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PREFACE

There are not enough books which deal with the interplay between func-

tional analysis and the theory of analytic functions. One reason for this is

the fact that many of the techniques of functional analysis have a "real

variable" character and are not directly applicable to problems which

belong intrinsically to analytic function theory, e.g., problems of conformal

mapping and Riemann surfaces. But there are parts of this theory which

blend beautifully with the concepts and methods of functional analysis.

These are fascinating areas of study for the general analyst, for three prin-

cipal reasons: (a) the point of view of the algebraic analyst leads to the

formulation of many interesting problems concerned with analytic func-

tions; (b) when such problems are solved by a combination of the tools

from the two disciplines, the depth of each discipline is increased; (c) the

techniques of functional analysis often lend clarity and elegance to the

proofs of classical theorems, and thereby make the results available in

more general situations.

The main purpose of this monograph is to provide an introduction to

the segment of mathematics in which functional analysis and analytic

function theory merge successfully. Its spirit is close to that of abstract

harmonic analysis, and, in fact, there is some overlap with the subject

matter of harmonic analysis. Because this work is introductory, there has

been no attempt to emulate cither the depth of Zygmund's book on trigo-

nometric series or the generality of the several books which treat harmonic

analysis on groups. The subject matter is restricted to Banach spaces of

analytic functions in the unit disc, roughly, those which are closely related

to the Hardy spaces Hp
(1 g p ^ oo). The historical accounting some-

times falls a bit short of the mark. Some effort toward such an accounting
is made in the sections entitled NOTES, at the end of each chapter. But a

few relevant references have been omitted (for example, A. Taylor's papers
in Studio, Mathematica, 1950-51). The material is not discussed in its ulti-

mate generality. Where proofs do carry over to more general contexts and
the extension is not treated elsewhere, my method is usually to give the

proofs in the unit disc and to discuss the generalizations afterward.

The first four chapters are devoted to the proofs of classical theorems

on boundary-values and boundary integral representations for analytic
vii



viii Preface

functions in the unit disc which lie in the Hardy class Hp
(1 ^ p ^ <).

Some basic results on (C, 1) summability of Fourier series are treated first,

not because this is necessary, but because the reader who is not acquainted
with approximate identity arguments may then see them in the context of

Cesaro summability as well as in the context of Abcl-Poisson summability.
The treatment of Cesaro means first also helps to underscore the "real

variable" nature of the basic propositions on boundary-values of Hp func-

tions, i.e., to underscore the fact that the proofs do not utilize analyticity

as such, but depend upon the fundamental theory of convergence, integra-

tion, and measure, plus a few basic facts about Banach spaces. The recent

work of Helson and Lowdenslager has provided such "real variable" proofs
for some of the F. and M. Riesz theorems on the space JET

1

,
which originally

leaned heavily on analytic function theory.

The fifth chapter contains the factorization theory for Hp
functions,

which, for its full strength, depends most decidedly on the fact that one is

dealing with analytic functions of one complex variable. The chapter also

contains a discussion of some partial extensions of the factorization, as well

as a brief description of the classical approach to the theorems of the first

five chapters.

There is a treatment of Hp
spaces in a half-plane, which (for organiza-

tional reasons) occurs in Chapter 8. The principal facts are derived by

reducing them to their counterparts in the unit disc. This is a bit unnatural,

and it is done for two reasons: (i) to avoid a lengthy discussion of Fourier

transforms, the natural tools for the study of the half-plane; (ii) to make
available a detailed description of the relationship between Hp of the disc

and Hp of the half-plane.

The remainder of the monograph deals with the structure of various

Bariach spaces and Banach algebras of analytic functions in the unit disc :

Hp as a Banach space; the ideal theory of the algebra of continuous func-

tions on the closed disc which are analytic in the interior; the invariant

subspaccs for the shift operator on the space H2
;
the maximal ideal space

of the algebra of bounded analytic functions in the disc. The material in

this part of the book differs from that in the earlier part of the book,

chiefly because the questions come from algebraic analysis. There is also

an age difference; the bulk of the mathematics in the early part dates from

1925 or before, whereas most of the mathematics in the later chapters

dates from 1949 to the present. The influence of Beurling's work is to be

found throughout the latter part of the book, not only because many of

the results are his, but also because he played a large role in reviving the

functional analyst's interest in classical analytic function theory.

The level of the book is about that of the second-year graduate student.

Chapter 1 summarizes the prerequisites for the reader, and these will carry

him through most of the book; however, in the later chapters, some addi-
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tional tools of analysis arc used with only a reference for the proof, e.g.,

the Plancherel theorem, the Krein-Milman theorem, the existence of the

Silov boundary for a function algebra, and Silov's theorem on the exist-

ence of idempotents in a Banach algebra. The prerequisites do not men-
tion analytic functions, since the knowledge required in that area is ele-

mentary. The book contains one hundred exercises, with the usual dual

purpose of exercises.

Thanks are due to many people for pointing out errors in the M.I.T.

notes from which the monograph evolved, particularly to R. Askey,
S. Bochner, H. Hclson, G. Leibowitz, W. Rudin, and N. Starr. I want to

thank the following people for the use of their unpublished results and/or

manuscripts in the preparation of the book: R. Arens, H. Bear, E. Bishop,
L. Carleson, A. Gleason, P. Halmos, H. Helson, D. Lowdenslager, D.

Newman, W. Rudin, H. Shapiro, A. Shields, and J. Wermer. I especially

want to thank R. Arens, I. Singer, and J. Wermer for their many helpful

discussions.

Finally, for all their hard work, my gratitude goes to Mrs. Judith

Bowers, who typed the bulk of the manuscript, and to the staff of

Prentice-Hall, Inc.

Pacific Palisades, California KENNETH HOFFMAN
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CHAPTER 1

PRELIMINARIES

Measure and Integration

If X is a set, the collection of all subsets of X forms a ring, using the

operations

A + B = (A U B)
- (A n B)

AB = A n B.

A a-ring of subsets of X is a subring of the ring of all subsets of X which

is closed under the formation of countable unions (and, a fortiori, closed

under the formation of countable intersections).

Suppose that X is a locally compact Hausdorff topological space, e.g.,

n-dimensional Euclidean space or a closed subset thereof. The Baire sub-

sets of X are the members of the smallest coring of subsets of X which

contains every compact G&, i.e., every compact subset of X which is the

intersection of a countable number of open sets. The Borel subsets of X
are the members of the smallest <r-ring of subsets of X which contains every

compact set. In Euclidean space, every compact (closed and bounded) set

is a G$; hence, if X is a closed subset of Euclidean space, the Baire and
Borel subsets of X coincide. When X is the real line or a closed interval

on the line, the ring of Baire (Borel) subsets of X may also be described

as the (r-ring generated by the half-open intervals [a, 6).

If X is a locally compact Hausdorff space, a positive Baire (Borel)

measure on X is a function p which assigns to every Baire (Borel) subset

of X a non-negative real number (or +), in such a way that

Y U A n}= S
\n = l / n = l

whenever Ai, A^ ... is a sequence of pairwise disjoint Baire (Borel) sets

in X. The Borel measure p is called regular if for each Borel set A

the infimum being taken over the open sets U containing A. A Baire

measure is always regular, and each Baire measure has a unique extension

1



2 Preliminaries

to a regular Borel measure. For this reason (and others) we shall discuss

only Baire measures on X.

The positive Baire measure /* is called finite if p,(A) is finite for each

Baire set A. If X is compact, /* is finite if and only if n(X) is finite.

Suppose X is the real line or a closed interval. Let F be a monotone

increasing (non-decreasing) function on X which is continuous from the

left:

F(x) = sup F(t).
t<x

Define a function /x on semi-closed intervals [a, b) by

M([a, 6))
= F(6)

-
F(a).

Then ju has a unique extension to a positive Baire measure on X. The
measure /z is finite if and only if F is bounded. If X is the real line, every

positive Baire measure on X arises in this way from a left-continuous

increasing function F. If X is a closed interval, a monotone function on X
is necessarily bounded ; thus, every finite positive Baire measure on X comes

from such an increasing function. If X is either the line or an interval, the

measure induced by F(x) = x is called Lebesgue measure.

For the general locally compact X, a Baire function on X is a complex-
valued function/ on X such that/"

1

OS) is a Baire set for every Baire set S
in the plane. Every continuous function is a Baire function. A simple
Baire function for M is a complex-valued function / on X of the form

where

(i) i, . . .
,
an are complex numbers;

(ii) Ei, . . .
,
En are disjoint Baire sets of finite /u-measure;

(iii) XE denotes the characteristic function of the set E.

The simple functions form a vector space over the field of complex num-
bers. For such simple Baire functions / we define

//* = S
k = l

If / is a simple function, so is |/| and

!//*! ^ J

The Baire function / is called integrable with respect to /x if there exists

a sequence of functions {fn} such that

(i) each/n is a simple Baire function for /*;

(ii) lim J|/w -/n|d/z = 0;
m,n-
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(iii) / converges to/ in measure; i.e., for each e > 0,

({*;l/(z)-/n(z)l ^ =0.

If/ is integrable, then for any such sequence {/} the sequence

converges and the limit of this sequence (which is independent of {/})
is denoted by J/d/x. Denote the class of /x-integrable functions by L l

(dn).

Then L l

(dn} is a vector space and / >
J/d/x is a linear functional on L l

.

The Baire function / is in D(dn) if and only if its real and imaginary

parts are in L l

(dp), or if and only if |/| is in L'(d/x). When/ is in L1

,

If / is a non-negative Baire function, one can always sensibly define J /d/x,

so long as + is allowed as a value. That is, either / is integrable, or for

every K > there is a simple function g ^ / with J gdn > K. In the

latter case, one defines J/d/x
= +.

A subset S of X has ji-measure zero if for each e > there is a Baire

set A containing S with p(A) < e. One can, if it is desirable, extend M to

the class of ^-measurable sets, such a set being one which differs from a

Baire set by a set of measure zero. For our purposes, this will usually not

be necessary. Any phenomenon which occurs except on a set of ^-measure

zero is said to happen almost everywhere (relative to /x). One can also

extend the concept of integrability to a function which agrees almost every-

where with a Baire function.

A basic theorem on integration is the Lebesgue dominated convergence

theorem. If {fn} is a sequence of integrable functions such that the limit

f(x) = lim fn(x) exists almost everywhere, and if there is a fixed integrable
n >w

function g such that |/w |
^ \g\ for each n, then/ is integrable and

ffdp = lim

Another basic fact is Fubini's theorem, a weak form of which is the follow-

ing. Suppose M is finite and / is a non-negative Baire function on the

product space X X X. If f(x, y) is integrable in x for each fixed y and in y

for each fixed x, then

If p is a positive number, the space Lp
(dp) consists of all Baire functions

/ such that |/| is in

then (fg)D(dn) and (Holder's inequality)

^ (J l/I
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Let us note something about the spaces Lv
(dp) when X is compact and

M is a finite measure. In this case, every continuous function on X is

integrable and the space of continuous functions is dense in L1

; i.e., if

/ L1 and e > 0, there is a continuous g such that

Jl/-d**<.
Also, if p ^ 1, then Lp is contained in L1

,
and the continuous functions

are a dense subspace of Lp
:

J I/
-

01"** < e.

If //i and M2 are positive Baire measures on X, we say that MI is abso-

lutely continuous with respect to M2 if every set of measure zero for /i2 is a

set of measure zero for MI- The Radon-Nikodym theorem states the fol-

lowing about finite measures: if MI and M2 are finite, then MI is absolutely

continuous with respect to M2 if and only if

where / is some non-negative function in L l

(d^. We say that MI and M2

are mutually singular if there are disjoint Baire sets E\ and Bz such that

for every Baire set A. The generalized Lebesgue decomposition theorem

states the following: if MI and M2 are any two finite positive Baire measures,

then MI is uniquely expressible in the form

Mi = Ma + M*

where Ma is absolutely continuous with respect to M2, and M and M2 are

mutually singular. That is,

dm =
/c?M2 + dp8

where / L1

(**) and M and M2 are mutually singular. One usually calls

/ the derivative of MI with respect to M2.

Let us look at this decomposition when X is a closed interval, and M2

is Lebesgue measure. Suppose M is the positive measure determined by the

increasing function F. Then, except on a set of Lebesgue measure zero,

the function F is differentiable, and if / = dF/dx, then / is Lebesgue

integrable and

dp = fdx + C?M

where M* is mutually singular with Lebesgue measure. The latter means

simply that M is determined by an increasing function F8 such that

dFJdx = almost everywhere with respect to Lebesgue measure.

We wish to make a few brief comments about measures which assume

arbitrary real or complex values. There are some technical difficulties here,

but they do not arise if one treats only finite measures. Again, let X be a
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locally compact space. A finite real Baire measure on X is a countably

additive and real-valued function M on the class of Baire sets. One way to

construct such a measure is to subtract two finite positive Baire measures:

M = MI M2- The Jordan decomposition theorem states that this is the

only example there is. Indeed, given such a real measure M there are dis-

joint Baire sets BI and Bz and finite positive measures MI and /x2 on B\

and B%, respectively, such that M = Mi M2- This splitting (with BI and

BZ disjoint) is unique. The positive measure MI + nz is called the total

variation of M, denoted |M|- One defines absolute continuity and singularity

of real measures using their total variations. It is then very easy to extend

the decomposition into absolutely continuous and singular parts, for ex-

ample, to the case where MI is a real measure. If X is a closed interval

on the real line, the finite real Baire measures on X are those induced by
real-valued functions of bounded variation which are continuous from the

left. The Jordan decomposition for such a measure corresponds to the

canonical expression for a function of bounded variation as the difference

of two increasing functions.

Finite complex Baire measures are defined similarly. If one wishes,

such a measure M is a function of the form MI + &M2, where MI and Ma are

finite real Baire measures. Again, there are certain obvious extensions of

some of the theorems above. And, of course, such a measure on a finite

interval will be induced by a complex-valued function of bounded varia-

tion.

Banach Spaces

Let X be a real or complex vector space. A norm on X is a non-negative
real-valued function ||- -||

on X such that

(i) ||x|| ^ 0; ||x||
= if and only if x = 0;

(ii)

(Hi)

A real (complex) normed linear space is a real (complex) vector space X
together with a specified norm on X. On such a space one has a metric p

defined by

p(x, y) = \\x-y\\.

If X is complete in this metric, we call X a Banach space. Completeness,

then, means that if {xn} is a sequence of elements of X such that

lim \\xm xn \\
=

m,n >

there exists an element x in X such that

lim \\x xn \\
= 0.



6 Preliminaries

Example 1. Let X be n-dimensional Euclidean space and define the

norm of the n-tuple x =
(x\ y

. . .
,
xn) by

Then X is a Banach space.

Example 2. Let S be a locally compact Hausdorff space and fix a

positive Baire measure M on S. Choose a number p ^ 1 and let X = Lp
(dju).

Define the norm of / G Lp to be its LMionn

II/IU
=

(J I/I'**)
1"-

On Lp as we have defined it, this is not a norm, since we may have \\f\\ P
=

without / = 0. Consequently, we agree to identify henceforth two func-

tions in Lp
(djj) which agree almost everywhere with respect to M- Strictly

speaking, then, the elements of Lp
(rf/x) will be equivalence classes of func-

tions; however, we carry on with the same notation, simply identifying

functions equal almost everywhere. With this convention the space Lv
(dp)

(p ^ 1) is a Banach space using the L^-norm. The crucial property of

completeness says that if {/} is a sequence of functions in Lp such that

lim /-/,i =
m,n

then there is an / in Lp such that ||/ fn \\ P > 0. The functions /, do not

necessarily converge pointwise to/; however, there is always a subsequence

which converges to / almost everywhere. In this discussion we want to

include the case p = o .

The space L(d/z) is simply the space of bounded Baire functions with

the M-essential sup norm:

U = CBBBUP |/(X)|

which means the iiifimum of sup \g(x)\ as g ranges over all bounded Baire
X

functions which agree with / almost everywhere with respect to /*. Of

course, in all this discussion of I/(djLi) we are identifying functions equal

almost everywhere.

Example 3. Let S be a compact Hausdorff space and X = C(S), the

space of all continuous real (or complex) functions on S. Equip C(S) with

the sup (or uniform) norm

/ = sup /(x).

Then COS) is a Banach space.

Let X be a Banach space. We consider the space X* of all linear func-

tionals F on X which are continuous:

\\xn
-

x||
-> implies \F(xn)

-
F(x)\ -> 0.
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The set X* forms a vector space in an obvious way. There is also a natural

norm on X*. It is based upon the observation that the linear functional F
is continuous if and only if it is bounded; i.e., if arid only if there is a

constant K > such that

\F(x)\ X| |*| |

for every x in X. The smallest such K is called the norm of F, i.e.,

\\F\\
= sup |F(x)|.

IMI^i

With this norm X* becomes a Banach space, the conjugate space of X.

Example 1. If X is Euclidean space, then every linear functional on X
is continuous. Such a functional F has the form

F(Xi, . . .
, Xn) = diXi + +

and
1 1*1 1

2 = k| 2 + ... + KI 2
.

Example 2. Let S be a locally compact space and /z a positive Baire

measure on S. Suppose 1 ^ p < > and that X = Lp
(dp). Then the con-

jugate space of X is L"(c//i) where - + - = 1. If p =
1, X* = LM(dp). If

j
then induces a continuous linear functional F on Lp by

Every continuous linear functional on Lp has this form, and

11*11
= IMU-

The conjugate space of L(dju) contains U(dv) ; but, except in trivial cases,

it is larger than 7A

Example 3. Let S be a compact Hausdorff space and X = C(S), the

space of continuous real (complex) functions on S. The conjugate space

of C(S) is the space of finite real (complex) Baire measures on S. This is

the statement of the Riesz representation theorem. It arises as follows.

Suppose /z is such a measure on *S. The linear functional corresponding

to fjL is

The norm of this functional F is called the total variation of /z on S. If /z

is a real measure, the total variation of p. on S is simply |/z|GS), where
|/z|

denotes the measure known as the total variation of /z. If A* is complex,
the total variation of /z on S is best thought of as the norm of the cor-

responding functional on C(S), since the relation of this number to the

total variations of the real and imaginary parts of /z is rather involved.

Of course, if /z is a positive measure, the norm of F is simply n(8). Needless

to say, the important part of the Riesz theorem is the fact that given a

bounded linear functional F on C(S) there exists a finite measure /z such



8 Preliminaries

thatF(/) =
J/C?M- This is proved by using the boundedness of F to extend

F to the class of bounded Baire functions and then defining n(E) = F(xE)

for each Baire set E.

Suppose X is a Banach space. One important property of continuous

linear functional on X is the Hahn-Banach extension theorem. If F is a

bounded linear functional on a subspace Y of X, then F can be extended

to a linear functional on X which has precisely the same bound (norm) as F.

In addition to the metric topology on the conjugate space X*, we shall

have occasion to consider another topology called the weak-star topology
on X*. It is defined as follows. Let FQ G X*, and select a finite number
of elements

fl?i, . . .
,
xn X and e > 0.

Let

U - {F<EX*; \F(xk)
- FoM < e, k = 1, . . .

, n}.

Such a set U is a basic weak-star neighborhood of FQ . A weak-star open
set is any union of such basic neighborhoods U. We then have a topology
on X*. It is the weakest topology on X* such that for each x G X the

function F > F(x) is continuous on X*. A topology on a set is, roughly, a

scheme for deciding when two points are close together. In the weak-star

topology two linear functional are close together if their values on a

finite number of elements of X are close together. In particular, a sequence

{Fn} converges to F in the weak-star topology if and only if

lim Fn(x)
= F(x)

n KJO

for each x in X.

We want the following basic result on X* with the weak-star topology.

If B is the closed unit ball in X*:

B=
then B is compact in the weak-star topology. This is a rather simple

consequence of the fact that the Cartesian product of compact spaces is

compact. We shall use this in the following wr

ay. If {Fn} is a sequence of

linear functionals on X with ||F|| ^ 1, then this sequence has a weak-star

cluster point in the unit ball; that is, there exists an F X* with ||F|| ^ 1

such that F(x) is a cluster point of the sequence {Fn(x)} for every x X.

For example, if {/xn} is a sequence of positive Baire measures on the compact

space S and if Mn(S) ^ 1 for each n, then there exists a finite measure /*

such that J/d/x is a cluster point of
{ $ fdpn }

for every / 6 C(S).

Hilbert Space and Fourier Series

Let // be a real or complex vector space. An inner product on H is a

function ( , ) which assigns to each ordered pair of vectors in H a scalar,

in such a way that
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(i) (xl + x2 , y)
=

(a?j, y) + (sf , */);

(ii) (Xz, y) = X(s, ?/) ;

(iii) (?/, a;)
= (x,y);

(iv) (x, x) ^ 0; (x, x)
= if and only if z = 0.

Such a space //, together with a specified inner product on //, is called an

inner product space. In any inner product space one has the Cauchy-
Schwarz inequality :

I (*,)! (*,*)fo3/)-

This inequality is evident if y = 0. If y ^ 0, the inequality results from

g (x + X?y, x + X?/), where X is the scalar

From the Schwarz inequality it follows easily that ||:r||
=

(x, x)
llz is a norm

on //. If H is complete in this norm, we say that H is a Hilbert space.

Thus, a Hilbert space is a Banach space in which the norm is induced by an

inner product. By expanding (x y, x y) and (x + y, x + y) it is easy

to see that the norm induced by an inner product satisfies the parallelo-

gram law :

Conversely, any such norm comes from an inner product. So, if one wishes,

a Hilbert space is a Banach space in which the norm satisfies the parallelo-

gram law.

Example 1. Let H be n-dimensional Euclidean space, and define the

inner product of

x =
(xi, . . .

,
xn) and y =

(?/i, . . .
, yn)

by
(x, y) = Xiyi + - + xnyn .

Then H is a Hilbert space.

Example 2. Let X be a locally compact space and /* a positive Baire

measure on X. Let // = L2
(d/x) with the inner product

(/,.?)
=

J/*fo.
Then H is a Hilbert space.

The second example is the one we are interested in. For this space we

already know one of the basic results about a Hilbert space H: every

continuous linear functional on H is "inner product with some fixed vector

in H"', that is, if F is a bounded linear functional on //, there is a unique

vector y in H such that F(x) =
(x, y) for all x in H. The norm of F is
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Two vectors x and y in H are called orthogonal if (x, y) =0. If x and

y are orthogonal, then

Theorem. Le S 6e a closed convex set in the Ililbcrt space H. Then S

contains a unique clement of smallest norm.

Proof. Convexity means that if x and y are in S, so is \x + (1 X)?/

for any X satisfying g X ^ 1. Let 7? = inf \\x\\. Choose a sequence {xn}x8
of elements of S such that lim \\xn \\

= /. Since S is convex, J (xm + xn)
is in S] so ||xm + xn \\ ^ 2/f. Now the parallelogram law says:

\\r 4- r II 2 4- llr r II* 2(llr II 2 4- llr ll 2^
||xTO -rxw || -r \\xm Xn\\ ^||xm || -r||xn ||;.

Since

lim (\\xm \\* + \\xn \\*)
= 2tf' and ||xw + xn || ^ 4tf*

?,n

we see that

lim||orm -a?n ||
=0.

m,n

Since S is closed, the sequence {x n} converges to an element x in S. Ob-

viously

||x|| =lim|H| =K.

Furthermore, x is the only clement in S of norm /. If y were another such

element the sequence x, y,x,y, . . . would have to converge by the above

argument.

If S is any collection of vectors in //, the orthogonal complement of S
is the set S-1- of all vectors in H which are orthogonal to every vector in S.

It is easy to see that S-
1-

is a closed subspace of //.

Theorem. Let S be a closed subspace of H. Then H = S Sx ; that is,

every vector x in H is uniquely expressible in the form x = y + z where y
is in S and z is in S-1 .

Proof. Fix XQ in H. Then, since S is a closed subspace,

x - S = {x
-

y\ y'm 8}

is easily seen to be a closed convex set in //. Let 2 be the unique element

of smallest norm in x S, say ZQ = x ?/o with ?/o in S. Claim ZQ is in S-1 .

Let y be in S. For any X the vector ZQ Xi/ is in xo S, so

H* - XT/] |* ^ ||zo||
2

.

If one takes

x = fayy),
(?/> y)

one obtains |(2/, 2o)| ^ 0; so (?/, 2 )
= 0. The uniqueness of T/O and 20 is a

simple consequence of the disjointness of S and S-*-.
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The element y (above) is called the orthogonal projection of x into the

closed subspace S. We see that y is simply the element in S closest to x.

Let N be any collection of vectors in H . We call N an orthogonal set

if any two distinct vectors in N are orthogonal. An orthonormal set is an

orthogonal set, each vector of which has norm 1.

Theorem. Let N =
(xi, . . .

,
xn} be a finite orthonormal set. For any

vector x in H, the orthogonal projection of x into the subspace spanned by N is

n

y = S (x, Xk)xk .

fc= l

Proof. Define y as above and put z = x y. Then y is in the subspace

spanned by xi, . . .
,
xn and, using the fact that (x t , xy)

= 54J ,
one sees that

z is orthogonal to each x&, hence is orthogonal to any linear combination

Of Xi, . . .
,
Xn .

Corollary (Bessel's inequality). // {xi, . . .
,
xn} is a finite orthonormal

set, then for any vector x in H

s IfosOMIMI'.
k= 1

Equality holds if and only if x is in the subspace spanned by xi, . . .
,
xn ;

that is, if and only if

X =
(X, Xi)Xi + + (X, Xn)xn.

Proof. Write x = y + z as above. Since (y, z)
=

0,

Using (x t , Xj)
=

5ij, one has
n

= S

These results can be extended to arbitrary orthonormal sets. For con-

venience we state them only for countable orthonormal sets.

Theorem. Let {xn} be a countable orthonormal set of vectors in H. Let

x be any vector in H. Then

2 |(x,xn)|
2 g ||x||

2
(BesseFs inequality).

n 1

n
The sequence sn = S (x, Xk)xk converges to the orthogonal projection of x

into the closed subspace spanned by {xn} . Thus, the following are equivalent.

(i) x is in the closed subspace spanned by {xk} .

(ii) ||x|l*= 2 l(x,xw)|*.
w = l

(iii) lim sn = x.
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Proof. Let Sn be the closed subspace spanned by {xi, . . .
,
xr} and let

S be the closed subspace spanned by the sequence {XT} . Applying the last

theorem to Sn,
we have

for every n. Thus the infinite series S \(x, Xk)\* converges, and its sum does

not exceed |H|
2

. If

Sn = (X, Xl)Xi + + (X, Xn)Xn

then, with n > w, we have

||STO -SW ||

2 = S
| fez*)!

2

k m+l

and so \\sm s n \\
as m,n oo. Let ?/

= liin sn . It is easy to see that

(?/, xk)
= lim (sn , arjt)

=
(x, Xjt)

n >

for each 7c. Thus, the vector z = x y is orthogonal to each xk ,
hence

to S. Since ?/ is in &, we sec that ?/ is the orthogonal projection of x in S.

Now a: is in S if and only if x =
2/. It is easy to see that

Thus (i), (ii), and (iii) are equivalent.

When x (in the above theorem) is in the closed subspace spanned by
{xn} one usually writes

00

X == 2j {X, XnjXn

for lim sn = x. Undoubtedly, the most important case of this last theorem

is the one in which the closed subspace spanned by {xn} is all of //. The

result then assumes this form :

Theorem. Let N = {xn} be a countable orthonormal set in H. The fol-

lowing are equivalent.

(i) N is complete; that is, the only vector orthogonal to every xn is the zero

vector.

(ii) N is closed; that is, the closed subspace spanned by N is all of H.

(iii) For every x in H,
00

(iv) For every x in H,
CO

X = S (X, Xn)xn .
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Proof. Let S be the closed subspace spanned by {xw} . Since

we know that S = H if and only if S1 =
{0}. Thus (i) and (ii) are

equivalent. The equivalence of (ii), (iii), and (iv) is contained in the last

theorem.

Now let's take a look at the case we are interested in. Let

// = L2
( TT, TT), the space of Lebesgue squaro-intcgrable functions on the

closed interval [ TT, TT] (complex values). The inner product is

In other words, L2
( TT, ?r)

=
L*(d/i)> where ju is the normalized Lebesgue

measure dp dx. Let <pn(x)
= einx. Then it is easy to verify that the

set {^n}"--oo is an orthonormal set. This orthonormal set is complete.

We assume this now and will prove it later. If / L2
( TT, TT), the numbers

are the Fourier coefficients of /. The formal series

is the Fourier series for /.

Our Hilbcrt space discussion above tells us the following. Suppose we
start with /

2
( **, TT) and define the Fourier coefficients cn as above.

Suppose n ^ and we wish to approximate/in L2-norm by a trigonometric

polynomial

P(x) = S <M*'.
&=-n

Then the best such approximation is given by

that is, by taking ak = CA> We also know that the sequence of Fourier

coefficients is square-summable and

(Here we have used the completeness of {<pn})- Furthermore,
oo

/ = S Cn<pn
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i.e., / is the sum (in the Hilbert space sense) of its Fourier series. What
this means, of course, is that the nth partial sum sn of the Fourier scries

converges to / in the L2-norm:

lim I*
|/(:r) sn(x)\*dx

= 0.

Note that we also have the Riesz-Fischer theorem : every square-summable

sequence of complex numbers is the sequence of Fourier coefficients of a

function in L2
( IT, IT). For if

2
^
W 2 <

just put

and observe that {sn} converges in L2 to a function / with Fourier coeffi-

cients cn .

NOTES

For the preliminaries on measure and integration, some references are Halmos

[38], Saks [79], Loomis [54], Titchmarsh [87], Dunford-Schwartz [25], Riesz-Nagy

[73]. For the material on Banach spaces, see Banach [7], Loomis [54], Dunford-

Schwartz [25], Riesz-Nagy [73]. The most convenient reference on Banach spaces

is probably Loomis' book, since it has the essentials elegantly done. For the mate-

rial on Hilbert spaces and orthonormal systems, see Zygmund [98], Stone [84],

Riesz-Nagy [73], Halmos [37], Titchmarsh [87].



CHAPTER 2

FOURIER SERIES

Throughout this chapter we shall be working on the closed interval [ TT, TT]

on the real line. If / is a complex-valued Lebosgue-integrable function on

that interval, the Fourier coefficients of / are the complex numbers

c = fWe-^dx, n =
0, 1, 2, ...

and the Fourier series for / is the formal series

S cne
inx

.

n oo

There are two fundamental questions about / and its associated series.

(1 ) Is / determined by its Fourier series?

(2) If so, how can we recapture /, given the Fourier scries?

In asking the first question, we are treating / as an element of LI

( TT, TT) ;

that is, we are identifying functions which differ only on a set of Lebesgue
measure zero. Question 1, then, asks whether two integrable functions

with the same sequence of Fourier coefficients agree almost everywhere.

This question has an affirmative answer, as we shall soon see. Question 2

is a much meatier one, in part because it is stated in such a vague way.
The first effort toward resolving Question 2 probably should be to form

the partial sums

and to ask whether these functions sn converge. Here one can ask whether

the sn converge pointwise, converge pointwise almost everywhere, converge

uniformly, or converge in some type of norm. If they do converge, do

they converge to /?

When/ is square-integrable we have already seen that the partial sums

converge to / in the L2-norm (assuming the completeness of {e
inx

}). One

might hope that for /in L 1 the sn converge to /in Z^-norm; however, this is

not necessarily the case. One might hope that if / is continuous and
15
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j( TT)
=

/(TT) then the sw converge uniformly to/, but this fails. Indeed, for

a continuous / it may happen that {sn} does not even converge pointwise.

Really, no situation is quite as pleasant as the L2
case, but this is not a

hopeless roadblock. One simply looks for other ways to recapture / from

its Fourier series. We shall look at one such method now. Before going

on we should mention that for "smooth" functions / the partial sums sn

do converge pointwise, e.g., if / is of bounded variation. If/ is, say, twice

continuously differentiable, it is trivial to verify that {sn} converges uni-

formly, because two integrations by parts show that cn = 0(l/n
2
).

Cesaro Means

The (first) Cesaro means of the Fourier series for / are the arithmetic

means

<rn = -
(s + + Sn-i), n =

1, 2, ----

As we shall see, if / is in LP
( TT, TT), 1 ^ p < co

,
then the Cesaro means ffn

converge to / in the L 7<-norm. And if / is continuous [and /( TT)
=

/(TT)]

then the an converge uniformly to /.

Now

sn(x)
= S c&**
k=-n

= S e" -
I
'

f(t)e-*'di-

Thus

where Kn(x) is the nth Cesaro mean of the series

i; e*x
.

fc"-oo

Thus

(n + l)#n+i(z)
- nKn(x)

= S e**

= S e**+ 2 e~ikx

k~0 k=\

1 - eix 1

cos nx cos (n + l)x

1 cos x

_ x>~i(n+l)as

1
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Since K\(x) =
1, it is easy to see that

v ( x
1 ricosnx']K W -
n Ll-cos x\

. n

. 1
sin- a;

t

This sequence of functions Kn is called Fejer's kernel. We have shown

for any intcgrable /on [ TT, TT] that the nth Cesaro mean of the Fourier

series for / is

where / is Fejer's kernel. Here are some properties of Kn.

(i) Kn

(ii)
= 1

(iii) If / is any open interval about a; = 0, then

lim sup |ff.(a:)|
=

(|a?| g T).
n-*> zg/

Property (i) is evident from the derived expression for Kn . Property (ii)

simply states that the nth Cesaro mean of the Fourier series for the con-

stant function 1 is 1. Property (iii) results from a few simple inequalities.

If < d < TT and if TT ^ \x\ ^ 5, then

so

(sin x)
2 ^ (sin 6)

2

1

n(sin
for

Now Kn is also an even function, but we shall make no use of that fact.

All that we want to know about Cesaro means will be proved using only

the above three properties of Fejer's kernel.

Any sequence of Lebesgue-integrable functions Kn which possesses

properties (i), (ii), and (iii) above we shall call an approximate identity

(for L1

). (Some call this a positive kernel.) We shall comment on the

terminology later. We shall also see other approximate identities later.

As one example slightly different from Fejer's kernel Kn ,
one might take

/2/fn, ^ x TT

\0, -IT g x < 0.

Theorem. Let i be a function in Lp
( TT, TT), where 1 ^ p < . Then

the Cesaro means of the Fourier series for f converge to f in the Lp-norw. // f is
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continuous and f(ir) =
f(V), then the Cesaro means converge uniformly to f.

Proof. Now

-
t)dt.vnw

2ir ;-

If we extend / to a function on the real line which is periodic with period

2?r, this may be written

*.(*) = T- I' f(*
-

t}Kn(t)dt.

The periodicity condition /( ir)
=

/(TT) is not important for /in Lp
,
since

we only know/(x) almost everywhere; however, in discussing a continuous

/ it is important because it makes the periodic extension of / continuous.

Let us examine the continuous case first. Since J Kn = 1
,

If 5 > 0, we write

and we see that

If / is continuous at x and 8 is small, the number \f(x f) /(o:)| is small

for
|t| g 5; and since

lim sup Kn (f)
=

0,

-
/(*) =

f
[f(x

- - f(x)]Kn(t)dt.

[/(*
- -

f(x)]K,t(t)dt

(x
-

t)
-
f(x)]Kn(t)dt

sup \f(x
-

f)
-

f(x)\ + 211/IL-sup
-d<t<6

we see that

lim (Tn(x)
=

f(x).
n *

If / is continuous on any closed interval a g x ^ b, then / is uniformly

continuous there and it is easily seen that vn(x) * /(#) uniformly on [a, 6].

For / in Lp we wish to estimate

Let g be any function in Lq
,
where h

- == 1. Then
P <l

t.(x)
-

f(x)]g(x)dx - 2 [/(x
- -

f(x)]g(x)Kn(t)dxdt

and thus
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[*n(x)
-

f(x)]g(x)dx

< o

Using the Holder inequality, the inside integral is not larger in modulus

than

II0IUI/.-/II,

where ft (x)
= f(x

-
t). Thus

1

for every g /A Therefore,

ik.
-

/HP ^ _'i/.
-

For, since L^ is the conjugate space of Lp
,
if we are given a function h in Lp

we can also find (by the Hahn-Banach theorem) a y in L'v such that
| \g\ \ (I

= 1

Now if 5 > 0, write

ik.
-

/HP ^ ^ /_',
n/.

- + ^ /fli ,
n/t

- /n^,

g sup
-5<t<8

If 5 is small, \\ft f\\ p is small for \t\ g 5, i.e., translation is continuous

in the Lp-norm. Thus

Theorem. // f is in L( TT, TT) then the Cesaro means of the Fourier series

for f converge to f in the weak-star topology on L.

Proof. As we observed above, for any g in L1

1 /' M*) -
f(x)]g(x-)dx g sup f /' [/(*

- -/
JTT y * a< ^?r y

Thus, we need only prove that

lim
t-n

or that

lim
/* f(y)[g(y)

-
9(y

-
t)]dt

- 0.
^o y-
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This follows from the fact that / is bounded and \\g g t \\i
> 0. So

5- I
9

ffn(x)g(x)dx ->
5-AW J if ZiTT

for every g in L1

; i.e., o-n >/ in the weak-star topology.

We should perhaps comment that the analogue of this last theorem

holds for measures as well. If p. is any finite complex Baire measure on

[ TT, ii] we can define the Fourier coefficients

Cn =

and the associated Fourier series. The coefficients cn are often called the

Fourier-Stieljes coefficients of the measure. We would not expect the

Cesaro means for pi to converge as functions, but we might expect the

measures r-<rn(z)d to converge to pi in the weak-star topology on meas-

ures. This is the case, but the measure pi must have period 2w. All this

means is that if pi has a "point mass" at TT or TT these masses must be the

same: pi({--7r})
= /*(W). A better way to formulate this condition is that

pi is really a measure on the circle obtained by identifying TT and TT.

Theorem. Let p be a finite (periodic) complex Baire measure on the interval

[-7T, TT] and let <rn be the nth Cesaro mean of the Fourier series for pi. //

f is any continuous function of period 2?r, then

Urn f(x)*n(x)dx -
w_*oo TT J v

that is, the measures <rndx converge to M in the weak-star topology.
AIT

Proof.

d/.(0

where rn is the nth Cesaro mean for/. Since rn > / uniformly, we are done.

One of the corollaries to the sequence of theorems above is Fejer's

theorem: every continuous function of period 2ir is a uniform limit of

trigonometric polynomials

p(x) = S aue
ikx

.

& n

From this it follows that the orthonormal family {e
inx
} is complete in

L2
( TT, TT), for the closed linear span of these functions contains the con-

tinuous functions, which are dense in L2
. Of course, the completeness is
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also contained in the result that for / in L2 the crn converge to / in ZA
We also know now that every integrable function is determined by its

sequence of Fourier coefficients; indeed, we know that any periodic measure

is determined by its Fourier coefficients.

Some comments may be in order, to place the results about Cesaro

means in proper perspective. Having defined Fourier coefficients for, say,

Lebesgue integrable functions, it is clear that if we add two functions the

respective Fourier coefficients add. For/, g in Ll

( TT, TT) we can also define

a multiplication (though not pointwise). The multiplication we have in

mind is convolution :

2,)-*'"'

Using the Fubini theorem, it is easy to see that f*g is again in L1 and that

Also, one can see that convolution is associative and makes L 1 into a linear

algebra. The nth Fourier coefficient of f*g is the product of the nth Fourier

coefficients of / and g:

-
(x
-

t)g(()dldx

One can also define the convolution of two measures. Let us do this only
in case one of the measures is absolutely continuous with respect to

Jjebesgue measure, i.e., has the form ^-f(x)dx with/ in L 1
. The convolu-

^7T

lion of / and /x is the function

(The Fubini theorem is required to see that this definition makes sense.)

Again, it is easy to verify that the Fourier coefficients of /*M are the prod-

ucts of the corresponding coefficients for / and M- An important case is the

one in which p is the Dirac delta measure, i.e., the point mass at 0. This

measure 6 assigns the measure 1 to a Baire set if it contains the point 0,

and otherwise assigns the measure 0. If / is in L1 then /*5 =
/; i.e., 6

serves as an identity under convolution. This corresponds to the fact that

the Fourier coefficients of 6 are all equal to 1 .

If / is in L1 the Cesaro means for / converge to / in L 1
. This is because

ffn = f*Kn and the measures Kn(x)dx are approaching the delta measure
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So. This is why we call {Kn} an approximate identity for L1
. Of course,

the Fejer kernel Kn is just the nth Cesaro mean of the Fourier series for

the delta measure 5 .

The results above hold when {Kn} is any approximate identity for L 1
.

That is, {/*/fn} converges uniformly to/ if/ is continuous, converges to/ in

ZAnorm if 1 g p <
, converges weak-star to / if / is in L, and {n*Kn}

converges to M weak-star if /x is a measure on the circle. The proofs are

exactly the same as those above if each Kn is a bounded function. This

will be the case in the approximate identities we consider. If the Kn are

not bounded, one must first verify that the convolution of an L1 function

and an Lp function is in L 7>

,
and then the proofs proceed as above.

Characterization of Types of Fourier Series

To complete our preliminary discussion of Fourier series, we turn to

the following question. Suppose we are given a formal Fourier series

S cne
inx

.

ft m: 00

How can we tell whether this is the Fourier series of an L 1 function? An
Lp function? A measure? A continuous function? For L2 we know the

answer: the sequence {cn} must be square-summable. Certain rough tests

can be applied in the other cases. For example, the sequence of Fourier

coefficients of any finite measure must be bounded (by the total variation

of the measure on [ TT, TT]). This includes the case of an absolutely con-

tinuous measure f(x)dx, f in L1
. For this case one can say even more:

ZTT

the Fourier coefficients of an iiitegrable function tend to zero:

lim \cn \

= 0.

|n|-oo

This is the Riemarm-Lebesgue lemma, and it is not difficult to prove.

For instance, one can prove it first when / is the characteristic function

of an interval [a, 6], Then one obtains

1 fb 1

cn = ;r- / e~inxdx
ZTT Ja

= l
[e-inb _ e-ina]

so that

The result then follows for step functions, i.e., linear combinations of

characteristic functions of intervals. Since the step functions are dense in
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Ll one has the general result. Of course the Fourier coefficients of a measure

need not tend to zero.

A reasonably satisfactory answer to our question about a formal series

can be given in terms of the Cesaro means of the series.

Theorem. A formal Fourier series is the Fourier series of

(i) an Lp
function, 1 < p ^ <*>

;

(ii) an L1

function;

(iii) a continuous function of period 2?r;

(iv) a finite measure;

(v) a finite positive measure;

if, and only if, the Cesaro means crn

(i)' are bounded in Lp-norm;

(ii)' converge in the U-norm;

(iii)' converge uniformly;

(iv)' are bounded in Il-norm;

(v)' are each non-negative.

Proof. We have already proved most of the implications k >
7c', and

the rest are easy to fill in. For example, if an is the nth Cesaro mean of the

Fourier series of a finite real measure, then

ffn(x)
= J Kn(x

-
t)dp(t)

and so

^ f'f \an(x)\dx ^ f f*r
Kn (x

-
t)d\n\(t)dx

For complex measures take real and imaginary parts.

So all we need prove is that if the <rn satisfy a condition 7c' then we have

a Fourier series of type fc. First let us make an observation about any
formal series:

lim
/

e-imx(Tn(x)dx = cm .

-47T J v

For if n > \m\ the mth Fourier coefficient of an is
-' * cm .

Suppose the Cesaro means are bounded in Lp-norm, where 1 < p ^ oo .

We may as well assume that

IWI,^!, n = 1,2,3,....

The ffn then lie in the unit ball of the conjugate space of L9
,
where

~ + - = 1. Since this unit ball is weak-star compact, there is a function/

in Lp with ||/|| p ^ 1 such that every weak-star neighborhood of / contains

ffn for infinitely many values of n. In other words, given any g in L9 the

numbers / <rngdx are near J fgdx for infinitely many values of n. Each e
imx
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is in Lq
\
since the rath Fourier coefficient of <rn tends to cm ,

it must be that

cm is the rath Fourier coefficient of/. This takes care of (i).

If the ffn converge in L 1

norm, they converge in that norm to an in-

tegrable function /. Since

^ fl,

cm is the rath Fourier coefficient of /.

If the ffn converge uniformly, they converge to a continuous/, and this

/ has the desired Fourier coefficients by a similar argument.

Suppose

Then the measures dpn = vn(x)dx are bounded in total variation by 1.

The space of measures is the conjugate space of the Banach space of

continuous functions. The /in all lie in the unit ball of this conjugate space;

hence, they have a weak-star cluster point M- Since each eimx is continuous,

the same sort of argument used above shows that n has the desired Fourier

coefficients.

Suppose that

Then
11 " 1 /"' / \j _

Thus the <rn arc bounded in Z^-norm, By the last result, our series is the

Fourier series of a finite (periodic) measure ju. So M is the weak-star limit

of the measures an(x)dx\ i.e.,

lim r g(x)an(x)dx = /"* g(x)d(x)
n_>oo ^7T J if JT

for every continuous g (of period 2?r). If g ^ 0, so is gan \
so J gdp ^ 0.

Thus \L is a positive measure.

NOTES

The chief reference on Fourier series is Zygmund's book [98]. It should be

consulted for the expansion and extension of the results on Fourier series. One

may also consult the books by Titchmarsh [87] and Rudin [76]. Fejer's theorem

is in [28]. The characterizations of Fourier series of various types are due to

Steinhaus [83] and Gross [36] for L\ G. C. and W. H. Young [97] for If, p > 1,

Young [96] for measures, Herglotz [45] for positive measures. See also Carath^o-

dory [16] for Fourier scries of increasing functions (positive measures).
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EXERCISES

00 1

1. The series - sin nx is the Fourier series of an L2 function. Which L2

n=in
function?

2. Let / be a Baire function on [ TT, TT] and suppose |/(#)| ^ 1. Prove that

each Ccsaro mean of the Fourier series for /satisfies \(rn(z)\ ^ 1. If for some n

arid x we have |o-n(ar)|
=

1, then /is constant.

3. Let 2 an be an infinite series. Suppose the Cesaro means of the series con-

verge to some number a, and suppose also that an = (
- V Prove that the

partial sums also converge to a. (G. H. Hardy [40]).

