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PEEFACE.

THIS text-book is designed for Colleges, Universities,
and Technical Schools. The aim of the author has been

to prepare a work for beginners, and at the same time to

make it sufficiently comprehensive for the requirements of

the usual undergraduate course. For the methods of develop
ment of the various principles he has drawn largely upon his

experience in the class-room. In the preparation of the work
all authors, home and foreign, whose works were available,
have been freely consulted.

In the first few chapters elementary examples follow the

discussion of each principle. In the subsequent chapters
sets of examples appear at intervals throughout each chapter,
and are so arranged as to partake both of the nature of a

review and an extension of the preceding principles. At the

end of each chapter general examples, involving a more
extended application of the principles deduced, are placed for

the benefit of those who may desire a higher course in the

subject.

The author takes pleasure in calling attention to a &quot;Dis

cussion of
Surfaces,&quot; by A. L. Nelson, M.A., Professor of

Mathematics in Washington and Lee University, which

appears as the final chapter in this work.

He takes pleasure also in acknowledging his indebtedness
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to Prof. C. S. Venable, LL.D., University of Virginia, to

Prof. William Cain, C.E., University of North Carolina,

and to Prof. E. S. Crawley, B.S., University of Pennsylvania,

for assistance rendered in reading and revising manuscript,

and for valuable suggestions given.

E. W. NICHOLS.

LEXINGTON, YA.

January, 1893.
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PLANE ANALYTIC GEOMETRY.

PAST L

CHAPTElt I.

CO-ORDINATES. THE CARTESIAN OR BILINEAR
SYSTEM.

1. THE relative positions of objects are determined by

referring them to some other objects whose positions are

assumed as known. Thus we speak of Boston as situated

in latitude north, and longitude west. Here the ob

jects to which Boston is referred are the equator and the

meridian passing through Greenwich. Or, we speak of Bos

ton as being so many miles north-east of New York. Here the

objects of reference are the meridian of longitude through

New York and New York itself. In the first case it will be

observed, Boston is referred to two lines which intersect each

other at right angles, and the position of the city is located

when we know its distance and direction from each of these

lines.

In like manner, if we take any point such as P x (Fig. 1) in

the plane of the paper, its position is fully determined when

we know its distance and direction from each of the two lines

X and Y which intersect each other at right angles in

that plane. This method of locating points is known by the

name of THE CARTESIAN, or BILINEAR SYSTEM. The lines of

1
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reference X, Y, are called CO-ORDINATE AXES, and, when
read separately, are distinguished as the X-AXIS and the

Y-AXIS. The point 0, the intersection of the co-ordinate

axes, is called the ORIGIN OF CO-ORDINATES, or simply the

ORIGIN.

The lines x and y which measure the distance of the

point P! from the Y-axis and the X-axis respectively, are

FIG. 1.

called the co-ordinates of the point the distance (x )
from

the Y-axis being called the abscissa of the point, and the dis

tance (y
f

) from the X-axis being called the ordinate of the

point.

2. Keferring to Fig. 1, we see that there is a point in each

of the four angles formed by the axes which would satisfy

the conditions of being distant x from the Y-axis and distant

y from the X-axis. This ambiguity vanishes when we com

bine the idea of direction with these distances. In the case

of places on the earth s surface this difficulty is overcome by

using the terms north, south, east, and west. In analytic geome

try the algebraic symbols -f- and are used to serve the same

purpose. All distances measured to the right of the Y-axis
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are called positive abscissas
;

those measured to the left,

negative ; all distances measured above the X-axis are called

positive ordinates
;

all distances below, negative. With this

understanding, the co-ordinates of the point Pj. become (V, y ) ;

of P 2 , (- x
f

, y ) ;
of P3 , (- xf

s
- y

f

) ;
of P4 , (x

r

,

- y
f

).

3. The four angles which the co-ordinate axes make with

each other are numbered 1, 2, 3, 4. The first angle is above

the X-axis, and to the right of the Y-axis
;
the second angle

is above the X-axis, and to the left of the Y-axis
;
the third

angle is below the X-axis, and to the left of the Y-axis
;
the

fourth angle is below the X-axis and to the right of the

Y-axis.

EXAMPLES.

1. Locate the following points :

(- 1, 2), (2, 3), (3,
-

1), (- 1,
-

1), (- 2, 0), (0, 1),

(0, 0), (3, 0), (0,
-

4).

2. Locate the triangle, the co-ordinates of whose vertices

are,

(0, 1), (- 1,
;

-
2), (3,

-
4).

3. Locate the quadrilateral, the co-ordinates of whose ver

tices are,

(2, 0), (0, 3), (- 4, 0), (0,
-

3).

What are the lengths of its sides ?

Ans. Vl3, 5, 5, V 13.

4. The ordinates of two points are each = b ; how is

the line joining them situated with reference to the X-axis ?

Ans. Parallel, below.

5. The commoji abscissa of two points is a ; how is the

line joining them situated ?

6. In what angles are the abscissas of points positive ?

In what negative ?

7. In what angles are the ordinates of points negative ?

In what angles positive ?
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8. In what angles do the co-ordinates of points have like

signs ? In what angles unlike signs ?

9. The base of an equilateral triangle coincides with the

X-axis and its vertex is on the Y-axis at the distance 3 below

the origin ; required the co-ordinates of its vertices ?

Ans.
(i- V12, 0), (0,

-
3), (-i V&quot;l2, 0).

10. If a point so moves that the ratio of its abscissa to its

ordinate is always = 1, what kind of a path will it describe,

and how is it situated ?

Ans. A straight line passing through the origin, and mak

ing an angle of 45 with the X-axis.

11. The extremities of a line are the points (2, 1), ( 1, 2) :

construct the line.

12. If the ordinate of a point is = 0, on which of the

co-ordinate axes must it lie ? If the abscissa is = ?

13. Construct the points ( 2, 3), (2, 3), and show that

the line joining them is bisected at (0, 0).

14. Show that the point (m, n) is distant Vm2 + ?i
2 from

the origin.

15. Find from similar triangles the co-ordinates of the

middle point of the line joining (2, 4), (1, 1).

Ans. ($,$).

THE POLAR SYSTEM.

4. Instead of locating a point in a plane by referring it to

two intersecting lines, we may adopt the second of the two

methods indicated in Art. 1. The point P 1? Fig. 2, is fully

determined when we know its distance PI (= r) and direc

tion P! X (= 0) from some given point in some given

line X. If we give all values from to oo to r, and all

values from to 360 to 0, it is easily seen that the position

of every point in a plane may be located.

This method of locating a point is called the POLAR SYSTEM.
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The point is called the POLE
;
the line X, the POLAR

Axis, or INITIAL LINE
;
the distance r, the EADIUS VECTOR

;

the angle 0, the DIRECTIONAL or VECTORIAL ANGLE. The
distance r and the angle 0, (r, 0), are called the POLAR CO
ORDINATES of a point.

5. In measuring angles in this system, it is agreed (as in

trigonometry), to give the positive sign (+) to all angles meas-

FIG. 2.

ured round to the left from the polar axis, and the opposite
sign (-) to those measured to the right. The radius vector
(r) is considered as positive (+) when measured from the
pole toward the extremity of the arc (0), and negative (-)when measured from the pole away from the extremity of the
arc (0). A few examples will make this method of locating
points clear.

If r = 2 inches and = 45, then
(2, 45) locates a point

PI 2 inches from the pole, and on a line making an ano-le
of -f 45 with the initial line.

If r = - 2 inches and = 45, then (- 2, 45) locates a
point P3 2 inches from the pole, and on a line making an
angle of 45 with the initial line also

;
but in this case the

point is on that portion of the boundary line of the angle
which has been produced backward through the pole.

If r = 2 inches and 9 = - 45, then
(2,
- 45) locates a
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point P4 2 inches from the pole, and out on a line lying below

the initial line, and making an angle of 45 with it.

If r = - 2 inches and 6 = - 45, then (
-

2,
- 45 )

locates a point P2 directly opposite (with respect to the pole),

the point P4 , (2,
- 45).

6. While the usual method in analytic geometry oi express

ing an angle is in degrees, minutes, and seconds (, , &quot;),

it

frequently becomes convenient to express angles in terms of

the angle whose arc is equal in length to the radius of the

measuring circle. This angle is called the CIRCULAR UNIT.

We know from geometry that angles at the centre ot

same circle are to each other as the arcs included between

their sides; hence, if and ff be two central angles, we

have,
_.

arc

& ~&quot;arc
7

Let ff = unit angle ;
then arc = r (radius of measuring

circle).

_ arc

Hence circular unit r

. -. r 6 = arc X circular unit.

If = 360, common measure, then arc = 2irr.

Hence, r X 360 = 2 TT r X circular unit.

Therefore the equation,

360 = 2 TT X circular unit, ... (1)

expresses the relationship between the two units of measure.

j
EXAMPLES.

1. What is the value in circular measure of an angle of 30 ?

From (1) Art. 6, we have,

360 = 30 X 12 = 2 TT circular unit.

.. 30 = - circular unit.
6
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2. What are the values in circular measure of the following
angles ?

1, 45, 60, 90,, 120, 180, 225, 270, 360.

3. What are the values in degrees of the following angles?

^ * * ,

3 2 4&quot; 8 4 4&quot; 8&quot; 8 6

4. What is the unit of circular measure ?

Ans. 57, 17
, 45.&quot;.

5. Locate the following points :

(2, 40),
^3,

(- 4, 90), (3,
-

135)., (- 1,
-

180),

3

-
1,
-

*), 2,
-

6. Locate the triangle whose vertices are,

4

3 \ /
1 5 \

-7T \, M, -TT -

7. The base of an equilateral triangle (= a) coincides with
the initial line, and one of its vertices is at the pole ;

re

quired the polar co-ordinates of the other two vertices.

(a&amp;gt; ()).

8. The polar co-ordinates of a point are ( 2, ~\ Give
\ 4 /

three other ways of locating the same point, using polar
co-ordinates.

/ i

Ans. - 2

9. Construct the line the co-ordinates of whose extremities

a.,
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10. How is the line, the co-ordinates of two of its points

being ( 3, -\ f 3, \ situated with reference to the initial

Ans. Parallel.

Find the rectangular co-ordinates of the following points :

11- = 13 4, \
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CHAPTER II.

LOCI.

7. THE Locus OF AN EQUATION is the path described by its

generatrix as it moves in obedience to the laiv expressed in the

equation.

The EQUATION OF A Locus is the algebraic expression of

the law subject to which the generatrix moves in describing that

locus.

If we take any point P3 , equally distant from the X-axis

and the Y-axis, and impose the condition that it shall so move

FIG. 3.

that the ratio of its ordinate to its abscissa shall always be

equal to 1, it will evidently describe the line P 3Pi- The

algebraic expression of this law is

It =
1, or y = x,

x

and is called the Equation of the Locus.

The line P^ is called the Locus of the Equation. Again :
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if we take the point P4 , equally distant from the axes, and

make it so move that the ratio of its ordinate to its abscissa

at any point of its path shall be equal to 1, it will describe

the line P4 P2 . In this case the equation of the locus is

y~ =
1, or y = x,

x

and the line P4 P2 is the locus of this equation.

8. It will be observed in either of the above cases (the

first, for example), that while the point P3 moves over the

line P8 PU its ordinate and abscissa while always equal are

yet in a constant state of change, and pass through all values

from oo, through 0, to -|- GO. For this reason y and x are

called the VARIABLE or GENERAL CO-ORDINATES of the line.

If we consider the point at any particular position in its

path, as at P, its co-ordinates (
x

, ?/) are constant in

value, and correspond to this position of the point, and to

this position alone. The variable co-ordinates are represented

by x and y, and the particular co-ordinates of the moving

point for any definite position of its path by these letters

with a dash or subscript ;
or by the first letters of the

alphabet, or by numbers. Thus (x , ?/), (x lt yi), (a, ), (2, 2)

correspond to some particular position of the moving point.

EXAMPLES.

1. Express in language the law of which y = 3 x -f- 2 is the

algebraic expression.

Ans. That a point shall so move in a plane that its ordinate

shall always be equal to 3 times its abscissa plus 2.

2. A point so moves that its ordinate + a quantity a is

always equal to its abscissa a quantity b ; required the

algebraic expression of the law.

Ans. y -\- a \x b.

3. The sum of the squares of the ordinate and abscissa of

a moving point is always constant, and = a 2
;
what is the

equation of its path ?

Ans. x2 + y
2 == a2

.
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4. Give in language the laws of which the following are

the algebraic expressions :

2y--.|. ^-2,*= -6.

y
2 = 4 z. 4 z2 5 y

2 = 18.

2 x2
-f 3 ?/

2 = 6. a^f + 62z2 = a2
62

.

if = 2px.

9. As the relationship between a locus and its equation

constitutes the fundamental conception of Analytic Geometry,
it is important that it should be clearly understood before

entering upon the treatment of the subject proper. We have

been accustomed in algebra to treat every equation of the

form y = x as indeterminate. Here we have found that this

equation admits of a geometric interpretation ; i.e., that it repre

sents a straight line passing through the origin of co-ordi

nates and making an angle of 45 with the X-axis. We shall

find, as we proceed, that every equation, algebraic or transcen

dental, which does not involve more than three variable quan

tities, is susceptible of a geometric interpretation. We shall

find, conversely, that geometric forms can be expressed alge

braically, and that all the properties of these forms may be

deduced from their algebraic equivalents.

Let us now assume the equations of several loci, and let us

locate and discuss the geometric forms which they represent.

10. Locate the geometric figure whose algebraic &wwdent is t+T*

y = 3x+2.

We know that the point where this locus cuts the Y-axis has

its abscissa x = 0. If, therefore, we make x = in the equa

tion, we shall find the ordinate of this point. Making the

substitution we find y = 2. Similarly, the point where the

locus cuts the X-axis has for the value of its ordinate. Mak-
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ing y = in the equation, we find x = f. Drawing now

the axes and marking on them the points

we will have two points of the required locus. Now make x

successively equal to

1, 2, 3,
-

1,
-

2,
-

3, etc.

in the equation, and find the corresponding values of y. For

convenience let us tabulate the result thus :

Values of x Corresponding Values of y

1 5

2 &quot; 8

3 &quot; 11
_ 1 - 1

_2 &quot; 4

FIG. 4.

Locating these points and tracing a line through them we

have the required locus. This locus appears to be a straight
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line and it is, as we shall see hereafter. We shall see also

that every equation of the first degree between two variables

represents some straight line. The distances Oa and Ob
which the line cuts off on the co-ordinate axes are called

INTERCEPTS. In locating straight lines it is usually sufficient

to determine these distances, as the line drawn through their

extremities will be the locus of the equation from which their

values were obtained.

EXAMPLES.

1. Locate the geometric equivalent of

I,-..-l_2*
Solving with respect to y in order to simplify, we have,

y=-2x + 2.

The extremities of the intercepts are

(0,2), (1,0).

Locating these points, and drawing a straight line through
them, we have the required locus.

Construct the loci of the following equations :

2. y = 2 x 2.
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13. Which of the following points are on the locus of the

equation 3 x2 + 2 y
2 = 6 ?

(2, 1), (V2, 0), (0,V3), (- 1, 3), (- V2, 0), (2, V3)

14. Write six points which are on the line

- y -2x = 3y 6.

15. Construct the polygon, the equations of whose sides are

y = 2x 1, y = a;, y = 5.

16. Construct the lines y = sx -f- and y = saj + 4, and

show by similar triangles that they are parallel.

11. Discuss and construct the equation :

x* + y* = 16.

Solving with respect to y, we have,

y = =t Vie - X 2 -

The double sign before the radical shows us that for every
value we assume for x there will be two values for y, equal
and with contrary signs. This is equivalent to saying that

for every point the locus has above the X-axis there is a cor

responding point below that axis. Hence the locus is symmet
rical with respect to the X-axis. Had we solved the equation
with respect to x a similar course of reasoning would have

shown us that the locus is also symmetrical with respect to the

Y-axis. Looking under the radical we see that any value of x

less than 4 (positive or negative) will always give two real

values for y ; that x J- 4 will give y = 0, and that any
value of x greater than -j- 4 will give imaginary values for y.

Hence the locus does not extend to the right of the Y-axis

farther than x = -f- 4, nor to the left farther than x = 4.

Making x = 0, we have y = _j_ 4

y = 0,
&quot; &quot; x = -j- 4.
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Drawing the axes and constructing the points,

(0, 4), (0,
-

4), (4, 0), ( 4, 0), we have four points of
the locus

; i.e., B, B , A, A!.

Y

B

Values of x

1

2

3

4

-1
-2
-3
-4

FIG. 5.

Corresponding Values of y
+ 3.8 and 3.8

+ 3.4 and - 3.4

+ 2.6 and - 2.6

+ 3.8 and - 3.8

+ 3.4 and 3.4

+ 2.6 and - 2.6

Constructing these points and tracing the curve, we find it

to be a circle.

This might readily have been inferred from the form
of the equation, for we know that the sum of the squares
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of the abscissa (OC) and ordinate (CP^ of any point Pj
in the circle is equal to the square of the radius (OPj).
We might, therefore, have constructed the locus by taking
the origin as centre, and describing a circle with 4 as a radius.

NOTE, x = -JL for any assumed value of y, or y = _j_ 0,

for any assumed value of x always indicates a tangency. Re

ferring to the figure we see that as x increases the values of

y decrease and become -j- when x = 4. Drawing the line

represented by the equation x = 4, we find that it is tangent
to the curve. We shall see also as we proceed that any two

coincident values of either variable arising from an assumed
or given value of the other indicates a point of tangency.

12. Construct and discuss the equation

9 x 2 + 16 y
2 = 144.

Solving with respect to ?/, we have

144 - 9 x2

16

x = gives y = -j- 3 ;

y = &quot; X = 4-4:.

Drawing the axes and laying off these distances, we have

four points of the locus
; i.e., B, B , A, A . Fig. 6.

Values of x Corresponding Values of y
1 &quot; 4 2.9 and - 2.9

2 &quot;

+2.6
&quot; 2.6

3 (( _i_ 2 &quot; 2

4

1 &quot; +2.9 &quot; 2.9

3 &quot;

-r- 2 &quot; - 2

4 &quot;

-J-

Locating these points and tracing the curve through them,

we have the required locus. Referring to the value of y we

see from the double sign that the curve is symmetrical with

respect to the X-axis. The form of the equation (containing
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only the second powers of the variables), shows that the locus

is also symmetrical with respect to the Y-axis. Looking

FIG. 6.

under the radical we see that any value of x between the

limits + 4 and 4 will give two real values for y ; and that

any value beyond these limits will give imaginary values for

y. Hence the locus is entirely included between these limits.

This curve, with which we shall have more to do hereafter,

is called the ELLIPSE.

13. Discuss and construct the equation

Solving, we have
2/
2 =

We see that the locus is symmetrical with respect to the

X-axis, and as the equation contains only the first power of

x, that it is not symmetrical with respect to the Y-axis. As

every positive value of x will always give real values for y,

the locus must extend infinitely in the direction of the posi

tive abscissae
;
and as any negative value of x will render y
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imaginary, the curve can have no point to the left of the
Y-axis. Making x = 0, we find y = -j- 0; hence the curve

passes through the origin, and is tangent to the Y-axis.

Making y = 0, we find x =
;

hence the curve cuts the
X-axis at the origin.

Values of x Corresponding Values of y
1 &quot; + 2 and -2
2 +2.8 -2.8
3 + 3.4 - 3.4
4 +4 -4

From these data we easily see that the locus of the equation
is represented by the figure below.

FK;. 7.

This curve is called the PARABOLA.

14. Discuss and construct the equation
4 z2 9 ?2 = 36

Hence

We see from the form of the equation that the locus must
be symmetrical with respect to both axes. Looking under
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the radical, we see that any value of x numerically less than

_j_ 3 or 3 will render y imaginary. Hence there is no

point of the locus within these limits. We see also that

any value of x greater than + 3 or 3 will always give real

values for y. The locus therefore extends infinitely in the

direction of both the positive and negative abscissae from the

limits x = i 3.

Making x = 0, we find y = -J- 2 V 1
; hence, the curve

does not cut the Y-axis.

Making y = 0, we find x = -j- 3 ; hence, the curve cuts

the X-axis in two points (3, 0), ( 3, 0).

Value of x.

4

5

6

-4
5

-6

Corresponding. Values of y

+ 1.7 and - 1.7

+ 2.6

+ 3.4

+ 1.7 &quot; - 1.7

-2.6
&quot; - 3.4

&quot; - 2.6

&quot; - 3.4

+ 2.6

4-3.4

FIG. 8.

This curve is called the HYPERBOLA.
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15. We have in the preceding examples confined ourselves

to the construction of the loci of RECTANGULAR equations ;

i.e., of equations whose loci were referred to rectangular
axes. Let us now assume the POLAR equation

r = 6 (1
- cos 0)

and discuss and construct it.

Assuming values for 6, we find their cosines from some
convenient table of Natural Cosines. Substituting these

values, we find the corresponding values of r.

Values of 6 Values of cos Values of r

1. 6 (1
- 1 )

=
30 .86 6 (1

-
.86) = .84

60 .50 6 (1
-

.50)
= 3.

90 6 (1
-

)
= 6.

120 - .50 6 (1 + .50)
= 9.

160 - .94 6 (1 + .94) = 11.64

180 - 1. 6 (1 + 1
)
= 12.

200 - .94 6 (1 + .94)
= 11.64

240 - .50 6 (1 + .50) = 9.

270 6 (1
-

)
= 6.

300 .50 6 (1
--

50) = 3.

330 .86 6 (1
-

.86)
= .84

Draw the initial line OX, and assume any point as the

pole. Through this point draw a series of lines, making the

assumed angles with the line OX, and lay off on them

the corresponding values of r. Through these points, tra

cing a smooth curve, we have the required locus.
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FIG. 9.

This curve, from its heart-like shape, is called the CARDIOID.

16. Discuss and construct the transcendental equation

y = log x.

NOTE. A transcendental .equation is one whose decree
ti-anscends the power of analysis to express.
Passing to equivalent numbers we have & = x, when 2 is

the base of the system of logarithms selected.
As the base of a system of logarithms can never be nega

tive, we see from the equation that no negative value of x can
satisfy it. Hence the locus has none of its points to the left
of the Y-axis. On the other hand, as every positive value of
x will give real values for y, we see that the curve extends
infinitely m the direction of the positive abscissae

If y = 0, then
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If x = 0, then

2* = .-. y = log .-. y = co.

The locus, therefore, cuts the X-axis at a unit s distance on

the positive side, and continually approaches the Y-axis with

out ever meeting it. It is further evident that whatever be

the base of the system of logarithms, these conditions must

hold true for all loci whose equations are of the form a? = x.

Values of x Corresponding Values of y

1
&quot;

2
&quot; 1

4 &quot; 2

8
&quot; 3

.5
- 1

.25
&quot; 2

Locating these points, the curve traced through them will

be the required locus.

FIG. 10.

This curve is called the LOGARITHMIC Curve, its name

being taken from its equation.
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17. The preceding examples explain the method employed
in constructing the locus of any equation. While it is true
that this method is at best approximate, yet it may be made
sufficiently accurate for all practical purposes by assuming
for one of the variables values which differ from each other

by very small quantities. It frequently happens (as in the
case of the circle) that we may employ other methods which
are entirely accurate.

18. In the discussion of an equation the first step, usually,
is to solve it with respect to one of the variables which enter
into it. The question of which variable to select is immate
rial in principle, yet considerations of simplicity and conven
ience render it often times of great importance. The sole

difficulty, in the discussion of almost all the higher forms of

equations, consists in resolving them. If this difficulty can
be overcome, there will be no trouble in tracing the locus and
discussing it. If, as frequently happens, no trouble arises in
the solution of the equation with respect to one of the vari

ables, then that one should be selected as the dependent
variable, and its value found in terms of the other. If it is

equally convenient to solve the equation with respect to either
of the variables which enter into it, then that one should be
selected whose value on inspection will afford the simpler
discussion.

EXAMPLES.

Construct the loci of the following equations :

1. 2jr-4 + l-0. 5. fi+4
2. y -., 10. 6. **+y-
3. 2y2 + 5s 2 = 10. 7. r2 = ^ 2 cos

4. 4aj2 -9
?/

a =-36. 8. 35 = logy.
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Construct the loci of the following :

9 si.y^O. 14. x*-x-6 = 0.

10. x2 + 2 ax + a2 = 0. 15. or
2

-j- x 6 == 0.

11. x 2 - a* = 0. 16. x 2 + 4 x - 5 - 0.

12 yi_9 = 0. 17. x*-7x + l2 = 0.

13. 7/
2 - 2 xy + x 2 - 0. 18. x 2 + 7 z + 10 = 0.

NOTE. Factor the first member: equate each factor to 0,

and construct separately.
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CHAPTER III.

THE STRAIGHT LINE.

19. To find the equation of a straight line, given the angle
which the line makes with the X-axis, and its intercept on the

Y-axis.

FIG. 11.

Let C S be the line whose equation we wish to determine.

Let SAX = and OB = b. Take any point P on the line

and draw PM
||
to OY and BN

||
to OX.

Then (OM, MP) = (x, y) are the co-ordinates of P.

From the figure PM = PN + OB = BNtan PEN + b, but

BN = OM = x, and tan PBN = tan SAX = tan .

.. Substituting and letting tan a =
s, we have,

(I)
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Since equation (1) is true for any point of the line SC, it

is true for every point of that line
;
hence it is the equation of

the line. Equation (1) is called the SLOPE EQUATION OF THE
STRAIGHT LINE

;
s

(
= tan

) is called the slope.

COROLLARY 1. If b = in (1), we have,

y = sx . . . (2)

for the slope equation of a line which passes through the

origin.

COR. 2. If s = in (1), we have

y = b

which is, as it ought to be, the equation of a line parallel to

the X-axis.

COR. 3. If s = oo, then = 90, and the line becomes

parallel to the Y-axis.

Let the student show by an independent process that the

equation of the line will be of the form x = a.

SCHOLIUM. We have represented by the angle which the

line makes with the X-axis. As this angle may be either

acute or obtuse, s, its tangent, may be either positive or nega
tive. The line may also cut- the Y-axis either above or below

the origin; hence, b, its Y-intercept, may be either positive or

negative. From these considerations it appears that

y = - sx + b

represents a line crossing the first angle ;

y == sx -{- b

represents a line crossing the second angle ;

y = sx b

represents a line crossing the third angle ;

y = sx b

represents a line crossing the fourth angle.
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EXAMPLES.

1. The equation of a line is 2 y + x = 3
; required its

slope and intercepts.

Solving with respect to y, we have,

1
,

3
y = x H .22

1 ^
Comparing with (1) Art. 19, we find s = and b =

2 2
= Y-intercept. Making y = in the equation, we have
= 3 = X-intercept.

2. Construct the line 2 y -\- x = 3.

The points in which the line cuts the axes are

O, ?V and (3, 3).
-*/

Laying these points off on the axes, and tracing a straight
line through them, we have the required locus. Or otherwise
thus : solving the equation with respect to y, we have,

~F-+f-

Lay off OB = b = | ;
draw

BN
||
OX and make it = 2, also

NP
||
OY and make it = + 1.

The line through P and B is

the required locus.
T^I^T -*

For

= tan BAX.

.-.tan BAX
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3. Construct the line 2 y x = 3.

Solving with respect to y, we have,

Lay off BO = 5 = | . Draw BK

||
to OX and make it = 2

;
draw

also NP
||
to OY and make it = 1.

A straight line through P and B
will be the required locus.

For = - = tan PBN = tan

BAX = s. Hence, in general, BN is laid off to the right or

to the left of Y according as the coefficient of x is fiositive

or negative.

Give the slope and intercepts of each of the following lines

and construct :

4. 2

Ans. s = -
,
& = 1, ^^

5. x-

6.

. * == - 12, * = -
2, a = - -

.

8.
y ~ + 2 x = 1 - y.

3

9.

NOTE._ a and 6 in the answers above denote the X-intercept

and the Y-intercept, respectively.
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What angle does each of the following lines cross ?

10. y = 3 x + 1. 12. y = 2 a; 1.

29

are

11. y = - x + 2.
\&amp;lt;^

14. Construct the figure the equation of whose sides are

2y + s-l = 0, 3^=2x + 2, y = - x - I.

15. Construct the quadriiftfc&rai the equations of whose sides

x = 3, y = x + l, y = 2, x = 0.

20. To find the equation of a straight line in terms of its

intercepts.

Y

FIG. 12.

Let S C be the line.

Then OB = b = Y-intercept, and

OA = a = X-intercept.

The slope equation of a line we have determined to be

Art. 19. equation (1),

y = sor + /&amp;gt;.
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From the right angled triangle AOB, we have,

OB
OA

tan GAB = tan BAX = - s = OB

.-.-.--*.
a

Substituting in the slope equation, we have,

This is called the SYMMETRICAL EQUATION of the straight
line.

COR. 1. If a + and b +, then we have,
rvt ni--

\-
j-
=

1, for a line crossing the first angle.

If a and b +, then

---f-^ = lisa line crossing the second angle.a b

If a and b
,
then

--- ^ = 1 is a line crossing the third angle.a b

If a -f- and b
,
then

----- *- = 1 is a line crossing the fourth angle.a b

EXAMPLES.

1. Construct ^
= 1.

NOTE. Lay off 3 units on the X-axis and 2 units on the

Y-axis. Join their extremities by a straight line.

Across which angles do the following lines pass ?
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Give the intercepts of each, and construct.

2-

|
+ |=1. 4.

-f~V=l.
/v, 7/ i*^ ^ r&amp;gt; -~)C7^-

q \ if 1 * n ^ y -i z--&amp;lt;r^-
AXV^^

Q &quot;Q

=
K&quot; ^ = -1 -

o 3 57
Write the slope equations of the following lines, and

construct :

= x 6.
o

. r-IS-7.
3

s.
y + ?. = _ i.

2
T

6

y-ix-2.
O

^
. ^ -J

O

J

5

10. Write y = e + 6 in a symmetrical form.

.&quot; 1 A
; 7-

= 1. /-t
O*^&quot;

/&amp;gt;

J

Given the following equations of straight lines, to write
their slope and symmetrical forms :

11. 2y + 3z-7 = z + 2. 13. 2? =

12. ^^ = a? ~ 3
. 14

x ~ V _2x-l23 43
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21. To find the equation of a straight line in terms of the

perpendicular to it from the origin and the directional cosines

of the perpendicular.

NOTE. The Directional cosines of a line are the cosines of

the angles which it makes with the co-ordinate axes.

FIG 13.

Let OS be- the line.

Let OP = p, BOP ==
7, AOP = .

From the triangles AOP and BOP, we have

OP OPOA = - -
,
OB =

COS COS 7

that is,
P 7. Pa = *

,
b = ^

cos w cos 7

Substituting these values in the symmetrical equation,

Art. 20. (1), _ + y- = 1, we have, after reducing,
a b

x cos + y cos 7
= p . . . (1)

which is the required equation.
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Since y
= 90

,
cos y = sin

;
hence

cc cos + y sin = p . . . (2)

This form is more frequently met with than that given in (1)

and is called the NORMAL EQUATION of the straight line.

COR. 1. If = 0, then

x =p
and the line becomes parallel to the Y-axis.

COR. 2. If = 90, then

y*=p
and the line becomes parallel to the X-axis.

22. If x cos + y sin = p be the equation of a given line,

then x cos + y sin a = p -- d is the equation of a parallel

line. For the perpendiculars p and p j- d coincide in direction

since they have the same directional cosines
;
hence the lines

to which they are perpendicular are parallel.

COR. 1. Since

p d -p = d

it is evident that d is the distance between the lines. If,

therefore, (x , y ) be a point on the line whose distance from

the origin is p -J- d, we have

x cos u + y sin = p -J- d.

.-. _j_ d = x cos &quot;

-\- y sin * p . . . (1)

Hence the distance of a point (x , y ) from the line

x cos a
-\- y sin a = p is found by transposing the constant

term to the first member, and substituting for x and y the co

ordinates x
, y of the point. Let us. for example, find the

distance of the point (y~3, 9) from the line x cos 30 + y sin

30 = 5.

From (1) d = V3 cos 30 -f 9 sin 30 - 5
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From Fig. 13 we have cos = -

,
sin= J/

/
= -

a b -2

.*. p =

7 / i y iHence _L
&amp;lt;2

t=
( |- ^ 1
a b Vtt 2 + 6

2

is the expression for the distance of the point (x
r

, ?/) from a

line whose equation is of the form - + = 1.
a b

Let the student show that the expression for d becomes

VA 2 + B 2

when the equation of the line is given in its general form.

See Art. 24, Equation (1).

EXAMPLES.

1. The perpendicular Kit fall from the origin on a straight

line = 5 and makes an arfgle of 30 with X-axis
; required the

equation of the line.

Ans. V3 sc + //
= 10.

2. The perpendicular from the origin on a straight line

makes an angle of 45 with the X-axis and its length = V2 5

required the equation of the line.

Ans. x -\-y = 2.

3 What is the distance of the point (2. 4) from the line

. Ans. i.

Find the distance of the point from the line in each of the

following cases :

4. From (2, 5) to
x -

|
= 1.

5. From (3, 0) to
|
-

|
= 1.

6. From (0, 1) to 2 y - x = 2.

7. From (a, c) to ?/
= SJT + b.^^
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23. To find the equation of a straight line referred to

oblique axes, given the angle between the axes, the angle which

the line makes with the X-axis and its Y-intercept.

NOTE. Oblique axes are those which intersect at oblique

angles.

Y

1

M

N&amp;gt;

FIG. H.

%

Let CS be the line whose equation we wish to determine,

it being any line in the plane YOX.
Let YOX = ft SAX = ,

OB = b.

Take any point P on the line and draw

PM
||
to OY and ON

||
to SC

;

then, PM =
y, OM = a, NOX ==

,
NP = OB = b.

From the figure

y = MN + NP = MN + b . . . (1)

From triangle ONM, we have,

MN sin NOM
OM sin MNO

sin

sin

Substituting the value of .M&quot;N&quot; drawn from this equation in

(1), we have,

y =
Sin &quot;

x + b ... (2)
sin

(/?
-

)
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This equation expresses the relationship between the co

ordinates of at least one point on the line. Bnt as the point
selected was any point, the above relation holds good for

every point, and is, therefore, the algebraic expression of the

law which governed the motion of the moving point in de

scribing the line. It is therefore the equation of the line.

COR. 1. If b = 0, then

sin
?/
= x . . . (3)

sin (p
-

a)

is the general equation of a line referred to oblique axes

passing through the origin.

COR. 2. If b = and =
0, then

y = o . . . (4)

the equation of the X-axis.

COR. 3. If ft = and /3
=

,
then

x = . . . (5)

the equation of the Y-axis.

COR. 4. If (3
= 90

; i.e., if the axes are made rectangular,

then

y = tan n x -\- ft.

But tan &amp;lt;t = s . . y = sx -J- ft-

This is the slope equation heretofore deduced. See Art.

19 (1).

Cor. 5. If
/3
= 90 and ft = 0, then

y = sx. See Art. 19, Cor. 1.

EXAMPLES.

1. Find the equation of the straight line which makes an

angle of 30 with the X-axis and cuts the Y-axis two units

distant from the origin, the axes making an angle of 60

with each other.

Ans. y = x -f- 2.

2. If the axes had been assumed rectangular in the exam

ple above, what would have been the equation ?

Ans. = -JL- + 2.
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3. The co-ordinate axes are inclined to each other at an

angle of 30, and a line passing through the origin is inclined
to the X-axis at an angle of 120, required the equation of the
line.

Ans. y = ,/qy f\ v o

24. Every equation of the first degree between two variables
is the equation of a straight line.

Every equation of the first degree between two variables
can be placed under the form

Ax + By + C -
. . . (1)

in which A, B, and C may be either finite or zero.

Suppose A, B, and C are not zero. Solving with respect to

y, we have,

Comparing equation (2) with (1) Art. .19, we see that it

is the equation of a straight line whose Y-intercept b =

- and whose slope s = A
;

hence (1), the equation

from which it was derived is the equation of a straight line.

If A = 0, then ?/ = *

B
the equation of a line parallel to the X-axis.

If B = 0, then x =
A

the equation of a line parallel to the Y-axis.

If C = 0, then y = - A
X)B

the equation of a line passing through the origin.

^

Hence, for all values of A, B, C equation (1) is the equa
tion of a straight line.



38 PLANE ANALYTIC GEOMETRY.
J

25. To find the equation of a straight line passing through

a given point.

Let (V, y )
be the given point.

Since the line is to be straight, its equation must be

y = sx + b ... (1)

in which s and b are to be determined.

Now, the equation of a line expresses the relationship which

exists between the co-ordinates of every point on it; hence

its equation must be satisfied when the co-ordinates of any

point on it are substituted for the general co-ordinates x and

y. We have, therefore, the equation of condition.

y =sx + b ... (2)

But a straight line cannot in general be made to pass

through a given point (x , /), cut off a given distance (b) on

the Y-axis, and make a given angle (tan.
=

s) with the X-axis.

We must therefore eliminate one of these requirements. By

subtracting (2) from (1), we have,

y - y = s
(
x - x

} (
3)

which is the required equation.

COR. 1. If x = 0, then

y - y = SX . . . (4)

is the equation of a line passing through a point on the

Y-axis.

COR. 2. If y = 0, then

y = s (x x )
. . . (5)

is the equation of a line passing through a point on the X-axis.

