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Introduction

Introduction

The class of polynomials is an extremely important class of functions, both in theoretical and in applied
mathematics. The definition of a polynomial is so simple that one may believe that everything is trivial
for polynomials. Of course, this is far from the truth. For instance, how can one numerically find the
solution of the equation

(1) 3z87 − z3 + 1 = 0

within a given (small) error ε? An application of Rouché’s theorem (cf. Section 3.5) shows that all 87
roots lie in the narrow annulus 0.96 ≤ |z| ≤ 1, so it will be very crowded in this annulus concerning
the roots. In principle we set up some guidelines in this book so the roots can be found. The task,
however, is far beyond the scope of the present volume, so it is left to the few interested readers to use
the methods given in the following and a computer in order to find the 86 complex roots remaining
after we have found the only real root in Section 4.1.

In the first chapter we describe some results on polynomials in general, before we in the next three
chapters proceed with the main subject of this book, namely to find the zeros of a polynomial. The
topics are (mainly following the contents of the chapters, but not strictly)

1) Explicit solution formulæ

• The fundamental theorem of algebra

• The binomial equation

• The equation of second degree

• Rational roots

• Multiple roots

• The Euclidean algorithm, i.e. common roots of two polynomials

2) Position of roots of polynomials in a complex plane (classical results)

• Descartes’s theorem

• Fourier-Budan’s theorem

• Sturm’s theorem

• Rouché’s theorem

• Hurwitz polynomials

3) Approximation methods

• Newton’s iteration method

• Graeffe’s root-squaring method.

We shall occasionally in a few topics assume some knowledge of Complex Functions Theory.

All topics of this book have been known in the literature for more than a century. Nevertheless, it is
the impression of the author that they are no longer common knowledge. One example is Graeffe’s
root-squaring method to find numerically roots why lie very close to each other in absolute size. It can
in principle be used to find the 86 complex roots of (1), but the work will be so large that it cannot
be included here.

3
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Rouché’s theorem and Hurwitz’s criterion of stability and their applications are well-known in Stability
Theory and among mathematicians, but in general, engineers do not know them. This is a pity, because
the can often be used to limit the domain, in which the roots of a polynomial are situation. It is, e.g.,
by two very simple applications of Rouché’s theorem that we can conclude that all the roots of (1) lie
in the open annulus 0.96 < |z| < 1.

Another extremely important theorem, which to the author’s experience is not commonly known
by engineers, is Weierstraß’s approximation theorem. It states that every continuous function f(t)
defined in a closed bounded interval I can be uniformly approximated by a sequence of polynomials.

More explicitly, for every given ε > 0 and every given continuous function f(t) on I one can explicitly
find a polynomial P (t), such that

(2) |f(t) − P (t)| ≤ ε for every t ∈ I.

This means in practice that if the tolerated uncertainty is a given ε > 0, then we are allowed to

replace the continuous function f(t) by the polynomial P (t), given by Weierstraß’s approximation
theorem. This is very fortunate for the use of computers, which strictly speaking are limited to only
work with polynomials, because only a finite number of constants can be stored in a computer. As
indicated above there even exists an explicit construction (Bernstein polynomials) of such polynomials
P (t), when f(t) and ε > 0 are given, such that (2) in fulfilled. One can prove that these Bernstein
polynomials are not the optimum choice, but in general they are “very close” to be it.

Since we want to emphasize this very important theorem of Weierstraß, although it is not needed in
the text itself, it has been described in a section of the Appendix.

Errors are unavoidable, so the author just hopes that there will not be too many of them.

October 5, 2011

Leif Mejlbro
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Complex polynomials in general

1 Complex polynomials in general

1.1 Polynomials in one variable.

A complex function of the form

(3) P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, a0, . . . , an ∈ C, a0 ̸= 0, constants,

in the complex variable z ∈ C is called a polynomial of degree n.

When the polynomial is restricted to the real axis, we shall often write P (x), x ∈ R, instead of P (z),
though we may in the later chapters also from time to time use the notation P (x) for x ∈ C complex.
Sometimes we shall allow ourselves to omit “x ∈ R” or “x ∈ C”, etc., where it is obvious, whether x
is real or complex.

The following two results are well-known.

Proposition 1.1.1 A polynomial P (z) is continuous everywhere in C.

Proof. It suffices to prove that every monomial zn is continuous at every fixed z0 ∈ C. It follows
from the binomial formula, cf. Appendix 5.1, that

5
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(4) (z0 + ∆z)n − zn
0 =

n∑
j=1

(
n
j

)
zn−j
0 ∆zj = ∆z

n−1∑
j=0

(
n

j + 1

)
zn−1−j
0 ∆zj ,

so (z0 + ∆z)n − zn
0 → 0 for ∆z → 0, i.e. (z0 + ∆z)n → zn

0 for ∆z → 0, and the proposition follows. �

Proposition 1.1.2 A polynomial P (z) of degree n is continuously differentiable everywhere in C, and
its derivative P ′(z) is a polynomial of degree n − 1.

Proof. It suffices again just to consider a monomial zn. Then by (4),

(z0 + ∆z)n − zn
0

∆z
=

n−1∑
j=0

(
n

j + 1

)
zn−1−j
0 ∆zj = n zn−1

0 + ∆z

n−2∑
j=0

(
n

j + 2

)
zn−2−j
0 ∆zj ,

hence,

lim
∆z→0

(z0 + ∆z)n − zn
0

∆z
= n zn−1

0 .

Using this result and the linearity it follows that the derivative of P (z) given by (3) is

P ′(z) = na0 zn−1 + (n − 1)a1 zn−2 + · · · + an−1,

which is a polynomial of degree n − 1, and the proposition is proved. �

It is very important that the description (3) of a polynomial P (z) is unique. This follows from

Theorem 1.1.1 The identity theorem. Two complex polynomials P (z) and Q(z) which are equal to
each other for every z ∈ C, have the same degree n and the same coefficients a0, a1, . . . , an ∈ C as
given in (3).

Proof. Assume that

P (z) = a0z
n + a1z

n−1 + · · · + an and Q(z) = b0z
n + b1z

n−1 + · · · + bn.

If necessary, we have here supplied with zero terms, so that the n + 1 coefficients become a0, . . . , an

and b0, . . . , bn, even if e.g. b0 = 0, etc.. We shall prove that if P (z) = Q(z) for all z ∈ C, then aj = bj

for every j = 0, 1, . . . , n.

If we choose z = 0, then we get an = P (0) = Q(0) = bn, thus an = bn, and it follows by a reduction
that

a0z
n + a1z

n−1 + · · · + an−1z = b0z
n + b1z

n−1 + · · · + bn−1z for all z ∈ C.

When z ̸= 0, this equation is equivalent to

(5) a0z
n−1 + a1z

n.2 + · · · + an−1 = b0z
n−1 + b1z

n−2 + · · · + bn−1, for z ∈ C \ {0}.

However, due to the continuity, (5) also holds for z = 0.

Repeating this process we get successively an−1 = bn−1, . . . , a0 = b0, and the theorem is proved. �

6
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Remark 1.1.1 A similar argument shows that if two convergent power series (same point of expan-
sion) are equal in their common domain of convergence, then they have the same coefficients. See also
Appendix 5.2. ♢

It is convenient to define the zero polynomial as the function Q(z) = 0 and use the polynomial
description

Q(z) = 0 · zn + 0 · zn−1 + · · · + 0 · z + 0,

whenever necessary, although this is not in agreement with the definition (3). We shall also say that
the zero polynomial has the degree −∞. We obtain by this convention that the degree of a product
of polynomials is equal to the sum of the degrees of the polynomials, i.e.

deg(P (z) · Q(z)) = deg P (z) + deg Q(z),

even if one of them is the zero polynomial. Here, deg P (z) denotes the degree of the polynomial P (z).

1.2 Transformations of real polynomials.

If all coefficients a0, . . . , an of (3) are real, we say that P (z) is a real polynomial

P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, a0, . . . , an ∈ R and z ∈ C.

This is of course an abuse of the language, because only the coefficients are real, and P (z) is not a
real number for general z ∈ C. However, if z = x ∈ R, then P (x) is always real.

We shall in the following show some simple transformation rules of real polynomials in a real variable
x ∈ R. These rules also hold for a complex variable z ∈ C, but for clarity we shall only consider P (x),
x ∈ R, in the discussions below.

1.2.1 Translations.

The chance of variable is here given by x = y + k, where k ∈ R is some real constant. If P (x) has
degree n, then it follows by a Taylor expansion from k, cf. Appendix 5.4.1, that

Q1(y) := P (y + k) =
P (n)(k)

n!
yn +

P (n−1)(k)
(n − 1)!

yn−1 + · · · + P ′(k)
1!

y + P (k).

The most commonly used translation is given by

k = − a1

na0
,

by which the coefficient b1 of yn−1 of Q1(y) becomes 0.

There is a reason why one usually only uses the translation above. In principle, we can set up a set of
equations, such that any given bj , j = 2, . . . , n, in Q1(y) becomes zero. Unfortunately, the equations
in the unknown translation parameter k will in general be increasingly difficult to solve, i.e.

bj =
P (n−j)(k)
(n − j)!

= 0 for j = 2, . . . , n.

For j = n we see that we shall solve P (k) = 0, i.e. find a zero of the polynomial, and we know that
this is in general not possible to find in all cases by an exact solution formula.

7
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Example 1.2.1 A polynomial can always be normalized by dividing it by a0 ̸= 0. We may therefore
assume that a0 = 1, so let us consider the polynomial of third degree,

P (x) = x3 + a1x
2 + a2x + a3, a1, a2, a3 ∈ R, x ∈ R.

Let k ∈ R. Then by the translation x = y + k,

P (x) = x3 + a1x
2 + a2x + a3 = (y + k)3 + a1(y + k)2 + a2(y + k) + a3

= y3 + {3k + a1} y2 +
{
3k2 + 2ka1 + a2

}
y +

{
k3 + a1k

2 + a2k + a3

}
(6)

= y3 + b1y
2 + b2y + b3.

The identity theorem gives

b1 = 3k + a1, b2 = 3k2 + 2ka1 + a2, b3 = k3 + a1k
2 + a2k + a3.

1) Choosing b1 = 0 we get k = −a1

3
.

2) Choosing b2 = 0 we get 3k2 + 2ka1 + a2 = 0, hence

k =
−2a1 ±

√
4a2

1 − 12a2

6
=

1
3

{
−a1 ±

√
a2
1 − 3a2

}
.

3) Choosing b3 = 0 it follows that this is the same as finding the zeros of the polynomial.

♢

1.2.2 Similarities.

For given k ∈ R \ {0}, the similarity of factor k is defined as the change of variable

y = kx, thus x =
y

k
.

In this case the transformed polynomial becomes equivalent to

Q2(y) := kn P
(y

k

)
= a0y

n + a1k yn−1 + a2k
2 yn−2 + · · · + an−1 kn−1 y + ankn,

where we for convenience have multiplied by kn.

Clearly, if x0 is a root of P (x), i.e. P (x0) = 0, then y0 = k x0 is a root of Q2(y), so similarities may
be used to scaling.

If all coefficients a0, . . . , an ∈ Q of P (x) are rational numbers, then we can choose k ∈ N so large that
the equivalent polynomial

Q̃2(y) :=
1
a0

Q2(y) = yn +
a1k

a0
yn−1 +

a2k
2

a0
yn−2 + · · · + ankn

a0

is normalized, b0 = 1, and all other coefficients b1, . . . , bn ∈ Z are integers.

A polynomial is called normalized, if its coefficient b0 = 1 of the term of highest degree. We see
that every polynomial of rational coefficients can be transformed into a normalized polynomial by a
similarity after a division by a0 ̸= 0.

8
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1.2.3 Reflection in 0.

The reflection is given by the change of variable y = −x, x = −y, so

Q3(y) := P (−y) = (−1)na0y
n + (−1)n−1a1y

n−1 + · · · + an−2y
2 − an−1y + an.

This can of course also be considered as a similarity where k = −1. All coefficients of odd index
change sign, while all coefficients of even index are unchanged. If x0 is a (real) root of P (x), then
y0 = −x0 is a (real) root of Q3(y), so all real roots change their sign by a reflection.

We shall later give some criteria concerning real positive roots. Reflection can be used to obtain
similar results for real negative roots.

1.2.4 Inversion.

The inversion is given by the change of variable x =
1
y
, y =

1
x

, where we must require that x ̸= 0 and

y ̸= 0. When we multiply by yn ̸= 0, we obtain the equivalent polynomial

9
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Q4(y) := yn P

(
1
y

)
= an yn + an−1 yn−1 + · · · + a1 y + a0,

so the coefficients are here given in the reversed order.

If x0 ̸= 0 is a root of P (x), then y0 = 1/x0 is a root of Q4(y), and if y0 ̸= 0 is a root of Q4(y), then
x0 = 1/y0 is a root of P (x).

1.3 The fundamental theorem of algebra.

It is very difficult, if possible at all, to make a serious investigation of the polynomials without being
able to refer to the Fundamental theorem of Algebra. We shall therefore in this section prove this
important theorem, before we start on other deeper results.

We have already used the terminology that z0 ∈ C is a root or a zero (both names are used in the
following) of a polynomial P (z), if P (z0) = 0.

Theorem 1.3.1 The fundamental theorem of algebra. Every polynomial P (z) of degree ≥ 1 has at
least one root z0 ∈ C.

The following proof is often called Cauchy’s proof in spite of the fact that it is actually due to Argand,
1815. The first attempt of a proof goes back to d’Alembert in 1746, and the theorem is therefore also
called d’Alembert’s theorem.

Proof. Consider the polynomial

P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, n ≥ 1 and a0 ̸= 0.

Clearly, P (0) = a0, so if an = 0, then z = 0 is a root. We may therefore in the following assume that
also an ̸= 0.

Let |z| = r > 0. Then we have the estimate

|P (z)| ≥ |a0| rn − |a1| rn−1 − |a2| rn−2 − · · · − |an−1| r − |an|

= rn

{
|a0| −

(
|a1|
r

+
|a2|
r2

+ · · · + |an−1|
rn−1

+
|an|
rn

)}
.(7)

When r → +∞, the right hand side of (7) tends towards +∞. In particular, P (z) ̸= 0, if |z| = r ≥ A
is sufficiently large. We choose A, such that |P (z)| > |an|, if |z| = r ≥ A.

The real function |P (z)| is continuous on the closed bounded disc {z ∈ C | |z| ≤ A}, so by one of the
main theorems of continuous functions, |P (z)| must have a minimum in this disc, so there exists a
z0 ∈ C, where |z0| ≤ A, such that

|P (z0)| ≤ |P (z)| for every z ∈ C, for which |z| ≤ A.

It follows in particular that

|P (z0)| ≤ |P (0)| = |an| ,

10
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and since |P (z)| > |an| for z| = A, we conclude that |z0| < A, so z0 lies in the interior of this disc.

We shall prove that P (z0) = 0. This is done contrariwise, i.e. we assume instead that P (z0) ̸= 0, and
then we derive a contradiction.

Figure 1: The discs in the proof of Theorem 1.3.1.

Choose ϱ0, such that 0 < ϱ0 < A − |z0|, cf. Figure 1. Then

B := {z ∈ C | |z − z0| < ϱ0} ⊂ {z ∈ C | |z| ≤ A},

so B is an open subset of the closed disc defined by |z| ≤ A. We put z = z0 +h for z ∈ B, so |h| < ϱ0.
Then

P (z0 + h) = b0h
n + b1h

n−1 + · · · + bn−1h + bn, bn = P (z0) ̸= 0 and b0 = a0 ̸= 0.

Choose j ∈ {0, 1, . . . , n − 1}, such that bj ̸= 0 and bk = 0 for k = j + 1, . . . , n − 1. Then, since
P (z0) = bn,

P (z0 + h) = P (z0) + b0h
n + · · · + bjh

n−j , where bj ̸= 0.

We write h in polar coordinates,

h = ϱ eiΘ, where 0 < ϱ < ϱ0 < A − |z0| ,

thus |z0 + h| < A.

Also, write P (z0) and bj in polar coordinates,

P (z0) = |P (z0)| eiφ and bj = |bj | eiψ.

Then

P (z0 + h) = |P (z0)| eiφ + |bj | ϱn−j ei(ψ+(n−j)Θ) + bj−1 hn−j+1 + · · · + b0 hn.

Choose Θ, i.e. the angle of h, such that ψ + (n − j)Θ = φ + π. Then

P (z0 + h) =
{
|P (z0)| − |bj | ϱn−j

}
eiφ + bj−1 hn−j+1 + · · · + b0 hn.

11
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Then choose ϱ so small that also |bj | ϱn−j ≤ |P (z0)|, so we get the estimates

|P (z0 + h)| ≤ |P (z0)| − |bj | ϱn−j + |bj−1| ϱn−j+1 + · · · + |b0| ϱn

= |P (z0)| − ϱn−j
{
|bj | − |bj−1| ϱ − · · · − |b0| ϱj

}
.(8)

For some smaller ϱ > 0 we can obtain that also

|bj | − |bj−1| ϱ − · · · − |b0| ϱj > 0,

hence, for such a ϱ we have

|P (z0 + h)| < |P (z0)| ,

which is contradicting the assumption that |P (z0)| was a minimum. Hence, the other assumption
that P (z0) ̸= 0 must be wrong, and we finally conclude that P (z0) = 0. �

Corollary 1.3.1 The fundamental theorem of algebra. Every polynomial P (z) of degree n ≥ 1 is,
apart from the order of the factors, uniquely factorized in the following way,

(9) P (z) = a (z − α1) (z − α2) · · · (z − αn) , a ̸= 0.

In particular, if P (z) has degree n, then P (z) has precisely n roots (counted by their multiplicities).

It is obvious that Corollary 1.3.1 implies Theorem 1.3.1. We shall prove that Theorem 1.3.1 also
implies Corollary 1.3.1, so the two results are indeed equivalent.

Proof. 1) Existence. Assume that the polynomial P (z) has degree n ≥ 1. Then it follows from
Theorem 1.3.1 that it has a root α1, thus P (α1) = 0.

By a Taylor expansion from α1, cf. Appendix 5.3, we get

P (z) =
P ′ (α1)

1!
(z − α1) +

P ′′ (α1)
2!

(z − α1)
2 + · · · + P (n) (α1)

n!
(z − α1)

n = (z − α1) · P1(z),

where

P1(z) :=
P ′ (α1)

1!
+

P ′′ (α2)
2!

(z − α1) + · · · + P (n) (α1)
n!

(z − α1)
n−1

is a polynomial of degree n − 1.

When we apply the same method on P1(z) we get similarly

P1(z) = (z − α2) · P2(z), i.e. P (z) = (z − α1) (z − α2)P2(z),

where P2(z) is a polynomial of degree n − 2.

We proceed in this way, and after n steps we have obtained (9).

2) Uniqueness. Assume that we have two representations of P (z),

P (z) = a (z − α1) (z − α2) · · · (z − αn) = b (z − β1) (z − β2) · · · (z − βm) ,

12
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where a ̸= 0 and b ̸= 0.

The terms of highest order are azn and bzm, respectively, so it follows from Theorem 1.1.1, The
identity theorem, than n = m and a = b.

If we choose z = α1, the left hand side becomes zero, P (α1) = 0. Hence, α1 must also be a root of
the right hand side, i.e. α1 must be one of the n numbers β1, . . . .βn. Changing indices, if necessary,
we may assume that α1 = β1.

When z ̸= α1, it follows from a division by a (z − α1) that

(z − α2) · · · (z − αn) = (z − β2) · · · (z − βn) , z ∈ C \ {α1} .

Due to the continuity this equation also holds for z = α1. Then proceed as above, i.e. the root α2 on
the left hand side must be one of the remaining numbers β2, . . . , βn, so α2 = β2 after another change
of index, etc.. Continue in this way n times, until we get the triviality 1 = 1, and the corollary is
proved. �

13
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The n numbers α1, α2, . . . , αn of Corollary 1.3.1 are all roots of P (z). They need not be mutually
different; some of them may be multiple roots. In some situations it is better to preserve (9), i.e.

P (z) = a (z − α1) (z − α2) · · · (z − αn) ,

even if there are repetitions among the factors, but in most cases we prefer to collect identical factors,
so

(10) P (z) = a (z − α1)
n1 · · · (z − αr)

nr , n1 + · · · + nr = n,

where nj ∈ N is called the multiplicity of the root αj , and where α1, . . . , αr in (10) are the mutually
different roots of P (z).

If nj = 1, then the corresponding root αj is called a simple root. If nj > 1, we say that αj is a multiple
root. In case of n1 = 2 we also call αj a double root.

Finally, (9) is also true for constants ̸= 0, i.e. for polynomials of degree 0, because there is no factor
of degree 1 in this case. This corresponds to the obvious fact that a constant polynomial ̸= 0 does
not have any root.

1.4 Vieti’s formulæ

Let α1, . . . , αn ∈ C denote the n roots of the polynomial

(11) P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, a0, . . . , an ∈ C, a0 ̸= 0.

Then also

P (z) = a (z − α1) (z − α2) · · · (z − αn)

= a0z
n − a0 (α1 + α2 + · · · + αn) zn−1 + a0 (α1α2 + α1α3 + · · · + αn−1αn) zn−2(12)

− · · · + (−1)na0α1α2 · · ·αn.

When we identify the coefficients of the two representations (11) and (12) of P (z), we get Vieti’s
formulæ in the n complex variables α1, α2, . . . , αn,

(13)




b1 =
a1

a0
= −{α1 + α2 + · · · + αn} ,

b2 =
a2

a0
= + {α1α2 + α1α3 + · · · + αn−1αn}

b3 =
a3

a0
= −{α1α2α3 + α1α2α4 + · · · + αn−2αn−1αn} ,

· · ·

bn =
an

a0
= (−1)n α1α2 · · ·αn.

The formulæ of (13) are also called the elementary s ymmetric polynomials in the n complex variables
α1, . . . , αn.

14
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Using (13 we easily prove

Theorem 1.4.1 Assume that the polynomial

P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, a0, a1, . . . , an ∈ R, a0 ̸= 0,

has real coefficients. If

(14) a2
1 − 2a0a2 < 0,

then P (z) has complex, non-real roots.

Proof. It follows from (13) and (14) that

0 >
a2
1 − 2a0a2

a2
0

=
{

a1

a0

}2

− 2 · a2

a0
= b2

1 − 2b2

= {− (α1 + α2 + · · · + αn)}2 − 2 {α1α2 + α1α3 + · · · + αn−1αn} = α2
1 + α2

2 + · · · + α2
n.

Since the sum of the squares of all roots is negative, they cannot all be real numbers. �

Remark 1.4.1 It follows actually from the proof that it suffices only to require that b1 and b2 are
real, and then of course (14). The remaining coefficients may be complex. ♢

Example 1.4.1 Every polynomial of the special form

P (z) = a0z
n + 0 · zn−1 + a2z

n−2 + · · · + an, a0, a2, . . . , an ∈ R,

where a1 = 0, and where a0 and a2 have the same sign, i.e. a0a2 > 0, must necessarily have complex
roots. This follows immediately from Theorem 1.4.1, because then

a2
1 − 2a0a2 = −2a0a2 < 0.

If in particular we choose a0 = a2 = 1 and a1 = 0, then it follows that every polynomial of the form

zn + zn−2 + a3z
n−3 + · · · + an, a3, . . . , an ∈ C,

must have complex roots. One simple example is the well-known z2 + 1. ♢

1.5 Rolle’s theorems.

In this section we show some variants of the well-known Rolle’s theorem, when it is restricted to
polynomials. We shall first prove the general r esult.

Theorem 1.5.1 Rolle’s theorem. Assume that f(t) is a real continuous function defined in a closed,
bounded interval [a, b]. Furthermore, assume that f is continuously differentiable in the interior in-
terval ]a, b[. If f(a) = f(b) = 0, then there exists at least one point ξ ∈ ]a, b[, such that f ′(ξ) = 0.
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Figure 2: Rolle’s theorem.

Proof. We shall give a proof which is very similar to the proof of Taylor’s formula in Appendix 5.3.
It follows from f(a) = 0 that

f(x) = f(a) +
∫ x

a

f ′(t) dt =
∫ x

a

f ′(t) dt for a ≤ x ≤ b.

We get in particular for x = b,

(15) f(b) = 0 =
∫ b

a

f ′(t = dt.

If f ′(t) ≡ 0 in [a, b], there is nothing to prove.

If f ′(t) is not identically 0, then f ′(t) must have both positive and negative values in ]a, b[, since
otherwise (15) could not be satisfied. By assumption, f ′(t) is continuous in ]a, b[, so there must exist
(at least) one ξ ∈ ]a, b[, such that f ′(ξ) = 0. �

We shall in the following choose f = P as a real polynomial (i.e. of real coefficients) of degree n in
the real variable x ∈ R,

(16) P (x) = a0x
n + a1x

n−1 + · · · + an, a0, . . . , an ∈ R, a0 ̸= 0, x ∈ R.

Theorem 1.5.2 Let P (x) be gives as in (16), and let a < b be two succeeding real zeros of P (x).
If the roots are counted according to their multiplicity, then the derivative P ′(x) has always an odd
number of zeros in the interval ]a, b[.

