈ I∗4 ∪ I4,
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g(x) = g(t(1 + β)) = t2(1 + β)− t2(1 + β)2

2
(1− 4tc)

= (1 + β)

(

t2 − t2

2
(1 + β) +

t2

2
8tc

1 + β

2

)

=
t2

2
(1 + β)

(

2− (1 + β) +
1 + β

2

)

(we used Condition (iii)

=
t2

2
(1 + β)

(

(1− β) + (1 + β)

2

)

=
t2

2

(

1− β2 +
(1 + β)2

2

)

=
t2

2

(

(1− β2/2)− 2β2 − 2β + 1

2

)

,

since the polynomial 2β2−2β+1 has a negative discriminant and thus,
is constantly positive. It follows that

max(J4, J
∗
4 ) ≤ t

∫ 8t

t(1+β)

eg(x)dx

≤ t

∫ (1+β)

0

eg(t(1+β))dx

≤ 7 t2 exp

(

(1− β2/2)− 1

2
(1 + 2β)

)

.

So, we have

max(J4, J
∗
4 ) < 7t2 exp

(
(
1− β2/2

)
)

.

Now we remind that α is fixed and α = β2/4 and hence

1− β2/2 = (1− α) + α/2.

Hence Inequality (EB4) gives

EetX > exp

(
t2

2
(1− α)

)

= exp

(
t2

2
(1− β2/2))

)

exp

(
αt2

4
)

)

and hence
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exp

(
αt2

4
(1− β2/2))

)

< EetS
∗
(
αt2

4
(1− β2/2))

)

,

which, by using Conditions (iiia) and (iiib), leads to

J2 + J4 <

(

8t2 exp

(
αt2

4
)

))

EetS
∗

and by Condition (iv), we get

J1 + J5) < 2 <
1

4
EetS

∗
and J2 + J4, J2 + J∗

4 ) <
1

4
EetS

∗
.

Since EetS
∗
= J1 + J2 + J3 + J4 + J5, it follows

J3 = t

∫ t(1+β)

t(1−β)

etxq(x)dx >
1

2
EetS

∗
.

Now using the bound of EetS
∗
as in Formula (S) and using the non-

increasingness of q and the non-decreasingness of x 7→ etx for t > 0,
leads to

1

2
exp

(
t2

2
(1− α)

)

< tq(t(1− β))
∫ t(1+β)

t(1−β)

et
2(1+β)dx,

that is

1

2
exp

(
t2

2
(1− α)

)

< 2t2q(t(1− β))et2(1+β)

and next

q(t(1−β)) ≥
[

1

4t2
exp

(
t2

2
α

)][

exp

(

−t2(1+β)+t
2

2
(1−α)−t

2

2
α

)]

, (EB6)

with
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exp

(
t2

2
α

)

exp

(

− t2(1 + β)
t2

2
(1− α)− t2

2
α

)

= exp

(
t2

2
(1− α− α− 2(1 + β)

)

= exp

(
t2

2
(1− 2α− 2(1 + β)

)

= exp

(

−t
2

2
(1 + 2α+ 2β)

)

(EB7)

We take t = ε/(1 − β). The quantity between the big brackets is
bounded below by one in virtue of Condition (v). From this the com-
bination of (EB6) and (EB7) gives

q(ε) > exp

(

−ε
2

2

1 + 2α+ 2β

(1− β2)

)

= exp

(

−ε
2

2

1 + 2β + β2/2

(1− β2)

)

and finally, by Condition (ii), we get

q(ε) > exp

(

−ε
2

2
(1 + γ)

)

,

which was the target. �

(17) - Billingsley’s Inequality (See Billinsgley (1968), page
69).

Let (Xn)n≥0 be a sequence of square integrable and centered real-valued
random variables defined on the same probability space (Ω,A,P). We
have for any ε >

√
2,

P

(

max
1≤k≤n

Sn ≥ ε

)

≤ 2P
(

Sn ≥ ε−
√

2Var(Sn)
)

.

where, as usual, Sn, n ≥ 1, are the partial sums of the studied sequence.

Proof. Put s2k = Var(Sk) for k ≥ 1. As usual,
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A =

(

max
1≤k≤n

Sn ≥ εsn

)

=
∑

1≤j≤n

(S1 < εsn, · · · , Sj−1 < εsn, Sj ≥ εsn)

≡
∑

1≤j≤n

Aj .

Now we have

P(A) = P(A ∩ (Sn ≥ (ε−
√
2)sn) + P(A ∩ (Sn < (ε−

√
2)sn)

≤ P(Sn ≥ (ε−
√
2)sn) +

∑

1≤≤n

P(Aj ∩ (Sn < (ε−
√
2)sn)

= P(Sn ≥ (ε−
√
2)sn) +

∑

1≤≤n−1

P(Aj ∩ (Sn < (ε−
√
2)sn),

since P(An ∩ (Sn < (ε−
√
2)sn) = ∅. We also have for each 1 ≤ j < n,

(Sj ≥ εn) and (Sn ≤ ε−
√
2)sn)⇒ (Sn−Sj ≥

√
2sn)⇒ (|Sn−Sj | ≥

√
2sn.)

Since we still have that Sn − Sj = Xj+1 + · · ·+Xj+1, for 1 ≤ j < n, is
independent of Aj , we get

P(Aj ∩ (Sn < (ε−
√
2)sn) ≤ P(Aj)P(|Sn − Sj| ≥ sn

√
2), 1 ≤ j < n.

Now using the Tchebychev inequality, we get

P(A) ≤ P(Sn ≥ (ε−
√
2)sn) +

∑

1≤≤n−1

s2n − s2j
2s2n

)

≤ P(Sn ≥ (ε−
√
2)sn) +

∑

1≤≤n−1

1

2
P(Aj)

≤ P(Sn ≥ (ε−
√
2)sn) +

1

2

∑

1≤≤n

P(Aj)

= P(Sn ≥ (ε−
√
2)sn) +

1

2
P(A)
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which leads to the desired result. �

18 - Etemadi’s Inequality. LetX1, · · · ,≤ Xn be n independent real-
valued random variables such that the partial sums Sk = X1+ ...+Xk,
1 ≤ k ≤ n, are definied. Then for any α ≥ 0, we have

P

(

max
1≤k≤n

|Sk| ≥ 3α

)

≤ 3 max
1≤k≤n

P (|Sk| ≥ α) . ♦

proof. The formula is obvious for n = 1. Let n ≥ 2. As usual, denote
B1 = (|X1| ≤ 3α), Bk = (|S1| < 3α, · · · , |Sk−1| < 3α, |Sk| ≥≥ 3α),
k ≥ 2. By decomposing (max1≤j≤n |Sj| ≥ 3α) over the partition

(|Sn| ≥ α) + (|Sn| < α) = Ω,

we have

( max
1≤j≤n

|Sj | ≥ 3α) ⊂ (|Sn| ≥ α) ∪ (|Sn| < α, max
1≤j≤n

|Sj | ≥ 3α)

And by the principle of the construction of the Bj ,

( max
1≤j≤n

|Sj| ≥ 3α) =
∑

1≤j n

Bj

and hence

( max
1≤j≤n

|Sj| ≥ 3α) ⊂ (|Sn| ≥ α) ∪
∑

1≤j n−1

(|Sn| < α3α) ∩ Bj

where the summation is restricted to j ∈ {1, ..., n− 1} since the event
(|Sn| < α3α) ∩ Bn is empty. Further, on (|Sn| < α) ∪ Bj, we have
(|Sn| < α) and (|Sj| < 3α) and the second triangle inequality |Sn −
Sj| ≥ |Sj| − |Sn| ≥ 3α− α = 2α, that is

(|Sn| < α)∩Bj ⊂ Bj∩(|Sn| < α)∩(|Sn−Sj | ≥ 2α) ⊂ Bj∩(|Sn−Sj | ≥ 2α).

Now, we remind that and Bj and Sn−Sj are independent. Translating
all this into probabilities gives

P( max
1≤j≤n

|Sj| ≥ 3α) ≤ P(|Sn| ≥ α) +
∑

1≤j n−1

P(Bj)P(|Sn − Sj| ≥ 2α)

≤ P(|Sn| ≥ α) +
∑

1≤j n−1

P(Bj)

(

P(|Sn| ≥ α) + P(|Sj| ≥ α)

)

.
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But (|Sn| ≥ 2α), (|Sn| ≥ α) and (|Sj| ≥ 2α) are subsets of

( max
1≤j≤n

|Sj| ≥ α)

and hence, we may conclude that

P

(

max
1≤j≤n

|Sj| ≥ 3α

)

≤ P

(

max
1≤j≤n

|Sj| ≥ α

)(

1 + 2
∑

1≤j≤n

P(Bj)

)

≤ P

(

max
1≤j≤n

|Sj| ≥ 3α

)(

1 + 2P

(
∑

1≤jn

Bj

))

≤ 3P( max
1≤j≤n

|Sj| ≥ 3α). �





CHAPTER 7

Introduction to Classical Asymptotic Theorems of

Independent Random variables

1. Easy Introduction

We are going to quickly discover three classical types of well-known
convergences which are related to sequences of independent random
variables. In the sequel :

(Xn)n≥0 is a sequence of centered real-valued random variables defined
on the same probability space (Ω,A,P). If the expectations µn = EXn’s
exist, we usually center theXn’s at their expectations by takingXn−µn

in order to have centered random variables. If the variances exist, we
denote σ2

n = Var(Xn) and

s20 = 0, s21 = σ2
1, s

2
n = σ2

1 + ... + σ2
n, n ≥ 2.

The laws we will deal with in this chapter are related to the partial
sums

S0 = 0, Sn = X1, Sn = X1 + ... +Xn.

(a) Discovering the simplest Weak Law of Large Numbers
(WLLN).

Suppose that the random variables Xn are independent and are identi-
cally distributed (iid) and have the common mathematical expectation
µ. We are going to find the limit in probability of the sequence

Xn =
Sn

n
, 6= 0.

By Proposition 18 in Section 6 in Chapter 5, a non-random weak limit
is also a limit in probability and vice-versa. So we may directly try
to show that Xn converges to a non-random limit (which is supposed
to be µ). To do this, we have many choices through the Portmanteau

207
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Theorem 11 in Section 4 in Chapter 5. Let us use the characteristic
function tool ΦXj

= Φ for all j ≥ 1. Since we have, by Proposition 6
in Section 6 in Chapter 2,

Φ′(0) = iµ and Φ(0) = 1,

(where i is the normed pure complex number with a positive angle),
we may use a one order Taylor expansion of Φ at zero to have

Φ(u) = 1 + iµu+O(u2), as u→ 0. (EX)

By the properties of the characteristic function and by taking into
account the fact that the variables are iid, we have

ΦSn/n(u) = ΦX1+...+Xn
(u/n) = Φ(u/n)n, u ∈ R.

Now, for u fixed, we have u/n → 0 as n → ∞, and we may apply
Formula (EX) to have, as n→ +∞,

ΦSn/n(u) = exp

(

n log(1 + iµu/n+O(n−2))

)

→ exp(iµu) = Φµ(u).

Here, we skipped the computations that lead to n log(1 + iµu/n +
O(n−2) → iµu. In previous books asLo (2017a) and Lo et al. (2016),
such techniques based on expansions of the logarithm function have
been given in details.

We just show that Sn/n µ, hence Sn/n→P µ. This gives us the first
law.

Theorem 14. (Kintchine) If (Xn)n≥0 is a sequence of independent
and are identically distributed (iid) random variables with a finite com-
mon mathematical expectation µ, we have the following Weak Law of
Large Numbers (WLLN) :

Sn/n→P µ, as n→ +∞.

(b) Discovering the Strong Law of Large Numbers (SLLN).

Before we proceed further, let us state a result of measure theory and
integration (See Lo (2017b), given in Exercise 3 in Doc 04-05, and its
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solution in Doc 04-08) in Chapter 5 in Lo (2017b) in the following
famous lemma.

Lemma 4. (Borel-Cantelli Lemma) Let (An)n≥0 ⊂ A.

(i) If the series
∑

n≥0 P(An) < +∞ is convergent, then

P

(

lim sup
n→+∞

An

)

= 0.

(ii) If the events An are independent and if the series diverges, that is

∑

n≥0 P(An) =∞, then

P

(

lim sup
n→+∞

An

)

= 1.

This lemma is the classical basis of the simple SLLN. But before we
continue, let us give the following consequence.

Corollary 1. Let (Xn)n≥0 be a sequence of independent a.e. finite
real-valued random variables such that Xn → 0 a.s as n→ +∞. Then
for any finite real number c > 0,

∑

n≥0

P(|Xn| ≥ c) < +∞.

Proof. Given the assumptions of the corollary, the events An’s are
independent. By the Borel-Cantelli Lemma,

∑

n≥0 P(|Xn| ≤ c) = +∞
would imply P(|Xn| > c, i.o) = 1 and hence (Xn → 0) a.e. would be
false. The proof is complete with this last remark. �

Let us expose the simple strong law of large number.

Theorem 15. (Simple Strong Law of Large Numbers) Let (Xn)n≥0

be a sequence of independent centered and square integrable random
variables with variance one, that is EX2

n = 1 for all n ≥ 1. Then

1

n

∑

1≤k≤n

Xk → 0 a.s. as n→ +∞.
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* Proof. Suppose that the assumption of the theorem hold. We are
going to use the perfect square method. Put

Yn = Sn2/n2, n ≥ 1,

that is, we only consider the elements of the sequence (Sk/k)k≥1 cor-
responding to a square index k = n2. Remark that Var(Yn) = n−2,
n ≥ 2. Fix 0 < β < 1/2. By Chebychev’s inequality, we have

P(|Yn| > n−β) ≤ n2(1−β)

and thus,

∑

n

P(|Yn| > n−β) ≤
∑

n2(1−β) <∞.

By Borel-Cantelli’s Lemma, we conclude that

P(lim
n

inf(|Yn| ≤ n−β) = 1.

Let us remind that

Ω0 = lim
n

inf(|Yn| ≤ n−β) =
⋃

n≥0

⋂

r≥n

(|Yr| ≤ r−β).

Hence, for all ω ∈ Ω0, there exists n(ω) ≥ 0 such that for any r ≥ n,

|Yr| ≤ r−β.

* By the sandwich’s rule, we conclude that, for any ω ∈ Ω0, we have

Ym(ω)→ 0.

This means that

Ω0 ⊂ (Yn → 0).

We conclude that P(Yn → 0) = 1 and hence Yn → 0, a.s..

To extend this result to the whole sequence, we use the decomposition
of N by segments with perfect squares bounds. We have

∀(n ≥ 0), ∃m ≥ 0, k(n) = m2 ≤ n ≤ (
√

k(n) + 1)2.
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We have

E(
1

n
(Sn − Sk(n)) = 0

and

Var(
1

n
(Sn−Sk(n)) =

1

n2
E

n∑

i=k(n)+1

X2
i ≤

1

n2
(2
√

k(n)+1) ≤ 3
√
n

2
= 3n−3/2.

Hence,

∑

n

P(

∣
∣
∣
∣

1

n
(Sn − Sk(n))

∣
∣
∣
∣
> n−β) ≤ 3

∑

n−( 3
2
−2β) <∞

whenever β < 3/4. We conclude as previously that

1

n
(Sn − Sk(n))→ 0, a.s.

Finally we have

Sn

n
=
Sn − Sk(n)

n
+
k(n)

k(n)
× Sk(n)

n
→ 0 a.s.,

since

1 ≤ n

k(n)
< 1 +

2
√

k(n)
+

1

k(n)

and
k(n)

n
→ 1.

We just finished to prove that

Sn

n
→ 0 a.s. �

In a more general case of random variables with common variance, we
may center and normalize them to be able to use the result above as
in
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Corollary 2. Let (Xn)n≥0 be a sequence of independent and square
integrable random variables with equal variance σ2 > 0,that is Var(Xn) =
σ2 for all n ≥ 1. Then

1

nσ

∑

1≤k≤n

(Xk − E(Xk))→ 0 a.s. as n→ +∞.

* We may also derive the

Proposition 19. (Kolmogorov) If (Xn)n≥0 is a sequence of inde-
pendent random variables with mathematical expectations µn and vari-
ances 0 < σ2

n < +∞, we have

1

n

∑

1≤j≤n

Xj − µj

σj
→ 0, a.s. as → 0.

If the expectations are zero’s that is µn = 0, n ≥ 0 and if the variances
are equal, that σ2

n = σ2, n ≥ 0, we have the simple SLLN :

Sn

nσ
→ 0, a.s. as → 0.

(c) Discovering the Central limit Theorem.

The Central Limit Theorem in Probability Theory turns around find-
ing conditions under which the sequence of partials sums Sn, n ≥ 1,
when appropriately centered and normalized, weakly converges to some
random variable. Generally, the probability law of the limiting random
variable is Gaussian.

Actually, we already encountered the CTL in our series, through The-
orem 4 in Chapter 7 in Lo (2017a) in the following way.

If the Xn’s are iid according to a Bernoulli probability law B(p), 0 <
p < 1, Sn follows a Biniomial laws of parameters p = 1 − q and n ≥ 1
and we have

Zn =
Sn − ESn

Var(Sn)1/2
=
Sn − npq√

npq
, n ≥ 1.

The invoked theorem (in Lo (2017a)) states that, as n→ +∞,

∀x ∈ R, FSn
(x)→ N(x) =

1√
2π

∫ x

−∞
exp(−t2/2) dλ(t).
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At the light of the Portmanteau Theorem 11 in Section 4 in Chapter
5, we have

Proposition 20. Let (Xn)n≥1, be a sequence of independent ran-
dom variables identically distributed as a Bernoulli probability law B(p),
0 < p < 1. Then we have the following Central limit Theorem (CLT)

Sn − npq√
npq

 N (0, 1), as n→ +∞.

We are going to see that result is a particular case the following one.

Proposition 21. (CLT for an iid sequence with finite variance).
Let (Xn)n≥1, be a sequence of centered and iid random variables with
common finite variance σ2 > 0. Then, we have the following CLT

Sn

sn
 N (0, 1), as n→ +∞. (CLTG)

If the common expectation is µ, we may write

Sn − nµ
σ
√
n
 N (0, 1), as n→ +∞.

Proof. The Portmanteau Theorem 11 in Section 4 in Chapter 5 offers
us a wide set of tools for establishing weak laws. In on dimensional
problems, the characteristic method is the favored one. Here, we have
ΦXj

= Φ for all i ≥ 1. Let us give the proof for σ = 1. By Proposition
6 in Section 6 in Chapter 2, we have

Φ(0) = 1, Φ′(0) = 0 and Φ′′(0) = −1.

Let us use two-order Taylor expansion of Φ in the neighborhood of 0
to have :

Φ(u) = 1− u2/2 +O(u2), as u→ 0. (EX2)

By the properties of the characteristic function and by taking into
account that the variables are iid, we have

ΦSn/
√
n(u) = ΦX1+...+Xn

(u/
√
n) = Φ(u/

√
n)n, u ∈ R.

Now for u fixed, we have u/
√
n → 0 as n → ∞, and we may apply

Formula (EX2) to have, for n→ +∞,
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ΦSn/
√
n(u) = exp

(

n log(1− u2/(2n) +O(n−3/2))

)

→ exp(−u2/2),

where again we skipped details on the expansions of the logarithm
function. So we have just proved that

Sn/
√
n N (0, 1).

If the common expectation is µ, we may transform the sequence to
((Xn − µ)/σ)n≥1, which is an iid sequence of centered random variables
with variance one. By applying the result above, we get

Sn

σ
√
n
 N (0, 1).

We finish the proof by noticing that : s2n = nσ2, n ≥ 1. �

(d) A remark leading the Berry-Essen Bounds.

Once we have a CLT in the form of Formula (CLTG), the Portmanteau
theorem implies that for any fixed x ∈ R

∣
∣
∣
∣
P

(
Sn

sn
≤ x

)

−N(x)

∣
∣
∣
∣
→ 0 as n→ +∞.

Actually, the formula above holds uniformly (See Fact 4 in Chapter 4
in Lo et al. (2016)), that is

Bn = sup
x∈R

∣
∣
∣
∣
P

(
Sn

sn
≤ x

)

−N(x)

∣
∣
∣
∣
→ 0 as n→ +∞.

A Berry-Bound is any bound of Bn. We will see later in this chapter a
Berry-Essen bound for sequence of independent random variables with
third finite moments.

Conclusion.

Through Theorem 14 and Propositions 19 and 21, we discovered simple
forms of three of the most important asymptotic laws in Probability
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Theory.

Establishing WLLN ’s, SLLN ’s, CLT ’s, Berrey-Essen bounds, etc. is
still a wide and important part in Probability Theory research under
a variety of dependence type and in abstract spaces.

For example, the extensions of such results to set-valued random vari-
ables constitute an active research field.

The results in this section are meaningful and are indeed applied. But
we will give important more general cases in next sections. The coming
results represent advanced forms for sequence of independent random
variables.
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2. Tail events and Kolmogorov’s zero-one law and strong
laws of Large Numbers

This chapter will be an opportunity to revise generated σ-algebras and
to deepen our knowledge on independence.

(A) Introduction and statement of the zero-one law.

At the beginning, let X = (Xt)t∈T be an non-empty of mappings from
(Ω,A) to some measure spaces (Ft,Ft). The σ-algebra on Ω generated
by this family is

AX = σ{X−1
ti

(Bti), Bti ∈ Fsi, (t1, ..., tp) ∈ T p, p ≥ 1}.

It is left as an exercise to check that AX is also generated by the class
of finite intersections of the form

CX = {
⋂

1≤k≤n

X−1
ti

(Bti), Bti ∈ Fsi, (t1, ..., tp) ∈ T p, p ≥ 1}, (P01)

which is a π-system.

Coming to our topic on the zero-one law, we already saw from the
Borel-Cantelli Lemma 4 that : for a sequence of independent events
(An)n≥0 ⊂ A on the probability space (Ω,A,P) such that An → A as
n→ +∞, then P(A) ∈ {0, 1}.

We are going to see that this is a more general law called the Kol-
mogorov zero-one law. Let (Xn)n≥1 be a sequence of measurable map-
pings from (Ω,A) to some measure spaces (Fi,Fi), i ≥ 1. For each
n ≥ 0, the smallest σ-algebra on Ω rendering measurable all the map-
ping Xk, k ≥ n, with respect to F is

Atail,n = σ{X−1
k (Bk), Bk ∈ Fk, k ≥ n}.

It is usually denoted as Atail,n = σ(Xk, k ≥ n) and quoted as the
σ-algebra generated by the mappings Xk, k ≥ n.

Definition. The tail σ-algebra generated by the sequence (Xn)n≥0,
relatively to F , is the intersection
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Atail =
⋂

n≥0

Atail,n.

The elements of Atail are, by definition, the tail events with respect to
the sequence (Xn)n≥0. ♦

Let us give an example. Let Bk ∈ Fk, for k ≥ 1. We have that

lim inf
n→+∞

(Xn ∈ Bk) ∈ Atail and lim sup
n→+∞

(Xn ∈ Bk) ∈ Atail.

Here is why. Because of the increasingness of the (∩p≥nAp)n≥0 (in n),
we have for any fixed n0 ≥ 0,

lim inf
n→+∞

(Xn ∈ B) =
⋃

n≥1

⋂

p≥n

(Xp ∈ B) =
⋃

n≥n0

⋂

p≥n

(Xp ∈ B)

and

{
⋃

k≥n

(Xn ∈ B), n ≥ n0

}

⊂ Atail,n0 ,

and then lim infn→+∞(Xn ∈ B) ∈ Atail,n0 for all n0 ≥ 0 and is in Atail.
To get the same conclusion for the superior limit, we applied that con-
clusion to its complement.

Let us prove a useful result before we proceed further.

The zero-one Law. If the sequence elements of the sequence (An)n≥0

are mutually independent, then any tail A event with respect to that
sequence is such that P(A) ∈ {0, 1}, that is the tail σ-algebra is be-
haves as the trivial σ-algebra. ♦

Before we give the proof, let us get more acquainted with independent
σ-algebras.

(B) Independence of σ-algebras.

Definition. Two non-empty sub-classes C1 and C2 of A are mutu-
ally independent if and only if : for any subsets {A1, ..., Aℓ1} ⊂ C1
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and {B1, ..., Bℓ2} ⊂ C2, for any non-negative, real-valued and measur-
able functions hi, i ∈ {1, 2}, defined on a domain containing {0, 1},
h1(1A1 , ..., 1Aℓ1

) and h2(1B1 , ..., 1Bℓ2
) are independent. ♦

For easy notation, let us denote by I(C1) the class of all elements of
the form h1(1A1, ..., 1Aℓ1

) as described above. I(C2) is defined similarly.

Example. Let F1 = {Xt, t ∈ T} a non-empty family of measurable
mappings from (Ω,A) to some measure space (F,F) and F2 = {Ys, s ∈
S} a non-empty family of measurable mappings from (Ω,A) to some
measure space (G,G). Suppose that any finite pairs of sub-families
(Xtj )1≤j≤p (p ≥ 1)and (Ysj)1≤j≤q (q ≥ 1) of F1 and F2 respectively, the
random vectors (Xt1 , ..., Xtp)

t and (Ys1, ..., Ysq)
t are independent, that

is

P(Xt1 ,...,Xtp ,Ys1 ,...,Ysq) = P(Xt1 ,...,Xtp) ⊗ P(Ys1 ,...,Ysq ). (DE01)

The classes

CX = {X−1
t (B), B ∈ F , t ∈ T} and CY = {Y −1

s (C), C ∈ G, s ∈ S}

are independent. To see that, we consider two finite subsets of CX and
CY of the forms

(X−1
t1

(B1), ..., X
−1
tp (Bp)) and (Y −1

s1
(C1), ..., S

−1
tq (Cq)).

where the (Bj)1≤j≤p ⊂ F and (Cj)1≤j≤q ⊂ G and, accordingly, two real-
valued and measurable functions h1 and h1 of their indicators functions
as

H1 = h1(1B1(Xt1), ..., 1Bp
(Xtp))) and H2 = h1(1C1(Ys1), ..., 1Cq

(Ysp))).

So, the functions H1 and H2 are independent because of Formula (DE).
♦

For now, we need the two results in the next proposition.
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Proposition 22. Let C1 and C2 be two mutually independent and
non-empty π-sub-classes of A. Consider the generated σ-algebra Ai =
σ(Ci), i ∈ {1, 2}.

(1) Then for any (A,B) ∈ A1 ×A2, A and B are independent.

(2) A1 and A2 are independent.

(3) For any non-negative and real-valued function Zi, i ∈ {1, 2}, such
that each Zi is Ci-measurable, we have

E(Z1Z2) = E(Z1)E(Z2). ♦

proof. We easily see that each Ai, i ∈ {1, 2}, is also generated by the
class of finite intersections of sets which are either elements of Ci or
complements of elements of Ai, denoted

C̃1 = {
⋂

1≤k≤n

Ai, Ai ∈ Ci or Ac
i ∈ Ci, 1 ≤ i ≤ p, p ≥ 1}.

Also, for example, we already learned in Chapter 1 (Subsection 3 in
Section 3.2) how to choose h1 such that Eh1(1A1 , ..., 1Aℓ1

) be of the
form

P(A′
1, ..., A

′
i, ..., A

′
ℓ1), (IN02)

where A′
i = Ai or A

′
i = Ac

i , 1 ≤ i ≤ ℓ1. In general, for any element
Z1 ∈ I(C1) of the form h1(1A1 , ..., 1Aℓ1

) with {A1, ..., Aℓ1} ⊂ C1, ℓ1, we
have

h1(1A1 , ..., 1Aℓ1
) =

∑

ε∈De≪1

h(ε)1∏
1≤i≤ℓ1

A
(εi)
i , (IN02)

and Z1 is simply a finite linear combination of elements of A1. So the
independence between C1 and C2 is that of A1 and A2 since the factor-
ization is preserved by finite liner combinations.

After these preliminary considerations, we going to prove a first step.

Step 1. We prove that for any A ∈ A1, A is independent from C2.
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To see this, define

A0,1 = {A ∈ A1, ∀Z ∈ I(C2), 1A independent of Z}.

By the assumption we have that C1 ⊂ A0,1. Let us quickly prove that
A0,2 is a σ-algebra. For sure, Ω ∈ A0,2. If A ∈ A0,1, 1Ac is a measurable
function of 1A, and by this is still in A0,1.

Let (A1, A2) ∈ A0,1, A2 ⊂ A1. For any non-negative and measurable
functions h(1A2\A1

) and ℓ(Z) of 1A2\A1
and Z ∈ I(C2), we have

h(1A2\A1) = h(0)(1(A2\A1)c) + h(1)(1A2 − 1A1)

= h(0)(1Ac
2
+ 1A1) + h(1)(1A2 − 1A1)

Hence, by multiplying h(1A2\A1) by ℓ(Z) and by taking the expecta-
tions, we will be able to factorize E(ℓ(Z)1B) for B ∈ {A1, A2, A

c
1} in

all the terms of the products and, by this, we get

E(h(1A2\A1)ℓ(Z)) = E(h(1A2\A1))E(ℓ(Z)).

We get that A2 \ A1 ∈ A0,1.

Finally, let (Ak)leqk≥0 ∈ A0,1 be a sequence of pairwise disjoint elements
of A0,1. We define

Bn =
⋃

1≤k≤n

Ak =
∑

k≥0

Ak and Bn =
⋃

1≤k≤n

Ak =
∑

1≤k≤n

Ak, n ≥ 0.

For any non-negative and measurable functions h(1Bn
) and ℓ(Z) of 1Bn

and Z ∈ I(C2), we have

h(1Bn
= h(0)

(

1−
∑

1≤k≤n

1Ak

)

+ h(1)
∑

1≤k≤n

1Ak
.

Here again, by multiplying h(1Bn
) by ℓ(Z) and by taking the expecta-

tions, we will be able to factorize any E(ℓ(Z)1B) for B ∈ {Bk, 1 ≤ k ≤
n} in all the terms of the product and, by this, we get also that :

∀n ≥ 0, E(h(1Bn
)ℓ(Z)) = E(h(1Bn

))E(ℓ(Z)).

