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PREFACE

In this little book I have attempted to treat the Elemenl>8

of Non-Euclidean Plane Geometry and Trigonometry in such

a way as to prove useful to teachers of Elementary Geometry

in schools and colleges. Recent changes in the teaching of

Geometry in England and America have made it more than

ever necessary that the teachers should have some knowledge

of the hypotheses on which Euclidean Geometry is built, and

especially of that hypothesis on which Euclid's Theory of

Parallels rests. The historical treatment of the Theory

of Parallels leads naturally to a discussion of the Non-Euclidean

Geometries ; and it is only when the logical possibility of these

Non-Euclidean Geometries is properly understood that a

teacher is entitled to form an independent opinion upon the

teaching of Elementary Geometry.

The first two chapters of this book are devoted to a short

discussion of the most important of the attempts to prove

Euclid's Parallel Postulate, and to a description of the work

of the founders of Non-Euclidean Greometry, Bolyai, Lobat-

schewsky and Riemann.

In Chapters III.-V. the Non-Euclidean Geometry of Bolyai

and Lobatschewsky, now known as the Hyperbolic Geometry,

is developed in a systematic manner. The feature of this

treatment is that in Chapter III. no use is made of the Principle

of Continuity, and that both the Geometry and the Trigono-

metry of the Hyperbolic Plane are built up without the use

of Solid Geometry.
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In Chapters VI.-VII. a similar treatment, though in less

detail, is given for the Elliptic Geometry.

Chapter VIII. deals with Poincare's representation of the

Non-Euclidean Geometries by the geometry of the families

of circles orthogonal or diametral to a fixed circle. From

these representations an elementary proof of the impossibility

of proving Euclid's Parallel Postulate can be obtained, and

they throw fresh light upon the Non-Euclidean Geometries

themselves.

This little book could never have been written had it not

been for the work of Bonola. It was from him that I first

learnt that an elementary treatment of the subject was possible.

Both to his historical work, an English translation of which

I had the privilege of undertaking, and to his article in Enriques'

Questioni riguardanti la geometria elementare, especially in

its extended form in the German edition of that work, this

book owes a very great deal.

The other writers on the same subject to whom I am most

indebted are Liebmann and Stackel. The treatment of Plane

Hyperbolic Trigonometry is due to Liebmann ; and to the

second edition of his well-known Nichteuklidische Geometrie,

as well as to his original papers, most of which he has sent to

me as they appeared^ I am much indebted. A similar acknow-

ledgment is due to Stackel. When he learnt that I was engaged

on this work, I received from him, in the most generous way,

a set of all his papers on the subject, many of which were

inaccessible to me in Australia ; and the gift of a copy of his

book on Wolfgang and Johann Bolyai, immediately on its

publication, allowed me to make some use of his final account

of the discovery of the Hyperbolic Geometry in reading my
proofs.

Other acknowledgments will be found in their proper place

in the text. However, I would mention here the frequent

use I have made of Halsted's work and^of the Bibliography

of Sommerville ; also the assistance which I have received
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from Dr. F. S. Macaulay, who read all tlie proofs and made

many valuable suggestions and amendments. The work

of another of the Editors of this Series, Mr. C. S. Jackson,

has made my labour lighter, and one of my colleagues in

Sydney, Mr. R. J. Lyons, has also read a great part of the

final proofs.

II. S CARSLAW.

Sydney, September, 1914.

NOTE.

The final proofs of this book had been corrected, and the

foregoing preface written and set up in type before the

outbreak of the war.

In the course of years v^hetinie\m^ come when such co-

operation as I have here acknowledged will again be possible.

H. S. C.

Sydney, January, 1916.
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NO:^r-EUCLIDEAX GEOMETRY.

CHAPTER I.

THE PARALLEL POSTULATE, AND THE WORK OF
SACCHERI, LEGENDRE AND GAUSS.

§ 1. By the term Non-Euclidean Geometry we understand
a system of Geometry built up without the aid of the Euclidean
Parallel Hypothesis, while it contains an assumption as to

parallels incompatible with that of Euclid.

The discovery that such Non-Euclidean Geometries are

logically possible was a result of the attempts to deduce
Euclid's Parallel Hypothesis from the other assumptions
which form the foundation of his Elements of Geometry.
It will be remembered that he defines Parallel Lines as follows :

Parallel straight lines are straight lines which, being in the

same plane and being produced indefinitely in both directions,

do not meet one another in either direction*

Then in I. 27 he proves that

// a straight line falling on two straight lines make the alter-

nate angles equal to one another, the straight lines will be parallel

to one another.

And in I. 28 that

If a straight line falling on two straight lines make the exterior

angle equal to the interior and opposite angle on the same side,

*Here and in other places where the text of Euclid's Elements is

quoted, the rendering in Heath's Edition (Cambridge, 1908) is adopted.
This most important treatise will be cited below as Heath's Euclid.

N.-E.G, A



2 NON-EUCLIDEAN GEOMETRY [ch i.

or the interior angles on the same side equal to two right angles,

the straight lines will be parallel to one another.

In order to prove tlie converse of tliese two propositions,

namely (I. 29), that

A straight line falling on parallel straight lines makes the

alternate angles equal to one another, the exterior angle equal to

the interior and opposite angle, and the interior angles on the

same side equal to two right angles,

he found it necessary to introduce the hypothesis as to

parallel lines, which he enunciates as follows :

If a straight line falling on two straight lines make the interior

angles on the same side less than two right angles, the two straight

lines, if produced indefinitely, meet on that side on ivhich are

the angles less than the two right angles.

This hypothesis we shall refer to as Euclid's Parallel Postu-

late. It is true that in some of the MSS. it finds a place among
the Axioms. In others it is one of the Postulates, and it

seems to belong more properly to that group. No use is made
of it in the earlier propositions of the First Book. Accordingly

these would find a place in the Non-Euclidean Geometries,

which differ only from the Euclidean in substituting for

his Parallel Postulate another incompatible with it. Other
theorems of the Euclidean Geometry will belong to the Non-
Euclidean, if they have been proved, or can be proved, without

the aid of the Parallel Postulate, and if these geometries

adopt the other assumptions, explicit and implicit, made by
Euclid.

§ 2. It is not within the scope of this book to discuss the

modern treatment of the assumptions on which the Euclidean

and Non-Euclidean Geometries are based. We shall deal

simply with the assumption regarding parallels. But it is right

to mention that the idea of motion or displacement, which
forms part of the method of superposition, itself involves an
axiom. The fourth proposition of Euclid's First Book now
finds a place among the Axioms of Congruence, and upon this

group of axioms the idea of motion is founded. Apparently

Euclid recognised that the use of the method of superposition

was a blot upon the Elements. He adopted it only in 1. 4, and
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refrained from employing it in other places, where it would
have shortened the demonstration.

Again, Postulate I., which asserts the possibility of drawing
a straight line from any one point to any other, must be held

to declare that the straight line so drawn is unique, and that

two straight lines cannot enclose a space. And Postulate II.,

which asserts the possibility of producing a finite straight line

continuously in a straight line, must also be held to assert that

the produced part in either direction is unique ; in other words,

that two straight lines cannot have a common segment.
But the following more fundamental and distinct assump-

tions are made by Euclid, without including them among the

axioms or postulates :

(i) That a straight line is infinite.

This property of the straight line is required in the proof of

I. 16. The theorem that the exterior angle is greater than
either of the interior and opposite angles does not hold in the

Non-Euclidean Geometry in which the straight line is regarded
as endless, returning upon itself, but not infinite.

(ii) Let A, B, C be three points, not lying in a straight line, and
let a, be a straight line lying in the plane ABC, and not passing

through any of the points A, B, or C. Then, if a passes through

a point of the segment AB, it must also pass through a point of the

segment BC, or of the segment AC {Pasch's Axiom).

From this axiom it can be deduced that a ray passing through
an angular point, say A, of the triangle ABC, and Ijdng in the
region bounded by AB and AC, must cut the segment BC.

(iii) Further, in the very first proposition of the First Book
of the Elements the vertex of the required equilateral triangle

is determined by the intersection of two circles. It is assumed
that these circles intersect. A similar assumption is made in

I. 22 in the construction of a triangle when the sides are given.

The first proposition is used in the fundamental constructions

of 1. 2 and I. 9-11.

Again, in I. 12, in order to be sure that the circle with a
given centre will intersect the given straight line, Euclid makes
the circle pass through a point on the side opposite to that in

which the centre lies. And in some of the propositions of

Book III. assumptions are made with regard to the inter-

section of the circles employed in the demonstration. Indeed
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right through the Elements constructions are effected by means
of straight lines and circles drawn in accordance with Postulates

I.-III. Such straight lines and circles determine by their inter-

section other points in addition to those given ; and these

points are used to determine new lines, and so on. The exist-

ence of these points of intersection must be postulated or

proved, in the same way as the existence of the other straight

Unes and circles in the construction has been postulated or

proved.

The Principle of Continuity, as it is called, is introduced to

fill this gap. It can be stated in different ways, but probably

the simplest is that which Dedekind originally adopted in dis-

cussing the idea of the irrational number. His treatment of

the irrational number depends upon the following geometrical

axiom :

// all the points of a straight line can he separated into two

classes, such that every point of the first class is to the left of every

point of the other class, then there exists one, and only one, point

which brings about this division of all the points into two classes,

this section of the line into two parts*

This statement does not admit of proof. The assumption of

this property is nothing less than an axiom by which we assign

its continuity to the straight line.

The Postulate of DedeJcind, stated for the linear segment, can

be readily applied to any angle, (the elements in this case

being the rays from the vertex), and to a circular arc. By
this means demonstrations can be obtained of the theorems

as to th» intersection of a straight line and a circle, and of

a circle with another circle, assumed by Euclid in the pro-

positions above mentioned.")* The idea of continuity was
adopted by Euclid without remark. What was involved in the

assumption and the nature of the irrational number were

unknown to the mathematicians of his time.

This Postulate of Dedekind also carries with it the important

* Dedekind, Stetigkeit und irrationale Zahhn, p. 11 (2nd ed., Braun-

schweig, 1892) ; English translation by Beman (Chicago, 1901).

t This question is treated fully in the article by Vitali in Enriques'

volume, Queationi rigiiardaiiii la geomeiria elementare (Bologna, 1900)

;

German translation under the title, Fragen der Elementargeometrie,

vol. i. p. 129 (Leipzig, 1911). See also Heath's Euclid, vol. i. p. 234.
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Postulate of Archimedes, which will be frequently referred to in

the following pages :

// two segments are given, there is always some muUijple of
the one ivhich is greater than the other.*

§ 3. An interesting discovery, arising out of the recent study
of the Foundations of Geometry, is that a great part of Ele-

mentary Geometry can be built up without the Principle of

Continuity. In place of the construction of Euclid I. 2, the

proof of which depends upon this Principle, the following

Postulate "] is made :

// A, B are two points on a straight line a, and if A' is a point

upon the same or another straight line a', then we can always find
on the straight line a', on a given rayfrom A', one and only one

point B', such that the segment AB is congruent to the segment

A'B'.

In other words, we assume that we can always set off a

given length on a given line, from a given point upon it,

towards a given side. By the term ray is meant the half-line

starting from a given point.

With this assumption, for Euclid's constructions for the

bisector of a given angle (I. 9), for the middle point of a given

straight line (I. 10), for the perpendicular to a given straight

line from a point upon it (I. 11), and outside it (I. 12), and,

finally, for an angle equal to a given angle (I. 23)—all of which,
in the Elements, depend upon the Principle of Continuity

—

we may substitute the following constructions, which are

independent, both of that Principle and of the Parallel

Postulate. J

* For the proof of the Postulate ofA rchiinedes on the assumption of

Dedekind's Postulate, see Vitali's article named alwve, § 3. Another
treatment of this question will be found in Hill)ert's GrHudtayen der
Geometrte, 3rcl ed. § 8. An English translation of the first edition was
made by Townsund (Chicago, 1902). The Postulate of Archimedes
stated above for linear segments is adopted also for angles, areas, and
volumes.

tCf. Hilbert, he. cit. 3rd ed. § 5, Axioms of Congruence.

J The constructions in Problems 1, 2, 3 and 5 are given by Halsted
in his book, Rational Geometry (2nd ed. UX)7). Those for Problems 4
and 6 in the text are independent of the Parallel Postulate, and
replace those given by Halsted, in which the Euclidean Hypothesis is

assumed.
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Problem 1 . To bisect a given angle.

Construction. On one of the lines bounding the given angle A take

any two points B, C.

On the other bounding line take AB' = AB and AC'=AC.
Join BC and B'C.

Let them intersect at D.

Then AD is the desired bisector.

Proof. The triangles BAG' and B'AC are congruent.

Therefore Z.ACB'= Z.AC'B and ^DBC=^DB'C'.
It follows that the triangles BDC and B'DC are congruent, since

BC = B'C'.

Therefore DB' = DB.

Finally the triangles BAD and B'AD are congruent, and AD bisects

the given angle.

Problem 2. To draw a perpendicular to a given straight line.

Construction. Let AB be the given straight lin?.

Take any other straight line AC through

A.

Upon AB take AD ^ AC.
Join CD.
Bisect ;^CAD (by Problem 1), and let the

bisector cut CD at G.

On AB take AF = AG, and on the ray AG
take AH = AD.

Join FH.
Then FH is perpendicular to AB.

Proof. From the triangles ACG and ADG, we have Z.AGD equal to

a right angle.

Also the triangles AGD and AFH are congruent.

Therefore Z.AFH=: Z.AGD = 1 right angle.
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Problem 3. At a given point on a given straight line to erect the

perpendicular.

Comtruction. Let A be the given point and BC the given straight line.

Draw the perpendicular ZOY (by Problem 2), meeting BC in O.

Take OY = OZ, and join AY and AZ.

Produce YA through A to X.

Bisect Z-XAZ by AD (by Problem I).

Then AD is the perpendicular to BC
through A,

Proof. By the construction, the tri-

angles OAZ and GAY are congruent.

Therefore L ZAO = L YAG
= Z.XAC.

But LD^Z=L\^D.
Therefore AD is perpendicular t(j BC.

Fig. 3.

Pkoblem 4. From a given point outside a given straight line to

draw the perpendicular to the line.

CoiiMrucflon. Let A, B be two points on the given line, and C the

point outside it.

Join AC and BC.
On the segment AB take a point D, and

(by Problem 3) draw the perpendicular at

D to AB.
By Pasch's Axiom, this lino nnist cut

either AC or BC
Let it cut AC, and let the point of

intersection be E.

Produce ED through D to F, so that

DE = DF.
Join AF and produce AF to G, such

that AG = AC.
Join CG, and let it be cut by AB, or AB

produced, at H.
Then CH is the required perpendicular.

Proof. I'roni the construction, the tri-

angles ADE and ADF are congruent, so F'o- *

that AB bisects /.CAG.
It follows that tlie triangles ACH and AGH are congruent, and that

Z.AHC is a right angle.

Problem 5. At a given point on a giYen straight line to make an

angle equal to a given angle.

Canstniction. Let A be the point on the given line a. (Cf. Fig. 5.)

Let D be the given (acute) angle.

From a point E on one of the lines bounding the angle, draw (by

Problem 4) the perpendicular EF to the other bounding line.
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On Aa take AC=DF.
At C erect the perpendicular Cc to Aa (by Problem 3).

Make BC = EF, and join AB.

C a
Fig. 5.

Proof. By the construction, the triangles DEF and ABC are
congruent.

Therefore L BAG = Z. E D F.

Problem 6. To bisect a given finite straight line.

Construction. Let AB be the given segment.
At B draw the perpendicular Bfo to AB (by

Problem 3).

Upon B/) take any point C and join AC.
At B make Z.AB"E= Z.BAC (by Problem 5).

Let the line BE cut AC at D.

Bisect iLADB by the line cutting AB at F (by
Problem 1).

Then F is the middle point of AB.

Proof. From the construction it follows that
the triangles ADF and DBF are congruent.

Thus AF=FB.

Noli. This construction has to be slightly modified for the Elliptic

Geometry. The point C must lie between B and the pole of AB.
[Cf. §78.]

Fig. 0.

§4. Two Theorems independent of the Parallel
Postulate.

1. The 'perpendicular to the base of any triangle through its

middle point is also perpendicular to the line joining the middle

'points of the two sides.

Let ABC be any triangle, and let F and E be tlie middle

points of the sides AB and AC.

Join F and E ; and draw AA', BB', and CC' perpendicular

to EF from A, B, and C.

Let H be the middle point of BC, and K the middle point

of B'C.

Join HK.
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We shall prove that HK is perpendicular to BC and EF.

From the triangles AFA' and BFB', which are congruent,

we have AA' = BB'.

Similarly AA' = CC'.

Therefore BB' = CC'.

Join BK and KC.

In the triangles BB'K and CC'K
we have

BB' = CC', B'K = C'K,

and the angles at B' and C are equal.

Therefore the triangles are con-
gruent, and BK = CK.

Again, in the triangles BHK and CHK, we have the three
sides equal, each to each.

Therefore the triangles are congruent, and

L BHK = L CHK = a right angle.

Also ^BKH=^CKH.
But, from the triangles BB'K and CC'K, we have

iBKB'=^CKC'.
Therefore l HKB' = ^ HKC' = a right angle.

Thus HK is perpendicular to both BC and EF.

2. The locus of the middle points of the segments joining a set

of points ABC... on one straight line and a set A'B'C'... on
another straight line is a straight line, provided that AB = A'B',

BC = B'C', etc.

Via. 8.

Let M, N, and P be the middle points of AA', BB', and CC'.

Join BM and produce it to B", so that BM = M B".

Join B"A' and B"B'.
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The sides of the triangle BB'B" are bisected at M and N.

Therefore the line bisecting B'B" at right angles is also

perpendicular to MN.
But this line bisects z. B'A'B", since A'B' = A'B".

Now produce A'B" to C", so that B"C" = BC = B'C'.

Join C' C", MC" and MC.
The triangles MAC and MA'C" are congruent, and it follows

that MC and MC" are in one straight line.

Since A'C' = A'C", the line bisecting C'C" at right angles

coincides with the line bisecting B'B" at right angles.

Therefore MN and MP are perpendicular to the same
straight line.

Therefore MNP are coUinear.

Proceeding to the points A, B, D, A', B', D' we have a

corresponding result, and in this way our theorem is proved.

§ 5. From the Commentary of Proclus * it is known that not

long after Euclid's own time his Parallel Postulate was the

subject of controversy. The questions in dispute remained
unsolved till the nineteenth century, though many mathe-
maticians of eminence devoted much time and thought to

their investigation. Three separate problems found a place

in this discussion :

(i) Can the Parallel Postulate be deduced from the other

assumptions on which Euclid's Geometry is based ?

(ii) If not, is it an assumption demanded by the facts of

experience, so that the system of propositions deduced from

the fundamental assumptions will describe the space in which

we live ?

(iii) And finally, are both it and assumptions incompatible

with it consistent with the other assumptions, so that the

adoption of the Euclidean Hypothesis can be regarded as an
arbitrary specialisation of a more general system, accepted not

because it is more true than the others, but because the

Geometry founded upon it is simpler and more convenient ?

There can be little doubt that Euclid himself was convinced

that the first of these questions must be answered in the

negative. The place he assigned to the Parallel Postulate and

* Of. Friedlein, Prodi Diadochi in primiim Eudidis elementorum

libmm comvientarii (Leipzig, 1873). Also Heath's Eudid, vol. i.

Introduction, chapter iv.

U
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his refusal to use it earlier than I. 29 are evidence that with
him it had only the value of an hypothesis. It seems at least

very probable that he realised the advantage of proving
without that postulate such theorems as could be established

independently
;

just as he refrained from using the method
of superposition, when other methods were available and
sufficient for the demonstration.

But the followers of Euclid were not so clear sighted. Fruit-

less attempts to prove the Parallel Postulate lasted Well into

the nineteenth century. /Indeed it will be surprising if the

use of the vicious directio7i-theory of parallels, advocated at

present in some influential quarters in England, does not raise

another crop of so-called demonstrations—the work of those

who are ignorant of the real foundations on which the Theory
of Parallels rests.

The assumption involved in the second question had also

an effect on the duration of the controversy. Had it not been
for the mistake which identified Geometry—the logical doc-
trine—with Geometry—the experimental science—the Parallel

Postulate would not so long have been regarded as a blemish
upon the body of Geometry. However, it is now admitted
that Geometry is a subject in which the assertions are that

such and such consequences follow from such and such pre-

mises. Whether entities such as the premises describe actually

exist is another matter. Whenever we think of Geometry as

a representation of the properties of the external world in

which we live, we are thinking of a branch of Applied Mathe-
matics. That the Euclidean Geometry does describe those

properties we know perfectly well. But we also know that it

is not the only system of Geometry which will describe them.
To this point we shall return in the last pages of this book.

In the answer to the third question the solution of the
problem was found. This discovery will always be associated

with the names of Lobatschewsky and Bolyai. They were the
first to state publicly, and to estabhsh rigorously, that a con-
sistent system of Geometry can be built upon the assumptions,
explicit and implicit, of Euclid, when his Parallel Postulate is

omitted, and another, incompatible with it, put in its place.

The geometrical system constructed upon these foundations is

as consistent as that of Euclid. Not only so, by a proper
choice of a parameter entering into it, this system can be made
to describe and agree with the external relations of things.
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This discovery, wMch was made about 1823-1830, does not
detract from the value of Euclid's work. The Euclidean
Geometry is not to be replaced by the Non-Euclidean Geome-
tries. The latter have thrown light upon the true nature of
Geometry as a science. They have also shown that Euclid's
Theory of Parallels, far from being a blot upon his work, is

one of his greatest triumphs. In the words of-Heath :
" When

we consider the countless successive attempts made through
more than twenty centuries to prove the Postulate, many of
them by geometers of ability, we cannot but admire the genius
of the man who concluded that such a hypothesis, which he
found necessary to the validity of his whole system of geometry,
^was really indemonstrable." *

§ 6. The Work of Saccheri (1667-1733).

The history of these attempts to prove the Parallel Postulate
does not lie within the scope of this work.f But we must
refer to one or two of the most important contributions to that
discussion from their bearing on the rise and development of
the Non-Euclidean Geometries.

r^ Saccheri, a Jesuit and Professor of Mathematics at the
I University of Pavia, was the first to contemplate the possi-

\ bility of hypotheses other than that of Euclid, and to work
\ out the consequences of these hypotheses. Indeed it required

J only one forward step, at the critical stage of his memoir, and
\ the discovery of Lobatschewsky and Bolyai would have been
'' anticipated by one hundred years. Nor was that step taken

by his immediate successors. His work seems to have been
quickly forgotten. It had fallen completely into oblivion when
the attention of the distinguished Italian mathematician
Beltrami was called to it towards the end of the nineteenth
century. His Note entitled " un precursore italiano di Legendre
e di Lobatschewsky "

% convinced the scientific world of the
importance of Saccheri's work, and of the fact that theorems,
which had been ascribed to Legendre, Lobatschewsky, and

, Bolyai, had been discovered by him many years earlier.

* Heath's Eiiclid, vol. i. p. 202.

tCf. Bonola, La. geometria iioneudidea (Bologna, 1906); English
translation (Chicago, 1912). In quoting this work, we shall refer to
the English translation.

XHend. Ace. Lincei (4), t. v. pp. 441-448 (1889).
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Saccheri's little book

—

EucUdes db omni ncevo vindicatus—
is now easily accessible.* It was published in 1733, the last

year of his life. Much of it has been incorporated in the

elementary treatment of the Non-Euclidean Geometries. A
great deal more would be found therein were it not for the fact

that he makes very frequent use of the Principle of Continuity.

It must not be forgotten that Saccheri was convinced of the

truth of the Euclidean Hypothesis. He discussed the con-

tradictory assumptions with a definite purpose—not, like

Bolyai and Lobatschewsky, to establish their logical possi-

bilit)»—but in order that he might detect

the contradiction which he was persuaded

must follow from them. In other words,

he was employing the reductio ad absurdum
argument.
The fundamental figure of Saccheri is

the two right-angled isosceles quadrilateral

ABDC, in which the angles at A and B are ^ ^

right angles, and the sides AC and BD equal.

It is easy to show by congruence theorems that the angles

at C and D are equal. [Cf. §28.]

On the Euclidean Hypothesis they are both right angles.

Thus, if it is assumed that they are both obtuse, or both acute,

the Parallel Postulate is implicitly denied.

Saccheri discussed these three hypotheses under the names :

The Hypothesis of the Right Angle . . , z. C = z. D = a right angle.

The Hypothesis of the Obtuse Angle ... LC =LD=an obtuse

angle.

The Hypoth'jsis of the Acute Angle ... LC=LD=an acute

angle.

He showed that

According as the Hypothesis of the Right Angle, the Obtuse

Angle, or the Acute Angle is found to be true, the sum of the

angles cf any triangle will be respectively equal to, greater than,

or less than tivo right angles.

Also that

If the sum of the angles of a single triangle is equal to, greater

than, or less than two right angles, then this sum mil be equal

*Cf. Engel u. Stackel, Die Theorie der ParcUlellinien von Euclid bis

auf Gaiiss, pp. 31-136 (Leipzig, 1895).
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to, greater than, or less than two right angles in every other

triangle.

Again, he showed that

The Parallel Postulate follows from, the Hypothesis of the Right

Angle, and from the Hypothesis of the Obtuse Angle.

He was thus able to rule out the Hypothesis of the Obtuse
Angle ; since, if the Parallel Postulate is adopted, the sum of

the angles of a triangle is two right angles, and the Hypothesis
of the Obtuse Angle is contradicted. It should be remarked
that he assumes in this argument that the straight lijae is

infinite. When that assumption is dropped, the Hypothesis
of the Obtuse Angle remains possible.

As we have already mentioned, Saccheri's aim was to show
that both the Hypothesis of the Acute Angle and that of the

Obtuse Angle must be false. He hoped to establish this by
deducing from these hypotheses some result, which itself

would contradict that from which it was derived, or be in-

consistent with a previous proposition. So, having demolished

the Hypothesis of the Obtuse Angle, he turned to that of the

Acute Angle. In the system built upon this Hypothesis,

after a series of propositions, which are really propositions in

the Geometry of Lobatschewsky and Bolyai, he believed that

he had found one which was inconsistent with those preceding

it. He concluded from this that the Hypothesis of the Acute
Angle was also impossible ; so that the Hypothesis of the

Right Angle alone remained, and the Parallel Postulate must
be true.

In his belief that he had discovered a contradiction in

the sequence of theorems derived from the Hypothesis of the

Acute Angle, Saccheri was wrong. He was led astray by the

prejudice of his time in favour of the Euclidean Geometry as

the only possible geometrical system. How near he came to

the discovery of the Geometry of Lobatschewsky and Bolyai

will be clear from the following description of the argument
contained in his Theorems 30 to 32 :

He is dealing with the pencil of rays proceeding from a

point A on the same side of the perpendicular from A to a given

line h, and in the same plane as that perpendicular and the line.

He considers the rays starting from the perpendicular AB
and ending with the ray AX at right angles to AB.

In addition to the last ray AX, he shows that, on the hypo-
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thesis of the Acute Angle, there are an infinite number of rays

which have a common perpendicular with the line h. These

rays obviously cannot intersect the line b.

There is no last ray of this set, although the length of the

common perpendicular decreases without limit ; but there is

a lower limit to the set.

Also, proceeding from the line AB, we have a set of rays which

intersect the line 6. There is no last ray of this set ; but there

is an upper limit to the set.

The upper limit of the one set and the lower limit of the other,

he showed to be one and the same ray.

Thus, there is one ray, the line a^, which divides the pencil

of rays into two parts, such that all he rays on the one side

of the line a^, beginning with AB, intersect the line b ; and all

the rays on the other side of the line a^, beginning with the

line AX, perpendicular to the line AB, do not intersect 6.

The line a^ is the boundary between the two sets of rays, and
is asymptotic to b.

The result which Saccheri obtained is made rigorous by the

introduction of the Postulate of Dedekind. According to that

postulate a division of the two classes such as is described above

carries with it the existence of a ray separating the one set of

lines from the other.

This ray, which neither intersects 6 nor has with it a common
perpendicular, is the right-handed (or left-handed) parallel of

Bolyai and Lobatschewsky to the given line.

§7. The Work of Legendre (1752-1833).

The contribution of Legendre must also be noticed. Like

Saccheri, he attempted to establish the truth of Euclid's

Postulate by examining in turn the Hypothesis of the Obtuse
Angle, the Hypothesis of the Right Angle, and the Hypothesis
of the Acute Angle. In his work these hypotheses entered as

assumptions regarding the sum of the angles of a triangle.

If the sum of the angles of a triangle is equal to two right

angles, the Parallel Postulate follows ; at any rate, if we
assume, as Euclid did, the Postulate of Archimedes.*

Legendre thus turned his attention to the other two cases.

He gave more than one rigorous proof that the sum of the

angles of a triangle could not be greater than two right angles.

*Cf. Heath's Euclid, vol. i, pp. 218-9.
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In these proofs the infinity of the line is assumed. One of

them is as follows :

Let the sum of the angles of the triangle ABC be tt + ol, and
let A be the smallest angle.

Bisect BC at D and produce AD to E, making DE = AD.
Join BE.

Then from the triangles ADC C^ E
and BDE, we have

lCad=l bed,

^ACD=^DBE.

Thus the sum of the angles of

the triangle AEB is also equal to __

TT + oc, and one of the angles /\

BAD or AEB is less than or

equal to | ^CAB.
Apply the same process to the triangle ABE, and we obtain

a new triangle in which one of the angles is less than or equal

to —lCAB, while the sum is again -tt + ol.