Proof. We first assume that all roots of P ′(x) are simple. Since P (x) does not have zeros in ]a, b[,
we may assume that P (x) > 0 in ]a, b[.

The zeros of P ′(x) divide ]a, b[ into open subintervals, in which P ′(x) is alternatively positive and
negative. Since P (x) > 0, we must have P ′(x) > 0 in the subinterval, which has x = a as its left
bound, and P ′(x) < 0 for x in the subinterval, which has x = b as its right bound.

16
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Figure 3: The sign of P ′(x) in [a, b].

It follows that we have the following variation of the sign of P ′(x),

+, 0, −, 0, +, 0, −, · · · , −, 0, +, 0, −.

17
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We notice that between two successive plus signs there are always two zeros of P ′(x). This implies
that the final zero to the right cannot be paired with another zero. The sequence ends with +, 0, −,
and the number of zeros of P ′(x) must therefore be odd in this case.

Then allow that P ′(x) has a higher order of zero in the case of either +, 0, −, or −, 0, +. This implies
that the order of the zero must necessarily be odd so in the count of the zeros we replace 1 by some
odd number. This does not change the conclusion of the theorem.

Finally, if the variation of sign of P ′(x) is either +, 0, +, or −, 0, −, then the zero must be of even
order. In this case we replace the variation +, 0, + by + alone, and the variation −, 0, − by − alone,
where we in both cases add an even number to the number of zeros. This process will not change the
conclusion either, and the theorem is proved. �

Theorem 1.5.3 Let P (x) be the polynomial (16), and let α < β be two successive real zeros of the
derivative P ′(x).

1) If P (α) · P (β) > 0, then P (x) has no zero in ]α, β[.

2) If P (α) · P (β) < 0, then P (x) has precisely one zero in ]α, β[.

Proof. 1) Assume that P (α), P (β) > 0, and that there is a ξ ∈ ]α, β[, such that P (ξ) = 0, so we aim
at getting to a contradiction.

It follows from the assumption that there exists a γ ∈ ]α, ξ[, such that P ′(γ) < 0, and a µ ∈ ]ξ, β[,
such that P ′(µ) > 0. Since P ′(x) is continuous, there also exists a ν ∈ ]γ, µ[, such that P ′(ν) = 0.
Then we have also ν ∈ ]α, β[, which contradicts the assumption that α and β are successive zeros of
P ′(x). Hence, P (x) ̸= 0 for every x ∈ ]α, β[.

2) Assume that P (α) · P (β) < 0, so P (α) and P (β) have different signs. The continuity of P (x)
implies that there exists a zero ξ ∈ ]α, β[ for P (x), thus P (ξ) = 0.

Assume that there exists another zero in the interval, e.g. µ ∈ ]α, ξ[, such that P (µ) = P (ξ) = 0.
Then Theorem 1.5.2 implies that there exists another zero ν ∈ ]µ, ξ[ of P ′(x). Since ν ∈ ]α, β[, this
contradicts the assumption that α and β are two successive zeros of P ′(x). �

Corollary 1.5.1 Let P (x) be the polynomial (16). If the derivative P ′(x) has p complex roots (i.e.
non-real roots), then the polynomial P (x) itself has at least p complex roots.

Proof. The degree of P (x) is n, so P ′(x) has degree n − 1, and P ′(x) has by assumption n − 1 − p
real roots.

It follows from Theorem 1.5.2 and Theorem 1.5.3 that the polynomial P (x) has at most one extra
real root, thus at most n − p real roots of P (x), and hence at least n − (n − p) = p complex roots of
P (x). �

Corollary 1.5.2 Let P (x) be the polynomial (16). The number of complex roots of the derivatives
P (j)(x), j = 0, 1, . . . , n, is a weakly decreasing function in j.
Here we have put P (0)(x) := P (x).

18

Download free eBooks at bookboon.com



Methods for finding (Real or Complex) Zeros in Polynomials

22 

Complex polynomials in general

Proof. This follows immediately by successive applications of Corollary 1.5.1. �

Example 1.5.1 If we can find the roots of the derivative P ′(x) of a polynomial of real coefficients,
then Rolle’s theorems can be applied to find where the real roots of P (x) are situated on the real axis.
This is always possible, if P (x) has degree 3, or if P (x) has degree 4, where the term of degree 3 is
missing. The latter condition can always be obtained by using a translation, cf. Section 1.2.1.

We shall illustrate this in the following by some examples.

1) Consider the polynomial P (x) = x3 − 2x − 5. Then P ′(x) = 3x2 − 2, which has the roots ±
√

6
3

.

We find by insertion the following variation of sign of P (x),

→ −∞ −
√

6
3

+
√

6
3

→ +∞

− − − + ∞

from which we conclude that there is only one real root and that it is >

√
6

3
.

2) The polynomial P (x) = x3 + x2 − 5x + 3 has the derivative P ′(x) = 3x2 + 2x − 5, which has the

roots −5
3

and +1. We get by insertion the following variation of sign of P (x).

→ −∞ − 5
3

1 → +∞

− + 0 +

from which follows that x = 1 is a double root and that there also is a real root < −5
3
. This is

easy to find by Vieti’s formulæ, because the sum of the roots, 1+1+α, must be −a1 = −1, hence
α = −3.

3) Finally, let P (x) = x4 + 12x2 + 96x − 12. Then

a2
1 − 2a0a2 = −24 < 0,

so it follows from Theorem 1.4.1 that we have at least two complex roots. Since P (0) = −12 < 0
and P (x) → +∞ for x → ±∞, we must also have at least two real roots. Finally, the total number
of roots is 4 by the Fundamental theorem of algebra, so we conclude that we have two real and two
complex roots.

♢
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2 Some solution formulæ of roots of polynomials

There are very few exact solution formulæ of a polynomial equation P (z) = 0. The reason is of course
Niels Henrik Abel’s result that P (z) = 0 in general cannot be solved by root signs, if deg P ≥ 5. (It
may of course occasionally be solvable). We shall in this chapter give the exact solution formulæ in
the cases of the binomial equation and the equation of second degree.

There exist exact solution formulæ for equations of third and fourth degree, but these are absolutely
not of any reasonable computational value, so although they are classical, we shall not give them here.

Finally, we give some useful partial results, assuming either that we have a rational root or a multiple
root.

2.1 The binomial equation.

The simplest possible non-trivial polynomial equation is the binomial equation in polar coordinates,

zn = a = r · exp(i{Θ + 2pπ}), r ≥ 0 and p ∈ Z.

Its n roots are given by

(17) z = n
√

r · exp
(

i
Θ + 2pπ

n

)
= n

√
r ·

{
cos

(
Θ + 2pπ

n

)
+ i · sin

(
Θ + 2pπ

n

)}
, p = 0, 1, . . . , n− 1.

That everyone of the n numbers of (17) are roots, follows by insertion. That they are mutually

different for r > 0 follows from the fact that they all lie on a circle of radius n
√

r with the angle
2π

n
between two adjacent roots, cf. Figure 4.

Figure 4: The six roots of z6 = −1.

Finally, it follows from the Fundamental theorem of algebra, cf. Corollary 1.3.1, that the equation has
precisely n roots.
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The geometry of (17), cf. Figure 4, can be exploited in the following way: Rewrite (17) as follows,

z = n
√

r · exp
(

i
Θ
n

)
· exp

(
2ipπ

n

)
= z0 · exp

(
2ipπ

n

)
, p = 0, 1, . . . , n − 1,

where z0 = n
√

r · exp
(
i
Θ
n

)
is anyone of the n possible solutions. Then the other roots are found, when

we successively multiply z0 by

exp
(

2iπ

n

)
= cos

(
2π

n

)
+ i · sin

(
2π

n

)

1, 2, . . . , n − 1 times.
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Example 2.1.1 We shall solve the binomial equation

z3 = −2 − 2i.

Figure 5: The three roots of z3 = −2 − 2i.

Since |a| = | − 2 − 2i| = 2
√

2 =
{√

2
}3

, it follows that all three roots lie on a circle of centre 0 and
radius

√
2.

Then it follows from Θ = Arg a = Arg(−2 − 2i) = −3π

4
that one of the solutions is given by

z1 =
√

2 · exp
(
−i

π

4

)
=

√
2

{
cos

(
−π

4

)
+ i sin

(
−π

4

)}
= 1 − i.

The remaining two roots are either found geometrically, cf. Figure 5, or by multiplication by exp
(

2πi

3

)

and exp
(

4πi

3

)
, resp., thus

z2 = z1 exp
(

2πi

3

)
= (1 − i)

{
−1

2
+ i

√
3

2

}
=

√
3 − 1
2

+ i

√
3 + 1
2

,

and

z3 = z1 exp
(

4πi

3

)
= (1 − i)

{
−1

2
+ i

√
3

2

}
= −

√
3 + 1
2

− i

√
3 − 1
2

. ♢

It is customary in the solutions to give the exact values of cos
(

2π

n

)
and sin

(
2π

n

)
for n = 2, 3, 4, 6, 8, 12,

cf. Table 1, where we have also added n = 5 and n = 10 for completeness. It should be mentioned
that such exact expressions using square roots do not exist for n = 7, 9, 11, 13, 14, but again for
n = 15, 16, 17, where, however, they are too complicated to have any practical use.
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n cos
(

2π

n

)
sin

(
2π

n

)

2 cos(π) = −1 sin(π) = 0

3 cos
(

2π

3

)
= −1

2
sin

(
2π

3

)
=

√
3

2
4 cos

(π

2

)
= 0 sin

(π

2

)
= 1

5 cos
(

2π

5

)
=

√
5 − 1
4

sin
(

2π

5

)
=

√
10 + 2

√
5

4

6 cos
(π

3

)
=

1
2

sin
(π

3

)
=

√
3

2

8 cos
(π

4

)
=

√
2

2
sin

(π

4

)
=

√
2

2

10 cos
(π

5

)
=

√
5 + 1
4

sin
(π

5

)
=

√
10 − 2

√
5

4

12 cos
(π

6

)
=

√
3

2
sin

(π

6

)
=

1
2

Table 1: Table of some exact values of cos
(

2π

n

)
and sin

(
2π

n

)
.

If in particular the exponent is n = 2 in the binomial equation, then it is possible to give exact solution
formulæ in the rectangular coordinates without using polar coordinates.

Theorem 2.1.1 Given the equation

z2 = (x + iy)2 = a = α + iβ.

1) If β > 0, then the solutions are

z = ±




√√
α2 + β2 + α

2
+ i

√√
α2 + β2 − α

2


 .

2) If β < 0, then the solutions are

z = ±




√√
α2 + β2 + α

2
− i

√√
α2 + β2 − α

2


 .

3) If β = 0, then the solutions are

z = ±

{√
|α| + α

2
+ i

√
|α| − α

2

}
.

In all three cases we define the square root of a positive number as a positive number.
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Proof. It suffices to prove 1), because 2) and 3) are proved similarly. We shall clearly only check
the candidates of the solutions. The plus/minus sign gives us two possible solutions, and a squaring
finally gives


±




√√
α2 + β2 + α

2
+ i

√√
α2 + β2 − α

2







2

=

√
α2 + β2 + α

2
−

√
α2 + β2 − α

2
+ 2i

√
α2 + β2 − α2

4
= α + iβ = a,

and 1) is proved. �

Example 2.1.2 In practice, Theorem 2.1.1 rarely gives “nice” solutions, though it occurs in special
cases. Clearly, the equation

z2 = 3 + 4i has the solutions ± (2 + i),

and the equation

z2 = 5 + 12i has the solutions ± (3 + 2i).

In general, the formulæ of Theorem 2.1.1 become messy. ♢

2.2 The equation of second degree.

The usual solution formula of the polynomial equation of second degree with real coefficients is still
valid, when the coefficients are complex. The only modification is that we shall choose one of the
two possibilities of the square root

√
b2 − 4ac, which is one of the solutions of the binomial equation

z2 = b2 − 4ac of degree 2.

Theorem 2.2.1 The solutions of the polynomial equation of second degree

azr + bz + c = 0,

where a ∈ C \ {0}, and b, c ∈ C are constants, are given by

(18) z =
1
2a

{
−b ±

√
b2 − 4ac

}
.

Proof. Let
√

b2 − 4ac denote one of the two solutions of the binomial equation w2 = b2 − 4ac. The
number of candidates of the solutions is two, so it suffices to check the candidates in the original
equation. A rearrangement of (18) gives

z +
b

2a
= ±

√
b2 − 4ac

2a
,

hence, by a squaring,

z2 +
b

a
z +

b2

4a2
=

b2 − 4ac

4a2
=

b2

4a2
− c

a
,
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which is reduced to

z2 +
b

a
z +

c

a
= 0.

Finally, we multiply by a to get the original equation. �

Example 2.2.1 The equation z2 − 2z − 2 − 4i = 0 has the solutions

z =
1
2

{
2 ±

√
4 − 4(−2 − 4i)

}
= 1 ±

√
1 + (2 + 4i) = 1 ±

√
3 + 4i = 1 ± (2 + i) =

{
3 + i,

−1 − i,

where we have used that ±
√

3 + 4i = ±(2 + i), cf. Example 2.1.2. A check shows that

α1 + α2 = 2 = −a1 and α1α2 = −3 + 1 − 4i = −2 − 4i = a2. ♢
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2.3 Rational roots.

If all coefficients a0, . . . , an ∈ Q of the polynomial P (z) are rational numbers, then there is a limited
set, which is easy to find, of possible rational roots, where we just have to check each one to see, if it
indeed is a root of P (z). first notice that we showed in Section 1.2.2 that if P (z) has only rational
coefficients, then we could find an equivalent polynomial with only integer coefficients, and even obtain
that b0 = 1. We shall not need this stronger result here, so in the following it is sufficient to assume
that all coefficients are integers.

We introduce the following notation. Assume that p and q ∈ Z, where q ̸= 0. We say that q is a
divisor of p and write q|p, if there is an r ∈ Z, such that

p = q · r.

Theorem 2.3.1 Assume that the polynomial

P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, a0, a1, . . . , an ∈ Z,

has integer coefficients, where a0 ̸= 0.
Assume that z =

p

q
∈ Q is a rational root of P (z), where p ∈ Z and q ∈ N do not have other common

divisors from Z than ±1. Then

p|an and q|a0.

Proof. We assume that P

(
p

q

)
= 0, where p ∈ Z and q ∈ N do not have other common divisors than

±1. Then

0 = qn P

(
p

q

)
= a0p

n + a1p
n−1q + · · · + an−1pqn−1 + anqn,

hence by some rearrangements,

p
{
a0p

n−1 + a1p
n−2q + · · · + an−1q

n−1
}

= −anqn,

and

q
{
a1p

n−1 + a2p
n−2q + · · · + anqn−1

}
= −a0p

n.

Since a0, . . . , an, p, q ∈ Z, and p and q have only the trivial common divisors, it follows from the first
equation that p|an, and from the second one that q|a0. �

In practice Theorem 2.3.1 is applied in the following way. Assume that the polynomial equation
P (z) = 0 has only integer coefficients. Let {q1, . . . , qℓ} be all mutually different (positive) divisors in
a0, and let {p1, . . . , pk} be all mutually different (positive) divisors in an. Then the possible rational
roots (if any) must belong to the set

{
±pi

qj

���� i = 1, . . . , k and j = 1, . . . , ℓ

}
.

Finally, we check all these at most 2kℓ possibilities.
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Example 2.3.1 We shall solve the equation

P (z) = z3 + 3z − 4 = 0

of integer coefficients. First notice that since a1 = 0 and a0 · a2 > 0, it follows from Example 1.4.1
that we must have two complex conjugated roots, and there is precisely one real root. If this root is
rational, it must be one of the elements of the set

{±1,±2,±4},

because a0 = 1 and an = −4. It follows by inspection that z = 1 is a root. Then we get by a division,

P (z) = z3 + 3z − 4 = (z − 1)
(
z2 + z + 4

)
.

Solving z2 + z + 4 = 0 we get the remaining two roots. Summing up, the three roots are

z1 = 1, z2 = −1
2

+ i

√
15
2

and z3 = −1
2
− i

√
15
2

.

The equation is of third degree, so it could in principle be solved by Cardano’s formula, which has
been omitted here. We shall here without details show why this is not done. In fact, if we instead of
the above apply Cardano’s formula, then we get after some very long and tedious computations that
the three roots are given by

z̃1 =
3
√

2 +
√

5 +
3
√

2 −
√

5,

z̃2 =

{
−1

2
+ i

√
3

2

}
3
√

2 +
√

5 +

{
−1

2
− i

√
3

2

}
3
√

2 −
√

5,

z̃3 =

{
−1

2
− i

√
3

2

}
3
√

2 +
√

5 +

{
−1

2
+ i

√
3

2

}
3
√

2 −
√

5.

It is far from obvious that {z1, z2, z3} and {z̃1, z̃2, z̃3} describe the same set of points.

Since solutions by Cardano’s formula usually have the complicated structure of z̃1, z̃2, z̃3 above, we
have decided here not to bring Cardano’s formula to avoid that the reader would be tempted to use
it. ♢

Remark 2.3.1 Theorem 2.3.1 does not assure that a polynomial of integer coefficients has rational
roots. In case of P (z) = z2 + 1 we have a0 = 1, a1 = 0 and a2 = 1, so the candidates of rational roots
are ±1. However, none of these is a root, the roots being the complex numbers ±i. ♢

Remark 2.3.2 Assume that

P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, a0, a1, . . . , an ∈ C, a0 ̸= 0.

Assume furthermore that every coefficient aj ∈ C has rational real and imaginary parts,

aj = αj + i βj , αj , βj ∈ Q, j = 0, 1, . . . , n.
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Then the method above of finding rational roots zk ∈ Q still applies. In fact, if

P

(
p

q

)
= 0, p ∈ Z and q ∈ N,

where p and q only have the common factors ±1, then we get by splitting qn P

(
p

q

)
= 0 into the real

and imaginary parts that

α0p
n + α1p

n−1q + · · · + αn−1pqn−1 + αnqn = 0,

and

β0p
n + β1p

n−1q + · · · + βn−1pqn−1 + βnqn = 0.

Multiplying by some constant from N we may assume that α0, . . . , αn and β0, . . . , βn are all integers,
so it follows from Theorem 2.3.1 that

p|αn and p|βn as well as q|α0 and q|β0.

Then it is easy to find all candidates of a rational root and then check it in the original equation. ♢
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Remark 2.3.3 Whenever the task is to find the roots of a polynomial it will always be a good strategy
first to check if the methods of this section apply. ♢

Example 2.3.2 We shall find all roots – if possible – of the polynomial

P (x) = x6 − 10x5 + 40x4 − 82x3 + 91x2 − 52x + 12

of integer coefficients.

Figure 6: The graph of P (x), which suggests that 1, 2, 3 are roots, though this is not a proof in itself.

Here, a0 = 1 and a6 = 12 = 1 · 2 · 2 · 3, so by Theorem 2.3.1 the candidates of possible rational roots
are

±1, ±2, ±3,±4,±6,±12.

Then notice that P (x) > 0 for x ≤ 0, so every real root must be positive. This leaves us the possibilities

1, 2, 3, 4, 6, 12.

We get by insertion,

P (1) = 0, P (2) = 0, P (3) = 0, P (4) = 108, P (6) = 6, 000, P (12) = 1, 197, 900,

so z = 1, 2, 3 are roots, and

(x − 1)(x − 2)(x − 3) = x3 − 6x2 + 11x − 6

is a divisor in P (x), and we get by a division,

P (x) = (x − 1)(x − 2)(x − 3)
(
x3 − 4x2 + 5x − 2

)
.

The candidates of rational roots of the latter factor are x = 1, 2. Notice that they necessarily must
be included in the previous set. We get by insertion,

13 − 4 · 12 + 5 · 1 − 2 = 0 and 23 − 4 · 22 + 5 · 2 − 2 = 8 − 16 + 10 − 2 = 0,
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so both x = 1 and x = 2 are roots in the latter factor. A division by (x−1)(x−2) = x2 −3x+2 gives

P (x) = (x − 1)(x − 2)(x − 3)
(
x3 − 4x2 + 5x − 2

)

= (x − 1)(x − 2)(x − 3){(x − 1)(x − 2) · (x − 1)}
= (x − 1)3(x − 2)2(x − 3),

and the six roots are

1, 1, 1, 2, 2, 3.

This example has been chosen as simple as possible. In general the computations are not that easy.

At the same time it is illustrated that we get more information of P (x) in the factorized form

P (x) = (x − 1)3(x − 2)2(x − 3),

than in the original form

P (x) = x6 − 10x5 + 40x4 − 82x3 + 91x2 − 52x + 12,

so a rule of thumb is to keep a factorization of a polynomial as long as possible. ♢

Example 2.3.3 We shall find all roots of the polynomial

P (x) = x5 + 2x4 − 2x3 + 2x2 − 3x

of integer coefficients.

Figure 7: The graph of P (x), which suggests that 0, 1, −3 are roots.

Obviously, x = 0 is a root, and we have P (x) = x · F (x), where

F (x) = x4 + 2x3 − 2x2 + 2x − 3
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is a polynomial of integer coefficients.

Here, a0 = 1 and a4 = 3, so it follows from Theorem 2.3.1 that the candidates of possible rational
roots are ±1, ±3. We get by insertion,

F (1) = 1 + 2 − 2 + 2 − 3 = 0, F (−1) = 1 − 2 − 2 − 2 − 3 = −8 ̸= 0,

F (3) = 81054.18 + 6 − 3 ̸= 0, F (−3) = 81 − 54 − 18 − 6 − 3 = 0,

and we have proved, what was indicated on Figure 7 that x = 0, x = 1 and x = −3 are roots of P (x).

A division by (x − 1)(x + 3) = x2 + 2x − 3 gives the following factorization of P (x),

P (x) = x · F (x) = x ·
(
x2 + 2x − 3

) (
x2 + 1

)
= x(x − 1)(x + 3)(x − i)(x + i),

and the five complex roots are

0, 1, −3, i, −i. ♢

2.4 The Euclidean algorithm.

We shall here shortly describe how we divide a polynomial

P (z) = a0z
n + a1z

n−1 + · · · + an, a0, . . . , an ∈ C, a0 ̸= 0,

by another one,

Q(z) = b0z
m + b1z

m−1 + · · · + bm, b0, . . . , bm ∈ C, b0 ̸= 0,

with remainder term, where we assume that m ≤ n. Usually even m < n in this division algorithm,
and the remainder term is a polynomial R(z) of degree < deg Q = m.

If one does not use a computer, the best way is to use a so-called “gallows construction”,

Q(z)|P (z) | · · ·.

For the given polynomials above the construction starts in the following way,

b0z
m + b1z

m−1 + · · · + bm|a0z
n + a1z

n−1 + · · · + an| (a0/b0) zn−m

(a0/b0) zn−m · Q(z) = a0z
n + a0 ·

b1

b0
zn−1 + · · ·

Subtraction gives:
(

a1 − a0 ·
b1

b0

)
zn−1 + · · · ,

and then proceed similarly, until the bottom polynomial (the remainder term) has lower degree than
Q(z). Since the degree is lowered by at least 1 at each step, this construction contains at most n−m+1
steps.
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Example 2.4.1 We shall find a and b such that x2 + x + 1 is a divisor of x4 + 3x3 + 5x2 + ax + b.

It follows by the division algorithm that

x2 + x + 1|x4 + 3x3 + 5x2 + ax + b|x2 + 2x + 2

x4 + x3 + x2+
2x2 + 4x2 + ax + b

2x3 + 2x2 + 2x

2x2 + (a − 2)x + b

2x2 + 2x + 2
(a − 4)x + b − 2

If x2 + x + 1 is a divisor, then the remainder term must be 0, thus a = 4 and b = 2, and we get

x4 + 3x3 + 5x2 + 4x + 2 =
(
x2 + x + 1

) (
x2 + 2x + 2

)
.

The roots are

x = −1
2
± i

√
3

2
and x = −1 ± i. ♢
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It is easy to understand the principle of the division algorithm above. However, if the coefficients
are not integers, the computations become usually very hard and tedious. In some cases one is only
interested in a constant times the remainder and not in the quotient itself. If the coefficients are
integers, then the third line in the gallows will usually have rational coefficients and not integers.
Multiply this third line by a constant, such that this new fourth line has integers as coefficients and
proceed in this way. Of course, in this case it does not make sense to indicate the quotient. Only the
remainder term times a convenient constant is here of interest.

In theoretical considerations one argues on the pure division algorithm as in the Euclidean algorithm
described in the following.

Let P1(z) and P2(z) be two polynomials, where deg P2 ≤ deg P1. Then by the division algorithm we
get a unique quotient Q1(z) and a unique remainder term P3(z), such that

P1(z) = P2(z) · Q1(z) + P3(z), deg P3 < deg P2.

Then repeat this process with P2(z) and P3(z), thus

P2(z) = P3(z) · Q2(z) + P4(z), deg P4 < deg P3,

where Q2(z) and P4(z) again are uniquely determined polynomials.

