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PREFACE

There are not enough books which deal with the interplay between func-
tional analysis and the theory of analytic functions. One reason for this is
the fact that many of the techniques of functional analysis have a “real
variable” character and are not directly applicable to problems which
belong intrinsically to analytic function theory, e.g., problems of conformal
mapping and Riemann surfaces. But there are parts of this theory which
blend beautifully with the concepts and methods of functional analysis.
These are fascinating areas of study for the gencral analyst, for three prin-
cipal reasons: (a) the point of view of the algebraic analyst leads to the
formulation of many interesting problems concerned with analytic func-
tions; (b) when such problems are solved by a combination of the tools
from the two disciplines, the depth of each discipline is increased; (¢) the
techniques of functional analysis often lend clarity and clegance to the
proofs of classical theorems, and thereby make the results available in
more general situations.

The main purpose of this monograph is to provide an introduction to
the segment of mathematics in which functional analysis and analytic
function thcory merge successfully. Its spirit is close to that of abstract
harmonic analysis, and, in fact, there is some overlap with the subject
matter of harmonic analysis. Because this work is introductory, there has
been no attempt to emulate cither the depth of Zygmund’s book on trigo-
nometric series or the generality of the several books which treat harmonic
analysis on groups. The subject matter is restricted to Banach spaces of
analytic functions in the unit dise, roughly, those which are closely related
to the Hardy spaces H? (1 < p £ »). The historical accounting some-
times falls a bit short of the mark. Some effort toward such an accounting
is made in the sections entitled NoTEs, at the end of each chapter. But a
few relevant references have been omitted (for example, A. Taylor’s papers
in Studia Mathematica, 1950-51). The material is not discussed in its ulti-
mate generality. Where proofs do carry over to more general contexts and
the extension is not treated elscwhere, my method is usually to give the
proofs in the unit disc and to discuss the generalizations afterward.

The first four chapters are devoted to the proofs of classical theorems
on boundary-values and boundary integral rcpresentations for analytic

vi



viii Preface

functions in the unit disc which lie in the Hardy class H? (1 < p < »).
Some basic results on (C, 1) summability of Fourier scries are treated first,
not because this is necessary, but because the rcader who is not acquainted
with approximate identity arguments may then see them in the context of
Cesaro summability as well as in the context of Abcl-Poisson summability.
The treatment of Cesaro means first also helps to underscore the “real
variable”” nature of the basic propositions on boundary-values of H? func-
tions, i.e., to underscore the fact that the proofs do not utilize analyticity
as such, but depend upon the fundamental theory of convergence, integra-
tion, and measure, plus a few basic facts about Banach spaces. The recent
work of Helson and Lowdenslager has provided such “real variable” proofs
for some of the F. and M. Riesz theorems on the space H!, which originally
leaned heavily on analytic function theory.

The fifth chapter contains the factorization theory for H? functions,
which, for its full strength, depends most decidedly on the fact that one is
dealing with analytic functions of one complex variable. The chapter also
contains a discussion of some partial extensions of the factorization, as well
as a brief description of the classical approach to the thcorems of the first
five chapters.

There is a treatment of H” spaces in a half-plane, which (for organiza-
tional reasons) occurs in Chapter 8. The principal facts are derived by
reducing them to their counterparts in the unit dise. This is a bit unnatural,
and it is done for two reasons: (i) to avoid a lengthy discussion of Fourier
transforms, the natural tools for the study of the half-plane; (ii) to make
available a detailed description of the relationship between H? of the disc
and H? of the half-planc.

The remainder of the monograph deals with the structure of various
Banach spaces and Banach algebras of analytic functions in the unit disec:
H? as a Banach space; the ideal theory of the algebra of continuous func-
tions on the closed disc which are analytic in the interior; the invariant
subspaces for the shift operator on the space H?; the maximal ideal space
of the algebra of bounded analytic functions in the dise. The material in
this part of the book diffcrs from that in the earlier part of the book,
chiefly because the questions come from algebraic analysis. There is also
an age difference; the bulk of the mathematics in the early part dates from
1925 or before, whereas most of the mathematics in the later chapters
dates from 1949 to the present. The influence of Beurling’s work is to be
found throughout the latter part of the book, not only because many of
the results are his, but also because he played a large role in reviving the
functional analyst’s intcrest in classical analytic function theory.

The level of the book is about that of the second-year graduate student.
Chapter 1 summarizes the prerequisites for the reader, and these will carry
him through most of the book; however, in the later chapters, some addi-
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tional tools of analysis arc used with only a reference for the proof, e.g.,
the Plancherel theorem, the Krein-Milman theorem, the existence of the
Silov boundary for a function algebra, and Silov’s theorem on the exist-
ence of idempotents in a Banach algebra. The prerequisites do not men-
tion analytic functions, since the knowledge requircd in that area is ele-
mentary. The book contains one hundred exercises, with the usual dual
purpose of exercises.

Thanks are due to many people for pointing out errors in the M.I.T.
notes from which the monograph evolved, particularly to R. Askey,
S. Bochner, H. Helson, G. Leibowitz, W. Rudin, and N. Starr. I want to
thank the following people for the use of their unpublished results and/or
manuscripts in the preparation of the book: R. Arens, H. Bear, E. Bishop,
L. Carleson, A. Gleason, P. Halmos, H. Helson, D. Lowdecnslager, D.
Newman, W. Rudin, H. Shapiro, A. Shields, and J. Wermer. I especially
want to thank R. Arens, I. Singer, and J. Wermer for their many helpful
discussions.

Finally, for all their hard work, my gratitude goes to Mrs. Judith
Bowers, who typed the bulk of the manuscript, and to the staff of
Prentice-Hall, Ine.

Pacific Palisades, California KeNNETH HOFFMAN
’






CONTENTS

. Preliminaries

Measure and Integration .
Banach Spaces . .
Hilbert Space and Fourier Serles

. Fourier Series

Cesaro Meuns .
Characterization of Typcs of I‘ouner bmw
Notes

Exercises.

. Analytic and Harmonic Functions in the Unit Disc

The Cauchy and Poisson Kernels
Boundary Values

Fatou’s Theorem

H* Spaces

Notes

Excrcises.

. The Space H!

The Helson-Lowdenslager Approach .
Szeg6’s Theorem .
Completion of the Dlscusswn of II 1
Dirichlet Algebras .

Notes .

Exercises.

Factorization for H» Functions

Inner and Outer Functions .
Blaschke Products and Singular Functlonb .
The Factorization Theorem .
Absolute Convergence of Taylor Somos .
Remarks on the Classical Approach .

xi

o v W

16
22
24
25

28
32
34
39
39

40

42
48
50

57
58

61
63
67

72

15

27

42

61



xii

10.

Contents

Functions of Bounded Characteristic
Notes
Exercises.

Analytic Functions with Continuous Boundary Values

Conjugate Harmonic Functions .
Theorems of Fatou and Rudin
The Closed 1dcals of A
Commutative Banach Algebras
Wermer’s Maximality Theorem .
Notes

Exercises.

. The Shift Operator

The Shift Operator on H? .
More about Dirichlet Algebras

Invariant Subspaces for H? of the Half—plane .

Isometries .

The Shift Opera.tor on L .
The Vector-valued Case
Representations of H” .
Notes

Exercises.

. Hr Spaces in a Half-plane

H? of the Half-plane . .
Boundary Values for 717 Functlons .

The Paley-Wicner Theorem

Factorization for H» Functions in a Half—p]ane
Notes

Exercises.

H? as a Banach Space

Extreme Points .
Isometries

Projcetions from L" to H r
Notes

Exercises.

H= as a Banach Algebra

Maximal Ideals in H® . .
Topological Structure of sm(H“) .
Discs in Fibers . .o

73
74
74

78
80
82
89
93
95
95

98
101
103
108
111
114
116
119
119

121
124
131
132
133
133

136
142
149
155
156

159
162
166

77

98

121

136

158



Condlents

L™ as a Banach Algebra

The Silov Boundary . . . . . .

Inner Functions and the Silov Boundary
Representing Measures and Annihilating Measures
Algebras on the Fibers.

Maximality .

Interpolation

Notes

Exercises.

Bibliography
Index

169
172
175
180
187
193
194
206
207

xiii

209
215






CHAPTER 1

PRELIMINARIES

Measure and Integration

If X is a set, the collection of all subsets of X forms a ring, using the
opcrations
A+B=(AUDB) - (4N B)

AB =ANB

A o-ring of subsets of X is a subring of the ring of all subsets of X which
is closed under the formation of countable unions (and, a fortiori, closed
under the formation of countable intersections).

Suppose that X is a locally compact Hausdorff topological space, e.g.,
n-dimensional KEuclidean space or a closed subset thereof. The Baire sub-
sets of X are the members of the smallest o-ring of subsets of X which
contains every compact G, i.c., every compact subset of X which is the
intersection of a countable number of open sets. The Borel subsets of X
are the members of the smallest o-ring of subsets of X which contains every
compact sct. In Euclidean space, every compact (closed and bounded) set
is a Gs; hence, if X is a closed subset of Iluclidean space, the Baire and
Borel subsets of X coincide. When X is the real line or a closed interval
on the line, the ring of Baire (Borel) subsets of X may also be described
as the o-ring gencrated by the half-open intervals [a, b).

If X is a locally compact Hausdorff space, a positive Baire (Borel)
measure on X is a function u which assigns to every Baire (Borel) subset
of X a non-negative real number (or +«), in such a way that

I‘-( Ul An) = §1 F(Aﬂ)
whenever A;, A, . .. is a sequence of pairwise disjoint Baire (Borel) scts
in X. The Borel measure u is called regular if for each Borel set 4
w(4) = inf p(U)

the infimum being taken over the open scts U containing A. A Baire
measure is always regular, and each Baire measure has a unique extension
1



2 Preliminaries

to a regular Borel measure. For this reason (and others) we shall discuss
only Baire measures on X.

The positive Baire measure u is called finite if u(A) is finite for cach
Baire set 4. If X is compact, p is finite if and only if x(X) is finite.

Suppose X is the real line or a closed interval. Let F be a monotone
increasing (non-decreasing) function on.X which is continuous from the
left:

F(x) = sup F(1).
i<z

Define a function p on semi-closed intervals [a, b) by
#([a, b)) = F(b) — F(a).

Then p has a unique extension to a positive Baire measure on X. The
measure p is finite if and only if F is bounded. If X is the real line, every
positive Baire measure on X arises in this way from a left-continuous
increasing function F. If X is a closed interval, a monotone function on X
is necessarily bounded; thus, every finitc positive Baire measurc on X comes
from such an increasing function. If X is either the line or an interval, the
measure induced by F(r) = z is called Lebesgue measure.

For the general locally compact X, a Baire function on X is a complex-
valued function f on X such that f~'(S) is a Baire set for every Baire set S
in the plare. Every continuous function is a Baire function. A simple
Baire function for u is a complex-valued function f on X of the form

f@) = 2 axy, (@)
k=1

where
(i) ay, ..., as, are complex numbers;
(ii) E,, ..., E, are disjoint Baire sets of finite u-measure;

(iii) x, denotes the characteristic function of the set E.

The simple functions form a vector space over the field of complex num-
bers. For such simple Baire functions f we define
n
[ fdu = 2 cun(Ey).
If f is a simple function, so is |f]| and

|[ fdu| = [ 1f\du.
The Baire function f is called integrable with respect to p if there exists
a sequence of functions {f.} such that

(i) each f, is a simple Baire function for g;

(i) lim [ |fm — falde = 0;

mn—o



Preliminaries 3

(iii) f. converges to f in measure; i.e., for each e > 0,
,{1_1,2 p({z; |f(x) — fal@)| = &) = 0.

If f is integrable, then for any such sequence {f.} the scquence { [ fadu}
converges and the limit of this sequence (which is independent of {f.})
is denoted by [ fdu. Denote the class of u-integrable functions by L'(dy).
Then L'(dw) is a vector space and f — f fdu is a lincar functional on L.
The Baire function f is in L'(dp) if and only if its real and imaginary
parts are in L'(du), or if and only if |f| is in L'(dg). When f is in L,

[ fdu] = [ 11ldw.
If f is a non-negative Baire function, one can always sensibly define f fdu,
so long as 4+ is allowed as a value. That is, either f is integrable, or for
every K > 0 there is a simple function g < f with f gdp > K. In the
latter casc, one defines [ fdu = +oo.

A subset S of X has u-measure zero if for each ¢ > 0 there is a Baire
set A containing S with u(A4) < e. One can, if it is desirable, extend u to
the class of p-measurable sets, such a sct being one which differs from a
Baire set by a set of measure zero. For our purposes, this will usually not
be necessary. Any phenomenon which oceurs except on a set of p-measure
zero 1s said to happen almost everywhere (rclative to p). One can also
extend the concept of integrability to a function which agrees almost every-
where with a Baire function.

A basic theorem on integration is the Lebesgue dominated convergence
theorem. If {f,} is a scquence of integrable functions such that the limit
f(x) = lim f.(x) exists almost everywhere, and if there is a fixed integrable

n—rwo

function g such that |f.| < |g| for each n, then f is integrable and
[ fdp = lim [ fadp.

Another basic fact is Fubini’s theorem, a weak form of which is the follow-
ing. Suppose p is finite and f is a non-ncgative Baire function on the
product space X X X. If f(z, y) is integrablc in z for each fixed y and in y
for each fixed z, then

I U S, du@)duly) = [ [[ f&, y)du)ldu(z).

If p is a positive number, the space L?(dp) consists of all Baire functions
fsuch that |f]? is in L (du). If

fe€Ll»(dp), g€L(dw), and
then (fg) € L'(dp) and (Holder’s inequality)
[ fodu| < ([ 1f12du) > ([ lglodu)e.

1 1
S4-=1
P q



4 Preliminaries

Let us note something about the spaces L?(du) when X is compact and
p is a finite measure. In this case, every continuous function on X is
integrable and the space of continuous functions is dense in L!; i.e., if
f € L' and ¢ > 0, there is a continuous g such that

J1f —gldu < e

Also, if p = 1, then L? is contained in L!, and the continuous functions
are a dense subspace of L?:

J1f = glrde < e.

If u; and u, are positive Baire measures on X, we say that y; is abso-
lutely continuous with respect to pe if every set of measure zero for p. is a
set of measure zero for p;. The Radon-Nikodym theorem states the fol-
lowing about finite measures: if p; and p, are finite, then u; is absolutely
continuous with respect to ps if and only if

dwm = fdus

where f is some non-negative function in L'(dus). We say that u; and ue
are mutually singular if there are disjoint Baire sets B; and B, such that

l‘i(A) = l‘i(A N B.i): .7 = 1,2,
for every Baire set A. The generalized Lebesgue decomposition theorem

states the following: if u; and us are any two finite positive Baire measures,
then u; is uniquely expressible in the form

B = pa + pe

where p, is absolutely continuous with respect to us, and u, and p, are
mutually singular. That is,

du = fdps + dp,

where f € L'(dps), and p, and g, are mutually singular. One usually calls
f the derivative of w with respeet to ps.

Let us look at this decomposition when X is a closed interval, and u,
is Lebesgue measure. Suppose u is the positive measure determined by the
increasing function F. Then, except on a set of Lebesgue measure zero,
the function F is differentiable, and if f = dF/dx, then f is Lebesgue
integrable and

dl-‘ = f dx + dl‘n

where p, is mutually singular with Lebesgue measure. The latter means
simply that u, is determined by an increasing function F, such that
dF,/dz = 0 almost everywhere with respect to Lebesgue measure.

We wish to make a few brief comments about measures which assume
arbitrary real or complex values. There are some technical difficulties here,
but they do not arise if one treats only finite measures. Again, let X be a
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locally compact space. A finite real Baire measure on X is a countably
additive and real-valued function u on the class of Baire sets. One way to
construct such a measure is to subtract two finite positive Baire measures:

= w — pz. The Jordan decomposition theorem states that this is the
only example there is. Indeed, given such a real measure p there are dis-
joint Baire sets B; and B, and finite positive measures p; and p2 on By
and B, respectively, such that p = wy — pe. This splitting (with B, and
B, disjoint) is unique. The positive measure p; + p2 is called the total
variation of p, denoted |u|. One defines absolute continuity and singularity
of real measures using their total variations. 1t is then very casy to extend
the decomposition into absolutely continuous and singular parts, for ex-
ample, to the case where p, is a real measurc. If X is a closed interval
on the real line, the finite real Baire measures on X are those induced by
real-valued functions of bounded variation which are continuous from the
left. The Jordan decomposition for such a measure corresponds to the
canonical expression for a function of bounded variation as the difference
of two increasing functions.

Finite complex Baire measures are defined similarly. If one wishes,
such a measure p is a function of the form u; + 4u, where iy and up are
finite rcal Baire mcasures. Again, there are certain obvious extensions of
some of the theorems above. And, of course, such a mcasure on a finite
interval will be induced by a complex-valued function of bounded varia-
tion.

Banach Spaces

Let X be a real or complex vector space. A norm on X is a non-negative
real-valued function |- - || on X such that
@) |l=|| 2 0; ||z|| = 0 if and only if z = 0;
Gi) Ilz + oll S ll=ll + Il
(iii) [Izf] = [ ]]].

A real (complex) normed linear space is a real (complex) vector space X
together with a specified norm on X. On such a space onc has a metric p
defined by

p(z,y) = llz — yl|.
If X is complete in this metric, we call X a Banach space. Completeness,
then, means that if {z,} is a sequence of elements of X such that

lim ||zm — 24| =0

mn—o
there exists an element z in X such that

lim ||z — z.|| = 0.
n—rco
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Example 1. Let X be n-dimensional Euclidean space and define the
norm of the n-tuple x = (x1,. .., z.) by

lall? = |zl2 + -+ + |zal®
Then X is a Banach space.

Example 2. Let S be a locally compact Hausdorff space and fix a
positive Baire measure u on S. Choose a number p = 1 and let X = Lr(dp).
Define the norm of f € L? to be its L -norm

e = (J 1fIrdu)ve.

On Lr as we have defined it, this is not a norm, since we may have ||f||, = 0
without f = 0. Consequently, we agree to identify henceforth two fune-
tions in L?(du) which agree almost everywhere with respect to p. Strictly
speaking, then, the elements of L*(du) will be equivalence classes of func-
tions; however, we carry on with the same notation, simply identifying
functions equal almost everywhere. With this convention the space L?(dp)
(p =2 1) is a Banach space using the L7-norm. The crucial property of
completeness says that if {f.} is a sequence of functions in L? such that

m [ |fm — fal?de = 0

then there is an f in L7 such that ||f — fa|l, — 0. The functions f, do not
neceessarily converge pointwise to f; however, there is always a subsequence
which converges to f almost everywhere. In this discussion we want to
include the case p = .
The space L®(dy) is simply the space of bounded Baire functions with
the p-essential sup norm:
[1flle = ess sup | /()|

which means the infimum of sup |g(x)| as g ranges over all bounded Baire
I

functions which agree with f almost everywhere with respect to p. Of
course, in all this discussion of L*(dr) we are identifying functions equal
almost everywhere.

Example 3. Let S be a compact Hausdorfl space and X = C(8), the
space of all continuous real (or complex) functions on 8. Equip C(S) with
the sup (or uniform) norm

[1f1le = sup [f()!.
Then C(S) is a Banach space.

Let X be a Banach space. We consider the space X* of all linear funec-
tionals F on X which are continuous:

||t — z|| = 0 implies |F(z,) — F(z)] — 0.
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The set X* forms a vector space in an obvious way. There is also a natural
norm on X*. 1t is based upon the observation that the lincar functional F
is continuous if and only if it is bounded; i.e., if and only if there is a
constant K > 0 such that

|F(2)| = K||z]|
for every z in X. The smallest such K is called the norm of F, i.e.,

[|Fl| = sup |F(x)l.
llzll =1
With this norm X* becomes a Banach space, the conjugate space of X.

Example 1. If X is Euclidean space, then every linear functional on X
is continuous. Such a functional F has the form

F(xy,...,2s) = at1 + -+ + @uZn
and IFl2 = laal* + - - - + |aal®

Example 2. Let S be a locally compact space and u a positive Baire
measure on S. Suppose 1 < p < © and that X = L?(dr). Then the con-

jugate space of X is Lv(du) where % + % =1 1fp=1 X*=L*du). If
g € L%(du), then g induces a continuous linear functional F on L? by
F(f) = [ fgdu, feEL~.

Every continuous linear functional on L? has this form, and
1F|l = llglla-

The conjugate space of L*(du) contains L'(du); but, except in trivial cases,
it is larger than L'

Example 3. Let S be a compact Hausdorff space and X = C(8S), the
space of continuous real (complex) functions on S. The conjugate space
of C(8S) is the space of finite rcal (complex) Baire measures on S. This is
the statement of the Ricsz representation theorem. It ariscs as follows.
Suppose p is such a measure on 8. The linear functional corresponding

to u is
F(f) = [ fdu, Fec(s).

The norm of this functional F is called the total variation of p on S. If u
is a real measure, the total variation of u on S is simply |u|(S), where |u]
denotes the mecasure known as the total variation of u. If u is complex,
the total variation of x on S is best thought of as the norm of the cor-
responding functional on C(S), since the relation of this number to the
total variations of the real and imaginary parts of p is rather involved.
Of course, if u is a positive measure, the norm of F is simply u(S). Needless
to say, the important part of the Riesz theorem is the fact that given a
bounded linear functional F on C(S) there exists a finite measure p such
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that F(f) = [ fdu. This is proved by using the boundedness of F to extend
F to the class of bounded Baire functions and then defining u(E) = F(x;)
for each Baire sct E.

Suppose X is a Banach space. One important property of continuous
lincar functionals on X is the Hahn-Banach extension theorem. If I is a
bounded lincar functional on a subspace Y of X, then F can be extended
to a linear functional on X which has precisely the same bound (norm) as F.

In addition to the metric topology on the conjugate space X*, we shall
have occasion to consider another topology called the weak-star topology
on X* It is defined as follows. Iet Fy € X*, and select a finite number
of clements

Let

Ty, ..., 2. €X and > 0.

U= {FeX*|F(z) —Fo(xk)l <ek=1,...,n}.

Such a set U is a basic weak-star neighborhood of Fi. A weak-star open
set is any union of such basic neighborhoods U. We ther have a topology
on X* It is the weakest topology on X* such that for each z € X the
function F — F(z) is continuous on X*. A topology on a sct is, roughly, a
scheme for deciding when two points are close together. In the weak-star
topology two lincar functionals are close together if their values on a
finite number of elements of X are close together. In particular, a sequence
{F.} converges to F' in the weak-star topology if and only if

lim F.(z) = F(x)

for each z in X.
We want the following basic result on X* with the weak-star topology.
If B is the closed unit ball in X*:

B={FeX%|Fll=1}

then B is compact in the weak-star topology. This is a rather simple
consequence of the fact that the Cartesian product of compact spaces is
compact. We shall use this in the following way. If {F,} is a sequence of
linear functionals on X with ||[Fa|| < 1, then this sequence has a weak-star
cluster point in the unit ball; that is, there exists an F € X* with ||F|| = 1
such that F(z) is a cluster point of the sequence {F.(z)} for every z € X.
For example, if {u.} is a sequence of positive Baire measures on the compact
space S and if u.(S) < 1 for each n, then there exists a finite measure p
such that [ fdu is a cluster point of {[ fdu.} for every f ¢ C(S).

Hilbert Space and Fourier Series

Let H be a real or complex vector space. An inner product on H is a
function ( , ) which assigns to each ordered pair of vectors in H a scalar,
in such a way that
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(@) @1+ 22, 9) = (21, 9) + (22, 9);

(i) (A\z,y) = A=, y);

(i) (y,z) = (z, y);

@iv) (x,z) 2 0; (z,z) =0if and only if z = 0.
Such a space H, together with a specified inner product on H, is called an
inner product space. In any inner product space one has the Cauchy-
Schwarz inequality :

I, 9 £ (z, 2)(, v)-

This inequality is evident if y = 0. If y £ 0, the inequality results from
0 £ (xr + Ay, z + \y), where X is the scalar

N o _@)
()
From the Schwarz inequality it follows casily that ||z]] = (z, z)Y2is a norm
on H. If H is complete in this norm, we say that H is a Hilbert space.
Thus, a Hilbert space is a Banach space in which the norm is induced by an
inner product. By expanding (x — y,z — y) and (z + y, = + ¥) it is easy
to sce that the norm induced by an inner product satisfies the parallelo-
gram law:
llz + yli2 + [lz — yllz = 2(||2}|* + |ly]]?).

Conversely, any such norm comes from an inner product. So, if one wishes,
a Hilbert space is a Banach space in which the norm satisfies the parallelo-
gram law.

Example 1. Let H be n-dimensional Euclidean space, and define the
inner product of

z=(y,...,Z.) and y = (yy,...,Yn)
by
(x,y) = oth + -+ + Zaln.

Then H is a Hilbert space.

Example 2. Let X be a locally compact space and p a positive Baire
measure on X. Let H = L*(dp) with the inner product

(f,9) = [ fad.
Then H is a Hilbert space.

The second example is the one we are interested in. For this space we
already know one of the basic results about a Hilbert space H: every
continuous linear functional on H is “inner product with some fixed vector
in H”; that is, if F is a bounded linear functional on H, there is a unique
vector y in H such that F(z) = (z, y) for all x in H. The norm of F is

FN = 1lyll.



10 Preliminaries

Two vectors z and y in H are called orthogonal if (z,y) = 0. If x and
y are orthogonal, then

llz + yll* = {lzli* + [lyll=

Theorem. Let S be a closed convex set in the Hilbert space H. Then S
conlains a unique clement of smallest norm.

Proof. Convexity means that if z and y are in S, so is Az + (1 — Ay
for any A satisfying0) < A = 1. LetK = ini; [lz]l. Choose a sequence {z}
zCE

of elements of 8§ such that lim ||z.|| = K. Since 8 is convex, 3 (Zm + Z»)
is in S; 50 ||zm + z.|| = 2K. Now the parallelogram law says:

[|2m + Zall? + [|l2m — 2al[* = 2(]|2all* + []2a][?).
Since
lim (||zn||* + ||z.||?) = 2K* and ||zm + 2./[* 2 4K?

we see that
lim ||zm — z.|| = 0.

Since S is closed, the sequence {r.} converges to an clement z in S. Ob-
viously

llz]| = lim [[z.]| = K.
Furthermore, z is the only clement in S of norm K. If y were another such
element the sequence z, y, «, ¥, . . . would have to converge by the above
argument.

If 8 is any collection of vectors in H, the orthogonal complement of S
is the set S* of all vectors in H which are orthogonal to every vector in S.
It is easy to see that S* is a closed subspace of H.

Theorem. Let S be a closed subspace of H. Then H = S @ 8*; that s,
every veclor x in H is uniquely expressible in the form x =y + z where y
1sin S and z is in SL.

Proof. Fix xoin H. Then, since S is a closed subspace,

xo— 8 = {20 — y;yin S}
is casily scen to be a closed convex set in F1. Let z be the unique element
of smallest norm in zo — S, say 20 = xo — 7o with o in S. Claim 2 is in S*.
Let y be in S. For any A the vector zo — Ay isin xo — S, so
|20 — Ayll® =[]0 |2

If one takes

= o),

)

one obtains |(y, 20)| £ 0; so (y, z0) = 0. The uniqueness of y, and 2z, is a
simple consequence of the disjointness of S and S*.
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The element y (above) is called the orthogonal projection of x into the
closed subspace S. We see that y is simply the element in S closest to z.

Let N be any collection of vectors in H. We call N an orthogonal set
if any two distinct vectors in N are orthogonal. An orthonormal set is an
orthogonal sct, each vector of which has norm 1.

Theorem. Let N = {xi,...,xa} be a finite orthonormal set. For any
vector x tn H, the orthogonal projeclion of x into the subspace spanned by N s

n
y= 3 (2,2
k=1

Proof. Define y as above and put z = 2 — y. Then y is in the subspace
spanned by zi, . . ., . and, using the fact that (z;, z;) = 4;j, one sees that
z is orthogonal to each xx, hence is orthogonal to any linear combination
of z,...,Za

Corollary (Bessel’s inequality). If {x,, ..., Xa} 28 a finite orthonormal
set, then for any vector x in H

2 |Gzl £ |l
k=1
Equality holds if and only if x is in the subspace spanned by xy, . . ., Xn;
that s, if and only if
z = (z,x1)x1 + +++ + (, Ts)Zn.
Proof. Write z = y + 2 as above. Since (y,2) = 0,
llzllz = llyll* + ||zl
USiIlg (x.-, .’L‘,’) = J,, one has
lyllz = = |(z, z)]
E=1
These results can be extended to arbitrary orthonormal sets. For con-
venience we state them only for countable orthonormal sets.
Theorem. Let {x,} be a countable orthonormal set of vectors in H. Let

x be any vector in H. Then

2.:1 [(z, zn)|? < ||z|[2 (Bessel’s incquality).