Proceeding in this way after n operations we obtain a tri-

angle, in which the sum of the angles is tt + ol, and one of the

angles is less than or equal to — ^CAB.

But we can choose n so large that 2"a>^CAB, by the

Postulate of Archimedes.

It follows that the sum of two of the angles of this triangle

is greater than two right angles, which is impossible (when the

length of the straight line is infinite).

Thus, we have Legendre's First Theorem that

The sum of the angles of a triangle cannot he greater than two

right angles.

Legendre also showed that

If the sum of the angles of a single triangle is equal to two

right angles, then the sum of the angles of every triangle is equal

to two right angles.

From these theorems it follows that

If the sum of the angles of a single triangle is less than two

right angles, then the sum of the angles of every triangle is less

than two right angles.
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All these results had been obtained many years earlier by
Saccheri.

Legendre made various attempts to prove that the sum can-

not be less than two right angles, even in a single triangle
;

but these efforts all failed, as we now know they were bound to

do. He published several so-called proofs in the successive

editions of his text-book of geometry, the Moments de GeomHrie.

All contained some assumption equivalent to the hypothesis
which they were meant to establish.

For example, in one he assumes that there cannot be an
absolute unit of length ;

* an alternative hypothesis already

noted by Lambert (1728-1777).t
In a second he assumes that from any point whatever, taken

within an angle, we can always draw a straight line which
will cut the two lines bounding the angle.

In a third he shows that the Parallel Postulate would be
true, if a circle can always be drawn through any three points

not in a straight line.

In another [cf. p. 279, llth Ed.] he argues somewhat as follows

:

A straight line divides a plane in which it lies into two con-

gruent parts. Thus two rays from a point enclosing an angle

less than two right angles contain an area less than half the

plane. If an infinite straight line lies wholly in the region

bounded by these two rays, it would follow that the area of

half the plane can be enclosed within an area itself less than
half the plane.

Bertrand's well-known " proof " (1778) of the Parallel Postu-

late { and another similar to it to be found in Crelle's Journal

(1834) fail for the sani^ reason as does Legendre's. They
depend upon a comparison of infinite areas. But a process of

reasoning which is sound for finite magnitudes need not be
valid in the case of infinite magnitudes. If it is to be extended
to such a field, the legitimacy of the extension must be proved.

Lobatschewsky himself dealt with these proofs, and pointed out
the weakness in the argument. First of all, the idea of con-

gruence, as applied to finite areas, is used in dealing with in-

finite regions, without any exact statement of its meaning in

this connection. Further—and here it seems best to quote his

* See below, p. 90. Also Bonola, loc. cit. § 20.

t Cf. Engel u. Stackel, loc. cit. p. 200.

jCf. Frankland, Theories of Parallelism, p. 26 (Cambridge, 1910).

N.-B.O. B
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own words :
" when we are dealing with areas extending to

infinity, we must in this case, as in all other parts of mathe-
matics, understand by the ratio of two of these infinitely great

numbers, the limit to which this tends when the numerator and
denominator of the fraction continually increase." *

It is not a little surprising that at the present day mathe-
maticians of distinction have been found quoting Bertrand's

argument with approval. "j"

§ 8. Both Legendre and Saccheri, in their discussion of

these hypotheses, make use of the axiom that the length of the

straight line is infinite, and they also assume the Postulate of

Archimedes. Hilbert | showed that the Euclidean Geometry
could be built up without the Postulate of Archimedes. Dehn §

investigated what effect the rejection of the Postulate of

Archimedes would have on the results obtained by Saccheri

and Legendre. He found that the sum of the angles of a tri-

angle can be greater than two right angles in this case. In

other words, the Hypothesis of the Obtuse Angle is possible.

Again, he showed that without the Postulate of Archimedes
we can deduce from the angle-sum in a single triangle being

two right angles, that the angle-sum in every triangle is two
right angles. But his most important discovery was that,

when the Postulate of Archimedes is rejected, the Parallel

Postulate does not follow from the sum of the angles of a

triangle being equal to two right angles. He proved that

there is a Non-Archimedean Geometry in which the angle-sum

in every triangle is two right angles, and the Parallel Postulate

does not hold.

His discovery has been referred to in this place because it

shows that the Euclidean Hypothesis is superior to the others,

which have been suggested as equivalent to it. Upon the

Euclidean Hypothesis, without the aid of the Postulate of

Archimedes, the Euclidean Geometry can be based. If we

* Cf. Lohatsehewsky, Nein Principles of Geometry icith a Complete
Theory of Parallels, Engel's translation, p. 71, in Engcl u. Stiickel's

Urkunden zur Geschichte der nichieuklidischen Geometrie, I. (Leipzig,

1898).

tCf. Frankland, The Mathematical Gazette, vol. vii. p. 136 (1913)

and p. 332 (1914) ; Nature, Sept. 7, 1911, and Oct. 5, 1911.

:J:
Cf . loc. cit. chapter iii.

§Cf. Math. Ann. vol. liii. p. 404 (1900), .
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substitute for it the assumption that the sum of the angles of a

triangle is two right angles—or that the locus of the points

equidistant from a straight line is another straight line

—

different geometries can be created. One of these is the

Euclidean Geometry, in which only one parallel can be drawn
to a straight line from a point outside it. Another is what
Dehn calls the Semi-Euclidean Geometry, in which an infinite

number of parallels can be drawn.*

§ 9. The Work of Gauss (1777-1855).

Though Bolyai and Lobatschewsky were the first to

publicly announce the discovery of the possibility of a Non-
Euclidean Geometry and to explain its content, the great

German mathematician Gauss had also independently, and
some years earlier, come to the same conclusion. His results

had not been published, when he received from Wolfgang
Bolyai, early in 1832, a copy of the famous Appendix, the

work of his son John.

This little book reached Gauss on February 14, 1832. On
the same day he wrote to Gerling, with whom he had been
frequently in correspondence on mathematical subjects : f
"... Further, let me add that I have received this day a

little book from Hungary on the Non-Euclidean Geometry. In
it I find all my own ideas and RESULTS, developed with
remarkable elegance, although in a form so concise as to offer

considerable difficulty to anyone not familiar with the subject.

The author is a very young Austrian officer, the son of a friend

of my youth, with whom, in 1798, I have often discussed these

matters. However at that time my ideas were still only

slightly developed and far from the completeness which they
have now received, through the independent investigation of

this young man. I regard this young geometer v. Bolyai as a

genius of the highest order. ..."
The letter in which Gauss replied to Wolfgang Bolyai three

weeks later is better known, but deserves quotation from the

light it throws upon his own work : J
"

. . . If I commenced by saying that I am unable to praise

this work (by John), you would certainly be surprised for a
moment. But I cannot say otherwise. To praise it would be to

* Cf. Halsted, Science, N.S. vol. xiv. pp. 705-717 (1901).

tCf. Gauss, Werke, vol. viii. p. 220.

ij: Gauss, Werke, vol. viii. p. 220.



20 NON-EUCLIDEAN GEOMETRY Lch.i.

praise myself. Indeed the whole contents of the work, the path
taken by your son, the results to which he is led, coincide

almost entirely with my meditations, which have occupied my
mind partly for the last thirty or thirty-five years. So I

remained quite stupefied. So far as my own work is concerned,
of which up till now I have put little on paper, my intention

was not to let it be published during my lifetime. Indeed the

majority of people have not clear ideas upon the questions of

which we are speaking, and I have found very few people who
could regard with any special interest what I communicated to

them on this subject. To be able to take such an interest one
must have felt very keenly what precisely is lacking, and about
that most men have very confused ideas. On the other hand,
it was my idea to write all this down later, so that at least it

should not perish with me. It is therefore a pleasant surprise

for me that I am spared this trouble, and I am very glad that

it is just the son of my old friend who takes the precedence of

me in such a remarkable manner. ..."
Wolfgang sent a copy of this letter to his son with the

remark :

" Gauss's answer with regard to your work is very satis-

factory, and redounds to the honour of our country and nation.

A good friend says, That's very satisfactory !
" *

John Bolyai was the reverse of pleased. That he would
be disappointed at the news that Gauss had already reached
the same conclusions as himself was natural. But his chagrin

led him to doubc whether Gauss had really made these dis-

coveries independently of his work. He conceived the absurd
idea that his father must have sent his papers to Gauss some
time earlier (they had been in his hands for several years),

and that Gauss had made use of them, jealous of being beaten
by this young Hungarian. In this he relied upon a remark
made by Gauss in 1804, in a letter to his father, when both
of them were trying to demonstrate the Parallel Postulate.

Wolfgang had sent him what he thought was a rigorous proof,

and Gauss replied that his demonstration was invalid, and that

he would try as clearly as possible to bring to light thestumbling-

*Cf. Stackel, "Die Entdeckung der nichteuklidisehen Geometrie
durch Johann Bolyai," Math. u. Naturwiaseyiachaftliche Berichte aws
Ungarn, Bd. xvii. p. 17 (1901). Also by the same author in Engel u.

Stackel's Urkunden zur Geschichte dfr nichleiildidiachen Geometrie, II.,

Wolfgang u. Johann Bolyai, vol. i. p. 72 (Leipzig, 1913).



9.10] GAUSS AND SCHWEIKART 21

block which he found therein. That this was not unlike the

obstacle which so far had baffled his own efforts. " However,
I am always hopeful," he added, "that some day, and that

in my own lifetime, a way over this obstacle will be revealed." *

Though John Bolyai afterwards saw how groundless his

suspicions were, he always held that Gauss had treated him
badly in this matter ; and it does seem unfortunate that Gauss
did not more effectively use his great influence to rescue from
ill-merited neglect the notable work of the two comparatively

unknown young mathematicians, Bolyai and Lobatschewsky.

Not till years after they had passed away did the scientific

world realise the immense value of their discoveries.

§ 10. Bolyai's discovery was made in 1823, and first pub-
lished in 1832. Far away in Kasan, Lobatschewsky—one of

the Professors of Mathematics in the local University—not

later than 1829, and probably as early as 1826, had also dis-

covered this new Geometry, of which the Euclidean was a

special case. Thus it is interesting to trace, so far as we can.

Gauss's attitude to the Theory of Parallels at that time. The
chief available authorities are some letters of his which still

survive, and some notes found among his papers.f

In the early years of the nineteenth centiiry he shared the

common belief that a proof of the Euclidean Hypothesis might
possibly be found. But in 1817 we find him writing to Olbers

as follows :

" Wachter has published a little paper on the * First Prin-

ciples of Geometry,' of which you will probably get a copy
through Lindenau. Although he has got nearer the root of

the matter than his predecessors, his proof is no more rigorous

than any of the others. I am becoming more and more
convinced that the necessity of our geometry cannot be
proved ..." J

In 1819 he learnt from Gerling in Marburg that one of his

colleagues, Schweikart—a Professor of Law, but formerly a
keen student of Mathematics—had informed him that he was
practically certain that Euclid's Postulate could not be proved
without some hypothesis or other ; and that it seemed to him

* Gauss, Werlce, vol. viii. p. 160.

t See Gauss, Werke, vol. viii.

J Gauss, Werke, vol. viii. p. 177.
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not improbable that our geometry was only a special case of a

more general one. At the same time Gerling sent him, at

Schweikart's request, a Memorandum, which the latter had
given him, desiring to know Gauss's opinion upon it.

This Memorandum is as follows :
*

" Marburg, December, 1818.

" There are two kinds of geometry—a geometry in the

strict sense—the Euclidean ; and an astral geometry.
" Triangles in the latter have the property that the sum of

their three angles is not equal to two right angles.
" This being assumed, we can prove rigorously :

(a) That the sum of the three angles of a triangle is less

than two right angles
;

(6) That the sum becomes always less, the greater the area

of the triangle
;

(c) That the altitude of an isoscele(' right-angled triangle

continually grows, as the sides increase, but it can

never become greater than a certain length, which I

call the Constant.

" Squares have, therefore, the following form (Fig. 11) :

" If this Constant were for us the radius of the earth (so

that every line drawn in the universe from one fixed star to

another, distant 90° from the first, would be a tangent to the

surface of the earth), it would be infinitely great in comparison

with the spaces which occur in daily life.

* Gauss, Werkt, vol. viii. p. 180.
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" The Euclidean geometry holds only on the assumption that
the Constant is infinite. Only in this case is it true that the
three angles of every triangle are equal to two right angles

;

and this can easily be proved, as soon as we admit that the
Constant is infinite."

This document is of peculiar importance, as it is in all

probability the earliest statement of the Non-Euclidean Geome-
try. From a passage in a letter of Gerling's,* we learn that
Schweikart made his discovery when in Charkow. As he left

that place for Marburg in 1816, he seems by that date to have
advanced further than the stage which Gauss had reached
in 1817, according to the letter quoted above.
To Gerling, Gauss replied as follows : f
"... Schweikart 's Memorandum has given me the greatest

pleasure, and I beg you to convey to him my hearty con-
gratulations upon it. It could almost have been written by
myself. (Es ist mir fast alles aus der Scele geschiieben). . . .

I would only fm'ther add that I have extended the Astral
Geometry so far, that I can fully solve all its problems as soon
as the Constant = C is given, e.g. not only is the DefectJ of the
angles of a plane triangle greater, the greater the area, but it is

exactly proportional to it ; so that the area has a limit which
it can never reach ; and this limit is the area of the triangle

formed by three lines asymptotic in pairs. ..."
From Bolyai's papers it appears that at this date he was

attempting to prove the truth of the Parallel Postulate. Also
in 1815-17 Lobatschewsky was working on the same traditional

lines.

§ 11. The above Memorandum is the only work of Schwei-
kart's on the Astral Geometry that is known. Like Gauss, he
seems not to have published any of his researches. However,
at his instigation, and encouraged by Gauss, his nephew
Taurinus devoted himself to the subject. In 1825 he pub-
lished a Theorie der Parallsllimen, containing a treatment of
Parallels on Non-Euclidean Lines, the rejection of the Hypo-
thesis of the Obtuse Angle, and some investigations resembling
those of Saccheri and Lambert on the Hypothesis of the Acute
Angle. For various reasons he decided that the Hypothesis of

*Cf. Gauss, Werke, vol. viii. p. 238.

t Gauss, Werke, vol. viii. p. 181. J See p. 54.
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the Acute Angle must also be rejected, though he recognised the

logical possibility of the propositions which followed from it.

Again, it is from a letter which Gauss wrote to Taurinus in

1824, before the publication of his book, that we obtain the

fullest information of his views :
*

" Your kind letter of the 30th October with the accompany-
ing little theorem I have read not without pleasure, all the

more as up till now I have been accustomed to find not even a

trace of real geometrical insight in the majority of the people

who make new investigations upon the so-called Theory of

Parallels. In criticism of your work I have nothing (or not

much) more to say than that it is incomplete. It is true that

your treatment of the proof that the sum of the angles of a

plane triangle cannot be greater than 180° is still slightly

lacking in geometrical precision. But there is no difficulty in

completing this ; and there is no doubt that that impossi-

bility can be established in the strictest possible fashion. The
position is quite different with regard to the second part, that

the sum of the angles cannot be smaller than 180°. This is

the real hitch, the obstacle, where all goes to pieces. I imagine

that you have not occupied yourself with this question for

long. It has been before me for over thirty years, and I don't

believe that anyone can have occupied himself more with this

second part than I, even though I have never published any-

thing upon it. The assumption that the sum of the three

angles is smaller than 180° leads to a peculiar Geometry, quite

distinct from our Euclidean, which is quite consistent. For
myself I have developed it quite satisfactorily, so that I can

solve every problem in it, with the exception of the determina-

tion of a Constant, which there is no means of settling a priori.

The greater we take this Constant, the nearer does the geometry
approach the Euclidean, and when it is given an infinite value

the two coincide. The theorems of that Geometry appear

almost paradoxical, and to the ignorant, absurd. When con-

sidered more carefully and calmly, one finds that they contain

nothing in itself impossible. For example, the three angles of

a triangle can become as small as we please, if only we may take

the sides large enough ; however, the area of a triangle cannot

exceed a definite limit, no matter how great the sides are

taken, nor can it reach that limit. All my attempts to find a

* Cf. Gauss, Werke, vol. viii. p. 186. This letter is reproduced in

facsimile in Engel u. Stackel's Theorie der ParalleUinien (Leipzig, 1895).
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contradiction, an inconsistency, in this Non-Euclidean Geome-
try, have been fruitless. The single thing in it, which is opposed

to our reason, is tliat if it were true, there must exist in space

a linear magnitude, determined in itself (although unknown to

us). But methinks, in spite of the meaningless Word-Wisdom
of the Metaphysicians, we know too little or nothing at all

about the real meaning of space, to stamp anything appearing

unnatural to us as Absolutely Impossible. If the Non-Euclidean
Geometry were the true one, and that Constant were in some
ratio to such magnitudes as we meet in om- measurements on
the earth or in the heavens, then it might be determined a

posteriori. Thus I have sometimes in jest expressed the

wish, that the Euclidean Geometry were not the true one,

because then we would have a priori an absolute measure.
" I have no fear that a man who has shown himself to me

as possessed of a thinking mathematical head will misunder-

stand what I have said above. But in every case take it as

a private communication, of which in no wise is any public

use to be made, or any use which might lead to publicity.

Perhaps, if I ever have more leisure than in my present cir-

cumstances, I may myself in the future make my investigations

known."

§ 12. Finally, in 1831, after Bolyai's Appendix was in print,

but before a copy had reached him, we find Gauss writing to

Schumacher, who thought he had proved that the sum of the

angles of a triangle must be two right angles, by a method
practically the same as the rotation method of Thibaut, which
so unfortunately has lately received official sanction in England
and crept into our text-books of Elementary Geometry. He
pointed out to him the fallacy upon which that so-called proof

rests. Then he added :
*

" In the last few weeks I have commenced to put down a

few of my own meditations which are already to some extent
forty t years old. These I had never put in writing, so that I

have been compelled three or foiir times to think out the

whole question afresh. Nevertheless I did not want it to

perish with me."

* Cf. Gauss, Werke, vol. viii. p. 213.

t Forty years before the date of this letter Gauss would be just a
little over 14 years old !
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The Notes on Parallels,* found among his papers, probably
belong to this period. Some use of them will be made below in

the formal development of the Geometry of Bolyai and
Lobatschewsky.
However his plans were changed when, in February, 1832,

Bolyai's work reached his handS. He saw that it was now
unnecessary for him to proceed with this work. The enthu-

siasm with which he read the Appendix we have already seen.

I have entered at some length into this story, partly because -a,

of its intrinsic interest
;

partly because of the urifortunate \
claim made by some mathematicians that to Gauss should

j

be ascribed the discovery of the Non-Euclidean Geometry ; /

partly, also, because it has been suggested that the work of /

Bolyai and Lobatschewsky had been inspired by the investiga- (

tions of Gauss.
|

The claim and the suggestion we now know to be unfounded.

The wonderful discovery, which revolutionised the science of

Geometry, must always be associated with the names of Bolyai

and Lobatschewsky, who, independently and without any
knowledge of the work of Gauss, fully developed the new
Geometry. While the glory of the discovery is theirs, we must
not forget the advance which Gauss, and also Schweikart, had
made along the same lines.

* Cf. Gauss, Werke, vol. viii. p. 202 ; also Bonola, loc. cit. p. 67.



CHAPTER II.

THE WORK OF BOLYAI, LOBATSCHEWSKY, AND RIEMANN.

THE FOUNDERS OF THE NON-EUCLIDEAN GEOMETRIES.

§ 13. John Bolyai (1802-1860).

As we have already seen, John Bolyai, a Hungarian officer

in the Austrian army, had in 1823 built up a consistent system
of geometry in which the Parallel Postulate of Euclid was
replaced by another, contradictory to the former. His dis-

covery was published in 1832 as an Appendix to his father's

work : Tentamen juventutem studiosam in elernenta tnatheseos

purae, elementaris ac sublimioris, methodo intuitiva, evidentia-

que huic propria, introducendi. This work is usually referred

to as the Tentamen. The title of the Appendix contributed by
the son, and placed at the end of vol. i. of the Tentamen, is :

Appendix. Scientiam spatii absolute veram exhibens : a veritate

aut falsitate Axiomatis XI Euclidei (a priori lumd unquani
decidenda) independenlem : adjecta ad casum falsitatis, qtiadra-

tura circuli geometrica. Auctore Johanne Bolyai de eadem,
Geotnetrarum in Exercitu Caesareo Regio Austriaco Castrensium
Capitaneo.

If we omit the title page, a page explaining the notation,

and two pages of errata, the Appendix contains only twenty-
four pages.

Bolyai's discovery was made as early as 1823, when he was
but 21 years old. At the time, we find him writing to his

father as follows :
*

" I have resolved to publish a work on the theory of parallels,

as soon as I shall have put the material in order, and my cir-

* Stackel u. Engel, " Gauss die beiden Bolyai und die nichteuklidische
Geometrie, Math. Ann. vol. xlix. p. 155 (1897). Also Stackel, loc. cit.

vol. i. p. 85.
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cumstances allow it. At present I have not yet completed this

work, but the road, which I have followed, has made it almost
certain that the goal will be attained, if that is at all possible :

the goal is not yet reached, but I have made such wonderful

discoveries that I have been almost overwhelmed by them, and
it would be the cause of continual regret if they were lost.

When you will see them, my dear father, you too will recognise

it. In the meantime I can only say this : / have created a new
universe from nothing. All that I have sent you till now is but
a house of cards compared to a tower. I am as fully persuaded
that it will bring me honour, as if I had already completed the

discovery."

Wolfgang suggested that his son should publish his work,

and offered to insert it as an Appendix in the Tentatnen. He
advised him, if he had really succeeded, not to lose time in

letting the fact be known, for two reasons :
*

" First, because ideas pass easily from one to another, who
can anticipate its publication ; and, secondly, there is some
truth in this, that many things have an epoch, in which they

are found at the same time in several places, just as the violets

appear on every side in spring. Also every scientific struggle

is just a serious war, in which I cannot say when peace will

arrive. Thus we ought to conquer when we are able, since the

advantage is always to the first comer."

But the publication of the Tentamen was delayed for some
years. In the meantime the MSS. was placed in his father's

hands, and he called some parts of it in question. His doubts

were partly removed, and the work was inserted in the first

volume, an advance copy of which reached Gauss at Gottingen

in February, 1832. The younger Bolyai attached immense
importance to the approval of Gauss, at that time the greatest

authority in the world of mathematics. The high praise which
Gauss gave to his work we have already mentioned.

§ 14. We now give a short description of the Appendix.

(i) It opens with a definition of parallels. // the ray AM is

not cut by the ray BN, situated in the same plane, but is cut by

every ray BP comprised in the angle ABN, this will be denoted

by BNlllAM.

*Stackel, "Die Entdeckung der nichteuklidischen Geometrie durch
Johann Bolyai," Math. u. Naturw. Berichte aus Ungarn, vol. xvii.

p. 14 (1901). Also loc. cit. vol. i. p. 86.
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In a footnote he adds " pronounced BN asymptotic to AM."
Bolyai always used tlie word -parallel and the symbol II

in the sense of equidistant, while he reserved the word
asymptotic and this symbol III for the new parallels, in the

sense in which we shall see Lobatschewsky used the term.

The properties of the new parallels are then established.

(ii) The properties of the circle and sphere of infinite radius

are obtained. It is shown that the geometry on the sphere of

infinite radius is identical with ordinary plane geometr}'.

(iii) Spherical Geometry is proved to be independent of the

Parallel Postulate.

(iv) The formulae of the Non-Euclidean Plane Trigonometry
are obtained with the help of the sphere of infinite radius.

(v) Various geometrical problems are solved for the Non-
Euclidean Geometry ; e.g. the construction of a " square

"

whose area shall be the same as that of a given circle,*

Bolyai laid particular stress upon the demonstration of the

theorems which can be established without any hypothesis as

to parallels. He speaks of such results as absolutely true, and
they form part of Absolute Geometry or the Absolute Science of

Space. As the title of the Appendix shows, one of his chief

objects was to build up this science.

In the Appendix he says little about the question of the

impossibility of proving the truth of the Euclidean Parallel

* Of course the Non -Euclidean "square" is not a quadrilateral with
equal sides and all its angles right angles. A rectangle is impossible \« .

in the Non-Euclidean plane. The square of Bolyai is simply a regular \ y
quadrilateral. The angles are equal, but their size depends on the r"

sides. /
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Postulate. He refers to the point more than once ; but he

postpones fuller treatment till a later occasion ; an occasion

which, so far as the public are concerned, never came. The
last sentences of the Appendix (Halsted's translation) are as

follows :

" It remains finally, (that the thing may be completed in

every respect), to demonstrate the impossibility (apart from

any supposition), of deciding a priori, whether 2, or some S

(and which one) exists.* This, however, is reserved for a more
suitable occasion."

§ 15. Bolyai retired from the army in 1833 and lived till

1860. So far as we know he published nothing further, either

in extension of the Appendix or on any other mathematical

subject. From several sources, chiefly notes found among his

papers, we learn that he occupied himself with some of the

problems of the Non-Euclidean Geometry. He carried his

work further in the direction of Solid Geometry. He investi-

gated more fully the relation between the Non-Euclidean

Geometry and Spherical Trigonometry ; and he pondered the

question of the possibility or impossibility of proving Euclid's

Hypothesis.

An unpublished version of part of the Appendix exists in

German,! in which he gives clearer expression to his views upon

the last of these topics than is to be found in the corresponding

section of the original. In this version, which dates from 1832,

the first part of § 33 reads as follows :

" Now I should briefly state the essential result of this

theory, and what it is in a position to effect :

" I. Whether 2 or S actually exists, remains here (and, as

the author can prove, for ever) undecided.

" II. Now there is a Plane Trigonometry absolutely true

{i.e. free from every hypothesis), in which, however, (according

to I.), the constant i and its very existence remain wholly

undetermined. With the exception of this unknown every-

thing is determined. But Spherical Trigonometry was

* Bolyai calls 2 the system of Geometry resting upon Euclid's

Hypothesis; and S the system founded upon his own definition of

parallels.

fCf. Stiickel, " Untersuchungen aus der absoluten Geometrie aus

Johann Bolyai's Nachlass," Math. u. Naturw. Berichte aus Ungam,
vol. xviii. p. 280, 1902. Also loc. cit. vol. ii. p. 181.
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developed absolutely and completely in § 26 ; so that the

ordinary familiar Spherical Trigonometry is not in the least

dependent upon Axiom XI. and is unconditionally true.

" III. By means of these two trigonometries and several

subsidiary theorems (to be found in the text of § 32) one is able

to solve all the problems of Solid Geometry and Mechanics,

which the so-called Analysis in its present development has in

its power (a statement which requires no further qualification),

and this can be done downright without the help of Axiom XI.
(on which until now everything rested as chief-foundation-

stone), and the whole theory of space can be treated in the

above-mentioned sense, from now on, with the analytical

methods (rightly praised within suitable limits) of the new
(science).

" Taking now into consideration the demonstration of the

impossibility of deciding between 2 and S (a proof which the

author likewise possesses), the nature of Axiom XI. is at

length fully determined ; the intricate problem of parallels

completely solved ; and the total eclipse completely dispelled,

which has so unfortunately reigned till the present (for minds
thirsting for the truth), an eclipse which has robbed so many of

their delight in science, and of their strength and time.
" Also, in the author, there lives the perfectly purified con-

viction (such as he expects too from every thoughtful reader)

that by the elucidation of this subject one of the most important
and brilliant contributions has been made to the real victory

of knowledge, to the education of the intelligence, and con-

sequently to the uplifting of the fortunes of men."

His proof of the impossibility of proving the Euclidean
Hypothesis seems to have rested upon the conviction that
the Non-Euclidean Trigonometry would not lead to any con-
tradiction. The following sentences are to be found among
his papers :

" We obtain by the analysis of a system of points on a
plane obviously quite the same formulae as on the sphere

;

and since continued analysis on the sphere cannot lead to any
contradiction (for Spherical Trigonometry is absolute), it is

therefore clear that in the same way no contradiction could
ever enter into any treatment of the system of points in a
plane." *

*Cf. Stiickel, loc. cit. vol. i. p. 121.

J
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And lower down in the same passage :

" But there still remains the question, whether in some way
or other the considerations of space would not avail for the
establishment of 2."

Indeed, owing to a mistake in his analysis, he thought for

a time that he had actually obtained a proof of the Euclidean
Hypothesis on these lines. But he discovered his error later.

From the fact that at one time he was willing to admit that,

Avith the aid of Solid Geometry, evidence against the logical

consistency of the Non-Euclidean Geometry might be obtained,

we must not imagine that he had failed to grasp the significance

of his earlier work. On the contrary, his argument shows that
he had seen more deeply into the heart of the matter than
Lobatschewsky himself. The latter, as we shall see below,

relied simply upon the formulae for the plane. Even when it

has been established that the Non-Euclidean Plane Geometry
is a perfectly logical and consistent system, the question still

remains, whether, somewhere or other, contradictory results

might not appear in the theorems of Solid Geometry.
This question, raised for the first time by Bolyai, was

settled many years later by Klein,* following upon some
investigations of Cayley. We shall give, in the last chapter

of this book, an elementary and rigorous demonstration
of the logical possibility of the Non-Euclidean Geometry of

Bolyai-Lobatschewsky, and shall show how the same argument
can be applied to the Non-Euclidean Geometry associated with

the name of Riemann.

§ 16. The Work of Lobatschewsky (1793-1856).

Nicolaus Lobatschewsky—Professor of Mathematics in the

University of Kasan—was a pupil of Bartels, the friend and
fellow-countryman of Gauss. As early as 1815 he was working

at the Theory of Parallels, and in notes of his lectures (1815-

1817), carefully preserved by one of his students, and now in

the Biblioteca Lobatschewskiana of the Kasan Physical-

Mathematical Society, no less than three " proofs " of the

Parallel Postulate are to be found. From a work on Elementary

Geometry, completed in 1823, but never published, the MSS. of

which was discovered in 1898 in the archives of the University

of Kasan, we know that by that date he had maSe some

*Cf. "tJber die sogenannte Nicht-Euklidische Geometrie," Math.

