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Preface

Enumerative combinatorics has undergone enormous development since the publication of
the first edition of this book in 1986. It has become more clear what are the essential topics,
and many interesting new ancillary results have been discovered. This second edition is an
attempt to bring the coverage of the first volume more up-to-date and to impart a wide
variety of additional applications and examples.

The main difference between this volume and the previous is the addition of ten new sections
(six in Chapter 1 and four in Chapter 3) and over 350 new exercises. In response to complaints
about the difficulty of assigning homework problems whose solutions are included, I have
added some relatively easy exercises without solutions, marked by an asterisk. There are
also a few organizational changes, the most notable being the transfer of the section on
P -partitions from Chapter 4 to Chapter 3, and extending this section to the theory of
(P, ω)-partitions for any labeling ω. In addition, the old Section 4.6 has been split into
Sections 4.5 and 4.6.

There will be no second edition of volume 2 nor a volume 3. Since the references in volume 2
to information in volume 1 are no longer valid for this second edition, I have included a table
entitled “First Edition Numbering” which gives the conversion between the two editions for
all numbered results (theorems, examples, exercises, etc., but not equations).

Exercise 4.12 has some sentimental meaning for me. This result, and related results con-
nected to other linear recurrences with constant coefficients, is a product of my earliest
research, done around the age of 17 when I was a student at Savannah High School.

“I have written my work, not as an essay which is to win the applause of the
moment, but as a possession for all time.”

It is ridiculous to compare Enumerative Combinatorics with History of the Peloponnesian
War, but I can appreciate the sentiment of Thucydides. I hope this book will bring enjoyment
to many future generations of mathematicians and aspiring mathematicians as they are
exposed to the beauties and pleasures of enumerative combinatorics.
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Chapter 1

What is Enumerative Combinatorics?

1.1 How to Count

The basic problem of enumerative combinatorics is that of counting the number of elements
of a finite set. Usually we are given an infinite collection of finite sets Si where i ranges over
some index set I (such as the nonnegative integers N), and we wish to count the number f(i)
of elements in each Si “simultaneously.” Immediate philosophical difficulties arise. What
does it mean to “count” the number of elements of Si? There is no definitive answer to
this question. Only through experience does one develop an idea of what is meant by a
“determination” of a counting function f(i). The counting function f(i) can be given in
several standard ways:

1. The most satisfactory form of f(i) is a completely explicit closed formula involving only
well-known functions, and free from summation symbols. Only in rare cases will such a
formula exist. As formulas for f(i) become more complicated, our willingness to accept
them as “determinations” of f(i) decreases. Consider the following examples.

1.1.1 Example. For each n ∈ N, let f(n) be the number of subsets of the set [n] =
{1, 2, . . . , n}. Then f(n) = 2n, and no one will quarrel about this being a satisfactory
formula for f(n).

1.1.2 Example. Suppose n men give their n hats to a hat-check person. Let f(n) be the
number of ways that the hats can be given back to the men, each man receiving one hat, so
that no man receives his own hat. For instance, f(1) = 0, f(2) = 1, f(3) = 2. We will see
in Chapter 2 (Example 2.2.1) that

f(n) = n!

n∑

i=0

(−1)i

i!
. (1.1)

This formula for f(n) is not as elegant as the formula in Example 1.1.1, but for lack of
a simpler answer we are willing to accept (1.1) as a satisfactory formula. It certainly has
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the virtue of making it easy (in a sense that can be made precise) to compute the values
f(n). Moreover, once the derivation of (1.1) is understood (using the Principle of Inclusion-
Exclusion), every term of (1.1) has an easily understood combinatorial meaning. This enables
us to “understand” (1.1) intuitively, so our willingness to accept it is enhanced. We also
remark that it follows easily from (1.1) that f(n) is the nearest integer to n!/e. This is
certainly a simple explicit formula, but it has the disadvantage of being “non-combinatorial”;
that is, dividing by e and rounding off to the nearest integer has no direct combinatorial
significance.

1.1.3 Example. Let f(n) be the number of n×n matrices M of 0’s and 1’s such that every
row and column of M has three 1’s. For example, f(0) = 1, f(1) = f(2) = 0, f(3) = 1. The
most explicit formula known at present for f(n) is

f(n) = 6−nn!2
∑ (−1)β(β + 3γ)! 2α 3β

α! β! γ!2 6γ
, (1.2)

where the sum ranges over all (n + 2)(n + 1)/2 solutions to α + β + γ = n in nonnegative
integers. This formula gives very little insight into the behavior of f(n), but it does allow
one to compute f(n) much faster than if only the combinatorial definition of f(n) were
used. Hence with some reluctance we accept (1.2) as a “determination” of f(n). Of course
if someone were later to prove that f(n) = (n − 1)(n − 2)/2 (rather unlikely), then our
enthusiasm for (1.2) would be considerably diminished.

1.1.4 Example. There are actually formulas in the literature (“nameless here for evermore”)
for certain counting functions f(n) whose evaluation requires listing all (or almost all) of the
f(n) objects being counted! Such a “formula” is completely worthless.

2. A recurrence for f(i) may be given in terms of previously calculated f(j)’s, thereby
giving a simple procedure for calculating f(i) for any desired i ∈ I. For instance, let f(n)
be the number of subsets of [n] that do not contain two consecutive integers. For example,
for n = 4 we have the subsets ∅, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 4}, so f(4) = 8. It is
easily seen that f(n) = f(n − 1) + f(n − 2) for n ≥ 2. This makes it trivial, for example,
to compute f(20) = 17711. On the other hand, it can be shown (see Section 4.1 for the
underlying theory) that

f(n) =
1√
5

(
τn+2 − τ̄n+2

)
,

where τ = 1
2
(1 +

√
5), τ̄ = 1

2
(1 −

√
5). This is an explicit answer, but because it involves

irrational numbers it is a matter of opinion (which may depend on the context) whether it
is a better answer than the recurrence f(n) = f(n− 1) + f(n− 2).

3. An algorithm may be given for computing f(i). This method of determining f subsumes
the previous two, as well as method 5 below. Any counting function likely to arise in practice
can be computed from an algorithm, so the acceptability of this method will depend on the
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elegance and performance of the algorithm. In general, we would like the time that it takes
the algorithm to compute f(i) to be “substantially less” than f(i) itself. Otherwise we are
accomplishing little more than a brute force listing of the objects counted by f(i). It would
take us too far afield to discuss the profound contributions that computer science has made
to the problem of analyzing, constructing, and evaluating algorithms. We will be concerned
almost exclusively with enumerative problems that admit solutions that are more concrete
than an algorithm.

4. An estimate may be given for f(i). If I = N, this estimate frequently takes the form
of an asymptotic formula f(n) ∼ g(n), where g(n) is a “familiar function.” The notation
f(n) ∼ g(n) means that limn→∞ f(n)/g(n) = 1. For instance, let f(n) be the function of
Example 1.1.3. It can be shown that

f(n) ∼ e−236−n(3n)!.

For many purposes this estimate is superior to the “explicit” formula (1.2).

5. The most useful but most difficult to understand method for evaluating f(i) is to give
its generating function. We will not develop in this chapter a rigorous abstract theory of
generating functions, but will instead content ourselves with an informal discussion and
some examples. Informally, a generating function is an “object” that represents a counting
function f(i). Usually this object is a formal power series. The two most common types of
generating functions are ordinary generating functions and exponential generating functions.
If I = N, then the ordinary generating function of f(n) is the formal power series

∑

n≥0

f(n)xn,

while the exponential generating function of f(n) is the formal power series

∑

n≥0

f(n)
xn

n!
.

(If I = P, the positive integers, then these sums begin at n = 1.) These power series are
called “formal” because we are not concerned with letting x take on particular values, and
we ignore questions of convergence and divergence. The term xn or xn/n! merely marks the
place where f(n) is written.

If F (x) =
∑

n≥0 anx
n, then we call an the coefficient of xn in F (x) and write

an = [xn]F (x).

Similarly, if F (x) =
∑

n≥0 anx
n/n!, then we write

an = n![xn]F (x).

In the same way we can deal with generating functions of several variables, such as

∑

l≥0

∑

m≥0

∑

n≥0

f(l,m, n)
xlymzn

n!
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(which may be considered as “ordinary” in the indices l,m and “exponential” in n), or even
of infinitely many variables. In this latter case every term should involve only finitely many
of the variables. A simple generating function in infinitely many variables is x1+x2+x3+· · · .
Why bother with generating functions if they are merely another way of writing a counting
function? The answer is that we can perform various natural operations on generating
functions that have a combinatorial significance. For instance, we can add two generating
functions, say in one variable with I = N, by the rule

(∑

n≥0

anx
n

)
+

(∑

n≥0

bnx
n

)
=
∑

n≥0

(an + bn)x
n

or (∑

n≥0

an
xn

n!

)
+

(∑

n≥0

bn
xn

n!

)
=
∑

n≥0

(an + bn)
xn

n!
.

Similarly, we can multiply generating functions according to the rule

(∑

n≥0

anx
n

)(∑

n≥0

bnx
n

)
=
∑

n≥0

cnx
n,

where cn =
∑n

i=0 aibn−i, or

(∑

n≥0

an
xn

n!

)(∑

n≥0

bn
xn

n!

)
=
∑

n≥0

dn
xn

n!
,

where dn =
∑n

i=0

(
n
i

)
aibn−i, with

(
n
i

)
= n!/i!(n − i)!. Note that these operations are just

what we would obtain by treating generating functions as if they obeyed the ordinary laws
of algebra, such as xixj = xi+j . These operations coincide with the addition and multipli-
cation of functions when the power series converge for appropriate values of x, and they
obey such familiar laws of algebra as associativity and commutativity of addition and mul-
tiplication, distributivity of multiplication over addition, and cancellation of multiplication
(i.e., if F (x)G(x) = F (x)H(x) and F (x) 6= 0, then G(x) = H(x)). In fact, the set of all
formal power series

∑
n≥0 anx

n with complex coefficients an (or more generally, coefficients
in any integral domain R, where integral domains are assumed to be commutative with a
multiplicative identity 1) forms a (commutative) integral domain under the operations just
defined. This integral domain is denoted C[[x]] (or more generally, R[[x]]). Actually, C[[x]],
or more generally K[[x]] when K is a field, is a very special type of integral domain. For
readers with some familiarity with algebra, we remark that C[[x]] is a principal ideal domain
and therefore a unique factorization domain. In fact, every ideal of C[[x]] has the form (xn)
for some n ≥ 0. From the viewpoint of commutative algebra, C[[x]] is a one-dimensional
complete regular local ring. Moreover, the operation [xn] : C[[x]] → C of taking the coeffi-
cient of xn (and similarly [xn/n!]) is a linear functional on C[[x]]. These general algebraic
considerations will not concern us here; rather we will discuss from an elementary viewpoint
the properties of C[[x]] that will be useful to us.

12



There is an obvious extension of the ring C[[x]] to formal power series in m variables
x1, . . . , xm. The set of all such power series with complex coefficients is denoted C[[x1, . . . , xm]]
and forms a unique factorization domain (though not a principal ideal domain for m ≥ 2).

It is primarily through experience that the combinatorial significance of the algebraic op-
erations of C[[x]] or C[[x1, . . . , xm]] is understood, as well as the problems of whether to
use ordinary or exponential generating functions (or various other kinds discussed in later
chapters). In Section 3.18 we will explain to some extent the combinatorial significance of
these operations, but even then experience is indispensable.

If F (x) and G(x) are elements of C[[x]] satisfying F (x)G(x) = 1, then we (naturally) write
G(x) = F (x)−1. (Here 1 is short for 1 + 0x + 0x2 + · · · .) It is easy to see that F (x)−1

exists (in which case it is unique) if and only if a0 6= 0, where F (x) =
∑

n≥0 anx
n. One

commonly writes “symbolically” a0 = F (0), even though F (x) is not considered to be a
function of x. If F (0) 6= 0 and F (x)G(x) = H(x), then G(x) = F (x)−1H(x), which we
also write as G(x) = H(x)/F (x). More generally, the operation −1 satisfies all the familiar
laws of algebra, provided it is only applied to power series F (x) satisfying F (0) 6= 0. For
instance, (F (x)G(x))−1 = F (x)−1G(x)−1, (F (x)−1)−1 = F (x), and so on. Similar results
hold for C[[x1, . . . , xm]].

1.1.5 Example. Let
(∑

n≥0 α
nxn
)
(1 − αx) =

∑
n≥0 cnx

n, where α is nonzero complex
number. (We could also take α to be an indeterminate, in which case we should extend the
coefficient field to C(α), the field of rational functions over C in the variable α.) Then by
definition of power series multiplication,

cn =

{
1, n = 0

αn − α(αn−1) = 0, n ≥ 1.

Hence
∑

n≥0 α
nxn = (1− αx)−1, which can also be written

∑

n≥0

αnxn =
1

1− αx.

This formula comes as no surprise; it is simply the formula (in a formal setting) for summing
a geometric series.

Example 1.1.5 provides a simple illustration of the general principle that, informally speaking,
if we have an identity involving power series that is valid when the power series are regarded
as functions (so that the variables are sufficiently small complex numbers), then this identity
continues to remain valid when regarded as an identity among formal power series, provided
the operations defined in the formulas are well-defined for formal power series. It would
be unnecessarily pedantic for us to state a precise form of this principle here, since the
reader should have little trouble justifying in any particular case the formal validity of our
manipulations with power series. We will give several examples throughout this section to
illustrate this contention.
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1.1.6 Example. The identity

(∑

n≥0

xn

n!

)(∑

n≥0

(−1)n
xn

n!

)
= 1 (1.3)

is valid at the function-theoretic level (it states that exe−x = 1) and is well-defined as a
statement involving formal power series. Hence (1.3) is a valid formal power series identity.
In other words (equating coefficients of xn/n! on both sides of (1.3)), we have

n∑

k=0

(−1)k
(
n

k

)
= δ0n. (1.4)

To justify this identity directly from (1.3), we may reason as follows. Both sides of (1.3)
converge for all x ∈ C, so we have

∑

n≥0

(
n∑

k=0

(−1)k
(
n

k

))
xn

n!
= 1, for all x ∈ C.

But if two power series in x represent the same function f(x) in a neighborhood of 0, then
these two power series must agree term-by-term, by a standard elementary result concerning
power series. Hence (1.4) follows.

1.1.7 Example. The identity

∑

n≥0

(x+ 1)n

n!
= e

∑

n≥0

xn

n!

is valid at the function-theoretic level (it states that ex+1 = e · ex), but does not make
sense as a statement involving formal power series. There is no formal procedure for writing∑

n≥0(x + 1)n/n! as a member of C[[x]]. For instance, the constant term of
∑

n≥0(x +
1)n/n! is

∑
n≥0 1/n!, whose interpretation as a member of C[[x]] involves the consideration

of convergence.

Although the expression
∑

n≥0(x+1)n/n! does not make sense formally, there are nevertheless
certain infinite processes that can be carried out formally in C[[x]]. (These concepts extend
straightforwardly to C[[x1, . . . , xm]], but for simplicity we consider only C[[x]].) To define
these processes, we need to put some additional structure on C[[x]]—namely, the notion of
convergence. From an algebraic standpoint, the definition of convergence is inherent in the
statement that C[[x]] is complete in a certain standard topology that can be put on C[[x]].
However, we will assume no knowledge of topology on the part of the reader and will instead
give a self-contained, elementary treatment of convergence.

If F1(x), F2(x), . . . is a sequence of formal power series, and if F (x) =
∑

n≥0 anx
n is another

formal power series, we say by definition that Fi(x) converges to F (x) as i → ∞, written
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Fi(x) → F (x) or limi→∞ Fi(x) = F (x), provided that for all n ≥ 0 there is a number δ(n)
such that the coefficient of xn in Fi(x) is an whenever i ≥ δ(n). In other words, for every n
the sequence

[xn]F1(x), [xn]F2(x), . . .

of complex numbers eventually becomes constant (or stabilizes) with value an. An equiv-
alent definition of convergence is the following. Define the degree of a nonzero formal
power series F (x) =

∑
n≥0 anx

n, denoted degF (x), to be the least integer n such that
an 6= 0. Note that degF (x)G(x) = degF (x) + degG(x). Then Fi(x) converges if and
only if limi→∞ deg(Fi+1(x) − Fi(x)) = ∞, and Fi(x) converges to F (x) if and only if
limi→∞ deg(F (x)− Fi(x)) =∞.

We now say that an infinite sum
∑

j≥0 Fj(x) has the value F (x) provided that
∑i

j=0 Fj(x)→
F (x). A similar definition is made for the infinite product

∏
j≥1 Fj(x). To avoid unimportant

technicalities we assume that in any infinite product
∏

j≥1 Fj(x), each factor Fj(x) satisfies
Fj(0) = 1.

For instance, let Fj(x) = ajx
j . Then for i ≥ n, the coefficient of xn in

∑i
j=0 Fj(x) is an.

Hence
∑

j≥0 Fj(x) is just the power series
∑

n≥0 anx
n. Thus we can think of the formal

power series
∑

n≥0 anx
n as actually being the “sum” of its individual terms. The proofs of

the following two elementary results are left to the reader.

1.1.8 Proposition. The infinite series
∑

j≥0 Fj(x) converges if and only if

lim
j→∞

deg Fj(x) =∞.

1.1.9 Proposition. The infinite product
∏

j≥1(1 + Gj(x)), where Gj(0) = 0, converges if
and only if limj→∞ degGj(x) =∞.

It is essential to realize that in evaluating a convergent series
∑

j≥0 Fj(x) (or similarly a
product

∏
j≥1 Fj(x)), the coefficient of xn for any given n can be computed using only finite

processes. For if j is sufficiently large, say j > δ(n), then degFj(x) > n, so that

[xn]
∑

j≥0

Fj(x) = [xn]

δ(n)∑

j=0

Fj(x).

The latter expression involves only a finite sum.

The most important combinatorial application of the notion of convergence is to the idea
of power series composition. If F (x) =

∑
n≥0 anx

n and G(x) are formal power series with
G(0) = 0, define the composition F (G(x)) to be the infinite sum

∑
n≥0 anG(x)n. Since

degG(x)n = n · degG(x) ≥ n, we see by Proposition 1.1.8 that F (G(x)) is well-defined as
a formal power series. We also see why an expression such as e1+x does not make sense
formally; namely, the infinite series

∑
n≥0(1 + x)n/n! does not converge in accordance with

the above definition. On the other hand, an expression like ee
x−1 makes good sense formally,

since it has the form F (G(x)) where F (x) =
∑

n≥0 x
n/n! and G(x) =

∑
n≥1 x

n/n!.
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1.1.10 Example. If F (x) ∈ C[[x]] satisfies F (0) = 0, then we can define for any λ ∈ C the
formal power series

(1 + F (x))λ =
∑

n≥0

(
λ

n

)
F (x)n, (1.5)

where
(
λ
n

)
= λ(λ− 1) · · · (λ− n + 1)/n!. In fact, we may regard λ as an indeterminate and

take (1.5) as the definition of (1 + F (x))λ as an element of C[[x, λ]] (or of C[λ][[x]]; that is,
the coefficient of xn in (1+F (x))λ is a certain polynomial in λ). All the expected properties
of exponentiation are indeed valid, such as

(1 + F (x))λ+µ = (1 + F (x))λ(1 + F (x))µ,

regarded as an identity in the ring C[[x, λ, µ]], or in the ring C[[x]] where one takes λ, µ ∈ C.

If F (x) =
∑

n≥0 anx
n, define the formal derivative F ′(x) (also denoted dF

dx
or DF (x)) to be

the formal power series

F ′(x) =
∑

n≥0

nanx
n−1 =

∑

n≥0

(n+ 1)an+1x
n.

It is easy to check that all the familiar laws of differentiation that are well-defined formally
continue to be valid for formal power series, In particular,

(F +G)′ = F ′ +G′

(FG)′ = F ′G+ FG′

F (G(x))′ = G′(x)F ′(G(x)).

We thus have a theory of formal calculus for formal power series. The usefulness of this
theory will become apparent in subsequent examples. We first give an example of the use of
the formal calculus that should shed some additional light on the validity of manipulating
formal power series F (x) as if they were actual functions of x.

1.1.11 Example. Suppose F (0) = 1, and let G(x) be the power series (easily seen to be
unique) satisfying

G′(x) = F ′(x)/F (x), G(0) = 0. (1.6)

From the function-theoretic viewpoint we can “solve” (1.6) to obtain F (x) = expG(x), where
by definition

expG(x) =
∑

n≥0

G(x)n

n!
.

Since G(0) = 0 everything is well-defined formally, so (1.6) should remain equivalent to
F (x) = expG(x) even if the power series for F (x) converges only at x = 0. How can
this assertion be justified without actually proving a combinatorial identity? Let F (x) =
1 +

∑
n≥1 anx

n. From (1.6) we can compute explicitly G(x) =
∑

n≥1 bnx
n, and it is quickly

seen that each bn is a polynomial in finitely many of the ai’s. It then follows that if expG(x) =
1 +

∑
n≥1 cnx

n, then each cn will also be a polynomial in finitely many of the ai’s, say
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cn = pn(a1, a2, . . . , am), wherem depends on n. Now we know that F (x) = expG(x) provided
1+
∑

n≥1 anx
n converges. If two Taylor series convergent in some neighborhood of the origin

represent the same function, then their coefficients coincide. Hence an = pn(a1, a2, . . . , am)
provided 1 +

∑
n≥1 anx

n converges. Thus the two polynomials an and pn(a1, . . . , am) agree
in some neighborhood of the origin of Cm, so they must be equal. (It is a simple result
that if two complex polynomials in m variables agree in some open subset of Cm, then they
are identical.) Since an = pn(a1, a2, . . . , am) as polynomials, the identity F (x) = expG(x)
continues to remain valid for formal power series.

There is an alternative method for justifying the formal solution F (x) = expG(x) to (1.6),
which may appeal to topologically inclined readers. GivenG(x) withG(0) = 0, define F (x) =

expG(x) and consider a map φ : C[[x]] → C[[x]] defined by φ(G(x)) = G′(x) − F ′(x)
F (x)

. One

easily verifies the following: (a) if G converges in some neighborhood of 0 then φ(G(x)) = 0;
(b) the set G of all power series G(x) ∈ C[[x]] that converge in some neighborhood of 0 is
dense in C[[x]], in the topology defined above (in fact, the set C[x] of polynomials is dense);
and (c) the function φ is continuous in the topology defined above. From this it follows that
φ(G(x)) = 0 for all G(x) ∈ C[[x]] with G(0) = 0.

We now present various illustrations in the manipulation of generating functions. Through-
out we will be making heavy use of the principle that formal power series can be treated as
if they were functions.

1.1.12 Example. Find a simple expression for the generating function F (x) =
∑

n≥0 anx
n,

where a0 = a1 = 1, an = an−1 + an−2 if n ≥ 2. We have

F (x) =
∑

n≥0

anx
n = 1 + x+

∑

n≥2

anx
n

= 1 + x+
∑

n≥2

(an−1 + an−2)x
n

= 1 + x+ x
∑

n≥2

an−1x
n−1 + x2

∑

n≥2

an−2x
n−2

= 1 + x+ x(F (x)− 1) + x2F (x).

Solving for F (x) yields F (x) = 1/(1− x− x2). The number an is just the Fibonacci number
Fn+1. For some combinatorial properties of Fibonacci numbers, see Exercises 1.35–1.42.
For the general theory of rational generating functions and linear recurrences with constant
coefficients illustrated in the present example, see Section 4.1.

1.1.13 Example. Find a simple expression for the generating function F (x) =
∑

n≥0 anx
n/n!,

where a0 = 1,

an+1 = an + nan−1, n ≥ 0. (1.7)

(Note that if n = 0 we get a1 = a0 + 0 · a−1, so the value of a−1 is irrelevant.) Multiply the
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recurrence (1.7) by xn/n! and sum on n ≥ 0. We get

∑

n≥0

an+1
xn

n!
=

∑

n≥0

an
xn

n!
+
∑

n≥0

nan−1
xn

n!

=
∑

n≥0

an
xn

n!
+
∑

n≥1

an−1
xn

(n− 1)!
.

The left-hand side is just F ′(x), while the right-hand side is F (x) + xF (x). Hence F ′(x) =
(1 + x)F (x). The unique solution to this differential equation satisfying F (0) = 1 is F (x) =
exp

(
x+ 1

2
x2
)
. (As shown in Example 1.1.11, solving this differential equation is a purely

formal procedure.) For the combinatorial significance of the numbers an, see equation (5.32).

Note. With the benefit of hindsight we wrote the recurrence an+1 = an + nan−1 with
indexing that makes the computation simplest. If for instance we had written an = an−1 +
(n−1)an−2, then the computation would be more complicated (though still quite tractable).
In converting recurrences to generating function identities, it can be worthwhile to consider
how best to index the recurrence.

1.1.14 Example. Let µ(n) be the Möbius function of number theory; that is, µ(1) = 1,
µ(n) = 0 if n is divisible by the square of an integer greater than one, and µ(n) = (−1)r if
n is the product of r distinct primes. Find a simple expression for the power series

F (x) =
∏

n≥1

(1− xn)−µ(n)/n. (1.8)

First let us make sure that F (x) is well-defined as a formal power series. We have by
Example 1.1.10 that

(1− xn)−µ(n)/n =
∑

i≥0

(−µ(n)/n

i

)
(−1)ixin.

Note that (1− xn)−µ(n)/n = 1 +H(x), where degH(x) = n. Hence by Proposition 1.1.9 the
infinite product (1.8) converges, so F (x) is well-defined. Now apply log to (1.8). In other
words, form logF (x), where

log(1 + x) =
∑

n≥1

(−1)n−1x
n

n
,

the power series expansion for the natural logarithm at x = 0. We obtain

logF (x) = log
∏

n≥1

(1− xn)−µ(n)/n

= −
∑

n≥1

log(1− xn)µ(n)/n

= −
∑

n≥1

µ(n)

n
log(1− xn)

= −
∑

n≥1

µ(n)

n

∑

i≥1

(
−x

in

i

)
.
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The coefficient of xm in the above power series is

1

m

∑

d|m
µ(d),

where the sum is over all positive integers d dividing m. It is well-known that

1

m

∑

d|m
µ(d) =

{
1, m = 1
0, otherwise.

Hence logF (x) = x, so F (x) = ex. Note that the derivation of this miraculous formula
involved only formal manipulations.

1.1.15 Example. Find the unique sequence a0 = 1, a1, a2, . . . of real numbers satisfying

n∑

k=0

akan−k = 1 (1.9)

for all n ∈ N. The trick is to recognize the left-hand side of (1.9) as the coefficient of xn in(∑
n≥0 anx

n
)2

. Letting F (x) =
∑

n≥0 anx
n, we then have

F (x)2 =
∑

n≥0

xn =
1

1− x.

Hence

F (x) = (1− x)−1/2 =
∑

n≥0

(−1/2

n

)
(−1)nxn,

so

an = (−1)n
(−1/2

n

)

= (−1)n
(
−1

2

) (
−3

2

) (
−5

2

)
· · ·
(
−2n−1

2

)

n!

=
1 · 3 · 5 · · · (2n− 1)

2nn!
.

Note that an can also be rewritten as 4−n
(
2n
n

)
. The identity

(
2n

n

)
= (−1)n4n

(−1/2

n

)
(1.10)

can be useful for problems involving
(
2n
n

)
.
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Now that we have discussed the manipulation of formal power series, the question arises as
to the advantages of using generating functions to represent a counting function f(n). Why,
for instance, should a formula such as

∑

n≥0

f(n)
xn

n!
= exp

(
x+

x2

2

)
(1.11)

be regarded as a “determination” of f(n)? Basically, the answer is that there are many stan-
dard, routine techniques for extracting information from generating functions. Generating
functions are frequently the most concise and efficient way of presenting information about
their coefficients. For instance, from (1.11) an experienced enumerative combinatorialist can
tell at a glance the following:

1. A simple recurrence for f(n) can be found by differentiation. Namely, we obtain

∑

n≥1

f(n)
xn−1

(n− 1)!
= (1 + x)ex+x

2/2 = (1 + x)
∑

n≥0

f(n)
xn

n!
.

Equating coefficients of xn/n! yields

f(n+ 1) = f(n) + nf(n− 1), n ≥ 1.

Note that in Example 1.1.13 we went in the opposite direction, i.e., we obtained the gener-
ating function from the recurrence, a less straightforward procedure.

2. An explicit formula for f(n) can be obtained from ex+(x2/2) = exex
2/2. Namely,

∑

n≥0

f(n)
xn

n!
= exex

2/2 =

(∑

n≥0

xn

n!

)(∑

n≥0

x2n

2nn!

)

=

(∑

n≥0

xn

n!

)(∑

n≥0

(2n)!

2nn!

x2n

(2n)!

)
,

so that

f(n) =
∑

i≥0
i even

(
n

i

)
i!

2i/2(i/2)!
=
∑

j≥0

(
n

2j

)
(2j)!

2jj!
.

3. Regarded as a function of a complex variable, exp
(
x+ x2

2

)
is a nicely behaved entire

function, so that standard techniques from the theory of asymptotic analysis can be used
to estimate f(n). As a first approximation, it is routine (for someone sufficiently versed in
complex variable theory) to obtain the asymptotic formula

f(n) ∼ 1√
2
nn/2e−

n
2
+
√
n− 1

4 . (1.12)

No other method of describing f(n) makes it so easy to determine these fundamental proper-
ties. Many other properties of f(n) can also be easily obtained from the generating function;
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for instance, we leave to the reader the problem of evaluating, essentially by inspection of
(1.11), the sum

n∑

i=0

(−1)n−i
(
n

i

)
f(i) (1.13)

(see Exercise 1.7). Therefore we are ready to accept the generating function exp
(
x+ x2

2

)

as a satisfactory determination of f(n).

This completes our discussion of generating functions and more generally the problem of
giving a satisfactory description of a counting function f(n). We now turn to the question
of what is the best way to prove that a counting function has some given description. In
accordance with the principle from other branches of mathematics that it is better to exhibit
an explicit isomorphism between two objects than merely prove that they are isomorphic, we
adopt the general principle that it is better to exhibit an explicit one-to-one correspondence
(bijection) between two finite sets than merely to prove that they have the same number
of elements. A proof that shows that a certain set S has a certain number m of elements
by constructing an explicit bijection between S and some other set that is known to have
m elements is called a combinatorial proof or bijective proof. The precise border between
combinatorial and non-combinatorial proofs is rather hazy, and certain arguments that to
an inexperienced enumerator will appear non-combinatorial will be recognized by a more
facile counter as combinatorial, primarily because he or she is aware of certain standard
techniques for converting apparently non-combinatorial arguments into combinatorial ones.
Such subtleties will not concern us here, and we now give some clear-cut examples of the
distinction between combinatorial and non-combinatorial proofs. We use the notation #S
or |S| for the cardinality (number of elements) of the finite set S.

1.1.16 Example. Let n and k be fixed positive integers. How many sequences (X1, X2, . . . , Xk)
are there of subsets of the set [n] = {1, 2, . . . , n} such that X1∩X2∩· · ·∩Xk = ∅? Let f(k, n)
be this number. If we were not particularly inspired we could perhaps argue as follows. Sup-
pose X1 ∩ X2 ∩ · · · ∩ Xk−1 = T , where #T = i. If Yj = Xj − T , then Y1 ∩ · · · ∩ Yk−1 = ∅
and Yj ⊆ [n] − T . Hence there are f(k − 1, n − i) sequences (X1, . . . , Xk−1) such that
X1 ∩ X2 ∩ · · · ∩ Xk−1 = T . For each such sequence, Xk can be any of the 2n−i subsets
of [n] − T . As is probably familiar to most readers and will be discussed later, there are(
n
i

)
= n!/i!(n− i)! i-element subsets T of [n]. Hence

f(k, n) =

n∑

i=0

(
n

i

)
2n−if(k − 1, n− i). (1.14)

Let Fk(x) =
∑

n≥0 f(k, n)xn/n!. Then (1.14) is equivalent to

Fk(x) = exFk−1(2x).

Clearly F1(x) = ex. It follows easily that

Fk(x) = exp(x+ 2x+ 4x+ · · ·+ 2k−1x)

= exp((2k − 1)x)

=
∑

n≥0

(2k − 1)n
xn

n!
.
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Hence f(k, n) = (2k−1)n. This argument is a flagrant example of a non-combinatorial proof.
The resulting answer is extremely simple despite the contortions involved to obtain it, and
it cries out for a better understanding. In fact, (2k − 1)n is clearly the number of n-tuples
(Z1, Z2, . . . , Zn), where each Zi is a subset of [k] not equal to [k]. Can we find a bijection
θ between the set Skn of all (X1, . . . , Xk) ⊆ [n]k such that X1 ∩ · · · ∩ Xk = ∅, and the set
Tkn of all (Z1, . . . , Zn) where [k] 6= Zi ⊆ [k]? Given an element (Z1, . . . , Zn) of Tkn, define
(X1, . . . , Xk) by the condition that i ∈ Xj if and only if j ∈ Zi. This rule is just a precise
way of saying the following: the element 1 can appear in any of the Xi’s except all of them,
so there are 2k − 1 choices for which of the Xi’s contain 1; similarly there are 2k − 1 choices
for which of the Xi’s contain 2, 3, . . . , n, so there are (2k−1)n choices in all. Thus the crucial
point of the problem is that the different elements of [n] behave independently, so we end up
with a simple product. We leave to the reader the (rather dull) task of rigorously verifiying
that θ is a bijection, but this fact should be intuitively clear. The usual way to show that θ
is a bijection is to construct explicitly a map φ : Tkn → Skn, and then to show that φ = θ−1;
for example, by showing that φθ(X) = X and that θ is surjective. Caveat : any proof that θ
is bijective must not use a priori the fact that #Skn = #Tkn!

Not only is the above combinatorial proof much shorter than our previous proof, but it
also makes the reason for the simple answer completely transparent. It is often the case, as
occurred here, that the first proof to come to mind turns out to be laborious and inelegant,
but that the final answer suggests a simpler combinatorial proof.

1.1.17 Example. Verify the identity
n∑

i=0

(
a

i

)(
b

n− i

)
=

(
a+ b

n

)
, (1.15)

where a, b, and n are nonnegative integers. A non-combinatorial proof would run as fol-
lows. The left-hand side of (1.15) is the coefficient of xn in the power series (polynomial)(∑

i≥0

(
a
i

)
xi
) (∑

j≥0

(
b
j

)
xj
)
. But by the binomial theorem,

(∑

i≥0

(
a

i

)
xi

)(∑

j≥0

(
b

j

)
xj

)
= (1 + x)a(1 + x)b

= (1 + x)a+b

=
∑

n≥0

(
a + b

n

)
xn,

so the proof follows. A combinatorial proof runs as follows. The right-hand side of (1.15) is
the number of n-element subsets X of [a+ b]. Suppose X intersects [a] in i elements. There
are

(
a
i

)
choices for X ∩ [a], and

(
b
n−i
)

choices for the remaining n− i elements X ∩{a+1, a+

2, . . . , a+ b}. Thus there are
(
a
i

)(
b
n−i
)

ways that X ∩ [a] can have i elements, and summing

over i gives the total number
(
a+b
n

)
of n-element subsets of [a+ b].

There are many examples in the literature of finite sets that are known to have the same
number of elements but for which no combinatorial proof of this fact is known. Some of
these will appear as exercises throughout this book.
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1.2 Sets and Multisets

We have (finally!) completed our description of the solution of an enumerative problem, and
we are now ready to delve into some actual problems. Let us begin with the basic problem
of counting subsets of a set. Let S = {x1, x2, . . . , xn} be an n-element set, or n-set for short.
Let 2S denote the set of all subsets of S, and let {0, 1}n = {(ε1, ε2, . . . , εn) : εi = 0 or 1}.
Since there are two possible values for each εi, we have #{0, 1}n = 2n. Define a map
θ : 2S → {0, 1}n by θ(T ) = (ε1, ε2, . . . , εn), where

εi =

{
1, if xi ∈ T
0, if xi 6∈ T.

For example, if n = 5 and T = {x2, x4, x5}, then θ(T ) = (0, 1, 0, 1, 1). Most readers will
realize that θ(T ) is just the characteristic vector of T . It is easily seen that θ is a bijection,
so that we have given a combinatorial proof that #2S = 2n. Of course there are many
alternative proofs of this simple result, and many of these proofs could be regarded as
combinatorial.

Now define
(
S
k

)
(sometimes denoted S(k) or otherwise, and read “S choose k”) to be the

set of all k-element subsets (or k-subsets) of S, and define
(
n
k

)
= #

(
S
k

)
, read “n choose k”

(ignore our previous use of the symbol
(
n
k

)
) and called a binomial coefficient. Our goal is to

prove the formula (
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
. (1.16)

Note that if 0 ≤ k ≤ n then the right-hand side of equation (1.16) can be rewritten n!/k!(n−
k)!. The right-hand side of (1.16) can be used to define

(
n
k

)
for any complex number (or

indeterminate) n, provided k ∈ N. The numerator n(n − 1) · · · (n− k + 1) of (1.16) is read
“n lower factorial k” and is denoted (n)k. Caveat. Many mathematicians, especially those
in the theory of special functions, use the notation (n)k = n(n + 1) · · · (n+ k − 1).

We would like to give a bijective proof of (1.16), but the factor k! in the denominator
makes it difficult to give a “simple” interpretation of the right-hand side. Therefore we use
the standard technique of clearing the denominator. To this end we count in two ways the
number N(n, k) of ways of choosing a k-subset T of S and then linearly ordering the elements
of T . We can pick T in

(
n
k

)
ways, then pick an element of T in k ways to be first in the

ordering, then pick another element in k − 1 ways to be second, and so on. Thus

N(n, k) =

(
n

k

)
k!.

On the other hand, we could pick any element of S in n ways to be first in the ordering,
then another element in n− 1 ways to be second, on so on, down to any remaining element
in n− k + 1 ways to be kth. Thus

N(n, k) = n(n− 1) · · · (n− k + 1).
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We have therefore given a combinatorial proof that
(
n

k

)
k! = n(n− 1) · · · (n− k + 1),

and hence of equation (1.16).

A generating function approach to binomial coefficients can be given as follows. Regard
x1, . . . , xn as independent indeterminates. It is an immediate consequence of the process of
multiplication (one could also give a rigorous proof by induction) that

(1 + x1)(1 + x2) · · · (1 + xn) =
∑

T⊆S

∏

xi∈T
xi. (1.17)

If we put each xi = x, then we obtain

(1 + x)n =
∑

T⊆S

∏

xi∈T
x =

∑

T⊆S
x#T =

∑

k≥0

(
n

k

)
xk, (1.18)

since the term xk appears exactly
(
n
k

)
times in the sum

∑
T⊆S x

#T . This reasoning is an
instance of the simple but useful observation that if S is a collection of finite sets such that
S contains exactly f(n) sets with n elements, then

∑

S∈S
x#S =

∑

n≥0

f(n)xn.

Somewhat more generally, if g : N→ C is any function, then
∑

S∈S
g(#S)x#S =

∑

n≥0

g(n)f(n)xn.

Equation (1.18) is such a simple result (the binomial theorem for the exponent n ∈ N) that
it is hardly necessary to obtain first the more refined (1.17). However, it is often easier in
dealing with generating functions to work with the most number of variables (indeterminates)
possible and then specialize. Often the more refined formula will be more transparent, and
its various specializations will be automatically unified.

Various identities involving binomial coefficients follow easily from the identity (1 + x)n =∑
k≥0

(
n
k

)
xk, and the reader will find it instructive to find combinatorial proofs of them. (See

Exercise 1.3 for further examples of binomial coefficient identities.) For instance, put x = 1
to obtain 2n =

∑
k≥0

(
n
k

)
; put x = −1 to obtain 0 =

∑
k≥0(−1)k

(
n
k

)
if n > 0; differentiate

and put x = 1 to obtain n2n−1 =
∑

k≥0 k
(
n
k

)
, and so on.

There is a close connection between subsets of a set and compositions of a nonnegative
integer. A composition of n can be thought of as an expression of n as an ordered sum of
integers. More precisely, a composition of n is a sequence α = (a1, . . . , ak) of positive integers
satisfying

∑
ai = n. For instance, there are eight compositions of 4; namely,

1 + 1 + 1 + 1 3 + 1
2 + 1 + 1 1 + 3
1 + 2 + 1 2 + 2
1 + 1 + 2 4.
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If exactly k summands appear in a composition α, then we say that α has k parts, and we call
α a k-composition. If α = (a1, a2, . . . , ak) is a k-composition of n, then define a (k−1)-subset
Sα of [n− 1] by

Sα = {a1, a1 + a2, . . . , a1 + a2 + · · ·+ ak−1}.

The correspondence α 7→ Sα gives a bijection between all k-compositions of n and (k − 1)-
subsets of [n − 1]. Hence there are

(
n−1
k−1

)
k-compositions of n and 2n−1 compositions of

n > 0. The inverse bijection Sα 7→ α is often represented schematically by drawing n dots
in a row and drawing vertical bars between k − 1 of the n − 1 spaces separating the dots.
This procedure divides the dots into k linearly ordered (from left-to-right) “compartments”
whose number of elements is a k-composition of n. For instance, the compartments

·| · ·| · | · | · · · | · · (1.19)

correspond to the 6-composition (1, 2, 1, 1, 3, 2) of 10. The diagram (1.19) illustrates another
very general principle related to bijective proofs — it is often efficacious to represent the
objects being counted geometrically.

A problem closely related to compositions is that of counting the number N(n, k) of solutions
to x1 +x2 + · · ·+xk = n in nonnegative integers. Such a solution is called a weak composition
of n into k parts, or a weak k-composition of n. (A solution in positive integers is simply a
k-composition of n.) If we put yi = xi+1, then N(n, k) is the number of solutions in positive
integers to y1 + y2 + · · ·+ yk = n+ k, that is, the number of k-compositions of n+ k. Hence
N(n, k) =

(
n+k−1
k−1

)
. A further variant is the enumeration of N-solutions (that is, solutions

where each variable lies in N) to x1 + x2 + · · ·+ xk ≤ n. Again we use a standard technique,
viz., introducing a slack variable y to convert the inequality x1 + x2 + · · · + xk ≤ n to the
equality x1+x2+· · ·+xk+y = n. An N-solution to this equation is a weak (k+1)-composition
of n, so the number N(n, k + 1) of such solutions is

(
n+(k+1)−1

k

)
=
(
n+k
k

)
.

A k-subset T of an n-set S is sometimes called a k-combination of S without repetitions. This
suggests the problem of counting the number of k-combinations of S with repetitions; that is,
we choose k elements of S, disregarding order and allowing repeated elements. Denote this
number by

((
n
k

))
, which could be read “n multichoose k.” For instance, if S = {1, 2, 3} then

the combinations counted by
((

3
2

))
are 11, 22, 33, 12, 13, 23. Hence

((
3
2

))
= 6. An equivalent

but more precise treatment of combinations with repetitions can be made by introducing the
concept of a multiset. Intuitively, a multiset is a set with repeated elements; for instance,
{1, 1, 2, 5, 5, 5}. More precisely, a finite multiset M on a set S is a pair (S, ν), where ν
is a function ν : S → N such that

∑
x∈S ν(x) < ∞. One regards ν(x) as the number of

repetitions of x. The integer
∑

x∈S ν(x) is called the cardinality, size, or number of elements
of M and is denoted |M |, #M , or cardM . If S = {x1, . . . , xn} and ν(xi) = ai, then we call
ai the multiplicity of xi in M and write M = {xa11 , . . . , x

an
n }. If #M = k then we call M

a k-multiset. The set of all k-multisets on S is denoted
((
S
k

))
. If M ′ = (S, ν ′) is another

multiset on S, then we say that M ′ is a submultiset of M if ν ′(x) ≤ ν(x) for all x ∈ S. The
number of submultisets of M is

∏
x∈S(ν(x) + 1), since for each x ∈ S there are ν(x) + 1

possible values of ν ′(x). It is now clear that a k-combination of S with repetition is simply
a multiset on S with k elements.
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Although the reader may be unaware of it, we have already evaluated the number
((
n
k

))
. If

S = {y1, . . . , yn} and we set xi = ν(yi), then we see that
((
n
k

))
is the number of solutions in

nonnegative integers to x1 + x2 + · · ·+ xn = k, which we have seen is
(
n+k−1
n−1

)
=
(
n+k−1

k

)
.

There are two elegant direct combinatorial proofs that
((
n
k

))
=
(
n+k−1

k

)
. For the first, let

1 ≤ a1 < a2 < · · · < ak ≤ n + k − 1 be a k-subset of [n + k − 1]. Let bi = ai − i + 1.
Then {b1, b2, . . . , bk} is a k-multiset on [n]. Conversely, given a k-multiset 1 ≤ b1 ≤ b2 ≤
· · · ≤ bk ≤ n on [n], then defining ai = bi + i − 1 we see that {a1, a2, . . . , ak} is a k-subset

of [n + k − 1]. Hence we have defined a bijection between
((

[n]
k

))
and

(
[n+k−1]

k

)
, as desired.

This proof illustrates the technique of compression, where we convert a strictly increasing
sequence to a weakly increasing sequence.

Our second direct proof that
((
n
k

))
=
(
n+k−1

k

)
is a “geometric” (or “balls into boxes” or “stars

and bars”) proof, analogous to the proof above that there are
(
n−1
k−1

)
k-compositions of n.

There are
(
n+k−1

k

)
sequences consisting of k dots and n−1 vertical bars. An example of such

a sequence for k = 5 and n = 7 is given by

|| · ·| · ||| · ·

The n − 1 bars divide the k dots into n compartments. Let the number of dots in the
ith compartment be ν(i). In this way the diagrams correspond to k-multisets on [n], so((
n
k

))
=
(
n+k−1

k

)
. For the example above, the multiset is {3, 3, 4, 7, 7}.

The generating function approach to multisets is instructive. In exact analogy to our treat-
ment of subsets of a set S = {x1, . . . , xn}, we have

(1 + x1 + x2
1 + · · · )(1 + x2 + x2

2 + · · · ) · · · (1 + xn + x2
n + · · · ) =

∑

M=(S,ν)

∏

xi∈S
x
ν(xi)
i ,

where the sum is over all finite multisets M on S. Put each xi = x. We get

(1 + x+ x2 + · · · )n =
∑

M=(S,ν)

xν(x1)+···+ν(xn)

=
∑

M=(S,ν)

x#M

=
∑

k≥0

((n
k

))
xk.

But

(1 + x+ x2 + · · · )n = (1− x)−n =
∑

k≥0

(−n
k

)
(−1)kxk, (1.20)

so
((
n
k

))
= (−1)k

(−n
k

)
=
(
n+k−1

k

)
. The elegant formula

((n
k

))
= (−1)k

(−n
k

)
(1.21)
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is no accident; it is the simplest instance of a combinatorial reciprocity theorem. A poset
generalization appears in Section 3.15.3, while a more general theory of such results is given
in Chapter 4.

The binomial coefficient
(
n
k

)
may be interpreted in the following manner. Each element of

an n-set S is placed into one of two categories, with k elements in Category 1 and n − k
elements in Category 2. (The elements of Category 1 form a k-subset T of S.) This suggests
a generalization allowing more than two categories. Let (a1, a2, . . . , am) be a sequence of
nonnegative integers summing to n, and suppose that we have m categories C1, . . . , Cm.
Let

(
n

a1,a2,...,am

)
denote the number of ways of assigning each element of an n-set S to one

of the categories C1, . . . , Cm so that exactly ai elements are assigned to Ci. The notation
is somewhat at variance with the notation for binomial coefficients (the case m = 2), but
no confusion should result when we write

(
n
k

)
instead of

(
n

k,n−k
)
. The number

(
n

a1,a2,...,am

)

is called a multinomial coefficient. It is customary to regard the elements of S as being n
distinguishable balls and the categories as being m distinguishable boxes. Then

(
n

a1,a2,...,am

)

is the number of ways to place the balls into the boxes so that the ith box contains ai balls.

The multinomial coefficient can also be interpreted in terms of “permutations of a multiset.”
If S is an n-set, then a permutation w of S can be defined as a linear ordering w1, w2, . . . , wn of
the elements of S. Think of w as a word w1w2 · · ·wn in the alphabet S. If S = {x1, . . . , xn},
then such a word corresponds to the bijection w : S → S given by w(xi) = wi, so that a
permutation of S may also be regarded as a bijection S → S. Much interesting combinatorics
is based on these two different ways of representing permutations; a good example is the
second proof of Proposition 5.3.2.

We write SS for the set of permutations of S. If S = [n] then we write Sn for S[n]. Since
we choose w1 in n ways, then w2 in n − 1 ways, and so on, we clearly have #SS = n!.
In an analogous manner we can define a permutation w of a multiset M of cardinality n
to be a linear ordering w1, w2, . . . , wn of the “elements” of M ; that is, if M = (S, ν) then
the element x ∈ S appears exactly ν(x) times in the permutation. Again we think of w
as a word w1w2 · · ·wn. For instance, there are 12 permutations of the multiset {1, 1, 2, 3};
namely, 1123, 1132, 1213, 1312, 1231, 1321, 2113, 2131, 2311, 3112, 3121, 3211. Let SM

denote the set of permutations of M . If M = {xa11 , . . . , x
am
m } and #M = n, then it is clear

that

#SM =

(
n

a1, a2, . . . , am

)
. (1.22)

Indeed, if xi appears in position j of the permutation, then we put the element j of [n] into
Category i.

Our results on binomial coefficients extend straightforwardly to multinomial coefficients. In
particular, we have (

n

a1, a2, . . . , am

)
=

n!

a1! a2! · · ·am!
. (1.23)

Among the many ways to prove this result, we can place a1 elements of S into Category 1
in
(
n
a1

)
ways, then a2 of the remaining n− a1 elements of [n] into Category 2 in

(
n−a1
a2

)
ways,
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Figure 1.1: Six lattice paths

etc., yielding

(
n

a1, a2, . . . , am

)
=

(
n

a1

)(
n− a1

a2

)
· · ·
(
n− a1 − · · · − am−1

am

)
(1.24)

=
n!

a1! a2! · · ·am!
.

Equation (1.24) is often a useful device for reducing problems on multinomial coefficients to
binomial coefficients. We leave to the reader the (easy) multinomial analogue (known as the
multinomial theorem) of equation (1.18), namely,

(x1 + x2 + · · ·+ xm)n =
∑

a1+···+am=n

(
n

a1, a2, . . . , am

)
xa11 · · ·xam

m ,

where the sum ranges over all (a1, . . . , am) ∈ Nm satisfying a1 + · · · + am = n. Note that(
n

1,1,...,1

)
= n!, the number of permutations of an n-element set.

Binomials and multinomial coefficients have an important geometric interpretation in terms
of lattice paths. Let S be a subset of Zd. More generally, we could replace Zd by any lattice
(discrete subgroup of full rank) in Rd, but for simplicity we consider only Zd. A lattice path L
in Zd of length k with steps in S is a sequence v0, v1, . . . , vk ∈ Zd such that each consecutive
difference vi− vi−1 lies in S. We say that L starts at v0 and ends at vk, or more simply that
L goes from v0 to vk. Figure 1.1 shows the six lattice paths in Z2 from (0, 0) to (2, 2) with
steps (1, 0) and (0, 1).

1.2.1 Proposition. Let v = (a1, . . . , ad) ∈ Nd, and let ei denote the ith unit coordinate
vector in Zd. The number of lattice paths in Zd from the origin (0, 0, . . . , 0) to v with steps
e1, . . . , ed is given by the multinomial coefficient

(
a1+···+ad

a1,...,ad

)
.

Proof. Let v0, v1, . . . , vk be a lattice path being counted. Then the sequence v1 − v0, v2 −
v1, . . . , vk − vk−1 is simply a sequence consisting of ai ei’s in some order. The proof follows
from equation (1.22).

Proposition 1.2.1 is the most basic result in the vast subject of lattice path enumeration.
Further results in this area will appear throughout this book.
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1.3 Cycles and Inversions

Permutations of sets and multisets are among the richest objects in enumerative combina-
torics. A basic reason for this fact is the wide variety of ways to represent a permutation
combinatorially. We have already seen that we can represent a set permutation either as a
word or a function. In fact, for any set S the function w : [n]→ S given by w(i) = wi corre-
sponds to the word w1w2 · · ·wn. Several additional representations will arise in Section 1.5.
Many of the basic results derived here will play an important role in later analysis of more
complicated objects related to permutations.

A second reason for the richness of the theory of permutations is the wide variety of in-
teresting “statistics” of permutations. In the broadest sense, a statistic on some class C of
combinatorial objects is just a function f : C → S, where S is any set (often taken to be
N). We want f(x) to capture some combinatorially interesting feature of x. For instance, if
x is a (finite) set, then f(x) could be its number of elements. We can think of f as refining
the enumeration of objects in C. For instance, if C consists of all subsets of an n-set S and
f(x) = #x, then f refines the number 2n of subsets of S into a sum 2n =

∑
k

(
n
k

)
, where(

n
k

)
is the number of subsets of S with k elements. In this section and the next two we will

discuss a number of different statistics on permutations.

Cycle Structure

If we regard a set permutation w as a bijection w : S → S, then it is natural to con-
sider for each x ∈ S the sequence x, w(x), w2(x), . . . . Eventually (since w is a bijection
and S is assumed finite) we must return to x. Thus for some unique ℓ ≥ 1 we have
that wℓ(x) = x and that the elements x, w(x), . . . , wℓ−1(x) are distinct. We call the se-
quence (x, w(x), . . . , wℓ−1(x)) a cycle of w of length ℓ. The cycles (x, w(x), . . . , wℓ−1(x)) and
(wi(x), wi+1(x), . . . , wℓ−1(x), x, . . . , wi−1(x)) are considered the same. Every element of S
then appears in a unique cycle of w, and we may regard w as a disjoint union or product of
its distinct cycles C1, . . . , Ck, written w = C1 · · ·Ck. For instance, if w : [7]→ [7] is defined
by w(1) = 4, w(2) = 2, w(3) = 7, w(4) = 1, w(5) = 3, w(6) = 6, w(7) = 5 (or w = 4271365
as a word), then w = (14)(2)(375)(6). Of course this representation of w in disjoint cycle
notation is not unique; we also have for instance w = (753)(14)(6)(2).

A geometric or graphical representation of a permutation w is often useful. A finite directed
graph or digraph D is a triple (V,E, φ), where V = {x1, . . . , xn} is a set of vertices, E is a
finite set of (directed) edges or arcs, and φ is a map from E to V × V . If φ is injective then
we call D a simple digraph, and we can think of E as a subset of V ×V . If e is an edge with
φ(e) = (x, y), then we represent e as an arrow directed from x to y. If w is permutation of
the set S, then define the digraph Dw of w to be the directed graph with vertex set S and
edge set {(x, y) : w(x) = y}. In other words, for every vertex x there is an edge from x to
w(x). Digraphs of permutations are characterized by the property that every vertex has one
edge pointing out and one pointing in. The disjoint cycle decomposition of a permutation
of a finite set guarantees that Dw will be a disjoint union of directed cycles. For instance,
Figure 1.2 shows the digraph of the permutation w = (14)(2)(375)(6).
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Figure 1.2: The digraph of the permutation (14)(2)(375)(6)

We noted above that the disjoint cycle notation of a permutation is not unique. We can
define a standard representation by requiring that (a) each cycle is written with its largest
element first, and (b) the cycles are written in increasing order of their largest element. Thus
the standard form of the permutation w = (14)(2)(375)(6) is (2)(41)(6)(753). Define ŵ to
be the word (or permutation) obtained from w by writing it in standard form and erasing
the parentheses. For example, with w = (2)(41)(6)(753) we have ŵ = 2416753. Now observe
that we can uniquely recover w from ŵ by inserting a left parenthesis in ŵ = a1a2 · · ·an
preceding every left-to-right maximum or record (also called outstanding element); that is,
an element ai such that ai > aj for every j < i. Then insert a right parenthesis where
appropriate; that is, before every internal left parenthesis and at the end. Thus the map
w 7→ ŵ is a bijection from Sn to itself, known as the fundamental bijection. Let us sum up
this information as a proposition.

1.3.1 Proposition. (a) The map Sn
∧→ Sn defined above is a bijection.

(b) If w ∈ Sn has k cycles, then ŵ has k left-to-right maxima.

If w ∈ SS where #S = n, then let ci = ci(w) be the number of cycles of w of length i. Note
that n =

∑
ici. Define the type of w, denoted type(w), to be the sequence (c1, . . . , cn). The

total number of cycles of w is denoted c(w), so c(w) = c1(w) + · · ·+ cn(w).

1.3.2 Proposition. The number of permutations w ∈ SS of type (c1, . . . , cn) is equal to
n!/1c1c1!2

c2c2! · · ·ncncn!.

Proof. Let w = w1w2 · · ·wn be any permutation of S. Parenthesize the word w so that
the first ci cycles have length 1, the next c2 have length 2, and so on. For instance, if
(c1, . . . , c9) = (1, 2, 0, 1, 0, 0, 0, 0, 0) and w = 427619583, then we obtain (4)(27)(61)(9583).
In general we obtain the disjoint cycle decomposition of a permutation w′ of type (c1, . . . , cn).
Hence we have defined a map Φ : SS → Sc

S , where Sc
S is the set of all u ∈ SS of type

c = (c1, . . . , cn). Given u ∈ Sc
S , we claim that there are 1c1c1!2

c2c2! · · ·ncncn! ways to write
it in disjoint cycle notation so that the cycle lengths are weakly increasing from left to right.
Namely, order the cycles of length i in ci! ways, and choose the first elements of these cycles
in ici ways. These choices are all independent, so the claim is proved. Hence for each u ∈ Sc

S

we have #Φ−1(u) = 1c1c1!2
c2c2! · · ·ncncn!, and the proof follows since #SS = n!.

Note. The proof of Proposition 1.3.2 can easily be converted into a bijective proof of the
identity

n! = 1c1c1!2
c2c2! · · ·ncncn!

(
#S

c
S

)
,
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analogous to our bijective proof of equation (1.16).

Proposition 1.3.2 has an elegant and useful formulation in terms of generating functions.
Suppose that w ∈ Sn has type (c1, . . . , cn). Write

ttype(w) = tc11 t
c2
2 · · · tcnn ,

and define the cycle indicator or cycle index of Sn to be the polynomial

Zn = Zn(t1, . . . , tn) =
1

n!

∑

w∈Sn

ttype(w). (1.25)

(Set Z0 = 1.) For instance,

Z1 = t1

Z2 =
1

2
(t21 + t2)

Z3 =
1

6
(t31 + 3t1t2 + 2t3)

Z4 =
1

24
(t41 + 6t21t2 + 8t1t3 + 3t22 + 6t4).

1.3.3 Theorem. We have

∑

n≥0

Znx
n = exp

(
t1x+ t2

x2

2
+ t3

x3

3
+ · · ·

)
. (1.26)

Proof. We give a naive computational proof. For a more conceptual proof, see Exam-
ple 5.2.10. Let us expand the right-hand side of equation (1.26):

exp

(∑

i≥1

ti
xi

i

)
=

∏

i≥1

exp

(
ti
xi

i

)

=
∏

i≥1

∑

j≥0

tji
xij

ijj!
. (1.27)

Hence the coefficient of tc11 · · · tcnn xn is equal to 0 unless
∑
ici = n, in which case it is equal

to
1

1c1c1! 2c2c2! · · ·
=

1

n!

n!

1c1c1! 2c2c2! · · ·
.

Comparing with Proposition 1.3.2 completes the proof.

Let us give two simple examples of the use of Theorem 1.3.3. For some additional examples,
see Exercises 5.10 and 5.11. A more general theory of cycle indicators based on symmetric
functions is given in Section 7.24. Write F (t; x) = F (t1, t2, . . . ; x) for the right-hand side of
equation (1.26).
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1.3.4 Example. Let e6(n) be the number of permutations w ∈ Sn satisfying w6 = 1. A
permutation w satisfies w6 = 1 if and only if all its cycles have length 1,2,3 or 6. Hence

e6(n) = n!Zn(ti = 1 if i|6, ti = 0 otherwise).

There follows
∑

n≥0

e6(n)
xn

n!
= F (ti = 1 if i|6, ti = 0 otherwise)

= exp

(
x+

x2

2
+
x3

3
+
x6

6

)
.

For the obvious generalization to permutations w satisfying wr = 1, see equation (5.31).

1.3.5 Example. Let Ek(n) denote the expected number of k-cycles in a permutation w ∈
Sn. It is understood that the expectation is taken with respect to the uniform distribution
on Sn, so

Ek(n) =
1

n!

∑

w∈Sn

ck(w),

where ck(w) denotes the number of k-cycles in w. Now note that from the definition (1.25)
of Zn we have

Ek(n) =
∂

∂tk
Zn(t1, . . . , tn)|ti=1.

Hence

∑

n≥0

Ek(n)xn =
∂

∂tk
exp

(
t1x+ t2

x2

2
+ t3

x3

3
+ · · ·

)∣∣∣∣
ti=1

=
xk

k
exp

(
x+

x2

2
+
x3

3
+ · · ·

)

=
xk

k
exp log(1− x)−1

=
xk

k

1

1− x
=

xk

k

∑

n≥0

xn.

It follows that Ek(n) = 1/k for n ≥ k. Can the reader think of a simple explanation
(Exercise 1.120)?

Now define c(n, k) to be the number of permutations w ∈ Sn with exactly k cycles. The
number s(n, k) := (−1)n−kc(n, k) is known as a Stirling number of the first kind, and c(n, k)
is called a signless Stirling number of the first kind.

1.3.6 Lemma. The numbers c(n, k) satisfy the recurrence

c(n, k) = (n− 1)c(n− 1, k) + c(n− 1, k − 1), n, k ≥ 1,

with the initial conditions c(n, k) = 0 if n < k or k = 0, except c(0, 0) = 1.
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Proof. Choose a permutation w ∈ Sn−1 with k cycles. We can insert the symbol n after
any of the numbers 1, 2, . . . , n − 1 in the disjoint cycle decomposition of w in n − 1 ways,
yielding the disjoint cycle decomposition of a permutation w′ ∈ Sn with k cycles for which
n appears in a cycle of length at least 2. Hence there are (n − 1)c(n − 1, k) permutations
w′ ∈ Sn with k cycles for which w′(n) 6= n.

On the other hand, if we choose a permutation w ∈ Sn−1 with k − 1 cycles we can extend
it to a permutation w′ ∈ Sn with k cycles satisfying w′(n) = n by defining

w′(i) =

{
w(i), if i ∈ [n− 1]
n, if i = n.

Thus there are c(n− 1, k− 1) permutations w′ ∈ Sn with k cycles for which w′(n) = n, and
the proof follows.

Most of the elementary properties of the numbers c(n, k) can be established using Lemma 1.3.6
together with mathematical induction. However, combinatorial proofs are to be preferred
whenever possible. An illuminating illustration of the various techniques available to prove
elementary combinatorial identities is provided by the next result.

1.3.7 Proposition. Let t be an indeterminate and fix n ≥ 0. Then

n∑

k=0

c(n, k)tk = t(t+ 1)(t+ 2) · · · (t+ n− 1). (1.28)

First proof. This proof may be regarded as “semi-combinatorial” since it is based directly
on Lemma 1.3.6, which had a combinatorial proof. Let

Fn(t) = t(t+ 1) · · · (t+ n− 1) =

n∑

k=0

b(n, k)tk.

Clearly b(n, k) = 0 if n = 0 or k = 0, except b(0, 0) = 1 (an empty product is equal to 1).
Moreover, since

Fn(t) = (t+ n− 1)Fn−1(t)

=
n∑

k=1

b(n− 1, k − 1)tk + (n− 1)
n−1∑

k=0

b(n− 1, k)tk,

there follows b(n, k) = (n− 1)b(n − 1, k) + b(n − 1, k − 1). Hence b(n, k) satisfies the same
recurrence and initial conditions as c(n, k), so they agree.

Second proof. Our next proof is a straightforward argument using generating functions. In
terms of the cycle indicator Zn we have

n∑

k=0

c(n, k)tk = n!Zn(t, t, t, . . . ).
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Hence substituting ti = t in equation (1.26) gives

∑

n≥0

n∑

k=0

c(n, k)tk
xn

n!
= exp t(x+

x2

2
+
x3

3
+ · · · )

= exp t(log(1− x)−1)

= (1− x)−t

=
∑

n≥0

(−1)n
(−t
n

)
xn

=
∑

n≥0

t(t+ 1) . . . (t+ n− 1)
xn

n!
,

and the proof follows from taking coefficient of xn/n!.

Third proof. The coefficient of tk in Fn(t) is

∑

1≤a1<a2<···<an−k≤n−1

a1a2 · · ·an−k, (1.29)

where the sum is over all
(
n−1
n−k
)

(n− k)-subsets {a1, . . . , an−k} of [n− 1]. (Though irrelevant
here, it is interesting to note that this sum is just the (n−k)th elementary symmetric function
of 1, 2, . . . , n − 1.) Clearly (1.29) counts the number of pairs (S, f), where S ∈

(
[n−1]
n−k
)

and
f : S → [n− 1] satisfies f(i) ≤ i. Thus we seek a bijection φ : Ω→ Sn,k between the set Ω
of all such pairs (S, f), and the set Sn,k of w ∈ Sn with k cycles.

Given (S, f) ∈ Ω where S = {a1, . . . , an−k}< ⊆ [n−1], define T = {j ∈ [n] : n−j 6∈ S}. Let
the elements of [n]− T be b1 > b2 > · · · > bn−k. Define w = φ(S, f) to be that permutation
that when written in standard form satisfies: (i) the first (=greatest) elements of the cycles
of w are the elements of T , and (ii) for i ∈ [n− k] the number of elements of w preceding bi
and larger than bi is f(ai). We leave it to the reader to verify that this construction yields
the desired bijection.

1.3.8 Example. Suppose that in the above proof n = 9, k = 4, S = {1, 3, 4, 6, 8}, f(1) = 1,
f(3) = 2, f(4) = 1, f(6) = 3, f(8) = 6. Then T = {2, 4, 7, 9}, [9] − T = {1, 3, 5, 6, 8}, and
w = (2)(4)(753)(9168).

Fourth proof of Proposition 1.3.7. There are two basic ways of giving a combinatorial proof
that two polynomials are equal: (i) showing that their coefficients are equal, and (ii) showing
that they agree for sufficiently many values of their variable(s). We have already established
Proposition 1.3.7 by the first technique; here we apply the second. If two polynomials in
a single variable t (over the complex numbers, say) agree for all t ∈ P, then they agree as
polynomials. Thus it suffices to establish (1.28) for all t ∈ P.

Let t ∈ P, and let C(w) denote the set of cycles of w ∈ Sn. The left-hand side of (1.28)
counts all pairs (w, f), where w ∈ Sn and f : C(w)→ [t]. The right-hand side counts integer
sequences (a1, a2, . . . , an) where 0 ≤ ai ≤ t+ n− i− 1. (There are historical reasons for this
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restriction of ai, rather than, say, 1 ≤ ai ≤ t+ i− 1.) Given such a sequence (a1, a2, . . . , an),
the following simple algorithm may be used to define (w, f). First write down the number n
and regard it as starting a cycle C1 of w. Let f(C1) = an+1. Assuming n, n−1, . . . , n− i+1
have been inserted into the disjoint cycle notation for w, we now have two possibilities:

i. 0 ≤ an−i ≤ t− 1. Then start a new cycle Cj with the element n− i to the left of the
previously inserted elements, and set f(Cj) = an−i + 1.

ii. an−i = t+ k where 0 ≤ k ≤ i− 1. Then insert n− i into an old cycle so that it is not
the leftmost element of any cycle, and so that it appears to the right of k + 1 of the
numbers previously inserted.

This procedure establishes the desired bijection.

1.3.9 Example. Suppose n = 9, t = 4, and (a1, . . . , a9) = (4, 8, 5, 0, 7, 5, 2, 4, 1). Then w is
built up as follows:

(9)
(98)
(7)(98)
(7)(968)
(7)(9685)
(4)(7)(9685)
(4)(73)(9685)
(4)(73)(96285)
(41)(73)(96285).

Moreover, f(96285) = 2, f(73) = 3, f(41) = 1.

Note that if we set t = 1 in the preceding proof, we obtain a combinatorial proof of the
following result.

1.3.10 Proposition. Let n, k ∈ P. The number of integer sequences (a1, . . . , an) such that
0 ≤ ai ≤ n− i and exactly k values of ai equal 0 is c(n, k)

Note that because of Proposition 1.3.1 we obtain “for free” the enumeration of permutations
by left-to-right maxima.

1.3.11 Corollary. The number of w ∈ Sn with k left-to-right maxima is c(n, k).

Corollary 1.3.11 illustrates one benefit of having different ways of representing the same
object (here a permutation)—different enumerative problems involving the object turn out
to be equivalent.

Inversions

The fourth proof of Proposition 1.3.7 (in the case t = 1) associated a permutation w ∈ Sn

with an integer sequence (a1, . . . , an), 0 ≤ ai ≤ n − i. There is a different method for
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accomplishing this which is perhaps more natural. Given such a vector (a1, . . . , an), assume
that n, n− 1, . . . , n− i+ 1 have been inserted into w, expressed this time as a word (rather
than a product of cycles). Then insert n − i so that it has an−i elements to its left. For
example, if (a1, . . . , a9) = (1, 5, 2, 0, 4, 2, 0, 1, 0), then w is built up as follows:

9
98
798
7968
79685
479685
4739685
47396285
417396285.

Clearly ai is the number of entries j of w to the left of i satisfying j > i. A pair (wi, wj) is
called an inversion of the permutation w = w1w2 · · ·wn if i < j and wi > wj. The above
sequence I(w) = (a1, . . . , an) is called the inversion table of w. The above algorithm for
constructing w from its inversion table I(w) establishes the following result.

1.3.12 Proposition. Let

Tn = {(a1, . . . , an) : 0 ≤ ai ≤ n− i} = [0, n− 1]× [0, n− 2]× · · · × [0, 0].

The map I : Sn → Tn that sends each permutation to its inversion table is a bijection.

Therefore, the inversion table I(w) is yet another way to represent a permutation w. Let us
also mention that the code of a permutation w is defined by code(w) = I(w−1). Equivalently,
if w = w1 · · ·wn and code(w) = (c1, . . . , cn), then ci is equal to the number of elements wj
to the right of wi (i.e., i < j) such that wi > wj . The question of whether to use I(w) or
code(w) depends on the problem at hand and is clearly only a matter of convenience. Often
it makes no difference which is used, such as in obtaining the next corollary.

1.3.13 Corollary. Let inv(w) denote the number of inversions of the permutation w ∈ Sn.
Then ∑

w∈Sn

qinv(w) = (1 + q)(1 + q + q2) · · · (1 + q + q2 + · · ·+ qn−1). (1.30)

Proof. If I(w) = (a1, . . . , an) then inv(w) = a1 + · · ·+ an. hence

∑

w∈Sn

qinv(w) =

n−1∑

a1=0

n−2∑

a2=0

· · ·
0∑

an=0

qa1+a2+···+an

=

(
n−1∑

a1=0

qa1

)(
n−2∑

a2=0

qa2

)
· · ·
(

0∑

an=0

qan

)
,

as desired.
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The polynomial (1+ q)(1+ q+ q2) · · · (1+ q+ · · ·+ qn−1) is called “the q-analogue of n!” and
is denoted (n)!. Moreover, we denote the polynomial 1 + q + · · ·+ qn−1 = (1− qn)/(1− q)
by (n) and call it “the q-analogue of n,” so that

(n)! = (1)(2) · · · (n).

In general, a q-analogue of a mathematical object is an object depending on the variable
q that “reduces to” (an admittedly vague term) the original object when we set q = 1.
To be a “satisfactory” q-analogue more is required, but there is no precise definition of
what is meant by “satisfactory.” Certainly one desirable property is that the original object
concerns finite sets, while the q-analogue can be interpreted in terms of subspaces of finite-
dimensional vector spaces over the finite field Fq. For instance, n! is the number of sequences
∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = [n] of subsets of [n]. (The symbol ⊂ denotes strict inclusion,
so #Si = i.) Similarly if q is a prime power then (n)! is the number of sequences 0 =
V0 ⊂ V1 ⊂ · · · ⊂ Vn = Fnq of subspaces of the n-dimensional vector space Fnq over Fq (so
dimVi = i). For this reason (n)! is regarded as a satisfactory q-analogue of n!. We can also
regard an i-dimensional vector space over Fq as the q-analogue of an i-element set. Many
more instances of q-analogues will appear throughout this book, especially in Section 1.10.
The theory of binomial posets developed in Section 3.18 gives a partial explanation for the
existence of certain classes of q-analogues including (n)!.

We conclude this section with a simple but important property of the statistic inv.

1.3.14 Proposition. For any w = w1w2 · · ·wn ∈ Sn we have inv(w) = inv(w−1).

Proof. The pair (i, j) is an inversion of w if and only if (wj, wi) is an inversion of w−1.
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1.4 Descents

In addition to cycle type and inversion table, there is one other fundamental statistic associ-
ated with a permutation w ∈ Sn. If w = w1w2 · · ·wn and 1 ≤ i ≤ n− 1, then i is a descent
of w if wi > wi+1, while i is an ascent if wi < wi+1. (Sometimes it is desirable to also define
n to be a descent, but we will adhere to the above definition.) Define the descent set D(w)
of w by

D(w) = {i : wi > wi+1} ⊆ [n− 1].

If S ⊆ [n − 1], then denote by α(S) (or αn(S) if necessary) the number of permutations
w ∈ Sn whose descent set is contained in S, and by β(S) (or βn(S)) the number whose
descent set is equal to S. In symbols,

α(S) = #{w ∈ Sn : D(w) ⊆ S} (1.31)

β(S) = #{w ∈ Sn : D(w) = S}. (1.32)

Clearly

α(S) =
∑

T⊆S
β(T ). (1.33)

As explained in Example 2.2.4, we can invert this relationship to obtain

β(S) =
∑

T⊆S
(−1)#(S−T )α(T ). (1.34)

1.4.1 Proposition. Let S = {s1, . . . , sk}< ⊆ [n− 1]. Then

α(S) =

(
n

s1, s2 − s1, s3 − s2, . . . , n− sk

)
. (1.35)

Proof. To obtain a permutation w = w1w2 · · ·wn ∈ Sn satisfying D(w) ⊆ S, first choose
w1 < w2 < · · · < ws1 in

(
n
s1

)
ways. Then choose ws1+1 < ws1+2 < · · · < ws2 in

(
n−s1
s2−s1

)
ways,

and so on. We therefore obtain

α(S) =

(
n

s1

)(
n− s1

s2 − s1

)(
n− s2

s3 − s2

)
· · ·
(
n− sk
n− sk

)

=

(
n

s1, s2 − s1, s3 − s2, . . . , n− sk

)
,

as desired.

1.4.2 Example. Let n ≥ 9. Then

βn(3, 8) = αn(3, 8)− αn(3)− αn(8) + αn(∅)

=

(
n

3, 5, n− 8

)
−
(
n

3

)
−
(
n

8

)
+ 1.
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Two closely related descent sets are of special combinatorial interest. We say that a per-
mutation w = w1w2 · · ·wn ∈ Sn (or more generally any sequence of distinct numbers) is
alternating (or zigzag or down-up) if w1 > w2 < w3 > w4 < · · · . Equivalently, D(w) =
{1, 3, 5, . . .} ∩ [n− 1]. The alternating permutations in S4 are 2143, 3142, 3241, 4132, 4231.
Similarly, w is reverse alternating (or up-down) if w1 < w2 > w3 < w4 > · · · . Equivalently,
D(w) = {2, 4, 6, . . .} ∩ [n − 1]. The reverse alternating permutations in S4 are 1324, 1423,
2314, 2413, 3412. The number of alternating permutations w ∈ Sn is denoted En (with
E0 = 1) and is called an Euler number. (Originally (−1)nE2n was called an Euler number.)
Since w is alternating if and only if n + 1 − w1, n + 1 − w2, . . . , n + 1 − wn is reverse al-
ternating, it follows that En is also the number of reverse alternating permutations in Sn.
We will develop some properties of alternating permutations and Euler numbers in various
subsequent sections, especially Section 1.6.

Note. Some mathematicians define alternating permutations to be our reverse alternating
permutations, while others define them to be permutations which are either alternating or
reverse alternating according to our definition.

For the remainder of this section we discuss some additional permutation statistics based
on the descent set. The first of these is the number of descents of w, denoted des(w). Thus
des(w) = #D(w). Let

Ad(x) =
∑

w∈Sd

x1+des(w) (1.36)

=
d∑

k=1

A(d, k)xk.

Hence A(d, k) is the number of permutations w ∈ Sd with exactly k − 1 descents. The
polynomial Ad(x) is called an Eulerian polynomial, while A(d, k) is an Eulerian number. We
set A(0, k) = δ0k. The first few Eulerian polynomials are

A0(x) = 1

A1(x) = x

A2(x) = x+ x2

A3(x) = x+ 4x2 + x3

A4(x) = x+ 11x2 + 11x3 + x4

A5(x) = x+ 26x2 + 66x3 + 26x4 + x5

A6(x) = x+ 57x2 + 302x3 + 302x4 + 57x5 + x6

A7(x) = x+ 120x2 + 1191x3 + 2416x4 + 1191x5 + 120x6 + x7

A8(x) = x+ 247x2 + 4293x3 + 15619x4 + 15619x5 + 4293x6

+247x7 + x8.

The bijection w 7→ ŵ of Proposition 1.3.1 yields an interesting alternative description of the
Eulerian numbers. Suppose that

w = (a1, a2, . . . , ai1)(ai1+1, ai1+2, . . . , ai2) · · · (aik−1+1, aik−1+2, . . . , ad)
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is a permutation in Sd written in standard form. Thus a1, ai1+1, . . . , aik−1+1 are the largest
elements of their cycles, and a1 < ai1+1 < · · · < aik−1+1. It follows that if w(ai) 6= ai+1, then
ai < ai+1. Hence ai < ai+1 or i = d if and only if w(ai) ≥ ai, so that

d− des(ŵ) = #{i ∈ [d] : w(i) ≥ i}.

A number i for which w(i) ≥ i is called a weak excedance of w, while a number i for which
w(i) > i is called an excedance of w. One easily sees that a permutation w = w1w2 · · ·wd has
k weak excedances if and only if the permutation u1u2 · · ·ud defined by ui = d+ 1− wd−i+1

has d− k excedances. Moreover, w has d− 1− j descents if and only if wdwd−1 · · ·w1 has j
descents. We therefore obtain the following result.

1.4.3 Proposition. The number of permutations w ∈ Sd with k excedances, as well as the
number with k + 1 weak excedances, is equal to the Eulerian number A(d, k + 1).

The next result gives a fundamental property of Eulerian polynomials related to generating
functions.

1.4.4 Proposition. For every d ≥ 0 we have

∑

m≥0

mdxm =
Ad(x)

(1− x)d+1
. (1.37)

Proof. The proof is by induction on d. Since
∑

m≥0 x
m = 1/(1− x), the assertion is true for

d = 0. Now assume that equation (1.37) holds for some d ≥ 0. Differentiate with respect to
x and multiply by x to obtain

∑

m≥0

md+1xm =
x(1− x)A′

d(x) + (d+ 1)xAd(x)

(1− x)d+2
. (1.38)

Hence it suffices to show that

Ad+1(x) = x(1− x)A′
d(x) + (d+ 1)xAd(x).

Taking coefficients of xk on both sides and simplifying yields

A(d+ 1, k) = kA(d, k) + (d− k + 2)A(d, k − 1). (1.39)

The left-hand side of equation (1.39) counts permutations in Sd+1 with k − 1 descents. We
can obtain such a permutation uniquely in one of two ways. For the first way, choose a
permutation w = w1 · · ·wd ∈ Sd with k−1 descents, and insert d+1 after wi if i ∈ D(w), or
insert d+1 at the end. There are k ways to insert d+1, so we obtain by this method kA(d, k)
permutations in Sd+1 with k − 1 descents. For the second way, choose w = w1 · · ·wd ∈ Sd

with k − 2 descents, and insert d + 1 after wi if i 6∈ D(w), or insert d+ 1 at the beginning.
There are d − k + 2 ways to insert d + 1, so we obtain a further (d − k + 2)A(d, k − 1)
permutations in Sd+1 with k−1 descents. We have verified that the recurrence (1.39) holds,
so the proof follows by induction.
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The appearance of the expression md in equation (1.37) suggests that there might be a more
conceptual proof involving functions f : [d] → [m]. We give such a proof at the end of this
section.

We can also give a formula for the exponential generating function of the Eulerian polyno-
mials themselves. For this purpose define A0(x) = 1.

1.4.5 Proposition. We have

∑

d≥0

Ad(x)
td

d!
=

1− x
1− xe(1−x)t . (1.40)

Proof. Perhaps the simplest proof at this point is to multiply equation (1.37) by td/d! and
sum on d ≥ 0. We get (using the convention 00 = 1, which is often “correct” in enumerative
combinatorics)

∑

d≥0

Ad(x)

(1− x)d+1

td

d!
=

∑

d≥0

∑

m≥0

mdxm
td

d!

=
∑

m≥0

xmemt

=
1

1− xet .

Now multiply both sides by 1 − x and substitute (1 − x)t for t to complete the proof. (A
more conceptual proof will be given in Section 3.19.)

A further interesting statistic associated with the descent set D(w) is the major index (orig-
inally called the greater index ), denoted maj(w) (originally ι(w)) and defined to be the sum
of the elements of D(w):

maj(w) =
∑

i∈D(w)

i.

We next give a bijective proof of the remarkable result that inv and maj are equidistributed,
i.e., for any k,

#{w ∈ Sn : inv(w) = k} = #{w ∈ Sn : maj(w) = k}. (1.41)

Note that in terms of generating functions, equation (1.41) takes the form

∑

w∈Sn

qinv(w) =
∑

w∈Sn

qmaj(w).

1.4.6 Proposition. We have ∑

w∈Sn

qmaj(w) = (n)!. (1.42)
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Proof. We will recursively define a bijection ϕ : Sn → Sn as follows. Let w = w1 · · ·wn ∈
Sn. We will define words (or sequences) γ1, . . . , γn, where γk is a permutation of {w1, . . . , wk}.
First let γ1 = w1. Assume that γk has been defined for some 1 ≤ k < n. If the last letter
of γk (which turns out to be wk) is greater (respectively, smaller) than wk+1, then split
γk after each letter greater (respectively, smaller) than wk+1. These splits divide γk into
compartments. Cyclically shift each compartment of γk one unit to the right, and place
wk+1 at the end. Let γk+1 be the word thus obtained. Set ϕ(w) = γn.

1.4.7 Example. Before analyzing the map ϕ, let us first give an example. Let w =
683941725 ∈ S9. Then γ1 = 6. It is irrelevant at this point whether 6 < w2 or 6 > w2

since there can be only one compartment, and γ2 = 68. Now 8 > w3 = 3, so we split 68 after
numbers greater than 3, getting 6 | 8. Cyclically shifting the two compartments of length
one leaves them unchanged, so γ3 = 683. Now 3 < w4 = 9, so we split 683 after numbers
less than 9. We get 6 |8 | 3 and γ4 = 6839. Now 9 > w5 = 4, so we split 6839 after numbers
greater than 4, giving 6 |8 |39. The cyclic shift of 39 is 93, so γ5 = 68934. Continuing in this
manner gives the following sequence of γi’s and compartments:

6
6 | 8
6 | 8 | 3
6 | 8 | 3 9
6 | 8 | 9 | 3 | 4
6 | 8 9 3 | 4 | 1
6 | 3 | 8 | 9 | 4 | 1 7
6 3 | 8 9 4 | 7 1 | 2
3 6 4 8 9 1 7 2 5

.

Hence ϕ(w) = 364891725. Note that maj(w) = inv(ϕ(w)) = 18.

Returning to the proof of Proposition 1.4.6, we claim that ϕ is a bijection transforming maj
to inv, i.e.,

maj(w) = inv(ϕ(w)). (1.43)

We have defined inv and maj for permutations w ∈ Sn, but precisely the same definition
can be made for any sequence w = w1 · · ·wn of integers. Namely,

inv(w) = #{(i, j) : i < j, wi > wj}
maj(w) =

∑

i :wi>wi+1

i.

Let ηk = w1w2 · · ·wk. We then prove by induction on k that inv(γk) = maj(ηk), from which
the proof follows by letting k = n.

Clearly inv(γ1) = maj(η1) = 0. Assume that inv(γk) = maj(ηk) for some k < n. First
suppose that the last letter wk of γk is greater than wk+1. Thus k ∈ D(w), so we need
to show that inv(γk+1) = k + inv(γk). The last letter of any compartment C of γk is the
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largest letter of the compartment. Hence when we cyclically shift this compartment we
create #C − 1 new inversions. Each compartment contains exactly one letter larger than
wk+1, so when we append wk+1 to the end of γk, the number of new inversions (i, k + 1) is
equal to the number m of compartments. Thus altogether we have created

∑

C

(#C − 1) +m = k

new inversions, as desired. The proof for the case wk < wk+1 is similar and will be omitted.

It remains to show that ϕ is a bijection. To do so we define ϕ−1. Let v = v1v2 · · · vn ∈ Sn.
We want to find a (unique) w = w1w2 · · ·wn ∈ Sn so that ϕ(w) = v. Let δn−1 = v1v2 · · · vn−1

and wn = vn. Now suppose that δk and wk+1, wk+2, . . . , wn have been defined for some
1 ≤ k < n. If the first letter of δk is greater (respectively, smaller) than wk+1, then split δk
before each letter greater (respectively, smaller) than wk+1. Then in each compartment of
δk thus formed, cyclically shift the letters one unit to the left. Let the last letter of the word
thus formed be wk, and remove this last letter to obtain δk−1. It is easily verified that this
procedure simply reverses the procedure used to obtain v = ϕ(w) from w, completing the
proof.

Proposition 1.4.6 establishes the equidistribution of inv and maj on Sn. Whenever we have
two equidistributed statistics f, g : S → N on a set S, we can ask whether a stronger result
holds, namely, whether f and g have a symmetric joint distribution. This means that for all
j, k we have

#{x ∈ S : f(x) = j, g(x) = k} = #{x ∈ S : f(x) = k, g(x) = j}. (1.44)

This condition can be restated in terms of generating functions as
∑

x∈S
qf(x)tg(x) =

∑

x∈S
qg(x)tf(x).

The best way to prove (1.44) is to find a bijection ψ : S → S such that for all x ∈ S, we
have f(x) = g(ψ(x)) and g(x) = f(ψ(x)). In other words, ψ interchanges the two statistics
f and g.

Our next goal is to show that inv and maj have a symmetric joint distribution on Sn. We
will not give an explicit bijection ψ : Sn → Sn interchanging inv and maj, but rather we
will deduce it from a surprising property of the bijection ϕ defined in the proof of Propo-
sition 1.4.6. To explain this property, define the inverse descent set ID(w) of w ∈ Sn by
ID(w) = D(w−1). Alternatively, we may think of ID(w) as the “reading set” of w as follows.
We read the numbers 1, 2, . . . , n in w from left-to-right in their standard order, going back
to the beginning of w when necessary. For instance, if w = 683941725, then we first read
12, then 345, then 67, and finally 89. The cumulative number of elements in these reading
sequences, excluding the last, form the reading set of w. It is easy to see that this reading
set is just ID(w). For instance, ID(683941725) = {2, 5, 7}.
We can easily extend the definition of ID(w) to arbitrary sequences w1w2 · · ·wn of distinct
integers. (We can even drop the condition that the wi’s are distinct, but we have no need
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here for such generality.) Simply regard w = w1w2 · · ·wn as a permutation of its elements
written in increasing order, i.e., if S = {w1, . . . , wn} = {u1, . . . , un}<, then identify w with
the permutation of S defined by w(ui) = wi. We can then write w−1 as a word in the
same way as w and hence can define ID(w) as the descent set of w−1 written as a word. For
instance, if w = 74285, then w−1 = 54827 and ID(w) = {1, 3}. We can obtain the same result
by reading w in the increasing order of its elements as before, obtaining reading sequences
u1u2 · · ·ui1 , ui1+1 · · ·ui2 , . . . , uij+1 · · ·uin, and then obtaining ID(w) = {i1, i2, . . . , ij} (the
cumulative numbers of elements in the reading sequences). For instance, with w = 74285
the reading sequences are 2, 45, 78, giving ID(w) = {1, 3} as before.

1.4.8 Theorem. Let ϕ be the bijection defined in the proof of Proposition 1.4.6. Then for
all w ∈ Sn, ID(w) = ID(ϕ(w)). In other words, ϕ preserves the inverse descent set.

Proof. Preserve the notation of the proof of Proposition 1.4.6. We prove by induction on
k that ID(γk) = ID(ηk), from which the proof follows by setting k = n. Clearly ID(γ1) =
ID(η1) = ∅. Assume that ID(γk) = ID(ηk) for some k < n. First suppose that the last letter
wk of γk is greater than wk+1, so that the last letter of any compartment C of γk is the unique
letter in the compartment larger than wk+1. Consider the reading of ηk+1. It will proceed
just as for ηk until we encounter the largest letter of ηk less than wk+1, in which case we next
read wk+1 and then return to the beginning. Exactly the same is true for reading γk+1, so by
the induction hypothesis the reading sets of ηk+1 and γk+1 are the same up to this point. Let
L be the set of remaining letters to be read. The letters in L are those greater than wk+1.
The reading words of these letters are the same for ηk and γk by the induction hypothesis.
But the letters of L appear in the same order in ηk and ηk+1 by definition of ηj . Moreover,
they also appear in the same order in γk and γk+1 since each such letter appears in exactly
one compartment, so cyclic shifts (or indeed any permutations) within each compartment of
γk does not change their order in γk+1. Hence the reading words of the letters in L are the
same for ηk+1 and γk+1, so the proof follows for the case wk > wk+1. The case wk < wk+1 is
similar and will be omitted.

Let imaj(w) = maj(w−1) =
∑

i∈ID(w) i. As an immediate corollary to Theorem 1.4.8 we get

the symmetric joint distribution of three pairs of permutations statistics including (inv,maj),
thereby improving Proposition 1.4.6. For further information about the bidistribution of
(maj, imaj), see Exercise 4.47 and Corollary 7.23.9.

1.4.9 Corollary. The three pairs of statistics (inv,maj), (inv, imaj), and (maj, imaj) have
symmetric joint distributions.

Proof. Let f be any statistic on Sn, and define g by g(w) = f(w−1). Clearly (f, g) have
a symmetric joint distribution, of which (maj, imaj) is a special case. By Theorem 1.4.8
ϕ transforms maj to inv while preserving imaj, so (inv, imaj) have a symmetric joint dis-
tribution. It then follows from Proposition 1.3.14 that (inv,maj) have a symmetric joint
distribution.

We conclude this section by discussing a connection between permutations w ∈ Sn and
functions f : [n]→ N (the set N could be replaced by any totally ordered set) in which the
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descent set plays a leading role.

1.4.10 Definition. Let w = w1w2 · · ·wn ∈ Sn. We say that the function f : [n] → N is
w-compatible if the following two conditions hold.

(a) f(w1) ≥ f(w2) ≥ · · · ≥ f(wn)

(b) f(wi) > f(wi+1) if wi > wi+1 (i.e., if i ∈ D(w))

1.4.11 Lemma. Given f : [n] → N, there is a unique permutation w ∈ Sn for which f is
w-compatible.

Proof. An ordered partition or set composition of a (finite) set S is a vector (B1, B2, . . . , Bk)
of subsets Bi ⊆ S such that Bi 6= ∅, Bi ∩ Bj = ∅ for i 6= j, and B1 ∪ · · · ∪ Bk = S. Clearly
there is a unique ordered partition (B1, . . . , Bk) of [n] such that f is constant on each Bi

and f(B1) > f(B2) > · · · > f(Bk) (where f(Bi) means f(m) for any m ∈ Bi). Then w
is obtained by arranging the elements of B1 in increasing order, then the elements of B2 in
increasing order, and so on.

The enumeration of certain natural classes of w-compatible functions is closely related to the
statistics des and maj, as shown by the next lemma. Further enumerative results concerning
w-compatible functions appear in Subsection 3.15.1. For w ∈ Sn let A(w) denote the set
of all w-compatible functions f : [n] → N; and for w ∈ Sd let Am(w) denote the set of
w-compatible functions f : [d]→ [m], i.e., Am(w) = A(w)∩ [m][d], where in general if X and
Y are sets then Y X denotes the set of all functions f : X → Y . Note that A0(w) = ∅.
1.4.12 Lemma. (a) For w ∈ Sd and m ≥ 0 we have

#Am(w) =

(
m+ d− 1− des(w)

d

)
=

((
m− des(w)

d

))
(1.45)

and ∑

m≥1

#Am(w) · xm =
x1+des(w)

(1− x)d+1
. (1.46)

(If 0 ≤ m < des(w), then we set
((

m−des(w)
d

))
= 0.)

(b) For f : [n]→ N write |f | =∑n
i=1 f(i). Then for w ∈ Sn we have

∑

f∈A(w)

q|f | =
qmaj(w)

(1− q)(1− q2) · · · (1− qn) . (1.47)

Proof. The basic idea of both proofs is to convert “partially strictly decreasing” sequences
to weakly decreasing sequences similar to our first direct proof in Section 1.2 of the formula((
n
k

))
=
(
n+k−1

k

)
. We will give “proofs by example” that should make the general case clear.

(a) Let w = 4632715. Then f ∈ Am(w) if and only if

m ≥ f(4) ≥ f(6) > f(3) > f(2) ≥ f(7) > f(1) ≥ f(5) ≥ 1. (1.48)
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Let g(5) = f(5), g(1) = f(1), g(7) = f(7)−1, g(2) = f(2)−1, g(3) = f(3)−2, g(6) = f(6)−3,
g(4) = f(4)− 3. In general, g(j) = f(j)−hj, where hj is the number of descents of w to the
right of j. Equation (1.48) becomes

m− 3 ≥ g(4) ≥ g(6) ≥ g(3) ≥ g(2) ≥ g(7) ≥ g(1) ≥ g(5) ≥ 1.

Clearly the number of such g is
((
m−3

7

))
=
((

m−des(w)
d

))
, and (1.45) follows. There are

numerous ways to obtain equation (1.46) from (1.45), e.g, by observing that

((
m− des(w)

d

))
= (−1)m−des(w)−1

( −(d+ 1)

m− des(w)− 1

)

and using (1.20).

(b) Let w = 4632715 as in (a). Then f ∈ A(w) if and only

f(4) ≥ f(6) > f(3) > f(2) ≥ f(7) > f(1) ≥ f(5) ≥ 0. (1.49)

Defining g as in (a), equation (1.49) becomes

g(4) ≥ g(6) ≥ g(3) ≥ g(2) ≥ g(7) ≥ g(1) ≥ g(5) ≥ 0.

Moreover,
∑
f(i) =

∑
g(i) + 10 =

∑
g(i) + maj(w). Hence

∑

f∈A(w)

q|f | = qmaj(w)
∑

g(4)≥g(6)≥g(3)≥g(2)≥g(7)≥g(1)≥g(5)≥0

qg(4)+···+g(5).

The latter sum is easy to evaluate in a number of ways, e.g., as an iterated geometric
progression (that is, first sum on g(4) ≥ g(6), then on g(6) ≥ g(3), etc.). It also is equivalent
to equation (1.76). The proof follows.

Let N[n] denote the set of all functions f : [n]→ N, and let A(w) denote those f ∈ N[n] that
are compatible with w ∈ Sn. Lemma 1.4.11 then says that we have a disjoint union

N[n] =
⋃
· w∈SnA(w). (1.50)

It also follows that
[m][d] =

⋃
· w∈Sd

Am(w). (1.51)

We now are in a position to give more conceptual proofs of Propositions 1.4.4 and 1.4.6.
Take the cardinality of both sides of (1.51), multiply by xm, and sum on m ≥ 0. We get

∑

m≥0

mdxm =
∑

w∈Sd

#Am(w) · xm.

The proof of Proposition 1.4.4 now follows from equation (1.46). Similarly, by (1.50) we
have ∑

f∈N[n]

q|f | =
∑

w∈Sn

∑

f∈A(w)

q|f |.
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The left-hand side is clearly 1/(1− q)n, while by equation (1.47) the right-hand side is

∑

w∈Sn

qmaj(w)

(1− q)(1− q2) · · · (1− qn) .

Hence
1

(1− q)n =

∑
w∈Sn

qmaj(w)

(1− q)(1− q2) · · · (1− qn) .

Multiplying by (1− q)(1− q2) · · · (1− qn) and simplifying gives Proposition 1.4.6.
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0  0  0  0  0  0  1  0  0
0  0  0  0  0  0  0  0  1
0  0  0  0  1  0  0  0  0
0  0  0  1  0  0  0  0  0
1  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  1  0
0  0  1  0  0  0  0  0  0
0  0  0  0  0  1  0  0  0
0  1  0  0  0  0  0  0  0

Figure 1.3: The permutation matrix of the permutation w = 795418362

1.5 Geometric Representations of Permutations

We have seen that a permutation can be regarded as either a function, a word, or a sequence
(the inversion table). In this section we will consider four additional ways of representing
permutations and will illustrate the usefulness of each such representation.

The first representation is the most obvious, viz., a permutation matrix. Specifically, if
w ∈ Sn then define the n× n matrix Pw, with rows and columns indexed by [n], as follows:

(Pw)ij =

{
1, if w(i) = j
0, otherwise.

The matrix Pw is called the permutation matrix corresponding to w. Clearly a square (0, 1)-
matrix is a permutation matrix if and only if it has exactly one 1 in every row and column.
Sometimes it is more convenient to replace the 0’s and 1’s with some other symbols. For
instance, the matrix Pw could be replaced by a n × n grid, where each square indexed by
(i, w(i)) is filled in. Figure 1.3 shows the matrix Pw corresponding to w = 795418362,
together with the equivalent representation as a grid with certain squares filled in.

To illustrate the use of permutation matrices as geometric objects per se, define a decreasing
subsequence of length k of a permutation w = w1 · · ·wn ∈ Sn to be a subsequence wi1 >
wi2 > · · · > wik (so i1 < i2 < · · · < ik by definition of subsequence). (Increasing subsequence
is similarly defined, though we have no need for this concept in the present example.) Let
f(n) be the number of permutations w ∈ Sn with no decreasing subsequence of length three.
For instance, f(3) = 5 since 321 is the only excluded permutation. Let w be a permutation
with no decreasing subsequence of length three, and let Pw be its permutation matrix, where
for better visualization we replace the 1’s in Pw by X’s. Draw a lattice path Lw from the
upper-left corner of Pw to the lower right corner, where each step is one unit to the right
(east) or down (south), and where the “outside corners” (consisting of a right step followed
by a down step) of Lw occur at the top and right of each square on or above the main
diagonal containing an X. We trust that Figure 1.4 will make this definition clear; it shows
the five paths for w ∈ S3 as well as the path for w = 412573968. It is not hard to see that
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Figure 1.4: Lattice paths corresponding to 321-avoiding permutations

the lattice paths so obtained are exactly those that do not pass below the main diagonal.
Conversely, it is also not hard to see that given a lattice path L not passing below the main
diagonal, there is a unique permutation w ∈ Sn with no decreasing subsequence of length
three for which L = Lw.

We have converted our permutation enumeration problem to a much more tractable lattice
path counting problem. It is shown in Corollary 6.2.3 that the number of such paths is the
Catalan number Cn = 1

n+1

(
2n
n

)
, so we have shown that

f(n) = Cn. (1.52)

The growth diagrams discussed in Section 7.13 show a more sophisticated use of permutation
matrices.

Note. The Catalan numbers form one of the most interesting and ubiquitous sequences in
enumerative combinatorics; see Chapter 6, especially Corollary 6.2.3 and Exercise 6.19, for
further information.

An object closely related to the permutation matrix Pw is the diagram of w ∈ Sn. Represent
the set [n] × [n] as an n × n array of dots, using matrix coordinates, so the upper-left dot
represents (1, 1), the dot to its right is (1, 2), etc. If w(i) = j, then from the point (i, j) draw
a horizonal line to the right and vertical line to the bottom. Figure 1.5 illustrates the case
w = 314652. The set of dots that are not covered by lines is called the diagram Dw of w.
For instance, Figure 1.5 shows that

D314652 = {(1, 1), (1, 2), (3, 2), (4, 2), (4, 5), (5, 2)}.

The dots of the diagram are circled for greater clarity.

It is easy to see that if aj denotes the number of elements of Dw in column j, then the
inversion table of w is given by I(w) = (a1, a2, . . . , an). Similarly, if ci is the number of
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Figure 1.5: The diagram of the permutation w = 314652

elements in the ith row of Dw then code(w) = (c1, c2, . . . , cn). If Dt
w denotes the transpose

(relection about the main diagonal) of Dw, then Dt
w = Dw−1.

As an illustration of the use of the diagram Dw, define a permutation w = w1 · · ·wn ∈ Sn

to be 132-avoiding if there does not exist i < j < k with wi < wk < wj . In other words,
no subsequence of w of length three has its terms in the same relative order as 132. Clearly
this definition can be generalized to define u-avoiding permutations, where u ∈ Sk. For
instance, the permutations considered above with no decreasing subsequence of length three
are just 321-avoiding permutations.

It is not hard to see that w is 132-avoiding if and only if there exists integers λ1 ≥ λ2 ≥ · · · ≥ 0
such that for all i ≥ 0 the ith row of Dw consists of the first λi dots in that row. In symbols,

Dw = {(i, j) : 1 ≤ j ≤ λi}.

Equivalently, if (i, j) ∈ Dw and i′ ≤ i, j′ ≤ j, then (i′, j′) ∈ Dw. In the terminology
of Section 1.7, the sequence λ = (λ1, λ2, . . . ) is a partition of

∑
λi = inv(w), and Dw is

the Ferrers diagram of λ. In this sense diagrams of permutations are generalizations of
diagrams of partitions. Note that in any n × n diagram Dw, where w ∈ Sn, there are at
least i dots in the ith row that do not belong to Dw. Hence if w is 132-avoiding then the
corresponding partition λ = (λ1, . . . λn) satisfies λi ≤ n − i. Conversely, it is easy to see
that if λ satisfies λi ≤ n − i then the Ferrers diagram of λ is the diagram of a (necessarily
132-avoiding) permutation w ∈ Sn. Hence the number of 132-avoiding permutations in
Sn is equal to the number of integer sequences λ1 ≥ · · · ≥ λn ≥ 0 such that λi ≤ n − i.
It follows from Exercise 6.19(s) that the number of such sequences is the Catalan number
Cn = 1

n+1

(
2n
n

)
. (There is also a simple bijection with the lattice paths that we put in one-to-

one correspondence with 321-avoiding permutations. In fact, the lattice path construction
we applied to 321-avoiding permutations works equally well for 132-avoiding permutations
if our paths go from the upper right to lower left; see Figure 1.6.) Hence by equation (1.52)
the number of 132-avoiding permutations in Sn is the same as the number of 321-avoiding
permutations in Sn, i.e., permutations in Sn with no decreasing subsequence of length three.
Simple symmetry arguments (e.g., replacing w1w2 · · ·wn with wn · · ·w2w1) then show that
for any u ∈ S3, the number of u-avoiding permutations w ∈ Sn is Cn.

Since #Dw = inv(w), the above characterization of diagrams of 132-avoiding permutations
w ∈ Sn yields the following refinement of the enumeration of such w.
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Figure 1.6: Lattice paths corresponding to 132-avoiding permutations in S3

( )T w

TT(  ) (  )u v

i

Figure 1.7: The definition of T (w)

1.5.1 Proposition. Let S132(n) denote the set of 132-avoiding w ∈ Sn. Then

∑

w∈S132(n)

qinv(w) =
∑

λ

q|λ|,

where λ ranges over all integer sequences λ1 ≥ · · · ≥ λn ≥ 0 satisfying λi ≤ n− i, and where
|λ| =∑λi.

For further information on the sums appearing in Proposition 1.5.1, see Exercise 6.34(a).

We now consider two ways to represent a permutation w as a tree T and discuss how the
structure of T interacts with the combinatorial properties of w. Let w = w1w2 · · ·wn be any
word on the alphabet P with no repeated letters. Define a binary tree T (w) as follows. If
w = ∅, then T (w) = ∅. If w 6= ∅, then let i be the least element (letter) of w. Thus w can
be factored uniquely in the form w = uiv. Now let i be the root of T (w), and let T (u) and
T (v) be the left and right subtrees of i; see Figure 1.7. This procedure yields an inductive
definition of T (w). The left successor of a vertex j is the least element k to the left of j in w
such that all elements of w between k and j (inclusive) are ≥ j, and similarly for the right
successor.

1.5.2 Example. Let w = 57316284. Then T (w) is given by Figure 1.8.

The correspondence w 7→ T (w) is a bijection between Sn and increasing binary trees on n
vertices; that is, binary trees with n vertices labelled 1, 2, . . . , n such that the labels along
any path from the root are increasing. To obtain w from T (w), read the labels of w in
symmetric order, i.e., first the labels of the left subtree (in symmetric order, recursively),
then the label of the root, and then the labels of the right subtree.
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Figure 1.8: The increasing binary tree T (57316284)

Let w = w1w2 · · ·wn ∈ Sn. Define the element wi of w to be

a double rise or double ascent , if wi−1 < wi < wi+1

a double fall or double descent , if wi−1 > wi > wi+1

a peak , if wi−1 < wi > wi+1

a valley, if wi−1 > wi < wi+1,

where we set w0 = wn+1 = 0. It is easily seen that the property listed below of an element i
of w corresponds to the given property of the vertex i of T (w).

Vertex i of T (w)
has precisely the

Element i of w successors below
double rise right
double fall left
valley left and right
peak none

From this discussion of the bijection w 7→ T (w), a large number of otherwise mysterious
properties of increasing binary trees can be trivially deduced. The following proposition
gives a sample of such results. Exercise 1.61 provides a further application of T (w).

1.5.3 Proposition. (a) The number of increasing binary trees with n vertices is n!.

(b) The number of such trees for which exactly k vertices have left successors is the Eulerian
number A(n, k + 1).

(c) The number of complete (i.e., every vertex is either an endpoint or has two successors)
increasing binary trees with 2n+ 1 vertices is equal to the number E2n+1 of alternating
permutations in S2n+1.
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Figure 1.9: The unordered increasing tree T ′(57316284)

Let us now consider a second way to represent a permutation by a tree. Given w =
w1w2 · · ·wn ∈ Sn, construct an (unordered) tree T ′(w) with vertices 0, 1, . . . , n by defin-
ing vertex i to be the successor of the rightmost element j of w which precedes i and which
is less than i. If there is no such element j, then let i be the successor of the root 0.

1.5.4 Example. Let w = 57316284. Then T ′(w) is given by Figure 1.9.

The correspondence w 7→ T ′(w) is a bijection between Sn and increasing trees on n + 1
vertices. It is easily seen that the successors of 0 are just the left-to-right minima (or
retreating elements) of w (i.e., elements wi such that wi < wj for all j < i, where w =
w1w2 · · ·wn). Moreover, the endpoints of T ′(w) are just the elements wi for which i ∈ D(w)
or i = n. Thus in analogy to Proposition 1.5.3 (using Proposition 1.3.1 and the obvious
symmetry between left-to-right maxima and left-to-right minima) we obtain the following
result.

1.5.5 Proposition. (a) The number of unordered increasing trees on n + 1 vertices is n!.

(b) The number of such trees for which the root has k successors is the signless Stirling
number c(n, k).

(c) The number of such trees with k endpoints is the Eulerian number A(n, k).
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1.6 Alternating permutations, Euler numbers, and the

cd-index of Sn

In this section we consider enumerative properties of alternating permutations, as defined in
Section 1.4. Recall that a permutation w ∈ Sn is alternating if D(w) = {1, 3, 5, . . .}∩ [n−1],
and reverse alternating if D(w) = {2, 4, 6, . . .} ∩ [n− 1].

1.6.1 Basic properties

Recall that En denotes the number of alternating permutations (or reverse alternating per-
mutations) w ∈ Sn (with E0 = 1) and is called an Euler number. The exponential generating
function for Euler numbers is very elegant and surprising.

1.6.1 Proposition. We have

∑

n≥0

En
xn

n!
= sec x+ tan x

= 1 + x+
x2

2!
+ 2

x3

3!
+ 5

x4

4!
+ 16

x5

5!
+ 61

x6

6!
+ 272

x7

7!
+ 1385

x8

8!
+ · · · .

Note that sec x is an even function (i.e, sec(−x) = sec x), while tan x is odd (tan(−x) =
− tan x). It follows from Proposition 1.6.1 that

∑

n≥0

E2n
x2n

(2n)!
= sec x (1.53)

∑

n≥0

E2n+1
x2n+1

(2n+ 1)!
= tanx. (1.54)

For this reason E2n is sometimes called a secant number and E2n+1 a tangent number.

Proof of Proposition 1.6.1. Let 0 ≤ k ≤ n. Choose a k-subset S of [n] in
(
n
k

)
ways, and

set S = [n]− S. Choose a reverse alternating permutation u of S in Ek ways, and choose a
reverse alternating permutation v of S in En−k ways. Let w be the concatenation ur, n+1, v,
where ur denotes the reverse of u (i.e., if u = u1 · · ·uk then ur = uk · · ·u1). When n ≥ 2,
we obtain in this way every alternating and every reverse alternating permutation w exactly
once. Since there is a bijection between alternating and reverse alternating permutations of
any finite (ordered) set, the number of w obtained is 2En+1. Hence

2En+1 =
n∑

k=0

(
n

k

)
EkEn−k, n ≥ 1. (1.55)

Set y =
∑

n≥0Enx
n/n!. Taking into account the initial conditions E0 = E1 = 1, equa-

tion (1.55) becomes the differential equation

2y′ = y2 + 1, y(0) = 1.
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The unique solution is y = sec x+ tan x.

Note. The clever counting of both alternating and reverse alternating permutations in
the proof of Proposition 1.6.1 can be avoided at the cost of a little elegance. Namely, by
considering the position of 1 in an alternating permutation w, we obtain the recurrence

En+1 =
∑

1≤j≤n
j odd

(
n

j

)
EjEn−j , n ≥ 1.

This recurrence leads to a system of differential equations for the power series
∑

n≥0E2nx
2n/(2n)!

and
∑

n≥0E2n+1x
2n+1/(2n+ 1)!.

Note that equations (1.53) and (1.54) could in fact be used to define sec x and tanx in terms
of alternating permutations. We can then try to develop as much trigonometry as possible
(e.g., the identity 1 + tan2 x = sec2 x) using this definition, thereby defining the subject of
combinatorial trigonometry. For the first steps in this direction, see Exercise 5.7.

It is natural to ask whether Proposition 1.6.1 has a more conceptual proof. The proof above
does not explain why we ended up with such a simple generating function. To be even more
clear about this point, rewrite equation (1.53) as

∑

n≥0

E2n
x2n

(2n)!
=

1
∑

n≥0

(−1)n
x2n

(2n)!

. (1.56)

Compare this equation with the exponential generating function for the number of permu-
tations in Sn with descent set [n− 1]:

∑

n≥0

xn

n!
=

1
∑

n≥0

(−1)n
xn

n!

. (1.57)

Could there be a reason why having descents in every second position corresponds to taking
every second term in the denominator of (1.57) and keeping the signs alternating? Possibly
the similarity between (1.56) and (1.57) is just a coincidence. All doubts are dispelled,
however, by the following generalization of equation (1.56). Let fk(n) denote the number of
permutations w ∈ Sn satisfying

D(w) = {k, 2k, 3k, . . .} ∩ [n− 1]. (1.58)

Then ∑

n≥0

fk(kn)
xkn

(kn)!
=

1
∑

n≥0

(−1)n
xkn

(kn)!

. (1.59)

Such a formula cries out for a more conceptual proof. One such proof is given in Section 3.19.
Exercise 2.22 gives a further proof for k = 2 (easily extended to any k) based on Inclusion-
Exclusion. Another enlightening proof, less elegant but more straightforward than the one
in Section 3.19, is the following.
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Proof of equation (1.59). We have

1
∑

n≥0

(−1)n
xkn

(kn)!

=
1

1−
∑

n≥1

(−1)n−1 xkn

(kn)!

=
∑

j≥0

(∑

n≥1

(−1)n−1 xkn

(kn)!

)j

=
∑

j≥0

∑

N≥j

∑

a1+···+aj=N

ai≥1

(
kN

ka1, . . . , kaj

)
(−1)N−j x

kN

(kN)!
.

Comparing (carefully) with equations (1.34) and (1.35) completes the proof.

A similar proof can be given of equation (1.54) and its extension to permutations in Skn+i

with descent set {k, 2k, 3k, . . .}∩ [kn+ i−1] for 1 ≤ i ≤ k−1. Details are left as an exercise
(Exercise 1.146).

1.6.2 Flip equivalence of increasing binary trees

Alternating permutations appear as the number of equivalence classes of certain naturally de-
fined equivalence relations. (For an example unrelated to this section, see Exercise 3.127(b).)
We will give an archetypal example in this subsection. In the next subsection we will give a
similar result which has an application to the numbers βn(S) of permutations w ∈ Sn with
descent set S.

Recall that in Section 1.5 we associated an increasing binary tree T (w) with a permutation
w ∈ Sn. The flip of a binary tree at a vertex v is the binary tree obtained by interchanging
the left and right subtrees of v. Define two increasing binary trees T and T ′ on the vertex
set [n] to be equivalent if T ′ can be obtained from T by a sequence of flips. Clearly this
definition of equivalence is an equivalence relation, and the number of increasing binary
trees equivalent to T is 2n−ǫ(T ), where ǫ(T ) is the number of endpoints of T . The equivalence
classes are in an obvious bijection with increasing (1-2)-trees on the vertex set [n], that is,
increasing (rooted) trees so that every non-endpoint vertex has one or two children. (These
are not plane trees, i.e., the order in which we write the children of a vertex is irrelevant.)
Figure 1.10 shows the five increasing (1,2)-trees on four vertices, so f(4) = 5. Let f(n)
denote the number of equivalence classes, i.e., the number of increasing (1,2)-trees on the
vertex set [n].

1.6.2 Proposition. We have f(n) = En (an Euler number).

Proof. Perhaps the most straightforward proof is by generating functions. Let

y =
∑

n≥1

f(n)
xn

n!
= x+

x2

2
+ 2

x3

6
+ · · · .
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Figure 1.10: The five increasing (1,2)-trees with four vertices

Then y′ =
∑

n≥0 f(n+ 1)xn/n!. Every increasing (1,2)-tree with n + 1 vertices is either (a)
a single vertex (n = 0), (b) has one subtree of the root which is an increasing (1,2)-tree
with n vertices, or (c) has two subtrees of the root, each of which is an increasing (1,2)-tree,
with n vertices in all. The order of the two subtrees is irrelevant. From this observation
we obtain the differential equation y′ = 1 + y + 1

2
y2, y(0) = 0. The unique solution is

y = sec x+ tanx− 1, and the proof follows from Proposition 1.6.1.

Algebraic note. Let Tn be the set of all increasing binary tree with vertex set [n].
For T ∈ Tn and 1 ≤ i ≤ n, let ωiT be the flip of T at vertex i. Then clearly the ωi’s
generate a group isomorphic to (Z/2Z)n acting on Tn, and the orbits of this action are the
flip equivalence classes.

1.6.3 Min-max trees and the cd-index

We now consider a variant of the bijection w 7→ T (w) between permutations and increasing
binary trees defined in Section 1.5 that has an interesting application to descent sets of
permutations. We will just sketch the basic facts and omit most details of proofs (all of which
are fairly straightforward). We define the min-max tree M(w) associated with a sequence
w = a1a2 · · ·an of distinct integers as follows. First, M(w) is a binary tree with vertices
labelled a1, a2, . . . , an. Let j be the least integer for which either aj = min{a1, . . . , an}
or aj = max{a1, . . . , an}. Define aj to be the root of M(w). Then define (recursively)
M(a1, . . . , aj−1) to be the left subtree of aj , and M(aj+1, . . . , an) to be the right subtree.
Figure 1.11(a) shows M(5, 10, 4, 6, 7, 2, 12, 1, 8, 11, 9, 3). Note that no vertex of a min-max
tree M(w) has only a left successor. Note also that every vertex v is either the minimum or
maximum element of the subtree with root v.

Given the min-max tree M(w) where w = a1 · · ·an, we will define operators ψi, 1 ≤ i ≤ n,
that permute the labels of M(w), creating a new min-max tree ψiM(w). The operator ψi
only permutes the label of the vertex of M(w) labelled ai and the labels of the right subtree
of this vertex. (Note that the vertex labelled ai depends only on i and the tree M(w), not
on the permutation w.) All other vertices are fixed by ψi. In particular, if ai is an endpoint
then ψiM(w) = M(w). We denote by Mai

the subtree of M(w) consisting of ai and the right
subtree of ai. Thus ai is either the minimum or maximum element of Mai

. Suppose that ai is
the minimum element of Mai

. Then replace ai with the largest element of Mai
, and permute

the remaining elements of Mai
so that they keep their same relative order. This defines

ψiM(w). Similarly suppose that ai is the maximum element of the subtree Mai
with root ai.
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Figure 1.11: (a) The min-max tree M = M(5, 10, 4, 6, 7, 2, 12, 1, 8, 11, 9, 3); (b) The trans-
formed tree ψ7M = M(5, 10, 4, 6, 7, 2, 1, 3, 9, 12, 11, 8)

Then replace ai with the smallest element ofMai
, and permute the remaining elements ofMai

so that they keep their same relative order. Again this defines ψiM(w). Figure 1.11(b) shows
that ψ7M(5, 10, 4, 6, 7, 2, 12, 1, 8, 11, 9, 3) = M(5, 10, 4, 6, 7, 2, 1, 3, 9, 12, 11, 8). We have a7 =
12, so ψ7 permutes vertex 12 and the vertices on the right subtree of 12. Vertex 12 is
replaced by 1, the smallest vertex of the right subtree. The remaining elements 1, 3, 8, 9, 11
get replaced with 3, 8, 9, 11, 12 in that order.

Fact #1. The operators ψi are commuting involutions and hence generate an (abelian)
group Gw isomorphic to (Z/2Z)ι(w), where ι(w) is the number of internal vertices of M(w).
Those ψi for which ai is not an endpoint are a minimal set Gw of generators for Gw. Hence
there are precisely 2ι(w) different trees ψM(w) for ψ ∈ Gw, given by ψi1 · · ·ψijM(w) where
{ψi1 , . . . , ψij} ranges over all subsets of Gw.

Given a permutation w ∈ Sn and an operator ψ ∈ Gw we define the permutation ψw by

ψM(w) = M(ψw). Define two permutations v, w ∈ Sn to be M-equivalent, denoted v
M∼ w,

if v = ψw for some ψ ∈ Gw. Clearly
M∼ is an equivalence relation, and by Fact #1 the size

of the equivalence class [w] containing w is 2ι(w).

There is a simple connection between the descent sets of w and ψiw.

Fact #2. Let ai be an internal vertex of M(w) with only a right child. Then

D(ψiw) =

{
D(w) ∪ {i}, if i 6∈ D(w)
D(w)− {i}, if i ∈ D(w).

Let ai be an internal vertex of M(w) with both a left and right child. Then exactly one of
i− 1, i belongs to D(w), and we have

D(ψiw) =

{
(D(w) ∪ {i})− {i− 1}, if i 6∈ D(w)

(D(w) ∪ {i− 1})− {i}, if i ∈ D(w).

Note that if ai is a vertex with two children, then ai−1 will always be an endpoint on the left
subtree of ai. It follows that the changes in the descent sets described by Fact #2 take place
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independently of each other. (In fact, this independence is equivalent to the commutativity
of the ψi’s.) The different descent sets D(w), where w ranges over an M-equivalence class,
can be conveniently encoded by a noncommutative polynomial in the letters a and b. Given
a set S ⊆ [n−1], define its characteristic monomial (or variation) to be the noncommutative
monomial

uS = e1e2 · · · en−1, (1.60)

where

ei =

{
a, if i 6∈ S
b, if i ∈ S.

For instance, uD(37485216) = ababbba.

Now let w = a1a2 · · ·an ∈ Sn, and let c, d, e be noncommutative indeterminates. For
1 ≤ i ≤ n define

fi = fi(w) =





c, if ai has only a right child in M(w)

d, if ai has a left and right child

e, if ai is an endpoint.

Let Φ′
w = Φ′

w(c, d, e) = f1f2 · · · fn, and let Φw = Φw(c, d) = Φ′(c, d, 1), where 1 denotes the
empty word. In other words, Φw is obtained from Φ′

w by deleting the e’s. For instance,
consider the permutation w = 5, 10, 4, 6, 7, 2, 12, 1, 8, 11, 9, 3 of Figure 1.11. The degrees
(number of children) of the vertices a1, a2, . . . , a12 are 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 1, 0,
respectively. Hence

Φ′
w = edcededcedce

Φw = dcddcdc. (1.61)

It is clear that if v
M∼ w, then Φ′

v = Φ′
w and Φv = Φw, since Φ′

w depends only on M(w)
regarded as an unlabelled tree.

From Fact #2 we obtain the following result.

Fact #3. Let w ∈ Sn, and let [w] be the M-equivalence class containing w. Then

Φw(a+ b, ab+ ba) =
∑

v∈[w]

uD(v). (1.62)

For instance, from equation (1.61) we have
∑

v∈[w]

uD(v) = (ab+ ba)(a+ b)(ab+ ba)(ab+ ba)(a + b)(ab+ ba)(a + b).

As a further example, Figure 1.12 shows the eight trees M(v) in the M-equivalence class
[315426], together with corresponding characteristic monomial uD(v). We see that

∑

v∈[315426]

uD(v) = babba + abbba + baaba + babab + ababa + abbab + baaab + abaab

= (ab+ ba)(a + b)(ab+ ba),
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Figure 1.12: The M-equivalence class [315426]

whence Φw = dcd.

Fact #4. Each equivalence class [w] contains exactly one alternating permutation (as well
as one reverse alternating permutation). Hence the number of M-equivalence classes of
permutations w ∈ Sn is the Euler number En.

While it is not difficult to prove Fact #4 directly from the definition of the tree M(w) and
the group Gw, it is also immediate from Fact #3. For in the expansion of Φw(a+ b, ab+ ba)
there will be exactly one alternating term bababa · · · and one term ababab · · · .
Now consider the generating function

Ψn = Ψn(a, b) =
∑

w∈Sn

uD(w)

=
∑

S⊆[n−1]

β(S)uS. (1.63)

Thus Ψn is a noncommutative generating function for the numbers β(S). For instance,
Ψ3 = aa+ 2ab+ 2ba+ bb. The polynomial Ψn is called the ab-index of the symmetric group
Sn. (In the more general context of Section 3.17, Ψn is called the ab-index of the boolean
algebra Bn.) We can group the terms of Ψn according to the M-equivalence classes [w], i.e.,

Ψn =
∑

[w]

∑

v∈[w]

uD(v), (1.64)

where the outer sum ranges over all distinct M-equivalence classes [w] of permutations in Sn.
Now by equation (1.62) the inner sum is just Φw(a+ b, ab+ ba). Hence we have established
the following result.
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1.6.3 Theorem. The ab-index Ψn can be written as a polynomial Φn in the variables c = a+b
and d = ab+ ba. This polynomial is a sum of En monomials.

The polynomial Φn is called the cd-index of the symmetric group Sn (or boolean algebra
Bn). It is a surprisingly compact way of codifying the numbers βn(S). The number of
distinct terms in Φn is the Fibonacci number Fn (the number of cd-monomials of degree n,
where deg c = 1 and deg d = 2; see Exercise 1.35(c)), compared with the 2n−1 terms of the
ab-index Ψn. For instance,

Φ1 = 1

Φ2 = c

Φ3 = c2 + d

Φ4 = c3 + 2cd+ 2dc

Φ5 = c4 + 3c2d+ 5cdc+ 3dc2 + 4d2

Φ6 = c5 + 4c3d+ 9c2dc+ 9cdc2 + 4dc3 + 12cd2 + 10dcd+ 12d2c.

One nice application of the cd-index concerns inequalities among the number βn(S). Given
S ⊆ [n− 1], define ω(S) ⊆ [n − 2] by the condition i ∈ ω(S) if and only if exactly one of i
and i + 1 belongs to S, for 1 ≤ i ≤ n − 2. For instance, if n = 9 and S = {2, 4, 5, 8}, then
ω(S) = {1, 2, 3, 5, 7}. Note that

ω(S) = [n− 2] ⇐⇒ S = {1, 3, 5, . . .} ∩ [n− 1] or S = {2, 4, 6, . . .} ∩ [n− 1]. (1.65)

1.6.4 Proposition. Let S, T ⊆ [n− 1]. If ω(S) ⊂ ω(T ), then βn(S) < βn(T ).

Proof. Let w ∈ Sn and Φ′
w = f1f2 · · · fn, so each fi = c, d, or e. Define

Sw = {i− 1 : fi = d}.

It is easy to see that

Φw =
∑

ω(X)⊇Sw

uX.

Since Φn has nonnegative coefficients, it follows that if ω(S) ⊆ ω(T ), then βn(S) ≤ βn(T ).
Now assume that S and T are any subsets of [n− 1] for which ω(S) ⊂ ω(T ) (strict contain-
ment). We can easily find a cd-word Φw for which ω(T ) ⊇ ωSw but ω(S) 6⊇ Sw. For instance,
if i ∈ ω(T )−ω(S) then let Φw = ci−1dcn−2−i, so Sw = {i}. It follows that βn(S) < βn(T ).

1.6.5 Corollary. Let S ⊆ [n − 1]. Then βn(S) ≤ En, with equality if and only if S =
{1, 3, 5, . . .} ∩ [n− 1] or S = {2, 4, 6, . . .} ∩ [n− 1].

Proof. Immediate from Proposition 1.6.4 and equation (1.65).
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1.7 Permutations of multisets

Much of what we have done concerning permutations of sets can be generalized to multisets.
For instance, there are two beautiful theories of cycle decomposition for permutations of
multisets (see Exercise 1.62 for one of them, and its solution for a reference to the other).
In this section, however, we will only discuss some topics that will be of use later.

First, it is clear that we can define the descent set D(w) of a permutation w of a (finite)
multiset M on a totally ordered set (such as P) exactly as we did for sets. Namely, if
w = w1w2 · · ·wn, then

D(w) = {i : wi > wi+1}.
Thus we also have the concept of α(S) = αM(S) and β(S) = βM(S) for a multiset M , as
well as the number des(w) of descents, the major index maj(w) and the multiset Eulerian
polynomial

AM(x) =
∑

w∈SM

x1+des(w),

and so on. In Section 4.4.5 we will consider a vast generalization of these concepts. Note for
now that there is no obvious analogue of Proposition 1.4.1—that is, an explicit formula for
the number αM(S) of permutations w ∈ SM with descent set contained in S.

We can also define an inversion of w = w1w2 · · ·wn ∈ SM as a 4-tuple (i, j, wi, wj) for which
i < j and wi > wj , and as before we define inv(w) to be the number of inversions of w.
Note that unlike the case for permutations we shouldn’t define an inversion to be just the
pair (wi, wj) since we can have (wi, wj) = (wk, wl) but (i, j) 6= (k, l). We wish to generalize
Corollary 1.3.13 to multisets. To do so we need a fundamental definition. If (a1, . . . , am) is
a sequence of nonnegative integers summing to n, then define the q-multinomial coefficient

(
n

a1, . . . , am

)
=

(n)!

(a1)! · · · (am)!
.

It is immediate from the definition that
(

n

a1,...,am

)
is a rational function of q which, when

evaluated at q = 1, becomes the ordinary multinomial coefficient
(

n
a1,...,am

)
. In fact, it is

not difficult to see that
(

n

a1,...,am

)
is a polynomial in q whose coefficients are nonnegative

integers. One way to do this is as follows. Write
(

n

k

)
as short for

(
n

k,n−k

)
(exactly in analogy

with the notation
(
n
k

)
for binomial coefficients). The expression

(
n

k

)
is a called a q-binomial

coefficient (or Gaussian polynomial). It is straightforward to verify that

(
n

a1, . . . , am

)
=

(
n

a1

)(
n − a1

a2

)(
n − a1 − a2

a3

)
· · ·
(

am

am

)
(1.66)

and (
n

k

)
=

(
n − 1

k

)
+ qn−k

(
n − 1

k − 1

)
. (1.67)

From these equations and the “initial conditions”
(

n

0

)
= 1 it follows by induction that(

n

a1,...,am

)
is a polynomial in q with nonnegative integer coefficients.
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1.7.1 Proposition. Let M = {1a1, . . . , mam} be a multiset of cardinality n = a1 + · · ·+ am.
Then ∑

w∈SM

qinv(w) =

(
n

a1, . . . , am

)
. (1.68)

First proof. Denote the left-hand side of (1.68) by P (a1, . . . , am) and writeQ(n, k) = P (k, n−
k). Clearly Q(n, 0) = 1. Hence in view of (1.66) and (1.67) it suffices to show that

P (a1, . . . , am) = Q(n, a1)P (a2, a3, . . . , am) (1.69)

Q(n, k) = Q(n− 1, k) + qn−kQ(n− 1, k − 1). (1.70)

If w ∈ SM , then let w′ be the permutation of M ′ = {2a2, . . . , mam} obtained by removing
the 1’s from w, and let w′′ be the permutation of M ′′ = {1a1, 2n−a1} obtained from w by
changing every element greater than 2 to 2. Clearly w is uniquely determined by w′ and w′′,
and inv(w) = inv(w′) + inv(w′′). Hence

P (a1, . . . , am) =
∑

w′∈SM′

∑

w′′∈SM′′

qinv(w′)+inv(w′′)

= Q(n, a1)P (a2, a3, . . . , am),

which is (1.69).

Now let M = {1k, 2n−k}. Let SM,i, 1 ≤ i ≤ 2, consist of those w ∈ SM whose last element
is i, and let M1 = {1k−1, 2n−k}, M2 = {1k, 2n−k−1}. If w ∈ SM,1 and w = u1, then u ∈ SM1

and inv(w) = n− k + inv(u). If w ∈ SM,2 and w = v2, then v ∈ SM2 and inv(w) = inv(v).
Hence

Q(n, k) =
∑

u∈SM1

qinv(u)+n−k +
∑

v∈SM2

qinv(v)

= qn−kQ(n− 1, k − 1) +Q(n− 1, k),

which is (1.70).

Second proof. Define a map

φ : SM ×Sa1 × · · · ×Sam → Sn

(w0, w1, . . . , wm) 7→ w

by converting the ai i’s in w0 to the numbers a1 + · · ·+ai−1 +1, a1 + · · ·+ai−1 +2, a1 + · · ·+
ai−1 + ai in the order specified by wi. For instance (21331223, 21, 231, 312) 7→ 42861537. We
have converted 11 to 21 (preserving the relative order of the terms of w1 = 21), 222 to 453
(preserving the order 231), and 333 to 867 (preserving 312). It is easily verified that φ is a
bijection, and that

inv(w) = inv(w0) + inv(w1) + · · ·+ inv(wm). (1.71)

By Corollary 1.3.13 we conclude
( ∑

w∈SM

qinv(w)

)
(a1)! · · · (am)! = (n)!,
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and the proof follows.

Note. If w1, . . . , wm are all identity permutations, then we obtain a map ψ : SM → Sn

known as standardization. For instance, ψ(14214331) = 17428563. Standardization is a very
useful technique for reducing problems about multisets to sets. For a significant example,
see Lemma 7.11.6.

The first proof of Proposition 1.7.1 can be classified as “semi-combinatorial.” We did not
give a direct proof of (1.68) itself, but rather of the two recurrences (1.69) and (1.70). At
this stage it would be difficult to give a direct combinatorial proof of (1.68) since there is
no “obvious” combinatorial interpretation of the coefficients of

(
n

a1,...,am

)
nor of the value of

this polynomial at q ∈ N. Thus we will now discuss the problem of giving a combinatorial
interpretation of

(
n

k

)
for certain q ∈ N, which will lead to a combinatorial proof of (1.68)

when m = 2. Combined with our proof of (1.69) this yields a combinatorial proof of (1.68)
in general. The reader unfamiliar with finite fields may skip the rest of this section, except
for the brief discussion of partitions.

Let q be a prime power, and denote by Fq a finite field with q elements (all such fields are
of course isomorphic) and by Fnq the n-dimensional vector space of all n-tuples (α1, . . . , αn),
where αi ∈ Fq.

1.7.2 Proposition. The number of k-dimensional subspaces of Fnq is
(

n

k

)
.

Proof. Denote the number in question by G(n, k), and let N = N(n, k) equal the number
of ordered k-tuples (v1, . . . , vk) of linearly independent vectors in Fnq . We may choose v1 in
qn − 1 ways, then v2 in qn − q ways, and so on, yielding

N = (qn − 1)(qn − q) · · · (qn − qk−1). (1.72)

On the other hand, we may choose (v1, . . . , vk) by first choosing a k-dimensional subspace
W of Fnq in G(n, k) ways, and then choosing v1 ∈W in qk − 1 ways, v2 ∈W in qk − q ways,
and so on. Hence

N = G(n, k)(qk − 1)(qk − q) · · · (qk − qk−1). (1.73)

Comparing (1.72) and (1.73) yields

G(n, k) =
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)

=
(n)!

(k)!(n − k)!
=

(
n

k

)
.

Note that the above proof is completely analogous to the proof we gave in Section 1.2 that(
n
k

)
= n!

k!(n−k)! . We may consider our proof of Proposition 1.7.2 to be the “q-analogue” of the

proof that
(
n
k

)
= n!

k!(n−k)! .
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Now define a partition of n ∈ N to be a sequence λ = (λ1, λ2, . . . ) of integers λi satisfying∑
λi = n and λ1 ≥ λ2 ≥ · · · ≥ 0. We also write λ = (λ1, . . . , λk) if λk+1 = λk+2 = · · · = 0.

Thus for example

(3, 3, 2, 1, 0, 0, 0, . . . ) = (3, 3, 2, 1, 0, 0) = (3, 3, 2, 1),

as partitions of 9. We may also informally regard a partition λ = (λ1, . . . , λk) of n (say with
λk > 0) as a way of writing n as a sum λ1+· · ·+λk of positive integers, disregarding the order
of the summands (since there is a unique way of writing the summands in weakly decreasing
order, where we don’t distinguish between equal summands). Compare with the definition
of a composition of n, in which the order of the parts is essential. If λ is a partition of n
then we write either λ ⊢ n or |λ| = n. The nonzero terms λi are called the parts of λ, and
we say that λ has k parts where k = #{i : λi > 0}. The number of parts of λ is also called
the length of λ and denoted ℓ(λ). If the partition λ has mi parts equal to i, then we write
λ = 〈1m1, 2m2 , . . . 〉, where terms with mi = 0 and the superscript mi = 1 may be omitted.
For instance,

(4, 4, 2, 2, 2, 1) = 〈11, 23, 30, 42〉 = 〈1, 23, 42〉 ⊢ 15. (1.74)

We also write p(n) for the total number of partitions of n, pk(n) for the number of partitions
of n with exactly k parts, and p(j, k, n) for the number of partitions of n into at most k parts,
with largest part at most j. For instance, there are seven partitions of 5, given by (omitting
parentheses and commas from the notation) 5, 41, 32, 311, 221, 2111, 11111, so p(5) = 7,
p1(5) = 1, p2(5) = 2, p3(5) = 2, p4(5) = 1, p5(5) = 1, p(3, 3, 5) = 3, and so on. By convention
we agree that p0(0) = p(0) = 1. Note that pn(n) = 1, pn−1(n) = 1 if n > 1, p1(n) = 1,
p2(n) = ⌊n/2⌋. It is easy to verify the recurrence

pk(n) = pk−1(n− 1) + pk(n− k),

which provides a convenient method for making a table of the numbers pk(n) for n, k small.

Let (λ1, λ2, . . . ) ⊢ n. The Ferrers diagram or Ferrers graph of λ is obtained by drawing a
left-justified array of n dots with λi dots in the ith row. For instance, the Ferrers diagram
of the partition 6655321 is given by Figure 1.13(a). If we replace the dots by juxtaposed
squares, then we call the resulting diagram the Young diagram of λ. For instance, the Young
diagram of 6655321 is given by Figure 1.13(b). We will have more to say about partitions
in various places throughout this book and especially in the next two sections. However, we
will not attempt a systematic investigation of this enormous and fascinating subject.

The next result shows the relevance of partitions to the q-binomial coefficients.

1.7.3 Proposition. Fix j, k ∈ N. Then

∑

n≥0

p(j, k, n)qn =

(
j + k

j

)
.

Proof. While it is not difficult to give a proof by induction using (1.67), we prefer a direct
combinatorial proof based on Proposition 1.7.2. To this end, let m = j + k and recall from
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(a) (b)

Figure 1.13: The Ferrers diagram and Young diagram of the partition 6655321

linear algebra that any k-dimensional subspace of Fmq (or of the m-dimensional vector space
Fm over any field F ) has a unique ordered basis (v1, . . . , vk) for which the matrix

M =



v1
...
vk


 (1.75)

is in row-reduced echelon form. This means: (a) the first nonzero entry of each vi is a 1; (b)
the first nonzero entry of vi+1 appears in a column to the right of the first nonzero entry of
vi; and (c) in the column containing the first nonzero entry of vi, all other entries are 0.

Now suppose that we are given an integer sequence 1 ≤ a1 < a2 < · · · < ak ≤ m, and
consider all row-reduced echelon matrices (1.75) over Fq for which the first nonzero entry of
vi occurs in the aith column. For instance, if m = 7, k = 4, and (a1, . . . , a4) = (1, 3, 4, 6),
then M has the form 



1 ∗ 0 0 ∗ 0 ∗
0 0 1 0 ∗ 0 ∗
0 0 0 1 ∗ 0 ∗
0 0 0 0 0 1 ∗




where the symbol ∗ denotes an arbitrary entry of Fq. The number λi of ∗’s in row i is
j − ai + i, and the sequence (λ1, λ2, . . . , λk) defines a partition of some integer n =

∑
λi

into at most k parts, with largest part at most j. The total number of matrices (1.75) with
a1, . . . , ak specified as above is q|λ|. Conversely, given any partition λ into at most k parts
with largest part at most j, we can define ai = j − λi + i, and there exists exactly q|λ|

row-reduced matrices (1.75) with a1, . . . , ak having their meaning above.

Since the number of row-reduced echelon matrices (1.75) is equal to the number
(

j+k

k

)
of

k-dimensional subspaces of Fmq , we get
(

j + k

k

)
=

∑

λ
≤k parts

largest part ≤j

q|λ| =
∑

n≥0

p(j, k, n)qn.
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Figure 1.14: Partitions in a 2× 3 rectangle

w= 12121121

2

2

1

1

11

2
1

Figure 1.15: The lattice path associated with the partition 431

For readers familiar with this area, let us remark that the proof of Proposition 1.7.3 essentially
constructs the well-known cellular decomposition of the Grassmann variety Gkm.

The partitions λ enumerated by p(j, k, n) may be described as those partitions of n whose
Young diagram fits in a k × j rectangle. For instance, if k = 2 and j = 3, then Figure 1.14
shows the

(
5
2

)
= 10 partitions that fit in a 2×3 rectangle. The value of |λ| is written beneath

the diagram. It follows that

(
5

2

)
= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6.

It remains to relate Propositions 1.7.1 and 1.7.3 by showing that p(j, k, n) is the number of
permutations w of the multiset M = {1j, 2k} with n inversions. Given a partition λ of n with
at most k parts and largest part at most j, we will describe a permutation w = w(λ) ∈ SM

with n inversions, leaving to the reader the easy proof that this correspondence is a bijection.
Regard the Young diagram Y of λ as being contained in a k × j rectangle, and consider the
lattice path L from the upper right-hand corner to the lower left-hand corner of the rectangle
that travels along the boundary of Y . Walk along L and write down a 1 whenever one takes
a horizontal step and a 2 whenever one takes a vertical step. This process yields the desired
permutation w. For instance, if k = 3, j = 5, λ = 431, then Figure 1.15 shows that path L
and its labelling by 1’s and 2’s. We can also describe w by the condition that the 2’s appear
in positions j − λi + i, where λ = (λ1, . . . , λk).
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1.8 Partition Identities

In the previous section we defined a partition λ of n ∈ N and described its Ferrers diagram
and Young diagram. In this section we develop further the theory of partitions, in particular,
the fascinating interaction between generating function identities and bijective proofs.

Let us begin by describing a fundamental involution on the set of partitions of n. Namely,
if λ ⊢ n, then define the conjugate partition λ′ to be the partition whose Ferrers (or Young)
diagram is obtained from that of λ by interchanging rows and columns. Equivalently, the
diagram (Ferrers or Young) of λ′ is the reflection of that of λ about the main diagonal. If
λ = (λ1, λ2, . . . ), then the number of parts of λ′ that equal i is λi − λi+1. This description
of λ′ provides a convenient method of computing λ′ from λ without drawing a diagram. For
instance, if λ = (4, 3, 1, 1, 1) then λ′ = (5, 2, 2, 1).

Recall that pk(n) denotes the number of partitions of n into k parts. Similarly let p≤k(n)
denote the number of partitions of n into at most k parts, that is, p≤k(n) = p0(n) + p1(n) +
· · · + pk(n). Now λ has at most k parts if and only if λ′ has largest part at most k. This
observation enables us to compute the generating function

∑
n≥0 p≤k(n)qn. A partition of

n with largest part at most k may be regarded as a solution in nonnegative integers to
m1 + 2m2 + · · ·+ kmk = n. Here mi is the number of times that the part i appears in the
partition λ, i.e., λ = 〈1m12m2 · · ·kmk〉. Hence

∑

n≥0

p≤k(n)qn =
∑

n≥0

∑

m1+···+kmk=n

qn

=
∑

m1≥0

∑

m2≥0

· · ·
∑

mk≥0

qm1+2m2+···+kmk

=

(∑

m1≥0

qm1

)(∑

m2≥0

q2m2

)
· · ·
(∑

mk≥0

qkmk

)

=
1

(1− q)(1− q2) · · · (1− qk) . (1.76)

The above computation is just a precise way of writing the intuitive fact that the most natural
way of computing the coefficient of qn in 1/(1− q)(1− q2) · · · (1− qk) entails computing all
the partitions of n with largest part at most k. If we let k →∞, then we obtain the famous
generating function ∑

n≥0

p(n)qn =
∏

i≥1

1

1− qi . (1.77)

Equations (1.76) and (1.77) can be considerably generalized. The following result, although
by no means the most general possible, will suffice for our purposes.

1.8.1 Proposition. For each i ∈ P, fix a set Si ⊆ N. Let S = (S1, S2, . . . ), and define P (S)
to be the set of all partitions λ such that if the part i occurs mi = mi(λ) times, then mi ∈ Si.
Define the generating function in the variables q = (q1, q2, . . . ),

F (S, q) =
∑

λ∈P (S)

q
m1(λ)
1 q

m2(λ)
2 · · · .
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Then

F (S, q) =
∏

i≥1

(∑

j∈Si

qji

)
. (1.78)

Proof. The reader should be able to see the validity of this result by “inspection.” The
coefficient of qm1

1 qm2
2 · · · in the right-hand side of (1.78) is 1 if each mi ∈ Sj , and 0 otherwise,

which yields the desired result.

1.8.2 Corollary. Preserve the notation of the previous proposition, and let p(S, n) denote
the number of partitions of n belonging to P (S), that is,

p(S, n) = #{λ ⊢ n : λ ∈ P (S)}.

Then
∑

n≥0

p(S, n)qn =
∏

i≥1

(∑

j∈Si

qij

)
.

Proof. Put each qi = qi in Proposition 1.8.1.

Let us now give a sample of some of the techniques and results from the theory of partitions.
First we give an idea of the usefulness of Young diagrams and Ferrers diagrams.

1.8.3 Proposition. For any partition λ = (λ1, λ2, . . . ) we have

∑

i≥1

(i− 1)λi =
∑

i≥1

(
λ′i
2

)
. (1.79)

Proof. Place an i − 1 in each square of row i of the Young diagram of λ. For instance, if
λ = 5322 we get

0 0 0 0 0

1 1 1

2 2

3 3

If we add up all the numbers in the diagram by rows, then we obtain the left-hand side of
(1.79). If we add up by columns, then we obtain the right-hand side.

1.8.4 Proposition. Let c(n) denote the number of self-conjugate partitions λ of n, i.e.,
λ = λ′. Then ∑

n≥0

c(n)qn = (1 + q)(1 + q3)(1 + q5) · · · . (1.80)
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Figure 1.16: The diagonal hooks of the self-conjugate partition 54431

Proof. Let λ be a self-conjugate partition. Consider the “diagonal hooks” of the Ferrers
diagram of λ ⊢ n, as illustrated in Figure 1.16 for the partition λ = 54431. The number of
dots in each hook form a partition µ of n into distinct odd parts. For Figure 1.16 we have
µ = 953. The map λ 7→ µ is easily seen to be a bijection from self-conjugate partitions of
n to partitions of n into distinct odd parts. The proof now follows from the special case
Si = {0, 1} if i is odd, and Si = {0} if i is even, of Corollary 1.8.2 (though it should be
obvious by inspection that the right-hand side of (1.80) is the generating function for the
number of partitions of n into distinct odd parts).

There are many results in the theory of partitions that assert the equicardinality of two
classes of partitions. The quintessential example is given by the following result.

1.8.5 Proposition. Let q(n) denote the number of partitions of n into distinct parts and
podd(n) the number of partitions of n into odd parts. Then q(n) = podd(n) for all n ≥ 0.

First proof (generating functions). Setting each Si = {0, 1} in Corollary 1.8.2 (or by direct
inspection), we have

∑

n≥0

q(n)qn = (1 + q)(1 + q2)(1 + q3) · · ·

=
1− q2

1− q ·
1− q4

1− q2
· 1− q

6

1− q3
· · ·

=

∏
n≥1(1− q2n)∏
n≥1(1− qn)

=
1

(1− q)(1− q3)(1− q5) · · · . (1.81)

Again by Corollary 1.8.2 or by inspection, we have

1

(1− q)(1− q3)(1− q5) · · · =
∑

n≥0

podd(n)qn,

and the proof follows.

Second proof (bijective). Naturally a combinatorial proof of such a simple and elegant result
is desired. Perhaps the simplest is the following. Let λ be a partition of n into odd parts,
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Figure 1.17: A second bijective proof that q(n) = podd(n)

with the part 2j − 1 occurring rj times. Define a partition µ of n into distinct parts by
requiring that the part (2j − 1)2k, k ≥ 0, appears in µ if and only the binary expansion of
rj contains the term 2k. We leave the reader to check the validity of this bijection, which
rests on the fact that every positive integer can be expressed uniquely as a product of an
odd positive integer and a power of 2. For instance, if λ = 〈95, 512, 32, 13〉 ⊢ 114, then

114 = 9(1 + 4) + 5(4 + 8) + 3(2) + 1(1 + 2)

= 9 + 36 + 20 + 40 + 6 + 1 + 2,

so µ = (40, 36, 20, 9, 6, 2, 1).

Third proof (bijective). There is a completely different bijective proof which is a good
example of “diagram cutting.” Identify a partition λ into odd parts with its Ferrers diagram.
Take each row of λ, convert it into a self-conjugate hook, and arrange these hooks diagonally
in decreasing order. Now connect the upper left-hand corner u with all dots in the “shifted
hook” of u, consisting of all dots directly to the right of u and directly to the southeast of
u. For the dot v directly below u (when |λ| > 1), connect it to all the dots in the conjugate
shifted hook of u. Now take the northwest-most remaining dot above the main diagonal and
connect it to its shifted hook, and similarly connect the northwest-most dot below the main
diagonal with its conjugate shifted hook. Continue until all the entire diagram has been
partitioned into shifted hooks and conjugate shifted hooks. The number of dots in these
hooks form the parts of a partition µ of n into distinct parts. Figure 1.17 shows the case
λ = 9955511 and µ = (11, 8, 7, 6, 3). We trust that this figure will make the above rather
vague description of the map λ 7→ µ clear. It is easy to check that this map is indeed a
bijection from partitions of n into odd parts to partitions of n into distinct parts.

There are many combinatorial identities asserting that a product is equal to a sum that can
be interpreted in terms of partitions. We give three of the simplest below, relegating some
more interesting and subtle identities to the exercises. The second identity below is related
to the concept of the rank rank(λ) of a partition λ = (λ1, λ2, . . . ), defined to be the largest
i for which λi ≥ i. Equivalently, rank(λ) is the length of the main diagonal in the (Ferrers
or Young) diagram of λ. It is also the side length of the largest square in the diagram of λ.

71



Figure 1.18: The Durfee square of the partition 75332

We can place this square to include the first dot or box in the first row of the diagram, in
which case it is called the Durfee square of λ. Figure 1.18 shows the Young diagram of the
partition λ = 75332 of rank 3, with the Durfee square shaded.

1.8.6 Proposition. (a) We have

1∏

i≥1

(1− xqi)
=
∑

k≥0

xkqk

(1− q)(1− q2) · · · (1− qk) . (1.82)

(b) We have

1∏

i≥1

(1− xqi)
=
∑

k≥0

xkqk
2

(1− q) · · · (1− qk)(1− xq) · · · (1− xqk) .

(c) We have
∏

i≥1

(1 + xqi) =
∑

k≥0

xkq(
k+1
2 )

(1− q)(1− q2) · · · (1− qk) . (1.83)

Proof. (a) It should be clear by inspection that

1∏

i≥1

(1− xqi)
=
∑

λ

xℓ(λ)q|λ|, (1.84)

where λ ranges over all partitions of all n ≥ 0. We can obtain λ by first choosing ℓ(λ) = k.
It follows from equation (1.76) that

∑

λ
ℓ(λ)=k

q|λ| =
qk

(1− q)(1− q2) · · · (1− qk) ,

and the proof follows.
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We should also indicate how (1.82) can be proved nonbijectively, since the technique is useful
in other situations. Let

F (x, q) =
1∏

i≥1

(1− xqi)
.

Clearly F (x, q) = F (xq, q)/(1 − xq), and F (x, q) is uniquely determined by this functional
equation and the initial condition F (0, q) = 1. Now let

G(x, q) =
∑

k≥0

xkqk

(1− q)(1− q2) · · · (1− qk) .

Then

G(xq, q) =
∑

k≥0

xkq2k

(1− q)(1− q2) · · · (1− qk)

=
∑

k≥0

xkqk

(1− q)(1− q2) · · · (1− qk−1)

(
1

1− qk − 1

)

= G(x, q)− xqG(x, q)

= (1− xq)G(x, q).

Since G(x, 0) = 1, the proof follows.

(b) Again we use (1.84), but now the terms on the right-hand side will correspond to rank(λ)
rather than ℓ(λ). If rank(λ) = k, then when we remove the Durfee square from the diagram
of λ, we obtain disjoint diagrams of partitions µ and ν such that ℓ(µ) ≤ k and ν1 = ℓ(ν ′) ≤ k.
(For the partition λ = 75332 of Figure 1.18 we have µ = 42 and ν = 32.) Every λ of rank k
is obtained uniquely from such µ and ν. Moreover, |λ| = k2 + |µ|+ |ν| and ℓ(λ) = k + ℓ(ν).
It follows that

∑

λ
rank(λ)=k

xℓ(λ)q|λ| = xkqk
2 1

(1− q) · · · (1− qk) ·
1

(1− xq) · · · (1− xqk) .

Summing over all k ≥ 0 completes the proof.

(c) Now the coefficient of xkqn in the left-hand side is the number of partitions of n into k
distinct parts λ1 > · · · > λk > 0. Then (λ1 − k, λ2 − k + 1, . . . , λk − 1) is a partition of
n−

(
k+1
2

)
into at most k parts, from which the proof follows easily.

The generating function (obtained e.g. from (1.82) by substituting x/q for x, or by a simple
modification of either of our two proofs of Proposition 1.8.6(a))

1∏

i≥0

(1− xqi)
=
∑

k≥0

xk

(1− q)(1− q2) · · · (1− qk)
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is known as the q-exponential function, since (1− q)(1− q2) · · · (1− qn) = (1− q)n(n)!. We
could even replace x with (1− q)x, getting

1∏

i≥0

(1− x(1− q)qi)
=
∑

k≥0

xk

(k)!
. (1.85)

The right-hand side reduces to ex upon setting q = 1, though we cannot also substitute
q = 1 on the left-hand side to obtain ex. It is an instructive exercise (Exercise 1.101) to
work out why this is the case. In other words, why does substituting (1− q)x for x and then
setting q = 1 in two expressions for the same power series not maintain the equality of the
two series?

A generating function of the form

F (x) =
∑

n≥0

an
xn

(1− q)(1− q2) · · · (1− qn)

is called an Eulerian or q-exponential generating function. It is the natural q-analogue of an
exponential generating function. We could just as well use

F (x(1− q)) =
∑

n≥0

an
xn

(n)!
(1.86)

in place of F (x). The use of F (x) is traditional, though F (x(1 − q)) is more natural com-
binatorially and has the virtue that setting q = 1 in the right-hand side of (1.86) gives an
exponential generating function. We will see especially in the general theory of generating
functions developed in Section 3.18 why the right-hand side of (1.86) is combinatorially
“natural.”

Proposition 1.8.6(a) and (c) have interesting “finite versions,” where in addition to the
number of parts we also restrict the largest part. Recall that p(j, k, n) denotes the number
of partitions λ ⊢ n for which λ1 ≤ j and ℓ(λ) ≤ k. The proof of Proposition 1.8.6(a) then
generalizes mutatis mutandis to give the following formula:

1
j∏

i=0

(1− xqi)
=

∑

k≥0

xk
∑

n≥0

p(j, k, n)qn

=
∑

k≥0

xk
(

j + k

j

)
.

By exactly the same reasoning, using the proof of Proposition 1.8.6(c), we obtain

j−1∏

i=0

(1 + xqi) =

j∑

k=0

xkq(
k
2)
(

j

k

)
. (1.87)
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Figure 1.19: The pentagonal numbers 1, 5, 12, 22

Equation (1.87) is known as the q-binomial theorem, since setting q = 1 gives the usual
binomial theorem. It is a good illustration of the difficulty of writing down a q-analogue of
an identity by inspection; it is difficult to predict without any prior insight why the factor

q(
k
2) appears in the terms on the right.

Of course there are many other ways to prove the q-binomial theorem, including a straight-
forward induction on j. We can also give a finite field proof, where we regard q as a prime
power. For each factor 1 + xqi of the left-hand side of (1.87), choose either the term 1 or
xqi. If the latter, then choose a row vector γi of length j whose first nonzero coordinate is
a 1, which occurs in the (j − i)th position. Thus there are qi choices for γi. After making
this choice for all i, let V be the span in Fjq of the chosen γi’s. If we chose k of the γi’s, then
dimV = k. Let M be the k × j matrix whose rows are the γi’s in decreasing order of the
index i. There is a unique k × k upper unitriangular matrix T (i.e., T is upper triangular
with 1’s on the main diagonal) for which TM is in row-reduced echelon form. Reversing
these steps, for each k-dimensional subspace V of Fjq, let A be the unique k × j matrix in

row-reduced echelon form whose row space is V . There are q(
k
2) k × k upper unitriangular

matrices T −1, and for each of them the rows of M = T−1A define a choice of γi’s. It follows

that we obtain every k-dimensional subspace of Fjq as a span of γi’s exactly q(
k
2) times, and

the proof follows.

Variant. There is a slight variant of the above finite field proof of (1.87) which has less
algebraic significance but is more transparent combinatorially. Namely, once we have chosen
the k × j matrix M , change every entry above the first 1 in any row to 0. We then obtain
a matrix in row-reduced echelon form. There are

(
k
2

)
entries of M that are changed to 0, so

we get every row-reduced echelon matrix with k rows exactly q(
k
2) times. The proof follows

as before.

For yet another proof of equation (1.87) based on finite fields, see Exercise 3.119.

We next turn to a remarkable product expansion related to partitions. It is the archetype for
a vast menagerie of similar results. We will give only a bijective proof; it is also an interesting
challenge to find an algebraic proof. The result is called the pentagonal number formula or
pentagonal number theorem because of the appearance of the numbers k(3k − 1)/2, which
are known as pentagonal numbers. See Figure 1.19 for an explanation of this terminology.
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1.8.7 Proposition. We have

∏

k≥1

(1− xk) =
∑

n∈Z

(−1)nxn(3n−1)/2 (1.88)

= 1 +
∑

n≥1

(−1)n
(
xn(3n−1)/2 + xn(3n+1)/2

)
(1.89)

= 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − · · · .

Proof. Let f(n) = qe(n)−qo(n), where qe(n) (respectively, qo(n)) is the number of partitions
of n into an even (respectively, odd) number of distinct parts. It should be clear that

∏

k≥1

(1− xk) =
∑

n≥0

f(n)xn.

Hence we need to show that

f(n) =

{
(−1)k, if n = k(3k ± 1)/2

0, otherwise.
(1.90)

Let Q(n) denote the set of all partitions of n into distinct parts. We will prove (1.90) when
n 6= k(3k±1)/2 by defining an involution ϕ : Q(n)→ Q(n) such that ℓ(λ) 6≡ ℓ(ϕ(λ)) (mod2)
for all λ ∈ Q(n). When n = k(3k±1)/2, we will define a partition µ ∈ Q(n) and an involution
ϕ : Q(n)− {µ} → Q(n)− {µ} such that ℓ(λ) 6≡ ℓ(ϕ(λ)) (mod2) for all λ ∈ Q(n)− {µ}, and
moreover ℓ(µ) = k. Such a method of proof is called a sign-reversing involution argument.
The involution ϕ changes the sign of (−1)ℓ(λ) and hence cancels out all terms in the expansion

∑

λ∈Q(n)

(−1)ℓ(λ)

except those terms indexed by partitions λ not in the domain of ϕ. These partitions form a
much smaller set that can be analyzed separately.

The definition of ϕ is quite simple. Let Lλ denote the last row of the Ferrers diagram of λ,
and let Dλ denote the set of last elements of all rows i for which λi = λ1− i+1. Figure 1.20
shows Lλ and Dλ for λ = 76532. If #Dλ < #Lλ, define ϕ(λ) to be the partition obtained
from (the Ferrers diagram of) λ by removing Dλ and replacing it under Lλ to form a new
row. Similarly, if #Lλ ≤ #Dλ, define ϕ(λ) to be the partition obtained from (the Ferrers
diagram of) λ by removing Lλ and replacing it parallel and to the right of Dλ, beginning at
the top row. Clearly ϕ(λ) = µ if and only if ϕ(µ) = λ. See Figure 1.21 for the case λ = 76532
and µ = 8753. It is evident that ϕ is an involution where it is defined; the problem is that
the diagram defined by ϕ(λ) may not be a valid Ferrers diagram. A little thought shows
that there are exactly two situations when this is the case. The first case occurs when λ has
the form (2k − 1, 2k − 2, . . . , k). In this case |λ| = k(3k − 1)/2 and ℓ(λ) = k. The second
bad case is λ = (2k, 2k − 1, . . . , k + 1). Now |λ| = k(3k + 1)/2 and ℓ(λ) = k. Hence ϕ is a
sign-reversing involution on all partitions λ, with the exception of a single partition of length
k of numbers of the form k(3k ± 1)/2, and the proof follows.
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Dλ

Lλ

Figure 1.20: The sets Lλ and Dλ for λ = 76532

ϕ

Figure 1.21: The involution ϕ from the proof of the Pentagonal Number Formula

We can rewrite the Pentagonal Number Formula (1.88) in the form
(∑

n≥0

p(n)xn

)(∑

n∈Z

(−1)nxn(3n−1)/2

)
= 1.

If we equate coefficients of xn on both sides, then we obtain a recurrence for p(n):

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− · · · . (1.91)

It is understood that p(n) = 0 for n < 0, so the number of terms on the right-hand side is
roughly 2

√
2n/3. For instance,

p(20) = p(19) + p(18)− p(15)− p(13) + p(8) + p(5)

= 490 + 385− 176− 101 + 22 + 7

= 627.

Equation (1.91) affords the most efficient known method to compute all the numbers p(1), p(2),
. . . , p(n) for given n. Much more sophisticated methods (discussed briefly below) are known
for computing p(n) that don’t involve computing smaller values. It is known, for instance,
that

p(104) = 36167251325636293988820471890953695495016030339315650422081868605887

952568754066420592310556052906916435144.

In fact, p(1015) can be computed exactly, a number with exactly 35,228,031 decimal digits.

It is natural to ask for the rate of growth of p(n). To this end we mention without proof the
famous asymptotic formula

p(n) ∼ eπ
√

2n/3

4
√

3n
. (1.92)

77



For instance, when n = 100 the ratio of the right-hand side to the left is 1.0457 · · · , while
when n = 1000 it is 1.0141 · · · . When n = 10000 the ratio is 1.00444 · · · . There is in fact an
asymptotic series for p(n) that actually converges rapidly to p(n). (Typically, an asymptotic
series is divergent.) This asymptotic series is the best known method for evaluating p(n) for
large n.
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1.9 The Twelvefold Way

In this section we will be concerned with counting functions between two sets. Let N and
X be finite sets with #N = n and #X = x. We wish to count the number of functions
f : N → X subject to certain restrictions. There will be three restrictions on the functions
themselves and four restrictions on when we consider two functions to be the same. This
gives a total of twelve counting problems, whose solution is called the Twelvefold Way.

The three restrictions on the functions f : N → X are the following.

(a) f is arbitrary (no restriction)

(b) f is injective (one-to-one)

(c) f is surjective (onto)

The four interpretations as to when two functions are the same (or equivalent) come about
from regarding the elements of N and X as “distinguishable” or “indistinguishable.” Think
of N as a set of balls and X as a set of boxes. A function f : N → X consists of placing
each ball into some box. If we can tell the balls apart, then the elements of N are called
distinguishable, otherwise indistinguishable. Similarly if we can tell the boxes apart, then
then elements of X are called distinguishable, otherwise indistinguishable. For example,
suppose N = {1, 2, 3}, X = {a, b, c, d}, and define functions f, g, h, i : N → X by

f(1) = f(2) = a, f(3) = b
g(1) = g(3) = a, g(2) = b
h(1) = h(2) = b, h(3) = d
i(2) = i(3) = b, i(1) = c.

If the elements of both N and X are distinguishable, then the functions have the “pictures”
shown by Figure 1.22. All four pictures are different, and the four functions are inequivalent.
Now suppose that the elements of N (but not X) are indistinguishable. This assumption
corresponds to erasing the labels on the balls. The pictures for f and g both become as
shown in Figure 1.23, so f and g are equivalent. However, f , h, and i remain inequivalent.
If the elements of X (but not N) are indistinguishable, then we erase the labels on the
boxes. Thus f and h both have the picture shown in Figure 1.24. (The order of the boxes
is irrelevant if we can’t tell them apart.) Hence f and h are equivalent, but f , g, and i are
inequivalent. Finally if the elements of both N and X are indistinguishable, then all four
functions have the picture shown in Figure 1.25, so all four are equivalent.

A rigorous definition of the above notions of equivalence is desirable. Two functions f, g :
N → X are said to be equivalent with N indistinguishable if there is a bijection u : N → N
such that f(u(a)) = g(a) for all a ∈ N . Similarly f and g are equivalent with X indistin-
guishable if there is a bijection v : X → X such that v(f(a)) = g(a) for all a ∈ N . Finally, f
and g are equivalent with N and X indistinguishable if there are bijections u : N → N and
v : X → X such that v(f(u(a))) = g(a) for all a ∈ N . These three notions of equivalence
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1 2 3

1 3 2

31 2

12 3

d

a b c d

a b c

a b c d

a b c d

Figure 1.22: Four functions with distinguishable balls and boxes

a b c d

Figure 1.23: Balls indistinguishable

1 2 3

Figure 1.24: Boxes indistinguishable

Figure 1.25: Balls and boxes indistinguishable
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are all equivalence relations, and the number of “different” functions with respect to one of
these equivalences simply means the number of equivalence classes. If f and g are equiva-
lent (in any of the above ways), then f is injective (respectively, surjective) if and only if
g is injective (respectively, surjective). We therefore say that the notions of injectivity and
surjectivity are compatible with the equivalence relation. By the “number of inequivalent
injective functions f : N → X,” we mean the number of equivalence classes all of whose
elements are injective.

We are now ready to present the Twelvefold Way. The twelve entries are numbered and will
be discussed individually. The table gives the number of inequivalent functions f : N → X
of the appropriate type, where #N = n and #X = x.

The Twelvefold Way
Elements

ofN
Elements

ofX
Any f Injective f Surjective f

dist. dist. 1. xn 2. (x)n
3. x!S(n, x)

indist. dist. 4.
((
x
n

))
5.
(
x
n

)
6.
((

x
n−x
))

dist. indist.
7. S(n, 0) + S(n, 1)

+ · · ·+ S(n, x)

8. 1 if n ≤ x
0 if n > x

9. S(n, x)

indist. indist.
10. p0(n) + p1(n)

+ · · ·+ px(n)

11. 1 if n ≤ x
0 if n > x

12. px(n)

Discussion of Twelvefold Way Entries

1. For each a ∈ N , f(a) can be any of the x elements of X. Hence there are xn functions.

2. Say N = {a1, . . . , an}. Choose f(a1) in x ways, then f(a2) in x − 1 ways, and so on,
giving x(x− 1) · · · (x− n+ 1) = (x)n choices in all.

3.∗ A partition of a finite set N is a collection π = {B1, B2, . . . , Bk} of subsets of N such
that

a. Bi 6= ∅ for each i

b. Bi ∩ Bj = ∅ if i 6= j

c. B1 ∪ B2 ∪ · · · ∪ Bk = N .

(Contrast this definition with that of an ordered partition in the proof of Lemma 1.4.11,
for which the subsets B1, . . . , Bk are linearly ordered.) We call Bi a block of π, and we
say that π has k blocks, denoted |π| = k. Define S(n, k) to be the number of partitions of
an n-set into k-blocks. The number S(n, k) is called a Stirling number of the second kind.
(Stirling numbers of the first kind were defined preceding Lemma 1.3.6.) By convention, we
put S(0, 0) = 1. We use notation such as 135-26-4 to denote the partition of [6] with blocks
{1, 3, 5}, {2, 6}, {4}. For instance, S(4, 2) = 7, corresponding to the partitions 123-4, 124-3,
134-2, 234-1, 12-34, 13-24, 14-23. The reader should check that for n ≥ 1, S(n, k) = 0 if
k > n, S(n, 0) = 0, S(n, 1) = 1, S(n, 2) = 2n−1 − 1, S(n, n) = 1, S(n, n − 1) =

(
n
2

)
, and

∗Discussion of entry 4 begins on page 87.
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S(n, n− 2) =
(
n
3

)
+ 3
(
n
4

)
. (See Exercise 43.)

Note. There is a simple bijection between the equivalence relations ∼ on a set X (which
may be infinite) and the partitions of X, viz., the equivalence classes of ∼ form a partition
of X.

The Stirling numbers of the second kind satisfy the following basic recurrence:

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1). (1.93)

Equation (1.93) is proved as follows. To obtain a partition of [n] into k blocks, we can
partition [n− 1] into k blocks and place n into any of these blocks in kS(n− 1, k) ways, or
we can put n in a block by itself and partition [n − 1] into k − 1 blocks in S(n − 1, k − 1)
ways. Hence (1.93) follows. The recurrence (1.93) allows one to prove by induction many
results about the numbers S(n, k), though frequently there will be preferable combinatorial
proofs. The total number of partitions of an n-set is called a Bell number and is denoted
B(n). Thus B(n) =

∑n
k=1 S(n, k), n ≥ 1. The values of B(n) for 1 ≤ n ≤ 10 are given by

the following table.

n 1 2 3 4 5 6 7 8 9 10
B(n) 1 2 5 15 52 203 877 4140 21147 115975

The following is a list of some basic formulas concerning S(n, k) and B(n).

S(n, k) =
1

k!

k∑

i=0

(−1)k−i
(
k

i

)
in (1.94a)

∑

n≥k
S(n, k)

xn

n!
=

1

k!
(ex − 1)k, k ≥ 0 (1.94b)

∑

n≥k
S(n, k)xn =

xk

(1− x)(1− 2x) · · · (1− kx) (1.94c)

xn =
n∑

k=0

S(n, k)(x)k (1.94d)

B(n+ 1) =
n∑

i=0

(
n

i

)
B(i), n ≥ 0 (1.94e)

∑

n≥0

B(n)
xn

n!
= exp(ex − 1) (1.94f)

We now indicate the proofs of (1.94a)–(1.94f). For all except (1.94d) we describe non-
combinatorial proofs, though with a bit more work combinatorial proofs can be given (see
e.g. Example 5.2.4). Let Fk(x) =

∑
n≥k S(n, k)xn/n!. Clearly F0(x) = 1. From (1.93) we

have

Fk(x) = k
∑

n≥k
S(n− 1, k)

xn

n!
+
∑

n≥k
S(n− 1, k − 1)

xn

n!
.
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Differentiate both sides to obtain

F ′
k(x) = kFk(x) + Fk−1(x). (1.95)

Assume by induction that Fk−1(x) = 1
(k−1)!

(ex − 1)k−1. Then the unique solution to (1.95)

whose coefficient of xk is 1/k! is given by Fk(x) = 1
k!

(ex − 1)k. Hence (1.94b) is true by
induction. To prove (1.94a), write

1

k!
(ex − 1)k =

1

k!

k∑

j=0

(−1)k−j
(
k

j

)
ejx

and extract the coefficient of xn. To prove (1.94f), sum (1.94b) on k to obtain

∑

n≥0

B(n)
xn

n!
=
∑

k≥0

1

k!
(ex − 1)k = exp(ex − 1).

Equation (1.94e) may be proved by differentiating (1.94f) and comparing coefficients, and
it is also quite easy to give a direct combinatorial proof (Exercise 107). Equation (1.94c)
is proved analogously to our proof of (1.94b), and can also be given a proof analogous to
that of Proposition 1.3.7 (Exercise 45). It remains to prove (1.94d), and this will be done
following the next paragraph.

We now verify entry 3 of the Twelvefold Way. We have to show that the number of sur-
jective functions f : N → X is x!S(n, x). Now x!S(n, x) counts the number of ways of
partitioning N into x blocks and then linearly ordering the blocks, say (B1, B2, . . . , Bx). Let
X = {b1, b2, . . . , bx}. We associate the ordered partition (B1, B2, . . . , Bx) with the surjec-
tive function f : N → X defined by f(i) = bj if i ∈ Bj . (More succinctly, we can write
f(Bj) = bj .) This establishes the desired correspondence.

We can now give a simple combinatorial proof of (1.94d). The left-hand side is the total
number of functions f : N → X. Each such function is surjective onto a unique subset
Y = f(N) of X satisfying #Y ≤ n. If #Y = k, then there are k!S(n, k) such functions, and
there are

(
x
k

)
choices of subsets Y of X with #Y = k. Hence

xn =

n∑

k=0

k!S(n, k)

(
x

k

)
=

n∑

k=0

S(n, k)(x)k. (1.96)

Equation (1.94d) has the following additional interpretation. The set P = K[x] of all
polynomials in the indeterminate x with coefficients in the field K forms a vector space over
K. The sets B1 = {1, x, x2, . . . } and B2 = {1, (x)1, (x)2, . . . } are both bases for P. Then
(1.94d) asserts that the (infinite) matrix S = [S(n, k)]k,n∈N is the transition matrix between
the basis B2 and the basis B1. Now consider again equation (1.28) from Section 1.3. If we
change x to −x and multiply by (−1)n we obtain

n∑

k=0

s(n, k)xk = (x)n.
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Thus the matrix s = [s(n, k)]k,n∈N is the transition matrix from B1 to B2, and is therefore
the inverse to the matrix S.

The assertion that the matrices S and s are inverses leads to the following result.

1.9.1 Proposition. a. For all m,n ∈ N, we have

∑

k≥0

S(m, k)s(k, n) = δmn.

b. Let a0, a1, . . . and b0, b1, . . . be two sequences of elements of a field K. The following
two conditions are equivalent:

i. For all n ∈ N,

bn =

n∑

k=0

S(n, k)ak.

ii. For all n ∈ N,

an =

n∑

k=0

s(n, k)bk.

Proof. a. This is just the assertion that the product of the two matrices S and s is the
identity matrix [δmn].

b. Let a and b denote the (infinite) column vectors (a0, a1, . . . )
t and (b0, b1, . . . )

t, respec-
tively (where t denotes transpose). Then (i) asserts that Sa = b. Multiply on the left
by s to obtain a = sb, which is (ii). Similarly (ii) implies (i).

The matrices S and s look as follows:

S =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 3 1 0 0 0 0
0 1 7 6 1 0 0 0 · · ·
0 1 15 25 10 1 0 0
0 1 31 90 65 15 1 0
0 1 63 301 350 140 21 1

...
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s =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 2 −3 1 0 0 0 0
0 −6 11 −6 1 0 0 0 · · ·
0 24 −50 35 −10 1 0 0
0 −120 274 −225 85 −15 1 0
0 720 −1764 1624 −735 175 −21 1

...




Equation (1.28) and (1.94d) also have close connections with the calculus of finite differences,
about which we will say a very brief word here. Given a function f : Z → K (or possibly
f : N→ K), where K is a field of characteristic 0, define a new function ∆f , called the first
difference of f , by

∆f(n) = f(n+ 1)− f(n).

We call ∆ the first difference operator, and a succinct but greatly oversimplified definition
of the calculus of finite differences would be that it is the study of the operator ∆. We may
iterate ∆ k times to obtain the k-th difference operator,

∆kf = ∆(∆k−1f).

The field element ∆kf(0) is called the k-th difference of f at 0. Define another operator
E, called the shift operator, by Ef(n) = f(n + 1). Thus ∆ = E − 1, where 1 denotes the
identity operator. We now have

∆kf(n) = (E − 1)kf(n)

=

k∑

i=0

(−1)k−i
(
k

i

)
Eif(n)

=

k∑

i=0

(−1)k−i
(
k

i

)
f(n+ i). (1.97)

In particular,

∆kf(0) =

k∑

i=0

(−1)k−i
(
k

i

)
f(i), (1.98)

which gives an explicit formula for ∆kf(0) in terms of the values f(0), f(0), . . . , f(k). We
can easily invert (1.97) and express f(n) in terms of the numbers ∆if(0). Namely,

f(n) = Enf(0)

= (1 + ∆)nf(0)

=
n∑

k=0

(
n

k

)
∆kf(0). (1.99)
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Note. The operator ∆ is a “discrete analogue” of the derivative operator D = d
dx

. It is an
instructive exercise to find finite difference analogues of concepts and results from calculus.
For instance, the finite difference analogue of ex is 2n, since Dex = ex and ∆2n = 2n.
Similarly, the finite difference analogue of xn is (x)n, since Dxn = nxn−1 and ∆(x)n =
n(x)n−1. The finite difference analogue of the Taylor series expansion

f(x) =
∑

k≥0

1

k!
(Dkf(0))xk

is just equation (1.99), where we should write
(
n
k

)
= 1

k!
(n)k to make the analogy even more

clear. A unified framework for working with operators such as D and ∆ is provided by
Exercise 5.37.

Now given the function f : Z→ K, write on a line the values

· · · f(−2) f(−1) f(0) f(1) f(2) · · · .
If we write below the space between any two consecutive terms f(i), f(i+1) their difference
f(i+ 1)− f(i) = ∆f(i), then we obtain the sequence

· · · ∆f(−2) ∆f(−1) ∆f(0) ∆f(1) ∆f(2) · · · .
Iterating this procedure yields the difference table of the function f . The kth row (regarding
the top row as row 0) consists of the values ∆kf(n). The diagonal beginning with f(0) and
extending down and to the right consists of the differences at 0, i.e., ∆kf(0). For instance,
let f(n) = n4 (where K = Q, say). The difference table (beginning with f(0)) looks like

0 1 16 81 256 625 · · ·
1 15 65 175 369

14 50 110 194
36 60 84

24 24
0

. . .

Hence by (1.99),

n4 =

(
n

1

)
+ 14

(
n

2

)
+ 36

(
n

3

)
+ 24

(
n

4

)
+ 0

(
n

5

)
+ · · · .

In this case, since n4 is a polynomial of degree 4 and
(
n
k

)
, for fixed k, is a polynomial of

degree k, the above expansion stops after the term 24
(
n
4

)
, that is, ∆k04 = 0 if k > 4 (or more

generally, ∆kn4 = 0 if k > 4). Note that by (1.94d) we have

n4 =
4∑

k=0

k!S(4, k)

(
n

k

)
,

so we conclude 1!S(4, 1) = 1, 2!S(4, 2) = 14, 3!S(4, 3) = 36, 4!S(4, 1) = 24.

There was of course nothing special about the function n4 in the above discussion. The same
reasoning establishes the following result.
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1.9.2 Proposition. Let K be a field of characteristic 0.

(a) A function f : Z→ K is a polynomial of degree at most d if and only if ∆d+1f(n) = 0
(or ∆df(n) is constant).

(b) If the polynomial f(n) of degree at most d is expanded in terms of the basis
(
n
k

)
, 0 ≤

k ≤ d, then the coefficients are ∆kf(0); that is,

f(n) =
d∑

i=0

∆kf(0) ·
(
n

k

)
.

(c) In the special case f(n) = nd we have

∆k0d = k!S(d, k).

1.9.3 Corollary. Let f : Z → K be a polynomial of degree d, where char(K) = 0. A
necessary and sufficient condition that f(n) ∈ Z for all n ∈ Z is that ∆kf(0) ∈ Z, 0 ≤ k ≤ d.
(In algebraic terms, the abelian group of all polynomials f : Z → Z of degree at most d is
free with basis

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
d

)
.)

Let us now proceed to the next entry of the Twelvefold Way.

4. The “balls” are indistinguishable, so we are only interested in how many balls go into
each box b1, b2, . . . , bx. If ν(bi) balls go into box bi, then ν defines an n-element multiset on
X. The number of such multisets is

((
x
n

))
.

5. This is similar to 4, except that each box contains at most one ball. Thus our multiset
becomes a set, and there are

(
x
n

)
n-element subsets of X.

6. Each box bi must contain at least one ball. If we remove one ball from each box, then
we obtain an (n − x)-element multiset on X. The number of such multisets is

((
x

n−x
))

.
Alternatively, we can clearly regard a ball placement as a composition of n into x parts,
whose number is

(
n−1
x−1

)
=
((

x
n−x
))

.

7. Since the boxes are indistinguishable, a function f : N → X is determined by the
nonempty sets f−1(b), b ∈ X, where f−1(b) = {a ∈ N : f(a) = b}. These sets form a
partition π of N , called the kernel or coimage of f . The only restriction on π is that it
can contain no more than x blocks. The number of partitions of N into at most x blocks is
S(n, 0) + S(n, 1) + · · ·+ S(n, x).

8. Each block of the coimage π of f must have one element. There is one such π if x ≥ n;
otherwise there is no such π.

9. If f is surjective, then none of the sets f−1(b) is empty. Hence the coimage π contains
exactly x blocks. The number of such π is S(n, x).

10. Let pk(n) denote the number of partitions of n into k parts, as defined in Section 1.7. A
function f : N → X with N and X both indistinguishable is determined only by the number
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of elements in each block of its coimage π. The actual elements themselves are irrelevant.
The only restriction on these numbers is that they be positive integers summing to n, and
that there can be no more than x of them. In other words, the numbers form a partition of
n into at most x parts. The number of such partitions is p0(n) + p1(n) + · · ·+ px(n). Note
that this number is equal to px(n+ x) (Exercise 66).

11. Same argument as 8.

12. Analogous argument to 9. If f : N → X is surjective, then the coimage π of f has
exactly x blocks, so their cardinalities form a partition of n into exactly x parts.

There are many possible generalizations of the Twelvefold Way and its individual entries.
See the Notes for an extension of the Twelvefold Way to a “Thirtyfold Way.” Another
very natural generalization of some of the Twelvefold Way entries is the following. Let
α = (α1, . . . , αm) ∈ Nm and β = (β1, . . . , βn) ∈ Nn. Suppose that we have αi balls of color
i, 1 ≤ i ≤ m. Balls of the same color are indistinguishable. We also have n distinguishable
boxes B1, . . . , Bn. In how many ways can we place the balls into the boxes so that box Bj

has exactly βj balls? Call this number Nαβ . Similarly define Mαβ to be the number of such
placements with the further condition that each box can contain at most one ball of each
color. Clearly Nαβ = Mαβ = 0 unless

∑
αi =

∑
βj (the total number of balls). Given

a placement of the balls into the boxes, let A be the m × n matrix such that Aij is the
number of balls colored i that are placed in box Bj . It is easy to see that this placement is
enumerated by Nαβ if and only if the ith row sum of A is αi and the jth column sum is βj .
In other words, A has row sum vector row(A) = α and column sum vector col(A) = β. Thus
Nαβ is the number of m× n N-matrices with row(A) = α and col(A) = β. Similarly, Mαβ is
the number of m × n (0, 1)-matrices with row(A) = α and col(A) = β. In general there is
no simple formula for Nαβ or Mαβ, but there are many interesting special cases, generating
functions, algebraic connections, etc. See for instance Proposition 4.6.2, Proposition 5.5.8–
Corollary 5.5.11, and the many appearances of Nαβ and Mαβ in Chapter 7.
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1.10 Two q-analogues of permutations

We have seen that the vector space Fnq is a good q-analogue of the n-element set [n], and a k-
dimensional subspace of Fnq is a good q-analogue of a k-element subset of [n]. See in particular
the finite field proofs of Proposition 1.7.3 and the q-binomial theorem (equation (1.87)).
In this section we pursue this line of thought further by considering the q-analogue of a
permutation of the set [n]. It turns out that there are two good q-analogues that are closely
related. This section involves some linear algebra over finite fields and is unrelated to the
rest of the text; it may be omitted without significant loss of continuity.

1.10.1 A q-analogue of permutations as bijections

A permutation w of the set [n] may be regarded as an automorphism of [n], i.e., a bijection
w : [n] → [n] preserving the “structure” of [n]. Since [n] is being regarded simply as a set,
any bijection w : [n]→ [n] preserves the structure. Hence one q-analogue of a permutation w
is a bijection A : Fnq → Fnq preserving the structure of Fnq . The structure under consideration
is that of a vector space, so A is simply an invertible linear transformation on Fnq . The set of
all such linear transformations is denoted GL(n, q), the general linear group of degree n over
Fq. Thus GL(n, q) is a q-analogue of the symmetric group Sn. We will sometimes identify
a linear transformation A ∈ GL(n, q) with its matrix with respect to the standard basis
e1, . . . , en of Fnq , i.e., ei is the ith unit coordinate vector (0, 0, . . . , 0, 1, 0, . . . , 0) (with 1 in
the ith coordinate). Hence GL(n, q) may be identified with the group of all n× n invertible
matrices over Fq.

For any of the myriad properties of permutations, we can try to find a corresponding property
of linear transformations over Fq. Here we will consider the following two properties: the
total number of permutations in Sn, and the distribution of permutations by cycle type.
The total number of elements (i.e., the order) of GL(n, q) is straightforward to compute.

1.10.1 Proposition. We have

#GL(n, q) = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) (1.100)

= q(
n
2)(q − 1)n(n)!.

Proof. Regard A ∈ GL(n, q) as an n × n matrix. An arbitrary n × n matrix over Fq is
invertible if and only if its rows are linearly independent. There are therefore qn− 1 choices
for the first row; it can be any nonzero element of Fnq . There are q vectors in Fnq linearly
dependent on the first row, so there are qn− q choices for the second row. Since the first two
rows are linearly independent, they span a subspace V of Fnq of dimension 2. The third row
can be any vector in Fnq not in V , so there are qn − q2 choices for the third row. Continuing
this line of reasoning, there will be qn−qi−1 choices for the ith row, so we obtain (1.100).

The q-analogue of the cycle type of a permutation is more complicated. Two elements
u, v ∈ Sn have the same cycle type if and only if they are conjugate in Sn, i.e., if and only
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if there exists a permutation w ∈ Sn such that v = wuw−1. Hence a reasonable analogue of
cycle type for GL(n, q) is the conjugacy class of an element of GL(n, q). In this context it is
better to work with all n×n matrices over Fq and then specialize to invertible matrices. Let
Mat(n, q) denote the set (in fact, an Fq-algebra of dimension n2) of all n× n matrices over
Fq. We briefly review the theory of the adjoint action of GL(n, q) on Mat(n, q). The proper
context for understanding this theory is commutative algebra, so we first review the relevant
background. There is nothing special about finite fields in this theory, so we work over any
field K, letting GL(n,K) (respectively, Mat(n,K)) denote the set of invertible (respectively,
arbitrary) n× n matrices over K.