The sequence s, = 1?::1 (x, X)Xk converges to the orthogonal projection of x
inlo the closed subspace spanned by {x,}. Thus, the following are equivalent.
(i) x s #n the closed subspace spanned by {xi}.
) flxlle = 2 16 %l

(iii)) lim s, = x.

n—o
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Proof. Let S, be the closed subspace spanned by {zi, ..., z,} and let
S be the closed subspace spanned by the sequence {z.}. Applying the last
theorem to S,, we have

n
2 |,z = |||l
k=1
for every n. Thus the infinite series Z |(x, z1)|2 converges, and its sum does
not exceed ||z]|2 If
8o = (T, 21)T1 + -+ + (T, Zn)Ta
then, with n > m, we have

n
llsm — sall = T |(z, z0)]®
k=m+1

and 0 ||sm — $u|| = 0 as myn — ®. Let y = lim s,. It is easy to see that
(y, 2) = lim (s, 22) = (z, 74)
n=->0
for each k. Thus, the vector z = xz — y is orthogonal to each x:, hence

to S. Since y is in S, we sce that y is the orthoganal projection of z in S.
Now z is in S if and only if z = y. 1t is easy to sce that

ol = 2 1@ el

Thus (i), (ii), and (iii) are equivalent.

When z (in the above theorem) is in the closed subspace spanned by
{z»} one usually writes

-]
z= 3 (x, x3)xn
n=1

for lim s, = z. Undoubhtedly, the most important case of this last theorem
is the one in which the closed subspace spanned by {z.} is all of H. The
result then assumes this form:

Theorem. Let N = {x,} be a countable orthonormal set in H. The fol-
lowing are equivalent.
(i) N s complele; that is, the only veclor orthogonal to every X, is the zero
veclor.
(ii) N s closed; thatl is, the closed subspace spanned by N is all of H.
(iii) For every x in H,

2 1@zl = |l
(iv) For every x in H,

T = 5 (z, zn)Zn.

na=]



Preliminaries 13

Proof. Let S be the closed subspace spanned by {z.}. Since
H=8®8,
we know that S = H if and only if St = {0}. Thus (i) and (ii) are
equivalent. The equivalence of (ii), (iii), and (iv) is contained in the last
theorem.

Now let’s take a look at the case we are interested in. Let
H = L*(—m, ), the space of Lebesgue square-integrable functions on the
closed interval [—m, 7] (complex valucs). The inner product is

1 r»
(0 = 5 7 F@)i@dz.
In other words, L*(—m, ) = L*(dw), where u is the normalized Lebesgue
measure dy = -2—11; dz. Let gu(x) = e, Then it is easy to verify that the

set {@n}e=_o 15 an orthonormal set. This orthonormal set is complete.
We assume this now and will prove it later. If f € L2(—, 7), the numbers

tn = o0 = 5 [, f@e i

are the Fourier coefficients of f. The formal series

z Cnf inz

is the Fourier series for J. "

Our Hilbert space discussion above tells us the following. Suppose we
start with f € L?(—m, ) and define the Fourier coeflicients ¢, as above.
Suppose n = 0 and we wish to approximate f in Lz-norm by a trigonometric
polynomial

n
Plx) = I ae®=

k=—n

Then the best such approximation is given by

8.(1) = T cie™®
k=—n
that is, by taking ar = cx. We also know that the sequence of Fourier
coefficicnts is square-summable and

3 el = IIfll = 5= [ 1f@)Pd.

ne= —o -

(Here we have used the completeness of {¢.}). Furthermore,

f = 2 CnPn
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ie., f is the sum (in the Hilbert space sense) of its Fourier series. What
this means, of course, is that the nth partial sum s, of the Fourier series
converges to f in the L2-norm:

. 1 [«

— — 2 =
lim 5= [7 |f(z) — su(@)lrdz = 0.
Note that we also have the Riesz-Fischer theorem : every squarc-summable
sequence of complex numbers is the sequence of Fourier coeflicients of a
function in L*(—m, 7). For if
Z el < oo

nm—o
just put
sa(z) = . T ceite
and observe that {s,} converges in L? to a function f with Fourier coeffi-
cients ca.

NOTES

For the preliminaries on measure and integration, some references are Halmos
[38], Saks [79], Loomis [54], Titchmarsh [87], Dunford-Schwartz [25], Riesz-Nagy
[73]. For the material on Banach spaces, see Banach [7], Loomis [54], Dunford-
Schwartz [25], Riesz-Nagy [73]. The most convenient reference on Banach spaces
is probably Loomis’ book, since it has the essentials elegantly done. For the mate-
rial on Hilbert spaces and orthonormal systems, see Zygmund [98], Stone [84],
Riesz-Nagy [73], Halmos [37], Titchmarsh [87].



CHAPTER 2

FOURIER SERIES

Throughout this chapter we shall be working on the closed interval [ —, 7]
on the recal line. If f is a complex-valued Iebesgue-integrable function on
that interval, the Fourier coefficients of f are the complex numbers

1 ” —inz, —
O = on /-.f(x)e dr, n=0,£l,+2 ...

and the Fourier series for f is the formal series

had :
E c”elnz.

fNom —

There are two fundamental questions about f and its associated series.

(1) Is f determined by its Fourier series?
(2) If so, how can we rccapture f, given the Fourier scries?

In asking the first question, we are treating f as an element of L'(—m, 7);
that is, we are identifying functions which differ only on a set of Lebesgue
measure zero. Question 1, then, asks whether two integrable functions
with the same sequence of Fourier coefficients agree almost everywhere.
This question has an affirmative answer, as we shall soon see. Question 2
is a much meatier one, in part because it is stated in such a vague way.
The first effort toward resolving Question 2 probably should be to form
the partial sums
n
s.(z) = T cret*s
k=—n

and to ask whether these functions s, converge. Here one can ask whether
the s, converge pointwise, converge pointwise almost everywhere, converge
uniformly, or converge in some type of norm. If they do converge, do
they converge to f?

When f is square-integrable we have already seen that the partial sums
converge to f in the L?*-norm (assuming the completeness of {¢**}). One
might hope that for f in L! the s, converge to f in L-norm; however, this is
not necessarily the case. One might hope that if f is continuous and

15
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f(—m) = f(x) then the s, converge uniformly to f, but this fails. Indeed, for
a continuous f it may happen that {s.} does not even converge pointwise.
Really, no situation is quite as pleasant as the L? case, but this is not a
hopeless roadblock. One simply looks for other ways to recapture f from
its Fourier series. We shall look at onc such method now. Before going
on we should mention that for “smooth’” functions f the partial sums s,
do converge pointwise, e.g., if f is of bounded variation. If f is, say, twice
continuously differentiable, it is trivial to verify that {s.} converges uni-
formly, beecause two integrations by parts show that c. = 0(1/n?).

Cesaro Means

The (first) Cesaro means of the Fourier series for f are the arithmetic
means

0'”=}L(so+..'+sﬂ—l)) n=1’2,...-

As we shall see, if fis in L?(—m, 1), 1 £ p < », then the Cesaro means o,
converge to f in the LP-norm. And if f is continuous [and f(—=) = f(=)]
then the o, converge uniformly to f.

Now
n
sn(z) = . 3 e
n . 1 x i
— sk . — —ik
= 2 oo /_, F(t)e—*dt
—_ l * - ik(z—1)
= [_' ) T eeod,
Thus

oalt) = 2—1; [ FKz — vt

where K,(z) is the nth Cesaro mean of the series
z eikz.
k=—w

Thus
(n + DKn(r) — nKa(z) = 3T e€**

k=—n
» n
— E eikz+ E e—ikz
k=0 k=1
1 — eilntDz 1 — e—ilntDz
1 —e¢* 1—¢t®

_cosnz —cos (n + Dz
- 1 —cosz
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Since K, (z) = 1, it is easy to see that
1 — cos n:c:l
| 1 —cosz
.. n P
sin 3 &
sin 1
:1 5%
This sequence of functions K, is called Fejer’s kernel. We have shown
for any integrable f on [—, 7] that the nth Cesaro mean of the Fourier

series for f is

Ka(x) = %

I
S =

oula) = o [ SOKz - )t

where K, is Fejer’s kernel. Here are some propertics of K..
() Kaz 0

(ii) 2—‘; [ K@iz =1

(iii) If I is any open interval about z = 0, then
lim sup |[K.(z)] =0 (|z|] £ 7).

n—w zEI
Property (i) is evident from the derived expression for K,.. Property (ii)
simply states that the nth Cesaro mean of the Fourier series for the con-
stant function 1 is 1. Property (iii) results from a few simple inequalities.
IfO0<é<mandif 7 = |z| = 5, then

(sin 4 x)? = (sin 1 6)2
50

|Ka(@)| < for 8 < [z] = .

n(sin § 8)?
Now K. is also an even function, but we shall make no use of that fact.
All that we want to know about Cesaro means will be proved using only
the above three properties of Fejer’s kernel.

Any sequence of Lebesgue-integrable functions K, which possesses
properties (i), (ii), and (iii) above we shall call an approximate identity
(for L'). (Some call this a positive kernel.) We shall comment on the
terminology later. We shall also see other approximate identities later.
As one example slightly different from Fejer’s kernel K,, one might take

, [2K. O0Szs<w
"7, -r=<z<0.

Theorem. Let f be a function in Le(—m, r), where 1 £ p < . Then
the Cesaro means of the Fourier series for f converge to f in the Lr-norm. If f is

K
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continuous and f(— ) = (=), then the Cesaro means converge uniformly to f.
Proof. Now

oulz) = 51; [} 10K.@ - .

If we extend f to a function on the real line which is periodic with period
2, this may be written

on(@) = 5= [7 &z = DEOd.

The periodicity condition f(—#) = f(x) is not important for f in L?, since
we only know f(z) almost everywhere; however, in discussing a continuous
f it is important because it makes the periodic extension of f continuous.
Let us examine the continuous case first. Since [ K, = 1,

0ule) = @) = 5= [7 e = ) — f@KOd.

If 6 > 0, we write

oule) = @) = 5= [, U@ = ) = f@K.0

5 [as e = ) = J@IKAO

EY)
and we sce that

loa(e) — @)l £ _sup |f@ —#) = f@)] + 2|/ ll-sup Ku(t).

If f is continuous at z and & is small, the number |f(z — ?) — f(z)| is small
for |t| £ §; and since
lim sup K.(f) = 0,

n—w [t|25

we see that
lim o.(z) = f(x).

If f is continuous on any closed interval ¢ £ z £ b, then f is uniformly
continuous there and it is easily seen that o.(x) — f(z) uniformly on [a, b].
For f in L? we wish to estimate

llow = £l

Let g be any function in L9, where-;; + -31- = 1. Then

o= [ loate) — f@oe)dz = o [[ U@ = 1) — S@lg@)Ko(O)dadt

and thus
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L [ i -]
< 2%.— f:, 2% /_', [z =) —f(x)]g(x)dxll{,.(t)dt,

Using the Holder inequality, the inside integral is not larger in modulus

than
”gHv'”ft - fll»
where fi(z) = f(x — 1). Thus

o [ loa@) — @] < gl - o= [~ Sl

for every g € L1. Therefore,

llaw = fllo < 5= [ 19 = Fll,Ka(dt

For, since L7 is the conjugate space of L7, if we are given a function A in L?
we can also find (by the Hahn-Banach theorem) a g in L¢ such that ||g||, = 1
and [ hg = [h]|,.

Now if & > 0, write

1 s 1
llow = fllo < 5 [ 15 = FlloKa@dt + 5= [, Wfe = Ul Ka@dt
< sup |Ife = fllo + 2[|S]]5-sup Ka().
—6<t<s t1=8
If & is small, ||f. — f||, is small for |¢| < §, i.e., translation is continuous
in the L?-norm. Thus

Lim llow — fll, = 0.

Theorem. Iff is in L°(—, 7) then the Cesaro means of the Fourier series
Jor f converge lo f tn the weak-star topology on L=

Proof. As we observed above, for any g in Lt

5117 /:, [z — 1) = fl@)]g(z)dz

+ 2[|f[|osup Ka(®).
EL

51; /_"" [o'"(x) —f(x)]g(x)dx < sup

—6<t<d

Thus, we need only prove that

lim [ [f@ = 1) = {@)lg(&)dz = 0
or that

lim [ fW)o@) ~ gty — Oddt = 0.
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This follows from the fact that f is bounded and ||g — g:[: — 0. So
1 7= 1 (=
5o [ on@e@dz > - [ f@)g@ds

for every g in L!; i.e., o» — [ in the weak-star topology.

We should perhaps comment that the analoguc of this last theorem
holds for measures as well. If u is any finite complex Baire measure on
[—m, ] we can define the Fourier coefficients

Cn = /_: e~ du(zx)

and the associated Fourier series. The coefficients ¢, are often called the
Fourier-Stieljes coefficients of the measure. We would not expect the
Cesaro means for g to converge as functions, but we might expect the

measures 511} ox(z)dz to converge to p in the weak-star topology on meas-

ures. This is the case, but the measure u must have period 2. All this
means is that if x has a “point mass” at = or — = these masscs must be the
same: u({—=}) = u({r}). A better way to formulate this condition is that
p is really a mecasure on the circle obtained by identifying —= and =.

Theorem. Let p be a finite (periodic) complex Baire measure on the interval
[—=, 7] and let o, be the nth Cesaro mean of the Fourier series for p. If
f is any conlinuous function of period 2w, then

tim 5= [* f@en)dz = [* f@)du(z)

that s, the measures 1 audx converge lo p in the weak-star topology.

Proof. o
51; /:Tf(x)m.(x)dx = / * [_217r /_”' f@)Kn(x — t)dx] du(t)

-

= 2, (0du()
where 7, is the nth Cesaro mean for f. Since 7, — f uniformly, we are done.

One of the corollaries to the sequence of theorems above is Fejer’s
theorem: every continuous function of period 27 is a uniform limit of
trigonometric polynomials

n
p() = T ae®e
From this it follows that the orthonormal family {e#} is complete in

L*(—m, =), for the closed linear span of these functions contains the con-
tinuous functions, which are dense in L2. Of course, the completeness is



Fourier Series 21

also contained in the result that for f in L? the o, converge to f in L2

We also know now that every integrable function is determined by its
sequence of Fourier coeflicients; indeed, we know that any periodic measure
is determined by its Fourier coefficients.

Some comments may be in order, to place the results about Cesaro
means in proper perspective. Having defined Fourier coefficients for, say,
Lebesgue integrable functions, it is clear that if we add two functions the
respective I'ourier coefficients add. For f, g in L'(—=, m) we can also define
a multiplication (though not pointwise). The multiplication we have in
mind is convolution :

(F0)@ = 5= [ 1 = 0o

Using the Fubini theorem, it is easy to see that f+g is again in L' and that
r*glle = 115111 llgl]a.

Also, one can sce that convolution is associative and makes L! into a linear
algebra. The nth Fourier coefficient of fxg is the product of the nth Fourier
coefficients of f and g:

gi,, f_', e~ (fxg)(zx)dz = 51—1 f:, einz 2’—” f_" f(x — )g(t)didx

27 J—= -

LY L [217 [T ep - t)dx]dt

—_ .1_ i —in, . .1_ " p—in P
=5 /_,g(l)e dt - 5- f_,e “f(y)dy.

One can also define the convolution of two measures. Let us do this only
in case one of the measures is absolutely continuous with respect to

Lebesgue measure, i.e., has the form Ql—ﬂ_ f(x)dz with f in L'. The convolu-

tion of f and u is the function
G @ = [ & = du.

(The Fubini theorem is required to see that this definition makes sense.)
Again, it is easy to verify that the Fourier coefficients of f*u are the prod-
ucts of the corresponding coefficients for f and u. An important case is the
one in which g is the Dirac delta measure, i.e., the point mass at 0. This
measure &, assigns the measure 1 to a Baire set if it contains the point 0,
and otherwise assigns the measure 0. If f is in L! then fxd, = f; i.e., &
serves as an identity under convolution. This corresponds to the fact that
the Fourier coefficients of & are all equal to 1.

If f is in L' the Cesaro means for f converge to f in L'. This is because
1

on K. (x)dx are approaching the delta measure

o. = f*K, and the measures
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8. This is why we call {K,} an approximate identity for L!. Of course,
the Fejer kernel K, is just the nth Cesaro mean of the Fourier series for
the delta measure .

The results above hold when {K,} is any approximate identity for L.
That is, {f*K.} converges uniformly to f if f is continuous, converges to f in
Lr-norm if 1 £ p < «, converges weak-star to f if f is in L*®, and {u*K,}
converges to p weak-star if u is a measure on the circle. The proofs are
exactly the same as those above if each K, is a bounded function. This
will be the case in the approximate identities we consider. If the K, are
not bounded, one must first verify that the convolution of an L! function
and an L7 function is in L?, and then the proofs proceed as above.

Characterization of Types of Fourier Series

To complete our preliminary discussion of Fourier series, we turn to
the following question. Suppose we are given a formal Fourier series

2 cneinz_
How can we tell whether this is the Fourier series of an L' function? An
L? function? A measurc? A continuous function? For L? we know the
answer: the sequence {¢.} must be square-summable. Certain rough tests
can be applied in the other cases. For example, the sequence of Fourier
coefficients of any finite measure must be bounded (by the total variation
of the measure on [—m, w]). This includes the case of an absolutely con-

. 1 . .
tinuous measure > f(x)dz, f in L. For this casc one can say even more:
s

the Fourier coefficients of an integrable function tend to zero:

lim |ea.| = 0.

|n|—e
This is the Ricmann-Lcbesgue lemma, and it is not difficult to prove.
For instance, one can prove it first when f is the characteristic function
of an interval [a, b]. Then one obtains

Cn = 51; L i e~inrdyx

= Y [,—inb _ ,—ina
2mn ¢ e ]
so that
ol = Sy
The result then follows for step functions, i.e., linear combinations of
characteristic functions of intervals. Since the step functions are dense in
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L! onc has the general result. Of course the Fourier cocfficients of a measure
nced not tend to zero.

A reasonably satisfactory answer to our question about a formal series
can be given in terms of the Cesaro means of the series.

Theorem. A formal Fourier series is the Fourier series of

(i) an Lr functzon, 1 < p < «;

(ii) an L! function;
(iii) a continuous function of period 2;
(iv) a finite measure;

(v) a finite positive measure;

if, and only f, the Cesaro means oy

(1)’ are bounded tn Lr-norm;

(i1)" converge in the 1-norm;
(iii)" converge uniformly;
(iv)" are bounded in L'-norm;

(v)' are each mon-negative.

Proof. We have already proved most of the implications k¥ — %’, and
the rest are casy to fill in. For example, if ¢, is the nth Cesaro mean of the
Fourier series of a finite real measure, then

ou(2) = [ Ku(z — O)du(t)
and so

o |7 lea@ldz = 5= [ [ Kulz — ddlul)dz

= I”I([_"r; T])
For complex measures take real and imaginary parts.
So all we nced prove is that if the o, satisfy a condition &’ then we have
a Fourier series of type k. First let us make an observation about any
formal series:

1 1 T —imz —
lim 5~ /_'c on(@)d = Cm.

For if n > |m| the mth Fourier coefficient of ¢, is n;nl_n_'v,[ Cm.

Suppose the Cesaro means are bounded in L?-norm, where 1 < p < .
We may as well assume that

lloallp =1, n=1,2,3,....
The . then lie in the unit ball of the conjugate space of L9, where
% + -; = 1. Since this unit ball is weak-star compact, there is a function f

in L? with ||f||, < 1 such that every weak-star ncighborhood of f contains
0. for infinitely many values of n. In other words, given any g in L the
numbers [ ¢.gdz are near [ fgdz for infinitely many values of n. Fach ¢
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is in L¢; since the mth Fourier coefficient of ¢, tends to ¢m, it must be that
cm is the mth Fourier coefficient of f. This takes care of (i).

If the o, converge in L! norm, they converge in that norm to an in-
tegrable function f. Since

z_lw [7. U@ = ax@leimdz| < IS = ol

¢m 18 the mth Fourier coefficient of f.

1f the ¢, converge uniformly, they converge 1o a continuous f, and this
f has the desired Fourier coefficients by a similar argument.

Suppose

loalh €1, n=1,2,3,....

Then the measures du, = 2l1r o.(x)dx arc bounded in total variation by 1.

The space of measures is the conjugate space of the Banach space of
continuous functions. The . all lie in the unit ball of this conjugate space;
hence, they have a weak-star cluster point p. Since each e is continuous,
the same sort of argument used above shows that u has the desired Fourier
coefficients.
Suppose that
o) 20, n=1,2....

Then

] 1r
llowl]s = on f,, on(z)dz = co.

Thus the o, are bounded in L!-norm. By the last result, our series is the
Fourier series of a finite (periodic) measure p. So p is the weak-star limit

of the measures ‘% a.(x)dx; ie.,

. 1 r= x
lim 5 [* g@)ou(z)dz = [* g(@)dutz)
for every continuous g (of period 2x). If g = 0, so is gon; so [ gdu = 0.
Thus u is a positive measure.

NOTES

The chief reference on Fourier series is Zygmund’s book [98]. It should be
consulted for the expansion and extension of the results on Fourier series. One
may also consult the books by Titchmarsh [87] and Rudin [76]. Fejer’s theorem
is in [28]. The characterizations of Fourier series of various types are due to
Steinhaus [83] and Gross [36] for L!, G. C. and W. H. Young [97] for L?, p > 1,
Young [96] for measures, Herglotz [45] for positive measures. See also Carathéo-
dory [16] for Fouricr series of increasing functions (positive measures).
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EXERCISES

1. The series 2‘,1 lsin nz is the Fourier series of an L? function. Which 12
n=

function?

2. Let f be a Baire function on [—, 7] and suppose |f(x)] < 1. Prove that
each Cesaro mean of the Fourier series for f satisfies [on(2)| < 1. If for some n
and z we have |o.(x)| = 1, then f is constant.

8. Let Z a, be an infinite serics. Suppose the Cesaro means of the series con-

verge to some number a, and suppose also that a. = O ('rlt) Prove that the

partial sums also converge to a. (G. H. Hardy [40]).

4. For an integrable function on [ —, 7], writc the partial sums of the Fourier
scries for f in the form

@) = o= [ fODAz — s

that is, determine the (Dirichlet) kernel D, explicitly. Use the result of Excrcise 3
to prove that, when f is of bounded variation,
lim su(z) = } lir(r)l [fz 4+ t) + f(z — )]

t—0+

n—o

) [n, |x| = w/n
Kuz) = 10, m/n<|z| S,

verify that {K,} is an approximate identity for L. What, specifically, do the
various convergence theorems of this chapter say for this particular approximate
identity?

6. If p = 1, prove that the convolution of an L! function and an L? function
isin L?. If p = o, prove that the convolution is continuous.

7. Give an example of two distinct measures on [ —, 7] which have the same
Fourier series if we do not identify — and .

8. If fis in L? prove that
.
g(x) = o /_'f(a: + t)f(t)de

is continuous. How does the Fourier series of g behave?

9. For finite measures u; and u, define the convolution u; * u, to be the unique
measure which yields the linear functional L on the continuous functions:

L(f) = [[ f& + y)dm(z)du(y).

Now prove that, if u, is absolutely continuous with respect to Lebesgue measure,
then ui * u, is also, and that its derivative is given by the convolution formula
used in this chapter to define the convolution of a function and a measure.
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10. Use Fejer’s theorem to prove the Weierstrass approximation theorem: On
a closed interval of the real line, every continuous function is a uniform limit of
polynomials.

11. Prove that the partial sums of the Fourier series of a function of bounded
variation are uniformly bounded.



CHAPTER 3

ANALYTIC AND HARMONIC
FUNCTIONS IN THE UNIT DISC

Let D denote the open unit dise in the complex plane:

D = {z;]e] <1}
and let C' denote the unit circle:
C = {z;|z| = 1}.

Recall that a complex-valued function f is analytic in D provided that
it is the sum of a convergent power series

flz) = % anz™.
n=0

This just means that f has a derivative at each point of D. A complex-
valued function v on D is harmonic if it satisfics Laplace’s equation:

d*u | *u
ox? + dy?

Any analytic function is a complex-valued harmonic function. A real-
valued function % is harmonic if and only if it is the real part of an
analytic function, f = u + 7. For a real-valued harmonic u, any v such
that u + 4v is analytic is called a harmonic conjugate of u. Such a v is
just a real-valued function which with » satisfies the Cauchy-Riemann
equations:

du _ 9y, ou _ _ 9y

dr oy dy ox
The harmonic conjugate of % is unique up to an additive constant. In
other words, given the real harmonic function u, there is a unique real
harmonic function » which is conjugate to u and vanishes at the origin.

27
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The Cauchy and Poisson Kernels

If f is an analytic (or harmonic) function in the unit dise D, we wish
to inquire when f has boundary values, and how f is determined by its
boundary values. Roughly, then, we shall investigate conditions under
which the limits

160) = lim f(re®)

exist and define a function on the unit circle C. Then we shall ask how f is
determined by this function on the circle. If fis actually analytic in a dise
of radius 1 + ¢, certainly f has boundary values and is determined by these
boundary values in accordance with the Cauchy integral formula:

16) = 35 [, 2o de.

For our purposes, it will be more convenient to write the Cauchy formula
in the form

1 = . e?
1@ =5 [ 1 - 5— .
If f is merely harmonie in a disc of radius 1 4+ ¢, we do not have a Cauchy
integral formula; however, we can recapture f from its boundary values by
mcans of the Poisson integral formula. Both of these formulas for the
disc are intimately related to Fourier serics; before we relate the Poisson
formula, let us establish the relationship between harmonic functions
and Fourier serics. We shall not give the bricfest discussion possible.
Instead, let us roam around a bit in order to acquire a feeling for what
is going on.

First, suppose f is analytic in the open disec:

f2) = f: an2".
n=0

Let £,(6) = f(re®). For a fixed r, f, is a function defined on the unit circle;
i.e., if we restrict f to the circle of radius r, we obtain a continuous function
on that circle which we can also interpret as a function on the unit circle.
Now

f:(6) = 50 arien,

That is, the nth Fourier coefficient of f, is a.", n = 0, and is zero for
n < 0. If f is analytic in the closed disc, the boundary value function
f1 has the Fourier coefficients a,. Let’s look at the Cauchy formula from
this point of view:
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50 = o [7 i)

et —re?

If we agree to write f(¢) for f(e®*), we have
1 [« 1
1:0) = 5~ f_'f(t) = o= 4t

= o= [7_50C.@ - Ha

where
1 .
1 — re®

In other words, £, is the convolution f, = f*C,, provided f here denotes f on
the unit circle. Thus, the Fourier coefficients of f, are the products of the
Fourier coefficients of f(¢**) and those of C,:

Ci(0) =

fle®) = 50 Qo™

Cr(eiO) = 5 rueino

n=0
f:(0) = Z aqren.
n=0

Suppose u is harmonic (and real-valued) in the dise. Then u is the real
part of an analytic function, or

u(z) = f(z) + 1)

where f is analytic. If

then
u(z) = 2Reao + :5:)1 a.z" + El a.2".

n=

If we restrict u to the circle of radius r,

u(0) = u(re®) = 3T carlnlei™®
Nn=—0w

where ¢y = 2 Re ay, ¢, = a, forn > 0 and ¢, = d_, for n < 0. If u is har-
monic in the closed disc, then the boundary function u; has the Fouricr
coefficients c,. Of course, c_, = €,, since u is real-valued. So we obtain %,
from u(e*) by multiplying the Fourier coefficient ¢, by . This means
only that u, is the convolution of u(e*) with the function P,, whose Fourier
coefficients are ri*:
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P,(6) = 3 rlnlgine

n=—x

C.(0) + C.(8) — 1
=2ReC,(0) — 1
= Re [2C,(6) — 1]

It

_ 1 4 re?®
N Re[] - re"’]
1 -1

-1 — 2rcos @ + r2

This family of functions P, is called Poisson’s kernel. We have just noted
that for any real harmonic function in the closed disec we have

u,(0) = u(re?®) = 2-1—1r /jr u(t) P, (0 — t)dt

where, as usual, u(f) denotes u(e?*). Of course, it immediately follows that
this Poisson integral formula holds for any complex-valued harmonic fune-
tion in the closed dise. In particular, it holds for an analytic function f.
Thus, both the Cauchy kernel C, and the Poisson kernel P, reproduce
analytic functions from their boundary values by convolution. It is easy
to see why this is so. The functions P, and C, have the same Fourier
cocflicients on the non-negative integers. Consequently, when we convolve
them with an “analytic’” function on the circle, the results are the same.
The differcnce is that whereas the Fourier coeflicients of P, are symmetric
about zero on the integers:

5o [T, mP.@)do = o

the Fourier coefficients of C, vanish on the negative integers:

L[ i _J/m nz0
2 f—re C(0)d0 = {0, n < 0.