Proceed in this way, until we obtain an equation, in which the remainder is the zero polynomial. Thus,

(19)




P1 = P2Q1 + P3, deg P3 < deg P2,
P2 = P3Q2 + P4, deg P4 < deg P3,

· · · · · ·
Pm−2 = Pm−1Qm−2 + Pm, deg Pm < deg Pm−1,
Pm−1 = PmQm−1.

It follows from the first line of (19) that a common divisor of P1 and P2 must also be a divisor of P3.
Then the second line of (19) implies that this common divisor is also a divisor of P4, etc., so it must
be a divisor of Pm.

Conversely, it follows immediately from (19) that Pm|Pm−1, hence also Pm|Pm−2, etc. so Pm must be
a divisor in both P1 and P2.

Hence we have proved

Theorem 2.4.1 Given two polynomials P1(z) and P2(z). There exists precisely one normalized poly-
nomial D(z), i.e. the coefficient of the term of highest degree in D(z) is 1, such that all common
divisors of P1(z) and P2(z) are precisely all divisors of D(z).
We call D(z) the greatest common divisor of P1(z) and P2(z), and we denote it by

D = (P1, P2) .

One usually finds D(z) = Pm(z) by means of the Euclidean algorithm (19) above.

Remark 2.4.1 If we are only interested in the remainder polynomials Pk of (19) and all coefficients
are rational, it may be convenient to apply the modified division algorithm described after Exam-
ple 2.4.1. ♢
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Corollary 2.4.1 Let (P1, P2) = D. If Q is a normalized polynomial, then

(P1 · Q,P2 · Q) = D · Q.

Proof. This follows from the fact that the Euclidean algorithm for P1Q and P2Q is obtained from
the Euclidean algorithm for P1 and P2 by multiplying every division equation by Q. �

Example 2.4.2 We shall find the greatest common divisor of the two polynomials

x4 − 3x3 + 5x2 + x − 4 and x5 + 7x4 − 8x3 + 5x2 − 4x − 1.

This example will demonstrate that without a computer the Euclidean algorithm gives some very
tough and tedious computation to carry out by hand. We shall therefore not follow (19) strictly, but
use some shortcuts, whenever possible.

The problem can in fact be reduced, if we start by checking the possible rational roots ±1. Of these
only x = 1 is a root of the latter polynomial, and x = 1 is also a root of the former polynomial, we
may reduce the problem considerably by a division by x − 1.

We shall in the following assume that we have not noticed that x = 1 is a common root of the two
polynomials. Then by the division algorithm,

x4 − 3x3 + 5x2 + x − 4|x5 + 7x4 − 8x3 + 5x2 − 4x − 1|x + 10

x5 − 3x4 + 5x3 + x2 − 4x

10x4 − 13x3 + 4x2 − 1
10x4 − 30x3 + 50x2 + 10x − 40

17x3 − 46x2 − 10x + 39

Then multiply the first divisor x4 − 3x3 + 5x2 + x − 4 by 17 and divide the result by the remainder
term 17x3 − 46x2 − 10x + 39,

17x3 − 46x2 − 10x + 39|17x4 − 51x3 + 85x2 + 17x − 68|x

17x4 − 46x3 − 10x2 + 39
−5x3 + 95x2 − 22x − 68

The next division is not nice, so we use the modified algorithm, multiplying the remainder by −17,
before we proceed,

17x3 − 46x2 − 10x + 39|85x3 − 1615x2 + 374x + 1156|5

85x3 − 230x2 − 50x + 195
−1385x2 + 424x + 961

We change the sign of the remainder term, and the theory then tells us that we shall divide 1385x2 −
424x− 961 into some multiple of 17x3 − 46x2 − 10x+39, so the factor should be chosen as 1385. This
does not look too nice, so instead we notice that 1385x2−424x−961 is a polynomial of second degree
with a known solution formula. The roots are

1 and − 961
1385

,
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so

1385x2 − 424x − 961 = (x − 1)(1385x + 961).

It follows by insertion that x = 1 is also a root of 17x3−46x2−10x+39, and it follows by the division
algorithm that

x − 1|17x3 − 46x2 − 10x + 39|17x2 − 29x − 39

17x3 − 17x2

−29x2 − 10x + 39
−29x2 + 29x

−39x + 39
−39x + 39

0

where the remainder is 0, so

17x3 − 46x2 − 10x + 39 = (x − 1)
(
17x2 − 29x − 39

)
.

The possible rational roots of 17x2 − 29x − 39 are

±1, ±3, ±13, ±39, ± 1
17

, ± 3
17

, ±13
17

, ±39
17

.

Clearly, none of these is equal to − 961
1385

, so the only common root is x = 1, and the largest common
divisor is

D(x) = x − 1. ♢

2.5 Roots of multiplicity > 1.

It is sometimes possible by applying the Euclidean algorithm to find the roots of multiple multiplicity.

Theorem 2.5.1 Given a polynomial P (z). The roots of multiple degree of P (z) are the roots of the
greatest common divisor D2 = (P, P ′) of the polynomial P (z) and its derivative P ′(z). Each of the
roots of D2 has a multiplicity which is 1 smaller than its multiplicity in the original polynomial P (z).

Proof. Write

(20) P (z) = a (z − α1)
p1 · · · (z − αr)

pr , p1, . . . , pr ≥ 1,

where α1, . . . , αr denote the r mutually different roots. Then

P ′(z) = a · p1 (z − α1)
p1−1 (z − α2)

p2 · · · (z − αr)
pr

+a · p2 (z − α1)
p1 (z − α2)

p2−1 · · · (z − αr)
pr

+ · · ·
+a · pr (z − α1)

p1 · · · (z − αr−1)
pr−1 · · · (z − αr)

pr−1

= a (z − α1)
p1−1 · · · (z − αr)

pr−1 {p1 (z − α2) · · · (z − αr) + · · · + pr (z − α1) · · · (z − αr−1)} .(21)
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If we put z = αj into the latter factor of (21), all terms disappear with the exception of

(22) pj (αj − α1) · · · (αj − αj−1) · (αj − αj+1) · · · (αj − αr) ̸= 0.

It follows from (20) and (22) that

D2 = (P, P ′) = (z − α1)
p1−1 · · · (z − αr)

pr−1
,

where we of course remove all factors where the exponent is pj = 1. �

Example 2.5.1 We shall find all n ∈ N, for which the polynomial (z + 1)n+1 + zn+1 + 1 has roots of
multiplicity > 1, i.e. we shall find n ∈ N, such that

P (z) = (z + 1)n+1 + zn+1 + 1 and P ′(z) = (n + 1) {(z + 1)n + zn}

have common roots, i.e. the greatest common divisor D(z) = (P, P ′) is a polynomial of degree ≥ 1.
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Using the Euclidean algorithm we get

(z + 1)n + zn|(z + 1) · (z + 1)n + z · zn + 1|z + 1
(z + 1) · (z + 1)n + (z + 1) · zn

−zn + 1

so the task is reduced to find common roots of the polynomials (z + 1)n + zn and zn − 1. This is of
course equivalent to find the common roots of

{(z + 1)n + zn} − {zn − 1} = (z + 1)n + 1 and zn − 1.

The roots of (z + 1)n + 1 lie on a circle of centre −1 and radius 1.
The roots of zn − 1 lie on a circle of centre 0 and radius 1.

Figure 8: The roots lie on both circles.

The only possibilities are, cf. Figure 8,

−1
2
± i

√
3

2
= exp

(
±2iπ

3

)
.

It only remains to find n ∈ N, such that these two numbers are roots in both (z + 1)n and zn − 1.

Notice that if

z0 = −1
2
± i

√
3

2
= exp

(
±2iπ

3

)
, then z0 + 1 =

1
2
± i

√
3

2
= exp

(
± iπ

3

)

with corresponding signs. Hence,

zn
0 = exp

(
±2inπ

3

)
= 1 for n = 3p, p ∈ N,

and

(z0 + 1)n = exp
(
± inπ

3

)
= −1 for n = 3(2p + 1), p ∈ N,
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and we conclude that the possible exponents must have the structure

(23) n = 3(2p + 1), p ∈ N0.

Then by insertion,

P (z0) = (z0 + 1)n+1 + zn+1
0 + 1 = − (z0 + 1) + z0 + 1 = 0,

and

P ′ (z0) = (n + 1) {(z0 + 1)n + zn
0 } = (n + 1){−1 + 1} = 0,

thus it follows for the given exponents (23) that

z0 = −1
2
± i

√
3

2
= exp

(
±2iπ

3

)

are indeed roots of multiplicity > 1, and there is no other possibility.

Finally, it follows from

P ′′ (z0) = (n + 1)n
{

(z0 + 1)n−1 + zn−1
0

}
= (n + 1)n

{
− exp

(
∓ iπ

3

)
+ exp

(
∓2iπ

3

)}

= (n + 1)n

{
−

(
1
2
∓ i

√
3

2

)
+

(
−1

2
∓ i

√
3

2

)}
= −(n + 1)n ̸= 0

that the multiplicity is 2 in both cases. ♢

Returning to Theorem 2.5.1 it follows that we can repeat the process on D2. This means that the
roots of D3 := (D2, D

′
2) are the roots of P (z) of at least multiplicity 3, and their multiplicities in D3

are their multiplicities in P (z) minus 2. If D3 is not a constant, then proceed with D4 := (D3, D
′
3),

etc.

Summing up, we get a sequence of polynomials of decreasing degrees,

(24)




D1 = P all roots of P,
D2 = (P, P ′) all multiple roots of P,
D3 = (D2, D

′
2) all roots of P of at least multiplicity 3,

...
...

Dj =
(
Dj−1, D

′
j−1

)
all roots of P of at least multiplicity j.

Obviously, this process stops after a finite number of steps.

We immediately get from the above

Theorem 2.5.2 Let the Dj be defined by (24). If Dj+1(z) ̸= 0, then the roots of the quotient
Dj(z)/Dj+1(z) are all simple. They are the roots of P (z) of precisely multiplicity j.

Theorem 2.5.2 is convenient in the sense that the multiple roots of P (z) of multiplicity j are the simple
roots of the simple polynomial Dj/Dj+1, where one could hope for more efficient solution methods,
because the degree of Dj/Dj+1 is smaller. The disadvantage is of course that it cannot be used, when
P (z) has only simple roots, because then D2 = (P, P ′) = 1.
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Example 2.5.2 Given the polynomial

P (z) = z6 − 3z5 + 7z4 − 10z3 + 8z2 − 5z + 2.

We shall factorize P (z) in the following way,

P (z) = G1(z) · G2
2(z) · · ·Gm

m(z),

where Gq(z) is the product of all factors z−ai, corresponding to the roots of multiplicity q, and where
m is the highest multiplicity of roots in P (z).

We first check for possible rational roots, cf. Section 2.3. These can only be one of the numbers ±1
and ±2. Since the terms of P (z) have alternating signs, −1 and −2 are not possible roots. Then we
get by insertion,

P (1) = 1 − 3 + 7 − 10 + 8 − 5 + 1 = 0,

and

P (2) = 64 − 3 · 32 + 7 · 16 − 10 · 8 + 8 · 4 − 5 · 2 + 2 = 8 + 36 − 10 + 2 = 36.

We conclude that z = 1 is a root.

Since

P ′(z) = 6z5 − 15z4 + 28z3 − 30z2 + 16z − 5, and P ′(1) = 0,

and

P ′′(z) = 30z4 − 60z3 + 84z2 − 60z + 16, and P ′′(1) = 10 ̸= 0,

we conclude that z = 1 is a root of multiplicity 2, and (z − 1)2 = z2 − 2z + 1 must be a divisor in
P (z). We get by division,

z2 − 2z + 1|z6 − 3z5 + 7z4 − 10z3 + 8z2 − 5z + 2|z4 − z3 + 4z2 − z + 2

z6 − 2z5 + z4

−z5 + 6z4 − 10z3 + 8z2 − 5z + 2
−z5 + 2z4 − z3

4z4 − 9z3 + 8z2 − 5z + 2
4z4 − 8z3 + 4z2

−z3 + 4z2 − 5z + 2
−z3 + 2z2 − z

2z2 − 4z + 2
2z2 − 4z + 2

0

We conclude that

(25) P (z) = z6 − 3z5 + 7z4 − 10z3 + 8z2 − 5z + z = (z − 1)2
{
z4 − z3 + 4z2 − z + 2

}
,
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so the investigation is then reduced to the polynomial

P1(z) = z4 − z3 + 4z2 − z + 2, where P ′
1(z) = 4z3 − 3z2 + 8z − 1.

We divide P ′
1(z) into 16P1(z),

4z3 − 3z2 + 8z − 1|16z4 − 16z3 + 64z2 − 16z + 32|4z − 1

16z4 − 12z3 + 32z2 − 4z

−4z3 + 32z2 − 12z + 32
−4z3 + 3z2 − 8z + 1

29z2 − 4z + 31

The remainder 20z2 − 4z + 31 has the roots

2 ± i
√

895
29

,
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which by insertion are seen not to be roots of 4z3 − 3z2 + 8z − 1. We therefore conclude that (25) is
the factorization with

G1(z) = z4 − z3 + 4z2 − z + 2 and G2(z) = z − 1.

The simple roots (two pairs of pairwise complex conjugated roots) of G1(z) cannot be found with the
methods known so far in this investigation. ♢

Example 2.5.3 Let P (z) be a polynomial of rational coefficients. Assume that α is the only root of
multiplicity ν. We shall prove that α is rational.

From Theorem 2.5.2 follows that we can write

P (z) = G1(z)G2
2(z) · · ·Gm

m(z),

where by assumption,

Gν
ν(z) = (z − α)ν ,

and where in general, Gj(z) has the simple roots which are precisely the roots of P (z) of multiplicity
j. We get by the Euclidean algorithm,

D1 = (P, P ′) = G2G
2
3 · · ·Gν−1

ν · · ·Gn−1
n

D2 = (D1, D
′
1) = G3G

2
4 · · ·Gν−2

ν · · ·Gn−2
n ,

...
...

...
Dν−1 =

(
Dν−2, D

′
ν−2

)
= Gν · · ·Gn−ν+1

n ,
Dν =

(
Dν−1, D

′
ν−1

)
= Gν+1 · · ·Gn−ν

n ,
...

...
...

Dn−1 = Gn.

Since rational coefficients are preserved by the Euclidean algorithm, Gm must have rational coefficients.
Then also

P1(z) = P (z)/Gn
n(z) = G1(z)G2

2(z) · · ·Gm−1
m−1(z)

must have rational coefficients, and we can repeat the procedure from the very beginning of this
example on P1(z). The conclusion is, that Gm−1(z) must have rational coefficients, etc., so every
Gj(z) must have rational coefficients. For j = ν we get Gν(z) = z − α, because no other root has
multiplicity ν. We therefore conclude that α ∈ Q is rational. ♢

Example 2.5.4 We shall reconsider the polynomial

P (z) = z6 − 10z5 + 40z4 − 82z3 + 91z2 − 52z + 12

of Example 2.3.2. This time we shall find its roots by using Theorem 2.5.2 instead.

We get

P ′(z) = 6z5 − 50z4 + 160z3 − 246z2 + 182z − 52
= 2

{
3z5 − 25z4 + 80z3 − 123z2 + 91z − 26

}
.
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If we divide P (z) by P ′(z) we get a quotient of the form Q0(z) = αz + β and a remainder term. This
shows that it would be better to divide

32P (z) = 9z6 − 90z5 + 360z4 − 738z3 + 819z2 − 468z + 108

by

1
2

P ′(z) = 3z5 − 25z4 + 80z3 − 123z2 + 91z − 26.

At this step we can leave the division to the reader for exercise. The result becomes

32 P (z) = (3z − 5) · 1
2

P ′(z) −
{
5z4 − 31z3 + 69z2 − 65z + 22

}
.

Then we divide

52 · 1
2

P ′(z) = 75z5 − 625z4 − 2000z3 − 3075z2 + 2275z − 650

by

R̃0(z) = 5z4 − 31z3 + 69z2 − 65z + 22.

The result is

25
2

P ′(z) = (15z − 32)R̃0(z) − 27z3 + 108z2 − 135z + 54

= (15z − 32)R̃0(z) − 27
{
z3 − 4z2 + 5z − 2

}
.

Then divide R̃0(z) above by the modified remainder

R̃1(z) = z3 − 4z2 + 5z − 2

to get

R̃0(z) = (5z − 11)R̃1(z),

so we conclude that the greatest common divisor is

D1(z) = (P (z), P ′(z)) = R̃1(z) = z3 − 4z2 + 5z − 2.

We check if D1(z) has multiple roots. First,

D′
1(z) = 3z2 − 8z + 5,

so we get by a polynomial division,

32 D1(z) = (3z − 4)D′
1(z) − 2(z − 1),

where the remainder is R̃2(z) = z − 1. Then finally,

D′
1(z) = (3z − 5)R̃2(z),
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and we conclude that

D2(z) = (D1(z), D′
1(z)) = z − 1.

Summing up, we have proved that

(26)




P (z) = z6 − 10z5 + 40z4 − 82z3 + 91z2 − 52z + 12

D1(z) = z3 − 4z2 + 5z − 2

D2(z) = z − 1.

It follows from D2(z) = z − 1 that z = 1 is a root of multiplicity 3. By a division,

P (z)
(z − 1)3

= z3 − 7z2 + 16z + 12

and

D1(z)
(z − 1)3

= z − 2,

so z = 2 must be a root of multiplicity 2 of P (z).
Finally

P (z)
(z − 1)3(z − 2)2

= z − 3,

and we conclude that

P (z) = (z − 1)3(z − 2)2(z − 3).

An alternative method is to use (26) to get

P (z)
D1(z)

= z3 − 6z2 + 11z − 6,

where the simple roots of this quotient are all mutually different roots of P (z). Furthermore,

D1(z)
D2(z)

= z2 − 3z + 2 = (z − 1)(z − 2),

so z = 1 and z = 2 are the roots of multiplicity ≥ 2. Finally,

P (z)
D1(z)

:
D1(z)
D2

=
P (z) · D2(z)

D1(z)2
= z − 3,

where we have removed all factors of higher multiplicity. Hence, z = 3 is the only simple root, and
(z − 1)2(z − 2)2(z − 3) must be a factor of P (z). It follows again from the division

P (z)
(z − 1)2(z − 2)2(z − 3)

= z − 1

that

P (z) = (z − 1)3(z − 2)2(z − 3). ♢
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3 Position of roots of polynomials in the complex plane

3.1 Complex roots of a real polynomial.

Recall that a polynomial is called real if all its coefficients are real. The following well-known theorem
is here included for completeness.

Theorem 3.1.1 Let P (z) be a real polynomial. If α + iβ, β ̸= 0, is a complex root, then the complex
conjugated α − iβ is also a complex root. In particular,

(z − (α + iβ))(z − (α − iβ)) = (z − α)2 + β2 = z2 − 2αz + α2 + β2,

is a divisor of P (z) of real coefficients, so

P (z) =
(
z2 − 2αz + α2 + β2

)
Q(z),

where Q(z) is also a real polynomial.
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Proof. Assume that

P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, a0, a1, . . . , an ∈ R,

has the complex root α + iβ, where α, β ∈ R and β ̸= 0. Then

P (α + iβ) = a0(α + iβ)n + a1(α + iβ)n−1 + · · · + an−1(α + iβ) + an = 0.

Since the aj are all real, it follows by complex conjugation that also

P (α − iβ) = a0(α − iβ)n + a1(α − iβ)n−1 + · · · + an−1(α − iβ) + an = 0 = 0,

hence α − iβ is also a root of P (z), and since β ̸= 0, we have α − iβ ̸= α + iβ, so

(z − (α + iβ))(z − (α − iβ)) = z2 − 2αz + α2 + β2

is a divisor of P (z) of real coefficients, so the quotient Q(z) is also a real polynomial, and
deg Q = deg P − 2.

If we argue similarly on Q(z), it follows immediately that if α + iβ is a root of order j, then α− iβ is
a root of the same order j. �

We mention in this connection a similar theorem with square roots instead of the imaginary “i”, so
such a conclusion of a “twin solution” is not restricted to the complex case alone.

Theorem 3.1.2 Assume that all coefficients of P (z) are rational numbers, a0, a1, . . . , an ∈ Q. If
P (z) has the root α +

√
β, where α, β ∈ Q and

√
β /∈ Q, then α −

√
β is also a root of P (z).

Proof. Assume that α +
√

β is a root, where α, β ∈ Q and
√

β /∈ Q. Then

P (α +
√

β) = a0

(
α +

√
β
)n

+ a1

(
α +

√
β
)n−1

+ · · · + an−1

(
α +

√
β
)

+ an

= a0

n∑
j=0

(
n
j

)
αn−jβj/2+a1

n−1∑
j=0

(
n − 1

j

)
αn−j−1βj/2+· · ·+an−1

(
α+

√
β
)

+ an

= a0

{
αn + n · αn−1

√
β +

(
n
2

)
αn−2β + · · ·

}
+ · · · + an

= Q1(α.β) +
√

β · Q2(α, β) = 0.

Since both Q1(α, β), Q2(α, β) ∈ Q and
√

β /∈ Q, we must have Q1(α, β) = 0 and Q2(α, β) = 0.

Similarly,

P (α −
√

β) = a0

(
α −

√
β
)n

+ a1

(
α −

√
β
)n−1

+ · · · + an−1

(
α −

√
β
)

+ an

= a0

n∑
j=0

(
n
j

)
αn−j(−1)jβj/2 + a1

n−1∑
j=0

(
n − 1

j

)
αn−j−1(−1)jβj/2 + · · ·

+an−1

(
α −

√
β
)

+ an.
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The terms in which
√

β does not occur must correspond to even j, in which case (−1)j = 1. Summing
up, we get the same Q1(α, β) as above.

The terms in which
√

β does occur as an extra factor must correspond to odd j, in which case
(−1)j = −1. Summing up, these terms add up to −

√
β · Q2(α, β), where Q2(α, β) is given as above.

Since Q1(α, β) and Q2(α, β) are the same in the two cases, we get

P
(
α −

√
β
)

= Q1(α, β) −
√

β · Q2(α, β) = 0.

It follows that
(
z −

(
α +

√
β
))(

z −
(
α −

√
β
))

= (z − α)2 − β = z2 − 2αz + α2 − β

of rational coefficients is a divisor in P (z),

P (z) =
{
z2 − 2αz + α2 − β

}
Q(z),

where Q(z) has rational coefficients. �

3.2 Descartes’s theorem.

We have previously from time to time used that if a polynomial

P (x) = a0x
n + a1x

n−1 + · · · + an−1x + a0, x ∈ R,

has only positive coefficients, aj > 0 for all j, then P (x) cannot have positive roots, and if the
coefficients are alternating, aj = (−1)j |aj | (or aj = (−1)j+1 |aj |) for all j, then P (x) cannot have
negative roots.

We shall in this section derive some improved results concerning where the real roots are lying on the
real axis. We assume that the real polynomial is normalized, i.e. that a0 = 1.

Theorem 3.2.1 If P (x) is of even degree, then P (x) has an even number of real roots (including the
possibility of no root at all).
If P (x) is of odd degree, then P (x) has an odd number of real roots. All roots are here counted
according to their multiplicities.

Proof. The theorem follows from Theorem 3.1.1, which states that for real polynomials, non-real
roots are always given in complex conjugated pairs, so the number of non-real roots is an even number.
The fundamental theorem of algebra states that the degree of a polynomial is equal to its number of
roots, counted by their multiplicity, so the theorem follows by parity. �

Theorem 3.2.2 Given the real normalized polynomial

P (x) = xn + a1x
n−1 + · · · + an−1x + an, a1, . . . , an ∈ R.

Define constants H and L by

−H := min {0, a1, . . . , an} and − L = min {0,−a1,+a2, . . . , (−1)nan} .

If P (x) has a real root, then it must lie in the interval [−1 − L, 1 + H].
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Proof. If x > 1 + H ≥ 1, then we get the estimates

P (x) ≥ xn − H
{
xn−1 + xn−2 + · · · + 1

}
= xn − H · xn − 1

x − 1

=
(x − 1)xn − H · xn + H

x − 1
>

H · xn − H · xn + H

x − 1
=

H

x − 1
> 0,

from which follows that P (x) has no real root > 1 + H.

A similar estimate shows that the polynomial

(−1)nP (−x) = xn − a1x
n−1 + a2x

n−2 − · · · + (−1)nan

does not have any root −x > 1 + L. Thus we conclude that P (x) does not have any root x < −1−L,
and the theorem is proved. �

If an ̸= 0, then 0 is not a root, and there is a neighbourhood of 0 which does not contain any root
from P (x).

Corollary 3.2.1 Given the real normalized polynomial

P (x) = xn + a1x
n−1 + · · · + an−1x + an, a1, . . . , an ∈ R and an ̸= 0.

Define N and M by

−N = min
{

0,
a1

an
, . . . ,

an

an

}
and −M = min

{
0, (−1)n−1 a1

an
, (−1)n−2 a2

an
, . . . ,−an−1

an
,
an

an

}
.