COR. 3. If x = and y = 0, then

y = sx

is the equation (heretofore determined), of a line passing

through the origin.
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EXAMPLES.

1. Write the equation of several lines which pass through
the point (2, 3).

2. What is the equation of the line which passes through
(1, 2), and makes an angle whose tangent is 2 with the
X-axis ?

Ans. y = 2 x 4.

3. A straight line passes through ( 1, 3), and makes an

angle of 45 with the X-axis. What is its equation ?

Ans. y = x 2.

4. Required the equations of the two lines which contain
the point (a, b), and make angles of 30 and 60, respectively
with X-axis.

Ans. y -b = ?L=JL y -b = ^.(x-a).

y
^

V3

26. To find the equation of a straight line passing through
two given points.

Let (x
r

, y ), (x&quot;, y&quot;)
be the given points.

Since the line is straight its equation must be

y = sx + b . . . (1)

in which s and b are to be determined.
Since the line is required to pass through the points (x , y ),

(x&quot;, y&quot;),
we have the equations of condition.

y = 8X + b . . . (2)

y&quot;
= #t&quot; + * ... (3)

As a straight line cannot, in general, be made to fulfil more
than two conditions, we must eliminate two of the four con
ditions expressed in the three equations above.

Subtracting (2) from (1), and then (3) from (2), we have,

y - y = s (x
- x f

)

y -
y&quot;

= s (x
-

x&quot;)
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Dividing these, member by member, we have,

y y _ xx
tf-y&quot;

~
x -x&quot;

Hence y - y =^^ (x
- x ) . . . (4)

3C, OC

is the required equation.

COR. 1. If y
r =

y&quot;,
then

y - y =
&amp;gt;

or y = tf&amp;gt;

which is, as it should be, the equation of a line
||
to the X-axis.

COR. 2. If x =
x&quot;,

then

x x 0, or x = x 1

,

which is the equation of a line
||
to the Y-axis.

EXAMPLES.

1. Given the two points ( 1, 6). ( 2, 8) ; required both

the slope and symmetrical equation of the line passing through

them.

Ans. y = - 2 x + 4, | + |
= 1.

2. The vertices of a triangle are (- 2, 1), (- 3, -4) (2, 0) ;

required the equations of its sides.
( y = 5 X + 11

Ans. -\4:X oy = 8

(y + x = 2.

Write the equations of the lines passing through the points :

3. (-2,3),(-3,-l) 6. (5,2), (-2,4)
Ans. ?/

= 4x-f-ll. Ans. 7 y + 2 x = 24.

4. (1,4), (0,0) 7. (2,0), (-3,0)
Ans. y = 4 x. Ans. y = 0.

5. (0,2),(3,-1)
8. (-l,-3), (-2,4)

Ans. + x = 2. Ans. y + 7 x + 10 = 0.
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27. To find the length of a line joining two given points.

FIG. 15.

Let (x
f

, i/), (x&quot;, y&quot;}
be the co-ordinates of the given points

P, P&quot;. L = FT&quot; = required length.
Draw P&quot;B and P A

||
to OY, and PC

||
to OX.

We see from the figure that L is the hypothenuse of a right

angled triangle whose sides are

P C = AB = OB - OA = x&quot;
- x

,
and

P&quot;C = P&quot;B - EC = if - y .

Hence,
PT&quot; = L =

fa&quot;

- x Y + (y
r::

~y

l

Y . - - (l)

Con. 1. If x and y = 0, the point P coincides with

the origin, and we have

L ~ V*&quot;
2 + y&quot;

2 ... (2)

for the distance of a point from the origin.

EXAMPLES.

1. Given the points (2, 0), ( 2, 3) ; required the distance

between them
;
also the equation of the line passing through

them.
Ans. L = 5, 47/-f3;r =6.
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2. The vertices of a triangle are (2, 1) ( 1, 2) (
-

3, 0) ;

what are the lengths of its sides ?

Ans. V8, VlOJ V2fr

Give the distances between the following points :

3. (2, 3), (1, 0) 7. (- 3, 2) ; (0, 1)

Ans. VlO.

4. (4,
-

5), (6, -_!)
8. (- 2,-l), (2, 0)

^ws. V20.

5. (0, 2), (- 1,
0)_

9. (a, ft), (c, d)

Ans. V5.

6. (0, 0), (2, 0) 10. (- 2, 3), (- a, 6).

Ans. 2.

11. What is the expression for the area of a triangle whose

vertices are (V, y ), (a&quot;, y&quot;)&amp;gt; (* &quot;, y &quot;)

?

Ans. Area = \ \x (y&quot;

- y &quot;)
+ *&quot;

(y&quot;

f- /) + xf&quot;

(y
1-

y&quot;)]-

28. To ./iTicZ
^Ae intersection of two lines given by their

equations.

Let y = sx -f- b, and

y = s a: + 6

be the equations of the given lines.

Since each of these equations is satisfied for the co-ordinates

of every point on the locus it represents, they must -ttt-tke

samer-tim* be satisfied for the co-ordinates of their point of

intersection, as this point is common to both. Hence, for the

co-ordinates of this point- the equations are simultaneous. So

treating them, we find

b b s b sb

for the co-ordinates of the required point.

EXAMPLES.

1. Find the intersection of y = 2 x + 1 and 2 y = x - 4.

Ans. (-2, -3).
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2. The equations of the sides of a triangle are

required the co-ordinates of its vertices.

Ans. (MH-i, -
=

\o oj \ 7 ]

3. Write the equation of the line which shall pass through
the intersection of 2 y -f- 3x -f- 2 = and 3 y x 8=0,
and make an angle with the X-axis whose tangent is 4.

Ans. y = 4 x -|- 10.

4. What are the equations of the diagonals of the quadri
lateral the equations of whose sides are y x-\-l =Q,
y = x -f 2, y = 3 x -f 2, and y + 2 x + 2 = ?

Ans. 23 y 9 ;c + 2 = 0, 3y 30 x = 6.

5. The equation of a chord of the circle whose equation is

x 2

-f- ?/
2 = 10 is y = x -f- 2 ; required the length of the chord.

Ans. L

29. If A* + By -f C = . . . (1)

and A a; + B y + C =
. . . (2)

be the equations of two straight lines, then

Ax -f By+ C + K (A a; + B y +C )
= ... (3)

(K being any constant quantity) is the equation of a straight
line which passes through the intersection of the lines repre
sented by (1) and (2). It is the equation of a straight line

because it is an equation of the first degree between two
variables. See Art. 24. It is also the equation of a straight
line which passes through the intersection of (1) and (2).

since it is obviously satisfied for the values of x and y which

simultaneously satisfy (1) and (2).

Let us apply this principle to find the equation of the line

which contains the point (2, 3) and which passes through the

intersection of y = 2 x -\- 1 and 2 y + a; = 2.
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From (3) we have y 2a l + K(2y + sc 2)=0
for the equation of a line which passes through the intersec

tion of the given lines. But by hypotheses the point (2, 3) is

on this line
;
hence 3 4-1 + K (6 + 2-2) =0

Substituting this value for K we have,

o

or, y x 1 ==

for the required equation. Let the student verify this result

by finding the intersection of the two lines and then finding

the equation of the line passing through the two points.

30. To find the angle between tivo lines given by their

equations.

M,

Yrf
1

FIG. 16.

Let y = sx +- /&amp;gt;. and

y = s x + V

be the equations of SC and MN, respectively ;
then

s = tan and s = tan .
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From the figures

=
(f -\-

a

. , (f
= u a.

From trigonometry,

tan cp
= tan

( )
=

tan tan a

.-. substituting;

Or, cp
= tan

-1 -
. . . (2).

1 -f ss

COR. 1. If s = s
,
then

&amp;lt;p

= tan -1
.. qp

= 0.

.*, the lines are parallel.

COR. 2. If 1 + ss = 0, then

(f
= tan

-1
oo .-.

g&amp;gt;

= 90

/. the lines are perpendicular.

SCHOL. These results may be obtained geometrically.
If the lines are parallel, then, Fig. 16,

If they are perpendicular

= 90 + a

.-. tan a = s = tan (90 -f )
= - cot =

.

tan a

.-. 1 + ss = 1 -{- tan tan = 1 4- tan |
=

tan

1-1 = 0.

EXAMPLES.

1. What is the angle formed by the lines y x 1 =
and 2y + 2cc + l=0?

y = 90.
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2. Required the angle formed by the lines y -\-ox 2 =
and 2 y+ 6 x + 8 = 0.

Ans.
q&amp;gt;

= 0.

3. Required the equation of the line which passes through

(2, 1) and is

(a) Parallel to 2 y 3x 5 = 0.

(b) Perpendicular to 2 ?/ 3x 5=0.
Ans. (a) 3 x - 2 y = 8, (5) 3 y -j- 2 x = 1.

4. Given the equations of the sides of a triangle

y = 2# + l, y= a -f- 2 and y = 3
; required.

(a) The angles of the triangle.

(b) The equations of the perpendiculars from vertices to

sides.

(c) The lengths of the perpendiculars.

5. What relation exists between the following lines :

y = SX + b.

y = SX 3.

y = SX -\- 6.

y = SX+ m.

6. What relation exists between the following:

y = sx -[- b.

y = sx -j- c.

7. Find the co-ordinates of the point in which a perpen

dicular through ( 2, 3) intersects y 2 a; + 1 = 0.

,.
(,r

8. Find the length of the perpendicular let fall from the

origin on the line 2y-\-x = 4.

Ans. L = - V80.
o

B
ty-j-C&quot;

= be the equations of three straight lines, and /,

m, and n be three constants which render the equation
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I (Ax + By + C) + m (Afx+ B y + CO + n (Af x + Wy -f

C&quot;)
= an identity, then the three lines meet in a point.

10. Find the equation of the bisector of the angle between
the two lines Ax + By + C = and Afx -f B y -f C = 0.

Ax + By +_C = __ (A x +j^y + CQ
VA2 + B 2

&quot;

VA 2 + B 2

GENERAL EXAMPLES.

1. A straight line makes an angle of 45 with the X-axis

and cuts off a distance = 2 on the Y-axis
;
what is its equation

when the axes are inclined to each other at an angle of 75 ?

Ans. y = -Y/2 x -j- 2.

2. Prove that the lines y = x -{- 1, y = 2 x + 2 and

y 3 a; -f- 3 intersect in the point (1, 0).

3. If (x
f

, y ) and
(x&quot;, y&quot;}

are the co-ordinates of the ex

tremities of a line, show that I t~, S- 1_2.
j
arf the co

ordinates of its middle point.

4. The equations of the sides of a triangle are y = x -f- 1,

a; = 4, y = x 1
; required the equations of the sides of

the triangle formed by joining the middle points of the sides

of the given triangle.

(y = x + 4
Ans. ly = x 4

o , _ q^ JL O.

5. Prove that the perpendiculars erected at the middle

points of the sides of a triangle meet in a common point.

NOTE. Take the origin at one of the vertices and make
the X-axis coincide with one of the sides. Find the equations
of the sides

;
and then find the equations of the perpendiculars

at the middle points of the sides. The point of intersection

of any two of these perpendiculars ought to satisfy the equa
tion of the third.
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6. Prove that the perpendiculars from the vertices of a

triangle to the sides opposite meet in a point.

7. Prove that the line joining the middle points of two of

the sides of a triangle is parallel to the third side and is equal
to one-half of it.

8. The co-ordinates of two of the opposite vertices of a

square are (2, 1) and (4, 3) ; required the co-ordinates of the

other two vertices and the equations of the sides.

Ans. (4, 1), (2, 3) ; y = 1, y = 3, x = 2, x = 4.

9. Prove that the diagonals of a parallelogram bisect each

other.

10. Prove that the diagonals of a rhombus bisect each other

at right angles.

11. Prove that the diagonals of a rectangle are equal.

12. Prove that the diagonals of a square are equal and bi

sect each other at right angles.

13. The distance between the points (x, y) and (1, 2) is = 4
;

give the algebraic expression of the fact.

Ans. (x
-

I)
2 + (y

-
2)

2 = 42
.

14. The points (1, 2), (2, 3) are equi-distant from the point

(x, y). Express the fact algebraically.

(x
-

1)2 + (y
_

2)
2 =

(x
-

2)
2 + (y

-
3)

a
; or, x + y = 4.

15. A circle circumscribes the triangle whose vertices are

(3, 4), (1, 2), ( 1, 2) ; required the co-ordinates of its centre.

Ans. (2, 1).

16. What is the expression for the distance between the

points (x&quot;, y&quot;), (x , ?/ ),
the co-ordinate axes being inclined

at an angle (3 ?

Ans. L = V&amp;lt;V
- xj

2 + (y&quot;

- yj + 2
(x&quot;

- x ) (y&quot;

- y } cos
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17. Given the perpendicular distance (p) of a straight line

from the origin and the angle () which the perpendicular

makes with the X-axis
; required the polar equation of the line.

Ans.
cos (0 )

18. Required the length of the perpendicular from the

origin on the line
|
+

|
= 1. AnSt 2 4

19. What is the equation of the line which passes through
the point (1, 2), and makes an angle of 45 with the line

whose equation is y -\- 2 x = 1 ?

Ans. y = - x + _ .

20. One of two lines passes through the points (1, 2),

( 4, 3), the other passes through the point (1, 3), and

makes an angle of 45 with the first line
; required the

equations of the lines.

Ans. y x + 1, and y = 3, or x = 1.

21. If p = in the normal equation of a line, through
what point does the line pass, and what does its equation

become ? Ans. (0, 0) ; y = s x.

22. Required the perpendicular distance of the point (r cos $,

r sin 0), from the line x cos + y sin = p. Ans. r p.

23. Given the base of a triangle = 2 a, and the difference

of the squares of its sides == 4 c
2

. Show that the locus of

the vertex is a straight line.

24. What are the equations of the lines which pass through
the origin, and divide the line joining the points (0, 1), (1, 0),

into three equal parts. Ans. 2 x = ?/,
2 y = x.

25. If (x , y ) and
(x&quot;, y&quot;)

be the co-ordinates of two points,

show that the point (
mx &quot; + nx

^

m
y&quot; +

&quot;/^divides the iine
m + n m -\- n

joining them into two parts which bear to each the ratio

m : n.
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CHAPTER IV.

TRANSFORMATION OF CO-ORDINATES.

31. IT frequently happens that the discussion of an equa
tion, and the deduction of the properties of the locus it

represents are greatly simplified by changing the position of
the axes to which the locus is referred, thus simplifying the

equation, or reducing it to some desired form. The operation
by which this is accomplished is termed the TRANSFORMATION
OF CO-ORDINATES.

FIG. 17.

The equation of the line PC, Fig. 17, is

y = sx -f b

when referred to the axes Y and X. If we refer it to the

axes Y and X its equation takes the simpler form

y = sx .
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If we refer it to Y&quot; and X&quot;,
the equation assumes the yet

simpler form

y&quot;
- 0.

Hence, it appears that the position of the axes materially

affects the form of the equation of a locus referred to them.

NOTE. The equation of a locus which is referred to rec

tangular co-ordinates is called the KECTANGULAR EQUATION of

the locus
;
when referred to polar co-ordinates, the equation is

called the POLAR EQUATION of the locus.

32. To find the equation of transformation from one system

of co-ordinates to a parallel system, the origin being changed.

O

FIG. 18.

Let CM be any plane locus referred to X and Y as axes,

and let P be any point on that locus. Draw PB
||
to OY

;

then from the figure, we have,

(OB, BP) = (x, y) for the co-ordinates of P when referred

to X and Y
;

(O A, AP) = (# ,/) for the co-ordinates of P when referred

to X and Y
;

(OD, DO ) (a, b) for the co-ordinates of
,
the new

origin.
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From the figure OB = OD -f DB ;
and BP = BA + AP

;

hence x = a + x and y = b -\- y

are the desired equations.

As these equations express the relations between x, a, x f

, y,

b, and y for any point on the locus they express the relations

between the quantities for every point. Hence, since the

equation of thQ locus CM expresses the relationship between

the co-ordinates of every point on it if we substitute for

x and y in that equation their values in terms of x and y
the resulting or transformed equation will express the rela

tionship between the x and y co-ordinates for every point

on it.

EXAMPLES.

1. What does the equation y = 3 x + 1 become when the

origin is removed to (2, 3) ?

Ans. y = 3 x -\- 4.

2. Construct the locus of the equation 2 y x = 2. Trans

fer the origin to (1, 2) and re-construct.

3. The equation of a curve is ?/
2
-f x 2

-\- 4 y 4 x 8 =
;

what does the equation become when the origin is taken at

(2,
-

2) ?

Ans. x 2 + y
2 = 16.

4. What does the equation ?/
2 - 2 x* - 2 y + 6 x - 3 =

become when the origin is removed to
(

,
1

)

?
9

Ans. 2 ?/
2 4 x 2 = - 1.

5. The equation of a circle is x* + ?/
2 = a2 when referred

to rectangular axes through the centre. What does this

equation become when the origin is taken at the left-hand

extremity of the horizontal diameter ?
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33. To find the equations of transformation from a rectangu-
lar system to an oblique system, the origin being changed.

D L B
FJG. 19.

Let P be any point on the locus CM.
Let O Y

,
O X be the new axes, making the angles y and

with the X-axis. Draw PA
||
to the Y -axis

;
also the lines

O D, AL, PB
||
to the Y-axis, and

AF, O K
||
to the X-axis.

From the figure, we have,

OB = OD + O N + AF, and

PB = DO + AN + PF.

But OB = x, OD = a, O N == x cos 6, AF =
PB = y, DO =

b, AN = x sin 0, PF =

hence, substituting, we have,

x = a + x cos + y cos
q&amp;gt;

)
,^

y = b -}- x sin + y sin
&amp;lt;p

)

for the required equations.

COR. 1. If a = 0, and b = 0, coincides with 0, and we
have,

cos
g&amp;gt;,

sin
&amp;lt;p ;

x = x! cos -f- y cos
&amp;lt;p

)
... (2)

y = x sin B -f y sin go .

for the equations of transformation from a rectangular system
to an oblique system, the ori-gin remaining the same.
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COR. 2. If a = 0, b = 0, and g&amp;gt;

= 90 + 6, coincides with

and the new axes X and Y are rectangular. Making these

substitutions, and recollecting that

cos (p
= cos (90 + 0)

= sin 0, and

sin (f
= sin (90 + 0) = cos 9,

we have,

x = x cos y sin 9 \ ,^
y = a sin + ?/ cos j

/or &e equations of transformation from one rectangular system

to another rectangular system, the origin remaining the same.

NOTE. If we rind the values of x and y in equations (2)

in terms of x and y we obtain the equations of transforma

tion from an oblique system to a rectangular system, the

origin remaining the same.

EXAMPLES.

1. What does the equation x* + if = 16 become when the

axes are turned through an angle of 45 ?

Ans. The equation is unchanged.

2. The equation of a line is y = x 1
; required the equa

tion of the same line when referred to axes making angles of

45 and 135 with the old axis of x.

Ans. y = -\A-

3. What does the equation of the line in Example 2 become

when referred to the old Y-axis and a new X-axis, making an

angle of 30 with the old X-axis.

Ans. 2 y = (V3 - 1) x - 2.
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34. To find the equations of transformation from a rectangu
lar system to a polar system, the origin and pole non-coincident.

FIG. 20.

Let (a, b) be the pole and O S the initial line, making an

angle g&amp;gt;
with the X-axis. Let CM be any locus and P any

point on it. From the figure, we have,

OB = OD + O F,

BP = DO + FP.

But OB = x, OD = a, O F = O P cos PO F = r cos (B + g&amp;gt;)

BP = y, DO =
b, FP = O P sin PO F = r sin (0 + &amp;lt;p) ;

hence, substituting, we have,

x = a -f- r cos

y = b -(- r sin (B +
for the required equations.

COR. 1. If the initial line O S is parallel to the X-axis
(it is

usual to so take it) cp
=

0, and

x = a + r cos ) ^
y = b + r sin )

become the equations of transformation.

COE. 2. If the pole is taken at the origin 0, and the initial

line made coincident with the X-axis a = 0, b = 0, and g&amp;gt;

= 0.

qp))

? ) )
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Hence, in this case,

s-rcosfl)
_ (3)

y = r sin 6 )

will be the required equations of transformation.

35. To find the equations of transformation from a polar

system to a rectangular system.

1. When the pole and origin are coincident, and when the

initial line coincides with the X-axis.

From equations (3), Art. 34, we have, by squaring and

adding r2 = cc
2 + y

2
; and,

by division tan = .

x

for the required equations. We have, also, from the same

equations,

r Vx 2 + y
2 r Vx2 + y

2

2. When the pole and origin are non-coincident, and when

the initial line is parallel to the X-axis.

From equations (2) of the same article, we have, by a simi

lar process,

r* = (x- ay + (y
-

b)
2

tan. 6 = y^~~-
;
also

x a

,, x a x a
cos = = -

sin0 =_y b

V(* - ay + (y
- W

for the required equations.
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EXAMPLES.

1. The rectangular equation of the circle is x2 + y
2 = a2

;

what is its polar equation when the origin and pole are coin

cident and the initial line coincides with the X-axis ?

Ans. r = a.

2. The equation of a curve is (x
2 + y

2

)
2 = a2

(x
2

y
2
) ;

re

quired its polar equation, the pole and initial being taken as

in the previous example.
Ans. r2 = a2 cos 2 0.

Deduce the rectangular equation of the following curves,

assuming the origin at the pole and the initial line coincident

with the X-axis.

3. r = a tan 2 sec 5. r2 = a2 sin 2

^ws. o^ = a? y. Ans. (x
2 + ?/

2
)
2 = 2 a scy.

4. r2 = a2 tan sec2
6. r == a (cos sin 0)

;c
3 = a2

y. Ans. x 2 + y
2 = a (x y}

GENERAL EXAMPLES.

Construct each of the following straight lines, transfer

the origin to the point indicated, the new axes being parallel

to the old, and reconstruct :

1. y = 3 x + 1 to (1, 2). 5. y = sx + b to (c, d).

2. 2 y - x - 2 = to (- 1, 2). 6. y + 2 a; = to (2,
-

2).

3. i y _|_
_ 4 = to (- 2,

-
1). 7. ?/

= mx to (Z, w).

4. y + x _f_i = o to (0, 2). 8. y -4o; + c = 0to(d,0).

What do the equations of the following curves become when

referred to a parallel (rectangular) system of co-ordinates

passing through the indicated points ?

9. 3 x2 + 2 y
2 = 6, (V2 , 0).

10 &quot; ? = 4*(1 &amp;gt;&amp;gt;-

12. /_ 2
11. 9 y

2 - 4 x 2 = - 36 (3, 0).
*
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13. What does the equation x2
-f- y

2 = 4 become when the

X-axis is turned to the left through an angle of 30 and the

Y-axis is turned to the right through the same angle ?

14. What does the equation x2
,y

2 = a2 become when the

axes are turned through an angle of 45 ?

15. What is the polar equation of the curve y
2 = 2 px, the

pole and origin being coincident, and the initial line coincid

ing with the X-axis ?

16. The polar equation of a curve is r = a (1 -f- 2 cos 0) ;

required its rectangular equation, the origin and pole being
coincident and the X-axis coinciding with the initial line.

Ans. (x
2
-f y

2 2 ax)
2 = a2

(x
2
-f y

2

).

Required the rectangular equation of the following curves,

the pole, origin, initial line, and X-axis being related as in

Example 16..

17. r2 = *
20. r = asec 2 ?-.

cos 2 2

Ans. x2
y

2 = a2
.

18. r = a sin 0. 21. r = a sin 2 0.

19. r = aO. 22. r2 -2r (cos + V3 sin
6&amp;gt;)

= 5.

Find the polar equations of the loci whose rectangular

equations are :

23. xs = y
2

(2 a - x). 25. a*y
2 = a2x4 - x\

24. 4a2x = y
2

(2 a x). 26. x* -f y* = a*.



THE CIRCLE. 59

CHAPTEE V.

THE CIRCLE.

36. THE circle is a curve generated by a point moving in

the same plane so as to remain at the same distance from a

fixed point. It will be observed that the circle as here de

fined is the same as the circumference as defined in plane

geometry.

37. Given the centre of a circle and its radius to deduce its

equation.

Y

Let C (^ $) be the centre of the circle, and let P be any

point on the curve. Draw CA and PM
||
to OY and CN

||
to

OX
;
then ^ ^

(OA, AC) = (*(, & ) are the co-ordinates of the centre C.

(OM, MP) = (x, y) are the co-ordinates of the point P.
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Let CF = a. From the figure, we have,

CN 2 + NP 2 = CP 2
;
... (1)

But ON 2 = (OM - OA)
2 =

(a; -^,
NP 2 = (MP - AC)

2 =
(y -^) 2

,
and

CP 2 = a2

Substituting these values in (1), we have,

(x -1^)
2 + (y -$)

2 = a . . . (2)

for the required, equation. For equation (2) expresses the

relation existing between the co-ordinates of any point (P) on
the circle

;
hence it expresses the relation between the co

ordinates of every point. It is, therefore, the equation of the

circle.

If in (2) we make x = and y = 0, we have,

a* + ,f = a*
. . . (3)

CC
2

?/
2

or, symmetrically,
- 4- * = 1 . . . (4)

CL L

for the equation of the circle when referred to rectangular
axes passing through the centre.

Let the student discuss and construct equation (3). See

Art. 11.

COR. 1. If we transpose x z in (3) to the second member and

factor, we have,

?/
2 =

(a + x) (a x) ;

i.e., in the circle the ordinate is a mean proportional between

the segments into which it divides the diameter.

COR. 2. If we take L, Fig. 21, as the origin of co-ordinates,

and the diameter H as the X-axis, we have,

LC = x = a and y = 0.

These values of x and y in (2) give

(x
-

a)
2 + ?/

2 = a 2
,

or, after reduction, x 2 + y
2 2 ax = . . . (5)

for the equation of the circle when referred to rectangular
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axes taken at the left hand extremity of the horizontal

diameter.

38. Every equation of the second degree between two varia

bles, in which the coefficients of the second powers of the

variables are equal and the term in xy is missing, is the equa
tion of a circle.

The most general equation of the second degree in which
these conditions obtain is

ax2 + ai/ + cx+dy+f=Q. . . . (1)

Dividing through by a and re-arranging, we have,

a

If to both members we now add

c
2 d*

4 a2 + 4 a2

the equation may be put under the form

4 a 2

Comparing this with (2) of the preceding article, we see

that it is the equation of a circle in which

c d

~a ~2~o

are the co-ordinates of the centre and

COR. 1. If ax 2
-{- ay&quot;- -f ex + dy -f- m = be the equation

of another circle, it must be concentric with the circle repre
sented by (1) ;

for the co-ordinates of the centre are the same.

Hence, when the equations of circles have the variables in
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their terms affected with equal coefficients, each to each, the

circles are concentric. Thus

are the equations of concentric circles.

EXAMPLES.

What is the equation of the circle when the origin is

taken.

1. At D, Fig. 21 ? Ans. x2 + f - 2 ay = 0.

2. At K, Fig. 21 ? Ans. x2 + if + 2 ay = 0.

3. At H, Fig. 21 ? Ans. x2 + if + 2 ax = 0.

What are the co-ordinates of the centres, and the values of

the radii of the following circles ?

4.

Ans. (1, 1), a =

5. a;a-t- 2,* + 4a;-6y-3=0.
^tns. (- 2, 3), a = 4.

6 2 z2 + 2 ?/
2 8 x = 0.

Ans. (2,0), a = 2.

7. X2 ,

?/
2 _ 6 x = o.

(3, 0), a = 3.

8. xz + ?/
2 4 x -f 8 ?/ 5 = 0.

. (2, 4) a = 5.

9. x2
H- ?/

2 mz + ^
2/ + G =

10. x2 + ?/
2 = m.

11. x2 4 * = -
?/
2

wy.

12. x2 + 2/

2 = c
2 + ^2

.

13. x2 cz + 7/
2 =/
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Write the equations of the circles whose radii and whose

centres are

14. a = 3, (0, 1). 18. a = m, (b, c).

Ans. x*+y2 -2y = 8.

15. a -2, (1,
-

2). 19. a = b, (c,
-

d).

Ans. x2 + if -2x + 4 y + 1 =0.

16. a = 5, (- 2,
-

2). 20. a = 5, (7, &).

^4rcs. ic
2 + y

z
-f 4 ?/ + 4 a; = 17.

17. a = 4, (0, 0). 21. =
A;, (2, i).

cc
2

?/
2 = 16.

22. The radius of a circle is 5
;
what is its equation if it is

concentric with x 2
-\- y

2 4ic=2?
Ans. x2

-f ?/
2 4 cc = 21.

23. Write the equations of two concentric circles which

have for their common centre the point (2, 1). ,

v 24. Find the equation of a circle passing through three

\ given points.

39. To deduce the polar equation of the circle.

B
FIG. 22.

The equation of the circle when referred to OY, OX is

(X
- X Y + (y

_ y Y = a\
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To deduce the polar equation let P be any point of the

curve, then

(OA, AP) = (x, y)

(OB, BO )
- (* , y )

(OP, POA) = (r, 0)

(00 ,
O OB) = (/, )

From the figure, A = x = r cos 0, AP = y = r sin 0,

OB = a; = r cos
,
BO = y = r sin :

hence, substituting, we have,

(
r Cos 6 r cos )

2 + (r sin - / sin )
2 = a 2

.

Squaring and collecting, we have,

^(cos
2 + sin2

0) + r 2

(cos
2
ff + sin2

)
- 2 r/ (cos cos

+ sin sin )
= a2

i.e.,
r2 + r 2 - 2 r/ cos (0

-
)
= a* . . . (1)

is &e polar equation of the circle.

This equation might have been obtained directly from the

triangle* OO P.

COR. 1. If = 0, the initial line OX passes through the cen

tre and the equation becomes

r2 + /a 2 rr cos = a2
.

COR. 2. Tf = 0, and / = a, the pole lies on the circum

ference and the equation becomes

r = 2 a cos 0.

COR. 3. If = 0, and / = 0, the pole is at the centre and

the equation becomes

r = a.

40. To show that the supplemental chords of the circle are

perpendicular to each other.

The supplemental chords of a circle are those chords which

pass through the extremities of any diameter and intersect each

other on the circumference.
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FIG. 23.

Let PB, PA be a pair of supplemental chords. We wish to

prove that they are at right angles to each other.

The equation of a line through B
( a, o) is

For a line through A (a, o), we have

y = s (x a).

Multiplying these, member by member, we have

if
= ss (x* a2

)
... (a)

for an equation which expresses the relation between the

co-ordinates of the point of intersection of the lines.

Since the lines must not only intersect, but intersect on the

circle whose equation is

this equation must subsist at the same time with equation (a)

above
; hence, dividing, we have

&quot;1

or, 1 + ss = ... (1)

Hence the supplemental chords of a circle are perpendicular

to each other.

Let the student discuss the proposition for a pair of chords

passing through the extremities of the vertical diameter.
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41. To deduce the equation of the tangent to the circle.

FIG. 24.

Let CS be any line cutting the circle in the points P (# , y
r

),

P&quot;
(x&quot;, y&quot;).

Its equation is

r
(x x

). (Art. 26, (4) ).

Since the points (a/, y ), (x&quot;, y&quot;)
are on the circle, we have

the equations of condition
/** i /2 2 /&quot;I \

I J ~~ * * *

\ /

These three equations must subsist at the same time
; hence,

subtracting (2) from (1) and factoring, we have,

(x
f + x&quot;) (*

-
x&quot;) + (y + y&quot;) (y

-
y&quot;)

-
;

y y l

y, _|_ X
&quot;

x .x&quot;

^

y + y&quot;

Substituting in the equation of the secant line it becomes

If we now revolve the secant line upward about P&quot; the

point P will approach P ;/ and will finally coincide with it

when the secant CS becomes tangent to the curve. But when
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P coincides with P&quot;,
x = x&quot; and ?/ = ?/&quot;; hence, substituting

in (3) we have,

y - y&quot;

= -
^ (*

-
*&quot;)&amp;gt; (*)

or, after reduction,

a-x&quot; + yy
&quot;

_;..;.. (5)

or, symmetrically,

for the equation of the tangent.

SCHOL. The SUB-TANGENT for a given point of a curve is the

distance from the foot of the ordinate of the point of tangency
to the point in which the tangent intersects the X-axis

; thus,

in Fig. 24, AT is the sub-tangent for the point P&quot;. To find

its value make y in the equation of the tangent (5) and
we have,

OT = x = .

But AT = OT - OA = -
x&quot;

x&quot;

n -2 &quot;2 ,//2

sub-tangent = a ~ x = V
.

42. To deduce the equation of the normal to the circle.

The normal to a curve at a given point is a line perpen
dicular to the tangent drawn at that point.

The equation of any line through the point P&quot;
(x&quot;, y&quot;) Fig.

24, is y - y&quot;

= s (x
-

x&quot;)
... (1)

In order that this line shall be perpendicular to the tangent
P&quot;T, we must have

1 -f 88 = 0.

But Art. 41, (4) s = ~
; hence, we must have s = V

.

y&quot; x&quot;
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Therefore, substituting in (1), we have,

y - y&quot; -*(*- *&quot;) (2) ;
*

or, after reduction,

yX
&quot; - X

y&quot;

= ... (3)

for the equation of the normal.

We see from the form of this equation that the normal to

the circle passes through the centre.

SCHOL. The SUB-NORMAL for a given point on a curve is

the distance from the foot of the ordinate of the point to the

point in which the normal intersects the X-axis. In the circle,

we see from Fig. 24 that the

Sub-normal = x&quot; .

43. By methods precisely analogous to those developed in

the last two articles, we may prove the equation of the tangent

(x
- x )* + (y- y Y = *

to be

(x
- xr

) (x&quot;

- x ) + (y
- y ) (y&quot;

- y }
= a* . . . (1)

and that of the normal to be

(y -y&quot;) (x&quot;

- x ) -(x- x&quot;) (y&quot;

- y )
= ... (2)

Let the student deduce these equations.

EXAMPLES.

1. What is the polar equation of the circle ax2 + ay* + ex +
dy +f= 0, the origin being taken as the pole and the X-axis

as the initial line ?

Ans. r2 + (- cos -f - sin \r + / = 0.

\a a J a

2. What is the equation of the tangent to the circle

x2 + f = 25 at the point (3, 4) ? The value of the sub-

tangent ? Ans. 3 x + 4 y = 25
; J^.

3. What is the equation of the normal to the circle

x2
-f if = 37 at the point (1, 6) ? What is the value of the

sub-normal ? Ans. y = 6 x
;

1.
--
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4. What are the equations of the tangent and normal to the
circle x 2

-f- if = 20 at the point whose abscissa is 2 and ordi-

nate negative ? Give also the values of the sub-tangent and
sub-normal for this point.

Ans. 2 cc - 4 ?/ = 20
;

2 ?/ + 4 cc =
;

Sub-tangent = 8
;
sub-normal = 2.

Give the equations of the tangents and normals, and the

values of the sub-tangents and sub-normals, to the following
circles :

5. x* + ?f = 12, at (2, + V8).
-

6. x z + ?/
2 = 25, at (3,

-
4)!

7. x 2 + ?/
2 = 20, at (2, ordinate +).

8. x 2
-f if = 32, at (abscissa +, 4).

9. x 2 + y
2 = a 2

,
at

(6, c).

10. a?
2

-|- y
2 = m, at (1, ordinate +).

11. x 2
-j- ?/

2 = &, at (2, ordinate
).

12. cc
2 + 7/

2 = 18, at (m. ordinate -f).

13. Given the circle x 2 + ?/
2 = 45 and the line 2 y + x = 2

;

required the equations of the tangents to the circle which are

parallel to the line.

Ans f3* + 6y = 45.

{3* + 6y=-45.
14. What are the equations of the tangents to the circle

x ~ + 2/

2 = 45 which are perpendicular to the line 2 y -f- ^ = 2 ?

, (3y- 6x^45.
1 6 x - 3 y = 45.

16. The point (3, 6) lies outside of the circle x 1 + y
2 = 9

;

required the equations of the tangents to the circle which

pass through this point.

Ans.
X
A

= 3
4 y 3 x = 15.
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17. What is the equation of the tangent to the circle

(x
_

2)
2 + (y 3)

2 = 5 at the point (4, 4) ?

Ans. 2 x -f y = 12.

18. The equation of one of two supplementary chords of

the circle x2
-\- y* = 9 is y = x -|- 2, what is the equation

of the other ?

2 ?/ -f 3 .x == 9.

19. Find the equations of the lines which touch the circle

(x a)
2

-\- (y b)
2 = r* and which are parallel to y = sx -f- c.

20. The equation of a circle is x2 + ?/
2 4 x + 4 ?/

= 9
;

required the equation of the normal at the point whose

abscissa == 3, and whose ordinate is positive.

Ans. 4 x y = 10.

44. To find the length of that portion of the tangent lying

between any point on it and the point of tangency.

Let (xu 1/1) be the point on the tangent. The distance of

this point from the centre of the circle whose equation is

(x x Y -f- (y y Y &amp;lt;*? is evidently

V(a&amp;gt;!

- x Y + (y,
- y y. See Art. 27, (1).

But this distance is the hypothenuse of a right angled tri

angle whose sides are the radius a and the required distance

d along the tangent ;
hence

d* = (x,
- x y + (2/1

- y Y - ^ ... (i)

COR. 1. If x = and y = 0, then (1) becomes

d2 = x^ + ^ - a2
. . . (2)

as it ought.