Next by letting n ↑ +∞, we get by the Monotone Convergence Theorem
that
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E(h(1B)ℓ(Z)) = E(h(1B))E(ℓ(Z)),

any non-negative and measurable functions h(1Bn
) and ℓ(Z) of 1Bn

and of Z ∈ I(C2). This proves that B ∈ A0,1. In summary A0,1 is a
Dynkin system containing the π-system. So by the λ− π-Lemma (See
Lo (2017b), Doc 04-02, Chapter 5), it contains A1. We conclude that
A1 = A0,1 and we get that :

Any element of A1 is independent of I(C2).

Step 2. For any Z1 ∈ I(A1) of the form h1(1A1, ..., 1Aℓ1
) with {A1, ..., Aℓ1} ⊂

A1, ℓ1, we have Z1 independent of C2.

This is an easy consequence of Formula (IN01) and the previous result.

Final Step 3. Put

A0,2 = {B ∈ A2, ∀Z ∈ I(A1), 1B independent of Z}.

By the previous steps, A0,2 includes C2. We use the same techniques as
in Step 1 to prove that A0,2 is a Dynkin-system and get that A0,2 = A2

by the classical methods. Next, we proceed to the same extension as
in Step 2 to conclude that any elements of I(A1) is independent of any
other element of I(A2). �

Now, we may go back the proof of the Kolmogorov law.

(C) Proof of the zero-one law. Define the σ-algebras

Apart, n = σ({X−1
k (B), B ∈ F , 0 ≤ k ≤ n}).

If A is a tail event, hence for each n ≥ 1, A ∈ Apart, n. Hence, by
the principle underlying Formula (P01) at the beginning at the section
and by Proposition above, we get that A is independent to any Apart, n,
n ≥ 1. Since these latter sub-classes are π-system (being σ-algebras),
A is also independent of

σ

(

Apart, n

)

= σ({X−1
k (F ), F ∈ F , k ≥ 0}) = Apart, 0.
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Since A ∈ Apart, 0, we get that A is independent to itself, that is
P(A) = P(A ∩ A) = P(A)P(A). The equation P(A)2 = P (A) has
only two solutions 0 or 1 in [0, 1]. �

(D) Limits Laws for independent random variables.

We are going to derive series of a three interesting asymptotic laws
from the Kolmogorov Inequality (Inequality 14 in Chapter 6), the last
of them being the celebrated Three-series law of Kolmogorov.

Let X1, X2, ... be independent centered and square integrable random
variables. We denote Var(Xi) = σ2

i , 1 ≤ i ≤ n. Define

C∞ = inf{C > 0, ∀k ≥ 0, |Xk| ≤ C a.s.}.
Define the partial sums by

S0 = 0, Sk =
k∑

i=1

Xi, k ≥ 1 and s0 = 0, s2k =
k∑

i=1

σ2
i .

We have :

Proposition 23. The following statements hold.

(1) If s2n converges σ2 ∈ R as n→ +∞, then (Sn)n≥0 converges a.s to
a a.s. finite (possibly constant) random variable.

(2) If the sequence (Xn)n≥0 is uniformly bounded, that is C∞ is finite,
s2n converges in R as n→ +∞ if and only if (Sn)n≥0 converges a.s.

More precisely, if s2n diverges as n → +∞ and if C∞ is finite, then
(Sn)n≥0 diverges on any measurable subset of Ω with a positive proba-
bility, that is (Sn)n≥0 non-where converges.

Proof. Since the random variables are centered and independent, we
have for any 0 ≤ k ≤ n,

V(Sn − Sk) =
∑

k<j≤n

V(Xj) = s2n − s2k.

Let us apply the right-hand Inequality 14 in Chapter 6, to get for any
ε > 0, for any 0 ≤ k ≥ n,
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P(max(|Sk+1 − Sk|, ..., |Sn − Sk|) ≥ ε) ≤ |s
2
n − s2k|
ε2

,

in other words, for any k ≥ 0, n ≥ 0, for any ε > 0

P

(
⋃

1≤j≤n

(|Sk+j − Sk| ≥ ε)

)

≤ s2n − s2k
ε2

.

Let us suppose that s2n converges in R as n → +∞, that is (s2n)n≥0 is
a Cauchy sequence. By applying the Monotone convergence Theorem,
we have for any k ≥ 0 for any ε > 0,

P

(
⋃

n≥k

(|Sn − Sk| ≥ ε) = 0

)

.

and next any ε > 0

P(
⋂

k≥0

(
⋃

n≥k

(|Sn − Sk| ≥ ε) = 0

)

.

To conclude, set

Ωp =
⋂

k≥0

(
⋃

n≥k

(|Sn − Sk| ≥ 1/p

)

, p ≥ 1 and Ω∞ =
⋃

p≥1

Ωp.

We still have P(Ω∞) = 0 and for any ω ∈ Ω∞, for any p ≥ 1, ∃k0 ≥ 0,
for all n ≥ k0,

|Sn − Sk|(ω) < 1/p.

We conclude that (Sn)n≥0 is Cauchy on Ω∞ and then converges on Ω∞,
and simply converges a.s.

It remains to prove that if C∞ is finite and if s2n → +∞, (Sn)n≥0

diverges a.s.. By Inequality 14 in Chapter 6, we also have for any
ε > 0, for any 0 ≤ k ≤ n,

P

(
⋃

1≤j≤n

(

|Sk+j − Sk| ≥ ε

))

≥ 1− (ε+ C∞)2

s2n − s2k
.

For k fixed and n→ +∞, we get for any ε > 0,
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P(
⋃

j≥0

(|Sk+j − Sk| ≥ ε) = 1.

and next, for any ε > 0,

P(
⋂

k≥0

⋃

j≥0

(|Sk+j − Sk| ≥ ε) = 1.

Denote

Ω0 =

(
⋂

k≥0

⋃

j≥0

(|Sk+j − Sk| ≥ 1

)

.

It is clear that P(Ω0) = 1 and (Sn)n≥0 is not Cauchy on Ω0. This proves
the two last statements of the proposition. �

Proposition 24. Suppose that the assumptions in Proposition 24
hold, except we assume that the Xk’s are not necessarily centered.
Then, if (Sn)n≥0 converges a.s as n→ +∞ and the sequence (Xn)n≥0 is
uniformly bounded (that is C∞ < +∞), then the two sequences (s2n)n≥0)
and

(∑

1≤k≤n EXk

)

n≥0
both converge to finite numbers as n→ +∞.

Proof. It uses the Kolmogorov construction of probability spaces. At
this stage, we know this result only in finite distribution (See Chapter
2, Section 5.2, Point (c5)). Here, we anticipate and use Theorem 27
(see page 314) in Chapter 9, and say:

There exists a probability space holding independent random variables
Xk, X

′
k, k ≥ 0 such that for each k, Xk =d X

′
k.

Let us suppose that the assumptions hold and let us define the sym-

metrized sequence X
(s)
k = Xk−X ′

k, k ≥ 0. Then the sequence (X
(s)
k )k≥0

is centered and uniformly bounded by 2C∞. Now, if
(∑

1≤k≤nXk

)

n≥0

converges a.s., so does
(∑

1≤k≤nX
′
k

)

n≥0
by the equality in law. Hence

(
∑

1≤k≤nX
(s)
k

)

n≥0
also converges. Next, by applying Point (2) of

Proposition 24, the sequence
(
∑

1≤k≤nV(X
(s)
k )
)

n≥0
converges. Since

∑

1≤k≤nV(X
(s)
k ) = 2s2n, we have the first conclusion.



2. KOLMOGOROV’S STRONG LAWS OF LARGE NUMBERS 225

It remains to prove that
(∑

1≤k≤n EXk

)

n≥0
converges. But we have for

all n ≥ 0,

∑

1≤k≤n

E(Xk) =
∑

1≤k≤n

Xk −
∑

1≤k≤n

(Xk − E(Xk))

From this and from that assumption that (Sn)n≥0 converges a.s, we
may apply Point (1) of Proposition 24 to see that the second series in
the right-hand of the formula above converges and get our last conclu-
sion. �

Remark. To fully understand this proof, the reader should seriously
know the Kolmogorov construction Theorem and its consequences. For
example, because of the independence, the vectors (X0, ..., Xk) and
(X ′

1, ..., X
′
k) have the same law of k ≥ 0 and by this, the sequences

(Xk)k≥0 and (X ′
k)k≥0 have the same law as stochastic processes. So the

a.s. depends only on the probability law of (Xk)k≥0, the proved results
remain valid on any other probability space for a sequence of the same
probability law. We advice the reader to come back to this proof after
reading Chapter 9.

Before we continue, let us denote for any real-valued random variable
X and a real-number c > 0, the truncation of X at c by

X(c) = X1(|X|≤c)

which is bounded by c.

Proposition 25. Suppose that the Xn’s are are square integrable,
centered and independent. If s2n converges σ2 ∈ R as n → +∞, then
(Sn)n≥0 converges a.s to a a.s. finite . The series (Sn)n≥0 converges
a.s. if and only any of the three series below converges :

(i)∀c ∈ R+\{0},
∑

k≥0

P(|Xk| ≥ c), (ii)
∑

k≥0

Var
(

X
(c)
k

)

and (iii)
∑

k≥0

E(X
(c)
k )

Proof. Suppose the three Conditions (i), (ii) and (iii) hold. From (ii),
(
∑

1≤k≤n

(

X
(c)
k − E(X

(c)
k )

))

n≥0

converges. This combined with Con-

dition (iii) implies that
(
∑

1≤k≤nX
(c)
k

)

n≥0
converges a.s., based on the
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remark that X
(c)
k =

(

X
(c)
k − E(X

(c)
k )

)

+

(

E(X
(c)
k )

)

for all k ≥ 0.

Next for all c > 0, the event (Xk 6= X
(c)
k ) occurs only if (|Xk| ≥ c) and

hence

P(Xn 6= X(c)
n , i.o) = lim

n↑+∞
P

(
⋃

k≥n

(Xk 6= X
(c)
k )

)

≤ lim
n↑+∞

∑

k≥n

P(|Xk| ≥ c).

Hence, by Condition (i), P(Xn 6= X
(c)
n , i.o) = 0 and next, the series

∑

k≥0Xk and
∑

k≥0X
(c)
k converge or diverge a.s. simultaneously. We

get that
∑

k≥0Xk converges a.s..

Conversely, if (Sn)n≥0 converges a.s., it follows that (Xn)n≥0 converges
a.s. to zero, by Corollary 1 in Section 1 below, Condition (i) holds.

The latter, by the a.s. equivalence between
∑

k≥0Xk and
∑

k≥0X
(c)
k ,

ensures that
∑

k≥0X
(c)
k converges, which by Proposition 24, yields Con-

ditions (ii) and (iii).

It remains to prove that none of the three conditions cannot fail, when-
ever the series

∑

k≥0Xk converges a.s.. First, by Corollary 1 in Section

1, Condition (i) cannot fail and hence the a.s. convergence of
∑

k≥0X
(c)
k

also cannot fail and this bears Conditions (ii) and (ii). �

Now let us close this introduction to these following important Kol-
mogorov’s Theorems.

(E) Strong Law of Large numbers of Limits Laws of Kolmoro-
rov.

Before we state the Kolmogorov laws, we state the following :

Kronecker Lemma. If (bn)n≥0 is an increasing sequence of positive
numbers and (xn)n≥0 is a sequence of finite real numbers such that
(∑

1≤k≤n xk
)

n≥0
converges to a finite real number s, then

∑

1≤k≤n bkxk

bn
→ 0 as n→∞. ♦
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This Lemma is proved in the Appendix, where it is derived from the
Toeplitz Lemma.

Let us begin by

(E-a) The Strong Law of Large Numbers for Square integrable
and independent random variables.

Theorem 16. Let (Xn)n≥0 be a sequence of square integrable and
independent random variables and let (bn)n≥1 be an increasing sequence
of finite real numbers. If

∑

n≥0

V(Xn)

b2n
< +∞, (CK01)

then we have the following SLLN

Sn − E(Sn)

bn
→ 0 as n→ +∞. (SK01)

Proof. The proof comes as the conclusion of the previous develop-
ments. Suppose that assumptions of the theorem hold and Condition
(CK01) is true. By Proposition 23, we have

∑

n≥0

Xn − E(Xn)

bn
< +∞, a.s. (SK02)

Applying the Kronecker Lemma with xk = Xk − E(Xk) and the same
sequence (bn)n≥0 leads to (SK01). �

Example. If the Xn’s have the same variance σ2, we may take bn = n,
n ≥ 1 and see that Condition (SK01) is verified since

∑

n≥1

V(Xn)

b2n
= σ2

∑

n≥1

1

n2
< +∞,

and next,

Sn − E(Sn)

n
→ 0 as n→ +∞. (SK03)
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We find again the simple SLLN as in Corollary 2 above.

Now, what happens if the first moments of the Xn exist but we do not
have information about the second moments of the Xn’s. We already
saw in Kintchine’s Theorem 14 that we have a WLLN if the Xn has the
same Law. Here again, the Kolmogorov theory goes far and establishes
the SLLN even if the common second moment is infinite. We are going
to see this in the next part.

(E-b) The Strong Law of Large Numbers for independent and
identically random variables with finite mean.

We will need the following simplified Toeplitz lemma which is proved
in the Appendix in its integrability.

Simple Toeplitz Lemma. Suppose that k(n) = n for all n ≥ 1. Let
(ck)k≥0 be sequence such that the sequence (bn)n≥0 = (

∑

1≤k≤n |ck|n≥0

is non-decreasing and bn →∞. If xn → x ∈ R as n→ +∞, then

1

bn

∑

1≤k≤n

ckxk → x as n→ +∞. ♦

Theorem 17. Let (Xn)n≥0 be a sequence of independent and iden-
tically distributed random variables having the same law as X. Then

(a) E|X| < +∞

if and only if

(b) Sn/n converges a.s. to a finite number c, which is necessarily
E(X).

Proof. Set An = (|X| ≥ n), n ≥ 0 with A0 = Ω clearly.

Now suppose that Point (b) holds. We have to prove that of E|X| is
finite. If X is bounded, there is nothing to prove. If not, the upper
endpoint of uep(X) is infinite and Formula (DF3) in Proposition 1 (See
Chapter 1, page 14)

−1 +
∑

n∈[0, [uep(X)]+]

P(|X| ≥ n) ≤ E|X| ≤
∑

n∈[0, [uep(X)]+]

P(|X| ≥ n)
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becomes

−1 +
∑

n≥0

P(|X| ≥ n) ≤ E|X| ≤
∑

n 6=0

P(|X| ≥ n). (DF4)

Then we have

Xn

n
=
Sn − Sn−1

n
=
Sn

n
− n− 1

n

Sn−1

n− 1
→ c− c = 0 a.s.

By the Borel-Cantelli Corollary 1, the serie
∑

n≥0 P(|Xn/c| ≥ 1) is con-
vergent, that

∑

n≥0 P(An) is finite and by Formula (DF4), E|X| is finite.

Now suppose that E|X| is finite. If X is bounded, we are in the case
of the last example above with Var(X) = σ2 is stationary and we have
that Sn/n converges to E(X) a.s.. If not, we use the truncated ran-

dom variables X
(t)
k = Xk1(|Xk|<k), k ≥ 1 and let S

(t)
0 = 0, S

(t)
1 = X

(t)
1 ,

S
(t)
n = X

(t)
1 + ...+X

(t)
n , n ≥ 2.

We already explained in page 225 that S
(t)
n /n and Sn/n have the same

a.s. limit or diverge a.s. together whenever
∑

n≥1 P(|Xn| ≥ n). But
since E|X| is finite, the series∑n≥1 P(|Xn| ≥ n) converges by Formula

(DF4). Hence we only have to prove that S
(t)
n /n → E(X) a.s.. Now,

by the Dominated Convergence Theorem, we have

E(X(t)
n =

∫

X1(|X|<n) dP→ EX as n→ +∞.

By applying the simple Toeplitz Lemma with ck = 1 and xk = E(X
(t)
n ,

we get

E(S
(t)
n

n
)→ EX.

So, our task is to prove that

S
(t)
n − E(S

(t)
n

n
)→ 0 a.s.

But this derives form Theorem 16 whenever we have
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∑

n≥1

Var(X
(t)
n )

n2
< +∞.

But we have

∑

n≥1

Var(X
(t)
n )

n2
=

∑

n≥1

E(X
(t)
n )2 − (E(X

(t)
n ))2

n2

≤
∑

n≥1

E(X
(t)
n )2

n2

=
∑

n≥1

E

(
X2

n2
1(|X|<n)

)

.

Next, define Bm = (m − 1 ≤ |X| < m), m ≥ 1. For m ≥ 1 fixed, we
have

X2

n2
1(|X|<n)∩Bm

=
X2

n2
1∅ = 0 for n < m,

and for n ≥ m

X2

n2
1(|X|<n)∩Bm

=
X2

n2
1Bm
≤ m2

n2
1Bm

,

so that

∑

n≥1

X2

n2
1(|X|<n)∩Bm

=
∑

n≥m

X2

n2
1(|X|<n)∩Bm

≤
(

m2
∑

n≥m

1

n2

)

1Bm
.

By comparing the series of the form
∑

n≥m f(n) with the integral
∫

x≥m
f(x)dx for a non-decreasing and continuous function f(x) = x−2,

we have

∑

n≥m

1

n2
≤
∫ +∞

m

x−2 dx = 1/m.

Hence, we have
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∑

n≥1

X2

n2
1(|X|<n)∩Bm

≤ m1Bm
= (1 + (m− 1))1Bm

≤ (1 + |X|)1Bm
.

Since, we obviously have
∑

m≥1Bm = Ω, we may sum over m in the
previous formula to have

∑

n≥1

X2

n2
1(|X|<n) ≤ (1 + |X|).

We arrive at

∑

n≥1

Var(X
(t)
n )

n2
≤ E

∑

n≥1

X2

n2
1(|X|<n) ≤ (1 + E|X|) < +∞.

We reached the desired condition which allows to conclude the proof. �

This nice theory of Kolmogorov opens the wide field of SLLN’s. The
first step for the generalization will be the Hájèk-Rényi approach we
will see soon in special monograph reserved to limits laws for sequences
of random variables of arbitrary probability laws.
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3. Convergence of Partial sums of independent Gaussian
random variables

Let us give the following interesting equivalences between different
types of convergences for partial sums of independent Gaussian real-
valued random variables.

we have

Theorem 18. Let (Xn)n≥1 be sequence of independent and centered
Gaussian real-valued random variables defined on the same probability
space (Ω,A,P). Let us define their partial sums Sn =

∑

1≤k≤nXn,

n ≥ 1 and s2n =
∑

1≤k≤n Var(Xn), n ≥ 1. The the following conver-
gences are equivalent, as n→ +∞,

(1) (Sn)n≥1 converges a.s. to an a.s. finite random variable Z.

(2) (Sn)n≥1 converges in probability to an a.s. finite random variable Z.

(3) (Sn)n≥1 weakly converges to an a.s. finite random variable Z.

(4) (sn)n≥1 converges in R.

(5) (Sn)n≥1 converges in L2.

Proof. The proof is based on the compa rison between type of con-
vergences in Chapter 5. The implication (1) → (2). Next (2) → (3)
by Point (a) of Proposition 18 in Section 5. Further (3) that for each
t ∈ R,

E exp(itSn)→ E exp(X(p, +∞)).

Since the Xn are independent, we have Sn ∼ N (0, s2n). Hence for all
t ∈ R,

exp(−ts2n/2)→ E exp(X(p, +∞)),

This is possible only if s2n converge in R, where we took into account
the fact that Z is a.s. finite. Now, by Proposition 23 (in Section 2
in Section 5, page 216) (4) implies (1). By this circular argument, the
assertions (1) to (4) are equivalent.
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Let us handle Assertion (5). Suppose (5) holds with s2n → s2. Let us
denote S =

∑

n≥1Xn. We have for all n ≥ 1

E(S − Sn)
=‖S − Sn‖22 = (s2 − s2n)→ 0.

So (5) implies (5). Finally, suppose that (2) holds. We have that by
Point (3) that Sn converge to S in probability and s2n converge to s2,
and next

‖Sn‖22 = s2n → s2 = ‖S‖22.

Thus by Point(c4) of Theorem 10 (in Section 2 in Section 5, page 167),
(2) implies (5). The proof is complete now.
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4. The Lindenberg-Lyapounov-Levy-Feller Central Limit
Theorem

We do not treat the Central limit Theorem on Rd, d ≥ 2, which is
addressed in Lo et al. (2016) in its simplest form.

We already described the CLT question on R with iid sequences. The
current section will give the most finest results for independent random
variables. Researchers are trying to export the Linderberg-Levy-Feller
Central Limit Theorem to abstract spaces under dependance condi-
tions. In that generalization process, mastering the techniques which
are used in the independence case significantly help.

Let us begin by the key result of Lyapounov.

(A) Lyapounov Theorem.

Theorem 19. Let X1, X2, ... a sequence of real and independent
random variables centered at expectations, with finite (n+δ)−moment,
δ > 0. Put for each n ≥ 1, Sn = X1 + ...+Xn and s2n = EX2

1 +EX2
2 +

... + EX2
n. We denote σ2

k = EX2
k , k ≥ 1 and Fk denotes the probability

distribution function of Xk. Suppose that

(4.1)
1

s2+δ
n

n∑

k=1

E |Xk|2+δ → 0 as n→∞.

Then, we have as n→ +∞,

Sn/sn  N(0, 1).

Proof of Theorem 19. According to Lemma 3 below, if (4.1) holds for
δ > 1, then it holds for δ = 1. So it is enough to prove the theorem for
0 < δ ≤ 1. By lemma 4 below, the assumption (4.1) implies sn → +∞
and

max
1≤k≤n

(
σk
sn

)2+δ

≤ max
1≤k≤n

E |Xk|2+δ

s2+δ
n

≤ 1

s2+δ
n

n∑

k=1

E |Xk|2+δ =: An(δ)→ 0.

Let us use the expansion of the characteristic functions

fk(u) =

∫

eiuxdFk(x)
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at the order two to get for each k, 1 ≤ k ≤ n as given in Lemma 1
below

(4.2) fk(u/sn) = 1− u2

2
.
σ2
k

s2n
+ θnk

|u|2+δ
E |Xk|2+δ

s2+δ
n

.

Now the characteristic function of Sn/sn is, for u ∈ R,

fSn/sn(u) =
n∏

k=1

fk(u/sn)

S that is

log fSn/sn(u) =

n∑

k=1

log fk(u/sn).

Now, we use the uniform expansion of log(1 + u) at the neighborhood
at 1, that is

(4.3) sup
|u|≤z

∣
∣
∣
∣

log(1 + u)

u

∣
∣
∣
∣
= ε(z)→ 0.

For each k in (4.2), we have

(4.4) fk(u/sn) = 1− ukn

with the uniform bound

|ukn| ≤
n∑

j=1

|u|2
2
.
σ2
k

s2n
+
|u|2+δ

E |Xk|2+δ

s2+δ
n

=
|u|2
2
. max
1≤k≤n

(
σ2
k

sn

)

+
|u|2+δ∑n

j=1 E |Xk|2+δ

s2+δ
n

= un.

By applying (4.3) to (4.4), we get

log fk(u/sn) = −ukn + θnuknε(un)
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and next

log fSn/sn(u) =
n∑

k=1

log fk(u/sn)

= −u
2

2
+ |u|2+δ θnAn(δ) + (

u2

2
+ |u|2+δ θnAn(δ))ε(un)

→ −u2/2.

We get for u fixed,

fSn/sn(u)→ exp(−u2/2).

This completes the proof. �

An expression of Lyapounov Theorem using triangular arrays.

Since the proof is based on the distribution of {Xk, 1 ≤ k ≤ n} for each
n ≥ 1, it may be extended to triangular array to the following corollary.

Corollary 3. Consider the triangular array {Xnk, 1 ≤ k ≤ n, n ≥
1}. Put for each n ≥ 1, Snn = Xn1 + ... + Xnn and s2nn = EX2

n1 +
EX2

n2 + ...+ EX2
nn. Suppose that for each n ≥ 1, the random variables

Xnk, 1 ≤ k ≤ n, are centered and independent such that

(4.5)
1

s2+δ
nn

n∑

k=1

E |Xnk|2+δ → 0 as n→∞.

Then
Snn/snn  N(0, 1).

Now, we are able to prove the Lyapounov-Feller-Levy Theorem (see
Lecam for an important historical note with the contribution of each
author in this final result).

(B) The General Central Limit Theorem on R.
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Theorem 20. Let X1, X2, ... a sequence of real and independent
random variables centered at expectations, with finite (n+δ)−moment,
δ > 0. Put for each n ≥ 1, Sn = X1 + ...+Xn and s2n = EX2

1 +EX2
2 +

... + EX2
n. We denote σ2

k = EX2
k , k ≥ 1 and Fk denotes the probability

distribution function of Xk. We have the equivalence between

(4.6) max
1≤k≤n

(
σ2
k

sn

)

→ 0 and Sn/sn  N(0, 1)

and

(4.7) ∀ε > 0,
1

s2n

n∑

k=1

∫

|x|≥εsn

x2dFk(x)→ 0 as n→∞.

Proof of Theorem 20.

The proof follows the lines of the proof in Loève (1997). But they
are extended by more details and adapted and changed in some parts.
Much details were omitted. We get them back for making the proof
understandable for students who just finished the measure and proba-
bility course.

Before we begin, let us establish an important property of

gn(ε) =
1

s2n

n∑

k=1

∫

|x|≥εsn

x2dFk(x),

when (4.7) holds. Suppose that this latter holds. We want to show
that there exists a sequence εn → 0 such that ε−2

n gn(εn)→ 0 (this im-
plying also that ε−1

n gn(εn) = o(εn) → 0 and that gn(εn) = o(ε2n)→ 0).
To this end, let k ≥ 1 fixed. Since gn(1/k) → 0 as n → ∞, we have
0 ≤ gn(1/k) ≤ k−3 for n large enough.

We will get what we want from an induction on this property. Fix
k = 1 and denote n1 an integer such that 0 ≤ gn(1) ≤ 1−3 for n ≥ n1.
Now we apply the same property on the sequence {gn(◦), n1 + 1} with
k = 2. We find a n2 > n1 such that 0 ≤ gn(1/2) ≤ 2−3 for n ≥ n2.
Next we apply the same property on the sequence {gn(◦), n2+1} with
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k = 2. We find a n3 > n2 such that 0 ≤ gn(1/3) ≤ 3−3 for n ≥ n3.
Finally, an infinite sequence of integers n1 < n2 < .. < nk < nk+1 < ..
such that for each k ≥ 1, one has 0 ≤ gn(1/k) ≤ k−3 for n ≥ nk. Put

εn = 1/k on nk ≤ n < nk+1.

We surely have εn → 0 and ε−2
n gn(εn). This is clear from

{
εn = 1/k on nk ≤ n < nk+1

ε−2
n gn(εn) = k2(1/k3) ≤ (1/k) on nk ≤ n < nk+1.

Now we arge going to use

(4.8) εn → 0 and ε−2
n gn(εn)→ 0.

Proof of (4.7) =⇒(4.6). Suppose (4.7) holds. Thus there exists a
sequence (εn)n≥0 of positive numbers such that (4.8) prevails. First,
we see that, for each j, 1 ≤ j ≤ n,

σ2
j

s2n
=

1

s2n

∫

x2dFj =
1

s2n

{∫

|x|≤εnsn

x2dFj +

∫

|x|≤εnsn

x2dFj

}

≤ 1

s2n

∫

|x|≤εnsn

x2dFk + ε2n

≤ 1

s2n

k∑

k=1

∫

|x|≤εnsn

x2dFk = g(εn) + ε2n.

It follows that

max
1≤j≤n

σ2
j

s2n
≤ g(εn) + ε2n → 0.

Its remains to prove that Sn/sn → N(0, 1). To this end we are going to
use this array of truncated random variables {Xnk, 1 ≤ k ≤ n, n ≥ 1}
defined as follows. For each fixed n ≥ 1, we set

Xnk =

{
Xk if |Xk| ≤ εnsn
0 if |Xk| > εnsn

, 1 ≤ k ≤ n.

Now, we consider summands Snn as defined in Corollary 3. Weremark
that for any η > 0,

P

(∣
∣
∣
∣

Snn

sn
− Sn

sn

∣
∣
∣
∣
> η

)

≤ P

(
Snn

sn
6= Sn

sn

)

= P

(
Snn

sn
6= Sn

sn

)
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and also,
(
Snn

sn
6= Sn

sn

)

= ((∃1 ≤ k ≤ n), Xnk 6= Xk)

= (∃(1 ≤ k ≤ n), |Xk| > εnsn) =
⋃

k=1

(|Xk| > εnsn).

We get

P

(∣
∣
∣
∣

Snn

sn
− Sn

sn

∣
∣
∣
∣
> η

)

≤
n∑

k=1

P (|Xk| > εnsn)

≤
n∑

k=1

∫

|x|≤εnsn

dFk =
n∑

k=1

∫

|x|≤εnsn

{
1

x2

}

x2dFk

≤
{

1

(εnsn)2

} n∑

k=1

∫

|x|≤εnsn

x2dFk

≤ 1

ε2n
gn(εn)→ 0.

Thus Snn/sn and Sn/sn are equivalent in probability. This implies that
they have the same limit law or do not have a limit law together. So to
prove that Sn/sn has a limit law, we may prove that Snn/sn has a limit
law. Next by Slutsky lemma, it will suffice to establish the limiting
law of Snn/snn whenever snn/sn → 1. We focus on this. We begin to
remark that, since E(Xk) = 0, we have the decomposition

0 = E(Xk) =

∫

xdFk =

∫

|x|≤εnsn

xdFk +

∫

|x|>εnsn

xdFk

to get that
∣
∣
∣
∣

∫

|x|≤εnsn

xdFk

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

|x|>εnsn

xdFk

∣
∣
∣
∣
.