If P (x) has a real root, then it must lie in one of the two intervals
]
−∞,− 1

1 + M

]
and

[
1

1 + N
, +∞

[
.

Proof. Put x =
1
y
. Then

ynP

(
1
y

)
= anyn + an−1y

n−1 + · · · + a1y + 1 = an

{
yn +

an−1

an
yn−1 + · · · + a1

an
y + 1

}
.

It follows from Theorem 3.2.2 that any real root y, if it exists, must lie in [−1 − M, 0[∪ ]0, 1 + N ].

Since y =
1
x

, we conclude that any real root must lie in the union

]
−∞,− 1

1 + M

]
∪

[
1

1 + N
,+∞

[
. �
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Example 3.2.1 Let

P (x) = x19 − 4x13 + 6x10 + 20x5 − 2x3 − 2x2 − 4.

Then

−H = min{0,−4, 6, 20,−2,−2,−4} = −4, hence H = 4,

and

−L = min{0,−4,−6, 20,−2, 2,−4} = −6, hence L = 6,

because a19−13 = a6 = −4, a19−10 = a9 = 6, a19−5 = a14 = 20, a19−3 = a16 = −2, a19−2 = a17 = −2
and a19 = −4. If α is a real root, then α ∈ [−1 − L, 1 + H] = [−7, 5].
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Figure 9: The graph of P (x) = x19 − 4x13 + 6x10 + 20x5 − 2x3 − 2x2 − 4.

Furthermore,

−1
4

y19 P

(
1
y

)
= y19 +

1
2

y17 − 5y14 − 3
2

y9 + y6 − 1
4
,

so

−N = min
{

0, 1,
1
2
,−5,−3

2
, 1,−1

4

}
= −5, thus N = 5,

and

−M = min
{

0,
1
2
, 5,

3
2
,−1,

1
4

}
= −1, thus M = 1,

so possible real roots must also lie in
]
−∞,−1

2

]
∪

[
1
6
, +∞

[
.

Combining these results we see that possible real roots are limited to
[
−7,−1

2

]
∪

[
1
6
, 5

]
.

It follows from Figure 9 that there is only one real root and it lies in the interval [0.7, 0.8] ⊂
[
1
6
, 5

]
. ♢

Theorem 3.2.3 Descartes’s theorem (1637). Let

P (x) = xn + a1x
n−1 + · · · an−1x + an, a1, . . . , an ∈ R,

be a real normalized polynomial.

• The number of positive roots of P (x), counted by multiplicity, is at most equal to the number of
changes in sign in the sequence 1, a1, . . . , an.

• The difference between the two numbers is an even number.

In the count of changes of sign we only consider coefficients aj ̸= 0 which are not zero.
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Proof. If P (0) = 0, then the root x = 0 has some multiplicity k ∈ N. Since 0 is not positive, we can
divide by xk to get P1(x) = P (x) · x−k for x > 0. Then by continuity, P1(0) ̸= 0, and P1(x) and P (x)
must have the same positive roots, all of the same multiplicity.

We may therefore in the following assume that an = P (0) ̸= 0.

Theorem 3.2.3 clearly follows, if we can prove

Lemma 3.2.1 Let P (x) be a normalized polynomial of real coefficients, where P (0) ̸= 0. If P (x) has
r positive roots, then there are r + 2p changes of sign in the sequence 1, a1, . . . , an, where p is some
nonnegative integer, p ∈ N0.

Proof. Induction after r.

1) If r = 0, then P (x) has no positive roots. Then P (x) has constant sign for x ≥ 0. Since P (x) → +∞
for x → +∞, this sign must be +, and we conclude that an = P (0) > 0.
The sequence 1, a1, . . . , an then starts and ends with positive terms. If ak is the first negative
term, then we search for the first following positive term aℓ, ℓ > k. It follows that we have two
changes in the subsequence 1, . . . , aℓ.
Proceed in the same way with the subsequence aℓ, . . . , an, where both aℓ and an are positive, etc..
After a finite number of steps, each adding 2 to the count of changes of sign, we finally reach an,
and the claim follows for r = 0.

2) Assume that the lemma holds for some r0 ∈ N0. We shall prove that it also holds for its successor
r = r0 + 1.

We assume that the polynomial P (x) has r0 + 1 positive roots, and we choose one of them, α > 0.
Then

(27) P (x) = xn + a1x
n−1 + · · · + an = (x − α)P0(x),

where

P0(x) = xn−1 + b1x
n−1 + · · · + bn−1

must have r0 positive roots, because we by division have removed one positive root α from P (x).

Using the assumption of induction above, P0(x) has r0 + 2p0 for some p0 ∈ N0 changes of sign in
its sequence of coefficients.

Then consider more closely the sequence of coefficients 1, b1, . . . , bn−1 of P0(x). Let bλ1 be the
first negative of these, then bλ2 the first positive of them after bλ1 , etc., up to bλr0+2p0

, which
represents the last change of sign.

We have schematically,

1, · · · , bλ1 , · · · , bλ2 , · · · , · · · , bλr0+2p0
, · · ·

+ ≥ 0 − ≤ 0 + ≥ (−1)r0
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Then notice that the coefficients a0 = 1, a1, . . . , an of P (x) are found from the coefficients b0 =
1, b1, . . . , bn−1 of P0(x) from (27) by the equations

a0 = 1, a1 = b1 − αb0, a2 = b2 − αb1, · · · , an−1 = bn−1 − αbn−2, an = −αbn−1.

In particular,



a0 = 1, positive,

aλ1 = bλ1 − αbλ1−1, negative,

aλ2 = bλ2 − αbλ2−1, positive,

...
...

aλr0+2p0
= bλr0+2p0

− αbλr0+2p0−1 , (−1)r0 ,

an = −αbn−1, (−1)r0 .
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In the last equation we use that bn−1 ̸= 0 must have the same sign as bλr0+2p0
.

Then consider the sequence 1, a1, . . . , an of coefficients. According to the analysis above there
must be an odd number of changes of sign between 1 and aλ1 , an odd number of changes of sign
between aλ1 and aλ2 , etc., until we obtain an odd number of changes of sign between aλr0+2p0 and
an. In the total count we therefore get that the number of changes of sign is r0 + 2p0 + 1 plus an
even number ≥ 0. This is precisely r0 + 1 + 2p for some p ∈ N0.

Lemma 3.2.1 now follows by induction, and then Theorem 3.2.3 is trivial. �

Example 3.2.2 1) We have trivially one change of sign in P (x) = x− 1, so we must have a positive
root. It is of course x = 1.

2) The polynomial P (x) = x2 − x + 1 has two changes of sign, so we either have none or two positive
roots. Since the discriminant is negative, we must have none real root.

3) The polynomial P (x) = x4 − 7x2 + 6x − 1 has no rational root. Its sequence of coefficients has
three changes of sign, so the polynomial has either one or three positive roots.
The polynomial P (−x) = x4 − 7x2 − 6x− 1 has one change of sign, so P (x) has one negative root,
cf. also Figure 10.

Figure 10: The graph of P (x) = x4 − 7x2 + 6x − 1.

4) The polynomial

P (x) = x19 − 4x13 + 6x10 + 20x5 − 2x3 − 2x2 − 4,

also considered in Example 3.2.1, cf. Figure 9, page 49, has three changes of sign in its sequence
of coefficients, so we have either one or three positive roots.
The polynomial

P (−x) − x19 + 4x13 + 6x10 − 20x5 + 2x3 − 2x2 − 4

has four changes of sign in its sequence of coefficients, so P (x) has either none, two or four negative
roots. ♢

52

Download free eBooks at bookboon.com



Methods for finding (Real or Complex) Zeros in Polynomials

56 

Position of roots of polynomials in the complex plane

Example 3.2.3 Consider the polynomial

P (x) = xn + a1x
n−1 + · · · + an−1x + an, a1, . . . , an ∈ R, an ̸= 0,

of degree ≥ 3. Assume that two successive coefficients are 0, thus ai = ai+1 = 0 for some
i ∈ {1, . . . , n − 2}. The sequence of coefficients for P (x) is then

1, a1, a2, . . . , ai−1, 0, 0, ai+2, . . . , an,

(at most n − 1 numbers ̸= 0), and the sequence of coefficients for (−1)nP (−x) is

1, −a1, a2, . . . , (−1)i−1, 0, 0, (−1)i+2ai+2, . . . , (−1)nan.

We get an estimate of the number of positive roots of P (x) from the former sequence, and an estimate
of the number of negative roots of P (x) from the latter sequence. Since an ̸= 0, it follows that 0 is
not a root.

Choose j, such that aj and aj+1 ̸= 0, and then combine the two sequences above,

aj , aj+1,

(−1)jaj , (−1)j+1aj+1.

It follows that we have just one (horizontal) change of sign in this group of coefficients.

If one of aj or aj+1 is zero, we of course have no such change. Thus, combining the two sequences,
where we in each horizontal sequence have at most n− 1 coefficients ̸= 0, we conclude that we can at
most have (n − 1) − 1 = n − 2 changes of signs in total in the two sequences. Hence, the polynomial
P (x) has at most n − 2 real roots, and thus at least one pair of complex conjugated roots.

For n = 3 we have only the possibility of x3 + a3, where the roots are found by solving a binomial
equation, cf. Section 2.1, hence the only real root is 3

√
−a3.

For n = 4 we have the two possibilities

x4 + a1x
3 + a4 and x4 + a3x + a4.

Notice that e.g. x4−2x2 +1 can be considered as a polynomial of degree 2 in the new variable z = x2,
and that we have two changes of sign. However, it has the four real roots 1, 1, −1, −1, so both 1 and
−1 are double roots. It is therefore in the result above essential that we assume that two successive
coefficients are 0. Otherwise the conclusion may be wrong. ♢

3.3 Fourier-Budan’s theorem.

Given a real normalized polynomial

P (x) = xn + a1x
n−1 + · · · + an−1x + an, a1, . . . , an ∈ R,

and put x = x0 + t for any real x0. Then by a Taylor expansion,

P (x0 + t) = P (x0) +
P ′ (x0)

1!
t + · · · + P (n) (x0)

n!
tn,
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where always P (n) (x0) = n!. It follows from Theorem 3.2.3, Descartes’s theorem, that the number of
roots of P (x) in the interval ]x0, +∞[ (counted by multiplicity) at most is equal to the number V (x0)
of changes of sign in the sequence

P (x0) , P ′ (x0) , . . . , P (n) (x0) = n!,

and that the difference between the two numbers is even.

Given any half open interval ]α, β], closed to the right, the number of roots of P (x) in ]α, β] (counted
by their multiplicities) must for some nonnegative integers A and B be

{V (α) − 2A} − {V (β) − 2B} = V (α) − V (β) − 2(A − B),

so this number is V (α) − V (β), modulo some even number. We shall prove that we always have
A ≥ B.

Theorem 3.3.1 Fourier-Budan’s theorem. (Mentioned at lectures in 1797; published in 1820.) Let
P (x) be a real normalized polynomial of degree n.

1) The number V (x) of changes of sign in the sequence

P (x), P ′(x), . . . , P (n)(x)

is a monotone decreasing function, which is half continuous from the right.

2) For every interval ]α, β] the number of roots in this interval is at most V (α) − V (β), and the
difference between the two numbers is even.

3) If x is negative and numerically large, then V (x) = n, and if x is positive and large, then V (x) = 0.

Proof. Let x1, . . . , xN be all real numbers, which are roots in at least one of the polynomials
P (x), P ′(x), . . . , P (n)(x), and let x1, . . . , xN be increasingly ordered. Then each of the polynomials
P (x), P ′(x), . . . , P (n−1)(x) must have constant sign in each of the intervals

]−∞, x1[ , ]x1, x2[ , . . . , ]xN−1, xN [ , ]xN ,+∞[ ,

which is supplemented with the trivial P (n)(x) = n! > 0 for every x ∈ R. Thus, V (x) must be constant
in each of these intervals.

Since clearly,

P (x) → +∞, P ′(x) → +∞, . . . , P (n−1)(x) → +∞ for x → +∞,

we conclude that P (x), P ′(x), . . . , P (n)(x) must all be positive in ]xN ,+∞[, so V (x) = 0 in ]xN ,+∞[.

Then notice that

(−1)nP (x) → +∞, (−1)n−1P ′(x) → +∞, . . . , −P (n−1)(x) → +∞ x → −∞,

which implies that P (x), P ′(x), . . . , P (n)(x) are successively positive and negative in ]−∞, x1[, so we
conclude that V (x) = n in ]−∞, x1[.

Theorem 3.3.1 follows, if we can prove
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Lemma 3.3.1 Given any i = 1, . . . , N . Then V (xi) = V (x) for all x ∈ ]xi, xi+1[, and V (xi) ≤ V (x)
for all x ∈ ]xi−1, xi[. In the latter case the difference is an even number, provided that xi is not a
root of P (x). If on the other hand xi is a root of P (x), then this difference is instead equal to the
multiplicity of the root xi in P (x) plus some even nonnegative number.

Proof. Consider the sequence P (x), P ′(x), . . . , P (n)(x) at the point xi and in the two adjacent
intervals.

If xi is a root of multiplicity m in P (x), then the first m numbers of P (xi) , P ′ (xi) , . . . , P (n) (xi)
must all be zero, and then P (m) (xi) ̸= 0. Its value can be positive as indicated in Table 2, or negative
as indicated in the alternative (Alt.) of Table 2.
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x < xi

(altern.
signs)

xi

x > xi

(const.
sign)

Alt.
x < xi

Alt.
xi

Alt.
xi > x

P (x) ± 0 + ± 0 −
...

...
...

...
...

...
...

P (m−1)(x) − 0 + + 0 -
P (m)(x) + + + - - -

...
...

...
...

...
...

...

Alternatives

xi xi xi

P (k)(x) + + + - - - + + + - - -
P (k+1)(x) ± 0 + ± 0 - ± 0 - ± 0 +

...
...

...
...

...
...

...
...

...
...

...
...

...
P [ℓ−1)(x) - 0 + + 0 - + 0 - - 0 +
P (ℓ)(x) + + + - - - - - - + + +

...
...

...
...

P (n)(x) + + +

Table 2: Possible variations of signs in the neighbourhood of xi in the proof of Fourier-Budan’s
theorem.

We shall take into account the possibility that there later on may be zeros in the sequence
P (xi) , P ′ (xi) , . . . , P (n) (xi). One such example is given in Table 2 for the sequence
P k+1) (xi) , . . . , P (ℓ−1 (xi), where P (k) (xi) and P (ℓ) (xi) are chosen positive in the main case, while
the possible alternatives are -, -, or +, -, or -, +.

Whenever P (j) (xi) ̸= 0, the function P (j) must necessarily have the same sign in the two adjacent
intervals.

Thus, if both P (j) (xi) and P (j+1) (xi) are ̸= 0, then the pair
(
P (j)(x), P (j+1)(x)

)
, will contribute with

the same number (either 0, or 1) in the two adjacent intervals as at the point xi itself.

Assume that xi is a root of P (x). Then by Taylor’s formula,




P (x) =
P (m) (xi)

m!
(x − xi)

m + · · · , thus
P (x)

(x − xi)
m → P (m) (xi)

m!
...

...
...

...

P (m−2)(x) =
P (m) (xi)

2!
(x − xi)

2 + · · · , thus
P (m−2)(x)
(x − xi)

2 → P (m) (xi)
2!

P (m−1)(x) =
P (m) (xi)

1!
(x − xi) + · · · , thus

P (m−1)(x)
x − xi

→ P (m) (xi)
1!

.

for x → xi. It follows in this case that P (x), . . . , P (m−1)(x) in the interval to the right of xi must
have the same sign as P (m) (xi), while P (m−1)(x) in the interval to the left of xi has the opposite sign
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x −∞ −2 −1 0 1 2 +∞
P (x) = x5 − x4 − 3x3 + 2x + 5 - - + + + + +
P ′(x) = 5x4 − 4x3 − 9x2 + 2 + + + + - + +
P ′′(x) = 20x3 − 12z2 − 18x - - - 0 - + +
P (3)(x) = 60x2 − 24x − 18 + + + - + + +
P (4)(x) = 120x − 24 - - - - + + +
P (5)(x) = 120 + + + + + + +
V (x) 5 5 4 2 2 0 0

Table 3: Table of P (x), . . . , P (5)(x) and V (x) for x = −∞, −2, −1, 0, 1, 2, +∞ in Example 3.3.1

of P (m) (xi), and P (m−2) (xi) has the same sign as P (m) (xi), etc.. Hence, there is no change of sign
in the subsequence P (x), . . . , P (m)(x) at xi as well as in the interval to the right of xi, and there are
m changes of sign in the interval to the left of xi.

Concerning the possible subsequence P (k)(x), . . . , P (ℓ)(x) as in Table 2, a similar argument shows
that P (k+1)(x), . . . , P (ℓ−1)(x) have the same sign of P (ℓ) (xi) in the interval to the right of xi, while
in the interval to the left of xi the signs are alternating. Hence, there are just as many changes of
sign in the interval to the right of xi of the subsequence P (k)(x), . . . , P (ℓ)(x) as at xi itself, namely
none, if the combination of signs of P (k) (xi) and P (ℓ) (xi) is either +, +, or -, -, and it is 1, if this
combination of signs is either +, -, or -, +.

In the interval to the left of xi the number of changes of sign is even, if the combination of signs is
either +, +, or -, -, in fact = the largest even number ≤ ℓ − k, and odd if the combination of signs is
either +, -, or -, +, in fact = the largest odd number ≤ ℓ − k.

It follows from the discussion above that we have the same number of changes of sign in the interval
to the right of xi, and when we look at the interval immediately to the left of xi we have found a loss
of m changes of sign, when xi is a root of P (x) of multiplicity m, and an even number of changes
of sign of each subsequence of the form P (k)(x), . . . , P (ℓ)(x), and Lemma 3.3.1 is proved, hence as a
consequence also Theorem 3.3.1. �

Example 3.3.1 Given the polynomial P (x) = x5 − 44 − 3x3 + 2x + 5, we obtain Table 3 of the signs
of P (x), P ′(x), . . . , P (5)(x), so we can compute the value of V (x) for various values of x.

The columns of −∞ and +∞ correspond to large negative and large positive x. It follows that all
real roots of P (z) must lie in the interval ]− 2, 2], and that we have one root in ]− 2,−1[, none or two
roots in ] − 1, 0], no root in ]0, 1], and none or two roots in ]1, 2].

It follows from Figure 11 that we have one real root in ]−2,−1], no root in ]−1, 1] and two real roots
in ]1, 2]. The remaining two roots must be complex conjugated.♢

Example 3.3.2 Consider the polynomial P (x) = x4 − 7x2 + 6x − 1 of Example 3.2.2. We choose
xi = −4, −3, . . . , 2, 3, and then set up Table 4.

We conclude from this table that we have one root in the interval ]−4,−3], another one in the interval
]2, 3], and none or two real roots in the interval ]0, 1], and none in ] − 3, 0]. ♢
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Figure 11: The graph of P (x) = x5 − x4 − 3x3 + 2x + 5 of Example 3.3.1.

x −∞ −4 −3 −2 −1 0 1 2 3 +∞
P (x) = x4 − 7x2 + 6x − 1 + + - - - - - - + +
P ′(x) = 4x3 − 14x + 6 - - - + + + - + + +
P ′′(x) = 12x2 − 14 + + + + - - - + + +
P (3)(x) = 24x - - - - - 0 + + + +
P (4)(x) = 24 + + + + + + + + + +
V (x) 4 4 3 3 3 3 1 1 0 0

Table 4: Table illustrating Fourier’s theorem in the case of Example 3.3.2.

3.4 Sturm’s theorem.

The problem of determining the number of real roots in a given interval was solved in 1829 by the
French mathematician Sturm. We shall apply the Euclidean algorithm on P (x) and P ′(x). We write
in the present case the equations of division in the following way,

(28)




P (x) = P ′(x)Q1(x) − P2(x),
P ′(x) = P2(x)Q2(x) − P3(x),
P2(x) = P3(x)Q3(x) − P4(x),

...
...

Pm−2(x) = Pm−1(x)Qm−1(x) − Pm(x),
Pm−1(x) = Pm(x)Qm(x)

This is also written in a more traditional way as

P (x) = P ′(x)Q1(x) + {P2(x)} ,

P ′(x) = {−P2(x)} · {−Q2(x)} + {−P3(x)} ,

−P2(x) = {−P3(x)}Q3(x) + P4(x),
−P3(x) = P4(x) · {−Q4(x)} + P5(x),

P4(x) = P5(x)Q5(x) + {−P6(x)} ,

etc.. Here we note that the first and the fifth equation have the same combination of signs, so these
will be repeated cyclically of period 4.

Thus, the changed form means that the quotients of the equations of division have been denoted
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Q1(x), −Q2(x), Q3(x), −Q4(x), . . . , and the remainders are −P2(x), −P3(x), P4(x), P5(x), . . . . This
means that (P, P ′) is the normalized polynomial which is associated with Pm(x).

The polynomial Pm(x) is a divisor in all of the polynomials P (x), P ′(x), P2(x), . . . , Pm(x).

We define the so-called Sturm chain as the sequence of polynomials,

H(x) :=
P (x)
Pm(x)

, H1(x) :=
P ′(x)
Pm(x)

, H2(x) :=
P2(x)
Pm(x)

, . . . , Hm−1(x) =
Pm−1(x)
Pm(x)

, Hm(x) =
Pm(x)
Pm(x)

= 1.

When the equations of (28) are divided by Pm(x), we clearly get

(29)




H(x) = H1(x)Q1(x) − H2(x),
H1(x) = H2(x)Q2(x) − H3(x)
H2(x) = H3(x)Q3(x) − H4(x)

...
...

Hm−1(x) = Hm−1(x)Qm−1(x) − Hm(x)
Hm−1(x) = Hm(x)Qm(x),
Hm(x) = 1,

where all polynomials have real coefficients.
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Assuming that P (x) is normalized, we get from the Fundamental theorem of algebra that

P (x) = (x − α1)
ν1 · · · (x − αs)

νs ,

where α1, . . . , αs are the mutually different (real or complex) roots of P (x), and ν1, . . . , νs are their
multiplicities, so

ν1 + · · · + νs = n,

and the largest common divisor, cf. Theorem 2.4.1, page 33, is

(P, P ′) = (x − α1)
ν1−1 · · · (x − αs)

νs−1
,

where we conventionally put (x − αj)
0 := 1.

Since Pm(x) and (P, P ′) have the same roots of the same multiplicities, we conclude that

H(x) = a (x − α1) · · · (x − αs) , a ̸= 0,

thus the polynomials H(x) and P (x) have the same (different) roots. Only in the case of H(x) they
are all simple.

After these preparations we formulate

Theorem 3.4.1 Sturm’s theorem. Let W (x) denote the number of changes of sign in the sequence

H(x), H1(x), . . . , Hm(x).

Then W (x) is a monotonically decreasing function in x. It is half continuous from the right.
For every half open interval ]α, β], the number of mutually different roots of P (x) in ]α, β] is equal to
W (α) − W (β).

Proof. Let x1, . . . , xN denote all real numbers, which are roots in at least one of the polynomials
H(x), H1(x), . . . , Hm−1(x), where we assume that they form an increasing sequence.

In each of the open intervals ]−∞, x1[, ]x1, x2[, . . . , ]xN−1, xN [, ]xN , +∞[, each of the polynomials
H(x), H1(x), . . . , Hm−1(x) must have constant sign. Furthermore, Hm(x) = 1 > 0 for all x. Hence,
W (x) is constant in each of the intervals mentioned above.

The theorem follows, if we can prove the following

Lemma 3.4.1 Let x1, . . . , xN be given as above. Fore every i = 1, . . . , N , the value of W (xi) is
equal to the value of W (x) in the adjacent interval to the right of xi.
In the adjacent interval to the left of xi the value of W (x) is given by

W (x) =




W (xi) , if xi is not a root of P (x),

W (xi) + 1, if xi is a root of P (x).
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Main case Alternative case

x < xi xi x > xi x < xi xi x > xi

H(x) - 0 + + 0 -
H1(x) + + + - - -

...
...

...
...

Main case Alternative case

Hk−1(x) + + + − − −
Hk(x) 0 0

Hk+1(x) - - - + + +
...

...
...

...
Hn(x) + + +

Table 5: Table of variations of sign at a zero xi and in the two adjacent intervals.

Proof. Consider the sequence H(x), H1(x), . . . , Hm(x) at xi, as well as in the two adjacent intervals
of xi.

Since Hm (xi) = 1 ̸= 0, it follows from the equations (29) that two successive numbers of the sequence
H (xi) , H1 (xi) , . . . , Hm (xi) cannot be 0 simultaneously.

Assume that xi is a root of P (x), thus also a root of H(x). Then the sequence must start with
H (xi) = 0, hence H1 (xi) ̸= 0, and H1 (xi) is either positive as indicated in the main case of Table 5,
or it is negative as indicated in the alternative case of Table 5.

If xi is not a root of P (x), then it is not a root of H(x) either. Hence, the sequence starts with
H (xi) ̸= 0.