Let R be a principal ideal domain (PID) that is not a field, and let M be a finitely-generated
R-module. Two irreducible (= prime, for PID’s) elements x, y ∈ R are equivalent if xR = yR,
i.e., if y = ex for some unit e. Let P be a maximal set of inequivalent irreducible elements
of R. The structure theorem for finitely-generated modules over PID’s asserts that M is
isomorphic to a (finite) direct sum of copies of R and R/xiR for x ∈ P and i ≥ 1. Moreover,
the terms in this direct sum are unique up to the order of summands. Thus there is a unique
k ≥ 0, and for each x ∈ P there is a unique partition λ(x) = (λ1(x), λ2(x), . . . ) (which may
be the empty partition), such that

M ∼= Rk ⊕
⊕

x∈P

⊕

i≥1

R/xλiR.

If moreover M has finite length d (i.e., d is the largest integer j for which there is a proper
chain M0 ⊂M1 ⊂ · · · ⊂Mj of submodules of M), then k = 0.

Now consider the case where R = K[u], well-known to be a PID. Let I = I(K) (abbreviated
to I(q) when K = Fq) denote the set of all nonconstant monic irreducible polynomials
f(u) over K, and let Par denote the set of all partitions of all nonnegative integers. Given
M ∈ Mat(n,K), then M defines a K[u]-module structure on Kn, where the action of u is
that of M . Let us denote this K[u]-module by K[M ]. Since K[M ] has finite length as a
K[u]-module (or even as a vector space over K), we have an isomorphism

K[M ] ∼=
⊕

f∈I(K)

⊕

i≥1

K[u]/
(
f(u)λi(f)

)
. (1.101)

Moreover, the characteristic polynomial det(zI −M) of M is given by

det(zI −M) =
∏

f∈I(K)

f(z)|λ(f)|.

Now GL(n,K) acts on Mat(n,K) by conjugation, i.e., if A ∈ GL(n,K) and M ∈ Mat(n, q),
then A ·M= AMA−1. (This action is called the adjoint representation or adjoint action
of GL(n,K).) Moreover, two matrices M and N in Mat(n,K) are in the same orbit of
this action if and only if K[M ] and K[N ] are isomorphic as K[u]-modules. Hence by equa-
tion (1.101) we can index the orbit of M by a function

ΦM : I(K)→ Par,
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where ∑

f∈I(K)

|ΦM(f)| · deg(f) = n, (1.102)

namely, ΦM (f) = λ(f). We call the function Φ = ΦM the orbit type of M . It is the analogue
for Mat(n,K) of the cycle type of a permutation w ∈ Sn.

We now restrict ourselves to the case K = Fq. As a first application of the description of
the orbits of GL(n, q) acting adjointly on Mat(n, q), we can find the number of orbits. To do
so, define β(n, q) = β(n) to be the number of monic irreducible polynomials f(z) of degree
n over Fq. It is well-known (see Exercise 2.7) that

β(n, q) =
1

n

∑

d|n
µ(d)qn/d. (1.103)

1.10.2 Proposition. Let ω(n, q) denote the number of orbits of the adjoint action of GL(n, q)
on Mat(n, q), or equivalently, the number of different functions Φ : I(q) → Par satisfying
(1.102). Then

ω(n, q) =
∑

j

pj(n)qj,

where pj(n) denotes the number of partitions of n into j parts. Equivalently,

∑

n≥0

ω(n, q)xn =
∏

j≥1

(1− qxj)−1.

Proof. We have

∑

n≥0

ω(n, q)xn =
∑

Φ:I→Par

x
P

f∈I |Φ(f)|·deg(f)

=
∏

f∈I

(∑

λ∈Par

x|λ|·deg(f)

)

=
∏

f∈I

∏

j≥1

(
1− xj·deg(f)

)−1
(by (1.77))

=
∏

n≥1

∏

j≥1

(1− xjn)−β(n).

Now using the formula (1.103) for β(n) we get

log
∑

n≥0

ω(n, q)xn =
∑

n≥1

∑

j≥1

β(n) log(1− xjn)−1

=
∑

n≥1

∑

j≥1

1

n

∑

d|n
µ(n/d)qd

∑

i≥1

xijn

i
.

91



Extract the coefficient c(d,N) of qdxN . Clearly c(d,N) = 0 when d ∤ N , so assume d|N . We
get

c(d,N) =
∑

i|N

1

i

∑

n : d|n|N
i

1

n
µ(n/d)

=
∑

i|N
d

1

i

∑

m|N
id

1

dm
µ(m).

An elementary and basic result of number theory asserts that

∑

k|r

µ(k)

k
=
φ(r)

r
,

where φ denotes the Euler phi-function. Hence

c(d,N) =
1

d

∑

i|N
d

φ(N/id)

N/d
.

Another standard result of elementary number theory states that
∑

k|r
φ(r/k) =

∑

k|r
φ(k) = r,

so we finally obtain

c(d,N) =
1

d

N/d

N/d
=

1

d
.

On the other hand, we have

log
∏

n≥1

(1− qxn)−1 =
∑

n≥1

∑

d≥1

qdxnd

d
.

The coefficient c′(d,N) of qdxN is 0 unless d|N , and otherwise is 1/d. Hence c(d, n) = c′(d, n),
and the proof follows.

Note. Proposition 1.10.2 shows that, insofar as the number of conjugacy classes is con-
cerned, the “correct” q-analogue of Sn is not the group GL(n, q) itself, but rather its adjoint
action on Mat(n, q). The number of orbits ω(n, q) is a completely satisfactory q-analogue of
p(n), the number of conjugacy classes in Sn, since ω(n, q) is a polynomial in q with nonneg-
ative integer coefficients satisfying ω(n, 1) = p(n). Note that if ω∗(n, q) denotes the number
of conjugacy classes in GL(n, q), then ω∗(n, q) is a polynomial in q satisfying ω∗(n, 1) = 0
(Exercise 1.190). For more conceptual proofs of Proposition 1.10.2, see Exercise 1.191.

We next define a “cycle indicator” of M ∈ Mat(n, q) that encodes the orbit of M . For every
f ∈ I and every partition λ 6= ∅, let tf,λ be an indeterminate. If λ = ∅, then set tf,λ = 1.
Let ΦM : I → Par be the orbit type of M . Define

tΦM =
∏

f∈I
tf,ΦM (f).
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Set
γ(n) = γ(n, q) = #GL(n, q).

We now define the cycle indicator (or cycle index ) of Mat(n, q) to be the polynomial

Zn(t; q) = Zn({tf,λ}; q) =
1

γ(n)

∑

M∈Mat(n,q)

tΦM .

(Set Z0(t; q) = 1.)

1.10.3 Example. (a) LetM be the diagonal matrix diag(1, 1, 3) . Then tΦM = tz−1,(1,1)tz−3,(1)

if q 6= 2m; otherwise tΦM = tz−1,(1,1,1).
(b) Let n = q = 2. Then

Z2(t; 2) =
1

6

(
tz,(1,1) + 3tz,(2) + 6tz,(1)tz+1,(1) + tz+1,(1,1) + 3tz+1,(2) + 2tz2+z+1,(1)

)
. (1.104)

We now give a q-analogue of Theorem 1.3.3, in other words, a generating function for the
polynomials Zn(t; q). To see the analogy more clearly, recall from equation (1.27) that

∑

n≥0

Zn(t; q)x
n =

∏

i≥1

∑

j≥0

tji
xij

ijj!
.

The denominator ijj! is the number of permutations w ∈ Sij that commute with a fixed
permutation with j i-cycles.

1.10.4 Theorem. We have

∑

n≥0

Zn(t; q)x
n =

∏

f∈I

∑

λ∈Par

tf,λx
|λ|·deg(f)

cf(λ)
, (1.105)

where cf(λ) is the number of matrices in GL(n, q) commuting with a fixed matrix M of size
|λ(f)| · deg(f) satisfying

ΦM (g) =

{
λ, g = f
∅, g 6= f.

Equivalently, cf(λ) is the number of Fq-linear automorphisms of the ring

Fq[M ] ∼=
⊕

i≥1

Fq[u]/
(
f(u)λi(f)

)

appearing in equation (1.101) .

Proof (sketch). Let G be a finite group acting on a finite set X. For a ∈ X, let Ga = {g ·a :
g ∈ G}, the orbit of G containing a. Also let Ga = {g ∈ G : g · a = a}, the stabilizer of
a. A basic and elementary result in group theory asserts that #Ga ·#Ga = #G. Consider
the present situation, where G = GL(n, q) is acting on Mat(n, q). Let M ∈ Mat(n, q). Then
A ∈ GM if and only if AMA−1 = M , i.e., if and only if A and M commute. Hence

#GM =
#G

cG(M)
, (1.106)
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where cG(M) is the number of elements of G commuting with M .

We have a unique direct sum decomposition

Fnq =
⊕

f∈I
Vf ,

where

Vf = {v ∈ Fnq : f(M)r(v) = 0 for some r ≥ 1}.
Thus M =

⊕
f∈I Mf , where MfVf ⊆ Vf and MfVg = {0} if g 6= f . A matrix A commuting

with M respects this decomposition, i.e., AVf ⊆ Vf for all f ∈ I. Thus A =
⊕

f∈I Af where
AfVf ⊆ Vf and AfVg = {0} if g 6= f . Then A commutes with M if and only if Af commutes
with Mf for all f . In particular,

cG(M) =
∏

f∈I
cf (ΦM(f)).

It follows from equation (1.106) that the number of conjugates of M (i.e., the size of the
orbit GM) is given by

#GM =
γ(n)∏

f cf(ΦM (f))
. (1.107)

This number is precisely the coefficient of tΦM/γ(n) in equation (1.105), and the proof
follows.

In order for Theorem 1.10.4 to be of any use, it is necessary to find a formula for the numbers
cf(λ). There is one special case that is quite simple.

1.10.5 Lemma. Let f(z) = z − a for some a ∈ Fq, and let 〈1k〉 denote the partition with k
parts equal to 1. Then cf(〈1k〉) = γ(k).

Proof. We are counting matrices A ∈ GL(k, q) that commute with a k × k diagonal matrix
with a’s on the diagonal, so A can be any matrix in GL(k, q).

1.10.6 Corollary. Let dn denote the number of diagonalizable (over Fq) matrices M ∈
Mat(n, q). Then

∑

n≥0

dn
xn

γ(n)
=

(∑

k≥0

xk

γ(k)

)q

.

Proof. A matrix M is diagonalizable over Fq if and only if its corresponding orbit type
ΦM : I → Par satisfies ΦM (f) = ∅ unless f = z − a for a ∈ Fq, and ΦM (z − a) = 〈1k〉 in the
notation of equation (1.74) (where we may have k = 0, i.e., a is not an eigenvalue of M).
Hence

dn = γ(n) Zn(t; q)|t
z−a,〈1k〉

=1, tf,λ=0otherwise .
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Making the substitution tz−a,〈1k〉 = 1, tf,λ = 0 otherwise into Theorem 1.10.4 yields

∑

n≥0

dn
xn

γ(n)
=
∏

a∈Fq

∑

k≥0

xk

cz−a(〈1k〉)
.

The proof follows from Lemma 1.10.5.

The evaluation of cf (λ) for arbitrary f and λ is more complicated. It may be regarded
as the q-analogue of Proposition 1.3.2, since equation (1.107) shows that the number of
conjugates of a matrix M is determined by the numbers cf (ΦM(f)). This formula for cf(λ)
is a fundamental enumerative result on enumerating classes of matrices in Mat(n, q), from
which a host of other enumerative results can be derived. Let λ′ = (λ′1, λ

′
2, . . . ) denote the

conjugate partition to λ, and let mi = mi(λ) = λ′i− λ′i+1 be the number of parts of λ of size
i. Set

hi = λ′1 + λ′2 + · · ·+ λ′i,

and let d = deg(f).

1.10.7 Theorem. We have

cf(λ) =
∏

i≥1

mi∏

j=1

(
qhid − q(hi−j)d) . (1.108)

1.10.8 Example. (a) Let λ = (4, 2, 2, 2, 1), so λ′ = (5, 4, 1, 1), h1 = 5, h2 = 9, h3 = 10,
h4 = 11, m1 = 1, m2 = 3, m4 = 1. Thus for deg(f) = 1 we have

cf(4, 2, 2, 2, 1) = (q5 − q4)(q9 − q8)(q9 − q7)(q9 − q6)(q11 − q10).

(b) Let λ = (k), so λ′ = 〈1k〉, hi = i for 1 ≤ i ≤ k, and mk = 1. For deg(f) = 1 we
get cf(k) = qk − qk−1. Indeed, we are asking for the number of matrices A ∈ GL(k, q)
commuting with a k × k Jordan block. Such matrices are easily seen to be upper
triangular with constant diagonals (parallel to the main diagonal). There are q − 1
choices for the main diagonal and q choices for each of the k − 1 diagonals above the
main diagonal, giving (q − 1)qk−1 = qk − qk−1 choices in all.

Proof of Theorem 1.10.7. The proof is analogous to that of Proposition 1.3.2. We write down
some data that determines a linear transformationM ∈ Mat(nd, q) for which ΦM (f) = λ ⊢ n,
and then we count in how many ways we obtain the same linear transformation M . Let
ℓ = ℓ(λ), the number of parts of λ, and similarly k = ℓ(λ′) = λ1.

Now let
v = {vij : 1 ≤ i ≤ ℓ, 1 ≤ j ≤ dλi}

be a basis B for Fndq , together with the indexing vij of the basis elements. Thus the number
N(n, d, q) of possible v is the number of ordered bases of Fndq , namely,

N(n, d, q) = (qnd − 1)(qnd − q) · · · (qnd − qnd−1) = #GL(nd, q). (1.109)

Let M = Mv be the unique linear transformation satisfying the following three properties:
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• The characteristic polynomial det(zI −M) of M is f(z)n.

• For all 1 ≤ i ≤ ℓ and 1 ≤ j < λid, we have M(vij) = vi,j+1.

• For all 1 ≤ i ≤ ℓ, we have that M(vi,λid) is a linear combination of the vij’s for
1 ≤ j ≤ λid.

It is not hard to see that M is indeed unique and that ΦM (f) = λ.

We now consider how many indexed bases v = (vij) determine the same linear transformation
M . Given M , define

Vi = {v ∈ Fndq : f(M)i(v) = 0}, 1 ≤ i ≤ k.

It is clear that
V1 ⊂ V2 ⊂ · · · ⊂ Vk

dimVi = (λ′1 + λ′2 + · · ·+ λ′i)d = hid

dim(Vi/Vi−1) = λ′id.

If B is a subset of Fnq , then set

f(M)B = {f(M)v : v ∈ B}.

There are qdim(Vk)d−qdim(Vk−1)d = qhkd−qhk−1d choices for v11 (since v11 can be any vector in Vk
not in Vk−1), after which all other vij are determined. There are then qhkd−q(hk−1+1)d choices
for v21 (since v21 can be any vector in Vk not in the span of Vk−1 and {v11, v12, . . . , v1d}), etc.,
down to qhkd − q(hk−1+mk)d choices for vmk ,1.

Let
B1 := {vi1, vi2, . . . , vid : 1 ≤ i ≤ λ′k}.

Thus B1 is a subset of Vk whose image in Vk/Vk−1 is a basis for Vk/Vk−1. Now vmk+1,1

(= vλ′k+1,1) can be any vector in Vk−1 not in the span of f(M)B1 ∪ Vk−2, so there are

qdim(Vk−1) − q#B1+dim(Vk−2) = qhk−1d − qmkd+hk−2d = qhk−1d − q(hk−1−mk−1)d

choices for vλ′k+1,1. There are then qhk−1d − q(hk−1−mk−1+1)d choices for vλ′k+2,1, then qhk−1d −
q(hk−1−mk−1+2)d choices for vλ′k+3,1, etc., down to qhk−1d − q(hk−1−1)d choices for vλ′k−1,1

.

Let
B2 = {vi1, vi2, . . . , vid : λ′k + 1 ≤ i ≤ λ′k−1},

so B2 = ∅ if λ′k = λ′k−1. Then f(M)(B1∪B2) is a subset of Vk−1 whose image in Vk−1/Vk−2 is
a basis for Vk−1/Vk−2. Now vλ′k−1+1,1 can be any vector in Vk−2 not in the span of f(M)(B1∪
B2) ∪ Vk−3, so there are

qdim(Vk−2) − q#B1+#B2+dim(Vk−3) = qhk−2d − qmkd+mk−1d+hk−3d = qhk−2d − q(hk−2−mk−2)d

choices for vλ′k−1+1,1. There are then qhk−2d−q(hk−2−mk−2+1)d choices for vλ′k−1+2,1, then qhk−2d−
q(hk−2−mk−2+2)d choices for vλ′k−1+3,1, etc., down to qhk−2d − q(hk−2−1)d choices for vλ′k−2,1

.
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Continuing in this manner shows that the total number of choices for v is given by the
right-hand side of equation (1.108).

We have shown that each indexed basis v of Fndq defines a matrix M ∈ Mat(nd, q) with
ΦM(f) = λ. Moreover, every matrix satisfying ΦM (f) = λ occurs the same number L(n, d, q)
times, given by the right-hand side of (1.108). Since by (1.109) the number of indexed bases
is #GL(nd, q), we get that the number of matrices M satisfying ΦM (f) = λ is equal to
GL(nd, q)/L(nd, q). It follows from equation (1.106) that L(nd, q) = cf(λ), completing the
proof.

As a slight variation, we can see directly that L(nd, q) = cf(λ) as follows. Let v = (vij)
be a fixed indexed basis for Fndq with M = M(v). Let v′ = (v′ij) be another indexed basis
satisfying M = M(v′). Then the linear transformation A ∈ GL(nd, q) satisfying A(vij) = v′ij
for all i, j commutes with M , and all matrices commuting with M arise in this way. Hence
once again L(nd, q) = cf (λ).

Even with the above formula for cf(λ), equation (1.105) is difficult to work with in its full

generality. However, if we specialize each variable tf,λ to t
|λ|
f , then the following lemma allows

a simplification of (1.105).

1.10.9 Lemma. For any f ∈ I of degree d we have

∑

λ∈Par

x|λ|

cf(λ)
=
∏

r≥1

(
1− x

qrd

)−1

.

Proof. By Theorem 1.10.7 it suffices to assume d = 1. Our computations take place in
the ring C(q)[[x]], i.e., power series in x whose coefficients are rational functions in q with
complex coefficients. It follows from Proposition 1.8.6(c) that

∏

r≥1

(
1− x

qr

)−1

=
∑

n≥0

xnq−n

(1− q−1) · · · (1− q−n)

=
∑

n≥0

(−1)nxnq(
n
2)

(1− q)(1− q2) · · · (1− qn) .

Hence by Theorem 1.10.7 we need to prove that

∑

λ⊢n

∏

i≥1

mi(λ)∏

j=1

1

qhi(λ) − qhi(λ)−j =
(−1)nq(

n
2)

(1− q)(1− q2) · · · (1− qn) . (1.110)

Substitute 1/q for q in equation (1.110). We will simply write hi = hi(λ) and mi = mi(λ).
Since

1

q−hi − q−(hi−j) =
qhi

1− qj ,

the left-hand side of (1.110) becomes

∑

λ⊢n

∏

i≥1

qmihi

(1− q) · · · (1− qmi)
.
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Figure 1.26: The “successive Durfee squares” of µ = (7, 7, 5, 4, 3, 2)

It is easy to see that ∑

i≥1

mihi =
∑

i≥1

(λ′i)
2
,

which we denote by 〈λ′, λ′〉.
Under the substitution q → 1/q the right-hand side of (1.110) becomes qn/(1−q) · · · (1−qn).
Thus we are reduced to proving that

∑

λ⊢n
q〈λ

′,λ′〉
∏

i≥1

1

(1− q) · · · (1− qmi)
=

qn

(1− q) · · · (1− qn) . (1.111)

We can replace 〈λ′, λ′〉 by 〈λ, λ〉 since this substitution merely permutes the terms in the
sum. Set m′

i = mi(λ
′) = λi − λi+1. Then

∑

λ⊢n
q〈λ,λ〉

∏

i≥1

1

(1− q) · · · (1− qm′
i)

=
∑

λ⊢n

q〈λ,λ〉

(1− q) · · · (1− qλ1)

(
λ1

λ2

)(
λ2

λ3

)
· · · .

The coefficient of qk in the right-hand side of (1.111) is equal to pn(k), the number of
partitions of k with largest part n. Given such a partition µ = (µ1, µ2, . . . ), associate a
partition λ ⊢ µ1 by taking the rank (= length of the Durfee square) of µ, then the rank of
the partition whose diagram is to the right of the Durfee square of µ, etc. For instance, if
µ = (7, 7, 5, 4, 3, 2), then λ = (4, 2, 1) as indicated by Figure 1.26. Given λ, the generating
function

∑
µ q

|µ| for all corresponding µ is

q〈λ,λ〉

(1− q) · · · (1− qλ1)

(
λ1

λ2

)(
λ2

λ3

)
· · · ,

as indicated by Figure 1.27 (using Proposition 1.7.3), and the proof follows.

Now let

Ẑn(t; q) = Zn(t; q)|tf,λ=t
|λ|
f
.
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Figure 1.27: The “successive Durfee square decomposition” of λ

For instance, from equation (1.104) we have

Ẑ2(t; 2) =
1

6

(
4t2z + 4t2z+1 + 6tztz+1 + 2tz2+z+1

)
.

Let f =
∏

fi∈I f
ai
i , with deg f = n. Then the coefficient of ta1f1 t

a2
f2
· · · in γ(n, q)Ẑ(t; q) is

just the number of matrices M ∈ Mat(n, q) with characteristic polynomial f . Note that in

general if we define deg(tf) = deg(f), then Ẑn(t; q) is homogeneous of degree n.

The following corollary is an immediate consequence of Theorem 1.10.4 and Lemma 1.10.9.

1.10.10 Corollary. We have

∑

n≥0

Ẑnx
n =

∏

f∈I

∏

r≥1

(
1− tf x

deg(f)

qr deg(f)

)−1

.

Many interesting enumerative results can be obtained from Theorem 1.10.4 and Corol-
lary 1.10.10. We give a couple here and some more in the Exercises (193-195). Let β∗(n, q)
denote the number of monic irreducible polynomials f(z) 6= z of degree n over Fq. It follows
from (1.103) that

β∗(n, q) =

{
q − 1, n = 1

1
n

∑
d|n µ(d)qn/d, n > 1.

(1.112)

1.10.11 Corollary. (a) We have

1

1− x =
∏

n≥1

∏

r≥1

(1− qrnxn)−β∗(n,q)
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(b) Let g(n) denote the number of nilpotent matrices M ∈ Mat(n, q). (Recall that A is
nilpotent if Am = 0 for some m ≥ 1.) Then g(n) = qn(n−1).

Proof. (a) Let I∗ = I − {z}. Set tz = 0 and tf = 1 for f 6= z in Corollary 1.10.10. Now

Ẑn(tz = 0, tf = 1 if f 6= 0) =
γ(n)

γ(n)
= 1,

so we get

1

1− x =
∏

f∈I∗

∏

r≥1

(
1− xdeg(f)

qr deg(f)

)

=
∏

n≥1

∏

r≥1

(
1− q−rnxn

)−β∗(n,q)
.

Since the left-hand side is independent of q, we can substitute 1/q for q in the right-hand side
without changing its value, and the proof follows. This result can also be proved by taking the
logarithm of both sides and using the explicit formula for β∗(n, q) given by equation (1.112).

(b) A matrix is nilpotent if and only if all its eigenvalues are 0. Hence

g(n) = γ(n) Ẑ(t; q)
∣∣∣
tz=1, tf =0 if f 6=z

.

By Corollary 1.10.10 and Proposition 1.8.6(a) there follows

∑

n≥0

g(n)
xn

γ(n)
=

∏

r≥1

(
1− x

qr

)−1

=
∑

k≥0

q−kxk

(1− q−1) · · · (1− q−k)

=
∑

k≥0

qk(k−1) x
k

γ(k)
,

and the proof follows. (For a more direct proof, see Exercise 1.188.)

1.10.2 A q-analogue of permutations as words

We now discuss a second q-analogue of permutations (already discussed briefly after Corol-
lary 1.3.13) and then connect it with the one discussed above (matrices in GL(n, q)). Rather
than regarding permutations of 1, 2, . . . , n as bijections w : [n] → [n], we may regard them
as words a1a2 · · ·an. Equivalently, we can identify w with the maximal chain (or (complete)
flag)

∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = [n] (1.113)
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of subsets of [n], by the rule {ai} = Si − Si−1. For instance, the flag ∅ ⊂ {2} ⊂ {2, 4} ⊂
{1, 2, 4} ⊂ {1, 2, 3, 4} corresponds to the permutation w = 2413. The natural q-analogue of
a flag (1.113) is a maximal chain or (complete) flag of subspaces

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Fnq (1.114)

of subspaces of Fnq , so dimVi = i. It is easy to count the number of such flags (as mentioned
after Corollary 1.3.13.

1.10.12 Proposition. The number f(n, q) of complete flags (1.114) is given by

f(n, q) = (n)! = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Proof. There are
(

n

1

)
= (n) choices for V1, then

(
n−1

1

)
choices for V2 (since the quotient

space Fnq /V1 is an (n− 1)-dimensional vector space), etc.

Comparing Corollary 1.3.13 with Proposition 1.10.12, we see that

f(n, q) =
∑

w∈Sn

qinv(w).

We can ask whether there is a bijective proof of this fact analogous to our proof of Propo-
sition 1.7.3. In other words, letting F(n, q) denote the set of all flags (1.114), we want to
find a map ϕ : F(n, q)→ Sn such that #ϕ−1(w) = qinv(w) for all w ∈ Sn. Such a map can
be defined as follows. Let F ∈ F(n, q) be the flag (1.114). It is not hard to see that there
is a unique ordered basis v = v(F ) = (v1, v2, . . . , vn) for Fnq (where we regard each vi as a
column vector) satisfying the two conditions:

• Vi = span{v1, . . . , vi}, 1 ≤ i ≤ n

• There is a unique permutation ϕ(F ) = w ∈ Sn for which the matrix A = [v1, . . . , vn]
t

satisfies (a) Ai,w(i) = 1 for 1 ≤ i ≤ n, (b) Ai,j = 0 if j > w(i), and (c) Aj,w(i) = 0 if
j > i. In other words, A can be obtained from the permutation matrix Pw (as defined
in Section 1.5) by replacing the entries Aij for (i, j) ∈ Dw (as defined in Section 1.5)
by any elements of Fq. We call A a w-reduced matrix.

For instance, suppose that w = 314652. Figure 1.5 shows that the possible matrices A have
the form

A =




∗ ∗ 1 0 0 0
1 0 0 0 0 0
0 ∗ 0 1 0 0
0 ∗ 0 0 ∗ 1
0 ∗ 0 0 1 0
0 1 0 0 0 0



.

Let Ωw be the set of flags F ∈ F(n, q) for which ϕ(F ) = w. Thus

F(n, q) =
⋃
· w∈SnΩw. (1.115)
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Since #Dw = inv(w) we have #Ωw = qinv(w), so we have found the desired combinatorial
interpretation of Proposition 1.10.12. The sets Ωw are known as Schubert cells, and equa-
tion (1.115) gives the cellular decomposition of the flag variety F(n, q), completely analogous
to the cellular decomposition of the Grassmann variety Gkm given in the proof of Proposi-
tion 1.7.3. The canonical ordered basis v(F ) is the “flag analogue” of row-reduced echelon
form, which gives a canonical ordered basis for a subspace (rather than a flag) of Fnq .

1.10.3 The connection between the two q-analogues

The order γ(n, q) of GL(n, q) and the number f(n, q) of complete flags is related by

γ(n, q) = q(
n
2)(q − 1)nf(n, q).

Can we find a simple combinatorial explanation? We would like to find a map ψ : GL(n, q)→
F(n, q) satisfying #ψ−1(F ) = q(

n
2)(q − 1)n for all F ∈ F(n, q). The definition of ψ is quite

simple: if A = [v1, . . . , vn]
t then let ψ(F ) be the flag {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Fnq given

by Vi = span{v1, . . . , vi}. Given F , there are q − 1 choices for v1, then q2 − q choices for v2,

then q3 − q2 choices for v3, etc., showing that #ψ−1(F ) = q(
n
2)(q − 1)n as desired.

We have constructed maps GL(n, q)
ψ→ F(n, q)

ϕ→ Sn. Given w ∈ Sn, let Γw = ψ−1ϕ−1(w).
Thus

GL(n, q) =
⋃
· w∈SnΓw, (1.116)

the Bruhat decomposition of GL(n, q). (The Bruhat decomposition is usually defined more
abstractly and in greater generality than we have done.) It is immediate from the formulas

#Ωw = qinv(w) and #ψ−1(F ) = q(
n
2)(q − 1)n that #Γw = q(

n
2)(q − 1)nqinv(w) and

γ(n, q) = q(
n
2)(q − 1)n

∑

w∈Sn

qinv(w). (1.117)

Together with Corollary 1.3.13, equation (1.117) gives a second combinatorial proof of Propo-
sition 1.10.1.

It is not difficult to give a concrete description of the “Bruhat cells” Γw. Namely, every
element A of Γw can be uniquely written in the form A = LM , where L is a lower-triangular
matrix in GL(n, q) and M is a w-reduced matrix. We omit the straightforward proof.

1.10.13 Example. (a) Every matrix A ∈ GL(2, q) can be uniquely written in one of the
two forms

[
a 0
b c

] [
1 0
0 1

]
=

[
a 0
b c

]

[
a 0
b c

] [
α 1
1 0

]
=

[
αa a

αb+ c b

]
,

where b, α ∈ Fq, a, c ∈ F∗
q = Fq − {0}.
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(b) The cell Γ3142 consists of all matrices of the form



a 0 0 0
b c 0 0
d e f 0
g h i j







α β 1 0
1 0 0 0
0 γ 0 1
0 1 0 0


 =




αa βa a 0
αb+ c βb b 0
αd+ e βd+ γf d f
αg + h βg + γi+ j g i


 ,

where b, d, e, g, h, i, α, β, γ ∈ Fq and a, c, f, j ∈ F∗
q.

The Bruhat decomposition (1.116) can be a useful tool for counting certain subsets S of
GL(n, q), by computing each #(S ∩ Γw) and summing over all w ∈ Sn. Proposition 1.10.15
illustrates this technique. First we need a simple enumerative lemma.

1.10.14 Lemma. Fix q, and for any integer n ≥ 0 let

an = #{(α1, . . . , αn) ∈ (F∗
q)
n :

∑
αi = 0}.

Then a0 = 1, and an = 1
q
((q − 1)n + (q − 1)(−1)n) for n > 0.

Proof. Define bn =
∑n

k=0

(
n
k

)
ak. Since every sequence (α1, . . . , αn) ∈ Fnq satisfying

∑
αi = 0

can be obtained by first specifying n− k terms to be 0 in
(
n
k

)
ways and then specifying the

remaining k terms in ak ways, we have

bn =

{
1, n = 0

qn−1, n ≥ 1.

There are many ways to see (e.g., equations (2.9) and (2.10)) that we can invert this rela-
tionship between the an’s and bn’s to obtain

an =

n∑

k=0

(−1)n−k
(
n

k

)
bk

=
1

q

[
n∑

k=0

(−1)n−k
(
n

k

)
qk + (q − 1)(−1)n

]

=
1

q
((q − 1)n + (q − 1)(−1)n).

1.10.15 Proposition. Let GL0(n, q) = {A ∈ GL(n, q) : tr(A) = 0}, where tr(A) denotes
the trace of A, and set γ0(n, q) = #GL0(n, q). Then

γ0(n, q) =
1

q

(
γ(n, q) + (−1)n(q − 1)q(

n
2)
)
.

Proof. Let id denote the identity permutation 1, 2, . . . , n, so inv(id) = 0. We will show that

#(GL0(n, q) ∩ Γw) =
1

q
#Γw, w 6= id

#(GL0(n, q) ∩ Γid) =
1

q

(
#Γid + (−1)n(q − 1)q(

n
2)
)
,
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from which the proof follows since
∑

w #Γw = γ(n, q).

Suppose that w 6= id. Let r be the least integer for which there exists an element (r, s) ∈ Dw,
where Dw denotes the diagram of w. It is easy to see that then (r, r) ∈ Dw. Consider a
general element A = LM of Γw, so the entries Lij satisfy Lii ∈ F∗

q, Lij ∈ Fq if i > j, and
Lij = 0 if i < j. Similarly Mi,w(i) = 1, Mij ∈ Fq if (i, j) ∈ Dw, and Mij = 0 otherwise.
Thus Arr will be a polynomial in the Lij ’s and Mij ’s with a term LrrMrr. (In fact, it is not
hard to see that Arr = LrrMrr, though we don’t need this stronger fact here.) There is no
other occurrence of Mrr in a main diagonal term of A. If we choose all the free entries of
L and M except Mrr (subject to the preceding conditions), then we can solve uniquely for
Mrr (since its coefficient is Lrr 6= 0) so that tr(A) = 0. Thus rather than q choices for Mrr

for any A ∈ Γw, there is only one choice, so #(GL0(n, q) ∩ Γw) = 1
q
#Γw as claimed.

Example. Consider the cell Γ3142 of Example 1.10.13(b). We have that #(GL0(4, q)∩Γ3142) is
the number of 13-tuples (a, . . . , j, α, β, γ) such that b, d, e, g, h, i, α, β, γ ∈ Fq and a, c, f, j ∈
F∗
q, satisfying

αa+ βb+ d+ i = 0. (1.118)

We have r = 1, so we can specify all 13 variables except α in q8(q− 1)4 ways, and then solve
equation (1.118) uniquely for α. Hence #(GL0(4, q) ∩ Γ3142) = q8(q − 1)4 = 1

q
#Γ3142.

Now let w = id, so A = L. Hence we can choose the elements of A below the diagonal

in q(
n
2) ways, while the number of choices for the diagonal elements is the number an of

Lemma 1.10.14. Hence from Lemma 1.10.14 we get

#Γid = q(
n
2)an

= q(
n
2)

1

q
((q − 1)n + (q − 1)(−1)n),

and the proof follows.
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NOTES

It is not our intention here to trace the development of the basic ideas and results of enumer-
ative combinatorics. It is interesting to note, however, that according to Heath [1.40, p. 319],
a result of Xenocrates of Chalcedon (396–314 bce) possibly “represents the first attempt on
record to solve a difficult problem in permutations and combinations.” (See also Biggs [1.8,
p. 113].) Moveover, Exercise 1.203 shows that Hipparchus (c. 190–after 127 bce) certainly
was successful in solving such a problem. We should also point out that the identity of
Example 1.1.17 is perhaps the oldest of all binomial coefficient identities. It is called by such
names as the Chu-Vandermonde identity or Vandermonde’s theorem, after Chu Shih-Chieh
(Zhū Sh̀ıjié in Pinyin and in simplified Chinese characters) (c. 1260–c. 1320) and
Alexandre-Théophile Vandermonde (1735–1796).

Two valuable sources for the history of enumeration are Biggs [1.8] and Stein [1.71]. Knuth
[1.49, §7.2.1.7] has written a fascinating history of the generation of combinatorial objects
(such as all permutations of a finite set). We will give below mostly references and comments
not readily available in [1.8] and [1.71].

For further information on formal power series from a combinatorial viewpoint, see, for
example Niven [1.60] and Tutte [1.73]. A rigorous algebraic approach appears in Bourbaki
[1.12, Ch. IV, §5], and a further paper of interest is Bender [1.5]. Wilf [1.76] is a nice
introduction to generating functions at the undergraduate level.

To illustrate the misconceptions (or at least infelicitous language) that can arise in dealing
with formal power series, we offer the following quotations (anonymously) from the literature.

“ Since the sum of an infinite series is really not used, our viewpoint can be either
rigorous or formal.”

“(1.3) demonstrates the futility of seeking a generating function, even an expo-
nential one, for IU(n); for it is so big that

F (z) =
∑

n

IU(n)zn/n!

fails to converge if z 6= 0. Any closed equation for F therefore has no solutions,
and when manipulated by Taylor expansion, binomial theorem, etc., is bound to
produce a heap of eggs (single -0- or double -∞-yolked). Try finding a generating
function for 22n

.”

“Sometimes we have difficulties with convergence for some functions whose coef-
ficients an grow too rapidly; then instead of the regular generating function we
study the exponential generating function.”

An analyst might at least raise the point that the only general techniques available for
estimating the rate of growth of the coefficients of a power series require convergence (so
that e.g. the apparatus of complex variable theory is available). There are, however, methods
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for estimating the coefficients of a divergent power series; see Bender [1.6, §5] and Odlyzko
[1.61, §7]. For further information on estimating coefficients of power series, see for instance
Flajolet and Sedgewick [1.22], Odlyzko [1.61] and Pemantle and Wilson [1.63]. In particular,
the asymptotic formula (1.12), due to Moser and Wyman [1.57], appears in [1.61, (8.49)].

The technique of representing combinatorial objects such as permutations by “models” such
as words and trees has been extensively developed. A pioneering work in this area in the
monograph [1.26] of Foata and Schützenberger. In particular, the “transformation fonda-
mentale” on pp. 13–15 of this reference is essentially our map w 7→ ŵ of Proposition 1.3.1.
Note, however, that this bijection was earlier used by Alfréd Rényi [1.67, §4] to prove Propo-
sition 1.3.1. The history of the generating function for the cycle indicator of Sn (Theo-
rem 1.3.3) is discussed in the first paragraph of the Notes to Chapter 5. The generating
function for permutations by number of inversions (Corollary 1.3.13) appears in Rodrigues
[1.68] and Netto [1.58, p. 73]. The generalization to multisets (Proposition 1.7.1) is due to
MacMahon [1.54, §1]. It was rediscovered by Carlitz [1.16]. The second proof given here
was suggested by A. Björner and M. L. Wachs [1.9, §3]. The cellular decomposition of
the Grassmann variety (the basis for our second proof of Proposition 1.7.3) is discussed by
S. L. Kleiman and D. Laksov [1.46]. For some further historical information on the results
of Rodriques and MacMahon, see the book review by Johnson [1.44]. The major index of a
permutation was first considered by MacMahon [1.53], who used the term “greater index.”
The terminology “major index” was introduced by Foata [1.25] in honor of MacMahon, who
was a major in the British army. MacMahon’s main result on the major index is the equidis-
tribution of inv(w) and maj(w) for w ∈ Sn. He gives the generating function (1.42) for
maj(w) in [1.53, §6] (where in fact w is a permutation of a multiset), and in [1.54] he shows
the equidistribution with inv(w). The bijective proof we have given here (proof of Proposi-
tion 1.4.6) appears in seminal papers [1.23][1.24] of Foata, which helped lay the groundwork
for the modern theory of bijective proofs. The strengthening of Foata’s result given by
Corollary 1.4.9 is due to Foata and Schützenberger [1.28].

The investigation of the descent set and number of descents of a permutation (of a set or
multiset) was begun by MacMahon [1.52]. MacMahon apparently did not realize that the
number of permutations of [n] with k descents is an Eulerian number. The first written state-
ment connecting Eulerian numbers with descents seems to have been by Carlitz and Riordan
[1.17] in 1953. The fundamental Lemma 1.4.11 is due to MacMahon [1.53, p. 287]. Eulerian
numbers occur in some unexpected contexts, such as cube slicing (Exercise 1.51), juggling
sequences [1.15], and the statistics of carrying in the standard algorithm for adding integers
(Exercise 1.52). MacMahon [1.55, vol. 1, p. 186] was also the first person to consider the ex-
cedance of a permutation (though he did not give it a name) and showed the equidistribution
of the number of descents with the number of excedances (Proposition 1.4.3).

We will not attempt to survey the vast subject of representing permutations by other combi-
natorial objects, but let us mention that an important generalization of the representation of
permutations by plane trees is the paper of Cori [1.19]. The first result on pattern avoidance
seems to be the proof of MacMahon [1.55, §97] that the number of 321-avoiding permu-
tations w ∈ Sn is the Catalan number Cn. MacMahon states his result not in terms of
pattern avoidance, but rather in terms of permutations that are a union of two decreasing
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sequences. MacMahon’s result was rediscovered by J. M. Hammersley [1.38], who stated it
without proof. Proofs were later given by D. E. Knuth [1.48, §5.1.4] and D. Rotem [1.69]. For
further information on 321-avoiding and 132-avoiding permutations, see Exercise 6.19(ee,ff)
and the survey of Claesson and Kitaev [1.18]. For further information on pattern avoidance
in general, see Exercises 57–59, as well as books by M. Bóna [1.11, Chs. 4–5] and by S.
Heubach and T. Mansour [1.42].

Alternating permutations were first considered by D. André [1.1], who obtained the basic
and elegant Proposition 1.6.1. (Note however that Ginsburg [1.34] asserts without giving a
reference that Binet was aware before André that the coefficients of sec x count alternating
permutations.) A combinatorial proof of Proposition 1.6.2 on flip equivalence is due to R.
Donaghey [1.20]. Further information on the connection between alternating permutations
and increasing trees appears in a paper of Kuznetsov, Pak, and Postnikov [1.51].

The cd-index Φn(c, d) was first considered by Foata and Schützenberger [1.27], who defined
it in terms of certain permutations they called André permutations. Their term for the
cd-index was “non-commutative André polynomial.” Foata and Strehl [1.29][1.30] further
developed the theory of André polynomials, André permutations, and their connection with
permutation statistics. Meanwhile Jonathan Fine [1.21] defined a noncommutative polyno-
mial ΦP (c, d) associated with certain partially ordered sets (posets) P . This polynomial was
first systematically investigated by Bayer and Klapper [1.4] and later by Stanley [1.70], who
extended the class of posets P which possessed a cd-index ΦP (c, d) to Eulerian posets. The
basic theory of the cd-index of an Eulerian poset is covered in Section 3.17. M. Purtill [1.65,
Thm. 6.1] showed that the cd-index Φn that we have defined is just the cd-index ΦBn (in the
sense of Fine and Bayer-Klapper) of the boolean algebra Bn (the poset of all subsets of [n],
ordered by inclusion). The approach to the cd-index Φn given here, based on min-max trees,
is due to G. Hetyei and E. Reiner [1.41]. For some additional properties of min-max trees,
see Bóna [1.10]. Corollary 1.6.5 was first proved by Niven [1.59] by a complicated induction.
De Bruijn [1.13] gave a simpler proof and extended it to Proposition 1.6.4. A further proof
is due to Viennot [1.75]. The proof we have given based on the cd-index appears in Stanley
[1.70, pp. 495–496]. For a generalization see Exericse 3.55.

The theory of partitions of an integer originated in the work of Euler, if we ignore some
unpublished work of Leibniz that was either trival or wrong (see Knobloch [1.47]). An
excellent introduction to this subject is the text by Andrews [1.2]. For a masterful survey
of bijective proofs of partition identities, see Pak [1.62]. The latter two references provide
historical information on the results appearing in Section 1.8. The asymptotic formula
(1.92) is due to Hardy and Ramanujan [1.39], and the asymptotic series mentioned after
equation (1.92) is due to Rademacher [1.66]. More recently J. H. Bruinier and K. Ono,

〈http://www.aimath.org/news/partition/brunier-ono〉,
have given an explicit finite formula for p(n). For an exposition of partition asymptotics, see
Andrews [1.2, Ch. 5].

The idea of the Twelvefold Way (Section 1.9) is due to G.-C. Rota (in a series of lectures),
while the terminology “Twelvefold Way” was suggested by Joel Spencer. An extension of
the Twelvefold Way to a “Thirtyfold Way” (and suggestion of even more entries) is due to
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R. Proctor [1.64]. An interesting popular account of Bell numbers appears in an article by
M. Gardner [1.33]. In particular, pictorial representations of the 52 partitions of a 5-element
set are used as “chapter headings” for all but the first and last chapters of certain editions
of The Tale of Genji by Lady Murasaki (c. 978–c. 1031 ce). A standard reference for the
calculus of finite difference is the text by C. Jordan [1.45].

The cycle indicator Zn(t; q) of GL(n, q) was first explicitly defined by Kung [1.50]. The
underlying algebra was known much earlier; for instance, according to Green [1.35, p. 407]
the basic Theorem 1.10.7 is due to P. Hall [1.36] and is a simple consequence of earlier work
of Frobenius (see Jacobson [1.43, Thm. 19, p. 111]). Green himself sketches a proof on
page 409, op. cit. Further work on the cycle indicator of GL(n, q) was done by Stong [1.72]
and Fulman [1.31]. A nice survey of enumeration of matrices over Fq was given by Morrison
[1.56], whom we have followed for Exercises 1.193–1.195. Our proof of Lemma 1.10.9 is
equivalent to one given by P. Hall [1.37].

The cellular decomposition (1.115) of the flag variety F(n, q) and the Bruhat decomposition
(1.116) of GL(n,K) (for any field K) are standard topics in Lie theory. See for instance
Fulton and Harris [1.32, §23.4]. A complicated recursive description of the number of matrices
in GL(n, q) with trace 0 and a given rank r was given by Buckheister [1.14]. Bender [1.7]
used this recurrence to give a closed-form formula. The proof we have given of the case
k = 0 (Proposition 1.10.15) based on Bruhat decomposition is new. For a generalization see
Exercise 1.196.
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A Note about the Exercises

Each exercise is given a difficulty rating, as follows.

1. routine, straightforward

2. somewhat difficult or tricky

3. difficult

4. horrendously difficult

5. unsolved

Further gradations are indicated by + and −. Thus [1–] denotes an utterly trivial problem,
and [5–] denotes an unsolved problem that has received little attention and may not be
too difficult. A rating of [2+] denotes about the hardest problem that could be reasonably
assigned to a class of graduate students. A few students may be capable of solving a [3–]
problem, while almost none could solve a [3] in a reasonable period of time. Of course the
ratings are subjective, and there is always the possibility of an overlooked simple proof that
would lower the rating. Some problems (seemingly) require results or techniques from other
branches of mathematics that are not usually associated with combinatorics. Here the rating
is less meaningful—it is based on an assessment of how likely the reader is to discover for
herself or himself the relevance of these outside techniques and results. An asterisk after the
difficulty rating indicates that no solution is provided.

EXERCISES FOR CHAPTER 1

1. [1–] Let S and T be disjoint one-element sets. Find the number of elements of their
union S ∪ T .

2. [1+] We continue with a dozen simple numerical problems. Find as simple a solution
as possible.

(a) How many subsets of the set [10] = {1, 2, . . . , 10} contain at least one odd integer?

(b) In how many ways can seven people be seated in a circle if two arrangements are
considered the same whenever each person has the same neighbors (not necessarily
on the same side)?

(c) How many permutations w : [6]→ [6] satisfy w(1) 6= 2?

(d) How many permutations of [6] have exactly two cycles (i.e., find c(6, 2))?

(e) How many partitions of [6] have exactly three blocks (i.e., find S(6, 3))?

(f) There are four men and six women. Each man marries one of the women. In how
many ways can this be done?
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(g) Ten people split up into five groups of two each. In how many ways can this be
done?

(h) How many compositions of 19 use only the parts 2 and 3?

(i) In how many different ways can the letters of the word MISSISSIPPI be arranged
if the four S’s cannot appear consecutively?

(j) How many sequences (a1, a2, . . . , a12) are there consisting of four 0’s and eight 1’s,
if no two consecutive terms are both 0’s?

(k) A box is filled with three blue socks, three red socks, and four chartreuse socks.
Eight socks are pulled out, one at a time. In how many ways can this be done?
(Socks of the same color are indistinguishable.)

(l) How many functions f : [5] → [5] are at most two-to-one, i.e., #f−1(n) ≤ 2 for
all n ∈ [5]?

3. Give combinatorial proofs of the following identities, where x, y, n, a, b are nonnegative
integers.

(a) [2–]
n∑

k=0

(
x+ k

k

)
=

(
x+ n+ 1

n

)

(b) [1+]
n∑

k=0

k

(
n

k

)
= n2n−1

(c) [3]
n∑

k=0

(
2k

k

)(
2(n− k)
n− k

)
= 4n

(d) [3–]
m∑

k=0

(
x+ y + k

k

)(
y

a− k

)(
x

b− k

)
=

(
x+ a

b

)(
y + b

a

)
, where m = min(a, b)

(e) [1] 2

(
2n− 1

n

)
=

(
2n

n

)

(f) [2–]
n∑

k=0

(−1)k
(
n

k

)
= 0, n ≥ 1

(g) [2+]
n∑

k=0

(
n

k

)2

xk =
n∑

j=0

(
n

j

)(
2n− j
n

)
(x− 1)j

(h) [3–]
∑

i+j+k=n

(
i+ j

i

)(
j + k

j

)(
k + i

k

)
=

n∑

r=0

(
2r

r

)
, where i, j, k ∈ N

4. [2]* Fix j, k ∈ Z. Show that

∑

n≥0

(2n− j − k)!xn
(n− j)!(n− k)!(n− j − k)!n!

=

[∑

n≥0

xn

n!(n− j)!

][∑

n≥0

xn

n!(n− k)!

]
.

Any term with (−r)! in the denominator, where r > 0, is set equal to 0.
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5. [2]* Show that

∑

n1,...,nk≥0

min(n1, . . . , nk)x
n1
1 · · ·xnk

k =
x1 · · ·xk

(1− x1) · · · (1− xk)(1− x1x2 · · ·xk)
.

6. [3–]* For n ∈ Z let

Jn(2x) =
∑

k∈Z

(−1)kxn+2k

k!(n + k)!
,

where we set 1/j! = 0 for j < 0. Show that

ex =
∑

n≥0

LnJn(2x),

where L0 = 1, L1 = 1, L2 = 3, Ln+1 = Ln + Ln−1 for n ≥ 2. (The numbers Ln for
n ≥ 1 are Lucas numbers.)

7. [2]* Let

ex+
x2

2 =
∑

n≥0

f(n)
xn

n!
.

Find a simple expression for
∑n

i=0(−1)n−i
(
n
i

)
f(i). (See equation (1.13).)

8. (a) [2–] Show that
1√

1− 4x
=
∑

n≥0

(
2n

n

)
xn.

(b) [2–] Find
∑

n≥0

(
2n−1
n

)
xn.

9. Let f(m,n) be the number of paths from (0, 0) to (m,n) ∈ N× N, where each step is
of the form (1, 0), (0, 1), or (1, 1).

(a) [1+]* Show that
∑

m≥0

∑
n≥0 f(m,n)xmyn = (1− x− y − xy)−1.

(b) [3–] Find a simple explicit expression for
∑

n≥0 f(n, n)xn.

10. [2+] Let f(n, r, s) denote the number of subsets S of [2n] consisting of r odd and s
even integers, with no two elements of S differing by 1. Give a bijective proof that
f(n, r, s) =

(
n−r
s

)(
n−s
r

)
.

11. (a) [2+] Let m,n ∈ N. Interpret the integral

B(m+ 1, n+ 1) =

∫ 1

0

um(1− u)n du,

as a probability and evaluate it by combinatorial reasoning.
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(b) [3+] Let n ∈ P and r, s, t ∈ N. Let x, yk, zk and aij be indeterminates, with
1 ≤ k ≤ n and 1 ≤ i < j ≤ n. Let M be the multiset with n occurrences of x, r
occurrences of each yk, s occurrences of each zk, and 2t occurrences of each aij .
Let f(n, r, s, t) be the number of permutations w of M such that (i) all yk’s appear
before the kth x (reading the x’s from left-to-right in w), (ii) all zk’s appear after
the kth x, and (iii) all aij ’s appear between the ith x and jth x. Show that

f(n, r, s, t) =
[(r + s+ 1)n+ tn(n− 1)]!

n!r!ns!nt!n(2t)!(
n
2)

·
n∏

j=1

(r + (j − 1)t)!(s+ (j − 1)t)!(jt)!

(r + s+ 1 + (n+ j − 2)t)!
. (1.119)

(c) [3–] Consider the following chess position.

R. Stanley

Suomen Tehtäväniekat, 2005j Z Z ZZpZ Z ZpOpZPZ ZZ o ZPZspZpZpZZ O o ZO Z Z ZZ Z J A
Black is to make 14 consecutive moves, after which White checkmates Black in
one move. Black may not move into check, and may not check White (except
possibly on his last move). Black and White are cooperating to achieve the aim
of checkmate. (In chess problem parlance, this problem is called a serieshelpmate
in 14.) How many different solutions are there?

12. [2+]* Choose n points on the circumference of a circle in “general position.” Draw
all
(
n
2

)
chords connecting two of the points. (“General position” means that no three

of these chords intersect in a point.) Into how many regions will the interior of the
circle be divided? Try to give an elegant proof avoiding induction, finite differences,
generating functions, summations, etc.

13. [2] Let p be prime and a ∈ P. Show combinatorially that ap − a is divisible by p. (A
combinatorial proof would consist of exhibiting a set S with ap − a elements and a
partition of S into pairwise disjoint subsets, each with p elements.)
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14. (a) [2+] Let p be a prime, and let n =
∑
aip

i and m =
∑
bip

i be the p-ary expansions
of the positive integers m and n. Show that

(
n

m

)
≡
(
a0

b0

)(
a1

b1

)
· · · (mod p).

(b) [3–] Use (a) to determine when
(
n
m

)
is odd. For what n is

(
n
m

)
odd for all 0 ≤ m ≤

n? In general, how many coefficients of the polynomial (1 + x)n are odd?

(c) [2+] It follows from (a), and is easy to show directly, that
(
pa
pb

)
≡
(
a
b

)
(mod p).

Give a combinatorial proof that in fact
(
pa
pb

)
≡
(
a
b

)
(mod p2).

(d) [3–] If p ≥ 5, then show in fact
(
pa

pb

)
≡
(
a

b

)
(mod p3).

Is there a combinatorial proof?

(e) [3–] Give a simple description of the largest power of p dividing
(
n
m

)
.

15. (a) [2] How many coefficients of the polynomial (1 + x+ x2)n are not divisible by 3?

(b) [3–] How many coefficients of the polynomial (1 + x+ x2)n are odd?

(c) [2+] How many coefficients of the polynomial
∏

1≤i<j≤n(xi + xj) are odd?

16. [3–]*

(a) Let p be a prime, and let A be the matrix A =
[(
j+k
k

)]p−1

j,k=0
, taken over the field

Fp. Show that A3 = I, the identity matrix. (Note that A vanishes below the main
antidiagonal, i.e., Ajk = 0 if j + k ≥ p.)

(b) How many eigenvalues of A are equal to 1?

17. (a) [1+]* Let m,n ∈ N. Prove the identity
((

n
m

))
=
((
m+1
n−1

))
.

(b) [2–] Give a combinatorial proof.

18. [2+]* Find a simple description of all n ∈ P with the following property: there exists
k ∈ [n] such that

(
n
k−1

)
,
(
n
k

)
,
(
n
k+1

)
are in arithmetic progression.

19. (a) [2+] Let a1, . . . , an ∈ N. Show that when we expand the product

n∏

i,j=1
i6=j

(
1− xi

xj

)ai

as a Laurent polynomial in x1, . . . , xn (i.e., negative exponents allowed), then the
constant term is the multinomial coefficient

(
a1+···+an

a1,...,an

)
.

Hint: First prove the identity

1 =

n∑

i=1

∏

j 6=i

(
1− xi

xj

)−1

. (1.120)
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(b) [2–] Put n = 3 to deduce the identity

a∑

k=−a
(−1)k

(
a+ b

a + k

)(
b+ c

b+ k

)(
c+ a

c+ k

)
=

(
a+ b+ c

a, b, c

)
.

(Set
(
m
i

)
= 0 if i < 0.) Note that if we specialize a = b = c, then we obtain

2a∑

k=0

(−1)k
(

2a

k

)3

=

(
3a

a, a, a

)
.

(c) [3+] Let q be an additional indeterminate. Show that when we expand the product

∏

1≤i<j≤k

(
1− q xi

xj

)(
1− q2 xi

xj

)
· · ·
(

1− qai
xi
xj

)

·
(

1− xj
xi

)(
1− qxj

xi

)
· · ·
(

1− qaj−1xj
xi

)
(1.121)

as a Laurent polynomial in x1, . . . , xn (whose coefficients are now polynomials in
q), then the constant term is the q-multinomial coefficient

(
a1+···+an

a1,...,an

)
.

(d) [3+] Let k ∈ P. When the product

∏

1≤i<j≤n

[(
1− xi

xj

)(
1− xj

xi

)
(1− xixj)

(
1− 1

xixj

)]k

is expanded as above, show that the constant term is

(
k

k

)(
3k

k

)(
5k

k

)
· · ·
(

(2n− 3)k

k

)
·
(

(n− 1)k

k

)
.

(e) [3–] Let f(a1, a2, . . . , an) denote the constant term of the Laurent polynomial

n∏

i=1

(
q−ai + q−ai+1 + · · ·+ qai

)
,

where each ai ∈ N. Show that
∑

a1,...,an≥0

f(a1, . . . , an)x
a1
1 · · ·xan

n

= (1 + x1) · · · (1 + xn)
n∑

i=1

xn−1
i

(1− x2
i )
∏

j 6=i(xi − xj)(1− xixj)
.

20. [2]* How many m×n matrices of 0’s and 1’s are there, such that every row and column
contains an even number of 1’s? An odd number of 1’s?
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21. [2]* Fix n ∈ P. In how many ways (as a function of n) can one choose a composition α
of n, and then choose a composition of each part of α? (Give an elegant combinatorial
proof.)

22. (a) [2] Find the number of compositions of n > 1 with an even number of even parts.
Naturally a combinatorial proof is preferred.

(b) [2+] Let e(n), o(n), and k(n) denote, respectively, the number of partitions of n
with an even number of even parts, with an odd number of even parts, and that
are self-conjugate. Show that e(n)− o(n) = k(n). Is there a simple combinatorial
proof?

23. [2] Give a simple “balls into boxes” proof that the total number of parts of all compo-
sitions of n is equal to (n+ 1)2n−2. (The simplest argument expresses the answer as a
sum of two terms.)

24. [2+] Let 1 ≤ k < n. Give a combinatorial proof that among all 2n−1 compositions of
n, the part k occurs a total of (n − k + 3)2n−k−2 times. For instance, if n = 4 and
k = 2, then the part 2 appears once in 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, and twice in
2 + 2, for a total of five times.

25. [2+] Let n− r = 2k. Show that the number f(n, r, s) of compositions of n with r odd
parts and s even parts is given by

(
r+s
r

)(
r+k−1
r+s−1

)
. Give a generating function proof and

a bijective proof.

26. [2]* Let c̄(m,n) denote the number of compositions of n with largest part at most m.
Show that ∑

n≥0

c̄(m,n)xn =
1− x

1− 2x+ xm+1
.

27. [2+] Find a simple explicit formula for the number of compositions of 2n with largest
part exactly n.

28. [2]* Let κ(n, j, k) be the number of weak compositions of n into k parts, each part less
than j. Give a generating function proof that

κ(n, j, k) =
∑

r+sj=n

(−1)s
(
k + r − 1

r

)(
k

s

)
,

where the sum is over all pairs (r, s) ∈ N2 satisfying r + sj = n.

29. [2]* Fix k, n ∈ P. Show that

∑
a1 · · ·ak =

(
n+ k − 1

2k − 1

)
,

where the sum ranges over all compositions (a1, . . . , ak) of n into k parts.

30. [2] Fix 1 ≤ k ≤ n. How many integer sequences 1 ≤ a1 < a2 < · · · < ak ≤ n satisfy
ai ≡ i (mod 2) for all i?
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31. [2+]

(a) Let #N = n, #X = x. Find a simple explicit expression for the number of ways
of choosing a function f : N → X and then linearly ordering each block of the
coimage of f . (The elements of N and X are assumed to be distinguishable.)

(b) How many ways as in (a) are there if f must be surjective? (Give a simple explicit
answer.)

(c) How many ways as in (a) are there if the elements of X are indistinguishable?
(Express your answer as a finite sum.)

32. [2] Fix positive integers n and k. Let #S = n. Find the number of k-tuples (T1, T2, . . . , Tk)
of subsets Ti of S subject to each of the following conditions separately, i.e., the three
parts are independent problems (all with the same general method of solution).

(a) T1 ⊆ T2 ⊆ · · · ⊆ Tk

(b) The Ti’s are pairwise disjoint.

(c) T1 ∪ T2 ∪ · · · ∪ Tk = S

33. (a) [2–]* Let k, n ≥ 1. Find the number of sequences ∅ = S0, S1, . . . , Sk of subsets of
[n] if for all 1 ≤ i ≤ k we have either (i) Si−1 ⊂ Si and |Si − Si−1| = 1, or (ii)
Si ⊂ Si−1 and |Si−1 − Si| = 1.

(b) [2+]* Suppose that we add the additional condition that Sk = ∅. Show that now
the number fk(n) of sequences is given by

fk(n) =
1

2n

n∑

i=0

(
n

i

)
(n− 2i)k.

Note that fk(n) = 0 if k is odd.

34. [2] Fix n, j, k ∈ P. How many integer sequences are there of the form 1 ≤ a1 < a2 <
· · · < ak ≤ n, where ai+1 − ai ≥ j for all 1 ≤ i ≤ k − 1?

35. The Fibonacci numbers are defined by F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 if n ≥ 3.
Express the following numbers in terms of the Fibonacci numbers.

(a) [2–] The number of subsets S of the set [n] = {1, 2, . . . , n} such that S contains
no two consecutive integers.

(b) [2] The number of compositions of n into parts greater than 1.

(c) [2–] The number of compositions of n into parts equal to 1 or 2.

(d) [2] The number of compositions of n into odd parts.

(e) [2] The number of sequences (ε1, ε2, . . . , εn) of 0’s and 1’s such that ε1 ≤ ε2 ≥
ε3 ≤ ε4 ≥ ε5 ≤ · · · .

(f) [2+]
∑
a1a2 · · ·ak, where the sum is over all 2n−1 compositions a1+a2 + · · ·+ak =

n.
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(g) [2+]
∑

(2a1−1 − 1) · · · (2ak−1 − 1), summed over the same set as in (f).

(h) [2+]
∑

2#{i : ai=1}, summed over the same set as (f).

(i) [2+]
∑

(−1)k−1(5a1−1 + 1) · · · (5ak−1 + 1), summed over the same set as (f).

(j) [2+]* The number of sequences (δ1, δ2, . . . , δn) of 0’s, 1’s, and 2’s such that 0 is
never immediately followed by 1.

(k) [2+] The number of distinct terms of the polynomial

Pn =

n∏

j=1

(1 + xj + xj+1).

For instance, setting x1 = a, x2 = b, x3 = c, we have P2 = 1 + a + 2b+ c + ab +
b2 + ac+ bc, which has eight distinct terms.

36. [2] Fix k, n ∈ P. Find a simple expression involving Fibonacci numbers for the number
of sequences (T1, T2, . . . , Tk) of subsets Ti of [n] such that

T1 ⊆ T2 ⊇ T3 ⊆ T4 ⊇ · · · .

37. [2] Show that

Fn+1 =
n∑

k=0

(
n− k
k

)
. (1.122)

38. [2]* Show that the number of permutations w ∈ Sn fixed by the fundamental trans-

formation Sn
∧→ Sn of Proposition 1.3.1 (i.e., w = ŵ) is the Fibonacci number Fn+1.

39. [2+] Show that the number of ordered pairs (S, T ) of subsets of [n] satisfying s > #T
for all s ∈ S and t > #S for all t ∈ T is equal to the Fibonacci number F2n+2.

40. [2]* Suppose that n points are arranged on a circle. Show that the number of subsets
of these points containing no two that are consecutive is the Lucas number Ln. This
result shows that the Lucas number Ln may be regarded as a “circular analogue”
of the Fibonacci number Fn+2 (via Exercise 1.35(a)). For further explication, see
Example 4.7.16.

41. (a) [2] Let f(n) be the number of ways to choose a subset S ⊆ [n] and a permutation
w ∈ Sn such that w(i) 6∈ S whenever i ∈ S. Show that f(n) = Fn+1n!.

(b) [2+] Suppose that in (a) we require w to be an n-cycle. Show that the number of
ways is now g(n) = Ln(n− 1)!, where Ln is a Lucas number.

42. [3] Let

F (x) =
∏

n≥2

(1− xFn) = (1− x)(1− x2)(1− x3)(1− x5)(1− x8) · · ·

= 1− x− x2 + x4 + x7 − x8 + x11 − x12 − x13 + x14 + x18 + · · · .

Show that every coefficient of F (x) is equal to −1, 0 or 1.
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43. [2–] Using only the combinatorial definitions of the Stirling numbers S(n, k) and c(n, k),
give formulas for S(n, 1), S(n, 2), S(n, n), S(n, n− 1), S(n, n− 2) and c(n, 1), c(n, 2),
c(n, n), c(n, n − 1), c(n, n − 2). For the case c(n, 2), express your answer in terms of
the harmonic number Hm = 1 + 1

2
+ 1

3
+ · · ·+ 1

m
for suitable m.

44. (a) [2]* Show that the total number of cycles of all even permutations of [n] and the
total number of cycles of all odd permutations of [n] differ by (−1)n(n− 2)!. Use
generating functions.

(b) [3–]* Give a bijective proof.

45. [2+] Let S(n, k) denote a Stirling number of the second kind. The generating function∑
n S(n, k)xn = xk/(1− x)(1− 2x) · · · (1− kx) implies the identity

S(n, k) =
∑

1a1−12a2−1 · · · kak−1, (1.123)

the sum being over all compositions a1 + · · · + ak = n. Give a combinatorial proof
of (1.123) analogous to the second proof of Proposition 1.3.7. That is, we want to
associate with each partition π of [n] into k blocks a composition a1 + · · ·+ak = n such
that exactly 1a1−12a2−1 · · · kak−1 partitions π are associated with this composition.

46. (a) [2] Let n, k ∈ P, and let j = ⌊k/2⌋. Let S(n, k) denote a Stirling number of the
second kind. Give a generating function proof that

S(n, k) ≡
(
n− j − 1

n− k

)
(mod 2).

(b) [3–] Give a combinatorial proof.

(c) [2] State and prove an analogous result for Stirling numbers of the first kind.

47. Let D be the operator d
dx

.

(a) [2]* Show that (xD)n =
∑n

k=0 S(n, k)xkDk.

(b) [2]* Show that

xnDn = xD(xD − 1)(xD − 2) · · · (xD − n+ 1) =
n∑

k=0

s(n, k)(xD)k.

(c) [2+]* Find the coefficients an,i,j in the expansion

(x+D)n =
∑

i,j

an,i,jx
iDj.

48. (a) [3] Let P (x) = a0 + a1x+ · · ·+ anx
n, ai ≥ 0, be a polynomial all of whose zeros

are negative real numbers. Regard ak/P (1) as the probability of choosing k, so
we have a probability distribution on [0, n]. Let µ = 1

P (1)

∑
k kak = P ′(1)/P (1),
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the mean of the distribution; and let m be the mode, i.e., am = maxk ak. Show
that

|µ−m| < 1.

More precisely, show that

m = k, if k ≤ µ < k + 1
k+2

m = k, or k + 1, or both, if k + 1
k+2
≤ µ ≤ k + 1− 1

n−k+1

m = k + 1, if k + 1− 1
n−k+1

< µ ≤ k + 1.

(b) [2] Fix n. Show that the signless Stirling number c(n, k) is maximized at k =
⌊1 + 1

2
+ 1

3
+ · · ·+ 1

n
⌋ or k = ⌈1 + 1

2
+ 1

3
+ · · ·+ 1

n
⌉. In particular, k ∼ log(n).

(c) [3] Let S(n, k) denote a Stirling number of the second kind, and define Kn by
S(n,Kn) ≥ S(n, k) for all k. Let t be the solution of the equation tet = n.
Show that for sufficiently large n (and probably all n), either Kn + 1 = ⌊et⌋ or
Kn + 1 = ⌈et⌉.

49. (a) [2+] Deduce from equation (1.38) that all the (complex) zeros of Ad(x) are real
and simple. (Use Rolle’s theorem.)

(b) [2–]* Deduce from Exercise 1.133(b) that the polynomial
∑n

k=1 k!S(n, k)xk has
only real zeros.

50. A sequence α = (a0, a1, . . . , an) of real numbers is unimodal if for some 0 ≤ j ≤ n we
have a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ aj+2 ≥ · · · ≥ an, and is log-concave if a2

i ≥ ai−1ai+1

for 1 ≤ i ≤ n − 1. We also say that α has no internal zeros if there does not exist
i < j < k with ai 6= 0, aj = 0, ak 6= 0, and that α is symmetric if ai = an−i for all i.
Define a polynomial P (x) =

∑
aix

i to be unimodal, log-concave, etc., if the sequence
(a0, a1, . . . , an) of coefficients has that property.

(a) [2–]* Show that a log-concave sequence of nonnegative real numbers with no
internal zeros is unimodal.

(b) [2+] Let P (x) =
∑n

i=0 aix
i =

∑n
i=0

(
n
i

)
bix

i ∈ R[x]. Show that if all the zeros of
P (x) are real, then the sequence (b0, b1, . . . , bn) is log-concave. (When all ai ≥ 0,
this statement is stronger than the assertion that (a0, a1, . . . , an) is log-concave.)

(c) [2+] Let P (x) =
∑m

i=0 aix
i and Q(x) =

∑n
i=0 bix

i be symmetric, unimodal, and
have nonnegative coefficients. Show that the same is true for P (x)Q(x).

(d) [2+] Let P (x) and Q(x) be log-concave with no internal zeros and nonnegative
coefficients. Show that the same is true for P (x)Q(x).

(e) [2] Show that the polynomials
∑

w∈Sn
xdes(w) and

∑
w∈Sn

xinv(w) are symmetric
and unimodal.

(f) [4–] Let 1 ≤ p ≤ n− 1. Given w = a1 · · ·an ∈ Sn, define

desp(w) = #{(i, j) : i < j ≤ i+ p, ai > aj}.
Thus des1 = des and desn−1 = inv. Show that the polynomial

∑
w∈Sn

xdesp(w) is
symmetric and unimodal.
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(g) [2+] Let S be a subset of {(i, j) : 1 ≤ i < j ≤ n}. An S-inversion of w =
a1 · · ·an ∈ Sn is a pair (i, j) ∈ S for which ai > aj . Let invS(w) denote the
number of S-inversions of w. Find a set S (for a suitable value of n) for which
the polynomial PS(x) :=

∑
w∈Sn

xinvS(w) is not unimodal.

51. [3–] Let k, n ∈ P with k ≤ n. Let V (n, k) denote the volume of the region Rnk in Rn

defined by

0 ≤ xi ≤ 1, for 1 ≤ i ≤ n

k − 1 ≤ x1 + x2 + · · ·+ xn ≤ k.

Show that V (n, k) = A(n, k)/n!, where A(n, k) is an Eulerian number.

52. [3–] Fix b ≥ 2. Choose n random N -digit integers in base b (allowing intial digits equal
to 0). Add these integers using the usual addition algorithm. For 0 ≤ j ≤ n − 1, let
f(j) be the number of times that we carry j in the addition process. For instance, if
we add 71801, 80914, and 62688 in base 10, then f(0) = 1 and f(1) = f(2) = 2. Show
that as N → ∞, the expected value of f(j)/N (i.e., the expected proportion of the
time we carry a j) approaches A(n, j + 1)/n!, where A(n, k) is an Eulerian number.

53. (a) [2]* The Eulerian Catalan number is defined by ECn = A(2n+ 1, n+ 1)/(n+ 1).
The first few Eulerian Catalan numbers, beginning with EC0 = 1, are 1, 2, 22,
604, 31238. Show that ECn = 2A(2n, n+ 1), whence ECn ∈ Z.

(b) [3–]* Show that ECn is the number of permutations w = a1a2 · · ·a2n+1 with n
descents, such that every left factor a1a2 · · ·ai has at least as many ascents as
descents. For n = 1 we are counting the two permutations 132 and 231.

54. [2]* How many n-element multisets on [2m] are there satisfying: (i) 1, 2, . . . , m appear
at most once each, and (ii) m+1, m+2, . . . , 2m appear an even number of times each?

55. [2–]* If w = a1a2 · · ·an ∈ Sn then let wr = an · · ·a2a1, the reverse of w. Express
inv(wr), maj(wr), and des(wr) in terms of inv(w), maj(w), and des(w), respectively.

56. [2+] Let M be a finite multiset on P. Generalize equation (1.41) by showing that

∑

w∈SM

qinv(w) =
∑

w∈SM

qmaj(w),

where inv(w) and maj(w) are defined in Section 1.7. Try to give a proof based on
results in Section 1.4 rather than generalizing the proof of (1.41).

57. [2+] Let w = w1w2 · · ·wn ∈ Sn. Show that the following conditions are equivalent.

(i) Let C(i) be the set of indices j of the columns Cj that intersect the ith row
of the diagram D(w) of w. For instance, if w = 314652 as in Figure 1.5, then
C(1) = {1, 2}, C(3) = {2}, C(4) = {2, 5}, C(5) = {2}, and all other C(i) = ∅.
Then for every i, j, either C(i) ⊆ C(j) or C(j) ⊆ C(i).
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(ii) Let λ(w) be the entries of the inversion table I(w) of w written in decreasing order.
For instance, I(52413) = (3, 1, 2, 1, 0) and λ(52413) = (3, 2, 1, 1, 0). Regard λ as
a partition of inv(w). Then λ(w−1) = λ(w)′, the conjugate partition to λ(w).

(iii) The permutation w is 2143-avoiding, i.e., there do not exist a < b < c < d for
which wb < wa < wd < wc.

58. For u ∈ Sk, let su(n) = #Su(n), the number of permutations w ∈ Sn avoiding u. If
also v ∈ Sk, then write u ∼ v if su(n) = sv(n) for all n ≥ 0 (an obvious equivalence
relation). Thus by the discussion preceding Proposition 1.5.1, u ∼ v for all u, v ∈ S3.

(a) [2]* Let u, v ∈ Sk. Suppose that the permutation matrix Pv can be obtained from
Pu by one of the eight dihedral symmetries of the square. For instance, Pu−1 and
be obtained from Pu by reflection in the main diagonal. Show that u ∼ v. We
then say that u and v are equivalent by symmetry, denoted u ≈ v. Thus ≈ is a
finer equivalence relation than ∼. What are the ≈ equivalence classes for S3?

(b) [3] Show that there are exactly three ∼ equivalence classes for S4. The equivalence
classes are given by {1234, 1243, 2143, . . .}, {3142, 1342, . . .}, and {1342, . . .},
where the omitted permutations are obtained by ≈ equivalence.

59. [3] Let su(n) have the meaning of the previous exercise. Show that cu := limn→∞ su(n)1/n

exists and satisfies 1 < cu <∞.

60. [2+] Define two permutations in Sn to be equivalent if one can be obtained from
the other by interchanging adjacent letters that differ by at least two, an obvious
equivalence relation. For instance, when n = 3 we have the four equivalence classes
{123}, {132, 312}, {213, 231}, {321}. Describe the equivalence classes in terms of more
familiar objects. How many equivalence classes are there?

61. (a) [3–] Let w = w1 · · ·wn. Let

F (x; a, b, c, d) =
∑

n≥1

∑

w∈Sn

av(w)bp(w)−1cr(w)df(w)x
n

n!
,

where v(w) denotes the number of valleys wi of w for 1 ≤ i ≤ n (where w0 =
wn+1 = 0 as preceding Proposition 1.5.3), p(w) the number of peaks, r(w) the
number of double rises, and f(w) the number of double falls. For instance, if
w = 32451, then 3 is a peak, 2 is a valley, 4 is a double rise, 5 is a peak, and 1 is
a double fall. Thus

F (x; a, b, c, d) = x+ (c+ d)
x2

2!
+ (c2 + d2 + 2ab+ 2cd)

x3

3!

+(c3 + d3 + 3cd2 + 3c2d+ 8abc + 8abd)
x4

4!
+ ·.

Show that

F (x; a, b, c, d) =
evx − eux
veux − uevx , (1.124)
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where uv = ab and u + v = c + d. In other words, u and v are zeros of the
polynomial z2 − (c + d)z + ab; it makes no difference which zero we call u and
which v.

(b) [2–] Let r(n, k) be the number of permutations w ∈ Sn with k peaks. Show that

∑

n≥0

∑

k≥0

r(n, k)tk
xn

n!
=

1 + u tan(xu)

1− tan(xu)
u

, (1.125)

where u =
√
t− 1.

(c) [2+] A proper double fall or proper double descent of a permutation w = a1a2 · · ·an
is an index 1 < i < n for which ai−1 > ai > ai+1. (Compare with the definition
of a double fall or double descent, where we also allow i = 1 and i = n with the
convention a0 = an+1 = 0.) Let f(n) be the number of permutations w ∈ Sn

with no proper double descents. Show that

∑

n≥0

f(n)
xn

n!
=

1
∑

j≥0

(
x3j

(3j)!
− x3j+1

(3j + 1)!

) (1.126)

= 1 + x+ 2
x2

2!
+ 5

x3

3!
+ 17

x4

4!
+ 70

x5

5!
+ 349

x6

6!

+2017
x7

7!
+ 13358

x8

8!
+ · · · .

62. In this exercise we consider one method for generalizing the disjoint cycle decom-
position of permutations of sets to multisets. A multiset cycle of P is a sequence
C = (i1, i2, . . . , ik) of positive integers with repetitions allowed, where we regard
(i1, i2, . . . , ik) as equivalent to (ij, ij+1, . . . , ik, i1, . . . , ij−1) for 1 ≤ j ≤ k. Introduce
indeterminates x1, x2, . . . , and define the weight of C by w(C) = xi1 · · ·xik . A multiset
permutation or multipermutation of a multiset M is a multiset of multiset cycles, such
that M is the multiset of all elements of the cycles. For instance, the multiset {1, 1, 2}
has the following four multipermutations: (1)(1)(2), (11)(2), (12)(1), (112). The weight
w(π) of a multipermutation π = C1C2 · · ·Cj is given by w(π) = w(C1) · · ·w(Cj).

(a) [2–]* Show that ∏

C

(1− w(C))−1 =
∑

π

w(π),

where C ranges over all multiset cycles on P and π over all (finite) multiset
permutations on P.

(b) [2+] Let pk = xk1 + xk2 + · · · . Show that

∏

C

(1− w(C))−1 =
∏

k≥1

(1− pk)−1.
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(c) [1+] Let fk(n) denote the number of multiset permutations on [k] of total size
n. For instance, f2(3) = 14, given by (1)(1)(1), (1)(1)(2), (1)(2)(2), (2)(2)(2),
(11)(1), (11)(2), (12)(1), (12)(2), (22)(1), (22)(2), (111), (112), (122), (222). De-
duce from (b) that ∑

n≥0

fk(n)xn =
∏

i≥1

(1− kxi)−1.

(d) [3–] Find a direct combinatorial proof of (b) or (c).

63. (a) [2–] We are given n square envelopes of different sizes. In how many different
ways can they be arranged by inclusion? For instance, if n = 3 there are six ways;
namely, label the envelopes A,B,C with A the largest and C the smallest, and
let I ∈ J mean that envelope I is contained in envelope J . Then the six ways
are: (1) ∅, (2) B ∈ A, (3) C ∈ A, (4) C ∈ B, (5) B ∈ A, C ∈ A, (6) C ∈ B ∈ A.

(b) [2] How many arrangements have exactly k envelopes that are not contained in
another envelope? That don’t contain another envelope?

64. (a) [2] Let f(n) be the number of sequences a1, . . . , an of positive integers such that
for each k > 1, k only occurs if k−1 occurs before the last occurrence of k. Show
that f(n) = n!. (For n = 3 the sequences are 111, 112, 121, 122, 212, 123.)

(b) [2] Show that A(n, k) of these sequences satisfy max{a1, . . . , an} = k.

65. [3] Let y =
∏

n≥1(1− xn)−1. Show that

4y3y′′ + 5xy3y′′′ + x2y3y(iv) − 16y2y′2 − 15xy2y′y′′ + 20x2y2y′y′′′

−19x2y2y′′2 + 10xyy′3 + 12x2yy′2y′′ + 6x2y′4 = 0. (1.127)

66. [2–]* Let pk(n) denote the number of partitions of n into k parts. Give a bijective
proof that

p0(n) + p1(n) + · · ·+ pk(n) = pk(n + k).

67. [2–]* Express the number of partitions of n with no part equal to 1 in terms of values
p(k) of the partition function.

68. [2]* Let n ≥ 1, and let f(n) be the number of partitions of n such that for all k, the
part k occurs at most k times. Let g(n) be the number of partitions of n such that no
part has the form i(i+1), i.e., no parts equal to 2, 6, 12, 20, . . . . Show that f(n) = g(n).

69. [2]* Let f(n) denote the number of self-conjugate partitions of n all of whose parts are
even. Express the generating function

∑
n≥0 f(n)xn as a simple product.

70. (a) [2] Find a bijection between partitions λ ⊢ n of rank r and integer arrays

Aλ =

(
a1 a2 · · · ar
b1 b2 · · · br

)

such that a1 > a2 > · · · > ar ≥ 0, b1 > b2 > · · · > br ≥ 0, and r+
∑

(ai + bi) = n.
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(b) [2+] A concatenated spiral self-avoiding walk (CSSAW) on the square lattice is
a lattice path in the plane starting at (0, 0), with steps (±1, 0) and (0,±1) and
first step (1, 0), with the following three properties: (i) the path is self-avoiding,
i.e, it never returns to a previously visited lattice point, (ii) every step after the
first must continue in the direction of the previous step or turn right, and (iii)
at the end of the walk it must be possible to turn right and walk infinitely many
steps in the direction faced without intersecting an earlier part of the path. For
instance, writing N = (0, 1), etc., the five CSSAW’s of length four are NNNN ,
NNNE, NNEE, NEEE, and NESS. Note for instance that NEES is not a
CSSAW since continuing with steps WWW · · · will intersect (0, 0). Show that
the number of CSSAW’s of length n is equal to p(n), the number of partitions of
n.

71. [2+] How many pairs (λ, µ) of partitions of integers are there such that λ ⊢ n, and
the Young diagram of µ is obtained from the Young diagram of λ by adding a single
square? Express your answer in terms of the partition function values p(k) for k ≤ n.
Give a simple combinatorial proof.

72. (a) [3–] Let λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) be partitions. Define µ ≤ λ if
µi ≤ λi for all i. Show that

∑

µ≤λ
q|µ|+|λ| =

1

(1− q)(1− q2)2(1− q3)2(1− q4)2 · · · . (1.128)

(b) [3–] Show that the number of pairs (λ, µ) such that λ and µ have distinct parts,
µ ≤ λ as in (a), and |λ| + |µ| = n, is equal to p(n), the number of partitions of
n. For instance, when n = 5 we have the seven pairs (∅, 5), (∅, 41), (∅, 32), (1, 4),
(2, 3), (1, 31), and (2, 21).

73. [2] Let λ be a partition. Show that

∑

i

⌈
λ2i−1

2

⌉
=

∑

i

⌈
λ′2i−1

2

⌉

∑

i

⌊
λ2i−1

2

⌋
=

∑

i

⌈
λ′2i
2

⌉

∑

i

⌊
λ2i

2

⌋
=

∑

i

⌊
λ′2i
2

⌋
.

74. [2] Let pk(n) denote the number of partitions of n into k parts. Fix t ≥ 0. Show that as
n→∞, pn−t(n) becomes eventually constant. What is this constant f(t)? What is the
least value of n for which pn−t(n) = f(t)? Your arguments should be combinatorial.

75. [2–] Let pk(n) be as above, and let qk(n) be the number of partitions of n into k distinct
parts. For example, q3(8) = 2, corresponding to (5, 2, 1) and (4, 3, 1). Give a simple
combinatorial proof that qk

(
n +

(
k
2

))
= pk(n).
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76. [2] Prove the partition identity

∏

i≥1

(1 + qx2i−1) =
∑

k≥0

xk
2
qk

(1− x2)(1− x4) · · · (1− x2k)
. (1.129)

77. [3–] Give a “subtraction-free” bijective proof of the pentagonal number formula by
proving directly the identity

1 +

∑
n odd

(
xn(3n−1)/2 + xn(3n+1)/2

)
∏

j≥1(1− xj)
=

1 +
∑

n even

(
xn(3n−1)/2 + xn(3n+1)/2

)
∏

j≥1(1− xj)
.

78. (a) [2] The logarithmic derivative of a power series F (x) is d
dx

logF (x) = F ′(x)/F (x).
By logarithmically differentiating the power series

∑
n≥0 p(n)xn =

∏
i≥1(1−xi)−1,

derive the recurrence

n · p(n) =
n∑

i=1

σ(i)p(n− i),

where σ(i) is the sum of the divisors of i.

(b) [2+] Give a combinatorial proof.

79. (a) [2+] Given a set S ⊆ P, let pS(n) (resp. qS(n)) denote the number of partitions
of n (resp. number of partitions of n into distinct parts) whose parts belong to
S. (These are special cases of the function p(S, n) of Corollary 1.8.2.) Call a pair
(S, T ), where S, T ⊆ P, an Euler pair if pS(n) = qT (n) for all n ∈ N. Show that
(S, T ) is an Euler pair if and only if 2T ⊆ T (where 2T = {2i : i ∈ T}) and
S = T − 2T .

(b) [1+] What is the significance of the case S = {1}, T = {1, 2, 4, 8, . . .}?

80. [2+] If λ is a partition of an integer n, let fk(λ) be the number of times k appears
as a part of λ, and let gk(λ) be the number of distinct parts of λ that occur at least
k times. For example, f2(4, 2, 2, 2, 1, 1) = 3 and g2(4, 2, 2, 2, 1, 1) = 2. Show that∑
fk(λ) =

∑
gk(λ), where k ∈ P is fixed and both sums range over all partitions λ of

a fixed integer n ∈ P.

81. [2+] A perfect partition of n ≥ 1 is a partition λ ⊢ n which “contains” precisely one
partition of each positive integer m ≤ n. In other words, regarding λ as the multiset
of its parts, for each m ≤ n there is a unique submultiset of λ whose parts sum to
m. Show that the number of perfect partitions of n is equal to the number of ordered
factorizations (with any number of factors) of n+ 1 into integers ≥ 2.

Example. The perfect partitions of 5 are (1, 1, 1, 1, 1), (3, 1, 1), and (2, 2, 1). The
ordered factorizations of 6 are 6 = 2 · 3 = 3 · 2.

82. [3] Show that the number of partitions of 5n+ 4 is divisible by 5.
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83. [3–] Let λ = (λ1, λ2, . . . ) ⊢ n. Define

α(λ) =
∑

i

⌈λ2i−1/2⌉

β(λ) =
∑

i

⌊λ2i−1/2⌋

γ(λ) =
∑

i

⌈λ2i/2⌉

δ(λ) =
∑

i

⌊λ2i/2⌋.

Let a, b, c, d be (commuting) indeterminates, and define

w(λ) = aα(λ)bβ(λ)cγ(λ)dδ(λ).

For instance, if λ = (5, 4, 4, 3, 2) then w(λ) is the product of the entries of the diagram

a b a b a
c d c d
a b a b
c d c
a b

Show that

∑

λ∈Par

w(λ) =
∏

j≥1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbjcj−1dj−1)(1− ajbj−1cjdj−1)
, (1.130)

where Par denotes the set of all partitions λ of all integers n ≥ 0.

84. [2]* Show that the number of partitions of n in which each part appears exactly 2, 3,
or 5 times is equal to the number of partitions of n into parts congruent to ±2, ±3,
6 (mod 12).

85. [2+]* Prove that the number of partitions of n in which no part appears exactly once
equals the number of partitions of n into parts not congruent to ±1 (mod 6).

86. [3] Prove that the number of partitions of n into parts congruent to 1 or 5 (mod 6)
equals the number of partitions of n in which the difference between all parts is at
least 3 and between multiples of 3 is at least 6.

87. [3–]* Let Ak(n) be the number of partitions of n into odd parts (repetition allowed)
such that exactly k distinct parts occur. For instance, when n = 35 and k = 3,
one of the partitions being enumerated is (9, 9, 5, 3, 3, 3, 3). Let Bk(n) be the number
of partitions λ = (λ1, . . . , λr) of n such that the sequence λ1, . . . , λr is composed of
exactly k noncontiguous sequences of one or more consecutive integers. For instance,
when n = 44 and k = 3, one of the partitions being enumerated is (10, 9, 8, 7, 5, 3, 2),
which is composed of 10, 9, 8, 7 and 5 and 3, 2. Show that Ak(n) = Bk(n) for all k and
n. Note that summing over all k gives Proposition 1.8.5, i.e., podd(n) = q(n) .
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88. (a) [3] Prove the identities

∑

n≥0

xn
2

(1− x)(1− x2) · · · (1− xn) =
1∏

k≥0

(1− x5k+1)(1− x5k+4)

∑

n≥0

xn(n+1)

(1− x)(1− x2) · · · (1− xn) =
1∏

k≥0

(1− x5k+2)(1− x5k+3)
.

(b) [2] Show that the identities in (a) are equivalent to the following combinatorial
statements:

• The number of partitions of n into parts ≡ ±1 (mod 5) is equal to the number
of partitions of n whose parts differ by at least 2.

• The number of partitions of n into parts ≡ ±2 (mod 5) is equal to the number
of partitions of n whose parts differ by at least 2 and for which 1 is not a
part.

(c) [2]* Let f(n) be the number of partitions λ ⊢ n satisfying ℓ(λ) = rank(λ). Show
that f(n) is equal to the number of partitions of n whose parts differ by at least
2.

89. [3] A lecture hall partition of length k is a partition λ = (λ1, . . . , λk) (some of whose
parts may be 0) satisfying

0 ≤ λk
1
≤ λk−1

2
≤ · · · ≤ λ1

k
.

Show that the number of lecture hall partitions of n of length k is equal to the number
of partitions of n whose parts come from the set 1, 3, 5, . . . , 2k − 1 (with repetitions
allowed).

90. [3] Let f(n) be the number of partitions of n all of whose parts are Lucas numbers
L2n+1 of odd index. For instance, f(12) = 5, corresponding to

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
4 + 4 + 1 + 1 + 1 + 1
4 + 4 + 4
11 + 1

Let g(n) be the number of partitions λ = (λ1, λ2, . . . ) such that λi/λi+1 >
1
2
(3 +

√
5)

whenever λi+1 > 0. For instance, g(12) = 5, corresponding to

12, 11 + 1, 10 + 2, 9 + 3, 8 + 3 + 1.

Show that f(n) = g(n) for all n ≥ 1.
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91. (a) [3–] Show that

∑

n∈Z

xnqn
2

=
∏

k≥1

(1− q2k)(1 + xq2k−1)(1 + x−1q2k−1).

(b) [2] Deduce from (a) the Pentagonal Number Formula (Proposition 1.8.7).

(c) [2] Deduce from (a) the two identities

∏

k≥1

1− qk
1 + qk

=
∑

n∈Z

(−1)nqn
2

(1.131)

∏

k≥1

1− q2k

1− q2k−1
=

∑

n≥0

q(
n+1

2 ). (1.132)

(d) [2+] Deduce from (a) the identity

∏

k≥1

(1− qk)3 =
∑

n≥0

(−1)n(2n+ 1)qn(n+1)/2.

Hint. First substitute −xq−1/2 for x and q1/2 for q.

92. [3] Let S ⊆ P and let p(S, n) denote the number of partitions of n whose parts belong
to S. Let

S = {n : n odd or n ≡ ±4,±6,±8,±10 (mod 32)}
T = {n : n odd or n ≡ ±2,±8,±12,±14 (mod 32)}.

Show that p(S, n) = p(T , n − 1) for all n ≥ 1. Equivalently, we have the remarkable
identity ∏

n∈S

1

1− xn = 1 + x
∏

n∈T

1

1− xn . (1.133)

93. [3] Let

S = ±{1, 4, 5, 6, 7, 9, 11, 13, 16, 21, 23, 28 (mod66)}
T = ±{1, 4, 5, 6, 7, 9, 11, 14, 16, 17, 27, 29 (mod66)},

where
±{a, b, . . . (modm)} := {n ∈ P : n ≡ ±a,±b, . . . (modm)}.

Show that p(S, n) = p(T, n) for all n ≥ 1 except n = 13. Equivalently, we have another
remarkable identity similar to equation (1.133):

∏

n∈S

1

1− xn = x13 +
∏

n∈T

1

1− xn .

94. (a) [3–] Let n ≥ 0. Show that the following numbers are equal.
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• The number of solutions to n =
∑

i≥0 ai2
i, where ai = 0, 1, or 2.

• Then number of odd integers k for which the Stirling number S(n + 1, k) is
odd.

• The number of odd binomial coefficients of the form
(
n−k
k

)
, 0 ≤ k ≤ n.

• The number of ways to write bn as a sum of distinct Fibonacci numbers Fn,
where ∏

i≥0

(1 + xF2i) =
∑

n≥0

xbn , b0 < b1 < · · · .

(b) [2–] Denote by an+1 the number being counted by (a), so (a1, a2, . . . , a10) =
(1, 1, 2, 1, 3, 2, 3, 1, 4, 3). Deduce from (a) that

∑

n≥0

an+1x
n =

∏

i≥0

(1 + x2i

+ x2i+1

).

(c) [2] Deduce from (a) that a2n = an and a2n+1 = an + an+1.

(d) [3–] Show that every positive rational number can be written in exactly one way
as a fraction an/an+1.

95. [3] At time n = 1 place a line segment (toothpick) of length one on the xy-plane,
centered at (0, 0) and parallel to the y-axis. At time n > 1, place additional line
segments that are centered at the end and perpendicular to an exposed toothpick end,
where an exposed end is the end of a toothpick that is neither the end nor the midpoint
of another toothpick. Figure 1.28 shows the configurations obtained for times n ≤ 6.
Let f(n) be the total number of toothpicks that have been placed up to time n, and
let

F (x) =
∑

n≥1

f(n)xn.

Figure 1.28 shows that

F (x) = x+ 3x2 + 7x3 + 11x4 + 15x5 + 23x6 + · · · .

Show that

F (x) =
x

(1− x)(1− 2x)

(
1 + 2x

∏

k≥0

(
1 + x2k−1 + 2x2k

))
.

96. Define

x
∏

n≥1

(1− xn)24 =
∑

n≥1

τ(n)xn

= x− 24x2 + 252x3 − 1472x4 + 4830x5 − 6048x6 − 16744x7 + · · · .

(a) [3+] Show that τ(mn) = τ(m)τ(n) if m and n are relatively prime.
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Figure 1.28: The growth of toothpicks

(b) [3+] Show that if p is prime and n ≥ 1 then

τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1).

(c) [4] Show that if p is prime then |τ(p)| < 2p11/2. Equivalently, write

∑

n≥0

τ(pn)xn =
Pp(x)

1− τ(p)x+ p11x2
,

so by (b) and Theorem 4.4.1.1 the numerator Pp(x) is a polynomial. Then the
zeros of the denominator are not real.

(d) [5] Show that τ(n) 6= 0 for all n ≥ 1.

97. [3–] Let f(n) be the number of partitions of 2n whose Ferrers diagram can be covered by
n edges, each connecting two adjacent dots. For instance, (4, 3, 3, 3, 1) can be covered
as follows:

Show that
∑

n≥0 f(n)xn =
∏

i≥1(1− xi)−2.

98. [2+] Let n, a, k ∈ N and ζ = e2πi/n. Show that

(
na

k

)

q=ζ

=

{ (
a
b

)
, k = nb

0, otherwise.

99. [2] Let 0 ≤ k ≤ n and f(q) =
(

n

k

)
. Compute f ′(1). Try to avoid a lot of computation.

100. [2+] State and prove a q-analogue of the Chu-Vandermonde identity

n∑

i=0

(
a

i

)(
b

n− i

)
=

(
a + b

n

)

(Example 1.1.17).
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101. [2]* Explain why we cannot set q = 1 on both sides of equation (1.85) to obtain the
identity

1 =
∑

k≥0

xk

k!
.

102. (a) [2]* Let x and y be variables satisfying the commutation relation yx = qxy, where
q commutes with x and y. Show that

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

(b) [2]* Generalize to (x1 + x2 + · · ·+ xm)n, where xixj = qxjxi for i > j.

(c) [2+]* Generalize further to (x1 + x2 + · · ·+ xm)n, where xixj = qjxjxi for i > j,
and where the qj ’s are variables commuting with all the xi’s and with each other.

103. (a) [3+] Given a partition λ (identified with its Young diagram) and u ∈ λ, let a(u)
(called the arm length of u) denote the number of squares directly to the right
of u, counting u itself exactly once. Similarly let l(u) (called the leg length of u)
denote the number of squares directly below u, counting u itself once. Thus if
u = (i, j) then a(u) = λi − j + 1 and l(u) = λ′j − i+ 1. Define

γ(λ) = #{u ∈ λ : a(u)− l(u) = 0 or 1}.

Show that ∑

λ⊢n
qγ(λ) =

∑

λ⊢n
qℓ(λ), (1.134)

where ℓ(λ) denotes the length (number of parts) of λ.

(b) [2]* Clearly the coefficient of xn in the right-hand side of equation (1.134) is 1.
Show directly (without using (a)) that the same is true for the left-hand side.

104. [2+] Let n ≥ 1. Find the number f(n) of integer sequences (a1, a2, . . . , an) such that
0 ≤ ai ≤ 9 and a1 +a2 + · · ·+an ≡ 0 (mod 4). Give a simple explicit formula (no sums)
that depends on the congruence class of n modulo 4.

105. (a) [3–] Let n ∈ P, and let f(n) denote the number of subsets of Z/nZ (the integers
modulo n) whose elements sum to 0 in Z/nZ. For instance, f(4) = 4, correspond-
ing to ∅, {0}, {1, 3}, {0, 1, 3}. Show that

f(n) =
1

n

∑

d|n
d odd

φ(d)2n/d,

where φ denotes Euler’s totient function.

(b) [5–] When n is odd, it can be shown using (a) (see Exercise 7.112) that f(n) is
equal to the number of necklaces (up to cyclic rotation) with n beads, each bead
colored black or white. Give a combinatorial proof. (This is easy if n is prime.)
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(c) [5–] Generalize. For instance, investigate the number of subsets S of Z/nZ sat-
isfying

∑
i∈S p(i) ≡ α (modn), where p is a fixed polynomial and α ∈ Z/nZ is

fixed.

106. [2] Let f(n, k) be the number of sequences a1a2 · · ·an of positive integers such that the
largest number occurring is k and such that the first occurrence of i appears before the
first occurrence of i+ 1 (1 ≤ i ≤ k − 1). Express f(n, k) in terms of familiar numbers.
Give a combinatorial proof. (It is assumed that every number 1, 2, . . . , k occurs at least
once.)

107. [1+]* Give a direct combinatorial proof of equation (1.94e), viz.,

B(n+ 1) =

n∑

i=0

(
n

i

)
B(i), n ≥ 0.

108. (a) [2+] Give a combinatorial proof that the number of partitions of [n] such that no
two consecutive integers appear in the same block is the Bell number B(n− 1).

(b) [2+]* Give a combinatorial proof that the number of partitions of [n] such that
no two cyclically consecutive integers (i.e., two integers i, j for which j ≡ i +
1 (modn)) appear in the same block is equal to the number of partitions of [n]
with no singleton blocks.

109. [2+]

(a) Show that the number of permutations a1 · · ·an ∈ Sn for which there is no 1 ≤
i < j ≤ n− 1 satisfying ai < aj < aj+1 is equal to the Bell number B(n).

(b) Show that the same conclusion holds if the condition ai < aj < aj+1 is replaced
with ai < aj+1 < aj .

(c) Show that the number of permutations w ∈ Sn satisfying the conditions of both
(a) and (b) is equal to the number of involutions in Sn.

110. [3–] Let f(n) be the number of partitions π of [n] such that the union of no proper
subset of the blocks of π is an interval [a, b]. For instance, f(4) = 2, corresponding to
the partitions 13-24 and 1234, while f(5) = 6. Set f(0) = 1. Let

F (x) =
∑

n≥0

f(n)xn = 1 + x+ x2 + x3 + 2x4 + 6x5 + · · · .

Find the coefficients of (x/F (x))〈−1〉.

111. [3–] Let f(n) be the number of partitions π of [n] such that no block of π is an interval
[a, b] (allowing a = b). Thus f(1) = f(2) = f(3) = 0 and f(4) = 1, corresponding to
the partition 13-24. Let

F (x) =
∑

n≥0

f(n)xn = 1 + x4 + 5x5 + 21x6 + · · · .

Express F (x) in terms of the ordinary generating function G(x) =
∑

n≥0B(n)xn =
1 + x+ 2x2 + 5x3 + 15x4 + · · · .
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112. [2]* How many permutations w ∈ Sn have the same number of cycles as weak ex-
cedances?

113. [2–]* Fix k, n ∈ P. How many sequences (T1, . . . , Tk) of subsets Ti of [n] are there such
that the nonempty Ti form a partition of [n]?

114. (a) [2–]* How many permutations w = a1a2 · · ·an ∈ Sn have the property that for
all 1 ≤ i < n, the numbers appearing in w between i and i + 1 (whether i is to
the left or right of i+ 1) are all less than i? An example of such a permutation is
976412358.

(b) [2–]* How many permutations a1a2 · · ·an ∈ Sn satisfy the following property: if
2 ≤ j ≤ n, then |ai − aj | = 1 for some 1 ≤ i < j? Equivalently, for all 1 ≤ i ≤ n,
the set {a1, a2, . . . , ai} consists of consecutive integers (in some order). E.g., for
n = 3 there are the four permutations 123, 213, 231, 321. More generally, find
the number of such permutations with descent set S ⊆ [n− 1].

115. [3–] Let n = 217 + 2 and define Qn(t) =
∑

S⊆[n−1] t
βn(S). Show that e2πi/n is (at least)

a double root of Qn(t).

116. (a) [2]* Show that the expected number of cycles of a random permutation w ∈ Sn

(chosen from the uniform distribution) is given by the harmonic number Hn =
1 + 1

2
+ 1

3
+ · · ·+ 1

n
∼ log n.

(b) [3] Let f(n) be the expected length of the longest cycle of a random permutation
w ∈ Sn (again from the uniform distribuiton). Show that

lim
n→∞

f(n)

n
=

∫ ∞

0

exp

(
−x−

∫ ∞

x

e−y

y
dy

)
dx = 0.62432965 · · · .

117. [2+] Let w be a random permutation of 1, 2, . . . , n (chosen from the uniform distribu-
tion). Fix a positive integer 1 ≤ k ≤ n. What is the probability pnk that in the disjoint
cycle decomposition of w, the length of the cycle containing 1 is k? In other words,
what is the probability that k is the least positive integer for which wk(1) = 1? Give
a simple proof avoiding generating functions, induction, etc.

118. (a) [2]* Let w be a random permutation of 1, 2, . . . , n (chosen from the uniform dis-
tribution), n ≥ 2. Show that the probability that 1 and 2 are in the same cycle
of w is 1/2.

(b) [2+] Generalize (a) as follows. Let 2 ≤ k ≤ n, and let λ = (λ1, λ2, . . . , λℓ) ⊢ k,
where λℓ > 0 . Choose a random permutation w ∈ Sn. Let Pλ be the probability
that 1, 2, . . . , λ1 are in the same cycle C1 of w, and λ1 + 1, . . . , λ1 + λ2 are in the
same cycle C2 of w different from C1, etc. Show that

Pλ =
(λ1 − 1)! · · · (λℓ − 1)!

k!
.
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(c) [3–] Same as (b), except now we take w uniformly from the alternating group An.
Let the resulting probability be Qλ. Show that

Qλ =
(λ1 − 1)! · · · (λℓ − 1)!

(k − 2)!

(
1

k(k − 1)
+ (−1)n−ℓ

1

n(n− 1)

)
.

119. [2+] Let Pn denote the probability that a random permutation (chosen from the uni-
form distribution) in S2n has all cycle lengths at most n. Show that limn→∞ Pn =
1− log 2 = 0.306852819 · · · .

120. [2+] Let Ek(n) denote the expected number of k-cycles of a permutation w ∈ Sn, as
discussed in Example 1.3.5. Give a simple combinatorial explanation of the formula
Ek(n) = 1/k, n ≥ k.

121. (a) [2]* Let f(n) denote the number of fixed-point free involutions w ∈ S2n (i.e., w2 =
1, and w(i) 6= i for all i ∈ [2n]). Find a simple expression for

∑
n≥0 f(n)xn/n!.

(Set f(0) = 1.)

(b) [2–]* If X ⊆ P, then write −X = {−i : i ∈ X}. Let g(n) be the number of ways
to choose a subset X of [n], and then choose fixed point free involutions w on
X ∪ (−X) and w̄ on X̄ ∪ (−X̄), where X̄ = {i ∈ [n] : i 6∈ X}. Use (a) to find a
simple expression for g(n).

(c) [2+]* Find a combinatorial proof for the formula obtained for g(n) in (b).

122. [2–]* Find
∑

w x
exc(w), where w ranges over all fixed-point free involutions in S2n and

exc(w) denotes the number of excedances of w.

123. [2]* Let An denote the alternating group on [n], i.e., the group of all permutations with
an even number of cycles of even length. Define the augmented cycle indicator Z̃An of
An by

Z̃An =
∑

w∈An

ttype(w),

as in equation (1.25). Show that

∑

n≥0

Z̃An

xn

n!
= exp

(
t1x+ t3

x3

3
+ t5

x5

5
+ · · ·

)
· cosh

(
t2
x2

2
+ t4

x4

4
+ t6

x6

6
+ · · ·

)
.

124. (a) [2] Let fk(n) denote the number of permutations w ∈ Sn with k inversions. Show
combinatorially that for n ≥ k,

fk(n + 1) = fk(n) + fk−1(n+ 1).

(b) [1+] Deduce from (a) that for n ≥ k, fk(n) is a polynomial in n of degree k and
leading coefficient 1/k!. For instance, f2(n) = 1

2
(n+ 1)(n− 2) for n ≥ 2.
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(c) [2+] Let gk(n) be the polynomial that agrees with fk(n) for n ≥ k. Find ∆jgk(−n);
that is, find the coefficients aj in the expansion

gk(−n) =
k∑

j=0

aj

(
n

j

)
.

125. [2+]* Find the number f(n) of binary sequences w = a1a2 · · ·ak (where k is arbitrary)
such that a1 = 1, ak = 0, and inv(w) = n. For instance, f(4) = 5, corresponding to
the sequences 10000, 11110, 10110, 10010, 1100. How many of these sequences have
exactly j 1’s?

126. [2+]* Show that
∑

w

qinv(w) = qn
n−1∏

j=0

(1 + q2 + q4 + · · ·+ q4j),

where w ranges over all fixed-point free involutions in S2n, and where inv(w) denotes
the number of inversions of w. Give a simple combinatorial proof analogous to the
proof of Corollary 1.3.13.

127. [2]

(a) Let w ∈ Sn, and let R(w) be the set of positions of the records (or left-to-right
maxima) of w. For instance, R(3265174) = {1, 3, 6}. For any finite set S of
positive integers, set xS =

∏
i∈S xi. Show that

∑

w∈Sn

qinv(w)xR(w) = x1(x2 + q)(x3 + q + 1) · · · (xn + q + q2 + · · ·+ qn−1). (1.135)

(b) Let V (w) be the set of the records themselves, e.g., V (3265174) = {3, 6, 7}. Show
that
∑

w∈Sn

qinv(w)xV (w) = (x1+q+q2+· · ·+qn−1)(x2+q+q2+· · ·+qn−2) · · · (xn−1+q)xn.

(1.136)

128. (a) [2] A permutation a1 · · ·an of [n] is called indecomposable or connected if n is the
least positive integer j for which {a1, a2, . . . , aj} = {1, 2, . . . , j}. Let f(n) be the
number of indecomposable permutations of [n], and set F (x) =

∑
n≥0 n!xn. Show

that ∑

n≥1

f(n)xn = 1− 1

F (x)
. (1.137)

(b) [2+] If a1 · · ·an is a permutation of [n], then ai is called a strong fixed point if (1)
j < i ⇒ aj < ai, and (2) j > i ⇒ aj > ai (so in particular ai = i). Let g(n) be
the number of permutations of [n] with no strong fixed points. Show that

∑

n≥0

g(n)xn =
F (x)

1 + xF (x)
.
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(c) [2+] A permutation w ∈ Sn is stabilized-interval-free (SIF) if there does not exist
1 ≤ i < j ≤ n for which w · [i, j] = [i, j] (as sets). For instance, 615342 fails to be
SIF since w · [3, 5] = [3, 5]. Let h(n) be the number of SIF permutations w ∈ Sn,
and set

H(x) =
∑

n≥0

h(n)xn = 1 + x+ x2 + 2x3 + 7x4 + 34x5 + 206x6 + · · · .

Show that
H(x) =

x
(∑

n≥0 n!xn+1
)〈−1〉 ,

where 〈−1〉 denotes compositional inverse (§5.4). Equivalently, by the Lagrange
inversion formula (Theorem 5.4.2), H(x) is uniquely defined by the condition

[xn−1]H(x)n = n!, n ≥ 1.

(d) [2+] A permutation w ∈ Sn is called simple if it maps no interval [i, j] of size
1 < j − i + 1 < n into another such interval. For instance, 3157462 is not
simple, since it maps [3, 6] into [4, 7] (as sets). Let k(n) be the number of simple
permutations w ∈ Sn, and set

K(x) =
∑

n≥1

k(n)xn = x+ 2x2 + 2x4 + 6x5 + 46x7 + 338x8 + · · · .

Show that

K(x) =
2

1 + x
−
(∑

n≥1

n!xn

)〈−1〉

.

129. (a) [2]* Let fk(n) be the number of indecomposable permutations w ∈ Sn with k
inversions. Generalizing equation (1.137), show that

∑

n≥1

fk(n)qkxn = 1− 1

F (q, x)
,

where F (q, x) =
∑

n≥0 (n)!xn. As usual, (n)! = (1 + q)(1 + q + q2) · · · (1 + q +
· · ·+ qn−1).

(b) [2] Write 1/F (q, x) =
∑

n≥0 gn(q)x
n, where gn(q) ∈ Z[q]. Show that

∑
n≥0 gn(q)

is a well-defined formal power series, even though it makes no sense to substitute
directly x = 1 in 1/F (q, x).

(c) [3] Write 1/F (q, x) in a form where it does make sense to substitute x = 1.

130. [2+] Let u(n) be the number of permutations w = a1 · · ·an ∈ Sn such that ai+1 6= ai±1
for 1 ≤ i ≤ n − 1. Equivalently, f(n) is the number of ways to place n nonattacking
kings on an n× n chessboard, no two on the same file or rank. Set

U(x) =
∑

n≥0

u(n)xn = 1 + x+ 2x4 + 14x5 + 90x6 + 646x7 + 5242x8 + · · · .
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Show that

U(x) = F

(
x(1− x)

1 + x

)
, (1.138)

where F (x) =
∑

n≥0 n!xn as in Exercise 1.128.

131. [2+]* An n-dimensional cube Kn has 2n facets (or (n − 1)-dimensional faces), which
come in n antipodal pairs. A shelling ofKn is equivalent to a linear ordering F1, F2, . . . , F2n

of its facets such that for all 1 ≤ i ≤ n− 1, the set {F1, . . . , F2i} does not consist of i
antipodal pairs. Let f(n) be the number of shellings of Kn. Show that

∑

n≥1

f(n)
xn

n!
= 1−

(∑

n≥0

(2n)!
xn

n!

)−1

.

132. [1+]* Let w ∈ Sn. Which of the following items doesn’t belong?

• inv(w) = 0

• maj(w) = 0

• des(w) = 0

• maj(w) = des(w) = inv(w)

• D(w) = ∅
• c(w) = n (where c(w) denotes the number of cycles of w)

• w5 = w12 = 1

133. (a) [2+] Let An(x) be the Eulerian polynomial. Give a combinatorial proof that
1
2
An(2) is equal to the number of ordered set partitions (i.e., partitions whose

blocks are linearly ordered) of an n-element set.

(b) [2+]* More generally, show that

An(x)

x
=

n−1∑

k=0

(n− k)!S(n, n− k)(x− 1)k.

Note that (n− k)!S(n, n− k) is the number of ordered partitions of an n-set into
n− k blocks.

134. [3–] Show that

An(x) =
∑

w

x1+des(w)(1 + x)n−1−2des(w),

where w ranges over all permutations in Sn with no proper double descents (as defined
in Exercise 1.61) and with no descent at the end. For instance, when n = 4 the
permutations are 1234, 1324, 1423, 2134, 2314, 2413, 3124, 3412, 4123.

135. (a) [2] Let An(x) be the Eulerian polynomial. Show that

An(−1) =

{
(−1)(n+1)/2En, n odd

0, n even.
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(b) [3–] Give a combinatorial proof of (a) when n is odd.

136. [2+] What sequence c = (c1, . . . , cn) ∈ Nn with
∑
ici = n maximizes the number of

w ∈ Sn of type c? For instance, when n = 4 the maximizing sequence is (1, 0, 1, 0).

137. [3–] Let ℓ be a prime number and write n = a0 + a1ℓ + a2ℓ
2 + · · · , with 0 ≤ ai < ℓ

for all i ≥ 0. Let κℓ(n) denote the number of sequences c = (c1, c2, . . . , cn) ∈ Nn with∑
ici = n, such that the number of permutations w ∈ Sn of type c is relatively prime

to ℓ. Show that
κℓ(n) = p(a0)

∏

i≥1

(ai + 1),

where p(a0) is the number of partitions of a0. In particular, the number of c such
that an odd number of w ∈ Sn have type c is 2b, where ⌊n/2⌋ has b 1’s in its binary
expansion.

138. [2+]* Find a simple formula for the number of alternating permutations a1a2 · · ·a2n ∈
S2n satisfying a2 < a4 < a6 < · · · < a2n.

139. [2+] An even tree is a (rooted) tree such that every vertex has an even number of
children. (Such a tree must have an odd number of vertices.) Note that these are not
plane trees, i.e., we don’t linearly order the subtrees of a vertex. Express the number
g(2n+ 1) of increasing even trees with 2n+ 1 vertices in terms of Euler numbers. Use
generating functions.

140. [3–] Define a simsun permutation to be a permutation w ∈ Sn such that w has no
proper double descents (as defined in Exercise 1.61(c)) and such that for all 0 ≤ k ≤
n− 1, if we remove n, n− 1, · · · , n− k from w (written as a word) then the resulting
permutation also has no proper double descents. For instance, w = 3241 is not simsun
since if we remove 4 from w we obtain 321, which has a proper double descent. Show
that the number of simsun permutations in Sn is equal to the Euler number En+1.

141. (a) [2+] Let En,k denote the number of alternating permutations of [n+ 1] with first
term k + 1. For instance, En,n = En. Show that

E0,0 = 1, En,0 = 0 (n ≥ 1), En+1,k+1 = En+1,k + En,n−k (n ≥ k ≥ 0). (1.139)

Note that if we place the En,k’s in the triangular array

E00

E10 → E11

E22 ← E21 ← E20

E30 → E31 → E32 → E33

E44 ← E43 ← E42 ← E41 ← E40

· · ·

(1.140)

and read the entries in the direction of the arrows from top-to-bottom (the so-
called boustrophedon or ox-plowing order), then the first number read in each row
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is 0, and each subsequent entry is the sum of the previous entry and the entry
above in the previous row. The first seven rows of the array are as follows:

1
0 → 1

1 ← 1 ← 0
0 → 1 → 2 → 2

5 ← 5 ← 4 ← 2 ← 0
0 → 5 → 10 → 14 → 16 → 16

61 ← 61 ← 56 ← 46 ← 32 ← 16 ← 0.
· · ·

(b) [3–] Define

[m,n] =

{
m, m+ n odd
n, m+ n even.

Show that ∑

m≥0

∑

n≥0

Em+n,[m,n]
xm

m!

yn

n!
=

cosx+ sin x

cos(x+ y)
. (1.141)

142. [3–] Define polynomials fn(a) for n ≥ 0 by f0(a) = 1, fn(0) = 0 if n ≥ 1, and
f ′
n(a) = fn−1(1− a). Thus

f1(a) = a

f2(a) =
1

2
(−a2 + 2a)

f3(a) =
1

3!
(−a3 + 3a)

f4(a) =
1

4!
(a4 − 4a3 + 8a)

f5(a) =
1

5!
(a5 − 10a3 + 25a)

f6(a) =
1

6!
(−a6 + 6a5 − 40a3 + 96a).

Show that
∑

n≥0 fn(1)xn = sec x+ tan x.

143. (a) [2–] Let fix(w) denote the number of fixed points (cycles of length 1) of the
permutation w ∈ Sn. Show that

∑

w∈Sn

fix(w) = n!.

Try to give a combinatorial proof, a generating function proof, and an algebraic
proof.
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(b) [3+] Let Altn (respectively, Raltn) denote the set of alternating (respectively,
reverse alternating) permutations w ∈ Sn. Define

f(n) =
∑

w∈Altn

fix(w)

g(n) =
∑

w∈Raltn

fix(w).

Show that

f(n) =

{
En −En−2 + En−4 − · · ·+ (−1)(n−1)/2E1, n odd

En − 2En−2 + 2En−4 − · · ·+ (−1)(n−2)/22E2 + (−1)n/2, n even.

g(n) =

{
En −En−2 + En−4 − · · ·+ (−1)(n−1)/2E1, n odd

En − (−1)n/2, n even.

144. (a) [2] Let

F (x) = 2
∑

n≥0

qn
∏n

j=1(1− q2j−1)
∏2n+1

j=1 (1 + qj)
,

where q =
(

1−x
1+x

)2/3
. Show that F (x) is well-defined as a formal power series.

Note that q(0) = 1 6= 0, so some special argument is needed.

(b) [3+] Let F (x) be defined by (a), and write

F (x) =
∑

n≥0

f(n)xn = 1+x+x2 +2x3 +5x4 +17x5 +72x6 +367x7 +2179x8 + · · · .

Show that f(n) is equal to the number of alternating fixed-point free involutions in
S2n, i.e., the number of permutations w ∈ S2n that are alternating permutations
and have n cycles of length two. For instance, when n = 3 we have the two
permutations 214365 and 645321, and when n = 4 we have the five permutations
21436587, 21867453, 64523187, 64827153, and 84627351.

145. [3–] Solve the following chess problem, where the condition “serieshelpmate” is defined
in Exercise 1.11(c).
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A. Karttunen, 2006KZ Z ZNsZ Z ZpZpZ Z Z OZro ZnZo lpZ ja Z Z ZZ Z Z ZZbZ Z Z
Serieshelpmate in 9: how many solutions?

146. [2+] Let fk(n) denote the number of permutations w ∈ Sn such that

D(w) = {k, 2k, 3k, . . .} ∩ [n− 1],

as in equation (1.58). Let 1 ≤ i ≤ k. Show that

∑

m≥0

fk(mk + i)
xmk+i

(mk + i)!
=

∑
m≥0(−1)m xmk+i

(mk+i)!∑
m≥0(−1)m xmk

(mk)!

.

Note that when i = k we can add 1 to both sides and obtain equation (1.59).

147. [2+] Call two permutations u, v ∈ Sn equivalent if their min-max trees M(u) and
M(v) are isomorphic as unlabelled binary trees. This notion of equivalence is clearly
an equivalence relation. Show that the number of equivalence classes is the Motzkin
number Mn−1 defined in Exercise 6.37 and further explicated in Exercise 6.38.

148. [2+] Let Φn = Φn(c, d) denote the cd-index of Sn, as defined in Theorem 1.6.3. Thus
c = a+ b and d = ab+ ba. Let S ⊆ [n− 1], and let uS be the variation of S as defined
by equation (1.60). Show that

Φn(a+ 2b, ab+ ba + 2b2) =
∑

S⊆[n−1]

α(S)uS,

where α(S) is given by equation (1.31).

149. [3–] If F (x) is any power series with noncommutative coefficients such that F (0) = 0,
then define (1− F (x))−1 to be the unique series G(x) satisfying

(1− F (x))G(x) = G(x)(1− F (x)) = 1.
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Equivalently, G(x) = 1 + F (x) + F (x)2 + · · · . Show that

∑

n≥1

Φn(c, d)
xn

n!
=

sinh(a− b)x
a− b

[
1− 1

2

(
c · sinh(a− b)x

a− b − cosh(a− b)x+ 1

)]−1

.

(1.142)
Note that the series on the right involves only even powers of a− b. Since (a− b)2 =
c2− 2d, it follows that the coefficients of this series are indeed polynomials in c and d.

150. (a) [3–]* Let f(n) (respectively, g(n)) be the total number of c’s (respectively, d’s)
that appear when we write the cd-index Φn(c, d) as a sum of monomials. For
instance, Φ4(c, d) = c3 + 2cd + 2dc, so f(4) = 7 and g(4) = 4. Show using
generating functions that f(n) = 2En+1 − (n + 1)En and g(n) = nEn −En+1.

(b) [5–] Is there a combinatorial proof?

151. [3–] Let µ be a monomial of degree n − 1 in the noncommuting variables c, d, where
deg(c) = 1 and deg(d) = 2. Show that [µ]Φn(c, d) is the number of sequences µ =
ν0, ν1, . . . , νn−1 = 1, where νi is obtained from νi−1 by removing a c or changing a d to
c. For instance, if µ = dcc there are three sequences: (dcc, ccc, cc, c, 1), (dcc, dc, cc, c, 1),
(dcc, dc, d, c, 1).

152. [3–] Continue the notation from the previous exercise. Replace each c in µ with 0, each
d with 10, and remove the final 0. We get the characteristic vector of a set Sµ ⊆ [n−2].
For instance, if µ = cd2c2d then we get the characteristic vector 01010001 of the set
Sµ = {2, 4, 8}. Show that [µ]Φn(c, d) is equal to the number of simsun permutations
(defined in Exercise 1.140) in Sn−1 with descent set Sµ.

153. (a) [2] Let f(n) denote the coefficient of dn in the cd-index Φ2n+1. Show that f(n) =
2−nE2n+1.

(b) [3] Show that f(n) is the number of permutations w of the multiset {12, 22, . . . , (n+
1)2} beginning with 1 such that between the two occurrences of i (1 ≤ i ≤ n)
there is exactly one occurrence of i+ 1. For instance, f(2) = 4, corresponding to
123123, 121323, 132312, 132132.

154. (a) [1+] Let F (x) =
∑

n≥0 f(n)xn/n!. Show that

e−xF (x) =
∑

n≥0

[∆nf(0)]xn/n!.

(b) [2] Find the unique function f : P → C satisfying f(1) = 1 and ∆nf(1) = f(n)
for all n ∈ P.

(c) [2] Generalize (a) by showing that

e−xF (x+ t) =
∑

n≥0

∑

k≥0

∆nf(k)
xn

n!

tk

k!
.
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155. (a) [1+] Let F (x) =
∑

n≥0 f(n)xn. Show that

1

1 + x
F

(
x

1 + x

)
=
∑

n≥0

[∆nf(0)]xn.

(b) [2+] Find the unique functions f, g : N→ C satisfying ∆nf(0) = g(n), ∆2ng(0) =
f(n), ∆2n+1g(0) = 0, f(0) = 1.

(c) [2+] Find the unique functions f, g : N→ C satisfying ∆nf(1) = g(n), ∆2ng(0) =
f(n), ∆2n+1g(0) = 0, f(0) = 1.

156. [2+] Let A be the abelian group of all polynomials p : Z→ C such that Dkp : Z→ Z
for all k ∈ N. (Dk denotes the kth derivative, and D0p = p.) Then A has a basis of
the form pn(x) = cn

(
x
n

)
, n ∈ N, where cn is a constant depending only on n. Find cn

explicitly.

157. [2] Let λ be a complex number (or indeterminate), and let

y = 1 +
∑

n≥1

f(n)xn, yλ =
∑

n≥0

g(n)xn.

Show that

g(n) =
1

n

n∑

k=1

[k(λ+ 1)− n]f(k)g(n− k), n ≥ 1.

This formula affords a method of computing the coefficients of yλ much more efficiently
than using (1.5) directly.

158. [2+] Let f1, f2, . . . be a sequence of complex numbers. Show that there exist unique
complex numbers a1, a2, . . . such that

F (x) := 1 +
∑

n≥1

fnx
n =

∏

i≥1

(1− xi)−ai .

Set logF (x) =
∑

n≥1 gnx
n. Find a formula for ai in terms of the gn’s. What are the

ai’s when F (x) = 1 + x and F (x) = ex/(1−x)?

159. [2] Let F (x) = 1 + a1x+ · · · ∈ K[[x]], where K is a field satisfying char(K) 6= 2. Show
that there exist unique series A(x), B(x) satisfying A(0) = B(0) = 1, A(x) = A(−x),
B(x)B(−x) = 1, and F (x) = A(x)B(x). Find simple formulas for A(x) and B(x) in
terms of F (x).

160. (a) [2] Let 0 ≤ j < k. The (k, j)-multisection of the power series F (x) =
∑

n≥0 anx
n

is defined by

Ψk,jF (x) =
∑

m≥0

akm+jx
km+j .

Let ζ = e2πi/k (where i2 = −1). Show that

Ψk,jF (x) =
1

k

k−1∑

r=0

ζ−jrF (ζrx).
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(b) [2] As a simple application of (a), let 0 ≤ j < k, and let f(n, k, j) be the number of
permutations w ∈ Sn satisfying maj(w) ≡ j (mod k). Show that f(n, k, j) = n!/k
if n ≥ k.

(c) [2+] Show that

f(k − 1, k, 0) =
(k − 1)!

k
+
∑

ζ

1

(1− ξ)k−1
,

where ξ ranges over all primitive kth roots of unity. Can this expression be
simplified?

161. (a) [2]* Let F (x) = a0 + a1x + · · · ∈ K[[x]], with a0 = 1. For k ≥ 2 define Fk(x) =
Φk,0(x) =

∑
m≥0 akmx

km. Show that for n ≥ 1,

[xkm]
F (x)

Φk,0F (x)
= 0.

(b) [2+] Let charK 6= 2. Given G(x) = 1 + H(x) where H(−x) = −H(x) (i.e.,
H(x) has only odd exponents), find the general solution F (x) = 1 + a1x + · · ·
to F (x)/F2(x) = G(x). Express your answer in the form F (x) = Φ(G(x))E(x),
where Φ(x) is a function independent from G(x), and where E(x) ranges over
some class E of power series, also independent from G(x).

162. [3–] Let g(x) ∈ C[[x]], g(0) = 0, g(x) = g(−x). Find all power series f(x) such that
f(0) = 0 and

f(x) + f(−x)
1− f(x)f(−x) = g(x).

Express your answer as an explicit algebraic function of g(x) and a power series h(x)
(independent from g(x)) taken from some class of power series.

163. Let f(x) ∈ C[[x]], f(x) = x+ higher order terms. We say that F (x, y) ∈ C[[x, y]] is a
formal group law or addition law for f(x) if f(x+ y) = F (f(x), f(y)).

(a) [2–] Show that for every f(x) ∈ C[[x]] with f(x) = x + · · · , there is a unique
F (x, y) ∈ C[[x, y]] which is a formal group law for f(x).

(b) [3] Show that F (x, y) is a formal group law if and only if F (x, y) = x+ y+ higher
order terms, and

F (F (x, y), z) = F (x, F (y, z)).

(c) [2] Find f(x) so that F (x, y) is a formal group law for f(x) in the following cases:

• F (x, y) = x+ y

• F (x, y) = x+ y + xy

• F (x, y) = (x+ y)/(1− xy)
• F (x, y) = x

√
1− y2 + y

√
1− x2
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(d) [2+] Using equation (5.128), show that the formal group law for f(x) = xe−x is
given by

F (x, y) = x+ y −
∑

n≥1

(n− 1)n−1x
ny + xyn

n!
,

where we interpret 00 = 1 in the summand indexed by n = 1.

(e) [3] Find the formal group law for the function

f(x) =

∫ x

0

dt√
1− t4

.

164. [3–] Solve the following equation for the power series F (x, y) ∈ C[[x, y]]:

(xy2 + x− y)F (x, y) = xF (x, 0)− y.

The point is to make sure that your solution has a power series expansion at (0, 0).

165. [2+] Find a simple description of the coefficients of the power series F (x) = x+ · · · ∈
C[[x]] satisfying the functional equation

F (x) = (1 + x)F (x2) +
x

1− x2
.

166. [2] Let n ∈ P. Find a power series F (x) ∈ C[[x]] satisfying F (F (x))n = 1 + F (x)n,
F (0) = 1.

167. [2] Let F (x) ∈ C[[x]]. Find a simple expression for the exponential generating function
of the derivatives of F (x), i.e., ∑

n≥0

DnF (x)
tn

n!
, (1.143)

where D = d/dx.

168. Let K be a field satisfying char(K) 6= 2. If A(x) = x +
∑

n≥2 anx
n ∈ K[[x]], then let

A〈−1〉(x) denote the compositional inverse of A; that is, A〈−1〉(A(x)) = A(A〈−1〉(x)) = x.

(a) [3–] Show that we can specify a2, a4, . . . arbitrarily, and they then determine
uniquely a3, a5, . . . so that A(−A(−x)) = x. For instance

a3 = a2
2

a5 = 3a4a2 − 2a4
2

a7 = 13a6
2 − 18a4a

3
2 + 2a2

4 + 4a2a6.

Note. Let E(x) = A(−x). Then the conditions A(x) = x+· · · andA(−A(−x)) =
x are equivalent to E(x) = −x+ · · · and E(E(x)) = x.

(b) [5–] What are the coefficients when a2n+1 is written as a polynomial in a2, a4, . . .
as in (a)?
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(c) [2+]* Show that A(−A(−x)) = x if and only if there is a B(x) = x+
∑

n≥2 bnx
n

such that A(x) = B〈−1〉(−B(−x)).
(d) [2+] Show that if A(−A(−x)) = x, then there is a unique B(x) as in (c) of the

form B(x) = x+
∑

n≥1 b2nx
2n. For instance,

b2 = −1

2
a2

b4 =
1

8

(
5a3

2 − 4a4

)

b6 = − 1

16

(
49a5

2 − 56a2
2a4 + 8a6

)
.

(e) [5–] What are the coefficients when b2n is written as a polynomial in a2, a4, . . . as
in (d)?

(f) [2+] For any C(x) = x+c2x
2 +c3x

3 + · · · , show that there are unique power series

A(x) = x+ a2x
2 + a3x

3 + · · ·
D(x) = x+ d3x

3 + d5x
5 + · · ·

such that A(−A(−x)) = x and C(x) = D(A(x)). For instance,

a2 = c2

d3 = c3 − c22
a4 = c4 − 3c3c2 + 3c32
d5 = c5 + 3c22c3 − 3c2c4 − c42.

(g) [2+] Find A(x) and D(x) as in (f) when C(x) = − log(1− x).
(h) [5–] What are the coefficients when a2n and d2n+1 are written as a polynomial in

c2, c3, . . . as in (f)?

(i) [2+] Note that if A(x) = x/(1 + 2x), then A(−A(−x)) = x. Show that

B〈−1〉(−B(−x)) = x/(1 + 2x)

if and only if e−x
∑

n≥0 bn+1x
n/n! is an even function of x (i.e., has only even

exponents).

(j) [2+] Identify the coefficients b2n of the unique B(x) = x+
∑

n≥1 b2nx
2n satisfying

B〈−1〉(−B(−x)) = x/(1 + 2x).

169. [2] Find a closed-form expression for the following generating functions.

(a)
∑

n≥0

(n + 2)2xn

(b)
∑

n≥0

(n + 2)2x
n

n!
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(c)
∑

n≥0

(n + 2)2

(
2n

n

)
xn

170. (a) [2–] Given a0 = α, a1 = β, an+1 = an + an−1 for n ≥ 1, compute y =
∑

n≥0 anx
n.

(b) [2+] Given a0 = 1 and an+1 = (n + 1)an −
(
n
2

)
an−2 for n ≥ 0, compute y =∑

n≥0 anx
n/n!.

(c) [2] Given a0 = 1 and 2an+1 =
∑n

i=0

(
n
i

)
aian−i for n ≥ 0, compute

∑
n≥0 anx

n/n!
and find an explicitly. Compare equation (1.55), where (in the notation of the
present exercise), a1 = 1 and the recurrence holds for n ≥ 1.

(d) [3] Let ak(0) = δ0k, and for 1 ≤ k ≤ n + 1 let

ak(n+ 1) =
n∑

j=0

(
n

j

) ∑

2r+s=k−1
r,s≥0

(a2r(j) + a2r+1(j))as(n− j).

Compute A(x, t) :=
∑

k,n≥0 ak(n)tkxn/n!.

171. Given a sequence a0, a1, . . . of complex numbers, let bn = a0 + a1 + · · ·+ an.

(a) [1+]* Let A(x) =
∑

n≥0 anx
n and B(x) =

∑
n≥0 bnx

n. Show that

B(x) =
A(x)

1− x.

(b) [2+] Let A(x) =
∑

n≥0 an
xn

n!
and B(x) =

∑
n≥0 bn

xn

n!
. Show that

B(x) =
(
I(e−xA′(x)) + a0

)
ex, (1.144)

where I denotes the formal integral, i.e.,

I

(∑

n≥0

cnx
n

)
=
∑

n≥0

cn
xn+1

n + 1
=
∑

n≥1

cn−1
xn

n
.

172. [3–] The Legendre polynomial Pn(x) is defined by

1√
1− 2xt+ t2

=
∑

n≥0

Pn(x)t
n.

Show that (1− x)nPn((1 + x)/(1− x)) =
∑n

k=0

(
n
k

)2
xk.

173. [2+] Find simple closed expressions for the coefficients of the power series (expanded
about x = 0):

(a)

√
1 + x

1− x
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(b) 2
(
sin−1 x

2

)2

(c) sin(t sin−1 x)

(d) cos(t sin−1 x)

(e) sin(x) sinh(x)

(f) sin(x) sin(ωx) sin(ω2x), where ω = e2πi/3

(g) cos(log(1 + x)) (express the answer as the real part of a complex number)

174. [1–] Find the order (number of elements) of the finite field F2.

175. [2+]* For i, j ≥ 0 and n ≥ 1, let fn(i, j) denote the number of pairs (V,W ) of subspaces
of Fnq such that dimV = i, dimW = j, and V ∩W = {0}. Find a formula for fn(i, j)
which is a power of q times a q-multinomial coefficient.

176. [2+] A sequence of vectors v1, v2, . . . is chosen uniformly and independently from Fnq .
Let E(n) be the expected value of k for which v1, . . . , vk span Fnq but v1, . . . , vk−1 don’t
span Fnq . For instance

E(1) =
q

q − 1

E(2) =
q(2q + 1)

(q − 1)(q + 1)

E(3) =
q(3q3 + 4q2 + 3q + 1)

(q − 1)(q + 1)(q2 + q + 1)
.

Show that

E(n) =
n∑

i=1

qi

qi − 1
.

177. (a) [2+]* Let f(n, q) denote the number of matrices A ∈ Mat(n, q) satisfying A2 = 0.
Show that

f(n, q) =
∑

2i+j=n

γn(q)

qi(i+2j)γi(q)γj(q)
,

where γm(q) = #GL(m, q). (The sum ranges over all pairs (i, j) ∈ N×N satisfying
2i+ j = n.)

(b) [2]* Write f(n, q) = g(n, q)(q − 1)k so that g(n, 1) 6= 0,∞. Thus f(n, q) may be
regarded as a q-analogue of g(n, 1). Show that

∑

n≥0

g(n, 1)
xn

n!
= ex

2+x.

(c) [5–] Is there an intuitive explanation of why f(n, q) is a “good” q-analogue of
g(n, 1)?
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178. [2+]* Let f(n) be the number of pairs (A,B) of matrices in Mat(n, q) satisfying AB =
0. Show that

f(n) =
n∑

k=0

qn(n−k)
(

n

k

)
(qn − 1)(qn − q) · · · (qn − qn−1).

179. [2–]* How many pairs (A,B) of matrices in Mat(n, q) satisfy A +B = AB?

180. [5–] How many matrices A ∈ Mat(n, q) have square roots, i.e., A = B2 for some
B ∈ Mat(n, q)? The q = 1 situation is Exercise 5.11(a).

181. [2]* Find a simple formula for the number f(n) of matrices A = (Aij) ∈ GL(n, q) such
that A11 = A1n = An1 = Ann = 0.

182. [2+] Let f(n, q) denote the number of matrices A = (Aij) ∈ GL(n, q) such that Aij 6= 0
for all i, j. Let g(n, q) denote the number of matrices B = (Bij) ∈ GL(n − 1, q) such
that Bij 6= 1 for all i, j. Show that

f(n, q) = (q − 1)2n−1g(n, q).

183. [2] Prove the identity
1

1− qx =
∏

d≥1

(
1− xd

)−β(d)
, (1.145)

where β(d) is given by equation (1.103).

184. (a) [2]* Let fq(n) denote the number of monic polynomials f(x) of degree n over Fq
that do not have a zero in Fq, i.e., for all α ∈ Fq we have f(α) 6= 0. Find a simple
formula for F (x) =

∑
n≥0 fq(n)xn. Your answer should not involve any infinite

sums or products.

Note. The constant polynomials f(x) = β for 0 6= β ∈ Fq are included in the
enumeration, but not the polynomial f(x) = 0.

(b) [2]* Use (a) to find a simple explicit formula for f(n, q) when n is sufficiently large
(depending on q).

185. (a) [1]* Show that the number of monic polynomials of degree n over Fq is qn.

(b) [2+] Recall that the discriminant of a polynomial f(x) = (x − θ1) · · · (x − θn) is
defined by

disc(f) =
∏

1≤i<j≤n
(θi − θj)2.

Show that the number D(n, 0) of monic polynomials f(x) over Fq with discrimi-
nant 0 (equivalently, f(x) has an irreducible factor of multiplicity greater than 1)
is qn−1, n ≥ 2.
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(c) [2+] Generalize (a) and (b) as follows. Fix k ≥ 1, and let X be any subset
of Nk containing (0, 0, . . . , 0). If f1, . . . , fk is a sequence of monic polynomials
over Fq, then set f = (f1, . . . , fk) and deg(f) = (deg(f1), . . . , deg(fk)). Given
an irreducible polynomial p ∈ Fq[x], let mult(p, f) = (µ1, . . . , µk), where µi is
the multiplicity of p in fi. Given β ∈ Nk, let N(β) be the number of k-tuples
f = (f1, . . . , fk) of monic polynomials over Fq such that deg(f) = β and such
that for any irreducible polynomial p over Fq we have mult(p, f) ∈ X. By a
straightforward generalization of Exercise 1.158 to the multivariate case, there
are unique aα ∈ Z such that

FX(x) :=
∑

α∈X
xα =

∏

α∈Nk

α6=(0,0,...,0)

(1− xα)aα , (1.146)

where if α = (α1, . . . , αk) then xα = xα1
1 · · ·xαk

k . Show that

∑

β∈Nk

N(β)xβ =
∏

α∈Nk

α6=(0,0,...,0)

(1− qxα)aα .

Note that if k = 1 andX = N, thenN(β) is the total number of monic polynomials
of degree β. We have fN(x) = 1/(1 − x) and

∑
β∈N N(β)xβ = 1/(1 − qx) =∑

n≥0 q
nxn, agreeing with (a).

186. Deduce from Exercise 1.185(c) the following results.

(a) [2] The number Nr(n) of monic polynomials f ∈ Fq[x] of degree n with no factor
of multiplicity at least r is given by

Nr(n) = qn − qn−r+1, n ≥ r. (1.147)

Note that the case r = 2 is equivalent to (b)

(b) [2] Let N(m,n) be the number of pairs (f, g) of monic relatively prime polynomials
over Fq of degrees m and n. In other words, f and g have nonzero resultant. Then

N(m,n) = qm+n−1, m, n ≥ 1. (1.148)

(c) [2+] A polynomial f over a field K is powerful if every irreducible factor of f
occurs with multiplicity at least two. Let P (n) be the number of powerful monic
polynomials of degree n over Fq. Show that

P (n) = q⌊n/2⌋ + q⌊n/2⌋−1 − q⌊(n−1)/3⌋, n ≥ 2. (1.149)

187. (a) [3–] Let q be an odd prime power. Show that as f ranges over all monic polyno-
mials of degree n > 1 over Fq, disc(f) is just as often a nonzero square in Fq as a
nonsquare.
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(b) [2+] For n > 1 and a ∈ Fq, let D(n, a) denote the number of monic polynomials
of degree n over Fq with discriminant a. Thus by Exercise 1.185(b) we have
D(n, 0) = qn−1. Show that if (n(n−1), q−1) = 1 (so q = 2m) or (n(n−1), q−1) = 2
(so q is odd) then D(n, a) = qn−1 for all a ∈ Fq. (Here (r, s) denotes the greatest
common divisor of r and s.)

(c) [5–] Investigate further the function D(n, a) for general n and a.

188. [3] Give a direct proof of Corollary 1.10.11, i.e., the number of nilpotent matrices in
Mat(n, q) is qn(n−1).

189. [3–] Let V be an (m + n)-dimensional vector space over Fq, and let V = V1 ⊕ V2,
where dim V1 = m and dimV2 = n. Let f(m,n) be the number of nilpotent linear
transformations A : V → V satisfying A(V1) ⊆ V2 and A(V2) ⊆ V1. Show that

f(m,n) = qm(n−1)+n(m−1)(qm + qn − 1),

190. (a) [2] Let ω∗(n, q) denote the number of conjugacy classes in the group GL(n, q).
Show that ω∗(n, q) is a polynomial in q satisfying ω∗(n, 1) = 0. For instance,

ω∗(1, q) = q − 1

ω∗(2, q) = q2 − 1

ω∗(3, q) = q3 − q
ω∗(4, q) = q4 − q
ω∗(5, q) = q5 − q2 − q + 1

ω∗(6, q) = q6 − q2

ω∗(7, q) = q7 − q3 − q2 + 1

ω∗(8, q) = q8 − q3 − q2 + q.

(b) [2+] Show that

ω∗(n, q) = qn − q⌊(n−1)/2⌋ +O(q⌊(n−1)/2⌋−1).

(c) [3–] Evaluate the polynomial values ω∗(n, 0) and ω∗(n,−1). When is ω∗(n, q)
divisible by q2?

191. [3–] Give a more conceptual proof of Proposition 1.10.2, i.e., the number ω(n, q) of
orbits of GL(n, q) acting adjointly on Mat(n, q) is given by

ω(n, q) =
∑

j

pj(n)qj.

192. (a) [2]* Find a simple formula for the number of surjective linear transformations
A : Fnq → Fkq .
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(b) [2]* Show that the number of m× n matrices of rank k over Fq is given by

(
m

k

)
(qn − 1)(qn − q) · · · (qn − qk−1).

193. [2] Let pn denote the number of projections P ∈ Mat(n, q), i.e., P 2 = P . Show that

∑

n≥0

pn
xn

γn
=

(∑

k≥0

xk

γ(k)

)2

,

where as usual γ(k) = γ(k, q) = #GL(k, q).

194. [2+] Let rn denote the number of regular (or cyclic) M ∈ Mat(n, q), i.e., the charac-
teristic and minimal polynomials of A are the same. Equivalently, there is a column
vector v ∈ Fnq such that the set {Aiv : i ≥ 0} spans Fnq (where we set A0 = I). Show
that

∑

n≥0

rn
xn

γ(n)
=

∏

d≥1

(
1 +

xd

(qd − 1)(1− (x/q)d)

)β(d)

=
1

1− x
∏

d≥1

(
1 +

xd

qd(qd − 1)

)β(d)

.

195. [2] A matrix A is semisimple if it can be diagonalized over the algebraic closure of the
base field. Let sn denote the number of semisimple matrices A ∈ Mat(n, q). Show that

∑

n≥0

sn
xn

γ(n, q)
=
∏

d≥1

(∑

j≥0

xjd

γ(j, qd)

)β(d)

.

196. (a) [2+] Generalize Proposition 1.10.15 as follows. Let 0 ≤ k ≤ n, and let fk(n) be
the number of matrices A = (aij) ∈ GL(n, q) satisfying a11 + a22 + · · ·+ akk = 0.
Then

fk(n) =
1

q

(
γ(n, q) + (−1)k(q − 1)q

1
2
k(2n−k−1)γ(n− k, q)

)
. (1.150)

(b) [2+] Let H be any linear hyperplane in the vector space Mat(n, q). Find (in terms
of certain data about H) a formula for #(GL(n, q) ∩H).

197. [3] Let f(n) be the number of matrices A ∈ GL(n, q) with zero diagonal (i.e., all
diagonal entries are equal to 0). Show that

f(n) = q(
n−1

2 )−1(q − 1)n
n∑

i=0

(−1)i
(
n

i

)
(n − i)!.
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For instance,

f(1) = 0

f(2) = (q − 1)2

f(3) = q(q − 1)(q4 − 4q2 + 4q − 1)

f(4) = q3(q − 1)(q8 − q6 − 5q5 + 3q4 + 11q3 − 14q2 + 6q − 1).

198. (a) [2+] Let h(n, r) denote the number of n × n symmetric matrices of rank r over
Fq. Show that

h(n+1, r) = qrh(n, r)+ (q−1)qr−1h(n, r−1)+ (qn+1− qr−1)h(n, r−2), (1.151)

with the initial conditions h(n, 0) = 1 and h(n, r) = 0 for r > n.

(b) [2] Deduce that

h(n, r) =





s∏

i=1

q2i

q2i − 1
·

2s−1∏

i=0

(qn−i − 1), 0 ≤ r = 2s ≤ n

s∏

i=1

q2i

q2i − 1
·

2s∏

i=0

(qn−i − 1), 0 ≤ r = 2s+ 1 ≤ n.

In particular, the number h(n, n) of n× n invertible symmetric matrices over Fq
is given by

h(n, n) =

{
qm(m−1)(q − 1)(q3 − 1) · · · (q2m−1), n = 2m− 1

qm(m+1)(q − 1)(q3 − 1) · · · (q2m−1), n = 2m.

199. (a) [3] Show that the following three numbers are equal:

• The number of symmetric matrices in GL(2n, q) with zero diagonal.

• The number of symmetric matrices in GL(2n− 1, q).

• The number of skew-symmetric matrices (A = −At) in GL(2n, q).

(b) [5] Give a combinatorial proof of (a). (No combinatorial proof is known that two
of these items are equal.)

200. [3] Let Cn(q) denote the number of n×n upper-triangular matrices X over Fq satisfying
X2 = 0. Show that

C2n(q) =
∑

j

[(
2n

n− 3j

)
−
(

2n

n− 3j − 1

)]
· qn2−3j2−j

C2n+1(q) =
∑

j

[(
2n + 1

n− 3j

)
−
(

2n + 1

n− 3j − 1

)]
· qn2+n−3j2−2j .

201. This exercise and the next show that simply-stated counting problems over Fq can have
complicated solutions beyond the realm of combinatorics. (See also Exercise 4.39(a).)
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(a) [3] Let
f(q) = #{(x, y, z) ∈ F3

q : x+ y + z = 0, xyz = 1}.
Show that f(q) = q + a− 2, where:

• if q ≡ 2 (mod 3) then a = 0,

• if q ≡ 1 (mod 3) then a is the unique integer such that a ≡ 1 (mod 3) and
a2 + 27b2 = 4q for some integer b.

(b) [2+] Let
g(q) = #{A ∈ GL(3, q) : tr(A) = 0, det(A) = 1.}

Express g(q) in terms of the function f(q) of part (a).

202. [4–] Let p be a prime, and let Np denote the number of solutions modulo p to the
equation y2 + y = x3 − x. Let ap = p − Np. For instance, a2 = −2, a3 = 1, a5 = 1,
a7 = −2, etc. Show that if p 6= 11, then

ap = [xp]x
∏

n≥1

(1− xn)2(1− x11n)2

= [xp](x− 2x2 − x3 + 2x4 + x5 + 2x6 − 2x7 − 2x9 + · · · .)

203. [3] The following quotation is from Plutarch’s Table-Talk VIII. 9, 732: “Chrysippus
says that the number of compound propositions that can be made from only ten simple
propositions exceeds a million. (Hipparchus, to be sure, refuted this by showing that
on the affirmative side there are 103,049 compound statements, and on the negative
side 310,952.)”

According to T. L. Heath, A History of Greek Mathematics, vol. 2, p. 245, “it seems
impossible to make anything of these figures.”

Can in fact any sense be made of Plutarch’s statement?
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SOLUTIONS TO EXERCISES

1. Answer: 2. There is strong evidence that human babies, chimpanzees, and even rats
have an understanding of this problem. See S. Dehaene, The Number Sense: How the
Mind Creates Mathematics, Oxford, New York, 1997 (pages 23–27, 52–56).

2. Here is one possible way to arrive at the answers. There may be other equally simple
(or even simpler) ways to solve these problems.

(a) 210 − 25 = 992

(b) 1
2
(7− 1)! = 360

(c) 5 · 5! (or 6!− 5!) = 600

(d)

(
6

1

)
4! +

(
6

2

)
3! +

1

2

(
6

3

)
2!2 = 274

(e)

(
6

4

)
+

(
6

1

)(
5

2

)
+

1

3!

(
6

2

)(
4

2

)
= 90

(f) (6)4 = 360

(g) 1 · 3 · 5 · 7 · 9 = 945

(h)

(
7

2

)
+

(
8

3

)
+

(
9

1

)
= 86

(i)

(
11

1, 2, 4, 4

)
−
(

8

1, 1, 2, 4

)
= 33810.

(j)

(
8 + 1

4

)
= 126

(k) 2

(
8

1, 3, 4

)
+ 3

(
8

2, 3, 3

)
+

(
8

2, 2, 4

)
= 2660

(l) 5! +

(
5

2

)
(5)4 +

1

2

(
5

1

)(
4

2

)
(5)3 = 2220

3. (a) Given any n-subset S of [x+n+1], there is a largest k for which #(S∩[x+k]) = k.
Given k, we can choose S to consist of any k-element subset in

(
x+k
k

)
ways, together

with {x+ k + 2, x+ k + 3, . . . , x+ n + 1}.
(b) First proof. Choose a subset of [n] and circle one of its elements in

∑
k
(
n
k

)
ways.

Alternatively, circle an element of [n] in n ways, and choose a subset of what
remains in 2n−1 ways.

Second proof (not quite so combinatorial, but nonetheless instructive). Divide
the identity by 2n. It then asserts that the average size of a subset of [n] is n/2.
This follows since each subset can be paired with its complement.
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(c) To give a non-combinatorial proof, simply square both sides of the identity (Ex-
ercise 1.8(a))

∑

n≥0

(
2n

n

)
xn =

1√
1− 4x

and equate coefficients. The problem of giving a combinatorial proof was raised
by P. Veress and solved by G. Hajos in the 1930s. For some published proofs,
see D. J. Kleitman, Studies in Applied Math. 54 (l975), 289–292; M. Sved, Math.
Intelligencer, 6(4) (1984), 44–45; and V. De Angelis, Amer. Math. Monthly 113
(2006), 642–644.

(d) G. E. Andrews, Discrete Math. 11 (1975), 97–106.

(e) Given an n-element subset S of [2n − 1], associate with it the two n-element
subsets S and [2n]− S of [2n].

(f) What does it mean to give a combinatorial proof of an identity with minus signs?
The simplest (but not the only) possibility is to rearrange the terms so that all
signs are positive. Thus we want to prove that

∑

k even

(
n

k

)
=
∑

k odd

(
n

k

)
, n ≥ 1. (1.152)

Let En (respectively On) denote the sets of all subsets of [n] of even (respectively,
odd) cardinality. The left-hand side of equation (1.152) is equal to #En, while
the right-hand side is #On. Hence we want to give a bijection ϕ : En → On. The
definition of ϕ is very simple:

ϕ(S) =

{
S ∪ {n}, n 6∈ S
S − {n}, n ∈ S.

Another way to look at this proof is to consider ϕ as an involution on all of
2[n]. Every orbit of ϕ has two elements, and their contributions to the sum∑

S⊆[n](−1)#S cancel out, i.e., (−1)#S+(−1)#ϕ(S) = 0. Hence ϕ is a sign-reversing
involution as in the proof of Proposition 1.8.7.

(g) The left-hand side counts the number of triples (S, T, f), where S ⊆ [n], T ⊆
[n + 1, 2n], #S = #T , and f : S → [x]. The right-hand side counts the number
of triples (A,B, g), where A ⊆ [n], B ∈

(
[2n]−A
n

)
, and g : A → [x − 1]. Given

(S, T, f), define (A,B, g) as follows: A = f−1([x − 1]), B = ([n] − S) ∪ T , and
g(i) = f(i) for i ∈ [x− 1].

(h) We have that
(
i+j
i

)(
j+k
j

)(
k+i
i

)
is the number of triples (α, β, γ), where (i) α is a

sequence of i+ j+2 letters a and b beginning with a and ending with b, with i+1
a’s (and hence j + 1 b’s), (ii) β = (β1, . . . , βj+1) is a sequence of j + 1 positive
integers with sum j + k + 1, and (iii) γ = (γ1, . . . , γi+1) is a sequence of i + 1
positive integers with sum k+ i+1. Replace the rth a in α by the word cγrd, and
replace the rth b in α by the word dβrc. In this way we obtain a word δ in c, d of
length 2n+4 with n+2 c’s and n+2 d’s. This word begins with c and ends with
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d(dc)m for some m ≥ 1. Remove the prefix c and suffix d(dc)m from δ to obtain
a word ǫ of length 2(n−m+ 1) with n−m+ 1 c’s and n−m+ 1 d’s. The map
(α, β, γ) 7→ ǫ is easily seen to yield a bijective proof of (h). This argument is due
to Roman Travkin (private communication, October 2007).

Example. Let n = 8, i = 2, j = k = 3, α = abbaabb, β = (2, 3, 1, 1), γ = (2, 3, 1).
Then

δ = (c2d)(d2c)(d3c)(c3d)(cd)(dc)(dc),

so ǫ = cd3cd3c4dc.

Note. Almost any binomial coefficient identity can be proved nowadays automatically
by computer. For an introduction to this subject, see M. Petkovšek, H. S. Wilf, and
D. Zeilberger, A=B, A K Peters, Wellesley, MA, 1996. Of course it is still of interest
to find elegant bijective proofs of such identities.

8. (a) We have 1/
√

1− 4x =
∑

n≥0

(−1/2

n

)
(−4)nxn. Now

(−1/2

n

)
(−4)n =

(
−1

2

) (
−3

2

)
· · ·
(
−2n−1

2

)
(−4)n

n!

=
2n · 1 · 3 · · · (2n− 1)

n!
=

(2n)!

n!2
.

(b) Note that
(
2n−1
n

)
= 1

2

(
2n
n

)
, n > 0 (see Exercise 1.3(e)).

9. (b) While powerful methods exist for solving this type of problem (see Example 6.3.8),
we give here a “naive” solution. Suppose the path has k steps of the form (0, 1), and
therefore k (1, 0)’s and n−k (1, 1)’s. These n+k steps may be chosen in any order, so

f(n, n) =
∑

k

(
n + k

n− k, k, k

)
=
∑

k

(
n+ k

2k

)(
2k

k

)
.

⇒
∑

n≥0

f(n, n)xn =
∑

k

(
2k

k

)∑

n≥0

(
n + k

2k

)
xn

=
∑

k

(
2k

k

)
xk

(1− x)2k+1

=
1

1− x

(
1− 4x

(1− x)2

)−1/2

, by Exercise 1.8(a)

=
1√

1− 6x+ x2
.

10. Let the elements of S be a1 < a2 < · · · < ar+s. Then the multiset {a1, a2 − 2, a3 −
4, . . . , ar+s − 2(r + s − 1)} consists of r odd numbers and s even numbers in [2(n −
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r− s+ 1)]. Conversely we can recover S from any r odd numbers and s even numbers
(allowing repetition) in [2(n− r − s+ 1)]. Hence

f(n, r, s) =

((
n− r − s+ 1

r

))((
n− r − s+ 1

s

))
=

(
n− r
s

)(
n− s
r

)
.

This result is due to Jim Propp, private communication dated 29 July 2006. Propp
has generalized the result to any modulus m ≥ 2 and has also given a q-analogue.

11. (a) Choose m+n+1 points uniformly and independently from the interval [0, 1]. The
integral is then the probability that the last chosen point u is greater than the
first m of the other points and less than the next n points. There are (m+n+1)!
orderings of the points, of which exactly m!n! of them have the first m chosen
points preceding u and the next n following u. Hence

B(m+ 1, n+ 1) =
m!n!

(m+ n+ 1)!
.

The function B(x, y) for Re(x),Re(y) > 0 is the beta function.

There are many more interesting examples of the combinatorial evaluation of
integrals. Two of the more sophisticated ones are P. Valtr, Discrete Comput.
Geom. 13 (1995), 637–643; and Combinatorica 16 (1996), 567–573.

(b) Choose (1+ r+ s)n+2t
(
n
2

)
points uniformly and independently from [0, 1]. Label

the first n chosen points x, the next r chosen points y1, etc., so that the points
are labelled by the elements of M . Let P be the probability that the order of the
points in [0, 1] is a permutation of M that we are counting. Then

P =
n! r!ns!n(2t)!(

n
2)

((r + s+ 1)n + tn(n− 1))!
f(n, r, s, t)

=

∫ 1

0

· · ·
∫ 1

0

(x1 · · ·xn)r((1− x1) · · · (1− xn))s
∏

1≤i<j≤n
(xi − xj)2tdx1 · · · dxn.

This integral is the famous Selberg integral ; see e.g. G. E. Andrews, R. Askey, and
R. Roy, Special Functions, Cambridge University Press, Cambridge/New York,
1999 (Chapter 8), and P. J. Forrester and S. O. Warnaar, Bull. Amer. Math.
Soc. 45 (2008), 489–534. The evaluation of this integral immediately gives equa-
tion (1.119). No combinatorial proof of (1.119) is known. Such a proof would
be quite interesting since it would give a combinatorial evaluation of Selberg’s
integral.

(c) One solution is 1.Pa5 2.Pa4 3.Pa3 4.Ra4 5.Ra8 6.Paxb2 7.Pb1=B 8.Pe2 9.Pe3
10.Bxf5 11.Bxe6 12.Bc8 13.Pg3 14.Pg2, after which White plays Bh2 mate. We
attach indeterminates to each of the Black moves as follows: 1.a12 2.a12 3.x 4.a24

5.a24 6.a23 7.a23 8.a13 9.a13 10.x 11.a34 12.a34 13.a14 14.a14. We also place an in-
determinate x before Black’s first move and after Black’s last move. All solutions
are then obtained by permutations of Black’s 14 moves, together with x at the
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Ra4

Ra8

Bc8

Bxe6

Bxf5

Pb1=B Pe3

Paxb2

Pa3

Pa4

Pa5

Pe2
Pg3

Pg2

Figure 1.29: The solution poset for Exercise 1.11(c)

beginning and end, with the property that moves labelled by the same indetermi-
nate must be played in the same order, and moves labelled aij must occur between
the ith x and jth x. In the terminology of Chapter 3, the solutions correspond
to the linear extensions of the poset shown in Figure 1.29. Hence the number of
solutions is

f(4, 0, 0, 1) = 54054.

For similar serieshelpmates (called queue problems) whose number of solutions
has some mathematical significance, see Exercises 1.145, 6.23 and 7.18. Some
references are given in the solution to Exercise 6.23. The present problem comes
from the article R. Stanley, Suomen Tehtäväniekat 59, no. 4 (2005), 193–203.

13. Let S consist of all p-tuples (n1, n2, . . . , np) of integers ni ∈ [a] such that not all the
ni’s are equal. Hence #S = ap − a. Define two sequences in S to be equivalent if one
is a cyclic shift of the other (clearly an equivalence relation). Since p is prime each
equivalence class contains exactly p elements, and the proof follows. For additional
results of this nature, see I. M. Gessel, in Enumeration and Design (Waterloo, Ont.,
1982), Academic Press, Toronto, ON, 1984, pp. 157–197, and G.-C. Rota and B. E.
Sagan, European J. Combin. 1 (1980), 67–76.

14. (a) We use the well-known and easily proved fact that (x + 1)p ≡ xp + 1 (mod p),
meaning that each coefficient of the polynomial (x+ 1)p− (xp + 1) is divisible by
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p. Thus

(x+ 1)n = (x+ 1)
P

aipi

≡
∏

i

(
xp

i

+ 1
)ai

(mod p)

≡
∏

i

ai∑

j=0

(
ai
j

)
xjp

i

(mod p).

The coefficient of xm on the left is
(
n
m

)
and on the right is

(
a0
b0

)(
a1
b1

)
· · · . This

congruence is due to F. E. A. Lucas, Bull. Soc. Math. France 6 (1878), 49–54.

(b) The binomial coefficient
(
n
m

)
is odd if and only if the binary expansion of m is

“contained” in that of n; that is, if m has a 1 in its ith binary digit, then so does n.
Hence

(
n
m

)
is odd for all 0 ≤ m ≤ n if and only if n = 2k − 1. More generally, the

number of odd coefficients of (1 + x)n is equal to 2b(n), where b(n) is the number
of 1’s in the binary expansion of n. See Exercise 1.15 for some variations.

(c) Consider an a × p rectangular grid of squares. Choose pb of these squares in(
pa
pb

)
ways. We can choose the pb squares to consist of b entire rows in

(
a
b

)
ways.

Otherwise in at least two rows we will have picked between 1 and p− 1 squares.
For any choice of pb squares, cyclically shift the squares in each row independently.
This partitions our choices into equivalence classes. Exactly

(
a
b

)
of these classes

contain one element; the rest contain a number of elements divisible by p2.

(d) Continue the reasoning of (c). If a choice of pb squares contains fewer than b− 2
entire rows, then its equivalence class has cardinality divisible by p3. From this
we reduce the problem to the case a = 2, b = 1. Now

(
2p

p

)
=

p∑

k=0

(
p

k

)2

= 2 + p2

p−1∑

k=1

(p− 1)2(p− 2)2 · · · (p− k + 1)2

k!2

≡ 2 + p2

p−1∑

k=1

k−2 (mod p3).

But as k ranges from 1 to p− 1, so does k−1 modulo p. Hence

p−1∑

k=1

k−2 ≡
p−1∑

k=1

k2 (mod p).

Now use, for example, the identity

n∑

k=1

k2 =
n(n + 1)(2n+ 1)

6
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to get
p−1∑

k=1

k2 ≡ 0 (mod p), p ≥ 5.

(e) The exponent of the largest power of p dividing
(
n
m

)
is the number of carries

needed to add m and n − m in base p. See E. Kummer, Jour. für Math. 44
(1852), 115–116, and L. E. Dickson, Quart. J. Math. 33 (1902), 378–384.

15. (a) We have

1 + x+ x2 =
1− x3

1− x ≡ (1− x)2 (mod 3).

Hence (1 + x + x2)n ≡ (1 − x)2n (mod 3). It follows easily from Exercise 1.14(a)
that if 2n has the ternary expansion 2n =

∑
ai3

i, then the number of coefficients
of (1 + x+ x2)n not divisible by 3 is equal to

∏
(1 + ai). This result was obtained

in collaboration with T. Amdeberhan.

(b) Let f(n) be the desired number. First consider the case n = 2j(2k − 1). Since
(1 + x+ x2)2j ≡ 1 + x2j

+ x2j+1
(mod 2), we have f(n) = f(2k − 1). Now

(1 + x+ x2)2k−1 ≡ 1 + x2k
+ x2k+1

1 + x+ x2
(mod 2).

It is easy to check that modulo 2 we have for k odd that

1 + x2k
+ x2k+1

1 + x+ x2
= 1 + x+ x3 + x4 + x6 + x7 + · · ·+ x2k−2 + x2k−1 + x2k

+x2k+2 + x2k+3 + x2k+5 + x2k+6 + · · ·+ x2k+1−3 + x2k+1−2.

It follows that f(2k − 1) = (2k+2 + 1)/3. Similarly, when k is even we have

1 + x2k
+ x2k+1

1 + x+ x2
= 1 + x+ x3 + x4 + x6 + x7 + · · ·+ x2k−4 + x2k−3 + x2k−1

+x2k+1 + x2k+2 + x2k+4 + x2k+5 + · · ·+ x2k+1−3 + x2k+1−2.

Hence in this case f(2k−1) = (2k+2−1)/3. For a generalization, see Exercise 4.25.

Now any positive integer n can be written uniquely as n =
∑r

i=1 2ji(2ki − 1),
where ki ≥ 1, j1 ≥ 0, and ji+1 > ji + ki. We are simply breaking up the binary
expansion of n into the maximal strings of consecutive 1’s. The lengths of these
strings are k1, . . . , kr. Thus

(1 + x+ x2)n ≡
r∏

i=1

(1 + x2ji + x2ji+1

)2ki−1 (mod 2).

There is no cancellation among the coefficients when we expand this product since
ji+1 > ji + 1. Hence

f(n) =

r∏

i=1

f(2ki − 1),
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where f(2ki − 1) is given above.

Example. The binary expansion of 6039 is 1011110010111. The maximal strings
of consecutive 1’s have lengths 1, 4, 1 and 3. Hence

f(6039) = f(1)f(15)f(1)f(7) = 3 · 21 · 3 · 11 = 2079.

(c) We have ∏

1≤i<j≤n
(xi + xj) ≡

∏

1≤i<j≤n
(xi − xj) (mod 2),

where the notation means that the corresponding coefficients of each side are
congruent modulo 2. The latter product is just the value of the Vandermonde
determinant det[xj−1

i ]ni,j=1, so the number of odd coefficients is n!. This result
can also be proved by a cancellation argument; see Exercise 2.34. A more subtle
result, equivalent to Exercise 4.64(a), is that the number of nonzero coefficients of
the polynomial

∏
1≤i<j≤n(xi+xj) is equal to the number of forests on an n-element

vertex set.

Some generalizations of the results of this exercise appear in T. Amdeberhan and R.
Stanley, Polynomial coefficient enumeration, preprint dated 3 February 2008;

〈http://math.mit.edu/∼rstan/papers/coef.pdf〉.

See also Exercise 4.24.

16. (a) This result was first given by N. Strauss as Problem 6527, Amer. Math. Monthly
93 (1986), 659, and later as the paper Linear Algebra Appl. 90 (1987), 65–72.
An elegant solution to Strauss’s problem was given by I. M. Gessel, Amer. Math.
Monthly 95 (1988), 564–565, and by W. C. Waterhouse, Linear Algebra Appl.
105 (1988), 195–198. Namely, let V be the vector space of all functions Fp → Fp.
A basis for V consists of the functions fj(a) = aj , 0 ≤ j ≤ p− 1. Let Φ: V → V
be the linear transformation defined by (Φf)(x) = (1− x)p−1f(1/(1− x)). Then
it can be checked that A is just the matrix of Φ with respect to the basis fj. It is
now routine to verify that A3 = I.

(b) Answer : (p + 2ǫ)/3, where ǫ = 1 if p ≡ 1 (mod 3) and ǫ = −1 if p ≡ −1 (mod 3).
Both Strauss, op. cit., and Waterhouse, op. cit., in fact compute the Jordan
normal form of A. Waterhouse uses the linear transformation Φ to give a proof
similar to that given in (a).

17. (b) Think of a choice of m objects from n with repetition allowed as a placement of
n − 1 vertical bars in the slots between m dots (including slots at the beginning
and end). For example,

| . . | | . . . | . .
corresponds to the multiset {10, 22, 30, 43, 52}. Now change the bars to dots and
vice versa:

. | | . . | | | . | |
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yielding {11, 20, 32, 40, 50, 61, 70, 80}. This procedure gives the desired bijection.
(Of course a more formal description is possible but only seems to obscure the
elegance and simplicity of the above bijection.)

19. (a) One way to prove (1.120) is to recall the Lagrange interpolation formula. Namely,
if P (x) is a polynomial of degree less than n and x1, . . . , xn are distinct numbers
(or indeterminates), then

P (x) =

n∑

i=1

P (xi)
∏

j 6=i

x− xj
xi − xj

.

Now set P (x) = 1 and x = 0.

Applying the hint, we see that the constant term C(a1, . . . , an) satisfies the re-
currence

C(a1, . . . , an) =

k∑

i=1

C(a1, . . . , ai − 1, . . . , an),

if ai > 0. If, on the other hand, ai = 0, we have

C(a1, . . . , ai−1, 0, ai+1, . . . , an) = C(a1, . . . , ai−1, ai+1, . . . , an).

This is also the recurrence satisfied by
(
a1+···+an

a1,...,an

)
, and the initial conditions

C(0, . . . , 0) = 1 and
(

0
0,...,0

)
= 1 agree.

This result was conjectured by F. J. Dyson in 1962 and proved that same year by
J. Gunson and K. Wilson. The elegant proof given here is due to I. J. Good in
1970. For further information and references, see [1.3, pp. 377–387].

(b) This identity is due to A. C. Dixon, Proc. London Math. Soc. 35(1), 285–289.

(c) This is the “q-Dyson conjecture,” due to G. E. Andrews, in Theory and Appli-
cation of Special Functions (R. Askey, ed.), Academic Press, New York, 1975,
pp. 191–224 (see §5). It was first proved by D. M. Bressoud and D. Zeilberger,
Discrete Math. 54 (1985), 201–224. A more recent paper with many additional
references is I. M. Gessel, L. Lv, G. Xin, and Y. Zhou, J. Combinatorial Theory,
Ser. A 115 (2008), 1417–1435.

(d) I. G. Macdonald conjectured a generalization of (a) corresponding to any root
system R. The present problem corresponds to R = Dn, while (a) is the case
R = An−1 (when all the ai’s are equal). After many partial results, the conjecture
was proved for all root systems by E. Opdam, Invent. math. 98 (1989), 1–18.
Macdonald also gave a q-analogue of his conjecture, which was finally proved by
I. Cherednik in 1993 and published in Ann. Math. 141 (1995), 191–216. For
the original papers of Macdonald, see Sem. d’Alg. Paul Dubriel et Marie-Paule
Malliavin, Lecture Notes in Math., no. 867, Springer, Berlin, pp. 90–97, and SIAM
J. Math. Anal. 13 (1982), 988–1007.
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(e) Write

F (x) = F (x1, . . . , xn) =
∑

a1,...,an≥0

[
n∏

i=1

(q−ai + · · ·+ qai)

]
xa11 · · ·xan

n

=

n∏

i=1

∑

j≥0

(q−j + · · ·+ qj)xji

=

n∏

i=1

∑

j≥0

(
q−j − qj+1

1− q

)
xji

=
1

(1− q)n
n∏

i=1

[
1

1− q−1xi
− q

1− qxi

]

=
n∏

i=1

1 + xi
(1− q−1xi)(1− qxi)

.

We seek the term F0(x) independent from q. By the Cauchy integral formula
(letting each xi be small),

F0(x) =
1

2πi

∮
dq

q

n∏

i=1

1 + xi
(1− q−1xi)(1− qxi)

=
(1 + x1) · · · (1 + xn)

2πi

∮
dq

n∏

i=1

qn−1

(q − xi)(1− qxi)
,

where the integral is around the circle |q| = 1. The integrand has a simple pole at
q = xi with residue xn−1

i /(1− x2
i )
∏

j 6=i(xi − xj)(1− xixj), and the proof follows
from the Residue Theorem.

Note. The complex analysis in the above proof can be replaced with purely
formal computations using the techniques of Section 6.3.

22. (a) Let a1 + · · · + ak be any composition of n > 1. If a1 = 1, then associate the
composition (a1 + a2) + a3 + · · ·+ ak. If a1 > 1, then associate 1 + (a1− 1) + a2 +
· · ·+ ak. This defines an involution on the set of compositions of n that changes
the parity of the number of even parts. Hence the number in question is 2n−2,
n ≥ 2. (Note the analogy with permutations: there are 1

2
n! permutations with an

even number of even cycles—namely, the elements of the alternating group.)

(b) It is easily seen that

∑

n≥0

(e(n)− o(n))xn =
∏

i≥1

(1 + (−1)ixi)−1.

In the first proof of Proposition 1.8.5 it was shown that

∏

i≥1

(1 + xi) =
∏

i≥1

(1− x2i−1)−1.
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Figure 1.30: First step of the solution to Exercise 1.24

Hence (putting −x for x and taking reciprocals),
∏

i≥1

(1 + (−1)ixi)−1 =
∏

i≥1

(1 + x2i+1)

=
∑

n≥0

k(n)xn,

by Proposition 1.8.4. A simple combinatorial proof of this exercise was given by
the Cambridge Combinatorics and Coffee Club in December, 1999.

23. Form all 2n−1 compositions of n as in (1.19). Each bar occurs in half the compositions,
so there are (n − 1)2n−2 bars in all. The total number of parts is equal to the total
number of bars plus the total number of compositions, so (n − 1)2n−2 + 2n−1 = (n +
1)2n−2 parts in all. This argument is due to D. E. Knuth (private communication, 21
August 2007).

Variant argument. Draw n dots in a row. Place a double bar before the first dot or
in one of the n − 1 spaces between the dots. Choose some subset of the remaining
spaces between dots and place a bar in each of these spaces. The double bar and
the bars partition the dots into compartments that define a composition α of n as in
equation (1.19). The compartment to the right of the double bar specifies one of the
parts of α. Hence the total number f(n) of parts of all compositions of n is equal to
the number of ways of choosing the double bar and bars as described above. As an
example, the figure

. . | . || . . | . . .
corresponds to the composition (2, 1, 2, 3) of 8 with the third part selected.

If we place the double bar before the first dot, then there are 2n−1 choices for the
remaining bars. Otherwise there are n − 1 choices for the double bar and then 2n−2

choices for the remaining bars. Hence f(n) = 2n−1 + (n− 1)2n−2 = (n+ 1)2n−2.

24. Draw a line of n dots and circle k consecutive dots. Put a vertical bar to the left and
right of the circled dots. For example, n = 9, k = 3: see Figure 1.30.

Case 1. The circled dots don’t include an endpoint. The above procedure can then be
done in n − k − 1 ways. Then there remain n− k − 2 spaces between uncircled dots.
Insert at most one vertical bar in each space in 2n−k−2 ways. This defines a composition
with one part equal to k circled. For example, if we insert bars as in Figure 1.31 then
we obtain 3 + 1 + 1 +©3 + 1.

Case 2. The circled dots include an endpoint. This happens in two ways, and now
there are n− k − 1 spaces into which bars can be inserted in 2n−k−1 ways.

Hence we get the answer

(n− k − 1)2n−k−2 + 2 · 2n−k−1 = (n− k + 3)2n−k−2.
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Figure 1.31: Continuation of the solution to Exercise 1.24

25. It is clear that
∑

n,r,s

f(n, r, s)qrtsxn =
∑

j≥0

(
qx

1− x2
+

tx2

1− x2

)j
.

The coefficient of qrts is given by

(
r + s

r

)
xr+2s

(1− x2)r+s
=

(
r + s

r

)∑

m≥0

(
m+ r + s− 1

r + s− 1

)
x2m+r+2s,

and the proof follows.

For a bijective proof, choose a composition of r + k into r + s parts in
(
r+k−1
r+s−1

)
ways.

Multiply r of these parts by 2 in
(
r+s
r

)
ways. Multiply each of the other parts by 2

and subtract 1. We obtain each composition of n with r odd parts and s even parts
exactly once, and the proof follows.

27. Answer: (n+ 3)2n−2 − 1.

30. Let bi = ai − i + 1. Then 1 ≤ b1 ≤ b2 ≤ · · · ≤ bk ≤ n − k + 1 and each bi is
odd. Conversely, given the bi’s we can uniquely recover the ai’s. Hence setting m =
⌊(n− k + 2)/2⌋, the number of odd integers in the set [n−k+1], we obtain the answer((
m
k

))
=
(
m+k−1

k

)
=
(
q
k

)
, where q = ⌊(n+ k)/2⌋.

This exercise is called Terquem’s problem. For some generalizations, see M. Abramson
and W. O. J. Moser, J. Combinatorial Theory 7 (1969), 171–180; S. M. Tanny, Canad.
Math. Bull. 18 (1975), 769–770; J. de Biasi, C. R. Acad. Sci. Paris Sér. A-B 285
(1977), A89–A92; and I. P. Goulden and D. M. Jackson, Discrete Math. 22 (1978),
99–104. A further generalization is given by Exercise 1.10.

31. (a) x(x+ 1)(x+ 2) · · · (x+ n− 1) = n!

((
n + 1

x− 1

))
= n!

((x
n

))

(b) (n)x(n− 1)n−x = n!

(
n− 1

x− 1

)

(c)
x∑

k=1

n!

k!

(
n− 1

k − 1

)

32. The key feature of this problem is that each element of S can be treated independently,
as in Example 1.1.16.

(a) For each x ∈ S, we may specify the least i (if any) for which x ∈ Ti. There are
k + 1 choices for each x, so (k + 1)n ways in all.
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Figure 1.32: An illustration of the solution to Exercise 1.35(f)

(b) Now each x can be in at most one Ti, so again there are k + 1 choices for x
and (k + 1)n choices in all. (In fact, there is a very simple bijection between the
sequences enumerated by (a) and (b).)

(c) Now each x can be in any subset of the Ti’s except the subset ∅. Hence there are
2k − 1 choices for each x and (2k − 1)n ways in all.

34. Let bi = ai − (i − 1)j to get 1 ≤ b1 ≤ · · · ≤ bk ≤ n − (k − 1)j, so the number of

sequences is
((

n−(k−1)j
k

))
.

35. (a) Obtain a recurrence by considering those subsets S which do or do not contain
n. Answer: Fn+2.

(b) Consider whether the first part is 2 or at least 3. Answer: Fn−1.

(c) Consider whether the first part is 1 or 2. Answer: Fn+1.

(d) Consider whether the first part is 1 or at least 3. Answer: Fn.

(e) Consider whether ε = 0 or 1. Answer: Fn+2.

(f) The following proof, as well as the proofs of (g) and (h), are due to Ira Gessel.
Gessel (private communication, 2 May 2007) has developed a systematic approach
to “Fibonacci composition formulas” based on factorization in free monoids as
discussed in Section 4.7. The sum

∑
a1a2 · · ·ak counts the number of ways of

inserting at most one vertical bar in each of the n− 1 spaces separating a line of
n dots, and then circling one dot in each compartment. An example is shown in
Figure 1.32. Replace each bar by a 1, each uncircled dot by a 2, and each circled
dot by a 1. For example, Figure 1.32 becomes

2 1 2 2 1 1 2 1 1 1 1 1 2 1 1 1 2 2 1 1 1 2 1 2.

We get a composition of 2n − 1 into 1’s and 2’s, and this correspondence is
invertible. Hence by (c) the answer is F2n.

A simple generating function proof can also be given using the identity

∑

k≥1

(x+ 2x2 + 3x3 + · · · )k =
x/(1− x)2

1− x/(1− x)2

=
x

1− 3x+ x2

=
∑

n≥1

F2nx
n.

(g) Given a composition (a1, . . . , ak) of n, replace each part ai with a composition
αi of 2ai into parts 1 and 2, such that αi begins with a 1, ends in a 2, and for
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all j the 2j-th 1 in α is followed by a 1, unless this 2j-th 1 is the last 1 in α.
For instance, the part ai = 4 can be replaced by any of the seven compositions
1111112, 111122, 111212, 11222, 121112, 12122, 12212. It can be checked that (i)
every composition of 2n into parts 1 and 2, beginning with 1 and ending with 2,
occurs exactly once by applying this procedure to all compositions of n, and (ii)
the number of compositions that can replace ai is 2ai−1 − 1. It follows from part
(c) that the answer is F2n−2. A generating function proof takes the form

∑

k≥1

(x2 + 3x3 + 7x4 + · · · )k =
x2/(1− x)(1− 2x)

1− x2/(1− x)(1− 2x)

=
x2

1− 3x+ x2

=
∑

n≥2

F2n−2x
n.

(h) Given a composition (a1, . . . , ak) of n, replace each 1 with either 2 or 1, 1, and
replace each j > 1 with 1, 2, . . . , 2, 1, where there are j−1 2’s. Every composition
of 2n with parts 1 and 2 is obtained in this way, so from part (c) we obtain the
answer F2n+1. A generating function proof takes the form

1

1− 2x− x2 − x3 − x4 − · · · =
1

1− x− x
1−x

=
1− x

1− 3x+ x2

=
∑

n≥0

F2n+1x
n.

(i) Answer: 2F3n−4 (with Fn defined for all n ∈ Z using the recurrence Fn = Fn−1 +
Fn−2), a consequence of the expansion

1

1 + x
1−5x

+ x
1−x

= 1− 2
∑

n≥1

F3n−4x
n.

A bijective proof is not known. This result is due to D. E. Knuth (private com-
munication, 21 August 2007).

(k) Answer: F2n+2. Let f(n) be the number in question. Now

Pn = Pn−1 + Pn−1xn + Pnxn+1. (1.153)

Each term of the above sum has f(n− 1) terms when expanded as a polynomial
in the xi’s. Since

Pn−1 + Pn−1xn = Pn−2(1 + xn−1 + xn) + Pn−2(1 + xn−1 + xn)xn,

the only overlap between the three terms in equation (1.153) comes from Pn−2xn,
which has f(n−2) terms. Hence f(n) = 3f(n−1)−f(n−2), from which the proof
follows easily. This problem was derived from a conjecture of T. Amdeberhan
(November 2007). For a variant, see Exercise 4.20.
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36. Let fn(k) denote the answer. For each i ∈ [n] we can decide which Tj contains i
independently of the other i′ ∈ [n]. Hence fn(k) = fk(1)n. But computing fk(1) is
equivalent to Exercise 1.35(e). Hence fn(k) = F n

k+2.

37. While it is not difficult to show that the right-hand side of equation (1.122) satisfies the
Fibonacci recurrence and initial conditions, we prefer a more combinatorial proof. For
instance, Exercise 1.34 in the case j = 2 shows that

(
n−k
k

)
is the number of k-subsets

of [n− 1] containing no two consecutive integers. Now use Exercise 1.35(a).

39. First solution (sketch). Let am,n be the number of ordered pairs (S, T ) with S ⊆ [m]
and T ⊆ [n] satisfying s > #T for all s ∈ S and t > #S for all t ∈ T . An easy
bijection gives

am,n = am−1,n + am−1,n−1.

Using aij = aji we get

an,n = an,n−1 + an−1,n−1

an,n−1 = an−1,n−1 + an−1,n−2,

from which it follows (using the initial conditions a0,0 = 1 and a1,0 = 2) that an,n =
F2n+2 and an,n−1 = F2n+1.

Second solution (sketch). It is easy to see that

am,n =
∑

i,j≥0
i+j≤min{m,n}

(
m− j
i

)(
n− i
j

)
.

It can then be proved bijectively that
∑

i,j≥0
i+j≤n

(
n−j
i

)(
n−i
j

)
is the number of compositions

of 2n+ 1 with parts 1 and 2. The proof follows from Exercise 1.35(c).

This problem (for the case n = 10) appeared as Problem A-6 on the Fifty-First William
Lowell Putnam Mathematical Competition (1990). The two solutions above appear in
K. S. Kedlaya, B. Poonen, and R. Vakil, The William Lowell Putnam Mathematical
Competition, Mathematical Association of America, Washington, DC, 2002 (pp. 123–
124).

41. (a) Perhaps the most straightforward solution is to let #S = k, giving

f(n) =

n∑

k=0

(n− k)k(n− k)!
(
n

k

)

= n!
n∑

k=0

(
n− k
k

)
.

Now use Exercise 1.37. It is considerably trickier to give a direct bijective proof.
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(b) We now have

g(n) =
n−1∑

k=0

(n− k)k(n− k − 1)!

(
n

k

)

= (n− 1)!
n−1∑

k=0

n

n− k

(
n− k
k

)
.

There are a number ways to show that Ln =
∑n−1

k=0
n
n−k
(
n−k
k

)
, and the proof

follows. This result was suggested by D. E. Knuth (private communication, 21
August 2007) upon seeing (a). A simple bijective proof was suggested by R. X. Du
(private communication, 27 March 2011); namely, choose an n-cycle C in (n−1)!
ways, and regard the elements of C as n points on a circle. We can choose S to be
any subset of the points, no two consecutive. By Exercise 1.40 this can be done
in Ln ways, so the proof follows.

42. Let
∏

n≥2(1 − xFn) =
∑

k≥0 akx
k. Split the interval [Fn, Fn+1 − 1] into the three

subintervals [Fn, Fn+Fn−3−2], [Fn+Fn−3−1, Fn+Fn−2−1], and [Fn+Fn−2, Fn+1−1].
The following results can be shown by induction:

• The numbers aFn, aFn+1, . . . , aFn+Fn−3−2 are equal to the numbers (−1)n−1aFn−3−2,
(−1)n−1aFn−3−3, . . . , (−1)n−1a0 in that order.