This vanishing of the negative Fourier coefficients of C, simply means that
C, is “orthogonal” to the conjugate of any analytic function which vanishes
at the origin; i.e., if f is analytic in the closed disc, then

m = 50 e~
and thus
2_11r~ f:'ﬁe_i—‘)cr(g — f)dt = @ = J(0).

On the other hand,
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2% [7 F@Puo — t)dt = o)
because f is harmonic. The kernel
H.(6) = 2C,(6) — 1

_ 14 re®
1 — et

is also interesting, in part because
P.(6) = Re H.(6).
But it is of more interest, because if f = u 4 % is analytic in the closed
dise, and #f f(0) s real, then
f(rett) = 5‘; [ w0 - na,
i.e., fr = usll,. This is easy to sec because u = 1 (f + ) and so

2],, / _, Y (fle) + fleM)H.(8 — t)dt

1 = | z
=5- .3 (f +1)-[2C(6 — &) — 1]dt

= Z%r /:' fle)C (6 — Odt + 2% fj,f(e")Cr(O — t)dt

— = [7. U + e
= f(re¥) +J0) — Ref(0).

So, if f(0) is real, f, = uxH,. This formula can be rewritten

J(re?) = - f u(c") al + ::w dt
or
1 (=
10 = 5 [7 uley S ar
Suppose we let
Q, =ImH,.

This kernel is called the conjugate Poisson kernel. We see from above that
. 1 (=
W) — — -
v(re®) 2 f_’ u(t)Q.(0 — t)dt

produces the harmonic conjugate » of 4, which vanishes at the origin. Of
course, P,(f) and Q.(f) are conjugate harmonic functions in the disc.
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Boundary Values

To begin seriously our discussion of the boundary behavior of harmonic
functions, we shall consider the problem of starting with a function on the
unit circle and extending it to a harmonic function in the dise. The original
problem of this sort was the Dirichlet problem: given a real-valued con-
tinuous function f on the unit cirele, find a continuous function on the
closed disc which agrees with f on the circle and which is harmonic in the
open disc D. This problem is completely solved by the Poisson integral
formula. All one needs to show is that the family of functions P,,0 = r < 1,
is an approximate identity for L' of the circle. Since

1—1
1 —2rcos@ + r

P.(6) =
we see the following:
(i) P,(6) = 0 (and P, is continuous on the circle);

(ii) 51; [ P@w=1, 0sr<1

(because the above integral is the value of the constant function 1 at
z=r);
(iii) if 0 < § < m, then
lim sup |P,(6)| = 0.

r—1 8125
1—r .
1 —2rcoséd + r2

Forif § < |6] < w, then P,(0) <

Theorem. Let f be a complex-valued function in LP of the unit circle,
where 1 < p < . Define f in the unit disc by

fre®) = 5= [*_SOP0 = 3.

Then the extended function { is harmonic in the open unit disc, and, ast — 1,
the functions 1.(8) = f(re®) converge to f in the Lr-norm. If { 4s continuous
on the unit circle, the f. converge uniformly io f; thus, the extended f is con-
tinuous on the closed disc, harmonic in the inlerior.

Proof. Since {P,} is an approximate identity, the proofs of the L?
convergence and the uniform convergence are just the same as the cor-
responding proofs about Cesaro means. The only thing which is basically
different here is that we also regard the family of functions {/,} as a har-
monic function on the open disc. There are various ways of secing why
this function is harmonic. One way is to observe that if the original f is
real-valued then the function f(r¢?®) is the real part of the analytic function
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_Lfr et
9@ = 5 [T 0 G2 d
Theorem. Let f be a bounded Baire function on the unit circle and

Jre®) = o= [* fOP6 — t)a.

The extended { is a bounded harmonic function in the open disc and, asr — 1,
the functions 1.(6) = f(re®®) converge to f n the weak-star topology on L>.

Proof. {P,} is an approximate identity.

Theorem. Let u be a finite complex Baire measure on the unit circle and let

fre®) = [P0 ~ 0du(0).

Then f is harmonic in the open disc and the measures
1
du, = o f-(6)do

converge to p in the weak-star topology on measures.

In all the above cases, it would seem convenient to say that the har-
monic function f(re?) is the Poisson integral of the corresponding function
or measure on the circle. This will save us some words as we proceed to
reverse the process. Just as we did for Cesaro means, we will now ask:
given a harmonic function in the dise, how do we ascertain if it is the
Poisson integral of some type of function or measure on the unit circle?
1f f is harmonic, then

fre®) = 3 carllein
n=—o
so the question is actually: when is {c.} the scquence of Fourier coefficients
of some type of function or measure? Of course, the answer will read just
as it did for Cesaro means, and so will the proof.

Theorem. Let f be a complex-valued harmonic function in the open unit
disc, and write

1+(0) = f(re?).

(A) If 1 < p £ o, then f s the Poisson inlegral of an LP function on the
unst circle if and only if the funclions f, are bounded in Lr-norm.

(ii) f 18 the Poisson inlegral of an integrable function on the circle if and
only if the f, converge in the L-norm.

(iii) f 4s the Poisson integral of a continuous function on the unit circle if
and only if the f, converge uniformly.

(iv) f 4s the Potsson iniegral of a finite complex Baire measure on the
circle if and only if the . are bounded in L'-norm.
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(v) f1s the Poisson inlegral of a finite positive Baire measure if and only
if f is non-negative.

We should make a few comments about the various parts of this theo-
rem. The L= part of (i) is often called Fatou’s theorem. The intecresting
part of it is the fact that any bounded harmonic function in the dise is the
Poisson integral of a bounded Baire function on the circle. Part (v) is often
called Herglotz’s theorem: every non-negative harmonic function is the
Poisson integral of a positive measure. One should note that in any of the
cases above the harmonic function f is real-valued if and only if the cor-
responding L? function or measure is real.

Fatou’s Theorem

The results we have obtained so far about harmonic functions are com-
pletely analogous to our former results about Cesaro means. Indeed, one
can view these results simply as another way of summing Fourier series
(Abel summability). One theorem on Cesaro summability which we did
not prove is Lebesguc’s theorem: if f is an integrable function on [—, 7],
the Cesaro means of the Fourier scries for f converge to f pointwise almost
cverywhere. This result has its analogue in Abel summability: if we cx-
tend f to a harmonic function in the unit disc, the functions f, converge
pointwise to f almost everywhere. This is a theorem of FFatou, which we
shall now prove.

Theorem (Fatou). Let u be a finile complex Baire measure on the unit
circle, and let f be the harmonic function in the unit disc defined by

fr,8) = [ P.(0 — )du(t).
Let 6, be any point where p is differentiable with respect to Lebesgue measure.
Then

lim £(r, ) = 2r (Zi;)(eo) = 2m'(0).

In fact,
lim f(r, §) = 2wu’(60)

as the point z = re¥ approaches e® along any path in the open disc which is
not tangent to the unit circle.

Proof. The measure p is induced by a complex-valued function F, of
bounded variation on the interval [—, 7]:

J gdu = [ gdF.
The theorem states that if F is differentiable at 6,, then
lim f(r, 0) = 2xF" (60)
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as re?® — ¢ along any non-tangential path, i.c., f(2) approaches the deriva-
tive of F (or p) with respect to normalized Lebesgue measure. For the
proof, let us first obscrve that the theorem is trivially true for du = db.
So, without loss of generality, we may (by subtracting a constant multiple
of df from dp) assume that p(C) = 0. Then F will satisfy F(—=) = F(x).
Now let

1 [=
me=ﬂfﬂnw—mmﬁ

Then
_l_ T prp _ i — _l. — D -]— P60 —
5o [P0 — DF@dt = —5-Puo — OF Q[+ 5= [7 P6 — 0dF ().
So

1 L[ pp—

59,0 = 5= [T Pi6 — OF ().

We first prove the radial convergence, since its proof is neater.
ﬂn®=/meWW—0ﬂ
E 0
=+

= ﬁ) " PUO[F@O —t) — F(O + t))dt

[T PO+ O —F@O — 1)
= j:) [—sin tP/(1)] o dt.
Since P; is an odd function, we have
1 r e F@O 1) — FO—1)
2ﬂ’f(r’ 0) = 2n _ K0 2sint dt

where

K.() = —% sin LP1(1).
Now it is easy to verify that {K,}, 0 < r < 1, is an approximate identity
for L. If F is differentiable at 6,, then the function

Fo+1t) — F6 — 1)
2sin ¢

G@) =

is continuous at ¢ = 0 with the value

Fo+1) —FBo—1) o
2 sin ¢ = F'(6)-

G(0) = lim
t—0

Since {K,} is an approximate identity, and since G is continuous at 0,
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1 .1 f=

lim 5-/(r, 6)) = lim 5~ f-, K.()G()dt
= G(0)
= F'(6).

Now for the non-tangential convergence. Suppose we have an arc in
the disc which approaches ¢®® non-tangentially. This means that we have
two continuous functions r = r(a), 8 = 6(a) defined for 0 < @ £ 1 such
that 0 £ r(e) <1 for 0 2 a <1, r(1) =1, 6(1) = 6. It is no loss of
generality to assume that 6, = 0. The non-tangential nature of the arc

then means that
0(a

1 - r(a)
is bounded for @ < 1. Let

K.(t) = sin tPy(0 — ) {(: = 0(a)

= r(a)
so that

22 1(r(@), 00e) = 5 [ Ky Ed e

Now we may also assume that F(0) = 0, for this can be arranged by sub-
tracting a constant from F, which will change neither dF nor the condition
F(—x) = F(w). Then
'0) = Tim L.
F0) = P_.I% sin ¢

Now we shall prove that the functions K, satisfy these conditions:

(1) [_" |K «(t)|dt is bounded as a — 1;
R £
(i) lim - f_’K.,(t)dz =1;

(iii) If 0 < & < m, then
lim sup |K.(f)| = 0.

a—l 65|t S

Condition (iii) is easy to verify, since
sin ¢ sin (£ — 6)
2r cos (0 — t) + 2]

_ _2rsintsin (£ — 6)

T 1—2rcos(0@—t) +r
so that if |¢| = & while 8 is near zero, sin tP;(@ — ) is small for r near 1.
Condition (ii) follows from

sin tP} — t) = 2r(1 — r?) - =

P60 — )

1 [ "0 — I N - =
o /__' sin {P;(0 — t)dt = o f__' cos tP.(8 — t)dt = r cos 6.
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It is in verifying condition (i) that we use the non-tangential nature of the
arc:

o [ IKa0ldt = 5= [ Isin (0 + OPi0)ds
< [sin 6] 5= [_" IP/Oldt + 5= [_" |sin tP(t)|dt.

Since —}_ sin tP/(f) is an approximate identity, the second integral is

bounded as r — 1. Also,

jsin 6] - o= [ |Pi(Oldt = |sino] - }r [2. 1Pieylae

.ol ro
|sin 6] - /_TP,(t)dt

1 |sin 0][P.(0) — P,(~)]

llsnol[ +r 1—r:|
T -7 147
T o ]

= 7 1-=7

Since |6]/(1 — r) is bounded on our arc, we conclude that [ |K.| is bounded
asa — 1.
With these three properties of the K., we finish the proof. Put

G) = :% ~F(0) and I(a) = - [ K
Then

5o (@), 0(e) — I@F'(0) = 5= [ GOR.()dL

Since @ is continuous at 0 with G(0) = 0, for & small the integral

/., 6K,

is small by condition (i) on the K,. Then

ﬁilga GKe

is small by condition (iii). Since lim I(a) = 1, we see that
a—1

lim 5-f(r(a), 6(a)) = F(0).
a—]1 &

This completes the proof.
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Corollary. Let f be a Lebesguc-integrable function on the unit circle. Then
the Poisson intcgral of £ has a non-langential limit at almost cvery point of the
unit circle, and these limils are almost cverywhere equal to f. More generally,
the Poisson integral of a finite measure p hus non-tangential limits equal almost
everywhere to the derivative of u with respect to normalized Lebesque measure.

Proof. Let u be a finite (complex) Baire measure on the circle and let
dp = .21; fdé + du, be the Lebesgue decomposition for p. Then p is dif-

ferentiable almost everywhere and ZI_‘(; = 2]—-7 almost everywhere. Now
apply Fatou’s theorem.
Corollary. Let { be a complex-valucd harmonic function in the unit disc

and suppose that the integrals
[ e Ieds

are bounded as r — 1 for some p, 1 £ p < . Then for almost every 0 the
radial limils

j0) = lim f(re)

extst and define a function fin L of the circle. If p > 1 then f is the Poisson
integral of {. If p = 1 then f is the Poisson tnlegral of a (unique) finite
21——1rfd0. If f s a bounded har-
monic function, the boundary_values exist almost everywhere and define a
bounded measurable function f whose Poisson integral is f.

measure whose absolutely continuous part is

Of course, the limits in the last Corollary exist non-tangentially as well
as radially. For emphasis we might also state the following.

Corollary. A non-negative harmonic function in the unit disc has non-
tangential limits at almost every point of the unit circle.

One conclusion from the various theorems above is the following. Sup-
pose 1 £ p £ » and we consider the class of harmonic functions f in the
open disc such that the functions f,(6) = f(re®) are bounded in L?-norm.
This class of harmonic functions forms a Banach space under the norm

1711 = tim 17

For1 < p £ « this Banach space is isomorphic to L? of the unit eircle.
The isomorphism is f — f, where  is the boundary function for f. If
1 < p < », we have not only

17l = tim (171
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but also lim ||f — f:||» = 0. For p = 1 this Banach space is isomorphic to
r—1

the space of finite (Baire) measures on the circle, the isomorphism being
f — u, where f is the Poisson integral of p.

Hr Spaces

Our results about harmonic functions apply in particular to analytic
functions. If 0 < p £ «» we denote by H? (I for Hardy) the class of
analytic functions f in the unit disc for which the functions f,(6) = f(re®)
are bounded in L7-norm as r — 1. If 1 £ p £ «, then H? is a Banach
space under the norm

111 = Yimm [l

i.e., H? is a closed subspace of the corresponding space of harmonic func-
tions. If 1 < p £ «, we can then identify H? with a closed subspace of L?
of the circle. This space we shall also denote by H?, because of the iso-
morphism. It consists of all functions f in L? whose Poisson intcgrals are
analytic on the dise, i.e., all f in L? such that

[T 1@cwds =0, n=1,23,....

When p = 1 we obtain an identification of H! with the closed space of
finite measures p on the circle which are “analytic”:

f:, edu() =0, n=1,23....

Now it is here that a very significant difference occurs between the har-
monic and analytic cases. A theorem of F. and M. Riesz states that any
measure g which is analytic as above is necessarily absolutely continuous
with respect to Lebesguc measure. This theorem makes it possible for us
to identify H' with the space of Lebesgue-integrable functions on the circle
such that

[_”' e™f(0)ds =0, n=1,23,....

Thus, our next task will be the proof of the theorem of F. and M. Riesz,
along with some related results.

NOTES

Fundamental facts about analytic and harmonic functions can be found in
Titchmarsh [87], Ahlfors [2] or many other places. For more about the Dirichlet
problem, see Courant’s book [21]. Fatou’s paper is [27]. The various boundary
value results here can be found in the books by Zygmund [98], Evans [24], Bieber-
bach [9], Nevanlinna [64], and Privaloff [70]. For analytic functions of class H?
see F. Riesz [71] and F. and M. Riesz [72].
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EXERCISES
1. If f is harmonic and zf(z) is harmonic, then f is analytic.

2. If {c,} is a bounded sequence, then

f(r,0) = 5 Cnrrinlgin?

n= —

is harmonic in the disc.

3. (a) Verify that P,(8) is harmonic.

(b) If u is harmonic and 0 £ u(r, §) £ P.(0), then u(r, ) = AP,(0) for some
constant A.

(¢) The set of all non-negative harmonic functions in the unit disc which have
the value 1 at the origin is a convex set of functions. What are the extreme points
of this set?

4. Let f be an analytic function in the unit disc without zeros satisfying |f] < 1.
Prove that
sup |[f@)[* £ inf |[f(2)].
lel£1/5 lel<1/7
6. For a real-valued harmonic function u in the disc, let » denote the harmonic
conjugate vanishing at the origin. Is the map from %, to v, continuous in the sup
norm? The L?-norm?

6. For a rcal-valued harmonic function u, the following are equivalent: (i) u is
the difference of two non-negative harmonic functions; (ii) the L! norms of the
functions u,(6) = u(r, 0) are bounded.

7. Give an example of an analytic function in the unit disc which is in no class
H? but which has non-tangential limits at almost cvery point of the unit circle.

8. Give an example of an analytic function in the disc which does not have
non-tangential limits at almost every point of the unit circle.

9. Prove that the set of all analytic functions in the unit disc for which

{ [ 15 bazdy < =

is a Hilbert space, using the square-root of the above integral as norm. Prove that
H? is a (linear) subspace of this Hilbert space. Is H? a dense subspace? Find an
orthonormal basis for this Hilbert space.

10. Prove Herglotz’s theorem: Every analytic function in the unit disc with
values in the right half-planc such that f(0) > 0 has the form

1@ = [ G2 a0

[4

where u is a finite positive measure on the unit circle,
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The set of all f analytic in |2| < 1 satisfying Ref = 0 and f(0) = 1 is a convex
set of functions. What are the extreme points of this convex set?
11. Let u be the real harmonic function in the disc determined by some finite

real measure on the circle. Prove that the associated conjugate harmonic functions
v have non-tangential limits at almost every point of the circle.

12. Show that Fatou’s theorem extends to the following situation. If fis a
real-valued integrable function on the unit circle, and if 6, is a point such that
lim f(6) = 4, then
06—

]j*nif(rs 00) = +o,



CHAPTER 4

THE SPACE H*

The Helson-Lowdenslager Approach

Most of the thcorems in this chapter generalize to the context of a
certain class of function algebras known as Dirichlet algebras. We shall
give the proofs for the case of the unit disc, but in such a manner that
they gencralize readily. We shall deseribe the generalizations later. It may
be that these proofs are not always the shortest possible as applied to the
classical case; however, they have an undeniable elegance. These first few
proofs arc duc to Helson and Lowdenslager.

We denote by A the collection of functions which are continuous on
the closed unit disc and analytic at cach interior point. Then A is a uni-
formly closed lincar algebra of continuous complex-valued functions on the
closed dise. In particular, A is Banach space under the sup norm

[Iflle = sup [f(z)].
lzl =1

Each f in A is (of course) the Poisson integral of its boundary values:

flre®) = 2% [P0 — vae.
Also
Iflle = sup [f(c™)].

This is easily seen from the maximum modulus prineiple for analytic func-
tions. Or, if one wishes, one may deduce this fact (i.e., the maximum
modulus principle for functions in A) directly from the Poisson formula.
Thus, we may identify the functions in A with their boundary values, ob-
taining an isomorphism between A and the Banach space of continuous
functions on the circle such that

f_"f(())emdo =0, n=123,....

This algebra of continuous functions we shall also denote by A. The

trigonometric polynomials of the form
42
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PO) = 3 awe
k=0

are in A and are uniformly dense in A. This follows, for example, from the
fact that if f is continuous on the circle and if the Fourier coefficients of f
vanish on the negative integers, then the Cesaro means of the Fourier scries
for f comprise a sequence of trigonometric polynomials of the above form
which converge uniformly to f. This corresponds to the fact that 4, as an
algebra on the dise, consists of all functions which are uniformly approxi-
mable by polynomials in z:

P@) = éo @,

The property of A (on the circle) which we want is Fejer’s theorem, in the
following form.

Theorem. The real parts of the functions in A are uniformly dense in
the space of real-valued continuous funclions on the unit circle. In other words,
if u is a finite real Baire measure on the circle such that f fdu = 0 for every
fin A, then u s the zero measure.

Proof. The rcal parts of the functions in A include every trigonometric

polynomial of the form
P(0) = 3 Ckciko, C—k = Tk
k=-—n

that is, every real-valued trigonometric polynomial. If f is real-valued and
continuous on the circle, every Cesaro mean for f is such a polynomial.
Hence, such polynomials are dense in the real continuous functions.

If u is a finite real measure on the circle which is “orthogonal” to every
Jin 4, then p is orthogonal to the real part of every fin A. So p is orthogo-
nal to every rcal continuous function and must be the zero measure.

Corollary. If u is a finile real measure on the circle such that [ fdu = 0
Sor every f in A which vanishes at the origin, then u s a constant multiple
of Lebesgue measure.

Proof. Let
1
A= fdu and du; = dp — erdo.

Then y, is a real measure which is orthogonal to every fin A:

Jfam = [ [f = fO)]dm +7©) [ dum =0+ 0 = 0.
Thus

u =0 or d;u=,;11—r>\d0.

We shall be working for some time entirely on the unit circle. Thus
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A, H?, ete. will be spaces of functions on the unit circle. One of the theo-
rems we shall prove is the theorem of F. and M. Riesz which we mentioned
earlier: an ‘“‘analytic”’ measure on the unit circle is absolutely continuous
with respect to Lebesgue measure. We shall also prove Szegs’s theorem.
The setting for this thcorem is as follows. We are given a finite positive
measure p on the circle, and we wish to know in the Hilbert space L2(du)
what the distance is from the constant function 1 to the subspace spanned
by the functions in A which “vanish at the origin.” That is, we wish to
compute
inf [ |1 — fl*de, fin A and [ fd§ = 0.

We shall be particularly interested in characterizing the measures u for
which the infimum is zcro, i.e., the measures for which 1 is in the closed
subspace of L2(du) spanned by the functions ¢, n = 1. Szego’s theorem
states that the square-distance (infimum) above is equal to

exp [él; /_: log h(0)do:]

where h is the derivative of u with respect to normalized Lebesgue measure:
dpy = :—zl; hd® 4+ du,, p, singular.

In particular, this distance depends only upon the absolutely continuous
part of p. Actually, Szego proved the distance formula for absolutely con-
tinuous measures, and Kolmogoroff and Krein extended it to the general
case.

Our program will be this. We begin to look at Szegd’s theorem and
obtain a preliminary result. This preliminary result ean be used to prove
the Riecsz theorem. Then we return and complete the proof of Szegd’s
theorem.

Let Ao, denote the set of functions f in A for which f fdo = 0. If uis
a positive measure, we arc intercsted in the L2?(dy) distance from 1 to A,.
The square of this distance will be

inf 1 — fltdp = 1 — Fld
fleA.,“ fledp = [ | |2dp

where F is the orthogonal projection of 1 into the closed subspace of L2(du)
which is spanned by the functions in A,.

Theorem. Let u be a finile positive Baire measure on the circle and
suppose 1 s not in the closed subspace of 1.2(dw) which 7s spanned by the
Junctions in Ao. Let F be the orthogonal projection of 1 into that closed sub-
space.

(i) The measure |1 — F|*du 28 a non-zero constant multiple of Lebesgue
measure. In particular, Lebesgue measure vs absolutely conlinuous with re-
8pect to p.
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(ii) The function (1 — F)~! s in H2
(iii) If h7s the derivative of p with respect to normalized Lebesgue measure,
then the function 1 — F)h s in

1
1= 12(5 a0}

Proof. 1et S be the closed subspace of L*(dp) spanned by A4,. Since F
is the orthogonal projection of 1 into S, the function (1 — F) is orthogonal
to 8. That is, (1 — F) is orthogonal to 4,. But (1 — F) is also orthogonal
to (1 — F)f for every f in Ao, because F is the limit in L2(dy) of a sequence
of elements f,, in Ao, and if f is a fixed element of Ao, then f(1 — f,) isin A,
and converges to f(1 — F). The statement that (1 — F) is orthogonal to
(1 — F)ffor all fin A, says

[fll — Fl2du = 0, fin A
Hence the measure {1 — F|*du is a constant multiple of Lebesgue measure.
That constant is not zero because 1 — F 5 0, i.e., 1 is not in S. Thus (i)
is proved.

To prove (ii), observe that

|1 — Fldp = kd8, k=0
and so, if u, denotes the absolutely continuous part of u,
du, = |1 — F|~*1:df

proving that (1 — F)!isin L% = L2 (21; d8>- Suppose f is in Ap. Then

k[ —F)Ydo=k[Q—F)fj1 — F|-db
= [ (1 = F)fdy
=0
because (1 — F) is orthogonal to f in L2?(du). Since this holds for cvery
fin Ay (in particular for f(6) = ¢, n = 1,2, 3, . ..) we see that (1 — F)~!
is in H2
To prove (iii), suppose dp = 2%_ hd6® + du,, p, singular. Since |1 — F|%du

is a constant multiple of df, the function (1 — F) vanishes almost every-
where with respect to p,. Thus

2y = L1 —
It = Fldu = 5 |1 — F|hds,

But |1 — F|%du = kdb, so |l — F|*his equal to a non-zero constant p, almost
everywhere with respect to df. But then

11 — Flh = |1 — F|7
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and since (1 — F)~!is in L? (% do), sois (1 — F)h.

Corollary 1. If u is a posilive measure on the circle with absolutely
conttnuous part ., then
inf [ |1 — fldp = iof [ |1 — f|%dpa
J€ Ao f€Ao
In particular, for any singular u the function 1 is in the 1L2(dp) closure of A,.

Proof. Let F be the orthogonal projection of 1 into the L2(du) closed
span of Ao,. The square of the distance from 1 to Ao in L*du) is then
J It — F|*du. As we noted in the theorem, the function (1 — F) vanishes
almost everywhere for the singular part of u. If we regard F as an element
of L2(du,), then F is in the closure of Ao in that space. Furthermore, since
(1 — F) vanishes almost everywhere with respect to du,, it is easily seen
that (1 — F) is orthogonal to Ao in L2(du.). Thus (1 — F) is also the
minimizing funetion for u,, and the proof is complete.

Corollary 2. Let u be a finite complex Baire measure on the circle which
is orthogonal to Ay, i.e., [ fdu = 0 for all f in Ao. Then the absolulely con-
tinuous and singular parts of u are separately orthogonal to A,.

Proof. Let p be any finite posilive measure with these two properties:

(i) » is absolutely continuous with respect to p and the Radon-
Nikodym derivative du/dp is bounded.
... dp 1
£ >
(i) do = 2=«

Ifdu = él; hd9 + dp,, then one such measure p is
1
dp = 5— (1 + |R])df + d|u|

where d|u,| is the total variation of the complex measure g,. Or in place of
d|us| use the sum of the total variations of the real and imaginary parts of g,.
Let f be in Ao. By property (ii) of p

11— flrdp ;ziwfll — f*d6 = 1.

If F is the orthogonal projcction of 1 into the closed subspace of L2(dp)
spanned by Ay, then
J11 = Flzdp = 1.

By the theorem above, (1 — F)'isin H2and (1 — F)(1 + |h|) is in

1
2 — J2f — .
L L(21rd0)
So (1 — F)his in L2,
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Suppose g is in 4o. Then
[ @ = Fygdu =o0.

For, choose a sequence of elements f, in 4o which converge to F in L2(dp).
Since dp/dp is bounded, we have

J @ — Fygdp = 31_{2 [ (= fa)gdu.

Each (1 — f.)g is in Ao, and since p is orthogonal to Ao, we have

f (1 — F)gdu =0, g¢in A,.
Now (1 — F) vanishes almost everywhere with respect to the singular part
of p, hence, vanishes almost everywhere du,. Thus

1

(1 — F)du = o (1 — F)hdo
so we have

J (1 — F)ghdg = 0, g in A,.

Let g. be a sequence of elements of A (not Ap) which converge to
(1—F)'in L? (2—11; d0)- We can do this since (1 — F)~'is in H2. Then
[ g.5(1 — F)hd6 = 0

for all f in A,. Since (1 — F)h is in L2 and since g, converges in L2 to
(1 — F)7', we take the limit on n and obtain

[ frds = 0, allfin A,
This proves that the absolutcly continuous part of u is orthogonal to A,.