45. To deduce the equation of the radical axis of two given

circles.

The RADICAL AXIS OF TWO CIRCLES is the locus of a point

from which tangents drawn to the two circles are equal.
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T

FIG. 25.

Let (x x Y + (v y }
2 = a2

,\ / I \*/ / /

(x x&quot;)

2 + (y y&quot;)
= b2 be the given circles.

Let P (XD yi) be any point on the radical axis
;
then from

the preceding article, we have,

d2 =
(x, -x )

2 + (Vl
- y )

2 - a2

d 2 =
(x,

-
x&quot;)

2 + (yi
-

y&quot;)

2 b2

.: by definition
(Xl x

)
2
-f (yt y

1

)
2 a2 =

(Xl x&quot;)

2

+ 6/1 y&quot;)

2
b2

, hence, reducing, we have,

2
(x&quot;

- x
) x,+2 (y&quot;

- y ) y, = x&quot;

2 - x 2 + y&quot;

2 - y
2

-f- a
2

b
2

.

Calling, for brevity, the second member m, we see that

(#15 2/i)
wiH satisfy the equation.

2
(x&quot;

-x )x+2 (y&quot;

- y ) y = m . . . (1)

But (xu 1/1) is any point on the radical axis
;
hence every

point on that axis will satisfy (1). It is, therefore, the re

quired equation.

COR. 1. If c = and c = be the equation of two circles,

then, c c =
is the equation of their radical axis.



72 PLANE ANALYTIC GEOMETRY.

COR. 2. From the method of deducing (1) it is easily seen

that if the two circles intersect, the co-ordinates of their points

of intersection must satisfy (1) ;
hence the radical axis of two

intersecting circles is the line joining their points of intersection,

PA, Fig. 25.

Let the student prove that the radical axis of any two

circles is perpendicular to the line joining their centres.

46. To show that the radical axes of three given circles in

tersect in a common point.

Let c = 0, c = 0, and c&quot;
=

be the equations of the three circles.

Taking the circles two and two we have for the equations of

their radical axes

c - c = . . . (1)

c - c&quot;
= ... (2)

c _ c
&quot; = o . . . (3)

It is evident that the values of x and y which simultaneously

satisfy (1) and (2) will also satisfy (3) ;
hence the proposition.

The intersection of the radical axes of three given circles is

called THE RADICAL CENTRE of the circles.

EXAMPLES.

Find the lengths of the tangents drawn to the following

circles :

1. (x
-

2)
2 + (y

-
3)

2 = 16 from (7, 2).

Ans. d = VlO.

2. x&amp;gt; + (y + 2)
2 - 10 from (3, 0).

Ans. d=^/3.

3
(a-
_ ay + if

= 12 from (b, c).

4. x2_f2/2_2^+4?/-2 from (3, 1).

5. x2 + y
2 = 25 from (6, 3).

Ans. d = V20.
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6. x2 + y
2 - 2 x = 10 from (5, 2).

Ans. d = 3.

7&amp;gt; (3
_ a)2 + (^

_
6)2
= c from (d, /).

g. X 2 + y
i _ 4 y = 10 from (0, 0).

Give the equations of the radical axis of each of the follow

ing pairs of circles :

9.

10. ( x
2 + y

1 4 y = 0.

| (x _ 3)2 _|_ ^2
_ 9 _ o. ^s. 3 a? = 2 y.

| X
2

_^_ ^2
_ 2 y = 0. -4?w. a? = i-

| x*
_|_ (y

_
3)2

_ 16 = 0.

13. ( x
2 + y

z = 16.

1 (x
-

I)
2 + 2/

2 = a?.

14.

Find the co-ordinates of the radical centres of each of the

following systems of circles :

15.

= 9.

- 2 2 = 25. -4w. G,
-

3).

16. (
x- + if

- 4 x + 6 y - 3 = 0.

J x8
4-3^ -4* = 12.

| x
.2

_j_ y&amp;gt;
_|_ 6 ?/

= 7. ^rcs. (1, I)-

17.
(.T

2 + 7/
2 = .

J
(^
-

I)
2 + f = 9.

( ^2 + yj
__ 2 a, 4. 4 y = 10.

18. ( x 2 + if
- k* - ft

2

-j- ?/

2 = ?H .

2
-f- // //

= d.
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47. To find the condition that a straight line y = sx + b

must fulfil in order that it may touch the circle x2 + y~ = a2
.

In order that the line may touch the circle the perpendicu

lar let fall from the centre on the line must be equal to the

radius of the circle.

From Art. 21, Fig. 13, we have

p = bcosy = - = -== -
sec y VI + tan. 2

p = r =

hence, r2

(1 + s
2

)
= b

2
. . . (1)

is the required condition.

COR. 1. If we substitute the value of b drawn from (1) in

the equation y = sx + b, AVC have

y = sx _j_ r Vl +s2 ... (2)

for the equation of the tangent in terms of its slope.

48. Two tangents are drawn from a point without the circle ;

required the equation of the chordjoining the points oftangency.

FIG. 26.

Let P r

(x
f

, y )
be the given point, and let PT&quot;, P P, be the

tangents through it to the circle.
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It is required to deduce the equation of PP /X

.

The equation of a tangent through P&quot;
(#&quot;, y&quot;)

is

xx&quot; \yy^_ _ i
O I rt

Since P
(a/, ?/) is on this line, its co-ordinates must satisfy

the equation ;
hence

x x&quot; . 1/1/ *

T + ^~ = 1
a2 a2

The point (x&quot;, ?/&quot;), therefore, satisfies the equation

.-. it is a point on the locus represented by (1). A similar

source of reasoning will show that P is also a point of this

locus. But (1) is the equation of a straight line
; hence, since

it is satisfied for the co-ordinates of both P&quot; and P, it is the

equation of the straight line joining them. It is, therefore,
the required equation.

49. A chord of a given circle is revolved about one of its

points ; required the equation of the locus generated by the

point of intersection of a pair of tangents drawn to the circle at

the points in which the chord cuts the circle.

Let P (x
f

, y
f

), Fig. 27, be the point about which the chord

P AB revolves. It is required to find the equation of the

locus generated by Pj (x l5 yj, the intersection of the tangents
AP 1? BP 1? as the line P AB revolves about P .

From the preceding article the equation of the chord AB is

X^X , ?/!?/ -,

^&quot;&quot;&quot;^

=

Since P
(a/, y ) is on this line, we have

a 2
a&quot;

x x . y y 1 /1
,

hence ^ -\ %
== l . . (1J

Cb Cf
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is satisfied for the co-ordinates of P x (x lt y-^) ;
hence Px lies on

the locus represented by (1). But P x is the intersection of

any pair of tangents drawn to the circle at the points in

which the chord, in any position, cuts the circle
;
hence (1)

will be satisfied for the co-ordinates of the points of intersec

tion of every pair of tangents so drawn.

Equation (1) is, therefore, the equation of the required

locus. We observe that equation (1) is identical with (1) of

the preceding article
;
hence the chord PP&quot; is the locus whose

equation we sought.

The point P (x
f

, y) is called THE POLE of the line PP&quot;

(** +& = 1Y and the line PP&quot;

(^ + ^f
= 1\ is called

THE POLAR of the point P
(x&amp;gt;, y&amp;gt;)

with regard to the circle

1-1-21 =
(i
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As the principles here developed are perfectly general, the

pole may be without^ on, or within the circle.

Let the student prove that the line joining the pole and the

centre is perpendicular to the polar.

NOTE. The terms pole and polar used in this article have

no connection with the same terms used in treating of polar

co-ordinates, Chapter I.

50. If the polar of the point P (x y
1

), .Fig. 27, passes through

PI ( XD yi), then the polar of P (x1? yi) will pass through P

The equation of the polar to P (x , y ) is

x x y u

~a*
+ ^~

=

In order that P x (aj 1? y^ may be on this line, we must have,

a 2 a2

But this is also the equation of condition that the point

P (x
f

, y
f

) may lie on the line whose equation is

^ _i_M 1

a 2

&quot;

a 2

But this is the equation of the polar of P! (x^ y-^ ;
hence

the proposition.

51. To ascertain the relationship between the conjugate diam

eters of the circle.

A pair of diameters are said to be conjugate when they are

so related that when the curve is referred to them as axes its

equation will contain only the second powers of the variables.

Let x 2 + ?/
2 = a2

. . . (1)

be the equation of the circle, referred to its centre and axes.

To ascertain what this equation becomes when referred to

OY
,
OX

,
axes making any angle with each other, we must

substitute in the rectangular equation the values of the old
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co-ordinates in terms of the new. From Art. 33, Cor. 1, we

have
x = x cos 9 + y cos 9

y = x r sin + y sin cp

for the equations of transformation. Substituting these

values in (1) and reducing, we have,

y
1 * + 2 x y cos ((f

-
0) + x 2 = a2

. . . (2)

FIG. 28.

Now, in order that OY ,
OX may be conjugate diameters

they must be so related that the term containing x y in (2)

must disappear; hence the equation of condition,

cos (cp
-

6)
=

;

... 9 -e = 90, 0*9-

The conjugate diameters of the circle are therefore perpen

dicular to each other. As there are an infinite number of

pairs of lines in the circle which satisfy the condition of being

at right angles to each other, it follows that in the circle there

are an infinite number of conjugate diameters.
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EXAMPLES.

1. Prove that the line y = V3 x -+- 10 touches the circle

-|- ?/
2 = 25, and find the co-ordinates of the point of tangency.

f5
5_ __y3,

2. What must be the value of b in order that the line

y = 2 x + b may touch the circle x 2 + ?/
2 = 16 ?

^7i. 6 = -L, V80.

3. What must be the value of s in order that the line

y = sx 4 may touch the circle x2
-f if

= 2 ?

Ans. s = -L_ V7.

4. The slope of a pair of parallel tangents to the circle

#2
_|- y

2 = 16 is 2
; required their equations.

Ans.

^j
= 2x - V80.

Two tangents are drawn from a point to a circle
; required

the equation of the chord joining the points of tangency in

each of the following cases :

5. From (4, 2) to x 2 + if
= 9.

Ans. 4 x + 2 y = 9.

6. From (3, 4) to or
2 + if

= 8.

^4ws. 3 x + 4 y = 8.

7. From (1, 5) to x2 + ?/
2 = 16.

Ans. x -\- 5 y = 16.

8. From (a, 6) to cc
2 + 7/

2 = c
2

.

v4?is. ax -{- by = c
2

.

What are the equations of the polars of the following points :

9. Of (2, 5) with regard to the circle x2 + y- = 16 ?

2 cc . 5 y -,^
16+16

10. Of (3, 4) with regard to the circle x2 + if = 9 ?

^715. 3 x + 4 y = 9.
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11. Of (a, b) with regard to the circle x2
-\- y- = m ?

Ans. ax -\- by = m.

What are the poles of the following lines :

12. Of 2 x -f 3 y = 5 with regard to the circle x2
-f y

2- = 25 ?

Ans. (10, 15).

13. Of ~ + y = 4 with regard to the circle

Jg
+

fg
= 1 ? ^5 -

(
2

&amp;gt;

4
)-

14. Of y = sx + 6 with regard to the circle

Ans-

(-^r&amp;gt;i

15. Find the equation of a straight line passing through

(0, 0) and touching the circle x2
-\- if 3 x -\- 4 y = 0.

Ans. y = - x.

GENERAL EXAMPLES.

1. Find the equation of that diameter of a circle which

bisects all chords drawn parallel to y = sx + b.

Ans. sy + # = 0.

2. Required the co-ordinates of the points in which the

line 2y x-|-l = intersects the circle

3. Find the co-ordinates of the points in which two lines

drawn through (3, 4) touch the circle

[The points are common to the chord of contact and the

circle.]
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4. The centre of a circle which touches the Y-axis is at

(4, 0) ; required its equation.
Ans. (x 4)

2 + y
2 = 16.

5. Find the equation of the circle whose centre is at the

origin and to which the line y = x -|- 3 is tangent.

Ans. 2 x2 + 2 y* = 9.

6. Given x2 + y
2 = 16 and (x 5)

2 + if = 4
5 required the

equation of the circle which has their common chord for a

diameter.

7. Required the equation of the circle which has the dis

tance of the point (3, 4) from the origin as its diameter.

Ans. x* -j- ?/
2 3 x 4 y = 0.

8. Find the equation of the circle which touches the lines

represented by x = 3, y = 0, and y = x.

9. Find the equation of the circle which passes through the

points (1, 2), (- 2, 3), (- 1,
-

1).

10. Required the equation of the circle which circumscribes

the triangle whose sides are represented by y 0, 3 y 4 x,

and 3 y = - 4 x + 6.

Ans. x 2
-f ?/

2
| x 1| y = 0.

11. Required the equation of the circle whose intercepts
are a and b, and which passes through the origin.

Ans. x 2
-f y

z ax by = 0.

12. The points (1, 5) and (4, 6) lie on a circle whose centre

is in the line y = x 4
; required its equation.
Ans. 2 x2 + 2 ?/

2 17 x y = 30.

13. The point (3. 2) is the middie point of a chord of the

circle x 2
-\- if-

= 16
; required the equation of the chord.

14. Given x 2 + ?/
2 = 16 and the chord y 4 x = 8. Show

that a perpendicular from the centre of the circle bisects the

chord.

15. Find the locus of the centres of all the circles which

pass through (2, 4), (3,
-

2).
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16. Show that if the polars of two points meet in a third

point, then that point is the pole of the line joining the first

two points.

17. Required the equation of the circle whose sub-tangent= 8, and whose sub-normal = 2.

Ans. x 1
-f y

2 = 20.

18. Required the equation of ihe circle whose sub-normal
= 2, the distance of the point in which the tangent intersects

the X-axis from the origin beinr = 8.

Ans. x2
-f- ?/

2 = 16.

19. Required the conditions in order that the circles

ax2 + aif + cx + dy + e = Q and axz + af + kx + ly + m =
may be concentric.

Ans. c k, d I.

20. Required the polar co-ordinates of the centre and the

radius of the circle

r2 2 r (cos + ^/3 sin 0)
= 5.

Ans. (2, 60) ;
r = 3.

21. A line of fixed length so moves that its extremities

remain in the co-ordinate axes
; required the equation of the

circle generated by its middle point.

22. Find the locus of the vertex of a triangle having given
the base = 2 a and the sum of the squares of its sides = 2 b2.

Ans. x2
-j- y

2 = &
2 a2

.

23. Find the locus of the vertex of a triangle having given
the base = 2 a and the ratio of its sides

= . Ans. A circle.
n

24. Find the locus of the middle points of chords drawn

from the extremity of any diameter of the circle
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CHAPTER VI.

THE PARABOLA.

52. THE parabola is the locus generated by a point moving
in the same plane so as to remain always equidistant from a

fixed point and a fixed line.

The fixed point is called the Focus
;
the fixed line is called

the DIRECTRIX
;
the line drawn through the focus perpendic

ular to the directrix is called the Axis
;
the point on the axis

midway between the focus and directrix is called the VERTEX
of the parabola.

53. To find the equation of the parabola, given the focus and

directrix.

Let EC be the directrix and let F be the focus. Let OX,
the axis of the curve, and the tangent OY drawn at the vertex
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0, be the co-ordinate axes. Take any point P on the curve
and draw PA

||
to OY, PB ||

to OX and join P and F. Then

(OA, AP) = (x, y) are the co-ordinates of P.

From the right angled triangle FAP, we have

if = AP 2 = FP2 - FA2
;
... (1)

But from the mode of generating the curve, we have

FP 2 = BP2 = (AO + OD)
2 =

(x + OD)
2
,

and from the figure, we have

FA2 = (AO - OF)
2 =

(x
- OF)

2
.

Substituting these values in (1), we have

if = (
X + OD)

2 -
(x
- OF)

2
. . . (2)

Let DF =p, then OD = OF = hence

or, after reduction, y
2= 2px . . . (3)

As equation (3) is true for any point of the parabola it is

true for every point ;
hence it is the equation of the curve.

COB. 1. If (x , y ) and (x
1

, y&quot;)
are the co-ordinates of any

two points on the parabola, we have,

hence ?/
2

:
y&quot;

2 \:x \ x&quot;
;

i.e., the squares of the ordinates of any two points on the para
bola are to each other as their abscissas.

SCHOL. By interchanging x and y, or changing the sign of

the second member, or both in (3), we have

y
2 = ~ 2px for the equation of a parabola symmetrical

with respect to X and extending to the left of Y;
x 2 = 2 py for the equation of a parabola symmetrical with

respect to Y and extending above X.

x 2 = 2py for the equation of a parabola symmetrical
with respect to Y and extending below X.

Let the student discuss each of those equations. See

Art. 13.
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54. To construct the parabola, given the focus and directrix.

FIG. 30.

First Method. Let DR be the directrix and let F be the
focus.

From F let fall the perpendicular FD on the directrix
;

it

will be the axis of the curve. Take a triangular ruler ADC
and make its base and altitude coincide with the axis and

directrix, respectively. Attach one end of a string, whose

length is AD, to A
;
the other end to a pin fixed at F. Place

the point of a pencil in the loop formed by the string and
stretch it, keeping the point of the pencil pressed against the
base of the triangle. Now, sliding the triangle up a straight

edge placed along the directrix, the point of the pencil will

describe the arc OP of the parabola ;
for in every position of

the pencil point the condition of its being equally distant

from the focus and directrix is satisfied. It is easily seen, for

instance, that when the triangle is in the position A D C that
FP = PD .

Second Method. Take any point C on the axis and erect
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the perpendicular P CP. Measure the distance DC. With F
as a centre and DC (= FP) as a radius describe the arc of a

circle, cutting P CP in P and P . P and F will be points of

the parabola. By taking other points along the axis we may,

by this method, locate as many points of the curve as may be

desired.

55. To find the Lotus-rectum, or parameter of the parabola.
The LATUS-RECTUM, or PARAMETER of the parabola, is the

double ordinate passing through the focus.

The abscissa of the points in which the latus-rectum pierces

the parabola is x = .

2i

Making this substitution in the equation

?/
2 = 2px

we have y* = 2p * = 2^-

Hence 2 y = 2 p.

COR. 1. Forming a proportion from the equation

if = 2px,
we have x:y:\y.

(

2p;

i.e., the latus-rectum of the parabola is a third proportional to

any abscissa and its corresponding ordinate.

EXAMPLES.

Find the latus-rectum and write the equation of the parab

ola which contains the point :

1. (2,4). 3. (a, I).

b* b
2

Ans. 8, ?/-
= 8 x. Ans.

, y
2 = - x.

a a

S. (-2,4). 4. (_, 2).

Ans. 8, ?/
2 = 8 x. Ans. -,?/=- -x.

a a

5. What is the latus-rectum of the parabola x* =
How is it defined in this case ?
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6. What is the equation of the line which passes through
the vertex and the positive extremity of the latus-rectum of

any parabola whose equation is of the form if = 2px ?

Ans. y = 2 x.

7. The focus of a parabola is at 2 units distance from the

vertex of the curve
;
what is its equation

(a) when symmetrical with respect to the X-axis ?

(b)
&quot; &quot; &quot; &quot; &quot; &quot; Y-axis?

Ans. (a) y
2 = 8x, (b) x* = 8 y.

Construct each of the following parabolas by three differ

ent methods.

8. if = Sx. 10. x 2 = 6 y.

9. if = - 4 x. 11. x2 = - 10 y.

12. What are the co-ordinates of the points on the parabola
?/

2 = 6 x where the ordinate and abscissa are equal ?

Ans. (0, 0), and (6, 6).

13. Required the co-ordinates of the point on the parabola
x2 = 4 y whose ordinate and abscissa bear to each other the

ration 3 : 2. Ans. (6, 9).

14. What is the equation of the parabola when referred to

the directrix and X-axis as axes ? Ans. y
2

2px p
2

.

Find the points of intersection of the following :

15. if = 4 x and 2 y x = 0.

Ans. (0, 0), (16, 8).

16. x 2 = 6 y and y x 1 = 0.

17. y* = 8 x and a: + 3 = 0.

18. if = 2x and x2 + ?/
2 = 8.

Ans. (2, 2), (2,
-

2).

19. x * = - 4 y and 3 x2 + 2 if = 6.

20. x 2 = 4 y and if = 4 x.
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56. To deduce the polar equation of the parabola, the focus

being taken as the pole.

The equation of the parabola referred to OY, OX, Fig. 29, is

f = 2px . . . (1)

To refer the curve to the initial line FX and the pole F

, ]
we have for the equation of transformation, Art. 34,

Cor. 1,

x = + r cos 0.

y = r sin 0.

Substituting these values in (1), we have

?-
2 sin2 = p~ + 2pr cos 9.

But sin2 = 1 cos 2
9

;

.-. r2 = p 2

-\-2pr cos 9 + r2 cos 2 9 = (p + r cos 0)
2
,

.-. r = p -\- r cos 9,

or, solving,

1 cos B

is the required equation.

We might have deduced this value directly as follows :

Let P
(r, 9) Fig. 29 be any point on the curve

;
then

FP = DA = DF -f FA = p + r cos 9
;

i.e., r=p + rvosO.

Hence r =
-,

*-
. .

1 cos 9

COR. 1. If 9 = 0, r = oo .

. If e = 90, r = p.

If 9 = 180, r =
|

.

If 9 = 270, v = p.

If 9 = 360, r = oo.

An inspection of the figure will verify these results.
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57. To deduce the equation of the tangent to the parabola.

If (V, y ), (x&quot;, y&quot;)
be the points in which a secant line cuts

the parabola, then

y-y = y,~ y
&quot;, (-**) (!)

OC- Ou

will be its equation. Since (V, ?/), (#&quot;, y&quot;)
are points of the

parabola, we have

y
2 = 2px ... (2)

7/
/2 = 2X /

(
3)

These three equations must subsist at the same time

hence, subtracting (3) from (2) and factoring, we have

y y&quot; 2p
i.e., x -x&quot;

==

y
f

+y&quot;

Substituting this value in (1), the equation of the secant

becomes

When the secant, revolved about
(x&quot;, y&quot;},

becomes tangent

to the parabola (x , y ) coincides with
(x&quot;, y&quot;) ;

hence x r

x&quot;,

y =
y&quot;. Making this substitution in (4), we have,

or, simplifying, recollecting that
y&quot;

2 = 2
px&quot;.

we have

yy&quot; =p(x+x&quot;) ... (6)

for the equation of the tangent to the parabola.

58. To deduce the value of the sub-tangent.

Making y = in (6), Art. 57, we have

x = -
x&quot; = OT, (Fig. 31)

for the abscissa of the point in which the tangent intersects

the X-axis. But the sub-tangent CT is the distance of this

point from the foot of the ordinate of the point of tangency;

i.e., twice the distance just found; hence

Sub-tangent = 2 x&quot;
;
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i.e., the sub-tangent is equal to double the abscissa of the point

of tangency.

59. The preceding principle affords us a simple method of

constructing a tangent to a parabola at a given point.
Let P&quot;

(a;&quot;, y&quot;)
be any point of the curve. Draw the ordi-

nate
P&quot;C, and measure 00. Lay off OT = 00.

FIG. 31.

A line joining T and P&quot; will be tangent to the parabola
at P&quot;.

60. To deduce the equation of the normal to the parabola.

The equation of any line through P&quot;
(#&quot;, y&quot;} Fig. 31, is

y-y&quot;
= s(x- x&quot;)

. . . (1)

We have found Art. 57, (5) for the slope of the tangent P&quot;T

s
r - p -

~7&quot;

hence, for the slope of the normal P&quot;N, we have

.__*:.
,P
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Substituting this value of s in (1), we have

y -y&quot;
= -

^ (*
-

*&quot;) (2)

for the equation of the normal to the parabola.

61. To deduce the value of the sub-normal.

Making y = in (2) Art. 60, we have, after reduction,

x=*p+af = ON; Fig. 31,

.-. Sub-normal = NC = p -\- x&quot; x&quot; = p.

Hence the sub-normal in the parabola is constant and equal

to the semi-parameter FB.

62. To shoiv that the tangents drawn at the extremities of

the latus rectum are perpendicular to each other.

The co-ordinates of the extremities of the latus-recturn are

?
, p

j

for the upper point, and I -

, p
j

for the lower point.

Substituting these values successively in the general equa
tion of the tangent line, Art. 57 (6), we have

yp = plx

-yp=plx +

or, cancelling,

y = x+| . . . (1)

y=-*-f (2)

for the equations of the tangents. As the coefficient of x

in (2) is minus the reciprocal of the coefficient of x in (1), the

lines are perpendicular to each other.

COR. 1. Making y = in (1) and (2), we find in each case

that x = ?.
;
hence, the tangents at the extremities of the

2
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latus-rectum and the directrix meet the axis of the parabola
in the same point.

The values of the coefficients of x in (1) and (2) show that
these tangent lines make angles of 45 with the X-axis.

63. To deduce the equation of the parabola when referred to

the tangents at the extremities of the latus-rectum as axes.

FIG. 32.

The equation of the parabola when referred to OY, OX, is

if = 2px . . . (1).

We wish to ascertain what this equation becomes when the

curve is referred to DY
,
DX

,
as axes.

Let P (x , i/) be any point of the curve
; then, Fig. 32

(OC, CP )
=

(x, y), and (DC ,
C P )

=
(a* , tf).

From the figure, we have,

OC = DC - DO = DK + C M - DO;
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but

DK = x cos 45 = r^C, C M = /cos 45 = -X-, DO =| ;

V2 V2
, JK ? phence x = -\

--^=-- 5r

V2 V2 2

We have, also, CP = MP - C K
;

.., _ *

V2 V2

Substituting the values of x and ?/ in (1), we have,

| (2/
- *T -^ (C + 2/ ) -^ 2

. - - (2)
* V2

In order to simplify this expression let DP = a
;
then from

the triangle DPF, we have,

DF =p = a cos 45 = -^=- .

V2&amp;lt;

Substituting this value of ^ in (2) and multiplying through

by 2, we have, (/ x
)
2 = 2 a (V 4- ?/) a2

,

or, ?/
2 + ic

2 2 a: / 2 ^ 2 / + a2 = 0.

Adding 4 a? ?/ to both members, the equation takes the form

&amp;lt;X+/-a)
2 = 4;ry,

or x + y
f a = -J- 2 a; ^ ?/

^
;

.-. transposing, x -[- 2 x *
y
*

-+- ?/
= a

;

... ^x yx = a ... (3)

or, symmetrically, dropping accents,

is the required equation.
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/EXAMPLES.1. What is the polar equation of the parabola, the pole

being taken at the vertex of the curve ?

Ans. r = 2p cot cosec 0.

Find the equation of the tangent to each of the following

parabolas, and give the value of the subtangent in each case :

2. y
2 = 4 x at (1, 2). Ans. y = x + 1

;
2.

3. x2 = 4 y at (- 2, 1).
Ans. a; + y + 1 =

;
2.

4. v/
2 = - 6 x at ( 6, ord +). Ans. 2 y + oj = 3

;
12.

5. x2 = 8 y at (abs +, 2). ^rcs. x + y = 2
;

4.

6. ?/
2 = 4 ax at (a,

2 a).

7. y
2 = ??ia; at (m, m).

8. a;
2 = ^y at (abs +, p).

9. x* = 2py at (abs-,
p-

\ 8

Write the equation of the normal to each of the following

parabolas :

10. To if = 16 x at (1, 4).

11. To x2 = - 10 y at (abs +, -
2).

12. To if
= mx at

( m, m).

13. To x2 = 2 m?/ at ofo - ,
-

\ o
\

14. The equation of a parabola is x* _L_ y
* = K

5
what

are the co-ordinates of the vertex of the curve ?

Ans. I -a, -- a
V4 4

15. Given the parabola if
= 4 x and the line y x = ;

required the equation of the tangent which is,

(a) parallel to the line,

(b) perpendicular to the line.

Ans. (a) y = x + 1, (b) y + a; + 1 = 0.
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16. The point (1, 2) lies outside the parabola if = 6x;
what are the equations of the tangents through the point to

the parabola ?

17. The point (2, 45) is on a parabola which is symmetri
cal with respect to the X-axis

; required the equation of the

parabolk, the pole being at the focus.

Ans. if = (4
- 2 V2) x.

18. The subtangent of a parabola = 10 for the point (5, 4) ;

required the equation of the curve and the value of the sub

normal.

Ans. y* = ^x;*.5 &amp;gt;

64. The tangent to the parabola makes equal angles with the

focal line drawn to the point of tangency and the axis of the

curve.

From Fig. 31 we have,

FT = FO + OT = 4- x&quot;.

We have, also,

FP&quot; = DC = DO + OC = f + x&quot;.

.-. FT = FP&quot;.

The triangle FP&quot;T is therefore isosceles and
FP&quot;T = FTP&quot;.

/

65. To find the condition that the line y = sx + c must fulfil
in order to touch the parabola y

2 = 2 px.

Eliminating y from the two equations, and solving the

resulting equation with respect to x, we have,

p - SC V (C8
- PY ~ C2S2 m

for the abscissae of the points oflntersection of the parabola
and line, considered as a secant. When the secant becomes
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a tangent, these abscissas become equal ;
but the condition for

equality of abscissas is that the radical in the numerator of

(1) shall be zero
;
hence

(cs 2^ c
2
s
2 =

0,

or, solving, c = --
S

is the condition that the line must fulfil in order to touch the

parabola.

COR. 1. Substituting the value of c in the equation

y = sx + c,

we have, V = sx + ^- (2)
S

for the equation of the tangent in terms of its slope.

66. To find the locus generated by the intersection of a tan

gent, and a perpendicular to it from the focus as the point of

tangency moves around the curve.

The equation of a straight line through the focus I?
)

is

In order that this line shall be perpendicular to the tangent

y = sx + L
. . . (2)

we must have, s
r = -

;

S

hence y = - -

;
+ ^-

- (3)

is the equation of a line through the focus perpendicular to

the tangent. Subtracting (3) from (2), we have

or, x = 0,

for the equation of the required locus. But x = is the

equation of the Y-axis
; hence, the perpendiculars from the
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focus to the tangents of a parabola intersect the tangents on the

Y-axis.

67. To find the locus generated by the intersection of two tan

gents which are perpendicular to each other as the point of tan-

gencij moves around the curve.

The equation of a tangent to the parabola is, Art. 65 (2),

y = 8X + f-g
- - - (1)

The equation of a perpendicular tangent is

y = -l*-f ...(2)
S A

Subtracting (2) from (1), we have,

...*
= -

|.
- - (3)

is the equation of the required locus. But (3) is the equa

tion of the directrix
; hence, the intersection of all perpendicu

lar tangents drawn to the parabola are points of the directrix.

68. Two tangents are drawn to the parabola from a point

without ; required the equation of the line joining the points of

tangency.

Let (V, ?/) be the given point without the parabola, and let

(X &amp;gt; 2/&quot;)? (
X2, 2/2)

be the points of tangency. Since (x
f

, y ~)
is

on both tangents, its co-ordinates must satisfy their equations ;

hence, the equations of condition,

y y&quot; =p(x +X&quot;\

2/2/2 =P (x + x z).

The two points of tangency (x&quot;, y&quot;), (x2, 2/2)
must therefore

satisfy

y y =p (* + ),

or yy
r = p (x + x ) . . . (1)

Since (1) is the equation of a straight line, and is satisfied

for the co-ordinates of both points of tangency, it is the

equation of the line joining those points.
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69. To find the equation of the polar of the pole (x, y ) with

regard to the parabola if = 2 px.

The polar of a pole with regard to a given curve is the line

generated by the point of intersection of a pair of tangents

drawn to the curve at the points in which a secant line through

the pole intersects the curve as the secant line revolves about the

pole.

By a course of reasoning similar to that of Art. 49, we may

prove the required equation to be

As the reasoning by means of which (1) is deduced is per

fectly general, the pole may be without, on, or within the

parabola.

COR. 1. If we make, in (1), (x
r

, y )
=

( | ,
0\ we have

\ z I

hence, the directrix is the polar of the focus.

70. To ascertain the position and direction of the axes,

other than the axis of the parabola and the tangent at the

vertex, to which if the parabola be referred its equation will

remain unchanged in form.

FIG. 33.
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Since the equation is to retain the form

y* = 2px ... (1)

let y
* = 2p

fx ... (2)

be the equation of the parabola when referred to the axes,

whose position and direction we are now seeking. It is

obvious at the outset that whatever may be the position of

the axes relatively to each other, the new Y -axis must be

tangent to the curve, and the new origin must be on the

curve
; for, if in (2) we make x = 0, we have y = 0, a

result which we can only account for by assuming the Y -axis

and the new origin in the positions indicated. This conclu

sion, we shall see, is fully verified by the analysis which

follows.

Let us refer the curve to a pair of oblique axes, making

any angle with each other, the origin being anywhere in the

plane of the curve. The equations of transformation are,

Art. 33 (1),

x = a -j- x
r
cos 6 + y cos

q&amp;gt;

y = b -f- x sin + y sin
g&amp;gt;.

Substituting these values in (1), we have,

?/
2 sin 2

q&amp;gt; + 2 x y sin sin
q&amp;gt; -f- x

2 sin 2
(9 + 2 (b sin

q&amp;gt; p
cos

&amp;lt;p) y + 2 (b sin p cos 0) x -f b2 2 pa = . . . (3)

Now, in order that this equation shall reduce to the same

form as (1), we must have the following conditions satisfied :

(a) sin sin
g&amp;gt;

= 0.

(b) sin 2 = 0.

(d)
b2 - 2 pa = 0.

(d) b sin
g&amp;gt; p cos

&amp;lt;p

= 0.

If = 0, then sin sin
g&amp;gt;

= and sin 2 = 0; i.e., conditions

(a) and (b) are satisfied for this assumed value of 6. But is

the angle which the new X -axis makes with the old X-axis
;

hence, these axes are parallel.

If (a, b) be a point of the parabola ?/
2 = 2px, then b2 = 2

pa is an analytical expression of the fact
;
hence (c) shows

that the new orisrin lies on the curve.
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If
S1!L^ = tan

&amp;lt;f

= P, then (d) is satisfied. But p- is the
cos gp b o

slope of the tangent at the point whose ordinate is b, Art.

57, (5),
and tan.

&amp;lt;p

is the slope of the new Y -axis
; hence, the

new Y -axis is a tangent to the parabola at the point whose

ordinate is b
;

.-. at (a, b) ;
.% at the new origin.

COR. 1. Substituting (a), (&), (c), and (d) in (3), recollecting

that cos = cos = 1, we have, after dropping accents,

2

sin* y
y -^S-*-

or, letting
% = p

f

,

sin &quot;

cp

we have y
2 = 2p x . . . (4)

for the equation of the parabola when referred to O Y
,
O X

,

Fig. 33. The form of (4) shows that for every value assumed

for x, y has two values, equal but of opposite sign ; hence,

OX bisects all chords, drawn parallel to OY and is therefore a

diameter of the parabola.

NOTE. A DIAMETER of a curve is a line which bisects a sys

tem of parallel chords.

\l

71. To show that the parameter of any diameter is equal

to four times the distance from the focus to the point in which

that diameter cuts the curve.

Draw the focal line FO and the normal O N, Fig. 33.

Since the triangle O FT is isosceles; Art. 64, the angle

O FN = 2
&amp;lt;r.

Since O N is a normal at
,
AO N =

&amp;lt;y&amp;gt;

and AN = p, Art.

61. Hence in the triangle FO A
AO = FO sin 2

g&amp;gt;

= FO 2 sin (jp
cos

&amp;lt;JP.

In the triangle NO A,

AO = AN cot v =
sin cp

cos cp

hence FO 2 sin cp cos &amp;lt;JP

= p .

-
;
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But

.-. FO = P
2 sin2

q&amp;gt;

i* -4
Sin* go

.-. 2p
f = 4 FO .

72. To find the equation of any diameter in terms of the

slope of the tangent and the semi-parameter.
The equation of any diameter as O X

, Fig. 33, is

y = AO = b.

But from the triangle AO N, we have,

b = AX cot
&amp;lt;p

= *L_ = &amp;lt;:

tan CP s

hence y = -
. . . (1)

is the required equation.

73. To show that the tangents drawn at the extremities of
any chord meet in the diameter which bisects that chord.

R

FIG. 34.

Let Y (x
f

, /), P&quot;
(x&quot;, y&quot;)

be the extremities of the chord

FP&quot;;

then y - y = y -
y&quot;

n (_;*&amp;gt;... (1)
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is its equation. The equation of the tangents at P (V,

P&quot;
0&quot;, y&quot;)

are

^-p(* + - (
2)

y/ -*(* + *&quot;) (
3

&amp;gt;

Eliminating x from (2) and (3) by subtraction, we have,

for the ordinate of the point of intersection of the tangents.

But
x

f

~~ X &quot;

n is the reciprocal of the slope of chord P
P&quot;,

(see (1) ). Hence, since the chord P P&quot; and the tangent Y T

are parallel, we have,

y -y&quot;

Substituting in (4) it becomes

-*.-

Comparing this value of y with (1) of the preceding

article, we see that the point of intersection is on the diameter.

EXAMPLES.

1. What must be the value of c in order that the line

y = 4 x _L_ c may touch the parabola ?/
2 = 8 x ?

J Ans. .

2. What is the parameter of the parabola which the line

y = 3 x + 2 touches ?

3. The slope of a tangent to the parabola y
2 = 6 x is = 3.

What is the equation of the tangent ? = 3 ^ _L i

4 The point (1, 3) lies on a tangent to a parabola ; required

the equation of the tangent and the equation of the parabc

the slope of the tangent ,=

4.^ 4 a _ l ; ^ = - 16 *.
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5. In the parabola y
z = 8 x what is the parameter of the

diameter whose equation is y W = ?