It is possible that we later get Hk (xi) = 0 in the sequence. Since we never can have two successive
zeros in the sequence, both Hk−1 (xi) and Hk+1 (xi) are ̸= 0. Using the formula from (29),

Hk−1 (xi) = Hk (xi)Qk (xi) − Hk+1 (xi) , and Hk (xi) = 0,

we conclude that Hk−1 (xi) and Hk+1 (xi) must have different signs. The main case in Table 5 has
+, -, and the alternative case has -, +.

For every given j, for which Hj (xi) ̸= 0, it follows that Hj(x) has the same sign in the two adja-
cent intervals as at xi. Hence, for every j, for which both Hj (xi) and Hj+1 (xi) are ̸= 0, the pair
(Hj(x),Hj+1(x)) will give the same contribution (either 0 or 1) to W (x) in the two adjacent intervals
as at xi.

Assume then that xi is a root of P (x) of multiplicity m. Then, by Taylor’s formula,

P (x) =
P (m) (xi)

m!
(x − xi)

m + · · · and P ′(x) =
P (m) (xi)
(m − 1)!

(x − xi)
m−1 + · · · ,

so the two polynomials P (x) and P ′(x) must in some interval ]xi, xi + ε[ have the same sign (=
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x −∞ −2 −1 0 1 2 +∞
P (x) = x5 − x4 − 3x3 + 2x + 5 - - + + + + +
P ′(x) = 5x4 − 4x3 − 9x2 + 2 + + + + - + +
P2(x) ≈ 34x3 + 9x2 − 40x − 127 - - - - - + +
P3(x) ≈ 79x2 − 574x + 827 + + + + + - +
P4(x) ≈ −3953x + 7578 + + + + + - -
P5(x) = some negative const. - - - - - - -
W (x) 4 4 3 3 3 1 1

Table 6: Table of W (x) for x = −2, −1, 0, 1, 2.

same sign as P (m) (xi)
)
. Hence, H(x) and H1(x) must also have the same sign in ]xi, xi + ε[, and

consequently in the whole adjacent interval to the right of xi.

Since xi is a simple zero of H(x), the sign of H(x) in the adjacent interval to the left of xi must be
the opposite one of the sign in the interval to the right of xi. Hence, the pair (H(x),H1(x)) produces
no change of sign at xi and in the adjacent interval to the right of xi, while we get one chance of sign
in the adjacent interval to the left of xi.

If Hk (xi) = 0, then there is precisely one change of sign in the subsequence Hk−1(x), Hk(x), Hk+1(x)
at xi and in the the two adjacent intervals, no matter the sign of Hk(x).

Summing up, we have in the adjacent interval to the right of xi the same number of changes of sign
as at xi. When we consider the adjacent interval to the left of xi, we have found a loss of one change
of sign, when we pass through xi, if xi is a root of P (x), and no chance in the number of changes of
sign, when xi is not a root of P (x), and Lemma 3.4.1, hence also Theorem 3.4.1, are proved. �

Notice that if x is not a multiple root of P (x), i.e. not a root in Pm(x), then W (x) is equal to
the number of changes of sign in the sequence P (x), P ′(x), P2(x), . . . , Pm(x), and we can avoid the
division by Pm(x), if we are content with finding the number of roots in intervals of endpoints which
are not multiple roots.

Remark 3.4.1 It is usually very difficult and tedious to find the polynomials P2(x), . . . , Pm(x) by
the Euclidean algorithm, which is caused by the denominators of the coefficients. However, in the
computation of W (x) we only count the changes of sign, so we may, if convenient, multiply every
polynomial by a positive constant. We use the symbol ≈ to indicate that some polynomial Pq(x) has
been multiplied by some positive constant. ♢

Example 3.4.1 Consider the polynomial P (x) = x5 − x4 − 3x3 + 2x + 5 of Example 3.3.1, where we
illustrated Fourier-Budan’s theorem.

Leaving out the tedious computations we end up with Table 6.

Since P5(x) is a negative constant, we conclude that all roots of P (x) are simple.

The columns corresponding to −∞ and +∞ correspond to large positive and negative x, so the signs
are determined by the terms of highest degree.
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There are W (−∞) − W (+∞) = 4 − 1 = 3 real roots. One of these lies in the interval ] − 2,−1[, and
two of them in the interval ]1, 2[, cf. Figure 11. ♢

3.5 Rouché’s theorem

We shall prove some general theorems from Complex Functions Theory and then apply them to
polynomials in order to get the information of how many roots (counted by their multiplicity) a
polynomial has in a domain bounded by a simple closed curve. By varying this curve we may obtain
information of where the roots are more precisely lying in the complex plane.

We first prove the following general result.
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Theorem 3.5.1 Let f : [a, b] → C \ {0} be a continuous function on a closed, bounded interval [a, b],
where f(t) ̸= 0 for every t ∈ [a, b]. Then f has a continuous argument function arg f(t).

Proof. a) First assume that there is an α ∈ R, such that

f(t) ∈ C \
{
z = r eiα | r ≥ 0

}
for every t ∈ [a, b],

i.e. the image of [a, b] by f does not cross the half line
{
z = eiα | r ≥ 0

}
.

Figure 12: The image f([a, b]) does not cross the half line
{
z = r eiα | r ≥ 0

}
.

Choose the argument function of f(t), such that

α < arg f(t) < α + 2π.

Define the logarithmic function Logα : C \
{
z = r eiα | r ≥ 0

}
→ C by

Logα z = ln |z| + i Argα z, where Argα z ∈ ]α, α + 2π[.

Then Logα is continuous, so the composed map Logα ◦ f is again continuous, hence also the imaginary
part

arg f(t) := Argα f(t).

b) Then assume that no such α exists. We put

m = inf{|f(t)| | t ∈ [a, b]}.

Since f is continuous on the bounded, closed interval [a, b], and f : [a, b] → C \ {0}, we conclude from
one of the main theorems for continuous functions that m > 0. It also follows from another one of
the main theorems that f is uniformly continuous on [a, b]. Hence, corresponding to m > 0 there is a
δ > 0, such that

|f(s) − f(t)| < m for all s, t ∈ [a, b] for which |s − t| < δ.

Choose division points a = t0 < t1 < · · · < tn = b, such that |tj − tj−1| < δ for j = 1, . . . , n. Then to
each of the intervals [tj−1, tj ] there is an αj ∈ R, such that

f(t) ∈ C \ {z = r eαj | r ≥ 0} for every t ∈ [tj−1, tj ] .
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Figure 13: The image f([a, b]) crosses every half line
{
z = r eiα | r ≥ 0

}
.

we may e.g. choose αj = arg f (tj) + π.

It follows from a) above that there exists a continuous argument function argj f(t) on [tj−1, tj ].

Furthermore, these argument functions can be chosen such that

argj f (tj) = argj+1 f (tj) at tj ∈ [tj−1, tj ] ∩ [tj , tj+1] = {tj} .

Then the argument function arg f(t), defined by

arg f(t) := argj f(t) for t ∈ [tj−1, tj ] , j = 1, . . . , n,

is uniquely determined and continuous. �

Given one continuous argument function Θ(t) = arg f(t), any other continuous argument function is
given by Θ(t) + 2pπ for some p ∈ Z. In fact, it is obvious that Θ(t) + 2pπ is a continuous argument
function, and if Θ(t) and Θ1(t) both are continuous argument functions for f(t), then Θ1(t)−Θ(t) is
continuous on [a, b]. Since arguments differ by 2pπ for some p ∈ Z, it follows from the continuity that
p must be constant in [a, b], and the claim is proved.

It follows in particular from the above that the difference

(30) arg f(b) − arg f(a)

has the same value for every continuous argument function arg f(t).

We call this difference (30) the argument variation of f along [a, b].

If in particular f(a) = f(b), i.e. the continuous curve z = f(t), t ∈ [a, b], is a closed curve which does
not pass through 0, then the argument variation is an integer times 2π,

(31) arg f(b) − arg f(a) = 2nπ for some n ∈ Z.

The number n ∈ Z of (31) is called the winding number around 0 of the function f : [a, b] → C \ {0},
or the closed curve f([a, b]) not passing through 0.

The winding number is interpreted as the number of times the curve winds around 0, counted positive
in the positive sense of the plane, and negative otherwise. We notice that counting negative loops
may cancel some of the counting of positive loops.
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Figure 14: The winding number of a closed curve not passing through 0. In the present example the
winding number is 2.

The geometrical interpretation above of the winding number is often very easy in practice. We shall
later prove that the winding number is equal to the difference of the number of zeros and the number
is equal to the difference of the number of zeros and the number of poles in a domain of an analytic
function. For polynomials the number of poles is 0, so we get the number of roots, counted by their
multiplicity.

Before we can make the statement more precise we need another theorem.

Theorem 3.5.2 Given two continuous and complex functions f : [a, b] → C \ {0} and g : [a, b] → C,
for which

f(a) = f(b) and g(a) = g(b).

If

(32) |g(t)| < |f(t)| for every t ∈ [a, b],

then the two functions f and f + g have the same winding number around 0.

Proof. From the estimate

|f(t) + g(t)| ≥ |f(t)| − |g(t)| > 0 for every t ∈ [a, b],

follows that both f and f + g : [a, b] → C \ {0} are continuous and that neither of then is 0 in the
interval [a, b]. Furthermore,

f(a) = f(b) and (f + g)(a) = (f + g)(b),

so the images f([a, b]) and (f + g)([a, b]) are both closed curves, not passing through 0. We write

f(t) + g(t) = f(t) ·
{

1 +
g(t)
f(t)

}
, t ∈ [a, b].

It follows from
����
g(t)
f(t)

���� < 1 that

ℜ
{

1 +
g(t)
f(t)

}
≥ 1 −

����
g(t)
f(t)

���� > 0,
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hence 1 +
g(t)
f(t)

lies in the right half plane for every t ∈ [a, b]. In particular, the principal argument

Arg
{

1 +
g(t)
f(t)

}
is continuous for t ∈ [a, b].

Choose any continuous argument function arg∗ f of f . Then arg∗ f(t) + Arg
{

1 +
g(t)
f(t)

}
must be a

continuous argument function arg(f + g) for f + g. Finally, since

Arg
{

1 +
g(a)
f(a)

}
= Arg

{
1 +

g(b)
f(b)

}
,

we conclude that

arg(f + g)(b) − arg(f + g)(a) = arg∗ f(b) − arg∗ f(a) = 2nπ,

and the theorem is proved. �
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The importance of Theorem 3.5.2 lies in the fact that it allows us slightly to perturb closed curves
without changing their winding numbers.

An obvious extension of the definition of the winding number is the following: Let Ω ⊆ C be an open
domain, and C a simple closed curve in Ω. Let f : Ω → C \ {0} be a continuous map. Then the image
f(C) must be a closed curve in C \ {0}, and as such it has a winding number around 0.

We shall now restrict ourselves to complex functions f(z) which are either polynomials, or fractions
of polynomials. Then we introduce

Definition 3.5.1 Let f : Ω → C be a fraction of two polynomials, f(z) =
P (z)
Q(z)

, Q(z) ̸= 0 for all

z ∈ Ω. We define the logarithmic derivative of f(z) by

f ′(z)
f(z)

, for z ∈ {z ∈ Ω | f(z) ̸= 0}.

Hence, the logarithmic derivative of f(z) =
P (z)
Q(z)

is defined in the set

Ω∗ := {z ∈ C | P (z) ̸= 0 and Q(z) ̸= 0}.

If in particular, f : Ω → C (R− ∪ {0}) does not have real values ≤ 0 for any z ∈ Ω, then the principal
logarithm Log f(z) of f(z) is analytic in Ω, and its derivative is

(33)
d

dz
Log f(z) =

f ′(z)
f(z)

.

This is the reason why we in general call the right hand side of (33) the logarithmic derivative of f(z),
even when Log f(z) is not defined.

Theorem 3.5.3 The argument principle. Let f(z) =
P (z)
Q(z)

be a quotient of two polynomials P (z)

and Q(z). Let C be a simple closed curve in Ω = {z ∈ C | P (z) ̸= 0 and Q(z) ̸= 0}, and let ω be the
bounded domain of boundary f(C).
Let N = N(ω) denote the number of zeros of the numerator P (z) in ω, and R = R(ω) the number of
zeros of the denominator Q(z) in ω, all counted according to their multiplicities.
Then the difference N − R is equal to the winding number of the closed curve f(C) around 0 in the
w-plane.
We have more precisely,

(34)
1

2πi

∮

C

f ′(z)
f(z)

dz = N(ω) − R(ω) = winding number of f(C) around w0 = 0.

Proof. We first prove that
1

2πi

∮
C

f ′(z)
f(z)

dz is the winding number of f(C) around the point w0 = 0

in the w-plane. Assume that C is given by the parametric description z(t), t ∈ [a, b]. Then we define
by g(t) = f(z(t)) a continuous complex function g : [a, b] → C \ {0} with a continuous argument
function arg g.
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Use the same construction as in b) in the proof of Theorem 3.5.1 to conclude that to every subinterval
[tj , tj+1] there corresponds a curve Cj , which is a subset of C. Then we get the computations,

1
2πi

�

C

f ′(z)
f(z)

dz=
n−1∑
j=0

1
2πi

∫

Cj

f ′(z)
f(z)

dz =
n−1∑
j=0

1
2πi

∫ tj+1

tj

g′(t)
g(t)

dt=
n−1∑
j=0

1
2πi

[ln |g(t)| + i · arg g(t)]tj+1
tj

=
1

2πi

n−1∑
j=0

{ln |g (tj+1)| − ln |g (tj)|} +
1
2π

n−1∑
j=0

{arg g (tj+1) − arg g (tj)}

=
1

2πi
{ln |g (tn)| − ln |g (t0)|} +

1
2π

{arg g (tn) − arg g (t0)}

=
1
2π

{ln |g(b)| − ln |g(a)|} +
1
2π

{arg g(b) − arg g(a)}

= 0 + winding number of g([a, b]) = f(C) around w0 = 0.

Finally,

(35)
f ′(z)
f(z)

=
Q(z)
P (z)

· P ′(z) · Q(z) − Q′(z) · P (z)
Q(z)2

=
P ′(z)
P (z)

− Q′(z)
Q(z)

,

so the claim follows, if only we can prove it for f(z) = P (z), a polynomial.

Given a polynomial, P (z) = a · (z − z1)
n1 · · · (z − zp)

np . Then

P ′(z)
P (z)

=
n1

z − z1
+ · · · + np

z − zp
,

so

1
2πi

�

C

P ′(z)
P (z)

dz =
p∑

j=1

1
2πi

�

C

nj

z − zj
dz.

We shall without proof use the well-known fact that

1
2πi

�

C

dz

z − z0
=




1 if z0 lies inside C,

0 if z0 lies outside C.

This gives

1
2πi

�

C

P ′(z)
P (z)

dz = number of zeros of P (z) inside C.

Similarly,

1
2πi

�

C

Q′(z)
Q(z)

dz = number of zeros of Q(z) inside C,

so when we integrate (35) the claim follows by insertion. �

Combining Theorem 3.5.2 and Theorem 3.5.3, the argument principle, we easily get
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Theorem 3.5.4 Rouché’s theorem for polynomials. Let P (z) and Q(z) be polynomials, and let C be
a simple closed curve in C. If

|P (z)| > |Q(z)| for every z ∈ C,

then P (z) and P (z) + Q(z) have the same number of zeros inside C.

Proof. Theorem 3.5.2 tells us that P (z) and P (z)+Q(z) have the same winding number with respect
to w0 = 0 in the w-plane. Theorem 3.5.3 tells us for polynomials that the winding number is equal to
the number of zeros. �

A simple consequence of Theorem 3.5.4 is another proof of

Corollary 3.5.1 The fundamental theorem of algebra. Given a polynomial of degree n ∈ N,

P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an, where a0 ̸= 0.

Then P (z) has precisely n roots, counted by multiplicity.

Proof. It follows from

P (z) = zn
{

a0 +
a1

z
+ · · · + an

zn

}
, z ̸= 0,

that there is an R, such that

|a0| rn > |an| + |an−1| r + · · · + |a1| rn−1 for r ≥ R.

Putting P1(z) = a0z
n and P2(z) = an + an−1z + · · · + a1z

n−1 we see that

|P1(z)| > |P2(z)| for every z ∈ C, for which |z| ≥ R.

It follows from Theorem 3.5.4 that P(z) = a0z
n and P1(z) + P2(z) = P (z) have the same number of

zeros inside every circle Cr of radius r ≥ R and the common centre 0. Then the claim follows, because
P1(z) = a0z

n trivially has an n-tuple zero at z = 0 and no other zero. �

Example 3.5.1 Rouché’s theorem does not preserve the multiplicity of a given zero. Given a complex
constant a ∈ C, where 0 < |a| < 1. Choose P (z) = zn and Q(z) = −a. If C is the unit circle |z| = 1,
then

|P (z)| = |zn| = 1 > |a| = |Q(z)| for |z| = 1,

so it follows from Rouché’s theorem that P (z) = zn and P (z) + Q(z) = zn − a have the same number
(= n) of zeros in the open unit disc {z ∈ C | |z| < 1}. However, P (z) has the zero z0 = 0 of multiplicity
n, while P (z) + Q(z) has n simple roots, all lying on the circle of radius n

√
|a| ̸= 0. ♢
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Example 3.5.2 A typical application of Rouché’s theorem is the following. Given the polynomial

z3 + 2z2 − 50z + 100.

It has three zeros by the fundamental theorem of algebra.

These three roots all lie inside the circle of equation |z| = 9. In fact, choose P1(z) = z3 and Q1(z) =
2z2 − 50z + 100. Then we have the following estimate for |z| = 9,

|P1(z)| = 93 = 729 and |Q1(z)| ≤ 2 · 92 + 50 · 9 + 100 = 712,

so |Q1(z)| < |P1(z)| for |z| = 9, and the claim follows from an application of Rouché’s theorem.

There is only one root inside the circle |z| = 4. We again apply Rouché’s theorem. However, this
time we choose P2(z) = −50z and Q2(z) = z3 + 2z2 + 100 and get the following estimates for
|z| = 4,

|P2(z)| = | − 50z| = 200 and |Q2(z)| =
∣∣z3 + 2z2 + 100

∣∣ ≤ 64 + 32 + 100 = 196,

so |P2(z)| > |Q2(z)| for |z| = 4, and the claim follows, because the only root of P2(z) = −50z inside
|z| = 4 is z = 0.
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Finally, there is no root lying inside |z| =
7
4
. In this case we choose

P3(z) = 100 and Q3(z) = z3 + 2z2 − 50z,

in which case we get the following estimate for |z| =
7
4
,

|Q3(z)| =
��z3 + 2z2 − 50z

�� ≤
(

2 +
7
4

){
7
4

}2

+ 50 · 7
4

=
15
4

· 49
19

+
7
4
· 50

<

{
1
4

+
7
4

}
· 50 = 100 = |P3(z)| ,

and the claim follows, because the constant P3(z) = 100 ̸= 0.

The roots are numerically computed to be approximately

−8.889 794 306, 2.658 473 477, 4.231 320 828.

Figure 15: The roots of z3 + 2z2 − 50z + 100 and Rouché’s theorem.

It should be noted that if we change the sign of the term −50z, so we instead consider the polynomial
z3 + 2z2 + 50z + 100, then we can without any changes repeat all the arguments above, so we have

• three roots inside |z| = 9,

• one root inside |z| = 4,

• no root inside |z| =
7
4
.

It is, however, in this case possible to find the roots directly, since we have

z3 + 2z2 + 50z + 100 = (z + 2)
(
z2 + 50

)
,

so the roots are −2, 5
√

2 i and −5
√

2 i. ♢
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Example 3.5.3 Consider the polynomial 3z87 − z3 + 1. The degree is 87, so by the fundamental
theorem of algebra it has 87 roots. They all lie in the open unit disc. In fact, choosing

P1(z) = 3z87 and Q1(z) = −z3 + 1,

we get the following estimate for |z| = 1,

|Q1(z)| =
∣∣−z3 + 1

∣∣ ≤ 2 < 3 =
∣∣3z87

∣∣ = |P1(z)| .

Since the dominating term P1(z) only has the 87-tuple root of z0 = 0 lying inside |z| = 1, the claim
follows.

Choosing P2(z) = 1 and Q2(z) = 3z87 − z3, we get the estimate, using e.g. a pocket calculator,

|Q2(z)| =
∣∣3z87 − z3

∣∣ ≤ 0.98 < 1 = |P2(z)| for |z| = 0.96,

so there lies no zero in the slightly smaller disc |z| ≤ 0.96. Hence, all 87 roots zj must lie in the narrow
annulus given by 0.96 < |zj | < 1, so it is from a numerical point of view fairly crowded concerning the
roots in this narrow annulus. For the time being it does not look too promising to find (numerically)
these roots with any prescribed tolerated uncertainty. That it is possible (though we shall not later
in this book do it for the given example), follows from an application of Graeffe’s squaring method,
which will be described in Chapter 4. ♢

3.6 Hurwitz polynomials

In connection with the question of stability of mechanical or electrical systems concerning oscillations,
it is of great importance to be able to decide whether a polynomial has all its roots lying an the open
left hand side of the plane. Polynomials of this property of only having roots in the open left hand
side of the plane are called Hurwitz polynomials. In this connection and aiming at proving stability
it is, however, of less importance also to find approximate values of these roots. It suffices in most
applications that they all have a negative real part.

In order to be more precise concerning what is meant by a Hurwitz polynomial we shall start with the
following considerations. Given the polynomial

P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an

of complex coefficients. Then clearly the polynomial

P (z) := a0 zn + a1 zn−1 + · · · + an−1 z + an = a0z
n + a1z

n−1 + · · · + an−1z + an,

where we have taken the complex conjugated coefficients, must have the complex conjugated roots of
those of P (z). Hence, the roots of the product P (z)P (z) are either real, or complex conjugated of the
same multiplicity, and P (z)P (z) must have real coefficients. Now, complex conjugation maps the left
(or right) half plane into itself, so without loss of generality we may in the remainder of this section
restrict ourselves to only consider polynomials of real coefficients, a0, . . . , an ∈ R.

Then we introduce the following more precise definition.

Definition 3.6.1 We say that a polynomial P (z) of real coefficients is a Hurwitz polynomial, if all
its zeros lie in the open left half plane ℜ z < 0.
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It follows by the fundamental theorem of algebra that

(36) P (z) = a0z
n + · · · + an = a0 (z − λ1) · · · (z − λn) , z ∈ C,

where some of the λj may be identical. If P (z) is a Hurwitz polynomial, and α + iβ, α < 0, β ̸= 0, is
a root, then α − iβ is also a root. Thus,

(z − α − iβ)(z − α + iβ) = (z − α)2 + β2 = z2 − 2αz +
(
α2 + β2

)

must be a divisor of P (z). By assumption α < 0, so this divisor has only positive coefficients.

If P (z) is a Hurwitz polynomial, and λ is a real root, then λ < 0, so the divisor z − λ has trivially
positive coefficients.

Hence, if P (z) is a Hurwitz polynomial, then it can be factorized into factors of first or second degree,
all of positive coefficients. Then it follows after a multiplication that P (z) itself must have positive
coefficients, and we have proved

Theorem 3.6.1 A necessary condition that a polynomial

P (z) = a0z
n + a1z

n−1 + · · · + an

of real coefficients is a Hurwitz polynomial, is that all its coefficients have the same sign, either all
positive or all negative.

For n = 1 and n = 2 the condition of Theorem 3.6.1 is also sufficient. This is no longer the case when
n ≥ 3.

Example 3.6.1 The polynomial

16z3 + 8z2 + 9z + 17

satisfies the necessary condition of Theorem 3.6.1. Its roots are −1,
1
4

+ i and
1
4
− i, so two of them

have positive real part, and the polynomial is not a Hurwitz polynomial, showing that the condition
of Theorem 3.6.1 is not sufficient for polynomials of degree ≥ 3. ♢

Theorem 3.6.2 A polynomial P (z) of real coefficients is a Hurwitz polynomial, if and only if




|P (z)| > |P (−z)| for ℜ z > 0,

P (iy) ̸= 0 for y ∈ R.

Proof. Factorize P (z),

P (z) = a0z
n + · · · + an = a0 (z − λ1) · · · (z − λn) , z ∈ C.

Assume that λj = α + iβ, where ℜλj = α < 0. If we write z = x + iy, then

|z − λj |2 = (x − α)2 + (y − β)2.
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If ℜ z = x > 0, then it follows from α < 0 that

|z − λj |2 = (x − α)2 + (y − β)2 > (−x − α)2 + (−y + β)2 =
��−z − λj

��2 .

If λj = α is real, i.e. β = 0, then it follows straightaway that

z − α| > | − z − α| for ℜ z > 0.

If instead λj is not real, i.e. β ̸= 0, then
��(z − λj)

(
z − λj

)�� >
��(−z − λj

)
(−z − λj)

�� for ℜ z > 0.

If therefore P (z) is a Hurwitz polynomial, then

|P (z)| > |P (−z)| for ℜ z > 0.

If x = 0, then |P (z)| = |P (−z)| = |P (iy)| = |P (−iy)| ̸= 0, because P (z) is a Hurwitz polynomial, so
it has no zero on the imaginary axis.