4. For an integrable function on [ TT, TT] ;
write the partial sums of the Fourier

series for/ in the form

<r f
&TT J ~*

that is, determine the (Dirichlct) kernel Dn explicitly. Use the result of Exercise 3

to prove that, when / is of bounded variation,

lim 8n(x)
= \ liin [f(x + t) + f(x

-
t)].

6. If

fn, |j| g ir/n

verify that {A"n} is an approximate identity for L1
. What, specifically, do the

various convergence theorems of this chapter say for this particular approximate

identity?

6. If p ^ 1, prove that the convolution of an L1 function and an Lp function

is in Lp
. If p = oo

f prove that the convolution is continuous.

7. Give an example of two distinct measures on [ ir, TT] which have the same

Fourier series if we do not identify TT and IT.

8. If / is in L2
, prove that

1

is continuous. How does the Fourier series of g behave?

9. For finite measures MI and ju2 define the convolution MI *
//2 to be the unique

measure which yields the linear functional L on the continuous functions:

Now prove that, if MI is absolutely continuous with respect to Lebesgue measure,

then MI * M2 is also, and that its derivative is given by the convolution formula

used in this chapter to define the convolution of a function and a measure.
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10. Use Fejer's theorem to prove the Weierstrass approximation theorem: On
a closed interval of the real line, every continuous function is a uniform limit of

polynomials.

11. Prove that the partial sums of the Fourier series of a function of bounded

variation are uniformly bounded.



CHAPTER 3

ANALYTIC AND HARMONIC
FUNCTIONS IN THE UNIT DISC

Let D denote the open unit disc in the complex plane:

D =
(z; \z\ < 1}

and let C denote the unit circle:

C= {*;|z|
=

1).

Recall that a complex-valued function / is analytic in D provided that

it is the sum of a convergent power series

/(z)
= S anzn .

n =

This just means that / has a derivative at each point of D. A complex-
valued function u on D is harmonic if it satisfies Laplace's equation:

d*u d*u

dx*
+

dy*

~ U>

Any analytic function is a complex-valued harmonic function. A real-

valued function u is harmonic if and only if it is the real part of an

analytic function, / = u + iv. For a real-valued harmonic u, any v such

that u + iv is analytic is called a harmonic conjugate of u. Such a v is

just a real-valued function which with u satisfies the Cauchy-Riemann

equations:

du _ dv dy, __ _dv
dx dy dy dx

The harmonic conjugate of u is unique up to an additive constant. In

other words, given the real harmonic function u, there is a unique real

harmonic function v which is conjugate to u and vanishes at the origin.

27
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The Cauchy and Poisson Kernels

If / is an analytic (or harmonic) function in the unit disc D, we wish

to inquire when / has boundary values, and how / is determined by its

boundary values. Roughly, then, we shall investigate conditions under

which the limits

exist and define a function on the unit circle C. Then we shall ask how/ is

determined by this function on the circle. If / is actually analytic in a disc

of radius 1 + c, certainly/ has boundary values and is determined by these

boundary values in accordance with the Cauchy integral formula:

For our purposes, it will be more convenient to write the Cauchy formula

in the form

If / is merely harmonic in a disc of radius 1 + e, we do not have a Cauchy
integral formula; however, we can recapture / from its boundary values by
means of the Poisson integral formula. Both of these formulas for the

disc are intimately related to Fourier series; before we relate the Poisson

formula, let us establish the relationship between harmonic functions

and Fourier series. We shall not give the briefest discussion possible.

Instead, let us roam around a bit in order to acquire a feeling for what
is going on.

First, suppose/ is analytic in the open disc:

/CO = S anzn.

n~0

Let/r(0)
=

/(re**). For a fixed r, fr is a function defined on the unit circle;

i.e., if we restrict/ to the circle of radius r, we obtain a continuous function

on that circle which we can also interpret as a function on the unit circle.

Now

/r(0)
= S anrnein9 .

n=0

That is, the nth Fourier coefficient of fr is anr
n

,
n 2> 0, and is zero for

n < 0. If / is analytic in the closed disc, the boundary value function

/i has the Fourier coefficients an . Let's look at the Cauchy formula from

this point of view:
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If we agree to write /(/) for /(") we

~
f'rmcr(e

-
f)dt

where

1
Cr(6)

=
1 -re*

In other words, /, is the convolution fr = f*CT, provided/ here denotes/ on

the unit circle. Thus, the Fourier coefficients of /, are the products of the

Fourier coefficients of /(e
i(

) and those of CT :

/(e) = S aeiB

Suppose w is harmonic (and real-valued) in the disc. Then u is the real

part of an analytic function, or

!*=/
where / is analytic. If

then

u(z) = 2 Re a + S an2n + 2
n=l n-1

If we restrict w to the circle of radius r,

wr(^)
= u(re

ie

)
= S

n*= *

where c = 2 Re a
,
cn = an for n > and cn = 3_n for w < 0. If w is har-

monic in the closed disc, then the boundary function u\ has the Fourier

coefficients cn . Of course, c_n = cn ,
since u is real-valued. So we obtain ur

from te(e
ifl

) by multiplying the Fourier coefficient cn by r |nl
. This means

only that ur is the convolution of u(e
i9

) with the function Pr ,
whose Fourier

coefficients are r |n|
:
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00

Pr(8) = S
^
rWe*

= Cr(9) + CM - 1

= 2 Re Cr(0)
- 1

= Re [2CV(0)
-

1]

Re

1
- r2

1 - 2r cos + r2

This family of functions Pr is called Poisson's kernel. We have just noted

that for any real harmonic function in the closed disc we have

ur(6)
= u(re) = ~-

[

*

u(t)Pr(0
-

JTT y-T

where, as usual, u(t) denotes u(e
il

). Of course, it immediately follows that

this Poisson integral formula holds for any complex-valued harmonic func-

tion in the closed disc. In particular, it holds for an analytic function /.

Thus, both the Cauchy kernel Cr and the Poisson kernel Pr reproduce

analytic functions from their boundary values by convolution. It is easy

to see why this is so. The functions Pr and Cr have the same Fourier

coefficients on the non-negative integers. Consequently, when we convolve

them with an "analytic" function on the circle, the results are the same.

The difference is that whereas the Fourier coefficients of PT are symmetric
about zero on the integers:

_L /"* e- inePr(0)de
= rW

ZTT J-*

the Fourier coefficients of Cr vanish on the negative integers:

This vanishing of the negative Fourier coefficients of Cr simply means that

Cr is "orthogonal" to the conjugate of any analytic function which vanishes

at the origin; i.e., if / is analytic in the closed disc, then

n0
and thus

On the other hand,
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because / is harmonic. The kernel

Hr (0)
= 2Cr(B)

- 1

= 1 + re"

1 - re*

is also interesting, in part because

Pr (ff)
= Re//r(0).

But it is of more interest, because if / = u + iv is analytic in the closed

disc, and if /(O) is real, then

/(*) =
jlr u(t)H

r(0
-

t)dt,

i.e., /r = M*//r . This is easy to see because w = 5 (/ + /) and so

r (fl
- -

t)dt + _rf&f)Cr(e
-

t)dt

= /(re')+7(0)-Re/(0).

So, if /(()) is real, fr
= u*HT . This formula can be rewritten

or

Suppose we let

Qr =

This kernel is called the conjugate Poisson kernel. We see from above that

v(re) = ~
u(t}Qr(0

-
t)dt

produces the harmonic conjugate v of u, which vanishes at the origin. Of

course, Pr(0) and Qr (0) are conjugate harmonic functions in the disc.
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Boundary Values

To begin seriously our discussion of the boundary behavior of harmonic

functions, we shall consider the problem of starting with a function on the

unit circle and extending it to a harmonic function in the disc. The original

problem of this sort was the Dirichlet problem: given a real-valued con-

tinuous function / on the unit circle, find a continuous function on the

closed disc which agrees with / on the circle and which is harmonic in the

open disc Z). This problem is completely solved by the Poisson integral

formula. All one needs to show is that the family of functions Pr, g r < 1,

is an approximate identity for L1 of the circle. Since

rv '
1 - 2r cos 6 + r*

we see the following:

(i) Pr(0) ^ (and Pr is continuous on the circle) ;

(because the above integral is the value of the constant function 1 at

* = 0;

(iii) if < 5 < -TT,
then

limsup|Pr (0)|
= 0.

r-*l |0|*

For if S g \6\ =g ,, then Pr(6) g
1 _

~ *
+ ,;

Theorem. Let f be a complex-valued function in L p
of the unit circle,

where 1 :g p < o> . Define f in the unit disc by

/(*) =
f'_r

f(t)Pr(0
~

t)dt.

Then the extended function f is harmonic in the open unit disc, and, as r 1,

the functions f r(0)
= f (re

w
) converge to f in the L p-norra. // f is continuous

on the unit circle, the fr converge uniformly to f
; thus, the extended f is con-

tinuous on the closed disc, harmonic in the interior.

Proof. Since {Pr} is an approximate identity, the proofs of the Lp

convergence and the uniform convergence are just the same as the cor-

responding proofs about Cesaro means. The only thing which is basically

different here is that we also regard the family of functions {/r} as a har-

monic function on the open disc. There are various ways of seeing why
this function is harmonic. One way is to observe that if the original / is

real-valued then the function f(rc
ie
) is the real part of the analytic function
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Theorem. Let f be a bounded Baire function on the unit circle and

r(9
-

t)dt.

The extended f is a bounded harmonic function in the open disc and, as r > 1,

the functions fr (0)
= f(re

ie

) converge to f in the weak-star topology on L.

Proof. {Pr} is an approximate identity.

Theorem. Let ju be a finite complex Baire measure on the unit circle and let

Then f is harmonic in the open disc and the measures

converge to M in <Ae weak-star topology on measures.

In all the above cases, it would seem convenient to say that the har-

monic function f(re
i0

) is the Poisson integral of the corresponding function

or measure on the circle. This will save us some words as we proceed to

reverse the process. Just as we did for Cesaro means, we will now ask:

given a harmonic function in the disc, how do we ascertain if it is the

Poisson integral of some type of function or measure on the unit circle?

If / is harmonic, then

/(re*) = S wMe**
n= oo

so the question is actually: when is {cn} the sequence of Fourier coefficients

of some type of function or measure? Of course, the answer will read just

as it did for Cesaro means, arid so will the proof.

Theorem. Let f be a complex-valued harmonic function in the open unit

disc, and write

(i) // 1 < p g oo
,
then f is the Poisson integral of an Lp

function on the

unit circle if and only if the functions fr are bounded in Lp-norm.

(ii) f is the Poisson integral of an integrable function on the circle if and

only if the fr converge in the L l-norm.

(iii) f is the Poisson integral of a continuous function on the unit circle if

and only if the fr converge uniformly.

(iv) f is the Poisson integral of a finite complex Baire measure on the

circle if and only if the f r are bounded in I^-norm.
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(v) f is the Poisson integral of a finite positive Baire measure if and only

if f is non-negative.

We should make a few comments about the various parts of this theo-

rem. The L part of (i) is often called Fatou's theorem. The interesting

part of it is the fact that any bounded harmonic function in the disc is the

Poisson integral of a bounded Baire function on the circle. Part (v) is often

called Herglotz's theorem: every non-negative harmonic function is the

Poisson integral of a positive measure. One should note that in any of the

cases above the harmonic function / is real-valued if and only if the cor-

responding Lp function or measure is real.

Fatou's Theorem

The results we have obtained so far about harmonic functions are com-

pletely analogous to our former results about Cesaro means. Indeed, one

can view these results simply as another way of summing Fourier series

(Abel summability). One theorem on Cesaro summability which we did

not prove is Lebesgue's theorem: if /is an iritegrable function on [ TT, *],

the Cesaro means of the Fourier scries for/ converge to/ pointwise almost

everywhere. This result has its analogue in Abel summability: if we ex-

tend / to a harmonic function in the unit disc, the functions fr converge

pointwise to / almost everywhere. This is a theorem of Fatou, which we
shall now prove.

Theorem (Fatou). Let n be a finite complex Baire measure on the unit

circle, and let f be the harmonic function in the unit disc defined by

f(r, 0)
= / Pr(9

-
t)dn(f).

Let 0o be any point where n is differenliable with respect to Lebesgue measure.

Then

In fact,

lim/(r, 6)
=

as the point z = re w approaches ei00

along any path in the open disc which is

not tangent to the unit circle.

Proof. The measure /* is induced by a complex-valued function F, of

bounded variation on the interval [ TT, *]:

fgd* = JgdF.

The theorem states that if F is differentiable at
,
then
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as re* > eio along any non-tangential path, i.e., /(z) approaches the deriva-

tive of F (or /A) with respect to normalized Lebesgue measure. For the

proof, let us first observe that the theorem is trivially true for d/z
= dO.

So, without loss of generality, we may (by subtracting a constant multiple

of dd from d/z) assume that p(C) = 0. Then F will satisfy F(-v) =
F(TT).

Now let

Then

J_

So

We first prove the radial convergence, since its proof is neater.

f(r,ff)
=
I^P'r(t)F(e-t-)dt

=/'+/:
=

f*Pl(t)[F(e
- - F( + <)]*

Jo smf

Since Pr is an odd function, we have

r. /.x /VX^ + -
F(0

-
-*-

where

Now it is easy to verify that {Kr}, < r < 1, is an approximate identity

for L 1
. If F is differentiable at

,
then the function

o Q -
G(0= 2 sin*

is continuous at t = with the value

0(0) Km 7
t->o ^ sin i

Since {JKr} is an approximate identity, and since G is continuous at 0,
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lim -/Mo) = lim-
" Kr(f)G(t)dt--

=
F'(0o).

Now for the non-tangential convergence. Suppose we have an arc in

the disc which approaches ei6Q
non-tangcntially. This means that we have

two continuous functions r = r(cf), 6 = 0(d) defined for ^ a ^ 1 such

that g r(a) < 1 for g a < 1, r(l) =
1, 6(1)

=
. It is no loss of

generality to assume that = 0. The non-tangential nature of the arc

then means that

9(a)

1 - r(a)

is bounded for a < 1. Let

so that

Now we may also assume that F(0) =
0, for this can be arranged by sub-

tracting a constant from F, which will change neither dF nor the condition

F(_ T)
=

F(TT). Then

F'(0) = lim
t-.o sin

Now we shall prove that the functions Ka satisfy these conditions:

(i) /_ \Ka(t)\dtis bounded as a > 1;

(ii) lim-

(iii) If < 8 < TT, then

lim sup \Ka(t)\ = 0.

Condition (iii) is easy to verify, since

sin t sin (t 0)
sin tP'r(B

- = 2r(l
- r2

)
[1
- 2r cos (0

- +

_ 2r sin t sin (<
-

0) , ,

""l-2rcos(0-0+r2 r^ j

so that if
|t| ^ 5 while is near zero, sin tPt(d /) is small for r near 1.

Condition (ii) follows from

sin *P;(0
- 0^ = cos Pr(0

-
f)dt

= r cos 0.
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It is in verifying condition (i) that we use the non-tangential nature of the

arc:

/_*
IK.COI* =

/_*,
Isin (6 + t)P',(t)\dt

g |sin 0| f'r \P'r(t)\dt +
/_'r

|sin tP'T(t}\dt.

Since sintP'r(() is an approximate identity, the second integral is

bounded as r 1. Also,

|sin 9\

'

\P'r \dt
-

|sin 0| \P',(t)\dt

-
|sin 0|

- f P'T(l)dt
TT J-*

1 --
TT

1+r 1
-r-|

1-r 1+rJ

^ 1 + r |0|"
TT 1 r

Since \0\/(l r) is bounded on our arc, we conclude that / \Ka \
is bounded

as a 1 .

With these three properties of the Ka,
we finish the proof. Put

" F (0) and I\&) ===

Then

/(r(), 0(a))
-

/(a)F'(O) =

Since (7 is continuous at with G(0) =
0, for 5 small the integral

is small by condition (i) on the Ka . Then

is small by condition (iii). Since lim 7(a) =
1, we see that

lim
j/(K), M) = *"(0).

This completes the proof.



38 Analytic and Harmonic Functions in the Unit Disc

Corollary. Let f be a Lebesgue-integrable function on the unit circle. Then

the Poisson integral of f has a ?ion-tangential limit at almost every point of the

unit circle, and these limits are almost cvcrywJwrc equal to f . More generally,

the Poisson integral of a finite measure n has non-tangential limits equal almost

everywhere to the derivative of n with respect to normalized Lebcsgm measure.

Proof. Let /i be a finite (complex) Baire measure on the circle and let

dp = zrfdd + dp 8 be the Lebesgue decomposition for M. Then M is dif-
ZTT

fereutiable almost everywhere and -^ = / almost everywhere. Now
CLu 67T

apply Fatou's theorem.

Corollary. Let f be a complex-valued harmonic function in the unit disc

and suppose that the integrals

are bounded as r 1 for some p, 1 ^ p < . Then for almost every 8 the

radial limits

Re) = lira /(re")
r-*l

exist and define a function fin Lp
of the circle. If p > 1 the,n f is the Poisson

integral of f. If p = 1 then f is the Poisson integral of a (unique) finite

measure whose absolutely continuous part is Id0. // f is a bounded har-
^7T

monic function^ the boundary values exist almost everywhere and define a

bounded measurable function f whose Poisson integral is f .

Of course, the limits in the last Corollary exist non-tangentially as well

as radially. For emphasis we might also state the following.

Corollary. A non-negative harmonic function in the unit disc has non-

tangential limits at almost every point of the unit circle.

One conclusion from the various theorems above is the following. Sup-

pose 1 g p ^ oo and we consider the class of harmonic functions / in the

open disc such that the functions fr(0)
= f(re

i0
) are bounded in Z/Miorm.

This class of harmonic functions forms a Banach space under the norm

For 1 < p g oo this Banach space is isomorphic to Lp of the unit circle.

The isomorphism is / >
/, where / is the boundary function for /. If

1 < p < oo
,
we have not only

||/||,-Hm||/r||,
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but also lim ||/ /r || p
= 0. For p = I this Banach space is isomorphic to

r-l

the space of finite (Baire) measures on the circle, the isomorphism being

/ /i, where / is the Poisson integral of ju.

HV Spaces

Our results about harmonic functions apply in particular to analytic

functions. If < p ^ o we denote by Hp
(II for Hardy) the class of

analytic functions / in the unit disc for which the functions fr(0) = f(re
ie

)

are bounded in L7'-norm as r > 1. Ifl ^p^S, then Hp is a Banach

space under the norm

i.e., Hp is a closed subspace of the corresponding space of harmonic func-

tions. If 1 < p ^ oo
,
we can then identify Hp with a closed subspace of Lp

of the circle. This space we shall also denote by //*', because of the iso-

morphism. It consists of all functions / in Lp whose Poisson integrals are

analytic on the disc, i.e., all/ in Lp such that

=
0, n =

1, 2, 3,

When p = 1 we obtain an identification of Hl with the closed space of

finite measures M on the circle which are "analytic":

=
0, n =

1, 2, 3, . . . .

Now it is here that a very significant difference occurs between the har-

monic and analytic cases. A theorem of F. and M. Riesz states that any
measure /* which is analytic as above is necessarily absolutely continuous

with respect to Lebesgue measure. This theorem makes it possible for us

to identify 7/ 1 with the space of Lebesgue-integrable functions on the circle

such that

=
0, n =

1, 2, 3, ....

Thus, our next task will be the proof of the theorem of F. and M. Riesz,

along with some related results.

NOTES

Fundamental facts about analytic and harmonic functions can be found in

Titchmarsh [87], Ahlfors [2] or many other places. For more about the Dirichlet

problem, see Courant's book [21]. Fatou's paper is [27]. The various boundary

value results here can be found in the books by Zygmund [98], Evans [24], Bieber-

bach [9], Nevanlinna [64], and Privaloff [70]. For analytic functions of class H*

see F. Riesz [71] and F. and M. Riesz [72].
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EXERCISES

1. If /is harmonic and zf(z) is harmonic, then /is analytic.

2. If {cn} is a bounded sequence, then

/(r, 0)
= S cnrMeinS

n= oo

is harmonic in the disc.

3. (a) Verify that Pr(B) is harmonic.

(b) If u is harmonic and g u(r, 6) g Pr(0), then tt(r, 6)
= \Pr(0) for some

constant A.

(c) The set of all non-negative harmonic functions in the unit disc which have

the value 1 at the origin is a convex set of functions. What are the extreme points

of this set?

4. Let/ be an analytic function in the unit disc without zeros satisfying |/| ^ 1.

Prove that

sup |/(z)|
2 S inf |/M|.

WS175 \z\<\/7

6. For a real-valued harmonic function u in the disc, let v denote the harmonic

conjugate vanishing at the origin. Is the map from ur to vr continuous in the sup

norm? The L2-norm?

6. For a real-valued harmonic function u, the following are equivalent: (i) u is

the difference of two non-negative harmonic functions; (ii) the L1 norms of the

functions ur(B)
=

u(r, 6) are bounded.

7. Give an example of an analytic function in the unit disc which is in no class

Hp but which has non-tangential limits at almost every point of the unit circle.

8. Give an example of an analytic function in the disc which does not have

non-tangential limits at almost every point of the unit circle.

9. Prove that the set of all analytic functions in the unit disc for which

is a Hilbert space, using the square-root of the above integral as norm. Prove that

H2
is a (linear) subspace of this Hilbert space. Is Hz a dense subspace? Find an

orttionormal basis for this Hilbert space.

10. Prove Herglotz's theorem: Every analytic function in the unit disc with

values in the right half-plane such that /(O) > has the form

where ju is a finite positive measure on the unit circle,
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The set of all /analytic in \z\ < 1 satisfying Re/ ^ and/(0) = 1 is a convex

set of functions. What are the extreme points of this convex set?

11. Let u be the real harmonic function in the disc determined by some finite

real measure on the circle. Prove that the associated conjugate harmonic functions

v have non-tangential limits at almost every point of the circle.

12. Show that Fatou's theorem extends to the following situation. If / is a

real-valued integrable function on the unit circle, and if 0o is a point such that

lim/(0) = +00, then

)
= +00.



CHAPTER 4

THE SPACE H1

The Helson-Lowdenslager Approach

Most of the theorems in this chapter generalize to the context of a

certain class of function algebras known as Dirichlet algebras. We shall

give the proofs for the case of the unit disc, but in such a manner that

they generalize readily. We shall describe the generalizations later. It may
be that these proofs are not always the shortest possible as applied to the

classical case; however, they have an undeniable elegance. These first few

proofs arc due to Hclson and Lowdenslager.
We denote by A the collection of functions which arc continuous on

the closed unit disc and analytic at each interior point. Then A is a uni-

formly closed linear algebra of continuous complex-valued functions on the

closed disc. In particular, A is Banach space under the sup norm

sup z.
M3i

Each / in A is (of course) the Poisson integral of its boundary values:

il

)Pr(0
-

t)dt.

Also

This is easily seen from the maximum modulus principle for analytic func-

tions. Or, if one wishes, one may deduce this fact (i.e., the maximum
modulus principle for functions in A) directly from the Poisson formula.

Thus, we may identify the functions in A with their boundary values, ob-

taining an isomorphism between A and the Banach space of continuous

functions on the circle such that

f*f f(ff)e*dB
=

0, n =
1, 2, 3, ....

This algebra of continuous functions we shall also denote by A. The

trigonometric polynomials of the form
42
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= S a*e
*=o

are in A and are uniformly dense in A. This follows, for example, from the

fact that if / is continuous on the circle and if the Fourier coefficients of /
vanish on the negative integers, then the Cesaro means of the Fourier series

for / comprise a sequence of trigonometric polynomials of the above form

which converge uniformly to /. This corresponds to the fact that A
,
as an

algebra on the disc, consists of all functions which arc uniformly approxi-

mable by polynomials in z:

P(z) = 2 a*z*.
& =

The property of A (on the circle) which we want is Fejer's theorem, in the

following form.

Theorem. The real parts of the functions in A are uniformly dense in

the space of real-valued continuous functions on the unit circle. In other words,

if p, is a finite real Baire measure on the circle such that J fd/z = for every

f in A, then p is the zero measure.

Proof. The real parts of the functions in A include every trigonometric

polynomial of the form

P(B) = S cke
ik

, c-* = c*
k= n

that is, every real-valued trigonometric polynomial. If / is real-valued and

continuous on the circle, every Cesaro mean for / is such a polynomial.

Hence, such polynomials are dense in the real continuous functions.

If /x is a finite real measure on the circle which is "orthogonal" to every

/ in A, then /z is orthogonal to the real part of every / in A. So /z is orthogo-

nal to every real continuous function and must be the zero measure.

Corollary. // jz is a finite real measure on the circle such that / fd/z
=

for every f in A which vanishes at the origin, t}ien /z is a constant multiple

of Lebcsgue measure.

Proof. Let

X =
J dn and d/zi

=
d/z Xd0.

Then /zi is a real measure which is orthogonal to every / in A :

= J [/
-

/(0)]dMi + /(O) / d/ii
= + = 0.

Thus

or djj,
= \dO.

We shall be working for some time entirely on the unit circle. Thus
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A, Hz
,
etc. will be spaces of functions on the unit circle. One of the theo-

rems we shall prove is the theorem of F. and M. Riesz which we mentioned

earlier: an "analytic" measure on the unit circle is absolutely continuous

with respect to Lebesgue measure. We shall also prove Szogo's theorem.

The setting for this theorem is as follows. We are given a finite positive

measure ju on the circle, and we wish to know in the Hilbert space L2
(dp)

what the distance is from the constant function 1 to the subspace spanned

by the functions in A which "vanish at the origin." That is, we wish to

compute
inf J |1

-
/!

2dM , / in A and J/d = 0.

We shall be particularly interested in characterizing the measures M for

which the infimum is zero, i.e., the measures for which 1 is in the closed

subspace of L2
(r//x) spanned by the functions <?

in<)

,
n ^ 1 . Szego's theorem

states that the square-distance (infimum) above is equal to

where h is the derivative of M with respect to normalized Lebesguc measure:

dp = hdB + d/zs , ns singular.

In particular, this distance depends only upon the absolutely continuous

part of fjL. Actually, Szego proved the distance formula for absolutely con-

tinuous measures, and Kolmogoroff and Krein extended it to the general

case.

Our program will be this. We begin to look at Szego's theorem and

obtain a preliminary result. This preliminary result can be used to prove
the Riesz theorem. Then we return and complete the proof of Szego's

theorem.

Let AQ denote the set of functions / in A for which J fdO = 0. If p is

a positive measure, we arc interested in the L 2
(rf/x) distance from 1 to AQ.

The square of this distance will be

inf l

where F is the orthogonal projection of 1 into the closed subspace of

which is spanned by the functions in AQ.

Theorem. Let p be a finite positive Baire measure on the circle and

suppose 1 is not in the closed subspace of L 2
(d/i) which is spanned by the

functions in Ao. Let F be the orthogonal projection of 1 into that closed sub-

space.

(i) The measure |1 F|
2
d/u is a non-zero constant multiple of Lebesgue

measure. In particular, Lebesgue measure is absolutely continuous with re-

spect tO fJL.
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(ii) The function (1
- F)"

1 is in H 2
.

(iii) // h is the derivative of M with respect to normalized Lebesgue. measure,

then the function (1 F)h is in

Proof. Let S be the closed subspace of L 2
(d/i) spanned by AQ. Since F

is the orthogonal projection of 1 into S, the function (1 F) is orthogonal

to S. That is, (1 F) is orthogonal to A . But (1 F) is also orthogonal

to (1 F)f for every / in A Q ,
because F is the limit in L 2

(d/z) of a sequence

of elements /w in AQ, and if / is a fixed element of A Q ,
then /(I fn) is in AQ

and converges to /(I F). The statement that (1 F) is orthogonal to

(1
- F)f for all / in AQ says

Hence the measure |1 F\
2dv is a constant multiple of Lebesgue measure.

That constant is not zero because 1 F ? 0, i.e., 1 is not in S. Thus (i)

is proved.

To prove (ii), observe that

and so, if jua denotes the absolutely continuous part of ju,

proving that (1 F)"
1
is in L 2 = L 2

f dO \ Suppose / is in A Q . Then

=

because (1 F) is orthogonal to / in L 2
(d/i). Since this holds for every

/in AQ (in particular for/(0) = e in9
,
n =

1, 2, 3, . . .) we see that (1 F)"
1

is in H 2
.

To prove (iii), suppose d/x
= fed0 + d/xff , M singular. Since |1 F\

2
dp,

is a constant multiple of rf0, the function (1 F) vanishes almost every-

where with respect to n8 . Thus

I

|1
_

F\
2
dfi

=
|1 F\

2hdO.

But |1 F\
2dp = kd9, so |1 F\

2h is equal to a non-zero constant p, almost

everywhere with respect to dO. But then
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and since (1
- F)-

1
is in L 2

(^ dB\ so is (1
-

F)h.

Corollary 1. // /z is a positive measure on the circle with absolutely

continuous part /zu ,
then

irif l -//i= inf

7n particular , /or an?/ singular p the Junction 1 is in Me L2
(d/z) closure of A .

Proof. Let F be the orthogonal projection of 1 into the L z
(dn) closed

span of AQ. The square of the distance from 1 to A Q in L z
(dn) is then

J |1 F\
2
dn. As we noted in the theorem, the function (1 F) vanishes

almost everywhere for the singular part of M- If we regard F as an element

of L 2
(dfjLa), then F is in the closure of Ao in that space. Furthermore, since

(1 F) vanishes almost everywhere with respect to dnK ,
it is easily seen

that (1 F) is orthogonal to A Q in L 2
(</Ma). Thus (1 F) is also the

minimizing function for /ztt ,
and the proof is complete.

Corollary 2. Let M be a finite complex Baire measure on the circle which

is orthogonal to A
, i.e., J fdju = for all f in A . Then the absolutely con-

tinuous and singular parts of /x arc separately orthogonal to Ao.

Proof. Let p be any finite positive measure with these twro properties:

(i) JLI
is absolutely continuous with respect to p and the Radon-

Nikodym derivative dp/dp is bounded.

,... dp . 1

(U) dB
* T

If d\t, ^ hdQ + d/Us, then one such measure p is
Zir

dp = ^(l + \k\)d9 + d|/i.|
^7T

where d\p.8 \
is the total variation of the complex measure /z. Or in place of

d\pf
\

use the sum of the total variations of the real and imaginary parts of n8 .

Let / be in AQ. By property (ii) of p

If F is the orthogonal projection of 1 into the closed subspace of L 2
(dp)

spanned by Ao, then

J|l
-

F\*dp ^ 1.

By the theorem above, (1
- F)-

1
is in H 2 and (1

-
F)(l + |&|) is in

So (1
-

F)h is in L 2
.
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Suppose g is in AQ. Then

/ (1
-

F)gd = 0.

For, choose a sequence of elements fn in A which converge to F in L*(dp).

Since dp/dp is bounded, we have

/ (1
-

F)gd = lim / (1
-

fjgdp.
n w

Each (1 /n)<7 is in 4o, and since M is orthogonal to AQ, we have

J (1
-

F)gdii = 0, ff
in .4 .

Now (1 F) vanishes almost everywhere with respect to the singular part

of p, hence, vanishes almost everywhere d/xf . Thus

so we have

J (1
-

F)ghde = 0, in A .

Let gn be a sequence of elements of A (not A ) which converge to

(1
- F)-

1 in L 2^ dA We can do this since (1
- F)~

l
is in IP. Then

-
F)hdO =

for all / in A . Since (1 F)h is in L 2
,
and since gn converges in L2 to

(1 F)~~
l

,
we take the limit on n and obtain

This proves that the absolutely continuous part of /i is orthogonal to A Q .

Theorem (F. and M. Riesz). Let p be a finite complex Baire measure

on the unit circle such that

=0, n = 1,2,3, ....

Then fj, is absolutely continuous with respect to Lebesgue measure.

Proof. We are assuming that /* is orthogonal to A . If p,
=

/* + MS ,
with

Ha absolutely continuous and M* singular, Corollary 2 above says that p,a

and M* are each orthogonal to A . Let's look at the singular measure p8 .

By Corollary 1 above we can find a sequence of functions fn in AQ which

converge to 1 in L 2 of the positive singular measure |/za |.
Since M* is orthogo-

nal to AQ,

/d/xs
= lim ffndu,

= 0.
n *

Then /z, is also orthogonal to 1. The singular measure e~*dn, is now or-

thogonal to AQ] hence, it is orthogonal to 1, i.e.,

J e-dn8 (0)
= 0.
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So e~2i
*d/z8 is orthogonal to A^ and, consequently, orthogonal to 1. Repeat-

ing this process, we conclude that

J e
inB

d^(ff)
=

0, n =
0, 1, 2, ...

so MS must be the zero measure. Therefore, our original /z is absolutely

continuous.

Szego's Theorem

Now let us complete Szego's theorem. We had reduced the problem
there to proving that for an absolutely continuous positive measure

djj.
= hdO the square of the distance [in L 2

(d/x)] from 1 to AQ is

To establish this we first prove the following.

Theorem. Let h be any non-negative and Lebesgue-integrable function on

the unit circle. Then

= inf

The left-hand side is to be interpreted as zero if log h is not integrable.

Proof. Since log h is bounded above by the non-negative integrable

function h, we have only log h iion-integrable if

J loghdO = QO.

Whether log h is integrable or not, we have

When h is a simple function, this is just the familiar relation between finite

arithmetic and geometric means. The same inequality will apply to the

function Jic if g is any real-valued integrable function. If such a g also

satisfies J gdO = 0, the inequality becomes

In particular, this holds if g = Re /, with / in A . So we have

exp Q / log
hd6^

g inf^ / t&dO, g = 9L\ J gd = 0.

< inf ~--
27T

It is not difficult to see that the last two infima are equal. The functions
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Re/ with / in A are dense in the real continuous functions, and, conse-

quently, dense in the real L1 functions. Thus the functions Be / with / in

AQ are dense in the real L1 functions g for which J gdd = 0. This alone

does not prove the equality of the two infima, since there is some difficulty

when we exponentiate. The difficulty can be removed as follows. If g is a

real L 1 function for which J gdO = 0, we can find a sequence of real func-

tions gn in L such that J gndO = and gn increases monotonely to g. By
the monotone convergence theorem it is clear that the infimum is the same

for the class of real L functions as it is for the class of real L 1 functions.

But each real L function is the pointwise almost everywhere limit of a

bounded sequence of the functions in Re A. Now, by the bounded con-

vergence theorem, the infimum is the same for real 7^ functions as it is

for functions in Re A .

Now we want to reverse the inequality. Suppose first that log h is

iritegrable. Let

and put g = X log h. Then g is real, in L1

,
and J gdO = 0. Also,

/ he'M = J eW = exp / log

Thus the infimum is attained at g and the inequality is actually equality.

If log h is not integrable, for any e > the function log(A + c) is in-

tegrable, so

exp TT- J log (h + )dffl
= inf ^- J (h + e)

Letting e tend to zero, we have the theorem.

Theorem (Szego; Kolmogoroff-Krein). Let p be a finite positive Baire

measure on the unit circle and let h be the derivative of n with respect to nor-

malized Lebcsguc measure. Then

inf I |1 -/|WM =
expf^- /' }ogh(0)do]fAo J L>fl" J-* J

Proof. By the last theorem,

exp f~- J log hde] = inf ^- J h#**W.
L** J gAo At

Now c2Rfiflf = \e
9

\

2
. If g is in A^ the function e has the form e 1 /

with/ in ^
,
soe2Re * =

|1 -/|
2

. Thus

exp [^ J logW] ^ mf ^ J |1
-

f\*hdd.

We now deduce the reverse inequality by applying this one to a dif-
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ferent function h. Let g be in AQ and apply the last inequality with h

replaced by |1 g\
2

. We obtain

exp [^ / log |1
-

flf|w]
^ mf ^ J |1

- / - g + fg\*dO

^ 1.

In particular, the function log |1 </|

2 is Lebesgue integrable and

Jlog|l -g\*M0.
Therefore,

|1
-

flf|*
= ke*

where p is a real L1 function such that / pdO = and the constant k

satisfies k ^ 1. This tells us (returning to our original h) that

;r J I

1 - ^Me = k '

<7~ J he*de ^ inf ;r J
Zir ZTT /^AO ^T

If we inf over g, we obtain

inf / |1
-
/|*W = exp

J-
/ log

We proved in Corollary 1 above that the infimum here is equal to

inf l

That completes the proof.

Of course, we may replace AQ in the theorem by the family of poly-

nomials vanishing at the origin. An immediate corollary to Szego's theorem

is that in L2(dW the closed linear span of the functions e
inB

,
n ^ 1 contains

the constant function 1 if, and only if,

MS)*---
This is easily seen to be equivalent to the statement that these functions

span L 2
(diJ.).

Completion of the Discussion of H1

Recall that the space Hp was defined as the class of analytic functions/
in the open unit disc for which the functions /r(0) = f(re

ie
) are bounded

in L ;)-norm. For 1 < p ^ oo we were rather easily able to identify Hp with

the space of Lp functions on the circle such that

JV/(0)d0 = 0, n = l,2,3,....

This used only the harmonicity of the functions in Hp
. For p =

1, the
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fact that an / in Hl was harmonic enabled us to identify / with a finite

measure /x on the circle (/ is the Poissori integral of M). The fact that / was

analytic told us that /* was "analytic", i.e.,

JVMW =0, n = 1,2,3,....

Now we have the theorem of F. and M. Riesz, which tells us that

dp =
,7- fdO where / is in L1

, and, of course, that / is the Poisson integral
2iTt

of /. The functions fr converge to / in L1

norm, and, in fact, the non-tan-

gential limit relation

holds for almost every 0. So we may now identify Hl with the space of L1

functions on the circle which are "analytic", just as we did for Hp
, p > I.

Now we want to establish some special properties of Hp functions on

the circle, chiefly the fact that if / is in PI1 then log I/(0)| is Lebesgue-

integrable.

Theorem. Let f be any function in H 1 such that

Then log |/(0)| is Lcbcsguc intcgrable and

Proof. First suppose / is in H2
. Applying Szego's theorem to the meas-

we obtain

cxp
^

/ log |/|Vtf
= urf J |]

-
g\*\f\*d6.

ure ;r~ \f\~dO, we obtain

For ^ in y!
,

where p is in ^lo- This last integral is not less than |/(0)|
2

. It follows that

If / is not in H2
, choose a sequence of functions /n in H2 such that

/n(0) = /(O) and fn converges to / in L1
. For example, let fn be the nth

Cesaro mean of the Fourier series for/. Then
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Letting n QO, we obtain the desired conclusion. In passing to the limit

here, a comment may be in order. Tf we choose any 6 > 0, the functions

log (|/n| + c) will converge to log (|/| + e) in Ll

,
and we may pass to the

limit with no difficulty:

Now let e tend to zero, and we are done.

Corollary. For any non-zero i in H 1 the Junction log |f(0)| is integrable and

Proof. As a function on the disc we can write f(z) = zng(z) where

0(0) 5^ 0. It is clear that g is also in 7/1 and that |<7(e
ifi

)|
=

\f(e
i6

)\ almost

everywhere. Apply the theorem to g.

Corollary. // f is in H 1

,
then f cannot vanish on a set of positive Lebesgue

measure on the circle unless f is identically zero.

The inequality

is simply an extension of Jensen's inequality from the case of analytic

boundary values to the case of integrable boundary values. We shall dis-

cuss the analogous extension of Jensen's formula for the difference of the

two quantities in the next chapter. We shall give another proof of the

integrability of log |/| for / in H1 when we discuss Dirichlet algebras. This

proof will also extend to the general context of Dirichlet algebras, but it

will be more elementary because it docs not make use of the Szcgo theorem.

One should contrast the last corollary with the situation for harmonic

functions. If / is harmonic in the disc and the functions /r(0)
= f(re

i6

) are

bounded in U norm, then / has non-tangential boundary values at almost

every point on the circle. These boundary values are the derivative with

respect to Lebesgue measure of the measure of which / is the Poisson in-

tegral. These boundary values may vanish almost everywhere, which hap-

pens if and only if the measure corresponding to / is singular. But when /
is analytic, the non-tangential boundary values cannot vanish, even on a

set of positive Lebesgue measure, unless / = 0.

Theorem. Every function in H 1
is the product of two functions in H2

.

Proof. It is no loss of generality to assume that we have a function / in

H1 for which /(O) ?* 0. Then log |/| is integrable, so for the positive rneas-
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lire dp =
|/|d0 the constant function 1 is not in the L 2

(dp) closure of AQ,
ZTT

the continuous H1 functions vanishing at the origin. By the first theorem

of this chapter |/|
=

fe|l F|~
2 almost everywhere, where F is the or-

thogonal projection of 1 onto the L 2
(d/x) span of -4

,
and k is a non-zero

constant. By the same theorem, (1 F)"
1
is in 772 and (1 F)/ is in L2

.

It is trivial to verify that since / is in 771 the function (1 F)/ is not only

in L2 but also in II2
. The factorization of / is then

/= (l-F)-'-(l -F)/.

Theorem. Let h be a non-negative Lebesguc-integrable function on the

circle. A necessary and sufficient condition that h be of the form h =
|f|

2
,
with

f a non-zero function in II2
,
is that log h be integrable.

Proof. If h =
\f |

2 with / non-zero in 7/2
,
we know that log A is in-

tegrate. On the other hand, if log A is integrable, then \h\
=

fc|l F|~
2
,

as in the last proof.

This theorem has another proof, which makes use of more of the special

properties of the disc.

Theorem. Let h be a non-negative integrable function on the circle. Then

h is the modulus of a non-zero H1

function if and only if log h is integrable.

If h is non-negative and in L, then h is the modulus of a non-zero H*function

if and only if log h is intcgrable.

Proof. Both statements have been proved in one direction. Suppose

log h is integrable. Let

Then / is analytic in the disc and

I/I
= c-

where u is the Poisson integral of log h. Now

w
=

. _ m
exp [U(re)]d6.

Also, since d/x
= Pr(0 l)dt is a positive measure of mass 1,

JTT

exp [(*)] = exp f^ f'f
P,(0

-
t) log *(0]

-

and so

*
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Thus /is inland
lim \f(re*)\

= limexp \u(re*)]

almost everywhere. If h is bounded, the above estimates show that / is in

jff
00

, i.e., it is a bounded analytic function.

Dirichlet Algebras

Let X be a compact Hausdorff space and let A be a uniformly closed

complex-linear algebra of continuous complex-valued functions on X which

contains the constant functions. We say that A is a Dirichlet algebra if

the real parts of the functions in A are uniformly dense in the real con-

tinuous functions on X. The terminology is due to A. M. Gleason. Of

course, we have just been working with one example of a Dirichlet algebra,

the algebra of continuous functions on the unit circle whose Fourier coeffi-

cients vanish on the negative integers. Another example is the following.

Let X be the torus, i.e., the product of the unit circle with itself. With
each continuous function/ on X, there is associated a double Fourier series

/(0, #) ~ S cmne
im6ein+

m,n

where the Fourier coefficients cmn are defined by

Cmn =

It is convenient to think of the Fourier coefficients as indexed by the lattice

points (m, ri) in the plane. If S is a set of lattice points, call S a half-plane if:

(i) for any two integers m, n, one and only one of the points (m, ri)

and ( m, ri) is in S\

(ii) for (m, ri) and (w ,
rc ) m S, the sum (m + m^n + n ) is in S.

If S is a half-plane of lattice points, let A be the set of all continuous

functions on the torus whose Fourier coefficients vanish outside S. Then
A is a Dirichlet algebra on the torus. There are certain obvious half-planes

one might use. An interesting one is obtained by choosing an irrational

number a and

S = {(m, n);m + not ^ 0}.

Another example (which includes the two examples above) is obtained

as follows. Let X be a compact abclian group whose character group X
contains a subsemigroup S, which "totally orders" X:

(i) the zero (identity) of X is in S;

(ii) for any non-zero element y in X, either y is in S or y is in S,

not both.
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Let A be the algebra of continuous functions on X whose Fourier trans-

forms vanish outside S. Then A is a Dirichlet algebra.

In a 1958 Acta paper, Henry Kelson and David Lowdenslager extended

most of the theorems of this chapter to the group context described in the

last example. As we said earlier, most of the elegant proofs we have given
are theirs. Some of the results had been obtained for Fourier series in

several variables by Bochner and others. Arens and Singer had previously

done some of the complex function theory in the group context. After the

appearance of the Helson-Lowdenslager paper, Bochner pointed out that

their results generalize to the context of certain rings of functions. Then
it was apparent that probably one natural setting for their work was
Dirichlet algebras.

Let A be a Dirichlet algebra on the compact space X. If pt is a finite

positive Baire measure on X, let Hp
(dv) denote the closure in Lp

(dn) of

the functions in A. When X is the circle and A is our standard example,

the Hp
spaces are Hp = Hp I dO V The particular relationship between

A and dO which is relevant here is that this measure is multiplicative
^7T

on A:

f,gmA.

For the general Dirichlet algebra A we single out any non-zero positive

Baire measure m on X which is multiplicative, on A. Then we proceed to

study the spaces Hp = Hp
(dni). We denote by A Q the set of functions / in

A such that J/dm = 0. With the proofs given above one obtains the

following results.

(1) Let M be a positive measure on X such that 1 is not in the closed

subspace of L2
(d/x) spanned by AQ. Let F be the orthogonal projection of 1

into that subspace. Then the measure |1 Fj
2
d/z is a non-zero constant

multiple of dm] the function (1 F)"
1
is in H*(dm) ;

and if h = dp/dm the

function (1
- F)h is in L2

(dm).

(2) If /z is a positive measure on X and d a = (dn/dm)dm, then

inf

In particular, if /* is mutually singular with w, then 1 is in the closed sub-

space of L2
(d/u) spanned by A .

(3) If /z is a finite complex measure on X which is orthogonal to A^
then the absolutely continuous and singular parts of M (with respect to m)
are separately orthogonal to AQ.

(4) If M is a positive measure on X, then
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(5) If / is a function in IP (dm) such that J fdm ^ 0, then log |/| is

intcgrablc with respect to m and

(6) Every function/ in ffl

(drn) for which J fdm 9* is the product of

two functions in //2
(dm).

(7) Let h be a non-negative function in L l

(dm). Then h has the form

h = \f |

2
,
where f is in 7/2

(rfm) and f fdm ^ 0, if and only if log h is in

U(dm).

Some comments are in order. Statement (4) above says that the Szego
theorem is valid for Dirichlet algebras. On the other hand, the theorem

of F. and M. Riesz generalizes in a different form from the circle context.