Ans. 136.

6. Show that if two tangents are drawn to the parabola
from any point of the directrix they will meet at right angles.

7. From the point (2, 5) tangents are drawn to ?/
2 = 8 x

;

required the equation of the chord joining the points of

tangency. Ans. 5 ?/ 4^ + 8 = 0.

8. What are the equations of the tangents to ?/
2 = 6 x

which pass through the point ( 2, 4) ?

Find the equation of the polar of the pole in each of the

following cases :

9. Of (- 1, 3) with regard to y
2 = 4*.

Ans. 3y 2x + 2 = Q.

10. Of (2, 2) with regard to if = 4 x.

Ans. 2y + 2a; + 4 = 0.

11. Of (ay b) with regard to y
2 = 4 x.

Ans. by 2 x 2 a = 0.

12. Given the parabola ?/
2 = x and the point ( 4, 10) ;

to

find the intercepts of the polar of the point.

Ans. a = 4:,b=-.
5

13. The latus-rectum of a parabola = 4
; required the pole

of the line y 8 x - 4, = 0.

Ans. (i,i).

14. Given if-
= 10 x and the tangent 2 y x = 10

; required
the equation of the diameter passing through the point of

tangency.
Ans. y = 10.

GENERAL EXAMPLES.

1. Assuming the equation of the parabola, prove that every
point on the curve is equally distant from the focus and
directrix.
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2. Find the equation of the parabola which contains the

points (0, 0), (2, 3), (- 2, 3).
Ans. 3 x2 = 4 y.

3. What are the parameters of the parabolas which pass

through the point (3, 4) ?

Ans. Y, and f .

4. Find the equation of that tangent to ?/
2 = 9 x which is

parallel to the line y 2 x 4 = 0.

Ans. 8y 16 a 9 = 0.

5. The parameter of a parabola is 4
; required the equation

of the tangent line which is perpendicular to the line

y = 2 x -\- 2. Give also the equation of the normal which is

parallel to the given line.

6. A tangent to ?/

2 = 4 x makes an angle of 45 with the

X-axis ; required the point of tangency.
Ans. (1,2).

Show that tangents drawn at the extremities of a focal

chord

7. Intersect on the directrix.

8. Meet at right angles.

9. That a line joining their point of intersection with the

focus is perpendicular to the focal chord.

10. Find the equation of the normal in terms of its slope.

11. Show that from any point within the parabola three

normals may be drawn to the curve.

12 Given the parabola r = to construct the tan-
1 + cos 6

gent at the point whose vectorial angle = 60, and to find the

angle which the tangent makes with the initial line.

Ans. 61 = 60.

13. Find the co-ordinates of the pole, the normal at one

extremity of the latus-rectum being its polar.
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14. In the parabola y
2 = 4 x what is the equation of the

chord which the point (2, 1) bisects ?

Ans. y = 2 x 3.

15. The polar of any point in a diameter is parallel to the

ordinates of that diameter.

16. The equation of a chord of y* = 10 x is y = 2 x 1
;

required the equation of the corresponding diameter.

17. Show that a circle described on a focal chord of the

parabola touches the directrix.

18. The base of a triangle = 2 a and the sum of the tan

gents of the base angles = b. Show that the locus of the

vertex is a parabola.

19. Required the equation of the chord of the parabola

y- =2px whose middle point is (m, n}.

A n x m
Ans. = .

p y n

20. A focal chord of the parabola if = 2 px makes an

angle = cp with the X-axis
; required its length.

Ans. -?-.

21. Show that the focal distance of the point of intersec

tion of two tangents to a parabola is a mean proportional to

the focal radii of the points of tangency.

22. Show that the angle between two tangents to a parab
ola is one-half the angle between the focal radii of the points
of tangency.

23. The equation of a diameter of the parabola y
2 = 2px

is y = a
; required the equation of the focal chord which this

diameter bisects.

24. The polars of all points on the latus-rectum meet the
axis of the parabola ?/

2 = 2px in the same point ; required the

co-ordinates of the point.

Ans. I
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CHAPTER VII.

THE ELLIPSE.

74. THE ellipse is the locus of a point so moving in a plane

that the sum of its distances from two fixed points is always

constant and equal to a given line. The fixed points are

called the Foci of the ellipse. If the points are on the

given line and equidistant from its extremities, then the given

line is called the TRANSVERSE or MAJOR Axis of the ellipse.

75. To deduce the equation of the ellipse, given the, foci and

the transverse axis.

Y

FIG. 35.

Let F, F! be the foci and AA the transverse axis. Draw

OY J_ to AA at its middle point, and take OY, OX as the

co-ordinate axes.
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Let P be ary point of the curve. Draw PF, PFi ;
draw

also PD
||
to OY.

Then (OD, DP) = (x, y) are the co-ordinates of P.

Let AA = 2a, FFX
= 20F = 201\ = 2 c, FP = r and

F XP = /.

From the right angled triangles FPD and FjPD, we have,,

r = V?/
2 + (x c)

2 and r Vy 2 + (#-{- c)
2

. . . (a)

From the mode of generation of the curve, we have,

r -f / = 2 a ;

hence Vy2 + (x
-

c)
2 + V y

2+ (x + c)
2 = 2 a

;
. . . (1)

or, clearing of radicals, and reducing,

a2

(if + x 2

) -c2 x2 = a2

(a
2 - c

2

) ... (2)

As this equation (2) expresses the relationship between the

co-ordinates of any point on the curve, it must express the

relationship between the co-ordinates of every point ;
hence

it is the required equation.

Equation (2) may be made, however, to assume a more

elegant form. Make x = in (2), we have,

?/
2 = a2 - c

2

for the square of the ordinate of the point in which the

curve cuts the Y-axis
; i.e., OB 2

(= OB /2

). Eepresenting
this distance by b, we have,

2 = a2 _ C
2
?

.-. c
2 = a2 -b* ... (3)

Substituting this value of c
2 in (2) and reducing, we have,

or, symmetrically,

for the equation of ellipse when referred to its centre and
axes.

Let the student discuss equation (4). See Art. 12.
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COR. 1. If we make b = a in (4), we have,

x2
-f y

2 = a 2

which is the equation of a circle.

COR. 2. If we interchange a and b in (5), we have,

for the equation of an ellipse whose transverse axis (=2 a)

lies along the Y-axis.

COR. 3. If (z , y
f

)
and

(z&quot;, y&quot;)
are two points on the curve,

we have from (4)

y = *L (^ - a/2
)
and

y&quot;*
=

-^ (a
2 -

z&quot;

2
) ;

^

hence, y
*

:
y&quot;

2
:: (a

- z ) (a + x )
: (a

-
x&quot;} (a + x&quot;) ;

.

i.e., the squares of the ordinates of any two points on the

ellipse are to each other as the rectangles of the segments in

which they divide the transverse axis.

COR. 4. By making x = x a and y = y in (4), we have

after reduction and dropping accents,

tf ,f _|_ ^ x2 - 2 atfx = . . . (7)

for the equation of the ellipse, A being taken as the origin

of co-ordinates.

76. The line BB , Fig. 35, is called the CONJUGATE or

MINOR axis of the ellipse ;
the points A and A are called the

VERTICES of the ellipse. It is evident from the figure that

the point bisects all lines drawn through it and terminating

in the curve. For this reason is called the CENTRE of

the ellipse.

The ratio
~ ** - -?- . See (3) Art. 75 ... (1)
a a

is called the ECCENTRICITY of the ellipse. It is evident that

this ratio is always &amp;lt;
1. The value of c = i Va2 - b2 meas

ures the distances of the foci F, F x from the centre.
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If a = b in (1), then e =
; i.e., when the ellipse becomes a

circle its eccentricity becomes zero.

If b = in (1), then e = 1
; i.e., when the ellipse becomes a

straight line the eccentricity becomes unity.

77. To find the values of the focal radii, r, /, of a point on

the ellipse in terms of the abscissa of the point.

The FOCAL RADIUS of a point on the ellipse is the distance

of the point from either focus.

From equations (a), Art. 75, we have,

r = V y
2 + (x cf ;

from the equation of the ellipse, Art. 75 (4), we have,

2 ^_ (a2 x 2\ ^2 _ &_ X 2 .

a2 a 2

hence, substituting

\ *

o ,

(X
2

2 ex + -

/ c-

t/V - 2 ex +
T &amp;lt;Z-

,.-

c= a x
;

a

hence r = a ex. See (1) Art. 76 ... (1)

Similarly we find

%
r = a + ex . . . (2)

78. Having given the transverse axis and the foci of any

ellipse, the principles of Art. 75 enables us to construct the

ellipse by three different methods.

First Method. Take a cord equal in length to the trans

verse axis AA . Attach one end of it at F, the other at F .

Place the point of a pencil in the loop formed by the cord

and stretch it upward until taut. Wheeling the pencil around,
while keeping, the point on the paper and tightly pressed
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against the cord, the path described will be an arc of the

ellipse. After describing the upper half of the ellipse, re

move the pencil and form the loop below the transverse axis.

By a similar process the lower half may be described. It is

FIG 36.

evident during the operation that the sum of the distances of

the point of the pencil from the foci is constant and equal to

the length of the cord
;

i.e., to the transverse axis.

Second Method. Take any point C on the transverse axis

and measure the distances A C, AC. With F as a centre and

CA as a radius describe the arc of a circle
;
also with F as a

centre and CA as a radius describe another arc. The points

R, B/ in which these arcs intersect are points of the ellipse.

By interchanging the radii two other points P, P may be

determined. A smooth curve traced through a number of

points thus located will be the required ellipse.

Third Method. Let the axes AA = 2 a, BB = 2 b be

given. Lay off on any straight edge MX (a piece of paper

will do) KD = OA = a and DL = OB == b. Place the

straight edge on the axes in the position indicated in the

figure. Then as K and L slide along the axes, the point D
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will describe the ellipse. For from the figure DLH and

DKE are similar triangles :

DK DL
_-

a b-- =
; i.e.,

- = -
(x and y beinglji x -// _ 2

the co-ordinates of D).

Hence, squaring, clearing of fractions, and transposing, we
have

a?tf _j_ &2X2 = az
b^

That is the locus described by D is an ellipse. An instru

ment based upon this principle is commonly used for drawing
the ellipse.

79. To find the latus rectum, or parameter of an ellipse.

The latus rectum or parameter of an ellipse is the double

ordinate passing through the focus.

The abscissas of the points in which the latus rectum

pierces the ellipse are x = -J- vV b
2

. Substituting either

of these values on the equation of the ellipse

we have y
2 = (a

2 -
(a

2 - b
2

))
= . . y = .

a2 a2 a

9 A2

Hence Latus rectum = 2 y = - - ... (1)a

Forming a proportion from this equation there results,

2y:2b::b:a ;

hence 2 y : 2 b :: 2 b : 2 a
;

i.e., the latus rectum is a third proportional to the two axes.

EXAMPLES.

Find the semi-axes, the eccentricity, and the latus rectum

of each of the following ellipses :

1. 3 x2
-f 2 y

2 = 6. 3. x2 + 3 if = 2.

2. ^,^ = L 4&amp;gt; 4 2 , 6 = o __ 2 3.2
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60 i
9 7 O 9 l V

cy -\- x- = a. o. x- -f-
-^- = ?i.m

Write the equation of the ellipse having given :

9. The transverse axis = 10
;
the distance between the foci

or
Ans. + $- = l.

25 9

10. Sum of the axes = 18
;
difference of axes = 6.

Ans. -4- l- = 1.
36

^
9

11. Transverse axis = 10
;

the conjugate axis = y2 the

transverse axis.

A x*
4y2 =1

25 25

12. Transverse axis = 20
; conjugate axis = distance be

tween foci.

Ans. -
-j- y

2 = 50.

13. Conjugate axis = 10
;
distance between foci = 10.

Ans. ^ + y* = 25.

14. Given 3y
2 + 4 a?

2 = 12
; required the co-ordinates of the

point whose ordinate is double its abscissa.

15. Given the ellipse 3 ?/
2 + 2 x2 = 12, and the line y x 1

;

to find the co-ordinates of their points of intersection.

X1
f

.-2

16. Given the ellipse (--=3-1, and the abscissa of a
64 15

point on the curve =
; required the focal radii of the point.

Ans. r = 7T%, / = 8TV
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80. To deduce the polar equation of the ellipse, either focus

being taken as the pole.

FIG. 37.

Let us take F as the pole, and let (FP ,
P FA) = (r, (9)

be

the co-ordinates of any point P of the ellipse. From Art. 77

(1) we have, r = a ex . . . (1)

From the figure, OD = OF + FD
;

i.e., x = ae -\- r cos 0.

Substituting this value of x in (1), we have

r = a e (ae -f- r cos 0),

or, reducing, we have

, _ *L ... (2)
1 + e cos

for the polar equation of the ellipse, the right-hand focus

being taken as the pole.

From Art. 77 (2),

F P = / = a + ez .

We readily determine from this value

1 - e cos

for the polar equation of the ellipse, the left-hand focus being
taken as tlje pole.
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COR. If 0, r = a (1 0)
= FA,

/ = a (1 + e)
= F A.

If = 90, r = a (1
- e

2

)
= a - a

2

= = FM.

r = a(l-e2)=a-a- -=-^- = - = FN.

If = 180, r = ft (1 + e)
= FA

,

/ = a (1
-

e)
= F A .

If = 270, r = a (1
- e

2

)
FM

,

If = 360, r = a (1
-

e)
= FA,

/ = a (1 + e)
= F A.

81. To deduce the equation of condition for the supplemental

chords of an ellipse.

Y

FIG. 38.

Let AP, A P be a pair of supplemental chords.

The equation of a line through A (a. o) is

y = s
(a; r/).



THE ELLIPSE. 115

The equation of a line through A ( a, 6) is

V = s (x + a).

Where these lines intersect we must have

?/
2 = ss

f

(x
2 a 2

) . . . (1)

In order that the lines shall intersect on the ellipse their

equations must subsist at the same time with the equation of

the ellipse

*- 5 (a^^ (
2)

Dividing (1) by (2), we have

or ss = -
. . . (3)

for the required condition.

COR. If a = b, the ellipse becomes -a circle and (3) be

comes
ss

f = -
1,

a relationship heretofore deduced. Art. 40 (1).

SCHOL. The preceding discussions have developed a remark

able analogy between the ellipse and circle. As we proceed
we shall find that the circle is only a particular form of the

ellipse and that all of the equations pertaining to it may be

deduced directly from the corresponding equations deduced
for the ellipse by simply making a = b in those equations.

82. To deduce the equation of the tangent to the ellipse.

Let P&quot;
(x&quot;, y&quot;),

V (x , ?/ ) be the points in which a secant

P&quot;S cuts the ellipse. Its equation is, therefore,

As the points are on the ellipse, we must have

,
2 = i!_(V- 3/2} AA

2

2/&quot;

2 =4 (a-
-

*&quot;

2

) ... (3)
a-
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FIG. 39.

These three equations must subsist at the same time
;
hence

subtracting (3) from (2) and factoring, we have

-
2/0 (/ + 2/0 = -

hence y
r - i/\ P_

x r -xT ^
Substituting this v^alue in (1) it becomes

/,2
/

_|_ x
&quot;

&amp;gt;- -^-7T7 (
&quot;- X) -

Eevolving the secant line upward about the point P&quot;
(x&quot;, ?/&quot;)

the other point of intersection P x

(x , y )
will approach P&quot; and

will finally coincide with it. When this occurs the secant

becomes a tangent and xf =
x&quot;, y

r =
y&quot; ; hence, substituting,

we have

i.e.,

or
xx

a2 b
2

for the equation of the tangent

1 .

,*;... (4)

. (5)
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COR. If b = a, we have

_i_ yy
I n

a*

for the equation of the tangent to the circle. See Art. 41 (6).

SCHOL. If we make x and y successively = in the equa

tion of the tangent (5), we have y = -

f
and x = ^ for the

y x &quot;

values of the variable intercepts OT , OT, Fig. 39
;

, ,, IP , .. d2

hence
y&quot;

= and x = .

y x

These values in the equation

*&quot;

2
. ?/

2 _
^~&quot; J

give, after reduction,

for the equation of the ellipse, the intercepts of its tangents
on the axes being the variables.

83. To deduce the value of the sub-tangent.

Making y = in (5), Art. 82, we have

.-.sub-tangent = DT = ^1 -
x&quot; = a* ~ x &quot;*

x&quot; xff

COR. If b = a, then from Art. 41, Schol. a2
x&quot;

2

rr&amp;lt;2

. . sub-tangent in the circle = 2
.

SCHOL. The value of the sub-tangent being independent of

the value of the minor axis (2 b) it follows that this value is

the same for every ellipse which is concentric with the given
ellipse, and whose common transverse axis is 2 a.
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84. The equation of condition that a line shall pass through

the centre of the ellipse and the point of tangency is, Fig. 39,

y&quot;

=
tx&quot;,

.-. the slope of this line is

t== ^7

The slope of the tangent at
(x&quot;, y&quot;) is, Art. 82,

a2
y&quot;

Multiplying, member by member, we have

But Art. 81 (3)

... ss =

i.e., the tangent to the ellipse and the line joining the centre and

the point of tangency enjoy the property of being supplemental
I)

chords of an ellipse whose semi-axes bear to each other the ratio -.

COR. If s = t, then s
f = t

; i.e., if one supplementary chord

is parallel to a diameter of the ellipse, the other supplementary

chord is parallel to the tangent drawn at the extremity of that

diameter.

85. The principles of Arts. 83, 84 afford us two different

methods of constructing a tangent to the ellipse at a given

point.

First Method. Art. 83, Schol. Let P&quot;, Fig. 40, be the given

point. Through P&quot; draw the ordinate P&quot;D and produce it

until it meets the circle described upon the transverse axis

of the ellipse (AA )
in F; draw FT tangent to the circle

at F. Join P&quot; and T ;
P&quot;T will be the required tangent.
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FIG. 40.

Second Method. Art. 84 and Cor. Draw P&quot;R through the

centre, and from A draw A R
||
to P&quot;R

;
P&quot;T drawn through

P&quot;
||
to R A will be tangent to the ellipse at P&quot;.

86. To deduce the equation of the normal to the ellipse.

The equation of any line through P&quot;
(x&quot;, y&quot;), Fig. 39, is

y - ?,&quot;
= S (X

-
X&quot;)

. . . (1).

In order that this line and the tangent at P&quot;
(x&quot;, y&quot;)

shall

be perpendicular their slopes must satisfy the condition

1 + S8 = o . . . (2).

We have found Art. 82 for the slope of the tangent

/==
&quot;5-^

;

hence, the slope of the normal is

Substituting this value of s in (1), we have

for the equation of the normal to the ellipse.
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COR. 1. . If a = b, then (3) becomes, after reduction,

yx
&quot; -

xy&quot;
- 0,

which is the equation of the normal line to the circle.

87. To deduce the value of the sub-normal

Making y = in the equation of the normal, (3), Art. 86,

we have, Fig. 39, ON = x

... Sub-normal

*x&quot;,

COR. 1. If a = b, then

Sub-normal for the circle = x&quot;.

EXAMPLES.

1. Deduce the polar equation of the ellipse, the pole being

at the centre and the initial line coincident with the X-axis.

AAns. r = -.-.
2 sin2 + b

2 cos2

Write the equation of the tangent to each of the following

ellipses, and give the value of the sub-tangent in each case.

2. 2z2 + 4y
2 = 38at (1, 3).

Ans. x + 6 y = 19
;
18.

3. El + 2. 1, at (1,
ordinate positive).

An,. a

4. !. + ._l, at (2,0).

5 . 2 ^+ 3^- 11 at (2,- 1)

0.

4as _ 3y . 11;i.

6 .
J/l + _ = 1, at (0, V) .

a o
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8. y
* + te2 - 2, at (1,

- V2 - 6).

9. + ?/
2 =

1, at (afo +, .5).m

Write the equation of the normal to each of the following

ellipses, and give the value of the sub-normal.

10. 3 7/
2 + 4 x2 = 39, at (3, 1).

11. 4 if + 2 ic
2 = 44, at ( 2, ord negative).

12. ^!_
_|_

j = 1. at
( 1, ord ).

13. -+{ 1, at (1,2).
o o

14. ^1 4- 7/2
=

1? at ^ ord _|_^
a,

15. m2
?/

2
-f- ?

2
ic

2 = m2n2
,

at (m, o).

16. The equation of a chord of an ellipse is y = 2 x + 6 ;

what is the equation of the supplementary chord, the axes of

the ellipse being 6 and 4 ?

Ans. y = f x + f.

17. Given the equation j-
M- = 1, and ?/ 2 =

;
re-

y ID

quired the equation of the tangents to the ellipse at the points

in which the line cuts tne curve.

18. Given the ellipse (-
% = 1, and the line y x -{-

2 = 0; required

(a) The equation of a tangent to the ellipse ||
to the line.

(b)
&quot; &quot; &quot;1 &quot; &quot; &quot;
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19. The point (4, 3) is outside the ellipse

1G
+ 1P 1;

required the equations of the tangents to the ellipse which

pass through the point.

88. The angle fanned by the focal lines drawn to any point

of an ellipse is bisected by the normal at that point.

FIG. 41.

Let P&quot;N be a normal at any point P&quot;
(a;&quot;, ?/ ).

Draw P&quot;F, P&quot;F

We have found, Art. 87, that

From Art. 76 we have OF = OF = ae; hence

NF = OF - OX = ae - e?x&quot; = e (a
- ex

ff

)

NF r = OF + OX = ae+ e*x&quot; = e (a + ex&quot;)

.-. NF : NF ::
(
-

ex&quot;)
: (a + ex&quot;)

But FP&quot; : FP&quot; :: (a
-

ex&quot;)
: (a + ex&quot;)

Art. 77, (1) and (2) 3

.-. NF : NF :: FP&quot; : F P&quot;.
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The normal, therefore, divides the base of the triangle

F P&quot;F into two segments which are proportional to the adja
cent sides. Hence

FP&quot;jST == F P&quot;N.

SCHOL. 1. If P&quot;T be a tangent drawn at
P&quot;,

we must have

F P&quot;C = FP&quot;T
;

for each of these angles is equal to the difference between a

right angle and the angle FP&quot;N (= FP&quot;N). Hence, the

tangent to the ellipse makes equal angles with the focal radii

drawn to the point of tangency.

SCHOL. 2. The principles of this article afford us another

method of drawing a tangent to the ellipse at a given point.

Let P&quot; be a point at which we wish to draw a tangent. Pro

duce F P&quot; to R, making P&quot;R = FP&quot;
; join F and R. A line

P&quot;T, drawn through P&quot; J_ to FR will be tangent to the ellipse

at P&quot;.

89. To find the condition that the straight line y = sx -f- c

must fulfil in order that it may touch the ellipse

4 + y. = i.
a b

2

If we consider the line as a secant and combine the equations

y = SX -\- C,

O I 7 O ?

a 2
lr

we obtain the co-ordinates of the points of intersection.

Eliminating y from these equations, we have

- sa2
c ab

for the abscissas of the points of intersection. Now, when the

secant line becomes a tangent, these abscissas become equal.

Looking at (1) we see that the condition for equality of ab-
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scissas is that the radical in the numerator shall disappear ;

hence
sV2

-f- ^ 2
- c

2 =
0,

or s*a2 + b2 = c
2

. . . (2)

is the required condition.

COR. If we substitute the value of c drawn from (2) in the

equation of the line, we have

y = SX -. V*2a2 + & ... (3)

for the equation of the tangent to the ellipse in terms of its

slope.

90. To find the locus generated by the intersection of a tan

gent to the ellipse and a perpendicular to it from a focus as

the point of tangency moves around the curve.

The equation of a straight line through the focus (ae, o) is

y = s (x ae).

In order that this line shall be perpendicular to the tangent

y = SX J- V*2 a + b
2

(1),

its equation must be

y = - i
(x
-

ae) . . . (2)
S

If we now combine (1) and (2) so as to eliminate the slope

(s),
the resulting equation will express the relationship be

tween the co-ordinates of the point of intersection of these

lines in every position they may assume
;
hence it will be the

equation of the required locus.

Transposing sx to the first member in (1), and clearing (2)

of fractions and transposing, we have

y SX = -t- Vs2a2 + b2
.

sy -}- x = ae.

Squaring these equations and adding, remembering that

a- b
2 = a ze2

,
Art. 76, we have,

or
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hence, the circle constructed on the transverse axis of the ellipse

is the locus of the intersection of the tangents and the perpen
diculars let fall from the focus on them.

This circle is known as the Major-Director circle of the

ellipse. (See Fig. 45. )

91. To find the locus generated by the intersection of two

tangents which are perpendicular to each other as the points of

tangency move around the curve.

The equation of a tangent to the ellipse is

y = SX + s a2 + b2
. . . (1)

The equation of a tangent perpendicular to (1) is

hence, by a course of reasoning analogous to that of the pre

ceding article, we have

x z + ?/ = a 2
-f b2

. . . (3)

The required locus is, therefore, a circle concentric with the

ellipse and having its radius equal to Va2
-f- b

2
.

92. Two tangents are drawn to the ellipse from a point with

out ; required the equation of the line joining the points of

tangency.

Let P
(a:

7

, ?/), Fig. 42, be the given point, and let P&quot;
(x&quot;, y&quot;),

?2 (*2&amp;gt; 2/2) be the points of tangency. Since V (x , y
f

) is a

point common to both tangents, its co-ordinates must satisfy
their equations ; hence,

x x&quot;

a 2

x x z y y z _ 1

a 2 ~W
Hence

(x&quot;, y&quot;)
and

(a;2
. y z )

will satisfy the equation
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As (1) is the equation of a straight line, and is satisfied for

the co-ordinates of both points of tangency, it must be the

equation of the straight line which joins them.

93. To find the equation of the polar of the pole (V, /), with

regard to the ellipse
2 _ 1~

-1--

FIG. 42.

By the aid of Fig. 42, and a course of reasoning similar to

that of Art. 49, the equation of
PiP&quot;, the polar to P

, may be

shown to be
xx ,y_y_
a2

b*
1.

COR. If the polar of the point P (x
f

, ?/) passes through
PI (^i&amp;gt; yi)j then the polar of P l (x^ T/J)

will pass through
P (V, /). (See Art. 50.)

94. To deduce the equation of the ellipse when referred to a

pair of conjugate diameters as axes.

A pair of conjugate diameters of the ellipse are those diam-
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eters to which if the ellipse be referred its equation will contain

only the second powers of the variables.

The equation of the ellipse when referred to its centre and
axes is

If we refer the ellipse to a pair of oblique axes having the

origin at the centre, we have, Art. 33, Cor. 1,

x = x cos + i/ cos (p

y = x sin + y sin y

for the equations of transformation. Substituting in
(1), we

have

(a
2 sin2 + W cos 2

0) x
2 + (a

2 sin2
q&amp;gt; + tf cos 2

q&amp;gt;) ij
2

+ 2 (a
2 sin sin

q&amp;gt; + 62 cos cos
(?)

a y = aW ... (2)

for the equation of the ellipse referred to oblique axes. But,

by definition, the equation of the ellipse when referred to a

pair of conjugate diameters contains only the second powers
of the variables

;
hence

a- sin sin cp -f b
2 cos cos y = . . . (3)

is the condition that a pair of axes must fulfil in order to be

conjugate diameters of the ellipse.

Making the co-efficient of x y equal to zero in (2), we have
after dropping accents

(a
2 sin 2 + 6

2 cos2

0) x 2
-f (a

2 sin 2
&amp;lt;p + 6

2 cos2
&amp;lt;p) y

2 = a2
6
2 ... (4)

for the equation of the ellipse when referred to a pair of con

jugate diameters. This equation, however, takes a simpler
form when we introduce the semi-conjugate diameters. Mak
ing y = and x = 0, successively, in (4), we have

-M2 cos2

a2
sin 2

(p + 6
2 cos2

&amp;lt;p J
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in which ar and ft represent the semi-conjugate axes. From

(5). we have

a? sin2 + ft
2 cos2 = ^L ;

2 2 |72 S
2 _ ^2

ft
2

Substituting these values of the co-efficients in (4), we have,

after reduction,

for the required equation.

COR. As equation (6) contains only the second powers of

the variables, it follows that each of the two diameters to

which the curve is referred will bisect all chords drawn

parallel to the other.

SCHOL. The equation of condition for conjugate diameters

(3) may be put under the forms

7 2

tan 6 tan
&amp;lt;p

= ---
. . . (7)

Comparing this expression with (3) Art. 81, we see that the

same result was obtained for the supplementary chords of an

ellipse; hence, Fig. 40, if A R
,
R A be a pair of supplement

ary chords, then RP&quot;, PR&quot;, drawn through the centre parallel

to these chords, will be a pair of conjugate diameters. Again :

comparing (7)
with (1) Art. 84, we see that the same relation

ship was obtained for a diameter and the tangent drawn at

its extremity ; hence, Fig. 40, if P&quot;R be a diameter and P&quot;T

be a tangent drawn at its extremity, then PR&quot;,
drawn through

the centre parallel to P&quot;T,
is the conjugate diameter to RP&quot;.

The equation of condition (7) being a single equation con

taining two unknown quantities (tan. 0, tan.
&amp;lt;r),

we may

assume any value we please for one of them, and the equation

will make known the value of the other
; hence, in the ellipse

there are an infinite number ofpairs of conjugate diameters.
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95. To find the equation of a conjugate diameter.

Let P&quot;R,
R P be a pair of conjugate diameters. We wish

to find the equation of R/P .

Y

FIG. 43.

The equation of the tangent line P&quot;T, drawn through
P&quot;

(*&quot;, y&quot;}
is

wr&quot; in/fxx
i yy _ i

a2
#
2

By Art. 94, Schol., the diameter P R/ is parallel to P&quot;T
;

hence its equation must be the same as that of the tangent,
the constant term being zero.

xx

or

. = . . . (1)

... (2)

is the equation of a diameter expressed in terms of the co

ordinates of the extremity of its conjugate diameter.

COR. Let s represent the slope of the diameter P&quot;R
; then,

from (2)

_
bV jr

2 1

. .

2
?/ a 2

s
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since ^ = ^ = i
;

DP&quot;
y&quot;

s

hence we have

y= -~x ! . . (3)a 2s

for the equation of a diameter in terms of the slope of its

conjugate diameter.

96. To find the co-ordinates of either extremity of a diam

eter, the co-ordinates of one extremity of its conjugate diameter

being given.

Let P&quot;R and RT
, Fig. 43, be a pair of conjugate diameters.

Let
(x&quot;, y&quot;)

be the co-ordinates of P&quot;. We wish to find the

co-ordinates (x
f

, y ) of P in terms of the co-ordinates of P.&quot;

The equation of condition that P (a/, y ) shall be on the

diameter P R is, Art. 95, (1)

X X&quot;

Since P (x
f

, y )
is on the ellipse, we have also

V2 o/2

Eliminating y and a;
, successively, from these equations,

we find

These expressions, taken with the upper signs, are the co

ordinates of P
;
taken with the lower signs, they are the

co-ordinates of R .

97. To show that the sum of the squares on any pair of

semi-conjugate diameters is equivalent to the sum of the squares

on the semi-axes.

Let P&quot;
(x&quot;, y&quot;}

and P (x
f

, y ). Fig. 43, be the extremities
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of any two semi-conjugate diameters. Let OP&quot; = a
,
OP = b

r

;

then, from the triangles ODP&quot;, OD P
,
we have,

&quot; ... (1)

and V2 = x 2 + y
2

. . . (2)

But, Art. 96, cc
2 = ~

and

hence b
2 =

i/
2 + x&quot;

2
. . (3}

b
2 a2

Adding (1) and (3), we have

70X / -
i // \ .

v + -TT

but _
_|_
2_ = l

;

hence, a 2
-f 6 2 == 2

-f ft
2

. . . (4)

98. To show that the parallelogram constructed on any two

conjugate diameters is equivalent to the rectangle constructed

on the axes.

Let P&quot;R
(
= 2a

), P R (
= 2ft

), Fig. 44, be any two conju
gate diameters. To prove that area CTC T = area BB H H.

The area of the parallelogram OP&quot;TR is

OR X P&quot;P.

From the figure P&quot;P = OP&quot; sin P&quot;OR

= a! sin (180 (&amp;lt;p 0) )
= a sin

(&amp;gt; &amp;lt;9) ;

.-. area of OP&quot;TR = afb sin
(&amp;lt;p

-
(9)

. . . (1)
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c
Fm. 44.

From the triangles OD P
, 0DP&quot;, we have

B

sn .y&quot;

OF V

Hence sin (qp 0)
= sin go cos 6 cos

g&amp;gt;

sin

Mb
ab

af
b
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Substituting this value in (1) and multiplying through by
4, we have

area OP&quot;TB X 4 = 4 ab
;

i.e., area CTC T&quot; = area BB H H.

99. To show that the ordinate of any point on the ellipse is

to the ordinate of the corresponding point on the circumscribing
circle as the semi-conjugate axis of the ellipse is to the semi-

transverse axis.

Let DP
,

DP&quot; be the ordinates of the corresponding points
P (* , /) and P&quot;

(x&quot;, y&quot;}.

Since P (x
r

, y ) is on the ellipse, we have

Since P&quot;
(x&quot;, y&quot;}

is on the circle whose radius is a, we have

Dividing these equations, member by member, we have
/ 7 2=

, (since oj = a;&quot; ) ;
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Similarly we may prove that

x 1 : x.2 :: a : b,

where Xi is the abscissa of any point on the ellipse, and x2 is

the corresponding abscissa of a point on the inscribed circle.

100. The principles of the preceding article give us a

method of describing the ellipse by points when the axes are

given.

From 0, Fig. 45, as a centre with radii equal to the semi-

axes OA, OB describe the circles A RA, BCB . Draw any
radius OB of the larger circle, cutting the smaller circle in M

;

draw MN
||
to OA

, cutting the ordinate let fall from R in N
;

N is a point of the ellipse. Since MJST is parallel to the base

of the triangle BD O, we have

D N : D R :: OM : OR
;

i. e., y y&quot;
b ^

;

hence, the construction.

101. To show that the area of the ellipse is to the area of

the circumscribing circle as the semi-minor axis of the ellipse is

to its semi-major axis.

FIG. 46.
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Inscribe in the ellipse any polygon AEE 1E2E3E4A/

, and
from its vertices draw the ordinates ED^D^ etc., producing
them upward to meet the circle in P, P 1? P2; etc. Joining
these points we form the inscribed polygon APP^P^A in
the circle.

Let (x, y ), (x , yj, (x&quot;, y2 ) etc., be the co-ordinates of

P, P 15
P2 , etc., and let

(a;, y), (x
r

, /), (aj&quot;, y&quot;), etc., be the co-ordi
nates of the corresponding points E, R 1} R2, etc., of the ellipse.

Then

Area

hence Area RPD.R,
Area

But, Art. 99,

a

Hence AreaRDD^
Area

We may prove in like manner that every corresponding pair
of trapezoids bear to each other this constant ratio; hence,
by the Theory of Proportion, the sum of all the trapezoids in
the ellipse will bear to the sum of all the trapezoids in the
circle the same ratio. Representing these sums by 2,t and
2T, respectively, we have

2* =
b

2T a

As this relationship holds true for any number of trape
zoids, it holds true for the limits to which the sum of the

trapezoids of the ellipse and the sum of the trapezoids of
the circle approach as the number of trapezoids increase.
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But these limits are the area of the ellipse and the area of

the circle
;
hence

area of ellipse b

area of circle a

COR. Since the area of the circle is TT a2
,
we have

area of ellipse b

TT a2 a

.. area of ellipse
= TT ab.

Since TT a 2
: TT ab : : TT ab : TT b*,

we see that the area of the ellipse is a mean proportional be

tween the areas of the circumscribed and inscribed circles.

EXAMPLES.

1. What must be the value of c in order that the line

y = 2 x + c may touch the ellipse

! + JL
2
== i ?

4 9
Ans. c = 5.

2. The semi-transverse of an ellipse is 10
;
what must be

the value of the semi-conjugate axis in order that the ellipse

may touch the line 2 y -\- x 14 = 0?
Ans. b = V24.

3. What are the equations of the tangents to the ellipse

~,2 ,,,2x
_i_ y i

&quot;*&quot;5 6

whose inclination to X-axis = 45 ?

4. The locus of the intersection of the tangents to the

ellipse -4 + = l
a2 b2

drawn at the extremities of conjugate diameters is an ellipse ;

required its equation.

Ans , + =2.
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5. Tangents are drawn from the point (0, 8) to the ellipse

a

f- + 2/
2 = i;

required the equation of the line joining the points of

tangency. Ans. 8 y 1 = 0.

Eequired the polar of the point (5, 6) with respect to the

following ellipses :

6. *2 3/2 = 9. 7. =1.

9. What are the polars of the foci ?

Ans. x = --
e

10. What is the pole of y = 3 x -f- 1 with respect to

. (- 12, 9).

11. The line 3 y = 5 x is a diameter of

T2 7/2

_^L _i_ iL _ i .

4 9

required the equation of the conjugate diameter.

Ans. 20 y + 27 # = 0.

12. A pair of conjugate diameters in the ellipse

T 2 ?/2

_-f JL.^1
16 9

o o

make angles whose tangents are ^ and
^, respectively,

with the X-axis
; required their lengths.