• The numbers aFn+Fn−3−1, aFn+Fn−3, . . . , aFn+Fn−2−1 are equal to 0.

• The numbers aFn+Fn−2, aFn+Fn−2+1, . . . , aFn+1−1 are equal to the numbers a0, a1,
. . . , aFn−3−1 in that order.

From these results the proof follows by induction.

N. Robbins, Fibonacci Quart. 34.4 (1996), 306-313, was the first to prove that the
coefficients are 0,±1. The above explicit recursive description of the coefficents is due
to F. Ardila, Fibonacci Quart. 42 (2004), 202–204. Another elegant proof was later
given by Y. Zhao, The coefficients of a truncated Fibonacci series, Fib. Quarterly, to
appear, and a significant generalization by H. Diao, arXiv:0802.1293.

43. Answer:

S(n, 1) = 1 c(n, 1) = (n− 1)!

S(n, 2) = 2n−1 − 1 c(n, 2) = (n− 1)!Hn−1

S(n, n) = 1 c(n, n) = 1

S(n, n− 1) =

(
n

2

)
c(n, n− 1) =

(
n

2

)

S(n, n− 2) =

(
n

3

)
+ 3

(
n

4

)
c(n, n− 2) = 2

(
n

3

)
+ 3

(
n

4

)
.

An elegant method for computing c(n, 2) is the following. Choose a permutation
a1a2 · · ·an ∈ Sn with a1 = 1 in (n − 1)! ways. Choose 1 ≤ j ≤ n − 1 and let
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w be the permutation whose disjoint cycle form is (a1, a2, . . . , aj)(aj+1, aj+2, . . . , an).
We obtain exactly j times every permutation with two cycles such that the cycle not
containing 1 has length n− j. Hence c(n, 2) = (n− 1)!Hn−1.

As a further example, let us compute S(n, n− 2). The block sizes of a partition of [n]
with n − 2 blocks are either 3 (once) and 1 (n − 3 times), or 2 (twice) and 1 (n − 4
times). In the first case there are

(
n
3

)
ways of choosing the 3-element block. In the

second case there are
(
n
4

)
ways of choosing the union of the two 2-element blocks, and

then three ways to choose the blocks themselves. Hence S(n, n − 2) =
(
n
3

)
+ 3
(
n
4

)
as

claimed.

45. Define ai+1 + ai+2 + · · ·+ ak to be the least r such that when 1, 2, . . . , r are removed
from π, the resulting partition has i blocks.

46. (a) We have by equation (1.94c) that

∑

n≥0

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)

=
xk

(1− x)⌈k/2⌉ (mod 2)
.

(b) The first of several persons to find a combinatorial proof were K. L. Collins and
M. Hovey, Combinatorica 31 (1991), 31–32. For further congruence properties of
S(n, k), see L. Carlitz, Acta Arith. 10 (1965), 409–422.

(c) Taking equation (1.28) modulo 2 gives

n∑

k=0

c(n, k)tk = t⌈n/2⌉(t+ 1)⌊n/2⌋ (mod 2).

Hence

c(n, k) ≡
( ⌊n/2⌋
k − ⌈n/2⌉

)
=

(⌊n/2⌋
n− k

)
(mod 2).

48. (a) This remarkable result is due to J. N. Darroch, Ann. Math. Stat. 35 (1964),
1317–1321. For a nice exposition including much related work, see J. Pitman, J.
Combinatorial Theory, Ser. A 77 (1997), 279–303.

(b) Let P (x) =
∑n

k=0 c(n, k)x
k. It is routine to compute from Proposition 1.3.7 that

P ′(1)

P (1)
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
,

and the proof follows from (a). For further information on the distribution of the
number of cycles of a permutations w ∈ Sn, see Pitman, ibid., pp. 289–290.

(c) This result is due to E. R. Canfield and C. Pomerance, Integers 2 (2002), A1
(electronic); Corrigendum 5(1) (2005), A9, improving earlier expressions for Kn

due to Canfield and Menon (independently). Previously it was shown by L. H.
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Harper, Ann. Math. Stat. 38 (1966), 410–414 (Lemma 1), that the polynomial∑
k S(n, k)xk has real zeros. As Pitman points out in his paper cited above

(page 291), the result (a) of Darroch reduces the problem of estimating Kn to
estimating the expected number of blocks of a random partition of [n]. For further
discussion, see D. E. Knuth, The Art of Computer Programming, vol. 4, Fascicle 3,
Addison-Wesley, Upper Saddle River, NJ, 2005 (Exercises 7.2.1.5–62 and 7.2.1.5–
63(e)).

49. (a) Let Fd(x) = Ad(x)/(1 − x)d+1. Differentiate equation (1.37) and multiply by x,
yielding

Fd+1(x) = x
d

dx
Fd(x),

etc.

(b) The proof is by induction on d. Since A1(x) = x, the assertion is true for d = 1.
Assume the assertion for d. By Rolle’s theorem, the function f(x) = d

dx
(1 −

x)−d−1Ad(x) has d−1 simple negative real zeros that interlace the zeros of Ad(x).
Since limx→−∞ f(x) = 0, there is an additional zero of f(x) less than the smallest
zero of Ad(x). Using equation (1.38), we have accounted for d strictly negative
simple zeros of Ad+1(x), and x = 0 is an additional zero. The proof follows by
induction. This result can be extended to permutations of a multiset; see R.
Simion, J. Combinatorial Theory, Ser. A 36 (1984), 15–22.

50. (b) Let D = d/dx. By Rolle’s theorem, Q(x) = Di−1P (x) has real zeros, and thus
also R(x) = xn−i+1Q(1/x). Again by Rolle’s theorem, Dn−i−1R(x) has real zeros.
But one computes easily that

Dn−i−1R(x) =
n!

2

(
bi−1x

2 + 2bix+ bi+1

)
.

In order for this quadratic polynomial to have real zeros, we must have b2i ≥
bi−1bi+1. This result goes back to I. Newton; see e.g. G. H. Hardy, J. E. Littlewood,
and G. Pólya, Inequalities, second ed., Cambridge University Press, Cambridge,
England, 1952 (page 52).

(c) Let us say that a polynomial P (x) =
∑m

i=0 aix
i with coefficients satisfying ai =

am−i has center m/2. (We don’t assume that degP (x) = m, i.e., we may have
am = 0.) Thus P (x) has center m/2 if and only if P (x) = xmP (1/x). If also
Q(x) = xnQ(1/x) (soQ(x) has center n/2), then P (x)Q(x) = xm+nP (1/x)Q(1/x).
Thus P (x)Q(x) has symmetric coefficients (with center (m+n)/2). It is also easy
to show this simply by computing the coefficients of P (x)Q(x) in terms of the
coefficients of P (x) and Q(x).

Now assume that P (x) =
∑m

i=0 aix
i has center m/2 and has unimodal coefficients,

and similarly for Q(x) =
∑n

i=0 bix
i. Let Aj(x) = xj + xj+1 + · · · + xm−j , a

polynomial with center m/2, and similarly Bj(x) = xj + xj+1 + · · ·+ xn−j . It is
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easy to see that

P (x) =

⌊m/2⌋∑

i=0

(ai − ai−1)Ai(x)

Q(x) =

⌊n/2⌋∑

j=0

(bj − bj−1)Bj(x).

Thus

P (x)Q(x) =

⌊m/2⌋∑

i=0

⌊n/2⌋∑

j=0

(ai − ai−1)(bj − bj−1)Ai(x)Bj(x).

It is easy to check by explicit computation that Ai(x)Bj(x) has unimodal coeffi-
cients and center (m+n)/2. Since P (x) and Q(x) have unimodal coefficients, we
have

(ai − ai−1)(bj − bj−1) ≥ 0.

Hence we have expressed P (x)Q(x) as a nonnegative linear combination of uni-
modal polynomials, all with the same center (m+n)/2. It follows that P (x)Q(x)
is also unimodal (with center (m+ n)/2).

(d) Perhaps the most elegant proof (and one suggesting some nice generalizations)
uses linear algebra. Write P (x) =

∑m
i=0 aix

i and Q(x) =
∑n

i=0 bix
i. Set ai = 0 if

i 6∈ [0, m], and similarly for bi. If X and Y are r × r real matrices all of whose
k × k minors are nonnegative, then the Cauchy-Binet theorem shows that the
same is true for the matrix XY . Moreover, it is easily seen that if c0, c1, . . . , cn is
nonnegative and log-concave with no internal zeros, then cicj ≥ ci−scj+s whenever
i ≤ j and s ≥ 0. Now take k = 2, X = [aj−i]

m+n
i,j=0, and Y = [bj−i]

m+n
i,j=0, and the

proof follows.

(e) The symmetry of the two polynomials is easy to see in various ways. The poly-
nomial x

∑
w∈Sn

xdes(w) is the Eulerian polynomial An(x) by equation (1.36); now

use (a), (b) and Exercise 1.49. The unimodality of the polynomial
∑

w∈Sn
xinv(w)

follows from (c) and the product formula (1.30). Note. A combinatorial proof

of the unimodality of
∑

w∈Sn
xinv(w) is implicit in the proof we have given, while

a combinatorial proof of the log-concavity and unimodality of An(x) is due to V.
Gasharov, J. Combinatorial Theory, Ser. A 82 (1998), 134–146 (§§4–5).

(f) This result was proved by F. De Mari and M. Shayman, Acta Appl. Math. 12
(1988), 213–235, using the hard Lefschetz theorem from algebraic geometry. It
would be interesting to give a more elementary proof. A related result was proved
by M. Bóna, Generalized descents and normality, arXiv:0709.4483.

(g) Let n = 4 and S = {(1, 2), (2, 3), (3, 4), (1, 4)}. Then

PS(x) = x4 + 8x3 + 6x2 + 8x+ 1.

Note that part (f) asserts that PS(x) is unimodal for S = {(i, j) : 1 ≤ i < j ≤
n, j ≤ i+ p}. It seems likely (though this has not been checked) that the proof

178



of De Mari and Shayman can be extended to the case S = {(i, j) : 1 ≤ i < j ≤
n, j ≤ i + pi}, where p1, . . . , pn−1 are any nonnegative integers. Can anything
further be said about those S for which PS(x) is unimodal?

For further information on the fascinating topic of unimodal and log-concave
sequences, see R. Stanley, in Graph Theory and Its Applications: East and West,
Ann. New York Acad. Sci., vol. 576, 1989, pp. 500–535, and the sequel by F.
Brenti, in Contemp. Math. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 71–
89. For the unimodality of the q-binomial coefficient

(
n

k

)
and related results, see

Exercise 7.75.

51. This result goes back to P. S. de Laplace. The following proof is due to R. Stanley, in
Higher Combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976), M. Aigner,
ed., Reidel, Dordrecht/Boston, 1977, p. 49. Given w ∈ Sn, let Sw denote the region
(a simplex) in Rn defined by

0 ≤ xw(1) ≤ xw(2) ≤ · · · ≤ xw(n) ≤ 1.

Define Snk =
⋃
w Sw, where w ranges over all permutations in Sn with exactly k − 1

descents. It is easy to see that vol(Sw) = 1/n!, so vol(Snk) = A(n, k)/n!. Define a map
ϕ : Snk →Rnk by ϕ(x1, . . . , xn) = (y1, . . . , yn), where

yi =

{
xi+1 − xi, if xi < xi+1

1 + xi+1 − xi, if xi > xi+1.

Here we set xn+1 = 1, and we leave ϕ undefined on the set of measure zero consisting
of points where some xi−1 = xi. One can check that ϕ is measure-preserving and a
bijection up to a set of measure zero. Hence vol(Rnk) = vol(Snk) = A(n, k)/n!. For
some additional proofs, see W. Meyer and R. von Randow, Math. Annalen 193 (1971),
315–321, and S. M. Tanny, Duke Math. J. 40 (1973), 717–722, and J. W. Pitman, J.
Combinatorial Theory, Ser. A 77 (1997), 279–303 (pp. 295–296). For a refinement and
further references, see R. Ehrenborg, M. A. Readdy, and E. Steingŕımsson, J. Combi-
natorial Theory, Ser. A 81 (1998), 121–126. For some related results, see Exercise 4.62.

52. This amusing result is due to J. Holte, Amer. Math. Monthly 104 (1997), 138–149.
Holte derived this result in the setting of Markov chains and obtained many additional
results about the combinatorics of carrying. Further work on this subject is due to P.
Diaconis and J. Fulman, Amer. Math. Monthly 116 (2009), 788–803, and Advances in
Applied Math. 43 (2009), 176–196, and A. Borodin, P. Diaconis, and J. Fulman, Bull
Amer. Math. Soc. 47 (2009), 639–670. There is a simple intuitive reason, which is
not difficult to make rigorous, why we get the Eulerian numbers. The probability that
we carry j in a certain column is roughly the probability that if i1, . . . , in are random
integers in the interval [0, b − 1], then bj ≤ i1 + · · ·+ in < b(j + 1). Now divide by b
and use Exercise 1.51.

56. Let φ(w) denote the standardization (as defined in the second proof of Proposition 1.7.1)
of w ∈ SM . If M = {1m1 , 2m2 , . . .} and #M = n, then {φ(w) : w ∈ SM} consists
of all permutations v ∈ Sn such that D(v−1) = {m1, m1 + m2, · · · } ∩ [n − 1]. It is

179



easy to see that inv(w) = inv(v) (a special case of (1.71)) and maj(w) = maj(v). The
proof now follows from equation (1.43) and Theorem 1.4.8. This result is due to P.
A. MacMahon, stated explicitly on page 317 of his paper [1.54]. Some other classes
of permutations that are equidistributed with respect to inv and maj are given by A.
Björner and M. L. Wachs, J. Combinatorial Theory, Ser. A 52 (1989), 165–187, and
D. Foata and D. Zeilberger, J. Comput. Applied Math. 68 (1996), 79–101. See also the
solution to Exercise 5.49(e).

57. Condition (i) does not hold if and only if there are indices i < i′ and j < j′ such
that (i, j) ∈ D(w), (i′, j′) ∈ D(w), (i, j′) 6∈ D(w), (i′, j) 6∈ D(w). Let w(i′′) = j and
w(i′′′) = j′. It is easy to check by drawing a diagram that i < i′′ < i′ < i′′′ and
w(i′′) < w(i) < w(i′′′) < w(i′), so w is not 2143-avoiding. The steps are reversible, so
(i) and (iii) are equivalent. The equivalence of (i) and (ii) follows from the fact that the
jth term of I(w) (respectively, I(w−1)) is the number of elements of D(w) in column
(respectively, row) j.

The permutations of this exercise are called vexillary. For further information on their
history and properties, see Exercise 7.22(d,e).

58. (b) The final step in obtaining this result was achieved by Z. Stankova, Europ. J.
Combin. 17 (1996), 501–517. For further information, see H. S. Wilf, Discrete Math.
257 (2002), 575–583, and M. Bóna [1.11, §4.4].

59. This result is known as the Stanley-Wilf conjecture. It was shown by R. Arratia,
Electronic J. Combinatorics 6(1) (1999), N1, that the conjecture follows from the
statement that there is a real number c > 1 (depending on u) for which su(n) < cn

for all n ≥ 1. This statement was given a surprisingly simple and elegant proof by A.
Marcus and G. Tardos, J. Combinatorial Theory, Ser. A 107 (2004), 153–160. A nice
exposition of this proof due to D. Zeilberger is available at

〈www.math.rutgers.edu/∼zeilberg/mamarim/mamarimhtml/paramath.html〉.

Another nice exposition is given by M. Bóna, [1.11, §4.5].

60. Answer. The equivalence classes consist of permutations whose inverses have a fixed
descent set. The number of equivalence classes is therefore 2n−1, the number of subsets
of [n− 1].

While it is not difficult to prove this result directly, it also can be understood in a nice
way using the “Cartier-Foata theory” of Exercise 3.123.

61. (a) By the properties of the bijection w 7→ T (w) discussed in Section 1.5, we have
that

F (x; a, b, c, d) =
∑

n≥1

∑

T

alr(T )be(T )−1cr(T )dl(T )x
n

n!
,

where T ranges over all increasing binary trees on the vertex set [n], with lr(T )
vertices with two children, e(T ) vertices that are endpoints, l(T ) vertices with
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just a left child, and r(T ) vertices with just a right child. By removing the root
from T , we obtain the equation

∂

∂x
(F − bx) = abF 2 + (c+ d)F. (1.154)

Solving this equation (a Ricatti equation, with a well-known method of solution)
with the initial condition F (0; a, b, c, d) = 0 yields equation (1.124).

This result is due to L. Carlitz and R. Scoville, J. reine angew. Math. 265 (1974),
110–137 (§7). Our presentation follows Exercise 3.3.46 of I. P. Goulden and D.
M. Jackson, Combinatorial Enumeration, John Wiley & Sons, New York, 1983;
reprinted by Dover, Mineola, NY, 2004. This latter reference contains more details
on solving the differential equation (1.154).

(b) The generating function is given by 1+ tF (x; 1, t, 1, 1), which can be simplified to
the right-hand side of equation (1.125).

The enumeration of permutations by number of peaks was first considered by
F. N. David and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962
(pp. 162–164). They obtain a generating function for r(n, k) written in a different
form from equation (1.125).

(c) We have that f(n) is the number of increasing binary trees on [n] such that no
vertex has only a left child except possibly the last vertex obtained by beginning
with the root and taking right children. Let g(n) be the number of increasing
binary trees on [n] such that no vertex has only a left child. Then

f(n+ 1) =

n∑

k=0

(
n

k

)
f(k)g(n− k)

g(n+ 1) +

n−1∑

k=0

(
n

k

)
g(k)g(n− k),

with f(0) = g(0) = 1. Setting F (x) =
∑
f(n)xn/n! and G(x) =

∑
g(n)xn/n!, we

obtain F ′ = FG and G +G′ = G2 + 1. We can solve these differential equations
to obtain equation (1.126). Goulden and Jackson, op. cit. (Exercise 5.2.17, attri-
bution on page 306) attribute this result to P. Flajolet (private communication,
1982). The proof in Goulden and Jackson is based essentially on the Principle of
Inclusion-Exclusion, and is given here in Exercise 2.23.

62. (b) First note that

pnk =
∑

d|n

∑

A

d(w(A))nk/d, (1.155)

where A ranges over all aperiodic cycles of length d (i.e., cycles of length d that
are unequal to a proper cyclic shift of themselves). Now substitute (1.155) into
the expansion of log

∏
(1− pk)−1 and simplify.

This result is implicit in the work of R. C. Lyndon (see Lothaire [4.31, Thm. 5.1.5]).
See also N. G. de Bruijn and D. A. Klarner, SIAM J. Alg. Disc. Meth. 3 (1982),
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359–368. The result was stated explicitly by I. M. Gessel (unpublished). A
different theory of cycles of multiset permutations, due to D. Foata, has a nice ex-
position in §5.1.2 of D. E. Knuth [1.48]. In Foata’s theory, a multiset permutation
has the meaning of Section 1.7.

(c) Let x1 = · · · = xk = x, and xj = 0 if j > k.

(d) Let σ = (a1, a2, . . . , ajk) be a multiset cycle of length jk, where k is the largest
integer for which the word u = a1a2 · · ·ajk has the form vk for some word v of
length j (where vk denotes the concatenation of k copies of v). Let Γ(σ) = pjk.
Given a multiset permutation π = σ1σ2 · · ·σm where each σi is a multiset cycle,
define Γ(π) = Γ(σ1) · · ·Γ(σm). It can then be verified combinatorially that the
number of multiset permutations π with fixed w(π) and Γ(π) is equal to the
coefficient of w(π) in Γ(π), leading to the desired bijection.

63. Label the envelopes 1, 2, . . . , n in decreasing order of size. Partially order an arrange-
ment of envelopes by inclusion, and adjoin a root labelled 0 at the top. We obtain
an (unordered) increasing tree on n+ 1 vertices, and this correspondence is clearly in-
vertible. Hence by Proposition 1.5.5 there are n! arrangements in all, of which c(n, k)
have k envelopes not contained in another and A(n, k) have k envelopes not containing
another.

64. (a) Let u be a sequence being counted, with mi occurrences of i. Replace the 1’s
in u from right-to-left by 1, 2, . . . , m1. Then replace the 2’s from right-to-left
by m1 + 1, m1 + 2, . . . , m1 + m2, etc. This procedure gives a bijection with Sn.
For instance, 13213312 corresponds to 38527614. Note that this bijection could
also be described as u 7→ ρψρ(u), where ρ(v) is the reversal of v, and ψ denotes
standardization (defined after the second proof of Proposition 1.7.1).

(b) The bijection in (a) has the property that max{a1, . . . , an} = des(ρ(w)−1)+1, etc.
This result was pointed out by D. E. Knuth (private communication, 21 August
2007) upon seeing (a).

65. It follows from a general theorem of Ramanujan (see D. Zagier, in J. H. Bruinier, G.
van der Geer, G. Harder and D. Zagier, eds., The 1-2-3 of Modular Forms, Springer-
Verlag, Berlin, 2008 (Prop. 16, p. 49)) that y satisfies a third order algebraic differential
equation, but it is considerably more complicated than the fourth degree equation
(1.127). This equation was first computed by M. Rubey in 2010. See W. Hebisch and
M. Rubey, J. Symbolic Computation, to appear.

70. (a) Draw a line L along the main diagonal of the Ferrers diagram of λ. Then ai is
the number of dots in the ith row to the right of L, while bi is the number of dots

in the ith column below i. Figure 1.33 shows that A77421 =

(
6 5 1
4 2 0

)
. This

bijection is due to F. G. Frobenius, Sitz. Preuss. Akad. Berlin (1900), 516–534,
and Gesammelte Abh. 3, Springer, Berlin, 1969, pp. 148–166, and the array Aλ is
called the Frobenius notation for λ.
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Figure 1.33: Frobenius notation

(b) Suppose that the path P consists of c1 steps N , followed by c2 steps E, then c3
steps S, etc., ending in cℓ steps. If ℓ = 2r then associate with P the partition λ
whose Frobenius notation is

Aλ =

(
cℓ−1 cℓ−3 cℓ−5 · · · c1
cℓ − 1 cℓ−2 − 1 cℓ−4 − 1 · · · c2 − 1

)
.

If ℓ = 2r − 1 then associate with P the partition λ whose Frobenius notation is

Aλ =

(
cℓ−1 cℓ−3 · · · c2 0
cℓ − 1 cℓ−2 − 1 · · · c3 − 1 c1 − 1

)
.

This sets up the desired bijection. For instance, the CSSAW of Figure 1.34(a)

corresponds to the partition λ = (8, 6, 5, 2, 1) with Aλ =

(
7 4 2
4 2 0

)
, while

Figure 1.34(b) corresponds to λ = (4, 3, 3, 3, 2, 1, 1) with Aλ =

(
3 1 0
6 3 1

)
. This

result is due to A. J. Guttman and M. D. Hirschhorn, J. Phys. A Math. Gen.
17 (1984), 3613–3614. They give a combinatorial proof equivalent to the above,
though not stated in terms of Frobenius notation. The connection with Frobenius
notation was given by G. E. Andrews, Electronic J. Combinatorics 18(2) (2011),
P6.

71. Answer. p(0) + p(1) + · · · + p(n). Given ν ⊢ k ≤ n, define λ to be ν with the part
n − k adjoined (in the correct position, so the parts remain weakly decreasing), and
define µ to be ν with n− k + 1 adjoined. This yields the desired bijection. For some
generalizations, see Theorem 3.21.11 and Exercise 3.150.

72. This exercise gives a glimpse of the fascinating subject of plane partitions, treated
extensively in Sections 7.20–7.22.

(a) Although equation (1.128) can be proved by ad hoc arguments, the “best” proof
is a bijection using the RSK algorithm, the special case q = 1, r = 2 and c→∞
of Theorem 7.20.1. A different generalization, but with a non-bijective proof, is
given by Theorem 7.21.7.
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(a) (b)

Figure 1.34: Two concatenated spiral self-avoiding walks

(b) This result is due to B. Gordon, Proc. Amer. Math. Soc. 13 (1962), 869–873. A
bijective proof was given by C. Sudler, Jr., Proc. Amer. Math. Soc. 16 (1965),
161–168. This result can be generalized to a chain λ1 ⊆ λ2 ⊆ · · · ⊆ λk of any
fixed number k of strict partitions, and with a fixed bound on the largest part
of λk. See [7.146, Prop. 16.1] and G. E. Andrews, Pacific J. Math. 72 (1977),
283–291.

73. Consider for instance λ = (5, 4, 4, 2, 1, 1), and put dots in the squares of the diagram
of λ as follows:

Count the total number of dots by rows and by columns to obtain the first identity.
The other formulas are analogous. There are many further variations.

74. Subtract one from each part of a partition of n into n−t parts to deduce that pn−t(n) =
p(t) if and only if n ≥ 2t.

75. The partition λ1 ≥ λ2 ≥ · · · ≥ λk corresponds to λ1 + k − 1 > λ2 + k − 2 > · · · > λk.

76. By the bijection illustrated in Figure 1.16, the coefficient of qkxn in the left-hand side
of equation (1.129) is equal to the number of self-conjugate partitions λ of n whose
rank is k. If we remove the Durfee square from the diagram of λ, then we obtain two
partitions µ and µ′ (the conjugate of µ) with largest part at most k. Hence we obtain
the right-hand side of (1.129).
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One can also prove this identity by making the substitution x→ x2 and q → qx−1 into
equation (1.83).

77. Given r ∈ Z, let λ be a partition satisfying λ′1 + r ≥ λ1 − 1. Define ψr(λ) to be the
partition obtained by removing the first column of (the diagram of) λ and adding a
new row at the top of length λ′1 + r. We need to give a bijection

γn :
⋃

m∈2Z

Par(n−m(3m− 1)/2)→
⋃

m∈1+2Z

Par(n−m(3m− 1)/2).

One can check that we can define γn as follows: for λ ∈ ⋃m∈2Z Par(n−m(3m− 1)/2),
let

γn(λ) =

{
ψ−3m−1(λ), if λ1 − λ′1 + 3m ≤ 0

ψ−1
−3m+2(λ), if λ1 − λ′1 + 3m ≥ 0.

This proof appears in D. M. Bressoud and D. Zeilberger, Amer. Math. Monthly 92
(1985), 54–55. Our presentation follows Pak [1.62, §5.4.1].

78. (a) Some related results are due to Euler and recounted in [1.55, §303].

(b) This problem was suggested by Dale Worley. For each 1 ≤ i ≤ n, each partition
λ of n − i, and each divisor d of i, we wish to associate a d-element multiset M
of partitions of n so that every partition of n occurs exactly n times. Given i, λ,
and d, simply associate d copies of the partition obtained by adjoining i/d d’s to
λ.

79. (a) See [1.2, Cor. 8.6].

(b) Clearly pS(n) = 1 for all n, so the statement qS(n) = 1 is just the uniqueness of
the binary expansion of n.

80. For each partition λ of n and each part j of λ occurring at least k times, we need to
associate a partition µ of n such that the total number of times a given µ occurs is the
same as the number fk(µ) of parts of µ that are equal to k. To do this, simply change
k of the j’s in λ to j k’s. For example, n = 6, k = 2:

λ j µ
1 1 1 1 1 1 1 2 1 1 1 1
2 1 1 1 1 1 2 2 1 1
3 1 1 1 1 3 2 1
4 1 1 1 4 2
2 2 1 1 2 2 2 1 1
2 2 1 1 1 2 2 2
2 2 2 2 2 2 2
3 3 3 2 2 2.

This result was discovered by R. Stanley in 1972 and submitted to the Problems and
Solutions section of Amer. Math. Monthly. It was rejected with the comment “A bit
on the easy side, and using only a standard argument.” Daniel I. A. Cohen learned
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of this result and included the case k = 1 as Problem 75 of Chapter 3 in his book
Basic Techniques of Combinatorial Theory, Wiley, New York, 1978. For this reason
the case k = 1 is sometimes called “Stanley’s theorem.” The generalization from
k = 1 to arbitrary k was independently found by Paul Elder in 1984, as reported by
R. Honsberger, Mathematical Gems III, Mathematical Association of America, 1985
(page 8). For this reason the general case is sometimes called “Elder’s theorem.” An
independent proof of the general case was given by M. S. Kirdar and T. H. R. Skyrme,
Canad. J. Math. 34 (1982), 194–195, based on generating functions. The bijection
given here also appears in A. H. M. Hoare, Amer. Math. Monthly 93 (1986), 475–476.
Another proof appears in L. Solomon, Istituto Nazionale di Alta Matematica, Symposia
Matematica, vol. 13 (1974), 453–466 (lemma on p. 461).

81. Given an ordered factorization n+1 = a1a2 · · ·ak, set a0 = 1 and let λ be the partition
for which the part a0a1 · · ·aj−1 occurs with multiplicity aj−1, 1 ≤ j ≤ k. For instance,
if 24 = 3 · 2 · 4 then we obtain the partition 666311 of 23. This procedure sets up a
bijection with perfect partitions of n, due to P. A. MacMahon, Messenger Math. 20
(1891), 103–119; reprinted in [1.3, pp. 771–787]. Note that if we have a perfect partition
λ of n with largest part m, then there are exactly two ways to add a part p to λ to
obtain another perfect partition, viz., p = m or p = n+ 1.

82. This result is due to S. Ramanujan in 1919, who obtained the remarkable identity

∑

n≥0

p(5n+ 4)xn = 5

∏
k≥1(1− x5k)5

∏
k≥1(1− xk)6

.

F. J. Dyson conjectured in 1944 that for each 0 ≤ i ≤ 4, exactly p(5n+4)/5 partitions
λ of 5n + 4 satisfy λ1 − λ′1 ≡ i (mod 5). This conjecture was proved by A. O. L.
Atkin and H. P. F. Swinnerton-Dyer in 1953. Many generalizations of these results are
known. For an introduction to the subject of partition congruences, see Andrews [1.2,
Ch. 10]. For more recent work in this area, see K. Mahlburg, Proc. National Acad. Sci.
102 (2005), 15373–15376.

83. Some hints. Let A be the set of all partitions λ such that λ2i−1− λ2i ≤ 1 for all i, and
let B be the set of all partitions λ such that λ′ has only odd parts, each of which is
repeated an even number of times. Verify the following statements.

• There is bijection A× B → Par satisfying w(µ)w(ν) = w(λ) if (µ, ν) 7→ λ.

• We have ∑

λ∈B
w(λ) =

∏

j≥1

1

1− ajbjcj−1dj−1
.

• Let λ ∈ A. Then the pairs (λ2i−1, λ2i) fall into two classes: (a, a) (which can occur
any number of times), and (a+1, a) (which can occur at most once). Deduce that

∑

λ∈A
w(λ) =

∏

j≥1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbjcj−1dj−1)
.
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This elegant bijective proof is due to C. Boulet, Ramanujan J. 3 (2006), 315–320,
simplifying and generalizing previous work of G. E. Andrews, A. V. Sills, R. P. Stanley,
and A. J. Yee.

88. (a) These are the famous Rogers-Ramanujan identities, first proved by L. J. Rogers,
Proc. London Math. Soc. 25 (1894), 318–343, and later rediscovered by I. Schur,
Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse (1917), 302–321, S. Ra-
manujan (sometime before 1913, without proof), and others. For a non-combina-
torial proof, see e.g. [1.2, §7.3]. For an exposition and discussion of bijective
proofs, see Pak [1.62, §7 and pp. 62–63]. For an interesting recent bijective proof,
see C. Boulet and I. Pak, J. Combinatorial Theory, Ser. A 113 (2006), 1019–
1030. None of the known bijective proofs of the Rogers-Ramanujan identities can
be considered “simple,” comparable to the proof we have given of the pentagonal
number formula (Proposition 1.8.7). An interesting reason for the impossibility of
a nice proof was given by I. Pak, The nature of partition bijections II. Asymptotic
stability, preprint.

(b) These combinatorial interpretations of the Rogers-Ramanujan identities are due
to P. A. MacMahon, [1.55, §§276–280]. They can be proved similarly to the proof
of Proposition 1.8.6, based on the observation that (λ1, λ2, . . . , λk) is a partition
of n with at most k parts if and only if (λ1 + 2k − 1, λ2 + 2k − 3, . . . , λk + 1) is
a partition of n+ k2 whose parts differ by at least two and with exactly k parts,
and similarly for (λ1 + 2k, λ2 + 2k − 2, . . . , λk + 2).

86. This is Schur’s partition theorem. See G. E. Andrews, in q-Series: Their Development
and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer
Algebra, American Mathematical Society, Providence, RI, 1986, pp. 53–58. For a
bijective proof, see D. M. Bressoud, Proc. Amer. Math. Soc. 79 (1980), 338–340. It is
surprising that Schur’s partition theorem is easier to prove bijectively than the Rogers-
Ramanujan identities (Exercise 1.88).

89. Let µ = (µ1, . . . , µk) be a partition of n into k odd parts less than 2k. We begin with
the lecture hall partition λ0 = (0, . . . , 0) of length k and successively insert the parts
µ1, µ2, . . . , µk to build up a sequence of lecture hall partitions λ1, λ2, . . . , λk = λ. The
rule for inserting µi := 2νi − 1 into λi−1 is the following. Add 1 to the parts of λi−1

(allowing 0 as a part), beginning with the largest, until either (i) we have added 1 to
µi parts of λi−1, or (ii) we encounter a value λi−1

2c−1 for which

λi−1
2c−1

n− 2c+ 2
=

λi−1
2c

n− 2c+ 1
.

In this case we add νi − c+ 1 to λi−1
2c−1 and νi − c to λi−1

2c . It can then be checked that
the map µ 7→ λ gives the desired bijection.

Example. Let k = 5 and µ = (7, 5, 5, 3, 1). We have
λ0
1

5
=

λ0
2

4
= 0. Hence λ1 =

(4, 3, 0, 0, 0). We now have
λ1
1

5
6= λ1

2

4
, but

λ1
3

3
=

λ1
4

2
= 0. Hence λ2 = (5, 4, 2, 1, 0).

Continuing in this way we get λ3 = (8, 6, 2, 1, 0), λ4 = (9, 7, 3, 1, 0), and λ = λ5 =
(10, 7, 3, 1, 0).
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Lecture hall partitions were introduced by M. Bousquet-Mélou and K. Eriksson, Ra-
manujan J. 1 (1997), 101–111, 165–185. They proved the result of this exercise as
well as many generalizations and refinements. In our sketch above we have followed
A. J. Yee, Ramanujan J. 5 (2001), 247–262. Her bijection is a simplified description
of the bijection of Bousquet-Mélou and Eriksson. Much further work has been done in
this area; see e.g. S. Corteel and C. D. Savage, J. Combinatorial Theory, Ser. A 108
(2004), 217–245, for further information and references.

90. This curious result is connected with the theory of lecture hall partitions (Exer-
cise 1.89). It was originally proved by M. Bousquet-Mélou and K. Eriksson, Ramanujan
J. 1 (1997), 165–185 (end of Section 4). For a nice bijective proof of this result and
related results, see C. D. Savage and A. J. Yee, J. Combinatorial Theory, Ser. A 115
(2008), 967–996.

91. (a) This famous result is the Jacobi triple product identity. It was first stated by C.
F. Gauss (unpublished). The first published proof is due to C. G. J. Jacobi, Fun-
damenta nova theoriae functionum ellipticarum, Regiomonti, fratrum Bornträger,
1829; reprinted in Gesammelte Werke, vol. 1, Reimer, Berlin, 1881, pp. 49–239.
For a summary of its bijective proofs, see Pak [1.62, §6 and pp. 60–62].

(b) Substitute q3/2 for q and −q1/2 for x, and simplify.

(c) For the first, set x = −1 and use equation (1.81). For the second, substitute
q1/2 for both x and q. The right-hand side then has a factor equal to 2. Divide
both sides by 2 and again use equation (1.81). These identities are due to Gauss,
Zur Theorie der neuen Transscendenten II, Werke, Band III, Göttingen, 1866,
pp. 436–445 (§4). For a cancellation proof, see Exercise 2.31. For another proof
of equation (1.132) based on counting partitions of n with empty 2-core, see
Exercise 7.59(g).

(d) After making the suggested substitution we obtain

∑

n∈Z

(−1)nxnq(
n
2) =

∏

k≥1

(1− qk)(1− xqk−1)(1− x−1qk).

Rewrite the left-hand side as

1 +
∑

n≥1

(−1)n(x−n + xn)q(
n
2).

Now divide both sides by 1 − x and let x → 1. The left-hand side becomes∑
n≥0(−1)n(2n + 1)q(

n
2). The right-hand side has a factor equal to 1 − x, so

deleting this factor and then setting x = 1 gives

(1− q)2
∏

k≥2

(1− qk−1)(1− qk)2 =
∏

k≥1

(1− qk)3,

and the proof follows. This identity is due to C. G. J. Jacobi, Fundamenta Nova
Theoriae Functionum Ellipticarum, Regiomonti, Sumtibus fratrum Borntraeger,
Königsberg, Germany, 1829 (page 90).
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92. This identity is due to G. E. Andrews, Amer. Math. Monthly 94 (1987), 437–439. A
simple proof based on the Jacobi triple product identity (Exercise 1.91) is due to F.
G. Garvan, in Number Theory for the Millenium, II (Urbana, IL, 2000), A K Peters,
Natick, MA, 2002, pp. 75–92 (§1). This paper contains many further similar identities.
For a continuation, see F. G. Garvan and H. Yesilyurt, Int. J. Number Theory 3 (2007),
1–42. No bijective proofs are known of any of these identities.

93. This identity is due to F. G. Garvan, op. cit. This paper and the continuation by
Garvan and Yesilyurt, op. cit., contain many similar identities. No bijective proofs are
known of any of them.

94. The sequence a1, a2, . . . (sometimes prepended with a0 = 0) is called Stern’s diatomic
sequence, after the paper M. A. Stern, J. Reine angew. Math. 55 (1858), 193–220. For
a survey of its remarkable properties, see S. Northshield, Amer. Math. Monthly 117
(2010), 581–598.

95. This remarkable result is due to D. Applegate, O. E. Pol, and N. J. A. Sloane, Con-
gressus Numerantium 206 (2010), 157–191.

96. (a) The function τ(n) is Ramanujan’s tau function. The function

∆(t) = (2π)12
∑

n≥1

τ(n)e2πit

plays an important role in the theory of modular forms; see e.g. T. Apostol, Modu-
lar Forms and Dirichlet Series in Number Theory 2nd, ed., Springer-Verlag, New
York, 1997 (p. 20) or J.-P. Serre, A Course in Arithmetic, Springer-Verlag, New
York, 1973 (§VII.4). The multiplicativity property of this exercise was conjec-
tured by S. Ramanujan, Trans. Cambridge Phil. Soc. 22 (1916), 159–184, and
proved by L. J. Mordell, Proc. Cambridge Phil. Soc. 19 (1917), 117–124.

(b) This result was also conjectured by Ramanujan, op. cit., and proved by Mordell,
op. cit.

(c) This inequality was conjectured by Ramanujan, op. cit., and proved by P. R.
Deligne, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307; 52 (1980),
137–252. Deligne deduced Ramanujan’s conjecture (in a nontrivial way) from his
proof of the Riemann hypothesis for varieties over finite fields (the most difficult
part of the “Weil conjectures”). Deligne in fact proved a conjecture of Petersson
generalizing Ramanujan’s conjecture.

(d) This inequality was conjectured by D. H. Lehmer, Duke Math. J. 14 (1947), 429–
492. It is known to be true for (at least) n < 2.2× 1016.

97. This result follows from the case p = 2 and µ = ∅ of Exercise 7.59(e). Greta Panova
(October 2007) observed that it can also be deduced from Exercise 1.83. Namely, first
prove by induction that the Ferrers diagram of λ can be covered by edges if and only
if the Young diagram of λ has the same number of white squares as black squares in
the usual chessboard coloring. Thus f(n) is the coefficient of qn in the right-hand side
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of equation (1.130) after substituting a = d = q/y and b = c = y. Apply the Jacobi
triple product identity (Exercise 1.91) to the numerator and then set y = 0 to get∑

n≥0 f(n)qn = 1/
∏

j≥1(1− qj)2.

98. Substitute na for j, −x for x, and ζ for q in the q-binomial theorem (equation (1.87)).
The proof follows straightforwardly from the identity

na−1∏

m=0

(1− ζmx) = (1− xn)a.

For a host of generalizations, see V. Reiner, D. Stanton, and D. White, J. Combinatorial
Theory, Ser. A 108 (2004), 17–50.

99. It is an immediate consequence of the identity f(q) = qk(n−k)f(1/q) that

f ′(1) =
1

2
k(n− k)f(1) =

1

2
k(n− k)

(
n

k

)
.

100. The Chu-Vandermonde identity follows from (1 + x)a+b = (1 + x)a(1 + x)b. Write
fn(x) = (1+x)(1+ qx) · · · (1+ qn−1x). The q-analogue of (1+x)a+b = (1+x)a(1+x)b

is fa+b(x) = fb(x)fa(q
bx). By the q-binomial theorem (equation (1.87)) we get

a+b∑

n=0

q(
n
2)
(

a + b

n

)
xn =

(
b∑

k=0

q(
k
2)
(

b

k

)
xk

)(
a∑

k=0

qbk+(k
2)
(

a

k

)
xk

)
.

Equating coefficients of xn yields

q(
n
2)
(

a + b

n

)
=

n∑

k=0

q(
n−k

2 )+bk+(k
2)
(

b

n − k

)(
a

k

)

⇒
(

a + b

n

)
=

n∑

k=0

qk(k+b−n)

(
a

k

)(
b

n − k

)
.

103. See Lemma 3.1 of K. Liu, C. H. F. Yan, and J. Zhou, Sci. China, Ser. A 45 (2002), 420–
431, for a proof based on the Hilbert scheme of n points in the plane. A combinatorial
proof of a continuous family of results including this exercise appears in N. Loehr and
G. S. Warrington, J. Combinatorial Theory, Ser. A 116 (2009), 379–403.

104. Let f(x) = 1 + x+ · · ·+ x9 and i2 = 1. It is not hard to see that

f(n) =
1

4
(f(1)n + f(i)n + f(−1)n + f(−i)n)

=
1

4
(10n + (1 + i)n + (1− i)n)

=





1
4
(10n + (−1)k22k−1), n = 4k

1
4
(10n + (−1)k22k−1), n = 4k + 1

1
4
10n, n = 4k + 2

1
4
(10n + (−1)k+122k), n = 4k + 3.
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105. (a) Let P (x) = (1 + x)(1 + x2) · · · (1 + xn) =
∑

k≥0 akx
k. Let ζ = e2πi/n (or any

primitive nth root of unity). Since for any integer k,

n∑

j=1

ζkj =

{
n, if n|k
0, otherwise,

we have
1

n

n∑

j=1

P (ζj) =
∑

j

ajn = f(n).

Now if ζj is a primitive dth root of unity (so d = n/(j, n)), then

xd − 1 = (x− ζj)(x− ζ2j) · · · (x− ζdj),

so putting x = −1 yields

(1 + ζj)(1 + ζ2j) · · · (1 + ζdj) =

{
2, d odd
0, d even.

Hence

P (ζj) =

{
2n/d, d odd

0, d even.

Since there are φ(d) values of j ∈ [n] for which ζj is a primitive dth root of unity,
we obtain

f(n) =
1

n

n∑

j=1

P (ζj) =
1

n

∑

d|n
d odd

φ(d)2n/d.

This result appears in R. Stanley and M. F. Yoder, JPL Technical Report 32-1526,
Deep Space Network 14 (1972), 117–123.

(b) Suppose that n is an odd prime. Identify the beads of a necklace with Z/nZ in an
obvious way. Let S ⊆ Z/nZ be the set of black beads. If S 6= ∅ and S 6= Z/nZ,
then there is a unique a ∈ Z/nZ for which

∑

x∈S
(x+ a) = 0.

The set {x + a : x ∈ S} represents the same necklace (up to cyclic symmetry),
so we have associated with each non-monochromatic necklace a subset of Z/nZ
whose elements sum to 0. Associate with the necklaces of all black beads and
all white beads the subsets S = ∅ and and S = Z/nZ, and we have the desired
bijection.

A proof for any odd n avoiding roots of unity and generating functions was given
by Anders Kaseorg (private communication) in 2004, though the proof is not a
direct bijection.

(c) See A. M. Odlyzko and R. Stanley, J. Number Theory 10 (1978), 263–272.
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106. We claim that f(n, k) is just the Stirling number S(n, k) of the second kind. We need
to associate with a sequence a1 · · ·an being counted a partition of [n] into k blocks.
Simply put i and j in the same block when ai = aj . This yields the desired bijection.
The sequences a1 · · ·an are called restricted growth functions or restricted growth strings
(sometimes with 1 subtracted from each term). For further information, see S. Milne,
Advances in Math. 26 (1977), 290–305.

108. (a) Given a partition π of [n− 1], let i, i+ 1, . . . , j for j > i, be a maximal sequence
of two or more consecutive integers contained in a block of π. Remove j − 1,
j−3, j−5, . . . from this sequence and put them in a block with n. Doing this for
every such sequence i, i+ 1, . . . , j yields the desired bijection. See H. Prodinger,
Fibonacci Quart. 19 (1981), 463–465, W. Y. C. Chen, E. Y. P. Deng, and R. R.
X. Du, Europ. J. Combin. 26 (2005), 237–243, and W. Yang, Discrete Math. 156
(1996), 247–252.

Example. If π = 1456-2378, then the bijection gives 146-38-2579.

The above proof easily extends (as done in papers cited above) to show the fol-
lowing result: let 0 ≤ k ≤ n, and let Bk(n) be the number of partitions of [n] so
that if i and j are in a block then |i− j| > k. Then Bk(n) = B(n− k).

109. (a) Given a partition π ∈ Πn, list the blocks in decreasing order of their smallest
element. Then list the elements of each block with the least element first, followed
by the remaining elements in decreasing order, obtaining a permutation w ∈ Sn.
The map π 7→ w is bijection from Πn to the permutations being enumerated. For
instance, if π = 13569−248−7, then w = 728419653. To obtain π from w, break
w before each left-to-right minimum. This result, as well as those in (b) and (c),
is due to A. Claesson, Europ. J. Combinatorics 22 (2001), 961–971.

(b) Now write the blocks in decreasing order of their smallest element, with the ele-
ments of each block written in increasing order.

(c) Let w be the permutation corresponding to π as defined in (a). Then w also
satisfies the condition of (b) if and only if each block of π has size one or two.

110. Answer: the coefficient of xn is B(n− 1), n ≥ 1. See Proposition 2.6 of M. Klazar, J.
Combinatorial Theory, Ser. A 102 (2003), 63–87.

111. The number of ways to partition a k-element subset of [n] into j intervals is
(
k−1
j−1

)(
n−k+j

j

)
,

since we can choose the interval sizes from left-to-right in
(
k−1
j−1

)
ways (the number of

compositions of k into j parts), and then choose the intervals themselves in
(
n−k+j

j

)

ways. Hence by the Principle of Inclusion-Exclusion (Theorem 2.1.1),

f(n) = B(n) +

n∑

k=1

k∑

j=1

B(n− k)(−1)j
(
k − 1

j − 1

)(
n− k + j

j

)
.

Now
k∑

j=1

(−1)j
(
k − 1

j − 1

)(
n− k + j

j

)
= (−1)k

(
n− k + 1

k

)
.
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Hence

f(n) =
n∑

k=0

B(n− k)(−1)k
(
n− k + 1

k

)

=

n∑

k=0

B(k)(−1)n−k
(
k + 1

n− k

)
.

(Is there some way to see this directly from Inclusion-Exclusion?) Now multiply by xn

and sum on n ≥ 0. Since by the binomial theorem

∑

n≥0

(−1)n−k
(
k + 1

n− k

)
xn = xk(1− x)k+1,

we get

F (x) =
∑

k≥0

B(k)xk(1− x)k+1

= (1− x)G(x(1− x)).

115. See D. Chebikin, R. Ehrenborg, P. Pylyavskyy, and M. A. Readdy, J. Combinatorial
Theory, Ser. A 116 (2009), 247–264. The polynomials Qn(t) are introduced in this
paper and are shown to have many cyclotomic factors, but many additional such factors
are not yet understood.

116. (b) See L. A. Shepp and S. P. Lloyd, Trans. Amer. Math. Soc. 121 (1966), 340–357.

117. Answer. pnk = 1/n for 1 ≤ k ≤ n. To see this, consider the permutations v = b1 · · · bn+1

of [n] ∪ {∗} beginning with 1. Put the elements to the left of ∗ in a cycle in the order
they occur. Regard the elements to the right of ∗ as a word which defines a permutation
of its elements (say with respect to the elements listed in increasing order). This defines
a bijection between the permutations v and the permutations w ∈ Sn. The length of
the cycle containing 1 is k if bk+1 = ∗. Since ∗ is equally likely to be any of b2, . . . , bn+1,
the proof follows.

Example. Let v = 1652∗4873. Then w has the cycle (1, 6, 5, 2). The remaining elements
are permuted as 4873 with respect to the increasing order 3478, i.e., w(3) = 4, w(4) = 8,
w(7) = 7, and w(8) = 3. In cycle form, we have w = (1, 6, 5, 2)(3, 4, 8)(7).

118. (b) We compute equivalently the probability that n, n− 1, . . . , n− λ1 + 1 are in the
same cycle C1, and n−λ1, . . . , n−λ1−λ2+1 are in the same cycle C2 different from
C1, etc. Apply the fundamental bijection of Proposition 1.3.1 to w, obtaining a
permutation v = b1 · · · bn. It is easy to check that w has the desired properties
if and only if the restriction u of v to n − k + 1, n − k + 2, . . . , n has n − k + λℓ
appearing first, then the elements n− k+ 1, n− k+ 2, . . . , n− k+ λℓ− 1 in some
order, then n−k+λℓ−1+λℓ, then the elements n−k+λℓ+1, . . . , n−k+λℓ−1+λℓ+1
in some order, then n− k+λℓ−2 +λℓ−1 +λℓ, etc. Hence of the k! permutations of
n−k+1, . . . , n there are (λ1−1)! · · · (λℓ−1)! choices for u, and the proof follows.
For a variant of this problem when the distribution isn’t uniform, see R. X. Du
and R. Stanley, in preparation.
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(c) Let v be as in (b), and let v′ = b2b1b3b4 · · · bn. Exactly one of v and v′ is even.
Moreover, the condition in (b) on the restriction u is unaffected unless b1 =
n− k + λℓ and b2 = n− k + i for some 1 ≤ i ≤ λℓ − 1. In this case v has exactly
ℓ records, so w has exactly ℓ cycles. Hence w is even if and only if n− ℓ is even.
Moreover, the number of choices for u is

(n− 2)!

(k − 2)!
(λ1 − 1)! · · · (λℓ − 1)!,

and the proof follows easily.

119. If a permutation w ∈ S2n has a cycle C of length k > n, then it has exactly one such
cycle. There are

(
2n
k

)
ways to choose the elements of C, then (k − 1)! ways to choose

C, and finally (2n− k)! ways to choose the remainder of w. Hence

Pn = 1− 1

(2n)!

2n∑

k=n+1

(
2n

k

)
(k − 1)!(2n− k)!

= 1−
2n∑

k=n+1

1

k

= 1−
2n∑

k=1

1

k
+

n∑

k=1

1

k

∼ 1− log(2n) + log(n)

= 1− log 2,

and the proof follows. For an amusing application of this result, see P. M. Winkler,
Mathematical Mind-Benders, A K Peters, Wellesley, MA, 2007 (pp. 12, 18–20).

120. First solution. There are
(
n
k

)
(k−1)! k-cycles, and each occurs in (n−k)! permutations

w ∈ Sn. Hence

Ek(n) =
1

n!

(
n

k

)
(k − 1)!(n− k)! =

1

k
.

Second solution. By Exercise 1.117 (for which we gave a simple bijective proof) the
probability that some element i ∈ [n] is in a k-cycle is 1/n. Since there are n elements
and each k-cycle contains k of them, the expected number of k-cycles is (1/n)(n/k) =
1/k.

124. (a) Let w = a1a2 · · ·an+1 ∈ Sn+1 have k inversions, where n ≥ k. There are fk(n)
such w with an+1 = n+ 1. If ai = n+ 1 with i < n + 1, then we can interchange
ai and ai+1 to form a permutation w′ ∈ Sn+1 with k − 1 inversions. Since n ≥ k,
every w′ = b1b2 · · · bn+1 ∈ Sn+1 with k− 1 inversions satisfies b1 6= n+ 1 and thus
can be obtained from a w ∈ Sn+1 with k inversions as above.

(b) Use induction on k.
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(c) By Corollary 1.3.13 we have

∑

k≥0

fk(n)qk = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)

=
(1− q)(1− q2) · · · (1− qn)

(1− q)n

= (1− q)(1− q2) · · · (1− qn)
∑

k≥0

(−n
k

)
(−1)kqk.

Hence if
∏

i≥1(1− qi) =
∑

j≥0 bjq
j , then

fk(n) =
k∑

j=0

(−1)jbk−j , n ≥ k.

Moreover, it follows from the Pentagonal Number Formula (1.88) that

br =

{
(−1)i, if r = i(3i± 1)/2

0, otherwise.

See pp. 15–16 of D. E. Knuth [1.48].

127. (a) We can reason analogously to the proofs of Proposition 1.3.12 and Corollary 1.3.13.
Given w = w1w2 · · ·wn ∈ Sn and 1 ≤ i ≤ n, define

ri = #{j : j < i, wj > wi}

and code′(w) = (r1, . . . , rn). For instance, code′(3265174) = (0, 1, 0, 1, 4, 0, 3).
Note that code′(w) is just a variant of code(w) and gives a bijection from Sn

to sequences (r1, . . . , rn) satisfying 0 ≤ ri ≤ i − 1. Moreover, inv(w) =
∑
ri,

and wi is a left-to-right maximum if and only if ri = 0. From these observations
equation (1.135) is immediate.

(b) Let I(w) = (a1, . . . , an), the inversion table of w. Then inv(w) =
∑
ai (as noted

in the proof of Corollary 1.3.13), and i is the value of a record if and only if ai = 0.
From these observations equation (1.136) is immediate.

128. (a) First establish the recurrence

n∑

j=1

f(j)(n− j)! = n!, n ≥ 1,

where we set g(0) = 1. Then multiply by xn and sum on n ≥ 0. This result
appears in L. Comtet, Comptes Rend. Acad. Sci. Paris A 275 (1972), 569–572,
and is also considered by Comtet in his book Advanced Combinatorics, Reidel,
Dordrecht/Boston, 1974 (Exercise VII.16). For an extension of this exercise and
further references, see Exercise 2.13.
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(b) (I. M. Gessel) Now we have

n! = g(n) +

n∑

j=1

g(j − 1)(n− j)!, n ≥ 1,

where we set g(0) = 1.

(c) See D. Callan, J. Integer Sequences 7 (2004), article 04.1.8.

(d) See M. H. Albert, M. D. Atkinson, and M. Klazar, J. Integer Sequences 6 (2003),
article 02.4.4. For a survey of simple permutations, see R. Brignall, in Permutation
Patterns (2010) (S. Linton, N. Ruškuc and V. Vatter, eds.), London Mathematical
Society Lecture Note Series, vol. 376, Cambridge University Press, pp. 41–65. For
some analogous results for set partitions, see M. Klazar, J. Combinatorial Theory,
Ser. A 102 2003), 63–87.

129. (b) It is easy to see that if w is an indecomposable permutation in Sn with k in-
versions, then n ≤ k + 1. (Moreover, there are exactly 2k−1 indecomposable
permutations in Sk+1 with k inversions.) Hence gn(q) has smallest term of degree
n− 1, and the proof follows.

(c) Answer: we have the continued fraction

1− 1

F (q, x)
=

a0

1− a1

1− a2

1− · · ·

,

where
an = (q⌊(n+1)/2⌋ + q⌊(n+1)/2⌋+1 + · · ·+ qn)x.

See A. de Medicis and X. G. Viennot, Advances in Appl. Math. 15 (1994), 262–304
(equations (1.24) and (1.25), and Theorem 5.3).

130. This result, stated in a less elegant form, is due to M. Abramson and W. O. J. Moser,
Ann. Math. Statist. 38 (1967), 1245–1254. The solution in the form of equation (1.138)
is due to L. W. Shapiro and A. B. Stephens, SIAM J. Discrete Math. 4 (1991), 275–280.

133. (a) We have 1
2
An(2) =

∑n−1
k=0 A(n, k + 1)2k, where A(n, k + 1) permutations of [n]

have k descents. Thus we need to associate an ordered partition τ of [n] with a
pair (w, S), where w ∈ Sn and S ⊆ D(w). Given w = a1a2 · · ·an, draw a vertical
bar between ai and ai+1 if ai < ai+1 or if ai > ai+1 and i ∈ S. The sets contained
between bars (including the beginning and end) are read from left to right and
define τ .

Example. Let w = 724531968 and S = {1, 5}. Write 7|2|4|53|1|96|8, so τ =
(7, 2, 4, 35, 1, 69, 8).

134. See D. Foata and M.-P. Schützenberger, [1.26, Thm. 5.6]. For a vast generalization
of this kind of formula, see E. Nevo and T. K. Petersen. Discrete Computational
Geometry 45 (2011), 503–521.
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135. (a) Put x = −1 in equation (1.40) and compare with (1.54).

(b) Let n = 2m + 1. Since des(w) = m if w is alternating, it suffices to show
combinatorially that

∑
w(−1)des(w) = 0, where w ranges over all non-alternating

permutations in Sn. For a non-alternating permutation w ∈ Sn let T = T (w) be
the increasing binary tree corresponding to w, as defined in Section 1.5. Since w
is not alternating, it follows from the table preceding Proposition 1.5.3 that T has
a vertex j with only one successor. For definiteness choose the least such vertex
j, and let T ′ be the flip of T at j, as defined in Subsection 1.6.2. Define w′ ∈ Sn

by T (w′) = T ′. Clearly w′′ = w, so we have defined an involution w 7→ w′ on
all non-alternating permutations in Sn. Since n is odd, it again follows from the
table preceding Proposition 1.5.3 that des(w) is the number of vertices of T (w)
with a left successor. Hence (−1)des(w)+(−1)des(w′) = 0, and the proof follows. For
further aspects of this line of reasoning, see D. Foata and M.-P. Schützenberger,
[1.26, Thm. 5.6].

136. Answer: c1 = cn−1 = 1, all other ci = 0.

137. The number of w ∈ Sn of type c is τ(c) = n!/1c1c1! · · ·ncncn!. Let n = a0 + a1ℓ.
It is not hard to see that τ(c) is prime to ℓ if and only if, setting k = cℓ, we have
c1 ≥ (n1−k)ℓ where

(
n1

k

)
is prime to ℓ It follows from Exercise 1.14 that the number of

binomial coefficients
(
n1

k

)
prime to ℓ is

∏
i≥1(ai + 1). Since (c1− (n1− k)ℓ, c2, . . . , cℓ−1)

can be the type of an arbitrary partition of a0, the proof follows.

This result first appeared in I. G. Macdonald, Symmetric Functions and Hall Polyno-
mials, Oxford University Press, 1979; second ed., 1995 (Ex. 10 of Ch. I.2). The proof
given here appears on pp. 260–261 of R. Stanley, Bull. Amer. Math. Soc. 4 (1981),
254–265.

139. Let z =
∑

n≥1 g(n)xn/n!. Then z′ = 1 + 1
2
z2 + 1

4!
z4 + · · · = cosh(z). The solution to

this differential equation satisfying z(0) = 0 is

z(x) = log(sec x+ tanx).

Since z′(x) = sec x, it follows easily that g(2n+ 1) = E2n. For further information and
a bijective proof, see Section 3 of A. G. Kuznetsov, I. M. Pak, and A. E. Postnikov,
[1.51].

140. Hint. Let fk(n) be the number of simsun permutations in Sn with k descents. By
inserting n + 1 into a simsun permutation in Sn, establish the recurrence

fk(n + 1) = (n− 2k + 2)fk−1 + (k + 1)fk(n),

with the initial conditions f0(1) = 1, fk(n) = 0 for k > ⌊n/2⌋. Further details may
be found in S. Sundaram, Advances in Math. 104 (1994), 225–296 (§3) in the context
of symmetric functions. We can also give a bijective proof, as follows. Let E be a
flip equivalence class of binary trees on the vertex set [n + 1]. There are En+1 such
flip equivalence classes. (Proposition 1.6.2) . There is a unique tree T ′ ∈ E such that
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(i) the path from the root 1 to n + 1 moves to the right, (ii) for every vertex not on
this path with two children, the largest child is on the left, and (iii) any vertex with
just one child has this child on the right. Let w′ ∈ Sn+1 satisfy T ′ = T (w′) (as in
Section 1.5). Then w′ ends in n + 1; let w ∈ Sn be w′ with n + 1 removed. It is not
hard to check that the map E 7→ w gives a bijection between flip equivalence classes
and simsun permutations. This proof is due to Maria Monks (October 2007).

Simsun permutations are named after Rodica Simion and Sheila Sundaram. They first
appear in the paper S. Sundaram, ibid. (p. 267). They are variants of the André per-
mutations of Foata and Schützenberger [1.27]. The terminology “simsun permutation”
is due to S. Sundaram (after they were originally called “Sundaram permutations” by
R. Stanley) in J. Algebraic Combin. 4 (1995), 69–92 (p. 75). For some further work
on simsun permutations, see G. Hetyei, Discrete Comput. Geom. 16 (1996), 259–275.

141. (a) Hint. Show that En+1,k is the number of alternating permutations of [n+ 2] with
first term k + 1 and second term unequal to k, and that En,n−k is the number of
alternating permutations of [n+ 2] with first term k + 1 and second term k.

The numbers En,k are called Entringer numbers, after R. C. Entringer, Nieuw.
Arch. Wisk. 14 (1966), 241–246. The triangular array (1.140) is due to L. Seidel,
Sitzungsber. Münch. Akad. 4 (1877), 157–187 (who used the word “boustrophe-
don” to describe the triangle). It was rediscovered by A. Kempner, Tôhoku Math.
J. 37 (1933), 347–362; R. C. Entringer, op. cit.; and V. I. Arnold, Duke Math. J.
63 (1991), 537–555. For further information and references, see J. Millar, N. J.
A. Sloane, and N. E. Young, J. Combinatorial Theory, Ser. A 76 (1996), 44–54.
A more recent reference is R. Ehrenborg and S. Mahajan, Ann. Comb. 2 (1998),
111–129 (§2). The boustrephedon triangle was generalized to permutations with
an arbitrary descent set by Viennot [1.75].

(b) Rotate the triangle and change the sign of Emn when m + n ≡ 1, 2 (mod 4) to
obtain the array

1 0 −1 0 5 0 · · ·
−1 −1 1 5 −5

0 2 4 −10
2 2 −14

0 −16
−16 · · ·

. . . .

This array is just a difference table, as defined in Section 1.9. By (a) the exponen-
tial generating function for the first row is sec(ix) = sech(x). By Exercise 1.154(c)
we get ∑

m≥0

∑

n≥0

(−1)⌊(2m+2n+3)/4⌋Em+n,[m,n]
xm

m!

yn

n!
= e−xsech(x+ y).

If we convert all the negative coefficients to positive, it’s not hard to see that the
generating function becomes the right-hand side of equation (1.141), as claimed.
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The transformation into a difference table that we have used here appears in
Seidel, op. cit., and is treated systematically by D. Dumont, Sém. Lotharingien
de Combinatoire 5 (1981), B05c (electronic). Equation (1.141) appears explicitly
in R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, second
ed., Addison-Wesley, Reading, MA, 1994 (Exercise 6.75).

142. It is easy to verify that
∑

n≥0

fn(a)x
n = (sec x)(cos(a− 1)x+ sin ax),

and the proof follows. The motivation for this problem comes from the fact that for
0 ≤ a ≤ 1, fn(a) is the volume of the convex polytope in Rn given by

xi ≥ 0 (1 ≤ i ≤ n), x1 ≤ a, xi + xi+1 ≤ 1 (1 ≤ i ≤ n− 1).

For further information on the case a = 1, see Exercise 4.56(c).

143. (a) Combinatorial proof. Let 1 ≤ i ≤ n. The number of permutations w ∈ Sn fixing i
is (n−1)!. Hence the total number of fixed points of all w ∈ Sn is n ·(n−1)! = n!.

Generating function proof. We have

f(n) :=
∑

w∈Sn

fix(w) = n!
d

dt1
Zn|ti=1,

where Zn is defined by (1.25). Hence by Theorem 1.3.3 we get

∑

n≥0

f(n)
xn

n!
=

d

dt1
exp

(
t1x+ t2

x2

2
+ t3

x3

3
+ · · ·

)∣∣∣∣
ti=1

= x exp

(
x+

x2

2
+
x3

3
+ · · ·

)

=
x

1− x,

whence f(n) = n!.

Algebraic proof. Let G be a finite group acting a set Y . By Burnside’s lemma
(Lemma 7.24.5), also called the Cauchy-Frobenius lemma, the average number of
fixed points of w ∈ G is the number of orbits of the action. Since the “defining
representation” of Sn on [n] has one orbit, the proof follows.

(b) This result is a straightforward consequence of Proposition 6.1 of R. Stanley, J.
Combinatorial Theory, Ser. A 114 (2007), 436–460. Is there a combinatorial
proof?

144. (a) It is in fact not hard to see that

2qn
∏n

j=1(1− q2j−1)
∏2n+1

j=1 (1 + qj)
=

2(2n− 1)!!

3n
xn +O(xn+1),

where (2n− 1)!! = 1 · 3 · 5 · · · (2n− 1).
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Kh5 Pe3 Nxh6 Pc4 Pb3

Bf8Pg5Bg6Qh4

Figure 1.35: The solution poset for Exercise 1.145

(b) See page 450 of R. Stanley, J. Combinatorial Theory, Ser. A 114 (2007), 436–460.

145. One solution is 1.Kh5 2.Pe3 3.Nxh6 4.Pc4 5.Pb3 6.Qh4 7.Bg6 8.Rg5 9.Bf8, followed
by Nf6 mate. Label these nine Black moves as 1,3,5,7,9,2,4,6,8 in the order given. All
solutions are a permutation of the nine moves above. If a1, a2, . . . , a9 is a permutation
w of the labels of the moves, then they correspond to a solution if and only w−1

is reverse alternating. (In other words, Qh4 must occur after both Kh5 and Pe3,
Bg6 must occur after both Pe3 and Nxh6, etc.). In the terminology of Chapter 3, the
solutions correspond to the linear extensions of the “zigzag poset” shown in Figure 1.35.
Hence the number of solutions is E9 = 7936. For some properties of zigzag posets, see
Exercise 3.66.

146. The proof is a straightforward generalization of the proof we indicated of equation (1.59).
For a q-analogue, see Proposition 3.3.19.4 and the discussion following it.

147. A binary tree is an unlabelled min-max tree if and only if every non-endpoint vertex
has a nonempty left subtree. Let fn be the number of such trees on n vertices. Then

fn+1 =

n∑

k=1

fkfn−k, n ≥ 1.

Setting y =
∑

n≥0 fnx
n we obtain

y − 1− x
x

= y2 − y.

It follows that

y =
1 + x−

√
1− 2x− 3x2

2x
.

Comparing with the definition of Mn in Exercise 6.27 shows that fn = Mn−1, n ≥ 1.

148. It is easy to see from equations (1.33) and (1.63) that

Ψn(a+ b, a) =
∑

S⊆[n−1]

α(S)uS.

The proof follows from the formula Ψ(a, b) = Φ(a+ b, ab+ ba) (Theorem 1.6.3).
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149. Hint. First establish the recurrence

2Φn =
∑

0<i<n
n−i=2j−1

(
n

i

)
Φic(c

2 − 2d)j−1 −
∑

0<i<n
n−i=2j

(
n

i

)
Φi(c

2 − 2d)j

+

{
2(c2 − 2d)k−1, n = 2k − 1

0, n = 2k.

The generating function follows easily from multiplying this recurrence by xn/n! and
summing on n ≥ 1.

This result is due to R. Stanley, Math. Z. 216 (1994), 483–499 (Corollary 1.4).

151. This elegant result is due to R. Ehrenborg, private communication (2007), based on the
Pyr operator of R. Ehrenborg and M. Readdy, J. Algebraic Combin. 8 (1998), 273–299.
Using concepts from Chapter 3, the present exercise has the following interpretation.
Let P be the poset whose elements are all cd-monomials. Define α to cover β in P if
β is obtained from α by removing a c or changing a d to c. Then [µ]Φn(c, d) is equal
to the number of maximal chains of the interval [1, µ]. The problem of counting such
chains was considered by F. Bergeron, M. Bousquet-Mélou, and S. Dulucq, Ann. Sci.
Math. Québec 19 (1995), 139–151. They showed that the total number of saturated
chains from 1 to rank n is En+1 (the sum of the coefficients of Φn+1), though they did
not interpret the number of maximal chains in each interval. Further properties of the
poset P (and some generalizations) were given by B. Sagan and V. Vatter, J. Algebraic
Combin. 24 (2006), 117–136.

152. An analogous result where simsum permutations are replaced by “André permutations”
was earlier proved by M. Purtill [1.65]. The result for simsun permutations was stated
without proof by R. Stanley, Math. Zeitschrift, 216 (1994), 483–499 (p. 498), saying
that it can be proved by “similar reasoning” to Purtill’s. This assertion was further
explicated by G. Hetyei, Discrete Comput. Geom. 16 (1996), 259–275 (Remark on
p. 270).

153. (a) First solution. Put c = 0 and d = 1 in equation (1.142) (so a − b =
√
−2) and

simplify. We obtain

∑

n≥0

f(n)
x2n+1

(2n+ 1)!
=
√

2 tan(x/
√

2).

The proof follows from Proposition 1.6.1.

Second solution. By equations (1.62) and (1.64) we have that 2nf(n) is the number
of complete (i.e., every internal vertex has two children) min-max trees with n
internal vertices. A complete min-max tree with n+1 internal vertices is obtained
by placing either 1 or 2n+3 at the root, forming a left complete min-max subtree
whose vertices are 2k + 1 elements from {2, 3, . . . , 2n + 2} (0 ≤ k ≤ n), and
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forming a right complete min-max subtree with the remaining elements. Hence
setting g(n) = 2nf(n) we obtain the recurrence

g(n+ 1) = 2

n∑

k=0

(
2n+ 1

2k + 1

)
g(k)g(n− k).

It is then straightforward to show that g(n) = E2n+1. The result of this exercise
was first proved by Foata and Schützenberger [1.27, Propriété 2.6] in the context
of André polynomials.

R. Ehrenborg (private communication, 2007) points out that there is a similar
formula for the coefficient of any monomial in Φn not containing two consecutive
c’s.

(b) See R. L. Graham and N. Zang, Enumerating split-pair arrangements, preprint
dated January 10, 2007. For some further combinatorial interpretations of Fn, see
C. Poupard, European J. Combinatorics 10 (1989), 369–374; A. G. Kuznetsov,
I. M. Pak and A. E. Postnikov, Uspekhi Mat. Nauk 49 (1994), 79–110; and M.
P. Develin and S. P. Sullivant, Ann. Combinatorics 7 (2003), 441–466 (Corol-
lary 5.7).

154. (a) Use equation (1.98).

(b) By (a), e−xF ′(x) = F (x), from which F (x) = ee
x−1, so f(n) is the Bell number

B(n). The difference table in question looks like

1 2 5 15 52 203 · · ·
1 3 10 37 151 · · ·

2 7 27 114 · · ·
5 20 87 · · ·

15 67 · · ·
52 · · ·

. . . .

Note that the first row is identical to the leftmost diagonal below the first row.
This “Bell number triangle” is due to C. S. Peirce, Amer. J. Math. 3 (1880), 15–57
(p. 48). It gained some popularity by appearing in the “Mathematical Games”
column of M. Gardner [1.33, Fig. 13]. D. E. Knuth uses it to develop properties of
Bell numbers in The Art of Computer Programming, vol. 4, Fascicle 3, Addison-
Wesley, Upper Saddle River, NJ, 2005 (Section 7.2.1.5) and gives some further
properties in Exercises 7.2.1.5–26 to 7.2.1.5–31.

(c) By Taylor’s theorem and (a) we have

∑

n≥0

∑

k≥0

∆nf(k)
xn

n!

tk

k!
= e−x

(
F (x) + F ′(x)t+ F ′′(x)

t2

2!
+ · · ·

)

= e−xF (x+ t).

This result appears in D. Dumont and X. G. Viennot, Ann. Discrete Math. 6
(1980), 77–87, but is undoubtedly much older.
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155. (a) For further information related to this problem and Exercise 1.154(a), see D.
Dumont, in Séminaire Lotharingien de Combinatoire, 5ème Session, Institut de
Recherche Mathématique Avancée, Strasbourg, 1982, pp. 59–78.

(b) One computes f(0) = 1, f(1) = 2, f(2) = 6, f(3) = 20, . . . . Hence guess
f(n) =

(
2n
n

)
and F (x) :=

∑
f(n)xn = (1− 4x)−1/2. By (a) we then have G(x) :=∑

g(n)xn = 1
1+x

F
(

x
1+x

)
= (1−2x−3x2)−1/2. To verify the guess, one must check

that 1
1+x

G
(

x
1+x

)
= F (x2), which is routine.

(c) (suggested by L. W. Shapiro) One computes f(0) = 1, f(1) = 1, f(2) = 2,
f(3) = 5 f(4) = 14, . . . . Hence guess f(n) = 1

n+1

(
2n
n

)
(the Catalan number Cn)

and F (x) :=
∑
f(n)xn = 1

2x
(1− (1− 4x)1/2). Then

F1(x) :=
∑

f(n+ 1)xn =
1

x
(F (x)− 1) =

1

2x2
(1− 2x− (1− 4x)1/2),

so by (a),

G(x) :=
∑

g(n)xn =
1

1 + x
F1

(
1

1 + x

)
=

1

2x2
(1− x− (1− 2x− 3x2)−1/2).

To verify this guess, one must check that 1
1+x

G
(

1
1+x

)
= F (x2), which is routine.

156. Answer: cn =
∏

p p
⌊n/p⌋, where p ranges over all primes. Thus c0 = 1, c1 = 1, c2 = 2,

c3 = 6, c4 = 12, c5 = 60, c6 = 360, and so on. See E. G. Strauss, Proc. Amer. Math.
Soc. 2 (1951), 24–27. The sequence cn can also be defined by the recurrence c0 = 1
and cn+1 = sn+1cn, where sn+1 is the largest squarefree divisor of n+ 1.

157. Let z = yλ, and equate coefficients of xn−1 on both sides of (λ + 1)y′z = (yz)′. This
result goes back to Euler and is discussed (with many similar methods for manipulating
power series) in D. E. Knuth, The Art of Computer Programming, vol. 2, third ed.,
Addison-Wesley, Upper Saddle River, NJ, 1997 (Section 4.7). It was rediscovered by
H. W. Gould, Amer. Math. Monthly 81 (1974), 3–14.

158. Let logF (x) =
∑

n≥1 gnx
n. Then

∑

n≥1

gnx
n =

∑

i≥1

∑

j≥1

aix
ij

j
=
∑

n≥1

xn

n

∑

d|n
dad.

Hence
ngn =

∑

d|n
dad,

so by the Möbius inversion formula of elementary number theory,

an =
1

n

∑

d|n
dgdµ(n/d). (1.156)

We have 1 + x = (1− x)−1(1− x2) (no need to use (1.156)).

If F (x) = ex/(1−x) then gn = 1 for all n, so by (1.156) we have an = φ(n)/n, where
φ(n) is Euler’s totient function.
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159. Answer: A(x) =
√
F (x)F (−x), B(x) =

√
F (x)/F (−x). This result is due to Marcelo

Aguiar (private communication, 2006) as part of his theory of combinatorial Hopf
algebras and noncommutative diagonalization.

160. (a) This formula is a standard result of hoary provenance which follows readily from

k−1∑

r=0

ζrj =

{
0, 0 < j < k
k, j = 0.

(b) Let ζ = e2πi/k. According to (a) and Proposition 1.4.6 we have

f(n, k, j) =
1

k

k−1∑

r=0

ζ−jr(n)!
∣∣
q=ζr . (1.157)

If n ≥ k then at least one factor 1 + q+ · · ·+ qm of (n)! will vanish at q = ζr for
1 ≤ r ≤ k− 1. Thus the only surviving term of the sum is (n)!|q=1 = n!, and the
proof follows.

(c) When n = k− 1, we have (n)!|q=ζr = 0 unless r = 0 or ζr is a primitive kth root
of unity. In the former case we get the term (k − 1)!/k. In the latter case write
ξ = ζr. Then

(k − 1)!|q=ξ =
(1− ξ)(1− ξ2) · · · (1− ξk−1)

(1− ξ)k−1
. (1.158)

Now
k−1∏

j=1

(q − ξj) =
qk − 1

q − 1
,

Letting q → 1 gives
∏k−1

j=1(1− ξj) = k. Hence from equation (1.158) we have

(k − 1)!|q=ξ =
k

(1− ξ)k−1
,

and the proof follows from setting n = k − 1 and j = 0 in equation (1.157).

Note. Let Φn(x) denote the (monic) nth cyclotomic polynomial, i.e., its zeros
are the primitive nth roots of unity. It can be shown that if n ≥ 2 then

f(n− 1, n, 0) =
(n− 1)!

n
+ (−1)n(n− 1)[xn−1] log

Φn(1 + x)

Φn(1)
.

Let us also note that Φn(1) = p if n is the power of a prime p; otherwise Φn(1) = 1.

161. (b) We have
H(x)

H(x) +H(−x) =
G(x)

2
.
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Hence

H(−x)
H(x)

=
2

G(x)
− 1

⇒ logH(−x)− logH(x) = log

(
2

G(x)
− 1

)
.

If we divide the left-hand side by −2 then we obtain the odd part of logH(x).
Hence

logH(x) = −1

2
log

(
2

G(x)
− 1

)
+ E1(x),

where E1(x) is any even power series in x with E1(0) = 0. Thus E(x) := eE1(x)

is an arbitrary even power series with E(0) = 1. Therefore we get the general
solution

H(x) =

(
2

G(x)
− 1

)−1/2

E(x).

162. Using the formulas

tan(x+ y) =
tanx+ tan y

1− (tan x)(tan y)
,

tan x/2 =
±
√

1 + tan2 x− 1

tanx
,

we have tan(tan−1 f(x) + tan−1 f(−x)) = g(x)

⇒ tan−1 f(x) =
1

2
tan−1 g(x) + k(x), k(x) = −k(−x)

⇒ f(x) = tan

(
1

2
tan−1 g(x) + k(x)

)

=
tan 1

2
tan−1 g(x) + tan k(x)

1− (tan 1
2
tan−1 g(x)) tan k(x)

=

√
1+g(x)2−1

g(x)
+ h(x)

1−
√

1+g(x)2−1

g(x)
h(x)

, h(x) = −h(−x)

Choosing the correct sign gives

f(x) =
−
√

1 + g(x)2 − 1 + g(x)h(x)

g(x)− (
√

1 + g(x)2 − 1)h(x)
,

where h(x) is any even power series.

163. (a) We have F (x, y) = f(f 〈−1〉(x)+f 〈−1〉(y)). The concept of a formal group law goes
back to S. Bocher, Ann. Math. 47 (1946), 192–201.
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(b) See for instance A. Fröhlich, Lecture Notes in Math., no. 74, Springer-Verlag,
Berlin/New York, 1968. For a combinatorial approach to formal groups via Hopf
algebras, see C. Lenart, Ph.D. thesis, University of Manchester, 1996, and C.
Lenart and N. Ray, Some applications of incidence Hopf algebras to formal group
theory and algebraic topology, preprint, University of Manchester, 1995.

(c) f(x) = x, ex − 1, tanx, sin x, respectively.

(d) Let R(x) = (xe−x)〈−1〉. Thus

F (x, y) = (R(x) +R(y))e−R(x)−R(y)

= xe−R(y) + ye−R(x).

The proof follows from equation (5.128), which asserts that

e−R(x) = 1−
∑

n≥1

(n− 1)n−1x
n

n!
.

(e) Euler, Institutiones Calculi integralis, Ac. Sc. Petropoli, 1761, showed that

F (x, y) =
x
√

1− y4 + y
√

1− x4

1 + x2y2
.

164. Note that setting x = 0 is useless. Instead write

F (x, y) =
xF (x, 0)− y
xy2 + x− y .

The denominator factors as x(y − θ1(x))(y − θ2(x)), where

θ1(x), θ2(x) =
1∓
√

1− 4x2

2x
.

Now y − θ1(x) ∼ y − x as x, y → 0, so the factor 1/(y − θ1(x)) has no power series
expansion about (0, 0). Since F (x, y) has such an expansion, the factor y− θ1(x) must
appear in the numerator. Hence xF (x, 0) = θ1(x), yielding

F (x, 0) =
1−
√

1− 4x2

2x2
=
∑

n≥0

Cnx
2n

F (x, y) =
2

1− 2xy +
√

1− 4x2
.

The solution to this exercise is a simple example of a technique known as the kernel
method. This method originated in Exercise 2.2.1-.4 of Knuth’s book The Art of
Computer Programming, vol. 1, Addison-Wesley, 1973, third edition, 1997. The present
exercise is the same as Knuth’s (after omitting some preliminary steps). See Section
1 of H. Prodinger, Sém. Lotharingien de Combinatoire 50 (2004), article B50f, for
further information and examples. An interesting variant of the kernel method applied
to queuing theory appears in Chapter 14 of L. Flatto, Poncelet’s Theorem, American
Math. Society, Providence, RI, 2009.
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165. Answer: the coefficient f(n) of F (x) is the number of 1’s in the binary expansion of n.

166. Answer: F (x) = (1 + xn)1/n =
∑

k≥0

(
1/n
k

)
xkn.

167. Equation (1.143) is just the Taylor series expansion of F (x+ t) at t = 0.

168. (a) It is not hard to check that for general A(x) = x+ a2x
2 + a3x

3 + · · · , we have

A(−A(−x)) = x+ p2x
2 + p3x

3 + · · · ,

where p2n−1 and p2n are polynomials in a2, a3, . . . , a2n−1. (It’s easy to see that in
fact p2 = 0.) Moreover, the only term of p2n−1 involving a2n−1 is 2a2n−1. Hence
if A(−A(−x)) = x then once a2, a3, . . . , a2n−2 are specified, we have that a2n−1

is uniquely determined. Thus we need to show that if a2, a4, ..., a2n−2 are speci-
fied, thereby determining a3, a5, . . . , a2n−1, then p2n = 0. For instance, equating
coefficients of x3 in A(−A(−x)) = x gives a3 = a2

2. Then

p4 = a3
2 − a2a3 = a3

2 − a2(a
2
2) = 0.

We can reformulate the result we need to prove more algebraically. Given A(x) =
x+ a2x

2 + · · · , let B(x) = A(−A(−x)) = x+ p2x
2 + · · · . Then we need to show

that p2n ∈ I := 〈p2, . . . , p2n−1〉, the ideal of the polynomial ring K[a2, a3, . . . ]
generated by p1, . . . , p2n−1.

Let A〈−1〉(x) = x+ α2x
2 + α3x

3 + · · · . Then

A(−x) = B(−A〈−1〉(x)) = A〈−1〉(x) + p2A
〈−1〉(x)2 − · · · .

Taking the coefficient of x2n gives

a2n ≡ −α2n + p2n (mod I). (1.159)

But also

−A(−x) = A〈−1〉(B(x))

= B(x) + α2B(x)2 + · · · .

Taking coefficients of x2n yields

−a2n ≡ p2n + [x2n]

2n∑

i=2

αi(x+ p2nx
2n)i (mod I)

≡ p2n + α2n (mod I). (1.160)

Equations (1.159) and (1.160) imply p2n ∈ I, as desired. This proof was obtained
in collaboration with Whan Ghang.

Note. It was shown by Ghang that a2n+1 is a polynomial in a2, a4, . . . , a2n with
integer coefficients.

207



Note. An equivalent reformulation of the result of this item is the following. For
any A(x) = x + a2x

2 + · · · ∈ K[[x]], either A(−A(−x)) = x or A(−A(−x)) − x
has odd degree. This result can be considerably generalized. For instance, if
C(x) = −x+ c2x

2 + · · · and C(C(x)) = x, then (writing composition of functions
as juxtaposition) either ACAC(x) = x or ACAC(x) − x has odd degree. More
generally, if ζ is a primitive kth root of unity and C(x) = ζx+ c2x

2 + · · · , where
Ck = x, then either (AC)k(x) = x or (AC)k(x) − x has degree d ≡ 1 (mod k).
The possibility of such a generalization was suggested by F. Bergeron (private
communication, 2007).

(d) Use induction on n.

(f) Marcelo Aguiar (private communication, 2006) first obtained this result as part of
his theory of combinatorial Hopf algebras and noncommutative diagonalization.

(g) Answer: A(x) = 2x/(2−x) and D(x) = log 2+x
2−x . This example is due to Aguiar.

(i) First show the following.

•
∑

n≥1

an

(
x

1− x

)n
=
∑

n≥bn
xn ⇐⇒ ex

∑

j≥0

aj+1
xj

j!
=
∑

j≥0

bj+1
xj

j!
.

(See Exercises 154(a) and 155(a).)

• For any F (x) = x+
∑

n≥2 anx
n and H(x) = x+

∑
n≥2 bnx

n, we have

F 〈−1〉(−F (−x)) = H〈−1〉(−H(−x))
if and only if F (x)/H(x) is odd.

(j) Answer. b2n = (−1)n−1E2n−1, where E2n−1 is an Euler number.

169. There are many possible methods. A uniform way to do all three parts is to note that
for any power series F (x) =

∑
n≥ anx

n, we have

xDF (x) =
∑

n≥0

nanx
n,

where D = d
dx

. Hence

(xD + 2)2F (x) =
∑

n≥0

(n+ 2)2anx
n.

Letting F (x) = 1/(1 − x), ex, and 1/
√

1− 4x yields after some routine computation
the three answers

∑

n≥0

(n+ 2)2xn =
4− 3x+ x2

(1− x)3

∑

n≥0

(n+ 2)2x
n

n!
= (x2 + 5x+ 4)ex

∑

n≥0

(n+ 2)2

(
2n

n

)
xn =

4− 22x+ 36x2

(1− 4x)3/2
.
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170. (a) Answer: y = (α+(β−α)x)/(1−x−x2). The general theory of linear recurrence
relations with constant coefficients is developed in Sections 4.1–4.4.

(b) The recurrence yields y′ = (xy)′ − 1
2
xy2, y(0) = 1, from which we obtain

y =
exp

(
x
2

+ x2

4

)

√
1− x .

For the significance of this generating function, see Example 5.2.9.

(c) We obtain 2y′ = y2, y(0) = 1, whence y = 1/(1− 1
2
x). Thus an = 2−nn!.

(d) (sketch) Let Fk(x) =
∑

n≥0 ak(n)xn/n!, so A(x, t) =
∑

k≥0 Fk(x)t
k. The recur-

rence for ak(n) gives

F ′
k(x) =

∑

2r+s=k−1

(F2r(x) + F2r+1(x))Fs(x). (1.161)

Let Ae(x) = 1
2
(A(x, t) + A(x,−t)) and Ao(x, t) = 1

2
(A(x, t) − A(x,−t)). From

equation (1.161) and some manipulations we obtain the system of differential
equations

∂Ae
∂x

= tAeAo + A2
o (1.162)

∂Ao
∂x

= tA2
e + AeAo.

To solve this system, note that

∂Ae/∂x

∂Ao/∂x
=
Ao
Ae
.

Hence ∂
∂x

(A2
e − A2

o) = 0, so A2
e − A2

o is independent of x. Some experimentation
suggests that A2

e −A2
o = 1, which together with (1.162) yields

∂Ae
∂x

= tAe
√
A2
e − 1 + A2

e − 1.

This equation can be routinely solved by separation of variables (though some care
must be taken to choose the correct branch of the resulting integral, including the
correct sign of

√
A2
e − 1). A similar argument yields Ao, and we finally obtain

the following expression for A = Ae + Ao:

A(x, t) =

√
1− t
1 + t

(
2

1− 1−ρ
t
eρx
− 1

)
,

where ρ =
√

1− t2. It can then be checked that this formula does indeed give the
correct solution to the original differential equations, justifying the assumption
that A2

e−A2
o = 1. For further details and motivation, see Section 2 of R. Stanley,

Michigan Math. J., to appear; arXiv:math/0511419.
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171. While this problem can be solved by the “brute force” method of computing the coeffi-
cients on the right-hand side of equation (1.144), it is better to note that B′(x)−B(x) =
A′(x) and then solve this differential equation for B(x) with the initial condition
B(0) = a0. Alternatively, one could start with A(x):

B(x) = (1 + I + I2 + · · · )A(x) = (1− I)−1A(x).

Multiplying by 1 − I and differentiating both sides results in the same differential
equation B′(x)−B(x) = A′(x). (It isn’t difficult to justify these formal manipulations
of the operator I.)

172. One method of proof is to first establish the three term recurrence

(n + 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

and then use induction.

173. (a)

√
1 + x

1− x = (1 + x)(1− x2)−1/2

=
∑

n≥0

4−n
(

2n

n

)
(x2n + x2n+1)

(b)
∑

n≥1

x2n

n2
(
2n
n

)

(c)
∑

n≥0

t(t2 − 12)(t2 − 32) · · · (t2 − (2n− 1)2)
x2n+1

(2n+ 1)!

(d)
∑

n≥0

t2(t2 − 22)(t2 − 42) · · · (t2 − (2n− 2)2)
x2n

(2n)!

(e) 2
∑

n≥0

(−1)n22n x4n+2

(4n+ 2)!
. Similar results hold for cos(x) cosh(x), cos(x) sinh(x),

and sin(x) cosh(x).

(f) 6
∑

n≥0

(−1)n26n x6n+3

(6n+ 3)!
. Similar results hold when any subset of the three sin’s is

replaced by cos. There seems to be no analogous result for four factors.

(g) ℜ
(
i

n

)
, where i2 = −1

To do (c), for instance, first observe that the coefficient of x2n+1/(2n + 1)! in
sin(t sin−1 x) is a polynomial Pn(t) of degree 2n+ 1 and leading coefficient (−1)n.
If k ∈ Z, then sin(2k + 1)θ is an odd polynomial in sin θ of degree 2k + 1. Hence
Pn(±(2k + 1)) = 0 for n > k. Moreover, sin 0 = 0 so Pn(0) = 0. We now

210



have sufficient information to determine Pn(t) uniquely. To get (b), consider the
coefficient of t2 in (d). For (g), note that

cos(log(1 + x)) = ℜ(1 + x)i.

174. Hint: what is the number of elements of the set {0, 1}?
176. Induction on n. We have E(0) = 0. For n ≥ 1 choose the first vector v1 at random. If

v1 = 0, we expect E(n) further steps, and this occurs with probability 1/qn. Otherwise
v1 is not the zero vector. Consider the projection of our space to a subspace comple-
mentary to v1. The uniform distribution over Fnq projects to the uniform distribution
over this copy of Fn−1

q , and our sequence of vectors will span Fnq precisely when the set
of their projections spans Fn−1

q . It follows that we expect E(n− 1) further steps, and
so

E(n) = 1 +
E(n) + (qn − 1)E(n− 1)

qn
.

Solving this equation gives E(n) = E(n− 1) + qn/(qn − 1), and so

E(n) =
n∑

i=1

qi/(qi − 1).

This argument was suggested by J. Lewis (October 2009).

182. Suppose that A ∈ GL(n, q) has no 0 entries. There are exactly (q − 1)2n−1 matrices
of the form DAD′, where D,D′ are diagonal matrices in GL(n, q). Exactly one of
the matrices C = DAD′ has the first entry in every row and column equal to −1.
Subtract the first column of C from every other column, obtaining a matrix D. Let
B be obtained from D by removing the first row and column. Then B is a matrix in
GL(n− 1, q) with no entry equal to 1, and every such matrix is obtained exactly once
by this procedure.

183. First solution (sketch). The identity asserts that each of the qn monic polynomials of
degree n can be written uniquely as a product of monic irreducible polynomials.

Second solution (sketch). Take logarithms of both sides and simplify the right-hand
side.

185. (b) Note that qn − D(n, 0) is the number of monic polynomials of degree n over Fq
with nonzero discriminant. In the same way that we obtained the first solution
to Exercise 1.183, we get

∑

n≥0

(qn −D(n, 0))xn =
∏

d≥1

(1 + xd)β(d).

Hence

∑

n≥0

(qn −D(n, 0))xn =

(
1− x2

1− x

)β(d)

=
1− qx2

1− qx ,
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the last step by Exercise 1.183. The proof follows easily. This result appears in D.
E. Knuth, The Art of Computer Programming, vol. 2, third ed., Addison-Wesley,
Reading, MA, 1997 (Exercise 4.6.2-2(b)) and is attributed to E. R. Berlekamp.
Greta Panova (November 2007) showed that this problem can also be solved by
establishing the recurrence

D(n, 0) =
∑

k≥1

qk(q2n−k −D(n− 2k, 0)).

(c) We have

∑

β∈Nk

N(β)xβ =
∏

d≥1

(∑

α∈X
xαd

)β(d)

=
∏

d≥1

∏

α∈Nk

α6=(0,0,...,0)

(1− xαd)aαβ(d).

The proof follows from Exercise 1.183.

186. (a) Let k = 1 and X = {0, 1, . . . , r − 1} in Exercise 1.185(c). We get

∑

n∈X
xn = 1 + x+ · · ·+ xr−1 =

1− xr
1− x .

Hence ∑

n≥0

Nr(n)xn =
1− qxr
1− qx ,

yielding equation (1.147). This result is stated in D. E. Knuth, The Art of Com-
puter Programming, vol. 2, third ed., Addison-Wesley, Reading, MA, 1997 (solu-
tion to Exercise 4.6.2-2(b)).

(b) Set k = 2 and X = {(m, 0) : m ∈ N} ∪ {(0, n) : n ∈ P} to get

∑

m,n≥0

N(m,n)xmyn =
1− qxy

(1− qx)(1− qy),

from which equation (1.148) follows.

(c) Take k = 1 and X = N− {1}. We get

∑

n≥0

P (n)xn =
1− qx6

(1− qx2)(1− qx3)
,

via the identity

1 +
t2

1− t =
1− t6

(1− t2)(1− t3) .
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Using the partial fraction expansion

1− qx6

(1− qx2)(1− qx3)
= −x

q
+

(1 + q)(1 + x)

q(1− qx2)
− 1 + qx+ qx2

q(1− qx3)
,

it is routine to obtain equation (1.149). This result can also be obtained by noting
that every monic powerful polynomial can be written uniquely in the form f 2g3,
where f and g are monic and g is squarefree. Hence P (n) =

∑
2i+3j=n q

i(qj −
D(j, 0)), where D(j, 0) is defined in Exercise 1.185(b), etc. This result is due to
R. Stanley (proposer), Problem 11348, Amer. Math. Monthly 115 (2008), 262; R.
Stong (solution), 117 (2010), 87–88.

Note. The term “powerful polynomial” is borrowed from the corresponding
notion for integers. See for instance the Wikipedia entry “Powerful number” at

〈http://en.wikipedia.org/wiki/Powerful number〉.

187. (a) The resultant res(f, g) of two polynomials f(x) =
∏

(x−θi) and g(x) =
∏

(x−τj)
over a field K is defined by

res(f, g) =
∏

i,j

(θi − τj).

It is a standard fact (a consequence of the fact that res(f, g) is invariant under
any permutation of the θi’s and of the τj ’s) that res(f, g) ∈ K. Suppose that
f(x) = f1(x) · · · fk(x) where each fi(x) is irreducible. Clearly

disc(f) =
k∏

i=1

disc(fi) ·
∏

1≤i<j≤k
res(fi, fj)

2. (1.163)

A standard result from Galois theory states that the discriminant of an irreducible
polynomial g(x) of degree n over a field K is a square in K if and only if the
Galois group of g(x) (regarded as a group of permutations of the zeros of g(x))
is contained in the alternating group An. Now the Galois group of an irreducible
polynomial of degree n over Fq is generated by an n-cycle and hence is contained
in An if and only if n is odd. It follows from equation (1.163) that if disc(f) 6= 0,
then disc(f) is a square in Fq if and only if n − k is even. This result goes
back to L. Stickelberger, Verh. Ersten Internationaler Mathematiker-Kongresses
(Zürich, 1897), reprinted by Kraus Reprint Limited, Nendeln/Liechtenstein, 1967,
pp. 182–193. A simplification of Stickelberger’s argument was given by K. Dalen,
Math. Scand. 3 (1955), 124–126. See also L. E. Dickson, Bull. Amer. Math.
Soc. 13 (1906/07), 1–8, and R. G. Swan, Pacific J. Math. 12 (1962), 1099–1106
(Corollary 1). The above proof is possibly new. Note: Swan, ibid. (§3), uses
this result to give a simple proof of the law of quadratic reciprocity.

Now let Ne(n) (respectively, No(n)) denote the number of monic polynomials
of degree n which are a product of an even number (respectively, odd number)
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of distinct irreducible factors. It is easy to see (analogous to the solution to
Exercise 1.183) that

∑

n≥0

(Ne(n)−No(n))xn =
∏

d≥1

(1− xd)β(d).

But ∏

d≥1

(1− xd)β(d) = 1− qx

by Exercise 1.183. Hence Ne(n) = No(n) for n > 1, and the proof follows.

(b) Let f(x) =
∏n

i=1(x−θi) be a monic polynomial of degree n over Fq. For a ∈ F∗
q =

Fq − {0}, write fa(x) = anf(x/a), so fa(x) =
∏n

i=1(x− aθi). It follows that

disc(fa(x)) = an(n−1)disc(f(x)).

If (n(n − 1), q − 1) = 1 then the map a 7→ an(n−1) is a bijection on F∗
q. Hence if

disc(f) 6= 0, then we have {disc(fa) : a ∈ F∗
q} = F∗

q . It follows that D(n, a) =
D(n, b) for all a, b ∈ F∗

q. Since D(n, 0) = qn−1 we have D(n, a) = qn−1 for all
a ∈ Fq.

Now assume that (n(n− 1), q − 1) = 2. Thus as a ranges over F∗
q, a

n(n−1) ranges
over all squares in F∗

q twice each. Some care must be taken since we can have
fa(x) = fb(x) for a 6= b. (This issue did not arise in the case (n(n− 1), q− 1) = 1
since the fa(x)’s had distinct discriminants.) Thus for each f let Pf be the multiset
of all fa, a ∈ F∗

q . The multiset union
⋃
f Pf contains each monic polynomial of

degree n over Fq exactly q−1 times. For each a, b ∈ F∗
q such that either both a, b or

neither a, b are squares, the same number of polynomials (counting multiplicity)
g ∈ ⋃f Pf satisfy disc(g) = a as satisfy disc(g) = b. Finally, by (a) it follows that
the number of g ∈ ⋃f Pf with square discriminants is the same as the number
with nonsquare discriminants. Hence D(n, a) = D(n, b) for all a, b ∈ F∗

q, and thus
as above for all a, b ∈ Fq.

188. First solution. Let V be an n-dimensional vector space over a field K, and fix an
ordered basis v = (v1, . . . , vn) of V . Let Nn denote the set of all nilpotent linear
transformations A : V → V . We will construct a bijection ϕ : Nn → V n−1. Letting
V = Fq, it follows that #Nn = #(Fq)n−1 = qn(n−1).

The bijection is based on a standard construction in linear algebra known as adapt-
ing an ordered basis w = (w1, . . . , wn) of a vector space V to an m-dimensional
subspace U of V . It constructs from w in a canonical way a new ordered basis
wi1, . . . , win−m , u1, . . . , um of V such that the first n−m elements form a subsequence
of w and the last m form an ordered basis of u. See e.g. M. C. Crabb, Finite Fields
and Their Applications 12 (2006), 151–154 (page 153) for further details.

Now let A ∈ Nn, and write Vi = Ai(V ), i ≥ 0. Let r be the least integer for which
Vr = 0, so we have a strictly decreasing sequence

V = V0 ⊃ V1 ⊃ · · · ⊃ Vr = 0.
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Set ni = dimVi and mi = ni−1−ni. Adapt the ordered basis v of V to V1. Then adapt
this new ordered basis to V2, etc. After r− 1 steps we have constructed in a canonical
way an ordered basis y = (y1, . . . , yn) such that yn−ni+1, . . . , yn is a basis for Vi, 1 ≤
i ≤ r− 1. We associate with A the (n− 1)-tuple ϕ(A) = (A(y1), . . . , A(yn−1)) ∈ V n−1.
(Note that A(yn) = 0.) It is straightforward to check that this construction gives a
bijection ϕ : Nn → V n−1 as desired.

This argument is due to M. C. Crabb, ibid., and we have closely followed his presenta-
tion (though with fewer details). As Crabb points out, this bijection can be regarded
as a generalization of the Prüfer bijection (first proof of Proposition 5.3.2, specialized
to rooted trees) for counting rooted trees on an n-element set. Further connections
between the enumeration of trees and linear transformations were obtained by J.-B.
Yin, Ph.D. thesis, M.I.T., 2009. For a further result of this nature, see Exercise 1.189.

Second solution (sketch), due to Hansheng Diao, November 2007. Induction on n, the
base case n = 1 being trivial. The statement is true for k < n. Let Q be the matrix
in Mat(n, q) with 1’s on the diagonal above the main diagonal and 0’s elsewhere, i.e.,
a Jordan block of size n with eigenvalue 0. Let

A = {(M,N) ∈ Mat(n, q)×Mat(n, q) : N is nilpotent, QM = MN}.

We compute #A in two ways. Let f(n) be the number of nilpotent matrices in
Mat(n, q). We can choose N in f(n) ways. Choose v ∈ Fnq in qn ways. Then there is a
unique matrix M ∈ Mat(n, q) with first row v such that QM = MN . Hence

#A = qnf(n). (1.164)

On the other hand, one can show that if M has rank r, then the number of choices for
N so that QM = MN is f(n − r)qr(n−r). Using Exercise 1.192(b) and induction we
get

#A = f(n) +

n∑

r=1

(qn − 1) · · · (qn − qr−1)q(n−r)(n−r−1) · qr(n−r)

= f(n) + qn(n−1)(qn − 1).

Comparing with equation (1.164) completes the proof.

Third solution (sketch), due to Greta Panova and Yi Sun (independently), November,
2007. Count in two ways the number of (n + 1)-tuples (N, v1, v2, . . . , vn) with N
nilpotent in Mat(n, q), and vi ∈ Fnq such that N(vi) = vi+1 (1 ≤ i ≤ n− 1) and v1 6= 0.
On the one hand there are f(n)(qn−1) such (n+1)-tuples since they are determined by
N and v1. On the other hand, one can show that the number of such (n+1)-tuples such
that vk 6= 0 and vk+1 = 0 (with vn+1 = 0 always) is f(n−k)qk(n−k)(qn−1) · · · (qn−qk−1),
yielding the recurrence

f(n)(qn − 1) =
n∑

k=1

f(n− k)qk(n−k)(qn − 1) · · · (qn − qk−1).
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The proof follows straightforwardly by induction on n.

For some additional work on counting nilpotent matrices, see G. Lusztig, Bull. London
Math. Soc. 8 (1976), 77–80.

189. See Proposition 4.27 of J. Yin, A q-analogue of Spanning Trees: Nilpotent Transfor-
mations over Finite Fields, Ph.D. thesis, M.I.T., 2009. This result may be regarded as
a q-analogue of the fact that the number of spanning trees of the complete bipartite
graph Kmn is mn−1nm−1 (see Exercise 5.30).

190. (a) We can imitate the proof of Proposition 1.10.2, using I∗ := I − {x} instead of I
and β∗ (defined by equation (1.112)) instead of β. We therefore get

∑

n≥0

ω∗(n, q)xn =
∏

n≥1

∏

j≥1

(1− xjn)−β∗(n)

=
∏

j≥1

1− xj
1− qxj , (1.165)

from which the proof is immediate.

(b) This result follows easily from the Pentagonal Number Formula (1.88) and Exer-
cise 1.74. A more careful analysis shows that if m = ⌊(n− 1)/2⌋, then

ω∗(n, q) = qn − qm − qm−1 − qm−2 − · · · − q2⌊(n+5)/6⌋ +O(q⌊(n+5)/6⌋−1).

(c) It follows from the Pentagonal Number Formula and equation (1.165) that

ω∗(n, 0) =

{
(−1)k, if n = k(3k ± 1)/2

0, otherwise,

We also have

ω∗(n,−1) =

{
2(−1)k, if n = k2

0, otherwise,

a consequence of the identity (1.131) due to Gauss.

By differentiating (1.165) with respect to q and setting q = 0, it is not hard to
see that ω∗(n, q) is divisible by q2 if and only if

k(3k − 1)

2
< n <

k(3k + 1)

2

for some k ≥ 1.

191. First solution (in collaboration with G. Lusztig). Let F be an algebraic closure of Fq.
We claim that the set Ω of orbits of the adjoint representation of GL(n, F ) has the
structure

Ω ∼=
⊕

λ⊢n
F ℓ(λ). (1.166)
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Let λ = (λ1, λ2, . . . , λk) ⊢ n, where λk > 0. Given α = (α1, . . . , αk) ∈ F k, let
M = M(λ,α) ∈ Mat(n, F ) be defined as follows: M is a direct sum of k Jordan blocks
J1, . . . , Jk, with Ji containing λi main diagonal elements equal to αi. We do yet have
a set of orbit representatives, since if we have j blocks of the same size, then they can
appear in any order. Hence the different conjugacy classes formed by j blocks of size
m has the structure F j/Sj, where Sj acts on F j by permuting coordinates. But it
is well-known that F j/Sj

∼= F j, viz., the elements of F j/Sj correspond to k-element
multisets {α1, . . . , αk} of elements of F which we associate with (β1, . . . , βk) ∈ F k by

k∏

i=1

(x− αi) = xk +
k∑

j=1

βjx
k−j.

Hence (1.166) follows. It is now a consequence of standard properties of the Frobenius
map α 7→ αq that the space Ωq of orbits of the adjoint representation of GL(n, q) has
an analogous decomposition

Ωq
∼=
⊕

λ⊢n
Fℓ(λ)
q ,

and the proof follows.

Second solution. Let f(z) ∈ Fq[z] be a monic polynomial of degree k. Let f(z) =∏
fi(z)

ri be its factorization into irreducible factors (over Fq). Let Mf ∈ Mat(n, q)
be a matrix whose adjoint orbit is indexed by Φ : I(q) → Par satisfying Φ(fi) = (ri)
(the partition with one part equal to ri). A specific example of such a matrix is the
companion matrix

Mf =




0 0 · · · 0 −β0

1 0 · · · 0 −β1

0 1 · · · 0 −β2
...

...
. . .

...
...

0 0 · · · 1 −βk−1



,

where f(z) = β0 +β1z+ · · ·+βk−1z
k−1 +zk. For fixed k, the space of all such Mf is just

an affine space Fkq (since it is isomorphic to the space of all monic polynomials of degree
k). Now given a partition λ ⊢ n with conjugate λ′ = (λ′1, λ

′
2, . . . ), choose polynomials

fi(z) ∈ Fq[z] such that deg fi = λ′i and fi+1|fi for all i ≥ 1. Let M = Mf1⊕Mf2⊕· · · ∈
Mat(n, q). For fixed λ, the space of all such M has the structure F

λ′1
q = Fℓ(λ)

q (since
once fi+1 is chosen, there are qλ

′
i+1−λ′i choices for fi). It is easy to check that the M ’s

form a cross-section of the orbits as λ ranges over all partitions of n, so the number
of orbits is

∑
λ⊢n q

ℓ(λ). This argument appears in J. Hua, J. Combinatorial Theory,
Ser. A 79 (1997), 105–117 (Theorem 11).

Third solution, due to Gabriel Tavares Bujokas and Yufei Zhao (independently), Novem-
ber 2007. We want the number of functions Φ : I(q)→ Par satisfying

∑
f∈I(q) |ΦM(f)|·

deg(f) = n. For each i ≥ 1, let

pi =
∏

f∈I(q)

fmi(Φ(f)),
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where mi(Φ(f)) denotes the number of parts of Φ(f) equal to i. Thus the pi’s are arbi-
trary monic polynomials satisfying

∑
i deg(pi) = n. First choose λ ⊢ 〈1d1, 2d2 , . . . 〉 ⊢ n

and then each pi so that deg pi = di. There are thus q
P

di = qℓ(λ) choices for the pi’s,
so

ω(n, q) =
∑

λ⊢n
qℓ(λ) =

∑

j

pj(n)qj.

193. A matrix P is a projection if and only if ΦP (z) = 〈1k〉 for some k, ΦP (z − 1) =
〈1n−k〉, and otherwise ΦP (f) = ∅. The proof now follows from Theorem 1.10.4 and
Lemma 1.10.5 exactly as does Corollary 1.10.6.

194. A matrix M is regular if and only if for all f ∈ I(q) there is an integer k ≥ 0 such that
ΦM(f) = (k). Write cf (k) for cf (λ) when λ = (k). From Theorem 1.10.7 we have

cf(k) = qkd − q(k−1)d, k ≥ 1,

where d = deg(f). Substitute tf,λ = 1 if λ = (k) and tf,λ = 0 otherwise in Theo-
rem 1.10.4 to get

∑

n≥0

rn
xn

γn
=

∏

f∈I

(
1 +

∑

k≥1

xk·deg(f)

qk·deg(f) − q(k−1)·deg(f)

)

=
∏

d≥1

(
1 +

∑

k≥1

xkd

qkd(1− q−d)

)β(d)

=
∏

d≥1

(
1 +

(x/q)d

(1− q−d)(1− (x/q)d)

)β(d)

=
∏

d≥1

(
1 +

xd

(qd − 1)(1− (x/q)d)

)β(d)

.

We can write this identity in the alternative form

∑

n≥0

rn
xn

γn
=

1

1− x
∏

d≥1

(
1 +

xd

qd(qd − 1)

)β(d)

by using equation (1.145) with x/q substituted for x.

195. A matrix M is semisimple if and only if for all f ∈ I(q) there is an integer k ≥ 0 such
that ΦM (f) = 〈1k〉. The proof now follows from Theorem 1.10.4 and Lemma 1.10.5
exactly as does Corollary 1.10.6.

196. (a) The proof parallels that of Proposition 1.10.15. We partition Sn into two classes
A and B, where

A = {w ∈ Sn : w 6= 12 · · ·ku for some u ∈ S[k+1,n]}
B = {w ∈ Sn : w = 12 · · ·ku for some u ∈ S[k+1,n]}.
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Let
G(n, k, q) = {A ∈ GL(n, q) : A11 + · · ·+ Akk = 0}.

For w ∈ A we have

# (Γw ∩G(n, k, q)) =
1

q
#Γw.

For w ∈ B we have

# (Γw ∩G(n, k, q)) = q(
n
2)+inv(w)(q − 1)n−kak

= q(
n
2)+inv(w)(q − 1)n−k((q − 1)k + (−1)k(q − 1)).

Hence

∑

w∈B
#(Γw ∩G(n, k, q)) =

1

q

(∑

w∈B
q(

n
2)+inv(w)(q − 1)n

+ (−1)k(q − 1)q(
n
2)−(n−k

2 )
∑

u∈S[k+1,n]

q(
n−k

2 )+inv(u)(q − 1)n−k




=
1

q

(∑

w∈B
(#Γw) + (−1)k(q − 1)q

1
2
k(2n−k−1)γn−k(q)

)
,

and the proof follows.

(b) The hyperplane H can be defined by H = {M ∈ Mat(n, q) : M ·N = 0}, where
N is a fixed nonzero matrix in Mat(n, q) and M ·N = tr(MN t), the standard dot
product in the vector space Mat(n, q). If P,Q ∈ GL(n, q), then M ·N = 0 if and
only if ((P t)−1M(Qt)−1) · (PNQ) = 0. Since two matrices N,N ′ ∈ Mat(n, q) are
related by N ′ = PNQ for some P,Q ∈ GL(n, q) if and only if they have the same
rank, it follows that #(GL(n, q) ∩H) depends only on rank(N). If rank(N) = k,
then we may take

Nij =

{
1, 1 ≤ i = j ≤ k
0, otherwise.

Hence #(GL(n, q) ∩H) is given by the right-hand side of equation (1.150).

197. Hint. Let f(n, k) be the number of k×n matrices over Fq of rank k with zero diagonal,
where 1 ≤ k ≤ n. Show that

f(n, k + 1) = qk−1(q − 1)(f(n, k) · (n − k)− f(n− 1, k)),

with the initial condition f(n, 1) = qn−1 − 1. The solution to this recurrence is

f(n, k) = q(
k−1
2 )−1(q − 1)k

(
k∑

i=0

(−1)i
(
k

i

)
(n − i)!

(n − k)!

)
.

Now set k = n.
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This result is due to J. B. Lewis, R. I. Liu, A. H. Morales, G. Panova, S. V. Sam, and Y.
Zhang, Matrices with restricted entries and q-analogues of permutations, arXiv:1011.4539.
(Proposition 2.2). This paper contains a host of other results about counting matrices
over Fq. A further result in this paper is given by Exercise 1.199.

198. (a) An (n + 1)× (n+ 1) symmetric matrix may be written as

N =

[
β y
yt M

]
,

where M is an n × n symmetric matrix, β ∈ Fq, and y ∈ Fnq . Elementary linear
algebra arguments show that from a particular matrix M of rank r we obtain:

• qn+1 − qr+1 matrices N of rank r + 2,

• (q − 1)qr matrices N of rank r + 1,

• qr matrices N of rank r,

• no matrices of other ranks.

The recurrence (1.151) follows. This recurrence (with more details of the proof)
was given by J. MacWilliams, Amer. Math. Monthly 76 (1969), 152–164, and was
used to prove (b). A simpler recurrence for h(n, n) alone was given by G. Lusztig,
Transformation Groups 10 (2005), 449–487 (end of §3.14).

(b) We can simply verify that the stated formula for h(n, r) satisfies the recurrence
(1.151), together with the initial conditions. For some generalizations and further
information, see R. Stanley, Ann. Comb. 2 (1998), 351–363; J. R. Stembridge,
Ann. Comb. 2 (1998), 365–385; F. Chung and C. Yang, Ann. Comb. 4 (2000),
13–25; and P. Belkale and P. Brosnan, Duke Math. J. 116 (2003), 147–188.

Note. There is less ad hoc way to compute the quantity h(n, n). Namely,
GL(n, q) acts on n×n invertible symmetric matrices M over Fq by A·M = AtMA.
This action has two orbits whose stabilizers are the two forms of the orthogonal
group O(n, q). The orbit sizes can be easily computed from standard facts about
O(n, q). For further details, see R. Stanley, op. cit. (§4).

199. (a) The equality of the first two items when q is even is due to J. MacWilliams,
Amer. Math. Monthly 76 (1969), 152–164 (Theorems 2, 3). The equality of the
second two items appears in O. Jones, Pacific J. Math. 180 (1997), 89–100. For
the remainder of the exercise, see Section 3 of the paper of Lewis-Liu-Morales-
Panova-Sam-Zhang cited in the solution to Exercise 1.197.

200. This result was conjectured by A. A. Kirillov and A. Melnikov, in Algèbre non com-
mutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr. 2, Soc. Math.
France, Paris, 1997, pp. 35–42, and proved by S. B. Ekhad and D. Zeilberger, Elec-
tronic J. Combinatorics 3(1) (1996), R2. No conceptual reason is known for such a
simple formula.

201. (a) The result follows from the theory of Gauss sums as developed e.g. in K. Ire-
land and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed.,
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Springer-Verlag, New York, 1990, and may have been known to Gauss or Eisen-
stein. This information was provided by N. Elkies (private communication, 1
August 2006).

(b) The argument is analogous to the proof of Proposition 1.10.15. Let

G = {A ∈ GL(3, q) : tr(A) = 0, det(A) = 1}.

If 123 6= w ∈ S3, then #(Γ2∩G) = 1
q(q−1)

#Γw. On the other hand, #(Γ123∩G) =

q3f(q). Hence we get

#G =
1

q(q − 1)
(γ(3, q)−#Γ123) + q3f(q)

= q3(q − 1)2(q2 + 2q + 2) + q3f(q).

202. This result is an instance of the Shimura-Taniyama-Weil conjecture, viz., every elliptic
curve is modular. An important special case of the conjecture (sufficient to imply
Fermat’s Last Theorem) was proved by A. Wiles in 1993, with a gap fixed by Wiles
and R. Taylor in 1994. The full conjecture was proved by Breuil, Conrad, Diamond,
and Taylor in 1999. Our example follows H. Darmon, Notices Amer. Math. Soc. 46
(1999), 1397–1401, which has much additional information.

203. The statement about 103,049 was resolved in January, 1994, when David Hough, then
a graduate student at George Washington University, noticed that 103,049 is the total
number of bracketings of a string of 10 letters. The problem of finding the number of
bracketing of a string of n letters is known as Schröder’s second problem and is discussed
in Section 6.2. See also the Notes to Chapter 6, where also a possible interpretation
of 310,952 is discussed. Hough’s discovery was first published by R. Stanley, Amer.
Math. Monthly 104 (1997), 344–350. A more scholarly account was given by F. Acerbi,
Archive History Exact Sci. 57 (2003), 465–502.
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Chapter 2

Sieve Methods

2.1 Inclusion-Exclusion

Roughly speaking, a “sieve method” in enumerative combinatorics is a method for deter-
mining the cardinality of a set S that begins with a larger set and somehow subtracts off or
cancels out unwanted elements. Sieve methods have two basic variations: (1) We can first
approximate our answer with an overcount, then subtract off an overcounted approxima-
tion of our original error, and so on, until after finitely many steps we have “converged” to
the correct answer. This method is the combinatorial essence of the Principle of Inclusion-
Exclusion, to which this section and the next four are devoted. (2) The elements of the
larger set can be weighted in a natural combinatorial way so that the unwanted elements
cancel out, leaving only the original set S. We discuss this technique in Sections 2.6-2.7.

The Principle of Inclusion-Exclusion is one of the fundamental tools of enumerative com-
binatorics. Abstractly, the Principle of Inclusion-Exclusion amounts to nothing more than
computing the inverse of a certain matrix. As such it is simply a minor result in linear
algebra. The beauty of the principle lies not in the result itself, but rather in its wide appli-
cability. We will give several example of problems that can be solved by Inclusion-Exclusion,
some in a rather subtle way. First we state the principle in its purest form.

2.1.1 Theorem. Let S be an n-set. Let V be the 2n-dimensional vector space (over some
field K) of all functions f : 2S → K. Let φ : V → V be the linear transformation defined by

φf(T ) =
∑

Y⊇T
f(Y ), for all T ⊆ S. (2.1)

Then φ−1 exists and is given by

φ−1f(T ) =
∑

Y⊇T
(−1)#(Y−T )f(Y ), for all T ⊆ S. (2.2)

Proof. Define ψ : V → V by ψf(T ) =
∑

Y⊇T (−1)#(Y−T )f(Y ). Then (composing functions
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right to left)

φψf(T ) =
∑

Y⊇T
(−1)#(Y−T )φf(Y )

=
∑

Y⊇T
(−1)#(Y−T )

∑

Z⊇Y
f(Z)

=
∑

Z⊇T

( ∑

Z⊇Y⊇T
(−1)#(Y−T )

)
f(Z).

Setting m = #(Z − T ) we have

∑

Z⊇Y⊇T
(Z,T fixed)

(−1)#(Y−T ) =

m∑

i=0

(−1)i
(
m

i

)
= δ0m,

the latter equality by putting x = −1 in equation (1.18) or by Exercise 1.3(f), so φψf(T ) =
f(T ). Hence φψf = f , so ψ = φ−1.

The following is the usual combinatorial situation involving Theorem 2.1.1. We think of S
as being a set of properties that the elements of some given set A of objects may or may
not have. For any subset T of S, let f=(T ) be the number of objects in A that have exactly
the properties in T (so they fail to have the properties in T = S − T ). More generally, if
w : A → K is any weight function on A with values in a field (or abelian group) K, then
one could set f=(T ) =

∑
x w(x), where x ranges over all objects in A having exactly the

properties in T . Let f≥(T ) be the number of objects in A that have at least the properties
in T . Clearly then

f≥(T ) =
∑

Y⊇T
f=(Y ). (2.3)

Hence by Theorem 2.1.1,

f=(T ) =
∑

Y⊇T
(−1)#(Y−T )f≥(Y ). (2.4)

In particular, the number of objects having none of the properties in S is given by

f=(∅) =
∑

Y⊇T
(−1)#Y f≥(Y ), (2.5)

where Y ranges over all subsets S. In typical applications of the Principle of Inclusion-
Exclusion it will be relatively easy to compute f≥(Y ) for Y ⊆ S, so equation (2.4) will yield
a formula for f=(T ).

In equation (2.4) one thinks of f≥(T ) (the term indexed by Y = T ) as being a first approxi-
mation to f=(T ). We then subtract

∑

Y⊇T
#(Y−T )=1

f≥(Y ),
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to get a better approximation. Next we add back in
∑

Y⊇T
#(Y−T )=2

f≥(Y ),

and so on, until finally reaching the explicit formula (2.4). This reasoning explains the
terminology “Inclusion-Exclusion.”

Perhaps the most standard formulation of the Principle of Inclusion-Exclusion is one that
dispenses with the set S of properties per se, and just considers subsets of A. Thus let
A1, . . . , An be subsets of a finite set A. For each subset T of [n], let

AT =
⋂

i∈T
Ai

(with A∅ = A), and for 0 ≤ k ≤ n set

Sk =
∑

#T=k

#AT , (2.6)

the sum of the cardinalities, or more generally the weighted cardinalities

w(AT ) =
∑

x∈AT

w(x),

of all k-tuple intersections of the Ai’s. Think of Ai as defining a property Pi by the condition
that x ∈ A satisfies Pi if and only if x ∈ Ai. Then AT is just the set of objects in A that
have at least the properties in T , so by (2.5) the number #(A1 ∩ · · · ∩An) of elements of A
lying in none of the Ai’s is given by

#(A1 ∩ · · · ∩An) = S0 − S1 + S2 − · · ·+ (−1)nSn, (2.7)

where S0 = A∅ = #A.

The Principle of Inclusion-Exclusion and its various reformulations can be dualized by inter-
changing ∩ and ∪, ⊆ and ⊇, and so on, throughout. The dual form of Theorem 2.1.1 states
that if

φ̃f(T ) =
∑

Y⊆T
f(Y ), for all T ⊆ S,

then φ̃−1 exists and is given by

φ̃−1f(T ) =
∑

Y⊆T
(−1)#(T−Y )f(Y ), for all T ⊆ S.

Similarly, if we let f≤(T ) be the (weighted) number of objects of A having at most the
properties in T , then

f≤(T ) =
∑

Y⊆T
f=(Y )

f=(T ) =
∑

Y⊆T
(−1)#(T−Y )f≤(Y ). (2.8)
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A common special case of the Principle of Inclusion-Exclusion occurs when the function f=

satisfies f=(T ) = f=(T ′) whenever #T = #T ′. Thus also f≥(T ) depends only on #T , and
we set a(n− i) = f=(T ) and b(n− i) = f≥(T ) whenever #T = i. (Caveat. In many problems
the set A of objects and S of properties will depend on a parameter p, and the functions
a(i) and b(i) may depend on p. Thus, for example, a(0) and b(0) are the number of objects
having all the properties, and this number may certainly depend on p. Proposition 2.2.2
is devoted to the situation when a(i) and b(i) are independent of p.) We thus obtain from
equations (2.3) and (2.4) the equivalence of the formulas

b(m) =

m∑

i=0

(
m

i

)
a(i), 0 ≤ m ≤ n (2.9)

a(m) =
m∑

i=0

(
m

i

)
(−1)m−ib(i), 0 ≤ m ≤ n. (2.10)

In other words, the inverse of the (n + 1)× (n + 1) matrix whose (i, j)-entry (0 ≤ i, j ≤ n)
is
(
j
i

)
has (i, j)-entry (−1)j−i

(
j
i

)
. For instance,




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1




−1

=




1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1


 .

Of course we may let n approach ∞ so that (2.9) and (2.10) are equivalent for n =∞.

Note that in language of the calculus of finite differences (see Chapter 1, equation (1.98)),
(2.10) can be rewritten as

a(m) = ∆mb(0), 0 ≤ m ≤ n.
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2.2 Examples and Special Cases

The canonical example of the use of the Principle of Inclusion-Exclusion is the following.

2.2.1 Example. (The “derangement problem” or “problème des rencontres”) How many
permutations w ∈ Sn have no fixed points, that is, w(i) 6= i for all i ∈ [n]? Such a
permutation is called a derangement. Call this number D(n). Thus D(0) = 1, D(1) = 0,
D(2) = 1, D(3) = 2. Think of the condition w(i) = i as the ith property of w. Now the
number of permutations with at least the set T ⊆ [n] of points fixed is f≥(T ) = b(n − i) =
(n − i)!, where #T = i (since we fix the elements of T and permute the remaining n − i
elements arbitrarily). Hence by (2.10) the number f=(∅) = a(n) = D(n) of permutations
with no fixed points is

D(n) =

n∑

i=0

(
n

i

)
(−1)n−ii!. (2.11)

This last expression may be rewritten

D(n) = n!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!

)
. (2.12)

Since 0.36787944 · · · = e−1 =
∑

j≥0(−1)j/j!, it is clear from (2.12) that n!/e is a good
approximation to D(n), and indeed it is not difficult to show that D(n) is the nearest
integer to n!/e. It also follows immediately from (2.12) that for n ≥ 1,

D(n) = nD(n− 1) + (−1)n (2.13)

D(n) = (n− 1)(D(n− 1) +D(n− 2)). (2.14)

While it is easy to give a direct combinatorial proof of equation (2.14), considerably more
work is necessary to prove (2.13) combinatorially. (See Exercise 2.8.) In terms of generating
functions we have that ∑

n≥0

D(n)
xn

n!
=

e−x

1− x.

The function b(i) = i! has a very special property—it depends only on i, not on n. Equiv-
alently, the number of permutations w ∈ Sn that have at most the set T ⊆ [n] of points
unfixed depends only on #T , not on n. This means that equation (2.11) can be rewritten in
the language of the calculus of finite differences (see Chapter 1, equation (1.98) as

D(n) = ∆nx!|x=0 ,

which is abbreviated ∆n0!. Since the number b(i) of permutations in Sn that have at most
some specified i-set of points unfixed depends only on i, the same is true of the number a(i)
of permutations in Sn that have exactly some specified i set of points unfixed. It is clear
combinatorially that a(i) = D(i), and this fact is also evident from equations (2.10) and
(2.11).

Let us state formally the general result that follows from the above considerations.
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2.2.2 Proposition. For each n ∈ N, let Bn be a (finite) set, and let Sn be a set of n
properties that elements of Bn may or may not have. Suppose that for every T ⊆ Sn, the
number of x ∈ Bn that lack at most the properties in T (i.e., that have at least the properties
in S − T ) depends only on #T , not on n. Let b(n) = #Bn, and let a(n) be the number of
objects x ∈ Bn that have none of the properties in Sn. Then a(n) = ∆nb(0).

2.2.3 Example. Let us consider an example to which the previous proposition does not
apply. Let h(n) be the number of permutations of the multiset Mn = {12, 22, . . . , n2} with
no two consecutive terms equal. Thus h(0) = 1, h(1) = 0, and h(2) = 2 (corresponding to the
permutations 1212 and 2121). Let Pi, for 1 ≤ i ≤ n, be the property that the permutation
w of Mn has two consecutive i’s. Hence we seek f=(∅) = h(n). It is clear by symmetry that
for fixed n, f≥(T ) depends only on i = #T , so write g(i) = f≥(T ). Clearly g(i) is equal to
the number of permutations w of the multiset {1, 2, . . . , i, (i+1)2, . . . , n2} (replace any j ≥ i
appearing in w by two consecutive j’s), so

g(i) = (2n− i)!2−(n−i),

a special case of equation (1.23). Note that b(i) := g(n − i) = (n + i)!2−i is not a function
of i alone, so that Proposition 2.2.2 is indeed inapplicable. However, we do get from (2.10)
that

h(n) =

n∑

i=0

(
n

i

)
(−1)n−i(n+ i)!2−i = ∆n(n+ i)!2−i

∣∣
i=0

.

Here the function (n + i)!2−i to which ∆n is applied depends on n.

We turn next to an example for which the final answer can be represented by a determinant.

2.2.4 Example. Recall that in Chapter 1 (Section 1.4) we defined the descent set D(w) of
a permutation w = a1a2 · · ·an of [n] by D(w) = {i : ai > ai+1}. Our object here is to obtain
an expression for the quantity βn(S), the number of permutations w ∈ Sn with descent set
S. Let αn(S) be the number of permutations whose descent set is contained in S, as in
equation (1.31). Thus (as pointed out in equation (1.31))

αn(S) =
∑

T⊆S
βn(T ).

It was stated in equation (1.34) and follows from (2.8) that

βn(S) =
∑

T⊆S
(−1)#(S−T )αn(T ).

Recall also that if the elements of S are given by 1 ≤ s1 < s2 < · · · < sk ≤ n − 1, then by
Proposition 1.4.1 we have

αn(S) =

(
n

s1, s2 − s1, s3 − s2, . . . , n− sk

)
.

Therefore

βn(S) =
∑

1≤i1<i2<···<ij≤k
(−1)k−j

(
n

si1 , si2 − si1 , . . . , n− sij

)
. (2.15)
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We can write (2.15) in an alternative form as follows. Let f be any function defined on
[0, k+1]× [0, k+1] satisfying f(i, i) = 1 and f(i, j) = 0 if i > j. Then the terms in the sum

Ak =
∑

1≤i1<i2<···<ij≤k
(−1)k−jf(0, i1)f(i1, i2) · · · f(ij, k + 1)

are just the nonzero terms in the expansion of the (k + 1)× (k + 1) determinant with (i, j)-
entry f(i, j + 1), (i, j) ∈ [0, k] × [0, k]. Hence if we set f(i, j) = 1/(sj − si)! (with s0 = 0,
sk+1 = n), we obtain from (2.15) that

βn(S) = n! det[1/(sj+1 − si)!], (2.16)

(i, j) ∈ [0, k]× [0, k]. For instance, if n = 8 and S = {1, 5}, then

βn(S) = 8!

∣∣∣∣∣∣∣∣∣∣∣∣

1

1!

1

5!

1

8!

1
1

4!

1

7!

0 1
1

3!

∣∣∣∣∣∣∣∣∣∣∣∣

= 217.

By an elementary manipulation (whose details are left to the reader), equation (2.16) can
also be written in the form

βn(S) = det

[(
n− si
sj+1 − si

)]
, (2.17)

where (i, j) ∈ [0, k]× [0, k] as before.

2.2.5 Example. We can obtain a q-analogue of the previous example with very little extra
work. We seek some statistic s(w) of permutations w ∈ Sn such that

∑

w∈Sn
D(w)⊆S

qs(w) =

(
n

s1, s2 − s1, . . . , n − sk

)
, (2.18)

where the elements of S are 1 ≤ s1 < s2 < · · · < sk ≤ n − 1 as above. We will then
automatically obtain q-analogues of equations (2.15), (2.16), and (2.17). We claim that
(2.18) holds when s(w) = inv(w), the number of inversions of w. To see this, set t1 = s1,
t2 = s2−s1, . . . , tk+1 = n−sk. Let M = {1t1 , . . . , (k+1)tk+1}. Recall from Proposition 1.7.1
that ∑

u∈S(M)

qinv(u) =

(
n

t1, t2, . . . , tk+1

)
. (2.19)

Now given u ∈ S(M), let v ∈ Sn be the standardization of u as defined after the second proof
of Proposition 1.7.1, so inv(u) = inv(v). We call v a shuffle of the sets [1, s1], [s1 +1, s2], . . . ,
[sk + 1, n]. Now set w = v−1. It is easy to see that v is a shuffle of [1, s1], [s1 + 1, s2], . . . ,
[sk+1, n] if and only if D(w) ⊆ {s1, s2, . . . , sk}. Since inv(v) = inv(w) by Proposition 1.3.14,
we obtain ∑

w∈Sn
D(w)⊆S

qinv(w) =

(
n

s1, s2 − s1, . . . , n − sk

)
, (2.20)
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as desired.

Thus set
βn(S, q) =

∑

w∈Sn
D(w)=S

qinv(w).

By simply mimicking the reasoning of Example 2.2.4 we obtain

βn(S, q) = (n)!det [1/(sj+1 − si)!]
k
0

= det

[(
n − si

sj+1 − si

)]k

0

(2.21)

For instance, if n = 8 and S = {1, 5}, then

βn(S, q) = (8)!

∣∣∣∣∣∣∣∣∣∣∣∣

1

(1)!

1

(5)!

1

(8)!

1
1

(4)!

1

(7)!

0 1
1

(3)!

∣∣∣∣∣∣∣∣∣∣∣∣

= q2 + 3q3 + 6q4 + 9q5 + 13q6 + 17q7 + 21q8 + 23q9

+24q10 + 23q11 + 21q12 + 18q13 + 14q14 + 10q15

+7q16 + 4q17 + 2q18 + q19.

If we analyze the reason why we obtained a determinant in the previous two examples, then
we get the following result.

2.2.6 Proposition. Let S = {P1, . . . , Pn} be a set of properties, and let T = {Ps1, . . . , Psk
} ⊆

S, where 1 ≤ s1 < · · · < sk ≤ n. Suppose that f≤(T ) has the form

f≤(T ) = h(n)e(s0, s1)e(s1, s2) · · · e(sk, sk+1)

for certain functions h on N and e on N×N, where we set s0 = 0, sk+1 = n, e(i, i) = 1, and
e(i, j) = 0 if j < i. Then

f=(T ) = h(n) det [e(si, sj+1)]
k
0 .
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2.3 Permutations with Restricted Position

The derangement problem asks for the number of permutations w ∈ Sn where for each i,
certain values of w(i) are disallowed (namely, we disallow w(i) = i). We now consider a
general theory of such permutations. It is traditionally described using terminology from
the game of chess. Let B ⊆ [n]× [n], called a board. If w ∈ Sn, then define the graph G(w)
of w by

G(w) = {(i, w(i)) : i ∈ [n]}.
Now define

Nj = #{w ∈ Sn : j = #(B ∩G(w)}
rk = number of k-subsets of B such that no two

elements have a common coordinate

= number of ways to place k nonattacking rooks on B.

Also define the rook polynomial rB(x) of the board B by

rB(x) =
∑

k

rkx
k.

We may identify w ∈ Sn with the placement of n nonattacking rooks on the squares
(i, w(i)) of [n] × [n]. Thus Nj is the number of ways to place n nonatttacking rooks
on [n] × [n] such that exactly j of these rooks lie in B. For instance, if n = 4 and
B = {(1, 1), (2, 2), (3, 3), (3, 4), (4, 4)}, then N0 = 6, N1 = 9, N2 = 7, N3 = 1, N4 = 1,
r0 = 1, r1 = 5, r2 = 8, r3 = 5, r4 = 1. Our object is to describe the numbers Nj, and
especially N0, in terms of the numbers rk. To this end, define the polynomial

Nn(x) =
∑

j

Njx
j .

2.3.1 Theorem. We have

Nn(x) =

n∑

k=0

rk(n− k)!(x− 1)k. (2.22)

In particular,

N0 = Nn(0) =

n∑

k=0

(−1)krk(n− k)!. (2.23)

First proof. Let Ck be the number of pairs (w,C), where w ∈ Sn and C is a k-element
subset of B ∩ G(w). For each j, choose w in Nj ways so that j = #(B ∩ G(w)), and then
choose C is

(
j
k

)
ways. Hence Ck =

∑
j

(
j
k

)
Nj . On the other hand, we first could choose C in

rk ways and then “extend” to w in (n− k)! ways. Hence Ck = rk(n− k)!. Therefore

∑

j

(
j

k

)
Nj = rk(n− k)!,
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or equivalently (multiplying by yk and summing on k),
∑

j

(y + 1)jNj =
∑

k

rk(n− k)!yk.

Putting y = x− 1 yields the desired formula.

Second proof. It suffices to assume x ∈ P. The left-hand side of equation (2.22) counts the
number of ways to place n nonattacking rooks on [n]× [n] and labeling each rook on B with
an element of [x]. On the other hand, such a configuration can be obtained by placing k
nonattacking rooks on B, labeling each of them with an element of {2, . . . , x}, placing n− k
additional nonattacking rooks on [n] × [n] in (n − k)! ways, and labeling the new rooks on
B with 1. This argument establishes the desired bijection.

The two proofs of Theorem 2.3.1 provide another illustration of the principle enunciated
in Chapter 1 (third proof of Proposition 1.3.7) about the two combinatorial methods for
showing that two polynomials are identical. It is certainly also possible to prove (2.23) by
a direct application of Inclusion-Exclusion, generalizing Example 2.2.1. Such a proof would
not be considered combinatorial since we have not explicitly constructed a bijection between
two sets (but see Section 2.6 for a method of making such a proof combinatorial). The two
proofs we have given may be regarded as “semi-combinatorial,” since they yield by direct
bijections formulas involving parameters y and x, respectively; and we then obtain (2.23) by
setting y = −1 and x = 0, respectively. In general, a semi-combinatorial proof of (2.5) can
easily be given by first showing combinatorially that

∑

X

f=(X)x#X =
∑

Y

f≥(Y )(x− 1)#Y (2.24)

or ∑

X

f=(X)(y + 1)#X =
∑

Y

f≥(Y )y#Y , (2.25)

and then setting x = 0 and y = −1, respectively.

As a example of Theorem 2.3.1, take B = {(1, 1), (2, 2), (3, 3), (3, 4), (4, 4)} as above. Then

N4(x) = 4! + 5 · 3!(x− 1) + 8 · 2!(x− 1)2 + 5 · 1!(x− 1)3 + (x− 1)4

= x4 + x3 + 7x2 + 9x+ 6.

2.3.2 Example. (Derangements revisted) Take B = {(1, 1), (2, 2), . . . , (n, n)}. We want to
compute N0 = D(n). Clearly rk =

(
n
k

)
, so

Nn(x) =

n∑

k=0

(
n

k

)
(n− k)!(x− 1)k

=

n∑

k=0

n!

k!
(x− 1)k

⇒ N0 =

n∑

k=0

(−1)k
n!

k!
.
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2.3.3 Example (Problème des ménages). This famous problem is equivalent to asking for
the number M(n) of permutations w ∈ Sn such that w(i) 6≡ i, i + 1 (modn) for all i ∈ [n].
In other words, we seek N0 for the board

B = {(1, 1), (2, 2), . . . , (n, n), (1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}.

By looking at a picture of B, we see that rk is equal to the number of ways to choose k
points, no two consecutive, from a collection of 2n points arranged in a circle.

2.3.4 Lemma. The number of ways to choose k points, no two consecutive, from a collection
of m points arranged in a circle is m

m−k
(
m−k
k

)
.

First proof. Let f(m, k) be the desired number; and let g(m, k) be the number of ways to
choose k nonconsecutive points from m points arranged in a circle, next coloring the k points
red, and then coloring one of the non-red points blue. Clearly g(m, k) = (m − k)f(m, k).
But we can also compute g(m, k) as follows. First color a point blue in m ways. We now
need to color k points red, no two consecutive, from a linear array of m−1 points. One way
to proceed is as follows. (See also Exercise 1.34.) Place m−1−k uncolored points on a line,
and insert k red points into the m − k spaces between the uncolored points (counting the
beginning and end) in

(
m−k
k

)
ways. Hence g(m, k) = m

(
m−k
k

)
, so f(m, k) = m

m−k
(
m−k
k

)
.

The above proof is based on a general principle of passing from “circular” to “linear” arrays.
We will discuss this principle further in Chapter 4 (see Proposition 4.7.13).

Second proof. Label the points 1, 2, . . . , m in clockwise order. We wish to color k of them
red, no two consecutive. First we count the number of ways when 1 isn’t colored red. Place
m−k uncolored points on a circle, label one of these 1, and insert k red points into the m−k
spaces between the uncolored points in

(
m−k
k

)
ways. On the other hand, if 1 is to be colored

red, then place m − k − 1 points on the circle, color one of these points red and label it 1,
and then insert in

(
m−k−1
k−1

)
ways k − 1 red points into the m− k − 1 allowed spaces. Hence

f(m, k) =

(
m− k
k

)
+

(
m− k − 1

k − 1

)
=

m

m− k

(
m− k
k

)
.

2.3.5 Corollary. The polynomial Nn(x) for the board B = {(i, i), (i, i + 1) (modn) : 1 ≤
i ≤ n} is given by

Nn(x) =

n∑

k=0

2n

2n− k

(
2n− k
k

)
(n− k)!(x− 1)k.

In particular, the number N0 of permutations w ∈ Sn such that w(i) 6= i, i + 1 (modn) for
1 ≤ i ≤ n is given by

N0 =

n∑

k=0

2n

2n− k

(
2n− k
k

)
(n− k)!(−1)k.
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Corollary 2.3.5 suggest the following question. Let 1 ≤ k ≤ n, and let Bn,k denote the board

Bn,k = {(i, i), (i, i+ 1), . . . , (i, i+ k − 1) (modn) : 1 ≤ i ≤ n}.

Find the rook polynomial Rn,k(x) =
∑

i ri(n, k)x
i of Bn,k. Thus by equation (2.23) the

number f(n, k) of permutations w ∈ Sn satisfying w(i) 6≡ i, i + 1, . . . , i + k − 1 (modn) is
given by

f(n, k) =

n∑

i=0

(−1)iri(n, k)(n− i)!.

Such permutations are called k-discordant. For instance, 1-discordant permutations are
just derangements. When k > 2 there is no simple explicit expression for ri(n, k) as there
was for k = 1, 2. However, we shall see in Example 4.7.19 that there exists a polynomial
Qk(x, y) ∈ Z[x, y] such that

∑

n

Rn,k(x)y
n =

−y ∂
∂y
Qk(x, y)

Qk(x, y)
,

provided that Rn,k(x) is suitably interpreted when n < k. For instance,

Q1(x, y) = 1− (1 + x)y

Q2(x, y) = (1− (1 + 2x)y + x2y2)(1− xy)
Q3(x, y) = (1− (1 + 2x)y − xy2 + x3y3)(1− xy).
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1,1 2,1 3,1

2,2 3,2

3,3

3,4

x

m

Figure 2.1: The Ferrers board of shape (1, 2, 4) with a rectangle C underneath

2.4 Ferrers Boards

Given a particular board or class of boards B, we can ask whether the rook numbers ri have
any special properties of interest. Here we will discuss a class of boards called Ferrers boards.
Given integers 0 ≤ b1 ≤ · · · ≤ bm, the Ferrers board of shape (b1, . . . , bm) is defined by

B = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ bi},

where we are using ordinary cartesian coordinates so the (1, 1) square is at the bottom left.
The board B depends (up to translation) only on the positive bi’s. However, it will prove to
be a technical convenience to allow bi = 0. Note that B is just a reflection and rotation of
the Young diagram of the partition λ = (bm, . . . , b1).

2.4.1 Theorem. Let
∑
rkx

k be the rook polynomial of the Ferrers board B of shape (b1, . . . , bm).
Set si = bi − i+ 1. Then

∑

k

rk · (x)m−k =
m∏

i=1

(x+ si).

Proof. Let x ∈ N, and let B′ be the Ferrers board of shape (b1 + x, . . . , bm + x). Regard
B′ = B ∪ C, where C is an x × m rectangle placed below B. See Figure 2.1 for the case
(b1, b2, b3) = (1, 2, 4). We count rm(B′) in two ways.

1. Place k rooks on B in rk ways, then m− k rooks on C in (x)m−k ways, to get

rm(B′) =
∑

k

rk · (x)m−k.
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2. Place a rook in the first column of B′ in x+b1 = x−s1 ways, then a rook in the second
column in x+ b2 − 1 = x+ s2 ways, and so on, to get

fm(B′) =
m∏

i=1

(x+ si).

This completes the proof.

2.4.2 Corollary. Let B be the triangular board (or staircase) of shape (0, 1, 2, . . . , m− 1).
Then rk = S(m,m− k).

Proof. We have that each si = 0. Hence by Theorem 2.4.1,

xm =
∑

rk · (x)m−k.

It follows from equation (1.94d) in Chapter 1 that rk = S(m,m− k).
A combinatorial proof of Corollary 2.4.2 is clearly desirable. We wish to associate a partition
of [m] into m− k blocks with a placement of k nonattacking rooks on B = {(i, j) : 1 ≤ i ≤
m, 1 ≤ j < i}. If a rook occupies (i, j), then define i and j to be in the same block of the
partition. It is easy to check that this procedure yields the desired correspondence.

2.4.3 Corollary. Two Ferrers boards, each with m columns (allowing empty columns), have
the same rook polynomial if and only if their multisets of the numbers si are the same.

Corollary 2.4.3 suggests asking for the number of Ferrers boards with a rook polynomial
equal to that of a given board B.

2.4.4 Theorem. Let 0 ≤ c1 ≤ · · · ≤ cm, and let f(c1, . . . , cm) be the number of Fer-
rers boards with no empty columns and having the same rook polynomial as the Ferrers
board of shape (c1, . . . , cm). Add enough intial 0’s to c1, . . . , cm to get a shape (b1, . . . , bt) =
(0, 0, . . . , 0, c1, . . . , cm) such that if si = bi − i + 1 then s1 = 0 and si < 0 for 2 ≤ i ≤ t.
Suppose that ai of the sj’s are equal to −i, so

∑
i≥1 ai = t− 1. Then

f(c1, . . . , cm) =

(
a1 + a2 − 1

a2

)(
a2 + a3 − 1

a3

)(
a3 + a4 − 1

a4

)
· · · .

Proof (sketch). By Corollary 2.4.3, we seek the number of permutations d1d2 · · · dt−1 of the
multiset {1a1 , 2a2 , . . . } such that 0 ≥ d1−1 ≥ d2−2 ≥ · · · ≥ dt−1−t+1. Equivalently, d1 = 1
and di must be followed by a number di+1 ≤ di+1. Place the a1 1’s down in a line. The a2 2’s

may be placed arbitrarily in the a1 spaces following each 1 in
((

a1
a2

))
=
(
a1+a2−1

a2

)
ways. Now

the a3’s may be placed arbitrarily in the a2 spaces following each 2 in
((

a2
a3

))
=
(
a2+a3−1

a3

)

ways, and so on, completing the proof.

For instance, there are no other Ferrers boards with the same rook polynomial as the triangu-
lar board (0, 1, . . . , n−1), while there are 3n−1 Ferrers boards with the same rook polynomial
as the n× n chessboard [n]× [n].
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If in the proof of Theorem 2.4.4 we want all the columns of our Ferrers board to have distinct
lengths, then we must arrange the multiset {1a1 , 2a2 , . . . } to first strictly increase from 1 to
its maximum in unit steps and then to be non-increasing. Hence we obtain the following
result.

2.4.5 Corollary. Let B be a Ferrers board. Then there is a unique Ferrers board whose
columns have distinct (nonzero) lengths and that has the same rook polynomial as B.

For instance, the unique “increasing” Ferrers board with the same rook polynomial as [n]×[n]
has shape (1, 3, 5, . . . , 2n− 1).
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2.5 V -partitions and Unimodal Sequences

We now give an example of a sieve process that cannot be derived (except in a very contrived
way) using the Principle of Inclusion-Exclusion. By a unimodal sequence of weight n (also
called an n-stack), we mean a P-sequence d1d2 · · ·dm such that

a.
∑
di = n

b. For some j, we have d1 ≤ d2 ≤ · · · ≤ dj ≥ dj+1 ≥ · · · ≥ dm.

Many interesting combinatorial sequences turn out to be unimodal. (See Exercise 1.50 for
some examples.) In this section we shall be concerned not with any particular sequence,
but rather with counting the total number u(n) of unimodal sequences of weight n. By
convention we set u(0) = 0. For instance, u(5) = 15, since all 16 compositions of 5 are
unimodal except 212. Now set

U(q) =
∑

n≥0

u(n)qn

= q + 2q2 + 4q3 + 8q4 + 15q5 + 27q6 + 47q7 + 79q8 + · · · .

Our object is to find a nice expression for U(q). Write [j]! = (1− q)(1− q2) · · · (1− qj). It
is easy to see that the number of unimodal sequences of weight n with largest term k is the
coefficient of qn in qk/[k − 1]![k]!. Hence

U(q) =
∑

k≥1

qk

[k − 1]![k]!
(2.26)

This is analogous to the formula

∑

n≥0

p(n)qn =
∑

k≥0

qk

[k]!
,

where p(n) is the number of partitions of n. (Put x = 1 in equation (1.82).) What we want,
however, is an analogue of equation (1.77), which states that

∑

n≥0

p(n)qn =
∏

i≥1

(1− qi)−1.

It turns out to be easier to work with objects slightly different from unimodal sequences,
and then relate them to unimodal sequences at the end. We define a V -partition of n to be
an N-array [

a1 a2 · · ·
c

b1 b2 · · ·

]
(2.27)

such that c+
∑
ai+

∑
bi = n, c ≥ a1 ≥ a2 ≥ · · · and c ≥ b1 ≥ b2 ≥ · · · . Hence a V -partition

may be regarded as a unimodal sequence “rooted” at one of its largest parts. Let v(n) be
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the number of V -partitions of n, with v(0) = 1. Thus for instance v(4) = 12, since there is
one way of rooting 4, one way for 13, one for 31, two for 22, one for 211, one for 112, and
four for 1111. Set

V (q) =
∑

n≥0

v(n)qn

= 1 + q + 3q2 + 6q3 + 12q4 + 21q5 + 38q6 + 63q7 + 106q8 + · · · .

Analogously to (2.26) we have

V (q) =
∑

k≥0

qk

[k]!2
,

but as before we want a product formula for V (q).

Let Vn be the set of all V -partitions of n, and let Dn be the set of all double partitions of n,
that is, N-arrays [

a1 a2 · · ·
b1 b2 · · ·

]
(2.28)

such that
∑
ai +

∑
bi = n, a1 ≥ a2 ≥ · · · and b1 ≥ b2 ≥ · · · . If d(n)#Dn, then clearly

∑

n≥0

d(n)qn =
∏

i≥1

(1− qi)−2. (2.29)

Now define Γ1 : Dn → Vn by

Γ1

[
a1 a2 · · ·
b1 b2 · · ·

]
=





[
a2 a3 · · ·

a1
b1 b2 · · ·

]
, if a1 ≥ b1

[
a1 a2 · · ·

b1
b2 b3 · · ·

]
, if b1 > a1.

Clearly Γ1 is surjective, but it is not injective. Every V -partition in the set

V 1
n =

{[
a1 a2 · · ·

c
b1 b2 · · ·

]
∈ Vn : c > a1

}

appears twice as a value of Γ1, so

#Vn = #Dn −#V 1
n .

Next define Γ2 : Dn−1 → V 1
n by

Γ2

[
a1 a2 · · ·
b1 b2 · · ·

]
=





[
a2 a3 · · ·

a1 + 1
b1 b2 · · ·

]
, if a1 + 1 ≥ b1

[
a1 + 1 a2 · · ·

b1
b2 b3 · · ·

]
, if b1 > a1 + 1.
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Again Γ2 is surjective, but every V -partition in the set

V 2
n =

{[
a1 a2 · · ·

c
b1 b2 · · ·

]
∈ Vn : c > a1 > a2

}

appears twice as a value of Γ2. Hence #V 1
n = #Dn−1 −#V 2

n , so

#Vn = #Dn −#Dn−1 + #V 2
n .

Next define Γ3 : Dn−3 → V 2
n by

Γ3

[
a1 a2 · · ·
b1 b2 · · ·

]
=





[
a2 + 1 a3 a4 · · ·

a1 + 2
b1 b2 b3 · · ·

]
, if a1 + 2 ≥ b1

[
a1 + 2 a2 + 1 a3 · · ·

b1
b2 b3 b4 · · ·

]
, if b1 > a1 + 2.

We obtain
#Vn = #Dn −#Dn−1 + #Dn−3 −#V 3

n ,

where

V 3
n =

{[
a1 a2 · · ·

c
b1 b2 · · ·

]
∈ Vn : c > a1 > a2 > a3

}
.

Continuing this process, we obtain maps Γi : Dn−(i
2)
→ V i−1

n . The process stops when
(
i
2

)
> n, so we obtain the sieve-theoretic formula

v(n) = d(n)− d(n− 1) + d(n− 3)− d(n− 6) + · · · ,

where we set d(m) = 0 for m < 0. Thus using equation (2.29) we obtain the following result.

2.5.1 Proposition. We have

V (q) =

(∑

n≥0

(−1)nq(
n+1

2 )

)∏

i≥1

(1− qi)−2.

We can now obtain an expression for U(q) using the following result.

2.5.2 Proposition. We have

U(q) + V (q) =
∏

i≥1

(1− qi)−2.

Proof. Let Un be the set of all unimodal sequences of weight n. We need to find a bijection
Dn → Un ∪ Vn. Such a bijection is given by

[
a1 a2 · · ·
b1 b2 · · ·

]
7→





[
a2 a3 · · ·

a1
b1 b2 · · ·

]
, if a1 ≥ b1

· · ·a2 a1 b1 b2 · · · , if b1 > a1
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2.5.3 Corollary. We have

U(q) =

(∑

n≥1

(−1)n−1q(
n+1

2 )

)∏

i≥1

(1− qi)−2.
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2.6 Involutions

Recall now the viewpoint of Section 1.1 that the best way to determine that two finite sets
have the same cardinality is to exhibit a bijection between them. We will show how to apply
this principle to the identity (2.5). (The seemingly more general (2.4) is done exactly the
same way.) As it stands this identity does not assert that two sets have the same cardinality.
Therefore we rearrange terms so that all signs are positive. Thus we wish to prove the
identity

f=(∅) +
∑

#Y odd

f≥(Y ) =
∑

#Y even

f≥(Y ), (2.30)

where f=(Y ) (respectively, f≥(Y )) denotes the number of objects in a set A having exactly
(respectively, at least) the properties in T ⊆ S. The left-hand side of (2.30) is the cardinality
of the set M ∪ N , where M is the set of objects x having none of the properties in S, and
N is the set of ordered triples (x, Y, Z), where x ∈ A has exactly the properties Z ⊇ Y with
#Y odd. The right-hand side of (2.30) is the cardinality of the set N ′ of ordered triples
(x′, Y ′, Z ′), where x′ ∈ A has exactly the properties Z ′ ⊇ Y ′ with #Y ′ even. Totally order
the set S of properties, and define σ : M ∪N → N ′ as follows:

σ(x) = (x, ∅, ∅), if x ∈M

σ(x, Y, Z) =





(x, Y − i, Z), if (x, Y, Z) ∈ N
and min Y = minZ = i

(x, Y ∪ i, Z), if (x, Y, Z) ∈ N
and minZ = i < minY.

It is easily seen that σ is a bijection with inverse

σ−1(x, Y, Z) =





x ∈M, if Y = Z = ∅

(x, Y − i, Z) ∈ N, if Y 6= ∅
and minY = minZ = i

(x, Y ∪ i, Z) ∈ N, if Z 6= ∅ and
minZ = i < minY
(where we set minY =∞ if Y = ∅).

This construction yields the desired bijective proof of (2.30).

Note that if in the definition of σ−1 we identify x ∈ M with (x, ∅, ∅) ∈ N ′ (so σ−1(x, ∅, ∅) =
(x, ∅, ∅)), then σ ∪ σ−1 is a function τ : N ∪N ′ → N ∪N ′ satisfying: (a) τ is an involution;
that is, τ 2 = id; (b) the fixed points of τ are the triples (x, ∅, ∅), so are in one-to-one
correspondence with M ; and (c) if (x, Y, Z) is not a fixed point of τ and we set τ(x, Y, Z) =
(x, Y ′, Z ′), then

(−1)#Y + (−1)#Y ′

= 0.
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Thus the involution τ selects terms from the right-hand side of (2.5) (or rather, terms from
the right-hand side of (2.5) after each f≥(Y ) is written as a sum (2.3)) that add up to the
left-hand side, and then τ cancels out the remaining terms.

We can put the preceding discussion in the following general context. Suppose that the finite
set X is written as a disjoint union X+∪X− of two subsets X+ and X−, called the “positive”
and “negative” parts of X, respectively. Let τ be an involution on X that satisfies:

a. If τ(x) = y and x 6= y, then exactly one of x, y belongs to X+ (so the other belongs to
X−).

b. If τ(x) = x then x ∈ X+.

If we define a weight function w on X by

w(x) =

{
1, x ∈ X+

−1, x ∈ X−,

then clearly

#Fix(τ) =
∑

x∈X
w(x), (2.31)

where Fix(τ) denotes the fixed point set of τ . Just as in the previous paragraph, the invo-
lution τ has selected terms from the right-hand side of (2.31) which add up to the left-hand
side, and has cancelled the remaining terms.

We now consider a more complicated situation. Suppose that we have another set X̃ that
is also expressed as a disjoint union X̃ = X̃+ ∪ X̃−, and an involution τ̃ on X̃ satisfying
(a) and (b) above. Suppose that we also are given a sign-preserving bijection f : X → X̃,

that is, f(X+) = X̃+ and f(X−) = X̃−. Clearly then #Fix(τ) = #Fix(τ̃ ) since #Fix(τ) =

#X+ − #X− and #Fix(τ̃) = #X̃+ − #X̃−. We wish to construct in a canonical way a
bijection g between Fix(τ) and Fix(τ̃). This construction is known as the involution principle
and is a powerful technique for converting non-combinatorial proofs into combinatorial ones.

The bijection g : Fix(τ) → Fix(τ̃) is defined as follows. Let x ∈ Fix(τ). It is easily seen,
since X is finite, that there is a nonnegative integer n for which

f(τf−1τ̃ f)n(x) ∈ Fix(τ̃). (2.32)

Define g(x) to be f(τf−1τ̃ f)n(x) where n is the least nonnegative integer for which (2.32)
holds.

We leave it to the reader to verify rigorously that g is a bijection from Fix(τ) to Fix(τ̃).
There is, however, a nice geometric way to visualize the situation. Represent the elements
of X and X̃ as vertices of a graph Γ. Draw an undirected edge between two distinct vertices
x and y if (1) x, y ∈ X and τ(x) = y; or (2) x, y ∈ X̃ and τ̃(x) = y; or (3) x ∈ X, y ∈ X̃,
and f(x) = y. Every component of Γ will then be either a cycle disjoint from Fix(τ) and
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Figure 2.2: An illustration of the involution principle

Fix(τ̃ ), or a path with one endpoint z in Fix(τ) and the other endpoint z̃ in Fix(τ̃ ). Then g
is defined by g(z) = z̃. See Figure 2.2.

There is a variation of the involution principle that is concerned with “sieve-equivalence.”
We will mention only the simplest case here; see Exercise 2.36 for further development.
Suppose that X and X̃ are (disjoint) finite sets. Let Y ⊆ X and Ỹ ⊆ X̃, and suppose that

we are given bijections f : X → X̃ and g : Y → Ỹ . Hence #(X − Y ) = #(X̃ − Ỹ ), and we

wish to construct an explicit bijection h between X − Y and X̃ − Ỹ . Pick x ∈ X − Y . As
in equation (2.32) there will be a nonnegative integer n for which

f(g−1f)n(x) ∈ X̃ − Ỹ . (2.33)

In this case n is unique since if x ∈ X̃ − Ỹ then g−1(y) is undefined. Define h(x) to be

f(g−1f)n(x) where n satisfies (2.33). One easily checks that h : X − Y → X̃ − Ỹ is a
bijection.

Let us consider a simple example of the bijection h : X − Y → X̃ − Ỹ .

2.6.1 Example. Let Y be the set of all permutations w ∈ Sn that fix 1, that is, w(1) = 1.

Let Ỹ be the set of all permutations w ∈ Sn with exactly one cycle. Thus #Y = #Ỹ =
(n− 1)!, so

#(Sn − Y ) = #(Sn − Ỹ ) = n!− (n− 1)!.

It may not be readily apparent, however, how to construct a bijection h between Sn − Y
and Sn − Ỹ . On the other hand, it is easy to construct a bijection g between Y and Ỹ ;
namely, if w = 1a2 · · ·an ∈ Y (where w is written as a word, i.e., w(i) = ai), then set
g(w) = (1, a2, . . . , an) (written as a cycle). Of course we choose the bijection f : Sn → Sn

to be the identity. Then equation (2.33) defines the bijection h : Sn − Y → Sn − Ỹ . For
example, when n = 3 we depict f by solid lines and g by broken lines in Figure 2.3. Hence
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123

132

231

312

321

(1)(2)(3)

(1)(23)

(12)(3)

(13)(2)

(132)

(123)

Figure 2.3: The bijection h : Sn − Y → Sn − Ỹ

(writing permutations in the domain as words and in the range as products of cycles),

h(213) = (12)(3)

h(231) = (1)(2)(3)

h(312) = (1)(23)

h(321) = (13)(2).

It is natural to ask here (and in other uses of the involution and related principles) whether
there is a more direct description of h. In this example there is little difficulty because Y
and Ỹ are disjoint subsets (when n ≥ 2) of the same set Sn. This special situation yields

h(w) =

{
w, if w 6∈ Ỹ

g−1(w), if w ∈ Ỹ . (2.34)

245



x

y

Figure 2.4: A lattice path in N2

2.7 Determinants

In Proposition 2.2.6 we saw that a determinant det[aij ]
n
0 , with aij = 0 if j < i − 1, can

be interpreted combinatorially using the Principle of Inclusion-Exclusion. In this section
we will consider the combinatorial significance of arbitrary determinants, by setting up a
combinatorial problem in which the right-hand side of equation (2.31) is the expansion of a
determinant.

We will consider lattice paths L = (v0, v1, . . . , vk) in N2, as defined in Section 1.2, with steps
vi−vi−1 = (1, 0) or (0,−1). We picture L by drawing an edge between vi−1 and vi, 1 ≤ i ≤ k.
For instance, the lattice path ((1, 4), (2, 4), (2, 3), (2, 2), (3, 2), (3, 1)) is drawn in Figure 2.4.
An n-path is an n-tuple L = (L1, . . . , Ln) of lattice paths. Let α, β, γ, δ ∈ Nn. Then L is of
type (α, β, γ, δ) if Li goes from (βi, γi) to (αi, δi). (Clearly then αi ≥ βi and γi ≥ δi.) The
n-path L is intersecting if for some i 6= j Li and Lj have a point in common; otherwise L

is nonintersecting. Define the weight of a horizontal step from (i, j) to (i + 1, j) to be the
indeterminate xj , and the weight Λ(L) of L to be the product of the weights of its horizontal
steps. For instance, the path in Figure 2.4 has weight x2x4.

If α = (α1, . . . , αn) ∈ Nn and w ∈ Sn, then let w(α) = (αw(1), . . . , αw(n)). Let A =
A(α, β, γ, δ) be the set of all n-paths of type (α, β, γ, δ), and let A = A(α, β, γ, δ) be the
sum of their weights. Consider a path from (βi, γi) to (αi, δi). Let m = αi − βi. For each
j satisfying 1 ≤ j ≤ m there is exactly one horizontal step of the form (j − 1 + βi, kj) →
(j + βi, kj). The numbers k1, . . . , km can be chosen arbitrarily provided

γi ≥ k1 ≥ k2 ≥ · · · ≥ km ≥ δi. (2.35)

Hence if we define
h(m; γi, δi) =

∑
xk1xk2 · · ·xkm ,

summed over all integer sequences (2.35), then

A(α, β, γ, δ) =

n∏

i=1

h(αi − βi; γi, δi). (2.36)

246



Figure 2.5: Three nonintersecting 2-paths

(In the terminology of Section 7.4, h(m; γi, δi) is the complete homogeneous symmetric func-
tion hm(xδi , xδi+1, . . . , xγi

.)

Now let B = B(α, β, γ, δ) be the set of all nonintersecting n-paths of type (α, β, γ, δ), and
let B = B(α, β, γ, δ) be the sum of their weights. For instance, let α = (2, 3), β = (1, 1),
γ = (2, 3), δ = (1, 0). Then B(α, β, γ, δ) = x2x

2
3 + x1x

2
3 + x1x2x3, corresponding to the

nonintersecting 2-paths shown in Figure 2.5.

2.7.1 Theorem. Let α, β, γ, δ ∈ Nn such that for w ∈ Sn, B(w(α), β, γ, w(δ)) is empty
unless w is the identity permutation. (For example, this condition occurs if αi < αi+1,
βi < βi+1, γi ≤ γi+1, and δi ≤ δi+1 for 1 ≤ i ≤ n− 1.) Then

B(α, β, γ, δ) = det[h(αj − βi; γi, δj)]n1 , (2.37)

where we set h(αj − βi; γi, δj) = 0 whenever there are no sequences (2.35).

Proof. When we expand the right-hand side of equation (2.37) we obtain

∑

w∈Sn

(sgnw)A(w(α), β, γ, w(δ)). (2.38)

Let Aw = A(w(α), β, γ, w(δ)). We will construct a bijection L→ L∗ from
(⋃

w∈Sn
Aw
)
−B

to itself satisfying:

a. L∗∗ = L; that is, ∗ is an involution

b. Λ(L∗) = Λ(L), that is, ∗ is weight-preserving

c. If L ∈ Au and L∗ ∈ Av then sgn u = −sgn v.

Then by grouping together terms of (2.38) corresponding to pairs (L,L∗) of intersecting n-
paths, we see that all terms cancel except for those producing the desired result B(α, β, γ, δ).

To construct the involution ∗, let L be an intersecting n-path. We need to single out some
canonically defined pair (Li, Lj) of paths from L that intersect, and then some canonically
defined intersection point (x, y) of these paths. One of many ways to do this is the following.
Let i be the least integer for which Li and Lk intersect for some k 6= i, and let x be the least
integer such that Li intersects some Lk with k > i at a point (x, y), and then of all such k
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let j be the minimum. Construct L∗
i by following Li to its first intersection point v = (x, y)

with Lj , and then following Lj to the end. Construct L∗
j similarly by following Lj to v and

then Li to the end. For k 6= i, j let L∗
k = Lk.

Property (a) follows since the triple (i, j, v) can be obtained from L∗ by the same rule that
L∗ is obtained from L. Property (b) is immediate since the totality of single steps in L and
L∗ is identical. Finally, v is obtained from u by multiplication by the transposition (i, j), so
(c) follows.

Theorem 2.7.1 has important applications in the theory of symmetric functions (see the first
proof of Theorem 7.16.1), but let us be content here with a simple example of its use.

2.7.2 Example. Let r, s ∈ N and let S be a subset of [0, r]× [0, s]. How many lattice paths
are there between (0, r) and (s, 0) that don’t intersect S? Call this number f(r, s, S). Let
S = {(a1, b1), . . . , (ak, bk)}, and set

α = (s, a1, . . . , ak), β = (0, a1, . . . , ak)

γ = (r, b1, . . . , bk), δ = (0, b1, . . . , bk).

Then f(r, s, S) = B(α, β, γ, δ), where we set each weight xm = 1. Now

h(αj − βi; γi, δj)|xm=1 =

(
αj + γi − βi − δj

αj − βi

)
.

Hence by Theorem 2.7.1,

f(r, s, S) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
r + s

r

) (
r + a1 − b1

a1

)
· · ·

(
r + ak − bk

ak

)

(
s− a1 + b1
s− a1

)
1 · · ·

(
ak − bk − a1 + b1

ak − a1

)

...

(
s− ak + bk
s− ak

) (
a1 − b1 − ak + bk

a1 − ak

)
· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where we set
(
i
j

)
= 0 if j < 0 or i − j < 0. When we expand this determinant we obtain

a formula for f(r, s, S) that can also be deduced directly from the Principle of Inclusion-
Exclusion. Indeed, by a suitable permutation of rows and columns the above expression
for f(r, s, S) becomes a special case of Proposition 2.2.6. (In its full generality, however,
Theorem 2.7.1 cannot be deduced from Proposition 2.2.6; indeed, the determinant (2.37)
will in general have no zero entries.)

248



NOTES

As P. Stein says in his valuable monograph [1.71], the Principle of Inclusion-Exclusion “is
doubtless very old; its origin is probably untraceable.” An extensive list of references is
given by Takács [2.22], and exact citations for results listed below without reference may be
found there. In probabilistic form, the Principle of Inclusion-Exclusion can be traced back
to A. de Moivre and less clearly to J. Bernoulli, and is sometimes referred to as “Poincaré’s
theorem.” The first statement in combinatorial terms may be due to C. P. da Silva and is
sometimes attributed to Sylvester.

Example 2.2.1 (the derangement problem) was first solved by P. R. de Montmort (in prob-
abilistic terms) and later independently investigated by Euler.

Example 2.2.4 (enumeration of permutations by descent set) was first obtained by MacMahon
[1.55, vol. 1, p. 190] and has been rediscovered several times since. Example 2.2.5 first
appears in Stanley [2.21]. The problème des ménages (or menage problem) (Example 2.3.3)
was suggested by Tait to Cayley and Muir, but they did not reach a definitive answer. The
problem was independently considered by Lucas and solved by him in a rather unsatisfactory
form. The elegant formula given in Corollary 2.3.5 is due to Touchard. For references to
more recent work see Comtet [2.3, p. 185] and Dutka [2.4]. The theory of rook polynomials
in general is due to Kaplansky and Riordan [2.13]; see Riordan [2.17, Chs. 7–8]. Ferrers
boards were first considered by D. Foata and M.-P. Schützenberger [2.5] and developed
further by Goldman, Joichi, and White [2.8]–[2.11]. The proof given here of Theorem 2.4.4
was suggested by P. Leroux. There have been many further developments in the area of
rook theory; see for instance Sjöstrand [2.18] and the references given there. The results of
Section 2.5 first appeared in Stanley [2.19, Ch. IV.3] and were restated in [2.20, §23].

The involution principle was first stated by Garsia and Milne [2.6], where it was used to give
a long-sought-for combinatorial proof of the Rogers-Ramanujan identities. (See Pak [1.62,
§7] for more information.) For further discussion of the involution principle, sieve equiva-
lence, and related results, see Cohen [2.2], Gordon [2.12], and Wilf [2.23]. The combinatorial
proof of the Principle of Inclusion-Exclusion given in Section 2.6 appears implicitly in Rem-
mel [2.16] and is made more explicit in Zeilberger [2.24]. Theorem 2.7.1 and its proof are
anticipated by Chaundy [2.1], Karlin and McGregor [2.14], and Lindström [2.15], though the
first explicit statement appears in a paper of Gessel and Viennot [2.7]. It was independently
rediscovered several times since the paper of Gessel and Viennot. Our presentation closely
follows that of Gessel and Viennot.
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EXERCISES FOR CHAPTER 2

1. [3] Explain why the Principle of Inclusion-Exclusion has the numerical value

8.53973422267356706546 · · · .

2. [2–]* Give a bijective proof of equation (2.24) or (2.25), i.e.,

∑

X

f=(X)x#X =
∑

Y

f≥(Y )(x− 1)#Y

or ∑

X

f=(X)(y + 1)#X =
∑

Y

f≥(Y )y#Y .

3. [2] Let S = {P1, . . . , Pn} be a set of properties, and let fk (respectively, f≥k) denote
the number of objects in a finite set A that have exactly k (respectively, at least k of
the properties. Show that

fk =

n∑

i=k

(−1)i−k
(
i

k

)
gi, (2.39)

and

f≥k =
n∑

i=k

(−1)i−k
(
i− 1

k − 1

)
gi, (2.40)

where
gi =

∑

T⊆S
#T=i

f≥(T ).

4. (a) [2] Let A1, . . . , An be subsets of a finite set A, and define Sk, 0 ≤ k ≤ n, by (2.6).
Show that

Sk − Sk+1 + · · ·+ (−1)n−kSn ≥ 0, 0 ≤ k ≤ n. (2.41)

(b) [2+] Find necessary and sufficient conditions on a vector (S0, S1, . . . , Sn) ∈ Nn+1

so that there exist subsets A1, . . . , An of a finite set A satisfying (2.6).

5. (a) [2] Let

0→ Vn
∂n→ Vn−1

∂n−1−→ · · · ∂1→ V0
∂0→W → 0 (2.42)

be an exact sequence of finite-dimensional vector spaces over some field; that is,
the ∂j ’s are linear transformations satisfying im ∂j+1 = ker ∂j (with ∂n injective
and ∂0 surjective). Show that

dimW =

n∑

i=0

(−1)i dimVi. (2.43)
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(b) [2] Show that for 0 ≤ j ≤ n,

rank ∂j =
n∑

i=j

(−1)i−j dimVi, (2.44)

so in particular the quantity on the right-hand side is nonnegative.

(c) [2] Suppose that we are given only that equation (2.42) is a complex ; that is,
∂j∂j+1 = 0 for 0 ≤ j ≤ n − 1, or equivalently im ∂j+1 ⊆ ker ∂j . Show that if
equation (2.44) holds for 0 ≤ j ≤ n, then (2.42) is exact.

(d) [2+] Let A1, . . . , An be subsets of a finite set A, and for T ⊆ [n] set AT =
⋂
i∈T Ai.

In particular, A∅ = A. Let VT be the vector space (over some field) with a basis
consisting of all symbols [a, T ] where a ∈ AT . Set Vj =

⊕
#T=j VT , and define for

1 ≤ i ≤ n linear transformations ∂j : Vj → Vj−1 by

∂j [a, T ] =

j∑

i=1

(−1)i−1[a, T − ti], (2.45)

where the elements of T are t1 < · · · < tj . Also, define W to be the vector space
with basis {[a] : a ∈ Ā1 ∩ · · · ∩ Ān}, and define ∂0 : V0 →W by

∂0[a, ∅] =

{
[a], if a ∈ Ā1 ∩ · · · ∩ Ān
0, otherwise.

(Here Āi = A−Ai.) Show that (2.42) is an exact sequence.

(e) [1+] Deduce equation (2.7) from (a) and (d).

(f) [1+] Deduce Exercise 2,4(a) from (b) and (d).

6. In this exercise we consider a multiset generalization of the Principle of Inclusion-
Exclusion.

(a) [2] Let N be a finite multiset, say N = {xa11 , . . . , x
ak
k }. For each 1 ≤ r ≤ k and

1 ≤ i ≤ ar, let Pir be some property that each of the elements of a set A may
or may not have, with the condition that if 1 ≤ i ≤ j ≤ ar then any object with
property Pjr also has Pir. (For instance, if A is a set of integers, then Pir could be
the property of being divisible by ri.) For every submultiset M ⊆ N , let f=(M)
be the number of objects in A with exactly the properties in M ; in other words,
if M = {xb11 , . . . , xbkk }, then f=(M) counts those objects in A which have property
Pbr ,r but fail to have Pbr+1,r for 1 ≤ r ≤ k. Similarly define f≥(M), so

f≥(M) =
∑

Y⊇M
f=(Y ). (2.46)

Show that
f=(M) =

∑

Y⊇M
Y−M is a set

(−1)#(Y−M)f≥(Y ). (2.47)

254



Dually, if

f≤(M) =
∑

Y⊆M
f=(Y ), (2.48)

then
f=(M) =

∑

Y⊆M
M−Y is a set

(−1)#(M−Y )f≤(Y ). (2.49)

(b) [2] Suppose that we encode the multiset N = {xa11 , . . . , x
ak
k } by the integer

n = pa11 · · · pak
k , where p1, . . . , pk are distinct primes. Thus submultisets M of

N correspond to (positive) divisors d of n. What do equations (2.48) and (2.49)
become in this setting?

7. [2] Fix a prime power q. Prove equation (1.103), namely, the number β(n) of monic
irreducible polynomials of degree n over the field Fq is given by

β(n) =
1

n

∑

d|n
µ(d)qn/d.

(Use Exercise 2.6(b).)

8. (a) [3–] Give a direct combinatorial proof of equation (2.13); that is,

D(n) = nD(n− 1) + (−1)n.

(b) [2] Let E(n) denote the set of permutations w ∈ Sn whose first ascent is in an
even position (where we always count n as an ascent). For instance, E(3) =
{213, 312}, and E(4) = {2134, 2143, 3124, 3142, 3241, 4123, 4132, 4231, 4321}. Set
E(n) = #E(n). Show that E(n) = nE(n − 1) + (−1)n. Hence (since E(1) =
D(1) = 0) we have E(n) = D(n).

(c) [2+] Give a bijection between the permutations being counted by E(n) and the
derangements of [n].

9. [2–] Prove the formula ∆k0d = k!S(d, k) of Proposition 1.9.2(c) (equivalent to equa-
tion (1.94a)) using the Principle of Inclusion-Exclusion.

10. (a) [1+]* How many functions f : [n]→ [n] have no fixed points?

(b) [2] Let E(n) be the number obtained in (a). Show that limn→∞E(n)/n! = 1/e,
the same as limn→∞D(n)/n! (Example 2.2.1). Which of D(n)/n! and E(n)/n!
gives the better approximation to 1/e?

11. [3–] Let a1, . . . , ak be positive integers with
∑
ai = n. Let S = {a1, a1 + a2, . . . , a1 +

a2 + · · ·+ ak−1}. Show that the number of derangements in Sn with descent set S is
the coefficient of xa11 · · ·xak

k in the expansion of

1

(1 + x1) · · · (1 + xk)(1− x1 − · · · − xk)
.
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12. [2+] Let α = (α1, . . . , αk) ∈ Nk, and let Mα be the multiset {1α1, . . . , kαk}. A de-
rangement of Mα is a permutation a1a2 · · ·an (where n =

∑
αi) of Mα that disagrees

in every position with the permutation we get by listing the elements of M in weakly
increasing order. For instance, the multiset {1, 22, 3} has the two derangements 2132
and 2312. Let D(α) denote the number of derangments of Mα. Show that

∑

α∈Nk

D(α)xα =
1

(1 + x1) · · · (1 + xk)
(
1− x1

1+x1
− · · · − xk

1+xk

)

=
1

1−∑S(#S − 1)
∏

i∈S xi
,

where S ranges over all nonempty subsets of [n].

13. Let w = a1a2 · · ·an ∈ Sn. The connectivity set C(w) of w is defined by

C(w) = {i : aj < ak for all j ≤ i < k} ⊆ [n− 1].

In other words, i ∈ C(w) if {a1, . . . , ai} = [i]. For instance, C(2314675) = {3, 4}.
(Exercise 1.128(a) deals with the enumeration of permutations w ∈ Sn satisfying
C(w) = ∅.)

(a) [2] If S = {i1, . . . , ik}< ⊂ [n− 1], then let

η(S) = i1!(i2 − i1)! · · · (ik − ik−1)!(n− ik)!.
Hence by Proposition 1.4.1 we have α(S) = n!/η(S), the number of permutations
w ∈ Sn with descent set D(w) ⊆ S. Show that

#{w ∈ Sn : S ⊆ C(w)} = η(S).

(b) [2+] Given S, T ⊆ [n− 1], let S = [n− 1]− S, and define

XST = #{w ∈ Sn : C(w) = S, D(w) = T}

ZST = #{w ∈ Sn : S ⊆ C(w), T ⊆ D(w)}
=

∑

S′⊇S
T ′⊇T

XS′T ′ .

For instance, for n = 4 we have the following table of XST .

S\T ∅ 1 2 3 12 13 23 123
∅ 1
1 0 1
2 0 0 1
3 0 0 0 1
12 0 1 1 0 1
13 0 0 0 0 0 1
23 0 0 1 1 0 0 1
123 0 1 2 1 2 4 2 1
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Show that

ZST =

{
η(S)/η(T ), if S ⊇ T,

0, otherwise.
(2.50)

(c) [2–] Let M = (MST ) be the matrix whose rows and columns are indexed by
subsets S, T ⊆ [n− 1] (taken in some order), with

MST =

{
1, if S ⊇ T,
0, otherwise.

Let D = (DST ) be the diagonal matrix with DSS = η(S). Let Z = (ZST ), i.e.,
the matrix whose (S, T )-entry is ZST . Show that equation (2.50) can be restated
as follows:

Z = DMD−1.

Similarly show that if X = (XST ), then

MXM = Z.

(d) [1+] For an invertible matrix A = (AST ), write A−1
ST for the (S, T )-entry of the in-

verse matrix A−1. Show that the Principle of Inclusion-Exclusion (Theorem 2.1.1)
is equivalent to

M−1
ST = (−1)#S+#TMST .

(e) [2–] Define the matrix Y = (YST ) by

YST = #{w ∈ Sn : S ⊆ C(w), T = D(w)}.

Show that Y = MX = ZM−1.

(f) [2+] Show that the matrices Z, Y,X have the following inverses:

Z−1
ST = (−1)#S+#TZST

Y −1
ST = (−1)#S+#T#{w ∈ Sn : S = C(w), T ⊆ D(w)}

X−1
ST = (−1)#S+#TXST .

14. (a) [2+]* Let Ak(n) denote the number of k-element antichains in the boolean algebra
Bn, i.e., the number of subsets S of 2[n] such that no element of S is a subset of
another. Show that

A1(n) = 2n

A2(n) =
1

2
(4n − 2 · 3n + 2n)

A3(n) =
1

6
(8n − 6 · 6n + 6 · 5n + 3 · 4n − 6 · 3n + 2 · 2n)

A4(n) =
1

24
(16n − 12 · 12n + 24 · 10n + 4 · 9n − 18 · 8n

+6 · 7n − 36 · 6n + 11 · 4n − 22 · 3n + 6 · 2n) .
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(b) [2+]* Show that for fixed k ∈ P there exist integers ak,2, ak,3, . . . , ak,2k such that

Ak(n) =
1

k!

2k∑

i=2

ak,ii
n.

Show in particular that ak,2k = 1, ak,i = 0 if 3 · 2k−2 < i < 2k, and ak,3·2k−2 =
k(k − 1).

15. (a) [2–] Given a permutation w ∈ S3, let Pw denote the corresponding permutation
matrix; that is, the (i, j)-entry of Pw is equal to δw(i),j . Let αw, where w ∈ S3,
be integers satisfying

∑
w αwPw = 0. Show that

α123 = α231 = α312 = −α132 = −α213 = −α321.

(b) [2] Let Hn(r) denote the number of n× n N-matrices A for which every row and
column sums to r. Assume known the theorem that A is a sum of permutation
matrices. Deduce from this result (for the case n = 3) and (a) that

H3(r) =

(
r + 5

5

)
−
(
r + 2

5

)
. (2.51)

(c) [3–] Give a direct combinatorial proof that

H3(r) =

(
r + 4

4

)
+

(
r + 3

4

)
+

(
r + 2

4

)
.

16. [2] Fix k ≥ 1. How many permutations of [n] have no cycle of length k? If fk(n)
denotes this number, then compute limn→∞ fk(n)/n!.

17. (a) [2] Let f2(n) be the number of permutations of the integers modulo n that consist
of a single cycle (a1, a2, . . . , an) and for which ai +1 6≡ ai+1 (modn) for all i (with
an+1 = a1). For example, for n = 4 there is one such permutation; namely,
(1, 4, 3, 2). Set f2(0) = 1 and f2(1) = 0. Use the Principle of Inclusion-Exclusion
to find a formula for f2(n).

(b) [1+] Write the answer to (a) in the form ∆ng(0) for some function g.

(c) [2–] Find the generating function
∑

n≥0 f2(n)xn/n!.

(d) [2–] Express the derangment number D(n) in terms of the numbers f2(k).

(e) [2–] Show that

lim
n→∞

f2(n)

(n− 1)!
=

1

e
.

(f) [3–] Generalize (e) to show that f2(n) has the asymptotic expansion

f2(n)

(n− 1)!
∼ 1

e

(
1− 1

n
+

1

n3
+

1

n4
− 2

n5
− 9

n6
+ · · ·+ ai

ni
+ · · ·

)
, (2.52)
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where
∑

i≥0 aix
i/i! = exp(1 − ex). By definition, equation (2.52) means that for

any k ∈ N,

lim
n→∞

nk

[
f2(n)

(n− 1)!
− 1

e

k∑

i=0

ai
ni

]
= 0.

