

1.0

.

TRIGONOMETRY FOR BEGINNERS

BY THE

REV. J. B. LOCK, M.A.

FELLOW OF GONVILLE AND CAUS COLLEGE, CAMBRIDGE FORMERLY MASTER AT EATON

REVISED AND ENLARGED

FOR THE USE OF AMERICAN SCHOOLS

BY

JOHN A. MILLER, A.M.

ASSISTANT PROFESSOR OF MATHEMATICS, LELAND STANFORD JR. UNIVERSITY PROFESSOR (ELECT) OF MECHANICS AND MATHEMATICAL ASTRONOMY, INDIANA UNIVERSITY

New York THE MACMILLAN COMPANY LONDON: MACMHLAN & CO., LTD. 1896

All rights reserved

Copyright, 1896, By THE MACMILLAN COMPANY.

Norwood Dress J. S. Cushing & Co. - Berwick & Smith Norwood Mass. U.S.A.

PREFACE

THE revision of the "Trigonometry for Beginners" differs from that of the original work, chiefly in the following particulars:

The subject matter of Chapter VII. formerly followed that of Chapters VIII. and IX.; the addition formulæ are proved for angles of any magnitude, and for more than two angles; a chapter on Inverse Trigonometric Functions and two chapters on Spherical Trigonometry have been added; logarithmic and trigonometric tables have been inserted. The rearrangement has necessitated minor changes in almost every chapter. Throughout the book, the question of ambiguity of solution has received careful attention. It is believed that the clear, simple presentation which characterized the original work has been retained.

It has been the endeavor to make definitions that need not be unlearned later; to give proofs, rigorous for the general plane angle; to present as much material as the student will master in a first course; and to present such material as will serve him best in his later studies. The proofs of many propositions are left as exercises for the student. These are formulated, and placed in the body of the text.

The lists of examples in the plane trigonometry are, for the most part, those of the original work. Some of the exercises in spherical trigonometry are selected from other texts.

Those desiring a shorter course may omit the chapters and the articles marked with an asterisk.

I acknowledge my indebtedness to Dr. Frank L. Sevenoak, who kindly permitted the use of his tables, and to friends who aided me by suggestions.

v

JOHN A. MILLER.

JUNE, 1896.

18:3964

.

CONTENTS

CHAPTER						PAGE
I.	DEFINITIONS. THE FIGURES OF TRIGONO				•	1
11.	MEASUREMENT OF ANGLES		•	•	•	5
III.	The Trigonometrical Ratios					12
IV.	THE ACUTE ANGLE					14
v.	THE TRIGONOMETRICAL RATIOS OF CERT.	AIN 2	ANGI	LES		-19
VI.	PRACTICAL APPLICATIONS					24
VII.	Use of Signs + and -, Definitions.	Тш	εТ	RIGO.	NÚ-	
	METRIC RATIOS	•				$\overline{28}$
VIII.	On the Relations between the Trigon	OMET	RIC	Rat	IOS	45
IX.	THE SOLUTION OF TRIGONOMETRICAL EQ	TATIC	NS			50
Х.	ON THE TRIGONOMETRICAL RATIOS OF	Two	OR	Me	RE	
	Angles					52
XI.	Multiple Angles, Sub-Multiple Angle	s				63
XII.	INVERSE TRIGONOMETRIC FUNCTIONS .					68
XIII.	Relations between the Sides and An	GLES	OF	а Т	RI-	
	ANGLE					72
XIV.	Logarithms					81
XV.	Solution of Triangles. Area of a T	RIAN	GLE			92
XVI.	Measurement of Heights and Distan	CES				103
XVII.	Miscellaneous Theorems					108
XVIII.	Relations among the Sides and Angl	LES O	F A	Sph	ERI-	
	CAL TRIANGLE					121
XIX.	Solution of Spherical Triangles .					133
Answer	5 TO EXAMPLES		•			141
TABLES:						
Log	ARITHMS OF NUMBERS	•	•			1
			•	•	•	

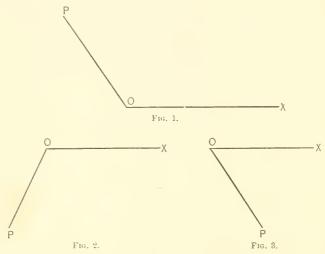
-

TRIGONOMETRY FOR BEGINNERS

CHAPTER I

DEFINITIONS

1. The primary object of Trigonometry was, as its name implies, to measure (or solve) triangles; *i.e.* having given the measure of certain parts of a triangle, *e.g.* two sides and its included angle, to compute the remaining parts. In a broader and now universally accepted sense, Trigonometry embraces, in addition to the solution of triangles, all investigations of the relations existing among certain ratios intimately associated with an angle. These ratios are defined in Art. 26.


This branch of the subject is sometimes called Angular Analysis.

2. The figures with which we shall be concerned in our study of Trigonometry are, with the exception of the *line* and the *angle*, the same as those of Geometry; *i.e.* they are subject to the same limitations and possess the same properties as those of Geometry. For example, the sum of the interior angles of a triangle equals two right angles in Trigonometry as well as in Geometry.

3. The line of Trigonometry differs from the line of Geometry, in that, in Trigonometry, it is sometimes of advantage to distinguish between lines drawn in *opposite* directions. [See Art. 47.] For the present, however, we shall not make this distinction.

4. By the angle XOP (Fig. 1, Fig. 2, Fig. 3), in Trigonometry, is not meant the *present inclination* of the lines OX and OP as in Geometry, but the amount of turning which OP has done about the point O, in coming from its *initial* position OX, to its *final* position OP. ILLUSTRATION. Suppose a race to be run around a circular course. The position of any one of the competitors would be known, if we know that he has described a certain angle about the centre of the course. Thus, if the distance to be run is three times around, the line joining each competitor to the centre would have to describe an angle of 12 right angles.

When we say that a competitor has described an angle of 6_3^2 right angles, we give not only his present position, but the total distance he has gone. He would, in such a case, have gone a little more than one and a half times around the course.

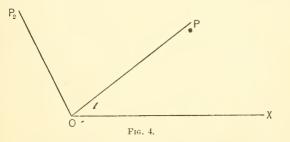
It is evident from this definition that a trigonometrical angle may have any magnitude however great. It is well to notice that angle XOP is the amount of turning that has been done. In other words, it is the *result* of the turning, not the *process*.

5. The geometrical representation of a trigonometric angle depends only on the initial and final positions of the line OP. Hence the figure XOP (Fig. 1, Art. 4) may be the geometrical representative of an unlimited number of trigonometrical angles.

(i.) The angle *XOP* may represent the angle less than two right angles, as in Geometry.

In this case, OP has turned from the position OX into the position OP by turning about O in the direction *contrary* to that of the hands of a watch.

(ii.) The angle XOP may represent the angle described by OP in turning from the position OX into the position OP in the same direction as that of the hands of a watch.


In the first case it is usual to say that the angle XOP is a positive angle; in the second case it is a negative angle.

(iii.) The angle XOP may be the geometrical representation of any of the trigonometrical angles formed by any number of complete revolutions in the *positive* or in the *negative* direction, added to either of the first two angles mentioned in (i.) and (ii.).

We may express (iii.) thus: XOP is the geometrical representative of XOP + 4n right angles, where n is any integer.

6. DEFINITIONS. O is called the origin. The line OX is the initial line. The line OP is the revolving line or radius vector. When referring to the angle XOP the lines OX and OP are called the sides of the angle, and O is called its vertex.

7. To add angle X'OP' to angle XOP, both being positive, revolve OP from its final position when it represents angle XOP,

through an angle equal to angle X'OP'; call this position OP_2 . Then, $\angle XOP_2 = \angle XOP + \angle X'OP'$.

EXAMPLES. I.

Give a geometrical representation of each of the following angles, the initial line being drawn in each case from the origin towards the right :

- 1. +3 right angles.
- **2**. + 5 right angles.
- **3.** $+4\frac{1}{2}$ right angles.
- 4. $+7\frac{1}{4}$ right angles.
- 5. -1 right angle.
- 6. $10\frac{2}{3}$ right angles.
- 7. $-10\frac{1}{3}$ right angles.

- **8**. +4 right angles.
- 9. -4 right angles.
- **10.** 4 *n* right angles.
- 11. (4n+2) right angles.
- 12. $-(4n+\frac{1}{2})$ right angles.
- 13. $1\frac{1}{2}$ right angles $+ 2\frac{1}{2}$ right angles.
- 14. $3\frac{1}{2}$ right angles $-\frac{1}{2}$ right angle.

8. Certain propositions which the student has proved while studying plane Geometry will be referred to very frequently, and quoted without proof.

The principal ones are:

a. The Pythagorean theorem.

b. Conditions under which two triangles are similar.

c. Homologous sides v f similar triangles are proportional, and homologous angles are equal.

d. I. The ratio $\frac{\text{eircumference of a circle}}{\text{diameter of a circle}}$ is a certain fixed number.

II. It is an *incommensurable* number.

III. It is $3.14159265 + \cdots$.

9. When we say that this number is incommensurable, we mean that its exact value cannot be stated as an *arithmetical* fraction.

It also happens that we have no short *algebraical* expression such as a surd, or combination of surds, which represents it exactly, so that we have no *numerical* expression whatever, arithmetical nor algebraical, to represent *exactly* the ratio of the circumference of a circle to its diameter.

Hence the universal custom has arisen, of denoting its *exact* value by the letter π .

Thus π stands *always* for the exact value of a certain incommensurable number, whose approximate value is 3.14159265, and which is the ratio of the circumference of any circle to its diameter.

It cannot be too carefully impressed on the student's memory that π stands for this number 3.14159265..., etc., and for nothing else; just as 180 stands for the number one hundred and eighty, and for nothing else.

We may notice that $\frac{22}{7} = 3.142857$.

So that $\frac{2}{\tau}^2$ and π differ by less than a thousandth part of their value.

CHAPTER M

MEASUREMENT OF ANGLES

10. It is usual to say that we have **measured** any concrete quantity, when we have found **how many** times it contains some familiar quantity of the same kind.

We say, for example, that we have measured a line, when we have found *how many* feet it contains. We say that we have measured a field, when we have found out *how many* acres or how many square yards it contains.

To know the measurement of any quantity, then, we must have two things. First, we must have a *unit*, or standard of reference, of the *same kind* as the thing measured. Secondly, we must have the *measure*, or the *number of times* the thing measured contains the unit, or standard quantity.

Hence, the measure of a quantity is the number, and the unit is the concrete quantity, by means of which it is measured.

EXAMPLE 1. A line contains 261 feet; that is, 261 times a foot. Here the *measure* or number is 261, and the *unit* a foot.

EXAMPLES. II.

1. What is the measure of 1 mile when a chain of 66 feet is the unit?

2. What is the measure of an acre when a square whose side is 22 yards is the unit ?

3. The length of an Atlantic cable is 2300 miles and the length of the cable from England to France is 21 miles. Express the length of the first in terms of the second as a unit.

4. The measure of a certain field is 22 and the unit 1100 square yards : express the area of the field in acres.

5. Find the measure of a miles when b yards is the unit

6. The measure of a certain distance is a when the unit is c feet. Express the distance in yards.

11. Measurement of angles. There are two common methods of measuring angles.

- (i.) The rectangular measure.
- (ii.) The circular measure.

RECTANGULAR MEASURE

12. Angles are always measured *in practice* with the **right angle** (or part of the right angle) as unit.

The reasons why the right angle is chosen for a unit are:

- (i.) All right angles are equal to one another.
- (ii.) A right angle is practically easy to draw.
- (iii.) It is an angle whose size is very familiar.

13. The right angle is divided into 90 equal parts, each of which is called a degree; each degree is subdivided into 60 equal parts, each of which is called a minute; and each minute is again subdivided into 60 equal parts, each of which is called a second.

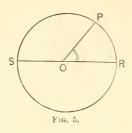
Instruments used for measuring angles are subdivided accordingly; and the size of an angle is known when, with such an instrument, it has been observed that the angle contains a certain number of degrees, and a certain number of minutes beyond the number of complete degrees, and a certain number of seconds beyond the number of complete minutes.

Thus an angle might be recorded as containing 79 degrees +18 minutes +36.4 seconds.

Degrees, minutes, and seconds are indicated respectively by the symbols $^{\circ}$, ', ", and the above angle would be written 79° 18' 36.4".

14. An angle given in degrees, minutes, and seconds may be expressed as the decimal of a right angle by the usual method.

EXAMPLE. Express $39^{\circ} 4' 27''$ as the decimal of a right angle.


.441574074 of a right angle, Ans.

Note. The French proposed to call the 100th part of a right angle a grade (written 3^{g}), the 100th part of a grade a minute (written 3^{v}), the 100th part of a minute a second (written 3^{v}). So that 1.437275 right angles would be read 143872^v 75^v. The decimal method of subdividing the right angles has never been used.

CIRCULAR MEASURE

15. DEFINITION. A radian is an angle at the centre of a circle, subtended by an are equal in length to the radius of the circle. Thus if in the circle RPS, whose centre is O, are RP = radius OR, then, angle ROP is a radian.

16. We shall now prove that the radian is a constant angle; or stating the same thing differently, we are about to prove that if we cake any number of different eireles, and neasure on the circumference of each an are equal in length to its radius, then the angles at the centres of these circles which stand on chese arcs respectively, will be all of the same size.

17. To prove that all radians are equal to one another.

Since the radian at the centre of a circle stands on an arc equal n length to the radius,

and an angle of two right angles at the centre of a eircle stands on half the circumference,

and since angles at the centre of a circle are to one another as the urcs on which they stand (Geom.),

hen,
$$\frac{\text{a radian}}{2 \text{ right angles}} = \frac{\text{radius}}{\text{semi-circumference}}$$

 $= \frac{\text{diameter}}{\text{circumference}} = \frac{1}{\pi}$.
Therefore a radian $= \frac{1}{\pi}$ of 2 right angles,
 $= \text{a certain fixed fraction of 180^\circ}$. (Art. 8.)

Thus the radian possesses the qualification most essential in a unit; viz. it is always the same.

18. The reasons why a radian is used as a unit are :

(i.) All radians are equal to one another.

ın

(ii.) Its use simplifies many formulæ in Theoretical Trigonom-

19. Since
$$1 \operatorname{radian} = \frac{2 \operatorname{rt} \measuredangle}{\pi}$$
, (Art. 17.)
 \therefore 1 radian = 57.2957°.
20. Since $1 \operatorname{radian} = \frac{2 \operatorname{rt} \measuredangle}{\pi}$,
 $\therefore \pi \operatorname{radians} = 2 \operatorname{rt} \measuredangle = 180^{\circ}$,
 $\frac{\pi}{2} \operatorname{radians} = 1 \operatorname{rt} \measuredangle = 90^{\circ}$,
 $\frac{3 \pi}{2} \operatorname{radians} = 3 \operatorname{rt} \measuredangle = 270^{\circ}$,
d so on.

21. A "e" is used to indicate radians, just as "°" is used to indicate degrees. Thus θ° is read " θ radians," just as A° is read "A degrees." When the measure of an angle is expressed as some *multiple* of π , e.g. $\frac{\pi}{2}$, the unit being the radian, common usage has sanctioned the omission of the "e" after the measure; thus, $\frac{\pi^{\circ}}{2}$ is usually written $\frac{\pi}{2}$. This practice sometimes confuses the beginner. Yet, with a little care no confusion need arise. We need only remember that π is a mere number (Art. S); that in the expression "the angle π " or kindred expressions some unit must be implied, and that by common agreement this unit is the radian, so that π is often used for 180°, meaning, then, π radians (Art. 20). This does not exclude the angle π° ; but if a degree is the unit, it is so expressed.

Another agreement sometimes made, is that the Greek letters α , β , etc., are used to express the measure of angles when the radian is the unit of measure; while, the Roman letters A, B, C, etc., are used when the unit of measure is the degree. The distinction, however, is not universally observed.

22. To find the number of degrees in an angle containing a given number of radians.

Let	D = number of degrees in the angle.	
Let	α = number of radians in the angle.	

$$1^{\circ} = \left(\frac{180}{\pi}\right)^{\circ}.$$
 (Art. 17.)
$$\therefore \ \alpha^{\circ} = \left(\frac{\alpha \times 180}{\pi}\right)^{\circ}.$$

$$\therefore \ \frac{\pi \times 180}{\pi} = D, \text{ the number of degrees}$$
(1)

which was to be found.

We may in a similar manner *find the number of radians in an angle* containing a given number of degrees. Or, simply solving (1) for a, we have $\alpha = \frac{\pi D}{180^5}$, the number of radians in an angle containing D degrees.

The problem may be thus solved: $\frac{D^{\circ}}{180^{\circ}} = \frac{\alpha^{\circ}}{\pi^{\circ}}$, for each fraction is the *ratio* of the same angle to two right angles.

MEASUREMENT OF ANGLES

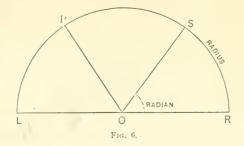
EXAMPLE. Find number of degrees in two radians. We have $\frac{D}{180} = \frac{2}{\pi} \therefore D = \frac{360}{\pi}.$ EXAMPLES. III. 23. I. Express each of the following angles as the decimal of a right angle : 1. 8° 15′ 27″. **3.** 97° 5′ 15″. 5. 132° 6′. **2.** 6° 4′ 30″. **4.** 16° 14′ 19″. 6. 49°. Express in degrees, minutes, and seconds : 7. .01375 right angles. 10. .240025 right angles. 8. .0875 right angles. 11. .180115 right angles. **9**. 1.704535 right angles. 12. .35 right angles. II. Express the following angles in rectangular measure : 1. π. 4. 3°. **7**. θ. 2. $\frac{3\pi}{4}$. 5. 3.14159265°, etc. 8. .00314159°, etc. 6. ^{2°}/₋. 3. 1°. 9. 10 π. III. Express the following angles in circular measure: **1**. 180°. **4**. 22¹°. 7. n°. 8. $\frac{90^{\circ}}{\pi}$. 5. 1°. 2. 360°. 6. 57.295°, etc. **3.** 60°. 9. 4. IV. Give a geometrical representation of the following trigonometrical

IV. Give a geometrical representation of the following trigonometrical angles. Draw the initial line from O, horizontally, to the right.

1. $\frac{\pi}{2}$ 2. 8π . 3. 5π . 4. $(2n+1)\pi$. 5. $(2n+\frac{1}{2})\pi$.

V. Find the ratio of

1. 45° to $\frac{3\pi}{4}$. **2.** 1° to 1° . **3.** 1.75° to $\frac{100^{\circ}}{\pi}$.


24. Since angles at the centre of a circle are to one another as the arcs on which they stand (Geom.), therefore (see Fig. 6)

 $\frac{\text{an angle } ROP}{\text{one radian}} = \frac{\text{arc } RP}{\text{arc } RS} = \frac{\text{arc } RP}{\text{the radius}}.$

Hence the angle $ROP = \frac{\operatorname{arc} RP}{\operatorname{the radius}}$ radians.

So that the circular measure of an angle (at the centre of a circle) is the ratio of its arc to the radius.

9

EXAMPLE. Find the number of degrees in the angle subtended by an arc 46 ft. 9 in. long, at the centre of a circle whose radius is 25 feet.

The angle stands on an arc of $46\frac{3}{4}$ feet, and the radian, at the centre of the same circle, stands on an arc of 25 feet.

$$\therefore \text{ the angle} = \frac{46\frac{3}{4}}{25} \text{ radians, } = \frac{187}{100} \times \frac{2 \text{ right angles}}{\pi},$$
$$= \frac{187}{100} \times \frac{180^{\circ}}{\pi} = 105.8^{\circ} \text{ nearly.}$$

EXAMPLES. IV.

(In the Answers 2^2_7 is used for π_{\cdot})

1. Find the number of radians in an angle at the centre of a circle of radius 25 feet, which stands on an arc of $37\frac{1}{2}$ feet.

2. Find the number of degrees in an angle at the centre of a circle of radius 10 feet, which stands on an arc of 5π feet.

3. Find the number of right angles in the angle at the centre of a circle of radius $\beta_{1^{2}T}^{-1}$ inches, which stands on an arc of 2 feet.

• 4. Find the length of the arc subtending an angle of $4\frac{1}{2}$ radians at the centre of a circle whose radius is 25 feet.

5. Find the length of an arc of 80 degrees on a circle of 4 feet radius.

6. The angle subtended by the diameter of the sun at the eye of an observer is 32'; find approximately the diameter of the sun if its distance from the observer be 90,000,000 miles.

7. A railway train is travelling on a curve of half a mile radius at the rate of 20 miles an hour; through what angle has it turned in 10 seconds ?

8. A railway train is travelling on a curve of two-thirds of a mile radius, at the rate of 60 miles an hour; through what angle has it turned in a quarter of a minute?

9. Find approximately the number of seconds contained in the angle which subtends an arc one mile in length at the centre of a circle whose radius is 4000 miles.

10. If the radius of a circle be 4000 miles, find the length of an arc which subtends an angle of 1'' at the centre of the circle.

25.

11. If in a circle whose radius is 12 ft. 6 in, an arc whose length is .6545 of a foot subtends an angle of 3 degrees, what is the ratio of the diameter of a circle to its circumference ?

12. If an arc 1.309 feet long subtend an angle of $7\frac{1}{2}$ degrees at the centre of a circle whose radius is 10 feet, find the ratio of the circumference of a circle to its diameter.

13. On a circle 80 feet in radius it was found that an angle of 22° 30' at the centre was subtended by an arc 31 ft. 5 in. in length; hence calculate to four decimal places the numerical value of the ratio of the circumference of a circle to its diameter.

14. If the diameter of the moon subtend an angle of 30', at the eye of an observer, and the diameter of the sun an angle of 32', and if the distance of the sun be 375 times the distance of the moon, find the ratio of the diameter of the sun to that of the moon.

15. Find the number of radians (*i.e.* the circular measure of) in 10" correct to 3 significant figures. (Use $\frac{35}{1.13}$ for π .)

16. Find the radius of a globe such that the distance measured upon its surface between two places in the same meridian, whose latitudes differ by $1^{\circ} 10'$, may be one inch.

17. By construction prove that the unit of circular measure is less than 60° .

18. On the 31st December the sun subtends an angle of 32' 36'', and on 1st July an angle of 31' 32''; find the ratio of the distances of the sun from the observer on those two days.

19. Show that the measure of the angle at the centre of a circle of radius r, which stands on an arc a, is $\frac{k \cdot a}{r}$, where k depends solely on the unit of angle employed.

Find k when the unit is (i.) a radian, (ii.) a degree.

20. The difference of two angles is $\frac{1}{2}\pi$, and their sum 56°; find them.

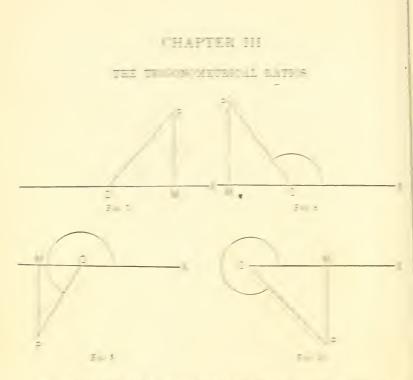
21. Find the number of radians in an angle of n'.

22. Express in right angles and in radians the angles

(i.) of a regular hexagon,

(ii.) of a regular octagon,

(iii.) of a regular quindecagon.


23. Taking for unit the angle between the side of a regular quindecagon and the next side produced, find the measures (i.) of a right angle, (ii.) of a radian.

24. Find the unit when the sum of the measures of a degree and of the hundredth part of a right angle is 1.

25. What is the unit when the sum of the measures of a right angles and of b degrees is c?

26. The three angles of a triangle have the same measure when the units are $\frac{1}{90}$ of a right angle, $\frac{1}{100}$ of a right angle, and a radian respectively; find the measure.

27. The interior angles of an irregular polygon are in A.P.; the least angle is 120° ; the common difference is 5° ; find the number of sides.

26 Weet by and HOFF of history set. From Plant plant of OP the set into the operation of PM a let full in the radius OF as in First back are not the ratio line pretories of history set acts and a set is the set of the back of history set acts and a set is the set of the

27. 1 $\stackrel{\text{MP}}{\longrightarrow}$ II $\stackrel{\text{OM}}{\longrightarrow}$ III $\stackrel{\text{MP}}{\longrightarrow}$ IV $\stackrel{\text{OP}}{\longrightarrow}$ $\stackrel{\text{OP}}{\longrightarrow}$

28. These prove layers in the incorporations in the manipulation of the environment layers are presented in the induction of the set of the set

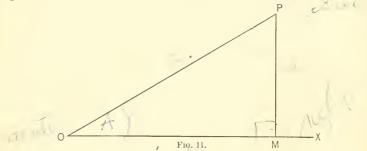
- I., $\frac{MP}{OP}$ is called the sine of angle *A*, and is read, sine *A*;
- II., $\frac{OM}{OP}$ is called the cosine of angle *A*, and is read, cosine *A*;
- III., $\frac{MP}{OM}$ is called the tangent of angle *A*, and is read, tangent *A*;
- IV., $\frac{OP}{MP}$ is called the cosecant of angle A, and is read, cosecant A;
- V., $\frac{OP}{OM}$ is called the secant of angle A, and is read, secant A;
- VI. $\frac{OM}{MP}$ is called the cotangent of *A*, and is read, cotangent *A*.

29. The expressions sine A, cosine A, tangent A, cosecant A, secant A, cotangent A are abbreviated into sin A, cos A, tan A, csc A or cosec A, sec A, cot A, respectively.

The powers of the trigonometric ratios are expressed as follows:

 $(\sin A)^2 = \sin A \times \sin A$, is written $\sin^2 A$; $(\cos A)^3 = \cos A \cdot \cos A \cdot \cos A$, is written $\cos^3 A$; $(\tan A)^n$ is written $\tan^n A$,

and so on.


The student must notice that "sin A" is a single symbol. It is the name of a number, or fraction, belonging to the angle A; and if it be at any time convenient, we may denote sin A by a single letter, such as s or x. Also $\sin^2 A$ is an abbreviation for $(\sin A)^2$, that is, for $(\sin A) \times (\sin A)$. Such abbreviations are used because they are convenient.

The student who succeeds in the study of trigonometry must commit the preceding definitions to memory.

CHAPTER IV

THE ACUTE ANGLE

30. Thus far we have placed no limitations on the magnitude of the angle under consideration at any time. In the present chapter we shall confine our attention to angles lying *between* 0° and 90° . We shall, in Chapter VII., return to the consideration of the general angle.

31. Given a right triangle *OMP* with the right angle at M. Then MOP is acute, as is also *OPM*. Let us consider angle MOP; call $\angle MOP$, A; then,

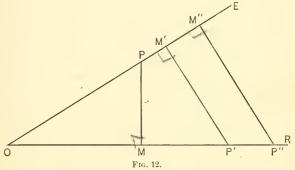
$$\sin A = \frac{MP}{OP} = \frac{\text{side of triangle opposite angle under consideration}}{\text{hypotenuse}},$$
or, briefly,
$$\sin A = \frac{\text{opposite side}}{\text{hypotenuse}};$$

$$\cos A = \frac{OM}{OP}$$

$$= \frac{\text{side of triangle adjacent to the angle under consideration}}{\text{hypotenuse}},$$
or, briefly,
$$\cos A = \frac{\text{adjacent side}}{\text{hypotenuse}};$$

$$14$$

$$\tan A = \frac{MP}{OM} = \frac{\text{opposite side}}{\text{adjacent side}};$$


and similar expressions for the other ratios.

EXERCISE. Write the trigonometrical ratios of angle P.

32. Assuming that the angle XOP is less than 90°, we shall show

I. That so long as 1 the angle remains unchanged, the ratios remain unchanged.

II. That a small change in the angle produces a change in each of the ratios.

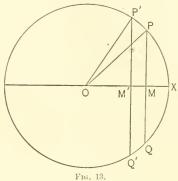
I. Take any angle ROE; let P be any point in OE, one of the lines containing the angle, and let P', P'' be any two points in OR, the other line containing the angle. Draw PM perpendicular to OR, and P'M', P''M'' perpendiculars to OE.

Then the three triangles OMP, OM'P', OM''P'' each contain a right angle, and they have the angle at O common; therefore their third angles must be equal.

Thus the three triangles are equiangular.

Therefore the ratios $\frac{MP}{OP}$, $\frac{M'P'}{OP'}$, $\frac{M''P''}{OP''}$ are all equal. (Geom.) But each of these ratios is $\frac{\text{opposite side}}{\text{hypotenuse}}$ with reference to the angle at O; that is, they are each sin ROE.

Thus, $\sin ROE$ is the same *whatever* be the position of the point P on *either* of the lines containing the angle ROE.


Therefore $\sin ROE$ is always the same.

II. Let *XOP* and *XOP'* be two angles nearly equal. (See Fig. 13).

¹ We shall show (Art. 63) that this change must be, in general, less than 90° . However, our proof is rigorous for the proposition stated.

15

Let OP = OP'. (See I.) Let P'Q' and PQ be perpendicular to OX. Since $\angle XOP'^{\dagger} \neq \angle XOP$; $P'Q' \neq PQ$ (Geometry); $\therefore M'P' \neq MP$ (Geometry); $\therefore OM' \neq OM$ (Geometry); $\sin XOP' = \frac{OP'}{M'P'}; = \frac{N'P'}{OP'} \qquad \sin XOP = \frac{MP}{OP}$. But, $\frac{M'P'}{OP'} \neq \frac{MP}{OP}$. $\therefore \sin XOP' \neq \sin XOP$.

EXERCISE I. Prove Proposition I. of this article for the remaining ratios. EXERCISE II. Prove Proposition II. of this article for the remaining ratios.

33. The student should observe carefully

(i.) that each *ratio*, such as $\frac{\text{opposite side}}{\text{hypotenuse}}$, is a mere *number*;

(ii.) that we have proved, in Art. 32, these ratios remain unchanged as long as the angle remains unchanged;

(iii.) that if the angle be altered ever so slightly, there is a consequent alternation in the value of these ratios;

(iv.) that since these ratios are all numbers, they are therefore algebraic quantities, and hence obey all the laws of ordinary algebra.

(v.) that there is a right angle in the same triangle as the angle referred to.

EXAMPLE. In Fig. 14, in which BDA is a right angle, find sin DBA and $\cos DBA$.

In this case

(i.) DB.1 is the angle.

(ii.) BDA is a right angle in the same triangle as the angle DBA.

(iii.) DA is the side opposite DBA and is perpendicular to BD.

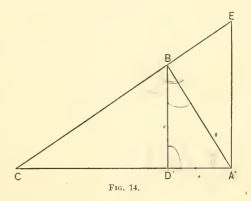
(iv.) BA is the hypotenuse.

(v.) BD is the adjacent side.

¹ We shall use the sign \neq , \ll , \gg , to mean "is different from," "is not less than," "is not greater than," respectively.

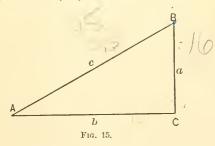
THE ACUTE ANGLE

Therefore $\sin DBA$, which	is	opposite side hypotenuse,	$=\frac{DA}{BA};$
$\cos DBA$, which	is	adjacent side hypotenuse	$= \frac{BD}{BA}$.


34.

EXAMPLES. V.

1. In the triangle ABC, C being a right angle, AB = 25, CB = 16; find $\sin A$, $\cos A$.


2. If in the triangle ABC, C being a right angle, AC = 2, BC = 4, find $\sin B$, $\cos B$, and $\cot B$.

3. Let ACB be any angle, and let ABC and BDC be right angles (see Fig. 14). Write down *two* values for each of the following ratios: (i.) sin ACB, (ii.) cos ACB, (iii.) tan ACB, (iv.) sin BAC, (v.) cos BAC, (vi.) tan BAC.

4. In Fig. 14 BDC, CBA, and EAC are right angles.

Write down (i.) $\sin DBA$, (ii.) $\sin BEA$, (iii.) $\sin CBD$, (iv.) $\cos BAE$, (v.) $\cos BAD$, (vi.) $\cos CBD$, (vii.) $\tan BCD$, (viii.) $\tan DBA$, (ix.) $\tan BEA$, (x.) $\tan CBD$, (xi.) $\sin DAB$, (xii.) $\sin BAE$.

5. If ABC be any right-angled triangle with a right angle at C, and we let A, B, and C stand for the angles at A, B, and C respectively, and let a, b, and c be the measures of the sides opposite the angles A, B, and C respectively:

Show that $\sin A = \frac{a}{c}$, $\cos A = \frac{b}{c}$, $\tan A = \frac{a}{b}$. Show also that $\sin^2 A + \cos^2 A = 1$.

Show also that (i.) $a = c \cdot \sin A$, (ii.) $b = c \cdot \sin B$, (iii.) $a = c \cdot \cos B$, (iv.) $b = c \cdot \cos A$, (v.) $\sin A = \cos B$, (vi.) $\cos A = \sin B$, (vi.) $\tan A = \cot B$.

6. The sides of a right-angled triangle are in the ratio 5:12:13; find the sine, cosine, and tangent of each acute angle of the triangle.

7. The sides of a right-angled triangle are in the ratio $1:2:\sqrt{3}$; find the sine, cosine, and tangent of each acute angle of the triangle.

8. Prove that if A be either of the angles of the above two triangles, $\sin^2 A + \cos^2 A = 1$.

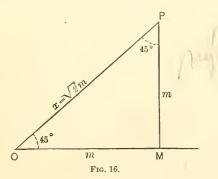
9. ABC is a right-angled triangle, C being the right angle. AB is 2 feet and AC is 1 foot; find the length of BC, and thence find the value of sin A, cos A, and tan A.

10. ABC is a right-angled triangle, C being the right angle, $AB = \sqrt{2}$ ft. and AC = 1 foot; prove that $\sin A = \cos A = \sin B = \cos B$.

11. *ABC* is a right-angled triangle, *C* being the right angle; BC = 1 foot, and $AB = \sqrt{3}$ feet; find *AC* and sin *A* and sin *B*.

CHAPTER V

ON THE TRIGONOMETRICAL RATIOS OF CERTAIN ANGLES


35. The trigonometrical ratios of an angle are *numerical quantities* simply, as their name ratio implies. They are in nearly all cases incommensurable numbers.

Their practical value has been found for all angles between 0° and 90° , which differ by 1'; and a list of these values will be found in any volume of Mathematical Tables.

The general method of finding trigonometrical ratios belongs to a more advanced part of the subject than the present, but there are certain angles whose ratios can be found in a simple manner.

36. To find the sine, cosine, and tangent of an angle of 45° .

When one angle of a right-angled triangle is 45°, that is, the half of a right angle, the third angle must also be 45°. Hence 45° is one angle of an *isosceles* right-angled triangle.

Let POM be an isosceles triangle such that PMO is a right angle, and OM = MP. Then $POM = OPM = 45^{\circ}$.

Let the measures of OM and of MP each be m. Let the measure of OP be x.

Then

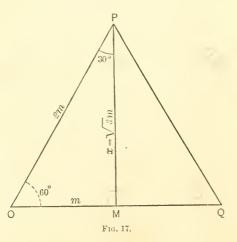
$$r = m^2 + m^2 = 2 m^2$$

 α

$$\therefore x = \sqrt{2} \cdot m.$$

Hence,
$$\sin 45^{\circ} = \sin POM = \frac{MP}{OP} = \frac{m}{\sqrt{2 \cdot m}} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2}$$
,

$$\cos 45^\circ = \cos POM = \frac{OM}{OP} = \frac{m}{\sqrt{2 \cdot m}} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2},$$


$$\tan 45^\circ = \tan POM = \frac{MP}{OM} = \frac{m}{m} = \frac{1}{1} = 1.$$

37. To find the sine, cosine, and tangent of an angle of 60°.

Each angle in an *equilateral* triangle is 60°, because they are each one-third of 180°. If we draw a perpendicular from one of the angular points of the triangle to the side opposite, we get a right-angled triangle in which one angle is 60°.

Let OPQ be an equilateral triangle. Draw PM perpendicular to OQ. Then OQ is bisected in M.

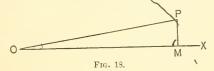
Let the measure of OM be m; then that of OQ is 2m, and therefore that of OP is 2m.

Let the measure of MP be x.

Then

 $x^2 = (2 m)^2 - m^2 = 4 m^2 - m^2 = 3 m^2.$

$$\therefore x = \sqrt{3} \cdot m$$


Hence,
$$\sin 60^\circ = \sin POM = \frac{MP}{OP} = \frac{\sqrt{3} \cdot m}{2m} = \frac{\sqrt{3}}{2}$$
,
 $\cos 60^\circ = \cos POM = \frac{OM}{OP} = \frac{m}{2m} = \frac{1}{2}$,
 $\tan 60^\circ = \tan POM = \frac{MP}{OM} = \frac{\sqrt{3} \cdot m}{m} = \frac{\sqrt{3}}{1} = \sqrt{3}$.

38. To find the sine, cosine, and tangent of an angle of 30°.

With the same figure and construction as above we have the angle $OPM = 30^\circ$, since it is half of OPQ, *i.e.* of 60° .

Hence,
$$\sin 30^\circ = \sin OPM = \frac{MO}{PO} = -\frac{m}{2m} = \frac{1}{2}$$
,
 $\cos 30^\circ = \cos OPM = \frac{PM}{PO} = \frac{\sqrt{3} \cdot m}{2m} = \frac{\sqrt{3}}{2}$,
 $\tan 30^\circ = \tan OPM = \frac{MO}{PM} = \frac{m}{\sqrt{3} \cdot m} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3}$.

39. To find the sine, cosine, and tangent of an angle of 0°.

Let XOP be a small angle. Draw PM perpendicular to OX, and let OP be always of the same length, so that P lies on the circumference of a circle whose centre is O.

Then if the angle XOP be diminished, we can see that MP is diminished also, and that consequently $\frac{MP}{OP}$, which is sin XOP, is diminished. And by diminishing the angle XOP sufficiently, we can make MP as small as we please, and therefore we can make sin XOPsmaller than any assignable number however small that number may be.

This is what is meant when it is said that the value to which sin *XOP* approaches as the angle is diminished, is 0. This is expressed by saying,

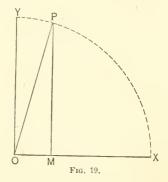
$$\sin \mathbf{0}^{\circ} = \mathbf{0}.$$
 (i.)

Again, as the angle XOP diminishes, OM approaches OP in length; and cos XOP, which is $\frac{OM}{OP}$, approaches in value to $\frac{OP}{OP}$, *i.e.* to 1.

This is expressed by saying,

$$\cos 0^\circ = 1. \tag{ii.}$$

Also, tan XOP is $\frac{MP}{OM}$; and we have seen that MP approaches 0, while OM does not; \therefore tan XOP approaches 0.


This is expressed by saying,

$$\tan 0^\circ = 0. \tag{iii.}$$

40. To find the sine, cosine, and tangent of 90° .

Let XOY be a right angle = 90°.

Draw XOP nearly a right angle; draw PM perpendicular to OX, and let OP be always of the same length, so that P lies on the circumference of a circle whose centre is O.

Then, as the angle XOP approaches to XOY, we can see that MP approaches OP, while OM continually diminishes.

Hence when XOP approaches 90°, sin XOP, which is approaches in value to $\frac{OP}{OP}$, that is to $\frac{1}{1}$, *i.e.* to 1.

Hence we say that $\sin 90^{\circ} = 1.$ (i.)

Again, when *XOP* approaches 90°;

cos XOP, which is $\frac{OM}{OP}$, approaches in value to $\frac{O}{OP}$, that is to 0. Hence we say that $\cos 90^\circ = 0.$ (ii.) Again, when *XOP* approaches 90°, tan *XOP*, which is $\frac{MP}{OM}$, OPapproaches in value to $\frac{1}{a \text{ quantity which approaches } 0}$

But in any fraction whose numerator does not diminish, the maller the denominator, the greater the value of that fraction; and f the denominator continually diminishes, the value of the fraction ontinually increases.

Hence, $\tan XOP$ can be made larger than any assigned number by making the angle XOP approach near enough to 90°.

This is what we mean when we say that

$$\tan 90^\circ$$
 is infinity, or, $\tan 90^\circ = \infty$. (iii.)

41. The following table exhibits the above results :

angle	0°	30°	45°	60°	90°	
• sine	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	
cosine	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	<u>1</u> 2	0	
tangent	• 0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	æ	

The student may notice that the sine increases with the angle, while the osine diminishes as the angle increases.

Also that the squares of the sines of 0° , 30° , 45° , 60° , and 90° are respectively, $\frac{1}{4}$, $\frac{2}{3}$, $\frac{3}{4}$, and $\frac{4}{4}$, and that the squares of the cosines of the same angles are $\frac{4}{4}$, $\frac{3}{4}$, $\frac{1}{4}$, and 0.

EXAMPLES. VI.

If $A = 90^\circ$, $B = 60^\circ$, $C = 30^\circ$, $D = 45^\circ$, prove the following:

1. $\cos^2 B - \sin^2 B = 1 - 2 \sin^2 B$.

2. $\sin B \cdot \cos C + \sin C \cdot \cos B = \sin A$.

3. $2(\cos B \cdot \cos D + \sin B \cdot \sin D)^2 = 1 + \cos C$.

4. $2(\sin D \cdot \cos C - \sin C \cdot \cos D)^2 = 1 - \cos C$.

5. $\sin 30^\circ = .5$. **6.** $\tan 60^\circ = 1.732 \cdots$. **7.** $\sin 45^\circ = .7071 \cdots$.

8. $\sin 60^\circ = .8660 \cdots$. **9.** $\tan 30^\circ = .5773 \cdots$.

CHAPTER VI

PRACTICAL APPLICATIONS

42. The actual measurement of the *line* joining two points which are any considerable distance apart, is a very tedious and difficult operation, especially when great accuracy is required; while the accurate measurement of an *angle* can, with proper instruments, be made with comparative ease and quickness.

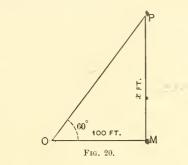
43. A Sextant is an instrument for measuring the angle between the two lines drawn from the observer's eye to each of two distant objects respectively.

A Theodolite is an instrument for measuring angles in a horizontal plane; also for measuring "angles of elevation" and "angles of depression."

44. The angle made with the horizontal plane, by the line joining the observer's eye with a distant object, is called

(i.) its angle of elevation, when the object is above the observer;

(ii.) its angle of depression, when the object is below the observer.¹


45. Trigonometry enables us, by measuring certain *angles*, to deduce other distances from one known distance, or, by the measurement of a *convenient* line, to deduce by the measurement of *angles* the lengths of lines whose actual measurement is difficult or impossible.