13. What is the area of the ellipse

?- + - = 1?
4 10

. 2 TT VlO.
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14. The minor axis of an ellipse is 10, and its area is equal

to the area of a circle whose diameter is 16
;
what is the length

of the major axis ? Ans. 25.

15. The minor axis of an ellipse is 6, and the sum of the

focal radii to a point on the curve is 16
; required the major

axis, the distance between the foci, and the area.

GENERAL EXAMPLES.

1. What is the equation of the ellipse which passes through

(2, 4) ( 2, 4), the centre being at the origin ?

2. The major axis of an ellipse is = 18, and the point

(6. 4) is on the curve
; required the equation of the ellipse.

1 13
3. The lines y = x + 6 and y = ~ x -f ^ are supplemen

tal chords drawn from the extremities of the transverse axis

of an ellipse ; required the equation of the ellipse.

4. The minor axis of an ellipse is = 12, and the foci and

centre divide the major axis into four equal parts ; required

the equation of the ellipse.

5. Assuming the equation of the ellipse show that the

sum of the distances of any point on the ellipse from the foci

is constant and = to the transverse axis.

6. The sub-tangent for a point whose abscissa is 2 is = 6

in an ellipse whose eccentricity is -
; required the equation

of the ellipse. AnSf ^L + ]_ = l.

7. What are the equations of the tangents to

which form with the X-axis an equilateral triangle ?

8. Show that the tangents drawn at the extremities of any

chord intersect on the diameter which bisects that chord.



THE ELLIPSE. 139

9. What are the equations of the tangents drawn at the
extremities of the latus-rectum ?

10. Show that the pair of diameters drawn parallel to the
chords joining the extremities of the axes are equal and
conjugate.

11. A chord of the ellipse

16
H

&quot;~9~

:

passes through the point (2, 3) and is bisected by the line

y x =
; required the equation of the chord.

12. What are the equations of the pair of conjugate diam
eters of the ellipse 16 ?/

2 + 9x2 = 144 which are equal ?

13.
^

Show that either focus of an ellipse divides the major
axis in two segments whose rectangle is equal (a) to the
rectangle of the semi-major axis and semi-parameter ; (&) to
the square of the semi-minor axis.

14. Show that the rectangle of the perpendiculars let fall
from the foci on a tangent is constant and equal to the square
of the semi-minor axis.

15. A system of parallel chords which make an angle whose
tangent = 2 with the X-axis are bisected by the diameter of
an ellipse whose semi-axes are 4 and 3; required the equation
of the diameter.

16. Show that the polar of a point on any diameter is

parallel to the conjugate diameter.

17. Find the locus of the vertex of a triangle having given
= 2 a, and the product of the tangent of the angles

at the base = -
.

^2

Ans.
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18. Find the locus of the vertex of a triangle having given

the base = 2 a, and the sum of the sides = 2 b.

Ans -

19. Find the locus of the intersection of the ordinate of

the ellipse produced with the perpendicular let fall from the

centre on the tangent drawn at the point in which the ordi

nate cuts the ellipse.

20. Find the locus generated by the intersection of two

tangents drawn at the extremities of two radii vectores (drawn
from centre) which are perpendicular to each other.

Ans. a^ bW = a2

21. A line of fixed length so moves that its extremities

remain in the co-ordinate axes
; required the locus generated

by any point of the line.

22. The angle AOP&quot; = y (Fig. 45) is called the eccentric

angle of the point P (# , tf) on the ellipse. Show that
(a; , ?/)

= (a cos cp, b sin
&amp;lt;p)

and from these values of the co-ordinates

deduce the equation of the ellipse.

23. Express the equation of the tangent at
(a;&quot;, y&quot;)

in terms

of the eccentric angle of the point.

Ans. - cos
q&amp;gt; 4-

y~ sin
&amp;lt;p

= 1.

a b

24. If (a/, ?/), (x&quot;, ?/ ) are the ends of a pair of conjugate

90.

diameters whose eccentric angles are cp and qo ,
show that



THE HYPERBOLA. 141

CHAPTER VIII.

THE HYPERBOLA.

102. THE hyperbola is the locus of a point so moving in a

plane that the difference of its distance from two fixed points

is always constant and equal to a given line. The fixed

points are called the Foci of the hyperbola. If the points

are on the given line produced and equidistant from its

extremities, then the given line is called the TRANSVERSE Axis

of the hyperbola.

103. To deduce the equation of the hyperbola, given the foci

and the transverse axis.

FIG. 47.

Let F, F be the foci, and AA the transverse axis. Draw
OY 1 to AA at its middle point, and take OY, OX as the
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co-ordinate axes. Let P be any point of the curve. Draw
PF. PF

;
draw also PD

||
to OY.

Then (OD, DP) = (x, y) are the co-ordinates of P.

Let AA = 2 a, FF = 2 OF == 2 OF = 2 c, FP = r and F P
= r

r
.

From the right angled triangles FPD and F PD, we have

r = Vy2 + (x ~c)
2 and / = Vy2 + (x + c)

2
. . . (a)

From the mode of generating the curve, we have

/ ? = 2 a.

Hence, substituting,

Vy2 + (x + c)
2 - V?/

2 + (x
-

c)
2 = 2a; . . . (1)

or, clearing of radicals and reducing, we have

(c*
_ a2

) x
2 - a2

if = a2

(c
2 - a2

)
... (2)

for the required equation. This equation, like that of the

ellipse (see Art. 75), may be put in a simpler form.

Let c
2 a2 = b

2
. . . (3)

This value in (2) gives, after changing signs,

or, symmetrically,

4- = l...(5)
a~ b~

for the equation of the hyperbola when referred to its centre

and axes.

Let the student discuss this equation. (See Art. 14)

Cor. 1. If b a in (5), we have

x2

if
= a2

. . . (6)

The curve represented by this equation is called the ^Equi

lateral Hyperbola. Comparing equation (6) with the equation

of the circle

we see that the equilateral hyperbola bears the same relation to

the common hyperbola that the circle bears to the ellipse.
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COR. 2. If (V, y ) and
(x&quot; , y&quot;)

are the co-ordinates of two

points on the curve, we have from (4)

y
2 = -*!

(x
2 - a2

) and if
2 = -*i

(35&quot;*

_ ^) ;a a2

hence /2
:

?/&quot;

2
:: (x

f

a) (x + a) :
(x&quot; a) (x&quot; -f a) ;

i.e., the squares of the ordinates of any two points on the

hyperbola are to each other as the rectangles of the segments in
which they divide the transverse axis.

COR. 3. By making x = x a and y = y
f
in (4) we have

after reducing and dropping accents,

V - b2 x 2 + 2 ab2x = ... (7)

for the equation of the hyperbola, A being taken as origin.

104. From equation (3) Art. 103, we have

b = 4- vr~

Laying this distance off above and below the origin on the

Y-axis, we have the points B, B
7

, Fig. 47, Art. 103. The line

BB i called the CONJUGATE Axis of the hyperbola. The
points A and A are called the VERTICES of the curve. The
point bisects all lines drawn through it and terminating in

the curve
;

for this reason it is called the CENTRE of the

hyperbola.

The ratio Vet2
-I- 62

&amp;gt;

- = 1 = e. See (3) Art. 103 ... (ra a

is called the ECCENTRICITY of the hyperbola. This ratio is

evidently &amp;gt; 1. The value of c = -t Va 2 + b2 measures the
distance of the foci F, F from the centre.

If b = a in
(1), we have e = V2 for the eccentricity of the

equilateral hyperbola.

105. To find the values of the focal radii, r, r of a point
on the hyperbola in terms of the abscissa of the point.
From equations (a) Art. 103, we have
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From the equation of the hyperbola, (4) Art. 103, we have

Hence, substituting

r = \/ x2 b 2 + x2 2 ex + c
2

,

V a2

a2
,

Art. 104 (1),

= x a :

hence r = ex a ... (1)

Similarly, we find

/ = ex + a . . . (2)

106. Tio construct the hyperbola having given the transverse

axis and the foci of the curve.

FIG. 48.

First Method. Let AA be the transverse axis and F, F ,
the

foci. Take a straight-edge ruler whose length is L and attach
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one of its ends at F so that the ruler can freely revolve about

that point. Cut a piece of cord so that its length shall be

= L 2 a, and attach one end to the free end of the ruler,

and the other end to the focus F. Place the ruler in the

position indicated by the full lines, Fig. 48, and place the

point of a pencil in the loop formed by the cord. Stretch

the cord, keeping the point of the pencil against the edge of

the ruler. If we now revolve the ruler upward about F
,
the

point of the pencil, kept firmly pressed against the ruler,

will describe the arc AP of the hyperbola. By fixing the

end of the ruler at F, we may describe an arc of the other

branch. It is evident in this process that the difference of

the distances of the point of the pencil from the foci F ,F,

is always equal to 2 a.

Second Method. Take any point D on the transverse axis.

Measure the distances A D, AD. With F as a centre and A D
as a radius describe the arc of a circle

;
with F as a centre and

AD as a radius describe another arc. The intersection of

these arcs will determine two points, P 1? P2 ,
of the curve. By

interchanging centres and radii we may locate the points E, 1?

R2 &amp;gt;

n the other branch. In this manner we may determine as

many points as the accuracy of the construction may require.

107. To find the lotus-rectum or parameter of the hyperbola.

The LATUS-RECTUM, or PARAMETER of the hyperbola, is the

double ordinate passing through either focus.

Making x = -j- V&2 + b 2 in the equation of the hyperbola

we have y = .-. 2 y = .

a a

Forming a proportion from this equation, we have

2y:2b ::b:a-,

i.e, the latus-rectum of the hyperbola is a third proportional to

the axes.
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108. The equation of the ellipse when referred to its centre

and axes is

a 2

y
2

-+- b 2x 2 = a2
b2

.

The equation of the hyperbola when referred to its centre

and axes is

Comparing these equations, we see that the only difference

is in the sign of b
2

. If, therefore, in the various analytical

expressions we have deduced for the ellipse, we substitute
- b

2 for &
2
, or, what is the same thing, + I V 1 for b, we

will obtain the corresponding analytical expressions for the

hyperbola.

109. To deduce the equation of the conjugate hyperbola.
Two hyperbolas are CONJUGATE when the transverse and con

jugate axes of one are respectively the conjugate and trans

verse axes of the other.

FIG. 49.

Thus in Fig. 49, if AA be the transverse axis of the hyper

bola which has BB for its conjugate axis, then the hyperbola

which has BB for its transverse axis and AA for its conjugate
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axis is its conjugate; and, conversely, the hyperbola whose

transverse axis is BB and conjugate axis is AA has for its

conjugate the hyperbola whose transverse axis is AA and

whose conjugate axis is BB .

We have deduced, Art. 103, (5),

* - = 1 . . (1)
a 1 b 2

for the equation of the hyperbola whose transverse axis lies

along the X-axis. We wish to find the equation of its conju

gate. It is obvious from the figure that the hyperbola which

has BB for its transverse axis and AA for its conjugate axis

bears the same relation to the Y-axis as the hyperbola whose

transverse axis is AA and conjugate axis is BB bears to the

X-axis
; hence, changing a to I and b to a, x to y and y to x

in (1), we have

- = -...

for the equation of the conjugate hyperbola to the hyperbola
whose equation is (1).

Comparing (1) and (2) we see that the equation of any

hyperbola and that of its conjugate differ only in the sign of
the constant term.

COR. Since V^2 + u2 = V 2 + b 2
,

the focal distances of

any hyperbola and those of its conjugate are equal.

The eccentricities of conjugate hyperbolas, however, are

not equal. For the hyperbola whose semi-transverse axis is

a and semi-conjugate axis is b, we have

Art. 104, (1) e = Vj .

For its conjugate hyperbola, we have
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EXAMPLES.

Find the semi-axes, the eccentricity and the- latus-rectum

of each of the following hyperbolas :

1. 9 2,2
_ 4 X 2 = _ 36 5. 3 y

2 - 2 cc
2 = 12.

2. ^1 - -^! = 1. 6. a?/
2 bx* = - aft.

4 9

3. ?/
2 - 16 x 2 = - 16. 7. -

if = m.
4

4. 4 z2 - 16 y
z = - 64. 8. y

2 - ma? = TO.

Write the equation of the hyperbola having given :

9. The transverse axis = 12
;

the distance between the

foci = 16.

10. The transverse axis = 10
; parameter = 8.

Ans. -- = l.

25 20

11. Semi-conjugate axis = 6
;
the focal distance = 10.

X2
?/

2--
j

64 36

X ?/ .&amp;lt;

Ans. -- L 1.

12. The equation of the conjugate hyperbola, x2 3 if
= 6.

Ans. x2 - 3 y
z + 6 = 0.

13. The conjugate axis is 10, and the transverse axis is

double the conjugate.
A 3?
Ans -

Io

14. The transverse axis is 8, and the conjugate axis =
distance between foci.

-f-16 ID



THE HYPERBOLA. 149

15. Given the hyperbola
2 ,,2

.2 jr _ i .

10 4

required the co-ordinates of the point whose abscissa is double

its ordinate.

l
2Vf Vj

16. Write the equation of the conjugate hyperbola to each

of the hyperbolas given in the first eight examples above.

17. Given the hyperbola 9 y
2 4 x* = 36

; required the

focal radii of the point whose ordinate is = 1 and abscissa

positive.

18. Determine the points of intersection of

^~ = 1. and + $- = 1.49 16 16

110. To deduce the polar equation of the hyperbola, either

focus being taken as the pole.

Let us take F as the pole, Fig. 47.

Let (FP, PFD) = (r, 0) be the co-ordinates of any point P
on the curve. From Art. 105, (1), we have

FP = r = ex - a . . . (1)

From Fig. 47, OD = OF + FD
;

i.e., x = ae -f- r cos 0.

Substituting this value in (1) and reducing, we have

a (I - ^
1 e cos

... (2)

for the polar equation of the hyperbola, the right hand focus

being taken as the pole.

Similarly from Art. 105, (2), we have

/ = * a - *
2
)

. (3)
1 - e cos

for the polar equation, the left hand focus being the pole.
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COR. If =
0, r = a ae = FA

,

/ = a + ae = F A.

If = 90,

r = a -f- ae2 = - = = semi-latus rectum.

r = a ae2 = = = semi-latus rectum.
a a

If = ISO
,
r = - a + ae = FA,
T = a -ae= - F A .

b 2

If $ _ 270 r = a 4- ae2 = semi-latus rectum.
a

r = a ae2 = = semi-latus rectum.
a

111. To deduce the equation of condition for the supple

mentary chords of the hyperbola.

By a method similar to that of Art. 81, or by placing b~

for b2 in (3) of that article, we have

=

aa

hence, the product of the slopes of any pair of supplementary

chords of an hyperbola is the same for every pair.

COR. If a = b, we have
1

ss 1, or, s =
,

S

. . tan = cot
;

hence, the sum of the two acute angles which any pair of sup

plementary chords of an equilateral hyperbola make ivith the

X-axis is equal to 90.

112. To deduce the equation of the tangent to the hyperbola.

By a method entirely analogous to that adopted in the

circle, or ellipse, or parabola, Arts. 41, 82, 57
;
or substituting

- b2 for b
2 in (5) of Art. 82, we find

xx&quot; yy&quot;_ 1 a)
~a7&quot; b2

&quot;

to be the equation of the tangent to the hyperbola.
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113. To deduce the value of the sub-tangent.

By operating on (1) of the preceding article (see Art. 83),
we find

Sub-tangent = x&quot;
- *- = x &quot;* ~ a*

.

114. The slope of a line passing through the centre of an

hyperbola (0, 0) and the point of tangency (x&quot;, y&quot;)
is

x

The slope of the tangent is, Art. 112, (1)

t = .*1 ^L
a2

y&quot;

Multiplying these equations, member by member, we have

=
$... a)

Comparing (1) of this article with (1) of Art. Ill, we find

ss = tt . . . (2)

Hence, the line from the centre of the hyperbola to the

point of tangency and the tangent enjoy the property of being
the supplemental chords of an hyperbola whose semi-axes

bear to each other the ratio - .

a

COR. If s = t, then s = t
; i.e., if one supplementary

chord of an hyperbola is parallel to a line drawn through the

centre, then the other supplementary chord is parallel to the

tangent drawn to the curve at the point in which the line

through the centre cuts the curve.

115. The preceding principle affords us a simple method
of drawing a tangent to the hyperbola at any given point of
the curve.
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FIG. 50.

Let P be any point at which we wish to draw a tangent.

Join P7 and 0, and from A7 draw A C
||
to P O

; join C and A.

The line P T, drawn from P
||

to CA will be the required

tangent.

116. To deduce the equation of the normal to the hyperbola.

We can do this by operating on the equation of the tangent,

as in previous cases, or by changing b
2 into b&quot; in the equa

tion of the normal to the ellipse, Art. 86, (3). By either

method, we obtain

for the required equation.

117. To deduce the value of the sub-normal.

By a course of reasoning similar to that of Art. 87, we have

7/2
*/sub-normal =

$-
%

d

COR. If b = a,

sub-normal = x&quot;
;

i.e., in the equilateral hyperbola the sub-normal is equal to

the abscissa of the point of tangency.
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EXAMPLES.

1. Deduce the polar equation of the hyperbola, the pole

being at the centre.

7.2 = ^!__
a2 sin2

-\- b 2 cos 2

Write the equation of the tangents to each of the follow

ing hyperbolas, and give the value of the sub-tangent in

each case.

2. 9 y
2 - 4 x2 = -

36, at (4, ord. +).

3. - - -~ = -
1, at (5, ord. +).

4 -
&quot;I T7T

= J at
(
4

&amp;gt;

Ord +)

5. y
i ._ 4 ^2 = _ 36j at

6. a?/
2 to 2 = abj at (aft, ord. +).

7. ^1-J^ = 1, at (Vm, 0).m 7^

8. Write the equation of the normal to each of the above

hyperbolas, and give the value of the sub-normal in each

case.

9. The equation of a chord of an hyperbola is y x 6

=
;
what is the equation of the supplemental chord, the

axes of the hyperbola being 12 and 8 ?

A 4 8
Ans. y = - x - _ .

10. Given the equations

Y-
- -

-f-
= ~

1, and y - x =
;

required the equations of the tangents to the hyperbola at the

points in which the line pierces the curve.
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11. One of the supplementary chords of the hyperbola

9 ?/2
_ if} xz = _ 144 i s parallel to the line y -=x

;
what are

the equations of the chords ?

Ans. 16
aj _16.

(
y

9 3

12. Given the hyperbola 2x 2 3 if = 6
; required the

equations of the tangent and normal at the positive end of

the right hand focal ordinate.

13. What is the equation of a tangent to

x2
if _ _,T &quot;T

:

which is parallel to the line 2?/ x + l = 0?

118. The angle formed by the focal lines drawn to any point

of the hyperbola is bisected by the tangent at that point.

Making y o in the equation of the tangent line, Art.

112, (1), we have

x = = OT. Fig. 50.
x

From Art. 104, (1) OF = OF = ae
;

9

hence OF - OT = FT = ae - -^ = \ (ex&quot;

-
a).

x x

OF + OT = F T =ae + -^ = ~-
(ex&quot; + a);

JC **.

.-. FT : F T :: ex&quot;
- a : ex&quot; + a.

But from Art. 105 we have

FF = ex&quot; a

FT = ex&quot; + a
;

.-. FF : FT :: ex&quot;
- a : ex&quot; + a.

Hence FT : F T :: FF : FT
;

i.e., the tangent P T divides the base of the triangle FFF
into two segments, which are proportional to the adjacent

sides
;

it must therefore bisect the angle at the vertex.
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COR. Since the normal P N, Fig. 50, is perpendicular to

the tangent, it bisects the external angle formed by the focal

radii.

SCHOL. The principle of this article gives us another

method of drawing a tangent to the hyperbola at a given

point. Let P be the point, Pig. 50. Draw the focal radii

FP
,
FT . The line P T drawn so as to bisect the angle

between the focal radii will be tangent to the curve at P .

119. To find the condition that the line y = sx + c must

fulfil in order that it may touch the hyperbola

^ K = l
a2

b
2

By a method similar to that employed in Art. 89, we find

s2 a 2
b2 = c

2
. . . (1)

for the required condition.

COR. 1. Substituting the value of c drawn from (1) in the

equation of the line, we have

y = sx 4- sV - b2 ... (2)

for the equation of the tangent to the hyperbola in terms of its

slope.

120. To find the locus generated by the intersection of a

tangent to the hyperbola and a perpendicular to it from a focus
as the point of tangency moves around the curve.

x2
-f if = a2

. . . (1)

is the equation of the required locus. (See Art. 90.)

121. To find the locus generated by the intersection of tivo

tangents which are perpendicular to each other as the points of

tangency move around the curve.

x* +if = a2
b* . . . (1)

is the equation of the required locus. (See Art. 91.)
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122. Two tangents are draivn to the hyperbola from a point
without ; required the equation of the line joining the points of

tangency. ^ _ yy_ = i . . . (i)
a2 b

2

is the required equation. (See Art. 92.)

123. To find the equation of the polar of the pole (x
1

, / ),

with regard to the hyperbola

_-!... (1,

is the required equation. (See Arts. 49 and 93.)

124. To deduce the equation of the hyperbola when referred

to a pair of conjugate diameters.

A pair of diameters are said to be conjugate when they are so

related that the equation of the hyperbola, when the curve is

referred to them as axes, contains only the secondpowers of the

variables.
~2 ,,,2- %- = 1 . : . (1)
a 2 b 2

is the required equation, and

a2 sin sin
&amp;lt;p

b
2 cos 9 cos y = 0,

or tan 6 tan
q&amp;gt;

= ~ . . . (2)
a 2-

is the condition for conjugate diameters. (See Art. 94.)

COR. From the form of (1) we see that all chords drawn

parallel to one of two conjugate diameters are bisected by the other.

SCHOL. From Art. Ill, (1) we have

hence ss = tan tan
&amp;lt;p.

If, therefore, s = tan 0, we have s = tan cp ; i.e., if one of

tivo conjugate diameters is parallel to a chord, the other conju

gate diameter is parallel to the supplement of that chord.
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From Art. 114 we have

hence

= il;
a2

tt = tan tan

If, therefore, t = tan 0, we have t = tan
&amp;lt;p ; i.e., if one of

two conjugate diameters is parallel to a tangent of the hyper

bola, the other conjugate diameter coincides with the line joining

the point of tangency and the centre.

125. From the condition for conjugate diameters,

b
2

tan tan 9?
= .

a*

we see that the products of the slopes of any pair of conju

gate diameters is positive; hence, the slopes are both positive
or both negative. It appears, therefore, that any two conju

gate diameters must lie in the same quadrant.

126. To find the equation of a conjugate diameter.

FIG. 51.
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Let P&quot;R&quot; be any diameter
;
then P B/, drawn through the

centre parallel to the tangent at P&quot; (P
/AN

) will be its con

jugate diameter. Art. 124, Schol.

The equation of the tangent at P&quot;
(#&quot;, y&quot;)

is

a2 b
2

hence, the equation of P B is

xx&quot;
_ yy&quot; _ *

7)2
&quot;

or y = ^.^x . . (2)a 2

y&quot;

But ^ = cot P&quot;OX = 1
;

V s

is the equation of a diameter in terms of the slope of its conju

gate diameter.

127. To find the co-ordinates of either extremity of a

diameter, the co-ordinates of one extremity of its conjugate

diameter being given.

Let the co-ordinates of P&quot;
(x&quot;, y&quot;), Fig. 51, be given.

By a course of reasoning similar to that of Art. 96, we find

The upper signs correspond to the point P (x
f

, y ) ;
the

lower signs to the point B/
(

x
, y }.

128. To show that the difference of the squares of any pair

of semi-conjugate diameters is equal to the difference of the

squares of the semi-axes.

By a course of reasoning similar to that of Art. 97, or, by

substituting
- b2 for b\ - b

2 for b
2 in (4) of that article, we

find

a * - b 2 = a2 - b 2
. . . (1)
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COR. If a = b, then a = b
f

; i.e., the equilateral hyperbola
has equal conjugate diameters.

129. To show that the parallelogram constructed on any two

conjugate diameters is equivalent to the rectangle constructed

on the axes.

By a method similar to that of Art. 98, we can show that

4 a b
r
sin

(g&amp;gt;

-
0)
= 4 ab

;

i.e., Area MNM N = Area CDC D . Fig. 51.

EXAMPLES.

1. The line y = 2 x + c touches the hyperbola

_ ,y _ -i .

9
&quot;&quot;

4
=

what is the value of c ?

Ans. c = -L, V32.
2. A tangent to the hyperbola

_*! j = i

10 12

has its Y-intercept = 2
; required its slope and equation.

Ans. VI76
; y = VlTO x + 2.

3. A tangent to the hyperbola 4?/
2 2x2 = 6 makes an

angle of 45 with the X-axis
; required its equation.

4. Two tangents are drawn to the hyperbola 4 y
2 9 x2 =

- 36 from the point (1, 2) ; required the equation of the chord
of contact.

Ans. 9 x 8 y = 36.

5. What is the equation of the polar of the right-hand
focus ? Of the left-hand focus ?

6. What is the polar of (1, ) with regard to the hyperbola
4 if x2 = 4 ? ^5. cc 2 ?/

= 4.

7. Find the diameter conjugate to y = x in the hyperbola
.2
J/_
16

Ans. y =
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8. Given the chord y = 2 x -f- 6 of the hyperbola

^ _ t. = 1
;

9 4

required the equations of the supplementary chord.

Ans. y = x .

9. In the last example find the equation of the
pair&quot;

of

conjugate diameters which are parallel to the chords.

Ans. y = 2 x, 9 y = 2 x.

10. The point (5, ^) lies on the hyperbola 9 if 16 x 2 =
144

; required the equation of the diameter passing through
it

;
also the co-ordinates of the extremities of its conjugate

diameter.

130. To deduce the equations of the rectilinear asymptotes

of the hyperbola.

An ASYMPTOTE of a curve is a line passing within a finite

distance of the origin which the curve continually approaches,

and to which it becomes tangent at an infinite distance.

FIG. 52.
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The equation of the hyperbola whose transverse axis lies

along the X-axis may be put under the form

y* = ~ (^ - 2
) ... (i)

(ju

The equations of the diagonals, DD ,
CO

,
of the rectangle

constructed on the axes AA
,
BB are

y = -x,
a

7,2

or, squaring, y&quot;

2- = x2
. . . (2)

a/

where y
r

represents the ordinates of points on the diagonals.
Let P (x, y] be any point on the X-hyperbola ;

and let D&quot;

(x, y } be the corresponding point on the diagonal DD . Sub

tracting (1) from (2) and factoring, we have

&amp;lt;y-z/)0/+2/)
= 2

;

hence y
r

y = D&quot;P = -
. . (3)

y + y

As the points D&quot;,
P recede from the centre, 0, their ordi

nates
D&quot;]ST,

P N increase and become infinite in value when
D&quot; and P are at an infinite distance. But as the ordinates

increase the value of the fraction (3), which represents their

difference, decreases and becomes zero when y and y are

infinite
; hence, the points D&quot; and P are continually approach

ing each other as they recede from the centre until at infinity

they coincide. But the locus of D&quot; during this motion is the
infinite diagonal DD

; hence, the diagonals of the rectangle
constructed on the axes of the hyperbola are the asymptotes of
the curve.

Therefore y = + *
x and y = - - x

a a
are the required equations.

COB. 1. If a = b, then

y = -4- x and ?/
= x

;

i.e., the asymptotes of the equilateral hyperbola make angles of
45 with the X-axis.
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COR. 2. The equation of the hyperbola CODjugate to (1)

may be put under the form

Subtracting (1) from (4), we have

y _ y = p i p/ == _

hence, aw hyperbola and its conjugate are curvilinear asymp
totes of each other.

COR. 3. Subtracting (2) from (4), we have

ti&quot; i, &quot;P Y\&quot;y y -=
&quot;\v

-jr~&amp;gt; / &amp;gt;

y +y
hence, if/ie rectilinear asymptotes of an hyperbola and of its con

jugate are the same.

131. To deduce the equation of the hyperbola when referred

to its rectilinear asymptotes as axes.

FIG. 53.

The equation of the hyperbola when referred to OY, OX,
is
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We wish to ascertain what this equation becomes when

OY
,
OX the rectilinear asymptotes are taken as axes.

Let P be any point of the curve
;
let Y OX = XOX = 0.

Then (OC, CF) = (x, y) ; (OD, DP )
= (x , y }.

From the figure, OC = OK + DR
;
CP = RP - DK

;

i.e., x = (x
f + y

r

)
cos (9

; y = (ij
- x ) sin B.

But from the triangle OAB, we have

sin (9 =
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132. To deduce the equation of the tangent to the hyperbola
when the curve is referred to its rectilinear asymptotes as axes.

Y,

FIG. 54.

By a course of reasoning similar to that employed in Arts,

41, 57, 82, we find the required equation to be

y-Y = -^(*-*&quot;) ... (i)
X

or, symmetrically,

1^=2... (2)
-

COR. If we make y = in (2), we have

x = 2 x&quot; = OT. Fig. 54.

But OM =
x&quot;,

.-. OM = MT .-. T D = TD
;

hence, the point of tangency in the hyperbola bisects that por
tion of the tangent included between the asymptotes.
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133. Since D
(x&quot;, ?/&quot;)

is a point of the hyperbola, we have

(see Fig. 54)
4

x&quot;y&quot;

= a2 + b\

or 2 x&quot; . 2 if = a2 + b
2

;

i.e., OT . OT = a2 + b
2

. . . (1)

hence, the rectangle of the intercepts of a tangent on the asymp

totes is constant and equal to the sum of the squares on the

semi-axes.

134. From (1) of the last article we have, after multiply

ing through by
sm ^ -

,

OT fYlv n- J_ A2

-^L- sin 20 =
&quot;f-^-

sin 2 = (a
2 + b2

) sin cos 0.

But, Art. 131,

sin = -J
,
cos = (t

;

Va 2 + 6 2 Va2 + b2

OT or
hence sin 2 = a&

;

i.e., arm OTT = arm OAD B.

.-. Ae triangle formed by a tangent to the hyperbola and its

asymptotes is equivalent to the rectangle on the semi-axes.

135. Draw the chord RB/, Fig. 54, parallel to the tangent
T T. Draw also the diameter OL through D.

Since TD = T D, we have B/L = BL.
Since OL is a diameter, we have LK = LH

;
hence

B L LK = BL LH
;

i.e., B K = BH
;

hence, the intercepts of a chord between the hyperbola and its

asymptotes are equal.
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EXAMPLES.

1. What are the equations of the asymptotes of the hyper-
~2 ,.2

bola f-g-
Ans. y = -J- | x.

What are the equations of the asymptotes of the follow

ing hyperbolas :

_.

3. 3 ^2
_ 2 ^2 = _ 5 mx 2 _ Uy 2 = c

Ans. y = -^ Vf x.

6. What do the equations given in the four preceding ex

amples become when the hyperbolas which they represent are

referred to their asymptotes as axes ?

7. The semi-conjugate axis of the hyperbola xy = 25 is

6
;
what is the value of the semi-transverse axis ?

Ans. 8.

What are the equations of the tangents to the following

hyperbolas :

8. To xy = 10. at (1, 10).
Ans. y + 10 x = 20.

9. To xy = + 12, at (2, 6).
Ans. y = 3 x -\- 12.

10. To xy m, at
( 1, m).

11. To xy = -
p, at ( 2,

\ /

12. Required the point of the hyperbola xy = 12 for which

the sub-tangent = 4.

Ans. (4, 3).

13. The equations of the asymptotes of an hyperbola

whose transverse axis = 16 are 3 y = 2 x and 3 y + 2 x =
;

required the equation of the hyperbola.

64
&quot;

256
*
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14. Prove that the product of the perpendiculars let fall

from any point of the hyperbola on the asymptotes is con
stant and

GENERAL EXAMPLES.

1. The point (6, 4) is on the hyperbola whose transverse is

10
; required the equation of the hyperbola.

Am. -
25 400

2. Assume the equation of the hyperbola, and show that
the difference of the distances of any point on it from the
foci is constant and = 2 a.

3. Required the equation of the hyperbola, transverse
axis = 6, which has 5 y = 2 x and 3 y = 13 x for the equa
tions of a pair of conjugate diameters.

An*. ^_^/_2

= 1
9 78

4. Show that the ratio of the sum of the focal radii of any
point on the hyperbola to the abscissa of the point is con
stant and = 2 e.

5. What are the conditions that the line y = sx -f c must
fulfil in order to touch

-^
- -- = 1 at infinity ?

a 2
b 2 J

Ans. s = _L_
-

,
c = 0.

a
6. Show that the conjugate diameters of an hyperbola are

also the conjugate diameters of the conjugate hyperbola.
7. Show that the portions of the chord of an hyperbola

included between the hyperbola and its conjugate are equal.
8. What is the equation of the line which passes through

the focus of an hyperbola and the focus of its conjugate
hyperbola ?

Ans. x
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9. Show that

^ = b_
e a

when e and e are the eccentricities of two conjugate hyper
bolas.

10. Find the angle between any pair of conjugate diame

ters of the hyperbola.

11. Show that in the hyperbola the curve can be cut by

only one of two conjugate diameters.

12. Find whether the line y = f x intersects the hyperbola
16 y~ 9 x2 = 144, or its conjugate.

13. Show that the conjugate diameters of the equilateral

hyperbola make equal angles with the asymptotes.

14. Show that lines drawn from any point of the equilat

eral hyperbola to the extremities of a diameter make equal

angles with the asymptotes.

15. In the equilateral hyperbola focal chords drawn parallel

to conjugate diameters are equal.

16. A perpendicular is drawn from the focus of an hyper

bola to the asymptote : show

(a) that the foot of the perpendicular is at the distance a

from the centre, and

(b) that the foot of the perpendicular is at the distance b

from the focus.

17. For what point of an hyperbola is the sub-tangent =
the sub-normal ?

18. Show that in the equilateral hyperbola the length of

the normal is equal to the distance of the point of contact

from the centre.

19. Show that the tangents drawn at the extremities of any

chord of the hyperbola intersect on the diameter which

bisects the chord.



THE HYPERBOLA. 169

20. Find the equation of the chord of the hyperbola

J?L - J^! =1
9 12

which is bisected at the point (4, 2).

21. Required the equations of the tangents to

J*L. I*- = 1
16 10

which make angles of 60 with the X-axis.

22. Show that the rectangle of the distances intercepted on

the tangents drawn at the vertices of an hyperbola by a

tangent drawn at any point is constant and equal to the

square of the semi-conjugate axis.

23. Given the base of a triangle and the difference of the

tangents of the base angles ; required the locus of the vertex.

24. Show that the polars of (m, n) with respect to the

hyperbolas

^1 _ J/l = 1, ll - ^1 = 1 are parallel.
a2

b* V2 a2

25. If from the foot of the ordinate of a point (x, y) of the

hyperbola a tangent be drawn to the circle constructed on

the transverse axis, and from the point of tangency a line be

drawn to the centre, the angle which this line forms with the

transverse axis is called the eccentric angle of (x, y). Show

that (x, y) = (a sec go, b tan go),
and from these values deduce

the equation of the hyperbola.

26. If (x
r

, y ), (x&quot;, y&quot;)
are the extremities of a pair of

conjugate diameters whose eccentric angles are go and cp, show

that
&amp;lt;p
+

&amp;lt;p

= 90.
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CHAPTER IX.

THE GENERAL EQUATION OF THE SECOND DEGREE.

136. The most general equation of the second degree be

tween two variables is

ay
2 + bxij + ex2 + dy + ex +f= . . . (1)

in which a, b, c, d, e, /are any constant quantities whatever.

To investigate the properties of the loci which this equation

represents under all possible values of the constants as to

sign and magnitude is the object of this chapter.

137. The equations of the lines in a plane, with which we

have had to do in preceding chapters, are

Ax -f By + C = 0. Straight line.

(Ax + B# + C)
2 = 0. Two coincident straight lines.

2/2
_ yS.

_ o. Two straight lines.

7/2 _j_ x
2 = a2

. Circle.

7/2 _|_ x
t _ o. Two imaginary straight lines.

7/
2 = 2px. Parabola.

0,2^2 _|_ 2^,2 = a2^ Ellipse.

ay _ tfx- = crb2
. Hyperbola.

a2^2 _ #83.2 = a2j^ Hyperbola,

Comparing these equations with the general equation, we

see that all of them may be deduced from it by making the

constants fulfil certain conditions as to sign and magnitude.

We are, therefore, prepared to expect that the lines which

these equations represent will appear among the loci repre

sented by the general equation of the second degree between

two variables. In the discussion which is to ensue we shall

find that these lines are the only loci represented by this

equation.
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DISCUSSION.

138. To show that the locus represented by a complete equa
tion of the second degree between two variables is also represented

by an equation of the second degree between two variables, in

which the term containing xy is wanting.
Let us assume the equation

aif + bxy + ex* +dy + ex +f= . . . (1)

and refer the locus it represents to rectangular axes, making
the angle with the old axes, the origin remaining the same.