18. [3] Let k ≥ 2. Let fk(n) be the number of cycles as in Exercise 2.17 such that for no i
do we have

w(i+ j) ≡ w(i) + j (modn), for all j = 1, 2, . . . , k − 1,

where the argument i+ j is taken modulo n. Use the Principle of Inclusion-Exclusion
to show that

f3(n)

(n− 1)!
= 1− 1

n
− 3

2

1

n2
− 14

3

1

n3
+O(n−4)

f4(n)

(n− 1)!
= 1− 1

n2
− 5

n3
− 29

2

1

n4
+O(n−5)

fk(n)

(n− 1)!
= 1− 1

nk−2
− (k − 2)(k + 1)

2

1

nk−1

−k(k + 1)(3k2 − 5k − 10

24

1

nk
+O(n−k−1),

for fixed k ≥ 5.

In particular, for fixed k ≥ 3 we have limn→∞ fk(n)/(n− 1)! = 1.

19. [2] Suppose that 2n persons are sitting in a circle. In how many ways can they form n
pairs if no two adjacent persons can form a pair? Express your answer as a finite sum.

20. [2] Call two permutations of the 2n-element set S = {a1, a2, . . . , an, b1, b2, . . . , bn}
equivalent if one can be obtained from the other by interchanges of consecutive el-
ements of the form aibi or biai. For example, a2b3a3b2a1b1 is equivalent to itself and to
a2a3b3b2a1b1, a2b3a3b2b1a1, and a2a3b3b2b1a1. How many equivalence classes are there?

21. (a) [2+]* Given numbers (or elements of a commutative ring with 1) ai for i ∈ Z,
with ai = 0 for i < 0 and a0 = 1, let f(k) = det[aj−i+1]

k
1. In particular, f(0) = 1.

Show that ∑

k≥0

f(k)xk =
1

1− a1x+ a2x2 − · · · .

(b) [2] Suppose that in (a) we drop the condition a0 = 1, say a0 = α. Deduce from
(a) that

∑

k≥0

f(k)xk =
1

1 +
∑

i≥1(−1)iαi−1aixi
.
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(c) [2+] Suppose that in (b) we let the first row of the matrix be arbitrary, i.e, let
Mk = (mij)

k
1 be the k × k matrix defined by

m1j = bj

mij = aj−i+1, i ≥ 2,

where a0 = α and ai = 0 for i < 0. Let g(k) = detMk. Show that

∑

k≥1

g(k)xk =

∑
j≥1(−1)j−1αj−1bjx

j

1 +
∑

i≥1(−1)iαi−1aixi
.

(d) [2] Fix 0 < a ≤ d. Let β(k) = βa+kd(a, a + d, a + 2d, ..., a + (k − 1)d). Deduce
from equation (2.16) that

∑

k≥0

β(k)
xk

(a+ kd)!
=

∑

j≥0

(−1)j
xj

(a+ jd)!

∑

i≥0

(−1)i
xi

(id)!

.

Give a q-analogue based on Example 2.2.5.

(e) [2*] Suppose that in Proposition 2.2.6 the function e(i, j) has the form

e(i, j) = αj−i

for certain numbers αk, with α0 = 1 and αk = 0 for k < 0. Show that f=(S) is
equal to the coefficient of xn+1 in the power series

h(n)(1− α1x+ α2x
2 − α3x

3 + · · · )−1.

22. (a) [2+] Let E2n denote the number of alternating permutations w ∈ S2n. Thus by
Proposition 1.6.1 we have

(∑

n≥0

E2n
xn

n!

)(
1− x2

2!
+
x4

4!
− · · ·

)
= 1.

Equating coefficients of x2n/(2n)! on both sides gives

E2n =

(
n

2

)
E2n−2 −

(
n

4

)
E2n−4 +

(
n

6

)
E2n−6 − · · · . (2.53)

Give a sieve-theoretic proof of equation (2.53).

(b) [2+] State and prove a similar result for E2n+1.

23. (a) [2+] Give a sieve-theoretic proof of Exercise 1.61(c), i.e., if f(n) is the number of
permutations w ∈ Sn with no proper double descents, then

∑

n≥0

f(n)
xn

n!
=

1
∑

j≥0

(
x3j

(3j)!
− x3j+1

(3j + 1)!

) .
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(b) [2+]* Generalize (a) as follows. Let fr(n) be the number of permutations w ∈ Sn
with no r consecutive descents (where n is not considered a descent). Give a
sieve-theoretic proof that

∑

n≥0

fr(n)
xn

n!
=

1
∑

j≥0

(
x(r+1)j

((r + 1)j)!
− x(r+1)j+1

((r + 1)j + 1)!

) .

24. [2+]* Fix j, k ≥ 1. For n ≥ 0 let f(n) be the number of integer sequences a1, a2, . . . , an
such that 1 ≤ ai ≤ k for 1 ≤ i ≤ n, and ai ≥ ai−1 − j for 2 ≤ i ≤ n. Give a
sieve-theoretic proof that

F (x) :=
∑

n≥0

f(n)xn =
1

∑

i≥0

(−1)i
(
k − j(i− 1)

i

)
xi
.

(Note that the denominator is actually a finite sum.)

25. (a) [2]* Let fi(m,n) be the number of m × n matrices of 0’s and 1’s with at least
one 1 in every row and column, and with a total of i 1’s. Use the Principle of
Inclusion-Exclusion to show that

∑

i

fi(m,n)ti =
n∑

k=0

(−1)k
(
n

k

)
((1 + t)n−k − 1)m. (2.54)

(b) [2]* Show that

∑

m,n≥0

∑

i≥0

∑

i≥0

fi(m,n)yi
xmyn

m!n!
= e−x−y

∑

i≥0

∑

j≥0

(1 + t)ij
xiyj

i!j!
.

Note that this formula, unlike equation (2.54), exhibits the symmetry between m
and n.

26. [2+]* Let π ∈ Πn, the set of partitions of [n]. Let S(π, r) denote the number of σ ∈ Πn

such that |σ| = r and #(A ∩ B) ≤ 1 for all A ∈ π and B ∈ σ. (This last condition
is equivalent to π ∧ σ = 0̂ in the lattice structure on Πn defined in Example 3.10.4.)
Show that

S(π, r) =
1

r!

r∑

i=0

(
r

i

)
(−1)r−i

∏

A∈π
(i)#A

=
1

r!
∆r
∏

A∈π
(n)#A|n=0 .
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27. (a) [3–] Let F be a forest, with ℓ = ℓ(F ) components, on the vertex set [n]. We say
that F is rooted if we specify a root vertex for each connected component of F .
Thus if c1, . . . , cℓ are the number of vertices of the components of F (so

∑
ci = n),

then the number p(F ) of ways to root F is c1c2 · · · cℓ. Show that the number of
k-component rooted forests on [n] that contain F is equal to

p(F )

(
ℓ− 1

ℓ− k

)
nℓ−k.

(b) [2+] Given any graph G on [n] with no multiple edges, define the polynomial

P (G, x) =
∑

F

xℓ(F )−1, (2.55)

summed over all rooted forests F on [n] contained in G. Let G denote the com-
plement of G; that is, {i, j} ∈

(
[n]
2

)
is an edge of G if and only if {i, j} is not

an edge of G. Use (a) and the Principle of Inclusion-Exclusion to show that

P (G, x) = (−1)n−1P (G,−x− n). (2.56)

In particular, the number c(G) of spanning trees of G (i.e., subgraphs of G that
are trees and that use all the vertices of G) is given by

c(G) = (−1)n−1P (G,−n)/n. (2.57)

(c) [2] The complete graph Kn has vertex set [n] and an edge between any two distinct
vertices (so

(
n
2

)
edges in all). The complete bipartite graph Kr,s has vertex set

A∪B, where A and B are disjoint with #A = r and #B = s, and with one edge
between each vertex of A and each vertex of B (so rs edges in all). Use (b) to
find the number of spanning trees of Kn and Kr,s.

28. [3] Let r ≥ 1. An r-stemmed V -partition of n is an array



b1 b2 b3 · · ·
a1 a2 · · · ar

c1 c2 c3 · · ·




of nonnegative integers satisfying a1 ≥ a2 ≥ · · · ≥ ar ≥ b1 ≥ b2 ≥ b3 ≥ · · · , ar ≥ c1 ≥
c2 ≥ c3 ≥ · · · , and

∑
ai +

∑
bi +

∑
ci = n. Hence a 1-stemmed V -partition is just a

V -partition. Let vr(n) denote the number of r-stemmed V -partitions of n. Show that

∑

n≥0

vr(n)xn =
pr(x)T (x)− qr(x)

(1− x)(1− x2) · · · (1− xr−1)
∏

i≥1(1− xi)2
,

where

p1(x) = 1, p2(x) = 2, q1(x) = 0, q2(x) = 1

pr(x) = 2pr−1(x) + (xr−2 − 1)pr−2(x), r > 2

qr(x) = 2qr−1(x) + (xr−2 − 1)qr−2(x), r > 2

T (x) =
∑

i≥0

(−1)ix(
i+1
2 ).
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29. (a) [2]* A concave composition of n is a nonnegative integer sequence a1 > a2 >
· · · > ar = br < br−1 < · · · < b1 such that

∑
(ai + bi) = n. For instance, the eight

concave compositions of 6 are 33, 5001, 4002, 3003, 2112, 2004, 1005, and 210012.
Let f(n) denote the number of concave partitions of n. Give a combinatorial
proof that f(n) is even for n ≥ 1.

(b) [5–] Set

F (q) =
∑

n≥0

f(n)qn = 1 + 2q2 + 2q3 + 4q4 + 4q5 + 8q6 + · · · .

Give an Inclusion-Exclusion proof, analogous to the proof of Proposition 2.5.1,
that

F (q) =
1−∑n≥1 q

n(3n−1)/2(1− qn)
(1− q)(1− q2)(1− q3) · · · .

30. [3] Give a sieve-theoretic proof of the Pentagonal Number Formula (Proposition 1.8.7),
viz.,

1 +
∑

n≥1(−1)n[xn(3n−1)/2 + xn(3n+1)/2]∏
i≥1(1− xi)

= 1.

Your sieve should start with all partitions of n ≥ 0 and sieve out all but the empty
partition of 0.

31. [3–] Give cancellation proofs, similar to our proof of the Pentagonal Number Formula
(Proposition 1.8.7), of the two identities of Exercise 1.91(c), viz.,

∏

k≥1

1− qk
1 + qk

=
∑

n∈Z

(−1)nqn
2

∏

k≥1

1− q2k

1− q2k−1
=

∑

n≥0

q(
n+1

2 ).

32. [3–] Give a cancellation proof of the identity

n∑

k=0

(−1)k
(

n

k

)
=

{
(1− q)(1− q3) · · · (1− qn−1), n even

0, n odd.

33. [2–] Deduce from equation (2.21) that

det

[(
n − i

j − i + 1

)]n−1

0

= q(
n
2). (2.58)

34. A tournament T on the vertex set [n] is a directed graph on [n] with no loops such
that each pair of distinct vertices is joined by exactly one directed edge. The weight
w(e) of a directed edge e from i to j (denoted i → j) is defined to be xj if i < j and
−xj if i > j. The weight of T is defined to be w(T ) =

∏
ew(e), where e ranges over

all edges of T .
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(a) [2–] Show that ∑

T

w(T ) =
∏

1≤i<j≤n
(xj − xi), (2.59)

where the sum is over all 2(n
2) tournaments on [n].

(b) [2–] The tournament T is transitive if there is a permutation z ∈ Sn for which
z(i) < z(j) if and only if i→ j. Show that a non-transitive tournament contains
a 3-cycle, i.e., a triple (t, u, v) of vertices for which t→ u→ v → t.

(c) [1+] If T and T ′ are tournaments on [n] then write T ↔ T ′ if T ′ can be obtained
from T by reversing a 3-cycle; that is, replacing the edges t → u, u → v, v → t
with u → t, v → u, t → v, and leaving all other edges unchanged. Show that
w(T ′) = −w(T ).

(d) [2] Show that if T ↔ T ′ then T and T ′ have the same number of 3-cycles.

(e) [2+] Deduce from (a)–(d) that

det
[
xj−1
i

]n
1

=
∏

1≤i<j≤n
(xj − xi),

by cancelling out all terms in the left-hand side of (2.59) except those correspond-
ing to transitive T .

35. (a) [2] Let f(x1, . . . , xn) be a homogeneous polynomial of degree n over a field K.
Show that

[x1x2 · · ·xn]f(x1, . . . , xn) =
∑

(ǫ1,...,ǫn)∈{0,1}n

(−1)n−
P

ǫif(ǫ1, . . . , ǫn). (2.60)

(Regard each ǫi in the exponent of −1 as an integer, and in the argument of f as
an element of K.)

(b) [2] Let A = (aij) be an n× n matrix. The permanent of A is defined by

per(A) =
∑

w∈Sn

a1,w(1)a2,w(2) · · ·an,w(n).

In other words, the formula for per(A) is the same as the expansion of det(A) but
with all signs positive. Show that

per(A) =
∑

S⊆[n]

(−1)n−#S
n∏

i=1

∑

j∈S
aij . (2.61)

36. [3–] Let A1, . . . , An be subsets of a finite set A, and B1, . . . , Bn subsets of a finite set
B. For each subset S of [n], let AS =

⋂
i∈S Ai and BS =

⋂
i∈S Bi. Given bijections

fS : AS → BS for each S ⊆ [n], construct an explicit bijection h : A−⋃n
i=1Ai → B −⋃n

i=1Bi. Your definition of h should depend only on the fS’s, and not on some ordering
of the elements of A or on the labeling of the subsets A1, . . . , An and B1, . . . , Bn.
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37. [3–]* Given a, b ∈ P with a < b, let C(b− a) denote the number of lattice paths in Z2

from (2a, 0) to (2b, 0) with steps (1, 1) or (1,−1) that never pass below the x-axis. (It
follows from Corollary 6.2.3(iv) that C(b−a) is the Catalan number 1

b−a+1

(
2(b−a)
b−a

)
, but

this fact is irrelevant here.) Now given {a1, a2, . . . , a2n}< ⊂ Z, let C(a1, a2, . . . , a2n)
denote the number of ways to connect the points (2a1, 0), (2a2, 0),. . . , (2a2n, 0) with
n pairwise disjoint lattice paths L1, . . . , Ln of the type just described. (Thus each Li
connects some (2aj, 0) to some (2ak, 0), j 6= k. If i 6= j then Li and Lj do not intersect,
including endpoints, so each (2ai, 0) is an endpoint of exactly one Li.)

Now given a triangular array A = (aij) with 1 ≤ i < j ≤ 2n, define the pfaffian of A
by

Pf(A) =
∑

ε(i1, j1, . . . , in, jn)ai1j1 · · ·ainjn,
where the summation is over all partitions {{i1, j1}<, . . . , {in, jn}<} of [2n] into 2-
element blocks, and where ε(i1, j1, . . . , in, jn) denotes the sign of the permutation (writ-
ten in two-line form) (

1 2 · · · 2n− 1 2n
i1 j1 · · · in jn

)
.

(It is easy to see that ε(i1, j1, . . . , in, jn) does not depend on the order of the n blocks.)
Give a proof analogous to that of Theorem 2.7.1 of the formula

C(a1, a2, . . . , a2n) = Pf(C(aj − ai)).

For instance,

C(0, 3, 5, 6) = Pf

∣∣∣∣∣∣

C(3) C(5) C(6)
C(2) C(3)

C(1)

∣∣∣∣∣∣

= Pf

∣∣∣∣∣∣

5 42 132
2 5

1

∣∣∣∣∣∣

= 5 · 1 + 132 · 2− 42 · 5
= 59.
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SOLUTIONS TO EXERCISES

1. We have

Principle of Inclusion-Exclusion = PIE

= πe

= (3.141592653 · · · )(2.718281828 · · · )
= 8.53973422267356706546 · · · .

3. We have

n∑

i=k

(−1)i−k
(
i

k

)
gi =

n∑

i=k

(−1)i−k
(
i

k

) ∑

T⊆S#T=i

f≥(T )

=

n∑

i=k

(−1)i−k
(
i

k

) ∑

T⊆R⊆S
#T=i

f=(R)

=
∑

R⊆S
f=(R)

∑

T⊆R
(−1)#T−k

(
#T

k

)
.

If #R = r then the inner sum is equal to

r∑

j=0

(−1)j−k
(
r

j

)(
j

k

)
=

(
r

k

) r∑

j=0

(−1)j−k
(
r − k
r − j

)
= δkr,

and the proof of equation (2.39) follows. The sum (2.40) is evaluated similarly. An
extensive bibliography appears in Takács [2.22].

4. (a) If we regard Ai as the set of elements having property Pi, then

AT = f≥(T ) =
∑

Y⊇T
f=(Y ).

Hence

Sk − Sk−1 + · · ·+ (−1)n−kSn =
∑

#T≥k
(−1)#T−kf≥(T )

=
∑

#T≥k

∑

Y⊇T
(−1)#T−kf=(Y )

=
∑

#Y≥k
f=(Y )

∑

T⊆Y
#T≥k

(−1)#T−k

=
∑

#Y≥k
f=(Y )

#Y∑

i=k

(−1)i−k
(

#Y

i

)
.
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It is easy to see that
∑m

i=k(−1)i−k
(
m
i

)
=
(
m−1
k−1

)
≥ 0. Since f=(Y ) ≥ 0, equa-

tion (2.41) follows.

Setting

S = f=(∅) = #(Ā1 ∩ · · · ∩ Ān) = S0 − S1 + · · ·+ (−1)nSn,

the inequality (2.41) can be rewritten

S ≥ 0

S ≤ S0

S ≥ S0 − S1

S ≤ S0 − S1 + S2

...

In other words, the partial sums S0 − S1 + · · ·+ (−1)kSk successively overcount
and undercount the value of S. In this form, equation (2.41) is due to Carlo
Bonferroni (1892–1960), Pubblic. Ist. Sup. Sc. Ec. Comm. Firenze 8 (1936), 1–
62. These inequalities sometimes make it possible to estimate S accurately when
not all the Si’s can be computed explicitly.

(b) Answer:
∑k

i=1(−1)i−k
(
i
k

)
Si ≥ 0, 0 ≤ k ≤ n.

5. (a) The most straightforward proof is by induction on n, the case n = 0 being trivial
(since when n = 0 exactness implies that W ∼= V0). The details are omitted.

(b) The sequence

0→ Vn
∂n→ Vn−1

∂n−1−→ · · · ∂j+1−→ Vj
∂j→ im ∂j → 0

is exact. But dim(im ∂j) = rank ∂j , so the proof follows from (a).

(c) By equation (2.44) we have dimVj = rank ∂j + rank ∂j+1. On the other hand,
rank ∂j+1 = dim(im ∂j+1) and rank ∂j = dimVj − dim(ker ∂j), so dim(im ∂j+1) =
dim(ker ∂j). Since im ∂j+1 ⊆ ker ∂j , the proof follows.

(d) For fixed a ∈ A let V a
T be the span of the symbols [a, T ] if a ∈ AT ; otherwise

V a
T = 0. Let V a

j =
⊕

#T=j V
a
T , and let W a be the span of the single element

[a] if a ∈ Ā1 ∩ · · · ∩ Ān; otherwise W a = 0. Then ∂j : V
a
j → V a

j−1, j ≥ 1, and
∂0 : V a

0 → W a. (Thus the sequence (2.42) is the direct sum of such sequences for
fixed a.) From this discussion it follows that we may assume A = {a}.
Clearly ∂0 is surjective, so exactness holds at W . It is straightforward to check
that ∂j∂j+1 = 0, so (2.42) is a complex. Since A = {a} we have dimVj =

(
n
j

)
and∑n

i=j(−1)i−j dimVi =
(
n−1
j−1

)
. There are several ways to show that rank ∂j =

(
n−1
j−1

)
,

so the proof follows from (c).

There are many other proofs, whose accessibility depends on background. For
instance, the complex (2.42) in the case at hand (with A = {a}) is the tensor

product of the complexes Ci : 0→ Ui
∂0→W → 0, where Ui is spanned by [a, {ti}].

Clearly each Ci is exact; hence so is (2.42). (The definition (2.45) was not plucked
out of the air; it is a Koszul relation, and (2.42) (with A = {a}) is a Koszul com-
plex. See almost any textbook on homological algebra for further information.).
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(e,f) Follows from dimVT = #AT , whence dimVj = Sj .

6. (a) Straightforward generalization of Theorem 2.1.1.

(b) We obtain the classical Möbius inversion formula (see Example 3.8.4). More
specifically, let Dn denote the set of all divisors of n, and let f, g : Dn → K. Equa-
tions (2.48) and (2.49) then assert that the following two formulas are equivalent:

g(m) =
∑

d|m
f(d), for all m|n

f(m) =
∑

d|m
µ(m/d)g(d), for all m|n. (2.62)

7. Each element α ∈ Fqn generates a subfield Fq(α) of order qd for some d|n. Thus α is a
zero of a unique monic irreducible polynomial fα(x) of degree d over Fq. Every such
polynomial has d distinct zeros, all belonging to Fqn. Hence

qn =
∑

d|n
dβ(d).

Möbius inversion (see equation (2.62)) gives

nβ(n) =
∑

d|n
µ(n/d)qd =

∑

d|n
µ(d)qn/d.

8. (a) See J. B. Remmel, European J. Combinatorics 4 (1983), 371–374, and H. S. Wilf,
Mathematics Magazine 57 (1984), 37–40.

(b) Note that the last entry an of a permutation w = a1 · · ·an ∈ Sn has no ef-
fect on the location of the first ascent unless w = n, n − 1, . . . , 1, in which case
the contribution to E(n) is (−1)n. See J. Désarménien, Sem. Lotharingien de
Combinatoire (electronic) 8 (1983), B08b; formerly Publ. I.R.M.A. Strasbourg,
229/S-08, 1984, pp. 11–16. For a generalization, see J. Désarménien and M. L.
Wachs, Sem. Lotharingien de Combinatoire (electronic) 19 (1988), B19a; formerly
Publ. I.R.M.A. Strasbourg, 361/S-19, 1988, pp. 13–21. See also Exercise 7.65 for
a related result dealing with symmetric functions.

Note. We can also see that E(n) = D(n) by noting that the number of permu-

tations w ∈ Sn whose first ascent is in position k is n!
(

1
k!
− 1

(k+1)!

)
for 0 ≤ k < n

and is 1/n! for k = n, and then comparing with equation (2.12). Moreover, in an
unpublished paper at

〈http://people.brandeis.edu/∼gessel/homepage/papers/color.pdf〉,
Gessel gives an elegant bijective proof in terms of “hook factorizations” of per-
mutations that

∑

n≥0

E(n)
xn

n!
=

1

1−
∑

k≥2

(k − 1)
xk

k!

=
e−x

1− x.
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(c) Write a derangement w as a product of cycles. Arrange these cycles in decreasing
order of their smallest element. Within each cycle, put the smallest element in
the second position. Then erase the parentheses, obtaining another permutation
w′. For instance, let w = 974382651 = (85)(43)(627)(91); then w′ = 854362791.
It is not hard to check that the map w 7→ w′ is a bijection from derangements in
Sn to E(n). This bijection is due to J. Désarménien, ibid.

I am grateful to Ira Gessel for providing most of the information for this exercise.

9. We interpret k!S(d, k) as the number of surjective functions f : [d]→ [k]. Let A be the
set of all functions f : [d] → [k], and for i ∈ [k] let Pi be the property that i 6∈ im f .
A function f ∈ A lacks at most the properties T ⊆ S ⊆ {P1, . . . , Pk} if and only if
im f ⊆ {i : Pi ∈ T}; hence the number of such f is id, where #T = i. The proof
follows from Proposition 2.2.2.

10. (b) We have

D(n)

n!
− 1

e
=

(
1− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!

)

−
(

1− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!
+ (−1)n+1 1

(n + 1)!
+ · · ·

)

=
(−1)n

(n+ 1)!
+ · · · ,

while

(
1− 1

n

)n
− 1

e
= en log(1− 1

n
) − 1

e

= en(− 1
n
− 1

2n2 +··· ) − 1

e

= − 1

2ne
+ · · · .

Hence D(n)/n! is a much better approximation to 1/e than E(n)/n!.

11. This result was proved by G.-N. Han and G. Xin, J. Combinatorial Theory Ser. A
116 (2009), 449–459 (Theorems 1 and 9), using the theory of symmetric functions.
A bijective proof was given by N. Eriksen, R. Freij, and J. Wästlund, Electronic J.
Combinatorics 16(1) (2009), #R32 (Theorem 2.1).

12. The Inclusion-Exclusion formula (2.11) for D(n) generalizes straightforwardly to

D(α) =
α1∑

β1=0

· · ·
αk∑

βk=0

(
α1

β1

)
· · ·
(
αk
βk

)
(−1)β1+···+βk

( ∑
(αi − βi)

α1 − β1, . . . , αk − βk

)
.
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Let γi = αi − βi. We get

∑

α

D(α)xα =
∑

β,γ

(
β1 + γ1

β1

)
· · ·
(
βk + γk
βk

)
(−1)

P

βi

(
γ1 + · · ·+ γk
γ1, . . . , γk

)
x

P

(βi+γi)

=
∑

γ

(
γ1 + · · ·+ γk
γ1, . . . , γk

)
x

P

γi

∑

β

(
β1 + γ1

β1

)
· · ·
(
βk + γk
βk

)
(−1)

P

βix
P

βi

=
∑

γ

(
γ1 + · · ·+ γk
γ1, . . . , γk

)
x

P

γi(1 + x1)
−γ1−1 · · · (1 + xk)

−γk−1

=
1

(1 + x1) · · · (1 + xk)

∑

n≥0

(
x1

1 + x1
+ · · ·+ xk

1 + xk

)n

=
1

(1 + x1) · · · (1 + xk)
(
1− x1

1+x1
− · · · − xk

1+xk

) .

This result appears as Exercise 4.5.5 in Goulden and Jackson [3.32], as a special case
of the more general Exercise 4.5.4.

13. These results appear in R. Stanley, J. Integer Sequences 8 (2005), article 05.3.8. This
paper also gives an extension to multisets and a q-analogue. For a generalization to
arbitrary Coxeter groups, see N. Bergeron, C. Hohlweg, and M. Zabrocki, J. Algebra
303 (2006), 831–846, and M. Marietti, European J. Combinatorics 29 (2008), 1555–
1562.

15. (a) The result follows easily after checking that any five of the matrices Pw are linearly
independent.

(b) Let A be a 3× 3 N-matrix for which every row and column sums to r. It is given
that we can write

A =
∑

w∈S3

αwPw, (2.63)

where αw ∈ N and
∑
αw = r. By Section 1.2, the number of ways to choose

αw ∈ N such that
∑
αw = r is

(
r+5
5

)
. By (a), the representation (2.63) is

unique provided at least one of α213, α132, α321 is 0. The number of ways to
choose α123, α231, α312 ∈ N and α213, α132, α321 ∈ P such that

∑
αw = r is equal

to the number of weak compositions of r − 3 into six parts; that is,
(
r+2
5

)
. Hence

H3(r) =
(
r+5
5

)
−
(
r+2
5

)
.

Equation (2.51) appears in §407 of MacMahon [1.55], essentially with the above
proof. To evaluate H4(r) by a similar technique would be completely impractical,
though it can be shown using the Hilbert syzygy theorem that such a computation
could be done in principle. See R. Stanley, Duke Math. J. 40 (1973), 607–632. For
a different approach toward evaluatingHn(r) for any n, see Proposition 4.6.2. The
theorem mentioned in the statement of (b) is called the Birkhoff-von Neumann
theorem and is proved for general n in Lemma 4.6.1.
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(c) One can check that every matrix being counted can be represented in exactly one
way in one of the forms



a+ e b+ d c
c + d a b+ e
b c+ e a+ d


 ,




a b+ d c+ e+ 1
c+ d a+ e+ 1 b

b+ e+ 1 c a+ d


 ,



a+ d+ 1 b c+ e+ 1

c a+ e+ 1 b+ d+ 1
b+ e+ 1 c + d+ 1 a


 ,

where a, b, c, d, e ∈ N, from which the proof is immediate. The idea behind this
proof is to associate an indeterminate xw to each w ∈ S3, and then to use the
identity

1− x132x213x321 = (1− x321) + x321(1− x132) + x321x132(1− x213).

Details are left to the reader. For yet another way to obtain H3(r), see M. Bóna,
Math. Mag. 70 (1997), 201–203.

16. Answer:

fk(n) =

⌊n/k⌋∑

i=0

(−1)i
n!

i!ki

lim
n→∞

fk(n)

n!
=

∑

i≥0

(−1)i

i!ki
= e−1/k.

17. (a)

n∑

i=0

(−1)i
(
n

i

)
(n− i− 1)!, provided we define (−1)! = 1.

(b) g(n) = (n− 1)!, with g(0) = 1.

(c) e−x(1− log(1− x))
(d) D(n) = f2(n) + f2(n+ 1).

This problem goes back to W. A. Whitworth, Choice and Chance, 5th ed. (and presum-
ably earlier editions), Stechert, New York, 1934 (Prop. 34 and Ex. 217). For further
information and references, including solutions to (e) and (f), see R. Stanley, JPL Space
Programs Summary 37–40, vol. 4 (1966), 208–214, and S. M. Tanny, J. Combinatorial
Theory 21 (1976), 196–202.

18. See R. Stanley, ibid.

19. Answer:
∑n

k=0(−1)k
(
2n−k
k

)
(2n− 2k − 1)!!, where (2m− 1)!! = 1 · 3 · 5 · · · (2m− 1).

20. Call a permutation standard if bi is not immediately followed by ai for 1 ≤ i ≤ n.
Clearly each equivalence class contains exactly one standard permutation. A straight-
forward use of Inclusion-Exclusion shows that the number of standard permutations is
equal to

n∑

i=0

(
n

i

)
(−1)i(2n− i)! = ∆n(n+ i)!|i=0 .
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21. (b) Let Ak = [aj−i+1]
k
1. Let D be the diagonal matrix diag(α, α2, . . . , αk). Then

D−1AD = [αj−iaj−i+1]. Since detA = detD−1AD, the proof follows from (a).

(c) If we remove the first row and ith column from M , then we obtain a matrix

Mi =

[
B C
0 An−k

]
, where B is an upper triangular (i− 1)× (i− 1) matrix with

α’s on the diagonal. Hence when we expand detM along the first row, we get

detM = b1(detAk−1)− αb2(detAk−2) + · · ·+ (−1)k−1αk−1bk(detA0).

The proof follows.

(d) For some alternative approaches and results related to this item, see Proposi-
tion 1.6.1, equation (1.59), Exercise 2.22, and equation (3.98).

22. (a) Let Sk be the set of permutations w = a1a2 · · ·a2n ∈ S2n satisfying

a1 > a2 < a3 > a4 < · · · > a2n−2k, a2n−2k+1 > a2n−2k+2 > · · · > a2n,

and let Tk be those permutations in Sk that also satisfy a2n−2k > a2n−2k+1. Hence
S1−T1 consists of all alternating permutations in Sn. Moreover, Ti = Si+1−Ti+1.
Hence

En = #(S1 − T1) = #S1 −#(S2 − T2) = · · · = #S1 −#S2 + #S3 − · · · .
A permutation in Sk is obtained by choosing a2n−2k+1, a2n−2k+2, . . . , a2n in

(
2n
2k

)

ways and then a1, a2, . . . , a2n−2k in E2(n−k) ways. Hence #Sk =
(
2n
2k

)
E2(n−k), and

the proof follows.

(b) The recurrence is

E2n+1 =

(
2n+ 1

2

)
E2n−1 −

(
2n+ 1

4

)
E2n−3 +

(
2n+ 1

6

)
E2n−5 − · · ·+ (−1)n,

proved similarly to (a) but with the additional complication of accounting for the
term (−1)n.

23. (a) The argument is analogous to that of the previous exercise. Let Sk be the set of
those permutations a1a2 · · ·an ∈ Sn such that a1a2 · · ·an−k has no proper double
descents and an−k+1 > an−k+1 > · · · > an. Let Tk consist of those permutations in
Sk that also satisfy an−k−1 > an−k > an−k+1. Let Uk consist of those permutations
in Sk that also satisfy an−k > an−k+1. Then Tk = Sk+2−Uk+2, Uk = Sk+1− Tk+1,
and S0 = S1 − T1. Hence

f(n) = #S0 = #(S1 − T1) = #S1 −#(S3 − U3)

= #S1 −#S3 + #(S4 − T4) = #S1 −#S3 + #S4 −#(S6 − U6),

etc. Since #Sk =
(
n
k

)
f(n − k), the proof follows. This result (with a different

proof) appears in F. N. David and D. E. Barton, Combinatorial Chance, Hafner,
New York, 1962 (pp. 156–157). See also I. M. Gessel, Ph.D. thesis, M.I.T. (Ex-
ample 3, page 51), and I. P. Goulden and D. M. Jackson, Combinatorial Enumer-
ation, John Wiley & Sons, New York, 1983; reprinted by Dover, Mineola, NY,
2004 (Exercise 5.2.17).
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27. (a) Follows easily from Proposition 5.3.2.

(b) Let fk(G) denote the coefficient of xk−1 in P (G, x); that is, fk(G) is equal to the
number of k-component rooted forests F of G. By the Principle of Inclusion-
Exclusion,

fk(G) =
∑

F

(−1)n−ℓ(F )gk(F ),

where F ranges over all spanning forests of G, and where gk(F ) denotes the
number of k-component rooted forests on [n] that contain F . (Note that n− ℓ(F )
is equal to the number of edges of F .) By (a), gk(F ) = p(F )

(
ℓ−1
ℓ−k
)
nℓ−k, where

ℓ = ℓ(F ). Hence

fk(G) =
∑

F

(−1)n−ℓp(F )

(
ℓ− 1

ℓ− k

)
nℓ−k. (2.64)

On the other hand, from equation (2.56) the coefficient of xk−1 in (−1)n−1P (G,−x−
n) is equal to

(−1)n−1
∑

F

(−1)ℓ−1p(F )

(
ℓ− 1

k − 1

)
nℓ−1−(k−1), (2.65)

again summed over all spanning forests F of G, with ℓ = ℓ(F ). Since equa-
tions (2.64) and (2.65) agree, the result follows.

Equation (2.57) (essentially the case x = 0 of (2.56)) is implicit in H. N. V.
Temperley, Proc. Phys. Soc. 83 (1984), 3–16. See also Theorem 6.2 of J. W.
Moon, Counting Labelled Trees, Canadian Mathematical Monographs, no. 1, 1970.
The general case (2.56) is due to S. D. Bedrosian, J. Franklin Inst. 227 (1964),
313–326. A subsequent proof of (2.56) using matrix techniques is due to A.
K. Kelmans. See equation (2.19) in D. M. Cvetković, M. Doob, and H. Sachs,
Spectra of Graphs, second ed., Johann Ambrosius Barth Verlag, Heidelberg, 1995.
A simple proof of (2.56) and additional references appear in J. W. Moon and S.
D. Bedrosian, J. Franklin Inst. 316 (1983), 187–190.

Equation (2.56) may be regarded as a “reciprocity theorem” for rooted trees. It
can be used, in conjunction with the obvious fact P (G+H, x) = xP (G, x)P (H, x)
(where G+H denotes the disjoint union of G and H) to unify and simplify many
known results involving the enumeration of spanning trees and forests. Part (c)
below illustrates this technique.

(c) We have

P (K1, x) = 1 ⇒ P (nK1, x) = xn−1

⇒ P (Kn, x) = (x+ n)n−1 (so c(Kn) = nn−2)

⇒ P (Kr +Ks, x) = x(x+ r)r−1(x+ s)s−1

⇒ P (Kr,s, x) = (x+ r + s)(x+ s)r−1(x+ r)s−1

⇒ c(Kr,s) = sr−1rs−1.

28. This result appeared in R. Stanley [2.19, Ch. 5.3] and was stated without proof in
[2.20, Prop. 23.8].
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29. (b) A generating function proof was given by G. E. Andrews, Electronic J. Combina-
torics 18(2) (2011), P6.

30. See G. W. E. Andrews, in The Theory of Arithmetic Functions (A. A. Gioia and D.
L. Goldsmith, eds.), Lecture Notes in Math., no. 251, Springer, Berlin, 1972, pp. 1–20.
See also Chapter 9 of reference [1.2].

31. These identities are due to Gauss. See I. Pak [1.62, §5.5].

32. This identity is due to Gauss. A cancellation proof was given by W. Y. C. Chen, Q.-H.
Hou and A. Lascoux, J. Combinatorial Theory, Ser. A 102 (2003), 309–320, where
several other proofs are also cited.

33. Let S = {1, 2, . . . , n− 1} in (2.21). There is a unique w ∈ Sn with D(w) = S, namely,

w = n, n − 1, . . . , 1, and then inv(w) =
(
n
2

)
. Hence βn(S, q) = q(

n
2). On the other

hand, the right-hand side of (2.21) becomes the left-hand side of (2.58), and the proof
follows.

34. This exercise is due to I. M. Gessel, J. Graph Theory 3 (1979), 305–307. Part (d) was
first shown by M. G. Kendall and B. Babington Smith, Biometrika 33 (1940), 239–251.
The crucial point in (e) is the following. Let G be the graph whose vertices are the
tournaments T on [n] and whose edges consist of pairs T, T ′ with T ↔ T ′. Then from
(c) and (d) we deduce that G is bipartite and that every connected component of G
is regular, so the connected component containing the vertex T consists of a certain
number of tournaments of weight w(T ) and an equal number of weight −w(T ).

Some far-reaching generalizations appear in D. Zeilberger and D. M. Bressoud, Discrete
Math. 54 (1985), 201–224 (reprinted in Discrete Math. 306 (2006), 1039–1059); D. M.
Bressoud, Europ. J. Combinatorics 8 (1987), 245–255; and R. M. Calderbank and P.
J. Hanlon, J. Combinatorial Theory, Ser. A 41 (1986), 228–245. The first of these
references gives a solution to Exercise 1.19(c).

35. (a) By linearity it suffices to assume that f is a monomial of degree n. If the support
of f (set of variables occurring in f) is S, then

f(ǫ1, . . . , ǫn) =

{
1, ǫi = 1 for all xi ∈ S
0, otherwise.

Hence

∑

(ǫ1,...,ǫn)∈{0,1}n

(−1)n−
P

ǫif(ǫ1, . . . , ǫn) =
∏

xi 6∈S
(1− 1)

=

{
1, f = x1x2 · · ·xn
0, otherwise,

and the proof follows.
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(b) Note that

per(A) = [x1x2 · · ·xn]
n∏

i=1

(ai1x1 + ai2x2 + · · ·+ ainxn),

and use (a). Equation (2.61) is due to H. J. Ryser, Combinatorial Mathematics,
Math. Assoc. of America, 1963 (Chap. 2, Cor. 4.2). For further information
on permanents, see H. Minc, Permanents, Encyclopedia of Mathematics and Its
Applications, Vol. 6, Addison-Wesley, Reading, Massachusetts, 1978; reprinted by
Cambridge University Press, 1984.

36. See B. Gordon [2.12].
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Chapter 3

Partially Ordered Sets

3.1 Basic Concepts

The theory of partially ordered sets (or posets) plays an important unifying role in enumer-
ative combinatorics. In particular, the theory of Möbius inversion on a partially ordered
set is a far-reaching generalization of the Principle of Inclusion-Exclusion, and the theory of
binomial posets provides a unified setting for various classes of generating functions. These
two topics will be among the highlights of this chapter, though many other interesting uses
of partially ordered sets will also be given.

To get a glimpse of the potential scope of the theory of partially ordered sets as it relates to
the Principle of Inclusion-Exclusion, consider the following example. Suppose we have four
finite sets A,B,C,D such that

D = A ∩B = A ∩ C = B ∩ C = A ∩B ∩ C.

It follows from the Principle of Inclusion-Exclusion that

|A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|
+|A ∩ B ∩ C|

= |A|+ |B|+ |C| − 2 |D|. (3.1)

The relations A ∩ B = A ∩ C = B ∩ C = A ∩ B ∩ C collapsed the general seven-term
expression for |A ∪ B ∪ C| into a four-term expression, since the collection of intersections
of A,B,C has only four distinct members. What is the significance of the coefficient −2 in
equation (3.1)? Can we compute such coefficients efficiently for more complicated sets of
equalities among intersections of sets A1, . . . , An? It is clear that the coefficient −2 depends
only on the partial order relation among the distinct intersections A,B,C,D of the sets
A,B,C—that is, on the fact that D ⊆ A, D ⊆ B, D ⊆ C (where we continue to assume
that D = A ∩ B = A ∩ C = B ∩ C = A ∩ B ∩ C). In fact, we shall see that −2 is a certain
value of the Möbius function of this partial order (with an additional element corresponding
to the empty intersection adjoined). Hence Möbius inversion results in a simplification
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of Inclusion-Exclusion under appropriate circumstances. However, we shall also see that
the applications of Möbius inversion are much further-reaching than as a generalization of
Inclusion-Exclusion.

Before plunging headlong into the theory of incidence algebras and Möbius functions, it is
worthwhile to develop some feeling for the structure of finite partially ordered sets. Hence
in the first five sections of this chapter we collect together some of the basic definitions and
results on the subject, though strictly speaking most of them are not needed in order to
understand the theory of Möbius inversion.

A partially ordered set P (or poset, for short) is a set (which by abuse of notation we also
call P ), together with a binary relation denoted ≤ (or ≤P when there is a possibility of
confusion), satisfying the following three axioms:

1. For all t ∈ P , t ≤ t (reflexivity).

2. If s ≤ t and t ≤ s, then s = t (antisymmetry).

3. If s ≤ t and t ≤ u, then s ≤ u (transitivity).

We use the obvious notation t ≥ s to mean s ≤ t, s < t to mean s ≤ t and s 6= t, and t > s
to mean s < t. We say that two elements s and t of P are comparable if s ≤ t or t ≤ s;
otherwise s and t are incomparable∗, denoted s‖ t.
Before giving a rather lengthy list of definitions associated with posets, let us first look at
some examples of posets of combinatorial interest that will later be considered in more detail.

3.1.1 Example. a. Let n ∈ P. The set [n] with its usual order forms an n-element poset
with the special property that any two elements are comparable. This poset is denoted n.
Of course n and [n] coincide as sets, but we use the notation n to emphasize the order
structure.

b. Let n ∈ N. We can make the set 2[n] of all subsets of [n] into a poset Bn by defining
S ≤ T in Bn if S ⊆ T as sets. One says that Bn consists of the subsets of [n] “ordered by
inclusion.”

c. Let n ∈ P. The set of all positive integer divisors of n can be made into a poset Dn in a
“natural” way by defining i ≤ j in Dn if j is divisible by i (denoted i|j).
d. Let n ∈ P. We can make the set Πn of all partitions of [n] into a poset (also denoted
Πn) by defining π ≤ σ in Πn if every block of π is contained in a block of σ. For instance, if
n = 9 and if π has blocks 137, 2, 46, 58, 9, and σ has blocks 13467, 2589, then π ≤ σ. We
then say that π is a refinement of σ and that Πn consists of the partitions of [n] “ordered
by refinement.”

e. In general, any collection of sets can be ordered by inclusion to form a poset. Some cases
will be of special combinatorial interest. For instance, let Bn(q) consist of all subspaces
of the n-dimensional vector space Fnq , ordered by inclusion. We will see that Bn(q) is a
nicely-behaved q-analogue of the poset Bn defined in (b).

∗“Comparable” and “incomparable” are accented on the syllable “com.”
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Figure 3.1: The posets with at most four elements

We now list a number of basic definitions and results connected with partially ordered sets.
Some readers may wish to skip directly to Section 3.6, and to consult the intervening material
only when necessary.

Two posets P and Q are isomorphic, denoted P ∼= Q, if there exists an order-preserving
bijection φ : P → Q whose inverse is order-preserving; that is,

s ≤ t in P ⇐⇒ φ(s) ≤ φ(t) in Q.

For example, if BS denotes the poset of all subsets of the set S ordered by inclusion, then
BS
∼= BT whenever #S = #T .

Some care has to be taken in defining the notion of “subposet.” By a weak subposet of P ,
we mean a subset Q of the elements of P and a partial ordering of Q such that if s ≤ t
in Q, then s ≤ t in P . If Q is a weak subposet of P with P = Q as sets, then we call P
a refinement of Q. By an induced subposet of P , we mean a subset Q of P and a partial
ordering of Q such that for s, t,∈ Q we have s ≤ t in Q if and only if s ≤ t in P . We then say
the subset Q of P has the induced order. Thus the finite poset P has exactly 2#P induced
subposets. By a subposet of P , we will always mean an induced subposet. A special type
of subposet of P is the (closed) interval [s, t] = {u ∈ P : s ≤ u ≤ t}, defined whenever
s ≤ t. (Thus the empty set is not regarded as a closed interval.) The interval [s, s] consists
of the single point s. We similarly define the open interval (s, t) = {u ∈ P : s < u < t},
so (s, s) = ∅. If every interval of P is finite, then P is called a locally finite poset. We also
define a subposet Q of P to be convex if t ∈ Q whenever s < t < u in P and s, u ∈ Q. Thus
an interval is convex.

If s, t ∈ P , then we say that t covers s or s is covered by t, denoted s⋖ t or t⋗s, if s < t and
no element u ∈ P satisfies s < u < t. Thus t covers s if and only if s < t and [s, t] = {s, t}.
A locally finite poset P is completely determined by its cover relations. The Hasse diagram
of a finite poset P is the graph whose vertices are the elements of P , whose edges are the
cover relations, and such that if s < t then t is drawn “above” s (i.e., with a higher vertical
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Figure 3.2: Some examples of posets
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^

Figure 3.3: Adjoining a 0̂ and 1̂

coordinate). Figure 3.1 shows the Hasse diagrams of all posets (up to isomorphism) with
at most four elements. Some care must be taken in “recognizing” posets from their Hasse

diagrams. For instance, the graph is a perfectly valid Hasse diagram, yet appears to
be missing from Figure 3.1. We trust the reader will resolve this anomaly. Similarly, why

does the graph not appear above? Figure 3.2 illustrates the Hasse diagrams of some
of the posets considered in Example 3.1.1.

We say that P has a 0̂ if there exists an element 0̂ ∈ P such that t ≥ 0̂ for all t ∈ P .
Similarly, P has a 1̂ if there exists 1̂ ∈ P such that t ≤ 1̂ for all t ∈ P . We denote by P̂
the poset obtained from P by adjoining a 0̂ and 1̂ (in spite of a 0̂ or 1̂ that P may already
possess). See Figure 3.3 for an example.

A chain (or totally ordered set or linearly ordered set) is a poset in which any two elements
are comparable. Thus the poset n of Example 3.1.1(a) is a chain. A subset C of a poset P is
called a chain if C is a chain when regarded as a subposet of P . The chain C of P is called
maximal if it is not contained in a larger chain of P . The chain C of P is called saturated
(or unrefinable) if there does not exist u ∈ P − C such that s < u < t for some s, t ∈ C
and such that C ∪ {u} is a chain. Thus maximal chains are saturated, but not conversely.
In a locally finite poset, a chain t0 < t1 < · · · < tn is saturated if and only if ti−1 ⋖ ti for
1 ≤ i ≤ n. The length ℓ(C) of a finite chain is defined by ℓ(C) = #C − 1. The length (or
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rank) of a finite poset P is

ℓ(P ) := max{ℓ(C) : C is a chain of P}.

The length of an interval [s, t] is denoted ℓ(s, t). If every maximal chain of P has the same
length n, then we say that P is graded of rank n. In this case there is a unique rank function
ρ : P → {0, 1, . . . , n} such that ρ(s) = 0 if s is a minimal element of P , and ρ(t) = ρ(s) + 1
if t ⋗ s in P . If s ≤ t then we also write ρ(s, t) = ρ(t) − ρ(s) = ℓ(s, t). If ρ(s) = i, then
we say that s has rank i. If P is graded of rank n and has pi elements of rank i, then the
polynomial

F (P, x) =

n∑

i=0

pix
i

is called the rank-generating function of P . For instance, all the posets n, Bn, Dn, Πn, and
Bn(q) are graded. The reader can check the entries of the following table (some of which
will be discussed in more detail later).

Poset P Rank of t ∈ P Rank of P

n t− 1 n− 1
Bn card t n
Dn number of prime divisors of t number of prime divisors of n

(counting multiplicity) (counting multiplicity)
Πn n− |t| n− 1
Bn(q) dim t n

The rank-generating functions of these posets are as follows. For Dn, let n = pa11 · · · pak
k be

the prime power factorization of n. We write, e.g., (n)x for the q-analogue (n) of n in the
variable x, so

(n)x =
1− xn
1− x = 1 + x+ x2 + · · ·+ xn−1.

F (n, x) = (n)x

F (Bn, x) = (1 + x)n

F (Dn, x) = (a1 + 1)x · · · (ak + 1)x

F (Πn, x) =

n−1∑

i=0

S(n, n− i)xi

F (Bn(q), x) =
n∑

i=0

(
n

i

)
xi.

We can extend the definition of a graded poset in an obvious way to certain infinite posets.
Namely, we say that P is graded if it can be written P = P0 ·∪P1 ·∪ · · · such that every maximal
chain has the form t0 ⋖ t1 ⋖ · · · , where ti ∈ Pi. We then have a rank function ρ : P → N just
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as in the finite case. If each Pi is finite then we also have a rank-generating function F (P, q)
as before, though now it may be a power series rather than a polynomial.

A multichain of the poset P is a chain with repeated elements; that is, a multiset whose
underlying set is a chain of P . A multichain of length n may be regarded as a sequence
t0 ≤ t1 ≤ · · · ≤ tn of elements of P .

An antichain (or Sperner family or clutter) is a subset A of a poset P such that any two
distinct elements of A are incomparable. An order ideal (or semi-ideal or down-set or
decreasing subset) of P is a subset I of P such that if t ∈ I and s ≤ t, then s ∈ I. Similarly
a dual order ideal (or up-set or increasing subset or filter) is a subset I of P such that if
t ∈ I and s ≥ t, then s ∈ I. When P is finite, there is a one-to-one correspondence between
antichains A of P and order ideals I. Namely, A is the set of maximal elements of I, while

I = {s ∈ P : s ≤ t for some t ∈ A}. (3.2)

The set of all order ideals of P , ordered by inclusion, forms a poset denoted J(P ). In Sec-
tion 3.4 we shall investigate J(P ) in greater detail. If I and A are related as in equation (3.2),
then we say that A generates I. If A = {t1, . . . , tk}, then we write I = 〈t1, . . . , tk〉 for the
order ideal generated by A. The order ideal 〈t〉 is the principal order ideal generated by
t, denoted Λt. Similarly Vt denotes the principal dual order ideal generated by t, that is,
Vt = {s ∈ P : s ≥ t}.
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Step 1

Step 2

Figure 3.4: Drawing a direct product of posets

3.2 New Posets from Old

Various operations can be performed on one or more posets. If P and Q are posets on disjoint
sets, then the disjoint union (or direct sum) of P and Q is the poset P + Q on the union
P ∪Q such that s ≤ t in P +Q if either (a) s, t ∈ P and s ≤ t in P , or (b) s, t ∈ Q and s ≤ t
in Q. A poset that is not a disjoint union of two nonempty posets is said to be connected.
The disjoint union of P with itself n times is denoted nP ; hence an n-element antichain is
isomorphic to n1. If P and Q are on disjoint sets as above, then the ordinal sum of P and
Q is the poset P ⊕Q on the union P ∪Q such that s ≤ t in P ⊕Q if (a) s, t ∈ P and s ≤ t
in P , or (b) s, t ∈ Q and s ≤ t in Q, or (c) s ∈ P and t ∈ Q. Hence an n-element chain is
given by n = 1⊕ 1⊕ · · · ⊕ 1 (n times). Of the 16 four-element posets, exactly one of them
cannot be built up from the poset 1 using the operations of disjoint union and ordinal sum.
Posets that can be built up in this way are called series-parallel posets. (See Exercises 3.14,
3.15(c), and 5.39 for further information on such posets.)

If P and Q are posets, then the direct (or cartesian) product of P and Q is the poset P ×Q
on the set {(s, t) : s ∈ P and t ∈ Q} such that (s, t) ≤ (s′, t′) in P × Q if s ≤ s′ in P and
t ≤ t′ in Q. The direct product of P with itself n times is denoted P n. To draw the Hasse
diagram of P × Q (when P and Q are finite), draw the Hasse diagram of P , replace each
element t of P by a copy Qt of Q, and connect corresponding elements of Qs and Qt (with
respect to some isomorphism Qs

∼= Qt) if s and t are connected in the Hasse diagram of P .

For instance, the Hasse diagram of the direct product
X

is drawn as indicated
in Figure 3.4.

It is clear from the definition of the direct product that P × Q and Q × P are isomorphic.
However, the Hasse diagrams obtained by interchanging P and Q in the above procedure in
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general look completely different, although they are of course isomorphic. If P and Q are
graded with rank-generating functions F (P, x) and F (Q, x), then it is easily seen that P ×Q
is graded and

F (P ×Q, x) = F (P, x)F (Q, x). (3.3)

A further operation on posets is the ordinal product P ⊗ Q. This is the partial ordering
on {(s, t) : s ∈ P and t ∈ Q} obtained by setting (s, t) ≤ (s′, t′) if (a) s = s′ and t ≤ t′,
or (b) s < s′. To draw the Hasse diagram of P ⊗ Q (when P and Q are finite), draw the
Hasse diagram of P , replace each element t of P by a copy Qt of Q, and then connect every
maximal element of Qs with every minimal element of Qt whenever t covers s in P . If P
and Q are graded and Q has rank r, then the analogue of equation (3.3) for ordinal products
becomes

F (P ⊗Q, x) = F (P, xr+1)F (Q, x).

Note that in general P ⊗Q and Q⊗P do not have the same rank-generating function, so in
particular they are not isomorphic.

A further operation that we wish to consider is the dual of a poset P . This is the poset P ∗

on the same set as P , but such that s ≤ t in P ∗ if and only if t ≤ s in P . If P and P ∗ are
isomorphic, then P is called self-dual. Of the 16 four-element posets, 8 are self-dual.

If P and Q are posets, then QP denotes the set of all order-preserving maps f : P → Q; that
is, s ≤ t in P implies f(s) ≤ f(t) in Q. We give QP the structure of a poset by defining
f ≤ g if f(t) ≤ g(t) for all t ∈ P . It is an elementary exercise to check the validity of the
following rules of cardinal arithmetic (for posets).

a. + and × are associative and commutative

b. P × (Q+R) ∼= (P ×Q) + (P × R)

c. RP+Q ∼= RP ×RQ

d. (RP )Q ∼= RP×Q
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Figure 3.5: The lattices with at most six elements

3.3 Lattices

We now turn to a brief survey of an important class of posets known as lattices. If s and t
belong to a poset P , then an upper bound of s and t is an element u ∈ P satisfying u ≥ s
and u ≥ t. A least upper bound (or join or supremum) of s and t is an upper bound u of s
and t such that every upper bound v of s and t satisfies v ≥ u. If a least upper bound of
s and t exists, then it is clearly unique and is denoted s ∨ t (read “s join t” or “s sup t”).
Dually one can define the greatest lower bound (or meet or infimum) s ∧ t (read “s meet t”
or “s inf t”), when it exists. A lattice is a poset L for which every pair of elements has a
least upper bound and greatest lower bound. One can also define a lattice axiomatically in
terms of the operations ∨ and ∧, but for combinatorial purposes this is not necessary. The
reader should check, however, that in a lattice L:

a. the operations ∨ and ∧ are associative, commutative, and idempotent (i.e., t ∧ t =
t ∨ t = t);

b. s ∧ (s ∨ t) = s = s ∨ (s ∧ t) (absorption laws);

c. s ∧ t = s⇔ s ∨ t = t⇔ s ≤ t.

Clearly all finite lattices have a 0̂ and 1̂. If L and M are lattices, then so are L∗, L ×M ,
and L ⊕M . However, L + M will never be a lattice unless one of L or M is empty, but

L̂+M (i.e., L+M with an 0̂ and 1̂ adjoined) is always a lattice. Figure 3.5 shows the Hasse
diagrams of all lattices with at most six elements.
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In checking whether a (finite) poset is a lattice, it is sometimes easy to see that meets, say,
exist, but the existence of joins is not so clear. Thus the criterion of the next proposition
can be useful. If every pair of elements of a poset P has a meet (respectively, join), then we
say that P is a meet-semilattice (respectively, join-semilattice).

3.3.1 Proposition. Let P be a finite meet-semilattice with 1̂. Then P is a lattice. (Of
course, dually a finite join-semilattice with 0̂ is a lattice.)

Proof. If s, t ∈ P , then the set S = {u ∈ P : u ≥ s and u ≥ t} is finite (since P is finite)
and nonempty (since 1̂ ∈ P ). Clearly by induction the meet of finitely many elements of a
meet-semilattice exists. Hence we have s ∨ t =

∧
u∈S u.

Proposition 3.3.1 fails for infinite lattices because an arbitrary subset of L need not have a
meet or join. (See Exercise 3.26.) If in fact every subset of L does have a meet and join,
then L is called a complete lattice. Clearly a complete lattice has a 0̂ and 1̂.

We now consider one of the types of lattices of most interest to combinatorics.

3.3.2 Proposition. Let L be a finite lattice. The following two condtions are equivalent.

i. L is graded, and the rank function ρ of L satisfies

ρ(s) + ρ(t) ≥ ρ(s ∧ t) + ρ(s ∨ t)

for all s, t ∈ L.

ii. If s and t both cover s ∧ t, then s ∨ t covers both s and t.

Proof. (i)⇒(ii) Suppose that s and t cover s ∧ t. Then ρ(s) = ρ(t) = ρ(s ∧ t) + 1 and
ρ(s ∨ t) > ρ(s) = ρ(t). Hence by (i), ρ(s ∨ t) = ρ(s) + 1 = ρ(t) + 1, so s ∨ t covers both s
and t.

(ii)⇒(i) Suppose that L is not graded, and let [u, v] be an interval of L of minimal length
that is not graded. Then there are elements s1, s2 of [u, v] that cover u and such that all
maximal chains of each interval [si, v] have the same length ℓi, where ℓ1 6= ℓ2. By (ii), there
are saturated chains in [si, v] of the form si < s1 ∨ s2 < t1 < t2 < · · · < tk = v, contradicting
ℓ1 6= ℓ2. Hence L is graded.

Now suppose that there is a pair s, t ∈ L with

ρ(s) + ρ(t) < ρ(s ∧ t) + ρ(s ∨ t), (3.4)

and choose such a pair with ℓ(s ∧ t, s ∨ t) minimal, and then with ρ(s) + ρ(t) minimal. By
(ii), we cannot have both s and t covering s ∧ t. Thus assume that s ∧ t < s′ < s, say. By
the minimality of ℓ(s ∧ t, s ∨ t) and ρ(s) + ρ(t), we have

ρ(s′) + ρ(t) ≥ ρ(s′ ∧ t) + ρ(s′ ∨ t). (3.5)

Now s′ ∧ t = s ∧ t, so equations (3.4) and (3.5) imply

ρ(s) + ρ(s′ ∨ t) < ρ(s′) + ρ(s ∨ t).
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Figure 3.6: A semimodular but nonmodular lattice

Clearly s∧(s′∨t) ≥ s′ and s∨(s′∨t) = s∨t. Hence setting S = s and T = s′∨t, we have found
a pair S, T ∈ L satisfying ρ(S)+ρ(T ) < ρ(S∧T )+ρ(S∨T ) and ℓ(S∧T, S∨T ) < ℓ(s∧t, s∨t),
a contradiction. This completes the proof.

A finite lattice satisfying either of the (equivalent) conditions of the previous proposition is
called a finite upper semimodular lattice, or a just a finite semimodular lattice. The reader
may check that of the 15 lattices with six elements, exactly eight are semimodular.

A finite lattice L whose dual L∗ is semimodular is called lower semimodular. A finite lattice
that is both upper and lower semimodular is called a modular lattice. By Proposition 3.3.2,
a finite lattice L is modular if and only if it is graded, and its rank function ρ satisfies

ρ(s) + ρ(t) = ρ(s ∧ t) + ρ(s ∨ t) for all s, t ∈ L. (3.6)

For instance, the lattice Bn(q) of subspaces (ordered by inclusion) of an n-dimensional vector
space over the field Fq is modular, since the rank of a subspace is just its dimension, and
equation (3.6) is then familiar from linear algebra. Every semimodular lattice with at most
six elements is modular. There is a unique seven-element non-modular, semimodular lattice,
which is shown in Figure 3.6. This lattice is not modular since s ∨ t covers s and t, but s
and t don’t cover s ∧ t. It can be shown that a finite lattice L is modular if and only if for
all s, t, u ∈ L such that s ≤ u, we have

s ∨ (t ∧ u) = (s ∨ t) ∧ u. (3.7)

This allows the concept of modularity to be extended to nonfinite lattices, though we will only
be concerned with the finite case. Equation (3.7) also shows immediately that a sublattice
of a modular lattice is modular. (A subset M of a lattice L is a sublattice if it is closed under
the operations of ∧ and ∨ in L.)

A lattice L with 0̂ and 1̂ is complemented if for all s ∈ L there is a t ∈ L such that s∧ t = 0̂
and s∨ t = 1̂. If for all s ∈ L the complement t is unique, then L is uniquely complemented.
If every interval [s, t] of L is itself complemented, then L is relatively complemented. An atom
of a finite lattice L is an element covering 0̂, and L is said to be atomic (or a point lattice)
if every element of L is a join of atoms. (We always regard 0̂ as the join of an empty set of
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Figure 3.7: A subset S of the affine plane and its corresponding geometric lattice L(S)

atoms.) Dually, a coatom is an element that 1̂ covers, and a coatomic lattice is defined in the
obvious way. Another simple result of lattice theory, whose proof we omit, is the following.

3.3.3 Proposition. Let L be a finite semimodular lattice. The following two conditions are
equivalent.

i. L is relatively complemented.

ii. L is atomic.

A finite semimodular lattice satisfying either of the two (equivalent) conditions (i) or (ii)
above is called a finite geometric lattice. A basic example is the following. Take any finite
set S of points in some affine space (respectively, vector space) V over a field K (or even over
a division ring). Then the subsets of S of the form S ∩W , where W is an affine subspace
(respectively, linear subspace) of V , ordered by inclusion, form a geometric lattice L(S). For
instance, taking S ⊂ R2 (regarded as an affine space) to be as in Figure 3.7(a), then the
elements of L(S) consist of ∅, {a}, {b}, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, c}, {a, b, c, d}.
For this example, L(S) is in fact modular and is shown in Figure 3.7(b).

Note. A geometric lattice is intimately related to the subject of matroid theory. A (finite)
matroid may be defined as a pair (S, I), where S is a finite set and I is a collection of subsets
of S satisfying the two conditions:

• If F ∈ I and G ⊆ F , then G ∈ I. In other words, I is an order ideal of the boolean
algebra BS of all subsets of S (defined in Section 3.4).

• For any T ⊆ S, let IT be the restriction of I to T , i.e., IT = {F ∈ I : F ⊆ T}. Then
all maximal (under inclusion) elements of IT have the same number of elements.

(There are several equivalent definitions of a matroid.) The elements of I are called inde-
pendent sets. They are an abstraction of linear independent sets of a vector space or affinely
independent subsets of an affine space. Indeed, if S is a finite subset of a vector space (re-
spectively, affine subset of an affine space) and I is the collection of linearly independent

288



(respectively, affinely independent) subsets of S, then (S, I) is a matroid. A matroid is
simple if every two-element subset of I is independent. Every matroid can be “simplified”
(converted to a simple matroid) by removing all elements of S not contained in any inde-
pendent set and by identifying any two points that are not independent. It is not hard to
see that matroids on a set S are in bijection with geometric lattices L whose set of atoms is
S, where a set T ⊆ S is independent if and only if its join in L has rank #T .

The reader may wish to verify the (partly redundant) entries of the following table concerning
the posets of Example 3.1.1.

Properties that Properties that
Poset P P possesses P lacks (n large)

n modular lattice complemented, atomic,
coatomic, geometric

Bn modular lattice, relatively
complemented, uniquely
complemented, atomic,
coatomic, geometric

Dn modular lattice complemented, atomic
coatomic, geometric
(unless n is squarefree,
in which case Dn

∼= Bk)

Πn geometric lattice modular

Bn(q) modular lattice, uniquely complemented
complemented, atomic,
coatomic, geometric
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3.4 Distributive Lattices

The most important class of lattices from the combinatorial point of view are the distributive
lattices. These are defined by the distributive laws

s ∨ (t ∧ u) = (s ∨ t) ∧ (s ∨ u)
s ∧ (t ∨ u) = (s ∧ t) ∨ (s ∧ u). (3.8)

(One can prove that either of these laws implies the other.) If we assume s ≤ u in the
first law, then we obtain equation (3.7) since s ∨ u = u. Hence every distributive lattice is
modular. The lattices n, Bn, and Dn of Example 3.1.1 are distributive, while Πn (n ≥ 3) and
Bn(q) (n ≥ 2) are not distributive. Further examples of distributive lattices are the lattices
J(P ) of order ideals of the poset P . The lattice operations ∧ and ∨ on order ideals are just
ordinary intersection and union (as subsets of P ). Since the union and intersection of order
ideals is again an order ideal, it follows from the well-known distributivity of set union and
intersection over one another that J(P ) is indeed a distributive lattice. The fundamental
theorem for finite distributive lattices (FTFDL) states that the converse is true when P is
finite.

3.4.1 Theorem (FTFDL). Let L be a finite distributive lattice. Then there is a unique (up
to isomorphism) poset P for which L ∼= J(P ).

Remark. For combinatorial purposes, it would in fact be best to define a finite distributive
lattice as any poset of the form J(P ), P finite. However, to avoid conflict with established
practices we have given the usual definition.

To prove Theorem 3.4.1, we first need to produce a candidate P and then show that indeed
L ∼= J(P ). Toward this end, define an element s of a lattice L to be join-irreducible if s 6= 0̂
and one cannot write s = t ∨ u where t < s and u < s. (Meet-irreducible is defined dually.)
In a finite lattice, an element is join-irreducible if and only if it covers exactly one element.
An order ideal I of the finite poset P is join-irreducible in J(P ) if and only if it is a principal
order ideal of P . Hence there is a one-to-one correspondence between the join-irreducibles
Λs of J(P ) and the elements s of P . Since Λs ⊆ Λt if and only if s ≤ t, we obtain the
following result.

3.4.2 Proposition. The set of join-irreducibles of J(P ), considered as an (induced) subposet
of J(P ), is isomorphic to P . Hence J(P ) ∼= J(Q) if and only if P ∼= Q.

Proof of Theorem 3.4.1. Because of Proposition 3.4.2, it suffices to show that if P is the
subposet of join-irreducibles of L, then L ∼= J(P ). Given t ∈ L, let It = {s ∈ P : s ≤
t}. Clearly It ∈ J(P ), so the mapping t 7→ It defines an order-preserving (in fact, meet-

preserving) map L
φ→ J(P ) whose inverse is order-preserving on φ(L). Moreover, φ is

injective since J(P ) is a lattice. Hence we need to show that φ is surjective. Let I ∈ J(P )
and t =

∨{s : s ∈ I}. We need to show that I = It. Clearly I ⊆ It. Suppose that u ∈ It.
Now ∨

{s : s ∈ I} =
∨
{s : s ∈ It}. (3.9)
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Apply ∧u to equation (3.9). By distributivity, we get

∨
{s ∧ u : s ∈ I} =

∨
{s ∧ u : s ∈ It}. (3.10)

The right-hand side is just u, since one term is u and all others are ≤ u. Since u is join-
irreducible (being by definition an element of P ), it follows from equation (3.10) that some
t ∈ I satisfies t ∧ u = u, that is, u ≤ t. Since I is an order ideal we have u ∈ I, so It ⊆ I.
Hence I = It, and the proof is complete.

In certain combinatorial problems, infinite distributive lattices of a special type occur natu-
rally. Thus we define a finitary distributive lattice to be a locally finite distributive lattice
L with 0̂. It follows that L has a unique rank function ρ : L→ N given by letting ρ(t) be the
length of any saturated chain from 0̂ to t. If L has finitely many elements pi of any given
rank i ∈ N, then we can define the rank-generating function F (L, x) by

F (L, x) =
∑

t∈L
xρ(t) =

∑

i≥0

pix
i.

In this case, of course, F (L, x) need not be a polynomial but in general is a formal power
series. We leave to the reader to check that FTFDL carries over to finitary distributive
lattices as follows.

3.4.3 Proposition. Let P be a poset for which every principal order ideal is finite. Then the
poset Jf(P ) of finite order ideals of P , ordered by inclusion, is a finitary distributive lattice.
Conversely, if L is a finitary distributive lattice and P is its subposet of join-irreducibles,
then every principal order ideal of P is finite and L ∼= Jf (P ).

3.4.4 Example. (a) If P is an infinite antichain, then Jf(P ) has infinitely many elements
on each level, so F (Jf(P ), x) is undefined.

(b) Let P = N×N. Then Jf(P ) is a very interesting distributive lattice known as Young’s
lattice, denoted Y . It is not hard to see that

F (Y, x) =
∑

i≥0

p(i)xi =
1∏

n≥1(1− xn)
,

where p(i) denotes the number of partitions of i (Sections 1.7 and 1.8). In fact, Y is
isomorphic to the poset of all partitions λ = (λ1, λ2, . . . ) of all integers n ≥ 0, ordered
componentwise (or by containment of Young diagrams). For further information on
Young’s lattice, see Exercise 3.149, Section 3.21, and various places in Chapter 7.

We now turn to an investigation of the combinatorial properties of J(P ) (where P is finite)
and of the relationship between P and J(P ). If I is an order ideal of P , then the elements
of J(P ) that cover I are just the order ideals I ∪{t}, where t is a minimal element of P − I.
From this observation we conclude the following result.

3.4.5 Proposition. If P is an n-element poset, then J(P ) is graded of rank n. Moreover,
the rank ρ(I) of I ∈ J(P ) is just the cardinality #I of I, regarded as an order ideal of P .
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It follows from Propositions 3.4.2, 3.4.5, and FTFDL that there is a bijection between (non-
isomorphic) posets P of cardinality n and (nonisomorphic) distributive lattices of rank n.
This bijection sends P to J(P ), and the inverse sends J(P ) to its poset of join-irreducibles.
In particular, the number of nonisomorphic posets of cardinality n equals the number of
nonisomorphic distributive lattices of rank n.

If P = n, an n-element chain, then J(P ) ∼= n + 1. At the other extreme, if P = n1, an
n-element antichain, then any subset of P is an order ideal, and J(P ) is just the set of subsets
of P , ordered by inclusion. Hence J(n1) is isomorphic to the poset Bn of Example 3.1.1(b),
and we simply write Bn = J(n1). We call Bn a boolean algebra of rank n. (The usual
definition of a boolean algebra gives it more structure than merely that of a distributive
lattice, but for our purposes we simply regard Bn as a certain distributive lattice.) It is clear
from FTFDL (or otherwise) that the following conditions on a finite distributive lattice L
are equivalent.

a. L is a boolean algebra.

b. L is complemented.

c. L is relatively complemented.

d. L is atomic.

e. 1̂ is a join of atoms of L.

f. L is a geometric lattice.

g. Every join-irreducible of L covers 0̂.

h. If L has n join-irreducibles (equivalently, rank(L) = n), then L has at least (equiva-
lently, exactly) 2n elements.

i. The rank-generating function of L is (1 + x)n for some n ∈ N.

Given an order ideal I of P , define a map fI : P → 2 by

fI(t) =

{
1, t ∈ I
2, t 6∈ I.

Clearly f is order-preserving, i.e., f ∈ 2P . Then fI ≤ fI′ in 2P if and only if I ⊇ I ′. Hence
J(P )∗ ∼= 2P . Note also that J(P ∗) ∼= J(P )∗ and J(P + Q) ∼= J(P ) × J(Q). In particular,
Bn = J(n1) ∼= J(1)n ∼= 2n. This observation gives an efficient method for drawing Bn using
the method of the previous section for drawing products. For instance, the Hasse diagram of
B3 is given by the first diagram in Figure 3.8. The other two diagrams show how to obtain
the Hasse diagram of B4.

If I ≤ I ′ in the distributive lattice J(P ), then the interval [I, I ′] is isomorphic to J(I ′ − I),
where I ′− I is regarded as an (induced) subposet of P . In particular, [I, I ′] is a distributive
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B3 Step 1 Step 2

Figure 3.8: Drawing B4 from B3

lattice. (More generally, any sublattice of a distributive lattice is distributive, an immediate
consequence of the definition (3.8) of a distributive lattice.) It follows that there is a one-to-
one correspondence between intervals [I, I ′] of J(P ) isomorphic to Bk (k ≥ 1) such that no
interval [K, I ′] with K < I is a boolean algebra, and k-element antichains of P . Equivalently,
k-element antichains in P correspond to elements of J(P ) that cover exactly k elements.

We can use the above ideas to describe a method for drawing the Hasse diagram of J(P ),
given P . Let I be the set of minimal elements of P , say of cardinality m. To begin with,
draw Bm

∼= J(I). Now choose a minimal element of P − I, say t. Adjoin a join-irreducible
to J(I) covering the order ideal Λt − {t}. The set of joins of elements covering Λt − {t}
must form a boolean algebra, so draw in any new joins necessary to achieve this. Now there
may be elements covering Λt−{t} whose covers don’t yet have joins. Draw these in to form
boolean algebras. Continue until all sets of elements covering a particular element have joins.
This yields the distributive lattice J(I∪{t}). Now choose a minimal element u of P −I−{t}
and adjoin a join-irreducible to J(I ∪ {t}) covering the order ideal λu − {u}. “Fill in” the
covers as before. This yields J(I ∪{t, u}). Continue until reaching J(P ). The actual process
is easier to carry out than describe. Let us illustrate with P given by Figure 3.9(a). We will
denote subsets of P such as {a, b, d} as abd. First, draw B3 = J(abc) as in Figure 3.9(b).
Adjoin the order ideal Λd = abd above ab (and label it d) (Figure 3.9(c)). Fill in the joins of
the elements covering ab (Figure 3.9(d)). Adjoin bce above bc (Figure 3.9(e)). Fill in joins
of elements covering bc (Figure 3.9(f)). Fill in joins of elements covering abc (Figure 3.9(g)).
Adjoin cf above c (Figure 3.9(h)). Fill in joins of elements covering c. These joins (including
the empty join c) form a rank three boolean algebra. The elements c, ac, bc, cf , and abc are
already there, so we need the three additional elements acf , bcf , and abcf (Figure 3.9(i)).
Now fill in joins of elements covering bc (Figure 3.9(j)). Finally, fill in joins of elements
covering abc (Figure 3.9(k)). With a little practice, this procedure yields a fairly efficient
method for computing the rank-generating function F (J(P ), x) by hand. For the above
example, we see that

F (J(P ), x) = 1 + 3x+ 4x2 + 5x3 + 4x4 + 3x5 + x6.

For further information about “zigzag” posets (or fences) as in Figure 3.9, see Exercise 3.66.
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294



3.5 Chains in Distributive Lattices

We have seen that many combinatorial properties of the finite poset P have simple inter-
pretations in terms of J(P ). For instance, the number of k-element order ideals of P equals
the number of elements of J(P ) of rank k, and the number of k-element antichains of P
equals the number of elements of J(P ) that cover exactly k elements. We wish to discuss
one further example of this nature.

3.5.1 Proposition. Let P be a finite poset and m ∈ N. The following quantities are equal:

a. the number of order-preserving maps σ : P →m,

b. the number of multichains 0̂ = I0 ≤ I1 ≤ · · · ≤ Im = 1̂ of length m in J(P ),

c. the cardinality of J(P ×m−1).

Proof. Given σ : P →m, define Ij = σ−1(j). Given 0̂ = I0 ≤ I1 ≤ · · · ≤ Im = 1̂, define the
order ideal I of P ×m−1 by I = {(t, j) ∈ P ×m−1 : t ∈ Im−j}. Given the order ideal I
of P ×m−1, define σ : P → m by σ(t) = min{m − j : (t, j) ∈ I} if (t, j) ∈ I for some j,
and otherwise σ(t) = m. These constructions define the desired bijections.

Note that the equivalence of (a) and (c) also follows from the computation

mP ∼= (2m−1)P ∼= 2m−1×P .

As a modification of the preceding proposition, we have the following result.

3.5.2 Proposition. Preserve the notation of Proposition 3.5.1. The following quantities
are equal:

a. the number of surjective order-preserving maps σ : P →m,

b. the number of chains 0̂ = I0 < I1 < · · · < Im = 1̂ of length m in J(P ).

Proof. Analogous to the proof of Proposition 3.5.1.

One special case of Proposition 3.5.2 is of particular interest. If #P = p, then an order-
preserving bijection σ : P → p is called a linear extension or topological sorting of P . The
number of linear extensions of P is denoted e(P ) and is probably the single most useful
number for measuring the “complexity” of P . It follows from Proposition 3.5.2 that e(P ) is
also equal to the number of maximal chains of J(P ).

We may identify a linear extension σ : P → p with the permutation σ−1(1), . . . , σ−1(p) of
the elements of P . Similarly we may identify a maximal chain of J(P ) with a certain type
of lattice path in Euclidean space, as follows. Let C1, . . . , Ck be a partition of P into chains.
(It is a consequence of a well-known theorem of Dilworth that the smallest possible value of
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Figure 3.10: A polyhedral set associated with a finite distributive lattice

k is equal to the cardinality of the largest antichain of P . See Exercise 3.77(d).) Define a
map δ : J(P )→ Nk by

δ(I) = (#(I ∩ C1),#(I ∩ C2), . . . ,#(I ∩ Ck)).

If we give Nk the obvious product order, then δ is an injective lattice homomorphism that
is cover-preserving (and therefore rank-preserving). Thus in particular J(P ) is isomorphic
to a sublattice of Nk. If we choose each #Ci = 1, then we get a rank-preserving injective
lattice homomorphism J(P ) → Bp, where #P = p. Given δ : P → Nk as above, define
Γδ =

⋃
T conv(δ(T )), where conv denotes convex hull in Rk and T ranges over all intervals

of J(P ) that are isomorphic to boolean algebras. (The set conv(δ(T )) is just a cube whose
dimension is the length of the interval T .) Thus Γδ is a compact polyhedral subset of Rk,
which is independent of δ (up to geometric congruence). It is then clear that the number
of maximal chains in J(P ) is equal to the number of lattice paths in Γδ from the origin
(0, 0, . . . , 0) = δ(0̂) to δ(1̂), with unit steps in the directions of the coordinate axes. In other
words, e(P ) is equal to the number of ways of writing δ(1̂) = v1 +v2 + · · ·+vp, where each vi
is a unit coordinate vector in Rk and where v1 + v2 + · · ·+ vi ∈ Γδ for all i. The enumeration
of lattice paths is an extensively developed subject which we encountered in various places
in Chapter 1 and in Section 2.7, and which is further developed in Chapter 6. The point
here is that certain lattice path problems are equivalent to determining e(P ) for some P .
Thus they are also equivalent to the problem of counting certain types of permutations.

3.5.3 Example. Let P be given by Figure 3.10(a). Take C1 = {a, c}, C2 = {b, d, e}. Then
J(P ) has the embedding δ into N2 given by Figure 3.10(b). To get the polyhedral set Γδ, we
simply “fill in” the squares in Figure 3.10(b), yielding the polyhedral set of Figure 3.10(c).
There are nine lattice paths of the required type from (0, 0) to (2, 3) in Γδ, that is, e(P ) = 9.
The corresponding nine permutations of P are abcde, bacde, abdce, badce, bdace, abdec,
badec, bdaec, bdeac.

3.5.4 Example. Let P be a disjoint union C1 + C2 of chains C1 and C2 of cardinalities m
and n. Then Γδ is an m× n rectangle with vertices (0, 0), (m, 0), (0, n), (m,n). As noted in
Proposition 1.2.1, the number of lattice paths from (0, 0) to (m,n) with steps (1, 0) and (0, 1)
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Figure 3.11: The distributive lattice J(2× 3)

is just
(
m+n
m

)
= e(C1 +C2). A linear extension σ : P →m + n is completely determined by

the image σ(C1), which can be any m-element subset of m + n. Thus once again we obtain
e(C1 + C2) =

(
m+n
m

)
. More generally, if P = P1 + P2 + · · ·+ Pk and ni = #Pi, then

e(P ) =

(
n1 + · · ·+ nk
n1, . . . , nk

)
e(P1)e(P2) · · · e(Pk).

3.5.5 Example. Let P = 2 × n, and take C1 = {(2, j) : j ∈ n}, C2 = {(1, j) : j ∈ n}.
Then δ(J(P )) = {(i, j) ∈ N2 : 0 ≤ i ≤ j ≤ n}. For example, the embedded poset
δ(J(2 × 3)) is shown in Figure 3.11. Hence e(P ) is equal to the number of lattice paths
from (0, 0) to (n, n), with steps (1, 0) and (0, 1), that never fall below (or by symmetry, that
never rise above) the main diagonal x = y of the (x, y)-plane. These lattice paths arose in
the enumeration of 321-avoiding permutations in Section 1.5, where it was mentioned that
they are counted by the Catalan numbers Cn = 1

n+1

(
2n
n

)
. It follows that e(2× n) = Cn. By

the definition of e(P ) we see that this number is also equal to the number of 2× n matrices
with entries the distinct integers 1, 2, . . . , 2n, such that every row and column is increasing.
For instance, e(2× 3) = 5, corresponding to the matrices

123 124 125 134 135
456 356 346 256 246.

Such matrices are examples of standard Young tableaux (SYT), discussed extensively in
Chapter 7.

We have now seen two ways of looking at the numbers e(P ): as counting certain order-
preserving maps (or permutations), and as counting certain chains (or lattice paths). There
is yet another way of viewing e(P )—as satisfying a certain recurrence. Regard e as a function
on J(P ), that is, if I ∈ J(P ) then e(I) is the number of linear extensions of I (regarded as a
subposet of P ). Thus e(I) is also the number of saturated chains from 0̂ to I in J(P ). From
this observation it is clear that

e(I) =
∑

I′⋖I

e(I ′), (3.11)
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Figure 3.12: The distributive lattice Jf(N + N)

where I ′ ranges over all elements of J(P ) that I covers. In other words, if we label the
element I ∈ J(P ) by e(I), then e(I) is the sum of those e(I ′) that lie “just below” I. This
recurrence is analogous to the definition of Pascal’s triangle, where each entry is the sum of
the two “just above.” Indeed, if we take P to be the infinite poset N+N and let Jf (P ) be the
lattice of finite order ideals of P , then Jf(P ) ∼= N× N, and labeling the element I ∈ Jf (P )
by e(I) yields precisly Pascal’s triangle (though upside-down from the usual convention in
writing it). Each finite order ideal I of N + N has the form m + n for some m,n ∈ N, and
from Example 3.5.4 we indeed have e(m + n) =

(
m+n
m

)
, the number of maximal chains in

m× n. See Figure 3.12.

Because of the above example, we define a generalized Pascal triangle to be a finitary dis-
tributive lattice L = Jf (P ), together with the function e : L → P. The entries e(I) of a
generalized Pascal triangle thus have three properties in common with the usual Pascal tri-
angle: (a) they count certain types of permutations, (b) they count certain types of lattice
paths, and (c) they satisfy a simple recurrence.
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3.6 Incidence Algebras

Let P be a locally finite poset, and let Int(P ) denote the set of (closed) intervals of P .
(Recall that the empty set is not an interval.) Let K be a field. If f : Int(P )→ K, then we
write f(x, y) for f([x, y]).

3.6.1 Definition. The incidence algebra I(P,K) (denoted I(P ) for short) of P over K is
the K-algebra of all functions

f : Int(P )→ K

(with the usual structure of a vector space over K), where multiplication (or convolution) is
defined by

fg(s, u) =
∑

s≤t≤u
f(s, t)g(t, u).

The above sum is finite (and hence fg is well-defined) since P is locally finite. It is easy to
see that I(P,K) is an associative algebra with (two-sided) identity, denoted δ or 1, defined
by

δ(s, t) =

{
1, if s = t
0, if s 6= t.

One can think of I(P,K) as consisting of all infinite linear combinations of symbols [s, t],
where [s, t] ∈ Int(P ). Convolution is defined uniquely by requiring that

[s, t] · [u, v] =

{
[s, v], if t = u

0, if t 6= u,

and then extending to all of I(P,K) by bilinearity (allowing infinite linear combinations of
the [s, t]’s). The element f ∈ I(P,K) is identified with the expression

f =
∑

[s,t]∈Int(P )

f(s, t)[s, t].

If P if finite, then label the elements of P by t1, . . . , tp where ti < tj ⇒ i < j. (The number
of such labelings is e(P ), the number of linear extensions of P .) Then I(P,K) is isomorphic
to the algebra of all upper triangular matrices M = (mij) over K, where 1 ≤ i, j ≤ p, such
that mij = 0 if ti 6≤ tj . (Proof. Identify mij with f(ti, tj).) For instance, if P is given by
Figure 3.13, then I(P ) is isomorphic to the algebra of all matrices of the form




∗ 0 ∗ 0 ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ 0 ∗
0 0 0 ∗ ∗
0 0 0 0 ∗



.

3.6.2 Proposition. Let f ∈ I(P ). The following conditions are equivalent:

a. f has a left inverse.
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Figure 3.13: A five-element poset

b. f has a right inverse.

c. f has a two-sided inverse (which is necessarily the unique left and right inverse).

d. f(t, t) 6= 0 for all t ∈ P .

Moreover, if f−1 exists, then f−1(s, u) depends only on the poset [s, u].

Proof. The statement that fg = δ is equivalent to

f(s, s)g(s, s) = 1 for all s ∈ P (3.12)

and
g(s, u) = −f(s, s)−1

∑

s<t≤u
f(s, t)g(t, u), for all s < u in P. (3.13)

It follows that f has a right inverse g if and only if f(s, s) 6= 0 for all s ∈ P , and in that
case f−1(s, u) depends only on [s, u]. Now the same reasoning applied to hf = δ shows that
f has a left inverse h if and only if f(s, s) 6= 0 for all s ∈ P ; that is, if and only if f has a
right inverse. But from fg = δ and hf = δ we have that g = h, and the proof follows.

Note. The fact that a right-inverse of f is a two-sided inverse also follows from general
algebraic reasoning. Namely, the restriction of f to Int([s, u]) satisfies a polynomial equation
with nonzero constant term. An example of such an equation is the characteristic equation

∏

t∈[s,u]

(f − f(t, t)) = 0. (3.14)

Hence a right inverse of f is a polynomial in f and therefore commutes with f .

Let us now survey some useful functions in I(P ). The zeta function ζ is defined by

ζ(t, u) = 1, for all t ≤ u in P.

Thus
ζ2(s, u) =

∑

s≤t≤u
1 = #[s, u].

More generally, if k ∈ P then

ζk(s, u) =
∑

s=s0≤s1≤···≤sk=u

1,
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the number of multichains of length k from s to u. Similarly,

(ζ − 1)(s, u) =

{
1, if s < u
0, if s = u.

Hence if k ∈ P then (ζ − 1)k(s, u) is the number of chains s = s0 < s1 < · · · < sk = u of
length k from s to u. By Propositions 3.5.1 and 3.5.2 we have additional interpretations of
ζk(s, u) and (ζ − 1)k(s, u) when P is a distributive lattice.

Now consider the element 2− ζ ∈ I(P ). Thus

(2− ζ)(s, t) =

{
1, if s = t
−1, if s < t.

By Proposition 3.6.2, 2 − ζ is invertible. We claim that (2 − ζ)−1(s, t) is equal to the total
number of chains s = s0 < s1 < · · · < sk = t from s to t. We sketch two justifications of this
fact.

First justification. Let ℓ be the length of the longest chain in the interval [s, t]. Then
(ζ − 1)ℓ+1(u, v) = 0 for all s ≤ u ≤ v ≤ t. Thus for s ≤ u ≤ v ≤ t we have

(2− ζ)[1 + (ζ − 1) + (ζ − 1)2 + · · ·+ (ζ − 1)ℓ](u, v)

= [1− (ζ − 1)][1 + (ζ − 1) + · · ·+ (ζ − 1)ℓ](u, v)

= [1− (ζ − 1)ℓ+1](u, v) = δ(u, v).

Hence (2 − ζ)−1 = 1 + (ζ − 1) + · · · + (ζ − 1)ℓ when restricted to Int([s, t]). But by the
definition of ℓ, it is clear that [1 + (ζ − 1) + · · ·+ (ζ − 1)ℓ](s, t) is the total number of chains
from s to t, as desired.

Second justification. Our second justification is essentially equivalent to the first one, but it
uses a little topology to avoid having to restrict our attention to an interval. The topological
approach can be used to perform without effort many similar kinds of computations in I(P ).
We define a topology on I(P ) (analogous to the topology on C[[x]] defined in Section 1.1)
by saying that a sequence f1, f2, . . . of functions converges to f if for all s ≤ t, there exists
n0 = n0(s, t) ∈ P such that fn(s, t) = f(s, t) for all n ≥ n0. With this topology, the following
computation is valid (because the infinite series converges):

(2− ζ)−1 = (1− (ζ − 1))−1 =
∑

k≥0

(ζ − 1)k,

so

(2− ζ)−1(s, t) =
∑

k≥0

(ζ − 1)k(s, t)

=
∑

k≥0

(number of chains of length k from s to t)

= total number of chains from s to t.
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Similarly to the above interpretation of (2 − ζ)−1 , we leave to the reader to verify that
(1− η)−1(s, t) is equal to the total number of maximal chains in the interval [s, t], where η
is defined by

η(s, t) =

{
1, if t covers s
0, otherwise.
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3.7 The Möbius Inversion Formula

It follows from Proposition 3.6.2 that the zeta function ζ of a locally finite poset is invertible;
its inverse is called the Möbius function of P and is denoted µ (or µP if there is possible
ambiguity). One can define µ recursively without reference to the incidence algebra. Namely,
the relation µζ = δ is equivalent to

µ(s, s) = 1, for all s ∈ P
µ(s, u) = −

∑

s≤t<u
µ(s, t), for all s < u in P. (3.15)

3.7.1 Proposition (Möbius inversion formula). Let P be a poset for which every principal
order ideal Λt is finite. Let f, g : P → K, where K is a field. Then

g(t) =
∑

s≤t
f(s), for all t ∈ P, (3.16)

if and only if

f(t) =
∑

s≤t
g(s)µ(s, t), for all t ∈ P. (3.17)

Proof. The set KP of all functions P → K forms a vector space on which I(P,K) acts (on
the right) as an algebra of linear transformations by

(fξ)(t) =
∑

s≤t
f(s)ξ(s, t),

where f ∈ KP , ξ ∈ I(P,K). The Möbius inversion formula is then nothing but the statement

fζ = g ⇐⇒ f = gµ.

Note. It is also easy to give a naive computational proof of Proposition 3.7.1. Assuming
(3.16), we have (for fixed t ∈ P )

∑

s≤t
g(s)µ(s, t) =

∑

s≤t
µ(s, t)

∑

u≤s
f(u)

=
∑

u≤t
f(u)

∑

u≤s≤t
µ(s, t)

=
∑

u≤t
f(u)δ(u, t)

= f(t),

which is (3.17). A completely analogous argument shows that (3.16) follows from (3.17).

A dual formulation of the Möbius inversion formula is sometimes convenient.
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Figure 3.14: The poset related to equation (3.1)

3.7.2 Proposition (Möbius inversion formula, dual form). Let P be a poset for which every
principal dual order ideal Vt is finite. Let f, g : P → K. Then

g(s) =
∑

t≥s
f(t), for all s ∈ P,

if and only if

f(s) =
∑

t≥s
µ(s, t)g(t), for all s ∈ P.

Proof. Exactly as above, except now I(P,K) acts on the left by

(ξf)(s) =
∑

t≥s
ξ(s, t)f(t).

As in the Principle of Inclusion-Exclusion, the purely abstract statement of the Möbius
inversion formula as given above is just a trivial observation in linear algebra. What is
important are the applications of the Möbius inversion formula. First we show the Möbius
inversion formula does indeed explain formulas such as equation (3.1).

Given n finite sets S1, . . . , Sn, let P be the poset of all their intersections ordered by inclusion,
including the empty intersection S1∪ · · ·∪Sn = 1̂. If T ∈ P , then let f(T ) be the number of
elements of T which belong to no T ′ < T in P , and let g(T ) = #T . We want an expression
for #(S1∪ · · ·∪Sn) =

∑
T≤1̂ f(T ) = g(1̂). Now g(T ) =

∑
T ′≤T f(T ′), so by Möbius inversion

on P we have

0 = f(1̂) =
∑

T∈P
g(T )µ(T, 1̂) ⇒ g(1̂) = −

∑

T<1̂

#T · µ(T, 1̂),

as desired. In the example given by equation (3.1), P is given by Figure 3.14. Indeed,
µ(A, 1̂) = µ(B, 1̂) = µ(C, 1̂) = −1 and µ(D, 1̂) = 2, so (3.1) follows.
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3.8 Techniques for Computing Möbius Functions

In order for the Möbius inversion formula to be of any value, it is necessary to be able to
compute the Möbius function of posets P of interest. We begin with a simple example that
can be done by brute force.

3.8.1 Example. Let P be the chain N. It follows directly from equation (3.15) that

µ(i, j) =





1, if i = j
−1, if i+ 1 = j

0, otherwise.

The Möbius inversion formula takes the form

g(n) =

n∑

i=0

f(i) for all n > 0

if and only if

f(0) = g(0), and f(n) = g(n)− g(n− 1) for all n > 0.

In other words, the operations Σ and ∆ (with Σ suitably initialized) are inverses of one
another, the finite difference analogue of the “fundamental theorem of calculus.”

Since only in rare cases can Möbius functions be computed by inspection as in Example 3.8.1,
we need general techniques for their evaluation. We begin with the simplest result of this
nature.

3.8.2 Proposition (the product theorem). Let P and Q be locally finite posets, and let
P ×Q be their direct product. If (s, t) ≤ (s′, t′) in P ×Q then

µP×Q((s, t), (s′, t′)) = µP (s, s′)µQ(t, t′).

Proof. Let (s, t) ≤ (s′, t′). We have

∑

(s,t)≤(u,v)≤(s′,t′)

µP (s, u)µQ(t, v) =

( ∑

s≤u≤s′
µP (s, u)

)( ∑

t≤v≤t′
µQ(t, v)

)

= δss′δtt′ = δ(s,t),(s′,t′).

Comparing with equation (3.15), which determines µ uniquely, completes the proof.

For readers familiar with tensor products we mention a more conceptual way of proving the
previous proposition. Namely, one easily sees that

I(P ×Q,K) ∼= I(P,K)⊗K I(Q,K)

and ζP×Q = ζP ⊗ ζQ. Taking inverses gives µP×Q = µP ⊗ µQ.
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3.8.3 Example. Let P = Bn, the boolean algebra of rank n. Now Bn
∼= 2n, and the Möbius

function of the chain 2 = {1, 2} is given by µ(1, 1) = µ(2, 2) = 1, µ(1, 2) = −1. Hence if
we identify Bn with the set of all subsets of an n-set X, then we conclude from the product
theorem that

µ(T, S) = (−1)#(S−T ).

Since #(S − T ) is the length ℓ(T, S) of the interval [T, S], in purely order-theoretic terms
we have

µ(T, S) = (−1)ℓ(T,S). (3.18)

The Möbius inversion formula for Bn becomes the following statement. Let f, g : Bn → K;
then

g(S) =
∑

T⊆S
f(T ), for all S ⊆ X,

if and only if

f(S) =
∑

T⊆S
(−1)#(S−T )g(T ), for all S ⊆ X.

This is just equation (2.8). Hence we can say that “Möbius inversion on a boolean algebra is
equivalent to the Principle of Inclusion-Exclusion.” Note that equation (2.8), together with
the Möbius inversion formula (Proposition 3.7.1), actually proves (3.18), so now we have two
proofs of this result.

3.8.4 Example. Let n1, . . . , nk be nonnegative integers, and let P = (n1 + 1)×(n2 + 1)×
· · · × (nk + 1), a product of chains of lengths n1, . . . , nk. Note that P is isomorphic to
the distributive lattice J(n1 + n2 + · · · + nk). Identify P with the set of all k-tuples
(a1, a2, . . . , ak) ∈ Nk with 0 ≤ ai ≤ ni, ordered componentwise. If ai ≤ bi for all i, then the
interval [(a1, . . . , ak), (b1, . . . , bk)] in P is isomorphic to (b1 − a1 + 1)×· · ·× (bk − ak + 1).
Hence by Example 3.8.1 and Proposition 3.8.2, we have

µ((a1, . . . , ak), (b1, . . . , bk)) =

{
(−1)

P

(bi−ai), if each bi − ai = 0 or 1
0, otherwise.

(3.19)

Equivalently,

µ(s, t) =

{
(−1)ℓ(s,t), if [s, t] is a boolean algebra

0, otherwise.

(See Example 3.9.6 for a mild generalization.)

There are two further ways of interest to interpret the lattice P = (n1 + 1)×· · ·×(nk + 1).
First, P is isomorphic to the poset of submultisets of the multiset {xn1

1 , . . . , x
nk
k }, ordered

by inclusion. Second, if N is a positive integer of the form pn1
1 · · · pnk

k , where the pi’s are
distinct primes, then P is isomorphic to the poset DN defined in Example 3.1.1(c) of positive
integral divisors of N , ordered by divisibility (i.e., r ≤ s in DN if r|s). In this latter context,
equation (3.19) takes the form

µ(r, s) =

{
(−1)t, if s/r is a product of t distinct primes

0, otherwise.
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In other words, µ(r, s) is just the classical number-theoretic Möbius function µ(s/r). The
Möbius inversion formula becomes the classical one, namely,

g(n) =
∑

d|n
f(d), for all n|N,

if and only if

f(n) =
∑

d|n
g(d)µ(n/d), for all n|N.

This example explains the termimology “Möbius function of a poset.”

Rather than restricting ourselves to the divisors of a fixed integer N , it is natural to consider
the poset P of all positive integers, ordered by divisibility. Since any interval [r, s] of this
poset appears as an interval in the lattice of divisors of s (or of any N for which s|N), the
Möbius function remains µ(r, s) = µ(s/r). Abstractly, the poset P is isomorphic to the
finitary distributive lattice

Jf(P + P + P + · · · ) = Jf

(∑

n≥1

P

)
∼=
∏

n≥1

N, (3.20)

where the product
∏

n≥1 N is the restricted direct product ; that is, only finitely many com-
ponents of an element of the product are nonzero. Alternatively, P can be identified with
the lattice of all finite multisets of the set P (or any countably infinite set).

We now come to a very important way of computing Möbius functions.

3.8.5 Proposition (Philip Hall’s theorem). Let P be a finite poset, and let P̂ denote P with
a 0̂ and 1̂ adjoined. Let ci be the number of chains 0̂ = t0 < t1 < · · · < ti = 1̂ of length i
between 0̂ and 1̂. (Thus c0 = 0 and c1 = 1.) Then

µ
bP (0̂, 1̂) = c0 − c1 + c2 − c3 + · · · . (3.21)

Proof. We have

µ
bP (0̂, 1̂) = (1 + (ζ − 1))−1(0̂, 1̂)

= (1− (ζ − 1) + (ζ − 1)2 − · · · )(0̂, 1̂)
= δ(0̂, 1̂)− (ζ − 1)(0̂, 1̂) + (ζ − 1)2(0̂, 1̂)− · · ·
= c0 − c1 + c2 − · · · .

The significance of Proposition 3.8.5 is that it shows that µ(0̂, 1̂) (and thus µ(s, t) for any
interval [s, t]) can be interpreted as an Euler characteristic, and therefore links the Möbius
function of P with the powerful machinery of algebraic topology. To see the connection,
recall that an (abstract) simplicial complex on a vertex set V is a collection ∆ of subsets of
V satisfying:
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a. If t ∈ V then {t} ∈ ∆,

b. if F ∈ ∆ and G ⊆ F , then G ∈ ∆.

Thus ∆ is just an order ideal of the boolean algebra BV that contains all one-element subsets
of V . An element F ∈ ∆ is called a face of ∆, and the dimension of F is defined to be
#F − 1. In particular, the empty set ∅ is always a face of ∆ (provided ∆ 6= ∅), of dimension
−1. Also define the dimension of ∆ by

dim ∆ = max
F∈∆

(dimF ).

If ∆ is finite, then let fi denote the number of i-dimensional faces of ∆. Define the reduced
Euler characteristic χ̃(∆) by

χ̃(∆) =
∑

i

(−1)ifi = −f−1 + f0 − f1 + · · · . (3.22)

Note that f−1 = 1 unless ∆ = ∅. The simplicial complexes ∆1 = ∅ and ∆2 = {∅} are not
the same; in particular, χ̃(∆1) = 0 and χ̃(∆2) = −1.

Note. The reduced Euler characteristic χ̃(∆) is related to the ordinary Euler characteristic
χ(∆) by χ̃(∆) = χ(∆) − 1 (if ∆ 6= ∅). Thus in computing χ(∆) the empty set is not
considered as a face, while for χ̃(∆) we do regard it as a face.

Now if P is any poset, then define a simplicial complex ∆(P ) as follows: the vertices of ∆(P )
are the elements of P , and the faces of ∆(P ) are the chains of P . The simplicial complex
∆(P ) is called the order complex of P . We then conclude from equations (3.21) and (3.22)
the following result.

3.8.6 Proposition (Proposition 3.8.5, restated). Let P be a finite poset. Then

µ
bP (0̂, 1̂) = χ̃(∆(P )).

Proposition 3.8.5 gives an expression for µ(0̂, 1̂) that is self-dual (i.e., remains unchanged if
P is replaced by P ∗). Thus we see that in any locally finite poset P ,

µP (s, t) = µP ∗(t, s).

(One can also prove this fact using µζ = ζµ.)

Let us recall that in topology one associates a topological space |∆|, called the geometric
realization of ∆, with a simplicial complex ∆. (One also says that ∆ is a triangulation of the
space |∆|.) Informally, place the vertices of ∆ in sufficiently general position (e.g., linearly
independent) in some Euclidean space. Then

|∆| =
⋃

F∈∆

conv(F ),
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Figure 3.15: A geometric realization of a simplicial complex

where conv denotes convex hull. For instance, if the maximal faces of ∆ are (abbreviating
{a, b} as ab, etc.) ab, bcd, bde, df , ef , g, then the geometric realization |∆| is shown in
Figure 3.15.

The reduced Euler characteristic χ̃(X) of the space X = |∆| is defined by

χ̃(X) =
∑

i

(−1)irank H̃i(X; Z),

where H̃i(X; Z) denotes the ith reduced homology group ofX. One then has from elementary
algebraic topology that

χ̃(X) = χ̃(∆), (3.23)

so that µ
bP (0̂, 1̂) depends only on the topological space |∆(P )| of ∆(P ). For instance, if ∆(P )

is a triangulation of an n-dimensional sphere, then µ
bP (0̂, 1̂) = (−1)n.

3.8.7 Example (for readers familiar with some topology). A finite regular cell complex Γ
is a finite set of nonempty pairwise-disjoint open cells σi ⊂ RN such that:

a. (σ̄i, σ̄i − σi) ≈ (Bn, Sn−1), for some n = n(i),

b. each σ̄i − σi is a union of σj ’s.

Here σ̄i denotes the closure of σi (in the usual topology on RN), ≈ denotes homeomorphism,
Bn is the unit ball {(x1, . . . , xn) ∈ Rn : x2

1 + · · · + x2
n ≤ 1}, and Sn−1 is the unit sphere

{(x1, . . . , xn) ∈ Rn : x2
1 + · · ·+ x2

n = 1}. Note that a cell σi may consist of a single point,
corresponding to the case n = 0. Also, define the underlying space of Γ to be the topological
space |Γ| = ⋃

σi ⊂ RN . Given a finite regular cell complex Γ, define its (first) barycentric
subdivision sd(Γ) to be the abstract simplicial complex whose vertices consist of the closed
cells σ̄i of Γ, and whose faces consist of those sets {σ̄i1 , . . . , σ̄ik} of vertices forming a flag
σ̄i1 ⊂ σ̄i2 ⊂ · · · ⊂ σ̄ik . The crucial property of a regular cell complex to concern us here is
that the geometric realization |sd(Γ)| of the simplicial complex sd(Γ) is homeomorphic to
the underlying space |Γ| of the cell complex Γ:

|sd(Γ)| ≈ |Γ|. (3.24)
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Now given a finite regular cell complex Γ, let P (Γ) be the poset of cells of Γ, ordered by
defining σi ≤ σj if σ̄i ⊆ σ̄j . It follows from the definition of sd(Γ) that ∆(P (Γ)) = sd(Γ).
From Proposition 3.8.6 and equations (3.23) and (3.24) we conclude the following.

3.8.8 Proposition. Let Γ be a finite regular cell complex, and let P = P (Γ). Then

µ
bP (0̂, 1̂) = χ̃(|Γ|), (3.25)

where χ̃(|Γ|) is the reduced Euler characteristic of the topological space |Γ|.

Propositions 3.8.6 and 3.8.8 deal with the topological significance of the integer µ
bP (0̂, 1̂). We

are also interested in other values µ
bP (s, t), so we briefly discuss this point. Let ∆ be any

finite simplicial complex, and let F ∈ ∆. The link of F is the subcomplex of ∆ defined by

lkF = {G ∈ ∆ : G ∩ F = ∅ and G ∪ F ∈ ∆}. (3.26)

If P is a finite poset and s < t in P , then choose saturated chains s1 ⋖ s2 ⋖ · · ·⋖ sj = s and
t = t1 ⋖ t2 ⋖ · · ·⋖ tk in P such that s1 is a minimal element and tk is a maximal element of
P . Let F = {s1, . . . , sj, t1, . . . , tk} ∈ ∆(P ). Then lkF is just the order complex of the open
interval (s, t) = {u ∈ P : s < u < t}, so by Proposition 3.8.6 we have

µ(s, t) = χ̃(lkF ). (3.27)

Now suppose that ∆ is an abstract simplicial complex that triangulates a manifold M , with
or without boundary. (In other words, |∆| ≈ M .) Let ∅ 6= F ∈ ∆. It is well known from
algebraic topology that lkF has the same homology groups as a sphere or ball of dimension
equal to dim(lkF ) = maxG∈lkF (dimG). Moreover, lkF will have the homology groups of
a ball precisely when F lies on the boundary ∂∆ of ∆. Equivalently, F is contained in
some face F ′ such that dimF ′ = dim ∆ − 1 and F ′ is contained in a unique maximal face
of ∆. (Somewhat surprisingly, lkF need not be simply-connected and |lkF | need not be a
manifold!) Since χ̃(Sn) = (−1)n and χ̃(Bn) = 0, we deduce from equations (3.25) and (3.27)
the following result.

3.8.9 Proposition. Let Γ be a finite regular cell complex. Suppose that |Γ| is a manifold,
with or without boundary. Let P = P (Γ). Then

µ
bP (s, t) =





0, if s 6= 0̂, t = 1̂, and the cell s lies on the
boundary of |Γ|

χ̃(|Γ|), if (s, t) = (0̂, 1̂)

(−1)ℓ(s,t), otherwise.

Motivated by Proposition 3.8.9, we define a finite graded poset P with 0̂ and 1̂ to be semi-
Eulerian if µP (s, t) = (−1)ℓ(s,t) whenever (s, t) 6= (0̂, 1̂), and to be Eulerian if in addition

µP (0̂, 1̂) = (−1)ℓ(0̂,1̂). Thus Proposition 3.8.9 implies that if |Γ| is a manifold (without bound-

ary), then P̂ (Γ) is semi-Eulerian. Moreover, if |Γ| is a sphere, then P̂ (Γ) is Eulerian. By

Example 3.8.3, boolean algebras Bn are Eulerian; indeed, Bn = P̂ (Γ), where Γ is the bound-
ary complex of an (n−1)-simplex. Hence |∆(Bn)| ≈ Sn−2, a vast topological strengthening of
the mere computation of the Möbius function of Bn. Some interesting properties of Eulerian
posets appear in Sections 3.16 and 3.17.
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ΓΓΓΓ Γ Γ1 2 3 4 5 6

Figure 3.16: Some regular cell complexes

P(Γ )^ P̂ P(Γ )^ P(Γ )^ P(Γ )^ P(Γ )^ P(Γ )^(Γ )1 2 3 4 5 6 5= *

Figure 3.17: The face posets of the regular cell complexes of Figure 3.16

3.8.10 Example. a. The diagrams of Figure 3.16 represent finite regular cell complexes
Γ such that |Γ| ∼= S1 or |Γ| ∼= S2. (Shaded regions represent 2-cells.) The corresponding

Eulerian posets P̂ (Γ) are shown in Figure 3.17. Note that P̂ (Γ2) and P̂ (Γ3) are lattices.
This is because in Γ2 and Γ3, any intersection σ̄i ∩ σ̄j is some σ̄k.

b. The diagram represents a certain cell complex Γ that is not regular, since for the
unique 1-cell σ we do not have σ̄−σ ≈ S0. (The sphere S0 consists of two points, while
σ̄ − σ is just a single point.) The corresponding poset P = P (Γ) is the two-element
chain, and |∆(P )| is not homeomorphic to |Γ|. (We have |Γ| ≈ S1 while |∆(P )| ≈ B1.)

Note that P̂ is not Eulerian even though |Γ| is a sphere.

c. Let Γ be given by Figure 3.18(a). Then |Γ| is a manifold without boundary with the

same Euler characteristic as S1 (namely, 0), though |Γ| 6≈ S1. Hence P̂ (Γ) is Eulerian
even though Γ does not have the same homology groups as a sphere. See Figure 3.18(b).

d. If Γ is a disjoint union of m points then |Γ| is a manifold with Euler characteristic m.

Hence P̂ (Γ) is semi-Eulerian, but not Eulerian if m 6= 2. See Figure 3.19.

For our final excursion into topology, let P be a finite graded poset with 0̂ and 1̂. We say
that the Möbius function of P alternates in sign if

(−1)ℓ(s,t)µ(s, t) ≥ 0, for all s ≤ t in P.

A finite poset P is said to be Cohen-Macaulay over an abelian group A if for every s < t in
P̂ , the order complex ∆(s, t) of the open interval (s, t) satisfies

H̃i(∆(s, t);A) = 0, if i < dim ∆(s, t). (3.28)
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(b)(a)

Figure 3.18: A nonspherical regular cell complex and its Eulerian face poset

= 2 = 3= 1m m m

Figure 3.19: Face posets of some 0-dimensional manifolds
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Here H̃i(∆(s, t);A) denotes reduced simplicial homology with coefficients in A. It follows
from standard topological arguments that if P is Cohen-Macaulay over some group A then
P is Cohen-Macaulay over Q. Hence we may as well take A = Q to get the widest class
of posets. One can easily show that a Cohen-Macaulay poset is graded. If equation (3.28)
holds (say with A = Q) and if d = dim ∆(s, t), then equation (3.27) implies that

µP (s, t) = χ̃(∆(s, t)) = (−1)d dimQ H̃d(∆(s, t); Q) ≥ 0.

Since d = ℓ(s, t)− 2 we conclude that

(−1)ℓ(s,t)µP (s, t) = dimQ H̃d(∆(s, t); Q) ≥ 0.

We have therefore proved the following result.

3.8.11 Proposition. If P is Cohen-Macaulay, then the Möbius function of P alternates in
sign.

Examples of Cohen-Macaulay posets include those of the form P (Γ), where Γ is a finite
regular cell complex such that |Γ| is a manifold of dimension d, with or without boundary,

satisfying H̃i(Γ; Q) = 0 if i < d. It can be shown that for any finite regular cell complex Γ,
the question of whether P (Γ) is Cohen-Macaulay depends only on the space |Γ|. It can also

be shown that if P̂ is a finite semimodular lattice, then P is Cohen-Macaulay. Though we
will not prove this fact here, we will later (Proposition 3.10.1) prove the weaker assertion
that the Möbius function of a finite semimodular lattice alternates in sign.
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3.9 Lattices and Their Möbius Functions

There are special methods for computing the Möbius function of a lattice that are inap-
plicable to general posets. We will develop these results in a unified way using the theory
of Möbius algebras. While the applications to Möbius functions can also be proved with-
out recourse to Möbius algebras, we prefer the convenience and elegance of the algebraic
viewpoint.

3.9.1 Definition. Let L be a lattice and K a field. The Möbius algebra A(L,K) is the
semigroup algebra of L with the meet operation, over K. In other words, A(L,K) is the
vector space over K with basis L, with (bilinear) multiplication defined by s · t = s ∧ t for
all s, t ∈ L.

The Möbius algebra A(L,K) is commutative and has a vector space basis consisting of
idempotents, namely, the elements of L. It follows from general ring-theoretic considerations
(Wedderburn theory or otherwise) that when L is finite we have A(L,K) ∼= K#L. We wish
to make this isomorphism more explicit. To do so, define for t ∈ L the element δt ∈ A(L,K)
by

δt =
∑

s≤t
µ(s, t)s.

Hence by the Möbius inversion formula,

t =
∑

s≤t
δs. (3.29)

The number of δt’s is equal to #L = dimK A(L,K), and equation (3.29) shows that they
span A(L,K). Hence the δt’s form a K-basis for A(L,K).

3.9.2 Theorem. Let L be a finite lattice and let A′(L,K) be the abstract algebra
⊕

t∈LKt,
where each Kt

∼= K. Denote by δ′t the identity element of Kt, so δ′sδ
′
t = δstδ

′
t (where δst

denotes the Kronecker delta). Define a linear transformation θ : A(L,K) → A′(L,K) by
setting θ(δt) = δ′t and extending by linearity. Then θ is an isomorphism of algebras.

Proof. If t ∈ L, then let t′ =
∑

s≤t δ
′
s ∈ A′(L,K). Since θ is clearly a vector space isomor-

phism, we need only show that s′t′ = (s ∧ t)′. Now

s′t′ =

(∑

u≤s
δ′u

)(∑

v≤t
δ′v

)
=
∑

u≤s
v≤t

δuvδ
′
u

=
∑

w≤s∧t
δ′w = (s ∧ t)′.

3.9.3 Corollary (Weisner’s theorem). Let L be a finite lattice with at least two elements,
and let 1̂ 6= a ∈ L. Then ∑

t : t∧a=0̂

µ(t, 1̂) = 0.
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Proof. In the Möbius algebra A(L,K) we have

aδ1̂ =

(∑

b≤a
δb

)
δ1̂ = 0, if a 6= 1̂. (3.30)

On the other hand,

aδ1̂ = a
∑

t∈L
µ(t, 1̂)t =

∑

t∈L
µ(t, 1̂)(a ∧ t). (3.31)

Writing aδ1̂ =
∑

t∈L ct · t, we conclude from equation (3.30) that c0̂ = 0 and from (3.31) that

c0̂ =
∑

t : t∧a=0̂ µ(t, 1̂).

Looking at the defining recurrence (3.15) for the Möbius function, we see that Corollary 3.9.3
gives a similar recurrence, but in general with many fewer terms. Some applications of
Corollary 3.9.3 will be given soon. First we give some other consequences of Theorem 3.9.2.
The next result is known as the Crosscut Theorem.

3.9.4 Corollary (Crosscut Theorem). Let L be a finite lattice, and let X be a subset of L
such that (a) 1̂ 6∈ X, and (b) if s ∈ L and s 6= 1̂, then s ≤ t for some t ∈ X. Then

µ(0̂, 1̂) =
∑

k

(−1)kNk, (3.32)

where Nk is the number of k-subsets of X whose meet is 0̂.

Proof. For any t ∈ L, we have in A(L,K) that

1̂− t =
∑

s≤1̂

δs −
∑

s≤t
δs =

∑

s 6≤t
δs.

Hence by Theorem 3.9.2, ∏

t∈X
(1̂− t) =

∑

s

δs,

where s ranges over all elements of L satisfying s 6≤ t for all t ∈ X. By hypothesis, the only
such element is 1̂. Hence ∏

t∈X
(1̂− t) = δ1̂.

If we now expand both sides as linear combinations of elements of L and equate coefficients
of 0̂, the result follows.

Note (for topologists). Let Γ be the set of all subsets of X (as in the previous corollary)
whose meet is not 0̂. Then Γ is a simplicial complex, and equation (3.32) asserts that
χ̃(Γ) = µ(0̂, 1̂). Let P ′ = P − {0̂, 1̂}. Comparing with Proposition 3.8.6, which asserts that
µ(0̂, 1̂) = χ̃(∆(P ′)), suggests that the two simplicial complexes Γ and ∆(P ′) might have
deeper topological similarities than merely having the same Euler characteristic. Indeed, it
can be shown that Γ and ∆(P ′) are homotopy equivalent, a good example of combinatorial
reasoning leading to a stronger topological result.
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It is clear that a subset X of L satisfies conditions (a) and (b) of Corollary 3.9.4 if and only
if X contains the set A∗ of all coatoms (= elements covered by 1̂) of L. To make the numbers
Nk as small as possible, we should take X = A∗. Note that if 0̂ is not the meet of all the
coatoms of L, then each Nk = 0. Hence we obtain the following corollary.

3.9.5 Corollary. If L is a finite lattice for which 0̂ is not a meet of coatoms, then µ(0̂, 1̂) = 0.
Dually, if 1̂ is not a join of atoms, then again µ(0̂, 1̂) = 0.

3.9.6 Example. Let L = J(P ) be a finite distributive lattice. The interval [I, I ′] of L is
a boolean algebra if and only if I ′ − I is an antichain of P . More generally, the join of all
atoms of the interval [I, I ′] (regarded as a sublattice of L) is the order ideal I ∪M , where
M is the set of minimal elements of the subposet I ′ − I of P . Hence I ′ is a join of atoms of
[I, I ′] if and only if [I, I ′] is a boolean algebra. From Example 3.8.3 and Corollary 3.9.5, we
obtain the Möbius function of L, namely,

µ(I, I ′) =





(−1)ℓ(I,I
′) = (−1)#(I′−I), if [I, I ′] is a boolean algebra (i.e., if

I ′ − I is an antichain of P )

0, otherwise.
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3.10 The Möbius Function of a Semimodular Lattice

We wish to apply the dualized form of Corollary 3.9.3 to a finite semimodular lattice L of
rank n with rank function ρ. Pick a to be an atom of L. Suppose a ∨ t = 1̂. If also a ≤ t,
then t = 1̂. Hence either t ∧ a = 0̂ or t = 1̂. Now from the definition of semimodularity we
have ρ(t) + ρ(a) ≥ ρ(t∧ a) + ρ(t∨ a), so either t = 1̂ or ρ(t) + 1 ≥ 0 + n. Hence either t = 1̂
or t is a coatom. From Corollary 3.9.3 (dualized) there follows

µ(0̂, 1̂) = −
∑

coatoms t
such that
t6≥a

µ(0̂, t). (3.33)

Since every interval of a semimodular lattice is again semimodular (e.g., by Proposition 3.3.2),
we conclude from equation (3.33) and induction on n the following result, mentioned at the
end of Section 3.8.

3.10.1 Proposition. The Möbius function of a finite semimodular lattice alternates in sign.

Since (−1)ℓ(s,t)µ(s, t) is a nonnegative integer for any s ≤ t in a finite semimodular lattice
L, we can ask whether this integer actually counts something associated with the structure
of L. This question will be answered in Section 3.14.

We now turn to two of the most important examples of semimodular lattices.

3.10.2 Example. Let q be a prime power, and let Vn = Fnq , an n-dimensional vector space
over the finite field Fq. (Any n-dimensional vector space over Fq will do, but for definiteness
we choose Fnq .) Let Bn(q) denote the poset of all subspaces of Vn, ordered by inclusion, as
defined in Example 3.1.1(e). We observed in Section 3.3 that Bn(q) is a graded lattice of
rank n, where the rank ρ(W ) of a subspace is just its dimension. We also mentioned that
since any two subspaces W,W ′ of V satisfy the “modular equality”

dimW + dimW ′ = dim(W ∩W ′) + dim(W ∪W ′),

it follows from equation (3.6) that Bn(q) is in fact a modular lattice. Since every subspace
of Bn(q) is the span of its one-dimensional subspaces, Bn(q) is also a geometric lattice. The
interval [W,W ′] ofBn(q) is isomorphic to the lattice of subspaces of the quotient spaceW ′/W ,
so [W,W ′] ∼= Bm(q), where m = ℓ(W,W ′) = dimW ′−dimW . Hence µ(W,W ′) depends only
on the integer ℓ = ℓ(W,W ′), so we write µℓ = µ(W,W ′). It is now an easy task to compute
µℓ using equation (3.33). Let a be an element of Bn(q) of rank 1, i.e., an atom. Now Bn(q)
has a total of

(
n

n−1

)
= qn−1 + qn−2 + · · ·+ 1 coatoms, of which

(
n−1

n−2

)
= qn−2 + qn−3 + · · ·+ 1

lie above a. Hence there are qn−1 coatoms t satisfying t 6≥ a, so from equation (3.33) we have

µn = −qn−1µn−1.

Together with the initial condition µ0 = 1, there follows

µn = (−1)nq(
n
2). (3.34)
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Figure 3.20: Small partition lattices

3.10.3 Example. We give one simple example of the use of equation (3.34). We wish to
count the number of spanning subsets of Vn. For the purpose of this example, we say that
the empty set ∅ spans no space, while the subset {0} spans the zero-dimensional subspace
{0}.∗ If W ∈ Bn(q), then let f(W ) be the number of subsets of Vn whose span is W , and
let g(W ) be the number whose span is contained in W . Hence g(W ) = 2q

dimW − 1, since ∅
has no span. Clearly

g(W ) =
∑

T≤W
f(T ),

so by Möbius inversion in Bn(q),

f(W ) =
∑

T≤W
g(T )µ(T,W ).

Putting W = Vn, there follows

f(Vn) =
∑

T∈Bn(q)

g(T )µ(T, Vn)

=
n∑

k=0

(
n

k

)
(−1)n−kq(

n−k
2 )
(
2q

k − 1
)
.

3.10.4 Example. Let ΠS denote the set of all partitions of the finite set S, and write Πn

for Π[n]. As in Example 3.1.1(d), we partially order ΠS by refinement ; that is, define π ≤ σ
if every block of π is contained in a block of σ. For instance, Π1, Π2, and Π3 are shown in
Figure 3.20. It is easy to check that Πn is graded of rank n− 1. The rank ρ(π) of π ∈ Πn is
equal to n − (number of blocks of π) = n −#π. Hence the rank-generating function of Πn

is given by

f(Πn, x) =
n−1∑

k=0

S(n, n− k)xk, (3.35)

where S(n, n − k) is a Stirling number of the second kind. If π, σ ∈ Πn, then π ∧ σ has as
blocks the nonempty sets B ∩ C, where B ∈ π and C ∈ σ. Hence Πn is a meet-semilattice.
Since the partition of [n] with a single block [n] is a 1̂ for Πn, it follows from Proposition 3.3.1
that Πn is a lattice.

∗The standard convention is that the empty set spans {0}. If we wish to retain this convention, then we
need to enlarge Bn(q) by adding ∅ below {0}.
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Suppose that π = {B1, . . . , Bk}. Then the interval [π, 1̂] is isomomorphic in an obvious way
to Ππ, the lattice of partitions of the set {B1, . . . , Bk}. Hence [π, 1̂] ∼= Πk. Now it is easy to
see that in Πk, the join of any two distinct atoms has rank two. Morever, any π ∈ Πn is the
join of those atoms {B1, . . . , Bn−1} such that #B1 = 2 (so #Bi = 1 for 2 ≤ i ≤ n− 1) and
B1 is a subset of some block of π. Hence Πn is a geometric lattice.

The above paragraph determined the structure of [π, 1̂]. Let us now consider the structure of
any interval [σ, π]. Suppose that π = {B1, . . . , Bk} and that Bi is partitioned into λi blocks
in σ. We leave to the reader the easy argument that

[σ, π] ∼= Πλ1 × Πλ2 × · · · × Πλk
.

In particular, [0̂, π] ∼= Πa1
1 × · · · ×Πan

n if π has ai blocks of size i.

Note. In analogy to the type of a permutation, we define the type of π ∈ Πn by type(π) =
(a1, . . . , an) if π has ai blocks of size i, for 1 ≤ i ≤ n. It is easy to prove in analogy with
Proposition 1.3.2 that the number of partitions π ∈ Πn of type (a1, . . . , an) is given by

#{π ∈ Πn : type(π) = (a1, . . . , an)} =
n!

1!a1a1! 2!a2a2! · · ·n!anan!
. (3.36)

As an example of the structure of [σ, π], let σ = 1-2-3-45-67-890 and π = 14567-2890-3. Then

[σ, π] ∼= Π{1,45,67} × Π{2,890} ×Π{3} ∼= Π3 × Π2 × Π1.

Now set µn = µ(0̂, 1̂), where µ is the Möbius function of Πn. If [σ, π] = Πλ1×Πλ2×· · ·×Πλk
,

then by Proposition 3.8.2 we have µ(σ, π) = µλ1 × µλ2 × · · · × µλk
. Hence to determine

µ completely, it suffices to compute µn. Although Πn is geometric so that equation (3.33)
applies, it is easier to appeal directly to Corollary 3.9.3. Pick a to be the partition with the
two blocks {1, 2, . . . , n−1} and {n}. An element t of Πn satisfies t∧a = 0̂ if and only if t = 0̂
or t is an atom whose unique two-element block has the form {i, n} for some i ∈ [n − 1].
The interval [t, 1̂] is isomorphic to Πn−1, so from Corollary 3.9.3 we have µn = −(n−1)µn−1.
Since µ0 = 1, we conclude

µn = (−1)n−1(n− 1)!. (3.37)

There are many other ways to prove this important result, some of which we shall consider
later. Let us simply point out here the more general result (which is proved in Exam-
ple 3.11.11) ∑

π∈Πn

µ(0̂, π)x#π = (x)n = x(x− 1) · · · (x− n+ 1). (3.38)

To get equation (3.37), equate coefficients of x.

Equation (3.38) can be put in the following more general context. Let P be a finite graded
poset with 0̂, say of rank n. Define the characteristic polynomial χP (x) of P by

χP (x) =
∑

t∈P
µ(0̂, t)xn−ρ(t)

=
n∑

k=0

wkx
n−k, say.

(3.39)
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The coefficient wk is called the kth Whitney number of P of the first kind :

wk =
∑

t∈P
ρ(t)=k

µ(0̂, t).

In this context, the number of elements of P of rank k is denoted Wk and is called the kth
Whitney number of P of the second kind. Thus the rank-generating function F (P, x) of P is
given by

F (P, x) =
∑

t∈P
xρ(t)

=
n∑

k=0

Wkx
k.

It follows from equation (3.38) that

χΠn(x) = (x− 1)(x− 2) · · · (x− n+ 1),

since Πn has rank n − 1 and #π = n − ρ(π). Hence from Proposition 1.3.7 we have wk =
s(n, n − k), a Stirling number of the first kind. Moreover, equation (3.35) yields Wk =
S(n, n − k) for the lattice Πn. For a poset-theoretic reason for the inverse relationship
between S(n, k) and s(n, k) given by Proposition 1.9.1(a), see Exercise 3.130(a).
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3.11 Hyperplane Arrangements

3.11.1 Basic definitions

In this section we give an interesting geometric application of Möbius functions which has a
vast number of further applications and extensions. The basic geometric concept to concern
us will be a (finite) hyperplane arrangement (or just arrangement for short), i.e., a finite
set A of affine hyperplanes in a finite-dimensional vector space V ∼= Kn, where K is a field.
To make sure that the definition of a hyperplane arrangement is clear, we define a linear
hyperplane to be an (n− 1)-dimensional subspace H of V , i.e.,

H = {v ∈ V : α · v = 0},
where α is a fixed nonzero vector in V and α · v is the usual dot product (after identifying
V with Kn):

(α1, . . . , αn) · (v1, . . . , vn) =
∑

αivi. (3.40)

An affine hyperplane is a translate J of a linear hyperplane, i.e.,

J = {v ∈ V : α · v = a},
where α is a fixed nonzero vector in V and a ∈ K. The vector α is the normal to J , unique
up to multiplication by a nonzero scalar.

Let A be an arrangement in the vector space V . The dimension dim(A) of A is defined
to be dim(V ) (= n), while the rank rank(A) of A is the dimension of the space spanned
by the normals to the hyperplanes in A. We say that A is essential if rank(A) = dim(A).
Suppose that rank(A) = r, and take V = Kn. Let Y be a complementary space in Kn to
the subspace X spanned by the normals to hyperplanes in A. Define

W = {v ∈ V : v · y = 0, for all y ∈ Y }.
If K = R then we can simply take W = X. (More generally, if char(K) = 0 then we can take
W = X provided that we modify the definition of the scalar product (3.40).) By elementary
linear algebra we have

codimW (H ∩W ) = 1 (3.41)

for all H ∈ A. In other words, H ∩W is a hyperplane of W , so the set AW := {H ∩W :
H ∈ A} is an essential arrangement in W . Moreover, the arrangements A and AW are
“essentially the same,” meaning in particular that they have the same intersection poset
(as defined below in Subsection 3.11.2). Let us call AW the essentialization of A, denoted
ess(A). When K = R and we take W = X, then the arrangement A is obtained from AW
by “stretching” the hyperplane H ∩W ∈ AW orthogonally to W . Thus if W⊥ denotes the
orthogonal complement to W in V , then H ′ ∈ AW if and only if H ′ ⊕W⊥ ∈ A. Note that
in characteristic p this type of reasoning fails since the orthogonal complement of a subspace
W can intersect W in a subspace of dimension greater than 0.

3.11.1 Example. LetA consist of the lines x = a1, . . . , x = ak inK2 (with coordinates x and
y). Then we can take W to be the x-axis, and ess(A) consists of the points x = a1, . . . , x = ak
in K.
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3.11.2 The intersection poset and characteristic polynomial

Let A be an arrangement in a vector space V , and let L(A) be the set of all nonempty
intersections of hyperplanes in A, including V itself as the intersection over the empty set.
Define s ≤ t in L(A) if s ⊇ t (as subsets of V ). In other words, L(A) is partially ordered by
reverse inclusion. The vector space V is the 0̂ element of L(A). We call L(A) the intersection
poset of A. It is the fundamental combinatorial object associated with an arrangement.

An arrangement A is called central if
⋂
H∈AH 6= ∅. We can translate all the hyperplanes in

a central arrangement by a fixed vector so that 0 ∈ ⋂H∈AH , where 0 denotes the origin of
V . Thus each hyperplane H ∈ A is a linear hyperplane and can therefore be identified with
a point fH in the dual space V ∗ (namely, if H is defined by α · v = 0, then H corresponds
to the linear functional f(v) = α · v). Let L be the geometric lattice, as defined after
Proposition 3.3.3, consisting of all intersections of {fH : H ∈ A} with linear subspaces of
V ∗, ordered by inclusion. It is straightforward to see that L ∼= L(A). We have therefore
proved the following result.

3.11.2 Proposition. Let A be a (finite) hyperplane arrangement in a vector space V . If A
is central, then L(A) is a geometric lattice. For any A, every interval of L(A) is a geometric
lattice.

We now define the characteristic polynomial χA(x) of the arrangement A by

χA(x) =
∑

t∈L(A)

µ(0̂, t)xdim(t).

Compare this definition with that of the characteristic polynomial χL(A) of the poset L(A)
itself (equation (3.39)). If A is essential, then χA(x) = χL(A)(x); in general,

χA(x) = xn−rχL(A)(x),

where n = dim(A) and r = rank(A). Since every interval of L(A) is a geometric lattice,
it follows from Proposition 3.10.1 that the coefficients of χA(x) alternate in sign. More
precisely, we have

χA(x) = xn − a1x
n−1 + · · ·+ (−1)n−ran−rx

n−r,

where each ai > 0. Note that a1 = #A, the number of hyperplanes in A.

We now use the Crosscut Theorem (Corollary 3.9.4) to give a formula (Proposition 3.11.3)
for the characteristic polynomial χA(x). Next we employ this formula for χA(x) to give a
recurrence (Proposition 3.11.5) for χA(x). We then use this recurrence to give a formula
(Theorem 3.11.7) for the number of regions and number of (relatively) bounded regions of a
real arrangement.

Extending slightly the definition of a central arrangement, call any subset B of A central if⋂
H∈BH 6= ∅.
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3.11.3 Proposition. Let A be an arrangement in an n-dimensional vector space. Then

χA(x) =
∑

B⊆A
B central

(−1)#Bxn−rank(B). (3.42)

3.11.4 Example. Let A be the arrangement in R2 shown below.

c d

a

b

The following table shows all central subsets B of A and the values of #B and rank(B).

B #B rank(B)
∅ 0 0
a 1 1
b 1 1
c 1 1
d 1 1
ac 2 2
ad 2 2
bc 2 2
bd 2 2
cd 2 2
acd 3 2

It follows that χA(x) = x2 − 4x+ (5− 1) = x2 − 4x+ 4.

Proof of Proposition 3.11.3. Let t ∈ L(A). Let

Λt = {s ∈ L(A) : s ≤ t},

the principal order ideal generated by t. Define

At = {H ∈ A : H ≤ t (i.e., t ⊆ H)}. (3.43)

By the Crosscut Theorem (Corollary 3.9.4), we have

µ(0̂, t) =
∑

k

(−1)kNk(t),
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Figure 3.21: An illustration of the definitions of At and AK

where Nk(t) is the number of k-subsets of At with join t. In other words,

µ(0̂, t) =
∑

B⊆At
t=

T

H∈BH

(−1)#B.

Note that t =
⋂
H∈BH implies that rank(B) = n−dim t. Now multiply both sides by xdim(t)

and sum over t to obtain equation (3.42).

The characteristic polynomial χA(x) satisfies a fundamental recurrence which we now de-
scribe. Let A be an arrangement in the vector space V . A subarrangement of A is a subset
B ⊆ A. Thus B is also an arrangement in V . If t ∈ L(A), then let At be the subarrangement
of equation (3.43). Also define an arrangement At in the affine subspace t ∈ L(A) by

At = {t ∩H 6= ∅ : H ∈ A−At}. (3.44)

Note that if t ∈ L(A), then

L(At) ∼= Λt := {s ∈ L(A) : s ≤ t}
L(At) ∼= Vt := {s ∈ L(A) : s ≥ t} (3.45)

Figure 3.21 shows an arrangement A, two elements t, u ∈ L(A), and the arrangements At
and Au.
Choose H0 ∈ A. Let A′ = A − {H0} and A′′ = AH0. We call (A,A′,A′′) a triple of
arrangements with distinguished hyperplane H0. An example is shown in Figure 3.22.

3.11.5 Proposition (Deletion-Restriction). Let (A,A′,A′′) be a triple of real arrangements.
Then

χA(x) = χA′(x)− χA′′(x).
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Figure 3.22: A triple of arrangements

Proof. Let H0 ∈ A be the hyperplane defining the triple (A,A′,A′′). Split the sum on the
right-hand side of (3.42) into two sums, depending on whether H0 6∈ B or H0 ∈ B. In the
former case we get ∑

H0 6∈B⊆A
B central

(−1)#Bxn−rank(B) = χA′(x).

In the latter case, set B1 = (B − {H0})H0 , a central arrangement in H0
∼= Kn−1 and a

subarrangement of AH0 = A′′. Suppose that S is a set of r ≥ 1 hyperplanes in A that all
have the same intersection with H0. Then

∑

∅6=T⊆S
(−1)#T = −1,

the same result we would get if r = 1. Since #B1 = #B − 1 and rank(B1) = rank(B) − 1,
we get

∑

H0∈B⊆A
B central

(−1)#Bxn−rank(B) =
∑

B1∈A′′

(−1)#B1+1x(n−1)−rank(B1)

= −χA′′(x),

and the proof follows.

3.11.3 Regions

Hyperplane arrangements have special combinatorial properties when K = R, which we
assume for the remainder of this subsection. A region of an arrangement A (defined over R)
is a connected component of the complement X of the hyperplanes:

X = Rn −
⋃

H∈A
H.
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Figure 3.23: An arrangement with 14 regions and four bounded regions

Let R(A) denote the set of regions of A, and let

r(A) = #R(A),

the number of regions. For instance, the arrangement A of Figure 3.23 has r(A) = 14.

It is a simple exercise to show that every region R ∈ R(A) is open and convex (continuing to
assume K = R), and hence homeomorphic to the interior of an n-dimensional ball Bn. Note
that if W is the subspace of V spanned by the normals to the hyperplanes in A, then the
map R 7→ R∩W is a bijection between R(A) and R(AW ). We say that a region R ∈ R(A)
is relatively bounded if R ∩W is bounded. If A is essential, then relatively bounded is the
same as bounded. We write b(A) for the number of relatively bounded regions of A. For
instance, in Example 3.11.1 take K = R and a1 < a2 < · · · < ak. Then the relatively
bounded regions are the regions ai < x < ai+1, 1 ≤ i ≤ k − 1. In ess(A) they become the
(bounded) open intervals (ai, ai+1). There are also two regions of A that are not relatively
bounded, viz., x < a1 and x > ak. As another example, the arrangement of Figure 3.23 is
essential and has four bounded regions.

3.11.6 Lemma. Let (A,A′,A′′) be a triple of real arrangements with distinguished hyper-
plane H0. Then

r(A) = r(A′) + r(A′′)

b(A) =

{
b(A′) + b(A′′), if rank(A) = rank(A′)

0, if rank(A) = rank(A′) + 1.

Note. If rank(A) = rank(A′), then also rank(A) = 1 + rank(A′′). The figure below
illustrates the situation when rank(A) = rank(A′) + 1.

0
H
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Proof. Note that r(A) equals r(A′) plus the number of regions of A′ cut into two regions
by H0. Let R′ be such a region of A′. Then R′ ∩ H0 ∈ R(A′′). Conversely, if R′′ ∈ R(A′′)
then points near R′′ on either side of H0 belong to the same region R′ ∈ R(A′), since
any H ∈ R(A′) separating them would intersect R′′. Thus R′ is cut in two by H0. We
have established a bijection between regions of A′ cut into two by H0 and regions of A′′,
establishing the first recurrence.

The second recurrence is proved analogously; the details are omitted.

We come to one of the central theorems in the subject of hyperplane arrangements.

3.11.7 Theorem. Let A be an arrangement in an n-dimensional real vector space. Then

r(A) = (−1)nχA(−1) (3.46)

b(A) = (−1)rank(A)χA(1). (3.47)

Proof. Equation (3.46) holds for A = ∅, since r(∅) = 1 and χ∅(x) = xn. By Lemma 3.11.6
and Proposition 3.11.5, both r(A) and (−1)nχA(−1) satisfy the same recurrence, so the
proof of (3.46) follows.

Now consider equation (3.47). Again it holds for A = ∅ since b(∅) = 1. (Recall that b(A)
is the number of relatively bounded regions. When A = ∅, the entire ambient space Rn is
relatively bounded.) Now

χA(1) = χA′(1)− χA′′(1).

Let d(A) = (−1)rank(A)χA(1). If rank(A) = rank(A′) = rank(A′′) + 1, then d(A) = d(A′) +
d(A′′). If rank(A) = rank(A′) + 1 then b(A) = 0 [why?] and L(A′) ∼= L(A′′) [why?]. Thus
d(A) = 0. Hence in all cases b(A) and d(A) satisfy the same recurrence, so b(A) = d(A).

As an application of Theorem 3.11.7, we compute the number of regions of an arrangement
whose hyperplanes are in general position, i.e.,

{H1, . . . , Hp} ⊆ A, p ≤ n ⇒ dim(H1 ∩ · · · ∩Hp) = n− p
{H1, . . . , Hp} ⊆ A, p > n ⇒ H1 ∩ · · · ∩Hp = ∅.

For instance, if n = 2 then a set of lines is in general position if and only if no two are
parallel and no three meet at a point.

3.11.8 Proposition (general position). Let A be an n-dimensional arrangement of m hy-
perplanes in general position. Then

χA(x) = xn −mxn−1 +

(
m

2

)
xn−2 − · · ·+ (−1)n

(
m

n

)
.
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In particular, if A is a real arrangement, then

r(A) = 1 +m+

(
m

2

)
+ · · ·+

(
m

n

)

b(A) = (−1)n
(

1−m+

(
m

2

)
− · · ·+ (−1)n

(
m

n

))

=

(
m− 1

n

)
.

Proof. Every B ⊆ A with #B ≤ n defines an element xB =
⋂
H∈BH of L(A). Hence L(A)

is a truncated boolean algebra:

L(A) ∼= {S ⊆ [m] : #S ≤ n},

ordered by inclusion. If t ∈ L(A) and rank(t) = k, then [0̂, t] ∼= Bk, a boolean algebra of
rank k. By equation (3.18) there follows µ(0̂, t) = (−1)k. Hence

χA(x) =
∑

S⊆[m]
#S≤n

(−1)#Sxn−#S

= xn −mxn−1 + · · ·+ (−1)n
(
m

n

)
.

3.11.4 The finite field method

In this subsection we will describe a method based on finite fields for computing the char-
acteristic polynomial of an arrangement defined over Q. We will then give two examples;
further examples may be found in Exercise 3.115.

Suppose that the arrangement A is defined over Q. By multiplying each hyperplane equation
by a suitable integer, we may assume A is defined over Z. In that case we can take coefficients
modulo a prime p and get an arrangement Aq defined over the finite field Fq, where q = pr.
We say that A has good reduction mod p (or over Fq) if L(A) ∼= L(Aq).
For instance, let A be the affine arrangement in Q1 = Q consisting of the points 0 and 10.
Then L(A) contains three elements, viz., Q, {0}, and {10}. If p 6= 2, 5 then 0 and 10 remain
distinct, so A has good reduction. On the other hand, if p = 2 or p = 5 then 0 = 10 in Fp,
so L(Ap) contains just two elements. Hence A has bad reduction when p = 2, 5.

3.11.9 Proposition. Let A be an arrangement defined over Z. Then A has good reduction
for all but finitely many primes p.
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Proof. Let H1, . . . , Hj be affine hyperplanes, where Hi is given by the equation αi · x = ai
(αi ∈ Zn, ai ∈ Z). By linear algebra, we have H1 ∩ · · · ∩Hj 6= ∅ if and only if

rank



α1 a1
...

...
αj aj


 = rank



α1
...
αj


 . (3.48)

Moreover, if (3.48) holds then

dim(H1 ∩ · · · ∩Hj) = n− rank



α1
...
αj


 .

Now for any r × s matrix A, we have rank(A) ≥ t if and only if some t × t submatrix B
satisfies det(B) 6= 0. It follows that L(A) 6∼= L(Ap) if and only if at least one member S of a
certain finite collection S of subsets of integer matrices B satisfies the following condition:

(∀B ∈ S) det(B) 6= 0 but det(B) ≡ 0 (mod p).

This can only happen for finitely many p, viz., for certain B we must have p| det(B), so
L(A) ∼= L(Ap) for p sufficiently large.

The main result of this subsection is the following. Like many fundamental results in com-
binatorics, the proof is easy but the applicability very broad.

3.11.10 Theorem. Let A be an arrangement in Qn, and suppose that L(A) ∼= L(Aq) for
some prime power q. Then

χA(q) = #


Fnq −

⋃

H∈Aq

H




= qn −#
⋃

H∈Aq

H.

Proof. Let t ∈ L(Aq) so #t = qdim(t). Here dim(t) can be computed either over Q or Fq.
Define two functions f, g : L(Aq)→ Z by

f(t) = #t

g(t) = #

(
t−

⋃

u>t

u

)
.

In particular,

g(0̂) = g(Fnq ) = #


Fnq −

⋃

H∈Aq

H


 .
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Clearly

f(t) =
∑

u≥t
g(u).

Let µ denote the Möbius function of L(A) ∼= L(Aq). By the Möbius inversion formula
(Proposition 3.7.1),

g(t) =
∑

u≥t
µ(t, u)f(u)

=
∑

u≥t
µ(t, u)qdim(u).

Put t = 0̂ to get

g(0̂) =
∑

u

µ(0̂, u)qdim(u) = χA(q).

3.11.11 Example. The braid arrangement Bn of rank n − 1 is the arrangement in Kn

with hyperplanes xi − xj = 0 for 1 ≤ i < j ≤ n. The characteristic polynomial of Bn
is particularly easy to compute by the finite field method. Namely, for a large prime p
(actually, any prime) χBn(p) is equal to the number of vectors (x1, . . . , xn) ∈ Fnp such that
xi 6= xj for all i < j. There are p choices for x1, then p − 1 choices for x2, etc., giving
χBn(p) = p(p− 1) · · · (p− n + 1) = (p)n. Hence

χBn(x) = (x)n. (3.49)

In fact, it is not hard to see that LBn
∼= Πn, the lattice of partitions of the set [n]. (See

Exercise 3.108(b).) Thus in particular we have proved equation (3.38).

3.11.12 Example. In this example we consider a modification (or deformation) of the braid
arrangement called the Shi arrangement and denoted Sn. It consists of the hyperplanes

xi − xj = 0, 1, 1 ≤ i < j ≤ n.

Thus Sn has n(n − 1) hyperplanes and rank(Sn) = n − 1. Figure 3.24 shows the Shi
arrangement S3 in ker(x1+x2+x3) ∼= R2 (i.e., the space {(x1, x2, x3) ∈ R3 : x1+x2+x3 = 0}).
3.11.13 Theorem. The characteristic polynomial of Sn is given by

χSn(x) = x(x− n)n−1.

Proof. Let p be a large prime. By Theorem 3.11.10 we have

χSn(p) = #{(α1, . . . , αn) ∈ Fnp : i < j ⇒ αi 6= αj and αi 6= αj + 1}.

Choose a weak ordered partition π = (B1, . . . , Bp−n) of [n] into p− n blocks, i.e.,
⋃
Bi = [n]

and Bi ∩ Bj = ∅ if i 6= j, such that 1 ∈ B1. (“Weak” means that we allow Bi = ∅.) For
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Figure 3.24: The Shi arrangement S3 in ker(x1 + x2 + x3)

2 ≤ i ≤ n there are p− n choices for j such that i ∈ Bj, so (p− n)n−1 choices in all. We will
illustrate the following argument with the example p = 11, n = 6, and

π = ({1, 4}, {5}, ∅, {2, 3, 6}, ∅). (3.50)

Arrange the elements of Fp clockwise on a circle. Place 1, 2, . . . , n on some n of these points
as follows. Place elements of B1 consecutively (clockwise) in increasing order with 1 placed at
some element α1 ∈ Fp. Skip a space and place the elements of B2 consecutively in increasing
order. Skip another space and place the elements of B3 consecutively in increasing order,
etc. For our example (3.50), say α1 = 6. We then get the following placement of 1, 2, . . . , 6
on F11.
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Let αi be the position (element of Fp) at which i was placed. For our example we have

(α1, α2, α3, α4, α5, α6) = (6, 1, 2, 7, 9, 3).

It is easily verified that we have defined a bijection from the (p−n)n−1 weak ordered partitions
π = (B1, . . . , Bp−n) of [n] into p − n blocks such that 1 ∈ B1, together with the choice of
α1 ∈ Fp, to the set Fnp−∪H∈(Sn)pH . There are (p−n)n−1 choices for π and p choices for α1, so
it follows from Theorem 3.11.10 that χSn(p) = p(p−n)n−1. Hence χSn(x) = x(x−n)n−1.

We obtain the following corollary immediately from Theorem 3.11.7.

3.11.14 Corollary. We have r(Sn) = (n+ 1)n−1 and b(Sn) = (n− 1)n−1.

Note. Since r(Sn) and b(Sn) have such simple formulas, it is natural to ask for a direct
bijective proof of Corollary 3.11.14. A number of such proofs are known; a sketch that
r(Sn) = (n+ 1)n−1 is given in Exercise 3.111.
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3.12 Zeta Polynomials

Let P be a finite poset. If n ≥ 2, then define Z(P, n) to be the number of multichains
t1 ≤ t2 ≤ · · · ≤ tn−1 in P . We call Z(P, n) (regarded as a function of n) the zeta polynomial
of P . First we justify this nomenclature and collect together some elementary properties of
Z(P, n).

3.12.1 Proposition. a. Let bi be the number of chains t1 < t2 < · · · < ti−1 in P . Then
bi+2 = ∆iZ(P, 2), i ≥ 0, where ∆ is the finite difference operator. In other words,

Z(P, n) =
∑

i≥2

bi

(
n− 2

i− 2

)
. (3.51)

In particular, Z(P, n) is a polynomial function of n whose degree d is equal to the
length of the longest chain of P , and whose leading coefficient is bd+2/d!. Moreover,
Z(P, 2) = #P (as is clear from the definition of Z(P, n)).

b. Since Z(P, n) is a polynomial for all integers n ≥ 2, we can define it for all n ∈ Z (or
even all n ∈ C). Then

Z(P, 1) = χ(∆(P )) = 1 + µ
bP (0̂, 1̂),

where ∆(P ) denotes the order complex of P .

c. If P has a 0̂ and 1̂, then Z(P, n) = ζn(0̂, 1̂) for all n ∈ Z (explaining the term zeta
polynomial). In particular,

Z(P,−1) = µ(0̂, 1̂), Z(P, 0) = 0 (if 0̂ 6= 1̂), and Z(P, 1) = 1.

Proof. a. The number of (n− 1)-element multichains with support t1 < t2 < · · · < ti−1 is((
i−1

n−1−(i−1)

))
=
(
n−2
i−2

)
, from which equation (3.51) follows. The additional information

about Z(P, n) can be read off from (3.51).

b. Putting n = 1 in (3.51) yields

Z(P, 1) =
∑

i≥2

bi

( −1

i− 2

)
=
∑

i≥2

(−1)ibi.

Now use Proposition 3.8.5.

c. If P has a 0̂ and 1̂, then the number of multichains t1 ≤ t2 ≤ · · · ≤ tn−1 is the same as
the number of multichains 0̂ = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn = 1̂, which is ζn(0̂, 1̂) for
n ≥ 2. There are several ways to see that Z(P, n), as defined by (3.51) for all n ≥ 2,
is equal to ζn(0̂, 1̂) for all n ∈ Z. For instance, it follows from equation (3.14) that
∆d+1ζk|k=0 = 0 (as linear transformations) [why?]. Multiplying by ζn gives ∆d+1ζn = 0
for any n ∈ Z. Hence by Proposition 1.9.2 ζn(0̂, 1̂) is a polynomial function for all
n ∈ Z, and thus must agree with (3.51) for all n ∈ Z.
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If m ∈ P, then let ΩP (m) denote the number of order-preserving maps σ : P →m. It follows
from Proposition 3.5.1 that ΩP (m) = Z(J(P ), m). Hence ΩP (m) is a polynomial function
of m of degree p = #P and leading coefficient e(P )/p!. (This can easily be seen by a more
direct argument.) We call ΩP (m) the order polynomial of P . Thus the order polynomial of
P is the zeta polynomial of J(P ). For further information on order polynomials in a more
general setting of labelled posets, see Section 3.15.3.

3.12.2 Example. Let P = Bd, the boolean algebra of rank d. Then Z(Bd, n) for n ≥ 1 is
equal to the number of multichains ∅ = S0 ⊆ S1 ⊆ · · · ⊆ Sn = S of subsets of a d-set S. For
any s ∈ S, we can pick arbitrarily the least positive integer i ∈ [n] for which s ∈ Si. Hence
Z(Bd, n) = nd. (We can also see this from Z(Bd, n) = Ωd1(n), since any map σ : d1→ n is

order-preserving.) Putting n = −1 yields µBd
(0̂, 1̂) = (−1)d, a third proof of equation (3.18).

This computation of µ(0̂, 1̂) is an interesting example of a “semi-combinatorial” proof. We
evaluate Z(Bd, n) combinatorially for n ≥ 1 and then substitute n = −1. Many other
theorems involving Möbius functions of posets P can be proved in such a fashion, by proving
combinatorially for n ≥ 1 an appropriate result for Z(P, n) and then letting n = −1.
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3.13 Rank Selection

Let P be a finite graded poset of rank n, with rank function ρ : P → [0, n]. If S ⊆ [0, n] then
define the subposet

PS = {t ∈ P : ρ(t) ∈ S},
called the S-rank-selected subposet of P . For instance, P∅ = ∅ and P[0,n] = P . Now define
αP (S) (or simply α(S)) to be the number of maximal chains of PS. For instance, α(i) (short
for α({i})) is just the number of elements of P of rank i. The function αP : 2[0,n] → Z is
called the flag f -vector of P . Also define βP (S) = β(S) by

β(S) =
∑

T⊆S
(−1)#(S−T )α(T ). (3.52)

Equivalently, by the Principle of Inclusion-Exclusion,

α(S) =
∑

T⊆S
β(T ). (3.53)

The function βP is called the flag h-vector of P .

Note. The reason for the terminology “flag f -vector” and “flag h-vector” is the following.
Let ∆ be a finite (d − 1)-dimensional simplicial complex with fi i-dimensional faces. The
vector f(∆) = (f0, f1, . . . , fd−1) is called the f -vector of ∆. Define integers h0, . . . , hd by the
condition

d∑

i=0

fi−1(x− 1)d−i =

d∑

i=0

hix
d−i.

(Recall that f−1 = 1 unless ∆ = ∅.) The vector h(∆) = (h0, h1, . . . , hd) is called the h-vector
of ∆ and is often more convenient to work with than the f -vector. It is easy to check that
for a finite graded poset P with order complex ∆ = ∆(P ), we have

fi(∆) =
∑

#S=i+1

αP (S)

hi(∆) =
∑

#S=i

βP (S).

Thus αP and βP extend in a natural way the counting of faces by dimension (or cardinality)
to the counting of flags (or chains) of P (which are just faces of ∆(P )) by the ranks of the
elements of the flags.

If µS denotes the Möbius function of the poset P̂S = PS ∪ {0̂, 1̂}, then it follows from
Proposition 3.8.5 that

βP (S) = (−1)#S−1µS(0̂, 1̂). (3.54)

For this reason the function βP is also called the rank-selected Möbius invariant of P .

Suppose that P has a 0̂ and 1̂. It is then easily seen that

αP (S) = αP (S ∩ [n− 1])

βP (S) = 0, if S 6⊆ [n− 1] (i.e., if 0 ∈ S or n ∈ S).
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3 4

Figure 3.25: A naturally labelled poset

Hence we lose nothing by restricting our attention to S ⊆ [n − 1]. For this reason, if we
know in advance that P has a 0̂ and 1̂ (e.g., if P is a lattice) then we will only consider
S ⊆ [n− 1].

Equations (3.53) and (3.54) suggest a combinatorial method for interpreting the Möbius
function of P . The numbers α(S) have a combinatorial definition. If we can define numbers
γ(S) ≥ 0 so that there is a combinatorial proof that α(S) =

∑
T⊆S γ(T ), then it follows that

γ(S) = β(S) so µS(0̂, 1̂) = (−1)#S−1γ(S). We cannot expect to define γ(S) for any P since
in general we need not have β(S) ≥ 0. However, there are large classes of posets P for which
γ(S) can indeed be defined in a nice combinatorial manner. To introduce the reader to this
subject we will consider two special cases here, while the next section is concerned with a
more general result of this nature.

Let L = J(P ) be a finite distributive lattice of rank n (so #P = n). Let ω : P → [n] be
an order-preserving bijection, i.e., a linear extension of P . In the present context we call
ω a natural labeling of P . We may identify a linear extension σ : P → [n] of P with a
permutation ω(σ−1(1)), . . . , ω(σ−1(n)) of the set [n] of labels of P . (Compare Section 3.5,
where we identified a linear extension with a permutation of the elements of P .) The set
of all e(P ) permutations of [n] obtained in this way is denoted L(P, ω) and is called the
Jordan-Hölder set of P . For instance, if (P, ω) is given by Figure 3.25, then L(P, ω) consists
of the five permutations 1234, 2134, 1243, 2143, 2413.

3.13.1 Theorem. Let L = J(P ) as above, and let S ⊆ [n− 1]. Then βL(S) is equal to the
number of permutations w ∈ L(P, ω) with descent set S.

Proof. Let S = {a1, a2, . . . , ak}<. It follows by definition that αL(S) is equal to the number
of chains I1 ⊂ I2 ⊂ · · · ⊂ Ik of order ideals of P such that #Ii = ai. Given such a chain
of order ideals, define a permutation w ∈ L(P, ω) as follows: first arrange the labels of the
elements of I1 in increasing order. To the right of these arrange the labels of the elements of
I2 − I1 in increasing order. Continue until at the end we have the labels of the elements of
P − Ik is increasing order. This establishes a bijection between maximal chains of LS and
permutations w ∈ L(P, ω) whose descent set is contained in S. Hence if γL(S) denotes the
number of w ∈ L(P, ω) whose descent set equals S, then

αL(S) =
∑

T⊆S
γL(T ),

and the proof follows.
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3.13.2 Corollary. Let L = Bn, the boolean algebra of rank n, and let S ⊆ [n−1]. Then βL(S)
is equal to the total number of permutations of [n] with descent set S. Thus βL(S) = βn(S)
as defined in Example 2.2.4.

Just as Example 2.2.5 is a q-generalization of Example 2.2.4, so we can generalize the previous
corollary.

3.13.3 Theorem. Let L = Bn(q), the lattice of subspaces of the vector space Fnq . Let
S ⊆ [n− 1]. Then

βL(S) =
∑

w

qinv(w),

where the sum is over all permutations w ∈ Sn with descent set S, and where inv(w) is the
number of inversions of w.

Proof. Let S = {a1, a2, . . . , ak}<. Then

αL(S) =

(
n

a1

)(
n − a1

a2 − a1

)(
n − a2

a3 − a2

)
· · ·
(

n − ak

n − ak

)

=

(
n

a1, a2 − a1, . . . , n − ak

)
.

The proof now follows by comparing equation (2.20) from Chapter 2 with equation (3.53).
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3.14 R-labelings

In this section we give a wide class A of posets P for which the flag h-vector βP (S) has
a direct combinatorial interpretation (and is therefore nonnegative). If P ∈ A then every
interval of P will also belong to A, so in particular the Möbius function of P alternates in
sign.

Let H(P ) denote the set of pairs (s, t) of elements of P for which t covers s. We may think
of elements of H(P ) as edges of the Hasse diagram of P .

3.14.1 Definition. Let P be a finite graded poset with 0̂ and 1̂. A function λ : H(P )→ Z
is called an R-labeling of P if, for every interval [s, t] of P , there is a unique saturated chain
s = t0 ⋖ t1 ⋖ · · ·⋖ tℓ = t satisfying

λ(t0, t1) ≤ λ(t1, t2) ≤ · · · ≤ λ(tℓ−1, tℓ). (3.55)

A poset P possessing an R-labeling λ is called R-labelable or an R-poset, and the chain
s = t0 ⋖ t1 ⋖ · · ·⋖ tℓ = t satisfying equation (3.55) is called the increasing chain from s to t.

Note that if Q = [s, t] is an interval of P , then the restriction of λ to H(Q) is an R-labeling
of H(Q). Hence Q is also an R-poset, so any property satisfied by all R-posets P is also
satisfied by any interval of P .

3.14.2 Theorem. Let P be an R-poset of rank n. Let λ be an R-labeling of P , and let
S ⊆ [n−1]. Then βP (S) is equal to the number of maximal chains m : 0̂ = t0⋖t1⋖· · ·⋖tn = 1̂
of P for which the sequence

λ(m) := (λ(t0, t1), λ(t1, t2), . . . , λ(tn−1, tn))

has descent set S; that is, for which

D(λ(m)) := {i : λ(ti−1, ti) > λ(ti, ti+1)} = S.

Proof. Let c : 0̂ < u1 < · · · < us < 1̂ be a maximal chain in P̂S. We claim there is a unique
maximal chain m of P containing c and satisfying D(λ(m)) ⊆ S. Let m : 0̂ = t0⋖t1⋖· · ·⋖tn =
1̂ be such a maximal chain (if one exists), and let S = {a1, . . . , as}<. Thus tai

= ui. Since
λ(tai−1

, tai−1+1) ≤ λ(tai−1+1, tai−1+2) ≤ · · · ≤ λ(tai−1, tai
) for 1 ≤ i ≤ s + 1 (where we set

a0 = 0̂, as+1 = 1̂), we must take tai−1
, tai−1+1, . . . , tai

to be the unique increasing chain of
the interval [ui−1, ui] = [tai−1

, tai
]. Thus M exists and is unique, as claimed.

It follows that the number α′
P (S) of maximal chains m of P satisfying D(λ(m)) ⊆ S is just

the number of maximal chains of PS; that is, α′
P (S) = αP (S). If β ′

P (S) denotes the number
of maximal chains m of P satisfying D(λ(m)) = S, then clearly

α′
P (S) =

∑

T⊆S
β ′
P (T ).

Hence from equation (3.53) we conclude β ′
P (S) = βP (S).
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Figure 3.26: A supersolvable lattice

3.14.3 Example. We now consider some examples of R-posets. Let P be a natural partial
order on [n], as in Theorem 3.13.1. Let (I, I ′) ∈ H(J(P )), so I and I ′ are order ideals of P
with I ⊂ I ′ and #(I ′ − I) = 1. Define λ(I, I ′) to be the unique element of I ′ − I. For any
interval [K,K ′] of J(P ) there is a unique increasing chain K = K0 < K1 < · · · < Kℓ = K ′

defined by letting the sole element of Ki−Ki−1 be the least integer (in the usual linear order
on [n]) contained in K ′ −Ki−1. Hence λ is an R-labeling, and indeed Theorems 3.13.1 and
3.14.2 coincide. We next mention without proof two generalizations of this example.

3.14.4 Example. A finite lattice L is supersolvable if it possesses a maximal chain c, called
an M-chain, such that the sublattice of L generated by c and any other chain of L is
distributive. Example of supersolvable lattices include modular lattices, the partition lattice
Πn, and the lattice of subgroups of a finite supersolvable group. For modular lattices, any
maximal chain is an M-chain. For the lattice Πn, a chain 0̂ = π0 ⋖ π1 ⋖ · · ·⋖ πn−1 = 1̂ is an
M chain if and only if each partition πi (1 ≤ i ≤ n− 1) has exactly one block Bi with more
than one element (so B1 ⊂ B2 ⊂ · · · ⊂ Bn−1 = [n]). The number of M-chains of Πn is n!/2,
n ≥ 2. For the lattice L of subgroups of a supersolvable group G, an M-chain is given by a
normal series {1} = G0 ⋖ G1 ⋖ · · ·⋖ Gn = G; that is, each Gi is a normal subgroup of G,
and each Gi+1/Gi is cyclic of prime order. (There may be other M-chains.)

If L is supersolvable with M-chain c : 0̂ = t0⋖t1⋖· · ·⋖tn = 1̂, then an R-labeling λ : H(P )→
Z is given by

λ(s, t) = min{i : s ∨ ti = t ∨ ti}. (3.56)

If we restrict λ to the (distributive) lattice L′ of L generated by c and some other chain,
then we obtain an R-labeling of L′ that coincides with Example 3.14.3. Figure 3.26 shows a
(non-semimodular) supersolvable lattice L with an M-chain denoted by solid dots, and the
corresponding R-labeling λ. There are five maximal chains, with labels 312, 132, 123, 213,
231 and corresponding descent sets {1}, {2}, ∅, {1}, {2}. Hence β(∅) = 1, β(1) = β(2) = 2,
β(1, 2) = 0. Note that all maximal chain labels are permutations of [3]; for the significance
of this fact see Exercise 3.125.

3.14.5 Example. Let L be a finite (upper) semimodular lattice. Let P be the subposet of
join-irreducibles of L. Let ω : P → [k] be an order-preserving bijection (so #P = k), and
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Figure 3.28: A non-lattice with an R-labeling

write ti = ω−1(i). Define for (s, t) ∈ H(L),

λ(s, t) = min{i : s ∨ ti = t}. (3.57)

Then λ is an R-labeling, and hence semimodular lattices are R-posets. Figure 3.27 shows
on the left a semimodular lattice L with the elements ti denoted by i, and on the right
the corresponding R-labeling λ. There are seven maximal chains, with labels 123, 132, 213,
231, 312, 321, 341, and corresponding descent sets ∅, {2},{1},{2}, {1}, {1, 2}, {2}. Hence
β(∅) = 1, β(1) = 2, β(2) = 3, β(1, 2) = 1.

Examples 3.14.4 and 3.14.5 both have the property that we can label certain elements of L
as ti (or just i) and then define λ by the similar formulas (3.56) and (3.57). Many additional
R-lattices have this property, though not all of them do. Of course equations (3.56) and
(3.57) are meaningless for posets that are not lattices. Figure 3.28 illustrates a poset P that
is not a lattice, together with an R-labeling λ.
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3.15 (P, ω)-partitions

3.15.1 The main generating function

A (P, ω)-partition is a kind of interpolation between partitions and compositions. The poset
P specifies inequalities among the parts, and the labeling ω specifies which of these inequal-
ities are strict. There is a close connection with descent sets of permutations and the related
statistics maj (the major index) and des (the number of descents).

Let P be a finite poset of cardinality p. Let ω : P → [p] be a bijection, called a labeling of
P .

3.15.1 Definition. A (P, ω)-partition is a map σ : P → N satisfying the conditions:

• If s ≤ t in P , then σ(s) ≥ σ(t). In other words, σ is order-reversing.

• If s < t and ω(s) > ω(t), then σ(s) > σ(t).

If
∑

t∈P σ(t) = n, then we say that σ is a (P, ω)-partition of n.

If ω is natural, i.e., s < t ⇒ ω(s) < ω(t), then a (P, ω)-partition is just an order-reversing
map σ : P → N. We then call σ simply a P -partition. Similarly, if ω is dual natural, i.e.,
s < t⇒ ω(s) > ω(t), then a (P, ω)-partition is a strict order-reversing map σ : P → N, i.e.,
s < t⇒ σ(s) > σ(t). We then call σ a strict P -partition.

Let P = {t1, . . . , tp}. The fundamental generating function associated with (P, ω)-partitions
is defined by

FP,ω = FP,ω(x1, . . . , xp) =
∑

σ

x
σ(t1)
1 · · ·xσ(tp)

p ,

where σ ranges over all (P, ω)-partitions σ : P → N. If ω is natural, then we write simply
FP for FP,ω. The generating function FP,ω essentially lists all (P, ω)-partitions and contains
all possible information about them. Indeed, it is easy to recover the labelled poset (P, ω) if
FP,ω is known.

3.15.2 Example. (a) Suppose that P is a naturally labelled p-element chain t1 < · · · < tp.
Then

FP =
∑

a1≥a2≥···≥ap≥0

xa11 x
a2
2 · · ·xap

p

=
1

(1− x1)(1− x1x2) · · · (1− x1x2 · · ·xp)
.

(b) Suppose that P is a dual naturally labelled p-element chain t1 < · · · < tp. Then

FP,ω =
∑

a1>a2>···>ap≥0

xa11 x
a2
2 · · ·xap

p

=
xp−1

1 xp−2
2 · · ·xp−1

(1− x1)(1− x1x2) · · · (1− x1x2 · · ·xp)
.
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Figure 3.29: A labelled poset

(c) If P is a p-element antichain, then all labelings are natural. We get

FP =
∑

a1,...,ap≥0

xa11 x
a2
2 · · ·xap

p

=
1

(1− x1)(1− x2) · · · (1− xp)
.

(d) Suppose that P has a minimal element t1 and two elements t2, t3 covering t1, with the
labeling ω(t1) = 2, ω(t2) = 1, ω(t3) = 3. Then

FP,ω =
∑

b<a≥c
xa1x

b
2x

c
3.

Let L(P, ω) denote the set of linear extensions of P , regarded as permutations of the labels
ω(t), as done in Section 3.13 for natural labelings. Thus L(P, ω) ⊆ Sp. Again following
Section 3.13 we call L(P, ω) the Jordan-Hölder set of the labeled poset (P, ω). For instance,
if (P, ω) is given by Figure 3.29 (with the labels circled) then

L(P, ω) = {3124, 3142, 1324, 1342, 1432}.

Write A(P, ω) for the set of all (P, ω)-partitions σ : P → N, and let σ ∈ A(P, ω). Define
σ′ : [p]→ N by

σ′(i) = σ(ω−1(i)).

In other words, σ and σ′ are essentially the same function, but the argument of σ is an
element t ∈ P , while the argument of σ′ is the label ω(t) of that element. This distinction is
particularly important in Subsection 3.15.3 (reciprocity), where we deal with two different
labelings of the same poset. We know from Lemma 1.4.11 that there is a unique permutation
w ∈ Sp for which σ′ is w-compatible. For any w ∈ Sp we write Sw for the set of all functions
σ : P → N for which σ′ is w-compatible. We come to the fundamental lemma on (P, ω)-
partitions.

3.15.3 Lemma. A function σ : P → N is a (P, ω)-partition if and only if σ′ is w-compatible
with some (necessarily unique) w ∈ L(P, ω). Equivalently, we have the disjoint union

A(P, ω) =
⋃
· w∈L(P,ω)Sw.
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Proof. We first show that if σ ∈ A(P, ω) ∩ Sw, then w ∈ L(P, ω). Let w = w1w2 · · ·wp.
Suppose that i < j and ω(s) = wi, ω(t) = wj. We need to show that we cannot have s > t.
If σ(s) = σ(t) then by definition of w-compatibility we have wi < wi+1 < · · · < wj. Hence
by definition of (P, ω)-partition we cannot have s > t. If instead σ(s) > σ(t) then again by
definition of (P, ω)-partition we cannot have s > t, so w ∈ L(P, ω).

It remains to show that if w ∈ L(P, ω) and σ′ is w-compatible, then σ ∈ A(P, ω). Clearly
σ is order-reversing, so we need to show that if s < t and ω(s) = wi > wj = ω(t), then
σ(s) > σ(t). Since wi > wj, somewhere in w between wi and wj is a descent wk > wk+1.
Thus

σ(s) = σ(wi) ≥ σ(wi+1) ≥ · · · ≥ σ(wk) > σ(wk+1) ≥ · · · ≥ σ(wj) = σ(t),

and the proof follows.

Given w ∈ Sp, let

Fw =
∑

σ∈Sw

x
σ(t1)
1 · · ·xσ(tp)

p , (3.58)

be the generating function for all functions σ : P → N for which σ′ is w-compatible. The
next result is a straightforward extension of Lemma 1.4.12. Write w′

i = j if wi = ω(tj).

3.15.4 Lemma. Let w = w1 · · ·wp ∈ Sp. Then

Fw =

∏
j∈D(w) xw′

1
xw′

2
· · ·xw′

j∏p
i=1

(
1− xw′

1
xw′

2
· · ·xw′

i

) . (3.59)

Proof. Let σ ∈ Sw. Define numbers ci, 1 ≤ i ≤ p, by

ci =

{
σ′(wi)− σ′(wi+1), if i 6∈ D(w)

σ′(wi)− σ′(wi+1)− 1, if i ∈ D(w),
(3.60)

where we set σ′(wp+1) = 0. Note that ci ≥ 0 and that any choice of c1, c2, . . . , cp ∈ N defines
a unique function σ ∈ Sw satisfying equation (3.60). Then

x
σ(t1)
1 · · ·xσ(tp)

p =

p∏

i=1

(
xw′

1
xw′

2
· · ·xw′

i

)ci ·
∏

j∈D(w)

xw′
1
xw′

2
· · ·xw′

j
.

This sets up a one-to-one correspondence between the terms in the left- and right-hand sides
of equation (3.59), so the proof follows.

Combining Lemmas 3.15.3 and 3.15.4, we obtain the main theorem on the generating function
FP,ω.

3.15.5 Theorem. Let (P, ω) be a labelled p-element poset. Then

FP,ω(x1, . . . , xp) =
∑

w∈L(P,ω)

∏
j∈D(w) xw′

1
xw′

2
· · ·xw′

j∏p
i=1

(
1− xw′

1
xw′

2
· · ·xw′

i

) . (3.61)
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3.15.6 Example. Let (P, ω) be given by Figure 3.29. Then Lemma 3.15.3 says that every
(P, ω)-partition σ : P → N satisfies exactly one of the conditions

σ′(3) > σ′(1) ≥ σ′(2) ≥ σ′(4)
σ′(1) ≥ σ′(3) > σ′(2) ≥ σ′(4)
σ′(3) > σ′(1) ≥ σ′(4) > σ′(2)
σ′(1) ≥ σ′(3) ≥ σ′(4) > σ′(2)
σ′(1) ≥ σ′(4) > σ′(3) > σ′(2).

It follows that

FP,ω(x1, x2, x3, x4) =
x1

(1− x1)(1− x1x2)(1− x1x2x3)(1− x1x2x3x4)

+
x1x2

(1− x2)(1− x1x2)(1− x1x2x3)(1− x1x2x3x4)

+
x2

1x2x4

(1− x1)(1− x1x2)(1− x1x2x4)(1− x1x2x3x4)

+
x1x2x4

(1− x2)(1− x1x2)(1− x1x2x4)(1− x1x2x3x4)

+
x1x

2
2x

2
4

(1− x2)(1− x2x4)(1− x1x2x4)(1− x1x2x3x4)
.

The above example illustrates the underlying combinatorial meaning behind the efficacy
of the fundamental Lemma 3.15.3— it allows the set A(P, ω) of all (P, ω)-partitions to be
partitioned into finitely many (namely, e(P )) “simple” subsets, each of which can be handled
separately.

3.15.2 Specializations.

We now turn to two basic specializations of the generating function FP,ω. Let a(n) denote
the number of (P, ω)-partitions of n. Define the generating function

GP,ω(x) =
∑

n≥0

a(n)xn. (3.62)

Clearly GP,ω(x) = FP,ω(x, x, . . . , x). Moreover,
∏

j∈D(w) x
j = xmaj(w). Hence from Theo-

rems 3.15.5 we obtain the following result.

3.15.7 Theorem. The generating function GP,ω(x) has the form

GP,ω(x) =
WP,ω(x)

(1− x)(1− x2) · · · (1− xp) , (3.63)

where WP,ω(x) is a polynomial given by

WP,ω(x) =
∑

w∈L(P,ω)

xmaj(w). (3.64)
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If we take P to be the antichain p1 (with any labeling) then clearly GP (x) = (1 − x)−p.
Comparing with equation (3.64) yields

∑

w∈Sp

xmaj(w) = (1 + x)(1 + x+ x2) · · · (1 + x+ · · ·+ xp−1),

which is the same (up to a change in notation) as equation (1.42).

Recall from Section 3.12 that we defined the order polynomial ΩP (m) to be the number
of order-preserving maps σ : P → m. By replacing σ(t) with m + 1 − σ(t) we see that
ΩP (m) is also the number of order-reversing maps P →m, i.e., the number of P -partitions
P → m. We can therefore extend the definition to labelled posets by defining the (P, ω)-
order polynomial ΩP,ω(m) for m ∈ P to be the number of (P, ω)-partitions σ : P →m. Let
eP,ω(s) be the number of surjective (P, ω)-partitions P → s. Note that for any ω we have
eP,ω(p) = e(P ). By first choosing the image σ(P ) of the (P, ω)-partition σ : P → m, it is
clear that

ΩP,ω(m) =

p∑

s=1

eP,ω(s)

(
m

s

)
.

It follows that ΩP,ω(m) is a polynomial in m of degree p and leading coefficient e(P )/p!.

Now define

HP,ω(x) =
∑

m≥0

ΩP,ω(m)xm.

The fundamental property of order polynomials is the following.

3.15.8 Theorem. We have

HP,ω(x) =

∑
w∈L(P,ω) x

1+des(w)

(1− x)p+1
. (3.65)

Proof. Immediate from equation (1.46) and Lemma 3.15.3.

In analogy to equation (1.36) we write

AP,ω(x) =
∑

w∈L(P,ω)

x1+des(w),

called the (P, ω)-Eulerian polynomial. As usual, when ω is natural we just write AP (x)
and call it the P -Eulerian polynomial. Note that Proposition 1.4.4 corresponds to the case
P = p1, when the order polynomial is just the Eulerian polynomial Ap(x). Note also that if
we take coefficients of xm in equation (3.65) (or by equation (1.45)) then we obtain

ΩP,ω(m) =
∑

w∈L(P,ω)

((
m− des(w)

p

))
.
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3.15.3 Reciprocity.

With a labeling ω of P we can associate a certain “dual” labeling ω. The connection
between ω and ω will lead to a generalization of the reciprocity formula

((
n
k

))
= (−1)k

(−n
k

)

of equation (1.21).

Let ω be a labeling of the p-element poset P . Define the complementary labeling ω by

ω(t) = p+ 1− ω(t).

For instance, if ω is natural so that a (P, ω)-partition is just a P -partition, then a (P, ω)-
partition is a strict P -partition. If w = w1w2 · · ·wp ∈ Sp, then let w = p + 1− w1, p + 1 −
w2, . . . , p+ 1− wp ∈ Sp. Note that D(w) = [p− 1]−D(w).

3.15.9 Lemma. Let Fw be as in equation (3.58). Then as rational functions,

x1x2 · · ·xpFw(x1, . . . , xp) = (−1)pFw

(
1

x1
, . . . ,

1

xp

)
.

Proof. Let w = w1 · · ·wp and w′
i = j if w(i) = ω(tj) as before. We have by Lemma 3.15.4

that

Fw

(
1

x1

, . . . ,
1

xp

)
=

∏
j∈D(w)

(
xw′

1
xw′

2
· · ·xw′

j

)−1

∏p
i=1

(
1−

(
xw′

1
xw′

2
· · ·xw′

i

)−1
)

= (−1)p
xpw′

1
xp−1
w′

2
· · ·xw′

p

∏
j∈D(w)

(
xw′

1
xw′

2
· · ·xw′

j

)−1

∏p
i=1

(
1− xw′

1
xw′

2
· · ·xw′

i

) . (3.66)

But


 ∏

j∈D(w)

xw′
1
xw′

2
· · ·xw′

j




 ∏

k∈D(w)

xw′
1
xw′

2
· · ·xw′

k


 =

p−1∏

j=1

xw′
1
xw′

2
· · ·xw′

j

= xp−1
w′

1
xp−2
w′

2
· · ·xw′

p−1
.

The proof now follows upon comparing equation (3.66) with Lemma 3.15.4 for w.

3.15.10 Theorem (the reciprocity theorem for (P, ω)-partitions). The rational functions
FP,ω(x1, . . . , xp) and FP,ω(x1, . . . , xp) are related by

x1x2 · · ·xpFP,ω(x1, . . . , xp) = (−1)pFP,ω

(
1

x1
, . . . ,

1

xp

)
.

Proof. Immediate from Theorem 3.15.5 and Lemma 3.15.9.
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The power series and polynomials GP,ω(x), WP,ω(x), HP,ω(x), and AP,ω(x) are well-behaved
with respect to reciprocity. It is immediate from the preceding discussion that

xpGP,ω(x) = (−1)pGP,ω(1/x)

WP,ω(x) = x(
p
2)WP,ω(1/x)

HP,ω(x) = (−1)p+1HP,ω(1/x) (3.67)

AP,ω(x) = xp+1AP,ω(1/x).

There is also an elegant reciprocity result for the order polynomial ΩP,ω(m) itself (and not
just its generating function HP,ω(x)). We first need the following lemma. It is a special case
of Proposition 4.2.3 and Corollary 4.3.1, where more conceptual proofs are given than the
naive argument below.

3.15.11 Lemma. Let f(m) be a polynomial over a fieldK of characteristic 0, with deg f ≤ p.
Let H(x) =

∑
m≥0 f(m)xm. Then there is a polynomial P (x) ∈ K[x], with degP ≤ p, such

that

H(x) =
P (x)

(1− x)p+1
. (3.68)

Moreover, as rational functions we have

∑

m≥1

f(−m)xm = −H(1/x). (3.69)

Proof. By linearity it suffices to prove the result for some basis of the space of polynomials
f(m) of degree at most p. Choose the basis

(
m+i
p

)
, 0 ≤ i ≤ p. Let

Hi(x) =
∑

m≥0

(
m+ i

p

)
xm

=
xp−i

(1− x)p+1
,

establishing equation (3.68). Now

−Hi(1/x) =
−x−p+i

(1− 1/x)p+1

=
(−1)pxi+1

(1− x)p+1

= (−1)p
∑

m≥1

(
m+ p− i− 1

p

)
xm

=
∑

m≥1

(−m+ i

p

)
xm,

and the proof of equation (3.69) follows.
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3.15.12 Corollary (the reciprocity theorem for order polynomials). The polynomials ΩP,ω(m)
and ΩP,ω(m) are related by

ΩP,ω(m) = (−1)pΩP,ω(−m).

Proof. Immediate from equation (3.67) and Lemma 3.15.11.

3.15.4 Natural labelings.

When ω is a natural labeling many properties of P dealing with the length of chains are
closely connected with the generating functions we have been considering. Recall that we
suppress the labeling ω from our notation when ω is natural, so for instance we write L(P )
for L(P, ω) when ω is natural. We also use an overline to denote that a labeling is dual
natural; for instance, GP (x) denotes GP,ω(x) for ω dual natural. To begin, if t ∈ P then
define δ(t) to be the length ℓ of the longest chain t = t0 < t1 < · · · < tℓ of P whose first
element is t. Also define

δ(P ) =
∑

t∈P
δ(t).

3.15.13 Corollary. Let p = #P . Then the degree of the polynomial WP (x) is
(
p
2

)
− δ(P ).

Moreover, WP (x) is a monic polynomial. (See Corollary 4.2.4(ii) for the significance of these
results.)

Proof. By equation (3.64) we need to show that

max
w∈L(P )

maj(w) =

(
p

2

)
− δ(P ),

and that there is a unique w achieving this maximum. Let w = a1a2 · · ·ap ∈ L(P ), and
suppose that the longest chain of P has length ℓ. Given 0 ≤ i ≤ ℓ, let ji be the largest
integer for which δ(aji) = i. Clearly j1 > j2 > · · · > jℓ. Now for each 1 ≤ i ≤ ℓ, there
is some element aki

of P satisfying aji < aki
in P (and thus also aji < aki

in Z) and
δ(aki

) = δ(aji)− 1. It follows that ji < ki ≤ ji−1. Hence somewhere in w between positions
ji and ji−1 there is a pair ar < ar+1 in Z, so

maj(w) ≤
(
p

2

)
−

ℓ∑

i=1

ji.

If δi denotes the number of elements t of P satisfying δ(t) = i, then by definition ji ≥
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Figure 3.30: A naturally labelled poset P with δ(P ) = 19

δi + δi+1 + · · ·+ δℓ. Hence

maj(w) ≤
(
p

2

)
−

ℓ∑

i=1

(δi + δi+1 + · · ·+ δℓ)

=

(
p

2

)
−

ℓ∑

i=1

iδi

=

(
p

2

)
−
∑

t∈P
δ(t).

If equality holds, then the last δ0 elements t of w satisfy δ(t) = 0, the next δ1 elements t from
the right satisfy δ(t) = 1, and so on. Moreover, the last δ0 elements must be arranged in
decreasing order as elements of Z, the next δ1 elements also in decreasing order, etc. Hence
there is a unique w for which equality hold.

3.15.14 Example. Let P be the naturally labelled poset shown in Figure 3.30. Then the
unique w ∈ L(P ) satisfying maj(w) =

(
p
2

)
− δ(P ) is given by

w = 2, 1, 6, 5, 7, 9, 4, 3, 11, 10, 8,

so maj(w) = 36 and δ(P ) = 19.

For our next result concerning the polynomial WP (x), let A(P ) (respectively, A(P )) de-
note the set of all P -partitions (respectively, strict P -partitions). Define a map (denoted ′)
A(P )→ A(P ) by the formula

σ′(t) = σ(t) + δ(t), t ∈ P. (3.70)

Clearly this correspondence is injective.

We say that P satisfies the δ-chain condition if for all t ∈ P , all maximal chains of the
principal dual order ideal Vt = {u ∈ P : u ≥ t} have the same length. If P has a 0̂, then
this is equivalent to saying that P is graded. Note, however, that the posets P and Q of
Figure 3.31 satisfy the δ-chain condition but are not graded.

3.15.15 Lemma. The injection σ 7→ σ′ is a bijection from A(P ) to A(P ) if and only if P
satisfies the δ-chain condition.
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P Q

Figure 3.31: Nongraded posets satisfying the δ-chain condition

Proof. The “if” part is easy to see. To prove the “only if” part, we need to show that if
P fails to satisfy the δ-chain condition then there is a τ ∈ A(P ) such that τ − δ 6∈ A(P ).
Assume that P does not satisfy the δ-chain condition. Then there exist two elements t0, t1
of P such that t1 covers t0 and δ(t0) > δ(t1) + 1. Define τ by

τ(t) =

{
δ(t), if t ≥ t0 and t 6= t1 (in P )

δ(t) + 1, if t 6≥ t0 or t = t1 (in P ).

It is easily seen that τ ∈ A(P ), but

τ(t0)− δ(t0) = 0 < 1 = τ(t1)− δ(t1).