Ann. vol. iv. (1871).
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advance ; for lie says regarding the Parallel Postulate, " a

rigorous proof of this truth has not hitherto been discovered
;

those which have been given can only be called explanations,

and do not deserve to be considered as mathematical proofs

in the full sense." *

Between 1823 and 1826 Lobatschewsky had entered upon
the path which finally led him to his great discovery. It is

known that in 1826 he read a paper to the Physical-Mathe-
matical Society of Kasan, entitled, Exposition succiiicte des

jrrincipes de la geometrie, avec mie demonstration rigoureuse du
theorl'me des paralleles. The MSS. of this work does not survive,

and the last clause in the title is ominous, for it suggests that
he had not yet reached his goal. But in 1829-30 he published
a memoir in Russian, On (lie Principles of Geometry,'\ and in

a footnote to the first page he explains that the work is an
extract from the Exposition succincte.

This memoir and many other works of Lobatschewsky have
come down to us, for, unlike Bolyai, he was- a prolific writer.

He published book after book, hoping to gain for the Non-
Euclidean Geometry the recognition it deserved—a recognition

which in his lifetime it wholly failed to receive. But his first

published work contains all that is essential to the treatment
of the subject ; and fully establishes the truth and value of

his discovery. Thus, if the year 1826 cannot, with absolute

certainty, be taken as the date at which Lobatschewsky had
solved the problem, there is not the least doubt that his dis-

covery of the Non-Euclidean Geometry was an accomplished
fact in the year 1829.

§ 17. This memoir consists of nearly seventy pages. The
earlier sections, §§ 1 to 7, deal with the ordinary geometrical

notions of surface, line, point, distance, etc. In § 8 he intro-

duces his theory of parallels.

This section reads as follows : J

* 1 am indebted to Dr. D. M. Y. Sommerville for a rendering of the
Appendix I. by Vasiliev to the Russian translation of Bonola's La
geometr'ta non-euclidea. From this Appendix the sentence in the text
is taken.

t When Lobatschewsky's works appeared in Russian. We give the
titles in English. This work is available in German in Eugel's
translation. See Engel u. Staekel's Urkimden ztir Oeschichte der vicht-

euk/idischen Geometrie, I. (Leipzig, 1898).

jCf. Engel, loc. cit. p. 10.

N.-E.a. c



34 NON-EUCLIDEAN GEOMETRY [ch.ii.

" We have seen that the sum of the angles of a rectilinear

triangle cannot be greater than tt. There still remains the

assumption that it may be equal to tt or less than tt. Each of

these two can be adopted without any contradiction appearing
in the deductions made from it ; and thus arise two geometries :

the one, the customary, it is that until now owing to its sim-

plicity, agrees fully with all practical measurements ; the

other, the imaginary, more general and therefore more diffi-

cult in its calculations, involves the possibility of a relation

between lines and angles.
" If we assume that the sum of the angles in a single rectilinear

triangle is equal to tt, then it will have the same value in all.

On the other hand, if we admit that it is less than tt in a single

triangle, it is easy to show that as the sides increase, the sum of

the angles diminishes.

"In all cases, therefore, two lines can never intersect, when
they make with a third, angles whose sum is equal to tt. It is

also possible that they do not intersect in the case when this

sum is less than tt, if, in addition, we assume that the sum
of the angles of a triangle is smaller than tt.

'• In relation to a line, all the lines of a plane can therefore

be divided into intersecting and not-intersecting lines. The
latter will be called parallel, if in the pencil of lines proceeding

from a point they form the limit between the two classes
;

or, in other words, the boundary between the one and the

other.
" We imagine the perpendicular a dropped from a point to

a given line, and a parallel drawn from the same point to the

same line. We denote the angle between a and the parallel

TT
by F(a). It is easy to show that the angle F(a) is equal to —

z

for every line, when the sum of the angles of a triangle is equal

to TT ; but, on the other hypothesis, the angle F (a) alters with

o, so that as a increases, it diminishes to zero, and it remains

always less than —

.

" To extend the meaning of F(a) to all lines a, on the latter

hypothesis, we shall take

f{0) = ^, F(-a) = 7r-F(a).

In this way we can associate with every acute angle A a
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positive line a, and with every obtuse angle A, a negative line

a, sucli that . ^, ,A = F(a).

Further parallels, in both cases, possess the following pro-

perties :

" If two lines are parallel, and two planes passing through

them intersect, their intersection is a line parallel to both.
" Two lines parallel to a third are parallel to each other.

" When three planes intersect each other in parallel lines, the

sum of the inner plane angles is equal to tt."

In § 9 the circle and sphere of infinite radius are introduced
;

the Limiting-Curve a.nA Limiting-Surface* of the Non-Euclidean
Geometry.

In §§11 to 15 he deals with the measurement of triangles

and the solution of the problems of parallels.

At the end of § 13 are to be found the fundamental equations

(17) connecting the angles and sides of a plane triangle.

§ 16, and those which follow it, are devoted to the determina-

tion, in the Non-Euclidean Geometry, of the lengths of curves,

the areas of surfaces, and the volumes of solids.

After the most important cases have been examined, he adds
a number of pages dealing with definite integrals, which have
only an analytical interest.

From the conclusion I make the following extract, as it is

related to the question already touched upon in the sections

dealing with Bolyai's work—the logical consistency of the

new geometry :

' After we obtained the equations (17), which express the

relations between the sides and angles of a triangle, we have
finally given general expressions for the elements of lines,

surfaces, and volumes. After this, all that remains in Geometry
becomes Analysis, where the calculations must necessarily

agree with one another, and where there is at no place the

chance of anything new being revealed which is not contained

in these first equations. From them all the relations of the

geometrical magnitudes to each other must be obtained. If

anyone then asserts that somewhere in the argument a con-

tradiction compels us to give up the fundamental assumption,
which we have adopted in this new geometry, this contradiction

can only be hidden in equations (17) themselves. But we

'' See note on p. 80.
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remark that these equations are transformed into the equations

(16) of Spherical Trigonometry by substituting ia, ib, and ic for

the sides a, b, and c. And in ordinary geometry and Spherical

Trigonometry there enter only the relations between lines. It

follows that the ordinary geometry, (Spherical) Trigonometry
and this new geometry must always be in agreement with
one another." *

§ 18. " The writings of Lobatschewsky were brought under
the notice of Gauss as early as 1841, and we gather from his

letters how much impressed he was with them. Indeed it

almost appears as if he had thrown himself into the study of

Russian that he might be able to read the numerous papers

which he hears this " clear-sighted mathematician " had
published in that tongue. Through Gauss the elder Bolyai

learnt in 1848 of the Russian's work, and in particular of the

Geometrische Untersuchungen zur Theorie der Parallellinien of

1840. The astonishing news and the volume, which Lobat-

schewsky had written as a summary of his work, were passed

on from the father to his son. How he received the intelligence

we learn from the following passage in some unpublished Notes

upon Nicolaus Lobatschewsky's Geometrische Untersuchungen :
"i"

" Even if in this remarkable work many other methods are

adopted, yet the spirit and the result so closely resemble the

Appendix to the Tentamen matheseos, which appeared in Maros-

Vasarhely in 1832, that one cannot regard it without astonish-

ment. If Gauss was, as he says, immensely surprised, first by
the Appendix and soon after by the remarkable agreement of

the Hungarian and Russian mathematician, not less so am L
" The nature of absolute truth can indeed only be the same

in Maros-Vdsdrhely as in Kamschatka and on the Moon, or, in

a word, anywhere in the world ; and what one reasonable

being discovers, that can also quite possibly be discovered by
another."

* The same point is referred to in Lobatsehewsky's other works :

cf. (i) Imaginary Geometry (Liebmann's translation, p. 8) ; (ii) Geo-

metrische Untersuchimr/en zur Theorie der Parallellinien (Halsted's

translation, p. 163) ; (iii) Pang4om^trie, § 8 (quoted by Bonola, he. cit.

p. 93).

+ Cf. Kiirscliak ii. Stackel, ".Tohann Bolyai's Bemerkungen iiber

Nicolaus Lobatsehewsky's Geometrische Untersuchungen zur Theorie

der Parallellinien," Math. m. Naturw. Berichte aus Uiiga^vi, vol. xviii.

p. 256 (1902)". Also, Stackel, loc. cit. vol. i. p. 140.
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Then lie goes on to remark that in the world of science dis-

coveries are not unlikely to be made about the same time ; but
he cannot help wondering whether someone had not brought
his own work to Lobatschewsky's notice ; after which the

latter might have attempted to reach the same goal by another
path. And he also makes the absurd suggestion that Lobat-
schewsky's work might really be due to Gauss himself ; that

Gauss, unable to endure that anyone should have anticipated

him in this matter, and yet powerless to prevent it, might have
himself written this work under Lobatschewsky's name. Bolyai
was undoubtedly a great genius, but he seems to have been the

possessor of an extraordinarily suspicious nature !

The opinion of Gauss on the same work is given in a letter

to Schumacher of 1846 :
*

"... I have lately had occasion again to go through the

little book ... by Lobatschewsky. It contains the outlines

of that geometry which must exist, and could quite consistently

exist, if the Euclidean Geometry is not true. A certain Schwei-
kart called such a geometry the Astral ; Lobatschewsky calls it

the Imaginary. You are aware that for fifty-four years (since

1792) f I have had the same conviction (with some extension
later, of which I shall not say more here). I have found nothing
really new to myself in Lobatschewsky's work ; but the
development is made on other lines than I had followed, and by
Lobatschewsky, indeed, in a most masterful fashion and with
real geometrical spirit. I feel compelled to bring the book under
your notice. It will give you exquisite pleasure. , .

."

Lobatschewsky died in 1856 and Bolyai four years later :

one of them, probably, a disappointed man ; the other,

certainly, an embittered one. Public recognition they had
not gained, and in all likelihood the number of mathematicians
acquainted with their work was extremely small. Had Gauss
only made public reference to their discoveries, instead of
confining himself to praise of their work, cordial and enthu-
siastic though it was, in conversation and correspondence, the
world would earlier have granted them the laurels they
deserved.

A few years after they had passed away the correspondence'
of Gauss and Schumacher was published, and the numerous

* Gauss, Werke, vol. viii. p. 238.

t Rather an early date, surely, for Gauss was born in 1777.
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references to the works of Lobatschewsky and Bolyai showed
the mathematicians of that day in what esteem Gauss had held

these two still unknown and obscure names. Soon afterwards,

thanks chiefly to Lobatschewsky 's works, and to the labours of

some well-known French, German, and Italian geometers, the

Non-Euclidean Geometry, which Bolyai and Lobatschewsky
had discovered and developed, began to receive full recognition.

To every student of the Foundations of Geometry their names
and their work are now equally familiar.

§19. The Work of Riemann (1826-1866).

The later development of Non-Euclidean Geometry is due
chiefly to Riemann, another Professor of Mathematics at

Gottingen. His views are to be found in his celebrated memoir :

Uber die HypotJiesen welche der Geometrie zu Grunde Uegen. This

paper was read by Riemann to the Philosophical Faculty at

Gottingen in 1854 as his Hahilitationsschrift, before an audience

not composed solely of mathematicians. For this reason it

does not contain much analysis, and the conceptions introduced

are mostly of an intuitive character. The paper itself was not

published till 1866, after the death of the author ; and the

developments of the Non-Euclidean Geometry due to it are

mostly the work of later hands.

Riemann regarded the postulate that the straight line is

infinite—^adopted by all the other mathematicians who had
devoted themselves to the study of the Foundations of Geome-
try—as a postulate which was as fit a subject for discussion as

the Parallel Postulate. What he held as beyond dispute was

the unboundedness of space. The difference between the in-

\jinite and unbounded he puts in the following words :

"In the extension of space construction to the infinitely

great, we must distinguish between unboundedness and infinite

extent ; the former belongs to the extent relations ; the latter

to the measure relations. That space is an unbounded three-

fold jnanifoldness is an assumption which is developed by
every conception of the outer world ; according to which every

instant the region of real perception is completed, and the

possible positions of a sought object are constructed, and which

by these applications is for ever confirming itself. The un-

boundedness of space possesses in this way a greater empirical

certainty than any external experience, but its infinite extent

by no means follows from this ; on the other hand, if we
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assume independence of bodies from position, and therefore

ascribe to space constant curvature, it must necessarily be

finite, provided this curvature has ever so small a positive

value." *

§20. Riemann, therefore, substituted for the hypothesis

that the straight line is infinite, the more general one that it is

unbounded. With this assumption the Hypothesis of the

Obtuse Angle need not be rejected. Indeed the argument which

led Saccheri, Legendre, and the others to reject that hypothesis

depended upon the theorem of the external angle (I. 16). In

the proof of this theorem it is assumed that the straight line is

infinite.

The Hypothesis of the Obtuse Angle being available, another

Non-Euclidean Geometry appeared. The importance of this

new Geometry was first brought to light, when the ideas of

the Non-Euclidean Geometry were considered in their bearing

upon Projective Geometry.
A convenient nomenclature was introduced by Klein.f He

called the three geometries Hyperbolic, Elliptic, or Parabolic,

according as the two infinitely distant points on a straight

line are real, imaginary, or coincident. The first case we meet

in the Geometry of Lobatschewsky and Bolyai ; the second

in the Geometry of Riemann ; the third in the Geometry of

Euclid. These names are now generally adopted, and the

different Non-Euclidean Geometries will be referred to below

by these terms.

It is evident that at this stage the development of the Non-
Euclidean Geometries passes beyond the confines of Elementary

Geometry. For that reason the Elliptic Geometry will not

receive the same treatment in this book as the simpler Hyper-

bolic Geometry. Also it should perhaps be pointed out here

—

the question will meet us again later—that the Elliptic Geome-
try really contains two separate cases, and that probably only

one of these was in the mind of Riemann. The twofold nature

of this Geometry was discovered by Klein.

* This quotation is taken from Clifford's translation of Riemann's
memoir {Nature, vol. viii. 1873). The surface of a sphere is unbcuvcled

:

it is not infinite. A two-dimensional being moving on the surface of a
sphere could walk always on and on witliout being brought to a stop.

tCf. Klein, " Uber die sogenannte Nicht-Euklidische Geometric,"
Math. Ann. vol. iv. p. 577 (1871), and a paper in Math. Ann. vol. vi.

Also Bonola, loc. cit. English translation, App. iv,
*"



[cH. in

CHAPTER III.

THE HYPERBOLIC PLANE GEOMETRY.

§ 21. In this chapter we proceed to the development of the

Plane Geometry of Bolyai and Lobatschewsky—-the Hyperbolic
Geometry. We have already seen that we are led to it by the

consideration of the possible values for the sum of the angles

of a triangle, at any rate when the Postulate of Archimedes
is adopted. This sum cannot be greater than two right angles,

assuming the infinity of the straight line. If it is equal to

two right angles, the Euclidean Geometry follows. If it is

less than two right angles, then two parallels can be drawn
through any point to a straight line.

It is instructive to see how Lobatschewsky treats this

question in the Geometrische Untersuchungen * one of his later

works, written when his ideas on the best presentation of this

fundamental point were finally determined.
" All straight lines in a plane which pass through the same

point," he says in § 16, " with reference to a given straight

line, can be divided into two classes, those which cut the line,

and those which do not cut it. That line which forms the

boundary between these two classes is said to be parallel to the

given line.

" From the point A (Fig. 13) draw the perpepdicular AD
to the line BC, and at A erect the perpendicular AE to the line

AD. In the right angle EAD either all the straight lines going

out from A will meet the line DC, as, for example, AF ; or some
of them, as the perpendicular AE, will not meet it.

" In the uncertainty whether the perpendicular AE is the

only line which does not meet DC, let us assume that it is

* Geomefrische Untersxichungen zur Theorie der Paralhllinien (Berlin,

1840). English translation by Halsted (Austin, Texas, 1891).
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possible tliat there are other lines, such as AG, which do not

cut DC however far they are produced.
" In passing from the lines AF, which cut DC, to the lines AG,

which do not cut DC, we must come upon a line AH, parallel

to DC, that is to say, a line on one side of which the lines AG
do not meet the line DC, while, on the other side, all the lines

AF meet DC.

" The angle HAD, between the parallel AH and the perpen-

dicular AD, is called the angle of parallelism, and we shall

denote it by ^{p), p standing for the distance AD."
Lobatschewsky then shows that if the angle of 2}arallelisvi

were a right angle for the point A and this straight line BC,

the sum of the angles in every triangle would have to be two
right angles. Euclidean Geometry would follow, and the angle

of parallelism would be a right angle for any point and any
straight line.

On the other hand, if the angle of parallelism for the point A
and this straight line BC were an acute angle, hf shows that

the sum of the angles in every triangle would have to be less

than two right angles, and the angle of parallelism for any
point and any straight line would be less than a right angle.

The assumption n(^) = ^ serves as the foundation for the

IT
ordinary geometry, and the assumption ^{p)<a leads to the

new geometry, to which he gave the name Imaginary Geo-

metry. In it two parallels can be drawn from any point to any
straight line.

In this argument Lobatschewsky relies upon the idea of
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continuity without stating the assumptions underlying that

term. The same remark applies to the argument of^Bolyai.

Indeed their argument does not prove the existence of the two
parallels. The existence of the two parallels in this geometry
is an axiom, just as the existence of only one parallel is an
axiom in the Euclidean Geometry.

§22. Hubert's Axiom of Parallels.

Hilbert makes the matter clearer by definitely inserting in his

treatment of the Hyperbolic Plane Geometry * the following

Axiom of Parallels :

// b is any straight line and A any point outside it, there are

akvays two rays through A, a^, and ag, which do notform one and
the same straight line, and do not intersect the line b, while every

other ray in the region hounded by a^ and ag, which passes through

A, does intersect the line b.

Fig. 14.

Let BC be the line h and AH, AK the rays a^ and a2-

From Pasch's Axiom f it follows that no line in the regions

H'AH, K'AK cuts BC (Fig. 14).

Hence the rays a^ (AH) and flg (AK) form the boundary
between the rays through A which cut BC and the rays through

A which do not cut BC.

Through A draw the perpendicular AD to the line b (BC),

and also the perpendicular E'AE to the line AD.
Now E'AE cannot intersect BC, for if it cut BC on one side of

D, it must cut it at a corresponding point on the other.

* Hilbert, loc. cit. p. 160. t Of. p. 3.
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Also it cannot be parallel to BC, because according to the
Axiom the two parallels are not to form one and the same
straight line.

Therefore the angles between a^, a^, and AD must be acute.

We shall now show that they are equal.

If the angles are unequal, one of them must be the greater.

Let ttj make the greater angle with AD, and at A make

-DAP=_DAK.

Then AP must cut BC when produced.

t\

^^^^/ \^v^
a.^ / \P ^a,

<r-
/

>

Fio. 15

Q C

Let it cut it at Q.
On the other side of D, from the line h cut off DR = DQ and

join AR.

Then the triangles DAQ and DAR are congruent, and AR
makes the same angle with AD as a^, so that AR and a^ must
coincide.

But ag does not cut BC ; therefore the angles which a^, a^
make with AD are not unequal.
Thus we have shown that the perpendicular AD bisects the

angle between the parallels ay and a^.

The angle which AD makes with either of these rays is called
the atigle of parallelism for the distance AD, and is denoted,
after Lobatschewsky, by ^{p), where AD =p.

The rays a^ and a^ are called the right-handed and left-

handed parallels from A to the line BC.

§ 23. In the above definition of parallels, the starting point
A of the ray is material. We shall now show that

A straight line maintains its property of parallelism at all -^

its points.
'

^
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In other words, if the ray AH is the right-handed {or left-

handed) parallel through A to the line BC, then it is the right-

handed {or left-handed) parallel through any point upon the ray

AH, or HA produced, to the given line.

Case I. Let A' be any point upon the ray AH other than A.

Through A' draw A'D' perpendicular to BC.

In the region bounded by A'D' and A'H draw any ray A'P,

and take Q, any point upon A'P.

Join AQ.
Then AQ produced must cut DC.

It follows from Pasch's Axiom that A'Q must cut D'C.

But A'H does not cut D'C, and A'P is any ray in the region

D'A'H.

Therefore A'H is a parallel through A' to the line BC.

Case II. Let A' be any point upon the ray AH produced

backwards through A.

Draw A'D' perpendicular to BC. *
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In the region bounded by A'D' and A'H draw through A'

any ray A'P, and produce PA' through A' to Q.

Upon A'Q take any point R and join AR.

Then RA produced must intersect DC.

It follows that A'P must intersect D'C.

Therefore, as above, the ray A'H is a parallel through any
point A', on HA produced, to the line BC.

In both cases the parallels are in the same sense or direction as

the original ray (i.e. both right-handed or both left-handed).

We are thus entitled to speak of a line AB as a right-handed (or

left-handed) parallel to another line CD, without reference to

any particular point upon the line AB.

§24. Another property of parallels with which we are

familiar in Euclidean Geometry also holds for the Hyperbolic

Geometry.

If the line AB is parallel to the line CD, then the line CD is

parallel to the line AB.

From A draw AC perpendicular to CD. and from C draw CE
perpendicular to AB.

Fio. 18.

In the region DCE draw any ray CF, and from A draw AG
perpendicular to CF.

It is easy to show that the point G must lie in the region

ECD.
Further, since .^ ACG is an acute angle and z. AGC is a right

angle, AC>AG.
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From AC cut off AH =AG, and draw HK perpendicular to

AH on the same side as CD.

Make ^ HAL = ^ GAB.

Then the ray AL must cut CD, and it follows that HK must
cut AL.

Let HK cut AL at M.

From AB cut off AN =AM, and join GN.
Then the triangles HAM and GAN are congruent.

Thus /. AGN =a right angle.

Therefore GN and GF coincide, and CF produced intersects

AB.

But CF was any ray in the region between CE and CD, and
CD itself does not cut AB.

Therefore CD is parallel to AB, in the same sense as A B is

parallel to CD.*

§25. A third important property of parallels must also be

proved :

If the line (1) is parallel to the line (2) and to the line (3),

the three lines being in the same plane, then the line (2) is also

parallel to (3).

Case I. Let the line (1) lie between (2) and (3). (Cf. Fig. 19.)

Fio. 19.

Let A and B be two points upon (2) and (3), and let AB cut

(1) in C.

Through A let any arbitrary line AD be drawn between

AB and (2).

* The proof in the text is adapted from that of Lobatsehewsky in

Ne.w Principles of Oeometry loifh a Complete Theory of Parallels, §96
(Engel's translation, p. 161t)- t
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Then it must cut (1), and on being produced must also cut

(3).

Since this holds for every line such as AD, (2) is parallel to

(3).

Case II. Let the line (1) be outside both (2) and (3), and
let (2) lie between (1) and (3). (Fig. 20.)

Fio. 20.

If (2) is not parallel to (3), through any point chosen at

random upon (3), a line different from (3) can be drawn which
is parallel to (2).

This, by Case I., is also parallel to (1), which is absurd.*

§26. We shall now consider the properties of the figure

[of. Fig. 21] formed by two parallel rays through two given

points and the segment of which these two points are the ends.

Fio. 21.

It is convenient to speak of two parallel lines as meeting at

infinity. In the Hyperbolic Geometry each straight line will

have two points at infinity, one for each direction of parallelism.

With this notation the parallels through A, B may be said to

meet at 12, the common point at infinity on these lines.

*The proof in the text is due to Gauss, and is taken from Boiiola,

loc. cit. p. 72.
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Also, a straight line will be said to pass through this point

12, when it is parallel to these two lines in the same sense.

1. If a straight line passes through one of the angular points

A, B, or 12, and through a point inside this figure, it must cut

the opposite side. (Fig. 21.)

Let P be the point within the figure. Then AP must cut BS2,

by the Axiom of Parallels. Let it cut 8(2 at Q. The line Pl2

must cut one of the sides AB or BQ, of the triangle ABQ, by
Pasch's Axiom. It cannot cut BQ, since it is parallel to Bl2.

Therefore it must cut AB.

2. A straight line in the plane ABI2, not passing through an
angular point, which cuts one of the sides, also cuts one, and only

one, of the remaining sides of this figure.

Let the straight line pass through a point C on AB. Let Ci2

be drawn through C parallel to AI2 and BI2. If the given line

lies in the region bounded by AC and Ci2, it must cut Ai2 ; and
if it lies in the region bounded by BC and Ci2 it must cut Bl2.

Again, if the line passes through a point D on AI2, and B, D
are joined, it is easy to show that it must cut either AB or Bi2.

We shall now prove some further properties of this figure.

3. The exterior angle at A or B is greater than the interior and
opposite angle.

.c

Fio. 22.

Consider the angle at A, and produce the line BA to C.

Make Z.CAM =/. ABO. AM cannot intersect Bi2, since the

exterior angle of a triangle is greater than the interior and
opposite angle. Also it cannot coincide with AI2, because then

the perpendicular to Al2 from the middle point of AB would
also be perpendicular to Bi2. The angle of parallelism for

this common perpendicular would be a right angle, and this

is contrary to Hilbert's Axiom of Parallels.
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Therefore ^CAi2>i.CAM, which is equal to ^lABfl.
' Thus the exterior angle at A is greater than the interior

angle at B.

A similar proof applies to the angle at B.

We take now two figures of this nature ; each consisting

of a segment and two parallels through the ends of the segment.

4. If the segment AB= the segment A'B', and the angle at

A =the angle at A', then the angles at B and B' are equal.

D'

n

B

n'

B'

Pio. 23.

If ^ ABft is not equal to l A'B'12', one of them must be the

greater.

Let ^ABi2>^A'B'0'.

Make ^ ABC =.1 A'B'fi'.

Then BC must cut Afi.

Let it cut it at D ; and on A'fl' take A'D' = AD, and join B', D'.

Then the triangles ABD and A'B'D' are congruent, so that

z. A'B'D' =:! ABD -z. A'B'i]', which is absurd.

It follows that z. AB12 is not greater than z. A'B'12', and that

the angles are equal.

5. If the segment AB = the segment A'B', and the angles at

A and B are equal, as also the angles at A' and B', then the

four angles at A, B, A' a)td B' are equal to each other.

B B'

Fig. 24.

If the angle at A is not equal to the angle at A', one of them
must be the greater. Let it be the angle at A,

N.-E.O. p
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At A and B draw the rays whicli make with AB an angle

equal to the angle at A'.

These rays must intersect ; let them meet at C.

From A'fi' cut ofi A'C'-AC, and join B'C
The triangles ABC and A' B'C' are congruent, so that

^ A'B'C =z- ABC =^ A'B'i]',

which is absurd.

Thus the angles at A and A' must be equal ; and it follows

that the angles at A, B, A' and B' are equal to each other.

6. // the angles at A and A' are equal, and the angles at B and
B' are also equal, then the segment AB= the segment A'B'.

If AB is not equal to A'B', one of them must be the greater.

Let it be AB.

A'

From AB cut off AC = A'B', and draw CI2 parallel to AI2.

Then, by (4), ^ ACi2 ^l A'B'il' =l ABI2.

But by (3), L ACfi > L ABfi.

Therefore AB cannot be greater than A'B', and the two
segments are equal.

§ 27. The Angle of Parallelism.

From § 26 (4), we can at once deduce that the angles of
parallelism coiresponding to equal distances are equal.

yy
FiQ. 2(3.

Combining this result with § 26 (3), we can assert that

If i.>j>P2, then n(^g)>II(^j).
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We shall see later (§ 41) that to any given segment we can

find the angle of parallelism, and that to any given acute angle

(§ 45) we can find the correspojiding distance.

Thus, we can say that

If lh=lh^ then Il{2h) = ^{p^).

If Pi>i?2. then Jl{p^) <U{p^).

If Pi<P2, then n(^^) > n(;?2)-

Also n(0) = '^,

n(oo) = o.

It is convenient to use the notation

a = n(a), /3 = n(&), etc.

Again, if the segment a is given, we can find the angle oc

[cf. § 41], and thus 7, -a. And to h -oc there corresponds a

distance of parallelism [cf. § 45]. It is convenient to denote
this complementary segment by a'.

Thus we have tt / /\ "^r tt / \n(a) = --n(a).

Further, in the words of Lobatschewsky,* " we are wholly
at liberty to choose what angle we will denote by the symbol
n(^), when the line p is expressed by a negative number, so

we shall assume Uln) + U( -i->)='7r
" ^** ''' ^ *"* ci»(m«l<.». >(

§28. Saccheri's Quadrilateral. ^ (,..»u ^ .„, ., ,^..

The quadrilateral in which the angles at A and B are right 7-'*'

angles, and the sides AC, BD equal, we shall call Saccheri's

Quadrilateral. We have seen that Saccheri

made frequent use of it in his discussion of

the Theory of Parallels.

In Saccheri's Quadrilateral, when the right

angles are adjacent to the base, the vertical

angles are equal acute angles, and the line

which bisects the base at right angles also A E B

bisects the opposite side at right angles. Fio. 27.

Let AC and BD be the equal sides, and the angles at A and
B right angles.

* Oeometrische Untersuchunyen zur TheoTie der ParcUlellinien, § 23.
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Let E, F be the middle points of AB and CD respectively.

Join EF, CE, and DE.

Then the triangles ACE and ED B are congruent, and the con-
gruence of CFE and EFD follows.

Thus the angles at C and D are

equal, and EF is perpendicular both
to AB and CD.

Further, the angles at C and D
are acute.

To prove this, at C and D draw
Cfl and D12 parallel to AB.