46. For this purpose we require the numerical values of the Trigonometrical Ratios of the angles observed. Accordingly, mathematical tables have been compiled, giving these ratios. These tables constitute a sort of numerical Dictionary, in which we can find the

¹ In measuring the angle of *depression* the telescope is turned from a horizontal position *downwards*. See Ex. VII. **3**.

numerical values of the trigonometrical ratios of any required angle.

EXAMPLE 1. At a point 100 feet from the foot of a tower, the angle of elevation of the top of the tower is observed to be 60° . Find the *height* of the top of the tower above the point of observation.

Let O be the point of observation; let P be the top of the tower; let a norizontal line through O meet the foot of the tower at the point M. Then OM = 100 feet, and the angle $MOP = 60^{\circ}$. Let MP contain x feet.

Then $\frac{MP}{OM} = \tan MOP = \tan 60^\circ = \sqrt{3}.$ $\therefore \frac{x}{100} = \sqrt{3}.$ $\therefore x = 100 \cdot \sqrt{3} = 100 \times 1.7320,$ = 173.2.

Therefore the required height is 173.2.

EXAMPLE 2. At a point 100 yards from the foot of a building, I measure the angle of elevation of the top, and find that it is 23° 15'; what is the height of the building?

As in Example 1, let the height be x yards.

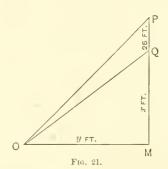
Then $\frac{x}{100} = \tan 23^{\circ} 15'$.

From the table of tangents we find that $\tan 23^{\circ} 15' = .4296339$.

Hence $x = 100 \times .4296339 = 42.96339$.

The height of the building = 43 yards, nearly. Ans.

EXAMPLE 3. A flagstaff, 25 feet high, stands on the top of a cliff; from a point on the seashore the angles of elevation of the highest and lowest points of the flagstaff are observed to be 47° 12' and 45° 13' respectively; find the height of the eliff.


Let O be the point of observation, PQ the flagstaff.

Let a horizontal line through O meet the vertical line PQ produced in M.

Then QP = 25 feet, $MOP = 47^{\circ} 12'$, $MOQ = 45^{\circ} 13'$.

TRIGONOMETRY FOR BEGINNERS

Let
$$MQ = x$$
 feet; let $OM = y$ feet.
Then $\frac{MP}{OM} = \tan 47^\circ 12', \quad \therefore \quad \frac{x+25}{y} = \tan 47^\circ 12'$
and $\frac{MQ}{OM} = \tan 45^\circ 13', \quad \therefore \quad \frac{x}{y} = \tan 45^\circ 13'$
Hence, by division, $\quad \therefore \quad \frac{x+25}{y} = \frac{\tan 47^\circ 12'}{\tan 45^\circ 13'}$

In the tables we find that

tän $47^{\circ} 12' = 1.0799018$, and tan $45^{\circ} 13' = 1.0075918$.

$$\therefore 1 + \frac{25}{x} = \frac{1.0799018}{1.0075918} = 1 + \frac{.0723100}{1.0075918}$$
$$\therefore \frac{x}{25} = \frac{1.0075918}{.0723100} = \frac{100759}{.072310}$$
$$\therefore x = \frac{2518075}{.7231} = 348, \text{ nearly.}$$

Therefore the cliff is 348 feet high.

EXAMPLES. VII.

Note. The answers are given correct to three significant figures.

1. At a point 179 feet in a horizontal line from the foot of a column, the angle of elevation of the top of the column is observed to be 45° ; what is the height of the column?

2. At a point 200 feet from, and on a level with the base of a tower, the angle of elevation of the top of the tower is observed to be 60^{-2} ; what is the height of the tower?

3. From the top of a vertical cliff, the angle of depression of a point on the shore 150 feet from the base of the cliff, is observed to be 30° ; tind the height of the cliff.

4. From the top of a tower 117 feet high the angle of depression of the top of a house 37 feet high is observed to be 30° ; how far is the top of the house from the tower?

-2₂₆

PRACTICAL APPLICATIONS

5. A man 6 feet high stands at a distance of 4 ft. 9 in. from a lamp-post, and it is observed that his shadow is 19 feet long; find the height of the lamp. 6. The shadow of a tower in the sunlight is observed to be 100 feet long, and at the same time the shadow of a lamp-post 9 feet high is observed to be $3\sqrt{3}$ feet long. Find the angle of elevation of the sun, and the height of the tower.

7. From a point P on the bank of a river, just opposite a post Q on the other bank, a man walks at right angles to PQ to a point R so that PR is 100 yards; he then observes the angle PRQ to be $32^{\circ} 17'$; find the breadth of the river. (tan $32^{\circ} 17' = .6317667$.)

8. A fine wire 300 feet long is attached to the top of a spire and the inclination of the wire to the horizon when held tight is observed to be 40° ; find the height of the spire. (sin $40^{\circ} = .6428$.)

9. A flagstaff 25 feet high stands on the top of a house; from a point on the plane on which the house stands the angles of elevation of the top and bottom of the flagstaff are observed to be 60° and 45° respectively; find the height of the house above the point of observation.

10. From the top of a cliff 100 feet high, the angles of depression of two ships at sea are observed to be 45° and 30° respectively; if the line joining the ships points directly to the foot of the cliff, find the distance between the ships.

11. A tower 100 feet high stands on the top'of a cliff; from a point on the sand at the foot of the cliff the angles of elevation of the top and bottom of the tower are observed to be 75° and 60° respectively; find the height of the cliff. (tan $75^{\circ} = 2 + \sqrt{3}$).

12. A man walking along a straight road observes at one milestone a house in a direction making an angle 30° with the road, and that at the next milestone the angle is 60° ; how far is the house from the road?

13. A man stands at a point A on the bank AB of a straight river and observes that the line joining A to a post C on the opposite bank makes with AB an angle of 30° . He then goes 400 yards along the bank to B and finds that BC makes with BA an angle of 60° ; find the breadth of the river.

14. From the top of a hill the angles of depression of the top and bottom of a flagstaff 25 feet high at the foot of the hill are observed to be $45^{\circ} 13'$ and $47^{\circ} 12'$ respectively; find the height of the hill. (tan $45^{\circ} 13' = 1.0075918$. (tan $47^{\circ} 12' = 1.0799018$.)

15. An isosceles triangle of wood is placed on the ground in a vertical position facing the sun. If 2a be the base of the triangle, b its height, and 30° the altitude of the sun, find the tangent of half the angle at the apex of the shadow.

16. The length of the shadow of a vertical stick is to the length of the stick as $\sqrt{3}$: 1. If the stick be turned about its lower extremity in a vertical plane, so that the shadow is always in the same direction, find what will be the angle of its inclination to the horizon when the length of the shadow is the same as before.

17. What distance in space is travelled in an hour in consequence of the earth's rotation, by a person situated in latitude 60° ? (Earth's radius = 4000 miles.)

CHAPTER VII

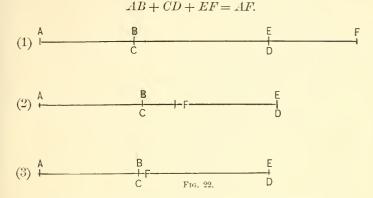
USE OF SIGNS + AND -. THE TRIGONOMETRIC RATIOS

47. Lines. The student has learned, in his study of algebra, that every quantitative symbol is affected by one of two signs, + or -; that if b be such a symbol, then +b and -b are of the same absolute magnitude, but that they are opposite in character; *i.e.* by whatever process +b may have been generated, -b has been generated by an exactly opposite process. We express this symbolically thus:

$$a + b - b \neq a$$
.

A line may be regarded as having been generated by the movement of a point. If, then, a line segment generated by the movement of a point in a given direction is represented by + b, where bis its measure, then a line segment generated by movement in the *opposite* direction is represented by - b, if b be *its* measure.

Thus line segments generated in opposite senses furnish an illustration of this algebraic convention.


48. We add line segments by placing the *beginning* of one segment at the *end* of another, so that all the extremities are collinear; *e.g.* suppose AB, CD, EF are line segments whose measures are a, b, c, respectively.

(1) Suppose AB, CD, EF are all generated in the same sense, then (1) Fig. 22 is the geometrical representation of their sum. The measure of their sum is a + b + c.

(2) Suppose AB and CD are generated in one sense and EF in the opposite sense, then (2) Fig. 22 is the geometrical representation of their sum. The measure of their sum is a + b - c.

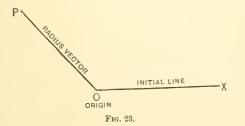
(3) Suppose that AB and CD are generated in one sense, and that EF is generated in the opposite sense, and that the measure of EF = the measure of CD; then (3) Fig. 22 is the geometrical rep-

resentation of their sum. The measure of their sum is a + b - b. In each case

Any straight line, OX being given, then it follows that

Lines drawn parallel to OX in one sense may be assumed positive; that is, are represented algebraically by their measures with the sign + before them; then

Lines drawn parallel to OX in the opposite sense are negative; that is, are represented algebraically by their measures with the sign — before them.


49. In naming a line by the letters at its extremities, we can indicate by the order of the letters the direction in which the line is supposed to be drawn.

Hence in using the two letters at its extremities to represent a line, the student will find it advantageous always to pay careful attention to the order of the letters.

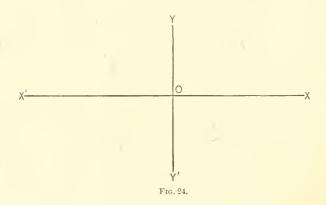
50. We should notice

(1) That it is immaterial which sense we choose as positive. But that, when once chosen, the negative sense is determined.

(2) That the line is the *result* of the movement, not the process.

51. We have already said in Art. 5

(i.) that, when an angle NOP is described by OP turning about O in the direction contrary to that of the hands of a watch, the angle NOP is said to be **positive**; that is, is represented algebraically by its measure with the sign + before it.


(ii.) that, when an angle XOP is described by OP turning about O in the same direction as the hands of a watch, the angle is said to be negative; that is, is represented algebraically by its measure with the sign – before it.

52. DEFINITIONS. QUADRANTS.

Draw through any point O two lines OX, OY perpendicular to each other.

(OX is drawn usually horizontally.)

The plane is divided into four parts called quadrants.

The part of the plane lying between

- (i.) OX and OY constitutes the *first* quadrant.
- (ii.) OY and OX' constitutes the second quadrant.
- (iii.) OX' and OY' constitutes the *third* quadrant.
- (iv.) OY' and OX constitutes the fourth quadrant.

An angle is said to be of the first quadrant if the radius vector OP is in the first quadrant; of the second, third, or fourth quadrant according as it is in the second, third, or fourth quadrant.

53. Let A be an angle between 0° and 90° , and let n be any whole number, positive, negative, or zero. Then

(i.) $2n \times 180^{\circ} + A$ represents algebraically an angle of the *first* quadrant.

(ii.) $2 n \times 180^{\circ} - A$ represents algebraically an angle of the *fourth* quadrant.

[For $2n \times 180^{\circ}$ represents some number *n* of *complete* revolutions of *OP*; so that after describing $n \times 360^{\circ}$, *OP* is again in the position *OX*.]

(iii.) $(2n+1) \times 180^{\circ} - A$ represents algebraically an angle of the *second* quadrant.

(iv.) $(2n+1) \times 180^{\circ} + A$ represents algebraically an angle of the *third* quadrant.

[For after describing $(2n + 1) \times 180^\circ$, *OP* is in the position *OX*.]

The corresponding expressions in circular measure are

(i.) $2n\pi+\theta$; (ii.) $2n\pi-\theta$; (iii.) $(2n+1)\pi-\theta$; (iv.) $(2n+1)\pi+\theta$.

EXAMPLES. VIII.

Draw a figure giving the position of the radius vector after it has turned through each of the following angles, and state to what quadrant each angle belongs.

1 . 270°	3.	425° .	5 30°.	7. -480° .
2 . 370°	. 4.	590°.	6 330°.	8. -750° .
9. $\frac{27 \pi}{4}$		11. $(2n+1)$	$\pi + \frac{\pi}{3}$.	13. $2 n\pi - \frac{\pi}{2}$.
10 . 2 <i>n</i> π	$+\frac{\pi}{6}$.	12. $(2n+1)$	$\pi - \frac{\pi}{4}$	14. $(2n+1)\pi - \frac{\pi}{2}$.

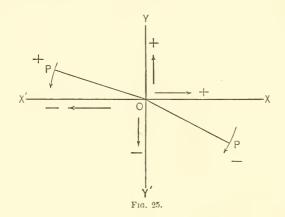
Note. $n\pi$ always stands for a whole number of two right angles.

54. For the remainder of our discussion, we shall make the following agreements:

Choose O as origin; choose OX, drawn horizontally, as initial line.

I. For lines parallel to the initial line OX, the positive direction is from O to X.

It is convenient, when considering one angle only, so to arrange the figure that from O to X is from left to right.


We next *choose* the positive direction of revolution about O for the radius vector.

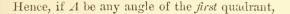
II. For lines perpendicular to OX, the positive direction is from O to Y, where XOY is a positive right angle.

When from O to X is from left to right, and the positive direction of revoution about O is contrary to that of the hands of a watch with its face upwards (counter-clockwise), then from O to Y is in the direction from the bottom of the page to the top.

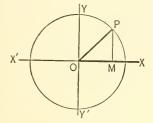
III. For lines parallel to OP, the positive direction is from O to P.

The radius vector carries its positive direction around with it; hence OP is always positive. The direction from O to P, as OP revolves, nowhere undergoes a sudden reversal of direction such as is indicated by a change of sign.

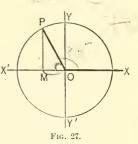
As already explained, the *negative* direction is in all cases exactly the reverse of the positive direction.

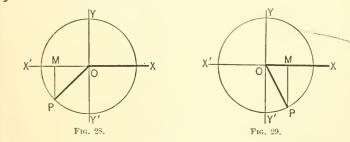

We have said that the definitions of the Trigonometrical Ratios (Art. 26) apply to angles of any magnitude. We may say also that when the angle exceeds a right angle, a line on which the point P is taken must be considered the radius vector; and that the order of the letters in MP, OM, OP give the directions of the lines, and therefore the signs of their measures.

55. We will now show that the trigonometrical ratios of an angle vary in Sign according to the Quadrant in which the radius vector of the angle happens to be.


From the definition we have, with the usual letters,

$$\sin XOP = \frac{MP}{OP}, \ \cos XOP = \frac{OM}{OP}, \ \tan XOP = \frac{MP}{OM}.$$


I. When *OP* is in the first quadrant (Fig. 26). *MP* is positive because from *M* to *P* is upwards (Art. 54, II.); *OM* is positive because from *O* to *M* is towards the right (Art. 54, I.); *OP* is positive (Art. 54, III.).



sin A, which is $\frac{MP}{OP}$, is positive; cos A, which is $\frac{OM}{OP}$, is positive; tan A, which is $\frac{MP}{OW}$, is positive.

II. When OP is in the second quadrant (Fig. 27), MP is positive, because from M to P is upwards.
OM is negative, because from O to M is towards the left.
OP is positive.

Hence, if A be any angle of the second quadrant,

sin A, which is $\frac{MP}{OP}$, is positive; cos A, which is $\frac{OM}{OP}$, is negative; tan A, which is $\frac{MP}{OM}$, is negative.

 \mathbf{D}

III. When OP is in the third quadrant (Fig. 28), MP is negative, OM is negative, OP is positive.

So that, if A be any angle of the third quadrant,

sin A is negative, cos A is negative, tan A is positive.

IV. When OP lies in the fourth quadrant (Fig. 29), MP is negative, OM is positive, OP is positive.

So that, if A be any angle of the *fourth* quadrant,

sin A is negative, cos A is positive, tan A is negative.

56. The table given below exhibits the results of the last article:

Quadrant	I.	II.	III.	1 V.
Sine	+	+	-	-
Cosine	+	-		+
Tangent	+	-	+	

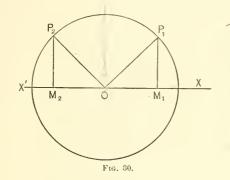
The student should notice that for any particular quadrant the three signs of sine, cosine, and tangent are unlike their signs for any other quadrant.

57. The cosecant, secant, and cotangent of an angle A have the same sign as the sine, cosine, and tangent of A respectively.

EXAMPLES. IX.

State the *sign* of the sine, cosine, and tangent of each of the following angles:

1	• 60°. +	2. 135°.	3.	265°.
4.	275°.	5. -10° .	6.	— 91°.
7.	- 193°	8 . – 350°	. 9.	- 1000°.
10.	$2n\pi + \frac{1}{4}\pi$.	11. $2 n\pi +$	$\frac{2}{4}\pi$. 12.	$2 n\pi - \frac{1}{6}\pi$.


58. The ratios of an angle of any quadrant may be expressed in terms of the ratios of a positive angle between 0° and 90° .

The algebraic values of the ratios depend only on the position of the radius vector.

I. Hence the proposition is evident for angles of the first quadrant.

II. Consider an angle of the second quadrant.

Let XOP_2 be an angle of the second quadrant. With OP_2 as adding describe a circle about O as centre. Construct $\angle XOP_1$, P_1 eing on the circumference of the circle [see I., Art. 32], so that

he measure of $\angle XOP_1 =$ measure of $\angle X'OP_2$. From P_1 and P_2 et perpendiculars fall on XX', cutting it in M_1 and M_2 respectively.

Then $\triangle M_1 OP_1 = \triangle M_2 OP_2;$

whence $M_2P_2 = M_1P_1$,

nd

$$\sin XOP_2 = \frac{M_2P_2}{OP_2}; \ \sin XOP_1 = \frac{M_1P_1}{OP_1}.$$

 $OM_2 = -OM_1$ (Art. 47).

But

$$\frac{M_2P_2}{OP_2} = \frac{M_1P_1}{OP_1};$$

$$\therefore \sin XOP_2 = \sin XOP_1;$$

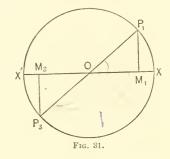
$$\cos XOP_2 = \frac{OM_2}{OP_2} = -\frac{OM_1}{OP_1} = -\cos XOP_1;$$

$$\tan XOP_2 = \frac{M_2P_2}{OM_2} = -\frac{M_1P_1}{OM_1} = -\tan XOP_1.$$

III. Angles of third quadrant.

Let OXP_3 be an angle of the third quadrant (Fig. 31). By reasoning similar to that in II.,

 $M_3P_3 = -M_1P_1; OM_3 = -OM_1$ (Art. 47).


TRIGONOMETRY FOR BEGINNERS

Hence

$$\sin XOP_3 = \frac{M_3P_3}{OP_3} = -\frac{M_1P_1}{OP_1} = -\sin XOP_1;$$

$$\cos XOP_3 = \frac{OM_3}{OP_3} = -\frac{OM_1}{OP_1} = -\cos XOP_1;$$

$$\tan XOP_3 = -\frac{M_3P_3}{OM_3} = \frac{M_1P_1}{OM_1} = \tan XOP_1.$$

IV. We leave as an exercise for the student to prove: If XOP_4 is an angle of the fourth quadrant,

 $\sin XOP_4 = -\sin XOP_1;$ $\cos XOP_4 = \cos XOP_1;$ $\tan XOP_4 = -\tan XOP_1.$

We have now proved our theorem.

COROLLARY I. The results of the preceding article may be formulated as follows (see Art. 53):

$$\begin{array}{c}
\sin (2 n 180^{\circ} \pm A) = \pm \sin A;\\
\cos (2 n 180^{\circ} \pm A) = \cos A;\\
\tan (2 n 180^{\circ} \pm A) = \pm \tan A.
\end{array}$$
I.
$$\sin [(2 n + 1) 180^{\circ} \pm A] = \mp \sin A;\\
\cos [(2 n + 1) 180^{\circ} \pm A] = -\cos A;\\
\sin [(2 n + 1) 180^{\circ} \pm A] = -\cos A;\\
\sin [(2 n + 1) 180^{\circ} \pm A] = -\tan A.
\end{array}$$
II.

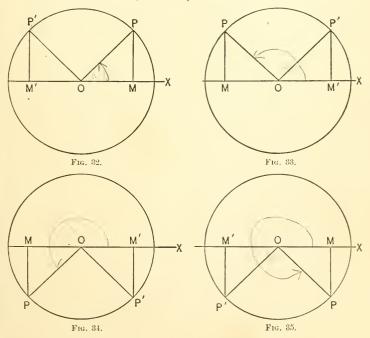
where A is an angle between 0° and 90° , and n is any integer positive, or negative, or zero, and either the *upper* sign or the *lower* sign is read on both sides of the equations.

36

COROLLARY II. Making n = 1 in each of the equations I., we obtain the very important formulae:

 $\begin{aligned} &\sin (360^\circ \pm {\it A}) = \pm \sin {\it A} \ ; \\ &\cos (360^\circ \pm {\it A}) = \cos {\it A} \ ; \\ &\tan (360^\circ \pm {\it A}) = \pm \tan {\it A}. \end{aligned}$

Making n = 0 in II.,


 $\begin{aligned} &\sin\left(180^\circ\pm \textbf{\textit{A}}\right)=\mp\sin \textbf{\textit{A}}\,;\\ &\cos\left(180^\circ\pm \textbf{\textit{A}}\right)=-\cos \textbf{\textit{A}}\,;\\ &\tan\left(180^\circ\pm \textbf{\textit{A}}\right)=\pm\tan \textbf{\textit{A}}. \end{aligned}$

Making n = 0 in I., and reading the lower sign, we obtain :

 $\sin (-\mathbf{A}) = -\sin \mathbf{A};$ $\cos (-\mathbf{A}) = \cos \mathbf{A};$ $\tan (-\mathbf{A}) = -\tan \mathbf{A}.$

59. If A be any angle,

 $\sin (180^{\circ} - A) = \sin A;$ $\cos (180^{\circ} - A) = -\cos A;$ $\tan (180^{\circ} - A) = -\tan A.$

Let *XOP* be any angle, *A*; see Figs. 32, 33, 34, 35. Let *XOP* be $180^{\circ} - A$.

It is easily proved that

if A is an angle of 1st quadrant, $180^{\circ} - A$ is an angle of 2d quadrant; if A is an angle of 2d quadrant, $180^{\circ} - A$ is an angle of 1st quadrant; if A is an angle of 3d quadrant, $180^{\circ} - A$ is an angle of 4th quadrant; if A is an angle of 4th quadrant, $180^{\circ} - A$ is an angle of 3d quadrant;

and as in Art. 58,

$$P'M' = PM;$$

$$OM' = -OM.$$

In each case

$$\sin (180^\circ - A) = \frac{M'P'}{OP'} = \frac{MP}{OP} = \sin A;$$

$$\cos (180^\circ - A) = \frac{OM'}{OP'} = \frac{-OM}{OP} = -\cos A;$$

$$\tan (180^\circ - A) = \frac{M'P'}{OM'} = \frac{MP}{-OM} = -\tan A.$$
 Q.E.D.

60. DEFINITION. One angle is said to be the **supplement** of another when their sum is two right angles. The results of Art. 58 may now be stated in words:

The sine of the supplement of an angle = the sine of the angle.

The cosine of the supplement of an angle = the negative cosine of the angle.

The tangent of the supplement of an angle = the negative tangent of the angle.

EXAMPLES. X.

Prove, drawing a separate figure in each case, that

1.	$\sin 60^\circ = \sin 120^\circ.$	4.	$\cos 320^\circ = -\cos \theta$	(-140°)	•
----	-----------------------------------	----	---------------------------------	------------------	---

- **2.** $\sin 340^\circ = \sin (-160^\circ)$. **5.** $\cos (-380^\circ) = -\cos 560^\circ$.
- **3.** $\sin(-40^\circ) = \sin 220^\circ$. **6.** $\cos 195^\circ = -\cos(-15^\circ)$.

If A, B, C be the angles of a triangle, prove

- 7. $\sin A = \sin (B + C)$. 9. $\cos B = -\cos (A + C)$.
- 8. $\sin C = \sin (A + B)$. 10. $\cos A = -\cos (C + B)$.

Prove by means of a figure that

11. $\sin(-A) = -\sin A$. 12. $\cos(-A) = \cos A$. **DEFINITION.** One angle is said to be the complement of another if their sum = a right angle.

EXAMPLE. The complement of 190° is -100° .

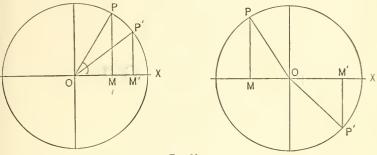


FIG. 36.

 $\sin (90^\circ - A) = \cos A;$ $\cos (90^\circ - A) = \sin A;$ $\tan (90^\circ - A) = \cot A.$

We shall prove the theorem in case A is an angle of the first or of the second quadrant. The student should prove it for the remaining cases.

If \varDelta is an angle of the 1st quadrant, $90^{\circ} - \varDelta$ is an angle of the 1st quadrant.

If A is an angle of the 2d quadrant, $90^{\circ} - A$ is an angle of the 4th quadrant.

Let XOP = A, and $XOP' = 90^\circ - A$.

Then, triangles MPO and M'OP' are similar (Fig. 36).

$$\frac{M'P'}{OP'} = \frac{OM}{OP}$$
 (i.), and $\frac{OM'}{OP'} = \frac{MP}{OP}$ (ii.), and $\frac{M'P'}{OM'} = \frac{OM}{MP}$ (iii.);

 \mathbf{or}

$$\sin (90^\circ - A) = \cos A;$$

$$\cos (90^\circ - A) = \sin A;$$

$$\tan (90^\circ - A) = \cot A.$$

il

EXAMPLES. XI.

Find the complements of

1.	30°.	3.	90°.	5.		- 25°.	7.	$\frac{3}{4}\pi$.
2.	190°.	4.	350°.	6.	-	- 320°.	8.	$-\frac{1}{6}\pi$.
\mathbf{Pr}	ove by drawing a	figu	re in each case:					

9. $\sin 70^\circ = \cos 20^\circ$.

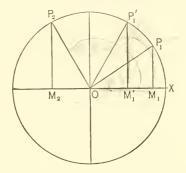
10. $\cos 47^{\circ} 16' = \sin 42^{\circ} 44'$.

- 11. $\tan 79^\circ = \cot 11^\circ$.
- **12.** $\sec 36^\circ = \csc 54^\circ$.

 13. $\cos 105^\circ = \sin - 15^\circ$.
 15. $\sec A = \csc (90^\circ - A)$.

 14. $\tan 135^\circ = \cot - 45^\circ$.
 16. $\cot A = \tan (90^\circ - A)$.

 15. $\sec A = \csc \frac{1}{2}(0^\circ - A)$.
 16. $\cot A = \tan (90^\circ - A)$.


 16. $\cot A = \tan (90^\circ - A)$.
 17. $\cos \frac{1}{2}A = \sin \frac{1}{2}(B + C)$.

 17. $\cos \frac{1}{2}A = \sin \frac{1}{2}(B + C)$.
 19. $\sin \frac{1}{2}C = \cos \frac{1}{2}(A + B)$.

 18. $\cos \frac{1}{2}B = \sin \frac{1}{2}(A + C)$.
 20. $\sin \frac{1}{2}A = \cos \frac{1}{2}(B + C)$.

62. To find the ratios of $90^\circ + A$.

We shall consider only the case when 1 is between 0° and 90°.

Let $XOP_1 = A$, and $XOP_2 = 90^\circ + A$. Construct $XOP'_1 = 90^\circ - A$.

Then the measure of XOP_2 = measure of $180^\circ - XOP'_1$.

$$\therefore \sin XOP_2 = \sin XOP'_1 \text{ (Art. 57)}.$$

$$\sin XOP'_1 = \cos XOP_1 \text{ (Art. 60)};$$

But

i.e.
$$\sin(90^\circ + 1) = \cos 1$$
, and similarly

$$\cos(90^\circ + 1) = -\sin(1)$$

$$\tan\left(90^\circ + 10\right) = -\cot 4.$$

The proof for the remaining cases offers little difficulty.

EXAMPLES. XII.

Find the algebraical value of the sine, cosine, and tangent of the following angles:

1.	150° .	4 . 330°.	7 . 225°.	10 . 750°.
2.	135°.	5. -45° .	8 . − 135°.	11. -840° .
3.	-240° .	6 300°.	9. 390°.	12 . 1020°.
13.	$2 n\pi + \frac{\pi}{4}$	14. $(2n+1)$	$()\pi - \frac{\pi}{3}$ 15.	$(2n-1)\pi + \frac{\pi}{6}$
16.	$\sin A = \frac{1}{2}.$	17. $\sin A = \frac{1}{\sqrt{2}}$.	18. $\sin A = \frac{\sqrt{3}}{2}$.	19. $\sin A = -\frac{1}{2}$.

Find four angles between zero and + 8 right angles which satisfy the equations:

20. $\sin A = \sin 20^{\circ}$ **21.** $\sin \theta = -\frac{1}{\sqrt{2}}$ **22.** $\sin \theta = -\sin \frac{\pi}{7}$. **23.** Prove that 30°, 150°, -330° , 390°, -210° have the same sine.

24. Show that each of the following angles has the same cosine :

 $-120^{\circ}, 240^{\circ}, 480^{\circ}, -480^{\circ}.$

25. The angles 60° and -120° have one of the Trigonometrical Ratios the same for both ; which of the ratios is it ?

26. Can the following angles have any one of their Trigonometrical Ratios the same for all? -23° , 157° , and -157° .

63. The ratios of the angles

$$2 n\pi, 2n\pi + \frac{\pi}{2}, (2n+1)\pi, (2n+1)\pi + \frac{\pi}{2}.$$

The reasoning by which we obtained the ratios of 0° and 90° applies with equal force for $2 n\pi$ and $2 n\pi + \frac{\pi}{2}$ respectively, whence we obtain,

$$\sin 2 n\pi = 0$$
, $\cos 2 n\pi = 1$, $\tan 2 n\pi = 0$; (i.)

$$\sin\left(2n\pi+\frac{\pi}{2}\right)=1, \quad \cos\left(2n\pi+\frac{\pi}{2}\right)=0, \quad \tan\left(2n\pi+\frac{\pi}{2}\right)=\infty. \quad (ii.)$$

We will now obtain the ratios of $(2 n + 1)\pi$.

We have shown that

when

$$\sin XOP_2 = \sin XOP_1; \qquad \text{(Fig. 30, Art. 58.)}$$

$$\cos XOP_2 = -\cos XOP_1; \qquad \text{tan } XOP_2 = -\tan XOP_1, \qquad \text{(Fig. 30, Art. 58.)}$$

however little the difference between 180° and XOP_2 may be. If this difference be very small, then XOP_1 differs from 0° by a very small quantity. Hence

$$\sin XOP_1 = 0, \ \cos XOP_1 = 1, \ \tan XOP_1 = 0;$$

ce $\sin XOP_2 = 0, \ \cos XOP_2 = -1, \ \tan XOP_2 = 0;$
(9) + 1) = 0 = (9) + (9)

or $\sin((2n+1)\pi = 0)$, $\cos((2n+1)\pi = -1)$, $\tan((2n+1)\pi = 0)$. (iii.)

We leave as an exercise to prove that

$$\sin\left[(2n+1)\pi + \frac{\pi}{2} \right] = -1, \quad \cos\left[(2n+1)\pi + \frac{\pi}{2} \right] = 0, \\
 \tan\left[(2n+1)\pi + \frac{\pi}{2} \right] = \infty.*
 \tag{iv.}$$

* See remark under corollary, next page.

Angle	00	90 ⁻²	180°	270-	3600
Sine	0	1	0	-1 .	0
Cosine	1	0	-1	0.	1
Tangent	0	œ	0	œ	0

COROLLARY. Making (1) n = 0 in each of the preceding formula, and (2) n = 1 in I., we obtain:

The sign has been omitted from ∞ , since all that we know is, when the angle is a little less than 90° or 270°, or a little greater than 90° or 270°, that the tangent is very large *numerically*; that in the first case, viz. the angle is a little less than either 90° or 270°, the tangent is positive; and in the second case, negative.

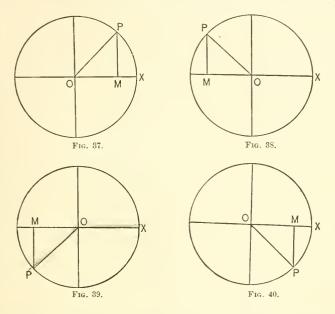
64. By Art. 32, if 1 be an angle of the first quadrant,

(1) A small change in A will produce a change in the values of its ratios.

(2) So long as the angle A is unchanged, its ratios are unchanged.

(3) To each value of A there is a definite value for each of its ratios. By Art. 58 the ratios of an angle of *any* quadrant may be expressed in terms of the ratios of an angle of the first quadrant. Hence the theorems of Art. 32 are true for any angle; or, more briefly, the ratios of an angle are unique.

DEFINITION. When two quantities are so related that a change in the value of one of them produces a corresponding change in the value of the other, the second is said to be a function of the first.


It appears from this article that the angle and its ratios are so related. For this reason the trigonometrical ratios are generally called trigonometric functions or circular functions.

65. To trace the changes in the magnitude and sign of sin .1 as A increases from 0° to 360°.

Construct circles with OP as radius. Let PM be perpendicular to OX. Let A = XOP.

Then
$$\sin A = \frac{MP}{OP}$$
.

When the angle A is 0° , MP is zero, and when A is 90° , MP is equal to OP; and as A continuously increases from 0° to 90° , MP

increases continuously from zero to OP; also OP is always equal to OX.

Therefore, when $A = 0^{\circ}$, the fraction $\frac{MP}{OP}$ is equal to $\frac{0}{OP}$, that is 0; when $A = 90^{\circ}$, the fraction $\frac{MP}{OP}$ is equal to $\frac{OP}{OP}$, that is 1; and as A continuously increases from 0° to 90°, the numerator of the fraction $\frac{MP}{OP}$ continuously increases from zero to OP, while the denominator is unchanged, and therefore the fraction $\frac{MP}{OP}$, which is sin A, increases continuously from 0 to 1, and is positive.

As A increases from 0° to 90° , MP increases from zero to OP, and is positive.

Therefore $\sin A$ increases from 0 to 1, and is positive.

As A increases from 90° to 180° , MP decreases from OP to zero, and is positive.

Therefore sin A decreases from 1 to 0, and is positive.

As A increases from 180° to 270° , MP increases numerically from 0 to OP, and is negative; hence sin A increases numerically from 0 to 1, and is negative.

TRIGONOMETRY FOR BEGINNERS

As \mathcal{A} increases from 270° to 360°, MP decreases from OP to zero, and is negative.

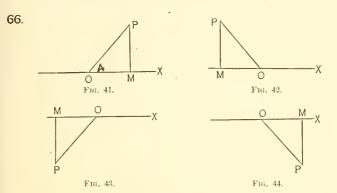
Therefore $\sin A$ decreases numerically from 1 to 0, and is negative.

CONDLARY. Therefore we may conclude that $\sin A$ is never greater than 1; that $\cos A$ is never greater than 1. That the *numerical* value of see A or of cosec A is never less than 1. For

$$\sec A = \frac{1}{\cos A}, \ \operatorname{cosec} A = \frac{1}{\sin A}. \tag{Def.}$$

EXAMPLES. XIII.

Trace the changes in sign and magnitude as A increases from 0° to 360° of


1.	cos A.	3.	cot 4.	5.	cosec 4.	7.	$\sin^2 A$.
2.	tan A.	4.	sec A.	6.	$1 - \sin A$.	8.	$\sin A \cdot \cos A.$

44

CHAPTER VIII

Riv en 1.

ON THE RELATIONS BETWEEN THE TRIGONOMETRIC RATIOS

Let XOP = A, any angle. (The figures are those of Art. 25.) The following relations are evident from the definitions:

 $\sin A$

tan A =

cosec
$$A = \frac{1}{\sin A};$$
 (1)

$$\sec A = \frac{1}{\cos A}; \tag{2}$$

$$\cot A = \frac{1}{\tan A}.$$
(3)

To prove

$$\sin A = \frac{MP}{OP}, \ \cos A = \frac{OM}{OP}.$$

$$\therefore \ \frac{\sin A}{\cos A} = \frac{\frac{MP}{OP}}{\frac{OM}{OP}} = \frac{MP}{OM} = \tan A.$$
(4) Q.E.D.
$$\frac{\cos A}{\sin A} = \cot A.$$
(5)

Similarly

67. To prove $\sin^2 A + \cos^2 A = 1$.

$$\sin^2 A = \frac{MP^2}{OP^2}, \ \cos^2 A = \frac{OM^2}{OP^2}.$$

Now $\sin^2 A + \cos^2 A = \frac{MP^2}{OP^2} + \frac{OM^2}{OP^2} = \frac{MP^2 + OM^2}{OP^2} = \frac{OP^2}{OP^2} = 1,$ $MP^2 + OM^2 = OP^2$. (Pythagorean Prop.)

since

Similarly we may prove that

 $1 + \tan^2 A = \sec^2 A$. $1 + \cot^2 A = \csc^2 A.$

and that

68. The following is a List of Formulæ with which the student must make himself familiar:

osec
$$A = \frac{1}{\sin A}$$
, sec $A = \frac{1}{\cos A}$,
 $\cot A = \frac{1}{\tan A}$, $\tan A = \frac{\sin A}{\cos A}$, $\cot A = \frac{\cos A}{\sin A}$,
 $\sin^2 A + \cos^2 A = 1$,
 $\tan^2 A + 1 = \sec^2 A$,
 $\cot^2 A + 1 = \csc^2 A$.

69. By means of these formulæ we are able to transform a given trigonometrical expression into a great variety of equivalent expressions.

EXAMPLE. Prove that $\tan A + \cot A = \sec A \cdot \csc A$.

Since
$$\tan A = \frac{\sin A}{\cos A}$$
, $\cot A = \frac{\cos A}{\sin A}$, $\sec A = \frac{1}{\cos A}$, $\csc A = \frac{1}{\sin A}$,
we have $\tan A + \cot A = \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}$.

V

$$=\frac{\sin^2 A + \cos^2 A}{\cos A \cdot \sin A} = \frac{1}{\cos A \cdot \sin A} = \sec A \cdot \csc A.$$
 [Art. 67.]

70. Tt is sometimes convenient to write a given expression in terms of the sine only, or in terms of the cosine only.

EXAMPLE I. Prove that $\sin^4 \theta + 2 \sin^2 \theta \cos^2 \theta = 1 - \cos^4 \theta$.

By Art. 67, we have $\sin^2 \theta = 1 - \cos^2 \theta$,

hence
$$\sin^4 \theta + 2\sin^2 \theta \cos^2 \theta = (1 - \cos^2 \theta)^2 + 2(1 - \cos^2 \theta) \times \cos^2 \theta$$
$$= (1 - 2\cos^2 \theta + \cos^4 \theta) + (2\cos^2 \theta - 2\cos^4 \theta)$$
$$= 1 - \cos^4 \theta.$$

46

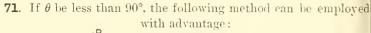
RELATIONS BETWEEN TRIGONOMETRIC RATIOS 47

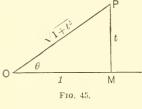
EXAMPLE II. Express $\sin^4 \theta + \cos^4 \theta$ in terms of $\cos \theta$.

$$\sin^4 \theta + \cos^4 \theta = (1 - \cos^2 \theta)^2 + \cos^4 \theta$$
$$= (1 - 2\cos^2 \theta + \cos^4 \theta) + \cos^4 \theta$$
$$= 1 - 2\cos^2 \theta + 2\cos^4 \theta.$$

Note. $(1 - \cos \theta)$ is called the versed sine of θ , and is written versin θ .

EXAMPLES. XIV.


Prove the following statements :


	3	
1.	$\cos A \cdot \tan A = \sin A.$	$4. \sec A \cdot \cot A = \operatorname{cosec} A.$
2.	$\cot A \cdot \tan A = 1.$	5. $\operatorname{cosec} A \cdot \tan A = \sec A$.
3.	$\cos A = \sin A \cdot \cot A.$	6. $(\tan A + \cot A) \sin A \cdot \cos A = 1.$
	7. $(\tan A - \cot$	$A)\sin A \cdot \cos A = \sin^2 A - \cos^2 A.$
	8. $\cos^2 A - \sin^2$	$A = 2\cos^2 A - 1 = 1 - 2\sin^2 A.$
	9. $(\sin A + \cos A)$	$A)^2 = 1 + 2\sin A \cdot \cos A.$
	10. $(\sin A - \cos A)$	$A)^2 = 1 - 2\sin A \cdot \cos A.$
	11. $\cos^4 B - \sin^4$	$B = 2\cos^2 B - 1.$
	12. $(\sin^2 B + \cos \theta)$	$(B^2 B)^2 = 1.$
	13. $(\sin^2 B - \cos^2 B)$	$(B)^2 = 1 - 4\cos^2 B + 4\cos^4 B.$
	14. $1 - \tan^4 B =$	$2\sec^2 B - \sec^4 B.$
	15. (sec $B - \tan \theta$	$B)(\sec B + \tan B) = 1.$
	16. $(\operatorname{cosec} \theta - \operatorname{cot}$	$(\operatorname{cosec} \theta + \operatorname{cot} \theta) = 1.$
	17. $\sin^3\theta + \cos^3\theta$	$= (\sin \theta + \cos \dot{\theta})(1 - \sin \theta \cos \theta).$
	18. $\cos^3\theta - \sin^3\theta$	$\theta = (\cos \theta - \sin \theta)(1 + \sin \theta \cos \theta).$
	19. $\sin^6 \theta + \cos^6 \theta$	$\theta = 1 - 3\sin^2\theta \cdot \cos^2\theta.$
	20. $(\sin^6\theta - \cos^6\theta)$	$\theta) = (2\sin^2\theta - 1)(1 - \sin^2\theta + \sin^4\theta).$
ļ.	$\frac{\tan A + \tan B}{\cot A + \cot B} = \tan A \cdot \tan B$	24. $\frac{1+\cos A}{1-\cos A} = (\csc A + \cot A)^2$.
2.	$\frac{\cot \alpha + \tan \beta}{\tan \alpha + \cot \beta} = \cot \alpha \cdot \tan \beta.$	25. 2 versin θ – versin ² $\tilde{\theta}$ = sin ² θ .
		26. versin θ (1 + cos θ) = sin ² θ .
3.	$\frac{1-\sin A}{1+\sin A} = (\sec A - \tan A)^2.$	
	Express in terms of (i.) $\cos \theta$,	(ii.) of $\sin \theta$,
	27. $\cos^4\theta - \sin^4\theta$.	31. $\tan^2 \theta + \cot^2 \theta$.
	28. $(\sin^2\theta - \cos^2\theta)^2$.	32. $1 + \cot^4 \theta$.
	29. $1 - \tan^4 \theta$.	33. $1 + \cot^2 \theta - \csc^2 \theta$.
	30. $\sin^6 \theta + \cos^6 \theta$.	34. $2 \tan^4 \theta - 4 \sin^2 \theta$.
	35. Show $\cos(90^\circ - \alpha) \sin(18^\circ)$	$80^{\circ} - \alpha) - \sin(90^{\circ} - \alpha) \cos(180^{\circ} - \alpha) = 1.$
-	36. $\tan(180^\circ + 45^\circ) \tan 45^\circ +$	$1 = \sec 245^{\circ}, \ \ 2 \cdot \cdot \cdot \stackrel{\ell}{\longrightarrow} \ \ .$
	37. $\cot 120^{\circ} \cdot \cot (-60^{\circ}) + 1 =$	0
	38. $\cos^2[(2n+1)\pi + A] = \frac{C}{2}$	$\cos^2 A + \sin^2 (1800 - A)$
1		sec ² A

By the aid of the formulæ of Art. 68 we may express the ratio: of any angle in terms of any *one* of its ratios, *e.g.*

To express the other trigonometric ratios of θ in terms of its tangent.

$$\cot \theta = \frac{1}{\tan \theta}$$
$$\sec \theta = \pm \sqrt{1 + \tan^2 \theta}.$$
$$\cos \theta = \frac{1}{\sec \theta} = \frac{1}{\pm \sqrt{1 + \tan^2 \theta}}.$$
$$\sin \theta = \tan \theta \ \cos \theta = \frac{\tan \theta}{\pm \sqrt{\tan^2 \theta + 1}}.$$
$$\csc \theta = \frac{1}{\sin \theta} = \frac{\pm \sqrt{1 + \tan^2 \theta}}{\tan \theta}.$$

Let MOP be a right triangle; Fig. 45, Let MP = t, OM = 1, $\therefore OP = \sqrt{1+t^2}$.

an
$$\theta = \frac{t}{1} = t$$
, sin $\theta = \frac{t}{\sqrt{1+t^2}}$,

 $\cos \theta = \frac{1}{\sqrt{1+t^2}}$, and so on. With suit-

able modifications we may employ this method whatever be the magnitude of θ .

t

Hence if we are given $\tan \theta$ we can calculate the value of the remaining ratios by either of the above methods.