Since t0 < t1, τ − δ 6∈ A(P ).

3.15.16 Theorem. Let P be a p-element poset. Then P satisfies the δ-chain condition if
and only if

x(
p
2)−δ(P )WP (1/x) = WP (x). (3.71)

(Since degWP (x) =
(
p
2

)
− δ(P ), equation (3.71) simply says that the coefficients of WP (x)

read the same backwards as forwards.)

Proof. Let σ ∈ A(P ) with |σ| = n. Then the strict P -partition σ′ defined by (3.70) satisfies
|σ′| = n+ δ(P ). Hence from Lemma 3.15.15 it follows that P satisfies the δ-chain condition
if an only if a(n) = a(n+ δ(P )) for all n ≥ 0. In terms of generating functions this condition
becomes xδ(P )GP (x) = GP (x). The proof now follows from Theorem 3.15.7.

Theorem 3.15.16 has an analogue for order polynomials. Recall that P is graded if all
maximal chains of P have the same length. We say that P satisfies the λ-chain condition
if every element of P is contained in a chain of maximum length. Clearly a graded poset
satisfies the λ-chain condition. The converse is false, as shown by Exercise 3.7(a).

Let Am(P ) (respectively, Am(P )) denote the set of all order-reversing maps (respectively,
strict order-reversing maps) σ : P →m. The next result is the analogue of Lemma 3.15.15
for graded posets and for the λ-chain condition.

3.15.17 Lemma. Let P be a finite poset with longest chain of length ℓ. For each i ∈ P,
define an injection θi : Ai(P )→ Aℓ+i(P ) by θi(σ) = σ + δ.

a. The map θ1 is a bijection (i.e, #Aℓ+1(P ) = 1) if and only if P satisfies the λ-chain
condition.
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b. The maps θ1 and θ2 are both bijections if and only if P is graded. In this case θi is a
bijection for all i ∈ P.

Proof. a. The “if” part is clear. To prove the converse, define δ∗(t) for t ∈ P to be the
length k of the longest chain t0 < t1 < · · · < tk = t in P with top t. Thus δ(t) + δ∗(t)
is the length of the longest chain of P containing t, and δ(t) + δ∗(t) = ℓ for all t ∈ P if
and only if P satisfies the λ-chain condition. Define σ, τ ∈ Aℓ+1(P ) by σ(t) = 1 + δ(t) and
τ(t) = ℓ− δ∗(t) + 1. Then σ 6= τ if (and only if) P fails to satisfy the λ-chain condition, so
in this case θ1 is not a bijection.

b. Again the “if” part is clear. To prove the converse, assume that P is not graded. If P
does not satisfy the λ-chain condition, then by (a) θ1 is not a bijection. Hence assume that
P satisfies the λ-chain condition. Let t0 < t1 < · · · < tm be a maximal chain of P with
m < ℓ. Let k be the greatest integer, 0 ≤ k ≤ m, such that δ(tk) > m− k. Since P satisfies
the λ-chain condition and t0 is a minimal element of P , δ(t0) = ℓ > m; so k always exists.
Furthermore, k 6= m since tm is a maximal element of P . Define a map σ : P → [ℓ + 2] as
follows:

σ(t) =

{
1 + δ(t), if t 6≤ tk+1

1 + max(δ(t), δ(tk+1) + λ(t, tk+1) + 1), if t ≤ tk+1,

where λ(t, tk+1) denotes the length of the longest chain in the interval [t, tk+1]. It is not hard
to see that σ ∈ Aℓ+2(P ). Moreover,

σ(tk)− δ(tk) = 1, σ(tk+1)− δ(tk+1) = 2,

so σ − δ 6∈ A(P ). Hence θ2 is not a bijection, and the proof is complete.

3.15.18 Corollary. Let P be a p-element poset with longest chain of length ℓ. Then

ΩP (−1) = ΩP (−2) = · · · = ΩP (−ℓ) = 0.

Moreover:

a. P satisfies the λ-chain condition if and only if ΩP (−ℓ− 1) = (−1)p.

b. The following three conditions are equivalent:

i. P is graded.

ii. ΩP (−ℓ− 1) = (−1)p and ΩP (−ℓ− 2) = (−1)pΩP (2).

iii. ΩP (−ℓ−m) = (−1)pΩP (m) for all m ∈ Z.

The following example illustrates the computational use of Corollary 3.15.18.

3.15.19 Example. Let P be given by Figure 3.32. Thus ΩP (m) is a polynomial of degree
6, and by the preceding corollary ΩP (0) = ΩP (−1) = ΩP (−2) = 0, ΩP (1) = ΩP (−3) = 1,
ΩP (2) = ΩP (−4). Thus as soon as we compute ΩP (2) we know seven values of ΩP (m), which
suffice to determine ΩP (m) completely. In fact, ΩP (2) = 14, from which we compute

∑

m≥0

ΩP (m)xm =
x+ 7x2 + 7x3 + x4

(1− x)7
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Figure 3.32: A graded poset

and

ΩP (m) =
1

180
(4m6 + 24m5 + 55m4 + 60m3 + 31m2 + 6m)

=
1

180
m(m+ 1)2(m+ 2)(2m+ 1)(2m+ 3).
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3.16 Eulerian Posets

Let us recall the definition of an Eulerian poset following Proposition 3.8.9: a finite graded
poset P with 0̂ and 1̂ is Eulerian if µP (s, t) = (−1)ℓ(s,t) for all s ≤ t in P . Eulerian posets
enjoy many remarkable properties concerned with the enumeration of chains. In this section
we will consider several duality properties of Eulerian posets, while the next section deals
with a generalization of the cd-index.

3.16.1 Proposition. Let P be an Eulerian poset of rank n. Then Z(P,−m) = (−1)nZ(P,m).

Proof. By Proposition 3.12.1(c) we have

Z(P,−m) = µm(0̂, 1̂)

=
∑

µ(t0, t1)µ(t1, t2) · · ·µ(tm−1, tm),

summed over all multichains 0̂ = t0 ≤ t1 ≤ · · · ≤ tm = 1̂. Since P is Eulerian, µ(ti−1, ti) =
(−1)ℓ(ti−1,ti). Hence µ(t0, t1)µ(t1, t2) · · ·µ(tm−1, tm) = (−1)n, so Z(P,−m) = (−1)nζm(0̂, 1̂) =
(−1)nZ(P,m).

Define a finite poset P with 0̂ to be simplicial if each interval [0̂, t] is isomorphic to a boolean
algebra.

3.16.2 Proposition. Let P be simplicial. Then Z(P,m) =
∑

i≥0Wi(m− 1)i, where

Wi = #{t ∈ P : [0̂, t] ∼= Bi}.

In particular, if P is graded then Z(P, q + 1) is the rank-generating function of P .

Proof. Let t ∈ P , and let Zt(P,m) denote the number of multichains t1 ≤ t2 ≤ · · · ≤
tm−1 = t in P . By Example 3.12.2, Zt(P,m) = (m − 1)i where [0̂, t] ∼= Bi. But Z(P,m) =∑

t∈P Zt(P,m), and the proof follows.

Now suppose that P is Eulerian and P ′ := P −{1̂} is simplicial. By considering multichains
in P that do not contain 1̂, we see that

Z(P ′, m+ 1) = Z(P,m+ 1)− Z(P,m) = ∆Z(P,m).

Hence by Proposition 3.16.2,

∆Z(P,m) =

n−1∑

i=0

Wim
i, (3.72)

where P has Wi elements of rank i (and n = rank(P ) as usual). On the other hand, by
Proposition 3.16.1 we have Z(P,−m) = (−1)nZ(P,m), so ∆Z(P,−m) = (−1)n−1∆Z(P,m−
1). Combining with equation (3.72) yields

n−1∑

i=0

Wi(m− 1)i =

n−1∑

i=0

(−1)n−1−iWim
i. (3.73)
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Equation (3.73) imposes certain linear relations on the Wi’s, known as the Dehn-Sommerville
equations. In general, there will be ⌊n/2⌋ independent equations (in addition to W0 = 1).
We list below these equations for 2 ≤ n ≤ 6, where we have set W0 = 1.

n = 2 : W1 = 2

n = 3 : W1 −W2 = 0

n = 4 : W1 −W2 +W3 = 2

2W2 − 3W3 = 0

n = 5 : W1 −W2 +W3 −W4 = 0

W3 − 2W4 = 0

n = 6 : W1 −W2 +W3 −W4 +W5 = 0

2W2 − 3W3 + 4W4 − 5W5 = 0

2W4 − 5W5 = 0.

A more elegant way of stating these equations will be discussed in conjunction with Theo-
rem 3.16.9.

A fundamental example of an Eulerian lattice L for which L−{1̂} is simplicial is the lattice
of faces of a triangulation ∆ of a sphere, with a 1̂ adjoined. In this case Wi is just the number
of (i− 1)-dimensional faces of ∆.

Let us point out that although we have derived equation (3.73) as a special case of Proposi-
tion 3.16.1, one can also deduce Proposition 3.16.1 from (3.73). Namely, given an Eulerian
poset P , apply (3.73) to the poset of chains of P with a 1̂ adjoined. The resulting formula
is formally equivalent to Proposition 3.16.1.

Next we turn to a duality theorem for the numbers βP (S) when P is Eulerian.

3.16.3 Lemma. Let P be a finite poset with 0̂ and 1̂, and let t ∈ P − {0̂, 1̂}. Then

µP−t(0̂, 1̂) = µP (0̂, 1̂)− µP (0̂, t)µP (t, 1̂).

Proof. This result is a simple consequence of Proposition 3.8.5

3.16.4 Lemma. Let P be as above, and let Q be any subposet of P containing 0̂ and 1̂.
Then

µQ(0̂, 1̂) =
∑

(−1)kµP (0̂, t1)µP (t1, t2) · · ·µP (tk, 1̂),

where the sum ranges over all chains 0̂ < t1 < · · · < tk < 1̂ in P such that ti 6∈ Q for all i.
(The chain 0̂ < 1̂ contributes µ(0̂, 1̂) to the sum.)

Proof. Iterate Lemma 3.16.3 by successively removing elements of P −Q from P .

3.16.5 Proposition. Let P be Eulerian of rank n, and let Q be any subposet of P containing
0̂ and 1̂. Set Q = (P −Q) ∪ {0̂, 1̂}. Then

µQ(0̂, 1̂) = (−1)n−1µQ(0̂, 1̂).
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Proof. Since P is Eulerian we have

µP (0̂, t1)µP (t1, t2) · · ·µP (tk, 1̂) = (−1)n

for all chains 0̂ < t1 < · · · < tk < 1̂ in P . Hence from Lemma 3.16.4 we have µQ(0̂, 1̂) =∑
(−1)k+n, where the sum ranges over all chains 0̂ < t1 < · · · < tk < 1̂ in Q. The proof

follows from Proposition 3.8.5.

3.16.6 Corollary. Let P be Eulerian of rank n, let S ⊆ [n − 1], and set S = [n − 1] − S.
Then βP (S) = βP (S).

Proof. Apply Proposition 3.16.5 to the case Q = PS ∪ {0̂, 1̂} and use equation (3.54).

Topological digression. Proposition 3.16.5 provides an instructive example of the useful-
ness of interpreting the Möbius function as a (reduced) Euler characteristic and then consid-
ering the actual homology groups. In general, we expect that if we suitably strengthen the
hypotheses to take into account the homology groups, then the conclusion will be similarly
strengthened. Indeed, suppose that instead of merely requiring that µP (s, t) = (−1)ℓ(s,t), we
assume that

H̃i(∆(s, t);K) =

{
0, i 6= ℓ(s, t)− 2
K, i = ℓ(s, t)− 2,

where K is a field (or any coefficient group), and ∆(s, t) denotes the order complex (as
defined in Section 3.8) of the open interval (s, t). Equivalently, P is Eulerian and Cohen-
Macaulay over K. (We then say that P is a Gorenstein* poset over K. The asterisk is part
of the notation, not a footnote indicator.) Let Q, Q be as in Proposition 3.16.5, and set

Q′ = Q = {0̂, 1̂}, Q′
= Q − {0̂, 1̂}. The Alexander duality theorem for simplicial complexes

asserts in the present context that

H̃i(∆(Q′);K) ∼= H̃n−i−3(∆(Q
′
);K).

(When K is a field there is a (non-canonical) isomorphism H̃j(∆;K) ∼= H̃j(∆;K).) In par-

ticular, χ̃(∆(Q′)) = (−1)n−1χ̃(∆(Q
′
)), which is equivalent to Proposition 3.16.5 (by Propo-

sition 3.8.6). Hence Proposition 3.16.5 may be regarded as the “Möbius-theoretic analogue”
of the Alexander duality theorem.

Finally we come to a remarkable “master duality theorem” for Eulerian posets P . We will
associate with P two polynomials f(P, x) and g(P, x) defined below. Define P̃ to be the set

of all intervals [0̂, t] of P , ordered by inclusion. Clearly the map P → P̃ defined by t 7→ [0̂, t]
is an isomorphism of posets. The polynomials f and g are defined inductively as follows.

1.
f(1, x) = g(1, x) = 1. (3.74)

2. If n+ 1 = rankP > 0, then f(P, x) has degree n, say f(P, x) = h0 + h1x+ · · ·+ hnx
n.

Then define

g(P, x) = h0 + (h1 − h0)x+ (h2 − h1)x
2 + · · ·+ (hm − hm−1)x

m, (3.75)

where m = ⌊n/2⌋.
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Figure 3.33: Some Eulerian posets

3. If n + 1 = rankP > 0, then define

f(P, x) =
∑

Q∈ eP
Q 6=P

g(Q, x)(x− 1)n−ρ(Q). (3.76)

We call f(P, x) the toric h-polynomial of P , and we call g(P, x) the toric g-polynomial of
P . The sequence (h0, . . . , hn) of coefficients of f(P, x) is called the toric h-vector of P . The
toric g-vector is defined similarly.

3.16.7 Example. Consider the six Eulerian posets of Figure 3.33. Write fi and gi for
f(Pi, x) and g(Pi, x), respectively. We compute recursively that

f0 = g0 = 1

f1 = g0 = 1, g1 = 1

f2 = 2g1 + g0(x− 1) = 1 + x, g2 = 1

f3 = 2g2 + 2g1(x− 1) + (x− 1)2 = 1 + x2, g3 = 1− x
f4 = 3g2 + 3g1(x− 1) + (x− 1)2 = 1 + x+ x2, g4 = 1

f5 = 2g4 + g3 + 4g2(x− 1) + 3g1(x− 1)2 + (x− 1)3 = 1 + x3,

g5 = 1− x.

3.16.8 Example. Write fn = f(Bn, x) and gn = g(Bn, x), where Bn is a boolean algebra of
rank n. A simple computation yields

f0 = 1, g0 = 1, f1 = 1, g1 = 1, f2 = 1 + x, g2 = 1,

f3 = 1 + x+ x2, g3 = 1, f4 = 1 + x+ x2 + x3, g4 = 1.

This computation suggests that fn = 1 + x + · · · + xn−1 (n > 0) and gn = 1. Clearly
equations (3.74) and (3.75) hold; we need only to check (3.76). The recurrence (3.76) reduces
to

fn+1 =
n∑

k=0

gk

(
n+ 1

k

)
(x− 1)n−k.
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Substituting gk = 1 yields

fn+1 =

n∑

k=0

(
n + 1

k

)
(x− 1)n−k

= (x− 1)−1
[
((x− 1) + 1)n+1 − 1

]
, by the binomial theorem

= 1 + x+ · · ·+ xn.

Hence we have shown:

f(Bn, x) = 1 + x+ · · ·+ xn−1, n ≥ 1

g(Bn, x) = 1, n ≥ 0.

Now suppose that P is Eulerian of rank n+ 1 and P − {1̂} is simplicial. Since g(Bn, x) = 1
we get from equation (3.76) that

f(P, x) =
∑

Q 6=P
(x− 1)n−ρ(Q)

=
n∑

i=0

Wi(x− 1)n−i, (3.77)

where P has Wi elements of rank i.

We come to the main result of this section.

3.16.9 Theorem. Let P be Eulerian of rank n + 1. Then f(P, x) = xnf(P, 1/x). Equiva-
lently, if f(P, x) =

∑n
i=0 hix

n−i, then hi = hn−i.

Proof. We write f(P ) for f(P, x), g(P ) for g(P, x), and so on. Set y = x − 1. Multiply
equation (3.76) by y and add g(P ) to obtain

g(P ) + yf(P ) =
∑

Q∈ eP

g(Q)yρ(P )−ρ(Q)

⇒ y−ρ(P )(g(P ) + yf(P )) =
∑

Q

g(Q)y−ρ(Q).

By Möbius inversion we obtain

g(P )y−ρ(P ) =
∑

Q

(g(Q) + yf(Q))y−ρ(Q)µ
eP (Q,P ).

Since P̃ is Eulerian we get µ
eP (Q,P ) = (−1)ℓ(Q,P ), so

g(P ) =
∑

Q

(g(Q) + yf(Q))(−y)ℓ(Q,P ). (3.78)
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Let f(Q) = a0 + a1x+ · · ·+ arx
r, where ρ(Q) = r + 1. Then

g(Q) + yf(Q) = (as − as+1)x
s+1 + (as+1 − as+2)x

s+2 + · · · ,

where s = ⌊r/2⌋. By induction on ρ(Q) we may assume that ai = ar−i for r < n. In this
case,

g(Q) + yf(Q) =

{
(as − as+1)x

s+1 + (as−1 − as−2)x
s+2 + · · · , r even

(as − as+1)x
s+2 + (as−1 − as−2)x

s+3 + · · · , r odd

= xρ(Q)g(Q, 1/x). (3.79)

Now subtract yf(P ) + g(P ) from both sides of equation (3.78) and use (3.79) to obtain

−yf(P ) =
∑

Q<1̂

xρ(Q)g(Q, 1/x)(−y)ℓ(Q,P )

⇒ f(P ) =
∑

Q<1̂

xρ(Q)g(Q, 1/x)(−y)ℓ(Q,P )−1

= xnf(P, 1/x), by equation (3.76),

and the proof is complete.

Equation (3.77) gives a direct combinatorial interpretation of the polynomial f(P, x) provided
P − {1̂} is simplicial, and in this case Theorem 3.16.9 is equivalent to equation (3.73). In
general, however, f(P, x) seems to be an exceedingly subtle invariant of P . See Exercises 176–
177 and 179 for further information.
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3.17 The cd-index of an Eulerian Poset

In Corollary 3.16.6 we showed that βP (S) = βP (S) for any Eulerian poset P of rank n,
where S ⊆ [n − 1] and S = [n − 1] − S. We can ask whether the flag h-vector βP satisfies
additional relations, valid for all Eulerian posets of rank n. For instance, writing β(i) as
short for β({i}), we always have the relation

βP (1)− βP (2) + · · ·+ (−1)nβP (n− 1) =

{
1, n even
0, n odd,

an immediate consequence of the Eulerian property. However, there can be additional rela-
tions, such as

βP (1, 2)− βP (1, 3) + βP (2, 3) = 1

when n = 5.

In this section we will find all the linear relations satisfied by the flag h-vector (or equivalently,
flag f -vector, since the two flag vectors are linearly related) of an Eulerian poset of rank
n. This information is best codified by a certain noncommutative polynomial ΦP (c, d),
called the cd-index of P . When P = Bn, the cd-index ΦBn(c, d) coincides with the cd-index
Φn(c, d) of Sn defined in Section 1.6. The equality of Φn(c, d) and ΦBn(c, d) is a consequence
of Corollary 3.13.2, which states that βBn(S) is the number βn(S) of permutations w ∈ Sn

with descent set S.

Recall from equation (1.60) that we defined the characteristic monomial uS of S ⊆ [n − 1]
by

uS = e1e2 · · · en−1,

where

ei =

{
a, if i 6∈ S
b, if i ∈ S.

Given any graded poset P of rank n with 0̂ and 1̂, define the noncommutative polynomial
ΨP (a, b), called the ab-index of P , by

ΨP (a, b) =
∑

S⊆[n−1]

βP (S)uS.

Thus ΨP (a, b) is a noncommutative generating function for the flag h-vector βP . Note that
it is an immediate consequence of the definition (3.52) (or equivalently, equation (3.53)) that

ΨP (a+ b, b) =
∑

S⊆[n−1]

αP (S)uS.

The main result of this section is the following.

3.17.1 Theorem. Let P be an Eulerian poset of rank n. Then there exists a polynomial
ΦP (c, d) in the noncommutative variables c and d such that

ΨP (a, b) = ΦP (a+ b, ab+ ba).
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Figure 3.34: A regular cell complex with four vertices, seven edges, and five faces

The polynomial ΦP (c, d) is called the cd-index of P . For instance, let P be the face poset of
the regular cell complex of Figure 3.34 (a decomposition of the 2-sphere). Then

ΨP (a + b, b) = aaa + 4baa + 7aba + 5aab+ 14bba+ 14bab+ 14abb+ 28bbb,

whence

ΨP (a, b) = aaa + 3baa + 6aba + 4aab+ 4bba + 6bab+ 3abb+ bbb

= (a + b)3 + 3(a+ b)(ab+ ba) + 2(ab+ ba)(a + b).

It follows that ΦP (c, d) = c3 + 3cd+ 2dc.

Proof of Theorem 3.17.1. The proof is by induction on rank(P ). The result is clearly true
for rank(P ) = 1, where ΦP (c, d) = 1. Assume for posets of rank less than n, and let
rank(P ) = n. We have

ΨP (a + b, b) =
∑

S⊆[n−1]

αP (S)uS

=
∑

0̂=t0<t1<···<tk=1̂

aρ(t0,t1)−1baρ(t1,t2)−1b · · ·aρ(tk−1,tk)−1.

Hence

ΨP (a, b) =
∑

0̂=t0<t1<···<tk=1̂

(a− b)ρ(t0 ,t1)−1b(a− b)ρ(t1,t2)−1b · · · (a− b)ρ(tk−1,tk)−1. (3.80)

This formula remains true when P is replaced by any interval [s, u] of P (since intervals of
Eulerian posets are Eulerian). Write ΨQ = ΨQ(a, b). Let (s, u) denote as usual the open
interval {v ∈ P : s < v < u}, and similarly for the half-open interval (s, u] = {v ∈ P :
s < v ≤ u}. Replacing P by [s, u] in equation (3.80) and breaking up the right-hand side
according to the value of t = tk−1 gives

Ψ[s,u] = (a− b)ρ(s,u)−1 +
∑

t∈(s,u)

Ψ[s,t]b(a− b)ρ(t,u)−1, (3.81)
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where the first term on the right-hand side comes from the chain s = t0 < t1 = u. Multiply
on the right by a− b and add Ψ[s,u]b to both sides:

Ψ[s,u]a = (a− b)ρ(s,u) +
∑

t∈(s,u]

Ψ[s,t]b(a− b)ρ(t,u). (3.82)

Let I(P ) denote the incidence algebra of P over the noncommutative polynomial ring Q〈a, b〉.
Define f, g, h ∈ I(P ) by

f(s, t) =

{
Ψ[s,t]a, s < t

1, s = t

g(s, t) =

{
Ψ[s,t]b, s < t

1, s = t

h(s, t) = (a− b)ρ(s,t).

Thus equation (3.82) is equivalent to f = gh.

Note that h−1 exists (since h(t, t) = 1). Since P is Eulerian and h has the multiplicative
property h(s, t)h(t, u) = h(s, u), we have

h−1(s, t) = µ(s, t)(a− b)ρ(s,t) = (−1)ρ(s,t)(a− b)ρ(s,t).

Therefore the relation g = fh−1 can be rewritten

Ψ[s,u]b = (−1)ρ(s,u)(a− b)ρ(s,u) +
∑

t∈(s,u]

Ψ[s,t]a(−1)ρ(t,u)(a− b)ρ(t,u).

Move Ψ[s,u]a to the left-hand side and cancel the factor b− a:

Ψ[s,u] = −(−1)ρ(s,u)(a− b)ρ(s,u)−1 −
∑

t∈(s,u)

Ψ[s,t]a(−1)ρ(t,u)(a− b)ρ(t,u)−1. (3.83)

Add equations (3.81) and (3.83). We obtain an expression for 2Ψ[s,u] as a function of Ψ[s,t]

for s < t < u and of a+ b = c and (a− b)2m = (c2− 2d)m. By the induction hypothesis Ψ[s,t]

is a polynomial in c and d, so the proof follows by induction.

It is easy to recover the result βP (S) = βP (S) (Corollary 3.16.6) from Theorem 3.17.1.
For this result is equivalent to ΨP (a, b) = ΨP (b, a), which is an immediate consequence of
ΨP (a, b) = ΦP (a+ b, ab+ ba).

If P is an Eulerian poset of rank n, then ΦP (c, d) is a homogeneous polynomial in c, d of
degree n − 1, where we define deg(c) = 1 and deg(d) = 2. The number of monomials of
degree n − 1 in c and d is the number of compositions of n − 1 into parts equal to 1 and
2, which by Exercise 1.35(c) is the Fibonacci number Fn. The coefficients of ΦP are linear
combinations of the 2n−1 numbers βP (S), S ⊆ [n − 1], where the coefficients in the linear
combination depend only on n, not on P . The coefficients of ΦP are also linear combinations
of the 2n−1 numbers αP (S), S ⊆ [n − 1], since the βP (S)’s are linear combinations of the
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Figure 3.35: The join B3 ∗B2

αP (T )’s (equation (3.52)). Let Fn denote the linear span of all flag h-vectors βP (or flag f -
vectors αP ) of Eulerian posets of rank n in the 2n−1-dimensional vector space of all functions
2[n−1] → R. The above argument shows that

dimFn ≤ Fn. (3.84)

We can also ask for the dimension of the affine subspace spanned by flag h-vectors of Eu-
lerian posets of rank n. There is at least one additional affine relation, namely, β(∅) = 1.
Equivalently, the coefficient of cn−1 in ΦP (c, d) is 1. Let Gn denote the affine span of all flag
h-vectors of Eulerian posets of rank n. Thus

dimGn ≤ Fn − 1. (3.85)

We now show that the bounds in equations (3.84) and (3.85) are tight.

First we need to define an operation on posets P and Q with 0̂ and 1̂. The join P ∗Q of P
and Q is the poset

P ∗Q = (P − {1̂})⊕ (Q− {0̂}), (3.86)

where ⊕ denotes ordinal sum. For instance, Figure 3.35 shows the join of the boolean
algebras B3 and B2. It is easy to see (Exercise 3.191) that the join of Eulerian posets is
Eulerian. Moreover, in this case we have

ΦP∗Q(c, d) = ΦP (c, d)ΦQ(c, d). (3.87)

Let Qm denote the face lattice of a polygon with m vertices, so Qm is Eulerian with rank-
generating function F (Qm, q) = 1 +mq +mq2 + q3. Moreover,

ΦQm(c, d) = c2 + (m− 2)d.

3.17.2 Theorem. We have dimFn = Fn and dimGn = Fn − 1.

362



Proof. By the discussion above we need to show that Fn and Fn − 1 are lower bounds for
the dimensions of F and G. Given a cd-monomial ρ = e1e2 · · · er let Pρ = Q1 ∗Q2 ∗ · · · ∗Qr,
where

Qi =

{
B2, ei = c
Qm, ei = d.

By equations (3.86) and (3.87), Pρ is Eulerian, and ΦPρ(c, d) = h1h2 · · ·hr, where

hi =

{
c, ei = c

c2 + (m− 2)d, ei = d.

For instance, if ρ = dc2d2, then

ΦPρ(c, d) = (c2 + (m− 2)d)c2(c2 + (m− 2)d)2

= m3dc2d2 +O(m2).

In general, ΦPρ(c, d) = mkρ+O(mk−1), where k is the number of d’s in ρ. Hence unless ρ = cn

we can make the coefficient of ρ arbitrarily large compared to the other coefficients, so it is
affinely (and hence linearly) independent from the other coefficients. Hence dimGn = Fn−1.
Since all the coefficients other than that of cn are affinely independent, while the coefficient
of cn is 1, it follows that the coefficient of cn is linear independent from the other coefficients.
Hence dimFn = Fn.

363



3.18 Binomial Posets and Generating Functions

We have encountered many examples of generating functions so far, primarily of the form∑
n≥0 f(n)xn or

∑
n≥0 f(n)xn/n!. Why are these types so ubiquitous, and why do generating

functions such as
∑

n≥0 f(n)xn/(1 + n2) never seem to occur? Are there additional classes
of generating functions besides the two above that are useful in combinatorics? The theory
of binomial posets seeks to answer these questions. It allows a unified treatment of many
of the different types of generating functions that occur in combinatorics. This section
and the next will be devoted to this topic. Most of the material in subsequent chapters
of this book will be devoted to more sophisticated aspects of generating functions that are
not really appropriate to the theory of binomial posets. We should mention that there
are several alternative approaches to unifying the theory of generating functions. We have
chosen binomial posets for two reasons: (a) We have already developed much of the relevant
background information concerning posets, and (b) of all the existing theories, binomial
posets give the most explicit combinatorial interpretation of the numbers B(n) appearing in
generating functions of the form

∑
n≥0 f(n)xn/B(n). (Do not confuse these B(n)’s with the

Bell numbers.)

Let us first consider some of the kinds of generating functions F (x) ∈ C[[x]] that have actually
arisen in combinatorics. These generating functions should be regarded as “representing”
the function f : N → C by the power series F (x) =

∑
n≥0 f(n)xn/B(n), where the B(n)’s

are certain complex numbers (which turn out in the theory of binomial posets always to be
positive integers.) The field C can be replaced with any fieldK of characteristic 0 throughout.

3.18.1 Example. a. (Ordinary generating functions) These are generating functions of
the form F (x) =

∑
n≥0 f(n)xn. (More precisely, we say that F is the ordinary generating

function of f .) Of course we have seen many examples of such generating functions, such as

∑

n≥0

(
t

n

)
xn = (1 + x)t

∑

n≥0

((
t

n

))
xn = (1− x)−t

∑

n≥0

p(n)xn =
∏

i≥1

(1− xi)−1.

b. (Exponential generating functions) Here F (x) =
∑

n≥0 f(n)xn/n!. Again we have many
examples, such as

∑

n≥0

B(n)
xn

n!
= ee

x−1

∑

n≥0

D(n)
xn

n!
=

e−x

1− x.

364



c. (Eulerian generating functions) Let q be a fixed positive integer (almost always taken in
practice to be a prime power corresponding to the field Fq). Sometimes it is advantageous to
regard q as an indeterminate, rather than an integer. The corresponding generating function
is

F (x) =
∑

n≥0

f(n)
xn

(n)!
,

where (n)! = (1 + q)(1 + q + q2) · · · (1 + q + · · · + qn−1) is in Section 1.3. Note that (n)!
reduces to n! upon setting q = 1. As discussed in Section 1.8, sometimes in the literature
one sees the denominator replaced with [n]! = (1 − q)(1 − q2) · · · (1 − qn); this amounts to
the transformation x 7→ x/(1− q). We will see that our choice of denominator is the natural
one insofar as binomial posets are concerned. One immediate advantage is that an Eulerian
generating function reduces to an exponential generating function upon setting q = 1. An
example of an Eulerian generating function is

∑

n≥0

f(n)
xn

(n)!
=

(∑

n≥0

xn

(n)!

)2

,

where f(n) is the total number of subspaces of Fnq , i.e., f(n) =
∑n

k=0

(
n

k

)
.

d. (Doubly-exponential generating functions) These have the form F (x) =
∑

n≥0 f(n)xn/n!2.
For instance, if f(n) is the number of n × n matrices of nonnegative integers such that
every row and column sum equals two, then F (x) = ex/2(1 − x)−1/2 (see Corollary 5.5.11).
Sometimes one has occasion to deal with the more general r-exponential generating function
F (x) =

∑
n≥0 f(n)xn/n!r, where r is any positive integer.

e. (Chromatic generating functions) Fix q ∈ P. Then

F (x) =
∑

n≥0

f(n)
xn

q(
n
2)n!

.

Sometimes one sees q(
n
2) replaced with qn

2/2, amounting to the transformation x → xq−1/2.
An example is

∑

n≥0

f(n)
xn

2(n
2)n!

=

(∑

n≥0

(−1)n
xn

2(n
2)n!

)−1

, (3.88)

where f(n) is the number of acyclic digraphs on n vertices; that is, the number of subsets of
[n]×[n] not containing a sequence of elements (i0, i1), (i1, i2), (i2, i3), . . . , (ij−1, ij), (ij , i0). For
instance, f(3) = 25, corresponding to the empty set, the six 1-subsets {(i, j) : i 6= j}, the
twelve 2-subsets {(i, j), (k, ℓ) : i 6= j, k 6= ℓ, (i, j) 6= (ℓ, k)}, and the six 3-subsets obtained
from {(1, 2), (2, 3), (1, 3)} by permuting 1,2,3. See the solution to Exercise 3.200.

The basic concept that will be used to unify the above examples is the following.

3.18.2 Definition. A poset P is called a binomial poset if it satisfies the three conditions:

a. P is locally finite with 0̂ and contains an infinite chain.
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b. Every interval [s, t] of P is graded. If ℓ(s, t) = n, then we call [s, t] an n-interval.

c. For all n ∈ N, any two n-intervals contain the same number B(n) of maximal chains.
We call B(n) the factorial function of P .

Note. Condition (a) is basically a matter of convenience, and several alternative conditions
are possible.

Note that from the definition of binomial poset we have B(0) = B(1) = 1, B(2) = #[s, t]−2,
where [s, t] is any 2-interval, and B(0) ≤ B(1) ≤ B(2) ≤ · · · .
3.18.3 Example. The posets below are all binomial posets.

a. Let P = N with the usual linear order. Then B(n) = 1.

b. Let P be the lattice of all finite subsets of P (or any infinite set), ordered by inclusion.
Then P is a distributive lattice and B(n) = n!. We will denote this poset as B.

c. Let P be the lattice of all finite-dimensional subspaces of a vector space of infinite
dimension over Fq, ordered by inclusion. Then B(n) = (n)!. We denote this poset by
B(q).

d. Let P be the set of all ordered pairs (S, T ) of finite subsets S, T of P satisfying #S =
#T , ordered componentwise (i.e., (S, T ) ≤ (S ′, T ′) if S ⊆ S ′ and T ⊆ T ′). Then
B(n) = n!2. This poset will be denoted B2. More generally, let P1, . . . , Pk be binomial
posets with factorial functions B1, . . . , Bk. Let P be the subposet of P1 × · · · × Pk
consisting of all k-tuples (t1, . . . , tk) such that ℓ(0̂, t1) = · · · = ℓ(0̂, tk). Then P is
binomial with factorial function B(n) = B1(n) · · ·Bk(n). We write P = P1 ∗ · · · ∗ Pk,
the Segre product of P1, . . . , Pk. Thus B2 = B∗B. More generally, we set Br = B∗· · ·∗B
(r times).

e. Let V be an infinite vertex set, let q ∈ P be fixed, and let P be the set of all pairs
(G, σ), where G is a function from all 2-sets {u, v} ∈

(
V
2

)
into {0, 1, . . . , q − 1} such

that all but finitely many values of G are 0 (think of G as a graph with finitely many
edges labelled 1, 2, . . . , q − 1), and where σ : V → {0, 1} is a map satisfying the two
conditions:

1. If G({u, v}) 6= 0 then σ(u) 6= σ(v), and

2.
∑

v∈V σ(v) <∞.

If (G, σ), (H, τ) ∈ P , then define (G, σ) ≤ (H, τ) if:

1. σ(v) ≤ τ(v) for all v ∈ V , and

2. If σ(u) = τ(u) and σ(v) = τ(v), then G({u, v}) = H({u, v}).

Then P is a binomial poset with B(n) = n!q(
n
2). We leave to the reader the task of

finding a binomial poset Q with factorial function B(n) = q(
n
2) such that P = Q ∗ B,

where B is the binomial poset of Example 3.18.3(b).
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f. Let P be a binomial poset with factorial function B(n), and let k ∈ P. Define the
rank-selected subposet (called the k-th Veronese subposet)

P (k) = {t ∈ P : ℓ(0̂, t) is divisible by k}.

Then P (k) is binomial with factorial function

Bk(n) = B(nk)/B(k)n.

Observe that the numbers B(n) considered in Example 3.18.3(a)–(e) appear in the power
series generating functions of Example 3.18.1. If we can somehow associate a binomial
poset with generating functions of the form

∑
f(n)xn/B(n), the we will have “explained”

the form of the generating functions of Example 3.18.3. We also will have provided some
justification of the heuristic principle that ordinary generating functions are associated with
the nonnegative integers, exponential generating functions with sets, Eulerian generating
functions with vector spaces over Fq, and so on.

To begin our study of binomial posets P , choose i, n ∈ N and let
(
n
i

)
P

denote the number of
elements u of rank i in an n-interval [s, t]. Note that since B(i)B(n − i) maximal chains of
[s, t] pass through a given element u of rank i, we have

(
n

i

)

P

=
B(n)

B(i)B(n− i) , (3.89)

so
(
n
i

)
P

depends only on n and i, not on the choice of the n-interval [s, t]. When P = B as in

Example 3.18.3(b), then B(n) = n! and
(
n
i

)
P

=
(
n
i

)
, explaining our terms “binomial poset”

and “factorial function.” The analogy with factorials is strengthened further by observing
that

B(n) = A(n)A(n− 1) · · ·A(1),

where A(i) =
(
i
1

)
P
, the number of atoms in an i-interval.

We can now state the main result concerning binomial posets. Let P be a binomial poset
with factorial function B(n) and incidence algebra I(P ) over C. Define

R(P ) = {f ∈ I(P ) : f(s, t) = f(s′, t′) if ℓ(s, t) = ℓ(s′, t′)}.

If f ∈ R(P ) then write f(n) for f(s, t) when ℓ(s, t) = n. Clearly R(P ) is a vector subspace
of I(P ).

3.18.4 Theorem. The space R(P ) is a subalgebra of I(P ), and we have an algebra isomor-
phism φ : R(P )→ C[[x]] given by

φ(f) =
∑

n≥0

f(n)
xn

B(n)
.

The subalgebra R(P ) is called the reduced incidence algebra of I(P ).
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Proof. Let f, g ∈ R(P ). We need to show that fg ∈ R(P ). By definition of
(
n
i

)
P

we have
for an n-interval [s, t]

fg(s, t) =
∑

u∈[s,t]

f(s, u)g(u, t)

=

n∑

i=0

(
n

i

)

P

f(i)g(n− i). (3.90)

Hence fg(s, t) depends only on ℓ(s, t), so R(P ) is a subalgebra of I(P ). Moreover, the
right-hand side of equation (3.90) is just the coefficient of xn/B(n) in φ(f)φ(g), so the proof
follows.

Let us note a useful property of the algebra R(P ) that follows directly from Theorem 3.18.4
(and that can also be easily proved without recourse to Theorem 3.18.4).

3.18.5 Proposition. Let P be a binomial poset and f ∈ R(P ). Suppose that f−1 exists in
I(P ), i.e., f(t, t) 6= 0 for all t ∈ P . Then f−1 ∈ R(P ).

Proof. The constant term of the power series F = φ(f) is equal to f(t, t) 6= 0 for any t ∈ P ,
so F−1 exists in C[[x]]. Let g = φ−1(F−1). Since FF−1 = 1 in C[[x]], we have fg = 1 in
I(P ). Hence f−1 = g ∈ R(P ).

We now turn to some examples of the unifying power of binomial posets. We make no
attempt to be systematic or as general as possible, but simply try to convey some of the
flavor of the subject.

3.18.6 Example. Let f(n) be the cardinality of an n-interval [s, t] of P , that is, f(n) =∑n
i=0

(
n
i

)
P
. Clearly by definition the zeta function ζ is in R(P ) and φ(ζ) =

∑
n≥0 x

n/B(n).
Since R(P ) is a subalgebra of I(P ) we have ζ2 ∈ R(P ). Since ζ2(s, t) = #[s, t], it follows
that

∑

n≥0

f(n)
xn

B(n)
=

(∑

n≥0

xn

B(n)

)2

.

Thus from Example 3.18.3(a) we have the the cardinality of a chain of length n (or the
number of integers in the interval [0, n]) satisfies

∑

n≥0

f(n)xn =

(∑

n≥0

xn

)2

=
1

(1− x)2
=
∑

n≥0

(n+ 1)xn,

whence f(n) = n+1 (not exactly the deepest result in enumerative combinatorics). Similarly
from Example 3.18.3(b) the number f(n) of subsets of an n-set satisfies

∑

n≥0

f(n)
xn

n!
=

(∑

n≥0

xn

n!

)2

= e2x =
∑

n≥0

2n
xn

n!
,

whence f(n) = 2n. The analogous formula for Eulerian generating functions was given in
Example 3.18.1(c).
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3.18.7 Example. If µ(n) denotes the Möbius function µ(s, t) of an n-interval [s, t] of P
(which depends only on n, by Proposition 3.18.5), then from Theorem 3.18.4 we have

∑

n≥0

µ(n)
xn

B(n)
=

(∑

n≥0

xn

B(n)

)−1

. (3.91)

Thus with P as in Example 3.18.3(a),

∑

n≥0

µ(n)xn =

(∑

n≥0

xn

)−1

= 1− x,

agreeing of course with Example 3.8.1. Similarly for Example 3.18.3(b),

∑

n≥0

µ(n)
xn

n!
=

(∑

n≥0

xn

n!

)−1

= e−x =
∑

n≥0

(−1)n
xn

n!
,

giving yet another determination of the Möbius function of a boolean algebra. Thus formally
the Principle of Inclusion-Exclusion is equivalent to the identity (ex)−1 = e−x.

3.18.8 Example. The previous two examples can be generalized as follows. Let Zn(λ)
denote the zeta polynomial (in the variable λ) of an n-interval [s, t] of P . Then since
Zn(λ) = ζλ(s, t), we have

∑

n≥0

Zn(λ)
xn

B(n)
=

(∑

n≥0

xn

B(n)

)λ

.

This formula is valid for any complex number (or indeterminate) λ.

3.18.9 Example. As a variant of the previous example, fix k ∈ P and let ck(n) denote the
number of chains s = s0 < s1 < · · · < sk = t of length k between s and t in an n-interval
[s, t]. Since ck(n) = (ζ − 1)k[s, t], we have

∑

n≥0

ck(n)
xn

B(n)
=

(∑

n≥1

xn

B(n)

)k

.

The case P = B is particularly interesting. Here ck(n) is the number of chains ∅ = S0 ⊂
S1 ⊂ · · · ⊂ Sk = [n], or alternatively the number of ordered partitions (S1, S2 − S1, S3 −
S2, . . . , [n] − Sk−1) of [n] into k (nonempty) blocks. Since there are k! ways of ordering a
partition with k blocks, we have ck(n) = k!S(n, k). Hence

∑

n≥0

S(n, k)
xn

n!
=

1

k!
(ex − 1)k .

Thus the theory of binomial posets “explains” the simple form of the generating function
from equation (1.94b) in Chapter 1.
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3.18.10 Example. Let c(n) be the total number of chains from s to t in the n-interval [s, t];
that is, c(n) =

∑
k ck(n). We have seen (Section 3.6) that c(n) = (2− ζ)−1(s, t). Hence

∑

n≥0

c(n)
xn

B(n)
=

(
2−

∑

n≥0

xn

B(n)

)−1

.

For instance, if P = N then

∑

n≥0

c(n)xn =

(
2− 1

1− x

)−1

= 1 +
∑

n≥1

2n−1xn.

Thus c(n) = 2n−1, n ≥ 1. Indeed, in the n-interval [0, n] a chain 0 = t0 < t1 < · · · < tk = n
can be identified with the composition (t1, t2 − t1, . . . , n− tk−1), so we recover the result in
Section 1.1 that there are 2n−1 compositions of n. If instead P = B, then

∑

n≥0

c(n)
xn

n!
=

1

2− ex .

As seen from Example 3.18.9, c(n) is the total number of ordered partitions of the set [n]; that
is, c(n) =

∑
k k!S(n, k). One sometimes calls an ordered partition of a set S a preferential

arrangement, since it corresponds to ranking the elements of S in linear order where ties are
allowed.

3.18.11 Example. Let f(n) be the total number of chains s = s0 < s1 < · · · < sk = t in
an n-interval [s, t] of P such that ℓ(si−1, si) ≥ 2 for all 1 ≤ i ≤ k, where k is allowed to vary.
By now it should be obvious to the reader that

∑

n≥0

f(n)
xn

B(n)
=

∑

k≥0

(∑

n≥0

xn

B(n)
− 1− x

)k

=

(
1−

∑

n≥2

xn

B(n)

)−1

(3.92)

For instance, when P = N we are enumerating subsets of [0, n] that contain 0 and n, and
that don’t contain two consecutive integers. Equivalently, we are counting compositions
(t1 − t0, t2 − t1, . . . , n− tk−1) of n with no part equal to 1. From equation (3.92) we have

∑

n≥0

f(n)xn =

(
1− x2

1− x

)−1

=
1− x

1− x− x2
= 1 +

∑

n≥2

Fn−1x
n,

where Fn−1 denotes a Fibonacci number, in agreement with Exercise 1.35(b). Similarly when
P = B we get (2+x−ex)−1 as the exponential generating function for the number of ordered
partitions of an n-set with no singleton blocks.
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3.19 An Application to Permutation Enumeration

In Section 3.13 we related Möbius functions to the counting of permutations with certain
properties. Using the theory of binomial posets we can obtain generating functions for
counting some of these permutations.

Throughout this section P denotes a binomial poset with factorial function B(n). Let S ⊆ P.
If [s, t] is an n-interval of P , then denote by [s, t]S the S-rank selected subposet of [s, t] with
s and t adjoined; that is,

[s, t]S = {u ∈ [s, t] : u = s, u = t, or ℓ(s, u) ∈ S}. (3.93)

Let µS denote the Möbius function of [s, t]S, and set µS(n) = µS(s, t). (It is easy to see that
µS(n) depends only on n, not on the choice of the n-interval [s, t].)

3.19.1 Lemma. We have

−
∑

n≥1

µS(n)
xn

B(n)
=

[∑

n≥1

xn

B(n)

][
1 +

∑

n∈S
µS(n)

xn

B(n)

]
. (3.94)

Proof. Define a function χ : N → {0, 1} by χ(n) = 1 if n = 0 or n ∈ S, and χ(n) = 0
otherwise. Then the defining recurrence (3.15) for Möbius functions yields µS(0) = 1 and

µS(n) = −
n−1∑

i=0

(
n

i

)

P

µS(i)χ(i), n ≥ 1,

where
(
n
i

)
P

= B(n)/B(i)B(n− i) as usual. Hence

−µS(n)(1− χ(n)) =
n∑

i=0

(
n

i

)

P

µS(i)χ(i), n ≥ 1,

which translates into the generating function identity

−
∑

n≥0

µS(n)
xn

B(n)
+
∑

n≥0

µS(n)χ(n)
xn

B(n)
=

[∑

n≥0

xn

B(n)

][∑

n≥0

µS(n)χ(n)
xn

B(n)

]
− 1.

This formula is clearly equivalent to equation (3.94).

We now consider a set S for which the power series 1+
∑

n∈S µS(n)xn/B(n) can be explicitly
evaluated.

3.19.2 Lemma. Let k ∈ P and let S = kP = {kn : n ∈ P}. Then

1 +
∑

n∈S
µS(n)

xn

B(n)
=

[∑

n≥0

xkn

B(kn)

]−1

. (3.95)

371



Proof. Let P (k) be the binomial poset of Example 3.18.3(f), with factorial function Bk(n) =
B(kn)/B(k)n. If µ(k) is the Möbius function of P (k), then it follow from equation (3.91) that

∑

n≥0

µ(k)(n)
xn

Bk(n)
=

[∑

n≥0

xn

Bk(n)

]−1

. (3.96)

But µ(k)(n) = µS(kn). Putting Bk(n) = B(kn)/B(k)n in equation (3.96), we obtain

∑

n≥0

µS(kn)
(B(k)x)n

B(kn)
=

[∑

n≥0

(B(k)x)n

B(kn)

]−1

.

If we put xk for B(k)x, then we get equation (3.95).

Combining Lemmas 3.19.1 and 3.19.2 we obtain:

3.19.3 Corollary. Let k ∈ P and S = kP. Then

−
∑

n≥1

µS(n)
xn

B(n)
=

[∑

n≥1

xn

B(n)

][∑

n≥0

xkn

B(kn)

]−1

.

Now specialize to the case P = B(q) of Example 3.18.3(c). For any S ⊆ P, it follows from
Theorem 3.13.3 that

(−1)#(S∩[n−1])−1µS(n) =
∑

w

qinv(w),

where the sum is over all permutations w ∈ Sn with descent set S. If S = kP, then
#(S ∩ [n− 1]) = ⌊(n− 1)/k⌋. Hence we conclude:

3.19.4 Proposition. Let k ∈ P, and let fn,k(q) =
∑

w q
inv(w), where the sum is over all

permutations w = a1a2 · · ·an ∈ Sn such that ai > ai+1 if and only if k|i. Then

∑

n≥1

(−1)⌊(n−1)/k⌋fn,k(q)
xn

(n)!
=

[∑

n≥1

xn

(n)!

][∑

n≥0

xkn

(kn)!

]−1

. (3.97)

Although Proposition 3.19.4 can be proved without the use of binomial posets, our approach
yields additional insight as to why equation (3.97) has such a simple form. In particular, the
simple denominator

∑
n≥0 x

kn/(kn)! arises from dealing with the Möbius function of the

poset P (k) where P = B(q).

We can eliminate the unsightly factor (−1)⌊(n−1)/k⌋ in equation (3.97) by treating each con-
gruence class of n modulo k separately. Fix 1 ≤ j ≤ k, substitute xk → −xk, and extract
from (3.97) only those terms whose exponent is congruent to j modulo k to obtain the elegant
formula

∑

m≥0
n=mk+j

fn,k(q)
xn

(n)!
=



∑

m≥0
n=mk+j

(−1)m
xn

(n)!



[∑

n≥0

(−1)n
xnk

(nk)!

]−1

(3.98)
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In particular, when j = k we can add 1 to both sides of equation (3.98) to obtain

∑

m≥0

fmk,k(q)
xmk

(mk)!
=

[∑

n≥0

(−1)n
xnk

(nk)!

]−1

. (3.99)

Equation (3.99) is also a direct consequence of Lemma 3.19.2.

One special case of equation (3.98) deserves special mention. Recall (Sections 1.4 and 1.6)
that a permutation a1a2 · · ·an ∈ Sn is alternating if a1 > a2 < a3 > · · · . It is clear from
the definition of fn,k(q) that fn,2(1) is the number En of alternating permutations in Sn.
Substituting k = 2, q = 1, and j = 1, k in equation (3.98) recovers Proposition 1.6.1, viz.,

∑

n≥0

En
xn

n!
= sec x+ tan x. (3.100)

Thus we have a poset-theoretic explanation for the remarkable elegance of equation (3.100).
Moreover, equation (1.59) and Exercise 1.146 can be proved in exactly the same way using
fn,k(1).
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Figure 3.36: The promotion operator ∂ applied to a linear extension

3.20 Promotion and Evacuation

This section is independent of the rest of this book (except for a few exercises) and can
be omitted without loss of continuity. Promotion and evacuation are certain bijections on
the set of linear extensions of a finite poset P . They have some remarkable properties and
arise in a variety of unexpected situations. See for instance Section A1.2 of Appendix 1 of
Chapter 7, as well as Exercises 3.79–3.80.

Let L(P ) denote the set of linear extensions of P . For now we regard a linear extension as
an order-preserving bijection f : P → p, where #P = p. Think of the element t ∈ P as
being labelled by f(t). Now define a bijection ∂ : L(P ) → L(P ), as follows. Remove the
label 1 from P . Let t1 ∈ P satisfy f(t1) = 1. Among the elements of P covering t1, let t2 be
the one with the smallest label f(t2). Remove this label from t2 and place it at t1. (Think
of “sliding” the label f(t2) down from t2 to t1.) Now among the elements of P covering t2,
let t3 be the one with the smallest label f(t3). Slide the label from t3 to t2. Continue this
process until eventually reaching a maximal element tk of P . After we slide f(tk) to tk−1,
label tk with p + 1. Now subtract 1 from every label. We obtain a new linear extension
f∂ ∈ L(P ), called the promotion of f . Note that we let ∂ operate on the right. Note also
that t1 ⋖t2 ⋖ · · ·⋖tk is a maximal chain of P , called the promotion chain of f . Figure 3.36(a)
shows a poset P and a linear extension f . The promotion chain is indicated by circled dots
and arrows. Figure 3.36(b) shows the labeling after the sliding operations and the labeling
of the last element of the promotion chain by p + 1 = 10. Figure 3.36(c) shows the linear
extension f∂ obtained by subtracting 1 from the labels in Figure 3.36(b).

It should be obvious that ∂ : L(P ) → L(P ) is a bijection. In fact, let ∂∗ denote dual
promotion, i.e., we remove the largest label p from some element u1 ∈ P , then slide the
largest label of an element covered by u1 up to u1, etc. After reaching a minimal element
uk, we label it by 0 and then add 1 to each label, obtaining f∂∗. It is easy to check that

∂−1 = ∂∗.

We next define a variant of promotion called evacuation. The evacuation of a linear extension
f ∈ L(P ) is denoted fǫ and is another linear extension of P . First compute f∂. Then
“freeze” the label p into place and apply ∂ to what remains. In other words, let P1 consist
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Figure 3.38: The linear extension fǫ2

of those elements of P labelled 1, 2, . . . , p− 1 by f∂, and apply ∂ to the restriction of f∂ to
P1. Then freeze the label p − 1 and apply ∂ to the p − 2 elements that remain. Continue
in this way until every element has been frozen. Let fǫ be the linear extension, called the
evacuation of f , defined by the frozen labels.

Figure 3.37 illustrates the evacuation of a linear extension f . The promotion paths are shown
by arrows, and the frozen elements are circled. For ease of understanding we don’t subtract
1 from the unfrozen labels since they all eventually disappear. The labels are always frozen
in descending order p, p − 1, . . . , 1. Figure 3.38 shows the evacuation of fǫ, where f is the
linear extension of Figure 3.37. Note that (seemingly) miraculously we have fǫ2 = f . This
example illustrates a fundamental property of evacuation given by Theorem 3.20.1(a) below.

We can define dual evacuation ǫ∗ analogously to dual promotion, i.e., evacuate from the top
of P rather than from the bottom. In symbols, if f ∈ L(P ) then define f ∗ ∈ L(P ∗) by
f ∗(t) = p + 1− f(t). Then ǫ∗ is given by

fǫ∗ = (f ∗ǫ)∗.

We can now state the main result of this section.
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3.20.1 Theorem. Let P be a p-element poset. Then the operators ǫ, ǫ∗, and ∂ satisfy the
following properties.

(a) Evacuation is an involution, i.e., ǫ2 = 1 (the identity operator).

(b) ∂p = ǫǫ∗

(c) ∂ǫ = ǫ∂−1

Theorem 3.20.1 can be interpreted algebraically as follows. The bijections ǫ and ǫ∗ generate
a subgroup of the symmetric group SL(P ) on all the linear extensions of P . Since ǫ and (by
duality) ǫ∗ are involutions, the group they generate is a dihedral group (possibly degenerate,
i.e., isomorphic to {1}, Z/2Z, or Z/2Z × Z/2Z) of order 1 or 2m for some m ≥ 1. If ǫ and
ǫ∗ are not both trivial, so they generate a group of order 2m, then m is the order of ∂p. In
general the value of m, or more generally the cycle structure of ∂p, is mysterious. For a few
cases in which further information is known, see Exercise 3.80.

The main idea for proving Theorem 3.20.1 is to write linear extensions as words rather
than functions and then to describe the actions of ∂ and ǫ on these words. The proof then
becomes a routine algebraic computation. Let us first develop the necessary algebra in a
more abstract context.

Let G be the group generated by elements τ1, . . . , τp−1 satisfying

τ 2
i = 1, 1 ≤ i ≤ p− 1

τiτj = τjτi, if |i− j| > 1.
(3.101)

Some readers will recognize these relations as a subset of the Coxeter relations defining the
symmetric group Sp. Define the following elements of G for 1 ≤ j ≤ p− 1:

δj = τ1τ2 · · · τj
γj = δjδj−1 · · · δ1
γ∗j = τjτj−1 · · · τ1 · τjτj−1 · · · τ2 · · · τjτj−1 · τj.

3.20.2 Lemma. In the group G we have the following identities for 1 ≤ j ≤ p− 1:

(a) γ2
j = (γ∗j )

2 = 1

(b) δj+1
j = γjγ

∗
j

(c) δjγj = γjδ
−1
j .

Proof. (a) Induction on j. For j = 1, we need to show that τ 2
1 = 1, which is given. Now

assume for j − 1. Then

γ2
j = τ1τ2 · · · τj · τ1 · · · τj−1 · · · τ1τ2τ3 · τ1τ2 · τ1 · τ1τ2 · · · τj · τ1 · · · τj−1 · · · τ1τ2τ3 · τ1τ2 · τ1.
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We can cancel the two middle τ1’s since they appear consecutively. We can then cancel the
two middle τ2’s since they are now consecutive. We can then move one of the middle τ3’s
past a τ1 so that the two middle τ3’s are consecutive and can be cancelled. Now the two
middle τ4’s can be moved to be consecutive and then cancelled. Continuing in this way,
we can cancel the two middle τi’s for all 1 ≤ i ≤ j. When this cancellation is done, what
remains is the element γj−1, which is 1 by induction.

(b,c) Analogous to (a). Details are omitted.

Proof of Theorem 3.20.1. A glance at Theorem 3.20.1 and Lemma 3.20.2 makes it obvious
that they should be connected. To see this connection, regard the linear extension f ∈ L(P )
as the word (or permutation of P ) f−1(1), . . . , f−1(p). For 1 ≤ i ≤ p − 1 define operators
τi : L(P )→ L(P ) by

(u1u2 · · ·up)τi =

{
u1u2 · · ·up, if ui and ui+1 are comparable in P

u1u2 · · ·ui+1ui · · ·up, if ui ‖ui+1.
(3.102)

Clearly τi is a bijection, and the τi’s satisfy the relations (3.101). By Lemma 3.20.2 the proof
of Theorem 3.20.1 follows from showing that

∂ = δp−1 := τ1τ2 · · · τp−1.

Note that if f = u1u2 · · ·up, then fδp−1 is obtained as follows. Let j be the least integer
such that j > 1 and u1 < uj. Since f is a linear extension, the elements u2, u3, . . . , uj−1 are
incomparable with u1. Move u1 so it is between uj−1 and uj. (Equivalently, cyclically shift
the sequence u1u2 · · ·uj−1 one unit to the left). Now let k be the least integer such that k > j
and uj < uk. Move uj so it is between uk−1 and uk. Continue in this way reaching the end.
For example, let z be the linear extension cabdfeghjilk of the poset in Figure 3.39 (which
also shows the evacuation chain for this linear extension). (We denote the linear extension
for this one example by z instead of f since we are denoting one of the elements of P by
f .) We factor z from left-to-right into the longest factors for which the first element of each
factor is incomparable with the other elements of the factor:

z = (cabd)(feg)(h)(jilk).

Cyclically shift each factor one unit to the left to obtain zδp−1:

zδp−1 = (abdc)(egf)(h)(ilkj) = abdcegfhkilj.

Now consider the process of promoting the linear extension f of the previous paragraph,
given as a function by f(ui) = i and as a word by u1u2 · · ·up. The elements u2, . . . , uj−1

are incomparable with u1 and thus will have their labels reduced by 1 after promotion. The
label j of uj (the least element in the linear extension f greater than u1) will slide down to
u1 and be reduced to j − 1. Hence f∂ = u2u3 · · ·uj−1u1 · · · . Exactly analogous reasoning
applies to the next step of the promotion process, when we slide the label k of uk down to
uj. Hence

f∂ = u2u3 · · ·uj−1u1 · uj+1uj+2 · · ·uk−1uj · · · .
Continuing in this manner shows that zδ = z∂, completing the proof of Theorem 3.20.1.
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Figure 3.39: The promotion chain of the linear extension cabdfeghjilk
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3.21 Differential posets

Differential posets form a class of posets with many explicit enumerative properties that can
be proved by linear algebraic techniques. Their combinatorics is closely connected with the
combinatorics of the relation DU − UD = I.

3.21.1 Definition. Let r ∈ P. An r-differential poset is a poset P satisfying the following
three axioms.

(D1) P has a 0̂ and is locally finite and graded (i.e., every interval [0̂, t] is graded).

(D2) If t ∈ P covers exactly k elements, then t is covered by exactly k + r elements.

(D3) Let s, t ∈ P , s 6= t. If exactly j elements are covered by both s and t, then exactly j
elements cover both s and t.

Note.

(a) It is easy to see that in axiom (D3) above we must have either j = 0 or j = 1. For
suppose j > 1 elements u1, u2, . . . are covered by both s and t, where the rank m of s
and t is minimal with respect to this property. Then u1 and u2 are covered by both s
and t, so by (D3) u1 and u2 cover at least two elements, contradicting the minimality
of m.

(b) Suppose that L is an r-differential lattice. Then by Proposition 3.3.2, axiom (D3) is
equivalent to the statement that L is modular.

Let us first give some examples of differential posets.

3.21.2 Example. 1. It is easy to see that if P is r-differential and Q is s-differential,
then P ×Q is (r + s)-differential.

2. Young’s lattice Y = Jf(N × N), defined in Example 3.4.4(b), is a 1-differential poset.
Axiom (D1) of Definition 3.21.1 is clear, while (D3) is follows from the distributivity
(and hence modularity) of L. For (D2), note that the positions where we can add a
square to the Young diagram of a partition λ (marked× in the diagram below) alternate
along the boundary with the positions where we can remove a square (marked •), with
× at the beginning and end.
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Figure 3.40: The reflection-extension construction

x

x

x

x

x

3. Let P be r-differential “up to rank n.” This means that (a) P is graded of rank n with
0̂, (b) P satisfies axiom (D2) of Definition 3.21.1 if rank(t) < n, and (c) P satisfies
axiom (D3) of Definition 3.21.1 if rank(s) = rank(t) < n. Define ΩrP , the reflection
extension of P , as follows. Let Pi denote the set of elements of P of rank i, and suppose
that Pn−1 = {s1, . . . , sk}. First place t1, . . . , tk ∈ Pn+1 with ti ⋗ u ∈ Pn if and only
if si ⋖ u (the “reflection of Pn−1 through Pn”). Then for each u ∈ Pn, adjoin r new
elements covering u. Figure 3.40 gives an example for r = 1 and n = 4. The open
circles and dashed lines show the reflection of rank 3 to rank 5, while the open squares
and dotted lines indicate the extension of each element of rank 4.

It is easy to see that ΩrP is r-differential up to rank n+ 1, and that

pn+1 = rpn + pn−1, (3.103)

where pi = #Pi. In particular, if we infinitely iterate the operation Ωr on P , then we
obtain an r-differential poset Ω∞

r P .

4. Let P be the one-element poset, and write Zr = Ω∞
r P . It is easy to check (e.g., by

induction) that Zr is a (modular) lattice, called the r-Fibonacci differential poset. If
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Figure 3.41: The Fibonacci differential poset Z1

r = 1 then it follows from equation (3.103) that #(Z1)n = Fn+1, a Fibonacci number.
See Figure 3.41 for Z1 up to rank 6.

We now turn to the connection between the axioms (D1)–(D3) of a differential poset and
linear algebra. Let K be a field and P any poset. Let KP be the vector space with basis
P , i.e., the set of all formal linear combinations of elements of P with only finitely many
nonzero coefficients. Let

K̂P =

{∑

t∈P
ctt : ct ∈ K

}
,

the vector space of all infinite linear combinations of elements of P . A linear transformation
ϕ : K̂P → K̂P is continuous if it preserves infinite linear combinations, i.e.,

ϕ
(∑

ctt
)

=
∑

ctϕ(t), (3.104)

so in particular the right-hand side of equation (3.104) must be well-defined. For instance, if

P is infinite and u ∈ P , then a map ϕ : K̂P → K̂P satisfying ϕ(t) = u for all t ∈ P cannot
be extended to a continuous linear transformation since ϕ

(∑
t∈P t

)
=
∑

t∈P u, which is not
defined.

Now assume that P satisfies axiom (D1). Define continuous linear transformations U : K̂P →
K̂P and D : K̂P → K̂P by

U(s) =
∑

t⋗s

t, for all s ∈ P

D(s) =
∑

t⋖s

t, for all s ∈ P.

3.21.3 Proposition. Let P satisfy axiom (D1). Then P is r-differential if and only if

DU − UD = rI,
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where I is the identity linear transformation on K̂P .

Proof. The proof is of the type “follow your nose.” By the definition of the product of linear
transformations, axiom (D2) is equivalent to the statement that the coefficient of t (when
we expand as an infinite linear combination of elements of P ) in (DU − UD)t is r. If s 6= t,
then axiom (D3) is equivalent to the statement that the coefficient of s in (DU − UD)t is
0.

If X ⊆ P , then write X =
∑

t∈X t ∈ K̂P . Define a pairing K̂P ×KP → K by

〈s, t〉 = δst, s, t ∈ P.

Thus 〈∑

t∈P
att,

∑

t∈P
btt

〉
=
∑

atbt,

a finite sum since
∑

t∈P btt ∈ KP . If f ∈ K̂P and t ∈ P , then 〈f, t〉 is just the coefficient of
t in f .

3.21.4 Proposition. Let P be an r-differential poset. Then

DP = (U + r)P .

Proof. Equivalent to axiom (D2). In more detail, for t ∈ P let

C−(t) = {s ∈ P : s⋖ t}.

Then 〈(U + r)P , t〉 = r + #C−(t), and the proof follows.

3.21.5 Example. Let t ∈ Pn (the set of elements of P of rank n), and let e(t) denote the
number of saturated chains 0̂ = t0 ⋖ t1 ⋖ · · ·⋖ tn = t from 0̂ to t. Then

e(t) = 〈Un0̂, t〉.

Similarly [why?],

∑

t∈Pn

e(t) = 〈Un0̂,Pn〉
∑

t∈Pn

e(t)2 = 〈DnUn0̂, 0̂〉.

Let us now consider some relations between U and D that are formal consequences of DU −
UD = rI. The basic goal is to “push” to the right the D’s in an expression (power series)
involving U and D by using DU = UD + rI. A useful way to understand such results
is the following. We can “represent” U = z (i.e., multiplication by the indeterminate z)
and D = r d

dz
since (r d

dz
)z − z(r d

dz
) = r as operators. Thus familiar identities involving
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differentiation can be transferred to identities involving U and D. For the algebraically
minded, a more precise statement is that we have an isomorphism

K〈〈U,D〉〉/(DU − UD − r) ∼= K

〈〈
z, r

d

dz

〉〉
,

where K〈〈·〉〉 denotes noncommutative formal power series.

As an example, let f(U) be any power series in U . Since r d
dz
f(z)g(z) = rf ′(z)g(z) +

f(z)r d
dz
g(z), we have

Df(U) = rf ′(U) + f(U)D.

This identity can be verified directly by proving by induction on n thatDUn = rnUn−1+UnD
and using linearity and continuity.

3.21.6 Theorem. (a) Suppose that DU − UD = rI. Then

e(U+D)x = e
1
2
rx2+UxeDx (3.105)

(b) Let f(U) be a power series in y whose coefficients are polynomials (independent of

another variable x) in U . Thus the action of f(U) on K̂P is well-defined. Then

eDxf(U) = f(U + rx)eDx.

In particular, setting f(U) = eUy and then x = y, we get

eDxeUx = erx
2+UxeDx. (3.106)

Note. Care must be taken in interpreting Theorem 3.21.6 since U and D don’t commute.
For instance, equation (3.105) asserts that

∑

n≥0

(U +D)n
xn

n!
=

(∑

n≥0

rnx2n

2nn!

)(∑

n≥0

Unx
n

n!

)(∑

n≥0

Dnx
n

n!

)
.

Thus when we equate coefficients of x3/3! on both sides, we obtain

(U +D)3 = 3!

[(
U3

6
+
U2D

2
+
UD2

2
+
D3

6

)
+
r

2
(U +D)

]
.

Proof of Theorem 3.21.6. Both equations (3.105) and (3.106) can be proved straightforwardly
by verifying them for the coefficient of xn using induction on n. We give other proofs based
on the representation U = z, D = r d

dz
discussed above.

(a) Let H(x) = e(D+U)x =
∑

n≥0(D + U)n x
n

n!
. Then H(x) is uniquely determined by

(D + U)H(x) =
d

dx
H(x), H(0) = 1.
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Let
J(x) = e

1
2
rx2+UxeDx.

Clearly J(0) = 1. Regarding D = r d
dU

, we have

(D + U)J(x) = (rxe
1
2
rx2+UxeDx + e

1
2
rx2+UxDeDx) + UJ(x)

d

dx
J(x) = (rx+ U)J(x) + e

1
2
rx2+UxDeDx

= (D + U)J(x).

Hence H(x) = J(x), proving (3.105).

(b) The Taylor series expansion of f(z + rx) at z is given by

f(z + rx) =
∑

n≥0

(
r
d

dz

)n
f(z)

xn

n!

= ex(r
d
dz)f(z),

and the proof follows from the representation D = r d
dU

.

We are now ready to give some enumerative applications. A Hasse walk of length ℓ from s
to t in a poset P is a sequence

s = t0, t1, . . . , tℓ = t, ti ∈ P,
such that either ti−1 ⋖ ti or ti−1 ⋗ ti for 1 ≤ i ≤ ℓ. Note that in a graded poset, all closed
Hasse walks (i.e., those with s = t) have even length.

3.21.7 Theorem. Let P be an r-differential poset, and let κℓ be the number of Hasse walks
of length ℓ from 0̂ to 0̂, so κℓ = 0 if ℓ is odd. Then

κ2n = (2n− 1)!! rn = 1 · 3 · 5 · · · (2n− 1)rn.

Proof. Note that κ2n = 〈(U + D)2n0̂, 0̂〉. Hence using equation (3.105) and Dn0̂ = 0 for
n ≥ 1, we get

∑

n≥0

κ2n
x2n

(2n)!
=

〈∑

n≥0

(U +D)n
xn

n!
0̂, 0̂

〉

=
〈
e(U+D)x0̂, 0̂

〉

=
〈
e

1
2
rx2+UxeDx0̂, 0̂

〉

=
〈
e

1
2
rx2+Ux0̂, 0̂

〉

= e
1
2
rx2

=
∑

n≥0

rn(2n− 1)!!
x2n

(2n)!
,

and the proof follows from equating coefficients of x2n/(2n)!.
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3.21.8 Theorem. For any r-differential poset P we have

∑

t∈Pn

e(t)2 = rnn!.

Proof. Completely analogous to the previous proof, using equation (3.106) and

∑

n≥0

(∑

t∈Pn

e(t)2

)
x2n

n!2
=
〈
eDxeUx0̂, 0̂

〉
.

We next give some enumerative applications of the identity DP = (U + r)P (Proposi-
tion 3.21.4).

3.21.9 Theorem. Let P be an r-differential poset. Then

eDxP = erx+
1
2
rx2+UxP (3.107)

e(U+D)xP = erx+rx
2+2UxP (3.108)

eDxeUxP = erx+
3
2
rx2+2UxP . (3.109)

Proof. Let H(x) = eDx. Then H(x)P is uniquely determined by the conditions

DH(x)P =
d

dx
H(x)P , H(0)P = P .

Let L(x) = erx+
1
2
rx2+UxP . Then

DL(x)P = (rxL(x) + L(x)D)P (since Df(U) = rf ′(U) + f(U)D)

= (rxL(x) + L(x)(U + r))P

= (rx+ U + r)L(x)P

=
d

dx
L(x)P .

Clearly L(0)P = P , so L(x) = H(x), proving (3.107).

Now

e(U+D)xP = e
1
2
rx2+UxeDxP

= e
1
2
rx2+Uxerx+

1
2
rx2+UxP

= erx+rx
2+2UxP ,

and

eDxeUxP = erx
2+UxeDxP

= erx
2+Uxerx+

1
2
rx2+UxP

= erx+
3
2
rx2+2UxP ,
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completing the proof.

Write α(0 → n) =
∑

t∈Pn
e(t), and let δn be the number of Hasse walks of length n from 0̂

(with any ending element).

3.21.10 Theorem. For any r-differential poset P we have

∑

n≥0

α(0→ n)
xn

n!
= erx+

1
2
rx2

∑

n≥0

δn
xn

n!
= erx+rx

2

.

Note. It follows from Theorem 1.3.3 or from Section 5.1 that Theorem 3.21.10 can be
restated in the form

α(0→ n) =
∑

w∈Sn

w2=1

rc(w)

∑

n≥0

δn =
∑

w∈Sn

w2=1

rc(w)2c2(w),

where c(w) denotes the number of cycles of w and c2(w) the number of 2-cycles. For instance,
α(0 → 3) = r3 + 3r2, and δ3 = r3 + 6r2. Note that in particular if r = 1, then α(0 → n) is
just the number of involutions in Sn. For the case where P is Young’s lattice Y , this result
is equivalent to Corollary 7.13.9.

Proof of Theorem 3.21.10. Clearly

α(0→ n) = 〈DnP , 0̂〉, δn = 〈(U +D)nP , 0̂〉.

Now for any f(U) we have 〈f(U)P , 0̂〉 = f(0), so

∑

n≥0

α(0→ n)
xn

n!
=

∑

n≥0

〈DnP , 0̂〉x
n

n!

= 〈eDxP , 0̂〉

= 〈erx+ 1
2
rx2+UxP , 0̂〉

= erx+
1
2
rx2

.

An analogous argument works for
∑

n≥0 δnx
n/n!.

Let us now generalize the above result for α(0 → n) by considering increasing Hasse walks
from rank n to rank n + k. More precisely, let α(n→ n + k) be the number of such walks,
i.e.,

α(n→ n + k) = #{tn ⋖ tn+1 ⋖ · · ·⋖ tn+k : ρ(ti) = i},
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where ρ denotes the rank function of P . In particular, α(n→ n) = #Pn. This special case
suggests that the rank-generating function

F (P, q) =
∑

t∈P
qρ(t) =

∑

n≥0

(#Pn)q
n

will be relevant, so let us note that

F (Y r, q) =
∏

i≥1

1

(1− qi)r

F (Zr, q) =
1

1− rq − q2
.

3.21.11 Theorem. For any r-differential poset P we have

∑

n≥0

∑

k≥0

α(n→ n+ k)qn
xk

k!
= F (P, q) exp

(
rx

1− q +
rx2

2(1− q2)

)
.

Note. Taking the coefficient of xk/k! for 0 ≤ k ≤ 2 yields

∑

n≥0

α(n→ n)qn = F (P, q)

∑

n≥0

α(n→ n + 1)qn =
r

1− qF (P, q)

∑

n≥0

α(n→ n + 2)qn =
r(r + 1) + r(r − 1)q

(1− q)2(1− q2)
F (P, q).

In general, it is immediate from Theorem 3.21.11 that for fixed k we have

∑

n≥0

α(n→ n + k)qn = Ak(q)F (P, q),

where Ak(q) is a rational function of q (and r) satisfying

∑

k≥0

Ak(q)
xk

k!
= exp

(
rx

1− q +
rx2

2(1− q2)

)
. (3.110)

Proof of Theorem 3.21.11. Let γ : K̂P → K[[q]] be the continuous linear transformation
defined by γ(t) = qρ(t) for all t ∈ P , so γ(P ) = F (P, q). Now

γ(eDxP ) =
∑

k≥0

γ(DkP )
xk

k!

=
∑

n≥0

∑

k≥0

α(n→ n+ k)qn
xk

k!
:= G(q, x).
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But also

γ(eDxP ) = erx+
1
2
rx2

γ(eUxP )

= erx+
1
2
rx2
∑

n≥0

∑

k≥0

α(n− k → n)qn
xk

k!

= erx+
1
2
rx2
∑

n≥0

∑

k≥0

α(n− k → n)qn−k
(qx)k

k!

= erx+
1
2
rx2

G(q, qx).

Hence we have shown that
G(q, x) = erx+

1
2
rx2

G(q, qx). (3.111)

Moreover, it is clear that
G(q, 0) = F (P, q). (3.112)

We claim that equations (3.111) and (3.112) determine G(q, x) uniquely. For if G(q, x) =∑
ak(q)x

k, then ∑
ak(q)x

k = erx+
1
2
rx2
∑

ak(q)(qx)
k.

We can equate coefficients of xk and solve for ak(q) in terms of a0(q), a1(q), . . . , ak−1(q), with
a0(q) = F (P, q), proving the claim.

Now note that F (P, q) exp
(

rx
1−q + rx2

2(1−q2)

)
satisfies equations (3.111) and (3.112), completing

the proof.

A further aspect of differential posets is the computation of eigenvalues and eigenvectors of
certain linear transformations. We illustrate this technique here by computing the eigen-
values of the adjacency matrix of the graph obtained by restricting the Hasse diagram of a
differential poset to two consecutive levels. In general, if G is a finite graph, say with no
multiple edges, then the adjacency matrix of G is the (symmetric) matrix A, say over C,
with rows and columns indexed by the vertices of G (in some order), with

Auv =

{
1, if uv is an edge of G
0, otherwise.

Let P be an r-differential poset, and let Pj−1,j denote the restriction of P to Pj−1 ∪ Pj.
Identify Pj−1,j with its Hasse diagram, regarded as an undirected (bipartite) graph. Let A

denote the adjacency matrix of Pj−1,j. We are interested in computing the eigenvalues (or
characteristic polynomial) of A. By definition of matrix multiplication, the matrix entry
(An)uv is the number of walks of length n from u to v. On the other hand, (An)uv is closely
related to the eigenvalues of A, as discussed in Section 4.7. This suggests that differential
poset techniques might be useful in computing the eigenvalues.

3.21.12 Theorem. Let pi = #Pi. Then the eigenvalues of A (over C) are as follows:

• 0 with multiplicity pj − pj−1
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• ±√rs with multiplicity pj−s − pj−s−1, 1 ≤ s ≤ j.

Note. The total number of eigenvalues is

pj − pj−1 + 2

j∑

s=1

(pj−s − pj−s−1) = pj−1 + pj ,

the number of elements of the poset Pj−1,j.

Proof of Theorem 3.21.12. For any set S write CS for the complex vector space with basis
S. Since CPj−1,j = CPj−1 ⊕ CPj, any v ∈ CPj−1,j can be uniquely written

v = vj−1 + vj , vi ∈ CPi.

Then A acts on CPj−1,j by
A(v) = D(vj) + U(vj−1).

Write Ui for the restriction of U to CPi, and similarly for Di and Ii. Thus the identity
DU − UD = rI takes the form

Di+1Ui − Ui−1Di = rIi.

Now Ui−1 and Di are adjoint linear transformations with respect to the bases Pi−1 and Pi
(in other words, their matrices are transposes of one another). Thus by standard results
in linear algebra, the linear transformation Ui−1Di is (positive) semidefinite and hence has
nonnegative real eigenvalues. Now

Di+1Ui = Ui−1Di + rIi.

The eigenvalues of Ui−1Di+rIi are obtained by adding r to the eigenvalues of the semidefinite
transformation Ui−1Di. Hence Di+1Ui has positive eigenvalues and is therefore invertible. In
particular, Ui is injective, so its adjoint Di+1 is surjective. Therefore

dim(kerDi) = dim CPi − dim CPi−1

= pi − pi−1.

Case 1. Let v ∈ ker(Dj), so v ∈ CPj, i.e., v = vj . Hence Av = Dv = 0, so ker(Dj) is an
eigenspace of A with eigenvalue 0. Thus 0 is an eigenvalue of A with multiplicity at least
pj − pj−1.

Case 2. Let w ∈ ker(Ds) for some 0 ≤ s ≤ j − 1. Let

w∗ =
√
r(j − s)U j−1−s(w)︸ ︷︷ ︸

w∗
j−1

+U j−s(w)︸ ︷︷ ︸
w∗

j

∈ CPj−1,j.

We can choose either sign for the square root. Then

A(w∗) = U(w∗
j−1) +D(w∗

j )

=
√
r(j − s)U j−s(w) +DU j−s(w)

=
√
r(j − s)U j−s(w) + U j−sD(w)︸ ︷︷ ︸

0

+r(j − s)U j−s−1(w)

=
√
r(j − s)U j−s(w) + r(j − s)U j−s−1(w)

=
√
r(j − s)w∗.
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If w1, . . . , wt is a basis for ker(Ds) then w∗
1, . . . , w

∗
t are linearly independent (since U is injec-

tive). Hence ±
√
r(j − s) is an eigenvalue of A with multiplicity at least t = dim(kerDs) =

ps − ps−1. We have found a total of

pj − pj−1 + 2

j−1∑

s=0

(ps − ps−1) = ps−1 + ps

eigenvalues, so we have them all.

3.21.13 Corollary. Fix j ≥ 1. The number of closed walks of length 2m > 0 in Pj−1,j

beginning and ending at some t ∈ Pj is given by

j∑

s=1

(pj−s − pj−s−1)(rs)
m.

Proof. By the definition of matrix multiplication, the total number of closed walks of length
2m in Pj−1,j is equal to tr A2m =

∑
θ2m
i , where the θi’s are the eigenvalues of A. (See

Theorem 4.7.1.) Exactly half these walks start at Pj. By Theorem 3.21.12 we have

1

2
trA2m =

1

2

j∑

s=1

(pj−s − pj−s−1)
(
(
√
rs)2m + (−√rs)2m

)

=
1

2

j∑

s=1

(pj−s − pj−s−1)2(rs)m,

and the proof follows.
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NOTES

The subject of partially ordered sets and lattices has its origins in the work of G. Boole,
C. S. Peirce, E. Schröder, and R. Dedekind during the nineteenth century. However, it
was not until the work of Garrett Birkhoff in the 1930s that the development of poset
theory and lattice theory as subjects in their own right really began. In particular, the
appearance in 1940 of the first edition of Birkhoff’s famous book [3.13] played a seminal role
in the development of the subject. It is interesting to note that the three successive editions
of this book used the terms “partly ordered set,” “partially ordered set,” and “poset,”
respectively. More explicit references to the development of posets and lattices can be found
in [3.13]. Another important impetus to lattice theory was the work of John von Neumann
on continuous geometries, also in the 1930s. For two surveys of this work see Birkhoff [3.12]
and Halperin [3.40].

A bibliography of around 1400 items dealing with posets (but not lattices!) appears in Rival
[3.57]. This latter reference contains many valuable surveys of the status of poset theory up
to 1982. In particular, we mention the survey [3.35] of C. Greene on Möbius functions. An
extensive bibliography of lattice theory appears in Grätzer [3.33].

Matroid theory was mentioned at the end of Section 3.3. Some books on this subject are by
Oxley [3.54], Welsh [3.89], and White (ed.) [3.90][3.91][3.92].

The idea of incidence algebras can be traced back to Dedekind and E. T. Bell, while the
Möbius inversion formula for posets is essentially due to L. Weisner in 1935. It was redis-
covered shortly thereafter by P. Hall, and stated in its full generality by M. Ward in 1939.
Hall proved the basic Proposition 3.8.5 (therefore known as “Philip Hall’s theorem”) and
Weisner the equally important Corollary 3.9.3 (“Weisner’s theorem”). However, it was not
until 1964 that the seminal paper [3.58] of G.-C. Rota appeared that began the systematic
development of posets and lattices within combinatorics. Reference to earlier work in this
area cited above appear in [3.58]. Much additional material on incidence algebras appears
in the book of E. Spiegel and C. O’Donnell [3.66].

We now turn to more specific citations, beginning with Section 3.4. Theorem 3.4.1 (the
fundamental theorem for finite distributive lattices) was proved by Birkhoff [3.11, Thm. 17.3].
Generalizations to arbitrary distributive lattices were given by M. H. Stone [3.86, Thm. 4]
and H. A. Priestley [3.55][3.56]. A nice survey is given by Davey and Priestley [3.24]. The
connection between chains in distributive lattices J(P ) and order-preserving maps σ : P → N
(Section 3.5) was first explicitly observed by Stanley in [3.67] and [3.68]. The notion of a
“generalized Pascal triangle” appears in Stanley [3.73].

The development of a homology theory for posets was considered by Deheuvels, Dowker,
Farmer, Nöbeling, Okamoto, and others (see Farmer [3.27] for references), but the combina-
torial ramifications of such a theory, including the connection with Möbius functions, was
not perceived until Rota [3.58, pp. 355–356]. Some early work along these lines was done
by Farmer, Folkman, Lakser, Mather, and others (see Walker [3.87][3.88] for references). In
particular, Folkman proved a result equivalent to the statement that geometric lattices are
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Cohen-Macaulay. The systematic development of the relationship between combinatorial
and topological properties of posets was begun by K. Baclawski and A. Björner and con-
tinued by J. Walker, followed by many others. A nice survey of topological combinatorics
up to 1995 was given by Björner [3.18], while Kozlov [3.48] has written an extensive text.
The connection between regular cell complexes and posets is discussed by Björner [3.15].
Cohen-Macaulay complexes were discovered independently by Baclawski [3.3] and Stanley
[3.75, §8]. A survey of Cohen-Macaulay posets, including their connection with commutative
algebra, appears in Björner-Garsia-Stanley [3.16]. For further information on the subject of
“combinatorial commutative algebra” see the books by Stanley [3.78] and by E. Miller and
B. Sturmfels [3.52]. The statement preceding Proposition 3.8.9 that lkF need not be simply
connected and |lkF | need not be a manifold when |∆| is a manifold is a consequence of a
deep result of R. D. Edwards. See for instance [3.23, II.12].

The Möbius algebra of a poset P (generalizing our definition in Section 3.10 when P is a lat-
tice) was introduced by L. Solomon [3.65] and first systematically investigated by C. Greene
[3.34], who showed how it could be used to derive many apparently unrelated properties of
Möbius functions.

Proposition 3.10.1 (stated for geometric lattices) is due to Rota [3.58, Thm. 4, p. 357]. The
formula (3.34) for the Möbius function of Bn(q) is due to P. Hall [3.39, (2.7)], while the
generalization (3.38) appeared in Stanley [3.74, Thm. 3.1] (with r = 1). The formula (3.37)
for Πn is due independently to Schützenberger and to Frucht and Rota (see [3.58, p. 359]).

Theorem 3.11.7 is perhaps the first significant result in the theory of hyperplane arrange-
ments. It was obtained by T. Zaslavsky [3.95][3.96] in 1975, though some special cases were
known earlier. In particular, Proposition 3.11.8 goes back to L. Schläfli [3.59] (written in
1850–1852 and published in 1901).

Proposition 3.11.3, known as Whitney’s theorem, was proved by H. Whitney [3.93, §6] for
graphs (equivalent to graphical arrangements). Whitney considered this formula further in
[3.94]. Many aspects of hyperplane arrangments are best understood via matroid theory,
as explained e.g. in Stanley [3.83]. The finite field method had its origins in the work of
Crapo and Rota [3.22, §16] but was not applied systematically to computing characteristic
polynomials until the work of C. A. Athanasiadis [3.1][3.2]. The theory of hyperplane ar-
rangements has developed into a highly sophisticated subject with deep connections with
topology, algebraic geometry, etc. For a good overview see the text of P. Orlik and H. Terao
[3.53]. For an introduction to the combinatorial aspects of hyperplane arrangements, see
the lecture notes of Stanley [3.83]. The Shi arrangement was first defined by Jian-Yi Shi
( ) [3.60][3.61], who computed the number of regions in connection with determining

the left cells of the affine Weyl group of type Ãn−1. The characteristic polynomial was first
computed by P. Headley [3.41].

Zeta polynomials were introduced by Stanley [3.72, §3] and further developed by P. Edelman
[3.26].

The idea of rank-selected subposets and the corresponding functions αP (S) and βP (S) was
considered for successively more general classes of posets by Stanley in [3.68, Ch. II][3.69][3.71],
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finally culminating in [3.76, §5]. Theorem 3.13.1 appeared (in a somewhat more general form)
in [3.68, Thm. 9.1], while Theorem 3.13.3 appeared in [3.74, Thm. 3.1] (with r = 1).

R-labelings had a development parallel to that of rank-selection. The concept was succes-
sively generalized in [3.68][3.69][3.71], culminating this time in Björner [3.14] (from which
the term “R-labeling” is taken) and Björner and Wachs [3.17]. Example 3.14.4 comes from
[3.69], while Example 3.14.5 is found in [3.71]. A more stringent type of labeling than R-
labeling, originally called L-labeling and now called EL-labeling, was introduced by Björner
[3.14] and generalized to CL-labeling by Björner and Wachs [3.17]. (The definition of CL-
labeling implicitly generalizes the notion of R-labeling to what logically should be called
“CR-labeling.”) A poset with a CL-labeling (originally, just with an EL-labeling) is called
lexicographically shellable. While R-labelings are used (as in Section 3.14) to compute Euler
characteristics (i.e., Möbius functions), CL-labelings allow one to compute the actual ho-
mology groups. From the many important examples, beginning with [3.17][3.19], of posets
that can be proved to have a CL-labeling but not an EL-labeling, it seems clear that CL-
labeling is the right level of generality for this subject. Note, however, that an even more
general concept is due to D. Kozlov [3.47]. We have treated only R-labelings here for ease
of presentation and because we are focusing on enumeration, not topology.

The theory of (P, ω)-partitions was foreshadowed by the work of MacMahon (see, for exam-
ple, [1.55, §§439, 441]) and more explicitly Knuth [3.46], but the first general development
appeared in Stanley [3.67][3.68]. Our treatment closely follows [3.68].

Eulerian posets were first explicitly defined in Stanley [3.77, p. 136], though they had cer-
tainly been considered earlier. A survey was given by Stanley [3.82]. In particular, Propo-
sition 3.16.1 appears in [3.72, Prop. 3.3] (though stated less generally), while our approach
to the Dehn-Sommerville equations (Theorem 3.16.9 in the case when P − {1̂} is Eulerian)
appears in [3.72, p. 204]. Classically the Dehn-Sommerville equations were stated for face
lattices of simplicial convex polytopes or triangulations of spheres (see [3.37, Ch. 9.8]); Klee
[3.45] gives a treatment equivalent in generality to ours. A good general reference on poly-
topes is the book of Ziegler [3.97].

Lemma 3.16.3 and its generalization Lemma 3.16.4 are due independently to Baclawski [3.4,
Lem. 4.6] and Stec̆kin [3.85]. A more general formula is given by Björner and Walker [3.20].
Proposition 3.16.5 and Corollary 3.16.6 appear in [3.77, Prop. 2.2]. Theorem 3.16.9 has an
interesting history. It first arose when P is the lattice of faces of a rational convex polytope
P as a byproduct of the computation of the intersection homology IH(X(P); C) of the toric
variety X(P) associated with P. Specifically, setting βi = dim IHi(X(P); C) one has

∑

i≥0

βiq
i = f(P, q2).

But intersection homology satisfies Poincaré duality, which implies βi = β2n−i. For references
and further information, see Exercise 3.179. It was then natural to ask for a more elementary
proof in the greatest possible generality, from which Theorem 3.16.9 arose. For further
developments in this area, see Exercise 3.179.

The cd-index arose from the work of M. Bayer and L. Billera [3.5] on flag f -vectors of
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Eulerian posets. J. Fine (unpublished) observed that the linear relations obtained by Bayer
and Billera are equivalent to the existence of the cd-index. Bayer and A. Klapper [3.6] wrote
up the details of Fine’s argument and developed some further properties of the cd-index.
Stanley [1.70] gave the proof of the existence of the cd-index appearing here as the proof of
Theorem 3.17.1 (with a slight improvement due to G. Hetyei; see L. Billera and R. Ehrenborg,
[3.10, p. 427]) and gave some additional results. An important breakthrough was later given
by K. Karu (Exercise 3.192).

The theory of binomial posets was developed by Doubilet, Rota, and Stanley [3.25, §8].
Virtually all the material of Section 3.18 (some of it in a more general form) can be found in
this reference, with the exception of chromatic generating functions [3.70]. The generating
function (2−ex)−1 of Example 3.18.10 was first considered by A. Cayley [3.21] in connection
with his investigation of trees. See also O. A. Gross [3.36]. The application of binomial
posets to permutation enumeration (Section 3.19) was developed by Stanley [3.74].

Among the many alternative theories to binomial posets for unifying various aspects of
enumerative combinatorics and generating functions, we mention the theory of prefabs of
Bender and Goldman [3.7], dissects of Henle [3.42], linked sets of Gessel [3.31], and species
of Joyal [3.44]. The most powerful of these theories is perhaps that of species, which is based
on category theory. An exposition is given by F. Bergeron, G. Labelle, and P. Leroux [3.8].
We should also mention the book of Goulden and Jackson [3.32], which gives a fairly unified
treatment of a large part of enumerative combinatorics related to the counting of sequences
and paths.

Evacuation (Section 3.20) first arose in the theory of the RSK algorithm. See pages 425–
429 of Chapter 7, Appendix I, for this connection. Evacuation was described by M.-P.
Schützenberger [3.62] in a direct way not involving the RSK algorithm. In two follow-up
papers [3.63][3.64] Schützenberger extended the definition of evacuation to linear extensions
of any finite poset and developed the connection with promotion. Schützenberger’s work was
simplified by Haiman [3.38] and Malvenuto and Reutenauer [3.51]. A survey of promotion
and evacuation with many additional references was given by Stanley [3.84].

Differential posets were discovered independently by S. Fomin [3.29][3.30] and Stanley [3.80]
[3.81]. Fomin’s work goes back to his M.S. thesis [3.28] and is done in the more general context
of “dual graded graphs” (essentially where the U and D operators act on different posets).
Our exposition follows [3.80], where many further results may be found. Theorem 3.21.6(b)
is based on a suggestion of Yan Zhang. Generalizations of differential posets in addition
to dual graded graphs include sequentially differential posets [3.81, §2], weighted differential
posets (an example appearing in [3.81, §3]), down-up algebras [3.9], signed differential posets
[3.49], quantized dual graded graphs [3.50], and the updown categories of M. E. Hoffman
[3.43].
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[60] J.-Y. Shi, The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, Lecture Notes In
Mathematics, no. 1179, Springer-Verlag, Berlin/Heidelberg/New York, 1986.

[61] J.-Y. Shi, Sign types corresponding to an affine Weyl group, J. London Math. Soc. 35
(1987), 56–74.

[62] M.-P. Schützenberger, Quelques remarques sur une construction de Schensted, Canad.
J. Math. 13 (1961), 117–128.

[63] M.-P. Schützenberger, Promotions des morphismes d’ensembles ordonnés, Discrete
Math. 2 (1972), 73–94.

[64] M.-P. Schützenberger, Evacuations, in Colloquio Internazionale sulle Teorie Combinato-
rie (Rome, 1973), Tomo I, Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome,
1976, pp. 257–264.

[65] L. Solomon, The Burnside algebra of a finite group, J. Combinatorial Theory 2 (1967),
603–615.

[66] E. Spiegel and C. O’Donnell, Incidence Algebras, Marcel Dekker, New York, 1997.

[67] R. Stanley, Ordered structures and partitions, thesis, Harvard Univ., 1971.

[68] R. Stanley, Ordered structures and partitions, Memoirs Amer. Math. Soc., no. 119
(1972).

[69] R. Stanley, Supersolvable lattices, Alg. Univ. 2 (1972), 197–217.

398



[70] R. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171–178.

[71] R. Stanley, Finite lattices and Jordan-Hölder sets, Alg. Univ. 4 (1974), 361–371.
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[74] R. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Com-
binatorial Theory Ser. A 20 (1976), 336–356.

[75] R. Stanley, Cohen-Macaulay complexes, in Higher Combinatorics (M. Aigner, ed.),
Reidel, Dordrecht/Boston, 1977, pp. 51–62.

[76] R. Stanley, Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249 (1979),
139–157.

[77] R. Stanley, Some aspects of groups acting on finite posets, J. Combinatorial Theory
Ser. A 32 (1982), 132–161.

[78] R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, vol. 41,
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o

EXERCISES FOR CHAPTER 3

1. [3] What is the connection between a partially ordered set and itinerant salespersons
who take revenge on customers who don’t pay their bills?

2. (a) [1+] A preposet (or quasi-ordered set) is a set P with a binary relation ≤ satisfying
reflexivity and transitivity (but not necessary antisymmetry). Given a preposet
P and s, t ∈ P , define s ∼ t if s ≤ t and t ≤ s. Show that ∼ is an equivalence
relation.

(b) [1+] Let P̃ denote the set of equivalence classes under ∼. If S, T ∈ P̃ , then define
S ≤ T if there is an s ∈ S and t ∈ T for which s ≤ t in P . Show that this
definition of ≤ makes P̃ into a poset.

(c) [2–] Let Q be a poset and f : P → Q order-preserving. Show that there is a unique

order-preserving map g : P̃ → Q such that the following diagram commutes:

P

f
��

>>
>>

>>
>>

// P̃

g
����

��
��

�

Q

Here the map P → P̃ is the canonical map taking t into the equivalence class
containing t.

3. (a) [1+] Let P be a finite preposet (as defined in Exercise 3.2). Define a subset U of
P to be open if U is an order ideal (defined in an obvious way for preposets) of
P . Show that P becomes a finite topological space, denoted Ptop.

(b) [2–] Given a finite topological space X, show that there is a unique preposet P
(up to isomorphism) for which Ptop = X. Hence the correspondence P → Ptop is
a bijection between finite preposets and finite topologies.

(c) [2–] Show that the preposet P is a poset if and only if Ptop is a T0-space, i.e.,
distinct points have distinct sets of neighborhoods.

(d) [2–] Show that a map f : P → Q of preposets is order-preserving if and only if f
is continuous when regarded as a map Ptop → Qtop.

4. [2–] Let P be a poset. Show that there exists a collection S of sets such that if we
partially order S by defining S ≤ T if S ⊆ T , then S ∼= P .

5. (a) [2] Draw diagrams of the 63 five-element posets (up to isomorphism), 318 six-
element posets, and 2045 seven-element posets (straightforward, but time-con-
suming). For readers with a lot of spare time on their hands, continue with eight-
element posets, nine-element posets, etc., obtaining the numbers 16999, 183231,
2567284, 46749427, 1104891746, 33823827452, 1338193159771, 68275077901156,
and 4483130665195087.
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(b) [5] Let f(n) be the number of nonisomorphic n-element posets. Find a “reason-
able” formula for f(n) (probably impossible, and similarly for the case of labelled
posets, i.e., posets on the vertex set [n]).

(c) [5] With f(n) as above, let P denote the statement that infinitely many values of
f(n) are palindromes when written in base 10. Show that P cannot be proved or
disproved in Zermelo-Fraenkel set theory.

(d) [3] Show that
log f(n) ∼ (n2/4) log 2.

(e) [3+] Improve (d) by showing

f(n) ∼ C2n
2/4+3n/2enn−n−1,

where C is a constant given by

C =
2

π

∑

i≥0

2−i(i+1) ≈ 0.80587793 (n even),

and similarly for n odd.

6. (a) [2] Let P be a finite poset and f : P → P an order-preserving bijection. Show
that f is an automorphism of P (i.e., f−1 is order-preserving).

(b) [2] Show that (a) fails for infinite P .

7. (a) [1+] Give an example of a finite poset P such that if ℓ is the length of the longest
chain of P , then every t ∈ P is contained in a chain of length ℓ, yet P has a
maximal chain of length less than ℓ.

(b) [2] Let P be a finite poset with no isolated points and with longest chain of
length ℓ. Assume that for every t covering s in P there exists a chain of length ℓ
containing both s and t. Show that every maximal chain of P has length ℓ.

8. [3–] Find a finite poset P for which there is a bijection f : P → P such that s ≤ t if
and only if f(s) ≥ f(t) (i.e., P is self-dual), but for which there is no such bijection f
satisfying f(f(t)) = t for all t ∈ P .

9. [2–] True or false: the number of nonisomorphic 8-element posets that are not self-dual
is 16507.

10. (a) [2–]* If P is a poset, then let Int(P ) denote the poset of (nonempty) intervals of
P , ordered by inclusion. Show that for any posets A and B, we have Int(A×B) ∼=
Int(A× B∗).

(b) [2+] Let P and Q be posets. If P has a 0̂ and Int(P ) ∼= Int(Q), show that
P ∼= A× B and Q ∼= A× B∗ for some posets A and B.

(c) [3] Find finite posets P,Q such that Int(P ) ∼= Int(Q), yet the conclusion of (b)
fails.
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11. (a) [2] Let A be the set of all isomorphism classes of finite posets. Let [P ] denote
the class of the poset P . Then A has defined on it the operations + and · given
by [P ] + [Q] = [P + Q] and P · Q = [P × Q]. Show that these operations make
A into a commutative semiring, i.e., A satisfies all the axioms of a commutative
ring except the existence of additive inverses.

(b) [3–] We can formally adjoin additive inverses to A in an obvious way to obtain
a ring B (exactly the same way as one obtains Z from N). Define a poset to be
irreducible if it cannot be written in a nontrivial way as a direct product. Show
that B is just the polynomial ring Z[[P1], [P2], . . . ] where the [Pi]’s are the classes
of irreducible connected finite posets with more than one element. (The additive
identity of B is given by the class of the empty poset, and the multiplicative
identity by the class of the one-element poset.)

(c) [3–] Find irreducible finite posets Pi satisfying P1 × P2
∼= P3 × P4, yet P1 6∼= P3

and P1 6∼= P4. Why does this not contradict the known fact that Z[x1, x2, . . . ] is a
unique factorization domain?

12. [2+] True or false: if every chain and every antichain of a poset P is finite, then P is
finite.

13. (a) [3] Let P be a poset for which every antichain is finite. Show that every antichain
of Jf(P ) is finite.

(b) [2] Show that if every antichain of P is finite, it need not be the case that every
antichain of J(P ) is finite.

14. A finite poset P is a series-parallel poset if it can be built up from a one-element poset
using the operations of disjoint union and ordinal sum. There is a unique four-element
poset (up to isomorphism) that is not series-parallel, namely, the zigzag poset Z4 of
Exercise 3.66.

(a) [2+]* Show that a finite poset P is series-parallel if and only if it contains no
induced subposet isomorphic to Z4. Such posets are sometimes called N-free
posets.

(b) [2+]* Let Pw be the inversion poset of the permutation w ∈ Sn, as defined in the
solution to Exercise 3.20. Show that Pw is N -free if and only if w is 3142-avoiding
and 2413-avoiding. Such permutations are also called separable. Note. The
number of separable permutations in Sn is the Schröder number rn−1, as defined
in Section 6.2.

15. An interval order is a poset P isomorphic to a set of closed intervals of R, with
[a, b] < [c, d] if b < c.

(a) [3–] Show that a finite poset P is an interval order if and only if it is (2+ 2)-free,
i.e., has no induced subposet isomorphic to 2 + 2.

(b) [3–] A poset P is a semiorder (or unit interval order) if it is an interval order
corresponding to a set of intervals all of length one. Show that an interval order
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P is a semiorder if and only if P is (3 + 1)-free. (For the enumeration of labelled
and unlabelled semiorders, see Exercises 6.30 and 6.19(ddd), respectively.)

(c) [3] Let t(n) be the number of nonisomorphic interval orders with n elements. Show
that

∑

n≥0

t(n)xn =
∑

n≥0

n∏

k=1

(1− (1− x)k)

= 1 + x+ 2x2 + 5x3 + 15x4 + 53x5 + 217x6 + · · · .

(d) [3] Let u(n) be the number of labelled n-element interval orders, i.e., interval
orders on the set [n]. Show that

∑

n≥0

u(n)
xn

n!
=

∑

n≥0

n∏

k=1

(1− e−kx)

= 1 + x+ 3
x2

2!
+ 19

x3

3!
+ 207

x4

4!
+ 3451

x5

5!
+ 81663

x6

6!
+ · · · .

(e) [2+] Show that the number of nonisomorphic n-element interval orders that are
also series-parallel posets (defined in Exercise 3.14) is the Catalan number Cn.

(f) [2]* Let ℓ1, . . . , ℓn be positive real numbers. Let g(ℓ1, . . . , ℓn) be the number of
interval orders P that can be formed from intervals I1, . . . , In, where Ii has length
ℓi, such that the element t of P corresponding to Ii is labelled i. For instance, if
n = 4 and P is isomorphic to 3 + 1, then 3 can be labelled a, b, c from bottom
to top and 1 labelled d if and only if ℓd ≥ ℓb (12 labelings in all if la, lb, lc, ld are
distinct). Show that g(ℓ1, . . . , ℓn) is equal to the number of regions of the real
hyperplane arrangement

xi − xj = ℓi, i 6= j

(n(n− 1) hyperplanes in all).

(g) [3] Suppose that ℓ1, . . . , ℓn in (f) are linearly independent over Q. Define a power
series

y = 1 + x+ 5
x2

2!
+ 46

x3

3!
+ 631

x4

4!
+ 9655

x5

5!
+ · · ·

by the equation
1 = y(2− exy),

or equivalently

y − 1 =

(
1

1 + x
log

1 + 2x

1 + x

)〈−1〉
,

where 〈−1〉 denotes compositional inverse. Let

z =
∑

n≥0

g(ℓ1, . . . , ℓn)
xn

n!

= 1 + x+ 3
x2

2!
+ 19

x3

3!
+ 195

x4

4!
+ 2831

x5

5!
+ 53703

x6

6!
+ · · · .
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Show that z is the unique power series satisfying

z′

z
= y2, z(0) = 1.

Note that it is by no means a priori obvious that g(ℓ1, . . . , ℓn) is independent of
ℓ1, . . . , ℓn (provided they are linearly independent over Q).

16. (a) [3] Let f(n) be the number of graded (3+1)-free partial orderings of an n-element
set. Set

G(x) =
∑

m,n≥0

2mn
xm+n

m!n!
.

Show that

∑

n≥0

f(n)
xn

n!
=

e2x(2ex − 3) + ex(ex − 2)2G(x)

ex(1 + 2ex) + (e2x − 2ex − 1)G(x)

= 1 + x+ 3
x2

2!
+ 13

x3

3!
+ 111

x4

4!
+ 1381

x5

5!
+ 22383

x6

6!
+ · · · .

(b) [5] What can be said about the total number of (3+1)-free posets on an n-element
set?

17. (a) [3–] Let S be a collection of finite posets, all of whose automorphism groups are
trivial. Let T be the set of all nonisomorphic posets that can be obtained by
replacing each element t of some P ∈ S with a finite nonempty antichain At.
(Thus if t covers s in P , then each t′ ∈ At covers each s′ ∈ As.) Let f(n) be
the number of nonisomorphic n-element posets in T . Let g(n) be the number of
posets on the set [n] that are isomorphic to some poset in T . Set

F (x) =
∑

n≥0

f(n)xn, G(x) =
∑

n≥0

g(n)
xn

n!
.

Show that G(x) = F (1− e−x).
(b) [2] What are F (x) and G(x) when S = {1, 2, . . . }, where i denotes an i-element

chain?

(c) [2+] Show that we can take S to consist of all interval orders (respectively, all
semiorders) with no nontrivial automorphisms. Then T consists of all noniso-
morphic interval orders (respectively, semiorders). Formulas for F (x) and G(x)
appear in Exercises 3.15(c,d), 6.30 and 6.19(ddd).

(d) [3–]* Show that the number of nonisomorphic n-element graded semiorders is
1 + F2n−2, where F2n−2 is a Fibonacci number.

18. [3] Let P be a finite (3+1)-free poset. Let ci denote the number of i-element chains of
P (with c0 = 1). Show that all the zeros of the polynomial C(P, x) =

∑
i cix

i are real.
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19. (a) [3–] An element t of a finite poset P is called irreducible if t covers exactly one
element or is covered by exactly one element of P . A subposet Q of P is called a
core of P , written Q = coreP , if:

i. one can write P = Q ∪ {t1, . . . , tk} such that ti is an irreducible element of
Q ∪ {t1, . . . , ti} for 1 ≤ i ≤ k, and

ii. Q has no irreducible elements.

Show that any two cores of P are isomorphic (though they need not be equal).
Hence the notation coreP determines a unique poset up to isomorphism.

(b) [1+]* If P has a 0̂ or 1̂, then show that coreP consists of a single element.

(c) [3–] Show that #(coreP ) = 1 if and only if the poset P P of order-preserving maps
f : P → P is connected. (Such posets are called dismantlable.)

(d) [5–] Is it possible to enumerate nonisomorphic n-element dismantlable posets or
dismantlable posets on an n-element set?

20. [2+]

(a) Let d ∈ P. Show that the following two conditions on a finite poset P are equiv-
alent:

i. P is the intersection of d linear orderings of [n], where #P = n,

ii. P is isomorphic to a subposet of Nd.

(b) Moreover, show that when d = 2 the two conditions are also equivalent to:

iii. There exists a poset Q on [n] such that s < t or s > t in Q if and only if s
and t are incomparable in P .

21. [3+] A finite poset P = {t1, . . . , tn} is a sphere order if for some d ≥ 1 there exist
(d − 1)-dimensional spheres S1, . . . , Sn in Rd such that Si is inside Sj if and only if
ti < tj . Prove or disprove: every finite poset is a sphere order.

22. [2+] Let P be a poset with elements t1, . . . , tp, which we regard as indeterminates.
Define a p× p matrix A by

Aij =

{
0, if ti < tj
1, otherwise.

Define the diagonal matrix D = diag(t1, . . . , tp), and let I denote the p × p identity
matrix. Show that

det(I +DA) =
∑

C

∏

ti∈C
ti,

where C ranges over all chains in P .

23. [2+] Show that the boolean algebraBP of all subsets of P, ordered by inclusion, contains
both countable and uncountable maximal chains.
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Figure 3.42: Which are lattices?

24. [2+] Let n ≥ 5. Show that up to isomorphism there is one n-element poset with 2n

order ideals, one with (3/4)2n order ideals, two with (5/8)2n order ideals, three with
(9/16)2n, and two with (17/32)2n. Show also that all other n-element posets have at
most (33/64)2n order ideals.

25. [2–] Which of the posets of Figure 3.42 are lattices?

26. [2] Give an example of a meet-semilattice with 1̂ (necessary infinite) that is not a
lattice.

27. [3–] Let L be a finite lattice, and define the subposet Irr(L) of irreducibles of L by

Irr(L) = {x ∈ L : x is join-irreducible or meet-irreducible (or both)}.

Show that L can be uniquely recovered from the poset Irr(L).

28. [3–] Give an example of a finite atomic and coatomic lattice that is not complemented.

29. [5–] A finite lattice L has n join-irreducibles. What is the most number f(n) of meet-
irreducible elements L can have?

30. (a) [2+] Show that a lattice is distributive if and only if it does not contain a sublattice
isomorphic to either of the two lattices of Figure 3.43.

(b) [2+] Show that a lattice is modular if and only if it does not contain a sublattice
isomorphic to the first lattice of Figure 3.43.

31. (a) [2+]* A poset is called locally connected if every nonempty open interval (s, t) is
either an antichain or is connected. Show that a finite locally connected poset
with 0̂ and 1̂ is graded.

(b) [3] Let L be a finite locally connected lattice for which every interval of rank 3 is
a distributive lattice. Show that L is a distributive lattice.

(c) [2–] Deduce from (b) that if L is a finite locally connected lattice for which every
interval of rank 3 is a product of chains, then L is a product of chains.
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Figure 3.43: Obstructions to distributivity and modularity

(d) [2–] Deduce from (b) that if L is a finite locally connected lattice for which every
interval of rank 3 is a boolean algebra, then L is a boolean algebra.

32. (a) [3–] For a finite graded poset P with 0̂ and with rank function ρ, let f(P ) be
the largest integer d such that there exists a partition of P − {0̂} into (pairwise
disjoint) closed intervals [s, t] satisfying ρ(t) ≥ d. Find f(Bn). For instance,
f(B3) = 2, corresponding to the partition

π = {[1, 12], [2, 23], [3, 13], [123, 123]}.

(b) [3–] Show that f(kn) = (k − 1)f(Bn).

(c) [2] Let a ≤ b. Show that f(a× b) = b.

(d) [2+] Let a ≤ b ≤ c. Show that f(a× b× c) = max{a+ b, c}.
(e) [3–] Let a ≤ b ≤ c ≤ d. Show that

f(a× b× c× d) = max{d,min{b+ d, a+ b+ c}}.

(f) [3] Find f(a× b× c× d× e).

33. [2+] Characterize all positive integers n for which there exists a connected poset with
exactly n chains (including the empty chain). The empty poset is not considered to be
connected.

34. [2]* Find all nonisomorphic posets P such that

F (J(P ), x) = (1 + x)(1 + x2)(1 + x+ x2).

35. (a) [2] Let fk(n) be the number of nonisomorphic n-element posets P such that if
1 ≤ i ≤ n − 1, then P has exactly k order ideals of cardinality i. Show that
f2(n) = 2n−3, n ≥ 3.

(b) [2+] Let g(n) be the number of those posets enumerated by f3(n) with the ad-
ditional property that the only 3-element antichains of P consist of the three
minimal elements and three maximal elements of P . Show that g(n) = 2n−7,
n ≥ 7.
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(c) [3] Show that

∑

n≥0

f3(n)xn =
x3 − x4 − x5 − xg(x)− x2g(x)

1− 2x− 3x2

= x3 + x5 + x6 + 3x7 + 6x8 + 16x9 + 39x10 + · · · ,

where

g(x) =
x3 − 2x4 − x5 − x6

1− 2x− 2x2 + 2x4 + 3x5
.

(d) [1+] Find fk(n) for k > 3.

36. (a) [2] Let L be a finite semimodular lattice. Let L′ be the subposet of L consisting of
elements of L that are joins of atoms of L (including 0̂ as the empty join). Show
that L′ is a geometric lattice.

(b) [3–] Is L′ a sublattice of L?

37. (a) [3–] LetW be a subspace of the vector spaceKn, whereK is a field of characteristic
0. The support of a vector v = (v1, . . . , vn) ∈ Kn is given by supp(v) = {i : vi 6=
0}. Let L denote the set of supports of all vectors in W , ordered by reverse
inclusion. Show that L is a geometric lattice.

(b) [2+] An isthmus of a graph H is an edge e of H whose removal disconnects
the component to which e belongs. Let G be a finite graph, allowing loops and
multiple edges. Let DG be the set of all spanning subgraphs of G that do not
have an isthmus, ordered by reverse edge inclusion. Use (a) to show that DG is a
geometric lattice.

38. [2+] Let k ∈ N. In a finite distributive lattice L, let Pk be the subposet of elements
that cover k elements, and let Rk be the subposet of elements that are covered by k
elements. Show that Pk ∼= Rk, and describe in terms of the structure of L an explicit
isomorphism φ : Pk → Rk.

39. [2+]* Find all finitary distributive lattices L (up to isomorphism) such that L ∼= Vt for
all t ∈ L. If we only require that L is a locally finite distributive lattice with 0̂, are
there other examples?

40. (a) [3–] Let L be a finite distributive lattice of length kr that contains k join-
irreducibles of rank i for 1 ≤ i ≤ r (and therefore no other join-irreducibles).
What is the most number of elements that L can have? Show that the lattice L
achieving this number of elements is unique (up to isomorphism).

(b) [2+] Let L be a finitary distributive lattice with exactly two join-irreducible ele-
ments at each rank n ∈ P, and let Li denote the set of elements of L at rank i.
Show that #Li ≤ Fi+2 (a Fibonacci number), with equality for all i if and only if
L ∼= Jf(P + 1), where P is the poset of Exercise 3.62(b).

(c) [5–] Suppose that L is a finitary distributive lattice with an infinite antichain
t1, t2, . . . such that ti has rank i. Does it follow that #Li ≥ Fi+2?
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41. (a) [2] Let L be a finite lattice. Given f : L→ N, choose s, t incomparable in L such
that f(s) > 0 and f(t) > 0. Define Γf : L→ N by

Γf(s) = f(s)− 1

Γf(t) = f(t)− 1

Γf(s ∧ t) = f(s ∧ t) + 1

Γf(s ∨ t) = f(s ∨ t) + 1

Γf(u) = f(u), otherwise.

Show that for some n > 0 we have Γnf = Γn+1f , i.e., Γnf is supported on a chain.

(b) [3–] Show the limiting function f̃ = Γnf (where Γnf is supported on a chain) does
not depend on the way in which we choose the pairs u, v (though the number of
steps n may depend on these choices) if and only if L is distributive.

(c) [2+] Show from (b) that f̃ has the following description: it is the unique function
f̃ : L → N supported on a chain, such that for all join-irreducibles t ∈ L and for
t = 0̂, we have ∑

s≥t
f(s) =

∑

s≥t
f̃(s).

(d) [2] For t ∈ L let g(t) =
∑

s≥t f(s). Order the join-irreducibles t1, . . . , tm of L such
that g(t1) ≥ g(t2) ≥ · · · ≥ g(tm), and let ui = t1 ∨ t2 ∨ · · · ∨ ti. Deduce from (c)
that f̃(ui) = g(ti)−g(ti+1) (where we set g(t0) = g(0̂) and g(tm+1) = 0), and that
f̃(u) = 0 for all other u ∈ L.

(e) [2+] Let L = Bn, the boolean algebra of subsets of [n]. Define f : Bn → N by
f(S) = #{w ∈ Sn+1 : Exc(w) = S}, where

Exc(w) = {i : w(i) > i},

the excedance set of w. Show that for all 0 ≤ i ≤ n we have

f̃({n− i+ 1, n− i+ 2, . . . , n}) = n!,

so all other f̃(S) = 0 (since f̃ is supported on a chain).

42. (a) [2–]* Regard Young’s lattice Y as the lattice of all partitions of all integers n ≥ 0,
ordered componentwise. Let Z be the subposet of Y consisting of all partitions
with odd parts. Show that Z is a sublattice of Y .

(b) [2]* Since sublattices of distributive lattices are distributive, it follows that Z is
a finitary distributive lattice. (This fact is also easy to see directly.) For what
poset P do we have Z ∼= Jf(P )?

43. [3–] Let P be the poset with elements si and ti for i ≥ 1, and cover relations

s1 ⋖ s2 ⋖ · · · , t1 ⋖ t2 ⋖ · · · , s2i ⋖ ti for i ≥ 1.

Find a nice product formula for the rank-generating function FJf (Jf (P ))(q).
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44. (a) [3–]* Let w = a1a2 · · ·an ∈ Sn. Let Pw = {(i, ai) : i ∈ [n]}, regarded as a subposet
of P × P. In other words, define (i, ai) ≤ (k, ak) if i ≤ k and ai ≤ ak. Let j(P )
denote the number of order ideals of the poset P . Show that

∑

w∈Sn

j(Pw) =
n∑

i=0

n!

i!

(
n

i

)
.

(b) [3]* Let w be as in (a), and let Qw = {(i, j) : 1 ≤ i < j ≤ n, ai < aj}. Partially
order Qw by (i, j) ≤ (r, s) if r ≤ i < j ≤ s. Show that

∑

w∈Sn

j(Qw) = (n+ 1)n−1.

45. (a) [2]* Let Lk(n) denote the number of k-element order ideals of the boolean algebra
Bn. Show that for fixed k, Lk(n) is a polynomial function of n of degree k−1 and
leading coefficient 1/(k−1)!. Moreover, the differences ∆iLk(0) are all nonnegative
integers.

(b) [3–]* Show that

L0(n) = L1(n) = 1

L2(n) =
(
n
1

)

L3(n) =
(
n
2

)

L4(n) =
(
n
2

)
+
(
n
3

)

L5(n) = 3
(
n
3

)
+
(
n
4

)

L6(n) = 3
(
n
3

)
+ 6
(
n
4

)
+
(
n
5

)

L7(n) =
(
n
3

)
+ 15

(
n
4

)
+ 10

(
n
5

)
+
(
n
6

)

L8(n) =
(
n
3

)
+ 20

(
n
4

)
+ 45

(
n
5

)
+ 15

(
n
6

)
+
(
n
7

)

L9(n) = 19
(
n
4

)
+ 120

(
n
5

)
+ 105

(
n
6

)
+ 21

(
n
7

)
+
(
n
8

)

L10(n) = 18
(
n
4

)
+ 220

(
n
5

)
+ 455

(
n
6

)
+ 210

(
n
7

)
+ 28

(
n
8

)
+
(
n
9

)

L11(n) = 13
(
n
4

)
+ 322

(
n
5

)
+ 1385

(
n
6

)
+ 1330

(
n
7

)
+ 378

(
n
8

)
+ 36

(
n
9

)
+
(
n
10

)
.

Note. It was conjectured that Lk(n) has only real zeros. This conjecture fails,
however, for k = 11.

46. (a) [2]* Let f(n) be the number of sublattices of rank n of the boolean algebra Bn.
Show that f(n) is also the number of partial orders P on [n].

(b) [2+]* Let g(n) be the number of sublattices of Bn that contain ∅ and [n] (the 0̂
and 1̂ of Bn). Write

F (x) =
∑

n≥0

f(n)
xn

n!

G(x) =
∑

n≥0

g(n)
xn

n!
.
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Figure 3.44: A meet-distributive lattice which is not distributive

Show that G(x) = F (ex − 1).

(c) [2]* Let h(n) be the number of nonempty sublattices of Bn. Write

H(x) =
∑

n≥0

h(n)
xn

n!
.

Using (b), show that H(x) = e2xG(x).

47. A finite meet-semilattice is meet-distributive if for any interval [s, t] of L such that s is
the meet of the elements of [s, t] covered by t, we have that [s, t] is a boolean algebra.
For example, distributive lattices are meet-distributive, while the lattice of Figure 3.44
is meet-distributive but not distributive.

(a) [2-]* Show that a meet-distributive lattice is lower semimodular and hence graded.

(b) [2] Let L be a meet-distributive meet-semilattice, and let fk = fk(L) be the
number of intervals of L isomorphic to the boolean algebra Bk. Also let gk = gk(L)
denote the number of elements of L that cover exactly k elements. Show that

∑

k≥0

gk(1 + x)k =
∑

k≥0

fkx
k.

(c) [1] Deduce from (b) that ∑

k≥0

(−1)kfk = 1. (3.113)

(d) [2+] Let L = J(m× n) in (a). Explicitly compute fk and gk.

(e) [3–] Given m ≤ n, let Qmn be the subposet of P× P defined by

Qmn = {(i, j) ∈ P × P : 1 ≤ i ≤ j ≤ m+ n− i, 1 ≤ i ≤ m},

and set Pmn = m× n. Show that Pmn and Qmn have the same zeta polynomial.

(f) [3+] Show that Pmn and Qmn have the same order polynomial.

(g) [3–] Show that J(Pmn) and J(Qmn) have the same values of fk and gk.
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48. [2+] Let L be a meet-distributive lattice, as defined in Exercise 3.47, and let t ∈ L.
Show that the number of join-irreducibles s of L satisfying s ≤ t is equal to the rank
ρ(t) of t.

49. [2] Let Lp denote the set of all natural partial orders P of [p] (that is, i <P j ⇒ i <Z j),
ordered by refinement. The bottom element is an antichain, and the top element is the
chain p. Figure 3.6 shows a poset isomorphic to L3. Show that Lp is meet-distributive
of rank

(
p
2

)
.

50. [2+] Let L be a finitary distributive lattice with finitely many elements of each rank.
Let u(i, j) be the number of elements of L of rank i that cover exactly j elements, and
let v(i, j) be the number of elements of rank i that are covered by exactly j elements.
Show that for all i ≤ j ≤ 0,

∑

k≥0

u(i, k)

(
k

j

)
=
∑

k≥0

v(i− j, k)
(
k

j

)
. (3.114)

(Each sum has finitely many nonzero terms.)

51. Let f : N→ N. A finitary distributive lattice L is said to have the cover function f if
whenever t ∈ L covers i elements, then t is covered by f(i) elements.

(a) [2+] Show that there is at most one (up to isomorphism) finitary distributive
lattice with a given cover function f .

(b) [2+] Show that if L is a finite distributive lattice with a cover function f , then L
is a boolean algebra.

(c) [2+] Let k ∈ P. Show that there exist finitary distributive lattices with cover
functions f(n) = k and f(n) = n + k.

(d) [2+] Let a, k ∈ P with a ≥ 2. Show that there does not exist a finitary distributive
lattice L with cover function f(n) = an+ k.

(e) [3] Show in fact that f(n) is the cover function of a finitary distributive lattice L
if and only if it belongs to one of the following seven classes. (Omitted values of
f have no effect on L.)

• Let k ≥ 1. Then f(n) = k for 0 ≤ n ≤ k.

• Let k ≥ 1. Then f(n) = n+ k.

• Let k ≥ 2. Then f(0) = 1, and f(n) = k for 1 ≤ n ≤ k.

• f(0) = 2, and f(n) = n+ 1 for n ≥ 1.

• Let k ≥ 0. Then f(n) = k − n for 0 ≤ n ≤ k.

• Let k ≥ 2. Then f(n) = k − n for 0 ≤ n < k, and f(k) = k.

• f(0) = 2, f(1) = f(2) = 1.

52. [2+]* What is the maximum possible value of e(P ) for a connected n-element poset
P ?
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53. [2]* Let P be a finite n-element poset. Simplify the two sums

f(P ) =
∑

I∈J(P )

e(I)e(Ī)

g(P ) =
∑

I∈J(P )

(
n

#I

)
e(I)e(Ī),

where Ī denotes the complement P − I of the order ideal I.

54. [2+]* Let P be a finite poset. Simplify the sum

f(P ) =
∑

t1<···<tn

1

(#Vt1 − 1) · · · (#Vtn−1 − 1)
,

where the sum ranges over all nonempty chains of P for which tn is a maximal element
of P . Generalize.

55. (a) [3] Generalize Corollary 1.6.5 as follows. Let T be a tree on the vertex set [n].
Given an orientation o of the edges of T , let P (T, o) be the reflexive and transitive
closure of o, so P (T, o) is a poset. Clearly for fixed T exactly two of these posets
(one the dual of the other) have no 3-element chains. Let us call the corresponding
orientations bipartite. Show that for fixed T , the number e(P (T, o)) of linear
extensions of (P, o) is maximized when o is bipartite. (Corollary 1.6.5 is the case
when T is a path.)

(b) [5–] Does (a) continue to hold when T is replaced with any finite bipartite graph?

56. [3–] Let P be a finite poset, and let f(P ) denote the number of ways to partition the
elements of P into (non-empty) disjoint saturated chains. For instance, f(n) = 2n−1.
Suppose that every element of P covers at most two elements and is covered by at
most two elements. Show that f(P ) is a product of Fibonacci and Lucas numbers. In
particular, compute f(m× n).

57. (a) [2]* Let P be an n-element poset. If t ∈ P then set λt = #{s ∈ P : s ≤ t}. Show
that

e(P ) ≥ n!∏
t∈P λt

. (3.115)

(b) [2+]* Show that equality holds in equation (3.115) if and only if every component
of P is a rooted tree (where the root as usual is the maximum element of the
tree).

58. [3–]* Let P be a finite poset. Let A be an antichain of P which intersects every maximal
chain. Show that

e(P ) =
∑

t∈A
e(P − t).

Try to give an elegant bijective proof.
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59. [2+] Let P be a finite p-element poset. Choose two incomparable elements s, t ∈ P .
Define Ps<t to be the poset obtained from P by adjoining the relation s < t (and
all those implied by transitivity). Similarly define Ps>t. Define Ps=t to be the poset
obtained from P by identifying s and t. Hence #Ps=t = p− 1. Write formally

P → Ps<t + Ps>t + Ps=t.

Now choose two incomparable elements (if they exist) of each summand and apply
the same decomposition to them. Continue until P is formally written as a linear
combination of chains:

P →
p∑

i=1

aii.

Show that the numbers ai are independent of the way in which the decomposition was
obtained, and find a combinatorial interpretation of ai.

60. Let P be a p-element poset. A bijection f : P → [p] is called a dropless labeling if we
never have s < t and f(s) = f(t) + 1.

(a) [1]* Show that every linear extension of P is a dropless labeling.

(b) [3–] Let G be an (undirected) graph, say with no loops or multiple edges. An
acyclic orientation of G is an assignment of a direction u → v or v → u to
each edge uv of G so that no directed cycles u1 → u2 → · · · → uk → u1 result.
Show that the number of dropless labelings of P is equal to the number of acyclic
orientations of the incomparability graph inc(P ). (For further information on the
number of acyclic orientations of a graph, see Exercise 3.109.)

(c) [2+]* Give a bijective proof that the number of dropless labelings of P is equal to
the number of bijections g : P → P such that we never have g(t) < t. Hint. Use
Proposition 1.3.1(a).

61. [2+] Let C be the set of all compositions of all positive integers. Define a partial
ordering on C by letting τ cover σ = (σ1, . . . , σk) if τ can be obtained from σ either by
adding 1 to a part, or adding 1 to a part and then splitting this part into two parts.
More precisely, for some j we have either

τ = (σ1, . . . , σj−1, σj + 1, σj+1, . . . , σk)

or
τ = (σ1, . . . , σj−1, h, σj + 1− h, σj+1, . . . , σk)

for some 1 ≤ h ≤ σj . See Figure 3.45. For each σ ∈ C find in terms of a “familiar”
number the number of saturated chains from the composition 1 (the bottom element
of C) to σ. What is the total number of saturated chains from 1 to some composition
of n?

62. (a) [2]* Let Pn be the poset with elements si, ti for i ∈ [n], and cover relations
s1 < s2 < · · · < sn and ti > si for all i ∈ [n]. E.g, P3 has the Hasse diagram of
Figure 3.46.

Find a “nice” expression for the rank-generating function F (J(Pn), x).
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Figure 3.45: The composition poset C

Figure 3.46: The poset P3 of Exercise 3.62

(b) [2–]* Let P = limn→∞ Pn. Find the rank-generating function F (Jf(P ), x).

(c) [2]* Find a simple formula for e(Pn).

(d) [2]* Let ΩPn(m) denote the order polynomial of Pn (naturally labelled). Form ∈ P
express ΩPn(m) in terms of Stirling numbers of the second kind.

(e) [2+]* For m ∈ P express ΩPn(−m) in terms of Stirling numbers of the first kind.

(f) [2+] Let P be as in (b). The generating function UP,m(x) of Exercise 3.171 is
still well-defined although P is infinite, viz., UP,m(x)) =

∑
σ x

|σ|, where σ ranges
over all order-reversing maps σ : P → [0, m] such that |σ| :=

∑
t∈P σ(t) < ∞.

Such a map σ is called a protruded partition of n = |σ| (with largest part at
most m). Thus we can regard a protruded partition of n as a pair (λ, µ), where
λ = (λ1, λ2, . . . ) is a partition, µ = (µ1, µ2, . . . ) is a sequence of nonnegative
integers satisfying µi ≤ λi, and

∑
(λi + µi) = n. For instance, there are six

protruded partitions of 3, given by

(3, 0), (21, 00), (111, 000), (2, 1), (11, 10), (11, 01).

Show that

UP,m(x) =
m∏

i=1

(1− xi − xi+1 − · · · − x2i)−1.

(g) [2+] Show that

∑

m≥0

UPn(x)qn = P (q, x)
∑

j≥0

xj(j+1)qj

[j]!(1− x− x2)(1− x− x3) · · · (1− x− xj+1)
,
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where [j]! = (1−x)(1−x2) · · · (1−xj) and P (q, x) = 1/(1−q)(1−qx)(1−qx2) · · · .

63. (a) [2]* Let P be a p-element poset, with every maximal chain of length ℓ. Let es
(respectively, ēS) denote the number of surjective (respectively, strict surjective)
order-preserving maps f : P → s. (The order-preserving map f is strict if s < t
in P implies f(s) < f(t).) Use Corollary 3.15.18 to show that

(i) 2ep−1 = (p+ ℓ− 1)e(P )

(ii) 2ēp−1 = (p− ℓ− 1)e(P )

(iii)
∑p

s=1 es = 2ℓ
∑p

s=1 ēs

(b) [1+]* With P as above. show that if p ≡ ℓ (mod 2) then e(P ) is even.

(c) [2]* With P as above, suppose that ℓ = p − 4. Let j(P ) denote the number of
order ideals of P . Show that e(P ) = 2(j(P )− p).

64. (a) [2+]* Let ϕ : Q[n] → Q[x] be the Q-linear function on polynomials with rational
coefficients that takes nk to

∑
j cj(k)x

j , where cj(k) is the number of ordered
partitions of [k] into j blocks (entry 3 of the Twelvefold Way or Example 3.18.9).
Let (P, ω) be a labelled poset. Show that

ϕΩP,ω(n) =
∑

j

aj(P, ω)xj,

where aj(P, ω) is the number of chains ∅ = I0 < I1 < · · · < Ij = P in J(P ) for
which the restriction of ω to every set Ii − Ii−1 is order-preserving.

(b) [1+]* Let c(k) denote the total number of ordered set partitions of [k]. Deduce
from (a) that when we substitute c(k) for nk in ΩP (n) (so P is naturally labelled),
then we obtain the total number of chains from 0̂ to 1̂ in J(P ).

(c) [2+]* Now let σ : Q[n] → Q[x] be defined by σ(nk) = (−1)k
∑

j cj(k)x
j . Let

#P = p. Show that

σΩP,ω(n) = (−1)p
∑

j

bj(P, ω)xj,

where bj(P, ω) is the number of chains ∅ = I0 < I1 < · · · < Ij = P in J(P ) for
which the restriction of ω to every set Ii − Ii−1 is order-reversing.

(d) [1+]* Deduce from (c) that when we substitute (−1)kc(k) for nk in Ω(P, n), then
we obtain (−1)p times the number of chains ∅ = I0 < I1 < · · · < Ij = P in J(P )
for which every interval Ii − Ii−1 is a boolean algebra.

65. [2] Let n ∈ P and r, s, t ∈ N. Let P (r, s, 2t, n) be the poset with elements xi (1 ≤ i ≤ n),
yij (1 ≤ i ≤ r, 1 ≤ j ≤ n), zij (1 ≤ i ≤ s, 1 ≤ j ≤ n), and aijk (1 ≤ j < k ≤ n,
1 ≤ i ≤ 2t), and cover relations

x1 ⋖ x2 ⋖ · · ·⋖ xn

y1j ⋖ y2j ⋖ · · ·⋖ yrj ⋖ xj , 1 ≤ j ≤ n
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Figure 3.47: The “Selberg poset” P (2, 1, 2, 3)

xj ⋖ z1j ⋖ z2j ⋖ · · ·⋖ zsj . 1 ≤ j ≤ n

xj ⋖ a1jk ⋖ a2jk ⋖ · · ·⋖ a2t,j,k ⋖ xk, 1 ≤ j < k ≤ n.

Use Exercise 1.11(b) to show that

e(P, r, s, 2t, n) =
[(r + s+ 1)n+ tn(n− 1)]!

n!r!ns!nt!n(2t)!(
n
2)

·
n∏

j=1

(r + (j − 1)t)!(s+ (j − 1)t)!(jt)!

(r + s+ 1 + (n+ j − 2)t)!
. (3.116)

Figure 3.47 shows the poset p = P (2, 1, 2, 3) for which e(P ) = 4725864 = 23 · 35 · 11 ·
13 · 17.

66. Let Zn denote the n-element “zigzag poset” or fence, with elements t1, . . . , tn and cover
relations t2i−1 < t2i and t2i > t2i+1.

(a) [2] How many order ideals does Zn have?

(b) [2+] Let Wn(q) denote the rank-generating function of J(Zn), so W0(q) = 1,
W1(q) = 1 + q, W2(q) = 1 + q + q2, W3(q) = 1 + 2q + q2 + q3, etc. Find a simple
explicit formula for the generating function

F (x) :=
∑

n≥0

Wn(q)x
n.
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Figure 3.48: A garland and an alternating labeling of 2× 4

(c) [2] Find the number e(Zn) of linear extensions of Zn.

(d) [3–] Let ΩZn(m) be the order polynomial of Zn. Set

Gm(x) = 1 +
∑

n≥0

ΩZn(m)xn+1, m ≥ 1.

Find a recurrence relation expressing Gm(x) in terms of Gm−2(x), and give the
intitial conditions G1(x) and G2(x).

67. [3] For p ≤ q define a poset Ppq to consist of three chains s1 > · · · > sp, t1 > · · · > tq,
and u1 > · · · > uq, with si < ui and ti < ui. Show that the number of linear extensions
of Ppq is given by

e(Ppq) =
22p(p+ 2q)! (2q − 2p+ 2)!

p! (2q + 2)! (q − p)! (q − p+ 1)!
.

68. The garland or double fence Gn is the poset with vertices s1, . . . , sn, t1, . . . , tn and cover
relations si < ti (1 ≤ i ≤ n), si < ti−1 (2 ≤ i ≤ n), and si < ti+1 (1 ≤ i ≤ n − 1).
Figure 3.48(a) shows the garland G5. An alternating labeling of an m-element poset
P is a bijection f : P → [m] such that every maximal chain t1 < t2 < · · · < tk has
alternating labels, i.e., f(t1) > f(t2) < f(t3) > f(t4) < · · · . Figure 3.48(b) shows an
alternating labeling of the poset 2× 4.

(a) [2+] Let j(n, k) denote the number of k-element order ideals of Gn. Show that

∑

n≥0

∑

k≥0

j(n, k)xkyn =
1− x2y2

1− (1 + x+ x2)y + x2y2 + x3y3
.

(b) [2]* Show that e(Gn) is the number of alternating labelings of 2× n.

(c) [5–] Find a nice formula or generating function for e(Gn). The values e(Gn) for
1 ≤ n ≤ 6 are

1, 4, 44, 896, 29392, 1413792.
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69. (a) [3] Fix an element t of a p-element poset P , and let L(P ) denote the set of all
linear extensions f : P → [p]. Show that the polynomial

Pt(x) =
∑

f∈L(P )

xf(t)

is log-concave, as defined in Exercise 1.50.

(b) [3+] Suppose that the finite poset P is not a chain. Show that there exist elements

s, t ∈ P such that f(s) < f(t) in more than a fraction 5−
√

5
10

= 0.276 · · · and less

than a fraction 5+
√

5
10

= 0.723 · · · of the linear extensions f of P .

70. (a) [2–]* Let En denote the poset of all subsets of [n] whose elements have even sum,
ordered by inclusion. Find #En.

(b) [2+]* Compute µ(S, T ) for all S ≤ T in En.

(c) [3–] Generalize (b) as follows. Let k ≥ 3, and let Pk denote the poset of all subsets
of P whose elements have sum divisible by k. Given T ≤ S in Pk, let

ij = #{n ∈ T − S : n ≡ j (mod k)}.
Clearly µ(S, T ) depends only on the k-tuple (i0, i1, . . . , ik−1), so write µ(i0, . . . , ik−1)
for µ(S, T ). Show that

∑

i0,...,ik−1≥0

µ(i0, . . . , ik−1)
xi00 · · ·x

ik−1

k−1

i0! · · · ik−1!

= k

[
k−1∑

j=0

exp
(
x0 + ζjx1 + ζ2jx2 + · · ·+ ζ (k−1)jxk−1

)
]−1

,

where ζ is a primitive kth root of unity.

71. [3–] Let P be a finite poset. The free distributive lattice FD(P ) generated by P is,
intuitively, the largest distributive lattice containing P as a subposet and generated
(as a lattice) by P . More precisely, if L is any distributive lattice containing P and
generated by P , then there is a (surjective) lattice homomorphism f : FD(P )→ L that
is the identity on P . Show that FD(P ) ∼= J(J(P )) − {0̂, 1̂}. In particular, FD(P ) is
finite. When P = n1 (an n-element antichain) we write FD(P ) = FD(n), the free
distributive lattice with n generators, so that FD(n) ∼= J(Bn)− {0̂, 1̂}.
Note. Sometimes one defines FD(P ) to be the free bounded distributive lattice gener-
ated by P . In this case, we need to add an extra 0̂ and 1̂ to FD(P ), so one sometimes
sees the statement FD(P ) ∼= J(J(P )) and FD(n) ∼= J(Bn).

72. (a) [2] Let P be a finite poset with largest antichain of cardinality k. Every antichain
A of P corresponds to an order ideal

〈A〉 = {s : s ≤ t for some t ∈ A} ∈ J(P ).

Show that the set of all order ideals 〈A〉 of P with #A = k forms a sublattice
M(P ) of J(P ).
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Stop after first T or HH

Stop after second toss

Stop after first H or TT

Stop after first toss

Stop before first toss

Figure 3.49: The binary stopping rule poset L2

(b) [3–] Show that every finite distributive lattice is isomorphic to M(P ) for some P .

73. (a) [2+] Let P be a finite poset, and define GP (q, x) =
∑

I q
#Ixm(I), where I ranges

over all order ideals of P and where m(I) denotes the number of maximal elements
of I. (Thus GP (q, 1) is the rank-generating function of J(P ).) Let Q be an n-
element poset. Show that

GP⊗Q(q, x) = GP (qn, q−n(GQ(q, x)− 1)),

where P ⊗Q denotes ordinal product.

(b) [2+] Show that if #P = p then

GP

(
q,
q − 1

q

)
= qp.

74. [2+] A binary stopping rule of length n is (informally) a rule for telling a person when
to stop tossing a coin, so that he is guaranteed to stop within n tosses. Two rules are
considered the same if they result in the same outcome. For instance, “toss until you
get three consecutive heads or four consecutive tails, or else after n tosses” is a stopping
rule of length n. Partially order the stopping rules of length n by A ≤ B if the tosser
would never stop later using rule A rather than rule B. Let Ln be the resulting poset.
For example, L2 is shown in Figure 3.49. Show that Ln is a distributive lattice, and
compute its poset of join-irreducibles. Find a simple recurrence for the rank-generating
function F (Ln, q) in terms of F (Ln−1, q).

75. Let G be a finite connected graph, allowing multiple edges but not loops. Fix a vertex
v of G, and let ao(G, v) be the set of acyclic orientations of G such that v is a sink. If o,
o′ ∈ ao(G, v), then define o ≤ o′ if we can obtain o′ from o by a sequence of operations
that consist of choosing a source vertex w not adjacent to v and orienting all edges of
G incident to w toward w, keeping the rest of o unchanged.

(a) [2+] Show that (ao(G, v),≤) is a poset.

421



Figure 3.50: A poset for Exercise 3.77

(b) [2–] Let G be a 6-cycle. By symmetry the choice of v is irrelevant. Show that

ao(G, v) ∼= J(2× 2) + 4 + 4 + 1 + 1.

(c) [3–] Show that every connected component of (ao(G, v),≤) is a distributive lattice.

76. In this exercise P and Q denote locally finite posets and I(P ), I(Q) their incidence
algebras over a field K.

(a) [2] Show that the (Jacobson) radical of I(P ) is {f : f(t, t) = 0 for all t ∈ P}. The
Jabcobson radical can be defined as the intersection of all maximal right ideals of
I(P ).

(b) [2+] Show that the lattice of two-sided ideals of I(P ) is isomorphic to the set
of all order ideals A of Int(P ) (the poset of intervals of P ), ordered by reverse
inclusion.

(c) [3–] Show that if I(P ) and I(Q) are isomorphic as K-algebras, then P and Q are
isomorphic.

(d) [3] Describe the group of K-automorphisms and the space of K-derivations of
I(P ).

77. (a) [3] Let P be a p-element poset, and define nonnegative integers λi by setting
λ1 + · · ·+ λi equal to the maximum size of a union of i chains in P . For instance,
the poset P of Figure 3.50 satisfies λ1 = 5, λ2 = 3, λ3 = 1, and λi = 0 for i ≥ 4.
Note that the largest chain has five elements, but that the largest union of two
chains does not contain a five-element chain. Show that λ1 ≥ λ2 ≥ · · · , i.e., if we
set λ = (λ1, λ2, . . . ) then λ ⊢ p.

(b) [3] Define µi’s analogously by letting µ1 + · · · + µi be the maximum size of a
union of i antichains. For the poset of Figure 3.50 we have µ = (µ1, µ2, . . . ) =
(3, 2, 2, 1, 1, 0, 0, . . . ). Show that µ ⊢ p.

(c) [3] Show that µ = λ′, the conjugate partition to λ.

(d) [2–] Deduce from (c) Dilworth’s theorem: the minimum k for which P is a union
of k chains is equal to the size of the largest antichain of P .
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(e) [2] Prove directly that λ1 = µ′
1, i.e., the size of the longest chain of P is equal to

the minimum k for which P is a union of k antichains.

(f) [3] Let A be the matrix whose rows and columns are indexed by P , with

Ast =

{
xst, if s < t

0, otherwise,

where the xst’s are independent indeterminates. It is clear that A is nilpotent,
i.e., every eigenvalue is 0. Show that the Jordan block sizes of A are the numbers
λi > 0 of (a).

78. (a) [3–] Find the partitions λ and µ of the previous exercise for the boolean algebra
Bn.

(b) [5] Do the same for the partition lattice Πn.

(c) [5] Do the same for the lattice Par(n) of partitions of n ordered by dominance
(defined in Exercise 3.136).

79. [3–] Let P be a finite poset on the set [p], such that if s < t in P then s < t in Z. A
linear extension of P can therefore be regarded as a permutation w = a1a2 · · ·ap ∈ Sp

such that if ai < aj in P , then i < j in Z. Define the comajor index comaj(w) =∑
i∈D(w)(p − i), where D(w) denotes the descent set of w. A P -domino tableau is

a chain ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ir = P of order ideals of P such that Ii − Ii−1 is a
two-element chain for 2 ≤ i ≤ r, while I1 is either a two-element or one-element chain
(depending on whether p is even or odd). In particular, r = ⌈p/2⌉. Show that the
following three quantities are equal.

(i) The sum w(P ) =
∑

w∈L(P )(−1)comaj(w). Note. If p is even, then comaj(w) ≡
maj(w) (mod2). In this case w(P ) = WP (−1) in the notation of Section 3.15.

(ii) The number of P -domino tableaux.

(iii) The number of self-evacuating linear extensions of P , i.e., linear extensions f
satisfying fǫ = f , where ǫ denotes evacuation.

80. (a) [3] Show that for the following p-element posets P we have f∂p = f , where ∂ is
the promotion operator and f is a linear extension of P . (We give an example of
each type of poset, from which the general definition should be clear.)

(i) Rectangles: Figure 3.51(a).

(ii) Shifted double staircases: Figure 3.51(b).

(iii) Shifted trapezoids: Figure 3.51(c).

(b) [3] Show that if P is a staircase (illustrated in Figure 3.51(d)), then f∂p is obtained
by reflecting P (labelled by f) about a vertical line. Thus f∂2p = f .

81. An n-element poset P is sign-balanced if the set EP of linear extensions of P (regarded
as a permutation of the elements of P with respect to some fixed ordering of the
elements) contains the same number of even permutations as odd permutations. (This
definition does not depend on the fixed ordering of the elements of P , since changing
the ordering simply multiplies the elements of EP by a fixed permutation in Sn).
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(c) (d)

(a) (b)

Figure 3.51: Four posets with nice promotion properties
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(a) [2–] Suppose that n ≥ 2. Show that if every nonminimal element of P is greater
than at least two minimal elements, then P is sign-balanced. For instance, atomic
lattices with at least three elements are sign-balanced (since we can clearly remove
0̂ without affecting the property of being sign-balanced).

(b) [2+] Suppose that the length ℓ(C) of every maximal chain C of P satisfies ℓ(C) ≡
n (mod 2). Show that P is sign-balanced.

82. [3] Show that a product p×q of two chains is sign-balanced if and only if p, q > 1 and
p ≡ q (mod 2).

83. [2] Show that P is sign-balanced if #P is even and there does not exist a P -domino
tableau, as defined in Exercise 3.79.

84. [2+] A mapping t 7→ t̄ on a poset P is called a closure operator (or closure) if for all
s, t ∈ P ,

t ≤ t̄
s ≤ t⇒ s̄ ≤ t̄
¯̄t = t̄.

An element t of P is closed if t = t̄. The set of closed elements of P is denoted P ,
called the quotient of P relative to the closure .̄ If s ≤ t in P , then define s̄ ≤ t̄ in P .
It is easy to see that P̄ is a poset.

Let P be a locally finite poset with closure t 7→ t̄ and quotient P . Show that for all
s, t ∈ P ,

∑

u∈P
ū=t̄

µ(s, u) =

{
µP (s̄, t̄), if s = s̄

0, if s < s̄.

85. [2+]* Let P be a finite poset. Show that the following two conditions are equivalent:

(i) For all s < t, the interval [s, t] has an odd number of atoms.

(ii) For all s < t, the interval [s, t] has an odd number of coatoms.

Hint : Consider µ(s, t) modulo 2.

86. [2+] Let f and g be functions on a finite lattice L, with values in a field of characteristic
0, satisfying

f(s) =
∑

t
s∧t=0̂

g(t). (3.117)

Show that if µ(0̂, u) 6= 0 for all u ∈ L, then equation (3.117) can be inverted to yield

g(s) =
∑

t

α(s, t)f(t),

where

α(s, t) =
∑

u

µ(s, u)µ(t, u)

µ(0̂, u)
.
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87. (a) [2+] Let P be a finite poset with 0̂ and 1̂, and let µ be its Möbius function. Let
f : P → C. Show that

∑
(f(t1)− 1)(f(t2)− 1) · · · (f(tk)− 1)

=
∑

(−1)k+1µ(0̂, t1)µ(t1, t2) · · ·µ(tk, 1̂)f(t1)f(t2) · · ·f(tk),

where both sums range over all chains 0̂ < t1 < · · · < tk < 1̂ of P .

(b) [1+] Deduce that

∑

0̂=t0<t1<···<tk=1̂

(−1)kµ(t0, t1)µ(t1, t2) · · ·µ(tk−1, tk) = 1.

(c) [2] Give a proof of (b) using incidence algebras.

(d) [2–] Deduce equation (3.113) from (a) when L is a meet-distributive lattice.

88. [2] Let P be a finite poset with 0̂ and 1̂, and with Möbius function µ. Show that

∑

s≤t
µ(s, t) = 1.

89. [2]* For a finite lattice L, let fL(m) be the number of m-tuples (t1, . . . , tm) ∈ Lm such
that t1 ∧ t2 ∧ · · · ∧ tm = 0̂. Give two proofs that

fL(m) =
∑

t∈L
µ(0̂, t)(#Vt)

m.

The first proof should be by direct Möbius inversion, and the second by considering(∑
t∈L t

)m
in the Möbius algebra A(L,R).

90. [2]* Let P be a finite graded poset, and let m(s, t) denote the number of maximal
chains of the interval [s, t]. Define f ∈ I(P,C) by

f(s, t) =
m(s, t)

ℓ(s, t)!
.

Show that

f−1(s, t) = (−1)ℓ(s,t)f(s, t).

91. (a) [3–]* Let L be a finite lattice with n atoms. Show that

|µ(0̂, 1̂)| ≤
(

n− 1

⌊(n− 1)/2⌋

)
,

and that this result is best possible.
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(b) [3+]* Assume also that the longest chain of L has length at most ℓ. show that

|µ(0̂, 1̂)| ≤
(
n− 1

k

)
,

where k = min(ℓ− 1, ⌊(n− 1)/2⌋), and that this result is best possible.

92. [3–] Assume that L is a finite lattice and fix t ∈ L. Show that

µ(0̂, 1̂) =
∑

u,v

µ(0̂, u)ζ(u, v)µ(v, 1̂),

where u, v range over all pairs of complements of t. Deduce that if µ(0̂, 1̂) 6= 0, then L
is complemented.

93. (a) [2] Let L be a finite lattice such that for every t > 0̂, the interval [0̂, t] has even
cardinality. Use Exercise 3.92 to show that L is complemented.

(b) [3–] Find a simple proof that avoids Möbius functions.

94. [2+] Let L = J(P ) be a finite distributive lattice. A function v : L → C is called a
valuation (over C) if v(0̂) = 0 and v(s) + v(t) = v(s ∧ t) + v(s ∨ t) for all s, t ∈ L.
Prove that v is uniquely determined by its values on the join-irreducibles of L (which
we may identify with P ). More precisely, show that if I is an order ideal of P , then

v(I) = −
∑

t∈I
v(t)µ(t, 1̂),

where µ denotes the Möbius function of I (considered as a subposet of P ) with a 1̂
adjoined.

95. [3–] Let L be a finite lattice and fix z ∈ L. Show that the following identity holds in
the Möbius algebra of L (over some field):

∑

t∈L
µ(0̂, t)t =

(∑

u≤z
µ(0̂, u)u

)
·


∑

v∧z=0̂

µ(0̂, v)v


 .

96. (a) [3–] Let L be a finite lattice (or meet-semilattice), and let f(s, v) be a function
(say with values in a commutative ring) defined for all s, v ∈ L. Set F (s, v) =∑

u≤s f(u, v). Show that

det [F (s ∧ t, s)]s,t∈L =
∏

s∈L
f(s, s).

(b) [2] Deduce that

det [gcd(i, j)]ni,j=1 =

n∏

k=1

φ(k),

where φ is the Euler totient (or φ) function.
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(c) [2] Choose f(s, v) = µ(0̂, s) to deduce that if L is a finite meet-semilattice such
that µ(0̂, s) 6= 0 for all s ∈ L, then there exists a permutation w : L→ L satisfying
s ∧ w(s) = 0̂ for all s ∈ L.

(d) [2] Let L be a finite geometric lattice of rank n with Wi elements of rank i. Deduce
from (c) (more precisely, the dualized form of (c)) that for k ≤ n/2,

W1 + · · ·+Wk ≤Wn−k + · · ·+Wn−1. (3.118)

In particular, W1 ≤Wn−1.

(e) [3–] If equality holds in equation (3.118) for any one value of k, then show that L
is modular.

(f) [5] With L as in (d), show that Wk ≤Wn−k for all k ≤ n/2.

97. [3–] Let L be a finite lattice such that µ(t, 1̂) 6= 0 and µ(0̂, t) 6= 0 for all t ∈ L.
Prove that there is a permutation w : L → L such that for all t ∈ L, t and w(t) are
complements. Show that this conclusion is false if one merely assumes that µ(0̂, t) 6= 0
for all t ∈ L.

98. [2+]* Let L be a finite geometric lattice, and let t be a coatom of L. Let η(t) be the
number of atoms s ∈ L satisfying s 6≤ t. Show that

|µ(0̂, 1̂)| ≤ |µ(0̂, t)| · η(t).

99. [2+]* Let L be a finite geometric lattice of rank n. Let L′ = L−{0̂}, and let f : L′ → A
be a function from L′ to the set A of atoms of L satisfying f(t) ≤ t for all t ∈ L′. Let
α(L, f) be the number of maximal chains 0̂ = t0 < t1 < · · · < tn = 1̂ of L such that

f(t1) ∨ · · · ∨ f(tn) = 1̂.

Show that α(L, f) = (−1)nµ(0̂, 1̂).

100. Let L be a finite geometric lattice.

(a) [2] Show that every element of L is a meet of coatoms (where we regard 1̂ as being
the meet of the empty set of coatoms).

(b) [2] Show that Proposition 3.10.1 has the following improvement for geometric
lattices: the Möbius function of L strictly alternates in sign. In other words, if
s ≤ t in L then (−1)ρ(t)−ρ(s)µ(s, t) > 0.

(c) [2+] Show that if µ(s, t) = ±1, then the interval [s, t] is a boolean algebra.

(d) [3–]* Let n ∈ P. Show that there exist finitely many geometric lattices L1, . . . , Lk
such that if L is any finite geometric lattice satisfying |µ(0̂, 1̂)| = n, then L ∼=
Li × Bd for some i and d.

101. (a) [3] Let L be a finite lattice and A,B subsets of L. Suppose that for all t 6∈ A
there exists t∗ > t such that µ(t, t∗) 6= 0 and t∗ 6= t ∨ u whenever u ∈ B. (Thus
1̂ ∈ A.) Show that there exists an injective map φ : B → A satisfying φ(s) ≥ s
for all s ∈ B.
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(b) [2+] Let K be a finite modular lattice. Show the following: (i) If 1̂ is a join of
atoms of K, then K is a geometric lattice and hence µ(0̂, 1̂) 6= 0. (ii) With K
as in (i), K has the same number of atoms as coatoms. (iii) For any a, b ∈ K,
the map ψb : [a ∧ b, a] → [b, a ∨ b] defined by ψb(t) = t ∨ b is a lattice (or poset)
isomorphism.

(c) [2+] Let L be a finite modular lattice, and let Jk (respectively, Mk) be the set of
elements of L that cover (respectively, are covered by) at most k elements. (Thus
J0 = {0̂} and M0 = {1̂}.) Deduce from (a) and (b) the existence of an injective
map φ : Jk →Mk satisfying φ(s) ≥ s for all s ∈ Jk.

(d) [2–] Deduce from (c) that the number of elements in L covering exactly k elements
equals the number of elements covered by exactly k elements.

(e) [2] Let Pk be the subposet of elements of L that cover k elements, and let Rk

be the subposet of elements that are covered by k elements. Show by example
that we need not have Pk ∼= Rk, unlike the situation for distributive lattices
(Exercise 3.38).

(f) Deduce Exercise 3.96(d) from (a).

102. (a) [5] Let L be a finite lattice with n elements. Does there exist a join-irreducible t
of L such that the principal dual order ideal Vt := {s ∈ L : s ≥ t} has at most
n/2 elements?

(b) [2+] Let L be any finite lattice with n elements. Suppose that there is a t 6= 0̂ in
L such that #Vt > n/2. Show that µ(0̂, s) = 0 for some s ∈ L.

103. [3] Let L be a finite lattice, and suppose that L contains a subset S of cardinality n
such that (i) any two elements of S are incomparable (i.e., S is an antichain), and (ii)
every maximal chain of L meets S. Find, as a function of n, the smallest and largest
possible values of µ(0̂, 1̂). For instance, if n = 2 then 0 ≤ µ(0̂, 1̂) ≤ 1, while if n = 3
then −1 ≤ µ(0̂, 1̂) ≤ 2.

104. (a) [3–] Let P be an (n+ 2)-element poset with 0̂ and 1̂. What is the largest possible
value of |µ(0̂, 1̂)|?

(b) [5] Same as (a) for n-element lattices L.

105. [5–] Let k, ℓ ∈ P. Find maxP |µ(0̂, 1̂)|, where P ranges over all finite posets with 0̂ and
1̂ and longest chain of length ℓ, such that every element of P is covered by at most k
elements.

106. [2+] Let L be a finite lattice for which |µL(0̂, 1̂)| ≥ 2. Does it follow that L contains a
sublattice isomorphic to the 5-element lattice 1⊕ (1 + 1 + 1)⊕ 1?

107. [3–] Let k ≥ 0, and let I be an order ideal of the boolean algebra Bn. Suppose that

for any t ∈ I of rank at most k, we have
∑

u∈I
u≥t

µ(t, u) = 0. Show that #I is divisible by

2k+1.
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108. LetG be a (simple) graph with finite vertex set V and edge set E ⊆
(
V
2

)
. Write p = #V .

An n-coloring of G (sometimes called a proper n-coloring) is a function f : V → [n]
such that f(a) 6= f(b) if {a, b} ∈ E. Let χG(n) be the number of n-colorings of G. The
function χG : N→ N is called the chromatic polynomial of G.

(a) [2–]* A stable partition of V is a partition π of V such that every block B of π is
stable (or independent), i.e., no two vertices of B are adjacent. Let SG(j) be the
number of stable partitions of V with k blocks. Show that

χG(n) =
∑

j

SG(j)(n)j .

Deduce that χG(n) is a monic polynomial in n of degree p with integer coefficients.
Moreover, the coefficient of np−1 is −(#E).

(b) [2+] A set A ⊆ V is connected if the induced subgraph on A is connected, i.e.,
for any two vertices v, v′ ∈ A there is a path from v to v′ using only vertices in A.
Let LG be the poset (actually a geometric lattice) of all partitions π of V ordered
by refinement, such that every block of V is connected. Show that

χG(n) =
∑

π∈LG

µ(0̂, π)n#π,

where #π is the number of blocks of π and µ is the Möbius function of LG. It
follows that the chromatic polynomial χG(n) and characteristic polynomial χLG

(n)
are related by χG(n) = ncχLG

(n), where c is the number of connected components
of G. Note that when G is the complete graph Kp (i.e., E =

(
V
2

)
), then we obtain

equation (3.38).

(c) [2+] Let BG be the hyperplane arrangement in Rp with hyperplanes xi = xj
whenever {i, j} ∈ E. We call BG a graphical arrangement. Show that LG ∼= L(BG)
(the intersection poset of B). Deduce that χG = χBG

.

(d) [2+] Let e be an edge of G. Let G − e (also denoted G\e) denote G with e
deleted, and let G/e denote G with e contracted to a point, and all resulting
multiple edges replaced by a single edge (so that G/e is simple). Deduce from (c)
above and Proposition 3.11.5 that

χG(n) = χG−e(n)− χG/e(n). (3.119)

Give also a direct combinatorial proof.

(e) [2+] Let ϕ : Q[n]→ Q[x] be the Q-linear function defined by ϕ(nk) =
∑

j S(k, j)xj ,
where S(k, j) denotes a Stirling number of the second kind. Show that

ϕ (χG(n)) =
∑

j

SG(j)xj. (3.120)

In particular, if BG denotes the total number of stable partitions of G (a G-
analogue of the Bell number B(n)), then we have the “umbral” formula χG(B) =
BG. That is, expand χG(B) as a polynomial in B (regarding B as an indetermi-
nate), and then replace Bk by B(k).
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109. Preserve the notation of the previous exercise. Let ao(G) denote the number of acyclic
orientations of G, as defined in Exercise 3.60.

(a) [2+] Use equation (3.119) to prove that

ao(G) = (−1)pχG(−1). (3.121)

(b) [2+] Give another proof of equation (3.121) using Theorem 3.11.7.

110. [3] Let w ∈ Sn, and let Aw be the arrangement in Rn determined by the equations
xi = xj for all inversions (i, j) of w.

(a) Show that r(Aw) ≥ #Λw, where Λw is the principal order ideal generated by w
in the Bruhat order on Sn (as defined in Exercise 3.183).

(b) Show that equality holds in (a) if and only if w avoids all the patterns 4231, 35142,
42513, and 351624.

111. [3–] Give a bijective proof that the number of regions of the Shi arrangement Sn is
(n+ 1)n−1 (Corollary 3.11.14).

112. A sequence A = (A1,A2, . . . ) of arrangements is called an exponential sequence of
arrangements (ESA) if it satisfies the following three conditions.

• An is in Kn for some field K (independent of n).

• Every H ∈ An is parallel to some hyperplane H ′ in the braid arrangement Bn
(over K).

• Let S be a k-element subset of [n], and define

ASn = {H ∈ An : H is parallel to xi − xj = 0 for some i, j ∈ S}.

Then L(ASn) ∼= L(Ak).

(a) [1+]* Show that the braid arrangements (B1,B2, . . . ) and Shi arrangements (S1,S2, . . . )
form ESA’s.

(b) [3–] Let A = (A1,A2, . . . ) be an ESA. Show that

∑

n≥0

χAn(x)
zn

n!
=

(∑

n≥0

(−1)nr(An)
zn

n!

)−x

.

(c) [3–] Generalize (b) as follows. For n ≥ 1 let An be an arrangement in Rn such
that every H ∈ An is parallel to a hyperplane of the form xi = cxj , where c ∈ R.
Just as in (b), define for every subset S of [n] the arrangement

ASn = {H ∈ An : H is parallel to some xi = cxj , where i, j ∈ S}.
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Suppose that for every such S we have LAS
n

∼= LAk
, where k = #S. Let

F (z) =
∑

n≥0

(−1)nr(An)
zn

n!

G(z) =
∑

n≥0

(−1)rank(An)b(An)
zn

n!
.

Show that ∑

n≥0

χAn(x)
zn

n!
=
G(z)(x+1)/2

F (z)(x−1)/2
.

113. [2] Use the finite field method (Theorem 3.11.10) to give a proof of the Deletion-
Restriction recurrence (Proposition 3.11.5) for arrangements defined over Q.

114. For the arrangements A below (all in Rn), show that the characteristic polynomials
are as indicated.

(a) [2–]* xi = xj for 1 ≤ i < j ≤ n and xi = 0 for 1 ≤ i ≤ n. Then

χA(x) = (x− 1)2(x− 2)(x− 3) · · · (x− n+ 1).

(b) [2+]* xi = xj for 1 ≤ i < j ≤ n and x1 + x2 + · · ·+ xn = 0. Then

χA(x) = (x− 1)2(x− 2)(x− 3) · · · (x− n+ 1).

(c) [3–]* xi = 2xj and xi = xj for 1 ≤ i < j ≤ n, and xi = 0 for 1 ≤ i ≤ n. Then

χA(x) = (x− 1)(x− n− 1)n−1.

115. For the arrangements A below (all in Rn), show that the characteristic polynomials
are as indicated.

(a) [2+] The Catalan arrangement Cn: xi − xj = −1, 0, 1, 1 ≤ i < j ≤ n. Then

χCn(x) = x(x− n− 1)(x− n− 2)(x− n− 3) · · · (x− 2n+ 1).

(b) [3] The Linial arrangement Ln: xi − xj = 1, 1 ≤ i < j ≤ n. Then

χLn(x) =
1

2n

n∑

k=0

(
n

k

)
(x− k)n−1. (3.122)

(c) [3–] The threshold arrangement Tn: xi + xj = 0, 1, 1 ≤ i < j ≤ n. Then

∑

n≥0

χTn(x)
zn

n!
= (1 + z)(2ez − 1)(x−1)/2.
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(d) [2] The type B braid arrangement BBn : xi − xj = 0, xi + xj = 0, 1 ≤ i < j ≤ n,
and xi = 0, 1 ≤ i ≤ n. Then

χBB
n

= (x− 1)(x− 3)(x− 5) · · · (x− 2n + 1).

116. [3–] Let v1, . . . , vk be “generic” points in Rn. Let C = C(v1, . . . , vk) be the arrangement
consisting of the perpendicular bisectors of all pairs of the points. Thus #C =

(
k
2

)
.

Find the characteristic polynomial χC(x) and number of regions r(C).
117. [3–] Let (t1,x1), . . . , (tk,xk) be “generic” events (points) in (n+1)-dimensional Minkow-

ski space R × Rn with respect to some reference frame. Assume that the events are
spacelike with respect to each other, i.e., there can be no causal connection among
them. Suppose that t1 < · · · < tk, i.e., the events occur in the order 1, 2, . . . , k. In
another reference frame moving at a constant velocity v with respect to the first, the
events may occur in a different order a1a2 · · ·ak ∈ Sk. What is the number of different
orders in which observers can see the events? Express your answer in terms of the
signless Stirling numbers c(n, i) of the first kind.

Note. Write v = tanh(ρ)u, where u is a unit vector in Rn and tanh(ρ) is the speed
(with the speed of light c = 1). Part of the Lorentz transformation states that the
coordinates (t,x) and (t′,x′) of the two frames are related by

t′ = cosh(ρ)t− sinh(ρ)x · u. (3.123)

118. (a) [3+] Let A = {H1, . . . , Hν} be a linear arrangement of hyperplanes in Rd with
intersection lattice L(A). Let r = d− dim(H1 ∩ · · · ∩Hν) = rankL(A). Define

Ω = Ω(A) = {p = (p1, . . . , pd) : pi ∈ R[x1, . . . , xd], and for all i ∈ [ν]

and α ∈ Hi we have p(α) ∈ Hi}.
Clearly Ω is a module over the ring R = R[x1, . . . , xd], that is, if p ∈ Ω and
q ∈ R, then qp ∈ Ω. One easily shows that Ω has rank r, i.e., Ω contains r
(and no more) elements linearly independent over R. Suppose that Ω is a free
R-module—that is, we can find p1, . . . ,pr ∈ Ω such that Ω = p1R ⊕ · · · ⊕ prR.
(The additional condition that piR ∼= R as R-modules is automatic here.) We
then call A a free arrangement. It is easy to see that we can choose each pi so
that all its components are homogeneous of the same degree ei. Show that the
characteristic polynomial of L(A) is given by

χL(A)(x) =
r∏

i=1

(x− ei).

(b) [3] Show that Ω is free if L is supersolvable, and find a free Ω for which L is not
supersolvable.

(c) [3] For n ≥ 3 let H1, . . . , Hν (ν =
(
n
2

)
+
(
n
3

)
) be defined by the equations

xi = xj , 1 ≤ i < j ≤ n

xi + xj + xk = 0, 1 ≤ i < j < k ≤ n.

Is Ω free?
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(d) [5] Suppose that A and A′ are two linear hyperplane arrangements in Rd with
corresponding modules Ω and Ω′. If L(A) ∼= L(A′) and Ω is free, does it follow
that Ω′ is free? In other words, is freeness a property of L(A) alone, or does it
depend on the actual position of the hyperplanes?

(e) [3] Let A = {H1, . . . , Hν} as in (a), and let t ∈ L(A). With At as in equa-
tion (3.43), show that if Ω(A) is free then Ω(At) is free.

(f) [3] Continuing (e), let At be as in equation (3.44). Give an example where Ω(A)
is free but Ω(At) is not free.

119. [2] Let V be an n-dimensional vector space over Fq, and let L be the lattice of subspaces
of V . Let X be a vector space over Fq with x vectors. By counting the number of
injective linear transformations V → X in two ways (first way—direct, second way—
Möbius inversion on L) show that

n−1∏

k=0

(x− qk) =

n∑

k=0

(
n

k

)
(−1)kq(

k
2)xn−k.

This is an identity valid for infinitely many x and hence valid as a polynomial identity
(with x an indeterminate). Note that if we substitute −1/x for x then we obtain
equation (1.87) (the q-binomial theorem).

120. (a) [3–] Let P be a finite graded poset of rank n, and let q ≥ 2. Show that the
following two conditions are equivalent:

• For every interval [s, t] of length k we have µ(s, t) = (−1)kq(
k
2).

• For every interval [s, t] of length k and all 0 ≤ i ≤ k, the number of elements
of [s, t] of rank i (where the rank is computed in [s, t], not in P ) is equal to
the q-binomial coefficient

(
k

2

)
(evaluated at the positive integer q).

(b) [5–] Is it true that for n sufficiently large, such posets P must be isomorphic to
Bn(q) (the lattice of subspaces of Fnq )?

121. [3–] Fix k ≥ 2. Let L′
n be the poset of all subsets S of [n], ordered by inclusion, such

that S contains no k consecutive integers. Let Ln be Ln with a 1̂ adjoined. Let µn
denote the Möbius function of Ln. Find µn(∅, 1̂). Your answer should depend only on
the congruence class of n modulo 2k + 2.

122. [2] A positive integer d is a unitary divisor of n if d|n and (d, n/d) = 1. Let L be
the poset of all positive integers with a ≤ b if a is a unitary divisor of b. Describe
the Möbius function of L. State a unitary analogue of the classical Möbius inversion
formula of number theory.

123. (a) [2+] Let M be a monoid (semigroup with identity ε) with generators g1, . . . , gn
subject only to relations of the form gigj = gjgi for certain pairs i 6= j. Order the
elements of M by s ≤ t if there is a u such that su = t. For instance, suppose
that M has generators 1, 2, 3, 4 (short for g1, . . . , g4) with relations

13 = 31, 14 = 41, 24 = 42.
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ε

13

34 11

134

1134

11324

1132

113

13

Figure 3.52: The distributive lattice L11324 when 13 = 31, 14 = 41, 24 = 42

Then the interval [ε, 11324] is shown in Figure 3.52. Show that any interval [ε, w]
in M is a distributive lattice Lw, and describe the poset Pw for which Lw = J(Pw).

(b) [1+] Deduce from (a) that the number of factorizations w = gi1 · · · giℓ is equal to
the number e(Pw) of linear extensions of Pw.

(c) [2–] Deduce from (a) that the Möbius function of M is given by

µ(s, su) =





(−1)r, if u is a product of r distinct
pairwise commuting gi

0, otherwise.

(d) [2] Let N(a1, a2, . . . , an) denote the number of distinct elements of M of degree
ai in gi. (E.g., g2

1g2g1g
2
4 has a1 = 3, a2 = 1, a3 = 0, a4 = 2.) Let x1, . . . , xn be

independent (commuting) indeterminates. Deduce from (c) that

∑

a1≥0

· · ·
∑

an≥0

N(a1, . . . , an)x
a1
1 · · ·xan

n =
(∑

(−1)rxi1xi2 · · ·xir
)−1

,

where the last sum is over all (i1, i2, . . . , ir) such that 1 ≤ i1 < i2 < · · · < ir ≤ n
and gi1 , gi2 , . . . , gir pairwise commute.

(e) [2–] What identities result in (d) when no gi and gj commute (i 6= j), or when all
gi and gj commute?

124. Let L be a finite supersolvable semimodular lattice, with M-chain C : 0̂ = t0 < t1 <
· · · < tn = 1̂.

(a) [3–] Let ai be the number of atoms s of L such that s ≤ ti but s 6≤ ti−1. Show
that

χL(q) = (q − a1)(q − a2) · · · (q − an).

(b) [3–] If t ∈ L then define

Λ(t) = {i : t ∨ ti−1 = t ∨ ti} ⊆ [n].
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One easily sees that #Λ(t) = ρ(t) and that if u covers t then (in the notation
of equation (3.56)) Λ(u) − Λ(t) = {λ(t, u)}. Now let P be any natural partial
ordering of [n] (i.e., if i < j in P , then i < j in Z), and define

LP = {t ∈ L : Λ(t) ∈ J(P )}.
Show that LP is an R-labelable poset satisfying

βLP
(S) =

∑

w∈L(P )
D(w)=S

βL(S),

where L(P ) denotes the Jordan-Hölder set of P (defined in Section 3.13).

In particular, taking L = Bn(q) yields from Theorem 3.13.3 a q-analogue of the
distributive lattice J(P ), satisfying

βLP
(S) =

∑

w∈L(P )
D(w)=S

qinv(w).

Note that LP depends not only on P as an abstract poset, but also on the choice
of linear extension P (or maximal chain of J(P )) that defines the elements of P
as elements of [n].

125. [3–] Let L be a finite graded lattice of rank n. Show that the following two conditions
are equivalent.

• L is supersolvable.

• L has an R-labeling for which the label of every maximal chain is a permutation
of 1, 2, . . . , n.

126. Fix a prime p and integer k ≥ 1, and define posets L
(1)
k (p), L

(2)
k (p), and L

(3)
k (p) as

follows:

• L(1)
k (p) consists of all subgroups of the free abelian group Zk that have finite index

pm for some m ≥ 0, ordered by reverse inclusion.

• L(2)
k (p) consists of all finite subgroups of (Z/p∞Z)k ordered by inclusion, where

Z/p∞Z = Z[1/p]/Z

Z[1/p] = {α ∈ Q : pmα ∈ Z for some m ≥ 0}.

• L(3)
k (p) =

⋃
n Ln,k(p), where Ln.k(p) denotes the lattice of subgroups of the abelian

group (Z/pn/Z)k, and where we regard

Ln,k(p) ⊂ Ln+1,k(p)

via the embedding

(Z/pnZ)k →֒
(
Z/pn+1/Z

)k

defined by
(a1, . . . , ak) 7→ (pa1, . . . , pak).
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(a) [2+] Show that L
(1)
k (p) ∼= L

(2)
k (p) ∼= L

(3)
k (p). Calling this poset Lk(p), show that

Lk(p) is a locally finite modular lattice with 0̂ such that each element is covered
by finitely many elements (and hence Lk(p) has a rank function ρ : Lk(p)→ N).

(b) [2–] Show that for any t ∈ Lk(p), the principal dual order ideal Vt is isomorphic
to Lk(p).

(c) [3–] Show that Lk(p) has
(

n+k−1

k−1

)
elements of rank n, and hence has rank-

generating function

F (Lk(p), x) =
1

(1− x)(1− px) · · · (1− pk−1x)
.

All q-binomial coefficients in this exercise are in the variable p.

(d) [1+] Deduce from (b) and (c) that if S = {s1, s2, . . . , sj}< ⊂ P, then

αLk(p)(S) =

(
s1 + k − 1

k − 1

)(
s2 − s1 + k − 1

k − 1

)

· · ·
(

sj − sj−1 + k − 1

k − 1

)
.

(e) [2+] Let Nk denote the set of all infinite words w = e1e2 · · · such that ei ∈ [0, k−1]
and ei = 0 for i sufficiently large. Define σ(w) = e1 + e2 + · · · , and as usual define
the descent set

D(w) = {i : ei > ei+1}.
Use (d) to show that for any finite S ⊂ P,

αLk(p)(S) =
∑

w∈Nk
D(w)⊆S

pσ(w)

βLk(p)(S) =
∑

w∈Nk
D(w)=S

pσ(w).

127. (a) [2–]* How many maximal chains does Πn have?

(b) [2+]* The symmetric group Sn acts on the partition lattice Πn in an obvious
way. This action induces an action on the setM of maximal chains of Πn. Show
that the number #M/Sn of Sn-orbits onM is equal to the Euler number En−1.
For instance, when n = 5 a set of orbit representatives is given by (omitting
0̂ and 1̂ from each chain, and writing e.g. 12-34 for the partition whose non-
singleton blocks are {1, 2} and {3, 4}): 12 < 123 < 1234, 12 < 123 < 123-45,
12 < 12-34 < 125-34, 12 < 12-34 < 12-345, 12 < 12-34 < 1234. Hint: use
Proposition 1.6.2.

(c) [2]* Let Λn denote the subposet of Πn consisting of all partitions of [n] satisfying
(i) if i is the least element of a nonsingleton block B, then i+ 1 ∈ B, and (ii) If
i < n and {i} is a singleton block, then {i+1} is also a singleton block. Figure 3.53
shows Λ6, where we have omitted singleton blocks from the labels. Show that the
number of maximal chains of Λn is En−1.
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12345 125−346

123456

1236−45

12−34−56123−45

12−34123

12

1234 125−34 12−345

126−3451256−34
12−3456

1234−56123−456

Figure 3.53: The poset Λ6

(d) [2+]* Show that Λn is a supersolvable lattice of rank n−1. Hence for all S ⊆ [n−2]
we have by Example 3.14.4 that βΛn(S) ≥ 0.

(e) [5–] Find an elegant combinatorial interpretation of βΛn(S) as the number of
alternating permutations in Sn−1 with some property depending on S.

(f) [2]* Show that the number of elements of Λn whose nonsingleton block sizes are
λ1 + 1, . . . , λℓ + 1 is the number of partitions of a set of cardinality m =

∑
λi

whose block sizes are λ1, . . . , λℓ (given explicitly by equation (3.36)) provided that
m+ ℓ ≤ n, and is 0 if m+ ℓ > n. As a corollary, the number of elements of Λn of
rank k is

∑min{k,n−k}
j=0 S(k, j), while the total number of elements of Λn is

#Λn =
∑

j+k≤n
j≤k

S(k, j),

including the term S(0, 0) = 1.

(g) [2]* We can identify Λn with a subposet of Λn+1 by adjoining a single block {n+1}
to each π ∈ Λn. Hence we can define Λ = limn→∞ Λn. Show that Λ has B(n)
elements of rank n, where B(n) denotes a Bell number.

(h) [2+]* Write

exp
∑

i≥1

Eiti
xi

i!
=
∑

k≥0

Pk(t1, t2, . . . , tk)
xk

k!
.

Show the the coefficient of tα1
1 · · · tαk

k in Pk(t1, . . . , tk) is the number of saturated
chains in Λ from 0̂ to a partition with αi + 1 nonsingleton blocks of cardinality
i. Thus if M(k, j) denotes the number of saturated chains in Λ from 0̂ to some
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element of rank k with j nonsingleton blocks, then

∑

j,k≥0

M(k, j)tj
xk

k!
= et(tan x+secx−1).

128. [3–]* Let π ∈ Πn have type (a1, a2, . . . ), with #π =
∑
ai = m. Let f(π) be the number

of σ ∈ Πn satisfying π ∨ σ = 1̂, π ∧ σ = 0̂, and #σ = n+ 1−#π. Show that

f(π) = 1a12a2 · · ·nan(n−m+ 1)m−2.

129. [2+]* Let P be a finite poset, and let µ be the Möbius function of P̂ = P ∪ {0̂, 1̂}.
Suppose that P has a fixed point free automorphism σ : P → P of prime order p, i.e.,
σ(t) 6= t and σp(t) = t for all t ∈ P . Show that

µ(0̂, 1̂) ≡ −1 (mod p).

What does this say in the case P̂ = Πp?

130. Let P be a finite poset satisfying: (i) P is graded of rank n and has a 0̂ and 1̂, and
(ii) for 0 ≤ i ≤ n there is a poset Qi such that [t, 1̂] ∼= Qi whenever n − ρ(t) = i. In
particular, P ∼= Qn. We call the poset P uniform.

(a) [2+] Let V (i, j) be the number of elements of Qi that have rank i− j, and let

v(i, j) =
∑

t

µ(0̂, t),

where t ranges over all t ∈ Qi of rank i − j. (Thus V (i, j) = Wi−j and v(i, j) =
wi−j , where w and W denote the Whitney numbers of Qi of the first and second
kinds, as defined in Section 3.10.) Show that the matrices [V (i, j)]0≤i,j≤n and
[v(i, j)]0≤i,j≤n are inverses of one another. (Note that Proposition 1.9.1 corre-
sponds to the case Qi = Πi+1.)

(b) [5] Find interesting uniform posets. Can all uniform geometric lattices be classi-
fied? (See Exercise 3.131(d).)

131. Let X be an n-element set and G a finite group of order m. A partial partition of X
is a collection {A1, . . . , Ar} of nonempty, pairwise-disjoint subsets of X. A partial G-
partition ofX is a family α = {a1, . . . , ar} of functions aj : Aj → G, where {A1, . . . , Ar}
is a partial partition of X. Define two partial G-partitions α = {a1, . . . , ar} and
β = {b1, . . . , bs} to be equivalent if their underlying partial partitions are the same (so
r = s), say {A1, . . . , Ar}, and if for each 1 ≤ j ≤ r, there is some w ∈ G (depending
on j) such that aj(t) = w · bj(t) for all t ∈ Aj . Define a poset Qn(G) as follows. The
elements of Qn(G) are equivalence classes of partial G-partitions. Representing a class
by one of its elements, define α = {a1, . . . , ar} ≤ β = {b1, . . . , bs} in Qn(G) if every
block Ai of the underlying partial partition {A1, . . . , Ar} of α is either (1) contained
in a block Bj of the underlying partial partition σ of β, in which case there is a w ∈ G
for which ai(t) = w · bj(t) for all t ∈ Ai, or else (2) every block of σ is disjoint from Ai.
(Thus Qn(G) has a top element consisting of the empty set.)
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(a) [2–] Show that if m = 1 then Qn(G) ∼= Πn+1.

(b) [3–] Show that Qn(G) is a supersolvable geometric lattice of rank n.

(c) [2] Use (b) and Exercise 3.124 to show that the characteristic polynomial of Qn(G)
is given by

χQn(G)(t) =

n−1∏

i=1

(t− 1−mi).

(d) [2] Show that Qn(G) is uniform in the sense of Exercise 3.130.

132. [2+] Let Pn be the set of all sets {i1, . . . , i2k} ⊂ P where

0 < i1 < i2 < · · · < i2k < 2n+ 1

and i1, i2 − i1, . . . , i2k − i2k−1, 2n + 1 − i2k are all odd. Order the elements of Pn by
inclusion. Then Pn is graded of rank n, with 0̂ and 1̂. Compute the number of elements
of Pn of rank k, the total number of elements of Pn, the Möbius function µ(0̂, 1̂), and
the number of maximal chains of Pn. Show that if ρ(t) = k then [0̂, t] ∼= Pk while [t, 1̂]
is isomorphic to a product of Pi’s. (Thus P ∗

n is uniform in the sense of Exercise 3.130.)

133. Let Ln denote the lattice of all subgroups of the symmetric group Sn, ordered by
inclusion. Let µn denote the Möbius function of Ln.

(a) [2+] Show that ∑
µn(0̂, G) = (−1)n−1(n− 1)!,

where G ranges over all transitive subgroups of Sn.

(b) [3] Show that µn(0̂, 1̂) is divisible by n!/2.

(c) [3] Let Cn denote the collection of transitive proper subgroups of Sn that contain
an odd involution (i.e., an involution with an odd number of 2-cycles). Show that

µn(0̂, 1̂) = (−1)n−1n!

2
−
∑

H∈Cn

µn(0̂, H).

(d) [3–] Let p be prime. Deduce from (c) that

µp(0̂, 1̂) = (−1)p−1p!

2
.

(e) [3–] Let n = 2a for some positive integer a. Deduce from (c) that

µn(0̂, 1̂) = −n!