We do obtain the fact that if ju is orthogonal to AQ the absolutely continuous

and singular parts of M are orthogonal to A
]
and that any singular measure

orthogonal to A is also orthogonal to 1. This is where the general state-

ment stops. It docs immediately imply the classical result, because we can

keep shifting the singular measure on the circle to conclude that it is zero.

For the general Dirichlet algebra one can have non-zero measures orthogo-
nal to AQ which are mutually singular with m (sec Exercise 11).

The integrability of the log of a non-zero H1 function is false for the

general Dirichlet algebra. One does have

log | J /dmj ^ Jlog|/|dm

so that log |/| is integrable if $ fdm ^ 0, but when the latter integral is

zero and / 7* it may happen that log |/| is not integrable. As we men-
tioned earlier, the Jensen inequality has a very short proof for Dirichlet

algebras which avoids the use of the generalized Szego theorem, and, in-

deed, uses only the definition of Dirichlet algebra. This inequality was first

proved for Dirichlet algebras by Arcns and Singer. The following short

proof was communicated to me by John Wermer.

Let X, A, and m be as above. Let / be any function in A. We denote

byKm) the integral J fdm. We wish to prove that

/log |/|dm ^ log |/(m)|.

Choose e > 0. Then log (|/| + e) is a real-valued continuous function on X.

Therefore, we can find a function g = u + iv in A such that

|u- log (|/| +)|< onX,
that is,

u - < log (|/| + e) < u + e.

Let h = e~~g
, so that h is also in A and

|ft|
= e~~

u
. On X we then have

\fh\
=

\fe-o\
=

l/ler- < e'
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by our choice of g. Since m is multiplicative on A, we also have

and

\f(m)\\h(m)\ :S
-A

So

log |/()| +log|*(m)| <e
or

log|/(m)|
-

u(m) < e.

Now M < + log (|/| + e) on X; hence

w(m) < e + / log (i/|

and we obtain

Let tend to zero, and we have Jensen's inequality for any / in A .

To prove the inequality for / in I/ 1

(dm), just approximate / in U(dm)
by functions in A .

NOTES

Szego's theorem is in Szego [86]. The characterization of H1 functions and the

intcgrability of log |/| is in F. and M. Riesz [72]. Many proofs of the F. and
M. Riesz theorem on measures have been given, e.g., see Kelson [42]. Some
recent work on the result can be found in Bishop [10], Wermer [91], Hoffman [47],

and Helson-Lowdenslagcr [43]. The last paper is the one from which most of the

proofs in this chapter arc taken. Bochner [14] pointed out the generality of their

arguments. Also sec Bochner J

s earlier paper [15]. Dirichlet algebras were defined

by Gleason [34]. More about Dirichlet algebras can be found in Wermer [92, 93].

The Helson-Lowdcnslager proofs extend somewhat beyond Dirichlet algebras, as

Bochner observed. The critical hypotheses for the proofs given here are (i) A is

an algebra of continuous complex-valued functions on the compact Hausdorff space

X, containing the constant functions; (ii) m is a positive measure on X which is

multiplicative on A ; (iii) if /z is a positive measure on X which agrees with m on A,
then /i

= m; (iv) the functions in A and their complex conjugates span l?(dm) ;

(v) each real / in L*(dw) is the pointwise almost everywhere limit of a bounded

sequence of functions in Re A . These hypotheses are satisfied if A is the algebra
of bounded analytic functions in the unit disc, if X is the maximal ideal space of the

algebra of bounded measurable functions on the unit circle, and if m is the measure

on X corresponding to Lebesgue measure on the circle. Hypothesis (iii) is satisfied

because of a theorem of Gleason and Whitney [35]. See Chapter 10. If one wants

the results just for Dirichlet algebras, the proofs can be shortened somewhat by first

proving Jensen's inequality for functions in the algebra, using the proof at the very
end of this chapter. Jensen's inequality for Dirichlet algebras was first proved by
Arens and Singer [5]. In fact, their proof shows that the Jensen inequality follows

from hypotheses (i), (ii), and (iii) above. We should mention that hypothesis (v)

above is used only in the proof of the Szego theorem, and all of the results enumer-
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ated on pages 55-56 follow from hypotheses (i)-(iv), except possibly result (4). We
shall see, in Chapter 10, other hypotheses which may replace (v) in obtaining

Szego's theorem. As a sampling of some previous generalizations of function theory
in the unit disc, see Bochner [13], Mackcy [57], Arens and Singer [6], and Wiener
and Masani [59]. Jensen's inequality for Dirichlct algebras was first proved by
Arens and Singer [5]. The integrability of log |/| for certain rings of continuous

functions was proved by Arens [4]. For more about analytic functions which vanish

on a set of positive measure, one may consult the paper of Lusin and Privaloff

[56] or PrivaloiFs book [70]. One result is if / is an arbitrary analytic function in

the unit disc, and if there is some set of positive measure on the circle on which

non-tangential limits of / exist and are zero, then / is identically zero.

EXERCISES

1. If /* is a positive measure of mass 1 and /is a real-valued function in ^(d/z),

prove that

exp[//dM] ^ JV^M
and equality holds if and only if / = almost everywhere dp.

2. Let / be a non-zero function in H1
. Prove the equivalence of these two prop-

erties of /.

[I

fir
gifl

_i_ z "1

/ n
-

log |/(0) \dO I where X is a constant of modulus
Zir J * e

w z J
1 (such an/ is called an outer function).

3. Let M be a finite positive Baire measure on the unit circle and suppose 1 is

not in the L2
(d/u) closure of AQ, the analytic functions with continuous boundary

values which vanish at the origin. Let F be the orthogonal projection of 1 into the

L?(dn) closure of A Q and let G =
(1 F)~

l
. Prove the following.

(a) G is in //2
;
G is an outer function (Exercise 2); (7(0)

= 1.

(b) The absolutely continuous part of M is

. =

where k = inf J |1
-

f\
z
dfj,.

(c) If E is a Baire set such that // lives on E and n, (the singular part of

lives on the complement of E, then the characteristic function of E is in

the closure of A in L?(dn).

(d) With reasonable conventions

4. Let p, be a finite positive Baire measure on the unit circle. Prove the equiva-
lence of the following.

(a) 1 is not in the L2
(d/x) closure of AQ.

(b)
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(c) If we norm A with the L?(dp) norm, evaluation at the origin is a bounded

linear functional on A.

(d) For each z in the open disc "evaluation at 2" is a bounded linear functional

on A, using the L2
(dn) norm on A.

(e) For each function /in H2
(dp) there is an analytic function g in the unit disc

(which is the quotient of two ordinary H2
functions) such that the non-tangential

limits of g agree with / almost everywhere with respect to Lcbosgue measure.

5. For each a, |a| < 1, evaluation at a is a bounded linear functional on the

Hilbert space H2
. This functional is, therefore, "inner product with" some function

in Hz
. Which function?

6. Use Szego's theorem to prove the following. If / is a function in L2 of the

circle, then the functions einBf(6), n ^ 0, span L2 of the circle if and only if

(a) / docs not vanish on a set of positive Lebesgue measure;

(b) log |/| is not Lebesgue integrable.

7. Let MI and nz be positive measures on the circle. In each of the L2
spaces

we complete the potynomials in z, arriving at the Hilbert spaces H2
(dni), H2

(dp.^.

On each of these spaces we consider the linear operator "multiplication by z"
Prove that these two multiplication operators are unitarily equivalent if and only if

(a) Hi and /z2 are mutually absolutely continuous.

(b) the functions log (dpj/d8), j = 1,2, are either both Lebesgue integrable or

both not Lebesgue integrable.

8. Let/ be in Lp of the unit circle C, 1 < p < <, and define g in the open unit

disc by

Is g in .

9. Prove that for any / analytic in \z\ < 1 the /> norms

^ /_',!/(*) I*W

are increasing in r.

10. If r is a conformal map of the disc onto the disc, docs/(z) > /(r(z)) map H2

into itself?

1
11. Consider the torus T =

{(e*. e**)} and Lebesgue measure dm = - r d0d\p
47T2

thereon.

(a) Prove that the functions e***, e*
n* are an orthonormal family in L2

(dm).

(b) Find a Fejcr kernel, giving the Cesaro means of the Fourier series for a

function in Ll
(dm). Prove the analogue of Fejer's theorem, the completeness of

the functions in part (a), etc.

(c) Choose an irrational number a. and let A consist of all continuous functions

of the torus whose Fourier coefficients dkn vanish for k + na < 0. Prove that A is

a Dirichlct algebra on torus.
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(d) Show that the F. and M. Riesz theorem is false for A. That is, let Ao be

the set of functions in A which vanish at the origin :

fdm = 0.

Then show that the measure /z defined by

f fdn = rj(e'^ e- iai
)(\

-
fl)-y, / C(!T)

is singular, non-zero, and orthogonal to AQ.



CHAPTER 5

FACTORIZATION FOR

Hp FUNCTIONS

Inner and Outer Functions

Suppose / is a non-zero function of the class Hl on the unit disc. Then

/ has non-tangential limits at almost every point of the unit circle:

and

/(re*) =
w
f(e)Pr(0

-
t)dt.

Also, log |/(e")l is Lebesgue integrable. Let

F(z) = exp
[ Jl iog |/(e )

Then F is an analytic function in the unit disc. Also, F is in 7/1 because

i /:. i^-)!* ^ s /:. i/^i*

This results from the fact that |F|
= e

M
,
where u is the Poisson integral of

log |/|. Clearly, |F|
=

|/| almost everywhere on the unit circle. Of course,

F has no zeros in the open disc, and

log |F(re*)|
=

/;jog \f(e")\P,(8
-

t)dt.

Thus, \F(z)\ ^ |/00 1

for each z in the open disc. For

log |/(re)| g 4 log |/(e)|Pr(
- 0* = log |F(r^)|.

This inequality is just an application of Jensen's inequality as we proved
it in the last chapter, but using the measure

dm = ^Pr(8-

61
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instead of dt. It is just the statement that log |/| is subharmoiiic; i.e.,
JTT

lies everywhere below the harmonic function log |F|, which lias the same

boundary values as log |/|.

Let us look at the function

F(z)

Now g is a bounded analytic function in the open disc; indeed,

Ifttl
- <, 1

F(z)

in the disc. Also, \g(e*)\
= 1 almost everywhere on the unit circle. Thus

we have/ as the product/ = gF of a bounded analytic function of modulus

one on the boundary and an H1 function F of a rather special type. It will

be convenient for us to make the following definitions.

An inner function is an analytic function g in the unit disc such that

\g(z)\ g 1 and 10(^)1
= 1 almost everywhere on the unit circle. An outer

function is an analytic function F in the unit disc of the form

where k is a real-valued integrable function on the circle and X is a complex
number of modulus 1. It is easy to see that such an outer function F is

in Hl

if, and only if, ek is also integrable; when F is an outer function in Hl

we have necessarily

The following characterizations of outer functions are useful.

Theorem. Let F be a non-zero function in H 1
. The following are equiva-

lent.

(i) F is an outer function.

(ii) // f is any function in H1 such that |f |

=
|F| almost everywhere on

the unit circle, then |F(z)| ^ |f(z)| at each point z in the open unit disc.

Proof. We gave above the proof that (i) implies (ii). On the other hand,

if (ii) holds, let G be the outer function

G(z) = exp
[ ^ log \F(

Then|F(z)| g \G(z)\ ^ |F(z)| on the disc. Thus, F/G is analytic and every-

where of absolute value 1. So F = XG where |X|
=

1, proving that F is

an outer function. Obviously, (iii) holds for any outer function in H1
. Sup-

pose that (iii) holds. Define G as above, and we see that F/G is bounded
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by 1 in the disc and has absolute value 1 at z = 0. Thus F/G =
X, a

constant of modulus 1.

Theorem. Let f be a non-zero function in H l
. Then f can be written in

the form f gF where g is an inner function and F is an outer function.

This factorization is unique up to a constant of modulus 1 and (of course)

the outer function F is in H1
.

Proof. As we observed above, if

F(z) = exp
[

f
log |/(e

then F is an outer function in II 1

, and///*
7 = is an inner function. If we

also have / = giFi with QI inner and FI outer, then \F\
=

|Fi| on the

boundary. Clearly, then, F = \Fi for some number X of modulus 1. So

X01/*
7

!
=

giFi and gi
=

\g.

Blaschke Products and Singular Functions

We are now going to factor each inner function into a product of two

more specialized inner functions. The first of these will be a Blaschke

product, to take care of the zeros of the given inner function. The second

factor will be determined by a singular measure on the unit circle.

Theorem. Let f be a bounded analytic function in the unit disc and

suppose f(0) ? 0. // {an} is the sequence of zeros of f in the open disc, each

repeated as often as the multiplicity of the zero of f, then the product Ii\an \

n

is convergent, that is,

2(1 -
|crn |) <oo.

Proof. Suppose |/1 g 1, for convenience. Of course, / may have only a

finite number of zeros, and then there is no question of convergence of their

product. Otherwise, / has a countable number of zeros : i, az, #3, and

we are going to prove that the infinite product

n M
n = l

converges.

Let Bn (z) be the finite product:

AW = n f^-fc-i 1 - atf

Now Bn (z) is a rational function, analytic in the closed unit disc, and

\Bn(e^)\ = 1, since each of the functions

z oik
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is of modulus 1 on the unit circle. Furthermore, f/Bn is a bounded analytic

function in the disc. Since

^1, a.e.

we have |/(z)| ^ \Bn(z)\ on the disc. In particular,

< |/(0)| g \Bn (Q)\ = n W.
fc = l

n

Since |a*| < 1 for each k, and since each of the partial products II [a*|

is not less than |/(0)|, the infinite product converges, completing the proof.

What we have in mind here is to form an infinite product from the

zeros of/, thus obtaining a function by which we can divide /to arrive at

a function with no zeros. Thus one would hope that the infinite product

n

should converge; however, it need not. Fortunately, if we simply rotate

the nth term in the product by an/|an|, the new infinite product does

converge.

Lemma. Let {an} be a sequence of non-zero complex numbers in the open
unit disc. A necessary and sufficient condition that the infinite product

"
OLn Un Z

n=B i |an |

1 ~ oL nz

should converge uniformly on compact subsets of the disc is that the product

II |n| should converge, i.e., that

S (1
- W) <>.

n= l

When this condition is satisfied, the product defines an inner function whose

zeros are exactly i, a*, . . . .

Proof. Let us first prove the last statement. Form the partial products

AW = n ft f^-fc=i \ak\ 1 oik*

Each Bn is analytic in the closed unit disc and has modulus 1 on the unit

circle. If the sequence {Bn} converges uniformly on compact subsets of

\z\ < 1 to a function B
f
it is clear that B is bounded by 1 and is analytic

in the interior of the unit disc. Of course, uniform convergence of the

infinite product means more than uniform convergence of the Bn . It

means that on each compact subset of the open disc at most a finite number

of the factors in the product have a zero, and that when these factors are

removed the partial products of the remaining infinite product converge
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uniformly to a function without zeros on the compact set. Uniform con-

vergence of the infinite product on compact sets certainly yields a bounded

analytic function whose zeros are e*i, <*2, . . . . In particular, this con-

vergence implies

Jx

(1
~ W) < oo.

Now suppose the an satisfy this last condition. Certainly, then, no more

than a finite number of factors in the infinite product can have a zero on

any given compact set. We wish to establish uniform convergence of the

product on each closed disc \z\ < r < 1. Let

Then

If |z| g r, then

Since 2 (1 |an |) < ,
we see that 2 |1 fn(z)\ is uniformly summable

on \z\ g r, and hence that the product n/(z) is uniformly and absolutely

convergent on that disc.

The convergence of the infinite product, if it is assumed that

2 (1 |a|) < oo, has another proof which is interesting and should be

mentioned. This proof also shows easily that the product is an inner

function. Let Bn be the nth partial product as above. It is then easy to

see that {Bn} converges in H2 on the circle. For

^ fl, \

B<
- 2 Rc Bn

Since each Bk has modulus 1 on the circle,

|Bm|2
=

|
Bn]2

= ! and

Thus

If n > m, then Bn/Bm is analytic and
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Thus

Since the infinite product II |*| converges, we see that Bn B in H2
.

This L2
convergence on the boundary easily yields uniform convergence

of Bn to B on compact subsets of the disc. A subsequence of the Bn con-

verges pointwise almost everywhere to B on the circle, from which it is

clear that B has modulus 1; i.e., B is an inner function.

A Blaschke product is an analytic function B of the form

where

(i) p, pi, PS, . . . are non-negative integers;

(ii) the aw are distinct non-zero numbers in the open unit disc;

(iii) the product II I
n

I

11" is convergent.
n

We have just seen that such a product converges uniformly on compact
sets and that the only zeros of B are a zero of order p at the origin and a

zero of order pn at . Of course, if p = or pn = 0, the corresponding

term in the product may be deleted so that one retains only the factors

which give rise to zeros. The only reason for allowing the orders to be

is to have one unified definition of Blaschke product.

Theorem. Let f be a non-zero bounded analytic function in the unit disc.

Then f is uniquely expressible in the form f = Bg where B is a Blaschke

product and g is a (necessarily bounded) analytic function without zeros.

Proof. Since / j 0, we can write /(z)
= zph(z) where A(0) j 0. Let B

be the product of zp and the Blaschke product formed from the zeros of h.

Then g
= f/B is analytic and bounded in the disc. The factorization

/ = Bg is unique, since a Blaschke product is uniquely determined by its

zeros.

Suppose we apply this last theorem when / is an inner function. Then
we shall have / = Bg, where B is a Blaschke product and g is an inner

function without zeros.

Theorem. Let g be an inner function without zeros, and suppose that g(0)

is positive. Then there is a unique singular positive measure p on the unit

circle such that

Proof. Since g is analytic in the disc and has no zeros, g = e~h
,
where h
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is an analytic function in the disc. Since g is bounded by 1, the real part

of h must be non-negative on the disc. Let h = u + iv so that u ^ 0.

The non-negative harmonic function u is uniquely expressible in the form

where \L is a positive measure on the circle. Since 0(0) > 0, we have
=

(or, at least, we may assume so by subtracting 2kiri from h). Thus,

Now |0|
= 1 almost everywhere on the circle. Since \g\

= <rM
,
this just

means that the non-tangential limits of u must vanish almost everywhere

on the circle. But these non-tangential limits are equal to So M is
ZTT u"

singular, and that completes the proof.

One important part of the above proof is the fact that if h is an analytic

function with values in the right half-plane and ft(0) > 0, then

for some positive measure \L on the circle. This is usually known as

Herglotz's theorem. It is equivalent to the theorem that a non-negative

harmonic function in the disc is the Poisson integral of a positive measure,
this also being known as Herglotz's theorem.

Let us call an inner function without zeros which is positive at the

origin a singular function.

The Factorization Theorem

Theorem. Let f j be an H 1

function in the unit disc. Then f is uniquely

expressible in the form f = BSF, where B is a Blaschke product, S is a

singular function^ and F is an outer function (in H1

).

Proof. We know that / = gF, where g is an inner function and F is an

outer function, and that this factorization is unique up to a constant

multiple of modulus 1. If B is the Blaschke product formed from the zeros

of g (i.e., the zeros of/) then g = BS, where S is an inner function without

zeros. By multiplying g by a constant of modulus 1, we can arrange that

S(0) > 0, i.e., that S is a singular function. We then absorb that constant

into the outer function F, and we are done.

Let us make a final description of the factorization / = BSF. Let p be

the order of the zero of / at the origin, and let i, 2 ,
. . . be the remaining

zeros of /, the multiplicity of an being pn . Then
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= exp
'

f
(log |/(c

where a = arg (//J5) (0) ;
and then

for some positive singular measure JLL From this one can deduce, among
other things, a generalized Jensen formula. If /(O) ^ 0, then

/J.
lo l/(")!d* = loe l/()l + 2 P lQg I""!'

1 + J *

If / is analytic in the closed disc, then the "singular part" of / is zero, B is

a finite Blaschke product, and one has the usual Jensen formula.

Of course, we shall call F the outer part of / and B S the inner part of /.

We know that F is in 7/1 and that B and S arc bounded. One should also

note that Blaschke products and singular functions are analytic in a much

larger region than the open unit disc. For emphasis, we might state these

as theorems.

Theorem. The Blaschke product whose zeros are

<*l, Cfe, 4s, . . .
,

< |on |
< 1

converges at all points z in the complex plane except those in the compact set K
consisting of

(i) the points z = l/on ;

(ii) the points z on the unit circle which are accumulation points of the

sequence {<xn}.

The convergence is uniform on any closed set in the plane which is disjoint

from K, and the product B(z) is thus analytic off K.

Proof. On any closed set disjoint from K, the numbers |1 anz\ are

uniformly bounded away from zero. The same estimates used for conver-

gence in the disc then apply.

We should remark that B(z) has a pole at each I/a*, and has an es-

sential singularity at the accumulation points of the an . In particular, B
cannot be extended continuously from the interior of the disc to any such

accumulation point, for the extended value of B would have to be zero,

while the non-tangential limits of B are of modulus 1 almost everywhere.

Theorem. // S is the singular function determined by the positive singular

measure M, then S is analytic everywhere in the complex plane except at tJwse

points of the unit circle which are in the closed support of the measure ju.



Factorization for H^ Functions 69

The function S (or even |S|) is not continuously extendable from the interior

of the disc to any point in the closed support of n.

Proof. The closed support of /z is the complement of the union of all

open sets on the circle which have /^-measure zero. Let K be this closed

support set. If z is not in K, then the function

is analytic at z with derivative

S = c~h
is analytic off K. This has nothing to do with the fact that ^ is

singular.

Suppose we have a point e^ on the circle such that \S\ extends con-

tinuously to this point. Certainly, then, |(<^
(1

)|
=

1, so Reft must be

bounded near this point. That is, there is a positive 5 such that Re h(re
i0

)

is bounded for |0 | ^ 6. Let u = Re h so that

u(r, 0)
= J Pr(0

-
t)dp(l).

Let gr be the restriction of ur to the interval \0 ^ 5, and then {0r}

is a bounded family of continuous functions on that interval. Thus, there

exists a bounded measurable function g which is a weak-star cluster point

of this family. Let F be any continuous function on the circle which

vanishes off the interval |0 |
g 5. Then

lim 1- [' F(S)u(r, 0)dO = f Fd/i
r_i ZTT J*

and the integrals

cluster at

S-r.~F(ff)g(e)d.
TT JUo 6

Since F vanishes for |0 |
> 6, we see that the last integral must be

equal to J Fd/z. Since this holds for all such F, we see that the restriction

of ^ to |0 0o
|
< 8 is absolutely continuous with respect to Lebesgue

measure on that interval and =
g. Since ju is singular, g = and

av 6TT

eie
is not in the closed support of M- That completes the proof.

Theorem. Let f be a function in H 1
. Then f is in H>, 1 g p ^ oo

, if

and only if the outer part of f is in H>. If f is continuous on the unit circle,

so is the outer part of f .
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Proof. The statement about Hp functions is obvious. Suppose / is con-

tinuous on the circle. LetK be the closed set of points on the circle at which

f(e) = 0. Let / = BSF be the canonical factorization of /. Certainly,

every point of accumulation of the zeros of the Blaschke product B is

contained in K, so B is analytic (and non-zero) at every point of the circle

which is not in K. The outer function

F() = exp\' ( log \ f (*) \
+

is continuous (and zero) on K because \F\
=

\f\. Since \F\ and B are con-

tinuous off K, so is \S\. By the last theorem, then, the measure M which

determines S must have its closed support contained in K. Consequently,

S is analytic off K. It follows that F = f/BS is continuous offK
,
and hence

that F is continuous on all of the circle.

Absolute Convergence of Taylor Series

This is a short section which contains two interesting theorems. One

is the theorem of Hardy and Littlewood which states that if a function in

Hl
is of bounded variation on the unit circle then the Taylor series for the

function is absolutely convergent. The other is Hardy's theorem on the

growth of the Fourier coefficients of an Hl function. We treat the latter

theorem first.

The Riemann-Lebesgue lemma states that the Fourier coefficients of

an integrable function tend to zero. For 7/1
functions, one can say much

more.

Theorem (Hardy). Let f be a function in H1 with power series

S anzn .

n=0
Then

s ^K|g Hi/Hi.
w = i n

Proof. First suppose that an ^ 0, n = 0, 1, 2, . . . . Then
00

Im/(re**) = S anrn sinn0.
n= l

Since

-L
2n

we obtain

(v _ 0) si
o ' n

onr- =
'

(
-

ff)
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Let r tend to 1 and we have what we want, assuming that an ^ 0. For the

general / write / = gh where g and h are the H2 functions defined by

and B is the Blaschke product of the zeros of /. If

000 = S bnz
n

n=

ftOO
= S c*z

n

n =

then by the Riesz-Fischer theorem the functions

G(z) = S
|fcn |z

//(z)
- 2 MZ*

are also in //2
;
in fact,

||(?||. Hldli and II//H. HWI,.

Let F = GIL Certainly, F is in H\ and

F(z) = 2 anzn
n =

where ow ^ 0. It is also apparent that \an \
g an . By the first part of our

proof

S i|o.|S S ^o.gn-in n =l^

But

and we are done.

Theorem. Lei f be a function on the unit circle which is both of bounded

variation and in H 1
. Then

(i) f is an absolutely continuous function;

(ii) the Fourier series for f is absolutely convergent.

Proof. Since / is of bounded variation, the Fourier coefficients of / are

(n * 0).

In particular, d/ is analytic. By the theorem of F. and M. Riesz, df is

absolutely continuous, i.e., df = gdO, where g is in H1
. Thus an = -&*,
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where bn is the nth Fourier coefficient of 0, n =
1, 2, 3, . . . . By the last

theorem

2 |o|
=
J i^l <oo.

That completes the argument.

Remarks on the Classical Approach

Let us make a few remarks on the more standard approach to the theo-

rems of this and the last chapter. Having defined the classes Hp in the

unit disc, p > 0, one can proceed direct!y to dispose of the case p > 1.

We did this by using the weak-star compactness of the unit ball in Lp
.

Needless to say, the case p 2 is much more easily disposed of; for if

/(Z)
= 2 fl2W

then
* I

"
I / / ;o \ I 1 n. ^^= 2*

So if / is in 7/2
,
we let r 1 and conclude that {an} is square-summable.

By the Riesz-Fiseher theorem, the an are the Fourier coefficients of an L2

function on the circle, arid it is apparent that / is the Poisson integral of

that function. One can then prove Fatou's theorem as we did, obtaining

non-tangential convergence almost everywhere of /to its boundary values.

If our function / happens to be bounded, the non-tangential convergence
makes it apparent that the boundary values of / define a bounded measur-

able function. This settles at least // and IP as far as the boundary value

theorems are concerned.

For any p > and any analytic/, it is relatively easy to show that the

Lp norms of the functions /r (0)
= f(re) are increasing as r 1. From this

one can see, for an / in Hp
,
that the infinite product of the moduli of the

zeros of / converges. Thus, any / in Hp is of the form/ = Bg, where B is a

Blaschke product and g is a function in IIp without zeros. Since g has no

zeros, g
pl* is analytic and is in II2 . Thus, g

pl2 has non-tangential limits

almost everywhere. Consequently, such limits also exist for

In particular, if / is in H l

,
we have

/ = (BVg)Vg

i.e., / is the product of two H2 functions. We thereby obtain the theorem

of F. and M. Riesz that every function in Hl
is the Poisson integral of

an L1 function on the circle, that L 1 function being the product of the

boundary values of BVg and those of Vg.
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The boundary values of a function in Hp define an Lp function on the

circle, and for any p ^ 1 the Poisson integral of this function is /. Of

course, one would not expect such an integral representation for p < 1.

The integrability of log \f(c
ie

)\ for/ in Hr> is fairly easy to obtain. If one

defines for h ^
log+ h = max [log h, 0]

logT h = min [log h, 0]

one has the following. Since log x ^ xa for large x and a given positive a,

it is easy to see that for any / in H1* the integrals

are bounded as r 1. By the classical Jensen inequality

/_Vs
+ !/(*)!* + /-,

log
~
\K

Assuming /(O) 5^ 0, one sees that the integrals

- log
~
\Kre*^do =

are bounded as r > 1. From this the integrability of log \f(e
ie

)\ is rather

easy to obtain.

The factorization theory for H 1 may now proceed as we did it above.

Functions of Bounded Characteristic

The factorization we have given for H p functions generalizes to the

class of functions of bounded characteristic, i.e., meromorphic functions

which are the quotient of two bounded analytic functions. If / = g/h,

where g and h arc bounded analytic functions with h not identically zero,

it is apparent that / has finite non-tangential limits at almost every point

of the circle. Suppose we write g and h as products of Blaschke products,

singular functions, and outer functions, say g = BgSgOg ,
h = BhShOh* The

quotient Og/0h has the form

where X is a scalar of modulus 1 and

k = log |0|
-

log |A|
= log |/|.

It is, therefore, an outer function (though not necessarily in H1

).

The quotient Sg/Sh has the form
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where M is a real singular measure; i.e., /x
= HH M& where these are the

positive singular measures going with h and g.

We conclude that every function of bounded characteristic has the form

where p is a real measure on the circle, and B\ and #2 are Blaschke products.

The absolutely continuous part of p will be log \f\dB. We could also ar-

range that BI and Bz have no common factor, and then the representation

is easily seen to be unique.

Of course, an IIP function is the quotient of two bounded analytic

functions. It suffices to show this when / is an outer function in Hp
. Then

/ is the quotient of the bounded outer functions determined by log" |/|

and log
+

|/|.

Functions of bounded characteristic are characterized by the property

that the integral of log+ |/| around the circle of radius r is bounded as

r 1 . For this result, we refer the reader to Ncvanlinna's book, Eindeutige

Analytischen Funktionen.

NOTES

The factorization for Hp functions should probably be attributed to Ricsz [71],

and Hcrglotz [45]. In the generality of functions of bounded characteristic, the

reference is Nevaiilirma [64]. A good reference for some of the fundamentals

is Beurling's paper [8], in which he coined the terms inner arid outer func-

tions. See also Rudin [75], Zygmund [98], Bicberbach [9], Privaloff [70]. The

theorem on absolute convergence of Fourier series is in Hardy-Littlcwood [41].

See Zjrgmund [98], as usual, for related questions. For a similar factorization of

matrix-valued Hp functions see the papers of Masani [58], Wiener and Masani

[59], and Potapov [69].

EXERCISES

1. Prove that

.

n-ilogn

is not the Fourier series of a finite measure on the circle.

2. Use the Hardy-Littlewood theorem to prove that the Taylor series about

the origin for (1 )
1/2 is absolutely convergent in the disc.

3. Prove that a bounded analytic function in the right half-plane which vanishes

at each positive integer is identically zero.

4. Let/ be a function in 7/1 and suppose that the functions znf, n ^ 0, span H1
.

Prove that / is outer.
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6. Let F be an outer function in H1
. Suppose / is in Hl and f/F is integrable

on the unit circle, \z\
= 1. Prove thatf/F is in//1

. Show that this property charac-

terizes outer functions F.

6. Let / be an analytic function in the unit disc. Prove that / is a (constant of

modulus 1 times a) Blaschke product if and only if

(a) \M\ ^ 1

(b) lim
r-*l

7. Can a Blaschke product be extended continuously from the open unit disc

to any point on the circle where its zeros accumulate?

8. Let |a| < 1 and let <t> be the linear fractional map

Then < induces a map / >/ o0 on the space of analytic functions in the disc.

Does this map preserve the class //*? The class of inner functions? The class of

outer functions in //*?

9. Let / be a bounded analytic function in the unit disc, and suppose there is a

positive number d such that

Prove that there exist bounded analytic functions g and h in the disc so that

(1 -2)0(2) +/(z)/i(z)
==

1, |g|<l.

(Hint: Show that one can choose h so that /A extends to be analytic in a neighbor-

hood of z = 1 and has the value 1 at z = 1 .)

10. Let / be an analytic function in the unit disc. Prove that/ is the quotient

of two bounded analytic functions if and only if

log
+

\f(re*)\dO
r

is bounded as r 1. (Hint: Use the log
+ condition to prove the Blaschke product

of the zeros of / converges; write/ = Eg and get g in the class log+. Write g = eh

and see what g in log+ says about h. Details are in Nevanlinna [64].)

11. Let / 9* be an analytic function in the unit disc, and suppose / is in II1
.

Assume you know nothing about H 1

except its definition. Norm H 1

by

II/H.

or

Prove that evaluation at the origin is bounded on I/1
, i.e.,

|/(0)| ^ A'll/lh.

Now let i, a2 ,
. . . be the zeros of / in the open disc which are different from

and show that the argument we applied to bounded functions proves the con-

vergence of II |aB |.
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12. Let / be a function in H1
. Prove that either of these conditions implies

that /is an outer function:

(a) I// is in//1
.

(b) Be /(*) >0for|2| <1.
If / is inner, prove that 1 + / is outer.

13. Let S be the singular function determined by the positive singular measure

/x. Let \ be any point on the unit circle which is in the closed support of ju. Prove

that there is a sequence of points zn in the open disc such that

lim zn = A and lim S(zn) = 0.



CHAPTER 6

ANALYTIC FUNCTIONS WITH
CONTINUOUS BOUNDARY VALUES

In this chapter we shall be studying the algebra A of continuous functions

on the closed unit disc which are analytic on the open disc. There are

various alternative descriptions of A . For example, A is the uniform closure

of the polynomials p(z). Or, if we identify each function in A with its

boundary values, A consists of the continuous functions on the unit circle

whose Fourier coefficients vanish on the negative integers. Beyond the

polynomials, the most obvious functions in A are those which have an

absolutely convergent Taylor series

/CO = S wn
, 2 |o| < oo.

n = n =

Such functions do not exhaust A
y
since A also contains, e.g., the functions

which are sums of uniformly (but not absolutely) convergent Taylor series.

We proved in the last chapter that any function in A which is of bounded

variation on the unit circle necessarily has an absolutely convergent Taylor
series.

The main point of this chapter is to give the complete description of

the closed ideals in A . This description will make heavy use of the factori-

zation theory of the last chapter, as well as some new material we shall

develop in tins chapter. Before we begin to discuss the ideal theory, we
want to make a few observations about functions in A .

If / ^ is a function in A, we know that the function log l/(e*)| is

Lebesgue integrable on the unit circle. In particular, if K is the (closed)

set of zeros of / on the circle, then K has Lebesgue measure zero. We shall

need a converse for this, namely, if K is an arbitrary closed set of Lebesgue

measure zero on \z\
=

1, then there exists a function in A whose zeros

on the closed unit disc are precisely the points of K. This is a result of

Fatou, which we shall soon prove; indeed, we shall prove Rudin's generali-

zation of the result which says that, given any continuous complex-valued

function g on A", there is a function/ in A such that/ = g on K. For these

11
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constructions we need to know a little about the behavior of conjugate

harmonic functions on the boundary.

Conjugate Harmonic Functions

Suppose / is a Lebesgue-integrable function on the circle. For conven-

ience, let / be real-valued. The function

where Qr is the conjugate Poisson kernel,

1 + re il 2r sin t

is analytic in the open disc. The real part of A is the Poisson integral of /.

Thus we know that if A = u + iv
t
the harmonic function u has noii-

tangential limits which exist and agree with / almost everywhere on the

circle. What about the harmonic conjugate v'? In other words, if

*(r, *)
= i

igat<

Qr (t)
= ^

l _ reit

-
1 _ 2r cos t + Tl

,

does v have non-tangential limits almost everywhere? If so, what are they?

Now Qr is obviously not an approximate identity (positive kernel) like Pr .

Nevertheless, the non-tangential limits do exist almost everywhere for v.

This is easy to see. It certainly will suffice to prove this when / ^ 0. If

we assume that / ^ 0, the above analytic function A has non-negative real

part. Thus, e~h
is a bounded analytic function. Therefore, e~ (M+ *r) has non-

tangential limits at almost every point of the circle, and since these limits

cannot vanish on a set of positive measure, both u and v have finite non-

tangential limits almost everywhere.
This does not answer the question of what the limits are. Since

lim QM) = Qi(t) = 7- :
= ctn \L

r_>i
v ' v '

1 cos i

one's guess would be that

lim v(r, 0)
= ~-

/"* f(0
-

t) ctn \l dt.

r_i ZTT J-T

This is the answer. Since

v(r y 0)
= ~-

/

*

f(B
-

t)Qr(t)di
ATT J~~f

t)Qr(t)dl

*z QT(t)dt
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we are asserting that, as r >
1, v(r, 0) approaches

^dt
2ir J-* 2 tan }t

almost everywhere. In particular, this integral exists for almost every 6.

Here we shall not give the whole story, proving only the sufficiency of the

existence of this integral.

Theorem. Let f be an integrable function on the circle and

// 6 is any number such that the integral

exists, then lim v(r, 0)
=

v(0).
r->l

Proof. Let

so that we are assuming fa is integrable. Now

-s /->>. -<>;-?+ ..

Now if

*rw
1 - 2r cos t + r*

then < gr(t) < 1 and lim gr(t)
=

0, except at t = 0. Since fa is integrable,

we must have J fagr > 0, i.e.,

r,0)
=

v(S).
r-*l

Corollary. // f is differentiabk at then

lim ?;(r, 0) = v(0)
r-l

exists. //, sa?/, f is continuously d/ifferentiable on a closed interval \6 |
^ 5,

^Aen on that interval the functions vr converge uniformly as r > 1.

Proof. The function fa is clearly integrable on any interval
\t\ ^ e > 0.

If / is differentiable at 0, then fa is bounded as t > 0, so <e is integrable.

If /is continuously differentiable on |0 |
^ 5, then we obtain a uniform
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bound on fa for 6 in the interval and t small; it is easy to see that v(r, 0) is

uniformly close to v(6).

Theorems of Fatou and Rudin

The last corollary enables us to construct special analytic functions

with continuous boundary values.

Theorem (Fatou). Let K be a closed set of Lebesgue measure zero on the

unit drck. Then there exists a function in A which vanishes precisely on K.

Proof. Let w be an extended real-valued function on the circle such

that

(i) w = oo on K, and tends continuously to QO as e
w
approaches K;

(ii) w g 1 on the circle;

(iii) w is finite-valued and continuously differentiable on C K]
(iv) w is integrable.

Such a w can be found since K has measure zero. One naive way to con-

struct such a function is the following. Since K is closed, the complement
C-K is the union of a countable number of disjoint open intervals (arcs) /.

Let en be the length of In . Choose a strictly positive and continuously dif-

ferentiable function yn on In such that yn ^ e~J

, yn tends to zero at the

endpoints of /, and

If we define y to be zero on K and y = yn on 7n ,
then ^ y g e~ ]

;
the

zeros of y are precisely the points of K
; y is continuous on C and continu-

ously differentiable on C-K; and log y is integrable. Let w log y.

Now define

Then h is analytic in the open disc arid Re h g 1. By property (iii)

of w and the Corollary above, h is actually continuous on the complement
of K in the closed disc. Since w tends continuously to > at each point

of K, the function

Re h(r, 0)
= ~-

tends radially to oo for each 6 in K.

Now let

1

'-JT
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It is apparent that g is in A
,
Re g ^ 0, and the zeros of g on the closed

disc are exactly the points of K. We remark that Re g = exactly on K.

Theorem (Rudin). Let Kbe a closed set of Lebesgue measure zero on the

unit circle
,
and let F be any continuous complex-valued function on K. Then

there exists a function in A whose restriction to K is F.

Proof. Assume K is non-empty. We can find a function / in A such

that

(i)/(z) = lifzetf;

(ii) |/(z)| < 1 if z is a point of the closed disc not in K. Just construct

g as in the last theorem and let / = e.

The idea of the proof is this. Using this function /, we prove that the

algebra of continuous functions on K which we obtain by restricting A to

K is uniformly closed (on K). Then we observe that this algebra of restric-

tions is (uniformly) dense in the continuous functions on K .

Let h be any function in A. Since/ = 1 on K and |/| < 1 off K,

sup|/i|
= lim \\f*h\l

K n~*

where (of coiirse) || \\M denotes the sup norm over the entire closed disc.

Each f
nh agrees with h on K. This means that f

nh = h + g, where g is a

function in A which vanishes on K . We now have

sup \h\
= irif \\h + 011*, 0-A, = on K.

K ff

Let S be the subspace of functions in A which vanish on K. Now S is a

closed subspace of A and

suplAl = inf \\h + 0IL

The right-hand number above is the standard quotient norm for the

coset h + S of the subspace S. It is easy to verify that, if S is a closed

subspace of a Banach space A, the quotient space A/S is complete in the

quotient norm. We conclude that the restriction of A to K is uniformly

closed.

It is quite easy to see that if K is any proper closed subset of the circle,

then the restriction of A to K is dense in the continuous functions on K.

Let AK be the uniform closure on K of the restrictions of the functions

in A. By a rotation, we may assume that K omits the open arc |0| < a

on the circle. If x is a positive number greater than 1, then (z x)~
l
is

in AK , indeed, in A. Let x be the infimum of the real numbers x > 1

such that (z z)-
1
is in AK- Claim: z = 1. Suppose XQ > 1. Then

we can find an x > XQ and e > such that x x<> < e but K lies outside
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the disc \z x\ < e and (z a;)"
1
is in AK . Let w =

(z x)~
l so that K

lies in the disc \w\ ^ 1/e. Now (z rco)"
1
is analytic on \w\ g 1/c and is,

therefore, uniformly approximate on that disc by polynomials in w. We
conclude that (z x^)"

1
is in AK ] indeed, we see by the same argument

that (z /)~
1

is in AK for any / satisfying \x t\ < e. Clearly, there is

such a real t less than #o. This contradicts the definition of XQ. We conclude

that XQ = 1; in particular, 1/z = z is in AK> By Fejer's theorem, AK
contains every continuous function on K.

We remark that the second half of the above proof (that is, that on a

proper closed subset of the circle every continuous function is a uniform

limit of polynomials) is a very old theorem which has a variety of proofs.

The one we gave is one of the more elementary ones and is modeled after

the proof of Runge's approximation theorem. Another interesting, but less

elementary, proof can be based on the theorem of F. and M. Riesz on

analytic measures. Suppose K is a proper closed subset of the circle; let

AK be the uniform closure on K of the polynomials. Suppose A K ^ C(K).

By the Hahn-Banach theorem there is a bounded linear functional on C(K)
which annihilates AK but is not zero. In other words, there is a non-zero

finite complex measure ponK such that J pdn = for every polynomial p.

According to F. and M. Riesz, any such measure on the circle has the form

d/z = fdB with / in H1
. Since M is supported on K

,
we see that / vanishes

on an open arc of the circle. So/ = and p.
=

0, which is a contradiction.

We should also point out that Rudin proved more than we have stated.

He proved that if F is continuous on the closed set of measure zero, K,
then there is an / in A such that / = F on K and / is bounded on the disc

by the maximum of F on K .

Bishop has generalized the Rudin theorem as follows. Let A be a uni-

formly closed algebra of continuous complex-valued functions on a compact
Hausdorff space X (1 A). Let K be any closed subset of X with this

property: if ju is a complex measure on X which is orthogonal to A, the

total variation of M on K is zero. Then the restriction of A to K is C(K)

(without closing).

The Closed Ideals of A

As we said earlier, we wish to describe the closed ideals in A. If R is

any ring, it is obviously of considerable interest to describe the ideals in R.

Needless to say, this is usually extremely difficult. If R is a commutative

ring with identity, one usually says that he knows the "ideal theory" of R
if he can answer such basic questions as the following:

(1) What are the maximal ideals of R?

(2) Is every proper ideal an intersection of maximal ideals?
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(3) What are the primary ideals of R, i.e., those contained in precisely

one maximal ideal?

(4) Is every ideal an intersection of primary ideals?

In a topological ring (or Banach algebra) such as our algebra A, one

normally restricts his attention to closed ideals. The task of describing

just the closed ideals is usually insurmountable; however, for our algebra A
they can all be described very precisely. This ideal theory was first done

by Beurling, but he never published the results. Later, Rudin independ-

ently obtained the results (Canadian Journal of Mathematics, 1957).

Since A happens to be a commutative Banach algebra with a single

generator, it is quite easy to find the maximal ideals of A, if one is willing

to use the general result that, for any maximal ideal in a commutative

Banach algebra with identity, the associated quotient field is the field of

complex numbers. We shall comment on this later, but for now it is of no

particular aid to us, since the description of the maximal ideals will soon

drop out of the general assault on the ideal theory.

If X is a point in the closed unit disc, it is apparent that

is a maximal ideal in A. We shall soon see that there are no others. What
other closed ideals in A are there? Certainly zzA, the set of functions in A
such that /(O) = /'(O) = is a closed ideal. It is also primary, since it is

contained in the single maximal ideal {/; jf(0)
=

0}. Thus, not every closed

ideal in A is an intersection of maximal ideals. There is an obvious exten-

sion of this example. Choose a sequence of points an in the open disc and

a sequence of non-negative integers pn ,
and let J be the set of functions

in A which have a zero of order at least pn at an . Clearly, J is a closed

ideal. Of course, we may have ,7 = 0. But if the an approach the boundary
of the disc rapidly, if the pn are not too large, and if the an do not cluster

on a set of positive measure on the circle, we shall have J ^ 0. For ex-

ample, if an = 1 2"n and pn = n, we have J 9* 0.

These are the obvious closed ideals in A: those determined by pre-

scribing orders of zeros at points in the open disc. From what we have

already done we can see that there are others. Let K be a closed set of

measure zero on the circle, and let JK be the set of functions in A which

vanish on K. We know that JK is a non-zero ideal (which is obviously

closed). There is another type of ideal which is more subtle. This is one

determined by the rate at which the functions in it tend to zero as z ap-

proaches the boundary. A simple example of this is the following. Let

*<)-
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Then F is not in A, but is an inner function. Indeed, F is the singular

function determined by the unit point mass at z = 1. Let M be the

(maximal) ideal of all functions in A which vanish at z = 1, and let

/ = FM. Then J is a closed ideal in A. For if g is in A and 0(1) =
0,

then Fg is in A, because F is analytic and of modulus 1 at every point of

the circle other than 2=1. Of course J is closed, because M is closed and
F is of modulus 1 almost everywhere. Furthermore, J ^ M because

(1 z) is not in J. If it were, (1 z)F~
l would be bounded, which it is not.