Prom Art. 33, Cor. 2, we have

x = x cos 6 y sin

y x sin 6 + y cos

for the equations of transformation. Substituting these values

in (1), we have,

ay* + b x
y&amp;gt; + CV2 + d y + e x +/= . . . (2)

in which

a! = a cos 2 + c sin 2 6 b sin cos
}

V = 2 (a c) sin B cos + b (cos
2 6 sin 2

0)
c = a sin2

-\- c cos 2 + 6 sin cos I . . . (3)
d! = d cos e sin

e = d sin -J- e cos

Since 0, the angle through which the axes have been turned,
is entirely arbitrary, we are at liberty to give it such a value

as will render the value of b equal to zero. Supposing it to

have that value, we have

2 (a c) sin cos 6 + b (cos
2 - sin 2

0)
=

0,

or (a c) sin 2 -f b cos 2 =
. . . (4)

or tan 20 = ^
. (5)

c a

Since any real number between -f- GO and o&amp;gt; is the tan

gent of some angle, equation (5) will always give real value

for 20; hence the above transformation is always possible.

Making b = in (2), we have, dropping accents,
a lf + eV + d y + e x +f = . . . (6)

for the equation of the locus represented by (1). To this

equation, then, we shall confine our attention.
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COR. 1. To find the value of a and c in terms of a, b,

and c. Adding and then subtracting the first and third of

the equations in (3), we have

c + a = c + a . . . (7)

c - a =
(c
-

a) cos 2 + b sin 2 ... (8)

Squaring (4) and adding to the square of (8), we have

... c - a = V(c - a)
8 + b* . . . (9)

Subtracting and then adding (7) and (9), we have

a = i\ G + a- V(c - ay +Tj . . . (10)

c = $ \c + a + V(c-a)
2 + ^ (11)

COB. 2. To find the signs of a! and c . Multiplying (10)

and (11), we have

y = i |(C + &amp;lt;0

2 -(( --
) + *

2

)h

... a c = -
i (V - 4 ac) . . - (12)

Hence, the si#?is of a and c depend upon the sign of the

quantity b
2 4 ac.

The following cases present themselves :

1. 62
&amp;lt;

4 ac. The sign of the second member of (12) is

positive, .-. a and c are both positive, or both negative.

2. b
2 = 4 ac. The second member of (12) becomes zero, .-.

a = 0, or c = 0.

[It will be observed that a and c cannot be equal to zero

at the same time, for such a supposition would reduce (6) to

an equation of the first degree.]

3. b
2

&amp;gt;
4 ac. The sign of the second member of (12) is

negative, .-. a must be positive and c negative, or a must be

negative and c positive.

139. To transform the equation a if + c x2
-f a

7

?/ + e a -f

f=Qinto an equation in which the first powers of the vari

ables are missing.
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Let us refer the locus to a parallel system of rectangular

axes, the origin being at the point (m, n). From Art. 32, we
have

x = m + a
, y = n + y .

Substituting these values in the given equation, we have

y2 + c
fx * + d&quot;ij + e&quot;x +f&quot;

= . . . (2)

in which

d&quot; = 2 a n + d
]

c&quot; = 2 c w -f e
f

*
(
3
)

/&quot;
= a ?i

2 + c m2 + rf w- + e ??t +/ j

Since m and w are entirely arbitrary, we may, in general,

give them such values as to make

2 a n + d = and 2 c w -f e =
;

i.e., in general, we may make

n = and m = . . (4)
2 a 2 c

f

We see from these values that when a! and c are not zero,

this transformation also is possible ;
and equation (2) becomes,

after dropping accents,

a if +cV+/&quot; = ... (5)

Equation (5), we observe, contains only the second power of

the variables
;
hence it is satisfied for the points (x, y) and

( a?, y). But only the equation of curves with centres

can satisfy this condition
; hence, equation (5) is the equa

tion of central loci. When either a f
or &amp;lt;/ is zero, then n or in

is infinite and the transformation becomes impossible. Hence
arise two cases which require special consideration.

140. CASE 1. a! == o.

Under this supposition equation (6), Art. 138, becomes

cV-MV + ^+/=0 ... (1)

Referring the locus of this equation to parallel axes, the

origin being changed, we have for the equations of trans

formation

x = m + x
, y = n -f- y .
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Substituting in (1), we have

CV2 + dy + (2 c m + e )
x + c m* + d n + e m +f=Q . . . (2)

Now, in general, we may give m and w such values as to

make
2 c m + e = 0, and c m2 + d w + e m +/= ;

i.e., we may make

m =
f ,

and

mg
-|- e^/^i, -f-/ _ e

2
4/c

7

^x 4 rZ c
V

If d is not zero (since a! = 0, c is not zero), this transfor

mation is possible and (2) becomes, after dropping accents,

c x2
-\- d y = 0,

Or jr
2 _ a

, /Q\

-^^... (3)

COR. If d =
0, (1) becomes

c x* + e x+f=0 ... (4)

or, solving with respect to x,

141. CASE 2. c = o.

Under this supposition equation (6),
Art. 138, becomes

Transforming this equation so as to eliminate ?/ and the

constant term, by a method exactly similar to that of the

preceding article, we find

dr

n =
J*

d * - 4 a!fnyi J_
A i r4fcV

and, if e is not zero, we have (of is not zero since c = 0)

f=--,* (2)
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COB. If e = 0, equation (1) becomes

142. Summarizing the results of the preceding articles, we
find that the discussion of the general equation

aif + bxy + ex2 + dy + ex +/ =
has been reduced to the discussion of the three simple forms :

1. a!if + cV + /&quot;
= 0. Art. 139, (5)

\

x2 = - . y . Art. 140, (3)
c

= --
f
x. Art. 141, (2)

^-. Art. 140, (5)

3.

^-. Art. 141, (3)

The discussion now involves merely a consideration of the

sign and magnitude of the constants which enter into these

equations.

143. tf
&amp;lt;

4 ac.

Under this supposition, since of and d are both positive or

both negative, Art. 138, Cor. 2, neither a! nor c can be zero
;

hence, forms 2 and 3 of the preceding article are excluded
from consideration.

The first form becomes either

or a y c a

in which of and c
f

may have any real value and
f&quot; may have

any sign and any value. Hence arise four cases :



176 PLANE ANALYTIC GEOMETRY.

CASE 1. If
f&quot;

has a sign different from that of a and c
,

equations (1) are equations of ellipses whose semi-axes are

GASP: 2. If
f&quot;

has the same sign as that of a and c
, equa

tions (1) represent imaginary curves.

CASE 3. If a = c and
f&quot;

has a different sign from that of

a and e
, equations (1) are equations of circles. If

/&quot;
has

the same sign as of and c
,
then the equations represent imagi

nary curves.

CASE 4. If/&quot;
= 0, equations (1) are equations of taw imagi

nary straight lines passing through the origin.

Hence, when bz
&amp;lt;

4 ac, every equation of the second degree

between two variables represents an ellipse, an imaginary curve,

a circle, or two imaginary straight lines intersecting at the

origin.

b
2 = 4 ac.

Under this supposition, Art. 138, Cor. 2, either a - 0, or

=
; hence, form (1) of Art. 142 is excluded.

Resuming the forms

(3)

y =
~~

(&amp;gt;

Z a

we have four cases depending upon the sign and magnitude

of the constants.

CASE 1. If d and c in the first form of (2) are not zero,

and if e and a in the second form of (2)
are not zero, then

equations (2) are equations of parabolas.
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CASE 2. Since the first form of (3) is independent of y, it

represents two lines parallel to each other and to the Y-axis.

The second form of (3) represents, similarly, two lines which

are parallel to the X-axis.

CASE 3. If e&quot;

2
&amp;lt; 4/b the first form of (3) represents two

imaginary lines.

If d 2
&amp;lt; 4/o/, the second form of (3) represents two imagi

nary lines.

CASE 4. If e
2 = 4/c ,

the first form of (3) represents one

straight line parallel to the Y-axis.

If d 2 = 4fa ,
the second form of (3) represents one straight

line parallel to the X-axis.

Hence, when b
2 = 4 ac, every equation of the second degree

between two variables represents a parabola, two parallel straight

lines, two imaginary lines, or one straight line.

145. l&amp;gt;

2
&amp;gt;

4 ac.

Under this supposition, Art. 138, Cor. 2, since a! and

c must have opposite signs, neither a nor c
f can be zero

;

hence forms (2) and (3) of Art. 142 are excluded from con

sideration under this head. The first form becomes either

ay -&amp;lt;fc +/&quot;
- 1

or -y + cV+/&quot; =OJ
We have here three cases.

CASE 1. If f has a different sign from that of a
, equations

(1) are equations of hyperbolas whose semi-axes are

0=v
/r

andJ=v/r,

If f has a different sign from that of c
, equations (1) are

still equations of hyperbolas.

CASE 2. If a = c
, equations (1) are equations of equilat

eral hyperbolas.

CASE 3. If
f&quot;

=
0, equations (1) are equations of two inter

secting straight lines.
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Hence, ivhen b 2
&amp;gt;

4 ac, every equation of the second degree

between two variables represents an hyperbola, an equilateral

hyperbola, or two intersecting straight lines.

146. SUMMARY. The preceding discussion has elicited the

following facts :

1. That the general equation of the second degree between

two variables represents, under every conceivable value of the

constants which enter into it, an ellipse, a parabola, an hyper

bola, or one of their limiting cases.

2. When b
2

&amp;lt;
4&c it represents an ellipse, or a limiting case.

3. When b
2 = 4ac it represents a parabola, or a limiting

case.

4. When b
2

&amp;gt;
4&c if. represents an hyperbola, or a limiting

case.

EXAMPLES.

1. Given the equation 3y
2

-\- 2 xy + 3 x2 Sy Sx =
;

to classify the locus, transform and construct the equation.

(a) To classify. Write the general equation and just below

it the given equation, thus :

ay2 + bxy + ex2 + dy -f ex +/ =
3 if + 2 xy + 3 x2 8 y 8 x = . . . (1)

Substituting the co-efficients in the class characteristic

#&amp;gt;

_ 4 aCj we have tf 4 ac = 4 - 36 = - 32
;

hence b
2

&amp;lt;4
ac.

and the locus belongs to the ellipse class, Art. 146.

(b) To refer the locus to axes such that the term containing

xy shall disappear.

From Art. 138, (5), we have

tan 2 =

hence tan 20 = - = + oc,

o o

.-. 2(9 = 90 .-. 6&amp;gt;

= 45 . . . (2)
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i.e., the new X-axis makes an angle of -j- 45 with the old

X-axis. Taking now (10), (11), (3), Art. 138, and substitut

ing values, we have

of = i
\c + a - V(c - a)- + l&amp;gt;*\

= 2.

c
f = i

\c + a + V(c- a)
2 + 2

J=4.

d = dcosO e sin = V2 (d e)
= 0.

e = d sin + e cos (9 = J- V^ (^ + e)
= 8 V2.

Substituting these values in (6), Art. 138, we have (/

being zero),

2 y
2 + 4 x 2 - 8 ViT x =0 ... (3)

(c)
To re/er ^^^ ^oci^s to its centre and axes.

Substituting the values found above in (4), Art. 139, we

d
have n = = U.

2c 8

Hence/&quot;
= a n2 + c m2

-f d n + e m + / = 8, Art. 139,

(3). .

Substituting this value of
f&quot; together with the values of a

and cf found above in (5), Art. 139, we have

2 if + 4 x 2 8 = 0,

or + %- = 1 ... (4)

for the reduced equation. The semi-axes of the ellipse are

a = V2 and b = 2.

(d) To construct.

Draw the axis OX
, making an angle of 45 with the old

X-axis. See (b).
Draw OY -Lto OX . The equation of the

curve when referred to these axes is given in (3). Constructing
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the point (V2, 0) we have the centre of the ellipse. See

(c). Draw O Y&quot; i- to OX&quot; at . The equation of the curve

when referred to O
Y&quot;,

O X as axes is given in (4).

FIG. 55.

Having the semi-axes, V2 and 2, we can construct the

ellipse by either of the methods given in Art. 78.

DISCUSSION.

If y in (1), we have for the X-intercepts 0, OD,

x = 0, x = -
.

If x = in (1), we have for the Y-intercepts 0, OC,

If x = in (3), we have y = _|_0; i.e., the ellipse is tangent

to the Y -axis.

If y = in (3), we have for the X -intercepts 0, OB,

x = 0, x = 2 V2.

If x = o in (4), we have for the Y&quot;-intercepts O A, O A .

y= =1=2.
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If y = in (4), we have for the X -intercepts O B, O O,

x = -j- V2.

2. Given the equation ?/
2 2 xy -f #2 2 y 1 = 0, class

ify the locus, transform and construct the equation.

(a) To classify.

aif + bxy + ex2
-f dy -f ex +/ =

y
2 2 ajy 4- a?

2 2 y 1 = . . . (1)
hence b2 4 ac = 4 4 = 0,

hence the locus belongs to the parabola class, Art. 146.

(b) To refer the locus to axes such that the term containing
xy shall disappear.

From Art. 138, (5), we have

tan 20= b
;

c a

hence, substituting

tan 2 = ?
1 - 1

-
5

... = -45 ... (2)

Substituting the values of the coefficients in (10) (11) (3)
of Art. 138, we have

c = \ \
c + a + V(e a)

2
-f- b*\

= 2.

d! = d cos e sin = 2
( V2) = V2.

e = d sin + e cos = - 2 (- 1 V2) = + V2.

Substituting these values in (1), Art. 140 (since a =
0),

we have 2 x 2 - V2 y + V2^ - 1 = . . . (3)
(c) To refer the parabola to a tangent at the vertex and the

axis.

Substituting the values of the constants in (a), Art. 140,we have e
r V2m = -

^-7
= -~ = - -35 nearly.

e 2 4fc 5n = ~~T^~~ = T~7^ = -
-90 nearly.4 d c 4V2 J
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Substituting the values of d and c&amp;gt; in (3), Art. 140 (since d
1

is not zero), we have

* = iV2.y . . . (4)

for the reduced equation.

(d) To construct.

V

Draw OX making an angle of -- 45 with the X-axis
;

draw OY 1 to OX . See (). The equation of the parabola

when referred to these axes is given in (3).

Constructing the point ( .35, .90), we have the vertex

of the parabola . See (c). Draw O X&quot; and O Y&quot; parallel to

the axes OX
,
OY respectively. The equation of the parab

ola referred to these axes is given in (4). The curve can now

be constructed by either of the methods given in Art. 54.
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DISCUSSION.

If x = in (1), we have for the Y-intercepts 00, 00
,

y = 2.4 y = - .4.

If y = in (1), we have for the Y-intercept OD, OD ,-l.
If x = in (3), we have for the Y -intercept OK,

y = ~ = - .707.

V2
If y = in (3), we have for the X -intercepts OL, OL

,

_
- V2 + yio - V2 - Vio

*/ . Jj Z=
4 4

If x == in (4), ?/
=

;
if y = in (4), x = _j_ 0.

3. Given the equation ?/ -^ 2 cc
2 2 ?/ + 6 x 3 = 0, classify

the locus, transform and construct the equation.

(a) To classify.

ay
2

-\- bxy -f- ex
2 + dy + ex -\- f= 0.

2y + 6x 3 = . . . (1)

hence, the locus belongs to the hyperbola class, Art. 146.

(b) To ascertain the direction of the rectangular axes (xy
being wanting).

tan 26 = = -5_ = Q :c- a -3
.-. 6 = 0;

i.e., the new X-axis is parallel to the old X-axis.

(c) To refer the hyperbola to its centre and axes, we have,
Art. 139, (4),

hence n = 1, m = -.

t

Substituting in the value of
/&quot;,

Art. 139, (3), we have

/ = a n2 + c m2 + d n + e m +/ = 1 2 + 9 3
;

hence
f&quot;
= 1
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This value, together with the values of a? and c in (5), Art.

139, gives 2 if
- 4 x* = - 1 . . (3)

for the required equation.

(d) To construct.

FIG. 57.

Construct the point (%, 1), and through it draw O X&quot;
||
to

OX, and O Y&quot;
||
to OY. The equation of the hyperbola

referred to these axes is given in (3). We see from this equa

tion that the semi-transverse axis is -. Laying off this dis-

u

tance to the right and then to the left of
,
we locate the

vertices of the curve A, A .

DISCUSSION.

If x = in (1), we have for the Y-intercepts OC, 00
,

y = 3, y = - 1.

If y = o in (1), we have for the X-intercepts OD, OD ,

x = 3 + V3 3- V3
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If x = in (3), we have

2/
= iVH^

If y = in (3), we have for the X-intercepts O A, O A ,

.-4
From this data the student may readily determine the

eccentricity, the parameter, and the focal distances of the

hyperbola.

4. Given the equation y
2

-\- x
z 4 ?/ + 4 # 1 = 0, class

ify the locus, transform and construct the equation.

(a) b 2
&amp;lt;4 ac .-. the locus belongs to the ellipse class.

(b) = .-. new X-axis is
||
to old X-axis.

(c) (m,w)=(-2, 2)and/&quot;
= -9

hence x2
-f- y- = 9

is the transformed equation of the locus, which from the form
of the equation is evidently a circle.

(d) Locate the point (2, 2). With this point as a centre,
and with 3 as a radius, describe a circle

;
it will be the re

quired locus.

5. y
2 2 xy + x 2 2 = 0.

(a) b2 = 4 ac .-. parabola class.

(b)
= 45 .-. new X-axis inclined at an angle of 45

to the old X-axis. We have also

a! = 0, c = 2, d = 0, e =
... 2 x2 - 2^0;
i.e., x = 1 and x = 1 ... (1)

are the equations of the locus when referred to the new axes.

(c) The construction gives the lines OX
,
OY as the new

axes of reference.

Equations (1) are the equations of the two lines CM, C M
drawn

||
to the Y -axis and at a unit s distance from it.
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FIG. 58.

We may construct the locus of the given equation without
going through the various steps required by the general
method. Factoring the given equation, we have

(y
- x + V2) (y -x- V2) = ;

hence y = x V2 and y = x -f- V2
are the equations of the locus. Constructing these lines

(OY, OX being the axes of reference), we get the two
parallel lines CM, C M .

Classify, transform, and construct each of the following
equations :

6. ?/
2 2 xy + x2 + 2 y 2 x -f 1 = 0.

7. if + 2 ajy + x2 - 1 = 0.

y = x 1.

8. 2^ 4. 5 a-s _ 12 x - 12 y = 0.
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9. 2?/
2 + 2x2 -4?/- 4x + 1 =0.

x2 + 7/
2 = f .

10. 7/2 _j_ jpa _ 2 aj + 1 = 0.

(1, 0).

11.
2/

2 + x2 + 2*+2 = 0.

Imaginary ellipse.

12. y
2 - 2 XT/ + x2 - 8 x + 16 = 0.

Parabola.

13. if 2 xy -f x 2

y + 2 x 1 = 0.

Parabola.

14. 4 ay - 2 x + 2 = 0.

Hyperbola.

15. ?/
2 2 or + 2 ?/ + 1 = 0.

Two intersecting lines.

16. if
- x2 + 2 y + 2 x - 4 = 0.

Equilateral hyperbola.

17. ?/
2 - 2 jcy + x2 + 2 y + 1 = 0.

18. / + 4 xy + 4 ic
2 - 4 = 0.

19. 2/

2 2 XT/ + 2 x 2 2 y + 2 x = 0.

20. if 4
a;// + 4 x 2 = 0.

21. ?/
2 2 jcy x 2 + 2 = 0.
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CHAPTER X.

HIGHER PLANE CURVES.

147. Loci lying in a single plain and represented by equa
tions other than those of the first and second degrees are

called HIGHER PLANE CURVES. We shall confine our atten

tion in this chapter to the consideration of a few of those

curves which have become celebrated by reason of the labor

expended upon them by the ancient mathematicians, or which

have become important by reason of their practical value in

the arts and sciences.

EQUATIONS OF THE THIRD DEGREE.

148. THE SEMI-CUBIC PARABOLA.

This curve is the locus generated by the intersection of the

ordinate TT of the common parabola with the perpendicular

OP let fall from its vertex upon the tangent drawn at T as

the point of tangency moves around the curve.

1. To deduce the rectangular equation.

Let T
(x&quot;, y&quot;)

be the point of tangency, and let P (x , y )

be a point of the curve.

Let y
2 == px be the equation of the common parabola.

Since the equation of the tangent line T M to the parabola

is Art. 57, (6),

the equation of the perpendicular (OM) let fall. from the

vertex is

{r
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FIG

Since TT is parallel to OY, we have for its equation

*=*&quot;, . . (2)

Combining (1) and
(2)&amp;gt;

we have

But

hence _ V4j^_
2p

Squaring and dropping accents, we have

for the equation of the semi-cubic parabola.
This curve is remarkable as being the first curve which was

rectified, that is, the length of a portion of it was shown to
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be equal to a certain number of rectilinear units. It derives

its name from the fact that its equation (3) may be written

xl = p% y ,

2. To deduce the polar equation.

Making x = r cos 6 and y r sin 9 in (3), we have, after

reduction,

r = p tan 2 sec . . . (4)

for the polar equation of the curve.

SCHOL. Solving (3) with respect to y, we have

An inspection of this value shows

(a) That the curve is symmetrical with respect to the

X-axis;

(b) That the curve extends infinitely from the Y-axis in

the direction of the positive abscissas.

149. To duplicate the cube by the aid of the parabola.

Let a be the edge of the given cube. We wish to con

struct the edge of a cube such that the cube constructed on it

shall be double the volume of the given cube
; i.e., that the

condition x8 = 2 a3 shall be satisfied.

FIG. 60.
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Construct the parabola whose equation is

i/
2 = 2 ax . . . (1)

Let MPO be the curve. Construct also the parabola whose

equation is

x*~y... (2)

Let NPO be this curve.

Then OA (= x) }
the abscissa of their point of intersection

is the required edge. For eliminating y between (1) and (2),

we have
x 8 = 2 a*.

This problem attained to great celebrity among the ancient

geometricians. We shall point out as we proceed one of the

methods employed by them in solving it.

150. THE CISSOID.

The cissoid is the locus generated by the intersection (P) of

the chord (OM ) of the circle (OMM T) with the ordinate

DN

s

FIG. 61.
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MN (equal to the ordinate M N let fall from the point

M on the diameter through 0) as the chord revolves about

the origin 0.

It may also be defined as the locus generated by the inter

section of a tangent to the parabola y
z = 8 ax with the

perpendicular let fall on it from the origin as the point of

tangency moves around the curve.

1. To deduce the rectangular equation.

First Method. Let OT = 2 a, and let P (x, y) be any point

of the curve. From the method of generation in this case

MN = M lST .-. ON = N T. From the similar triangles ONP,

ON M
,
we have

NP : ON : : M N : ON .

But NP = y, ON =
oj, M N = VON . N T = V (2 -),

ON = 2 a - x
;

. .y : x :: V(2 a x) x : 2 a x.

Hence y. =^ ... (1)

is the required equation.

Second Method. The equation of the tangent line to the

parabola if = 8 ax is Art. 65, (2)

. 2a
y = SX + -

s

The equation of a line passing through the origin and per

pendicular to this line is

Combining these equations so as to eliminate s. we have

for the equation of the locus.

This curve was invented by Diocles, a Greek mathematician

of the second century, B.C., and called by him the cissoid from
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a Greek word meaning &quot;ivy.&quot;
It was employed by him in

solving the celebrated problem of inserting two mean propor
tionals between given extremes, of which the duplication of

the cube is a particular case.

2. To deduce the polar equation.

From the figure (OP, PO^) =
(r, 0)

we have also r = OP = M K = OK - OM/.

But OK = 2 a sec and OM = 2 a cos
;
hence

r = 2 a (sec cos 0),

or r = 2 a tan 6 sin

is the polar equation of the curve.

SCHOL. Solving (1) with respect to y, we have

y =
2 a x

An inspection of this value shows

(a) That the cissoid is symmetrical with respect to the

X-axis.

(b) That x = and x = 2 a are the equations of its limits.

(c) That x = 2 a is the equation of a rectilinear asymp
tote (SS ).

151. To duplicate the cube, by the aid of the cissoid.

Let OL, Fig. 61, be the edge of the cube which we wish to

duplicate. Construct the arc BO of the cissoid, CO = a

being the radius of the base circle. Lay off CD = 2 CA =
2 a and draw DT intersecting the cissoid in B

;
draw BO

and at L erect the perpendicular LR intersecting BO in R.

Then LR is the edge of the required cube
;
for the equation

of the cissoid gives

hence HB 2 =
ig (since HB =

y, OH = x, and HT =
PL _L

2 a - x).

The similar triangles CDT and HBT give

CD : CT :: HB : HT.
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But CD = 2 CT by construction
;
hence HB = 2 HT

.-. HT = HB

This value of HT in the value of HB2 above gives

HB2 = 2QH3
;
hence HB 3 = 2 OH 8

.

HB
The triangles OHB and OLE are similar

;
hence

HB : OH :: LE : OL
.-. HB8

: OH8 ::LK8 ::OL 3

But HB 3 = 2 OH 3
,
hence LB,3 = 2 OL8

;
whence the con

struction.

152. THE WITCH.

FIG. 62.
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The witch is the locus of a point P 011 the produced ordi-

nate DP of a circle, so that the produced ordinate DP is to

the diameter of the circle OA as the ordinate DM is to the

outer segment DA of the diameter.

It may also be defined as the locus of a point P 011 the

linear sine DM of an angle at a distance from its foot D equal
to twice the linear tangent of one-half the angle.

1. To deduce the rectangular equation.
First Method. From the mode of generation, we have

DP : OA :: DM : DA
But DP =

y, OA = 2 a, DM = VOD . DA = Vx (2 a - x),
DA = 2 a x

;

hence y:2a:: V(2 a x) x : 2 a x.

is the required equation.
Second Method. Let MCO =

;
then by definition

?/
== 2 a tan - = 2 a \

,

//a ^ ~ cos ^
2 V a (1 + cos 0)

But a (1
- cos 0)

= a - a cos = OC DC = OD == x, and
a (1 + cos 0)

= a + a cos = OC + DC = OD = 2 a - x
;

hence u = 2 a

or, squaring y
2 = ~-

.

2 a x

This curve was invented by Donna Maria Agnesi, an Italian

mathematician of the eighteenth century.
SCHOL. Solving (1) with respect to y, we have

y = =t 2 a J-~x .

V 2 a x

Hence (a) the witch is symmetrical with respect to the
X-axis.

(b) x = and x = 2 a are the equations of its limits.

(6-)
x = 2 a is the equation of the rectilinear asymptote SS .
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EQUATIONS OF THE FOURTH DEGREE.

153. THE CONCHOID.

The conchoid is the locus generated by the intersection of

a circle with a secant line passing through its centre and a

fixed point A as the centre of the circle moves along a fixed

line OX.
As the intersection of the circle and secant will give two

points P, P, one above and the other below the fixed line, it

is evident that during the motion of the circle these points

will generate a curve with two branches. The upper branch

MBM is called the SUPERIOR BRANCH
;
the lower, the IN

FERIOR BRANCH. The radius of the moving circle O P

(= OB) is called the MODULUS. The fixed line OX is called

the DIRECTRIX
;
the point A, the POLE.

1. To deduce the rectangular equation.

Let P (x, y), the intersection of the circle PP P and the
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secant AO P, be any point of the curve. Let O P = OB = b,

and let OA = a.

The equation of the circle whose centre is at (x
f

, 0) is

The equation of the line AO P is

y = sx a . . . (1)

Making y = in (1), we have

s

for the distance 00 .

But 00 = x
;
hence

a ^ - = b- . . . (2)

is the equation of the circle. If we now combine (1) and (2)
so as to eliminate s, the resulting equation will express the

relationship between the co-ordinates of the locus generated
by the intersection of the loci they represent. Substituting
the value of s drawn from (1) in (2), we have

*V-(P-tf) &amp;lt;&amp;gt;
+ 2/)

2
. . . (3)

is the required equation.
We might have deduced this equation in the following very

simple way: Draw AT
||
to OX, and PT

||
to OY. Since the

triangles ATP and O SP are similar, we have

PS:SO ::PT: TA
;

- e -

Hence

_

This curve was invented by Nicomedes, a Greek mathema
tician who flourished in the second century of our era.

It was employed by him in solving the problems of the
duplication of a cube and the trisection of an angle.
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2. To deduce the polar equation.

From the figure we have (AY being the initial line, and A
the pole)

(AP, PAB) = (&amp;gt;-, 0)

But AP = ACT -t O P ;

hence r = a sec b

is the polar equation of the curve.

SCHOL. Solving (3) with respect to x, we have

An inspection of this value shows

(a) That the conchoid is symmetrical with respect to the

Y-axis.

(b) That y = b and y = b are the equations of its limits.

(c)
That y = gives x = -J- oo, . . the X-axis is an asymp

tote. _
(d) If a 0, then cc = -t V&2

2/

a

; i.e., the conchoid be

comes a circle.

(e) If b
&amp;gt; a, the inferior branch has a loop as in the figure.

(/) If b = a, the points A and A coincide and the loop

disappears.

(g) If b
&amp;lt; a, the inferior branch is similar in form to the

superior branch, and the point A (o, a) is isolated] i.e.,

though entirely separated from the curve, its co-ordinates still

satisfy the equation.

154. To trisect an angle by the aid of the conchoid.

Let PCX be the angle which we wish to trisect. From C

with any radius as CD describe the semi-circle DAH. From

the point A draw AB J_ to CX and make OB = CD. With

A as a pole and OB as a modulus construct a conchoid on

CX as a directrix. Join H, the intersection of the inferior

bnuich and the circle, with A and produce it to meet the

directrix in K
;
then

CKA = PCX.
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FIG. 64.

For join H and C
;
then from the nature of the conchoid

HK = HC = OB.

From the figure PCX == CAR + CKA
;

but CAK = CHA = 2 CKA
;

hence PCX = 2 CKA + CKA.
Therefore CKA = 1 PCX.
We might have used the superior branch for the same pur

pose.

155. THE LIMACON.

FIG. 65.



200 PLANE ANALYTIC GEOMETRY.

The Iima9on is the locus generated by the intersection of

two lines OP, CP which are so related that during their revo

lution about the points and C the angle PCX is always

equal to | POX.
1. To deduce the polar equation.

Let be the pole, and OX the initial line. Let P be any

point of the curve, and let OC a
;
then

(OP, POX) = (r, 0).

From the triangle POC, we have

OP : OC :: sin OCP : sin OPC
;

i.e., r : a :: sin f &amp;lt;9 : sin 1 0.

TT a sin
Hence r :

*
t

From Trigonometry
sin = 3 sin \ 4 sin3

\ =
(3 4 sin2

\ 0) sin^ 0;

hence r = a (3 4 sin 2

^ 0),

= a (1 + 2 cos 0) . . . (1)

is the polar equation of the limayon.

2. To deduce the rectangular equation.

From Art. 35, we have

r = # + / cos

for the equations of transformation from polar to rectangular

co-ordinates. Substituting these values in (1), we have

ax

Vx 2
4- ?/

2

or x y - ^) 2 = 2

(*
2 + y

a

)
... (2)

for the required equation.

SCHOL. 1. From the triangle ODA, we have

OD = OA cos = 2 a cos 0.

From (1) OP = a + 2 . cos 6
;

hence OP - OD = DP = a
;
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i.e., the intercept between the circle ODA and the limayon
of the secant through is constant and equal to the radius of

the circle.

SCHOL. 2. If 6 = 0, r = 3 a = OB.

If B = 90, r = a = OM.
If 6 = 180, r = - a = OC
If = 270, r = a = OM

156. THE LEMXISCATA.

The lemniscata is the locus generated by the intersection of

a tangent line to the equilateral hyperbola with a perpen
dicular let fall on it from the origin as the point of tangency
moves around the curve.

FIG. 66.

1. To deduce the rectangular equation.
Since T

(a&quot;, ?/ )
is a point of the equilateral hyperbola, we

have, Art. 103, Cor 1,

x -

y
- == a 2

. . . (1)

The equation of the tangent line TP is, Art. 112,

xx&quot;
yy&quot;

= a2 ... (2)
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rr

Since the slope of this line is
,
the equation of the per

pendicular OP is

,*. 0)

Treating (2) and (3) as simultaneous and solving for x&quot; and

y&quot;,
we find

.r

Substituting these values in (1),
we have

--
(x

2 + ff
or (x

2 + T/
2

)
2 = a2

(x
2 -

7/
2
)

. . . (4)

for the required equation.

This curve was invented by James Bernouilli. It is quad-

rable, its area being equal to the square constructed on the

semi-transverse axis OA.

2. To deduce the polar equation.

We have Art. 34, (3), for the equations of transformation

x = r cos 0, y = r sin 9.

These values in (4) give

\r
2

(cos
2 6 + sin 2

0)J
2= ^ \r* (cos

2 - sin2

&amp;lt;9)};

therefore r4 = a z r 2 cos 2 0,

or r2 = a2 cos 2 (9 ... (5)

is the required equation.

SCHOL. If = 0, cos 20 = cos = 1 .-. r = i a.

If
&amp;lt; 45, cos 2 B &amp;lt;

cos 90 .-. r has two equal values with

opposite signs.

If = 45, cos 2 (9 = cos 90 = .-. r = 0.

If 6
&amp;gt;

45 and &amp;lt;135 r is imaginary.

If $ = 135, cos 2 6 = cos 270 = .-. r= 0.

If e = 180, cos 2 6 = cos 360 . - 1 .-. r a.

An examination of these values of r shows that the curve

occupies the opposite angles formed by the asymptotes of the

hyperbola.
The curve is symmetrical with respect to both axes.



HIGHER PLANE CURVES. 203

TRANSCENDENTAL EQUATIONS.
157. THE CURVE OF SINES.

This curve takes its name from its equation
y = sin x,

and may be defined as a curve whose ordinates are the sines
of the corresponding abscissas, the latter being considered as
rectified arcs of a circle.

FIG. 6?.

To construct the curve. Give values to x which differ from
each other by 30, and find from a &quot;TABLE OF NATURAL
SIXES -

the values of the corresponding ordinates.

Tabulating the result, we have,

Value of x
Corresponding

30 = 5 = .52
6

60 = ^ = 1.04

90 = ^ = 1.56
o

120 = i5 = 2.08
6

Value of y

.50

.87

1.00

.87



PLANE ANALYTIC GEOMETRY.

Value of x

150 =~- = 2.60
6

180 = TT = 3.14

210 = = 3.66
6

240 = ~ = 4.18
6

270 = = 4.70
6

300 = i^ = 5.22
6

330 = = 5.75

360 = 2 TT = 6.28

Corresponding Value of y

.50

.50

- 1.00

-.87

- .50

Constructing these points and tracing a smooth curve

through them, we have the required locus. As x may have

any value from to GO and yet satisfy the equation of the

curve, it follows that the curve itself extends infinitely in

the direction of both the positive and negative abscissas.

158. THE CURVE OF TANGENTS.

FIG. 68.
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This curve also takes its name from its equation.

y = tan x.

To construct the curve. Give x values differing from each

other by 30 and find from a Table of Natural Tangents the

corresponding values of y. Tabulating, we have,

Value of x Corresponding Value of y
&quot;

30 = - = .52
&quot; .57

6

60 = = 1.04 &quot; 1.73
6

90 = = 1.56 oo

6

120 = 4
-^ = 2.08 &quot; 1-73
6

150 = 5- = 2.60 &quot; .57
6

180 = TT = 8.14 &quot;

210 = = 3.66 &quot; .57
6

240 == = 4.18 &quot; 1.73
6

270 = = 4.70 &quot; oo

6

300 = = 5.22 &quot; - 1.73

330 = ^ = 5.75 - .57

360 = 2 TT = 6.28 &quot;

Constructing these points and tracing a smooth curve

through them, we have the locus of the equation.

This curve, together with that of the preceding article,

belong to the class of Repeating Curves, so called because

they repeat themselves infinitely along the X-axis.
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159. THE CYCLOID.

This curve is the locus generated by a point on the circum
ference of a circle as the circle rolls along a straight line.

The line OM is called the BASE of the cycloid ;
the

point P, the GENERATING POINT
;
the circle BPL, the GEN

ERATING CIRCLE
;
the line HB

, perpendicular to OM at its

middle point, the Axis. The points and M are the VERTICES
of the cycloid.

1. To deduce the rectangular equation, the origin being
taken at the left-hand vertex of tJie curve.

Let P be any point on the curve, and the angle through
which the circle has rolled, PCB = 0. Let LB, the diameter
of the circle, = 2 a.

Then OA = OB AB and AP = CB CK.

ButOA = ayOB =a 0, AB = PK = a sin 0,AP = y, CB= a,

CK = a cos 6
; hence, substituting, we have

x = a 9 a sin

y = a a cos
... (1)
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Eliminating between these equations, we have

x = a cos&quot;
1 - - V2 ay y

2 = a vers&quot;
1 -

- ^2 ay -if . . . (2)

for the required equation.

SCHOL. An inspection of (2) shows

(a) that negative values of y render x imaginary.

(b) When y = 0, x = a vers&quot;
1 = 0; but a vers&quot;

1 = 2 TT a,

or 4 TT a, or 6 TT a, or etc.
;
hence there are an infinite number

of points such as and M.

(c) When y = 2 a, x = a vers&quot;
1 2 = TT a = OB

;
but

a vers&quot;
1 2 = 3 TT a, or 5 ?r a, or 7 TT a, or etc.

; hence, there are

an infinite number of points such as H.

(d) y = and y = 2 a are equations of the limits.

(e) For every
vvalue of y between the limits and 2 a there

are an infinite number of values for x.

2. To deduce the rectangular equation, the origin being at the

highest point H,

We have for the equations of transformation

x = OA = OB - PK = TT a + x

y = AP = B H - HK = 2 a + /
These values in (1) above give

x = a (0 TT)
a sin 1 ,\

y = a a cos

But
,
the angle through which the circle has rolled from

H, = TT
;
hence

x = a 6 -\- a sin ] ,.-.

y = a (COS ff - 1) }

Hence x = a vers&quot;
1 - + V 2 ay ?/

2
. . . (5)

The invention of this curve is usually attributed to Galileo.