2
.

(f) [3] Let p be an odd prime and n = 2p. Deduce from (c) that

µn(0̂, 1̂) =





−n!, if n− 1 is prime and p ≡ 3 (mod 4)
n!/2, if n = 22
−n!/2, otherwise.
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134. (a) [3–]* Let A be a finite alphabet and A∗ the free monoid generated by A. If
w = a1a2 · · ·an is a word in the free monoid A∗ with each ai ∈ A, then a subword
of w is a word v = ai1ai2 · · ·aik where 1 ≤ i1 < i2 < · · · < ik ≤ n. Partially order
A∗ by u ≤ v if u is a subword of v. We call this partial ordering the subword order
on A∗. Let µ be the Möbius function of A∗. Given v = a1a2 · · ·an where ai ∈ A,
call the letter ai special if ai = ai−1. Show that

µ(u, v) = (−1)ℓ(v)−ℓ(u)s(u, v),

where s(u, v) is the number of subwords of v isomorphic to u which use every
special letter of v. For instance,

µ(aba, abaaba) = −2

(where we have underlined the only special letter.) There is a simple proof using
Philip Hall’s theorem (Proposition 3.8.5), based on a sign-reversing involution
acting on a subset of the set of chains of the open interval (u, v).

(b) [3–]* Now define u ≤ v if u is a factor of v, as defined in Example 4.7.7. We call
this partial ordering the factor order on A∗. Given a word w = a1a2 · · ·an ∈ A∗,
n ≥ 2, define ιw = a2a3 · · ·an−1 and ϕw to be the longest v 6= w (possibly the
empty word 1) which is both a left factor and right factor of w (so one can write
w = vw′ = w′′v). The word w is trivial if a1 = a2 = · · · = an. Show that the
Möbius function of the factor order is determined recursively by

µ(u, v) =





µ(u, ϕv), if ℓ(u, v) > 2 and u ≤ ϕv 6≤ ιv
1, if ℓ(u, v) = 2, v is nontrivial and u = ιv or u = ϕv

(−1)ℓ(u,v), if ℓ(u, v) < 2
0, in all other cases.

In particular µ(u, v) ∈ {0,+1,−1}.

135. Let Λn denote the set of all p(n) partitions of the integer n ≥ 0. Order Λn by refinement.
This means that λ ≤ ρ if the parts of λ can be partitioned into blocks so that the
parts of ρ are precisely the sum of the elements in each block of λ. For instance,
(4, 4, 3, 2, 2, 2, 1, 1) ≤ (9, 4, 4, 2), corresponding to 9 = 4 + 2 + 2 + 1, 4 = 4, 4 = 3 + 1,
2 = 2.

(a) [2–]* Show that Λn is graded of rank n− 1.

(b) [5] Determine the Möbius function µ(λ, ρ) of Λn. (This is trivial when λ = 〈1n〉
and easy when λ = 〈1n−221〉.)

(c) [3] Does the Möbius function µ of Λn alternate in sign; that is, (−1)ℓµ(λ, ρ) ≥ 0
if [λ, ρ] is an interval of length ℓ? Is Λn a Cohen-Macaulay poset?

136. [3] Let Λn be as in Exercise 3.135, but now order Λn by dominance. This means that
(λ1, λ2, . . . ) ≤ (ρ1, ρ2, . . . ) if λ1 + λ2 + · · ·+ λi ≤ ρ1 + ρ2 + · · ·+ ρi for all i ≥ 1. Find
µ for this ordering.
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137. [2] Let P and Q be finite posets. Express the zeta polynomial values Z(P + Q,m),
Z(P ⊕Q,m), and Z(P ×Q,m) in terms of Z(P, j) and Z(Q, j) for suitable values of
j.

138. (a) [2] Let P be a finite poset and Int(P ) the poset of (nonempty) intervals of P ,
ordered by inclusion. How are the zeta polynomials Z(P, n) and Z(Int(P ), n)
related?

(b) [2] Suppose that P has a 0̂ and 1̂. Let Q denote Int(P ) with a 0̂ adjoined. How
are µP (0̂, 1̂) and µQ(0̂, 1̂) related?

139. [2+]* Let Uk denote the ordinal sum of k 2-element antichains, so #Uk = 2k. Show
that ∑

k≥0

Z(Uk, n)xk =
1

2

(
1 + x

1− x

)n
− 1

2
.

140. [2+] Let ϕ : Q[n]→ Q[x] be the Q-linear function on polynomials with rational coeffi-
cients that takes nk to

∑
j cj(k)x

j , where cj(k) = j!S(k, j), the number of ordered par-
titions of [k] into j blocks, or equivalently, the number of surjective functions [k]→ [j]
(Example 3.18.9). (Set ϕ(1) = 1.) Let Z(P, n) denote the zeta polynomial of the poset
P . Show that

ϕZ(P, n+ 2) =
∑

j≥1

cj(P )xj−1,

where cj(P ) is the number of j-element chains of P .

141. (a) [2] Let P be a finite poset, and let Q = ch(P ) denote the poset of nonempty
chains of P , ordered by inclusion. Let Q0 denote Q with a 0̂ (the empty chain
of P ) adjoined. Show that if Z(P,m+ 1) =

∑
i≥1 ai

(
m−1
i

)
, then Z(Q0, m + 1) =

1 +
∑

i≥1 aim
i.

(b) [2] Let P̂ and Q̂ denote P and Q, respectively, with a 0̂ and 1̂ adjoined. Express
µ

bQ(0̂, 1̂) in terms of µ
bP (0̂, 1̂).

(c) [2–] Let P be an Eulerian poset with 0̂ and 1̂ removed. Show that Q̂ is Eulerian.

(d) [2+] Define Fn(x) =
∑n

k=1 k!S(n, k)xk−1, where S(n, k) denotes a Stirling number
of the second kind. By letting E = Bn in (c), deduce that

Fn(x) = (−1)n−1Fn(−x− 1). (3.124)

142. (a) [2] We say that a finite graded poset P of rank n is chain-partitionable, or just
partitionable, if for every maximal chain K of P there is a chain r(K) ⊆ K
(the restriction of K) such that every chain (including ∅) of P lies in exactly
one of the intervals [r(K), K] of Q0. Given a chain C of P , define its rank set
ρ(C) = {ρ(t) : t ∈ C} ⊆ [0, n]. Show that if P is partitionable, then β(P, S) is
equal to the number of maximal chains K of P for which ρ(r(K)) = S. Thus a
necessary condition that P is partitionable is that β(P, S) ≥ 0 for all S ⊆ [0, n].
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(b) [2+] Show that if P is a poset for which P̂ := P ∪ {0̂, 1̂} is R-labelable, then P is
partitionable.

(c) [5] Is every Cohen-Macaulay poset partitionable?

143. (a) [3–] If P is a poset, then the comparability graph Com(P ) is the graph whose
vertices are the elements of P , and two vertices s and t are connected by an
(undirected) edge if s < t or t < s. Show that the order polynomial ΩP (m) of a
finite poset P depends only on Com(P ).

(b) [2] Give an example of two finite posets P,Q for which Com(P ) 6∼= Com(Q) but
ΩP (m) = ΩQ(m).

144. [2]* Let Bk denote a boolean algebra of rank k, and ΩBk
(m) its order polynomial.

Show that ΩBn+1(2) = ΩBn(3).

145. [2+] Let ΩP (n) denote the order polynomial of the finite poset P , so from Section 3.12
we have ΩP (n) = Z(J(P ), n). Let p = #P . Use Example 3.9.6 to give another proof of
the reciprocity theorem for order polynomials (Theorem 3.15.10) in the case of natural
labelings, i.e., for n ∈ P, (−1)pΩP (−n) is equal to the number of strict order-preserving
maps τ : P → n.

146. [1+] Compute ΩP (n) and (−1)pΩP (−n) explicitly when (i) P is a p-element chain, and
(ii) P is a p-element antichain.

147. [1+] Compute Z(L, n) when L is the lattice of faces of each of the five Platonic solids.

148. [2]* Let P be a p-element poset. Find a simple expression for
∑

ω ΩP,ω(n), where ω
ranges over all p! labelings of P .

149. [3] Let Y be Young’s lattice (defined in Section 3.4). Fix µ ≤ λ in Y , and let Z(n) =
ζn(µ, λ) be the zeta polynomial of the interval [µ, λ]. Choose r so that λr+1 = 0, and
set
(
a
b

)
= 0 if a < 0 (in contravention to the usual definition). Show that

Z(n+ 1) = det

[(
λi − µj + n

i− j + n

)]

1≤i,k≤r
.

150. (a) [3] Let S = {a1, . . . , aj}< ⊂ P. Define fS(n) to be the number of chains λ0 < λ1 <
· · · < λj of partitions λi in Young’s lattice Y such that λ0 ⊢ n and λi ⊢ n + ai
for i ∈ [j]. Thus in the notation of Section 3.13 we have fS(n) = αY (T ), where
T = {n, n + a1, . . . , n+ aj}. Set

∑

n≥0

fS(n)qn = P (q)AS(q),

where P (q) =
∏

i≥1(1 − qi)−1. For instance, A∅(q) = 1. Show that AS(q) is a
rational function whose denominator can be taken as

φaj
(q) = (1− q)(1− q2) · · · (1− qaj ).
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(b) [2+] Compute AS(q) for S ⊆ [3].

(c) [3–] Show that for k ∈ P,
∑

S⊆[k]

(−1)k−#SAS(q) = q(
k+1
2 )φk(q)

−1. (3.125)

(d) [2+] Deduce from (c) that if βY (S) is defined as in Section 3.13, then for k ∈ N
we have

∑

n≥0

βY ([n, n+ k])qn+k = P (q)
k∑

i=0

(
qi(i+3)/2(−1)k−i

φi(q)

)
− (−1)k

1− q .

(e) [2] Give a simple combinatorial proof that A{1}(q) = (1− q)−1.

151. (a) [2+] Let P be a p-element poset, and let S ⊆ [p−1] such that βJ(P )(S) 6= 0. Show
that if T ⊆ S, then βJ(P )(T ) 6= 0.

(b) [5–] Find a “nice” characterization of the collections ∆ of subsets of [p − 1] for
which there exists a p-element poset P satisfying

βJ(P )(S) 6= 0⇔ S ∈ ∆.

(c) [2+] Show that (a) continues to hold if we replace J(P ) with any finite supersolv-
able lattice L of rank p.

152. (a) [2+] Let P be a finite naturally labelled poset. Construct explicitly a simplicial
complex ∆P whose faces are the linear extensions of P , such that the dimension
of the face w is des(w) − 1. (In particular, the empty face ∅ ∈ ∆P is the linear
extension 12 · · ·p, where p = #P .)

(b) [2] Draw a picture (geometric realization) of ∆P when P is a four-element an-
tichain.

(c) [3] Show that when P = p1 (a p-element antichain), we have H̃i(∆P ; Z) 6= 0 if
and only if

p− 4

3
≤ i ≤ 2p− 5

3
,

where H̃ denotes reduced homology.

153. [2+] Let p ∈ P and S ⊆ [p − 1]. What is the least number of linear extensions a
p-element poset P can have if βJ(P )(S) > 0?

154. [3–] If L and L′ are distributive lattices of rank n such that βL(S) = βL′(S) for all
S ⊆ [n − 1] (or equivalently αL(S) = αL′(S) for all S ⊆ [n − 1]), then are L and L′

isomorphic?

155. (a) [2+] Let P be a finite graded poset of rank n with 0̂ and 1̂, and suppose that every
interval of P is self-dual. Let S = {n1, n2, . . . , ns}< ⊆ [n − 1]. Show that αP (S)
depends only on the multiset of numbers n1, n2−n1, n3−n2, . . . , ns−ns−1, n−ns
(not on their order).
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(b) [2]* Let L be a finite distributive lattice for which every interval is self-dual. Show
that L is a product of chains. (For a stronger result, see Exercise 3.166.)

(c) [5] Find all finite modular lattices for which every interval is self-dual.

156. [2+] Let P = N× N. For any finite S ⊂ P we can define αP (S) and βP (S) exactly as
in Section 3.13 (even though P is infinite). Show that if S = {m1, m2, . . . , ms}< ⊂ N,
then

βN×N(S) = m1(m2 −m1 − 1) · · · (ms −ms−1 − 1).

157. Let P be a finite graded poset of rank n with 0̂ and 1̂.

(a) [2] Show that

∆k+1Z(P, 0) =
∑

S⊆[n−1]
#S=k

αP (S).

(b) [2+] Show that

(1− x)n+1
∑

m≥0

Z(P,m)xm =
∑

k≥0

βkx
k+1,

where

βk =
∑

S⊆[n−1]
#S=k

βP (S).

(c) [2] Show that the characteristic polynomial of P is given by χP (q) =
∑

k≥0wkq
n−k,

where

(−1)kwk = βP ([k − 1]) + βP ([k]).

(Set βP ([n]) = βP ([−1]) = 0.)

158. (a) [3–] Let k, t ∈ P. Let Pk,t denote the poset of all partitions π of the set [kt] =
{1, 2, . . . , kt}, ordered by refinement (i.e., Pk,t is a subposet of Πkt), satisfying the
two conditions:

i. Every block of π has cardinality divisible by k.

ii. If a < b < c < d and if B and B′ are blocks of π such that a, c ∈ B and
b, d ∈ B′, then B = B′.

Show combinatorially that the zeta polynomial of Pk,t is given by

Z(Pk,t, n+ 1) =
((kn+ 1)t)t−1

t!
.

(b) [1+] Note that Pk,t always has a 1̂, and that P1,t has a 0̂. Use (a) to show that P1,t

has Ct elements and that µP1,t(0̂, 1̂) = (−1)t−1Ct−1, where Cr denotes a Catalan
number.

(c) [3–] Show that P2,t
∼= Int(P1,t), the poset of intervals of P1,t..
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(1234) (1243) (1324) (1342) (1423) (1432)
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id

Figure 3.54: The absolute order on S4

(d) [3] Note that Pk,t is graded of rank t− 1. If S = {m1, . . . , ms}< ⊆ [0, t− 2], then
show that

αPk,t
(S) =

1

t

(
t

m1

)(
kt

m2 −m1

)
· · ·
(

kt

ms −ms−1

)(
kt

t− 1−ms

)
.

(e) [1] Deduce that Pk,t has 1
t

(
t
m

)(
kt
m−1

)
elements of rank t − m and has k(kt)!t−2

maximal chains.

(f) [3–] Let λ ⊢ t. Show that the number Nλ of π ∈ P1,t of type λ (i.e., with blocks
sizes λ1, λ2,. . . ) is given by

Nλ =
(n)ℓ(λ)−1

m1(λ)! · · ·mn(λ)!
,

where λ has mi(λ) parts equal to i.

(g) [2+] Use Exercise 3.125 to show that P1,t is a supersolvable lattice (though not
semimodular for t ≥ 4).

159. [2+] Define a partial order A(Sn) on the symmetric group Sn, called the absolute
order, as follows. We say that u ⋖ v in A(Sn) if v = (i, j)u for some transposition
(i, j), and if v has fewer cycles (necessarily exactly one less) than u. See Figure 3.54
for the case n = 4. Clearly the maximal elements of A(Sn) are the n-cycles, while
there is a unique minimal element 0̂ (the identity permutation). Show that if w is an
n-cycle then [0̂, w] ∼= P1,n, where P1,n is defined in Exercise 3.158.

160. [2] Let P be a p-element poset. Define two labelings ω, ω′ : P → [p] to be equivalent
if A(P, ω) = A(P, ω′). Clearly this definition of equivalence is an equivalence relation.
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For instance, one equivalence class consists of the natural labelings. Show that the
number of equivalence classes is equal to the number of acyclic orientations of the
Hasse diagram H of P , considered as an undirected graph. (See Exercise 3.109 for
further information on the number of acyclic orientations of a graph.)

161. [2] Fix j, k ≥ 1. Given two permutations u = u1 · · ·uj and v = v1 · · · vk of disjoint
finite sets U and V of integers, a shuffle of u and v is a permutation w = w1 · · ·wj+k of
U ∪ V such that u and v are subsequences of w. Let Sh(u, v) denote the set of shuffles
of u and v. For instance, Sh(14, 26) = {1426, 1246, 1264, 2146, 2164, 2614}. In general,
#Sh(u, v) =

(
j+k
j

)
. Let S ⊆ [j + k − 1]. Show that the number of permutations in

Sh(u, v) with descent set S depends only on D(u) and D(v) (the descent sets of u and
v). (Use the theory of (P, ω)-partitions.)

162. (a) [2+] Let P1, P2 be disjoint posets with pi = #Pi. Let ω be a labeling of P1 + P2

(disjoint union). Let ωi be the labeling of Pi whose labels are in the same relative
order as they are in the restriction of ω to Pi. Show that

WP1+P2,ω(x) =

(
p1 + p2

p1

)

x

WP1,ω1(x)WP2,ω2(x),

where
(

p1+p2

p1

)
x

indicates that the q-binomial coefficient should be taken in the

variable x.

(b) [2] Let {B1, . . . , Bk} ∈ Πn, and let wi be a permutation of Bi. Extending to k per-
mutations the definition of shuffle in Exercise 3.161, define a shuffle of w1, . . . , wk

to be a permutation w = a1 · · ·an of [n] such that the subword of w consisting of
letter from Bi is wi. For instance 469381752 is a shuffle of 4812, 67, and 935. Let
sh(w1, . . . , wk) denote the set of all shuffles of w1, . . . , wk, so if #Bi = bi then

#sh(w1, . . . , wk) =

(
n

b1, . . . , bk

)
.

Show that ∑

w∈sh(w1,...,wk)

xmaj(w) = xα
(

n

b1, . . . , bk

)

x

, (3.126)

where α =
∑

i maj(wi).

(c) [2+]* Deduce from (b) that the minimum value of maj(w) for w ∈ sh(w1, . . . , wk)
is equal to

∑
maj(wi), and that this value is achieved for a unique w. Find an

explicit description of this extremal permutation w.

163. (a) [2+] Let P be a p-element poset, with order polynomial ΩP (m). Show that as
m → ∞ (with m ∈ P), the function ΩP (m)m−p is eventually decreasing, and
eventually strictly decreasing if P is not an antichain.

(b) [5] Is the function ΩP (m)m−p decreasing for all m ∈ P?

164. [2+] Let P be a finite poset. Does the order polynomial ΩP (m) always have nonnegative
coefficients?
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Figure 3.55: Two posets with simple order polynomials

165. [3+] Let (P, ω) be a finite labelled poset. Does the (P, ω)-Eulerian polynomial AP,ω(x)
have only real zeros? What if ω is a natural labeling?

166. Let (P, ω) = {t1, . . . , tp} be a labelled p-element poset. Define the formal power series
GP,ω(x) in the variables x = (x0, x1, . . . ) by

GP,ω(x) =
∑

σ

xσ(t1) · · ·xσ(tp) =
∑

σ

x
#σ−1(0)
0 x

#σ−1(1)
1 · · · ,

where the sums range over all (P, ω)-partitions σ : P → N.

(a) [3] Suppose that ω is natural, and write GP (x) for GP,ω(x). Show that GP (x) is
a symmetric function (i.e., GP (x) = GP (wx) for any permutation w of N, where
wx = (xw(0), xw(1), . . . )) if and only if P is a disjoint union of chains.

Note. It is easily seen that GP (x) is symmetric if and only if for

S = {n1, n2, . . . , ns}< ⊆ [p− 1],

the number αJ(P )(S) depends only on the multiset of numbers n1, n2 − n1, · · · ,
ns − ns−1, p− ns (not on their order). See Exercise 3.155.

(b) [5] Show that GP,ω(x) is symmetric if and only if P is isomorphic to a (finite)
convex subset of N×N, labelled so that ω(i, j) > ω(i+1, j) and ω(i, j) < ω(i, j+1).

167. (a) [2+]* Let P be a finite poset that is a disjoint union of two chains, with a 0̂ or 1̂ or
both added. Label P so that the labels i and i+ 1 always occur on two elements
that form an edge of the Hasse diagram. This gives a labelled poset (P, ω). Two
examples are shown in Figure 3.55.

Show that all w ∈ L(P, ω) have the same number of descents, and as a consequence
give an explicit formula for the (P, ω)-order polynomial ΩP,ω(m).

(b) [3–] Show that if (P, ω) is a labelled poset such that all w ∈ L(P, ω) have the same
number of descents, then P is an ordinal sum of the posets of (a), and describe
the possible labelings ω.
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Figure 3.56: A poset P for which WP (x) has a nice product formula

168. [3]* Let P be a finite naturally labelled poset. Suppose that every connected order
ideal I of P is either principal, or else there is a unique way to write I = I1 ∪ I2 (up
to order) where I1 and I2 are connected order ideals properly contained in I. The
poset P of Figure 3.56 is an example. Write as usual (i) = 1 + q + · · · + qi−1 and
(n)! = (1)(2) · · · (n). Show that

WP (x) = (n)!

∏
{I1,I2} (#I1 + #I2)∏

I (#I)
,

where I runs over all connected order ideals of P , and {I1, I2} runs over all pairs of
incomparable (in J(P )) connected order ideals such that I1 ∩ I2 6= ∅. For the poset P
of Figure 3.56 we get

WP (x) = (5)!
(6)

(1)(1)(2)(2)(4)(5)
= 1 + x+ 2x2 + x3 + 2x4 + x5 + x6.

169. (a) [2] Let M = {1r1, 2r2, . . . , mrm} be a finite multiset on [m], and let SM be the set
of all

(
r1+···+rm
r1,...,rm

)
permutations w = (a1, a2, . . . ar) of M , where r = r1 + · · ·+ rm =

#M . Let des(w) be the number of descents of w, and set

AM(x) =
∑

w∈SM

x1+des(w),

AM(x) =
∑

w∈SM

xr−des(w).

Show that
∑

n≥0

((
n

r1

))((
n

r2

))
· · ·
((

n

rm

))
xn =

AM (x)

(1− x)r+1

∑

n≥0

(
n

r1

)(
n

r2

)
· · ·
(
n

rm

)
xn =

AM(x)

(1− x)r+1
.

(b) [2+] Find the coefficients of AM(x) explicitly in the case m = 2.

170. Let us call a finite graded poset P (with rank function ρ) pleasant if the rank-generating
function F (L, q) of L = J(P ) is given by

F (L, q) =
∏

t∈P

1− qρ(t)+2

1− qρ(t)+1
.

In (a)–(g) show that the given posets P are pleasant. (Note that (a) is a special case
of (b), and (c) is a special case of (d).)
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(a) [2] P = m× n, where m,n ∈ P

(b) [3] P = l×m× n, where l,m, n ∈ P

(c) [2] P = J(2× n), where n ∈ P

(d) [3+] P = m× J(2× n), where m,n ∈ P

(e) [3+] P = J(3× n), where n ∈ P

(f) [2+] P = m× (n⊕ (1 + 1)⊕ n), where m,n ∈ P

(g) [3–] P = m× J(J(2× 3)) and P = m× J(J(J(2× 3))), where m ∈ P

(h) [5] Find a reasonable expression for F (J(P )), where P = n1 × n2 × n3 × n4 or
P = J(4× n). (In general, these posets P are not pleasant.)

(i) [5] Are there any other “nice” classes of connected pleasant posets? Can all
pleasant posets be classified?

171. (a) [2–] Let (P, ω) be a finite labelled poset and m ∈ N. Define a polynomial

UP,ω,m(q) =
∑

σ

q|σ|,

where σ ranges over all (P, ω)-partitions σ : P → [0, m]. In particular, UP,0(q) = 1
(as usual, the suppression of ω from the notation indicates that ω is natural)
and UP,ω,m(1) = ΩP,ω(m + 1). Show that UP,m(q) = F (J(m × P ), q), the rank-
generating function of J(m× P ).

(b) [2+] If #P = p and 0 ≤ i ≤ p− 1, then define

WP,ω,i(q) =
∑

w

qmaj(w), (3.127)

where w ranges over all permutations in L(P, ω) with exactly i descents. Note
that WP,ω(q) =

∑
iWP,ω,i(q). Show that for all m ∈ N,

UP,ω,m(q) =

p−1∑

i=0

(
p + m − i

p

)
WP,ω,i(q). (3.128)

(c) [2] Let ω∗ be the labeling of the dual P ∗ defined by ω∗(t) = p + 1− ω(t). (Note
that ω∗ and ω have the same values. However, ω∗ is a labeling of P ∗ while ω is a
labeling of P .) Show that

WP ∗,ω∗,i(q) = qpiWP,ω,i(1/q) (3.129)

UP ∗,ω∗,m(q) = qpmUP,ω,m(1/q). (3.130)

(d) [1+]* The formula

(
a

b

)
=

(1− qa)(1− qa−1) · · · (1− qa−b+1)

(1− qb)(1− qb−1) · · · (1− q)
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allows us to define
(

a

b

)
for any a ∈ Z and b ∈ N. Show that

(
−a

b

)
= (−1)bq−b(2a+b−1)/2

(
a + b − 1

b

)

= (−1)bq(
b+1
2 )
(

a + b − 1

b

)

1/q

.

(e) [2+] Equation (3.96) and part (d) above allow us to define UP,ω,m(q) for any
m ∈ Z. Show that for m ∈ P,

UP,ω,−m(q) = (−1)p
∑

τ

q−|τ |,

where τ ranges over all (P, ω)-partitions τ : P → [m− 1].

(f) [3–] If t ∈ P , then let δ(t) and δi, 0 ≤ i ≤ ℓ = ℓ(P ), be as in Section 3.15.4.
Define

∆r = δr + δr+1 + · · ·+ δℓ, 1 ≤ r ≤ ℓ,

and set
M(P ) = [p− 1]− {∆1,∆2, . . . ,∆ℓ}.

Show that the degree of WP,i(q) is equal to the sum of the largest i elements of
M(P ). Note also that if P is graded of rank ℓ, then

∆r = #{t ∈ P : ρ(t) ≤ ℓ− r}.

172. Let P = {t1, . . . , tp} be a finite poset. We say that P is Gaussian if there exist integers
h1, . . . , hp > 0 such that for all m ∈ N,

UP,m(q) =

p∏

i=1

1− qm+hi

1− qhi
, (3.131)

where UP,m(q) is given by Exercise 3.171.

(a) [3–] Show that P is Gaussian if and only if every connected component of P is
Gaussian.

(b) [3–] If P is connected and Gaussian, then show that every maximal chain of P
has the same length ℓ. (Thus P is graded of rank ℓ.)

(c) [3] Let P be connected and Gaussian, with rank function ρ (which exists by (b)).
Show that the multisets {h1, . . . , hp} and {1 + ρ(t) : t ∈ P} coincide.

Note. It follows easily from (c) that a finite connected poset P is Gaussian if
and only if P ×m is pleasant (as defined in Exercise 3.170) for all m ∈ P.

(d) [2+] Suppose that P is connected and Gaussian, with h1, . . . , hp labelled so that
h1 ≤ h2 ≤ · · · ≤ hp. Show that hi + hp+1−i = ℓ(P ) + 2 for 1 ≤ i ≤ p.
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(e) [2+] Let P be connected and Gaussian. Show that every element of P of rank
one covers exactly one minimal element of P .

(f) [3+] Show that the following posets are Gaussian:

i. r × s, for all r, s ∈ P,

ii. J(2× r), for all r ∈ P,

iii. the ordinal sum r ⊕ (1 + 1)⊕ r, for all r ∈ P,

iv. J(J(2× 3)),

v. J(J(J(2× 3))).

(g) [5] Are there any other connected Gaussian posets? In particular, must a con-
nected Gaussian poset be a distributive lattice?

173. Let (P, ω) be a labelled poset, and set

E(P ) = {(s, t) : s⋖ t}.

Define ǫ = ǫω : E(P )→ {−1, 1} by

ǫ(s, t) =

{
1, ω(s) < ω(t)
−1, ω(s) > ω(t).

We say that ǫ is a sign-grading if for all maximal chains t0 ⋖ t1 ⋖ · · · ⋖ tℓ in P the
quantity

∑ℓ
i=1 ǫ(ti−1, ti) is the same, denoted r(ǫ) and called the rank of ǫ. A labelled

poset (P, ω) with a sign-grading ǫ is called a sign-graded poset. In that case we have
a rank function ρ = ρǫ given by

ρ(t) =
m∑

i=1

ǫ(ti−1, ti),

where t0 ⋖ t1 ⋖ · · ·⋖ tm = t is a saturated chain from a minimal element t0 to t. (The
definition of sign-grading insures that ρ(t) is well-defined.)

(a) [1+]* Suppose that ω is natural. Show that ǫ is a sign-grading if and only if P is
graded.

(b) [2]* Show that a finite poset P has a labeling ω for which (P, ω) is a sign-graded
poset if and only if the lengths of all maximal chains of P have the same parity.

(c) [2+]* Suppose that ω and ω′ are labelings of P which both give rise to sign-
gradings ǫ and ǫ′. Show that the (P, ω) and (P, ω′)-Eulerian polynomials are
related by

xr(ǫ)/2AP,ω(x) = xr(ǫ
′)/2AP,ω′(x).

(d) [2]* Suppose that (P, ω) is a sign-graded poset whose corresponding rank function
ρ takes on only the values 0 and 1, and ρ(s) < ρ(t) implies ω(s) < ω(t). We then
call ω a canonical labeling of P . Show that every sign-graded poset (P, ω) has
a canonical labeling. Figure 3.57 shows a poset (P, ω), the sign-grading ǫω, the
rank function ρ, and a canonical labeling ω′.
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Figure 3.58: The procedure P → (P ′, P ′′)

(e) [2+]* Let (P, ω) be sign-graded, where ω is a canonical labeling. Let s ‖ t in P ,
with ρ(t) = ρ(s) + 1. Define

P ′ = P with s < t adjoined,

P ′′ = P with s > t adjoined.

Thus ω continues to be a labeling of P ′ and P ′′. Show that P ′ and P ′′ are sign-
graded, and that ω is a canonical labeling for both. Figure 3.58 shows an example
of this decomposition for the poset of Figure 3.57. We take s to be the element
labelled 4 (of rank 1) and t to be the element labelled 2 (of rank 1).

(f) [2–]* Show that L(P, ω) = L(P ′, ω) ·∪L(P ′′, ω).

(g) [2+] Write A′
j(x) = Aj(x)/x, where Aj(x) is an Eulerian polynomial. Iterate the

procedure P → (P ′, P ′′) as long as possible. Deduce that if (P, ω) is sign-graded,
then we can write the (P, ω)-Eulerian polynomial AP,ω(x) as a sum of terms of the
form xbA′

a1
(x) · · ·A′

ak
(x), where b ∈ N. Moreover, all these terms are symmetric

(in the sense of Exercise 3.50) with the same center of symmetry.

(h) [2] Deduce from (g) that the coefficients of AP,ω(x) are symmetric and unimodal.

(i) [2–] Carry out the procedure of (g) for the poset of Figure 3.59, naturally labelled.

174. (a) [2–] Show that a finite graded poset with 0̂ and 1̂ is semi-Eulerian if and only if
for all s < t in P except possibly (s, t) = (0̂, 1̂), the interval [s, t] has as many
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Figure 3.59: A poset for Exercise 3.173(i)

Figure 3.60: The poset 1⊕ 21⊕ 21⊕ 21⊕ 1

elements of odd rank as of even rank. Show that P is Eulerian if in addition P
has as many elements of odd rank as of even rank.

(b) [2] Show that if P is semi-Eulerian of rank n, then

(−1)nZ(P,−m) = Z(P,m) +m((−1)nµP (0̂, 1̂)− 1).

(c) [2] Show that a semi-Eulerian poset of odd rank n is Eulerian.

175. [2+] Suppose that P and Q are Eulerian, and let P ′ = P − {0̂}, Q′ = Q − {0̂},
R = (P ′ ×Q′) ∪ {0̂}. Show that R is Eulerian.

176. (a) [2] Let Pn denote the ordinal sum 1⊕ 21⊕ 21⊕· · ·⊕ 21⊕1 (n copies of 21). For
example, P3 is shown in Figure 3.60. Compute βPn(S) for all S ⊆ [n].

(b) [1+] Use (a) and Exercise 3.157(b) to compute
∑

m≥0 Z(Pn, m)xm.

(c) [2+] It is easily seen that Pn is Eulerian. Compute the polynomials f(Pn, x) and
g(Pn, x) of Section 3.16.

177. (a) [2] Let Ln denote the lattice of faces of an n-dimensional cube, ordered by inclu-
sion. Show that Ln is isomorphic to the poset Int(Bn) with a 0̂ adjoined, where
Bn denotes a boolean algebra of rank n.

(b) [2] Show that Ln is isomorphic to Λn with a 0̂ adjoined, where Λ is the three-

element poset .

(c) [2] Let Pn be the poset of Exercise 3.176. Show that Ln is isomorphic to the poset
of chains of Pn that don’t contain 0̂ and 1̂ (including the empty chain), ordered
by reverse inclusion, with a 0̂ adjoined.

(d) [3–] Let S ⊆ [n]. Show that

βLn(S) =

n∑

i=0

(
n

i

)
Dn+1(S, i+ 1),
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Figure 3.61: Plane trees with four vertices

where Dm(T, j) denotes the number of permutations of [m] with descent set T
and last element j, and where S = [n]− S.

(e) [2+] Compute Z(Ln, m).

(f) [3] Since Ln is the lattice of faces of a convex polytope, it is Eulerian by Proposi-
tion 3.8.9. Compute the polynomial g(Ln, x) of Section 3.16. Show in particular
that

g(Ln, 1) =
1

n+ 1

(
2n

n

)
and f(Ln, 1) = 2

(
2(n− 1)

n− 1

)
.

(g) [3–] Use (f) to show that g(Ln, x) =
∑
aix

i, where ai is the number of plane trees
with n + 1 vertices such that exactly i vertices have at least two children. For
example, see Figure 3.61 for n = 3, which shows that g(L3, x) = 1 + 4x.

178. [2+]* Let f(n) be the total number of chains containing 0̂ and 1̂ in the lattice Ln of
the previous exercise. Show that

∑

n≥0

f(n)
xn

n!
=

ex

2− e2x .

179. [4] Let L be the face lattice of a convex polytope P. Show that the coefficients of
g(L, x) are nonnegative. Equivalently (since f(L, 0) = g(L, 0) = 1) the coefficients of
f(L, x) are nonnegative and unimodal, i.e., weakly increase to a maximum and then
decrease.

180. (a) [2+] Let n, d ∈ P with n ≥ d + 1. Define L′
nd to be the poset of all subsets

S of [n], ordered by inclusion, satisfying the following condition: S is contained
in a d-subset T of [n] such that whenever 1 ≤ i 6∈ T , [i + 1, i + k] ⊆ T , and
n ≥ i + k + 1 6∈ T , then k is even. Let Lnd be L′

nd with a 1̂ adjoined. Show that
Lnd is an Eulerian lattice of rank d+ 1. The lattice L42 is shown in Figure 3.62.

(b) [2]* Show that Lnd has
(
n
k

)
elements of rank k for 0 ≤ k ≤ ⌊d/2⌋.

181. (a) [3–] Let L = L0 ∪ L1 ∪ · · · ∪ Ld+1 be an Eulerian lattice of rank d + 1. Suppose
that the truncation L0 ∪ L1 ∪ · · · ∪ L⌈(d+1)/2⌉ is isomorphic to the truncation
M = M0∪M1∪· · ·∪M⌈(d+1)/2⌉, where M is a boolean algebra Bn of rank n = #L1.
Does it follow that n = d+ 1 and that L ∼= M? Note that by Exercise 3.180 this
result is best possible, i.e., ⌈(d+ 1)/2⌉ cannot be replaced with ⌈(d− 1)/2⌉.

455



1412 23 34

1 2 3 4

φ

1̂

Figure 3.62: The Eulerian lattice L42

B2

a

cb

d

ac−b−d

abc−d

a−c−bda−b−cd

abcd

B )(Γ 2

ab−c−d

ab−cd a−bcd ac−bd

a−b−c−d

Figure 3.63: The Eulerian lattice ΓB2

(b) [2] What if we only assume that L is an Eulerian poset?

182. [3–] Let P be a finite poset, and let π be a partition of the elements of P such that
every block of π is connected (as a subposet of P ). Define a relation ≤ on the blocks
of π as follows: B ≤ B′ if for some t ∈ B and t′ ∈ B′ we have t ≤ t′ in P . If this
relation is a partial order, then we say that π is P -compatible. Let ΓP be the set of
all P -compatible partitions of P , ordered by refinement (so Γ(P ) is a subposet of ΠP ).
See Figure 3.63 for an example. Show that ΓP is an Eulerian lattice.

183. (a) [2–]* Define a partial order, called the (strong) Bruhat order on the symmetric
group Sn, by defining its cover relations as follows. We say that w covers v if
w = (i, j)v for some transposition (i, j) and if inv(w) = 1 + inv(v). For instance,
75618324 covers 73618524; here (i, j) = (2, 6). We always let the “default” partial
ordering of Sn be the Bruhat order, so any statement about the poset structure of
Sn refers to the Bruhat order. The poset S3 is shown in Figure 3.64(a), while the
solid and broken lines of Figure 3.65 show S4. Show that Sn is a graded poset with
ρ(w) = inv(w), so that the rank-generating function is given by F (Sn, q) = (n)!.

(b) [3–] Given w = a1a2 · · ·an ∈ Sn define a left-justified triangular array Tw whose
ith row consists of a1, . . . , ai written in increasing order. For instance, if w =
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Figure 3.64: The Bruhat order S3 and weak order W (S3)

31524, then

Tw =

3
1 3
1 3 5
1 2 3 5
1 2 3 4 5.

Show that v ≤ w if and only if Tv ≤ Tw (component-wise ordering).

(c) [3] Show that Sn is Eulerian.

(d) [2+] Show that the number of cover relations in Sn is (n + 1)!(Hn+1 − 2) + n!,
where Hn+1 = 1 + 1

2
+ 1

3
+ · · ·+ 1

n+1
.

(e) [2+]* Find the number of elements w ∈ Sn for which the interval [0̂, w] is a
boolean algebra. Your answer shouldn’t involve any sums or products.

(f) [5–] Find the total number of intervals of Sn that are boolean algebras.

(g) [3+] Let v ⋖ w in Sn, so w = (i, j)v for some i < j. Define the weight ω(v, w) =
j − i. Set r =

(
n
2

)
. If C : 0̂ = v0 ⋖ v1 ⋖ · · · ⋖ vr = 1̂ is a maximal chain of Sn,

then define
ω(C) = ω(v0, v1)ω(v1, v2) · · ·ω(vr−1, vr).

Show that
∑

C ω(C) = r!, where C ranges over all maximal chains of Sn.

184. [3] Let In denote the subposet of Sn (under Bruhat order) consisting of the involutions
in Sn. Show that In is Eulerian.

185. (a) [2–]* Define a partial order W (Sn), called the weak (Bruhat) order on Sn, by
defining its cover relations as follows. We say that w covers v if w = (i, i + 1)v
for some adjacent transposition (i, i+1) and if inv(w) = 1+ inv(v). For instance,
75618325 covers 75613825. The poset W (S3) is shown in Figure 3.64(b), while the
solid lines of Figure 3.65 show W (S4). Show that W (Sn) is a graded poset with
ρ(w) = inv(w), so that the rank-generating function is given by F (W (Sn), q) =
(n)!.
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Figure 3.65: The Bruhat order S4 and weak order W (S4)

(b) [2+] Show that W (Sn) is a lattice.

(c) [2] Show that the number of cover relations in W (Sn) is (n− 1)n!/2.

(d) [3–] Let µ denote the Möbius function of W (Sn). Show that

µ(v, w) =





(−1)k, if w can be obtained from v by reversing the elements
in each of k + 1 disjoint increasing factors of v

0, otherwise.

(e) [3] Show that the zeta polynomial of W (Sn) satisfies

Z(W (Sn),−j) = (−1)n−1j, 1 ≤ j ≤ n− 1.

(f) [2]* Characterize permutations w ∈ W (Sn) for which the interval [0̂, w] is a
boolean algebra in terms of pattern avoidance.

(g) [2+]* Find the number of elements w ∈ W (Sn) for which the interval [0̂, w] is
a boolean algebra. Your answer shouldn’t involve any sums or products. More
generally, find a simple formula for the generating function

∑
n≥0

∑
w q

rank(w)xn,

where w ranges over all elements of W (Sn) for which the interval [0̂, w] is a
boolean algebra.

(h) [3–]* Let f(n, i) denote the total number of intervals ofW (Sn) that are isomorphic
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to the boolean algebra Bi. Show that

∑

n≥0

∑

i≥0

f(n, i)qi
xn

n!
=

1

1− x− qx2

2

= 1 + x+ (q + 2)
x2

2!
+ (6q + 6)

x3

3!

+(6q2 + 36q + 24)
x4

4!
+ (90q2 + 240q + 120)

x5

5!

(90q3 + 1080q2 + 1800q + 720)
x6

6!
+ · · · .

(i) [3–]* Find the number of elements w ∈ W (Sn) for which the interval [0̂, w] is a
distributive lattice. Your answer shouldn’t involve any sums or products.

(j) [5–] Find the total number of intervals of W (Sn) that are distributive lattices.
The values for 1 ≤ n ≤ 8 are 1, 2, 16, 124, 1262, 15898, 238572, 4152172.

(k) [3+] Show that the number Mn of maximal chains of W (Sn) is given by

Mn =

(
n
2

)
!

1n−1 3n−2 5n−3 · · · (2n− 3)1
.

(l) [3+] Let v ⋖ w in W (Sn), so w = (i, i + 1)v for some i. Define the weight
σ(v, w) = i. Set r =

(
n
2

)
. If C : 0̂ = v0 ⋖ v1 ⋖ · · ·⋖ vr = 1̂ is a maximal chain of

W (Sn), then define

σ(C) = σ(v0, v1)σ(v1, v2) · · ·σ(vr−1, vr).

Show that
∑

C σ(C) = r!, where C ranges over all maximal chains of Sn.

(m) [5–] Is the similarity between (l) above and Exercise 3.183(g) just a coincidence?

186. (a) [3–] Let w ∈ Sn be separable, as defined in Exercise 3.14(b). Show that the
rank-generating functions of the intervals Λw = [0̂, w] and Vw = [w, 1̂] in W (Sn)
(where rank(w) = 0 in Vw) satisfy

F (Λw, q)F (Vw, q) = (n)!.

(b) [3–] Show that the polynomials F (Λw, q) and F (Vw, q) are symmetric and uni-
modal (as defined in Exercise 1.50).

(c) [3–] Let w = a1a2 · · ·an ∈ Sn be 231-avoiding. Set an+1 = n + 1. Show that

F (Λw, q) =
n∏

i=1

(ci),

where ci is the least positive integer for which ai+ci > ai.

(d) [5–] What can be said about other permutations w ∈ Sn for which F (Λw, q) is
symmetric, or more strongly, is a divisor of (n)!?
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Figure 3.66: The distributive lattices M(3) and M(4)
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187. (a) [2]* For n ≥ 0, define a partial order M(n) on the set 2[n] of all subsets of [n] as
follows. If S = {a1, . . . , as}> ∈ M(n) and T = {b1, . . . , bt}> ∈M(n), then S ≥ T
if s ≥ t and ai ≥ bi for 1 ≤ i ≤ t. The posets M(3) and M(4) are shown in
Figure 3.66.

Show that M(n) ∼= J(J(2 × n)) and that the rank-generating function of M(n)
is given by

F (M(n), q) = (1 + q)(1 + q2) · · · (1 + qn).

(b) [2+] Consider the following variation Gn of the weak order on Sn, which we call
the greedy weak order. It is a partial order on a certain subset (also denoted Gn)
of Sn. First, we let 12 · · ·n ∈ Gn. Suppose now that w = a1a2 · · ·an ∈ Gn and
that the permutations that cover w in the weak order W (Sn) are obtained from
w by transposing adjacent elements (ai1 , ai1+1), . . . , (aik , aik+1). In other words,
the ascent set of w is {i1, . . . , ik}. Then the permutations that cover w in Gn are
obtained by transposing one of the pairs (aij , aij+1) for which (aij , aij+1) is minimal
in the poset P × P among all the pairs (ai1 , ai1+1), . . . , (aik , aik+1). For instance,
the elements that cover 342561 in weak order are obtained by transposing the
pairs (3, 4), (2, 5), and (5, 6). The minimal pairs are (3, 4) and (2, 5). Hence in
G6, 342561 is covered by 432561 and 345261. Show that Gn ∼= M(n− 1).

(c) [2+] Describe the elements of the set Gn.

188. [3–] Let a = (a1, a2, . . . , an) be a finite sequence of integers with no two consecutive
elements equal. Let P = P (a) be the set of all subsequences a′ = (ai1 , ai2 , . . . , aim)
(so 1 ≤ i1 < i2 < · · · < im ≤ n) of a such that no two consecutive elements of a′ are
equal. Order P by the rule b ≤ c if b is a subsequence of c. Show that P is Eulerian.

189. [2+]* Let P be an Eulerian poset of rank d + 1 with d atoms, such that P − {1̂} is a
simplicial poset. Show that if d is even, then P has an even number of coatoms.

190. (a) [3–] Let Pn be the poset of rank n+1 illustrated in Figure 3.67(a) for n = 6. The
restriction of Pn to ranks i and i+1, 2 ≤ i ≤ n−2, is the poset of Figure 3.67(b).
Show that Pn is Eulerian with cd-index equal to the sum of all cd monomials of
degree n (where deg c = 1, deg d = 2).

(b) [2]* Let M(n) denote the number of maximal chains of Pn. Show that

∑

n≥0

M(n)xn =
1

1− 2x− 2x2
.

191. (a) [2]* Let P and Q be Eulerian posets. Show that P ∗Q is Eulerian, where P ∗Q
is the join of P and Q as defined by equation (3.86).

(b) [2]* Show that ΦP∗Q(c, d) = ΦP (c, d)ΦQ(c, d), where Φ denotes the cd-index.

192. [4–] Let P be a Cohen-Macaulay and Eulerian poset. Such posets are also called
Gorenstein* posets, as in the topological digression of Section 3.16. Show that the
cd-index ΦP (c, d) has nonnegative coefficients.
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(a) (b)

Figure 3.67: An Eulerian poset with a simple cd-index

193. (a) [3–] Give an example of an Eulerian poset whose cd-index has a negative coeffi-
cient.

(b) [3] Strengthening (a), give an example of an Eulerian poset P whose flag h-vector
βP has a negative value.

194. [5–] Let P be a finite graded poset of rank n, with pi elements of rank i. We say
that P is rank-symmetric if pi = pn−i for 0 ≤ i ≤ n. Find the dimension d(n) of the
space spanned, say over Q, by the flag f -vectors (or equivalently flag h-vectors) of all
Eulerian posets P of rank n with the additional condition that every interval of P is
rank-symmetric.

195. [3] Fix k ≥ 1, and let Fn(k) be the space spanned over Q by the flag f -vectors of all
graded posets of rank n with 0̂ and 1̂ such that every interval of rank k is Eulerian. Such
posets are called k-Eulerian. Since Fn(k) = Fn(k+ 1) for k even by Exercise 3.174(c),
we may assume that k is odd, say k = 2j + 1. Let dn(k) = dimFn(k). Show that

∑

n≥0

dn(2j + 1)xn = 1 +
x(1 + x)(1 + x2j)

1− x− x2 − x2j+2
.

196. (a) [2] Show that if B(n) is the factorial function of a binomial poset, then B(n)2 ≤
B(n− 1)B(n+ 1).

(b) [5] What functions B(n) are factorial functions of binomial posets? In particular,
can one have B(n) = F1F2 · · ·Fn, where Fi is the ith Fibonacci number (F1 =
F2 = 1, Fn+1 = Fn + Fn−1)?

462



197. [3–] Show that there exist an uncountable number of pairwise nonisomorphic binomial
posets Pα such that (a) they all have the same factorial function B(n), and (b) each
Pα has a maximal chain 0̂ = t0 ⋖ t1 ⋖ t2 < · · · such that Pα =

⋃
n≥0[0̂, tn].

198. [3–] Let P be an Eulerian binomial poset, i.e., a binomial poset for which every interval
is Eulerian. Show that either every n-interval of P is a boolean algebra Bn, or else
every n-interval is a “butterfly poset” or ladder 1 ⊕ A2 ⊕ A2 ⊕ · · · ⊕ A2 ⊕ 1, where
A2 = 1 + 1, a two-element antichain.

199. [2–] Find all finite distributive lattices L that are binomial posets, except for the axiom
of containing an infinite chain.

200. [2+] Let Pn be an n-interval of the q = 2 case of the binomial poset of Exam-

ple 3.18.3(e), so B(n) = 2(n
2)n!. Show that the zeta polynomial of Pn is given by

Z(Pn, m) =
∑

G

χG(m), (3.132)

where G ranges over all simple graphs on the vertex set [n], and where χG is the
chromatic polynomial of G. (Note that Example 3.18.9 gives a generating function for
Z(Pn, m).)

201. (a) [2] Let P be a locally finite poset with 0̂ for which every maximal chain is infinite
and every interval [s, t] is graded. Thus P has a rank function ρ. Call P a trian-
gular poset if there exists a function B : {(i, j) ∈ N× N : i ≤ j} → P such that
any interval [s, t] of P with ρ(s) = m and ρ(t) = n has B(m,n) maximal chains.
Define a subset T of the incidence algebra I(P ) = I(P,K), where char(K) = 0,
by

T (P ) = {f ∈ I(P ) : f(s, t) = f(s′, t′) if ρ(s) = ρ(s′) and ρ(t) = ρ(t′)}.
If f ∈ T (P ) then write f(m,n) for f(s, t) when ρ(s) = m and ρ(t) = n. Show
that T (P ) is isomorphic to the algebra of all infinite upper-triangular matrices
[aij ]i,j≥0 over K, the isomorphism being given by

f 7→




f(0, 0)

B(0, 0)

f(0, 1)

B(0, 1)

f(0, 2)

B(0, 2)
· · ·

0
f(1, 1)

B(1, 1)

f(1, 2)

B(1, 2)
· · ·

0 0
f(2, 2)

B(2, 2)
· · ·

...
...

...




,

where f ∈ T (P ).

(b) [3–] Let L be a triangular lattice. Set D(n) = B(n, n + 1) − 1. Show that L is
(upper) semimodular if and only if for all n ≥ m+ 2,

B(m,n)

B(m+ 1, n)
= 1 +

n−m−2∑

i=0

D(m)D(m+ 1) · · ·D(m+ i).

463



(c) [2] Let L be a triangular lattice. If D(n) 6= 0 for all n ≥ 0 then show that L is
atomic. Use (b) to show that the converse is true if L is semimodular.

202. [3] The shuffle poset Wmn with respect to alphabets A and B is defined in Exer-
cise 7.48(g). Let [u, v] be an interval of Wmn, where u = u1 · · ·ur and v = v1 · · · vs. Let
ui1 · · ·uit and vj1 · · · vjt be the subwords of u and v, respectively, formed by the letters
in common to both words. Because u ≤ v, the shuffle property implies uip = vip for
each p = 1, . . . , t. Moreover, the remaining letters of u belong to A, and the remaining
letters of v belong to B. Therefore the interval [u, v] is isomorphic to the product of
shuffle posets Wip−ip−1−1,jp−jp−1−1 for p = 1, 2, . . . , t + 1, where we set i0 = j0 = 0,
it+1 = r + 1 and jt+1 = s+ 1. We write

[u, v] ≃c
∏

p

Wip−ip−1−1,jp−jp−1−1, (3.133)

the canonical isomorphism type of the interval [u, v]. (The reason for this terminology
is that some of the factors in equation (3.133) can be one-element posets, any of which
could be omitted without affecting the isomorphism type.) Consider now the poset
W∞∞ whose elements are shuffles of finite words using the lower alphabet A = {ai :
i ∈ P} and the upper alphabet B = {bi : i ∈ P}, with the same definition of ≤ as for
finite alphabets. A multiplicative function on W∞∞ is a function f in the incidence
algebra I(W∞∞,C) for which f00 = 1 and which has the following two properties:

• If [u, v] and [u′, v′] are two intervals both canonically isomorphic to Wij , then
f(u, v) = f(u′, v′). We denote this value by fij.

• If [u, v] ≃c
∏

i,jW
cij
ij then f(u, v) =

∏
ij f

cij
ij .

Let f and g be two multiplicative functions on W∞∞, and let

F = F (x, y) =
∑

i,j≥0

fijx
iyj,

G = G(x, y) =
∑

i,j≥0

gijx
iyj,

F ∗G = (F ∗G)(x, y) =
∑

i,j≥0

(f ∗ g)ijxiyj,

where ∗ denotes convolution in the incidence algebra I(W∞∞,C). Let F0 = F (x, 0),
G0 = G(0, y), and

F̃ (x, y) = F (x,G0y)

G̃(x, y) = G(F0x, y).

Show that
1

F ∗G =
1

F̃G0

+
1

F0G̃
− 1

F0G0
.
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203. [3–] Fix an integer sequence 0 ≤ a1 < a2 < · · · < ar < m. For k ∈ [r], let fk(n) denote
the number of permutations b1b2 · · · bmn+ak

of [mn+ak] such that bj > bj+1 if and only
if j ≡ a1, . . . , ar (modm). Let

Fk = Fk(x) =
∑

n≥0

(−1)nr+kfk(n)
xmn+ak

(mn+ ak)!

Φj(x) =
∑

n≥0

xmn+j

(mn + j)!
.

Let ā denote the least nonnegative residue of a (modm), and set ψij = Φai−aj
(x). Show

that
F1ψ11 + F2ψ12 + · · · + Frψ1r = 1
F1ψ21 + F2ψ22 + · · · + Frψ2r = 0

...
F1ψr1 + F2ψr2 + · · · + Frψrr = 0.

Solve these equations to obtain an explicit expression for Fk(x) as a quotient of two
determinants.

204. (a) [2+] Let P be a locally finite poset for which every interval is graded. For any
S ⊆ P and s ≤ t in P , define [s, t]S as in equation (3.93) and let µS(s, t) denote
the Möbius function of the poset [s, t]S evaluated at the interval [s, t]. Let z be
an indeterminate, and define g, h ∈ I(P ) by

g(s, t) =

{
1, if s = t

(1 + z)n−1, if ℓ(s, t) = n ≥ 1

h(s, t) =





1, if s = t∑

S

µS(s, t)z
n−1−#S, if s < t, where ℓ(s, t) = n ≥ 1 and

S ranges over all subsets of [n− 1].

Show that h = g−1 in I(P ).

(b) [1+] For a binomial poset P write h(n) for h(s, t) when ℓ(s, t) = n, where h is
defined in (a). Show that

1 +
∑

n≥1

h(n)
xn

B(n)
=

[
1 +

∑

n≥1

(1 + z)n−1 xn

B(n)

]−1

.

(c) [2] Define

Gn(q, z) =
∑

w∈Sn

zdes(w)qinv(w),

where des(w) and inv(w) denote the number of descents and inversions of w,
respectively. Show that

1 + z
∑

n≥1

Gn(q, z)
xn

(n)!
=

[
1− z

∑

n≥1

(z − 1)n−1 xn

(n)!

]−1

.
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In particular, setting q = 1 we obtain Proposition 1.4.5:

1 +
∑

n≥1

z−1An(z)
xn

n!
=

[
1−

∑

n≥1

(x− 1)n−1x
n

n!

]−1

=
1− z

ex(z−1) − z ,

where An(z) denotes an Eulerian polynomial.

205. (a) [2+] Give an example of a 1-differential poset that is not isomorphic to Young’s
lattice Y nor to Ω∞

1 Y [n] for any n, where Y [n] denotes the rank n truncation of
Y (i.e., the subposet of Y consisting of all elements of rank at most n).

(b) [3] Show that there are two nonisomorphic 1-differential posets up to rank 5, five
up to rank 6, 35 up to rank 7, 643 up to rank 8, and 44605 up to rank 9.

(c) [3–] Give an example of a 1-differential poset that is not isomorphic to Y nor to
a poset Ω∞

1 P , where P is 1-differential up to some rank n.

206. [3] Show that the only 1-differential lattices are Y and Z1.

207. [2+] Let P be an r-differential poset, and let Ak(q) be as in equation (3.110). Write
α(n− 2→ n→ n− 1→ n) for the number of Hasse walks t0 ⋖ t1 ⋖ t2 ⋗ t3 ⋖ t4 in P ,
where ρ(t0) = n− 2. Show that

∑

n≥0

α(n− 2→ n→ n− 1→ n)qn = F (P, q)(2rq2A2(q) + rq3A3(q) + q4A4(q)).

208. (a) [2+] Let P be an r-differential poset, and let t ∈ P . Define a word (noncom-
mutative monomial) w = w(U,D) in the letters U and D to be a valid t-word
if 〈w(U,D)0̂, t〉 6= 0. Note that if s ∈ P , then a valid t-word is also a valid
s-word if and only if ρ(s) = ρ(t). Let w = w1 · · ·wl be a valid t-word. Let
S = {i : wi = D}. For each i ∈ S, let ai be the number of D’s in w to the right
of wi, and let bi be the number of U ’s in w to the right of wi. Show that

〈w0̂, t〉 = e(t)r#S
∏

i∈S
(bi − ai),

where e(t) is defined in Example 3.21.5.

(b) [2–]* Deduce from (a) that if n = ρ(t) then

〈w0̂,P 〉 = α(0→ n)r#S
∏

i∈S
(bi − ai).

(c) [2–]* Deduce the special case 〈UDUU 0̂,P 〉 = 2r2(r + 1). Also deduce this result
from Exercise 3.207.
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209. [2] Let U and D be operators (or indeterminates) satisfying DU −UD = 1. Show that

(UD)n =
n∑

k=0

S(n, k)UkDk, (3.134)

where S(n, k) denotes a Stirling number of the second kind.

210. [2+] A word w in U and D is balanced if it contains the same number of U ’s as D’s.
Show that if DU − UD = 1, then any two balanced words in U and D commute.

211. [3–]* Let P be an r-differential poset. Let c(t) denote the number of elements covering
t ∈ P , and set f(n) =

∑
t∈Pn

c(t)2. Show that

∑

n≥0

f(n)qn =
r2 + (r + 1)q − q2

(1− q)(1− q2)
F (P, q).

212. Let P be an r-differential poset, and fix k ∈ N. Let κ(n → n + k → n) denote the
number of closed Hasse walks in P of the form t0 ⋖ t1 ⋖ · · ·⋖ tk ⋗ tk+1 ⋗ · · ·⋗ t2k (so
t0 = t2k) such that ρ(t0) = n.

(a) [2–]* Show that

κ(n→ n+ k → n) =
∑

t∈Pn

〈DkUkt, t〉

=
∑

s∈Pn

∑

t∈Pn+k

e(s, t)2,

where e(s, t) denotes the number of saturated chains s = s0 ⋖ s1 ⋖ · · ·⋖ sk = t.

(b) [2+]* Show that
∑

n≥0

κ(n→ n + k → n)qn = rkk!(1− q)−kF (P, q).

213. [2+] Let P be an r-differential poset, and let κ2k(n) denote the total number of closed
Hasse walks of length 2k starting at some element of Pn. Show that for fixed k,

∑

n≥0

κ2k(n)qn =
(2k)!rk

2kk!

(
1 + q

1− q

)k
F (P, q).

214. (a) [3–] Show that the “fattest” r-differential poset is Zr, i.e., has at least as many
elements of any rank i as any r-differential poset.

(b) [5] Show that the “thinnest” r-differential poset is Y r.

215. (a) [2] Let P be an r-differential poset, and let pi = #Pi. Show that p0 ≤ p1 ≤ · · · .
Hint. Use linear algebra.

(b) [2+]* Show that limi→∞ pi =∞.

(c) [5] Show that pi < pi+1 except for the case i = 0 and r = 1.
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SOLUTIONS TO EXERCISES

1. Itinerant salespersons who take revenge on customers who don’t pay their bills are
retaliatory peddlers, and “retaliatory peddlers” is an anagram of “partially ordered
set,” i.e., they have the same multiset of letters.

2. Routine. See [3.13], Lemma 1 on page 21.

3. The correspondence between finite posets and finite topologies (or more generally ar-
bitrary posets and topologies for which any intersection of open sets is open) seems
first to have been considered by P. S. Alexandroff, Mat. Sb. (N.S.) 2 (1937), 510–518,
and has been rediscovered many times.

4. Let S = {Λt : t ∈ P}, where Λt = {s ∈ P : s ≤ t}. This exercise is the poset analogue
of Cayley’s theorem that every group is isomorphic to a group of permutations of a
set.

5. (a) The enumeration of n-element posets for 1 ≤ n ≤ 7 appears in John A. Wright,
thesis, Univ. of Rochester, 1972. Naturally computers have allowed the values of
n to be considerably extended. At the time of this writing the most recent paper
on this topic is G. Brinkmann and B. D. McKay, Order 19 (2002), 147–179.

(c) The purpose of this seemingly frivolous exercise is to point out that some simply
stated facts about posets may be forever unknowable.

(d) D. J. Kleitman and B. L. Rothschild, Proc. Amer. Math. Soc. 25 (1970), 276–282.
The lower bound for this estimate is obtained by considering posets of rank one
with ⌊n/2⌋ elements of rank 0 and ⌈n/2⌉ elements of rank 1.

(e) D. J. Kleitman and B. L. Rothschild, Trans. Amer. Math. Soc. 205 (1975), 205–
220. The asymptotic formula given there is more complicated but can be simplified
to that given here. It follows from the proof that almost all posets have longest
chain of length two.

6. (a) The function f is a permutation of a finite set, so fn = 1 for some n ∈ P. But
then f−1 = fn−1, which is order-preserving.

(b) Let P = Z ∪ {t}, with t < 0 and t incomparable with all n < 0. Let f(t) = t and
f(n) = n+ 1 for n ∈ Z.

7. (a) An example is shown in Figure 3.68. There are four other 6-element examples,
and none smaller. For the significance of this exercise, see Corollary 3.15.18(a).

(b) Use induction on ℓ, removing all minimal elements from P . This proof is due
to D. West. The result (with a more complicated proof) first appeared in [2.19,
pp. 19–20].

8. The poset Q of Figure 3.69 was found by G. Ziegler, and with a 0̂ and 1̂ adjoined
is a lattice. Ziegler also has an example of length one with 24 elements, and an
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Figure 3.68: A solution to Exercise 3.7

Figure 3.69: A self-dual poset with no involutive antiautomorphism

example which is a graded lattice of length three with 26 elements. Another example
is presumably the one referred to by Birkhoff in [3.13, Exer. 10, p. 54].

9. False. Non-self-dual posets come in pairs P, P ∗, so the number of each order is even.
The actual number is 16506. The number of self-dual 8-element posets is 493.

10. (b) Suppose that f : Int(P )→ Int(Q) is an isomorphism. Let f([0̂, 0̂]) = [s, s], where
0̂ ∈ P and s ∈ Q. Define A to be the subposet of Q of all elements t ≥ s, and
define B to be all elements t ≤ s. Check that P ∼= A× B∗, Q ∼= A× B.

This result is due independently to A. Gleason (unpublished) and M. Aigner and
G. Prins, Trans. Amer. Math. Soc. 166 (1972), 351–360.

(c) (A. Gleason, unpublished) See Figure 3.70. The poset P may be regarded as a
“twisted” direct product (not defined here) of the posets A and B of Figure 3.71,
and Q a twisted direct product of A and C. These twisted direct products exist
since the poset A is, in a suitable sense, not simply-connected but has the covering
poset Ã of Figure 3.71. A general theory was presented by A. Gleason at an M.I.T.
seminar in December, 1969.

For the determination of which posets have isomorphic posets of convex subposets
see G. Birkhoff and M. K. Bennett, Order 2 (1985), 223–242 (Theorem 13).

11. (a) See Birkhoff [3.13, Thm. 2, p. 57].

(b) See [3.13, Thm. 2, pp. 68–69].

(c) See [3.13, p. 69]. If P is any connected poset with more than one element, then
we can take P1 = 1 + P 3, P2 = 1 + P + P 2, P3 = 1 + P 2 + P 4, P4 = 1 +
P , where 1 denotes the one-element poset. There is no contradiction, because
although Z[x1, x2, . . . ] is a UFD, this does not mean that N[x1, x2, . . . ] is a unique
factorization semiring. In the ring B we have (writing Q for [Q])

P1P2 = P3P4 = (1 + P )(1− P + P 2)(1 + P + P 2).
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P = Q =

Figure 3.70: A solution to Exercise 3.10(c)

A B AC
~

Figure 3.71: Four posets related to Exercise 3.10(c)

12. True. If the number of maximal chains of P is finite then P is clearly finite, so
assume that P has infinitely many maximal chains. These chains are all finite, so in
particular every maximal chain containing a nonmaximal element t of P must contain
an element covering t. The set C+(t) of elements covering t ∈ P is an antichain, so
C+(t) is finite. Since P has only finitely many minimal elements (since they form
an antichain), infinitely many maximal chains C contain the same minimal element
t0. Since C+(t0) is finite, infinitely many of the chains C contain the same element
t1 ∈ C+(t0). Continuing in this say, we obtain an infinite chain t0 < t1 < · · · , a
contradiction.

13. (a) This result is a consequence of G. Higman, Proc. London Math. Soc. (3) 2 (1952),
326–336.

(b) Let P = P1 + P2, where each Pi is isomorphic to the rational numbers Q with
their usual linear order. Every antichain of P has at most two elements. For any
real α > 0, let

Iα = {a ∈ P1 : a < −α} ∪ {b ∈ P2 : b < α}.
Then the Iα’s form an infinite (in fact, uncountable) antichain in J(P ).

15. (a) Straightforward proof by induction on #P . This result is implicit in work of A.
Ghouila-Houri (1962) and P. C. Gilmore and A. J. Hoffman (1964). The first
explicit statement was given by P. C. Fishburn, J. Math. Psych. 7 (1970), 144–
149. Two references with much further information on interval orders are P. C.
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Fishburn, Interval Orders and Interval Graphs, Wiley-Interscience, New York,
1985, and W. T. Trotter, Combinatorics and Partially Ordered Sets, The Johns
Hopkins University Press, Baltimore, 1992. In particular, Fishburn (pp. 19–22)
discusses the history of interval orders and their applications to such areas as
psychology.

(b) This result is due to D. Scott and P. Suppes, J. Symbolic Logic 23 (1958), 113–128.
Much more information on semiorders may be found in the books of Fishburn and
Trotter cited above.

(c) See M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev, J. Combinatorial
Theory Ser. A 117 (2010), 884–909 (Theorem 13). This paper mentions several
other objects (some of which were already known) counted by t(n), in particular,
the regular linearized chord diagrams (RLCD) (not defined here) of D. Zagier,
Topology 40 (2001), 945–960. The paper of Zagier also contains the remarkable
result that if we set F (x) =

∑
n≥0 t(n)xn, then

F (1− e−24x) = ex
∑

n≥0

u(n)
xn

n!
,

where ∑

n≥0

u(n)
x2n+1

(2n+ 1)!
=

sin 2x

2 cos 3x
.

(d) This result is a consequence of equation (4) of Zagier, ibid., and the bijection
between interval orders and RLCD’s given by Bousquet-Mélou, et al., op. cit.
Note that if we set F (x) =

∑
n≥0 t(n)xn and G(x) =

∑
n≥0 u(n)x

n

n!
, then G(x) =

F (1 − e−x). This phenomenon also occurs for semiorders (see equation (6.57))
and other objects (see Exercise 3.17 and the solution to Exercise 6.30).

(e) A series-parallel interval order can clearly be represented by intervals such that
for any two of these intervals, they are either disjoint or one is contained in
the other. Conversely any such finite set of intervals represents a series-parallel
interval order. Now use Exercise 6.19(o). For a refinement of this result see J.
Berman and P. Dwinger, J. Combin. Math. Combin. Comput. 16 (1994), 75–85.
An interesting characterization of series-parallel interval orders was given by M.
S. Rhee and J. G. Lee, J. Korean Math. Soc. 32 (1995), 1–5.

(f) (sketch) Let Gn denote the arrangement in part (e). Putting x = −1 in Proposi-
tion 3.11.3 gives

r(Gn) =
∑

B⊆Gn
B central

(−1)#B−rank(B). (3.135)

Given a central subarrangement B ⊆ Gn, define a digraph GB on [n] by letting
i→ j be a (directed) edge if the hyperplane xi − xj = ℓi belongs to B. One then
shows that as an undirected graph GB is bipartite. Moreover, if B is a block of
GB (as defined in Exercise 5.20), say with vertex bipartition (UB, VB), then either
all edges of B are directed from UB to VB, or all edges are directed from VB to
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UB. It can also be seen that all such directed bipartite graphs can arise in this
way. It follows that equation (3.135) can be rewritten

r(Gn) = (−1)n
∑

G

(−1)e(G)+c(G)2b(G), (3.136)

where G ranges over all (undirected) bipartite graphs on [n], e(G) denotes the
number of edges of G, and b(G) denotes the number of blocks of G.

Equation (3.136) reduces the problem of determining r(Gn) to a (rather difficult)
problem in enumeration, whose solution may be found in A. Postnikov and R.
Stanley, J. Combinatorial Theory Ser. A 91 (2000), 544–597 (§6).

16. This result is to J. Lewis and Y. Zhang, Enumeration of graded (3+1)-avoiding posets,
arXiv:1106.5480.

17. (a) Hint. First show that the formula G(x) = F (1− e−x) is equivalent to

n!f(n) =
n∑

k=1

c(n, k)g(k),

where c(n, k) denotes a signless Stirling number of the first kind.

The special case where T consists of the nonisomorphic finite semiorders is due
to J. L. Chandon, J. Lemaire, and J. Pouget, Math. et Sciences Humaines 62
(1978), 61–80, 83. (See Exercise 6.30.) The generalization to the present exercise
(and beyond) is due to Y. Zhang, in preparation (2011).

(b) F (x) = (1 − x)/(1 − 2x), the ordinary generating function for the number of
compositions of n, and G(x) = 1/(2 − ex), the exponential generating function
for the number of ordered partitions of [n]. See Example 3.18.10.

(c) These results follow from two properties of interval orders and semiorders P :
(i) any automorphism of P is obtained by permuting elements in the same au-
tonomous subset (as defined in the solution to Exercise 3.143), and (ii) replacing
elements in an interval order (respectively, semiorder) by antichains preserves the
property of being an interval order (respectively, semiorder).

18. Originally this result was proved using symmetric functions (R. Stanley, Discrete Math.
193 (1998), 267–286). Later M. Skandera, J. Combinatorial Theory (A) 93 (2001),
231–241, showed that for a certain ordering of the elements of P , the square of the
anti-incidence matrix of Exercise 3.22, with each ti = 1, is totally nonnegative (i.e.,
every minor is nonnegative). The result then follows easily from Exercise 3.22 and
the standard fact that totally nonnegative square matrices have real eigenvalues. Note
that if P = 3 + 1 then CP (x) = x3 + 3x2 + 4x+ 1, which has the approximate nonreal
zeros −1.34116± 1.16154i.

19. (a,c) These results (in the context of finite topological spaces) are due to R. E. Stong,
Trans. Amer. Math. Soc. 123 (1966), 325–340 (see page 330). For (a), see also
D. Duffus and I. Rival, in Colloq. Math. Soc. János Bolyai (A. Hajnal and V.
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T. Sós, eds.), vol. 1, North-Holland, New York, pp. 271–292 (page 272), and J.
D. Farley, Order 10 (1993), 129–131. For (c), see also D. Duffus and I. Rival,
Discrete Math. 35 (1981), 53–118 (Theorem 6.13). Part (c) is generalized to
infinite posets by K. Baclawski and A. Björner, Advances in Math. 31 (1979),
263–287 (Thm. 4.5). For a general approach to results such as (a) where any way
of carrying out a procedure leads to the same outcome, see K. Eriksson, Discrete
Math. 153 (1996), 105–122; Europ. J. Combinatorics 17 (1996), 379–390; and
Discrete Math. 139 (1995), 155–166.

20.(a,b) The least d for which (i) or (ii) holds is called the dimension of P . For a survey of
this topic, see D. Kelly and W. T. Trotter, in [3.57, pp. 171–211]. In particular,
the equivalence of (i) and (ii) is due to Ore, while (iii) is an observation of Dushnik
and Miller. Note that a 2-dimensional poset P on [n] which is compatible with
the usual ordering of [n] (i.e., if s < t in P , then s < t in Z) is determined by
the permutation w = a1 · · ·an ∈ Sn for which P is the intersection of the linear
orders 1 < 2 < · · · < n and a1 < a2 < · · · < an. We call P = Pw the inversion
poset of the permutation w. In terms of w we have that ai < aj in P if and only
if i < j and ai < aj in Z. For further results on posets of dimension 2, see K.
A. Baker, P. C. Fishburn, and F. S. Roberts, Networks 2 (1972), 11–28. Much
additional information appears in P. C. Fishburn, Interval Orders and Interval
Graphs, John Wiley, New York, 1985, and in W. T. Trotter, Combinatorics and
Partially Ordered Sets: Dimension Theory, The John Hopkins University Press,
Baltimore, MD, 1992.

21. The statement is false. It was shown by S. Felsner, W. T. Trotter, and P. C. Fishburn,
Discrete Math. 201 (1999), 101–132, that the poset n3, for n sufficiently large, is not
a sphere order.

22. This result is an implicit special case of a theorem of D. M. Jackson and I. P. Goulden,
Studies Appl Math. 61 (1979), 141–178 (Lemma 3.12). It was first stated explictly by
R. Stanley, J. Combinatorial Theory Ser. A 74 (1996), 169–172 (in the more general
context of acyclic digraphs). To prove it directly, use the fact that the coefficient of xj

in det(I + xDA) is the sum of the principal j × j minors of DA. Let DA[W ] denote
the principal submatrix of DA whose rows and columns are indexed by W ⊆ [p]. It is
not difficult to show that

detDA[W ] =

{ ∏
i∈W ti, if W is the set of vertices of a chain

0, otherwise,

and the proof follows.

23. Of course ∅ < [1] < [2] < · · · is a countable maximal chain. Now clearly BP
∼= BQ

since P and Q are both countable infinite sets. For each α ∈ R define tα ∈ BQ by
tα = {s ∈ Q : s < α}. Then the elements tα, together with 0̂ and 1̂, form an
uncountable maximal chain.

24. For an extension to all n-element posets having at least (7/16)2n order ideals, see R.
Stanley, J. Combinatorial Theory Ser. A 10 (1971), 74–79. For further work on the
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Figure 3.72: The MacNeille completion of Irr(L)

number of n-element posets with k order ideals, see M. Benoumhani, J. Integer Seq. 9
(2006), 06.2.6 (electronic), and K. Ragnarsson and B. Tenner, J. Combinatorial Theory
Ser. A 117 (2010), 138–151.

25. None.

26. Perhaps the simplest example is 1⊕ (1+1)⊕N∗, where N∗ denotes the dual of N with
the usual linear order. We could replace N∗ with Z.

27. Let B be the boolean algebra of all subsets of Irr(L), and let L′ be the meet-semilattice
of B generated by the principal order ideals of Irr(L). One can show that L is isomor-
phic to L′ with a 1̂ adjoined.

In fact, L is the MacNeille completion (e.g., [3.13, Ch. V.9]) of Irr(L), and this exercise
is a result of B. Banaschewski, Z. Math. Logik 2 (1956), 117–130. An example is shown
in Figure 3.72.

28. Let L be the sub-meet-semilattice of the boolean algebra B6 generated by the subsets
1234, 1236, 1345, 2346, 1245, 1256, 1356, 2456, with a 1̂ adjoined. By definition L is
coatomic. One checks that each singleton subset {i} belongs to L, 1 ≤ i ≤ 6, so L is
atomic. However, the subset {1, 2} has no complement.

This example was given by I. Rival (personal communication) in February, 1978. See
Discrete Math. 29 (1980), 245–250 (Fig. 5).

29. D. Kleitman has shown (unpublished) that

(
n

⌊n/2⌋

)(
1 +

1

n

)
< f(n) <

(
n

⌊n/2⌋

)(
1 +

1√
n

)
,

and conjectures that the lower bound is closer to the truth.

30.(a,b) Since sublattices of distributive (respectively, modular) lattices are distributive
(respectively, modular), the “only if” part is immediate from the nonmodularity
of the first lattice in Figure 3.43 and the nondistributivity of both lattices. For the
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Figure 3.73: A construction used in the solution to Exercise 3.35

“if” part, it is not hard to check that the failure of the distributive law (3.8) for a
triple (s, t, u) forces the sublattice generated by s, t, u to contain (as a sublattice)
one of the two lattices of Figure 3.43. Similarly the failure of the modular law
(3.7) forces the first lattice of Figure 3.43. This result goes back to R. Dedekind,
Festschrift Techn. Hoch. Braunuschweig, 1897, 1–40; reprinted in Ges. Werke,
vol. 2, 103–148, and Math. Ann. 53 (1900), 371–403; reprinted in Ges. Werke,
vol. 2, 236–271.

31. (b) See J. D. Farley and S. E. Schmidt, J. Combinatorial Theory Ser. A 92 (2000),
119–137.

(c) This result was originally conjectured by R. Stanley (unpublished) and proved by
D. J. Grabiner, Discrete Math. 199 (1999), 77–84.

(d) This result is originally due to R. Stanley (unpublished).

32. (a) Answer: f(Bn) = ⌈n/2⌉. See C. Biró, D. M. Howard, M. T. Keller, W. T. Trotter,
and S. J. Young, Interval partitions and Stanley depth, J. Combinatorial Theory,
Ser. A 117 (2010), 475–482. See Exercise 3.142 for a more general context to this
topic.

(b)–(e) See Y. H. Wang, The new Stanley depth of some power sets of multisets, arXiv:0908.3699.

33. Answer (in collaboration with J. Shareshian): n 6= 1, 3, 5, 7.

35. (a) By Theorem 3.4.1, f2(n) is equal to the number of distributive lattices L of rank
n with exactly two elements of every rank 1, 2, . . . , n − 1. We build L from
the bottom up. Ranks 0,1,2 must look (up to isomorphism) like the diagram in
Figure 3.73(a), where we have also included u = s ∨ t of rank 3. We have two
choices for the remaining element v of rank 3—place it above s or above t, as
shown in Figure 3.73(b). Again we have two choices for the remaining element of
rank 4—place it above u or above v. Continuing this line of reasoning, we have
two independent choices a total of n − 3 times, yielding the result. When, for
example, n = 5, the four posets are shown in Figure 3.74.

(b) Similar to (a).
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Figure 3.74: The four posets enumerated by f2(5)

(c) See J. D. Farley and R. Klippenstine, J. Combinatorial Theory, Ser. A 116 (2009),
1097–1119.

(d) (suggested by P. Edelman) fk(n) = 0 for k > 3 since
(
k
2

)
> k.

36. (a) Clearly L′ is a join-semilattice of L with 0̂; hence by Proposition 3.3.1 L′ is a
lattice. By definition L′ is atomic. Suppose t covers s in L′. Then t = s ∨ a
for some atom a of L. The semimodularity property of Proposition 3.3.2(ii) is
inherited from L by L′. Thus L′ is geometric.

(b) No. Let K be the boolean algebra B5 of all subsets of [5], with all four-element
subsets removed. Let L consist of K with an additional element t adjoined such
that t covers {1} and is covered by {1, 2, 3} and {1, 4, 5}. Then t 6∈ L′ but t
belongs to the sublattice of L generated by L′.

37. (a) This result is an immediate consequence of a much more general result of W. T.
Tutte, J. Res. Natl. Bur. Stand., Sect. B 69 (1965), 1–47. For readers who know
some matroid theory we provide some more details. Tutte shows (working in the
broader context of “chain groups”) that the set of minimal nonempty supports are
the set of circuits of a matroid. Since char(K) = 0 the support sets coincide with
the unions of minimal nonempty supports. This means that the supports coincide
with the sets of unions of circuits. The complements of circuits are hyperplanes
of the dual matroid. The proper flats of a matroid coincide with the intersections
of hyperplanes so their complements are unions of circuits of the dual, and the
present exercise follows.

(b) Let KE denote the vector space of all functions E → K, and let V denote the
vertex set of G. Choose an orientation o of the edges of G. For each vertex v, let
v+ denote the set of edges pointing out of v, and v− the set of edges pointing in
(with respect to o). Let

W =

{
f ∈ KE : ∀v ∈ V

∑

e∈v+
f(e) =

∑

e∈v−
f(e)

}
.

Elements of W are called flows. It is not hard to check that a spanning subgraph
of G is the support of a flow if and only if it has no isthmus, and the proof follows
from (a).
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38. If t ∈ Pk, then define

φ(t) = sup{u : u 6≥ any join-irreducible ti such that

t = t1 ∨ · · · ∨ tn is the (unique) irredundant

expression of t as a join of join-irreducibles}. (3.137)

In particular, if t ∈ P1 then φ(t) = sup{u : u 6≥ t}.
It is fairly easy to see that φ has the desired properties by dealing with the poset P
for which L = J(P ), rather than with L itself.

40. (a) Answer :
2k−1(2r(k−1) − 1)

2k−1 − 1
+2r(k−1). This result is a special case of a more general

result, where the number of elements of every rank is specified, of R. Stanley, J.
Combinatorial Theory 14 (1973), 209–214 (Corollary 1).

(b) See R. Stanley, ibid. (special case of Theorem 2). For further information on the
extremal lattice J(P + 1), see [3.73].

(c) This inequality, if true, is best possible, as seen by taking L = Jf(P + 1) as in
(b). Note that Jf(P + 1) is maximal with respect to having two join-irreducibles
at each positive rank, and is conjectured to be minimal with respect to having
an antichain passing through each positive rank.

41. (a) Let t1, . . . , tp be a linear extension of L, regarded as a permutation of the elements
of L. Let σi = (Γi(t1), . . . ,Γ

i(tp)). All the sequences σi have the same sum of
their terms. Moreover, if σi 6= σi+1 then σi < σi+1 in dominance order. It follows
that eventually we must have σn = σn+1.

(b) The “if” part of the statement is equivalent to Problem A3 on the 69th William
Lowell Putnam Mathematical Competition (2008). The “only if” part follows
easily from Exercise 3.30(a). The “only if” part was observed by T. Belulovich
and is discussed at the Putnam Archive,

〈www.unl.edu/amc/a-activities/a7-problems/putnamindex.shtml〉.

(c) This result was shown by F. Liu and R. Stanley, October 2009.

(d) This observation is due to R. Ehrenborg, October 2009.

(e) Use (d) and the fact that #{w ∈ Sn+1 : w(i) > i} = (n + 1 − i)n!. This result
is due to R. Ehrenborg, October 2009.

43. First show that Jf (P ) can be identified with the subposet of N × N consisting of all
(i, j) for which 0 ≤ j ≤ ⌊i/2⌋. Then show that Jf(Jf(P )) can be identified with the
subposet (actually a sublattice) of Young’s lattice consisting of all partitions whose
parts differ by at least 2. It follows from Exercise 1.88 that

FJf (Jf (P ))(q) =
1∏

k≥0

(1− q5k+1)(1− q5k+4)
.
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47. (b) Induction on #L. Trivial for #L = 1. Now let #L ≥ 2, and let t be a maximal
element of L. Suppose that t covers j elements of L, and set L′ = L − {t}.
The meet-distributivity hypothesis implies that the number of s ≤ t for which
[s, t] ∼= Bk is equal to

(
j
k

)
. Hence

∑

k≥0

gk(L)xk = xj +
∑

k≥0

gk(L
′)(1 + x)k, and

∑

k≥0

fk(L)xk =

j∑

k=0

(
j

k

)
xk +

∑

k≥0

fk(L
′)xk

= (1 + x)j +
∑

k≥0

fk(L
′)xk,

and the proof follows by induction since L′ is meet-distributive.

Note that in the special case L = J(P ), gk(L) is equal to the number of k-element
antichains of P .

(c) Let x = −1 in (b). This result was first proved (in a different way) for distributive
lattices by S. K. Das, J. Combinatorial Theory, Ser. B 26 (1979), 295–299. It can
also be proved using the identity ζµζ = ζ in the incidence algebra of the lattice
L ∪ {1̂}.
Topological remark. This exercise has an interesting topological generaliza-
tion (done in collaboration with G. Kalai). Given L, define an abstract cubical
complex Ω = Ω(L) as follows: the vertices of Ω are the elements of L, and the
faces of Ω consist of intervals [s, t] of L isomorphic to boolean algebras. (It follows
from Exercise 3.177(a) that Ω is indeed a cubical complex.)

Proposition. The geometric realization |Ω| is contractible. In fact, Ω is collapsi-
ble.

Sketch of proof. Let t be a maximal element of L, let L′ = L − {t}, and let
s be the meet of elements that t covers, so [s, t] ∼= Bk for some k ∈ P. Then
|Ω(L′)| is obtained from |Ω(L)| by collapsing the cube |[s, t]| onto its boundary
faces that don’t contain t. Thus by induction Ω(L) is collapsible, so |Ω(L)| is
contractible.

The formula
∑

(−1)kfk = 1 asserts merely that the Euler characteristic of Ω(L)
or |Ω(L)| is equal to 1; the statement that |Ω(L)| is contractible is much stronger.
For some further results along these lines involving homotopy type, see P. H.
Edelman, V. Reiner, and V. Welker, Discrete & Computational Geometry 27(1)
(2002), 99–116.

(d) A k-element antichain A of m× n has the form

A = {(a1, b1), (a2, b2), . . . , (ak, bk)},
where 1 ≤ a1 < a2 < · · · < ak ≤ m and n ≥ b1 > b2 > · · · > bk ≥ 1. Hence
gk =

(
m
k

)(
n
k

)
.

It is easy to compute, either by a direct combinatorial argument or by (b) and
Vandermonde’s convolution (Example 1.1.17), that fk =

(
m
k

)(
m+n−k

m

)
.
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(e) This result was proved independently by J. R. Stembridge (unpublished) and
R. A. Proctor, Proc. Amer. Math. Soc. 89 (1983), 553–559 (Theorem 2). Later
Stembridge gave another proof in Europ. J. Combinatorics 7 (1986), 377–387
(Corollary 2.2).

(f) R. A. Proctor, op. cit., Theorem 1.

(g) This result was conjectured by P. H. Edelman for m = n, and first proved in
general by R. Stanley and J. Stembridge using the theory of “jeu de taquin”
(see Chapter 7, Appendix A1.2). An elementary proof was given by M. Haiman
(unpublished). See J. R. Stembridge, Europ. J. Combinatorics 7 (1986), 377–387,
for details and additional results (see in particular Corollary 2.4).

48. Induction on ρ(t). Clearly true for ρ(t) ≤ 1. Assume true for ρ(t) < k, and let ρ(t) = k.
If t is join-irreducible, then the conclusion is clear. Otherwise t covers r > 1 elements.
By the Principle of Inclusion-Exclusion and the induction hypothesis, the number of
join-irreducibles s ≤ t is

r(k − 1)−
(
r

2

)
(k − 2) +

(
r

3

)
(k − 3)− · · · ±

(
r

k − 1

)
= k.

For further information on this result and on meet-distributive lattices in general, see
B. Monjardet, Order 1 (1985), 415–417, and P. H. Edelman, Contemporary Math. 57
(1986), 127–150. Other references include C. Greene and D. J. Kleitman, J. Combina-
torial Theory, Ser. A 20 (1976), 41–68 (Thm. 2.31); P. H. Edelman, Alg. Universalis
10 (1980), 290–299; and P. H. Edelman and R. F. Jamison, Geometriae Ded. 19 (1985),
247–270.

49. Routine. For more information on the posets Lp, see R. A. Dean and G. Keller, Canad.
J. Math. 20 (1968), 535–554.

50. The left-hand side of equation (3.114) counts the number of pairs (s, S) where s is
an element of L of rank i and S is a set of j elements that s covers. Similarly the
right-hand side is equal to the number of pairs (t, T ) where ρ(t) = i− j and T is a set
of j elements that cover t. We set up a bijection between the pairs (s, S) and (t, T )
as follows. Given (s, S), let t =

∧
w∈S w, and define T to be set of all elements in the

interval [t, s] that cover t.

51. (a) Let L be a finitary distributive lattice with cover function f . Let Lk denote the
sublattice of L generated by all join-irreducibles of rank at most k. We prove by
induction on k that Lk is unique (if it exists). Since L =

⋃
Lk, the proof will

follow.

True for k = 0, since L0 is a point. Assume for k. Now Lk contains all elements
of L of rank at most k. Suppose that t is an element of Lk of rank k covering n
elements, and suppose that t is covered by ct elements in Lk. Let dt = f(n)− ct.
If dt < 0 then L does not exist, so assume dt ≥ 0. Then the dt elements of L−Lk
that cover t in L must be join-irreducibles of L. Thus for each t ∈ Lk of rank
k attach dt join-irreducibles covering t, yielding a meet-semilattice L′

k. Let Pk+1
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denote the poset of join-irreducibles of L′
k. Then P ′

k+1 must coincide with the
poset of join-irreducibles of Lk+1. Hence Lk+1 = J(Pk+1), so Lk+1 is uniquely
determined.

(b) See Proposition 2 on page 226 of [3.73].

(c) If f(n) = k then L = Nk. If f(n) = n+ k, then L = Jf(N2)k.

(d) Use Exercise 3.50 to show that

u(5, 1) = −(k/3)(2a3 − 2a2 − 3).

Hence u(5, 1) < 0 if a ≥ 2 and k ≥ 1, so L does not exist.

(e) See J. D. Farley, Graphs and Combinatorics 19 (2003), 475–491 (Theorem 11.1).

55. (a) See K. Saito, Advances in Math. 212 (2007), 645–688 (Theorem 3.2).

(b) Essentially this question was raised by Saito, ibid. (Remark 4).

56. Let E be the set of all (undirected) edges of the Hasse diagram of P . Define e, f ∈ E
to be equivalent if e has vertices s, u and f has vertices t, u, such that either both s < u
and t < u, or both s > u and t > u. Extend this equivalence to an equivalence relation
using reflexivity and transitivity. The condition on P implies that the equivalence
classes are paths and cycles. We obtain a partition of P into disjoint saturated chains
by choosing a set of edges, no two consecutive, from each equivalence class. If an
element t of P does not lie on one of the chosen edges, then it forms a one-element
saturated chain. The number of ways to choose a set of edges, no two consecutive,
from a path of length ℓ is the Fibonacci number Fℓ+2. The number of ways to choose
a set of edges, no two consecutive, from a cycle of length ℓ is the Lucas number Lℓ (see
Exercise 1.40), and the proof follows. This result is due to R. Stanley, Amer. Math.
Monthly 99 (1992); published solution by W. Y. C. Chen, 101 (1994), 278–279.

For P = m × n the equivalence classes consist of all cover relations between two
consecutive ranks. Assuming m ≤ n, we obtain

f(m× n) = F n−m
2m+3

m∏

i=1

F 2
2i+2.

59. It is straightforward to prove by induction on n that ai is the number of strict surjective
maps τ : P → i, i.e., τ is surjective, and if s < t in P then τ(s) < τ(t). See R. Stanley,
Discrete Math. 4 (1973), 77–82.

60. (b) This result is implicit in J. R. Goldman, J. T. Joichi, and D. E. White, J. Com-
binatorial Theory Ser. B 25 (1978), 135–142 (put x = −1 in Theorem 2) and J.
P. Buhler and R. L. Graham, J. Combinatorial Theory (A) 66 (1994), 321–326
(put λ = −1 and use our equation (3.121) in the theorem on page 322), and
explicit in E. Steingŕımsson, Ph.D. thesis, M.I.T., 1991 (Theorem 4.12). For an
application see R. Stanley, J. Combinatorial Theory Ser. A 100 (2002), 349–375
(Theorem 4.8).
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Sketch of proof. Given the dropless labeling f : P → [p], define an acyclic ori-
entation o = o(f) as follows. If st is an edge of inc(P ), then let s → t in o if
f(s) < f(t). Clearly o is an acyclic orientation of inc(P ). Conversely, let o be
an acyclic orientation of inc(P ). The set of sources (i.e., vertices with no arrows
into them) form a chain in P since otherwise two are incomparable, and there is
an arrow between them that must point into one of them. Let s be the minimal
element of this chain, i.e., the unique minimal source. If f is a dropless label-
ing of P with o = o(f), then we claim f(s) = 1. Suppose to the contrary that
f(s) = i > 1. Let j be the largest integer satisfying j < i and t := f−1(j) 6< s.
Note that j exists since f−1(1) > s. We must have t > s since s is a source. But
then f−1(j + 1) ≤ s < t = f−1(j), contradicting the fact that f is dropless. Thus
we can set f(s) = 1, remove s from inc(P ), and proceed inductively to construct
a unique f satisfying o = o(f).

61. Write Comp(n) for the set of compositions of n. Regarding n as given, and given a set
S = {i1, i2, . . . , ij}< ⊆ [n− 1], define the composition

σS = (i1, i2 − i1, . . . , ij − ij−1, n− ij) ∈ Comp(n).

Given a sequence u = b1 · · · bk of distinct integers, let D(u) = {i1, i2, . . . , ij}< ⊆ [k− 1]
be its descent set. Now given a permutation w = a1 · · ·an ∈ Sn, let w[k] = a1 · · ·ak.
It can be checked that

σD(w[1]) ⋖ σD(w[2]) ⋖ · · ·⋖ σD(w[n])

is a saturated chain m in C from 1 to σ = σ(w[n]), and that the map w 7→ m is a
bijection from Sn to saturated chains in C from 1 to a composition of n. Hence the
number of saturated chains from 1 to σ ∈ Comp(n) is βn(S), the number of w ∈ Sn

with descent set S, where σ = σS. In particular, the total number of saturated chains
from 1 to some composition of n is

∑
S βn(S) = n!. This latter fact also follows from

the fact that every α ∈ Comp(n) is covered in C by exactly n+ 1 elements.

The poset C was first defined explicitly in terms of compositions by Björner and Stanley
(unpublished). It was pointed out by S. Fomin that C is isomorphic to the subword
order on all words in a two-letter alphabet (see Exercise 3.134). A generalization
was given by B. Drake and T. K. Petersen, Electronic J. Combinatorics 14(1) (2007),
#R23.

62. (f) Let ki be the number of λj’s that are equal to i in a protruded partition (λ, µ).
If some aj = i then µj can be any of 0, 1, . . . , i, so aj + bj is one of i, i+ 1, . . . , 2i.
Hence

UPn(x) =

n∏

i=1

(∑

k≥0

(xi + xi+1 + · · ·+ x2i)k

)

=

n∏

i=1

(1− xi − xi+1 − · · · − x2i)−1.
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(g) Write ∑

n≥0

UPn(x)qn = P (q, x)
∑

j≥0

Wj(x)q
j.

The poset P satisfies P ∼= 1⊕ (1 + P ). This leads to the recurrence

Wj(x) =
x2j

1− xWj−1(x) + xj
1− xj+1

1− x Wj(x), W0(x) = 1.

Hence Wj(x) = x2jWj−1(x)/(1− xj)(1− x− xj+1), from which the proof follows.

Protruded partitions are due to Stanley [2.19, Ch. 5.4][2.20, §24], where more
details of the above argument can be found. For a less combinatorial approach,
see Andrews [1.2, Exam. 18, p. 51].

65. The fact that Exercise 1.11 can be interpreted in terms of linear extensions is an
observation of I. M. Pak (private communication). Note. Equation 3.116 continues to
hold if 2t is an odd integer, provided we replace any factorial m! with the corresponding
Gamma function value Γ(m+ 1).

66. (a) The Fibonacci number Fn+2—a direct consequence of Exercise 1.35(e).

(b) Simple combinatorial proofs can be given of the recurrences

W2n = W2n−1 + q2W2n−2, n ≥ 1

W2n+1 = qW2n +W2n−1, n ≥ 1.

It follows easily from multiplying these recurrences by x2n and x2n+1, respectively,
and summing on n, that

F (x) =
1 + (1 + q)x− q2x3

1− (1 + q + q2)x2 + q2x4
.

(c) A bijection σ : Zn → [n] is a linear extension if and only if the sequence n +
1 − σ(t1), . . . , n + 1 − σ(tn) is an alternating permutation of [n] (as defined in
Section 1.4). Hence e(Zn) is the Euler number En, and by Proposition 1.6.1 we
have ∑

n≥0

e(Zn)
xn

n!
= tanx+ sec x.

(d) Adjoin an extra element tn+1 to Zn to create Zn+1. We can obtain an order-
preserving map f : Zn →m + 2 as follows. Choose a composition a1 + · · ·+ak =
n + 1, and associate with it the partition {t1, . . . , ta1}, {ta1+1, . . . , ta1+a2}, . . . of
Zn+1. For example, choosing n = 17 and 3 + 1 + 2 + 4 + 1 + 2 + 2 + 3 = 18
gives the partition shown in Figure 3.75. Label the last element t of each block
by 1 or m+ 2, depending on whether t is a minimal or maximal element of Zn+1,
as shown in Figure 3.76. Removing these labelled elements from Zn+1 yields a
disjoint union Y1 + · · · + Yk, where Yi is isomorphic to Zai−1 or Z∗

ai−1 (where ∗

denotes dual). For each i choose an order-preserving map Yi → [2, m + 1] in
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Figure 3.75: Illustration of the solution to Exercise 3.66(d)

+2m+2m+2m +2m

1 1 1 1

Figure 3.76: Continuing the solution to Exercise 3.66(d)

ΩZai−1(m) ways. There is one additional possibility. If some ai = 2, then we can
also assign the unique element t of Yi the same label (1 or m+2) as the remaining
element s in the block containing t (so t is labelled 1 if it is a maximal element
of Zn+1 and m+ 2 if it is minimal). This procedure yields each order-preserving
map f : Zn →m + 2 exactly once. Hence

ΩZn(m+ 2) =
∑

a1+···+ak=n+1

k∏

i=1

(ΩZai−1(m) + δ2,ai
)

⇒ Gm+2(x) =
∑

k≥0

(Gm(x)− 1 + x2)k

= (2− x2 −Gm(x))−1.

The initial conditions are G1(x) = 1/(1− x) and G2(x) = 1/(1− x− x2).

An equivalent result was stated without proof (with an error in notation) in Ex. 3.2
of R. Stanley, Annals of Discrete Math. 6 (1980), 333–342. Moreover, G. Ziegler
has shown (unpublished) that

Gm+1(x) =
1 +Gm(x)

3− x2 −Gm(x)
.

67. A complicated proof was first given by G. Kreweras, Cahiers Bur. Univ. Rech. Opera-
tionnelle, no. 6, 1965 (eqn. (85))). Subsequent proofs were given by H. Niederhausen,
Proc. West Coast Conf. on Combinatorics, Graph Theory, and Computing (Arcata,
Calif., 1979), Utilitas Math., Winnipeg, Man., 1980, pp. 281–294, and Kreweras and
Niederhausen, Europ. J. Combinatorics 4 (1983), 161–167.

68. (a) See E. Munarini, Ars Combin. 76 (2005), 185–192. For further properties of order
ideals and antichains of garlands, see E. Munarini, Integers 9 (2009), 353–374.

69. (a) This result is due to R. Stanley, J. Combinatorial Theory, Ser. A 31 (1981), 56–65
(see Theorem 3.1). The proof uses the Aleksandrov-Fenchel inequalities from the
theory of mixed volumes.

483



(b) This result was proved by J. N. Kahn and M. Saks, Order 1 (1984), 113–126,

with 5±
√

5
10

replaced with 3
11

and 8
11

. The improvement to 5±
√

5
10

is due to G. R.
Brightwell, S. Felsner, and W. T. Trotter, Order 12 (1995), 327–349. Both proofs
use (a). It is conjectured that there exist s, t in P such that f(s) < f(t) in no fewer
than 1

3
and no more than 2

3
of the linear extensions of P . The poset 2 + 1 shows

that this result, if true, would be best possible. On the other hand, Brightwell,
Felsner, and Trotter show that their result is best possible for a certain class of
countably infinite posets, called thin posets.

70. (c) Due to Ethan Fenn, private communication, November, 2002.

71. The result for FD(n) is due to Dedekind. See [3.13, Ch. III, §4]. The result for FD(P ) is
proved the same way. See, for example, Corollary 6.3 of B. Jónsson, in [3.57, pp. 3–41].
For some related results, see J. V. Semegni and M. Wild, Lattices freely generated by
posets within a variety. Part I: Four easy varieties, arXiv:1004.4082; Part II: Finitely
generated varieties, arXiv:1007.1643.

72. (a) The proof easily reduces to the following statement: if A and B are k-element
antichains of P , then A ∪B has k maximal elements. Let C and D be the set of
maximal and minimal elements, respectively, of A ∪ B. Since t ∈ A ∩ B if and
only if t ∈ C ∩D, it follows that #C + #D = 2k. If #C < k, then D would be
an antichain of P with more than k elements, a contradiction.

This result is due to R. P. Dilworth, in Proc. Symp. Appl. Math. (R. Bellman
and M. Hall, Jr., eds.), American Mathematical Society, Providence, RI, 1960,
pp. 85–90. An interesting application appears in §2 of C. Greene and D. J. Kleit-
man, in Studies in Combinatorics (G.-C. Rota, ed.), Mathematical Association
of America, 1978, pp. 22–79.

(b) R. M. Koh, Alg. Univ. 17 (1983), 73–86, and 20 (1985), 217–218.

73. (a) Let p : P ⊗Q → P be the projection map onto P (i.e., p(s, t) = s), and let I be
an order ideal of P ⊗ Q. Then p(I) is an order ideal of P , say with m maximal
elements t1, . . . , tm and k nonmaximal elements s1, . . . , sk. Then I is obtained
by taking p−1(s1) ∪ · · · ∪ p−1(sk) together with a nonempty order ideal Ii of each
p−1(ti) ∼= Q. We then have #I = kn+

∑
#Ii and m(I) =

∑
m(Ii). Hence

∑

I∈J(P⊗Q)

q#Ixm(I) =
∑

T∈J(P )

qn(#T−m(T ))(GQ(q, x)− 1)m(T )

= GP (qn, q−n(GQ(q, x)− 1)).

(b) Let t be a maximal element of P , and let Λt = {s ∈ P : s ≤ t}. Set P1 = P − t
and P2 = P − Λt. write G(P ) = GP (q, (q − 1)/q). One sees easily that

G(P ) = G(P1) + (q − 1)q#Λt−1G(P2),

by considering for each I ∈ J(P ) whether t ∈ I or t 6∈ I. By induction we have
G(P1) = qp−1 and G(P2) = q#(P−Λt), so the proof follows.

This exercise is due to M. D. Haiman.
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Figure 3.77: The complete dual binary tree P3

74. If Ln = J(Pn), then Pn is the complete dual binary tree of height n, as illustrated in
Figure 3.77. An order ideal I of Pn defines a stopping rule as follows: start at 0̂, and
move up one step left (respectively, right) after tossing a tail (respectively, head). Stop
as soon as you leave I or have reached a maximal element of Pn.

Since Pn = 1⊕ (Pn−1 + Pn−1), it follows easily that

F (Ln, q) = 1 + qF (Ln−1, q)
2.

75. This result is due to J. Propp, Lattice structure for orientations of graphs, preprint,
1993, and was given another proof using hyperplane arrangements by R. Ehrenborg
and M. Slone, Order 26 (2009), 283–288.

76. See R. Stanley, Bull. Amer. Math. Soc. 76 (1972), 1236–1239; [3.25, §3]; K. Baclawski,
Proc. Amer. Math. Soc. 36 (1972), 351–356; R. B. Feinberg, Pacific J. Math. 65 (1976),
35–45; R. B. Feinberg, Discrete Math. 17 (1977), 47–70; M. Wild, Linear Algebra Appl.
430 (2009), 1007–1016; Y. Drozd and P. Kolesnik, Comm. Alg. 35 (2007), 3851–3854.
A wealth of additional material can be found in Spiegel and O’Donnell [3.66].

77.(a–c) These results are part of a beautiful theory of chains and antichains developed
originally by C. Greene and D. J. Kleitman, J. Combinatorial Theory Ser. A 20
(1976), 41–68, and C. Greene, J. Combinatorial Theory Ser. A 20 (1976), 69–70.
They were rediscovered by S. Fomin, Soviet Math. Dokl. 19 (1978), 1510–1514.
Subsequently two other elegant approaches were discovered, the first based on
linear algebra by E. R. Gansner, SIAM J. Algebraic Discrete Methods 2 (1981),
429–440, and the second based on network flows by A. Frank, J. Combinatorial
Theory, Ser. B 29 (1980), 176–184. A survey of this latter method (with much
additional information) appears in T. Britz and S. Fomin, Advances in Math. 158
(2001), 86–127.

(d) Clearly k = ℓ(λ), and by (c) we have ℓ(λ) = µ1. This famous result, which can
be regarded as a special case of the duality theorems of network flows and linear
programming, is due to R. P. Dilworth, Ann. Math. 51 (1950), 161–166.

(e) Clearly µ′
1 ≥ λ1, since an antichain intersects a chain in at most one element.

On the other hand, we have P = P1 ∪ · · · ∪ Pλ1 , where P1 is the set of minimal
elements of P , P2 is the set of minimal elements of P − P1, etc. Each Pi is an
antichain, so µ′

1 ≤ λ1. Note that this “dual” version of Dilworth’s theorem is
much easier to prove than Dilworth’s theorem itself.

485



(f) See M. Saks, SIAM J. Algebraic Discrete Methods 1 (1980), 211–215, and Discrete
Math. 59 (1986), 135–166, and E. R. Gansner, op. cit. An erroneous determination
of the Jordan block sizes of A was earlier given by A. C. Aitken, Proc. London
Math. Soc. (2) 38 (1934), 354–376, and D. E. Littlewood Proc. London Math.
Soc. (2) 40 (1936), 370–381, and [7.88, §10.2].

78. (a) The lattice Bn has the property, known as the strong Sperner property, that a
maximum size union of k antichains consists of the union of the k largest ranks.
Hence µi is just the ith largest binomial coefficient

(
n
j

)
. Some other posets with

the strong Sperner property are any finite product of chains, Bn(q), J(m×n×r)
for any m,n, r ≥ 1, and J(J(2× n)). On the other hand, it is unknown whether
J(m × n × r × s) has the strong Sperner property. For further information see
K. Engel, Sperner Theory, Cambridge University Press, Cambridge, 1997.

(b) G.-C. Rota, J. Combinatorial Theory 2 (1967), 104, conjectured that the size of
the largest antichain in Πn was the maximum Stirling number S(n, k), i.e., the
largest rank in Πn was a maximum size antichain. This conjecture was disproved
by E. R. Canfield, Bull. Amer. Math. Soc. 84 (1978), 164. For additional infor-
mation, see E. R. Canfield, J. Combinatorial Theory Ser. A 83 (1998), 188–201.

(c) By Exercise 7.2(f) we have λ1 = 1
3
m(m2+3r−1), where n =

(
m+1

2

)
+r, 0 ≤ r ≤ m.

E. Early, Ph.D. thesis, M.I.T., 2004 (§2), showed that λ2 = λ1−6 for n > 16, and
λ3 = λ2 − 6 for n > 135. Early conjectures that for large n, λi − λi+1 depends
only on i. It is an interesting open problem to determine µ1. Some observations
on this problem are given by Early, ibid.

79. (i)=(ii). Let w = a1 · · ·ap ∈ L(P ). Let i be the least nonnegative integer (if it exists)
for which

w′ := a1 · · ·ap−2i−2ap−2iap−2i−1ap−2i+1 · · ·ap ∈ L(P ).

Note that w′′ = w. Now exactly one of w and w′ has the descent p − 2i − 1. The
only other differences in the descent sets of w and w′ occur (possibly) for the numbers
p−2i−2 and p−2i. Hence (−1)comaj(w)+(−1)comaj(w′) = 0. The surviving permutations
w = b1 · · · bp in L(P ) (those for which i does not exist) are exactly those for which the
chain of order ideals

∅ ⊂ · · · ⊂ {b1, b2, . . . , bp−4} ⊂ {b1, b2, . . . , bp−2} ⊂ {b1, b2, . . . , bp} = P

is a P -domino tableau. We call w a domino linear extension; they are in bijection
with domino tableaux. Such permutations w can only have descents in positions p −
j where j is even, so (−1)comaj(w) = 1. Hence (i) and (ii) are equal. This result,
stated in a dual form, appears in R. Stanley, Advances Appl. Math. 34 (2005), 880–902
(Theorem 5.1(a)).

(ii)=(iii). Let τi be the operator on L(P ) defined by equation (3.102). Thus w is
self-evacuating if and only if

w = wτ1τ2 · · · τp−1 · τ1 · · · τp−2 · · · τ1τ2τ3 · τ1τ2 · τ1.
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On the other hand, note that w is a domino linear extension if and only if

wτp−1τp−3τp−5 · · · τh = w,

where h = 1 if p is even, and h = 2 if p is odd. We claim that w is a domino linear
extension if and only if

w̃ := wτ1 · τ3τ2τ1 · τ5τ4τ3τ2τ1 · · · τmτm−1 · · · τ1
is self-evacuating, where m = p− 1 if p is even, and m = p− 2 if p is odd. The proof
follows from this claim since the map w 7→ w̃ is then a bijection between domino linear
extensions and self-evacuating linear extensions of P .

The claim is proved by an elementary argument analogous to the proof of Theo-
rem 3.20.1. The cases p even and p odd need to be treated separately. We won’t
give the details here but will prove the case p = 6 as an example. For notational
simplicity we write simply i for τi. We need to show that the two conditions

w = w135 (3.138)

w132154321 = w132154321 · 123451234123121 (3.139)

are equivalent. (The first condition says that w is a domino linear extension, and the
second that w132154321 is self-evacuating.) The internal factor 32154321 · 12345123
cancels out of the right-hand side of equation (3.139). We can also cancel the rightmost
21 on both sides of (3.139). Thus (3.139) is equivalent to w1321543 = w141231. Now
w1321543 = w1352143 and w141231 = w112143 = w2143. Cancelling 2143 from the
right of both sides yields w135 = w. Since all steps are reversible, the claim is proved
for p = 6.

The equality of (ii) and (iii) was first proved by J. R. Stembridge, Duke Math. J. 82
(1996), 585–606, for the special case of standard Young tableaux (i.e., when P is a
finite order ideal of N × N). Stembridge’s proof was based on representation theory.
He actually proved a more general result involving semistandard tableaux that does
not seem to extend to other posets. The bijective argument given here, again for the
case of semistandard tableaux, is due to A. Berenstein and A. N. Kirillov, Discrete
Math. 225 (2000), 15–24.

The equivalence of (i) and (iii) is an instance of Stembridge’s “q = −1 phenomenon.”
Namely, suppose that an involution ι acts on a finite set S. Let f : S → Z. (Usually
f will be a “natural” combinatorial or algebraic statistic on S.) Then we say that
the triple (S, ι, f) exhibits the q = −1 phenomenon if the number of fixed points of ι
is given by

∑
t∈S(−1)f(t). See J. R. Stembridge, J. Combinatorial Theory Ser. A 68

(1994), 373–409; Duke Math. J. 73 (1994), 469–490; and Duke Math. J. 82 (1996),
585–606. The q = −1 phenomenon has been generalized to the action of cyclic groups
by V. Reiner, D. Stanton, and D. E. White, J. Combinatorial Theory, Ser. A 108
(2004), 17–50, where it is called the “cyclic sieving phenomenon.” For further examples
of the cyclic sieving phenomenon, see C. Bessis and V. Reiner, Ann. Combinatorics,
submitted, arXiv:math/0701792; H. Barcelo, D. Stanton, and V. Reiner, J. London
Math. Soc. (2) 77 (2009), 627–646; and B. Rhoades, Cyclic sieving and promotion,
preprint.
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80. Part (a)(i) follows easily from work of Schützenberger, while (a)(ii)–(a)(iii) are due to
Haiman, and (b) to Edelman and Greene. For further details, see R. Stanley, Electronic
J. Combinatorics 15(2) (2008-2009), #R9 (§4).

81. (a) If a1a2a3 · · ·an ∈ L(P ), then a2a1a3 · · ·an ∈ L(P ).

(b) Hint. Show that the promotion operator ∂ : L(P ) → L(P ) always reverses the
parity of the linear extension f to which it is applied. See R. Stanley, Advances
in Appl. Math. 34 (2005), 880–902 (Corollary 2.2). Corollary 2.4 of this reference
gives another result of a similar nature.

82. This result is due to D. White, J. Combinatorial Theory, Ser. A 95 (2001), 1–38

(Corollary 20 and §8). White also computes the “sign imbalance”
∣∣∣
∑

w∈Ep×q
sgn(w)

∣∣∣
when p × q in not sign-balanced. A conjectured generalization for any finite order
ideal of N × N appears in R. Stanley, Advances in Applied Math. 34 (2005), 880–902
(Conjecture 3.6).

83. Let #P = 2m, and suppose that there does not exist a P -domino tableau. Let w =
a1a2 · · ·a2m ∈ EP . Since there does not exist a P -domino tableau, there is a least i for
which a2i−1 and a2i are incomparable. Let w′ be the permutation obtained from w by
transposing a2i−1 and a2i. Then the map w 7→ w′ is an involution on EP that reverses
parity, and the proof follows. This result appears in R. Stanley, ibid. (Corollary 4.2),
with an analogous result for #P odd.

84. We have

∑

u∈P
ū=t̄

µ(s, u) =
∑

u

µ(s, u)δP (ū, t̄)

=
∑

u,v̄

µ(s, u)ζP (ū, v̄)µP (v̄, t̄)

=
∑

u,v̄

µ(s, u)ζ(u, v̄)µP (v̄, t̄) (since u ≤ v̄ ⇔ ū ≤ v̄)

=
∑

v̄∈P

δ(s, v̄)µP (v̄, t̄).

This fundamental result was first given by H. Crapo, Archiv der Math. 19 (1968), 595–
607 (Thm. 1), simplifying some earlier work of G.-C. Rota in [3.58]. For an exposition
of the theory of Möbius functions based on closure operators, see Ch. IV.3 of M. Aigner,
Combinatorial Theory, Springer-Verlag, Berlin/Heidelberg/New York, 1979.

86. Let G(s) =
∑

t≥s g(t). It is easy to show that

∑

0̂≤u≤s

µ(0̂, u)G(u) =
∑

t
s∧t=0̂

g(t) = f(s).
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Now use Möbius inversion to obtain

µ(0̂, t)G(t) =
∑

u≤t
µ(u, t)f(u). (3.140)

On the other hand, Möbius inversion also yields

g(s) =
∑

t≥s
µ(s, t)G(t). (3.141)

Substituting the value of G(t) from equation (3.140) into (3.141) yields the desired
result.

This formula is a result of P. Doubilet, Studies in Applied Math. 51 (1972), 377–395
(lemma on page 380).

87. (a) Given C : 0̂ < t1 < · · · < tk < 1̂, the coefficient of f(t1) · · · f(tk) on the left-hand
side is ∑

C′⊇C
(−1)#(C′−C) = (−1)k+1µ(0̂, t1)µ(t1, t2) · · ·µ(tk, 1̂),

by Proposition 3.8.5. Here C ′ ranges over all chains of P − {0̂, 1̂} containing C.

Essentially the same result appears in Ch. II, Lemma 3.2, of [3.67].

(b) Put each f(t) = 1. All terms on the left-hand side are 0 except for the term
indexed by the chain 0̂ < 1̂ (an empty product is equal to 1).

(c) We have ∑

0̂=t0<t1<···<tk=1̂

(−1)kµ(t0, t1)µ(t1, t2) · · ·µ(tk−1, tk)

= (1− (µ− 1) + (µ− 1)2 − (µ− 1)3 + · · · )(0̂, 1̂)

= (1 + (µ− 1))−1(0̂, 1̂)

= ζ(0̂, 1̂)

= 1.

(d) By Example 3.9.6 we have
µ(t0, t1)µ(t1, t2) · · ·µ(tk−1, tk)

=

{
(−1)ℓ, if the chain t0 < t1 < · · · < tk is boolean

0, otherwise,

and the proof follows easily from (a).

88. Consider ζµζ(0̂, 1̂) in the incidence algebra I(P,C). For a similar trick, see the solution
to Exercise 3.47(b). A solution can also be given based on Philip Hall’s theorem
(Proposition 3.8.5).

92. This result is known as the “Crapo complementation theorem.” See H. H. Crapo, J.
Combinatorial Theory 1 (1966), 126–131 (Thm. 3). For topological aspects of this
result, see A. Björner, J. Combinatorial Theory, Ser. A 30 (1981), 90–100.
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93. (a) By the inductive definition (3.15) of the Möbius function, it follows that µL(0̂, t)
is odd (and therefore nonzero) for all t ∈ L. Now use Exercise 3.92.

(b) See R. Freese and Univ. of Wyoming Problem Group, Amer. Math. Monthly 86
(1979), 310–311.

94. This result (stated slightly differently) is due to G.-C. Rota, in Studies in Pure Math-
ematics (L. Mirsky, ed.), Academic Press, London, 1971, pp. 221–233 (Thm. 2). Re-
lated papers include G.-C. Rota, in Proc. Univ. Houston Lattice Theory Conf., 1973,
pp. 575–628; L. D. Geissinger, Arch. Math. (Basel) 24 (1973), 230–239, 337–345, and
in Proc. Third Caribbean Conference on Combinatorics and Computing, University of
the West Indies, Cave Hill, Barbados, pp. 125–133; R. L. Davis, Bull. Amer. Math.
Soc. 76 (1970), 83–87; H. Dobbertin, Order 2 (1985), 193–198. See also Exercise 4.58.

95. See Greene [3.34, Thm. 5].

96. Our exposition for this entire exercise is based on Greene [3.35].

(a) Define a matrix M = [M(s, t)] by setting M(s, t) = ζ(s, t)f(s, t). Clearly if
we order the rows and columns of M by some linear extension of L, then M is
triangular and detM =

∏
s f(s, s). On the other hand (writing ζ for the matrix

of the ζ-function of L with respect to the basis L, that is, ζ is the incidence matrix
of the relation L),

M tζ =

[∑

u

f(u, s)ζ(u, s)ζ(u, t)

]

s,t∈L

=

[∑

u≤s∧t
f(u, s)

]

s,t∈L

= [F (s ∧ t), s].

Thus det[F (s ∧ t, s)] = detM tζ = detM .

This formula is a result of B. Lindström, Proc. Amer. Math. Soc. 20 (1969), 207–
208, and (in the case where F (s, v) depends only on s) H. S. Wilf, Bull. Amer.
Math. Soc. 74 (1968), 960–964.

(b) Take L to be the set [n] ordered by divisibility, and let f(s, v) = φ(s) (so F (s, v) =
s). For a proof from scratch, see G. Pólya and G. Szegö, Problems and Theorems
in Analysis II, Springer-Verlag, Berlin/Heidelberg/New York, 1976 (Part VIII,
Ch. 1, no. 33).

(c) When f(s, v) = µ(0̂, s) we have (suppressing v)

F (s ∧ t) =
∑

u≤s∧t
µ(0̂, u) = δ(0̂, s ∧ t).

Hence the matrix R = [F (s ∧ t)] is just the incidence matrix of the relation
s∧ t = 0̂. By (a), detR 6= 0. Hence some term in the expansion of detR must be
nonzero, and this term yields the desired permutation w.

This result is due to T. A. Dowling and R. M. Wilson, Proc. Amer. Math. Soc.
47 (1975), 504–512 (Thm. 2*).
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Figure 3.78: A lattice with no complementing permutation

(d) By Exercise 3.100(b) we have that µ(s, t) 6= 0 for all s ≤ t in a geometric lattice L.
Apply (c) to the dual L∗. We get a permutation w : L→ L such that s∨w(s) = 1̂
for all s ∈ L. Semimodularity implies ρ(s) + ρ(w(s)) ≥ n, so w maps elements of
rank at most k injectively into elements of rank at least n− k.
This result is also due to T. A. Dowling and R. M. Wilson, ibid. (Thm. 1). The
case k = 1 was first proved by C. Greene, J. Combinatorial Theory 2 (1970),
357–364.

(e) T. A. Dowling and R. M. Wilson, op. cit. (Thm. 1).

97. See T. A. Dowling, J. Combinatorial Theory, Ser. B 23 (1977), 223–226. The following
elegant proof is due to R. M. Wilson (unpublished). Let ζ be the matrix in the solution
to Exercise 3.96(a), and let

∆0 = diag(µ(0̂, t) : t ∈ L),

∆1 = diag(µ(t, 1̂) : t ∈ L).

By the solution to Exercise 3.96(c) (and its dual), we have that

[
ζ t∆0ζ

]
uv

= δ(0̂, u ∧ v)
[
ζ∆1ζ

t
]
uv

= δ(u ∨ v, 1̂).

Let C = ζ∆1ζ
t∆0ζ . Since C = (ζ∆1ζ

t)∆0ζ = ζ∆1(ζ
t∆0ζ), it follows that Cuv = 0

unless u and v are complements. But the hypothesis on L implies that detC 6= 0, and
so a nonzero term in the expansion of detC gives the desired permutation w.

For an example where µ(0̂, t) 6= 0 for all t ∈ L, yet a “complementing permutation”
does not exist, see Figure 3.78.

100. (a) Suppose that s is an element of L of maximal rank that is not a meet of coatoms.
Thus s is covered by a unique element t [why?]. Clearly t 6= 1̂; else s would be a
coatom. Since L is atomic, there is an atom a of L such that a 6≤ t; else 1̂ would
not be a join of atoms. Since L is semimodular, s ∨ a covers a. Since a 6≤ t we
have s ∨ a 6= t, a contradiction.
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(b) Consider equation (3.33). By (a) the sum is not empty, so the proof follows by
induction on the rank of L (the case rank(L) = 1 being trivial).

(c) Induction on n = rank(L), the case n = 1 being trivial. Now assume for rank(L) =
n − 1, and let rank(L) = n. Let a be an atom of L. By (b), the sum over t in
equation (3.33) has exactly one term. Thus there is exactly one coatom t of L
not lying above a, and moreover by the induction hypothesis the interval [0̂, t] is
isomorphic to Bn−1. Since this result holds for all atoms a, it is easy to see that
all subsets of the atoms have different joins. Hence L ∼= Bn.

101. (a) Let f : L→ Q, and define f̂ : L→ Q by

f̂(t) =
∑

s≤t
f(s).

For any t ≤ t∗ in L we have
∑

t≤s≤t∗
f̂(s)µ(s, t∗) =

∑

t≤s≤t∗
µ(s, t∗)

∑

u≤s
f(u)

=
∑

u

f(u)
∑

t≤s≤t∗
u≤s

µ(s, t∗)

=
∑

u

f(u)
∑

t∨u≤s≤t∗
µ(s, t∗)

=
∑

u
t∨u=t∗

f(u).

Now suppose that f(t) = 0 unless t ∈ B. We claim that the restriction f̂A of f̂ to

A determines f̂ (and hence f since f(t) =
∑

s≤t f̂(s)µ(s, t) by Möbius inversion).

We prove the claim by induction on the length ℓ(t, 1̂) of the interval [t, 1̂]. If t = 1̂

that 1̂ ∈ A by hypothesis, so f̂(1̂) = f̂A(1̂). Now let t < 1̂. If t ∈ A then there

is nothing to prove, since f̂(t) = f̂A(t). Thus assume t 6∈ A. Let t∗ be as in the
hypothesis. Then ∑

u
t∨u=t∗

f(u) = 0 (empty sum),

so ∑

t≤s≤t∗
f̂(s)µ(s, t∗) = 0.

By induction, we know f̂(s) for t < s. Since µ(t, t∗) 6= 0, we can then solve for

f̂(t). Hence the claim is proved.

It follows that the matrix [ζ(s, t)]s∈B
t∈A

has rank b = #B. Thus some b×b submatrix

has nonzero determinant. A nonzero term in the expansion of this determinant
defines an injective function φ : B → A with φ(s) ≥ s, and the proof follows.

This result and the applications below are due to J. P. S. Kung, Order 2 (1985),
105–112; Math. Proc. Cambridge Phil. Soc. 101 (1987), 221–231. The solution
given here was suggested by C. Greene.
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Figure 3.79: A modular lattice for which P1 6∼= Q1

(b) These are standard results in lattice theory; for example [3.13], Thm. 13 on page
13 and §IV.6–IV.7.

(c) Choose A = Mk and B = Jk in (a). Given t ∈ L, let t∗ be the join of elements
covering t. By (i) from (b) we have µ(t, t∗) 6= 0. Moreover by (ii) if t is covered
by j elements of L then t∗ covers j elements of [t, t∗]. Thus if t 6∈ A = Mk

then T ∗ covers more than k elements of [t, t∗]. Let u ∈ B = Jk. Then by (iii),
[t ∧ u, u] ∼= [t, t ∨ u]. Hence t ∨ u 6= t∗, so the hypotheses of (a) are satisfied and
the result follows.

(d) By (c), #Jk ≤ #Mk. Since the dual of a modular lattice is modular, we also
have #Mk ≤ #Jk, and the result follows. This result was first proved (in a more
complicated way) by R. P. Dilworth, Ann. Math. (2) 60 (1954), 359–364, and
later by B. Ganter and I. Rival, Alg. Universalis 3 (1973), 348–350.

(e) See Figure 3.79.

(f) With L as in Exercise 3.96(d), choose

A = {t ∈ L : ρ(t) ≥ n− k}
B = {t ∈ L : ρ(t) ≤ k}.

Define t∗ = 1̂ for all t ∈ L. The hypotheses of (a) are easily checked, so in
particular #B ≤ #A as desired.

102. (a) This diabolical problem is equivalent to a conjecture of P. Frankl. See page 525
of Graphs and Order (I. Rival, ed.), Reidel, Dordrecht/Boston, 1985. For some
further work on this conjecture, see R. Morris, Europ. J. Combinatorics 27 (2006),
269–282, and the references therein.

(b) If not, then by Exercise 3.96(c) there is a permutation w : L → L for which
s ∧ w(s) = 0̂ for all s ∈ L. But if #Vt > n/2 then Vt ∩ w(Vt) 6= ∅, and any
u ∈ Vt ∩ w(Vt) satisfies u ∧ w(u) ≥ t. One can also give a simple direct proof
(avoiding Möbius inversion) of the following stronger result. Let L be a finite
lattice with n elements, such that for all 0̂ < s ≤ t in L, there exists u 6= t for
which s ∨ u = t. Then every t > 0̂ satisfies #Vt ≤ n/2.
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Figure 3.80: A lattice with no sublattice 1⊕ (1 + 1 + 1)⊕ 1

103. Answer. If n ≥ 3 then

−
(

n− 1

2⌊(n− 1)/4⌋

)
≤ µ(0̂, 1̂) ≤

(
n− 1

2⌊(n− 1)/4⌋+ 1

)
.

See H. Scheid, J. Combinatorial Theory 13 (1972), 315–331 (Satz 5).

104. (a) E. E. Maranich, Mat. Zametki 44 (1988), 469–487, 557; translation in Math. Notes
44 (1988), 736–447 (1989), and independently G. M. Ziegler, J. Combinatorial
Theory, Ser. A 56 (1991), 203–222, have shown by induction on the length of P
that the answer is

max (a1 − 1) · · · (ak − 1),

where the maximum is taken over all partitions a1 + · · ·+ aj = n. (One can show
that the maximum is obtained by taking at most four of the ai’s not equal to five.)
This bound is achieved by taking P to be the ordinal sum 1⊕a11⊕· · ·⊕ak1⊕1.
For some additional results, see D. N. Kozlov, Combinatorica 19 (1999), 533–548.

(b) One can achieve n2−ǫ (for any ǫ > 0 and sufficiently large n) by taking L to be
the lattice of subspaces of a suitable finite-dimensional vector space over a finite
field. It seems plausible that n2−ǫ is best possible. This problem was suggested
by L. Lovász. A subexponential upper bound is given by Ziegler, op. cit.

105. This problem was suggested by P. H. Edelman. It is plausible to conjecture that the
maximum is obtained by taking P to be the ordinal sum 1 ⊕ k1⊕ k1⊕ · · · ⊕ k1⊕ 1
(ℓ − 1 copies of k1 in all), yielding |µ(0̂, 1̂)| = (k − 1)ℓ−1, but this conjecture is false.
The first counterexample was given by Edelman; and G. M. Ziegler, op. cit., attained
|µ(0̂, 1̂)| = (k − 1)(kℓ−1 − 1), together with some related results.

106. No, an example being given in Figure 3.80. The first such example (somewhat more
complicated) was given by C. Greene (private communication, 1972).

107. This result is due to R. Stanley (proposer), Problem 11453, Amer. Math. Monthly 116
(2009), 746. The following solution is due to R. Ehrenborg.
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We can rewrite the identity (regarding elements of I as subsets of [n]) as
∑

u∈I
u≥t

(−1)#u = 0.

Sum the given identity over all sets v in I of cardinality j, where 0 ≤ j ≤ k:

0 =
∑

v∈I
#v=j

∑

u∈I
u≥v

(−1)#u

=
∑

u∈I

∑

v≥u
#v=j

(−1)#u

=
∑

u∈I

(
#u

j

)
(−1)#u.

Multiply this equation by (−2)j and take modulo 2k+1, to obtain

0 ≡
∑

u∈I

(
#u

j

)
(−1)#u−j2j mod 2k+1.

Observe that this congruence is also true for j > k, that is, it holds for all nonnegative
integers j. Now summing over all j and using the binomial theorem, we have modulo
2k+1 that

0 ≡
∑

j≥0

∑

u∈I

(
#u

j

)
(−1)#u−j2j

≡
∑

u∈I

∑

j≥0

(
#u

j

)
(−1)#u−j2j

≡
∑

u∈I
(−1 + 2)#u

≡
∑

u∈I
1

≡ #I.

This result is the combinatorial analogue of a much deeper topological result of G.
Kalai, in Computational Commutative Algebra and Combinatorics, Advanced Studies
in Pure Mathematics 23 (2002), 121–163 (Theorem 4.2), a special case of which can
be stated as follows. Let ∆ be a finite simplicial complex, or equivalently, an order
ideal I of Bn. Suppose that for any face F of dimension at most k − 1 (including the
empty face of dimension −1), the link (defined in equation (3.26)) of F is acyclic (i.e.,
has vanishing reduced homology). Let fi denote the number of i-dimensional faces of
∆. Then there exists a simplicial complex Γ with gi i-dimensional faces such that

∑

i≥−1

fix
i = (1 + x)k+1

∑

i≥−1

gix
i. (3.142)
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(Note that equation (3.142) does not imply the present exercise because the hypothesis
on ∆ is stronger for (3.142).) An even stronger result was conjectured by Stanley,
Discrete Math. 120 (1993), 175–182 (Conjecture 2.4), as follows. Let L be the poset
(or meet-semilattice) of faces of ∆. Then there exists a partitioning of L into intervals
[s, t] of rank k+1 such that the bottom elements s of the intervals form an order ideal
of L. The case k = 0 was proved by Stanley, Discrete Math. 120 (1993), 175–182,
and some generalizations by A. M. Duval, Israel J. Math. 87 (1994), 77–87, and A. M.
Duval and P. Zhang, Israel J. Math. 121 (2001), 313–331. A stronger conjecture than
the one just stated is due to Kalai, op. cit. (Conjecture 22).

108. (b) If σ is a partition of V , then let χσ(n) be the number of maps f : V → [n] such
that (i) if a and b are in the same block of σ then f(a) = f(b), and (ii) if a and b
are in different blocks and {a, b} ∈ E, then f(a) 6= f(b). Given any f : V → [n],
there is a unique σ ∈ LG such that f is one of the maps enumerated by χσ(n). It
follows that for any π ∈ LG, we have n#π =

∑
σ≥π χσ(n). By Möbius inversion

χπ(n) =
∑

σ≥π n
#σµ(π, σ). But χ0̂(n) = χG(n), so the proof follows.

This interpretation of χG(n) in terms of Möbius functions is due to G.-C. Rota
[3.58, §9].

(c) Denote the hyperplane with defining equation xi − xj by He, where e is the edge
with vertices i and j. Let iT be an intersection of some set T of hyperplanes
of the arrangement BG. Let GT be the spanning subgraph of G with edge set
{e : He ∈ T}. If e′ is an edge of G such that its vertices belong to the same
connected component of GT , then it is easy to see that iT = iT∪{e′}. From this
observation it follows that LBG

is isomorphic to the set of connected partitions of
G ordered by refinement, as desired. It follows from (b) that χG and χBG

differ
at most by a power of q. Equality then follows e.g. from the fact that both have
degree equal to #V .

(d) It is routine to verify equation (3.119) from (c) and Proposition 3.11.5. To give
a direct combinatorial proof, let e = {u, v}. Show that χG(n) is the number of
proper colorings f of G − e such that f(u) 6= f(v), while χG/e(n) is the number
of proper colorings f of G− e such that f(u) = f(v).

(e) It follows from equation (1.96) and Proposition 1.9.1(a) that ϕ((n)k) = xk. Now
use (a). Chung Chan has pointed out that this result can also be proved from (d)
by first showing that if we set gG =

∑
j SG(j)xj , then gG = gG−e − gG/e for any

edge e of G. Equation (3.120) is equivalent to an unpublished result of Rhodes
Peele.

109. (a) We need to prove that

ao(G) = ao(G− e) + ao(G/e),

together with the initial condition ao(G) = 1 if G has no edges. Let o be an acyclic
orientation of G− e, where e = {u, v}. Let o1 be o with u→ v adjoined, and o2

be o with v → u adjoined, so o1 and o2 are orientations of G. The key step is to
show the following: exactly one of o1 and o2 is acyclic, except for ao(G/e) cases
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for which both o1 and o2 are acyclic. See R. Stanley, Discrete Math. 5 (1973),
171–178.

(b) A region of the graphical arrangement BG is obtained by specifying for each edge
{i, j} of G whether xi < xj or xi > xj . Such a specification is consistent if and
only if the following condition is satisfied: let o be the orientation obtained by
letting i → j whenever we choose xi < xj . Then o is acyclic. Hence the number
of regions of BG is ao(G). Now use Exercise 3.108(c) and Theorem 3.11.7. This
proof is due to G. Greene and T. Zaslavsky, Trans. Amer. Math. Soc. 280 (1983),
97–126.

110. Part (a) was proved and (b) was conjectured by A. E. Postnikov, Total positivity, Grass-
mannians, and networks, arXiv:math/0609764 (Conjecture 24.4(1)). Postnikov’s con-
jecture was proved by A. Hultman, S. Linusson, J. Shareshian, and J. Sjöstrand, J.
Combinatorial Theory Ser. A 116 (2009), 564–580.

111. See C. A. Athanasiadis and S. Linusson, Discrete Math. 204 (1999), 27–39; and R.
Stanley, in Mathematical Essays in Honor of Gian-Carlo Rota (B. Sagan and R. Stan-
ley, eds.), Birkhäuser, Boston/Basel/Berlin, 1998, pp. 359–375.

112. (b) By Whitney’s theorem (Proposition 3.11.3) we have for any arrangement A in Kn

that

χA(x) =
∑

B⊆A
B central

(−1)#Bxn−rank(B).

Let A = (A1,A2, . . . ), and let B ⊆ An for some n. Define π(B) ∈ Πn to have
blocks that are the vertex sets of the connected components of the graph G on
[n] with edges

E(G) = {ij : ∃xi − xj = c in B}. (3.143)

Define

χ̃An(x) =
∑

B⊆A
B central
π(B)={[n]}

(−1)#Bxn−rank(B).

Then

χAn(x) =
∑

π={B1,...,Bk}∈Πn

∑

B⊆A
B central
π(B)=π

(−1)#Bxn−rank(B)

=
∑

π={B1,...,Bk}∈Πn

χ̃A#B1
(x)χ̃A#B2

(x) · · · χ̃A#Bk
(x).

Thus by the exponential formula (Corollary 5.1.6),

∑

n≥0

χAn(x)
zn

n!
= exp

∑

n≥1

χ̃An(x)
zn

n!
.
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But π(B) = {[n]} if and only if rank(B) = n−1, so χ̃An(x) = cnx for some cn ∈ Z.
We therefore get

∑

n≥0

χAn(x)
zn

n!
= exp x

∑

n≥1

cn
zn

n!
(3.144)

=

(∑

n≥0

bn
zn

n!

)x

,

where exp
∑

n≥1 cn
zn

n!
=
∑

n≥0 bn
zn

n!
. Put x = −1 to get

∑

n≥0

(−1)nr(An)
zn

n!
=

(∑

n≥0

bn
zn

n!

)−1

,

from which it follows that

∑

n≥0

χAn(x)
zn

n!
=

(∑

n≥0

(−1)nr(An)
zn

n!

)−x

.

This result was stated without proof by R. Stanley, Proc. Nat. Acad. Sci. 93
(1996), 2620–2625 (Theorem 1.2), and proved in [3.83, Thm. 5.17].

(c) Similarly to equation (3.144) we get

∑

n≥0

χAn(x)
zn

n!
= exp

∑

n≥1

(cnx+ dn)
zn

n!

= A(z)xB(z),

say, where A(z) and B(z) are independent of x. Put x = −1 and x = 1, and solve
for A(z) and B(z) to complete the proof. This result appears without proof in
[3.83, Exer. 5.10].

113. Let Aq lie in Fnq . Suppose that A′
q = Aq−{H0}. The points of Fnq that do not lie in any

H ∈ A′ are a disjoint union of those points that do not lie on any H ∈ Aq, together
with the points α ∈ H0 that do not lie on any H ∈ Aq. These points α are just those
points in H0 that do not lie on A′′

q , so the proof follows. This proof was suggested by
A. Postnikov, private communication, February 2010.

115. (a) Let p be a large prime. By Theorem 3.11.10 we want the number of ways to choose
an n-tuple (a1, . . . , an) ∈ Fnp such that no ai−aj = 0,±1 (i 6= j). Once we choose
a1 in p ways, we need to choose n − 1 points (in order) from [p − 3] so that no
two are consecutive. Now use Exercise 1.34 for j = 2. This arrangement is called
the “Catalan arrangement” because the number of regions is n!Cn. Perhaps the
first explicit appearance of this arrangement and determination of the number of
regions is R. Stanley, Proc. Nat. Acad. Sci. 93 (1996), 2620–2625 (special case of
Theorem 2.2). The evaluation of χCn(x) appears in C. A. Athanasiadis, Advances
in Math. 122 (1996), 193–233 (special case of Theorem 5.1).
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(b) The case x = −1 (i.e., the number of regions of Ln) was raised by N. Linial. Equa-
tion (3.122) was first proved by C. Athanasiadis, ibid. (Theorem 5.2), generalized
further in J. Alg. Comb. 10 (1999), 207–225 (§3), using the finite field method
(Theorem 3.11.10). A proof based on Whitney’s theorem (Proposition 3.11.3) was
given by A. E. Postnikov, Ph.D. thesis, M.I.T., 1997. Numerous generalizations
appear in A. E. Postnikov and R. Stanley, J. Combinatorial Theory, Ser. A 91
(2000), 544–597. See also Exercise 5.41 for some combinatorial interpretations of
r(Ln).

(c) This result is a special case of Exercise 3.112(c). It first appeared (without proof)
as Exercise 5.25 of [3.83]. The arrangement Tn is called the “threshold arrange-
ment” because the number of regions is equal to the number of threshold graphs
with vertex set [n] (see Exercise 5.4).

(d) Let p be a large prime (p > 2 will do). Choose a1 6= 0 in p−1 ways. Since p is odd,
we can choose a2 6= 0,±a1 in p− 3 ways. We can then choose a3 6= 0,±a1,±a2 in
p− 5 ways, etc., giving

χBB
n
(x) = (x− 1)(x− 3)(x− 5) · · · (x− 2n+ 1).

A nice introduction to the combinatorics of hyperplane arrangements related to
root systems is T. Zaslavsky, Amer. Math. Monthly 88 (1981), 88–105.

116. It is not so difficult to show that the intersection poset L(C) is isomorphic to the
rank k truncation of the partition lattice Πn, i.e., the order ideal of Πn consisting
of all partitions with at least n − k blocks. It follows from Proposition 1.3.7 and
equations (3.38) and (3.46) that

χC(x) =

k∑

i=0

(−1)ic(n, n− i)xn−i

r(C) = c(n, n) + c(n, n− 1) + · · ·+ c(n, n− k).

This problem was first considered by I. J. Good and T. N. Tideman, J. Combinatorial
Theory Ser. A 23 (1977), 34–45, in connection with voting theory. They obtained
the formula for r(C) by a rather complicated induction argument. Later Zaslavsky,
Discrete Comput. Geom. 27 (2002), 303–351, corrected an oversight in the proof of
Good and Tideman and reproved their result by using standard techniques from the
theory of arrangements (working in a more general context than here). H. Kamiya, P.
Orlik, A. Takemura, and H. Terao, Ann. Combinatorics 10 (2006), 219–235, considered
additional aspects of this topic in an analysis of ranking patterns.

117. It follows from equation (3.123) that in a reference frame at velocity v, the events
pi = (ti,xi) and pj = (tj ,xj) occur at the same time if and only if

t1 − t2 = (x1 − x2) · v.

The set of all such v ∈ Rn forms a hyperplane. The set of all such
(
k
2

)
hyperplanes

forms an arrangement E = E(p1, . . . ,pk), which we call the Einstein arrangement.
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The number of different orders in which the events can be observed is therefore r(E).
As in the previous exercise, the intersection poset L(E) is isomorphic to the rank k
truncation of Πn, so we obtain as above that

r(E) = c(n, n) + c(n, n− 1) + · · ·+ c(n, n− k).

For instance, when n = 3 we get

r(E) =
1

48

(
k6 − 7k5 + 23k4 − 37k3 + 48k2 − 28k + 48

)
.

For further details, see R. Stanley, Advances in Applied Math. 37 (2006), 514–525.
Some additional results are due to M. I. Heiligman, Sequentiality restrictions in special
relativity, preprint dated 4 February 2010.

118. (a) This remarkable result is equivalent to the main theorem of H. Terao, Invent.
Math. 63 (1981), 159–179. For an exposition, see Orlik and Terao [3.53, Thm. 4.6.21].

(b) The result that Ω is free when L is supersolvable (due independently to R. Stanley
and to M. Jambu and H. Terao, Advances in Math. 52 (1984), 248–258) can
be proved by induction on ν using the Removal Theorem of H. Terao, J. Fac.
Sci. Tokyo (IA) 27 (1980), 293–312, and the fact that if L = L(H1, . . . , Hν) is
supersolvable, then for some i ∈ [ν] we have that L(H1, . . . , Hi−1, Hi+1, . . . , Hν) is
also supersolvable. Examples of free Ω when L is not supersolvable appear in the
previous reference and in H. Terao, Proc. Japan Acad. (A) 56 (1980), 389–392.

(c) This question was raised by Orlik–Solomon–Terao, who verified it for n ≤ 7. The
numbers (e1, . . . , en) for 3 ≤ n ≤ 7 are given by (1, 1, 2), (1, 2, 3, 4), (1, 3, 4, 5, 7),
(1, 4, 5, 7, 8, 10), and (1, 5, 7, 9, 10, 11, 13). However, G. M. Ziegler showed in Ad-
vances in Math. 101 (1993), 50–58, that the arrangement is not free for n ≥ 9.
The case n = 8 remains open.

(d) This question is alluded to on page 293 of H. Terao, F. Fac. Sci. Tokyo (IA) 27
(1980), 293–312. It is a central open problem in the theory of free arrangements,
though most likely the answer is negative.

(e) See H. Terao, Invent. Math. 63 (1981), 159–179 (Prop. 5.5), and Orlik and Terao
[3.53, Thm. 4.2.23]. Is there a more elementary proof?

(f) The question of the freeness of At was raised by P. Orlik. A counterexample was
discovered by P. H. Edelman and V. Reiner, Proc. Amer. Math. Soc. 118 (1993),
927–929.

119. Let N(V,X) be the number of injective linear transformations V → X. It is easy to
see that N(V,X) =

∏n−1
k=0(x−qk). On the other hand, let W be a subspace of V and let

F=(W ) be the number of linear θ : V → X with kernel (null space) W . Let F≥(W ) be
the number with kernel containing W . Thus F≥(W ) =

∑
W ′≥W F=(W ), so by Möbius

inversion we get

N(V,X) = F=({0}) =
∑

W ′

F≥(W ′)µ(0̂,W ′).
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Clearly F≥(W ′) = xn−dimW ′
, while by equation (3.34) µ(0̂,W ′) = (−1)kq(

k
2), where

k = dimW ′. Since there are
(

n

k

)
subspaces W ′ of dimension k, we get

N(V,X) =
n∑

k=0

(−1)kq(
k
2)
(

n

k

)
xn−k.

120. See R. Stanley, J. Amer. Math. Soc. 5 (1992), 805–851 (Proposition 9.1). This exercise
suggests that there is no good q-analogue of an Eulerian poset.

121. First solution. Let f(i, n) be the number of i-subsets of [n] with no k consecutive
integers. Since the interval [∅, S] is a boolean algebra for S ∈ L′

n, it follows that
µ(∅, S) = (−1)#S. Hence, setting an = µn(∅, 1̂),

−an =

n∑

i=0

(−1)if(i, n).

Define F (x, y) =
∑

i≥0

∑
n≥0 f(i, n)xiyn. The recurrence

f(i, n) = f(i, n− 1) + f(i− 1, n− 2) + · · ·+ f(i− k + 1, n− k)
(obtained by considering the largest element of [n] omitted from S ∈ L′

n) yields

F (x, y) =
1 + xy + x2y2 + · · ·+ xk−1yk−1

1− y(1 + xy + · · ·+ xk−1yk−1)
.

Since −F (−1, y) =
∑

n≥0 any
n, we get

∑

n≥0

any
n =

−(1− y + y2 − · · · ± yk−1)

1− y(1− y + y2 − · · · ± yk−1)

=
1 + (−1)k−1yk

1 + (−1)kyk+1

= −(1 + (−1)k−1yk)
∑

i≥0

(−1)i(−1)kiyi(k+1)

⇒ an =





−1, if n ≡ 0,−1 (mod 2k + 2)

(−1)k, if n ≡ k, k + 1 (mod 2k + 2)

0, otherwise.

Second solution (E. Grimson and J. B. Shearer, independently). Let ∅ 6= a ∈ L′
n. The

dual form of Corollary 3.9.3 asserts that
∑

t∨a=1̂

µ(∅, t) = 0.

Now t ∨ a = 1̂ ⇒ t = 1̂ or t = {2, 3, . . . , k} ∪ A where A ⊆ {k + 2, . . . , n}. It follows
easily that

an − (−1)k−1an−k−1 = 0.

This recurrence, together with the initial conditions a0 = −1, ai = 0 if i ∈ [k− 1], and
ak = (−1)k determine an uniquely.
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24
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Figure 3.81: The poset P11324 when 13 = 31, 14 = 41, 24 = 42

122. An interval [d, n] of L is isomorphic to the boolean algebra Bν(n/d), where ν(m) denotes
the number of distinct prime divisors of m. Hence µ(d, n) = (−1)ν(n/d).

Write d ‖ n if d ≤ n in L. Given f, g : P→ C, we have

g(n) =
∑

d‖n
f(d), for all n ∈ P,

if and only if

f(n) =
∑

d‖n
(−1)ν(n/d)g(d), for all n ∈ P.

123.(a,b) Choose a factorization w = gi1 · · · giℓ . Define Pw to be the multiset {i1, . . . , iℓ}
partially ordered by letting ir < is if r < s and girgis 6= gisgir , or if r < s
and ir = is. For instance, with w = 11324 as in Figure 3.52, we have Pw as in
Figure 3.81. One can show that I is an order ideal of Pw if and only if for some
(or any) linear extension gi1 , . . . , gik of I, we have w = gi1 · · · gikz for some z ∈M .
It follows readily that Lw = J(Pw), and (b) is then immediate.

The monoid M was introduced and extensively studied by P. Cartier and D.
Foata, Lecture Notes in Math., no. 85, Springer-Verlag, Berlin/Heidelberg/New
York, 1969. It is known as a free partially commutative monoid or trace monoid.
The first explicit statement that Lw = J(Pw) seems to have been made by I.
M. Gessel in a letter dated February 8, 1978. This result is implicit, how-
ever, in Exercise 5.1.2.11 of D. E. Knuth [1.48]. This exercise of Knuth is es-
sentially the same as our (b), though Knuth deals with a certain representa-
tion of elements of M as multiset permutations. An equivalent approach to
this subject is the theory of heaps, developed by X. G. Viennot [4.60] after
a suggestion of A. M. Garsia. For the connection between factorization and
heaps, see C. Krattenthaler, appendix to electronic edition of Cartier-Foata,
〈www.mat.univie.ac.at/∼slc/books/cartfoa.pdf〉.

(c) The intervals [v, vw] and [ε, w] are clearly isomorphic (via the map x 7→ vx), and
it follows from (a) that Pw is an antichain (and hence [ε, w] is a boolean algebra) if
and only if w is a product of r distinct pairwise commuting gi. The proof follows
from Example 3.9.6.

A different proof appears in P. Cartier and D. Foata, op. cit, Ch. II.3.

(d) Let u ∈ M . Let Q̂M be the set of all infinite Q-linear combinations of elements

of M . It is clear that Q̂M has an obvious structure of a ring. By the recurrence
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(3.15) for the Möbius function, we have

[u]

(∑

v∈M
µ(ε, v)v

)(∑

w∈M
w

)
=

∑

u=vw

µ(ε, v)

=
∑

v≤u
µ(ε, v)

= δεu.

Hence

∑

w∈M
w =

(∑

v∈M
µ(ε, v)v

)−1

. (3.145)

If w ∈M , then let xw denote the (commutative) monomial obtained by replacing
in w each gi by xi. Applying this homomorphism to equation (3.145) and using
(c) completes the proof.

(e) We have

∑

a1≥0

· · ·
∑

an≥0

(
a1 + · · ·+ an
a1, . . . , an

)
xa11 · · ·xan

n =
1

1− (x1 + · · ·+ xn)

and ∑

a1≥0

· · ·
∑

an≥0

xa11 · · ·xan
n =

1

(1− x1) · · · (1− xn)
,

respectively.

124. (a) See [3.69], Theorem 4.1.

(b) This exercise is jointly due to A. Björner and R. Stanley. Given t ∈ L, let
Dt = J(Qt) be the distributive sublattice of L generated by C and t. The M-
chain C defines a linear extension of Qt and hence defines Qt as a natural partial
ordering of [n]. One sees easily that LP ∩Dt = J(P∩Qt). From this all statements
follow readily. Let us mention that it is not always the case that LP is a lattice.

125. See P. McNamara, J. Combinatorial Theory, Ser. A 101 (2003), 69–89. McNamara
shows that there is a third equivalent condition: L admits a good local action of the
0-Hecke algebra Hn(0). This condition is too technical to be explained here.

126. (a) The isomorphism L
(2)
k (p) ∼= L

(3)
k (p) is straightfoward, while L

(1)
k (p) ∼= L

(2)
k (p)

follows from standard duality results in the theory of abelian groups (or more
generally abelian categories). A good elementary reference is Chapter 2 of P.
J. Hilton and Y.-C. Wu, A Course in Modern Algebra, Wiley, New York, 1974.
In particular, the functor taking G to HomZ(G,Z/p∞Z) is an order-reversing
bijection between subgroups G of index pm (for some m ≥ 0) in Zk and subgroups
of order pm in (Z/p∞Z)k ∼= HomZ(G,Z/p∞Z).

The remainder of (a) is routine.
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(b) Follows, for example, from the fact that every subgroup of Zk of finite index is
isomorphic to Zk.

(c) This result goes back to Eisenstein, Königl. Preuss. Akad. Wiss. Berlin (1852),
350–359, and Hermite J. Reine u. angewandte Mathematik 41 (1851), 191–216.
The proof follows directly from the theory of Hermite normal form (see, e.g., §6 of
M. Newman, Integral Matrices, Academic Press, New York, 1972), which implies
that every subgroup G of Zk of index pn has a unique Z-basis y1, . . . , yk of the
form

yi = (ai1, ai2, . . . , aii, 0, . . . , 0),

where aii > 0, 0 ≤ aij < aii if j < i, and a11a22 · · ·akk = pn. Hence the number of
such subgroups is

∑

b1+···+bk=n

pb2+2b3+···+(k−1)bk =

(
n + k − 1

k − 1

)
.

For some generalizations, see L. Solomon, Advances in Math. 26 (1977), 306–326,
and L. Solomon, in Relations between Combinatorics and Other Parts of Mathe-
matics (D.-K. Ray-Chaudhuri, ed.), Proc. Symp. Pure Math., vol 34, American
Mathematical Society, Providence, RI, 1979, pp. 309–329.

(d) If t1 < · · · < tj in Lk(p) with ρ(ti) = si, then t1 can be chosen in
(

s1+k−1

k−1

)
ways,

next t2 in
(

s2−s1+k−1

k−1

)
ways, and so on.

(e) A word w = e1e2 · · · ∈ Nk satisfies D(w) ⊆ S = {s1, . . . , sj}< if and only if e1 ≤
e2 ≤ · · · ≤ es1, es1+1 ≤ · · · ≤ es2, . . . , esj−1+1 ≤ · · · ≤ esj

, esj+1 = esj+2 = · · · = 0.
Now for fixed i and k,

∑

0≤d1≤···≤di≤k−1

pd1+···+di =

(
i + k − 1

k − 1

)
,

and the proof follows easily.

The problem of computing αLλ
(S) and βLλ

(S), where Lλ is the lattice of subgroups
of a finite abelian group of type λ = (λ1, . . . , λk) (or more generally, a q-primary
lattice as defined in R. Stanley, Electronic J. Combinatorics 3(2) (1996), #R6
(page 9)) is more difficult. (The present exercise deals with the “stable” case
λi → ∞, 1 ≤ i ≤ k.) One can show fairly easily that βLλ

(S) is a polynomial
in p, and the theory of symmetric functions can be used to give a combinatorial
interpretation of its coefficients that shows they are nonnegative. An independent
proof of this fact is due to L. M. Butler, Ph.D. thesis, M.I.T., 1986, and Memoirs
Amer. Math. Soc. 112, no. 539 (1994) (Theorem 1.5.5).

130. (a) For any fixed t ∈ Qi we have

0 =
∑

s≤t
µ(0̂, s) =

∑

j



∑

s≤t
ρ(t)=i−j

µ(0̂, s)


 .
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Sum on all t ∈ Qi of fixed rank i− k > 0 to get (since [x, 1̂] ∼= Qj)

0 =
∑

j




∑

s∈Qi
ρ(s)=i−j

µ(0̂, s)







∑

t∈Qj

ρ(t)=j−k

1




=
∑

j

v(i, j)V (j, k).

On the other hand, it is clear that
∑

j v(i, j)V (j, i) = 1, and the proof follows.

This result (for geometric lattices) is due to T. A. Dowling, J. Combinatorial
Theory, Ser. B 14 (1973), 61–86 (Thm. 6).

(b) See M. Aigner, Math. Ann. 207 (1974), 1–22; M. Aigner, Aeq. Math. 16 (1977),
37–50; and J. R. Stonesifer, Discrete Math. 32 (1980), 85–88. For some related
results, see J. N. Kahn and J. P. S. Kung, Trans. Amer. Math. Soc. 271 (1982),
485–489, and J. P. S. Kung, Geom. Dedicata 21 (1986), 85–105.

131. See T. A. Dowling, J. Combinatorial Theory, Ser. B 14 (1973), 61–86. Erratum, same
journal 15 (1973), 211.

A far-reaching extension of these remarkable “Dowling lattices” appears in the work
of Zaslavsky on signed graphs (corresponding to the case #G = 2) and gain graphs
(arbitrary G). Zaslavsky’s work on the calculation of characteristic polynomials and
related invariants appears in Quart. J. Math. Oxford (2) 33 (1982), 493–511. A general
reference for enumerative results on gain graphs is T. Zaslavsky, J. Combinatorial
Theory, Ser. B 64 (1995), 17–88.

132. Number of elements of rank k is
(
n+k
2k

)

#Pn = F2n+1 (Fibonacci number)

(−1)nµ(0̂, 1̂) = 1
n+1

(
2n
n

)
(Catalan number)

number of maximal chains is 1 · 3 · 5 · · · (2n− 1)

This exercise is due to K. Baclawski and P. H. Edelman.

133. (a) Define a closure operator (as defined in Exercise 3.84) on Ln by setting G =
S(O1) × · · · × S(Ok), where O1, . . . ,Ok are the orbits of G and S(Oi) denotes
the symmetric group on Oi. Then Ln ∼= Πn. In Exercise 3.84 choose s = 0̂ and
t = 1̂, and the result follows from equation (3.37).

(b) A generalization valid for any finite group G is given in Theorem 3.1 of C. Kratzer
and J. Thévenaz, Comment. Math. Helvetici 59 (1984), 425–438.

(c–f) See J. Shareshian, J. Combinatorial Theory, Ser. A 78 (1997), 236–267. For a
topological refinement, see J. Shareshian, J. Combinatorial Theory, Ser. A 104
(2003), 137–155.

135. (b) The poset Λn is defined in Birkhoff [3.13], Ch. I.8, Ex. 10. The problem of
computing the Möbius function is raised in Exercise 13 on p. 104 of the same
reference. (In this exercise, 0 should be replaced with the partition 〈1n−22〉).
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(c) It was shown by G. M. Ziegler, J. Combinatorial Theory, Ser. A 42 (1986), 215–
222, that Λn is not Cohen-Macaulay for n ≥ 19, and that the Möbius function
does not alternate in sign for n ≥ 111. (These bounds are not necessarily tight.)
For some further information on Λn, see F. Bédard and A. GOupil, Canad. Math.
Bull. 35 (1992), 152–160.

136. See T. H. Brylawski, Discrete Math. 6 (1973), 201–219 (Prop. 3.10), and C. Greene,
Europ. J. Combinatorics 9 (1988), 225–240. For further information on this poset,
see Exercises 78(c) and 7.2, as well as A. Björner and M. L. Wachs, Trans. Amer.
Math. Soc. 349 (1997), 3945–3975 (§8); J. N. Kahn, Discrete and Comput. Geometry
2 (1987), 1–8; and S. Linusson, Europ. J. Combinatorics 20 (1999), 239–257.

137. Answer: Z(P +Q,m) = Z(P,m) + Z(Q,m)

Z(P ⊕Q,m) =

m−1∑

j=2

Z(P, j)Z(Q,m+ 1− j) + Z(P,m) + Z(Q,m), m ≥ 2

Z(P ×Q,m) = Z(P,m)Z(Q,m).

138. (a) By definition, Z(Int(P ), n) is equal to the number of multichains

[s1, t1] ≤ [s2, t2] ≤ · · · ≤ [sn−1, tn−1]

of intervals of P . Equivalently,

sn−1 ≤ sn−2 ≤ · · · ≤ s1 ≤ t1 ≤ t2 ≤ tn−1.

Hence Z(Int(P ), n) = Z(P, 2n− 1).

(b) It is easily seen that

Z(Q, n)− Z(Q, n− 1) = Z(Int(P ), n).

Put n = 0 and use Proposition 3.12.1(c) together with (a) above to obtain
µQ(0̂, 1̂) = −Z(P,−1) = −µP (0̂, 1̂). When P is the face lattice of a convex poly-
tope, much more can be said about Q. This is unpublished work of A. Björner,
though an abstract appears in the Oberwolfach Tagungsbericht 41/1997, pp. 7–8,
and a shorter version in Abstract 918-05-688, Abstracts Amer. Math. Soc. 18:1
(1997), 19.

140. Since nk =
∑

j j!S(k, j)
(
n
j

)
by equation (1.94d), and since the polynomials

(
n
j

)
are

linearly independent over Q, it follows that ϕ(
(
n
j

)
) = xj . But by equation (3.51) we

have

Z(P, n+ 2) =
∑

j≥1

cj(P )

(
n

j − 1

)
.

Applying ϕ to both sides completes the proof. Note the similarity to Exercise 3.108(e).
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141. (a) For any chain C of P , let ZC(Q0, m + 1) be the number of multichains C1 ≤
C2 ≤ · · · ≤ Cm = C in Q0. Since the interval [∅, C] in Q0 is a boolean algebra,
we have by Example 3.12.2 that ZC(Q0, m + 1) = m#C . Hence Z(Q0, m + 1) =∑

C∈Q0
m#C =

∑
aim

i, where P has ai i-chains, and the proof follows from
Proposition 3.12.1(a).

(b) Answer: µ
bP (0̂, 1̂) = µ

bQ(0̂, 1̂). Topologically, this identity reflects the fact that a
finite simplicial complex and its first barycentric subdivision have homeomorphic
geometric realizations and therefore equal Euler characteristics.

(c) Follows easily from (b).

(d) It is easy to see that the number of elements of Q̂ of rank k − 1 is k!S(n, k),
1 ≤ k ≤ n. It is not hard to see that equation (3.124) is then a consequence of
Theorem 3.16.9. The formula (3.124) was first observed empirically by M. Bóna

(private communication dated 27 October 2009). Note. The dual poset Q̂∗ is
the face lattice of the permutohedron, the polytope of Exercise 4.64(a).

142. (a) Let γP (S) denote the number of intervals [r(K), K)] for which ρ(r(K)) = S. If
C is any chain of P with ρ(C) = S, then C is contained in a unique interval
[r(K), K] such that ρ(r(K)) ⊆ S; and conversely an interval [r(K), K] such that
ρ(r(K)) ⊆ S contains a unique chain C of P such that ρ(C) = S. Hence

∑

T⊆S
γP (T ) = αP (S),

and the proof follows from equation (3.53).

The concept of chain-partitionable posets is due independently to J. S. Provan,
thesis, Cornell Univ., 1977 (Appendix 4); R. Stanley [3.76, p. 149]; and A. M.
Garsia, Advances in Math. 38 (1980), 229–266 (§4). The first two of these refer-
ences work in the more general context of simplicial complexes, while the third
uses the term “ER-poset” for our (chain-)partitionable poset.

(b) Let λ : H(P̂ ) → Z be an R-labeling and K : t1 < · · · < tn−1 a maximal chain of

P , so 0̂ = t0 < t1 < · · · < tn−1 < tn = 1̂ is a maximal chain of P̂ . Define

r(K) = {ti : λ(ti−1, ti) > λ(ti, ti+1)}.

Given any chain C : s1 < · · · < sk of P , define K to be the (unique) maximal chain
of P that consists of increasing chains of the intervals [0̂, s1], [s1, s2], . . . , [sk, 1̂],
with 0̂ and 1̂ removed. It is easily seen that C ∈ [r(K), K], and that K is the
only maximal chain of P for which C ∈ [r(K), K]. Hence P is partitionable.

(c) The posets in a special class of Cohen-Macaulay posets called “shellable” are
proved to be partitionable in the three references given in (a). It is not known
whether all Cohen-Macaulay shellable posets (or in fact all Cohen-Macaulay
posets) are R-labelable. On the other hand, it seems quite likely that there ex-
ist Cohen-Macaulay R-labelable posets that are not shellable, though this fact is
also unproved. (Two candidates are Figures 18 and 19 of Björner-Garsia-Stanley
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and

Figure 3.82: Two posets with the same order polynomial

[3.16].) A very general ring-theoretic conjecture that would imply that Cohen-
Macaulay posets are partitionable appears in R. Stanley, Invent. Math. 68 (1982),
175–193 (Conjecture 5.1). For some progress on this conjecture, see for instance I.
Anwar and D. Popescu, J. Algebra 318 (2007), 1027–1031; Y. H. Shen, J. Algebra
321 (2009), 1285–1292; D. Popescu, J. Algebra 321 (2009), 2782-2797; M. Cim-
poeaş, Matematiche (Catania) 63 (2008), 165–171; J. Herzog, M. Vladoiu, and
X. Zheng, J. Algebra 322 (2009), 3151-3169; D. Popescu and M. I. Qureshi, J.
Algebra 323 (2010), 2943–2959; and the two surveys D. Popescu, Stanley depth,
〈www.univ-ovidius.ro/math/sna/17/PDF/17 Lectures.pdf〉 and S. A. Seyed,
M. Tousi, and S. Yassemi, Notices Amer. Math. Soc. 56 (2009), 1106–1108.

143. (a) First proof. It is implicit in the work of several persons (e.g., Faigle-Schrader,
Gallai, Golumbic, Habib, Kelly, Wille) that two finite posets P and Q have the
same comparability graph if and only if there is a sequence P = P0, P1, . . . , Pk = Q
such that Pi+1 is obtained from Pi by “turning upside-down” (dualizing) a subset
T ⊆ Pi such that every element t ∈ Pi − T satisfies either (a) t < s for all s ∈ T ,
or (b) t > s for all s ∈ T , or (c) s ‖ t for all s ∈ T . (Such subsets T are called
autonomous subsets.) The first explicit statement and proof seem to be in B.
Dreesen, W. Poguntke, and P. M. Winkler, Order 2 (1985), 269–274 (Thm. 1).
A further proof appears in D. A. Kelly, Order 3 (1986), 155–158. It is easy to
see that Pi and Pi+1 have the same order polynomial, so the proof of the present
exercise follows.

Second proof. Let ΓP (m) be the number of maps g : P → [0, m− 1] satisfying
g(t1) + · · · + g(tk) ≤ m − 1 for every chain t1 < · · · < tk of P . We claim that
ΩP (m) = ΓP (m). To prove this claim, given g as above define for t ∈ P

f(t) = 1 + max{g(t1) + · · ·+ g(tk) : t1 < · · · < tk = t}.
Then f : P → [m] is order-preserving. Conversely, given f then

g(t) = min{f(t)− f(s) : t covers s}.
Thus ΩP (m) = ΓP (m). But by definition ΓP (m) depends only on Com(P ). This
proof appears in R. Stanley, Discrete Comput. Geom. 1 (1986), 9–23 (Cor. 4.4).

(b) See Figure 3.82.

For a general survey of comparability graphs of posets, see D. A. Kelly, in Graphs
and Order (I. Rival, ed.), Reidel, Dordrecht/Boston, 1985, pp. 3–40.

145. We have ΩP (−n) = Z(J(P ),−n) = µnJ(P )(0̂, 1̂). By Example 3.9.6.

µn(0̂, 1̂) =
∑

(−1)#(I1−I0)+···+#(In−In−1),
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summed over all multichains ∅ = I0 ⊆ I1 ⊆ · · · ⊆ In = P of order ideals of P such
that each Ii − Ii−1 is an antichain of P . Since #(I1 − I0) + · · · + #(In − In−1) = p,
we have that (−1)pµn(0̂, 1̂) is equal to the number of such multichains. But such
a multichain corresponds to the strict order-preserving map τ : P → n defined by
τ(t) = i if t ∈ Ii − Ii−1, and the proof follows. This proof appeared in Stanley [3.67,
Thm. 4.2].

146.

Ωp1(n) = (−1)pΩp1(−n) = np

Ωp(n) =

((
n

p

))
=

(
n+ p− 1

p

)

(−1)pΩp(−n) =

(
n

p

)

147. Tetrahedron: Z(L, n) = n4

cube or octahedron: Z(L, n) = 2n4 − n2

icosahedron or dodecahedron: Z(L, n) = 5n4 − 4n2

Note that in all cases Z(L, n) = Z(L,−n), a consequence of Proposition 3.16.1.

149. The case µ = ∅ is equivalent to a result of P. A. MacMahon [1.55] (put x = 1 in
the implied formula for GF (p1, p2, . . . , pm;n) on page 243) and has been frequently
rediscovered in various guises. The general case is due to G. Kreweras, Cahiers du
BURO, no. 6, Institut de Statistique de L’Univ. Paris, 1965 (Section 2.3.7) and is also
a special case (after a simple preliminary bijection) of Theorem 2.7.1. When µ = ∅ and
λ has the form (M−d,M−2d, . . . ,M−ℓd) the determinant can be explicitly evaluated;
see Exercise 7.101(b). A different approach to these results was given by I. M. Gessel,
J. Stat. Planning and Inference 14 (1986), 49–58, and by R. A. Pemantle and H.
S. Wilf, Electronic J. Combinatorics 16 (2009), #R60. For an extensive survey of
the evaluation of combinatorial determinants, see C. Krattenthaler, Sém. Lotharingien
Combin. 42 (1999), article B42q and Linear Algebra Appl. 411 (2005), 68-166.

150. (a) When the Young diagram λ0 is removed from λj , there results an ordered disjoint
union (the order being from lower left to upper right) of rookwise connected skew
diagrams (or skew shapes, as defined in Section 7.10) µ1, . . . , µr. For example,
if λ0 = (5, 4, 4, 4, 3, 1) and λj = (6, 6, 5, 4, 4, 4, 1), then we obtain the sequence
of skew diagrams shown in Figure 3.83. Since |µ1| + · · · + |µr| = aj, there are
only finitely many possible sequences µ = (µ1, . . . , µk) for fixed S. Thus if we let
fS(µ, n) be the number of chains λ0 < λ1 < · · · < λj under consideration yielding
the sequence µ, then it suffices to show that the power series AS(µ, q) defined by

∑

n≥0

fS(µ, n)qn = P (q)AS(µ, q) (3.146)

is rational with numerator φaj
(q).
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µ1 µ2 µ3= = =

Figure 3.83: A sequence of skew shapes

We illustrate the computation of AS(µ, q) for µ given by Figure 3.83, and leave the
reader the task of seeing that the argument works for arbitrary µ. First, it is easy
to see that there is a constant cS(µ) ∈ P for which AS(µ, q) = cS(µ)A{aj}(µ, q),
so we may assume that S = {aj} = {9}. Consider a typical λj , as shown in
Figure 3.84. Here a, b, cmark the lengths of the indicated rows, so c ≥ b+2 ≥ a+5.
When the rows intersecting some µi are removed from λj, there results a partition
ν with no parts equal to b − 1, b − 2, or c − 1, and every such ν occurs exactly
once. Hence ∑

n≥0

f{9}(µ, n)qn+9

= P (q)
∑

c≥b+2≥a+5≥6

qa+2b+(3c−1)(1− qb−1)(1− qb−2)(1− qc−1).

To evaluate this sum, expand the summand into eight terms, and sum on c, b, a in
that order. Each sum will be a geometric series, introducing a factor 1− qi in the
denominator and a monomial in the numerator. Since among the eight terms the
maximum sum of coefficients of a, b, c in the exponent of q is aj = 9 (coming from
qa+4b+4c−5), it follows that the eight denominators will consist of distinct factors
1 − qi, 1 ≤ i ≤ 9. Hence they have a common denominator φ9(q), as desired. Is
there a simpler proof?

(b) Let AS(q) = BS(q)/φaj
(q). Then

B∅ = 1, B1 = 1, B2 = 2− q, B3 = 3− q − q2, B1,2 = 2,

B1,3 = 3 + 2q − q2 − q3, B2,3 = 4− q + 2q2 − 2q3, and

B1,2,3(q) = 2(2− q)(1 + q + q2).

Is there a simple formula for B[n](q)?

(c) (with assistance from L. M. Butler) First check that the coefficient g(n) of qn,
in the product of the left-hand side of equation (3.125) with P (q), is equal to
βY ([n, n+k])+βY ([n+1, n+k]). We now want to apply Theorem 3.13.1. Regard
N2 with the usual product order as a coarsening of the total (lexicographic) order

(i, j) ≤ (i′, j′) if i < i′ or if i = i′, j ≤ j′.

By Theorem 3.13.1, g(n) is equal to the number of chains ν : ν0 < ν1 < · · · < νk

of partitions νi such that (1) νi ⊢ n + i; (2) νi+1 is obtained from νi by adding
a square (in the Young diagram) strictly above the square that was added in
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a

b

c

Figure 3.84: An example of the computation of AS(µ, q)

obtaining νi from νi−1; and (3) the square added in νk from νk−1 is not in the top
row. (This last condition guarantees a descent at n+k.) Here ν0 can be arbitrary
and ν1 can be obtained by adding any square to ν0. (If the square added to ν0

starts a new row or is in the bottom row of ν0, then the chain ν contributes to
βY ([n+1, n+k]); otherwise it contributes to βY ([n, n+k]). We can now argue as
in the solution to (a); namely, the added k squares belong to columns of length
2 ≤ i1 < i2 < · · · < ik, and when these rows are removed any partition can be
left. Hence

∑

n≥0

g(n)qn+k = P (q)
∑

2≤i1<i2≤···≤ik
qi1+···+ik

= qk+(k+1
2 )P (q)φk(q),

and the proof follows. Is there a simple proof avoiding Theorem 3.13.1?

(d) Follows readily from the first sentence of the solution to (c), upon noting that

βY ([n, n+ k]) =

k∑

i=0

(−1)i (βY ([n+ i, n+ k])

+ βY ([n + i+ 1, n+ k))− (−1)k.

(The term −(−1)k is needed to cancel the term (−1)kβY [n + k + 1, n + k]) =
(−1)kβY (∅) = (−1)k arising in the summand with i = k.)

(e) We want to show that the number f(n) of chains λ < µ with λ ⊢ n and µ ⊢ n+ 1
is equal to p(0) + p(1) + · · ·+ p(n), where p(j) is the number of partitions of j.
Now see Exercise 1.71. (This bijection is implicit in the proof of (a) or (c).)
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Figure 3.85: A simplicial complex whose faces are the permutations w ∈ S4

151. (a) By Theorem 3.13.1 there exists a permutation w = a1a2 · · ·an ∈ L(P ) with
descent set S = {i1, . . . , ik}<. Set i0 = 0, ik+1 = p, and choose 1 ≤ r ≤ k.
Rearrange all the elements air−1+1, air−1+1, . . . , air+1 in increasing order, obtaining
a permutation w′. Since P is naturally labelled we have w′ ∈ L(P ). Moreover,
D(w′) = D(w)− {ir}, from which the proof is immediate. This result is due to
Stanley [3.67, Ch. III, Cor. 1.2][3.68, Cor. 15.2].

(b) Some necessary conditions on ∆ are given in [3.68, §16].

(c) We use the characterization of supersolvable lattices given by Exercise 3.125. The
proof then parallels that of (a) with linear extensions replaced with labels of
maximal chains. Specifically, let m : 0̂ = t0 ⋖ t1 ⋖ · · ·⋖ tp = 1̂ be a maximal chain
with label λ(m) = (λ1, . . . , λp) ∈ Sp such that D(λ(m)) = S. Using the notation
of (a), replace tir−1+1, tir−1+2, . . . , tir+1 with the unique increasing chain between
tir−1+1 and tir+1, obtaining a new maximal chain m′. Because the labels of maximal
chains are permutations of 1, 2, . . . , p it follows that D(λ(m′)) = D(λ(m))− {ir},
and the proof is immediate as in (a).

Note. The result we have just proved is true under the even more general
hypothesis that L is a finite Cohen-Macaulay poset, but the proof now involves
algebraic techniques. See R. Stanley [3.76, Cor. 4.5] and Björner-Garsia-Stanley
[3.16, p. 24].

152. (a) Let w = a1 · · ·an be a linear extension of P . Define the vertices of w to be
the linear extensions obtained by choosing i ∈ D(w) and writing the elements
a1, . . . , ai in increasing order, followed by writing the elements ai+1, . . . , an in
increasing order. It is easy to check that we obtain a simplicial complex ∆P with
the desired properties.

Example. If w = 3642175, then the vertices of w are 3612457, 3461257, 2346157,
and 1234675. The simplicial complex ∆P was investigated (in a more general
context) by P. H. Edelman and V. Reiner, Advances in Math. 106 (1994), 36–62.

(b) See Figure 3.85.

(c) See P. L. Hersh, J. Combinatorial Theory, Ser. A 105 (2004), 111–126.

153. Answer. Let [p− 1]− S = {i1, . . . , ik}<. Then the minimum value of e(P ) is

min e(P ) = i1!(i2 − i1)!(i3 − i2)! · · · (p− ik)!,

achieved uniquely by P = i1 ⊕ (i2 − i1)⊕ · · · ⊕ (p − ik).
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Figure 3.86: Posets with equal values of βJ(P )(S)

154. The answer is affirmative for n ≤ 6. Of the 2045 nonisomorphic seven-element posets, it
was checked by J. R. Stembridge that there is a unique pair P,Q that satisfy βJ(P )(S) =
βJ(Q)(S) for all S ⊆ [6]. The Hasse diagrams of P and Q are given in Figure 3.86.

155. (a) Let 1 ≤ k ≤ n, and define in the incidence algebra I(P ) (over R, say) a function
ηk by

ηk(s, t) =

{
1, if ρ(t)− ρ(s) = k
0, otherwise.

The self-duality of [s, t] implies that ηjηk(s, t) = ηkηj(s, t) for all j and k, so ηj
and ηk commute. But

αP (S) = ηn1ηn2−n1 · · · ηn−nk
(0̂, 1̂),

and the proof follows since the various ηj ’s can be permuted arbitrarily.

(c) It follows from a result of F. Regonati, J. Combinatorial Theory, Ser. A 60 (1992),
34–49 (theorem on page 45) that such lattices are products of certain modular
lattices known as q-primary (though not conversely). See also Theorem 3.4 of
R. Stanley, Electronic J. Combinatorics 3, #R6 (1996); reprinted in The Foata
Festschrift (J. Désarménien, A. Kerber, and V. Strehl, eds.), Imprimerie Louis-
Jean, Gap, 1996, pp. 165–186. There is an almost complete classification of
primary modular lattices (which includes the q-primary modular lattices) by Baer,
Inaba, and Jónsson-Monk; see B. Jónsson and G. S. Monk, Pacific J. Math. 30
(1969), 95–139. A complete classification of finite modular lattices for which every
interval is self-dual (or the more general products of q-primary lattices) seems
hopeless since it involves such problems as the classification of finite projective
planes. For some further work related to primary modular lattices, see F. Regonati
and S. D. Sarti, Ann. Combinatorics 4 (2000), 109–124.

156. We have N × N = Jf(Q), where the elements of Q are s1 < s2 < · · · and t1 < t2 <
· · · . Regard Q as being contained in the total order where si < tj for all i, j. By
Theorem 3.13.1 (extended in an obvious way to finitary distributive lattices), we have
that βN×N(S) is equal to the number of linear orderings u1, u2, . . . ofQ such that the si’s
appear in increasing order, the ti’s appear in increasing order, and a ti is immediately
followed by an sj if and only if ti = uk where k ∈ S. Thus u1, . . . , um1 can be chosen
as s1, . . . , si, t1, . . . , tm1−i (0 ≤ i ≤ m1 − 1) in m1 ways. Then um1+1 = si+1, while
um1+2, . . . , um2 can be chosen in m2−m1−1 ways, and so on, giving the desired result.
A less combinatorial proof appears in [3.68, Prop. 23.7].
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157. (a) Let αk =
∑

#S=k αP (S). Now Z(P,m) is equal to the number of multichains

0̂ = t0 ≤ t1 ≤ · · · ≤ tm = 1̂. Such a multichain K is obtained by first choosing a
chain C : 0̂ < u1 < · · · < uk < 1̂ in αk ways, and then choosing K whose support
(underlying set) is C in

((
k+2

m−1−k
))

=
(
m
k+1

)
ways. Hence Z(P,m) =

∑
k

(
m
k+1

)
αk;

that is, ∆k+1Z(P, 0) = αk.

(b) Divide both sides of the desired equality by (1− x)n+1 and take the coefficient of
xm. Then we need to show that

Z(P,m) =
∑

j

βj(−1)m−j−1

( −n− 1

m− j − 1

)

=
∑

j

βj

(
n+m− j − 1

n

)
.

Now

αk =
∑

#S=k

∑

T⊆S
βP (T )

=
∑

j

∑

#T=j

(
n− 1− j
n− 1− k

)
βP (T )

=
∑

j

(
n− 1− j
n− 1− k

)
βj .

Hence from (a),

Z(P,m) =
∑

k

(
m

k + 1

)
αk

=
∑

j,k

(
m

k + 1

)(
n− 1− j
n− 1− k

)
βj.

But ∑

k

(
m

k + 1

)(
n− 1− j
n− 1− k

)
=

(
n+m− j − 1

n

)

(e.g., by Example 1.1.17), and the proof follows.

A more elegant proof can be given along the following lines. Introduce variables
x1, . . . , xn−1 and for S ⊆ [n − 1] write xS =

∏
i∈S xi. Moreover, for a multichain

K : t1 ≤ · · · ≤ tm of P − {0̂, 1̂} write xK =
∏m

i=1 xρ(ti). One easily sees that

∑

K

xK =
∑

S

αP (S)

(∏

i∈S

xi
1− xi

)

=

∑
S βP (S)xS

(1− x1)(1− x2) · · · (1− xn−1)
.
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Set each xi = x and multiply by (1− x)−2 (corresponding to adjoining 0̂ and 1̂)
to obtain (a) and (b).

Note. If f(m) is any polynomial of degree n, then Section 4.3 discusses the
generating function

∑
m≥0 f(m)xm, in particular, its representation in the form

P (x)(1 − x)−n−1. Hence the present exercise may be regarded as “determining”
P (x) when f(m) = Z(P,m).

(c) By definition of χP (q) we have

wk =
∑

t∈P
ρ(t)=k

µ(0̂, t)

=
∑

ρ(t)≤k
µ(0̂, t)−

∑

ρ(t)≤k−1

µ(0̂, t).

Letting µS denote the Möbius function of the S-rank-selected subposet PS of P
as in Section 3.13, then by the defining recurrence (3.15) for µ we get

wk = −µ[k](0̂, 1̂) + µ[k−1](0̂, 1̂).

The proof follows from equation (3.54).

158. In the case k = 1, a noncombinatorial proof of (a) was first given by G. Kreweras,
Discrete Math. 1 (1972), 333–350, followed by a combinatorial proof by Y. Poupard,
Discrete Math. 2 (1972), 279–288. The case of general k, as well as (c) and (d), is due
to P. H. Edelman, Discrete Math. 31 (1980), 171–180. See also P. H. Edelman, Discrete
Math. 40 (1982), 171–179. Of course (b) follows from (a) by taking n = 1 and n = −2,
while (e) follows from (d) by taking S = {t −m} and S = [0, t − 2]. Part (f) is due
to Kreweras, op. cit. (Thm. 4), while (g) first appeared in P. L. Hersh, Ph.D. thesis,
M.I.T., 1999 (Theorem 4.3.2), and J. Combinatorial Theory Ser. A 103 (2003), 27–52
(Theorem 6.3). To solve (g) using Exercise 3.125, define a labeling λ : H(P1,t)→ Z as
follows. If π⋖σ in P1,t, then σ is obtained from π by merging two blocks B,B′. Define

λ(π, σ) = max(minB,minB′)− 1.

It is routine to check that λ has the necessary properties. This labeling is due to
P. H. Edelman and A. Björner, and appears in A. Björner, Trans. Amer. Math. Soc.
260 (1980), 159–183 (page 165). A different edge labeling related to parking functions
appears in R. Stanley, Electronic J. Combinatorics 4 (1997), #R20. Note that P1,t is
a lattice by Proposition 3.3.1 because it is a meet-semilattice of Πt with 1̂.

Partitions π satisfying (ii) are called noncrossing partitions and have received much
attention. For some additional information and references, see Exercises 5.35, 6.19(pp),
and 7.48(f).

159. By symmetry it suffices to take w = (1, 2, . . . , n). In this case it can be checked that
an isomorphism ϕ : [0̂, w]→ P1,n is obtained by taking the set of elements of each cycle
of u ∈ [0̂, w] to be the blocks of ϕ(w). This result is due to P. Biane, Discrete Math.
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175 (1997), 41–53 (Theorem 1). For further information on the absolute order, see
C. A. Athanasiadis and M. Kallipoliti, J. Combinatorial Theory, Ser. A 115 (2008),
1286–1295.

160. Given a labeling ω, define an orientation oω of H by directing an edge ij from i to j
if i < j. Clearly oω is acyclic, and it is easy to check that ω and ω′ are equivalent if
and only if oω = oω′ . The problem of counting the number of equivalence classes was
raised by Stanley [3.67, p. 25], with the answer stated without proof in [3.68, p. 7].

161. Without loss of generality we may assume U∪V = [j+k]. Let P be the j-element chain
with elements labelled u1, . . . , uj from bottom to top, and similarly Q with elements
labelled v1, . . . , vk. Denote this labeling of P +Q by ω. Note that A(P +Q,ω) depends
only on D(u) and D(v), and that L(P, ω) = sh(u, v). The proof follows easily from
Lemmas 3.15.3 and 3.15.4. Exercises 7.93 and 7.95 are related.

162. (a) Although this problem can be done using the formula (3.13) for WP,ω(x), it is
easier to observe that

GP1+P2,ω(x) = GP1,ω1(x)GP2,ω2(x)

and then use equation (3.63).