Now we make a much more general type of closed ideal. Subsequently
we show that this is the only type.

Theorem. Let K be a dosed set of Lebesgue measure zero on the unit

circle. Let F be an inner function such that

(i) if ai, 2, . . . are the zeros of F in the open disc, then every accumulation

point of the an is in K;

(ii) the measure determining the singular part of F is supported on K.

Let J be the set of functions of the form Fg, where g is a function in A
which vanishes on K. Then J is a closed non-zero ideal in A.

Proof. Let F = BS, where B is the Blaschke product with zeros

ai, Qf2, . . . and S is the inner function determined by the positive singular

measure ju. Every accumulation point of the an is in K. Thus, B is analytic

in the complement of K in the complex plane. The closed support of M is

contained in K . Thus, S is analytic on the complement of K. If g is any
function in A which vanishes on K, the fact that F is bounded makes it

obvious that Fg is in A. If J is the set of such functions Fg, certainly J
is an ideal in A. Also, / is non-zero, because the zero measure of K guar-

antees the existence of a g ^ in A which vanishes on K. To see that J
is closed, argue as follows. Let {Fgn} be a sequence of functions in J which

converges to a function/ in A. Then

and, since F is of modulus 1 on the circle,

(essential sup on the circle). Thus, {gn} converges uniformly to Ff on the

circle. So Ff = F~ l

f = g, where g = lim gn . Clearly, /is in J (i.e.,/
= Fg).

Now we wish to show that every non-zero closed ideal in A has the

above form. To prove this, begin with such an ideal J and let K be the

closed set of measure zero on the circle obtained by intersecting the zeros

on the circle of all the functions in J. How do we produce the inner func-

tion F? F will have to be an inner function which divides every / in J.

Consequently, F must divide the inner part of every / in J. Indeed, one

feels that F should be the "greatest common divisor" of these inner parts.

We need the following.
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If F and G are inner functions, we shall say that F divides G if G/F is a

bounded analytic function. When F divides G, it is clear that G/F is,

again an inner function.

Lemma. Let S be any non-empty family of inner functions. Then there

is a unique inner function F with these two properties:

(i) F divides every function in $F.

(ii) If FI is an inner function which divides each function in $, then FI

divides F.

Proof. Let F = BS and F! = B& be inner functions. If F divides Fif

then clearly B divides JBi, i.e., every zero of F in the open disc (with

multiplicity) is also a zero of F\. If F divides FI, then clearly S must
divide Si- Now

Si / x f ft* +z tj , x
l-

(z)
= exp

[] -^ (dp,
-

d/ii)
J

where M is the positive singular measure defining S and MI is the correspond-

ing measure for Si. Now Si/S is bounded if and only if M ~ Mi ^ 0, i.e.,

if and only if MI ^ M-

Given the family $, the function F we are seeking is defined as follows.

The Blaschke product for F is the one formed from the common zeros of

the functions in $. The measure M for F will be the "greatest" positive

measure on the circle which is dominated by the corresponding measures

of all functions in $. If there is such a measure, we clearly have the F
we want.

All we need demonstrate is that any family of positive measures has a

greatest lower bound. This is easy to verify. If
{fjia} is such a family of

measures, the greatest lower bound of the /* is the measure /* defined by

M(J?) =inf S inf M (^)
P j-l a

where P ranges over all partitions of the set E into the disjoint union of

Baire sets EI, . . .
,
En . Upon checking that /x is a measure, we are done.

Needless to say, we call F the greatest common divisor of the inner

functions in the family $.

Theorem. Let J be a non-zero closed ideal in A, and let K be the inter-

section of the zeros of the functions in J on the unit circle. Let F be the greatest

common divisor of the inner parts of the non-zero functions in J. Then J is

precisely the set of functions of the form Fg, where g ranges over the functions

in A which vanish on K.

Proof. Virtually by definition, every function / in J has the form Fg,

where g is in A and vanishes on K. Just let g be the quotient of the inner

part of / by F, multiplied by the outer part of /.
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If J denotes the set of functions in A of the formf/F with/ in J, then

clearly J is a closed ideal in A which is contained in the ideal of all func-

tions vanishing on K. We are to prove that these two ideals are identical.

What this tells us is that we need only prove the theorem for the case

F = 1.

Assume that we have a closed ideal J in A, such that the greatest

common divisor of the inner parts of its non-zero elements is 1. Let K be

the common zeros of the functions in J on the circle, and let 7 = I(K) be

the ideal of all functions in A which vanish on K. We shall prove that

J = 1(K). To do this, it will suffice to prove that any complex measure

on the circle which is orthogonal to J is also orthogonal to /. This says

that, as closed subspaces of the continuous functions on the circle, J and /

are annihilated by exactly the same bounded linear functionals.

Let /z be a finite complex Baire measure on the circle such that /z is

orthogonal to J:

//** =
<>, /<EJ.

Fixing / in /, we have (since J is an ideal)

/ znfdfj,
=

0, ?i = 0, 1,2, ....

This means that /d/z is an "analytic" measure. The theorem of F. and M.
Riesz tells us that

fdv =

where /// is in H1
. Note that H/ also vanishes at the origin.

Let

dfji
=

be the Lebesgue decomposition for /z (</>
inU and /z singular). From above,

we see that fd^8
= for every / in J. Since the functions in J have no

common zero off K, this shows that /zs is supported on K. We also have

associated with each / in J an JF/
1 function J// such that /0 = H/ almost

everywhere. If / ^ 0, this just says that <t> agrees almost everywhere with

the non-tangential limits of the mcromorphic function ///// on the disc.

Among other things, we see that the meromorphic function ///// (for/ 7*

in J) is independent of/. If/, g are in J and non-zero, we have H//f = H /g

almost everywhere on the circle; hence,

gHf fH = a.e. on the circle.

But gHf fHg is in fl1 . Thus, this function vanishes identically on the

disc:

/()
~

(*)
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Let us call this meromorphic functionM . Note that M is actually analytic,

for we are assuming that the g.c.d. of the inner parts of the functions in J
is 1. At any point X in the open disc we have an/ in J for which /(X) 5^ 0.

Since M =
/////, we see that M is analytic at X.

We wish to prove thatM is in H1
. Since the non-tangential limits of M

agree with < almost everywhere, this will show us that is in H1
. Of course,

M may be 0, but that case requires no comment. If we choose a particular

/ 7* in J (or use the fact that M is of bounded characteristic) and re-

member that M is analytic, we see that

M (z)
= \B(z) exp

where B is a Blaschke product and p is the real measure defined by

dp =
2 log |Af |d0 + dpi dpz

-*- 1 I . I In I 1 J"
ttpi ttp2

Pi and p2 being positive singular measures on the circle. For any / in J we
have fM in W. This clearly means that, if n/ is the measure defining the

singular part of /, /*/ ^ pi. But the inner factors of the /'s have g.c.d. 1,

so pi
= 0. Thus

M(z) = \B(z) exp - J? dP2 exp

where < is in Z/
1

, log |0| is in L 1

,
and pa is a positive singular measure.

Thus M is in J/ 1

; i.e., < is in 7/1 of the circle. Of course, M also vanishes

at the origin, because each H/ does.

Now let h be any function in A which vanishes on K . Then

Since < is in Jf?
1 and vanishes at the origin, the first integral is zero. Since

H8 is supported on K, and since h vanishes on K, the second integral is

zero. That completes the proof.

Corollary. Every maximal ideal of A is of the form

A/x= {/^1;/(X) =0}

for some point X in the closed unit disc.

Proof. First, we need to observe that if J is any proper ideal in A,
the closure of J is a proper closed ideal in A. The closure of J is clearly

an ideal; we need only show that it is proper. If / belongs to J, we must

have ||1 -/IU ^ 1. If ||1 -/Hoc < 1, then obviously I// is in A, and

no element of a proper ideal can be invertible. Thus, ||1 /IU ^ 1 will
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also hold for every / in the closure of J. IfM is a maximal ideal, the above

remarks make it clear that M is closed. The description we have given

for closed ideals makes it apparent that M must be an M\.

Corollary. // fj,
. . .

,
fn are functions in A which have no common zero

on the closed disc, then there exist functions gi, . . .
, gn in A such that

frgi + +fngn = 1.

Proof. The set of all functions of the form/i0i + + fngn is an ideal.

If it does not contain 1, it is a proper ideal and must (by Zorn's lemma)
be contained in a maximal ideal.

Corollary. Every closed ideal in A is the principal closed ideal generated

by a function in A.

Proof. Certainly the zero ideal is principal. If J is a non-trivial closed

ideal, let K and F be as in the theorem. Let g be any function in A whose

zeros are precisely A" and let / be the outer part of g. Then it is clear that

Ff generates J.

Corollary. The closed ideals J in A which are primary, i.e., contained

in precisely one maximal ideal, are those of the following types:

(i) J is the principal ideal generated by (z a)
k

,
where k is a positive

integer and a. is a point of the open unit disc.

(ii) J is the (closed) principal ideal generated by

where |X|
= 1 and p is a non-negative real number.

Proof. If J is primary and contained in the maximal ideal Ma with

|a| < 1, then the corresponding set K is empty and the corresponding
inner function must be

If J is primary and in M\ with |X|
=

1, then K =
{X} and the correspond-

ing F must be

where /* is a positive measure concentrated at the point X. If we let

p = M({X}), we have (ii).

It is not true that every closed ideal is an intersection of primary ideals.

If J, K, F are as above, it is easy to verify that J is an intersection of

primary ideals if and only if the measure n which determines the singular

part of F is discrete, i.e., the sum of a countable number of point masses.

Let us review. Suppose we have a closed ideal J in A, Q ?* J 7* A.
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Then J will be contained in a certain set of maximal ideals. This set is

usually called the hull of J. Thus the hull of J is the set of common zeros

on the disc of the functions in J. Now hull (J) will look like this:

(i) hull (/) is a non-empty proper closed subset of \z\ g 1.

(ii) There is either a finite or a countably infinite number of points

of the open disc which belong to hull (J). If there is an infinite number

of such points i, 0:2, . . .
,
then

S (1
- kl) <.

(iii) The intersection of hull (J) with the unit circle is a closed set K
of Lebesgue measure zero, and K contains every accumulation point of the

points an of (ii).

Of course, any closed set satisfying (i), (ii), and (iii) is the hull of some

closed ideal of A
, namely, the ideal of all functions in A which vanish on

that set. This ideal is simply the intersection of the maximal ideals which

contain J, for any J having that hull. This intersection is usually called

the kernel of the hull of J.

If H is a hull, we have a complete description of all the closed ideals J
which have H as their hull. Each such J is obtained as follows. For each

oLn in H select a positive integer pn . The only constraint on the choice of

the pn is that 2 pn (l |an |) < . Choose a finite positive measure /* on

// C\ C. Let J be the set of functions / in A such that

(a) / vanishes on //;

(b) / has a zero of order at least pn at an ;

(c) the function

j *>]'
is bounded as \z\ 1. For each such choice of the pn and /z we obtain a

closed ideal J and distinct choices give distinct ideals. The pn specify

orders of zeros inside the disc, and n specifies "order" of vanishing at the

boundary.
We already looked at the case when H is a single point. If H = {X}

with |X| < 1, we obtain a countable number of closed ideals with hull //.

If |X|
=

1, then we have a continuum of distinct closed ideals with hull

Commutative Banach Algebras

We wish to prove Wermer's theorem that A is a maximal closed sub-

algebra of the continuous functions on the unit circle. For this we shall

not need the ideal theory which we have just completed; however, we do
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need the characterization of the maximal ideals of A (which we have).

As we mentioned earlier, this characterization of the maximal ideals is

easy to obtain if one knows one fundamental theorem on commutative

Banach algebras, and we shall now derive the result from that theorem,

since the concepts involved are relevant to the proof of Wermer's theorem.

A commutative Banach algebra is a commutative complex linear algebra

By which is equipped with a norm under which it is a Banach space and

for which the norm is related to the multiplication by

11*011 ^ INI 112/11-

If B has an identity for multiplication we also require that the identity has

norm 1. Certainly A is such an object, i.e., a commutative Banach algebra

with identity (using the sup norm). For another example, take

B = H, with H/ll
= sup |/(*)|, |*| <1.

Let B be a commutative Banach algebra with identity. We denote the

identity of B by 1, and abbreviate XI to X.

Lemma 1. // ||1 x|| < 1, then x is invertible.

Proof. Since \\y
n

\\ g \\y\\
n

,
the series 1 + (1

-
x) + (1

-
x)

2 + - - -

converges in B to x~~l =
[1 (1 x)]"

1
.

Lemma 2. // |X| > ||x||, then (x X) is invertible.

Proof, (x X) = X (
- x 1 V It suffices to invert 1

-
x. But

so 1
- x is invertible by Lemma 1.
A

Lemma 3. The set of invertible elements of B is open, and on that set

the map x x^1 is continuous.

Proof. Suppose x is invertible and let y be any element of B such that

\\x-y\\< |Mh.
Then

111
~

x->y\\
= \\x~\x

-
y)\\

Thus x~l

y is invertible by Lemma 1
;
so y is invertible. This shows that

the set of invertible elements is open. If we use the geometric series for

the inverse of (x~
l

y), it is easy to verify that

||*-'
-

jr'll < II*
-

2/11 IMKIMI-1 -
II*
-

2/ID

which shows that inversion is continuous.
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Lemma 4. The set of complex numbers X such that (x X) is invertible

is an open set in the complex plane, the complement of which is compact and

non-empty.

Proof. The set of such X is open by Lemma 3. Its complement is called

the spectrum of x. It is compact because (by Lemma 2) it is contained in

the closed disc of radius ||a;|]. To prove that this spectrum is non-empty,
we argue as follows. Let F be any bounded linear functional on B. Define

a complex-valued function / on the complement of the spectrum of x by

/(X) = F\_(x
-

X)-
1

].

Now / is analytic. For

= \_
[F((x

_ x _ A)
_
1}

= *[(*- A- A)-' -(x-X)-1

]

=
I F[>(a;

- X - h)~
l
(x
-

X)-
1

]

=
f[(j;

- X - )-(* - A)-
1

].

If we let h > 0, we sec (by the continuity of inversion and F) that / is dif-

ferentiable and

/'(X) = F[(x
-

A)-].

Note that lim /(X) =
0, because

and as |X|
> oo,

- x > 0, and (since inversion and F are continuous)
A

If the spectrum of x is empty, then for each bounded linear functional

F the associated / is an entire function which tends to zero at infinity.

By Liouville's theorem /(X) = 0; in particular,
=

/(O) = F(xr
1

). So ar1

is killed by every bounded linear functional on B. Thus or1 =
0, a complete

absurdity.

Lemma 5. A commutative Banach algebra which is a field is (isomorphic

to) the field of complex numbers.

Proof. Suppose B is a field. Let x be an element of B. By Lemma 4

there is a scalar X such that x X is not invertible. But B is a field, so

x X = 0. Thus, every element of B is a scalar multiple of the identity.
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Theorem. Let B be a commutative Banach algebra with identity, and let

M be a maximal ideal in B. The quotient algebra B/M is isometrically

isomorphic to the field of complex numbers. Thus M is the kernel of a homo-

morphism of B onto the field of complex numbers. Also
t
M is closed and this

homomorphism is continuous.

Proof. Now ||1 sc|l s 1 for every x in M. Otherwise, M would con-

tain an invertible element and not be a proper ideal. The same inequality

holds for all x in the closure of M. This closure is, therefore, a proper ideal

containing M and must be equal to M.
The quotient space B/M inherits a natural quotient norm

HZ + M|| =
inf||* + 7/H, yM.

With this norm B/M is a Banach space. Also, B/M is a commutative

linear algebra. It is easy to verify that (1 + M) has norm 1 and

IK* + M)(y + M)|| g ||x + M|| ||i/ + M||;

hence B/M is a commutative Banach algebra with identity. Since If is a

maximal ideal, B/M is a field. By Lemma 5 we see that B/M is isomorphic

to the complex numbers. The quotient map from B to B/M may now be

regarded as a complex homomorphism of B. It is not only continuous, but

norm-decreasing. That completes the proof.

If B is a commutative Banach algebra with identity, and if is a homo-

morphism of B onto the field of complex numbers, the kernel of is a

maximal ideal in B. By the last theorem, this kernel is closed and < is

automatically continuous; indeed, |0(x)| g ||x||. The last theorem really

tells us that there is a one-one correspondence between the complex horno-

morphisms of B and the maximal ideals of B. Another way to say this is

that we may identify the maximal ideals of B with those (necessarily

bounded) linear functionals < ^ on B which happen to be multiplicative:

<t>(xy)
= 0(3)*fo).

This theorem certainly settles the question of the maximal ideals in

our algebra A of continuous functions on the closed disc which are analytic

in the interior. Suppose M is a maximal ideal in A . Then M is the kernel

of a homomorphism <f> from A onto the complex numbers. This <t> is neces-

sarily continuous; in fact,

|0(/)l ^ II/IU.

Let X =
0(z). Then |X| ^ 1. This determines <f> on the polynomials

0(2 anzn) = 2 awX;

that is, evaluates every polynomial at X. These polynomials are dense

in A, and since is continuous, must just be "evaluation at X." In

particular, M is the set of functions in A which vanish at X.
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Wermer's Maximality Theorem

We now turn to Wermer's maximality theorem. For the most part, we
shall regard A as a uniformly closed algebra of functions on the unit circle.

Theorem (Wermer). A is a maximal dosed subalgebra of the continuous

complex-valued functions on the unit circle. In other words
, if f is a continuous

complex-valued Junction on the circle which is not in A, then polynomials in z

and f are dense in the continuous functions on the circle.

Proof. Let C denote the algebra of all continuous complex-valued func-

tions on the circle. Suppose B is a uniformly closed subalgebra of C which

contains A. We shall prove that either B = A or B C. This will be done

by considering the complex homomorphism of A obtained by evaluating
at the origin:

First, suppose that < does not extend to a complex homomorphism of B,

i.e., that there is no complex homomorphism of B whose restriction to A
is <. Then there is no non-zero complex homomorphism of B which sends

the function z into 0, because < is the only homomorphism of A with this

property. This means that z lies in no maximal ideal of B and, hence, that

z lies in no proper ideal of B. Therefore, zB = B, so 1/2 = z is in B. By
Fejer's theorem B = C.

Suppose that there is a complex homomorphism $ of B whose restriction

to A is <. In particular, $ is a linear functional on B of bound 1, and can

(by the Hahn-Banach theorem) be extended to a linear functional of norm
1 on C. There is thus a finite complex measure /i on the circle such that

*(/) =
J/<*M

for all / in B, and such that the total variation of pt is 1. Since <(!) =
1,

we have J d/z
= 1. Now it is easy to see that a complex measure which

has total variation 1 and integral 1 must be a positive measure. Since B
contains A,

= #(*")

- f(0)

=

for n =
1, 2, 3, . . . . Since pt is a real measure, this implies dp =

Now let / be any function in B. Then
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_L
[* ef(e")<W = J

JTT J *

=

for n =
1, 2, . . . . Thus/ is in A. We conclude that B = A

Wermer's first proof of this theorem, although not lengthy, made use

of more classical analysis than docs the argument we have presented

(chiefly, some of the boundary value theorems for Hp
). The proof above

is due to Singer and Hoffman. In reading the proof above, Paul Cohen

extracted from it a very elementary proof which is worth presenting. Sup-

pose B is a closed subalgebra of C which contains A properly. Clearly,

then, we can find a function / in B whose ( 1) Fourier coefficient is 1,

By Fejer's theorem we can find polynomials p and q such that

where h is a continuous function of sup norm less than . Choose a positive

number M S \\zq
-

2q\\*. For any 6 >

because zq zq is pure imaginary. Now

dzq
= d(zf

- I - zp)
- dh

= zg
- dh - 6

where g is in B. Since \h\ < |, we have

||1 + 5 + z(g + g)|U ^ 1 + 'M + |
If we choose d so that 5 < l/2Af

2
,
we have

||l+8+*(ff + ff)IU< 1+5.

Now g} q, and 2 are in JB, so the inequality above shows that z(g + dq)

is invertible in B. But then z is invertible in JS, i.e., 2 is in B. Thus B = C
by Fejer's theorem.

Corollary. // K is a proper closed subset of the unit circle, then every

continuous complex-valued function on K is a uniform limit of polynomials.

Proof. Of course we have already given two proofs of this result, but

this one is also interesting. Let B be the set of all continuous functions /
on the circle such that the restriction of / to K is uniformly approximable
on K by polynomials. Clearly, B is a uniformly closed algebra of functions

on the circle which contains A. Since K is a proper closed subset of the

circle, and since B contains (in particular) every continuous function which
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vanishes on K, we certainly cannot have B = A. By the maximality of A
we see that B contains all continuous functions on the circle.

NOTES

Bourling never published the ideal theory for A The ideas are in Bcurling [S].

Hudin's paper on the ideal theory is Rudin [75]; his paper [74] contains the exten-

sion of continuous functions from a set of measure zero. This was also done by
Carlcson [17]. Sec Bishop [11] for a generalization. The original work on non-

trivial extensions of the zero function is Fatou [27]. The behavior of conjugate
harmonic functions on the boundary is studied in some detail in Zygmund [98].

For a discussion of commutative Banach algebras, see Gelfand [32] or Gelfand-

Raikov-Silov [33]. Wermer's maximality theorem is Wermer [90]. The proof given
here is in Hoffman-Singer [49]. See Cohen [20] for his proof. Maximal algebras
of continuous functions are discussed in detail in Hoffman-Singer [49]. See Bishop

[10] for a direct generalization of Wermer's theorem: On a simply connected com-

pact set in the plane which has an interior, the uniform closure of the polynomials
is a maximal closed subalgcbra of the continuous functions on the boundary.

Maximality is a special type of approximation theorem. For more on approxima-
tion by analytic functions, sec the books of Walsh [89], Ahiezer [1], the papers of

Mcrgelyan [60, 61], Szasz [85], and Miintz [62].

EXERCISES

1. Show that /(0)
=

(1 e*) exp ^ '^
is a continuous function on the

unit circle, that there is an analytic function in the disc with non-tangential limits

almost everywhere equal to /, but that / is not a uniform limit of polynomials.

2. If / is in // and /
2
is in A

,
does it follow that/ is in A (A = uniform closure

of polynomials)? What if we assume only that the boundary values of/
2 are con-

tinuous? Answer both these questions, i.e., /
2

is continuous on the closed disc or

has continuous boundary values, when / is a bounded harmonic function.

3. If / is a continuously differentiate function on the unit circle and

4. Is every/in //- the derivative of a function in A! What about every/in H1?

6. Prove the approximation theorem of Runge [78] : If K is a compact set in

the plane with a connected complement, then every function analytic on a neighbor-

hood of K can be uniformly approximated on K by polynomials. Outline of proof:

(i) Use the argument we employed for K on the circle, to prove that l/(z a)

is so approximate for every a not in K. (ii) Given / analytic in an open set U
about K, choose a rectifiable closed path F in U which winds around each point
of A" exactly once. Write / in terms of its Cauchy integral representation on F,



96 Analytic Functions with Continuous Boundary Values

and observe that the approximating sums for the integral give a uniform approxi-

mation to / by rational functions.

6. Let {Dn} be a sequence of closed discs centered at the origin, so that Z)n

lies in the interior of /)n+i and the union of the Dn is the open unit disc,. In Dn

choose a compact set Kn contained in the interior of Dn and not meeting Z)w_i.

Suppose Kn has a connected complement in the plane. Now use Runge's theorem

(Exercise 5) to prove that any function/ which is defined and analytic on a neigh-

borhood of the union of the Kn can be uniformly approximated on that union by
functions analytic in the open unit disc. Outline of proof: Given / and e > 0,

approximate / on D\ by a polynomial p\, uniformly within c/2. Choose a poly-

nomial pz which is uniformly within e/4 of p\ on Di and uniformly with e/4 of/on
KZ. Then approximate pz on Dz and/ on Kz by a pzy

within e/8, etc. The sequence

{pn} converges to a function approximating /.

7. Use the result of Exercise 6 to construct

(a) an analytic function in the unit disc which has a radial limit at no point

of the unit circle;

(b) (Remmert) three analytic functions /, g, and h in the disc which separate

the points of the disc; at each point one of them has a non-vanishing derivative; and

I/I + 101 + W tends uniformly to +00 at the boundary [take h(z) = (1 z)"
1

and obtain / and g from Exercise 6, using sequences of annuli notched near the

positive axis] ;

(c) a sequence of analytic functions in the disc which converges pointwise to

zero, but does not converge uniformly on compact sets.

8. For which functions / in A (the uniform closure of the polynomials) does /

belong to the closed ideal generated by /
2?

9. Let /i, . . . ,/n be analytic functions in the open unit disc which have no

common zero in that open disc. Prove that there exist analytic functions g\, . . .
, gn

in |z| < 1 such that frgi + +fngn = 1. (Hint: Let Dk be the closed disc of

radius 1 l/(k + 1). Use the corresponding result for analytic functions with

continuous boundary values to find g, . . .
, g continuous on D\ and analytic

in the interior of ft such that S/^r,-"
= 1 on DI. Now prove there are g?\ . . .

, g^
continuous on Dz and analytic in its interior such that

S/;flf
} = 1 on Dz and |0J

1} - gf
}

\
< 1 on Di.

Get g?\ . . .
, g such that

2fi9f
} = 1 on D8 and \gf>

-
gf>\ < } on D2,

etc.

10. Let H(D) be the full ring of analytic functions on some open set D in the

complex plane. Prove that every homomorphism of H(D) onto the field of complex
numbers is evaluation at a point of D. If D is non-empty, prove the kernels of these

homomorphisms do not exhaust the maximal ideals of the ring H(D).

11. Prove the inversion theorem of Wiener [94] : If / is a continuous function

on the unit circle without zeros, and if/has an absolutely convergent Fourier series,

then I// has an absolutely convergent Fourier series. (Hint: Let B be the algebra

of all continuous complex-valued functions/on the unit circle for which the Fourier

coefficients are absolutely summable:
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Equip B with this sum as norm. Verify that B is a commutative Banach algebra

with identity. Show that each homomorphism of B onto the complex numbers is

evaluation at a point of the unit circle. Apply the basic result on Banach algebras

which we proved.)

12. By the method of Exercise 11, prove the following. If f(z)
= 2 a^n where

\an \
< <

,
and if/ has no zeros in the closed unit disc, then I// has an absolutely

convergent Taylor series.

13. Give an example of a non-negative continuous function on the unit circle

which has an integrable logarithm but which is not the modulus of a function in A.



CHAPTER 7

THE SHIFT OPERATOR

The Shift Operator on -ff
2

Many problems in analysis are related to the classification of the in-

variant subspaces for some bounded linear operator on a Hilbert space.

In a 1949 Acta paper, Beurling described all the invariant subspaces for

the operator "multiplication by 2" on the Hilbert space II2
. This work has

been extended in various directions by Lax, by Helson arid Lowdcnslager,
and by Halmos. The work now relates to harmonic analysis on the real

line, prediction theory, representations of algebras, representations of semi-

groups, and the study of function algebras (Dirichlet algebras). One's best

guess would be that these extensions of Beurling's work are far from being

over. The material we are going to discuss (and the proofs) has now evolved

to the point at which one could begin with a brief general discussion of

partial isometrics on a Hilbert space and then obtain most of the results

by specializing the isometrics. This is essentially what Halmos has done

of late; however, this general point of view does not always give the

shortest or most instructive proofs in the special cases. (In some cases it

does.) So, we shall begin by discussing Beurling's original problem using

the Helson-Lowdenslager proof, and then we shall attempt to describe the

various extensions. This will cause some repetition of proofs, but that is

probably all for the better.

The linear operator we are going to study is usually called the shift

operator (on 7/2
). It is the linear operator T on the Hilbert space H2

,

described variously as follows:

(1) H2 is the space of square-summable sequences of complex numbers:

s = [oo, ai, a2 ,
. . .], and T(s) =

[0, a
, ai, . . .].

(2) H2 is the space of L2 functions on the unit circle whose Fourier

coefficients vanish on the negative integers, and

(Tfm = e J(0).

(3) H2 is the space of analytic functions in the unit disc for which the

98
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functions /r(0)
= /(re*) are bounded in L2

norm, and T is "multiplication

by *."

We shall work with the second and third descriptions interchangeably.

The problem is this: we wish to find all closed subspaces S of H2 which are

invariant under multiplication by z:

zSQS.

An obvious example of such a subspace is the space of functions which

vanish at the origin, or the space of functions which vanish at any pre-

scribed set of points in the open disc. Of course, this begins to sound like

the ideal theory for the algebra A, which we did in the last chapter. In

fact, it sounds so much like it that one is led immediately to a more general

example of an invariant subspace:

S = F//2

where F is a fixed inner function. But, we would do well to remind our-

selves that it was Bcurling's inspired observation that inner functions were

intimately related to the description of the invariant subspaces for the

shift operator. This work was the prelude to his ideal theory for A, not

some "aftermath" thereof.

Having observed that each FHZ is an invariant subspace, one is led to

conjecture that there arc no other invariant subspaces. This is the case.

Assuming that it is so, one must ask: if S = FHZ for some inner function F,

how do we find F, given SI We can see that F will be the greatest common
divisor of the inner parts of the functions in S. This, too, was Beurling's

observation, and it looks natural to us only because we have been through
it in the case of continuous boundary values. But he also noted that if

F(0) ? 0, then F is a scalar multiple of the orthogonal projection of 1

into S. Suppose F is an inner function and X = 7(0). Then \F is the

orthogonal projection of 1 into F//2
:

1 = \F + (1
-

XF)

Fg(l
-

\F)de = ^ (F -

= (F(0)
-

=

for every g in H2
. This second observation has eventually led to the follow-

ing proof by Helson and Lowdenslager.

Theorem. Let S be a non-zero closed subspace of H2
. Then S is invariant

under multiplication by z if and only if S = FH2
, where F is an inner func-

tion.
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Proof. One half is trivial. Suppose we are given an invariant subspace

S. It is no loss of generality to assume that there is at least one function

in S which does not vanish at the origin. For, if k denotes the highest order

common zero of the functions in S at z = 0, then S = zkSo, where /So is

invariant and contains a function not vanishing at the origin.

Let G be the orthogonal projection of the constant function 1 into S:

1 = G + (1
-

(?)

where G is in S and (1 G) is orthogonal to S. We are assuming that

G ? 0, for 1 is orthogonal to S if and only if every / in S vanishes at the

origin. Now we prove that the modulus of G is constant on the unit circle.

Since G is in S, we have znG in S for n =
1, 2, 3, . . . . By definition,

(1 G) is orthogonal to /S, and since znG vanishes at the origin, we have

= -L I
*

(l
- G)Gedd

Zir Jr

2ir J-

= -^- r c
6TT J *

The positive measure \G\
2dO is orthogonal to e in9

,
n =

1, 2, 3, ... and must,

therefore, be a constant multiple of Lebesgue measure.

Now we claim S = G//2
. Since the modulus of G is constant on the

circle, and since G is in S, it is apparent that S contains G//2
. Let / be a

function in S which is orthogonal to GH2
. We prove / = 0. Since / is

orthogonal to Gzn
,
n -

0, 1, 2, . . .
,
we have

= ^ f'w
JV<r**d, n =

0, 1, 2, . . . .

By definition of G we have (1 C) orthogonal to znf, i.e.,

=

= -7- r
lie Jif

Therefore, ffi is the zero function; since G is a non-zero function of constant

modulus, this means / = 0. We conclude that S = GH2
. If we multiply

G by a suitable constant, we obtain an inner function F for which S = FHZ
.

Of course, F is unique up to a constant of modulus 1.
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Corollary. // S is a non-trivial closed subspace of II2 which is invariant

under multiplication by z, then S = FH2
,
where F is the greatest common

divisor of the inner parts of the functions in S.

Corollary. Let f be a function in II2
. Then the functions znf, n =

0, 1,

2, . . .
, span H2

if and only if f is an outer function, that is, if and only if

f 5* Oand

Proof. The span of the functions znf is simply the smallest closed sub-

space of //2 which contains / and is invariant under multiplication by z.

This subspace is H2
if and only if the inner parts of the functions in it

have greatest common divisor 1, and this clearly means that the inner

part of / is 1, i.e., that / is an outer function. When we first introduced

outer functions, we observed that they arc characterized by Jensen's in-

equality being equality.

We should probably comment that the characterization of these in-

variant subspaces exhibits explicitly their lattice structure. To each non-

zero invariant subspace S we have assigned a unique inner function F.

If another such subspace Si is given, it is clear that S is contained in Si if

and only if F\ divides F. Every collection of these invariant subspaces has

a least upper bound, namely, the subspace corresponding to the greatest

common divisor of the associated inner functions. The process is, of course,

reversible. That is, one can use this description of invariant subspaces to

prove that any collection of inner functions has a greatest common divisor.

More about Dirichlet Algebras

The central part of the characterization above extends to the context

of Dirichlet algebras, which we introduced in Chapter 4. Recall that a

Dirichlet algebra is a uniformly closed algebra A of continuous complex-
valued functions on a compact Hausdorff space X, such that the real parts

of the functions in A are dense in the real continuous functions on X.

If we have any non-zero positive measure m on X which is multiplicative

on A, we define H2
(dm) to be the closure in L'l(dm) of the functions in A.

Here we want to comment on "invariant subspaces" of H2
(dm). Of course,

we do not expect a shift operator on H 2
(dm). The subspaces we discuss

are those which are invariant under multiplication by every function/ in A .

If A is the algebra of continuous functions on the unit circle whose

Fourier coefficients vanish on the negative integers, and if m is normalized

Lebesgue measure, then Hz
(dm) = H2

,
and the subspaces invariant under

multiplication by functions in A are just the invariant subspaces for the

shift operator. Thus, the situation we describe is a generalization of the

study of invariant subspaces for the shift operator.
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Suppose we are given the Dirichlet algebra A on the compact space -X"

and we fix a positive measure m on X which is multiplicative on A.

Theorem. Let S be a closed subspace of H2
(dm) which is invariant under

multiplication by the functions in A. Suppose thai there is at least one function

g in S such that J gdm 5^ 0. Then there exists a fmiclion F in H 2
(din)

which has modulus 1 almost everywhere with respect to m and for which

S = FII2
(dm).

Proof. We sketch the proof, which is virtually identical to the proof we

gave for the corresponding theorem in the disc. First, one can easily verify

that m is multiplicative on H2
(dm). If the subspace S is given as above,

our hypothesis says that 1 is not orthogonal to S. Let G be the orthogonal

projection of 1 into S. Let AQ denote the set of functions/ in A for which

J/dm = 0. Since

J Gfdm = //dm- J Gdm =

for/in^4o, we have
= J (1

- G)Gfdm

for every / in AQ. Since A is a Dirichlct algebra, the measure \G\*dm is a

constant multiple of dm. So \G\
=

fc, where k is a non-zero constant. It

is then clear that S contains GII\dm). If g is in S and is orthogonal to

GHz
(dm) we have

J gGfdm =
0, f'mA.

But by the definition of (?, we have

= J (1
- tyfgdm

= -f gGfdm

if / is in AQ. Thus, the measure g(jdm is zero, which says that g = almost

everywhere dm.

Those subspaces of Hz
(dm) in which all the functions vanish at m

cannot be taken care of by a function of modulus 1. For example, let X
be the torus. Choose an irrational number a, and let A be the algebra

of all continuous functions on the torus whose Fourier coefficients

vanish outside the half-plane where m + na ^ 0. Then A is a Dirichlet

algebra. If dm =
dOd\l/, H2

(dm) becomes the space of square-summable

functions on the torus with a Fourier series

/(, iW ~ S amneimBc in
+.
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If we take S to be the subspace of functions / for which aoo = 0, then S
is invariant under multiplication by functions in A, but is not of the form

S = FH*(dm).
The criterion for a function to generate H*(dm) also generalizes, as

follows.

Theorem. Let g be a function in H2
(dm). Then the closed linear span

of the functions fg with f in A is H3
(dm) if and only if

/log 101dm = log|J0dm| > -co.

Proof. The proof can be given rather easily with the use of Szcgo's

theorem for Dirichlet algebras, which we proved in Chapter 4. Let g be a

function in II*(dm). Suppose that Ag is dense in 772
(dm). Then there is a

sequence of functions gn in A such that

J|i
-

gng\*dm -> 0.

Certainly then,

fgdm = X 9* and J gndm > X"1
.

We can, therefore, assume that gn = X""
1

/, where fn is in A$ y
the set

of /in A such that J fdm = 0. Now

/ |1
-

(X-i
-

fn)g\*dm = -1 + J IX-"
1 - M'M'dm

= -l + |Xh/|l -
X/n |

2
|<7|

2dm.

We conclude that

Thus
inf J |1 -/h</|

2dm g |X|*
=

fAo

But the reverse inequality holds for any g. Thus the infimum is equal to

|X|
2

. Szcgo's theorem states that this infimum is

exp [J log |0|
2dm]

so we obtain

J log \g\dm
= log |J gdm\ > -co.

It is very easy to reverse the steps if this last condition holds, to

conclude that 1 is in the closure of Ag] hence, Ag spans H2
(dm).

Invariant Subspaces for H2 of the Half-plane

Consider the half-plane Re(w) > 0. If / is analytic in this right half-

plane, we say that / is in the class 7/2
, provided that the integrals

are bounded for x > 0. A theorem of Paley and Wiener states that each

such / has non-tangential limits at almost every point on the imaginary



104 TVie Shift Operator

axis, that these boundary values are square-integrable, and that / is the

Poisson integral of its boundary values:

Let us assume this theorem for the moment. (We shall prove it in the

next chapter.) Then 7/2 of the half-plane becomes a Hilbert space, with

the inner product

In a 1959 Acta paper, Peter Lax extended Beurling's result about the

invariant subspaces for the shift operator to certain "invariant" subspaces

of 772 of the half-plane. Actually, Lax considered vector-valued analytic

functions, which we shall discuss later. We wish now to discuss the problem
for the scalar-valued 772 described above, and to show that this result of

Lax is equivalent to Bcurling's result.

Lax's scalar-valued theorem is the following. If S is a closed subspace
of 772 of the right half-plane, then S is invariant under multiplication by
the functions <r Xw

,
X ^ 0,

%
if and only if S = FH'2

,
where F is an inner

function (i.e., F is analytic in the half-plane, bounded by 1, and has non-

tangential limits which exist and are of modulus 1 almost everywhere on

the imaginary axis). If one uses a stronger form of the Paley-Wiener theo-

rem (which we shall not), every function / in 772 has the form

where /is square-integrable ;
that is, every/ in //2 is the Laplace (or Fourier)

transform of a square-integrable function on the positive half-line. A sub-

space S of 772 which is invariant under multiplication by c~*w for all X ^
is then simply the "transform" of a subspace of L2

(0, ) which is invariant

under all right translations.

We want to establish the simple relationship between 7/2 of the disc

and 772 of the half-plane. If we map the disc onto the right half-plane by

w =
1 - z

then 772 of the disc is carried onto a space of analytic functions in the half-

plane ;
we wish to relate that space to //2 of the half-plane. On the boundary

the linear fractional map is

if
1+e*

lt ~
1 - e

from which it is easy to obtain

7- dO = -
(1 + ty-W.

ZTT TT
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Thus, if g is measurable on the circle and f(if)
=

</(e
w
), we see that g is

integrable if and only if / is integrable with respect to the measure

(1 + t*)~
l

dt\ when g is integrable,

In particular, this will hold for g in II2
. When g is in // 2

,
its values inside

the disc are given by

If we define f(w) =
g(z)

= g ( r~r V then this Poisson integral formula
\w -r 1 /

for g transforms into the Poisson formula

or

Thus, 7/2 of the disc is transformed into the space of analytic functions in

the right half-plane which are the Poisson integral (as above) of a function

on the imaginary axis which is in L2
( dt

j.
In other words, as a

subspace of L2 of the circle, 7/2 is transformed into the subspace of

L2
( cfa

j
of those functions whose Poisson integrals are analytic for

Re w > 0.

Now H2 of the right half-plane consists of all functions analytic for

Re w > which arc the Poisson integral of a function on the imaginary
axis which is in Lz

(dt). Certainly, then, if / is in //2 of the half-plane, the

function

is in J/2 of the disc. But we claim that _ g(z) is in Hz of the disc. For

= HI

Since f(it) L2
(dZ) and |1 + 17|

2 = 1 + J
2
,
we see that (1 + iO/(fl) is in

L2

(
A

J.
Thus, _ tf ^(e

w
) is square-integrable on the circle. It is

a simple matter to verify that if g is in H2 of the disc and --
5 g(e

ie
)

1 ~" 6
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is in L 2 of the circle, then ^ ^ g(z) is in //2
. We conclude that, if / is in Hz

14-2
of the right half-plane, then (1 + w)J(w) is, under the map w = _
the image of an 7/2 function in the unit disc. The converse of this also

holds. Suppose we have / analytic for Re w > and (1 + w)f(w) comes

from an Hz function in the disc. This means only that the boundary values

(1 + if)f(if) exist almost everywhere, that they are in L2
f

,

dt
J,
and

that (1 + w)/is the Poisson integral of these boundary values. Certainly,

then, f(il) C L~(df). Also, / is the Poisson integral of its boundary values,

because / obviously comes from an //2 function in the disc if (1 + w)f(w)
does (division by (1 + w) is essentially multiplication by (1 z) in the

disc). What we have proved, assuming the Paley-Wiener theorem, may be

summarized as follows:

Theorem. Let f be an analytic function in the right half-plane. Then f

is in H2
if and only if the function (1 + w)f (w) is transformed by the map

w 1 .

z =
jj

r into a function h in H2
of the unit disc. Indeed, the map from fw ~j~ i

toW h is an isometry of H2 onto H2
of the disc.

In order to handle "invariant" subspaces we need two simple lemmas.

Lemma. Let S be a closed subspace of H2
of the disc. Then S is invariant

under multiplication by z if and only if S is invariant under multiplication

by every bounded analytic function.

Proof. Of course, this is obvious from Beurling's characterization of the

invariant subspaces for multiplication by 2; however, it is also obvious

a priori. One half is trivial. So, suppose S is invariant under multiplication

by z. Clearly, S is invariant under multiplication by any polynomial in z\

hence, S is invariant under multiplication by/, where /is any uniform limit

of polynomials. Now given any / 7/00

,
if r < 1 the function fr(z)

=
f(rz)

is a uniform limit of polynomials. If g S
9
we have frg in S for each

r < 1. If ft is in L 2
(d0), and if

JfyhM =

for each r < 1, then J fghdB =
0, since fr >/ boundedly and pointwise

almost everywhere. Thus, fg is in the L2 closed span of {frg}. Conse-

quently, S is invariant under multiplication by //. (One can replace fr

by (Tn,
the nth Cesaro mean for/, and the argument goes as well.)

Lemma. Let S be a closed subspace of H2
of the right half-plane. Then S

is invariant under multiplication by the functions e~Xw
,
X ^ 0, if and only if
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S is invariant under multiplication by every bounded analytic function in the

half-plane.

Proof. Again, one half is trivial. Suppose S is invariant under multi-

plication by <rx for every X ^ 0. Let / be a bounded analytic function.

We wish to show that S is invariant under multiplication by/. From what

we did above in the disc, we know that / is the bounded pointwise (a.e.)

limit of a sequence of polynomials in -
Thus, if we prove the in-

variance for f(w) =
> we shall be done. Actually, f(w) 1 =

w + 1 w -f- l

will do as well. We see that we need only prove that S is invariant under

multiplication by (1 + w)~\ Now

-J
1 + w

Let

fn(w) =
f*

e- (

Approximating sums for the integral show that fn is a bounded pointwise

limit of linear combinations of the e~XM>
,
X ^ 0. Thus S is invariant under

multiplication offn . But/n(w) > (1 + w)"
1

pointwise and the convergence

is bounded. That proves the lemma.

Theorem (Lax). Let S be a non-zero closed subspace of H2
of the right

half-plane, and suppose that S is invariant under multiplication by e~"
Xw

for

every X ^ 0. Then S has the form S = FH2
,
where F is an inner function.

Proof. We look at the Hilbert space

// = (!+ w)H*
with the inner product

We proved above that f(w) > V^(l + w)/(w) is an isomctry of H2 onto

/?, and that is precisely the image of //2 of the disc under the linear

ID ~~ 1 ^
fractional map z = -- Obviously, S =

(1 + w)S is a closed subspacew
I

A

of a.

From the last lemma, we know that S is invariant under multiplication

by any bounded analytic function. Clearly, S has the same property.

Under the linear fractional map, 3 goes onto IP of the disc and S onto a

closed subspace thereof. Since this map preserves the class of bounded

analytic functions, we have immediately from Beurling's result that

S = FH, where F is an inner function. Thus, S = FH*.
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Several remarks are in order. First, as we commented earlier, the dis-

cussion above shows the Beurling and Lax theorems to be equivalent.

Second, the inner function associated with S is unique up to a constant

of modulus 1. Third, one of the ideas which helps to unify the theorems

in the disc and half-plane is that of considering subspaccs invariant under

multiplication by all bounded analytic functions. These theorems seern to

deal with special types of representations of the algebra of bounded analytic

functions, which we shall discuss later.

Isometries

Recently, Halrnos has observed that one or two elementary results

about isometries on a Hilbert space shed considerable light on the type of

invariant subspace problem which we have been discussing. These results

do not simplify the characterization of the invariant subspaces for the

shift operator; they do, however, lend perspective to the discussion. Also,

they greatly simplify the proof of Lax's vector-valued theorem, and they

facilitate the discussion of the invariant subspaccs for multiplication by z

on L 2 of the circle. In the latter context, the ideas are very similar to those

used by Ildson and Lowdenslager.
Let 77 be a Hilbert space. An isometry on II is a linear transforma-

tion (operator) from 77 into 77 which preserves inner products:

(Tx, Ty) =
(x, y).

If T maps 77 onto 77, we call T a unitary operator. The canonical example
of an isometry which is not unitary is the shift operator on 772

,
or multipli-

cation by z on 772 of the disc. A slightly more general example is the follow-

ing. Let K be an arbitrary Hilbert space. Let H2
(K) be the space of

sequences
h ~

[h<>, hi, ht, . . .]

of elements of K for which

s IIMI
2 <.

n=0

The inner product on IP(K) is

(0, *)
= 2 (0n, fen).n0

Let T be the "shift" operator on 7f2
(K):

T(Ao, fci,
=

(0, Ao, fci, . . .)