E.g. suppose $\tan \theta = \sqrt{3}$, then

$$\sin \theta = \frac{\sqrt{3}}{\sqrt{1+3}} = \frac{\sqrt{3}}{2}, \text{ and so on.}$$

72. The expressions obtained for $\sin \theta$, $\cos \theta$, $\sec \theta$, and $\csc \theta$, in Art. 70, are affected with a double sign. Hence these ratios are not *uniquely* determined. If, however, we know tan θ and in addition to what quadrant θ belongs, we can determine the respective signs of the ratios named.

E.g. if $\tan \theta = \sqrt{3}$ and we know that θ is of the third quadrant, then $\sin \theta = -\frac{\sqrt{3}}{2}$.

EXAMPLES. XV. (a).

1. Express all the other ratios of A in terms of cos A.

2. Express all the ratios of $90^{\circ} + A$ in terms of $\cot A$; $A < 90^{\circ}$.

3. Express all the ratios of $180^{\circ} - A$ in terms of sec A.

4. Express all the other ratios of A in terms of csc A.

5. Use formulæ of Art. 67 to express all the other ratios of A in terms of $\sin A$.

6. Use the method of Art. 71 to express all the ratios of A in terms of cosine A; $A < 90^{\circ}$.

EXAMPLES. XV. (b).

Suppose no angle in the following list is greater than $+ 180^{\circ}$.

1. If $\sin A = \frac{3}{5}$, find $\tan A$ and $\operatorname{cosec} A$.

2. If $\cos B = \frac{1}{3}$, find $\sin B$ and $\cot B$.

3. If $\tan A = \frac{4}{3}$, find $\sin A$ and $\sec A$.

4. If sec $\theta = 4$, find $\cot \theta$ and $\sin \theta$.

5. If $\tan \theta = \sqrt{3}$, find $\sin \theta$ and $\cos \theta$.

6. If
$$\cot \theta = \frac{2}{\sqrt{5}}$$
, find $\sin \theta$ and $\sec \theta$.

7. If $\sin \theta = \frac{b}{c}$, find $\tan \theta$.

8. If $\tan \theta = a$, find $\sin \theta$ and $\cos \theta$.

9. If sec $\theta = a$, find sin θ and cot θ .

10. If $\sin \theta = a$, and $\tan \theta = b$, prove that $(1 - a^2) (1 + b^2) = 1$.

11. If $\cos \theta = h$, and $\tan \theta = k$, find the equation connecting h and k.

12. If $A < 90^\circ$, and $\tan A + \sec A = 2$, prove that $\sin A = \frac{3}{5}$. Find the remaining ratios of A.

13. Show, using the formulæ Art. 67, that the numerical value of

 $\sin A \ge 1$, $\cos A \ge 1$, $\sec A \le 1$, $\operatorname{cosec} A \le 1$.

CHAPTER IX

THE SOLUTION OF TRIGONOMETRICAL EQUATIONS

73. The formulæ developed in Chapter VII. and the expressions to be proved in Examples XIV. are true for *any* angle.

E.g. $\sin^2 A + \cos^2 A = 1$, whatever be the value of 11. $\sin \theta = \tan \theta$ is true whatever value θ may have.

We shall now consider expressions which are true only for certain values of the angle.

E.g. $\sin \theta = \frac{\sqrt{2}}{2}$ is an equation satisfied by 45° and 135°, and by no other positive angles less than 360°.

The former expressions are called Trigonometric Identities.

The latter expressions are called **Trigonometric Equations**.

The solution of a trigonometric equation is the process of finding an angle which, if substituted in the equation, satisfies it.

	74. EXAMPLE 1. Solve the equation	
	$\sin\theta - \csc\theta + \frac{3}{2} = 0.$	
	Substitute in the equation $\csc \theta = \frac{1}{\sin \theta}$.	
	Then $2\sin^2\theta + 3\sin\theta - 2 = 0$,	
or	$(\sin\theta + 2)(2\sin\theta - 1) = 0.$	
	$\therefore \sin \theta = -2,$	(1)
	$\sin\theta = \frac{1}{2}.$	(2)
	No angle satisfies (1). [Example 13, XV., (b) .]	
	I. Let us suppose that $\theta < 180^{\circ}$.	
	Then from (2) $\theta = 30^{\circ}$,	(Art. 41.)
or,	$\theta = 150^{\circ}$.	(Art. 58, Cor.)
	II. Suppose θ is unrestricted in magnitude.	
	Then $\theta = 30^{\circ}, \ 2 \ \pi + 30^{\circ}, \ 390^{\circ}, \ \cdots \ 2 \ n \ \pi + 30^{\circ};$	(Art. 58, Cor.)
or,	$\theta = 150^{\circ}, \ 2 \ \pi + 150^{\circ} \cdots 2 \ n \ \pi + 150^{\circ},$	
or,	in a single statement,	
	$\theta = 2 n\pi + 30^{\circ}$, or $(2 n + 1) \pi - 30^{\circ}$.	
	50	

Another series of angles will satisfy equation (2),

 -330° , *i.e.* $-2\pi + 30^{\circ}$, and in general $-2n\pi + 30^{\circ}$. viz. (Art. 58.) -210° , *i.e.* $-\pi - 30^{\circ}$, and in general $-(2n + 1)\pi - 30^{\circ}$, (Art. 58.) and *n* being a *positive* integer.

Another statement combines the results of II. thus,

$$\theta = 2 n\pi + 30^{\circ},$$

$$\theta = (2 n + 1) \pi - 30^{\circ},$$

or

n being any integer, positive or negative, or zero.

EXAMPLE 2. What positive angles satisfy the equation

$$\sqrt{2}\cos\theta = \cot\theta?$$
$$\cot\theta = \frac{\cos\theta}{\sin\theta}.$$

 $\sqrt{2}\cos\theta - \frac{\cos\theta}{\cos\theta} = 0.$

Then

Substitute

$$\sin \theta$$

$$\cos \theta \left(\sqrt{2} - \frac{1}{\sin \theta} \right) = 0.$$

$$\therefore \cos \theta = 0,$$

$$\sin \theta = \frac{1}{\sqrt{2}}.$$
(1)

From (1)
$$\theta = \frac{\pi}{2}$$
 or $\frac{3\pi}{2}$, $2\pi + \frac{\pi}{2}$, $3\pi + \frac{\pi}{2}$, and in general $n\pi + \frac{\pi}{2}$.

From (2)
$$\theta = 2n\pi + \frac{\pi}{4}$$
 or $(2n+1)\pi - \frac{\pi}{4}$

n being a *positive* integer or zero.

EXAMPLES. XVI.

Find all positive angles not greater than 360° satisfying the equations :

1.	$\sin\theta = \frac{1}{\sqrt{2}}.$	9.	$2\cos\theta = \sqrt{3}\cot\theta.$
	$\sqrt{2}$	10.	$\tan \theta = 3 \cot \theta.$
2.	$4\sin\theta = \csc\theta.$	11.	$\tan\theta + \cot\theta = 2.$
3.	$2\cos\theta = \sec\theta.$		$2\sin^2\theta + \sqrt{2}\cos\theta = 2.$
4.	$4\sin\theta - 3\csc\theta = 0.$	13.	$2\cos^2\theta + \sqrt{2}\sin\theta = 2.$
5.	$4\cos\theta - 3\sec\theta = 0.$	14.	$3\tan^2\theta - 4\sin^2\theta = 1.$
6.	$3\tan\theta = \cot\theta.$	15.	$2\sin^2\theta + \sqrt{2}\sin\theta = 2.$
7.	$3\sin\theta - 2\cos^2\theta = 0.$		$\cos^2\theta - \sqrt{3}\cos\theta + \frac{3}{4} = 0.$
8.	$\sqrt{2}\sin\theta = \tan\theta.$	17.	$\cos^2\theta + 2\sin^2\theta - \frac{5}{2}\sin\theta = 0.$

Find all angles, either positive or negative, whose magnitude is not greater than 360°, which satisfy the following equations:

18.
$$5 \tan^2 \theta - \sec^2 \theta = 11.$$

$$\sec^2 \theta = 11.$$
 19. $\frac{\sin(180^\circ - \theta)}{2} + \tan \theta = 0$

Find all angles that satisfy the following equations: **21.** $\sqrt{3}\sin\theta + 2\cos^2\theta = 2$ **20.** $\tan^2 \theta = 1$.

22.
$$2\sin\theta\cos\theta = 1$$

51

CHAPTER X

ON THE TRIGONOMETRICAL RATIOS OF TWO OR MORE ANGLES

75. We will now establish the following fundamental formulæ:

$$\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B$$

$$\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B$$

$$\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B$$

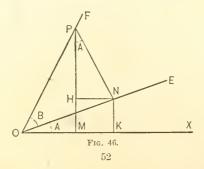
$$\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B$$
(i.)

Here A and B are angles; so that (A + B) and (A - B) are also angles.

Hence, $\sin (A + B)$ is the sine of an angle, and must not be confounded with $\sin A + \sin B$.

Sin(A + B) is a single fraction.

Sin $A + \sin B$ is the sum of two fractions.


The student should notice that the words of the two proofs of Arts. 76, 77 are very nearly the same.

76. To prove that

 $\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B,$ $\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B.$

and that

and the first with

Let XOE be the angle A, and EOF the angle B, then XOF is the angle (A + B).

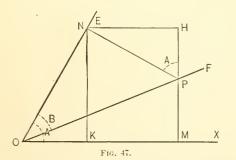
In OF, the line which is one of the sides of the angle (A + B), take any point P, and from P draw PM and PN at right angles to OX and OE respectively. Draw NH and NK at right angles to MP and OX respectively. Then the angle

$$HPN = 90^{\circ} - PNH = HNO = XOE = A^{1}$$

Now $\sin(A+B) = \sin XOF = \frac{MP}{OP} = \frac{MH+HP}{OP} = \frac{KN}{OP} + \frac{HP}{OP}$

$$=\frac{KN\cdot ON}{ON\cdot OP} + \frac{HP\cdot NP}{NP\cdot OP} = \frac{KN^{-}}{ON} \cdot \frac{ON}{OP} + \frac{HP}{NP} \cdot \frac{NP}{OP}$$

 $= \sin XOE \cdot \cos EOF + \cos HPN \cdot \sin EOF$


 $= \sin A \cdot \cos B + \cos A \cdot \sin B.$

Also,
$$\cos (A + B) = \cos XOF = \frac{OM}{OP} = \frac{OK - MK}{OP} = \frac{OK}{OP} - \frac{HN}{OP}$$

= $\frac{OK \cdot ON}{ON \cdot OP} - \frac{HN \cdot NP}{NP \cdot OP} = \frac{OK}{ON} \cdot \frac{ON}{OP} - \frac{HN}{NP} \cdot \frac{NP}{OP}$
= $\cos XOE \cdot \cos EOF - \sin HPN \cdot \sin EOF$
= $\cos A \cdot \cos B - \sin A \cdot \sin B$.

· 77. To prove that

$$\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B,$$

$$\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B.$$

and that

¹ Or thus. On OP as diameter, describe a circle. This will pass through M and N, because the angles OMP and ONP are right angles; therefore MPN and MON are angles in the same segment; so that the augle MPN=MON=A.

Let XOE be the angle A, and FOE the angle B. Then in the figure, XOF is the angle (A - B).

In OF, the line which bounds the compound angle (A - B), take any point P, and from P draw PM, PN at right angles to ON and OE respectively. Draw NH, NK at right angles to MP and OX respectively. Then the angle

$$NPH = 90^{\circ} - HNP = HNE = XOE = A^{1}$$

Now $\sin(A - B) = \sin XOF = \frac{MP}{OP} = \frac{MH - PH}{OP} = \frac{KN}{OP} - \frac{PH}{OP}$ $= \frac{KN \cdot ON}{ON \cdot OP} - \frac{PH \cdot NP}{NP \cdot OP} = \frac{KN}{ON} \cdot \frac{ON}{OP} - \frac{PH}{NP} \cdot \frac{NP}{OP}$ $= \sin XOE \cdot \cos FOE - \cos HPN \cdot \sin FOE$ $= \sin A \cdot \cos B - \cos A \cdot \sin B.$

Also, $\cos(A - B) = \cos XOF = \frac{OM}{OP} = \frac{OK + KM}{OP} = \frac{OK}{OP} + \frac{NH}{OP}$

$$=\frac{OK \cdot ON}{ON \cdot OP} + \frac{NH \cdot NP}{NP \cdot OP} = \frac{OK}{ON} \cdot \frac{ON}{OP} + \frac{NH}{NP} \cdot \frac{NP}{OP}$$

$$= \cos XOE \cdot \cos FOE + \sin HPN \cdot \sin FOE$$

 $= \cos A \cdot \cos B + \sin A \cdot \sin B.$

EXAMPLE. Find the value of sin 75°.

$$\sin 75^\circ = \sin (45^\circ + 30^\circ)$$

$$= \sin 45^\circ \cdot \cos 30^\circ + \cos 45^\circ \cdot \sin 30^\circ$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$$

$$= \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{\sqrt{2}(\sqrt{3} + 1)}{4} \cdot$$

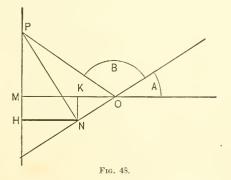
EXAMPLES. XVII.

1. Show that $\cos 75^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}$. 2. Show that $\sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}$. 3. Show that $\cos 15^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$. 4. Show that $\tan 75^\circ = 2 + \sqrt{3}$.

¹ Or thus. On *OP* as diameter, describe a circle. This will pass through M and N, because the angles *OMP* and *ONP* are right angles; therefore the angles *MPN* and *MON* together make up two right angles, so that the angle HPN = MON = A.

5. If $\sin A = \frac{4}{5}$ and $\sin B = \frac{3}{5}$, find a value for $\sin (A + B)$ and for $\cos (A - B)$.

6. If $\sin A = .6$ and $\sin B = \frac{5}{13}$, find a value for $\sin (A + B)$ and for $\cos (A + B)$.


7. When $\sin A = \frac{1}{\sqrt{5}}$ and $\sin B = \frac{1}{\sqrt{10}}$, then one value of (A + B) is 45°. 8. Prove that $\sin 75^\circ = .9659 \dots$.

9. Prove that $\sin 15^\circ = .2588 \dots$

10. Prove that $\tan 15^\circ = .2679 \dots$.

11. Calculate $\sin 90^{\circ}$ and $\cos 90^{\circ}$, using the ratios of 45° .

*78. The proofs given in Arts. 76 and 77 are really, at least so far as the figures are concerned, rigorous only in case $(A + B) < 90^{\circ}$, and hence A and B are each less than 90°. By a careful regard as to sign of angles and lines, however, the wording will hold for angles of any magnitude. The student may satisfy himself that this is true by constructing suitable figures. The accompanying figure will serve in case $A + B < 180^{\circ}$ and $A < 90^{\circ}$, $B > 90^{\circ}$.

* 79. In order, however, to remove the restrictions as to magnitude, placed on \mathcal{A} and B, we shall pursue the following course:

Suppose $180^\circ > A > 90^\circ$ and $B < 90^\circ$.

Put

or

 $A = 90^{\circ} + A';$ then $A' < 90^{\circ}.$

$$\frac{\sin(A + B)}{\sin[90^\circ + (A' + B')]} = \sin[90^\circ + (A' + B)], \text{ (Art. 64.)}$$
$$\frac{\sin[90^\circ + (A' + B')]}{\sin[90^\circ + (A' + B')]} = \cos(A' + B). \text{ (Art. 62.)}$$

 \square and *B* are each less than 90°. We may therefore write,

$$\cos (A' + B) = \cos A' \cos B - \sin A' \sin B; \quad (Art. 76.)$$
$$\cos (A - 90^\circ + B)$$

 $= \cos (A - 90^{\circ}) \cos B - \sin (A - 90^{\circ}) \sin B;$

since $\cos(A - 90^\circ + B) = \cos[90^\circ - (A + B)]$ (Art. 58 Cor.)

$$= \sin \left(A + B \right); \qquad (Art. 61.)$$

(Art. 61.)

and since
$$\sin(A - 90^\circ) = -\sin(90^\circ - A)$$
 (Art. 58.)

 $= -\cos 1$,

we may write,

$$\sin\left(A+B\right) = \sin A \cos B + \cos A \sin B$$

By a repetition of this process \varDelta may become an angle of any quadrant, and it is evident the reasoning and wording remain just as above; so that the *magnitude of* \varDelta is unrestricted.

$$\therefore \sin (A + B) = \sin A \cos B + \cos A \sin B, \qquad (i.)$$

whatever be the magnitude of A, provided $B < 90^{\circ}$.

There remains yet to inquire what happens if A and B are both greater than 90°.

Suppose $180^\circ > B > 90^\circ$.

Put

$$B = 90^{\circ} + B';$$
 then $B' < 90^{\circ};$

$$\sin(A + B) = \sin(90^\circ + A + B') = \cos(A + B').$$

We can now apply (i.), whence

$$\sin (A + B) = \cos A \cos B' - \sin A \sin B'$$
$$= \cos A \sin B + \sin A \cos B.$$

Equation (1) is therefore true if $B > 90^{\circ}$ but $< 180^{\circ}$. As before we need only repeat the process in order to remove all restrictions as to the magnitude of B. Hence we conclude that whatever the values of A and B,

$$\sin\left(A+B\right) = \sin A \cos B + \sin B \cos A.$$

By a similar process, the three kindred formulæ may be shown to be true for all angles.

NOTE. See Nixon's Elementary Trigonometry, Sec. 18.

For an elegant proof of this theorem by the method of projections, see Hobson's *Plane Trigonometry*, Sec. 40.

80. It is important that the student should become thoroughly familiar with the formulæ of Art. 75, and that he should be able to work examples involving their use.

EXAMPLES. XVIII.

Prove the following statements :

1. $\sin (A + B) + \sin (A - B) = 2 \sin A \cdot \cos B$, 2. $\sin(A + B) - \sin(A - B) = 2\cos A \cdot \sin B$. **3.** $\cos(A + B) + \cos(A - B) = 2\cos A \cdot \cos B$. 4. $\cos(A - B) - \cos(A + B) = 2\sin A \cdot \sin B$. 5. $\frac{\sin(A+B) + \sin(A-B)}{\cos(A+B) + \cos(A-B)} = \tan A.$ 6. $\tan \alpha + \tan \beta = \frac{\sin (\alpha + \beta)}{\cos \alpha \cdot \cos \beta}$. 13. $\frac{\tan\theta + \cot\phi}{\cot\phi - \tan\theta} = \cos(\theta - \phi) \cdot \sec(\theta + \phi).$ 14. $\frac{\cot \theta + \cot \phi}{\cot \theta - \cot \phi} = -\frac{\sin (\theta + \phi)}{\sin (\theta - \phi)}$ 7. $\tan \alpha - \tan \beta = \frac{\sin (\alpha - \beta)}{\cos \alpha \cdot \cos \beta}$ 8. $\cot a + \tan \beta = \frac{\cos (a - \beta)}{\sin a \cdot \cos \beta}$ 15. $\frac{\tan\theta\cdot\cot\phi+1}{\tan\theta\cdot\cot\phi-1} = \frac{\sin(\theta+\phi)}{\sin(\theta-\phi)}$ 9. $\cot \alpha - \tan \beta = \frac{\cos (\alpha + \beta)}{\sin \alpha \cdot \cos \beta}$ 16. $\frac{1 + \cot \gamma \cdot \tan \delta}{\cot \gamma - \tan \delta} = \tan (\gamma + \delta).$ 10. $\tan \alpha + \cot \beta = \frac{\cos (\alpha - \beta)}{\cos \alpha \cdot \sin \beta}$ 17. $\frac{1 - \cot \gamma \cdot \tan \delta}{\cot \gamma + \tan \delta} = \tan (\gamma - \delta).$ 18. $\frac{\tan \gamma \cdot \cot \delta - 1}{\tan \gamma + \cot \delta} = \tan (\gamma - \delta).$ $\frac{\tan\theta + \tan\phi}{\tan\theta - \tan\phi} = \frac{\sin(\theta + \phi)}{\sin(\theta - \phi)}$ 11. 19. $\frac{\tan \gamma \cdot \cot \delta + 1}{\cot \delta - \tan \gamma} = \tan (\gamma + \delta).$ $\tan\theta\cdot\tan\phi+1 = \cos\left(\theta-\phi\right).$ 12. $1 - \tan \theta \cdot \tan \phi = \cos (\theta + \phi)$ 20. $\frac{\cot \delta - \cot \gamma}{\cot \gamma \cdot \cot \delta + 1} = \tan (\gamma - \delta).$ **21.** $\tan^2 \alpha - \tan^2 \beta = \frac{\sin(\alpha + \beta) \cdot \sin(\alpha - \beta)}{\cos^2 \alpha \cdot \cos^2 \beta}$. **22.** $\cot^2 a - \tan^2 \beta = \frac{\cos (a + \beta) \cdot \cos (a - \beta)}{\sin^2 a \cdot \cos^2 \beta}$. 23. $\frac{\tan^2 \alpha - \tan^2 \beta}{1 - \tan^2 \alpha \cdot \tan^2 \beta} = \tan (\alpha + \beta) \cdot \tan (\alpha - \beta).$ 24. $\sin(\alpha + \beta) \cdot \sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta = \cos^2 \beta - \cos^2 \alpha$. 25. $\cos(\alpha + \beta) \cdot \cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta = \cos^2 \beta - \sin^2 \alpha$. **26.** $\sin (A - 45^\circ) = \frac{\sin A - \cos A}{\sqrt{2}}$. 27. $\sqrt{2} \cdot \sin(A + 45^\circ) = \sin A + \cos A$. **28.** $\cos A - \sin A = \sqrt{2} \cdot \cos (A + 45^{\circ}).$ **29.** $\cos(A + 45^\circ) + \sin(A - 45^\circ) = 0.$ **30.** $\cos(A - 45^{\circ}) = \sin(A + 45^{\circ}).$ **31.** $\sin(\theta + \phi) \cdot \cos \theta - \cos(\theta + \phi) \cdot \sin \theta = \sin \phi$. **32.** $\sin(\theta - \phi) \cdot \cos \phi + \cos(\theta - \phi) \cdot \sin \phi = \sin \theta$. **33.** $\cos(\theta + \phi) \cdot \cos\theta + \sin(\theta + \phi) \cdot \sin\theta = \cos\phi$. $\frac{\tan\left(\theta-\phi\right)+\tan\phi}{1-\tan\left(\theta-\phi\right)\cdot\tan\phi}=\tan\theta.$ 34.

$$35. \quad \frac{\tan (\theta + \phi) - \tan \theta}{1 + \tan (\theta + \phi) \cdot \tan \theta} = \tan \phi.$$

$$36. \quad 2\sin \left(a + \frac{\pi}{4}\right) \cdot \cos \left(\beta - \frac{\pi}{4}\right) = \cos \left(a - \beta\right) + \sin \left(a + \beta\right).$$

$$37. \quad 2\sin \left(\frac{\pi}{4} - a\right) \cdot \cos \left(\frac{\pi}{4} + \beta\right) = \cos \left(a - \beta\right) - \sin \left(a + \beta\right).$$

$$38. \quad \cos \left(a + \beta\right) + \sin \left(a - \beta\right) = 2\sin \left(\frac{\pi}{4} + a\right) \cdot \cos \left(\frac{\pi}{4} + \beta\right).$$

$$39. \quad \cos \left(a + \beta\right) - \sin \left(a - \beta\right) = 2\sin \left(\frac{\pi}{4} - a\right) \cdot \cos \left(\frac{\pi}{4} - \beta\right).$$

$$40. \quad \sin nA \cdot \cos A + \cos nA \cdot \sin A = \sin (n + 1) A.$$

$$41. \quad \cos (n - 1) A \cdot \cos A - \sin (n - 1) A \cdot \sin A = \cos nA.$$

$$- 42. \quad \sin nA \cdot \cos (n - 1) A - \cos nA \cdot \sin (n - 1) A = \sin A.$$

$$43. \quad \cos (n - 1) A \cdot \cos (n + 1) A - \sin (n - 1) A + \sin (n + 1) A = \cos 2 nA.$$

$$44. \quad (\cos A + \sin A) (\cos B + \sin B) = \cos (A - B) + \sin (A + B).$$

81. The following formulæ are important:

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B};$$

$$\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}.$$

(ii.)

The proof of the first is given below. The student may prove the second in a similar manner. Or, since these formulae are true for all values of A and B, we may substitute -B, for B; the formula now becomes $\tan(A-B) = \frac{\tan A + \tan(-B)}{1 - \tan A \tan(-B)} = \frac{\tan A - \tan B}{1 + \tan A \tan B}$.

EXAMPLE. To prove $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$

(i.) By using the results of Arts. 76, 77, we have

$$\tan \left(A+B\right) = \frac{\sin \left(A+B\right)}{\cos \left(A+B\right)} = \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B - \sin A \cdot \sin B}.$$

Divide the numerator and the denominator of this fraction each by $\cos A \cdot \cos B$, and we get

$$\tan (A+B) = \frac{\frac{\sin A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}}{\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} - \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}} = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}.$$
 Q.E.D.

EXAMPLES. XIX.

- 1. If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{4}$, prove that $\tan(A+B) = \frac{6}{2}$, and $\tan(A-B) = \frac{2}{9}$.
- 2. If $\tan A = 1$ and $\tan B = \frac{1}{\sqrt{3}}$, prove that $\tan (A + B) = 2 + \sqrt{3}$.
- 3. Prove that $\tan 15^\circ = 2 \sqrt{3}$.

4. If $\tan A = \frac{5}{6}$ and $\tan B = \frac{1}{11}$, prove that $\tan (A + B) = 1$. What is (A + B) in this case ?

5. If $\tan A = m$ and $\tan B = \frac{1}{m}$, prove that $\tan (A + B) = \infty$. What is (A + B) in this case ?

Prove the following statements :

6.
$$\cot(A+B) = \frac{\cot A \cdot \cot B - 1}{\cot A + \cot B}$$

9. $\frac{\cot \theta - 1}{\cot \theta + 1} = \cot\left(\theta + \frac{\pi}{4}\right)$
7. $\cot(A-B) = \frac{\cot A \cdot \cot B + 1}{\cot B - \cot A}$
10. $\tan\left(\theta - \frac{\pi}{4}\right) + \cot\left(\theta + \frac{\pi}{4}\right) = 0$
8. $\cot\left(\theta - \frac{\pi}{4}\right) = \frac{\cot \theta + 1}{1 - \cot \theta}$
11. $\cot\left(\theta - \frac{\pi}{4}\right) + \tan\left(\theta + \frac{\pi}{4}\right) = 0$

12. If $\tan a = \frac{m}{m+1}$ and $\tan \beta = \frac{1}{2m+1}$, prove that $\tan (a + \beta) = 1$.

13.
$$\frac{\tan(n+1)\phi - \tan n\phi}{1 + \tan(n+1)\phi \cdot \tan n\phi} = \tan\phi.$$

14.
$$\frac{\tan(n+1)\phi + \tan(1-n)\phi}{1-\tan(n+1)\phi \cdot \tan(1-n)\phi} = \tan 2\phi.$$

15. If $\tan \alpha = m$ and $\tan \beta = n$, prove that

$$\cos(a + \beta) = \frac{1 - mn}{\sqrt{(1 + m^2)(1 + n^2)}}$$

16. If $\tan a = (a + 1)$ and $\tan \beta = (a - 1)$, then $2 \cot (a - \beta) = a^2$.

17. If $\alpha + \beta + \gamma = 90^{\circ}$, then $\tan \gamma = \frac{1 - \tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$.

82. From Art. 75 we have

$$\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B;$$

$$\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B;$$

$$\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B;$$

$$\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B.$$

(i.)

From these by addition and subtraction we get

$$\sin (A + B) + \sin (A - B) = 2 \sin A \cdot \cos B;$$

$$\sin (A + B) - \sin (A - B) = 2 \cos A \cdot \sin B;$$

$$\cos (A + B) + \cos (A - B) = 2 \cos A \cdot \cos B;$$

$$\cos (A - B) - \cos (A + B) = 2 \sin A \cdot \sin B.$$
(ii.)

Now put S for (A + B), and put T for (A - B):

Then
$$S + T = 2A$$
, and $S - T = 2B$,

so that

$$A = \frac{S+T}{2}$$
, and $B = \frac{S-T}{2}$.

Hence the above results may be written

$$\sin S + \sin T = 2\sin \frac{S+T}{2} \cdot \cos \frac{S-T}{2};$$

$$\sin S - \sin T = 2\cos \frac{S+T}{2} \cdot \sin \frac{S-T}{2};$$

$$\cos S + \cos T = 2\cos \frac{S+T}{2} \cdot \cos \frac{S-T}{2};$$

$$\cos T - \cos S = 2\sin \frac{S+T}{2} \cdot \sin \frac{S-T}{2}.$$

(iii.)

83. The formulæ (iii.) are most important, and the student is recommended to get thoroughly familiar with them in *words*, as follows:

(1) The sum of the sines of two angles equals twice the sine of half their sum multiplied by the cosine of half their difference.

(2) The difference of the sines of two angles equals twice the cosine of half their sum multiplied by the sine of half their difference.

(3) The sum of the cosines of two angles equals twice the cosine of half their sum multiplied by the cosine of half their difference.

(4) The difference of the cosines² of two angles equals twice the sine of half their sum multiplied by the sine of half their difference.

84. It will be convenient to refer to the formulæ (i.) as the 'A, B' formulæ, and to the formulæ (iii.) as the 'S, T' formulæ.

EXAMPLES. XX.

Prove the following statements:

1. $\sin 60^{\circ} + \sin 30^{\circ} = 2 \sin 45^{\circ} \cdot \cos 15^{\circ}$. 2. $\sin 60^{\circ} + \sin 20^{\circ} = 2 \sin 40^{\circ} \cdot \cos 20^{\circ}$. 3. $\sin 40^{\circ} - \sin 10^{\circ} = 2 \cos 25^{\circ} \cdot \sin 15^{\circ}$. 4. $\cos \frac{\pi}{3} + \cos \frac{\pi}{2} = 2 \cos \frac{5\pi}{12} \cdot \cos \frac{\pi}{12}$. 5. $\cos \frac{\pi}{3} - \cos \frac{\pi}{2} = 2 \sin \frac{5\pi}{12} \cdot \sin \frac{\pi}{12}$. 6. $\sin 3A + \sin 5A = 2 \sin 4A \cdot \cos A$. 7. $\sin 7A - \sin 5A = 2 \cos 6A \cdot \sin A$. 8. $\cos 5A + \cos 9A = 2 \cos 7A \cdot \cos 2A$.

¹ If A and B are each less than 90° , then S, which is their sum, is greater than T, their difference. Therefore if S be less than 90° , $\cos S$ is less than $\cos T$; so that $\cos T - \cos S$ is positive.

 2 The difference of the cosines of two angles is the cosine of the smaller angle – the cosine of the greater angle.

9.
$$\cos 5A - \cos 4A = -2 \sin \frac{9A}{2} \cdot \sin \frac{A}{2}$$
.
10. $\cos A - \cos 2A = 2 \sin \frac{3A}{2} \cdot \sin \frac{A}{2}$.
11. $\frac{\sin 2\theta + \sin \theta}{\cos \theta + \cos 2\theta} = \tan \frac{3\theta}{2}$.
13. $\frac{\sin 3\theta + \sin 2\theta}{\cos 2\theta - \cos 3\theta} = \cot \frac{\theta}{2}$.
14. $\frac{\sin \theta + \sin \phi}{\cos \theta - \cos \phi} = \frac{\cos \theta + \cos \phi}{\sin \phi - \sin \theta}$.
15. $\cos (60^\circ + A) + \cos (60^\circ - A) = \cos A$.
16. $\cos (45^\circ + A) + \cos (45^\circ - A) = \sqrt{2} \cdot \cos A$.
17. $\sin (45^\circ + A) - \sin (45^\circ - A) = \sqrt{2} \cdot \sin A$.
18. $\cos (30^\circ - A) - \cos (30^\circ + A) = \sin A$.
19. $\frac{\sin \theta - \sin \phi}{\cos \phi - \cos \theta} = \cot \frac{\theta + \phi}{2}$.
20. $\frac{\sin \theta - \sin \phi}{\sin \theta + \sin \phi} = \cot \left(\frac{\theta + \phi}{2}\right) \cdot \tan \left(\frac{\theta - \phi}{2}\right)$.

85. It is important that the student should be thoroughly familiar with the second set of formulæ on Art. 82.

Written as follows, they may be regarded as the inverse of the 'S, T' formulæ.

$$2 \sin A \cdot \cos B = \sin (A + B) + \sin (A - B);$$

$$2 \cos A \cdot \sin B = \sin (A + B) - \sin (A - B);$$

$$2 \cos A \cdot \cos B = \cos (A + B) + \cos (A - B);$$

$$2 \sin A \cdot \sin B = \cos (A - B) - \cos (A + B).$$

(iv.)

EXAMPLES. XXI.

Express as the sum or as the difference of two trigonometrical ratios the ten following expressions :

- 1. $2 \sin \theta \cdot \cos \phi$. 2. $2 \cos a \cdot \cos \beta$. 3. $2 \sin 2 a \cdot \cos \beta$. 4. $2 \cos (a + \beta) \cdot \cos (a - \beta)$. 5. $2 \sin 3 \theta \cdot \cos 5 \theta$. 10. $\cos 4 \theta \cdot \sin \theta$. 12. Simplify $\sin \frac{5}{2} \cdot \cos \frac{2}{2} - \sin \frac{9}{2} \cdot \cos \frac{3}{2}$. 13. Simplify $\sin 3 \theta + \sin 2 \theta + 2 \sin \frac{3}{2} \cdot \cos \frac{9}{2}$.
- **14.** Prove that $\sin \frac{11\theta}{4} \cdot \sin \frac{\theta}{4} + \sin \frac{7\theta}{4} \cdot \sin \frac{3\theta}{4} = \sin 2\theta \cdot \sin \theta$.

*86. Since A and B are any angles, we may substitute for A, $\alpha + \beta$, and for B, γ ; then

$$\sin (A + B) = \sin (\alpha + \beta + \gamma)$$

= $\sin (\alpha + \beta) \cos \gamma + \cos (\alpha + \beta) \sin \gamma$
= $(\sin \alpha \cos \beta + \cos \alpha \sin \beta) \cos \gamma$
+ $(\cos \alpha \cos \beta - \sin \alpha \sin \beta) \sin \gamma$.
$$\therefore \sin (\alpha + \beta + \gamma) = \sin \alpha \cos \beta \cos \gamma + \sin \beta \cos \alpha \cos \gamma$$

+ $\cos \alpha \cos \beta \sin \gamma - \sin \alpha \sin \beta \sin \gamma$. (1)

It is evident that these formulæ may be extended in this way to include any number of angles that we choose.

EXAMPLES. XXII.

Find the expressions similar to (1) for

1.	$\cos(\alpha + \beta + \gamma).$	3. $\cos(\alpha + \beta - \gamma)$.
2.	$\sin\left(\alpha+\beta-\gamma\right).$	4. $\sin(\alpha \pm \beta \pm \gamma)$.

*87. The formulæ of Arts. 86 and 75 are called the addition formulæ of the Trigonometric functions.

CHAPTER XI

ON THE TRIGONOMETRICAL RATIOS OF MULTIPLE ANGLES AND SUBMULTIPLE ANGLES

88. To express the trigonometrical ratios of the angle 2 A in terms of those of the angle A.

Since
$$\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B$$
;
 $\therefore \sin (A + A) = \sin A \cdot \cos A + \cos A \cdot \sin A$;
 $\therefore \sin 2A = 2 \sin A \cdot \cos A$. (1)
Also, since $\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B$;
 $\therefore \cos (A + A) = \cos A \cdot \cos A - \sin A \cdot \sin A$;
 $\therefore \cos 2A = \cos^2 A - \sin^2 A$. (2)
But $1 = \cos^2 A + \sin^2 A$;
 $\therefore 1 + \cos 2A = 2\cos^2 A$,
and $1 - \cos 2A = 2\sin^2 A$.
The last two results are usually written
 $\cos 2A = 2\cos^2 A - 1$, (3)
and $\cos 2A = 1 - 2\sin^2 A$. (4)
Again, $\tan (A + B) = \frac{\tan A + \tan B}{2}$;

 $1 - \tan A \cdot \tan B^2$

$$\therefore \tan (A + A) = \frac{\tan A + \tan A}{1 - \tan A \cdot \tan A};$$

$$\therefore \tan 2A = \frac{2 \tan A}{1 - \tan^2 A}.$$

$$_{63}$$
(5)

TRIGONOMETRY FOR BEGINNERS

89. These five formulæ are very important,

- $\sin 2 \mathbf{A} = 2 \sin \mathbf{A} \cdot \cos \mathbf{A}; \tag{1}$ $\cos 2 \mathbf{A} = \cos^2 \mathbf{A} \sin^2 \mathbf{A}; \tag{2}$
- $\begin{array}{c} \cos 2 \, A = \cos^2 A \sin^2 A ; \\ \cos 2 \, A = 2 \cos^2 A 1 ; \end{array}$ (2)
 (3)
- $\cos 2A = 1 2\sin^2 4$ (1)

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}.$$
 (5)

90. The following result is important,

$$\frac{\sin 2A}{1+\cos 2A} = \frac{2\sin A \cdot \cos A}{2\cos^2 A} = \tan A.$$

91. SUBMULTIPLE ANGLES. In formulæ (v.) the angle A is any angle. Hence we may write $A = \frac{a}{5}$.

The formulæ (v.) now become

$$\sin \alpha = 2 \sin \frac{\alpha}{2} \cdot \cos \frac{\alpha}{2};$$

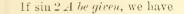
$$\cos \alpha = \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2};$$

$$\cos \alpha = 2 \cos^2 \frac{\alpha}{2} - 1;$$

$$\cos \alpha = 1 - 2 \sin^2 \frac{\alpha}{2};$$

$$\tan \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}.$$

*92. An examination of formulæ (v.) shows that if $\sin A$ or $\cos A$ be given, $\cos 2A$ is uniquely determined. The converse is not true; *i.e.* if $\cos 2A$ is given, $\sin A$ and $\cos A$ have a sign **ambiguity**.


We have

$$\cos^{2} A = \frac{\cos 2 A + 1}{2}$$

$$\therefore \cos A = \pm \sqrt{\frac{\cos 2 A + 1}{2}}$$
Similarly,

$$\sin A = \pm \sqrt{\frac{1 - \cos 2 A}{2}};$$

$$\tan A = \pm \sqrt{\frac{1 - \cos 2 A}{1 + \cos 2 A}}.$$

$$\sin 2.4 + 1 = 2\sin 4 \cos 4 + \sin^2 4 + \sin^2 4.$$

65

Since

whence

$$\sin^2 A + \cos^2 A = 1,$$

$$\therefore \pm \sqrt{\sin 2A} + 1 = \cos A + \sin A.$$

Similarly, $\pm \sqrt{1 - \sin 2A} = \sin A - \cos A$,

$$2\sin A = \pm \sqrt{\sin 2A} + 1 \pm \sqrt{1 - \sin 2A}$$

This presents a fourfold sign ambiguity.

Similar remarks apply with equal force to the submultiple angles.

EXAMPLES. XXIII.