Then, by § 26 (4), i. ACfi =l BDI2.

Produce CD to E.

By §26 (3), ^ED12>^DCU.
Therefore, since z.ACD=:_BDC, it follows that

^EDB>^CDB.
Thus L ACD and l BDC are both acute angles.

§29. If in the quadrilateral A BDC, the angles at A and B are

right angles, and the side AC is greater than

BD, the angle at C is less than the angle C

at D. E =~1D

Since we are given AC > BD, we can cut

off from AC the segment AE=BD. When
this has been done, join DE.

It follows from § 28 that i. AED =l BDE.

But L. AED > ^ ACD and l BDC > ^ BDE.

Therefore l BDC > l ACD.

The converse of these theorems is easily proved indirectly,

namely, that, if the angles at A and B are right atigles, according

as z.ACD= :lBDC. so is AC=BD.

§30. // ABDC is a quadrilateral in which the angles at A, B,

and C a^e right angles, then the angle at D must be acute.

Produce BA through A to B', making AB' = AB. (Fig. 30.)

Draw B'D' perpendicular to B'A and equal to BD.

Join CD', D'A, and DA.

From the congruent triangles D'B'A and DBA, we have

D'A=DA and z. D'AB' =^ DAB.
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Thus ^ D'AC =zL DAC, and the triangles D'AC and DAC are

congruent.

Therefore l D'CA is a right angle, and DC, CD' form one
straight line.

d' c d

Applying the result of § 28 to the quadrilateral D'B'BD, it

follows that the angles at D' and D are equal and acute.

§ 31. The sum of the angles of every triangle is less ^
than two right angles.

Case I. Let the triangle ABC be any right-angled triangle

with =90°.

At A make l BAD =^ ABC.

Fio. 31.

From O, the middle point of AB, draw the perpendiculars OP
and OQ to CB and AD respectively.

Then the triangles POB and ACQ are congruent, and it

follows that OP and OQ are in one and the same straight line.
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Thus the quadrilateral ACPQ, has the angles at C, P, and Q
right angles.

Therefore, by §30, the angle at A, namely _CAD, must be

acute.

It follows that the sum of the angles of any right-angled

triangle must be less than two right angles.

Case II. Consider now any triangle, not right-angled.

Every triangle can be divided into two right-angled triangles

by drawing the perpendicular from at

least one angular point to the opposite

side (Fig. 32).

Let AD be the perpendicular referred

to in the triangle ABC, and let the

angles a.', «.", /3, y be as in the figure.

Then A + B + C = (a' + /3) -1- («." + y).

But a' + 18 < 1 right angle

and a" -f- y < 1 right angle.

Therefore A -f B + C < 2 right angles. !°'

It should be noticed that no use has been made of the

Postulate of Archimedes in proving this result.

The diflference between two right angles and the sum of the

angles of a triangle will be called the Defect of the Triangle.

Corollary. There cannot he two triangles tvith their angles

equal each to each, which are not congruent.

It is easy to show that if two such triangles did exist, we
could obtain a quadrilateral with the sum of its angles equal to

four right angles. We have simply to cut off from one of the

triangles a part congruent with the other. But the sum of

the angles of a quadrilateral cannot be four right angles,

if the sum of the angles of every triangle is less than two

right angles.

§32. Not-intersecting Lines.

It follows from the Theorem of the External Angle (I. 16)

that if two straight lines have a common perpendicular, they

cannot intersect each other. And they cannot be parallel,

since this would contradict Hilbert's Axiom of Parallels [cf.

§ 26 (3)].
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The converse is also true, namely, that

If two straight lines neither intersect nor are parallel, they

must have a common perpendicular.*

Fio. 33.

Let a and b be the two given lines, which neither intersect

nor are parallel.

From any two points A and P on the line a, draw AB and
PB' perpendicular to the line 6.

If AB = PB', the existence of a common perpendicular

follows from § 28. Therefore we need only discuss the case

when AB is not equal to PB'.

Let PB' be the greater.

Cut off A'B' from PB' so that A'B' is equal to AB.

At A' on the line A'B', and on the same side of the line as

AB, draw the ray a' making with A'B' the same angle as a, or

PA produced, makes with AB.

We shall now prove that a' must cut the line a.

Denote the ray PA by a^, and draw from B the ray h parallel

to a^.

Since a, b are not-intersecting lines, the ray h must lie in the

region between BA and B' B produced.

Through B' draw the ray h', on the same side of B'A' as

h is of BA, and making the same angle with the ray B'B as

A.does with B'B produced.

From § 26 (3), it follows that the parallel from B' to h and a^

lies in the region between h' and B' B.

* This proof is due to Hilbert ; cf. loc. cit. p. 162.
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Therefore Ji' must cut a^.

Let it cut this line at T.

Since a' is parallel to B'T, it follows that the ray a' must
cut PT (Pasch's Axiom).

Let these rays a^, a' intersect at Q.

From Q draw QR perpendicular to the line h, and from the

line h cut ofE BR' equal to B'R and on the opposite side of B
from B'.

In the same way, from the line a cut o£E AQ' equal to A'Q,
and on the opposite side of A from P.

In this way we obtain a quadrilateral ABR'Q' congruent with
A'B'RQ.

Thus QRR'Q' is a Saccheri's Quadrilateral, and the line

joining the middle points of QQ', RR' is perpendicular to a
and h.

§ 33. Two 'parallel lines approach each other continually, and
their distance apart eventually becomes less than any assigned

quantity.

Let a and b be two parallel lines.

Upon a take any two points P and Q, PQ being the direction

of parallelism for the lines.

>bM H N

From P and Q draw the perpendiculars PM and QN to b:

Bisect MN at H, and draw the perpendicular at H to the

line 6.

This must intersect the segment PQ ; let it do so at K.

At K draw the ray a' parallel to b in the other direction.

This ray must intersect PM, since it enters the triangle

PKM at the vertex K.

Let it cut PM at P'.
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Since the triangles KHM and KHN are congruent, and
L HKP'=^ HKQ, it easily follows that P'M is equal to QN.
But P' lies on the segment PM.
Therefore PM is greater than QN, and we have shown that

as we pass along the line a, in the direction of parallelism, the

distance from h continually diminishes.

We have now to prove the second part of the theorem.

Let a and 6 be two parallel lines as before, and P any point

on the line a.

N M'
Fio. 35.

Draw PM perpendicular to 6, and let « be any assigned
length as small as we please.

If PM is not smaller than e, cut o£E MR = 6.

Through R draw the ray a^ (RT) parallel to a and 6 in the
same sense.

Also draw through R the ray RS perpendicular to MR.
RS must cut the ray a, since l PRT is an obtuse angle.

Let it cut a at Q and draw QN perpendicular to h.

Now the lines RQS and the line h have a common perpen-
dicular.

Therefore they are not-intersecting lines.

It follows that Z.NQR is greater than the angle of

parallelism for the distance QN.
At Q make l. NQR' = l NQR.
Then l NQR' > l NQT', T' being any point upon PQ pro-

duced.
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From the line b cut off NM' = NIVI, on the other side of N
from M, and from QR' cut ofi QR' = QR.

Join R'M'.

Then R'M' is perpendicular to b, and is cut by the ray PQ
between R' and M'.

Let the point of section be H.

Then M'H < M'R', and M'R' = MR.
Therefore we have found a point on the line a whose distance

from b is less than the given length e.

•

§ 34. The shortest distance between any two not-intersecting

lines is their common perpendicular, and as we proceed along

either of the lines from the point at which it is cut by the common
perpendicular the distance from one to the other continuxilly

increases.

Let the common perpendicular to two not-intersecting lines

a and b meet them at A and B.

Let P and Q be two other points on
one of the lines on the same side of Aj

and such that AP < AQ.
Draw PM and QN perpendicular to the

other line.

Then in the quadrilateral A BMP, the

angle A is a right angle and the angle B M N

APM is acute (cf. § 30). pi«- so.

Therefore PM > AB (cf. § 29).

Also in the quadrilateral PQMN, the angle MPQ is obtuse

and PQN is acute.

Therefore QN > PM.

Thus, as we pass along the ray APQ... the distance from the

line b continually increases from its value at A.

It can be shown that two parallel lines continually diverge

towards the side opposite to the direction of parallelism, and
that two intersecting lines continually diverge from the point

of intersection. Also, the distance apart, both in the case of

intersecting lines, of parallel lines, in the direction opposite to

that of parallelism, and of not-intersecting lines will become
eventually greater than any assigned length.

The theorems of §§ 33-4 were all proved by Lobatschewsky

;

cf. New Principles of Geometry with a Complete Theory of

Parallels (Engel's translation), § 108 et seq.
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§35. The correspondence between a Right-Angled
Triangle and a Quadrilateral with Three Right
Angles and One Acute Angle.

The sides of a right-angled triangle ABC, in which C is the
right angle, are denoted as usual by a, h, and c ; the angles A
and B by A and ju ; and the distances corresponding to the
angles of parallelism X and ju are denoted by I and m.
Between these quantities a, h, c, I, m, A, and fx certain relations

hold.

Similarly the elements of a quadrilateral, in which three

angles are right angles, the remaining angle being necessarily

acute, are connected by certain relations.

We proceed to find the equations connecting these quanti-

ties, and to establish a very important correspondence between
the two figures.

Fio. 38.

I. The Right-Angled Triangle.

Let ABC be any right-angled triangle. Produce the hypo-
thenuse through A a distance Z, and at the other end of the

segment I draw the parallel to the line CA. Also draw through
B the parallel to both these lines.

It follows from Fig. 38 that

fM + U{c + l)=^U{a) = (A, (1)

and in the same way we have

\ + U{c + m) = n{b) = l3 (1')
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Now draw through A the parallel to the line BC (Fig. 39).

Also draw the line perpendicular to c, which is parallel to

BC in the same sense. This line will cut the hypothenuse, or

the hypothenuse produced, according as m is less than or

greater than c.

If m < c, we have
\-f/3 = n(c-w) (2)

If m > c, then we would have

7r-X-/3 = n(77i-c).

Fio. 39. FiCf, 40.

With the usual notation (cf. § 27) this reduces to

\ + /3 = Il{c-m).

In the same way we have

IUL+(X. = II{C-1) (2')

Finally, produce CB through B, and draw the perpendicular

to CB produced which is also parallel to AB (Fig. 40). Also

produce AC through C, and draw the perpendicular to AC
which is parallel to AB.

From Fig. 40, if we suppose a line drawn through C parallel

to AB, it is clear that

U{l-b) + U{m + a) 2' (3)

and similarly U(m-a) + U{l + h) = ^ (3')
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II. The Quadrilateral with Three Right Angles and an Acute
Angle.

Let PQRS be a quadrilateral in which the angles P, Q, R
are right angles. We denote the sides, for reasons that will

presently appear, by Zj, a^, m^ , and c^ ; the acute angle ,by

y3j ; and l^, c^ contain this angle /3j.

Produce c^ through R a distance w^, and draw the perpen-

dicular at the end of that segment. Since II (wij) + 11 (w^') = -^

,

if the parallel through R to PQ is supposed drawn, it follows

that this perpendicular is parallel to PQ (Fig. 41).

It follows that A, -fn(Ci-l-Wj) = /3i,
(I.)

and correspondingly yj + n(/i -f-rt\) = /8i
(I'.)

Fig. 42.

From RS cut off the segment m^ ; then it is obvious from
Fig. 42 that Xj+A = n(c,-m,), (II.)

and correspondingly Yi + /3i
= n(/j - a^) (IF.)
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Finally, from QP cut off the segment m^, and from PS pro-

duced the segment &j, and raise the perpendiculars at the ends

of these lines (Fig. 43),

p

m,
Fig. 43.

It follows that

U{l^ + h,) + U{m.,

and correspondingly

n(ci-K&i) +n«

Q.

.(III.)

(iir.)

III. We are now able to establish the correspondence be-

tween the two figures.

A right-angled triangle is fully determined when we know
c and ju ; a quadrilateral of this nature, when we know Cj

and ?%'.

Let Ci = c and n(mi') = ^-yu,

so that m^ = m.

Then it follows from (!') and (2) that

X + ^ = U(c-m),

-A+^=n(fi-t-m),

and therefore 2X = 11 (c - m) - U(c + m),

2^ = U{c-m) + U{c + m).
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But from (I.) and (II.) we have

Xi + |8i
= n(q-7ni) = n(c-m),

- Xi + /3^ = n (Cj + Wj ) = n (c + w).

Therefore Aj = A and /3i
= /3.

From (III') and (III.)> we now obtain

Thus m - ttj =w - a,

and ftj = a.

Therefore we have obtained the important result

:

// a, b, c, (A, fx) are the five elements of a rigid-angled triangle,

then there exists a quadrilateral with three right angles and one

acute angle, in which the sides are c, m', a, and 1, taken in order,

and the acute angle ^ lies between c and 1.*

The converse of this theorem also holds.

§ 36. The Closed Series of Associated Right-Angled
Triangles.

We have seen that to the right-angled triangle a, h, c, (A, fx)

there corresponds a quadrilateral with three right angles and

* This result was given by Lobatschewsky in his earliest work, On the

Principles of Oeome/ry (of. §§ 11, 16, Engel's translation, pp. 15 and 25),

but liis demonstration requires the theorems of the Non Euclidean Solid

Geometry. TI)e proof in the text is due to Liebmann (Math. Ann,
vol. Ixi. p. 185 (1905), and NichteuHidische Oeometrie, 2nd ed. §10),
who first established the correspondence between the right-angled tri-

angle and the quadrilateral with three right angles and an acute angle
by the aid of Plane Geometry alone.

This is an important development, as the Parallel Constructions
depend upon this correspondence, and theNon-EuclideanPlane Geometry
and Trigonometry is now self-contained.

Further, as we shall see below (§ 45), the existence of a segment
corresponding to any given angle of parallelism can be established

without the use of the Principle of Continuity, on which Lobatschewsky 's

demonstration depends. Therefore, though the existence of j), when
n(jo) is given, is assumed in the above demonstration, the cori'espond-

ence between the triangle and quadrilateral is independent of that
principle.
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an acute angle /3, the two sides enclosing the acute angle

being c and I, and the other two a and m'.

If we interchange c and I, and m' and a, we obtain the same

quadrilateral. It follows that, given the right-angled triangle

a, h, c, (X, fi), there exists another right-angled triangle whose

elements are a^, h^, c^, (A^, yUj), where

aj = m', b^ = b, c-^ = l, A| = y, ijl^ = -^-cl.

Thus, starting with the right-angled triangle

a, b, c, (X, /i), (1)

we obtain a second right-angled triangle whose elements are

< ^ h (y. f-"-)
(^)

If we now take the sides and opposite angles of this triangle

in the reverse order, i.e. write it as the triangle

b, m', I, (|-a-, yj,

we obtain another right-angled triangle with the elements

c', m', a, (X, |-iS) (3)

Writing this as

m', c', a',
(I -A ^)'

we obtain another with the elements

V, c', b', (|-oc, m) (4)

From this we obtain in its turn

/', a, m, (y, |-^) (5)

Again, from this we have

b, a, c, (fi, X), (6)

the last being the original triangle.
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The relation between the elements of these triangles can be
put in the form of the following rule :

Let a, b, c, (A = IT (1), y« = 11 (m)) he the sides, hypothenuse, and
the angles opposite the sides of a right-angled triangle. Write the

letters a', 1, c, m, b' m cyclic order on the sides of a pentagon. The
six triangles which form the closed series of associated triangles

are obtained, if ive write the letters a,^', \r, Cr, mr, br' in the same or

reverse order on the sides, starting with any one side, and take the

elements with the suffices equal to those on the same sides without

the suffices.

i.e. ar = r

;

br = a\ i.e. br = a

;

IT• mr = b\ i.e. fir = -2 -13;

Cr = ra;

Ir = c, i.e. Xy = y ;

giving the triangle (5) above.

These results have an important bearing on certain problems
of construction. For example, the problem of constructing a
right-angled triangle when the hypothenuse c and a side a are

given, with the usual construction involves the assumption as
N.-E.a.

. E
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to tlie intersection of a circle and a straight line ; an assumption

which depends upon thel Principle of Continuity. But we
know that with the triangle a, h, c, (A, ju) there is associated a

triangle l',a,m, [y, -n- /S). In this triangle we are given a

side a and the adjacent angles y, — ; and it can be constructed
z

without that assumption. The associated triangle gives us

the second side h of the required triangle. This argument
depends upon the theorem proved in §§41-3, that we can always

find n (p) when p is given, and that proved in § 45, that

given Il{p), we can always find p.

§37. Proper and Improper Points.

In the Euclidean Plane two lines either intersect or are

parallel. If we speak of two parallels as intersecting at " a

point at infinity " and assign to every straight line " a point

at infinity," so that the plane is completed by the introduction

of these fictitious or improper points, we can assert that any
two given straight lines in the plane intersect each other.

On this understanding we have two kinds of pencils of

straight lines in the Euclidean Plane : the ordinary pencil

whose vertex is a proper point, and the set of parallels to

any given straight line, a pencil of lines whose vertex is an

improper point.

Also, in this Non-Euclidean Geometry, there are advantages

to be gained by introducing fictitious points in the plane. If

two coplanar straight lines are given they belong to one of

three classes. They may intersect in the ordinary sense ; they

may be parallel ; or they may be not-intersecting lines with a

common perpendicular. Corresponding to the second and
third classes we introduce two kinds of fictitious or improper

points. Two parallel lines are said to intersecif at a point at

infinity. And every straight line will have two points at

infinity, one corresponding to each direction of parallelism.

All the lines parallel to a given line in the same sense will

thus have a common point

—

a point at infinity on the line.

Two not-intersecting lines have a common perpendicular.

The lines are said to intersect in an ideal point corresponding

to this perpendicular. And all the lines perpendicular to one

and the same straight line are said to intersect in the ideal

point corresponding to this line.
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We shall denote an ordinary point

—

a proper point—^by the

usual capital letter, e.g. A. An improper point

—

a point at

infinity—-by the Greek capital letter, e.g. 12 ; and a point

belonging to the other class of improper points

—

an ideal point

—by a Greek capital letter with a suffix, to denote the line to

which the ideal point corresponds, e.g. Fg.

Thus any two lines in the hyperbolic plane determine a

pencil.

(i) If the lines intersect in an ordinary point A, the pencil

is the set of lines through the point A in the plane.

(ii) If the lines are parallel and intersect in the improper
point i2, the pencil is the set of lines in the plane parallel to

the given lines in the same sense,

(iii) If the two lines are perpendicular to the line c, and
thus intersect in the ideal point which we shall denote by F,.,

the pencil is the set of lines all perpendicular to the line c.

§38. We now enumerate all the cases in which two points

in the Hyperbolic Plane fix a straight line and the correspond-

ing constructions :

(1) Two ordinary points A and B. The construction of the

line joining any two such points is included in the assumptions

of our geometry,

(2) An ordinary point [A] and a point at infinity [12], The
line Ai2 is constructed by drawing the parallel through A to

the line which contains (2, in the direction corresponding to i2.

This construction is given below in §§41-3,

(3) An ordinary point [A] and an ideal point [r,.]. This line

is constructed by drawing the perpendicular from A to the

representative line c of the ideal point,

(4) Two points at infinity [12, 12']. The line 1212' is the

common parallel to the two given lines on which 12, 12' lie.

These lines are not parallel to each other or 12 and 12' would
be the same point. The construction of this line is given below
in § 44.

(5) An ideal point [Tg] and a point at infinity [12] not lying

on the representative line c of the ideal point. The line rci2

is the line which is parallel to the direction given by 12 and
perpendicular to the representative line c of the ideal point.

The construction of this line is given below in § 45.
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(6) Two ideal points [F^, F^], when the lines c and c' do not

intersect and are not parallel. The line F^F^, is the common
perpendicular to the two not-intersecting lines c and c'. The
construction of this line was given in § 32.

The pairs of points which do not determine a line are as

follows :

(i) An ideal point and a point at infinity lying on the repre-

sentative line of the ideal point.

(ii) Two ideal points, whose representative lines are parallel

or meet in an ordinary point.*

§ 39. With this notation the theorems as to the concurrence

of the lines bisecting the sides of a triangle at right angles, the

lines bisecting the angles of a triangle, the perpendiculars from
the angular points to the opposite sides, which hold in the

Euclidean Geometry, will be found also to be true in this Non-
Euclidean Geometry. Lines will be said to intersect in the

sense of §§ 37, 38. Also, in speaking of triangles, it is not

always necessary that they should have ordinary points for

their angular points. The figure of § 26 is a triangle with one

angular point at an improper point—a point at infinity. It

will be seen that a number of the theorems of that section

are analogous to familiar theorems for ordinary triangles.

With regard to the concurrence of Ifnes in the triangle we
shall only take one case—the perpendiculars through the

middle points of the sides.

The perpendiculars to the sides of a triangle at their middle

points are concurrent.

Let ABC be the triangle and D, E, F the middle points of the

sides opposite A, B and C.

Case (i) If the perpendiculars at the middle points of two
of the sides intersect in an ordinary point, the third perpen-

dicular must also pass through this point. The proof depends

on the congruence theorems as in the Euclidean case.

*In the foundation of Projective Geometry independent of the

Parallel Postulate, this difficulty is overcome by the introduction of

new entities, called improper lines, and ideal lines, to distinguish them
from the ordinary or proper lines, Cf . Bonola, lac. cit. English transla-

tion, App. IV.
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Case (ii) Let the perpendiculars at D and E be not-inter-

secting lines, and let D'E' be the line perpendicular to both.

From A, B, and C draw A A', BB', and CC perpendicular to

D'E'.

Then it is not difficult to show from congruent triangles that

AA'-CC and BB' = CC'.

Thus AA' = BB'.

Let F' be the middle point of A'B'.

From § 28 it follows that FF' is perpendicular to AB and A'B'.

Therefore, in this case the three perpendicular bisectors of

the sides meet in an ideal point.

Case (iii) There remains the case when the lines through
D and E perpendicular to the sides are parallel. It follows

from Cases (i) and (ii) that the perpendicular to the third side

through F cannot intersect the other perpendiculars either in

an ordinary point, or in an ideal point. It must therefore be
parallel to these two lines in the same sense ; or it must be
parallel to the first in one sense and to the other in the opposite

sense.

The second alternative we shall show to be impossible ; so

the first necessarily will be true.

When the angular points of a triangle are all at infinity

(ft', 0", ft'") a straight line cannot cut all three sides. For
if it cuts two of them at P and Q, say, PQ produced must
be one of the rays through Q which does not intersect the other

side. (Cf. Fig. 46.)
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But if BC is the greatest side of the triangle, the angle at A
is the greatest angle.

Pio. 46.

If, then, we make .lCAP = lACB, AP produced must cut

BC. (Fig. 47.)

Let it cut it at Q.
Then EQ is perpendicular to AC.

A similar argument applies to the perpendicular through F.

Fio. 47.

Therefore the perpendiculars at E and F both intersect BC.

It follows that the three perpendiculars cannot form a tri-

angle whose angular points are all at infinity.
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Therefore they are parallel to one another in the same sense

and intersect in an improper point—a point at infinity.

If we take these three cases together, it will be seen that the

theorem is established.

§40. The Parallel Constructions.

In Hubert's Parallel Axiom the assumption is made that

from any point outside any straight line two parallels can

always be drawn to the line. In other words, it is assumed that

to any segment 'p there corresponds an angle of parallelism

n(p).

The fundamental problems of construction with regard to

parallels are the following :

L To draw the parallel to a given straight line from a given

point towards one end.

2. To draw a straight line which shall be parallel to one

given straight line, and perpendicular to another given straight

line which intersects the former.

In other words :

1. Given j), to find 11(2)).

2. Given 11(2)), ^^ ^^^ V-

For both of these problems Bolyai gave solutions ; and
one was discussed by Lobatschewsky. In both cases the

argument, in one form or other, makes use of the Principle of

Continuity.

In the treatment followed in this book the Hyperbolic

Geometry is being built up independently of the Principle of

Continuity. For that reason neither Bolyai's argument
(Appendix, §§ 34, 35), nor Lobatschewsky's discussion * of the

second problem, will be inserted.

§ 41. To draw the Parallel to a given Line from

a Point outside it. Bolyai's Classical Construction

(Appendix, §34).

To draw the 'parallel to the straight line AHfrom a given point D,

Bolyai proceeds as follows :

Draw the perpendiculars DB and EA to AN (Fig. 48), and the

perpendicular DE to the line AE.

*Cf. Lobatschewsky, Geametrische Unterstichunyen znr Theorie der

Parallelinien, § 23 (Halsted's translation, p. 135). Also Neiv Principles

of Oeometry, § 102 (Engel's translation).
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The angle EDB of the quadrilateral ABDE, in which, three

angles are right angles, is a right angle, or an acute angle,

according as ED is equal to or greater than AB (cf. §29).

With centre A describe a circle whose radius is equal to ED.

It will intersect DB at a point C, coincident with B, or be-

tween B and D.

The angle which the line AC makes with DB is the angle of

parallelism corresponding to the segment BD.

Therefore a parallel to AN can be drawn by making the angle

BDM equal to the angle ACB.
Bolyai's proof is omitted for the reasons named above ; but

it should be remarked that his construction holds both for the

Euclidean and Non-Euclidean Geometries ; in his language it

belongs to the Absolute Science of Space.

§ 42. The correspondence which we have established in § 35

between the right-angled triangle and the quadrilateral with

three right angles and one acute angle, leads at once to Bolyai's

construction.

We have seen that, to the right-angl«d triangle a, b, c, (X, ju),

there corresponds a quadrilateral with three right angles and an
acute angle /3, the sides containing the acute angle being c and

1, and the other two, a and m'.

Therefore we can place the right-angled triangle in the

quadrilateral, so that the side a of the triangle coincides with

the side a of the quadrilaterial, and the side h of the triangle

lies along the side I of the quadrilateral. Then the hypothenuse

of the triangle will be parallel to the side c of the quadrilateral,

since it makes an angle ^ ~ f^ with m'.
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§ 43. Second Proof of Bolyai's Parallel Construction.

The following proof of the validity of Bolyai's construc-

tion is due to Liebmann :
* it will be seen that it depends

(1) on Theorem (2) of § 4, regarding the locus of the middle
points of the segments A A', BB', etc., joining a set of

points, A, B, C, ... , A', B', C, .••, on two straight lines,

such that AB = A'B', BC = B'C', etc.; and (2) on the con-

currence of the perpendicular bisectors of the sides of a

triangle (cf. § 39).

Let A be the given point, and AF the perpendicular from A
to the given line.

It is required to draw from A the parallel to the ray Fi2.

Let us suppose the parallel Al] drawn.
From Afi and FI2 cut off equal segments AS and FD, and

join SD.

Let M and M' be the middle points of AF and SD.
From §4 we know that the line MM' is parallel to Afi

and FO.

Draw the line I2"AI2' through A perpendicular to AF, and
produce M'M through the point M.

Then it is clear that the ray M'M is parallel to the line AO".

Draw from F the parallel FJ2' to All', and let it intersect Ai2

in G.

From FO' cut off FS' equal to AS. Join SS' and S'D.

The line GM bisects SS' at right angles, and is perpendicular

to the line I2i2'.

Also the perpendicular bisector of DS' bisects the angle DFS',

and is perpendicular to 1212'.

* Ber. d. k. scichs. Gea. d. Wiss. Math. Phya. Klaaae, vol. Ixii. p, 35
(1910) ; also NichttuMidische Geomeirie (2nd ed. ), p. 35.



74 NON-EUCLIDEAN GEOMETRY Lch. m.

These two bisectors have therefore an ideal point in common,
and the perpendicular bisector of SD must pass through the

same ideal point (cf. § 39) ; i.e. it must also be perpendicular

to 1212'.

Suppose the parallel M'12' drawn through M' to AO'.

The bisector of the angle S2'M'i2 is perpendicular to 1212',

and therefore to SD.

It follows that M'S bisects the angle i2"M'i2'.

But M'12" and M'12' are the parallels from M' to i2"Al2'.

Therefore M'S is perpendicular to 12"Al2'.

And AS was made equal to FD in our construction.

The result to which we are brought can be put in the follow-

ing words : Let the perpendicular AF be drawn from the point

A to the given line a (F12), and let the perpendicular A12' be

drawn at A to AF. From any point D on the ray F12 drop the

perpendicular DB to Al2'. This line DB cuts off from the

parallel Ai2 a length equal to FD.

The parallel construction follows immediately. We need only

describe the arc of a circle of radius FD with A as centre. The
parallel A12 is got by joining A to the point at which this arc

cuts DB.

The existence of the parallel, given by Hilbert's Axiom,

allows us to state that the arc will cut the line once between

B and D, without invoking the Principle of Continuity.*

§ 44. Construction of a Common Parallel to two given

Intersecting Straight Lines.!

Let 012 and 012' be the two rays a and 6 meeting at O and
containing an angle less than two right angles.

From these rays cut off any two equal segments OA and OB.

From A draw the parallel Al2' to the ray 012', and from B

the parallel B12 to the ray 012.

Bisect the angles 12A12' and 12B12' by the rays a' and b'.

By § 26 (4), we know that

Z.0A12' = ^0B12.

* In pjuclid's Elements the fundamental problems of construction of

Book I. can be solved without the use of Postulate 3 : "To describe a

circle with any centre and distance." To draw the parallel from a

given point to a given line can be reduced to one of the problems of

§3. On the other hand, in the Hyperbolic Geometry, the parallel-

construction requires this postulate as to the possibility of drawing

a circle.

t Cf. Hilbert, loc. cit. p. 163^
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It follows that ^I2Ai2' = ^I2Bl2',

^i2AE = z.i2'BF = ^12BF.

We shall now show that the lines a' and 6' neither intersect,

nor are parallel.

If possible, let them intersect at M.