It is clear that T is a non-unitary isometry on H2
(K). Of course, the shift

operator on 772 is the special case of this example when K = C, the complex
numbers.
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Lemma. Let T be an isometry on a Hilbert space H, and let N be the

orthogonal complement of the range of T. Then the subspaces

7%V), fc = 0, 1,2,3, ...

are pairwise orthogonal.

Proof. We should note that since T is an isometry the subspaces N,
T(N), T2

(N), . . . are closed. For the proof, suppose g j < fc. Let

Xj y N. We wish to show that (T>x, Tk
y) 0. Since T is isometric and

fc > J,

and the latter inner product is zero because 7T(fc
~

;)
?y is in the range of T

and x is in N.

Theorem. Let T be an isometry on a Hilbert space II. Let N be the

orthogonal complement of the range of T, a?id let M 6e Me orthogonal comple-
ment of the span of the spaces T k

(N), k ^ 0. Then

(i) H = M N T(N)
r

P(N) -
.

(ii) the subspace M is invariant wider T; indeed, the restriction of T to M
is a unitary operator on M.

(iii) the svbspace M consists of all vectors h in H which are "infinitely

divisible" by T, i.e., all h swc/i //MZ/ h is in the range of T k
for every non-

negative integer k.

Proof. By the lemma above, the spaces Tk
(N), k ^ 0, are pairwise

orthogonal. By the definition of M we then have (i). Suppose m 6 Af .

Since m is orthogonal to N, we must have m in the range of T, i.e., m = 77t

for some h in #. But h is also in Af
;
for if k ^ and nN,

(T
k
n, h)

= (T^n, Th)

= (T
k+l

n, m)

= 0.

Thus M C T(M). Note that this shows that every m 6M is "infinitely

divisible" by T. It is also easy to see that M is invariant under T. If

m 6 Af and nN, the inner product

is zero for fc ^ 1 because mM, and is zero for fc = by definition of N.

That proves (ii). We have already proved one half of (iii), that the vectors

in A/ are infinitely divisible by T. Conversely, if h H
,
and if for each

fc ^ there is an hk in // with h = Tk
(h^, it is very easy to check that

h 6 M. For example, if h = Thi, we have h orthogonal to N. If h = 772
&2,

then fe is orthogonal to N and T(AT), etc.

Corollary. Let T be an isometry on a Hilbert space H. Then there are

subspaces M and N 0/ H swcA thai T is /Ac direct sum of a unitary operator
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on M and an operator on M1
which is unitarily equivalent to the shift operator

on H2
(N).

Proof. Let M and N be as above. Let Ti be the restriction of T to M
and Tz the restriction of T to ML

. Then TI is unitary and T is the direct

sum of TI and TV Now

M1 = tf T(N) T*(tf) ....

There is a completely obvious isomorphism of M^ with H2
(N) which carries

Tz onto the shift operator on H2
(N).

Corollary. Let T be an isometry on a Hilbert space H. The following

three properties of T are equivalent:

(i) There is no non-zero subspace of H on which T is unitary.

(ii) There is no non-zero element of H which is "infinitely divisible
91

by T.

(iii) There is a Hilbert space N such that T is unitarily equivalent to the

shift operator on H2
(N).

Proof. We have done the more difficult part of the work above. That

is, we have shown that (i) and (ii) are equivalent and that each implies

(iii). The argument will be completed if we show that the shift operator

on H'2(A
T

) has property (ii). This is obvious.

Now we have characterized the shift operator on Hz of some Hilbert

space by the properties of being (a) an isometry; (b) unitary on no non-

zero subspace. This makes it very easy to give (a la Halmos) the descrip-

tion of the invariant subspaces for this operator, which were first found by
Lax. First, we shall show how we can abstractly characterize the shift

operator on Hz
(of the complex numbers). When we have done this, we

turn (in the next section) to the application of these ideas to the charac-

terization of all invariant subspaces for the shift operator on L2 of the

circle. Then we return to the invariant subspaces for the shift on H2 of a

Hilbert space.

Theorem. Let T be a non-unitary isometry on a Hilbert space H. The

following are equivalent:

(i) T is unitarily equivalent to the shift operator on H2
(i.e., equivalent

to multiplication by z on H2
of the disc).

(ii) There is no non-trivial subspace of II which completely reduces T
(i.e., if S is a closed subspace of H such that S and Sx are invariant under T,

then S = {0} or S = H).

Proof. Let us first show that multiplication by z onHz has property (ii).

It will suffice to show that if /, g 6 H2
, and if zj is orthogonal to zng for

all m, n ^ 0, then either / = or g = 0. But this is clear, for we have

= 0, m, n =
0, 1, 2,
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Thus, fg = Q almost everywhere on the circle. So either/ or g must vanish

on a set of positive measure on the circle, and for an H2 function this

makes it identically zero.

Now suppose we have a non-unitary isometry T on H with no (noii-

trivial) completely reducing subspace. In particular, if we let N be the

orthogonal complement of the range of T
7

,
we must have

H =

We cannot have AT = 0, since T is not unitary; hence, in the decomposition

H = M@N@T(N)-.-
we must have M =

{0}. In other words, (ii) guarantees that T "is" the

shift operator on //2
(AT), and our task is now to prove that N is one-

dimensional. Let n be a non-zero vector in N, and let S be the 1 -invariant

subspace spanned by n, i.e., the span of the vectors Tk
n, k ^ 0. We claim

that Sx is invariant under T. Now h 6 S
1 means that

(T*n, h) = for k =
0, 1, 2, ____

Thus, for k = 1, 2, 3, . . . we have (T
k
n, Th) = 0. But (n, Th) = by

definition of N, so Th is in S\ Since S ^ {0}, we must havq S* = {0}

by (ii). Thus, S = H
; i.e., every h in # is uniquely expressible in the form

h = a n + aiTra + a2T2n +
where 2 |a fc

|

2 < >. In particular, it is clear that every vector in AT is a

scalar multiple of n.

The Shift Operator on L2
.

Now we turn to the shift operator (multiplication by e ie
) on L2 of the

unit circle. We shall describe the invariant subspaces for this operator.

Of course, one invariant subspace is //2
, or, more generally, any subspace

of T
2 which is invariant under multiplication by z. Thus the discussion

is a slight extension of the characterization of the invariant subspaces for

the shift operator on H2
.

Let S be a closed subspace of L2 of the circle such that e*S Q S. It

may happen that S is also invariant under multiplication by e~*. This

means only that S is a subspace on which the shift operator is unitary,

or that S is invariant under multiplication by every bounded measurable

function. It is well-known that any such subspace has the form S = xL?

where x is the characteristic function of some Baire set; in other words,

such an S consists of all functions in L2 which vanish on some fixed Baire

set.

Theorem. Let S be a closed subspace of L2 which is invariant under

multiplication by z.
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(i) // zS =
S, then S consists of all functions in L* which vanish on some

fixed Baire set on the circle.

(ii) // zS ^ S, then S = FH2
,
where F is a measurable function of

modulus 1.

Proof. As we said, (i) is well-known and easy to verify. Suppose zS 9 S.

Let N be the orthogonal complement of zS in S. Then

where M consists of all functions in S which are "infinitely divisible" by z

in S. Suppose / is in N. Then / is orthogonal to zkf for fc = 1, 2, 3, ... or

0, fc = l,2,3,....

Thus |/ 1

is constant almost everywhere on the circle.

Now M is a subspace of L2 on which multiplication by z is unitary.

Thus M = xL2
,
where x is the characteristic function of some Baire set.

Choose/ 7^ in N. There is such an /since zS 5^ S. Then zkfis orthogonal
to x for fc = 0, 1, 2, . . .

; i.e.,

=
0, fc = 0, 1, 2, . . . .

Thus /x is in ff2
. Obviously, x 5* 1, so /x vanishes on a set of positive

measure. But /x is in IP, so we must have /x = a.e. On the other hand,

/ is a non-zero function of constant modulus. We conclude that x = 0.

Now we have

The subspace N is one-dimensional. There are several ways to see this.

First, it is evident from the fact that each function in N has constant

modulus. Second, if we have functions / and g in N orthogonal to one

another, we have / orthogonal to zkg for fc ^ and zkf orthogonal to g for

fc ^ so that/0= and (by the constant modulus property) either/ =
or g = 0. Third, by the general result of the last section, it would suffice

to show that there is no non-trivial subspace of S which completely reduces

multiplication by z. This means that if/, gS and if z jf is orthogonal

to zkg for all j, fc ^ 0, then either / = or g = 0; that is, if /, g 6 S and

fg = 0, then / = or g = 0. This can be done by showing at the outset

that any function in S which vanishes on a set of positive measure is

identically zero.

Since N is one-dimensional, we can choose an F in N of modulus 1,

and S will consist of all functions of the form

where S |an |

2 < *>, i.e., S = FH*.
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There is an analogous theorem for L2 of the real line. If we use the

Paley-Wiener theorem and the relation between H2 of the disc and IP of

the half-plane, we obtain this result immediately. With each g in L2 of the

circle we associate a function / on the imaginary axis by

fit-

Then / is in L2
(dt). In fact, up to a constant, g >/ is an isomctry of L2

of the circle onto L2 of the line. This map carries IP of the circle onto IP
of the imaginary axis, i.e., the boundary values of the functions in IP of

the right half-plane. In the last theorem we were studying the subspaces
of L2 of the circle invariant under multiplication by z, i.e., invariant under

multiplication by (the boundary values of) every bounded analytic func-

tion. These subspaccs are carried onto the subspaces of L 2
(dt) invariant

under multiplication by such boundary values, or onto the subspaces of

L2
(d/) invariant under multiplication by <r ix ' for all X ^ 0. The result from

the disc now carries over directly. It perhaps sounds more natural if we

perform a 90-dcgree rotation and use the upper half-plane.

Theorem. Let IP denote the space of square-integrable functions on the

real line which are boundary values offunctions in H2
of the upper half-plane.

Let S be any closed sulspace of L2
of the line which is invariant under multi-

plication by e iXx
/or all X ^ 0. Then S is of one of the following two types:

(i) S consists of all functions in L2 which vanish on some fixed Baire set.

(ii) S = FH2
,
where F is a measurable function of modulus 1.

If one uses the full strength of the theorem of Paley arid Wiener which

we have been discussing, there results a characterization of all subspaces
of L2 of the line which are invariant under right translation. This amounts

to the use of the Plancherel theorem. If / is an integrable function on the

line, the Fourier transform of / is the function / defined by

The Plancherel theorem states that (a) if / is in L1
Pi L2 then / is in L2

and ||/|| 2
=

U/HJ, using the measure =dt; (b) the map from L1 H L*

into L2 defined by / > / has a unique extension to a unitary map of Z/
2

onto L2
. This extension defines the Fourier transform of any L2 function.

The Paley-Wiener theorem says that the space IP of the last theorem is

the set of all Fourier transforms of L2 functions which vanish on the half-

line ( 00, 0). Translation of / by X multiplies the Fourier transform by
e**. The last theorem may then be stated as follows.
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Theorem. Let H2 denote the space of Fourier transforms of L2
functions

which vanish on the left half-line. Suppose S is a (closed) suhspace of L2

which is right translation invariant.

(i) // S is invariant under all translations, then S consists of all functions

in L2 whose Fourier transforms vanish on some fixed Baire set E', i.e.,

S = XKIA

(ii) Otherwise
,
S = FII2

,
where F is a measurable function of modulus 1.

We might mention one interesting corollary to the description of these

invariant subspaccs of L2
. Suppose / is an L2 function on the unit circle.

Then the functions e ine
f(0) with n ^ span L2

if and only if

(a) / docs not vanish on a set of positive measure;

(b) log |/| is not integrable.

Equivalently, suppose / is in L2 of the line. Then the right translates

of / span L2
if and only if

(a) the Fourier transform/ does not vanish on a set of positive measure;

log \?(x)\
(b) _r 2

y|
is not Lebesgue integrable.

1 ~r~ x

Actually, these results were known prior to the characterization of the

"invariant" subspaces. They are corollaries to Szego's theorem, which we

proved in Chapter 4.

The Vector-valued Case

We shall now give the description of the invariant subspaces for the

shift operator on //2 of a Hilbert space. This was first done by Lax. We
shall follow Halmos in obtaining the result as an easy corollary to the re-

sults on isometries which we have already given. The discussion here will

be brief. The proof, as such, is complete; however, we shall skim over some

standard preliminaries to avoid becoming embroiled in a lengthy discussion

of vector-valued integration and analytic functions with values in a Banach

space.

Recall that for any Hilbert space K we defined HZ
(K) as the space of

all sequences
h =

[fto, fcii hzj . . .]

of elements of K for which S \\hn \\

2 < . Each element of //*(#) may also

be interpreted as an analytic function in the unit disc with values in K:

h(z)
= S znhn .

n-O

This amounts to regarding ft as a square-integrable function on the circle

with values in K
,
and then extending h to the disc by the Poisson integral

formula. The functions we obtain in the disc are characterized by the

property that the integrals
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arc bounded as r * 1. Each such function in the disc may be identified

with its boundary values as in the scalar-valued case, and we may thus

identify HZ
(K) with this space of analytic functions in the unit disc.

Naturally, this identifies the shift operator with "multiplication by z"
The "invariant subspacc theorem" then assumes the following form.

Theorem. Let K be a Hilbert space, and let Sbea closed non-zero subspace

of H2
(K) which is invariant under multiplication by z. Then there exists a

Hilbert space N and a function F such that

(i) F is an analytic function in the unit disc with values in the space of

bounded linear operators from N into K; if |z| < 1 then ||F(z)|| g 1; at

almost every point e ifl on the unit circle F(e
id

) is an isometry;

(ii) S = FH 2
(N); i.e., S consists of all g in H2

(K) of the form

g(z)
= F(z)f(z)

where f is in H2
(N).

Proof. If we restrict "multiplication by z" to the subspace 8, we obtain

an isometry on S which is not unitary on any subspace of S. Thus, if we
let JV denote the orthogonal complement in S of the subspace zS, we shall

have

S = N@zN@z*N -.
This enables us to identify S with 1T2

(N). The function F is defined as

follows. Suppose \z\ < 1. Then F(z) is the linear operator from N into K
obtained by evaluating each element of N at the point z. Now S = FH*(N)
because of the above direct sum decomposition for S. The other properties

of F stated in (i) are easy to verify, modulo the preliminaries we said we
would skim over. Any two reasonable-sounding definitions of an analytic

function with values in a Baiiach space are equivalent. Here one can use

the usual existence of the derivative. Each hH>2

(K) is differentiate

because it is the sum of a convergent power scries. It is, then, easy to see

that F is differentiate, F'(z) being the operator which sends each n in N
into n'(z). Obviously,

\\F(z)\\ ^ 1 for |z| < 1

so F has boundary values at almost every point of the circle. This is the

analogue of Fatou's theorem on bounded scalar-valued analytic functions,

and its proof can be given in the same manner. To check that these bound-

ary values are isometric almost everywhere, just use the fact that each n

in N is of constant norm almost everywhere on the circle (n is orthogonal

to zkn for fc = 1, 2, 3, . . .).

We should remark that the subspace AT has dimension not greater than

the dimension of the underlying Hilbert space K. The theorem would seem
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more elegant if N were always isomorphie to K\ however, the simplest

examples show that dim N < dim K occurs. The result will seem to be

a more natural generalization of the scalar-valued case if we "embed" N
in K. Choose an isometry of N onto some closed subspace K of K. Then

regard the function F as having values in the bounded operators from 7C

into K. For each z define F(z) to be and K^, thereby extending F(z) to

a bounded linear operator on K. On the boundary, the operator F(e
jff

) is

(almost everywhere) a partial isometry on A", that is, an operator which is

isometric on a subspace and zero on its orthogonal complement. The
theorem then states that every subspace of H2 H2

(K) which is invariant

under multiplication by z has the form F//2
,
where F is an analytic function

in the unit disc whose values are bounded operators on K] \\F(z)\\ g 1;

and at almost every point of the unit circle F(e*) is a partial isometry.

It goes without saying that one can translate these various vector-

valued theorems from the disc to the half-plane, where Lax originally

proved these results.

Representations of H*

In this section we shall discuss representations (by bounded linear

operators on a Hilbert space) of the algebra of bounded analytic functions

in the unit disc. The section is brief and the results are rather meager.

There are two reasons for including this section. First, as we mentioned

earlier, this point of view does lend perspective to some? of the results above.

Second, the study of representations of 7/ seems worthy of considerable

research.

By a representation of # we mean a mapping / - 7/ from W 00 into

the set of bounded linear operators on some Hilbert space which is an

algebra homomorphism, and which carries 1 onto the identity operator.

The material above has been concerned with the special class of repre-

sentations obtained as follows. Choose a Hilbert space K and represent/ by
the operator "multiplication by/" on the Hilbert space H2

(K):

This standard representation of // on H*(K) has (of course) many special

properties. Some of those which may be of interest from the standpoint

of more general representations are as follows:

(i) for every inner function /the operator 7/ is an isometry; if / 5^ 1,

then Tf is not unitary on any non-zero subspace;

(ii) | \f 1 1 oo
=

1 1 7/| |,
the representation is isometric;

(iii) if fn > / boundedly and pointwise almost everywhere, then

7/n -> Tf in the strong operator topology, i.e., Tfn(x) T/(x) for each

vector x.
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The results on isometries which we discussed above show that certain

of these properties characterize the "standard" representations.

Theorem. Let f Tf be a representation of H.
(i) The representation is unitarily equivalent to the standard representa-

tion of H on H2
of some Hilbert space if and only if the operator Tz is an

isometry which is not unitary on any non-zero subspace.

(ii) The representation is unitarily equivalent to the standard representa-

tion on II2
of the disc if and only if Tz is a non-unitary isometry with no

non-trivial completely reducing subspace.

Proof. Assuming that Tz is isometric and not unitary on a non-zero

subspace, we let N be the orthogonal complement of the range of Tz . The

underlying Hilbert space then has the form

N TZ(N) T2
Z(N) --.

In other words, there is an isomorphism of the space onto //2
C/V) which

carries Tz onto the operator "multiplication by z." We must verify that

this isomorphism carries Tf onto multiplication by /, for every / in //.

Since T/ is a bounded linear operator, it will suffice to prove this on JV;

that is, it will suffice to prove that if

/CO - 2 akz
k

fc =

and n N, then

Tf (n)
= 2 a*7*(n).

fc
=

Now
T

ff(n)
- a n =

(IF/
- a /)n = T9 (n)

where g(z)
=

/(z) a . Since 0(0) = 0, we have g = zh for some h in //.

Thus

T,(n) = Tz(Th (ri))

proving that Tg (?i) is in the range of Tz . It follows that aQn is the orthogonal

projection of n into the subspace N. By considering f(z) a <)>&, the

same sort of argument shows that a n + aiTz(n) is the orthogonal projec-

tion of Tf(n) into W TZ(N). Continuing in this way, we prove (i).

Statement (ii) is now merely a repetition of the characterization of the

shift operator on H'2 of the disc.

The theorems on the invariant subspaces for the shift operator take

the following form, in the language of representations.

Theorem. Let K be a Hilbert space and let f Mf be the standard

representation of H on H2
(K); i.e., M f is multiplication by f. Let S be any

subspace of H2
(K) which is invariant under this representation. Then the

induced representation on S is unitarily equivalent to the standard representa-

tion of H on H2
of some Hilbert space N, where dim N g dim K.
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Proof. This is a simple corollary of part (i) of the last theorem.

It seems natural to ask what one can say about a representation/ > T/
of 7/ under various other sets of hypotheses. For example, what can be

said if one assumes only that Tz is an isometry? Not a great deal. For

instance, there is a representation of H with these properties:

(a) \\Tt \\ g
(b) for every inner function / the operator 7/ is an isometry;

(c) for at least one inner / the isometry T/ is not unitary on any non-

zero subspace;

(d) Tz is the identity operator.

If we are willing to add a very special continuity condition to the

representation, in addition to the assumption that Tz is isometric, a great

deal can be said. This continuity condition is that if fn >/ boundedly
and pointwise almost everywhere, then 7/n > 7/ in the strong operator

topology. Suppose Tz is isometric and this continuity prevails. If we let

N be the orthogonal complement of the range of T31 then the underlying

space decomposes in the form

M@N@TS(N) T*(N) - -

where M consists of all vectors in the space which are "infinitely divisible"

by Tt . Now it is easy to see that M is invariant under all 7/. This does not

require continuity of the representation ;
M is invariant under any operator

which commutes with Tz . The continuity guarantees that

N T,(N)

is invariant under all 7/; certainly, this space is invariant under 7/ for all

polynomials /, and the polynomials are dense in 7/, using the topology
of bounded pointwise almost everywhere convergence on the unit circle.

Thus, the representation decomposes into the direct sum of two rep-

resentations, one of which is equivalent to the standard representation on

H*(N). The other, on the subspace M, is completely determined by the

unitary operator C7, which we obtain by restricting Tz to M . Of course,

U is not an arbitrary unitary operator; but, evidently, U is a unitary

operator having the property that if {fn} is a sequence of polynomials

which is bounded and converges almost everywhere on the circle, the op-

erators fn(U) converge in the strong operator topology, i.e., converge

pointwise on M. This holds if U is the direct sum of unitary operators,

each of which is equivalent to multiplication by e*
9 on L2

(dju), where n

is a positive measure on the circle, which is absolutely continuous with

respect to Lebesgue measure.
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NOTES

The starting point for this chapter is Beurling [8]. See also the paper of

Karhunen [51]. In the half-plane, the scalar and vector-valued problems are in

Lax [53]. The essence of the generalization to Dirichlet algebras is in Helson-

Lowdcnslager [43]. The L2 case arid some of its generalizations are in the more

recent paper by Helson-Lowdenslagcr [44]. The relevance of the results on isome-

trics is pointed out by Halmos [39]. His paper contains a more detailed discussion

of the vector-valued case. For example, we have not included a uniqueness theorem.

Wermer [93] has used the basic result on invariant subspaces to embed "analytic

discs" in the space of maximal ideals of a Dirichlet algebra.

EXERCISES

1. Let \an} be a sequence of points in the open unit such that 2(1 \ct.n \) < oo .

Let S be the set of all functions / in II2 such that f(an) = /'(a*)
= for each n.

Prove that S is a closed subspace of II2 invariant under multiplication by z. Find

the inner function F such that S = FH2
.

2. Find a bounded analytic function / in the disc and a closed subspace of Hz

which is invariant under multiplication by / but is not of the form FHZ
.

3. Let / be a bounded analytic function in the unit disc. Prove that

1
, /, f

2
, /

3
,

. . . form an orthonormal basis for //2
if and only if f(z)

=
\z, where

|X|
= I-

4. (Beurling) For/ in IP, f ^ 0, define

= exp
[
log

Prove that ^ d(f) ^ 1 and that 5 is multiplicative. Also show that the functions

znf, n ^ 0, span Hz
if and only if 5(f)

= 1.

6. Let S be the subspace of II2
consisting of all / such that fll --; )

=

for all n greater than some positive integer N/. What is the closure of ?

6. Let / be a squarc-integrable function on the unit circle. One of the results

of this chapter (or Szcgo's theorem) implies that the functions c
in6
f(6) with n ^

span L? if and only if the einSf(0) with n ^ span L2
. Is this obvious, a priori?

7. Which of the following functions/ in L2 of the real line have the property
that their right translates span L

2
?

8. Let /x be a finite positive Baire measure on the unit circle, and let

be the closure in L2
(dp) of the polynomials in z. Describe the closed subspaces of

H2
(dij) which are invariant under multiplication by z. Exercise 3 of Chapter 4

may be of some help.
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9. Let F be a non-constant inner function in the disc, and let T be the operator

"multiplication by F" on II2 .

(a) Prove that T is an isometry which is unitary on no non-zero subspacc.

(b) Prove that T is unitarily equivalent to multiplication by z if and only if

where |X|
= 1 and |a| < 1.

10. If / is in H l of the disc, prove that the functions z*J, n ^ 0, span H1
if

and only if / is an outer function.

11. Let < r < 1, and let Tr be the linear operator on #2 of the disc defined by

that is, Tr is restriction to the disc of radius r. Find all the invariant subspaces for

Tr . (Hint: Show that Tr is a positive and completely continuous operator.)



CHAPTER 8

H* SPACES IN A HALF-PLANE

Hp of the Half-plane

In this chapter \ve shall be working in the half-plane Re (w) ^ 0. If / is

analytic in the open right half-plane, we say that / belongs to the class Hp
y

provided that the Lp norms

are bounded for x > 0. We shall establish some of the theory of these

spaces. Their study is much more akin to the theory of Fourier transforms

than to the theory of Fourier series. We shall work in part with Fourier

transforms; however, we shall utilize what we know about Hp of the unit

disc to establish some of the fundamentals. This has the disadvantage of

being somewhat "unnatural," but it has the advantages of avoiding dupli-

cation of proofs and of exhibiting the simple relationship between the Hp

spaces of the disc and those of the half-plane.

At the outset, there are a few elementary comments we should make.

The conditions imposed on an Hp function in the half-plane are (in a sense)

more restrictive than the corresponding conditions in the disc. In order

for an analytic / to be in Hp we first must require that the Lp norms of /

along vertical lines be finite and then that they be bounded. In the disc

there is no question of the finiteness of the Lp norm on the circle of radius r.

When we require a bound on the Lp norms on vertical lines, the bound for

large x is just as important as the bound for x small, i.e., vertical lines

near the boundary. The function

is square-integrable on each vertical line and the integrals

are bounded on any strip g x g c; but these integrals are clearly not

bounded as x g oo .

121
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Spaces in a Half-Plane

The primary tasks for us will be the proof of the existence of boundary
values (on the imaginary axis) and the establishment of a Poisson integral

formula for recapturing a function from its boundary values. To see what

the Poisson kernel is for a half-plane, let us look at the linear fractional map

w + l

of the half-plane Re w > onto the unit disc |z| < 1. On the boundary
this map is

from which it is easy to deduce that

In other words, the normalized Lebcsgue measure on the circle corresponds

to the Cauchy probability measure

1 dl

irl +<2

on the imaginary axis. If g is a measurable function on the unit circle,

and if

then g is Lebesgue-integrable if and only if / is integrable with respect

to the measure dt. When g is integrable,
1 + I

Now it is easy to "lift" the Poisson formula from the disc to the half-

plane. The Poisson kernel for the point z in the disc is

Since

tt-l w-l
e*

9 + z it + 1 w + 1

e* z it - 1 w I
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the Poisson kernel for the point w in the right half-plane should be

raw - 11 = x(l + t?)

lit- w ] x* + (y- t)
z

Of course, we must use this function with the measure n m so it is
v \*- ~i~ ^ )

perhaps more sensible to call

i

the Poisson kernel for w. From Fatou's theorem in the disc we now have

the following.

Theorem. Let F be a measurable function on the imaginary axis which

is integrable with respect to the measure (1 + t2
)"Mt. Define f in the right

half-plane by

Then f is harmonic and has non-tangential limits which exist and agree with F
at almost every point of the imaginary axis.

Proof. The proof is immediate from Fatou's theorem for the disc and

from our computations above. One should remark that non-tangential

arcs are preserved, since the map from the disc to the half-plane is con-

formal.

Several comments are in order. First, note that the above theorem is,

in particular, true if F belongs to Lp of Lebesgue measure on the imaginary

axis, for some p ^ 1. Second, one can, of course, give a direct proof of the

above theorem, without appealing to the corresponding result in the disc.

Third, if F is the restriction to the imaginary axis of a function analytic

in some half-plane Re (w) > c, it does not follow that / is analytic.

Some control on the analytic function at infinity is necessary to guarantee
this. For instance, it is clear that the Poisson formula reproduces any
bounded analytic function from its boundary values, but not, say, ew.

Now let us record some of the special properties of / when F is actually

in L*(dt).

Theorem. Let p ^ 1 and let F be a function in Lp
( oo, oo). Let f be the

harmonic function in the right half-plane defined by
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(i) For each x > the function fx(y) = f(x + iy) is in Lp
( oo, oo).

(ii) The l^-norms ||fx || p are bounded for x > 0. In fact, ||fx || p is a

decreasing function of x for x > 0.

(iii) The. functions fx converge to F in Lp
( oo, oo) as x > 0.

(iv) f(w) tends uniformly to zero as w tends to infinity inside any fixed

half-plane Re (w) ^ 6 > 0.

Proof. We arc not on a finite measure space, so F need not be integrable.

But since - Px is integrable, its convolution with F is a function fx in Lp
.

7T

Also,

\\G*F\\ P \\GUF\\,
and since Px ^ and

we have

H/.II, ^ m
To see that \\f*\\p is a decreasing function of x, suppose Xi < x2 . Verify
that

-i - ._

z
- Xl(y l)dt

and repeat the above argument, replacing F by fXl and Px by Px^ Xl . The

convergence of fx to F in 7> is a standard approximate identity argument,
like several we have given.

To prove (iv), observe that since - Px(y t)dt is a positive measure of

mass 1 we have

\f(x + iy)\" g ; [" \F(t)\'P.(y
-

f)dt.

Suppose > 0. Since F is in Lp
,
we can choose T > such that

Now Px(y <) = "' an(l ^ we keep x ^ 5 > 0, we shall have
X

Now with 5T fixed, the last integral is obviously 0(\x + iy\"
1

) in x g 6.

Boundary Values for Hp Functions

We are now going to prove that if / is in Hp of the right half-plane for

some p ^ 1, then / has non-tangential limits at almost every point of the
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imaginary axis, the boundary value function F is in Lp
,
and / is the Poisson

integral of F. As we shall see, this follows rather easily from the fact that

such an / possesses property (iv) of the last theorem.

Theorem. Let f be in H> of the right half-plane for some p ^ 1. Then

f(w) tends uniformly lo zero as w tends to infinity inside any fixed half-plane

Re (w) ^ d > 0.

Proof. The proof will proceed by reducing to the last theorem. That is,

we shall show that for Re (w) > XQ > we can write / as the Poisson

integral of its values on the line Re (w) = XQ. Fix w with Re (w) > 0.

Choose positive numbers XQ, x, and y such that

XQ < lie (W) < X

y<lm (w) < y.

We represent / by means of the Cauchy integral formula applied to the

rectangle with vertices XQ iy, x iy. We obtain

&-*
-y x + it w J-y XQ + it w

/(*
-

iy)

s iy w xo s + iy

Choose a large positive number F, say Y > 2|Im w|. We shall average the

above expression for/(ti?) over the interval (Y, 27). First, note that

since |s db iy to| ^ F/2 in the range of y's considered. Now, we estimate

the inside integral by Holder's inequality, using the fact that there is a

fixed M such that

If g is the conjugate to p, i.e., if
-

H =
1, this estimate gives

>0 as
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Averaging 2irif(w), we obtain

1 f2Y
2irif(w)

= lim p Jy [/i(x; y)
- 7

Now it is easy to see that

y-< x

lim ^
r->oo /

This is an immediate consequence of the fact that

/_, |o _L 7*/ __ 7/ ,|

^
lo i^ &fc tl/l

We obtain, therefore,

O_,*// /1 ..\ 7 /. . *x \ 7 /,. . _~ \
Z7rt/^t0J

= ii^x,ooj -fiV^Oj 00
,).

We shall now let x > oo . For p =
1,

/ IfO -I-?AI /I \

|/i(z;>)| ^ / ^ _^ ^ g M-(z -
Ren?) = Of -1

and for p > 1,

so I\(x] oo)~>0asx * oo . Thus we obtain

for any rr which satisfies < x < Re i^.

We have a Cauchy integral representation for /, from which we can

easily obtain a Poisson integral representation. Let

w = + it\ and w' = 2xQ + <iy.

Now Re w; < XQ, so if we use the Cauchy integral theorem and repeat the

above argument, we obtain

f(x, + it

-- x + it w'
dt.

If we subtract this from our Cauchy integral for f(w) and remember that

w w' = 2(J XQ), we obtain

M fa _ _ ^ >

By part (iv) of the last theorem we have immediately that f(w) tends

uniformly to zero as w tends to infinity inside any fixed half-plane

Re (w) ^ d > 0.
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Theorem. Let p 1 and let f be anyfunction in Hp
of the right half-plane.

Let g be the function in the unit disc defined by

Then g is in H p
of the disc.

Proof. Let Cr be the circle of radius r in the disc: C r

Then we wish to bound the integrals

as r > 1.

For each 5 > 0, the line x = d in the right half-plane is transformed by
our linear fractional map into a circle F 5 in the disc, which is tangent to the

unit circle at z = 1. Given r < 1, we can choose a 6 > which is suffi-

ciently small that Cr lies in the interior of the circle F 5 . By the last theorem,
the function / is continuous in the half-plane Re (w) ^ 6, including the

point at infinity. This means that g is analytic in the interior of the circle

F and is continuous on the closed disc bounded by F$. Since Cr is inside

this disc, it follows that

>(2)|*|d*| g 2
]vt \g(z)\*\dz\.

We shall comment on this below. Assuming this inequality for now, we
obtain

, ^2

7 M~ 2
\
(lW

\

W|P F+^
dt

(1 + S)
2 +

< ~7l/"~~
r

where M is the bound for the Lp norms of / on vertical lines. We conclude

that g is in Hp of the disc.

We used an inequality in the above proof, which can be stated as fol-

lows. Suppose g is analytic inside the circle F and continuous on the closed

disc bounded by T. If C is a circle interior to that disc, then
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To prove this, one may assume that T is the unit circle. The result then

states that if g is continuous on the closed unit disc and analytic in the

interior, and if C is a circle in the open unit disc, then

If one represents g as the Poisson integral of its boundary values, this is

trivial to verify.

Now we have the theorem we have been seeking.

Theorem. Let p ^ 1 and let f be a function in H> of the right half-plane.

(i) f has non-tangential limits at almost every point of the imaginary axis.

(ii) The boundary values of f are in Lp and

(iii) The functions fx(y)
== f(x + iy) converge in Lp-norw to f(iy) as

x->0.

Proof. Let g be the function in the unit disc defined by

By the last theorem, g is in Hp of the disc. Thus g has non-tangential limits

at almost every point of the unit circle, and g is the Poisson integral of its

boundary values:

Since the linear fractional map from the disc to the half-plane is conformal,

we deduce immediately that / has non-tangential limits at almost every

point of the imaginary axis. As we observed at the beginning of this

chapter, the boundary values of / are in Lp ( V and / is represented

by the Poisson formula of (ii). Of course, the boundary values of / are

actually in Lp
(dt). By Fatou's lemma

r \f(it)\
pdt g 1ml f \f(x + it)\

pdt
J - x-K) J - *

g M*.

This proves (i) and (ii). Statement (iii) follows from (ii), as we observed

in a previous theorem. We have stated it again for emphasis.

The Relation between the Hp Spaces for the Disc and Half-plane

The proof of the last theorem made essential use of the fact that each

Hp function / in the right half-plane is transformed by the linear fractional

map
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w
1 -a

into a function g in H" of the disc :

We have, therefore, a mapping from Hp of the half-plane to a subspace of

Hp of the disc. It is quite easy to determine what this subspace is. It

consists of all functions g in Hp of the disc such that

is also in H* of the disc. If g is in Hp of the disc, the corresponding analytic

/ in the right half-plane need not be in Hp of the half-plane. All that one

can state is that / is analytic for Re (w) > and is the Poisson integral

of a function on the imaginary axis which is in Lp of the measure

(1 + P)~
l
dt. In other words,

1 + P

is Lebesgue integrable. Suppose we select an analytic branch of the

logarithm of 1 + w in the right half-plane. Then

/(to)

(1 + w)*'*

is in Lp on the imaginary axis. Thus, / is in Hp of the right half-plane if

and only if (1 + w)*
lp
f(w) is in Lp

(di/l + /
2
) on the imaginary axis (if we

assume, as always, that g is in Hp of the disc). Since

l+n>=
2

1 -z

we see that / is in Hp of the half-plane exactly when

is in Lp on the unit circle. Now we need the following.

Lemma. Let p ^ 1, let a > 0, and let g be a function in Hp
of the disc.

A necessary and sufficient condition that the function

be in H p is that h(e*) be in Lp on /ie uraY cfrcfe.
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Proof. Now

\g(t)\> g exp [^ log |</(e)|'P,

|1
-

|

= exp
'

log |1
- e|P.

so that

\h(z)\> exp [^ PM log
|fc(e)|'d]

Thus

We should point out that the only property of (1 z)
a which is relevant

in the lemma is that it is an outer function. Returning to our g before the

lemma, we see that g transforms into a function in Hp of the half-plane if

and only if

is also in Hp of the disc. What we have proved may be summarized as

follows.

Theorem. Let g be an analytic function in the unit disc, and let f be the

analytic function in the right half-plane defined by

// p ^ 1, then f is in H p
of the right half-plane if and only if

g(z)
=

(1
-

where G is in H p
of the unit disc. Equivalency, g is in II p of the unit disc

if and only if

f(w) =
(1 + wp*F(w)

where F is in IIP of the right half-plane.

There are some remarks we might make. The content of the last

theorem is, perhaps, more clear if we state it roughly. The relation between

the two Hp
spaces is this. Start with Hp of the disc

;
use the linear fractional

map to transform this space to a space Hp of functions in the right half-

plane; choose an analytic branch of (1 + w) zlp on Re w > 0; divide every

function in Hp by (1 + t0)
2/
*; the resulting space is Hp of the half-plane.

Indeed, up to a constant, this map is a Banach space isometry between the

two Hp
spaces. If
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then

i
f"m \h(it)\'dt

=
f*r \g(e*)\'d.

Since Sp consists of all analytic / in the right half-plane which are the

Poisson integral of a function on the imaginary axis in Lp
(dt/l + 2

), and

Hp consists of all analytic / which are the Poisson integral of a function on

the imaginary axis in Lp
(dt), the relation

HP =
(1 + w)*iH

seems evident. On the boundary the relationship is clearly right. The only

point to be chocked is that after multiplying an Hp function by (1 + w) 2lp

the resulting analytic function is still the Poisson integral of its boundary
values. This is what we did in the lemma above.

For the case p = 2 we have the relation /72 =
(1 + it?)//

2 which we

discussed in the last chapter.

The Paley-Wiener Theorem

If one uses the Plancherel theorem, one obtains from our results here

the one-sided Paley-Wiener theorem.

Theorem (Paley-Wiener). A complex-valued function f in the right half-

plane belongs to the class H2
if and only if f has the form

for some function f in L2
(0, <*>). This representation is unique.

Proof. The function / will be defined by

Literally, this definition makes sense only if / is integrable. The Plancherel

theorem asserts that if / is in Ll O L* then / is in L2 and ||/|| 2
=

||/||,

the set of such / is dense in L2
,
and so the Fourier transform / > / can be

uniquely extended to a unitary mapping of L2 onto L2
. This defines the

Fourier transform / for any / in L2
. We represent / by the above formula,

with the understanding that this is correct if / is in L1

,
but must be in-

terpreted in a limiting sense in general. With the same convention about

limits, we also have the inversion formula
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Now it is quite easy to verify that if / is in L2 and vanishes on the left

half-line, the corresponding / is the boundary function of an //2 function.

Just extend / to the half-plane as in the statement of the theorem.

We want to prove that if / is in Hz the Fourier transform / vanishes

on the left half-line. First, let us observe that it will suffice to prove this

when / is in Hl

,
for II1 O H2 is plainly dense in II2

. If / is in H*, f is the

limit in L2 norm of the functions

each of which is in 7/ 1 O //*.

Suppose / is in IP and x < 0. Let

h(w) =
(1
- w^

Now (1 + wYf(w) is in what we called /71

,
the image of Hl of the disc.

1 ~~~ ID

Evidently, h is also in this space, because
T-^T;

is bounded on Re (w) ^ 0,

and for x < the function cxw is also bounded on that half-plane. But then

= o.

Here we have used the fact that [TT(! + /
2
)]~

1
is the Poisson kernel for the

point w = 1. That completes the proof.

Factorization for Hp Functions in a Half-plane

By direct translation of the corresponding results in the unit disc we
obtain the following results about a non-zero function / in Hp of the right

half-plane, p ^ 1.

(i) If ft, ft, ... are the zeros different from 1 of / in Re (w) > 0, then

n

which is the necessary and sufficient condition for the convergence of the

Blaschke product

Of course, fc denotes the order of the zero of / at w = 1 and
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is a function in Hp without zeros.

(ii) The boundary values of / cannot vanish on a set of positive

Lebesgue measure; indeed,

The function

+ Ir,/ \ f 1 f *
i I */ MM t

F(w) = exp
[- J_ m log I/Ml

is in Hp
\
also l/^l

=
|/| almost everywhere on the imaginary axis and

\F(w)\ ^ \f(w)\ on the half-plane.

(iii) If X = c ifl

,
where a = arg (

j^ 1(1), then the function

is uniquely representable in the form

where M is a finite singular positive measure on the imaginary axis and p is

a non-negative real number.

NOTES

The basic results on Hp of the half-plane are due to Paley and Wiener [67] for

p = 2 and to Bochner [12] for p = 1. The arguments used here are basically those

of Hille and Tamarkin [46] which are similar to the Paley-Wiener methods, and

to those of Gabriel [29]. Other approaches can be used, particularly ones which

use more about Fourier transforms and less about the disc; e.g., see Titchmarsh

[88]. It seems difficult to find the relationship between Hp of the disc and JIP of

the half-plane stated anywhere. For a discussion of Fourier transforms, the

Planchcrel theorem, etc., see the books by Paley and Wiener [68], Wiener [95],

and Titchmarsh [88], For results on factorization of functions analytic in a half-

plane see Gabriel [29, 30]. The inequality about J |/|
p|dH along curves is dis-

cussed in Gabriel [31] and Carlson [19] for subharmonic functions.

EXERCISES

1. Let / be an analytic function in the right half-plane and let g be the function

in the unit disc:
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We consider the integrals

1

(a) If these integrals are bounded, show that g is in 772 of the disc.

(b) Exhibit a g in 772 so that the integrals are not bounded.

2. Let / be analytic in the half-plane Re (w) > 0. Show that / is in 772 if and

only if there exists a positive number 5 such that

(i) the integrals

are bounded for < x < 5

(ii) / is bounded on the half-plane Re (w) ^ 6.

3. For / in 772 of the right half-plane, define

Show that U is a unitary mapping of 772 onto 7/2
. Replace inversion by a conforms!

map of the half-plane onto itself arid prove the same result, thereby obtaining a

group of unitary operators on 7/2
.

4. Let / be analytic in the half-plane Re (w) > 0. Prove that / is in IP if

and only if / = gh, where g and h are in H2 of the right half-plane.

6. (Akutowitz [3]). Let /be analytic in the half-plane Re (w) > 0. Prove that

/ is a Blaschkc product if and only if

(a) |/<u| 1.

6. Let / be a non-wegalive harmonic function in the right half-plane. Prove the

following.

(a) f(x + iy)
= px + -

I f
-

dn(t), where p is a non-negative con-
TT j x \ \y t)

stant and p, is a finite positive measure on the imaginary axis.

(b) r /(
f
+ y dy < for aU x > 0.

y- 1 + y*

(c) (Loomis-Widder [55]) If / is harmonic on x ^ and vanishes on x = 0,

then/(z + iy)
= px.

7. Let a > 0. Let Ta be the linear operator on IP of the right half-plane defined

by (Taf)(w) = f(a + w). Use the Paley-Wiener theorem to describe the invariant

subspaces for Ta -

8. Let g Ll
( oo, oo). If f(%y) is the boundary function of an 7/2 function in

the right half-plane, define
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Prove that Tg is a bounded linear operator on H2
(regarded as a subspace of L2

of the imaginary axis). Let a > 0, and let Ta be the operator of Exercise 7. Prove

that Ta is one of the operators Tu and that any subspace of H* invariant under Tt

is also invariant under every Tg .

9. Docs the operator (Tf)(w) =/(J w) map H2 of the right half-plane into

itself? If so, is T a bounded operator?

10. Prove that every function / in L2 of the real line is uniquely expressible in

the form/ = /+ + /-, where /+ is in //2 of the upper half-plane and/- is in H2 of the

lower half-plane. Show that

and a similar formula defines /_ for Re (w) < 0.

11. Refer to Exercise 10 and let H+ be the set of L2 functions on the line which

are boundary values of functions in H2 of the upper half-plane, and define 7/~

similarly, using the lower half-plane. Show that L2 = H+ //~ (orthogonally),

and that both W and H" are translation invariant. Find all orthogonal direct sum

decompositions L2 = S T, where S and T are (closed) translation invariant

subspaces.



CHAPTER 9

Hp AS A BANACH SPACE

The purpose of this chapter is to relate some of the work of recent years

on the Banach space structure of the Hp spaces in the unit disc (p ^ 1).

As usual, we will deal with II* either as the space of analytic functions in

the unit disc for which the functions /r(0)
= f(re*) arc bounded in L*

norm, or as the space of Lv functions / on the unit circle for which

f'v e*f(0)M
=

0, w= 1,2,3, ....

Described in the latter way, II1' is easily seen to be a commutative Banach

algebra, using convolution as multiplication; however, a discussion of this

aspect of the spaces \vould take us too far afield, so we shall be primarily

concerned with the linear structure. As it happens, H is also a commuta-

tive Banach algebra under pointwise multiplication. We shall discuss this

Banach algebra in some detail in the next chapter, and will treat it in a

limited sense in this chapter, since the algebraic structure of 77 is of con-

siderable aid in studying // and H l as Banach spaces. The material we
cover here is as follows: (1) the characterization of the extreme points in

the unit ball of Hp
, (2) the isometrics of H* and H l

,
and (3) projections

of L onto Hp
.

Extreme Points

In studying a Banach space X, one problem of considerable interest

is that of describing the geometry of the unit ball,

S

In particular, one would like to find the extreme points of 2, that is, the

points in 2 which are not a proper convex combination of two distinct

points of 2. If X is a Hilbert space, the extreme points of 2 are precisely

those on the unit sphere, i.e., those of norm 1. This is also true of the Lp

spaces for 1 < p < oo. On the other hand, the unit ball in L1 has no

extreme points whatsoever, and one must presume that this is somewhat

typical for a Banach space. Certainly, then, a description of the extreme
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points of S does not convey complete information about the geometry of S.

Still, such a description can be very useful.