We remark also that

E(Xnk) =

∫

|Xk|≤εnsn

XnkdP+

∫

|Xk |>εnsn

XnkdP(4.9)

=

∫

|Xk|≤εnsn

XkdP+

∫

|Xk|>εnsn

0 dP.
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Combining all what precedes leads to

|E(Xnk)| =

∣
∣
∣
∣

∫

|Xk|≤εnsn

XkdP

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

|x|>εnsn

xdFk

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

|x|>εnsn

{
1

x

}

x2dFk

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

|x|>εnsn

1

|x|x
2dFk

∣
∣
∣
∣
≤ 1

εnsn

∣
∣
∣
∣

∫

|x|>εnsn

x2dFk

∣
∣
∣
∣
.

Therefore,

(4.10)
1

sn

n∑

k=1

|E(Xnk)| ≤ ε−1
n g(εn)→ 0.

Based on this, let us evaluate snn/sn. Notice that for each fixed n ≥
1, the Xnk are still independent. The technique used in 4.9 may be
summarized as follows : any any measurable function g(◦) such that
g(0) = 0,

Eg(Xnk) =

∫

|Xk |≤εnsn

g(Xnk)dP+

∫

|Xk|>εnsn

g(0)dP =

∫

|Xk |≤εnsn

g(Xnk)dP.

By putting these remarks together, we obtain
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1− s2nn
s2n

=
s2n − s2nn
sn2

=
1

sn2

{
n∑

k=1

EX2
k −

n∑

k=1

E(Xnk − E(Xnk))
2

}

=
1

sn2

{
n∑

k=1

EX2
k −

(
n∑

k=1

E(X2
nk)−E(Xnk)

2

)}

=
1

sn2

{
n∑

k=1

EX2
k −

n∑

k=1

EX2
nk +

n∑

k=1

(EXnk)
2

}

=
1

sn2

{
n∑

k=1

∫

X2
kdP −

n∑

k=1

∫

|Xk |≤εnsn

X2
kdP +

n∑

k=1

(EXnk)
2

}

=
1

sn2

{
n∑

k=1

∫

|Xk|>εnsn

X2
kdP +

n∑

k=1

(EXnk)
2

}

≤ 1

sn2

{
n∑

k=1

∫

|Xk|>εnsn

X2
kdP +

n∑

k=1

(E |Xnk|)2
}

Finally, we use the simple inequality of real numbers (
∑ |ai|)2 =

∑ |ai|2+
∑2

i 6=j |ai| |aj | ≥
∑ |ai|2 and conclude from the last inequality that

∣
∣
∣
∣
1− s2nn

s2n

∣
∣
∣
∣
≤ 1

sn2

{
n∑

k=1

∫

|Xk|>εnsn

X2
kdP +

n∑

k=1

(E |Xnk|)2
}

≤ 1

sn2







n∑

k=1

∫

|Xk|>εnsn

X2
kdP +

(
n∑

k=1

E |Xnk|
)2






= g(εn) +

(

1

sn

n∑

k=1

E |Xnk|
)

.

By (4.10) above, we arrive at

∣
∣
∣
∣
1− s2nn

s2n

∣
∣
∣
∣
≤ g(εn) + ε−1

n g(εn)→ 0.
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It comes that snn/sn → 1. Finally, the proof of this part will be derived
from Snn/snn. We center the Xnk at their expectations. To prove that
the sequence of the new summands Tnn/snn converges to N (0, 1), we
use Corollary 1 by checking the Lyapounov’s condition

1

s3nn

n∑

k=1

E |Xnk − EXnk|3 → 0 as n→∞.

By

1

s3nn

n∑

k=1

E |Xnk −EXnk|3 =
1

s3nn

n∑

k=1

E |Xnk − EXnk| × E |Xnk − EXnk|2

≤ 2

s3nn

n∑

k=1

E |Xnk| × E |Xnk − EXnk|2 .

Take g(·) = |·| in (4) to see again that

E |Xnk| =
∫

|Xk|≤εnsn

|Xnk| dP ≤ εnsn.

The last two formula yied

1

s3nn

n∑

k=1

E |Xnk − EXnk|3 ≤
2εnsn
s3nn

n∑

k=1

E |Xnk −EXnk|2

=
2εnsns

2
nn

snn
= εn

2sn
snn
→ 0.

It comes by Corrolary 3 that

Tnn
snn

=
Snn −

∑n
k=1E(Xnk)

snn
→ N(0, 1).

Since snn/sn → 1 and by 4.10

∣
∣
∣
∣

∑n
k=1E(Xnk)

snn

∣
∣
∣
∣
≤ sn
snn

{

1

sn

n∑

k=1

E |Xnk|)
}

→ 0.

We conclude that Snn/snn converges to N (0, 1).
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Proof of : (4.6)=⇒ (4.7). The convergence to N (0, 1) implies that
for any fixed t ∈ R, we have

(4.11)
n∏

k=1

fk(u/sn)→ exp(−u2/2).

We are going to use uniform expansions of log(1 + z). We have

lim
z→0

∣
∣
∣
∣

log(1 + z)− z
z2

∣
∣
∣
∣
=

1

2

this implies

(4.12) sup
z≤u

∣
∣
∣
∣

log(1 + z)− z
z2

∣
∣
∣
∣
= ε(u)→ 1/2 as u→ 0.

Now, use the expansion

fk(u/sn) = 1 + θk
u2σ2

k

2s2n
.

This implies that

(4.13) max
1≤k≤n

≤ |fk(u/sn)− 1| ≤ u2

2
max
1≤k≤n

σ2
k

s2n
= un → 0.

and next

|fk(u/sn)− 1| = θ2k
u2σ2

k

2s2n
× u2σ2

k

2s2n
≤
[
u4

4
max
1≤k≤n

σ2
k

s2n

]

× σ2
k

s2n
.

This latter implies

n∑

k=1

|fk(u/sn)− 1| ≤
[
u4

4
max
1≤k≤n

σ2
k

s2n

]

= Bn(u)→ 0.

By (4.13), we see that log fk(u/sn) is uniformly defined in 1 ≤ k ≤ n
for n large enough and (4.11) becomes

n∑

k=1

log fk(u/sn)→ −u2/2,

that is
u2

2
+

n∑

k=1

log fk(u/sn)→ 0.
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Now using the uniform bound of |fk(u/sn)− 1| by un to get

log(fk(u/sn)) = fk(u/sn)− 1 + (fk(u/sn)− 1)2ε(un)

and then

u2

2
+

n∑

k=1

log fk(u/sn) =
u2

2
+

n∑

k=1

fk(u/sn)− 1 + (fk(u/sn)− 1)2ε(un)

=

{

u2

2
−

n∑

k=1

1− fk(u/sn)
}

+

{
n∑

k=1

(fk(u/sn)− 1)2

}

ε(un),

with
∣
∣
∣
∣
∣

{
n∑

k=1

(fk(u/sn)− 1)2

}

ε(un)

∣
∣
∣
∣
∣
≤ Bn(u) |ε(un)| = o(1).

We arrive at
u2

2
=

n∑

k=1

1− fk(u/sn) + o(1).

If we take the real parts, we have for any fixed ε > 0,

u2

2
=

n∑

k=1

∫

(1− cos
ux

sn
)dFk(x) + o(1)

=
n∑

k=1

∫

|x|<εsn

(1− cos
ux

sn
)dFk(x)

+
n∑

k=1

∫

|x|≥εsn

(1− cos
ux

sn
)dFk(x) + o(1),

that is

u2

2
−

n∑

k=1

∫

|x|<εsn

(1−cos ux
sn

)dFk(x) =
n∑

k=1

∫

|x|≥εsn

(1−cos ux
sn

)dFk(x)+o(1),
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We have by Fact 2 below that
√

2(1− cos a) ≤ 2 |a/2|δ for all δ, 0 <
δ ≤ 1. Apply this for δ = 1 to have

n∑

k=1

∫

|x|<εsn

(1− cos
ux

sn
)dFk(x)

≤ u2

2s2n

n∑

k=1

∫

|x|<εsn

x2dFk(x)

=
u2

2s2n
(

n∑

k=1

∫

x2dFk(x)−
n∑

k=1

∫

|x|≥εsn

x2dFk(x))

=
u2

2s2n
(s2n −

n∑

k=1

∫

|x|≥εsn

x2dFk(x)) =
u2

2
(1− gn(ε)).

On the other hand

n∑

k=1

∫

|x|≥εsn

(1− cos
ux

sn
)dFk(x) ≤ 2

n∑

k=1

∫

|x|≥εsn

dFk(x)

= 2

n∑

k=1

∫

|x|≥εsn

{
1

x2

}

x2dFk(x)

≤ 2

ε2s2n

n∑

k=1

∫

|x|≥εsn

x2dFk(x) ≤
2

ε2
.

By putting all this together, we have

u2

2
≤ u2

2
(1− gn(ε)) +

2

ε2
+ o(1)

which leads
u2

2
gn(ε) ≤

2

ε2
+ o(1)

which in turns implies

gn(ε) ≤
2

u2
(
2

ε2
+ o(1)).

By letting first n→ +∞ and secondly u→ 0, we get

gn(ε)→ 0.
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This concludes the proof. �
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(C) APPENDIX : TOOLS, FACTS AND LEMMAS
1 - A useful development for the characteristic function.

Consider the characteristic function associated with the real probability
distribution function F that is

R ∋ x →֒ f(x) =

∫

eitxdF (x)

Suppose that the nth moment exists, that is

mn =

∫

xndF (x).

In the following, we also denote

µn =

∫

|x|n dF (x)

Lemma 5. Let 0 < δ ≤ 1. If µn+2 is finite, then we have the fol-
lowing expansion

(4.14)

f(u) = 1 +

n∑

k=1

(iu)kmk

k!
+ θ21−δµn+δ |u|n+δ

(1 + δ)(2 + δ)...(n + δ)
, |θ| ≤ 1.

Proof of Lemma 5. By using the Lebesgue Dominated Theorem, we
get the f is n-times differentiable and the k-th derivative is

(4.15) f (k)(0) = ikmk =

∫

xkdF (x), 1 ≤ k ≤ n.

We may use the Taylor-Mac-Laurin formula expansion

f(u) = 1 +
n−1∑

k=1

(iu)kmk

k!
+

∫ u

0

(u− x)n−1

n!
f (n)(x)dx.

We are going to handle ρn(u) =
∫ u

0
xn−1

n!
f (n)(x)dx. Let us make the

change variable t = x/u and use 4.15 to get
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ρn(u) = un
∫ 1

0

(1− t)n−1

n!
f (n)(tu)dt

= (iu)n
∫ 1

0

∫
(1− t)n−1

(n− 1)!
xneituxdF (x)dt

= (iu)n
∫ 1

0

∫
(1− t)n−1

(n− 1)!
xn(eitux − 1 + 1)dF (x)dt

= (iu)n
∫ 1

0

∫
(1− t)n−1

(n− 1)!
xndF (x)dt

+ (iu)n
∫ 1

0

∫
(1− t)n−1

(n− 1)!
xn(eitux − 1)dF (x)dt

The first term is

ρn(1, u) = (iu)n
∫ 1

0

(1− t)n−1

(n− 1)!
dt

∫

xndF (x) = (iu)nmn

[

−(1− t)
n

n!

]t=1

t=0

=
(iu)nmn

n!
.

To handle the second term, we remark that,
∣
∣eia − 1

∣
∣ =

√

2− 1− cos(a) = 2 |sin(a/2)| .
Let 0 < δ ≤ 1. If |a/2| ≥ 1, we have

∣
∣eia − 1

∣
∣ = 2 |sin(a/2)| ≤ |a| ≤ 2 |a/2|δ

by the decreasingness in δ of the function |a/2|δ. If |a/2| ≤ 1, we get

by Fact 1 below that also |eia − 1| = 2 |sin(a/2)| ≤ 2 |a/2|δ. We have
for all a ∈ R, for all 0 ≤ δ ≤ 1,

∣
∣eia − 1

∣
∣ ≤ 2 |a/2|δ

Applying this to (4.16) yields

|ρn(2, u)| ≤ |u|
∫ 1

0

∫
(1− t)n−1

(n− 1)!
|x|n

∣
∣eitux − 1

∣
∣ dF (x)dt

≤ 21−δ |u|n+δ

∫ 1

0

(1− t)n−1tδ

(n− 1)!
dt

∫

|x|n+δ dF (x)

≤ 21−δ |u|n+δ µn+δ

∫ 1

0

(1− t)n−1tδ

(n− 1)!
dt.
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Since by Fact 2 below,
∫ 1

0

(1− t)n−1tδ

(n− 1)!
dt =

1

(1 + δ)(2 + δ)...(n + δ)
,

we get

ρn(2, u) = θ21−δµn+δ |u|n+δ

(1 + δ)(2 + δ)...(n+ δ)
,

with |θ| ≤ 1. By getting together all these pieces, we get (4.14). This
concludes the proof of Lemma 5.

FACT 1. For any a ∈ R,
∣
∣eia − 1

∣
∣ =

√

2(1− cos a) ≤ 2 |sin(a/2)| ≤ 2 |a/2|δ .

This is easy for |a/2| > 1. Indeed for δ > 0, |a/2|δ > 0 and

2 |sin(a/2)| ≤ 2 ≤ 2 |a/2|δ

Now for |a/2| > 1, we have the expansion

2(1− cos a) = a2 −
∞∑

k=2

(−1)2 a2k

(2k)!
= x2 − 2

∞∑

k≥2,k even

a2k

(2k)!
− a2(k+1)

(2(k + 1))!

= a2 − 2x2(k+1)
∞∑

k≥2,k even

1

(2k)!

{
1

a2
− 1

(2k + 1)((2k + 2)...(2k + k)

}

.

For each k ≥ 2, for |a/2| < 1,
{

1

a2
− 1

(2k + 1)((2k + 2)...(2k + k)

}

≥
{
1

4
− 1

(2k + 1)((2k + 2)...(2k + k)

}

≥ 0.

Hence

2(1− cos a) ≤ a2.

But for |a/2| , the function δ →֒ |a/2|δ is non-increasing δ, 0 ≤ δ ≤ 1.
Then

√

2(1− cos a) ≤ |a| = 2 |a/2|1 ≤ 2 |a/2|δ .
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FACT 2. For any 1 < δ ≤ 1, for any n ≥ 1
∫ 1

0

(1− t)n−1tδ

(n− 1)!
dt =

1

(1 + δ)(2 + δ)...(n + δ)
.

Proof. By integrating by parts, we get
∫ 1

0

(1− t)n−1tδ

(n− 1)!
dt =

1

δ + 1

[
(1− t)n−1tδ

(n− 1)!

]t=1

t=0

+
1

δ + 1

∫ 1

0

(1− t)n−2tδ+1

(n− 2)!
dt,

that is ∫ 1

0

(1− t)n−1tδ

(n− 1)!
dt =

1

δ + 1

∫ 1

0

(1− t)n−2tδ+1

(n− 2)!
dt.

From there, we easily get by induction that, for 1 ≤ ℓ ≤ n− 1,

∫ 1

0

(1− t)n−1tδ

(n− 1)!
dt =

1

(δ + 1) (δ + 2) ... (δ + ℓ)

∫ 1

0

(1− t)n−ℓ−1tδ+ℓ

(n− 2)!
dt.

For ℓ = n− 1, we have
∫ 1

0

(1− t)n−1tδ

(n− 1)!
dt =

1

(δ + 1) (δ + 2) ... (δ + n− 1)

∫ 1

0

tδ+n−1dt

=
1

(δ + 1) (δ + 2) ... (δ + n)
.

This finishes the proof. �

Lemma 6. Let Y a random variable with r0-th finite moment, r0 >
0. Then the function g(x) = logE |Y |x, 0 ≤ x ≤ r0, is convex.

Proof of Lemma 6. Let 0 ≤ r1 < r2 ≤ r0. Use the Cauchy-Scharwz

inequality to |Y |(r1+r2)/2 and |Y |(r2−r1)/2 to have

(E |Y |r1)2 ≤ E |Y |(r1+r2) ×E |Y |(r2−r1)

which implies

2 logE |Y |r1 ≤ logE |Y |(r1+r2) + logE |Y |(r2−r1)

that is, since g is continuous,
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(4.16) g(r1) ≤
1

2
(g(r1 + r2) + g(r2 − r1)).

Now, set x = r1 + r2 and y = r2 − r1 and (4.16) becomes

(4.17) g(
x+ y

2
) ≤ 1

2
(g(x) + g(y))

for 0 ≤ x ≤ r0. Now, the Dominated Convergence Theorem, the fonc-
tion g(·) is continuous. So (4.17) implies the convexity of g(·). �

Lemma 7. Let X1, X2, ... a sequence of real and independent ran-
dom variables centered at expectations, with finite (n+δ)−moment, δ >
0. Put for each n ≥ 1, Sn = X1+...+Xn et s2n = EX2

1+EX2
2+...+EX2

n.
We denote σ2

k = EX2
k , k ≥ 1 et Fk denotes the probability distribution

function of Xk. If δ > 1, then any fixed n ≥ 1,

(4.18)
1

s2+δ
n

n∑

k=1

E |Xk|2+δ ≤
(

1

s3n

n∑

k=1

E |Xk|3
)(δ−2)/δ

.

Proof of Lemma 7. Let n ≥ 1 be fixed. Let (π1, ..., πn) following
a multinomial law of n issues having all the probability n or occuring
but only on repeatition. This means that only one of the π′

ks is one,
the remaining being zero. Sey

Y =

n∑

k=1

πkXk.

The meaning of this expression is the following :

Y = Xk on (πk = 1).

So we have, for r ≥ 0.

|Y |r =
n∑

k=1

πk |Xk|r .
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Hence

E |Y |r = E

n∑

j=1

πj |Xj |r =
n∑

k=1

P (πk = 1)E

(
n∑

j=1

πj |Xj |r | πk = 1

)

=
1

n

n∑

k=1

E |Xk|r .

Use now the convexity of g(r) = logE |Y |r for δ > 1 like that :

δ − 1

δ
× 2 +

1

δ
× (2 + δ) = 3

and convexity implies

g(
δ − 1

δ
× 2 +

1

δ
× (2 + δ)) ≤ δ − 1

δ
g(2) +

1

δ
g(2 + δ)).

This implies

δ logE |Y |3 ≤ (δ − 1) logE |Y |2 + logE |Y |2+δ

and by taking exponentials, we get

(
E |Y |3

)δ ≤
(
E |Y |2

)δ−1
E |Y |2+δ =⇒ E |Y |3 ≤

(
E |Y |2

)δ−1
(

E |Y |2+δ
)1/δ

.

Replacing by the values of E |Y |r , we get

1

n

n∑

k=1

E |Xk|3 ≤
1

n(δ−1)/δ
s2(δ−1)/δ
n

(

1

n

n∑

k=1

E |Xk|2+δ

)1/δ

.

From there, easy computations lead to

1

s3n

n∑

k=1

E |Xk|3 ≤
(

1

s2+δ
n

n∑

k=1

E |Xk|2+δ

)1/δ

.

LEMMA 4. Let δ > 0 and let X be a real random variable such that
|X|2+δ is integrable. Then

(
EX2

)(2+δ)/2 ≤ E |X|2+δ .

PROOF. Use Lemma 2 and the convexity of g(x) = logE |X|x , 0 <
x ≤ 2 + δ to the convex combination

2 =
2

2 + δ
× (2 + δ) +

2

2 + δ
× 0
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to get

g(2) ≤ 2

2 + δ
g(2 + δ) +

2

2 + δ
g(0).

Since g(0) = 0, we have

logE |X|2 ≤ 2

2 + δ
logE |X|2+δ ,

which gives the desired results upon taking the exponentials.
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5. Berry-Essen approximation

Once the central theorem holds, the convergence of the distribution
functions of Sn/sn, denoted Fn, n ≥ 1, to that of a standard Gaussian
random variable denoted by G holds uniformly, by a known result of
weak convergence (See Lo et al. (2016), chapter 4, Fact 5), that is

sup
x∈R
|Fn(x)−G(x)| →, as n→ +∞.

The Berry-Essen inequality is the most important result on the rate of
convergence of Fn to G. Here is a classical form of it.

5.1. Statement of the Berry-Essen Inequality.

Theorem 21. (Berry-Essen) Let X1, X2, ... be independent random
variables with zero mean and with partial sums {Sn, n ≥ 1}. Suppose

that γ3k = E |Xk|3 < +∞ for all k ≥ 1, and set σ2
k = V ar(Xk), s

2
n =

∑

1≤j≤k σ
2
j and β3

n =
∑

1≤j≤k γ
3
j . Then

sup
x∈R

∣
∣
∣
∣
P

(
Sn

sn
≤ x

)

− P(N(0, 1) ≤ x)

∣
∣
∣
∣
≤ C

β3
n

s3n
.

Remarks This result may be extended to some dependent data. Gen-
erally, one seeks to get a Berry-Essen type results each time a Central
limit Theorem is obtained.

The value of C may be of interest and one seeks to have it the lowest
possible. In the proof below, C will be equal to 36.

PROOF The proof is very technical. But, it is important to do it
at least one time, since, it may give ideas when no longer prevails the
independence.

The proof itself depends on two interesting lemmas. We suggest to
the reader who wants to develop an expertise in this field, to do the
following.

1) The reader who wishes to master this very technical proof is rec-
ommended to read the statement and the proof of the Essen Lemma
10. This lemma gives the important formula (5.4). It is based on the
inversion formula that expresses the density probability function with
respect to the characteristic function. It also uses a characterization
the supremum of bounded and right-continuous with left-limits (rcll)
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of real-valued functions vanishing at ±∞ given in Lemma 13.

2) Next, read the statement of Lemma 12 which gives the approxima-
tion of the characteristic function of Sn/sn to that of a standard normal
random variable which is exp(−t2/2). The proof of this Lemma uses a
special expansion of the characteristic function in the neighborhood of
zero given in Lemma 11.

From these two points, the proof of the Theorem of Berry-Essen comes
out naturally in the following lines by plugging the results of Lemma
12 in the formula (5.4) of Lemma 10. And we say :

By Lemma 5.4,

(5.1)

sup
x

∣
∣FSn/sn(x)−G(x)

∣
∣ ≤ 1

π

∫ T

−T

∣
∣
∣
∣

ψSn/sn(t)− exp(−t2/2)
t

∣
∣
∣
∣
dt+24A/(πT ),

where A is an upper bound of the derivative the standard gaussian
distribution function G whose infimum is 1/

√
2π. Take A = 1/

√
2π

and T = Tn = s3n/(4β
3
n). We use Formula (5.1) and the following

inequality

∥
∥ψSn/sn(t)− exp(−t2/2)

∥
∥ ≤ 16 exp(−t2/2)β

3
n |t|3
s3n

.

to grap on

sup
x

∣
∣FSn/sn(x)−G(x)

∣
∣ ≤ 16

π

β3
n

s3n

∫ s3n/(4β
3
n)

−s3n/(4β
3
n)

t2 exp(−t2/2)dt+ 24(1/)

πs3n/(4β
3
n)

≤ 16

π

β3
n

s3n

∫ s3n/(4β
3
n)

s3n/(4β
3
n)

t2 exp(−t2/2)dt+ 96β3
n

π
√
2πs3n

.

The integral
∫ s3n/(4β

3
n)

s3n/(4β
3
n)
t2 exp(−t2/2)dt is bounded by

∫ s3n/(4β
3
n)

s3n/(4β
3
n)

t2 exp(−t2/2)dt = 3

2

√
2π.
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We get

sup
x

∣
∣FSn/sn(x)−G(x)

∣
∣ ≤ 24

√
3√
π

β3
n

s3n
+

96β3
n

π
√
2πs3n

≤
(

24
√
3√
π

+
96

π
√
2π

)

β3
n

s3n

≤ 36
β3
n

s3n
.

This concludes the proof.

5.2. Tools, Facts and Lemmas.

Lemma 8. Define the triangle probability density function pdf , with
parameter T as following

(5.2) ftri(x) =
1

T
(1− |x|

T
)1(|x|≤T ).

(i) Then its characteristic function is

Φtri(T )(t) = sin2(tT/2)/(tT )2.

(ii) The function

g(x) =
1− cosxT

πx2T
, x ∈ R,

defines a density distribution function and its characteristic function is
1− |t| /T .

Proof. We have

Φtri(T )(t) =
1

T

∫ T

−T

eitx(1− |x|
T

)dx

=
1

T

{∫ 0

−T

eitx(1 +
x

T
)dx+

∫ T

0

eitx(1− x

T
)dx

}

.

Next, we have

∫ 0

−T

eitx(1 +
x

T
)dx =

[
eitx

it

]0

−T

+
1

T

∫ 0

−T

xeitxdx.
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By integrating by parts, we get
∫ 0

−T

eitx(1 +
x

T
)dx =

[
eitx

it

]0

−T

+
1

T

[
xeitx

it

]0

−T

+
1

itT

∫ 0

−T

eitxdx

=

[
eitx

it

]0

−T

+
1

T

[
xeitx

it

]0

−T

− 1

itT

[
eitx

it

]0

−T

=
1

it
(1− e−itT ) +

1

it
e−itT +

1

t2T
(1− e−itT ).

Likewise, we get

∫ T

0

eitx(1− x

T
)dx =

[
eitx

it

]T

0

− 1

T

∫ T

0

xeitxdx.

=

[
eitx

it

]T

0

− 1

T

[
xeitx

it

]T

0

+
1

itT

∫ T

0

eitxdx

=

[
eitx

it

]T

0

− 1

T

[
xeitx

it

]T

0

+
1

itT

[
eitx

it

]T

0

=
1

it

(

eitT − 1)− 1

it
eitT − 1

t2T
(eitT − 1

)

.

By putting all this together, and by adding term by term, we get

Φtri(T )(t) =
1

T

{
2 sin tT

t
− 2 sin tT

t
− 2 cos tT − 2

t2T

}

=
2(1− cos tT )

t2T 2

=
sin2 tT/2

t2T 2
.

Remark that Φtri(T )(t) is well defined for t = 0. From now, we may
use the inversion theorem for an absolutely continuous distribution
function :

ftri(T )(t) =
1

2π

∫

e−itxΦtri(T )(x)dx.

Then for |t| ≤ T,

1

T

(

1− |t|
T

)

=
1

2π

∫

e−itx sin
2 xT/2

x2T 2
dx,

which gives
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1− |t|
T

=
1

2π

∫

R

e−itx sin
2 xT/2

2πx2T 2
dx

=
1

π

∫

R

e−itx1− cosxT

x2T 2
dx

=

∫

R

eitx
1− cos xT

πx2T 2
dx.

Taking t = 0 in that formula proves that

1− cosxT

πx2T 2
, x ∈ R

is a density probability on R, and its characteristic function is 1−|t| /T .
This gives

Lemma 9. The following function

1− cosxT

πx2T 2
, x ∈ R

is a probability density function with characteristic function 1− |t| /T.

The following lemma uses the inverse formulas in Proposition 5 (see
section Part V, Section 6, Chapter 2).

Lemma 10. Let U and V be two random variables, and suppose
that

(5.3) sup
x∈R

F ′
V (x) ≤ A.

Then

(5.4) sup
x
|FU(x)− FV (x)| ≤

1

π

∫ T

−T

∣
∣
∣
∣

ψU(t)− ψV (t)

t

∣
∣
∣
∣
dt+ 24A/(πT ).

Proof. Suppose that
∫ T

−T

∣
∣
∣
∣

ψU (t)− ψV (t)

t

∣
∣
∣
∣
dt < +∞,

for T > 0, otherwise (5.4) is obvious. We may consider, by using
Kolmogorov Theorem, that we are on a probability space holding the
ordered pair (U, V ) and an absolutely continuous random variable ZT

with characteristic function (1− |t| /T )1(|t|≤T ) as allowed by Lemma 9
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such that ZT is independent from U and V . Given the cdf F(U,V ) of
(U, V ) and the cdf FZT

, the cdf of (U, V, ZT ) is given by

F(U,V,ZT )(u, v, z) = F(U,V )(u, v)× FZT
(z), (u, v, z) ∈ R3.

The probability space by using the Lebesgue-Stieljes measure of F(U,V,ZT )

following Point (c5), Section (page 62).

Now, we recall the convolution formula on U and ZT :

FU+ZT
(x) =

∫

FU(x− y)fZT
(y) dy, x ∈ R.

Define FU+ZT
likewise. Set

∆(x) = FU (x)− FV (x), x ∈ R.

and

(5.5) ∆T (x) =

∫

∆(x− y)fZT
(y)dy = FU+ZT

(x)− FV+ZT
(x).

We remark that for any fixed t, ψZT
(t) = (1 − |t| /T )1(|t|≤T ) → 1,

which is the characteristic function of 0. Then ZT weakly converges to
0, that is equivalent to ZT →P 0. Using results of weak theory (see
for example Chapter 5, Subsection 3.2.3, Proposition 21 in Lo et al.
(2016)) implies that U +ZT  U and V +ZT  V . By returning back
to the distribution functions that are continuous, we have from (5.5)

For any x, ∆T (x)→ ∆(x) as T →∞.
By applying Proposition 5 (see section Part V, Section 6, Chapter 2),
we have for continuity points x and b of both FU+ZT

and FV+ZT
, with

b < x,

(FU+ZT
(x)− FU+ZT

(b)− ((FU+ZT
(x)− FU+ZT

(b))

= lim
U→+∞

1

2π

∫ U

−U

e−ixt − e−ibt

it
(ψU (t)− ψV (t))ψZT

(t)dt

=
1

2π

∫ T

−T

e−ixt − e−ibt

it
(ψU(t)− ψV (t))ψZT

(t)dt,

=
1

2π

∫ T

−T

(ψU (t)− ψV (t))ψZT
(t)

(

−
∫ b

x

e−itvdv

)

dt,
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since ψZT
(t) vanishes outside [−T, T ]. By letting b ↓ −∞ over the

set of continuity points of both FU+ZT
and FV+ZT

, and by using the
Fatou-Lebesgue convergence theorem at right, we get

FU+ZT
(x)− FU+ZT

(x)

=
1

2π

∫ T

−T

(ψU(t)− ψV (t))ψZT
(t)

(

−
∫ −∞

x

e−itvdv

)

dt

=
1

2π

∫ T

−T

−e−itx (ψU(t)− ψV (t))ψZT
(t)

(

−
∫ −∞

x

e−itvdv

)

dt

which gives, for any continuity point x of both FU+ZT
and FV+ZT

.
By taking the supremum of those continuity point x of both FU+ZT

and FV+ZT
(which amounts to taking the supremum over R by right-

continuity), we finally get

‖∆T ‖+∞ ≤
1

2π

∫ T

−T

∣
∣
∣
∣

ψU(t)− ψV (t)

t

∣
∣
∣
∣
dt.