Conversely, if P (z) is a polynomial of real coefficients satisfying |P (z)| > |P (−z)| for ℜ z > 0, then in
particular P (z) ̸= 0 for ℜ z > 0. Adding the condition that also P (iy) ̸= 0 for y ∈ R proves that P (z)
is a Hurwitz polynomial, and the theorem is proved. �
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Theorem 3.6.3 Schur’s criterion. The polynomial P (z) of real coefficients is a Hurwitz polynomial,
if and only if all its coefficients are of the same sign, and the polynomial

Q(z) =
P (1)P (z) − P (−1)P (−z)

z + 1

of lower degree is a Hurwitz polynomial.

Proof. When P (z) is a Hurwitz polynomial we put

R(z) = P (1)P (z) − P (−1)P (−z).

Applying Theorem 3.6.2 on P (z) we get |P (z)| > |P (−z)| for ℜ z > 0, and |P (1)| > |P (−1)|, so

|P (1)P (z)| > |P (−1)P (−z)| for ℜ z > 0,

and also for ℜ z = 0, because then |P (z)| = |P (−z)| > 0 and P (1)| > |P (−1)|. Hence, R(z) is also a
Hurwitz polynomial, because R(z) ̸= 0 for ℜ z ≥ 0.

Trivially,

R(−1) = P (1)P (−1) − P (−1)P (1) = 0,

so −1 is a root, and z + 1 is a divisor, i.e.
R(z)
z + 1

is a polynomial of lower degree, i.e.

(37) Q(z) :=
R(z)
z + 1

=
P (1)P (z) − P (−1)P (−z)

z + 1

is a Hurwitz polynomial.

We shall then prove that if P (z) is not a Hurwitz polynomial, then Q(z) given by (37) is not a Hurwitz
polynomial, which will conclude the proof.

Assume that P (z) has a root iy0 on the imaginary axis. Then −iy0 is also a root of P (z), so

Q (iy0) =
P (1)P (iy0) − P (−1)P (−iy0)

iy0 + 1
= 0,

and iy0 is a root of Q (iy0). This shows that Q(z) is not a Hurwitz polynomial in this case.

Assume that P (z0) = 0, where ℜ z0 > 0. Then

(z0 + 1) Q (z0) = −P (−1)P (−z0) , (−z0 + 1) Q (−z0) = P (1)P (−z0) .

If also P (−z0) = 0, then it immediately follows that Q (z0) = 0, and Q(z) is not a Hurwitz polynomial
in this case.

Therefore, the remaining possibility is that P (z0) = 0, while P (−z0) ̸= 0. Then apply that a0, . . . , an

all have the same sign, so

P (−1)| =
∣∣(−1)na0 + (−1)n−1a1 + · · · + an

∣∣ < |a0 + a1 + · · · + an| = P (1)|.

It follows that

|(z0 + 1) Q (z0)| = |P (−1)| · |P (−z0)| < |P (1)| · |P (−z0)| = |(−z0 + 1) Q (−z0)| .
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Now, ℜ z0 > 0, so it follows immediately from Theorem 3.6.2 that (z + 1)Q(z) is not a Hurwitz
polynomial, thus Q(z) is not a Hurwitz polynomial, and Schur’s criterion is proved. �

Since deg Q < deg P , Schur’s criterion may be applied at most n − 2 times before we can conclude
whether P (z) is a Hurwitz polynomial or not.

Example 3.6.2 Given the polynomial P (z) = z3 + 2z2 + 3z + 1 we compute by Schur’s criterion,

Q(z) =
1

z + 1
{
7

(
z3 + 2z2 + 3z + 1

)
− (−1)

(
−z3 + 2z2 − 3z + 1

)}
= 6z2 + 10z + 8.

It follows that Q(z) is a polynomial of second degree of positive coefficients, so by the remark following
Theorem 3.6.1, the polynomial Q(z), hence also P (z), is a Hurwitz polynomial. ♢

Example 3.6.3 Given the polynomial P (z) = z3 + 2z2 + z + 3 we compute by Schur’s criterion,

Q(z) =
1

z + 1
{
7

(
z3 + 2z2 + z + 3

)
− 3

(
−z3 + 2z2 − z + 3

)}
= 10z2 − 2z + 12.

Clearly, Q(z) is not a Hurwitz polynomial, so P (z) is not a Hurwitz polynomial either. ♢

We mention without proof the following most commonly used criterion of Hurwitz polynomial. The
proof is very long and tedious.

Theorem 3.6.4 Hurwitz’s criterion (1895). Given a polynomial

P (z) = a0z
n + a1z

n−1 + · · · + an−1z + an

of positive coefficients. Then P (z) is a Hurwitz polynomial, if and only if the following system of
inequalities is fulfilled,

D1 = a1 > 0, D2 =
����

a1 a0

a3 a2

���� > 0, D3 =

������
a1 a0 0
a3 a2 a1

a5 a4 a3

������
> 0, . . . ,

Dn =

���������

a1 a0 0 · · · 0
a3 a2 a1 · · · 0
...

...
...

...
a2n−1 a2n−2 a2n−3 · · · an

���������
> 0,

where we have put ak = 0 for k > n.

Example 3.6.4 (Cf. also Example 3.6.2). We get for the polynomial P (z) = z3 + 2z2 + 3z + 1,

D1 = 2 > 0, D2 =
����

2 1
1 3

���� = 5 > 0, D3 =

������
2 1 0
1 3 2
0 0 1

������
= 5 > 0,

so P (z) is a Hurwitz polynomial, and all three roots lie in the left half plane. ♢
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Example 3.6.5 (Cf. also Example 3.6.3). We get for the polynomial P (z) = z3 + 2z2 + z + 3,

D2 =
����

2 1
3 1

���� = −1 < 0.

Hence, there is at least one root satisfying ℜ z ≥ 0. Assuming that z = iy is purely imaginary we get

P (iy) =
(
3 − 2y2

)
+ iy

(
1 − y2

)
̸= 0 for all y ∈ R,

so there is at least one root of positive real part. It cannot be real, so we have two complex conjugated
roots of positive real part. The approximate values of the roots are

−2.174 559 41 and 0.087 279 7 ± 1.171 312 1 i. ♢
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4 Approximation methods

4.1 Newton’s approximation formula

This is usually derived from Banach’s fix point theorem.. We shall not formulate and prove the latter
theorem in its full generality in a complete metric space, but only consider the space of real numbers
R, or the space of complex numbers C.

Definition 4.1.1 We say that a map f : R → R, or f : C → C, is a contraction, if there exists a
λ ∈ [0, 1[, the contraction factor, such that

|f(y) − f(x)| ≤ λ|y − x| for all x, y ∈ R (or ∈ C).

A contraction is clearly continuous, and if we put f◦n = f ◦ · · · ◦ f , i.e. a composition n times, then
f◦n is a contraction of contraction factor λn. In fact,

|f◦n(y) − f◦n(x)| =
���
(
f◦(n−1)(y)

)
− f

(
f◦(n−1)(x)

)��� ≤ λ
���f◦(n−1)(y) − f◦(n−1)(x)

���

≤ · · · ≤ λn |y − x|,

and the claim is proved.

Definition 4.1.2 Let f : R → R, or f : C → C, be given. We say that x0 ∈ R (C) is a fix point of f ,
if f (x0) = x0.

We can now prove Banach’s fix point theorem for R and C, and we notice that if we follow the same
proof with obvious modifications, the theorem is proved in general for complete metric spaces.

Theorem 4.1.1 Banach’s fix point theorem in R, or C. Every contraction on R or C has precisely
one fix point x0. If x ∈ R(or C) is any given point, then f◦n(x) → x0 for n → +∞.

Proof. Assume that f : R → R (of f : C → C) is a contraction of contraction factor λ ∈ [0, 1[.

Uniqueness. Assume that x1 and x2 are two fix points of f . Then

0 ≤ |x1 − x2| = |f (x1) − f (x2)| ≤ λ |x1 − x2| ,

because f is a contraction. Since 0 ≤ λ < 1, this is only possible, if x1 = x2, so the contraction has
at most one fix point.

Existence. Choose any fixed x ∈ R (or C), and consider the sequence (f◦n(x)). Then for every n ∈ N,
���f◦n(x) − f◦(n+1)(x)

��� = |f◦n(x) − f◦n(f(x))| ≤ λn|x − f(x)|,

because f◦n is a contraction of contraction factor λn.
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Then for any given n, k ∈ N, it follows from the above that
���f◦n(x) − f◦(n+k)(x)

��� ≤
���f◦n(x) − f◦(n+1)(x)

��� + · · · +
���f◦(n+k−1)(x) − f◦(n+k)(x)

���

≤
{
λn + λn+1 + · · · + λn+k−1

}
|x − f(x)| = λn · 1 − λk

1 − λ
|x − f(x)|

≤ λn

1 − λ
|x − f(x)|.

From λ ∈ [0, 1[ follows that

λn

1 − λ
|x − f(x)| → 0 for n → +∞,

hence (f◦n(x)) is a Cauchy sequence in R (or C). Since R and C are complete, the Cauchy sequence
(f◦n(x)) is convergent with the limit x0, say, thus

f◦n(x) → x0 for n → +∞.

Furthermore, since f is continuous,

f (f◦n(x)) = f◦(n+1)(x) → f(x) for n → +∞.

The limit of a convergent sequence in R (or C) is unique, so we conclude that x0, constructed in this
way as the limit of the sequence (f◦n(x)), is indeed a fix point. �

We are only considering polynomials, so there is no need to formulate Newton’s iteration method for
real C2 functions. If a polynomial Q(x) has multiple roots, then we know from Chapter 2 how we can
find another polynomial P (x) of precisely the same roots, all of them, however, only of multiplicity
1. Therefore, we can without loss of generality in the following assume that the polynomial P (x) has
only simple roots, i.e. if P (x0) = 0, then P ′ (x0) ̸= 0.

Theorem 4.1.2 Newton’s iteration method for polynomials of only simple roots. Let P (x) be a
polynomial of only simple roots, and assume that x0 is a (real or complex) zero of P (x). If we choose
x1 sufficiently close to x0 and define

xn+1 = f (xn) := xn − P (xn)
P ′ (xn)

for n ∈ N,

then xn → x0 for n → +∞.

Proof. Since x0 is a simple zero, we must have P ′(x) ̸= 0 in an open neighbourhood Ω of x0. Hence
the map

f(x) := x − P (x)
P ′(x)

, for x ∈ Ω,

is of class C∞(U), and even an analytic function in U , because P (x) is a polynomial. It follows that

f ′(x) = 1 − P ′(x)
P ′(x)

+
P (x)P ′′(x)
{P ′(x)}2 =

P (x)P ′′(x)
{P ′(x)}2 in U.
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In particular, f ′ (x0) = 0, because P (x0) = 0. Since

f(x) − f(y)
x − y

≈ f ′ (x0) = 0

for x and y in a small neighbourhood of x0, there exists to every λ ∈ ]0, 1[ an rλ > 0, such that

f(x) − f(y)| ≤ λ |x − y| for |x − x0| , |y − x0| < rλ,

and f is a local contraction on B (x0, rλ). The theorem then follows from Banach’s fix point theorem.
�

Although Newton’s iteration method usually is very efficient, there is, however, a drawback, because
the contraction in the proof is local. If one of the elements xn of the iterative sequence does not lie
in B (x0, rλ), then we cannot conclude anything about its successor. This could easily happen with a
bad choice of x1, because we neither know x0 (we are going to find x0 by this method) nor the radius
rλ. It is therefore in general a matter of a lucky choice of the starting point x1, if this method is going
to be successful.

Usually one only applies Newton’s iteration method in the case of a real polynomial, i.e. of real
coefficients.
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Theorem 4.1.3 Let P (x) be a polynomial of real coefficients of degree ≥ 3, and assume that it has a
simple real root x0 lying in some interval ]a, b[.

1) If P ′(x) ·P ′′(x) > 0 in ]a, b[, then the Newton iteration method converges towards x0, if we choose
the right end point x1 = b as our starting point.

2) If P ′(x) ·P ′′(x) < 0 in ]a, b[, then the Newton iteration method converges towards x0, if we choose
the left end point x1 = a as our starting point.

Proof. We shall prove Theorem 4.1.3 by some simple graphical considerations, cf. Figures 16-19.

1) Assume that P (x) is convex and increasing in a neighbourhood of x0, i.e.

P ′(x) > 0 and P ′′(x) > 0 in a neighbourhood of x0.

If we choose the starting point x1 to the right of the root x0, it follows readily from Figure 16 that

x1 > x2 > x3 > · · · > x0, xn ↘ x0,

because a bounded decreasing sequence is convergent, and x0 is the only possible limit point.

Figure 16: If P (x) is convex and increasing in a neighbourhood of x0, choose the starting point to the
right of x0 and obtain a decreasing sequence converging towards x0.

2) Assume that P (x) is convex and increasing in a neighbourhood of the root x0, i.e.

P ′(x) < 0 and P ′′(x) > 0 in a neighbourhood of x0.

If we choose the starting point x1 to the left of the root x0, it follows readily from Figure 17 that

x1 < x2 < x3 < · · · < x0, xn ↗ x0,

because a bounded increasing sequence is convergent, and x0 is the only possible limit point.

3) Assume that P (x) is concave and increasing in a neighbourhood of x0, i.e.

P ′(x) > 0 and P ′′(x) < 0 in a neighbourhood of x0.

If we choose the starting point x1 to the left of the root x0, it follows readily from Figure 18 that

x1 < x2 < x3 < · · · < x0, xn ↗ x0,

because a bounded increasing sequence is convergent, and x0 is the only possible limit point.
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Figure 17: If P (x) is convex and decreasing in a neighbourhood of x0, choose the starting point to
the left of x0 and obtain an increasing sequence converging towards x0.

Figure 18: If P (x) is concave and increasing in a neighbourhood of x0, choose the starting point to
the left of x0 and obtain an increasing sequence converging towards x0.

4) Assume that P (x) is concave and decreasing in a neighbourhood of x0, i.e.

P ′(x) < 0 and P ′′(x) < 0 in a neighbourhood of x0.

If we choose the starting point x1 to the right of the root x0, it follows readily from Figure 19 that

x1 > x2 > x3 > · · · > x0, xn ↘ x0,

because a bounded decreasing sequence is convergent, and x0 is the only possible limit point. �

Example 4.1.1 We consider the polynomial P (x) = x3 − 2x − 5 from Example 1.5.1 (1). Then we

know already that there is a real root >

√
6

3
. By insertion,

P (1) = 1 − 2 − 5 = −6, P (2) = 8 − 4 − 5 = −1, P (3) = 27 − 6 − 5 = 16,

so the real root lies in the interval [2, 3], which can also be seen from the graph.
It follows from

P ′(x) = 3x2 − 2 and P ′′(x) = 6x

that P ′(x) > 3 · 22 − 2 = 10 and P ′′(x) > 6 · 2 = 12, hence P ′(x) · P ′′(x) > 0 in this interval, so
we choose the right end point x1 = 3 of the interval as our starting point. Notice that even if x0

apparently lies very close to x = 2, the best strategy is to choose x1 = 3.

83

Download free eBooks at bookboon.com



Methods for finding (Real or Complex) Zeros in Polynomials

87 

Approximation methods

Figure 19: If P (x) is concave and decreasing in a neighbourhood of x0, choose the starting point to
the right of x0 and obtain a decreasing sequence converging towards x0.

Figure 20: The graph of P (x) = x3 − 2x − 5.

The iteration map is

f(x) = x − P (x)
P ′(x)

= x − 1
3
· 3x3 − 6x − 15

3x2 − 2
=

2
3

x +
1
3
· 4x + 15
3x2 − 2

,

so the iteration formula becomes

xn+1 =
2
3

xn +
1
4
· 4xn + 15

3x2
n − 2

.

Using just a simple pocket calculator we get with x1 = 3 > x0,

x1 = 3, x2 = 2.36, x3 = 2.12720,

x4 = 2.09514, x5 = 2.09455, x6 = 2.09455,

so an approximate value of the real root is α1 ≈ 2.09455.

Then using Vieti’s formulæ we see that the two complex conjugated roots α2, α3 must have the
structure 1.047274 ± iy, because α1 + α2 + α3 = 0, and ℜα2 = ℜα3. Furthermore,

α1 · α2 · α3 = (−1)3 · (−5) = 5 = 2.09455
{
1.0472752 + y2

}
,

from which

y2 =
5

2.09455
− 1.0472752 = 1.29036,
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so y = 1.13594. The three roots are therefore approximately

α1 = 2.09455, α2 = 1.047275 + i · 1.13594, α3 = 1.047275 − i · 1.13594. ♢

Example 4.1.2 In Example 1.5.1 (3) we considered the polynomial P (x) = x4 +12x2 +96x−12 and
showed that it had two real and two complex conjugated roots. From

P (0) = −12 and P (1) = 97

follows that we have one real root in the interval ]0, 1[.

From

P (−3) = −111 and P (−4) = 52

follows that we have another real root in ] − 4,−3[.
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These rough results can also be obtained by considering the graph of Figure 21.

Figure 21: The graph of P (x) = x4 + 12x2 + 96x − 12.

Then we compute

P ′(x) = 4x3 + 24x + 96 = 4
{
x3 + 6x + 24

}
,

P ′′(x) = 12x2 + 24 = 12
{
x2 + 2

}
.

Clearly, P ′′(x) > 0 for all x ∈ R, and P ′(x) > 0 for x ∈ ]0, 1[. Hence, P ′(x) · P ′′(x) > 0 for x ∈ ]0, 1[,
so we choose x1 = 1 as our starting point in this interval.

Then, since P ′′(x) > 0 everywhere, P ′(x) is increasing. It follows from

P (−3) = 4{−27 − 18 + 24} = −84 < 0

that P ′(x) · P ′′(x) < 0 for x ∈ ] − 4,−3[. Therefore, the starting point of the iteration in this interval
is chosen as x1 = −4.

The iteration map is given by

f(x) = x − P (x)
P ′(x)

= x − x4 + 12x2 + 96x − 12
4 {x3 + 6x + 24}

= · · · =
3x

4
− 3

2
· x2 + 12 − 2
x3 + 6x + 24

,

so the iteration formula is given by

xn+1 =
3
4
· xn − 3

2
· x2

n + 12xn − 2
x3

n + 6xn + 24
.

Choosing x1 = 1 we get successively,

x2 =
3
4
− 3

2
· 1 + 12 − 2
1 + 6 + 24

=
3
4
− 3

2
· 11
31

= 0.21774,

x3 =
3
4
· 0.21774 − 3

2
· 0.217742 + 12 · 0.21774 − 2
0.217743 + 6 · 0.21774 + 24

= 0.12418,

x4 =
3
4
· 0.12418 − 3

2
· 0.124182 + 12 · 0.12418 − 2
0.124183 + 6 · 0.12418 + 24

= 0.12310,

x5 =
3
4
· 0.12310 − 3

2
· 0.123102 + 12 · 0.12310 − 2
0.123103 + 6 · 0.12310 + 24

= 0.12310,
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so an approximate value of this real root is α1 = 0.12310.

Then we turn to the root in the interval [−4,−3], where we should choose x1 = −4 as our starting
point. However, in order not to make errors in the computations, due to the minus signs, we instead
introduce xn = −yn. Then the iteration formula becomes

yn+1 =
3
4

yn +
3
2
· y2

n − 12yn − 2
24 − 6yn − y3

n

=
3
4

yn +
3
2
· 12yn + 2 − y2

n

y3
n + 6yn + 24

.

Choosing y1 = 4 we get

y2 = 3 +
3
2
· 48 + 2 − 16
64 + 24 − 24

= 3 +
51
64

= 3.79688,

y3 =
3
4
· 3.79688 +

3
2
· 12 · 3.79688 + 2 − 3.796882

3.796883 + 6 · 3.79688 − 24
= 3.77668,

y4 =
3
4
· 3.77668 +

3
2
· 12 · 3.77668 + 2 − 3.776682

3.776683 + 6 · 3.77668 − 24
= 3.77649,

y5 =
3
4
· 3.77649 +

3
2
· 12 · 3.77649 + 2 − 3.776492

3.776493 + 6 · 3.77649 − 24
= 3.77649,

and we conclude that an approximate value of this real root is α2 = −y5 = −3.77649.

To find the complex roots we apply Vieti’s formulæ. The sum of the roots is α1 + α2 + α3 + α4 = 0,
so

α3 + α4 = 3.77649 − 0.012310 = 3.65339.

Since these two roots are complex conjugated,

ℜα3 = ℜα4 =
1
2
· 3.65339 = 1.826695,

and

α3 = 1.826695 + iy, α4 = 1.826695 − iy.

The product of the roots is α1 · α2 · α3 · α4 = (−1)4 · (−12), thus

−12 = 0.12310 · {−3.77649} ·
{
1.8266952 + y2

}
,

and

y2 + 1.8266952 =
12

0.12310 · 3.77649
= 25.81278,

from which

y2 = 25.81278 − 1.8266952 = 22.47597,

so y = 4.74088.

Summing up, the four roots are approximately given by

α1 = 0.12418, α2 = −3.77649,
α3

α4

}
= 1.826695 ± i · 4.74088. ♢
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Example 4.1.3 Cf. also Example 2.4.2. The polynomial P (x) = x4 − 3x3 + 5x2 + x− 4 has the real
root x = 1, and we get by a division that

P (x) = (x − 1)Q(x), where Q(x) = x3 − 2x2 + 3x + 4.

The possible rational roots of Q(x) are ±1, ±2, ±4, and it is easily seen that this set of possible roots
can be reduced to −1, −2, −4. We finally get by insertion,

Q(−1) = −2, Q(−2) = −18, Q(−4) < 0,

so Q(x) does not have rational roots.

Figure 22: The graph of P (x) = x3 − 2x2 + 3x + 4.

Since a2
1 − 2a0a2 = (−2)2 − 2 · 1 · 3 = 4 − 6 = −2 < 0, it follows from Theorem 1.4.1 that Q(x) must

have non-real roots. These are complex conjugated in pairs, because the coefficients of the polynomial
are real. Now, n = 3, so we can only have one such pair, and we have precisely one real root. It follows
from the continuity and Q(−1) = −2 and Q(0) = 4 that this real root lies in the interval ] − 1, 0[,
which can also be seen from Figure 22.

By differentiation,

Q′(x) = 3x2 − 4x + 3 and Q′(x) > 0 for x < 0,

Q′′(x) = 6x − 4 and Q′′(x) < 0 for x < 0.

Since Q′(x) · Q′′(x) < 0, we choose the left end point x1 = −1 < x0 = α1 as our starting point of the
iteration below.

The iteration map is

f(x) = x − Q(x)
Q′(x)

= x − x3 − 2x2 + 3x + 4
3x2 − 4x + 3

,

where it is no help to further reduce the fraction, so the iteration formula becomes

xn+1 = xn − x3
n − 2x2

n + 3xn + 4
3x2

n − 4xn + 3
= xn +

(−xn)3 + 2 (−xn)2 + 3 (−xn) − 4
3 (−xn)2 + 4 (−xn) + 3

.

We get using x1 = −1,

x2 = −1 − (−1)3 − 2 − 3 + 4
3 + 4 + 3

= −1 +
2
10

= −0.8,
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x − 3 = −0.8 +
0.83 + 2 · 0.82 + 3 · 0.8 − 4

3 · 0.82 + 4 · 0.8 + 3
= −0.77635,

x4 = −0.77635 +
0.776353 + 2 · 0.776352 + 3 · 0.77635 − 4

3 · 0.776352 + 4 · 0.77635 + 3
= −0.77605,

x5 = −0.77605 +
0.776053 + 2 · 0.776052 + 3 · 0.77605 − 4

3 · 0.776052 + 4 · 0.77605 + 3
= −0.77605.

The real root is approximately given by α1 = −0.77605.

Then use Vieti’s formulæ and that ℜα2 = ℜα3 to get

α1 + α2 + α3 = −(−2) = 2, thus α2 + α3 = 2.77605,

and therefore α2, α3 = 1.388025 ± iy. Finally,

α1α2α3 = (−1)34 = −4 = −0.77605 ·
{
1.3880252 + y2

}
,
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from which

y2 =
4

0.77605
− 1.3880252 = 3.22769, or y = 1.79658,

and the three roots are approximately

α1 = −0.77605, α2 = 1.388025 + i · 1.79658, α3 = 1.388025 − i · 1.79658. ♢

Example 4.1.4 Finally, we shall consider the polynomial P (x) = 3x87 − x3 + 1 of Example 3.5.3.
We know already that it has precisely one real root, and that Rouché’s theorem implied that all roots

lie in the annulus
24
25

< |α| < 1. Clearly,

P (x) = 3x87 − x3 + 1 > 0 for 0 < x < 1,

so the real root must lie in the interval ] − 1,−0.96[, cf. also Figure 23.

Figure 23: The graph of P (x) = 3x87 − x3 + 1.

In order to avoid mistakes concerning the minus signs in the iteration process we put y = −x, x = −y,
so we shall instead find y ∈ ]0.96, 1[, such that

Q(y) := 3y87 − y3 − 1 = 0, y ∈ ]0.96, 1[.