The triangle AOB is isosceles, and /-OAB=^OBA.
Therefore l BAM =z_ ABM, and AM = BM.

M
Fio, 50.

Through M draw the parallel M12 to Afi and BI2,

Then, since AM = BM and ^MA12 = ^MBi2, by §26 (4), we
°^^^^^^^« ^AM12 = ^BM12,
which is absurd.

The lines AE and BF therefore do not intersect at an ordinary-

point, and this proof applies also to the lines produced through
A and B.

Next, let us suppose that they are parallel.

Since the ray a' lies in the region BAI2, it must intersect BI2.

Let it cut that line at D.

Then we have z.i]AE = i.DBF, and ^ADI2 =^BDE.
Also we are supposing DE and BF parallel, and we have

A12 and DJ2 parallel.
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It follows from §26 (6) that AD = DB.
Therefore we have -l DAB = ^ DBA.
But ^ BAG =^ ABC.
Therefore we have z_DAB=^CAB, which is absurd.

Thus, the rays AE and AF cannot be parallel.

Similarly the rays EA, FB produced through A and B cannot
be parallel.

We have now shown that the lines a' and h' neither intersect

nor are parallel. ^
They must, thereforCj have a common perpendicular (§ 32).

We shall now show that this common perpendicular is

parallel to both 012 and 0S2'.

Let it cut the lines AE and BF at U and V.

Then AU = BV, by § 29.

If VU is not parallel to AS2, draw through U the ray U12

parallel to AI2, and through V the ray Vi2 parallel to Afi.

Then, by § 26 (4), l AUO =/. BVfi.

Also the angles AUV and BVU are right angles, so the exterior

angle at U would be equal to the interior and opposite angle

12VU, which is impossible (§26 (3)).

Thus we have shown that the ray VU is parallel to 012.

The same argument applies to the ray UV and 012'.

Therefore we have proved that there is a common parallel

to the two given intersecting rays, and we have shown how to

construct it.

Corollary. A common 'parallel can he drawn to any two

given coplanar lines.

If the given lines intersect when produced, the previous

proof applies.

If they do not intersect, take any point A on the line (i) and
draw a parallel from A to the line (ii).

We can now draw a common parallel to the two rays through

A, and by § 25 this line will also be parallel to the two given

lines.

§ 45. Construction of the Straight Line which is per-

pendicular to one of two Straight Lines containing an
Acute Angle, and parallel to the other.

Let a{OA) and 6 (OB) be the two rays containing an acute

angle.
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At O make /.AOB'=^AOB, and denote the ray OB'
by b'.

The common parallel to the rays b and b' will be perpendicu-

lar to O A. (Cf. §22.)

B

PlO. 51,

We have thus solved the

second fundamental problem

of parallels. To a given angle

of parallelism to find the corre-

sponding segment. In other

words, given n(^) to find p.

Incidentally we have also

shown that to any acute angle

n (p), however small, or how-
ever near a right angle, there

corresponds a segment p.

Corollary. If two co-

planar lines are not-inter-

secting lines, we can still draw
a line parallel to one and
perpendicular to the other.

We need only take a point on the line (i), and draw from
it a ray parallel to the line (ii). The line perpendicular

to (i) and parallel to the ray just drawn will be parallel to the

line (ii).

§ 46. Corresponding Points on two Straight Lines.

P and Q are said to be corresponding points on two straight

lines when the segment PQ makes equal angles with the two lines

on the same side.

If the lines intersect at an ordinary point O, and P is any
point upon one of them, we need only take OQ = OP, and
the point Q on the second line will correspond to P on
the first.

Obviously there is only one point on the second ray cor-

responding to the point P on the first ; and if R is the point

corresponding to Q on a third ray through O, then P and R

are corresponding points.

Also the locus of the points on the rays of a pencil, whose
vertex is an ordinary point O, which correspond to a given

point P on one of the rays, is the circle with centre O and
radius OP.
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§ 47. We proceed to the case when the lines are parallel

and thus intersect at an improper point (a point at infinity).

1. // (i) and (ii) are any two parallel straight lines, there

exists one and only one point on (ii) which corresponds to a given

point on (i).

n

Pio. 52.

Let P be the given point on (i) and take any point R on (ii).

Bisect the internal angles at P and R. The bisectors must
meet in an ordinary point.

I\

Pio. 53.

Let them meet at S, and from S draw SM and SN per-

pendicular to (i) and (ii).
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hThen SM=SN.
Through S draw Si2 parallel to P12.

It will also be parallel to Ri2, and it will bisect ^MSN,
since there is only one angle of parallelism for a given distance.

Let S' be any point upon the parallel through S to (i) and (ii).

From S' draw S'M' and S'N' perpendicular to these lines.

By congruence theorems, it is easy to show that S'M' = S'N',

and that S'i2 bisects z.M'S'N'.

From P draw PL perpendicular to Si2, and from L draw
Lm and Lw perpendicular to (i) and (ii). (Cf. Fig. 53.)

Cut off wQ = mP on the opposite side of n from 12, and
join LQ.

Then it follows that PLQ is a straight line, and that Q
corresponds to P.

It is easy to show that there can only be one point on the

second line corresponding to P on the first.

2. If P and Q are corresponding points on the lines (i) and (ii),

and Q and R corresponding points on the lines (ii) and (iii), the

three lines being parallel t<f each other, then P, Q, and R cannot

he in the same straight line.

\
JTl

Fio. 54.

If possible, let PQR be a straight line.

By the definition of corresponding points, we have

^fiPQ = ^l]QP,

^i2QR = ^i2Ra
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Therefore zLl2PR+^f2RP = two right angles, which is im-

possible, since PR would make equal alternate angles with PD,

and RO, and these two parallels would have a common per-

pendicular.

3. If P corresponds to Q on the parallels (i) and (ii), and Q
to R on the parallels (ii) and (iii), then P corresponds to R on the

parallels (i) and (iii).

Fig. 55.

This follows from the concurrence of the perpendicular

bisectors of the sides of a triangle (§ 39).

The perpendicular bisector of PQ is parallel to the given lines
;

the same holds of the perpendicular bisector of QR,

It follows that the line bisecting PR at right angles is parallel

to the other two bisectors, and to (i) and (iii).

Therefore P and R correspond.

§48. The Limiting-Curve or Horocycle.*

We now come to o»e of the most important curves in the

Hyperbolic Geometry.

The locus of the corresponding points on a pencil of parallel

lines is a curve called the Limiting-Curve or Horocycle.

It is clear that this is the circle of infinite radius, and from

§ 47 (2) it follows that it is not a straight line.

* Lobatschewsky uses the terms grenzkreis, courbe-limite, and hwi-

cycle ; Bolyai speaks of the linea-L,
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Let P and P' he any two dijferent 'points upon the same ray of a

pencil of parallel lines; the Limiting-Curve through P is congruent

with the Limiting-Curve through P'.

Fio. 56.

We must first explain what we mean by two Limiting-

Curves being congruent.

We suppose a set of points obtained on the Limiting-Curve

which starts at P' ; e.g. P', Q', R', S', etc., on any set of lines

1, 2, 3, 4, ... , of the pencil.

We shall show that a set of points P, q, r, s, etc., exists on
the Limiting-Curve through P, such that the segments Pq,

P'Q' are equal, the segments qr, Q'R' are equal, etc., and
these related linear segments make equal angles with the lines

of the pencil which they respectively intersect.

To prove this, take the segment P'Q'.

At P make _12P)^z.l2P'Q', and take Pj = P'Q'.

From q draw the ray parallel to P12.

Then, by §26 (4), we know that £.PjI2=z.P'Q'fi.

But P' and Q' are corresponding points.

Therefore P and q are corresponding points.

Proceeding now from Q' and q respectively, we find a point

r on the Limiting-Curve through P, such that the segments qr

and Q'R' are equal, while qr makes the same angles with the
N.-E.G. ¥



82 NON-EUCLIDEAN GEOMETRY [ch. m.

rays passing througli its ends, as Q'R' does with the rays

through its ends.

We have thus shown that between the two Limiting-Curves

there is a one-one correspondence of the nature stated, and in

this case we say that the two curves are congruent.

Further, it is clear that it is immaterial at which line of

the pencil we begin our Limiting-Curve.

It is convenient to speak of the point at infinity, through

which all the parallel lines of the pencil pass, as the centre of

the Limiting-Curve ; also to call the lines of the pencil the

axes of the curve. Concentric Limiting-Curves will be Limiting-

Curves with the same centre.

We can now state the following properties of these curves :

(a) The Limiting-Curve in the Hyperbolic Geometry cor-

responds to the circle with infinite radius in the EucUdean
Geometry.

(6) Any two Limiting-Curves are congruent with each other.

(c) In one and the same Limiting-Curve, or in any two
Limiting-Curves, equal chords subtend equal arcs, and equal

arcs subtend equal chords.

{d) The Limiting-Curve cuts all its axes at right angles, and
its curvature is the same at all its, points.

f

§49. The Equidistant-Curve.

There remains the pencil of lines through an ideal point

:

the set of lines all perpendicular tojthe same line.

1. If two given lines have a

common perpendicular, to any
point P on the one corresponds p I q
one and only one point Q on the

other.

Let MN be the common per-

pendicular to the given lines,

and P any point on one of them.

From the other line cut off

NQ= MP, Q being on the same ^ j\j

side of the common perpen- f,o 57

dicular as P.

Then PMNQis one of Saccheri's Quadrilaterals, and the angles

at P and Q are equal.



-18, 49] THE EQUIDISTANT-CURVE 83

Thus Q corresponds to P, and as before there can only be

one point on the second line corresponding to a given point

on the first.

2. If the lines (i), (ii), and (iii) are all perpendicular to the

same straight line, then if the point Q on (ii) corresponds to the

point P on (i), and the point R on (iii) to the point Q on (ii),

the points P and R correspond.

(i) (" )
(iii)

^IQ 1

P

-

R

M N
Fio. 68.

Let the common perpendicular meet the lines in M, N, and S.

Then PIVI=QN and QN=RS.
Therefore PM = RS, and P and R correspond.

3. The locus of corresponding points upon a pencil of lines

whose vertex is an ideal point is called an Equidistant-Curve,

from the fact that the points upon the locus are all at the same
distance from the line to which all the lines of the pencil are

perpendicular. This line is called the base-line of the curve.

On the Euclidean Plane the Equidistant-Curve is a straight

line. On the Hyperbolic Plane the locus is concave to the

common perpendicular.

This follows at once from the properties of Saccheri's Quadri-

lateral (cf. § 29). Indeed Saccheri used this curve in his sup-

posed refutation of the Hypothesis of the Acute Angle.

We have thus beenled to three curves in this Non-Euclidean
Plane Geometry, which may all be regarded as " circles."

(a) The locus of corresponding points upon a pencil of lines,

whose vertex is an ordinary point, is an ordinary circle, with
the vertex as centre and the segment from the vertex to one of

the points as radius.

(6) The locus of the corresponding points upon a pencil of

lines, whose vertex is an improper point—a point at infinity

—
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is a Limiting-Curve, or* Circle of Infinite Radius, with its centre

at the vertex of the pencil.

(c) The locus of corresponding points upon a pencil of lines,

whose vertex is an improper point—an ideal point—is an Equi-

distant-Curve, whose base-line is the representative line of the

ideal point.

According as the perpendiculars to the sides of a triangle ABC at

their middle points meet in an ordinary point, a point at infinity, or an
ideal point, the points ABC determine an ordinary circle, a limiting-curve,

or an equidistant-curve. (Cf. § 39.)

THE MEASUREMENT OF AREA.

V §50. Equivalent Polygons.

\A Two polygons are said to be equivalent when they can he broken

, \ up into a finite number of triangles congruent in pairs.
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Fig. 59.

With this definition of equivalence, we shall now prove the

following theorem :

7/ two polygons P^ and P^ are each equivalent to a third polygon

Pg, then P-y and Pg are equivalent to each other.
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We are given both for P^ and P2 a partition into tria. pc'
such that to these two partitions correspond two partition^

of Pg, the triangles in the partitions of P3 being congruent in

pairs to the triangles in the partitions of P^ and Pg.

Consider the two partitions of P3 simultaneously ; in

general, every triangle of the one partition will be cut into

polygons by the sides of the triangles of the second partition.

We now introduce (cf. Fig. 59) a sufficient number of linear

segments, so that each of these polygons shall be cut into

triangles.

By this means the two partitions of P3 are further reduced
to the same set of triangles, and this can be associated with a

set of triangles in P^ and Pg respectively.

Therefore the polygons P^ and Pg can be broken up into a

finite number of triangles congruent in pairs, and they are

equivalent to each other.

§51. Equivalent Triangles.

A necessary and sufficient condition that two triangles are

equivalent is that they have the same defect. (Cf. § 31.)

The theorem stated above will now be proved. It has to

be taken in several steps.

1. Two triangles with a side of the ofie equal to a side of the

other, and the same defect, are equivalent.

Consider the triangle ABC, in which E, F are the middle
points of the sides CA and AB.

Let the perpendiculars from A, B,

and C on EF meet that line at A',

B', and C.
Then AA' = BB'=CC', and the

quadrilateral BCC'B' is one of Sac-

cheri's Quadrilaterals, the angles at

B', C' being right angles, and the

sides BB' and CC being equal.

Further, the acute angles at B and C in that quadrilateral

are each equal to half the sum of the angles of the triangle

ABC.
Now, the quadrilateral is made up of the triangles BB'F,

CC'E, and the figure BCEF,

Also the triangles BB'F and CC'E are congruent, respectively,

with AA'F and AA'E.
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aerefore the quadrilateral BB'C'C and the triangle ABC are

equivalent.

Next, let AiBjCj be another triangle with its side BjCi equal

to BC, and the same defect as the triangle ABC.
For this triangle we get in the same way one of Saccheri's

Quadrilaterals, the acute angles at Bj and C^ being equal to

the acute angles at B and C, while the side B^Cj = the

side BC.

It is easy to see that these quadrilaterals must be congruent,

for if they were not, we should obtain a quadrilateral, in which

the sum of the angles would be four right angles, by a process

which amounts to placing the one quadrilateral upon the

other, so that the common sides coincide.

It follows that the triangles ABC and A^BjCi are equivalent.

Thus we have shown that triangles with a side of the one equal

to a side of the other, and the same defect, are equivalent.

Corollary. The locus of the vertices of triangles on the

same base, with equal defects, is an Equidistant-Curve.

2. Any two triangles with the same defect and a side of the one

greater than a side of the other are equivalent.

Let ABC be the one triangle and A^BjCi the other, and let

the side AiCj(6^) be greater than the side AC (6).

Let E, F be the middle points of AC and AB.

From C draw CC perpendicular to EF ; CC cannot be greater

than \h.
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Construct the right-angled triangle with a side equal to CC
and ^bi for the hypothenuse.*

Cut ofi C'Eg equal to the other side of this triangle.

Join CEg, and produce it to Ag making CE2=E2A2.
Join AgB.

Then the triangle AgBC has a side equal to h^, and the same
defect as the two given triangles.

Also the triangles ABC and AgBC are equivalent ; and the

triangles AgBC and AiB^Ci, by (1).

Therefore the triangles ABC and A^BjCi are equivalent (§ 50).

3. Any two triangles, with the same defect, are equivalent.

For a side of one must be greater than, equal to, or less

than, a side of the other.

When it is a case of equality, the triangles are equivalent

by (1).

In the other two cases, the same result follows from (2).

4. The converse of this theorem also holds :

Any two equivalent triangles have the same defect.

From the definition of equivalence, the two triangles can be
broken up into a finite number of triangles congruent in pairs.

But if a triangle is broken up by transversals f into a set of

sub-triangles, it is easy to show that the defect of the triangle

is equal to the sum of the defects of the triangles in this parti-

tion. Further, following Hilbert,| it can be shown that any
given partition of a triangle into triangles can be obtained by
successive division by transversals. It follows that the sum of

the defects of the triangles is equal to the defect of the original

triangle.

Now the two equivalent triangles can be broken up into a
finite number of triangles congruent in pairs. And the defects

of congruent triangles are equal.

* The construction of the riglit-angled triangle from a side and the
hypothenuse does not involve the Principle of Continuity. The results
of §36 show that this problem can be reduced to that of constructing a
right-angled triangle out of a side and the adjacent angle.

t A triangle is said to be broken up by transverscds, when the parti-

tion into triangles is obtained by lines from the angular points to the
opposite sides, either in the original triangle or in the additional
triangles which have been obtained from the first by division by
transversals.

:J:Cf. Hilbert, loc. cit. §20, or Halsted, Rationed Geometry, p. 87.
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Therefore the defects of any two equivalent triangles are

equal.

The theorem enunciated at the head of this section is thus
established : a necessary and sufficient condition for equiva-
lence of triangles is equal defect.

5. A triangle is said to be equivalent to the sum of two
other triangles, when the three triangles can be broken up
into a finite number of triangles, such that the triangles in the
partition of the first are congruent in pairs with the sum of the

triangles in the partitions of the other two.

Now the defect of each triangle is equal to the sum of the

defects of the triangles into which it is divided.

It follows that if a triangle is equivalent to the sum of two

other triangles, its defect is equal to the swn of their defects.

§ 52. If we regard area as a concept associated with a recti-

\ linear figure, just as length is with a straight line, it is obvious

^ that equivalent figures have equal area* And if, further, we
regard the area of a rectilinear figure as a magnitude to which
we can ascribe the relations of sum, equality and inequality,

greater and less, we obtain at once from the theorems of § 51

the result that the areas of triangles are proportional to their

defects. Indeed if we start with any triangle as the triangle of

imit area, a triangle which is n times this triangle will have n
times its defect.

\ But closer examination of the argument shows that in this

treatment of the question of area various assumptions are

made ; and the work of some mathematicians of the present

day has put the theory of area on a sounder logical basis.f

This more exact treatment of the theory of area in the Hyper-
' bolic Plane is simple, and will now be given :

The measure of area of a triangle is defined as P multiplied

* Hilbert distinguished between equivalent polygons, as defined above,

and polygons which are equivalent by completion. Two polygons are

said to be equivalent hy completion, when it is possible to annex to them
equivalent polygons, so that the two completed polygons are equivalent.

If the Postulate of Archimedes is adopted, polygons, which are equiva-

lent by completion, are also equivalent. Hilbert was able to establish

the theory of area on the doctrine of equivalence by completion without
the aid of the Postulate of Archimedes. Loc. cit. Chapter IV.

+ Cf. Art. VI. by Amaldi,*in Enriques' volume referred to above.

Also Finzel, Die Lehre vom Fldcheninhalt in der allgemeinen Geometric

(Leipzig, 1912).
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by its defect, k being a constant depending on the unit triangle,

and the unit of angle is chosen so that a right angle has ^ for

its measure. The number h^ is introduced to bring the results

into agreement with the analytical work in other parts of this

book.

It follows from § 51 that
^

1. If two triangles have the same measure of area, they are

equivalent, and that if two triangles are equivalent, they have

,

the same measure of area.

2. If a triangle is broken up into a finite number of triangles,

the measure of area of the triangle is equal to the sum of the

measures of area of the triangles in the partition.

3. If a triangle is equivalent to the sum of two other tri-

angles, the measure of area of this triangle is equal to the sum
of the measures of area of the other two triangles.

The measure of area of a polygon is defined to he the sum of the

measures of area of the triangles into which it is divided in any
given partition.

This sum is independent of the partition which has been
chosen. The sum of the defects of the triangles in any parti-

tion is equal to {n - 2) times two right angles - the sum of the

angles of the polygon. This is sometimes called the Defect of
the Polygon.

With regard to polygons we can now state the following

theorems :

1. If two polygons have the same measure of area, they are

equivalent. For they are each equivalent to the triangle whose
defect is the sum of the defects of the given partitions.

2. If two polygons are equivalent, they have the same
measure of area. For they can be broken up into a finite

number of triangles congruent in pairs.

3. If a polygon is broken up into a finite number of sub-

polygons, the measure of area of the polygon is the same as

the sum of the measures of area of the sub-polygons.

4. If a polygon is equivalent to the sum of two other poly-

gons, its measure of area is equal to the sum of the measures
of area of these two polygons.

Rectilinear polygons with the same measure of area will be
said to have equal area. Thus equivalent polygons have equal
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area. The area of a polygon will be said to be greater or less

than the area of another polygon according as its measure of

area is greater or less than the measure of area of the other.

§ 53. In the Euclidean Plane we say that a rectilinear figure

contains so many square inches (or sq. ft., etc.), and by con-

sidering a curvilinear figure as the limit of a rectilinear, figure

we obtain a method of measuring curvilinear figures.

In the Hyperbolic Plane there is no such thing as a square
inch, or rectangle with equal sides, or any rectangle. To every
rectilinear figure there corresponds an equivalent Saccheri's

Quadrilateral. To all equivalent rectilinear figures there

corresponds one and the same Saccheri's Quadrilateral with a

definite acute angle.

This quadrilateral with a given acute angle can be con-

structed in this geometry immediately. The construction

follows from the correspondence established between right-

angled triangles and the quadrilateral with three right angles.

If the acute angle is /3, we obtain the corresponding segment

6{/3 = n(6)}, by the construction of §45. We draw any
right-angled triangle with a side equal to h. The associated

quadrilateral has its acute angle equal to 0, and the Saccheri's

Quadrilateral is obtained by placing alongside it a congruent

quadrilateral.

All Saccheri's Quadrilaterals with the same acute angle are

equivalent.

Thus it will be seen that there is a fundamental difierence

between measurement of length and area in the Euclidean

and the Hyperbolic Plane.* In the Euclidean, the measures

are relative. In the Hyperbolic, they are absolute. With every

linear segment there can be associated a definite angle, namely
the angle of parallelism for this segment. With every area,

a definite angle can be associated, namely the acute angle

of the equivalent Saccheri's Quadrilateral.

* Cf. Bonola, loc. cit. § 20. Also supra, p. 17.
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THE HYPERBOLIC PLANE TRIGONOMETRY.

§ 54. In this chapter we shall develop the Trigonometry of

the Hyperbolic Plane, as in the preceding one we have discussed

the Geometry of the Hyperbolic Plane, without introducing

the theorems of Solid Geometry into the argument.
The properties of the Limiting-Curve lead to the formulae

of Plane Trigonometry, without the use of the Limiting-Surface,

as the surface formed by the rotation of a Limiting-Curve

about one of its axes is called. The method of Lobatschewsky
and Bolyai is foimded upon the Geometry upon that Surface.

We begin with some theorems upon Concentric Limiting-

Curves.

1. If A, B and A', B' are the 'points in which two Concentric

Limiting-Curves cut tivo of their axes, then AB = A'B'.

Fir.. 62.

Join AA' and BB' (Fig. 62).

Through the middle point M
parallel to the rays of the pencil.

n.'

of the chord AA' draw Mi2
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Then Mfl is perpendicular to the chord BB', and is sym-
metrical to the two parallels AB and A'B' (cf. § 26 (4) and § 47).

Therefore it passes through the middle point N of BB'.

Then it follows from the quadrilateral ABB'A' that AB = A'B'.

2. // A, B and A', B' are the points in which two Concentric

Limiting-Curves cut two of their axes, and P, Q, are the middle

points of the arcs AA' and BB', then PQ is a line of the pencil.

Fio. 63.

Since equal arcs subtend equal chords (cf. § 48), the chords

AP and A'P are equal, and the chords BQ and B'Q are equal.

It follows that PQ is the line of symmetry for the two axes

AB and A'B', and is parallel to both (cf. § 47).

Corollary. If the points P^, Pg, Pg, P^, ... , divide the arc A A'

into n equal arcs, and the axes through these points are met hy the

Limiting-Curve BB' in Q^, Q^, Qg, Q4, ... , the points Q.y, Qg,

Q3, Q4, ... divide the arc BB' into n equxil arcs.

3. // A, A', A", are three points on a Limiting-Curve, and
B, B', B", are the three points in which a Concentric Limiting-

Curve is cut by the axes through A, A', and A", then

arc AA' : arc AA" = arc BB' : arc BB".

First, let the arcs A A' and AA" be commensurable, and let

the one be tn times the arc AP and the other n times the arc

AP.

Through P draw the line of the pencil. Let it cut the second

Limiting-Curve in Q.
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Then we know from (2) that the arc BB' =m times the arc
''

BQ, and that the arc BB" = n times the arc BQ,

Fio. 64.

Thus the proportion follows.

Secondly, if the arcs are incommensurable, we reach the

same conclusion by proceeding to the limit.

Fio. 65.

ri

§ 55. Let us start with a Limiting-Curve whose centre is 12,

and take any two points A and B upon the curve (Fig. 65).
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On the ray AQ, cut off the equal segments AA^, A^Aa, AgAg, ....

Let the Concentric Limiting-Curves through A^, Ag, Ag, ...
,

cut the ray Bfi in B^, B.^, Bg, ... .

Then we have, by § 54 (1).

AAj = B Bj = B^ Bg = B2B3 = etc.

Also, from §48 and §54(3),

arcAB : arc AiBj = arc A^Bj : arc A2B2 = arc AgBg : arc A3B3 = etc.

This ratio is greater than unity, and depends only on the
length of AAi

.

We may choose the unit segment so that the ratio is equal to
e, when AAi = AiA2 = A2A3 = ... =the unit segment.

Let the arcs AB, A^B^, AgBg, etc., be denoted by s, s^, $2,

etc., when the segment AA^ is the unit of length.

Then we have
. S-t ^^ oj 00 ^^ 09 • Ot> ^^^

. . . ^ c.

Thus Sn = se-'^, when w is a positive integer.

n

It is easy to deduce from this that when the segment AP
(Fig. 66) is X units, x being any rational number, and the arc

PQ is denoted by Sx, then we have

se-

We obtain the same result for an irrational number x by
proceeding to the limit.
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Therefore, with this unit of length we have the following

theorem :

If ABDC (Fig. 67) is a figure hounded by two Concentric

Limiting-Curves AC and BD, and ttvo straight lines AB and CD,
the straight lines being axes of the curves, the lengths a and Sx of
the arcs AC and BD are connected by the equation

Sx^se ,

ivhen the segments AB and CD are x units of length, and AC is

the external curve, BD the internal.

St

Fio. 67.

If another unit of length had been chosen, so that the
ratio of the arc AB (Fig. 65) to the arc A^Bj had been
a(a>l), when AAi = BBi=the unit of length, the equation
connecting s and Sx would have been

Sx = sa-^.

1

Putting a = e^,

X

we have Sx = se *.

The number Jc is the parameter of the Hyperbolic Geometry-
depending upon the unit of length chosen.

§ 56. Since we can find p to satisfy the equation

n(;;) =
J,

there is a point Q on the Limiting-Curve through P, such that



9G NON-EUCLIDEAN GEOMETRY [CH. rv.

the tangent at Q is parallel to the axis through P, in the

opposite sense to that in which the axis is drawn (Fig. 68).

We shall for the present denote the length of this arc by S.*

Let B be a point on the Limiting-Curve through A, such that

the arc AB is less than S (Fig. 69).

It follows that the tangent at B must intersect the axis

through A.

Let it cut 12A in D, and let the segments AD and BD be u
and t. It is easy to show that u<t.

Produce the arc BA to the point C, such that the arc

BC = S,

On OD produced take the point A^, such that DAi = DB = ^.

Then the perpendicular through A^ to the axis is parallel to

BD, and therefore to Cl2'.

Let the Limiting-Curve through Aj meet C12' in C^.

Since the tangent at A^ is parallel to Ci2', the arc fKjC^ = S.

*Cf. p. 119.
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It follows from § 55 that

arc AjCj : arc AC = e«+'.

Therefore S-s = Se-(«+') (1)

Next, produce the arc AB through B to the point P, such that
the arcBP = S (Fig. 70).

m

t

Du

>n.

Q

t
Fio. 70.

Let the tangent at B as before cut the axis through A at

D, and let AD=w and BD=^.
On Afl, on the opposite side of A from D, take the point Q,

such that DQi = t.

Then the perpendicular through Q to the axis is parallel to

DB, and, therefore, to P12'.

Let the Limiting-Curve through Q cut the axis PI2 in R.

Since the tangent at Q is parallel to the axis through R,

arcQR = S.

But AQ=<-w.
Therefore S-Fs = Se«-« (2)

From (1) and (2), we have

e'* = cosh^, (3)

and ,s = Stanh^ (4)

§ 57. The Equation of the Limiting-Curve.

Let Ox and Oy be two lines at right angles, and let P be the

point {x, y) on the Limiting-Curve through O, with Ox for

axis (Fig. 71).

Draw PM perpendicular to the axis Ox, and let the Con-
centric Limiting-Curve through M cut the axis through P in N.

ThenOM = PN=x, MP = ?/.

Let arc OP = s, and arc MN =s'.

From the construction it follows that s' < S.

N.-E.a.
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Now the coordinates of P, a!;(OM), and y{MP) are, respec-

tively, the u and t of the previous section with reference to

the arc .9'.

Therefore we have, from § 56 (3),

e^ = cosh y (1)

Fio. 71.

This is the equation of the Limiting-Curve through O with

its axis coinciding with the axis of x.

Also, we have s = s'e^

= Se* tanh y, from § 56 (4),

= Ssinh?/ (2)

§58. The Hyperbolic Functions of Complementary
Segments.

Let Oa; and Oy be two lines at right angles, and let the

Limiting-Curve through O with axis Ox have the arc OP = S
(Fig. 72).

Let A be a point upon Ox, such that OA = a;, and let the

Limiting-Curve through A be cut by the axis through P in B.

Let arc AB = s.

At A draw the perpendicular to the axis of x. Since it must
cut PB, let it intersect it at C.

Produce AC through C to the point D, such that AC = CD.
At D draw DQ perpendicular to CD.
The line DQ must be parallel to CP, since z.DCP = z.ACB,

and CB is parallel to Afi.