Theorem (F. and M. Riesz). Let u be a finite complex Baire measure
on the unit circle such that

[ emdu(®) =0, n=1,23,....
Then p s absolutely continuous with respect lo Lebesgue measure.

Proof. We are assuming that u is orthogonal to A,. If p = ps + u., with
ks absolutely continuous and p, singular, Corollary 2 above says that u,
and p, are cach orthogonal to A4,. Let’s look at the singular measure p,.
By Corollary 1 above we can find a sequence of functions f, in A, which
converge to 1 in L? of the positive singular measure |u,|. Since g, is orthogo-
nal to A,,

[ du. = lim [ fudp, = 0.

Then p, is also orthogonal to 1. The singular measure ¢~#du, is now or-
thogonal to A,; hence, it is orthogonal to 1, i.e.,

J e *du,(6) = 0.
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So e~2®dy, is orthogonal to A,, and, consequently, orthogonal to 1. Repeat-
ing this process, we conclude that

Ieinﬂd#a(e) — 0’ n = 0, -_-tl, :]:2, “ e

so u, must be the zero measure. Therefore, our original u is absolutely
continuous.

Szegd’s Theorem

Now let us complete Szegd’s theorem. We had reduced the problem
there to proving that for an absolutely continuous positive mecasure

du = 5= hdd the square of the distance [in L(dy)] from 1 to Ao is

exp [2l1r f_: log hdo].

To establish this we first prove the following,.

Theorem. Let h be any non-negative and Lebesgue-integrable funciion on
the unit circle. Then

- L " —_ 3 _1._ ' Re f,
exp [% /_Tlog h(B)do] = inf o~ /_’he .
The left-hand side s to be tnterpreted as zero if log h 7s not vnlegrable.

Proof. Since log h is bounded above by the non-negative integrable
function A, we have only log h non-integrable if

Jloghdt = —o.
Whether log h is integrable or not, we have

exp [2% f log hda] < LT [ hdo.

When & is a simple function, this is just the familiar relation between finite
arithmetic and geometric means. The same inequality will apply to the
function he? if g is any real-valued integrable function. 1f such a g also
satisfies [ gdf = 0, the inequality becomes

1 1
cxp [2—1r [ log hdl)] = 2n [ hesds.
In particular, this holds if ¢ = Re f, with f in 4,. So we have

exp [2—1—1 [ log hda] < ir;f2—11r-fheﬂd0, g=gel, [gdo=o0.

< inf = [ heRe/do.

f€EA0 £&T
It is not difficult to see that the last two infima are equal. The functions
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Re f with f in A are dense in the real continuous functions, and, conse-
quently, dense in the real L! functions. Thus the functions Re f with f in
Ao are dense in the recal L! functions g for which [ gdf = 0. This alone
does not prove the equality of the two infima, since there is some difficulty
when we exponentiate. The difficulty can be removed as follows. If gis a
real L1 function for which f gdd = 0, we can find a sequence of real fune-
tions gn in L* such that [ g,d8 = 0 and g, increases monotonely to g. By
the monotone convergence theorem it is clear that the infimum is the same
for the class of real L® functions as it is for the class of real L! functions.
But each real L® function is the pointwise almost everywhere limit of a
bounded sequence of the functions in Re A. Now, by the bounded con-
vergence theorem, the infimum is the same for real L* functions as it is
for functions in Re A.

Now we want {o reverse the incquality. Suppose first that logh is
integrable. Let

1
=5 [ log hdo
and put ¢ = A — log h. Then g is real, in L', and [ gdf = 0. Also,
1 rhends = L [ o7 = exp | &= :
om J hevdd = 5r J e*df = exp [21r [ log th]

Thus the infimum is attained at g and the incquality is actually equality.
If log h is not integrable, for any ¢ > 0 the function log(h + ¢) is in-

tegrable, so
1 |
exp [2; f log (b + e)dﬂ] = fleri 5o

Letling e tend to zero, we have the theorem.

[ (b + €)eRetds.

T

Theorem (Szego; Kolmogoroff-Krein). Lef u be a finite posilive Baire
measure on the unit circle and let h be the derivative of p with respect to nor-
malized Lebesguc measure. Then

inf / 1 — fl*du = exp [2% f_'f log h(0)d0]-

J€EAo
Proof. By the last theorem,

exp [2]7 [ log hdo] = inf o | he2Resd,

Now ¢2Reo = |es]2, If g is in Ao, the function ¢? has the form ¢ = 1 — f
with f in Ao, so ¢2Be9 = |1 — f|2. Thus

exp [2% [ log hdo] z inf 51; [ 11 — f|hd.

We now deduce the reverse inequality by applying this one to a dif-
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ferent function h. Let g be in A, and apply the last inequality with A
replaced by |1 — g[2. We obtain

1 . 1
exp [2——”flog n- gl’d()] P }Enlfo o JIt =1 —g+7qlds
= 1.

In particular, the function log |1 — g|? is Lebesgue integrable and

Jlog |1 — g2d8 = 0.
Therefore,
|1 — gl* = ke

where p is a real L! function such that [ pdf = 0 and the constant k
satisfies k = 1. This tells us (returning to our original &) that

1 1 1
X — althdd = k - — > inf — [ heRe,
21_[ |1 — g|*hd6 = k 52 f herds = jler}ii; o | heResdo

1
= exp [5; [ log hdo]-
If we inf over g, we obtain
mf — | |1 — fl*hdb = I: lo ldﬁ]
int L 1~ g0 = exp [ 2= flog
We proved in Corollary 1 above that the infimum here is equal to
inf [ |1 — f|*dp.
J€Ao
That completes the proof.
Of course, we may replace Ao in the theorem by the family of poly-
nomials vanishing at the origin. An immediate corollary to Szego’s theorem

is that in L*(dg) the closed lincar span of the functions ¢, n = 1 contains
the constant function 1 if, and only if,

jlog( )do_ -

This is easily seen to be equivalent to the statecment that these functions
span L2(dp).

Completion of the Discussion of H!

Recall that the space H? was defined as the class of analytic functions f
in the open unit dise for which the functions f,() = f(re®) are bounded
in Lr-norm. For 1 < p £ « we were rather easily able to identify H? with
the space of L? functions on the circle such that

[ emf(0)ds =0, n=1,2,3,....

This used only the harmonicity of the functions in H?. For p = 1, the
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fact that an f in A' was harmonic enabled us to identify f with a finite
measure u on the circle (f is the Poisson integral of u). The fact that f was
analytic told us that p was “‘analytic”, i.e.,

[ emdu(d) =0, n=1,2,3,....
Now we have the theorem of F. and M. Riesz, which tells us that
du = ‘21;_ jdo where f is in L', and, of course, that f is the Poisson integral

of f. The functions f, converge to f in L' norm, and, in fact, the non-tan-
gential limit relation

) = lim 1)

holds for almost every 6. So we may now identify H' with the space of L
functions on the circle which are “analytic”, just as we did for H?, p > 1.

Now we want to establish some speeial propertics of H? functions on
the cirele, chiefly the fact that if f is in H' then log |f(6)] is Lebesgue-
integrable.

Theorem. Let { be any funclion in H' such that
70) = 5- 500 = 0
T 2r ’
Then log |(8)| s Lebesgue integrable and
o [7 log 17(®)do 2 log |1(0)]
27 J-= T )

Proof. ¥irst suppose f is in H2 Applying Szeg6’s theorem to the meas-

1 . R
ure 5 |f]2d6, we obtain

1 . 1
exp | g7 [log /"8 | = inf 5= [ 11 - gllspas.
For g in A,,
1 1
55 d 11— gPlrpde = 5 [|f — fglds
1
= 5= [ 17(0) — pl*de
where p is in 4y. This last integral is not less than |f(0)|2. It follows that
1
5= J log 17(6)ld0 = log |5(0)!.
If f is not in H?, choose a sequence of functions f» in H? such that

J2(0) = f(0) and f. converges to f in L'. For example, let f, be the nth
Cesaro mean of the Fourier series for f. Then
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o= [ tog 17u1ds 2 log |1(0))

Letting n — o, we obtain the desired conclusion. In passing to the limit
here, a comment may be in order. If we choose any ¢ > 0, the functions
log (|fa] + €) will converge to log (|f| + ¢) in L', and we may pass to the
limit with no difficulty:

5= [ log (If] + 0 2 log |(0).

Now let e tend to zero, and we are done.
Corollary. For any non-zero f in H! the function log |£(6)| is tniegrable and

51; [ log |£1d8 = log |/(0)].

Proof. As a function on the disc we can write f(z) = 2ng(z) where
g(0) 5= 0. 1t is clear that g is also in H' and that |g(e®)| = |f(e®)| almost
everywhere. Apply the theorem to g.

Corollary. If f is in HY, then f cannot vanish on a set of positive Lebesgue
measure on the circle unless f is identically zero.

The inequality
1
5 J log 1f1d8 = log |(0)]

is simply an extension of Jensen’s inequality from the case of analytic
boundary values to the case of integrable boundary values. We shall dis-
cuss the analogous extension of Jensen’s formula for the difference of the
two quantitics in the next chapter. We shall give another proof of the
integrability of log |f] for f in H' when we discuss Dirichlet algebras. This
proof will also extend to the general context of Dirichlet algebras, but it
will be more clementary because 1t does not make use of the Szegd theorem.

One should contrast the last corollary with the situation for harmonic
functions. If f is harmonic in the disc and the functions f,(6) = f(re®) are
bounded in ! norm, then f has non-tangential boundary values at almost
every point on the circle. These boundary values are the derivative with
respect to Lebesgue measure of the measure of which f is the Poisson in-
tegral. Thesc boundary values may vanish almost everywhere, which hap-
pens if and only if the measure corresponding to f is singular. But when f
is analytic, the non-tangential boundary values cannot vanish, even on a
set of positive Lebesgue measure, unless f = 0.

Theorem. Every function in H! is the product of two functions in H2.

Proof. Tt is no loss of generality to assume that we have a function f in
H! for which f(0) ¢ 0. Then log |f| is integrable, so for the positive meas-
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ure dp = 51-1; |f]d6 the constant function 1 is not in the L?(du) closure of 4,,

the continuous H! functions vanishing at the origin. By the first theorem
of this chapter |f| = k|1 — F|~ almost everywhere, where F is the or-
thogonal projcction of 1 onto the L#(du) span of Ao, and k is a non-zero
constant. By the same theorem, (1 — F)'isin /2 and (1 — F)f is in L2
1t is trivial to verify that since f is in H! the function (1 — F)f is not only
in L2 but also in I72. The factorization of f is then

J=Q0Q-=F)-0-F)f.
Theorem. Let h be a non-negative Lebesgue-integrable funciion on the

circle. A necessary and sufficient condition that h be of the formh = |f|2, with
f a non-zero function in H2, 7s that log h be integrable.

Proof. If h = |f|* with f non-zero in II*, we know that logh is in-
tegrable. On the other hand, if log h is integrable, then |h| = k|1 — F|2,
as in the last proof.

This thcorem has another proof, which makes use of more of the special
properties of the dise.

Theorem. Let h be a non-negative integrable funclion on the circle. Then
h <5 the modulus of a non-zero H! function if and only if log h is integrable.
If h is non-negative and in L, then h is the modulus of a non-zcro H* function
if and only if log h s integrable.

Proof. Both statements have been proved in one direction. Suppose
log h is integrable. Let

f(2) = exp [51; f Tt h(0)d0]-

—re® — 2

Then f is analytic in the dise and
Il = e
where u is the Poisson integral of log h. Now

o= [7 Strenyias = 5-

T

_, &xp [u(re®)]do.

Also, since du = 2_11; P,(6 — t)dt is a positive measure of mass 1,
exp [u(re®)] = exp [51; [P0~ 1)log h(t)dt]

< 5 [7. Po — Oh(ya (exp [f gdu] < [ eody)

and so
1 ' i 1 x
5n |7 renlds < 5- [T htoy.
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Thus f is in H! and
lin} |[f(re®)] = linlx exp [u(re®)]

= h(6)

almost everywhere. If 4 is bounded, the above estimates show that f is in
H~,i.e., it is a bounded analytic function.

Dirichlet Algebras

Let X be a compact Hausdorff space and let A be a uniformly closed
complex-linear algebra of continuous complex-valued functions on X which
contains the constant functions. We say that A is a Dirichlet algebra if
the real parts of the functions in A are uniformly dense in the real con-
tinuous functions on X. The terminology is due to A. M. Gleason. Of
course, we have just been working with one example of a Dirichlet algebra,
the algebra of continuous functions on the unit circle whose Fourier coeffi-
cients vanish on the negative integers. Another example is the following.
Let X be the torus, i.e., the product of the unit circle with itself. With
each continuous function f on X, there is associated a double Fourier series

f(ay 'l’) ~ T Cmneimeint
mn
where the Fourier coefficients ... are defined by
1 [« [« _
=1 2 —i(mf+ny)
G 42 [—r /—-.-f(a’ ll/)e d0d¢

It is convenient to think of the Fouricr cocflicients as indexed by the lattice
points (m, n) in the plane. If Sis aset of lattice points, call S a half-plane if:

(i) for any two intcgers m, n, one and only one of the points (m, n)
and (—m, —n) isin S;

(ii) for (m, m) and (mq, no) in S, the sum (m + mo, n + 7o) is in 8.

If S is a half-plane of lattice points, let A be the set of all continuous
functions on the torus whose Fourier coefficients vanish outside S. Then
A is a Dirichlet algebra on the torus. There are certain obvious half-planes
one might use. An interesting one is obtained by choosing an irrational
number o and

S = {(m, n); m + na = 0}.

Another example (which includes the two examples above) is obtained
as follows. Let X be a compact abelian group whose character group X
contains a subsemigroup S, which “totally orders” X:

(i) the zero (identity) of X is in S;

(i) for any non-zero element y in X, either y is in S or —y is in 8,
not both.
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Let A be the algebra of continuous functions on X whose Fourier trans-
forms vanish outside S. Then A4 is a Dirichlet algebra.

In a 1958 Acta paper, Henry Helson and David Lowdenslager extended
most of the theorems of this chapter to the group context described in the
last example. As we said carlier, most of the elegant proofs we have given
are theirs. Some of the results had been obtained for Fourier series in
several variables by Bochner and others. Arens and Singer had previously
done some of the complex function theory in the group context. After the
appearance of the Helson-Lowdenslager paper, Bochner pointed out that
their results gencralize to the context of certain rings of functions. Then
it was apparcnt that probably one natural setting for their work was
Dirichlet algebras.

Let A be a Dirichlet algebra on the compact space X. If p is a finite
positive Baire measure on X, let H?(du) denote the closure in L?(du) of
the functions in A. When X is the circle and A is our standard example,

the H” spaces are H? = H? (2% de)- The particular relationship between

A and -21; df which is relevant here is that this measure is multiplicative

onA:
1 1 1 :
5 J fodo =5 [fdb - 5- [ gdb, f,gin A.

For the general Dirichlet algebra A we single out any non-zero positive
Baire measure m on X which is multiplicative on A. Then we proceed to
study the spaces H? = H?(dm). We denote by A, the set of functions f in
A such that [ fdm = 0. With the proofs given above one obtains the
following results.

(1) Let u be a positive mecasure on X such that 1 is not in the closed
subspace of L*(du) spanned by Ao. Let F be the orthogonal projection of 1
into that subspace. Then the measure |1 — F|2dy is a non-zcro constant
multiple of dm; the function (1 — F)~'is in H*(dm); and if b = du/dm the
function (1 — F)h is in L*(dm).

(2) If uis a positive measure on X and du, = (du/dm)dm, then

inf [ |1 = fladu = inf [ |1 — f|*dp.
;le'l.,“ fledu flenmfl £lrdu

In particular, if u is mutually singular with m, then 1 is in the closed sub-
space of L2(du) spanned by Ao,.

(3) If u is a finite complex measure on X which is orthogonal to Ao,
then the absolutely continuous and singular parts of u (with respect to m)
are scparately orthogonal to A,.

(4) If pis a positive measure on X, then
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fielfa 11 = fl*du = exp [f log (g—%) dm].

(5) If f is a funetion in H'(dm) such that ffdm # 0, then log |f] is
integrable with respect to m and

Jlog |f|dm = log | [ fdm|.

(6) Every function f in H'(dm) for which f fdm # 0 is the product of
two functions in H*(dm).

(7) Let h be a non-negative function in L'(dm). Then h has the form
h = |f|?, where f is in II2(dm) and ffdm, # 0, if and only if logh is in
L(dm).

Some comments are in order. Statement (4) above says that the Szego
theorem is valid for Dirichlet algebras. On the other hand, the theorem
of F. and M. Riesz generalizes in a different form from the circle context.
We do obtain the fact that if u is orthogonal to A, the absolutely continuous
and singular parts of p are orthogonal to Ay; and that any singular mcasure
orthogonal 1o Ay is also orthogonal to 1. This is where the general state-
ment stops. It docs immediately imply the classical result, because we can
keep shifting the singular measure on the circle to conclude that it is zcro.
For the gencral Dirichlet algebra one can have non-zero measures orthogo-
nal to A, which are mutually singular with m (sec Exercise 11).

The integrability of the log of a non-zero H! function is false for the
general Dirichlet algebra. One does have

log | [ fdm| < [ log |f\dm

so that log |f| is integrable if [ fdm s 0, but when the latter integral is
zero and f 0 it may happen that log |f| is not integrable. As we men-
tioned earlier, the Jensen inequality has a very short proof for Dirichlet
algebras which avoids the usc of the generalized Szegé theorem, and, in-
dced, uses only the definition of Dirichlet algebra. This inequality was first
proved for Dirichlet algebras by Arcns and Singer. The following short
proof was ecommunicated to me by John Wermer.

Let X, A, and m be as above. Let f be any function in A. We denote
by f(m) the integral [ fdm. We wish to prove that

[ log |f|dm = log | f(m)|.

Choosc e > 0. Thenlog (|f]| + ) is a real-valued continuous function on X.
Therefore, we can find a function g = u + v in 4 such that

lu —log (If + ¢l <e onX,

u—e<log(f]+e <u-+e
Let h = e79, so that h is also in 4 and |h| = ¢ On X we then have

Ifhl = lfe| = |fle™ < e

that is,
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by our choice of g. Since m is multiplicative on A, we also have

Fm)h(m) = (fe=o)"(m)

and ) )
|f(m)] |h(m)| < sup Ife9] < e
So A
log |f(m)| + log |h(m)| < e
or

log |f(m)| — 4(m) < e.
Now u < € + log (|f| + ¢€) on X; hence

a(m) < e + [log (f] + e)dm
and we obtain

log |f(m)| < 2¢ + [ log (If| + ¢)dm.

Let € tend to zero, and we have Jensen’s inequality for any fin A.
To prove the inequality for f in H'(dm), just approximate f in L'(dm)
by functions in A.

NOTES

Szegd’s theorem is in Szegd [86]. The characterization of H! functions and the
integrability of log |f| is in F. and M. Riesz [72]. Many proofs of the F. and
M. Riesz theorem on mecasures have been given, e.g., see Helson [42]. Some
recent work on the result can be found in Bishop [10], Wermer [91], Hoffman [47],
and Helson-Lowdenslager [43]. The last paper is the one from which most of the
proofs in this chapter are taken. Bochner [14] pointed out the generality of their
arguments. Also scc Bochner’s earlier paper [15]. Dirichlet algebras were defined
by Gleason [34]. More about Dirichlet algebras can be found in Wermer [92, 93].
The Helson-Lowdenslager proofs extend somewhat beyond Dirichlet algelbiras, as
Bochner observed. The critical hypotheses for the proofs given here are (i) 4 is
an algebra of continuous complex-valued functions on the compact Hausdorff space
X, containing the constant functions; (ii) m is a positive measure on X which is
multiplicative on A; (iii) if p is a positive measure on X which agrees with m on 4,
then p = m; (iv) the functions in A and their complex conjugates span L*(dm);
(v) each real f in L=(dm) is the pointwise almost everywhere limit of a bounded
sequence of functions in Re A. These hypothescs are satisfied if A4 is the algebra
of bounded analytic functions in the unit dise, if X is the maximal ideal space of the
algebra of bounded measurable functions on the unit circle, and if m is the measure
on X corresponding to Lebesgue measure on the circle. Hypothesis (iii) is satisfied
because of a theorem of Gleason and Whitney [35]. See Chapter 10. If one wants
the results just for Dirichlet algebras, the proofs can be shortened somewhat by first
proving Jensen’s inequality for functions in the algebra, using the proof at the very
end of this chapter. Jensen’s inequality for Dirichlet algebras was first proved by
Arens and Singer [5]. In fact, their proof shows that the Jensen inequality follows
from hypotheses (i), (i), and (iii) above. We should mention that hypothesis (v)
above is used only in the proof of the Szegd theorem, and all of the results enumer-
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ated on pages 55-56 follow from hypotheses (i)-(iv), except possibly result (4). We
shall see, in Chapter 10, other hypotheses which may replace (v) in obtaining
Szego’s theorem. As a sampling of some previous generalizations of function theory
in the unit disc, see Bochner [13], Mackey [57], Arens and Singer [6], and Wiener
and Masani [59]. Jensen’s inequality for Dirichlet algebras was first proved by
Arens and Singer [5]. The integrability of log |f| for certain rings of continuous
functions was proved by Arens [4]. For more about analytic functions which vanish
on a set of positive measure, one may consult the paper of Lusin and Privaloff
[56] or Privalofl’s book [70]. One result is if f is an arbitrary analytic function in
the unit dise, and if there is some set of positive measure on the circle on which
non-tangential limits of f exist and are zero, then f is identically zero.

EXERCISES

1. If u is a positive measure of mass 1 and f is a real-valued function in L'(dy),
prove that
exp [ [ fdu] < [ e/du
and equality holds if and only if f = 0 almost everywhcre du.

2. Let f be a non-zero function in H. Prove the equivalence of these two prop-
erties of f.

(a) log [fO)] = 5= [ tog1®)lde.

(b) f(z) = Nexp [511—‘_ /' 0 + zlog |f(0)[d0] where A is a constant of modulus

wel —
1 (such an f is called an outer function).

3. Let p be a finite positive Baire measure on the unit circle and suppose 1 is
not in the L*(dp) closure of Ao, the analytic functions with continuous boundary
values which vanish at the origin. Let F be the orthogonal projection of 1 into the
L*(dy) closure of Ag and let G = (1 — F)7. Prove the following.

(a) Gisin II?; G is an outer function (Exercise 2); G(0) = 1.

(b) The absolutely continuous part of u is

=% ae
dpa = 5- |GPdo,

where k = inf f|] — flPdp.
f€ Ao
(c) If E is a Baire set such that p, lives on E and p, (the singular part of u)
lives on the complement of E, then the characteristic function of E is in H*(du),

the closure of A in L*(dp).
(d) With reasonable conventions

Hdp) = H*(dpa) © LA(dp.).

4. Let p be a finite positive Baire measure on the unit circle. Prove the equiva-
lence of the following,.

(a) 1is not in the L*(du) closure of Aj.

(b) H¥(dp) # L*(dp).
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(¢) If we norm 4 with the L?(du) norm, evaluation at the origin is a bounded
linear functional on A.

(d) For each z in the open disc “evaluation at 2" is a bounded linear functional
on A, using the L?(du) norm on A.

(e) For each function f in H2(du) there is an analytic function g in the unit disc
(which is the quoticnt of two ordinary H? functions) such that the non-tangential
limits of g agree with f almost everywhere with respect to Lebesgue measure.

6. For each a, |a] < 1, evaluation at « is a bounded linear functional on the
Hilbert space H2. This functional is, therefore, “inner product with” some funetion
in H2. Which function?

6. Use Szegd’s theorem to prove the following. If f is a function in L2 of the
circle, then the functions e™%(6), n = 0, span L? of the circle if and only if

(a) fdocs not vanish on a set of positive Lebesgue measure;

(b) log |f| is not Lebesgue integrable.

7. Let p1 and p, be positive measures on the circle. In each of the L2 spaces
we complete the polynomials in 2, arriving at the Hilbert spaces H2(du,), H(dps).
On each of these spaces we consider the linear operator “multiplication by z.”
Prove that these two multiplication operators are unitarily equivalent if and only if

(a) w1 and . are mutually absolutely continuous.

(b) the functions log (du;/d6), j = 1, 2, are either both Lebesgue intcgrable or
both not Lebesgue integrable.

8. Let f be in L? of the unit circle C, 1 < p < =, and dcfine g in the open unit

disc by
L[N
9(z) = 2m'/c>\ —Z ™
Is g in HP?

9. Prove that for any f analytic in |z| < 1 the L? norms

o= [ \fre)|ra0
are increasing in r.

10. If 7 is a conformal map of the disc onto the disc, does f(z) — f(7(z)) map H?
into itself?

11. Consider the torus T = {(¢?, ¢*¥)} and Lebesgue measure dm = 4—11r—2d9dlll

thereon.

(a) Prove that the functions e**, ei*¥ are an orthonormal family in L*(dm).

(b) Find a Fejer kernel, giving the Cesaro means of the Fourier series for a
function in L(dm). Prove the analogue of Fejer’s theorem, the completeness of
the functions in part (a), ete.

(¢) Choose an irrational number « and let 4 consist of all continuous functions
of the torus whose Fourier coefficients ax vanish for & 4+ na < 0. Prove that A is
a Dirichlet algebra on torus.
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(d) Show that the F. and M. Riesz theorem is false for A. That is, let Ao be
the set of functions in A which vanish at the origin:

fT fdm = 0.
Then show that the measure u defined by
Jotin = [ e e —iya, - feCD

is singular, non-zero, and orthogonal to Ao.



CHAPTER 5

FACTORIZATION FOR
H> FUNCTIONS

Inner and Outer Functions

Suppose f is a non-zero function of the class H! on the unit disc. Then
f has non-tangential limils at almost every point of the unit circle:

J(¢®) = lim f(z)
z2—eid
and
fre®) = 2 / " f(e)Py(6 — t)dt
2w J-= T )
Also, log |f(e**)| is Lebesguc integrable. Let

FG) = oxp | 5= [7, G2 log If(e®)ldt |

—re?® — 2
Then F is an analytic function in the unit dise. Also, F is in /' because

o= [ \FGenldn < 5= [T |felde.

This results from the fact that |F| = e¥, where u is the Poisson integral of
log |f|. Clearly, |F| = |f| almost everywhere on the unit circle. Of course,
F has no zeros in the open dise, and

log [F(re®)] = 5= [ log |1(e®)| P20 — D)t
Thus, |F(z)] = |f(2)| for each 2z in the open disc. For
log |/(re®)] = 5 [, log |5(¢)|P.(® — )t = log [F(re?)].

This inequality is just an application of Jensen’s inequality as we proved
it in the last chapter, but using the measure

1
dm = é;P,(B — t)dt
61
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instead of L di. 1t is just the statement that log |f| is subharmonic; i.e.,
27

lies everywhere below the harmonic function log |F|, which has the same
boundary valucs as log |f].
Let us look at the function

g9(2) = @),

F(z)
Now g is a bounded analytic function in the open disc; indeed,
<
Ig(z)l P(Z) 1

in the disc. Also, |g(¢#)| = 1 almost everywhere on the unit circle. Thus
we have f as the product f = gF of a bounded analytic function of modulus
one on the boundary and an H* function F of a rather special type. It will
be convenient for us to make the following definitions.

An inner function is an analytic function g in the unit disc such that
[g(2)] £ 1 and |g(e®?)| = 1 almost everywhere on the unit circle. An outer
function is an analytic function F in the unit disc of the form

F@) = nexp |5 [7 G200 |

(5'0

where £ is a real-valued integrable function on the circle and A is a complex
number of modulus 1. It is casy to see that such an outer function F is
in H' if, and only if, ¢* is also integrable; when F is an outer function in H!
we have necessarily
k(0) = log [F(c®)| a.e.
The following characterizations of outer functions are uscful.

Theorem. Let F be a non-zero function in H'. The following are equiva-
lent.
() F s an ouler function.
(i1) If f is any function in H' such that |f| = |F| almost everywhere on
the unit circle, then |F(z)| 2 |{(2)| at each point z in the open unit disc.

(i) log [FO)| = 57 [, log |F(e®)|ds

Proof. We gave above the proof that (i) implies (ii). On the other hand,
if (ii) holds, let G be the outer function

G(2) = exp [211r /' e+ zlog |F(e")|d0]

- etﬂ

Then |F(2)| < |G(2)| £ |F(2)| onthe disc. Thus, F/G is analytic and every-
where of absolute value 1. So F = AG where [A] = 1, proving that F is
an outer function. Obviously, (iii) holds for any outer function in /1*. Sup-
pose that (iii) holds. Define G as above, and we see that F/G is bounded
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by 1 in the disc and has absolute value 1 at z = 0. Thus //G =}, a
constant of modulus 1.