(b) Let P = P1 + · · ·+ Pk, where Pk is a chain labelled by the word wi from bottom
to top. Then L(P, ω) = sh(w1, . . . , wk). Moreover, WPi,ωi

= qmaj(wi), so the proof
follows from iterating (a).

163. (a) If P is an antichain then ΩP (m) = mp, and the conclusion is clear. It thus suffices
to show that when P is not an antichain the coefficient of mp−1 in ΩP (m) is
positive. The coefficient is equal to 2eP (p− 1)− (p− 1)e(p) (as defined preceding
Theorem 3.15.8). Let A be the set of all ordered pairs (σ, i), where σ : P → p

is a linear extension and i ∈ [p − 1]. Let B be the set of all ordered pairs (τ, j),
where τ : P → p − 1 is a surjective order-preserving map and j = 1 or 2. Since
#A = (p− 1)e(p) and #B = 2e(p− 1), it suffices to find an injection φ : A→ B
that is not surjective. Choose an indexing {t1, . . . , tp} of the elements of P . Given
(σ, i) ∈ A, define φ(σ, i) = (τ, j), where

τ(t) =

{
σ(t), if σ(t) ≤ i

σ(t)− 1, if σ(t) > i

j =

{
1, if σ(tr) = i, σ(ts) = i+ 1, and r < s
2, if σ(tr) = i, σ(ts) = i+ 1, and r > s.

It is easily seen that φ is injective. If t covers s in P and τ : P → p − 1 is an
order preserving surjection for which τ(s) = τ(t) (such a τ always exists), then
one of (τ, 1) and (τ, 2) cannot be in the image of φ. Hence φ is not surjective.

(b) This problem was raised by J. N. Kahn and M. Saks, who found the above proof
of (a) independently from this writer.
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Figure 3.87: Posets for which ΩP (m) has a negative coefficient

Figure 3.88: A counterexample to the poset conjecture

164. No. There are four 5-element posets for which ΩP (m) has a negative coefficient, and
none smaller. These four posets are shown in Figure 3.87.

165. J. Neggers, J. Combin. Inform. System Sci. 3 (1978), 113–133, made a conjecture equiv-
alent to AP (x) having only real zeros (the naturally labelled case). In 1986 Stanley
(unpublished) suggested that this conjecture could be extended to arbitrary labelings.
The first published reference seems to be F. Brenti, Mem. Amer. Math. Soc., no. 413
(1989). These conjectures became known as the poset conjecture or the Neggers-Stanley
conjecture. Counterexamples to the conjecture of Stanley were obtained by P. Brändén,
Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 155–158. Finally J. R. Stem-
bridge, Trans. Amer. Math. Soc. 359 (2007), 1115–1128, produced counterexamples
to the original conjecture of Neggers. Stembridge’s smallest counterexample has 17
elements. One such poset P is given by Figure 3.88, for which

AP (x) = x+ 32x2 + 336x3 + 1420x4 + 2534x5 + 1946x6 + 658x7 + 86x8 + 3x9,

which has zeros near −1.858844 ± 0.149768i. It is still open whether every graded
natural poset satisfies the poset conjecture.

166. (a) The “if” part is easy; we sketch a proof of the “only if” part. Let P be the smallest
poset for which GP (x) is symmetric and P is not a disjoint union of chains. Define
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GP (x) =
∑

τ xτ(t1) · · ·xτ(tp), where τ ranges over all strict P -partitions τ : P → N.
The technique used to prove Theorem 3.15.10 shows that GP (x) is symmetric if
and only if GP (x) is symmetric. Let M be the set of minimal elements of P . Set
m = #M and P1 = P −M . The coefficient of xm0 in GP (x) is GP1(x

′), where
x′ = (x1, x2, . . . ). Hence GP1(x) is symmetric, so P1 is a disjoint union of chains.
Similarly, if M ′ denotes the set of maximal elements of P , then P−M ′ is a disjoint
union of chains.

Now note that m is the largest power of x0 that can appear in a monomial in
GP (x). Hence m is the largest power of any xi that can appear in a monomial in
GP (x). Let A be an antichain of P . We can easily find a strict P -partition that
is constant on A, so #A ≤ m. Hence the largest antichain of P has size m. By
Dilworth’s theorem (Exercise 3.77(d)), P is a union of m chains. Each such chain
intersects M and M ′. It is easy to conclude that P is a disjoint union of chains
C1, . . . , Ck, together with relations s < t, where s is a minimal element of some
Ci and t a maximal element of some Cj, i 6= j.

Next note that the coefficient of xm0 x1x2 · · ·xp−m in GP (x) is equal to e(P1), the
number of linear extensions of P1, so the coefficient of x0x1 · · ·xi−1x

m
i xi+1 · · ·xp−m

is also e(P1) for any 0 ≤ i ≤ p − m. Let Q = C1 + · · · + Ck. Then the coef-
ficient of xm0 x1x2 · · ·xp−m in GQ(x) is again equal to e(P1), since P1

∼= Q −
{minimal elements of Q}. Thus the coefficient of x0x1 · · ·xi−1x

m
i xi+1 · · ·xp−m in

GQ(x) is e(P1). Since P is a refinement of Q it follows that if τ : P → [0, p−m]
is a strict Q-partition such that τ−1(j) has one element for all j ∈ [0, p − m]
with a single exception #τ−1(i) = m, then (regarding P as a refinement of Q)
τ : P → [0, p−m] is a strict P -partition. Now let s < t in P but s ‖ t in Q. One
can easily find a strict Q-partition τ : Q → [0, p −m] with τ(s) = τ(t) = i, say,
and with #τ−1(i) = m, #τ−1(j) = 1 if j 6= i. Then τ : P → [0, p −m] is not a
strict P -partition, a contradiction.

(b) This conjecture is due to R. Stanley, [3.68, p. 81]. For a proof of the “if” part,
see Theorem 7.10.2. An interesting special case (different from (a)) is due to C.
Malvenuto, Graphs and Combinatorics 9 (1993), 63–73.

167. (b) The idea is to rule out subposets of P until the only P that remain have the
desired form. For instance, P cannot have a three-element antichain A. For let
i, j, k be the labels of the elements of A. Then there are linear extensions of P of
the form σi′j′k′τ for fixed σ and τ , where i′j′k′ is any permutation of ijk. One
can check that these six linear extensions cannot all have the same number of
descents.

169. (a) Apply Theorem 3.15.8 to the case P = r1 + · · ·+ rm, naturally labelled.

(b) Suppose that w ∈ SM with des(w) = k − 1. Then w consists of x1 1’s, then y1

2’s, and so on, where x1 + · · ·+ xk = r1, y1 + · · ·+ yk = r2, and x1 ∈ N, xi ∈ P
for 2 ≤ i ≤ k, yi ∈ P for 1 ≤ i ≤ k− 1, yk ∈ N. Conversely, any such xi’s and yi’s
yield a w ∈ SM with des(w) = k − 1. There are

(
r1
k−1

)
ways of choosing the xi’s
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and
(
r2
k−1

)
ways of choosing the yi’s. Hence

AM(x) =

r1+r2∑

k=0

(
r1
k

)(
r2
k

)
xk+1.

A q-analogue of this result appears in [3.68, Cor. 12.8]. Exercise 3.156 is related.

170. (a) An order ideal of J(m× n) of rank r can easily be identified with a partition of
r into at most m parts, with largest part at most n. Now use Proposition 1.7.3
to show that F (L, q) =

(
m+n

m

)
, which is equivalent to pleasantness.

(b) Equivalent to a famous result of MacMahon. See Theorem 7.21.7 and the discus-
sion following it. A further reference is R. Stanley, Studies in Applied Math. 50
(1971), 167–188, 259–279.

(c) An order ideal of J(2 × n) of rank r can easily be identified with a partition of
r into distinct parts, with largest part at most n, whence F (L, q) = (1 + q)(1 +
q2) · · · (1 + qn).

(d) This result is equivalent to a conjecture of Bender and Knuth, shown by G. E.
Andrews, Pacific J. Math. 72 (1977), 283–291, to follow from a much earlier
conjecture of MacMahon. MacMahon’s conjecture was proved independently by
G. E. Andrews, Adv. Math. Suppl. Studies, vol. 1 (1978), 131–150; B. Gordon,
Pacific J. Math. 108 (1983), 99–113; and I. G. Macdonald, Symmetric Functions
and Hall Polynomials, Oxford Univ. Press, 1979 (Ex. 19 on p. 53), second ed., 1995
(Ex. 19 on p. 86). MacMahon’s conjecture and similar results can be unified by
the theory of minuscule representations of finite-dimensional complex semisimple
Lie algebras; see R. A. Proctor, Europ. J. Combinatorics 5 (1984), 331–350.

(e) This result is equivalent to the conjectured “q-enumeration of totally symmetric
plane partitions,” alluded to by G. E. Andrews, Abstracts Amer. Math. Soc. 1
(1980), 415, and D. P. Robbins (unpublished), and stated more explicitly in R.
Stanley, J. Combinatorial Theory, Ser. A 43 (1986), 103–113 (equation (2)). The
q = 1 case was first proved by J. R. Stembridge, Advances in Math. 111 (1995),
227–243, and later by G. E. Andrews, P. Paule, and C. Schneider, Advances in
Applied Math. 34 (2005), 709–739. A proof of the general case was finally given
by C. Koutschan, M. Kauers, and D. Zeilberger, arXiv:1002.4384, 23 February
2010. Several persons have shown that F (L, q) is also equal to

∑
A(detA), where

A ranges over all square submatrices (including the empty matrix ∅, with det ∅ =
1) of the (n+ 1)× (n+ 1) matrix

[
qi+1+(j+1

2 )(i

j

)]n
i,j=0

.

(f,g) Follows from either Theorem 6 or the proof of Theorem 8 of R. A. Proctor, Europ.
J. Combinatorics 5 (1984), 331–350. (It is not difficult to give a direct proof of
(f).) The proof of Proctor’s Theorem 8 involves the application of the techniques
of our Section 3.15 to these posets.
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171. (a) Follows from the bijection given in the proof of Proposition 3.5.1.

(b) This result appears in [3.68, Prop. 8.2] and is proved in the same way as Theo-
rems 3.15.7 or 3.15.16.

(c) Equation (3.129) follows directly from the definition (3.127); see [3.68, Prop. 12.1].
Equation (3.130) is then a consequence of (3.96) and (3.97). Alternatively, (3.130)
follows directly from (a).

(e) Analogous to the proof of Theorem 3.15.10.

(f) See [3.68, Prop. 17.3(ii)].

172. (a) First note that

(
p + m − i

p

)
=

(1− qp−iy)(1− qp−i−1y) · · · (1− q−i+1y)

(1− qp)(1− qp−1) · · · (1− q) ,

where y = qm. It follows from Exercise 3.171(b) that there is a polynomial VP (y)
of degree p in y, whose coefficients are rational functions of q, such that

UP,m(q) = VP (qm).

The polynomial VP (y) is unique since it is determined by its values on the infinite
set {1, q, q2, . . . }.
Since UP1+P2,m(q) = UP1,m(q)UP2,m(q), it follows that if each component of P is
Gaussian, then so is P . Conversely, suppose that P1 + P2 is Gaussian. Thus

VP1+P2(y) = R(q)

p∏

i=1

(
1− yqhi

)
,

where R(q) depends only on q (not on y). But clearly VP1+V2(y) = VP1(y)VP2(y).
Since each factor 1−yqhi is irreducible (as a polynomial in y) and since deg VPi

(y) =
#Pi, we must have

VPi
(y) = Ri(q)

∏

j∈Si

(
1− yqhi

)
,

where j ranges over some subset Si of [p]. Since UPi,0(q) = VPi
(1) = 1, it follows

that Ri(q) =
∏

j∈Si

(
1− qhi

)−1
, so Pi is Gaussian.

(b) Clearly for any finite poset P we have

lim
m→∞

UP,m(q) = Gp(q),

as defined by equation (3.62). Hence if P is Gaussian we get

GP (q) =
WP (q)

(1− q) · · · (1− qp) =

p∏

i=1

(
1− qhi

)−1
. (3.147)

Hence WP (q) = qd(P )WP (1/q) where d(P ) = degWP (q), so by Theorem 3.15.16
P satisfies the δ-chain condition.
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Now by equation (3.130) we have

Um,P (q) = qpmUP,m(1/q) = UP,m(q).

It follows that P ∗ is also Gaussian, and hence P ∗ satisfies the δ-chain condition.
But if P is connected, then both P and P ∗ satisfy the δ-chain condition if and
only if P is graded, and the proof follows.

(c) Suppose that ai of the hj ’s are equal to i. Then by equation (3.128) we have

(p)!

(1)a1 · · · (p)ap
(1− qy)a1(1− q2y)a2 · · · (1− qpy)ap

=

p−1∑

i=0

(1− qp−iy)(1− qp−i−1y) · · · (1− q−i+1y)WP,i(q). (3.148)

Pick 1 ≤ j ≤ p + 1, and let bi = ai if i 6= j, and bj = aj + 1 (where we set
ap+1 = 0). Set

(p + 1)!

(1)b1 · · · (p + 1)bp+1
(1− qy)b1 · · · (1− qp+1y)bp+1

=

p∑

i=0

(1− qp+1−iy) · · · (1− q−i+1y)Xi(P, q).

This equation uniquely determines each Xi(P, q).

Now we note the identity

(1− qp+1y)(1− qjy) = (1− qi+j)(1− qp+1−iy)

+(qi+j − qp+1)(1− q−iy). (3.149)

Multiply equation (3.148) by (3.149) to obtain

(1− qj)
p∑

i=0

(1− qp+1−iy) · · · (1− q−i+1y)Xi(P, q)

=

p−1∑

i=0

[
(1− qi+j)(1− qp+1−iy) · · · (1− q−i+1y)

+ (qi+j − qp+1)(1− qp−iy) · · · (1− q−iy)
]
WP,i(q).

It follows that

(1− qj)Xi = (1− qi+j)Wi + (qi+j−1 − qp+1)Wi−1. (3.150)

Next define

[p− 1]− {a1 + a2 + · · ·+ ai : i ≥ 1} = {c1, . . . , ck}>.
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If we assume by induction that we know degWi−1 and degWi in equation (3.150),
then we can compute degXi. It then follows by induction that

degWi = c1 + · · ·+ ci, 0 ≤ i ≤ k.

Comparing with Exercise 3.171(f) completes the proof.

(d) If UP,m(q) is given by equation (3.131) then

qpmUP,m(1/q) = UP,m(q).

Comparing with equation (3.130) shows that UP,m(q) = UP ∗,m(q). Let ρ∗ denote
the rank function of P ∗. It follows from (c) that

{1 + ρ(t) : t ∈ P} = {1 + ρ∗(t) : t ∈ P}
= {ℓ(P ) + 1− ρ(t) : t ∈ P}

(as multisets). Hence by (c) the multisets {h1, . . . , hp} and {ℓ(P )+2−h1, . . . , ℓ(P )+
2− hp} coincide, and the proof follows. (This result was independently obtained
by P. J. Hanlon.)

(e) Let P have Wi elements of rank i. Using equation (3.131) and (c), one computes
that the coefficient of q2 in UP,1(q) is

(
W0

2

)
+W1. By Exercise 3.171(a) this number

is equal to the number of two-element order ideals of P . Any of the
(
W0

2

)
two-

element subsets of minimal elements forms such an order ideal. The remaining W1

two-element order ideals must consist of an element of rank one and the unique
element that it covers, completing the proof.

(f) A uniform proof of (i)-(v), using the representation theory of semisimple Lie
algebras, is due to R. A. Proctor, Europ. J. Combinatorics 5 (1984), 313–321.
For ad hoc proofs (using the fact that a connected poset P is Gaussian if and only
if P ×m is pleasant for all m ∈ P). see the solution to Exercise 3.170(b,d,f,g).

Note. Posets P satisfying equation (3.147) are called hook length posets. R. A.
Proctor and D. Peterson found many interesting classes of such posets. See Proc-
tor, J. Algebra 213 (1999), 272–303 (§1). Proctor discusses a uniform proof based
on representation theory and calls these posets d-complete. For a classification
of d-complete posets, see Proctor, J. Algebraic Combinatorics 9 (1999), 61–94.
For a further important property of d-complete posets, see Proctor, preprint,
arXiv:0905.3716.

173. This beautiful theory is due to P. Brändén, Electronic J. Combinatorics 11(2) (2004),
#R9. Note that as a special case of (h), AP,ω(x) has symmetric unimodal coeffi-
cients if P is graded and ω is natural. (Symmetry of the coefficients also follows from
Corollary 3.15.18 and Corollary 4.2.4(iii).) In this special case unimodality was shown
by V. Reiner and V. Welker, J. Combinatorial Theory, Ser. A 109 (2005), 247–280
(Corollary 3.8 and Theorem 3.14), and later as part of more general results by C. A.
Athanasiadis, J. reine angew. Math. 583 (2005), 163–174 (Lemma 3.8), and Electronic
J. Combinatorics 11 (2004), #R6 (special case of Theorem 4.1), by using deep results
on toric varieties. A combinatorial proof using a complicated recursion argument was
given by J. D. Farley, Advances in Applied Math. 34 (2005), 295–312.
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(g) For a canonical labeling ω the procedure will end when each poset is an ordinal
sum Q1 ⊕ · · · ⊕ Qk of antichains, labelled so that every label of elements of Qi

is either less than or greater than every label of elements in Qi+1, depending on
whether i is odd or even. From this observation the proof follows easily (using (c)
to extend the result to any labeling ω for which (P, ω) is sign-graded).

(h) Use Exercise 1.50(c,e).

(i) We obtain

AP (x) = (1 + x)(1 + 4x+ x2) + 4(x+ x2) = 1 + 9x+ 9x2 + x3.

174. (a) The statement that the interval [s, t] has as many elements of odd rank as of even
rank is equivalent to

∑
u∈[s,t](−1)ρ(u)−ρ(s) = 0. The proof now follows easily from

the defining recurrence (3.15) for µ.

(b) Analogous to Proposition 3.16.1.

(c) If n is odd, then by (b),

Z(P,m) + Z(P,−m) = −m((−1)nµP (0̂, 1̂)− 1).

The left-hand side is an even function of m, while the right-hand side is even if
and only if µP (0̂, 1̂) = (−1)n. (There are many other proofs.)

175. By Proposition 3.8.2, P ×Q is Eulerian. Hence every interval [z′, z] of R with z′ 6= 0̂R
is Eulerian. Thus by Exercise 3.174(a) it suffices to show that for every z = (s, t) > 0̂R
in R, we have ∑

z′≤z
(−1)ρR(z′) = 0,

where ρR denotes the rank function in R. Since for any v 6= 0̂R we have ρR(v) =
ρP×Q(v)− 1, there follows

∑

z≤z′
inR

(−1)ρR(z′) =
∑

u≤z
inP×Q

(−1)ρP×Q(u)−1

−
∑

0̂P 6=s′≤s
inP

(−1)ρP (s′)−1 −
∑

0̂Q 6=t′≤t
inQ

(−1)ρQ(t′)−1

+(−1)ρP×Q(0̂P×Q)−1 + (−1)ρR(0̂R)

= 0− 1− 1 + 1 + 1 = 0.

For further information related to the poset R, see M. K. Bennett, Discrete Math. 79
(1990), 235–249.

176. (a) Answer: βPn(S) = 1 for all S ⊆ [n].

(b) By Exercise 3.157(b),

∑

m≥0

Z(Pn, m)xm =
x(1 + x)n

(1− x)n+2
.

(One could also appeal to Exercise 3.137.)
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(c) Write fn = f(Pn, x), gn = g(Pn, x). The recurrence (3.76) yields

fn = (x− 1)n + 2

n−1∑

i=0

gi(x− 1)n−1−i. (3.151)

Equations (3.75) and (3.151), together with the initial conditions f0 = g0 = 1,
completely determine fn and gn. Calculating some small cases leads to the guess

gn =

⌊n/2⌋∑

k=0

(−1)k
[(
n− 1

k

)
−
(
n− 1

k − 2

)]
xk (3.152)

fn =

⌊n/2⌋∑

k=0

(−1)k
[(
n− 1

k

)
−
(
n− 1

k − 1

)]
(xk + xn−k).

It is not difficult to check that these polynomials satisfy the necessary recurrences.

Note also that g2m = (1− x)g2m−1 and f2m+1 = (1− x)2m(1 + x).

177. (a) Let Cn = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1}, an n-dimensional cube. A nonempty
face F of Cn is obtained by choosing a subset T ⊆ [n] and a function φ : T →
{0, 1}, and setting

F = {(x1, . . . , xn) ∈ Cn : xi = φ(i) if i ∈ T}.

Let F correspond to the interval [φ−1(1), φ−1(1) ∪ ([n] − T )] of Bn. This yields
the desired (order-preserving) bijection.

(b) Denote the elements of Λ as follows:

0 1

u

Let F be as above, and correspond to F the n-tuple (y1, . . . , yn) ∈ Λn where
yi = φ(i) if i ∈ T and yi = u if i 6∈ T . This yields the desired (order-preserving)
bijection.

(c) Denote the two elements of Pn of rank i by ai and bi, 1 ≤ i ≤ n. Associate with
the chain z1 < z2 < · · · < zk of Pn−{0̂, 1̂} the n-tuple (y1, . . . , yn) ∈ Λn as follows:

yi =





0, if some zj = ai
1, if some zj = bi
u, otherwise.

This yields the desired bijection.

(d) Follows from (c) above, Exercise 3.176(a), and [3.77, Thm. 8.3].

(e) With Λ as in (b) we have Z(Λ, m) = 2m − 1, so by Exercise 3.137 Z(Λn, m) =
(2m− 1)n. It follows easily that

Z(Ln, m) = 1n + 3n + 5n + · · ·+ (2m− 1)n.
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(f) Answer: g(Ln, x) =
∑

k≥0
1

n−k+1

(
n
k

)(
2n−2k
n

)
(x−1)k (obtained in collaboration with

I. M. Gessel). A generating function for g(Ln, x) was given in R. Stanley, J. Amer.
Math. Soc. 5 (1992), 805–851 (Proposition 8.6), namely,

∑

n≥0

g(Ln, x)
yn

n!
= e2y

∑

n≥0

(−1)ngn
yn

n!
,

where gn is given by equation (3.152).

(g) This result was deduced from (f) by L. W. Shapiro (private communication). For
further work in this area, see G. Hetyei, A second look at the toric h-polynomial
of a cubical complex, arXiv:1002.3601.

179. For rational polytopes, i.e., those whose vertices have rational coordinates, this result
follows from the hard Lefschetz theorem for the intersection homology of projective
toric varieties; see Stanley [3.79]. For arbitrary convex polytopes the notion of inter-
section homology needs to be defined despite the absence of a corresponding variety,
and the hard Lefschetz theorem must be proved in this context. The theory of “com-
binatorial intersection homology” was developed by G. Barthel, J.-P. Brasselet, K.-H.
Fiesler, and L. Kaup, Tohoku Math. J. 54 (2002), 1–41, and independently by P.
Bressler and V. A. Lunts, Compositio Math. 135:3 (2003), 245–278. K. Karu, Invent.
math. 157 (2004), 419–447, showed that the hard Lefschetz theorem held for this the-
ory, thereby proving the nonnegativity of the coefficients of g(L, x). An improvement
to Karu’s result was given by Bressler and Lunts, Indiana Univ. Math. J. 54 (2005),
263–307. A more direct approach to the work of Bressler and Lunts was given by
Barthel, Brasselet, Fiesler, and Kaup, Tohoku Math. J. 57 (2005), 273–292. It remains
open to prove the nonnegativity of the coefficients of g(P, x) (or even f(P, x)) when P
is both Cohen-Macaulay and Eulerian.

180. Lnd is in fact the lattice of faces of a certain d-dimensional convex polytope C(n, d)
called a cyclic polytope. Hence by Proposition 3.8.9, Lnd is an Eulerian lattice of rank
d + 1. The combinatorial description of Lnd given in the problem is called “Gale’s
evenness condition.” See, for example, page 85 of P. McMullen and G. C. Shephard,
Convex Polytopes and the Upper Bound Conjecture, Cambridge Univ. Press, 1971, or
[3.37, p. 62], or G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995
(Theorem 0.7).

181. (a) If L is the face lattice of a convex d-polytope P, then the result goes back to
Carathéodory. For a direct proof, see B. Grünbaum, Convex Polytopes, second
ed., Springer-Verlag, New York, 2003 (item 4 on page 123). The extension to
Eulerian lattices is due to H. Bidkhori, Ph.D. thesis, M.I.T., 2010 (Section 3.5).
The proof first shows by induction on d that L − {1̂} is simplicial (as defined in
Section 3.16). It then follows from equation (3.73) that L has

(
d+1
k

)
elements of

rank k for all k. Since L is atomic (e.g., by Corollary 3.9.5) it must be a boolean
algebra.

(b) In Exercise 3.191 let P = Bd and Q = B2. Then P ∗Q (defined by equation (3.86))
is Eulerian of rank d+ 1 whose truncation (P ∗Q)0 ∪ (P ∗Q)1 ∪ · · · ∪ (P ∗Q)d−1

is a truncated boolean algebra, yet P ∗Q itself is not a boolean algebra.
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182. Let P = {t1, . . . , tn}, and define

P = {(α1, . . . , αn) ∈ Rn : 0 ≤ αi ≤ 1, and ti ≤ tj ⇒ αi ≤ αj}.

Then P is a convex polytope, and it is not difficult to show (as first noted by L. D.
Geissinger, in Proc. Third Carribean Conf. on Combinatorics, 1981, pp. 125–133) that
ΓP is isomorphic to the dual of the lattice of faces of P and hence is an Eulerian lattice.
For further information on the polytope P, see R. Stanley, J. Disc. and Comp. Geom.
1 (1986), 9–23.

183. (b) This description of the Bruhat order goes back to C. Ehresmann, Ann. Math. 35
(1934), 396–443, who was the first person to define the order. For an exposition,
see A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Springer, New
York, 2005 (Chapter 2). This book is the standard reference on the combinatorics
of Coxeter groups, which we will refer to as B-B for the remainder of this exercise
and in Exercise 3.185.

(c) The Bruhat order can be generalized to arbitrary Coxeter groups. In this context,
Sn was shown to be Eulerian by D.-N. Verma, Ann. Sci. Éc. Norm. Sup. 4
(1971), 393–398, and V. V. Deodhar, Invent. Math. 39 (1977), 187–198. See B-B,
Corollary 2.7.10. More recent proofs were given by J. R. Stembridge, J. Algebraic
Combinatorics 25 (2007), 141–148, B. C. Jones, Order 26 (2009), 319–330, and
M. Marietti, J. Algebraic Combinatorics 26 (2007), 363–382. This last paper
introduces a new class of Eulerian posets called zircons, which give a combinatorial
generalization of Bruhat order. A far-reaching topological generalization of the
present exercise is due to A. Björner and M. L. Wachs [3.17]. A survey of Bruhat
orders is given by A. Björner, Contemp. Math. 34 (1984), pp. 175–195.

(d) First show that for fixed i < j, the number of permutations v for which v < (i, j)v
is n!/(j− i+1). Then sum on 1 ≤ i < j ≤ n. This argument is due to D. Callan,
as reported in The On-Line Encyclopedia of Integer Sequences, A002538.

(g) This result goes back to Chevalley in 1958 (for arbitrary finite Coxeter groups),
but the first explicit statement seems to be due to J. R. Stembridge, J. Algebraic
Combinatorics 15 (2002), 291–301. For additional information see A. Postnikov
and R. Stanley, J. Algebraic Combinatorics 29 (2009), 133–174.

184. See F. Incitti, J. Algebraic Combinatorics 20 (2004), 243–261. For further work on
this poset, see A. Hultman and K. Vorwerk, J. Algebraic Combinatorics 30 (2009),
87–102.

185. (b) Given w = a1a2 · · ·an ∈ Sn, let Iw = {(ai, aj) : i < j, ai > aj}, the inversion set
of w. It is easy to see that v ≤ w in W (Sn) if and only if Iv ⊆ Iw. From this
observation it follows readily that v ∨ w is defined by Iv∨w = Iv ∪ Iw, where the
overline denotes transitive closure. Hence W (Sn) is a join-semilattice. Since it
has a 0̂ (or, in fact, since it is self-dual via the anti-automorphism a1a2 · · ·an 7→
an · · ·a2a1), it follows thatW (Sn) is a lattice. This argument appears in C. Berge,
Principles of Combinatorics, Academic Press, New York, 1971 (§4.4, Prop. 3). For
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further information see A. Hammett and B. G. Pittel, Meet and join in the weak
order lattice, preprint, 2006. An exposition of the weak order for arbitrary Coxeter
groups appears in B-B, Chapter 3.

(c) Every vertex in the Hasse diagram of W (Sn) has degree n − 1, from which the
result is immediate.

(d) Follows from Corollary 3 on page 185 of A. Björner, Contemp. Math. 34 (1984),
pp. 175–195. A topological generalization appears in B-B, Corollary 3.2.8

(e) This result was shown by P. H. Edelman, Geometry and the Möbius function of
the weak Bruhat order of the symmetric group, unpublished.

(k) This result was first proved by R. Stanley, Europ. J. Combinatorics 5 (1984),
359–372 (Corollary 4.3). Subsequent proofs were announced in P. H. Edelman
and C. Greene, Contemporary Math. 34 (1984), 155–162, and A. Lascoux and
M.-P. Schützenberger, C. R. Acad. Sc. Paris 295, Série I (1982), 629–633. The
proof of Edelman and Greene appears in Advances in Math. 63 (1987), 42–99.
An interesting exposition was given by A. M. Garsia, Publications du LaCIM,
Université du Québec á Montréal, Montréal, vol. 29, 2002. The number Mn is just
the number of standard Young tableaux of the staircase shape (n−1, n−2, . . . , 1);
see Exercise 7.22.

(l) This result was first proved by I. G. Macdonald, Notes on Schubert polynomials,
Publications du LaCIM, Université du Québec à Montréal, Montréal, vol. 6, 1991
(equation (6.11)). A simpler proof, as well as a proof of a q-analogue conjectured
by Macdonald, was given by S. Fomin and R. Stanley, Advances in Math. 103
(1994), 196–207 (§2).

186.(a–c) Fan Wei, The weak Bruhat order and separable permutations, arXiv:1009:5740.

(d) It has been checked for n ≤ 8 that if w ∈ Sn and F (Λw, q) is symmetric, then
every zero of F (Λw, q) is a root of unity.

187. (b) For every set S ⊆ [n− 1] there exists a unique permutation w ∈ Gn with descent
set D(w) = S. The map w 7→ D(w) is an isomorphism from Gn to M(n).

(c) These permutations w = a1 · · ·an are just those of Exercise 1.114(b), i.e., for all
1 ≤ i ≤ n, the set {a1, a2, . . . , ai} consists of consecutive integers (in some order).
Another characterization of such permutations w is the following. For 1 ≤ i ≤ n,
let µi be the number of terms of w that lie to the left of i and that are greater
than i (a variation of the inversion table of w). Then µ = (µ1, µ2, . . . , µn) is a
partition into distinct parts (i.e., for some k we have µ1 > µ2 > · · · > µk =
µk+1 = · · · = µn = 0). Note that we also have D(w) = {µ1, · · · , µk−1} and
maj(w) = inv(w). These permutations are also the possible ranking patterns as
defined by H. Kamiya, P. Orlik, A. Takemura, and H. Terao, Ann. Combinatorics
10 (2006), 219–235.

188. The poset P is an interval of the poset of normal words introduced by F. D. Farmer,
Math. Japonica 23 (1979), 607–613. It was observed by A. Björner and M. L. Wachs
[3.19, §6] that the poset of all normal words on a finite alphabet S = {s1, . . . , sn} is
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Figure 3.89: A poset Q for which Q⊗ (1 + 1) ∪ {0̂, 1̂} has a nonpositive flag h-vector

just the Bruhat order of the Coxeter group W = 〈S : s2
i = 1〉. Hence P is Eulerian by

the Verma-Deodhar result mentioned in the solution to Exercise 3.183. A direct proof
can also be given.

190. (a) This result is due to R. Ehrenborg, G. Hetyei, and M. A. Readdy, Level Eulerian
posets, preprint dated 12 June 2010 (Corollary 8.3), as a special case of a much
more general situation.

192. This deep result was proved by K. Karu, Compositio Math. 142 (2006), 701–708. Karu
gives another proof for a special case (complete fans) in Lefschetz decomposition and
the cd-index of fans, preprint, math.AG/0509220. Ehrenborg and Karu, J. Algebraic
Combin. 26 (2007), 225–251, continue this work, proving in particular a conjecture of
Stanley that the cd-index of a Gorenstein* lattice is minimized on boolean algebras.

193. (a) The simplest example is obtained by taking two butterfly posets (as defined in
Exercise 3.198) of rank 5 and identifying their top and bottom elements. For this
poset P we have

ΦP (c, d) = c4 + 2c2d+ 2cd2 − 4d2.

For further information on negative coefficients of the cd-index, see M. M. Bayer,
Proc. Amer. Math. Soc. 129 (2001), 2219–2225.

(b) It follows from the work of M. M. Bayer and G. Hetyei, Europ. J. Combinatorics
22 (2001), 5–26, that such a poset must have rank at least seven. For an example
of rank 7, let Q be the poset of Figure 3.89, and let P = Q ⊗ (1 + 1), with a 0̂
and 1̂ adjoined (where ⊗ denotes ordinal product). Then it can be checked that
P is Eulerian, with βP (4, 5, 6) = −2. The poset Q appears as Figure 2 in Bayer
and Hetyei, ibid.

194. If S = {a1, a2, . . . , ak}≤ ⊆ [n − 1], then let ρ = (a1, a2 − a1, a3 − a2, . . . , n − ak), a
composition of n. We write αP (ρ) for αP (S). By Exercise 3.155(a), we have αP (ρ) =
αP (σ) if ρ and σ have the same multiset of parts. By a result of Bayer and Billera [3.5,
Prop. 2.2], αP is determined by its values on those ρ with no part equal to 1. From
this we get d(n) ≤ p(n)− p(n− 1), where p(n) denotes the number of partitions of n.
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Figure 3.90: An interval in a putative “Fibonacci binomial poset”

On the other hand, the work of T. Bisztriczky, Mathematika 43 (1996), 274–285, gives
a lower bound for d(n), though it is far from the upper bound p(n) − p(n − 1). For
the lower bound see also M. M. Bayer, A. Bruening, and J. Stewart, Discrete Comput.
Geom. 27 (2002), 49–63.

195. See R. Ehrenborg, Order 18 (2001), 227–236 (Prop. 4.6).

196. (a) Let [s, t] be an (n + 1)-interval of P , and let u be a coatom (element covered
by t) of [s, t] Then [s, t] has A(n + 1) = B(n + 1)/B(n) atoms, while [s, u] has
A(n) = B(n)/B(n − 1) atoms. Since every atom of [s, u] is an atom of [s, t] we
have A(n + 1) ≥ A(n), and the proof follows.

(b) The poset of Figure 3.90 could be a 4-interval in a binomial poset where B(n) =
F1F2 · · ·Fn. It is known that the Fibonomial coefficient

(
n

k

)

F

=
FnFn−1 · · ·Fn−k+1

FkFk−1 · · ·F1

is an integer, a necessary condition for the existence of a binomial poset with
B(n) = F1F2 · · ·Fn. For a combinatorial interpretation of

(
n
k

)
F
, see A. T. Ben-

jamin and S. S. Plott, Fib. Quart. 46/47 (2008/2009), 7–9.

197. See J. Backelin, Binomial posets with non-isomorphic intervals, arXiv:math/0508397.
Backelin’s posets have factorial function B(1) = 1 and B(n) = 2n−2 for n ≥ 2.

198. See R. Ehrenborg and M. A. Readdy, J. Combinatorial Theory Ser. A 114 (2007),
339–359. For further work in this area see H. Bidkhori, Ph.D. thesis, M.I.T., 2010, and
Finite Eulerian posets which are binomial, Sheffer or triangular, arXiv:1001.3175.

199. Answer: L is a chain or a boolean algebra.

200. Equation (3.132) is equivalent to a result of R. C. Read, Canad. J. Math. 12 (1960),
410–414 (also obtained by E. A. Bender and J. R. Goldman [3.7]). The connection
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with binomial posets was pointed out by Stanley, Discrete Math. 5 (1973), 171–178
(§3). Note that equation (3.88) (the chromatic generating function for the number of
acyclic digraphs on [n]) follows immediately from equations (3.132) and (3.121).

201. (a) See [3.25, Prop. 9.1]. This result is proved in exact analogy with Theorem 3.18.4.

(b,c) See [3.25, Prop. 9.3].

202. See Theorem 5.2 of R. Simion and R. Stanley, Discrete Math. 204 (1999), 369–396.

203. As the notation becomes rather messy, let us illustrate the proof with the example
a1 = 0, a2 = 3, a3 = 4, m = 6. Let

Sn = {6i, 6i+ 3, 6i+ 4 : 0 ≤ i ≤ n}
S ′
n = Sn ∪ {6n}
S ′′
n = Sn ∪ {6n, 6n+ 3}.

Let P be the binomial poset B of all finite subsets of N, ordered by inclusion, and let
µS(n) be as in Section 3.19. Then by Theorem 3.13.1 we have

(−1)nf1(n) = µSn(6n) := g1(n)
(−1)n+1f2(n) = µS′

n
(6n+ 3) := g2(n)

(−1)n+2f3(n) = µS′′
n
(6n+ 4) := g3(n).

By the defining recurrence (3.15) we have

g1(n) = −
n−1∑

i=0

[(
6n

6i

)
g1(i) +

(
6n

6i+ 3

)
g2(i) +

(
6n

6i+ 4

)
g3(i)

]
, n > 0

g2(n) = −
n∑

i=0

(
6n+ 3

6i

)
g1(i)−

n−1∑

i=0

(
6n+ 3

6i+ 3

)
g2(i)−

n−1∑

i=0

(
6n+ 3

6i+ 4

)
g3(i)

g3(n) = −
n∑

i=0

(
6n+ 4

6i

)
g1(i)−

n∑

i=0

(
6n+ 4

6i+ 3

)
g2(i)−

n−1∑

i=0

(
6n+ 4

6i+ 4

)
g3(i).

These formulas may be rewritten (incorporating also g1(0) = 1)

δ0n =

n∑

i=0

[(
6n

6i

)
g1(i) +

(
6n

6i+ 3

)
g2(i) +

(
6n

6i+ 4

)
g3(i)

]

0 =
n∑

i=0

[(
6n + 3

6i

)
g1(i) +

(
6n + 3

6i+ 3

)
g2(i) +

(
6n + 3

6i+ 4

)
g3(i)

]

0 =

n∑

i=0

[(
6n + 4

6i

)
g1(i) +

(
6n + 4

6i+ 3

)
g2(i) +

(
6n + 4

6i+ 4

)
g3(i)

]
.
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Figure 3.91: A 1-differential poset up to rank 6

Multiplying the three equations by x6n/(6n)!, x6n+3/(6n + 3)!, and x6n+4/(6n + 4)!,
respectively, and summing on n ≥ 0 yields

F1Φ0 + F2Φ3 + F3Φ2 = 1

F1Φ3 + F2Φ0 + F3Φ5 = 0

F1Φ4 + F2Φ1 + F3Φ0 = 0,

as desired. We leave to the reader to see that the general case works out in the same
way. Note that we can replace fk(n) by the more refined

∑
w q

inv(w), where w ranges
over all permutations enumerated by fk(n), simply by replacing B by Bq and thus a!
by (a)! and

(
a
b

)
by
(

a

b

)
throughout.

An alternative approach to this problem is given by D. M. Jackson and I. P. Goulden,
Advances in Math. 42 (1981), 113–135.

204. (a) See [3.74, Lemma 2.5].

(b) Apply Theorem 3.18.4 to (a). See [3.74, Cor. 2.6].

(c) Specialize (b) to P = B(q) and note that by Theorem 3.13.3 we have Gn(q, z) =
(−1)nh(n)|z→−z. A more general result is given in [3.74, Cor. 3.6].

205. (a) See Figure 3.91 for a 1-differential poset P up to rank 6 that is not isomorphic to
ΩiY [6− i] for any 0 ≤ i ≤ 6. Then Ω∞P is the desired example.

(b) These results were computed by Patrick Byrnes, private communication dated 7
March 2008.

(c) Examples of this nature appear in J. B. Lewis, On differential posets, Undergrad-
uate thesis, Harvard University, 2007;

〈http://math.mit.edu/∼jblewis/JBLHarvardSeniorThesis.pdf〉.
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206. This result was proved by P. Byrnes, preprint, 2011, based on work of Y. Qing, Master’s
thesis, M.I.T., 2008. It is reasonable to conjecture that the only r-differential lattices
are direct products of a suitable number of copies of Y and Zk’s, k ≥ 1.

207. With γ as in the proof of Theorem 3.21.11, we have

γ(UDUUP ) =
∑

n≥0

α(n− 2→ n→ n− 1→ n)qn.

Repeated applications of DU = UD + rI gives UDUU = 2rU2 + U3D. Then use
DP = (U + r)P (Proposition 3.21.3) to get

UUDUP = (2rU2 + rU3 + U4)P .

The proof follows easily from Theorem 3.21.11. This result appeared in [3.80, Exam. 3.5]
as an illustration of a more general result, where UUDU is replaced by any word in U
and D.

208. (a) Use the relation DU = UD + rI to put w in the form

w =
∑

i,j

cij(w)U iDj , (3.153)

where cij(w) is a polynomial in r, and where if cij(w) 6= 0 then i − j = ρ(t).
It is easily seen that this representation of w is unique. Apply U on the left to
equation (3.153). By uniqueness of the cij’s there follows [why?]

cij(Uw) = ci−1,j(w). (3.154)

Now apply D on the left to equation (3.153). Using DU i = U iD + riU i−1 we get
[why?]

cij(Dw) = ci,j−1(w) + r(i+ 1)ci+1,j(w). (3.155)

Setting j = 0 in equations (3.154) and (3.155) yields

ci0(Uw) = ci−1,0(w) (3.156)

ci0(Dw) = r(i+ 1)ci+1,0. (3.157)

Now let (3.153) operate on 0̂. We get w(0̂) = cn0(w)Un(0̂). Thus the coefficient
of t in w(0̂) is given by

〈w(0̂), t〉 = cn0(w)e(t).

It is easy to see from equations (3.156) and (3.157) that

cn0(w) = r#S
∏

i∈S
(bi − ai),

and the proof follows.
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209. Easily proved by induction on n. In particular, assume for n, multiply by UD on the
left, and use the identity DUk = kUk−1 + UkD. See [3.80, Prop. 4.9].

210. UsingDU = UD+1, we can write a balanced word w = w(U,D) as a linear combination
of words UkDk. By Proposition 1.9.1, we can invert equation (3.134) to get

UnDn =

n∑

k=0

s(n, k)(UD)k = UD(UD − 1) · · · (UD − n + 1).

It follows that every balanced word is a polynomial in UD. Since any two polynomials
in UD commute, the proof follows. This result appeared in [3.80, Cor. 4.11(a)].

213. We have (using equation (3.105))

∑

n≥0

∑

k≥0

κ2k(n)
qnx2k

(2k)!
=

∑

t∈P

〈
e(D+U)xt, t

〉
qρ(t)

= erx
2/2
∑

t∈P

〈
eUxeDxt, t

〉
qρ(t).

From Exercise 3.212(b) it is easy to obtain

∑

n≥0

∑

k≥0

κ2k(n)
qnx2k

(2k)!
= F (P, q) exp

(
1

2
rx2 +

rqx2

1− q

)
.

Extracting the coefficient of x2k/(2k)! on both sides completes the proof. This result
first appeared in [3.80, Cor. 3.14].

214. This is a result of P. Byrnes, preprint, 2011.

215. (a) We showed in the proof of Theorem 3.21.12 that the linear transformation Ui : CPi →
CPi+1 is injective. Hence

pi = dim CPi ≤ dim CPi+1 = pi+1.
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Chapter 4

Rational Generating Functions

4.1 Rational Power Series in One Variable

The theory of binomial posets developed in the previous chapter sheds considerable light on
the “meaning” of generating functions and reduces certain types of enumerative problems to
a routine computation. However, it does not seem worthwhile to attack more complicated
problems from this point of view. The remainder of this book will for the most part be
concerned with other techniques for obtaining and analyzing generating functions. We first
consider the simplest general class of generating functions, namely, the rational generating
functions. In this chapter we will concern ourselves primarily with rational generating func-
tions in one variable; that is, generating functions of the form F (x) =

∑
n≥0 f(n)xn that

are rational functions in the ring K[[x]], where K is a field. This means that there exist
polynomials P (x), Q(x) ∈ K[x] such that F (x) = P (x)Q(x)−1 in K[[x]]. Here it is assumed
that Q(0) 6= 0, so that Q(x)−1 exists in K[[x]]. The field of all rational functions in x over
K is denoted K(x), so the ring of rational power series is given by K[[x]] ∩K(x). For our
purposes here it suffices to take K = C or sometimes C with some indeterminates adjoined.

The fundamental property of rational functions in C[[x]] from the viewpoint of enumeration
is the following.

4.1.1 Theorem. Let α1, α2, . . . , αd be a fixed sequence of complex numbers, d ≥ 1 and
αd 6= 0. The following conditions on a function f : N→ C are equivalent:

i. ∑

n≥0

f(n)xn =
P (x)

Q(x)
, (4.1)

where Q(x) = 1+α1x+α2x
2 + · · ·+αdx

d and P (x) is a polynomial in x of degree less
than d.

ii. For all n ≥ 0,

f(n+ d) + α1f(n+ d− 1) + α2f(n+ d− 2) + · · ·+ αdf(n) = 0. (4.2)
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iii. For all n ≥ 0,

f(n) =

k∑

i=1

Pi(n)γni , (4.3)

where 1+α1x+α2x
2 + · · ·+αdx

d =
∏k

i=1(1− γix)di , the γi’s are distinct and nonzero,
and Pi(n) is a polynomial of degree less than di.

Proof. Fix Q(x) = 1 + α1x+ · · ·+ αdx
d. Define four complex vector spaces as follows:

V1 = {f : N→ C such that (i) holds}

V2 = {f : N→ C such that (ii) holds}

V3 = {f : N→ C such that (iii) holds}

V4 = {f : N→ C such that
∑

n≥0 f(n)xn =
∑k

i=1

∑di

j=1 βij(1− γix)−j , for some

βij ∈ C, where γi and di have the same meaning as in (iii).}
We first claim that dimV4 = d (all dimensions are taken over C). Now V4 is spanned over C
by the rational functions Rij(x) = (1− γix)−j , where 1 ≤ i ≤ k and 1 ≤ j ≤ di. There are∑
di = d such functions, so dimV4 ≤ d. It remains to show that the Rij(x)’s are linearly

independent. Suppose to the contrary that we have a linear relation
∑

cijRij(x) = 0, (4.4)

where cij ∈ C and not all cij = 0. Let i be such that some cij 6= 0, and then let j be the
largest integer for which cij 6= 0. Multiply equation (4.4) by (1− γix)j and set x = 1/γi. We
obtain cij = 0, a contradiction, proving that dimV4 = d.

Now in (i) we may choose the d coefficients of P (x) arbitrarily. Hence dimV1 = d. In (ii)
we may choose f(0), f(1), . . . , f(d − 1) and then the other f(n)’s are uniquely determined.
Hence dimV2 = d. In (iii) we see that f(n) is determined by the d coefficients of the Pi(n)’s,
so dimV3 ≤ d. (It is not so apparent, as it was for (i) and (ii), that different choices of
Pi(n)’s will produce different f(n)’s.) Now for j ≥ 0 we have

1

(1− γx)j =
∑

n≥0

(−γ)n
(−j
n

)
xn =

∑

n≥0

xnγn
(
j + n− 1

j − 1

)
.

Since
(
j+n−1
j−1

)
is a polynomial in n of degree j we get V4 ⊆ V3. Since dimV4 = d ≥ dimV3

we have V3 = V4.

If f ∈ V1, then equate coefficients of xn in the identity Q(x)
∑

n≥0 f(n)xn = P (x) to get
f ∈ V2. Since dimV1 = dimV2 there follows V1 = V2.

By putting the sum
∑k

i=1

∑di

j=1 βij(1−γix)−j over a common denominator, we see that V4 ⊆
V1. Since dim V1 = dimV4 there follows V1 = V2 = V3 (= V4), so the proof is complete.

Before turning to some interesting variations and special cases of Theorem 4.1.1, we first
give a couple of examples of how a rational generating function arises in combinatorics.
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4.1.2 Example. The prototypical example of a function f(n) satisfying the conditions of
Theorem 4.1.1 is given by f(n) = Fn, a Fibonacci number. The recurrence Fn+2 = Fn+1 +Fn
yields the generating function

∑
n≥0 Fnx

n = P (x)/(1− x− x2) for some polynomial P (x) =
a+ bx. The initial conditions F0 = 0, F1 = 1 imply that P (x) = x. Hence

∑

n≥0

Fnx
n =

x

1− x− x2
.

Now 1− x− x2 = (1− ϕx)(1− ϕ̄x), where

ϕ =
1 +
√

5

2
, ϕ̄ =

1−
√

5

2
= 1− ϕ = − 1

ϕ
.

Hence Fn = αϕn + βϕ̄n. Setting n = 0, 1 yields the linear equations

α+ β = 0, ϕα + ϕ̄β = 1,

with solution α = 1/
√

5 and β = −1/
√

5. Hence

Fn =
ϕn − ϕ̄n√

5
. (4.5)

Although equation (4.5) has no direct combinatorial meaning, it still has many uses. For
instance, since −1 < ϕ̄ < 0, it is easy to deduce that Fn is the nearest integer to ϕn/

√
5.

Thus we have a very accurate expression for the rate of growth of Fn. Moreover, the explicit
formula (4.5) often gives a routine method for proving various identities and formulas in-
volving Fn, though sometimes there are more enlightening combinatorial or algebraic proofs.
An instance is mentioned in Example 4.7.16.

4.1.3 Example. Let f(n) be the number of paths with n steps starting from (0, 0), with
steps of the type (1, 0), (−1, 0), or (0, 1), and never intersecting themselves. For instance,
f(2) = 7, as shown in Figure 4.1 (with the initial point at (0, 0) circled). Equivalently, letting
E = (1, 0), W = (−1, 0), N = (0, 1), we want the number of words A1A2 · · ·An (Ai = E,W ,
or N) such that EW and WE never appear as factors. Let n ≥ 2. There are f(n−1) words
of length n ending in N . There are f(n− 1) words of length n ending in EE, WW , or NE.
There are f(n− 2) words of length n ending in NW . Every word of length at least 2 ends
in exactly one of N , EE, WW , NE, or NW . Hence

f(n) = 2f(n− 1) + f(n− 2), f(0) = 1, f(1) = 3.

By Theorem 4.1.1, there are numbers A and B for which
∑

n≥0 f(n)xn = (A + Bx)/(1 −
2x− x2). By, for example, comparing coefficients of 1 and x, we obtain A = B = 1, so

∑

n≥0

f(n)xn =
1 + x

1− 2x− x2
.

We have 1 − 2x − x2 = (1 − (1 +
√

2)x)(1 − (1 −
√

2)x). Again by Theorem 4.1.1 we have
f(n) = a(1+

√
2)n+ b(1−

√
2)n for some numbers a and b. By, for example, setting n = 0, 1

we obtain a = 1
2
(1 +

√
2) and b = 1

2
(1−

√
2). Hence

f(n) =
1

2

(
(1 +

√
2)n+1 + (1−

√
2)n+1

)
. (4.6)
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Figure 4.1: Some non-self-intersecting lattice paths

Note that without the restriction that the path doesn’t self-intersect, there are 3n paths with
n steps. With the restriction, the number has been reduced from 3n to roughly (1 +

√
2)n =

(2.414 · · · )n. Note also that since −1 < 1−
√

2 < 0, it follows from equation (4.6) that

f(n) =





⌊
1
2
(1 +

√
2)n+1

⌋
, n even,

⌈
1
2
(1 +

√
2)n+1

⌉
, n odd.

538



4.2 Further Ramifications

In this section we will consider additional information that can be gleaned from Theo-
rem 4.1.1. First we give an immediate corollary that is concerned with the possibilities of
“simplifying” the formulas (4.1), (4.2), (4.3).

4.2.1 Corollary. Suppose that f : N→ C satisfies any (or all) of the three equivalent condi-
tions of Theorem 4.1.1, and preserve the notation of that theorem. The following conditions
are equivalent.

i. P (x) and Q(x) are relatively prime. In other words, there is no way to write P (x)/Q(x) =
P1(x)/Q1(x), where P1, Q1 are polynomials and degQ1 < degQ = d.

ii. There does not exist an integer 1 ≤ c < d and complex numbers β1, . . . , βc such that

f(n+ c) + β1f(n+ c− 1) + · · ·+ βcf(n) = 0

for all n ≥ 0. In other words, equation (4.2) is the homogeneous linear recurrence with
constant coefficients of least degree satisfied by f(n).

iii. degPi(n) = di − 1 for 1 ≤ i ≤ k.

Next we consider the coefficients of any rational function P (x)/Q(x), where P,Q ∈ C[x],
not just those with degP < degQ. Write C∗ = C− {0}.
4.2.2 Proposition. Let f : N → C and suppose that

∑
n≥0 f(n)xn = P (x)/Q(x), where

P,Q ∈ C[x]. Then there is a unique finite set Ef ⊂ N (called the exceptional set of f) and
a unique function f1 : Ef → C∗ such that the function g : N→ C defined by

g(n) =

{
f(n), if n 6∈ Ef

f(n) + f1(n), if n ∈ Ef .

satisfies
∑

n≥0 g(n)xn = R(x)/Q(x) where R ∈ C[x] and degR < degQ. Moreover, assuming
Ef 6= ∅ (i.e., degP ≥ degQ), define m(f) = max{i : i ∈ Ef}. Then:

i. m(f) = degP − degQ.

ii. m(f) is the largest integer n for which equation (4.2) fails to hold.

iii. Writing Q(x) =
∏k

i=1(1−γix)di as in Theorem 4.1.1(iii), there are unique polynomials
P1, . . . , Pk for which equation (4.3) holds for all n sufficiently large. Then m(f) is the
largest integer n for which (4.3) fails.

Proof. By the division algorithm for polynomials in one variable, there are unique polyno-
mials L(x) and R(x) with degR < degQ such that

P (x)

Q(x)
= L(x) +

R(x)

Q(x)
. (4.7)
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Thus we must define Ef , g(n), and f1(n) by

∑

n≥0

g(n)xn =
R(x)

Q(x)
, Ef = {i : [xi]L(x) 6= 0},

∑

n∈Ef

f1(n)xn = −L(x).

The rest of the proof is then immediate.

We next describe a fast method for computing the coefficients of a rational function P (x)/Q(x) =∑
n≥0 f(n)xn by inspection. Suppose (without loss of generality) that Q(x) = 1+α1x+ · · ·+

αdx
d, and let P (x) = β0 + β1x+ · · ·+ βex

e (possibly e ≥ d). Equating coefficients of xn in

Q(x)
∑

n≥0

f(n)xn = P (x)

yields
f(n) = −α1f(n− 1)− · · · − αdf(n− d) + βn, (4.8)

where we set f(k) = 0 for k < 0 and βk = 0 for k > e. The recurrence (4.8) can easily be
implemented by inspection (at least for reasonably small values of d and αi). For instance,
let

P (x)

Q(x)
=

1− 2x+ 4x2 − x3

1− 3x+ 3x3 − x3
.

Then

f(0) = β0 = 1

f(1) = 3f(0) + β1 = 3− 2 = 1

f(2) = 3f(1)− 3f(0) + β2 = 3− 3 + 4 = 4

f(3) = 3f(2)− 3f(1) + f(0) + β3 = 12− 3 + 1− 1 = 9

f(4) = 3f(3)− 3f(2) + f(1) = 27− 12 + 1 = 16

f(5) = 3f(4)− 3f(3) + f(2) = 48− 27 + 4 = 25,

and so on. The sequence of values 1, 1, 4, 9, 16, 25, . . . looks suspiciously like f(n) = n2,
except for f(0) = 1. Indeed, the exceptional set Ef = {0}, and

P (x)

Q(x)
= 1 +

x+ x2

(1− x)3
= 1 +

∑

n≥0

n2xn.

We will discuss in Section 4.3 the situation when f(n) is a polynomial, and in particular the
case f(n) = nk.

Proposition 4.2.2(i) explains the significance of the number deg P − degQ when degP ≥
degQ. What about the case degP < degQ? This is best explained in the context of
a kind of duality theorem. If

∑
n≥0 f(n)xn = P (x)/Q(x) with degP < degQ then the

formulas (4.2) and (4.3) are valid. Either of them may be used to extend the domain of f to
negative integers. In (4.2) we can just run the recurrence backwards (since by assumption
αd 6= 0) by successively substituting n = −1,−2, . . . . It follows that there is a unique
extension of f to all of Z satisfying (4.2) for all n ∈ Z. In (4.3) we can let n be a negative
integer on the right-hand side. It is easy to see that these two extensions of f to Z agree.
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4.2.3 Proposition. Let d ∈ N and α1, . . . , αd ∈ C with αd 6= 0. Suppose that f : Z → C
satisfies

f(n+ d) + α1f(n+ d− 1) + · · ·+ αdf(n) = 0 for all n ∈ Z.

Thus
∑

n≥0 f(n) = F (x) is a rational function, as is
∑

n≥1 f(−n)xn = F (x). We then have

F (x) = −F (1/x),

as rational functions.

Note. It is important to realize that Proposition 4.2.3 is a statement about the equality of
rational functions, not power series. For instance, suppose that f(n) = 1 for all n ∈ Z. Then
F (x) =

∑
n≥0 x

n = 1/(1− x) and F (x) =
∑

n≥1 x
n = x/(1− x). Then as rational functions

we have

−F (1/x) = − 1

1− 1/x
= − x

x− 1
=

x

1− x = F (x).

Proof. Let F (x) = P (x)/Q(x), where Q(x) = 1+α1x+ · · ·+αdxd. Let L denote the complex
vector space of all formal Laurent series

∑
n∈Z anx

n, an ∈ C. Although two such Laurent
series cannot be formally multiplied in a meaningful way, we can multiply such a Laurent

series by the polynomial Q(x). The map L Q→ L given by multiplication by Q(x) is a linear
transformation. The hypothesis on f implies that

Q(x)
∑

n∈Z

f(n)xn = 0.

Since multiplication by Q(x) is linear, we have

Q(x)
∑

n≥1

f(−n)x−n = −Q(x)
∑

n≥0

f(n)xn = −P (x).

Substituting 1/x for x yields

∑

n≥1

f(−n)xn = −P (1/x)

Q(1/x)
= −F (1/x),

as desired. (The reader suspicious of this argument should check carefully that all steps are
formally justified. Note in particular that the vector space L contains the two rings C[[x]]
and

{∑
n≤n0

anx
n
}
, whose intersection is C[x].)

Proposition 4.2.3 allows us to explain the significance of certain properties of the rational
function P (x)/Q(x).

4.2.4 Corollary. Let d ∈ P and α1, . . . , αd ∈ C with αd 6= 0. Suppose that f : Z → C
satisfies

f(n+ d) + α1f(n+ d− 1) + · · ·+ αdf(n) = 0

for all n ∈ Z. Thus
∑

n≥0 f(n)xn = P (x)/Q(x) where Q(x) = 1 + α1x + · · · + αdx
d and

degP < degQ. Say P (x) = β0 + β1x+ · · ·+ βd−1x
d−1.
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i. min{n ∈ N : f(n) 6= 0} = min{j ∈ N : βj 6= 0}.
Moreover, if r denotes the value of the above minimum, then f(r) = βr.

ii. min{n ∈ P : f(−n) 6= 0} = min{j ∈ P : βd−j 6= 0} = degQ− degP .
Moreover, if s denotes the value of the above minimum, then f(−s) = −α−1

d βs.

iii. Let F (x) = P (x)/Q(x), and let r and s be as above. Then F (x) = ±xr−sF (1/x) if and
only if f(n) = ∓f(−n + r − s) for all n ∈ Z.

Proof. If
P (x) = βrxr + βr+1x

r+1 + · · ·+ βd−1x
d−1,

then P (x)/Q(x) = βrx
r + · · · , so (i) is clear. If

P (x) = βd−sx
d−s + βd−s−1x

d−s−1 + · · ·+ β0,

then by Proposition 4.2.3 we have

∑

n≥1

f(−n)xn = −P (1/x)

Q(1/x)
= − βd−sx−(d−s) + · · ·+ β0

1 + α1x−1 + · · ·+ αdx−d

=
−α−1

d (βd−sx
s + · · ·+ β0x

d)

1 + αd−1α
−1
d x+ · · ·+ α−1

d xd
= −α−1

d βd−sx
s + · · · ,

from which (ii) follows. Finally, (iii) is immediate from Proposition 4.2.3.

Corollary 4.2.4(ii) answers the question raised above as to the significance of degQ− deg P
when degQ > deg P . A situation to which this result applies is Corollary 3.15.13.

It is clear that if F (x) and G(x) are rational power series belonging to C[[x]], then αF (x) +
βG(x) (α, β,∈ C) and F (x)G(x) are also rational. Moreover, if F (x)/G(x) ∈ C[[x]], then
F (x)/G(x) is rational. Perhaps somewhat less obvious is the closure of rational power series
under the operation of Hadamard product. The Hadamard product F ∗G of the power series
F (x) =

∑
n≥0 f(n)xn and G(x) =

∑
n≥0 g(n)xn is defined by

F (x) ∗G(x) =
∑

n≥0

f(n)g(n)xn.

4.2.5 Proposition. If F (x) and G(x) are rational power series, then so is the Hadamard
product F ∗G.

Proof. By Theorem 4.1.1 and Proposition 4.2.2, the power series H(x) =
∑

n≥0 h(n)xn is
rational if and only if h(n) =

∑m
i=1Ri(n)ζni , where ζ1, . . . , ζm are fixed nonzero complex

numbers and R1, . . . , Rm are fixed polynomials in n. Thus if F (x) =
∑

n≥0 f(n)xn and

G(x) =
∑

n≥0 g(n)xn, then f(n) =
∑k

i=1 Pi(n)γni and g(n) =
∑l

j=1Qi(n)δnj for n large.
Then

f(n)g(n) =
∑

i,j

Pi(n)Qj(n)(γiδj)
n

for n large, so F ∗G is rational.
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4.3 Polynomials

An important special class of functions f : N → C whose generating function
∑

n≥0 f(n)xn

is rational are the polynomials. Indeed, the following result is an immediate corollary of
Theorem 4.1.1.

4.3.1 Corollary. Let f : N → C, and let d ∈ N. The following three conditions are equiva-
lent:

i.
∑

n≥0

f(n)xn =
P (x)

(1− x)d+1
, where P (x) ∈ C[x] and deg P ≤ d.

ii. For all n ≥ 0,
d+1∑

i=0

(−1)d+1−i
(
d+ 1

i

)
f(n+ i) = 0.

In other words, ∆d+1f(n) = 0.

iii. f(n) is a polynomial function of n of degree at most d. (Moreover, f(n) has degree
exactly d if and only if P (1) 6= 0.)

Note that the equivalence of (ii) and (iii) is just Proposition 1.9.2(a). Also note that when
P (1) 6= 0, so that deg f = d, then the leading coefficient of f(n) is P (1)/d!. This may be
seen, for example, by considering the coefficient of (1 − x)d+1 is the Laurent expansion of∑

n≥0 f(n)xn about x = 1.

The set of all polyonomials f : N → C (or f : Z → C) of degree at most d is a vector space
Pd of dimension d + 1 over C. This vector space has many natural choices of a basis. A
description of these bases and the transition matrices among them would occupy a book in
itself. Here we list what are perhaps the four most important bases, with a brief discussion
of their significance. Note that any set of polynomials p0(n), p1(n), . . . , pd(n) with deg pi = i
is a basis for Pd [why?].

a. ni, 0 ≤ i ≤ d. When a polynomial f(n) is expanded in terms of this basis, then we of
course obtain the usual coefficients of f(n).

b.
(
n
i

)
, 0 ≤ i ≤ d. (Alternatively, we could use (n)i = i!

(
n
i

)
.) By Proposition 1.9.2(b)

we have the expansion f(n) =
∑d

i=0(∆
if(0))

(
n
i

)
, the discrete analogue of the Taylor

series (still assuming that f(n) ∈ Pd) f(x) =
∑d

i=0D
if(0)x

i

i!
, where Df(t) = d

dt
f(t).

By Proposition 1.9.2(c), the transition matrices between the bases ni and
(
n
i

)
are

essentially the Stirling numbers of the first and second kind, that is

nj =

j∑

i=0

i!S(j, i)

(
n

i

)
=

j∑

i=0

S(j, i)(n)i

(
n

j

)
=

1

j!

j∑

i=0

s(j, i)ni, or (n)j =

j∑

i=0

s(j, i)ni.
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c.
((
n
i

))
= (−1)i

(−n
i

)
, 0 ≤ i ≤ d. (Alternatively, we could use the rising factorial n(n +

1) · · · (n+ i− 1) = i!
((
n
i

))
.) We thus have

f(n) =

d∑

i=0

(−1)i(∆if(−n))n=0

((n
i

))
.

Equivalently, if one forms the difference table of f(n) then the coefficients of
((
n
i

))
in

the expansion f(n) =
∑
ci
((
n
i

))
are the elements of the diagonal beginning with f(0)

and moving southwest. For instance, if f(n) = n3 + n + 1 then we get the difference
table

−29 −9 −1 1 = f(0)
20 8 2
−12 −6

6,

so n3 +n+1 = 1+2
((
n
1

))
−6
((
n
2

))
+6
((
n
3

))
. The transition matrices with ni and with(

n
i

)
are given by

nj =

j∑

i=0

(−1)j−ii!S(j, i)
((n
i

))

((
n

j

))
=

1

j!

j∑

i=0

c(j, i)ni, where c(j, i) = (−1)j−is(j, i)

(
n

j

)
=

j∑

i=1

(−1)j−i
(
j − 1

i− 1

)((n
i

))

((
n

j

))
=

j∑

i=1

(
j − 1

i− 1

)(
n

i

)
.

d.
(
n+d−i
d

)
, 0 ≤ i ≤ d. There are (at least) two quick ways to see that this is a basis

for Pd. Given that f(n) =
∑d

i=0 ci
(
n+d−i
d

)
, set n = 0 to obtain c0 uniquely. Then set

n = 1 to obtain c1 uniquely, and so on. Thus the d+1 polynomials
(
n+d−i
d

)
are linearly

independent and therefore form a basis for Pd. Alternatively, observe that

∑

n≥0

(
n+ d− i

d

)
xn =

xi

(1− x)d+1
.

Hence the statement that the polynomials
(
n+d−i
d

)
form a basis for Pd is equivalent (in

view of Corollary 4.3.1) to the obvious fact that the rational functions xi/(1 − x)d+1,
0 ≤ i ≤ d, form a basis for all rational functions P (x)/(1 − x)d+1, where P (x) is a
polynomial of degree at most d. If

∑

n≥0

f(n)xn =
w0 + w1x+ · · ·+ wdx

d

(1− x)d+1
,
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then the numbers w0, w1, . . . , wd are called the f -Eulerian numbers, and the polynomial
P (x) = w0 + w1x + · · · + wdx

d is called the f -Eulerian polynomial. If in particular
f(n) = nd, then it follows from Proposition 1.4.4 that the f -Eulerian numbers are
simply the Eulerian numbers A(d, i), while the f -Eulerian polynomial is the Eulerian
polynomial Ad(x). Just as for ordinary Eulerian numbers, the f -Eulerian numbers
frequently have combinatorial significance. A salient example are order polynomials
ΩP,ω(m) of labelled posets (Theorem 3.15.8). While we could discuss the transition
matrices between the basis

(
n+d−i
d

)
and the other three bases considered above, this is

not a particularly fruitful endeavor and will be omitted.
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4.4 Quasipolynomials

A quasipolynomial (known by many other names, such as pseudopolynomial and polynomial
on residue classes (PORC)) of degree d is a function f : N→ C (or f : Z→ C) of the form

f(n) = cd(n)nd + cd−1(n)nd−1 + · · ·+ c0(n),

where each ci(n) is a periodic function (with integer period), and where cd(n) is not identically
zero. Equivalently, f is a quasipolynomial if there exists an integer N > 0 (namely, a common
period of c0, c1, . . . , cd) and polynomials f0, f1, . . . , fN−1 such that

f(n) = fi(n) if n ≡ i (modN).

The integer N (which is not unique) will be called a quasiperiod of f .

4.4.1 Proposition. The following conditions on a function f : N → C and integer N > 0
are equivalent.

i. f is a quasipolynomial of quasiperiod N ,

ii.
∑

n≥0

f(n)xn =
P (x)

Q(x)
, where P (x), Q(x) ∈ C[x], every zero α of Q(x) satisfies αN = 1

(provided P (x)/Q(x) has been reduced to lowest terms), and degP < degQ.

iii. For all n ≥ 0,

f(n) =
k∑

i=1

Pi(n)γni , (4.9)

where each Pi is a polynomial function of n and each γi satisfies γNi = 1.

Moreover, the degree of Pi(n) in equation (4.9) is equal to one less than the multiplicity of
the root γ−1

i in Q(x), provided P (x)/Q(x) has been reduced to lowest terms.

Proof. The proof is a simple consequence of Theorem 4.1.1; the details are omitted.

4.4.2 Example. Let pk(n) denote the number of partitions of n into at most k parts. Thus
from equation (1.76) we have

∑

n≥0

pk(n)xn =
1

(1− x)(1− x2) · · · (1− xk) .

Hence pk(n) is a quasipolynomial. Its minimum quasiperiod in equal to the least common
multiple of 1, 2, . . . , k, and its degree is k − 1. Much more precise statements are possible;
consider for instance the case k = 6. Then

p6(n) = c5n
5 + c4n

4 + c3n
3 + c2(n)n2 + c1(n)n+ c0(n),
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where c3, c4, c5 ∈ Q (and in fact c5 = 1/5!6!, as may be seen by considering the coefficient
of (1 − x)−6 in the Laurent expansion of 1/(1 − x)(1 − x2) · · · (1 − x6) about x = 1), c2(n)
has period 2, c1(n) has period 6, and c0(n) has period 60. (These need not be the minimum
periods.) Moreover, c1(n) is in fact the sum of periodic functions of periods 2 and 3. The
reader should be able to read these facts off from the generating function 1/(1 − x)(1 −
x2) · · · (1− x6).

The case k = 3 is particularly elegant. Let us write [a0, a1, . . . , ap−1]p for the periodic function
c(n) of period p satisfying c(n) = ai if n ≡ i (mod p). A rather tedious computation yields

p3(n) =
1

12
n2 +

1

2
n +

[
1,

5

12
,
2

3
,
3

4
,
2

3
,

5

12

]

6

.

It is essentially an “accident” that this expression for p3(n) can be written in the concise
form ‖ 1

12
(n + 3)2 ‖, where ‖ t ‖ denotes the nearest integer to the real number t, that is,

‖ t‖=
⌊
t+ 1

2

⌋
.
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4.5 Linear Homogeneous Diophantine Equations

The remainder of this chapter will be devoted to two general areas in which rational gener-
ating functions play a prominent role. Another such area is the theory of (P, ω)-partitions
developed in Section 3.15.

Let Φ be an r×m matrix with integer entries (or Z-matrix ). Many combinatorial problems
turn out to be equivalent to finding all (column) vectors α ∈ Nm satisfying

Φα = 0, (4.10)

where 0 = (0, 0, . . . , 0) ∈ Nr. (For convenience of notation we will write column vectors as
row vectors.) Equation (4.10) is equivalent to a system of r homogeneous linear equations
with integer coefficients in the m unknowns α = (α1, . . . , αm). Note that if we were searching
for solutions α ∈ Zm (rather than α ∈ Nm) then there would be little problem. The
solutions in Zm (or Z-solutions) form a subgroup G of Zm and hence by the theory of
finitely-generated abelian groups, G is a finitely-generated free abelian group. The minimal
number of generators (or rank) of G is equal to the nullity of the matrix Φ, and there are
well-known algorithms for finding the generators of G explicitly. The situation for solutions
in Nm (or N-solutions) is not so clear. The set of solutions forms not a group, but rather a
(commutative) monoid (semigroup with identity) E = EΦ. It certainly is not the case that
E is a free commutative monoid; that is, there exist α1, . . . ,αs ∈ E such that every α ∈ E
can be written uniquely as

∑s
i=1 aiαi, where ai ∈ N. For instance, take Φ = [1, 1,−1,−1].

Then in E there is the nontrivial relation (1, 0, 1, 0) + (0, 1, 0, 1) = (1, 0, 0, 1) + (0, 1, 1, 0).

Without loss of generality we may assume that the rows of Φ are linearly independent; that
is, rank Φ = r. If now E ∩ Pm = ∅ (i.e., the equation (4.10) has no P-solution), then for
some i ∈ [m], every (α1, . . . , αm) ∈ E satisfies αi = 0. It costs nothing to ignore this entry
αi. Hence we may assume from now on that E ∩Pm 6= ∅. We then call E a positive monoid.

We will analyze the structure of the monoid E to the extent of being able to write down a
formula for the generating function

E(x) = E(x1, . . . , xm) =
∑

α∈E
xα, (4.11)

where if α = {α1, . . . , αm} then xα = xα1
1 · · ·xαm

m . We will also consider the closely related
generating function

E(x) =
∑

α∈E

xα, (4.12)

where E = E ∩ Pm. Since we are assuming that E 6= ∅, it follows that E(x) 6= 0. In general
throughout this section, if G is any subset of Nm then we write

G(x) =
∑

α∈G
xα.

First, let us note that there is no real gain in generality by also allowing inequalities of the
form Ψα ≥ 0 for some s×m Z-matrix Ψ. This is because we can introduce slack variables

548



variables γ = (γ1, . . . , γs) and replace the inequality Ψα ≥ 0 by the equality Ψα − γ = 0.
An N-solution to the latter equality is equivalent to an N-solution to the original inequality.
In particular, the theory of P -partitions (where the labeling ω is natural) of Section 3.15 can
be subsumed by the general theory of N-solutions to equation (4.10), though P -partitions
have many additional special features. Specifically, introduce variables αt for all t ∈ P and
αst for all pairs s < t (or in fact just for s⋖ t). Then an N-solution α to the system

αs − αt − αst = 0, for all s < t in P (or just for all s⋖ t) (4.13)

is equivalent to the P -partition σ : P → N given by σ(t) = αt. Moreover, a P-solution
to equation (4.13) is equivalent to a strict P -partition τ with positive parts. If we merely
subtract one from each part, then we obtain an arbitrary strict P -partition. Hence by
Theorem 3.15.10, the generating functions E(x) and E(x) of (4.11) and (4.12), for the
system (4.13), are related by

E(x) = (−1)pE(1/x), (4.14)

where 1/x denotes the substitution of 1/xi for xi in the rational function E(x). This suggests
a reciprocity theorem for the general case (4.10), and one of our goals will be to prove such a
theorem. (We do not even know yet whether E(x) and E(x) are rational functions; otherwise
equation (4.14) makes no sense.) The theory of P -partitions provides clues about obtaining
a formula for E(x). Ideally we would like to partition in an explicit and canonical way the
monoid E into finitely many easily-understood parts. Unfortunately we will have to settle
for somewhat less. We will express E as a union of nicely behaved parts (called “simplicial
monoids”), but these parts will not be disjoint and it will be necessary to analyze how they
intersect. Moreover, the simplicial monoids themselves will be obtained by a rather arbitrary
construction (not nearly as elegant as associating a P -partition to a unique w ∈ L(P )), and
it will require some work to analyze the simplicial monoids themselves. But the reward for
all this effort will be an extremely general theory with a host of interesting and significant
applications.

Although the theory we are about to derive can be developed purely algebraically, it is more
convenient and intuitive to proceed geometrically. To this end we will briefly review some of
the basic theory of convex polyhedral cones. A linear half-space H of Rm is a subset of Rm

of the form H = {v : v ·w ≥ 0} for some fixed nonzero vector w ∈ Rm. A convex polyhedral
cone C in Rm is defined to be the intersection of finitely many half-spaces. (Some authorities
would require that C contain a vector v 6= 0.) We say that C is pointed if it doesn’t contain
a line; or equivalently, whenever 0 6= v ∈ C then −v 6∈ C. A supporting hyperplane H of C
is a linear hyperplane of which C lies entirely on one side. In other words H divides Rm into
two closed half-spaces H+ and H− (whose intersection is H), such that either C ⊆ H+ or
C ⊆ H−. A face of C is a subset C ∩H of C, where H is a supporting hyperplane. Every face
F of C is itself a convex polyhedral cone, including the degenerate face {0}. The dimension
of F , denoted dimF , is the dimension of the subspace of Rm spanned by F . If dimF = i,
then F is called an i-face. In particular, {0} and C are faces of C, called improper, and
dim{0} = 0. A 1-face is called an extreme ray, and if dim C = d then a (d−1)-face is called a
facet. We will assume the standard result that a pointed polyhedral cone C has only finitely
many extreme rays, and that C is the convex hull of its extreme rays. A simplicial cone
σ is an e-dimensional pointed convex polyhedral cone with e extreme rays (the minimum
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Figure 4.2: An edge-labelled face lattice and corresponding triangulation

possible). Equivalently, σ is simplicial if there exist linearly independent vectors β1, . . . ,βe

for which σ = {a1β1 + · · · + aeβe : ai ∈ R+}. A triangulation of C consists of a finite
collection Γ = {σ1, . . . , σt} of simplicial cones satisfying: (i) ∪σi = C, (ii) if σ ∈ Γ, then
every face of σ is in Γ, and (iii) σi ∩ σj is a common face of σi and σj . An element of Γ is
called a face of Γ.

4.5.1 Lemma. A pointed polyhedral cone C possesses a triangulation Γ whose 1-faces (=
1-dimensional faces of Γ) are the extreme rays of C.

Proof. Let L denote the lattice of faces of C, so the face {0} is the unique minimal element
of L. The extreme rays of C are the atoms of L. Choose an ordering R1, . . . ,Rm of the
extreme rays. Given an edge e = uv of the Hasse diagram of L (so u ⋖ v in L) define λ(e)
to be the least integer i for which v = u ∨ Ri in L. Let m be a maximal chain of L, say
0̂ = t0 ⋖ t1 ⋖ · · · ⋖ td = C, for which λ(t0, t1) > λ(t1, t2) > · · · > λ(td−1, td). Suppose that
λ(ti−1, ti) = ji. Let ∆m be the convex hull of the extreme rays Rj1, . . . ,Rjd. We leave it to
the reader to check that the ∆m’s are the facets of a triangulation Γ whose 1-faces are the
extreme rays of C. (Is the similarity to Example 3.14.5 just a coincidence?)

As an illustration of the above proof, consider a 3-dimensional cone C whose cross-section
is a quadrilateral Q. Let R1, . . . ,R4 be the extreme rays of C in cyclic order. Figure 4.2(a)
shows the edge-labelled face lattice of C (or the face lattice of Q). There are two decreasing
chains, labelled 321 and 431. The corresponding triangulation of Q (a cross-section of the
triangulation Γ of C) is shown in Figure 4.2(b).

The boundary of C, denoted ∂ C, is the union of all facets of C. (This definition coincides with
the usual topological notion of boundary.) If Γ is a triangulation of C, define the boundary
∂Γ = {σ ∈ Γ : σ ⊆ ∂ C}, and define the interior Γ◦ = Γ− ∂Γ.

4.5.2 Lemma. Let Γ be any triangulation of C. Let Γ̂ denote the poset (actually a lattice)
of elements of Γ, ordered by inclusion, with a 1̂ adjoined. Let µ denote the Möbius function
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of Γ̂. Then Γ̂ is graded of rank d+ 1, where d = dim C, and

µ(σ, τ) =





(−1)dim τ−dimσ, if σ ≤ τ < 1̂

(−1)d−dim σ+1, if σ ∈ Γ◦ and τ = 1̂

0, if σ ∈ ∂Γ and τ = 1̂.

Proof. This result is a special case of Proposition 3.8.9.

Let us now return to the system of equations (4.10). Let C denote the set of solutions
α in nonnegative real numbers. Then C is a pointed convex polyhedral cone. We will
always denote dim C by the letter d. Since we are assuming that rank Φ = r and that E is
positive, it follows that d = m − r [why?]. Although we don’t require it here, it is natural
to describe the faces of C directly in terms of E. We will simply state the relevant facts
without proof. If α = (α1, . . . , αm) ∈ Rm, then define the support of α, denoted supp α, by
supp α = {i : αi 6= 0}. If X is any subset of Rm, then define

suppX =
⋃

α∈X
(supp α).

Let L(C) be the lattice of faces of C, and let L(E) = {supp α : α ∈ E}, ordered by inclusion.
Define a map f : L(C)→ Bm (the boolean algebra on [m]) by f(F) = suppF . Then f is an
isomorphism of L(C) onto L(E).

4.5.3 Example. Let Φ = [1, 1,−1,−1]. The poset L(E) is given by Figure 4.3. Thus C
has four extreme rays and four 2-faces. The four extreme rays are the rays from (0, 0, 0, 0)
passing through (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), and (0, 1, 0, 1).

Now let Γ be a triangulation of C whose extreme rays are the extreme rays of C. Such a
triangulation exists by Lemma 4.5.1. If σ ∈ Γ, then let

Eσ = σ ∩Nm. (4.15)

Then each Eσ is a submonoid of E, and E =
⋃
σ∈ΓEσ. Moreover, if we set

Eσ = {u ∈ Eσ : u 6∈ Eτ for any τ ⊂ σ}, (4.16)
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Figure 4.4: Triangulation of a cross-section of a cone C

then E =
⋃· σ∈ΓEσ (disjoint union). This provides the basic decomposition of E and E into

“nice” subsets, just as Lemma 3.15.3 did for (P, ω)-partitions.

The “triangulation” {Eσ : σ ∈ Γ} of E and {Eσ : σ ∈ Γ◦} of E yield the following result
about generating functions.

4.5.4 Lemma. The generating functions E(x), E(x) and Eσ(x), Eσ(x) are related by

E(x) = −
∑

σ∈Γ

µ(σ, 1̂)Eσ(x), (4.17)

E(x) =
∑

σ∈Γ◦

Eσ(x). (4.18)

Proof. Equation (4.17) follows immediately from Möbius inversion. More specifically, set
E 1̂(x) = 0 and define

Hσ(x) =
∑

τ≤σ
Eτ (x), σ ∈ Γ̂.

Clearly

Hσ(x) = Eσ(x), σ ∈ Γ

H1̂(x) = E(x). (4.19)

By Möbius inversion,

0 = E 1̂(x) =
∑

σ≤1̂

Hσ(x)µ(σ, 1̂),

so equation (4.17) follows from (4.19).

Equation (4.18) follows immediately from the fact that the union E =
⋃· σ∈Γ◦Eσ is disjoint.

4.5.5 Example. Let E be the monoid of Example 4.5.3. Triangulate C as shown in Fig-
ure 4.4, where supp a = {1, 3}, supp b = {1, 4}, supp c = {2, 4}, supp d = {2, 3}. Then the

poset Γ̂ is given by Figure 4.5. Note also that Γ◦ = {bd, abd, bcd}. Lemma 4.5.4 states that

E(x) = Eabd(x) + Ebcd(x)−Ebdx
E(x) = Eabd(x) + Ebcd(x) + Ebd(x). (4.20)
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Figure 4.5: Face poset of the triangulation of Figure 4.4

Our next step is the evaluation of the generating functions Eσ(x) and Eσ(x) appearing in
equations (4.17) and (4.18). Let us call a submonoid F of Nm (or even Zm) simplicial if
there exist linearly independent vectors α1, . . . ,αt ∈ F (called quasigenerators of F ) such
that

F = {γ ∈ Nm : nγ = a1α1 + · · ·+ atαt for some n ∈ P and ai ∈ N}.
The quasigenerators α1, . . . ,αt are not quite unique. If α′

1
, . . . ,α′

s
is another set of quasi-

generators, then s = t and with suitable choice of subscripts α′

1
= qiα

′

i
where qi ∈ Q, qi > 0.

Define the interior F of F by

F = {α ∈ Nm : nα = a1α1 + · · ·+ atαt for some n ∈ P and ai ∈ P}. (4.21)

Note that F depends only on F , not on α1, . . . ,αt.

4.5.6 Lemma. The submonoids Eσ of E defined by equation (4.15) are simplicial. If
R1, . . . ,Rt are the extreme rays of σ, then we can pick as quasigenerators of Eσ any nonzero
integer vectors in R1, . . . ,Rt (one vector from each Ri). Moreover, the interior of Eσ, as
defined by equation (4.21), coincides with the definition (4.16) of Eσ.

Proof. This is an easy consequence of the fact that σ is a simplicial cone. The details are
left to the reader.

If F ⊆ Nm is a simplicial monoid with quasigenerators Q = {α1, . . . ,αt}, then define two
subsets DF and DF (which depend on the choice of Q) as follows:

DF = {γ ∈ F : γ = a1α1 + · · ·+ atαt, 0 ≤ ai < 1} (4.22)

DF = {γ ∈ F : γ = a1α1 + · · ·+ atαt, 0 < ai ≤ 1}. (4.23)

Note that DF and DF are finite sets, since they are contained in the intersection of the
discrete set F (or Nm) with the bounded set of all vectors a1α1 + · · · + atαt ∈ Rm with
0 ≤ ai ≤ 1.
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4.5.7 Lemma. Let F ⊆ Nm be a simplicial monoid with quasigenerators α1, . . . ,αt.

i. Every element γ ∈ F can be written uniquely in the form

γ = β + a1α1 + · · ·+ atαt,

where β ∈ DF and ai ∈ N. Conversely, any such vector belongs to F .

ii. Every element γ ∈ F can be written uniquely in the form

γ = β̄ + a1α1 + · · ·+ atαt,

where β̄ ∈ DF and ai ∈ N. Conversely, any such vector belongs to F .

Proof. i. Let γ ∈ F , and write (uniquely) γ = b1α1 + · · ·+ btαt, bi ∈ Q. Let ai = ⌊bi⌋,
and let β = γ − a1α1 − · · · − atαt. Then β ∈ F , and since 0 ≤ bi − ai < 1,
in fact β ∈ DF . If γ = β′ + a′1α1 + · · · + a′tαt were another such representation,
then 0 = β − β′ = (a1 − a′1)α1 + · · · + (at − a′t)αt. Each ai − a′i ∈ Z, while if
β−β′ = c1α1+ · · ·+ctαt, then −1 < ci < 1. Hence ci = 0 and the two representations
agree. The converse statement is clear.

ii. The proof is analogous to (i). Instead of ai = ⌊bi⌋ we take ai = ⌈bi − 1⌉, and so on.

4.5.8 Corollary. The generating functions

F (x) =
∑

α∈F
xα, F (x) =

∑

α∈F

xα

are given by

F (x) =

(∑

β∈DF

xβ

)
t∏

i=1

(1− xαi)−1 (4.24)

F (x) =


∑

β∈DF

xβ




t∏

i=1

(1− xαi)−1 (4.25)

Proof. Immediate from Lemma 4.5.7.

Note. For the algebraic-minded, we mention the algebraic significance of the sets DF and
DF . Let G be the subgroup of Zm generated by F , and let H be the subgroup of G generated
by the quasigenerators α1, . . . ,αt. Then each of DF and DF is a set of coset representatives
for H in G. Moreover, DF (respectively, DF ) consists of those coset representatives that
belong to F (respectively, F ) and are closest to the origin. It follows from general facts
about finitely-generated abelian groups that the index [G : H ] (i.e., the cardinalities of DF

and DF ) is equal to the greatest common divisor of the determinants of the t× t submatrices
of the matrix whose rows are α1, . . . ,αt.
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4.5.9 Example. Let α1 = (1, 3, 0) and α2 = (1, 0, 3). The greatest common divisor of the
determinants ∣∣∣∣

1 3
1 0

∣∣∣∣ ,
∣∣∣∣

1 0
1 3

∣∣∣∣ ,
∣∣∣∣

3 0
0 3

∣∣∣∣

is 3 = #DF = #DF . Indeed, DF = {(0, 0, 0), (1, 1, 2), (1, 2, 1)} and DF = {(1, 1, 2), (1, 2, 1),
(2, 3, 3)}. Hence

F (x) =
1 + x1x2x

2
3 + x1x

2
2x3

(1− x1x3
2)(1− x1x3

3)

F (x) =
x1x2x

2
3 + x1x

2
2x3 + x2

1x
3
2x

3
3

(1− x1x3
2)(1− x1x3

3)
.

We have mentioned above that if the simplicial monoid F ⊆ Nm has quasigenerators
α1, . . . ,αt, then any nonzero rational multiples of α1, . . . ,αt (provided they lie in Nm)
can be taken as the quasigenerators. Thus there is a unique set β1, . . . ,βt of quasigenera-
tors such that any other set has the form a1β1, . . . , atβt, where ai ∈ P. We call β1, . . . ,βt

the completely fundamental elements of F and write CF(F ) = {β1, . . . ,βt}. Now suppose
that E is the monoid of all N-solutions to equation (4.10). Define β ∈ E to be completely
fundamental if for all n ∈ P and α,α′ ∈ E for which nβ = α + α′, we have α = iβ and
α′ = (n− i)β for some i ∈ P, 0 ≤ i ≤ n. Denote the set of completely fundamental elements
of E by CF(E).

4.5.10 Proposition. Let Γ be a triangulation of C whose extreme rays coincide with those
of C, and let E =

⋃
σ∈ΓEσ be the corresponding decomposition of E into simplicial monoids

Eσ. Then the following sets are identical:

i. CF(E),

ii.
⋃
σ∈Γ CF(Eσ),

iii. {β ∈ E : β lies on an extreme ray of C, and β 6= nβ′ for some n ≥ 1, β′ ∈ E},

iv. the nonzero elements β of E of minimal support that are not of the form nβ′ for some
n > 1, β′ ∈ E.

Proof. Suppose that 0 6= β ∈ E and supp β is not minimal. Then some α ∈ E satisfies
supp α ⊂ supp β. Hence for n ∈ P sufficiently large, nβ − α ≥ 0 and so nβ − α ∈ E.
Setting α′ = nβ −α we have nβ = α + α′ but α 6= iβ for any i ∈ N. Thus β 6∈ CF(E).

Suppose that β ∈ E belongs to set (iv), and let nβ = α + α′, where n ∈ P and α,α′ ∈ E.
Since supp β is minimal, either α = 0 or supp α = supp β. In the latter case, let p/q be the
largest rational number where q ∈ P, for which β − (p/q)α ≥ 0. Then qβ − pα ∈ E and
supp (qβ−pα) ⊂ supp β. By the minimality of supp β, we conclude qβ = pα. Since β 6= β′

for n > 1 and β′ ∈ E, it follows that p = 1 and therefore β ∈ CF(E). Thus the sets (i) and
(iv) coincide.
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Now let R be an extreme ray of C, and suppose that α ∈ R, α = α1 + α2, αi ∈ C. By
definition of extreme ray, it follows that α1 = aα2, 0 ≤ a ≤ 1. (Otherwise α1 and α2 lie
on different sides of the hyperplane H supporting R.) From this observation it is easy to
deduce that the sets (i) and (iii) coincide.

Since the extreme rays of Γ and C coincide, an element β of CF(Eσ) lies on some extreme
ray R of C and hence in set (iii). Conversely, if σ ∈ Γ contains the extreme ray R of C
and if H supports R in C, then H supports R in σ. Thus R is an extreme ray of σ. Since
E =

⋃
σ∈Γ Eσ, it follows that set (iii) is contained in set (ii).

We finally come to the first of the two main theorems of this section.

4.5.11 Theorem. The generating functions E(x) and E(x) represent rational functions
of x = (x1, . . . , xm). When written in lowest terms, both these rational functions have
denominator

D(x) =
∏

β∈CF(E)

(
1− xβ

)
.

Proof. Let Γ be a triangulation of C whose extreme rays coincide with those of C (existence
guaranteed by Lemma 4.5.1). Let E =

⋃
σ∈Γ Eσ be the corresponding decomposition of

E. Since CF(Eσ) is a set of quasigenerators for the simplicial monoid Eσ, it follows from
Corollary 4.5.8 that Eσ(x) and Eσ(x) can be written as rational functions with denominator

D(x) =
∏

β∈CF(E)

(
1− xβ

)
.

By Proposition 4.5.10, CF(Eσ) ⊆ CF(E). Hence by Lemma 4.5.4 we can put the expressions
(4.17) and (4.18) for E(x) and E(x) over the common denominator D(x).

It remains to prove that D(x) is the least possible denominator. We will consider only
E(x), the proof being essentially the same (and also following from Theorem 4.5.14) for
E(x). Write E(x) = N(x)/D(x). Suppose that this fraction is not in lowest terms. Then
some factor T (x) divides both N(x) and D(x). By the unique factorization theorem for the
polynomial ring C[x1, . . . , xm], we may assume that T (x) divides 1−xγ for some γ ∈ CF(E).
Since γ 6= nγ′ for any integer n > 1 and any γ′ ∈ Nm, the polynomial 1−xγ is irreducible.
Hence we may assume that T (x) = 1− xγ. Thus we can write

F (x) =
N ′(x)∏

β∈CF(E)
β6=γ

(
1− xβ

) , (4.26)

where N ′(x) ∈ C[x1, . . . , xm]. Since for any n ∈ P and aβ ∈ N (β 6= γ), we have

nγ 6=
∑

β∈CF(E)
β6=γ

aβ · β,
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it follows that only finitely many terms of the form xnγ can appear in the expansion of
the right-hand side of equation (4.26). This contradicts the fact that each nγ ∈ E, and
completes the proof.

Our next goal is the reciprocity theorem that connects E(x) and E(x). As a preliminary
lemma we need to prove a reciprocity theorem for simplicial monoids.

4.5.12 Lemma. Let F ⊆ Nm be a simplicial monoid with quasigenerators α1, . . . ,αt, and
suppose that DF = {β1, . . . ,βs}. Then

DF = {α− β1, . . . ,α− βs}.

where α = α1 + · · ·+ αt.

Proof. Let γ = a1α1 + · · ·+ atαt ∈ F . Since 0 ≤ ai < 1 if and only if 0 < 1 − ai ≤ 1, the
proof follows from the definitions (4.22) and (4.23) of DF and DF .

Recall that if R(x) = R(x1, . . . , xm) is a rational function, then R(1/x) denotes the rational
function R(1/x1, . . . , 1/xm).

4.5.13 Lemma. Let F ⊆ Nm be a simplicial monoid of dimension t. Then

F (x) = (−1)tF (1/x).

Proof. By equation (4.24) we have

F (1/x) =

(∑

β∈DS

x−β

)
t∏

i=1

(
1− x−αi

)−1

= (−1)t

(∑

β∈DS

xα−β

)
t∏

i=1

(1− xαi)−1 ,

where α is as in Lemma 4.5.12. By Lemma 4.5.12,

∑

β∈DS

xα−β =
∑

β∈DS

xβ.

The proof follows from equation (4.25).

We now have all the necessary tools to deduce the second main theorem of this section.

4.5.14 Theorem (the reciprocity theorem for linear homogeneous diophantine equations).
Assume (as always) that the monoid E of N-solutions to equation (4.10) is positive, and let
d = dim C. Then

E(x) = (−1)dE(1/x).
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Proof. By Lemma 4.5.2 and equation (4.17) we have

E(1/x) = −
∑

σ∈Γ◦

(−1)d−dimσ+1Eσ(1/x).

Thus by Lemma 4.5.13,

E(1/x) = (−1)d
∑

σ∈Γ◦

Eσ(x).

Comparing with equation (4.18) completes the proof.

We now give some examples and applications of the above theory. First we dispose of the
equation α1 + α2 − α3 − α4 = 0 discussed in Examples 4.5.3 and 4.5.5.

4.5.15 Example. Let E ⊂ N4 be the monoid of N-solutions to α1 + α2 − α3 − α4 = 0.
According to equation (4.20), we need to compute Eabd(x), Ebcd(x), and Ebd(x). Now
CF(E) = {β1,β2,β3,β4}, where β1 = (1, 0, 1, 0), β2 = (1, 0, 0, 1), β3 = (0, 1, 0, 1), β4 =
(0, 1, 1, 0). A simple computation reveals that Dabd = Dbcd = Dbd = {(0, 0, 0, 0} (the reason
for this being that each of the sets {β1,β2,β4}, {β2,β3,β4}, and {β2,β4} can be extended
to a set of free generators of the group Z4). Hence by Lemma 4.5.12, we have Dabd =
{β1 + β2 + β4} = {(2, 1, 2, 1}, Dbcd = {β2 + β3 + β4} = {(1, 2, 1, 2)}, Dbd = {β2 + β4} =
{(1, 1, 1, 1)}. There follows

E(x) =
1

(1− x1x3)(1− x1x4)(1− x2x3)

+
1

(1− x1x4)(1− x2x4)(1− x2x3)

− 1

(1− x1x4)(1− x2x3)

=
1− x1x2x3x4

(1− x1x3)(1− x1x4)(1− x2x3)(1− x2x4)
,

E(x) =
x2

1x2x
2
3x4

(1− x1x3)(1− x1x4)(1− x2x3)

+
x1x

2
2x3x

2
4

(1− x1x4)(1− x2x4)(1− x2x3)

+
x1x2x3x4

(1− x1x4)(1− x2x3)

=
x1x2x3x4(1− x1x2x3x4)

(1− x1x3)(1− x1x4)(1− x2x3)(1− x2x4)
.

Note that indeed E(x) = −E(1/x). Note also that E(x) = x1x2x3x4E(x). This is because
α ∈ E if and only if α + (1, 1, 1, 1) ∈ E. More generally, we have the following result.

4.5.16 Corollary. Let E be the monoid of N-solutions to equation (4.10), and let γ ∈ Zm.
The following two conditions are equivalent.
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i. E(1/x) = (−1)dxγE(x),

ii. E = γ + E (i.e., α ∈ E if and only if α + γ ∈ E).

Proof. Condition (ii) is clearly equivalent to E(x) = xγE(x). The proof follows from The-
orem 4.5.14.

Note. There is another approach toward computing the generating function E(x) of Ex-
ample 4.5.15. Namely, the monoid E is generated by the vectors β1, β2, β3, β4, subject to
the single relation β1 + β3 = β2 + β4. Hence the number of representations of a vector δ in
the form

∑
aiβi, ai ∈ N, is one more than the number of representations of δ− (1, 1, 1, 1) in

this form. It follows that

E(x) =
1− x1x2x3x4

(1− x1x3)(1− x1x4)(1− x2x3)(1− x2x4)
.

The relation β1 + β3 = β2 + β4 is called a syzygy of the first kind. In general there can
be relations among the relations, called syzygies of the second kind, etc. In order to develop
a “syzygetic proof” of Theorem 4.5.11, techniques from commutative algebra are necessary
but which will not be pursued here.

Only in the simplest cases is it practical to compute E(x) by brute force, such as was done in
Example 4.5.15. However, even if we can’t compute E(x) explicitly we can still draw some
interesting conclusions, as we now discuss. First we need a preliminary result concerning
specializations of the generating function E(x).

4.5.17 Lemma. Let E be the monoid of N-solutions to equation (4.10). Let a1, . . . , am ∈ Z
such that for each r ∈ N, the number g(r) of solutions α = (α1, . . . , αm) ∈ E satisfying
L(α) := a1α1 + · · ·+ amαm = r is finite. Assume that g(r) > 0 for at least one r > 0. Let
G(λ) =

∑
r≥0 g(r)λ

r. Then:

i. G(λ) = E(λa1 , . . . , λam) ∈ C(λ), where E(x) =
∑

γ∈E xγ as usual.

ii. degG(λ) < 0.

Proof. i. We first claim that g(s) = 0 for all s < 0. Let α ∈ E satisfy L(α) = r > 0, and
suppose that there exists β ∈ E with L(β) = s < 0. Then for all t ∈ N the vectors
−tsα + trβ are distinct elements of E, contradicting g(0) < ∞. Hence the claim is
proved, from which it is immediate that G(λ) = E(λa1 , . . . , λam). Since E(x) ∈ C(x),
we have G(λ) ∈ C(λ).

ii. By equation (4.17) and Lemma 4.5.2, it suffices to show that degEσ(λ
a1 , . . . , λam) < 0

for all σ ∈ Γ◦. Consider the expression (4.24) for Eσ(x) (where F = Eσ) and let
β ∈ DS. Thus by equation (4.22), β = b1α1 + · · · + btαt, 0 ≤ bi < 1. Hence
L(β) ≤ L(α1) + · · · + L(αt) with equality if and only if t = 0 (so σ = {0}). But
{0} 6∈ Γ◦, so L(β) < L(α1) + · · · + L(αt). Since the monomial xβ evaluated at
x = (xa1 , . . . , xam) has degree L(β), it follows that each term of the numerator of
Eσ(λ

a1 , . . . , λam) has degree less than the degree L(α1)+· · ·+L(αt) of the denominator.
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Note that in the preceding proof we did not need Lemma 4.5.2 to show that G(λ) ≤ 0. We
only required this result to show that the constant term G(0) of G(λ) was “correct” (in the
sense of Proposition 4.2.2).
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4.6 Applications

4.6.1 Magic squares

We now come to our first real application of the preceding theory. Let Hn(r) be the number
of n × n N-matrices such that every row and column sums to r. We call such matrices
magic squares, though our definition is far less stringent than the classical one. For instance,
H1(r) = 1 (corresponding the the 1 × 1 matrix [r]), H2(r) = r + 1 (corresponding to[

i r − i
r − i i

]
, 0 ≤ i ≤ r), and Hn(1) = n! (corresponding to all n × n permutation

matrices). Introduce n2 variables αij for (i, j) ∈ [n] × [n]. Then an n × n N-matrix with
every row and column sum r corresponds to an N-solution to the system of equations

n∑

i=1

αij =

n∑

i=1

αki, 1 ≤ j ≤ n, 1 ≤ k ≤ n, (4.27)

with α11 +α12 + · · ·+α1n = r. It follows from Lemma 4.5.17(i) that if E denotes the monoid
of N-solutions to equation (4.27), then

E(xij)| x1j=λ
xij=1,i>1

=
∑

r≥0

Hn(r)λ
r. (4.28)

In particular, Hn(r) is a quasipolynomial in r. To proceed further, we must find the set
CF(E).

4.6.1 Lemma. The set CF(E) consists of the n! n× n permutation matrices.

Proof. Let π be a permutation matrix, and suppose that kπ = α1 + α2, where α1,α2 ∈ E.
Then α1 and α2 have at most one nonzero entry in every row and column (since supp αi ⊆
supp π) and hence are multiples of π. Thus π ∈ CF(E).

Conversely, suppose that π = (πij) ∈ E is not a permutation matrix. If π is a proper
multiple of a permutation matrix then clearly π 6∈ CF(E). Hence we may assume that some
row, say i1, has at least two nonzero entries πi1j1 and πi1,j′1. Since column j1 has the same
sum as row i1, there is another nonzero entry in column j1, say πi2j1 . Since row i2 has the
same sum as column j1, there is another nonzero entry in row i2, say πi2j2. If we continue in
this manner, we eventually must reach some entry twice. Thus we have a sequence of at least
four nonzero entries indexed by (ir, jr), (ir+1, jr), (ir+1, jr+1), . . . , (is, js−1), where is = ir (or
possibly beginning (ir+1, jr)—this is irrelevant). Let α1 (respectively, α2) be the matrix
obtained from π by adding 1 to (respectively, subtracting 1 from) the entries in positions
(ir, jr), (ir+1, jr+1), . . . , (is−1, js−1) and subtracting 1 from (respectively, adding 1 to) the
entries in positions (ir+1, jr), (ir+2, jr+1), . . . , (is, js−1). Then α1,α2 ∈ E and 2π = α1 +α2.
But neither α1 nor α2 is a multiple of π, so π 6∈ CF(E).

We now come to the main result concerning the function Hn(r).
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4.6.2 Proposition. For fixed n ∈ P the function Hn(r) is a polynomial in r of degree
(n− 1)2. Since it is a polynomial it can be evaluated at any r ∈ Z, and we have

Hn(−1) = Hn(−2) = · · · = Hn(−n+ 1) = 0

(−1)n−1Hn(−n− r) = Hn(r). (4.29)

Proof. By Lemma 4.6.1, any π = (πij) ∈ CF(E) satisfies π11 + π12 + · · ·+ π1n = 1. Hence if
we set xij = λ and xij = 1 for i ≥ 2 in 1− xπ (where xπ =

∏
i,j x

πij

ij ), then we obtain 1− λ.
Let

Fn(λ) =
∑

r≥0

Hn(r)λ
r.

Then by Theorem 4.5.11 and Lemma 4.5.17, Fn(λ) is a rational function of degree less than
0 and with denominator (1 − λ)t+1 for some t ∈ N. Thus by Corollary 4.3.1, Hn(r) is a
polynomial function of r.

Now α is an N-solution to equation (4.27) if and only if α + κ is a P-solution, where κ is
the n× n matrix of all 1’s. Thus by Corollary 4.6.16,

E(1/x) = ±
(∏

i,j

xij

)
E(x).

Substituting x1j = λ and xij = 1 if j > 1, we obtain

Fn(1/λ) = ±λnFn(λ) = ±
∑

r≥0

Hn(r)λ
r,

where Hn(r) is the number of n× n P-matrices with every row and column sum equal to r.
Hence by Proposition 4.2.3,

Hn(−n− r) = ±Hn(r)

(the sign being (−1)degHn(r)). Since Hn(1) = · · · = Hn(n − 1) = 0, we also get Hn(−1) =
· · · = Hn(n− 1) = 0.

There remains to show that degHn(r) = (n − 1)2. We will give two proofs, one analytic
and one algebraic. First we give the analytic proof. If α = (αij) is an N-matrix with
every row and column sum equal to r, then (a) 0 ≤ αij ≤ r, and (b) if αij is given for
(i, j) ∈ [n− 1]× [n− 1], then the remaining entries are uniquely determined. Hence

Hn(r) ≤ (r + 1)(n−1)2 , so degHn(r) ≤ (n− 1)2.

On the other hand, if we arbitrarily choose

(n− 2)r

(n− 1)2
≤ αij ≤

r

n− 1
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for (i, j) ∈ [n− 1]× [n− 1], then when we fill in the rest of α to have row and column sums
equal to r, every entry will be in N. Thus

Hn(r) ≥
(

r

n− 1
− (n− 2)r

(n− 1)2

)(n−1)2

=

(
r

(n− 1)!2

)(n−1)2

,

so degHn(r) ≥ (n− 1)2. Hence degHn(r) = (n− 1)2.

For the algebraic proof that degHn(r) = (n− 1)2, we compute the dimension of the cone C
of all solutions to equation (4.27) in nonnegative real numbers. The n2 equations appearing
in (4.27) are highly redundant; we need for instance only

n∑

j=1

α1j =
n∑

j=1

αij, 2 ≤ i ≤ n,

and
n∑

i=1

αi1 =
n∑

i=1

αij , 2 ≤ j ≤ n.

Thus C is defined by 2n− 2 linearly independent equations in Rn2
, so dim C = n2 − 2n+ 2.

Hence the denominator of the rational generating function
∑

r≥0Hn(r)λ
r, when reduced to

lowest terms, is (1− λ)n
2−2n+2, so degHn(r) = n2 − 2n+ 1 = (n− 1)2.

One immediate use of Proposition 4.6.2 is for the actual computation of the values Hn(r).
Since Hn(r) is a polynomial of degree (n − 1)2, we need to compute (n − 1)2 + 1 values
to determine it completely. Since Hn(−1) = · · · = Hn(−n + 1) = 0 and Hn(−n − r) =
(−1)n−1Hn(r), once we compute Hn(0), Hn(1), . . . , Hn(i) we know 2i+ n + 1 values. Hence
it suffices to take i =

(
n−1

2

)
in order to determine Hn(r). For instance, to compute H3(r) we

only need the trivially computed values H3(0) = 1 and H3(1) = 3! = 6. To compute H4(r),
we need only H4(0) = 1, H4(1) = 24, H4(2) = 282, H4(3) = 2008. Some small values of
Fn(λ) are given by:

F3(λ) =
1 + λ+ λ2

(1− λ)5

F4(λ) =
1 + 14λ+ 87λ2 + 148λ3 + 87λ4 + 14λ5 + λ6

(1− λ)10

F5(λ) =
P5(λ)

(1− λ)17
,

where

P5(λ) = 1 + 103λ+ 4306λ2 + 63110λ3

+388615λ4 + 1115068λ5 + 1575669λ6 + 1115068λ7

388615λ8 + 63110λ9 + 4306λ10 + 103λ11 + λ12.
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Note. We can apply the method discussed in the Note following Corollary 4.5.16 to the
computation of Hn(r). When n = 3 the computation can easily be done without recourse to
commutative algebra. This approach is the subject of Exercise 2.15, which we now further
explicate. Let Pw be the permutation matrix corresponding to the permutation w ∈ S3.
Any five of these matrices are linearly independent, and all six of them satisfy the unique
linear dependence (up to multiplication by a nonzero scalar)

P123 + P231 + P312 = P213 + P132 + P321. (4.30)

Let E be the monoid of all 3 × 3 N-matrices with equal row and column sums. For A =
(aij) ∈ E write

xA =
3∏

i,j=1

x
aij

ij .

In particular,

xPw =

3∏

i=1

xi,w(i).

It follows easily from equation (4.30) that

∑

A∈E
xA =

1− xP123xP231xP312

∏
w∈S3

(1− xPw)
. (4.31)

Hence

∑

r≥0

H3(r)λ
r =

1− λ3

(1− λ)6

=
1 + λ+ λ2

(1− λ)5
.

Moreover, we can write the numerator of the right-hand side of equation (4.31) as

(1− xP123) + xP123(1− xP231) + xP123xP231(1− xP312).

Each expression in parentheses cancels a factor of the denominator. It follows that we can
describe a canonical form for the elements of E. Namely, every element of E can be uniquely
written in exactly one of the forms

aP132 + bP213 + cP231 + dP312 + eP321

(a+ 1)P123 + bP132 + cP213 + dP312 + eP321

(a+ 1)P123 + bP132 + cP213 + (d+ 1)P231 + eP321,

where a, b, c, d, e ∈ N.

As a modification of Proposition 4.6.2, consider the problem of counting the number Sn(r)
of symmetric N-matrices with every row (and hence every column) sum equal to r. Again
the crucial result is the analogue of Lemma 4.6.1.
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4.6.3 Lemma. Let E be the monoid of symmetric n×n N-matrices with all row (and column)
sums equal. Then CF(E) is contained in the set of matrices of the form π or π + πt, where
π is a permutation matrix and πt is its transpose (or inverse).

Proof. Let α ∈ E. Forgetting for the moment that α is symmetric, we have by Lemma 4.6.1
that supp α contains the support of some permutation matrix π. Thus for some k ∈ P
(actually, k = 1 will do, but this is irrelevant), kα = π+ρ where ρ is an N-matrix with equal
line sums. Therefore 2kα = k(α+αt) = (π+πt)+(ρ+ρt). Hence supp(π+πt) ⊆ supp(α).
It follows that any β ∈ CF(E) satisfies jβ = π +πt for some j ∈ P and permutation matrix
π. If π = πt then we must have j = 2; otherwise j = 1 and the proof follows.

4.6.4 Proposition. For fixed n ∈ P, there exist polynomials Pn(r) and Qn(r) such that
degPn(r) =

(
n
2

)
and

Sn(r) = Pn(r) + (−1)rQn(r).

Moreover,
Sn(−1) = Sn(−2) = · · · = Sn(−n + 1) = 0,

Sn(−n− r) = (−1)(
n
2)Sn(r).

Proof. By Lemma 4.6.3, any β = (βij) ∈ CF(E) satisfies β11 + β12 + · · · + β1n = 1 or 2.
Hence if we set xij = λ and xij = 1 for i ≥ 2 in 1−xβ, then we obtain either 1−λ or 1−λ2.
Set Gn(λ) =

∑
r≥0 Sn(r)λ

r. Then by Theorem 4.5.11 and Lemma 4.5.17, Gn(x) is a rational
function of negative degree and with denominator (1− λ)s(1−λ2)t for some s, t ∈ N. Hence
by Proposition 4.4.1 (or the more general Theorem 4.1.1), Sn(r) = Pn(r) + (−1)rQn(r) for
certain polynomials Pn(r) and Qn(r). The remainder of the proof is analogous to that of
Proposition 4.6.2.

For the problem of computing degQn(r), see equation (4.50) and the sentence following.

Some small values of Gn(λ) are given by:

G1(λ) =
1

1− λ, G2(λ) =
1

(1− λ)2

G3(λ) =
1 + λ+ λ2

(1− λ)4(1 + λ)

G4(λ) =
1 + 4λ+ 10λ2 + 4λ3 + λ4

(1− λ)7(1 + λ)

G5(λ) =
V5(λ)

(1− λ)11(1 + λ)6
,

where

V5(λ) = 1 + 21λ+ 222λ2 + 1082λ3 + 3133λ4

+5722λ5 + 7013λ6 + 5722λ7 + 3133λ8

+1082λ9 + 222λ10 + 21λ11 + λ12.
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4.6.2 The Ehrhart quasipolynomial of a rational polytope

An elegant and useful application of the above theory concerns a certain function i(P, n)
associated with a convex polytope P. By definition, a convex polytope P is the convex hull
of a finite set of points in Rm. Then P is homeomorphic to a ball Bd. We write d = dimP
and call P a d-polytope. Equivalently, the affine span aff(P) of P is a d-dimensional affine
subspace of Rm. By ∂P and P◦ we denote the boundary and interior of P in the usual
topological sense (with respect to the embedding of P in its affine span). In particular ∂P
is homeomorphic to the (d− 1)-sphere Sd−1.

A point α ∈ P is a vertex of P if there exists a closed affine half-space H ⊂ Rm such that
P ∩ H = {α}. Equivalently, α ∈ P is a vertex if it does not lie in the interior of any line
segment contained in P. Let V be the set of vertices of P. Then V is finite and P = conv V ,
the convex hull of V . Moreover, if S ⊂ Rm is any set for which P = conv V , then V ⊆ S.
The (convex) polytope P is called rational if each vertex of P has rational coordinates.

If P ⊂ Rm is a rational convex polytope and n ∈ P, then define integers i(P, n) and ī(P, n)
by

i(P, n) = card(nP ∩ Zm)

ī(P, n) = card(nP◦ ∩ Zm),

where nP = {nα : α ∈ P}. Equivalently, i(P, n) (respectively, ī(P, n)) is equal to the
number of rational points in P (respectively, P◦) all of whose coordinates have least denom-
inator dividing n. We call i(P, n) (respectively, ī(P, n)) the Ehrhart quasipolynomial of P
(respectively, P◦). Of course we have to justify this terminology by showing that i(P, n) and
ī(P, n) are indeed quasipolynomials.

4.6.5 Example. a. Let Pm be the convex hull of the set {(ε1, . . . , εm) ∈ Rm : εi =
0 or 1}. Thus Pm is the unit cube in Rm. It should be geometrically obvious that
i(Pm, n) = (n+ 1)m and ī(Pm, n) = (n− 1)m.

b. Let P be the line segment joining 0 and α > 0 in R, where α ∈ Q. Clearly i(P, n) =
⌊nα⌋+1, which is a quasipolynomial of minimum quasiperiod equal to the denominator
of α when written in lowest terms.

In order to prove the fundamental result concerning the Ehrhart quasipolynomials i(P, n)
and ī(P, n), we will need the standard fact that a convex polytope P may also be defined
as a bounded intersection of finitely many half-spaces. In other words, P is the set of all
real solutions α ∈ Rm to a finite system of linear inequalities α · δ ≤ a, provided that this
solution set is bounded. (Note that the equality α ·δ = a is equivalent to the two inequalities
α · (−δ) ≤ −a and α · δ ≤ a, so we are free to describe P using inequalities and equalities.)
The polytope P is rational if and only if the inequalities can be chosen to have rational (or
integral) coefficients.

Since i(P, n) and ī(P, n) are not affected by replacing P with P + γ for γ ∈ Zm, we may
assume that all points in P have nonnegative coordinates, denoted P ≥ 0. We now associate
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with a rational convex polytope P ≥ 0 in Rm a monoid EP ⊆ Nm+1 of N-solutions to a
system of homogeneous linear inequalities. (Recall that an inequality may be converted to
an equality by introducting a slack variable.) Suppose that P is the set of solutions α to
the system

α · δi ≤ ai, 1 ≤ i ≤ s,

where δi ∈ Qm, ai ∈ Q. Introduce new variables γ = (γ1, . . . , γm) and t, and define
EP ⊆ Nm+1 to be the set of all N-solutions to the system

γ · δi ≤ ait, 1 ≤ i ≤ s.

4.6.6 Lemma. A nonzero vector (γ, t) ∈ Nm+1 belongs to EP if and only if γ/t is a rational
point of P.

Proof. Since P ≥ 0, any rational point γ/t ∈ P with γ ∈ Zm and t ∈ P satisfies γ ∈ Nm.
Hence a nonzero vector (γ, t) ∈ Nm+1 with t > 0 belongs to EP if and only if γ/t is a rational
point of P.

It remains to show that if (γ, t) ∈ EP and t = 0, then γ = 0. Because P is bounded it is
easily seen that every vector β 6= 0 in Rm satisfies β · δi > 0 for some 1 ≤ i ≤ s. Hence the
only solution γ to γ · δi ≤ 0, 1 ≤ i ≤ s, is γ = 0, and the proof follows.

Our next step is to determine CF(EP), the completely fundamental elements of EP . If
α ∈ Qm, then define den α (the denominator of α) as the least integer q ∈ P such that
qα ∈ Zm. In particular, if α ∈ Q then den α is the denominator of α when written in lowest
terms.

4.6.7 Lemma. Let P ≥ 0 be a rational convex polytope in Rm with vertex set V . Then

CF(EP) = {((den α)α, den α) : α ∈ V }.

Proof. Let (γ, t) ∈ EP , and suppose that for some k ∈ P we have

k(γ, t) = (γ1, t1) + (γ2, t2),

where (γi, ti) ∈ EP , ti 6= 0. Then

γ/t = (t1/kt)(γ1/t1) + (t2/kt)(γ2/t2),

where (t1/kt) + (t2/kt) = 1. Thus γ/t lies on the line segment joining γ1/t1 and γ2/t2. It
follows that (γ, t) ∈ CF(EP) if and only if γ/t ∈ V (so that γ1/t1 = γ2/t2 = γ/t) and
(γ, t) 6= j(γ′, t′) for (γ′, t′) ∈ Nm+1 and an integer j > 1. Thus we must have t = den(γ/t),
and the proof follows.

It is now easy to establish the two basic facts concerning i(P, n) and ī(P, n).

4.6.8 Theorem. Let P be a rational convex polytope of dimension d in Rm with vertex set
V . Let F (P, λ) = 1 +

∑
n≥1 i(P, n)λn. Then F (P, λ) is a rational function of λ of degree

less than 0, which can be written with denominator
∏

α∈V (1− λden α). (Hence in particular
i(P, n) is a quasipolynomial whose “correct” value at n = 0 is i(P, 0) = 1.) The complex
number λ = 1 is a pole of F (P, λ) of order d + 1, while no value of λ is a pole whose order
exceeds d+ 1.

567



Proof. Let the variables xi correspond to γi and y to t in the generating function EP(x, y);
that is,

EP(x, y) =
∑

(γ,t)∈EP

xγyt.

Lemma 4.6.6, together with the observation EP(0, 0) = 1, shows that

EP(1, . . . , 1, λ) = F (P, λ). (4.32)

Hence by Lemma 4.5.17, F (P, λ) is a rational function of degree less than 0. By Theo-
rem 4.5.11 and Lemma 4.6.7, the denominator of EP(x, y) is equal to

∏

α∈V

(
1− x(den α)αyden α

)
.

Thus by equation (4.32), the denominator of F (P, λ) can be taken as
∏

α∈V
(
1− λden α

)
.

Now dimEP is equal to the dimension of the vector space 〈CF(EP)〉 spanned by CF(EP) =
{((den α)α, den α) : α ∈ V }. Clearly then we also have 〈CF(EP)〉 = 〈(α, 1) : α ∈ V 〉.
The dimension of this latter space is just the maximum number of α ∈ V that are affinely
independent in Rm (i.e., such that no nontrivial linear combination with zero coefficient
sum is equal to 0). Since P spans a d-dimensional affine subspace of Rm there follows
dimEP = d+ 1. Now by Lemmas 4.5.2 and 4.5.4 we have

EP(x, y) =
∑

σ∈Γ

(−1)d+1−dim σEσ(x, y),

so
F (P, λ) =

∑

σ∈Γ

(−1)d+1−dim σEσ(1, . . . , 1, λ). (4.33)

Looking at the expression (4.24) for Eσ(x, y), we see that those terms of equation (4.33)
with dim σ = d + 1 have a positive coefficient of (λ− 1)d+1 in the Laurent expansion about
λ = 1, while all other terms have a pole of order at most d at λ = 1. Moreover, no term has
a pole of order greater than d+ 1 at any λ ∈ C. The proof follows.

4.6.9 Theorem (the reciprocity theorem for Ehrhart quasipolynomials). Since i(P, n) is a
quasipolynomial, it can be defined for all n ∈ Z. If dimP = d, then ī(P, n) = (−1)di(P,−n).

Proof. A vector (γ, t) ∈ Nm lies in EP if and only if γ/t ∈ P◦. Thus

EP(1, . . . , 1, λ) =
∑

n≥1

ī(P, n)λn.

The proof now follows from Theorem 4.5.14, Proposition 4.2.3, and the fact (shown in the
proof of the previous theorem) that dimEP = d+ 1.

Unlike Theorem 4.5.11, the denominator D(λ) =
∏

α∈V
(
1− λden α

)
of F (P, λ) is not in

general the least denominator of F (P, λ). By Theorem 4.6.8, the least denominator has a
factor (1−λ)d+1 but not (1−λ)d+2, while D(λ) has a factor (1−λ)#V . We have #V = d+1
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if and only if P is a simplex. For roots of unity ζ 6= 1, the problem of finding the highest
power of 1 − ζλ dividing the least denominator of F (P, λ) is very delicate and subtle. A
result in this direction is given by Exercise 4.66. Here we will content ourselves with one
example showing that there is no obvious solution to this problem.

4.6.10 Example. Let P be the convex 3-polytope in R3 with vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), (1, 1, 0), and (1

2
, 0, 1

2
). An examination of all the above theory will produce no

theoretical reason why F (P, λ) does not have a factor 1 + λ in its least denominator,
but such is indeed the case. It is just an “accident” that the factor 1 + λ appearing in∏

α∈V
(
1− λden α

)
= (1− λ)5(1 + λ) is eventually cancelled, yielding F (P, λ) = (1− λ)−4.

One special case of Theorems 4.6.8 and 4.6.9 deserves special mention.

4.6.11 Corollary. Let P ⊂ Rm be an integral convex d-polytope (i.e., each vertex has integer
coordinates). Then i(P, n) and ī(P, n) are polynomial functions of n of degree d, satisfying

i(P, 0) = 1, i(P, n) = (−1)dī(P, n).

Proof. By Theorem 4.6.8, the least denominator of F (P, λ) is (1− λ)d+1. Now apply Corol-
lary 4.3.1.

If P ⊂ Rm is an integral polytope, then of course we call i(P, n) and ī(P, n) the Ehrhart
polynomials of P and P◦. One interesting and unexpected application of Ehrhart polynomials
is to the problem of finding the volume of P. Somewhat more generally, we need the concept
of the relative volume of an integral d-polytope. If P ⊂ Rm is such a polytope, then the
integral points of the affine space A spanned by P is a translate (coset) of some d-dimensional
sublattice L ∼= Zd of Zm. Hence there exists an invertible affine transformation φ : A → Rd

satisfying φ(A ∩ Zm) = Zd. The image φ(P) of P under φ is an integral convex d-polytope
in Rd, so φ(P) has a positive volume (= Jordan content or Lebesgue measure) ν(P), called
the relative volume of P. It is easy to see that ν(P) is independent of the choice of φ and
hence depends on P alone. If d = m (i.e., P is an integral d-polytope in Rd), then ν(P) is
just the usual volume of P since we can take φ to be the identity map.

4.6.12 Example. Let P ⊂ R2 be the line segment joining (3, 2) to (5, 6). The affine span
A of P is the line y = 2x− 4, and A ∩ Z2 = {(x, 2x− 4) : x ∈ Z}. For the map φ : A → R
we can take φ(x, 2x − 4) = x. The image φ(P) is the interval [3, 5], which has length 2.
Hence ν(P) = 2. To visualize this geometrically, draw a picture of P as in Figure 4.6(a).
When “straightened out” P looks like Figure 4.6(b), which has length 2 when we think of
the integer points (3, 2), (4, 4), (5, 6) as consecutive integers on the real line.

4.6.13 Proposition. Let P ⊂ Rm be an integral convex d-polytope. Then the leading coef-
ficient of i(P, n) is ν(P).

Sketch of proof. The map φ : A → Rd constructed above satisfies i(P, n) = i(φ(P), n).
Hence we may assume m = d. Given n ∈ P, for each point γ ∈ P with mγ ∈ Zd construct a
d-dimensional hypercube Hγ with center γ and sides of length 1/n parallel to the coordinate
axes. These hypercubes fit together to fill P without overlap, except for a small error on
the boundary of P. There are i(P, n) hypercubes is all with a volume n−d each, and hence
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Figure 4.6: Computing relative volume

a total volume of n−di(P, n). As n→∞ it is geometrically obvious (and not hard to justify
rigorously—this is virtually the definition of the Riemann integral) that the volume of these
hypercubes will converge to the volume of P. Hence limn→∞ n−di(P, n) = ν(P), and the
proof follows.

4.6.14 Corollary. Let P ⊂ Rm be an integral convex d-polytope. If we know any d of the
numbers i(P, 1), ī(P, 1), i(P, 2), ī(P, 2), . . . , then we can determine ν(P).

Proof. Since i(P, 0) = 1 and i(P,−n) = (−1)dī(P, n), once we know d of the given numbers
we know d + 1 values of the polynomial i(P, n) of degree d. Hence we can find i(P, n) and
in particular its leading coefficient ν(P).

4.6.15 Example. a. If P ⊂ Rm is an integral convex 2-polytope, then

ν(P) =
1

2
(i(P, 1) + ī(P, 1)− 2).

This classical formula (for m = 2) is usually stated in the form

ν(P) =
1

2
(2A−B − 2),

where A = #(Z2 ∩ P) = i(P, 1) and B = #(Z2 ∩ ∂P) = i(P, 1)− ī(P, 1).

b. If P ⊂ Rm is an integral convex 3-polytope, then

ν(P) =
1

6
(i(P, 2)− 3i(P, 1) + ī(P, 1) + 3).

c. If P ∈ Rm is an integral convex d-polytope, then

ν(P) =
1

d!

(
(−1)d +

d∑

k=1

(
d

k

)
(−1)d−ki(P, k)

)
.
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Let P be an integral convex d-polytope in Rm. Because i(P, n) is an integer-valued polyno-
mial of degree d, we have from Corollary 4.3.1 that

∑

n≥0

i(P, n)xn =
A(P, x)

(1− x)d+1

for some polynomial A(P, x) ∈ Z[x] of degree at most d. We call A(P, x) the P-Eulerian
polynomial. For instance, if P is the unit d-dimensional cube then i(P, n) = (n + 1)d. It
follows from Proposition 1.4.4 that A(P, x) = Ad(x)/x, where Ad(x) is the ordinary Eulerian
polynomial. Note that by Proposition 4.6.13 and the paragraph following Corollary 4.3.1,
we have for a general integral convex d-polytope that Ad(1) = d!ν(P). Hence A(P, x) may
be regarded as a refinement of the relative volume ν(P). If A(P, x) =

∑d
i=0 h

∗
ix

i, then the
vector h∗(P) = (h∗0, . . . , h

∗
d) is called the h∗-vector or δ-vector of P. It can be shown that

the h∗-vector is nonnegative (Exercise 4.48).

Note. Corollary 4.6.14 extends without difficulty to the case where P is not necessarily
convex. We need only assume that P ⊂ Rm is an integral polyhedral d-manifold with
boundary; that is, a union of integral convex d-polytopes in Rm such that the intersection
of any two is a common face of both and such that P, regarded as a topological space, is a
manifold with boundary. (In fact, we can replace this last condition with a weaker condition
about the Euler characteristic of P and local Euler characteristic of P at any point α ∈ P,
but we will not enter into the details here.) Assume for simplicity that m = d. Then the
only change in the theory is that now i(P, 0) = χ(P), the Euler characteristic of P. Details
are left to the reader.

We conclude with two more examples.

4.6.16 Example (Propositions 4.6.2 and 4.6.4 revisited). a. Let P = Ωn ⊂ Rn2
, the

convex polytope of all n × n doubly-stochastic matrices, i.e., matrices of nonnegative
real numbers with every row and column sum equal to one. Clearly M ∈ rΩn ∩ Zn2

if
and only if M is an N-matrix with every row and column sum equal to r. Hence i(Ωn, r)
is just the function Hn(r) of Proposition 4.6.2. Lemma 4.6.1 is equivalent to the state-
ment that V (Ωn) consists of the n × n permutation matrices. Thus Ωn is an integral
polytope, and the conclusions of Proposition 4.6.2 follow also from Corollary 4.6.11.

b. Let P = Σn ∈ Rn2
, the convex polytope of all symmetric doubly-stochastic matrices.

As in (a), we have i(Σn, r) = Sn(r), where Sn(r) is the function of Proposition 4.6.4.
Lemma 4.6.3 is equivalent to the statement that

V (Σn) ⊆
{

1

2
(P + P t) : P is an n× n permutation matrix

}
.

Hence denM = 1 or 2 for all M ∈ V (Σn), and the conclusions of Proposition 4.6.4
follow also from Theorem 4.6.8.

4.6.17 Example. Let P = {t1, . . . , tp} be a finite poset. Let O = O(P ) be the convex hull
of incidence vectors of dual order ideals K of P ; that is, vectors of the form (ε1, . . . , εp),
where εi = 1 if ti ∈ K and εi = 0 otherwise. Then

O = {(a1, . . . , ap) ∈ Rp : 0 ≤ ai ≤ 1 and ai ≤ aj if ti ≤ tj}.
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Thus (b1, . . . , bp) ∈ nO ∩ Zp if and only if (i) bi ∈ Z, (ii) 0 ≤ bi ≤ n, and (iii) bi ≤ bj if
ti ≤ tj . Hence i(O(P ), n) = ΩP (n+ 1), where ΩP is the order polynomial of P . The volume
of O(P ) is e(P )/p!, the leading coefficient of ΩP (n + 1) or ΩP (n). (The volume is the same
as the relative volume since dimO(P ) = p.) The polytope O(P ) is called the order polytope
of P .
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4.7 The Transfer-matrix Method

4.7.1 Basic Principles

The transfer-matrix method, like the Principle of Inclusion-Exclusion and the Möbius inver-
sion formula, has simple theoretical underpinnings but a very wide range of applicability.
The theoretical background can be divided into two parts—combinatorial and algebraic.
First we discuss the combinatorial part. A (finite) directed graph or digraph D is a triple
(V,E, φ), where V = {v1, . . . , vp} is a set of vertices, E is a finite set of (directed) edges or
arcs, and φ is a map from E to V × V . If φ(e) = (u, v), then e is called an edge from u to v,
with initial vertex u and final vertex v. This is denoted u = init e and v = fin e. If u = v then
e is called a loop. A walk Γ in D of length n from u to v is a sequence e1e2 · · · en of n edges
such that init e1 = u, fin en = v, and fin ei = init ei+1 for 1 ≤ i < n. If also u = v, then Γ is
called a closed walk based at u. (Note that if Γ is a closed walk, then eiei+1 · · · ene1 · · · ei−1 is
in general a different closed walk. In some graph-theoretical contexts this distinction would
not be made.)

Now let w : E → R be a weight function with values in some commutative ring R. (For our
purposes here we can take R = C or a polynomial ring over C.) If Γ = e1e2 · · · en is a walk,
then the weight of Γ is defined by w(Γ) = w(e1)w(e2) · · ·w(en). Let i, j ∈ [p] and n ∈ N.
Since D is finite we can define

Aij(n) =
∑

Γ

w(Γ),

where the sum is over all walks Γ in D of length n from vi to vj . In particular, Aij(0) = δij .
If all w(e) = 1, then we are just counting the number of walks of length n from u to v.
The fundamental problem treated by the transfer matrix method is the evaluation of Aij(n).
The first step is to interpret Aij(n) as an entry in a certain matrix. Define a p × p matrix
A = (Aij) by

Aij =
∑

e

w(e),

where the sum ranges over all edges e satisfying init e = vi and fin e = vj. In other words,
Aij = Aij(1). The matrix A is called the adjacency matrix of D, with respect to the weight
function w. The eigenvalues of the adjacency matrix A play a key role in the enumeration
of walks. These eigenvalues are also called the eigenvalues of D (as a weighted digraph).

4.7.1 Theorem. Let n ∈ N. Then the (i, j)-entry of An is equal to Aij(n). (Here we define
A0 = I even if A is not invertible.)

Proof. The proof is immediate from the definition of matrix multiplication. Specifically, we
have

(An)ij =
∑

Aii1Ai1i2 · · ·Ain−1j ,

where the sum is over all sequences (i1, . . . , in−1) ∈ [p]n−1. The summand is 0 unless there is
a walk e1e2 · · · en from vi to vj with fin ek = vik (1 ≤ k < n) and init ek = vik−1

(1 < k ≤ n).
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If such a walk exists, then the summand is equal to the sum of the weights of all such walks,
and the proof follows.

The second step of the transfer-matrix method is the use of linear algebra to analyze the
behavior of the function Aij(n). Define the generating function

Fij(D, λ) =
∑

n≥0

Aij(n)λn.

4.7.2 Theorem. The generating function Fij(D, λ) is given by

Fij(D, λ) =
(−1)i+j det(I − λA : j, i)

det(I − λA)
, (4.34)

where (B : j, i) denotes the matrix obtained by removing the jth row and ith column of B.
Thus in particular Fij(D, λ) is a rational function of λ whose degree is strictly less than the
multiplicity n0 of 0 as an eigenvalue of A.

Proof. Fij(D, λ) is the (i, j)-entry of the matrix
∑

n≥0 λ
nAn = (I − λA)−1. If B is any

invertible matrix, then it is well-known from linear algebra that (B−1)ij = (−1)i+j det(B :
j, i)/ det(B), so equation (4.34) follows.

Suppose now that A is a p× p matrix. Then

det(I − λA) = 1 + α1λ+ · · ·+ αp−n0λ
p−n0,

where

(−1)p
(
αp−n0λ

n0 + · · ·+ α1λ
p−1 + λp

)

is the characteristic polynomial det(A − λI) of A. Thus as polynomials in λ, we have
deg det(I − λA) = p− n0 and deg det(I − λA : j, i) ≤ p− 1. Hence

degFij ≤ p− 1− (p− n0) < n0.

One special case of Theorem 4.7.2 is particularly elegant. Let

CD(n) =
∑

Γ

w(Γ),

where the sum is over all closed walks Γ in D of length n. For instance, CD(1) = trA, where
tr denotes trace.

4.7.3 Corollary. Let Q(λ) = det(I − λA). Then

∑

n≥1

CD(n)λn = −λQ
′(λ)

Q(λ)
.
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Proof. By Theorem 4.7.1 we have

CD(n) =

p∑

i=1

Aii(n) = trAn.

Let ω1, . . . , ωq be the nonzero eigenvalues of A. Then

trAn = ωn1 + · · ·+ ωnq , (4.35)

so ∑

n≥1

CD(n)λn =
ω1λ

1− ω1λ
+ · · ·+ ωqλ

1− ωqλ
.

When put over the denominator (1 − ω1λ) · · · (1 − ωqλ) = Q(λ), the numerator becomes
−λQ′(λ). (Alternatively, this result may be deduced directly from Theorem 4.7.2.)

4.7.2 Undirected graphs

The above theory applies also to ordinary (undirected) graphs G. If we replace each edge
e in G between vertices u and v with the two directed edges e′ from u to v and e′′ from v
to u, then walks in the resulting digraph DG of length n from u to v correspond exactly
to walks in G of length n from u to v, as defined in the Appendix. The same remarks
apply to weighted edges and walks. Hence the counting of walks in undirected graphs G
is just a special case of counting walks in digraphs. The undirected case corresponds to a
symmetric adjacency matrix A. Symmetric matrices enjoy algebraic properties that lead to
some additional formulas for the enumeration of walks.

Recall that a real symmetric p × p matrix A has p linearly independent real eigenvectors,
which can in fact be chosen to be orthonormal (i.e., orthogonal and of unit length). Let
ut1, . . . , u

t
p (where t denotes transpose, so ui is a row vector) be real orthonormal eigenvectors

for A, with corresponding eigenvalues λ1, . . . , λp. Each ui is a row vector, so uti is a column
vector. Thus the dot (or scalar or inner) product of the vectors u and v is given by uvt

(ordinary matrix multiplication). In particular, uiu
t
j = δij . Let U = (uij) be the matrix

whose columns are ut1, . . . , u
t
p, denoted U = [ut1, . . . , u

t
p]. Thus U is an orthogonal matrix and

U t = U−1 =



u1
...
up


 ,

the matrix whose rows are u1, . . . , up. Recall from linear algebra that the matrix U diago-
nalizes A, i.e.,

U−1AU = diag(λ1, . . . , λp),

where diag(λ1, . . . , λp) denotes the diagonal matrix with diagonal entries λ1, . . . , λp.
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4.7.4 Corollary. Given the graph G as above, fix the two vertices vi and vj. Let λ1, . . . , λp be
the eigenvalues of G, i.e., of the adjacency matrix A = A(G). Then there exist real numbers
c1, . . . , cp such that for all n ≥ 1, we have

(An)ij = c1λ
n
1 + · · ·+ cpλ

n
n.

In fact, if U = (urs) is a real orthogonal matrix such that U−1AU = diag(λ1, . . . , λp), then
we have

ck = uikujk.

Proof. We have [why?]
U−1AnU = diag(λn1 , . . . , λ

n
p).

Hence
An = U · diag(λn1 , . . . , λ

n
p)U

−1.

Taking the (i, j)-entry of both sides (and using U−1 = U t) gives

(An)ij =
∑

k

uikλ
n
kujk,

as desired. �

4.7.3 Simple applications

With the basic theory out of the way, let us look at some applications.

4.7.5 Example. For p, n ≥ 1 let fp(n) denote the number of sequences a1a2 · · ·an ∈ [p]n

such that ai 6= ai+1 for 1 ≤ i ≤ n, and an 6= a1. We are simply counting closed walks of
length n in the complete graph Kp; we begin at vertex a1, then walk to a2, etc. Let A be
the adjacency matrix of Kp. Then A+ I is the all 1’s matrix J and hence has rank 1. Thus
p − 1 eigenvalues of A + I are equal to 0, so p − 1 eigenvalues of A are equal to −1. To
obtain the remaining eigenvalue of A, note that trA = 0. Since the trace is the sum of the
eigenvalues, the remaining eigenvalue of A is p − 1. This may also be seen by noting that
the column vector [1, 1, . . . , 1]t is an eigenvector for A with eigenvalue p−1. We obtain from
equation (4.35) that

fp(n) = (p− 1)n + (p− 1)(−1)n. (4.36)

By symmetry, the number of closed walks of length n in Kp that start at a particular vertex,
say 1, is given by

(An)11 =
1

p
fp(n) =

1

p
((p− 1)n + (p− 1)(−1)n) .

The number of walks of length n between two unequal vertices, say 1 and 2, is given by

(An)12 =
1

p− 1
((p− 1)n − (An)11)

=
1

p
((p− 1)n − (−1)n) .
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1
3

2

Figure 4.7: A digraph illustrating the transfer-matrix method

Another way to obtain these results is to note that Jk = pk−1J for k ≥ 1. Hence

An = (J − I)n

= (−1)nI +

n∑

k=1

(−1)n−k
(
n

k

)
Jk

= (−1)nI +

(
n∑

k=1

(−1)n−k
(
n

k

)
pk−1

)
J

= (−1)nI +
1

p
((p− 1)n − (−1)n) J.

It is now easy to extract the (1, 1) and (1, 2) entries.

4.7.6 Example. Let f(n) be the number of sequences a1a2 · · ·an ∈ [3]n such that neither
11 nor 23 appear as two consecutive terms aiai+1. Let D be the digraph on V = [3] with an
edge (i, j) if j is allowed to follow i in the sequence. Thus D is given by Figure 4.7. If we set
w(e) = 1 for every edge e, then clearly f(n) =

∑3
i,j=1Aij(n−1). Setting Q(λ) = det(I−λA)

and Qij(λ) = det(I − λA : j, i), there follows from Theorem 4.7.2 that

F (λ) :=
∑

n≥0

f(n+ 1)λn =

∑3
i,j=1(−1)i+jQij(λ)

Q(λ)
.

Now

A =




0 1 1
1 1 0
1 1 1


 ,

so by direct calculation,

(1− λA)−1 =
1

1− 2λ− λ2 + λ3




(1− λ)2 λ λ(1− λ)
λ(1− λ) 1− λ− λ2 λ2

λ λ(1 + λ) 1− λ− λ2


 .

It follows that

F (λ) =
3 + λ− λ2

1− 2λ− λ2 + λ3
, (4.37)

or equivalently, ∑

n≥0

f(n)λn =
1 + λ

1− 2λ− λ2 + λ3
.
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In the present situation we do not actually have to compute (I − λA)−1 in order to write
down equation (4.37). First compute det(I − λA) = 1− 2λ− λ2 + λ3. Since this polynomial
has degree 3, it follows from Theorem 4.7.2 that degF (λ) < 0. Hence the numerator of F (λ)
is determined by the initial values f(1) = 3, f(2) = 7, f(3) = 16. This approach involves a
considerably easier computation than evaluating (I − λA)−1.

Now suppose that we impose the additional restriction on the sequence a1a2 · · ·an that
ana1 6= 11 or 23. Let g(n) be the number of such sequences. Then g(n) = CD(n), the
number of closed walks in D of length n. Hence with no further computation we obtain

∑

n≥1

g(n)λn = −λQ
′(λ)

Q(λ)
=

λ(2 + 2λ− 3λ2)

1− 2λ− λ2 + λ3
. (4.38)

It is somewhat magical that, unlike the case for f(n), we did not need to consider any initial
conditions. Note that equation (4.38) yields the value g(1) = 2. The method disallows
the sequence 1, since a1an = 11. This illustrates a common phenomenon in applying Corol-
lary 4.7.3—for small values of n (never larger than p−1) the value of CD(n) may not conform
to our combinatorial expectations.

4.7.7 Example. A factor of a word w is a subword of w consisting of consecutive letters. In
other words, v is a factor of w if we can write w = uvy for some words u and y. Let f(n) be
the number of words (i.e., sequences) a1a2 · · ·an ∈ [3]n such that there are no factors of the
form aiai+1 = 12 or aiai+1ai+2 = 213, 222, 231, or 313. At first sight it may seem as if the
transfer-matrix method is inapplicable, since an allowed value of ai depends on more than
just the previous value ai−1. A simple trick, however, circumvents this difficulty—make the
digraph D big enough to incorporate the required past history. Here we take V = [3]2, with
edges (ab, bc) if abc is allowed as three consecutive terms of the word. Thus D is given by
Figure 4.8. If we now define all weights w(e) = 1, then

f(n) =
∑

ab,cd∈V
Aab,cd(n− 2).

Thus
∑

n≥0 f(n)λn is a rational function with denominator Q(λ) = det(I−λA) for a certain
8×8 matrix A. (The vertex 12 is never used so we can take A to be 8×8 rather than 9×9.)

It is clear that the above technique applies equally well to prove the following result.

4.7.8 Proposition. Let S be a finite set, and let F be a finite set of finite words with terms
(letters) from S. Let f(n) be the number of words a1a2 · · ·an ∈ Sn such that no factor
aiai+1 · · ·ai+j appears in F . Then

∑
n≥0 f(n)λn ∈ Q(λ). The same is true if we take the

subscripts appearing in aiai+1 · · ·ai+j modulo n. In this case, if g(n) is the number of such
words, then

∑
n≥1 g(n)λn = −λQ′(λ)/Q(λ) for some Q(λ) ∈ Q[λ], provided that g(n) is

suitably interpreted for small n.

While there turn out to be special methods for actually computing the generating functions
appearing in Proposition 4.7.8 (see for example Exercise 4.40), at least the transfer-matrix
method shows transparently that the generating functions are rational.
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Figure 4.8: The digraph for Example 4.7.7

4.7.9 Example. Let f(n) be the number of permutations a1a2 · · ·an ∈ Sn such that |ai−i| =
0 or 1. Again it may first seem that the transfer-matrix method is inapplicable, since the
allowed values of ai depend on all the previous values a1, . . . , ai−1. Observe, however, that
there are really only three possible choices for ai—namely, i− 1, i, or i+ 1. Moreover, none
of these values could be used prior to ai−2, so the choices available for ai depend only on
the choices already made for ai−2 and ai−1. Thus the transfer-matrix method is applicable.
The vertex set V of the digraph D consists of those pairs (α, β) ∈ {−1, 0, 1}2 for which it is
possible to have ai − i = α and ai+1 − i − 1 = β. An edge connects (α, β) to (β, γ) if it is
possible to have ai− i = α, ai+1− i− 1 = β, ai+2− i− 2 = γ. Thus V = {v1, . . . , v7}, where
v1 = (−1,−1), v2 = (−1, 0), v3 = (−1, 1), v4 = (0, 0), v5 = (0, 1), v6 = (1,−1), v7 = (1, 1).
(Note, for instance, that (1, 0) cannot be a vertex, since if ai − i = 1 and ai+1 − i − 1 = 0,
then ai = ai+1.) Writing α1α2 for the vertex (α1, α2), and so on, it follows that a walk
(α1α2, α2α3), (α2α3, α3α4), . . . , (αn, αn+1, αn+1αn+2) of length n in D corresponds to the
permutation 1 + α1, 2 + α2, . . . , n + 2 + αn+2 of [n + 2] of the desired type, provided that
α1 6= −1 and αn+2 6= 1. Hence f(n + 2) is equal to the number of walks of length n in D
from one of the vertices v4, v5, v6, v7 to one of the vertices v1, v2, v4, v6. Thus if we set
w(e) = 1 for all edges e in D, then

f(n+ 2) =
∑

i=4,5,6,7

∑

j=1,2,4,6

(An)ij .

The adjacency matrix is given by



1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 1 1 0 0 0 0
0 0 0 0 0 0 1




and Q(λ) = det(I − λA) = (1− λ)2(1− λ− λ2). As in Example 4.7.6, we can compute the
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numerator of
∑

n≥0 f(n+2)λn using initial values, rather than finding (I−λA)−1. According
to Theorem 4.7.2, the polynomial (1 − λ2)(1 − λ − λ2)

∑
n≥0 f(n + 2)λn may have degree

as large as 6, so in order to compute
∑

n≥0 f(n)λn we need the initial values f(0), f(1),
. . . , f(6). If this work is actually carried out then we obtain

∑

n≥0

f(n)λn =
1

1− λ− λ2
, (4.39)

so that f(n) is just the Fibonacci number Fn+1 (!).

Similarly we may ask for the number g(n) of permutations a1a2 · · ·an ∈ Sn such that
ai − i ≡ 0,±1 (modn). This condition has the effect of allowing a1 = n and an = 1, so
that g(n) is just the number of closed walks (α1α2, α2α3), (α2α3, α3α4), . . . , (αn−1αn, αnα1),
(αnα1, α1α2) in D of length n. Hence

∑

n≥1

g(n)λn = −λQ
′(λ)

Q(λ)
=

2λ

1− λ +
λ(1 + 2λ)

1− λ− λ2
. (4.40)

Hence g(n) = 2 + Ln, where Ln is the nth Lucas number. Note the “spurious” values
g(1) = 3, g(2) = 5.

It is clear that the preceding arguments generalize to the following result

4.7.10 Proposition. a. Let S be a finite subset of Z. Let fS(n) be the number of permu-
tations a1a2 · · ·an ∈ Sn such that ai − i ∈ S for i ∈ [n]. Then

∑
n≥0 fS(n)λn ∈ Q(λ).

b. Let gS(n) be the number of permutations a1a2 · · ·an ∈ Sn such that for all i ∈ [n] there
is a j ∈ S for which ai− i ≡ j (modn). If we suitably interpret gS(n) for small n, then
there is a polynomial Q(λ) ∈ Q[λ] for which

∑
n≥1 g(n)λn = −λQ′(λ)/Q(λ).

4.7.4 Factorization in Free Monoids

The reader is undoubtedly wondering, in view of the simplicity of the generating functions
(4.39) and (4.40), whether there is a simpler way of obtaining them. Surely it seems un-
necessary to find the characteristic polynomial of a 7× 7 matrix A when the final answer is
1/(1 − λ − λ2). The five eigenvalues 0,0,0,1,1 do not seem relevant to the problem. Actu-
ally, the vertices v5 and v7 are not needed for computing f(n), but we are still left with a
5× 5 matrix. This brings us to an important digresson—the method of factoring words in a
free monoid. While this method has limited application, when it does work it is extremely
elegant and simple.

Let A be a finite set, called the alphabet. A word is a finite sequence a1a2 · · ·an of elements
of A, including the empty word 1. The set of all words in the alphabet A is denoted A∗.
Define the product of two words u = a1 · · ·an and v = b1 · · · bm to be their juxtaposition,

uv = a1 · · ·anb1 · · · bm.
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In particular, 1u = u1 = u for all u ∈ A∗. The set A∗, together with the product just
defined, is called the free monoid on the set A. (A monoid is a set with an associative
binary operation and an identity element.) If u = a1 · · ·an ∈ A∗ with ai ∈ A, then define
the length of u to be ℓ(u) = n. In particular, ℓ(1) = 0. If C is any subset of A∗, then define

Cn = {u ∈ C : ℓ(u) = n}.

Let B be a subset of A∗ (possibly infinite), and let B∗ be the submonoid of A∗ generated
by B; that is, B∗ consists of all words u1u2 · · ·un where ui ∈ B. We say that B∗ is freely
generated by B if every word u ∈ B∗ can be written uniquely as u1u2 · · ·un where ui ∈ B.
For instance, if A = {a, b} and B = {a, ab, aab} then B∗ is not freely generated by B (since
a · ab = aab), but is freely generated by {a, ab}. On the other hand, if B = {a, ab, ba} then
B∗ is not freely generated by any subset of A∗ (since ab · a = a · ba).
Now suppose that we have a weight function w : A → R (where R is a commutative ring),
and define w(u) = w(a1) · · ·w(an) if u = a1 · · ·an, ai ∈ A. In particular, w(1) = 1. For any
subset C of A∗ define the generating function

C(λ) =
∑

u∈C
w(u)λℓ(u) ∈ R[[λ]].

Thus the coefficient f(n) of λn in C(λ) is
∑

u∈Cn
w(u). The following proposition is almost

self-evident.

4.7.11 Proposition. Let B be a subset of A∗ that freely generates B∗. Then

B∗(λ) = (1− B(λ))−1.

Proof. We have

f(n) =
∑

i1+···+ik=n

k∏

j=1


∑

u∈Bij

w(u)


 .

Multiplying by λn and summing over all n ∈ N yields the result.

As we shall soon see, even the very straightforward Proposition 4.7.11 has interesting appli-
cations. But first we seek a result, in the context of the preceding proposition, analogous to
Corollary 4.7.3. It turns out that we need the monoid B∗ to satisfy a property stronger than
being freely generated by B. This property depends on the way in which B∗ is embedded in
A∗, and not just on the abstract structure of B∗. If B∗ is freely generated by B, then we say
that B∗ is very pure if the following condition, called unique circular factorization (UCF),
holds:

(UCF) Let u = a1a2 · · ·an ∈ B∗, where B∗ is freely generated by B, with ai ∈ A. Thus for
unique integers 0 < n1 < n2 < · · · < nk < n we have

a1a2 · · ·an1 ∈ B, an1+1an1+2 · · ·an2 ∈ B

an2+1an2+2 · · ·an3 ∈ B, . . . , ank+1ank+2 · · ·an ∈ B.
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Figure 4.9: Unique circular factorization
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Figure 4.10: Failure of unique circular factorization

Suppose that for some i ∈ [n] we have aiai+1 · · ·ana1 · · ·ai−1 ∈ B∗. Then i = nj +1 for some
0 ≤ j ≤ k, where we set n0 = 0.

In other words, if the letters of u are written in clockwise order around a circle, as in
Figure 4.9(a), with the initial letter u1 not specified, then there is a unique way of inserting
bars between pairs of consecutive letters such that the letter between any two consecutive
bars, read clockwise, form a word in B. See Figure 4.9(b).

For example, if A = {a} and B = {aa}, then B∗ fails to have UCF since the word u = aa can
be “circularly factored” in the two ways shown in Figure 4.10. Similarly, if A = {a, b, c} and
B = {abc, ca, b} then B∗ again fails to have UCF since the word u = abc can be circularly
factored as shown in Figure 4.11.

Though not necessary for what follows, for the sake of completeness we state the following
characterization of very pure monoids. The proof is left to the reader.

4.7.12 Proposition. Suppose that B∗ is freely generated by B ⊂ A∗. The following two
conditions are equivalent:

b

c

a

b

c

a

Figure 4.11: Another failure of unique circular factorization
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i. B∗ is very pure.

ii. If u ∈ A∗, v ∈ A∗, uv ∈ B∗ and vu ∈ B∗, then u ∈ B∗ and v ∈ B∗.

Suppose now that B∗ has UCF. We always compute the length of a word with respect to
the alphabet A, so B∗

n = B∗ ∩A∗
n. If aj ∈ A and u = a1a2 · · ·an ∈ B∗

n, then an A∗-conjugate
(or cyclic shift) of u is a word aiai+1 · · ·ana1 · · ·ai−1 ∈ A∗

n. Define g(n) =
∑
w(u), where

the sum is over all distinct A∗-conjugates u of words in B∗
n. For instance, if A = {a, b} and

B = {a, ab}, then

g(4) = w(aaaa) + w(aaab) + w(aaba) + w(abaa) + w(baaa) + w(abab) + w(baba)

= w(a)4 + 4w(a)3w(b) + 2w(1)2w(b)2.

Define the generating function

B̃(λ) =
∑

n≥1

g(n)λn.

4.7.13 Proposition. Assume B∗ is very pure. Then

B̃(λ) =
λ d
dλ
B(λ)

1− B(λ)
= λB∗(λ)

d

dλ
B(λ) =

λ d
dλ
B∗(λ)

B∗(λ)
.

Equivalently,

B∗(λ) = exp
∑

n≥1

g(n)
λn

n
. (4.41)

First proof. Fix a word v ∈ B. Let gv(n) be the sum of the weights of distinct A∗-conjugates
aiai+1 · · ·ai−1 of words in B∗

n such that for some j ≤ i and k ≥ i, we have ajaj+1 · · ·ak = v.
Note that j and k are unique by UCF. If ℓ(v) = m, then clearly gv(n) = mw(v)f(n −m),
where B∗(λ) =

∑
n≥0 f(n)λn. Hence

g(n) =
∑

v∈B
gv(n) =

n∑

m=0

mb(m)f(n−m),

where b(n) =
∑

v∈Bn
w(v). We therefore get

B̃(λ) =

(∑

m≥0

mb(m)λm

)
B∗(λ) = λB∗(λ)

d

dλ
B(λ).

Our second proof of Proposition 4.7.13 is based on a purely combinatorial lemma involving
the relationship between “ordinary” words in B∗ and their A∗-conjugates. This is the general
result mentioned after the first proof of Lemma 2.3.4.

4.7.14 Lemma. Assume that B∗ is very pure. Let fk(n) =
∑

uw(u), where u ranges over
all words in B∗

n that are a product of k words in B. Let gk(n) =
∑

v w(v), where v ranges
over all distinct A∗-conjugates of the above words u. Then nfk(n) = kgk(n).
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Proof. Let A be the set of ordered pairs (u, i), where u ∈ B∗
n and u is the product of k words

in B, and where i ∈ [n]. Let B be the set of ordered pairs (v, j), where v has the meaning
above, and where j ∈ [k]. Clearly #A = nfk(n) and #B = kgk(n). Define a map ψ : A→ B
as follows: suppose that u = a1a2 · · ·an = b1b2 · · · bk ∈ B∗

n, where ai ∈ A, bi ∈ B. Then let

ψ(u, i) = (aiai+1 · · ·ai−1, j),

where ai is one of the letters of bj . It is easily seen that ψ is a bijection that preserves the
weight of the first component, and the proof follows.

Second proof of Proposition 4.7.13. By the preceding lemma,

nf(n) =
∑

k

nfk(n) =
∑

k

kgk(n). (4.42)

The right-hand side of equation (4.42) counts all pairs (v, bi), where v is an A∗-conjugate
of some word b1b2 · · · bk ∈ B∗

n, with bj ∈ B. Thus v may be written uniquely in the form
b′jbj+1 · · · bkb1b2 · · · bj−1b

′′
j . where b′′j b

′
j = bj . Associate with v the ordered pair (bibi+1 · · · bi−1,

b′jbj+1 · · · bi−1b
′′
j ). This sets up a bijection between the pairs (v, bi) above and pairs (y1, y2),

where y1 ∈ B∗, y2 is an A∗-conjugate of an element of B∗, and ℓ(y1) + ℓ(y2) = n. Hence

∑

k

kgk(n) =

n∑

i=0

f(i)g(n− i).

By equation (4.42), this says λ d
dλ
B∗(λ) = B∗(λ)B̃(λ).

Note that when B is finite, B̃(λ) and B∗(λ) are rational. See Exercise 4.8 for further infor-
mation on this situation.

4.7.15 Example. Let us take another look at Lemma 2.3.4 from the viewpoint of Lemma 4.7.14.
LetA = {0, 1} and B = {0, 10}. AnA∗-conjugate of an element of B∗

m that is also the product
of m− k words in B corresponds to choosing k points, no two consecutive, from a collection
of m points arranged in a circle. (The position of the 1’s corresponds to the selected points.)
Since there are

(
m−k
k

)
permutations of m− 2k 0’s and k 10’s, we have fm−k(m) =

(
m−k
k

)
. By

Lemma 4.7.14, gm−k(m) = m
m−k

(
m−k
k

)
, which is Lemma 2.3.4. Note that f1(1) = 0, not 1,

since a single point on a circle is regarded as being adjacent to itself.

4.7.16 Example. Recall from Exercise 1.35(c) that the Fibonacci number Fn+1 counts the
number of compositions of n into parts equal to 1 or 2. We may represent such a composition
as a row of “bricks” of length 1 or 2; for example, the composition 1+1+2+1+2 is represented
by Figure 4.12(a). An ordered pair (α, β) of such compositions of n is therefore represented
by two rows of bricks, such as in Figure 4.12(b). The vertical line segments passing from
top to bottom serve to “factor” these bricks into blocks of smaller length. For example,
Figure 4.13 shows the factorization of Figure 4.12(b). The prime blocks (i.e., those that
cannot be factored any further) are given by Figure 4.14. Since there are F 2

n+1 pairs (α, β),
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(a) (b)

Figure 4.12: A representation of the composition 11212 and the pair (11212, 21211)

Figure 4.13: The prime blocks corresponding to Figure 4.12(b)

we conclude that

∑

n≥0

F 2
n+1λ

n =

(
1− λ− λ2 − 2λ2

1− λ

)−1

=
1− λ

(1 + λ)(1− 3λ+ λ2)
.

In principle the same type of reasoning would yield combinatorial evaluations of the gener-
ating functions

∑
n≥0 F

k
n+1λ

n, where k ∈ P. However, it is no longer easy to enumerate the
prime blocks when k ≥ 3. On the contrary, we can reverse the above reasoning to enumerate
the prime blocks. For instance, it can be deduced from the explicit formula (4.5) for Fn (or
otherwise) that

y :=
∑

n≥0

F 3
n+1λ

n =
1− 2λ− λ2

1− 3λ− 6λ2 + 3λ3 + λ4
.

Let g3(n) be the number of prime blocks of length n and height 3, and set z =
∑

n≥1 g3(n)λn.
Since y = 1/(1− z) we get

z = 1− 1

y

=
λ+ 5λ2 − 3λ3 − λ4

1− 2λ− λ2

= λ+ 7λ2 + 12λ3 + 30λ4 + 72λ5 + 174λ6 + · · · .

Can the recurrence g3(n+ 2) = 2g3(n+ 1) + g3(n) for n ≥ 3 be proved combinatorially?

As a variant of the one-row case above, where the generating function is F (λ) = 1/(1−λ−λ2),
suppose that we have n points on a circle that we cover by bricks of length 1 or 2, where a
brick of length i covers i consecutive points. Let g(n) be the number of such coverings. If
we choose the second point in clockwise order of each brick of length two, then we obtain a
bijection with subsets of the n points, no two consecutive. Hence by Exercise 1.40, we have
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together with interchanging
n  >            Length 2   +1    3,

             the two rows
together with interchanging
            the two rows

n>           Length 2       2,

Figure 4.14: The prime blocks

g(n) = Ln. On the other hand, by Proposition 4.7.13 we have

∑

n≥0

g(n)λn =
λ d
dλ

(λ+ λ2)

1− λ− λ2
=

λ+ 2λ2

1− λ− λ2
.

Moreover, we can build a circular covering by bricks one unit at a time (say in clockwise
order) by adding at each step either a brick of length one, the first half of a brick of length
two, or the second half of a brick of length two. The rules for specifying what steps can
follow what other steps are encoded by the transfer matrix

A =




1 1 0
0 0 1
1 1 0


 .

The eigenvalues of A are 0 and (1±
√

5)/2, so by equation (4.35) we get

g(n) =

(
1 +
√

5

2

)n

+

(
1−
√

5

2

)n

.

We therefore have a theoretical explanation of why Ln has the simple form αn + βn.

We now derive equations (4.39) and (4.40) using Propositions 4.7.11 and 4.7.13.

4.7.17 Example. Represent a permutation a1a2 · · ·an ∈ Sn by drawing n vertices v1, . . . , vn
in a line and connecting vi to vai

by a directed edge. For instance, the permutation 31542
is represented by Figure 4.15. A permutation a1a2 · · ·an ∈ Sn for which |ai − i| = 0 or 1
is then represented as a sequence of the “prime” graphs G and H of Figure 4.16. In other
words, if we set A = {a, b, c} amd G = a, H = bc, then the function f(n) of Example 4.7.9
is just the number of words in B∗

n, where B = {a, bc}. Setting w(a) = w(b) = w(c) = 1, we
therefore have by Proposition 4.7.11 that

∑

n≥0

f(n)λn = B∗(λ) = (1− B(λ))−1,

where B(λ) = w(a)λℓ(a)+w(bc)λℓ(bc) = λ+λ2. Consider now the number g(n) of permutations
a1a2 · · ·an ∈ Sn such that ai = 0,±1 (modn). Every cyclic shift of a word in B∗ gives rise
to one such permutation. There are exactly two other such permutations (n ≥ 3), namely,
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Figure 4.15: A representation of the permutation 31542

Figure 4.16: The prime graphs for permutations satisfying |ai − i| = 0, 1

234 · · ·n1 and n123 · · · (n− 1), as shown in Figure 4.17. Hence,

∑

n≥1

g(n)λn =
λ d
dλ
B(λ)

1− B(λ)
+
∑

n≥1

2λn

=
λ(1 + 2λ)

1− λ− λ2
+

2λ

1− λ,

provided of course we suitably interpret g(1) and g(2).

4.7.18 Example. Let f(n) be the number of permutations a1a2 · · ·an ∈ Sn with ai−i = ±1
or ±2. To use the transfer-matrix method would be quite unwieldy, but the factorization
method is very elegant. A permutation enumerated by f(n) is represented by a sequence of
graphs of the types shown in Figure 4.18. Hence B(λ) = λ2 + λ4 + 2

∑
m≥3 λ

m and

∑

n≥0

f(n)λn = B∗(λ) =

(
1− λ2 − λ4 − 2λ3

1− λ

)−1

=
1− λ

1− λ− λ2 − λ3 − λ4 + λ5
.

Suppose now that we also allow ai − i = 0. Thus let f ∗(n) be the number of permutations
a1a2 · · ·an ∈ Sn with ai − i = ±1,±2, or 0. There are exactly two new elements of B

and

Figure 4.17: Graphs of two exceptional permutations
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ii.

i.

iii.

iv.

(Two orientations of the edges, and with 2    > 4 vertices)m

(Two orientations of the edges, and with 2   + 1 > 3 vertices)m

Figure 4.18: The prime graphs for permutations satisfying ai − i = ±1 or ±2

v.

vi.

Figure 4.19: Two additional prime graphs

introduced by this change, shown in Figure 4.19. Hence

∑

n≥0

f ∗(n)λn =

(
1− λ− λ2 − λ3 − λ4 − 2λ3

1− λ

)−1

=
1− λ

1− 2λ− 3λ3 + λ5
.

4.7.19 Example (k-discordant permutations). In Section 2.3 we discussed the problem of
counting the number fk(n) of k-discordant permutations a1a2 · · ·an ∈ Sn, that is, ai − i 6≡
0, 1, . . . , k − 1 (modn). We saw that

fk(n) =
n∑

i=0

(−1)iri(n)(n− i)!,

where ri(n) is the number of ways of placing i nonattacking rooks on the board

Bn = {(r, s) ∈ [n]× [n] : s− r ≡ 0, 1, . . . , k − 1 (modn)}.

The evaluation of ri(n), or equivalently the rook polynomial Rn(x) =
∑

i ri(n)xi, can be
accomplished by methods analogous to those used to determine gS(n) in Proposition 4.7.10.
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The transfer-matrix method will tell us the general form of the generating function Fk(x, y) =∑
n≥1Rn(x)y

n (suitably interpreting Rn(x) for n < k), while the factorization method will
enable us to compute Fk(x, y) easily when k is small.

First we consider the transfer-matrix approach. We begin with the first row of Bn and either
place a rook in a square of this row or leave the row empty. We then proceed to the second
row, either placing a rook that doesn’t attack a previously placed rook or leaving the row
empty. If we continue in this manner, then the options available to us at the ith row depend
on the configuration of the rooks on the previous k − 1 rows. Hence, for the vertices of our
digraph Dk, we take all possible placements of nonattacking rooks on the first k − 1 rows of
Bn (where n ≥ 2k−1 to allow all possibilities). An edge connects two placements P1 and P2

if the last k − 2 rows are identical to the first k − 2 rows of P2, and if we overlap P1 and P2

in this way (yielding a configuration with k rows), then the rooks remain nonattacking. For
instance, D2 is given by Figure 4.20. There is no arrow from v2 to v3 since their overlap would
be shown in Figure 4.21(a), which is not allowed. Similarly D3 has 14 vertices, a typical edge
being shown in Figure 4.21(b). If we overlap these two vertices, then we obtain the legal
configuration shown in Figure 4.21(c). Define the weight w(P1, P2) of an edge (P1, P2) to be
xν(P2), where ν(P2) is the number of rooks in the last row of P2. It is then clear that a closed
walk Γ of length n and weight xν(Γ) in Dk corresponds to a placement of ν(Γ) nonattacking
rooks on Bn (provided n ≥ k). Hence if Ak is the adjacency matrix of Dk with respect to
the weight function w, then

Rn(x) = trAnk , n ≥ k.

Thus if we set Qk(λ) = det(I − λAk) ∈ C[x, λ], then by Corollary 4.7.3 we conclude

∑

n≥1

Rn(x)λ
n = −λQ

′
k(λ)

Qk(λ)
. (4.43)

For instance, when k = 2 (the “problème des ménages”) then with the vertex labeling given
by Figure 4.20, we read off from Figure 4.20 that

Ak =




1 x x
1 x 0
1 x x


 ,

so that

Q2(λ) = det




1− λ −λx −λx
−λ 1− λx 0
−λ −λx 1− λx




= 1− λ(1 + 2x) + λ2x2.

Therefore ∑

n≥1

Rn(x)λ
n =

λ(1 + 2x)− 2λ2x2

1− λ(1 + 2x) + λ2x2
(k = 2).
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Figure 4.20: The nonattacking rook digraph D2
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Figure 4.21: Nonedges and edges in the digraphs D2 and D3

The above technique, applied to the case k = 3, would involve the determinant of a 14× 14
matrix. The factorization method yields a much easier derivation. Regard a placement P of
nonattacking rooks on Bn (or on any subset of [n]× [n]) as a digraph with vertices 1, 2, . . . , n,
and with a directed edge from i to j if a rook is placed in row i and column j. For instance,
the placement shown in Figure 4.22(a) corresponds to the digraph shown in Figure 4.22(b).
In the case k = 2, every such digraph is a sequence of the primes shown in Figure 4.23(a),
together with the additional digraph shown in Figure 4.23(b). If we weight such a digraph
with q edges by xq, then by Proposition 4.7.13 there follows

∑

n≥1

Rn(x)λ
n =

λ d
dλ
B(λ)

1− B(λ)
+
∑

n≥2

xnλn, (4.44)

where

B(λ) = xλ+
∑

i≥1

xi−1λi

= xλ+
λ

1− xλ.

This yields the same answer as before, except that we get the correct value R1(x) = 1 + x
rather than the spurious value R1(x) = 1 + 2x. To obtain R1(x) = 1 + 2x, we would have
to replace

∑
n≥2 x

nλn in equation (4.44) by
∑

n≥1 x
nλn. Thus in effect we are counting the

first digraph of Figure 4.23(a) twice, once as a prime and once as an exception.

When the above method is applied to the case k = 3, it first appears extremely difficult
because of the complicated set of prime digraphs that can arise, such as in Figure 4.24. A
simple trick eliminates this problem; namely, instead of using the board Bn = {(j, j), (j, j +
1), (j, j+ 2) (modn)}, use instead B′

n = {(j, j− 1), (j, j), (j, j+1) (modn)}. Clearly Bn and
B′
n are isomorphic and therefore have the same rook polynomials, but surprisingly B′

n has a
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Figure 4.22: A rook placement and its corresponding digraph

> 1 verticesi 

... ...

> 2 verticesn

Figure 4.23: Prime digraphs and an exception for k = 2

much simpler set of prime placements than Bn. The primes for B′
n are given by Figure 4.25.

In addition, there are exactly two exceptional placements, shown in Figure 4.26. Hence

∑

n≥1

Rn(x)λ
n =

λ d
dλ
B(λ)

1− B(λ)
+ 2

∑

n≥3

xnλn, (4.45)

where

B(λ) = λ+ xλ+ x2λ2 + 2
∑

i≥2

xi−1λi

= λ+ xλ+ x2λ2 +
2xλ2

1− xλ.

If we replace
∑

n≥3 x
nλn in equation (4.45) by

∑
n≥1 x

nλn (causing R1(x) and R2(x) to be
spurious), then after simplification there results

∑

n≥1

Rn(x)λ
n =

λ(1 + 2x+ 2xλ− 3x3λ2)

1− (1 + 2x)λ− xλ2 + x3λ3
+

xλ

1− xλ.

4.7.5 Some sums over compositions

Here we will give a more complex use of the transfer-matrix than treated previously.

Figure 4.24: A complicated prime digraph
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> 1 verticesi 

...

> 2 verticesi

...

Figure 4.25: The prime digraphs for B′
n

... ...

Figure 4.26: The two exceptions for B′
n

A polyomino is a finite union P of unit squares in the plane such that the vertices of the
squares have integer coordinates, and P is connected and has no finite cut set. Two poly-
nominoes will be considered equivalent if there is a translation that transforms one into the
other (reflections and rotations not allowed). A polyomino P is horizontally convex (or HC)
if each “row” of P is an unbroken line of squares, that is, if L is any line segment parallel
to the x-axis with its two endpoints in P , then L ⊂ P . Let f(n) be the number of HC-
polyominoes with n squares. Thus f(1) = 1, f(2) = 2, f(3) = 6, as shown by Figure 4.27.
Suppose that we build up an HC-polyomino one row at a time, starting at the bottom. If
the ith row has r squares, then we can add an (i+ 1)-st row of s squares in r + s− 1 ways.
It follows that

f(n) =
∑

(n1 + n2 − 1)(n2 + n3 − 1) · · · (ns + ns+1 − 1), (4.46)

where the sum is over all 2n−1 compositions n1 +n2 + · · ·+ns+1 of n (where the composition
with s = 0 contributes 1 to the sum). This formula suggests studying the more general sum,
over all compositions n1 + n2 + · · ·+ ns+k−1 = n with s ≥ 0, given by

f(n) =
∑

(f1(n1) + f2(n2) + · · ·+ fk(nk))(f1(n2) + f2(n3) + · · ·+ fk(nk+1))

· · · (f1(ns) + f2(ns+1) + · · ·+ fk(ns+k−1)), (4.47)

where f1, . . . , fk are arbitrary functions from P → C (or to any commutative ring R). We
make the convention that the term in equation (4.47) with s = 0 is 1. The situation (4.46)
corresponds to f1(m) = m+ α and f2(m) = m− α− 1 for any fixed α ∈ C.

Figure 4.27: Horizontally convex polyominoes with at most three squares
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11 10 01 11 10 10 00 00

Figure 4.28: A path in the digraph D3

It is surprising that the transfer-matrix method can be used to write down an explicit expres-
sion for the generating function F (x) =

∑
n≥1 f(n)xn in terms of the generating functions

Fi(x) =
∑

n≥1 fi(n)xn. We may compute a typical term of the product appearing in equa-
tion (4.47) by first choosing a term fi1(ni1) from the first factor φ1 = f1(n1) + f2(n2) + · · ·+
fk(nk), then a term fi2(ni2+1) from the second factor φ2 = f1(n2) + f2(n3) + · · ·+ fk(nk+1),
and so on, and finally multiplying these terms together.

Alternatively we could have obtained this term by first deciding from which factors we choose
a term of the form fi1(n1), then deciding from which factors we choose a term of the form
fi2(n2), and so on. Once we’ve chosen the terms fij(nij ), the possible choices for fij+1

(nij+1
)

are determined by which of the k−1 factors φj−k+2, φj−k+3, . . . , φj we have already chosen a
term from. Hence define a digraphDk with vertex set V = {(ε1, . . . , εk−1) : εi = 0 or 1}. The
vertex (ε1, . . . , εk−1) indicates that we have already chosen a term from φj−k+l if and only if
εl−1 = 1. Draw an edge from (ε1, . . . , εk−1) to (ε′1, . . . , ε

′
k−1) if it is possible to choose terms of

the form fij (nj+1) consistent with (ε1, . . . , εk−1), and then of the form fij+1
(nj+1) consistent

with (ε′1, . . . , ε
′
k−1) and our choice of fij (nj)’s. Specifically, this means that (ε′1, . . . , ε

′
k−1) can

be obtained from (ε2, . . . , εk−1, 0) by changing some 0’s to 1’s. It now follows that a path in
Dk of length s + k − 1 that starts at (1, 1, . . . , 1) (corresponding to the fact that when we
first pick out terms of the form fi1(ni1), we cannot choose from nonexistent factors prior to
φ1) and ends at (0, 0, . . . , 0) (since we cannot have chosen from nonexistent factors following
φs) corresponds to a term in the expansion of φ1φ2 · · ·φs. For instance, if k = 3 then the
term f3(n3)f1(n2)f1(n3)f2(n5)f3(n7) in the expansion of φ1φ2 · · ·φ5 corresponds to the path
shown in Figure 4.28. The first edge in the path corresponds to choosing no term fi1(n1),
the second edge to choosing f1(n2), the third to f1(n3)f3(n3), the fourth to no term fi4(n4),
the fifth to f2(n5), the sixth to no term fi6(n6), and the seventh to f3(n7).

We now have to consider the problem of weighting the edges of Dk. For definiteness, consider
for example the edge e from v = (0, 0, 1, 0, 0, 1) to v′ = (1, 1, 0, 1, 1, 0). This means that we
have chosen a factor f3(m)f6(m)f7(m), as illustrated schematically by

7 6 5 4 3 2 1
v 0 0 1 0 0 1
v′ 1 1 0 1 1 0

If 2 ≤ i ≤ k−1, then we include fi(m) when column i is given by 0
1
. We include fk(m) if the

first entry of v is 0, and we include f1(m) if the last entry of v′ is 1. We are free to choose m
to be any positive integer. Thus if we weight the above edge e with the generating function

∑

m≥1

f3(m)f6(m)f7(m)xm = F3 ∗ F6 ∗ F7,
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where ∗ denotes the Hadamard product, then the total weight of a path from (1, 1, . . . , 1) to
(0, 0, . . . , 0) is precisely the contribution of this path to the generating function F (x). Note
that in the case of an edge e where we pick no terms of the fi(m) for fixed m, then we are
contributing a factor of 1, so that the edge must be weighted by

∑
m≥1 x

m = x/(1−x), which
we will denote as J(x). Since there is no need to keep track of the length of the path, it
follows from Theorem 4.7.2 that F (x) = Fij(Dk, 1), where i is the index of (1, 1, . . . , 1) and
j of (0, 0, . . . , 0). (In general, it is meaningless to set λ = 1 in Fij(D, λ), but here the weight
function has been chosen so that Fij(Dk, 1) is a well-defined formal power series. Of course
if we wanted to do so, we could consider the more refined generating function Fij(Dk, λ),
which keeps track of the number of parts of each composition.)

We can sum up our conclusions in the following result.

4.7.20 Proposition. Let Ak be the following 2k−1 × 2k−1 matrix whose rows and columns
are indexed by V = {0, 1}k−1. If v = (ε1, . . . , εk−1), v

′ = (ε′1, . . . , ε
′
k−1) ∈ V , then define the

(v, v′)-entry of Ak as follows:

(Ak)vv′ =





0, if for some 1 ≤ i ≤ k − 2, we have εi+1 = 1 and ε′i = 0

Fi1 ∗ · · · ∗ Fir , otherwise, where {i1, . . . , ir} = {i : εk−i+1 = 0 and
ε′k−i = 1}, and where we set εk = 0, ε′0 = 1, and an
empty Hadamard product equal to J = x/(1− x).

Let Bk be the matrix obtained by deleting row (0, 0, . . . , 0) and column (1, 1, . . . , 1) from
I − Ak (where I is the identity matrix) and multiplying by the appropriate sign. Then the
generating function F (x) =

∑
n≥1 f(n)xn, as defined by equation (4.47), is given by

F (x) =
detBk

det(I −Ak)
.

In particular, if each Fi(x) is rational then F (x) is rational by Proposition 4.2.5.

Here are some small examples. When k = 2, we have D2 given by Figure 4.29, while

A2 =

[
F2 F1 ∗ F2

J F1

]
, B2 = [J ],

F (x) =
J

(1− F1)(1− F2)− J · (F1 ∗ F2)
. (4.48)

In the original problem of enumerating HC-polyominoes,

F1(x) =
∑

n≥1

nxn = x/(1− x)2

F2(x) =
∑

n≥1

(n− 1)xn = x2/(1− x)2

(F1 ∗ F2)(x) =
∑

n≥1

n(n− 1)xn = 2x2/(1− x)3,
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F1

00

10

J

Figure 4.29: The digraph D2

yielding

F (x) =
x/(1− x)(

1− x

(1− x)2

)(
1− x2

(1− x)2

)
− x

1− x ·
2x2

(1− x)3

=
x(1− x)3

1− 5x+ 7x2 − 4x3
.

It is by no means obvious that f(n) satisfies the recurrence

f(n+ 3) = 5f(n+ 2)− 7f(n+ 1) + 4f(n), n ≥ 2, (4.49)

and it is difficult to give a combinatorial proof.

Finally let us consider the case k = 3. Figure 4.30 shows D3, while

A3 =




F3 F1 ∗ F3 F2 ∗ F3 F1 ∗ F2 ∗ F3

0 0 F3 F1 ∗ F3

J F1 F2 F1 ∗ F2

0 0 J F1




B3 =




0 1 −F3

−J −F1 1− F2

0 0 J




F (x) =
J2

det(I − A3)
,

595



11

00 01

10

F  * F  * F

F  * F

F  * FJ

F  * F
FF

F

F

J

F  * F

F

2

2

2

2 3

3

2

3
1

1

1 1
1

1
1

3

Figure 4.30: The digraph D3

where

det(I −A3) = (1− F1)(1− F3)(1− F2 − F1F3)

−J(1− F1)(F2 ∗ F3 + F3(F1 ∗ F3))

−J(1− F3)(F1 ∗ F2 + F1(F1 ∗ F3))

−J2((F1 ∗ F3)
2 + F1 ∗ F2 ∗ F3).
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NOTES

The basic theory of rational generating functions in one variable belongs to the calculus of
finite differences. Charles Jordan [4.25] ascribes the origin of this calculus to Brook Taylor
in 1717 but states that the real founder was James Stirling in 1730. The first treatise on
the subject was written by Euler in 1755, where the notation ∆ for the difference operator
was introduced. It would probably be an arduous task to ascertain the precise origin of
the various parts of Theorem 4.1.1, Corollary 4.2.1, Proposition 4.2.2, Proposition 4.2.5,
Corollary 4.3.1, and Proposition 4.4.1. The reader interested in this question may wish to
consult the extensive bibliography in Nörlund [4.39].

The reciprocity result Proposition 4.2.3 seems to be of more recent vintage. It is attributed
by E. Ehrhart [4.12, p. 21] to T. Popoviciu [4.44, p. 8]. However, Proposition 4.2.3 is actually
a special case of a result of G. Pólya [4.42, §44, p. 609]. It is also a special case of the less
general (than Pólya) result of R. M. Robinson [4.47, §3].

The operation of Hadamard product was introduced by J. Hadamard [4.16], who proved
Proposition 4.2.5. This result fails for power series in more than one variable, as observed
by A. Hurwitz [4.20].

Methods for dealing with quasipolynomials such as pk(n) in Example 4.4.2 were developed by
Herschel, Cayley, Sylvester, Glaisher, Bell, and others. For references, see [2.3, §2.6]. Some
interesting properties of quasipolynomials are given by I. G. Macdonald as an appendix to
the monograph [4.14, pp. 145–155] of Ehrhart and by N. Li and S. Chen [4.30, §3].

The theory of linear homogeneous diophantine equations developed in Section 4.5 was inves-
tigated in the weaker context of Ehrhart quasipolynomials by E. Ehrhart beginning around
1955. (It is remarkable that Ehrhart did most of his work as a teacher in a lycée and did
not receive his Ph.D. until 1966 at the age of 59 or 60.) Ehrhart’s work is collected together
in his monograph [4.14], which contains detailed references. Some aspects of Ehrhart’s work
were corrected, streamlined, and expanded by I. G. Macdonald [4.34][4.35].

The extension of Ehrhart’s work to linear homogeneous diophantine equations appeared
in Stanley [4.52] and is further developed in [4.54][4.57]. In these references commutative
algebra is used as a fundamental tool. The approach given here in Section 4.5 is more in line
with Ehrhart’s original work. Reference [4.57] is primarily concerned with inhomogeneous
equations and the extension of Theorem 4.5.14 (reciprocity) to this case. A more elementary
but less comprehensive approach to inhomogeneous equations and reciprocity is given in
[4.53, §§8–11]; see also Exercises 4.34 and 35. For further background information on convex
polytopes, see Ziegler [3.97].

Other approaches toward “Ehrhart theory” appear in M. Beck and F. Sottile [4.5], P. Mc-
Mullen [4.37], S. V. Sam [4.48], S. V. Sam and K. M. Woods [4.49] and R. Stanley [4.56]. A
nice exposition of Ehrhart theory and related topics at the undergraduate level is given by
M. Beck and S. Robins [4.4].

The triangulation defined in the proof of Lemma 4.5.1 is called the pulling triangulation
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and has several other descriptions. See for instance Beck-Robins [4.4, Appendix] and De
Loera-Rambau-Santos Leal [4.11, §4.3.2]. Our description of the pulling triangulation follows
Stanley [4.56, Lemma 1.1].