With the exception of the conic sections no known curve

possesses so many useful and beautiful properties. The fol

lowing are some of the more important :
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1. Area OPHDB O = area HDB = TT a2
.

2. Area of cycloid OHMO = 3 HDB = 3 TT a2
.

3. Perimeter OPHM = 4 HB = 8 a.

4. If two bodies start from any two points of the curve

(the curve being inverted and friction neglected), they will

reach the lowest point H at the same time.

5. A body rolling down this curve will reach the lowest

point H in a shorter time than if it were to pursue any other

path whatever.

SPIRALS.

160. The SPIRAL is a transcendental curve generated by a

point revolving about some fixed point, and receding from it

in obedience to some fixed law.

The portion of the locus generated during one revolution of

the point is called a SPIRE.

The circle whose radius is equal to the radius-vector of the

generating point at the end of the first revolution is called

the MEASURING CIRCLE of the spiral.

161. THE SPIRAL OF ARCHIMEDES.

FIG. 70.
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This spiral is the locus generated by a point so moving
that the ratio of its radius-vector to its vectorial angle is

always constant.

From the definition, we have

r = c

hence r = c . . . (1)

is the equation of the spiral.

To construct the spiral.

Assuming values for and finding from (1) the correspond

ing value for r, we have

Values of Corresponding Values of r

45 = ^ ^c
4 4

90=^ 2_^ c
4 4

135 = ^L 3 * -

180 =&amp;lt;*

225 =
4̂

270 =^
..

T&quot;

360 = 2

Constructing these points and tracing a smooth curve

through them, we have a portion of the spiral.
Since (9 = gives r = 0, the spiral passes through the pole.
Since = oo gives r = oo, the spiral makes an infinite

number of revolutions about the pole.
Since = 2 TT gives r = 2 IT c, OA (= 2 IT c) is the radius of

the measuring circle.
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162. THE HYPERBOLIC SPIRAL.

This curve is the locus generated by a point so moving that

the product of its radius-vector and vectorial angle is always
constant.

From the definition we have

r =
c,

or

for the equation of the spiral.

FIG. 71.

To construct the spiral.

Giving values to 0, finding the corresponding values of r,

we have

Values of Corresponding Values of r

oc

45 = Z &quot;
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Values of Corresponding Values of r

135= 7T

4 O 7T

180 = 7T
&quot; -

7T

225 = 5
TT

4 OTT

270 =-TT &quot; ~
4 GTT

315 =-TT &quot;

4 TTT

360 = 2 TT
&quot;

oo

Constructing the points we readily find the locus to be a

curve such as we have represented in the figure.

Since 6 = gives r = oo there is no point of the spiral

corresponding to a zero-vectorial angle.

Since = oo gives r = 0, the spiral makes an infinite number

of revolutions about the pole before reaching it.

Since 6 = 2-n- gives

c is the circumference of the measuring circle.

SCHOL. Let P be any point on the spiral ;
then

(OP, POA) = (r, 0).

With as a centre and OP as a radius describe the arc PA.

By circular measure, Arc PA = r 6, and from (1) c = r
;

hence Arc PA = c
;

i.e., the arc of any circle between the initial line and the

spiral is equal to the circumference of the measuring circle.
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163. THE PARABOLIC SPIRAL.
This spiral is the locus generated by a point so moving

that the ratio of the square of its radius-vector to its vectorial

angle is always constant.

From the definition we have

or, r* = c . . . (1)

for the equation of the spiral.

FIG. 72.

To construct the spiral.

Values of Corresponding

45 = !T

4

90 = 2*
((

4

135 =
4̂

180 = 7T

Values of r

V2 C7T

V3c



Values of

225 =^
270 = ^T

4

3i5 = IJL

360 = 2

oo
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Corresponding Values of r

213

-JV5C

7C7T

00

Constructing these points and tracing a smooth curve

through them we have the required locus.

Since = gives r = 0, the spiral passes through the pole.
Since = oo gives r = oo, the spiral has an infinite num

ber of spires.

164. THE LITUUS or TRUMPET.
This curve has for its equation

r2 =
c,

FIG. 73.
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If =
0, r = oo

;
if 6 = oo, r = 0. This curve has the

initial line as an asymptote to its infinite branch.

165. The Logarithmic /SJjiraZ.

This spiral is the locus generated by a point so moving that

the ratio of its vectorial angle to the logarithm of its radius

vector is equal to unity. Hence

or passing to equivalent numbers (a being the base), we have

r a* . . . (1)

for the equation of the spiral.

To construct the spiral. Let a = 2, then

r = 29

is the particular spiral we wish to construct.
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Values of 6 Corresponding Values of r

1

1 = 57.3 2
2 = 114. 6 &quot; 4
3 = 171.9 8
4 = 229. 2 16

&amp;lt;

&quot;

CO

- 1 = - 57.3 .5

-2=-114.6 .25
- 3 = - 171.9 .125
_ 4 = - 229. 2 .062

oo

A smooth curve traced through these points will be the

required locus.

Since = gives r = 1 whatever be the assumed value of

a, it follows that all logarithmic spirals must intersect the
initial line at a unit s distance from the pole.

Since = GO gives r = oo
,
the spiral makes an infinite

number of revolutions without the circle whose radius OA = 1.

Since 6 = GO gives r = 0, the spiral makes an infinite

number of revolutions within the circle OA before reaching
its pole.

EXAMPLES.

1. Discuss and construct the cubical parabola

XB

y = ~r-
p*

2. What is the polar equation of the Iima9on, Fig, 65, the

pole being at C ?

Ans. r = 2 a cos - 0.

3

3. Let OF = OF = a Vf Fig. 66. Show that the lemnis-

cata is the locus generated by a point so moving that the
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product of its distances from the two fixed points F, F is

constant and

v 2

Discuss and construct the loci of the following equations :

4. x = tan y. 12. a3 = xs
axy.

5. y = cos x. 13. jcl -j- y? = 1.

6.
2/
= sec*. 14. 4 + |r = l.

a2
&3

7. a; = sin y. 15. ? = sin 2 0.

8.
&amp;lt;?/

= cot x. 16. r =
sin 2

n

9. y = cosec ic. 17. r = a sin3 - .

o

10. y =
3x ~ l

18. r2 sin2 20 = 1.
x3

no Q , o -| 1 rv 1 ~T~ Sill C

. a?
2
?/
2

-4- a-?/
2 = 1. 19. r = -

.

1 - sin

20. Discuss and construct the locus of the equation

y _ 96 a 2
;/

2 + 100 ciV x^ = or

2
J- V(ic 6 a) (a + 6 a) (x 8 a) (x + 8 a).

21. Show that y ^ x are the equations of the rectilinear

asymptotes of the locus represented by the equation of

Ex. 20.



SOLID ANALYTIC GEOMETRY,

PART II.

CHAPTER I.

CO-ORDINATES. THE TRI-PLANAR SYSTEM..

166. The position of a point in space is determined when

we know its distance and direction from three planes which

intersect each other, these distances being measured on

lines drawn from the point parallel to the planes. Although

it is immaterial in principle what angle these planes make

with each other, yet, in practice, considerations of convenience

and simplicity have made it usual to take them at right

angles. They are so taken in what follows.

Let XOZ, ZOY, YOX be the CO-ORDINATE PLANES inter

secting each other at right angles. Let OX, OY, OZ be the

CO-ORDINATE AXES and 0, their intersection, the ORIGIN of

CO-ORDINATES.

Let P be any point in the right triedral angle
- XYZ.

Then P is completely determined when we know the lengths

and directions of the three lines PA, PB, PC let fall from

this point on the planes.

As the planes form with each other eight right triedral

angles, there are evidently seven other points which satisfy

the condition of being at these distances from the co-ordi

nate planes. The ambiguity is avoided here (as in the case

217
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of the point in a plane) by considering the directions in which

these lines are measured.

Assuming distances to the right of YOZ as positive, distances

to the left will be negative.

4-Z

A/

-Y

-X 4-X

Assuming distances 6o*;e XOY as positive, distances

will be negative.

Assuming distances in front o/XOZ as positive, distances ^o

^Ae rear will be negative.

Calling x
, 7/

r

,
z (= BP, AP, CP, respectively) the co-orc?i-

wa^es of the point P in the FIRST ANGLE, we have the follow

ing for the co-ordinates of the corresponding points in the

other seven :

SECOND ANGLE, above XY plane, to left YZ plane, in front

of XZ plane, (- x
, y ,

z
)
P 2 .

THIRD ANGLE, above XY plane, to left YZ plane, in rear

of XZ plane, (- xr

,

- y ,
z

)
P 8 .
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FOURTH ANGLE, above XY plane, to right YZ plane, in

rear of XZ plane, (x
f

,

- y , )
P4 .

FIFTH ANGLE, below XY plane, to right YZ plane, in

front of XZ plane, (x
f

, y ,
s

) PS-

SIXTH ANGLE, below XY plane, to left YZ plane, in front

of XZ plane, (
x

, y , )
P6 .

SEVENTH ANGLE, below XY plane, to left YZ plane, in

rear of XZ plane, (
x f

, y }
z ) P 7 .

EIGHTH ANGLE, below XY plane, to right YZ plane, in rear

of XZ plane, (x
f

,

-
i/,
-

)
P 8 .

EXAMPLES.

1. In what angles are the following points :

(1, 2,
-

3), (- 1, 3,
-

2), (- 1,
-

2,
-

4), (3,
-

2, 1).

2. State the exact position with reference to the co-ordi

nate axes (or planes) of the following points :

(0, 0, 2), (- 2, 1, 2), (3, 1, 0), (3,
-

1, 2), (2, 0, 3), (- 1, 2,

0), (0,
-

1, 0), (3, 0, 1), (1,
-

2, 3), (0, 0,
-

2), (4, 1, 2),

(5, 1,
-

1), (1, 1,
-

1).

3. In which of the angles are the X-co-ordinates positive ?

In which negative ? In which of the angles are the Y-co-

ordinates positive ? In which are the Z-co-ordinates negative?

167. Projections. The projection of a point on a plane is

the foot of the perpendicular let fall from the point on the

plane. Thus A, B, and C, Fig. 75, are the projections of the

point P on the planes XZ, YZ, XY, respectively.
The projection of a line of definite length on a plane is the

line joining the projections of its extremities on that plane.
Thus OC, Fig. 75, is the projection of OP on the XY plane.
The projection of a line of definite length on another line

is that portion of the second line included between the feet of

the perpendiculars drawn from the extremities of the line of

definite length to that line.
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Thus OM, Fig. 75, is the projection of OP on the X-axis.

;NOTE. The projections of points and lines as above de

fined are orthogonal. Unless otherwise stated, all projections

will be so understood in what is to follow.

168. To find the length of a line joining two points in space.

P&quot;

FIG. 76.

Let P
(a? , tf, ) and V&quot;

(z&quot;, y&quot;, *&quot;}
be the given points.

Let L (=P P&quot;)
be the required length. Draw P&quot;C and

||
to OZ

;
NA and CD

||
to OY

;
NB

||
to OX. Join N

and C and draw P M
||
to NO.

We observe from the figure that L is the hypothenuse of a

right angled triangle whose sides are P M and P&quot;M.

Hence

but = NO =
=

(P&quot;C
-

... L =
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COR. If x =
0, if

=
0, s = 0, then the point P coincides

with the origin and

... L = V*&quot;
2 + y&quot;

2 + s&quot;

2 ... (3)

expresses the distance of a point from the origin.

169. Given the length and the directional angles of a line

joining any point with the origin to find the co-ordinates of the

point.

The Directional angles of a line are the angles which the line

makes with the co-ordinate axes.

Let P
(x, y, z), Fig. 75, be any point, then OP = L will be

its distance from the origin. Let POX, POY, POZ = a, fa y,

respectively.

Since OM, ON, OR (== x, y, z) are the projections of OP
on X, Y, Z, respectively, we have

x = L cos u }

y = L cos ft I ... (1)

z = L cos y

for the required co-ordinates.

COR. Squaring and adding equations (1), we have

x * + y
2 + 2 = L2

(cos
2

-f- cos 2
ft -f cos2

y) ;

but x* + y
2 + *2 = L2 Art. 168 (3) ;

.

hence cos 2 u -f cos 2

/? -f- cos2

/ = 1 . . . (2)

That is, the sum of the squares of the directional cosines of a
space line is equal to unity.

SCHOL. The directional angles of any line, as P
P&quot;, Fig. 76,

are the same as those which the line makes with three lines
drawn through 1J/

||
to X, Y, Z. The projections of P P&quot; on

three such lines are x&quot;
- x f

, if - tf, z
&quot; _ ^ Art. 168; hence

x&quot; x = L COS a
&quot;1

y&quot;

- y = L cos ft [ ... (3)
&quot;

z = L cos
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EXAMPLES.

Required the length of the lines joining the following

points :

1. (1, 2, 3), (- 2, 1, 1), 4. (0, 0, 0), (2, 0, 1).

Ans. V14. Ans. -/5.

2. (3,
-

2, 0), (2, 3, 1). 5. (0, 4, 1), (- 2,
-

1, -2).
^tws. V27. ^ws. V38.

3. (0, 3, 0), (3,
-

1, 0). 6. (1,
-

2, 3), (3, 4, 6).

Ans. 5. Ans. 7.

7. Find the distance of the point (2, 4, 3) from the origin ;

also the directional cosines of the line.

8. A line makes equal angles with the co-ordinate axes.

What are its directional cosines ?

9. Two of the directional cosines of a line are Vf and

What is the value of the other ?

10. If (x
f

, y ,
z

)
and

(a;&quot;, y&quot;, z&quot;)
are the co-ordinates of the

extremities of a line show that

x + x&quot; y + y&quot;
z + z&quot;

&quot;-+
z&quot;\

2 2-J
are the co-ordinates of its middle point.

THE POLAR SYSTEM.

170. The position of a space point is completely determined

when we know its distance and direction from some fixed point.

For a complete expression of the direction of the point it is

necessary that two angles should be given. The angles

usually taken are

1st, The angle which the line joining the point and the

fixed point makes with a plane passing through the fixed

point ;
and 2d, The angle which the projection of the line join

ing the points on that plane makes with a fixed line in the

plane.
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FIG. 77.

Let be the fixed point and P the point whose position we
wish to determine. Join O and P, and let XOY be any plane
passing through 0. Let OX be a given line of the plane
XOY. Draw PB 1 to XOY and pass the plane PBO through
PB and OP. The intersection OB of this plane with XOY
will be the projection of OP on XOY. The angles POB (0),
BOX

(go) and the distance OP (r), when given completely de
termine the position of P. For the angle cp determines the

plane POB, the angle determines the line OP in that plane,
and the distance r determines the point P on that line.

This method of locating a point is called the POLAR SYS
TEM. The angles and qo are called VECTORIAL ANGLES, and
the distance r is called the RADIUS VECTOR of the point.
The point P, when written

(r, 9, &amp;lt;p),

is said to be expressed in

terms of its POLAR CO-ORDINATES.
It is evident by giving all values from to 360 to and

&amp;lt;P,

and all values from to oo to r that every point in space
may be located.

171. Given the polar co-ordinates of a point to find its rec

tangular co-ordinates.

Draw OY 1 to OX and in the plane BOX ;
draw OZ 1 to
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OY and OX, and let OX, OY, OZ be the co-ordinate axes.

Draw BA
||
to OY

; then, Fig. 77,

(OA, AB, BP) = (x, y, z) are the rectangular co-ordinates of P.

From the triangle BOP, we have

z = r sin 6.

From the triangle ABO, we have

x = OB cos cp.

But OB = r cos .: x = r cos cos cp.

From the same triangle we have

y = OB sin qo,

y = r cos 6 sin (p.

Henee x = r cos 6 cos cp 1

y = r cos 9 sin cp V ... (1)

z = r sin

express the required relationship.

Con. If P (x, y, ) be the co-ordinates of any point on a

locus whose rectangular equation is given then equations (1)

are evidently the equations of transformation from a rectangu

lar system to a polar system, the pole being coincident with the

origin.

Finding the values of r, 6 and cp from (1) in terms of x and

y, we have

r= Vx2 + if +

(9 = tan-1

+
= tan-

1

for the equations of transformation from a polar system to a

rectangular system, the origin and 2)ole being coincident.
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EXAMPLES.

Find the polar co-ordinates of the following points :

1. (2,1,1).
3. (10,2,8).

2. (V3, 1, 2 V3). 4. (3,
-

1, 4).

Find the rectangular co-ordinates of the following :

5. (5, 30, 60). 7.

(6,=,

6

Find the polar equations of the following surfaces, the pole

and origin being coincident :

9. X2 + ^2 + ,2 = az
m

Ans. r = a.

10. z + sx + ty
- c = 0.

sin + 5 cos cos
g&amp;gt; -f cos sin qo

Find the directional cosines of the lines joining the follow

ing pairs of points :

11. (1, 2,
-

1), (3, 2, 1).
13. (2,

-
1,
-

5), (4, 5, 6).

12. (4,
-

1, 2), (- 1, 3, 2). 14. (0, 2, 0), (3, 0, 1).

15. If (V, /, )
and

(z&quot;, y&quot;, &quot;)

be the co-ordinates of two

space points, show that the point

/ mx&quot; + nxr

my&quot; + ny mz&quot; + nzf

\ 7wT+ % m + w m + n

divides the line joining them into two parts which bear to

each other the ratio m : n.
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CHAPTER II.

THE PLANE.

172. To deduce the equation of the plane.

Let us assume as the basis of the operation the following

property :

If on a perpendicular to a plane two points equidistant from
the plane be taken, then every point in the plane is equidistant

from these two points, and any point not in the plane is un

equally distant.

FIG.

Let ABC be any plane. Draw OR 1 to ABC, and meeting

it in E. Produce OR until RR = OR = p. Every point in

the plane is equally distant from and R . Let P (x, y,*,)

be any point of the plane ;
let ON, MN, MR ,

the co-ordinates
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of R = d, e, /, respectively. Then from Art. 168, (2), we have

PR == (d
- xY + (e- yY + (/- zY

From the same article, equation (3), we have

OF2 = xs + f + *2
5

hence, by the assumed property,

(d
- xY + (e- yY + (/- *)

2 = x2 + y
2 + *2

-

Simplifying this expression, we have

d*+ 6
* + f

z
/1Xdx + ey +fz = - ^ - ... (1)

for the required equation.

173. To find the equation of a plane in terms of the per

pendicular to it from the origin and the directional cosines of

the perpendicular.
Let

, /8,
and 7 be the directional angles of the perpendicu

lar OR 7

(=2p), Fig. 78. Since ON, MN, MR (= d, e, f) =
the projections of OR on the co-ordinate axes, we have (Art.

169, (1) )

d = 2p cos 1

e = 2^ cos (3 [
... (1)

f 2p cos 7

Substituting these values in (1), Art. 172, and remembering
that cos2 + cos2 ft H~ cos2 Y 1? we have

cc cos + ?/ cos ^8 + z cos 7 = p . . . (2)

for the required equation. Equation (2) is called the NORMAL
EQUATION of the plane.

Since OR = 2p = V^2 + e2 +/2
, equations (1) give

d e
cos
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Substituting these values in (2), we have

d e
~ y ~

for the equation of the plane expressed in terms of the co-or

dinates of a point on the perpendicular to it from the origin

and the perpendicular.

COR. 1. If p = in (2), we have

x cos + y cos ft + z cos y
= . . . (4)

for the equation of a plane through the origin.

COR. 2. If = 90, cos = 0, hence

y cos (3 + z cos 7
= p . . . (5)

is the equation of a plane 1 to the YZ-plane.

If ft
= 90, we obtain similarly

x cos + z cos 7
= p . . . (6)

for the equation of a plane J_ to the XZ-plane.

If Y = 90, then

x cos + ?/ cos /?
= p . . . (7)

is the equation of a plane 1 to the XY-plane.

COR. 3. If = 90 and (3
= 90, then

.--1L ... (8)
cos 7

is the equation of a plane 1 to YZ and XZ, and hence
||
to

XY.

Similarly, we find

y = --*cos

(10)
COS

for the equations of planes ||

to XZ and YZ respectively.
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COR. 4. If p = in (8), (9), and (10), then

y = I ... (11)

J

are the equations of XY, XZ, and YZ, respectively.

174. To find the equation of a plane in terms of its in

tercepts.

Let, Fig. 78, OA =a, OB = b, OC = c. Since OE (=p) is

perpendicular to the plane ABC, we have from the right tri

angles OEA, OEB, and OEC

COS =

0080=| f

COS 7 =

... (a)

J

Substituting these values in the normal equation and

reducing, we have

* + -| +
* = 1 . . . (1)a b c

for the required equation. Equation (1) is called the SYM
METRICAL EQUATION of the plane.

175. Every equation of the first degree between three vari

ables represents a plane.
The most general equation of the first degree between

three variables is of the form

Ax -f By -f C* = D . . . (1)

Dividing both members of this equation by VA2
-|- B 2 + C 2

,

we haveABC
-2

x
~&quot;~ ^/A2 i T^2 i ni y* iVA2 + B 2 + C 2 VA2~+ B 2 + C 2 * VA2 + B2 + C 2

A2 + B 2 + C
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Comparing (2)
with (3) of Art. 173, we see that the co

efficients of the variables are the directional cosines of some

line expressed in terms of the co-ordinates of one of its

points, and that the second member measures the distance of

a plane from the origin ;
hence (2) and therefore (1) is the

equation of a plane.

176. To find the equations of the traces and the values of

the intercepts of a plane given by its equation.

7

FIG. 79.

Let ABC be the plane and let its equation be

Ax + By + C2 = D.

1. To find the equations of the traces AB, BC, AC.

The traces are the intersections of the given plane with

the co-ordinate planes ; hence, combining their equations, we

have

Ax + By + Cz = D
| /&amp;lt; Ax + B^ = D&amp;lt; Trace 011XY (AB) . . .(1)

z = )

Ax + By+ C = D
|

. Ax + Cs = D _ Trace on XZ (AC) . . , (2)

Cz = D &quot;)

.
j&amp;gt;

I

Q,, __ j)^ Trace on YZ (BC) ... (3)

,

r
Ax
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2. To find the intercepts OA, OB, OC.

The points A, B, C are the intersections of the given plane

with the co-ordinate planes taken in pairs ; hence, combining

their equations, we have

A* + By + C* = D
(4)

-nL

y-Q
-D

. . . (5)

._ 00 . . . (6)

COR. If the plane is perpendicular to XZ its Y-inter-

cept = OB = oo
; hence, equation (5), B = 0. Making B =

in the general equation, we have

Ace + O = D . . . (7)

But (7) and (2) are the same equations; hence, a perpendic
ular plane and its trace on the plane to ivhich it is perpendic
ular have the same equation.

177. If x cos a.
-j- y cos ft -|- cos 7

= p be the normal equa
tion of a plane, then x cos u

-\- y cos (3 -j- z cos 7 = p -^ d is the

equation of a parallel plane at the distance d from it.

For the directional cosines of the perpendiculars are the

same
; hence, the perpendiculars are coincident

; hence, the

planes are parallel. The distance of the planes apart is equal

to the difference of the perpendiculars drawn to them from

the origin ;
but this difference is p -j- d p ; i.e., J- d. Hence,

the proposition.

COR. If (V, ?/, ) be a point in the plane whose distance

from the origin is p -]- d ;
then

_J_ d = Xf

COS -|- if COS (3 + COS 7 p . . . (1)
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is its distance from the parallel plane whose distance from

the origin is p. From equations (a), Art. 174, we have

cos = -
,
cos j8

=
,
cos 7

= P-
;

a 6 c

hence cos2 + cos2 + cos2
/
= ^ + % + -~

2

- = 1-

& v C

These values in (1) give

for the expression of the distance of a point from a plane

which is given in its symmetrical form.

Let the student show that the expression for d becomes

d _A^Vy + Cz:_-^
m (3)

* + B 2 + C 2

when the equation of the plane is given in its general form.

What is the significance of the double sign in (1), (2), and

(3)?

178. To find the equation of a plane which passes through

three given points.

Let (V, y ,
z

f

), (x&quot;, y&quot;, *&quot;), (*&quot; , y&quot;,
*

&quot;)

^ the given points.

Since the equation we seek is that of a plane, it must be

Ax + By + Cz = D . (1)

in which A, B, C, D are to be determined by the conditions

imposed.
Since the plane is to contain the three given points, the co

ordinates of each of these must satisfy its equation ;. hence,

the following equations of condition :

Ax + B// + C.~ = D
Ax&quot; + B/ + C,~&quot;

= D
Ax &quot; + By

&quot; + C
&quot; = D.

These three equations contain tlie/ow unknown quantities

A, B, C, D. If we find from the equations the values of A,
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B, C in terms of D and the known quantities, and substitute

these values in (1), each term of the resulting equation will

contain D as a factor. Let

A =
AT&amp;gt;,

B = B D, C = CD be the values found.

Substituting in (1), we have

A Daj + B D?/ + C Vz = D.

... A a + B y + C s = 1 ... (2)

is the required equation.

179. The preceding discussion has elicited the fact that

every equation of the first degree between three variables

represents a plane surface. It remains to be shown that every

equation between three variables represents a surface of some

kind.

Let z =/(, y) C
1)

be any equation between the three variables (x, y, z). Since

x and y are independent, we may give them an infinite number

of values. For every pair of values thus assumed there is a

point on the XY plane. These values in (1) give the corre

sponding value or values of z, which, laid off on the perpen
dicular erected at the point in the XY plane, will locate one

or more points on the locus of the equation. But the number

of values of z for any assumed pair of values of x and y are

necessarily finite, Avhile the number of pairs of values which

may be given x and y are infinite ; hence (1) must represent

a surface of some kind.

If

-/(*, y)

z =
q&amp;gt; (x, y) j

. . . (2)

be the equations of two surfaces, then they will represent their

line of intersection if taken simultaneously. For these equa
tions can only be satisfied at the same time by the co-ordinates

of points common to both. Hence, in general, two equations

between three variables determine the position of a line in space.
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If z =f(x,y)
=

&amp;lt;P (^ y)

= V (x, y}

be the equations of three surfaces, then they will represent

their point or points of intersection when considered as simul

taneous. Hence, in general, three equations letiveen three

variables determine the positions of space points.

EXAMPLES.

Find the traces and intercepts of the following planes:

4. 2

11. The directional cosines of a perpendicular let fall from

the origin on a plane are | ,\ , |; required the equation of the
o o o

plane, the length of the perpendicular
== 4.

An, 5+^ + f-l.
Required the equations of the plane whose intercepts are

as follows :

12. 1,2,3. 14- i,, -2.

13. 2,
-

1, 3. 15. -
1,
-

,

&quot; 4.

16. What is the equation of the plane, the equations of

whose traces are x 3 y = 4 and x -j-
z = 4 ?

a 3 ?/ + z = 4.
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17. The co-ordinates of the projection of a point in the

plane x 3y-}-2z = 2ov. the XY plane are (2, 1) ; required

the distance of the point from the XY plane.
Ans. f.

Write the equations of the planes which contain the follow

ing points :

18. (1, 2, 3), (- 1, 2,
-

1), (3, 2, 0).

19. (4, 1, 0), (2, 0, 0), (0, 1, 2).

20. (0, 2, 0), (3, 2, 1), (- 1, 0, 2).

21. (2, 2, 2), (3, 3, 3), (- !,-!,- 1).

Find the point of intersection of the planes

22. a- + ^ _ z = 4. 23. 2 x - y + z = 10.

2^-33 + ?/
= 10. x + ?/-2 = 3.

x -f T/
- 2 = 2. 2 x - 4 y + 5 = 6.

24.

Find the distance of the point (2, 1, 3), from each of the

planes

25. .x cos 60 + y cos 60 + z cos 45 = 9.

26. x + 3 y z = 8.

27. x + ^ + 3 z = 4. 28. --- + - = 1.
2 325

29. Find the equation of the plane which contains the

point (3, 2, 2) and is parallel to the plane x 2
ij -\- z = 6.

Reduce the following equations to their normal and sym
metrical forms :

30. 2x 3y + z = . 31. 4 cc + 2 y z = ~.

qo 2
,

1
o&amp;lt;6. x ~\- y - # = o.

33. If s, s
,

s&quot; represent the sides of the triangle formed by
the traces of a plane, and a, b. c represent the intercepts,

show that s
2 + s

2 + s
&quot;2 = 2 (a

2
-f b2 + c

2

).
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CHAPTEE III.

THE STRAIGHT LINE.

180. To deduce the equations of the straight line.

The straight line in space is determined when two planes
which intersect in that line are given. (See Art. 179.) The

equations of any two planes, therefore, may be considered as

representing a space line when taken simultaneously. Of the

infinite number of pairs of planes which intersect in and de

termine a space line, two of its projecting planes that is,

two planes which pass through the line and are perpendicular
to two of the co-ordinate planes give the simplest equations.

For this reason two of these planes are usually selected.
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Let PBM be the plane which projects a space line on XZ,
then its equation will be of the form

x = sz -j- a (
see Art. 176, Cor.)

in which s = tan ZBP and a = OA.
Let P B M be the plane which projects the line on YZ,

then its equation will be

y=t*+b,
in which t = tan ZB P and b = OA. .

But the two planes determine the line
;
hence

x = sz + a

are the required equations.

COR. 1. If a = and b = 0, then

x = sz )

y = tz j

are the equations of a line which pass through the origin.
COR. 2. If s = and t = 0, we have

for the equation of a line
||
to the Z-axis.

COR. 3. Since equations (1) express the relation existing
between the co-ordinates of every point on the space line, if

we eliminate Z from these equations we obtain the immediate
relation existing between x and y for points of the line. But
this relation is evidently the same for all points in the pro
jecting plane of the line which is 1 to XY and therefore for

its trace on XY. But the trace is the projection of the line

on XY
; hence, eliminating, we have

sy tx = bs at . . . (4)

for the equation of the projection of the line on XY.
181. We have found, Art. 169, Schol., for the length of a

line joining two points the expression

T.-^-y _ y&quot; -j/ ^ *&quot;-:.
COS a COS (3 COS 7
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Eliminating L and letting x&quot;, y&quot;,
z&quot; (= x, y, z) be the co

ordinates of any point on the line, we have

x x _ y y _ z
x-jx

cos cos (3 cos 7

for the SYMMETRICAL EQUATION of a straight line.

182. To find where a line given by the equations of its

projections pierces the co-ordinate planes.

Let
X =

_

=

_ f &quot;f ? I be the equations of the line.

y fz-\-0 )

1. To find where the line pierces the XY-plane.

The equation of the XY-plane is

Since the point of intersection is common to both the line

and the plane, its co-ordinates must satisfy their equations.

Hence
x = sz -j- a

y = t-Z -\- b

are simultaneous equations. So treating them we find

(a, b, 0)

to be the required point.

2. To find where the line pierces the XZ-plane.

The equation of the XZ-plane is

y-o.
Combining this with the equations of the line, we have

for the required point.

3. To find where the line pierces the XZ-plane.

x = sz -{-

y = tz -f- b y are simultaneous ;

hence
&amp;lt;),

s

is the required point.
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183. To find the equations of a line passing through a given

pont.
Let (x j y

r

,
z

f

) be the given point.

Since the line is straight its equations are

a)
ft

&amp;gt;y = te + b

in which the constants are unknown.
Since it is to pass through the point (# , y ,z

f

) its equations
must be satisfied for the co-ordinates of this point ;

hence
the equations of condition :

x = sz
f + a ) ,n\

y
1 = tz

f + b \

As the three conditions imposed by these four equations

cannot, in general, be fulfilled by a straight line, we must
eliminate one of them. Subtracting the first equation in

group (2) from the first in group (1) and the second in group
(2) from the second in group (1), we have

x x = s (z z ) |
,,

y - y = t (Z
- Z ) }

for the general equations of a straight line passing through a

point.

184. To find the equations of a line passing through two

given points.

Let (x
f

, y ,
z

), (x
fl

, y&quot;, z&quot;)
be the given points.

As the line is straight its equations are

... (i)

in which the constants are to be determined.

As it is to pass through (x , y ,
z

), we must have

xf = sz
f

y = tz
r
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As it is to pass through (#&quot;, y&quot;, z&quot;),
we must have also

x&quot; = sz&quot; + a
I (3)

y&quot;

= tz&quot; + b }

As these six equations impose four conditions on the line,

we must eliminate two of them. The conditions of the

proposition, however, require the line to pass through the

two points ;
hence we must eliminate the other two.

Elimiting a and b from groups (1) and (2), by subtraction,

we hav6 x

x x = s (z z
r

) |

y - y = t (z
- *

) j
(
4)

Now, eliminating a and b from (2) and (3), we have

X - X&quot; = s (Z
_

z&quot;)

-

t

,j -y&quot;
= t (z

-
z&quot;) j

Eliminating s and t between (4) and (5), we have

,

for the required equations.

EXAMPLES.

x = *? z -4- 1 )
1. Given the line

^ = 4 ^ _ 3 r required the equation of

the projection on XY.
Ans. 2 x y = 5.

2. How are the following lines situated with reference to

the axes ?

x=2\ y=0\ ?/
= 0) a; = )

Find the co-ordinates of the points in which the following
lines pierce the co-ordinate planes :

x=-z-l) , 2x =
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6. Given (2, 1, 2), (3, 0, 2) ; required

(a) The length of the line joining the points.

(7&amp;gt;)

The equation of the line.

(c) The points in which the line pierces the co-ordinate

planes.

Find the equations of the lines which pass through the

points :

7. (2, 1, 3), (3,
-

1,
-

1). 9. (2,
-

1, 0), (3, 0, 0).

8. (
-

1, 2, 3), (
- 1,0, 2). 10. (1,

-
1,
-

2), (- 1, -2, - 3).

11. The projections of a line on XZ and YZ make angles
of 45 and 30 respectively with the Z-axis, and the line in

space contains the point (1, 2, 3) ; required the equations of

the line.

/y&amp;gt;

~ -/
t*/ *v

^^ w.

y = -4-
- V 3 +

V3
12. The vertices of a triangle are (2, 1, 3), (3, 0, 1),

( 2, 4, 3) ; required the equations of its sides.

13. Is the point (2, 1, 3) on the line which passes through

(- 1, 3, 2), (3, 2,
-

2) ?

14. Write the equations of a line which lies in the plane

NOTE. Assume two points in the plane ;
the line joining

them will be a line of the plane.

15. Find the equation of a line through (1, 2, 2) which
is parallel to the plane x y + z = 4.

16. Find the point in which the line
^ + 2 ^ = 3 )

y z + 2 = 0)
pierces the plane 3 x -\- 2 y z = 4.

17. Required the equation of the plane which contains the
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18. Find the point of intersection of the planes

x + 3y z = 4, x y + z = 2, 2 x + y = 3.

19. Find the equations of the projecting planes of the line

a._2v + = 4

20. Which angles do the following planes cross ?

x -y. + z = 4:,2x +y -3z = 2, x - 2 y - z = 1.

185. To find the intersection of two lines given by their

equations.
x = sz + a ) , x = s z + a \

Let y-. + ft|
Mld y-^ + ft

f

;

be the given equations. Since the point of intersection is com

mon to both lines, its co-ordinates must satisfy their equations.

Hence these equations are simultaneous. But we observe that

there are four equations and only three unknown quantities ;

hence, in order that these equations may consist (and the lines

intersect), a certain relationship must exist between the con

stants which enter into them. To find this relationship, we

eliminate x between the first and third, y between the second

and fourth, and z between the two equations which result.

We thus obtain

(s
- s

f

) (b
- & )

-
(t
-

(a
- a

)
=

for the required equation of condition that the two lines shall

intersect. If this condition is satisfied for any pair of as

sumed lines the lines will intersect, and we obtain the

co-ordinates of this point by treating any three of the four

equations which represent them as simultaneous. So treating

the first, second, and third we obtain

a a
, ;

a a
/ i ^&amp;gt;

s s s s

for the co-ordinates of the required point.

NOTE. We were prepared to expect that our analysis

would lead to some conditional equation, for in assuming the

equations of two space lines it would be an exceptional case
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if we so assumed them that the lines which they represent
intersected. Lines may cross each other under any angle in

space without intersecting. In a plane, however, all lines

except parallel lines must intersect. Hence, no conditional

equation arose in their discussion.

186. To find the angle between tiuo lines, given by their

equations, in terms of functions of the angles which the lines

make with the axes.

Let
x = sz -f- a

be the equations of the two lines. The angle under which
two space lines cross each other is measured by the angle
formed by two lines drawn through some point parallel to
their directions.

FIG. 81.. .

Let OB and OC be two lines drawn through the origin

parallel to the given lines. Then

will be their equations. The angle between these lines is the

angle sought. Let cp (= BOG) be this angle.
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Let a
, , y represent the angles which the line BO makes

with X, Y, Z, respectively ;
and

&quot;, 0&quot;, y&quot;
the angle which

CO makes with the same axes. Take any point P (x
f

, y ,
z }

on OB and any point P&quot;
(x&quot;, y&quot;, z&quot;)

on CO and join them by

a right line forming the triangle P OP&quot;.

Let OF - I/, OP&quot;== L&quot;,
and P P&quot;

= L.