Since we want to prove Formula (5.4), the last formula says it will be
enough to prove

(5.6) ‖∆‖∞ ≤ 2 ‖∆T‖∞ + 24A/(πT )

We remark that ∆ is bounded and is right-continuous with left-limits at
each point of R and ∆(+∞) = ∆(−∞) = 0. Then by Lemma 13 below,
there exists a x0 ∈ R such that ‖∆‖∞ = |∆(x0)| or ‖∆‖∞ = |f(x0−)|.
We continue with the case where ‖∆‖∞ = |∆(x0)| = ∆(x0). Handling
the other cases is similar. We have for any s > 0 :

∆(x0 + s)−∆(x0) = {FU(x0 + s)− FU(x0)} − {FV (x0 + s)− FV (x0)}
and, by (5.3),

FV (x0 + s)− FV (x0) =

∫ x0+s

x0

F ′
V (t)dt ≤ As.

Next

∆(x0 + s)−∆(x0) = {FU(x0 + s)− FU (x0)} − As ≥ −As
since {FU(x0 + s)− FU(x0)} ≥ 0 (FU increasing). This gives for any
s ≥ 0

∆(x0 + s) ≥ ‖∆‖∞ − As.
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By applying this to s = ‖∆‖∞ /(2A))+y for |y| ≤ ‖∆‖∞ /(2A), we get

(5.7) ∆

(

x0 +
‖∆‖∞
2A

+ y

)

≥ ‖∆‖∞
2
−Ay

We going to apply this to ∆T , while reminding the definition, to see
that

∆T

(

x0 +
‖∆‖∞
2A

)

=

∫

∆

(

x0 +
‖∆‖∞
2A

− y
)

fZT
(y)dy

=

∫

{|y|≤‖∆‖∞/(2A)}
∆

(

x0 +
‖∆‖∞
2A

− y
)

fZT
(y)dy

+

∫

{|y|>‖∆‖∞/(2A)}
∆

(

x0 +
‖∆‖∞
2A

− y
)

fZT
(y)dy.

On one hand, by (5.7), we have
∫

{|y|≤‖∆‖/(2A)}
∆(x0 +

‖∆‖∞
2A

− y)fZT
(y)dy

≥
∫

{|y|≤‖∆‖∞/(2A)}

(‖∆‖∞
2
−Ay

)

fZT
(y)dy

≥ ‖∆‖∞
2

∫

{|y|≤‖∆‖/(2A)}
fZT

(y)dy

=
‖∆‖∞

2
P

(

|ZT | ≤
‖∆‖∞
2A

)

=
‖∆‖∞

2

{

1− P
(

|ZT | >
‖∆‖∞
2A

)}

and for the other term, we use the following trivial inequality

∆(·) ≥ − sup
x∈R
|∆(x)| = −‖∆‖∞

to have
∫

{|y|>‖∆‖/(2A)}
∆

(

x0 +
‖∆‖∞
2A

− y
)

fZT
(y)dy

≥ −‖∆‖∞
∫

{|y|>‖∆‖/(2A)}
fZT

(y)dy

≥ −∆ ‖∆‖∞
∫

{|y|>‖∆‖/(2A)}
fZT

(y)dy

= −∆ ‖∆‖∞ P

(

|ZT | >
‖∆‖∞
2A

)

.



262 7. ASYMPTOTICS THEOREMS OF INDEPENDENT RANDOM VARIABLES

The two last formulas lead to

∆T

(

x0 +
‖∆‖∞
2A

)

≥ ‖∆‖∞
2

{

1− 3P

(

|ZT | >
‖∆‖∞
2A

)}

and next

(5.8) ‖∆T ‖∞ ≥
‖∆‖∞

2

{

1− 3P

(

|ZT | >
‖∆‖∞
2A

)}

.

In this last step, we have

P

(

|ZT | >
‖∆‖∞
2A

)

=

∫

{|y|>‖∆‖∞/(2A)}
1− cos yT

πTy2
dy

=

∫ +∞

∆‖∆‖∞/(2A)

1− cos yT

πTy2
dy

=
1

π

∫ +∞

∆‖∆‖∞T/(4A)

1− cos 2y

y2
dy

=
2

π

∫ +∞

∆‖∆‖∞T/(4A)

sin2 y

y2
dy

≤ 2

π

∫ +∞

‖∆‖∞T/(4A)

1

y2
dy

=
8A

πT ‖∆‖∞
.

This and (5.8) yield

2 ‖∆T‖∞ ≥
{

‖∆‖∞ − 3 ‖∆‖∞ P

(

|ZT | >
‖∆‖∞
2A

)}

≥ ‖∆‖∞ −
24A

Tπ
,

which implies

‖∆‖∞ ≤ 2 ‖∆T ‖∞ +
24A

Tπ
.

This was the target, that is Formula (5.6), which is enough to have the
final result (5.4). �

Technical Lemmas used by the proof.
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Lemma 11. . Let X be a real random variable with n + 1 finite
moments. Then for any t ∈ R,
∣
∣
∣
∣
∣
ψX(t)−

n∑

k=0

(it)k

k!
E |X|k

∣
∣
∣
∣
∣
≤ min

(

2 |t|n
n!

E |X|n , |t|
n+1

(n + 1)!
E |X|n+1

)

.

Proof. We may use the Taylor-Mac-Laurin expansion formula,

f(y) =

n∑

k=0

yk

k!
f (k)(0) +

∫ y

0

(y − x)n
n!

f (n)(x)dx

for f(y) = eiy. We have f (k)(y) = ikf(y) and then

(5.9) eiy =

n∑

k=0

(iy)k

k!
+ in+1

∫ y

0

eix
(y − x)n

n!
dx.

Then ∣
∣
∣
∣
∣
eiy −

n∑

k=0

(iy)k

k!

∣
∣
∣
∣
∣
≤ 1

n!

∫ |y|

0

|y − x|n dx ≤ |y|n+1

(n + 1)!
.

We apply (5.9) for n− 1, that is

eiy =

n−1∑

k=0

(iy)k

k!
+ in

∫ y

0

eix
(y − x)n−1

(n− 1)!
dx

and we use the decomposition eix = 1 + (eix − 1) to get

eiy =

n−1∑

k=0

(iy)k

k!
+ in

∫ y

0

(y − x)n−1

(n− 1)!
dx+ in

∫ y

0

(eix − 1)
(y − x)n−1

(n− 1)!
dx.

We have

in
∫ y

0

(y − x)n−1

(n− 1)!
dx = (iy)n,

which leads to

eiy =

n∑

k=0

(iy)k

k!
+ in

∫ y

0

(eix − 1)
(y − x)n−1

(n− 1)!
dx

and next, since |(eix − 1)| ≤ 2,
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∣
∣
∣
∣
∣
eiy −

n∑

k=0

(iy)k

k!

∣
∣
∣
∣
∣
≤ 2

(n− 1)!

∫ |y|

0

|y − x|n dx ≤ 2 |y|n
n!

.

We then get
∣
∣
∣
∣
∣
eiy −

n∑

k=0

(iy)k

k!

∣
∣
∣
∣
∣
≤ min

(

2 |y|n
n!

,
|y|n+1

(n + 1)!

)

.

We apply this to a random real variable X with enough finite moments
to get
∣
∣
∣
∣
∣
EeitX − E

n∑

k=0

(itX)k

k!

∣
∣
∣
∣
∣
≤ E

∣
∣
∣
∣
∣
eitX −

n∑

k=0

(itX)k

k!

∣
∣
∣
∣
∣
≤ Emin

(

2 |tX|n
n!

,
|tX|n+1

(n + 1)!

)

,

and then
∣
∣
∣
∣
∣
ψX(t)−

n∑

k=0

(it)k

k!
E |X|k

∣
∣
∣
∣
∣
≤ min

(

2 |t|n
n!

E |X|n , |t|
n+1

(n+ 1)!
E |X|n+1

)

Lemma 12. With the notations and assumptions of the Theorem,
we have :

Part 1.
∣
∣exp(itSn/sn)− exp(−t2/2)

∣
∣ ≤ 0.4466464

β3
n

s3n
|t|3 exp(− |t|2 /2) for |t| ≤ sn/(2βn).

Part 2.
∣
∣exp(itSn/sn)− exp(−t2/2)

∣
∣ ≤ 16

β3
n

s3n
|t|3 exp(− |t|2 /3) for |t| ≤ s3n/(4β

3
n).

Proof.

Proof of Part 1. Let us prove that

∣
∣exp(itSn/sn)− exp(−t2/2)

∣
∣ ≤ 0.5

β3
n

s3n
|t|3 exp(− |t|3 /3) for |t| ≤ sn/(2βn)

To this end, we use the following expansion

exp(itXk/sn) = 1− t2σ2
k

2s2n
+ θ
|t|3 γ3k
6s3n

, |θ| ≤ 1.
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For |t| ≤ sn/(2βn),

r1,k =

∣
∣
∣
∣
∣
θ
|t|3 γ3k
6s3n

∣
∣
∣
∣
∣
≤ |t|

3 γ3k
6s3n

.

Next

log exp(itXk/sn) = log

(

1− t2σ2
k

2s2n
+ r1,k

)

= −t
2σ2

k

2s2n
+ r1,k + r2,k,

with, after having used the cr-inequality,

r2,k ≤
∣
∣
∣
∣
−t

2σ2
k

2s2n
+ r1

∣
∣
∣
∣

2

≤ 2

∣
∣
∣
∣
−t

2σ2
k

2s2n

∣
∣
∣
∣

2

+ 2 |r1|2

≤ 1

2

(

|t|3 σ3
k

s3n

)( |t| σk
sn

)

+
1

18

(

|t|3 γ3k
s3n

){

|t|3 γ3k
s3n

}

.

Now |t| ≤ sn/(2βn) implies

( |t|σk
sn

)

≤
(
σk
sn
× sn

2βn

)

=
1

2

σk
βn

=
1

2

(
σ3
k

β3
n

)1/3

≤ 1

2

(
σ3
k

γ3n

)1/3

=
1

2

σk
γk
≤ 1

2
,

by Lyapounov’s inequality, that is for 1 ≤ p ≤ q,

(E |Xk|p)1/p ≤ (E |Xk|q)1/q

and next
{

|t|3 γ3k
s3n

}

≤
{
γ3k
s3n
× s3n

8β3
n

}

≤ 1

8
.

We arrive, after applying again Lyapounov’s inequality, at

r2,k ≤
1

2

(

|t|3 σ3
k

s3n

)

× 1

2
+

1

18

(

|t|3 γ3k
s3n

)

1

8
=

37

144

|t|3 γ3k
s3n

.
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Next

log exp(itSn/sn) =
n∑

k=1

log exp(itXk/sn)

= −t2/2 + rn

= −t2/2 +
n∑

k=1

|t|3 γ3k
6s3n

+
37

144

|t|3 γ3k
s3n

= −t2/2 + 61

144

|t|3 β3
n

s3n

≤ −t2/2 + 61

144
× 1

8
,

where we used |t| ≤ sn/(2βn) at the last step. We already have

exp(itSn/sn) = exp(−t2/2 + rn)

so that
∣
∣exp(itSn/sn)− exp(−t2/2)

∣
∣ = exp(−t2/2) ‖ern − 1‖ .

We use the formula ‖ez − 1‖ ≤ ‖z‖ e‖z‖ to see that

∣
∣exp(itSn/sn)− exp(−t2/2)

∣
∣ = exp(−t2/2) ‖ern − 1‖
≤ exp(−t2/2) ‖rn‖ e‖rn‖

≤ exp(−t2/2) 61
144

|t|3 β3
n

s3n
e61/(8∗144)

≤ 0.4466464× exp(−t2/2) |t|
3 β3

n

s3n

≤ 16× exp(−t2/2) |t|
3 β3

n

s3n

≤ 16× exp(−t2/2) |t|
3 β3

n

s3n
,

since exp(−t2/2) ≤ exp(−t2/3).

Proof of Part 2. This is proved as follows. If s3n/(4β
3
n) ≤ sn/(2βn),

Part 2 is implied by Part 1. Then, we only need to prove Part 2 in the
case

sn/(2βn) < s3n/(4β
3
n),
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and only for t satisfying

sn/(2βn) < t ≤ s3n/(4β
3
n).

Let us proceed by considering the symmetrized form of Xk, denoted by
Xs

k, and defined by

Xs
k = Xk −X ′

k,

where X ′
k is a random variable with the same law than Xk and inde-

pendent of Xk. Then, obviously, EX
s
k = EXk−EX ′

k = EXk−EXk = 0
and

Var(Xs
k) = Var(Xk) +Var(X ′

k) + 2 Cov(Xk, X
′
k) = σ2

k + σ2
k + 0 = 2σ2

k

and finally, by the Cr-inequality

E |Xs
k|r = E |Xk −Xk|r ≤ cr(E |Xk|r + E |X ′

k|r),

with cr = 2r−1, r ≥ 1. Apply it to r = 3 to get

E |Xs
k|3 ≤ 4(E |Xk|3 + E |X ′

k|3) = 8γ3k.

Now, we remark that we have for any real random variable

ψX(t) =

∫

cos(tx) dPX(x) + i

∫

sin(tx) dPX(x).

and

ψ−X(t) = xψ−X(t) =

∫

cos(tx) dPX(x)− i
∫

sin(tx) dPX(x) = ψX(t),

where ψX(t) is the conjugate of ψX(t). Next, from this and by inde-
pendence, we have

ψXs
k
(t) = ψXk−X′

k
(t) = ψXk

(t)ψ−X′
k
(t) = ψXk

(t)ψ−Xk
(t)

= ψXk
(t)ψXk

(t) = ‖ψXk
(t)‖2 ,

where, here, ‖◦‖ denotes the norm in the complex space. Next, we
apply Lemma 11 to Xs

k at the order n = 2 to get

∣
∣ψXs

k
(t)− (1− 2σ2

kt
2)
∣
∣ ≤ 8 |t|3

6
γ3k =

4 |t|3
3

γ3k.

The triangle inequality leads to

ψXs
k
(t) ≤ 1− 2σ2

kt
2 +

4 |t|3
3

γ3k,
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which gives (⊲⊳)

ψXs
k
/sn(t) ≤ exp{−2σ

2
kt

2

s2n
+

4 |t|3
3s3n

γ3k}.

Denote also Ss
n = Xs

1 + ...+X
s
n. Then, by reminding that ψXs

k
(t) is real

and non-negative and that
∥
∥ψXs

k
/sn(t)

∥
∥ is an absolute value, we have

ψSs
n/sn(t) =

n∏

k=1

ψXs
k
(t) ≤

n∏

k=1

exp{−σ
2
kt

2

s2n
+

4 |t|3
3s3n

γ3k}

= exp{−
n∑

k=1

σ2
kt

2

s2n
+

n∑

k=1

4 |t|3
3s3n

γ3k}

= exp{−t2 + 4 |t|3 β3
n

3s3n
}.

Now, for |t| ≤ s3n/(4β
3
n), it comes that

ψSs
n/sn(t) ≤ exp{−t2 + 4 |t|3 β3

n

3s3n
}

≤ exp{−t2 + t2

3
} = exp{−2t2/3}.

Since ψSs
n/sn(t) =

∥
∥ψSn/sn(t)

∥
∥
2
, we have

∥
∥ψSn/sn(t)

∥
∥ ≤ exp{−t2/3}.

Now, since, sn/(2βn) < |t|,

1 ≤ 2βn |t|
sn

=
2βn |t|3
sn

×
(

1

|t|2
)

≤ 2βn |t|3
sn

×
(
4β2

n

s2n

)

=
8β3

n |t|3
s3n

.

To conclude, we say that

∥
∥ψSn/sn(t)− exp(−t2/2)

∥
∥ ≤ exp(−t2/2) +

∥
∥ψSn/sn(t)

∥
∥

≤ exp(−t2/2) + exp{−t2/3}
≤ 2 exp(−t2/2).



5. BERRY-ESSEN APPROXIMATION 269

We conclude by using the following stuff :
∥
∥ψSn/sn(t)− exp(−t2/2)

∥
∥ ≤ 2 exp(−t2/2)× (1)

≤ 2 exp(−t2/2)8β
3
n |t|3
s3n

= 16 exp(−t2/2)β
3
n |t|3
s3n

.

The following lemma on elementary real analysis has been used in the
proof the Essen Lemma 10.

Lemma 13. Let f be a bounded and non-constant right-continuous
mapping from R to R with left-limits at each point of R, such that

lim
x→−∞

f(x) = 0 and lim
x→+∞

f(x) = 0.

Then there exists some x0 ∈ R such that

0 < c = sup
x∈R
|f(x)| = |f(x0)| or c = |f(x0−)|

where f(x−) stands for the left-limit of f at x.

Proof. Let c = supx∈R |f(x)|. The number c is strictly positive, other-
wise f would be constant and equal to zero, which would be contrary to
the assumption. Now since limx→−∞ f(x) = 0 and limx→+∞ f(x) = 0,
we can find A > 0 such that

∀x, (|x| > A) =⇒ (|f(x)| < c/2).

So, we get

c = sup
x∈[−A,A]

|f(x)|.

We remark that c is finite since f is bounded. Now consider a se-
quence (xn)n≥0 ⊂ [−A,A] such that |f(xn)| → c. Since (xn)n≥0 ⊂
[−A,A], by the Bolzano-Weierstrass property, there exists a subse-
quence (xn(k))k≥0 ⊂ (xn)n≥0 converging to some x0 ∈ [−A,A]. Con-
sider

I(ℓ) = {k ≥ 1, xn(k) ≥ x0} and I(r) = {k ≥ 1, xn(k) < x0}.

One of these two set is infinite. If I(ℓ) is infinite, we can find a sub-
sequence

(
xn(kj)

)

j≥1
such that xn(kj) ≥ x0 for any j ≥ 1 and xn(kj) → x0
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as j →∞. Then by right-continuity, |f(xn(kj))| → |f(x0)| and as a sub-
sequence of |f(xn)| which converges to c, we also have |f(xn(kj))| → c
as j →∞. Then

c = |f(x0)|

If I(r) is infinite, we can find a sub-sequence
(
xn(kj)

)

j≥1
such that

xn(kj) < x0 for any j ≥ 1 and xn(kj) → x0 as j → ∞. Then by the
existence of the left-limit of f at x0, |f(xn(kj))| → |f(x0−)| and as a
sub-sequence of |f(xn)| which converges to c, we also have |f(xn(kj))| →
c as j →∞. Then

c = |f(x0−)| .

Lemma 14. We have the following inequality, for any complex num-
ber z

‖ez − 1‖ ≤ ‖z‖ e‖z‖
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6. Law of the Iterated Logarithm

The Law of the Iterated Logarithm, abbreviated LIL is one of the clas-
sical results in Probability Theory. As usual, it was discovered for a
sequence of iid real-valued random variables. From a quick tour of the
introduction on the question in Loève (1997), in Gutt (2005) and in
Feller (1968b), we may say that the LIL goes back to Kintchine, and
to Levy in the binary case and finally to Kolmogorov and to Cantelli
in the general case for independent random variables. Other impor-
tant contributors in the stationary case are Hartman & Wintner, and
Strassen. Here, we present the Kolmogorov Theorem as cited by Loève
(1997).

Throughout this section, the iterated logarithm function log(log(x)),
x > e, is denoted by log2(x).

Let us ive the statement of LIL law, by using the notation introduced
above. A sequence of square integrable and centered real-valued ran-
dom variables (Xn)n≥0 defined on the same probability space (Ω,A,P)
satisfies the LIL if we have

lim sup
n→+∞

Sn
√

2snlog2s2n
= 1, a.s.

If the (−Xn)n≥1 also satisfies the LIL, we also have

lim inf
n→+∞

Sn
√

2snlog2s2n
= −1, a.s.

The two conditions which required in the independent scheme to have
the LIL are :

sn → +∞ as n→ +∞, (C1).

and

|Xn/sn| = o((log2s
2
n)

−1), as n→ +∞. (C2)

The conditions (C2) is used to ensure the following one :

(C3) : For all R+ \ {0} ∋ c > 1, there exists a sub-sequence (snk
)k≥1 of

(sn)n≥1 such that
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snk+1
/snk

∼ c as k → +∞,

which is ensured if snk
∼ βck, where β > 0 is a real constant.

But it is important that the proof below is based only (C1) and
(C3). In the iid, we have sn = σ

√
n, n ≥ 1. For any c > 0, we may

take nk = σ[ck], k ≥ 1 to have (C2).

Let us state the Kolmogorov Theorem.

Theorem 22. Let (Xn)n≥0 be a sequence of square integrable and
centered real-valued random variables defined on the same probability
space (Ω,A,P) such that Condition (C1) and (C3) hold. Then the
sequence satisfies the LIL, that is

lim sup
n→+∞

Sn
√

2snlog2s2n
= 1, a.s.

and, by replacing Xn by −Xn (which replacement does not change the
variances), we have

lim inf
n→+∞

Sn√
2snlogsn

= −1, a.s.

Proof. Let δ > 0. By applying (C3), let (snk
)k≥1 be a sub-sequence of

(sn)n≥1 such that snk
∼ ck, as k → +∞, with 1 < c < 1 + δ so that

2δ′ = 1− 1 + δ

c
> 0 (S1)

and
(snk

(2 log2 snk
)1/2)/(snk−1

(2 log2 snk−1
)1/2)→ c. (S2)

Now, since the the following class of integers intervals

{[1, n1[, [nk−1, nk[, k ≥ 1}

is a partition of N \ {0}, we have for all each n ≥ 1, there exists a
unique k ≥ 1 such that n ≥ [nk−1, nk[ and so

Sn > (1 + δ)sn(2 log2 sn)
1/2,

implies that
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S∗
nk

= sup
ℓ≤nk

Sℓ ≥ Sn > (1+δ)sn(2 log2 s
2
n)

1/2 ≥ (1+δ)snk−1
(2 log2 snk−1

)1/2,

which by (S1) and (S2), implies, for large values of k, that

S∗
nk
> (1 + δ′1)

2snk
(2 log2 snk

)1/2.

When put together, these formulas above prove that

(

Sn > (1+δ)sn(2 log2 sn)
1/2, i.o.

)

⊂
(

S∗
nk
> (1+δ′)snk

(2 log2 s
2
nk
)1/2, i.o.

)

Hence by Inequality (12) in Chapter 6 (See page 202), we have

P

(

S∗
nk

> (1 + δ′2)snk
(2 log2 snk

)1/2
)

≤ 2 P

(

S∗
nk
>

(

1 + δ′ −
√
2

(2 log2 snk−1
)1/2

)

snk
(2 log2 s

2
nk
)1/2
)

.

So, for any 0 < δ′′ < δ′, we have for large values of k,

P

(

S∗
nk
> (1+δ′)(2 log2 s

2
nk
)1/2
)

≤ 2P

(

S∗
n > (1+δ′′)snk

(2 log2 s
2
nk−1

)1/2
)

.

At this step, let us apply the exponential inequality, Statement (i)
in Theorem 13, to have, with εnk

= (1 + δ′′)(2 log2 snk
)1/2 and cnk

.
Since, by assumption, cnk

εnk
→ 0 and for k large to ensure based on

cnk
εnk

< 1, the last formula yields
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P

(

S∗
nk
/snk

> εnk
) < exp(−ε

2
nk

2
(1 + εnk

cnk
/2)(2 log2 snk−1

)1/2
)

≤ exp

(

− ε2nk

2

)

= exp

(

− (1 + δ′′)2(2 log2 snk

2
)

)

≤ exp

(

− (1 + δ′′) log2 s
2
nk

)

=
1

(1 + δ) log s2nk

∼ 1
(

2k log(1 + δ′′)

)(1+δ′′)
.

Since the last term in the group of formulas above is the general term
of a converging series, we also see that the series of general term

P

(

Sn > (1 + δ)sn(2 log2 s
2
n)

1/2, i.o.

)

also converges. By Point (i) of Borel Cantelli’s Lemma 4, we have

P

(

S∗
nk
> (1 + δ′′)snk

(2 log2 s
2
nk
)1/2, i.o (in k)

)

= 0,

and by the bounds and inclusions that are proved above, we have

P

(

Sn > (1 + δ)sn(2 log2 s
2
n)

1/2, i.o.

)

= 0,

that is, for any arbitrary δ > 0, we have

lim sup
n→+∞

Sn
√

2s2nlog2s
2
n

≤ 1 + δ, a.s.

which proves that

lim sup
n→+∞

Sn
√

2snlog2s2n
≤ 1. a.s.
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To prove that this superior limit is also greater than one, we just remark
that the first part of the proof applied to the −Xn’s with δ = 1 leads
to

P({ω ∈ Ω, ∃N(ω), ∀n ≥ N, −Sn ≤ 2(2s2nlog2s
2
n)

1/2)}) = 1

Set

Ω∗
1 = {ω ∈ Ω, ∃N(ω), ∀n ≥ N, Sn ≤ 2(2s2nlog2s

2
n)

1/2)}.

Now, let δ > 0 and let c > 1 such that

δ′

2
= 1−

(

(1− δ)
(

1− 1

c2

)1/2

− 2

c

)

> 0

so that

(

(1− δ)
(

1− 1

c2

)1/2

− 2

c

)

> 1− δ′. (K1)

Now we select, By Formula (C3), a sub-sequence (snk
)k≥1 of (sn)n≥1

such that snk
∼ ck, as k → +∞. Next, we wish to apply Theorem

13 to the non-overlapping spacings Ynk
= Snk

− Snk−1
’s of variances

unk
= s2n − s2n−1. We immediately check that

unk
= s2n−s2n−1 ∼

(

1− 1

c2

)

and v2nk
= (2 log2 u

2
nk
) ∼ (2 log2 u

2
k). (K2)

We have to remark that we still have, as k +∞,

bnk
=

1

unk

max
nk−1<n≤nk

|Xnk
|

= max
nk−1<n<nk

|Ynk
|

≤ 1

unk

max
1≤nk

|Xnk
|

= O

(

(2 log2 s
2
nk
)−1/2)

)

→ 0.

because of the first part of Formula (K2) above. Now, we are in the
position to re-conduct the same method to the Ynk

. So for 0 < δ,



276 7. ASYMPTOTICS THEOREMS OF INDEPENDENT RANDOM VARIABLES

εnk
= (1−δ)vnk

→ +∞. We take γ = (1−δ)−1. Applying Theorem 13
with that value of γ for large values of k so that we have bnk

is small
enough and (1− δ)(2 log2 u2nk

)1/2 is large enough, leads to

P

(

Ynk
/unk

> (1 + δ)(2 log2 u
2
nk
)1/2
)

> exp

(

−ε
2
nk

2

)

> exp
(
(1− δ) log2(u2nk

)
)

=
1

(2k log unk
)(1− δ)

∼ 1
(

2k log(1 + δ)

)(1−δ)
.

Since the series of general term

P

(

Ynk
/unk

> (1− δ1)(2 log2 u2nk
)1/2
)

diverges and the Ynk
are independent, we have by Point (i) of Borel-

Cantelli Lemma 4.

P

(

Ynk
/unk

> (1− δ)(2 log2 u2nk
)1/2, i.o.

)

= 1.

Set

Ω∗
1 = (Ynk

/unk
> (1− δ)(2 log2 u2nk

)1/2, i.o.

)

.

On Ω∗ = Ω∗
1 ∩ Ω∗

2, we have

Snk
= Snk

− Snk−1
+ Snk−1

> (1− δ)uk(2 log2 u2k)1/2 + Snk−1
, i.o

⇒ (Snk
> (1− δ)snk

(2 log2 s
2
sk
)1/2 − 2snk−1

(2 log2 s
2
nk−1

)1/2), i.o

⇒ (Snk
> (1− δ)(snk

(2 log2 s
2
nk
)1/2)

×
(

uk(2 log2 u
2
k)

1/2

snk
(2 log2 s

2
nk
)1/2)

−
snk−1

(2 log2 s
2
nk−1

)1/2)

snk
(2 log2 s

2
nk
)1/2

)

, i.o. (L45)
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But, as k → +∞
(

uk(2 log2 u
2
k)

1/2

snk
(2 log2 s

2
nk
)1/2)

−
2snk−1

(2 log2 s
2
nk−1

)1/2)

snk
(2 log2 s

2
nk
)1/2

)

converges to
(

(1− δ)
(

1− 1

c2

)1/2

− 2

c

)

> 1− δ′.

We conclude that Line (L41) above that

Ω∗ ⊂ (Snk
> (1− δ)snk

(2 log2 s
2
nk
)1/2, i.o).

Since P(Ω∗) = 1, we get that for any δ > 0, we have

P((Snk
> (1− δ)snk

(2 log2 s
2
nk
)1/2, i.o) = 1.

The proof of the theorem is now complete. �





CHAPTER 8

Conditional Expectation

1. Introduction and definition

We already saw in Chapter 7 the key role played independence in Prob-
ability Theory. But a very great part, even the greatest part, among
studies in Probability Theory rely on some kind on dependence rather
that on independence. However, the notion of independence, in most
situations, is used as a theoretical modeling tool or as an approximation
method. Actually, many methods which are used to handle dependence
are based transformation of independent objects or based on some near-
ness measure from the independence frame. So, the better one masters
methods based on independence, the better one understands methods
for dependence studies.

However there is a universal tool to directly handle dependence, pre-
cisely the Conditional Mathematical Expectation tool. This chapter
which is devoted to it, is the door for the study of arbitrary sequences
or family of random objects.

The most general way to deal and to introduce to this tool relies on
the Radon-Nikodym Theorem as stated in Doc 08-01 in Chapter 9 in
Lo (2017b). We already spoke a little on it in the first lines in Chapter
6.