Therefore Oy, CP, and DQ are parallel.



57.58] COMPLEMENTARY SEGMENTS 99

It follows that the segments OA and AD are complementary,

i.e. n(0A) + n(AD) = 5.

With the usual notation (cf. § 27) we take x' as the comple-
mentary segment to x.

Therefore, if OA = x, AC = S--

It follows that Se-* = s = Stanh-. (§56(4).)

Fio. 72.

Therefore for complementary segments we have

e-a; = tanhl.
2

But sinh x =
gx_ g-a;

1 / x'
.'. sinh a; = ^ ( coth ^ - tanh

x'\_ 1

2 / sinh x'
~ cosech x'.

.'. cosh x = \/l+ sinh'' a; = coth x'.

.'. tanh X = sech x' and coth x = cosh a;'.

Also sech a; = tanh x' and cosech a; = sinh x'.
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§ 59. The Equations connecting the Sides and Angles

of a Right-Angled Triangle.

Let ABC be any right-angled triangle, C being the right

angle.

Produce the side AC througb C, and draw the parallel BO
through B to AC.

Also produce AB through B to L, where AL is the segment I,

such that
x = U{l). [\ = ^BAC (of. Fig. 37).]

Through L draw Lfi parallel to B12 and AC.

Let the Limiting-Curves through B and L, with centre at

fi, meet the axes at B', D, and D' (Fig. 73).

Let the arcs BB', DD', LD be denoted by s, s^, s^, and let

the segment BD=«.
Then we have

S sinh a = s = s^e" [§ 57 (2).]

Si + 52 = Stanh/, [§56(4).]

§2 = 8 tanh BL = S tanh (I - c),

e'* = coshBL = cosh(l-c). [§56(3).]

It follows that

sinh a = cosh (I - c){tanh I - tanh (l-c)}

sinh I cosh (l-c)- cosh I sinh (I - c)

cosh I

= sinh c/cosh Z.
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Thus sinh c = sinh a cosh 1 1.

(Hypothenuse, side, and opposite angle.)

From this formula, connecting the hypothenuse, a side, and
the opposite angle of any right-angled triangle, we can obtain
the relations between all the other elements, by using the
associated triangles of § 36.

We know that, starting with a right-angled triangle in

which the elements are

a, ^, c, (X, /u), (1)

we obtain successively triangles with the elements

*', b, I, (y. f-oc), (2)

o', m', a', (\, |-/8), (3)

I'y C, b', (|-a, fij, (4)

I', a, m, (y, ^-pj (5)

Fromfcdid second triangle

we have sinh I = sinh m' cosh c

= ^—.— cosh c, by § 58.
smhm -^

^

Therefore cosh c = sinh 1 sinhm II.

(Hypothenuse and two angles.)

Also, from the same triangle (by I.),

sinh I = sinh b cosh a'

= sinh b coth a.

Therefore tanha = ^^r-^ Ill)

(Two sides and an angle.)

Now, since cosh c = sinh I sinh m,

. , sinh b sinh awe have cosh c =—=— x ,

—

z-^.
tanh a tanh b



102 NON-EUCLIDEAN GEOMETRY [ch.iv.

Therefore cosh c = cosh a cosh b IV.

(Hypothenuse and two sides.)

Further, cosh a = sinh I ^!"j^? (by III.

)

. , jcoshm ,, T \= sinh( —=- (bv 1.).

cosh /

Therefore cosh a = tanh 1 cosh m V.

(Side and two angles.)

Applying (IV.) to the triangle

c', ?/i', a',-U, \-p\^

we have cosh a = cosh c' cosh m',

and this gives tanh a = tanhm tanh c VI.

(Hypothenuse, a side, and included angle.)

These six formulae are all given by a rule similar to Napier's

Rules in Spherical Trigonometry :

(i) Ld the, letters a', 1, c, m, b' he written one at each of the sides

of a pentagon taken in order. Then

cosh of the middle part = the product of the hyperbolic sines of the

adjacent parts

and

cosh of the middle part = the product of the hyperbolic cotangents

of the opposite parts.
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§ 60. The Equations for an Oblique-Angled Triangle.

In the case of the Oblique-Angled Triangle ABC, the sides

opposite the angular points A, B, and C will be denoted hy a, b,

and c, as usual ; but the angles at A, B, and C will be denoted

by X, /i, and v.

With this notation the distance of parallelism for the angle

at A will be /.

We proceed to prove that

I. sinh a : sinh b : sinh c = sech 1 : sech.m : sech n.

This corresponds to the Sine Rule of ordinary Trigo-

nometry.

Via. 75.

Let ABC be all acute angles.

From an angular point, say A, draw the perpendicular AD to

the opposite side. We then obtain two right-angled triangles

ABD and ACD, as in Fig. 75.

Writing AD=p, we have (by §59, I.)

sinh c
sinh^ , from the triangle ABD,

and

cosh m

sinh p = , , from the triangle ACD.
^ cosh n

Thus we have

sinh b : sinh c = sech m : sech n.

Taking another angular point— say B—and proceeding in

the same way, we would have

sinh a : sinh c = sech I : sech n.
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Therefore

sinh a : sinh h : sinh c = sech I : sech m : sech n.

If one of tlie angles is obtuse, we obtain the same result,

using the notation ri( - a;) = tt - n(x).

For the right-angled triangle, the result follows from§ 59, 1.

II. We shall now prove the theorem corresponding to the

Cosine Rule of ordinary Trigonometry.

We take in the fii'st place the case when B and C are acute

angles.

From A draw the perpendicular AD to BC.

Let AD=p, CD = 5', and BD = a-^ (Fig. 75).

Then, from the triangle ABD we have

coshc = cosh(a-g)cosh^ (§59, IV.),

and from the triangle ACD we have

cosh b = cosh^ cosh q.

Also, we have

tanh(a -q) = tanh c tanh m (§ 59, VI.),

mi f T- 7 cosh c cosh q
Therefore cosh o = r-. ^

cosh(a-g')

= cosh c(cosh a cosh (a~q) - sinh a sinh (a - q))

cosh {a - q)

= cosh a cosh c - sinh a cosh c tanh {a - q)

= cosh a cosh c - sinh a sinh c tanh m.

If the angle B is obtuse, so that D falls on CB produced,

the same result follows, provided account is taken of the

notation Ii{-x) = nr -n{x).

If the angle B is a right angle, the result follows from

§ 59, IV.

We are thus brought to the Cosine Formula, which may
be put in the form :

cosh a = cosli b cosli c - sinh b sinh c tanh 1,

§ 61. The Measurement of Angles.

Up till this stage, except in §§ 51-2, there has been no

need to introduce a unit of angle into our work. The
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equation a =H (a), connecting the segment and the correspond-

ing angle of parallelism, has had only a geometrical significance.

In it oc has stood for a certain definite acute angle, which has

the property that the perpendicular to one of its bounding lines,

at a distance a from the angular point, is parallel to the other

bounding line.

When it comes to assigning numerical values to angles, the

choice of one number is sufficient, if, in addition, the angle

zero is denoted by O. In the Non-Euclidean Trigonometry

we shall assign the number - to the right angle. All other

angles will have the numerical values proper to them on this

scale.

In the rest of this work, when we use the equation oc = 11 (a),

both oc and a will be numbers, the one the measure of the angle

on this scale, the other the measure of the segment on one of

the scales agreed upon below (§ 55), in which the unit segment
is the distance apart of two concentric Limiting-Curves, when

1

the ratio of the arcs cut ofE by two of their axes is e or e*.

It should perhaps be remarked that in dealing with the
trigonometrical formulae in the previous sections the measure
of the segment, and not the segment itself, is what we have
meant to denote by the letters in the different equations.

§ 62. The Trigonometrical Functions of the Angle.

The Trigonometrical Functions

sinoc, cosoc, tanoc, etc.,

are defined by the equations :

la - ia ia - ia,

e -e e +e
sin a =—TT-—

>

cos oc =

sin oc 1
tan a. = , cot oc =

cos OL tan a
1 1

secoc = -, cosecoc =
cos a sm oc

The fundamental equation of the Hyperbolic Trigonometry
^^ tanha = cosa,

when a = n (a).
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We proceed to obtain this relation :
*

Consider the function /(oc) defined l>y the equation

tanh a = cos/(a,).

and let us write a = A(a.).

When 0. = -^, a = 0, tanha = 0, cos/(a) = 0; i.e.fl-^j = ~.

When a = 0, a = 30 , tanh a = 1, cos/ (a) = 1 ; i.e. /(O) = 0.

Further, as a increases from to go
, /(oc) diminishes con

tinuously from — to 0.

Next consider a triangle ABC—not right-angled—and let

the perpendicular from B cut the base AC at D. Let the

elements of the triangle ABD be denoted by AB = c, BD = a,

DA = ft, z.ABD = yu, ^BAD = X. Also let the elements of the

triangle BDC be denoted by BC = Cj, CD= bj^, DB = a^,

lBCD = \, LDBC = jUL^, FH=|^
As the side BD is common, a Tr^.)=^(*'

Fio. 76.

Then, from the Cosine Formula, § 60, we have

, //_ cosh c cosh Cj - cosh (b + bj)
tann ut = ; i ; i

•

suih c smh Cj

ir^v- ^*^

* The method of this and the preceding sections is due to Liebmann,
" Elementare Ableitimg der nichteuklidischen Trigonometrie," Ber.

d. k. aiichs. Oes. d. Wiss. Math. Phys. Klasse, vol. lix. p. 187 (1907), and
Nichteuklidische Geometrie, 2nd ed. p. 71. Another method, also inde-

pendent of the geometry of space, is to be found in Gerard's work, and
in the paper by Young referred to below, p. 136.
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With the notation of this section, we have

cosf{fjL + fjL^) = tanh A (jut. + ju^)

cosh c cosh Cj - cosh (b + b^)

sinh c sinh q
,, , cosh i cosh ft, sinh ft sinh 6,= COth C COth C, ;-^j ^-, ^^j ;—r

—

.

' snih c snih Cj sinh c sinh Cj

But we know that

tanh a = tanh c tanh m, [§ 59, VL]

i.e. tanh a = tanh c cos/(yu).

Similarly tanh a^ = tanh c^ cos/(^j).

Therefore coth c coth fj = coth^a cosf{/j.) cos/(/Xj).

Further, from § 59, L, we obtain

sinh 6 1 • // \
• , =—r— = sin/ (fX),

sinh c cosh m -^ v*- /'

sinh ftj _ 1 _ • // \

sinh Cj cosh m^
~ ''

^^^''

Therefore -r-r

—

. , ^ = sin/(u) sin/(ui ).

sinh c sinh Cj "^ ^'^^
•'

^'^^'

We are left with the term

cosh b cosh ftj

sinh c sinh Cj
*

But, from § 59, VL and IV., we have

tanh m _ cosh c _ cosh b

. sinh a sinh c cosh a sinh c

'

Therefore
cosh ft cosh b^ ^ cos/(/i) cosfifx^)

_

sinh c sinh Cj sinh-^a

Thus we obtain

cos/(/i + ^aj) = coth^a cos/(/oi) cos/(/ij)

- cosech-rt cosf{/u) cos f(fjL^) - sin/(/A) sin/(jUj)

= cos/(/a) cosf{^{) - sin/(yu) sin/(/Xi)

= cos[/(ya)+/(Mi)].
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But when /x = /u^ = ^t + /x^ = 0,

/(m)=/(Mi)=/(a^ + /«i)
= 0.

Therefore we have

This is a functional equation from which the continuous

function /(/x) is to be derived.

It may be written f{x + y) =f{x) +f{y),

with /(0) = 0, /(f)
=
f-

Thus sve have

f(x + h)-f{x) _f(j/ + h)-f{y)

h h

Proceeding to the limit

Thus /
' (^) = constant.

Therefore f(x) = Aa; + B.

The values of /(O) and/(^j determine A and B, so that we
have finally ^^'^

f{x) = x.

Thus we are led to the desired equation

tanh a = cos a.

§ 63. From the result proved in last section,

tanha = cosa,

it follows immediately that

sinha = cotcx.,

cosha = coseca,

cotha = seccx.,

sech a = sin a,

cosech a = tan oc.
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If we insert these values in the Trigonometrical Formulae
of § 59, we obtain :

sinh a = sinh c sin \ from sinh c = sinh a cosh I.

sinh 6 = tanh a cot A ,, sinh & = tanh a sinh Z.

cosh c — cot X cot /x „ cosh c = sinh I sinh m.

cosh c = cosh a cosh 6 „ cosh c = cosh a cosh 6.

cosX = cosh a sin y(jt „ cosh a = tanh / cosh w.

tanh a = tanh c cos yu „ tanh a = tanh m tanh c.

And the formulae of § 60 for the Oblique-Angled Triangle

become
gjj^j^ ^ . gjj^j^ ^ . ^^^j^ c = sin X : sin /x : sin v,

cosh a = cosh h cosh c - sinh h sinh c cos X.

^Z/ ^Aese results agree toith the coire^onding formulae in

Spherical Trigonometry, when X, yu, v take the place of A, B, C, and

the Hyperbolic Functions of a, b, and c take the place of the Circular

Functions of a, b, and c.

§ 64. The Angle of Parallelism.

Since tanh a = cos a.

,

we have
1 - cos a. _ 1 - tanh a

1 + cos a ~ 1 + tanh a'

Therefore tan^ — = e-^"^,

and tan^ = e-«

The angle oc is acute, so the positive sign has to be taken

in extracting the square root.

This may be written

tAn\'n.{p) = e-P*

§65. The formulae of §§56-64 have been deduced on the

understanding that the unit of length employed is the distance

between concentric Limiting-Curves when the ratio of the arcs

cut off by two of their axes is e.

* This result is given by Bolyai, Appendix, § 29, and by Lobatschewsky
in his various books, e.g. Oeometrische Untersuchungen zur Theorie der

Parallellinien, § 36.
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If a different unit is adopted, so that the ratio of the arc

AB to the arc AjBj is a, any number greater than unity, we
have the equation

Sa = 5a ~ * instead of Sx = se- ^.

I

Putting a = e*,

this gives Sx = se *.

This parameter k will enter into all the equations of the

preceding sections, so that sinhy, cosh—, etc., will replace

sinh a, cosh a, etc.
^ "'

And the equation for the Angle of Parallelism will be

_p
tan|n(^) = e"*.

The Euclidean Geometry now appears as a special case of

the Hyperbolic Geometry, for if we let k-^cc , the formulae
of this Non-Euclidean Geometry reduce to those of the

Euclidean.

In the first place, since

tan|n(^) = e'<^,

the angle of parallelism becomes ^ when k->oo .

Further, the equations connecting the sides and angles of a

right-angled triangle, viz.

sinh
-J-
= sinh ^ sin X,

K K

sinh -J- = tanh ^ cot X,
a; k

cosh -r- = cot X cot fjL,

. c , a . b
cosh j^ = cosh -r cosh -r

,

cos X = cosh -r- sin jul,

tanh -r = tanh -y- cos u,
k k
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becomle sin A =
a

cotA =
h

- >

a

cot A cot B == 1,

a2 + &2 =-c\

cosA == sin B,

cosB =

a

when we write A, B for \ and /ul.

From the Sine and Cosine Formulae for the Oblique-Angled

Triangle (§ 63) we get at once,

sin A : sin B : sin C = a : & : c,

a2 = 62 + ^2 -2k cos A.

Again, y, y, and - can be made infinitesimals by letting a, 6,

and c tend to zero instead of h to infinity. In this case again

the Euclidean relations are obtained.

This result can be stated in other terms :

In the immediate neighbourhood of a -point on the Hyperbolic ,'

Plane, the formulae of the Euclidean Geometry hold true.

Or, again :

The Euclidean Formulae hold true in Infinitesimal Geometry

on the Hyperbolic Plane. J

These theorems have an important bearing upon the question •

as to whether the Hyperbolic Geometry can actually represent

the external relations of the space in which we live. The
experimental fact that, within the limits of error to which all

actual observations are subject, the sum of the angles of a

triangle is two right angles does not prove that the geometry
of our space is the Euclidean Geometry. It might be a Hyper-
bolic Geometry in which the parameter k was very great.

The Geometry of Bolyai and Lobatschewsky can be made
to fit in with the facts of experience by taking k large enough.

The Postulate of Euclid reaches the same end by another

means. It is a better means, for it gives a simpler geometry.
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CHAPTEK V.

MEASUREMENTS OF LENGTH AND AREA, WITH THE
AID OF THE INFINITESIMAL CALCULUS.

§66. In this Chapter we shall apply the Trigonometrical

Formulae found in Chapter IV. to the measurements of Length
and Areas of Curves.

The first thing to be done is to obtain the expression for

the element of arc of a plane curve.

The Element of Arc in Cartesian Coordinates.

In the Euclidean Plane

ds^ = dx^ + dy"^.

We shall now prove that in the Hyperbolic Plane

ds2 = cosh2 ? dx2 + dy2.
k

Let P, Q be the points {x, y), (x + Sx, y + Sy).

Draw PM and QN per-pendicular to the axis of x.

Then 0M=«, MP^'^, 0[^=x + Sx, and NCl = y + Sy.

From P draw PH perpendicular to QN.

Let PQ, = Ss, PH=^, HQ=^, and NH=2;.

Then, in the right-angled triangle PHQ,

^§2 ^p2^q2* ^Q ^\iQ lowest order.

*This follows from §65, where we have proved that the Euclidean

Formulae hold in Infinitesimal Geometry. If we start with

cosh -r-= cosh -^ cosh ^

,

we obtain the same result when we neglect terms above the lowest

order.
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Also> in the quadrilateral MNHP, the angles at M, N, and H
are right angles, and the sides beginning at M are

Sx, z, q, y.

These correspond to a, ni, c, I

in a right-angled triangle. [Cf. § 35.]

M N
Fio. 77.

Thus we have

Therefore

Also, we have

. , Sx
smh j- =

sinh

cosh-v-
k

[Cf.§59,I.]

q = cosh -|- Sx, to the lowest order.
tC

cosh ^ = tanh I coth j. [Cf. § 59, V., and § 58.]

Therefore y and z diflFer by a small quantity when Sx is small.

Put z = y + r}.

Then we have tanh ^^7^ cosh -r «= tanh y

.

N.-E.O. H
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This gives, to the lowest order,

i.e. ,y=-2^sinh|-cosh|-6a;2.

Therefore y and z differ by a quantity of the second order

when Sx is of the first order.

Now p={y + ^y)- ^•

Therefore p = Sy, to the first order.

It follows from Ss^ =p^ + q"^, that

8s^ = cosh^ 1^ Sx^ + Sy-, to the lowest order.

Thus we have shown that the element of arc in Cartesian

Coordinates is given by

ds2 = cosli2|-dx2 + dy2.
k

§ 67. Element of Arc in Polar Coordinates.

In the Euclidean Plane we have for the element of arc in

Polar Coordinates, the equation

We proceed to find the corresponding formula in the

Hyperbolic Plane.

It may be obtained in two ways. It could be deduced from

ds^ — cosh^ ^ dx^ + dyK
k . ^

by using the relations connecting x, y and r, Q ; \'\7.

[Cf. §63.]

cosh T =

k
= cosh r cosh

k

tanh| .

A;

sinh|

y\

- tan a =

.
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It is simpler and more instructive to obtain the result

directly.

Let P, Q be the points (r, 0), {r + Sr, d + SO).

Fio. 78.

Draw PN perpendicular to OQ.
Let PQ = ^>, PN=^, NQ=jo, and ON = z.

Then, from the triangle PNQ, we have as before

Also, from the triangle ONP, we have

sinh
I
= sinh ^ sin 66. [§ 63.]

Therefore q = k sinh j- Sd, to the lowest order.
fC

Also, we have from the same triangle

cosh
J,
= cosh -r cosh |.

Therefore r and z are nearly equal.

Put »='2 + f-
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2ky'
Then cosh y +$ sinh ^ = cosh r ( 1 +

k k k k\

to the lowest order.

Thus ^=91; Goth-r, to the lowest order
;

i.e.r and z differ by a small quantity of the second order,

when SO is of the first order.

But

Therefore

It follows that

p = r + 8r-z.

p = dr, to the first order.

Ss^ = Sr^ + k^ sinh^ y SO^, to the lowest order.
k

Therefore ds2 = dr2 + k2sinh2~d02.
k

§68. The Element of Arc in Limiting-Curve Co-

ordinates.

We shall now describe a system of coordinates peculiar to

the Hyperbolic Plane. The position of the point P is given

by the Limiting-Curve and axis on which it lies, the Limiting-

A

Fio. 79.

Curves being all concentric, their common centre being at

infinity on the axis of x.

Let the Limiting-Curve through P cut off a segment of

length ^(OPfl) on the axis of x, and let the axis through P
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cut off an arc of length ;; (OA) on the Limiting-Curve through
O. (Fig. 79.)

(^, r}) are called the Limiting-Curve Coordinates of the

point P.

Now take another point Q with coordinates

Let the Limiting-Curve through Q cut the axis of x (the

axis through O) at Qo.
Let the Limiting-Curve through P be cut by the axis through

Q at S, and the Limiting-Curve through Q by the axis through
P in R.

Also, let A and B be the points where the Limiting-Curve
through O is cut by the axes through P and Q.

arcOA=;;, arc OB = r] + Stj,

0P„ = ^, 0Q,==^+ Si.

It follows from the properties of Concentric Limiting-
Curves [§ 55], that

arc QR = Sr}e ^'
.

_i
.'. arcQR = (5;/e ^, to the first order.
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Further, PR = 8^, and we write PQ = Ss, as usual.

Now we know that

PQ2 = PR2 + RQ2, to the lowest order.

.'. 88"^ = S^^ + e * Sif, to the lowest order.

Therefore ds^ = d^^ ^q k ^^2

This result could also have been deduced from that of

§ 66 by using the equations connecting {x, y) and (^, rj). [Cf.

§57 and §69 (3).]

§ 69. We apply these formulae to find the perimeter of a

circle, and the lengths of portions of the Equidistant-Curve

and the Limiting-Curve.

1. The Perimeter of a Circle of Radius a.

In ds^ = dr'^ + ¥ sinh2 y dQ"^,
k

we put r — a and dr = 0.

Thus the arc from = to 6 = 6 is given by

s = k sinh ^ x6.
k

The Perimeter of the Circle follows by putting = 2x,

and is given by the expression

I 27rk sinh r •

k

2. The Equidistant-Curve y = b.

In ds^ = cosh^ | dx^ + dy\

we put i/ = b and dij = 0.

Thus the arc from a; = to x = x is given by

s = xcosli-.
k

3. The Limiting-Ciirve.

The equation of the Limiting-Curve . through the origin,

with its centre at infinity on the axis of x, is

e^=co8h|. [Cf. §57(1).]
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In ds^=^cosh'^^dx'^ + df-,

we put dx = tanh
j^
dy.

Then fiJs2 = ('l+sinh2|^rfy!

Thus ds = cosh
j_
dy.

119

It follows that s = k sinh - , when we measure s from the

origin. ^

If we compare this result with §57 (2), we see that the

length of the arc of the Limiting-Curve, such that the tangent
at one end is parallel to the axis through the other, is unity,

when ^=1.

§ 70. The Element of Area.

Let the arc AB be an arc of a Limiting-Curve, centre 12,

such that the tangent at B is parallel to the axis through A.

Then we know that the length of the arc AB is k. fS 57 (2)
and §69 (3).]

1

Also, if AAj = 1, the length of the arc ^fi^ = ]ce *;

if AiA2= 1, the length of the arc k.^B^ = ke *,

and so on.
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Let the area of ABB^Aj be denoted by A^.
1

Then (cf. § 48) the area of A^BjBgAg will be A^e *
;

that of AgBgBgAg will be A^e *, etc.

Thus the area of ABB„A„

L i
+ e

1 _ i n-l \

k A. J- /? *

Therefore, as 7i-> oo, this area approaches a limit, namely

A„
A =

This is the area of the region bounded by two axes of a

Limiting-Curve and an arc such that the tangent at one end
is parallel to the axis through the other end.

The unit of area has not yet been chosen in this discussion.

We now fix it so that the area denoted above by A will be

k^ the unit of area.

With this measurement

Also the area of ABA,iB,i will be k\l - e ^).

Next, let P be a point on A B, or AB produced, such that the

arc AP=s.

Then area APPjAj : area ABBjAj =s :k,

and area APP„An=^sVl -e ^).

Taking x, first, a rational number, and then treating the

irrational number x as the limit of a sequence of rational

numbers, we find from the above that the area bounded by the
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arcs of two Concentric Limiting-Curves, distant x apart, the

larger one being of length s, is equal to

Fio. 82.

From this result the expression for the element of area in

Limiting-Curve Coordinates will now be deduced.

Let P, Q, R and S be the points

a, ri), (i+Si, rj + Sr,), (i+S^, r,), and (^, n + Sf}) [cf . Fig. 80].

_i
Then arc PS = 87;e *, [§68]

and PR = ^^.

Therefore the area PQRS is given by

-1/ JJ\
kSrje *(l-e V-

When S^, St] are small, this becomes, to the lowest order,

i
e ^SiSri.

Therefore the element of area in LAmUing-Cv/rve Coordinates is

i
e * d^drj.

This is equal to the product of the two perpendicular chords

PR and PS which bound the infinitesimal element, and with
these units the expression for the element of area is the same
as that in the Euclidean Plane.
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§ 71. The Element of Area in Cartesian Coordinates.

This result can be obtained from the expression found in

§ 70, by using the methods of the Calculup.

We have j7 = A;tanh^e^

e '^ =coshT-
k

[Cf. § 57

and § 69 (3).]

These are the equations connecting (x, y) and (A j/).

To find the element of area in Cartesian Coordinates (x, y),

we need only replace

by lco8h'4^^Jxdy,
k d{x, y) ^

After reduction, we obtain

cosh \ dx dy.
k

s

p

y

•

R

X ^^ N ^
Fio. 83.

The result, however, can be found directly as follows

:

Let P, Q be the points (?;, y), {x + &, y + <5//).

Let the Equidistant-Curves through P and Q with Qx as

base-line meet the ordinates at R and S (Fig. 83).
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The figure PRQS becomes a i-ectangle in the limit, and we
can use the Euclidean expression for its area (cf. i^ 70).

Then arc PR = cosh | Sx [§ 69 (2)]

and PS = Sy.

Hence the element of area in Cartesian Com'dinates is

cosh ~ dx dy.
k

§ 72. The Element of Area in Polar Coordinates.

As before, the result can be obtained by using the equations

cosh J = cosh
J-
cosh ^

,

tan0 =
tanh ^

k

sinh

which connect (r, 6) and (x, y).

Fig. 84.

But it is simpler to obtain the element of area directly

from the geometrical figure :

Let P, Q be the points (r, Q), (r + Sr, + SO).
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Let the circles through P and Q cut the radii at S and R,

forming the element PRQS.

Then we have arc PS = k sinh ^ ^0, by § 69 ( 1 ),

PR = Sr.

The figure PRQS becomes a rectangle in the limit.

Therefore the element of area in Polar Coo7-dinates is

ksinhidrdO.
k

The area of the circle of radius a is thus given by

I I
k sinh

-J-
dr dO,

Jo Jo fc

which becomes

or

27rA;2(coshT-- 1
j,

4:7rk^smh.^ -^.
2k

§ 73. The Area of a Triangle and of a Quadrilateral
with three Right Angles.

Fig. 85.

Let OABC be a quadrilateral with the sides a, m', c, I, as in

Fig. 85, and the angles at O, A, C right angles ; A lying on

the axis of z and C on the axis of y.
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Let P be any point on CB, and PM the perpendicular from

P to OA.

Then, from the associated right-angled triangle for the

quadrilateral OMPC, we have

tanh|cosh-r = coshT. (§59, V.)

But the area of the quadrilateral OABC is given by

\ I cosh
I
dx dy.

Denote this by S.

Integrating, we have

= k\ si

Jo
sinh ~ dx

k

{

COsh-r

oV'^

'.dx

sinh^ ^ - sinh^ -7

sinh —
= A;-sin ^

sinh -r-

sinh ^

.. 8inTr, =
k^ • -um

sinh —
k

But, from the associated right-angled triangle, we have

h
^^"^

T-

tanhy = 1. (§59, IIL)

sinh-j-
k

And tanh| = cos^. (§62.)
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Therefore

Therefore

sin

Thus the area of a quadrilateral with three right angles and an
acute angle /3 is equal to . .

on this scale.

But a triangle ABC (Fig. 86) is equal in area to Saccheri's

Quadrilateral BCC'B', in which the angles at B and C are each

equal to half the sum of the angles of the triangle.

The triangle is thus equal in area to twice the quadrilateral

with three right angles, and an acute angle equal to J(A + B + C).

Using the result just found, the area of the triangle ABC
on this scale of measurement is »

where

F(7r-2;6),

2/3 = A + B + C.

In other words, the area of the triangle is the product of

k"^ and its defect.

Comparing this with § 52, we see why the particular unit of

area was chosen in § 70.
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THE ELLIPTIC PLANE GEOMETRY.

§ 74. In Hubert's Parallel Postulate, through any point A
outside any line b, two parallels a^ and a^ can be drawn to the

line, and these separate the lines in the plane of the parallels

which cut 6 from the lines which do not cut it.

On the Euclidean Hypothesis, the two rays a^ and 02

together form one and the same line, and there is but one

parallel to any line from a point outside it.

There is still another case to be examined, namely that in

which all the rays through A cut the line 6. In this case there

is no parallel through a point outside a line to that line.