From the triangle P OP&quot;,
we have

IfO I T ff&amp;gt; T 2
j + L -Lr /-i\

COS^ 2L07-

But Art. 168, equation (3) and (2)

L 2 = x 2 + y
2 + * 2

,

L&quot;

2 =
x&quot;*+ y&quot;* + ^//2

,

L2 =
(x&quot;

- xj + (if
- yj + (*&quot;

- *r

Substituting these values in (1), we have

cos
&amp;lt;p

= -
T~^T&quot;

~ Ov

But Art. 169, (1)

x = L cos
, ?/

= L cos /? ,

= L cos y

x&quot; = L&quot; cos
&quot;, y&quot;

= L&quot; cos
)3&quot;,

&quot; = L&quot; cos
y&quot;

Substituting in (2),
we have

cos
&amp;lt;f

= cos cos
&quot; + cos /3

cos
/3&quot; + cos y cos

y&quot;
. . . (3)

for the required relation.

COR. If v = 90

cos cos
&quot; + cos ^3

r

cos
)8&quot; + cos y cos

y&quot;

= . . . (4)

187. To ymd ^e awr/Ze ^//-ic/i ^&amp;lt;?o space Zmes maA;e with each

other in terms of functions of the angles which the projections

of the lines make with the co-ordinate axes.

be, as in the preceding article, the equations of the lines
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drawn through the origin parallel to the given lines. Since
P (x, y ,

z
), Fig. 81, is a point on the first line, we have

* _

x = sz

y = *
,

and, Art. 168, I/2 = x&quot;

2 + y
2 + z \

Eliminating, we find

&quot;

vi + s2 + ^
2 vi + s2 + 1

2

~

vi + *+Ta ;

and since P&quot; (x
r/

, y&quot;, &quot;)
is a point on the second line, we

have

x&quot; = s z&quot;

y&quot;

= M,
and, Art. 168, L&quot;

2 = x &quot;1 + y&quot;

2
-f- ^//2

.

Hence,

Vl + s* +
But, Art. 169,

L/ Vl + s
/2 + t

12

Substituting these values in equation (3), Art. 186, and

reducing, we have

_

Vl + .9
2

for the required expression.
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COB. 1. If
&amp;lt;f&amp;gt;

= 0, the lines are parallel and equation (1)

becomes

i = T==4J^===.
Clearing of fractions and squaring, we have

Performing the operations indicated, transposing and col

lecting, we have

But the sum of the squares of these quantities cannot be

equal to zero unless each separately is equal to zero
;
hence

j = s? t
&amp;lt; = t

,
st

f = s t . . . (2)

are the conditions for parallelism of space lines. The first

two of these conditions show that if two lines in space are

parallel, then their projections on the co-ordinate planes are

parallel also. The third condition (sf
= s t)

is a mere conse

quence of the other two, and may be omitted in stating the

conditions for parallelism.

COB. 2. If 9 = 90, the lines are perpendicular to each

other, and equation (1) becomes

1 + ss + it

hence 1 + ** + = (
3

&amp;gt;

is the condition for perpendicularity
in space.

188. Since the angle which a line makes with any one ot

the co-ordinate axes is the complement of the angle which the

line makes with the co-ordinate plane to which that axis is

perpendicular
if we let

, ft y be the complements of
, p, y ,

respectively,
we have

for the sines of the angles which a space line makes with the

co-ordinate planes.
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TRANSFORMATION OF CO-ORDINATES.

189. To find the equations of transformation from one

system of co-ordinates to a parallel system, the origin being
changed.

FIG. 82.

Let X, Y, Z be the old axes and X
,
Y

,
Z the new.

Let P be any point on the locus CM. Draw PB, A K,
O L

||
to OZ and meeting XOY in B, B and L. Draw BE

and produce it to A
;
BE will be

||
to Y

;
draw LX

||
to BE

and LE
||
to OX. Then (OA, AB, BP) = (

x
, y, z) are the

old co-ordinates of the point P.

(O A ,
A B

,
B P) = (a; , y ,

z ) are the new co-ordinates of
the point P.

(OX, XL, LO )
=

(a, b, c) are the old co-ordinates of the
new origin .

From the figure



248 SOLID ANALYTIC GEOMETRY.

OA = ON + O A
,
AB == NL + A B

,
BP = LO + B P

;

hence x = a -f- x , y = b -\- ?/, z = c + z

are the required equations.

190. To find the equations of transformation from a rec

tangular system in space to an oblique system, the origin being
the same.

FIG. 83.

Let OX, OY, OZ be the old axes, and OX
,
OY

,
OZ the

new.

Let u
, ft, f be the angles which OX makes with OX, OY,

OZ respectively.

Let
u&quot;, fi&quot;, f be the angles which OY makes with OX, OY,

OZ respectively.

Let &quot;

, $ &quot;, f&quot;
be the angles which OZ makes with OX, OY,

OZ respectively.

Let P be any point on the locus CM. Draw PB and PB
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||
to OZ and OZ

, respectively, and let B and B be the points
in which these lines pierce the planes XOY and X OY .

Draw B A
||
to OY

;
then

(OA, AB, BP) = (x, y, z) are the old co-ordinates of the

point P.

(OA ,
A B

,
B P) = (x

f

, y
!

, ) are the new co-ordinates of the

point P.

From P, B and A let fall the perpendiculars PA, BT&amp;gt;,
A L

on the X-axis
;
then from the figure, we have

OA = OL + LD + DA
But OL, LD and DA are the projections of OA

,
A B

,
and

PB
, respectively on the X-axis, and each, therefore, is equal

to the line whose projection it is into the cosine of the angle
which that line makes with the X-axis. (See Art. 169 (1) .)

.-. OL = OA cos
,
LD = A B cos &amp;lt;/

,
DA = B P cos &quot;

i.e., OL = x cos
,
LD = y cos

&quot;,
DA = z cos

&quot;

;

hence, substituting, we have

X = x COS -f- y
r

COS n&quot; -f z COS a
&quot;

1

Similarly y = x cos p + y cos p + cos
p&quot;

I ... (1)
z = x cos y -f if cos f + z

f
cos

Y&quot;

Of the nine angles involved in these equations, six only are

independent, for since the old axes are rectangular, we must
have (See Art. 169, equation (2) ).

cos 2 + cos 2 p -f cos2 / = 1 1

cos 2 &quot; + cos 2
$&quot; + cos 2

y&quot;
=1 I (

2)

cos 2 &quot; + cos 2 &quot; + cos 2f = 1
j

Con. 1. If we suppose the new axes to be rectangular also

we must have in addition to equation (2) the following condi

tional equations : See Art. 186, Cor.

cos cos
&quot;

-f cos /? cos
/3&quot; + cos f cos

7&quot;

=
cos cos

&quot; + cos p cos
p&quot; + cos f cos

/&quot;
= I (3)

cos
&quot;

cos
&quot; + cos p cos /?

&quot; + cos f cos y
&quot; =

j

Hence, in this case, only three of the nine angles involved
in equation (1) are independent.



250 SOLID ANALYTIC GEOMETRY.

THE CONIC SECTIONS.

191.. The CONIC SECTIONS, or, more simply, THE CONICS,

are the curves cut from the surface of a right circular cone by

a plane.

We wish to show that every such section is an ellipse, a

parabola, an hyperbola, or one of their limiting cases. Art.

146.

192. To deduce the equation of the conic surface.

FIG. 84.

Let CAEA C be the conic surface, generated by revolving

the element CA about OZ as an axis. Let P be any point on

any element as CE
;
let OC = c and OEC = 6.

Draw DP
||
to XY-plane and intersecting OZ in D; draw

PK
||
to OZ, KB ||

to OY, and join and K producing it to

meet the base circle in E.

Then (OB, BK, KP) = (a?, y, z) are the co-ordinates of P.

From the similar triangles COE, CDP, we have

50.-00_tan.. .(1)DP OE
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But DC = 00 - PK = c - z, and DP = OK = Vz2 + y
z

\

hence,

c z = tan
;

i.e., (c
-

z)
2 =

(x
2 + if) tan 2

. . . (2)

is the required equation.

193. To find the equation of the intersection of a right cir

cular cone and a plane.

Let GALA be the cone and X OY the cutting plane. Let
X OX, the angle which the cutting plane makes with the

plane of the cone s base, = &amp;lt;p.

Let P
(x, y, z) be any point on the curve of intersection

BPB . We wish to find the equation of this curve when
referred to OY, OXr

as axes.

Draw PD
||
to OY

;
PL and DK

||
to OZ

;
then

(OK, KL, LP) = (x, y, z) are the space co-ordinates of P,
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and (OD, DP) = (x
f

, y) are the co-ordinates of P when referred

to OX
,
OY.

From the figure KL = DP, PL = KD = OD sin qp, OK =
OD cos go.

i.e., V = V&amp;gt;

z = x sm Vi x = x cos V-

But these values of x, y, & must subsist together with the

equation of the conic surface for every point on the curve of

intersection; hence substituting in
(2),

Art. 192, reducing and

remembering that sin2
y = cos 2

cp tan. 2
?, we have, dropping

accents,

?/
2 tan 2

l9 + x2 cos 2

&amp;lt;p(tan

2 tan +2 casing c
2 = . . . (1)

for the equation of the intersection.

By giving every value to y from to 90 and to c every

value from to oo, equation (1) can be made to represent every

section cut from a cone by a plane except sections made by

planes that are parallel to the co-ordinate planes.

COR. 1. Comparing (1) with (1),
Art. 138. we find

a = tan. 2

c = cos 2
(JP (tan

2 9 tan 2

g&amp;gt;)

Hence, equation (1) represents an ellipse, a parabola, an

hyperbola or one of their limiting cases according as, Art.

146.

b
2

&amp;lt;
4 ac

IP =. 4 ac

b2
&amp;gt;

4 ac.

Case 1.
&amp;gt; &amp;lt;p.

We find this supposition in (2) gives a
&amp;gt;

and c
&amp;gt; ; hence, b

2
&amp;lt;

4 ac, i.e., the intersection is an

ellipse.

If 6
&amp;gt;

&amp;lt;p

and c = 0, the equation resulting from introducing

this supposition in (1) can only be satisfied by the point

(0, 0) ;
hence it is the equation of two imaginary lines inter

secting at the origin.
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]f cp
=

0, equation (1) becomes

if tan 2 + x 2 tan 2
6&amp;gt;
= c2

,

that is, the intersection is a circle.

CASE 2. (9 =
g&amp;gt;.

This supposition in (2) gives a
&amp;gt; and

c = .-. Z&amp;gt;

2 = 4c. Hence the intersection is a parabola,
If =

qp and c = 0. From (1), we have

?/
2 tan 2

&amp;lt;9

-
; i.e., y =

which is the equation of the X-axis a straight line.

If =
cp
= 90and&amp;lt;?= oo,then the cone becomes a cylinder,

and the cutting plane is perpendicular to its base. The inter
section is therefore two parallel lines.

CASE 3. 9
&amp;lt; cp. This supposition makes a

&amp;gt; 0, c
&amp;lt;

.-. b2
&amp;gt;

4 ac. Hence the intersection is an hyperbola.
If 6

&amp;lt; q&amp;gt;

and c = then (1) becomes

if- tan
2 = x 2 cos2

9) (tan
2

&amp;lt;p

tan 2

0)

which is the equation of two intersecting lines.

CASE 4. Planes
\\

to the co-ordinate planes.

(a) Plane
\\

to XY-plane. Let z = m be the equation of
such a plane. Combining it with the equation of the conic

surface, we have

...
tan 2

which is the equation of a circle for all values of m.

(b) Plane
||

to YZ-plane. Let x = n be the equation of
such a plane. Combining with (2), Art. 192, we have

or 7/
2 tan 2

z? + 2 cz + n* tan 2
c
2 = . . . (4)

which, since b2
&amp;gt;

4 ac, is the equation of an hyperbola for all

values of n.

(c) Plane
\\
to XZ-plane. Let y = p be the equation of such

a plane. Combining with (2), Art. 192, we have after reduc
tion

a;
2 tan 2 z2 + 2 c +^2 tan 2

c
2 = . . . (5)
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which, since b
2

&amp;gt;
4 ac, is the equation of an hyperbola for all

values of p
2

.

Hence, in all possible positions of the cutting plane, the

intersection is an ellipse, a parabola, an hyperbola, or one of

their limiting cases.

NOTE. Equations (3), (4), (5) of case 4 are the equa

tions of the projections of the curves of intersection on the

planes to which they are parallel. But the projection of any

plane curve on a parallel plane is a curve equal to the given

curve
;
hence the conclusions of case 4 are true for the

curves themselves.

194. We have defined the conies, Art. 191, as the curves

cut from the surface of a right circular cone by a plane, and

assuming this definition we have found and discussed their

general equation, Art. 193.

A conic, however, may be otherwise defined as the locus

generated by a point so moving in a plane that the ratio of its

distance from a fixed point and a fixed line is always constant.

195. To deduce the general equation of a conic.

Y

D

FIG.

Let us assume the definition of Art. 194 as the basis of the

operation. Let F be the fixed point and OY the fixed line.

Let P be the generating point in any position of its path.
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Draw FO J_ to OY, and take OY and OX as co-ordinate axes.

Draw PL
||
to OY, PD J_ to OY, and join P and F. Let OF

= p.

FP
By definition - = e = a constant.

From triangle FPL, FP 2 == FL 2 + PL 2

;...(!)
but FL2 = (OL - OF)

2 =
(x
- p)\ LP 2 = f- and FP2 =

e
2DP 2 = e*x2

.

These values in (1) give
e

2 x 2 =
(x -p)

2 + if

or, after reduction,

y- + (1
- e

2

) x
2 - 2px + p* = . . . (2)

for the required equation.

COR. Comparing (2) with (1), Art. 138, we find

a = 1, b = 0, and c = (1 e
2

),

hence 6 2 4 ac = 4 (1 e
2

)
= 4

(e~ 1) . . . (3)

CASE 1. The fixed point not on the fixed line ; i.e., p not
zero.

If e
&amp;lt; 1, b

2
&amp;lt;

4 ac.; hence equation (2) is the equation of

an ellipse.

If e = 1, 6
2 = 4 ac

;
hence equation (2) is the equation of a

parabola.

If e
&amp;gt; 1, 62

&amp;gt;
4 ac

;
hence equation (2) is the equation of

an hyperbola.

CASE 2. The fixed point is on the fixed line, i.e., p = 0.

In this case (2) becomes

f + (1
- e

2

) ^
2 =

. . . (4)

If e
&amp;lt; 1, equation (4) represents two imaginary lines inter

secting at origin.

If e = l, equation (4) represents one straight line (the

X-axis).
If e

&amp;gt; 1, equation (4) represents two straight lines inter

secting at the origin.

Hence, equation (2) represents the conies or one of their lim

iting cases.
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GENERAL EXAMPLES.

1. Find the point of intersection of the lines

x = 2 + 1 x = + 2

and the cosine of the angle between them.
5

^%s. (3, 5, 1) ;
cos

g&amp;gt;

=
^|

2. Required the equation of the line which passes through

(1 } 2, 3) and is parallel to

_ 9 2 _]_ 1 ) x = 2 z 5

y~l-V}-
^

?/= -.+
3. What is the angle between the lines

Ans. V = 90.

4. What is the distance of the point ( 3, 2,
-

1) from

the line

y = 4 z -\- 3 i

5. A line makes equal angles with the co-ordinate axes
;

required the angles which it makes with the co-ordinate

planes.

6. The equation of a surface is x2
-f y* + 2 x 4 y -

Q z _ 2
;
what does the equation become when the surface is

referred to a parallel system of axes, the origin being at

(1, 2, 3) ? Ans. x2 + if + z2 = 16.

7. Given the line
?

x +
^^ 2

j
, required the projection of

the line on XY and the point on which the line pierces the

co-ordinate planes.
Ans. in part, 2 y + a- = 4.

8. Required the distance cut off on the Z and Y axes by
I 9 __ A

the projections of the line
j~_ ^ x == 9 on Y^-

s = - 6

Ans.
?/
_3 .

&quot;

o
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9. How are the following pair of lines related ?

x = 2z 2 x = 2z-

10. What are the equations of the line which passes through

the origin and the point of intersection of the lines

A x = 3z\

11. What is the distance of the point (3. 2, 4) from the

origin ? What angle does this line make with its projection

on XY ?

12. A straight line makes an angle of 60 with the X-axis

and an angle of 45 with the Y-axis
;
what angle does it make

with the Z-axis ? Ans. 60.

13. What are the cosines of the angles which the lines

Q &quot;1 ^

make with the co-ordinate axes ?

14. A line passes through the point (1, 2, 3) and makes

V2 1 1

angles with X, Y, Z whose cosines are
2 ? 2

resPect &quot;

ively; required

(a) the equation of the line,

(b) the equation of the plane J_ to the line at the point,

(V) to show that the projections of the line are J_ to the

traces of the plane. 212
15. The directional cosines of two lines are

, ,
and

o o o

Xfrj 1,1. What is the cosine of the angle which they
L 2i

make with each other ?

3 +2 V2
Ans. Cos

y&amp;gt;

= -
b

16. The projecting planes of a line are x = 3 z 1 and

x = 2 y -\- 2. What is the equation of the plane which pro

jects the line on YZ ? Ans. 3 z 2 y = 3.
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17. The projections of a line on XZ and YZ each form with

the Z-axis an angle of 45
; required the equation of the line

which passes through (2, 1, 4) parallel to the line.

18. Find the equation of the line which contains the point

(3,. 2, 1) and meets the line
x
^

* Z
_~3

l

[

at right angles.
/

19. Given the lines
* =

**+_l\ }
and

x

y

=
|

* +
\ J

;
re-

quired

(a) the value of s in order that the lines may be parallel ;

(b) the value of s in order that the lines may be perpen

dicular
;

(c) the value of s in order that the lines may intersect.

212
20. The directional cosines of a line are -

,

-
,

-
; required

o o o

the sines of the angles which the line makes with the co-ordi

nate planes.

21. Find the equations of the line which passes through

the origin and is perpendicular to the two lines
^
_

j- z _^_ 3
j-

- i 1 ) Ans. x 3 z )

r 11 = 2 z\
y = 2, Z )

&

22. Find the angle included between the two planes

x + By + C* = D and A x + B y + C = D .

and

AA +
2 + B a + C&quot;

23. If two planes are parallel show that the coefficients of

the variables in their equations are proportional.

24. Find the condition for perpendicularity of the two

planes given in Example 22.

Ans. AA + BB + CO - 0.
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CHAPTER IV.

A DISCUSSION OF THE SURFACES OF THE
SECOND ORDER.

By A. L. Nelson, M.A., Professor of Mathematics in Washing
ton and Lee University, Va.

EVERY equation involving three variables represents a sur

face. If the equation be of the first degree the surface will

be a plane. If the equation be of a higher degree the surface
will be curved. It is proposed in this chapter to determine
the nature of the surfaces represented by equations of the
second degree involving three variables. The most general
form of the equation of the second degree is Ax 2 + By/

2
-f- Cz

2

+ Day + Vxz + -Fyz + Gx + Hy + Iz + K = . . . (1) where
the coefficients A, B, C, etc., may be of either sign and of any
magnitude. Let us suppose the co-ordinate axes to be rectan

gular. The form of equation (1) may be simplified by a
transformation of axes. Let us turn the axes without chan

ging the origin.

The formulae of transformation are (Art. 190)

X = X f

COS + y COS a&quot;
-f- z COS a &quot;

y = x f

cos p + / cos $ + z cos ft
&quot;

z =x cos f + if cos / + cos f
Substituting these values, equation (1) becomes

AV* + By2 + CV2 + DVv/ + EW + F yV + GV + Hy
+ TV + K =

. . . (2).
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Since the original axes were supposed rectangular the nine

angles ft f etc., are connected by the three relations

cos 2 + cos 2

ft 4- cos 2 f = I.

cos 2 &quot;

4- cos 2
ft&quot; 4- cos 2

y&quot;
= 1.

COS 2 a
&quot;

4- COS2
/J&quot; 4- COS 2

/&quot;
= 1.

If we take the new axes also rectangular, which is desir

able, the nine angles will be connected by the three additional

relations

cos a cos
&quot;

-j- cos ft cos
ft&quot; 4- cos f cos f = 0.

cos cos a
&quot; + cos /? cos ft

&quot;

4- cos y cos
f&quot;
= 0.

cos u&quot; cos
&quot;

4- cos
ft&quot;

cos /?

&quot;

-4- cos f cos
y&quot;
= 0.

This will leave three of the nine angles to be assumed arbi

trarily. Let us give to them such values as to render the co

efficients D
,
E

,
and F each equal to zero in equation (2).

The general equation will thus be reduced to the form
AV2

4- By2
4- CV2

4- GV + Hy 4- IV 4- K = 0,

or, omitting accents,

Ax 2
4- By

2 4 Cs2 + GJB + Hy + I 4- K = . . . (3)

In order to make a further reduction in the form of the

equation let us endeavor to move the origin without changing
the direction of the axes. The formulae of transformation

will be (Art. 189)
x = a 4- #

&amp;gt; y = b + y
r

,
z = f- 4- %

Equation (3) will become

A (a 4- x Y + B (b + y Y + C (c + * )* + G (a + x
) 4

H (b + //) 4- I
(c 4- *

) + K = 0.

Developing, omitting accents, and placing A 2

4- B& 2 + O2

4- Ga + HZ + Ic + K = L, the equation takes the form

Ax 2
4- B//

2 + C,?
2 + (2 Att 4- G) x 4- (2 B^ +H) y 4- (2 Cc +1 )z

+ L = 0.

In order now to give definite values to the quantities a, b,

and c, which were entirely arbitrary, let us assume

= --1L_ c = _ _JL or
,

--
2A 2B
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=
, Cc + I = . . . (4)

If these values of a, b, and c be Unite, the general equation
reduces to the form

+ By
2 + C* 2 + L = . . . [A],

a form which will be set aside for further examination.
It may be remarked that equations (4) are of the first

degree, and will give only one value to each of the quantities
a, b, and c, and there is therefore only one position for the
new origin.

If, however, either A, B, or C be zero, then a, b, or c will
become infinite, and the origin will be removed to an infinite
distance. This, must be avoided.

Let us suppose A = 0, while B and C are finite. We may
then assume 2 B6 + H =

0, and 2 Cc + I = 0, but we cannot
assume 2 Aa + G = 0.

Having assumed the values of b and c as indicated, let us
assume the entire constant term equal to zero. This will give

B62 + Cc2 + Ga + Hb + IC + K =
0,

or a = - g
2 + Co2 + Kb + Ic + K

G
and the general equation will be reduced to the form

By2 + C*a + G* = . . . (B),
a second form set aside for examination.
We must observe that this last proposed transformation

will also fail when G = 0, that is, when the first power of x
as well as the second power of x

,
is wanting in the general

equation.

And without making the second transformation we have a
third form for examination, viz. :

IV* + C* a + Hy + I* + K =
. . . (C)

Lastly, two of the terms involving the second powers of
the variables may be wanting, and the equation (1) then
becomes

Cs2 + Gx + Hy 4. Iz + K =
. . . (D)
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It is apparent, therefore, that every equation of the second

degree involving three variables can be reduced to one or
another of the four forms

A* 2 + By
2 + Cz* + L = . . . (A)

By
2 + C*2 + Gx = . . . (B)

B?/
2 + C.?

2 + H// + I* + K - . . . (C)
C 2 + Gx + Hy + Iz + K =

. . . (D)

We will examine each of these forms in order, beginning
with the first form :

Ax2 + B?/
2 + C*2 + L = . . . (A)

This equation admits of several varieties of form according
to the signs of the coefficients.

1. A, B, and C positive, and L negative in the first member.
2. A, B, C, and L positive.

3. Two of the coefficients as A and B positive, C and L
negative.

4. Two of the coefficients as A and B positive, C negative,
and L positive.

Ko other cases will occur.

CASE 1. Ax 2 + B?/
2 + Cs2 = L,

in which form all of the coefficients are positive.
In order to determine the nature of the surface represented

by this equation, let it be intersected by systems of planes

parallel respectively to the co-ordinate planes. The equations
of these intersecting planes will be x = a, y = b, z = c. Com
bining the equations of these planes with that of the surface,
we find the equations of the projections on the co-ordinate

planes of the curves of intersection.

When x = a, By
2 + C.?

2 = L - Aa2 an ellipse.
&quot;

y = b, Ax2 + Cz2 = L - IW an ellipse.
&quot; z = c, Ax 2 + By

2 = L - Cc2 an ellipse.

Thus we see that the sections parallel to each of the co

ordinate planes are ellipses.
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The section made by the plane x = a is real when

L Aa2
&amp;gt;

or a
&amp;lt; -j- y

-~
,
and imaginary in the contrary

case.

The section made by the plane y = b is real when

ft
&amp;lt; =i= V/~fT~&amp;gt;

and imaginary when ft
&amp;gt; -[- y .

The section made by the plane s = c is real when

c
&amp;lt; i y ~7T &amp;gt;

and imaginary when c -J- &amp;gt; i/ .

Thus we see that the surface is enclosed within a rectangu
lar parallelepiped whose dimensions are

When a = or 4 = or c = the! Vc
sections become points.

When a = 0, ft = 0, and c = 0, we find the sections made
by the co-ordinate planes

By2 + C,-
2 = L.

Ax2 + C,v
2 = L.

Ax 2

-f~ By
2 = L.

E
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These are called the principal sections of the surface. The

principal sections are larger ellipses than the sections parallel

to them, as is indicated by the magnitude of the absolute

term.

The surface is called the Ellipsoid.

It may be generated by the motion of an ellipse of variable

dimensions whose centre remains on a fixed line, and whose

plane remains always perpendicular to that line, and whose

semi-axes are the ordinates of two ellipses which have the

same transverse axis, but unequal conjugate axes placed at

right angles to each other. The axes of the principal sections

are called the axes of the ellipsoid.

If we represent the semi-axes of the ellipsoid by a, b, and

c, we shall have

and the equation of the surface

Ax2 + B?/
2

-j- Cz
2 = L becomes

a2 b2 c
2

b2
c
2x2

-f- a
2
c
2

y
2

-f- a
2
b
2z2 = a2b

2
c
2

.

These are the forms in which the equation of the ellipsoid

is usually given.

If we suppose B = A, then b = a, and the equation becomes

x2 + y
2 z2

_ 1
2 2~

and the surface is the Ellipsoid of Revolution about the axis

of Z.

If A = B == C, then a = b = c, and the equation becomes

x2
-j_ ?/

2
-(- z2 = a2

,
and the surface is a sphere.

If L = 0, the axes 2
i/-^-,

2

reduce to zero, and the ellipsoid becomes a point.
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CASE 2. If L be negative in the second member, the equa
tion Ax2 + B?/

2
-j- Cz

2 = L will represent an imaginary

surface, and there will be no geometrical locus.

Hence the varieties of the ellipsoid are

(1) The ellipsoid proper with three unequal axes.

(2) The ellipsoid of revolution with two equal axes.

(3) The sphere.

(4) The point.

(5) The imaginary surface.

CASE 3. In this case the equation takes the form

Ax 2 + By
2 - Cz2 = L,

in which A, B, C, and L are essentially positive.

Cutting the surface by planes as before, the sections will be,

when x = a, ~By
2 Cz2 = L Aa2

,
a hyperbola, having its

transverse axis parallel to the Y-axis when a
&amp;lt; -j- t/ ,

but
V A.

parallel to the Z-axis when a
&amp;gt; y And when a = -J-

v/
,
the intersection becomes two straight lines whose pro-

.A.

jections on the plane of YZ pass through the origin.

When y = b, Ax 2 Cz 2 = L B&2
,
a hyperbola, with simi

lar conditions as above.

When z = c, Ax 2 + B?/
2 = L + Cc2

,
an ellipse real for all

values of c.

Since the elliptical sections are all real, the surface is con

tinuous, or it consists of a single sheet.

The principal sections are found by making successively

a = 0, which gives By
2 Cz2 = L, a hyperbola.

b = 0, Ax2 - Cz2 = L,

c = 0,
&quot; Ax 2 + %2 = L, an ellipse.

The surface is called the elliptical hyperboloid of one sheet.

The equation may be reduced to the form

v?_ .y*_ ^L = i
2 2 *
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This surface may be generated by an ellipse of variable

dimensions whose centre remains constantly on the Z-axis,

and whose plane is perpendicular to that axis, and whose

semi-axes are the ordinates of two hyperbolas having the

same conjugate axis coinciding with the Z-axis, but having

different transverse axes placed at right angles to each other.

FIG. B.

If we suppose A = B, then will a = b, and the equation of

the surface becomes

the hyperboloid of revolution of one sheet.

If A = B = C, we have x2 + if
- ^ = az

,
the equilateral

hyperboloid of revolution of one sheet.

If L = 0, the equation represents a right cone having an

elliptical base
;
and if A = B this base becomes a circle.
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Hence we have the following varieties of the hyperboloid

of one sheet.

1. The liyperboloid proper, with three unequal axes.

2. The hyperboloid of revolution.

3. The equilateral hyperboloid of revolution.

4. The cone.

CASE 4. Ax 2 + B?/
2 - O2 = - L, where A, B, C, and L

are essentially positive.

Intersecting the surface as before we have, when x = a,

j&amp;gt;^2

_ QgZ _ _ L _ Aa2
,
a hyperbola having its transverse

axis parallel to the axis of Z.

When y = b, Ax2
Cz&quot; = L B6 2

. A hyperbola hav

ing its transverse axis parallel to the axis of Z.

When z = c, Ax 2 + B//
2 = L -f Cc2

,
an ellipse real when

c
&amp;gt; -j- I/- ,

and imaginary when c
&amp;lt; -J- t / . Since the

V C V C

sections between the limits =
-j- i/ are imaginary, but

V G
real beyond those limits, it follows that there are two distinct

sheets entirely separated from each other.

The surface is called the hyperboloid of two sheets.

The principal sections are found by making successively
a = 0, which gives By

2 O2 = L, a hyperbola with its

transverse axis parallel to the Z-axis.

b = 0, which gives Az2 O2 = L, a hyperbola with its

transverse axis parallel to the Z-axis.

c = 0, which gives Ax2 + By
2 = L, an imaginary ellipse.

The semi-axes of the first section are i / and t / .

V B V C

Those of the second section are I/ and !/_. And those
V A V C

of the imaginary section are i/ ( 1) and i /
( 1).V A V B

The distances 2
i/-^- ,

2 4/1*1.
,
and 2 \/A are called the axes

I _X T Jj V
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FIG. C.

of the surface. Eepreseiiting the semi-axes by a, b, and c,

the equation of the surface may be reduced to the form

5 + -? L

If we suppose A = B
?
then a = &, and the equation re

duces to

the hyperboloid of revolution of two sheets.



SURFACES OF THE SECOND ORDER. 269

If A = B = C, the equation becomes
x * + f _ ^ = _ a*

9

which represents the surface generated by the revolution of
an equilateral hyperbola about its transverse axis.

Finally, if L = 0, the surface becomes a cone having an

elliptical base, and the base becomes a circle when A = B.
We have, therefore, the following varieties of the hyper

boloid of two sheets:

1. The hyperboloid proper having three unequal axes.
2. The hyperboloid of revolution.

3. The equilateral hyperboloid of revolution.

4. The cone.

We will now examine the second form,

By
2 + C* 2 + G x = . . . (B)

Three cases apparently different present themselves for
examination.

(1). B and C positive and G negative in the first mem
ber.

(2). B, C, and G positive.

(3). B positive and C and G negative.
CASE 1. The equation may be written

B?/
2 + O.2 = Gx

in which B, C, and G are essentially positive.
Let the surface be intersected as usual by planes parallel

respectively to the co-ordinate planes.
When x =

, By
2 + O2 = Ga, an ellipse real when a

&amp;gt; 0,
and imaginary when a

&amp;lt;
0.

When y = b, O2 = Gx B62
, a parabola with its axis

parallel to the axis of X.
When z = c, By

2 = Gx - O2 a parabola with its axis

parallel to the axis of X.
The principal sections are found by making a = 0, b = 0,

and c 0.

When a = 0, By
2 + C,?

2 =
0, a point, the origin.

When b = 0. C.s
2 =

Ga;, a parabola with its vertex at the

origin.



270 SOLID ANALYTIC GEOMETRY.

When c,
= 0, B?/

2 = G#, a parabola with vertex at the origin.

Since every positive value of x gives a real section, and

every negative value of x an imaginary section, the surface

consists of a single sheet extending indefinitely and contin

uously in the direction of positive abscissas, but having no

points in the opposite direction from the origin.

The surface is called the elliptical paraboloid. It may be

generated by the motion of an ellipse of variable dimensions

whose centre remains constantly on the same straight line,

and whose plane continues perpendicular to that line, and

whose semi-axes are the ordinates of two parabolas having a

common transverse axis and the same vertex, but different

parameters placed with their planes perpendicular to each

other.

FIG. D.

CASE 2. If we suppose G to be positive in the first member

so that the equation will take the form

By
2 + C 2 = -

Go;,
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the sections perpendicular to the X-axis will become imaginary
when x

&amp;gt; 0, and real when x
&amp;lt;

0.

In other respects the results are similar to those deduced in

case 1.

Thus the equation will represent a surface of the same form

as in case 1, but turned in the opposite direction from the

co-ordinate plane of YZ.

If B = C, the surface becomes the paraboloid of revolution.

CASE 3. By
2 - C a = Gx.

Intersect the surface by planes as before.

When x = a, By
2 Gz2 = Ga, a hyperbola with transverse

axis in the direction of the Y-axis when a
&amp;gt; ;

and in the

direction of the Z-axis when a
&amp;lt;

0.

When y = b. Cz 2 = Gx -\- B6
2
,
a parabola having its axis

in the direction of the X-axis and extending to the left.

When z = c
} B?/

2 = Gx -j- Cc
2

,
a parabola having its axis in

the direction of the X-axis and extending to the right.

Since every value of x, either positive or negative, gives a

real section, the surface consists of a single sheet extending

indefinitely to the right and left of the plane of YZ. This

surface is called the Hyperbolic Paraboloid. To find its princi

pal sections make x, y, and z alternately equal to zero.

When x = 0, B^/
2 = Cz2

,
two straight lines.

When y = 0, Cz2 = Gx, a parabola with axis to the left.

When = 0, B?/
2 = Gx, a parabola with axis to the right.

The hyperbolic paraboloid admits of no variety.
Now taking up form (C), By

2 + Csa + Hy + Iz + K =
0,

we see that it is the equation of a cylinder whose elements
are perpendicular to the plane of YZ, and whose base in the

plane of YZ will be an ellipse or hyperbola according to

the signs of B and C.

The fourth form (D), Cz2 + Ga; + Hy -f Is + K = repre
sents a cylinder having its bases in the planes XZ and YZ
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2. The hyperboloid of one or two sheets, with their

varieties, viz. : the hyperboloid proper of one or two sheets,

the hyperboloid of revolution of one or two sheets, the

equilateral hyperboloid of revolution of one or two sheets,

the cone with an elliptical or circular base.

3. The paraboloid, either elliptical or hyperbolic, with the

variety, the paraboloid of revolution.

4. The cylinder, having its base either an ellipse, hyper
bola, or parabola.

Surfaces of Revolution. The general equation of surfaces

of revolution may be deduced by a direct method, as follows :

Ri

FIG. F.

Let the Z-axis be the axis of revolution, and let the equa
tion of AB, the generating curve in the plane of XZ, be

x2 =
fz.

Let P be the point in this curve which generates the circle
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PQR, and let r be the radius of the circle. We will have

The value of r2 may also be expressed in terms of z from
the equation of the generatrix in the plane of XZas follows :

r2 = CP
2 = (JD

2

=fz.

Equating these two values of r we have

as the general equation of surfaces of revolution.

It will be observed that the second value of r2
is the value

of x2 in the equation of the generatrix. Hence, to find the

equation of the surface of revolution we have only to substi
tute x2 + if of the surface for x 2 in the generatrix.

Surface of a Sphere. Equation of generatrix x 2 + z2 = K,.
2

Hence the equation of the surface of the sphere is

Ellipsoid of Revolution.

Generatrix JL_
-f-

J!L = 1,

Surface
x*

~^~ ^ -4- 1
a2

c
2

Similarly, the equation of the hyperboloid of revolution is

***-*-*
Paraboloid of Revolution.

x2 =
4:pz, the generatrix.

x2 + IT = 4=pz, the surface of revolution.

Cone of revolution, z = mx -+- j3 the generatrix,

~T x ~

~~i^~

Hence x2 -

or m2

(x
2 + if)

=
(z
-

ft)
2

.
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EXAMPLES.

1. What is the locus in space of 4 x2
-f 9 y- = 36 ? Of

9 z2 - 16 y
2 = 144 ? Of ^ 2 + if = r- ? Qf if + ,-

2 = r2
? Of

7/2 + 8 x = o ?

2. Determine the nature of the surfaces x 2
-\- y&quot;- -(- 4 z2 = 25,

7 (^ + ^ _ 4 .2 =
79&amp;gt;

3. Find the equation of the surface of revolution about the

axis of Z whose generatrix is z = 3 x -\- 5.

4. Find the equation of the cone of revolution whose inter

section with the plane of XYisx2
-f- y

2 =
9, and whose vertex

is
(0, 0, 5.)

5. Determine the surfaces represented by

a;
2 + 4 y

2 + 9 sa = 36.

x* + 4 y
2 _ 9 # = 36

x 2 + 4 y
2 = 9 2 - 36.

4 y
2 + 9 22 = 36 x.

9z* = 36x.
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