We are interested in the extreme points of the unit ball in Hp
,

1 g p g oo. For 1 < p < oo this presents no problem, for, as we men-

tioned above, every point on the unit sphere of Lp is an extreme point

of the unit ball in Lp
. Obviously, then, the extreme points in the unit ball

of Hp are exactly the functions of norm 1 (1 < p < oo). This leaves us

the two cases p = 1 and p oo . In the case p 1 it is not immediately
evident that the unit ball should have any extreme points, since the unit

ball in L1 has none. But H1 differs radically from L 1 in that it is the con-

jugate space of a Banach space. A general theorem of Krein and Milman
states that if a Banach space X is (isometrically isomorphic to) the con-

jugate space of some Banach space Y, then the unit ball in X not only

has extreme points, but has sufficiently many to "span" the unit ball.

The form of this theorem which is relevant here is the following.

Theorem (Krein-Milman). Let Y be a Banach space, and let K be a

non-empty convex subset of the conjugate space Y*. Suppose that K is com-

pact in the weak-star topology on Y*. Then K has an extreme point; in fact,

K is the weak-star closure of the convex hull of its extreme points.

The theorem applies in particular to the case when K is the unit ball

in F*. At one point later on, we shall have need of this theorem, and we
shall use it without presenting a proof; however, most of what we do in

this chapter does not depend upon this result. Our reason for stating it

now is to suggest that the unit balls in H1 and H should have "quite a

few" extreme points. Of course, in order that the theorem be applicable,

we need the following.

Theorem. Every H p
space (1 ^ p g oo) is (isometrically isomorphic to)

the conjugate space of a Banach space.

Proof. For 1 < p g oo
,
this result is more or less evident from the

corresponding fact about Lp
. As a space of functions on the unit circle,

Hp is defined as the set of all / in Lp which annihilate ein6 for n ^ 1. Since

Lp is the conjugate space of Lq
,
where - + - =

1, we see that Hp is the

annihilator of the closed subspace of Lq which is spanned by the functions

e in9
,
n =

1, 2, 3, .... The latter space is //g, the space of Hq functions

which vanish at the origin. From this it is easy to identify Hp with the

conjugate space of the quotient space Lq/H%. In particular, H* "is" the

conjugate space of the quotient U/Hl. The fact that Hl
is a conjugate

space is not so evident. This is essentially the content of the F. and M.
Riesz theorem on measures: a measure n on the circle which annihilates

e ine for n ^ 1 is absolutely continuous with respect to Lebesgue measure;

i.e., it has the form dn = hdO with h in H1
. Using this result and the fact
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that the space of finite complex measures on the circle is the conjugate

space of the space C of continuous functions, one can proceed as above to

identify II1 with the conjugate space of C/A ,
where A Q is the uniform

closure of the polynomials vanishing at the origin.

Before taking up the extreme points for II 1 and i/00

,
let us make a few

elementary observations about the unit ball 2 in the Banach space X.

First, the statement that x is an extreme point of 2 simply means that if

# = ? (y + z) with y and z in S, then x = y = z. For if

x = \a + (1
-

A)&

where a and b are distinct elements in 2 and < X < 1
,
then we can choose

two distinct points y and z on the line segment from I) to a such that

x =
-J (?/ + 2). Second, any extreme point of necessarily has norm I

;
for

if \\x\\ < 1, we can write x = % (y + z), where y and z are distinct scalar

multiples of x, each having norm less than 1. Third, the condition that x

be an extreme point of 2 can also be phrased as follows: if / is any element

of X such that \\x + t\\ g 1 and \\x
-

t\\ g 1, then = 0. For if

x = J (y + 2) with 2/ and 2 in S, put t = x y so that

z=z + J and \\x + t\\ ^ I, \\x
-

t\\
1.

The condition # = y = z is equivalent to / = 0.

Now let us consider //, the space of bounded analytic functions in the

unit disc. Since the unit ball of // consists of those functions which map
the disc into the disc, one feels that the extreme functions should be those

which take extreme values fairly often. In L this is the complete answer:

the extreme functions in the ball are those which are of modulus i almost

everywhere, i.e., those whose values are extreme points of the disc. Clearly,

then, any / in 7/* which is of modulus 1 on the unit circle (any inner /)

will be extreme in the unit ball of //*. However, there are additional

extreme points. For example, suppose / is in //*, |/| ^ 1, and |/|
= 1

on any set E of positive measure on the circle. Then/ is an extreme point

of the ball in #; for if/ = \, (g + ft) where \g\ g 1 and
|ft| g 1 we must

have / = g = ft on the set E. Since the measure of E is positive while

/, g, and ft are analytic, this implies/ = g = ft. Neither do these functions

exhaust the extreme points. The complete answer is the following.

Theorem. A function f in H is an extreme point of the unit ball in H
if and only if |f(z) |

g 1 and

Proof. Suppose the integral condition holds. Let g be any function in

H" such that ||/ + g\\ g 1 and ||/
-

g\\* g 1. Then
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Therefore

\g(e*)\* g 1 - |/(")|

and so

2
f'w log \g(e)\dO g 27rlog2

= 00.

This implies that g
= 0. We conclude that / is extreme.

Now suppose the integral condition on / fails to hold, i.e., that

log (1
-

|/(e*)|) is integrable. Let

g(z)
= exp Tf /' J^ log (1

-
|/(e)|)d

L7T / *" C

Then 5^ and g is a bounded analytic function
; indeed,

\g(e)\
= 1 - |/(e*)|.

Then ||/ + g\\*> ^ 1 arid ||/ g\\ M ^ 1, so/ is not extreme.

We should mention that this result also holds for the Banach space A
of continuous functions on the closed disc which are analytic in the in-

terior. The first half of the proof carries over as above, because if / is

extreme in the unit ball of 77, it is certainly extreme in the unit ball

of the subspace A. For the second half of the proof, we must arrange that

g have continuous boundary values. If / is in A and log (1 \f(e
w
)\) is

integrable, we can choose a continuous function u on the unit circle such

that ^ M ^ 1 I/I, log M is integrable, and u is continuously differ-

entiable on each open arc of the set where |/| ^ 1. If we then put

g will have continuous boundary values and will satisfy

|0(e*)| ^ 1 - |/(e*)|.

Again, / is not extreme.

Now we turn to the more interesting problem of the extreme points in

the unit ball of 7/1
. Here we cannot be motivated by the corresponding

result for L 1

,
since the unit ball in U has no extreme points. We must

search for a class of functions in 771

possessing an extremal property. The

relevant class here is that comprised of the outer functions of norm 1.

An outer function / in 771
is characterized by an extremal property: if g

is in 771 and |/| ^ |gr|
on the circle, then |/(z)| ^ |0(z)| for each z in the

disc. So the following result is not too surprising.

Theorem (Rudin-de Leeuw). Let f be a function in H 1
. Then f is an

extreme point of the unit ball in H 1

if and only if f is an outer function

of norm 1.
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Proof. First, let us show that if ||/||i
= 1 and / is outer, then / is

extreme. Suppose that / is any L 1 function on the circle which has L1 norm
1 and which does not vanish on a set of positive measure. Let g be a func-

tion in L1 such that ||/0||i ^ 1. Of course, equality must hold, i.e.,

Let <
= g/f so that <t> is integrable with respect to the measure

dp =
\f\dO. Now /i is a positive measure of mass 1 and the conditions

ZiTT

assumed on g state that

J[|l+*| + |1

But

|1 +01 + |

and. since ju has mass 1, we must have

almost everywhere. But this implies that < is real-valued and 1 g <t> ^ 1

almost everywhere. Thus, any g in L 1 such that j|/ g\\i ^ 1 has the form

g = </, where 1 g </> g 1 .

Now suppose/ is in 7/ 1 and ||/||i
= 1. Then/ does not vanish on a set

of positive measure on the circle; consequently, if g is in H1 and

1 1/ =t 0|| g 1, we have (on the circle) g = </, where -1 g g 1. Thus

|0| ^ |/ 1

on the circle, and if / is outer this implies that

I0COI ^ I/GOI

on the unit disc. Therefore, ^ = g/f is a bounded analytic function with

real boundary values and is constant. But then since

we see that =
0, that is,

= 0. Thus, / is extreme in the unit ball of H1
.

Now suppose / is a non-zero function in 7/1 which is not an outer func-

tion. This means that / = IF, whore / is a non-constant inner function

and F is an outer function. Recall that this factorization of / is unique up
to a constant of modulus 1

,
that

F(z) = X exp
'

log |/(

and that / = f/F. Let us adjust the constant X occurring in the outer part

F so that

j/(*) |
Re /(*)< = 0.

Now let

= i(i +W
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Then g is a non-zero (7 5^ const) function in II 1
. Now, since

|/(c
tf

)|
= 1 and 2 Re (z)

= ^--^ for |z|
= 1

z

we see that

0(e*) = /(e")Re/(e").

Thus,

|/(e) 0(e)| =
|/

Consequently,

ll/0ll

because we arranged that |/| Re 7 has integral on the circle. This argu-
ment shows that if ||/||i ^ 1 and / is not outer, then / is not an extreme

point of the unit ball in H1
.

We should like now to give some corollaries (also due to Rudin and

de Lceuw) to this theorem and its proof, which will exhibit some rather

fascinating facts about the unit ball in 77 1
. Probably the most remarkable

is the following.

Corollary 1. Let f be a function in the unit bait S of H 1
.

(i) // ||f||i
= 1 and f is not an extreme point of S then f = itfi + fc),

where fi and fz are distinct extreme points of 2J.

(ii) // ||f||j < 1, then f is a convex combination of some two extreme points

o/S.

Proof, (i) Suppose \\f\\i
= 1. We construct g as in the proof of the

above theorem and put /i
= / + g, /2 = / g. Then

||/i||i
=

||/t|!i
= 1 and /= *(/!+/).

By the theorem, we arc done if we show that fi and /2 arc outer functions.

The claim is that / db tg are outer functions for any real / satisfying t ^ 1.

Now

+ 27

by the definition of g and the fact that / = IF. Now we choose a real

1

ss =--.

27 t)
-

number s such that cos s = - Then

so

Since the product of outer functions is outer, it suffices to show that the

last two factors above are outer functions. This amounts to showing that
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if h is an inner function then 1 + h is outer. This is easy to see. For if

c > 0, then (1 + e) + h = h< is outer, being bounded and bounded away
from zero. Thus

h t (z)
= cxp [^ f^^^ log \h t (e*)\M + i arg Ae (

As e > 0, the functions log \h t
\
decrease monotonically to log \h + 1|, so

by the Lebesgue dominated convergence theorem the above formula holds

with ht replaced by (1 + h). Therefore, 1 + h is outer.

For part (ii) of the corollary, suppose ||/||i
= 5 < 1. If / is zero, the

argument is trivial. If 5 > and/ is outer, it is also trivial, for/ is on the

line segment joining the extreme points ~f and -/. Now suppose
O

< 5 < 1 and/ is not outer. Construct g as in the theorem and then choose

numbers li > 1 and fe > 1 such that

By our argument above, / + 1$ and / Ug are outer functions (thus ex-

treme points), and/ lies on the segment joining these functions.

Corollary 2. The closure of the set of extreme points of the unit ball in H1

consists of all f in II 1 such that

(a) ||f||i
=

l;

(b) f has no zeros in the open unit disc.

Proof. Suppose / is in H1 and ||/n /||i > 0, where the fn are outer

functions of norm 1. Clearly, ||/||i
= 1. Since / / in L1 norm on the

circle, fn > / uniformly on compact subsets of the open unit disc. Conse-

quently, either / has no zeros on the disc or / = 0. The latter is absurd

since ||/||i
= 1.

Now let / satisfy (a) and (b). Put fr (z)
= f(rz) for < r < 1. Then

||/r /||i
> as r 1 and fr is outer, being bounded away from zero.

If gr
=

||/r||f Vr, Qr is an extreme point of the unit ball of H1 and gr >/
as r > 1.

Isometrics

In this section we shall describe the Banach space isometrics of H1 onto

itself and of // onto itself. In either case, all isometrics are induced by
conformal mappings of the unit disc onto itself. One can reduce the study
of isometrics of H1 to the study of isometrics of II". This was done by
de Leeuw, Rudin, and Wermer, after de Leeuw had first found the isome-

trics of H1

by a lengthier method. The isometrics of 7/ were also found

by Nagasawa, using a different method. Through the use of the Krein-

Milman theorem, the study of isometrics of H can be reduced to the study
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of the algebra automorphisms of 77, first characterized by Kakutani.

Thus, we shall begin by describing the automorphisms of //.

Theorem. Let $ be an automorphism of the algebra of bounded analytic

functions in the unit disc onto itself. Then there is a conformal map r of the

disc onto itself such that (<f)(X)
=

f(r(X)) for all bounded analytic f. Con-

versely, for any such T the <t> defined in this manner is an automorphism of the

algebra of bounded analytic functions in the disc.

Proof. If r is a conformal map, it is clear that / /(r) is an auto-

morphism of /7. Suppose we are given an automorphism <. Since $ ^ 0,

it is apparent that 0(1) = 1. Let / be a non-zero function in //. Then/
has a zero at some point of the open unit disc if arid only if there is some

positive integer n such that / is not the nth power of any function in //.

Since < is an algebra automorphism, / has an nth root if and only if

</>(/) has an nth root. Therefore, </ maps the class of functions without

zeros (in the disc) onto itself. But since 0(1) =
1, it follows that </> preserves

the range of every function; for <(/ X) = <(/) X has a zero if and

only if / X has a zero.

Let z denote the identity function: z(X)
=

X; and let r = $(z). We shall

prove that r is a conformal map of |X| < 1 onto itself. From our remarks

above, we know immediately that r maps |X| < 1 onto itself. We must

show that r is one-one. For each X with |X| < 1, the function z X is prime
in the ring H; i.e., if z X = fg with/ and g in H*, either / or g must be

invertible in //. Consequently, <f>(z X)
= r X must also be prime in

//. Then, obviously, r X cannot have two distinct zeros in the open

disc, else r X would be divisible by z Xi and z X2. Thus T is one-one,

and is a conformal map of the open disc onto itself.

Now let
\//

be the automorphism of H obtained by composing with

the automorphism / > /(r^
1

) :

Then \f/ is an automorphism of // such that $(z) = z. It is clear that such

a ^ is the identity automorphism. Let/ be in // and |X| < 1. Then

/-/(X) = (z-X)0r, <7inff.

Since \l/(z X)
= z X, we have

so W/)(X) =
/(X). Since ^ is the identity,

for all /in//
00

.

Of course, this same result holds for the algebra A of functions con-

tinuous on the closed unit disc, analytic in the interior. The proof is the

same, after one makes two elementary observations: (1) If r is a conformal
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map of the disc onto itself, then T has continuous (even analytic) boundary
values. Thus, / -> /(T) is an automorphism of A. (2) If / is in A and / has

no zeros in the open disc, then / has an nth root in A for each n. Another

algebra to which the theorem applies is the full algebra of analytic func-

tions in the disc.

The proof of the preceding theorem is tied to the simple connectivity

of the disc, because of the argument about roots which it contains. We
might present another elementary proof which is interesting and which

avoids the root argument. Suppose is an automorphism of //. Let / be

in //* and let X be any complex number. Then X belongs to the closure of

the range of / if and only if (/ X) is not invertible in II00
. Since it is

clear that 0(1) =
1, we see that the ranges of / and </ have the same

closure. Let r = <j>z. The range of r is, then, an open set whose closure

is the closed unit disc (T is non-constant since < is one-one). Thus, r maps
the open disc into the open disc. Let |X| < 1 and/ in //. Then |r(X)| < 1

and

/-/(r(XV) - [z~r(X)]<7

where g is in H. Consequently,

so <t>f /(r(X)) vanishes at X, i.e.,

Thus is the map / > /(r), and, since < maps //* onto //*, it is clear that

T is a conformal map (r"
1
is the function which </> maps onto z).

Now we turn to isometrics of 7/00
. The result here is that if T is a linear

isometry of 7/ onto //*, then T =
<*</>, where a is a constant of modulus 1

and is an algebra automorphism of H, that is,

for sornc conformal map r. This is a consequence of a very general result

on algebras of continuous functions. We shall give the proof of the general
theorem. The proof will lean heavily on the theorem of Krein and Milman
which we staled at the beginning of this chapter, and, as we said, we shall

not prove that theorem.

Theorem. Let X be a compact Hausdorff space and let A. be a complex
linear subalgcbra of C(X), the algebra of continuous complex-valued functions
on X. Assume that A contains the constant function 1 . Suppose T is a one-one

linear map of A onto A which is isometric:

\\Tf\\.
= II/IU

Then T has the form
Tf = atf

where a is a fixed function in A which is of modulus 1, I/a is in A, and </>
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is an algebra automorphism. In particular, if T(l) =
], then T is multi-

plicative.

Proof. First, let us note two things. (1) It is no loss of generality to

assume that A is uniformly closed, because any isometry of A can be

uniquely extended to an isometry of the uniform completion of A. (2) It

is also no loss of generality to assume that A separates the points of X.

We can always arrange this by identifying those points of X which are

identified by every / in A.

Now, regarding A as a Banach space with the sup norm, we let 2

denote the unit ball in the conjugate space A*. We wish to call attention

to some particular elements of 2, the point evaluations:

.(/)
-

/(*), x in X.

The Krein-Milman theorem guarantees that 2 has extreme points. We
wish to show that every extreme point. L of 2 has the form L = \LX where

|X|
= 1 and Lx is one of the above point evaluations. Suppose L is extreme

in 2. Then I|L||
=

1, and the llalm-Banach theorem guarantees the exist-

ence of a bounded linear functional F on C(X) 9
which is an extension of L,

and for which
! | F| |

=
||L||

= 1. Let S be the set of all such extensions of L.

It is clear that S is a convex and weak-star compact subset of C(X)*.
Choose F, an extreme point of S (using Krein-Milman again). Then F is

actually extreme in the unit ball of C(X)*. If F =
4 (Fl + F2 ) with

| |F,! |
^ 1, then

\\FL\\
=

I!F2 ||
= 1

and if Lj is the restriction of F> to A, each Lj is in 2 and L = 4 (Lj + L2).

Since L is extreme, LI = L2
= L. Thus, each F, is a norm preserving

extension of L (i.e., is in S) and because F is extreme in S, FI = F2
= F.

The extreme points in the unit ball of C(X)* are easily identified. This

unit ball is the set of all complex Baire measiircs on X which have total

variation at most one. The extreme points are, therefore, of the form

dp = \ddx ,
where |X|

= 1 and dx is the unit point mass at some point x in X.

It follows that our extreme functional F has the form

TO = V(*)

and, restricting to A, the extreme functional L in 2 has the form

L = XL*, |X|
=

1, x 6 X.

Since A separates the points of X, the point x which is associated with L
in this way is unique; therefore, X is unique as well.

Now let E be the set of extreme points of 2. For every / in A

= sup |L(/)|.
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This we see as follows. Since each L in E is a linear functional on A of

norm 1,

H/IU sup |L(/)|, Lintf.

Suppose 1 1/ 11 oo
= ! Since X is compact, / attains its maximum on X at

some point or
, say, /(.TO)

=
||/||

== 1- Let

M= {L6S;L(/) =
1}.

Then M is non-empty (L^ is in M); A/ is convex; and M is weak-star

compact. By Krein-Milman, M has an extreme point L. Such an L must

actually be extreme in the unit ball S. For if L = (Li + L2) with Lj in 2J,

the facts that \\f\\*
= 1 and L(/) - 1 imply that L,(/) =

1, j = 1, 2.

Then, since L is extreme in M, we have LI L2
= L. Thus, the "maxi-

mum set" M for / contains an extreme point of 2, and

= BUp|L(/)|

the maximum actually being attained.

At last we consider the given Banach space isometry T of A. The

adjoint T* of T, defined by

is then an isometry of A* onto A*. Thus T* must carry the unit ball 2

onto itself, and also must carry the set E of extreme points of 2 onto itself.

Now let

B = {x X; L is extreme in 2}.

Since Lx is extreme if and only if XL, is extreme for all X of modulus 1,

the points of E are exactly the functional \LX with |X|
= 1 arid x in B.

If x is in B, then T*LX must also be an extreme point of 2. This associates

with x a complex number a(x) of modulus 1 and a point T(X) in B such that

T*L, = aGc)LT(,,

or

(Zy)(s) =
a(z)/(T(*)), all/ in 4.

Taking / = 1 in the above, we see that a(x) = (71) (z) for x in B, i.e.,

that a is (the restriction to B of) a function in ^4.

Now we begin to use the ring structure of A. Let /, g be in A and let

x be in B. Then

If we multiply by a(a;), we obtain

(*X3TOX*) = (Tf}(x)(Tg}(x).

For any fe in 4 we know that II/&IU is the supremum of |L(fc)| for L in
J,

that is,
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We have just seen that for any / and g in A the function

h = r(/0)
-

(Tf)(Tg)

vanishes on B. Consequently, we have

<*T(fg) = (Tf)(Tg)

for all/, in A If we take/ = </
= T~l

(\), we see immediately that I/a is

in A Since both a and a"1 have modulus 1 on B and since each attains

its maximum on B, we see that |a(x)|
= 1 on all of X. Then, if we define

* by

it is clear that is an algebra automorphism of A .

Corollary. Let T be any Banach space isometry of H onto H. Then T
has the form

where a is a complex constant of modulus 1 and r is a conformal map of the

open unit disc onto itself.

Proof. We shall (of course) apply the above theorem. In order to do

so, we must show that H is isornetrically isomorphic to an algebra of

continuous functions on a compact Hausdorff space X. One way to do this

is the following. For each X, |X| < 1, let L\ be the complex homomorphism
of //* defined by L\(f] = /(X). Let X be the weak-star closure of the set

of all such L\ in the conjugate space (H*)*. Since each L\ is in the unit

ball of (//)*, we see that X is a compact Hausdorff space when it is

endowed with the weak-star topology. With each / in H" associate the

function / on X by
/(L) = L(/), L in X.

Each /is continuous on X by definition of the weak-star topology. Because

each L\ is multiplicative on //, it is clear that / > / is a (sup-norm)
isometric isomorphism of H with an algebra of continuous functions on X.

If we now apply the theorem, every isometry of H 00 has the form

Tf = 0/, where <f> is an algebra automorphism of H* and a is a function

in // which is of modulus 1 on the unit disc. Such an a is constant, and,
as we proved, <t> has the form

for some conformal map T. Hence, we are done.

Once again, we point out that the same corollary holds for the algebra
A of continuous functions on the closed disc which are analytic in the
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interior. The proof is even shorter, since A is already an algebra of con-

tinuous functions on a compact space.

Theorem. Every linear isomctry of H 1 onto H 1 is of the form

(7y)(X) =
*r'(X)/(r(X))

where a is a complex constant of modulus 1 and r is a conformal map of the

open unit disc onto itself. Conversely, for any such a and r the T so defined

is an isonwtry of H 1 onto H1
.

Proof. The converse statement is readily verified. Suppose, then, that

T is a linear isometry of H} onto H1
. Then T preserves the unit ball in H1

and preserves its extreme points. Consequently, T preserves the closure

of the set of extreme points. But this is the set of functions of norm 1

which have no zeros in the open unit disc. We conclude that, for / in H1

,

f has a zero if and only if Tf has a zero.

Now let F =
5T(1). By our remarks above, F has no zeros in the open

disc. Similarly, if / is in H1 and X is a complex number, / X has a zero

if and only if Tf XF has a zero. In other words, / and Tf/F have the

same range on the open disc. Define

Then U maps the subspace H* onto itself; in fact, U is isometric on H*
(with the sup norm), since Vf and / have the same range. Actually, U
maps //* onto 7/00

,
because if g is in //* the function / = T"l

(Fg) is in //*

and Uf = g. Furthermore, [/(I)
= 1. Hence, U is an algebra automor-

phism of J/ and has the form

for some conformal map r. This says that

(T/)(X) =
F(X)/(r(X))

for every bounded / in H1
.

From the last expression for T, we have

for all / in //. But for any / in H1

ll/lli
=

f't \f(e)\M
=

f'w |rV)|

Since T is isometric, we have

/_\ |F(e)| \g(e)\dO = |r'(e")| |0

for every g in H". So

/ \F\pdO = / |r'
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for every non-negative bounded measurable function p, because p + e = \g\

with g 6 # for any e > [log (p + e) is integrable]. Thus |F|
=

|r'| a.e.

on the circle. But both F and T' are outer functions; F is outer because

F = T(l) and 1 is outer; r is outer by direct computation of the derivative

of a linear fractional map. It follows that |F(X)|
=

|r'(X)| for |X| < 1, or

that F(X) =
ar'(X), where a is a constant of modulus 1. We now know

that T has the desired form on H, and, since // is dense in HL

,
we are

done.

To the best of our knowledge, the description of the isometrics of Hp

for p ? 1, 2, oo remains unknown. In particular, one might ask whether

every Banach space isometry of IIP for p ^ 2 is induced by a conformal

map of the disc onto itself.

Projections from Lp to Hp

One of the most useful features of a Hilbert space H arises from the

fact that each closed subspace S of II has a natural complementary closed

subspace, S*. The direct sum decomposition // = S S^ associates with

S a bounded projection P, which has S as range and S^ as null space. This

is all so natural in a Hilbert space that one virtually identifies P and S.

In our early treatment we were (often indirectly) aided by this, in the

situation where // = L2 and S = H2
.

If X is a Banach space and S is a closed subspace of X, there is not

usually any closed subspace T such that X = S T, let alone a "natural"

T with this property. In the pure linear space sense, there are many sub-

spaces T which are complementary to S. It is only when we require T to

be closed that any difficulty arises. If X = S T, we have a unique pro-

jection from X onto S with null space T:

x = s + t

Px = s.

If T is closed, then P is a bounded (i.e., continuous) linear operator on X]
and, although T may not be "natural," the existence of this bounded

projection of X onto S can be very useful.

The situation we shall discuss is that in which the Banach space is Lp

of the unit circle, and the closed subspace is Hp
(1 g p g <). In this

context there is certainly a natural candidate for a closed subspace com-

plementary to //p
, namely, the space of complex conjugates of Hp functions

vanishing at the origin. In other words, if / is in Lp and

S
n- s

9 inB

then one might hope that / = g + fe, where
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-1
ft ~ S Cn

in0

nt= oo

and that this splitting of the Fourier scries of / really defines two functions

g and h in Lp
. This is certainly the case if p = 2. In fact, we shall prove

below the theorem of M. Riesz, which states that it is the case for

1 < p < oo
; however, for p = 1 and p oo it fails utterly. For example,

it is very easy to see that

is the Fourier series of a bounded function on the circle, but that

V I ,,in9
4J k
n=i n

is not the Fourier series of a bounded function, i.e., a function in H. With
a bit more work one can show that

* cos nO

n = 2 log U

is the Fourier series of an Z/
1

function; but, as we proved earlier,

is not the Fourier series of an Hl function ( 2 ;

- = 00).
\ n log n )

Suppose we let 77g be the space of complex conjugates of Hp functions

vanishing at the origin. Certainly, Til is a closed subspace of Lp
. As we

said, we shall see that

LP = //*0Fg, 1 < p < oo.

For p = 1 we have

L 1
7* Hl @Hl

Of course, the sot of functions / in L1 which are of the form / = g + h

with g in H1 and h in //J is dense in L 1

,
since the trigonometric polynomials

are so decomposable. But the map
N NSr /f inB _ *V / f,in9

CftC ' Z/ t'M<>

n=-N w=0

is not bounded in the L 1 norm. Later, we shall prove D. J. Newman's
result that H1 has no complementary closed subspace in L1 whatsoever.

For p = oo the situation is (in a certain sense) even worse. As we noted,

L00
5* 7/00

77o
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but, furthermore, the functions of the form g + h with g and h in 7/ are

not even dense in L. ^

Theorem. The dosed linear span of the functions in H and their compkx
conjugates is not all of L.

Proof. This proof was suggested to us by D. J. Newman. For any / in

Llet

where Qr is the conjugate Poisson kernel. If / is real-vahicd, then / is the

harmonic function vanishing at the origin which is conjugate to the har-

monic extension of /. The idea of the proof is this. For any / in L which

is in the closed linear span of // and I/
00

,
the function/ does not grow very

rapidly along the positive axis. To be specific,

r-l-

On the other hand, if /(0)
=

I (IT 0) for g g 2ir the Fourier series

for / is

* sin nO

SO

demonstrating that the little-oh relation does not hold for every / in L.
All we need demonstrate is that the growth condition on / is satisfied

for functions in the closure of 7/ + 77. This is clearly the case if / is in

// + 77, since / is then a bounded function in the disc. Since

<MO-
1
- 2r cos t + r*

it is clear that the functions

Qr(Q

log (1
-

r)

are bounded in U norm as r * 1. Thus, if fn >/in the essential sup norm

/n(r) _ /(r)

log (1
-

r) log (1
-

r)

uniformly in r, and the growth condition holds for / in the closure of

//co + j7

Let us turn now to the main positive result.

Theorem (M. Riesz). Let I < p < . Let f be an Lp
function on the

unit circle with Fourier series
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Then

is the Fourier series of an Lp function g, and

where Kp is a constant depending only on p, no/ on f. Equivakntly, if

h = u + iv is in H p arid v vanishes at the origin,

IHI, g Af,|M|p

wftere Mp is a constant independent of h.

Proof. Let us first comment on the equivalence of the two assertions.

It clearly suffices to prove the assertions when / and h are trigonometric

polynomials. In the first case, we may also assume that / is real-valued,

i.e., that/ = h + h, where h is a polynomial; the first statement says that

the map from u to h is bounded in the Lp norm, while the second says that

the map from u to v is bounded. These are clearly equivalent.

For the proof, assume that h = u + iv is an analytic function with con-

tinuous boundary values and that v vanishes at the origin. We prove

IMI, g Mp\\u\\p .

First assume that u > so that h maps the disc into the right half-plane.

A suitable branch of hp is then analytic with continuous boundary values.

Remembering that v(0) =
0, we have

s ;*>.

Now we estimate J \h
p

(iv)
p
\dO. Write

(u + ivy - (iv)
p =

Jiv

and then

\h*
-

(ivy\ g pu\u +
= pu(u*
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Since (A + B)
r g 2r

(A
r + BT

) for r > 0, we have

Accordingly,

J 1

\v\*~
1

].

;~ J ttPd + ~; J

153

by applying Holder's inequality to

J u\v\*'-
ld6.

Combining this with our previous estimate, we obtain

J \(ivY\dQ g ^ J |/i
-

(ivY\dO + ^ / \l

Now

so

But
Re

^ / Re (iv

=
|?;|

7> exp [it

= H p cos (|PTT)

Re^J(^"< J

so we obtain

If we combine this with our estimate for the latter integral and write

\ =

we have

cos

INI,

g P2<p-"i*(l + \p-i) + 1.

ISIf p ^ 3, 5, 7, . . . so that cos
( 9 )

5^ 0, we conclude that |M| p/||w||p i

bounded for u > 0. It is easy to remove the restriction u > 0. Given an

h = u + iv, write u u+ u~, where u+ and u~ are positive continuous

functions. If we approximate u+ and u~ uniformly by real parts of analytic

functions with continuous boundary values, a simple application of the

triangle inequality (plus the bound for u > 0) shows that IW|p/lMlP is

bounded.

This completes the proof except for the exceptional values p =
3, 5,
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7, .... For such a p, let q be the conjugate exponent,
- + - = 1. Then

we have the theorem for q.

Note that

\\v\\p
= sup

where s ranges over all real parts of analytic functions with continuous

boundary values (or all real parts of polynomials) satisfying \\s\\ q
= 1. For

such an s let t be the harmonic conjugate vanishing at the origin. Then

J vsd6 = J utdO

because (u + iv)(s + it) is real at the origin. Consequently,

= Mq\\u\\*-

That completes the proof.

Theorem (D. J. Newman). There is no closed subspace of L 1

comple-

mentary to H 1
. Equivalently, there is no bounded projection from L 1 onto H 1

.

Proof (Rudin). The idea of the proof is to show that if there is any
bounded projection of U onto H } then the "natural" projection must be

bounded. So assume we have a linear transformation P which associates

with each / in L1 a function Pf in 7/1 in such a way that

(i) ||P/||i ^ K\\f\\i, K a positive constant;

(ii) P/ = /foreach/inH1
.

Now, for / in L 1 define

Here, fe denotes the ^-translate (or rotation) of /:

For a fixed / in L 1

,
the map >

fe is a continuous function from the circle

into L1

,
and since /' is continuous, the map > (P/0)-0 is continuous. This

leaves no confusion as to the meaning of the integral defining Pf. Now it is

clear that P is a bounded linear operator on L1
. Since 7/ 1

is rotation in-

variant it is evident that P maps U into 7/ 1

;
in fact, a short computation

shows that
" n =

0, n<0.

We conclude that P is the "natural projection" from L1 to H 1

, at least on
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trigonometric polynomials. Since that projection is not bounded we have a

contradiction.

The proof above works equally well for projections from Lp to Hp as

long as 1 g p < oo
;
that is, the proof shows that if there is any bounded

projection from Lp to Hp
,
then the natural projection is bounded. This is

because rotation is continuous in the Lp-norm. The difference is that for

1 < p < oo we have M. Riesz's theorem that the natural projection is

bounded, whereas for p = 1 it is not. The proof also carries over directly

to projections from the space C of continuous functions on the circle to

the space A of continuous functions whose negative Fourier coefficients

vanish. For, rotation 9 > /0 is continuous in the sup norm, if / is a con-

tinuous function. We conclude that there is no bounded projection from

C onto A.

For the case of L and 7/ the argument is not quite so simple, since

rotation is not continuous in the sup norm for a fixed L function; however,
this only forces a minor modification in the proof.

Theorem. There is no bounded projection of L onto H.

Proof. Suppose P is such a bounded projection. Let us employ the

notation

If / is in L we define a function Pf in L by

(Pf, g)
=

f'r [Pf,, Se]d0, all g in V.

Since P is bounded, for a fixed / the integral on the right defines a bounded
linear functional on L 1

,
and this linear functional is therefore "inner product

with" some function in L. The latter function we call Pf. Now one can

proceed as before to verify that P is the natural projection of L to H*
and is also bounded a contradiction.

The proof of this last result was first shown to us by R. Arens, who with

P. C. Curtis had independently found Rudin's proof about projections from

Lp to Hp
. The informed reader will note that the last theorem implies that

there is no bounded projection from Ll to Hl
. If there were a closed sub-

space of L1

complementary to H1

,
the conjugate space L would be the di-

rect sum of the annihilator of that closed space and the annihilator of H1
.

Thus there would be a closed subspace of L complementary to the

space of H functions vanishing at the origin.

NOTES

Kakutani's theorem on automorphisms is in [50]. The characterization of the

extreme points in the unit ball is due to Arens, Buck, Carleson, and Hoffman,
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during the 1957 Conference on Analytic Functions at the Institute for Advanced

Study. The extreme points of the unit ball in IP were found by deLecuw and Rudin

[23]. This paper also contains the two corollaries to the characterization, as well

as a discussion of some other extremum problems in H 1
. The Krein-Milman theo-

rem is in [52], For a proof, one may consult the book of Dunford and Schwartz

[25]. The theorem which we proved here concerning isometrics of function algebras
lirst came to my attention through the paper of Arens and Singer [5]; however,
it has been discovered independently by a great many people, and I know not to

whom original credit should go. The isometries of W were first found by deLeeuw

[22]. The proof presented here is due to deLeeuw, Rudin, arid Wermcr [24],

all of their work being carried on independent of Nagasawa [63], who also de-

scribed the isometries of H". M. Riesz's proof of the boundeclness of the natural

projection from D> to 77" (1 < p < oo) can be found in Zygmund [98], along
with various other proofs of the theorem. See Bochner [14] for another proof.

As we gave it, Riesz's proof carries over directly to the context of Dirichiet algebras,

as was pointed out to me by J. Wermcr. Let A be a Dirichiet algebra on the com-

pact Hausdorff space X, and let m be a positive measure on X which is multipli-

cative on A. Assume each real-valued / in A is constant. If u is the real part of a

function in A, there is a unique v such that / vdm = and u + iv is in A. The

theorem, then, says that the map from u to r is bounded in the Is(dm) norm, for

1 < p < oo. D. J. Newman's paper on the impossibility of projecting LL onto II1

is [66]. Rudin [77] first found the proof given here, and has generalized the result

somewhat.

EXERCISES

1. Let / be in A, i.e., / is continuous on the closed unit disc analytic in the

interior. If / has no zeros in \z\ < 1, prove that / has an ?ith root in A, for

n -
1, 2, 8, ....

2. Prove that the unit ball in U has no extreme points.

3. If 1 < p < oo, prove that every function of norm 1 is an extreme point of

the unit ball in J>.

4. Prove that every element of norm 1 in a Hilbert space // is an extreme point
of the unit ball in 77.

6. (deLecuw-Rudin) Regard 771 as a subspace of the conjugate space of the

continuous functions on the circle. Prove that the weak-star closure of the set of

extreme points of the unit ball in 7/1 consists of all / in 77 1 such that ||/||i S 1

and /has no zeros in the open unit disc, together with the zero function.

6. Let K be a closed subset of the unit circle, and let BK be the subspace of

functions in H* which are continuous at each point of K. Find all (sup-norm)
isometries of BK onto BK .

7. Consider the second proof we gave that every automorphism of 77* is induced

by a conformal map. Use it to prove that if D is any bounded region in the plane

which is the interior of its closure, every automorphism of the algebra of bounded

analytic functions on D is induced by a conformal map D onto D.
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8. Let D and R be bounded regions in the plane. Let </> be a homomorphism
of the algebra of bounded analytic functions on D onto the algebra of bounded

analytic functions on R, <f> ^ 0.

(a) Show that 0(1) is either 1 or on each component of R; and if #0 is the

union of those components on which $(1) =
1, then <t> is really a homomorphism

into the bounded analytic functions on RQ (so that we may as well assume that

I)
=

i).

(b) If 0(1) = 1, and T = $(2), then r(R) is contained in D (the closure of D).

(c) If the interior of 25 is D, 0(1) =
1, and T is non-constant, then

(d) If is one-one and onto and int D = D, then

where T is a conformal map of R onto Z).

00
COS Tl0

9. [98; page 253] Prove that 2 T^ is the Fourier series of an integrable
n =2 logra

ein9

function, but .
-

is not in If1
.

n=2logn

10. [98; page 253] Prove that 2 5!L2?
is the Fourier series of a bounded

n=l U
00

1

function, but that 2 -c l
'

nfl
is not in //*.

11. [98; page 253] Prove that 2
S
\
nn

converges uniformly to a continuous
71 in log n

00
1

function on the unit circle, but that 2 -e"** is not the Fourier series of a func-
71 = 1 W

tion in 4 (i.e., of a continuous function).



CHAPTER 10

H" AS A BANACH ALGEBRA

In this chapter we deal with ff00

,
the algebra of hounded analytic functions

in the unit disc. In Chapter 9 we studied this algebra to a limited extent;

we classified its automorphisms and from this classified its lianach space

isometrics. Here we shall concentrate on the space of maximal ideals of

H, relate what is known to date about its structure, and add a few new

pieces of information. First, let us clarify the term "maximal ideal space."

We consider a commutative Barmch algebra B (with identity). As we

proved in Chapter 6, there is a one-one correspondence

<t>
<~> M

between homomorphisms <t> of B onto the algebra of complex numbers

and maximal ideals M in the algebra B. The correspondence is defined by
M = kernel (<). We also showed that each maximal ideal M is closed and

consequently that each complex homomorphisrn <jf>
is continuous:

!*(*)! S l!*||.

Therefore, the complex homomorphisms of B arc the bounded linear func-

tionals on B which are multiplicative:

The bound (or norm) of such a </> is precisely 1, since <(!) = 1. Suppose
we let 30Z(JS) denote the set of complex homomorphisms of B. Then ^fl(B)

is a subset of the conjugate space /?*, arid in fact is contained in the unit

sphere of B*. Also, 9Tl(B) is closed in the weak-star topology on B*. Let L
be a bounded linear functional on B which is in the; weak-star closure of

9TCCB)- If x and y arc elements of B and t > 0, there is an element <t> in

9TC() such that

\L(x)
-

*(*)| < e

\L(y)
-

\L(xy)
-

0(:

Since <l>(xy)
=

<Kx)cK?/), ^ is clear that

158
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\Ldey)
- L

Thus L is multiplicative; i.e., L is in 3T!(). Since the unit ball in B* is

weak-star compact, it follows that 3fTC(B) is a compact Hausdorff space

when it is equipped with the weak-star topology. This compact space is

called the space of complex homomorphisms of B, or (because of the cor-

respondence between homomorphisms and maximal ideals) it is often called

the space of maximal ideals of B. We shall use the latter term; however,
we shall continue to think of the elements of 311(5) as homomorphisms.

With each element x in B we associate a complex-valued function A

on 3fTC(B) by

Each x is a continuous function on 9TC(B); indeed, by definition, the weak-

star topology is the weakest (smallest) topology on 3TC(7?) which makes

each x continuous. If denotes the set of all ,
then we have constructed

a representation (algebra homomorphism)

from B onto $, an algebra of continuous complex-valued functions on

3TC(J3). This is usually called the Golfand representation. In general, this

representation is not faithful; that is, we may have x =0 but x ^ 0. It

will, however, be an isomorphism in the cases we consider. It is always
true that the representation is norm decreasing:

II^IL ^ iwi.

This is merely a repetition of the fact that each complex homomorphism
of B is bounded by 1 .

One may reasonably ask what makes the representation x *& so

interesting. In the first place, perhaps the simplest commutative Banach

algebras are the algebras C(X) of all continuous complex-valued func-

tions on a compact Hausdorff space X; evidently, then, it is worthwhile

to represent the general B by (a subalgebra of) such an algebra. Among
such representations, the Gelfand representation is fundamental because

of its intimate relation to the algebraic structure of B. For example, the

statement that an element x of B is invcrtible translates into the statement

that the function A has no zeros on the space 3TC(5).

Maximal Ideals in H*

If we use pointwise addition and multiplication, together with the sup
norm

I I/II- rap |/W |

is a commutative Banach algebra with identity. Consequently, our
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comments above apply to H", giving us the representation// of H* by
an algebra of continuous functions on the compact maximal ideal space

3TC(ff). We wish to explore some of the structure of this space. What are

the maximal ideals (complex homomorphisms) of 77? We shall not answer

this question; indeed, it seems clear that no concrete answer could ever

be given. But we shall discover enough about the structure of ^(//) to

justify our efforts.

The only obvious complex homomorphisms of 77 are the point evalu-

ations

where X is a point in the open unit disc. It is evident that there are others.

For instance, if / denotes the set of functions / in 7/ such that /(A) tends

to zero as X approaches 1 along the positive axis, it is clear that 7 is a proper
ideal in H*. Accordingly, I is contained in a maximal ideal; i.e., there is

a complex homomorphism </> of 77 such that <(/) = for all / in 7. But
is not one of the point evaluations <x, since there is no X at which every /
in 7 vanishes. Needless to say, there are many such "new" homomor-

phisms; the number is impressive.

Note that the point evaluations <t>\ show that the Gelfand representa-

tion / >/ is one-one; if / =
0, then /(0x) = /(X) = for each X in the

open disc. Furthermore, we can see that the representation is isometric:

We know that \\}\\ g ||/||, and the </>x tell us that

Thus 77 is isometrically isomorphic to 7?, a uniformly closed subalgcbra

of the continuous complex-valued functions on the maximal ideal space

Sfrc(/7).

There is a natural continuous mapping of 3flZ(77) into the closed unit

disc in the plane. If z denotes the coordinate (or identity) function on the

disc, the mapping we have in mind sends the homornorphism < into its

value on the function z. In other words, the mapping is 2. To avoid con-

fusion, let us use the symbol IT for 2:

(*)
=

*(*), * 311(77").

Theorem. The mapping IT is a continuous map of ffll (I I
00

) onto the closed

unit disc in the plane. Over the open unit disc D, IT is one-one, and ir~
l

maps D
homeomorphically onto an open subset A of ^(H 00

).

Proof. By its very definition as I, TT is a continuous map from 3H(77)
into the closed unit disc. Each point X in the open disc is in the range of TT,

since ir(<t>\)
= X. Since 3R(77) is compact, so is the range of TT; therefore,
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this range must be the entire closed unit disc. Suppose |X| < 1 and

TT(<)
= X. If / vanishes at X, then / = (z X)0, and so

0.

Since </>(/)
= for every / which vanishes at X, it follows that is evalua-

tion at X. This shows that TT is one-one over D. If we let A = ir^D),
then TT maps A homeomorphically onto Z>, since the topology of A is the

weak topology defined by the functions/, and the topology of D is the weak

topology defined by the functions /in ff.

It is convenient to picture IT as a projection of TO(/y) onto the closed

disc. As we saw, ?r is one-one over D, so the open unit disc is homeomor-

phically embedded in TO by X > <\. The remainder of TO is mapped by TT

onto the unit circle. If |a|
=

1, we shall call ir~
l

(a) the fiber of TO over a
and denote this fiber by TO:

TO =
Ti-'Ca)

= {0 TO; 00&)
=
a}.

The fiber TOa is a closed subset of TO and consists of the homomorphisms
of H which resemble 'evaluation at a.' Let us make this precise.

Theorem. Let f be a function in H and let a be a point of the unit circle.

Let {An} be a sequence, of points in the open unit disc which converges to a,

and suppose that the limit f = lim f(Xn) exists. Then there is a complex

homomorphism < in the fiber TO such that 0(f)
= f .

Proof. Let J be the collection of functions g in H for which lim </(Xn)

= 0. Then J is an ideal in H* and is contained in a maximal ideal, that

is, there is a complex homomorphism </> of # such that <(0) = for every

g in /. The functions (z a) and (/ f) are both in /. Thus 0(z) = a
and 0(/) = f.

Theorem. The function f is constant on the fiber TO if and only if f is

continuously extendable to D U {a} .

Proof. If / is continuously extendable to Z) U {}, there is a complex
number f such that lim/(Xn)

= f for every sequence of points Xn in D
which converges to a. We wish to show that / has the constant value f
on the fiber TO. Assume f = 0. Let h(\) = J(l + aX) so that A (a) = 1

and |A| < 1 elsewhere on the closed unit disc. Since / is continuous at a

with the value 0, one can readily check that (1 An)/ converges uniformly
to / as n > oo . If <p is a complex homomorphism of H* which lies in the

fiber TO, then <t>(h)
= 1. Consequently, <[(l hn)f] =

0, and, since $
is continuous, <(/) = 0. Thus / is identically on TOa .