Prove the following identities:

1. $2 \csc 2 A = \sec A \cdot \csc A$. 17. $\frac{\sin\beta}{1-\cos\beta} = \cot\frac{\beta}{2}$. 2. $\frac{\operatorname{cosec}^2 A}{\operatorname{cosec}^2 A - 2} = \sec 2 A.$ $18. \quad \frac{1-\cos\beta}{1+\cos\beta} = \tan^2\frac{\beta}{2}.$ 3. $\frac{2 - \sec^2 A}{\sec^2 A} = \cos 2 A$. 19. $\frac{1 + \sec \beta}{\sec \beta} = 2\cos^2 \frac{\beta}{2}.$ 4. $\cos^2 A (1 - \tan^2 A) = \cos 2 A$. 5. $\cot 2A = \frac{\cot^2 A - 1}{2 \cot A}$. **20.** $\operatorname{cosec} \beta - \cot \beta = \tan \frac{\beta}{2}$. **21.** $\frac{\cos 2x}{1 + \sin 2x} = \frac{1 - \tan x}{1 + \tan x}$ $6. \quad \frac{2 \tan B}{1 + \tan^2 B} = \sin 2 B.$ 22. $\frac{\cos x}{1-\sin x} = \frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}$ 7. $\tan B + \cot B = 2 \operatorname{cosec} 2 B$. $\frac{1-\tan^2 B}{1+\tan^2 B} = \cos 2 B.$ 8. 9. $\cot B - \tan B = 2 \cot 2 B$. **23.** $\frac{1}{1+\sin x} = \frac{\cot \frac{x}{2}-1}{\cot \frac{x}{2}+1}$ 10. $\frac{\cot^2 B + 1}{\cot^2 B - 1} = \sec 2 B.$ 11. $\left(\sin\frac{\theta}{2} + \cos\frac{\theta}{2}\right)^2 = 1 + \sin\theta.$ 24. $\frac{\cos x}{1-\sin x} = \frac{\cot \frac{x}{2}+1}{\cot \frac{x}{2}-1}$ 12. $\left(\sin\frac{\theta}{2} - \cos\frac{\theta}{2}\right)^2 = 1 - \sin\theta.$ 13. $\cos^2\frac{\theta}{2}\left(1+\tan\frac{\theta}{2}\right)^2=1+\sin\theta.$ 25. $\frac{1+\sin x + \cos x}{1+\sin x - \cos x} = \cot \frac{x}{2}$ 14. $\sin^2\frac{\theta}{2}\left(\cot\frac{\theta}{2}-1\right)^2 = 1 - \sin\theta.$ $26. \quad \frac{\cos^3 \alpha + \sin^3 \alpha}{\cos^2 \alpha} = \frac{2 - \sin 2 \alpha}{2}.$ $\cos \alpha + \sin \alpha$ 15. $\left(\frac{\tan\frac{\theta}{2}+1}{\tan\frac{\theta}{2}-1}\right)^2 = \frac{1+\sin\theta}{1-\sin\theta}$ $\mathbf{27.} \quad \frac{\cos^3 \alpha - \sin^3 \alpha}{\cos \alpha - \sin \alpha} = \frac{2 + \sin 2 \alpha}{2}.$ 28. $\cos^4 \alpha - \sin^4 \alpha = \cos 2 \alpha$. 16. $\frac{\sin\beta}{1+\cos\beta} = \tan\frac{\beta}{2}$. 29. $\cos^6 a + \sin^6 a = \frac{1 + 3\cos^2 2 a}{4}$.

TRIGONOMETRY FOR BEGINNERS

30.
$$\cos^{6} \alpha - \sin^{6} \alpha = \frac{(3 + \cos^{2} 2\alpha)\cos 2\alpha}{4}$$
.
34. $\frac{\sin 5\beta}{\sin \beta} - \frac{\cos 5\beta}{\cos \beta} = 4\cos 2\beta$.
31. $\frac{\sin 3\beta}{\sin \beta} - \frac{\cos 3\beta}{\cos \beta} = 2$.
32. $\frac{\cos 3\beta}{\sin \beta} + \frac{\sin 3\beta}{\cos \beta} = 2\cot 2\beta$.
35. $\frac{\sin \frac{5\pi}{12}}{\sin \frac{\pi}{12}} - \frac{\cos \frac{5\pi}{12}}{\cos \frac{\pi}{12}} = 2\sqrt{3}$.
36. $\tan (45^{\circ} + A) - \tan (45^{\circ} - A) = 2\tan 2A$.
37. $\tan (45^{\circ} - A) + \cot (45^{\circ} - A) = 2\sec 2A$.
38. $\frac{\tan^{2} (45^{\circ} + A) - 1}{\tan^{2} (45^{\circ} + A) + 1} = \sin 2A$.
39. $\frac{\sec A + \tan A}{\sec 1 - \tan A} = \tan \left(45^{\circ} + \frac{A}{2} \right) \cdot \cot \left(45^{\circ} - \frac{A}{2} \right)$.
40. $\frac{\cos (A + 45^{\circ})}{\cos (A - 45^{\circ})} = \sec 2A - \tan 2A$.
41. $\tan B = \frac{\sin B + \sin 2B}{1 + \cos B + \cos 2B}$.
42. $\tan B = \frac{\sin 2B - \sin B}{1 - \cos B + \cos 2B}$.

93. The following two formulæ should be remembered:

$$\sin 3 A = 3 \sin A - 4 \sin^3 A;$$

$$\cos 3 A = 4 \cos^3 A - 3 \cos A.$$
(vi.)

NOTE. The similarity of these two results is likely to cause confusion. This may be avoided by observing that the second formula must be true when $A = 0^{\circ}$; and then $\cos 3 A = \cos 0^{\circ} = 1$. In which case the formula gives $\cos 0^{\circ} = 4 \cos 0^{\circ} - 3 \cos 0^{\circ}$, or 1 = 4 - 3, which is true.

The first formula may be proved thus:

$$\sin 3A = \sin (2A + A) = \sin 2A \cdot \cos A + \cos 2A \cdot \sin A$$

= (2 \sin A \cdot \cos A) \cos A + (1 - 2 \sin^2 A) \sin A
= 2 \sin A \cos^2 A + \sin A - 2 \sin^3 A
= 2 \sin A (1 - \sin^2 A) + \sin A - 2 \sin^3 A
= 2 \sin A - 2 \sin^3 A + \sin A - 2 \sin^3 A
= 3 \sin A - 4 \sin^2 A.

The second formula may be proved in a similar manner.

EXAMPLE. Prove that

$$\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}.$$
$$\tan 3A = \tan (2A + A) = \frac{\tan 2A + \tan A}{1 - \tan 2A \cdot \tan A}$$
$$= \frac{2\tan A}{1 - \tan^2 A} + \tan A$$
$$= \frac{2\tan A + \tan A}{1 - \frac{2\tan A}{1 - \tan^2 A} \cdot \tan A} = \frac{2\tan A + \tan A - \tan^3 A}{1 - \tan^2 A - 2\tan^2 A}$$
$$= \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}.$$

EXAMPLES, XXIV.

Prove the following statements:

1. $\frac{\sin 3A}{\sin A} = 2\cos 2A + 1$. 2. $\frac{\cos 3A}{\cos A} = 2\cos 2A - 1$. 3. $\frac{3\sin A - \sin 3A}{\cos 3A + 3\cos A} = \tan^3 A$. 4. $\cot 3A = \frac{\cot^3 A - 3\cot A}{3\cot^2 A - 1}$. 5. $\frac{\sin 3A - \sin A}{\cos 3A + \cos A} = \tan A$. 6. $\frac{\sin 3A - \cos 3A}{\sin A + \cos A} = 2\sin 2A - 1$. 7. $\frac{\sin 3A + \cos 3A}{\cos A - \sin A} = 2\sin 2A + 1$. 8. $\frac{1}{\tan 3A - \tan A} + \frac{1}{\cot A - \cot 3A} = \cot 2A$. 9. $\left(\frac{3\sin A - \sin 3A}{3\cos A + \cos 3A}\right)^2 = \left(\frac{\sec 2A - 1}{\sec 2A + 1}\right)^3$. 10. $\frac{1 - \cos 3A}{1 - \cos A} = (1 + 2\cos A)^2$.

CHAPTER XII

INVERSE TRIGONOMETRIC FUNCTIONS

94. From the equation $y = \sin \phi$, we know that ϕ is an angle whose sine is y. The last statement is expressed by the notation $\phi = \sin^{-1}y$.

Hence $\sin^{-1}y$ is an angle.

 $\sin^{-1}y$ is sometimes read. "an angle whose sine is y." sometimes "are-sine y." but more frequently "anti-sine y." But it must be remembered that it means "an angle whose sine is y."

 $\cos^{-1}y$ means "an angle whose cosine is y."

tan⁻¹y means "an angle whose tangent is y."

 $\csc^{-1}y$ means "an angle whose cosecant is y."

sec y means "an angle whose secant is y."

 $\cot^{-1}y$ means "an angle whose cotangent is y."

These are read "anti-cosine y." "anti-tangent y," "anti-cosecant y." "anti-cosecant y." "anti-cotangent y." respectively.

EXAMPLE. $30^\circ = \sin^{-1}\frac{1}{2}; \ 45^\circ = \sin^{-1}\frac{1}{\sqrt{2}};$

95. The expressions $\sin^{-1}y$, $\cos^{-1}y$, etc., are called the *Inverse* Trigonometric Functions or Inverse Circular Functions.

96. In Art, 58 we showed that an infinite number of angles, differing by 2π , have the same ratios. Accordingly an infinite number of angles will satisfy an equation of the form $\phi = \sin^{-1}y$, $\theta = \cos^{-1}x$, etc. Accordingly for the sake of definiteness we shall (unless otherwise stated) make the following conventions:

(1) When we are given either of the equations $\phi = \sin^{-1} y$, $\phi = \tan^{-1} y$, $\phi = \csc^{-1} y$, $\phi = \cot^{-1} y$, we shall understand ϕ to be an angle, either *positive* or *negative*, whose magnitude is not greater than 90°.

(2) When we are given the equations $\phi = \cos^{-1} y$, $\phi = \sec^{-1} y$, we shall limit ϕ to a *positive* angle whose magnitude is not greater than 180°.

With these agreements one value and but one will satisfy any of these equations.

If, however, ϕ is given, we can always write a definite equation.

For example,
$$225^\circ = \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$
. But if we had given us
 $\phi = \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$,

and had known nothing else whatever of ϕ , by our agreements we would have concluded $\phi = -45^{\circ}$.

EXAMPLE 2. Given $\phi = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.

By our agreements we know that $\phi = 135^{\circ}$. We can now write

$$135^\circ = \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right).$$

If, on the other hand, we are given

$$\phi = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
, we conclude $\phi = 45^{\circ}$.

97. To express the inverse ratios in terms of a given one.

e.g. if $\theta = \tan^{-1}x$, to express the inverse trigonometric functions in terms of x.

$x = \tan \theta;$	$\therefore \theta = \tan^{-1} x.$
$\frac{1}{x} = \cot \theta;$	$\therefore \ \theta = \cot^{-1} \frac{1}{x}$
$\sqrt{1+x^2} = \sec\theta;$	$\therefore \ \theta = \sec^{-1}\sqrt{1+x^2}.$
$\frac{1}{\sqrt{1+x^2}} = \cos\theta;$	$\therefore \ \theta = \cos^{-1} \frac{1}{\sqrt{1+x^2}}.$
$\frac{x}{\sqrt{1+x^2}} = \sin\theta;$	$\therefore \ \theta = \sin^{-1} \frac{x}{\sqrt{1+x^2}}$
$\frac{\sqrt{1+x^2}}{x} = \csc\theta;$	$\therefore \ \theta = \csc^{-1} \frac{\sqrt{1+x^2}}{x}$

No ambiguity of sign exists.

For if x is positive, $\sin \theta$ is positive; therefore $\sqrt{1+x^2}$ is positive. If x is negative, $\sin \theta$ is negative; hence $\sqrt{1+x^2}$ is positive. Then by convention $\cos \theta$ is positive; therefore $\sqrt{1+x^2}$ is positive.

EXERCISE. If $x = \cos \theta$, express the inverse trigonometric functions in terms of x.

98. Let $x = \sin \theta$. Then $x = \cos\left(\frac{\pi}{2} - \theta\right);$ $\therefore \theta = \sin^{-1}x.$ $\frac{\pi}{2} - \theta = \cos^{-1}x;$ $\therefore \theta = \frac{\pi}{2} - \cos^{-1}x;$ $\therefore \sin^{-1}x = \frac{\pi}{2} - \cos^{-1}x.$ EXERCISE. Show $\tan^{-1}x = \frac{\pi}{2} - \cot^{-1}x;$ $\sec^{-1}x = \frac{\pi}{2} - \csc^{-1}x.$

99. To express two inverse trigonometric functions as a single inverse function;

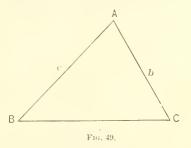
e.g. consider
$$\sin^{-1} x + \sin^{-1} y$$
.
Put
 $x = \sin A; \therefore A = \sin^{-1} x$.
 $y = \sin B; \therefore B = \sin^{-1} y;$
 $\therefore \sin (A + B) = x\sqrt{1 - y^2} + y\sqrt{1 - x^2}$.
 $A + B = \sin^{-1} x + \sin^{-1} y = \sin^{-1} (x\sqrt{1 - y^2} + y\sqrt{1 - x^2})$.

EXERCISE. Express $\tan^{-1}x + \tan^{-1}y$ as a single inverse trigonometric function.

EXAMPLES. XXV.

1.
$$\phi = \tan^{-1}(\frac{1}{3})$$
; find $\cos \phi$.
2. $\phi = \cos^{-1}(-\frac{1}{2})$ find $\csc \phi$.
3. $\phi = \sin^{-1}(-\frac{1}{2})$ find $\sec \phi$; find $\tan \phi$.
4. $\phi = \tan^{-1}\frac{m}{m+1}$, $\theta = \tan^{-1}\frac{1}{2m+1}$; show that $(\theta + \phi) = \frac{\pi}{4}$.
5. $\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{3}{5} = \frac{\pi}{2}$.
7. $2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}$.
6. $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$.
8. $\sin(2\sin^{-1}x) = 2x\sqrt{1-x^2}$.
9. $\sin^{-1}\sqrt{\frac{x-a+b}{2b}} = \cos^{-1}\sqrt{\frac{b+a-x}{2b}}$.
10. $\cos^{-1}x \pm \cos^{-1}y = \cos^{-1}(xy \pm \sqrt{(1-x^2)(1-y^2)})$.
11. $\tan^{-1}\frac{1}{2} = \tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9}$.
12. $\tan^{-1}2 + \tan^{-1}\frac{1}{2} = \frac{\pi}{2}$.

13. Find value of $\sin\left(\sin^{-1}\frac{\sqrt{3}}{2} + \cos^{-1}\frac{\sqrt{3}}{2}\right)$. 14. $\sin^{-1}\frac{3}{5} - \sin^{-1}\frac{5}{13} = \sin^{-1}\frac{16}{6}$. 15. If $\tan^{-1}ky = \tan^{-1}kz - gkx$, then $y = \frac{1}{k} \cdot \frac{2k - \tan gkx}{1 + 2k \tan kgx}$. 16. $\sin(\sin^{-1}x + \sin^{-1}\sqrt{1 - x^2}) = 1$. 17. $\sin^{-1}\left(\tan\frac{\pi}{4}\right) = 2\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$.


CHAPTER XIII

ON THE RELATIONS BETWEEN THE SIDES AND ANGLES OF A TRIANGLE

100. The three sides and the three angles of any triangle are called its six parts.

By the letters A. B. C we shall indicate

geometrically, the three angular points of the triangle ABC: algebraically, the three angles at those angular points respectively.

By the letters a, b, c, we shall indicate the measures of the sides BC, C.A, AB, opposite the angles A, B, C, respectively.

101. I. We know that $A + B + C = 180^{\circ}$. (Geom.)

102. Also if A be an angle of a triangle, then A may have any value between 0° and 180° . Hence,

(i.) sin A must be positive (and less than 1);

(ii.) $\cos A$ may be positive or negative (but must be numerically less than 1):

(iii.) tan A may have any value whatever, positive or negative.

103. Also, if we are given the value of

(i.) sin A, there are two angles, each less than 180°, which have the given positive value for their sine.

(ii.) cos A, or (iii.) tan A, then there is only one value of A, which value can be found from the Tables.

104. $\frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^\circ$. Therefore $\frac{A}{2}$ is less than 90°, and its Trigonometrical Ratios are all positive. Also, $\frac{4}{2}$ is known, when the value of any one of its ratios is given. Similar remarks of course apply to the angles B and C.

 $A + B + C = 180^{5} + A + B = 180^{9}$

 $\frac{A+B+C}{2} = 90^{\circ}; \quad \therefore \frac{A+B}{2} = 90^{\circ} - \frac{C}{2},$

EXAMPLE 1. To prove
$$\sin(A + B) = \sin C$$
.

$$\operatorname{AMPLE} 1. \quad 10 \text{ proce} \sin (A + B) \equiv \sin C.$$

$$\therefore \sin (A + B) = \sin (180^\circ - C) = \sin C.$$
 (Art. 59.)

and

EXAMPLE 2. To prove $\sin \frac{A+B}{2} = \cos \frac{C}{2}$.

Now

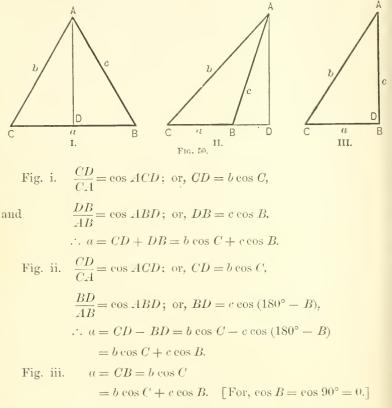
and

 $\therefore \sin \frac{A+B}{2} = \sin \left(90^\circ - \frac{C}{2}\right) = \cos \frac{C}{2}$ (Art. 61.)

EXAMPLES. XXVI.

Find A from each of the six following equations, A being an angle of a triangle:

2. $\cos A = -\frac{1}{2}$. 1. $\cos A = \frac{1}{2}$. 3. $\sin A = \frac{1}{2}$. 5. $\sqrt{2} \sin A = 1$. 4. $\tan A = -1$. 6. $\tan A = -\sqrt{3}$.


Prove the following statements, A, B, C being the angles of a triangle:

- 7. $\sin(A + B + C) = 0$. 8. $\cos(A + B + C) = -1$.
- 9. $\sin \frac{1}{2}(A + B + C) = 1$. 10. $\cos \frac{1}{2} (A + B + C) = 0.$
- 12. $\cot \frac{1}{2}(B+C) = \tan \frac{1}{2}A$. 11. $\tan(A + B) = -\tan C$.
- **13.** $\cos(A + B) = -\cos C$. 14. $\cos(A + B - C) = -\cos 2 C$.
- **15.** $\tan A \cot B = \cos C \cdot \sec A \cdot \csc B$.
- 16. $\frac{\sin A \sin B}{\sin A + \sin B} = \tan \frac{C}{2} \cdot \tan \frac{A B}{2}$. 17. $\frac{\sin 3 B \sin 3 C}{\cos 3 C \cos 3 B} = \tan \frac{3 A}{2}$.

105. II. To prove $a = b \cos C + c \cos B$.

From 1, any one of the angular points, draw AD perpendicular to BC, or to BC produced if necessary.

There will be three cases. Fig. i. when both B and C are acute angles; Fig. ii. when one of them (B) is obtuse; Fig. iii. when one of them (B) is a right angle. Then,

Similarly it may be proved that,

$$b = e \cos A + a \cos C; \ c = a \cos B + b \cos A.$$

106. III. To prove that, in any triangle, the sides are proportional to the sines of the angles opposite; or, To prove that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

From .1, any one of the angular points, draw AD perpendicular to BC, or to BC produced if necessary. Then,

I. Fig. 50.
$$AD = b \sin C$$
; for, $\frac{AD}{AC} = \sin C$ [Def.];

also
$$AD = c \sin B$$
; for, $\frac{DA}{AB} = \sin B$.
 $\therefore b \sin C = c \sin B$;
 $\frac{b}{\sin B} = \frac{c}{\sin C}$.
II. Fig. 50. $AD = b \sin C$,
 $AD = c \sin ABD = c \sin (180^\circ - B)$.
 $\therefore AD = c \sin B$;
 $\therefore b \sin C = c \sin B$;

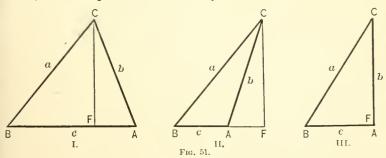
and

or,

or,

III. Fig. 50.
$$AB = AC \cdot \sin C$$
; or, $c = b \sin C$;

 $\overline{\sin B} = \overline{\sin C}$


$$\therefore \frac{c}{\sin C} = \frac{b}{\sin B} \cdot \quad [\text{For } \sin B = \sin 90^\circ = 1.]$$

Similarly it may be proved that

$$\frac{a}{\sin A} = \frac{b}{\sin B};$$

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$
 Q.E.D.

107. IV. To prove that $a^2 = b^2 + c^2 - 2bc \cos A$.

Take one of the angles A. Then of the other two, one must be acute. Let B be an acute angle. From C draw CF perpendicular to BA, or to BA produced if necessary.

There will be three figures according as A is less, greater than, or equal to a right angle. Then,

I. Fig. 51. $BC^2 = CA^2 + AB^2 - 2 \cdot BA \cdot FA$; (Geom.) or, $a^2 = b^2 + c^2 - 2 c \cdot FA$ $= b^2 + c^2 - 2 cb \cos A$. (For $FA = b \cdot \cos A$.) II. Fig. 51. $BC^2 = CA^2 + AB^2 + 2 \cdot BA \cdot AF$; (Geom.) or, $a^2 = b^2 + c^2 + 2 cb \cos FAC$ $= b^2 + c^2 - 2 bc \cos A$. (For $FAC = 180^\circ - A$.) III. Fig. 51. $BC^2 = CA^2 + AB^2$; (Geom.)

or, $a^2 = b^2 + c^2 - 2 bc \cos A$. (For $\cos A = \cos 90^\circ = 0$.)

Similarly it may be proved that

$$\frac{b^2 = c^2 + a^2 - 2 \ ca \ \cos B}{c^2 = a^2 + b^2 - 2 \ ab \ \cos C}$$

and that

108. V. Hence, $\cos A = \frac{b^2 + c^2 - a^2}{2 bc}$, $\cos B = \frac{c^2 + a^2 - b^2}{2 ca}$, $\cos C = \frac{a^2 + b^2 - c^2}{2 ab}$.

*109. The formulæ of Art. 108 may be obtained directly from those of Art. 105.

$$a = b \cos C + c \cos B. \tag{1}$$

$$b = c \cos A + a \cos C. \tag{2}$$

$$c = a \cos B + b \cos A. \tag{3}$$

Multiplying (1), (2), (3) by a, b, c respectively and adding, we obtain

 $a^{2} + b^{2} + c^{2} = 2 a (b \cos C + c \cos B) + 2 b c \cos A = 2 a^{2} + 2 b c \cos A.$

$$\therefore \cos A = \frac{b^2 + c^2 - a^2}{2 bc}$$

EXERCISE I. Find the two corresponding expressions, viz., for $\cos B$ and $\cos C$.

EXERCISE II. If a = 5, b = 6, c = 7, find $\cos A$.

110. VI. Let s stand for half the sum of a, b, c; so that

(a+b+c)=2s.

Then, (b + c - a) = (b + c + a - 2a) = (2s - 2a) = 2(s - a), and (c + a - b) = (c + a + b - 2b) = (2s - 2b) = 2(s - b),

and (a+b-c)=(a+b+c-2,c)=(2s-2,c)=2(s-c).

111. VII. To prove that

$$\sin\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}} \text{ and that } \cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}},$$

where s stands for half the sum of the sides a, b, c.

Now, since

$$\cos A = \frac{b^2 + c^2 - a^2}{2 bc} \text{ and } 1 - \cos A = 2 \sin^2 \frac{A}{2}, \quad (\text{Art. 88.})$$

$$\therefore 2 \sin^2 \frac{A}{2} = 1 - \cos A = 1 - \frac{b^2 + c^2 - a^2}{2 bc}$$

$$= \frac{2 bc - (b^2 + c^2 - a^2)}{2 bc} = \frac{a^2 - (b^2 - 2 bc + c^2)}{2 bc}$$

$$= \frac{a^2 - (b - c)^2}{2 bc} = \frac{\{a - (b - c)\}\{a + (b - c)\}}{2 bc};$$

$$\therefore \sin^2 \frac{A}{2} = \frac{(a + c - b)(a + b - c)}{4 bc};$$

$$\therefore \sin \frac{A}{2} = \sqrt{\frac{(2 s - 2 b)(2 s - 2 c)}{4 bc}} = \sqrt{\frac{(s - b)(s - c)}{bc}}.$$

Again, since $2\cos^2\frac{A}{2} = 1 + \cos A$,

(Art. 88.)

$$\therefore 2 \cos^2 \frac{A}{2} = 1 + \cos A = 1 + \frac{b^2 + c^2 - a^2}{2 bc}$$

= $\frac{(b + c)^2 - a^2}{2 bc} = \frac{(b + c + a)(b + c - a)}{2 bc};$
$$\therefore \cos \frac{A}{2} = \sqrt{\frac{2 s \cdot (2 s - 2 a)}{4 bc}} = \sqrt{\frac{s(s - a)}{bc}}.$$

112. $\tan \frac{A}{2} = \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} = \frac{\sqrt{\frac{(s - b)(s - c)}{bc}}}{\sqrt{\frac{s(s - a)}{bc}}} = \sqrt{\frac{(s - b)(s - c)}{s(s - a)}}.$

EXAMPLE. Write down the corresponding formulæ for $\sin \frac{B}{2}$, for $\cos \frac{B}{2}$, and for $\tan \frac{B}{2}$.

113. VIII. Again,

$$\sin A = 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2}; \qquad (Art. 91.)$$

$$\therefore \sin A = 2 \sqrt{\frac{(s-b)(s-c)}{bc}} \cdot \sqrt{\frac{s(s-a)}{bc}}$$

$$\therefore \sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}.$$

The letter S usually stands for $\sqrt{s(s-a)(s-b)(s-c)}$, so that the above may be written $\frac{\sin A}{a} = \frac{2S}{abc}$.

Similarly,
$$\frac{\sin B}{b} = \frac{2S}{abc} = \frac{\sin C}{c}$$
.

114. IX. To prove that

$$\frac{b-c}{b+c} \cdot \cot \frac{A}{2} = \tan \frac{B-C}{2}.$$

Since $\frac{b}{\sin B} = \frac{c}{\sin C}$ (Art. 106), let each of these fractions = d.

Then
$$b = d \sin B$$
, and $c = d \sin C$.

$$\therefore \frac{b-c}{b+c} = \frac{d\sin B - d\sin C}{d\sin B + d\sin C} = \frac{\sin B - \sin C}{\sin B + \sin C}$$

$$= \frac{2\sin \frac{B-C}{2} \cdot \cos \frac{B+C}{2}}{2\sin \frac{B+C}{2} \cdot \cos \frac{B-C}{2}}$$

$$= \frac{\tan \frac{B-C}{2}}{\tan \frac{B+C}{2}} \qquad (Art. 82.)$$

$$\therefore \frac{b-c}{b+c} = \frac{\tan \frac{B-C}{2}}{\cot \frac{4}{2}} \qquad [Since \tan \frac{B+C}{2} = \tan\left(90^\circ - \frac{4}{2}\right).]$$

Q.E.D.

 $\therefore \frac{b-c}{b+c} \cdot \cot \frac{A}{2} = \tan \frac{B-C}{2}.$ Similarly, $\frac{c-a}{c+a} \cot \frac{B}{2} = \tan \frac{C-A}{2};$ $\frac{a-b}{a+b} \cot \frac{C}{2} = \tan \frac{A-B}{2}.$

115. The student is advised to make himself thoroughly familiar with the following formulæ :

$$\sin A = \frac{2}{bc} \sqrt{s (s - a)(s - b)(s - c)} = \frac{2 S}{bc};$$
 (i.) (Art. 113.)
 $a = b \cos C + c \cos B;$ (ii.) (Art. 105.)
 $a = \frac{b}{b} - \frac{c}{c} - \frac{abc}{c}.$ (iii.) (Art. 106.)

$$\frac{1}{\sin A} = \frac{1}{\sin B} = \frac{1}{\sin C} = \frac{1}{2S};$$
 (111.) (Art. 106.)

$$\cos A = \frac{b^2 + c^2 - a^2}{2 bc};$$
 (iv.) (Art. 108.

SIDES AND ANGLES OF A TRIANGLE

$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}};$$
 (v.) (Art. 111.)

$$\cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}; \qquad (vi.) (Art. 111.)$$

$$\tan\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}; \quad (vii.) (Art. 112.)$$

$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \operatorname{cot} \frac{A}{2}.$$
 (viii.) (Art. 114.)

116. The sign of the radicals in v., vi., and vii. of Art. 115 is positive, because $\frac{A}{2} < 90^{\circ}$.

 $\sin \frac{4}{2}$, $\cos \frac{1}{2}$, $\tan \frac{4}{2}$ cannot be imaginary, since, then, either s-a, s-b, s-c, is negative; which is impossible.

EXAMPLES. XXVII.

In any triangle ABC prove the following statements :

$$1. \frac{\sin A + 2 \sin B}{a + 2 b} = \frac{\sin C}{c}, \qquad 2. \frac{\sin^2 A - m \cdot \sin^2 B}{a^2 - m \cdot b^2} = \frac{\sin^2 C}{c^2}, \\3. a \cos A + b \cos B - c \cos C = 2 c \cos A \cdot \cos B. \\4. (a + b) \sin \frac{C}{2} = c \cos \frac{A - B}{2}, \qquad 5. (b - c) \cos \frac{A}{2} = a \sin \frac{B - C}{2}, \\6. a \sin (B - C) + b \sin (C - A) + c \sin (A - B) = 0, \\7. \frac{a - b}{c} = \frac{\cos B - \cos A}{1 + \cos C}, \qquad 8. \frac{b + c}{a} = \frac{\cos B + \cos C}{1 - \cos A}, \\9. \sqrt{bc} \sin B \cdot \sin C = \frac{b^2 \sin C + c^2 \sin B}{b + c}, \\10. a + b + c = (b + c) \cos A + (c + a) \cos B + (a + b) \cos C. \\11. b + c - a = (b + c) \cos A - (c - a) \cos B + (a - b) \cos C. \\12. \tan A = \frac{a \sin C}{b - a \cos C}, \qquad 13. \frac{\tan B}{\tan C} = \frac{a^2 + b^2 - c^2}{a^2 - b^2 + c^2}.$$

In solving the following list of examples, the student will select from the formulæ of Art. 115 those best suited to his purpose.

EXAMPLE. Given a = 2, $b = \sqrt{6}$, $c = 1 + \sqrt{3}$. To find the angles of the triangle.

It is evident that we may apply either iv., v., vi., or vii.; but that ii., iii., and viii. contain *two* angles, and hence cannot be used. We shall employ iv. We find

$$\cos A = \frac{1}{\sqrt{2}}, \quad \therefore \quad A = 45^{\circ}; \\ \cos B = \frac{1}{2}, \quad \therefore \quad B = 60^{\circ}; \\ C = 180^{\circ} - (A + B) = 75^{\circ}. \end{cases}$$

EXAMPLES. XXVIII.

1. Simplify the formulæ

$$\cos A = \frac{b^2 + c^2 - a^2}{2 b c}, \ \cos \frac{1}{2} A = \sqrt{\left\{\frac{s(s-a)}{bc}\right\}}$$

in the case of an equilateral triangle.

- **2.** The sides of a triangle are as $2: \sqrt{6}: 1 + \sqrt{3}$; find the angles.
 - **3.** The sides of a triangle are as 4, $2\sqrt{2}$, $2(\sqrt{3}-1)$; find the angles.
- **4.** Given $C = 120^{\circ}$, $c = \sqrt{19}$, a = 2; find b.

5. Given $A = 60^{\circ}$, $b = 4\sqrt{7}$, $c = 6\sqrt{7}$; find a.

• 6. Given $A = 45^{\circ}$, $B = 60^{\circ}$, and a = 2; find c.

7. The sides of a triangle are as 7 : 8 : 13 ; find the greatest angle.

8. The sides of a triangle are 1, 2, $\sqrt{7}$; find the greatest angle.

9. The sides of a triangle are as $a:b:\sqrt{(a^2+ab+b^2)}$; find the greatest angle.

10. When a:b:c as 3:4:5, find the greatest and least angles; given $\cos 36^{\circ} 52' = .8$.

11. If a = 5 miles, b = 6 miles, c = 10 miles, find the greatest angle. [cos $49^{\circ} 33' = .65$.]

12. If a = 4, b = 5, c = 8, find C. Given that $\cos 54^{\circ} 54' = .575$.

13. $a: b = \sqrt{3}: 1$, and $C = 30^\circ$; find the other angles.

14. If b = 3, $C = 120^{\circ}$, $c = \sqrt{13}$, find a and the sines of the other angles.

15. Given $A = 105^{\circ}$, $B = 45^{\circ}$, $c = \sqrt{2}$; solve the triangle.

16. Given $B = 75^{\circ}$, $C = 30^{\circ}$, $c = \sqrt{8}$; solve the triangle.

17. Given $B = 45^{\circ}$, $c = \sqrt{75}$, $b = \sqrt{50}$; solve the triangle.

18. Two sides of a triangle are $3\sqrt{6}$ yards and $3\sqrt{3} + 1$ yards, and the included angle is 45° ; solve the triangle.

19. If the angles adjacent to the base of a triangle are $22\frac{10}{2}$ and $112\frac{10}{2}$, show that the perpendicular altitude will equal half the base.

20. If $A = 45^{\circ}$ and $B = 60^{\circ}$, show that $2c = a(1 + \sqrt{3})$.

21. The cosines of two of the angles of a triangle are $\frac{1}{2}$ and $\frac{2}{3}$; find the ratio of the sides.

CHAPTER XIV

LOGARITHMS

117. Before proceeding to the problem known as the solution of triangles, we shall discuss *very briefly* the use of common logarithms and certain mathematical tables. These tables may be found on the last sixty-five pages of this book.

Note. — The discussion of logarithms belongs properly to Algebra, to which the student is referred for a more general treatment.

The student will observe that computation by means of logarithms is a mere combination of exponents.

118. In Algebra it is explained that when different powers or roots of the same number are concerned,

(i.) *multiplication* is effected by *adding* the *indices*;

(ii.) *division* is effected by *subtracting* the *indices*;

(iii.) *involution* and *evolution* are respectively effected by the *multiplication* and *division* of the *indices*.

EXAMPLE 1. Let $m = a^{h}$, $n = a^{k}$; then $m \times n = a^{h} \times a^{k} = a^{h+k}$, (i.)

 $m \div n = a^{h} \div a^{k} = a^{h-k}, \tag{ii.}$

$$\begin{array}{c} m^{3} = (a^{h})^{3} = a^{3h}, \\ \sqrt[4]{m} = m^{\frac{1}{4}} = (a^{h})^{\frac{1}{4}} = a^{\frac{1}{4}}. \end{array}$$
(iii.)

119. DEFINITION. The logarithm of a number, n, to a certain base, b, is the index with which it is necessary to affect b to produce n.

E.g. suppose $b^{l} = n$; then logarithm *n* to base *b* is *l* for *b*, raised to *l*th power, produces *n*. This is expressed in the following notation:

$$\log_b n = l.$$

and is read "logarithm of *n* to the base *b* equals *l*." Or, if no ambiguity arises, simply "log n = l."

EXAMPLES. $\log_2 8 = 3$; for $2^3 = 8$, or 2 must be raised to power 3 to produce 8. $\log_{10} 100 = 2$.

G

120. The use of logarithms is based upon the following propositions:

I. The logarithm of the product of two numbers is equal to the logarithm of one of the numbers plus the logarithm of the other.

For, let $\log_b m = x$; then $m = b^x$, (Def.) and let $\log_b n = y$; then $n = b^y$. (Def.) $(mn) = (h^x h^y) = (h^{x+y})$

$$\therefore \log_b(mn) = \log_b(b^{x+y}) = x + y.$$

But

$$x + y = \log_b m + \log_b n;$$

$$\log_b(mn) = x + y = \log_b m + \log_b n.$$

Q.E.D.

or,

II. The logarithm of the quotient of two numbers is the logarithm of the dividend minus the logarithm of the divisor.

For
$$\left(\frac{m}{n}\right) = \left(\frac{b^x}{b^y}\right) = b^{(x-y)}$$
.
 $x - y = \log_x m - \log_y m$.

But

$$\therefore \log_b\left(\frac{m}{n}\right) = x - y = \log_b m - \log_b n.$$

III. The logarithm of a number raised to a power k is κ times the logarithm of the number.

For,
$$(m^k) = (b^x)^k.$$

Now,
$$\log_b b^{kx} = kx = k \log_b m.$$

EXAMPLES. Given $\log_{10} 2 = .30103$, $\log_{10} 3 = .47712$, $\log_{10} 7 = .84509$; find the values of the following:

(i.)
$$\log_{10} 6 = \log_{10} (2 \times 3) = \log_{10} 2 + \log_{10} 3$$

 $= .30103 + .47712 = .77815.$ [by 1.]
(ii.) $\log_{10} \frac{7}{3} = \log_{10} 7 - \log_{10} 3 = .84509 - .47712 = .36797.$ [by 11.]
(iii.) $\log_{10} 3^5 = 5$ times $\log_{10} 3 = 5 \times .30103 = 1.50515.$ [by 111.]
(iv.) $\log_{10} \sqrt[3]{\frac{3 \times 4}{7}} = \log_{10} \left(\frac{3 \times 4}{7}\right)^{\frac{1}{3}} = \frac{1}{3}$ of $\log_{10} \frac{3 \times 4}{7}$ [by 111.]
 $= \frac{1}{3}$ of $(\log 3 + \log 4 - \log 7) = \frac{1}{3}$ of $\{.47712 + twice, .30103 - .84509\}$
 $= \frac{1}{3}$ of $.23408 = .07802.$ [by 1. and II.]

(v.) $\log_{10} 5 = \log_{10} \frac{10}{2} = \log_{10} 10 - \log_{10} 2 = 1 - .30103 = .69897.$

EXAMPLES. XXIX.

1. Find the logarithms to the base a of a^3 , a^{10}_{3} , $\sqrt[4]{a}$, $\sqrt[3]{a^2}$, $\frac{1}{a^3}$

- 2. Find the logarithms to the base 2 of 8, 64, $\frac{1}{2}$, .125, .015625. $\sqrt[3]{64}$.
- 3. Find the logarithms to the base 3 of 9, 81, $\frac{1}{3}$, $\frac{1}{27}$, $\frac{1}{81}$.

LOGARITHMS

4. Find the value of $\log_2 8$, $\log_2 .5$, $\log_2 .243$, $\log_5 .04$, $\log_{10} 1000$, $\log_{10} .001$.

5. Find the value of $\log_a a^{\frac{4}{3}} \log_b \sqrt[3]{b^2} \log_8 2$, $\log_{27} 3$, $\log_{100} 10$.

6. Prove that $\log(\sqrt[3]{2} \times \sqrt[4]{7} \div \sqrt[5]{9}) = \frac{1}{3}\log 2 + \frac{1}{4}\log 7 - \frac{2}{5}\log 3$.

121. That system of logarithms whose base is **ro** is called the **common** system of logarithms.

In speaking of logarithms hereafter, *common* logarithms are referred to unless the contrary is expressly stated.

We shall assume that an index of 10 can be found such that 10 affected with this index is practically equivalent to any number.

The indices of these powers of 10, *i.e.* the common logarithms, are in general *incommensurable* numbers.

Now, the greater the index with which 10 is affected, the greater will be the value of the equivalent expression; and the less the index, the less will be the numerical value of the expression.

Hence, if one number be less than another, the logarithm of the first will be less than the logarithm of the second.

But the student should notice that logarithms (or indices) are *not proportional* to the corresponding numbers.

EXAMPLE. 1000 is less than 10000; and the logarithm to base 10 of the first is 3 and of the second is 4.

But 1000, 10000, 3, 4 are not in proportion.

122. PROPOSITION. If two numbers expressed in the decimal notation have the same digits arranged in the same order (so that they differ only in the position of the decimal point), their logarithms to the base 10 differ only by an integer.

The decimal point in a number is moved by multiplying or dividing the number by some power of 10.

Let the numbers be m and n; then $m = n \times 10^k$ when k is a whole number (positive or negative); then

 $\log m = \log (n \times 10^k) = \log n + \log 10^k = \log n + k. \quad (Art. 120.)$

That is, $\log m$ and $\log n$ differ by an integer. Q.E.D.

EXAMPLE 1. $\log 1679.2 = \log \{(1.6792) \times 10^3\} = \log 1.6792 + \log 10^3$ = $\log 1.6792 + 3$.

EXAMPLE 2. Given that $\log 1.7692 = .247776$;

find (i.) log 17692, (ii.) log .0017692, (iii.) log 176.92.

Here $\log 17692 = \log (1.7692 \times 10^4) = 4.247776$,

 $\log .0017692 = \log (1.7692 \times 10^{-3}) = -3 + .247776,$

 $\log 176.92 = \log (1.7692 \times 10^2) = 2.247776.$

123. We know from Algebra that $1 = 10^{\circ}$,

 $10 = 10^1$ and that $.1 = \frac{1}{10} = 10^{-1}$ $100 = 10^2$ and that $.01 = \frac{1}{100} = 10^{-2}$ $1000 = 10^3$ and that $.001 = \frac{1}{1000} = 10^{-3}$ $10000 = 10^4$ and that $.0001 = \frac{1}{10000} = 10^{-4}$

and so on.

Hence, the logarithm of 1 is 0.

The logarithm of any number greater than 1 is positive.

The logarithm of any positive number less than 1 is negative.

124. Observe also

- that the logarithm of any number between 1 and 10 is a positive decimal fraction;
- that the logarithm of any number between 10 and 100, i.e. between 10^1 and 10^2 , is 1 + a decimal fraction;
- that the logarithm of any number between 1000 and 10000, i.e. between 10^3 and 10^4 , is 3 + a decimal fraction; and so on.

125. Observe also

that the logarithm of any number between 1 and .1, *i.e.* between 10° and 10⁻¹, can be written in the form -1 + a decimal fraction;

that the logarithm of any number between .1 and .01, i.e. between 10^{-1} and 10^{-2} , can be written in the form -2 + a decimal fraction; and so on.

EXAMPLE 1. How many digits are contained in the integral part of the number whose logarithm is 3.67192?

The number is 10^{3.67192} and this is greater than 10³, *i.e.* greater than 1000, and it is less than 10^4 , *i.e.* less than 10000. Therefore the number lies between 1000 and 10000, and therefore the integral part of it contains four figures.

EXAMPLE 2. Given that $3 = 10^{4771213}$, find the number of the digits in the integral part of 320. $3 = 10^{.4771213}$,

We have

$$3^{20} = (10^{.47712})^{20} = 10^{9.54242}$$

Therefore there are 10 digits in the integral part of 3²⁰; for it is greater than 10⁹ and less than 10¹⁰.

EXAMPLE 3. Suppose that the decimal part of the logarithm is to be kept positive, find the integral part of the logarithm of .0001234.

This number is greater than .0001, *i.e.* than 10^{-4} and less than .001, *i.e.* than 10⁻⁸.

Therefore its logarithm lies between -3 and -4, and therefore it is -4 + a fraction; the integral part is therefore -4.