Definition 9. Let X be real-valued random variable (Ω,A,P) which
is quasi-integrable, that is

∫
X+dP < ∞ for example. Let B be a σ-

sub-algèbra of A, meaning that B is a σ-algebra of subsets of Ω and
B ⊂ A. The mapping

φ : B −→ R

A →֒ φ(B) =
∫

B
XdP

is well-defined and continuous with respect to P in the following sense

(∀B ∈ B), (P(B) = 0 =⇒ φ(B) = 0).

279
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By Radon-Nikodym’s Theorem (See Doc 08-01 in Chapter 9 in Lo
(2017b)), there exists a random variable, uniquely defined a.s.,

Z : (Ω,B) 7→ R

which is B -measurable such that

(1.1) (∀B ∈ B),
(∫

B

X dP =

∫

B

Z dP

)

.

This random variable Z, is defined as the mathematical expectation of
X with respect to B and denoted by by

Z = E(X/B) = EB(X) a.s.,

* and the mathematical expectation is uniquely B-almost surely.

Let Y be a measurable mapping Y (Ω,A)→ (G,D), where (G,D) is an
arbitrary measurable space. As previously explained in the first lines in
Section 2 in Chapter 6;

BY = {Y −1(H), H ∈ D}
is the σ-algebra generated by Y , the smallest one rendering Y measur-
able. It is a σ-sub-algebra of A. The mathematical expectation with
respect to Y , denoted by E(X/Y ), is the mathematical expectation with
respect to BY that is

E(X/Y ) = E(X/BY ).

Extension. Later we will define the mathematical expectation with
respect to a family a measurable mappings similarly to the one with
respect to one mapping Y as in the definition.

This definition is one of the most general ones. In the special case where
we work with square integrable real-valued random variables, a specific
definition based on the orthogonal projection on the closed linear space
H = L2(Ω,B) of B-measurable random variables is possible. And the
mathematical expectation of X is its orthogonal projection on H . We
will see this in Section 1. But as we will see it, even in the general
case, the mathematical expectation is still a linear projection L1 as
explained in Remark 1 below.
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2. The operator of the mathematical expectation

We already knew in Doc 08-01 in Chapter 9 in Lo (2017b), that E(X/B)
is a.s. finite (in the frame of Probability Theory) and is integrable
whenever X is. In stating the properties below, we fix B and we do
not need write the mention of with respect to B.

We have

Proposition 26. Considered as an operator from L1(Ω, A,P) to
L1(Ω,B,P), the mathematical expectation mapping

L L1(Ω, A,P) −→ L1(Ω,B,P)
X →֒ E(X/B)

is linear and satisfies

L2 = L and ‖L‖ = 1.

It is non-negative in the following sense

X ≥ 0 =⇒ L(X) ≥ 0.

The operator L is non-decreasing in the sense that, for (X, Y ) ∈ (L1)2,

X ≤ Y a.s. ⇒ L(X) ≤ L(Y ), a.s.

Proof. Let X and Y be two integrable random variables, defined both
on (Ω,A), α and β two real numbers. Then αX +βY and αE(X/B)+
βE(Y/B) are a.s. defined. Then for any B ∈ B, we have

∫

B

(αX + βY )dP = α

∫

B

XdP+ β

∫

B

Y dP,

which, by the the definition of the mathematical expectation, implies

α

∫

B

E(X/B)dP+ β

∫

B

E(Y/B)dP =

∫

B

{αE(X/B) + βE(Y/B)}dP.

Since αE(X/B) + βE(Y/B) is B-measurable, the equality entails that

E((αX + βY )/B) = αE(X/B) + E(Y/B), a.s.
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Next, as an immediate consequence of the definition, E(X/B) = X a.s.
whenever X is B-measurable. Since L(X) = E(X/B) is B-measurable,
it comes that

L2(X) = E(L(X)/B) = L(X),

which implies that L2 = L. The non-negativity comes from Radon-
Nikodym’s Theorem which says the if X is non-negative, the mapping

B ∋ B 7−→ φ(B) =

∫

B

XdP =

∫

B

Z dP

is non-negative. Hence the its Radon-Nikodym derivative Z is non-
negative. Here is an easy proof. Indeed Ba = (Z < a) ∈ B, a < 0. Fix
a < 0. If Ba is not a null-set, we would have

φ(B) =

∫

Ba

X dP =

∫

Ba

Z dP ≤ aP(Ba) < 0.

This is impossible since we have φ(Ba) ≥ 0. So for k ≥ 1, all the events
B−1/k are null-sets. Since

(Z ≤ 0) =
⋂

k≥1

B−1/k,

(Z ≤ 0) is a null-event and thus, Z ≥ 0 a.s..

The non-decreasingness is immediate from the combination of the lin-
earity and the non-negativity.

Let us determine the norm of L defined by

‖L‖ = sup{‖L(X)‖1 / ‖X‖1 , X ∈ L1, ‖X‖1 6= 0}.

First let us show that L is contracting, that is

|E(X/B)| ≤ E(|X|/B).

We have X ≤ |X| and −X ≤ |X|. We have E(X/B) ≤ E(|X| /B) and
−E(X/B) = E(−X/B) ≤ E(|X|/B) ≥ 0.

We conclude that
|E(X/B)| ≤ E(|X|/B).

By applying the definition of the mathematical expectation, we have
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‖E(X/B)‖1 = E|E(X/B)| ≤ EE(|X|/B) = E(|X|) = ‖X‖1 .

Hence we have
‖L(X)‖1 ≤ ‖X‖1 .

Next we have
‖L‖ ≤ 1.

But if ‖X‖1 6= 0 and X is B-measurable, we have L(X) = X and for
such random variables, we have‖L(X)‖1 / ‖X‖1 = 1. We conclude that

‖L‖ = 1.

The proof of the proposition is complete. �

Remark 1. A linear operator L such that L2 = L is called a pro-
jection. Hence the mathematical operator is a projection of L1 to the
sub-space of B-measurable functions.

3. Other Important Properties

Proposition 27. We have the following facts.

(1) If X is B-measurable, then E(X/B) = X a.s.

(2) The mathematical conditional expectation is anon-negative linear
and non-decreasing operator.

(3) The mathematical conditional expectation is a contracting operator,
that is, whenever the expressions make sense,

|E(X/B)| ≤ E(|X|/B).

(4) Let B1 and B2 be two σ-sub-algebras of A with B1 ⊂ B2 ⊂ A. We
have

(3.1) E(E(X/B2)/B1) = E(X/B1)
and

(3.2) E(E(X/B1)/B2) = E(X/B1).
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(5) Let X be a random variable independent of B in the following sense
: for any mapping B-measurable mapping Z : Ω 7−→ R and for any
measurable application h : R 7−→ R,

E(Z × h(X)) = E(Z)× E(h(X)).

Then, if E(X) exists, we have

E(X/B) = E(X).

(6) (Monotone Convergence Theorem for Mathematical expectation).
Let (Xn)n≥0 be a non-decreasing sequence of integrable random vari-
ables which are all non-negative or all integrable. Then we have

E( lim
n→∞

Xn/B) = lim
n→∞

E(Xn/B)

(7) (Fatou-Lebesgue Theorems). Let (Xn)n≥0 be quasi-integrable real-
valued random variables which is a.s. bounded below by an integrable
random variable, then

E(lim inf
n→∞

Xn/B) ≤ lim inf
n→∞

E(Xn/B).

If the sequence is a.s. bounded above by an integrable random variable,
then

E(lim sup
n→∞

Xn/B) ≥ lim sup
n→∞

E(Xn/B).

If the sequence is uniformly a.s. bounded by an integrable random vari-
able Z and converges a.s. to X, then

lim
n→∞

E(Xn/B) = E(X/B)

and

E(|X|/B) ≤ E(|Z|/B).

(8) Let X be a quasi-integrable random variable. Let Z be B-measurable
and non-negative or integrable. Then we have

E(ZX/B) = Z × E(X/B).
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Proof.

Points from (1) to (3) are already proved in the first proposition.

Proof of Point (4). First we know that E(X/B1) is B1-measurable
and thus B2-measurable. By Point (1), we have

E(E(X/B1)/B2) = E(X/B1).

Formula (3.1) is proved. Next, for any B ∈ B1 ⊂ B2, we have

∫

B

XdP =

∫

B

E(X/B2)dP,

since B is also in B2. Now we apply the definition of the mathematical
expectation with respect to B1 in the right-hand member to have

∫

B

XdP =

∫

B

E(X/B2)dP =

∫

B

E(E(X/B2)/B1)dP.

Since E(E(X/B2)/B1) is B1-measurable, we conclude that E(X/B1) =
E(E(X/B2)/B1) a.s. Thus, we reach Formula (3.2).

Proof of (5). It is clear that the constant mapping ω 7−→ E(X) is
B-measurable. Hence for any B ∈ B,
∫

B

X dP = E(1B × X) = E(1B)×E(X) = E(X)

∫

B

dP =

∫

B

E(X)dP,

which proves that

E(X/B) = E(X), a.s.

Proof of Point (6). Let (Xn)n≥0 be a non-decreasing sequences of
random variables such that E(X+

n ) < ∞ pour tout n ≥ 0. For any
B ∈ B, we have

∫

B

XndP =

∫

B

E(Xn/B)dP.

Since the sequences (Xn)n≥0 and (E(Xn/B))n≥0 are non-decreasing of
integrable random variable, we may apply the Monotone Convergence
Theorem to get
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∫

B

lim
n→∞

XndP = lim
n→∞

∫

B

XndP = lim
n→∞

∫

B

E(Xn/B)dP =

∫

B

lim
n→∞

E(Xn/B)dP.

Since limn→∞ E(Xn/B)dP is B-measurable, we have

E( lim
n→∞

Xn/B) = lim
n→∞

E(Xn/B).

Proof of Point (7). Based on the Monotone convergence Theorem for
conditional expectation in the previous Point (6), the Fatou-Lebesgue
Theorem and the Lebesgue Dominated Theorem are proved as in the
unconditional case, as done in Chapter 6 in Lo (2017b). �

Proof of Point (8). Let Z be a B-measurable random variable non-
negative or integrable. Thus ZE(X/B) is B-measurable. Suppose that
Z = 1C , C ∈ B, that is Z is B-measurable indicator function. We have
for any B ∈ B,

∫

B

Z X dP =

∫

B

1C X dP =

∫

BC

X dP

=

∫

BC

E(X/B)dP =

∫

B

1CE(X/B)dP.

Thus, we have
∫

B

Z X dP =

∫

B

Z E(X/B)dP.

Since Z × E(X/B) is B−measurable, we get

E(ZX/B) = ZE(X/B).
To finish the proof, we follow the famous three steps method by extend-
ing the last formula to elementary functions based on B-measurable
sets, next to non-negative random variables using Point (6) above and
finally to an arbitrary random variable Z using the additivity of both
the expectation and the conditional expectation.

* We may and do have the same theory by using non-negative
B-measurable random variables in place of the elements of B in the
definition of the mathematical expectation.
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4. Generalization of the definition

Let us define by E(X/B) a B-measurable random variable such that
for all B-measurable mapping h : (Ω,B) 7−→ (R,B), we have

(4.1)

∫

h X dP =

∫

hE(X/B) dP

We are going to quickly show that the definitions based on Formulas
(4.1) and (1.1) respectively are the same.

Before we do it, let us just say that Formula (4.1) usually offers a more
comfortable handling of the mathematical expectation.

Proof of the equivalence between Formulas (4.1) and (1.1). The
implication (4.1) =⇒ (1.1) by taking h = 1B for B ∈ B. To prove the
converse implication, we use the classical three steps methods. Suppose
that Formula (1.1) holds.

Step 1. If h = 1B for B ∈ B, Formula (4.1) is obvious.

Step 2. h is an elementary function of the form

h =

p
∑

i=1

αi1Bi
,

where Bi ∈ B et αi ∈ R. By using the linearity, we have

∫

h X dP =

∫
(

p
∑

i=1

αi1Bi

)

X dP

=

p
∑

i=1

αi

(∫

1Bi
X dP

)

=

p
∑

i=1

αi

(∫

1Bi
E(X/B) dP

)

=

∫
(

p
∑

i=1

αi1Bi

)

E(X/B)dP =

∫

hE(X/B) dP.

Step 3. h is B-measurable and non-negative There exists a sequence of
elementary (hn)n≥0 based on elements of B such that hn ր h and thus,

hnX
+ ր hX+ and hnE(X

+/B)ր hE(X+/B).
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By the monotone convergence Theorem, we have

∫

hnX
+dP =

∫

hnE(X
+/B)dPր

∫

hX+dP =

∫

hE(X+/B)dP.

We similarly get
∫

h X− dP =

∫

hE(X−/B)dP.

Thus by quasi-integrability, we have
∫

h X dP =

∫

hE(X+/B)dP−
∫

h X− dP

=

∫

hE(X+/B)dP−
∫

h E(X−/B)dP =

∫

hE(X/B) dP.

The proof is over. �

With the second definition, some properties are easier to prove as the
following one.

Proposition 28. if Z is B-measurable either non-negative or in-
tegrable, we have for any quasi-integrable random variable,

E(Z × X/B) = Z × E(X/B).

Proof. Let h be any non-negative and real valued B)-measurable func-
tion. We have

∫

h{ZX}dP =

∫

{hZ}XdP =

∫

{hZ}E(X/B)dP =

∫

h {ZE(X/B)} dP.

Since ZE(X/B) is B-measurable, we get that E(ZX/B) = ZE(X/B)
a.s. �

5. Mathematical expectation with respect to a random
variable

Let us consider that B is generated by a measurable mapping Y :
(Ω, ,A)→ (G,D), where (G,D) is an arbitrary leasure space, that is

B = BY = {Y −1(H), H ∈ D}

Par definition, we denote
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E(X/BY ) = E(X/Y ).

Let us prove that any real valued and BY -measurable mapping h is of
the form g(Y ), where g is a measurable mapping defined on (G,D) and
takes its values in R.

To see this, let us use again the four steps method. In the first step,
let us suppose is an indicator function of an element of BY . So there
exists C ∈ D, such that

h = 1Y −1(C) = 1C(Y )

Clearly g = 1C is a real-valued measurable mapping defined on G such
that h = g(Y ).

In a second step, let h be a of the form

h =

p
∑

i=1

αi1Y −1(Bi) =

p
∑

i=1

αi1Bi
(Y ) =

(
p
∑

i=1

αi1Bi

)

(Y ) = g(Y ),

where g is clearly D-measurable. We easily move to non-negative BY
-measurable function by Point (6) of Proposition ... and the classical
fact that any measurable and non-negative function is a non-decreasing
limit of a sequence of non-negative elementary function. The extension
to an arbitrary quasi-integrable B-measurable function is done by using
the positive and negative parts.

In summary, whenever it exists, E(X/Y ) is has the form

E(X/Y ) = g(Y ),

g is a measurable mapping defined on (G,D) and takes its values in R.

This function g is also called the regression function of X in Y
denoted as

E(X/Y = y) = g(y).

It is very interesting to see a discrete version of that formula, which
is very commonly used. Suppose that Y takes a countable number of
values denoted by (yj)j∈J , j ⊂ N. We recall that we have

E(X) = E(E(X/Y )),
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and next by using the regression function, we have

E(X) = E(E(X/Y )) = Eg(Y )

=
∑

j∈J
g(yj)P(Y = yj) =

∑

j∈J
E(X/Y = yj)P(Y = yj).(5.1)

This gives

E(X) =
∑

j∈J
E(X/Y = yj)P(Y = yj).

If X itself is discrete and takes the values (xi)i∈I , we have

(5.2) E(X) =
∑

j∈J
xiP(X = xi/Y = yj)P(Y = yj).

Let us study the Jensen’s inequality for the mathematical expectation.
We keep the same notations. For some details on convex function in
our series, on may consult Exercise 6 and its solution in Doc 03.09 in
Chapter 4 in Lo (2017b).

6. Jensen’s Inequality for Mathematical Expectation

Theorem 23. Let X be random variable supported by an interval
I on which is defined a real-valued convex function φ. Suppose that X
and φ(X) are integrable. Then for any σ-sub-algebra B of A, we have

φ(E(X/B) ≤ E(φ(X)/B).
Proof. Let us follows Chung (1974) in the first proof therein. Let us
proceed by step.

Step 1. Let us suppose that X takes a finite number of distinct values
(xj), j ∈ J , J finite. Let us denote Bj = (X = xj), j ∈ J so that

X =
∑

j∈J
xj1Bj

, and
∑

j∈J
1Bj

= 1Ω = 1. (F1)

and hence

φ(X) =
∑

j∈J
φ(xj)1Bj

.



6. JENSEN’S INEQUALITY FOR MATHEMATICAL EXPECTATION 291

By the linearity of the mathematical expectation, we have

E(φ(X)/B) =
∑

j∈J
φ(xj)E(1Bj

/B). (F2)

But the real numbers E(1Bj
/B) add up to one since, because of Formula

(F1), we get

∑

j∈J
E(1Bj

/B) = E

(
∑

j∈J
1Bj

/B
)

= E(1Ω/B) = 1.

Hence by the convexity of φ, the right-hand member of Formula (F2)
satisfies

∑

j∈J
φ(xj)E(1Bj

/B) ≥ φ

((
∑

j∈J
xjE(1Bj

)

/B
)

,

and, surely, the right-hand member is

φ

(

E

(
∑

j∈J
xj1Bj

)

/B
)

= φ(E(X/B). (F3)

By comparing the left-hand term of Formula (F2) and the right-hand
term of Formula (F3), we get the desired result.

Step 2. For a a.s. finite general random variable, we already know
from Measure Theory and Integration that X is limit of a sequence
elementary functions (Xp)p≥1 with |Xp| ≤ |X| for all p ≥ 1.

If X is bounded a.s, say |X| ≤ A < +∞ .a.s, then by the continuity
φ, we have

max

(

|φ(X)|, sup
p≥1
|φ(Xp)|

)

≤ ‖φ‖[−A,A] < +∞.

By applying the result of Step 1, we have for all p ≥ 1

φ(E(Xp/B) ≤ E(φ(Xp)/B).

By applying the Dominated Convergence Theorem in both sides, we
get the desired result.
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Step 3. Now suppose that X is not bounded above. By Proposition
17.6 in Choquet (1966), each point of (a, φ(a)) of the Graph Γ of the
convex function φ has a supporting line, that is a straight line which
passes through (a, φ(a)) and is below Γ. A quick drawing may help to
catch the meaning of this. For each n ≥ 1, consider a supporting line
at the point (n, φ(n)) with equation fn(x) = Anx+Bn.

If X is not bounded below, we consider, for each n ≥ 1, a supporting
line at the point (−n, φ(−n)) with equation g(x) = Cnx+Dn.

We may haveX bounded below and not bounded above, X not bounded
below and bounded above orX neither bounded below and nor bounded
above. In all these situations, we will have similar way to handle the
situation. Let us take the last case. We define

φn = gn1]−∞,−n[ + φ1[−n,n] + fn1]n,+∞[

We may check quickly that each φn is convex, φn ≤ φ and φn ↑ φ as
n ↑ +∞. By denoting, for each n ≥ 1,

En = ‖φ‖[−n,n]

and an = |An|+ |Cn|+ |En| and bn = |Bn|+ |Dn|, we have for all n ≥ 1,
for all x ∈ R

|φn(x)| ≤ an|x|+ bn,

and next for all n ≥ 1, for all p ≥ 1

|φn(Xp)| ≤ an|Xp|+ bn ≤ an|X|+ bn, (F4)

Since for each n ≥ 1, φn is convex, the result of Step 1 gives for all
p ≥ 1,

φn(E(Xp/B) ≤ E(φn(Xp)/B).

By fixing n ≥ 1, by letting p → +∞ and by applying the Dominated
Convergence Theorem in both sides on the account of Formula (F4),
we get

φn(E(X/B) ≤ E(φn(X)/B).
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By letting n ↑ +∞, and by applying the Monotone convergence Theo-
rem of the integrable functions in the right-hand member, we get the
general conclusion. �

7. The Mathematical Expectation as an Orthogonal
Projection in L2

Let us suppose that X ∈ E = L2(Ω,A,P). For any σ-sub-algebra
B of A, let us consider H = L2(Ω,B,P) the square integrable and
real-valued B-measurable functions. At least 1 = 1Ω and 0 = 1∅ are
elements of H .

We already know that L2(Ω,A,P) is a Hilbert space endowed with
inner product

L2(Ω,A,P)2 ∋ (X, Y ) 7→ 〈X, Y 〉 = E(XY ).

We have the following projection theorem in Hilbert spaces (See for
example Theorem 6.26 in Chidume (2014), page 109).

Proposition 29. Suppose that E is a Hilbert space and H a closed
sub-linear space. Fix x ∈ E. We have the following facts.

(1) There exists a unique element pH(x) ∈ H such that

d(x,H) = inf{‖x− h‖, h ∈ H} = ‖x = pH(x)‖.

(2) pH(x) is also the unique element of H such that x − pH(x) is or-
thogonal all elements of H.

We are going to apply it in order to characterize E(X/B). We have

Theorem 24. For any σ-sub-algebra B of A, H(B) = L2(Ω,B,P)
is a closed linear space, and for any X ∈ E = L2(Ω,A,P),

E(X/B) = pH(B)(X). a.s.

Proof. Let us begin to show that H(B) is closed. Let Z a limit of
a sequence of elements of H(B). Since E is a Hilbert space, we know
that Z is still in E, thus is square integrable. By Theorem 10 in Chap-
ter 5, page 167, the concerned sequence converges to Z in probability
and next, by the relation between weak and strong limits seen in the
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same chapter, a sub-sequence of the sequence converges a.s. to Z. Fi-
nally Z being an a.s. limit of a sequence B-measurable functions is
B-measurable. In total Z ∈ H(B). thus H(B) is closed in E.

Now for any X ∈ E, Point (2) of Proposition 29 characterizes Z =
pH(B)(X). Thus for any B ∈ B, h = 1B ∈ H(B), 〈X − Z, h〉 = 0, that
is 〈X,Z〉 = 〈X, h〉

∫

B

X dP =

∫

B

Z dP.

We conclude that Z = E(X/B). �

8. Useful Techniques

In a great number of situations, we need to compute the mathematical
expectation of a real-valued function h(X) of X and we have to use
a conditioning based on another random variables Y where of course
X and Y are defined on the same probability space (Ω,A,P), even if
they may have their values in different measure spaces (E1,GE1) and
(E2,GE2). Suppose h : (E1,GE1)→ R is measurable and that h is non-
negative or h(X) is integrable. We already know that there exists a
measurable function g : (E2,GE2)→ R such that

E(h(X)/Y ) = g(Y ) (CG01)

and by this, we have

E(h(X)) = E(g(Y )). (CG02)

Now suppose that Y is continuous with respect to a measure ν that
is given on the measure space (E2,GE2). By reminding that g(y) =
E(h(X)/(Y = y)) for y ∈ E2, we have from formula (CG02)

E(h(X)) = E(g(Y ))

=

∫

E2

g(y) dµ(y)

=

∫

E2

E(h(X)/(Y = y)) dν(y)

which is, in short,
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E(h(X)) =

∫

E2

g(y) dν(y). (CG03)

This result takes the following particular forms.

(I) Conditioning by a discrete random variable.

Suppose that Y is discrete, that is the values set of Y is countable and
is written as D = {yj,∈ J}, J ⊂ N. Hence the probability law of Y
is continuous with respect to the counting measure ν with support D.
Thus by the Discrete Integration Formula (DIF1) (see page 66) applied
to Formula (CG03), we get

E(h(X)) =
∑

j∈J
E(h(X)/(Y = yj))P(X = jj). (CD)

(II) Conditioning by an absolutely continuous real random
vector.

Suppose that E2 = Rr, r ≥ 1. If Y is continuous with respect to the
Lebesgue measure λr, we get the formula

E(h(X)) =

∫

Rr

E(h(X)/(Y = y)) fY (y) dλr(y). (CC01)

(III) Conditional probability density function.

On top of the assumptions in Part (II) above, let us suppose also that
E2 = Rs, s ≥ 1, with d = r+ s. Let us suppose that Z = (X t, Y t)t has
a pdf fZ ≡ f(X,Y ) with respect to the Lebesgue measure on Rd. Thus
the marginal pdf ’s of X and Y are defined by

fX(x) =

∫

Rr

f(X,Y )(x, y) dλr(y), x ∈ Rs

and

fY (y) =

∫

Rs

f(X,Y )(x, y) dλs(x), y ∈ Rr.

Let us define
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fX|Y=y(x) =
f(X,Y )(x, y)

fY (y)
, fY (y) > 0,

as the conditional pdf of X given Y = y. The justification of such a
definition relies in the fact that replacing E(h(X)/(Y = y))

∫

Rs

h(x)fX|Y=y(x) dλs(x)

and using Tonelli’s Theorem (when h in non-negative) or Fubini’s The-
orem (when h(X) is integrable) leads to

∫

Rr

(∫

Rs

h(x)fX|Y=y(x) dλs(x)

)

fY (y) dλt(y)

=

∫

Rr

(∫

Rs

h(x)
f(X,Y )(x, y)

fY (y)
dλs(x)

)

fY (y) dλt(y)

=

∫

Rs

h(x)

(∫

Rs

f(X,Y )(x, y)

fY (y)
dλt(y)

)

dλs(x)

=

∫

Rs

h(x)fX(x)dλs(x)

= E(h(X)).

This leads to the frequent use the following formula

E(h(X)) =

∫

Rr

(∫

Rs

h(x)fX|Y=y(x) dλs(x)

)

fY (y) dλr(y). (CC02)



CHAPTER 9

Probability Laws of family of Random Variables

1. Introduction

We have already studied the finite product measure in Chapter 8 in
Lo (2017b) for σ-finite measures defined on arbitrary measure spaces.
In this chapter we give the Theorem of Kolmogorov which establishes
the arbitrary product of probability measures, but in special measure
spaces.

This theorem of Kolmogorov is the foundation of the modern theory of
probability. There is nothing above it, in term of probability laws. On
this basis, the modern theory of random analysis, which extends Real
Analysis (paths smoothness, differentiability, integration according to
different types, etc) is built on.

We recommend the reader, especially the beginner, to read it as many
as possible and to often and repeatedly come back to it in order to see
its deepness and to understand its consequences.

Among special spaces on which the construction is made, we count
Polish spaces. A Polish space is a complete and separable metric space
(E, d) like (Rs, ρ), s ≥ 1, where ρ is one of its three classical metrics.
An interesting remark is that the finite product of Polish spaces is a
Polish space. The finite Borel product σ of Polish spaces is generated
by the product of open balls.

Here, the level of abstraction is moderately high. Once again, we rec-
ommend the beginner to go slow and to give himself the needed time
to understand the definitions and the notation. This chapter may be
considered as a continuation of Chapter 8 in Lo (2017b).

We already encountered this Kolmogorov construction in finite dimen-
sions in Chapter 2 in pages 44 and 62. The results in this chapter will
be the most general extension of this kind of result.

297
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In the first section, we state and prove the existence of the product
probability measure. Next, we will see how to state a number of par-
ticular forms involving Lebesgue-Stieljes measures.

2. Arbitrary Product Probability Measure

Let (Et,Bt,Pt), t ∈ T 6= ∅, be a family of probability spaces. We define
the product space by

E =
∏

t∈T
Et.

If T is finite, even countable, we may use the classical notation : T =
{tj, j ≥ 0}. It make senses to speak about the first factor Et1 , the
second Et2 , etc. The elements of

E =
∏

j≥0

Etj ,

may be denoted by x = (xt1 , xt2 , ...) as an ordered set.

But, the index set T may arbitrary and uncountable. For example T be
may a set of functions. If the functions are real-valued, T is uncountable
and has a partial order. Sometimes we may not have an order at all.
So the general appropriate way to study E seems to consider E as a
set of functions. Thus, an element x of E, written as

x = (xt)t∈T = (x(t), t ∈ T ),

is perceived as a function x which corresponds to each t ∈ T a value
x(t) = xt ∈ Et.

Let us begin to introduce the projections and give relevant notation.
We denote by Pf the class of finite and non-empty subsets of T . Given
an element S = {s1, ..., sk} of Pf , we may write in any order of the
subscripts. This leads to the class of ordered and non-empty subsets
denoted by Pof . Elements of Pof are written as k-tuples S = (s1, ..., sk),
k ≥ 1. For any S = (s1, ..., sk) ∈ Pof , we have the finite product space

ES =

k∏

j=1

Esj
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which is endowed with the finite product σ-algebra

BS =
k⊗

j=1

Bsj .

The projection of this space ES is defined by

(2.1)
ΠS : (E,B) −→ (ES,BS)

x = (xt)t∈T 7−→ ΠS(x) = (xs1, ..., xsk)
.

We name S as the index support of the projection.

Our first objective is to define a σ-algebra on E, which renders mea-
surable all the projections on finite sub-products spaces.

2.1. The Product σ-algebra on the product space. Let us
begin by the definition

Definition 10. The product σ-algebra on E, denoted by B, is the
smallest σ-algebra rendering measurable all the projections of finite in-
dex support.

We already know that such a σ-algebra exists. Compared to the finite
product σ-algebra, there is nothing new yet.

In the sequel, we have to change the order of elements of V ∈ Pof . So
the following recall may be useful. Indeed, by permuting the elements
of V = (v1, ..., vk) ∈ Pof , k ≥ 1, by means of a permutation s of
{1, 2, ..., n}, the correspondence

(2.2)
(E,B) −→ (Es(S),Bs(S))

(xv1 , ..., xvk) 7−→ (xs(v1), ..., xs(vk))
.

is a one-to-one mapping. Also, in parallel of the notation of EV , we
may and do adopt the following notation

xV = (xs(v1), ..., xs(vk)).

As well, the space SV denote the class of measurable rectangles in EV .

Now, as in the finite product case, we have to see how to generate
B by what should correspond to the class of measurable rectangles.
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Here, we use the phrasing in Loève (1997) of measurable cylinders.
Let S = (s1, ..., sk) ∈ Pof , k ≥ 1. A finite measurable rectangle in ES

is generally denoted by

(2.3) AS =
k∏

j=1

Asj , (Asj ∈ Bsj , 1 ≤ j ≤ k)

It is clear that Π−1
S (AS) is the set of all x = (xt)t∈T such that

xsj ∈ Asj , 1 ≤ j ≤ k.