By differentiation,

Q′(y) = 4
{
87y86 − y2

}
> 0 for y ∈ ]0.96, 1[,

Q′′(y) = 6
{
3 741 y85 − y

}
> 0 for y ∈ ]0.96, 1[.

Since Q′(y)Q′′(y) > 0, Theorem 4.1.3 tells us to choose the right end point y1 = 1 of the interval as
our starting point for the iteration process.

The iteration map is

f(y) = y − Q(y)
Q′(y)

= y − 3y87 − y3 − 1
3 {87 y86 − y2}

,

hence the iteration formula becomes

yn+1 = yn − 3y87
n − y3

n − 1
3 {87 y86

n − y2
n}

.
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Choosing y1 = 1, cf. the above, we get

y2 = 1 − .
3 − 1 − 1
3{87 − 1}

= 1 − 1
3 · 86

= 0.99612,

y3 = 0.99612 − 3 · 0.9961287 − 0.996123 − 1
3 {87 · 0.9961286 − 0.996122}

= 0.99530,

y4 = 0.99530 − 3 · 0.9953087 − 0.995303 − 1
5 {87 · 0.9953086 − 0.995302}

= 0.99527,

y5 = 0.99527 − 3 · 0.9952787 − 0.995273 − 1
3 {87 · 0.9952786 − 0.995272}

= 0.99527,

so using this particular pocket calculator we conclude that the real root is approximately
α1 = −0.99527. Since the exponent, 87, is very large, one should double check this result, because we
do not know the programs used in the pocket calculator. Figure 23 was created in MAPLE, so quite
another program. Looking at Figure 23 the found approximate value above looks very plausible. ♢

4.2 Graeffe’s root-squaring process

The most well-known approximation method, when we shall find the roots of a polynomial, is of
course Newton’s approximation theorem, which was treated in Section 4.1. There exists, however,
another method, which is less known, and yet it is in some cases superior to Newton’s approximation,
in particular when the derivative P ′(x) is very small in a neighbourhood of a zero. This method is
called Graeffe’s root-squaring process after the Swiss mathematician C. H. Graeffe (1799–1873), who
published this method as early as in 1837. Although the method may seem troublesome at the first
glance, it may still have some advantages, in particular when one has a computer - or just a pocket
calculator - at hand.

4.2.1 Analysis

1) Description of the squaring process. Assume first that all the roots of the normalized real polyno-
mial equation

(38) P (x) = xn + a1x
n−1 + a2x

n−2 + · · · + an−1x + an = 0

are all real and mutually distinct in absolute value, thus in particular all simple. We shall for
convenience, which will become clear later, write them in the form

−r1, −r2, −r3, . . . , −rn, where |−r1| > |−r2| > · · · > |−rn| ,

arranged in decreasing order of the modules from −r1 to −rn.

We rearrange (38) in such a way that all even powers are on one side of the equality sign, and all
the odd powers on the other side of the equality sign,

xn + a2x
n−2 + · · · = −

{
a1x

n−1 + a3x
n−3 + · · ·

}
,
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and then square both sides,



x2n + a2
2x

2n−4 + a2
3x

2n−6 + · · ·
+2a2x

2n−2 + 2a4x
2n−4 + · · ·

+2a2a4x
2n−6 + · · ·

+ · · ·




=




a2
1x

2n−2 + a2
3x

2n−6 + a2
5x

2n−10 + · · ·
+2a1a3x

2n−4 + 2a1a5x
2n−6 + · · ·

+2a3a5x
2n−8 + · · ·

· · · .

Collecting all terms on the left we get after a reduction,

x2n −
{
a2
1 − 2a2

}
x2n−2 +

{
a2
2 − 2a1a3 + 2a4

}
x2n−4

−
{
a2
3 − 2a2a4 + 2a1a5 − 2a6

}
x2n−6 + · · · = 0.(39)

The idea is that every root −rj of (38) is also a root of (39), because if

P (−rj) = Peven (−rj) + Podd (−rj) = 0,

then the process above is described by

Peven (−rj) = −Podd (−rj) and Peven (−rj)
2 = Podd (−rj)

2
,

so (39) is written

Peven (−rj)
2 − Podd (−rj)

2 = {Peven (−rj) + Podd (−rj)} {Peven (−rj) − Podd (−rj)}
= P (−rj) {Peven (−rj) − Peven (−rj)} = 0.

In the next step we let y := −x2 in (39. Then notice that

x2n−j = (−1)n−jyn−j = (−1)n · (−1)j yn−j ,

so by this substitution (39) becomes

y2n −
{
a2
1 − 2a2

}
yn−1 +

{
a2
2 − 2a1a3 + 2a4

}
yn−2

−
{
a2
3 − 2a2a4 + 2a1a5 − 2a6

}
yn−3 + · · · = 0.(40)

From y = −x2 follows that the roots of (40) are

yj = −{−rj}2 = −r2
j , j = 1, . . . , n,

so (40) has the same degree as (38), and its roots are obtained from the roots of (38) by a squaring,
followed by putting a minus sign in front of them.

Repeating this process we find at step number k some polynomial equation

(41) xn
k + a1,kxn−1

k + a2.kxn−2
k + · · · + an−1,kxk + an,k = 0

of the n real roots

(42) −r2k

1 , −r2k

2 , . . . , −r2k

n .

The process above is the same also when some of the roots have the same modulus, including the
case when we have pairs of conjugated complex roots. It is, however, easiest to describe under the
assumption that all roots are real and of mutually different modules. We shall first analyze this
simple case.
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2) The case of only simple real roots of mutually different modules. Since |r1| > |r2| > · · · > |rn| by
assumption, we obtain for “large” k that

(43) |r1|2
k

≫ |r2|2
k

≫ · · · ≫ |rn|2
k

,

so the roots −r2k

j are very different in absolute value. This can be used to find approximate values
of each root −r2k

j . To see this we apply Vieti’s formulæ on the equation (41) of the n separated
(simple) roots (42). We write for short m = 2k. Due to the minus signs in (42) we get

(44)




a1,k = rm
1 + rm

2 + · · · + rm
n−1 + rm

n ,
a2,k = rm

1 {rm
2 + · · · + rm

n } + rm
2 {rm

3 + · · · + rm
n } + · · · ,

a3,k = rm
1 {rm

2 rm
3 + · · · } + rm

2 {rm
3 rm

4 + · · · } + · · · ,
...

...
an,k = rm

1 rm
2 · · · rm

n
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Applying (43) on (44) we see that we have approximately

(45)




a1,k = rm
1 ,

a2,k = rm
1 rm

2 ,
a3,k = rm

1 rm
2 rm

3 ,
...

...
an,k = rm

1 rm
2 rm

3 · · · rm
n ,

because all of the other finitely many terms of (44) are much smaller than the leading term in (45).
It then is very easy to find rj from (45), because

(46)




rm
1 = a1,k,

rm
2 =

a2,k

a1,k
...

...
rm
j =

aj,k

aj−1,k
...

...
rm
n =

an,k

an−1,k
,

i.e.




|r1| = m
√

a1,k,

|r2| = m

√
a2,k

a1,k
,

...
...

|rj | = m

√
aj,k

aj−1,k
,

...
...

|rn| = m

√
an,k

an−1,k
,

where m = 2k.

Clearly, we cannot determine the sign of the roots by this method, but these can easily be found,
either by a graphical consideration, or by the theory of the previous chapters, or by simply inserting
±r1 into the original polynomial equation (38)

The analysis above was based on the assumption that |r1| > |r2| > · · · > |rn|, and that the roots
−r1, −r2, . . . , −rn are all real.

3) The case of precisely two roots of equal modulus. We shall now assume that all roots are real and
that just two of them are equal in absolute value, say |r3| = |r4|, so r4 = ±r3. We apply the same
method as described above and finally arrive again at (41) and (42), where of course −r2k

3 = −r2k

4

for k ∈ N, because then all the exponents are even. Recalling that 2k = m, formulæ (44) are then
written




a1,k = rm
1 ,

a2,k = rm
1 rm

2 ,

a3,k = rm
1 rm

2 rm
3 + rm

1 rm
2 rm

4 + · · · = 2rm
1 rm

2 rm
3 + · · · ,

a4,k = rm
1 rm

2 rm
3 rm

4 + · · · = rm
1 rm

2 r2m
3 + · · · ,

...
...

an−1,k = rm
1 rm

2 r2m
3 rm

5 · · · rm
n−1 + · · · ,

an,k = rm
1 rm

2 r2m
3 rm

5 · · · rm
n ,
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where the dots indicate numerically smaller terms. Hence, (45) is here replaced by

(47)




a1,k = rm
1 ,

a2,k = rm
1 rm

2 ,

a3,k = 2rm
1 rm

2 rm
3 ,

a4,k = rm
1 rm

2 r2m
3 ,

...
an−1,k = rm

1 rm
2 r2m

3 rm
5 · · · rm

n−1,

an,k = rm
1 rm

2 r2m
3 rm

5 · · · rm
n .

The only difference between (45) and (47), when |r3| = |r4| is that c3 = 2rm
1 rm

2 rm
3 , where we get an

extra factor 2, because in the following the product r2m
3 = rm

3 rm
4 is unchanged from the previous.

Therefore, (46) is replaced by

(48)

rm
1 = a1,k,

rm
2 =

a2,k

a1,k
,

rm
3 = rm

4 =
a3,k

2a2,k

rm
5 =

a5,k

a4,k
,

...
...

rm
n =

an,k

an−1,k
,




, thus




|r1| = m
√

a1,k,

|r2| = m

√
a2,k

a1,k
,

|r3| = |r4| = m

√
a3,k

2a2,k
,

|r5| = m

√
a5,k

a4,k
,

...
...

|rn| = m

√
an,k

an−1,k
,

where m = 2k,

so the difference is that |r3| = |r4| = m

√
a3,k

2a2,k
. We can for large m estimate the number of equal

modulus, because

a3,k+1 = 2
{
r2m
1 r2m

2 r2m
3

}
=

1
2
{a3,k}2

,

so we just compare two successive coefficients (with respect to k), if the lower number is squared
or not, when we pass from k to k + 1 for large k. We notice that since m

√
2 → 1 for m → +∞, we

may above instead use the simpler estimate

|r3| = |r4| ≈ m

√
a3,k

,
a2,k,

because in the limit, k → +∞, or m → +∞, we shall get the right values of |r3| = |r4|.

4) The case of precisely p roots of equal modulus. Similarly, if e.g. |r3| = |r4| = |r5| (three roots of
equal modulus), then we get for large m = 2k,

|r3| = |r4| = |r5| = m

√
a3,k

3a2,k
≈ m

√
a3,k

a2,k
,
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and generally, if |rj | > |rj+1| = |rj+2| = · · · = |rj+p| > |rj+p+1|, then

(49) |rj+1| = |rj+2| = · · · = |rj+p| = m

√
aj+1,k

p · aj,k
≈ m

√
aj+1,k

aj,k
for large m = 2k,

because m
√

p → 1 for m → +∞.

We can for large m estimate the number p of roots of equal modulus, because for large k,

aj+1,k+1 ≈ 1
p
· a2

j+1,k, or p ≈
a2

j+1,k

aj+1,k+1
.

5) The case of precisely one pair of complex conjugated roots with different modules from all the other
roots. We shall now consider the case where the given equation (38) contains one pair of simple
complex conjugated roots. It suffices in the analysis only to consider a polynomial equation of
fourth degree of the roots

−r1, −r2 eiΘ, −r2 e−iΘ, −r3,

where we assume that |r1| > |r2| > |r3|. Then the polynomial can also be written

(x + r1)
(
x + r2 eiΘ

) (
x + r2 e−iΘ

)
(x + r3) = 0.

When we perform k root-squaring operations and put m = 2k, then the resultant equation has the
roots

−rm
1 , −rm

2 eimΘ, −rm
2 e−imΘ, −rm

3 ,

so the corresponding polynomial can be written

(z + rm
1 )

(
z + rm

2 eimΘ
) (

z + rm
2 e−imΘ

)
(z + rm

3 ) = 0,

which we rearrange as

z4 +
{
rm
1 + rm

2 eimΘ + rm
2 e−imΘ + rm

3

}
z3

+
{
rm
1 rm

2 eimΘ + r1r
m
2 e−imΘ + rm

1 rm
3 + r2m

2 + rm
2 rm

3 eimΘ + rm
2 rm

3 e−imΘ
}

z2(50)

+
{
r1r

2m
2 + rm

1 rm
2 rm

3 eimΘ + rm
1 rm

2 rm
3 e−imΘ + r2m

2 rm
3

}
z + rm

1 r2m
2 rm

3 = 0.

We notice that the first terms in (50) are dominating in the coefficients of z3 and z. Then we turn
to the coefficient of z2, which is also written

2rm
1 rm

2 cos mΘ + rm
1 rm

3 + r2m
2 + 2rm

2 rm
3 cos mΘ.

If cos mΘ is approximately +1 or −1, then 2rm
1 rm

2 cos mΘ is numerically dominant. If instead
cos mΘ is approximately 0, either rm

1 r3 or r2m
2 become dominant. Therefore, if m increases,

then the coefficient of z2 continuously fluctuates in sign, which is very unlike the coefficients
corresponding to real roots, which remain positive. Hence, we can identify complex conjugated
roots by this fluctuations of the corresponding coefficient. Clearly, the restriction to a polynomial
of fourth degree is of no importance. The observation above holds for general real polynomials.
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Once we have identified a pair of simple complex conjugated roots, like in (50), the modules is
found in the following way, where we first analyze (50), where rm

2 should be found. For large m
we have approximately

z4 + rm
1 z3 + a2,k (r1, r2, r3, Θ) z2 + rm

1 r2m
2 z + rm

1 r2m
2 rm

3 = 0,

from which we derive that a1,k = rm
1 and a3,k = rm

1 rm
2 and a4,k = rm

1 r2m
2 rm

3 . We see that we shall
neglect the fluctuating coefficient a2,k (r1, r2, r3, Θ) and only consider

(51)

rm
1 = a1,k,

r2m
2 =

a3,k

a1,k
,

rm
3 =

a4,k

a3,k
,




thus




|r1| = m
√

a1,k,

|r2| = 2m

√
a3,k

a1,k
,

|r3| = m

√
a4,k

c3,k
,

where m = 2k.
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The general method is to neglect the fluctuating coefficient aj,k (r1, . . . , rn, Θ) corresponding to a
pair of simple complex conjugated roots, and then the modulus |rj | of the two complex roots is
given by

|rj | = 2m

√
aj+1,k

aj,k
.

Then recall that we have assumed that there is only one pair of complex conjugated roots u ± iv.
In order to find u and v we notice that it follows from Vieti’s formulæ after a rearrangement that

u = −1
2
{a1 + sum of all real roots in the polynomial} ,

so the real part is easy to find. Then

u2 + v2 = r2
j = m

√
aj+1,k

aj,k
implies that v =

√
r2
j − u2,

so we have also found the imaginary part. Thus for a single pair of complex conjugated roots u±iv
the method above should be straightforward.

6) Several pairs of complex roots. If there is at least two pairs of complex conjugated roots, the
description of the method becomes more complicated. First of all one identifies all modules |rj |
and find all the real roots by the previous described method.

The complex roots are then written in the form

uj ± ivj , where u2
j + v2

j = r2
j .

Then we apply some of Vieti’s formulæ, starting with a1 = a1,0, and then an−1 = an−1,0 in case of
two pairs, etc., and then find some equations of the unknown real parts uj . One should of course
choose the least complicated of Vieti’s formulæ in this process, but it must be admitted that if
there are many pairs of complex roots, then we are forced to solve a very complicated system of
non-linear equations in the uj . We shall later illustrate this by an example with two pairs.

4.2.2 Template for Graeffe’s root-squaring process.

Let

P0(x) = xn + a1x
n−1 + a2x

n−2 + · · · + an−1x + an

be a given normalized polynomial of real coefficients.

1) We shall define the coefficients of the polynomial

P1(y) = yn + a′
1y

n−1 + a′
2y

n−2 + · · · + a′
n−1y + a′

n

in the next step of the root-squaring process. This is described in (52), where we get the a′
j by
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summing the j-th column.

(52)

1 a1 a2 a3 a4 a5 · · ·

12 a2
1 a2

2 a2
3 a2

4 a2
5 · · ·

−2a2 −2a1a3 −2a2a4 −2a3a5 −2a4a6 · · ·
2a4 2a1a5 2a2a6 2a3a7 · · ·

−2a6 −2a1a7 −2a2a8 · · ·
2a8 2a1a9 · · ·

−2a10 · · ·

1 a′
1 a′

2 a′
3 a′

4 a′
5 · · ·

Then repeat (52) on the new coefficients (1, a′
1, a

′
2, . . . , a

′
n), etc.. It cannot be told in advance how

many times this should be done. A rule of thumb is that one should stop when each computed
coefficient aj,k+1 (with the exceptions of the cases of multiple roots, or complex roots) is roughly
the square of the preceding one aj,k, i.e. aj,k+1 ≈ {aj,k}2 for all coefficients which are not connected
with multiple roots or complex conjugated roots. This happens when the corresponding double
products are negligible compared with the square, so in practice it is easy to see when one should
stop. This will be evident from the examples in Section 4.2.3.

2) If all coefficients are positive, so all roots are real, and if furthermore they have mutually different
modules, then find |r1| , . . . , |rn| by (46). Check the sign of the roots, i.e. check the possible
solutions ±r1, . . . , ±rn in the original polynomial P0(x).

3) If all coefficients are positive, but some of the coefficients are not eventually roughly squared, this
is an indication of that we have roots of equal modulus. In this case, apply (48), or (49), whenever
needed to find |r1| , . . . , |rn| and then check ±r1, . . . , ±rn in the original polynomial P0(x).

4) If some of the coefficients fluctuate, this is an indication of a pair of complex conjugated roots. In
this case, apply (51), or modifications of (51), to find |r1| , . . . , |rn|. For these pairs of complex
conjugated roots, apply Vieti’s formulæ to find them explicitely.

4.2.3 Examples.

We shall give three examples, one with only real roots of mutually different modules, one with only
real roots, but where some of the roots have a common modulus, and finally an example, where we
have two pairs of complex conjugated roots. In two of the examples it is possible to find the roots
directly, so we can compare the results.

Example 4.2.1 We shall find all roots of the polynomial equation

P (x) = x4 − x3 − 10x2 − x + 1 = 0.

We first notice that it is possible to solve this equation directly, because if x0 is a root, then x0 ̸= 0,

and
1
x0

is also a root. In fact,

P

(
1

x0

)
=

1
x4

0

{
1 − x0 − 10x2

0 − x3
0 + x4

0

}
=

1
x4

0

P (x0) = 0.
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Since

(x − x0)
(

x − 1
x0

)
= x2 −

{
x0 +

1
x0

}
x + 1,

the polynomial must necessarily have the structure

P (x) = x4 − x3 − 10x2 − x + 1 =
(
x2 − ax + 1

) (
x2 − bx + 1

)

= x4 − (a + b)x3 + (2 + ab)x2 − (a + b)x + 1.

When we identify the coefficients we get

a + b = 1, and 2 + ab = −10, i.e. ab = −12,

and a and b are the roots of the equation z2 − (a + b)z + ab = z2 − z − 12 = 0, thus

a
b

}
=

1
2

{
1 ±

√
48 + 1

}
=

1
2
{1 ± 7} =

{
4

−3 ,
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and we have proved that P (x) can be factorized in the following way,

P (x) = x4 − x3 − 10x2 − x + 1 =
(
x2 − 4x + 1

) (
x2 + 3x + 1

)
,

from which we immediately get the roots

x = 2 ±
√

22 − 1 = 2 ±
√

3 and x =
1
2

{
−3 ±

√
32 − 4

}
=

1
2

{
−3 ±

√
5
}

.

Since we shall estimate the efficiency of Graeffe’s root-squaring method we notice for later use that
the roots are approximately

3.7321, 0.2679, −0.3820, −2.6180.

It will be convenient also to give the modules of the roots, ordered according to their size,

(53) |r1| = 3.7321, |r2| = 2.6180, |r3| = 0.3820, |r4| = 0.2679,

because this is the order they should occur, when we apply the root-squaring method.

We notice that the four modules are mutually distinct and that all four roots are real, so this should
be the easiest case to handle.

It follows from Table 7 that all coefficients are approximately squared, when we pass form one step to
the next. We therefore conclude that all four roots are real, and that they are of mutually different
modules, in particular they are all simple.

Using k = 6 we get m = 2k = 64, and it follows from (46) that

r64
1 = 4.0239 · 1036, thus |r1| = 3.7321,

r64
2 =

2.2650 · 1063

4.0239 · 1036
, thus |r2| = 2.6180,

r64
3 =

4.0239 · 1036
2.2650 · 1063

, thus |r3| = 0.3820,

r64
4 =

1
4.0239 · 1036

, thus |r4| = 0.2680,

in agreement with (53).

Since r1 + r2 + r3 + r4 = 1, we must have r1 > 0 and r2 < 0, and r1 + r2 = 1.1141 = 1 − r3 − r4, or
r3 + r4 = −0.1141. This implies that r3 < 0 and r4 > 0, so we conclude that the roots are

r1 = 3.7321, r2 = −2.6180, r3 = −0.3820, r4 = 0.2680. ♢

Example 4.2.2 Let us consider the normalized polynomial

P (x) = x5 + 2x4 − 5x3 − 10x2 + 4x + 8

of integer coefficients. Its possible rational roots are ±1, ±2, ±4,±8. A simple check shows that the
roots are

x1 = 2, x2 = x3 = −2, x4 = 1 and x5 = −1,
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k a0 a1 a2 a3 a4

1 a2
1 a2

2 a2
3 a2

4

−2a2 −2a1a3 −2a2a4

2a4

0 1 −1 −10 −1 1
1 1 100 1 1

20 −2 20
2

1 1 21 100 21 1
1 441 10 000 441 1

−200 −882 −200
2

2 1 241 9 120 241 1
1 5.8081E4 8.3174E7 5.8081E4 1

−1.8240E4 1.1616E5 −1.8240E4
⋆

3 1 3.9841E4 8.3058E7 3.9841E4 1
1 1.5873E9 6.8987E15 1.5873E9 1

−1.6612E8 −3.1746E9 −1.6612E8
4 1 1.4212E9 6.8987E15 1.4212E9 1

1 2.0198E18 4.7592E31 2.0198E18 1
−1.3797E16 ⋆ −1.3797E16

5 1 2.0060E18 4.7592E31 2.0060E18 1
1 4.0240E36 2.2650E63 4.0240E36 1

−9.5184E31 −9.5184E31
6 1 4.0239E36 2.2650E63 4.0239E36 1

Table 7: The coefficients of the root-squaring method of Example 4.2.1.
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k m = 2k a0 a1 a2 a3 a4 a5

1 a2
1 a2

2 a2
3 a2

4 a2
5

−2a2 −2a1a3 −2a2a4 −2a3a5

2a4 2a1a5

0 1 1 2 −5 −10 4 8
1 4 25 100 16 64

10 40 40 160
8 32

1 2 1 14 73 172 176 64
1 196 5.329E3 2.9584E4 3.0976 E4 4.096E3

−146 −4.816E3 −2.5696E4 −2.2016 E4
0.358E3 0.1792E4

2 4 1 50 865 5 680 8 960 4 096
1 2 500 7.4823E5 3.2262E7 8.0282 E7 1.6777E7

−1 730 −5.6800E5 −1.5501E7 −4.6531 E7
0.1792E5 0.0410E7

3 8 1 770 1.9815E5 1.7171E7 3.3751 E7 1.6777E7
1 5.9290E5 3.9261E10 2.9485E14 1.1391E14 2.8148E14

−3.9629E5 −2.6444E10 −0.1338E14 −5.7617E14
0.0067E10 0.0003E14

4 16 1 1.9661E5 1.2885E10 2.8150E14 5.6296E14 2.8148E14
1 3.8655E10 1.6603E20 7.9243E28 3.1693 E29 7.9228E28

−2.5771E10 −1.1069E20 −0.0015E28 −1.5847E29
⋆ ⋆

5 32 1 1.2885E10 5.5340E19 7.9228E28 1.5846 E29 7.9228E28
1 1.6602E20 3.0625E39 6.2771E57 2.5108 E58 6.2771E57

−1.1068E20 −2.0417E39 ⋆ −1.2554E58
6 64 1 5.5341E19 1.0208E39 6.2771E57 1.2554 E58 6.2771 57

1 3.0628E39 1.0420E78 3.9402E115 1.5760E116 3.9402E115
−2.0416E39 0.6948E78 ⋆ 0.7880E116

7 128 1 1.0212E39 3.4720E77 3.9402E115 7.8800E115 3.9402E115
1 1.0428E78 1.2055E155 1.5525E231 6.2094E231 1.5525E231

−0.6944E78 −0.80475E155 ⋆ −3.1050E231
8 256 1 3.4840E77 4.0075E154 1.5525E231 3.1044E231 1.5525E231

Table 8: The coefficients of the root-squaring method of Example 4.2.2.
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so x2 = x3 is a double root, x1, x2, x3 have the same modulus 2, and the two simple roots x4 and x5

have the same modulus 1. All five roots are real. We shall see how Graeffe’s root-squaring method
can show that three of the roots have modulus 2, and the remaining two roots have the modulus 1.
All derived coefficients in Table 8 are positive, so we conclude that all five roots are real. When we
compare the two lines corresponding to k = 7 and k = 8 we see that

a1,8 ≈ 1
3

a2
1,7, a2,8 ≈ 1

3
a2
2,7, a4,8 ≈ 1

2
a2
4,7,

so three of the roots have the same modulus, and the remaining two have the same modulus, i.e.

|x1| = |x2| = |x3| and |x4| = |x5| .
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k m = 2k m

√
a2,k

a1,k

m

√
a3,k

a2,k

m

√
a4,k

a3,k

m

√
a5,k

a5,k

1 2 2.2835 1.5350 1.0116 0.6030
2 4 2.0394 1.6008 1.1207 0.8223
3 8 2.0013 1.7467 1.0881 0.8397
4 16 2.0000 1.8673 1.0443 0.9576
5 32 2.0000 1.9325 1.0219 0.9786
6 64 2.0000 1.9660 1.0109 0.9892
7 128 2.0000 1.9829 1.0054 0.9946
8 256 2.0000 1.9915 1.0027 0.9973

Table 9: Estimates of the modules of the roots in Example 4.2.2.