Theorem. Let f be a non-zero function in H'. Then f can be wrillen in
the form f = gF where g 1s an inner function and F is an ouler function.
This faclorizalion is unique up to a constant of modulus 1 and (of course)
the outer function F ¢s in HL.

Proof. As we observed above, if

F(2) = exp [Ql; /' ¢ + zlog If(e")ld()]

—rc? — 2

then I is an outer function in II', and f/F = ¢ is an inner function. If we
also have f = g:I, with g, inner and F; outer, then |F| = |Fi| on the
boundary. Clearly, then, F = \F; for some number A of modulus 1. So
)\gll’wl = glFl and 0= Ag

Blaschke Products and Singular Functions

We are now going to factor each inner function into a product of two
more specialized inner functions. The first of these will be a Blaschke
product, to take care of the zeros of the given inner function. The second
factor will be determined by a singular measure on the unit circle.

Theorem. Let f be a bounded analylic function in the unit disc and
suppose £(0) £ 0. If {an} is the sequence of zeros of f in the open disc, cach
repeated as oflen as the multiplicily of the zero of f, then the product TI |ow|

n

18 convergent, that 1s,
21— |aa]) < oo,

Proof. Suppose |f] < 1, for convenience. Of course, f may have only a
finite number of zeros, and then there is no question of convergence of their
product. Otherwise, f has a countable number of zeros: a1, a3, as, . . . and
we are going to prove that the infinite product

0
H Ianl
n=1
converges.

Let B.(2) be the finite product:

noZ— o
B,.(z) - ],1.:.11 1 — @z
Now B.(z) is a rational function, analytic in the closed unit dise, and
|Ba(e®)| = 1, since each of the functions
2 — o
1-— te 7%
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is of modulus 1 on the unit circle. Furthermore, f/B, is a bounded analytic
function in the disc. Since

[f(e™)]
| Ba(c®)]

we have |f(z)| < |Ba(z)| on the disc. In particular,

= |feM] =1, ae.

0 < |f(0)] = |B.(0)] = kI:II o

Since |ax| < 1 for each %, and since cach of the partial products ﬁ [ ot
k=1

is not less than [f(0)], the infinite product converges, completing the proof.

What we have in mind here is to form an infinite product from the
zeros of f, thus obtaining a function by which we can divide f to arrive at
a function with no zeros. Thus one would hope that the infinite product

2 2z — an

nI=I 11 — anz
should converge; however, it neced not. Fortunately, if we simply rotate
the nth term in the product by —&,/|a.|, the new infinite product does

converge.

Lemma. Let {an} be a sequence of non-zero complex numbers in the open
unit disc. A necessary and sufficient condition thal the infinite product

Qp Qp — 2

n=1 Ia,.l 1 — anz

should converge uniformly on compact subsels of the disc is that the product
11 |an| should converge, i.e., that

S (A - |ax]) < oo.

n=1
When this condition is satisfied, the product defines an tnner function whose
zeros are exactly oy, as, . . . .

Proof. Let us first prove the last statement. Form the partial products

ay o — 2

B =1 100 T = 2z

Each B, is analytic in the closed unit disc and has modulus 1 on the unit
circle. If the sequence {B,} converges uniformly on compact subsets of
|z2| < 1 to a function B, it is clear that B is bounded by 1 and is analytic
in the interior of the unit disc. Of course, uniform convergence of the
infinite product means more than uniform convergence of the B,. It
means that on each compact subset of the open dise at most a finite number
of the factors in the product have a zero, and that when these factors are
removed the partial products of the remaining infinite product converge
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uniformly to a function without zeros on the compact set. Uniform con-
vergence of the infinite product on compact sets certainly yields a bounded
analytic function whose zeros are a, oz, .... In particular, this con-
vergence implies

2 (1= ) <.

Now suppose the a, satisfy this last condition. Certainly, then, no more
than a finite number of factors in the infinite product can have a zero on
any given compact set. We wish to establish uniform convergence of the
product on each closed disc |z| < r < 1. Let

50 = () s

1= fule) = [I—J——‘ﬂ]u—i—

!a,. 1 - 'anl

_ 1 — |oul [1 + |an) _ 1].

|ta) 1 — an2

1= fu()| = ——l—L[ -+ 1]

Since 2 (1 — |aa]) < ®, we see that Z |1 — f.(2)| is uniformly summable
on |z| = r, and hence that the product II f.(2) is uniformly and absolutely
convergent on that disc.

The convergence of the infinite produet, if it is assumed that
2 (1 — |an]) < =, has another proof which is interesting and should be
mentioned. This proof also shows easily that the product is an inner
function. Let B, be the nth partial product as above. It is then casy to
see that {B,} converges in H? on the circle. For

Then

If |2] < r, then

1 x 1 -
2r /-, |Bw — Bultdb = 5 f_, [|Bul + |Bal? + 2 Re B.Bn]dd.

Since each B; has modulus 1 on the cirele,

|Bml2 = anP =1 and Bm — l;‘__
Thus
1

1 (+ Ba,7
21[ |Bnm —B,.|2de_2[1 Rez—ﬂ_f_rzdﬂ]

If n > m, then B,/B,, is analytic and

-211;.[ _do - (g'—:)(O) - k-Ijﬂ o
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Thus
1 = kd
5= [ 1Bn— Bulrds = 2 (1 Y |a,,|)

Since the infinite product IT |ax| converges, we see that B, — B in H2
This L* convergence on the boundary easily yields uniform convergence
of B, to B on compact subsets of the disc. A subsequence of the I3, con-
verges pointwise almost everywhere to B on the circle, from which it is
clear that B has modulus 1; i.c., B is an inner function.
A Blaschke product is an analytic function B of the form
Bo =~ 1 [& =52

n=1 Ian‘ ' 1 - (_1,._2

where
(A1) p, py, De, - . . are non-negative integers;
(ii) the a, are distinct non-zero numbers in the open unit disc;
(iii) the product IT |aa|™ is convergent.
n

We have just seen that such a product converges uniformly on compact
sets and that the only zeros of B arc a zero of order p at the origin and a
zero of order p, at an.. Of course, if p = 0 or p. = 0, the corrcsponding
term in the product may be deleted so that one retains only the factors
which give rise to zeros. The only rcason for allowing the orders to be 0
is to have one unified definition of Blaschke product.

Theorem. Let f be a non-zero bounded analytic function in the unit disc.
Then £ is uniquely expressible in the form f = Bg where B is a Blaschke
product and g 18 a (mecessarily bounded) analytic function without zeros.

Proof. Since f # 0, we can write f(2) = 2?h(z) where h(0) £ 0. Let B
be the product of 2z and the Blaschke product formed from the zeros of .
Then ¢ = f/B is analytic and bounded in the disc. The factorization
f = By is unique, since a Blaschke product is uniquely determined by its
Zeros.

Suppose we apply this last theorem when f is an inner function. Then
we shall have f = Bg, where B is a Blaschke product and ¢ is an inner
function without zeros.

Theorem. Let g be an inner function without zeros, and suppose that g(0)
18 positive. Then there 18 a unique singular posttive measure p on the unit

circle such that
#
06 = exp [ - [ GEEduo) |

Proof. Since g is analytic in the disc and has no zeros, g = ¢~*, where &
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is an analytic function in the dise. Since g is bounded by 1, the real part

of & must be non-negative on the disc. Let A = u + ¢v so that u = 0.

The non-negative harmonic function u is uniquely expressible in the form
u(re®) = [ P,(8 — t)du(t)

where p is a positive measure on the circle. Since g(0) > 0, we have

v(0) = 0 (or, at least, we may assume so by subtracting 2kx? from k). Thus,

o) = [ z: 2 4ue).

Now |g| = 1 almost everywhere on the circle. Since |g] = ¢~*, this just
means that the non-tangential limits of © must vanish almost everywhere

on the circle. But these non-tangential limits are equal to 2]—1 %% So u is

singular, and that completes the proof.

One important part of the above proof is the fact that if & is an analytic
function with valucs in the right half-plance and h(0) > 0, then

he) = [ G du(o)

e? — 2

for some positive measure p on the circle. This is usually known as
Herglotz’s theorem. It is equivalent to the theorem that a non-negative
harmonic function in the disc is the Poisson integral of a positive measure,
this also being known as Herglotz’s theorem.

Let us call an inner function without zeros which is positive at the
origin a singular function.

The Factorization Theorem

Theorem. Letf = 0 be an H! function in the unit disc. Then f is uniquely
expressible in the form f = BSF, where B is a Blaschke product, S is a
singular function, and T is an outer function (in HY).

Proof. We know that f = gF, where g is an inner function and F is an
outer function, and that this factorization is unique up to a constant
multiple of modulus 1. 1f B is the Blaschke product formed from the zeros
of g (i.e., the zeros of f) then ¢ = BS, where S is an inner function without
zeros. By multiplying g by a constant of modulus 1, we can arrange that
S(0) > 0, i.e., that S is a singular function. We then absorb that constant
into the outer function F, and we are done.

Let us make a final description of the factorization f = BSF. Let p be
the order of the zero of f at the origin, and let a4, as, . . . be the remaining
zeros of f, the multiplicity of a, being p,. Then
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B(z) = zv ﬁ [E-, o an ——_z ]pn

n=1 anl 1 - Qn2

Pe) = exp | 5 [, G2 og f(e")] + iyt |
where a = arg (f/B)(0); and then
oy — @) e’ + 2
8@ = gore = p[ f(, d‘”(e)]

for some positive singular measure p. From this one can deduce, among
other things, a generalized Jensen formula. If f(0) 5= 0, then

3z |7, 08 1(c)1d0 = 1og |10)] + 2 p log sl + [ ds.

If f is analytic in the closed disc, then the “singular part” of f is zero, B is
a finite Blaschke product, and one has the usual Jensen formula.

Of course, we shall call /¥ the outer part of f and B-S the inner part of f.
We know that F is in H' and that B and S arc bounded. One should also
note that Blaschke products and singular functions are analytic in 2 much
larger region than the open unit dise. For emphasis, we might state these
as theorems.

Theorem. The Blaschke product whose zeros are
a, a0, .., 0<|a| <1

converges at all points z in the complex plane except those in the compact set K
consisting of

(1) the poinis z = 1/a,;

(ii) the points z on the unil circle which are accumulation points of the
sequence {an}.

The convergence vs uniform on any closed set in the plane which is disjoint
from K, and the product B(z) is thus analytic off K.

Proof. On any closed set disjoint from K, the numbers |1 — @&.z| are
uniformly bounded away from zero. The same estimates used for conver-
gencc in the disc then apply.

We should remark that B(z) has a pole at each 1/a,, and has an es-
sential singularity at the accumulation points of the a,. In particular, B
cannot be extended continuously from the interior of the disc to any such
accumulation point, for the extended value of B would have to be zero,
while the non-tangential limits of B are of modulus 1 almost everywhere.

Theorem. If S is the singular function determined by the posilive singular
measure u, then S 18 analytic everywhere in the complex plane except al those
points of the unit circle which are in the closed support of the measure p.
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The function S (or even |S|) s not continuously extendable from the interior
of the disc to any point in the closed support of p.

Proof. The closed support of p is the complement of the union of all
open sets on the circle which have p-measure zero. Let K be this closed
support set. If z is not in K, then the function

he) = [ 52 duto)
is analytic at z with derivative
, 9pid
h'(z) = /((:T——z)zd“(ﬂ)'

S = ¢ " is analytie off K. This has nothing to do with the fact that p is
singular.

Suppose we have a point e® on the circle such that |S| extends con-
tinuously to this point. Certainly, then, |S(¢®™)| = 1, so Re h must be
bounded near this point. That is, there is a positive 6 such that Re h(re?)
is bounded for |0 — 6y < 6. Let « = Re h so that

u(r, 0) = [ P8 — t)du(?). _
Let g, be the restriction of w, to the interval |6 — 6| < 5, and then {g,}
is a bounded family of continuous functions on that interval. Thus, there
exists a bounded measurable function g which is a weak-star cluster point
of this family. Let F be any continuous function on the circle which
vanishes off the interval |6 — 6,) < 8. Then

.1 s
lim 5~ ]_1 FO)u(r, 0)d0 = [ Fdp

r—l]

and the integrals

1 Oo+5

5 [ F(O)ulr, 0)d8
cluster at

1 [oots

37 I I’(0)gg0)d0

Since I vanishes for |6 — 6, > 5, we see that the last integral must be
equal to [ Fdp. Since this holds for all such F, we sec that the restriction
of uto |0— 6] <3éis absolut(,ly continuous with respect to Lebesgue

measure on that interval and E = zl g. Since u is singular, g = 0 and

¢ is not in the closed support of p. That completes the proof.

Theorem. Let f be a function in H. Then f is in H?, 1 S p £ o, if
and only if the ouler part of f s in Hr. If { 1s continuous on the unit circle,
s0 18 the outer part of 1.
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Proof. The statement about H? functions is obvious. Suppose f is con-
tinuous on the circle. Let K be the closed set of points on the circle at which
f(e®) = 0. Let f = BSF be the canonical factorization of f. Certainly,
every point of accumulation of the zeros of the Blaschke product B is
contained in K, so B is analytic (and non-zero) at every point of the circle
which is not in K. The outer function

FG) = exp - [7 S og |1 (e%) | + ia)ao]

is continuous (and zero) on K because |F| = |f|. Since |F| and B are con-
tinuous off K, so is |S|. By the last theorem, then, the measure p which
determines S must have its closed support contained in K. Consequently,
S is analytic off K. It follows that F = f/BS is continuous off K, and hence
that F is continuous on all of the circle.

Absolute Convergence of Taylor Series

This is a short section which contains two interesting theorems. One
is the theorem of Hardy and Littlewood which states that if a function in
H! is of bounded variation on the unit circle then the Taylor series for the
function is absolutely convergent. The other is Hardy’s theorem on the
growth of the Fourier cocfficients of an H' function. We treat the latter
theorem first.

The Ricmann-Lebesgue lemma states that the Fourier coefficients of
an integrable function tend to zcro. For H! functions, one can say much
more.

Theorem (Hardy). Let f be a function in H* with power series

2 Q2.
n=0
Then
=1
2 lal < sl
Proof. First supposc thata, = 0,2 =0,1,2,.... Then
Im f(re?) = §1 a,r" sin nf.
Since
L [* (x — 6) sin ndd = 2
o r sin ”
we obtain
> l _]_ T i
”2_31 5 0™ =5 Jo (= — 6) Im f(re®)do

<1 A >\ fre®)ldo = |||
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Let r tend to 1 and we have what we want, assuming that a, = 0. For the
general f write f = gh where g and h are the H? functions defined by

_B(L) ho (L)
g = B ( B ’ h = B )
and B is the Blaschke product of the zeros of f. If

g(z) = 3 bu"
n=0

then by the Riesz-Fischer theorem the functions
G(z) = Z |balen
II(Z) =2 lC,.lZ"
are also in Hz; in fact,
lIGll: = llgll: and [[H|l2 = |[h][2.
Let F = GH. Certainly, F is in H', and
F(z) = Eo An2™

where @, = 0. It is also apparent that |a.| £ @. By the first part of our
proof
2 Ll = = Las < llFll
n=17 n=1M
But
1F]l < 1IGll2 [|Hle = lgllz [[Rll2 = [If]lx

and we are done.

Theorem. Let f be a function on the unit circle which is both of bounded
variation and in H'. Then

(1) f 7s an absolutely continuous function;

(ii) the Fourier series for f is absolutely convergent.

Proof. Since f is of bounded variation, the Fourier coefficients of f are
. N —ind =,7’__1_ ¥ o—ing
an =5 [T SO0 =% - o= [7 edf(0) (n = 0).

In particular, df is analytic. By the theorem of F. and M. Riesz, df is

absolutely continuous, i.e., df = gdf, where g is in H'. Thus a, = :—‘b.,
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where b, is the nth Fourier coefficient of g, n = 1,2, 3,. ... By the last
theorem

© o 1
z ‘an[ =2 - |bn| < o,
n=1 n=1"M
That completes the argument.

Remarks on the Classical Approach

Let us make a few remarks on the more standard approach to the theo-
rems of this and the last chapter. Having defined the classes H? in the
unit dise, p > 0, one can proceced directly to disposc of the case p > 1.
We did this by using the weak-star compactness of the unit ball in L2,
Needless to say, the case p = 2 is much more easily disposed of ; for if

/@) = T aur
n=0

then
1 x

27 J-

e = 3 fanfere

So if f is in H?, we let r — 1 and conclude that {a.} is square-summable.
By the Riesz-Fischer theorem, the a, are the I'ourier coefficients of an L2
function on the circle, and it is apparent that f is the Poisson integral of
that function. One can then prove Fatou’s theorem as we did, obtaining
non-tangential convergence almost everywhere of f to its boundary values.
If our function f happens to be bounded, the non-tangential convergence
makes it apparent that the boundary values of f define a bounded measur-
able function. This settles at least H* and H? as far as the boundary value
theorems are concerned.

For any p > 0 and any analytic f, it is relatively easy to show that the
L7 norms of the functions f,(6) = f(re®) are increasing as r — 1. From this
one can see, for an f in H?, that the infinite product of the moduli of the
zeros of f converges. Thus, any fin H? is of the form f = Bg, where B is a
Blaschke product and g is a function in I/» without zeros. Since g has no
zeros, g*/? is analytic and is in [J2. Thus, g*/? has non-tangential limits
almost everywhere. Consequently, such limits also exist for

f = B(gr?)¥».
In particular, if f is in H', we have
f=(BVg)Vyg
i.e., f is the product of two H? functions. We thereby obtain the theorem

of F. and M. Riesz that every function in H! is the Poisson integral of
an L' function on the circle, that L! function being the product of the

boundary values of BV and those of V/, g;
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The boundary valucs of a function in H? define an L? function on the
circle, and for any p = 1 the Poisson integral of this function is f. Of
course, one would not expect such an integral representation for p < 1.
The integrability of log |f(¢®)| for f in II? is fairly easy 1o obtain. If one
defines for A = 0

logt h = max [log h, 0]
log= h = min [log h, 0]

one has the following. Since log x < 2= for large z and a given positive e,
it is easy to see that for any f in H” the integrals

1 [« .
—_ + 0
o /_rlog |f(re®)|do
are bounded as r — 1. By the classical Jensen inequality
1 (- + i 1 (- — (et
5o [ logt |re®)ldo + 5= [ og~ |[(re*)|dd 2 log |(0)].
Assuming f(0) # 0, one sees that the integrals
1 (= o
= N
> /_r log | f(re®)|do

are bounded as r — 1. From this the integrability of log |f(¢®)| is rather
casy to obtain.
The factorization theory for H' may now proceed as we did it above.

Functions of Bounded Characteristic

The factorization we have given for H? functions generalizes to the
class of functions of bounded characteristic, i.e., meromorphic functions
which are the quotient of two bounded analytic functions. If f = g/h,
where g and & are bounded analytic functions with A not identically zero,
it is apparent that f has finite non-tangential limits at almost every point
of the circle. Suppose we write g and h as products of Blaschke products,
singular functions, and outer functions, say ¢ = ByS;0,, h = BuSyOn. The
quotient 0,/0; has the form
* e? 42

-re? — 2

A exp {51; k(o)do}

where A is a scalar of modulus 1 and
k = log lg| — log |h| = log |fl.

It is, therefore, an outer function (though not necessarily in H*).
The quotient S,/S: has the form

exp { / ()': J_r zdu(ﬂ)}

€
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where u is a real singular mecasure; i.e., p = ps — p, where these are the
positive singular measures going with h and g.
We conclude that every function of bounded characteristic has the form

1(2) =)\§1Ez;cx {[“ +2d(0)}

where p is a real measure on the circle, and B, and B; are Blaschke products.
The absolutely continuous part of p will be 2]—” log |f|df. We could also ar-

range that B; and B; have no common factor, and then the representation
is easily seen to be unique.

Of course, an H” function is the quotient of two bounded analytic
functions. It suffices to show this when f is an outer function in H». Then
f is the quotient of the bounded outer functions determined by log— |f]
and —logt !f].

Functions of bounded characteristic are characterized by the property
that the integral of log* |f| around the circle of radius r is bounded as
r — 1. For this result, we refer the reader to Nevanlinna’s book, Eindeulige
Analytischen Funkiionen.

NOTES

The factorization for H» functions should probably be attributed to Riesz [71],
and Herglotz [45]. In the generality of functions of bounded characteristic, the
reference is Nevanlinna [64]. A good reference for some of the fundamentals
is Beurling’s paper [8], in which he coined the terms inner and outer func-
tions. See also Rudin [75], Zygmund [98], Bicberbach [9], Privaloff [70]. The
theorem on absolute convergence of Fourier series is in Hardy-Littlewood [41].
See Zygmund [98], as usual, for related questions. For a similar factorization of
matrix-valued H? functions see the papers of Masani [58], Wicner and Masani
[569], and Potapov [69].

EXERCISES
1. Prove that

2 eiu’
n=ilogn

is not the Fourier series of a finite measure on the circle.

2. Use the Hardy-Littlewood theorem to prove that the Taylor series about
the origin for (1 — 2)'2 is absolutely convergent in the disc.

3. Prove that a bounded analytic function in the right half-plane which vanishes
at each positive integer is identically zero.

4. Let f be a function in H' and suppose that the functions 2f, n = 0, span H".
Prove that f is outer.
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6. Let F be an outer function in H%. Suppose f is in H' and f/I is integrable
on the unit circle, |2| = 1. Prove that f/F is in H'. Show that this property charac-
terizes outer functions F.

6. Let f be an analytic function in the unit disc. Prove that f is a (constant of
modulus 1 times a) Blaschke product if and only if

() |fG)] =1

(b) lim f ™ log |f(re®)|d6 = 0.

r— -7

7. Can a Blaschke product be extended continuously from the open unit disc
to any point on the circle where its zeros accumulate?

8. Let |a| < 1 and let ¢ be the lincar fractional map

z—a

¢(Z) - 1 — (_XZ.
Then ¢ induces a map f — f o ¢ on the space of analytic functions in the disc.
Does this map preserve the class H'? The class of inner functions? The class of
outer functions in H'?

9. Let f be a bounded analytic function in the unit dise, and suppose there is a
positive number 6 such that

I — 2| + |f(2)] 2 0.
Prove that there exist bounded analytic functions g and A in the disc so that
(1 = 2)g) +f@hz) =1, |z <1.
(Hint: Show that one can choosc k so that fh extends to be analytic in a neighbor-
hood of z = 1 and has the valuc 1 at z = 1.)

10. Let f be an analytic function in the unit dise. Prove that f is the quotient
of two bounded analytic functions if and only if

[j log* |f(re®)|do

is bounded as r — 1. (Hint: Use the log* condition to prove the Blaschke product
of the zeros of f converges; write f = Bg and get g in the class logt. Write g = €*
and see what g in log* says about h. Details are in Nevanlinna [64].)

11. Let f # 0 be an analytic function in the unit dise, and suppose f is in II'.
Assume you know nothing about H! except its definition. Norm H* by

Iflls = tim 5= [7 | ftre®)1do

= 1 (- 0
or 171l = sup 5 [ 15(relae.

Prove that evaluation at the origin is bounded on I, i.e.,

170)| = KIfl]x.
Now let a4, o, . . . be the zeros of f in the open dise which are different from 0
and show that the argument we applied to bounded functions proves the con-
vergence of IT |a|.
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12. Let f be a function in H. Prove that either of these conditions implies
that f is an outer function:

(a) 1/fisin H1.

(b) Ref(z) > 0for |2] < 1.
If  is inner, prove that 1 + f is outer.

13. Let S be the singular function determined by the positive singular measure
g. Let X be any point on the unit circle which is in the closed support of u. Prove
that there is a sequence of points z, in the open disc such that

limz, =X and lim S(z,) = 0.



CHAPTER 6

ANALYTIC FUNCTIONS WITH
CONTINUOUS BOUNDARY VALUES

In this chapter we shall be studying the algebra A of continuous functions
on the closed unit dise which are analytic on the open disec. There are
various alternative deseriptions of A. For example, A is the uniform closure
of the polynomials p(z). Or, if we identify each function in 4 with its
boundary values, A consists of the continuous functions on the unit cirele
whose Fourier coeflicicnts vanish on the negative integers. Beyond the
polynomials, the most obvious functions in A are those which have an
absolutely convergent Taylor series

Jz) = > a.z", 3 las] < .
n=0 n=0

Such functions do not exhaust A, since A also contains, e.g., the functions
which are sums of uniformly (but not absolutely) convergent Taylor series.
We proved in the last chapter that any function in A which is of bounded
variation on the unit circle necessarily has an absolutely convergent Taylor
series.

The main point of this chapter is to give the complete description of
the closed ideals in 4. This description will make heavy use of the factori-
zation theory of the last chapter, as well as some new material we shall
develop in this chapter. Before we begin to discuss the ideal theory, we
want to make a few observations about functions in 4.

If f # 0 is a function in A, we know that the function log |f(¢?)] is
Lebesgue integrable on the unit circle. In particular, if K is the (closed)
sct of zeros of f on the circle, then K has Lebesgue measure zero. We shall
need a converse for this, namely, if K is an arbitrary closed set of Lebesgue
measure zero on |z| = 1, then there exists a function in A whose zcros
on the closed unit disc are precisely the points of K. This is a result of
Fatou, which we shall soon prove; indeed, we shall prove Rudin’s gencrali-
zation of the result which says that, given any continuous complex-valued
function g on K, there is a function f in 4 such that f = g on K. For these

77
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constructions we need to know a little about the behavior of conjugate
harmonic functions on the boundary.

Conjugate Harmonic Functions

Suppose f is a Lebesgue-integrable function on the circle. For conven-
ience, let f be real-valued. The function

1 ks e“’ + 4
he) =52 7 G foyde
is analytic in the open dise. The real part of A is the Poisson integral of f.
Thus we know that if A = w + v, the harmonic function % has non-
tangential limits which exist and agree with f almost cverywhere on the
circle. What about the harmonic conjugate »? In other words, if

o, 0) = 5= [7 10 = D@0t

where Q, is the conjugate Poisson kernel,

1 + reit 2rsint
&) = Im— reit 1 —2rcost 4 r?

docs v have non-tangential limits almost everywhere? If so, what are they?
Now @, is obviously not an approximate identity (positive kernel) like P,.
Nevertheless, the non-tangential limits do exist almost everywhere for ».
This is easy to see. 1t certainly will suflice to prove this when f = 0. If
we assume that f = 0, the above analytic function & has non-negative real
part. Thus, ¢~*is a bounded analytic function. Thercfore, ¢~®“*+® has non-
tangential limits at almost cvery point of the circle, and since these limits
cannot vanish on a set of positive measure, both « and » have finite non-
tangential limits almost everywhere.
This does not answer the question of what the limits are. Since

: _ __sint .,
lim Qu(t) = Qi(t) = [ gory = ctn ¥

one’s guess would be that
: 1 [+ .
111111 u(r, 0) = o /_'f(a — 1) ctn 1t dt.

This is the answer. Since
o, 0) = 5= |7 10 — DR
= —5- [T 50 + D0
__ 1 r=fo+t —f6—-1
T 2r _[—r 2 Q:(t)at
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we are asserting that, as r — 1, v(r, 6) approaches
L f0)—fO-1)

27 )= 2 tan 3t

almost everywhere. In particular, this integral exists for almost every 6.
Here we shall not give the whole story, proving only the sufficiency of the
existence of this integral.

Theorem. Let f be an iniegrable function on the circle and
1 x
o(r, ) = 5= [7 56 — D@L

If 6 s any number such that the tntegral

_ 1 = fO0+0—J06—10
v(6) = 21 J-= 2 tan it dt

exists, then lim v(r, 0) = v(0).
r—1

Proof. Let

_fe+t—f6-10
$olt) = 2 tan it

so that we are assuming ¢ is integrable. Now
1 (= 2r sin ¢ tan 3t
v(r, 0) — 0(0) = 2w J-= ¢°(t)[1 1—2rcost+ r’] a
1

_ L3 (1 - 1‘)2
T or /—r o(t) 1 —2rcost + r2 dt.