LOGARITHMS

126. From Art. 120–125 it is evident that the logarithm of any positive number may be written as an integer + a decimal fraction.

The *integral* part of the logarithm is called the characteristic. The *decimal* part of the logarithm is called the mantissa. For *concenience*, the mantissæ of common logarithms are always kept **positive.** In this way the mantissæ of the logarithms of numbers consisting of the same digits, arranged in the same order, are *always* the *same* (Art. 120); because removing the decimal place to the right or to the left is equivalent to multiplying the number by 10^{k} , where k is a positive or negative *integer*, as the case may be.

EXAMPLE. The mantissa of $\log 3.456 = \text{mantissa}$ of $\log (345.6)$.

The student cannot observe too carefully that the mantissa is always positive.

The mantissæ have been calculated and arranged in convenient tables. See table I.

127. It is evident from Arts. 120–125, that the characteristic of a logarithm can be obtained by the following rule:

RULE. The characteristic of the logarithm of a number greater than unity is **one less** than the number of figures in the integral part of the number.

The characteristic of a number less than unity is negative, and (when the number is expressed as a decimal) is **one more** than the number of ciphers between the decimal point and the first significant figure to the right of the decimal point.

When the characteristic is negative, as for example in the logarithm -3 + .17609, the logarithm is abbreviated thus, $\overline{3}.17609$.

EXAMPLE 1. The characteristics of 36741, 36.741, .0036741, 3.6741, and .36741 are respectively $\underline{4}$, 1, -3, 0, and -1.

EXAMPLE 2. Given that the mantissa of the logarithm of 36741 is 56515, we can at once write down the logarithm of any number whose digits are 36741.

Thus

• $\log 3674100 = 6.56515,$ $\log 36741 = 4.56515,$ $\log 367.41 = 2.56515,$ $\log .36741 = 1.56515,$ $\log .00036741 = \overline{4.56515},$

and so on.

128. We have said that logarithms are in general incommensurable numbers. Their values can, therefore, only be given approximately.

6.5

If the value of any number is given to seven significant figures, then the **error** (*i.e.* the difference between the *given* value and the *exact* value of the number) is less than a millionth part of the number.

EXAMPLE. 3.141592 is the value of π correct to seven significant figures. The *error* is less than .000001; for π is less than 3.141593, and greater than 3.141592.

The ratio of .000001 to 3.141592 is equal to 1:3141592. The ratio of .000001 to π is less than this; *i.e.* much less than the ratio of one to one million.

129. An actual measurement of any kind must be made with the greatest care, with the most accurate instruments, by the most skilful observers, if it is to attain to anything like the accuracy represented by 'seven significant figures'; and, indeed, the value of any quantity given correct to 'four significant figures' is exact for most practical purposes.

130. A five-place table of logarithms is placed at the end of the book. (See table I.) Page 1 of this table contains the logarithms, to five places of decimals, of all numbers from 1 to 100. Pages 2–16 contain the mantissæ, to five decimal places, of the logarithms all numbers from 100 to 10000. But all numbers from 0 to ∞ is one of these numbers multiplied by ten affected with either a positive or negative index.

e.g. $4628326 = 4.628326 \times 10^6$; $.03986 = 3.986 \times 10^{-2}$.

Hence by prefixing to the mantissæ the proper characteristic (see Art. 126) we obtain the logarithm of any number, of not more than four significant figures, from 0 to ∞ .

131. To find the logarithm of a given number. (a) If the number contains not more than four significant figures. Find the mantissae from the table corresponding to these four significant figures and prefix the proper characteristic. The result is the logarithm required.

EXAMPLE 1. To find the logarithm of 4064.

$$4064 = 4.064 \cdot 10^3.$$

Referring to the table 1., page 8, we find, at the intersection of the row headed 406 and the column headed 4, the number .60895.

 $\therefore \log 4064. = 3.60895.$

EXAMPLE 2. To find log 04064. This logarithm differs from the former as to the characteristic, which is -2.

 $\therefore \log .04064 = 2.60895.$

(b) To find the logarithm of a number of more than four digits.

We shall assume that if the difference is small the difference between numbers is proportional to the difference of their logarithms. This proposition is proved in works on Algebra. If there are more than four digits in the number, we cannot obtain its logarithm directly from the table, but must *interpolate*. This is illustrated by the following example. To find the logarithm of 3456.4. This number lies between 3457 and 3456. Its logarithm therefore lies between log 3457 and log 3456.

 $\log 3457 - \log 3456 = 3.53870 - 353857 = .00013.$

If $\log 3456.4 = l$,

 $\log 3456.4 - \log 3456 = l - 3.53857.$

By the theorem stated above,

1:.00013 = .4: l − 3.53857; \therefore l = .4 × .00013 + 3.53857; \therefore log 3456.4 = 3.53862.

Or we may reason thus:

Since increasing 3456 by 1 increases its logarithm by .00013 increasing 3456 by .4 of 1 increases its logarithm by .4 of .00013 or by .000052.

In forming such products as $.4 \times .00013$, we retain only five decimal places. We increase the number occupying the fifth place by unity if the succeeding number is equal to or is greater than 5. We neglect the number occupying the sixth place if it is less than 5.

EXAMPLE. To find the logarithm of 56.452.

 $\log 56.46 = 1\ 75174$ $\log 56.45 = 1.75166$ 8 $.2 \times 8 = 1.6, \quad \therefore \ \log 56.452 = 1.75168.$

EXAMPLES. XXX.

Find logarithms of the following numbers :

1. 3562; 7.456; .00432.	3. .045624 ; .035421 ; .0072345.
2. 86421; 96.204; .00352.	4. 6789000 ; 32,456,000.

132. To find the number whose logarithm is given. The method of procedure is just the reverse of that of Art. 131, and will be illustrated by the following examples:

EXAMPLE 1. To find the number whose logarithm is 3.41447.

Looking in the body of the table of logarithms of numbers, we find, at the intersection of the line headed 259 and the column headed 7, the given mantissa 41447.

 \therefore log 2.597 = .41447. The characteristic 3 shows there are four figures to the left of the decimal point. Hence the number required is 2597.

EXAMPLE 2. The number whose logarithm is 5.41447 is 259700. The number whose logarithm is 2.41447 is .02597.

It may happen that the mantissa of the given logarithm does not occur in the table. We then proceed as follows:

To find the number whose logarithm is .43563.

The mantissæ next lower and next higher than the given mantissa are .43553 and .43569 respectively.

 $\log 2.727 = .43569,$ $\log 2.726 = .43553,$.43569 - .43553 = .00016,.43562 - .43553 = .00009,

Using the proportion of Art. 132,

.001 : .00016 = n - 2.726 : .00009,

where n is the desired number:

$$\therefore n = 2.72656.$$

Or thus:

Since the mantissa of the number is .00009 greater than the mantissa of log 2.726, and the mantissa of log 2.727 is .00016 greater, the number must be $\frac{9}{76}$ of .001 greater than 2.726.

The number obtained is not accurate to more than five significant figures. If the characteristic indicates that more than five figures are to the left of the decimal point, the remaining places are filled with ciphers. Thus in the problem solved we can rely only on 27265. The 6 is questionable.

EXAMPLES. XXXI.

1. Find the number whose logarithm is .56867.

2. Find the number whose logarithm is 4.66029.

3. Find the number whose logarithm is 6,39669.

4. Find the number whose logarithm is 4.64311.

5. Find the number whose logarithm is .75504.

LOGARITHMS

EXAMPLES. XXXII.

Find the values of the following correct to four significant figures :

1. $\sqrt[3]{451}$, 2. $\sqrt[5]{802}$, 3. $(273)^{\frac{4}{9}} \times (234)^{\frac{1}{4}}$, 4. $(451)^{\frac{3}{5}} \times (231)^{\frac{4}{3}}$, 5. $\left(\frac{192.5}{84}\right)^{3}$, 6. $\frac{(34.79)^{\frac{3}{2}}}{(41.25)^{\frac{3}{2}}}$, 7. $\frac{(24.76)^{\frac{2}{3}}}{(.0045)^{\frac{3}{2}}}$, 8. $\frac{7.89}{.0345} \times (89130)^{\frac{1}{7}}$, 9. $\frac{\frac{3}{9}\sqrt{(5.2)}}{5\sqrt{(11.31)}} \times (\frac{4}{9})^{-\frac{1}{2}}$, 9. $\frac{3}{9}\sqrt{(5.2)}}{5\sqrt{(11.31)}} \times (\frac{4}{9})^{-\frac{1}{2}}$, 9. $\frac{3}{9}\sqrt{(11.31)}} \times (\frac{4}{9})^{-\frac{1}{2}}$, 9. $\frac{3}{9}\sqrt{(11.31)}} \times (\frac{4}{9})^{-\frac{1}{2}}$, 9. $\frac{3}{9}\sqrt{(11.31)}} \times (\frac{3}{9}\sqrt{(11.31)}} \times (\frac{3}{9}\sqrt{(11.31)}} \times (\frac{3}{9}\sqrt{(11.31)}} \times (\frac{3}{9}\sqrt{(11.$

Solve the equations correct to four figures :

13. $10^x = 421$. **14.** $(\frac{2}{2}\frac{1}{0})^x = 3$. **15.** $(\frac{2}{2}\frac{0}{0}\frac{3}{0})^{2x} = 2$.

133. Since the trigonometric ratios are numbers we can find their logarithms. Since the sine of an angle is never greater than 1, the characteristic of its logarithm is negative (except for $\sin \theta = 1$).

To avoid the use of negative characteristics it is usual to add ten to the actual logarithm of $\sin \theta$ and call the result $\log \sin \theta$, e.g. the actual logarithm of $\sin 7^{\circ}$ is $\overline{1.08589}$, but as explained above it is written $\log \sin 7^{\circ} = 9.08589$. Similar remarks apply to the logarithm of the cosine of an angle, to the logarithm of tangents of angles from 0° to 45°, and to the logarithm of cotangents of angles from 45° to 90°.

Table II. contains the logarithmic sine, tangent, cotangent, and cosine for every ten seconds from 0° to 2° , and for every minute from 1° to 89° . From these we can find the logarithms of the trigonometric ratios of any angle, because (Art. 58) the ratios of any angle can be expressed in terms of the ratios of angles of the first quadrant.

134. To find log $\sin \theta$, having given θ . We shall illustrate the method of procedure by some examples.

EXAMPLE 1. To find $\log \sin 15^{\circ} 25'$, see tables, page 41, at the intersection of the line headed 25, in left margin, and the column headed $\log \sin \theta$ under 15° , we find 9.42416, *i.e.* $\log \sin 15^{\circ} 25' = 9.42461$.

EXAMPLE 2. To find $\log \sin 74^{\circ} 20' 40''$.

Log sin 74° 20′ 40″ cannot be found directly in the tables. Hence we must *interpolate*.

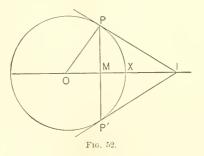
We assume the theorem, A very small change in an angle is proportional to the corresponding change in its sine.¹

¹ We have added a proof of this theorem in Arts. 137-139.

From the tables, at the intersection of the line headed 20 in the right margin and column headed $\log \sin \theta$ above 74, we find 9.98356, *i.e.*

> $\log \sin 74^{\circ} 20' = 9.98356$ Similarly $\log \sin 74^{\circ} 21' = 9.98359$

Hence the difference of 1' (*i.e.* 60'') in the angle corresponds to a difference .00003 in the log sin of its angle. Hence by theorem quoted above, to a difference of 40" in the angle corresponds a difference of $\frac{40}{60}$ of .00003 = .00002.


> $\therefore \log \sin 74^{\circ} 20' 40'' = 9.98356 \pm .00002$ = 9.98358.

135. To find θ , having given log sin θ . This is the converse of Art. 134. The reasoning is not essentially different from that of Art. 131.

136. The sine, cosine, etc., are sometimes called the natural sine. natural cosine, etc. Table III., a, b, c, d, contains the natural trigonometric functions from 0° to 90° at intervals of 6'.

***137.** To prove $\sin \theta < \theta \tan \theta$. Let P'XP be a circle with centre O, and radius OP. Draw the tangents PI and P'I. Connect PP'.

Let θ be the *circular* measure of *XOP*. Then 2θ is the circular measure of P'OP. Now

PP' < are PP < (PI + IP').(Geom.) $\therefore PM < \text{are } XP < PI.$ $\frac{PM}{\Omega P} < \frac{\operatorname{are} XP}{\Omega P} < \frac{PI}{\Omega P}$ (1)are $XP = OP \cdot \theta$. Substituting in (1), $\sin \theta < \theta < \tan \theta$. (2)Q.E.D.

But

* **138**. To prove when θ is very small.

$$\frac{\sin \theta}{\theta} = 1, \text{ approximately}; \\ \frac{\tan \theta}{\theta} = 1, \text{ approximately}.$$

Divide (2) of the last article by $\sin \theta$.

$$1 < \frac{\theta}{\sin \theta} < \cos \theta.$$

By Art. 39, when θ is very small, $\cos \theta$ approaches 1. But $\frac{\theta}{\sin \theta}$ lies between 1 and $\cos \theta$. Hence, approximately, $\frac{\theta}{\sin \theta} = 1$ when θ is *very small*. $\frac{\theta}{\tan \theta} = \frac{\theta}{\sin \theta} \cos \theta$. Hence, as before, $\frac{\theta}{\tan \theta} = 1$ when θ is *very small*.

It must not be forgotten that θ is given in circular measure.

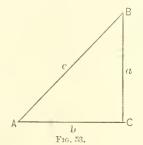
*139.
$$\frac{\sin(\theta + x) - \sin\theta}{\sin(\theta + y) - \sin\theta} = \frac{\sin\theta\cos x + \cos\theta\sin x - \sin\theta}{\sin\theta\cos y + \cos\theta\sin y - \sin\theta}$$

If now x is very small, and y is very small, we may write $\cos x = 1$, $\sin x = x$; and if y is very small, $\cos y = 1$, $\sin y = y$.

: when x and y are very small,
$$\frac{\sin(\theta + x) - \sin\theta}{\sin(\theta + y) - \sin\theta} = \frac{x}{y}$$
. (1)

Or, a very small change in an angle is proportional to the corresponding change in the sine of that angle.

In a similar way this law of proportional change may be established for each of the natural functions.



CHAPTER XV

ON THE SOLUTION OF TRIANGLES

140. The problem known as the solution of triangles may be stated thus: When a sufficient number of the parts of a triangle are given, to find the magnitude of each of the other parts.

141. Solution of the right triangle (see Ch. VI.). Let ACB be a right-angled triangle with the right angle at C.

We have

 $a = c \sin A = c \cos B;$ $b = c \cos A = c \sin B;$ $a = b \tan A = b \cot B.$

The signs of the ratios are all positive.

6 1 L 1 1 1	$\log a = \log c + \log \sin A - 10;$	(Art. 132.)	
		$\log b = \log c + \log \cos A - 10;$	(Art. 132.)
		$\log a = \log b + \log \tan d^{1}$	(Art. 132.)

EXAMPLES. XXXIII.

Given a = 12562, A = 12°. Find B, b, and c.
 Given c = 35, B = 37° 10′ 5′′. Solve the triangle.
 Given b = 100, B = 42°. Find c and a.

¹ See footnote, page 94.

142. The student has proved, while studying Geometry, that a triangle is uniquely determined when there are given :

I. Three sides.

II. One side and two angles.

III. Two sides and the included angle. And

IV. That either one, two, or no triangles are determined when two sides and the angle opposite one of them is given.

When, therefore, three parts (one of which is a side) are given, the other parts can be calculated. There are four cases.

Case I.

143. Given three sides, *a*, *b*, *c*. We find two of the angles from the formula

(Art. 141, I.)

$$\tan\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}};$$
$$\tan\frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}.$$

The third angle $C = 180^{\circ} - A - B$.

144. In practical work we proceed as follows:

$$\log \tan \frac{A}{2} = \log \sqrt{\frac{(s-b)(s-c)}{s(s-c)}};$$

or,

$$\log \tan \frac{4}{2} = \frac{1}{2} \{ \log (s-b) + \log (s-c) - \log s - \log (s-a) \}.$$

Similarly,

$$\log \tan \frac{B}{2} = \frac{1}{2} \{ \log (s-c) + \log (s-a) - \log s - \log (s-b) \}.$$

145. Either of the formulæ

$$\lim_{t \to 0} \frac{1}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}, \cos \frac{1}{2} = \sqrt{\frac{s(s-a)}{bc}}$$

may also be used as above.

The $\sin \frac{A}{2}$ and the $\cos \frac{A}{2}$ formulæ are either of them as convenient as the $\tan \frac{A}{2}$ formula, when one of the angles only is to be found. If all the angles are to be found, the tangent formulæ are convenient, because we can find the log tangents of two half angles from the same four logs, viz. log s, log (s - a), log (s - b), log (s - c). To find the log sines of two half angles we require the six logarithms, viz. $\log (s - a)$, $\log (s - b)$, $\log (s - c)$, $\log a$, $\log b$, $\log c$.

EXAMPLE. Given a = 275.35, b = 189.28, c = 301.47 chains; find A and B. Here, s = 383.05, s - a = 107.70, s - b = 193.77, s - c = 81.58.

Then
$$\log \tan \frac{A}{2} = \frac{1}{2} \{\log 193.77 + \log 81.58 - \log 383.05 - \log 107.70\}$$

= $\frac{1}{2} \{2.28728 + 1.91158 - 2.58325 - 2.03221\}$ '
= 9.79169^{-1} (Art. 132), [From the tables.]

whence

$$\begin{array}{l} \begin{array}{l} & & \\ \hline 2 \end{array} = 51\ 45\ 26.5\ , \ .\ A = 05\ 50\ 51\ .\ A gamma, \\ \\ & \\ \begin{array}{l} \text{og tan} \ B \\ \hline 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 1 \\ \hline 3 \\ \hline 2 \\ \hline 1 \\ \hline 3 \\ \hline 3 \\ \hline 1 \\ \hline 3 \\ \hline 3 \\ \hline 1 \\ \hline 3 \\ \hline 3 \\ \hline 1 \\ \hline 3 \\ \hline 3 \\ \hline 1 \\ \hline 3 \\ \hline 3 \\ \hline 3 \\ \hline 1 \\ \hline 3 \\ \hline 3$$

146. This case may also be solved by the formula

$$\cos A = \frac{b^2 + c^2 - a^2}{2 bc}$$

But this formula is not adapted for logarithmic calculation, and therefore is seldom used in practice.

It may sometimes be used with advantage, when the given lengths of a, b, c are small.

EXAMPLE. Find the greatest angle of the triangle whose sides are 13, 14, 15. Let a = 15, b = 14, c = 13. Then the greatest angle is A.

Now, $\cos A = \frac{14^2 + 13^2 - 15^2}{2 \times 14 \times 13} = \frac{-140}{2 \times 14 \times 13} = \frac{5}{13} = .384615$ = $\cos 67^{\circ} 23'$, nearly. [By the table of natural cosines.] ... the greatest angle = $67^{\circ} 23'$.

EXAMPLES. XXXIV.

1. If a = 352.25, b = 513.27, c = 482.68 yards, find the angles A and B.

2. Find the two largest angles of the triangle whose sides are 484, 376, 522 feet.

3. Given a = .641, b = .529, c = .702; find two largest angles of the triangle.

4. Given a = 2, b = 1.64, c = 2.075; find B.

5. If a = 3811, b = 3850, c = 4090 yards, find C.

6. The sides are 2, $\sqrt{2}$, and $\sqrt{3} - 1$; find the angles.

¹ The result here is really 1.79169, but we have added ten to it in order to make this number agree with the one given in the table (see Art. 132). In the example, Art. 148, each of the values of $\log \sin A$ and $\log \sin B$ are ten too large; since one is negative and the other positive the result is not affected. Little difficulty will be experienced, if careful attention is given to Art. 132.

THE SOLUTION OF TRIANGLES

Case II.

147. Given one side and two angles, as a, B, C. First, $A = 180^{\circ} - B - C$; which determines A.

Next,

$$\frac{b}{\sin B} = \frac{a}{\sin A}$$
, or, $b = \frac{a \cdot \sin B}{\sin A}$;

and,

$$\frac{c}{\sin C} = \frac{a}{\sin A}$$
, or, $c = \frac{a \cdot \sin C}{\sin A}$.

These determine b and c.

S

148. In practical work we proceed as follows:

Since

$$b = \frac{a \cdot \sin B}{\sin A}$$

$$\therefore \log b = \log \frac{a \cdot \sin B}{\sin A},$$

 $\therefore \log b = \log_{a} a + \log \sin B - \log \sin A.$

Similarly, $\log c = \log a + \log \sin C - \log \sin A$. EXAMPLE. Given that c = 1764.3 feet, $C = 18^{\circ} 27'$, and $B = 66^{\circ} 39'$; find b. From the tables we find $\log 1764.3 = 3.24657$.

> log sin 18° 27′ = 9.50034, log sin 66° 39′ = 9.96289 ; ∴ log b = 3.24657 + 9.96289 - 9.50034 $= 3.70912 = \log 5118.2$; ∴ b = 5118.2 feet.

EXAMPLES. XXXV.

1.
$$A = 53^{\circ} 24'$$
, $B = 66^{\circ} 27'$, $c = 338.65$ yards. Find *a* and *C*.

2. Find c, having given a = 1000, $A = 50^{\circ}$, $C = 66^{\circ}$.

Find b, having given B = 32° 15′, C = 21° 47′ 20″, a = 34 feet.
 Given c = .0161, A = 35° 15′, C = 123° 39′; solve the triangle.

Case III.

149. Given two sides and the included angle, as b, c, A. First, $B + C = 180^{\circ} - A$. Thus (B + C) is determined.

Next,
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{4}{2}$$
.

Thus (B - C) is determined.

And B and C can be found when the values of (B + C) and (B-C) are known.

Lastly,
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
 or $a = \frac{b \cdot \sin A}{\sin B}$.

Whence a is determined.

150. In practical work we proceed as follows:

Since
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$
,

$$\therefore \log\left(\tan\frac{B-C}{2}\right) = \log\left(b-c\right) - \log\left(b+c\right) + \log\left(\cot\frac{4}{2}\right),$$

so, since $a = \frac{b \cdot \sin 4}{\sin b},$

Also, since

$$b = \log b + \log \sin A - \log \sin B$$
, as in Case II

EXAMPLE. Given b = *456.12 chains, c = 296.86 chains, and $A = 74^{\circ} 20'$. find the other angles.

Here,
$$b - c = 159.26, b + c = 752.98.$$

From the table we find

og 159.26 = 2.2021, and log 752.08 = 2.87678,
log cot
$$37^{\circ} 10' = .1202; ^{1}$$

$$\therefore \log \tan \frac{B-C}{2} = 2.20210 - 2.87678 + .12026 = 9.44558^{1} = \log \tan 15^{\circ} 35' 18'';$$

$$\therefore B-C = 31^{\circ} 10' 36'', \text{ and } B+C = 180^{\circ} - 74^{\circ} 20'.$$

$$B + C = 105^{\circ} 40';$$

$$\therefore 2 B = 136^{\circ} 50' 36''; 2 C = 74^{\circ} 29' 24'',$$
$$B = 68^{\circ} 25' 18''; \text{ or, } C = 37^{\circ} 14' 42''.$$

or

151. The formula
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 may be used in simple eases.

EXAMPLE. If b = 35 feet, c = 21 feet, and $A = 50^{\circ}$, find a, given that $\cos 50^\circ = .643.$ $a^2 = 35^2 + 21^2 - 2 \times 35 \times 21 \times \cos 50^\circ;$ Here

$$\therefore \ \frac{a^2}{7^2} = 5^2 + 3^2 - 2 \times 5 \times 3 \times \cos 50^\circ, = 25 + 9 - 30 \times .643, = 14.71,$$
$$\frac{a}{7} = 3.82 \text{ nearly ; or, } a = 26.74 = \text{ about } 26^3_4 \text{ feet.}$$

¹ See footnote, page 94.

EXAMPLES. XXXVI.

1. b = 19 feet, c = 20 feet, $A = 60^{\circ}$; find B and C.

2. a = 376.375 feet, b = 251.765 feet, $C = 78^{\circ} 26'$; find B and A.

3. $a = .3, b = .363, C = 124^{\circ} 56'$; solve the triangle.

4. $a = 135, b = 105, C = 60^{\circ}$; find A.

5. $b = 8, c = 11, A = 93^{\circ} 35'$; find a.

6. In a certain triangle two of the sides are 12 and 16 respectively; the angle included by them is 160.5° ; find the other angles.

Case IV.

152. Given two sides and the angle opposite one of them, as b, c, B.

First, since
$$\frac{c}{\sin C} = \frac{b}{\sin B}$$
; $\therefore \sin C = \frac{c \sin B}{b}$.

C must be found from this equation.

When C is known, $A = 180^\circ - B - C$,

$$\iota = \frac{b \sin A}{\sin B}$$

and

Which solves the triangle.

153. It should be noticed, however, that the angle C, found from the trigonometrical equation $\sin C = a$ given quantity, where C is an angle of a triangle, has two values, one less than 90°, and one greater than 90° (Art. 103).

The question arises, Are both these values admissible?

This may be decided as follows:

If B is not less than 90°, C must be less than 90°; and the smaller value for C only is admissible.

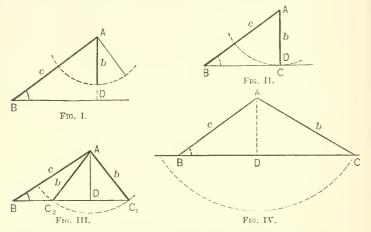
If B is less than 90° we proceed thus :

1. If b is less than $c \sin B$, then $\sin C$, which $=\frac{c \sin B}{b}$, is greater than 1. This is impossible. Therefore if b is less than $c \sin B$, there is no solution whatever.

2. If b is equal to $c \sin B$, then $\sin C = 1$, and therefore $C = 90^{\circ}$; and there is only one value of C, viz. 90°.

3. If b is greater than $c \sin B_{\lambda}$ and less than c, then B is less than C, and C may be obtuse or acute. In this case C may have either of the values found from the equation $\sin C = \frac{c \sin B}{b}$. Hence there are two solutions, and the triangle is said to be ambiguous.

н


4. If b is equal to or greater than c, then B is equal to or greater than C, so that C must be an acute angle; and the smaller value for C only is admissible.

154. The same results may be obtained geometrically.

Construction. Draw AB = c; make the angle ABD = the given angle B; with centre A and radius = b describe a circle; draw AD perpendicular to BD.

Then $AD = c \sin B$.

1. If b is less than $c \sin B$, *i.e.* less than AD, the circle will not cut BD at all, and the construction fails. (Fig. I.)

2. If b is equal to AD, the circle will *touch* the line BD in the point D, and the required triangle is the **right-angled** triangle ABD. (Fig. II.)

3. If b is greater than AD and less than AB, *i.e.* than c, the circle will cut the line BD in two points C_1 , C_2 , each on the same side of B. And we get two triangles ABC_1 , ABC_2 , each satisfying the given condition. (Fig. III.)

4. If b is equal to c, the circle cuts BD in B and in one other point C; if b is greater than c, the circle cuts BD in two points, but on *opposite* sides of B. In either case there is only **one** triangle satisfying the given condition. (Fig. IV.)

155. We may also obtain the same results algebraically from the formula $b^2 = c^2 + a^2 - 2 ca \cos B$.

In this b, c, B are given, a is unknown. Write x for a, and we get the quadratic equation,

 $x^2 - 2 c \cos B \cdot x = b^2 - c^2.$

Whence, $x^2 - 2 c \cos B \cdot x + c^2 \cos^2 B = b^2 - c^2 + c^2 \cos^2 B$ = $b^2 - c^2 \sin^2 B$;

$$\therefore x = c \cos B \pm \sqrt{b^2 - c^2} \sin^2 B.$$

Let a_1, a_2 be the two values of x thus obtained; then

$$a_{1} = c \cos B + \sqrt{b^{2} - c^{2} \sin^{2} B}; \\ a_{2} = c \cos B - \sqrt{b^{2} - c^{2} \sin^{2} B}. \end{cases}$$

Which of these two solutions is admissible may be decided as follows:

1. When b is less than $c \sin B$, then $(b^2 - c^2 \sin^2 B)$ is negative, so that a_1, a_2 are **impossible** quantities.

2. When b is equal to $c \sin B$, then $(b^2 - c^2 \sin^2 B) = 0$, and $a_1 = a_2$; thus the *two* solutions become one.

3. When b is greater than $c \sin B$, then the two values a_1 , a_2 are different and positive unless

 $egin{aligned} &\sqrt{b^2-c^2\sin^2 B} \ ext{is} \ > c\cos B; \end{aligned}$ i.e. unless $b^2-c^2\sin^2 B \ > c^2\cos^2 B,$ i.e. unless $b^2 \ > c^2. \end{aligned}$

4. When b is equal to c, then $a_2 = 0$; if b is greater than c, then a_2 is negative, and is therefore inadmissible. In either of these cases a_1 is the **only** available solution.

156. We give two examples. In the first there are two solutions; in the second there is only one.

EXAMPLE 1. Find A and C, having given that b = 379.41 chains, c = 483.74 chains, and $B = 34^{\circ} 11'$.

 $\log \sin C = \log c + \log \sin B - \log b$ = 2.68461 + 9.74961 - 2.57910 = 9.85511 = L sin 45° 45'; ... C = 45° 45', or 180° - 45° 45' = 134° 15'.

Since b is less than c, each of these values is admissible.

When $C = 45^{\circ} 45'$, then $A = 100^{\circ} 4'$. When $C = 134^{\circ} 15'$, then $A = -11^{\circ} 34'$.

EXAMPLE 2. Find A and C, when b = 483.74 chains, c = 379.14 chains, and $B = 34^{\circ} 11'$.

$$\log \sin C = \log c + \log \sin B - \log b$$

= 2.5791 + 0.7496148 - 2.68461
= 9.64411 = log sin 26° 9';
... C = 26° 9', or 180° - 26° 9' = 153° 514

Since b is greater than c, C must be less than 90° , and the larger value for C is inadmissible.

[It is also clear that $(153^{\circ} 51' + 34^{\circ} 11')$ is $> 180^{\circ}$.] $\therefore C = 26^{\circ} 9', A = 119^{\circ} 40'.$

EXAMPLES, XXXVII.

1. Discuss the following problems, using the method of Art. 153.

(a) $B = 45^{\circ}$; c = 12; $b = \sqrt{50}$. (b) $B = 45^{\circ}$; c = 10; $b = \sqrt{50}$. (c) $B = 45^{\circ}$; $c = \sqrt{40}$; $b = \sqrt{50}$. (d) $B = 45^{\circ}$; $c = \sqrt{75}$; $b = \sqrt{50}$. 2. If $B = 40^{\circ}$, b = 140.5 ft., a = 170.6 ft. Find A and C.

3. Find B, C, and c, having given that $A = 50^{\circ}$, b = 97, a = 119. (See Ex. 2.)

4. If $C = 30^{\circ}$, b = 100, c = 45, is the triangle ambiguous ?

157. It is sometimes easier to use natural sines, cosines, and tangents (Art. 136), than to use processes of computation involving logarithms. The theory of the solution of triangles is the same in either case, and it is only a question as to which process involves the greater amount of labor, to perform the indicated arithmetical processes, or to use logarithms.

EXAMPLE.
$$a = 50$$
, $A = 78^{\circ}$, $B = 27^{\circ}$; find b.
We have $b = a \frac{\sin B}{\sin A} = 50 \times \frac{\sin 27^{\circ}}{\sin 78^{\circ}} = \frac{50 \times 4540}{9781}$
 $\therefore b = 23.1.$

MISCELLANEOUS EXAMPLES. XXXVIII.

1. Find A when a = 374.5, b = 576.2, c = 759.3 feet.

- **2.** Find B when a = 4001, b = 9760, c = 7942 yards.
- **3.** Find C when a = 8761.2, b = 7643, c = 4693.8 chains.

4. Find B when $A = 86^{\circ} 19'$, b = 4930, c = 5471 chains.

5. Find C when $B = 32^{\circ} 58'$, c = 1873.5, a = 764.2 chains.

6. Find c when $C = 108^{\circ} 27'$, a = 36541, b = 89170 feet.

7. Find c when $B = 74^{\circ} 10'$, $C = 62^{\circ} 45'$, b = 3720 yards.

8. Find b when $B = 100^{\circ} 19'$, $C = 44^{\circ} 59'$, a = 1000 chains.

9. Find a when $B = 123^{\circ} 7' 20''$, $C = 15^{\circ} 9'$, c = 9964 yards.

Find the other two angles in the six following triangles :

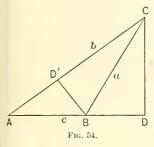
10. $C = 100^{\circ} 37'$, b = 1450, c = 6374 chains.

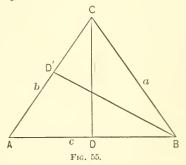
11. $C = 52^{\circ} 10', b = 643, c = 872$ chains.

12. $A = 76^{\circ} 2' 30'', b = 1000, a = 2000$ chains.

13. $C = 54^{\circ} 23', b = 873.4, c = 752.8$ feet.

14. $C = 18^{\circ} 21', b = 674.5, c = 269.7$ chains.


15. $A = 29^{\circ} 11' 43'', b = 7934, a = 4379$ feet.


16. The difference between the angles at the base of a triangle is 17° 48', and the sides subtending those angles are 105.25 feet and 76.75 feet; find the third angle.

17. If b: c = 4:5, a = 1000 yards and $A = 37^{\circ} 19'$; find b.

The student will find some Examples of Solution of Triangles without the aid of logarithms, in Examples XLII.

158. To find the Area of a Triangle.

In either figure Let Δ = area of triangle *ABC*. Let *CD* be perpendicular to *AB*. Let length of *CD* = p.

 $\Delta = \frac{1}{2} cp; \qquad (Geom.)$ $\therefore \ \Delta = \frac{1}{2} a \sin B \cdot c = \frac{1}{2} a c \sin B; \qquad (Geom.)$ or $\Delta = \frac{1}{2} b \sin A \cdot c = \frac{1}{2} b c \sin A.$

Similarly, if BD' is perpendicular to $\varDelta C$,

 $\Delta = \frac{1}{2} ab \sin C.$

In words:

The area of a triangle equals the continued product of any two sides and the sine of the angle included by them.

159. By i., Art. 115,
$$\sin A = \frac{2}{bc} \times \sqrt{s(s-a)(s-b)(s-c)};$$

 $\therefore \Delta = \sqrt{s(s-a)(s-b)(s-c)} = S.$ (Art. 113.)

160. Data, sufficient for the solution of a triangle, may be given in other terms than that of sides and angles, as in the four cases considered.

e.g. The triangle is determined when there are given area and two angles.

For, suppose in triangle ABC, we are given Δ , A, B.

$$ac \sin B = 2 \Delta. \quad \therefore \quad ac = \frac{2 \Delta}{\sin B};$$

$$a = \frac{c \sin A}{\sin C} \quad \therefore \quad c^2 = \frac{2 \Delta \sin C}{\sin A \sin B}; \qquad \text{Q.E.D.}$$

See the following list of exercises for similar examples:

EXAMPLES. XXXIX.

1. Show that the triangle is determined when there are given : area, one angle, and side opposite the angle.

2. Find the area of the triangle ABC when

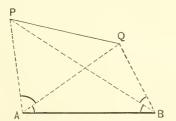
(i.) a = 4 feet, b = 10 feet, $C = 30^{\circ}$. (ii.) b = 5 inches, c = 20 inches, $A = 60^{\circ}$. (iii.) $c = 66\frac{2}{3}$ yards, a = 15 yards, $B = 17^{\circ} 14'$ [sin 17° 14' = .29626]. (iv.) a = 13, b = 14, c = 15. (v.) a = 10 feet, the perpendicular from A on BC = 20 feet. (vi.) a = 625, b = 505, c = 904.

CHAPTER XVI

ON THE MEASUREMENT OF HEIGHTS AND DISTANCES

161. By the aid of the solution of triangles

we can find the distance between points which are inaccessible; we can calculate the magnitude of angles which cannot be practically


observed;

we can find the relative heights of distant and inaccessible points.

The method on which the trigonometrical survey of a country s conducted affords the following illustration:

162. To find the distance between two distant objects.

Two convenient positions A and B, on a level plain as far apart is possible, having been selected, the distance between A and B is

neasured with the greatest possible care. This line AB is called the base line.

Next, the two distant objects, P and Q (church spires, for nstance), visible from A and B, are chosen.

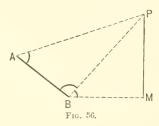
The angles PAB, PBA are observed. Then by Case II. Ch. XV., the lengths of the lines PA, PB are calculated.

Again, the angles QAB, QBA are observed; and by Case II. the engths of QA and QB are calculated.

Thus the lengths of P.1 and Q.1 are found.

The angle PAQ is observed; and then by Case III. the length of PQ is calculated.

TRIGONOMETRY FOR BEGINNERS


104

Thus we are able to find not only the length PQ, but the angle which PQ makes with any line in the figure. The points P and Qare not necessarily accessible, the only condition being that P and Q must be visible from both A and B.

163. In practice, the points P and Q will generally be accessible, and then the line PQ, whose length has been calculated, may be used as a new base to find other distances.

164. To find the height of a distant object above the point of observation.

Let B be the point of observation; P the distant object. From B measure a base line BA of any convenient length, in any convenient direction; observe the angles PAB, PBA, and by Case II. Ch. XV.

calculate the length of BP. Next observe at B the 'angle of elevation' of P; that is, the angle which the line BP makes with the horizontal line BM, M being the point in which the vertical line through P cuts the horizontal plane through B.

Then PM, which is the vertical height of P above B, can be calculated, for $PM = BP \cdot \sin MBP$.

EXAMPLE 1. The distance between a church spire A and a milestone B is known to be 1764.3 feet; C is a distant spire. The angle CAB is $94^{\circ}54'$, and the angle CBA is $66^{\circ}39'$; find the distance of C from A.

ABC is a triangle, and we know one side, c, and two angles (A and B), and therefore it can be solved by Case II. Ch. XV.

The angle $ACB = 180^{\circ} - 94^{\circ} 54' - 66^{\circ} 39' = 18^{\circ} 27'.$

Therefore the triangle is the same as that solved in Art. 148. Therefore AC = 5118.2 feet.

EXAMPLE 2. If the spire C, in the last example, stands on a hill, and the angle of elevation of its highest point is observed at A to be $4^{\circ}19'$; find how much higher C is than A.

The required height $x = AC \cdot \sin 4^{\circ} 19'$ and AC is 5118.2 feet;

$$\log x = \log \left(AC \cdot \sin 4^{\circ} 19'\right)$$

 $= \log 5118.2 + \log \sin 4^{\circ} 19' - 10$

= 3.70911 + 8.87661

 $= 2.58573 = \log 385.24.$

... x = 385 ft. 3 in. nearly.

EXAMPLES. XL.

(EXAMPLES VII. CONSIST OF EASY EXAMPLES ON THIS SUBJECT.)

1. Two straight roads, inclined to one another at an angle of 60° , lead from a town A to two villages B and C; B on one road distant 30 miles from A, and C on the other road distant 15 miles from A. Find the distance from B to C. Ans. 25,98 m.

2. Two ships leave harbor together, one sailing N.E. at the rate of $7\frac{1}{2}$ miles an hour, and the other sailing north at the rate of 10 miles an hour. Prove that the distance between the ships after an hour and a half is 10.6 miles.

3. A and B are two consecutive milestones on a straight road, and C is a distant spire. The angles ABC and BAC are observed to be 120° and 45° respectively. Show that the distance of the spire from A is 3.346 miles.

4. If the spire C in the last question stands on a hill, and its angle of elevation at A is 15° , show that it is .896 of a mile higher than A.

5. If in Question (3) there is another spire D such that the angles DBA and DAB are 45° and 90° respectively and the angle DAC is 45°, prove that the distance from C to D is $2\frac{3}{4}$ miles very nearly.

6. A and B are two consecutive milestones on a straight road, and C is the \bullet chimney of a house visible from both A and B. The angles C_AB and CBA are observed to be 36° 18' and 120° 27', respectively. Show that C is 2639.5 yards from B.

7. A and B are two points on opposite sides of a mountain, and C is a place visible from both A and B. It is ascertained that C is distant 1794 feet and 3140 feet from A and B, respectively, and the angle ACB is 58° 17′. Show that the angle which the line pointing from A to B makes with AC is 80° 55′ 49′′.

8. A and B are two hill-tops 34920 feet apart, and C is the top of a distant hill. The angles CAB and CBA are observed to be $61^{\circ}53'$ and $76^{\circ}49'$, respectively. Prove that the distance from A to C is 51515 feet.

$\log 34920 = 4.54307$;	$\log \sin 76^{\circ} 49' = 9.98840;$
$\log 51515 = 4.71193;$	$\log \operatorname{cosec} 41^\circ 18' = 10.18045.$

9. From two stations A and B on shore, 3742 yards apart, a ship C is observed at sea. The angles BAC, ABC are simultaneously observed to be 72°34' and 81°41', respectively. Prove that the distance from A to the ship is 8522.7 yards.

 $\log 3742 = 3.57310$; $\log \sin 81^{\circ} 41' = 9.99540$; $\log 8522.7 = 3.90057$; $\log \csc 25^{\circ} 45' = 10.36206$.

10. The distance between two mountain peaks is known to be 4970 yards, and the angle of elevation of one of them when seen from the other is $9^{\circ} 14'$. How much higher is the first than the second? Sin $9^{\circ} 14' = .16045$.

21ns. 797.5 yards.

11. Two straight railways intersect at an angle of 60° . From their point of intersection two trains start, one on each line, one at the rate of 40 miles an hour. Find the rate of the second train that at the end of an hour they may be 35 miles apart. Ans. Either 25 or 15 miles an hour. (Art. 153.)

12. A and B are two positions on opposite sides of a mountain; C is a point visible from A and B; AC and BC are 10 miles and 8 miles, respectively, and the angle BCA is 60°. Prove that the distance between A and B is 9.165 miles.

13. A and B are consecutive milestones on a straight road; C is the top of a distant mountain. At A the angle CAB is observed to be $38^{\circ}19'$; at B the angle CBA is observed to be $132^{\circ}42'$, and the angle of elevation of C at B is $10^{\circ}15'$; show that the top of the mountain is 1243.5 yards higher than B.

$$\begin{split} \log \sin 38^\circ 19' = & 9.79239 \; ; & \log 1760 = 3.24551 \; ; \\ \log \operatorname{cosec} 8^\circ 59' = & 10.80646 \; ; & \log 1243.5 = 3.09465 \; ; \\ \log \sin 10^\circ 15' = & 9.25028. \end{split}$$

14. A base line AB, 1000 feet long, is measured along the straight bank of a river; C is an object on the opposite bank; the angles BAC and CBAare observed to be 65° 37′ and 53° 4′ respectively; prove that the perpendicular breadth of the river at C is 829.87 feet.