We write the above fact as

Π−1
S (AS) = AS ×

∏

t/∈S
Et. (FP )

Definition 11. The class S of measurable cylinders of E is the
class of subsets of E which are of the form Π−1

S (AS), S ∈ Pof .

In other words, a measurable cylinder of E is a product of measurable
subsets At ∈ Bt of the form

∏

t∈T
At, (SP01)

such that at most a finite number of the At, t ∈ T , are non-empty. If
V = {v1, ..., vk} ⊂ T is such that At = ∅ for t /∈ V , then the product

AV =
∏

v∈V
Av (SP02)

is called a finite support of the cylinder and the cylinder is written as

c(AV ) = AV ×
∏

t/∈V
Et. (SP03)

Remarks. The following remarks are important.

(1) In the definition of the support of the cylinder in Formula (SP02),
the order of V is not relevant in the writing of the cylinder c(AV ), but
it really counts in the writing of the support AV .
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(2) A support is not unique. For example if one of Ev, v ∈ V , is equal
to Ev, may may drop it from the support. As well, we may add to V
any other w /∈ V such that Aw = Ew : we may drop full spaces from
the support and add full spaces to it.

(3) Formula (SP03) means that x = (xt)t∈T is in the cylinder only if
xv ∈ Ev, v ∈ V , and we do not care about where are the xt, t /∈ V .
The only knowledge about them is that they remain in their full space
Et, t /∈ V .

(4) The notation c(AV ) introduced in Formula (SP03) stands for cylin-
der of support AV where V is non-empty set of T .

(5) For the sake of shorter notation, we may write the formula in (SP03)
in the form

c(AV ) = AV ×E ′
S where E ′

S =
∏

t∈V
Et

The coming concept of coherence, which is so important to the theory
of Kolmogorov, depends on the understanding of the remarks above
and the next remark.

(6) Common index support of two cylinders. Consider two cylin-
ders

(2.4) c(AV ) = AV ×
∏

t/∈V
Et and c(BW ) = BW ×

∏

t/∈W
Et.

of respective supports V = (v1, ..., vq) ∈ Pof and W = (w1, ..., wp) ∈∈
Pof , p ≥ 1, q ≥ 1.

We want to find a common support for both c(AV ) and c(AW ). We
proceed as follows. Let us form an ordered set U by selecting first
all the elements of V in the ascendent order of the subscripts. Next
we complete by adding the elements of W which were not already in
U , still in the ascendent order of the subscripts. At the arrival, the
elements of W , corresponding to the common elements of V and W if
they exists, may not be present if U in the original order of the their
subscripts in W . Rather, they are present in U in the subscripts order
of some permutation s(W ) of W .
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Example. Suppose that V = (v1, v2, v3, v4, v5)(1, 4, 7, 2, 5) and W =
(w1, w2, w3, w4) = (5, 2, 10, 8). We have

U = (1, 4, 7, 2, 5, 10, 8)

* So the elements of W are given in order in (w2, w1, w3, w4) which is
s(W ) with s(1) = 2, s(2) = 2, s(3) = 3 and s(4) = 4.

But we already saw that the order of the subscripts of V , or W or U
does not alter the cylinders c(AV ), c(BW ), c(AU) or c(BU). We have

(2.5) c(AV ) = AU × E ′
U and c(BW ) = BU × E ′

U .

Actually, we formed AU (resp. AU) by adding full spaces Et to the
support AV (resp. BW ) for t ∈ U \ V ) (resp. for t ∈ U \W ) .

We say that we have written c(AV ) and c(BW ) with a common index
support U . This consideration will be back soon.

(5) In the definition of a cylinder, the finite support, say AV , is a
measurable rectangle. But in general, AV may be a measurable subset
of EV , that is AV ∈ BV and we still have

Π−1(AV ) = AV × E ′
V ,

which is to be interpreted as

x ∈ AV × E ′
V ⇔ xV ∈ AV .

Now, we are ready to go further and to give important properties of S.

Proposition 30. S is a semi-algebra.

Proof. (i) Let us see that E ∈ S. If we need to prove it, we consider
a point t0 ∈ T , put At0 = Et0 and get that

E = At0 ×
∏

t6=t0

Et = c
(
A{t0}

)
.

(ii) Next, by the definition of a cylinder of support S ∈ Pof , checking
that x belongs to c(AS) or not depends only of xS ∈ AS or not. So we
have
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(2.6) c(AS)
c = Ac

S ×
∏

t/∈S
Et,

Next, let us check that the complement of any element of S is a finite
sum of elements of S. We already knew that the class of measurable
rectangles in EV is a semi-algebra, so that Ac

S is a finite sum of elements

of measurable rectangles A
(j)
S , 1 ≤ j ≤ r, r ≥ 1, of ES. And it becomes

obvious that

c(AS)
c = Ac

S ×
∏

t/∈S
Et

=

(
∑

1≤j≤r

A
(j)
S

)

×
∏

t/∈S
Et

=
∑

1≤j≤r

(

A
(j)
S ×

∏

t/∈S
Et

)

=
∑

1≤j≤r

c(A
(j)
S ).

Our checking is successful.

(iii) Finally, let us check that S is stable under finite intersection. To
do so, let us consider two cylinders

(2.7) c(AV ) = AV ×
∏

t/∈V
Et and c(BW ) = BW ×

∏

t/∈W
Et,

and next their expressions using a common index support as explained
earlier, we have

(2.8) c(AV ) = AU × E ′
U and c(BW ) = BU × E ′

U .

It becomes clear that we have

(2.9) c(AV ) ∩ c(BW ) = c(AV ) =

(

AU ∩ BU

)

× E ′
U ,

which is element of S since
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AU ∩BU =
∏

t∈U
At ∩ Bt.

* We also have

Theorem 25. The σ-algebra on E generated by the projections,
denoted B in Definition 10, is also generated by the class of cylinders
of finite support S, called the product σ-algebra and denoted as

B =
⊗

t∈T
Bt.

Proof. Let us denote by B the σ-algebra on E generated by the pro-
jections with finite support and by B0 the one generated by S.

(1) Let us prove that B ⊂ B0. Let us fix V ∈ Pof . For any measurable
rectangle AV which in EV , that is AV ∈ σ(SV ), we already now, since
Formula (FP), that

π−1(AV ) = AV × E ′
V

and next

π−1
V (AV ) = AV ×E ′

V ∈ S ⊂ B0.

So each projection π−1
V of finite support is B0-measurable. We conclude

B ⊂ B0 by the definition of B.

2) Let us prove that B0 ⊂ B. It is enough to prove that S ⊂ B. But
any element A of (S) can be written as

A =
∏

t∈V
At ×

∏

t/∈V
Et =: AV × E ′

V , At ∈ Bt

which is

A = Π−1
V (AV ),

and then to B, since AV ∈ BV and ΠV is B-measurable. �
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3. Stochastic Process, Measurability for a family of Random
Variables

I - General case : family of random variable.

Now we have the product space

E =
∏

t∈T
Et,

endowed with the product σ-algebra

B =
⊗

t∈T
Bt.

We may study the measurability of mappings X : (Ω,A) → (E,B).
According to the notation above, we denote

∀ω ∈ Ω, X(ω) = (Xt(ω))t∈T .

For all t ∈ T , the mapping ω 7−→ Xt(ω) taking its values in Et is called
the t-th component or margin.We immediately have that for each t ∈ T ,

Xt = Πt ◦X.

It become clear that if X is measurable, thus each margin Xt, t ∈ T ,
is also measurable. Actually, this is a characterization of the measura-
bility of such mappings.

Proposition 31. A mapping X (Ω,A) −→ (E, E) is measurable
if and only if each margin Xt, t ∈ T , is measurable. Indeed, we have

Proof. We only need to prove the implication that if all the margins
Xt, t ∈ T , are measurable, then X is. Suppose that all the margins
Xt, t ∈ T , are measurable. It will be enough to show that X−1(cl(AV ))
is measurable whenever cl(AV ) ∈ S. By using the notation above, we
have

ω ∈ X−1(c(AV )) ↔ X(ω) ∈ c(AV )

↔ (∀v ∈ V,Xv(ω) ∈ Av)

↔ (∀v ∈ V, ω ∈ X−1
v (Av))

↔ ω ∈
⋂

v∈A
X−1

v (Av),
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which, by the measurability of the Xv’s, gives

X−1(c(AV )) =
⋂

v∈A
X−1

v (Av) ∈ A. �

II - Stochastic Processes.

Let consider the special case where all the Et are equal to one space
E0 on which is defined a σ-algebra B0. The product space is denoted
by

E = ET
0

and is the class of all mappings defined from T to E0. As in the general
context, elements of E are denoted x = (xt)t∈T , where for all t ∈ T ,
xt ∈ E0. The product σ-algebra is denoted by

B = B⊗T
0 .

We have the general terminology :

(1) A measurable application X : (Ω,A) →
(
ET

0 ,B⊗T
0

)
is called a

stochastic process.

(2) E0 is called the states space of the stochastic process.

(3) T is called the time space in a broad sense.

(4) If T = {1} is a singleton, the stochastic process is called a simple
random variable.

(5) If T = {1, ..., k} is finite with 2 ≤ k ∈ N, the stochastic process is
called a random vector.

(6) If T = N, the stochastic process is a sequence of random variables.

(7) If T = Z, the stochastic process is called a time series.

(8) If T = R+, the terminology of time space is meant in the real-life
case.
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(9) If T in endowed with a partial order, we generally speak of a ran-
dom field or random net.

(10) For any ω ∈ Ω, the mapping

T ∋ t 7→ Xt(ω).

is called a path of the stochastic process on E0.

4. Probability Laws of Families of random Variables

(I) The concept of Coherence.

Consider a probability measure P on the product measure space (E,B).
The image measure on a sub-product (ES,BS) by the projection ΠS,
where S = (s1, ..., sk) ∈ Pof is

PS = PΠ−1
S ,

We recall that for any BS ∈ BS, we have

PS(BS) = P(Π−1
S (BS)).

We get the family of probability measures

{PS, S ∈ Pof (T )},

which we called the family of marginal probability measures with finite
index support. By a language abuse, we also use the phrase of family
of finite-dimensional marginal probability measures of P.

We are going to discover some important relations between the finite-
dimensional marginal probability measures. But we should also keep
in mind that, for any S ∈ Pof(T ), a probability measure PS on (ES,BS)
is characterized by its values on SS, which the class of measurable rect-
angles on ES.

First, let us consider (S1, S2) ∈ Pof (T )
2, such that one of them is a

permutation of the other, that is S1 = s(S2), where S1 = (s1, ..., sk),
and s is a permutation {1, 2, ..., k}. Consider any AS1 ∈ SS1 . We have

s(AS1) = s(As1 × ...×Ask) = As(s1) × ...×As(sk) = AS2 .
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Furthermore, the projection on ES2 is the composition of the projection
on ES1 and the permutation of that projection by s, which gives

ΠS2 = s ◦ ΠS1 ,

from which, by the characterization of a finite product probability by
its values on the measurable rectangles, we have

Π−1
S2

= Π−1
S1
◦ s−1,

and similarly,

Π−1
S1

= Π−1
S2
◦ s.

Hence, for any BS1 ∈ BS1 , we have

PΠ−1
S1
(BS1) = PΠ−1

S2
◦ s(BS1),

which leads to

PS1(BS1) = PS2(s(BS1)),

and
PS1(·) = Ps(S1)(s(·)).

* We already reached a first coherence (or consistency) condition. Let
us discover a second one. Let U = (u1, .., ur) ⊂ S = (s1, ..., sk), where
the inclusion holds with the preservation of the ascendent order of the
subscripts. Then the projection on EU is obtained by the projection on
E on ES first, and next by the projection of ES on EU denoted ΠS,U .
Accordingly to the notation above, we have for any BU ⊂ EU ,

Π−1
S,U(BU) = BU × E ′

S\U ,

which is interpreted as

xS = (xU , xS\U) ∈ Π−1
S,U(BU)⇔ xU ∈ BU .

Going back to the considerations which were made above about the
projection on S, we have

ΠU = ΠS,U ◦ ΠS,

and next,
PΠ−1

U = PΠ−1
S Π−1

S,U ,

and finally,

PU = PSΠ
−1
S,U .
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We get a second relation between the marginal probability measures.
Based on the previous developments, we may define

Definition 12. A family of finite-dimensional probability measures
{PS, S ∈ Pof (T )} is said to be coherent if and only if we have the follow-
ing two conditions, called coherence coherent or consistency conditions :

(CH1a) For any ordered and finite subsets U and S of T such that U
is subset of S with the preservation of the ascendent ordering of the
subscripts of U in S, we have

PU = PSΠ
−1
S,U .

(CH2) For any ordered and finite subset S of T and for any permutation
s of ES, for any BS ∈ BS,

PS(BS) = Ps(S)(s(BS)).

Important Remarks.

(a) The condition (CH2) is useless when T is endowed with a total
ordering. In that case, we may and do write the finite subsets of T
always in that total order.

(b) The main coherence condition (CH1a) may have different equiva-
lent forms.

(b1) First we may write (CH1a) when S has only one point more than
U . From the new condition, we have the general one by simple induc-
tion.

(b2) We may also consider V andW two finite ordered subsets of T such
that U = V ∩W is not empty, and as usual, we suppose that V ∩W
is in V and in W with the same ascendent order of the subscripts.
Condition (CH1a) gives

PSΠ
−1
V,U = PSΠ

−1
W,U

and this, in turn, implies (CH1a) for U = V ⊂W = S. So we have the
following new coherence condition :
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(CH1b) For any U = (u1, .., ur) ∈ Pof (T ) and S = (u1, ..., ur, ur+1)
with ur+1 /∈ U ,

PU = PSΠ
−1
S,U

which is equivalent to saying that for B ∈ B(u1,...,ur),

P(u1,...,ur)(B) = P(u1,...,ur,ur+1)(B × Eur+1).

(CH1c) For any two finite and ordered subsets of V and W of T such
that U = V ∩W is not empty and is in V and in W with the same
ascendent order of the subscripts, we have

PSΠ
−1
V,U = PSΠ

−1
W,U .

(II) Towards the construction of a probability law of a coher-
ent family of marginal probability.

In this part, we try to solve the following problems.

(i) Given a coherent (or consistence) family of real-valued, non-negative,
normed and additive mappings LV , V ∈ Pof (T ) defined on BV , and
denoted

F = {LV , V ∈ Pof (T )},

does it exists a real-valued, normed and non-negative and
additive mapping L on B such that the elements of F are the finite-
dimensional margins of L, that is for any V ∈ Pof (T ),

LV = LΠ−1
V ?

(ii) Given a coherent family of finite-dimensional probability measures
PV , S ∈ Pof(T ), defined on BV and denoted

F = {PV , V ∈ Pof (T )},

does it exists a probability measure P on B such that the elements
of F are the finite-dimensional marginal probability measures of P, that
is for any ,

PV = PΠ−1
V ?
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Of course, if Problem (ii) is solved, Problem (i) is also solved, by taking
L = P. On the other side, the solution of Problem (i) is the first step
to the solution of Problem (ii).

We are going to see that Problem (i) has a solution with no supple-
mentary conditions. We have

Theorem 26. Given a coherent family F = {LV , V ∈ Vof(T )} of
non-negative, normed and additive applications, as described above, it
exists a normed and non-negative and additive application L

on B such that the elements of F are the finite-dimensional margins of
L, that is for any V ∈ Pof (T ),

LV = LΠ−1
V .

Proof. We adopt the notation introduced before to go faster. Let us
suppose we are given a coherent family of {LV , S ∈ Pof (T )}. Let us
define S ⊂ P(E) the class of cylinders of finite support, the following
mapping

(4.1) AV × E ′
V 7→ L(AV ×E ′

V ) = LV (AV )

for all V ∈ Pof (T ) and AV ∈ SV , or in an other notation

(4.2) Π−1
V (AV ) 7→ L(Π−1

V (AV )) = LV (AV )

The first thing to do is to show that L is well-defined. Indeed, the
support of A = AV × E ′

V ∈ S (with AV ∈ SV ) is not unique. Let
us consider an other represent of A : A = AW × E ′

W , AW ∈ SW ). If
U = V ∩W is empty, it means that all the factors of A are full spaces
and and so A = E and, and since all the Lt’s are normed, we have

LV (AV ) = LW (AW ) = 1 = L(A).

If U is not empty, what ever how it is ordered, it is present in V
according to a certain order corresponding to a permutation of r of it.
Also, there exists a permutation s of EW such that r(U) is in W with
the preservation of the ascendent order of the script. So we may denote
r(U) = (u1, ..., uk), V = (v1, ..., vp), s(W ) = (w1, ..., wq), p ≥ k, q ≥ k.
We have
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AV = Ar(U) × EV \r(U) and As(W ) = Ar(U) × Es(W )\r(U)

and it is clear that

LV (AV ) = LV (Ar(U) ×EV \r(U)) (L11)

= LV

(

Π−1
V,r(U)(Ar(U))

)

(L12)

= Lr(U)(Ar(U)) (L13)

= Lr(U)(r(AU)) (L14)

= LU (AU) (L15)

In Lines (L11)-(L13), we used the coherence condition (CH1a) while
(CH2) was used in Lines (L14) and (L15).

At the arrival, using any writing of A ∈ S leads to the same value.
Then the mapping L is well-defined and normed.

In the next step, we have to show that L is additive of S. For this, let
us consider an element of S that is split into two disjoint elements of
S. Suppose

A = B + C

with

A = AU ×E ′
U , B = AV ×E ′

V and C = CW × E ′
W .

Let consider Z = U ∪ V ∪W given in some order of the subscripts.
There exist permutations s, r and p of EU , EV and EW respectively
such that r(U), s(V ) and p(W ) are given in Z with the preservation of
the ascendent order of the subscripts and we have :

A =

(

Ar(U) ×EZ\r(U)

)

× E ′
Z ≡ A∗

Z ×E ′
Z ,

B =

(

Bs(V ) ×EZ\s(V )

)

× E ′
Z ≡ B∗

Z × E ′
Z ,

and
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C =

(

Cp(Z) ×EZ\p(W )

)

×E ′
Z ≡ C∗

Z ×E ′
Z ,

with

A∗
Z × E ′

Z =

(

B∗
Z × E ′

Z

)

+

(

C∗
Z × E ′

Z

)

This is possible only if we have

A∗
Z = B∗

Z + C∗
Z ,

with

LZ(A
∗
Z) = LU (AU), LZ(B

∗
Z) = LV (BV ), and LZ(C

∗
Z) = LW (CZ)

Using the coherence conditions, we have

L(B) = LZ(B
∗
Z)) (L31)

= LZ

(

Π−1
r(V ),Z

(
Br(V )

))

(L32)

= Lr(V )

(
Br(V )

)
(L33)

= LV (BV ).

By doing the same for A and C, we have

L(A) = LU(AU) = LZ(A
∗
Z)),

L(B) = LV (BV ) = LZ(B
∗
Z)),

L(C) = LW (CW ) = LZ(C
∗
Z))

Bu using the additivity of LZ , we conclude that

L(A) = L(B) + L(C).

The mapping L is normed and additive on the semi-algebra. From
Measure Theory and Integration (See Doc 04-02, Exercise 15, in Lo
(2017b)), L is automatically extended to a normed and additive map-
ping on the algebra C generated by S.
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Now, we face Problem (ii). Surely, the assumptions and the solution
Problem (i) ensure that there exists a normed and additive mapping L

whose margins are the PV , V ∈ Pof (T ). Let us call it P. All we have
to do is to get an extension of P to σ(C) = B.

A way to do it is to use Caratheodory’s Theorem (See Doc 04-03 in
Lo (2017b) for a general revision). But, unfortunately, we need spe-
cial spaces. Suppose that each (Et, dt), t ∈ T , is Polish space, that is
a metric separable and complete separable space. The following facts
are known in Topology. For V ∈ Pof (T ), the space EV is also a Polish
space. In such spaces, the extension of P to probability measure is pos-
sible. The proof heavily depends on topological notions, among them
a characterization of compact sets.

We give the proof in the last section as an Appendix. In the body of
the text, we focus on probability theory notions. However, we strongly
recommend the learners to read the proof in small groups. We have
the following Theorem.

Theorem 27. (Fundamental Theorem of Kolmogorov) Let us sup-
pose that each (Et, dt), t ∈ T is Polish Space. For any V ∈ Pof(T ), EV

is endowed with the Borel σ-algebra associated with the product metric
of the metrics of its factors.

For T 6= ∅, given a coherent family F = {PV , V ∈ Pof (T )} of finite-
dimensional probability measures, there exists a unique probability mea-
sure on B such that the elements of F are the finite-dimensional mar-
gins of L, that is for any V ∈ Pof (T ),

PV = PΠ−1
V .

Now, we are going to derive different versions of that important basis
of Probability Theory and provide applications and examples.

To begin, let us see how to get the most general forms the Kolmogorov
construction in finite dimensions (See Chapter 2 in pages 44 and 62).
Let us repeat a terminology we already encountered. For any mapping

X : (Ω,A,P)→ (E,B)
we have X(ω) = (Xt(ω))t∈T . For any V = (v1, ..., vk) ∈ Pof(T ), k ≥ 1,

XV ≡ (Xv1 , ..., Xvk) = ΠV (X),
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is called a finite-dimensional (and ordered) margin of X . We have

Theorem 28. Let us suppose that each (Et, dt), t ∈ T is a Polish
Space. For any V ∈ Pof (T ), ES is endowed with the Borel σ-algebra
associated with the product metric of the metrics of its factors.

For T 6= ∅, given a coherent family F = {PV , V ∈ Pof(T )} of proba-
bility measures, there exists a probability space (Ω,A,P) and a measur-
able mapping X defined on Ω with values in (E,B) such that for any
V ∈ Pof (T ), k ≥ 1,

PV = PXV
= PX−1

V .

In other words, there exists a probability space (Ω,A,P) holding a mea-
surable mappingX with values in (E,B) such that the finite-dimensional
marginal probability measures PV , V ∈ Pof (T ) are the probability laws
of the finite-dimensional (and ordered) margins XV of X.

Furthermore, the probability laws of the finite-dimensional (and or-
dered) margins XV of X determine the probability law of X.

Proof. We apply Theorem 27 above to get the probability measure
on P on (E,B) whose finite-dimensional marginal probabilities are the
PV , V ∈ Pof (T ). Now we take

(Ω,A,P) = (E,B,P)
* and set X as the identity mapping. We have

PXV
= PX−1

V = PΠV (X)−1

= PΠ−1
V X−1

= PVX
−1.

Now for any BV ∈ BV ,

PXV
(BV ) = PV ({ω ∈ Ω, X(ω) = ω ∈ BV }) = PV (BV ).

We get the desired result : PXV
= PV , V ∈ Pof (T ). To finish, the

probability law of X is given by

PX(B) = PX−1(B), B ∈ B.
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By the uniqueness of the Caratheodory’s extension for a σ-additive
and proper mapping of from an algebra to the σ-algebra generated,
the probability measure PX−1 on B is characterized by its values on S.
But an element of S is of the form

B = BV × E ′
V , BV ∈ B, V ∈ Pof(T ).

We have have

X ∈ B = BV ×E ′
V ⇔ XV ∈ BV

that is

X−1(B) = X−1
V (BV ).

Hence, by applying P at both sides, we get

PX(BV × E ′
V ) = PXV

(BV ).

* Since the values of PX are functions only of the values of the prob-
ability laws of the finite-dimensional (and ordered) margins XV of X ,
these latter finally determine PX . �

We are continuing to see developments of the Kolmogorov Theorem in
special sections.

5. Skorohod’s Construction of real vector-valued stochastic
processes

(I) - The General Theorem.

Let T be an non-empty index set. For each t ∈ T , let be given Et =
Rd(t), where d(t) is positive integer number. Let us consider a family
of probability distribution functions described as follows : for V =
(v1, ..., vk) ∈ Pof (T ), k ≥ 1, we set d(V ) = d(v1) + ... + d(vk). The
probability distribution function associated to V is defined for xvj ∈
Rd(vj), 1 ≤ j ≤ k, by

Rd(V ) ∋ (xv1 , ..., xvk) 7→ FV (xv1 , ..., xvk).

The family of {FV , V = (v1, ..., vk) ∈ Pof (T )} is coherent if and only if :

(CHS1), for V ∈ Pof (T ), for any (xv1 , ..., xvk) ∈ Rd(V ), for any permu-
tation of EV ,
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FV (xv1 , ..., xvk) = Fs(V )(s(xv1 , ..., xvk))

and

(CHS2) for V ∈ Pof (T ), for any (xv1 , ..., xvk) ∈ Rd(V ), for any u ∈ T\V ,

FV (xv1 , ..., xvk) = lim
u↑{+∞}d(u)

FV (xv1 , ..., xvk , u).

In all this part, by writing (xv1 , ..., xvk) ∈ Rd(V ), we also mean that
xvj ∈ Rd(vj), for all j ∈ {1, ..., k}.

Here is the Skorohod Theorem as follows.

Theorem 29. Given a coherent family of probability distribution
functions {FV , V = (v1, ..., vk) ∈ Pof (T )}, there exists a probability
space (Ω,A,P) holding a measurable mapping X with values in (E,B)
such that each finite-dimensional marginal probability distribution func-
tion FXV

, V ∈ Pof(T ) is FV , that is for of V = (v1, ..., vk), k ≥ 1, for
(xv1 , ..., xvk) ∈ Rd(V ),

FV (xv1 , ..., xvk) = P(Xv1 ≤ xv1 , ..., Xvk ≤ xvk).

Proof. The proof results from the application of The Kolmogorov
Theorem and a smart use of the Lebesgue-Stieljes measures. We remind
first that for any ℓ ≥ 1, a finite measure on Rℓ is characterized by its
values of the elements of the form

]−∞, a] =
∏

1≤j≤ℓ

]−∞, aj], a = (a1, ..., aℓ)

which form a π-system denoted Dℓ, which in turn, generates B(Rℓ).
Consider the unique Lebesgue-Stieljes probability measure PV on Rd(V )

associated with FV , V = (v1, ..., vk) ∈ Pof(T )}, k ≥ 1. By keeping the
previous notation, we have that for any (xv1 , ..., xvk) ∈ Rd(V ) and for
any permutation of EV
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PV (v) = FV (xv1 , ..., xvk)

= Fs(V )(s(xv1 , ..., xvk))

= Ps(V )

(

s

(
∏

1≤j≤k

]−∞, xvj ]
))

= Ps(V )s
−1

(
∏

1≤j≤k

]−∞, xvj ]
)

.

Since the probability measures PV and Ps(V )s
−1 coincide on Dd(V ), they

are equal and the first coherence condition is proved. To prove the
second, we have

PV

(
∏

1≤j≤k

]−∞, xvj ]
)

= FV (xv1 , ..., xvk)

= lim
Rd(u)↑{+∞}d(u)

FV ∪{u}(s(xv1 , ..., xvk), u)

= lim
Rd(u)↑{+∞}d(u)

PV ∪{u}

(
∏

1≤j≤k

]−∞, xvj ]×]−∞, u]
)

= PV ∪{u}

(
∏

1≤j≤k

]−∞, xvj ]× Eu

)

.

But the two probability measures on Rd(V ) : PV (B) and PV ∪{u} (B × Eu),
B ∈ BV , coincide on Dd(V ). Hence for any B ∈ BV , we have

PV (B) = PV ∪{u} (B ×Eu) .

Thus, the coherence condition (CH1b) holds. Finally there exists a
probability measure P on (E,B) whose finite-dimensional marginal
probability measures are the elements of {PV , V ∈ Pof}. Let us take

(Ω,A,P) = (E,B,P)
and set X as the identity mapping. We have, for any (xv1 , ..., xvk) ∈
Rd(V ),
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P(Xv1 ≤ xv1 , ..., Xvk ≤ xvk) = P({ω ∈ E, ωv1 ≤ xv1 , ..., ωvk ≤ xvk})
= P(

∏

1≤j≤k

]−∞, xvj ]× E ′
V )

= PV

(
∏

1≤j≤k

]−∞, xvj ]
)

= FV (xv1 , ..., Xvk).

The proof is finished. �

Other forms of the Skorohod Theorem using densities of prob-
ability.

Suppose we have the similar following situation as earlier. For each

t ∈ T , let be given Et = E
d(t)
0 , where d(t) is positive integer number.

Let ν be a σ-finite measure on E0. On each EV = EV
0 , V ∈ Pof (T ), we

have a the finite product probability :

νV = ν⊗d(v1)ν ⊗⊗d(v2) ⊗ · · · ⊗ ν⊗d(vk) = ν⊗d(V ).

* Now a family of marginal probability density functions (pdf ) {fV , V =

(v1, ..., vk) ∈ Pof (T )}, each fV is pdf with respect to ν⊗d(V ) on E
d(V )
0 ,

is said to be coherent if the two conditions hold :

(CHSD1) For V ∈ Pof(T ), for any (xv1 , ..., xvk) ∈ E
d(V )
0 , for any

permutation of EV , we have

fV (xv1 , ..., xvk) = fs(V )(s(xv1 , ..., xvk))

and,

(CHSD2) for V ∈ Pof (T ), for any (xv1 , ..., xvk) ∈ Rd(V ), for any u ∈
T \ V ,

fV (xv1 , ..., xvk) =

∫

Evu

fV (xv1 , ..., xvk , u)dν
⊗d(vu)(u),

meaning that fV (xv1 , ..., xvk) is a marginal pdf of fV (xv1 , ..., xvk , u).
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Let us consider the finite distribution probability measure on EV de-
fined by

EV (= E
d(V )
0 ) ∋ B 7→ PV (B) =

∫

EV

fV (xv1 , ..., xvk)dν
⊗d(V )(xv1 , ..., xvk),

It is easy to see that (CHSD1) and (CHSD2) both ensure that the PV

form a coherent family of finite dimensional probability measures. We
apply theorem to conclude that :

For any coherent family of marginal probability density functions (pdf )
{fV , V = (v1, ..., vk) ∈ Pof (T )}, each fV is pdf with respect ν⊗d(V ) on

E
d(V )
0 , there exists a probability space (Ω,A,P) holding a measurable

mapping X with values in (E,B) such that each finite-dimensional pdf
fXV

, V ∈ Pof (T ) is FV , that is for of V = (v1, ..., vk), k ≥ 1, for
(xv1 , ..., xvk) ∈ Rd(V ),

dP(Xv1 , · · · , Xvk) = fV dν
⊗d(V ).