We shall see that this corresponds to the Hypothesis of the

Obtuse Angle of Saccheri, in accordance with which the sum of

the angles of a triangle exceeds two right angles. Saccheri and
Legendre were able to rule this case out as untrue ; but their

argument depended upon the assumption that a straight line

was infinite in length. Riemaim was the first to recognise that

a system of geometry compatible with the Hypothesis of the

Obtuse Angle became possible when, for the hypothesis that

the straight line is infinite, was substituted the more general

one that it is endless or unbounded. (Cf. §§ 19, 20.)

The geometry built up on the assumption that a straight

line is unbounded, but not infinite, and that no parallel can be
drawn to a straight line from a point outside it will now be
treated in the same manner in which the Hyperbolic Geometry
was discussed.

§ 75. We proceed to the development of Plane Geometry
when the assumptions

(i) All straight lines intersect each other,

(ii) The straight line is not infinite,
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take tlie place of the Parallel Hypothesis of Euclid and his

implicit assumption that the line is infinite.

Let A and B be any two points on a given line L.

The perpendiculars at A and B to the line must intersect,

by assumption (i).

Let them meet at the point O.
Since ^OAB = z.OBA, we have OA = OB.
At O make ^BOQ =^AOB (Fig. 87), and produce OQ to

cut the line L at P.

Then AB = BP and Z.OPA is a right angle.

By repeating this construction, we show that if P is a point

on AB produced through B, such that AP =m . AB, the line OP
is perpendicular to L and equal to OA and OB. The same
holds for points on AB produced through A, such that

BP = m.AB. In each case m is supposed to be a positive

integer.

Now, let be a point on AB, such that AB =m . AC, m being

a positive integer. The perpendicular at to L must pass

through the point O, since if it met OA at O' the above argu-

ment shows that O'B must be perpendicular to L and coincide

with OB.
It follows that if P is any point on the line L, such that

AP =— .AB, m and n being any two positive integers, OP is
n

perpendicular to the line L and equal to OA and OB.

The case when the ratio AP : AB is incommensurable would
be deduced from the above by proceeding to the limit.
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Now, all points on the line are included in this argument,
80 that the perpendiculars at all points of the line L pass

through the same point.

Now, let L' be another line and A', B' two points upon it,

such that the segment AB = A'B'.

The perpendiculars at A', B' meet in a point, which we shall

call O'.

Pio. 88.

The triangles AOB and A'O'B' have a side of the one equal
to a side of the other, and the two angles adjacent to the sides

are equal, each to each.

It follows that 0'A'=OA.
Thus we have shown that the perpendiculars at all points on

any line meet at a point which is at a constant distance from
the line.

The point will be called the Pole of the Line.

§76. Now, in Fig. 89, produce OA to 0^, where OiA=OA.
Join OjB.

Then, from the triangles OAB and OiAB, it follows that

^OiBA = z.OBA = a right angle.

Thus OB and O^B are in a straight lige.

Also, AOj produced must intersect AB at a point C, such that
O^C is perpendicular to AB, and OC will be also perpendicular
to AB.

Thus OAOj produced returns to O, and the line is endless or

unbounded.

Its length is four times the distance of the pole of the line

from the given line.

N.-E.G. z
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We shall denote the constant distance OA by ^, so that

with this notation the length of the line is 4^.
Thus two other assumptions of the ordinary geometry are

contradicted in this geometry :

Two straight lines enclose a space
;

Two points do not always determine a straight line.

Through the two poles of a line an infinite number of lines

can be dxawn, just as through the two ends of a diameter of a

sphere an infinite number of great circles can be drawn.

It is now clear that the argument which Euclid employs in

I. 16 is not valid in this geometry. The exterior angle of a

triangle is greater than either of the interior and opposite

angles only when the corresponding median is inferior to W.
If this median is equal to ^, the exterior angle is equal to

the interior angle considered ; if it is greater than %, the

exterior angle is less than the interior angle considered.

Also, as I. 16 was essential to the proof of I. 27, it is now
evident why in this geometry that theorem does not hold. Of
course, if I. 16 did hold, there would have to be at least one

parallel to a line through any point outside it. In a limited
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region of the plane, I. 16 does hold, and theorems dependent
upon it are true in such a region.

The plane of this geometry has properties completely analo-

gous to those possessed by the surface of a sphere. The great

circles of the sphere correspond to the straight lines of the

plane. Like the line, they are endless. Any two points on
the surface of the sphere determine a great circle, provided the

points are not the opposite ends of a diameter. The great

circles through any point on the sphere intersect all other

great circles.

We shall find that this analogy can be carried further. The
sum of the angles of a spherical triangle is greater than two
right angles. The sum of the angles of a triangle in this plane

is greater than two right angles. The Spherical Excess
measures the area of spherical triangles. With suitable units

the area of plane triangles is equal to their excess. Indeed
the formulae of this Plane Trigonometry, as we shall show
later, are identical with the formulae of ordinary Spherical

Trigonometry.* ^c^*^

§ 77. It must be remarked, however, that in the argument
of § 76 it is assumed that the point 0^ is a different point from
p. If the two points coincide, the plane of this geometry has

a wholly different character. The length of a straight line is

now 2^ instead of 4^. If two points P, Q are given on the

plane, and any arbitrary straight line, we can pass from P to. (1
Q by a path which does not leave the plane, and does not cutn /

the line. In other words, the plane is not divided by its lines] ,

into two parts. *

The essential difference between the two planes is that in

the one the plane has the character of a two-sided surface, and
in the other it has the character of a one-sided surface .f The
first plane—that which we have been examining—is usually

called the spherical plane (or double elliptic plane) ; the second
plane is usually called the elliptic (or single elliptic) plane.

The geometries which can be developed on both of these

planes are referred to as Riemann's (Non-Euclidean) Geome-
tries. It seems probable that the Spherical Plane was the only

• Spherical Geometry can be built up independently of the Parallel

Postulate, so it is not necessary to say ordinary Spherical Trigonometry
when referring to it.

tCf. Bonola, loc. cit. §75.
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form in his mind. The Single Elliptic Plane and its importance

in the higher treatment of the Non-Euclidean Geometries were

first brought to light by Klein.

§ 78. We shall now show that this geometry corresponds to

Saccheri's Hypothesis of the Obtuse Angle, so that the sum of

the angles of a triangle is always greater than two right angles.

The following theorem enables us to put the proof concisely :

1. In any triangle ABC in which ike angle C is a right angle,

the angle A is less than, equal to, or greater than a right angle,

according as the segment BC is less than, equal to, or greater than |£.

Let P be the pole of the side AC.

Then P lies upon BC, and PC = ^.
Join AP.

Then z.PAC = a right angle.

If CB > CP, then l BAC > l PAC ; i.e. l BAC > a right angle.

If CB = CP, then l BAC =^ PAC ; i.e. l BAC = a right angle.

If CB < CP, then L BAC < l PAC ; i.e. L BAC < a right angle.

The converse also holds.

Now consider any right-angled triangle ABC in which C is

the right angle.

If either of the sides AC or BC is greater than or equal to

^, the sum of the angles is greater than two right angles by
the above theorem.

If both sides are less than ^, from D, the middle point of

the hypothenuse, draw DE perpendicular to the side BC.

Let P be the pole of DE.
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Produce ED to F, so that ED = DF.

Join AF and PF. p
Then the triangles ADF and DEB are congruent, and AF, F^-

lie in one straight line.

But we know that z.PAC>a right angle, since CP is greater

than 'g.

Therefore the sum of the angles at A and B in the right-

angled triangle ACB is greater than a right angle in this case

as well as in the others.

Thus we have proved that

2. In any right-angled triangle the sum of the angles is greater

i
than two right angles.

Finally, let ABC be any triangle in

which none of the angles are right angles.

We need only consider the case when
two of the angles are acute.

Let Z.ABC and Z.ACB be acute.

From A draw AD perpendicular to

BC ; D must lie on the segment BC.

Then, from (2),

L ABD + .'_ BAD > a right angle

and z.DAC + ^ACD>a right angle.
Fio. 92.

It follows that the sum of the angles of the triangle ABC is

greater than two right angles.
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Thus we have proved that

3. The sum of the angles of any triangle is greater than two

right angles.

The amount by which the sum of the angles of a triangle

exceeds two right angles is called its Excess.

§ 79. Saccheri's Quadrilateral, and the Quadrilateral

with three Right Angles and one Obtuse Angle.

Let AC and BD be equal perpendiculars to the segment AB.

The quadrilateral ABDC we have called Saccheri's Quadri-

lateral.

Let E, F be the middle points of AB and CD.

We know that EF is perpendicular to both AB and CD ;
and

that the angles ACD and BDC are equal.

But the sum of the angles of a quadrilateral must be greater

than four right angles, since it is made up of two triangles.

It follows that the angles at C and D are obtuse.

Fio. 94.

Thus the Elliptic Geometry corresponds to Saccheri's Hypothesis

of the Obtuse Angle.

Now let ABDC (Fig. 94) be a quadrilateral in which the angles

at A, B, and D are right angles.

The angle at C must be obtuse by §78.

Each of the two sides containing the obtuse angle in a quadri-

lateral with three right angles is less than the side opposite to it.

To prove this, we proceed as follows :

If AC is not less than BD, it must be either greater than it

or equal to it.

But we know that if AC = BD, z.ACD=/LBDC, which is

impossible, as one is obtuse and the other a right angle.

If AOBD, cut ofi AE=BD, and join ED.
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Then we know that l NED =^ EDB.

But :lEDB is acute, so that both must be acute, which is

impossible.

Therefore AC must be less than BD.

Again, starting with AB and CD, which are both perpendicular

to BD, we find that CD is less than AB, so our theorem is proved.

We shall not proceed further with the formal development
of this geometry. There is no Theory of Parallels, for

parallel lines do not exist in it. There is only one kind of

circle, the locus of corresponding points upon a pencil of

straight lines. The measurement of areas follows on the same
lines as in the Hyperbolic Geometry.

Two triangles which have the same excess have equal areas,

and conversely.

The area of a triangle is proportional to its excess.
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CHAPTER VII.

THE ELLIPTIC PLANE TRIGONOMETRY.

§ 80. The following treatment of the Elliptic Trigonometry
is due to Gerard and Mansion. Gerard discussed the Hyper-
bolic Trigonometry on these lines.* Mansion showed that
the method discovered by Gerard was applicable also to the
Elliptic case.f

The notation to be employed has first to be explained.

Let OA and OA' be two lines meeting at O at right angles.

Let OL be a third line making an acute angle with OA and OA'.
Let P be any point upon the line OL, such that 0P<^.

Let PM and PM' be the perpendiculars to OA and OA'.

We denote OM, MP, and OP by x, y, and r ; and OM' and
M'P by y' and x'.

* Gerard, Sur la G^om4trie won euclidienne (Paris, 1892). Cf. also
Young, " On the Analytical Basis of Non-Euclidian Geometry," Amer.
Journ. of Math., vol. xxxiii. p. 249 (1911) ; and Coolidge, Non-Euclidean
Geometry, ch. iv. (Oxford, 1909).

t Mansion, Principes Fondamentarix de la 64om,6trie non euclidienne
de Riemann (Paris, 1895).
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§ 81. I. //" P, Q are any two points on OL, sicch that

OP<OQ<^,
and Pp, Qq are perpendicular to OA, then LOPp<LOQ,q.

We know that LpPQ. + LPQ.q>2 right angles.

Also L0Pp + ^pPQ. = 2 right angles.

Therefore z. OPp< l PQ.q.

If S is the point on OL, such that 0S =^ and Ss is per-

pendicular to OA, we know that AOSs = a right angle.

It follows that LQPp<LOQ/i<z. right angle.

II. "From O to S, J continually increases.

Let P and Q be any two points upon OL, such that

OP<OQ<|C.
Then we know that if Pp = Qq, we must have LpPQ = i. PQq,

which is impossible by (I.).

Again, if Pp>Q,q, cut ofi pP' = qQ„ and join P'Q. (Fig. 97.)

Then LpP'Q, = LP'Qq.

But LPQlq<a, right angle.



138 NON-EUCLIDEAN GEOMETRY [CH. VII.

Therefore l jaP'Q and l P'Qq are equal acute angles, whicli is

impossible.

Fio. 97

Thus, as the point P [moves along OL from O towards S, y
continually increases.

III. From O to S, the ratio - continually increases.

First, consider points upon OL corresponding to equal seg-

nients on OA.

q r
Fig. 98.

Let P, Q, R be three such points, so that

jyq = qr.
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Then we know that pP<qQi<rR.
From rR cut off rP' = pP, and join QP'.

Then we have PQ = QP' and -Q,Pp = i.QlP'r.

Therefore z.QRP'>^QP'R and QR<^QP'.

Thus, if J>q = i^> PQ>QR.

Therefore, for equal increments of x, we have decreasing

increments of r.

It follows from this that if P and Q are any two points upon
OL, such that OP<OQ<^, and OM, ON are commensurable,

OM ON
OP '^ OQ'

When OM and ON are incommensurable, we reach the same
conclusion by proceeding to the limit.

Thus, from O to S, the ratio - continually increases.

IV. From O to S, the ratio -^ decreases.
r

First we consider points upon OL at equal distances along

that line.

Let P, Q, and R be three such points, so that

PQ = QR.

From P and R draw PH and RK perpendicular to Qq.
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Then we know ttat Pj)< Hq and Rr < Kq (§ 79).

But QH = QK. Therefore Q,q-Hq = Kq- Qq.
It follows from the above that Qq-Pp>Rr- Q,q.

Therefore, for equal increments of r we have diminishing

increments of y.

It follows from this that if P and Q are any two points upon
OL, such that OP < OQ < ^, and OP, OQ are commensurable,

Pp Qq
OP OQ'

When OP and OQ are incommensurable, we obtain the same
result by proceeding to the limit.

Thus, as P moves along OL from O towards S, the ratio

^ continually decreases.

V. When r tends to zero, the ratio x : r tends towards a finite

limit from above, and the ratio y : r tends towards a finite limit

from below.

From (III.) we know that x : r continually decreases as r

tends to zero, so that this ratio has a limit, finite or zero.

From (IV.) we know that y : r continually increases as r

tends to zero, so that this ratio either has a finite limit, not
zero, or becomes infinite.

But from the quadrilateral whose sides are {x, y, x', y') we
have X > x'. (Fig. 95.) Thus x:r >x':r.

But, by (IV.), x': r either has a finite limit, not zero, or

becomes infinite, as r tends to zero.

Therefore the limit of a; : r cannot be zero, and must be some
finite number. Also x : r approaches this limit from above.
But it follows from the preceding argument that y' : r has

a finite limit, not zero.

Also we know that y < y', and thus y : r < y' : r.

It follows that y : r has a finite limit, not zero, and it

approaches this from below.

These two limits Lt(^), Lt(-| are chosen as the sine

and cosine of the acute angle which OL makes with OA,* and
the other ratios follow in the usual way.

* These limits are functions of the angle. It can be shown that they
are continuous, and that with a proper unit of angle they are given
by the usual exponential expressions. Cf . Coolidge, loc. cit. p. 53.
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§82. We turn now to the quadrilateral with three right

angles and one obtuse angle.

Let 0AB6 be such a quadrilateral, the angles at O, B, and b

being right angles.

Produce 06, and cut off bc = Ob and cd = bc.

Draw the perpendiculars to 06 produced at the points c and
d ; and from A the perpendiculars to the lines just drawn.

Fig. 100.

We thus obtain three quadrilaterals 0AB6, OACc, OADd, of

this nature, standing on the bases 06, Oc, and Od.
It is easy to show that the obtuse angles of these quadri-

laterals increase as the bases increase.

Let 6B produced meet AC at H, AB produced meet Cc at I,

and AC produced meet DtZ at J.

Then we have AB = Bl, AB < AH, and Al > AC.
It follows that AB > AC - AB.
Also we have HC = CJ and AD < AJ.

Therefore AC - AH = AJ - AC, and finally AC - AB > AD - AC.
Thus AB > AC - AB > AD - AC.

§ 83. We return to the notation of § 80 and the figure

OMPM', in which the angles at O, M, and M' are right angles,

and the sides OM, MP, PM', and'OM' are denoted by x, y, x',

and y' respectively.

We shall now prove the following theorem :

In the quadrilateral with three right angles (x, y, x', y'), in
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which the sides x', y include the obtuse angle, if y' is Jcept fixed

and X tends to zero, the ratio x': x tends to a finite limit 0(y')

from above, and this ratio is less than <p{j).

X M
Fio. 101.

As in § 81 we find that x' : x continually decreases as x
tends to zero. It must have a limit, which may be zero or

some number less than unity.

Produce MP, and draw M'Q perpendicular to MP.

From § 82 we know that as x decreases, the ratio ——
increases.

^

Pio. 102.

It must therefore have a finite limit, not zero, or become
infinite.

^ . M'Q M'P . ..,_ ^ ..,„
But —- < , smce M Q < M P.

x X

Thus Lt( — 1 cannot be zero.
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This function is associated with the segment M'O, denoted
by y', and will be written as (p{y').

Now we have seen that

(?/')> M'Q.x.

But in the quadrilateral OM'PM, the side PM plays the same
part as OM' in the quadrilateral OM'QM.

Thus <p(y)> M'P:x.

Thus we have 0(y)<-<0(y)-.

Since x' <x, the function 0(t/') is less than unity, except for

t/' = 0, when it becomes equal to unity.

§ 84. We shall now show that the function defined in the
previous section is continuous.

Let OS and Os be two lines meeting at O, such that

OS = Os = |C and i.SOs is acute.

m X
"^

p
c

' \\, y
d Xt n/"
D C

Fm. 103.

Then the angles at S and s are both right angles.

Let SB = aj— y, SC=a;, and SD=x + y.

Let the perpendiculars at B, C, and D to OS, meet 05 at
h, c, and d.

Through 6 and d draw bm and dn perpendicular to Cc.
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From §81 (III.), applied to the acute angles den and
bcm, we have cb < cd, cm :cb<cC : cO, and cn:cd<cC : cO.

From the second of these relations we have

I.e.

Cm Cc Cc cb

~Ss~ Ss Ss cO

'Bh Bb\ Cc Cc cb/Bb .BOX Cc Cc cb ,.
\Ss'Cm)~Ss Ss cO

Then, by §83, if Ss, and thus Bb and Cm tend to zero,

we have

Ss ^^ '

Further, LtcJ = CB = y and LtcO = CO = ^-a;.

Therefore, from (a), we have

i.e. ^(^x-y)-ct>{x)<i>{y)^^^<l>{x)<t>{y). (/3)

Again, from the inequality —^<—^, we have in the same way
Cu/ C\J

^(x)(f>(y)-^(x + y)^^-^cl>(x)^{y) (y)

Adding (^8) and (y), we have

^(z-y)-(p(x + y)^-~^—<p{x)<p(y)<^^,

since (j){x), (^{y) are each less than unity. It follows that

<p{z) is a continuous function of x.
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§ 85. We shall now show that

</.(x + y) + 0(x - y) = 20(x)0(y).

With the figure of § 84, let the perpendicular at c to Cc

meet Dd and Bb in p and q. From cd cut off cr = cb, and
join jpr.

Then we have cp = cq and pr = qb.

We shall presently suppose Ss to become infinitesimal. In

this case the angles at p and q differ infinitesimally from right

angles, and Ldpr becomes infinitesimal.

It follows that dr is infinitesimal as compared with pd ;
*

and that if Ss is an infinitesimal of the first order, dr is at

least of the second order.

But dp-qb = dp-pr< dr.

And dp-qb = {Dp - Dd) - {Bb - Bq).

Therefore we have •

J
, / D/? Cc Dd Bb Bq Cc\ _
\Cc' Ss~ Ss~ S^ Cc' Ss)~

Lt(B^) = ,(,) = LtQ).

And Lt(|) = <^(x), Lt(g) = 0(x + 3/),

and uQ-^ = ^(x-y).

Thus we have

</>{x + y)-i<p(x-y) = 2<f>(x)<l>(y).

§86. We proceed to the equation

<t>{x + y) + (p(x -y) = 2<l){x)(p{y).

We are given that (^{x) is a continuous function, which is

equal to unity when x = 0, and when x>0, <p{x) <1.
Let Xi be a value of x in the interval to which the equation

applies.

Then we can find k, so that <f>{x^) = coa-r-

*C{. Coolidge, he. cit. p. 49.
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The function cos x has here a purely analj^ical meaning,

being defined by the equation

cosa;=l-2-j + ^, -••••

It follows that (l^i) = cos -=-J

,

0(??-.rj) = cos-^,

nx,\ /nx

Now let X be any other value of x in the interval. If it

happens that this value is included in the set

nx-.
nx. or —-i,

we know that 0(.'r;) = cos
(
,-), by the above.

But if it is not included in these forms, we can still find

positive integers m, n by going on far enough in the scale, such

that nx.\

where e is any positive number as small as we please.

But (b{x) and cos y-' are continuous functions.
k

x
It follows that (x) = cos r •

This value of k will be related to the measure of the line OS,

denoted by ^ in the previous sections.

§ 87. We have now to deal with a rather complicated figure.

From it we shall obtain the fundamental equation of this

Trigonometry for the Right-Angled Triangle ABC, in which C

is the right angle, viz.

c a b /ix
cos r = cos .- cos r \^)

k k k

Let ABC be a right-angled triangle, in which C is the right

angle.

From a point b upon AB produced draw be perpendicular

to AC.
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Move the triangle 6cA along AC till it coincides with C and
he takes up the position 6'C.

We thus have the triangle h'a'C

congruent with 6Ac.

In the same way move the

triangle hck along BA until h

coincides with B and the triangle

takes up the position Ba"c".

Through the middle point I of

a'A draw I L perpendicular to BA.

Then LI produced will be per-

pendicular to h'a'

.

We thus obtain the common
perpendicular to h'a' and BA,

the line KIL.

In the same way we obtain

the common perpendicular MJN
to AC and a"c" through the

middle point J of Ao".

Finally, we draw ?>'Q perpen-

dicular to AB and hh" perpen-
dicular to BC.

Fio. 104.

We have seen that as Bh tends to zero, we have

Lt*^'=Lt*|
B6 bB

•(i)

MJ
In the same way Lt -— = Lt

JA

IL

IA"

Thi Lt^, = Lt^.
Aa Aa

(ii)

Dividing (i) by (ii) and remembering that Aa" = Bb and
Aa' = C^, Ave have

Lt

which may be written

bir_

MN
Lt^ Lt^'

T ^ b'Q. _ bb" T ^ B^»'

We shall now show that this equation is the same as

0(AB) = 0(BC)0(CA).

.(iii)
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From § 83, we have

0(LQ)<|^<</,(K6').

Now, when B6 tends to zero, LQ and Kfe' tend to BA, and

from § 84, 0(LQ) and (p{^b') tend to (/)(AB).

Thus, Lt^ = 0(AB) (iv)

In the same way we have

Lt(^') = 0(BC) (V)

b6'
There remains the limit of—

.

MN

Let s be the point at which Be" meets AC.

We know from § 81 (I.), that s lies between C and c, and

we have Bs>BC.
Then, since Cb' = Bc", we have Bh'>sc".

Therefore |^ >^ >0(Nc«').
MN Mn ^^ '

Produce BC till it meets a"c" in R.

We have BR>Bc", so that BR>C6'.
From BR cut off Bc' = C6'.

Draw c'P perpendicular to MN.
Then we have

I^kF <^ = S^ < 0(PO < 0(CM - PM - Cc').
MN MP MP w / v^ ''

BJ'
Thus ^(CM-PM -Cc')>^^TT>0(Nc")•MN '

Proceeding to the limit,

^(*^>=i^Ki;) <">

From (iii)-(vi), it follows that 0(AB) = 0(BC)<^(CA), or with

the usual notation from § 86,

c a b
COSi- = COSeCOSr.
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Note. At several points in this argument we have assumed
that the segments concerned are less than ^.
Once the fundamental theorem has been proved for triangles

in which this condition is satisfied, it can be extended by
analysis to all other cases.

§ 88. The remaining formulae are easily obtained :

b c
To prove tan ^ = cos A tan ^ (2)

Let ABC be any right-angled triangle, with C a right angle.

Take any point D on AC, and join BD.
Draw DE perpendicular to AB.

Let AE=p, ED=q, AD=r, and BD=Z.
Then, from the triangle ABC, we have

cos cos r cos
k (^) '

a h r a . b . r= cos y cos J cos J + cos J sm j sin y
k k k k k k

c r a . b . r= cos T cos T + cos T sm r sin t-
fC fC iC fC fC

Also, from the triangle BDE, we have in the same way

I c r q . p . c
cos T = cos T cos r + cos r Sin j: sin v.

rri r
a . b . r .q . p . c

1 here!ore cos j sm y sin ^ = cos f sm y- sm y

.

* k k k k k k
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TT • 1 • cab
Using the equations cos r = cos t cos t,

r P Q
cos 7 = cos =7 cos y,

k k k

tan T tan T
1 . . k k
this gives =—— •

tan
J

tan r

This result holds however small r may be.

But we have seen that when r->0, ~ has a definite limit
r

other than zero, and that this limit is taken as the cosine of

the angle. (§81.)

tan|

Therefore cos A = Lt

'-^"tan''

tan

,

tan J

k

b

§89. To prove that
. asm-

•
]j^

sin A = (3)

sin-
k

We have seen that as r^O, the ratio " tends to a definite
r

limit, other than zero, and that this limit is taken as the sine

of the angle.

Now from the equation

c a b
COS|; = COS rCOST,

we find that when a, b, and c are small,

c^ = a'^ + b\ to the lowest order.

It follows that sin'''A + cos^A =1. •
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But, from § 88, we have j
tatir

cos A =
tariv

A;

tan^ r

Therefore sin^A = 1

k

sin^ T - tair t CDS'* j

1 "^ 9 C
1 - sec T cos^ 7

k k

oC

1 - COS'' y
«

8in^ ,-

A:

• 2«

. a

Therefore sin A = .

. c
sin 7^ k

The remaining formulae,

COS A = cos r sm B, (4;

sin T = tan -r cot A, (5)

cos T = cot A cot B, (6)

can be easily deduced from those already obtained.
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The six equations (l)-(6) are the equations of ordinary

Spherical Trigonometry, when ^, j, and -^ are substituted for

a, b, c.
k k k

8 90. The Trigonometry of the Oblique-Angled Triangle

follows from that of the Right-Angled Triangle, the definitions

of the sine and cosine being extended to obtuse angles. The
formulae will be identical with those of ordinary Spherical
Trigonometry, with the parameter k introduced.

The elements of arc and area can also be deduced as in

Chapter V. In this case we shall have

ds^ = cos^
J
dx^ + dif-,

ds^^dr^ + k'^sin^jdO'^,
k

d^ = cos r dx dy,

T
dA = k sin v dr d0.

Also the Euclidean Formulae hold true in Infinitesimal

Geometry on the Elliptic Plane.



CHAPTER VIII.

THE CONSISTENCY OF THE NON-EUCLIDEAN GEOMETRIES
AND THE IMPOSSIBILITY OF PROVING THE PARALLEL
POSTULATE.

j
§ 91. As we have already seen, the discovery of the Non-

I

Euclidean Geometries arose from the attempts to prove

'Euclid's Parallel Postulate. Bolyai and Lobatschewsky did

a double service to Geometry. They showed why these

attempts had failed, and why they must always fail ; for they
succeeded in building up a geometry as logical and consistent

as the Euclidean Geometry, upon the same foundations, except

that for the Parallel Postulate of Euclid, another incompatible

with it was substituted. They differed from almost all their

predecessors in their belief that, proceeding on these lines, they
would not meet any contradiction ; and they held that the

system of geometry built upon their Parallel Postulate was a
fit subject of study for its own sake.

The question naturally arises : How can one be certain

that these Non-Euclidean Geometries are logical and con-

sistent systems ? How can we be sure that continued study
would not after all reveal some contradiction, some incon-

sistency ? Saccheri thought he had found such in the Hyper-
bolic Geometry ;

• but he was mistaken. Even Bolyai, many
years after the publication of the Appendix, was for a time of

the opinion that he had come upon a contradiction, and that
the sought-for proof of the Euclidean Hypothesis was in his

hands. He, too, was mistaken.

Of course, it is not sufficient simply to point to the fact that
these geometries—developed into a large body of doctrine as

they have been—do not offer in any of their propositions the
contradiction which the earlier workers in those fields were
convinced they must contain. We must be sure that, proceed-
ing further on these lines, such contradiction could never be
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discovered. If we can prove this to be the case, then we know
that Euclid's Parallel Postulate cannot be demonstrated.

§ 92. There are several ways by which it is possible to

establish the fact that the Hyperbolic and Elliptic Geometries
are as logical and consistent as the Euclidean Geometry.*

Lobatschewsky, and to some extent Bolyai, relied upon
the formulae of the Hyperbolic Plane Trigonometry. These
are identical with the formulae of Spherical Trigonometry,

if the radius of the sphere is imaginary. If the ordinary

Spherical Trigonometry offers no contradiction, their geo-

metry could not do so. However, this proof is not complete

in itself, for it leaves aside the domain of Solid Geometry, and
does not establish the impossibility of the difficulty appearing

in that field. (Cf. Chapter II. §§ 15, 17.)

The most important of all the proofs of the consistency of

the Non-Euclidean Geometries is that due to Cayley and
Klein. In it one passes beyond the elementary regions within

the confines of which this book is meant to remain. Other
proofs are analytical. The assumptions of geometry are

translated into the domain of number. Any inconsistency

would then appear in the arithmetical form of the assumptions

or in the deductions from them. This form of proof also seems
to lie outside the province of this book.