15. A is the foot of a vertical pole, B and C are due east of A, and D is due south of C. The elevation of the pole at B is double that at C, and the angle subtended by AB at D is $\tan^{-1}\frac{1}{3}$. Also BC = 20 feet, CD = 30; find the height of the pole. — Hobson's Trig.

16. Two towers, one 200 feet high, the other 150 feet high, standing on a horizontal plane, subtend, at a point in the plane, angles of 30° and 60° respectively. The horizontal angle that their bases subtend at the same point is 120° ; how far are the two towers apart ?

17. The diagonals of a parallelogram are in length d_1 and d_2 , the angle between them is ϕ ; show that the area of a parallelogram is $\frac{1}{2} d_1 d_2 \sin \phi$.

18. A man walking along a straight road at the rate of three miles an hour sees in front of him at an elevation of 60° a balloon which is travelling horizontally in the same direction at the rate of six miles an hour; ten minutes after he observes that the elevation is 30° ; prove that the height of the balloon above the road is $440 \sqrt{3}$ yards.

19. A person standing at a point A, due south of a tower built on a horizontal plain, observes the altitude of the tower to be 60°. He then walks to a point B due west from A and observes the altitude to be 45°, and then at the point C in AB produced he observes the altitude to be 30°; prove that AB = BC.

20. The angle of elevation of a balloon, which is ascending uniformly and vertically, when it is one mile high is observed to be $35^{\circ}20'$; 20 minutes later the elevation is observed to be $55^{\circ}40'$. How fast is the balloon moving ?

Ans. $3(\sin 20^{\circ} 20')(\sec 55^{\circ} 40')(\csc 35^{\circ} 20')$ miles per hour.

21. A tower stands at the foot of an inclined plane whose inclination to the horizon is 9° ; a line is measured up the incline from the foot of the tower of 100 feet in length. At the upper extremity of this line the tower subtends an angle of 54° ; find the height of the tower. Ans. 114.4 feet.

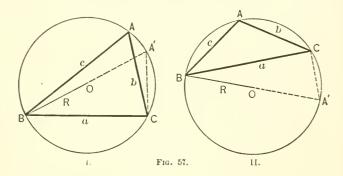
22. The altitude of a certain rock is observed to be 47° , and after walking 1000 feet towards the rock, up a slope inclined at an angle of 32° to the horizon the observer finds that the altitude is 77° ; prove that the vertical height of the rock above the first point of observation is 1034 feet. Sin $47^{\circ} = .73135$.

23. At the top of a chiminey 150 feet high standing at one corner of a triangular yard, the angle subtended by the adjacent sides of the yard are 30° and 45° respectively; while that subtended by the opposite side is 30° ; show that the lengths of the sides are 150 feet, 86.6 feet, and 106 feet respectively.

24. A flagstaff h feet stands on the top of a tower. From a point in the plane on which the tower stands, the angles of elevation of the top and bottom of the flagstaff are observed to be α and β respectively; prove that the height of the tower is $\frac{h \sin \beta \cos \alpha}{2}$ feet.

$$\frac{1}{\sin\left(\alpha-\beta\right)}$$

25. The angular elevation of the top of a steeple at a place due south of it is 45°, and at another place due west of the former station and distant *a* feet from it the elevation is 15°; show that the height of the steeple is $\frac{a}{2}(3^{\frac{1}{4}}-3^{-\frac{1}{4}})$ feet.


* CHAPTER XVII

MISCELLANEOUS THEOREMS

165. To find the radius of the Circumscribing Circle.

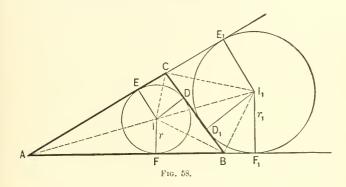
Let a circle AA'CB be described about the triangle ABC. Let R stand for its radius. Let O be its centre. Join BO, and produce it to cut the circumference in A'. Join A'C.

Then, Fig. I., the angles BAC, BA'C in the same segment are equal; Fig. II., the angles BAC, BA'C are supplementary; also the angle BC'A in a semicircle is a right angle.

Therefore, $\frac{CB}{A'B} = \sin CA'B = \sin CAB = \sin A$,

$$\frac{a}{2R} = \sin A; \quad \therefore \ 2R = \frac{a}{\sin A}.$$

166. Similarly, it may be proved that


οг,

$$2 R = \frac{b}{\sin B}; \text{ and that } 2 R = \frac{c}{\sin C}.$$

Hence,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2 R.$$

Thus *d*, the value of each of these fractions, is the diameter of the circumscribing circle, which is another proof of the "law of sines," viz.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

167. To find the radius of the Inscribed Circle.

Let D, E, F be the points in which the circle inscribed in the triangle ABC touches the sides. Let I be the centre of the circle; let r be its radius. Then ID = IE = IF = r.

The area of the triangle ABC

or,

= area of IBC + area of ICA + area of IAB. And the area of the triangle $IBC = \frac{1}{2}ID \cdot BC = \frac{1}{2}r \cdot a$; \therefore area of $ABC = \frac{1}{2}ID \cdot BC + \frac{1}{2}IE \cdot CA + \frac{1}{2}IF \cdot AB$ $= \frac{1}{2}ra + \frac{1}{2}rb + \frac{1}{2}rc$; $\Delta = \frac{1}{2}r(a + b + c) = \frac{1}{2}r \cdot 2s = rs$. $\therefore r = \frac{\Delta}{s} = \frac{S}{s}$.

168. A circle which touches one of the sides of a triangle and the other two sides produced is called an **Escribed Circle** of the triangle.

169. To find the radius of an Escribed Circle.

Let an escribed circle touch the side BC and the sides AC, ABproduced in the points D_1 , E_1 , F_1 respectively. Let I_1 be its centre, i its radius. Then

$$I_1 D_1 = I_1 E_1 = I_1 F_1 = r_1.$$

The area of the triangle ABC

$$= \text{ area of } ABI_1C - \text{ area of } I_1BC,$$

$$= \text{ area of } I_1CA + \text{ area of } I_1AB - \text{ area of } I_1BC;$$

$$\Delta = \frac{1}{2}I_1E_1 \cdot CA + \frac{1}{2}I_1F_1 \cdot AB - \frac{1}{2}I_1D_1 \cdot BC,$$

$$= \frac{1}{2}r_1b + \frac{1}{2}r_1c - \frac{1}{2}r_1a$$

$$= \frac{1}{2}r_1(b + c - a) = \frac{1}{2}r_1(2s - 2a) = r_1(s - a).$$

$$\therefore r_1 = \frac{\Delta}{s - a} = \frac{S}{s - a}.$$

Similarly if r_2 and r_3 be the radii of the other two escribed circles of the triangle *ABC*, then

$$r_2 = \frac{S}{s-b}; \quad r_3 = \frac{S}{s-c}$$

170. To calculate the lengths AE, AE_1 , AF_1 .

AE + EC + CD + DB + BF + FA = 2s. (Fig. 58, Art. 167.) But AE = AF, CD = EC,

DB = BF (tangents to the same circle from a given point).

 $\therefore AE + CD + BD = s$, or AE + a = s.

 $\therefore AE = s - a.$

From similar triangles,

$$\frac{AE_1}{AE} = \frac{r_1}{r} \quad \therefore \quad AE_1 = \frac{AE \cdot r_1}{r} = \frac{(s-a)\Delta}{\frac{\Delta}{s}(s-a)} = s.$$
$$\therefore \quad AE_1 = s = AF_1.$$

EXAMPLES. XLI.

1. Show (i.) CD = EC = (s - c); (ii.) BF = BD = s - b; (iii.) $DD_1 =$ numerical difference of b and c.

2. Find the radii of the inscribed and each of the escribed circles of the triangle ABC when a = 13, b = 14, c = 15 feet.

3. Show that the triangles in which (i.) a = 2, $A = 60^{\circ}$; (ii.) $b = \frac{2}{3} \cdot \sqrt{3}$, $B = 30^{\circ}$ can be inscribed in the same circle.

4. Prove that $R = \frac{abc}{4S}$; find R in the triangle of (2).

5. Prove that if a series of triangles of equal perimeter are described about the same circle, they are equal in area.

6. If $A = 60^{\circ}$, $a = \sqrt{3}$, $b = \sqrt{2}$, prove that the area $= \frac{1}{4}(3 + \sqrt{3})$.

or,

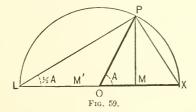
7. Prove that each of the following expressions represents the area of the triangle ABC:

(i.) $\frac{abc}{4R}$. $(\mathbf{v}_{\cdot}) = \frac{1}{2} a^2 \sin B \cdot \sin C \cdot \operatorname{cosec} A$. (vi.) $ra \operatorname{cosec} \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C_{\star}$ (ii.) $2 R^2 \sin A \cdot \sin B \cdot \sin C$. (vii.) $(rr_1r_2r_3)^{\frac{1}{2}}$. (iii.) rs.

(iv.) $Rr(\sin A + \sin B + \sin C)$. (viii.) $\frac{1}{2}(a^2 - b^2) \sin A \cdot \sin B \cdot \operatorname{cosec}(A - B)$.

Prove the following statements:

8. If a, b, c are in A.P., then ac = 6 rR.


9. The area of the greatest triangle, two of whose sides are 50 and 60 feet, is 1500 sq. feet.

10. If the altitude of an isosceles triangle is equal to the base, R is five-eighths of the base.

171. We give here a geometrical proof of the following propositions.

PROP. I. To prove that

 $\cos A = 2\cos^2 \frac{1}{2}A - 1 = 1 - 2\sin^2 \frac{1}{2}A.$ (See Art. 91.)

Let XOP be the angle A; with O as centre and any radius OXdescribe the semicircle XPL; join PL, PX, and draw PM perpendicular to LOX.

.

Then

Then

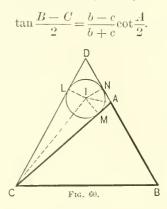
$$POM = OLP + OPL = 2 OL$$

$$\therefore OLP = \frac{1}{2} POM = \frac{1}{2} A.$$
Now, $\cos A = \frac{OM}{OP} = \frac{LM - LO}{OP} = \frac{2 LM}{2 OP} - \frac{OP}{OP}$

$$= 2 \cdot \frac{LM}{LP} \cdot \frac{LP}{LX} - 1 = 2 \cos OLP \cdot \cos OLP - 1$$

$$= 2 \cos^2 \frac{1}{2} A - 1 \qquad (i.)$$

$$= 2 (1 - \sin^2 \frac{1}{2} A) - 1$$


$$= 1 - 2 \sin^2 \frac{1}{2} A. \qquad (ii.)$$

PROP. II. To prove $\sin A = 2 \sin \frac{1}{2} A \cdot \cos \frac{1}{2} A$,

$$\sin A = \frac{MP}{OP} = 2 \cdot \frac{MP}{LP} \cdot \frac{LP}{2 \ OP} = 2 \cdot \frac{MP}{LP} \cdot \frac{LP}{LX}$$
$$= 2 \sin OLP \cdot \cos OLP = 2 \sin \frac{1}{2}A \cdot \cos \frac{1}{2}A.$$

(See Art. 91.)

PROP. III. To prove that in any triangle

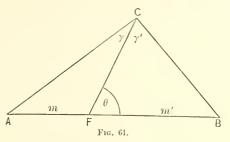
Let ABC be a triangle of which the angle B is greater than C. Make the angle BCD = B and produce BA to D.

In the triangle ACD inscribe the circle LMN, centre I, touching the sides in L, M, N; join IL, IM, IN, IA, IC.

Then
$$ICM = \frac{1}{2}LCM = \frac{1}{2}(DCB - ACB) = \frac{1}{2}(B - C),$$

 $IAM = \frac{1}{2}DAC = \frac{1}{2}(180^{\circ} - CAB) = (90^{\circ} - \frac{1}{2}A),$
 $CM = CL = CD - LD = BD - ND = BN = BA + AM;$
 $\therefore CM = \frac{1}{2}(CM + BA + AM) = \frac{1}{2}(AC + AB) = \frac{1}{2}(b + c),$
 $AM = AC - CM = b - \frac{1}{2}(b + c) = \frac{1}{2}(b - c).$

and


Hence

$$\frac{\tan \frac{B-C}{2}}{\cot \frac{A}{2}} = \frac{\tan ICM}{\tan (90^\circ - \frac{1}{2}A)} = \frac{\tan ICM}{\tan IAM}$$
$$= \frac{\frac{IM}{CM}}{\frac{IM}{AM}} = \frac{AM}{CM} = \frac{\frac{1}{2}(b-c)}{\frac{1}{2}(b+c)} = \frac{b-c}{b+c}.$$
 Q.E.D.

172. If a line *CF*, drawn from the vertex *C*, of a triangle *ABC*, divides the vertical angle into two angles γ and γ' , and the base into

two corresponding segments, m, m', and if CF makes the angle θ with the base, then $(m + m') \cos \theta = m \cot \gamma - m' \cot \gamma'$.

(Minchin's Statics, § 36.)

$$\frac{CF}{\sin A} = \frac{m}{\sin \gamma}; \quad \therefore \quad CF = \frac{m \sin A}{\sin \gamma};$$
$$= \frac{m (\sin \theta \cos \gamma - \sin \gamma \cos \theta)}{\sin \gamma};$$
$$CF = \frac{m' \sin B}{\sin \gamma'} = \frac{m' (\sin \theta \cos \gamma' + \sin \gamma' \cos \theta)}{\sin \gamma'}.$$

also,

Equate these values of CF.

$$m(\sin\theta\cot\gamma - \cos\theta) = m'(\sin\theta\cot\gamma' + \cos\theta);$$

$$\therefore (m+m')\cot\theta = m\cot\gamma - m'\cot\gamma'. \quad (1) \text{ Q.E.D.}$$

COROLLARY. I. Suppose CF is a median; then $m = m', 2 \cot \theta = \cot \gamma - \cot \gamma'.$

 $m = m, \quad 2 \cos \theta = \cot \gamma - \cot \gamma.$

II. Suppose CF bisects angle C;

$$\frac{m+m'}{m-m'} = \frac{c}{m-m'} = \frac{\cot \overline{2}}{\cot \theta}.$$
(3)

III. Suppose CF is perpendicular to the base; then

$$\cot \theta = 0, \ m' \cot \gamma' = m \cot \gamma.$$
⁽⁴⁾

This is evident geometrically.

EXERCISE. Show that

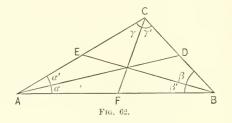
I

$$(m + m') \cot \theta = m' \cot A - m \cot B.$$
(5)

173. Let *ABC* be any triangle, and *AD*, *BE*, *CF* the medians drawn from *A*, *B*, *C* respectively. Let *AD* divide the angles *A* into two angles a, a'; *BE* divide angle *B* into β, β' , and *CF* divide angle *C* into γ, γ' .

From (2),	$2\cot\theta = \cot\gamma - \cot\gamma'.$
From (5) ,	$2 \cot \theta = \cot A - \cot B;$
	$\therefore \cot A - \cot B = \cot \gamma - \cot \gamma'.$

(2)


Similarly,

$$\cot B - \cot C = \cot \alpha - \cot \alpha';$$

 $\cot C - \cot A = \cot \beta - \cot \beta'.$

Adding these equations, we obtain

 $\cot \alpha + \cot \beta + \cot \gamma = \cot \alpha' + \cot \beta' + \cot \gamma'.$

EXAMPLES. XLII.

MISCELLANEOUS EXERCISES.

1. Define the terms sine, cotangent; and prove that if A be any angle,

 $\sin^2 A + \cos^2 A = 1.$

If $\tan A = \frac{3}{4}$, find $\sin A$ and $\cos A$.

2. Find the sine, cosine, and tangent of 30° .

In a triangle ABC, the angle C is a right angle, the angle A is 60° , and the length of the perpendicular let fall from C on AB is 20 feet; find the length of AB.

3. Prove geometrically that $\cos(180^\circ - A) = -\cos A$.

4. Prove (1) $\sin (A + B) \cdot \sin (A - B) = \sin^2 A - \sin^2 B$;

(2)
$$\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{1}{2}(A + B)}{\tan \frac{1}{2}(A - B)}$$

5. Prove that

 $\cos^2 A - \cos A \cos (60^\circ + A) + \sin^2 (30^\circ - A) = \frac{3}{4}.$

6. Find the greatest side of the triangle of which one side is 2183 feet and the adjacent angles are $78^{\circ}14'$ and $71^{\circ}24'$.

7. Express the other trigonometrical ratios in terms of the cosine.

8. Prove $\sin(180^\circ + A) = -\sin A;$

 $\tan\left(90^\circ + A\right) = -\cot A.$

9. Write down the sines of all the angles which are multiples of 30° and less than 360° .

10. Prove $\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}$

11. If $\tan A + \sec A = 2$, prove that $\sin A = \frac{3}{5}$, when A is less than 90°.

If $\sin A = \frac{4}{5}$, prove that $\tan A + \sec A = 3$, when A is less than 90°.

12. The length of the greatest side of a triangle is 1035.43 feet, and the three angles are 44° , 66° , and 70° . Solve the triangle.

13. Express the other trigonometrical ratios in terms of the cotangent.

14. Prove that $\operatorname{cosec}(180^\circ + 1) = -\operatorname{cosec} A.$

15. Write down the tangents of all the angles which are multiples of 30° and less than 360° .

16. If $\tan A + \sec A = 3$, prove that $\sin A = \frac{4}{5}$, when A is less than 90°.

If sin $A = \frac{2}{3}$, prove that tan $A + \sec A = 2$, when A is less than 90°.

17. Find the sines of the three angles of the triangle whose sides are 193, 194, and 195 feet.

18. Investigate the following formulæ:

(1) $\cos \frac{3A}{2} = (2\cos A - 1)\cos \frac{1}{2}A;$

(2) $\cos\theta - \cos(\theta + \delta) = \sin\theta\sin\delta(1 + \cot\theta\tan\frac{1}{2}\delta).$

19. Define the secant of an angle.

Prove the formula
$$\frac{1}{\sec^2 A} + \frac{1}{\csc^2 A} = 1.$$

If sin $A = \frac{1}{3}$, find sec A.

20. Find the logarithms of $\sqrt{(32)}$; and of .03125 to the base $\sqrt[3]{2}$.

21. Express the sine, cosine, and tangent of each of the angles 1962°, 2376°, 2844°, in terms of the trigonometrical functions of angles lying between 0 and 45°.

22. Prove the formula to express the cosine of the sum of two angles in \geq terms of the sines and cosines of those angles.

 \checkmark Express cos 5 a in terms of cos a.

23. Find solutions of the equations

(i.)
$$\sec\theta\csc\theta - \cot\theta = \sqrt{3}$$
;

Que (ii.) $\sin 2\theta - \sin \theta = \cos 2\theta + \cos \theta$.

24. A ring 10 inches in diameter is suspended from a point 1 foot above its centre by six equal strings attached to its circumference at equal intervals; find the cosine of the angle between two consecutive strings.

25. Define 1°. Assuming that $\frac{2}{7}^2$ is the circular measure of two right angles, express the angle A° in circular measure.

Find the number of degrees in the angle whose circular measure is .1.

26. Find the trigonometrical ratios of the angle whose cosine is $\frac{3}{5}$.

27. Prove that (1) $\cos(180^\circ + A) = \cos(180^\circ - A);$

(2) $\tan (90^\circ + A) = \cot (180^\circ - A).$

TRIGONOMETRY FOR BEGINNERS

28. Prove $\sin x(2\cos x - 1) = 2\sin \frac{x}{2}\cos \frac{3x}{2}$.

29. Express $\log_{10} 5.832$, $\log_{10} \sqrt[3]{(35)}$, and $\log_{10} .3048$ in terms of $\log_{10} 2$, $\log_{10} 3$, $\log_{10} 7$.

30. If the angle opposite the side a be 60° , and if b, c be the remaining sides of the triangle, prove that

$$(a + b + c)(b + c - a) = 3 bc.$$

31. Assuming $\frac{2}{7}$ to be the circular measure of two right angles, express in degrees the angle whose circular measure is θ . Find the number of degrees in an angle whose circular measure is $\frac{1}{3}$.

32. Show from the definitions of the trigonometrical function that

 $\sin^2 A + \cot^2 A + \cos^2 A = \csc^2 A.$

Pro	ve that	$\frac{\tan A + \sec A + 1}{\sin A + \sin A} = \frac{\sec A + 1}{\sin^2 A}$
11070 that		$\tan A + \sec A - 1 = \tan A$
33.	Prove	$\sin x (2\cos x + 1) = 2\cos \frac{x}{2}\sin \frac{3x}{2}.$

34. Find the logarithms of $\sqrt{(27)}$ and .037 to the base $\sqrt[3]{3}$.

35. If $(\sin A + \sin B + \sin C)(\sin A + \sin B - \sin C) = 3 \sin A \sin B$, and $A + B + C = 180^\circ$, prove that $C = 60^\circ$.

36. Given $A = 18^\circ$, $B = 144^\circ$, and b = 1; solve the triangle.

37. Give the trigonometrical definition of an angle.

What angle does the minute-hand of a clock describe between twelve o'clock and 20 minutes to four ?

38. Express the cosine and the tangent of an angle in terms of the sine.

The angle A is greater than 90°, but less than 180°, and $\sin A = \frac{1}{3}$; find $\cos A$.

39. Find all the values of θ between 0 and 2π for which $\cos \theta + \cos 2\theta = 0$.

40. If in a triangle $a \cos A = b \cos B$, the triangle will be either isosceles or right-angled.

41. The sides are 1 foot and $\sqrt{3}$ feet respectively, and the angle opposite to the shorter side is 30° ; solve the triangle.

42. The sides of a triangle are 2, 3, 4; find the greatest angle, having given

 $\log 2 = .30103,$ $\log 3 = .47712,$ $\log \tan 52^{\circ} 15' = .11110,$ $\log \tan 52^{\circ} 14' = .11083.$

43. Distinguish between Euclid's definition of an angle and the trigonometrical definition.

What angle does the minute-hand of a clock describe between half-past four and a quarter-past six ?

MISCELLANEOUS THEOREMS

44. Express the sine and the cosine of an angle in terms of the tangent.

The angle A is greater than 180°, but less than 270°, and $\tan A = \frac{1}{2}$. Find $\sin A$.

45. Prove (i.) $\sin 2A = \frac{2 \cot A}{1 + \cot^2 A}$.

(ii.) Show that if $A + B + C = 90^{\circ}$,

 $\sin 2A + \sin 2B + \sin 2C = 4\cos A\cos B\cos C.$

46. Find all the values of θ between 0 and 2π , for which

 $\sin\theta + \sin 2\theta = 0.$

47. If in a triangle $b \cos A = a \cos B$, show that the triangle is isosceles.

48. The sides are 1 foot and $\sqrt{2}$ feet respectively, and the angle opposite to the shorter side is 30°. Solve the triangle.

49. Express in degrees, minutes, and seconds (1) the angle whose circular measure is $\frac{1}{20}\pi$; (2) the angle whose circular measure is 5.

If the angle subtended at the centre of a circle by the side of a regular heptagon be the unit of angular measurement, by what number is an angle of 45° represented ?

50. Prove that

 $(\sin 30^\circ + \cos 30^\circ) (\sin 120^\circ + \cos 120^\circ) = \sin 30^\circ.$

51. Prove the formulæ:

(1) $\cos^2(\alpha + \beta) - \sin^2 \alpha = \cos \beta \cos (2 \alpha + \beta);$

(2) $1 + \cot \alpha \cot \frac{1}{2} \alpha = \operatorname{cosec} \alpha \cot \frac{1}{2} \alpha$.

52. Find solutions of the equations :

(1) $5 \tan^2 x - \sec^2 x = 11$; (2) $\sin 5\theta - \sin 3\theta = \sqrt{2} \cdot \cos 4\theta$.

53. Two sides of a triangle are 10 feet and 15 feet in length, and the angle between them is 30°. What is its area ?

54. Given that

 $\sin 40^{\circ} 29' = 0.64922$, $\sin 40^{\circ} 30' = 0.64944$;

find the angle whose sine is 0.64930.

55. Express in circular measure (1) 10'; (2) $\frac{1}{5}$ of a right angle.

If the angle subtended at the centre of a circle by the side of a regular pentagon be the unit of angular measurement, by what number is a right angle represented ?

56. If sec $\alpha = 7$, find tan α and cosec α .

57. Prove the formulæ:

(1) $\cos^2(\alpha - \beta) - \sin^2(\alpha + \beta) = \cos 2\alpha \cos 2\beta;$

(2) $1 + \tan \alpha \tan \frac{1}{2} \alpha = \sec \alpha.$

58. Find solutions of the equations:

(1) $5 \tan^2 x + \sec^2 x = 7$; (2) $\cos 5\theta + \cos 3\theta = \sqrt{2} \cdot \cos 4\theta$.

59. The lengths of the sides of a triangle are 3 feet, 5 feet, and 6 feet. What is its area?

60. Given that

 $\sin 38^\circ\,25' = 0.62137\;;\;\; \sin 38^\circ\,26' = 0.62160\;;$ find the angle whose sine is (0.62150).

61. Which is greater, 76° or 1.2° ?

62. Determine geometrically $\cos 30^\circ$ and $\cos 45^\circ$.

If $\sin A$ be the arithmetic mean between $\sin B$ and $\cos B$, then

 $\cos 2 A = \cos^2 \left(B + 45^\circ \right).$

63. Establish the following relations:

- (1) $\tan^2 A \sin^2 A = \tan^2 A \sin^2 A;$
- (2) $\cot A \cot 2 A = \operatorname{cosec} 2 A;$
- (3) $\frac{\sin(x+3y) + \sin(3x+y)}{\sin 2x + \sin 2y} = 2\cos(x+y).$

64. Express $\log_{10} \sqrt{(28)}$, $\log_{10} 3.888$, $\log_{10} .1742$ in terms of $\log_{10} 3$, $\log_{10} 5$, $\log_{10} 7$.

65. Prove that $\sin (A + B) = \sin A \cos B + \cos A \sin B$, and deduce the expression for $\cos (A + B)$.

Show that

 $\sin A \cos (B + C) - \sin B \cos (A + C) = \sin (A - B) \cos C.$

66. One side of a triangular lawn is 102 feet long, its inclinations to the other sides being 70° 30′, 78° 10′, respectively. Determine the other sides and the area. $\log \sin 70^{\circ} 30' = 9.974$, $\log 102 = 2.009$, $\log \sin 78^{\circ} 10' = 9.990$, $\log 185 = 2.267$, $\log \sin 31^{\circ} 20' = 9.716$, $\log 192 = 2.283$, $\log 2 = .301$, $\log 9234 = 3.965$.

67. Which is greater, 126° or the angle whose circular measure is 2.3?

68. Establish the following relations:

- (1) $\cot^2 A \cos^2 A = \cot^2 A \cos^2 A;$
- (2) $\tan A + \cot 2 A = \operatorname{cosec} 2 A;$

(3)
$$\frac{\cos(x-3y) - \cos(3x-y)}{\sin 2x + \sin 2y} = 2\sin(x-y).$$

69. Given $\log_{10} 2 = .3010300$, $\log_{10} 9 = .9542425$; find without using tables, $\log_{10} 5$, $\log_{10} 6$, $\log_{10} .0216$, and $\log_{10} \sqrt[5]{(.375)}$.

70. Prove that $\sin 30^\circ + \sin 120^\circ = \sqrt{2} \cos 15^\circ$.

71. Establish the identities :

(1)
$$1 + \cos A + \sin A = \sqrt{2} (1 + \cos A) (1 + \sin A);$$

(2)
$$\operatorname{cosec} 2A = \frac{\operatorname{cosec}^2 A}{2\sqrt{\operatorname{cosec}^2 A - 1}};$$

(3)
$$\sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} - \sin\frac{6\pi}{7} = 4\sin\frac{\pi}{7}\sin\frac{3\pi}{7}\sin\frac{5\pi}{7}$$

MISCELLANEOUS THEOREMS

72. The sides of a triangular lawn are 102, 185, and 192 fect in length, the smallest angle being approximately 31° 20'. Find its other angles and its area.

$\log 102 = 2.009,$	$\log \sin 31^{\circ} \ 20' = 9.716,$	
$\log 185 = 2.267,$	$\log \sin 70^{\circ} 30' = 9.974,$	
$\log 192 = 2.283,$	$\log \sin 78^{\circ} 10' = 9.990,$	
$\log 2 = .301, \log 9234 = 3.965,$		

73. If the circumference of a circle be divided into five parts in arithmetical progression, the greatest part being six times the least, express in radians the angle each subtends at the centre.

74. Define the sine of an angle, wording your definition so as to include angles of any magnitude.

Prove that $\sin\left(90^\circ + A\right) = \cos A,$ and

 $\cos\left(90^\circ + A\right) = -\sin A,$

and by means of these deduce the formulæ

 $\sin(180^\circ + A) = -\sin A$, $\cos(180^\circ + A) = -\cos A$.

75. Prove the formulæ:

(1) $\cot^2 A = \csc^2 A - 1$;

(2) $\cot^4 A + \cot^2 A = \operatorname{cosec}^4 A - \operatorname{cosec}^2 A$.

Verify (2) when $A = 30^{\circ}$.

76. Evaluate to 4 significant figures by the aid of the table of logarithms

 $\frac{7.891}{.0345} \times \sqrt[7]{.}(008931).$

77. If sin B be the geometric mean between sin A and $\cos A$, then $\cos 2 B = 2 \cos^2 (A + 45^\circ).$

78. The lengths of two of the sides of a triangle are 1 foot and $\sqrt{2}$ feet respectively, the angle opposite the shorter side is 30°. Prove that there are two triangles which satisfy these conditions; find their angles, and show that their areas are in the ratio $\sqrt{3} + 1 : \sqrt{3} - 1$.

79. If the circumference of a circle be divided into six parts in arithmetical progression, the greatest being six times the least, express in radians the angle each subtends at the centre.

80. Define the tangent of an angle, wording your definition so as to include angles of any magnitude.

Prove that $\tan (90^\circ + A) = -\cot A$, and by means of this formula deduce the formula $\tan(180^\circ + A) = \tan A$.

81. Compute by means of tables the value of

$$\frac{6.12}{.4131} \times \sqrt[5]{54.17}.$$

82. Prove that $\cos (A + B) = \cos A \cos B - \sin A \sin B$, and deduce the **expression** for $\sin(A + B)$.

Show that $\cos A \cos (B + C) - \cos B \cos (A + C) = \sin (A - B) \sin C$.

83. Establish the identities :

(1)
$$1 + \cos A - \sin A = \sqrt{2(1 + \cos A)(1 - \sin A)};$$

(2)
$$\sec 2A = \frac{\sec^2 A}{2 - \sec^2 A};$$

(3) $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + 4 \cos \frac{\pi}{7} \cos \frac{3\pi}{7} \cos \frac{5\pi}{7} + 1 = 0.$

84. Two adjacent sides of a parallelogram 5 in. and 3 in. long respectively, include an angle of 60° . Find the lengths of the two diagonals and the area of the figure.

85. Investigate the following formulæ:

(1) $\sin \frac{3A}{2} = (1 + 2\cos A) \sin \frac{1}{2}A;$ (2) $\sin (\theta + \delta) - \sin \theta = \cos \theta \sin \delta (1 - \tan \theta \tan \frac{1}{2}\delta).$

86. Prove that

(1) $\sin 10^\circ + \sin 50^\circ = \sin 70^\circ$;

(2) $\sqrt{3} + \tan 40^\circ + \tan 80^\circ = \sqrt{3} \tan 40^\circ \tan 80^\circ$;

(3) if $A + B + C = 180^{\circ}$,

$$\frac{\sin A - \sin B \cos C}{\cos B} = \frac{\sin B - \sin A \cos C}{\cos A}$$

87. Prove by means of the logarithmic table that

$$\frac{1}{73^{-\frac{1}{7}}} = 1.846$$
 nearly.

88. The length of one side of a triangle is 1006.62 feet and the adjacent angles are 44° and 70° . Solve the triangle, having given

$L\sin 44^\circ = 9.8417713,$	$L\sin 70^\circ = 9.9729858,$
$L\sin 66^\circ = 9.9607302,$	$\log 1006.62 = 3.0028656,$
$\log 7654321 = 6.8839067,$	$\log 103543 = 5.0151212.$

89. Find the length of the arc of a circle whose radius is 8 feet which subtends at the centre an angle of 50° , having given

 $\pi = 3.1416.$

90. Prove that $\sin A = -\sin (A - 180^{\circ})$.

Find the sines of 30° and 2010° .

91. Given that the integral part of $(3.1622)^{100000}$ contains fifty thousand digits, find $\log_{10} 31622$ to five places of decimals.

92. Prove that

(1) $\cos^2 A + \cos^2 B - 2 \cos A \cos B \cos (A + B) = \sin^2 (A + B);$

(2) $\cos^2 A + \sin^2 A \cos 2 B = \cos^2 B + \sin^2 B \cos 2 A$.

93. Prove that in any triangle

 $a^2 \cos 2 B + b^2 \cos 2 A = a^2 + b^2 - 4 ab \sin A \sin B.$

94. If a = 123, $B + 29^{\circ} 17'$, $C = 135^{\circ}$, find c, having given

 $\log \sin 15^{\circ} \ 43' = 9.4327777.$

CHAPTER XVIII

RELATIONS AMONG THE SIDES AND THE ANGLES OF A SPHERICAL TRIANGLE

174. The succeeding pages contain a brief discussion of some of the properties of spherical triangles.

For the sake of ready reference, we shall enumerate, without proof, some properties of solid figures. The statements contained in sections 175–177 are proved in works on solid geometry, to which the student is referred.

175. Definitions and Theorems. The curve of intersection of a plane and a sphere is a circle.

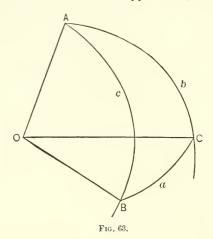
When the plane of the circle passes through the centre of the sphere, their curve of intersection is called a great circle.

One great circle can be passed through any two points on the surface of the sphere, and only one if these points are not extremities of a diameter of the sphere.

A spherical figure is any part of the surface of the sphere bounded by arcs of great circles.

A spherical polygon is a spherical figure bounded by more than two arcs. The arcs are called the sides of the polygon. The intersections of the arcs are called the vertices of the polygon.

176. The angle between two great circles is measured by the angle between the tangents drawn to the circles at their point of intersection. This is called a spherical angle.


The angle between two great circles equals the angle between their planes.

177. SPHERICAL TRIANGLES. A spherical triangle is a spherical polygon of three sides.

Let ABC be a spherical triangle.

Let *O* be the centre of the sphere.

By the letters A, B, C we shall indicate geometrically the three angular points of the triangle ABC; algebraically, the three angles at those points respectively. By the letters a, b, c we shall indicate the measures of the sides opposite A, B, C, respectively.

a, b, c are measured by the angles at the centre of the sphere, and hence they are measured in angular units; e.g. c is measured by angle AOB.

We know, then, the following properties :

1. * The sum of two sides of a triangle is greater than the third.

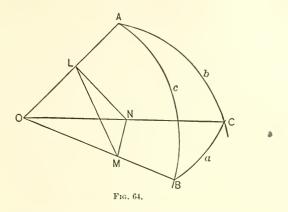
2. The greatest side is opposite the greatest angle, and conversely.

3. Any angle $A < 180^{\circ}$.

4. $(A + B + C) < 540^{\circ}$ and $> 180^{\circ}$.

5. Any side $a < 180^{\circ}$.

6. $(a+b+c) < 360^{\circ}$.


7. A - B and a - b are of the same sign.

8. A side which differs from 90° more than another side is in the same quadrant as the angle opposite it.

9. If A'B'C' is the polar triangle of ABC, and if A', B', C' are its angles, and a', b', c' the corresponding sides, then

 $A = 180^{\circ} - a'; \quad A' = 180^{\circ} - a;$ $B = 180^{\circ} - b'; \quad B' = 180^{\circ} - b;$ $C = 180^{\circ} - c'; \quad C' = 180^{\circ} - c.$

* NOTE. We know that in general three great circles intersect in such a way as to form eight spherical triangles; and that at least one of these triangles satisfies the conditions of Art. 177. We shall consider only such triangles.

178. To prove $\cos a = \cos c \cos b + \sin b \sin c \cos A$.

Let ABC be a spherical triangle.

Let O be the centre of the sphere, and OA = OB = OC = radius of the sphere.

In the plane AOB, draw LM perpendicular to OA. In the plane AOC, draw LN perpendicular to OA. Then the plane angle MLN = A (Art. 176). In the plane triangles LMN and MON,

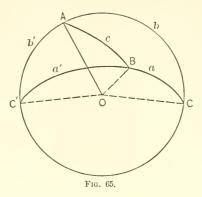
$$\overline{MN}^2 = \overline{LM}^2 + \overline{LN}^2 - 2 \overline{LM} \quad \overline{LN} \cos A. \quad (Art. 107.)$$
$$\overline{MN}^2 = \overline{OM}^2 + \overline{ON}^2 - 2 \overline{OM} \cdot \overline{ON} \cos a.$$

Equate these values of \overline{MN}^2 ,

$$\overline{OM}^2 - \overline{LM}^2 + \overline{ON}^2 - \overline{LN}^2 - 2 \ \overline{OM} \cdot \overline{ON} \cos a + 2 \ LM \cdot LN \cos A = 0.$$

But $\overline{OM}^2 - \overline{LM}^2 = \overline{OL}^2$, and $\overline{ON}^2 - \overline{LN}^2 = \overline{OL}^2$;
 $\therefore 2 \ \overline{OL}^2 - 2 \ \overline{OM} \cdot \overline{ON} \cos a + 2 \ LM \cdot LN \cos A = 0;$
or $OL - OL + LM \ LN \cos A = 0;$

or


i.e.

$$\frac{OL}{OM} \cdot \frac{OL}{ON} + \frac{LM}{OM} \cdot \frac{LN}{ON} \cos A = \cos a;$$

 $\cos c \cos b + \sin b \sin c \cos A = \cos a. \tag{a}$

179. By reference to Fig. 63 it is evident that the demonstration of the preceding article requires that c and b are each less than 90°, while a is unrestricted.

Suppose, now, that one of the sides, b, say, is greater than 90°. Produce the great circles AC and BC. They intersect again in C', Fig. 65.

Consider now the triangle ABC.

 $AB < 90^{\circ}$ (hypothesis).

$$AC' = (180^{\circ} - AC) < 90^{\circ}.$$

We can now apply the formula (a), of the preceding article, to ABC'. Hence

 $\cos a' = \cos b' \cos c + \sin b' \sin c \cos (180^\circ - A). \tag{b}$

But
$$\cos a' = -\cos a$$
; (Art. 59.)

and
$$\cos b' = -\cos b$$
; (Art. 59.)

and $\cos(180^\circ - A) = -\cos A$.

Substituting these values in (b) we obtain

 $\cos a = \cos b \cos c + \sin b \sin c \cos A.$

Similarly, if both b and c are greater than 90°, it may be shown that $\cos a = \cos b \cos c + \sin b \sin c \cos A$.

So that (a) is true for all spherical triangles which we are considering. Similarly we can express the other angles in terms of the sides. We therefore have this relation involving the sides and one angle.

$$\begin{array}{c}
\cos a = \cos b \, \cos c \, + \sin b \, \sin c \, \cos A, \\
\cos b = \cos c \, \cos a \, + \sin c \, \sin a \, \cos B, \\
\cos c = \cos a \, \cos b \, + \sin a \, \sin b \, \cos C.
\end{array}$$
(1)

Whence

$$\begin{array}{l}
\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}, \\
\cos B = \frac{\cos b - \cos c \cos a}{\sin c \sin a}, \\
\cos C = \frac{\cos c - \cos a \cos b}{\sin a \sin b}.
\end{array}$$
(2)

SPHERICAL TRIANGLES

The last two formulæ of either set can be derived from the first one of that set by making a cyclical interchange of a into b, b into c, c into a, and at the same time changing A into B, B into C, Cinto A.

180. To show that

$$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}.$$
(3)

This is a relation involving the sides and the opposite angles.

PROOF.
$$\sin^2 A = 1 - \cos^2 A$$

= $\frac{\sin^2 b \sin^2 c - (\cos a - \cos b \cos c)^2}{\sin^2 b \sin^2 c}$. (Art. 179.)

Substitute for $\sin^2 b$, $1 - \cos^2 b$, and $\sin^2 c = 1 - \cos^2 c$, and reducing we obtain

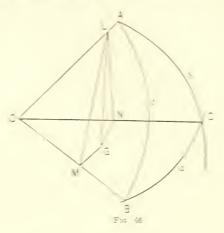
$$\sin^2 A = \frac{1 - \cos^2 b - \cos^2 c - \cos^2 a + 2\cos a \cos b \cos c}{\sin^2 b \sin^2 c}.$$

Multiplying both sides of the equation by $\frac{1}{\sin^2 a}$, and extracting the square root of each side, we obtain

$$\frac{\sin A}{\sin a} = \frac{\sqrt{1 - \cos^2 b - \cos^2 c - \cos^2 a + 2\cos a\cos b\cos c}}{\sin a\sin b\sin c}$$

In a similar way we might solve for $\frac{\sin B}{\sin b}$. But this is equivalent to a cyclical interchange of the letters as described in Art. 179. But an interchange of the letters changes the left side of the equation into $\frac{\sin B}{\sin b}$, and leaves the right side unchanged. Hence

$$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$$
$$= \frac{\sqrt{1 - \cos^2 b - \cos^2 c - \cos^2 a + 2\cos a \cos b \cos c}}{\sin a \sin b \sin c}, \quad \text{Q.E.D.}$$


since $A < 180^{\circ}$, and since $a < 180^{\circ}$ (Art. 177).

Therefore $\sin A$ and $\sin a$ are positive. Therefore there is no *ambiguity* of sign.

181. We shall add a geometrical proof of the theorem.

Take L any point in O.4. From L let a perpendicular fall on plane COB, piercing it in G; from G draw GM and GN perpen-

Licular to OB and OC respectively. Join L and M; join L and N. Then $LM \perp OB$, and $LN \perp OC$ (Geom.)