In general, this is used in the context of Rd, d ≥ 1, with ν being the
Lebesgue measure or a counting measure on R. But it goes far beyond
as a general law.

6. Examples

To make it simple, let T = R+ or T = N. So we do not need to care
about the first coherence condition since we have a natural order. Let
be given Et = E

d(t)
0 , where E0 is a polish space and d(t) is positive

integer number.

Problem 1. Given a family of Probability measures Pt on each Et,
of dimension d(t). Does-it exist a probability space (Ω,A,P) holding
a stochastic process (Xt)t∈T with independent margins such that each
margin Xt follows the probability law Pt.

Solution. We can easily that the family of finite dimensional proba-
bility measure,

P(t1,t2,...,tk =

k⊗

j=1

Ptj ;
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for t1 < ... < tk, defined by, for any Bj ∈ B(Et), j ∈ {1, ..., k},

P(t1,t2,...,tk

(
∏

1≤j≤k

Bj

)

=

k∏

j=1

Ptj (Bj).

is coherent since for tj+1 > tj ,

P(t1<t2<...<tk

(
∏

1≤j≤k

Bj ×Ej+1

)

=
k∏

j=1

Ptj (Bj)× Ptj+1
(Ej+1)

=
k∏

j=1

Ptj (Bj).

Thus, the answer is positive.

Problem 2. Many techniques are based on the symmetrization method
as in the proof of Proposition 24 (See page 224). We need to have two
sequences (Xn)n≥1 and (Yn)n≥1 on the same probability space and hav-
ing their values on Rd such thatXn =d Yn for each n ≥ 1. Is it possible?

Here is the statement of the problem for independent margins.

Given a family of Probability measures Pt on each Et, of dimension
d(t). Does-it exist a probability space (Ω,A,P) holding a stochastic
process (Xt)t∈T with independent margins such that :

(a) Xt ∈ E2
t , that is Xt = (X

(1)
t , X

(2)
t )t

(b) For each t ∈ T , for each i ∈ {1, 2}, P
X

(i)
t

= Pt.

If this problem is solved and if E0 is a linear space, we may form the

symmetrized form X(s) = X
(1)
t −X(2)

t with X
(1)
t =d X

(2)
t .

Solution. Let us apply the solution of Problem 1 for the case where
E0 = R in the context of independent margins. We notice that nothing

is said about the dependence between X
(1)
t and X

(2)
t . So we may take,

for any t ∈ T , an arbitrary probability distribution function Ft on R2d(t)

such that the margins
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Ft(x1, · · · , xd(t)
︸ ︷︷ ︸

d(t) times

,+∞, · · · ,+∞
︸ ︷︷ ︸

d(t) times

)

and

Ft(+∞, · · · ,+∞
︸ ︷︷ ︸

d(t) times

, xd(t)+1, · · · , x2d(t)
︸ ︷︷ ︸

d(t) times

),

are equal both the probability distribution function of Pt. This is pos-
sible by the use of copulas. With such a frame, we apply again the
Skorohod Theorem to get our solution.

Problem 3. Existence of the Poisson Process. Given θ > 0, by the
solution of Problem 1, there exists a probability space (Ω,A,P) holding
a sequence independent random variables identically distributed as the
standard exponential law E denoted X1, X2, etc.

Let us call them the independent and exponential inter-arrival times.

Let us define the arrival times Z0, Zj = X1 + · · ·+Xj, j ≥ 1, so that
we have

Z0 < Z1 < · · ·Zj · · ·

If we suppose that the Zj are the arrival times of clients at a desk (say
a bank desk) and Z0 = 0 is the opening time of the desk, we may wish
to know the probability law of the number at arrived clients at a time
t > 0,

N(]0, t]) = Nt =
∑

j≥1

1(Zj≤t).

Here, we say that we have a standard Poisson Process (SPP) of inten-
sity θ. Sometimes, authors mean (Nt)t≥0 which is the counting function
of the SPP, others mean (Xn)n≥1 which is the sequence of arrival times
or (Zn)n≥1 which is the sequence of inter-arrival times.

Problem 4. Existence of Brownian Movement by the exercise. Let
0 = t0 < t1 < ... < tn be n real numbers and consider Y1, Y2, ..., Yn, n
non-centered Gaussian with respective variances t1, t2− t1, ..., tn− tn−1.
Set
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X = (X1, X2, ..., Xn) = (Y1, Y1 + Y2, ..., Y1 + Y2 + · · ·+ Yn).

a) Find the density of X .

b) Give the distribution function of X .

c) Now, consider that family of distribution functions indexed by the
ordered and finite subsets of R+ : for any (x1, x2, ..., xk) ∈ Rk, k ≥ 1,

F(t1,t2,...<tk)(x1, x2, ..., xk) (BR01)

=

∫ x1

−∞
dy1

∫ x2

−∞
dy2 · · ·

∫ xk

−∞

k∏

i=1

1
√

2π(ti − ti−1)
exp

(

− 1

2

(yi − y2i−1)

ti− t−1

)

dyk,

where (t1 < t2, ... < tk) is an ordered and finite subset of R+, with
y0 = t0 = 0.

c1) Say on the basis of questions (a) and (b), why do we have, for all
(t1 < t2, ... < tk), k ≥ 2; for all (x1, x2, ..., xk−1) ∈ Rk−1

lim
xk↑∞

F (t1, t2, ..., tk)(x1, x2, ..., xk) = F(t1,t2,...,tk−1)(x1, x2, ..., xk−1)

c2) Show this property directly from the definition (BR01).

c3) Conclude by the Kolmogorov-Skorohod, that there is a stochastic
process (Ω,A,P, (Bt)t∈R+) for which we have

F(B(t1),B(t2),...,B(tk))(x1, x2, ..., xk) = F(t1,t2,...<tk)(x1, x2, ..., xk)

for any finite and ordered subset (t1, t2, ... < tk) of R+.

Alternatively, use the system of pdf ’s indexed by the ordered and finite
subsets of R+ : for any (x1, x2, ..., xk) ∈ Rk, k ≥ 1,

f(t1,t2,...<tk)(x1, x2, ..., xk) (BR02)

=

k∏

i=1

1
√

2π(ti − ti−1)
exp

(

− 1

2

(yi − y2i−1)

ti− t−1

)
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where (t1 < t2, ... < tk) is an ordered and finite subset of R+, with
y0 = t0 = 0, and the coherence condition (CHSD2) (page 319) to jus-
tify the existence of such a process.

d) Such a stochastic process (Bt)t∈R+ is called Brownian motion in
Probability Theory and Wiener Process in Statistics.

Show or state the following facts.

d1) Its finite distributions are non-centered Gaussian vectors.

d2) For all 0 ≤ s < t, Bt −Bs and Bs are independent.

d3) For all t ≥ 0,

Bt − Bs ∼ B(t− s) ∼ N (0, t− s).

d4) Γ(s, t) = Cov(Bt, Bs) = min(s, t), (t, s) ∈ R2
+.

(e) A stochastic process (Xt)t≥0 is said to be Gaussian if and only if its
finite margins are Gaussian vectors.

Show the following points :

(e1) Show that the probability law of a Gaussian Process is entirely
determined by its mean function

m(t) = E(Xt), t ∈ R+.

and by its variance-covariance function

Γ(s, t) = Cov(Xt, Xs), (t, s) ∈ R2
+.

(e2) Deduce from this that the probability law of the Brownian Process
is entirely the variance-covariance function

Γ(s, t) = Cov(Xt, Xs) = min(s, t), (t, s) ∈ R2
+.
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7. Caratheodory’s Extension and Proof of the Fundamental
Theorem of Kolmogorov

Our departure point is the end of the Proof of Theorem 26. The con-
struction mapping L; we denote now as P is additive and normed on
the algebra C = a(S) generated by S. By Carathéodory Theorem (Doc
04-03 in Lo (2017b)), P is uniquely extensible to a probability measure
whenever it is continuous at ∅, that is, as n→∞,

(

C ∋ An ↓ ∅
)

=⇒
(

P(An) ↓ 0
)

.

Actually, we are going to use an ab contrario reason. Suppose that
there exists a non-increasing sequence (An)n≥0 ⊂ C and P(An) does not
converges to zero. Since the sequence (P(An))n≥1 is non-increasing, its
non-convergence to zero is equivalent to

∃ε > 0), (∀n ≥ 1,P(An) > ε).

At the beginning let us remark that C = a(S) is formed by the finite
sum of elements of S, we rely on the above considerations on finite
sums of elements of S, and easily get that any element of C, and then
any An is of the form

An = BVn
× E ′

Vn
, n ≥ 1,

where BVn
∈ BVn

, and Vn ∈ Pof (T ). Hence the whole sequence does
involve only a countable spaces Et, t ∈ T0, where

T0 =
∞⋃

j=1

Vn

and denote, accordingly,

ET0 =
∏

t∈T0

Et.

So we may ignore all the other factors in E.

An = BVn
×

∏

t/∈T0\Vn

Et.

As well, we may use the natural order of integers and only consider
supports index sets of the form Vn = (1, ..., m(n)), n ≥ 1. Now we are
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going to use the following key topological property : in a Polish space,
for any Borel set B, for any finite measure µ, for any ε > 0, there exists
a compact set K(ε) such

µ(B \K(ε)) < ε.

Then for any ε > 0, for any n ≥ 1, there exists a compact set B′
Vn
⊂ BVn

such that

PVn
(BVn

− B′
Vn
) ≤ ε2−(n+1).

Let us denote
A′

n = B′
Vn
× E ′

T0\Vn

Hence for each n ≥ 1,

P (An − A′
n) = PVn

(BVn
− B′

Vn
) < ε2−(n+1).

Let us set

Cn = A′
1 ∩ ... ∩ A′

n.

We have for each n ≥ 1,

P (An − Cn) = P (An ∩ (

n⋃

j=1

(A′
j)

c)) ≤
n∑

j=1

P (An ∩ (A′
j)

c))

≤
n∑

j=1

P (An − A′
j)

≤
n∑

j=1

P (Aj −A′
j)

≤
n∑

j=1

ε2−(j+1) < ε/2.

But Cn ⊂ A′
n ⊂ An, we have

P (Cn) = P (An)− P (An − Cn) > P (An)− ε/2 > ε/2.

We conclude that for all n ≥ 1, Cn is non-empty. So, by the axiom of

Choice, we may choose, n ≥ 1, x(n) = (x
(n)
1 , x

(n)
2 , ....) ∈ ET0 such that

x(n). By the non-decreasingness of the sequence (Cn)n≥1, the sequence
(x(n))n≥1 is in C1, which we recall is such that
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C1 ⊂ A′
1 = B′

V1
×E ′

T0\V1

∀n ≥ 1, (x
(n)
1 , x

(n)
2 , ..., x(n)m1

)) ∈ E ′
V1
.

Since B′
V1

est compact, there exists a sub-sequence (x(n1,k)) of (x(n))
such that

(x
(n1,k)
1 , x

(n1,k)
2 , ..., x

(n1,k)
m1 ))→ (x∗1, ..., x

∗
m(1)) ∈ B′

V1
⊂ BV1 .

But the sub-sequence Now by the nature (x(n1,k)) ∈ C2 whenever
n1,k ≥ 2 (which happens for from some value k2 > 0 since the se-
quence (n1,k)k≥1 is an increasing sequence of non-negative integers).
We thus have

∀k > k2 ≥ 1, (x
(n1,k)
1 , x

(n1,k)
2 , ..., x

(n1,k)
m1 )) ∈ E ′

V2
.

We conclude similarly that there exists a sub-sequence (x(n2,k))k≥1 of
(x(n1,k))k≥1 such that

(x
(n2,k)
1 , x

(n2,k)
2 , ..., x

(n2,k)
m1 ))→ (x∗1, ..., x

∗
m(2)) ∈ BV2 .

It is important the for a common factor j between AV1 and AV2 , the
limit x∗j remains unchanged as the limit of a sub-sequence of converging
sequence. We may go so-forth and consider the diagonal sub-sequence

(x(nk,k))k≥1.

We have that for each n ≥ 1, there existsK(n) > 0 such that (x(nk,k))k≥K(n) ⊂
Cn. Hence, for each n ≥ 1,

(x∗1, ..., x
∗
m(n)) ∈ BVn

.

So by denoting

x∗ = (x∗1, x
∗
2, ...),

we get that x∗ belongs to each An, n ≥ 0. Hence A is not empty.





CHAPTER 10

Appendix

1. Some Elements of Topology

.

I - Stone-Weierstrass Theorem.

Here are two forms of Stone-Weierstrass Theorem. The second is more
general and is the one we use in this text.

Proposition 32. Let (S, d) be a compact metric space and H a
non-void subclass of the class C(S,R) of all real-valued continuous func-
tions defined on S. Suppose that H satisfies the following conditions.

(i) H is lattice, that is, for any couple (f, g) of elements of H, f ∧ g et
f ∨ g are in H

(ii) For any couple (x, y) of elements of S and for any couple (a, b) of
real numbers such that a = b if x = y, there exists a couple (h, k) of
elements of H such that

h(x) = a and k(y) = b.

Then H is dense in C(S,R) endowed with the uniform topology, that is
each continuous function from S to R is the uniform limit of a sequence
of elements in H.

Theorem 30. Let (S, d) be a compact metric space and H a non-
void subclass of the class C(S,C) of all real-valued continuous functions
defined on S. Suppose that H satisfies the following conditions.

(i) H contains all the constant functions.

(ii) For all (h, k) ∈ H2, h+ k ∈ H, h× k ∈ H, u ∈ H.

329
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(iii) H separates the points of S, i.e., for two distinct elements of S, x
and y, that is x 6= y, there exists h ∈ H such that

h(x) 6= h(y).

Then H is dense in C(S,C) endowed with the uniform topology, that is
each continuous function from S to C is the uniform limit of a sequence
of elements in H.

Remark.

If we work in R, the condition on the conjugates - u ∈ H - becomes
needless.

But here, these two classical versions do not apply. We use the following
extension.

Corollary 4. Let K be a non-singleton compact space and A be
a non-empty sub-algebra of C(K,C). Let f ∈ C(K,C). Suppose that
there exists K0 ⊂ K such that k \K0 has at least two elements and f
is constant on K0. Suppose that the following assumption hold.
(1) A separates the points of K \ K0 and separates any point of K0

from any point of K \K0.

(2) A contains all the constant functions.

(3) For all f ∈ A, its conjugate function f̄ = R(f)− iIm(f) ∈ A,

Then

f ∈ A.
A proof if it available in Lo (2018b).

II- Approximations of indicator functions of open sets by Lip-
schitz function.

We have the

Lemma 15. Let (S, d) be an arbitrary metric space and G be an
open set of S. Then there exists a non-decreasing sequence (fk)k≥1 of
non-negative real-valued and Lipschitz functions defined on S converg-
ing to 1G.
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Proof. Let G be an open set of S. For any integer number k ≥ 1, set
the function fk(x) = min(kd(x,Gc), 1), x ∈ S. We may see that for
any k ≥ 1, fm has values in [0, 1], and is bounded. Since Gc is closed,
we have

d(x,Gc) =

{
> 0 if x ∈ G
0 if x ∈ Gc .

Let us show that fk is a Lipschitz function. Let us handle |fk(x)− fk(y)|
through three cases.

Case 1. (x, y) ∈ (Gc)2. Then

|fk(x)− fk(y)| = 0 ≤ k d(x, y).

Case 2. x ∈ G and y ∈ Gc (including also the case where the roles of
x and y are switched). We have

|fk(x)− fk(y)| = |min(kd(x,Gc), 1)| ≤ k d(x,Gc) ≤ k d(x, y),

by the very definition of d(x,Gc) = inf{d(x, z), z∈ Gc}.

Case 3. (x, y) ∈ G2. We use Lemma 16 in this section, to get

|fk(x)− fk(y)| = |min(kd(x,Gc), 1)−min(kd(y,Gc), 1)| ≤ |kd(x,Gc)− kd(y,Gc)| ,
≤ k d(x, y)

by the second triangle inequality. Then fk is a Lipschitz function with
coefficient k. Now, let us show that

fk ↑ 1G as k ↑ ∞.

Indeed, if x ∈ Gc, we obviously have fk(x) = 0 ↑ 0 = 1G(x). If x ∈ G,
that d(x,Gc) > 0 and kd(x,Gc) ↑ ∞ as k ↑ ∞. Then for k large
enough,

(1.1) fk(x) = 1 ↑ 1G(x) = 1 ask ↑ ∞.

�.

III -Lipschitz property of finite maximum or minimum.

We have the

Lemma 16. For any real numbers x, y, X, and Y ,

(1.2) |min(x, y)−min(X, Y )| ≤ |x−X|+ |y − Y | .
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Proof. Let us have a look at the four possibles case.

Case 1 : min(x, y) = x and min(X, Y ) = X . We have

|min(x, y)−min(X, Y )| ≤ |x−X|
Case 2 : min(x, y) = x and min(X, Y ) = Y . If x ≤ Y , we have Y ≥ X ,
we have

0 ≤ min(X, Y )−min(x, y) = Y − x ≤ X − x
If x > Y , we have X ≥ Y , we have

0 ≤ min(x, y)−min(X, Y ) = x− Y ≤ y − Y
Case 3 : min(x, y) = y and min(X, Y ) = Y . We have

|min(x, y)−min(X, Y )| ≤ |y − Y |
Case 4 : min(x, y) = y and min(X, Y ) = X . This case id handled as
for Case 2 by permuting the roles of (x, y) and (X, Y ).
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2. Orthogonal Matrices, Diagonalization of Real
Symmetrical Matrices and Quadratic forms

I - Orthogonal matrices.

We begin by this result.

Proposition 33. For any square d-matrix T , we have the equiva-
lence between the following assertions.

(1) T is invertible and the inverse matrix T−1 of T is its transpose
matrix, that is

TT t = T tT = Id,

where Id is the identical matrix of dimension d.

(2) T is an isometry, that is T preserves the norm : For any x ∈ Rd

‖Tx‖ = ‖x‖ .

(3) The columns

(

T (1), T (2), .., T (d)

)

form an orthonormal basis of Rd.

(4) The transposes of the lines

(

T t
1, ..., T

t
d

)

form an orthonormal basis

of Rd.

Besides, if T is orthogonal, its transpose is also orthogonal and satisfies

det(T ) = ±1.

Before we give the proof, we provide the definition of an orthogonal
matrix.

Definition 13.
A square d-matrix is orthogonal if and only if one of the equivalent
assertions of Proposition 33 holds.



334 10. APPENDIX

Now we may concentrate of the

Proof of Proposition 33.

Recall that, in finite dimension linear theory, the d-matrix B is the in-
verse of the d-matrix A if and only if AB = Id if and only if BA = Id.
(See the reminder at the end of the proof).

Let us show the following implications or equivalences.

(i) (1)⇔ (3). By definition, for any (i, j) ∈ {1, ..., d}d,
(
T tT

)

ij
=
(
T t
)

i
T (j) =

(
T (j)

)t
T (j) = 〈T (i), T (j)〉. (I01)

and

(
TT t

)

ij
= Ti(T

t)j = Ti(Tj)
t =

(

T t
i

)t

(Tj)
t = 〈T t

i , T
t
j 〉. (I02)

By Formula (I01), we have the equivalence between T tT = Id and (3),
and thus, (1) and (3) are equivalent.

(i) : (1) ⇔ (4). The same conclusion is immediate by using Formuka
(I02) instead of Formula (I01).

(ii) (3)⇐⇒ (2). We have for all x ∈ Rd,

‖Tx‖2 = 〈Tx, Tx〉 =t (Tx) (Tx) =t xtTTx

=
n∑

i=1

n∑

j=1

(
tTT

)

ij
xixj =

n∑

i=1

n∑

j=1

〈T (i), T (j)〉xixj . (IS01)

Hence, (3) implies that for all x ∈ Rd,

‖Tx‖2 =
n∑

i=1

x2i = ‖x‖2 ,

which is the definition of an isometry.

(iii) (2)⇐⇒ (3). Let us suppose that (2) holds.
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To show that each T (i0), for a fixed i0 ∈ {1, ..., d} is normed, we apply
(ISO) to the vector x whose coordinates are zero except xi0 = 1. We
surely have ‖x‖ = 1 and all the terms of

n∑

i=1

n∑

j=1

〈T (i), T (j)〉xixj

are zero except for i = j = i0, and the summation reduces to 〈T (i0), T (i0)〉x2i0 =
〈T (i0), T (i0)〉. Equating the summation with ‖x‖2 gives that

〈T (i0), T (i0)〉 = 1.

So, T (i0) is normed.

To show that two different columns T (i0) and T (j0), for a fixed ordered
pair (i0, j0) ∈ {1, ..., d}2, are orthogonal, we apply (ISO) the vector x
whose coordinates are zero except xi0 = 1 and xj0 = 1. We surely have
‖x‖2 = 2 and all the terms of

n∑

i=1

n∑

j=1

〈T (i), T (j)〉xixj

are zero except for i = j = i0, i = j = j0 and (i, j) = (i0, j0), and the
summation reduces to

〈T (i0), T (i0)〉x2i0 + 〈T (j0), T (j0)〉x2i0 + 2〈T (i0), T (j0)〉xi0x2j0

By equating with the summation with ‖x‖2, we get

2 = 2 + 2〈T (i0), T (j0)〉.

This implies that 〈T (i0), T (j0)〉 = 0.

We conclude that (2) holds whenever (3) does.

We obtained the following equivalences

(1) ⇔ (3)
m m
(4) (2),
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from which we deive the equivalence between the four assertions.

It remains the two last points. That the transpose of T is orthogo-
nal with T , is a direct consequence of the equivalence between asser-
tions (3) and (4). Since a square matrix and its transpose have the
same determinant and since TT t = Id, we get that 1 = det(TT t) =
det(T )det(T t) = det(T )2. �.

A useful reminder.

In finite dimension linear theory, the d-matrix B is the inverse of the
d-matrix A if and only if AB = Id if and only if BA = Id. But in
an arbitrary algebraic structure (E, ⋆) endowed with an internal op-
eration ⋆ having a unit element e, that is an element of e satisfying
x ⋆ e = e ⋆ x = x for all x ∈ E, an inverse y of x should should fulfills :
x ⋆ y = y ⋆ x = e. The definition may be restricted to x ⋆ y = e or to
y ⋆ x = e if the operation e is commutative.

In the case of d-matrices, the operation is not commutative. So using
only one of the two conditions AB = Id and BA = Id to define the
inverse of a matrix A is an important result of linear algebra in finite
dimensions.

II - Diagonalization of symmetrical matrices.

Statement and proof.

We have the important of theorem.

Theorem 31. For any real and symmetrical d-matrix A, there ex-
ists an orthogonal d-matrix T such that TAT t is a diagonal matrix
diag(δ1, ..., δd), that is

TAT t = diag(δ1, ..., δd),

where δi, 1 ≤ i ≤ d, are finite real numbers.

Remark. In other words, any real and symmetrical d-matrix A ad-
mits d real eigen-values (not necessarily distinct) δi, 1 ≤ i ≤ d and the
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passage matrix may be chosen to be an orthogonal matrix.

Proof. Let us suppose that A is symmetrical, which means that for
any u ∈ Rd, we have

〈Au, v〉 = 〈u,Av〉. (S)
.
In a first step, let us borrow tools from Analysis. The linear application
Rd ∋ u→ Au is continuous so that

‖A‖ = sup
u∈Rd, ‖u‖≤1

‖Au‖ = sup
u∈Rd, ‖X‖u1

‖Au‖ < +∞.

Since the closed ball is closed a compact set in Rd, there exists, at least,
u0 such that ‖u0‖ = 1 and

sup
‖u‖≤1

‖Au‖ = ‖Au0‖ .

In a second step, let us assume that A has two eigen-vectors u and v
associated to two distinct real eigen-valeues µ and λ. By Formula (S)
above, we have

µ〈u, v〉 = λ〈u, v〉
⇒ (µ− λ)〈u, v〉 = 0.

We get that u and v are orthogonal. We get the rule : two eigen-vectors
of a symmetric square matrix which are associated to two distinct real
eigen-values are orthogonal.

In a third step, let us show that if a linear sub-space F in invariant
by A, that is for all u ∈ F , Au ∈ F (denoted AF ⊂ F ), then the
orthogonal F⊥ of F is also invariant by A. Indeed, if F is A-invariant
and v ∈ F⊥, we have

∀u ∈ F, 〈Av, u〉 = 〈v, Au〉 = 0;

since Au ∈ F .
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Finally, in the last and fourth step, we have for u ∈ Rd, such that
‖Au‖ = 1, by applying the Cauchy-Schwartz Inequality

‖Au‖ =2= 〈Au,Au〉 = 〈u,A2u〉 ≤ ‖A2u‖. (S1)
The equality is reached for some u1 (with ‖u1‖ = 1) only if u1 and
A2u1 are linearly dependent, that is exists λ such that

A2u1 = λu1,

meaning that u1 is an eigen-vector of A2 where, by taking the norms,
we have

λ = ‖A2u1‖.
Now, we have all the tools to solve the problem by induction. By
definition, we have

‖A‖2 = ‖Au0‖2 ≤ ‖A2u0‖ ≤ ‖A‖‖Au0‖ ≤ ‖A‖‖A‖‖u0‖,

and hence Formula (S1) becomes an equality for u0. The conclusion
of the fourth step says that u0 is an eigen-vector of A2 associated to
λ = ‖A‖2. For λ = µ2, this leads to A2u0 = u2u0, that is

(A− µId)(A+ µId)u0 = 0.

Now, either (A+ µId)u0 = 0 and u0 is an eigen-vector of A associated
to −µ, or v0 = (A+µId)u0 6= 0 and v0 is an eigen-vector of A associated
to µ. In both case, the eigen-value is ±‖A‖.

We proved that A has at least on real eigen-vector we denote by e1
associated to λ1 = ±‖A‖. In a next step, let us denote F1 = Lin({e1})
and G2 = F⊥

1 . It is clear that F1 is invariant by A, so is G2. We
consider the restriction of A on G2. We also have that A2 symmetri-
cal and clearly ‖A2‖ ≤ ‖A‖. We find an eigen-vector e2 of A2, thus
of A, associated with λ2 = ±‖A2‖ and |λ1| ≥ |λ2| and e1 and e2 are
orthogonal. We do the same for F2 = Lin(e1, e2), G3 = F⊥

2 and A3 the
restriction of A2 (and hence of A) on G3. We will find an eigen-vector
e3 of A2, thus of A, associated with λ3 = ±‖A3‖ and |λ1| ≥ |λ2| ≥ |λ3|
with {e1, e2, e3} orthonormal. We proceed similarly to get exactly d
normed eigen-vectors orthogonal associated to a decreasing sequence
of eigen-values in absolute values. �
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(b) Some consequences.

(b1) Determinant.

If TAT t = diag(δ1, ..., δd), where T is orthogonal, we have

det(TAT t) = det(T )det(T t)det(A) = det(T )2det(A) = det(A)

and next

det(A) = det

(

diag(δ1, ..., δd)

)

which leads to

det(A) =
d∏

1

δj .

(b2) A useful identity.

If TAT t = diag(δ1, ..., δd), where T is orthogonal, we have, for any
(i, j) ∈ {1, ..., d}2,

d∑

j=1

δh

(

T (h)(T (h))t
)

ij

= aij . (UID)

Proof. Let us denote D = diag(δ1, ..., δd) and suppose that TAT t =
D, T being orthogonal. We get A=T tDT . Hence, for any (i, j) ∈
{1, ..., d}2, we have

(A)ij =

(

T tD

)

i

T (j).

But the h elements, 1 ≤ h ≤ d, of the line

(

T tA

)

i

are

(

T t

)

i

D(h)),

which are

∑

1≤r≤d

ttiδhδrh = δhthi.

Thus, we have



340 10. APPENDIX

(A)ij =

(

T tD

)

i

T (j) =
∑

1≤h≤d

δhthithj =
∑

1≤h≤d

δh

(

T (h)(T (h))T

)

ij

.

III - Elements from Bi-linear Forms and Quadratic Forms
Theory.

Before we begin, let us remind Formula (ACBT), seen in the proof of
(P5) in Points (b)-(b2) in Section 5.2 in Chapter 2 : for any (p × d)-
matrix A, any (d×s)-matrix C and any (q×s)-matrix B, the ij-element
of ACBt is given by

∑

1≤k ≤s

∑

1≤p ≤p

aihchkbjk.

Let us apply this to vectors u = At ∈ Rd, v = Bt ∈ Rk and to a matrix
(d× k)-matrix C. The unique element of the (1× 1)-matrix utCv is

utCv =
∑

1≤i ≤d

∑

1≤j≤k

cijuivj .

This formula plays a key role in bi-linear forms studies in finite dimen-
sions.

If d-matrix C is diagonal, that is Cij = 0 for i 6= j, we have

utCv =
∑

1≤i ≤d

δjv
2
j . (C0)

where δj = cjj, j ∈ {1, ..., d}. We may use the Kronecker’s symbol
defined by

δij =

{
1 if i = j
0 if i 6= j

.

to get the following notation of a diagonal matrix. A d-diagonal matrix
D whose diagonal elements are denoted by δj , j ∈ {1, ..., d}, respec-
tively, may be written as follows :

D = diag(δ1, ..., δ2) =

(

δiδij

)

1≤i,j≤d

.
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(a) - Bi-linear Forms.

By definition, a function

f : Rd × Rk → R

is bi-linear if and only if :

(i) for any fixed u ∈ Rd, the partial application v 7→ f (u, v) is linear

and

(ii) for any fixed v ∈ Rk, the partial application u 7→ f (u, v) is linear.

The link with matrices theory is the following. Let (e1, e2, ...en) be an
orthonormal basis of Rd and (ε1, ε2, ..., εk) an orthonormal basis of Rk.
Let us define the (d× k)-matrix A by

aij = f(ei, εj)

and denote the coordinates of u ∈ Rd and v ∈ Rk in those bases by

u =

n∑

i=1

uiei and v =

m∑

j=1

vjεj.