Finally, there are a number of geometrical proofs, depending

upon concrete interpretations of the Non-Euclidean Geo-

metries in the Euclidean. The earliest of these—due to

Beltrami, and dealing with the Hyperbolic Geometry

—

requires a knowledge of the Geometry of Surfaces. But an
elementary representation of the Hyperbolic Plane and Space

in the Euclidean was given by Poincare.
" Let us consider," he says, " a certain plane, which I shall

call the fundamental plane, and let us construct a kind of

dictionary by making a double series of terms written in two
columns, and corresponding each to each, just as in ordinary

dictionaries the words in two languages which have the same
signification correspond to one another :

Space. - - The portion of space situated above
the fundamental plane.

* For a discussion on more advanced lines, cf. Sommerville's Non-

Euclidean Oeometry, oh. v. and vi. (London, 1914).
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Plane. - - Sphere cutting orthogonally the

fundamental plane.

Line. - - - Circle cutting orthogonally the funda-

mental plane.

Sphere. - - Sphere.

Circle. - - Circle.

Angle. - - Angle.

Distance between The logarithm of the anharmonic
two points. ratio of these two points and of

the intersections of the fundamental
plane with the circle passing through
these points and cutting it ortho-

gonally.

Etc. Etc.

" Let us take Lobatschewsky's theorems and translate them
by the aid of this dictionary, as we would translate a German
text with the aid of a German-French dictionary. We shall

then obtain the theorems of ordinary geometry. For instance,

Lobatschewsky's theorem :
' The sum of the angles of a

triangle is less than two right angles ' may be translated thus :

' If a curvilinear triangle has for its sides arcs of circles which
cut orthogonally the fundamental plane, the sum of the angles

of this curvilinear triangle will be less than two right angles.'

Thus, however far the consequences of Lobatschewsky's
hypotheses are carried, they will never lead to a contradiction

;

in fact, if two of Lobatschewsky's theorems were contra-

dictory, the translation of these two theorems made by the
aid of our dictionary would be contradictory also. But
these translations are theorems of ordinary geometry, and no
one doubts that ordinary geometry is exempt from contra-

diction." *

§ 93. To Poincare is also due another representation of the

Hyperbolic Geometry, which includes that given in the pre-

ceding section as a special case. We shall discuss this repre-

sentation at some length, as also a corresponding one for the

Elliptic Geometry, since from these we can obtain in a simple

and elementary manner the proof of the impossibility of

* Poincard*, La Science et I'HypolMse. English translation by Green-
street, p. 41 et seq.
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proving the Parallel Postulate and of tlie logical consistency

both of the Hyperbolic and Elliptic Geometries. In this

discussion the " dictionary method " of §"29vwill be more fully

explained. ^^
We shall consider three families of circles in a plane

—

extending the argument to spheres later. These are the

family of circles passing through a fixed point ; the family

of circles cutting a fixed circle orthogonally ; and the- family

of circles cutting a fixed circle diametrally {i.e. the common
chord of the fixed circle and any of the variable circles is to

be a diameter of the fixed circle). Denoting the fixed point

by O, and taking the fixed circle as a circle with centre O and
radius k, the first family of circles has power zero with regard

to O ; the second, power k^ ; and the third, poiver — P. We
shall see that the geometries of these three families of circles

agree with the Euclidean, Hyperbolic, and Elliptic Geometries,

respectively.

§ 94. The System of Circles through a Fixed Point.

If we invert from a point O the lines lying in a plane through

O we obtain a set of circles passing through that point. To
every circle there corresponds a straight line, and to every
straight line a circle. The circles intersect at the same angles

as the corresponding lines. The properties of the family of

circles could be deduced from the properties of the set of lines,

and every proposition concerning points and lines in the one
system could be interpreted as a proposition concerning points

and circles in the other.

There is another method of dealing with the geometry of

this family of circles. We shall describe it briefly, as it will

make the argument in the case of the other families, which
represent the Non-Euclidean Geometries, easier.

If two points A and B are given, these, with the point O,

fully determine a circle passing through the point O. We
shall call these circles nominal lines.* We shall refer to the

points in the plane of the circles as nominal points, the point O
being supposed excluded from the domain of the nominal

* In another place, cf. Bonola, loc. cit., English translation, Appendix
v., and Proc. Edin. Math. Soc, Vol. 28, p. 95 (1910), I have used the

terms ideal points, ideal lines, etc. For these I now substitute nominal
points, nominal lines, etc., owing to possible confusion with the ideal

points, ideal lines, etc., of §§ 37, 38.
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points. We define the angle between two nominal lines as

the angle between the circles with which the nominal lines

coincide at their common point.

With these definitions, two different nominal points A, B
in this Nominal Geometry always determine a nominal line

AB, just as two different ordinary points always determine

a straight line AB.

The nominal points and lines also satisfy the " axioms of

order," * which express the idea of between-ness, when the

point O is excluded from the domain of the nominal points.

If this point were not excluded, we could not say that of any
three nominal points on a nominal line, there is always one,

and only one, which lies between the other two.

Proceeding to the question of parallels, we define parallel

nominal lines as follows :

The nominal line through a nominal point parallel to a given

nominal line is the circle of the system which passes through

the given point and touches at O the circle coinciding with the

given nominal line.

Referring to Fig. 106 we see that in the pencil of nominal

lines through A there is one nominal line which does not cut

BC, namely, the circle of the system which touches OBC at O.

This nominal line does not cut the nominal line BC, for the

point O is excluded from the domain of the nominal points.

It is at right angles to AM, the nominal line through A per-

pendicular to the nominal line BC. Every nominal line through

* Cf. Hilbert, loc. cit. § 3.
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A making with AM an angle less tlian a right angle will cut
BC on the side of 0AM in which the acute angle lies.

Therefore in the geometry of these nominal points and lines

the Euclidean Parallel Postulate holds.

§ 95. Before we can deal with the metrical properties of this

geometry, we require a measure of length. We define the

nominal length ofa nominal segment as the length of the rectilinear

segment to which it corresponds.

From this definition it is not difficult to show that the

nominal length of a nominal segment is unaltered hy inversion

with regard to a circle of the system ; and that inversion with

regard to such a circle is equivalent to reflection of the nominal
points and lines in the nominal line which coincides with the

circle of inversion.

Now, if we invert successively with regard to two circles of

the system {i.e. if we reflect in two nominal lines one after

the other), we obtain what corresponds to a displacement in

two dimensions. A nominal triangle ABC takes up the position

A'B'C after the first reflection ; and from A'B'C' it passes to

the position A"B"C" in the second. The sides and angles

of A"B"C" (in our nominal measurement) are the same as the
sides and angles of the nominal triangle ABC, and the point

C" lies on the same side of A"B" as the point C does of AB.
Further, we can always fix upon two inversions which will

change a given nominal segment AB into a new position such
that A comes to A', and AB lies along a given nominal line

through A'. We need only invert first with regard to the

circle which " bisects " the nominal line AA' at right angles.

This brings AB into a position A'B", say. Then, if we invert

with regard to the circle of the system which bisects the angle

between A'B" and the given nominal line through A', the

segment AB is brought into the required position.

The method of superposition is thus available in the geometry
of the nominal points and lines. Euclid's argument can be
" translated " directly into the new geometry. We have
only to use the words nominal points, nominal lines, nominal
parallels, etc., instead of the ordinary points, lines, parallels,

etc., and we obtain from the ordinary geometry the corre-

sponding propositions in the geometry of this family of circles.

It should perhaps be pointed out that the nominal circle

with centre A is an ordinary circle. For the orthogonal
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trajectories of the circles of the system through A (i.e. of the

nominal lines through A) is the family of coaxal circles with

O and A as Limiting Points. The nominal lengths of the

nominal segments from A to the points where one of these

circles cuts the pencil of lines will be the same.

§ 96. The argument sketched in the preceding sections can
be extended to Solid Geometry. Instead of the system of

circles lying in one plane and all passing through the point O,

we have now to deal with the system of spheres all passing

through the point O,

The nominal point is the same as the ordinary point, but the

point O is excluded from the domain of the nominal points.

The nominal line through two nominal points is the circle

passing through O and these tivo points.

The nominal plane through three nominal points is the sphere

passing through O and these three points.

The nominal line through a point A parallel to a nominal
line BC is the circle through A which lies on the sphere through
O, A, B and C, and touches the circle OBC at the point O.

It is clear that a nominal line is determined by two different

nominal points, just as a straight line is determined by two
different ordinary points. The nominal plane is determined
by three different nominal points, not on a nominal line, just

as an ordinary plane is determined by three different ordinary
points not on a straight line. If two points of a nominal line

lie on a nominal plane, then all the points of that line lie on
that plane . The intersection oftwo nominal planes is a nominal
line, etc.

The measurement of angles in the new geometry is the same
as that in the ordinary geometry ; the angle between two
nominal lines is defined as the angle between the circles with
which these lines coincide at their intersection. The measure-
ment of length is as before. Inversion in a sphere through O
is equivalent to reflection in the nominal plane coinciding with
that sphere. Displacements, being point-transformations
according to which every point of the domain is transformed
into a point of the domain, in such a way that nominal lines

remain nominal lines, and nominal lengths and angles are
unaltered, will be given by an even number of inversions in the
spheres of the system.
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Thus, the geometry of these nominal points, lines, and planes

is identical with the ordinary Euclidean Geometry. Its

elements satisfy the same laws ; every proposition valid in

the one is also valid in the other ; and from the theorems

of the Euclidean Geometry those of the Nominal Geometry
can be inferred, and vice versa.

The plane geometry of the nominal points and lines described

in the preceding sections is a special case of the more general

plane geometry based upon the definitions of this section.

§ 97. The System of Circles orthogonal to a Fixed

Circle.

We proceed to discuss the geometry of the system of circles

orthogonal to a fixed circle, centre O and radius k. We shall

call this circle the fundamental circle. Then the system of

circles has power P with respect to O.

Pio. 107.

Let A and B be any two points within the fundamental

circle and A', B' the inverse points with respect to that circle.

Then A, A', B, B' are concyclic, and the circle which passes

through them cuts the fundamental circle orthogonally.

There is one and only one circle orthogonal to the fundamental

circle which passes through two different points within that

circle.

In discussing. the properties of the family of circles ortho-

gonal to the fundamental circle, we shall call the points within

that circle nominal points. The points on the circumference

of the fundamental circle are excluded from the domain of

the nominal points.*

* In this discussion the nominal points, etc., are defined somewhat
differently from the idea^ points, etc.. in the paper referred to on p. 156.
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We define the nominal line through any two nominal j)oints

as the circle which passes through these two points and cuts the

fundamental circle orthogonally.

Two different nominal points A, B always determine a nominal
line AB, just as two different ordinary points A, B always
determine a straight line AB. The nominal points and lines

also obey the " axioms of order."

We define the angle between two intersecting nominal lines

as the angle between the tangents at the common point, within

the fundamental circle, of the circles with which the nominal
lines coincide.

We have now to consider in what way it will be proper to

define parallel nominal lines.

Fig. 108.

Let AM (Fig. 108) be the nominal line through A perpendicular

to the nominal line BC ; in other words, the circle of the system
which passes through A and cuts the circle of the system through
BC orthogonally. Imagine AM to rotate about A so that these

nominal lines through A cut the nominal line through BC at a
gradually smaller angle. The circles through A which touch
the circle through BC at the points U and V, where it meets
the fundamental circle, are nominal lines. They separate the
lines of the pencil of nominal lines through A, which cut BC
from those which do not cut it. All the lines in the angle ^
shaded in the figure do not cut the line BC ; all those in the
angle ^p, unshaded, do cut this nominal line.

N.-E.a. I,
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This property is what is assumed in the Parallel Postulate
on which the Hyperbolic Geometry is based. We are therefore
led to define parallel nominal lines in the plane geometry we
are investigating as follows :

The nominal lines through a nominal point parallel to a
nominal line are the two circles of the system passing through
the given point which touch the circle with which the given nominal
line coincides at the points where it cuts thefundamental circle.

Thus we have in this geometry two parallels—a right-handed
parallel and a left-handed parallel—and these separate the
lines of the pencil which intersect the given line from those
which do not intersect it.

§ 98. At this stage we can say that any of the theorems of

the Hyperbolic Geometry which involve only angle properties

will hold in the geometry of the circles, and vice versa. Those
involving metrical properties of lines we cannot discuss until

the nominal length of a nominal segment has been defined.

Fia. 109.

For example, it is obvious that there are nominal triangles

whose angles are all zero (Fig. 109). The sides of these triangles

are parallel in pairs, and we regard parallel lines as containing

an angle zero.

Further, we can prove that the sum ofthe angles in any nominal
triangle is less than two right angles, by inversion, as follows :

Let Cj, Cg, Cg, be three circles of the system

—

i.e. three

nominal lines forming a nominal triangle, say PQR. We
suppose these circles completed, and we deal with the whole
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circumference of each. Invert the circles from the point of

intersection R' of Cj and C2, which lies outside the fundamental
circle. Then the nominal lines C^ and Cg become two straight

lines Ci and C2', through the inverse of R. Also the funda-

mental circle C inverts into a circle C', cutting Cj' and Cg' at

right angles, so that its centre is at the point of intersection

of these two lines. Again the circle C3 inverts into a circle Cg',

cutting C' orthogonally. Hence its centre lies outside C.
We thus obtain a curvilinear triangle in which the sum of

the angles is less than two right angles ; and since the angles

in this triangle are equal to those in the nominal triangle, Our
result is proved.

Finally, it can be shown that there is always one -and only one

circle of the system which will cut two not-intersecting circles

of the system orthogonally. In other words, two not-intersecting

nominal lines have a common perpendicular.

All these results we have established in the Hyperbolic
Geometry. They could be accepted in the geometry of the

circles for that reason.

§ 99. As to the measurement of length, we define the nominal
length of a nominal segment as follows :

The nominal length of any nominal segment AB is equal to

AV /BV^
log

,

^VAU/ BU

where U and V are the points where the circle which coincides

with the nominal line AB cuts the fundamental circle. (Cf.

Fig. 107.)

With this definition the nominal length of AB is the same
as that of BA. Also the nominal length of the complete line

is infinite. If C is any point on the nominal segment AB
between A and B, the nominal length of AB is the same as the

sum of the nominal lengths of AC and CB.
Let us consider what effect inversion with regard to a circle

of the system has upon the nominal points and lines.

Let A be a nominal point and A' the inverse of this point

in the fundamental circle.

Let the circle of inversion meet the fundamental circle in C,

and let its centre be D (Fig. 110).

Suppose A and A' invert into B and B'.

N.-B.Q. L 2
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Since the circle AA'C touches the circle of inversion at C,

its inverse also touches that circle at C. But the points

A, A', B, B' are concyclic, and the radical axes of the three

circles AA'C, BB'C and AA'B'B are concurrent.

Therefore BB' passes through O and OB . 0B' = 0C2. Thus
the circle AA'B'B is orthogonal to the fundamental circle and
also to the circle of inversion.

It follows that if any nominal point A is changed by inversion

with regard to a circle of the system into the point B, the nominal

line AB is perpendicular to the nominal line with which the

circle of inversion coincides.

We shall now prove that it is " bisected " by that nominal

line. Let the circle through A, A', B and B' meet the circle

of inversion at M and the fundamental circle at U and V
(Fig. 111). It is clear that U and V are inverse points with

regard to the circle of inversion

.

Then we have —-r =
BV

AU

CV
CA'

AV

BU
cy
cb'

AV

AU

AV

AU

BV
Bu'

MV
MU

cv^ _^ _ /Mvy
CA.CB~Clvr2~VMU/

MV
MU

BV

BU*

Thus the nominal length of AM is equal to the nominal length

of BM.
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Therefore we have the following result

:

Inversion with regard to any circle of the system changes any
point A into a point B, such that the nominal line AB is perpendi-

cular to and " bisected " by the nominal line tvith which the

circle of inversion coincides.

Fio. 111.

In other words,

Any nominal point takes up the position of its image in the

nominal line coinciding with the circle of inversion.

We shall now examine what effect such an inversion has upon
a nominal line.

Since a circle orthogonal to the fundamental circle inverts

into a circle also orthogonal to the fundamental circle, any
nominal line AB inverts into a nominal line ab, and the points

U and V for AB invert into the points u and v for ab (Fig. 112).

When the circle of inversion and the nominal line AB inter-

sect, the lines AB and ab meet on the circle of inversion.

Denoting this point by M, it is easy to show that the nominal
lengths of AM and BM are respectively equal to the nominal
lengths of aM and 6lVI. It follows that the nominal length of

the segment AB is unaltered by inversion with regard to any
circle of the system.

The same result can be obtained immediately from the
corresponding figure when the nominal line AB does not cut

the circle of inversion.
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The preceding results may be summed up as follows :

Inversion with regard to any circle'of the system has the same

effect upon the nominal points and lines as reflection in the

nominal line with which the circle of inversion coincides.

The argument of § 95 can now be applied to the geometry
of this family of circles. Successive inversion with regard to

two circles of the system corresponds to a displacement in

two dimensions. We can always fix upon two circles of the

system which will change a nominal segment AB into a new
position, such that A coincides with P and AB lies along a given

nominal line through P. The method of superposition is thus

available in this geometry, and any theorems in the Hyperbolic

Geometry involving congruence of linear segments can be at

once " translated " into it.

§ 100. We notice that the definition of the nominal length

of a segment fixes the nominal unit of length. We may take

this unit segment on one of the diameters of the fundamental

circle, since these lines are also nominal lines of the system.

Let it be the segment OP (Fig. 113).

Then we must have

/Pu\ PU
that is, log(^—J = l; that is, — = e.
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Thus the point P divides the diameter in the ratio e : 1.

The unit segment is thus fixed for any position in the domain
of the nominal points, since the segment OP can be " moved "

Fio. 113.

so that one of its ends coincides with any given nominal

point.

A different expression for the nominal length, viz.,

would simply mean an alteration in this unit, and taking

logarithms to the base a instead of e would have the same
efiect.

§ 101. We are now able to establish some further theorems
of Hyperbolic Geometry, using the metrical properties of this

Nominal Geometry.
In the first place we can say that Similar Triangles are

impossible. For if there were two nominal triangles with the

same angles and not congruent, we could " move " the second
so that its vertex would coincide with the corresponding angular

point of the first, and its sides would lie along the same nominal
lines as the sides of the first. We would thus obtain a "quadri-
lateral " whose angles would be together equal to four right

angles ; and this is impossible, since we have seen that the

sum of the angles in these nominal triangles is always less

than two right angles.

We also see that parallel lines are asymptotic ; that is, they
continually approach each other. This follows from the

figure for nominal parallels and the definition of nominal
length.
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Further, it is obvious that as the point A moves away along
the perpendicular MA to the line BC (Fig. 108), the angle of

parallelism diminishes from - to zero in the limit.

We shall now prove that the angle of parallelism, 11(2?), ^^^

the segment y, is given by

Consider a nominal line and a parallel to it through a point A.

Let AM (Fig. 114) be the perpendicular to the given line ML)

and AU the parallel.

Let the figure be inverted from the point M', the radius of

inversion being the tangent from M' to the fundamental

circle.

Then we obtain a new figure (Fig. 115) in which the corre-

sponding nominal lengths are the same, since the circle of

inversion is a circle of the system. The lines AM and MU
become straight lines through the centre of the fundamental

circle, which is the inverse of the point M. Also, the circle AU
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becomes the circle au, touching the radius mu at u, and cutting

ma at an angle 11(59). These radii mu, mh are also nominal
lines of the system.

Let the nominal length of AM be p.

Then we have :P =log(^/^)

=logf^V-)=logf-)-^ \acl m^J ^ \acj

Fio. 115.

But from the geometry of Fig. 115, remembering that au
cuts he at the angle n(^), we have

ac = i{l-tan(^-niH))}.

where k is the radius of the fundamental circle.

Therefore 2^ = ^^g ^o* (

—

W^ )

and

Finally, in this geometry there will be three kinds of circles.

There will be (i) the circle with its centre at a finite distance
;
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(ii) the limiting-curve, witli its centre at infinity, or at a point
where two parallels meet ; and (iii) the equidistant-curve,
with its centre at the ideal * point of intersection of two lines

which have a common perpendicular.

All these curves are ordinary circles, but they do not
belong to the system of circles orthogonal to the fundamental
circle.

As to the first, the nominal lines through a point A are all

cut orthogonally by the circles of the coaxal system with A
and its inverse point A' as Limiting "Points. Thus these

circles are the circles of this nominal geometry with A as their

centre. They would be traced out by the end of a nominal
segment through A, when it is reflected in the nominal lines

of the pencil.

As to the second, the circles which touch the fundamental
circle at a point U cut all the circles of the system which
pass through U orthogonally. They are orthogonal to the
pencil of parallel nominal lines meeting at infinity in U.

Thus these circles are the circles of this nominal geometry
with their centre at the point at infinity common to a pencil

of parallel nominal lines. They would be obtained when the
reflection takes place in the lines of this pencil.

As to the third, all circles through U, V cut all the nominal
lines perpendicular to the line AB (cf. Fig. Ill) orthogonally.

Thus these circles are the circles of the nominal geometry with
their centre at the ideal point common to this pencil of not-

intersecting nominal lines. They would be obtained when
the reflection takes place in the lines of this pencil.

These three circles correspond to the ordinary circle, the

Limiting-Curve and the Equidistant-Curve of the Hyperbolic
Geometry.

§ 102. The Impossibility of proving Euclid's Parallel

Postulate.

We can now assert that it is impossible for any inconsistency

to exist in this Hyperbolic Geometry. If such a contradiction

entered into this plane geometry, it would also occur in the
interpretation of the result in the nominal geometry. Thus
a contradiction would also be found in the Euclidean Geometry.
We can therefore state that it is impossible that any logical

Cf. § 37.
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inconsistency could arise in the Hyperbolic Plane Geometry,
provided no logical inconsistency can arise in the Euclidean

Plane Geometry. It could still be argued that such a contra-

diction might be found in the Hyperbolic Solid Geometry.
An answer to such an objection is forthcoming at once. The
geometry of the system of circles, all orthogonal to a fixed

circle, can be readily extended into a three-dimensional system.

The nominal points are the points inside a fixed sphere, exclud-

ing the points on the surface of the sphere from their domain.
The nominal lines are the circles through two nominal points

cutting the fixed sphere orthogonally. The nominal planes are

the spheres through three nominal points cutting the fixed

sphere orthogonally. The ordinary plane enters as a particular

case of these nominal planes, and so the plane geometry just

discussed is a special case of a plane geometry of this system.

With suitable definitions of nominal lengths, nominal parallels,

etc., we have a solid geometry exactly analogous to the Hyper-
bolic Solid Geometry. It follows that no logical inconsistency

could arise in the Hyperbolic Solid Geometry, since, if such did

occur, it would also be found in the interpretation of the

result in this Nominal Geometry, and therefore it would enter

into the Euclidean Geometry.
By this result our argument is complete. However far the

Hyperbolic Geometry is developed, no contradictory results

could be obtained. This system is thus logically possible,

and the axioms upon which it is founded are not contradictory.

Hence it is impossible to prove Euclid's Parallel Postulate,

since its proof would involve the denial of the Parallel Postulate

of Bolyai and Lobatschewsky.

§ 103. The System of Circles cutting a Fixed Circle

diametrally.

We shall now discuss the geometry of the system of circles

cutting a fixed circle centre, O and radius k, diametrally.

The points in which any circle of the system cuts the fixed

circle are to be at the extremities of some diameter. We
shall call the fixed circle, as before, the fundamental circle.

The system of circles with which we are to deal has power — k^

with respect to O.

Let A and B be any two points within the fundamental
circle, and A', B' the points on OA and 08, such that
OA.OA'= -A;2 and OB.OB'= -P.
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Then A, A', B, B' are concyclic, and the circle which passes

through them cuts the fundamental circle diametrally

(Fig. 116). There is one, and only one, circle cutting the

fundamental circle diametrally, which passes through two

different points within the fundamental circle.

Fio. 116.

In discussing the properties of the family of circles cutting

the fundamental circle diametrally, two methods can be

followed. We can restrict the nominal points of the geometry

to the points within and upon the fundamental circle. In

this case we regard the points on the circumference at the

extremities of a diameter as one and the same nominal point.

In the other case, we extend the field of nominal points outside

the circle to infinity, and the points on the circumference do

not require special treatment.

These two alternatives, we shall see below, correspond to

the two forms of the Elliptic Geometry, in one of which every

straight line intersects every other straight line in one point,

while in the other form, straight lines have always two points

of intersection. The nominal lines are the circles which cut

the fundamental circle diametrally.

When the field of nominal points is restricted to points within

or upon the fundamental circle, any two different nominal

•points A, B determine a nominal line AB. Also any two nominal

lines must intersect at a single nominal point.



103] THIRD SYSTEM OF CIRCLES 173

When tlie domain of the nominal points is both within and
without the fundamental circle, two nominal points do not

always determine uniquely a nominal line. If the points

A and B are upon the circumference of the circle at opposite

ends of a diameter, a pencil of nominal lines passes through
A and B. Again, if the points A and B lie on a line through
O and OA . 0B= -h^, the same remark holds true.

Further, with the same choice of nominal points, every

nominal line intersects every other nominal line in two nominal
points.

The simplest way of discussing the properties of the system
of circles with which we are dealing, is to make use of the

fact that they can be obtained by projecting the great circles

of a sphere stereographically from a point on the surface of

the sphere on the tangent plane at the point diametrally

opposite. If the centre of projection is a pole of the sphere,

the equator projects into the fundamental circle, and one
hemisphere projects into points outside this circle, the other

into points within it. This projection is a conformal one,

and the angle at which two great circles intersect is the same
as the angle at which the corresponding circles in the plane

cut each other.

We define the angle between two nominal lines as the angle

between the circles with which they coincide.

We are now able to prove some of the theorems of this

Nominal Geometry.
Since all the great circles perpendicular to a given great

circle intersect at the poles of that circle, it follows that all

the nominal lines perpendicular to a given nominal line intersect

at one point, in the case when the nominal points are within or

upon the circumference of the fundamental circle ; in two points,

when this field is both within and without. (Of. §§ lb-11.)

The point of intersection is spoken of as a pole, or the pole,

of the line.

Again, in a right-angled spherical triangle ABC, in which

C is the right angle, the angle at A= a right angle, according

as the pole of AC lies on CB produced, or coincides with B,

or lies between C and B.

When translated into the language of the nominal geometry,
we have the theorem which corresponds to § 78 (1).

Further, the sum of the angles of a spherical triangle is

greater than two right angles. It follows, since the projection
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is conformal, that the sum of the angles of a nominal triangle

in this geometry is greater than two right angles. (Cf. § 78 (3).)

However, the metrical properties of this geometry cannot
be treated so easily as were the corresponding properties in

the geometry of the system of circles cutting the fundamental
circle orthogonally. The same argument to a certain extent

applies, but in the definition of nominal lengths the inter-

sections with an imaginary circle have to be taken. It should

be added that in the extension to solid geometry the system
of spheres cutting a fixed sphere diametrally has to be

employed.
The fuller discussion of this nominal geometry will not be

undertaken here. If it is desired to establish the fact that

no contradiction could appear in the Elliptic Geometry,
however far that geometry were developed, there are simpler

methods available than this one. The case of the Hyperbolic
Geometry was discussed in detail, because it offered so

elementary a demonstration of the impossibility of proving

the Parallel Postulate of Euclid.

§ 104. We have already quoted some remarks of Bolyai's

on the question of whether the Euclidean or the Non-Euclidean
Geometry is the true geometry.* We shall conclude this

presentation of our subject with two quotations from modern
geometers on the same topic :

" What then," says Poincare, " are we to think of the
question : Is Euclidean Geometry true ? It has no meaning.
We might as well ask if the metric system is true, and if the

old weights and measures are false ; if Cartesian coordinates

are true and polar coordinates false. One geometry cannot
be more true than another ; it can only be more convenient.

Now, Euclidean Geometry is, and will remain, the most
convenient : first, because it is the simplest, and it is so not
only because of our mental habits or because of the kind of

intuition that we have of Euclidean space ; it is the simplest

in itself, just as a polynomial of the first degree is simpler than
a polynomial of the second degree ; secondly, because it

sufficiently agrees with the properties of natural solids, those

bodies which we compare and measure by means of our senses .f

* Cf. § 16.

j- Poincare, La Science et VHypothese. English translation, p. 50.
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And another French geometer writes :

" We are then entitled to say that the geometry which most
closely resembles reality is the Euclidean Geometry, or at least

one which differs very little from it ; . . . the error is too

small to be apparent in the domain of our observations and
with the aid of the instruments at our disposal.

" In a word, not only have we theoretically to adopt the

Euclidean Geometry, but in addition this geometry is physically

true."*

The matter can be put in another way. The question

whether the Euclidean Geometry is 'the true geometry has no
place in Geometry—the Pure Science. It has a place in

Geometry—the Applied Science. The answer to the question

—if an answer can be given—lies with the experimenter. But
,

his reply is inconclusive. All that he can tell us is that the
\

sum of the angles of any triangle that he has observed— :

however great the triangle may have been—is equal to two
right angles, subject to the possible errors of observation.

To say that it is exactly two right angles is beyond his power.

One interesting point must be mentioned in conclusion.

In the Theory of Relativity, it is the Non-Euclidean Geometry
of Bolyai and Lobatschewsky which, in some ways at least,

is the more convenient. Gauss's jesting remark that he would
be rather glad if the Euclidean Geometry were not the true

geometry, because then we would have an absolute measure
of length, finds an echo in the writings of those who in these

last years have developed this new theory .f

* Hadamard, Let^ons de Odomitrie dementaire, vol. i. p. 286 (Paris, 1898).

t Cf. the letter to Taurinus, quoted on p. 24. Also the letter to
Gerling given in Gauss, Werke, vol. viii. p. 169.

A similar remark is to be found in Lambert's Theorie der Parallel-

Linien, § 80 ; see Engel u. Stackel, loc. cit. p. 200.
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