If / is constant on TO, the last theorem shows immediately that / is

continuously extendable to D U {<*} .

Theorem. Let f be a function in II
00 and a a point of the unit circle.

Suppose there is a complex homomorphism <t> in the fiber TO such that 0(f)
= 0.
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Then there is a sequence of points Xn in D such that Urn Xn = a and Urn f(Xn)
= 0.

Proof. If we cannot find such a sequence of points, there is an open
disc N centered at a such that

Write / = BSF, where B is a Blaschke product, S is a singular function,

and F is an outer function. Since / is bounded away from zero in a neigh-
borhood of a, the functions B and S an? analytic on that part of the unit

circle C which lies in N. (The zeros of B never enter N, and the singular

measure determining S must be supported on C-N.) By absorbing a

constant of modulus 1 into the inner function BS, we may assume that

= exp [^
e

log
|/(e-)|e].

Now, since |/| ^ 6 > on D n #, the function log |/(e*)| is bounded on
N n C. Thus, if we define

= exp ^c (
_

log | /(e

will be a bounded analytic function. Furthermore,

exp

where 7c is intcgrablc and vanishes identically on .V D C. It follows that

fh is analytically continuable across that part of the unit circle which lies

in N, and also that \fh\
= 1 on N n C. By tho last theorem, the repre-

senting function (fh)* is constant on the fiber
c
JTCa,

and that constant lias

modulus 1. Therefore, if < is in cJRa ,

80 0(/) ^ 0- This contradicts the hypothesis that <(/) = for some <

in 3fRa .

Corollary. // f is a function in H and! is a point of the unit circle,

then the range of f on the fiber iTRa consists of all complex numbers f for which

there is a sequence of points Xn in D with Urn Xn = a and Urn f (Xn )
=

f.

This corollary makes precise the rough statement that each homo-

morphism < in the fiber SfTla is akin to "evaluation at a." It also shows us

that each 2fTCa contains myriads of complex homomorphisms of H.

Topological Structure of yd(H)

We shall now consider various topological questions about the maximal

ideal space of #. The point evaluations <t>\ embed the open unit disc
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as an open subset A of TO. The remaining homomorphisms lie in the fibers

3fEa , and, as the last corollary shows, are in some sense limits of the points

of A. The question naturally arises: are these homomorphisms actually

limits of the <x in the topology of TO? In other words, is the open disc A
dense in TO? This question remains unanswered. Although it seems to be

quite abstract, it is easily translated into a very concrete question about

bounded analytic functions. [See NOTES]

Theorem. A necessary and sufficient condition that the open disc A
should be dense in 3Tl(H) is the following. If fi, . . .

,
fn are bounded analytic

functions in the open unit disc such that

l/i(X)l + + |/.(X)| 5 > 0, |X|< 1

then there exist bounded analytic functions gi, . . .
, gn such that figi + +

fngn
= 1.

Proof. Suppose that there is a complex homomorphism <o of // which

is not in the closure of A. By definition of the topology on TO this means
that there exist functions /i, . . .

, fn in H* and a positive 6 such that

</>o(/j)
=

0, j = 1
,

. . .
, n, but the open set

does not intersect A. In particular,

l/i| + + !/.!

on the open unit disc, but /i, . . .
, / lie in a proper ideal of H*>, namely,

the kernel of <t>Q . The statement that /i, . . .
, fn lie in a proper ideal is

equivalent to the statement that 1 is not in the ideal they generate, i.e.,

there do not exist g\, . . .
, gn in H such that

flQl + ' +/0n = I-

One can easily see that this argument is reversible.

We might make some comments about the status of this problem of

the density of A in TO. If

l/ll + ' + |/n| fe 5 >

then it is relatively easy to find analytic functions gi, . . .
, gn such that

/1J71 + +fnOn = 1.

This requires only that /i, ...,/ have no common zero in |X| < 1. We
indicated in the exercises for Chapter 6 one way to find such 0i, . . .

, gn .

The work comes in getting 0i, . . .
, gn to be bounded when the sum of the

moduli of the /> is bounded away from zero. In certain special cases the

problem has been solved. For instance, we solved a special case in the last

theorem of the preceding section. The proof which we gave of the fact

that, if / vanishes on c
JTC tt ,

then / tends to zero along some sequence ap-

proaching a is just the proof that if
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\z
-

a| + |/| ^ 6 >

then 1 is in the ideal generated by (z a) and /. More difficult special

cases have been solved by Newman and Carlcson in their work on inter-

polation problems in //. The set 9TC - A has been called the "corona."

Although we cannot resolve the question of whether 3fTl-A has an in-

terior, we can infer a few facts about the topology of 3HZ-A. We have the

decomposition
3TC-A = U 9fTla .

W-i

It is easy to see that the various fibers ytla arc homeomorphic. The algebra

7/00
is rotation invariant, and each rotation induces a homeomorphism of

Sfft which maps A onto A and "rotates" the fibers OTCa . More generally,

let \{/ be any algebra automorphism of //. Then the adjoint mapping ^*
defined by

(***)(/) = */)
maps 3TZ homcomorphically onto 31Z. We proved in the last chapter that ^
has the form

where T is a conformal (linear fractional) map of the disc onto itself. Thus

\^*0X = <t>rt\)

so $* maps A onto A. If $ is in the fiber 3Tla , then, clearly, \l/*<t> is in the

fiber 3Hr(a) ,
since

(***)(*)
= *(+*) = *W = r().

Here we have used the fact that r is continuous on the unit circle and the

consequent fact that <(r) =
r(a). Similarly, one sees that ^* maps 3TC

homeomorphically onto WlT (a).

Since the various fibers 3TCa are homeomorphic, one might guess that

the decomposition
OTZ-A = U 01Z

M-i

is a product decomposition, that is, that SJTl-A is naturally homeomorphic
to the topological product of the unit circle and one of the fibers ^TCa .

We can fix a fiber, say iJTli, and identify "JTC-A with the point set C X 3TCi

by using rotations. Let Ra be the rotation X > X so that R% is a

homeomorphism of 3TT. Then

is a one-one correspondence between 3TC and C X SfTCi, but it is not a homeo-

morphism, because the map from a to Ra4> is badly discontinuous. In

other words, if we allow the circle group to operate on 3TZ through the

homeomorphisms 72J, it does not operate continuously, but only as a dis-

crete group. For if we fix <t> in 9fTC-A, its orbit



H as a Banach Algebra 165

{IB*; a GC}

under the rotation group is not a closed subset of 3TC.

Theorem. // {*n} is any sequence of points of 9TE-A which converges,

then all but a finite number of the < n lie in tlw same fiber 3TC. Consequently,

if S is any function from the unit circle into 311-A such that w S is the iden-

tity, the range of S cannot be closed; hence S cannot be continuous.

Proof. Let {*n} be a sequence of points of 3TC-A with n in 2TCaB , i.e.,

*-(*) = av If there is an infinite number of the an ,
we may as well as-

sume that the an are all distinct. Choose an open arc In about an in such a

way that the fn are pairwise disjoint. Let

f(-!), if /n
?/() = S

U), otherwise.

Define

so that / is in //* and |/l
= e

u on the circle C. By defmitipn of w, we see

that / is continuous on each of the arcs In and hence that

fe, n even

!*.(/)!= i
-> n odd.
u

Certainly, then, the sequence {0n} does not converge.

The second statement of the theorem, concerning sections of the projec-

tion map TT, is evident from the result about sequences in 3TC-A.

The last statement of the theorem says that the "projection" TT from

3TC-A onto C has no continuous cross section. It certainly shows that the

decomposition

OTl-A = U 3TC

M-i

is not a product decomposition (in the obvious way). The peculiar topo-

logical nature of this decomposition is further underscored by the following.

Theorem. Let W+ be the union of the fibers 9TCa for 1m (a) > and let

W_ be the union of the Wla for 1m (a) < 0. Each point in the fiber 2fTCi is

in the closure of W+, or in the closure of W_, or in neither; these are three

mutually disjoint possibilities, each of which occurs.

Proof. Let u be the harmonic function in the unit disc which has the

boundary values

;0,
Im (a) >

u(a) = 4

ll, Im (a) < 0.



166 H* as a Banach Algebra

Let / = cu+ iv
,
where v is a harmonic conjugate of u. Then / is in H" and

| /|
= e

u
. Note that / is continuous at all points of the unit circle except

a =t 1. Therefore, the representing function / has the constant mod-

ulus 1 on W+ and the constant modulus e on TF-. It is clear that W+ and

W- have disjoint closures, e.g., no point in Sflti can lie in both of these

closures, W+ and TF_.
__ __

Since the projections ir(W+) and ir(WJ) are compact, we see that

T(W+) = {aC; Im(tt) ^ 0}

7r(JF_)
= {a (EC; Im (a) g 0}.

Obviously, then, there is a point in the fiber iTlIi which lies in 11'+ and also

a point which lies in 1F_. But there are also points in SfTti which lie neither

in W+ nor in TF_. Consider the function / defined in the first part of the

proof. It is evident that |/|
= eu = Ve everywhere on the unit inter-

val. This implies the existence of a homomorphism in 9Tli for which

|0(/)|
= Ve. No such <t> is in TF+ or PF_. That completes the proof.

An intuitive description of this theorem illuminates the strange char-

acter of the topology of 9H-A. If we consider any fiber SEa ,
the points <

of 3\la fall into exactly one of those categories: <t> can be approached from

points in the fibers 91t/j with ft a little to one side of a; or <t> can be ap-

proached from points in the STfy with ft a little to the other side of a; or

cannot be approached by any points of iW-A except those in the fiber 3TCa .

The existence of <'s of the third type simply shows that the fiber 3Ha has

a non-empty interior in the space 3TC-A. Whether C
JIZ has any interior in

the maximal ideal space DTI is unknown, since it is equivalent to whether A
is dense in 9TI, i.e., whether 3TC-A has an interior.

Later, we shall establish a few more topological results about S^//
00

),

chiefly that 9H-A is connected and that each of the fibers 9flZtt is connected.

Discs in Fibers

In this section we shall prove the existence of a homeomorphic and

analytic embedding of the open unit disc into each of the fibers 3Tla .

Specifically, we find a homeomorphism \l/ of the open unit disc D into 9fH

such that

(i) for each/ in 7/ the composition / \l/ its analytic on D.

(ii) / >/ o ^ is an algebra homomorphism of // onto H00
.

Let L be the linear fractional map

t(X
- D

'*
1 + 1 (X

-
1)

Of course, L is a conformal map of the closed disc onto itself, and X = 1
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is the unique fixed point of L in the closed disc D \J C. Let L(n) denote the

nth composition of L with itself. Then

Now we define a sequence of mappings from D into the maximal ideal

space TO by
*n(A)

= 7r~
l

[L^)(X)], n = 1,2,3,....

That is, ^n(X) is the complex homomorphism of //* which evaluates each /
at the point L(2ri)

(X). Each \f/n is an analytic map from D into TO; i.e.,

/ o
if/n is an analytic function on D for any / in H*>:

In the space of maps from D to TO, the sequence {^n} has a cluster point

^, because TO is compact. Now \l/ will also be an analytic map from D
into TO, since for each / in H* the sequence / \[/n is uniformly bounded
and consequently uniformly equicontinuous on each compact subset of Z).

Now we claim that

(i) \l/ maps D into the fiber TOij

(ii) \t/ is a homeomorphism;

(iii) for any / in 7/ there is a in /f such that <> ^ =
/.

Statement (i) is easily proved. We have

1- 7
/ ~

hm
w~>oo 1 + m(\ 1)

for each X in 7>. Consequently, TT(^(X))
= 1 for each X, since TT(^(X)) is a

cluster point of L (

W(\).
To prove statement (ii) we argue as follows. Define

= X H L(- 2fc

)(X).
k=

On any compact subset of the disc,

|L<
W) -i\K-rv n>0.

Applying this with n =
2*, k = 0, 1, 2, . . .

,
we see that the infinite prod-

uct above converges uniformly on compact subsets of the disc to an an-

alytic function h. Since |L
(n)

|
g 1, we also have |/&(X)| g 1. This function

h will show us that ^ is a homeomorphism. The claim is that

A(*(x)) = x.

If we restrict our attention to a fixed compact subset of D and use the

inequality



168 H* as a Banach Algebra

*

|n|

thereon, we have

n L<2
- 2

'>(x) n L<*-)(X) -

2"- 2i
>(A) -11+ 2

&=o i=n

|X| .X fi + "2 (2-
-

2*)-' + 2 (2*
-

2)->"|L* *=o *=w+i J

> as n > oo .

The step from line 3 to line 4 in the preceding equation used the inequality

|i
- n x,| g i IA*- i|

; ;A;=1 fc-1

for any sequence of points in I). From h ^ = 2 it is clear that ^ is a

homeomorphism. The inverse of ^ is the restriction of h to the range of ^.

Statement (iii), that / >/^ maps 7/00 onto //
M

,
is now perfectly

clear. For if / is any function in //, set g = / /i, and then

0^=/oAo^=/.
Let us see what we have. The map \l/ is a homcomorphism of the disc D

into the fiber 9TCi. The set $(D) is then topologically a disc. We can use ^
to endow ^(/>) with an analytic structure, by just transferring the analytic

structure of D. If we do this, then for any / in // the restriction o the

representing function / to $(D) is a bounded analytic function on the

disc t(D). Furthermore, this restriction map is onto all bounded analytic
functions on #(Z)). Let

B =

Roughly, one might say that B = //(^(D)). In any event, R is a uni-

formly closed algebra of continuous functions on ^(Z)) which is Lsomorphic
to H. If we use the sup norm, B is then a commutative Banach algebra
with identity. The maximal ideal space of B is

3TC(B)
= {<K 3n(ff) ; *(/) = whenever / = on t(D)} .

For, since B is a homomorphic image of //*, we can identify the complex

homomorphisms of B with those complex homomorphisms of # which
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arc "well-defined" on B. The maximal ideal space of B is, therefore, a

subset of the fiber 31Zi. Since B is isomorphic to //, we conclude that 3TCi

contains a homcomorphic replica of the entire maximal ideal space ^H(//
co

).

Each of the fibers attached to $(&) will contain a disc, attached to which

are fibers containing discs, arid so on. Thus the maximal ideal space 3TC

reproduces itself ad infmitum inside each of the fibers 3TCtt .

Perhaps we should point out the fact that the map / / \fs which we
have been discussing is a norm-decreasing algebra homomorphism of 7/00

onto H which carries every function with continuous boundary values

into a constant function. Of course, any function which is continuous at

a = 1 is carried onto a constant function.

L as a Banach Algebra

As usual, L denotes the space of bounded measurable (or Baire)

functions on the unit circle, with complex values. If we identify functions

which are equal almost everywhere with respect to Lebesgue measure,

then L is a Banach space under the (Lebesgue) essential sup norm

II/H
= esssup|/(e*)|.

If we use point-wise multiplication, then L is a commutative Banach

algebra with identity. The maximal ideal space of L is a totally (even

extremal ly) disconnected compact Hausdorff space Ar
,
and L is isomet-

rically isomorphic (via the Gelfand representation) to C(X), the algebra

of all continuous complex-valued functions on X. These facts have a

variety of proofs. We shall present direct proofs, since they are easy and

since their inclusion will provide us with suitable notation and terminology

for what we do later.

Let X = i)U(L), the space of complex homomorphisms of //. We
then have the Gelfand representation/*/ defined by /(</>)

=
</>(/).

Lemma. For each f in L, sup |f(0)|
-

||f||.
X

Proof. We know that ||/||ao ^ ||/||. To prove the reverse inequality,

choose a complex number X such that |X|
=

||/|| and the set {(/ X| < c}

lias positive measure for each e > 0. Such a X can be found by the definition

of the essential sup norm. Then (/ X) is not invertible in L, because

such an inverse would have modulus greater than 1/c on a set of positive

measure, for each e > 0. Thus (/ X)L is a proper ideal in L; it is

contained in a maximal ideal, so there is a complex homomorphism of

L00 such that

!*(/)!
-

|x|
=

ll/ll.

Lemma. As E ranges over the measurable subsets of the unit circle, the

open-closed sets
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{*6X; **(*)= 0}

0we a basis for the topology of X. In particular, X is totally disconnected.

Proof. By definition, the sets of the form

U=
with /i, . . .

, fn in Z/ and > form a basis for the (weak) topology of X.

The simple functions
k

S X>x*,
>-i

are dense in L. From this it is easy to see that, in defining the basic open
sets U above, we can restrict the /, to being characteristic functions of

measurable sets. But if E is a measurable set xl = XE so that x# assumes

only the values and 1. Therefore, when e < 1

Ixtf, < 6, j = 1, . . .
, n] = {xEi = 0, .7

=
1, . . .

, n}

= {x = 0}

where E is the union of E\, . . .
, Y That, proves the lemma.

Theorem. The Gelfand representation of L 00

maps L isometrically and

isomorphically onto C(X). Also, the representation preserves complex con-

jugation.

Proof. We know that the homomorphism / >/ is isometric, and hence

is also an isomorphism. Let F be a continuous function on X. Since the

open-closed sots {XE = 0} form a basis for the topology of JY, we can ap-

proximate F uniformly by functions of the form

S Xyx*;,.
j = i

When we do so, the isometry of the Gclfand representation tells us that

the simple functions S X^xz?, converge in L to a function / for which

/ = F. Thus = C(X). Approximation by simple functions makes it

apparent that the conjugate of / is (/)
A

.

Corollary. A subset K of X is both open and closed if and only if

K = {XE = 0} for some measurable set E on the unit circle.

Proof. The set K is both open and closed if and only if the character-

istic function of K is continuous. Since / >/ maps L onto C(X), we see

that K is open-closed if and only if XK = / for some / in L. Since

XK =
XA-, we have /

2 =
/, and thus / = XE for some measurable set E.

We have seen that X = SfTC(L) is totally disconnected, i.e., it has a

basis of open-closed sets. As we mentioned earlier, X is extremally dis-

connected, that is, every open subset of X lias a closure which is also open.

We shall have no need of this fact. It is quite easy to prove, by using the
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fact that every collection of measurable sets on the circle has a least upper
bound. Given an open set U in K, let E denote the least upper bound of

the measurable sets S for which {%s = 1} is contained in U. Then {fo = 1}

is the closure of U.

The maximal ideal space of Z/ has a natural projection onto the unit

circle, much like the projection of the maximal ideal space of #. If we
call this projection <7,

it is denned by

that is, CT = z. Since \z\*
= 1 on the unit circle, we have

|z|

2 = 1 on X.

Therefore, a maps X into the unit circle, and it is clear that the map is

onto the circle. If a is a point on the unit circle, the set Xay consisting of

all complex hornomorphisms of L which send z into a, will be called the

fiber of X over a:

; <t>(z)
= a}

Theorem. Let f be a function in L. The range of f on the fiber Xa con-

sists of all- complex numbers f with this property: for each neighborhood N
of a and each e > 0, the set

{|/-ri< e}ntf
has positive Lebcsgue measure.

Proof. The number f fails to be in the range of / on Xa if and only if

there is no proper ideal of L which contains both (z a) and (/ f),

i.e., if and only if there are functions g and h in L such that

(z-a)<7+(/-m = l.

This means simply that there exists a bounded measurable function h

such that

1 - (/
-

f)*

2 a

is essentially bounded. Such an h exists if and only if / f is essentially

bounded away from zero in a neighborhood of a.

Corollary. Let f be a function in L and let a be a point of the unit circle.

Any value which / assumes on the fiber Xa is assumed on a non-empty open
subset of X.

Proof. Suppose / assumes the value on Xa . Choose a neighborhood
Ni of a. The set NI O {|/| < 1} has positive measure. We can, therefore,
find a closed set E\ on the unit circle such that E\ has positive measure,
E! does not contain a, and |/| < 1 on E\. Let N* be a neighborhood of a
which is disjoint from 7i\. We can then find a closed set E2 which is con-

tained in Nz, has positive measure, does riot contain a, and is such that
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| /| < % on Ez. We then choose a neighborhood N* of a and get a closed

set #3 of positive measure on which |/| < ,
and which excludes a and is

disjoint from E\ and E2 . We continue in this way, making sure that the

neighborhoods Nk satisfy

n Nk - R.
fc=l

We then have a sequence of pairwise disjoint closed subsets Ek of the unit

circle such that

(i) the Ek converge to the point a.

(ii) |/| < 1/k on Ek .

Now let 7? be the union of the Ek. We claim that / vanishes on the set

Xa O {XE =
1} and that the latter set is non-empty. This set is non-

empty by the last theorem, because the set where XE = 1 has positive

measure in every neighborhood of a. The function XE.f tends continuously

to at a. By the theorem, %KJ is identically on Xa , i.e., / vanishes at

every point of Xa where XE = 1- We arc done.

This corollary is just a topological comment about the fibers Xa .

It states that Xa is a compact Hausdorff space with the property that

any continuous function F which vanishes at some point also vanishes

on a non-empty open subset of Xa . Note that it does not assert that the

set of zeros of F is open, but only that this set is either empty or has a

non-empty interior.

The Silov Boundary

We return now to the algebra 77, which we have represented by the

algebra // of continuous functions on the compact maximal ideal space

3fTC = ^(J/
00

). The chief object of this section is to identify the Silov

boundary for //* with the maximal ideal space of L. First, let us make

a few comments about "boundaries" for a function algebra.

Suppose that X is a compact Hausdorff space and that A is an algebra

of continuous complex-valued functions on X which contains the con-

stant functions and separates the points of X. A boundary for the algebra A
is a subset S of X such that

sup |/j
= max

|
f |,

all / in A
x s

that is, such that every function in A attains its maximum modulus on the

set S. If S is closed, this just means that

sup | /|
= sup I /|

X S

for each / in A . Among the closed boundaries for .4 there is a smallest one.

In other words, the intersection of all closed boundaries for A is a boundary
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for A. This smallest closed boundary is called the ilov boundary for A.

For a proof of its existence we refer the reader to [54; page 80]. If B is a

commutative Banach algebra with identity, if X is the maximal ideal

space of B, and if A is the representing algebra JS, we call this boundary
the Silov boundary for B.

The standard illustration of the concept of Silov boundary is obtained

when A is the algebra of continuous functions on the closed unit disc which

are analytic in the interior. The maximum modulus theorem for analytic

functions tells us that the Silov boundary for A is a subset of the unit

circle. It is very easy to see that it must be the entire unit circle, because

A is rotation invariant; also, if \a\
=

1, then f(z)
=

J(l + &z) is a func-

tion in A which takes its maximum on the closed disc precisely at the

point z a.

What can we say about the Silov boundary for //*? Since we have

embedded the unit disc as an open subset A of the space Wl 3TC(//),

the maximum modulus principle for analytic functions tells us that the

Silov boundary for // (i.e., for H) is contained in the topological boundary
of A in the space 3TZ. One's first guess might be that the Silov boundary
is all of A A; however, this is not the case. Here is an elementary proof.

Let

so that / is in //*, / has no zeros in the open unit disc, and /(z) tends to

as z approaches 1 along the positive axis. Therefore, the representing func-

tion / must have a zero somewhere on A A. No such zero of/ can lie on

the Silov boundary. In fact, we must have |/|
= 1 on the Silov boun-

dary. Let U be the open subset of 9fH on which |/| < 1. If U intersects

the Silov boundary, the minimality of this closed boundary tells us that

there exists a function of g in // such that |0| does not attain to its maxi-

mum of the complement of U. By the definition of U, we then have

l/$l < 1 10!U on all of 3TC. But the boundary values of /are of absolute value

1 almost everywhere on the unit circle, so multiplication by / is an iso-

metry. Thus, we have the contradiction

HfflU > ILfolU

=
ILfrll

We conclude that the Silov boundary is a proper closed subset of A A.

Later, we shall see that A A is a great deal larger than the Silov bound-

ary, because the first set is connected and the second is totally discon-

nected.

To identify the Silov boundary for //"*, we proceed as follows. If we

identify each function/ in // with the function F in L determined by the
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boundary values of /, we may regard 7/00 as a closed subalgcbra of Z/

(the algebra of functions in L* whose negative Fourier coefficients vanish).

This provides us with a natural mapping T from X =
ffll(L) into 3TC =

3fn(//). This map T is defined by restricting each complex homornorphism
of L to the subalgebra H. It is easy to see that T is continuous.

Theorem. The map T is a homeomorphism ofX into 3TC, and the image set

r(X) is the Silov boundary for H; that is, r(X) is the smallest dosed subset

of Sfft on which every f (f in H) attains its maximum modulus.

Proof. Since X is compact and T is continuous, we can prove that T

is a homeomorphism by showing that r is one-one. The latter means that

the functions in 7/ separate the complex homomorphisms of L, and it

will soon become apparent that this separation condition is satisfied.

Certainly, each /, / in 7/, attains its maximum modulus on the closed

set r(X), because, if F denotes the "boundary values" of/,

sup |/| HI/11 =
11*11

= sup |A'|
= sup I/!.

3TI X T()

Thus r(X) is a closed boundary for //". Also, there is no proper closed

subset of r(X) on which all the/ attain their maximum moduli. This fact

can be proved as follows. Any proper closed subset of X omits an open-
closed set U. Such a set U has the form

U= {<K X-

where E is some measurable subset of the circle. If u is the harmonic

extension of XE to the disc, if v is a harmonic conjugate of u, and if / = eu+**,

then / is in ff and |/|
= exp (XE) almost everywhere on the circle. If F

is the boundary function for /, we have |/'

T

|

= exp (XE) on X, or

onf/

l, onX- U.

Thus |P| does not attain its maximum on X U. We conclude that there

is no proper closed subset of X on which all the functions F, representing
H functions, attain their maximum moduli. The construction above

shows also that the elements of // separate the complex homomorphisms
of L. Therefore X is homeomorphic to r(X), and there is no proper

closed subset of r(X) on which all the /, / in //, attain their maximum
moduli.

In the last few sections, we have discussed various restriction maps of

one maximal ideal space into another. Let us summarize. Again, we let A
denote the algebra of continuous functions on the circle whose negative

Fourier coefficients vanish. We then have

A C # C = C(X)
and
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Of course, sm(/l) is the closed unit disc in the plane. We did not originally

define TT as the indicated restriction map, but rather as "evaluation at the

function z." The maximal ideal space of A is identified as the closed disc

by making the homomorphism <t> in 9tt,(A) correspond to the point <t>(z).

This identifies TT with the restriction map from 3n(//) into 3TC(4). In our

diagram, we know the following:

(i) TT is a homeomorphism over the open unit disc;

(ii) TT is many-to-one over the points of the unit circle;

(iii) T is a homeomorphism of X into 3TC(//);

(iv) r(X) is a proper closed subset of A A, and is the Silov boundary
for 7/00

;

(V) <T = 7T o T.

From this point on, we shall identify X and r(X), and so regard X as a

subset of

Inner Functions and the Silov Boundary

Suppose that / is an inner function in H". Then |/|
= 1 almost every-

where on the unit circle; thus it is apparent that the representing function/
is of absolute value 1 on the Silov boundary X =

SfTlCL
00

). In this section

we shall prove D. J. Newman's theorem which shows, among other things,

that this modular property characterizes the Silov boundary. The result

states that if < is a complex homomorphism of //, the following are

equivalent: (i) <t> lies on the Silov boundary, i.e., < extends to a complex

homomorphism of L; (ii) |0(/)|
= 1 for every inner function /; (iii)

|<(5)|
= 1 for every Blaschke product J5; (iv) <(/) ^ for every inner

function /; (v) <t>(B) ^ for every Blaschke product B.

One can, of course, also phrase the result in terms of maximal ideals,

rather than complex homomorphisms. Since a maximal idealM in J/ lies

on the Silov boundary if and only ifM is the intersection ofH with a maxi-

mal ideal in L, the important part of the result is that any maximal

ideal in H which does not lie on the Silov boundary contains a Blaschke

product. As a first step, we prove a theorem which is of independent
interest.

Theorem. Every inner function is a uniform limit of Blaschke products.
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Proof. When we defined a Blaschke product B in Chapter 5, the func-

tion B was completely determined by its sequence of zeros. In the present

context, we allow ourselves to multiply B by a constant of modulus 1 and

still call the resulting function a Blaschke product.

Let / be an inner function. We wish to approximate / by Blaschke

products. We may assume that/(0) ^ 0. If |a| < 1, define

1 - */(*)

It is clear that ga is an inner function. We shall find a sequence of numbers

an such that an and each gan is a Blaschke product. This will prove the

theorem.

Define

ga is a Blaschke product if and only if lim J(r, a) = 0; for, this limit is
r >1

J d/z, where /* is the positive singular measure on the circle which deter-

mines the singular part of ga . Let

J(a) = lim J(r, a).
T->1

Since we are only interested in small values of a, let us assume that

M < l/(0)l- Then ga (ff) ^ 0, and so the convergence of J(r, a) to J(a) is

bounded:

log |0a(0)| ^ J(r, a) g 0.

Suppose we consider a positive number p < |/(0)|. Then /(r, a) is uni-

formly bounded on |a|
=

p. Consequently

\dz\dO

where

f(z*)
-

pe
dO.

ZIP y-i -
i pe-~j(Z)

Now

7p(g) - 51 I* loi I/to
~

P6"!^ - 51 /_'.
log I

6* -

By Jensen's formula, the second integral is and the first integral is

JP() = max (logp, log |/(s) I).
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Since / is an inner function

limlog|/(rc'OI =0
r 1

for almost every t. Thus Ip (re
il

) tends to as r >
1, for almost every

value of t. But Ip (re
u
) is bounded. We conclude that

and since J < it must be that J = a.e. Therefore there is a value of

a such that |a|
= p and J(a) =

0, i.e., ga is a Blaschke product. Since we
can find such an a for each p < |/(0)|, the proof is complete.

Theorem. Let < be a complex homomorphism of H", and suppose that

<(B) 7* for every Blaschke product B. Then

(i) |0(B)|
= I/or every Blaschke product B;

(ii) |<KOI
= 1 for every inner function f;

(iii) for every f in H, the number <(f) is in the range of f on the Silov

boundary X = afH(L).

Proof, (i) If does not annul any Blaschke product, < is not evalua-

tion at a point of the open unit disc. Thus |0(z)|
=

1, and in fact

\4>(B)\
= 1 for any finite Blaschke product B. Thus we only need prove

that |0(B)|
= 1 when B has the form

BOO - f^l < |J < 1, S (1
-

laj) <
n = l M^nl/L 1 CKW2J

Choose a non-decreasing sequence of positive integers pn such that

lim pn =
n

2pn(i -| B |) <.
If AT is a positive integer, define

(z)
= n [F.oo]-

n = l

p^w = n [F.w]^
n-l

where

Then

As we just noted, |</>(Pjv)|
=

1, and certainly |<KQtf)l < 1- Hence
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As N oo we have PN * and so

(ii) Since every inner function is a uniform limit of Blaschke products,

and since $ is continuous, (ii) follows from (i).

(iii) Suppose / is a function in 7/ such that / does not vanish any-
where on the Silov boundary. Then |/| is essentially bounded away from

on the unit circle. Thus, if / = gF where g is inner and F is outer, \F\ is

bounded away from on the circle, and this implies that l/F is a

bounded analytic function. Hence </>(F) 5^ 0. We have

!*(/)!
=

> 0.

That proves (iii).

Lemma. Let <t> be any complex homomorphism of H*. // u is a real-valued

function in L, define

{(u) =

where Fw is the bounded analytic function

Then t is a bounded and positive linear functional on the space of real-valued

L functions. Furthermore, the junction \p defined by

is a linear functional of norm 1 on L whose restriction to 1 1
30

is 0.

Proof. First we show that ( is additive.

+
arid so ( is additive.

It is clear that I is bounded by 1
;
if \u\ ^ 1 then

-
e
^ l*,| ^ e

and (since Fu is invertible in 7/00

) we have

e

or

-1 ^ ((u) g 1.

Since I is additive and bounded, it is continuous and hence linear.
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The positivity of f follows from the fact that \\f\\
=

((I) = 1. It can

also be chocked directly by the same sort of argument as above. If u ^
then we have

^ t(u).

Since I is a positive linear functional of norm 1, it is immediate that

the complex extension ^ of
,
defined by

f(u + iv)
= l(u) + it(v)

is a positive linear functional of norm 1 on L*. If / = u + iv is in //, then

^(/) <X/)- It suffices to prove this when / vanishes at the origin. We
then have

F, = e-

and so

*() + #()

log|<Ke')l +

Re *(/) + Im <t>(f)

What the above Lemma does is exhibit an explicit Hahn-Banach (norm-

preserving) extension of <t> to a linear functional ^ on L.

Theorem. // <t> is a complex homomorphism of H, the following are

equivalent.

(i) < Zies in iAe /SzZov boundary for H.
(ii) is the restriction to H of a complex homomorphism of L.
(iii) |<(f)|

= 1 for every inner function f.

(iv) |<(B)|
= 1 /or every Blaschke product B.

(v) 0(f) ^ /or ewer?/ inner function f .

(vi) 0(B) 9* /or ever?/ Blaschke product B.

(vii) for et'er?/ f in II
00

,
^/ie number <(f) is in /fee ran</e of f on /fee SiZov

boundary for II
00

.

Proof. We have previously done most of the work. In fact, we can

complete the proof by showing that (vii) implies (ii). Suppose that < has

property (vii). We refer to the Lemma above. First we show that for any
real-valued function u in L the number t(u)

= log |0(fw)| belongs to the

range of u on the space X = 3H(L). This is clear since |0(F)| belongs
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to the range of Pu on X and log |PU |

= w. We combine this observation

with the fact that X is totally disconnected to show that the linear func-

tional ( is simply evaluation at a point of X, i.e., there exists x X such that

t(u)
= u(x) for all real values of u in L. Since X is totally disconnected,

finite linear combinations of idempotent functions (simple functions) are

dense in L. If no such point exists, then for each value of x in X there

is an idempotent e in L such that 6(x) = 1 but t(e)
=

0, because for each

idempotent e the value of t(e) must be or 1. Since X is compact, we can

find a finite number of idempotents d, . . .
,
en such that

ft + + A. > 1

t(ek)
=

0, k = 1, . . .
,
n.

If we set u =
<?i + + en ,

then (w)
= is not in the range of ft on X.

Now we know that I is evaluation at a point of X, that is, that / is

multiplicative. Therefore the complex extension ^ of I is a complex homo-

morphism of L whose restriction to J/ is <.

In connection with this Theorem, we should mention two facts which

we shall see later. First, for any individual inner function /, the set of

points in ^l(H
M
) where j/|

= 1 is always larger than the Silov boundary.

Second, a maximal ideal M off the Silov boundary contains a Blaschke

product B; however, it is not necessarily the case that M is in the closure

of the sequence of zeros of B in the unit disc.

Representing Measures and Annihilating Measures

For a function algebra, one of the useful features of the Silov boundary
is that each complex homomorphism of the algebra can be represented as

integration with respect to a positive measure on the boundary. In this

section we shall discuss such "representing measures" for the algebra H,
and the results we obtain will give us some information about annihilating

measures for H.
Let Y be a compact Hausdorff space, arid let A be a uniformly closed

separating algebra of continuous functions on Y which contains the con-

stant functions. Let X be the Silov boundary for A, and let < be a complex

homomorphism of A. With the sup norm A is a commutative Banach

algebra with identity, and so is necessarily continuous:

!*(/)!< sup |/|, all/ in A.

The map / /|r, which restricts each function / in A to the Silov bound-

ary, is a (sup) norm-preserving isomorphism of A with a subalgebra of

C(X). Thus, we may regard A as a subalgebra of C(X), and 4> is a bounded

linear functional on this subalgebra:
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< SUP I/I-

By the Hahn-Banach theorem, we can extend < to a linear functional of

bound 1 on C(X). Such a functional is determined by a finite complex
Baire measure m^ on X, and so

*(/) =
fz fdm*

for every/ in A. Now w$ is a complex measure of total variation 1 and

/ dra^
= 1. From this it is easy to see that ra must be a positive measure.

We conclude that for each complex homomorphism < of A there exists

at least one positive measure w* on the Silov boundary X such that

(/)
=
fx fdm<>, all /in A.

Any such positive measure we shall call a representing measure for <. We
notice that in the above argument we could replace X by any closed subset

S of X such that

!</>(/)!< sup |/|, /in A.
s

Such a set we shall call a support set for <, since it is a set which will support
a representing measure for <.

If we apply these results to #, we conclude that for each complex

homomorphism </> of //* there is at least one positive measure m^ on the

Silov boundary X =
9flZ(L) such that

As we shall soon see, each </> in 2fH(H) actually has a unique representing

measure m<t>.

What sort of condition on an algebra might guarantee that representing

measures are unique? If one has two positive measures m<t> and M* on the

Silov boundary which represent the same homomorphism <, then the dif-

ference m<j, /x0 is a real measure on the boundary which is orthogonal to

the algebra. Thus, the most obvious condition which would guarantee

uniqueness of representing measures for all homomorphisms is that no

non-zero real measure on the Silov boundary is orthogonal to the algebra.

This just means that the algebra is a Dirichlet algebra on its Silov bound-

ary, i.e., that the real parts of the functions in the algebra are dense in

the real continuous functions on the Silov boundary. Now H* is not a

Dirichlet algebra on its Silov boundary, that is, the real parts of the func-

tions in //* are not (uniformly) dense in the real L functions. We gave
one proof of this in Chapter 9, where we showed that any function in

the closure of # + H has a conjugate harmonic function of growth
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o
(log _ ]

in the disc. There is a more abstract proof which is short,

and worth presenting.

Theorem. Let X be a totally disconnected compact Hausdorff space, and

let Abe a Dirichlet algebra on X. Then A = C(X).

Proof. Let S be any open-closed subset of X and let xs be its charac-

teristic function. Then xs is a real continuous function on X. Conse-

quently there is a function / in A such that

on X. The range of / does riot intersect the line Re z =
-J-

in the plane.

Hence we can find a sequence of polynomials pn (z) which converge uniformly

to 1 on that part of the range of / to the right of the line Re z = i and

which converge uniformly to on that part of the range of / to the left

of Re z J. Then pn (f) is a sequence of functions in A which converge

uniformly to xs> Thus xs is in A. Since X is totally disconnected and A
contains the characteristic function of every open-closed subset of X, it

follows that A = C(X).
If we apply this argument to //, we conclude that H* is not a Dirichlet

subalgcbra of L; indeed, we see that the uniform closure of Re 77 does

not contain the characteristic function of any measurable set E on the

unit circle, unless E has (normalized) Lebcsguo measure or 1 . In spite

of this fact, representing measures are unique for every complex liomo-

morphism of J/" . This is because // possesses a property which is very

close to the Dirichlet property: Every real-valued function u in L is the

logarithm of the modulus of an invertiblc function F in //:

Theorem. Let X be a compact Hausdorff space, and let Abe a uniformly

closed subalgcbra of C(X) which contains the constant functions. Suppose that

there is a dense subspace S of the real-valued continuous functions on X such

that each u in S has the form u = log |FM |,
where Fu is an invcrlible element

of A. // is a complex homomorphism of A, then $ has a unique representing

measure m* on X. Furthermore, m^ is the measure defined by

/ udmt = log \<I>(FU)\, u S.

Proof. Let m and p be two (positive) measures on X, each of which

represents 0. Let u be a function in *S, u = log \FU \, where Fu is an in-

vertible function in A. Since

Fudm
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and <t>(Fu
l

)
=
fx Fu

l

dp

we have

l

)\ < S <r*dp.

But <t>(FJ<t>(Fu
}

)
=

1, and so

J e
udm >

[J cr-dp]-
1
.

Since S is a subspace, the same inequality holds with u replaced by tu,

where t is any real number. Therefore

J
(l
+ tu +

,

u + -

-)
dm ^

[/ (l
- tu +

l

^tf

for every real value of /, that is

1 + t J udm + ~
J u?dm +

for all real values of /. Clearly then

J udm ^ J

Since this is true for every u in S, which is dense in CK(X), we conclude

that p < m. Since p and in are positive measures of mass 1
,
it follows that

p = m.

If u is in S define l(u) = log |<(FM)|, where Fu is any invertible function

in A such that log \FV
\

= u. U is clear that is a well-defined function on

S, which is additive because is multiplicative. Also

S max M.
jt

Therefore \((u)\ ^ \\u\\, i.e., / is bounded by 1. Since t is additive and
bounded it is continuous and linear on S. There is a unique extension of t

to a bounded linear functional on C/e(X), arid the extended functional is

given by a positive measure m^ on X. To see that m represents <t> we need

only show that J udm^ Re <(/) when u = Re/ with / in A. Since

u = log le'
7

!

=
log |*(eO|

=
log|e*tf>|

= Re
That completes the proof.
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Another way to state the uniqueness part of this last theorem is: If a

linear functional $ on A happens to be multiplicative, then there is a unique
Hahn-Baiiach (norm-preserving) extension of ^ to a linear functional on

C(X). One should note that the hypothesis of this theorem is satisfied if A
is a Dirichlet algebra on the space X. For, the space S = Re A has the

stated property: If u = Re/ with / in A then u = log \e?\. As we said,

the hypothesis is also satisfied when X =
9dT(L*) and A is the algebra /?.

Here we can in fact take S as the space of all real-valued continuous func-

tions on X. Thus, each complex homomorphism 4> of 7/ has a unique

representing measure m$ on X = ^(L00

). It is defined as follows: If u is

a real L function then

= log \<t>(Fu )\

where Fu is any outer function in 7/ such that log |Ftt
|

= u almost every-

where on the unit circle. For the case in which is evaluation at a point X

in the open unit disc, the uniqueness of m$ was proved by Gleason and

Whitney. In this case the description of m$ reduces to

Ix

where P\ is the Poisson kernel for the point X. In particular, when $ is

evaluation at the origin, the unique Hahn-Banach extension of </> to a

linear functional ^ on L is given by

1 /* ,/ ,.x ^
fL".

If we combine our last result with the methods of Helson and Low-

denslager (discussed in Chapter 4) we can obtain results about the relation

of representing measures for H to annihilating measures for H* and also

to arbitrary positive measures on the Silov boundary. It is not surprising

that we can say more about representing measures for points in the open
unit disc, but the first result we should discuss in Szego's theorem, which

is valid in the context of the last Theorem.

Theorem. Let A be a uniformly closed algebra of continuous complex-

valued functions on the compact Hausdorff space X (1 A). Suppose that the

class of functions log |F|, where F is an invertible ekment of A, contains a

dense subspace S of the real-valued continuous functions on X. Let m be any

positive measure on X which is multiplicative on A, and let Ao be the set of

functions f in A such ttiat J fdm = 0. Then for every positive measure n on X

bf / |1 -/|^-p[j log
(

Proof. We are assuming that m is a representing measure for a complex
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homomorphism of A. As we proved in the last theorem, m is the unique

representing measure for <, and is defined by

when w S and Fu is an invertible element of A such that u = log |FW |.

From the specific form of m we can easily show that m satisfies Jensen's

inequality:

log |*(/)l
= log | J/dm| < / log |/|dm, for all /6 A.

Given /in A, let e > 0. Then log (|/| + c) is a continuous function on X.

Choose u = log \FU \

in the subspace S so that

u - e < log (|/| + e) < u + e.

Then |/F
x

|
< e e on X. Therefore

!</>(/) tffir
1

)! <

If we take the logarithm of both sides of this inequality we have

But u < c + log (|/| + e) on X, and if we integrate with respect to m

J wdm < e + J log (|/| + )dm.

Hence

<2c+ Jlog(|/| + c)dm

and if we let c > 0, we have the Jensen inequality.

Now let M be any positive measure on X, and let

If dp = hdm + dfjL8 is the Lobesgue decomposition of M relative to m, then

/(/x)
= /(MO) where d/ia

== W^, the absolutely continuous part of p. This

follows from the uniqueness of m by the Helson-Lowdenslager argument
which we presented in part (i) of the Theorem on page 44 of Chapter 4

and its Corollary 1. This reduces the problem to the case when d = hdm
with h a non-negative function in Ll

(dm). In this case we wish to show

that

/(M)
= exp (Jlogftdm).

If / is in AO, then by the Jensen inequality

/ |1
-

f\*hdm S exp [J log (|1
-

f\*h)dm]

= exp [J log [1 f\
2
dm] exp [J log hdm]

^ exp log |<K1
~

/)!
2
-exp [J log hdm]

= 1-cxp [/ log Mm].
Therefore



186 H" as a Banach Algebra

g exp [J log hdm].

Since m is a positive measure of mass 1

exp [ f log hdm] = inf / he ffdm, g = g 6 Ll

(dm), J gdm = 0.

o

See the proof on page 48. By a simple argument, we need only employ
continuous functions g in computing the last infimum (sec page 49). Thus

exp [J log hdm] = inf J hcdm, g Cn(X), J gdm = 0.

If g Cit(X) we can uniformly approximate g by functions u =
log \FU \

Z
,

where Fu is an invertiblc clement of A. If J gdm =
0, we can choose the

approximating functions u so that <t>(Fu)
= 1. This only involves replacing

Fu by [<t>(Fu)]-*F.u . Therefore

inf J hc'dm = inf / /^!
2
dra, </>(F)

=
1, F, ^~l A.

*

If 0(F) = 1 then F = 1 - / where/ 6 A . Thus

exp [J log Mm] = inf J fc|f |

2d?n

> inf f A|l
-

f\*dm

This completes the proof.

Of course the above Szego theorem holds when X = OTCL"), A = /7,
and m is the representing measure for any complex homomorphism of //*.

For measures representing points in the open unit disc we also have an

F. and M. Riesz theorem.

Theorem. Let m be /Ae unique positive measure on X = 3TC(L) w/w'cA

represents the homomorphism "evaluation at the origin" on H, and let HJ
6e ^ se^ of functions f where f is m H and vanishes at the origin. Let \i

be a finite complex Baire measure on X which is orthogonal to H*. Then the

absolutely continuous and singular parts of \L with respect to nio are separately

orthogonal to HJ ,
and the singular part is also orthogonal to 1.

Proof. The proof is identical with the proof of the general F. and M.

Riesz theorem in Chapter 4 (page 47). All that is required is: (i) ra is

multiplicative on 7?; (ii) any positive measure on X which agrees with mo

on /7 is equal to mo; (iii) the real parts of the functions in ft00 are dense

in the space of real functions in L2
(dm ). Hypothesis (iii) simply states

that the real parts of the functions in // are dense in the real functions

in L2 of the circle.