We have the following expression of the bi-linear form

f(u, v) = utAv.

The proof is the following :

f(u, v) = f

(
n∑

i=1

uiei,
m∑

j=1

vjεj

)

=
n∑

i=1

uif

(

ei,
m∑

j=1

vjεj

)

=

n∑

i=1

ui

m∑

j=1

vjf (ei, εj)

=

n∑

i=1

m∑

j=1

uiaijvj
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Thus, we may conclude with the help of Formula (uTCv) above.

(b) - Quadratic forms.

For any bi-linear form f : (Rd)2 → R, the mapping

x ∋ Rd 7→ Qf (x) = f(x, x)

is called the quadratic form associated with f .

The quadratic form is said to be semi-positive if and only if Qf (x) ≥
0, for all x ∈ Rd.

It is said to be positive if and only if Qf (x) > 0x, for all 0 6= x ∈ Rd.

We already know that f may be represented by a d-matrix A and thus,
Qf may be represented as

Qf (u) = utAu, u ∈ Rd.

But, since Qf (u)
t = utAtu = Qf (u), we also have for all u ∈ Rd that

Qf(u) = ut
A+ At

2
u, u ∈ Rd.

The matrix B = (A+ At)/1 is symmetrical and we have

Qf (u) = utBu, u ∈ Rd,

which leads to the :

Proposition 34. Any quadratic form Q on Rd is of the form.

Q(u) = utBu, u ∈ Rd,

where B is a d-symmetrical form.
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(c) - Canonical reduction of a Quadratic forms.

Reducing a quadratic form Q on Rd to a canonical form consists in
finding an invertible linear change of variable v = Tu = (v1, ..., vd)

d

such that Q0(v) = Q(Tv) is of the form

Q0(v) =
∑

1≤j≤d

δjv
2
j .

This may be achieved in finite dimension in the following ways. Let B
be a symmetrical matrix associated to the quadratic formB. According
to Part II of this section, we can find an orthogonal matrix T such
that TBT t is a diagonal matrix D = diag(δ1, ..., δd). For v = Tu =
(v1, ..., vd)

d, we have

Q(vT ) = vt(T tAT )v = vtDv =
∑

1≤i≤d, 1≤j≤d

dijvivj =
∑

1≤j≤d

δjv
2
j .

This leads to the

Proposition 35. Any quadratic form Q on Rd the form.

Q(u) = utBu, u ∈ Rd,

where B is a d-symmetrical matrix, may be reduced to the canonical for

Q(u) =
∑

1≤j≤d

δjv
2
j , (CF )

where v = Tu and the columns of T t form an orthonormal basis of Rd

and are eigen-vector of B respectively associated to the eigen-values δj,
1 ≤ j ≤ d.

Consequences. From the canonical form (CF), we may draw the
straightforward following facts based on the facts that T is invertible
and its determinant is ±1. Hence each element u ∈ Rd is of the from
u = Tv. Hence, Formula (FC) holds for all u ∈ Rd with u = Tv.

(1) If all the eigen-values are non-negative, the quadratic form Q is
semi-positive.
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(2) If all the eigen-values are positive, the quadratic form Q is semi-
positive.

(3) If the quadratic form Q is semi-positive and B is invertible or has
a non-zero determinant, that it is positive.

Before we close the current section, let us remind that a canonical form
as in (CF) is not unique. But the three numbers of positive terms η(+),
of negative terms (η−) and zero terms (η0) are unique. The triplet
(η(−), η(0), η(+)) is called the signature of the quadratic form.

====

3. What should not be ignored on limits in R - Exercises
with Solutions

Definition ℓ ∈ R is an accumulation point of a sequence (xn)n≥0 of real
numbers finite or infinite, in R, if and only if there exists a sub-sequence
(xn(k))k≥0 of (xn)n≥0 such that xn(k) converges to ℓ, as k → +∞.

Exercise 1.

Set yn = infp≥n xp and zn = supp≥n xp for all n ≥ 0. Show that :

(1) ∀n ≥ 0, yn ≤ xn ≤ zn.

(2) Justify the existence of the limit of yn called limit inferior of the
sequence (xn)n≥0, denoted by lim inf xn or lim xn, and that it is equal
to the following

lim xn = lim inf xn = sup
n≥0

inf
p≥n

xp.

(3) Justify the existence of the limit of zn called limit superior of the
sequence (xn)n≥0 denoted by lim sup xn or lim xn, and that it is equal

lim xn = lim sup xn = inf
n≥0

sup
p≥n

xpxp.

(4) Establish that

− lim inf xn = lim sup(−xn) and − lim sup xn = lim inf(−xn).
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(5) Show that the limit superior is sub-additive and the limit inferior
is super-additive, i.e. : for two sequences (sn)n≥0 and (tn)n≥0

lim sup(sn + tn) ≤ lim sup sn + lim sup tn

and
lim inf(sn + tn) ≥ lim inf sn + lim inf tn.

(6) Deduce from (1) that if

lim inf xn = lim sup xn,

then (xn)n≥0 has a limit and

lim xn = lim inf xn = lim sup xn

Exercise 2. Accumulation points of (xn)n≥0.

(a) Show that if ℓ1=lim inf xn and ℓ2 = lim sup xn are accumulation
points of (xn)n≥0. Show one case and deduce the second one and by
using Point (3) of Exercise 1.

(b) Show that ℓ1 is the smallest accumulation point of (xn)n≥0 and ℓ2
is the biggest. (Similarly, show one case and deduce the second one
and by using Point (3) of Exercise 1).

(c) Deduce from (a) that if (xn)n≥0 has a limit ℓ, then it is equal to
the unique accumulation point and so,

ℓ = lim xn = lim sup xn = inf
n≥0

sup
p≥n

xp.

(d) Combine this result with Point (6) of Exercise 1 to show that a
sequence (xn)n≥0 of R has a limit ℓ in R if and only if lim inf xn =
lim sup xn and then

ℓ = lim xn = lim inf xn = lim sup xn.
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Exercise 3. Let (xn)n≥0 be a non-decreasing sequence of R. Study
its limit superior and its limit inferior and deduce that

lim xn = sup
n≥0

xn.

Deduce that for a non-increasing sequence (xn)n≥0 of R,

lim xn = inf
n≥0

xn.

Exercise 4. (Convergence criteria)

Prohorov Criterion Let (xn)n≥0 be a sequence of R and a real number
ℓ ∈ R such that: Every subsequence of (xn)n≥0 also has a subsequence
( that is a subssubsequence of (xn)n≥0 ) that converges to ℓ. Then, the
limit of (xn)n≥0 exists and is equal ℓ.

Upcrossing or Downcrossing Criterion.

Let (xn)n≥0 be a sequence in R and two real numbers a and b such that
a < b. We define

ν1 =

{
inf {n ≥ 0, xn < a}
+∞ if (∀n ≥ 0, xn ≥ a)

.

If ν1 is finite, let

ν2 =

{
inf {n > ν1, xn > b}
+∞ if (n > ν1, xn ≤ b)

.

.
As long as the ν ′js are finite, we can define for ν2k−2(k ≥ 2)

ν2k−1 =

{
inf {n > ν2k−2, xn < a}
+∞ if (∀n > ν2k−2, xn ≥ a)

.

and for ν2k−1 finite,

ν2k =

{
inf {n > ν2k−1, xn > b}
+∞ if (n > ν2k−1, xn ≤ b)

.

We stop once one νj is +∞. If ν2j is finite, then

xν2j − xν2j−1
> b− a.

We then say : by that moving from xν2j−1
to xν2j , we have accomplished

a crossing (toward the up) of the segment [a, b] called up-crossings. Sim-
ilarly, if one ν2j+1 is finite, then the segment [xν2j , xν2j+1

] is a crossing
downward (down-crossing) of the segment [a, b]. Let

D(a, b) = number of up-crossings of the sequence of the segment [a, b].
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(a) What is the value of D(a, b) if ν2k is finite and ν2k+1 infinite.

(b) What is the value of D(a, b) if ν2k+1 is finite and ν2k+2 infinite.

(c) What is the value of D(a, b) if all the ν ′js are finite.

(d) Show that (xn)n≥0 has a limit iff for all a < b, D(a, b) <∞.

(e) Show that (xn)n≥0 has a limit iff for all a < b, (a, b) ∈ Q2, D(a, b) <
∞.

Exercise 5. (Cauchy Criterion). Let (xn)n≥0 R be a sequence of
(real numbers).

(a) Show that if (xn)n≥0 is Cauchy, then it has a unique accumulation
point ℓ ∈ R which is its limit.

(b) Show that if a sequence (xn)n≥0 ⊂ R converges to ℓ ∈ R, then, it
is Cauchy.

(c) Deduce the Cauchy criterion for sequences of real numbers.
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SOLUTIONS

Exercise 1.

Question (1). It is obvious that :

inf
p≥n

xp ≤ xn ≤ sup
p≥n

xp,

since xn is an element of {xn, xn+1, ...} on which we take the supremum
or the infimum.

Question (2). Let yn = inf
p≥0
xp = inf

p≥n
An, where An = {xn, xn+1, ...} is

a non-increasing sequence of sets : ∀n ≥ 0,

An+1 ⊂ An.

So the infimum on An increases. If yn increases in R, its limit is its
upper bound, finite or infinite. So

yn ր lim xn,

is a finite or infinite number.

Question (3). We also show that zn = supAn decreases and zn ↓ lim
xn.

Question (4) . We recall that

− sup {x, x ∈ A} = inf {−x, x ∈ A} ,
which we write

− supA = inf(−A).
Thus,

−zn = − supAn = inf(−An) = inf {−xp, p ≥ n} .
The right hand term tends to −lim xn and the left hand to lim(−xn)
and so

−lim xn = lim (−xn).

Similarly, we show:

−lim (xn) = lim (−xn).
Question (5). These properties come from the formulas, where A ⊆
R, B ⊆ R :

sup {x+ y, A ⊆ R, B ⊆ R} ≤ supA+ supB.
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In fact :
∀x ∈ R, x ≤ supA

and
∀y ∈ R, y ≤ supB.

Thus
x+ y ≤ supA+ supB,

where
sup

x∈A,y∈B
x+ y ≤ supA+ supB.

Similarly,
inf(A+B ≥ inf A+ inf B.

In fact :

∀(x, y) ∈ A× B, x ≥ inf A and y ≥ inf B.

Thus
x+ y ≥ inf A+ inf B,

and so
inf

x∈A,y∈B
(x+ y) ≥ inf A+ inf B

Application.

sup
p≥n

(xp + yp) ≤ sup
p≥n

xp + sup
p≥n

yp.

All these sequences are non-increasing. By taking the infimum, we
obtain the limits superior :

lim (xn + yn) ≤ lim xn + lim xn.

Question (6). Set

lim xn = lim xn.

Since :
∀x ≥ 1, yn ≤ xn ≤ zn,

yn → lim xn
and

zn → lim xn,

we apply the Sandwich Theorem to conclude that the limit of xn exists
and :
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lim xn = lim xn = lim xn.

Exercice 2.

Question (a).

Thanks to Question (4) of Exercise 1, it suffices to show this property
for one of the limits. Consider the limit superior and the three cases:

The case of a finite limit superior :

limxn = ℓ finite.

By definition,
zn = sup

p≥n
xp ↓ ℓ.

So:
∀ε > 0, ∃(N(ε) ≥ 1), ∀p ≥ N(ε), ℓ− ε < xp ≤ ℓ+ ε.

Take less than that:

∀ε > 0, ∃nε ≥ 1 : ℓ− ε < xnε
≤ ℓ+ ε.

We shall construct a sub-sequence converging to ℓ.

Let ε = 1 :
∃N1 : ℓ− 1 < xN1 = sup

p≥n
xp ≤ ℓ+ 1.

But if

(3.1) zN1 = sup
p≥n

xp > ℓ− 1,

there surely exists an n1 ≥ N1 such that

xn1 > ℓ− 1.

If not, we would have

(∀p ≥ N1, xp ≤ ℓ− 1 ) =⇒ sup {xp, p ≥ N1} = zN1 ≥ ℓ− 1,

which is contradictory with (3.1). So, there exists n1 ≥ N1 such that

ℓ− 1 < xn1 ≤ sup
p≥N1

xp ≤ ℓ− 1.

i.e.

ℓ− 1 < xn1 ≤ ℓ+ 1.
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We move to step ε = 1
2
and we consider the sequence(zn)n≥n1 whose

limit remains ℓ. So, there exists N2 > n1 :

ℓ− 1

2
< zN2 ≤ ℓ− 1

2
.

We deduce like previously that n2 ≥ N2 such that

ℓ− 1

2
< xn2 ≤ ℓ+

1

2
with n2 ≥ N1 > n1.

Next, we set ε = 1/3, there will exist N3 > n2 such that

ℓ− 1

3
< zN3 ≤ ℓ− 1

3
and we could find an n3 ≥ N3 such that

ℓ− 1

3
< xn3 ≤ ℓ− 1

3
.

Step by step, we deduce the existence of xn1 , xn2 , xn3, ..., xnk
, ... with

n1 < n2 < n3 < ... < nk < nk+1 < ... such that

∀k ≥ 1, ℓ− 1

k
< xnk

≤ ℓ− 1

k
,

i.e.

|ℓ− xnk
| ≤ 1

k
,

which will imply:
xnk
→ ℓ

Conclusion : (xnk
)k≥1 is very well a subsequence since nk < nk+1 for

all k ≥ 1 and it converges to ℓ, which is then an accumulation point.

Case of the limit superior equal +∞ :

lim xn = +∞.

Since zn ↑ +∞, we have : ∀k ≥ 1, ∃Nk ≥ 1,

zNk
≥ k + 1.

For k = 1, let zN1 = inf
p≥N1

xp ≥ 1 + 1 = 2. So there exists

n1 ≥ N1
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such that :
xn1 ≥ 1.

For k = 2, consider the sequence (zn)n≥n1+1. We find in the same
manner

n2 ≥ n1 + 1

and
xn2 ≥ 2.

Step by step, we find for all k ≥ 3, an nk ≥ nk−1 + 1 such that

xnk
≥ k,

which leads to xnk
→ +∞ as k → +∞.

Case of the limit superior equal −∞ :

limxn = −∞.

This implies : ∀k ≥ 1, ∃Nk ≥ 1, such that

znk
≤ −k.

For k = 1, there exists n1 such that

zn1 ≤ −1.
But

xn1 ≤ zn1 ≤ −1.
Let k = 2. Consider (zn)n≥n1+1 ↓ −∞. There will exist n2 ≥ n1 + 1 :

xn2 ≤ zn2 ≤ −2
Step by step, we find nk1 < nk+1 in such a way that xnk

< −k for all
k bigger than 1. So

xnk
→ +∞

Question (b).

Let ℓ be an accumulation point of (xn)n≥1, the limit of one of its sub-
sequences (xnk

)k≥1. We have

ynk
= inf

p≥nk

xp ≤ xnk
≤ sup

p≥nk

xp = znk
.

The left hand side term is a sub-sequence of (yn) tending to the limit
inferior and the right hand side is a sub-sequence of (zn) tending to the
limit superior. So we will have:
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lim xn ≤ ℓ ≤ lim xn,

which shows that lim xn is the smallest accumulation point and lim xn
is the largest.

Question (c). If the sequence (xn)n≥1 has a limit ℓ, it is the limit
of all its sub-sequences, so subsequences tending to the limits superior
and inferior. Which answers question (b).

Question (d). We answer this question by combining point (d) of this
exercise and Point 6) of the Exercise 1.

Exercise 3. Let (xn)n≥0 be a non-decreasing sequence, we have:

zn = sup
p≥n

xp = sup
p≥0

xp, ∀n ≥ 0.

Why? Because by increasingness,

{xp, p ≥ 0} = {xp, 0 ≤ p ≤ n− 1} ∪ {xp, p ≥ n} .

Since all the elements of {xp, 0 ≤ p ≤ n− 1} are smaller than than
those of {xp, p ≥ n} , the supremum is achieved on {xp, p ≥ n} and so

ℓ = sup
p≥0

xp = sup
p≥n

xp = zn.

Thus
zn = ℓ→ ℓ.

We also have yn = inf {xp, 0 ≤ p ≤ n} = xn, which is a non-decreasing
sequence and so converges to ℓ = sup

p≥0
xp.

Exercise 4.

Let ℓ ∈ R having the indicated property. Let ℓ′ be a given accumulation
point.

(xnk
)k≥1 ⊆ (xn)n≥0 such that xnK

→ ℓ′.

By hypothesis this sub-sequence (xnK
) has in turn a sub-sub-sequence

(

xn(k(p))

)

p≥1
such that xn(k(p))

→ ℓ as p→ +∞.

But as a sub-sequence of
(

xn(k)

)

,

xn(k(ℓ))
→ ℓ′.
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Thus
ℓ = ℓ′.

Applying that to the limit superior and limit inferior, we have:

lim xn = lim xn = ℓ.

And so lim xn exists and equals ℓ.

Exercise 5.

Question (a). If ν2k is finite and if ν2k+1 is infinite, then there ate
exactly k up-crossings : [xν2j−1

, xν2j ], j = 1, ..., k, that is, we have
D(a, b) = k.

Question (b). If ν2k+1 is finite and ν2k+2 is infinite, then there
are exactly k up-crossings: [xν2j−1

, xν2j ], j = 1, ..., k, that is we have
D(a, b) = k.

Question (c). If all the ν ′js are finite, then there are an infinite num-
ber of up-crossings : [xν2j−1

, xν2j ], j ≥ 1k : D(a, b) = +∞.

Question (d). Suppose that there exist a < b rationals such that
D(a, b) = +∞. Then all the ν ′js are finite. The subsequence xν2j−1

is
strictly below a. So its limit inferior is below a. This limit inferior is
an accumulation point of the sequence (xn)n≥1, so is more than lim xn,
which is below a.

Similarly, the subsequence xν2j is strictly below b. So the limit superior
is above a. This limit superior is an accumulation point of the sequence
(xn)n≥1, so it is below lim xn, which is directly above b. This leads to :

lim xn ≤ a < b ≤ lim xn.

That implies that the limit of (xn) does not exist. In contrary, we just
proved that the limit of (xn) exists, meanwhile for all the real numbers
a and b such that a < b, D(a, b) is finite.

Now, suppose that the limit of (xn) does not exist. Then,

lim xn < lim xn.

We can then find two rationals a and b such that a < b and a number
ǫ such that 0 < ǫ, such that
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lim xn < a− ǫ < a < b < b+ ǫ < lim xn.

If lim xn < a− ǫ, we can return to Question (a) of Exercise 2 and con-
struct a sub-sequence of (xn) which tends to lim xn while remaining
below a−ǫ. Similarly, if b+ǫ < lim xn, we can create a sub-sequence of
(xn) which tends to lim xn while staying above b+ ǫ. It is evident with
these two sequences that we could define with these two sequences all
νj finite and so D(a, b) = +∞.

We have just shown by contradiction that if all the D(a, b) are finite
for all rationals a and b such that a < b, then, the limit of (xn)n≥0 exists.

Exercise 5. Cauchy criterion in R.

Suppose that the sequence is Cauchy, i.e.,

lim
(p,q)→(+∞,+∞)

(xp − xq) = 0.

Then let xnk,1
and xnk,2

be two sub-sequences converging respectively

to ℓ1 = lim xn and ℓ2 = lim xn. So

lim
(p,q)→(+∞,+∞)

(xnp,1 − xnq,2) = 0.

, By first letting p→ +∞, we have

lim
q→+∞

ℓ1 − xnq,2 = 0,

which shows that ℓ1 is finite, else ℓ1 − xnq,2 would remain infinite and
would not tend to 0. By interchanging the roles of p and q, we also
have that ℓ2 is finite.

Finally, by letting q → +∞, in the last equation, we obtain

ℓ1 = lim xn = lim xn = ℓ2.

which proves the existence of the finite limit of the sequence (xn).

Now suppose that the finite limit ℓ of (xn) exists. Then

lim
(p,q)→(+∞,+∞)

(xp − xq) = ℓ− ℓ = 0,

0
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which shows that the sequence is Cauchy.

Improper Riemann integral of an odd function on R. Consider

f(x) =
1

π(1 + x2)
, x ∈ R.

We have

∫ +∞

−∞

1

π(1 + x2)
dx =

∫

−∞
+∞d(tanx) =

[

tanx

]+∞

−∞
= π.

Hence f is a pdf. Let X be a random variable associated to the pdf f .
Set g(x) = xf(x), x ∈ R. Since g+ and g− are non-negative and locally
bounded and Riemann integrable, we have

∫

R

g+(x)dλ(x) =

∫

R

g−(x)d = +∞ and

∫

R

g+(x)dλ(x) =

∫

R

g+(x)d = +∞,

by using for example the D’Alembert criterion. Hence E(X) does not
exist.

4. Important Lemmas when dealing with limits on limits in
R

(1) - Cesaro generalized Limit.

The following result is often quoted as the Cesaro lemma.

Lemma 17. Let (xn)n≥1 ⊂ R be a sequence of finite real numbers
converging to x ∈ R, then sequence of arithmetic means

yn =
x1 + ... + xn

n
, n ≥ 1

S also converges to x.

Proof. Suppose that (xn)n≥1 ⊂ R converge to x ∈ R as n→ +∞. Fix
ε > 0. Thus, there exists N ≥ 1 such that |xn − x| < ε for all n ≥ N .
Now, for any n ≥ N , we have



4. IMPORTANT LEMMAS WHEN DEALING WITH LIMITS ON LIMITS IN R 357

|yn − x| =

∣
∣
∣
∣

x1 + ...+ xn
n

− y + ...+ y

n

∣
∣
∣
∣

=

∣
∣
∣
∣

(x1 − x) + ...+ (xn − x)
n

∣
∣
∣
∣

=

∣
∣
∣
∣

(x1 − x) + ...+ (xN − x)
n

∣
∣
∣
∣
+

∣
∣
∣
∣

(xN+1 − x) + ...+ (xn − x)
n

∣
∣
∣
∣

= AN +

∣
∣
∣
∣

(xN+1 − x) + ... + (xn − x)
n

∣
∣
∣
∣
.

with AN = |(x1−x)+ ...+(xN −x)|, which is constant with N . Hence
for for any n ≥ N , we have

|yn − x| < ≤ AN +
1

n
(|xN+1 − x|+ ...+ |xn − x|)

≤ AN

n
+

(n−N)

n
ε

we conclude that, for all ε > 0,

lim sup
n→+∞

|yn − x| ≤ ε,

and this achieves the proof. �

Remark. The limit of sequence of arithmetic means (x1 + ...+ xn)/n,
n ≥ 1, may exists and that of (xn)n≥1 does not. In that sense the
limit of the arithmetic means, whenever it exists, is called the Cesaro
generalized limit of the sequence of (xn)n≥1.

(2) - Toeplitz Lemma. Let (an,k)(n≥1, 1≤k≤k(n) be an array of real
numbers such that

(i) For any fixed k ≥ 1, an,k → 0 as n→ +∞,

(ii) there exists a finite real number c such that supn≥1

∑

1≤h≤k(n) |an,k| ≤
c.
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Let (xn)n≥1 be a sequence of real number and define yn =
∑

1≤h≤k(n) xkan,k
and bn = sup1≤h≤k(n) an,k, n ≥ 1. We have the following facts.

(1) If xn → 0 as n→ +∞, then yn → 0 as n→ +∞.
(2) If bn → 1 and xn → x ∈ R as n→ +∞, then yn → x as n→ +∞.

(3) Suppose that k(n) = n for all n ≥ 1. Let (ck)k≥0 be sequence
such that the sequence (bn)n≥0 = (

∑

1≤k≤n |ck|n≥0 is non-decreasing
and bn →∞. If xn → x ∈ R as n→ +∞, then

1

bn

∑

1≤k≤n

ckxk → x as n→ +∞. ♦

Proof. All the convergence below are meant as n→ +∞.

Proof of (1). Since xn converges to 0, we can find for any fixed η > 0
a number k0 = k0(η) > 0 such that for any k ≥ k0, |xk| ≤ η/c and (by
this), we have for any n ≥ 0

|yn| ≤ max(
∑

1≤h≤k0

|xk||an,k|,
∑

1≤h≤k0

|xk||an,k|+
∑

k0≤h≤k(n)

|xk||an,k|) (L1)

≤
∑

1≤h≤k0

|xk||an,k|+ (η/c)
∑

1≤h≤k(n)

|an,k|

≤
∑

1≤h≤k0

|xk||an,k|+ η,

in short

|yn| ≤
∑

1≤h≤k0

|xk||an,k|+ η.

In the Line (L1) above, it is not sure that k(n) might exceed k0, so
we bound by the first argument of the max if k(n) ≤ k0. The the last
equation, we let n go to infinity to have, for all η > 0,

lim sup
n→+∞

|yn| ≤ η,

since that finite number of k0 sequences |xk||an,k| (in n) converge to
zero, which implies that yn converges to zero.
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Proof of 2. We have

yn = x
∑

1≤h≤k0

an,k +
∑

1≤h≤k0

an,k(xk − x)

which implies

|yn − x| ≤ |x||
∑

1≤h≤k0

an,k − 1|+ c|xk − x|,

* which by the assumptions lead to yn → 0.

Proof of (3). By setting an,k = ck/bn, 1 ≤ kn, we inherit the assump-
tion is the former points with c = 1 and we may conclude by applying
Point (2). �

(3) - Kronecker Lemma. If (bn)n≥0 is an increasing sequence of
positive numbers and (xn)n≥0 is a sequence of finite real numbers such
that

(∑

1≤k≤n xk
)

n≥0
converges to a finite real number s, then

∑

1≤k≤n bkxk

bn
→ 0 as n→∞. ♦

Proof. Set b0 = 0, ak = bk+1 − bk, k ≥ 0, s1 = 0, sn+1 = x1 + .. + sn,
n ≥ 2. We have

∑

1≤k≤n bkxk

bn
=

∑

1≤k≤n bk(sk+1 − sk)
bn

= sn+1 −
1

bn

∑

1≤k≤n

bksk. (L2)

To see how to get Line, we just have to develop the summation and to
make the needed factorizations as in

bn(sn+1 − sn) + bn−1(sn − sn−1) + bn−2(sn−1 − sn−2) + · · · b3(s4 − s3) + b2(s3 − s2) + b1(s2 − s1)
bnsn+1 − sn)(bn − bn−1)− sn−1(sn−1 − bn−2) + · · · s2(b2 − b1) + s1b1.

From Line (L2), we may apply Point (3) of the Toeplitz’s Lemma above,
since bn = a1 + ... + an, to conclude that the expression in Line (L2)
converges to zero as n→ +∞. �
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5. Miscellaneous Results and facts

A - Technical formulas.

A1. We have for all t > 0, we have

∀t ∈ R+, e
t(1−t) ≤ 1 + t ≤ et. ♦

Proof. Put g(t) = (1 + t) − et t ≥ 0. It is clear that g′(t) = 1 − et is
non-positive and hence g is non-decreasing on R+, and thus : for any
t ∈ R+, g(t) ≤ g(0), which leads to the right-hand. To deal with the
left-hand one, we put g(t) = et(t−1) − t(t − 1)), t ∈ R. The first two
derivatives of g are

g′(t) = (−2t + 1)et(t−1) − 1 and g′′(t) = (4t2 − 4t− 1)et(t−1), t ∈ R.

The zeros of 4t2−4t−1)et(t−1) are t1 = (1−
√
2)/2 and t2 = (1+

√
2)/2.

Since t1 ≤ 0, g′′ is negative on [0, t2] vanishes on t2 and positive on
]t2, +∞[. This means that g′ which vanishes at 0 and tends to −1
at +∞, decreases on [0, t2], reaches its minimum at value at t2 and
increases to −1 on ]t2, +∞[. So we have proved that g′ is non-positive
on t ∈ R+1. We conclude that for any t ∈ R+, g(t) ≤ g(0), which is
the right-hand member of the inequality.

Acknowledgement. This proof is due to Cherif Mamadou Moctar
Traor, University of Bamako, Mali.

6. Quick and powerfull algorithms for Gaussian probabilities

Visual Basic
TM

codes to compute F (z) = P(N (0, 1) ≤ z).

Function ProbaNormale ( z As Double ) As Double

Dim a1 As Double , a2 As Double , a3 As Double , A4 As Double
Dim A5 As Double , w As Double , W1 As Double , P0 As Double

a1 = 0.31938153

a2 = −0.356563782
a3 = 1.781477937

A4 = −1.821255978
A5 = 1.330274429
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W1 = Abs ( z )

w = 1 / (1 + 0.2316419 ∗ W1)
W1 = 0.39894228 ∗ Exp(−0.5 ∗ W1 ∗ W1)

P0 = ( a3 + w ∗ (A4 + A5 ∗ w) )
P0 = w ∗ ( a1 + w ∗ ( a2 + w ∗ P0) )

P0 = W1 ∗ P0

I f z <= 0 Then

P0 = 1 − P0
End I f

ProbaNormale = 1 − P0

End Function

Quantile Function.

The quantile function or inverse function of F (z) = P(N (0, 1) ≤ z) is
computed by :

Publ ic Function inverseLoiNormal ( z As Double ) As Double

Dim a1 As Double , a2 As Double , a3 As Double , A4 As Double , A5 As Double
Dim A6 As Double

Dim W1 As Double , w As Double , W2 As Double , Q As Double

a1 = 2 .515517 : a2 = 0 .802853 : a3 = 0.010328

A4 = 1 .432788 : A5 = 0 .189269 : A6 = 0.001308

I f z <= 0 Then
inverseLoiNormal = −4
Exit Function

E l s e I f z >= 1 Then

inverseLoiNormal = 4
Exit Function

End I f

Q = 0 .5 − Abs ( z − 0 . 5 )
w = Sqr(−2 ∗ Log (Q) )

W1 = a1 + w ∗ ( a2 + a3 ∗ w) : W2 = 1 + w ∗ (A4 + w ∗ (A5 + A6 ∗ w) )
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inverseLoiNormal = (w − W1 / W2) ∗ Sgn ( z − 0 . 5 )

End Function
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