The study of “magic squares” (as defined in Section 4.6) was initiated by MacMahon
[4.36][1.55, §404–419]. In the first of these two references MacMahon writes down in Art. 129
a multivariate generating function for all 3 × 3 magic squares, though he doesn’t explictly
write down a formula for H3(r). In the second reference he does give the formula in §407.
For MacMahon’s proof, see Exercise 2.15. Proposition 4.6.2 was conjectured by H. Anand,
V. C. Dumir, and H. Gupta [4.1] and was first proved by Stanley [4.52]. Ehrhart [4.13]
also gave a proof of Proposition 4.6.2 using his methods. An elementary proof (essentially
an application of the transfer-matrix method) of part of Proposition 4.6.2 was given by J.
H. Spencer [4.51]. The fundamental Lemma 4.6.1 on which Proposition 4.6.2 rests is due
to Garrett Birkhoff [4.6]. It was rediscovered by J. von Neumann [4.61] and is sometimes
called the “Birkhoff-von Neumann theorem.” The proof given here is that of von Neumann.
There are several papers earlier than that of Birkhoff that are equivalent to or easily imply
the Birkhoff-von Neumann theorem. Perhaps the first such results are two nearly identical
papers, one in German and one in Hungarian, by D. König [4.27][4.28].

L. Carlitz [4.8, p. 782] conjectured that Proposition 4.6.4 is valid for some constant Qn(r)
and proved this fact for n ≤ 4. The value of G5(r) given after Proposition 4.6.4 shows that
Carlitz’s conjecture is false for n = 5. Proposition 4.6.4 itself was first proved by Stanley
[4.52], and a refinement appears in [4.54, Thm. 5.5]. In particular, it was shown that

degQn(r) ≤
{ (

n−1
2

)
− 1, n odd

(
n−2

2

)
− 1, n even,

(4.50)

and it was conjectured that equality holds for all n. This conjecture was proved by R.-Q. Jia,
[4.23][4.24]. The values of Fn(λ) (given for n ≤ 5 preceding Lemma 4.6.3) were computed for
n ≤ 6 by D. M. Jackson and G. H. J. van Rees [4.21]. They were extended to n ≤ 9 by M.
Beck and D. Pixton [4.3]. The values for Gn(λ) for n ≤ 5 appearing after Proposition 4.6.4
were first given in [4.54].

Example 4.6.15(a) is a classical result of G. A. Pick [4.41]. The extension (b) to three
dimensions is due to J. E. Reeve [4.45], while the general case (c) (or even more general
Corollary 4.6.14) is due to Macdonald [4.34].

The connection between the powers An of the adjacency matrix A of a digraph D and the
counting of walks in D (Theorem 4.7.1) is part of the folklore of graph theory. An extensive
account of the adjacency matrix A is given by D. M. Cvetković, M. Doob, and H. Sachs
[4.10]; see §1.8 and §7.5 in particular for its use in counting walks. We should also mention
that the transfer-matrix method is essentially the same as the theory of finite Markov chains
in probability theory. For a noncommutative version of the transfer-matrix method, see §6.5
of volume 2 of the present text.

The transfer-matrix method has been used with great success by physicists in the study of
phase transitions in statistical mechanics. See for instance Baxter [4.2] and Percus [4.40] for
further information.
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For more information on Example 4.7.7, see Exercise 4.40 and the references given there. For
work related to Examples 4.7.9, 4.7.17, and 4.7.18, see Lagrange [4.29] and Metropolis, Stein,
and Stein [4.38], and the references given there. These approaches are less combinatorial than
ours.

Our discussion of factorization in free monoids merely scratched the surface of an extensive
subject. An excellent overall reference is Lothaire [4.31], from which we have taken most of
our terminology and notation. Sequels appear in [4.32][4.33]. Other interesting references
include Cohn [4.9] and Fliess [4.15]. The application to summing

∑
F 2
n+1λ

n (Example 4.7.16)
appears in Shapiro [4.50]. For more information on powers of Fibonacci numbers, see Jarden
and Motzkin [4.22], Hathaway and Brown [4.17], Riordan [4.46], Carlitz [4.7], and Horadam
[4.19].

Two topics with close connections to factorization in monoids are the combinatorial theory of
orthogonal polynomials and the theory of heaps. Basic references are two papers [4.59][4.60]
of X. G. Viennot.

The first published statement for the generating function F (x) for HC-polyominos appearing
before equation (4.49) seems to be due to H. N. V. Temperley [4.58]. Earlier the recurrence
(4.49) was found by Pólya in 1938 but was unpublished by him until 1969 [4.43]. A proof of
the more general equation (4.48) is given by Klarner [4.26], while an algebraic version of this
proof appears in Stanley [4.55, Ex. 4.2]. The elegant transfer-matrix approach given here
was suggested by I. M. Gessel. The combinatorial proof of equation (4.49) alluded to after
(4.49) is due to D. R. Hickerson [4.18].
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EXERCISES FOR CHAPTER 4

1. [2+] Let F (x) and G(x) be rational functions. Is it true that F (x) + G(x) is also
rational?

2. (a) [3–] Suppose that f(x) =
∑

n≥0 anx
n is a rational function with integer coefficients

an. Show that we can write f(x) = P (x)/Q(x), where P and Q are relatively
prime (over Q[x]) polynomials with integer coefficients such that Q(0) = 1.

(b) [3–] Suppose that f(x1, . . . , xn) is a formal power series (over C, say) that rep-
resents a rational function P (x1, . . . , xn)/Q(x1, . . . , xn), where P and Q are rela-
tively prime polynomials. Show that Q(0, 0, . . . , 0) 6= 0.

3. [3–] Suppose that f(x) ∈ Z[[x]], f(0) 6= 0, and f ′(x)/f(x) ∈ Z[[x]]. Prove or disprove
that f(x)/f(0) ∈ Z[[x]]. (While this problem has nothing to do with rational functions,
it is similar in flavor to Exercise 4.2(a).)

4. (a) [3+] Suppose that
∑

n≥0 anx
n ∈ C[[x]] is rational. Define χ : C→ Z by

χ(a) =

{
1, a 6= 0
0, a = 0.

Show that
∑

n≥0 χ(an)x
n is also rational (and hence its coefficients are eventually

periodic, by Exercise 4.46(b)).

(b) [2+] Show that the corresponding result is false for C[[x, y]]; that is, we can have∑
amnx

myn rational but
∑
χ(amn)x

myn nonrational.

(c) [3+] Let
∑

n≥0 anx
n and

∑
n≥0 bnx

n be rational functions with integer coefficients
an and bn. Suppose that cn := an/bn is an integer for all n (so in particular
bn 6= 0). Show that

∑
n≥0 cnx

n is also rational.

5. [5] Given polynomials P (x), Q(x) ∈ Q[x] for which P (x)/Q(x) =
∑

n≥0 anx
n, is it

decidable whether there is some n for which an = 0?

6. [3–] Given a sequence a = (a0, a1, . . . ) with entries in a field, the Hankel determinant
Hn(a) is defined by

Hn(a) = det(ai+j)0≤i,j≤n.

Show that the power series
∑

n≥0 anx
n is ratonal if and only if Hn(a) = 0 for all

sufficiently large n. Equivalently, the infinite matrix (ai+j) has finite rank.

7. (a) [2+] Let bi ∈ P for i ≥ 1. Use Exercise 4.4 to show that the formal power series

F (x) =
∑

i≥1

(1− x2i−1)−bi

is not a rational function of x.
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(b) [2+] Find ai ∈ P (i ≥ 1) for which the formal power series

F (x) =
∑

i≥1

(1− xi)−ai

is a rational function of x.

8. [2] Let F (x) =
∑

n≥0 an+1x
n ∈ C[[x]]. Show that the following conditions are equiva-

lent.

i. There exists a rational power series G(x) for which F (x) = G′(x)/G(x).

ii. The series exp
∑

n≥1

an
xn

n
is rational.

iii. There exist nonzero complex numbers (not necessarily distinct) α1, . . . , αj, β1, . . . , βk
such that for all n ≥ 1,

an =
∑

αni −
∑

βni .

9. [2+] If F (x) is a rational function over Q such that F (n) ∈ Z for all n ∈ Z, does it
follow that F (x) is a polynomial?

10. [3] Let f(z) be an analytic function in an open set containing the disk |z| ≤ 1. Suppose
that the only singularities of f(z) inside or on the boundary of this disk are poles, and
that the Taylor series

∑
anz

n of f(z) at z = 0 has integer coefficients an. Show that
f(z) is a rational function.

11. Solve the following recurrences.

(a) [2–] a0 = 2, a1 = 3, an = 3an−1 − 2an−2 for n ≥ 2.

(b) [2–] a0 = 0, a1 = 2, an = 4an−1 − 4an−2 for n ≥ 2.

(c) [2] a0 = 5, a1 = 12, an = 4an−1 − 3an−2 − 2n−2 for n ≥ 2.

(d) [2+] ai = i for 0 ≤ i ≤ 7, and

an = an−1 − an−3 + an−4 − an−5 + an−7 − an−8, n ≥ 8.

Rather than an explicit formula for an, give a simple description. For instance,
compute a105 without using the recurrence.

12. [2] Consider the decimal expansion

1

9899
= 0.00010203050813213455 · · · .

Why do the Fibonacci numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . appear?

13. [2+] Is it true that for every n ∈ P there is a Fibonacci number Fk, k ≥ 1, divisible by
n?
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14. [3] Let a, b ∈ P, and define f(0) = a, f(1) = b, and f(n + 1) = f(n) + f(n − 1) for
n ≥ 1. Show that we can choose a, b so that f(n) is composite for all n ∈ N.

15. [2+] Let I be an order ideal of the poset Nm, and define f(n) = #{(a1, . . . , am)} ∈ I :
a1 + · · · + am = n}. In other words, f(n) is the number of t ∈ I whose rank in Nm

in n. Show that there is a polynomial P (n) such that f(n) = P (n) for n sufficiently
large. For instance, if I is finite then P (n) = 0.

16. [2+] How many partitions λ = (λ1, λ2, . . . ) of n satisfy λ3 = 2? Give an exact formula.

17. (a) [2+]* Let Ak be the set of all permutations w = a1a2 · · ·a2n of the multiset
Mn = {12, 22, . . . , n2} with the following property: if r < s < t and ar = at,
then as > ar. For instance, A2 = {1122, 1221, 2211}. Let Bn be the set of all
permutations w = a1a2 · · ·a2n of Mn with the following property: if r < s and
ar = as < at, then r < t. For instance, B2 = {1122, 1212, 1221}. Let

Fn(x) =
∑

w∈An

xdes(w),

Gn(x) =
∑

w∈Bn

xdes(w),

where des(w) denotes the number of descents of w. Show that Fn(x) = Gn(x).

(b) [2+] Show that
∑

k≥0

S(n+ k, k)xk =
xFn(x)

(1− x)2n+1
,

where S(n+ k, k) denotes a Stirling number of the second kind.

18. [2+]* Define polynomials pn(u) by

∑

n≥0

pn(u)x
n =

1

1− ux− x2
.

Use combinatorial reasoning to find
∑

n≥0 pn(u)pn(v)x
n.

19. [2]* Let a, b ∈ R. Define a function f : N→ R by f(0) = a, f(1) = b, and

f(n+ 2) = |f(n+ 1)| − f(n), n ≥ 0.

Find F (x) =
∑

n≥0 f(n)xn. (If you prefer not to look at a large number of cases, then
assume that 0 ≤ a ≤ b.)

20. [2+]* Show that the function f(n) of Example 4.1.3, i.e., the number of words w of
length n in the alphabet {N,E,W} such that EW and WE are not factors of w, is
equal to the number of nonzero coefficients of the polynomial

Pn(x) =

n∏

j=1

(1 + xj − xj+1).

Show moreover that all these coefficients are equal to ±1. (For a related result, see
Exercise 1.35(k).)
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21. [3] A tournament T on [n] is a directed graph on the vertex set [n] with no loops and
with exactly one edge between any two distinct vertices. The outdegree of a vertex i
is the number of edges i → j. The degree sequence of T is the set of outdegrees of
its vertices, arranged in decreasing order. (Hence the degree sequence is a partition
of
(
n
2

)
.) A degree sequence is unique if all tournaments with that degree sequence are

isomorphic. Let f(n) be the number of unique degree sequences of tournaments on [n].
Set f(0) = 1. Show that

∑

n≥0

f(n)xn =
1

1− x− x3 − x4 − x5

= 1 + x+ x2 + 2x3 + 4x4 + 7x5 + 11x6 + 18x7 + 31x8 + · · · .

22. [2+]* Let α ∈ C, and define for n ∈ N,

fα(n) =
n∑

k=0

(
n− k
k

)
αk.

Show that Fα(x) :=
∑

n≥0 fα(n)xn is a rational function, and compute it explicitly.
Find an explicit formula for fα(n). What value of α requires special treatment?

23. (a) [2+]* Let S be a finite sequence of positive integers, say 2224211. We can describe
this sequence as “three two’s, one four, one two, two one’s,” yielding the derived
sequence 32141221 = δ(S). Suppose we start with S = 1 and form successive
derived sequences δ(S) = 11, δ2(S) = 21, δ3(S) = 1211, δ4(S) = 111221, δ5(S) =
312211, etc. Show that for all n ≥ 0, no term of δn(S) exceeds 3.

(b) [3] Beginning with S = 1 as in (a), let f(n) be the length (number of terms) of
δn(S), and set

F (x) =
∑

n≥0

f(n)xn = 1 + 2x+ 2x2 + 4x3 + 6x4 + 6x5 + · · · .

Show that F (x) is a rational function which, when reduced to lowest terms,
has denominator D(x) of degree 92. Moreover, the largest reciprocal zero λ =
1.30357726903 · · · (which controls the rate of growth of f(n)) of D(x) is an alge-
braic integer of degree 71.

(c) [3] Compute the (integer) polynomial x71−x69−2x68−· · · of degree 71 for which
λ is a zero.

(d) [3+] What if we start with a sequence other than S = 1?

24. (a) [3] Let f(x) = f(x1, . . . , xk) ∈ Fq[x1, . . . , xk]. Show that for each α ∈ Fq − {0}
there exist Z-matrices A0, A1, . . . , Aq−1 of some square size, and there exist a row
vector u and a column vector v with the following property. For any integer n ≥ 1
let a0 + a1q + · · ·+ arq

r be its base q expansion, so 0 ≤ ai ≤ q − 1. Let Nα(n) be
the number of coefficients of f(x)n equal to α. Then

Nα(n) = uAa0Aa1 · · ·Aarv.
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(b) [2–]* Deduce that the generating function

∑

n≥1

Nα(1 + q + q2 + · · ·+ qn−1)xn

is rational.

25. Let k = 1 in Exercise 4.24. Without loss of generality we may assume f(0) 6= 0.

(a) [3–] Show that there exist periodic functions u(m) and v(m) depending on f(x)
and α, such that

Nα(q
m − 1) = u(m)qm + v(m) (4.51)

for all m sufficiently large.

(b) [3–] Let d be the least positive integer for which f(x) divides xq
m(qd−1) − 1 for

some m ≥ 0. In other words, d is the degree of the extension field of Fq obtained
by adjoining all zeros of f(x). Then the functions u(m) and v(m) have period d
(and possibly smaller periods, necessarily dividing d).

(c) [2+] Let µ be the largest multiplicity of any irreducible factor (or any zero) of
f(x). Then equation (4.51) holds for all m ≥ ⌈logq µ⌉. In particular, if f(x) is
squarefree, then (4.51) holds for all m ≥ 0.

(d) If f(x) is primitive over Fq (i.e., f(x) is irreducible, and any zero ζ of f(x) is
a generator of the multiplicative group of the field Fq(ζ)), then d = deg f and
u(m) = dqd−1/(qd − 1) (a constant).

(e) [3–] Write [a0, a1, . . . , ak−1] for the periodic function p(m) on Z satisfying p(m) =
ai for m ≡ i (mod k). Verify the following examples:

• If f(x) = 1 + x ∈ Fnq where q = 2k, then N1(m) = 2m.

• If f(x) = 1 + x ∈ Fnq where q is odd, then

N1(m) =
1

2
(qm + 1), N−1(m) =

1

2
(qm − 1).

• If f(x) = 1 + x + x2 + x3 + x4 ∈ F2[x], then f(x) is irreducible but not
primitive, and

N1(m) =
1

5
[8, 12]2m +

1

5
[−3, 1, 3,−1].

• If g(x) = 1 + x2 + x5 ∈ F2[x] then g(x) is primitive and

N1(m) =
80

31
2m +

1

31
[−49,−67,−41, 11,−9].

• If g(x) = 1 + x+ x3 + x4 + x5 ∈ F2[x] then g(x) is primitive and

N1(m) =
80

31
2m +

1

31
[−49,−5,−41, 11,−9].

Note the closeness to the previous item.
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• Let g(x) = (1 + x2 + x5)3 ∈ F2[x]. Then

N1(m) =





1, m = 0
9, m = 1

168
31

2m + 1
31

[297,−243,−393,−507,−177], m ≥ 2.

• Let g(x) = 2 + x+ x2 ∈ F3[x]. Then g(x) is primitive and

N1(m) =
3

4
3m +

1

2
− 1

4
(−1)m

N2(m) =
3

4
3m − 1

2
− 1

4
(−1)m.

• Let g(x) = 2 + x2 + x3 ∈ F3[x]. Then g(x) is irreducible but not primitive,
and

N1(m) =
18

13
3m +

1

13
[−5, 11, 7]

N2(m) =
9

13
3m − 1

13
[9, 14, 3].

26. (a) [3+] Let p be a prime, and let gn(p) denote the number of nonisomorphic groups
of order pn. Write (i, j) for the greatest common divisor of i and j. Show that

g1(p) = 1

g2(p) = 2

g3(p) = 5

g4(p) = 15, p ≥ 3

g5(p) = 2p+ 61 + 2(p− 1, 3) + (p− 1, 4), p ≥ 5

g6(p) = 3p2 + 39p+ 344 + 24(p− 1, 3) + 11(p− 1, 4) + 2(p− 1, 5), p ≥ 5

g7(p) = 3p5 + 12p4 + 44p3 + 170p2 + 707p+ 2455

(4p2 + 44p+ 291)(p− 1, 3) + (p2 + 19p+ 135)(p− 1, 4)

+(3p+ 31)(p− 1, 5) + 4(p− 1, 7) + 5(p− 1, 8) + (p− 1, 9), p ≥ 7.

(b) [3+] Show that for fixed p,

gn(p) = p
2
27
n3+O(n5/2).

(c) [5] Show that for fixed n, gn(p) is a quasipolynomial in p for p sufficiently large.

27. Let X be a finite alphabet, and let X∗ denote the free monoid generated by X. Let
M be the quotient monoid of X∗ corresponding to relations w1 = w′

1, . . . , wk = w′
k,

where wi and w′
i have the same length, 1 ≤ i ≤ k. Thus if w ∈M , then we can speak

unambiguously of the length of w as the length of any word in X∗ representing w. Let
f(n) be the number of distinct words in M of length n, and let F (x) =

∑
n≥0 f(n)xn.

(a) [3–] If k = 1, then show that F (x) is rational.
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(b) [3] Show that in general F (x) need not be rational.

(c) [3–] Linearly order the q letters in X, and let M be defined by the relations
acb = cab and bac = bca for a < b < c, and aba = baa and bab = bba for a < b.
Compute F (x).

(d) [3–] Show that if M is commutative then F (x) is rational.

28. (a) [2+] Let A and B be n× n matrices (over C, say). Given α = (α1, . . . , αr),β =
(β1, . . . , βr) ∈ Nr, define

t(α,β) = trAα1Bβ1Aα2Bβ2 · · ·AαrBβr .

Show that Tr(x,y) :=
∑

α,β∈Nr t(α,β)xαyβ is rational. What is the denominator
of Tr(x,y)?

(b) Compute T1(x, y) for A =

[
0 −1
1 0

]
and B =

[
1 1
−1 0

]
.

29. [2+] Let A,B,C be square matrices of the same size over some field K. True or false:
for fixed i, j, the generating function

∑

n≥1

(AnBnCn)ij x
n

is rational.

30. [2+] Let E be the monoid of N-solutions to the equation x + y − 2z − w = 0. Write
the generating function

E(x) = E(x, y, z, w) =
∑

α∈E
xα

explicitly in the form

E(x) =
P (x)∏

β∈CF(E)(1− xβ)
.

That is, determine explicitly the elements of CF(E) and the polynomial P (x).

31. [3–] Let f(n) denote the number of distinct Z/nZ-solutions α to equation (4.10) modulo
n. For example, if Φ = [1 −1] then f(n) = n, the number of solutions (α, β) ∈ (Z/nZ)2

to α− β = 0 (modn). Show that f(n) is a quasipolynomial for n sufficiently large (so
in particular

∑
n≥1 f(n)xn is rational).

32. [2+] Let E∗ be the set of all N-solutions to equation (4.10) in distinct integers α1, . . . , αm.
Show that the generating function E∗(x) :=

∑
α∈E∗ xα is rational.

33. (a) [2]* Let Φ = Φn be the 1× (n + 1) matrix

Φ = [1, 2, 3, . . . , n,−n].

Show that the number of generators of the monoid EΦ, as a function of n, is
superpolynomial, i.e., grows faster than any polynomial in n.
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(b) [2]* Compute the generating function

EΦ3(x) =
∑

α∈EΦ3

xα.

Express your answer as a rational function reduced to lowest terms.

34. [3] Let Φα = 0 be a system of r linear equations in m unknowns x1, . . . , xm over Z,
as in equation (4.10). Let S be a subset of [m]. Suppose that Φα = 0 has a solution
(γ1, . . . , γm) ∈ Zm satisfying γi > 0 if i ∈ S and γi < 0 if i 6∈ S. Let

FS(x) =
∑

α

xα

FS(x) =
∑

β

xβ,

where α runs over all N-solutions to Φα = 0 satisfying αi > 0 if i ∈ S, while β runs
over all N-solutions to Φβ = 0 satisfying βi > 0 if i 6∈ S. Show that

FS(x) = (−1)corank(Φ)FS(1/x).

35. (a) [2+] Let Φ be an r × m Z-matrix, and fix β ∈ Zr. Let Eβ be the set of all
N-solutions α to Φα = β. Show that the generating function Eβ(x) represents
a rational function of x = (x1, . . . , xm). Show also that either Eβ(x) = 0 (i.e.,
Eβ = ∅) or else Eβ(x) has the same least denominator D(x) as E(x) (as given
in Theorem 4.5.11).

(b) [2+] Assume for the remainder of this exercise that the monoid E is positive
and that Eβ 6= ∅. We say that the pair (Φ,β) has the R-property if Eβ(x) =
(−1)dEβ(1/x), where Eβ is the set of P-solutions to Φα = −β, and where d is as
in Theorem 4.5.14. (Thus Theorem 4.5.14 asserts that (Φ, 0) has the R-property.)
For what integers β does the pair ([1 1 − 1 − 1], β) have the R-property?

(c) [3] Suppose that there exists a vector α ∈ Qm satisfying −1 < αi ≤ 0 (1 ≤ i ≤ m)
and Φα = β. Show that (Φ,β) has the R-property.

(d) [3+] Find a “reasonable” necessary and sufficient condition for (Φ,β) to have the
R-property.

36. (a) [2] Let σ be a d-dimensional simplex in Rm with integer vertices v0, . . . , vd. We
say that σ is primitive (or unimodular) if v1− v0, v2− v0, . . . , vd− v0 form part of
a Z-basis for Zm. This condition is equivalent to the statement that the relative
volume of σ is equal to 1/d!, the smallest possible relative volume of an integer
d-simplex. Now let P be an integer polytope in Rm. We say that a triangulation
Γ of P is primitive (or unimodular) if every simplex σ ∈ Γ is primitive. (We are
allowed to have vertices of Γ that are not vertices of P. For instance, the line
segment [0, 2] has a primitive triangulation whose facets are [0, 1] and [1, 2].) Does
every integral polytope have a primitive triangulation?
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(b) [2+] Let Γ be a primitive triangulation of the integer polytope P. Suppose that
Γ has fi i-dimensional faces. Express the Ehrhart polynomial i(P, n) in terms of
the fi’s.

37. (a) [2+]* Let P be an integer polytope in Rd with vertex set V . Suppose that P is
defined by inequalities αi · x ≤ βi. Given v ∈ V , let the support cone at v be the
cone Cv defined by αi · x ≤ βi whenever αi · v = βi. Let

Fv(x) =
∑

γ∈Cv∩Zd

xγ .

Show that each Fv(x) is a rational Laurent series.

(b) [3] Show that ∑

v∈V
Fv(x) =

∑

γ∈P∩Zd

xγ ,

where the sum on the left is interpreted as a sum of rational functions (not formal
Laurent series).

Example. Let P be the interval [2, 5] ⊂ R. Then

F2(x) =
∑

n≥2

xn =
x2

1− x

F5(x) =
∑

n≤5

xn =
x5

1− x−1
,

and

x2

1− x +
x5

1− x−1
= x2 + x3 + x4 + x5

=
∑

n∈[2,5]

xn.

As another example, let P have vertices (0, 0), (0, 2), (2, 0), and (4, 2). Then C(2,0)
is defined by y ≥ 0 and x− y ≤ 2, and

F(2,0)(x, y) =
∑

n≥0

∑

m≤n+2

xmyn

=
∑

n≥0

yn · xn+2

1− x−1

=
x2

1− x−1
· 1

1− xy

= − x3

(1− x)(1− xy) .
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38. [3] Let Φ be an r×mmatrix whose entries are polynomials in n with integer coefficients.
Let β be a column vector of length m whose entries are also polynomials in n with
integer coefficients. Suppose that for each fixed n ∈ P the number f(n) of solutions
α ∈ Nm to Φα = β is finite. Show that f(n) is a quasipolynomial for n sufficiently
large.

39. (a) [4–] Let P1, . . . , Pk ∈ Fq[x1, . . . , xm]. Let f(n) be the number of solutions α =
(α1, . . . , αm) ∈ Fmqn to the equations P1(α) = · · · = Pk(α) = 0. Show that
F (x) := exp

∑
n≥1 f(n)xn/n is rational. (See Exercise 4.8 for equivalent forms of

this condition.)

(b) [4–] Let P1, . . . , Pk ∈ Z[x1, . . . , xm], and let p be a prime. Let f(n) be the number
of solutions α = (α1, . . . , αm) ∈ (Z/pnZ)m to the congruences

P1(α) ≡ · · · ≡ Pk(α) ≡ 0 (mod pn).

Show that F (x) :=
∑

n≥1 f(n)xn is rational.

40. (a) [2+] Let X = {x1, . . . , xn} be an alphabet with n letters, and let C〈〈X〉〉 be the
noncommutative power series ring (over C) in the variables X; that is, C〈〈X〉〉
consists of all formal expressions

∑
w∈X∗ αww, where αw ∈ C and X∗ is the free

monoid generated by X. Multiplication in C〈〈X〉〉 is defined in the obvious way,
viz.,

(∑

u

αuu

)(∑

v

βvv

)
=

∑

u,v

αuβvuv

=
∑

w

γww,

where γw =
∑

uv=w αuβv (a finite sum).

Let L be a set of words such that no proper factor of a word in L belongs to L.
(A word v ∈ X∗ is a factor of w ∈ X∗ if w = uvy for some u, y ∈ X∗.) Define an
L-cluster to be a triple (w, (v1, . . . , vk), (ℓ1, . . . , ℓk)) ∈ X∗ × Lk × [r]k, where r is
the length of w = σ1σ2 · · ·σr and k is some positive integer, satisfying:

i. For 1 ≤ j ≤ k we have w = uvjy for some u ∈ X∗
ℓj−1 and y ∈ X∗ (i.e., w

contains vj as a factor beginning in position ℓj). Henceforth we identify vj
with this factor of w.

ii. For 1 ≤ j ≤ k − 1, we have that vj and vj+1 overlap in w, and that vj+1

begins to the right of the beginning of vj (so 0 < ℓ1 < ℓ2 < · · · < ℓk < r).

iii. v1 contains σ1, and vk contains σr.

Note that two different L-clusters can have the same first component w. For
instance, if X = {a} and L = {aaa}, then (aaaaa, (aaa, aaa, aaa), (1, 2, 3)) and
(aaaaa, (aaa, aaa), (1, 3)) are both L-clusters.

Let D(L) denote the set of L-clusters. For each word v ∈ L introduce a new
variable tv commuting with the xi’s and with each other. Define the cluster
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generating function

C(x, t) =
∑

(w,µ,ν)∈D(L)

(∏

v∈L
tmv(µ)
v

)
w ∈ C[[tv : v ∈ L]]〈〈X〉〉,

where mv(µ) denotes the number of components vi of µ ∈ Lk that are equal to v.
Show that in the ring C[[tv : v ∈ L]]〈〈X〉〉 we have

∑

w∈X∗

(∏

v∈L
tmv(w)
v

)
w = (1− x1 − · · · − xn − C(x, t − 1))−1 , (4.52)

where mv(w) denotes the number of factors of w equal to v, and where t − 1
denotes the substitution of tv − 1 for each tv.

(b) [1+]* Note the following specializations of equation (4.52):

i. If we let the variables xi in (4.52) commute and set each tv = t, then the
coefficient of tkxm1

1 · · ·xmn
n is the number of words w ∈ X∗ with mi xi’s for

1 ≤ i ≤ n, and with exactly k factors belonging to L.

ii. If we set each xi = x and ti = t in (4.52), then the coefficient of tkxm is the
number of words x ∈ X∗ of length m, with exactly k factors belonging to L.

iii. If we set each xi = x and each tv = 0 in (4.52), then the coefficient of xm is
the number of words w ∈ X∗ with no factors belonging to L.

(c) [2] Show that if L is finite and the xi’s commute in (4.52), then (4.52) represents
a rational function of x1, . . . , xn and the tv’s.

(d) [2] If w = a1a2 · · ·al ∈ X∗, then define the autocorrelation polynomial Aw(x) =
c1 + c2x+ · · ·+ clx

l−1, where

ci =

{
1, if a1a2 · · ·al−i+1 = aiai+1 · · ·al
0, otherwise.

For instance, if w = abacaba, then Aw(x) = 1 + x4 + x6. Let f(m) be the number
of words w ∈ X∗ of length m that don’t contain w as a factor. Show that

∑

m≥0

f(m)xm =
Aw(x)

(1− nx)Aw(x) + xl
. (4.53)

41. (a) [1+]* Let Bk(n) be the number of ways to place k nonattacking queens on an
n× n chessboard. Show that B1(n) = n2.

(b) [2+] Show that

B2(n) =
1

6
n(n− 1)(n− 2)(3n− 1).

(c) [3–] Show that

B3(n) =





1
12
n(n− 2)2(2n3 − 12n2 + 23n− 10), n even

1
12

(n− 1)(n− 3)(2n4 − 12n3 + 25n2 − 14n+ 1), n odd.
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(d) [2+] Show that for fixed k ≥ 1,

Bk(n) =
1

k!
n2k − 5

3 · (k − 2)!
n2k−1 +O(n2k−2).

(e) [3–] Show that
∑

n≥0Bk(n)xn is a rational power series. In fact, Bk(n) is a
quasipolynomial.

42. (a) [2+]* Show that the number of ways to place k nonattacking bishops on the white
squares of an (n− 1)× n chessboard is the Stirling number S(n, n− k).

(b) [3–] Let Ak(n) be the number of ways to place k nonattacking bishops on an n×n
chessboard. Show that Ak(n) is a quasipolynomial with quasiperiod two.

(c) [3] Find an explicit formula for Ak(n) in the form of a triple sum.

43. [2+] Let t(n) be the number of noncongruent triangles whose sides have integer length
and whose perimeter in n. For instance t(9) = 3, corresponding to 3+ 3 + 3, 2+ 3 + 4,
1 + 4 + 4. Find

∑
n≥3 t(n)xn.

44. [2+] Let k, r, n ∈ P. Let Nkr(n) be the number of n-tuples α = (α1, . . . , αn) ∈ [k]n

such that no r consecutive elements of α are equal. (For example, Nkr(r) = kr − k.)
Let Fkr(x) =

∑
n≥0Nkr(n)xn. Find Fkr(x) explicitly. (Set Nkr(0) = 1.)

45. (a) [3] Let m ∈ P and k ∈ Z. Define a function f : {m,m+ 1, m+ 2, . . . } → Z by

f(m) = k

f(n+ 1) =

⌊
n + 2

n
f(n)

⌋
, n ≥ m.

(4.54)

Show that f is a quasipolynomial on its domain.

(b) [5–] What happens when (n + 2)/n is replaced by some other rational function
R(n)?

46. (a) [2+] Define f : N→ Q by

f(n+ 2) =
6

5
f(n+ 1)− f(n), f(0) = 0, f(1) = 1. (4.55)

Show that |f(n)| < 5
4
.

(b) [2] Suppose that f : N → Z satisfies a linear recurrence (4.2) where each αi ∈ Z,
and that f(n) is bounded as n→∞. Show that f(n) is periodic.

(c) [3+] Suppose that y is a power series with integer coefficients and radius of con-
vergence one. Show that y is either rational or has the unit circle as a natural
boundary.

47. [3] If α ∈ Nm and k > 0, then let fk(α) denote the number of partitions of α into
k parts belonging to Nm. For example, f2(2, 2) = 5, since (2, 2) = (2, 2) + (0, 0) =
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(1, 0) + (1, 2) = (0, 1) + (2, 1) = (2, 0) + (0, 2) = (1, 1) + (1, 1). If α = (α1, . . . , αm),
then write as usual xα = xα1

1 · · ·xαm
m . Clearly

∑

α∈Nm

∑

k≥0

fk(α)tkxα =
∏

α∈Nm

(1− txα)−1 ,

the m-dimensional generalization of equation (1.77). Show that

∑

α∈Nm

fk(α)xα =
[∑

x
maj(w1)
1 · · ·xmaj(wm)

m

] [ m∏

i=1

(1− xi)(1− x2
i ) · · · (1− xki )

]−1

,

where the second sum is over all m-tuples (w1, . . . , wm) ∈ Sm
k satisfying w1w2 · · ·wm =

1. Note that Proposition 1.1.8.6(a) is equivalent to the case m = 1.

48. (a) [3] Let P be an integral convex d-polytope with P-Eulerian polynomial A(P, x).
Show that the coefficients of A(P, x) are nonnegative.

(b) [3+] Let Q ⊂ Rm be a finite union of integral convex d-polytopes, such that the
intersection of any two of these polytopes is a common face (possibly empty) of
both. Suppose that Q, regarded as a topological space, satisfies

Hi(Q,Q− p; Q) = 0 if i < d, for all p ∈ Q
H̃i(Q; Q) = 0 if i < d.

Here Hi and H̃i denote relative singular homology and reduced singular homology,
respectively. We may define the Ehrhart function i(Q, n) for n ≥ 1 exactly as for
polytopes P, and one easily sees that i(Q, n) is a polynomial of degree d for n ≥ 1.
Define i(Q, 0) = 1, despite the fact that the value of the polynomial i(Q, n) at
n = 0 is χ(Q), the Euler characteristic of Q. Set

∑

n≥0

i(Q, n)xn =
A(Q, x)

(1− x)d+1
.

Show that the coefficients of the polynomial A(Q, x) are nonnegative.

(c) [3] Suppose that P and Q are integral convex polytopes (not necessarily of the
same dimension) in Rm with Q ⊆ P. Show that the polynomial A(P, x)−A(Q, x)
has nonnegative coefficients. Note that (a) follows from taking Q = ∅.

49. Let P be an integral convex d-polytope in Rm, and let A(P, x) = 1 + h1x+ · · ·+ hdx
d.

(a) [3] Show that

hd + hd−1 + · · ·+ hd−i ≤ h0 + h1 + · · ·+ hi+1, (4.56)

for 1 ≤ i ≤ ⌊d/2⌋ − 1.

(b) [3] Let s = max{i : hi 6= 0}. Show that

h0 + h1 + · · ·+ hi ≤ hs + hs−1 + · · ·+ hs−i, (4.57)

for 0 ≤ i ≤ ⌊s/2⌋.
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50. [2] Let ∂P denote the boundary of the d-dimensional integral convex polytope P in
Rm. For n ∈ P we can define

i(∂P, n) = #(n · ∂P ∩ Zm),

exactly as was done for P. Set i(∂P, 0) = 1. Show that

∑

n≥0

i(∂P, n)xn =
h0 + h1x+ · · ·+ hdx

d

(1− x)d ,

where hi ∈ Z and hi = hd−i for 0 ≤ i ≤ d.

51. (a) [2] Fix r, s ∈ P. Let P be the convex polytope in Rr+s defined by

x1 + x2 + · · ·+ xr ≤ 1, y1 + y2 + · · ·+ ys ≤ 1, xi ≥ 0, yi ≥ 0.

Let i(n) = i(P, n) be the Ehrhart (quasi)polynomial of P. Use Exercise 3.169 to
find F (x) =

∑
n≥0 i(n)xn explicitly; that is, find the denominator of F (x) and the

coefficients of the numerator. What is the volume of P? What are the vertices of
P?

(b) [2] Find a partially ordered set Prs for which i(P, n − 1) = ΩPrs(n), the order
polynomial of Prs.

52. [3–]* Let σd be the d-dimensional simplex in Rd with vertices (0, 0, 0, . . . , 0), (1, 0, 0, . . . , 0),
(1, 2, 0, . . . , 0), . . . , (1, 2, 3, . . . , d). Show that i(σd, n) = (n + 1)d.

53. An antimagic square of index n is a d × d N-matrix M = (mij) such that for every

permutation w ∈ Sd we have
∑d

i=1mi,w(i) = n. In other words, any set of d entries,
no two in the same row or column, sum to n.

(a) [2] For what positive integers d do there exist d × d antimagic squares whose
entries are the distinct integers 1, 2, . . . , d2?

(b) [2+] Let Ri (respectively, Ci) be the d× d matrix with 1’s in the ith row (respec-
tively, ith column) and 0’s elsewhere. Show that a d×d antimagic square has the
form

M =

n∑

i=1

aiRi +

n∑

j=1

bjCj,

where ai, bj ∈ N.

(c) [2+] Use (b) to find a simple explicit formula for the number of d × d antimagic
squares of index n.

(d) [2] Let Pd be the convex polytope in Rd2 of all d×d matrices X = (xij) satisfying

xij ≥ 0,

d∑

i=1

xi,w(i) = 1 for all w ∈ Sd.

What are the vertices of Pd? Find the Ehrhart polynomial i(Pd, n).
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(e) [2] Find the Pd-Eulerian polynomial A(Pd, x) and the relative volume ν(Pd).

54. (a) [2+] Let

Hn(r) =

(n−1)2∑

i=0

c(n, i)r(n−1)2−i,

where Hn(r) denotes the number of n × n N-matrices with line sum r, as in
Subsection 4.6.1. Show that c(n, 1)/c(n, 0) = 1

2
n(n− 1)2.

(b) [5–] (rather speculative) Fix k ≥ 0. Then as n → ∞ we have the asymptotic
formula

c(n, k)

c(n, 0)
∼ n3k

2kk!
.

55. [2+]* Let f(n) denote the number of 2× 3 N-matrices such that every row sums to 3n
and every column to 2n. Find an explicit formula for f(n) and compute (as a rational
function reduced to lowest terms) the generating function

∑
n≥0 f(n)xn.

56. (a) [2+] Let P = {t1, . . . , tp} be a finite poset. Let C(P ) denote the convex polytope
in Rp defined by

C(P ) = {(ε1, . . . , εp) ∈ Rp : 0 ≤ εi1 + · · ·+ εik ≤ 1 whenever ti1 < · · · < tik}.

Find the vertices of C(P ).

(b) [2+] Show that the Ehrhart (quasi)polynomial of C(P ) is given by i(C(P ), n−1) =
ΩP (n), the order polynomial of P . Thus we have two polytopes associated with
P whose Ehrhart polynomial is ΩP (n + 1), the second given by Example 4.6.17.

(c) [2] Given n, k ≥ 1, let Cn,k be the convex polytope in Rn defined by xi ≥ 0 for
1 ≤ i ≤ n and

xi+1 + xi+2 + · · ·+ xi+k ≤ 1, 0 ≤ i ≤ n− k.

Find the volume ν(Cn,2). (Note that the volume of Cn,k is the same as the relative
volume since dim Cn,k = n.)

(d) [5] Find the volume Vn of Cn,3. For instance,

(1!V1, 2!V2, . . . , 10!V12) = (1, 1, 1, 2, 5, 14, 47, 182, 786, 3774, 19974, 115236).

(e) [2+] Let k ≤ n ≤ 2k. Show that the volume of Cn,k is Cn−k+1/n!, where Cn−k+1

is a Catalan number.

57. [2+] Let P and Q be partial orderings of the same p-element set. Suppose that the
incomparability graph inc(P ) of P is a proper (spanning) subgraph of inc(Q). Use
Exercise 4.56 to show that e(P ) < e(Q).
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58. (a) [3–] Let P be a finite poset and let V(P ) denote the set of all maps f : P → R
such that for every order ideal I of P we have

0 ≤
∑

t∈I
f(t) ≤ 1.

Clearly V(P ) is a convex polytope in the vector space RP , called the valuation
polytope of P . It is linearly equivalent to the polytope of all valuations on J(P )
(as defined in Exercise 3.94) with values in the interval [0, 1]. Show that the
vertices of V(P ) consist of all functions fC , where C is a chain t1 < t2 < · · · < tk
in P , defined by

f(t) =

{
(−1)i−1, t = ti

0, otherwise.

Thus V(P ) is an integer polytope.

(b) [2–]* Show that dimV(P ) = #P .

(c) [2] Compute the Ehrhart polynomial i(V(p), n) of the valuation polytope of a
p-element chain.

(d) [2+] Show that

A(V(P +Q), x) = A(V(P ), x)A(V(Q), x),

where A(P, x) denotes the P-Eulerian polynomial.

(e) [2] Show that i(V(P ), 1) is the total number of chains of P (including the empty
chain).

(f) [2+] Let p = #P , and let m denote the number of minimal elements of P . Show
that degA(V(P ), x) = p−m.

(g) [2+] Show that xp−mA(V(P ), 1/x) = A(V(P ), x) if and only if every connected
component of P has a unique minimal element.

(h) [2+]* Let Uk denote the ordinal sum of k 2-element antichains, as in Exercise 3.139.
Let A(n) denote the n×n real matrix, with rows and columns indexed by [n+1],
defined by

A(n)ij =

{
i+ j − 1, if i+ j ≤ n+ 2

2n− i− j + 3, if i+ j ≥ n+ 2.

Show that i(V(Uk), n) is the sum of the entries of the first row of A(n)k. Is there
a more explicit formula for i(V(Uk), n)? Is there a nice formula for the volume of
V(Uk)? If we write vol(Uk) = uk/(2k)!, then

(u1, . . . , u6)) = (2, 8, 162, 6128, 372560, 33220512).

(i) [5–] What more can be said about V(P ) in general? Is there a nice combinatorial
interpretation of its volume? Are the coefficients of i(V(P ), n) nonnegative?
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59. [3] Let t ∈ R, and define νd(t) = (t, t2, . . . , td) ∈ Rd. The set of all points νd(t), t ∈ R,
is called the moment curve. Let n > d and T = {t1, . . . , tn}, where the ti’s are real
numbers satisfying t1 < · · · < tn. Define the cyclic polytope Cd(T ) to be the convex
hull of the points νd(t1), . . . , νd(tn). Suppose that each ti is an integer, so Cd(T ) is an
integral polytope. Show that

i(Cd(T ), m) = vol(Cd(T ))md + i(Cd−1(T ), m),

where we set i(C0(T ), m) = 1. In particular, the polynomial i(Cd(T ), m) has positive
coefficients.

60. [2+] Give an example of a 3-dimensional simplex (tetrahedron) P with integer vertices
such that the Ehrhart polynomial i(P, n) has a negative coefficient.

61. (a) [2+] Let ej be the jth unit coordinate vector in Rd, and let Pd be the convex hull
of the 2d vectors ±ej . (This polytope is the d-dimensional cross-polytope. When
d = 3 it is an octahedron.) Let i(Pd, n) denote the Ehrhart polynomial of Pd.
Find explicitly the polynomial Pd(x) for which

∑

n≥0

i(Pd, n)xn =
Pd(x)

(1− x)d+1
.

(b) [3–] Show that every (complex) zero of i(Pd, n) has real part −1/2.

62. Let 1 ≤ k ≤ n− 1. The hypersimplex ∆k,d is the convex hull of all (0, 1)-vectors in Rd

with exactly k 1’s.

(a) [2–]* Show that dim ∆k,d = d− 1.

(b) [2+] Show that the relative volume of ∆k,d is A(d−1, k)/(d−1)!, where A(d−1, k)
is an Eulerian number (the number of permutations w ∈ Sd−1 with k−1 descents).

(c) [2+] Show that

i(∆k,d, n) = [xkn]

(
1− xn+1

1− x

)d
.

(d) [2]* Deduce from (c) that

i(∆k,d, n) =

⌊kn/(n+1)⌋∑

j=0

(−1)j
(
d

j

)(
(k − j)n− j + d− 1

d− 1

)
.

(e) [5–] Are the coefficients of i(∆k,d, n) nonnegative?

(f) [2]* Let A(∆k,d, x) be the ∆k,d-Eulerian polynomial. Show that A(∆1,d, x) = 1.

(g) [2+] Show that

A(∆2,d, x) =





1 + 1
2
d(d− 3)x+

(
d
4

)
x2 +

(
d
6

)
x3 + · · ·+

(
d
d

)
xd/2, d even

1 + 1
2
d(d− 3)x+

(
d
4

)
x2 +

(
d
6

)
x3 + · · ·+

(
d
d−1

)
x(d−1)/2, d odd.
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(h) [5–] Find a combinatorial interpretation of the coefficients of A(∆k,d, x).

(i) [3] Define the “half-open” hypersimplex ∆′
k,d to be the set of all vectors (x1, . . . , xd) ∈

Rd satisfying 0 ≤ xi ≤ 1 and

0 ≤ x1 + · · ·+ xd ≤ 1, k = 1
k − 1 < x1 + · · ·+ xd ≤ k, 2 ≤ k ≤ d.

Thus the unit cube [0, 1]d is a disjoint union of the ∆′
k,d’s. Show that

A(∆′
k,d, x) =

∑

w

xdes(w),

where w ranges over all permutations in Sd with k− 1 excedances. For instance,
A(∆′

3,4, x) = 4x+ 6x2 + x3, corresponding to the permutations 2314, 2413, 3412,
1342 (one descent), 2431, 3421, 2143, 3142, 3241, 4312 (two descents), and 4321
(three descents).

63. [3] Let v1, . . . , vk ∈ Zm. Let

Z = {a1v1 + · · ·+ akvk : 0 ≤ ai ≤ 1}.

Thus Z is a convex polytope with integer vertices. Show that the Ehrhart polynomial
of Z is given by i(Z, n) = cmn

m + · · ·+ c0, where ci =
∑

X f(X), the sum being over
all linearly independent i-element subsets X of {v1, . . . , vk}, and where f(X) is the
greatest common divisor (always taken to be positive) of the determinants of the i× i
submatrices of the matrix whose rows are the elements of X.

64. (a) [3] Let Pd denote the convex hull in Rd of the d! points (w(1), w(2), . . . , w(d)),
w ∈ Sd. The polytope Pd is called the permutohedron. Show that the Ehrhart
polynomial of Pd is given by

i(Pd, n) =

d−1∑

i=0

fin
i,

where fi is the number of forests with i edges on a set of d vertices. For example,
f0 = 1, f1 =

(
d
2

)
, fd−1 = dd−2. In particular, the relative volume of Pd is dd−2.

(b) [3] Generalize (a) as follows. Let G be a finite graph (loops and multiple edges
permitted) with vertices v1, . . . , vd. An orientation o of the edges may be regarded
as an assignment of a direction u → v to every edge e of G, where e is incident
to vertices u and v. If in the orientation o there are δi edges pointing out of vi,
then call δ(o) = (δ1, . . . , δd) the outdegree sequence of o. Define o to be acyclic
if there are no directed cycles u1 → u2 → · · · → uk → u1, as in Exercise 3.60.
Let PG denote the convex hull in Rd of all outdegree sequences δ(o) of acyclic
orientations of G. Show that

i(PG, n) =

d−1∑

i=0

fi(G)ni,
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where fi(G) is the number of spanning forests of G with i edges. Show also that

PG ∩ Zd = {δ(o) : o is an orientation of G},

and deduce that the number of distinct δ(o) is equal to the number of spanning
forests of G. (Note that (a) corresponds to the case G = Kd.)

65. [3] An FHM-graph is a graph G (allowing multiple edges, but not loops) such that
every induced subgraph has at most one connected component that is not bipartite.
A spanning quasiforest of a graph G is a spanning subgraph H of G for which every
connected component is either a tree or has exactly one cycle C, such that C has odd
length. Let c(H) denote the number of (odd) cycles of the quasiforest H . If H is a
graph with vertices v1, . . . , vp and q edges, then the extended degree sequence of H is

the sequence d̃(H) = (d1, . . . , dp, q) ∈ Rp+1, where vi has degree (number of incident

edges) di. Let D̃(G) denote the convex hull in Rp of the extended degree sequence
d̃(H) of all spanning subgraphs H of G. Show that if G is an FHM-graph, then

i(D̃(G), n) = apn
p + ap−1n

p−1 + · · ·+ a0, (4.58)

where

ai =
∑

H

max{1, 2c(H)−1},

the sum being over all spanning quasiforests H of G with i edges.

66. (a) [3] Let P be a d-dimensional rational convex polytope in Rm, and let the Ehrhart
quasipolynomial of P be

i(P, n) = cd(n)nd + cd−1(n)nd−1 + · · ·+ c0(n),

where c0, . . . , cd are periodic functions of n. Suppose that for some j ∈ [0, d],
the affine span of every j-dimensional face of P contains a point with integer
coordinates. Show that if k ≥ j, then ck(n) is constant (i.e., period one).

(b) [3] Generalize (a) as follows: the (not necessarily least) period of ci(n) is the least
positive integer p such that each i-face of pP contains an integer vector.

67. [2]* Let M be a diagonalizable p × p matrix over a field K. Let λ1, . . . , λr be the
distinct nonzero eigenvalues of M . Fix (i, j) ∈ [p]×[p]. Show that there exist constants
a1, . . . , ar ∈ K such that for all n ∈ P,

(Mn)ij = a1λ
n
1 + · · ·+ arλ

n
r .

68. (a) [2]* By combinatorial reasoning, find the number f(r, n) of sequences ∅ = S0, S1,. . . ,
S2n = ∅ of subsets of [r] such that for each 1 ≤ i ≤ 2n, either Si−1 ⊂ Si and
|Si − Si−1| = 1, or Si ⊂ Si−1 and |Si−1 − Si| = 1.
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(b) [2]* Let A(r) be the adjacency matrix of the Hasse diagram of the boolean algebra
Br. Thus the rows and columns of A(r) are indexed by S ∈ Br, with

A(r)S,T =

{
1, if S covers T or T covers S in Br

0, otherwise.

Use (a) to find the eigenvalues of A(r). (It is more customary to use (b) to solve
(a).)

69. [2]* Use reasoning similar to the previous exercise to find the eigenvalues of the adja-
cency matrix of the complete bipartite graph Krs. Thus first compute the number of
closed walks of length ℓ in Krs.

70. (a) [2+] Let G be a finite graph (allowing loops and multiple edges). Suppose that
there is some integer ℓ > 0 such that the number of walks of length ℓ from any
fixed vertex u to any fixed vertex v is independent of u and v. Show that G has
the same number k of edges between any two vertices (including k loops at each
vertex).

(b) [3–] Again let G be a finite graph (allowing loops and multiple edges). For any
vertex v, let dv be its degree (number of incident edges). Start at any vertex of G
and do a random walk as follows: if we are at a vertex v, then walk along an edge
incident to v with probability 1/dv. Suppose that there is some integer ℓ ≥ 1 such
that for any intial vertex u, after we take ℓ steps we are equally likely to be at
any vertex. Show that we have the same conclusion as (a), i.e., G has the same
number k of edges between any two vertices.

71. [2+] Let Ko
p denote the complete graph with p vertices, with one loop at each vertex.

Let Ko
p −Ko

r denote Ko
p with the edges of Ko

r removed, i.e., choose r vertices of Ko
p ,

and remove all edges between these vertices (including loops). Thus Ko
p − Ko

r has(
p+1
2

)
−
(
r+1
2

)
edges. Find the number CG(ℓ) of closed walks in G = Ko

21−Ko
18 of length

ℓ ≥ 1.

72. [3–] Let G be a finite graph on p vertices. Let G′ be the graph obtained from G by
placing a new edge ev incident to each vertex v, with the other vertex of ev being a
new vertex v′. Thus G′ has p new edges and p new vertices. The new vertices all
have degree one. By combinatorial reasoning, express the eigenvalues of the adjacency
matrix A(G′) in terms of the eigenvalues of A(G).

73. (a) [2]* Let F (n) be the number of ways a 2 × n chessboard can be partitioned

into copies of the two pieces and . (Any rotation or reflection of the
pieces is allowed.) For instance, f(0) = 1, f(1) = 1, f(2) = 2, f(3) = 5. Find
F (x) =

∑
n≥0 f(n)xn.

(b) [2]* Let g(n) be the number of ways if we also allow the piece . Thus g(0) = 1,
g(1) = 2, g(2) = 11. Find G(x) =

∑
n≥0 g(n)xn.
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74. [2+] Suppose that the graph G has 16 vertices and that the number of closed walks
of length ℓ in G is 8ℓ + 2 · 3ℓ + 3 · (−1)ℓ + (−6)ℓ + 5 for all ℓ ≥ 1. Let G′ be the
graph obtained from G by adding a loop at each vertex (in addition to whatever loops
are already there). How many closed walks of length ℓ are there in G′? Give a linear
algebraic solution and (more difficult) a combinatorial solution.

75. (a) [2+] LetM = (mij) be an n×n circulant matrix with first row (a0, . . . , an−1) ∈ Cn,
that is, mij = aj−i, the subscript j − i being taken modulo n. Let ζ = e2πi/n.
Show that the eigenvalues of M are given by

ωr =

n−1∑

j=0

ajζ
jr, 0 ≤ r ≤ n− 1.

(b) [1] Let fk(n) be the number of sequences of integers t1, t2, . . . , tn modulo k (i.e.,
tj ∈ Z/kZ) such that tj+1 ≡ tj − 1, tj, or tj + 1 (mod k), 1 ≤ j ≤ n − 1. Find
fk(n) explicitly.

(c) [2] Let gk(n) be the same as fk(n), except that in addition we require t1 ≡ tn− 1,
tn, or tn + 1 (mod k). Use the transfer-matrix method to show that

gk(n) =

k−1∑

r=0

(
1 + 2 cos

2πr

k

)n
.

(d) [5–] From (c) we get g4(n) = 3n + 2 + (−1)n and g6(n) = 3n + 2n+1 + (−1)n. Is
there a combinatorial proof?

76. (a) [2+] Let A = A(n) be the n× n real matrix given by

Aij =





1, j = i+ 1 (1 ≤ i ≤ n− 1)
1, j = i− 1 (2 ≤ i ≤ n)
0, otherwise.

Thus A is the adjacency matrix of an n-vertex path. Let Vn(x) = det(xI − A),
so V0(x) = 1, V1(x) = x, V2(x) = x2 − 1, V3(x) = x3 − 2x. Show that Vn+1(x) =
xVn(x)− Vn−1(x), n ≥ 1.

(b) [2+]* Show that

Vn(2 cos θ) =
sin((n+ 1)θ)

sin(θ)
.

Deduce that the eigenvalues of A(n) are 2 cos(jπ/(n+ 1)), 1 ≤ j ≤ n.

(c) [2–] Let un(k) be the number of sequences of integers t1, t2, . . . , tk, 1 ≤ ti ≤ n,
such that tj+1 = tj − 1 or tj + 1 for 1 ≤ j ≤ n − 1, and tk = t1 − 1 or t1 + 1 (if
defined, i.e., 1 can be followed only by 2, and n by n− 1). Find un(k) explicitly.

(d) [2+] Find a simple formula for u2n(2n).

77. [2]* Let fp(n) be as in Example 4.7.5. Give a simple combinatorial proof that fp(n−1)+
fp(n) = p(p− 1)n−1, and deduce from this the formula fp(n) = (p− 1)n + (p− 1)(−1)n

(equation (4.36)).
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78. (a) [2] Let gk(n) denote the number of k×n matrices (aij)1≤i≤k, 1≤j≤n of integers such
that a11 = 1, the rows and columns are weakly increasing, and adjacent entries
differ by at most 1. Thus ai,j+1 − aij = 0 or 1, and ai+1,j − aij = 0 or 1. Show
that g2(n) = 2 · 3n−1, n ≥ 1.

(b) [2+] Show that Gk(x) =
∑

n≥1 gk(n)xn is a rational function. In particular,

G3(x) =
2x(2− x)

1− 5x+ 2x2
.

79. (a) [2+] Let G1, . . . , Gk be finite graphs on the vertex sets V1, . . . , Vk. Given any
graph H , write m(u, v) for the number of edges between vertices u and v. Let
u = (u1, . . . , uk) ∈ V1 × · · · × Vk and v = (v1, . . . , vk) ∈ V1 × · · · × Vk. Define
the star product G1 ∗ · · · ∗ Gk of G1, . . . , Gk to be the graph on the vertex set
V1 × · · · × Vk with edges defined by

m(u, v) =





0, if u, v differ in at least two coordinates∑
im(ui, ui), if u = v
m(ui, vi), if u, v differ only in coordinate i.

Find the eigenvalues of the adjacency matrix A(G1 ∗ · · · ∗ Gk) in terms of the
eigenvalues of A(G1), . . . , A(Gk).

(b) [2+] Let Vi = [mi], and regard B = V1 × · · · × Vk as a k-dimensional chessboard.
A rook moves from a vertex u of B to any other vertex v that differs from u in
exactly one coordinate. Suppose without loss of generality that u = (1, 1, . . . , 1)
and v = (1k−r, 2r) (i.e., a vector of k − r 1’s followed by r 2’s). Find an explicit
formula for the number N of ways a rook can move from u to v in exactly n
moves.

80. [2+] As in Exercise 4.40, let X = {x1, . . . , xn} be an alphabet with n letters. Let N be
a finite set of words. Define fN(m) to be the number of words w ∈ X∗

m (i.e., of length
m) such that w contains no subwords (as defined in Exercise 3.134) belonging to N .
Use the transfer-matrix method to show that FN(x) :=

∑
m≥0 fN(m)xm is rational.

81. (a) [2] Fix k ∈ P, and for n ∈ N define fk(n) to be the number of ways to cover a k×n
chessboard with 1

2
kn nonoverlapping dominoes (or dimers). Thus fk(n) = 0 if kn

is odd, f1(2n) = 1, and f2(2) = 2. Set Fk(x) =
∑

n≥0 fk(n)xn. Use the transfer-
matrix method to show that Fk(x) is rational. Compute Fk(x) for k = 2, 3, 4.

(b) [3] Use the transfer-matrix method to show that

fk(n) =

⌊k/2⌋∏

j=1

cn+1
j − c̄n+1

j

2bj
, nk even, (4.59)
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where

cj = aj +
√

1 + a2
j

c̄j = aj −
√

1 + a2
j

bj =
√

1 + a2
j

aj = cos
jπ

k + 1
.

(c) [3–] Use (b) to deduce that we can write Fk(x) = Pk(x)/Qk(x), where Pk and Qk

are polynomials with the following properties:

i. Set ℓ = ⌊k/2⌋. Let S ⊆ [ℓ] and set S = [ℓ]− S. Define

cS =

(∏

j∈S
cj

)
∏

j∈S

c̄j


 .

Then

Qk(x) =





∏

S

(1− cSx), k even

∏

S

(1− c2Sx2), k odd,

where S ranges over all subsets of [ℓ].

ii. Qk(x) has degree qk = 2⌊(k+1)/2⌋.

iii. Pk(x) has degree pk = qk − 2.

iv. If k > 1 then Pk(x) = −xpkPk(1/x). If k is odd or divisible by 4 then
Qk(x) = xqkQk(1/x). If k ≡ 2 (mod 4) then Qk(x) = −xqkQk(1/x). If k is
odd then Pk(x) = Pk(−x) and Qk(x) = Qk(−x).

82. For n ≥ 2 let Tn be the n × n toroidal graph, that is, the vertex set is (Z/nZ)2, and
(i, j) is connected to its four neighbors (i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1) with
entries modulo n. (Thus Tn has n2 vertices and 2n2 edges.) Let χn(λ) denote the
chromatic polynomial of Tn, and set N = n2.

(a) [1+] Find χn(2).

(b) [3+] Use the transfer-matrix method to show that

logχn(3) =
3N

2
log(4/3) + o(N).

(c) [5] Show that

logχn(3) =
3N

2
log(4/3)− π

6
+ o(1).

(d) [5] Find limN→∞N−1 logχn(4).
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(e) [3–] Let χn(λ) = λN−q1(N)λN−1 +q2(N)λN−2−· · · . Show that there are polyno-
mials Qi(N) such that qi(N) = Qi(N) for all N sufficiently large (depending on i).
For instance, Q1(N) = 2N , Q2(N) = N(2N−1), and Q3(N) = 1

3
N(4N2−6N−1).

(f) [5–] Let αi = Qi(1). Show that

1 +
∑

i≥1

Qi(N)xi = (1 + α1x+ α2x
2 + · · · )N

= (1 + 2x+ x2 − x3 + x4 − x5 + x6 − 2x7 + 9x8 − 38x9

+130x10 − 378x11 + 987x12 − 2436x13 + 5927x14

−14438x15 + 34359x16 − 75058x17

+134146x18 + · · · )N . (4.60)

Equivalently, in the terminology of Exercise 5.37, the sequence 1, 1! · Q1(N), 2! ·
Q2(N), . . . is a sequence of polynomials of binomial type.

(g) [5–] Let L(λ) = limN→∞ χn(λ)1/N . Show that for λ ≥ 2, L(λ) has the asymptotic
expansion

L(λ) ∼ λ(1− α1λ
−1 + α2λ

−2 + · · · ).
Does this infinite series converge?
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SOLUTIONS TO EXERCISES

1. No. Suppose that F (x) ∈ K(x) and G(x) ∈ L(x), where K and L are fields of different
characteristics (or even isomorphic fields but with no explicit isomorphism given, such
as C and the algebraic closure of the p-adic field Qp). Then F (x) +G(x) is undefined.

2. (a) Define a formal power series
∑

n≥0 anx
n with integer coefficients to be primitive if

no integer d > 1 divides all the ai. One easily shows that the product of primitive
series is primitive (a result essentially due to Gauss but first stated explicitly
by Hurwitz; this result is equivalent to the statement that Fp[[x]] is an integral
domain, where Fp is the field of prime order p).

Clearly we can write f(x) = P (x)/Q(x) for some relatively prime integer polyno-
mials P and Q. Assume that no integer d > 1 divides every coefficient of P and
Q. Then Q is primitive, for otherwise if Q/d ∈ Z[x] for d > 1, then

P

d
= f

Q

d
∈ Z[x],

a contradiction. Since (P,Q) = 1 in Q[x], there is an integer m > 0 and polyno-
mials A,B ∈ Z[x] such that AP + BQ = m. Then m = Q(Af + B). Since Q is
primitive, the coefficients of Af + B are divisible by m. (Otherwise, if d < m is
the largest integer dividing Af+B, then the product of the primitive series Q and
(Af+B)/d would be the imprimitive polynomial m/d > 1.) Let c be the constant
term of Af +B. Then m = Q(0)c. Since m divides c, we have Q(0) = ±1.

This result is known as Fatou’s lemma and was first proved in P. Fatou, Acta
Math. 30 (1906), 369. The proof given here is due to A. Hurwitz; see G. Pólya,
Math. Ann. 77 (1916), 510–512.

(b) This result, while part of the “folklore” of algebraic geometry and an application
of standard techniques of commutative algebra, seems first to be explicitly stated
and proved (in an elementary way) by I. M. Gessel, Utilitas Math. 19 (1981),
247–251 (Thm. 1).

3. The assertion is true. Without loss of generality we may assume that f(x) is primitive,
as defined in the solution to Exercise 4.2. Let f ′(x) = f(x)g(x), where g(x) ∈ Z[[x]].
By Leibniz’s rule for differentiating a product, we obtain by induction on n that
f(x)|f (n)(x) in Z[[x]]. But also n!|f (n)(x), since if f(x) =

∑
aix

i then 1
n!
f (n)(x) =∑(

i
n

)
aix

i−n. Write f(x)h(x) = n!(f (n)(x)/n!), where h(x) ∈ Z[[x]]. Since the product
of primitive polynomials is primitive, we obtain just as in the solution to Exercise 4.2
that n!|h(x) in Z[[x]], so f(x)|(f (n)(x)/n!). In particular, f(0)|(f (n)(0)/n!) in Z, which
is the desired conclusion.

Note. An alternative proof uses the known fact that Z[[x]] is a unique factorization
domain. Since f(x)|f (n)(x), and since f(x) and n! are relatively prime in Z[[x]], we get
n!f(x)|f (n)(x).

This exercise is due to David Harbater.
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4. (a) This result was first proved by T. A. Skolem, Oslo Vid. Akad. Skrifter I, no. 6
(1933), for rational coefficients, then by K. Mahler, Proc. Akad. Wetensch. Am-
sterdam 38 (1935), 50–60, for algebraic coefficients, and finally independently
by Mahler, Proc. Camb. Phil. Soc. 52 (1956), 39–48, and C. Lech, Ark. Math. 2
(1953), 417–421, for complex coefficients (or over any field of characteristic 0) and
is known as the Skolem-Mahler-Lech theorem. All the proofs use p-adic methods.
As pointed out by Lech, the result is false over characteristic p, an example being
the series

F (x) =
1

1− (t+ 1)x
− 1

1− x −
1

1− tx
over the field Fp(t). See also J.-P. Serre, Proc. Konin. Neder. Akad. Weten. (A)
82 (1979), 469–471.

For an interesting article on the Skolem-Mahler-Lech theorem, see G. Myerson and
A. J. van der Poorten, Amer. Math. Monthly 102 (1995), 698–705. For a proof,
see J. W. S. Cassels, Local Fields, Cambridge University Press, Cambridge, 1986.
For further information on coefficients of rational generating functions, see A. J.
van der Poorten, in Coll. Math. Sci. János Bolyai 34, Topics in Classical Number
Theory (G. Hal’asz, ed.), vol. 2, North-Holland, New York, 1984, pp. 1265–1294.
(This paper, however, contains many inaccuracies, beginning on page 1276.)

(b) Let

F (x, y) =
∑

m,n≥0

(m− n2)xmyn

=
1

(1− x)2(1− y) −
y + y2

(1− x)(1− y)3
.

Then ∑

m,n≥0

χ(m− n2)xmyn =
∑

xm
2

yn,

which is seen to be nonrational, for example, by setting y = 1 and using (a). This
problem was suggested by D. A. Klarner.

(c) A proof based on the same p-adic methods used to prove (a) is sketched by A. J.
van der Poorten, Bull. Austral. Math. Soc. 29 (1984), 109–117.

5. This problem was raised by T. Skolem, Skand. Mat. Kongr. Stockholm, 1934 (1934),
163–188. For the current status of this problem, see V. Halava, T. Harju, M. Hirven-
salo, and J. Karhumäki, Skolem’s problem—on the border between decidability and
undecidability, preprint.

6. This fundamental result is due to L. Kronecker, Monatsber. K. Preuss. Akad. Wiss.
Berlin (1881), 535–600. For an exposition, see F. R. Gantmacher, Matrix Theory,
vol. 2, Chelsea, New York, 1989 (§XV.10).

7. (a) Write
xF ′(x)

F (x)
=

b1x

1− x +G(x). (4.61)
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where G(x) =
∑

n≥1 cnx
n. By arguing as in Example 1.1.14, we have

cn =
∑

(2i−1)|n
i6=1

(2i− 1)bi.

If n is a power of 2 then the above sum is empty and cn = 0; otherwise cn 6= 0. By
Exercise 4.4, G(x) is not rational. Hence by equation (4.61), F (x) is not rational.

This result is essentially due to J.-P. Serre, Proc. Konin. Neder. Akad. Weten.
(A) 82 (1979), 469–471.

(b) Let F (x) = 1/(1 − αx), where α ≥ 2. Then by the same reasoning as Exam-
ple 1.1.14 we have that ai ∈ Z and

ai =
1

i

∑

d|i
µ(i/d)αd

≥ 1

i

(
αi −

i−1∑

j=1

αj

)
> 0.

It is also possible to interpret ai combinatorially when α ≥ 2 is an integer (or a
prime power) and thereby see combinatorially that ai > 0. See Exercise 2.7 for
the case when α is a prime power.

8. (i)⇒(iii) If F (x) ∈ C[[x]] and F (x) = G′(x)/G(x) with G(x) ∈ C((x)), then G(0) 6=
0,∞. Hence if G(x) is rational then we can write

G(x) =
c
∏

(1− βix)∏
(1− αix)

for certain nonzero αi, βi ∈ C. Direct computation yields

G′(x)

G(x)
=
∑ αi

1− αix
−
∑ βi

1− βix
,

so an =
∑
αni −

∑
βni .

(iii)⇒(ii) If an =
∑
αni −

∑
βni . then

exp
∑

n≥1

an
xn

n
=

∏
(1− βix)∏
(1− αix)

by direct computation.

(ii)⇒(i) Set G(x) = exp
∑

n≥1 an
xn

n
and compute that

F (x) =
d

dx
logG(x) =

G′(x)

G(x)
.
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9. Yes. Suppose that F (x) = P (x)/Q(x), where P,Q ∈ Q[x]. By the division algorithm
for polynomials we have

F (x) = G(x) +
R(x)

Q(x)
,

where degR < degQ (with deg 0 = −∞, say). If R(x) 6= 0 then we can find positive
integer p, n for which pG(n) ∈ Z and 0 < |R(n)/Q(n)| < 1/p, a contradiction.

10. This result is due to E. Borel, Bull. Sci. Math. 18 (1894), 22–25. It is a useful tool
for proving that generating functions are not meromorphic. For instance, let pn be the
nth prime and f(z) =

∑
n≥1 pnz

n = 2z + 3z2 + 5z3 + · · · . It is easy to see that f(z)
has radius of convergence 1 and is not rational [why?]. Hence by Borel’s theorem, f(z)
is not meromorphic.

11. (a) Answer: an = 2n + 1. A standard way to solve this recurrence that does not
involve guessing the answer in advance is to observe that the denominator of the
rational function

∑
n≥0 anx

n is 1 − 3x + 2x2 = (1 − x)(1 − 2x). Hence an =
α2n + β1n = α2n + β. The initial conditions give α+ β = 2, 2α+ β = 3, whence
α = β = 1.

(b) Answer: an = n2n.

(c) Answer: an = 3n+1 + 2n + 1.

(d) The polynomial x8−x7+x5−x4+x3−x+1 is just the 15th cyclotomic polynomial,
i.e., its zeros are the primitive 15th roots of unity. It follows that the sequence
a0, a1, . . . is periodic with period 15. Thus we need only compute a8 = 4, a9 = 0,
a10 = −5, a11 = −7, a12 = −9, a13 = −7, a14 = −4 to determine the entire
sequence. In particular, since 105 ≡ 0 (mod 15), we have a105 = a0 = 0. To solve
this problem without recognizing that x8−x7 +x5−x4 +x3−x+1 is a cyclotomic
polynomial, simply compute an for 8 ≤ n ≤ 22. Since an = an+15 for 0 ≤ n ≤ 7,
it follows that an = an+15 for all n ≥ 0.

12. Note that
10000

9899
=

1

1− 1
100
− 1

1002

and
1

1− x− x2
=
∑

n≥0

Fn+1x
n.

13. Because the Fibonacci recurrence can be run in reverse to compute Fi from Fi+1 and
Fi+2, and because there are only finitely many pairs (a, b) ∈ Z/nZ × Z/nZ, it follows
that the sequence (Fi)i∈Z is periodic modulo n for all n ∈ Z. Since F0 = 0, it follows
that some Fk for k ≥ 1 must be divisible by n. Although there is an extensive literature
on Fibonacci numbers modulo n, e.g., D. D. Wall, Amer. Math. Monthly 67 (1960),
525–532, and S. Gupta, P. Rockstroh, and F. E. Su, Splitting fields and periods of
Fibonacci sequences modulo primes, arXiv:0909.0362, it is not clear who first came
up with the elegant argument above. Problem A3 from the 67th Putnam Mathematical
Competition (2006) involves a similar idea. Note that the result of the present exercise
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fails for the Lucas numbers when n = 5. The above proof breaks down because Li 6= 0
for all i ∈ Z.

14. The first such sequence was obtained by R. L. Graham, Math. Mag. 37 (1964), 322–324.
At present the smallest pair (a, b) is due to J. W. Nicol, Electronic J. Combinatorics
6 (1999), #R44, viz.,

a = 62638280004239857 = 127 · 2521 · 195642524071

b = 49463435743205655 = 3 · 5 · 83 · 89 · 239 · 1867785589.

15. Two solutions appear in R. Stanley, Amer. Math. Monthly 83 (1976), 813–814. The
crucial lemma in the elementary solution given in this reference is that every antichain
of Nm is finite.

16. Denote the answer by f(n). The Young diagram of λ contains a 2 × 3 rectangle in
the upper left-hand corner. To the right of this rectangle is the diagram of a partition
with at most two parts. Below the rectangle is the diagram of a partition with parts
1 and 2. Hence

∑

n≥0

f(n)xn =
x6

(1− x)2(1− x2)2

= 1 +
1

4(1− x)4
− 5

4(1− x)3
+

39

16(1− x)2
− 9

4(1− x)
+

1

16(1 + x)2
− 1

4(1 + x)
.

It follows that for n ≥ 1,

f(n) =
1

4

(
n+ 3

3

)
− 5

4

(
n+ 2

2

)
+

39

16
(n+ 1)− 9

4
+

1

16
(−1)n(n + 1)− 1

4
(−1)n

=
1

48

(
2n3 − 18n2 + 49n− 39

)
+

1

16
(−1)n(n− 3).

This problem was suggested by A. Postnikov, private communication, 2007.

17. (b) See Exercise 3.62 and I. M. Gessel and R. Stanley, J. Combinatorial Theory,
Ser. A 24 (1978), 24–33. The polynomial Fn(x) is called a Stirling polynomial.

21. See P. Tetali, J. Combinatorial Theory Ser. B 72 (1998), 157–159. For a connec-
tion with radar tracking, see T. Khovanova, Unique tournaments and radar tracking,
arXiv:0712.1621.

23. (b) This remarkable result is due to J. H. Conway, Eureka 46 (1986), 5–18, and §5.11
in Open Problems in Communication and Computation (T. M. Cover and B.
Gopinath, eds.), Springer-Verlag, New York, 1987 (pp. 173–188). For additional
references, see item A005150 of The On-Line Encyclopedia of Integer Sequences.
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(c) F (x) = x71 − x69 − 2x68 − x67 + 2x66 + x64 − x63 − x62 − x61 − x60 − x59 + 2x58 +
5x57 +3x56− 2x55− 10x54− 3x53− 2x52 +6x51 +6x50 +x49 +9x48− 3x47− 7x46−
8x45−8x44 +10x43 +6x42 +8x41−5x40−12x39 +7x38−7x37 +7x36 +x35−3x34 +
10x33 + x32 − 6x31 − 2x30 − 10x29 − 3x28 + 2x27 + 9x26 − 3x25 + 14x24 − 8x23 −
7x21 + x20 − 3x19 − 4x18 − 10x17 − 7x16 + 12x15 + 7x14 + 2x13 − 12x12 − 4x11 −
2x10 − 5x9 + x7 − 7x6 + 7x5 − 4x4 + 12x3 − 6x2 + 3x− 6.

(d) For any initial sequence the generating function F (x) is still rational, though now
the behavior is more complicated and more difficult to analyze. See the references
in (b).

24. (a) Suppose that a0, a1, . . . is an infinite sequence of integers satisfying 0 ≤ ai ≤ q−1.
Let P ′ be the Newton polytope of f , i.e., the convex hull in Rk of the exponent
vectors of monomials appearing in f , and let P be the convex hull of P ′ and the
origin. If c > 0, then write cP = {cv : v ∈ P}. Set S = (q − 1)P ∩ Nk and
rm =

∑m
i=0 aiq

i.

Suppose that f(x)rm =
∑

γ cm,γx
γ . We set f(x)r−1 = 1. Let FSq be the set of all

functions F : S → Fq. We will index our matrices and vectors by elements of FSq
(in some order). Set

Rm = {0, 1, . . . , qm+1 − 1}k.
For m ≥ −1, define a column vector ψm by letting ψm(F ) (the coordinate of ψm
indexed by F ∈ FSq ) be the number of vectors γ ∈ Rm such that for all δ ∈ S we
have cm,γ+qm+1δ = F (δ). Note that by the definition of S we have cm,γ+qm+1δ = 0
if δ 6∈ S. (This is the crucial finiteness condition that allows our matrices and
vectors to have a fixed finite size.) Note also that given m, every point η in Nk

can be written uniquely as η = γ + qm+1δ for γ ∈ Rm+1 and δ in Nk.

For 0 ≤ i ≤ q − 1 define a matrix Φi with rows and columns indexed by FSq as
follows. Let F,G ∈ FSq . Set

g(x) = f(x)i
∑

β∈S
G(β)xβ

=
∑

γ

dγx
γ ∈ Fq[x].

Define the (F,G)-entry (Φi)FG of Φi to be the number of vectors γ ∈ R0 =
{0, 1, . . . , q− 1}k such that for all δ ∈ S we have dγ+qδ = F (δ). A straightforward
computation shows that

Φamψm−1 = ψm, m ≥ 0. (4.62)

Let u = uα be the row vector for which u(F ) is the number of values of F equal
to α, and let n = a0 + a1q + · · ·+ arq

r as in the statement of the theorem. Then
it follows from equation (4.62) that

Nα(n) = uΦarΦar−1 · · ·Φa0ψ−1,

completing the proof.
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This proof is an adaptation of an argument of Y. Moshe, Discrete Math. 297
(2005), 91–103 (Theorem 1) and appears in T. Amdeberhan and R. Stanley, Poly-
nomial coefficient enumeration, preprint dated 3 February 2008;

〈http://math.mit.edu/∼rstan/papers/coef.pdf〉 (Theorem 2.1).

25. See T. Amdeberhan and R. Stanley, ibid. (Theorem 2.8), where the result is given in
the slightly more general context of the polynomial f(x)q

n−c for c ∈ P.

26. (a) The case n = 5 was obtained by G. Bagnera, Ann. di Mat. pura e applicata (3) 1
(1898), 137–228. The case n = 6 is due to M. F. Newman, E. A. O’Brien, and M.
R. Vaughan-Lee, J. Algebra 278 (2004), 283–401. The case n = 7 is due to E. A.
O’Brien and M. R. Vaughan-Lee, J. Algebra 292 (2005), 243–258. An interesting
book on enumerating groups of order n is S. R. Blackburn, P. M. Neumann, and
G. Venkataraman, Enumeration of Finite Groups, Cambridge University Press,
Cambridge, 2007.

(b) The lower bound gn(p) ≥ p
2
27
n2(n−6) is due to G. Higman, Proc. London Math.

Soc. (3) 10 (1960), 24–30. The upper bound with the error term O(n8/3) in the
exponent is due to C. C. Sims, Proc. London Math. Soc. (3) 15 (1965), 151-
166. The improved error term O(n5/2) is due to M. F. Newman and C. Seeley,
appearing in Blackburn, et al., ibid. (Chapter 5).

(c) This is a conjecture of G. Higman, ibid. (page 24). See also Higman, Proc. London
Math. Soc. 10 (1960), 566–582.

27. (a) Follows from J. Backelin, Comptes Rendus Acad. Sc. Paris 287(A) (1978), 843–
846.

(b) The first example was given by J. B. Shearer, J. Algebra 62 (1980), 228–231. A
nice survey of this subject is given by J.-E. Roos, in 18th Scandanavian Congress of
Mathematicians (E. Balslev, ed.), Progress in Math., vol. 11, Birkhäuser, Boston,
1981, pp. 441–468.

(c) Using Theorems 4 and 6 of D. E. Knuth, Pacific J. Math. 34 (1970), 709–727,
one can give a bijection between words in M of length n and symmetric q × q
N-matrices whose entries sum to n. It follows that

F (x) =
1

(1− x)q(1− x2)(
q
2)
.

See Corollary 7.13.6 and Section A1.1 (Appendix 1) of Chapter 7.

(d) This result is a direct consequence of a result of Hilbert-Serre on the rationality
of the Hilbert series of commutative finitely-generated graded algebras. See, for
example, M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Al-
gebra, Addison-Wesley, Reading, Mass., 1969 (Theorem 11.1); W. Bruns and J.
Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993
(Chapter 4); and D. Eisenbud, Commutative Algebra with a View Toward Alge-
braic Geometry, Springer-Verlag, New York, 1995 (Exercise 10.12).
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28. (a) We have

Tr(x,y) = tr
∑

Aα1Bβ1 · · ·AαrBβrxαyβ

= tr
(∑

Aα1xα1
1

)(∑
Bβ1yβ1

1

)
· · ·
(∑

Aαrxαr
r

)(∑
Bβryβr

r

)

= tr(1−Ax1)
−1(1− By1)

−1 · · · (1−Axr)−1(1− Byr)−1.

Now for any invertible matrix M , the entries of M−1 are rational functions (with
denominator detM) of the entries of M . Hence the entries of (1−Ax1)

−1 · · · (1−
Byr)

−1 are rational functions of x and y with coefficients in C, so the trace has
the same property. The denominator of Tr(x,y) can be taken to be

det(1− Ax1)(1−By1) · · · (1−Axr)(1−Byr)

=

r∏

i=1

det(1− Axi) ·
r∏

j=1

det(1− Byj).

(b)

(1− Ax)(1− By) =

[
1− y + xy x− y
−x+ y + xy 1 + xy

]

⇒ T1(x, y) =
2− y + xy

(1 + x2)(1− y + y2)
.

29. True. The generating function
∑

n≥0(A
n)rsλ

n is rational by Theorem 4.7.2. Hence
(An)rs has the form of Theorem 4.1.1(iii), viz.,

(An)rs =

k∑

m=1

Pm(n)γnm, n≫ 0.

The same is true of B and C and hence of (AnBnCn)ij by the definition of matrix
multiplication, so the proof follows.

30. Answer:
1 + xyz − x2yzw − xy2zw

(1− x2z)(1− xw)(1− y2z)(1− yw)
.

31. Let S = {β ∈ Zm : there exist α ∈ Nm and n ∈ P such that Φα = nβ and 0 ≤ αi <
n}. Clearly S is finite. For each β ∈ S, define Fβ =

∑
yαxn, summed over all solutions

α ∈ Nm and n ∈ P to Φα = nβ and αi < n. Now
∑

n≥0 f(n)xn =
∑

β∈S Fβ(1, x)
(where 1 = (1, . . . , 1) ∈ Nm), and the proof follows from Theorem 4.5.11.

32. For S ⊆
(
[m]
2

)
, let ES denote the set of N-solutions α to equation (4.10) that also satisfy

αi = αj if {i, j} ∈ S. By Theorem 4.5.11 the generating function ES(x) is rational,
while by the Principle of Inclusion-Exclusion

E∗(x) =
∑

S

(−1)#SES(x), (4.63)
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and the proof follows.

Note. For practical computation, one should replace S ⊆
(
[m]
2

)
by π ∈ Πm and should

replace equation (4.63) by Möbius inversion on Πm.

34. See Proposition 8.3 of Stanley [4.53].

35. (a) Given β ∈ Zr, let S = {i : βi < 0}. Now if γ = (γ1, . . . , γr), then define
γS = (γ′1, . . . , γ

′
r) where γ′i = γi if i 6∈ S and γ′i = −γi if i ∈ S. Let F S be the

monoid of all N-solutions (α,γ) to Φα = γS. By Theorem 4.5.11, the generating
function

F S(x,y) =
∑

(α,γ)∈FS

xαyγ

is rational. Let βS = (β ′
1, . . . , β

′
r). Then

Eβ(x) =
1

β ′
1! · · ·β ′

r!

∂β
′
1

∂y
β′
1

1

· · · ∂
β′

r

∂y
β′

r
r

F S(x,y)

∣∣∣∣∣
y=0

, (4.64)

so Eβ(x) is rational. Moreover, if α ∈ CF(E) then (α, 0) ∈ CF(F S). The factors
1−xα in the denominator of F S(x,y) are unaffected by the partial differentiation
in equation (4.64), while all other factor disappear upon setting y = 0. Hence
D(x) is a denominator of Eβ(x). To see that it is the least denominator (provided
Eβ 6= ∅), argue as in the proof of Theorem 4.5.11.

(b) Answer: β = 0,±1.

(c) Let αi = pi/qi for integers pi ≥ 0 and qi > 0. Let ℓ be the least common multiple
of q1, q2, . . . , qm. Let Φ = [γ1, . . . ,γm] where γi is a column vector of length r, and
define γ′

i
= (ℓ/qi)γi. Let Φ′ = [γ′

1
, . . . ,γ′

m
]. For any vector ν = (ν1, . . . , νm) ∈ Zm

satisfying 0 ≤ νi < qi, let E ′
(ν) be the set of all N-solutions δ to Φ′(δ) = 0 such

that δi ≡ νi (mod qi). If E ′ denotes the set of all N-solutions δ to Φ′(δ) = 0, then
it follows that E ′ =

⋃· νE
′
(ν) (disjoint union). Hence by Theorem 4.5.14,

E
′
(x) = ±E ′(1/x) = ±

∑

ν

E ′
(ν)(1/x). (4.65)

Now any monomial xε appearing in the expansion of E ′
(ν)(1/x) about the origin

satisfies εi ≡ −νi (mod q′i). It follows from equation (4.65) that E ′
(ν)(1/x) =

±E ′
(ν̄)(x), where ν̄i = qi − νi for νi 6= 0 and ν̄i = νi for νi = 0, and where

E
′
(µ) = E ′

(µ) ∩ E
′
.

Now let σi be the least nonnegative residue of pi modulo qi, and let σ = (σ1, . . . , σm).
Define an affine transformation φ : Rm → Rm by the condition

φ(δ) = (δ1/q1, . . . , δm/qm) + α.

One can check that φ defines a bijection between E ′
(σ) and Eβ and between E

′
(σ)

and Eβ, from which the proof follows.
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This proof is patterned after Theorem 3.5 of R. Stanley, in Proc. Symp. Pure Math.
(D. K. Ray-Chaudhuri, ed.), vol. 34, American Math. Society, 1979, pp. 345–355.
This result can also be deduced from Theorem 10.2 of [4.53], as can many other
results concerning inhomogeneoous linear equations. A further proof is implicit
in [4.57] (see Theorem 3.2 and Corollary 4.3).

(d) See Corollary 4.3 of [4.57].

36. (a) No. The simplest example is the simplex σ in R3 with vertices (0, 0, 0), (1, 1, 0),
(1, 0, 1), and (0, 1, 1). Note that σ has no additional integer points, so σ itself is
the only integer triangulation of σ. But σ is not primitive, e.g., since

det




0 1 1
1 0 1
1 1 0


 = 2 > 1.

(b) If σ is a primitive d-simplex, then it is not hard to see that i(σ, n) =
(
n+d
d

)
, so

ī(σ, n) = (−1)d
(−n+d

d

)
=
(
n−1
d

)
. Since P is the disjoint union of the interior of the

faces of Γ, we get

i(P, n) =
∑

j≥0

fj

(
n− 1

j

)
.

An elegant way to state this formula is ∆ji(P, 1) = fj , where ∆ denotes the first
difference operator.

37. (b) This remarkable result is due to M. Brion, Ann. Sci. École Norm. Sup. (4) 21
(1988), 653–663. Many subsequent proofs and expositions have been given, such
as M. Beck, C. Haase, and F. Sottile, Math. Intell. 31 (2009), 9–17.

38. This result is due to S. Chen, N. Li, and S. V. Sam, Generalized Ehrhart polynomials,
arXiv:1002.3658. Their result generalizes the conjecture of Exercise 4.12 of the first
edition of this book. A conjectured multivariate generalization is due to Ehrhart [4.14,
p. 139].

39. (a) This result was conjectured by A. Weil as part of his famous “Weil conjectures.”
It was first proved by B. M. Dwork, Amer. J. Math. 82 (1960), 631–648, and a
highly readable exposition appears in Chapter V of N. Koblitz, p-adic Numbers, p-
adic Analysis, and Zeta-Functions, second ed., Springer-Verlag, New York, 1984.
The entire Weil conjectures were subsequently proved by P. R. Deligne (in two
different ways) and later by G. Laumon and K. S. Kedlaya (independently).

(b) This exercise is a result of J.-I. Igusa, J. Reine Angew. Math. 278/279 (1975),
307–321, for the case k = 1. A simpler proof was later given by Igusa in Amer.
J. Math. 99 (1977), 393–417 (appendix). A proof for general k was given by
D. Meuser, Math. Ann. 256 (1981), 303–310, by adapting Igusa’s methods. For
another proof, see J. Denef, Lectures on Forms of Higher Degree, Springer-Verlag,
Berlin/Heidelberg/New York, 1978.
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40. (a) Let Dw denote the set of all factors of w belonging to L. (We consider two factors
u and v different if they start or end at different positions in w, even if u = v as
elements of X∗.) Clearly for fixed w,

∑

T⊆Dw

(∏

v∈T
sv

)
=
∏

v∈L
(1 + sv)

mv(w).

Hence if we set each sv = tv − 1 in equation (4.52) we obtain the equivalent
formula

∑

u∈X∗

∑

T⊆Dw

(∏

v∈T
sv

)
= (1− x1 − · · · − xn − C(x, s))−1 . (4.66)

Now given w ∈ X∗ and T ⊆ Dw, there is a unique factorization w = v1 · · · vk such
that either

i. vi ∈ X and vi does not belong to one of the factors in T , or

ii. vi is the first component of some L-cluster (vi, µ, ν) where the components of
µ consist of all factors of vi contained in Dw.

Moreover, ∏

v∈T
sv =

∏

i

∏

v∈L
smv(µ)
v ,

where i ranges over all vi satisfying (ii), and where µ is then given by (ii). It
follows that when the right-hand side of equation (4.66) is expanded as an element
of C[[tv : v ∈ L]]〈〈X〉〉, it coincides with the left-hand side of (4.66).

This result is due to I. P. Goulden and D. M. Jackson, J. London Math. Soc. (2)
20 (1979), 567–576, and also appears in [3.32, Ch. 2.8]. A special case was proved
by D. Zeilberger, Discrete Math. 34 (1981), 89–91. (The precise hypotheses used
in this paper are not clearly stated.)

(c) Let Cv(x, t) consist of those terms of C(x, t) corresponding to a cluster (w, µ, ν)
such that the last component of µ is v. Hence C(x, t) =

∑
v∈L Cv(x, t). By

equation (4.52) or (4.66), it suffices to show that each Cv is rational. An easy
combinatorial argument expresses Cv as a linear combination of the Cu’s and 1
with coefficients equal to polynomials in the xi’s and tv’s. Solving this system of
linear equations by Cramer’s rule (it being easily seen on combinatorial grounds
that a unique solution exists) expresses Cv as a rational function. (Another solu-
tion can be given using the transfer-matrix method.) An explicit expression for
C(x, t) obtained in this way appears in Goulden and Jackson, ibid., Prop. 3.2, and
in [3.32, Lem. 2.8.10]. See also L. J. Guibas and A. M. Odlyzko, J. Combinatorial
Theory, Ser. A 30 (1981), 193–208.

(d) The right-hand side of equation (4.53) is equal to (1− nx + xℓAw(x)−1)−1. The
proof follows from analyzing the precise linear equation obtained in the proof of
(c). This result appears in L. J. Guibas and A. M. Odlyzko, ibid.

41. (b) E. Lucas, Théorie des nombres, Gauthier-Villars, 1891.
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(c) E. Landau, Naturwissenschaftliche Wochenschrift, August 2, 1896.

(d) This result and many more on this topic, such as the determination of B4(n) and
similar results for other chess pieces, can be found in V. Kotěšovec, Non-attacking
chess pieces, second ed., 2010,

〈http://web.telecom.cz/vaclav.kotesovec/math.htm〉.

(e) Identify an n × n chessboard with the set [0, n − 1]2. Then k!Bk(n) is equal to
the number of vectors v = (α1, . . . , αk, β1, . . . , βk, γ) ∈ Z2k+1 satisfying

γ = n− 1 (4.67)

0 ≤ αi ≤ γ, 0 ≤ βi ≤ γ (4.68)

i 6= j ⇒ [(αi 6= αj] & (βi 6= βj) & (αi − βi 6= αj − βj) &

αi + βi 6= αj + βj)]. (4.69)

Label the r = 4
(
k
2

)
inequalities of (4.69), say I1, . . . , Ir. Let Īi denote the negation

of Ii, that is, the equality obtained from Ii by changing 6= to =. Given S ⊆ [r],
let fS(n) denote the number of vectors v satisfying (4.67), (4.68), and Ii for i ∈ S.
By the Principle of Inclusion-Exclusion,

k!Bk(n) =
∑

S

(−1)#SfS(n). (4.70)

Now by Theorem 4.5.11 the generating functions FS =
∑
xα1

1 · · ·xαk
k y

β1
1 · · · yβk

k x
γ

are rational, where the sum is over all vectors v satisfying (4.68) and Īi for i ∈ S.
But

∑
fS(n)xn−1 is obtained from FS by setting each xi = yj = 1, so

∑
fS(n)xn

is rational. It then follows from (4.70) that
∑
Bk(n)xn is rational.

Note that the basic idea of the proof is same as in Exercise 4.32; namely, replace
non-equalities by equalities and use Inclusion-Exclusion. For many more results
of this nature, see S. Chaiken, C. R. H. Hanusa, and T. Zaslavsky, Mathematical
analysis of a q-queens problem, preprint dated 19 May 2011.

42. The explicit formula is due to C. E. Arshon, Reshenie odnŏı kombinatorornŏı zadachi,
Math. Proveschchenie 8 (1936), 24–29, from which it is clear that Ak(n) has the prop-
erties stated in (b). A polytopal approach to nonattacking bishops was developed by
S. Chaiken, C. R. H. Hanusa, and T. Zaslavsky, ibid. Proofs can also be given using
the theory of Ferrers boards of Section 2.4.

43. We want to count triples (a, b, c) ∈ P3 satisfying a ≤ b ≤ c, a+b > c, and a+b+c = n.
Every such triple can be written uniquely in the form

(a, b, c) = α(0, 1, 1) + β(1, 1, 1) + γ(1, 1, 2) + (1, 1, 1),

where α, β, γ ∈ N; namely,

α = b− a, β = a+ b− c− 1, γ = c− b.
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Moreover, n − 3 = 2α + 3β + 4γ. Conversely, any triple (α, β, γ) ∈ N3 yields a valid
triple (a, b, c). Hence t(n) is equal to the number of triples (α, β, γ) ∈ N3 satisfying
2α+ 3β + 4γ = n− 3, so

∑

n≥3

t(n)xn =
x3

(1− x2)(1− x3)(1− x4)
.

From the viewpoint of Section 4.5, we obtained such a simple answer because the
monoid E of N-solutions (a, b, c) to a ≤ b ≤ c and a + b ≥ c is a free (commutative)
monoid (with generators (0, 1, 1), (1, 1, 1), and (1, 1, 2)).

Equivalent results (with more complicated proofs) are given by J. H. Jordan, R. Walch,
and R. J. Wisner, Notices Amer. Math. Soc. 24 (1977), A-450, and G. E. Andrews,
Amer. Math. Monthly 86 (1979), 477–478. For some generalizations, see G. E. An-
drews, Ann. Combinatorics 4 (2000), 327–338, and M. Beck, I. M. Gessel, S. Lee, and
C. D. Savage, Ramanujan J. 23 (2010), 355–369.

44. A simple combinatorial argument shows that

Nkr(n + 1) = kNkr(n)− (k − 1)Nkr(n− r + 1), n ≥ r. (4.71)

It follows from Theorem 4.1.1 and Proposition 4.2.2(ii) that Fkr(x) = Pkr(x)/(1−kx+
(k − 1)xr), where Pkr(x) is a polynomial of degree r (since the recurrence (4.71) fails
for n = r − 1). In order to satisfy the initial conditions Nkr(0) = 1, Nkr(n) = kr if
1 ≤ n ≤ r − 1, Nkr(r) = kr − k, we must have Pkr(x) = 1− xr. Hence

Fkr(x) =
1− xr

1− kx+ (k − 1)xr
.

If we reduce Fkr(x) to lowest terms then we obtain

Fkr(x) =
1 + x+ · · ·+ xr−1

1− (k − 1)x− (k − 1)x2 − · · · − (k − 1)xr−1
.

This formula can be obtained by proving directly that

Nkr(n+ 1) = (k − 1)[Nkr(n) +Nkr(n− 1) + · · ·+Nkr(n− r + 2)],

but then it is somewhat more difficult to obtain the correct numerator.

45. (a) (I. M. Gessel and R. A. Indik, A recurrence associated with extremal problems,
preprint, 1989) Let q ∈ P, p ∈ Z with (p, q) = 1, and i ∈ N. First one shows that
the two classes of functions

f(n) = i+

n∑

j=1

⌈
pj

q

⌉
, where n ≥ 2iq + q,

f(n) = −i+ 1 +

n∑

j=1

⌈
pj + 1

q

⌉
, where n ≥ 2iq + 2q,

satisfy the recurrence (4.54). Then one shows that for any m ∈ P and k ∈ Z, one
of the above functions satisfies f(m) = k.
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(b) The most interesting case is when R(n) = P (n)/Q(n), where

P (n) = xd + ad−1x
d−1 + ad−2x

d−2 + · · ·+ a0

Q(n) = xd + bd−2x
d−2 + · · ·+ b0,

where the coefficients are integers and ad−1 > 0. (Of course we should assume that
Q(n) 6= 0 for any integer n ≥ m.) In this case f(n) = O(na), where a = ad−1, and
we can ask whether f(n) is a quasipolynomial. Experimental evidence suggests
that the answer is negative in general, although in many particular instances the
answer is afirmative. Gessel has shown that in all cases the function ∆af(n) is
bounded. A further reference is Z. Füredi and A. Kündgen, J. Graph Theory 40
(2002), 195–225 (Theorem 7).

46. (a) A simple computation shows that

f(n) =
5i

8
(αn − βn),

where α = 1
5
(3− 4i) and β = 1

5
(3 + 4i). Since |α| = |β| = 1, we have

|f(n)| ≤ 5

8
(|α|n + |β|n) =

5

4
.

The easiest way to show f(n) 6= ±5/4 is to observe that the recurrence (4.55)
implies that the denominator of f(n) is a power of 5.

(b) Since f is integer-valued and bounded, there are only many finitely many different
sequences f(n+1), f(n+2), . . . , f(n+d). Thus for some r < s we have f(r+ i) =
f(s+ i) for 1 ≤ i ≤ d; and it follows that f has period s− r.

(c) This result was conjectured by G. Pólya in 1916 and proved by F. Carlson in 1921.
Subsequent proofs and generalizations were given by Pólya and are surveyed in
Jahrber. Deutsch. Math. Verein. 31 (1922), 107–115; reprinted in George Pólya:
Collected Papers, vol. 1 (G. Pólya and R. P. Boas, eds.), M.I.T. Press, 1974,
pp. 192–198. For more recent work in this area, see the commentary on pp. 779–
780 of the Collected Papers.

47. See A. M. Garsia and I. M. Gessel, Advances in Math. 31 (1979), 288–305 (Remark 22).
There is now a large literature on the subject of vector partitions. See for example B.
Sturmfels, J. Combin. Theory Ser. A 72 (1995), 302–309; M. Brion and M. Vergne, J.
Amer. Math. Soc. 1 (1997), 797–833; A. Szenes and M. Vergne, Adv. in Appl. Math.
3) (2003), 295–342; W. Baldoni and M. Vergne, Transformation Groups 13 (2009),
447–469.

48. (a) Several proofs are known of this result. One [4.56, Thm. 2.1] uses the result
(H. Bruggesser and P. Mani, Math. Scand. 29 (1971), 197–205) that the bound-
ary complex of a convex polytope is shellable. The second proof (an immediate
generalization of [4.54, Prop. 4.2]) shows that a certain commutative ring RP as-
sociated with P is Cohen-Macaulay. A geometric proof was given by U. Betke
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and P. McMullen, Monatshefte für Math. 99 (1985), 253–265 (a consequence of
Theorem 1, Theorem 2, and the remark at the bottom of page 257 that h(K, t)
has nonnegative coefficients). Further references include M. Beck and F. Sottile,
Europ. J. Combin. 28 (2007), 403–409 (reproduced in M. Beck and S. Robins
[4.4, Thm. 3.12]), and A. Stapledon, Ph.D. thesis, University of Michigan, 2009.

(b) See R. Stanley, in Commutative Algebra and Combinatorics (M. Nagata and
H. Matsumura, eds.), Advanced Studies in Pure Mathematics 11, Kinokuniya,
Tokyo, and North-Holland, Amsterdam/New York, 1987, pp. 187–213 (Theo-
rem 4.4). The methods discussed in U. Betke, Ann. Discrete Math. 20 (1984),
61–64, are also applicable.

(c) This result was originally proved using commutative algebra by R. Stanley, Eu-
rop. J. Combinatorics 14 (1993), 251–258. A geometric proof was given by A.
Stapledon, Ph.D. thesis, University of Michigan, 2009, and arXiv:0807.3542.

49. Equation (4.56) is due to T. Hibi, Discrete Math. 83 (1990), 119–121, while (4.57) is a
result of R. Stanley, Europ. J. Combinatorics 14 (1993), 251–258. Both these proofs
were based on commutative algebra. Subsequently geometric proofs were given by A.
Stapledon, Trans. Amer. Math. Soc. 361 (2009), 5615–5626. Stapledon gives a small
improvement of Hibi’s inequality and some additional inequalities.

50. Let

F (x) =
∑

n≥0

i(P, n)xn =

∑d
j=0 aix

i

(1− x)d+1
.

By the reciprocity theorem for Ehrhart polynomials (Theorem 4.6.9) we have

∑

n≥0

i(∂P, n)xn = F (x)− (−1)d+1F (1/x)

=

∑d+1
j=0 aj(x

j − xd+1−j)

(1− x)d+1
,

from which the proof follows easily. For further information, including a reference to
a proof that hi ≥ 0, see Exercise 4.48(b).

51. (a) We have that i(n) is equal to the number of N-solutions to x1 + · · · + xr ≤ n,
y1+· · ·+ys ≤ n. There are

(
n+r
r

)
ways to choose the xi’s and

(
n+s
s

)
ways to choose

the yi’s, so i(n) =
(
n+r
r

)(
n+s
s

)
=
((
n+1
r

)) ((
n+1
s

))
. Hence by Exercise 3.169(b) we

get

F (x) =
∑

n≥1

((n
r

))((n
s

))
xn−1

=

∑r
k=0

(
r
k

)(
s
k

)
xk

(1− x)r+s+1
.
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The volume of P is by Proposition 4.6.13

V (P) =
1

(r + s)!

r+s∑

k=0

(
r

k

)(
s

k

)
=

1

r!s!
.

There are (r + 1)(s + 1) vertices—all vectors (x1, . . . , xr, y1, . . . , ys) ∈ Nr+s such
that x1 + · · ·+ xr ≤ 1 and y1 + · · ·+ ys ≤ 1.

(b) Prs = r + s. See Exercise 4.56 for a generalization to any finite poset P .

53. (a) For any d, the matrix



1 2 · · · d
d+ 1 d+ 2 · · · 2d

...
d2 − d+ 1 d2 − d+ 2 · · · d2




is an antimagic square.

(b) Let M = (mij) be antimagic. Row and column permutations do not affect the
antimagic property, so assume that m11 is the minimal entry of M . Define ai =
mi1 − m11 ∈ N and bj = m1j ∈ N. The antimagic properties implies mij =
mi1 +m1j −m11 = ai + bj .

(c) To get an antimagic square M of index n, choose ai and bj in (b) so that
∑
ai +∑

bj = n. This can be done in
(
2d+n−1

2d−1

)
ways. Since the only linear relations

holding among the Ri’s and Cj’s are scalar multiples of
∑
Ri =

∑
Cj, it follows

that we get each M exactly once if we subtract from
(
2d+n−1

2d−1

)
the number of

solutions to
∑
ai +

∑
bj = n with ai ∈ P and bj ∈ N. It follows that the desired

answer is
(
2d+n−1

2d−1

)
−
(
d+n−1
2d−1

)
. (Note the similarity to Exercise 2.15(b).)

(d) The vertices are the 2d matrices Ri and Cj ; this result is essentially a restatement
of (b). An integer point in nPd is just a d×d antimagic square of index n. Hence
by (c),

i(Pd, n) =

(
2d+ n− 1

2d− 1

)
−
(
d+ n− 1

2d− 1

)
.

(e) By (d) we have

∑

n≥0

i(Pd, n)xn =
1

(1− x)2d
− xd

(1− x)2d

=
1 + x+ · · ·+ xd−1

(1− x)2d−1
,

whence A(Pd, x) = 1 + x+ · · ·+ xd−1 and ν(Pd) = d/(2d− 2)!.

54. (a) It follows from equation (4.29) that the average of the zeros of Hn(r) is −n/2.
Since degHn(r) = (n − 1)2, we get that the sum of the zeros is −1

2
n(n − 1)2/2,

and the proof follows. This result was observed empirically by R. Stanley and
proved by B. Osserman and F. Liu (private communication dated 16 November
2010).
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56. (a) The vertices are the characteristic vectors χA of antichains A of P ; that is, χA =
(ε1, . . . , εp), where

εi =

{
1, if xi ∈ A,
0, if xi 6∈ A.

(b) Let O(P ) be the order polytope of Example 4.6.17. Define a map f : O(P ) →
C(P ) by f(ε1, . . . , εp) = (δ1, . . . , δp), where

δi = min{εi − εj : xi covers xj in P}.

Then f is a bijection (and is continuous and piecewise-linear) with inverse

εi = max{δj1 + · · ·+ δjk : tj1 < · · · < tjk = ti}.

Moreover, the image of O(P ) ∩ ( 1
n
Z)p under f is C(P ) ∩ ( 1

n
Z)p, and the proof

follows from Example 4.6.17.

Note. Essentially the same bijection f is given in the solution to Exercise 3.143(a).
Indeed, it is clear that C(P ) depends only on Com(P ), so any property of C(P )
(such as its Ehrhart polynomial) depends only on Com(P ).

The polytope C(P ) is called the chain polytope of P . For more information on
chain polytopes, order polytopes, and their connections, see R. Stanley, Discrete
Comput. Geom. 1 (1986), 9–23. For a generalization, see F. Ardila, T. Bliem, and
D. Salazar, Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann polytopes
as marked poset polytopes, arXiv:1008.2365.

(c) Choose P to be the zigzag poset Zn of Exercise 3.66. Then C(Zn) = Cn,2. Hence
by (b) and Proposition 4.6.13, ν(Cn) is the leading coefficient of ΩZn(m). Then
by Section 3.12 we have ν(Cn,2) = e(Zn)/n!. But e(Zn) is the number En of
alternating permutations in Sn (see Exercise 3.66(c)), so

∑

n≥0

e(Zn)
xn

n!
= tanx+ sec x.

A more ad hoc determination of ν(Cn,2) is given by I. G. Macdonald and R. B.
Nelsen (independently), Amer. Math. Monthly 86 (1979), 396 (problem proposed
by R. Stanley), and R. Stanley, SIAM Review 27 (1985), 579–580 (problem pro-
posed by E. E. Doberkat). For an application to tridiagonal matrices, see P. Dia-
conis and P. M. Wood, Random doubly stochastic tridiagonal matrices, preprint.

(d) Using the integration method of Macdonald and Nelsen, ibid., the following result
can be proved. Define polynomials fn(a, b) by

f0(a, b) = 1, fn(0, b) = 0 for n > 0

∂

∂a
fn(a, b) = fn−1(b− a, 1− a).
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For instance,

f1(a, b) = a

f2(a, b) =
1

2
(2ab− a2)

f3(a, b) =
1

6
(a3 − 3a2 − 3ab2 + 6ab).

Then ν(Cn,3) = fn(1, 1). A “nice” formula or generating function is not known
for fn(a, b) or Vn. Similar results hold for ν(Cn,k) for k > 3.

(e) Let P be the poset with elements t1, . . . , tn satisfying t1 < t2 < · · · < tk, tk+1 <
tk+2 < · · · < tn, and tk+i < ti+1 for 1 ≤ i ≤ n−k, except that when n = 2k we omit
the relation t2k < tk+1. The equations defining C(P ) are exactly the same as those
defining Cn,k, so ν(Cn,k) = e(P )/n!. If we add a 0̂ to P and remove successively
2k − n − 1 1̂’s (where when n = 2k we add a 1̂), we don’t affect e(P ) and we
convert P to 2×(n − k + 1). It is easy to see that e(2×(n − k + 1)) = Cn−k+1

(see Exercise 6.19(aaa)), and the proof follows.

57. By Exercise 4.56(a), the set of vertices of the polytope C(P ) is a proper subset of
the set of vertices of C(Q), so vol(C(P )) < vol(C(Q)). By Exercise 4.56(b) we have
vol(C(P )) = e(P )/p! and similarly for vol(C(Q)), so the proof follows. No other proof
of this “obvious” inequality (communicated by P. Winkler) is known.

58. (a) This result was conjectured by L. D. Geissinger, in Proc. Third Caribbean Confer-
ence on Combinatorics and Computing, University of the West Indies, Cave Hill,
Barbados, pp. 125–133, and proved by H. Dobbertin, Order 2 (1985), 193–198.

(c) To compute i(V(p), n) choose f(1), f(2), . . . , f(p) in turn so that 0 ≤ f(1)+f(2)+
· · · + f(j) ≤ n. There are exactly n + 1 choices for each f(j), so i(V(P ), n) =
(n + 1)p.

(d) Let 0 ≤ k ≤ n. There are i(V(P ), k)− i(V(P ), k − 1) maps f : P → Z for which
every order ideal sum is nonnegative and the maximum such sum is exactly k.
Given such an f , there are then i(V(Q), n − k) choices for g : Q → Z for which
every order ideal sum is nonnegative and at most n− k. It follows that

i(V(P +Q), n) =

n∑

k=0

(i(V(P ), k)− i(V(P ), k − 1))i(V(Q), n− k).

Hence
(

(1− x)
∑

n≥0

i(V(P ), n)xn

)(∑

n≥0

i(V(Q), n)xn

)
=

∑

n≥0

i(V(P +Q), n)xn

=
A(V(P +Q), x)

(1− x)p+q+1
,

where p = #P and q = #Q. The result now follows from
∑

n≥0 i(V(P ), n)xn =
A(V(P ), x)/(1− x)p+1 and

∑
n≥0 i(V(Q), n)xn = A(V(Q), x)/(1− x)q+1.
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(e) In view of (a), we need to show that the only integer points of V(P ) are the
vertices. This is a straightforward argument.

(f) It follows from Corollary 4.2.4(ii) and the reciprocity theorem for order polyno-
mials (Theorem 4.6.9) that the quantity p + 1 − degA(V(P ), x) is equal to the
least d > 0 for which there is a map f : P → Q such that every order ideal sum
lies in the open interval (0, 1) and df(t) ∈ Z for all t ∈ P . Since every subset of
the set of m minimal elements t1, . . . , tm is an order ideal, we have f(ti) > 0 and
f(t1) + · · ·+ f(tm) < 1. Hence the minimal d for which df(ti) ∈ Z is d = m+ 1,
obtained by taking each f(ti) = 1/(m + 1). We can extend f to all of P by
defining f(t) = 0 if t is not minimal, so the proof follows.

(g) Let f(t) = 1/(m + 1) for each minimal t ∈ P . By the proof of (f) and by
Corollary 4.2.4(iii), we have that xp−mA(V(P ), 1/x) = A(V(P ), x) if and only if
there is a unique extension of f to P for which each order ideal sum lies in (0, 1)
and for which (m + 1)f(t) ∈ Z for all t ∈ P . It is not difficult to show that
this condition holds if and only if every connected component of P has a unique
minimal element (in which case f(t) = 0 for all nonminimal t ∈ P ).

59. This result was conjectured by M. Beck, J. A. De Loera, M. Develin, J. Pfeifle, and
R. Stanley, Contemp. Math. 374 (2005), 15–36 (Conjecture 1.5) and proved by F.
Liu, J. Combinatorial Theory, Ser. A 111 (2005), 111–127. Liu subsequently greatly
generalized this result, culminating in the paper Higher integrality conditions, volumes
and Ehrhart polynomials, Advances in Math. 226 (2011), 3467–3494.

60. The tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, r), r ≥ 1, has four integer
points and volume going to∞, so for sufficiently large r the Ehrhart polynomial must
have a negative coefficient. In fact, r = 13 yields 13

6
n3 + n2 − 1

6
n+ 1.

61. (a) The facets of Pd are given by the 2d inequalities

±x1 ± x2 ± · · · ± xd ≤ 1.

Hence i(Pd, n) is the number of integer solutions to

|x1|+ |x2|+ · · ·+ |xd| ≤ n,

or, after introducing a slack variable y,

|x1|+ |x2|+ · · · |xd|+ y = n.

Equivalently,

i(P, n) =
∑

f(a1)f(a2) · · · f(ad),

summed over all weak compositions a1 + · · ·+ ad + b = n of n into d parts, where

f(a) =

{
1, a = 0
2, a > 0.
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Now
∑

a≥0 f(a)xa = (1 + x)/(1− x), so

∑

n≥0

i(P, n)xn =

(
1 + x

1− x

)d
· 1

1− x =
(1 + x)d

(1− x)d+1
.

Hence Pd(x) = (1 + x)d.

(b) Follows from F. R. Rodriguez-Villegas, Proc. Amer. Math. Soc. 130 (2002), 2251–
2254. It is also a consequence of Theorem 3.2 of R. Stanley, Europ. J. Combina-
torics 32 (2011), 937–943. For some related results, see T. Hibi, A. Higashitani,
and H. Ohsugi, Proc. Amer. Math. Soc. 139 (2011), 3707–3717.

62. (b) The projection of ∆k,d to the first d − 1 coordinates gives a linear bijection ϕ
with the polytope Rd−1,k of Exercise 1.51. Moreover, ϕ takes aff(∆k,d) ∩ Zd to
Rd−1,k ∩ Zd−1, where aff denotes affine span. Since ∆k,d and Rd−1,k are both
integer polytopes, it follows that they have the same Ehrhart polynomial and
therefore the same relative volume.

(c) The polytope ∆k,d is defined by

0 ≤ xi ≤ 1, x1 + · · ·+ xd = k.

Hence i(∆k,d, n) is equal to the number of integer solutions to the equation x1 +
· · ·+ xd = kn such that 0 ≤ xi ≤ n, so

i(∆k,d, n) = [xkn](1 + x+ · · ·+ xn)d

= [xkn]

(
1− xn+1

1− x

)d
.

(g) This result is equivalent to Theorem 13.2 of T. Lam and A. E. Postnikov, Discrete
& Comput. Geom. 38 (2007), 453–478, after verifying that the triangulation of
∆2,d appearing there is primitive and appealing to Exercise 4.36(b). It can also
be proved directly from part (c) or (d) of the present exercise.

(i) This result was conjectured by R. Stanley and proved by N. Li (December, 2010).

63. This result follows from the techniques in §5 of G. C. Shephard, Canad. J. Math. 26
(1974), 302–321, and was first stated by R. Stanley [4.56, Ex. 3.1], with a proof due to
G. M. Ziegler appearing in Applied Geometry and Discrete Combinatorics, DIMACS
Series in Discrete Mathematics, vol. 4, 1991, pp. 555–570 (Theorem 2.2). The polytope
Z is by definition a zonotope, and the basic idea of the proof is to decompose Z into
simpler zonotopes (namely, parallelopipeds, the zonotopal analogue of simplices), each
of which can be handled individually. There is also a proof based on the theory of
mixed volumes.

64. (b) The crucial fact is that the polytope PG is a zonotope and so can be handled
by the techniques of Exercise 4.63. See [4.56, Ex. 3.1]. A purely combinatorial
proof that the number of δ(o)’s equals the number of spanning forests of G is
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given by D. J. Kleitman and K. J. Winston, Combinatorica 1 (1981), 49–54. The
polytope PG was introduced by T. K. Zaslavsky (unpublished) and called by him
an acyclotope. For a vast generalization of the permutohedron, see A. Postnikov,
Int. Math. Res. Notices 2009 (2009), 1026–1106.

65. The crucial fact is that for a loopless graph G, the integer points in the polytope
D̃(G) are the extended degree sequences of spanning subgraphs of G if and only if
G is an FHM-graph. This result is due to D. R. Fulkerson, A. J. Hoffman, and M.
H. McAndrew, Canad. J. Math. 17 (1965), 166–177, whence the term “FHM-graph.”
Equation (4.58) is due to R. Stanley, in Applied Geometry and Discrete Combinatorics,
DIMACS Series in Discrete Mathematics, vol. 4, 1991, pp. 555–570 (§5). For the case
G = Kk, see Exercise 5.16.

66. (a) This result was conjectured by Ehrhart [4.14, p. 53] and solved independently by
R. Stanley [4.56, Thm. 2.8] and P. McMullen, Arch. Math. (Basel) 31 (1978/79),
509–516. A polytope Q whose affine span contains an integer point is called
reticular by Ehrhart [4.14, p. 47], and the least j for which every j-face of P is
reticular is called the grade of P [4.14, p. 12].

(b) See McMullen, ibid., §4.

70. (a) Let A denote the adjacency matrix of G. We have Aℓ = pJ for some p ≥ 0, where
J is the all 1’s matrix. The matrix pJ has one nonzero eigenvalue, so the same is
true for A. Since A is symmetric, it therefore has rank one. Since [1, 1, . . . , 1] is
a left eigenvector and [1, 1, . . . , 1]t is a right eigenvector for pJ , the same is true
for A. These conditions suffice to show that all entries of A are equal.

The analogous problem for directed graphs is much more complicated; see Exer-
cise 5.74(f).

(b) Let V be the vertex set of G, with p = #V . Note that G must be connected so
dv > 0 for all v ∈ V . Let D be the diagonal matrix with rows and columns indexed
by V , such that Dvv = 1/dv. Let M = DA. Note that Muv is the probability of
stepping to v from u. The hypothesis onG is therefore equivalent toM ℓ = 1

p
J . Let

E be the diagonal matrix with Evv = 1/
√
dv. Then E−1ME = EAE, a symmetric

matrix. Thus M is conjugate to a symmetric matrix and hence diagonalizable.
The proof is now parallel to that of (a).

71. The adjacency matrix A of G has only two distinct rows, so rankA = 2. Thus there
are two nonzero eigenvalues (since A is symmetric), say x and y. We have

tr(A) = x+ y = number of loops = 3.

Furthermore, tr(A2) = CG(2), which is twice the number of nonloop edges plus the
number of loops [why?]. Thus

tr(A2) = x2 + y2 = 2

((
21

2

)
−
(

18

2

))
+ 3 = 117.

(There are other ways to compute tr(A2).) The solutions to the equations x + y = 3
and x2 + y2 = 117 are (x, y) = (9,−6) and (−6, 9). Hence CG(ℓ) = 9ℓ + (−6)ℓ.
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72. Let us count the number cG′(n) of closed walks of length n in G′. We can do a closed
walk W in G of length n− 2k and then between any two steps of the walk (including
before the first step and after the last) insert “detours” of length two along an edge
ev and back. There are

(
n−k
k

)
ways to insert the detours [why?]. Thus the number of

closed walks of G′ that start at a vertex of G is

cG(n) +

(
n− 1

1

)
cG(n− 2) +

(
n− 2

2

)
cG(n− 4) +

(
n− 3

3

)
cG(n− 6) + · · · .

On the other hand, we can start at a vertex v′. In this case after one step we are at
v and can take n − 2 steps as in the previous case, ending at v, and then step to v′.
Thus the number of closed walks of G′ that start at a vertex v′ is

cG(n− 2) +

(
n− 3

1

)
cG(n− 4) +

(
n− 4

2

)
cG(n− 6) +

(
n− 5

3

)
cG(n− 8) + · · · .

Therefore

cG′(n) = cG(n) +

((
n− 1

1

)
+ 1

)
cG(n− 2)

+

((
n− 2

2

)
+

(
n− 3

1

))
cG(n− 4)

+

((
n− 3

3

)
+

(
n− 4

2

))
cG(n− 6) + · · · .

The following formula can be proved in various ways and is closely related to Exer-
cise 4.22: if λ2 6= −4 then

λn +

((
n− 1

1

)
+ 1

)
λn−2 +

((
n− 2

2

)
+

(
n− 3

1

))
λn−4

+

((
n− 3

3

)
+

(
n− 4

2

))
λn−6 + · · · = αn + αn,

where

α =
λ+
√
λ2 + 4

2
, α =

λ−
√
λ2 + 4

2
.

Since cG(n) =
∑
λni , where the λi’s are the eigenvalues of A(G), and similarly for

cG′(n), we get that the eigenvalues of A(G′) are (λi ±
√
λ2
i + 4)/2. (We don’t have to

worry about the special situation λ2
i = −4 since the λi’s are real.)

For a slight generalization and a proof using linear algebra, see Theorem 2.13 on page
60 of D. M. Cvetković, M. Doob, and H. Sachs [4.10].

74. Answer: 9ℓ + 2 · 4ℓ + (−5)ℓ + 5 · 2ℓ + 4. Why is there a term +4?

75. (a) The column vector (1, ζr, ζ2r, . . . , ζ (n−1)r)t (t denotes transpose) is an eigenvector
for M with eigenvalue ωr. The attempt to generalize this result from cyclic
groups and other finite abelian groups to arbitrary finite groups led Frobenius to
the discovery of group representation theory; see T. Hawkins, Arch. History Exact
Sci. 7 (1970/71), 142–170; 8 (1971/72), 243–287; 12 (1974), 217–243.
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(b) fk(n) = k · 3n−1

(c) Let Γ = Γk be the directed graph on the vertex set Z/kZ such that there is an
edge from i to i + 1 (mod k). Then gk(n) is the number of closed walks in Γ of
length n. If for (i, j) ∈ (Z/kZ)2 we define

Mij =

{
1, if j ≡ i− 1, i, i+ 1 (mod k)
0, otherwise,

then the transfer-matrix method shows that gk(n) = trMn, where M = (Mij).
By (a), the eigenvalues of M are 1+ζr+ζ−r = 1+2 cos(2πr/k), where ζ = e2πi/k,
and the proof follows.

76. (a) Expand det(xI−A) by the first row. We get Vn(x) = xVn−1(x)+det(xI−A : 1, 2).
Subtract the first column of the matrix (xI − A : 1, 2) from the second. The
determinant is then clearly −Vn−2(x), and the result follows. Note. If Un(x) is
the Chebyshev polynomial of the first kind, then Vn(2x) = Un(x).

(c) Answer:
∑n

j=1

(
2 cos jπ

n+1

)k
.

(d) Answer: (2n+ 1)
(
2n
n

)
− 4n.

78. (a) There are two choices for the first column. Once a column has been chosen, there
are always exactly three choices for the next column (to the right).

(b) Let Γn be the graph whose vertex set is {0, 1}n−1, withm edges from (a1, . . . , an−1)
to (b1, . . . , bn−1) if there are m ways to choose the next column to be of the form
[d, d + b1, d + b1 + b2, . . . , d + b1 + · · · + bn−1]

t when the current column has the
form [c, c + a1, c + a1 + a2, . . . , c + a1 + · · ·+ an−1]

t. In particular, there are two
loops at each vertex; otherwise m = 0 or 1. Then gk(n) is the total number of
walks of length n − 1 in Γn, so by the transfer-matrix method (Theorem 4.7.2)
Gk(x) is rational.

For the case k = 3 we get a 4× 4 matrix A with det(I−xA) = (1−x)(2−x)(1−
5x + 2x2), but the factor (1− x)(2 − x) is cancelled by the numerator. Thus we
are led to the question: what is the degree of the denominator of Gk(x) when this
rational function is reduced to lowest terms?

This exercise is due to L. Levine (private communication, 2009).

79. (a) Write ci(n) for the number of closed walks of length n in Gi, and similarly c(n)
for the number of closed walks of length n in G = G1 ∗ · · · ∗Gk. Then

c(n) =
∑

i1+···+ik=n
ij≥0

(
n

i1, . . . , ik

)
c1(i1) · · · ck(ik).

It follows that if Fi(x) =
∑

n≥0 ci(n)x
n

n!
and F (x) =

∑
n≥0 c(n)x

n

n!
, then F (x) =

F1(x) · · ·Fk(x). If the eigenvalues of a graph G are λ1, . . . , λp, then

∑

n≥0

(λn1 + · · ·+ λnp )
xn

n!
= eλ1x + · · ·+ eλpx.

651



It now follows from equation (4.35) that the eigenvalues of G are the numbers
µ1 + · · ·+ µk, where µi is an eigenvalue of Gi.

The star product is usually called the sum and is denoted G1 + · · · + Gk, but
this notation conflicts with our notation for disjoint union. The result of this
exercise is a special case of a more general result of D. M. Cvetković, Grafovi
i njihovi spektri (thesis), Univ. Beograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz.,
no. 354–356 (1971), 1–50, and also appears in [4.10, Thm. 2.23].

(b) We are asking for the number of walks of length n in the star product Km1 ∗ · · · ∗
Kmk

, from (1, 1, . . . , 1) to (1n−r, 2r). Write fm(n) for the number of closed walks
of length n in Km from some specified vertex i. Write gm(n) for the number of
walks of length n in Km from some specified vertex i to a specified different vertex
j. Then the number N we seek is given by

N =
∑

i1+···+ik=n
ij≥0

(
n

i1, . . . , ik

)
fm1(i1) · · ·fmk−r

(ik−r)gmk−r+1
(ik−r+1) · · · gmk

(ik).

(4.72)
By Example 4.7.5 we have

fm(n) =
1

m
((m− 1)n + (m− 1)(−1)n)

gm(n) =
1

m
((m− 1)n − (−1)n) .

Substituting into equation (4.72), expanding the product, and arguing as in (a)
gives

N =
1

m1 · · ·mk

∑

S⊆[k]

(−1)#([r+1,k]−S)


 ∏

i∈[r+1,k]∩S
(mi − 1)



(∑

j∈S
mj − k

)n

.

For instance, if B = [a] × [b], then the number of walks from (1, 1) to (1, 1) in n
steps is

N =
1

ab
((a+ b− 2)n + (b− 1)(a− 2)n + (a− 1)(b− 2)n + (a− 1)(b− 1)(−2)n) .

The number of walks from (1, 1) to (1, 2) in n steps is

N =
1

ab
((a+ b− 2)n − (a− 2)n + (a− 1)(b− 2)n − (a− 1)(−2)n) .

The number of walks from (1, 1) to (2, 2) in n steps is

N =
1

ab
((a+ b− 2)n − (a− 2)n − (b− 2)n + (−2)n) .

This problem can also be solved by explicitly diagonalizing the adjacency matrix
of G and using Corollary 4.7.4.
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u v

Figure 4.31: Dimers in columns u and v

80. Let N = {w1, w2, . . . , wr}. Define a digraph D = (V,E) as follows: V consists of all
(r+1)-tuples (v1, v2, . . . , vr, y) where each vi is a left factor of wi and vi 6= wi (so wi =
viui where ℓ(ui) ≥ 1) and where y ∈ X. Draw a directed edge from (v1, v2, . . . , vr, y)
to (v′1, v

′
2, . . . , v

′
r, y

′) if viy
′ 6∈ N for 1 ≤ i ≤ r, and if

v′i =

{
viy

′, if v′iy is a left factor of wi
vi, otherwise.

A walk beginning with some (1, 1, . . . , 1, y1) (where 1 denotes the empty word) and
whose vertices have last coordinates y1, y2, . . . , ym corresponds precisely to the word
w = y1y2 · · · ym having no subword in N . Hence by the transfer-matrix method FN (x)
is rational.

81. (a) Let D be the digraph with vertex set V = {0, 1}n. Think of (ε1, . . . , εk) ∈ V as
corresponding to a column of a k×n chessboard covered with dimers, where εi = 1
if and only if the dimer in row i extends into the next column to the right. There
is a directed edge u→ v if it is possible for column u to be immediately followed
by column v. For instance, there is an edge 01000 → 10100, corresponding to
Figure 4.31. Then fk(n) is equal to the number of walks in D of length n−1 with
certain allowed initial and final vertices, so by Theorem 4.7.2 Fk(x) is rational.
(There are several tricks to reduce the number of vertices which will not be pursued
here.)

Example. Let k = 2. The digraph D is shown if Figure 4.32. The paths must
start at 00 or 11 and end at 00. Hence if

A =

[
1 1
1 0

]

then

F2(x) =
− det(I − xA : 1, 2) + det(I − xA : 2, 2)

det(I − xA)

=
x+ (1− x)
1− x− x2

=
1

1− x− x2
,

the generating function for Fibonacci numbers.
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1011

00 01

Figure 4.32: The digraph for dimer coverings of a 2× n board

This result can also be easily be obtained by direct reasoning. We also have (see
J. L. Hock and R. B. McQuistan, Discrete Applied Math. 8 (1984), 101–104; D. A.
Klarner and J. Pollack, Discrete Math. 32 (1980), 45–52; R. C. Read, Aequationes
Math. 24 (1982), 47–65):

F3(x) =
1− x2

1− 4x2 + x4

F4(x) =
1− x2

1− x− 5x2 − x3 + x4

F5(x) =
1− 7x2 + 7x4 − x6

1− 15x2 + 32x4 − 15x6 + x8

F6(x) =
1− 8x2 − 2x3 + 8x4 − x6

1− x− 20x2 − 10x3 + 38x4 + 10x5 − 20x6 + x7 + x8
.

(b) Equation (4.59) was first obtained by P. W. Kastelyn, Physica 27 (1961), 1209–
1225. It was proved via the transfer-matrix method by E. H. Lieb, J. Math. Phys.
8 (1967), 2339-2341. Further references to this and related results appear in the
solution to Exercise 3.82(b). See also Section 8.3 of Cvetković, Doob, and Sachs
[4.10].

(c) See R. Stanley, Discrete Applied Math. 12 (1985), 81–87.

82. (a) χn(2) =

{
2, n even
0, n odd.

(b) This is equivalent to a result of E. H. Lieb, Phys. Rev. 162 (1967), 162–172.
More detailed proofs appear in Percus [4.40, pp. 143–159] (this exposition has
many minor inaccuracies), E. H. Lieb and F. Y. Wu, in Phase Transitions and
Critical Phenomena (C. Domb and M. S. Green, eds.), vol. 1, Academic Press,
London/New York, 1972, pp. 331–490, and Baxter [4.2] (see eq. (8.8.20) and
p. 178).

(c) The constant −π/6 has been empirically verified to 8 decimal places.

(e,f) See N. L. Biggs, Interaction Models, Cambridge University Press, 1977; Biggs,
Bull. London Math. Soc. 9 (1977), 54–56; D. Kim and I. G. Enting, J. Combina-
torial Theory, Ser. B 26 (1979), 327–336. In particular, the expansion (4.60) is
equivalent to equation (16) of the last reference.
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Appendix

Graph Theory Terminology

The number of systems of terminology presently used in graph theory is equal, to a close
approximation, to the number of graph theorists. Here we describe the particular terminol-
ogy that we have chose to use throughout this book, though we make no claims about its
superiority to any alternate choice of terminology.

A finite graph is a triple G = (V,E, φ), where V is a finite set of vertices, E is a finite set of
edges, and φ is a function that assigns to each edge e a 2-element multiset of vertices. Thus
φ : E →

((
V
2

))
. If φ(e) = {u, v}, then we think of e as joining the vertices u and v. We say

that u and v are adjacent and that u and e, as well as v and e, are incident. If u = v then
e is called a loop. If φ is injective (one-to-one) and has no loops, then G is called simple.
In this case we may identify e with the set φ(e) = {u, v}, sometimes written e = uv. In
general, the function φ is rarely explicitly mentioned in dealing with graphs, and virtually
never mentioned in the case of simple graphs.

A walk (called by some authors a path) of length n from vertex u to vertex v is a sequence
v0e1v1e2v2 · · · envn such that vi ∈ V , ei ∈ E, v0 = u, vn = v, and any two consecutive terms
are incident. If G is simple then the sequence v0v1 · · · vn of vertices suffices to determine the
walk. A walk is closed if v0 = vn, a trail if the ei’s are distinct, and a path if the vi’s (and
hence the ei’s) are distinct. If n ≥ 1 and all the vi’s are distinct except for v0 = vn, then the
walk is called a cycle.

A graph is connected if it is nonempty and any two distinct vertices are joined by a path (or
walk). A graph without cycles is called a free forest or simply a forest. A connected graph
without cycles is called a free tree (called by many authors simply a tree).

A digraph or directed graph is defined analogously to a graph, except now φ : E → V × V ;
that is, an edge consists of an ordered pair (u, v) of vertices (possibly equal). The notions of
walk, path, trail, cycle, and so on, carry over is a natural way to digraphs; see the beginning
of Section 4.7.1 for further details.

We come next to the concept of a tree. It may be defined recursively as follows. A tree (or
rooted tree) T is a finite set of vertices such that:

a. One specially designated vertex is called the root of T , and

b. The remaining vertices (excluding the root) are partitioned intom ≥ 0 disjoint nonempty
sets T1, . . . , Tm, each of which is a tree. The trees T1, . . . , Tm are called subtrees of the
root.

Rather than formally defining certain terms associated with a tree, we will illustrate these
terms with an example, trusting that this will make the formal definitions clear. Suppose
that T = [9], with root 6 and subtrees T1, T2. The subtree T1 has vertices {2, 7} and root 2,
while T2 has vertices {1, 3, 4, 5, 8, 9}, root 3, and subtrees T3, T4. The subtree T3 has vertices
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{1, 4, 5, 8}, root 5, and subtrees T5, T6, T7 consisting of one vertex each, while T4 consists of
the single vertex 9. The tree T is depicted in an obvious way in Figure A-1. Note that we
are drawing a tree with its root at the top. This is the most prevalent convention among
computer scientists and combinatorialists, though many graph theorists (as well as Nature
herself) would put the root at the bottom. In Figure A-1, we call vertices 2 and 3 the children
or successors of vertex 6. Similarly 7 is the child of 2, 5 and 9 are the children of 3, and
1,4,8 are the children of 5. We also call 2 the parent or predecessor of 7, 5 the parent of 1,4,
and 8, and so on. Every vertex except the root has a unique parent. Those vertices without
children are called leaves or endpoints ; in Figure 4.33 they are 1,4,7,8,9.

2

7

6

3

5

1 8 4

9

Figure 4.33: A tree

If we take the diagram of a tree as in Figure 4.33 and ignore the designation of the root (i.e.,
consider only the vertices and edges), then we obtain the diagram of a free tree. Conversely,
given a free tree G, if we designate one of its vertices as a root, then this defines the structure
of a tree T on the vertices of G. Hence a “rooted tree,” meaning a free tree together with a
root vertex, is conceptually identical to a tree.

A tree may also be regarded in a natural way as a poset; simply consider its diagram to be a
Hasse diagram. Thus a tree T , regarded as a poset, has a unique maximal element, namely,
the root of the tree. Sometimes it is convenient to consider the dual partial ordering of T .
We therefore define a dual tree P to be a poset such that the Hasse diagram of the dual
poset P ∗ is the diagram of a tree.

Some important variations of trees are obtained by modifying the recursive definition. A
plane tree or ordered tree is obtained by replacing (b) in the definition of a tree with:

b′. The remaining vertices (excluding the root) are put into an ordered partition (T1, . . . , Tm)
of m ≥ 0 pairwise disjoint, nonempty sets T1, . . . , Tm, each of which is a plane tree.

To constrast the distinction between (rooted) trees and plane trees, an ordinary (rooted)
tree may be referred to as an unordered tree. Figure 4.34 shows four different plane trees,
each of which has the same “underlying tree.” The ordering T1, . . . , Tm of the subtrees is
depicted by drawing them from left-to-right in that order.
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6 5 3

4 2

1

6 35

4 2

1

3 5 6 3 6 5

2 4 2 4

11

Figure 4.34: Four plane trees

Figure 4.35: Some ternary trees with four vertices

Now let m ≥ 2. An m-ary tree T is obtained by replacing (a) and (b) with:

a′′. Either T is empty, or else one specially designated vertex is called the root of T , and

b′′. The remaining vertices (excluding the root) are put into a (weak) ordered partition
(T1, . . . , Tm) of exactly m disjoint (possibly empty) sets T1, . . . , Tm, each of which is an
m-ary tree.

A 2-ary tree is called a binary tree. When drawing an m-ary tree for m small, the edges
joining a vertex v to the roots of its subtrees T1, . . . , Tm are drawn at equal angles symmetric
with respect to a vertical axis. Thus an empty subtree Ti is inferred by the absence of the ith
edge from v. Figure 4.35 depicts five of the 55 nonisomorphic ternary trees with four vertices.
We say that an m-ary tree is complete if every vertex not an endpoint has m children. In
Figure 4.35, only the first tree is complete.

The length ℓ(T ) of a tree T is equal to its length as a poset; that is, ℓ(T ) is the largest
number ℓ for which there is a sequence v0, v1, . . . , vℓ of vertices such that vi is a child of vi−1

for 1 ≤ vi ≤ ℓ (so v0 is necessarily the root of T ). The complete m-ary tree of length ℓ is the
unique (up to isomorphism) complete m-ary tree with every maximal chain of length ℓ; it
has a total of 1 +m+m2 + · · ·+mℓ vertices.

A rooted tree (with or without additional structure, such as being a plane tree or binary
tree) on a linearly ordered vertex set (such as [n]) is increasing if every path from the root
is increasing.
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First Edition Numbering

We give below the numbers of theorems, etc., from the original (first) edition of Volume 1,
together with their numbers in this second edition. References in Volume 2 to Volume 1
refer to the first edition, so the table below can be used to find the referents in the second
edition of Volume 1.

first edition second edition

Example 1.1.1 Example 1.1.1
Example 1.1.2 Example 1.1.2
Example 1.1.3 Example 1.1.3
Example 1.1.4 Example 1.1.4
Example 1.1.5 Example 1.1.5
Example 1.1.6 Example 1.1.6
Example 1.1.7 Example 1.1.7
Proposition 1.1.8 Proposition 1.1.8
Proposition 1.1.9 Proposition 1.1.9
Example 1.1.10 Example 1.1.10
Example 1.1.11 Example 1.1.11
Example 1.1.12 Example 1.1.12
Example 1.1.13 Example 1.1.13
Example 1.1.14 Example 1.1.14
Example 1.1.15 Example 1.1.15
Example 1.1.16 Example 1.1.16
Example 1.1.17 Example 1.1.17
Proposition 1.3.1 Proposition 1.3.1
Proposition 1.3.2 Proposition 1.3.2
Lemma 1.3.3 Lemma 1.3.6
Proposition 1.3.4 Proposition 1.3.7
Example 1.3.5 Example 1.3.8
Example 1.3.6 Example 1.3.9
Proposition 1.3.7 Proposition 1.3.10
Corollary 1.3.8 Corollary 1.3.11
Proposition 1.3.9 Proposition 1.3.12
Corollary 1.3.10 Corollary 1.3.13
Proposition 1.3.11 Proposition 1.4.1
Proposition 1.3.12 Proposition 1.4.3
Example 1.3.13 Example 1.5.2
Proposition 1.3.14 Proposition 1.5.3
Example 1.3.15 Example 1.5.4
Proposition 1.3.16 Proposition 1.5.5
Proposition 1.3.17 Proposition 1.7.1
Proposition 1.3.18 Proposition 1.7.2
Proposition 1.3.19 Proposition 1.7.3
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first edition second edition

Proposition 1.4.4 Proposition 1.8.1
Corollary 1.4.5 Corollary 1.8.2
Proposition 1.4.1 Proposition 1.9.1
Proposition 1.4.2 Proposition 1.9.2
Corollary 1.4.3 Corollary 1.9.3
Theorem 2.1.1 Theorem 2.1.1
Example 2.2.1 Example 2.2.1
Proposition 2.2.2 Proposition 2.2.2
Example 2.2.3 Example 2.2.3
Example 2.2.4 Example 2.2.4
Example 2.2.5 Example 2.2.5
Proposition 2.2.6 Proposition 2.2.6
Theorem 2.3.1 Theorem 2.3.1
Example 2.3.2 Example 2.3.2
Example 2.3.3 Example 2.3.3
Lemma 2.3.4 Lemma 2.3.4
Corollary 2.3.5 Corollary 2.3.5
Theorem 2.4.1 Theorem 2.4.1
Corollary 2.4.2 Corollary 2.4.2
Corollary 2.4.3 Corollary 2.4.3
Theorem 2.4.4 Theorem 2.4.4
Corollary 2.4.5 Corollary 2.4.5
Proposition 2.5.1 Proposition 2.5.1
Proposition 2.5.2 Proposition 2.5.2
Corollary 2.5.3 Corollary 2.5.3
Example 2.6.1 Example 2.6.1
Theorem 2.7.1 Theorem 2.7.1
Example 2.7.2 Example 2.7.2

Example 3.1.1 Example 3.1.1
Proposition 3.3.1 Proposition 3.3.1
Proposition 3.3.2 Proposition 3.3.2
Proposition 3.3.3 Proposition 3.3.3
Theorem 3.4.1 Theorem 3.4.1
Proposition 3.4.2 Proposition 3.4.2
Proposition 3.4.3 Proposition 3.4.3
Proposition 3.4.4 Proposition 3.4.5
Proposition 3.5.1 Proposition 3.5.1
Proposition 3.5.2 Proposition 3.5.2
Example 3.5.3 Example 3.5.3
Example 3.5.4 Example 3.5.4
Example 3.5.5 Example 3.5.5
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first edition second edition

Definition 3.6.1 Definition 3.6.1
Proposition 3.6.2 Proposition 3.6.2
Proposition 3.7.1 Proposition 3.7.1
Proposition 3.7.2 Proposition 3.7.2
Example 3.8.1 Example 3.8.1
Proposition 3.8.2 Proposition 3.8.2
Example 3.8.3 Example 3.8.3
Example 3.8.4 Example 3.8.4
Proposition 3.8.5 Proposition 3.8.5
Proposition 3.8.6 Proposition 3.8.6
Example 3.8.7 Example 3.8.7
Proposition 3.8.8 Proposition 3.8.8
Proposition 3.8.9 Proposition 3.8.9
Example 3.8.10 Example 3.8.10
Proposition 3.8.11 Proposition 3.8.11
Definition 3.9.1 Definition 3.9.1
Theorem 3.9.2 Theorem 3.9.2
Corollary 3.9.3 Corollary 3.9.3
Corollary 3.9.4 Corollary 3.9.4
Corollary 3.9.5 Corollary 3.9.5
Example 3.9.6 Example 3.9.6
Proposition 3.10.1 Proposition 3.10.1
Example 3.10.2 Example 3.10.2
Example 3.10.3 Example 3.10.3
Example 3.10.4 Example 3.10.4
Proposition 3.11.1 Proposition 3.12.1
Example 3.11.2 Example 3.12.2
Theorem 3.12.1 Theorem 3.13.1
Corollary 3.12.2 Corollary 3.13.2
Theorem 3.12.3 Theorem 3.13.3
Definition 3.13.1 Definition 3.14.1
Theorem 3.13.2 Theorem 3.14.2
Example 3.13.3 Example 3.14.3
Example 3.13.4 Example 3.14.4
Example 3.13.5 Example 3.14.5
Proposition 3.14.1 Proposition 3.16.1
Proposition 3.14.2 Proposition 3.16.2
Lemma 3.14.3 Lemma 3.16.3
Lemma 3.14.4 Lemma 3.16.4
Proposition 3.14.5 Proposition 3.16.5
Corollary 3.14.6 Corollary 3.16.6
Example 3.14.7 Example 3.16.7
Example 3.14.8 Example 3.16.8
Theorem 3.14.9 Theorem 3.16.9
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first edition second edition

Example 3.15.1 Example 3.18.1
Definition 3.15.2 Definition 3.18.2
Example 3.15.3 Example 3.18.3
Theorem 3.15.4 Theorem 3.18.4
Proposition 3.15.5 Proposition 3.18.5
Example 3.15.6 Example 3.18.6
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List of Notation (partial)

C complex numbers

N nonnegative integers

P positive integers

Q rational numbers

R real numbers

R+ nonnegative real numbers

Z integers

C∗ C− {0}

[n] the set {1, 2, . . . , n} for n ∈ N (so [0] = ∅)

[i, j] for integers i ≤ j, the set {i, i+ 1, . . . , j} (when the context
is clear, it can also be the set {x ∈ R : i ≤ x ≤ j})

δij the Kronecker delta, equal to 1 if i = j and 0 otherwise

:= equals by definition

·∪ disjoint union

S ⊆ T S is a subset of T

S ⊂ T S is a subset of T and S 6= T

⌊x⌋ greatest integer ≤ x

⌈x⌉ least integer ≥ x

cardX, #X, |X| all used for the number of elements of the finite set X

{a1, . . . , ak}< the set {a1, . . . , ak} ⊂ R, where a1 < · · · < ak

2S the set of subsets of S

XN the set of all functions f : N → X (a vector space if X is a field)

(
S
k

)
the set of k-element subsets of S

((
S
k

))
the set of k-element multisets on S
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(
n

a1,a2,...,ak

)
multinomial coefficient

(
n

k

)
q-binomial coefficient (in the variable q)

(
n

k

)
x

q-binomial coefficient in the variable x

(i) 1 + q + · · ·+ qi−1, for i ∈ P

(n)! (1)(2) · · · (n), for n ∈ N

[i] 1− xi, for i ∈ P

[n]! [1][2] · · · [n], for n ∈ N

SM the set of permutations of the multiset M

s(n, k) Stirling number of the first kind

c(n, k) signless Stirling number of the first kind

S(n, k) Stirling number of the second kind

B(n) Bell number

A(n, k) Eulerian number

Ad(x) Eulerian polynomial

En Euler number

Cn Catalan number

A(w) set of functions f : [n]→ N that are compatible with w ∈ Sn

Am(w) set of functions f : [n]→ [m] that are compatible with w ∈ Sn

∆ first difference operator, i.e., ∆f(n) = f(n+ 1)− f(n)

λ ⊢ n λ is a partition of the integer n ≥ 0

Par(n) the set of all partitions of the integer n ≥ 0

Comp(n) the set of all compositions of the integer n ≥ 0

p(n) number of partitions of n

pk(n) number of partitions of n into k parts

Sn set (or group) of all permutations of [n]
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inv(w) number of inversions of the permutation (or sequence) w

maj(w) major index of the permutation (or sequence) w

des(w) number of descents of the permutation (or sequence) w

D(w) descent set of the permutation (or sequence) w

exc(w) number of excedances of the permutation w ∈ Sn

Exc(w) excedance set of the permutation w ∈ Sn

c(w) number of cycles of the permutation w

αn(S), α(S) #{w ∈ Sn : D(w) ⊆ S}

βn(S), β(S) #{w ∈ Sn : D(w) = S}

Fq a finite field (unique up to isomorphism) with q elements

F∗
q Fq − {0}

GL(n, q) group of invertible linear transformations Fnq → Fnq

Mat(n, q) algebra of n× n matrices over Fq

γn = γn(q) #GL(n, q)

I(q) set of all nonconstant monic irreducible polynomials over Fq

imA image of the linear transformation (or function) A

kerA kernel of the linear transformation A

trA trace of the linear transformation A

det(B : j, i) determinant of the matrix obtained from B
by removing the jth row and ith column

aff(S) affine span of the subset S of a vector space V , i.e.,
all linear combinations of elements of S whose coefficients sum to 0

R[x] ring of polynomials in the indeterminate x with coefficients
in the integral domain R

R(x) ring of rational functions in x with coefficients in R, so R(x)
is the quotient field of R[x] when R is a field

R[[x]] ring of formal power series
∑

n≥0 anx
n in

672



x with coefficients an in R

R((x)) ring of formal Laurent series
∑

n≥n0
anx

n, for some n0 ∈ Z,
in x with coefficients an in R, so R((x)) is the quotient field
of R[[x]] when R is a field

Ψk,jF (x) (k, j) multisection of the power series F (x)

xα xα1
1 · · ·xαk

k , where α = (α1, . . . , αk)

[xn]F (x) coefficient of xn in the series F (x) =
∑
anx

n

F (x)〈−1〉 compositional inverse of the power series
F (x) = a1x+ a2x

2 + · · · , a1 6= 0

f(n) ∼ g(n) f(n) and g(n) are asymptotic as n→∞, i.e.,
limn→∞ f(n)/g(n) = 1

s‖ t s and t are incomparable (in a poset P )

s⋖ t t covers s (in a poset P )

P ∗ dual of the poset P

P̂ the poset P with a 0̂ and 1̂ adjoined

P +Q disjoint union of the posets P and Q

P ×Q cartesian (or direct) product of the posets P and Q

P ⊕Q ordinal sum of the posets P and Q

P ⊗Q ordinal product of the posets P and Q

Λt {s ∈ P : s ≤ t}, where P is a poset

Vt {s ∈ P : s ≥ t}, where P is a poset

Int(P ) the poset of (nonempty) intervals of the poset P

J(P ) lattice of order ideals of the poset P

Jf(P ) lattice of finite order ideals of the poset P

e(P ) number of linear extensions of the poset P

ρ rank function of the graded poset P

ℓ(s, t) length of the longest chain of the interval [s, t]
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PS the S-rank-selected subposet of the graded poset P ,
i.e., PS = {t ∈ P : ρ(t) ∈ S}

αP (S) number of maximal chains of the rank-selected subposet PS

βP (S)
∑

T⊆S(−1)#(S−T )αP (T )

L(P, ω) set of linear extensions (regarded as permutations of the labels)
of the labelled poset (P, ω) on [p]

|σ| ∑
t∈X σ(t), for a function σ : X → Z, where X is a finite set

L(P ) the set L(P, ω) when ω is natural

ΩP,ω(m) order polynomial of the labelled poset P, ω

ΩP (m) ΩP,ω(m) when ω is natural

|∆| geometric realization of the simplicial complex ∆

∂Γ boundary of a triangulation Γ

Γ◦ interior of a triangulation Γ

r(A) number of regions of the arrangement A

b(A) number of bounded regions of the arrangement A
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(2 + 2)-free, see poset, (2 + 2)-free
(3 + 1)-free, see poset, (3 + 1)-free
00, 41
δ-chain condition, see poset, δ-chain condi-

tion
δ-vector, see polytope, convex, δ-vector
1̂, see poset, 1̂
0̂, see poset, 0̂
λ-chain condition, see poset, λ-chain condi-

tion
1/9899, 606
103,049, 159
132-avoiding permutation, see permutation,

132-avoiding
2143-avoiding permutation, see permutation,

2143-avoiding
310,952, 159
3142 and 2413-avoiding permutation, see per-

mutation, 3142 and 2413-avoiding
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, see Wu, S. Y. J.
, see Xie, J. X.
, see Xin, G.
, see Yan, C. H. F.
, see Yang, D. M.

, see Zhang, Y.
, see Zhao, Y.

A = B, 162
ab-index

of a poset, see poset, ab-index
ab-index

of the symmetric group, see group, sym-
metric, ab-index

Abramson, M.
restricted permutation, 196
Terquem’s problem, 171

Acerbi, F.
103,049, 221

action
adjoint, 90

acyclic digraph, see digraph, acyclic
acyclic orientation, see graph, orientation, acyclic
acyclotope, see polytope, acyclotope
addition law, see law, addition
adjacency matrix, see matrix, adjacency
adjacent, see graph, adjacent vertices
adjoint action, see action, adjoint
adjoint representation, see representation, ad-

joint
Aguiar, M.
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power series equations, 204, 208
Aigner, M.

closure operator, 488
poset of intervals, 469
uniform posets, 505

Aitken, A. C.
nilpotent matrix, 486

Albert, M. H.
simple permutations, 196

Aleksandrov-Fenchel inequalities, see inequal-
ity, Aleksandrov-Fenchel

Alexander duality theorem, 355
Alexandroff, P. S.

finite topologies, 468
algebra

boolean, 292
k-element order ideals, 411
Möbius function, see incidence algebra,

Möbius function, boolean algebra
down-up, 394
0-Hecke, 503
Hopf

formal group, 206
incidence, see incidence algebra
Möbius, 314

alphabet, 580
alternates in sign, see incidence algebra, Möbius

function, alternates in sign
alternating group, see group, alternating
alternating permutation, see permutation, al-

ternating
Amdeberhan, T.

(1 + x+ x2)n, 166
Fibonacci number, 173
polynomial coefficients, 167
powers of polynomials over Fq, 635

anagram, 468
Anand, H.

magic squares, 598
André, D.

alternating permutations, 107
Andrews, G. W. E.

binomial coefficient sum, 161
concave composition, 274
CSSAW, 183

integer partitions, 107
partition asymptotics, 107
partition congruences, 186
partition identity, 189
pentagonal number formula, 274
pleasant poset, 519
protruded partition, 482
q-Dyson conjecture, 168
Schur’s partition theorem, 187
Selberg integral, 163
totally symmetric plane partition, 519
triangles with perimeter n, 641
two-row plane partition, 184

animal mathematics, see Dehaene, animal math-
ematics

antichain, see poset, antichain
antimagic square, see square, antimagic
antisymmetry, see poset, antisymmetry
Anwar, I.

ring theory conjecture, 508
aperiodic cycle, see cycle, aperiodic
Apostol, T.

Ramanujan’s tau function, 189
Applegate, D.

toothpick sequence, 189
Ardila, F.

chain and order polytopes, 645
Fibonacci number product, 175

arm length, see partition (of an integer), arm
length

Arnold, V. I.
boustrephedon triangle, 198

arrangement (of hyperplanes), 321
braid arrangement, 330

exponential sequence, 431
Catalan arrangement, 432
central, 322
central subset, 322
characteristic polynomial, 322
Deletion-Restriction, 324
dimension, 321
Einstein, 500
essential, 321
essentialization, 321
exponential sequence, 431
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free, 433
general position, 327
good reduction, 328
graphical, 430
intersection poset, 322
Linial arrangement, 432
region, 325

relatively bounded, 326
Shi arrangement, 330

bijective proof, 431
exponential sequence, 431

subarrangement, 324
threshold arrangement, 432
triple, 324
type B braid arrangement, 433

Arratia, R.
Stanley-Wilf conjecture, 180

Arshon, C. E.
nonattacking bishops, 640

ascent, see permutation, ascent
Askey, R.

Selberg integral, 163
asymptotic expansion, 258, 628
asymptotic formula, see formula, asymptotic
asymptotic formula (for partitions), see par-

tition (of an integer), asymptotic for-
mula

Athanasiadis, C. A.
absolute order, 516
Catalan arrangement, 498
finite field method, 392
Linial arrangement, 499
Shi arrangement, 497
unimodality of AP,ω(x), 522

Atiyah, M. F.
rational Hilbert series, 635

Atkin, A. O. L.
p(5n+ 4), 186

Atkinson, M. D
simple permutations, 196

atom (of a lattice), see lattice, atom
atomic lattice, see lattice, atomic
autocorrelation polynomial, see polynomial,

autocorrelation

autonomous subset, see poset, autonomous
subset

Babington Smith, B.
transitive tournament, 274

Backelin, J.
binomial posets, 529
quotient of free monoid, 635

Baclawski, K.
Cohen-Macaulay poset, 392
incidence algebra, 485
Möbius function of subposet, 393
poset cores, 473
poset of odd-element sets, 505
poset topology, 392

Baer, R.
primary modular lattice, 513

Bagnera, G.
p-group enumeration, 635

Baker, K. A.
posets of dimension two, 473

balanced word, see word, balanced
Baldoni, W.

vector partitions, 642
balls into boxes, 26
Banaschewski, B.

MacNeille completion, 474
Barcelo, H.

cyclic sieving, 487
Barthel, G.

combinatorial intersection homology, 525
Barton, D. E.

peaks, 181
permutations with no proper double de-

scents, 272
barycentric subdivison, see complex, barycen-

tric subdivision
Baxter, R. J.

3-colorings of toroidal graph, 654
statistical mechanics, 598

Bayer, M. M.
cd-index, 107, 393, 528
Eulerian posets with self-dual intervals,

529
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poset of odd-element sets, 505
series-parallel interval orders, 404

Entringer, 198
Euler, 39
cd-index of Sn, 61
flip equivalence, 56
generating function, 54
power series equations, 208

Eulerian, 39
carrying, 125
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André, 107, 198, 201
ascent, 38
code, 36
comajor index, 423
connected, 140
connectivity set, 256
cycle, 29
cycle type, see permutation, type
derangement, 227, 232
descent, 38
descent set, 38

determinantal formula, 228
diagram, 49
digraph, 29
double ascent, 52
double descent, 52
double fall, 52
double rise, 52
down-up, 39
excedance, 40

weak, 40
expected number of k-cycles, 32
fixed-point free involution, 139
greater index, 41
hook factorization, 268
indecomposable, 140
inverse descent set, 43
inversion, 36
inversion table, 36
involution, 242

sign-reversing, 161
left-to-right maximum, 30
left-to-right minimum, 53
longest cycle, 138
major index, 41

705



multiset, 127
number of descents, 39
of a multiset, 27

derangement, 256
descent set, 62
inversion, 62
standardization, 64

outstanding element, 30
peak, 52
proper double descent, 127, 260

Eulerian polynomial, 142
proper double fall, 127
record, 30
records and inversions, 140
retreating element, 53
reverse alternating, 39
separable, 403
shuffle, 447
SIF, 141
simple, 141
simsun, 143
stabilized-interval-free, 141
standard, 271
standard representation, 30
strong fixed point, 140
subsequence

decreasing, 48
increasing, 48

Sundaram, 198
type, 30
u-avoiding, 50
up-down, 39
valley, 52
valleys, peaks, double rises, and double

falls, 126
vexillary, 180
zigzag, 39

permutation matrix, see matrix, permutation
permutations

conjugate in Sn, 89
permutohedron, 507, see polytope, permuto-

hedron
Petersen, T. K.

composition poset, 481
Eulerian polynomial, 196

Peterson, D.
d-complete posets, 522

Petkovšek, M.
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function, product theorem
projection matrix, see matrix, projection
promotion, see poset, linear extension, pro-

motion
promotion chain, see poset, linear extension,

promotion chain
proof

semi-combinatorial, 232

proper coloring (of a graph), see graph, col-
oring, proper

property
strong Sperner, 486

Propp, J.
acyclic orientation poset, 485
subsets of [2n], 163

protruded partition, see partition (of an inte-
ger), protruded

Provan, J. S.
chain-partitionable poset, 507
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rank-selected Möbius invariant, see poset, rank-

selected Möbius invariant
rank-selected subposet, see poset, rank-selected
rank-symmetric, see poset, rank-symmetric
rank-generating function, see function, rank-

generating
ranking pattern, see pattern, ranking
rational generating function, see generating

function, rational
rational polytope, see polytope, convex, ra-

tional

Ray, N.
formal group, 206

r-differential Fibonacci poset, see poset, dif-
ferential, Fibonacci

r-differential poset, see poset, differential
Read, R. C.

chromatic polynomial and binomial posets,
529

dimer coverings of a rectangle, 654
Readdy, M. A.

cd-index of Sn, 201
cube slices, 179
descent set polynomial, 193
Eulerian binomial poset, 529
simple cd-index, 528

reciprocity theorem, see theorem, reciprocity
linear homogeneous diophantine equations,

see theorem, reciprocity, linear homo-
geneous diophantine equations

order polynomial, see poset, order poly-
nomial, reciprocity

(P, ω)-partitions, see poset, (P, ω)-parti-
tion, reciprocity

record, see permutation, record
rectangle

evacuation, see poset, rectangle, evacua-
tion

recurrence
Deletion-Restriction, 324

finite field method, 432
reduced Euler characteristic

of a simplicial complex, see complex, sim-
plicial, reduced Euler characteristic

of a space, 309
reduced incidence algebra, see incidence alge-

bra, reduced
Reeve, J. E.

lattice polyhedron, 598
refinement (of a poset), see poset, refinement
refinement (ordering of Πn), see lattice, par-

titions of a set, refinement ordering
refining (the enumeration of objects), 29
reflection-extension, see poset, reflection-ex-

tension
reflexivity, see poset, reflexivity
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region (of an arrangement), see arrangement
(of hyperplanes), region

Regonati, F.
primary modular lattice, 513
self-dual intervals, 513

regular cell complex, see complex, regular cell
regular linearized chord diagram, see diagram,

regular linearized chord
regular matrix, see matrix, regular
Reiner, E. J.

cd-index, 107
Reiner, V.

cyclic sieving, 487
free arrangement, 500
homotopy type, 478((
na
k

))
q=ζ

, 190

simplicial complex of linear extensions,
512

unimodality of AP,ω(x), 522
relation

Koszul, 267
relative volume, see polytope, convex, rela-

tive volume
relatively bounded, see arrangement (of hy-

perplanes), region, relatively bounded
relatively complemented, see lattice, relatively

complemented
Remmel, J. B.

derangements, 268
Inclusion-Exclusion, 249

removal theorem, see theorem, removal
rencontres, see problème, des rencontres
Rényi, A.

fundamental transformation, 106
representation

adjoint, 90
restricted growth function, see function, re-

stricted growth
restricted growth string, see string, restricted

growth
restriction (of a chain), see poset, chain, re-

striction
resultant, 213
reticular, see polytope, reticular

retreating element, see permutation, retreat-
ing element

Reutenauer, C.
promotion and evacuation, 394

reverse alternating permutation, see permu-
tation, reverse alternating

Rhee, M. S.
series-parallel interval order, 471

Rhoades, B.
cyclic sieving, 487

ring
Cohen-Macaulay

Ehrhart polynomial generating function,
642

Riordan, J.
Eulerian number, 106
Fibonacci powers, 599
rook polynomials, 249

Rival, I.
modular lattice, 493
non-complemented lattice, 474
poset bibliography, 391
poset cores, 472

R-labelable, see poset, R-labelable
R-labeling, see poset, R-labeling
RLCD, see diagram, regular linearized chord
Robbins, D. P.

totally symmetric plane partition, 519
Robbins, N.

Fibonacci number product, 175
Roberts, F. S.

posets of dimension two, 473
Robins, S.

Ehrhart polynomial generating function,
643

Ehrhart theory, 597
pulling triangulation, 598

Robinson, R. M.
reciprocity, 597

Rockstroh, P.
Fibonacci numbers modulo n, 632

Rodrigues, B. O.
inversions, 106

Rodriguez-Villegas, F. R.
cross-polytope, 648
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Rogers, L. J.
Rogers-Ramanujan identities, 187

Rogers-Ramanujan identities, see identity, Rogers-
Ramanujan

Rolle’s theorem, see theorem, Rolle’s
rook polynomial, see polynomial, rook
Roos, J.-E.

nonrational series, 635
root (of a tree), see tree, root
rooted tree, see tree, rooted
Rosen, M.

Gauss sums, 220
Rota, G.-C.

antichains in Πn, 486
binomial poset, 394
chromatic polynomial, 496
closure operator, 488
congruences, 164
finite field method, 392
Möbius function of Πn, 392
Möbius function of semimodular lattice,

392
poset homology, 391
seminal paper, 391
Twelvefold Way, 107
valuation on distributive lattice, 490

Rotem, D.
321-avoiding permutations, 107

Rothschild, B. L.
poset enumeration, 468

row sum vector, see vector, row sum
row-reduced echelon form, 66
Roy, R.

Selberg integral, 163
R-poset, see poset, R-poset
r-stemmed V -partition, see partition, V -par-

tition, r-stemmed
Rubey, M.

differential equation, 182
rule

binary stopping, 421
Ryser, H. J.

permanent, 275

Sachs, H.

dimer coverings of a rectangle, 654
eigenvalues of an adjacency matrix, 650
walks in graphs, 598

Sagan, B. E.
cd-index of Sn, 201
congruences, 164

Saito, K.
bipartite orientation, 480

Saks, M.
linear extensions, 484
nilpotent matrix, 486
order polynomial, 516

Salazar, D.
chain and order polytopes, 645

salespersons, 401
Sam, S. V.

Ehrhart theory, 597
generalized Ehrhart quasipolynomial, 638
matrices over Fq with zero diagonal, 220
symmetric and skew-symmetric matrices

over Fq, 220
Santos Leal, F.

pulling triangulation, 598
Sarti, S. D.

primary modular lattice, 513
saturated chain, see poset, chain, saturated
Savage, C. D.

lecture hall partitions, 188
Lucas numbers and partitions, 188
triangles with perimeter n, 641

Scheid, H.
extremal Möbius function, 494

Scheider, C.
totally symmetric plane partition, 519

scheme
Hilbert, 190

Schläfli, L.
hyperplanes in general position, 392

Schmidt, S. E.
distributive lattice characterization, 475

Schrader, R.
comparability graph, 508

Schröder’s second problem, see problem, Schrö-
der’s second

Schröder, E.
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posets and lattices, 391
Schubert cell, see cell, Schubert
Schur, I.

Rogers-Ramanujan identities, 187
Schur’s partition theorem, see theorem, Schur’s

partition
Schützenberger, M.-P.

An(−1), 197
André permutation, 198
cd-index, 107
cd-index coefficient, 202
equidistribution of maj and inv, 106
Eulerian polynomial, 196
evacuation, 394, 488
Ferrers boards, 249
Möbius function of Πn, 392
promotion and evacuation, 394
representation of permutations, 106
weak (Bruhat) order, 527

Scott, D.
semiorder, 471

Scoville, R.
valleys, peaks, double rises, double falls,

181
secant number, 54
Sedgewick, R.

estimating coefficients, 106
Seely, C.

p-group enumeration, 635
Seidel, L.

boustrephedon triangle, 198
difference table transformation, 199

Selberg integral, see integral, Selberg
Selberg poset, see poset, Selberg
self-avoiding path, see path, lattice, self-a-

voiding
self-evacuating, see poset, linear extension,

self-evacuating
self-reference, see self-reference
self-conjugate partition, see partition (of an

integer), self-conjugate
self-dual poset, see poset, self-dual
Semegni, J. V.

free distributive lattice, 484
semi-ideal, see poset, semi-ideal

semi-combinatorial proof, see proof, semi-com-
binatorial

semi-Eulerian poset, see poset, semi-Eulerian
semimodular lattice, see lattice, semimodular
semiorder, see poset, semiorder
semisimple matrix, see matrix, semisimple
separable permutation, see permutation, sep-

arable
sequence

derived, 608
log-concave, 124

linear extensions, 420
no internal zeros, 124
outdegree, 622
Stern’s diatomic, 189
symmetric, 124
unimodal, 124

convex polytope, 455
weight n, 238

series
normal (of a group), 339

series-parallel poset, see poset, series-parallel
serieshelpmate, 145
Serre, J.-P.

nonrational series, 631
Ramanujan’s tau function, 189
rational Hilbert series, 635
Skolem-Mahler-Lech theorem, 630

set composition, see composition, set
set partition, see partition (of a set)
Seyed, S. A.

ring theory conjecture, 508
Shapiro, L. W.

Catalan number generating function, 203
Fibonacci powers, 599
g-polynomial of cube, 525
restricted permutation, 196

Shareshian, J.
arrangement and Bruhat order, 497
posets with n chains, 475
subgroup lattice of Sn, 505

Shayman, M.
generalized descents, 178

Shearer, J. B.
a Möbius function, 501
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nonrational series, 635
shellable poset, see poset, shellable
shelling

of cube, 142
Shen, Y. H.

ring theory conjecture, 508
Shephard, G. C.

cyclic polytope, 525
zonotope Ehrhart polynomial, 648

Shepp, L. A.
longest cycle of a permutation, 193

Shi arrangement, see arrangement (of hyper-
planes), Shi arrangement

Shi, J.-Y.
Shi arrangement, 392

shift operator, see operator, shift
shifted double staircase

evacuation, see poset, shifted double stair-
case, evacuation

Shimura-Taniyama-Weil conjecture, 221
shuffle

of permutations, see permutation, shuffle
of sets, 229

shuffle poset, see poset, shuffle
sieve method, see method, sieve
sieve-equivalence, see equivalence, sieve
SIF, see permutation, SIF
sign-balanced, see poset, sign-balanced
sign-graded, see poset, sign-graded
sign-grading, see poset, sign-grading
signed graph, see graph, signed
sign-reversing involution, see permutation, in-

volution, sign-reversing
da Silva, C. P.

inclusion-exclusion, 249
Simion, R.

real zeros, 177
shuffle poset, 530
simsun permutation, 198

simple graph, see graph, simple
simple matroid, see matroid, simple
simple permutation, see permutation, simple
simplex

primitive, 612
unimodular, 612

simplicial complex, see complex, simplicial
simplicial cone, see cone, simplicial
simplicial monoid, see monoid, simplicial
simplicial poset, see poset, simplicial
Sims, C. C.

p-group enumeration, 635
simsun permutation, see permutation, sim-

sun
Sjöstrand, J.

arrangement and Bruhat order, 497
rook theory, 249

Skandera, M. A.
(3 + 1)-free posets and real zeros, 472

Skolem, T. A.
decidability of 0 coefficient, 630
Skolem-Mahler-Lech theorem, 630

Skolem-Mahler-Lech theorem, see theorem,
Skolem-Mahler-Lech

Skyrme, T. H. R.
parts of partitions, 186

Sloane, N. J. A.
boustrephedon triangle, 198
toothpick sequence, 189

Slone, M.
acyclic orientation poset, 485

Solomon, L.
abelian groups, 504
Möbius algebra, 392
parts of partitions, 186

sorting
topological, 295

Sottile, F.
Brion’s theorem, 638
Ehrhart polynomial generating function,

643
Ehrhart theory, 597

space
Minkowski, 433
topological

finite, 401
special letter, see monoid, free, special letter
Spencer, J. H.

magic squares, 598
Twelvefold Way, 107

Sperner family, see poset, Sperner family
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Sperner property
strong, see property, strong Sperner

sphere order, see poset, sphere order
Spiegel, E.

incidence algebra, 391, 485
square

antimagic, 618
magic, 561

stabilized-interval-free, see permutation, stablized-
interval-free

stabilizer, 93
stable partition, see graph, stable partition
stack, see n-stack
staircase, see board (for rook placements),

staircase
evacuation, see poset, staircase, evacua-

tion
standard permutation, see permutation, stan-

dard
standard representation, see permutation, stan-

dard representation
standard Young tableau, see tableau, stan-

dard Young
standardization (of a multiset permutation),

see permutation, of a multiset, stan-
dardization

Stankova, Z.
pattern avoidance, 180

Stanley, R.
(3 + 1)-free posets and real zeros, 472
βn(S, q), 249
103,049, 221
acyclic orientation, 497
alternating involutions, 200
arrangements and matroids, 392
binomial poset, 394
binomial posets and permutation enumer-

ation, 394
boolean algebra characterization, 475
boolean intervals, 479
Catalan arrangement, 498
cd-index, 107, 394, 528
cd-index of Sn, 201
chain polytope volume, 645
chain-partitionable poset, 507

chains in Bruhat order, 526
chains in distributive lattices, 391
characteristic polynomial of Πn, 392
chess problems, 164
chromatic polynomial and binomial posets,

530
coefficients of Hn(r), 644
Cohen-Macaulay poset, 392, 512
combinatorial commutative algebra, 392
combinatorics of hyperplane arrangements,

392
comparability graph, 508
composition poset, 481
connectivity set, 270
cross-polytope, 648
cube slices, 179
cycles with ai + 1 6≡ ai+1 (modn), 271
cyclic polytope, 647
differential poset, 394
dimer coverings of a rectangle, 654
disjoint saturated chains, 480
divisibility of #I, 494
domino tableau, 486
dropless labeling, 480
Ehrhart polynomial inequalities, 643
Ehrhart polynomial monotonicity, 643
Ehrhart quasipolynomial, 649
Ehrhart theory, 597
Einstein arrangement, 500
equivalent posets, 516
Eulerian poset, 393
exponential sequence of arrangements, 498
extended degree sequences, 649
extremal distributive lattice, 477
fixed points of alternating permutations,

199
free arrangement, 500
function on distributive lattice, 477
generalized Linial arrangement, 499
generalized Pascal triangle, 391
generic interval order, 472
g-polynomial of cube, 525
HC-polyominoes, 599
hypersimplex, 648
incidence algebra, 485
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inequalities for βn(S), 107
inhomogeneous reciprocity, 638
linear extensions of fence, 483
log-concavity and linear extensions, 483
magic squares, 270
noncrossing partitions

edge labeling, 515
order and chain polytopes, 645
order ideals of Nm, 633
order polynomial reciprocity, 509
partitioning of face poset, 496
parts of partitions, 185
P -compatible partition, 526
P -domino tableau, 488
permutations of type c, 197
permutations with w(i + j) 6≡ w(i) + j

(modn), 271
pleasant poset, 519
polynomial coefficients, 167
polynomial sums modulo n, 191
polytope face lattice, 525
poset conjecture, 517
poset decomposition, 480
poset determinant, 473
posets with many order ideals, 473
positivity of βJ(P )(S), 512
powerful polynomial, 213
powers of polynomials over Fq, 635
(P, ω)-partition, 393
product of chains characterization, 475
promotion and evacuation, 394, 488
protruded partition, 482
pulling triangulation, 598
q-Eulerian poset, 501
q-primary lattice, 504
rank-selected subposet, 392
reciprocity, 637
ring theory conjecture, 508
self-dual intervals, 513
Shi arrangement, 497
shuffle poset, 530
sign-balanced conjecture, 488
sign-balanced posets, 488
solution to recurrence, 209
Stirling polynomial, 633

subset sums modulo n, 191
Sundaram permutation, 198
supersolvable semimodular lattice, 503
symmetric GP (x), 518
symmetric magic squares, 598
symmetric matrix enumeration, 220
totally symmetric plane partition, 519
unimodality and log-concavity, 179
V -partition, 249, 273
weak (Bruhat) order, 527
zeta polynomial, 392
zonotope Ehrhart polynomial, 648

Stanley-Wilf conjecture, see conjecture, Stan-
ley-Wilf

Stanley’s theorem, see theorem, Stanley’s
Stanton, D.

cyclic sieving, 487((
na
k

))
q=ζ

, 190

Stapledon, A.
Ehrhart polynomial generating function,

643
Ehrhart polynomial inequalities, 643
Ehrhart polynomial monotonicity, 643

star product, see graph, star product
stars and bars, 26
statistical mechanics, 598
Stec̆kin, B. S.

Möbius function of subposet, 393
Stein, M. L.

permutation enumeration, 599
Stein, P. R.

history of enumeration, 105
monograph, 249
permutation enumeration, 599

Steingŕımsson, E.
cube slices, 179
dropless labeling, 480

Stembridge, J. R.
βJ(P )(S), 513
boolean intervals, 479
Bruhat order, 526
chains in Bruhat order, 526
poset conjecture, 517
q = 1 phenomenon, 487
self-evacuating linear extensions, 487
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symmetric matrix enumeration, 220
totally symmetric plane partition, 519
zeta polynomial, 479

Stephens, A. B.
restricted permutation, 196

Stern’s diatomic sequence, see sequence, Stern’s
diatomic

Stern, M. A.
diatomic sequence, 189

Stewart, J.
Eulerian posets with self-dual intervals,

529
Stickelberger, L.

square discriminant, 213
Stirling number

of the first kind, see number, Stirling, of
the first kind

of the second kind, see number, Stirling,
of the second kind

signless, of the first kind, see number,
Stirling, signless, of the first kind

Stirling polynomial, see polynomial, Stirling
Stirling, J.

calculus of finite differences, 597
Stone, M. H.

distributive lattice, 391
Stonesifer, J. R.

uniform posets, 505
Stong, R. A.

cycle indicator of GL(n, q), 108
powerful polynomial, 213

Stong, R. E.
poset cores, 472

Strauss, E. G.
integer derivatives, 203

Strauss, N.
binomial coefficient matrix, 167

Strehl, V.
André polynomial, 107

strict P -partition, see poset, P -partition, strict
strict order-preserving map, see poset, order-

preserving map, strict
strictly alternates in sign, see incidence alge-

bra, Möbius function, strictly alter-
nates in sign

string
restricted growth, 192

strong fixed point, see permutation, strong
fixed point

strong Sperner property, see property, strong
Sperner

Sturmfels, B.
combinatorial commutative algebra, 392
vector partitions, 642

Su, F. E.
Fibonacci numbers modulo n, 632

subarrangement, see arrangement (of hyper-
planes), subarrangement

sublattice, see lattice, sublattice
submultiset, 25
subsequence

decreasing, see permutation, subsequence,
decreasing

increasing, see permutation, subsequence,
increasing

subspace lattice, see lattice, subspaces of Fnq
subtree, see tree, subtree
subword, see word, subword
subword order, see poset, subword order
successive Durfee squares, see partition (of an

integer), successive Durfee squares
Sudler, C., Jr.

two-row plane partition, 184
Sullivant, S. P.

multiset permutations, 202
sum

Gauss, 220
sum (of graphs), see graph, sum
Sun, Y.

nilpotent linear transformations, 215
Sundaram, S.

simsun permutation, 197, 198
supersolvable, see lattice, supersolvable
Suppes, P.

semiorder, 471
support (of a vector), see vector, support, 551
support cone, see cone, support
supporting hyperplane, see hyperplane, sup-

porting
supremum, see poset, supremum
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Sved, M.∑(
2n
n

)
xn, 161

Swan, R. G.
square discriminant, 213

Swinnerton-Dyer, H. P. F.
p(5n+ 4), 186

Sylvester, J. J.
inclusion-exclusion, 249
quasipolynomials, 597

symmetric group, see group, symmetric
symmetric joint distribution, see distribution,

symmetric joint
symmetric matrix, see matrix, symmetric
symmetric order (of tree vertices), 51
SYT, see tableau, standard Young
syzygy, 559
Szegö, G.

determinant of gcd’s, 490
Szenes, A.

vector partitions, 642

table
difference, 86
inversion, see permutation, inversion ta-

ble
tableau

P -domino, see poset, P -domino tableau
standard Young, 297

weak order, 527
Tait, P. G.

problème des ménages, 249
Takács, L.

inclusion-exclusion, 266
Takemura, A.

perpendicular bisector arrangement, 499
ranking pattern, 527

Tale of Genji, 108
tangent number, 54
Tanny, S. M.

cube slices, 179
cycles with ai + 1 6≡ ai+1 (modn), 271
Terquem’s problem, 171

Tardos, G.
Stanley-Wilf conjecture, 180

Taylor, B.

calculus of finite differences, 597
Taylor, R.

Shimura-Taniyama-Weil conjecture, 221
Taylor’s theorem, see theorem, Taylor’s
Temperley, H. N. V.

HC-polyominoes, 599
Tenner, B.

posets with many order ideals, 474
Terao, H.

free arrangement, 500
hyperplane arrangements, 392
perpendicular bisector arrangement, 499
ranking pattern, 527
removal theorem, 500

Terquem’s problem, see problem, Terquem’s
Tetali, P.

tournament degree sequence, 633
theorem

binomial, 24
Birkhoff-von Neumann, 270, 598
Cauchy-Binet, 178
Cayley’s, 468
Crapo complementation, 489
crosscut, 315
Dilworth, 295, 422
Elder’s, 186
Fermat’s last, 221
hard Lefschetz, 178, 525
Hilbert syzygy, 270
multinomial, 28
pentagonal number, 75
Philip Hall’s, 307, 489

factor order, 441
Poincaré’s, 249
q-binomial, 75

Möbius inversion, 434
reciprocity

combinatorial, 27
Ehrhart quasipolynomial, 568
linear homogeneous diophantine equa-

tions, 557
order polynomial, see poset, order poly-

nomial, reciprocity
(P, ω)-partitions, see poset, (P, ω)-par-

tition, reciprocity
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rooted trees, 273
removal, 500
Rolle’s, 124, 177
Schur’s partition, 187
Skolem-Mahler-Lech, 630
Stanley’s, 186
Taylor’s

and difference tables, 202
Vandermonde, 105
Weisner’s, 314
Whitney’s, 392

theory
queueing, 206

Thévenaz, J.
lattice of subgroups, 505

threshold arrangement, see arrangement (of
hyperplanes), threshold arrangement

threshold graph, see graph, threshold
Thucydides

History of the Peloponnesian War, 6
Tideman, T. N.

perpendicular bisector arrangement, 499
toothpick, 134
topological sorting, see sorting, topological
topological space

finite, see space, topological, finite
toric variety, see variety, toric
toric g-polyomial, see poset, Eulerian, toric

g-polynomial
toric g-vector, see vector, toric g
toric h-polyomial, see poset, Eulerian, toric

h-polynomial
toric h-vector, see vector, toric h
toroidal graph, see graph, toroidal
totally ordered set, see poset, totally ordered

set
Touchard, J.

problème des ménages, 249
tournament, see graph, tournament
Tousi, M.

ring theory conjecture, 508
trace monoid, see monoid, trace
trail, see graph, trail
transformation fondamentale, 106
transitivity, see poset, transitivity

trapezoid
evacuation, see poset, shifted trapezoid,

evacuation
Travkin, R.

binomial coefficient sum, 162
tree, 655

(1-2), 56
binary, 657

flip, 56
bipartite orientation, 414
dual, 656
even, 143
free, 655
increasing binary, 51
length, 657
m-ary, 657

complete, 657
min-max, 57
ordered, 656
plane, 656
root, 655
rooted, 655
subtree, 655
unordered, 656

triangle
Pascal, 298

generalized, 298
triangular board, see board (for rook place-

ments), triangular
triangular poset, see poset, triangular
triangulation

of a cone, 550
face, 550

of a simplicial complex, 308
primitive, 612
pulling, 598
unimodular, 612

tridiagonal matrix, see matrix, tridiagonal
trigonometry, combinatorial, 55
triple (of arrangements), see arrangement (of

hyperplanes), triple
trivial word (in factor order), see word, trivial

(in factor order)
Trotter, W. T.

interval order, 471
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interval partitions, 475
linear extensions, 484
poset dimension, 473
semiorder, 471
sphere order, 473

truncated boolean algebra, see poset, boolean
algebra, truncated

Tutte, W. T.
chain groups, 476
formal power series, 105

Twelvefold Way, 79
type

of a set partition, see partition (of a set),
type

orbit, 91
type B braid arrangement, see arrangement

(of hyperplanes), type B braid arrange-
ment

u-avoiding permutation, see permutation, u-
avoiding

UCF, see monoid, unique circular factoriza-
tion

umbral formula, see formula, umbral
underlying space, see complex, regular cell,

underlying space
uniform poset, see poset, uniform
unimodal sequence, see sequence, unimodal
unimodular simplex, see simplex, unimodular
unimodular triangulation, see triangulation,

unimodular
unique circular factorization, see monoid, u-

nique circular factorization
unique degree sequence, see graph, tourna-

ment, degree sequence, unique
uniquely complemented, see latttice, uniquely

complemented
unit interval order, see poset, unit interval

order
unitary divisor, see divisor, unitary
unordered tree, see tree, unordered
unrefinable chain, see poset, chain, unrefin-

able
up-set, see poset, up-set

up-down permutation, see permutation, up-
down

updown category, see category, updown
upper bound, see poset, upper bound
upper semimodular lattice, see lattice, upper

semimodular
upper-triangular matrix, see matrix, upper-

triangular

Vakil, R.
Putnam Mathematical Competition, 174

valid t-word, see word, valid t-word
valley, see permutation, valley
Valtr, P.

combinatorial evaluation of integrals, 163
valuation, see lattice, distributive, valuation
valuation polytope, see polytope, valuation
van Rees, G. H. J.

magic squares, 598
Vandermonde’s theorem, see theorem, Van-

dermonde
Vandermonde, A.-T.

Chu-Vandermonde identity, 105
variation (of a set), 59
variety

flag, 102
cellular decomposition, 102

Grassmann, 67
cellular decomposition, 67

toric, 393, 525
Vatter, V.

cd-index of Sn, 201
Vaughan-Lee, M. R.

p-group enumeration, 635
vector

δ, see polytope, convex, δ-vector
characteristic, 23
column sum, 88
denominator, 567
h∗, see polytope, convex, h∗-vector
row sum, 88
support, 409
toric g, 356
toric h, 356

vector partition, see partition, vector
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Venkataraman, G.
group enumeration, 635

Veress, P.∑(
2n
n

)
xn, 161

Vergne, M.
vector partitions, 642

Verma, D.-N.
Bruhat order, 526

Veronese subposet, see poset, subposet, Ver-
onese

vertex
final, 573
initial, 573
of a graph, see graph, vertex
of a polytope, see polytope, convex, ver-

tex
very pure, see monoid, very pure
vexillary permutation, see permutation, vex-
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