Angle B is measured by angle LMG. Angle C is measured by angle LNG.

$$LM \cdot \sin B = LG = LN \sin C;$$

$$LM = OL \sin AOB = OL \sin c;$$

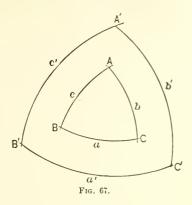
$$LN = OL \sin AOC = OL \sin b;$$

$$\therefore OL \sin C \sin B = OL \sin c \sin c;$$

$$\frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}.$$

182. If A B C be the polar triangle of ABC, then (Fig. 67)

$$z = 1^{8/2} - A;$$


$$z = 1^{8/2} - B;$$

$$z = 1^{8/2} - C.$$

(Art. 177)

We may now apply formula 1 + BC.

 $\cos \alpha = \cos \delta \cos \alpha - \sin \delta \sin \alpha \cos A$.

Now,
$$\cos x = -\cos A$$
, $\sin b = \sin B$;
 $\cos b = -\cos B$, $\sin c = \sin C$;
 $\cos c = -\cos C$, $\cos A = -\cos a$.

Substituting these values in (a), we obtain

 $-\cos A = \cos B \cos C - \sin B \sin C \cos a.$

Treating the other two formulæ similarly, we obtain

 $\cos A = -\cos B \cos C + \sin B \sin C \cos a;$ $\cos B = -\cos C \cos A + \sin C \sin A \cos b;$ $\cos C = -\cos A \cos B + \sin A \sin B \cos c.$ (4)

Relation involving the angles and one side.

Solving these equations for $\cos a$, $\cos b$, $\cos c$, we have

$$\cos a = \frac{\cos A + \cos B \cos C}{\sin B \sin C};$$

$$\cos b = \frac{\cos B + \cos C \cos A}{\sin C \sin A};$$

$$\cos c = \frac{\cos C + \cos A \cos B}{\sin A \sin B}.$$
(5)

183. From (1),

 $\cos a = \cos b \cos c + \sin b \sin c \cos A.$

Substituting in this formula the value of $\cos c$ obtained from (1), we obtain

 $\begin{array}{ccc} \cos a \left(1 - \cos^2 b\right) = \sin a \sin b \cos b \cos C + \sin b \sin c \cos A;\\\\ \text{or} & \cos a \sin b = \sin a \cos b \cos C + \sin c \cos A;\\\\ \text{and similarly,} & \cos b \sin a = \sin b \cos a \cos C + \sin c \cos B;\\\\ & \cos b \sin c = \sin b \cos c \cos A + \sin a \cos B;\\\\ & \cos c \sin b = \sin c \cos b \cos A + \sin a \cos C;\\\\ & \cos c \sin a = \sin c \cos a \cos B + \sin b \cos C;\\\\ & \cos a \sin c = \sin a \cos c \cos B + \sin b \cos A. \end{array}\right\}$ (6)

(6) is a relation involving two angles and the sides.

By treating (3) similarly,

 $\cos A \sin B = \cos a \sin C - \cos c \cos B \sin A;$ $\cos C \sin B = \cos c \sin A - \cos a \cos B \sin C;$ $\cos C \sin A = \cos c \sin B - \cos b \cos A \sin C;$ $\cos B \sin A = \cos b \sin C - \cos c \cos A \sin B;$ $\cos B \sin C = \cos b \sin A - \cos a \cos C \sin B;$ $\cos A \sin C = \cos a \sin B - \cos b \cos C \sin A.$

(7)

(7) is a relation between the angles and two sides.

From (6),

$$\cos a \sin b = \sin a \cos b \cos C + \sin c \cos A;$$

$$\therefore \frac{\cos a}{\sin a} \sin b = \cos b \cos C + \frac{\sin c}{\sin a} \cos A;$$

$$\therefore \cot a \sin b = \cos b \cos C + \sin C \cdot \frac{\cos A}{\sin A};$$
 (Art. 180.)

$$\cot a \sin b = \cos b \cos C + \sin C \cot A.$$
 (8)

The student may derive the five corresponding formulæ:

184. To express $\cos \frac{1}{2}A$, $\sin \frac{1}{2}A$, $\tan \frac{1}{2}A$ in terms of the sides.

$$\cos \frac{1}{2} A = \sqrt{\frac{\cos A + 1}{2}}.$$
(Art. 92.)
From (2). $\sqrt{\frac{\cos A + 1}{2}} = \sqrt{\frac{\sin b \sin c + \cos a - \cos b \cos c}{2 \sin b \sin c}}$

$$= \sqrt{\frac{\cos a - \cos (b + c)}{2 \sin b \sin c}}$$
(Art. 75.)

$$= \sqrt{\frac{\sin \left(\frac{a + b + c}{2}\right) \sin \left(\frac{b + c - a}{2}\right)}{\sin b \sin c}}.$$
 (a) (Art. 82.)

If we put a + b + c = 2s, (a) may be written:

$$\cos \frac{1}{2} A = \sqrt{\frac{\sin s \cdot \sin(s - a)}{\sin b \cdot \sin c}};$$
similarly,
$$\cos \frac{1}{2} B = \sqrt{\frac{\sin s \cdot \sin(s - b)}{\sin a \sin c}},$$

$$\cos \frac{1}{2} C = \sqrt{\frac{\sin s \cdot \sin(s - c)}{\sin a \sin b}},$$
(9)

SPHERICAL TRIANGLES

EXERCISE. The student may show that

$$\sin \frac{1}{2} \mathbf{A} = \sqrt{\frac{\sin(s-b)\sin(s-c)}{\sin b \sin c}},\tag{10}$$

$$\tan \frac{1}{2}\mathbf{A} = \sqrt{\frac{\sin(s-b)(s-c)}{\sin s \cdot \sin(s-a)}},\tag{11}$$

with the corresponding formulæ for B and C.

185. To find $\cos \frac{1}{2}a$, $\sin \frac{1}{2}a$, $\tan \frac{1}{2}a$. Using the results of (5), the student may show that, if $S = \frac{1}{2}(A + B + C)$,

$$\cos\frac{1}{2}a = \sqrt{\frac{\cos(S-B)\cos(S-C)}{\sin B \cdot \sin C}};$$
(12)

$$\sin \frac{1}{2} a = \sqrt{\frac{1 - \cos a}{2}},$$

$$= \sqrt{\frac{\sin B \sin C - \cos A - \cos B \cos C}{2 \sin B \sin C}},$$

$$= \sqrt{\frac{-(\cos (B + C) + \cos A)}{2 \sin B \sin C}}.$$

$$\therefore \sin \frac{1}{2} a = \sqrt{\frac{-\cos S \cos (S - A)}{\sin B \sin C}},$$
(13)

$$\tan \frac{1}{2} a = \sqrt{\frac{-\cos S \cos (S - A)}{\cos (S - B) \cos (S - C)}}.$$
(14)

$$\sin a = 2\sin \frac{1}{2}a\cos \frac{1}{2}a \tag{Art. 91.}$$

$$=\frac{2}{\sin B \sin C}\sqrt{-\cos S \cos (S-A) \cos (S-B) \cos (S-C)}.$$
 (15)

186. I. Since any side $a < 180^\circ$, and any angle $A < 180^\circ$,

 $\cos \frac{1}{2}a$, $\sin \frac{1}{2}a$, $\tan \frac{1}{2}a$, $\sin \frac{1}{2}A$, $\cos \frac{1}{2}A$, $\tan \frac{1}{2}A$

are all positive; hence the sign of the radical in expressions (9) - (15) is positive.

II. Since $s < 180^{\circ}$, $a < 180^{\circ}$, $b < 180^{\circ}$, $c < 180^{\circ}$, and since the differences s - a, s - b, s - c are less than 180° and positive, the expressions (9) - (11) are real.

III. If a', b', c' are the sides of the polar triangle of A, B, C, then a' < (b' + c');

i.e.
$$180^{\circ} - A < (180^{\circ} - B + 180^{\circ} - C);$$

i.e. $B + C - A < 180^{\circ};$
i.e. $S - A < 90^{\circ};$

$$\therefore \cos(S - A)$$
 is positive.

Since $270^{\circ} > S^{\circ} > 180^{\circ}$, cos S is negative; *i.e.* $-\cos S$ is positive. Therefore the expressions (12) - (15) are real.

187. $\cos \frac{1}{2}(A+B) = \cos \frac{1}{2}A \cos \frac{1}{2}B - \sin \frac{1}{2}A \sin \frac{1}{2}B$. (Art. 75.)

Substitute in this equation the values of $\cos \frac{1}{2} A$, etc., from (9) and (10).

$$\cos \frac{1}{2} (A+B) = \frac{\sin s}{\sin c} \sqrt{\frac{\sin (s-a) \sin (s-b)}{\sin b \sin a}} - \frac{\sin (s-c)}{\sin c} \sqrt{\frac{\sin (s-a) \sin (s-c)}{\sin b \sin a}}.$$

$$\cdot \cos \frac{1}{2} (A+B) = \frac{\sin s - \sin (s-c)}{\sin c} \sqrt{\frac{\sin (s-a) (s-c)}{\sin b \sin a}}.$$

Now
$$\frac{\sin s - \sin (s - c)}{\sin c} = \frac{2 \cos \frac{1}{2} \cdot \sin \frac{1}{2}}{2 \sin \frac{1}{2} c \cos \frac{1}{2} c}$$
 (Art. 83.)

=

$$\frac{\cos\frac{\alpha+\sigma}{2}}{\cos\frac{1}{2}c}.$$
 (Art. 91.)

$$\sin \frac{C}{2} = \sqrt{\frac{\sin (s-a)\sin (s-b)}{\sin a \sin b}} \cdot (\text{from (10)})$$

$$\therefore \cos \frac{A+B}{2} = \frac{\cos \frac{a+b}{2}}{\cos \frac{c}{2}} \sin \frac{c}{2}.$$
 (16)

EXERCISE. The student may prove :

$$\cos\frac{A-B}{2} = \frac{\sin\frac{a+b}{2}}{\sin\frac{c}{2}}\sin\frac{c}{2};$$
(17)

$$\sin\frac{A+B}{2} = \frac{\cos\frac{a-b}{2}}{\cos\frac{c}{2}}\cos\frac{c}{2};$$
(18)

$$\sin\frac{A-B}{2} = \frac{\sin\frac{(a-b)}{2}}{\sin\frac{c}{2}}\cos\frac{c}{2}.$$
(19)

Formulæ (16), (17), (18), (19) are known as Gauss' Formulæ.

SPHERICAL TRIANGLES

188. The student will prove without difficulty :

$$\tan\frac{A+B}{2} = \frac{\cos\frac{a-b}{2}}{\cos\frac{a+b}{2}}\cot\frac{C}{2};$$
(20)

$$\tan\frac{A-B}{2} = \frac{\sin\frac{a-b}{2}}{\sin\frac{a+b}{2}}\cot\frac{C}{2};$$
(21)

$$\tan\frac{a+b}{2} = \frac{\cos\frac{A-B}{2}}{\cos\frac{A+B}{2}} \tan\frac{c}{2}; \qquad (22)$$

$$\tan\frac{a-b}{2} = \frac{\sin\frac{A-B}{2}}{\sin\frac{A+B}{2}} \tan\frac{c}{2}.$$
 (23)

Formulæ (20), (21), (22), (23) are known as Napier's Analogies.

189. In the special case that one of the angles, C, is equal 90°, we derive from the foregoing formulæ the following :

From (1),
$$\cos c = \cos a \cos b.$$
 (24)
From (3), $\sin A = \frac{\sin a}{\sin c};$
 $\sin B = \frac{\sin b}{\sin c}.$ (25)
From (7), $\cos A = \cos a \sin B;$
 $\cos B = \cos b \sin A.$ (26)
 $\therefore \cos A = \frac{\tan b}{\tan c};$
 $\cos B = \frac{\tan a}{\tan c}.$ (27)
From (8), $\tan A = \frac{\tan a}{\sin b};$
 $\tan B = \frac{\tan b}{\sin a}.$ (28)

From (5),

$$\cos a = \frac{\cos A}{\sin B};$$

$$\cos b = \frac{\cos B}{\sin A};$$

$$\therefore \cos c = \frac{\cos A}{\sin A} \cdot \frac{\cos B}{\sin B} = \cot A \cdot \cot B.$$
(29)

190. DEFINITION. Two angles are said to be of the "same affection," if both are greater or both are less than 90°. They are said to be of **opposite affection** if one is greater and the other less than 90°.

Formula (24) shows that if a and b are of the same affection, $c < 90^{\circ}$; and if a and b are of opposite affection, $c > 90^{\circ}$, C being a right angle. For, if a and b are both of the same affection, $\cos a \cdot \cos b$ is positive. $\therefore \cos c$ is positive, $\therefore c < 90^{\circ}$. But if they are of opposite affection, $\cos a \cdot \cos b$ is negative, $\therefore \cos c$ is negative; $\therefore c > 90^{\circ}$.

EXERCISE 1. Show that in a right-angled triangle an angle and the side opposite are of the same affection.

EXERCISE 2. Show that a side and the hypotenuse of a right-angled triangle are of the same or opposite affection, according as the included angle is less than or greater than 90° .

EXERCISE 3. In any triangle, $\frac{a+b}{2}$ and $\frac{A+B}{2}$ are of the same affection. EXERCISE 4. If C is a right angle, show that

 $2\cos c = \cos\left(a+b\right) + \cos\left(a-b\right).$

EXERCISE 5. If C is a right angle, show that

 $\tan \frac{1}{2}(c+a) \tan (c-a) = \tan^2 \frac{1}{2}b.$

CHAPTER XIX

SOLUTION OF SPHERICAL TRIANGLES

191. According to propositions proved in Geometry we are able to construct a spherical triangle when *any three* of its parts are given. Accordingly, we propose the problem, to show that if given any three parts of a spherical triangle, we are able to calculate the remaining parts.

This problem is known as the solution of spherical triangles. There are six cases; viz. when there are given:

I. Three sides.

II. Two sides and included angle.

III. Two sides and the angle opposite one of them.

IV. Two angles and a side opposite one of them.

- V. One side and two angles adjacent to it.
- VI. Three angles.

192. The Right Triangle.

Before considering the solution of the general triangle, we shall discuss the solution of the right triangle. Let C be a right angle. We have the following cases:

Given:			To calculate:
I.	a, b.		c, A, B.
II.	$\begin{cases} a, c. \\ c, b. \end{cases}$		b, A, B. a, A, B.
III.	$\begin{cases} a, A. \\ b, B. \end{cases}$		b, c, B. α, c, A.
IV.	$\begin{cases} a, B. \\ b, A. \end{cases}$		b, c, A. a, c, B.
V.	$\begin{cases} c, \ A, \\ c, \ B. \end{cases}$		a, b, B. a, b, A.
VI.	A, B.	100	a, b, c.

193. If any of the parts, when calculated, is found in terms of its sine, then the solution in general is ambiguous; since there are *two* angles less than 180° which have the same sine. See Case III., below.

If, however, all the parts are found in terms of other ratios than their sines, or cosecants, the solution is unique.

194. DISCUSSION OF THE DIFFERENT CASES. By referring to Art. 189, the student will verify the following equations. In many instances he will find other sets of equations which will solve the problems.

Case I.

Given a, b; required c, A, B.

$$\cos c = \cos a \cos b;$$

$$\tan A = \frac{\tan a}{\sin b};$$
$$\tan B = \frac{\tan b}{\sin a}.$$

The solution is unique.

Case II.

Given a, c; required b, A, B.

$$\cos b = \frac{\cos c}{\cos a};$$
$$\sin A = \frac{\sin a}{\sin c};$$
$$\cos B = \frac{\tan a}{\tan c}.$$

This case presents an apparent ambiguity. But by Art. 190, a and A are of the same affection. \therefore the solution is unique.

Case III.

Given a, A; required c, b, B.

$$\sin c = \frac{\sin a}{\sin A};$$
$$\sin b = \frac{\tan a}{\tan A};$$
$$\sin B = \frac{\cos A}{\cos a}.$$

B, b, and c are given by their sines; hence there is, apparently at least, a series of ambiguities.

(a) If
$$\sin a = \sin A$$
, then $a = A$. (Art. 190, Exercise 1.)
 $\therefore \sin c = 1$, $\sin b = 1$, $\sin B = 1$.

Hence in this case the solution is unique.

(b) There remain yet two possibilities for c; viz.:

I. c and a of like affection; then $b < 90^{\circ}$, and $B < 90^{\circ}$.

(Art. 190, Exercises 1 and 2.)

II. c and a of opposite affection; then $b > 90^{\circ}$ and $B > 90^{\circ}$. These are the only alternatives.

Given a, B; required c, b, A.

$$\tan c = \frac{\tan a}{\cos B};$$
$$\cos A = \cos a \sin B;$$
$$\tan b = \sin a \tan B.$$

The solution is unique. Why?

Case V.

Given c, A; required a, b, B. $\sin a = \sin c \sin A;$ $\tan b = \tan c \cos A;$ $\cot B = \cos c \tan A.$ The solution is unique. Why?

Case VI.

Case

Given A, B; required a, b, c.

$$\cos a = \frac{\cos A}{\sin B};$$
$$\cos b = \frac{\cos B}{\sin A};$$
$$\cos c = \cot A \cot B.$$

195. Solution of the general triangle.

Given a, b, c; required A, B, C. This may be solved by (2),

$$\cos A = \frac{\cos a - \cos b \, \cos c}{\sin b \, \sin c}$$

This formula, however, is not adapted to logarithmic computation. When logarithms are employed, either (9), (10), or (11) may be used. If, however, *all* the angles are desired, (11) serves us best.

The solution is unique. Why?

EXAMPLE. Given

$$a = 93^{\circ} 45',$$

 $b = 27^{\circ} 16',$
 $c = 88^{\circ} 12'.$
 $\tan \frac{1}{2} A = \sqrt{\frac{\sin (s-b) \sin (s-c)}{\sin s \cdot \sin (s-a)}}.$
:. log $\tan \frac{1}{2} A = \frac{1}{2} [\log \sin (s-b) + \log \sin (s-c) - \log s - \log (s-a)].$
 $s = 104^{\circ} 36' 30'',$
 $s - a = 10^{\circ} 51' 30'',$
 $s - b = 77^{\circ} 20' 30'',$
 $s - c = 16^{\circ} 24' 30''.$
log $\sin (s-b) + \log \sin (s-c) = 9.98936 + 9.45099 = 9.44035;$
log $\sin s + \log \sin (s-a) = 9.98572 + 9.27504 = 9.26016;$
 $\therefore \log \tan \frac{1}{2} A = .09009;$
 $\therefore A = 101^{\circ} 48' 4''.$

Case II.

Given a, b, C; required A, B, c. Formulæ (20) and (21) give

$$\tan\frac{(A+B)}{2} = \frac{\cos\frac{a-b}{2}}{\cos\frac{a+b}{2}} \cot\frac{C}{2};$$
$$\tan\frac{(A-B)}{2} = \frac{\sin\frac{(a-b)}{2}}{\sin\frac{(a+b)}{2}} \cot\frac{C}{2}.$$

Whence A + B and (A - B) can be found, and therefore A and B.

From (16),
$$\cos\frac{c}{2} = \frac{\cos\frac{a+b}{2}}{\cos\frac{a+b}{2}}\sin\frac{C}{2},$$

which determines c.

If we wish to determine c independent of A and B, proceed as follows:

 $\cos c = \cos a \cos b + \sin a \sin b \cos C = \cos a (\cos b + \tan a \sin b \cos C).$

Put $\tan a \cos C = \tan \phi$, which determines ϕ .

$$\therefore \cos c = \cos a \frac{(\cos b \cos \phi + \sin b \sin \phi)}{\cos \phi};$$

$$\therefore \cos c = \frac{\cos a \cos (b - \phi)}{\cos \phi}.$$

This formula is adapted to logarithmic computation.

Case III.

Given a, b, A; required B, c, C.

$$\sin B = \frac{\sin A}{\sin a} \sin b \ (a); \qquad (\text{from (3)})$$

$$\tan \frac{c}{2} = \frac{\cos \frac{A+B}{2}}{\cos \frac{A-B}{2}} \tan \frac{a+b}{2}; \qquad (\text{from (22)})$$

$$\cot \frac{C}{2} = \frac{\cos \frac{a+b}{2}}{\cos \frac{(a-b)}{2}} \tan \frac{(A+B)}{2}. \qquad (\text{from (20)})$$

Discussion of the solution.

I. If sin $A \sin b > \sin a$, no solution is possible; for sin B > 1. II. If sin $a > \sin A \sin b$, equation (a) is satisfied by two supplementary values of B. Now $\frac{A+B}{2}$ and $\frac{a+b}{2}$ are of like affection, hence, if both values of B satisfy this condition, there are two solutions; otherwise, but one. This test requires that we first solve for B before we determine whether there are one or two solutions. There are several methods of determining this by an inspection of given data. The following is one, quoted from Wheeler's Trigonometry, where the reader is referred to Chauvenet's Trigonometry, p. 197:

2

(1) When b differs more from 90° than a, B must be in the same quadrant as b (Art. 177), and there can be but one solution. It remains to show that (2) when a differs more from 90° than b, there will be necessarily two solutions. We have

$$\sin c = \frac{\cos a - \cos b \cos c}{\sin b \cos A}.$$
 (from (1))

Two solutions exist so long as $\sin c$ is positive. Now, when *a* differs more from 90° than *b*, we have (neglecting the signs for a moment),

$$\cos a > \cos b > \cos b \cos c;$$

therefore, the numerator of the above value of $\sin c$ has the sign of $\cos a$. But by Art. 177, a and A are in the same quadrant, and therefore $\cos a$ and $\cos A$ have the same sign; therefore, the numerator and denominator have the same sign, and the value of $\sin c$ is positive, as was to be proved.

Hence, there is but one solution when the side opposite the given angle differs less from 90° than the other given side, and two solutions when the side opposite the given angle differs more from 90° than the other given side.

Case IV.

Given a, A, B; required C, b, c.

$$\sin b = \frac{\sin B}{\sin A} \cdot \sin a;$$

$$\tan \frac{c}{2} = \frac{\cos \frac{A+B}{2}}{\cos \frac{A-B}{2}} \tan \frac{a+b}{2};$$

$$\tan \frac{C}{2} = \frac{\sin \frac{(a-b)}{2}}{\cos \frac{a+b}{2}} \cot \frac{A+B}{2}.$$

This solution is also ambiguous.

If $\sin a \sin B > \sin A$, no solution is possible.

Now it is evident that the triangle ABC, and its polar triangle A'B'C', have the same number of solutions.

The data given in this case determine two sides of A'B'C' and one angle of A'B'C' opposite one of these sides. Hence, by Case III., we can determine whether there are one or two solutions of A'B'C'; and, hence, whether there are one or two triangles of ABC satisfying the given data.

Case V.

Given c, A, B; required C, a, b.

$$\tan \frac{a+b}{2} = \frac{\cos \frac{A-B}{2}}{\cos \frac{A+B}{2}} \tan \frac{c}{2}; \qquad \text{(from (22))}$$
$$\tan \frac{a-b}{2} = \frac{\sin \frac{A-B}{2}}{\sin \frac{A+B}{2}} \tan \frac{c}{2}.$$

This determines $\frac{a+b}{2}$ and $\frac{a-b}{2}$, and hence a and b.

$$\tan\frac{C}{2} = \frac{\cos\frac{a-b}{2}}{\cos\frac{a+b}{2}} \cot\frac{A+B}{2}.$$
 (from (20))

The solution is unique.

Case VI.

Given A, B, C; required a, b, c.

$$\cos \frac{1}{2}a = \sqrt{\frac{\cos(S-B)\cos(S-C)}{\sin B\sin C}}; \quad (\text{from } (12))$$

or, if all the sides are desired,

$$\tan \frac{1}{2}a = \sqrt{\frac{-\cos S \cos(S-A)}{\cos(S-B)\cos(S-C)}}.$$
 (from (14))

Formula (3) may be used as a check formula in each of the cases.

EXAMPLES. XLIII.

1. $a = 84^{\circ} 30'$; $b = 46^{\circ} 10'$; $C = 75^{\circ} 46'$. Find A, B, c.

2. In a right-angled triangle calculate A, B, c, having given $a = 86^{\circ} 45'$; $b = 108^{\circ} 20'$.

3. In a right-angled triangle,

 $a = 63^{\circ} 12'$; $B = 75^{\circ} 9'$. Find A, B, c.

4. A spherical triangle has,

 $a = 124^{\circ} 12' 30''$; $b = 54^{\circ} 18'$; $c = 97^{\circ} 12' 30''$. Solve the triangle.

5. In a right triangle,

 $A = 125^{\circ}$; $B = 43^{\circ}$ 18'. Solve the triangle.

6. A spherical triangle has,

 $a = 125^{\circ} 12'$; $b = 107^{\circ} 10'$; $c = 45^{\circ}$. Solve the triangle.

7. Having given,

 $b = 108^{\circ} 30'$; $c = 40^{\circ} 50'$; $C = 39^{\circ} 50'$. Solve the triangle.

8. A spherical triangle has,

 $a = 110^{\circ} \ 30'$; $c = 16^{\circ} \ 12'$; $C = 84^{\circ} \ 2'$. Solve the triangle.

9. Having given,

 $A = 66^{\circ} 30'$; $B = 75^{\circ} 20'$; $C = 110^{\circ} 10'$. Solve the triangle.

10. In a spherical triangle,

 $A = 107^{\circ} 36' 9''$; $B = 36^{\circ} 17' 20''$; $c = 56^{\circ} 21' 30''$. Solve the triangle.

11. In a right triangle,

 $a = 75^{\circ} 24'$; $c = 69^{\circ} 20'$. Solve the triangle.

TRIGONOMETRY FOR BEGINNERS

12. In a spherical triangle,

 $a = 147^{\circ} 49'$; $A = 137^{\circ} 36'$; $C = 90^{\circ}$. Find b, B, c.

13. In a right triangle,

 $A = 73^{\circ} 7'$; $c = 114^{\circ} 32'$; $C = 90^{\circ}$. Find a, B, b.

14. A spherical triangle,

 $C = 146^{\circ} 37' 54''; B = 55^{\circ} 36''; b = 96^{\circ} 34' 24''.$ Solve the triangle.

15. In a right triangle,

 $A = 85^{\circ} 25'$; $B = 105^{\circ} 12'$; $C = 90^{\circ}$. Solve the triangle.

16. In a spherical triangle,

 $A = 39^{\circ} 45'$; $B = 26^{\circ} 59'$; $c = 154^{\circ} 47'$. Solve the triangle.

- 17. A spherical triangle has, $a = 150^\circ 57'; \ b = 134^\circ 16'; \ A = 144^\circ 23'.$ Solve the triangle.
- 18. In a spherical triangle, $a=35^\circ\;37'\;;\;b=59^\circ\;12'\;;\;C=124^\circ\;18'.\;\;\text{Solve the triangle}.$
- 19. In a spherical triangle,

 $A=58^\circ~16'~;~B=41^\circ~28'~;~c=75^\circ~54'.~$ Solve the triangle.

20. In a spherical triangle,

 $a=68^\circ\,16'\,;\ b=53^\circ\,24'\,;\ C=86^\circ\,40'.$ Solve the triangle.

21. In a right triangle,

 $A=29^\circ\;33'\,;\ B=87^\circ\;21'\,;\ C=90^\circ.$ Solve the triangle.

ANSWERS TO EXAMPLES

II.

1. 80. **2.** 10. **3.** $109\frac{11}{21}$. **4.** 5 acres. **5.** $\frac{1760 a}{b}$. **6.** $\frac{a \cdot c}{3}$ yds. III. (i.) 1. .09175 of a right angle.
2. .0675 of a right angle.
4. .180429 of a right angle.
5. 1.467 of a right angle. 1.07875 of a right angle.
 54 of a right angle. **11**. 16° 12′ 37.26′′. 7. 1° 14′ 15″. **9.** 153° 24′ 29.34′′, **8.** 7° 52′ 30′′. **10.** 21° 36′ 8.1′′. 12. 31° 30′. (ii.) 1. 2 right angles, or 4. $\frac{6}{\pi}$ right angles. 7. $\frac{2\theta}{\pi}$ right angles. 180°. 2. $\frac{3}{2}$ of a right angle.5. 2 right angles.8. .002 of a right
angle.3. $\frac{2}{\pi}$ right angles.6. $\frac{4}{\pi^2}$ right angles.9. 20 right angles. (iii.) **1.** π . **2.** 2π . **3.** $\frac{\pi}{3}$. **4.** $\frac{\pi}{8}$. **5.** $\frac{\pi}{180}$. **6.** 1°. **7.** $\frac{n}{180}\pi$. **8.** $\frac{1}{2}$ °. **9.** $\frac{24\pi}{180}$. 2. $\frac{\pi}{180}$. (v.) 1. $\frac{1}{3}$. **3.** $\frac{6}{2}\frac{3}{0}$.

IV.

1.	$\frac{3}{2}$. 2. 90. 3. $4\frac{4}{5}$. 4 . $112\frac{1}{2}$ ft.	20.	38°, 18°. 21. $\frac{n\pi}{10800}$.
5.	$5\frac{37}{63}$ ft. 6. 838000 miles.		10800
7.	$\frac{1}{9}$ radian = $6\frac{4}{11}$ degrees.	22.	(i.) $120^{\circ}, \frac{2\pi}{3}$; (ii.) $135^{\circ}, \frac{3\pi}{4}$.
8.	$21_{\frac{2}{4}\frac{1}{4}}^{\frac{2}{4}}$ degrees. 9. $51_{\frac{6}{1}\frac{1}{1}}^{\frac{6}{1}}$		
10.	about 34 yds. 11. 1:3.1416.		(iii.) $156^{\circ}, \frac{13}{15}\pi.$
12.	3.1416. 13. 3.1416.	02	(i.) 3_4^3 ; (ii.) $\frac{15}{2\pi}$ 24. $\frac{19^\circ}{10}$
14.	400 : 1. 15. .0000484 ····.	20.	(1.) 5_{\pm} , (11.) $\frac{2}{2\pi}$ 21. 10
16.	49 $_{11}^{11}$ in. 18. 473 : 489.	25.	$\frac{9 a + 10 b}{10 c}$ 26. $\frac{1800 \pi}{19 \pi + 1800}$
19	(i.) $k = 1$. (ii.) $k = \frac{180}{\pi}$.		$10 c$ $19 \pi + 1800$
10.	(1.) $n = 1$. (11.) $n = \frac{\pi}{\pi}$.	27.	9 or 16.

v.
1. $\sin A = \frac{16}{25}$; $\cos A = \frac{3\sqrt{41}}{25}$. 2. $\frac{1}{\sqrt{5}}$; $\frac{2}{\sqrt{5}}$; 2.
3. (i.) $\frac{DB}{CB}$, $\frac{BA}{CA}$; (ii.) $\frac{CD}{CB}$, $\frac{CB}{CA}$; (iii.) $\frac{DB}{CD}$, $\frac{BA}{CB}$; (iv.) $\frac{DB}{AB}$, $\frac{BC}{AC}$;
(v.) $\frac{AD}{AB}$, $\frac{AB}{AC}$; (vi.) $\frac{DB}{AD}$, $\frac{BC}{AB}$.
4. (i.) $\frac{DA}{BA}$; (ii.) $\frac{BA}{EA}$ or $\frac{AC}{EC}$; (iii.) $\frac{DC}{BC}$; (iv.) $\frac{AB}{AE}$; (v.) $\frac{AD}{AB}$ or $\frac{AB}{AC}$;
(vi.) $\frac{BD}{BC}$; (vii.) $\frac{DB}{CD}$ or $\frac{BA}{CB}$ or $\frac{AE}{CA}$; (viii.) $\frac{DA}{BD}$; (ix.) $\frac{BA}{EB}$ or $\frac{AC}{EA}$;
(x.) $\frac{DC}{BD}$; (xi.) $\frac{DB}{AB}$ or $\frac{BC}{AC}$; (xii.) $\frac{BE}{AE}$.
6. Of the smaller angle, the sine $=\frac{5}{13}$, cosine $=\frac{1}{13}^2$, tangent $=\frac{5}{12}$. Of the larger angle, the sine $=\frac{1}{12}^2$, cosine $=\frac{5}{13}$, tangent $=\frac{5}{12}^2$.
7. Of the smaller angle, the sine $=\frac{1}{2}$, cosine $=\frac{\sqrt{3}}{2}$, tangent $=\frac{1}{\sqrt{3}}$.
Of the larger angle, the sine $=\frac{1}{2}\sqrt{3}$, cosine $=\frac{1}{2}$, tangent $=\sqrt{3}$.
9. $BC = \sqrt{3}$; $\sin A = \frac{1}{2}\sqrt{3}$; $\cos A = \frac{1}{2}$; $\tan A = \sqrt{3}$.
11. $AC = \sqrt{2}$; $\sin B = \sqrt{\frac{2}{3}}$; $\sin A = \frac{1}{\sqrt{3}}$.
VII.
1 . 179 ft. 7 . 63.17 yds. 13 . 173.2 yds.
2. 346 ft 8. 192.8 ft. 14. 373 ft.
3. 86.6 ft. 9. 34.15 ft. $\sqrt{3} a$
3. 86.6 ft. 9. 34.15 ft. 15. $\frac{\sqrt{3} a}{3 b}$. 4. 138.5 ft. 10. 73.2 ft. 15. $\frac{\sqrt{3} a}{3 b}$.
5. $7\frac{1}{2}$ ft. 11. 86.6 ft. 16. 30°.
6. 60°; 173 ft. 12. 1524 yds. 17. About 523.6 miles.
XI.
1. 60°. 3. 0°. 5. 115°. 7. $-\frac{1}{4}\pi$.
2. -100° . 4. -260° . 6. 410° . 8. $\frac{2}{3}\pi$.
XII.
1. $+\frac{1}{2}$; $-\frac{\sqrt{3}}{2}$; $-\frac{1}{\sqrt{3}}$; 6. $\frac{\sqrt{3}}{2}$; $+\frac{1}{2}$; $+\sqrt{3}$. 11. $-\frac{\sqrt{3}}{2}$; $-\frac{1}{2}$; $+\sqrt{3}$.
2. $\frac{1}{\sqrt{2}}$; $-\frac{1}{\sqrt{2}}$; -1. 7. $-\frac{1}{\sqrt{2}}$; $-\frac{1}{\sqrt{2}}$; +1. 12. $-\frac{\sqrt{3}}{2}$; $+\frac{1}{2}$; $-\sqrt{3}$.
3. $+\frac{\sqrt{3}}{2}; -\frac{1}{2}; -\sqrt{3}.$ 8. $-\frac{1}{\sqrt{2}}; -\frac{1}{\sqrt{2}}; +1.$ 13. $+\frac{1}{\sqrt{2}}; +\frac{1}{\sqrt{2}}; +1.$
4. $-\frac{1}{2}$; $+\frac{\sqrt{3}}{2}$; $-\frac{1}{\sqrt{3}}$. 9. $+\frac{1}{2}$; $+\frac{\sqrt{3}}{2}$; $+\frac{1}{\sqrt{3}}$. 14. $\frac{\sqrt{3}}{2}$; $-\frac{1}{2}$; $-\sqrt{3}$.
5. $-\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; -1.$ 10. $+\frac{1}{2}; +\frac{\sqrt{3}}{2}; +\frac{1}{\sqrt{3}}.$ 15. $-\frac{1}{2}; -\frac{\sqrt{3}}{2}; +\frac{1}{\sqrt{3}}.$

16.	36° ; 150° ; -210° ; -330° .	20.	$20^{\circ}; 160^{\circ}; 380^{\circ}; 520^{\circ}$
17.	45° ; 135° ; -225° ; -315° .	21.	$\frac{5}{4}\pi; \frac{7}{4}\pi; \frac{13}{4}\pi; \frac{15}{4}\pi.$
18.	60° ; 120° ; -240° ; -300° .	22.	$\frac{8}{7}\pi$; $\frac{1}{7}\pi$; $\frac{2}{7}\pi$; $\frac{2}{7}\pi$; $\frac{2}{7}\pi$.
19.	$-30^{\circ}; -150^{\circ}; 210^{\circ}; 330^{\circ}.$		The tangent. 26. No.

$$\mathbf{XV}. (a).$$
1. $\sin A = \pm \sqrt{1 - \cos^2 A}; \ \tan A = \pm \frac{\sqrt{1 - \cos^2 A}}{\cos A};$
 $\cot A = \pm \frac{\cos A}{\sqrt{1 - \cos^2 A}}; \ \sec A = \frac{1}{\cos A}; \ \csc A = \pm \frac{1}{\sqrt{1 - \cos^2 A}}.$
2. $\sin (90^\circ + A) = \frac{\cot A}{\sqrt{\cot^2 A + 1}}; \ \cos (90^\circ + A) - \frac{1}{\sqrt{\cot^2 A + 1}};$
 $\tan (90^\circ + A) = -\cot A; \ \sec (90^\circ + A) = -\sqrt{\cot A + 1};$
 $\csc (90^\circ + A) = -\cot A; \ \sec (90^\circ + A) = -\sqrt{\cot A + 1};$
 $\csc (90^\circ + A) = \frac{\sqrt{\cot^2 A + 1}}{\cot A}.$
3. $\sin (180^\circ - A) = \pm \frac{\sqrt{\sec^2 A - 1}}{\sec A}; \ \cos (180^\circ - A) = -\frac{1}{\sec A};$
 $\tan (180^\circ - A) = \pm \frac{\sqrt{\sec^2 A - 1}}{\sec A}; \ \cos (180^\circ - A) = -\frac{1}{\sec A};$
 $\tan (180^\circ - A) = \pm \sqrt{\sec^2 A - 1}, \ etc.$
4. $\sin A = \frac{1}{\csc A}; \ \cos A = \frac{\pm \sqrt{\csc^2 A - 1}}{\csc A}; \ \tan A = \pm \frac{\sin A}{\sqrt{1 - \sin^2 A}}, \ etc.$
5. $\sin A = \sin A; \ \cos A = \pm \sqrt{1 - \sin^2 A}; \ \tan A = \pm \frac{\sin A}{\sqrt{1 - \sin^2 A}}, \ etc.$
6. See answers to Example 1.
b) 1. $\tan A = \pm \frac{3}{4}; \ \csc A = \frac{5}{3}.$
2. $\sin B = \frac{2\sqrt{2}}{3}; \ \cot B = \frac{1}{2\sqrt{2}}.$
4. $\cot \theta = \frac{1}{\sqrt{15}}; \ \sin \theta = \frac{\sqrt{15}}{4}.$
5. $\sin \theta = \frac{\sqrt{3}}{2}; \ \cos \theta = \frac{1}{2}.$
6. $\sin \theta = \frac{\sqrt{3}}{2}; \ \cos \theta = \frac{1}{2}.$
7. $\frac{b}{\pm \sqrt{c^2 - b^2}}$
8. $\frac{a}{\pm \sqrt{a^2 + 1}}; \ \frac{1}{\sqrt{a^2 + 1}}.$
9. $\sin \theta = \frac{\sqrt{a^2 - 1}}{a}, \ \cot \theta = \frac{1}{\sqrt{a^2 - 1}}.$
11. $h^2(1 + h^2) = 1.$

12. $\cos\theta = \frac{4}{5}$; $\tan\theta = \frac{3}{4}$; $\cot\theta = \frac{4}{3}$; $\sec\theta = \frac{5}{4}$; $\csc\theta = \frac{5}{3}$.

XVI.

1.	45°; 135°. 2 . 30°; 150°; 210°; 330°.	8.	45°; 315°; 0°; 180°.
3.	45°; 135°; 225°; 315°.	9.	90°; 270°; 60°; 120°.
4.	60°; 120°; 240°; 300°.	10.	60°; 120°; 240°; 300°.
5.	30°; 150°; 210°; 330°.	11.	$45^{\circ}; 225^{\circ}.$
6.	30°; 150°; 210°; 330°.	12.	90°; 70°; 45°; 315°.
7.	30°; 150°.	13.	0° ; 180°; 45°; 135°.

TRIGONOMETRY FOR BEGINNERS

14. 45°; 135°; 225°; 315°. **15.** 45°; 135°. **16.** 30°; 330°. **17.** 30°; 150°. **18.** $\pm 60^{\circ}$; $\pm 120^{\circ}$; $\pm 240^{\circ}$; $\pm 300^{\circ}$. **21.** $n\pi$; $2 n\pi + \frac{\pi}{3}$; $(2n+1)\pi - \frac{\pi}{3}$. **19.** 0° ; 180° ; -180° ; -360° . **20.** $2 n\pi \pm \frac{\pi}{4}$; (*n* any integer). **22.** $n\pi + \frac{\pi}{4}$. XXI. 1. $\sin(\theta + \phi) + \sin(\theta - \phi)$. 3. $\sin(2\alpha + 3\beta) + \sin(2\alpha - 3\beta)$. 2. $\cos(\alpha - \beta) + \cos(\alpha + \beta)$. 4. $\cos 2\alpha + \cos 2\beta$.

5. $\sin 8\theta - \sin 2\theta$. 6. $\cos \theta + \cos 2\theta$. 7. $\frac{1}{2}(\cos 3\theta - \cos 5\theta)$. 8. $\frac{1}{2}(\sin 4\theta - \sin \theta)$. 12. $-\cos 4\theta \sin 2\theta$. **9.** $\sin 60^{\circ} + \sin 40^{\circ}$.

XXV.

- **13.** $4\cos^2\frac{\theta}{2}\sin 2\theta$.
- 1. $\frac{3}{\sqrt{10}}$, 2. $\frac{2}{\sqrt{3}}$, 3. $\frac{2}{\sqrt{3}}$, $-\sqrt{\frac{7}{3}}$, 13. 1.

10. $\frac{1}{2} (\sin 60^\circ - \sin 30^\circ).$ 11. $2\cos 3\theta\cos 2\theta$.

XXVI.

1. 60°. **2.** 120°. **3.** 30°; 150°. **4.** 135°. **5.** 45°; 135°. **6.** 120°.

XXVIII.

1.	$\cos A = \frac{1}{2}; \ \cos \frac{1}{2}A = \frac{1}{2}\sqrt{3}.$	13. 120° . 14. $a = 1$.
2.	$45^{\circ}; \ 60^{\circ}; \ 75^{\circ}.$	15. $C = 30^{\circ}; a = \sqrt{3} + 1; b = 2.$
3.	135°; 30°; 15°. 4 . 3. 5 . 14.	16. $A = 75^{\circ}$; $a = b = \sqrt{3} + 1$.
6.	$1 + \sqrt{3}$. 7. 120°. 8. 120°.	17. $C = 60^{\circ}$ or 120° .
9.	120°. 10. 90°; 36° 52′.	18. 60°; 75°; 6 yds.
11.	$130^{\circ} 27'$. 12. $125^{\circ} 6'$.	21. $15:8\sqrt{3}:4\sqrt{5}+6.$

XXIX.