Now if
_ (1 —r)?
g-(t) = 1 —2rcost + r2

then0 < ¢,(f) < 1andlim g,() = 0,exceptatt = 0. Since ¢ is integrable,
r—l1

we must have [ ¢eg, — 0, i.c.,
lim »(r, 6) = v(6).
r—1

Corollary. If f is differentiable at 6 then
lim v(r, 6) = v(9)
r—l
extsts. If, say, f is continuously diflerentiable on a closed interval |0 — 6] < 3,

then on that inicrval the functions v. converge uniformly asr — 1.

Proof. The function ¢; is clearly integrable on any interval || = ¢ > 0.
If f is differentiable at 6, then ¢ is bounded as £ — 0, so ¢ is integrable.
If f is continuously differentiable on |§ — 6,| < 8, then we obtain a uniform
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-

bound on ¢ for 6 in the interval and ¢ small; it is easy to see that v(r, 6) is
uniformly close to v(6).

Theorems of Fatou and Rudin

The last corollary enables us to construct special analytic functions
with continuous boundary values.

Theorem (Fatou). Let K be a closed set of Lebesgue measure zero on the
unit circle. Then there exisls a funclion in A which vanishes precisely on K.

Proof. Let w be an extended real-valued function on the circle such
that

(i) w = — on K, and tends continuously to — as ¢* approaches K ;
(i1) w = —1 on the circle;

(iii) w is finite-valued and continuously differentiable on C — K;

(iv) w is integrable.

Such a w can be found since K has measure zero. One naive way to con-
struct such a function is the following. Since K is closcd, the complement
C-K is the union of a eountable number of disjoint open intervals (arcs) I,.
Let ex be the length of I,. Choose a strictly positive and continuously dif-
ferentiable function y, on I, such that y, = e, y, tends to zcro at the
endpoints of I,, and

/1. log yn = —2en.

If we define y to be zero on A and y = y, on I,, then 0 £ y < ¢7!; the
zeros of y are precisely the points of K; y is continuous on € and continu-
ously differentiable on C-K; and log y is integrable. Let w = log y.

Now define

_Lfretts
h(z) T 2 /—re"’ -2z

Then h is analytic in the open dise and Re h £ —1. By property (iii)
of w and the Corollary above, h is actually continuous on the complement
of K in the closed disc. Since w tends continuously to —e at each point
of K, the function

Re h(r, 6) = 51; [7 wPuo — vt

w(8)dh.

tends radially to —o for each 6 in K.
Now let

g=ﬁ.
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It is apparent that ¢ is in A, Reg =< 0, and the zeros of g on the closed
disc are cxactly the points of K. We rcmark that Re ¢ = 0 exactly on K.

Theorem (Rudin). Let K be a closed set of Lebesque measure zero on the
unit circle, and let F be any conlinuous complex-valucd function on K. Then
there exists a function in A whose restriclion lo K 1s F.

Proof. Assume K is non-empty. We can find a function f in 4 such

that
(1) fz) =1ifz€K;

(ii) |f(2)] < 1if zis a point of the closed disc not in K. Just construct
g as in the last theorem and let f = e*.

The idea of the proof is this. Using this function f, we prove that the
algebra of continuous functions on K which we obtain by restricting 4 to
K is uniformly closed (on K). Then we observe that this algebra of restrie-
tions is (uniformly) dense in the continuous functions on K.

Let A be any function in 4. Since f = 1 on K and |f| < 1 off K,

sup [k| = lim ||f"h]|

where (of course) |- - - || denotes the sup norm over the entire closed disc.
Each fh agrees with h on K. This means that f~h = h + g, where g is a
function in A which vanishes on K. We now have

sup |h| = inf ||k + gl|le, g€EA, g =0o0nK.
g

Let S be the subspace of functlions in 4 which vanish on K. Now Sis a
closed subspace of 4 and

sup [h| = :relg 1A + gllw.

The right-hand number above is the standard quotient norm for the
coset b + S of the subspace S. It is easy to verify that, if S is a closed
subspace of a Banach space A, the quotient space A/S is complete in the
quotient norm. We conclude that the restriction of A to K is uniformly
closed.

1t is quite easy to see that if K is any proper closed subset of the circle,
then the restriction of A to K is dense in the continuous functions on K.
Let Ax be the uniform closure on K of the restrictions of the functions
in A. By a rotation, we may assume that K omits the open arc |6] < a
on the circle. If z is a positive number greater than 1, then (z — z)~! is
in Ag, indeed, in A. Let zo be the infimum of the real numbers z > —1
such that (z — z)~! is in Ag. Claim: zo = —1. Suppose zo > —1. Then
we can find an z > zo and € > 0 such that x — 2o < ¢ but K lies outside
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the dise |2 — z| < eand (z — z)'is in Ax. Let w = (¢ — z)~? so that K
lies in the disc |w| £ 1/e. Now (z — zo)! is analytic on |w| < 1/e and is,
therefore, uniformly approximable on that disc by polynomials in w. We
conclude that (z — z0)™ is in Ak; indeed, we see by the same argument
that (z — ¢)~ is in Ax for any t satisfying |z — ¢| < e. Clearly, there is
such a real ¢ less than xo,. This contradicts the definition of z,. We conclude
that zo = —1; in particular, 1/Z = z is in Ax. By Fejer’s theorem, Ax
contains every continuous function on K.

We remark that the second half of the above proof (that is, that on a
proper closed subset of the circle every continuous function is a uniform
limit of polynomials) is a very old theorem which has a varicty of proofs.
The one we gave is one of the more elcmentary ones and is modeled after
the proof of Runge’s approximation theorem. Another interesting, but less
elementary, proof can be based on the theorem of F. and M. Riesz on
analytic measures. Suppose K is a proper closed subset of the circle; let
Ak be the uniform closure on K of the polynomials. Suppose 4x # C(K).
By the Hahn-Banach theorem there is a bounded linear functional on C(K)
which annihilates A but is not zero. In other words, therc is a non-zero
finite complex measure p on K such that [ pdu = 0 for every polynomial p.
According to F. and M. Riesz, any such measure on the circle has the form
du = fd@ with f in H'. Since u is supported on K, we see that f vanishes
on an oper: arc of the circle. Sof = 0 and x = 0, which is a contradiction.

We should also point out that Rudin proved more than we have stated.
He proved that if F is continuous on the closed sct of measure zero, K,
then there is an f in A such that f = F on K and f is bounded on the dise
by the maximum of F on K.

Bishop has generalized the Rudin theorem as follows. Let A be a uni-
formly closed algebra of continuous complex-valued funetions on a compact
Hausdorff space X (1€ A4). Let K be any closed subset of X with this
property: if p is a complex measure on X which is orthogonal to 4, the
total variation of u on K is zero. Then the restriction of A to K is C(K)
(without closing).

The Closed Ideals of A

As we said earlier, we wish to describe the closed ideals in 4. If R is
any ring, it is obviously of considerable interest to describe the ideals in R.
Needless to say, this is usually extremely difficult. If R is a commutative
ring with identity, one usually says that he knows the “ideal theory” of B
if he can answer such basic questions as the following:

(1) What are the maximal ideals of R?
(2) Is every proper ideal an intersection of maximal ideals?
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(3) What are the primary ideals of R, i.e., those contained in precisely

one maximal ideal?
(4) Is every ideal an intersection of primary ideals?

In a topological ring (or Banach algebra) such as our algebra 4, one
normally restricts his attention to closed ideals. The task of describing
just the closed ideals is usually insurmountable; however, for our algebra A
they can all be described very precisely. This ideal theory was first done
by Beurling, but he never published the results. Later, Rudin independ-
ently obtained the results (Canadian Journal of Mathematics, 1957).

Since A happens to be a commutative Banach algebra with a single
generator, it is quite easy to find the maximal ideals of A, if one is willing
to use the general result that, for any maximal ideal in a commutative
Banach algebra with identity, the associated quotient field is the field of
complex numbers. We shall comment on this later, but for now it is of no
particular aid to us, since the description-of the maximal ideals will soon
drop out of the general assault on the ideal theory.

If \ is a point in the closed unit dise, it is apparent that

{fed;50) =0}

is a maximal ideal in A. We shall soon see that there are no others. What
other closed ideals in A are there? Certainly 224, the set of functions in A
such that f(0) = f'(0) = 0 is a closed ideal. It is also primary, since it is
contained in the single maximal ideal {f; f/(0) = 0}. Thus, not every closed
ideal in A is an intersection of maximal ideals. There is an obvious exten-
sion of this example. Choose a sequence of points a, in the open disc and
a sequence of non-negative integers p., and let J be the set of functions
in A which have a zero of order at least p. at a,. Clearly, J is a closed
ideal. Of course, we may have J = 0. But if the a, approach the boundary
of the disc rapidly, if the p. are not too large, and if the a, do not cluster
on a set of positive measure on the circle, we shall have J = 0. For ex-
ample, if a, = 1 — 27 and p, = n, we have J # 0.

These are the obvious closed ideals in A: those determined by pre-
scribing orders of zeros at points in the open disc. From what we have
already done we can see that there are others. Let K be a closed set of
measure zero on the circle, and let Jx be the set of functions in A which
vanish on K. We know that Jx is a non-zero ideal (which is obviously
closed). There is another type of ideal which is more subtle. This is one
determined by the rate at which the functions in it tend to zero as z ap-
proaches the boundary. A simple example of this is the following. Let

F(z) = exp [: i_ i]
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Then F is not in A, but is an inner function. Indeed, F is the singular
function determined by the unit point mass at z = 1. Let M be the
(maximal) ideal of all functions in A which vanish at z = 1, and let
J = FM. Then J is a closed ideal in A. For if g is in 4 and g(1) = 0,
then Fg is in A, because F is analytic and of modulus 1 at every point of
the circle other than z = 1. Of course J is closed, because M is closed and
F is of modulus 1 almost everywhere. Furthermore, J # M because
(1 — 2)isnotindJ. If it were, (1 — 2)F~! would be bounded, which it is not.

Now we make a much more gencral type of closed ideal. Subsequently
we show that this is the only type.

Theorem. Let K be a closed set of Lebesgue measure zero on the unit
circle. Let F be an inner function such that

() of a1, s, . . . are the zeros of ¥ in the open disc, then every accumulation
point of the oy 18 in K;

(ii) the measure determining the singular part of T vs supported on K.

Let J be the set of functions of the form g, where g is a function in A
which vanishes on K. Then J is a closed non-zero ideal in A.

Proof. Let F = BS, where B is the Blaschke product with zeros
aj, ag, . . . and 8§ is the inner funetion determined by the positive singular
measure . Every accumulation point of the a, isin K. Thus, B is analytic
in the complement of K in the complex plane. The closed support of u is
contained in K. Thus, S is analytic on the complement of K. If g is any
function in A which vanishes on K, the fact that F is bounded makes it
obvious that Fg is in A. If J is the set of such functions Fg, certainly J
is an ideal in A. Also, J is non-zero, because the zero measure of K guar-
antees the existence of a g % 0 in A which vanishes on K. To see that J
is closed, argue as follows. Let {Fg.} be a sequence of functions in J which
converges to a function f in A. Then

|1Fgn — flle — 0,
and, sinee F is of modulus 1 on the circle,
”gﬂ - Fy”m -0

(essential sup on the circle). Thus, {g.} converges uniformly to Ff on the
circle. So Ff = F-'f = g, where g = lim g,. Clearly, fisinJ (i.e.,f = Fg).

Now we wish to show that every non-zero closed ideal in A has the
above form. To prove this, begin with such an ideal J and let K be the
closed set of measure zero on the circle obtained by intersecting the zeros
on the circle of all the functions in J. How do we produce the inner func-
tion F? F will have to be an inner function which divides every f in J.
Conscquently, F must divide the inner part of every f in J. Indeed, one
feels that F should be the “greatest common divisor”’ of these inner parts.
We need the following.
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If F and G are inner functions, we shall say that /" divides G if G/F is a
bounded analytic function. When F divides G, it is clear that G/F is,
again an inner function.

Lemma. Let § be any non-empty family of inner functions. Then there
18 a unique inncr function F with these two properties:

(i) F dwvides every function in .

(ii) If F, 2s an inner function which divides cach function in §, then Ty
divides F.

Proof. Let F = BS and Fy; = B,S; be inner functions. If F' divides F},
then clearly B divides B, i.e., every zero of F in the open disc (with

multiplicity) is also a zero of Fi. If F divides Fi, then clearly S must
divide S;. Now

, %(Z) =exp[f22f:(dn—dux)]

where u is the positive singular measure defining S and g, is the correspond-
ing measure for S;. Now 8:/8 is bounded if and only if p — 3 £ 0, i.e.,
if and only if gy = p.

Given the family &, the function F we are seeking is defined as follows.
The Blaschke product for F is the one formed from the common zeros of
the functions in §. The mecasure u for F will be the ‘“‘greatest’” positive
measure on the circle which is dominated by the corresponding measures
of all functions in §. If there is such a measure, we clearly have the F
we want.

All we need demonstrate is that any family of positive measures has a
greatest lower bound. This is casy to verify. If {u.} is such a family of
mcasures, the greatest lower bound of the p, is the measure p defined by

W(E) = inf 3 inf pa(E;)
P j=1 «a

where P ranges over all partitions of the set £ into the disjoint union of
Baire sets Ey, . . ., E.. Upon checking that u is a measure, we arc done.

Needless to say, we call F the greatest common divisor of the inner
functions in the family &.

Theorem. Let J be a non-zero closed ideal in A, and let K be the inter-
section of the zeros of the funciions in J on the unit circle. Let F be the greatest
common divisor of the inner parts of the non-zcro functions in J. Then J ts
precisely the set of functions of the form Fg, where g ranges over the functions
in A which vanish on K.

Proof. Virtually by definition, every function f in J has the form Fg,
where ¢ is in A and vanishes on K. Just let g be the quotient of the inner
part of f by F, multiplied by the outer part of f.
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If J denotes the set of functions in A of the form f/F with f in J, then
clearly J is a closed ideal in A which is contained in the ideal of all func-
tions vanishing on K. We are to prove that these two ideals are identical.
What this tells us is that we need only prove the theorem for the case
F=1

Assume that we have a closed ideal J in A, such that the greatest
common divisor of the inner parts of its non-zero elements is 1. Let K be
the common zeros of the functions in J on the circle, and let I = I(K) be
the ideal of all functions in A which vanish on K. We shall prove that
J = I(K). To do this, it will suffice to prove that any complex measure
on the cirele which is orthogonal to J is also orthogonal to I. This says
that, as closed subspaces of the continuous functions on the circle, J and 1
are annihilated by exactly the same bounded linear functionals.

Let u be a finite complex Baire measure on the circle such that u is
orthogonal to J:

[fdu =0, fedJ.
Fixing f in J, we have (since J is an idecal)
[zfdp =0, n=0,1,2,....

This means that fdu is an “analytic’’ measure. The theorem of F. and M.
Ricsz tells us that

1
Sfdu = o Hdo

where H; is in H'. Note that H; also vanishes at the origin.
Let

1
du = 2‘;¢d0+dﬂ.

be the Lebesgue decomposition for u (¢ in L' and g, singular). From above,
we see that fdu, = 0 for every f in J. Since the functions in J have no
common zero off K, this shows that u, is supported on K. We also have
associated with each f in J an H! function H; such that f¢ = H; almost
cverywhere. If f 5 0, this just says that ¢ agrees almost everywhere with
the non-tangential limits of the meromorphic function H;/f on the disc.
Among other things, we see that the meromorphic function H;/f (for f > 0
inJ) is independent of f. 1ff, g are in J and non-zero, we have H;/f = H,/qg
almost everywhere on the circle; hence,

gH; — fH, = 0 a.e. on the circle.
But gH; — fH, is in H'. Thus, this function vanishes identically on the

dise:
H,(z) _ Hy(2),
f(2) g9(2)
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Let us call this meromorphic function M. Note that M is actually analytic,
for we are assuming that the g.c.d. of the inner parts of the functions in J
is 1. At any point A in the open disc we have an f in J for which f(A) = 0.
Since M = H,/f, we sce that M is analytic at A.

We wish to prove that M is in H'. Since the non-tangential limits of M
agree with ¢ almost everywhere, this will show us that ¢ isin H*. Of course,
M may be 0, but that case requires no comment. If we choose a particular
f# 0in J (or use the fact that M is of bounded characteristic) and re-
member that M is analytic, we see that

M (z) = AB(2) exp [

i0
0“] i' : dp(o)]

where B is a Blaschke product and p is the real measure defined by

dp = 2l7rlog \M|d0 + dpy — dpa

= 5 log [61d8 + dpy — dps
™

p1 and ps being positive singular measures on the circle. For any fin J we
have fM in H'. This clearly means that, if u, is the measure defining the

singular part of f, u; = p1. But the inner factors of the f’s have g.c.d. 1,
80 py = 0. Thus

M(z) = \B(z2) exp [—/ z: -_l__ dpz:' exp [2]7 f' ¢+ zlog [¢[d0:|

rew

where ¢ is in LY, log |¢| is in L', and pe is a positive singular measure.
Thus M is in H*; i.e., ¢ is in H* of the circle. Of course, M also vanishes
at the origin, because cach H; does.

Now let & be any function in A which vanishes on K. Then

[ hdu = 5- [ hado + | b,

Since ¢ is in H! and vanishes at the origin, the first integral is zero. Since
s is supported on K, and since h vanishes on K, the second integral is
zero. That completes the proof.

Corollary. Every maximal ideal of A is of the form
M\ = {feA;f(\) = 0}
for some point \ in the closed unit disc.

Proof. First, we need to observe that if J is any proper ideal in 4,
the closure of J is a proper closed ideal in A. The closure of J is clearly
an ideal; we need only show that it is proper. If f belongs to J, we must
have |1 — f]lo 2 1. If ||l — f|lo < 1, then obviously 1/f is in 4, and

no element of a proper ideal can be mvertlble Thus, ||1 — f|le = 1 will
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also hold for every f in the closure of J. If M is a maximal ideal, the above
remarks make it clear that M is closed. The description we have given
for closed ideals makes it apparent that M must be an M,.

Corollary. If fy, .. ., f, are functions tn A which have no common zero
on the closed disc, then there exist functions g, . . ., gn tn A such that

f]gl + e +fngn =1,

Proof. The set of all functions of the form figy + - -+ -+ f.g. is an ideal.
If it does not contain 1, it is a proper ideal and must (by Zorn’s lemma)
be contained in a maximal ideal.

Corollary. Every closed ideal in A s the principal closed ideal gencrated
by a function in A.

Proof. Certainly the zero ideal is principal. If J is a non-trivial closed
ideal, let K and F be as in the theorem. Let g be any function in 4 whose
zeros are preeisely K and let f be the outer part of g. Then it is clear that
Ff gencrates J.

Corollary. The closed ideals J in A which are primary, i.e., contained
in precisely one maximal idcal, are those of the following types:

(1) J 4s the principal ideal gencrated by (z2 — )%, where k 7s a positive
tnleger and a is a point of the open unit disc.

(i1) J s the (closed) principal ideal generaled by

z2+ A
1@ = @ = Nexp [ 2]
where |\| = 1 and p is a non-negative real number.

Proof. If J is primary and contained in the maximal ideal M, with
la] < 1, then the corresponding set K is empty and the corresponding
" inner function must be

= —_ k
F) = [ & a—2=z ] ]

Ja] 1 — az

If J is primary and in M), with [\| = 1, then K = {A} and the correspond-

ing F must be
)
F(z) = exp [—-/ iw f;du(ﬂ)]

where p is a positive measure concentrated at the point A. If we let
p = u({A}), we have (ii).
It is not true that every closed ideal is an intersection of primary ideals.
If J, K, F are as above, it is easy to verify that J is an intersection of
primary ideals if and only if the measure u which determines the singular
part of F is discrete, i.e., the sum of a countable number of point masses.
Let us review. Suppose we have a closed ideal J in 4, 0 = J # A.
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Then J will be contained in a certain set of maximal ideals. This set is
usually called the hull of /. Thus the hull of J is the set of common zeros
on the disc of the functions in J. Now hull (J) will look like this:

(i) hull (J) is a non-empty proper closed subset of |z| < 1.

(ii) There is either a finite or a countably infinite number of points
of the open dise which belong to hull (J). If there is an infinite number
of such points e, as, . . ., then

51 (1 = |a]) < .

(iii) The interscction of hull (J) with the unit circle is a closed set K
of Lebesgue measure zero, and K contains every accumulation point of the
points ey, of (ii).

Of course, any closed set satisfying (i), (ii), and (iii) is the hull of some
closed ideal of A4, namely, the ideal of all functions in A which vanish on
that set. This ideal is simply the interscetion of the maximal ideals which
contain J, for any J having that hull. This intersection is usually called
the kernel of the hull of J.

If H is a hull, we have a complete description of all the closed ideals J
which have H as their hull. Each such J is obtained as follows. For each
a, in H sclect a positive integer p,.. The only constraint on the choice of
the p. is that 2 p.(1 — |aa|) < «. Choose a finite positive measure g on
II N C. Let J be the set of functions f in A such that

(a) f vanishes on H;
(b) f has a zcro of order at least p. at as;

(¢) the function
B .
1@ exp| [ GEEduo)]

is bounded as |z| — 1. For each such choice of the p, and p we obtain a
closed ideal J and distinet choices give distinct ideals. The p, specify
orders of zeros inside the disc, and p specifies “‘order” of vanishing at the
boundary.

We already looked at the case when H is a single point. If H = {\}
with [A| < 1, we obtain a countable number of closed ideals with hull H.
If [\| = 1, then we have a continuum of distinct closed ideals with hull
o = {A}.

Commutative Banach Algebras

We wish to prove Wermer’s theorem that A is a maximal closed sub-
algebra of the continuous functions on the unit circle. For this we shall
not need the ideal theory which we have just completed; however, we do
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need the characterization of the maximal ideals of A (which we have).
As we mentioned earlier, this characterization of the maximal ideals is
easy to obtain if one knows one fundamental theorem on commutative
Banach algebras, and we shall now derive the result from that theorem,
since the concepts involved are relevant to the proof of Wermer’s theorem.

A commutative Banach algebra is a commutative complex linear algebra
B, which is equipped with a norm under which it is a Banach space and
for which the norm is related to the multiplication by

llzyll = llell llyll-

If B has an identity for multiplication we also require that the identity has
norm 1. Certainly A is such an object, i.e., a commutative Banach algebra
with identity (using the sup norm). For another example, take
B = H~, with [|f|| =sup|f@)], le| <1.

Let B be a commutative Banach algebra with identity. We denote the
identity of B by 1, and abbreviate A1 to A.

Lemma 1. If ||1 — x|| < 1, then x 7s tnvertible.

Proof. Since ||y*|| = ||ly||, the seriecs 1 + (1 —z) + (1 —2z)2 4 ---
converges in Btoz' =[1 — (1 — z)]-.

Lemma 2. If |A| > ||x||, then (x — \) is tnverlsble.

Proof. (x — \) =\ (-lxz — ]). It suffices to invert 1 — %x. But

1

-

1
el <1

sol — ]x:c is invertible by Lemma 1.
Lemma 3. The set of invertible elements of B is open, and on that set
the map x — x~1 is conttnuous.
Proof. Suppose z is invertible and let y be any element of B such that
e — yll < [l==|
Then
1 =z ty|| = [lz='(x — )|
= [z lle — yll < 1.

Thus z7'y is invertible by Lemma 1; so y is invertible. This shows that
the set of invertible elements is open. 1f we use the geometric series for
the inverse of (z7y), it is easy to verify that

lla= — y=II < llz = gll el Ul = lle — wll)

which shows that inversion is continuous.
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Lemma 4. The set of complex numbers \ such that (x — \) s tnvertible
s an open set in the complex plane, the complement of which vs compact and
non-empty.

Proof. The set of such A is open by Lemma 3. Its complement is called
the spectrum of z. It is compact because (by Lemma 2) it is contained in
the closed dise of radius ||x||. To prove that this spectrum is non-empty,
we argue as follows. Let F be any bounded linear functional on B. Define
a complex-valued function f on the complement of the spectrum of z by

f) = Fl(x — N)™].
Now f is analytic. For

LB =IO _ 2 tr( —x = ) = F(@ = M)

= 2Fl@ = N =R — (&~ )]

- %F[h(x = = B — A

=F(x — X — )z — N

If we let h — 0, we sce (by the continuity of inversion and F) that fis dif-
ferentiable and

f') = Fl(z — M.
Note that Ilim J(A) = 0, because

" 00 = %F[Gx - 1)—1],

1 .. . .
and as [\| = ©, =z — 0, and (since inversion and I arc continuous)

F [()1—\:1: —1 )_1] — —F(1).

If the spectrum of z is empty, then for each bounded linear functional
F the associated f is an entire function which tends to zero at infinity.
By Liouville’s theorem f(A) = 0; in particular, 0 = f(0) = F(z™'). So z!
is killed by every bounded linear functional on B. Thusz~! = 0, a complete
absurdity.

Lemma 6. A commutaiive Banach algebra which is a field is (isomorphic
to) the field of complex numbers.

Proof. Suppose B is a field. Let x be an element of B. By Lemma 4
there is a scalar \ such that £ — X is not invertible. But B is a field, so
z — XA = 0. Thus, every element of B is a scalar multiple of the identity.
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Theorem. Lect B be a commulative Banach algebra with identity, and let
M be @ maximal ideal in B. The quotient algebra B/M is isomeirically
isomorphic to the ficld of complex numbers. Thus M s the kernel of a homo-
morphism of B onto the field of complex numbers. Also, M is closed and this
homomorphism is continuous.

Proof. Now ||1 — z|| 2 1 for every z in M. Otherwise, M would con-
tain an invertible element and not be a proper ideal. The same inequality
holds for all z in the closure of M. This closure is, therefore, a proper ideal
containing M and must be equal to M.

The quotient space B/M inherits a natural quotient norm

llz + M| = inf [ +yl|, yeM.

With this norm B/M is a Banach space. Also, B/M is a commulative
linear algebra. It is casy to verify that (1 4+ M) has norm 1 and

|z + M)y + M)|| < llz + M|| |ly + M||;

hence B/M is a commutative Banach algebra with identity. Since M is a
maximal ideal, B/M is a field. By Lemma 5 we see that 3/M is isomorphic
to the complex numbers. The quotient map from B to B/M may now be
regarded as a complex homomorphism of B. It is not only continuous, but
norm-decreasing. That completes the proof.

If Bis a commutative Banach algebra with identity, and if ¢ is a homo-
morphism of B onto the field of complex numbers, the kernel of ¢ is a
maximal ideal in B. By the last theorem, this kernel is closed and ¢ is
automatically continuous; indeed, |¢(x)| = ||z|l. The last theorem really
tells us that there is a one-one correspondence between the complex homo-
morphisms of B and the maximal ideals of B. Another way to say this is
that we may identify the maximal ideals of B with those (necessarily
bounded) lincar functionals ¢ # 0 on B which happen to be multiplicative:
o(zy) = ¢(z)d(y).

This theorem certainly settles the question of the maximal ideals in
our algebra A of continuous functions on the closed disc which are analytic
in the interior. Suppose M is a maximal ideal in A. Then M is the kernel
of a homomorphism ¢ from A onto the complex numbers. This ¢ is neces-
sarily continuous; in fact,

6] = If]w
Let X = ¢(2). Then |A\| < 1. This determines ¢ on the polynomials
62 a.2") = 2 a

that is, ¢ evaluates every polynomial at . These polynomials are dense
in A, and since ¢ is continuous, ¢ must just be “evaluation at N\.” In
particular, M is the set of functions in 4 which vanish at A.
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Wermer’s Maximality Theorem

We now turn to Wermer’s maximality theorem. For the most part, we
shall regard A as a uniformly closed algebra of functions on the unit circle.

Theorem (Wermer). A ¢s a mazximal closed subalgebra of the continuous
complex-valued functions on the unit circle. In other words, if { is a conttnuous
complez-valucd function on the circle which is not in A, then polynomsials in z
and f are dense in the continuous funclions on the circle.

Proof. Let C denote the algebra of all continuous complex-valued fune-
tions on the circle. Suppose B is a uniformly closed subalgebra of C which
contains A. We shall prove that either B = A or B = C. This will be done
by considering the complex homomorphism ¢ of 4 obtained by evaluating
at the origin:

#U) = 1(0) = 5= [ fie*)n.

First, suppose that ¢ docs not extend to a complex homomorphism of B,
i.e., that there is no complex homomorphism of B whose restriction to A
is ¢. Then there is no non-zero complex homomorphism of B which sends
the function z into 0, because ¢ is the only homomorphism of A with this
property. This means that z lies in no maximal ideal of B and, hence, that
z lies in no proper ideal of B. Thercfore, zB = B,so 1/z = Zis in B. By
Fejer’s theorem B = C.