Corollary. // p, is a (complex) measure on X which is orthogonal to H,
and if n is mutually singular with mo, then p, is also orthogonal to all f where f

is in the closed subalgebra of H00 which is generated by H and z.

Proof. This follows from the last theorem by an argument similar
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to one used in proving the F. and M. Ricsz theorem in Chapter 4. Since /*

is singular and orthogonal to jf?, the singular measure 'zdn is orthogonal

to fiv ,
and hence is orthogonal to 1. Thus (z

2
)

A

d/* is orthogonal to fi%, etc.

Corollary. Let n be any finite real measure on X which is orthogonal to H.
Then M is mutually singular with mo, and p, is, therefore, orthogonal to J

for every function f which is in the dosed subalgebra of L generated by H
and z.

Proof. Let d/z
= hdm + d^ be the Lebesguc decomposition of n rela-

tive to ra . Then the measures hdnio and dp.B are separately orthogonal to

/?; each of these measures is real, since /* is a real measure. Thus h is a

real-valued function in L L

(dm), and is orthogonal to the functions in //

and their complex conjugates. If we use, for example, Cesaro means, it is

then easy to see that h is orthogonal to I/
00

. Thus h = almost everywhere

We now know that /x is a singular measure, and we can apply the previ-

ous corollary.

Algebras on the Fibers

Let a. be a point on the unit circle. We denote by A a the algebra

obtained by restricting /? to the fiber Ma in the maximal ideal space

3TC = 9fH(//
oc

). In this section we shall study A a, principally because it is

a very interesting function algebra, but also because through the study of

Aa we will obtain some results about 77.

Theorem, (i) A is a uniformly closed subalgebra of C(3Tla). (ii) The

maximal ideal space ofAa is 3TCa . (Hi) The Silov boundary for Aa is contained

in Xa = X O 3Tla .

Proof. Let f(z)
= i(l + 5z). As we have noted several times, / is a

function in 77 such that/ = 1 on the fiber 2Hl and |/| < 1 on the remainder

of 3TC. The three statements of this theorem all follow from the existence

of this function /. (i) Since 77 is uniformly closed on TO, and since 3Tla

is the set where a function of norm 1 is equal to 1
,
the restriction of 7?

to 31Za is uniformly closed. The algebra A a is isomorphic to 7?/7a ,
where

7 tt is the ideal of functions in 7? which vanish on fflia . Since 7a is closed,

A a inherits the complete quotient norm on the quotient of the Banach

spaces 77
M and 7. If one uses the function /, it is not difficult to show

that the quotient norm on A a is equal to the sup norm over 2fll. For the

details, we refer the reader to the proof of Rudin's extension theorem in

Chapter 6. (ii) Each complex homomorphism of A a induces a complex

homomorphism of 77, by composing with the restriction map. Thus one

may identify the complex homomorphisms of A a with those complex

homomorphisms 4> of /7 which arc well-defined on A a , i.e., those < such
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that 0(0) = whenever = on 3H. But these homomorphisms are

exactly those in the fiber 3fTCa ,
because 1 / vanishes precisely on 9fEa .

(iii) Let be a complex homomorphism of A a ] i.e., let be in 3(Tla . Let

m^ be the representing measure for <t> on the Silov boundary X for H.
If we use our distinguished function /, we see that

1 =
fx (J)

n
dm*, n =

1, 2, 3, ....

But as n increases, (/)
n
converges boundedly and pointwise to the charac-

teristic function of the set 3nZa . Thus

and m+ must be supported on Xa . In particular,

!?(*) i

= sup |0|, gin//"
Xa

so the Silov boundary for Aa is a subset of Xa .

Corollary. // is a complex homomorphism of H which is contained

in the fiber 9fTCtt ,
then the representing measure for <t> is supported on X.

Corollary. Each fiber 3TCa is connected.

Proof. A theorem of Silov [82], which we shall not prove, states that

if the maximal ideal space of a function algebra is disconnected, then the

algebra contains a non-trivial idempotent function. Since we know that

3TCa is the maximal ideal space of A aj we can prove that 3ffta is connected

by showing that A a contains no non-trivial idempotents. Thus we shall

show that if g is in f/ and the function (0)
2 vanishes on 3fTCa ,

then

either is identically on 2HXa or $ is identically 1 on 3TCa . We proved earlier

that the range of on the fiber 3fTCa consists of all complex numbers X

for which there exists a sequence of points zn in the open unit disc with

lim zn = a and lim g(zn)
= X. From this it is clear that if the range of

on 3TC consisted precisely of the numbers and 1, the function g would map
every sufficiently small neighborhood of a onto a disconnected set. This

is (of course) absurd.

Corollary. In the maximal ideal space of H, the complement of the open
unit disc is connected.

Proof. Suppose Sfll-A is not connected. Then 3TC-A is the union of two

non-empty disjoint closed sets, KQ and K\. Each fiber 3Ha is then the union

of the disjoint closed sets KQ Pi 3TCa and KI O 3Tla. Since 9TCa is connected,

one of these two sets is empty. The unit circle is, therefore, disconnected

by the closed sets

{a; 9TZa C KQ} and {a; 9fHtt C #1}.

Now we want to prove what is perhaps the most striking property of

Aa . In order to do so, we shall need the following definitions.
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Let A be a collection of continuous complex-valued functions on a

topological space S. We say that A is regular on S if, for each closed set K
in S and each point p not in K

,
there is a function g in A such that =

on K but 0(p) j 0. We say that A is normal on S if, for each pair of dis-

joint closed sets KQ and Ki in S, there exists a function in A such that

= on KQ and g = 1 on /Ci.

Theorem. The algebra Aa is regular on the space X; in fact, the collection

offunctions {|F| ;
F in Aa} is normal on Xa .

Proof. Recall that Xa is that part of the Silov boundary X which lies

in the fiber 3fTCa . We know that the Silov boundary for A a is contained in

Xa ,
so we can reasonably identify Aa with its restriction to Xa . Since X

is totally disconnected, so is Xa . What we shall prove is that if K is any

(relatively) open-closed subset of Xa ,
there exists a function' h in // such

that K = on K and |A|
= 1 on Xa - K.

For convenience, assume that a = 1. Let K be an open-closed subset

of Xi. Since X is totally disconnected, K is the intersection with X\ of

an open-closed subset of X. In other words, there is a measurable set E
on the unit circle such that

Let

w(e) =
[1
-

XB(C")] log |1
-

e"|.

Then w is in L1 of the circle and is bounded above. Hence

/:,?! <>*]

is in J/00
. Almost everywhere on the unit circle, we have

in f *> OIiE
lkl

= ^ =
111 - e-l off^^|i e

I,
on />.

From this we see that the function / defined by

is a bounded measurable function. Thus

where / is in Z/. Let </> be any complex homomorphism of L which lies

in the fiber Xi and for which <Kx#) = 0. Then

*(&) = *(1
-

*)*(/) + *()*(*) = 0-*(/) + 0-*(A) = 0.

Thus A vanishes on the set K. But

[1
-

\h\]x*
- a.e.
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so that |A|
= 1 at any point of X where \E = 1. In particular, we have

A = on K, and \h\
= 1 on Xi - #.

Most of the remaining properties of Aa which we wish to discuss are

consequences of this result. Two of these properties of A a are (i) Xa is

the Silov boundary for A a ] (ii) A a is contained in no maximal closed sub-

algebra of C(Xa). We shall prove these results for any function algebra A
which is regular on a compact Hausdorff space X. In view of this, one

may ask what makes Aa anything special as a function algebra. The answer

is that A a is, to the best of my knowledge, the first known example of a

uniformly closed algebra which is regular on the compact space X but is

not all of C(X). It was also the first known function algebra not contained

in a maximal algebra.

Theorem. Let X be a compact Hausdorff space and let Kbe a uniformly
closed algebra of continuous complex-valued Junctions on X, such that A
separates the points of X and contains the constant functions. Suppose
that A is regular on X. Then

(i) X is the Silov boundary for A;

(ii) any function in A which vanishes on a non-empty open subset of X
also vanishes on a non-empty open subset of the maximal ideal space of A;

(iii) if <t) is a complex homomorphism of A and K is a minimal support
set for 0, and if f is a function in A which vanishes on an open subset of X
which intersects K, then 0(f)

= 0;

(iv) X is the maximal ideal space of A if and only if A is normal on X;
(v) if K is a closed subset of X with the property that the restriction of A

to K is not dense in C(K), then K has a proper closed subset S such that the

restriction ofA to S is Hot dense in C(S) ;

(vi) A is contained in no maximal proper closed subalgebra of C(X).

Proof, (i) This statement is a well-known (and obvious) fact. Let K be

the Silov boundary for A. If K were not all of X, there would exist a

function in A which vanished on K but was not identically 0. (ii) Let /
be a function in A which vanishes on a non-empty open set U in X. Then
there exists a non-empty open set V whose closure is contained in U.

Since A is regular on X, there is a function g in A which vanishes on the

complement of V but is not identically zero. Now fg = 0. Let

AT=

Then N is a non-empty open subset of 3frc(A) and 0(/) = for each

in N. (iii) Recall that a support set for the complex homomorphism is

a closed subset K of X such that

W/) I
3 sup I/I,

K

Suppose that K is a minimal support set for 0, i.e., that no proper closed
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subset of K is a support set for <t>. Let / be a function in A which vanishes

on an open subset U of X such that U H K is non-empty. Then 0(/) = 0;

for, suppose 0(/) ^ 0. Then let m^ be a representing measure for which

is supported on K. Then

for every g in A. Let dp,
= 7777 /dm$. Then ^ is a finite complex measure

whose closed support is contained in K C7, and

for all in A. Then there is a constant k such that

^ ft sup
JT U

for every in A. This means that is a bounded complex homomorphism
of the restriction algebra A\K-U. Hence <j> extends to a complex homo-

morphism of the uniform completion of this restriction algebra. This

completion is a commutative Banach algebra with identity, so any com-

plex homomorphism of it is automatically of norm 1. Thus

10(0)1 ^ sup |0|, 0in AK-U

and K U is a support set for 0. This contradicts the minimality of K.

[We should remark that the proof of (iii) made no use of the regularity

of A.] (iv) It is well-known that a commutative Banach algebra which is

regular on its maximal ideal space is actually normal thereon. We refer

the reader to [54; page 84] for a proof. We are chiefly interested here in

the converse, which is due to Bishop. Suppose that A is normal on X.

We shall prove that X is the maximal ideal space of A. Let be any com-

plex homomorphism of A. We shall prove that is evaluation at a point

of X. Let K be a minimal support set for 0. The existence of such a set

is a simple consequence of Zorn's lemma. Suppose that K contains at

least two points. Then we can find two closed subsets KQ and KI of X
such that the interior of each has a non-empty intersection with K. Since

A is normal on X, there exists a function / in A such that / = on KQ and

/ = 1 on KI. By (iii), we must have 0(/) = and 0(1 /) =
0, an ab-

surdity. We conclude that K is a single point, and hence that is evalua-

tion at that point, (v) Suppose that A\K is not dense in C(K). Then there

is a finite complex Baire measure ^ on the set K such that p 5^ and /z

annihilates A :

0, /in A.

Let a; be a point in the closed support of M- The support of M must contain
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more than one point; hence, there is an open subset U of X which inter-

sects the support of M and whose closure does not contain x. Let / be a

function in A such that / = on U but f(x) ** 0. Let dm =
/d/x, and MI

is a measure which annihilates A. Also, MI is supported on the closed set

S = X U, a proper subset of X. Since z is in the support of M and

f(x) T* 0, we cannot have MI = 0. We have a non-zero measure on S which

annihilates A, so the restriction of A to S is not dense in C(S). (vi) Let B
be a maximal proper closed subalgebra of C(X). We shall prove that B
is not regular on X, and hence cannot contain A. The crucial fact about

a maximal algebra B is the following. If K is any closed subset of X, then

either B\K is dense in C(K\ or B contains every continuous function on X
which vanishes on K . To prove this, let B' be the set of all / in C(X) such

that f\K is in the uniform closure of B\K. It is clear that B' is a uniformly

closed subalgebra of C(X) which contains B. By the maximality of B,

either B' = C(X) or B' = B. If BL = C(X\ then every continuous func-

tion on K is a uniform limit of functions in B\K. If B' = B, then every

/ in C(X) for which f\K is in B\K lies in B. In particular, every / in C(X)
wThich vanishes on K is in the algebra B. With this fundamental fact

established, we argue as follows. Let M be a non-zero complex measure

on X which annihilates B, arid let K be the closed support of /* Then

B|A* is not dense in C(K). Let S be any proper closed subset of K. We
shall prove that A \s is dense in C(S). If .4 \s is not dense in C(S), then every
continuous function vanishing on S is in B. The restriction of M to K S
is then a measure which annihilates every continuous function on K S
which vanishes at infinity. Hence, this restriction is and /x is supported
on S. This contradicts the definition of K. Now we refer to part (v) of

the theorem and see that B cannot be regular on X, since we have produced
a closed subset K of X such that A\K is not dense in C(K)j but A\s is dense

in C(S) for any proper closed subset 8 of K.

If we apply these results to the algebra A a on the fiber 3fTCtt ,
we have

the following. The maximal ideal space of Aa is 9flZa ; the Silov boundary
for A a is Xa ,

Aa is regular on Xa
',
A a is contained in no maximal subalgebra

of C(Xa) ;
3TCa is connected

;
Xa is totally disconnected. There is one further

interesting property of A a ,
which follows from the topological nature

ofXa . In the section of this chapter which dealt with L, we proved that

Xa is a topological space with this property: if / is a continuous function

on Xa , any value which / assumes is assumed on a non-empty open
subset of Xa - By part (ii) of the last theorem, we then have the following.

Let / be any function in the algebra Aa . Any value of / on the Silov bound-

ary Xa is assumed by / on a non-empty open subset of the maximal ideal

space 3flla . We also see that, in some sense, Aa comes close to being normal

on the space Xa - If K is any open-closed subset of Xa ,
there is a function /

in Aa such that / = on K and |/|
= 1 on Xa K. If X is in the range
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of / on Xa ,
then we have / = X on some non-empty open-closed subset

K\ of Xa . For each such X of absolute value 1, the sets K and K\ constitute

a pair of disjoint closed sets for which we do have a function in Aa which

vanishes on K and is 1 on K\. If <t> is any complex homomorphism of A a

and S is a minimal support set for <, we know that S cannot intersect both

K and K\, and cannot intersect two distinct sets K\. Consequently, S has

no interior in the space Xa ,
and (roughly speaking) every complex homo-

morphism of Aa is supported on a very "thin" subset of Xa .

Maximality

In this section we shall prove that 7/00
is a maximal weak-star closed

subalgebra of L, and that 7/ is contained in no algebra which is maximal

among the proper uniformly closed subalgebras of L.

Theorem. Let B be any (uniformly) closed subalgebra of L which con-

tains H.

(i) // B 7* H, then B contains z.

(ii) // B 7* L, then there is some point a. on the unit circle such that the

restriction of 6 to the fiber X tt is a proper closed subalgebra of C(Xa).

Proof, (i) Let <o be the homomorphism of H given by evaluation at

the origin. Either < extends to a complex homomorphism of the algebra B
or it does not. Suppose that it does extend, i.e., that there is a complex

homomorphism \l/ of B such that \[/(f)
= /(O) for all / in //. Through the

Gelfand representation of L, we have B represented as a uniformly closed

subalgebra 5 of C(X). Thus there is a positive measure n on X = 3fn(L)

such that

This positive measure n is, in particular, a representing measure for $o-

By the Gleason-Whitney theorem, there is a unique representing measure

mo for 0o. Thus ^ = TOO and

If / is any function in B, then forn > we have

=

from which we conclude that / is in H". Thus, if B ^ H*, the homo-
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morphism fa docs not extend to B. Hence there is no complex homo-

morphism of B which sends z into 0, because <#>o is the only complex homo-

morphism of H* with this property. But then z lies in no proper ideal in

the algebra B, which means that z is invertible in B, or that l/z = 1 is

in B.

(ii) Suppose that B is a closed subalgebra of Z/
80 which contains H.

If |a|
=

1, the function /(z)
= ^(1 + dz) is in B and satisfies/ = 1 on Xa ,

I/I < 1 on the remainder of X. As we have noted several times, this

means that the algebra Ba ,
obtained by restricting B to Xa ,

is uniformly

closed. Now suppose that Ba = C(Xa ) for each a on the circle; we shall

prove that B = L. Let $ be any complex homomorphism of B, and let

a =
<t>(z). Then |a|

=
1, because, by part (i) of this theorem, z is in

B and we must have #(z)0(z) = 1. We again use the function / in B
which is equal to 1 on Xa and of modulus less than 1 elsewhere on X. Since

0(2) = a
t <(/) =

1, and any representing measure for < must be supported

on Xa . This means that <t> is really a complex homomorphism of Bai corn-

posed with the restriction map B*Ba . Since Ba = C(Xa) 1 <l> must be

evaluation at a point of Xa . We conclude that every complex homo-

morphism of B is evaluation (on ) at a point of Xj i.e., that X is the max-

imal ideal space of B. Now X is totally disconnected. The theorem of

Silov [82] states that 6 must contain the characteristic function of every

open-closed subset of its maximal ideal space. Thus B contains the char-

acteristic function of every measurable subset of the circle, so B = L.

Corollary. H is a maximal weak-star closed subalgebra of L.

Proof. Let B be a weak-star closed subalgebra of Z/ which contains

7/00
. We prove that either B = L or B = II. If B ^ 7/, part (i) of

the theorem tells us that B contains z. Since the trigonometric polynomials
are weak-star dense in L, we have B = L.

Corollary. There is no algebra which contains H and is maximal among
the proper uniformly closed subalgebras of L.

Proof. Let B be a proper closed subalgebra of Z/ which contains II*.

By part (ii) of the theorem, there is a point a on the unit circle such that

Ba is a proper closed subalgebra of C(Xa). If B is maximal, then obviously

Ba must be a maximal subalgebra of C(Xa). But Ba contains the algebra

Aa = J^|jr and we proved in the last section that Aa is contained in no

maximal subalgebra of C(Xa). We conclude that B is not a maximal

closed subalgebra of L.

Interpolation

Let {zk} be a sequence of points in the open unit disc. We shall call

{zk} an interpolating sequence if, for each bounded sequence of complex
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numbers {wk} , there exists a function / in H such that f(zk)
= wk for every

k. The main purpose of this section is to give a characterization of such

sequences. We have chosen to incorporate this in our discussion of H*>

as a Banach algebra because it is related to various questions about the

maximal ideal space of H. We might mention one example of this now.

We have previously discussed the question of whether the open unit disc

is dense in ^(T/
00

). We showed that this is equivalent to the following

question: if /i, . . .
, fn are functions in H such that

|/|+ -+|/n| feS>0
on the disc, do there exist functions gi, . . .

, gn in ff00 such that

If n = 2 and {zk} is the sequence of zeros of /i, then the function 2 must

interpolate the values 17/2(2*) at the points zk . If {zk} is an interpolating

sequence and /i is simply the Blaschke product for that sequence, it is

easy to see that g\ and gz can be found. As we shall see later, the same result

holds for the general n\ that is, if one of the functions /,- is the Blaschke

product for an interpolating sequence, then appropriate </i, . . .
, gn can be

found. Of course, what we are describing are very special cases of the

density question in 3Tl(//), but questions of this type led R. C. Buck to

ask whether any interpolating sequences exist. L. Carleson, W. Hayman,
and D. J. Newman worked independently on the interpolation problem,
and each of them proved the existence of a great many interpolating se-

quences; e.g., every sequence which has a cluster point on the unit circle

contains a subsequence which is an interpolating sequence. Both Carleson

and Newman gave necessary and sufficient conditions for {zk} to be an

interpolating sequence. Newman had two conditions on the sequence,

whereas Carleson proved the stronger result, that one of these conditions

is necessary and sufficient. Carlesori's characterization of interpolating

sequences is surprisingly simple, and, although it does not provide the

solution of any deep problems about 2fTC(/?), it does shed some light on

such problems.

Let us look at the interpolation problem. If {zk} is any sequence of

points in the open unit disc, we consider the linear operator R which as-

sociates with each/ in ff its sequence of values on the points zk :

We wish to know under what condition R maps H* onto /, the space of

all bounded sequences of complex numbers. One obvious condition which

is necessary is that the zk be distinct. Another condition which is evidently

necessary is that

s (i
-

hi) <>.
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This condition is necessary in order to be able to find an / in H" such that

f(zk)
= for k ^ 2 but f(zi) ^ 0. If we employ a fundamental theorem on

Banach spaces, we can deduce another necessary condition, which we shall

subsequently show is sufficient. The space t* is a Banach space under the

sup norm, and R is a norm-decreasing linear transformation of H* into ^.

If R maps // onto /*, then is Lsomorphic to the quotient space ////,
where / is the ideal of all functions in H which vanish on the sequence

{zk}. If we equip H/I with the quotient norm

then H/I becomes a Banach space, and R induces a one-one norm-

decreasing linear transformation of 7/00

// onto (. A corollary to the

closed-graph theorem states that a one-one bounded linear transformation

of a Banach space onto a Banach space necessarily has a bounded inverse.

Thus there is a constant M > such that, if w = {wk} is in /*, there is

an / in // with Rf = w and

II/H gMsupH.
In other words, all sequences bounded by 1 can be interpolated in a uni-

formly bounded manner. In particular, for each k we can find a function

fk in 7/00 such that

fk(Zj)
=

djk

Jlf.

If Bk denotes the Blaschke product whose zeros are the points z, for

j T^ fc, then Bk divides //f . Since \\fk \\ g M and fk (zk ) = 1, we must have

\Bk(zk)\ ^ l/M. If we put 5 = 1/M, we have concluded that any inter-

polating sequence {zk} necessarily satisfies

(C) n ^ 6 > 0, k =
1, 2, 3,

Carleson's theorem states that the condition (C) is also sufficient for

{zk} to be an interpolating sequence. At the same time that Carleson

proved this theorem, D. J. Newman independently showed that {zk} is an

interpolating sequence if and only if it satisfies (C) together with the

condition :

(N) 2 |/(z*)l(l
~

l*l) <, for every /in H1
.

It follows that (C) implies (N), and the bulk of Carleson's work was de-

voted to establishing this implication. We are now going to prove the

sufficiency of (C). The first step will be the proof of Newman's result.

This is done by Banach space methods. Then, using the recent proof of

Shapiro and Shields, we shall show that (C) implies (N).
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Theorem. (Carleson; Newman). Let {zk} be a sequence of points in

the open unit disc. Then {zk} is an interpolating sequence if and only if

conditions (C) and (N) are satisfied.

Proof. Assume that we have a sequence of distinct points z*. Suppose
that w = {wk} is a bounded sequence of complex numbers. Certainly, we

can find a function in 7/ which interpolates w at any finite number of the

points z^ One way to do this is the following. Let

_
ZkZ

= Bn (z)

~
1 g fc g n

2 Zfc

&n* = Bnk (Zk).

Define

and we have fn (zk) = w*, 1 ^ fc < n. In fact, the most general function

in // which interpolates ^ at 0i, . . .
,
zn is

fn + Bng, gmH".
If {z*} is an interpolating sequence, then all sequences w in the unit ball

of ^ can be interpolated in a uniformly bounded manner. This tells us

that if we define

mn (w) = inf H/n + Bng\\
QU

we must have

supsupran(w) < oo, |M| g 1.

n w

But the converse also holds. If the above supremum is finite and w is an

element of the unit ball of t, we can find a sequence of functions gn in

H* such that

gn (zk) = wk ,
1 ^ k ^ n

The sequence {gn} is a normal family and will then have a subsequence
which converges uniformly on compact subsets of the disc to a function g

in H* with ||0|| g M. It is clear that g(zk)
= wk for all k. We conclude

that the finiteness of the supremum sup sup mn(w) is necessary and suf-
n w

ficient for {zk} to be an interpolating sequence.

Now
m*(w) = inf \\fn + Bng\\
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where Fn = }n/Bn and || |U denotes the essential sup norm on the unit

circle. Here we have used the fact that \Bn \

= 1 on the unit circle. Thus
we see that mn(w) is the norm of the coset Fn + H in the quotient space
L00

///
00

- Now L is the conjugate space of the Banach space L1
. Also, H

is the annihilator of the space 7/J, consisting of the H1 functions which

vanish at the origin. Thus we may identify L^/H* with the conjugate

space of the Banach space //J. In particular,

mn(w) = inf 11^ + 0| UoW
= norm of Fn as a linear functional on //J

= sup

If /is in//1

,

, /in//
1

,

/in//1

,

= 2

n Wk
. V* z."~

b
J

Now we have

?ftn(w)
= SUp

Thus, if we constrain w to the unit ball in <,
n i

If we now let

M = sup j^ |/( 4)|(1
-

|z*|*), /in H\ II/IK ^ 1

and remember that |6nfcl ^ 1, we see that

M ^ sup sup mn(w) ^ Af .

f
., .

Condition (C) says that inf |6,*| ^ 5, and thus we conclude that {zk} is an

interpolating sequence if and only if (C) is satisfied and M < GO. The

theorem will now be proved if we show that M < oo if and only if

2 |/0fc)l(l
- M) < *

for every / in H1
. It is obviously immaterial whether we multiply

by (1
-

\Zk\) or by (1
-

|z*|
2
). If M < oo, certainly

- W 2
) < oo
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for each / in Hl
. Conversely, if the sum is finite for each /, the rule

Tf =

defines a linear mapping of Hl into the Banach space t1 of all absolutely

summable sequences. The condition M < > says simply that T is a

bounded linear transformation from H1 to P. The closed-graph theorem

asserts that T is bounded if its graph is closed. This means that if / >/
in H1 and the sequences Tfn converge to the sequence X = {\k} in t\ then

Tf = X. Either the Poisson or Cauchy integral formula shows that if

fn >/ in 7/ 1

,
then fn (z) >/() uniformly on compact subsets of the disc,

so it is apparent that the graph of T is closed.

Actually we have proved a little more than we have stated in the last

theorem. Before stating this extra information as a corollary, we want to

switch from the space II 1 to the space //2
,
in order to facilitate our later

work. Consider the supremum

M = sup S !/(z*)lO
- Nl

2
), /in H\

/ k=i

which occurred in the proof. It is rather easy to see that

M = sup S |<7(z*)|
2
(l
- W 2

), g in //2
, ||0||, g 1.

a k=i

Since the square of any g in the unit ball of H2
is a function in the unit

ball of //*, it is apparent that this second supremum does not exceed M.
On the other hand, if / is any function in the unit ball of /f1

,
we can write

/ = Bg*, where B is a Blaschke product and g is in the unit ball of #2
; also,

This establishes the reverse inequality.

Corollary. Let {zk} be a sequence of points in the unit disc which satisfies

condition (C). Then {zk} is an interpolating sequence if and only if the

supremum

M = sup S I0(**)I
2
(1
-

l**l
2
), g in H\ \\g\\* g 1

Q ft= l

is finite. When M is finite, every sequence in the unit ball of f00 can be inter-

polated by a function of H whose norm does not exceed - M.
o

Now we set about the task of showing that condition (C) automatically

guarantees the finiteness of M. We shall follow Shapiro and Shields in

reducing this task to a weighted interpolation problem for H2 functions.

The reduction is contained in the following lemma.

Lemma 1. Let {zk} be a sequence of points in the open unit disc. Suppose
there exists a constant K such that if {Xk} is any square-summable sequence

of complex numbers, then there is a g in H2
satisfying
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(i) \\g\\l K SX*! 2
.

(ii)

Then

ft

S !<?(**) I

2 ~ W 2
) =i #||0||I

/or ever?/ g in H 2
.

Proof. The proof will be virtually identical with the proof of the first

theorem of this section, except that we replace 7/ with H2
. We begin

with a sequence X = {X*} satisfying S |X*|
2 ^ 1; that is, with a X in the

unit ball of the sequence space
2

. As before, we consider the special func-

tions/n which solve the interpolation problem at the first n points. Because

of the weights appearing in (ii) above, these functions are

As before, we define

mn (X = inf

= inf

where Fn = fn/Bn . Thus mn (X) is the norm of Fn as a linear functional on

the space HI. (Here, we are identifying the bounded linear functional on

L2 with Z/
2 functions by omitting the complex conjugate which occurs in

the definition of the inner product on L2
.) If we apply the Cauchy integral

formula to the terms of J FnfdO, we obtain

mn(X)
= sup

/
2 ?r ^ 1.

Thus, if we constrain X to the unit ball of t2
,

r Supmn(X)T ^ sup S l/(z*)!
2 ~ kl

L X J / k=l

/in #2
, Il/Hf S 1. Therefore,

[supsupmn (X)]
2

sup S
n X / A=l

/in Hz
, \\f\\2 ^ 1. We are assuming that every X in the unit ball of (*

can be interpolated as in (ii) by a function of H2 whose square norm does

not exceed K. Thus
[sup sup mn(X)]

2 ^ K
n X

and that completes the proof of the lemma.

Now we wish to show that any sequence {2*} which satisfies condition

(C) also satisfies the hypothesis of Lemma 1. We shall do so in Lemma 4
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below, but first we shall state two facts which, although elementary, are

probably not obvious without some thought.

Lemma 2. Let {aij} be a double sequence of complex numbers which is

self-adjoint, aji
=

al], and suppose there is a constant N such that

2 Kl
J-l

N, t-1,2,8,....

Then for any square-summable sequence of complex numbers

2 a,j\i\j
^,J

^ N 2

2 |a -|

y-i

Proof. Suppose A =
[a,,] is a self-adjoint n X n matrix such that

N for each i. Then

sup 2 avyXtXy S |X,|
2

is the norm of A as a linear operator on complex Euclidean space O.
This operator norm is, in turn, equal to the largest magnitude of any

eigenvalue of A. If c is such an eigenvalue, then for some non-zero ntuple

(Xi, . . .
,
Xn) we have

2 flijX,- 1, . . .
,
n.

Thus

\c\\\j\ g 2 M
If we sum these inequalities on j and divide by 2 |Xy|, we see that |c| ^ N.

This proves the lemma in the finite case. In fact, if we replace a^ by |a <; |,

the conditions are not changed, so

.S S |a||X f||X,| g N 2 |Xt |

2

for each n. The lemma is now obvious.

Lemma 3. // {zjj is a sequence which satisfies condition (C), then

S (1
""i

l

f
j|t)(

^TJ
g' |2) Sl-21og, * = 1,2,3,....

Proof. It is easy to verify that

Condition (C) tells us that

or that

(i
-

n
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-S log g -2 log 5.

If one now uses the identity at the beginning of the proof and the inequality

x g log (1 x)

the conclusion follows.

Lemma 4. // the sequence {zk} satisfies condition (C), then for any

square-summabk sequence {Xk} there is a function g in H2 such that

(i) IWBS | (1-2 log*) 21^.

(ii) 0fe)(l
- kl

2
)
1 '2 =

X*, fc-1,2,3,....

Proof. Once again, we begin with a square-summable sequence
and solve the weighted interpolation problem at the first n points; however,
we now define

1 l^fcP)^
2

/. = J^^W-
It is easy to see that

/(*)(!
-

**l
2
)
172 =

**, 1 ^ * ^ n.

Now we shall obtain a uniform bound on the norms of the /n . First

II f\\?ff f
\ _ v At^L (a a }\\Jn\\'2 \JnjJnJ fs

?i
2

./)
2 ^ WI ' WJ '

where (/, g) denotes the usual inner product on L2 of the circle. Now

since Bn is of modulus 1 on the circle. If one uses the Cauchy integral

formula, it is relatively easy to calculate the last inner product and obtain

__ U.I2W2z

Since (1
-

ki|
2
)
1/2

(l
-

|a>|
2
)
1/2 S |1

-
5#>|, we see from Lemma 3 that

S |(^-, <7n/)| g 2(1 -2 log 6).
j

Then, by Lemma 2, we have

Since the functions fn all lie in a fixed ball in H2
,
some subsequence of

{/n} will converge weakly to a function g in that ball. This weak conver-

gence guarantees (at least) pointwise convergence on the unit disc, so g
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will have properties (i) and (ii) in the statement of the theorem. That

completes the proof.

If we now combine Lemmas 1 and 4 with the corollary to the first

theorem of this section, we have the result we have been seeking.

Theorem. Let {zk} be a sequence of points in the open unit disc. A
necessary and sufficient condition that {ZK} be an interpolating sequence is

that there exist a positive number d such that

n k = i, 2, 3, . . . .

// this condition is satisfied, then for any bounded sequence {\Vk} there is ant
in Il such that

(i) /(*) =
tifc, * - 1, 2, 3, . . . .

(ii) ll/l|=g|(l
- 2 logS) sup H.

Before presenting some corollaries, we should like to make one remark

about the proof of Lemma 4. The functions fn which were chosen there to

interpolate at the first n points arc not the ones of minimal L2 norm.

This shrewd choice of the fn by Shapiro and Shields accounts in part for

the relatively short proof of Lemma 4, which they discovered.

Corollary (Hayman; Newman). Suppose {zk} is a sequence of points in

the open unit disc which approaches the boundary exponentially, i.e.,

< c < 1.

Then {zk} is an interpolating sequence.

Proof. Since, for points a, ft in the unit disc,

a- 13

we see that

n Zk - Zj

1 -

When j > k, we have

and thus

-
aft

n

=
i - |a||0|

n - ZjZk

i - c*-*(i
- N)

On the other hand,

i - NM s (i + c'-*)(i
- M).
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Thus
* 1 /

n ^ n 7-r-
5
;-w

1 - 1*1 S c
fc

-'(l
- N)

-
\Zi\)

Thus
w 1 /in

n = n T^T~
3<k n = l 1 T~ C

and it is clear that {zk} satisfies condition (C).

Corollary. Any {zk} such that Tim |zk |

= 1 contains a subsequence which

is an interpolating sequence.

Proof. This is clear from the previous corollary.

Corollary (Hayman; Newman). // {zk} is an increasing sequence of

points on the positive axis, then {zk} is an interpolating sequence if and only if

Proof. We have shown that interpolation is possible if the z* tend to

the boundary exponentially. Conversely, if interpolation is possible, there

is a positive 6 such that

s= =
1 ZkZk-l 1 Zk-1

These last corollaries show us that if |z*| tends to 1 in a sufficiently rapid

way, then {zk} is an interpolating sequence; however, one should not get

the idea that any such growth condition is necessary for interpolation,

other than the obvious one:

JMl
-

\zk \) <*>.

Three years before the solution of the H* interpolation problem, A. G.

Naftalevitch showed the following. If {zk} is any sequence of non-zero

numbers which satisfies this last summability condition, there exists a

sequence {z} which satisfies condition (C) and for which

|**| |%| y
fc = 1,2,3,....

There are different ways to formulate necessary and sufficient condi-

tions for {z^ to be an interpolating sequence. The condition (C) is cer-

tainly the simplest, but there are others which are instructive. One of

these is this: every sequence of O's and 1's can be interpolated by some H*
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function. Hayman has given a direct proof that if every such idempotent

sequence can be interpolated, then the sequence {zk} satisfies condition (C).

When combined with Carleson's result, this shows the equivalence of

interpolation of all bounded sequences and interpolation of idempotents.

Actually, this equivalence is a consequence of a more general result of

Bade and Curtis on Banach algebras.

Theorem. Let B be a commutative Banach algebra with identity and let

g = {pk} be a sequence of distinct points in the maximal ideal space of B.

The following are equivalent.

(i) fi| fl
= p.

(ii) 6|s contains every idempotent in P.

(iii) S is discrete in its relative topology as a subset of 3TC(B) ;
its closure 5 in

9Tl(B) is homeomorphic to the Cech compaclificalion of S', Sis a hull in Sfll(B).

Proof. Obviously, (i) implies (ii). Now we shall prove that (ii) implies

(i). Here we shall use the result of Bade and Curtis [Corollary 3.5, page

858, Amer. Jour. Math., October, I960]. It states the following. Suppose
that A is a complex linear subalgebra of t which contains every idempo-
tent in t*. If there is any norm on A under which it is a Banach algebra,

then A = ^. In the case at hand, we apply this theorem to A = 6\s.

All that we need demonstrate is that this A is a Banach algebra with some

suitable norm. But this is clear. Let 7 be the (closed) ideal consisting of

those elements xinB such that = on S. Then

(* + /)-* A\ B

is an isomorphism between the quotient algebra B/I and the algebra \s.

The standard quotient norm on B/I is a Banach algebra norm, and that

completes the argument that (ii) implies (i). Now assume that (i) holds.

We shall prove (iii). Since every bounded function on the sequence S
is the restriction to S of a continuous function

,
it is clear that each pk

is isolated from the points p,-, j ? k. In other words, S is discrete as a

topological subspace of 3fTC(J3). Consider the closure S of S in 3TC(J3).

Each bounded function on S has a
continuous^

extension to 5, by (i).

The functions f
,
x in jB, separate the_points

of S, since they separate the

points of 3H(J3). Since S is dense in S, it follows that 5 is the Cech com-

pactification of S, i.e., the smallest compact Hausdorff space which con-

tains S and has the property that every bounded (continuous) function

on S has a continuous extension to the containing space. The hull of 8
is the set of all points p in 3H(B) such that (p)

= for every A which

vanishes on S, i.e., for every x in the ideal 7. For any p in the hull of S,

defines a complex homomorphism of the algebra 6\ s . But 6\s =
,
which

is isomorphic to the algebra of all continuous functions on S. The above
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homomorphism is, therefore, evaluation at a point of S, that is, p is in S.

We conclude that S = hull (S). That completes the proof that (i) implies

(iii). Assume now that (iii) holds. We prove (ii). As we noted before,

6\s is a commutative Banach algebra, using the norm inherited from B/I.
It is easy to verify that every complex homomorphism of B\ s is evaluation

at a point of the hull of S. Since hull (S)
= S and S is the Cech compactifi-

cation of the discrete countable space S, the maximal ideal space of 6\ s
is the totally disconnected space S. By the theorem of Silov (82), 6\ 8

must contain every idempotent continuous function on 5. Hence, we
have (ii).

If we apply this theorem to # and combine with our earlier results,

we see the following. If S =
{zk} is a sequence of distinct points in the

open unit disc, these are equivalent: (i) S is an interpolating sequence;

(ii) S satisfies condition (C); (iii) primitive idempotent sequences (i.e.,

sequences of one 1 and the remainder O's) can be interpolated in a bounded

way; (iv) every idempotent sequence can be interpolated; (v) the closure

of the sequence S in the maximal ideal space of /7 is homeotnorphic to

the Cech compactification of the integers, and if B is the Hlaschke product
with zeros {zk}, then every zero of B on 3fn(//) is in the closure of S.

Corollary. Let B be a Blaschke product whose zeros are an interpolating

sequence, and let fi, . . .
,
fn be functions in H. The following are equivalent.

(i) There are functions g, gi, . . .
, gn in H such that

9B + 2g3fi
= l.

3

(ii) There is a d > such that

\B\ + \fl\+ -H/nl^S
on the unit disc.

(iii) There is a d > such that

on the sequence of zeros of B.

NOTES

For a discussion of the maximal ideal space of a commutative Banach algebra,
see the papers of Gelfand [32], Gelfand-Raikov-Silov [33], or the book by Loomis

[54]. The results on 3fTl(#) which are found in the second, third, and fourth sec-

tions of this chapter are contained in the paper of I. J. Schark [80]. The basic

results on L as a Banach algebra are well-known; e.g., see Dunford-Schwartz [25].

The identification of the Silov boundary for 7/
60

is also from the paper of I. J.

Schark [80]. The uniqueness of representing measures for points in the open unit

disc was proved in the paper of Gleason and Whitney [35], together with various

generalizations. It was first pointed out by Gleason that there are no non-trivial

Dirichlet algebras on a totally disconnected space. The proof given here was shown
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to me by H. S. Bear. The regularity of the algebra Aa on the fiber Xa was proved
in the paper of Hoffman and Singer [49], together with these consequences: Aa lies

in no maximal subalgcbra of C(Xa), and // lies in no maximal subalgebra of L.
The connectedness of the fibers 3TCa and the space 31X-A was proved in the paper
of Hoffman [48]. The various consequences of the fact that the algebra A is regular

on the space X do not depend upon the fact that A is uniformly closed, but only

on the fact that A is a commutative Banach algebra under some norm. The basic

material on the interpolation problem in//00
is contained in the papers of Carleson

[18], Newman [65], and Haymaii [Ann. de Tlnstitute Fourier, XIII (1958)]. The

proofs we have used here are in the paper of Shapiro and Shields [81]. Their

paper contains a nice discussion of this and other interpolation problems, and

a reasonable bibliography on these problems. While reading the page proofs for

this chapter, I received a manuscript from Lennart Carleson, and it appears that

he has proved that the open unit disc is dense in 9fH(//).

EXERCISES

1. Prove that the complement of the open unit disc in 3ffl(//) is the maximal

ideal space of the closed subalgebra of L" which is generated by //* and 2.

2. Let A be a uniformly closed subalgebra of C(X). Let be a complex homo-

morphism of A which is not evaluation at a point of X.

(a) Among all the support sets for prove there is a minimal one (not neces-

sarily a minimum one).

(b) Prove that any minimal support set for ^ is a perfect set. (Hint: If XQ is

tin isolated point of $<*>, the closed support of a representing measure m^ for <,

choose / A such that/(x )
= and <(/) =

1, and look at/dw .)

3. Consider the algebra A a , obtained by restricting H* to the fiber 3TCa in

9fn(//). Prove the following:

(a) A a contains a non-constant real-valued function.

(b) Every point on the Silov boundary Xa is in the closure of 2fTCa Xa *

(c) If A' is any open-closed subset of Xa ,
then the restriction of Aa to K

is not dense in C(K).

(d) If K is a closed subset of Xay then the restriction of Aa to K is C(K),

if and only if every measure on X* which is orthogonal to Aa has total

variation on K .

4. With the notation of Exercise 3, if <t> is a complex homomorphism of A a ,

let 84, be the closed support of the (unique) representing measure for 0. Prove the

following:

(a) If <t> OTa Xa ,
then 8$ is a perfect subset of Xa which has no interior

in X..

(b) For any </> g 3TCa the support set 8$ is an intersection of "peak" sets for

//", i.e., subsets of 9fH(//"
>

) of the form {/=!}, where /#* and

ll/ll
= I-

(c) If </> 6 3TC - Xa , there exists a ^ 6 2fTC
- Xa such that S* is a proper

closed subset of 8$.

(d) If K is an open-closed subset of Xa ,
then the restriction of Aa to K is

not uniformly closed, unless K is empty or K = X.
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5. Let [zk] be a sequence of points in the open unit disc. Prove that S = fa]
is an interpolation sequence if and only if the following is true: If Si and S are any
two disjoint subsequences of S with corresponding Blaschkc products B } and B2 ,

then Bi and Bz lie in no proper ideal of 7/.

Suppose {zk} and {2k} are disjoint interpolating sequences, with corresponding

Blaschke products B and B. Prove that the union of the two sequences is an in-

terpolating sequence if and only if B and B lie in no proper ideal of //".

6. Prove the equivalence of the three statements in the final Corollary of this

Chapter. Give an example of a Blaschke product for which these statements are

equivalent, but whose zeros do not form an interpolating sequence.

7. Let A be the uniform closure of the polynomials on the unit disc. If {zk} is

a sequence of distinct points in the open unit disc, show that the following two

statements are equivalent.

(i) If g is any continuous function on the closed unit disc, there exists / <E A
such that f(zk)

=
g(zk), k =

1, 2, 3,

(ii) {zn} is an interpolating sequence for II *, and the set of accumulation points

of {zk} on the unit circle has Lebesgue measure zero.
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Maximal ideal, 82, 87, 92, 158

Maximal ideal space, 159, 205

Maximally, 93, 190, 194

Measurable set, 3

Measure, absolutely continuous, 21, 44,

46, 47, 55

analytic, 39, 47, 51

Baire, 1

Borel, 1

complex, 5

derivative of, 4

Dirac, 21

finite, 2

Fourier series of, 20

Lebcsgue, 2

multiplicative, 55

periodic, 24

Poisson integral of, 33

positive, 1

real, 5

regular, 1
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Measure (cont.)

singular, 46, 55, 66

zero, 3

Mutual singularity, 4

Non-negative harmonic function, 38, 134

Non-tangential limits, 34, 41, 78, 123

vanishing of, 52, 58

Norm, 5

essential sup, 6

Z>, 6

sup, 6

Normal family of functions, 189

Normed linear space, 5

Orthogonal complement, 10

projection, 11

set, 11

vectors, 10

Orthonormal set, 1 1

Outer function, 62, 103, 120, 13i)

in half-plane, 133

Outer part, 68, 69

Paley-Wiencr theorem, 103, 104, 113, 131

Parallelogram law, 9

Partial sums, 15

Periodic measure, 20

Plancherel theorem, 131

Poisson integral formula, 30

kernel, 30 (for half-plane, 123)

Positive measure, 2

Privaloff's theorem, 58

Projection, from L* to H*, 149, 154. 155

orthogonal, 11

theorem of M. Riesz, 151

Radon-Nikodym theorem, 4

Regular Borcl measure, 1

family of functions, 189

Representations of H*, 116

Representing measure, 181, 207

Riemann-Lebesgue lemma, 22

Riesz, F. and M., theorem on measures,

47, 51, 56, 59, 72, 186

Riesz, M., theorem on projections from
L> to //*, 151

Riesz-Fischer theorem, 14

Riesz representation theorem, 7

Rungo's theorem, 95

Shift operator, 98, 111

invariant subspaces for, 99, 111, 115

Sigma ring, 1

Silov boundary, 173

for y/
00

, 174, 179

Simple function, 2

Singular function, 67, 68, 133

SpM.no of complex homomorphisms, 159

of maximal ideals, 159

Spectrum, 91

Subharmonic function, 62

Sumnmbility, Abel, 32, 33, 34

Cesaro, 17, 19, 20

Sup norm, 6

Support set for homomorphism, 181, 207

Szego's theorem, 49, 56, 184

Topology, weak, 159

weak-star, 8

Total variation, 5, 7

Unitary operator, 108, 134

Variation of measure, 5, 7

Weak topology, 159

Weak-star topology, 8, 156

Weierstrass approximation theorem, 26

Wiener's inversion theorem, 96

X*, 6
