From Table 9 we derive that |x1| = |x2| = |x3| = 2 and |x4| = |x5| ≈ 1. In order to get 1 in the
latter case we should proceed with the computations another one or two steps, but most people would
already at this stage judge that the modulus is indeed 1. Finally, by inserting ±1, ±2 in the original
equation we get as before

x1 = 2, x2 = x3 = −2, x4 = 1, x5 = −1. ♢

Example 4.2.3 Finally, we shall find the roots of the polynomial equation

(54) x7 + x6 − 4x5 − 4x4 − 2x3 − 5x2 − x − 1 = 0,

by using Graeffe’s squaring method.

We first check for possible rational roots. These can only be ±1, and neither of them are roots for
obvious reasons, because the sum of the coefficients is an odd number.

One may also investigate if there are multiple roots. We shall not write down the tedious details, only
mention that there are no multiple root in this case.

Then we use the Graeffe’s root-squaring method to set up Table 10.

It follows from Table 10 that from row k = 7, i.e. m = 27 = 128, all coefficients are uninfluenced
by the product terms with the exception of the fifth and the seventh coefficients, which continually
fluctuate in sign. We can therefore terminate the root-squaring process at this stage, concluding that
there must be two pairs of complex roots and three real roots. Furthermore, the real roots must be
of mutually different modules, because the transition from one step to the next one is approximately
a squaring.

It follows from r256
1 ≈ 5.6033 · 2085 that

ln |r1| =
1

256
ln

(
5.6033 · 1085

)
= 0.7713, hence |r1| = 2.1625.

It follows from r256
1 · r256

2 ≈ 1.6806 · 20159 that

ln |r2| =
1

256
{
ln

(
1.6806 · 10159

)
− ln

(
5.6033 · 1085

)}
= 0.6609, hence |r2| = 1.9365.
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k a0 a1 a2 a3 a4 a5 a6 a7

1 a2
1 a2

2 a2
3 a2

4 a2
5 a2

6 a2
7

−2a2 −2a1a3 −2a2a4 −2a3a5 −2a4a6 −2a5a7

2a4 2a1a5 2a2a6 2a3a7

−2a6 −2a1a7

0 1 1 −4 −4 −2 −5 −1 −1

1 16 16 4 25 1 1
+8 +8 −16 −40 −4 −10

−4 −10 +8 8
+2 +2

1 1 9 20 −8 −26 29 −9 1

81 400 64 676 841 81 1
−40 144 1040 464 −468 −58

−52 522 −360 −16
18 −18

2 1 41 492 1644 762 357 23 1

1681 2.4206E5 2.7027E6 5.8064E5 1.2745E5 529 1
−984 −1.3481E5 −0.7498E6 −1.1738E6 −0.3505 E5 −714

0.0152E5 0.0293E6 0.0226E6 0.0329E5
⋆ ⋆

3 1 697 1.0877E5 1.9822E6 −5.7062E5 9.5685E4 −185 1

4.8581E5 11.8309E9 3.9261E12 32.5607E10 9.1556E9 0.3423E5 1
−2.1754 E5 −2.7632E9 0.1241E12 −37.9334E10 −0.2111 E9 −1.9137E5

−1.1412E6 0.1334E12 −0.0040E10 0.0040E9

4 1 2.6827E5 9.0666E9 4.0534E12 −5.3767E10 8.9485E9 −1.5715E5 1

7.1969E10 8.2203E19 1.6430E25 0.2891E21 8.0076E19 24.6961E9
−1.8133E10 −0.2175E19 9.7497E20 −7.2544E22 −1.6899E16 −17.8970E9

⋆ ⋆ ⋆ ⋆

5 1 5.3836E10 8.0028E19 1.6431E25 −6.9653E22 8.0059E19 6.7991E9 1

2.8983E21 6.4045E39 2.6998E50 4.8515E45 6.4094E39 4.6228E19
−0.1601E21 −1.7692E36 ⋆ −2.6309E45 ⋆ −16.012E19

6 1 2.7383E21 6.4027E39 2.6998E50 2.2206E45 6.4094 39 −1.1389E20 1

1 7.4983E42 4.0995E79 7.2889E100 4.9311E90 4.1080E79 1.2971E40 1
−0.0128E42 ⋆ ⋆ −3.4608E90 ⋆ −1.2819E38

7 1 7.4855E42 4.0995E79 7.2889E100 1.4702E90 4.1080E79 1-5213E38 1

5.6033E85 1.6806E159 5.3128E201 2.1615E180 1.6876E159 2.3144E76 1
⋆ ⋆ ⋆ −5.9886 E180 ⋆ −8.2160E79

8 1 5.6033E85 1.6806E159 5.3128E201 −3.8271 E180 1.6876E159 −8.2137E79 1

Table 10: The coefficients of the root-squaring method of Example 4.2.3.
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It follows from r256
3 =

a3,8

a2,8
that

ln |r3| =
1

256
{
ln

(
5.3128 · 10201

)
− ln

(
1.6806 · 10159

)}
= 0.3823, hence |r3| = 1.4625.

Since there is only one change of sign in (54) between successive coefficients, only one of the three
roots is positive. It follows from P (2) = −39 and P (3) = 1517 that the positive root must lie between
2 and 3. Thus we conclude that the three real roots are approximately

r1 = 2.1625, r2 = −1.9365, r3 = −1.4656.

Then we compute the modules of the complex roots. In the first case,

r4 ≈ 512

√
a5,8

a3,8
=

512

√
1.6876 · 10159

5.3128 · 10201
= 0.8260,

and in the second case,

r5 ≈ 512

√
a7,8

5,8
= 512

√
1

1.6876 · 10159
= 0.4887.

Using Vieta’s equations we see that the real parts, u4 and u5, satisfy

(55) u4 + u5 =
1
2
{−1 − (2.1625 − 1.9365 − 1.4656)} = 0.1150,

and

an−1 = (−1)n−1{sum of the products of the roots taken n − 1 at a time}.

In the given case, n = 7 and a6 = −1, thus

−1 = r2r3 (u4 + iv4) (u4 − iv4) (u5 + iv5) (u5 − iv5)
+r1r3 (u4 + iv4) (u4 − iv4) (u5 + iv5) (u5 − iv5)
+r1r2 (u4 + iv4) (u4 − iv4) (u5 + iv5) (u5 − iv5)
+r1r2r3 {(u4 − iv4) (u5 + iv5) (u5 − iv5) + (u4 + iv4) (u5 + iv5) (u5 − iv5)}
+r1r2r3 {(u4 + iv4) (u4 − iv4) (u5 − iv5) + (u4 + iv4) (u4 − iv4) (u5 + iv5)}

= (r1r2 + r2r3 + r3r1)
(
u2

4 + v2
4

) (
u2

5 + v2
5

)

+r1r2r3

{
2uu

(
u2

5 + v2
5

)
+ 2u5

(
u2

4 + v2
4

)}

= (r1r2 + r2r3 + r3r1) r2
4 · r2

5 + 2
(
u4r

2
5 + u5r

2
4

)
r1r2r3.

It follows by a rearrangement that

(56) 2r2
2 · u4 + 2r2

4 · u5 = − 1
r1r2r3

− r2
4r

2
5

{
1
r1

+
1
r2

+
1
r3

}
.

We insert r1 = 2.1625, r2 = −1.9365, r3 = −1.4656, r4 = 0.8260 and r5 = 0.4887 into (56) to get

0.4777 · u4 + 1.3646 · u5 = −0.1629 + 0.1200 = −0.0429,
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so together with (55) we get the system



u4 + u5 = 0.1150,

0.4774 · u4 + 1.3646 · u5 = −0.0429,

so using Cramer’s solution formula,

u4 =

����
0.1150 1

−0.0429 1.3646

��������
1 1

0.4774 1.3646

����
=

0.1998
0.8872

= 0.2252,

and

u5 =

����
1 0.1150

0.4774 −0.0429

��������
1 1

0.4774 1.3646

����
=

−0.0978
0.8872

= −0.1102.
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Then finally,

v4 =
√

r2
4 − u2

4 =
√

0.82602 − 0.22522 = 0.7947,

and

v5 =
√

r2
5 − u2

5 =
√

0.48872 − 0.11022 = 0.4761,

and the complex roots are

0.2252 ± i · 0.7947 and − 0.1102 ± i · 0.4761. ♢

The examples above show that the real roots are fairly easy to compute. In case of pairs of complex
roots we first find the modulus rm, and then write um ± ivm, where r2

m = u2
m +v2

m. Use always Vieti’s
formula

−a1 = sum of all roots,

when we have at least one pair of complex roots. If we have two pairs of complex roots, then we
should also include

(−1)n−1an−1 = sum of all products of the roots taken n − 1 at a time.

If there are three pairs of complex roots, we include another one of Vieti’s formulæ, in which case the
new system becomes more difficult to solve, due to the non-linearity, etc..

The worst case is of course when all roots of the real polynomial of degree 2n are complex, in which case
we shall include n of V ieti′s 2n equations, of which only two are linear in the real parts u1, . . . , un.
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5 Appendix

5.1 The binomial formula

We shall for completeness prove the binomial formula

(57) (a + b)n =
n∑

j=0

(
n
j

)
an−j bj for a, b ∈ C, n ∈ N0.

We use here the well-known notations c0 := 1, and
(

n
j

)
=

n!
j!(n − j)!

=
1 · 2 · · ·n

(1 · 2 · · · j) · (1 · 2 · · · (n − j))
, and 0! := 1.

Proof. If a = 0, we get by the conventions above bn on both sides of the equality (57).

If a ̸= 0, it follows by dividing by an that it suffices to prove (57) for a = 1, i.e. we divide by an and

replace
b

a
by b to reduce the claim to

(58) (1 + b)n =
n∑

j=0

(
n
j

)
bj , b ∈ C and n ∈ N0.

We shall prove (58) by induction.

When n = 0, we just get 1 = 1 by the conventions above.

When n = 1, we get

(1 + b)1 = 1 + b and
1∑

j=0

(
1
j

)
bj =

(
1
0

)
b0 +

(
1
1

)
b1 = 1 + b.

Therefore, (58) holds for at least n = 0 and n = 1.

Assume that (58) holds for some n ∈ N. Then, using this assumption,

(1 + b)n+1 = (1 + b) · (1 + b)n = (1 + b)
n∑

j=0

(
n
j

)
bj

=
n∑

j=0

(
n
j

)
bj +

n∑
j=0

(
n
j

)
bj+1 =

n∑
j=0

(
n
j

)
bj +

n+1∑
j=1

(
n

j − 1

)
bj

=
(

n
0

)
b0 +

(
n
n

)
bn+1 +

n∑
j=1

{(
n
j

)
+

(
n

j − 1

)}
bj .

We notice that
(

n
0

)
= 1 =

(
n + 1

0

)
and

(
n
n

)
= 1 =

(
n + 1
n + 1

)
,
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and
(

n
j

)
+

(
n

j − 1

)
=

n!
j!(n − j)!

+
n!

(j − 1)!(n + 1 − j)!
=

n!
j!(n + 1 − j)!

{(n + 1 − j) + j}

=
n!(n + 1)

j(n + 1 − j)!
=

(n + 1)!
j!(n + 1 − j)!

=
(

n + 1
j

)
.

Hence, finally

(1 + b)n+1 =
(

n
0

)
b0 +

n∑
j=1

{(
n
j

)
+

(
n

j − 1

)}
bj +

(
n
n

)
bn+1

=
(

n + 1
0

)
b0 +

n∑
j=1

(
n + 1

j

)
bj +

(
n + 1
n + 1

)
bn+1 =

n+1∑
j=0

(
n + 1

j

)
bj ,

and (58 follows by induction. �

Remark 5.1.1 It is not hard, using a similar proof, to prove Euler’s rule of differentiation of a
product of two Cn-functions f and g,

(59)
dn

dzn
{f(z) · g(z)} =

n∑
j=0

(
n
j

)
dn−jf

dzn−j
· djg

dzj
,

where we have put
d0h

dz0
(z) := h(z). ♢

5.2 The identity theorem for convergent power series

Theorem 5.2.1 Two complex power series

f(z) =
+∞∑
n=0

an zn and g(z) =
+∞∑
n=0

bn zn,

which are both convergent in the same nonempty disc |z| < r, and here are equal to each other, have
the same coefficients, i.e.

an = bn for all n ∈ N0.

Proof. The proof follows the same patterns as the proof of Theorem 1.1.1. Let f(z) = g(z) for all
|z| < r. Putting z = 0 we get

a0 = f(0) = g(0) = b0,

so

f(z) − a0 =
+∞∑
n=1

an zn = z
+∞∑
n=0

an+1 zn = g(z) − b0 = z
+∞∑
n=0

bn+1 zn
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for all |z| < r. Hence, for 0 < |z| < r,

+∞∑
n=0

an+1 zn = a1 + z
+∞∑
n=0

an+2 zn = b1 + z
+∞∑
n=0

bn+2 zn,

so

(60) a1 − b1 = z

{
+∞∑
n=0

bn+2 zn −
+∞∑
n=0

an+2 zn

}
for 0 < |z| < r.

The left hand side of (60) is a constant, while the right hand side tends towards 0 for z → 0. Hence
a1 = b1, and it follows from (60) that

+∞∑
n=0

bn+2 zn =
+∞∑
n=0

an+2 zn for 0 < |z| < r.

Repeating this argument we get successively,

a2 = b2, a3 = b3, . . . , an = bn, . . . ,

and the theorem follows. �

112

Download free eBooks at bookboon.com



Methods for finding (Real or Complex) Zeros in Polynomials

116 

Appendix

Example 5.2.1 The power series method. Using the identity theorem we can describe the power
series solution method of differential equations of polynomial coefficients. We shall illustrate this
important method by the very simple example

(61) f ′(x) − 2x f(x) = 0, x ∈ R, f(0) = 1,

the solution of which is of course f(x) = exp
(
x2

)
.

When we insert into (61) the formal power series

f(x) =
+∞∑
n=0

an xn and f ′(x) =
+∞∑
n=1

n an xn−1,

where the latter is obtained by termwise differentiation of the former, we get formally

0 = f ′(x) − 2x f(x) =
+∞∑
n=1

nan xn−1 − 2
+∞∑
n=0

an xn+1 =
+∞∑

n=−1

(n + 2)an+2 xn+1 −
+∞∑
n=0

2an xn+1

= a1 +
+∞∑
n=0

{(n + 2)an+2 − 2an}xn+1.

Since this is the zero polynomial, it follows from Theorem 5.2.1, The identity theorem, that all coeffi-
cients are zero, thus a1 = 0 and

(62) (n + 2)an+2 − 2an = 0, n ∈ N0, thus an+2 =
2

n + 2
an, n ∈ N0.

From a1 = 0 and (62) follow by induction that a2n+1 = 0 for every n ∈ N0. When the index is even,
n = 2m, then we get from (62) that

(2m + 2)a2m+2 − 2a2m = 0, thus (m + 1)a2(m+1) = a2·m, m ∈ N.

We multiply the latter formula by m! ̸= 0, and then we get by recursion,

(m + 1)! a2(m+1) = m! a2·m = · · · = 1! a2·1 = 0! a0 = a0 = f(0) = 1.

Solving with respect to a2m we get

a2m =
1
m!

, hence a2n =
1
n!

and a2n+1 = 0 for n ∈ N0.

Therefore, the formal power series solution becomes

f(x) =
+∞∑
n=0

a2n x2n =
+∞∑
n=0

1
n!

(
x2

)2
= exp

(
x2

)
,

where we at last recognize the power series expansion of the exponential, so the formal solution is also
the correct solution. ♢
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5.3 Taylor’s formula

We shall here prove Taylor’s formula, first in general, and then restrict ourselves to polynomials.

Theorem 5.3.1 Taylor’s formula. Let f ∈ Cn+1(I) be an n + 1 times continuously differentiable
function on an open real interval, and let a ∈ I be a given point. Then, for x ∈ I,

f(x) = f(a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n +
∫ x

a

f (n+1)(t)
n!

(x − t)n dt.

Proof. We shall here give a direct proof. If x is considered as a constant, then t − a is an integral
of 1, and it follows by a series of successive partial integrations that

f(x) = f(a) +
∫ x

a

1 · f ′(t) dt = f(a) +
[
t − x

1!
· f ′(t)

]x

a

−
∫ x

a

t − x

1!
f ′′(t) dt

= f(a) +
f ′(a)

1!
(x − a) −

[
(t − x)2

2!
· f ′′(t)

]x

a

+
∫ x

a

(t − x)2

2!
f (3)(t) dt

= f(a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 +
[
(t − x)3

3!
f (3)(t)

]x

a

−
∫ x

a

(t − x)3

3!
f (4)(t) dt

= · · ·

= f(a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n +
∫ x

a

(x − t)n

n!
f (n+1)(t) dt,

and the theorem is proved. �

Theorem 5.3.1 holds in particular for polynomials P (x) in the real variable x ∈ R. We get an even
better result, because if P (x) has degree n, then clearly P (n+1)(t) ≡ 0, so the error term (the final
integral) disappears, and we have

(63) P (x)P (a) +
P ′(a)

1!
(x − a) +

P ′′(a)
2!

(x − a)2 + · · · + P (n)(a)
n!

(x − a)n, for all x ∈ R,

without the error term.

By the identity theorem, Theorem 1.1.1, the coefficients of a polynomial are unique, so (63) also holds,
when x ∈ R is replaced by z ∈ C.

Finally, we leave as an exercise to the reader to prove (63), when a ∈ C is a complex constant.

5.4 Weierstraß’s approximation theorem

It is the author’s experience that this very important theorem is not too well-known in general. It
is, however, due to this theorem in many cases possible to work only with approximating polyno-
mials instead of with more general continuous functions, so it plays indeed a very important role in
Mathematics.
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Theorem 5.4.1 Weierstraß’s approximation theorem. Let f be a continuous function on the bounded
closed real interval [a, b]. Then there exists a sequence of polynomials {Pn}, which converges uniformly
on [a, b] towards f .

That Pn → f uniformly on [a, b] for n → +∞ means that to every ε > 0 there exists an n0 ∈ N, such
that

|f(x) − Pn(x)| < ε for all n ≥ n0 and all x ∈ [a, b],

i.e. the graphs of Pn lie eventually in an ε-tube around the graph of the continuous function.

Remark 5.4.1 We shall here give the customary proof, which for given ε > 0 and corresponding
n0 ∈ N explicitly defines the approximating Bernstein polynomials, so the proof of Theorem 5.4.1 is
actually constructive. ♢

Proof. Clearly, we can approximate the real and the imaginary parts of f separately, so without
loss of generality we may assume that f is a real function.
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Then notice that the linear transformation g : [0, 1] → [a, b], given by

g(t) = a + (b − a)t, t ∈ [0, 1],

makes f ◦ g a continuous function of [0, 1], so we may assume from the beginning that [a, b] = [0, 1].

Since f is continuous on the bounded closed interval [0, 1], it follows from one of the main theorems
of continuous functions that f is uniformly continuous on [0, 1]. This means that given ε > 0 there
exists a δ > 0, such that

(64) |f(x) − f(y)| <
ε

2
, whenever x, y ∈ [0, 1] and |x − y| < δ.

Let in the following ε and δ be given, such that (64) is fulfilled, and define the Bernstein polynomials
Bn,f (t) corresponding to the function f , in the following way,

Bn,f (t) =
n∑

k=0

f

(
k

n

)(
n
k

)
tk(1 − t)n−k, n ∈ N.

We shall prove that

(65) |f(t) − Bn,f (t)| ≤ ε for all t ∈ [0, 1] and all n ≥ n0,

where

(66) n0 :=
1

ε · δ2
max

t∈[0,1]
|f(t)|.

We shall need the following

Lemma 5.4.1

n∑
k=0

{
t − k

n

}2 (
n
k

)
tk(1 − t)n−k =

t(1 − t)
n

for t ∈ [0, 1].
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Proof of Lemma 5.4.1. If one is familiar with the variance of the binomial distribution from
Probability Theory, this is trivial. If not, one proceeds in the following way:

n∑
k=0

{
t − k

n

}2 (
n
k

)
tk(1 − t)n−k =

n∑
k=0

{
t2 − 2 · k

n
+

k2

n2

}2 (
n
k

)
tk(1 − t)n−k

= t2
n∑

k=0

(
n
k

)
tk(1 − t)n−k − 2t

n∑
k=1

(n − 1)!
(k − 1)!(n − k)!

tk(1 − t)n−k

+
n∑

k=1

k − 1 + 1
n

· (n − 1)!
(k − 1)!(n − k)!

tk(1 − t)n−k

= t2 · 1n − 2t · t
n−1∑
k=0

(
n − 1

k

)
tk (1 − t)n−1−k +

1
n
· t

n−1∑
k=0

(
n − 1

k

)
tk (1 − t)n−1−k

+
n − 1

n

n∑
k=2

(n − 2)!
(k − 2)!(n − k)!

tk (1 − t)n−k

= t2 − 2t2 · 1n−1 +
1
n
· t · 1n−1 +

{
1 − 1

n

}2 n−2∑
k=0

(
n − 2

k

)
tk (1 − t)n−2−k

= t2 − 2t2 +
1
n

t +
{

1 − 1
n

}
t2 · 1n−2 =

1
n

t(1 − t),

so

0 ≤
n∑

k=0

{
t − k

n

}2 (
n
k

)
tk (1 − t)n−k =

t(1 − t)
n

≤ 1
4n

for t ∈ [0, 1]. �

Returning to the proof of Weierstraß’s approximation theorem, we choose

n ≥ 1
ε · δ2

max
t∈[0,1]

|f(t)|,
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and then we get by (64) and Lemma 5.4.1 the following computation,

|f(t) − Bn,f (t)| =

�����f(t) · {t + (1 − t)}n −
n∑

n=0

f

(
k

n

)(
n
k

)
tk (1 − t)n−k

�����

=

�����
n∑

k=0

{
f(t) − f

(
k

n

)}(
n
k

)
tk (1 − t)n−k

�����

≤




∑
������
t−

k

n

������
<δ

+
∑

������
t−

k

n

������
≥δ




����f(t) − f

(
k

n

)���� ·
(

n
k

)
tk (1 − k)n−k

≤ ε

2

∑
������
t−

k

n

������
<δ

(
n
k

)
tk (1 − t)n−k +

∑
������
t−

k

n

������
≥δ

2 max
t∈[0,1]

|f(t)| ·

{
t − k

n

}2

δ2

(
n
k

)
tk (1 − t)n−k

≤ ε

2

n∑
k=0

(
n
k

)
tk (1 − t)n−k +

2
δ2

max
t∈[0,1]

|f(t)|
n∑

k=0

{
t − k

n

}2 (
n
k

)
tk (1 − t)n−k

=
ε

2
+

2
δ2

max
t∈[0,1]

|f(t)| · 1
n

t(1 − t)

≤ ε

2
+

2
δ2

max
t∈[0,1]

|f(t)| · ε · δ2

maxt∈[0,1] |f(t)|
· 1
4

=
ε

2
+

ε

2
= ε,

assuming that f is not identical 0. It is of course trivial, when f ≡ 0. �
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logarithmic derivative, 58
multiple root, 13
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Newton’s approximation formula, 68
Newton’s iteration method, 69, 70
normalized polynomial, 8, 9, 41
power series method, 81
real polynomial, 7, 39
reflection in a point, 9
Rolle’s theorem, 15, 17
root, 10
Rouché’s theorem, 54, 61
Rouché’s theorem for polynomials, 60
Schur’s criterion, 65
similarity, 9
simple root, 13
Sturm chain, 51
Sturm’s theorem, 50, 52
Taylor expansion, 8
Taylor’s formula, 82
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Weierstraß’s approximation theorem, 83
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