Suppose that there is a complex homomorphism ¢ of B whose restriction
to 4 is ¢. In particular, ¢ is a linear functional on B of bound 1, and can
(by the Hahn-Banach theorem) be extended to a linear functional of norm
1 on C. There is thus a finite complex measure u on the circle such that -

é(f) = [ fdu

for all f in B, and such that the total variation of u is 1. Since ¢(1) =1,
we have [ du = 1. Now it is casy to see that a complex measure which
has total variation 1 and integral 1 must be a positive measure. Since B
contains A,
[ du(0) = $(z")

= o)

= 27(0)

=0
for n =1,2,3,.... Since u is a rcal measure, this implies du = 2% dé.

Now let f be any function in B. Then



94 Analytic Functions with Continuous Boundary Values

1 f= ...
5 f_'e'"'{f(e")do = [ 2fdy
= $(z"f)
é(z")(f)
z"(0)é(f)
=0
forn=1,2,.... Thusfisin A. We conclude that B = A.

Wermer’s first proof of this theorem, although not lengthy, made use
of more classical analysis than docs the argument we have presented
(chiefly, some of the boundary value theorems for H?). The proof above
is due to Singer and Hoffman. In reading the proof above, Paul Cohcn
extracted from it a very elementary proof which is worth presenting. Sup-
pose B is a closed subalgebra of C which contains A properly. Clearly,

then, we can find a function f in B whose (—1) Fourier coefficient is 1.
By Fejer’s theorem we can find polynomials p and ¢ such that

Zf=1+zp+2zj+h

where £ is a continuous function of sup norm less than 1. Choose a positive
number M 2 [lzg — Zjl|.. Forany s > 0

1 4 8(zqg — 2)|| = 1 + 8°M?2

because zqg — 2§ is pure imaginary. Now
82 = 6(2f — 1 — zp) — ok
=29 — 6h — &
where g is in B. Since || < %, we have
11484+ 2(g + og)llo S 1+ 502 +

If we choose & so that § < 1/2M?, we have

1+ 8 +2(g + 8)lle <1+

Now g, ¢, and z are in B, so the inequality above shows that z(g 4 8¢)
is invertible in B. But then z is invertible in B, i.e.,, Zisin B. Thus B = C
by Fejer’s theorem.

Corollary. If K is a proper closed subset of the unit circle, then every
continuous complex-valued function on K is a uniform limit of polynomials.

Proof. Of course we have already given two proofs of this result, but
this one is also interesting. Let B be the set of all continuous functions f
on the circle such that the restriction of f to K is uniformly approximable
on K by polynomials. Clearly, B is a uniformly closed algebra of functions
on the cirele which contains A. Since K is a proper closed subset of the
circle, and since B contains (in particular) every continuous function which
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vanishes on K, we certainly cannot have B = A. By the maximality of A
we see that B contains all continuous functions on the cirele.

NOTES

Beurling never published the ideal theory for A. The ideas are in Beurling [8].
Rudin’s paper on the ideal theory is Rudin [75]; his paper [74] contains the exten-
sion of continuous functions from a set of measure zero. This was also done by
Carleson [17]. Sce Bishop [11] for a generalization. The original work on non-
trivial extensions of the zero function is Fatou [27]). The behavior of conjugate
harmonic functions on the boundary is studied in some detail in Zygmund [98].
For a discussion of commutative Banach algebras, see Gelfand [32] or Gelfand-
Raikov-Silov [33]. Wermer’s maximality thcorem is Wermer [90]. The proof given
here is in Hoffman-Singer [49]. See Cohen [20] for his proof. Maximal algebras
of continuous functions are discussed in detail in Hoffman-Singer [49]. Sce Bishop
[10] for a direct generalization of Wermer’s theorem: On a simply connected com-
pact sct in the plane which has an interior, the uniform closure of the polynomials
is a maximal closed subalgebra of the continuous functions on the boundary.
Maximality is a special type of approximation theorem. For more on approxima-
tion by analytic functions, see the books of Walsh [89], Ahiezer [1], thc papers of
Mergelyan [60, 61], Szasz [85], and Miintz [62].

EXERCISES

i
1. Show that f(8) = (1 — e®) exp [1 :': Z“’] is a continuous function on the

unit circle, that there is an analytic function in the dis¢ with non-tangential limits
almost everywhere cqual to f, but that f is not a uniform limit of polynomials.

2. If fisin H= and f?isin A, does it follow that fisin A (A = uniform closure
of polynomials)? What if we assume only that the boundary values of f2 are con-
tinuous? Answer both these questions, i.e., f2 is continuous on the closed disc or
has continuous boundary values, when f is a bounded harmonic function.

3. If f is a continuously differentiable function on the unit circle and

_ f(f+t)—f(r—t)
9(x) 2tan ¢ d,
, 1 'ﬂz+t)—g(x—t)
evaluate o ). 2tand ! dt.

4. Is every fin H= the derivative of a function in A? What about every fin H'?

6. Prove the approximation theorem of Runge [78]: If K is a compact set in
the plane with a connected complement, then every function analytic on a neighbor-
hood of K can be uniformly approximated on K by polynomials. Outline of proof:
(i) Use the argument we employed for K on the circle, to prove that 1/(z — a)
is so approximable for every a not in K. (ii) Given f analytic in an open set U
about K, choose a rectifiable closed path T' in U which winds around each point
of K exactly once. Write f in terms of its Cauchy integral representation on T,
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and observe that the approximating sums for the integral give a uniform approxi-
mation to f by rational functions.

6. Let {D,} be a scquence of closed discs centered at the origin, so that D,
lies in the interior of D,,1 and the union of the D, is the open unit dise. In D,
choosc a compact set K, contained in the interior of D, and not meeting Dy,
Suppose K, has a connected complement in the plane. Now use Runge’s theorem
(Exercise 5) to prove that any function f which is defined and analytic on a neigh-
borhood of the union of the K, can be uniformly approximated on that union by
functions analytic in the open unit disc. Outline of proof: Given f and € > 0,
approximate f on D, by a polynomial p;, uniformly within €/2. Choosc a poly-
nomial p, which is uniformly within e/4 of p; on D; and uniformly with €/4 of f on
K,. Then approximate p; on D; and f on K3 by a ps, within ¢/8, etc. The sequence
{ps} converges to a function approximating f.

7. Use the result of Exercise 6 to construct

(a) an analytic function in the unit disc which has a radial limit at no point
of the unit circle;

(b) (Remmert) three analytic functions f, g, and % in the disc which separate
the points of the disc; at each point one of them has a non-vanishing derivative; and
If| + lg| + |#| tends uniformly to +o at the boundary [take h(z) = (1 — 2)?
and obtain f and g from Excrcise 6, using sequences of annuli notched near the
positive axis];

(c) a sequence of analytic functions in the disc which converges pointwise to
zero, but does not converge uniformly on compact sets.

8. For which functions f in A (the uniform closure of the polynomials) does f
belong to the closed ideal generated by f2?

9. Let fy, ..., f. be analytic functions in the open unit disc which have no
common zero in that open dise. Prove that there exist analytic functions gy, . . ., gn
in |z] <1 such that figi + -+« + fagn = 1. (Hint: Let D, be the closed disc of
radius 1 — 1/(k + 1). Use the corrcsponding result for analytic functions with
continuous boundary values to find g{",. .., ¢ continuous on D, and analytic
in the interior of D; such that = f g/ = 1 on Di. Now prove there are g2, . . ., g2
continuous on D, and analytic in its interior such that

Zfg®P=1onD: and |gf¥ — g{®| <1on D,
Get g@, ..., g% such that
Zfg® =1onDs and |gf® — gf’| < % on D,, ete.
10. Let H(D) be the full ring of analytic functions on some open set D in the
complex plane. Prove that every homomorphism of H(D) onto the field of complex

numbers is evaluation at a point of D. If D is non-empty, prove the kerncls of these
homomorphisms do not exhaust the maximal ideals of the ring H(D).

11. Prove the inversion theorem of Wiener [94]: If f is a continuous function
on the unit circle without zeros, and if f has an absolutely convergent Fourier series,
then 1/f has an absolutely convergent Fourier series. (Hint: Let B be the algebra
of all continuous complex-valued functions f on the unit circle for which the Fourier
coeflicicnts are absolutely summable:



Analytic Functions with Continuous Boundary Values 97

«©
Y en <.

n= —

Equip B with this sum as norm. Verify that B is a commutative Banach algebra
with identity. Show that each homomorphism of B onto the complex numbers is
evaluation at a point of the unit circle. Apply the basic result on Banach algebras
which we proved.)

12. By the method of Exercise 11, prove the following. If f(z) = Z aq.2® where
Z |as] < o, and if f has no zeros in the closed unit disc, then 1/ has an absolutely
convergent Taylor series.

13. Give an example of a non-negative continuous function on the unit circle
which has an integrable logarithm but which is not the modulus of a function in A.



CHAPTER 7

THE SHIFT OPERATOR

The Shift Operator on H?

Many problems in analysis are related to the classification of the in-
variant subspaces for some bounded linear operator on a Hilbert space.
In a 1949 Acta paper, Beurling described all the invariant subspaces for
the operator “multiplication by 2’ on the Hilbert space H2. This work has
been extended in various direclions by Lax, by Helson and Lowdenslager,
and by Halmos. The work now relates to harmonie analysis on the real
line, prediction theory, representations of algebras, representations of semi-
groups, and the study of function algebras (Dirichlet algebras). One’s best
guess would be that these extensions of Beurling’s work are far from being
over. The material we arc going to discuss (and the proofs) has now evolved
to the point at which one could begin with a brief general discussion of
partial isometries on a Hilbert space and then obtain most of the results
by specializing the isometries. This is essentially what Halmos has done
of late; however, this general point of view does not always give the
shortest or most instructive proofs in the special cases. (In some cases it
does.) So, we shall begin by discussing Beurling’s original problem using
the Helson-Lowdenslager proof, and then we shall attempt to describe the
various extensions. This will cause some repetition of proofs, but that is
probably all for the better.

The linear operator we are going to study is usually called the shift
operator (on H?). It is the linear opcrator T on the Hilbert space H?
described variously as follows:

(1) H: is the space of square-summable sequences of complex numbers:
s = [ag,a1,as,...], and T(s) = [0, ao, ay,. . .].

(2) H? is the space of L? functions on the unit circle whose Fourier
coefficients vanish on the negative integers, and

(Tf)(0) = e™f(6).
(3) H:is the space of analytic functions in the unit dise for which the
98
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functions f,(6) = f(re®) are bounded in L? norm, and T is “multiplication
by 2.”

We shall work with the second and third descriptions interchangeably.
The problem is this: we wish to find all closed subspaces S of H? which are
invariant under multiplication by z:

2SC 8.

An obvious example of such a subspace is the space of functions which
vanish at the origin, or the spacc of functions which vanish at any pre-
seribed set of points in the open disc. Of course, this begins to sound like
the ideal theory for the algebra A, which we did in the last chapter. In
fact, it sounds so much like it that one is led immediately to a more general
example of an invariant subspace:

S = FH?

where F is a fixed inner function. But, we would do well to remind our-
selves that it was Beurling’s inspired observation that inner functions were
intimately related to the description of the invariant subspaces for the
shift opcrator. This work was the prelude to his ideal theory for A, not
some ‘‘aftermath’ thercof.

Having observed that each FH? is an invariant subspace, one is led to
conjecture that there arc no other invariant subspaces. This is the case.
Assuming that it is so, one must ask: if § = FH? for some inner function F,
how do we find F, given S? We can sce that F will be the greatest common
divisor of the inner parts of the functions in 8. This, too, was Beurling’s
observation, and it looks natural to us only because we have been through
it in the casc of continuous boundary values. But he also noted that if
F(0) 5« 0, then F is a scalar multiple of the orthogonal projcction of 1
into S. Suppose F is an iuner function and A = F(0). Then AF is the
orthogonal projection of 1 into FI2:

1 = AF + (1 — \F)

L [ Fo(t — Ao = - [, = Ngas

27 J-=
= (F(0) — X)g(0)
=0

for every g in H2. This second observation has eventually led to the follow-
ing proof by Helson and Lowdenslager.

Theorem. Let S be a non-zero closed subspace of H2. Then S is invariant
under mulliplication by z if and only if S = FH?, where F is an inner func-
lion.
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Proof. One half is trivial. Suppose we are given an invariant subspace
S. Tt is no loss of generality to assume that there is at least one function
in S which does not vanish at the origin. For, if k£ denotes the highest order
common zero of the functions in S at z = 0, then S = zkS,, where S, is
invariant and contains a function not vanishing at the origin.

Let G be the orthogonal projection of the constant function 1 into S:

1=G+(1 -0

where G is in S and (1 — @) is orthogonal to S. We are assuming that
G # 0, for 1 is orthogonal to S if and only if every f in 8 vanishes at the
origin. Now we prove that the modulus of G is constant on the unit circle.
Since G is in S, we have 2"G in 8 for n = 1,2,3,.... By dcfinition,
(1 — @) is orthogonal to S, and since 2*( vanishes at the origin, we have

1 " G in
0=5 [7 (1 - T)Gedo

_ 1 - inf __1- " 2,inf,
=5 /_TGc i — 5= /_' |G2eintdp

- ‘2]7 " eoo|Glds,
The positive measure |G|2d6 is orthogonal to e, n = 1, 2, 3, . . . and must,
therefore, be a constant multiple of Lebesgue measure.

Now we claim S = GH?. Since the modulus of G is constant on the
circle, and since G is in S, it is apparent that S contains GH2 Let f be a
function in S which is orthogonal to GHz We prove f = 0. Since f is
orthogonal to Gz*, n = 0,1,2, ..., we have

1 r=

—_ — (Y, —ind =
0 on _,f(:e de, n=0,1,2,....

By definition of G we have (1 — @) orthogonal to 27/, i.e.,
—_ l " — () f,inb
0 =5 [ (1= Tyeido

1
T o

] 5 1 T o .
nf —_— Y, inb
_'fc do o f_tf(_w do

= —5 [ fGema.

Therefore, G is the zero function; since G is o non-zero function of constant
modulus, this means f = 0. We conclude that S = GH2. If we multiply
G by a suitable constant, we obtain an inner function F for which S = FH?.
Of course, F is unique up to a constant of modulus 1.
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Corollary. If S is a non-trivial closed subspace of 112 which is invariant
under multiplication by z, then S = FH?2, where ¥ s the greatest common
divisor of the inner parts of the functions in S.

Corollary. Let f be a function in H2. Then the functions z°f, n = 0, 1,
2, ..., span H? if and only if { is an ouler funclion, that is, if and only if
f=0and

log [0)] = 5- [ log [fc*)ldo.

Proof. The span of the functions z*f is simply the smallest closed sub-
space of H? which contains f and is invariant under multiplication by z.
This subspace is H? if and only if the inner parts of the functions in it
have greatest common divisor 1, and this clcarly means that the inner
part of fis 1, i.e., that f is an outer function. When we first introduced
outer functions, we observed that they arc characterized by Jensen’s in-
cquality being equality.

We should probably comment that the characterization of these in-
variant subspaces exhibits explicitly their lattice structure. To each non-
zero invariant subspace S we have assigned a unique inner function F.
If another such subspace S; is given, it is clear that S is contained in S, if
and only if F; divides F. Every collection of these invariant subspaces has
a least upper bound, namely, the subspace corresponding to the greatest
common divisor of the associated inner functions. The process is, of course,
reversible. That is, one can use this description of invariant subspaces to
prove that any collection of inncr functions has a greatest common divisor.

More about Dirichlet Algebras

The central part of the characterization above extends to the context
of Dirichlet algebras, which we introduced in Chapter 4. Recall that a
Dirichlet algebra is a uniformly closed algebra A of continuous complex-
valued functions on a compact Hausdorff space X, such that the real parts
of the functions in A are dense in the real continuous functions on X.
1f we have any non-zero positive measure m on X which is multiplicative
on A, we define H?(dm) to be the closure in L?(dm) of the functions in 4.
Here we want to comment on “invariant subspaces” of H*(dm). Of course,
we do not expect a shift operator on H2(dm). The subspaces we discuss
are those which are invariant under multiplication by every function fin 4.

If A is the algebra of continuous functions on the unit circle whose
Fourier coefficients vanish on the negative integers, and if m is normalized
Lebesgue measure, then H2(dm) = H?, and the subspaces invariant under
multiplication by functions in A are just the invariant subspaces for the
shift opcrator. Thus, the situation we describe is a generalization of the
study of invariant subspaces for the shift operator.
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Suppose we are given the Dirichlet algebra A on the compact space X
and we fix a positive measure m on X which is multiplicative on A.

Theorem. Let S be a closed subspace of H2(dm) which is invariant under
mulliplication by the functions in A. Supposc thal there is at least one function
g in S such that [ gdm £ 0. Then there exists a function F in H*(dm)
which has modulus 1 almost cverywhere with respect to m and for which
S = FH*(dm).

Proof. We sketch the proof, which is virtually identical to the proof we
gave for the corresponding theorem in the dise. Tirst, one can easily verify
that m is multiplicative on H?(dm). If the subspace S is given as above,
our hypothesis says that 1 is not orthogonal to S. Let G be the orthogonal
projection of 1 into S. Let A, denote the set of functions f in A for which
[ fdm = 0. Since

[ Gfdm = [ fdm- [ Gdm = 0
for f in A,, we have
0

[ ( - ©)Gfdm
= — [ f1G|2dm

for every f in A,. Since 4 is a Dirichlet algebra, the measure |G|2dm is a
constant multiple of dm. So |G| = k, where k is a non-zero constant. It
is then clear that S contains GII*(dm). If g is in S and is orthogonal to
GH*(dm) we have
[ 9Gfdm =0, fin A.
But by the definition of G, we have
0=[Q1—a)fgdm
= — [ ¢Gfdm

if f is in 4. Thus, the measure gGdm is zero, which says that ¢ = 0 almost
everywhere dm.

Those subspaces of H%*(dm) in which all the functions vanish at m
cannot be taken care of by a function of modulus 1. For example, let X

be the torus. Choose an irrational number e, and let A be the algebra
of all continuous functions on the torus whose Fourier coeflicients

1 [« [« o
amn = 373 [, [, 10, W)eimeinvdedy

vanish outside the half-planc where m + na = 0. Then A is a Dirichlet
algebra. If dm = Zi];ﬂ didy, H?(dm) becomes the space of square-summable
functions on the torus with a Fourier scries

f6,¥) ~ T ame™eiv.
m+na20
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If we take S to be the subspace of functions f for which agp = 0, then S
is invariant under multiplication by functions in 4, but is not of the form
S = FII*(dm).

The criterion for a function to gencrale H*(dm) also generalizes, as
follows.

Theorem. Let g be a function tn H*(dm). Then the closed linear span
of the functions fg with f tn A is H*(dm) if and only if

[ log lgldm = log |[ gdm| > —oo.

Proof. The proof can be given rather easily with the use of Szego’s
theorem for Dirichlet algebras, which we proved in Chapter 4. Let g be a
function in H2(dm). Suppose that Ag is densc in I7?(dm). Then there is a
sequence of functions g, in 4 such that

[ 11 — gugl?dm — 0.

Certainly then,
fgdm = A0 and [ g.dm — XL

We can, therefore, assume that g, = A= — f,, where f, is in 4,, the set
of fin A such that [ fdm = 0. Now

JIt = (1 = fagldm = =1 + [N = fulslgl2dm

= =14 2 [ 1 = Ma[tlgldm.
We conclude that
J 11 = Naltlglzdm — |AJ2
Thus
inf f1 = fPlghdm < N2 = |f gdm.

But the reverse inequality holds for any g. Thus the infimum is equal to
[A]2. Szegd’s theorem states that this infimum is

exp [[ log Jg*dm]
so we obtain
[ log |gldm = log |[ gdm| > —w.
It is very easy to reverse the steps if this last condition holds, to
conclude that 1 is in the closure of Ag; hence, Ag spans H*(dm).

Invariant Subspaces for H? of the Half-plane

Consider the half-plane Re(w) > 0. If f is analytic in this right half-
plane, we say that f is in the class H?, provided that the integrals

[, 11 + i)ldy

are bounded for z > 0. A theorem of Paley and Wiener states that each
such f has non-tangential limits at almost every point on the imaginary
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axis, that these boundary values are square-integrable, and that f is the
Poisson integral of its boundary values:

. 1 f= . T
S +iy) = o [ ft) ot
Let us assume this theorem for the moment. (We shall prove it in the

next chapter.) Then I72 of the half-planc becomes a Hilbert space, with
the inner product

,9) = [, fGgtand.

In a 1959 Acta paper, Peter Lax extended Beurling’s result about the
invariant subspaces for the shift operator to certain “invariant” subspaces
of H? of the half-plane. Actually, Lax considered vector-valued analytic
functions, which we shall discuss later. We wish now to discuss the problem
for the scalar-valued H? described above, and to show that this result of
Lax is equivalent to Beurling’s result.

Lax’s scalar-valued theorem is the following. If S is a closed subspace
of H? of the right half-plane, then S is invariant under multiplication by
the functions e"*», A = 0,*if and only if S = FH? where F is an inner
function (i.e., F¥ is analylic in the half-plane, bounded by 1, and has non-
tangential limits which exist and are of modulus 1 almost everywhere on
the imaginary axis). If one uses a stronger form of the Paley-Wiener theo-
rem (which we shall not), every function f in H? has the form

fw) = [ Fa)e=eda

where fis squarc-integrable; that is, every f in 12 is the Laplace (or Fourier)
transform of a square-integrable function on the positive half-line. A sub-
space S of H? which is invariant under multiplication by ¢*» forall X = 0
is then simply the “transform” of a subspace of L*(0, «) which is invariant
under all right translations.

We want to establish the simple relationship between H? of the disc
and H? of the half-plane. If we map the disc onto the right half-plane by

142
T1-z

then H? of the disc is carried onto a space of analytic functions in the half-
plane; we wish to relate that space to 2 of the half-plane. On the boundary
the linear fractional map is

w

14 e?

1 —e?

it =
from which it is easy to obtain

Lap=1 -
5-d0 = — (1 + )L,
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Thus, if g is measurable on the circle and f(52) = g(e®), we see that g is
integrable if and only if f is integrable with respect to the measure
(1 4+ »)~'dt; when ¢ is integrable,
Lo man = L [° fan . L
5o [ oo = ~ JCORE o

In particular, this will hold for g in 772. When ¢ is in H?, its values inside
the disc are given by

0@ = 5 [ ot Re [ GEE | .

If we define f(w) = g(z) =g ( T 1) » then this Poisson integral formula

for g transforms into the Poisson formula

fw) = 1 [T s e[ 0] o

fa+in) = ¢ [T 16 o

Thus, I of the disc is transformed into the space of analytic functions in
the right half-plane which are the Poisson integral (as above) of a function

or

1
Ttz dt). In other words, as a

subspace of L? of the circle, II? is transformed into the subspace of

on the imaginary axis which is in L2<

L2 (1 T dt) of those functions whose Poisson integrals are analytic for

Rew > 0.

Now H? of the right half-plance consists of all functions analytic for
Re w > 0 which are the Poisson integral of a function on the imaginary
axis which is in L2(d(). Certainly, then, if f is in 112 of the half-plane, the

function
1+2
g(z) = ( z)

}_ p g(2) is in H? of the disc. For

is in H? of the disc. But we claim that 1

1 1_ -9 = 3 (1 + w)f(w) [w - l_ié]

Since f(z't) € L(dt) and |1 + #t|* = 1 + {2, we sce that (1 4 ¢«0)f(st) is in
L2 (1 T dt) Thus, —— = L pr) g(e®) is square-integrable on the circle. It is

a simple matter to verify that if ¢ is in H? of the disc and T — oo g(e*)
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g(z) is in H2, We conclude that, if f is in H?

1+2
1—2
the image of an H? function in the unit disc. The converse of this also
holds. Suppose we have f analytic for Re w > 0 and (1 4 w)f(w) comes
from an H? function in the disc. This means only that the boundary values
(1 4 4t)f(st) exist almost everywhere, that they are in L2 (1 —]I- 7 dt ), and
that (1 4+ w)f is the Poisson integral of these boundary values. Certainly,
then, f(s1) € L2(di). Also, f is the Poisson integral of its boundary values,
because f obviously comes from an 72 function in the dise if (1 4+ w)f(w)
does (division by (1 4+ w) is essentially multiplication by (1 — z) in the
disc). What we have proved, assuming the Paley-Wicner theorem, may be
summarized as follows:

is in L2 of the circle, then

1—2

of the right half-plane, then (1 4+ w)f(w) is, under the map w =

Theorem. Let f be an analytic function in the right half-plane. Then
s in H? if and only if the funclion (1 + w)f(w) is transformed by the map

TwH1
to V'm h is an isometry of Hz onto H? of the disc.

In order to handle “invariant” subspaces we nced two simple lemmas.

Z into a function h in H2 of the unit disc. Indeed, the map from f

Lemma. Let S be a closed subspace of H? of the disc. Then S is invariant
under muliiplication by z if and only if S is invariant under mulliplication
by every bounded analytic function.

Proof. Of course, this is obvious from Beurling’s characterization of the
invariant subspaces for multiplication by z; however, it is also obvious
a priori. One half is trivial. So, suppose S is invariant under multiplication
by z. Clearly, § is invariant under multiplication by any polynomial in z;
hence, S is invariant under multiplication by f, where f is any uniform limit
of polynomials. Now given any f € II*, if r < 1 the function f,(2) = f(r2)
is a uniform limit of polynomials. If g ¢S, we have f,g in S for each
r < 1. If hisin L2(d6), and if

{ f.ghdd = 0

for each r < 1, then [ fghdd = 0, since f, — f boundedly and pointwise
almost cverywhere. Thus, fg is in the L? closed span of {f,g}. Conse-
quently, 8 is invariant under multiplication by H®. (One can replace f,
by on, the nth Cesaro mean for f, and the argument goes as well.)

Lemma. Let S be a closed subspace of H? of the right half-plane. Then S
18 tnvariant under multiplication by the functions ¢, A = 0, if and only if
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S is tnvariant under multiplication by every bounded analytic function in the
half-plane.

Proof. Again, one half is trivial. Suppose S is invariant under multi-
plication by ¢v for every A 2 0. Let f be a bounded analytic function.
We wish to show that S is invariant under multiplication by f. From what
we did above in the dise, we know that f is the bounded pointwise (a.e.)

limit of a scquence of polynomials i in 2 + 1 Thus, if we prove the in-

-1 =2
+ 7 we shall be done. Actually, f(w) — 1 = v il

will do as well. We see that we need only prove that S is invariant under
multiplication by (1 + w)~'. Now

1 o
= — (1+w)z,
T+ w A e dz.

falw) = l;) " -y,

Approximating sums for the integral show that f, is a bounded pointwise
limit of lincar combinations of the ¢¥, A = 0. Thus S is invdriant under
multiplication of f,. But f.(w) — (1 4 w)~? pointwise and the convergence
is bounded. That proves the lemma.

Theorem (Lax). Let S be a non-zero closed subspace of H? of the right
half-plane, and suppose that S is tnvariant under multiplication by e for
every A\ = 0. Then S has the form S = FH2, where I is an inner function.

Proof. We look at the Hilbert space
A =0+ wH

variance for f(w) =

Let

with the inner product
1 © RS2 ].
(9 = 5 [ 1@ ;e

We proved above that f(w) — +/7(1 4 w)f(w) is an isometry of H? onto
H, and that H is pre(,isely the image of H? of the disc under the linear

fractional map z = v- Obviously, S = (1 + w)S is a closed subspace

of A.

From the last lemma, we know that S is invariant under multiplication
by any bounded analytic function. Clearly, § has the same property.
Under the linear fractional map, /7 goes onto I? of the disc and S onto a
closed subspace thercof. Since this map preserves the class of bounded
analytic functions, we have immediately from Beurling’s result that
S = FH, where F is an inner function. Thus, § = FHz.

+1
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Several remarks are in order. First, as we commented earlier, the dis-
cussion above shows the Beurling and Lax theorems to be equivalent.
Second, the inner function associated with S is unique up to a constant
of modulus 1. Third, one of the ideas which helps to unify the theorems
in the disc and half-plane is that of considering subspaces invariant under
multiplication by all bounded analytic functions. These theorems seem to
deal with special types of representations of the algebra of bounded analytic
functions, which we shall discuss later.

Isometries

Recently, Halmos has observed that one or two elementary results
about isometries on a Hilbert space shed considerable light on the type of
invariant subspace problem which we have been discussing. These results
do not simplify the characterization of the invariant subspaces for the
shift opcrator; they do, however, lend perspective to the discussion. Also,
they greatly simplify the proof of Lax’s vector-valued theorem, and they
facilitate the discussion of the invariant subspaces for multiplication by 2
on Lz of the cirele. In the latter context, the ideas are very similar to those
used by Ilelson and Lowdenslager.

Let H be a Hilbert space. An isometry on I7 is a linear transforma-
tion (operator) from I into H which preserves inner products:

(Tz, Ty) = (z, ).
If T maps H onto H, we call T a unitary opcrator. The canonical example
of an isometry which is not unitary is the shift operator on II2, or multipli-
cation by z on H2 of the disc. A slightly more general example is the follow-
ing. Let K be an arbitrary Hilbert space. Let H*(K) be the space of
sequences

h = [ho, hy, he, . . .]

of elements of K for which
3 |hall? < .
n=0

The inner product on H2(K) is

(g) h) = ”E=0 (gﬂy hﬂ)
Let T be the “shift”” operator on H*(K):
T(ho, hl, . ) = (0, hﬂ, hl, .. )

It is clear that T is a non-unitary isometry on H2(K). Of course, the shift
operator on H? is the special case of this example when K = C, the complex
numbers.
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Lemma. Let T be an isometry on a IHilbert space H, and let N be the
orthogonal complement of the range of 'I'. Then the subspaces

T*N), £=10,1,2,3,...
are pairwise orthogonal.

Proof. We should note that since 7 is an isometry the subspaces N,
TWN), TxN), ... arc closed. For the proof, suppose 0 < j < k. Let
z,y € N. We wish to show that (T, T*y) = 0. Since T is isometric and
k>,

(Tz, Try) = (x, T% )
and the latter inner product is zero because T%*9y is in the range of T
and z isin N.

Theorem. Let T be an isometry on a Hilbert space . Let N be the
orthogonal complement of the range of 'L', and let M be the orthogonal comple-
ment of the span of the spaces TH(N), k = 0. Then

M H=MONDOTN)@TN)D ---.

(i1) the subspace M is inwariant under T; indeed, the restriction of T to M
s a unilary operalor on M.

(iii) the subspace M consists of all vectors h in H which are ‘“infinitely
divisible” by T, i.e., all h such that h is in the range of T* for every non-
negative integer k.

Proof. By the lemma above, the spaces T*(N), k = 0, are pairwisc
orthogonal. By the definition of M we then have (i). Suppose m € M.
Since m is orthogonal to N, we must have m in the range of T, i.e., m = Th
for some hin H. But his alsoin M;forif k = 0and n€N,

(T*n, h) = (T*"'n, Th)
= (T*n, m)
= 0.
Thus M C T(M). Note that this shows that every m € M is “‘infinitely
divisible” by T. 1t is also easy to see that M is invariant under 7. If
m € M and n € N, the inner product
(T*n, Tm)

is zero for k = 1 because m € M, and is zero for k£ = 0 by definition of N.
That proves (ii). We have already proved one half of (iii), that the vectors
in M are infinitely divisible by 7. Conversely, if h € H, and if for each
k = 0 there is an h; in H with h = T*(h,), it is very easy to check that
h€ M. For example, if h = Th;, we have h orthogonal to N. If h = T?hs,
then h is orthogonal to N and T(N), cte.

Corollary. Let T be an tsometry on a Hilbert space H. Then there are
subspaces M and N of H such that T is the direct sum of a unitary operalor
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on M and an operator on M* which is unitarily equivalent lo the shift operator
on H2(N).

Proof. Let M and N be as above. Let T; be the restriction of T to M
and T the restriction of T to M*. Then T, is unitary and T is the direct
sum of T and T:. Now

M'=N@TWN)DPTN)D ---.

There is a completely obvious isomorphism of M* with H2(N) which carries
Te onto the shift operator on H2(N).

Corollary. Let T be an isometry on a Hilbert space H. The following
three properties of T are equivalent:
(i) There is no non-zero subspace of H on which T is unitary.
(ii) There is no non-zero element of H which is ‘“‘infinitely divisible” by T.
(ii1) There is a Hilbert space N such that T us unitarily equivalent to the
shift operator on Hx(N).

Proof. We have done the more difficult part of the work above. That
is, we have shown that (i) and (ii) are equivalent and that each implies
(iii). The argument will be completed if we show that the shift operator
on H2(N) has property (ii). This is obvious.

Now we have characterized the shift operator on H? of some Hilbert
space by the properties of being (a) an isometry; (b) unitary on no non-
zero subspace. This makes it very easy to give (& la Halmos) the descrip-
tion of the invariant subspaces for this operator, which were first found by
Lax. First, we shall show how we can abstractly characterize the shift
operator on Hz (of the complex numbers). When we have done this, we
turn (in the next section) to the application of these idcas to the charac-
terization of all invariant subspaces for the shift operator on L? of the
circle. Then we return to the invariant subspaces for the shift on H? of a
Hilbert space.

Theorem. Let T be a non-unitary isometry on a Hilbert space H. The
following are equivalent:
(i) T 4s unitarily equivalent to the shift operalor on H? (i.e., equivalent
to mulliplicalion by z on H? of the disc).
(ii) There is no non-trivial subspace of H which completely reduces T
(t.e., if S is a closed subspace of H such that S and S* are invariant under T,
then S = {0} or S = H).

Proof. Let us first show that multiplication by z on H? has property (ii).
It will suffice to show that if f, g € H?, and if z"f is orthogonal to z"g for
all m,n = 0, then either f = 0 or ¢ = 0. But this is clear, for we have

[ mm0g@ds = 0, mn=0,12,....
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Thus, f§ = 0 almost everywhere on the circle. So either f or g must vanish
on a set of positive mcasure on the circle, and for an H? function this
makes it identically zero.

Now suppose we have a non-unitary isometry 7 on H with no (non-
trivial) completely reducing subspace. In particular, if we let N be the
orthogonal complement of the range of T, we must have

H=N®OTW)®TWN)®D ---.

We cannot have N = 0, since T is not unitary; hence, in the decomposition

H=M®@ANPTN)D ---
we must have M = {0}. In other words, (il) guarantccs that 7' “is” the
shift operator on H2(N), and our task is now to prove that N is one-
dimensional. Let n be a non-zero vector in N, and let S be the T-invariant
subspace spanned by n, i.e., the span of the vectors T%n, k = 0. We claim
that S* is invariant under 7. Now h € S* means that

(T*n,h) =0 fork=0,1,2,....

Thus, for k = 1,2,3,... we have (T*n, Th) = 0. But (n, Th) =0 by
definition of N, so Th is in 8*. Since S # {0}, we must have S* = {0}
by (ii). Thus, 8 = H;i.e., every h in H is uniquely expressible in the form

h =am + aTn + aTn + ---

where X |ai/? < ». In particular, it is clear that every vector in N is a
scalar multiple of n.

The Shift Operator on L2,

Now we turn to the shift operator (multiplication by e®) on L? of the
unit circle. We shall describe the invariant subspaces for this operator.
Of course, one invariant subspace is H?, or, more generally, any subspace
of H? which is invariant under multiplication by z. Thus the discussion
is a slight extension of the characterization of the invariant subspaces for
the shift operator on H2.

Let S be a closed subspace of L? of the circle such that e?S C 8. It
may happen that S is also invariant under multiplication by e¢~%#. This
means only that S is a subspace on which the shift operator is unitary,
or that S is invariant under multiplication by every bounded measurable
function. It is well-known that any such subspace has the form S = xL?
where x is the characteristic function of some Baire set; in other words,
such an 8 consists of all functions in L? which vanish on some fixed Baire
set.

Theorem. Let S be a closed subspace of L which is tnvariant under
multiplication by z.
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(i) If 28 = 8, then S consists of all functions in L* which vanish on some
Jixed Baire set on the circle.

(i) If zS <« 8, then S = FH?, where F is a measurable function of
modulus 1.

Proof. Aswe said, (i) is well-known and easy to verify. Suppose 28 = S.
Let N be the orthogonal complement of 28 in S. Then

S=MOPNP:NP2ND ---
where M consists of all functions in § which are “infinitely divisible” by 2z
in S. Suppose f is in N. Then f is orthogonal to 2*f for k = 1,2,3,. .. or

[7 i@ ke =0, k=1,23,....

Thus |f] is constant almost everywhere on the circle.

Now M is a subspace of L? on which multiplication by z is unitary.
Thus M = xL2, where x is the characteristic function of some Baire set.
Choose f # 0in N. There is such an f since 2S # S. Then z*f is orthogonal
toxfork=0,1,2,...;ie.,

f_" eMf(B)x(0)dd =0, k=0,1,2,....

Thus fx is in H2 Obviously, x # 1, so fx vanishes on a set of positive
measure. But fx is in H2, so we must have fx = 0 a.c. On the other hand,
f is a non-zero function of constant modulus. We conclude that x = 0.

Now we have
S = N@ZN@ZHV@ e,

The subspace N is one-dimensional. There are several ways to sce this.
First, it is evident from the fact that each function in N has constant
modulus. Second, if we have functions f and g in N orthogonal to one
another, we have f orthogonal to z%g for £ = 0 and z*f orthogonal to g for
k = 0so that fj= 0 and (by the constant modulus property) either f = 0
or ¢ = 0. Third, by the general result of the last section, it would suffice
to show that there is no non-trivial subspace of S which completely reduces
multiplication by z. This means that if f, ¢ €S and if zif is orthogonal
to z*g for all j, k = 0, then either f = 0 or ¢ = 0; that is, if f, g€ S and
f§ =0, then f = 0 or g = 0. This can be done by showing at the outset
that any function in S which vanishes on a set of positive measure is
identically zero.

Since N is one-dimensional, we can choose an F in N of modulus 1,
and S will consist of all functions of the form

aF + a;2F + axtF + ---
where 2 |a.|* < 0, i.e., S = FH:.
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There is an analogous thcorem for L? of the real line. If we use the
Paley-Wiener theorem and the relation between H? of the disc and H? of
the half-plane, we obtain this result immediately. With each g in L? of the
circle we associate a function f on the imaginary axis by

. 1 it —1
Jh) =g +iz~"(¢t+1)'

Then f is in L*(dt). In fact, up to a constant, ¢ — f is an isometry of L?
of the circle onto L2 of the line. This map carries 12 of the circle onto H?
of the imaginary axis, i.e., the boundary values of the functions in I7? of
the right half-plane. In the last theorem we were studying the subspaces
of L? of the circle invariant under multiplication by z, i.c., invariant under
multiplication by (the boundary values of) every bounded analytic func-
tion. These subspaces are carried onto the subspaces of L2(dt) invariant
under multiplication by such boundary values, or onto the subspaces of
L(d¢) invariant under multiplication by ¢e=#*tfor all A = 0. The result from
the disc now carrics over directly. It perhaps sounds more natural if we
perform a 90-degree rotation and use the upper half-plane.

Theorem. Let H? denote the space of square-integrable functions on the
real line which are boundary values of functions in H? of the upper half-plane.
Let S be any closed subspace of 1.2 of the line which is invariant under mulls-
plication by e™* for all X\ = 0. Then S is of one of the following two types:

(i) S consusts of all functions in L2 which vanish on some fixed Baire sct.

(ii) S = FH?, where F is a measurable function of modulus 1.

If one uses the full strength of the thcorem of Paley and Wiener which
we have been discussing, there results a characterization of all subspaces
of L? of the line which are invariant under right translation. This amounts
to the use of the Plancherel theorem. If f is an integrable function on the
line, the Fourier transform of f is the function f defined by

1 o 0
j@) = Z= [ fe.

The Plancherel theorem states that (a) if f is in L' N L2 then f is in L2
and |2 = ||f|l2, using the measure \—712=d£; (b) the map from L' N L?
™

into L? defined by f — J has a unique extcnsion to a unitary map of L2
onto L2, This extcnsion defines the Fourier transform of any L? function.
The Paley-Wiener theorem says that the space H? of the last theorem is
the set of all Fourier transforms of L? functions which vanish on the half-
line (—e, 0). Translation of f by A\ multiplies the Fourier transform by
e™>. The last theorem may then be stated as follows.
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Theorem. Let H? denote the space of Fourier transforms of L? functions
which vanish on the left half-line. Suppose S is a (closed) subspace of 12
which is right translation invariant.

(1) If S is invariant under all lranslations, then S consists of all functions
in L2 whose Fourier transforms vanish on some fized Baire set E', i.e.,
S = Xl‘;Lz.

(i) Otherwise, S = FH?, where F is a measurable function of modulus 1.

‘We might mention one interesting corollary to the description of these
invariant subspaces of L2 Suppose f is an L? function on the unit cirele.
Then the functions ¢°f(f) with n = 0 span L2 if and only if

(a) f docs not vanish on a set of positive measure;

(b) log |f| is not integrable.

Equivalently, suppose f is in L? of the linc. Then the right translates
of f span L2 if and only if

(a) the Fourier transform f does not vanish on a set of positive measure;

(b) lng—_lj(sz)l is mot Lebesgue integrable.

Actually, these results were known prior to the characterization of the
“invariant”’ subspaces. They are corollarics to Szegd’s theorem, which we
proved in Chapter 4.

The Vector-valued Case

We shall now give the description of the invariant subspaces for the
shift operator on H? of a Hilbert space. This was first done by Lax. We
shall follow Halmos in obtaining the result as an easy corollary to the re-
sults on isometries which we have already given. The discussion here will
be brief. The proof, as such, is complete; however, we shall skim over some
standard preliminarics to avoid becoming embroiled in a lengthy discussion
of vector-valued integration and analytic functions with values in a Banach
space.

Recall that for any Hilbert space K we defined H*(K) as the space of

all sequences
h = [ho, by, hs, . . .]

of elements of K for which 2 [|h.||2 < «. Each element of H*(K) may also
be interpreted as an analytic function in the unit disc with values in K:

hz) = 3 2.
n=0

This amounts to regarding h as a square-integrable function on the circle
with values in K, and then extending & to the disc by the Poisson integral
formula. The functions we obtain in the disc are characterized by the
property that the integrals
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J7 Ihtre®)|=de

arc bounded as r — 1. Each such function in the disc may be identified
with its boundary values as in the scalar-valued case, and we may thus
identify H2(K) with this space of analytic functions in the unit disec.
Naturally, this identifies the shift opcrator with “multiplication by 2.”
The ““invariant subspace thcorem” then assumes the following form.

Theorem. Let K be a Hilbert space, and let S be a closed non-zero subspace
of Hx(K) which is tnvariani under mulliplication by z. Then there cxists a
Hilbert space N and a function ¥ such that

(i) ¥ s an analylic funciion in the unit disc with values tn the space of
bounded lincar operators from N inlo K; if |z| < 1 then ||F(2)|| £ 1; at
almost every point ¢® on the unil circle F(e®) ¢s an tsometry;

(ii) 8 = ¥H*(N); i.e., S consists of all g in H2(K) of the form

g9(z) = F(2)f(2)
where { 73 in H2(N).

Proof. 1f we restrict “multiplication by 2" to the subspace 8, we obtain
an isometry on § which is not unitary on any subspace of S. Thus, if we
let N denote the orthogonal complement in S of the subspace 28, we shall
have

S=NP:NE=2N@D ---.

This enables us to identify S with I/2(N). The function F is defined as
follows. Suppose |z] < 1. Then F(2) is the linear operator from N into K
obtained by evaluating each clement of N at the point z. Now S = FH%(N)
because of the above direct sum decomposition for S. The other properties
of F stated in (i) are easy to verify, modulo the preliminaries we said we
would skim over. Any two reasonable-sounding definitions of an analytic
function with values in a Banach space arc cquivalent. Here one can use
the usual existence of the derivative. Each h € H*(K) is differentiable
because it is the sum of a convergent power scries. It is, then, easy to see
that F is differentiable, F’(z) being the operator which sends cach » in N
into »/(2). Obviously,

[IF)| =1 forle <1

so F has boundary values at almost every point of the circle. This is the
analogue of Fatou’s theorem on bounded scalar-valued analytie functions,
and its proof can be given in the same manner. To check that these bound-
ary values are isometric almost everywhere, just use the fact that each n
in N is of constant norm almost everywhere on the circle (n is orthogonal
toztnfork=1,2,3,...).

We should remark that the subspace N has dimension not greater than
the dimension of the underlying Hilbert space K. The theorem would seem
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more elegant if N were always isomorphic to K; however, the simplest
examples show that dim N < dim K oceurs. The result will seem to be
a more natural generalization of the scalar-valued case if we “embed” N
in K. Choose an isometry of N onto some closed subspace Ky of K. Then
regard the function F' as having values in the bounded operators from K,
into K. For each z dcfine F(z) to be 0 and K§, thereby extending F(z) to
a bounded linear operator on K. On the boundary, the operator F(e®) is
(almost everywhere) a partial isometry on K, that is, an operator which is
isometric on a subspace and zcro on its orthogonal complement. The
theorem then states that every subspace of A2 = H*(K) which is invariant
under multiplication by z has the form FII2, where F is an analytic function
in the unit disc whose values are bounded operators on K; ||F(2)|| £ 1;
and at almost every point of the unit circle F(e?) is a partial isometry.

It goes without saying that one can translate these various vector-
valued theorems from the disc to the half-plane, where Lax originally
proved these results.

Representations of H*

In this section we shall discuss representations (by bounded linear
operators on a Hilbert space) of the algebra of bounded analytic functions
in the unit disc. The section is brief and the results are rather meager.
There are two reasons for including this section. TMirst, as we mentioned
earlier, this point of view does lend perspective to some of the results above.
Sccond, the study of representations of H* scems worthy of considerable
research.

By a representation of H* we mean a mapping f — T, from H* into
the set of bounded linear operators on some Hilbert space which is an
algebra homomorphism, and which carries 1 onto the identity operator.
The material above has been concerned with the special class of repre-
sentations obtained as follows. Choose a Hilbert space K and represent f by
the operator “multiplication by f”’ on the Hilbert space II*(K):

(T/h)(2) = f(2)h(2).

This standard representation of H* on H2(K) has (of course) many special
properties. Some of those which may be of interest from the standpoint
of more general representations are as follows:
(i) for every inner function f the operator 7Y is an isometry; if f # 1,

then T is not unitary on any non-zero subspace;

@@) {Iflle = ||T¥l|, the representation is isometric;

(iii) if f» —f boundedly and pointwise almost everywhere, then
T;., — T; in the strong operator topology, i.e., Ty (x) — Ty(z) for each
vector x.
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The results on isometries which we discussed above show that certain
of these properties characterize the “standard’ representations.

Theorem. Let f — T be a representation of H™.

(1) The representation is unitarily equivalent to the standard representa-
tion of H® on H? of some Hilbert space if and only if the operalor T, is an
isomelry which is nol unilary on any non-zero subspace.

(ii) The representation is unilarily equivalent to the standard representa-
tion on 112 of the disc if and only if T, is a non-unitary isomelry with no
non-~trivial completely reducing subspace.

Proof. Assuming that T, is isometric and not unitary on a non-zero
subspace, we let N be the orthogonal complement of the range of 7.. The
underlying Hilbert space then has the form

NOTMN)DT:N)D ---
In other words, there is an isomorphism of the space onto H2(N) which
carries T, onto the operator “multiplication by 2z.”” We must verify that
this isomorphism carries T; onto multiplication by f, for cvery f in /1=
Since T, is a bounded linear operator, it will suffice to prove this on N;
that is, it will suffice to prove that if

J@@) =

n[vs
?~

and n €N, then

Ti(n) = a,T%(n).

T
[} 8
(=]

Now
Ti(n) — aon = (Ty — al)n = Ty(n)
where ¢g(z) = f(2) — ap. Since g(0) = 0, we have g = zh for some h in H=.
Thus
To(n) = T(Tu(n))

proving that T,(n) is in the range of T,. It follows that aon is the orthogonal
projection of n into the subspace N. By considering f(z) — ao — a:2, the
same sort of argument shows that agn + a:7.(n) is the orthogonal projec-
tion of Ty(n) into N @ 7.(N). Continuing in this way, we prove (i).

Statement (ii) is now merely a repectition of the characterization of the
shift operator on H2 of the disc.

The thcorems on the invariant subspaces for the shift operator take
the following form, in the language of representations.

Theorem. Let K be a Hilbert space and let £ — M; be the standard
representation of H® on H2(K); i.e., My 1s mulliplication by f. Let S be any
subspace of H2(K) which is invariant under this representation. Then the
tnduced representation on S s unitarily equivalent to the standard representa-
tion of H* on H? of some Hilbert space N, where dim N = dim K.
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Proof. This is a simple corollary of part (i) of the last theorem.

It seems natural to ask what one can say about a representation f — Ty
of H* under various other sets of hypotheses. For example, what can be
said if one assumes only that T, is an isometry? Not a great deal. For
instance, there is a representation of H* with these propertics:

@) |1T/] = [If1le;

(b) for every inner function f the operator 7Y is an isometry;

(c) for at least one inner f the isometry T is not unitary on any non-
zero subspace;

(d) 7. is the identity operator.

If we are willing to add a very special continuity condition to the
representation, in addition to the assumption that 7' is isometrie, a great
deal can be said. This continuity eondition is that if f, — f boundedly
and pointwise almost everywhere, then 7, — T, in the strong opcrator
topology. Suppose T, is isometric and this continuity prevails. If we let
N be the orthogonal complement of the range of 7., then the underlying
space decomposes in the form

MANDOTWNDT:N)D -

where M consists of all vectors in the space which are “infinitely divisible”
by T.. Now it is easy to see that M is invariant under all 7';. This does not
require continuity of the representation; M is invariant under any operator
which commutes with T,. The continuity guarantees that

NOTN)D -+

is invariant under all T;; certainly, this space is invariant under T for all
polynomials f, and the polynomials are dense in H*, using the topology
of bounded pointwise almost everywhere convergence on the unit circle.

Thus, the representation decomposes into the direct sum of two rep-
resentations, one of which is equivalent to the standard representation on
H*(N). The other, on the subspace M, is completely determined by the
unitary operator U, which we obtain by restricting T, to M. Of course,
U is not an arbitrary unitary operator; but, evidently, U is a unitary
operator having the property that if {f.} is a sequence of polynomials
which is bounded and converges almost everywhere on the circle, the op-
erators f,(U) converge in the strong operator topology, i.e., converge
pointwise on M. This holds if U is the direct sum of unitary operators,
each of which is equivalent to multiplication by e® on L2?(du), where p
is a positive measure on the circle, which is absolutely continuous with
respeet to Lebesgue measure.
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NOTES

The starting point for this chapter is Beurling [8]. See also the paper of
Karhunen [51]. In the half-plane, the scalar and vector-valued problems are in
Lax [53]. The esscnce of the generalization to Dirichlet algebras is in Helson-
Lowdcnslager [43]. The 12 case and some of its generalizations are in the more
recent paper by Helson-Lowdenslager [44]. The relevance of the results on isome-
trics is pointed out by Halmos [39]. His paper contains a more detailed discussion
of the vector-valued case. For example, we have not included a uniqueness theorem.
Wermer [93] has used the basic result on invariant subspaces to embed “analytic
discs” in the space of maximal ideals of a Dirichlet algebra.

EXERCISES

1. Let {@.} be ascquence of points in the open unit such that 2 (1 — |aw]) < .
Let S be the set of all functions f in 12 such that f(ay) = f’(a) = 0 for each =.
Prove that S is a closed subspace of H? invariant under multiplication by 2. Find
the inner function F such that S = FH2

2. Find a bounded analytic function f in the disc and a closed subspace of H?
which is invariant under multiplication by f but is not of the form FH2.

3. Let f be a bounded analytie function in the unit disc. Prove that
1,1,7% f% . .. form an orthonormal basis for /12 if and only if f(z) = Nz, where
Al = 1.

4. (Beurling) For fin 142 f 5 0, define
1 x .
) = exp [Jog £ - 5= | log f(e)1a0 |

Prove that 0 < 8(f) < 1 and that 6 is multiplicative. Also show that the functions
z"f,n = 0, span H?if and only if 6(f) = 1.

6. Let S be the subspace of /12 consisting of all f such that f (1 - :—z;) =0

for all n greater than some positive integer N,. What is the closure of S?

6. Let f be a squarc-integrable function on the unit circle. One of the results
of this chapter (or Szegé’s theorem) implies that the functions ¢f(6) with n = 0
span L2 if and only if the ei"f(6) with n < 0 span L2 Is this obvious, a priori?

7. Which of the following functions f in 12 of the real line have the property
that their right translates span 1??

] 1

) = —— = — = ¢~lol

® J@) = 72 W) ) = o5 (©) f@) =
8. Let p be a finite positive Baire measure on the unit circle, and let H2(dy)

be the closure in L?(du) of the polynomials in z. Describe the closed subspaces of

H*dp) which are invariant under multiplication by z. Exercise 3 of Chapter 4

may be of some help.
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9. Let F be a non-constant inner function in the dise, and let T be the operator
“multiplication by I’ on H2.

(a) Prove that T is an isometry which is unitary on no non-zero subspace.

(b) Prove that T is unitarily cquivalent to multiplication by z if and only if

F(z) =\

z—a
1 —oz
where [\ = 1 and |a| < 1.

10. If f is in H! of the dise, prove that the functions 27, n = 0, span H! if
and only if f is an outer function.

11, Let 0 < r < 1, and let 7', be the linear operator on H? of the disc defined by

(T:f)(2) = f(r2);
that is, T is restriction to the disc of radius r. Find all the invariant subspaces for
T.. (Ilint: Show that 7', is a positive and completely continuous operator.)



CHAPTER 8

H» SPACES IN A HALF-PLANE

Hp? of the Half-plane

In this chapter we shall be working in the half-plane Re (w) = 0. If fis
analytic in the open right half-plane, we say that f belongs to the class H?,
provided that the L? norms

7. 1@ + iy

are bounded for z > 0. We shall establish some of the theory of these
spaces. Their study is much more akin to the theory of Fourier transforms
than to the theory of Fourier series. We shall work in part with Fourier
transforms; however, we shall utilize what we know about H? of the unit
disc to establish some of the fundamentals. This has the disadvantage of
being somewhat “unnatural,” but it has the advantages of avoiding dupli-
cation of proofs and of exhibiting the simple relationship between the H?
spaces of the disc and those of the half-plane.

At the outset, there are a few elementary comments we should make.
The conditions imposed on an H? function in the half-plane are (in a sense)
more restrictive than the corresponding conditions in the disc. In order
for an analytic f to be in H? we first must require that the L? norms of f
along vertical lines be finite and then that they be bounded. In the disc
there is no question of the finiteness of the L? norm on the circle of radius 7.
When we require a bound on the L? norms on vertical lines, the bound for
large x is just as important as the bound for x small, i.e., vertical lines
near the boundary. The function

1
is square-integrable on each vertical line and the integrals
2. 1 + i dy

are bounded on any strip 0 £ x < c; but these integrals are clearly not

bounded as ¢ < .
121
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The primary tasks for us will be the proof of the existence of boundary
values (on the imaginary axis) and the establishment of a Poisson integral
formula for recapturing a function from its boundary values. To sce what
the Poisson kernel is for a half-plane, let us look at the linear fractional map

w—1

Tw + w+1
of the half-plane Re w > 0 onto the unit disc |2| < 1. On the boundary
this map is

i —1

i+ 1
from which it is easy to deduce that

1d_1 -
21rdt_1r(] + )7

In other words, the normalized Lebesgue measure on the circle corresponds
to the Cauchy probability measure

1 _dl

Tl 42

on the imaginary axis. If g is a mecasurable function on the unit circle,
and if

e¥? =

f@t) = g(e®)

B (it—l)
“9\a 1

then ¢ is Lebesgue—intcgrable if and only if f is integrable with respect

to the measure —— dt. When g is integrable,

1+t‘

L d N 1 © . 1
27 f_, gle?)do = f_m fait) - gt

Now it is easy to “lift” the Poisson formula from the dise to the half-
plane. The Poisson kernel for the point z in the dise is

P.(6) = Re [e"—"'—"]

e — 2z
Since
-1 w-—1
e? 4 2 it+1+w+1
e? —z it —1 w—l
zt+1 w+1
ttw — 1

it —w
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the Poisson kernel for the point w in the right half-plane should be

tw—17_ _z(1+)
Re[it—w]—xz-}-(y—t)’

Of course, we must use this function with the measure Rl—%