1. $3; \frac{10}{3}; \frac{1}{4}; \frac{2}{3}; -\frac{5}{2}$. **3.** 2; 4; -1; -3; -4. **5.** $\frac{4}{3}; \frac{2}{3}; \frac{1}{3}; \frac{4}{3}; \frac{1}{2}$. **2.** 3; 6; -1; -3; -6, 2. **4.** 3; -1; 5; -2; 3; -3.

XXX.

 1. 3.55169; .87251; 3.63548.
 3. 2.65920; 2.54926; 3.85941.

 2. 4.93662; 1.98320; 3.54654.
 4. 6.83181; 7.51129.

XXXI.

1.	3.7040.	2 . 45740.2.	3 . 2492830.	4 00043965.	5 . 5.68915.
			XXXII.		
1.	7.669.	4 . 55460.	7. 8287.	10 6731.	13 . 2.624.
2.	3.809.	5. 12.03.	8. 1165.	11 . 1.096.	14 . 22.51.

3. 47.32. **6.** .04023. **9.** .3107. **12.** 823.6. **15.** 23.28.

XXXIII.

1. C = 60.42; b = 59.1; $B = 78^{\circ}$. **2.** b = 21.14; $A = 52^{\circ} 49' 55''$; a = 27.89.

XXXIV.

1.	$A = 41^{\circ} \ 16' \ 52''.$	3.	$60^{\circ} 50' 51''; 73^{\circ} 1' 50''.$	5.	64 ' 31' 58''.
2.	73° 32′ 12″; 62° 46′ 18″.	4.	47° 25′ 40″.	6.	135°; 30°; 15°.

XXXV.

1. a = 313.46 yds. **2.** 1192.55 yds. **3.** 22.415 ft. **4.** a = .01116; b = .006962.

XXXVI.

1.	57° 27′ 25′′; 62° 32′ 35′′.	3.	$A=24^{\circ}\;41'\;48'';$	c = .5886.
2.	64° 26′ 47″; 37° 7′ 13′.	4.	$72^{\circ} \ 12' \ 59''.$	5. 14.

XXXVII.

A = 51° 18' 21''; C = 88° 41' 39''; or A = 128° 41' 39''; C = 11° 18' 21''.
 B = 38° 38' 24''; C = 91° 91' 36''; c = 155.3.
 No.

XXXVIII.

1.	28° 35′ 39′′.	4.	$43^{\circ} 40'$		7. 3437.6 yds.
2.	104° 44′ 39′′.	5.	$128^{\circ}23$	' 13''	. 8 . 1728.2 chains.
3.	$32^{\circ} 20' 48''$.	6.	106531	ft.	9. 25376 yds.
10.	$A = 66^{\circ} \ 27' \ 48''$; $B = 1$	$2^{\circ}55$	/ 12//.	14.	$B = 51^{\circ} 56' 17'', \text{ or } 128^{\circ} 3' 43''.$
11.	$A = 92^{\circ} 12' 53''$; $B = 3$	85° 37	<i>t 711</i> .	15.	$B = 62^{\circ} 6' 10''$, or $117^{\circ} 53' 50''$.
12.	$B = 29^{\circ} 1' 40'' ; \ C = 74$	$^{\circ}55'$	5077.	16.	Very nearly 90°.
13.	$B = 70^{\circ} 35' 24'', \text{ or } 109'$	$^{\circ}24^{\prime}$	367.	17.	1319.6 yds.

XLII.

1. $\sin A = \frac{3}{5}$; $\cos A = \frac{4}{5}$. 2. $\frac{80}{3}\sqrt{3}$ ft. = 46.19 ... ft. 6. 4227.47 ft. 9. 30° , 60° , 90° , 120° , etc., have for sine $\frac{1}{2}$, $\sqrt{\frac{3}{2}}$, 1, $\sqrt{\frac{3}{2}}$, $\frac{1}{2}$, 0, $-\frac{1}{2}$, $-\sqrt{\frac{3}{2}} - 1$, $-\sqrt{\frac{3}{2}}$, $-\frac{1}{2}$, respectively. 12. The other sides are 765.4321 ft.; 1006.6 ft. 15. 30° , 60° , 90° , etc., have for $\tan \frac{1}{3}\sqrt{3}$, $\sqrt{3}$, ∞ , $-\sqrt{3}$, $-\frac{1}{3}\sqrt{3}$, 0, $\frac{1}{3}\sqrt{3}$, ∞ . $-\sqrt{3}$, $-\frac{1}{3}\sqrt{3}$, respectively. 17. $\frac{168}{193}$, $\frac{168}{195}$, $\frac{32592}{193 \times 195}$. 19. $\sec A = \frac{3}{4}\sqrt{2}$. 20. (i) $\frac{15}{2}$; (ii.) -15. 21. $+\sin 18^{\circ}$, $-\cos 18^{\circ}$, $-\tan 18^{\circ}$; $-\sin 30^{\circ}$, $-\cos 30^{\circ}$, $+\tan 36^{\circ}$; $-\sin 36^{\circ}$, $+\cos 36^{\circ}$, $-\tan 36^{\circ}$. 22. $\cos 5a = 16\cos^{5}a - 20\cos^{3}a + 5\cos a$. 23. (i) 0, $u\pi$, $\frac{1}{3}\pi$; (ii.) $\cos \theta = \frac{1}{2}$, or $\sin (\theta - 45^{\circ}) = \frac{1}{\sqrt{2}}$. 24. $\frac{1}{25}\sqrt{651} = .981 \cdots$. 25. $\frac{1}{630}A$ radians; 5.72965^{\circ}. 26. $\sin e$, $\frac{4}{3}$; \tan , $\frac{4}{3}$; \cot , $\frac{3}{4}$; \csc , $\frac{5}{3}$.

TRIGONOMETRY FOR BEGINNERS

29. (i.) $6 \log_{10} 3 + 3 \log_{10} 2 - 3$; (ii.) $\frac{1}{3} \{ \log_{10} 7 + 1 - \log_{10} 2 \};$ (iii.) $3 \log_{10} 7 + 3 \log_{10} 2 - 2 \log_{10} 3 - 2$. **31.** $6_{3} \theta \text{ deg.}$; 19.09854°. 38. $-\frac{2}{3}\sqrt{2}$. **39.** π ; $\frac{1}{3}\pi$; $\frac{5}{3}\pi$. **34.** 3; -9.**36.** $C = 18^{\circ}$, $a = c = 2 \div \sqrt{(10 - 2\sqrt{5})}$. **41.** 1 ft., 120°, 30°; or 2 ft., 60°, 90°. **37.** -1320° . **42**. 104° 28′ 39′′. 44. $-\frac{1}{5}\sqrt{5}$. **43.** - 630°. **46.** 0; π ; $\frac{2}{3}\pi$; $\frac{4}{3}\pi$. **48.** $\frac{1}{\sqrt{6}} \pm \sqrt{2}$ and 15° , 135° ; or, 105° , 45° . **49.** 9^{-} ; $286^{5} 28' 41.16''$; $\frac{5}{8}$. **52.** (i.) $n\pi \pm \frac{1}{3}\pi$; (ii.) $\frac{1}{2}n\pi \pm \frac{1}{8}\pi$, or $n\pi + (-1)^{n\frac{1}{4}}\pi$. **54.** 40° 29′ 19.85′′. 55. $\frac{1}{1080}\pi$; $\frac{1}{10}\pi$; $\frac{5}{4}$. 53. 373 sq. ft. **56.** $\tan \alpha = 4\sqrt{3}$, $\operatorname{cosec} \alpha = \frac{7}{3\pi}\sqrt{3}$. **58.** (i.) $n\pi \pm \frac{1}{4}\pi$; (ii.) $\frac{1}{2}n\pi \pm \frac{1}{8}\pi$; or, $2n\pi \pm \frac{1}{4}\pi$. 59. 2 14 sq. ft. **60.** 38° 25′ 32.7′′. **64.** (i.) $1 - \log_{10} 5 + \frac{1}{2} \log_{10} 7$; $1 - 4 \log_{10} 5 + 5 \log_{10} 3$; $2 - 5 \log_{10} 5 - 2 \log_{10} 3 + 2 \log_{10} 7.$ **66.** 192 ft., 185 ft., and 9234 sq. ft. **67.** 2.3 radians = 131.779926° . **69.** .69897; .77815; 2.33445; 1.91480. **72.** 78° 10′; 70° 30′; 9234 sq. ft. **73.** $\frac{4}{35}\pi$; $\frac{9}{35}\pi$; $\frac{14}{5}\pi$; $\frac{19}{35}\pi$; $\frac{24}{5}\pi$. **76.** 116.6. **78.** 135°, 15°; or 45°, 105°. **79.** $_{21}^{2}\pi; \frac{4}{21}\pi; \frac{6}{21}\pi; \frac{8}{21}\pi; \frac{1}{21}\pi; \frac{$ **81.** 32.92.... **84.** 7 ft.; $\sqrt{19}$ ft.; $\frac{15}{\sqrt{3}}$ sq. ft. **88.** 1035.43 ft.; 765.4321 ft.; 66². **89.** 6.981 ft. **90.** $\frac{1}{2}$; $-\frac{1}{2}$. **91.** 4.49999. **94.** 3210.793.

XLIII.

-1

1.	$1 = 95^{\circ} 56' 18'';$	7. 1	$B = 68^{\circ} 18';$	13.	$a = 60^{\circ} 31' 24'';$
	$B = 46^{\circ} 7' 15'';$		$4 = 132^{\circ} \ 33' \ 48''$;		$B = 143^{\circ} 50';$
	$c = 75^{\circ} 56' 27''.$		$a = 131^{\circ} 15' 48'';$		$b = 147^{\circ} 32' 6''$.
			· · · · · · · · · · · · · · · · · · ·		
2.	$A = 86^{\circ} \; 54' \; 53''$;	or, 1	$B = 111^{\circ} \ 42'$;	14.	$a = 55^{\circ};$
	$B = 108^{\circ} \ 18' \ 23''$;	-	$A = 77^{\circ} 4' 36'';$		$c = 138^{\circ} 10';$
	$c = 91^{\circ} 1' 12''.$	($a = 95^{\circ} 50'$.		$A = 42^{\circ} 30'.$
			$a = 69^{\circ} \ 56' \ 30'';$		1 = 42 ov.
3.	$c = 82^{\circ} 37' 24'';$		· · · · ·	15.	$a = 85^{\circ} \ 15';$
	$A = 64^{\circ} 9' 34'';$		$b = 82^{\circ} \ 16' \ 28''$;		$b = 105^{\circ} \ 15' \ 15'';$
	$b = 73^{\circ} 5' 32''.$		$c = 105^{\circ} 57'.$		
		10.	$a = 72^{\circ} 44';$		$c = 91^{\circ} \ 15'.$
4.	$A = 127^{\circ} 22';$		$b = 36^{\circ} 22';$	16.	$a = 121^{\circ} 27' 30'';$
	$B = 51^{\circ} \ 18'$;			10.	$b = 37^{\circ} 15' 30'';$
	,	($C = 56^{\circ} \ 12'.$		
	$C = 72^{\circ} \ 27'.$	11.	Impossible.		$C = 161^{\circ} \ 22' \cdot$
5.	$a = 146^{\circ} 35' 20'';$	12.	$B = 60^{\circ} 45';$	17.	$c = 23^{\circ} 57';$
	$b = 27^{\circ} \ 19'$;		$b = 43^{\circ} 34';$		$B = 59^{\circ} 11';$
	$c = 137^{\circ} 59' 33''.$				· · · · ·
	C = 107 0.0 0.0 0.0		$c = 52^{\circ} \ 11';$		$C=29^\circ 9';$
6.	$A = 129^{\circ} \ 49' \ 44''$;	or, 1	$B = 119^{2} \ 15'$;	01,	$c = 55^{\circ} 42';$
	$C = 46^{\circ} \ 32' \ 48'';$		$b = 136^{\circ} 25';$		$B = 120^{\circ} 49'$;
	$B = 78^{\circ} \ 47' \ 48''$		$c = 127^{\circ} 49'.$		$C = 97^{\circ} 44'.$
	1) = 10 11 10 i	,	- 121 10.		0 - 01 11.

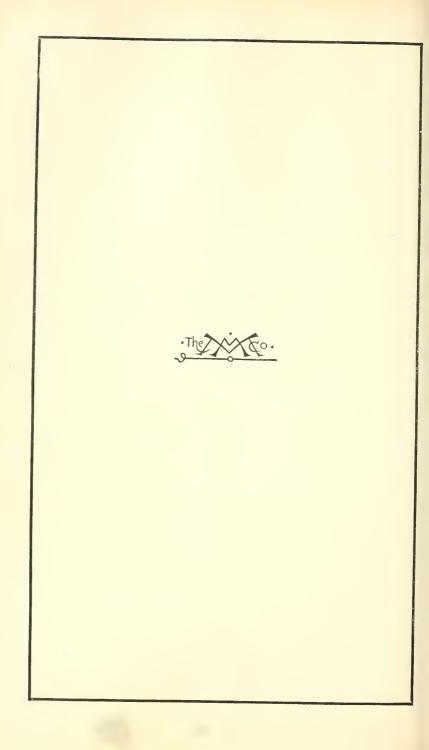
18.
$$c = 82^{\circ} \ 16'$$
;
 $A = 29^{\circ} \ 2'$;
 $B = 45^{\circ} \ 44'$.

19. $a = 58^{\circ} \ 33' \ 37'';$ $b = 41^{\circ} \ 47' \ 40'';$ $C = 104^{\circ} \ 48' \ 4''.$

-

20.
$$A = 74^{\circ} \ 2' \ 53'';$$

 $B = 56^{\circ} \ 11' \ 55'';$
 $c = 74^{\circ} \ 41' \ 4''.$
21. $a = 29^{\circ} \ 26' \ 30'';$


 $b = 84^{\circ} \ 37' \ 15'';$ $c = 85^{\circ} \ 19' \ 2''.$,

TABLES

LOGARITHMIC AND TRIGONOMETRIC

CALCULATED TO FIVE PLACES OF DECIMALS

TABLES

LOGARITHMIC AND TRIGONOMETRIC

CALCULATED TO

FIVE PLACES OF DECIMALS

ARRANGED BY

F. L. SEVENOAK, A.M.

ASSISTANT PRINCIPAL OF THE ACADEMIC DEPARTMENT, STEVENS INSTITUTE OF TECHNOLOGY

New Dork

THE MACMILLAN COMPANY LONDON: MACMILLAN & CO., LTD.

1896

All rights reserved

Copyright, 1896, By THE MACMILLAN COMPANY.

Norwood Press J. S. Cushing & Co. – Berwiek & Smith Norwood Mass. U.S.A.

BRIEF EXPLANATIONS AND RULES

FOR THE

USE OF THESE TABLES

THE logarithm of a number consists in general of two parts, — an integral part, and a decimal. The integral part is called the characteristic, and the decimal part, when it is so written that it is positive, is called the mantissa.

RULE I. The characteristic of the logarithm of a number greater than unity is less by one than the number of digits in its integral part, and is positive.

Thus, the characteristic of the logarithm of 48226 is 4.

RULE II. The characteristic of the logarithm of a decimal fraction is greater by unity than the number of ciphers immediately after the decimal point, and is negative.

Thus, the characteristic of the logarithm of .048226 is $\overline{2}$. We indicate that the characteristic is negative by writing the minus sign above it.

TABLE I

To find the logarithm of a number.

(a) When the number is between 1 and 100.

The logarithm is on page 1.

(b) When the number consists of one or two significant figures.

The mantissa is on page 1.

The characteristic is found by Rule I. or II.

Thus,

log 8.5 = 0.92942; log .85 = 1.92942;log .085 = 2.9242.

(c) When the number contains three significant figures.

In the column headed No., find the number. On a line with it, and in the column having o at the top, is the mantissa. Prefix the characteristic (Rules I. and II.).

Thus, $\log 574 = 2.75891;$ $\log 57.40 = 1.75891;$ $\log .0574 = \overline{2.75891}.$

(d) When the number contains four significant figures.

In the column headed No., find the first three significant figures. On a line with these, and in the column having at the top the fourth significant figure, is the mantissa. Prefix the proper characteristic (Rules I. and II.).

Thus,	$\log 9275 = 3.96731;$
	$\log 9.275 = 0.96731;$
	$\log .09275 = \overline{2.96731}$.

(e) When the number contains more than four significant figures.

Suppose the logarithm of 62543 is required. Since the number lies between 62540 and 62550, its logarithm lies between their logarithms. In the column headed No., find the first three figures. On a line with these, and in the columns having 4 and 5 at the top, are the mantissæ .79616 and .79623. Prefixing the proper characteristic, we have

$$log 62550 = 4.79623$$
$$log 62540 = 4.79616$$
Differences, 10 .00007

Here we see that while the number increases from 62540 to 62550, the logarithm increases .00007. Now our number, 62543, is $\frac{3}{10}$ of the way from 62540 to 62550; hence, if to the logarithm of 62540 we add $\frac{3}{10}$ of .00007, a nearly correct logarithm of 62543 is obtained.

Thus,

log 62540 = 4.79616correction = .00002 ... log 62543 = 4.79618

vi

We have here assumed that the differences of logarithms are proportional to the differences of their corresponding numbers, which gives us results that are approximately correct. For greater accuracy we must use tables of more places.

To find the number corresponding to a logarithm.

(a) When the given mantissa can be found in the table.

The first three figures of the number are in the column headed *No.*, and on a line with the mantissa; the fourth figure is at the top of the column containing the mantissa.

Find the number whose logarithm is 2.93202.

The mantissa, found on page 17, corresponds to the number 8551. As the characteristic is 2, the required number is 855.1.

(b) When the given mantissa cannot be found in the table.

Find the number whose logarithm is 8.82252 - 10 or 2.82252.

As the exact mantissa is not in the table, take out the next larger, .82256, and the next smaller, .82249, and retain the characteristic in arranging the work.

Thus, the number corresponding to	2.82256	is	.066.46
and the number corresponding to	2.822.49	is	.066.45
Differences,	.00007		.0000I

Now the given logarithm, $\overline{2.82252}$, is .00003 greater than the smaller of the two logarithms, and the difference in logarithms of .00007 corresponds to a difference in numbers of .00001; therefore we should increase the number corresponding to the logarithm $\overline{2.82249}$ by $\frac{.00003}{.00007}$, or $\frac{3}{7}$ of .00001.

Thus, the number corresponding to	2.82249 = .06645.
and the correction $\left(\frac{3}{7} \text{ of } .00001\right)$	= .000004
the number corresponding to	$\overline{2.82252} = .066454$

vii

TABLE II

This table contains the logarithmic sine, tangent, cotangent, and cosine for every ten seconds from 0° to 2° , and for every minute from 1° to 89° .

To find the logarithmic sine, tangent, cotangent, or cosine of an angle less than 90° .

When the angle is less than 45° , use the column headings at the top of the page and the *left-hand* minute column. When the angle is greater than 45° , use the column headings at the bottom of the page and the *right-hand* minute column.

Find $\log \sin 20^\circ 25' 12''$.

On page 43, we find

 $\log \sin 20^{\circ} 25' = 9.54263.$

This logarithm must be increased by $\frac{12}{60}$ of the difference between it and log sin 20° 26'.

:. $\log \sin 20^{\circ} 25' 12'' = 9.54263 + \frac{1}{5}$ of .00034 = 9.54270.

Find $\log \tan 52^\circ 17' 10''$. On page 52, we find

 $\log \tan 52^\circ 17' = 10.11162.$

This value must be increased by $\frac{1.0}{6.0}$ of the difference between it and log tan 52° 18'.

:. $\log \tan 52^{\circ} 17' 10'' = 10.11162 + \frac{1}{6}$ of .00026 = 10.11166.

NOTE. In finding log sin or log tan we add the correction, but subtract in finding log cos or log cot.

For closer work, larger tables, such as those of Vega, should be employed.

To find an angle less than 90° , having given its logarithmic sine, tangent, cotangent, or cosine.

Find the angle for which $\log \cos = 9.94065 - 10$.

On page 48, we find the next smaller logarithm, 9.94062 - 10, which corresponds to the angle $29^{\circ} 17'$, and the next larger logarithm, which corresponds to the angle $29^{\circ} 16'$.

Thus,

$$9.94069 - 10 = \log \cos 29^{\circ} 16$$

9.94062 - 10 = log cos 29^{\circ} 17
Differences, .00007 1

The given logarithm is .00003 larger than the smaller of these logarithms; therefore we have a correction of $\frac{.00003}{.00007}$ or $\frac{2}{7}$ of 60" to make.

Thus, $\log \cos 9.94065 - 10$ corresponds to angle $29^{\circ} 17' - \frac{3}{7}$ of $60'' = 29^{\circ} 16' 26''$.

Find the angle for which $\log \tan = 0.15782$.

On page 50, we find

 $0.15800 = 55^{\circ} 12'$ 0.15773 = 55° 11'
Differences, 0.0027 1'

The given logarithm is .00009 larger than the smaller of these logarithms; therefore we have a correction of $\frac{.00009}{.00027}$ or $\frac{1}{3}$ of 60" to make.

Thus, log tan 0.15782 corresponds to angle 55° 11' + $\frac{1}{3}$ of 60'' = 55° 11' 20''.

NOTE. In finding the angle corresponding to log sin or log tan we add the correction, but subtract for log cos or log cot.

TABLE III (a), (b), (c), (d)

These tables contain the natural trigonometric functions from 0° to 90° at intervals of 6'.

ix

TABLE I

THE

COMMON LOGARITHMS

SQ

a.v

OF THE

NATURAL NUMBERS

FROM I TO 10,000

No.	Log.	No.	Log.	No.	Log.	No.	Log	No.	Log.
1	0.00000	21	1.32222	41	1.61278	61	1.78533	81	1.90849
2	0.30103	22	1.34242	42	1.62325	62	1.79239	82	1.91381
3	0.47712	23	1.36173	43	1.63347	63	1.79934	83	1.91908
4	0.60206	24	1.38021	44	1.64345	64	1.80618	84	1.92428
5	0.69897	25	1.39794	45	1.65321	65	1.81291	85	1.92942
6	0.77815	26	1.41497	46	1.66276	66	1.81954	86	1.93450
7	0.84510	27	1.43136	47	1.67210	67	1.82607	87	1.93952
8	0.90309	28	1.44716	48	1.68124	68	1.83251	88	1.94448
9	0.95424	29	1.46240	49	1.69020	69	1.83885	89	1.94939
10	1.00000	30	1.47712	50	1.69897	70	1.84510	90	1.95424
11	1.04139	31	1.49136	51	1.70757	71	1.85126	91	1.95904
12	1.07918	32	1.50515	52	1.71600	72	1.85733	92	1.96370
13	1.11394	33	1.51851	53	1.72428	73	1.86332	93	1.96848
14	1.14613	34	1.53148	54	1.73239	74	1.86923	94	1.97313
15	1.17609	35	1.54407	55	1.74036	75	1.87506	95	1.97772
16	1.20412	36	1.55630	56	1.74819	76	1.88081	96	1.98227
17	1.23045	37	1.56820	57	1.75587	77	1.88649	97	1.98677
18	1.25527	38	1.57978	58	1.76343	78	1.89209	98	1.99123
19	1.27875	39	1.59106	59	1.77085	79	1.89763	99	1.99564
20	1.30103	40	1.60206	60	1.77815	80	1.90309	100	2.00000

		-								
No.	0	1	2	3	4	5	6	7	8	9
100 101 102 103 104	00 4 3 2 00 8 6 0 01 2 8 4	00 475 00 903 01 326	00 518	00 561 00 988 01 410		00 647 01 072 01 494	00 689 01 115 01 536	00 732 01 157 01 578	00 346 00 775 01 199 01 620 02 036	00 817 01 242 01 662
105 106 107 108 109	02 531 02 938 03 342	02 572 02 979 03 383	02 202 02 612 03 019 03 423 03 822	02 653 03 060 03 463	02 694 03 100 03 503	02 735 03 141 03 543	02 776 03 181 03 583	02 \$16 03 222 03 623	02 449 02 857 03 262 03 663 04 060	02 898 03 302 03 703
110 111 112 113 114	04 532 04 922 05 308	04 571 04 961 05 346	04 218 04 610 04 999 05 385 05 767	04 650 05 038 05 423	04 689 05 077 05 461	04 727 05 115 05 500	04 766 05 154 05 538	04 805 05 192 05 576	04 454 04 844 05 231 05 614 05 994	04 883 05 269 05 652
115 116 117 118 119	06 446 06 819 07 188	06 483 06 856 07 225	06 145 06 521 06 893 07 262 07 628	06 558 06 930 07 298	06 595 06 967 07 335	06 633 07 004 07 372	06 670 07 041 07 408	06 707 07 078 07 445	06 371 06 744 07 115 07 482 07 846	06 781 07 451 07 518
120 121 122 123 124	08 279 08 636 08 991	08 314 08 672 09 026	07 990 08 350 08 707 09 061 09 412	o8 386 o8 743 o9 096	08 422 08 778 09 132	08 458 08 814 09 167	08 493 08 849 09 202	08 529 08 884 09 237	08 207 08 565 08 920 09 272 09 621	08 600 08 955 09 307
125 126 127 128 129	10 037 10 380 10 721	10 072 10 415 10 755	09 760 10 106 10 449 10 789 11 126	10 140 10 483 10 823	10 175 10 517 10 857	10 209 10 551 10 890	10 243 10 585 10 924	10 278 10 619 10 958	09 968 10 31 2 10 653 10 992 11 327	10 346 10 687 11 025
130 131 132 133 134	11 727 12 057 12 385	11 760 12 090 12 418	11 461 11 793 12 123 12 450 12 775	11 826 12 156 12 483	11 \$60 12 189	11 893 12 222 12 548	11 926 12 254 12 581	11 959 12 287 12 61 3	11 661 11 992 12 320 12 646 12 969	12 024 12 352 12 678
135 136 137 138 139	13354 13672 13988	13386 13704 14019	13 098 13 418 13 735 14 051 14 364	13450 13767 14082	13481 13799	13 513 13 830	13 545 13 862 14 176	13577 13893 14208	13290 13609 13925 14239 14551	13 640 13 956 14 270
140 141 142 143 144	14 922 15 229 15 534	14 953 15 259 15 564	14 675 14 983 15 290 15 594 15 897	15 014 15 320 15 625	15 045 15 351 15 655	15 076 15 381 15 685	15 106 15 412 15 715	15 137 15 442 15 746	14 860 15 168 15 473 15 776 16 077	15 198 15 503 15 806
145 146 147 148 149	16435 16732 17020	16 465 16 761 17 056	16 197 16 495 16 791 17 085 17 377	16 524 16 820 17 114	16 850 17 143	16 584 16 879 17 173	16 613 16 909	16 643 16 938 17 231	16 376 16 673 16 967 17 260 17 551	16 702 16 997
150	17 609	17 638	17 067	17 696	17 725	17 754	17 782	17 811	17 840	17 869

No.	0	1	2	3	4	5	6	7	8	9
150 151 152 153 154	17 898	17 926 18 213	17 955 18 241	17084	18 298	18 041	17 782 18 070 18 355 18 639 18 921	18 384	17 840 18 127 18 412 18 696 18 977	18441
155 156 157 158 159	19 312 19 590 19 866	19 340 19 618 19 893	19 368 19 645 19 921	19 117 19 396 19 673 19 948 20 222	19 42 4 19 700 19 976	19 451 19 728 20 003	19 201 19 479 19 756 20 030 20 303	19 507 19 783 20 058	19 535 19 811 20 085	19 838 20 112
160 161 162 163 164	20 683 20 952 21 219 21 484	20 710 20 978 21 245 21 511	20 737 21 005 21 272 21 537	20 493 20 763 21 032 21 299 21 564	20 790 21 059 21 325 21 590	20 817 21 085 21 352 21 617	20 575 20 844 21 112 21 378 21 643	20 871 21 139 21 405 21 669	20 898 21 165 21 431 21 696	20 925 21 192 21 458 21 722
165 166 167 168 169	22 01 1 22 272 22 531 22 789	22 037 22 298 22 557 22 814	22 063 22 324 22 583 22 840	22 350 22 608 22 866	22 115 22 376 22 634 22 891	22 141 22 401 22 660	21 906 22 167 22 427 22 686 22 943	22 194 22 453 22 712	22 220 22 479 22 737	22 246 22 505 22 763
170 171 172 173 174	23 045 23 300 23 553 23 805 24 055	23 325 23 578 23 830 24 080	23 350 23 603 23 855 24 105	23 376 23 629 23 880 24 130	23 401 23 654 23 905 24 155	23 426 23 679 23 930	23 198 23 452 23 704 23 955 24 204	23 477 23 729 23 980	23 502 23 754 24 005	23 528 23 779 24 030
175 176 177 178 178	24 551 24 797	24 576 24 822 25 066	24 601 24 846 25 091	25 115	24 650 24 895 25 1 39	24 674 24 920 25 164	24 452 24 699 24 944 25 188 25 431	24 724 24 969 25 212	24 748 24 993 25 237	25 018 25 261
180 181 182 183 184	25 527 25 768 26 007 26 245 26 482	26 031 26 269	26 055 26 293	26 079 26 316	26 102 26 340	25 888 26 1 26 26 364	25 672 25 912 26 150 26 387 26 623	25 935 26 174 26 41 1	25 959 26 198 26 435	25 983 26 221 26 458
185 186 187 188 189	26 717 26 951 27 184 27 416 27 646	26 975 27 207 27 439	26 998 27 231 27 462	27 021 27 254 27 485	27 045 27 277 27 508	27 068 27 300 27 531	26 858 27 091 27 323 27 554 27 784	27 114 27 346 27 577	27 138 27 370 27 600	27 161 27 393 27 623
190 191 192 193 194	28 103	28 126 28 353 28 578	28 149 28 375	27 944 28 171 28 398 28 623 28 847	28 194 28 421	28 217 28 443 28 668 28 892	28 01 2 28 240 28 466 28 691 28 914	28 262 28 488 28 713 28 937	28 285 28 511 28 735 28 959	28 307 28 533 28 758 28 981
195 196 197 198 199	29 447 29 667	29 248 29 469 29 688	29 270 29 491 29 710	29 070 29 292 29 513 29 732 29 951	29 314 29 535	29 557 29 776	29 137 29 358 29 579 29 798 30 016	29 001 29 820	29 623 29 842	29 645 29 863
200	30 103	30 1 2 5	30 146	30 168	30 190	30 21 1	30 233	30 255	30 276	30 298

No.	0	1	2	3	4	5	6	7	8	9
200 201 202 203 204	30 320 30 535 30 750	30 125 30 341 30 557 30 771 30 984	30 363 30 578 30 792	30 384 30 600 30 814	30 406 30 621 30 835	30 428 30 643	30 449 30 664 30 878	30 255 30 471 30 685 30 899 31 112	30 492 30 707 30 920	30 514 30 728
205 206 207 208 209	31 387 31 597 31 806		31 429 31 639 31 848	31 450 31 660 31 869	31 471		31 513 31 723 31 931	31 323 31 534 31 744 31 952 32 160		31 366 31 576 31 785 31 994 32 201
210 211 212 213 214		32 449 32 654 32 858		32 490 32 695 32 899		32 940	32 552 32 756 32 960	32 366 32 572 32 777 32 980 33 183	32 797 33 001	32 818 33 021
215 216 217 218 219	33 244 33 445 33 646 33 846 34 044	33 666	33 486 33 686 33 885		33 325 33 526 33 726 33 925 34 124	33 345 33 546 33 746 33 945 34 143	33 365 33 566 33 766 33 965 34 163	33 385 33 586 33 786 33 985 34 183	33 806 34 005	33 425 33 626 33 826 34 025 34 223
220 221 222 223 224					34 321 34 518 34 713 34 908 35 102	34 341 34 537 34 733 34 928 35 122		34 380 34 577 34 772 34 967 35 160	34 400 34 596 34 792 34 986 35 180	
225 226 227 228 229		35 430 35 622 35 813	35 449 35 641	35 276 35 468 35 660 35 851 36 040	35 295 35 488 35 679 35 870 36 059	35 315 35 507 35 698 35 889 36 078	35 334 35 526 35 717 35 908 36 097	35 353 35 545 35 736 35 927 36 116	35 372 35 564 35 755 35 946 36 135	35 392 35 583 35 774 35 965 36 154
230 231 232 233 234	36 173 36 361 36 549 36 736 36 922	36 568 36 754		36 418 36 605	36 248 36 436 36 624 36 810 36 996	36 455 36 642			36 511	36 530 36 717
235 236 237 238 239	37 107 37 291 37 475 37 658 37 840	37 125 37 310 37 493 37 076 37 858	37 144 37 328 37 511 37 694 37 876	37 162 37 346 37 530 37 712 37 894	37 181 37 365 37 548 37 731 37 912	37 199 37 383 37 566 37 749 37 931	37 218 37 401 37 585 37 767 37 949	37 236 37 420 37 603 37 785 37 967	37 254 37 438 37 621 37 803 37 985	37 273 37 457 37 639 37 822 38 003
240 241 242 243 244	38 021 38 202 38 382 38 561 38 739	38 039 38 220 38 399 38 578 38 757	38 057 38 238 38 417 38 590 38 775		38 093 38 274 38 453 38 632 38 810	38 112 38 292 38 471 38 650 38 828		38 148 38 328 38 507 38 686 38 863	38 166 38 346 38 525 38 703 38 881	
245 246 247 248 249	39 270 39 445	38 934 39 111 39 287 39 463 39 637	39 1 29 39 305 39 480	39 146 39 322 39 498	38 987 39 164 39 340 39 515 39 690			39 041 39 217 39 393 39 568 39 742	39 058 39 235 39 410 39 585 39 759	39 076 39 252 39 428 39 602 39 777
250	39 794	39 81 1	39 829	39 846	39 863	39 881	39 898	39 91 5	39 933	39 950

	1				_	1				
No.	0	1	2	3	4	5	6	7	8	9
250 251 252 253 254	39 967 40 140 40 312	39 985 40 157 40 329	39 829 40 002 40 175 40 346 40 518	40 019 40 192 40 364	40 037 40 209 40 381	40 054 40 226 40 398	39 898 40 071 40 243 40 415 40 586	40 088 40 201 40 4 32	40 106 40 278 40 440	40 123 40 295 40 466
255 256 257 258 259	40 824 40 993 41 162	40 841 41 010 41 179	40 688 40 858 41 027 41 196 41 363	40 875 41 044 41 212	40 892 41 061 41 229	40 909 41 078 41 246	40 756 40 926 41 095 41 263 41 430	40 943 41 111 41 280	40 960 41 128 41 296	40 970 41 145 41 31 3
260 261 262 263 264	41 830	41 847 42 012	41 531 41 697 41 863 42 029 42 193	41 880 42 045	41 896 42 062	41 747 41 913 42 078	41 597 41 764 41 929 42 095 42 259	41 780 41 946 42 111	41 797 41 963 42 127	41 814 41 979 42 144
265 266 267 268 269	42 488 42 651 42 813	42 504 42 667 42 830	42 357 42 521 42 684 42 846 43 008	42 537 42 700 42 862	42 553 42 716 42 878	42 570 42 732 42 894	42 423 42 586 42 749 42 911 43 072	42 602 42 765 42 927	42 619 42 781 42 943	42 635 42 797 42 959
270 271 272 273 274	43 297 43 457 43 616 43 775	43 31 43 473 43 632 43 791	43 169 43 329 43 489 43 648 43 807	43 345 43 505 43 664 43 823	43 361 43 521 43 680 43 838	43 377 43 537 43 696 43 854	43 233 43 393 43 553 43 712 43 870	43 409 43 569 43 727 43 886	43 425 43 5 43 743 43 902	43 44 1 43 600 43 759 43 917
275 276 277 278 279	44 091 44 248 44 404	44 107 44 264 44 420	43 965 44 122 44 279 44 436 44 592	44 138 44 295 44 451	44 154 44 311 44 467	44 170 44 326 44 483	44 028 44 185 44 342 44 498 44 654	44 201 44 358 44 514	44 217 44 373 44 529	44 232 44 389 44 545
280 281 282 283 283	44 871 45 025 45 179	44 886 45 040 45 194	44 747 44 902 45 056 45 209 45 362	44 917 45 071 45 225	44 932 45 086 45 240	44 948 45 102 45 255	44 809 44 963 45 117 45 271 45 423	44 979 45 133 45 286	44 994 45 148 45 301	45 010 45 163 45 317
285 286 287 288 289	45 637 45 788 45 939	45 652 45 803 45 954	45 515 45 667 45 818 45 969 46 120	45 682 45 834 45 984	45 697 45 849 46 000	45 712 45 864 46 015	45 576 45 728 45 879 46 030 46 180	45 743 45 894 46 045	45 758 45 909 46 060	45 773 45 924 46 075
290 291 292 293 294	46 389 46 538 46 687	46 404 46 553 46 702	46 270 46 419 46 568 46 716 46 864	46 434 46 583 46 731	46 449 46 598 46 746	46 464 46 613 46 761 46 909	46 330 46 479 46 627 46 776 46 923	46 494 46 642 46 790 46 938	46 509 46 657 46 805 46 953	46 523 46 672 46 820 46 967
295 296 297 298 299	47 129 47 276	47 144 47 290 47 4 <u>3</u> 6	47 012 47 159 47 305 47 451 47 596	47 173 47 319 47 465	47 188 47 334 47 480	47 202	47 070 47 217 47 363 47 509 47 654	47 232 47 378 47 524	47 246 47 392 47 538	47 261 47 407 47 553
300	47 712	47 727	47 741	47 756	47 770	47 784	47 799	47 813	47 828	47 842

No.	0	1	2	3	4	5	6	7	8	9
300 301 302 303 304	47 857 48 001 48 144	47 727 47 871 48 015 48 159 48 302	47 885 48 029 48 173	47 900 48 044 48 187	47 914 48 058 48 202	47 929 48 073 48 216	47 799 47 943 48 087 48 230 48 373	47 958 48 101 48 244	47 972 48 116 48 259	47 986 48 1 30
305 306 307 308 309	48 572 48 714 48 855	48 444 48 586 48 728 48 869 49 010	48 001 48 742 48 883	48 61 5 48 756 48 897	48 629 48 770	48 643 48 785 48 926	48 515 48 657 48 799 48 940 49 080	48 671 48 813 48 954	48 686 48 827 48 968	48 700 48 841 48 982
310 311 312 313 314	49 276 49 415 49 554 49 693	49 150 49 290 49 429 49 568 49 707	49 304 49 443 49 582 49 721	49 318 49 457 49 596 49 734	49 332 49 471 49 610 49 748	49 346 49 485 49 624	49 220 49 360 49 499 49 538 49 776	49 374 49 51 3 49 651	49 388 49 527 49 665	49 402 49 541 49 679
315 316 317 318 319	49 969 50 106 50 243	49 845 49 982 50 120 50 256 50 393	49 996 50 1 33 50 270	50 010 50 147 50 284	50 024 50 161 50 297	50 037 50 174 50 311	49 914 50 051 50 188 50 325 50 461	50 065 50 202 50 338	50 079 50 21 5	50 092 50 229 50 365
320 321 322 323 324	50 651 50786 50 920	50 529 50 664 50 799 50 934 51 668	50 678 50 813 50 947	50 691 50 826 50 961	50 705 50 840	50 718		59 745	50 759 50 893 51 028	50 772 50 907 51 041
325 326 327 328 329	51 322 51 455 51 587	51 202 51 335 51 468 51 601 51 733	51 348 51 481 51 614	51 362 51 495 51 627	51 508	51 654		51 680	51 428 51 561 51 693	51 574
330 331 332 333 334	51 983 52 114 52 244	51 865 51 996 52 127 52 257 52 388	52 009 52 140 52 270	52 022 52 153 52 284	52 035 52 166 52 297	52 048 52 179 52 310	51 930 52 061 52 192 52 323 52 453	52 075 52 205 52 336	52 088 52 218 52 349	52 101
335 336 337 338 339	52 634 52 763 52 892	52 517 52 647 52 776 52 905 53 033	52 660 52 789 52 917	52 673 52 802 52 930	52 943	52 699 52 827 52 956	52 582 52 711 52 840 52 969 53 097	52 724 52 853 52 982	52 737 52 866 52 994	52 750 52 879 53 007
340 341 342 343 344	53 275 53 403	53 542	53 301 53 428 53 555		53 326 53 453	53 339		53 364	53 250 53 377 53 504 53 631 53 757	53 263 53 390 53 517 53 643 53 769
345 346 347 348 349	53 908 54 033 54 158	53 920 54 045	53 933 54 058 54 183	53 945	53 832 53 958 54 083 54 208 54 332	54 095 54 220	53 983 54 108	54 120 54 245	54 008 54 1 33 54 258	
350	54 407	54 4 1 9	54 4 32	54 444	54 456	54 469	54 481	54 494	54 506	54 518

No.	0	1	2	3	4	5	6	7	8	9
350 351 352 353 354	54 531	54 543 54 667 54 790	54 555 54 679 54 802	54 568	54 704	54 469 54 593 54 716 54 839 54 962	54 481 54 605 54 728 54 851 54 974	54 617 54 741 54 864	54 630 54 753 54 876	54 642 54 765 54 888
355 356 357 358 359	55 145 55 267	55 157 55 279 55 400	55 291 55 41 3	55 182	55 194	55 084 55 206 55 328 55 449 55 570	55 218 55 340 55 461	55 108 55 230 55 352 55 473 55 594	55 121 55 242 55 364 55 485 55 606	55 376 55 497
360 361 362 363 364	55 751 55 871 55 991	55 883 56 003	55 775			55 811 55 931 56 050	.55 703 55 823 55 943 56 062 56 182	55 835 55 955 56 074	55 727 55 847 55 967 56 086 56 205	
365 366 367 368 369	56 348 56 467 56 585	56 360 56 478 56 597	56 372 56 490 56 608	56 384 56 502 56 620	56 277 56 396 56 514 56 632 56 750	56 407 56 526	56 301 56 419 56 538 56 656 56 773	56 431 56 549 56 667	56 561 56 679	56 336 56 455 56 573 56 691 56 808
370 371 372 373 374		56 949 57 066 57 183	57 078		56 984 57 101 57 217	56 996 57 113 57 229	57 008 57 124 57 241		57031	
375 376 377 378 378 379	57 403 57 519 57 634 57 749 57 864	57 530 57 646	57 426 57 542 57 657 57 772 57 887	57 438 57 553 57 669 57 784 57 898	57 449 57 565 57 680 57 795 57 910	57 461 57 576 57 692 57 807 57 921	57 588 <u>.</u> 57 703 57 818	57 484 57 600 57 715 57 830 57 944	57 611 57 726 57 841	57 507 57 623 57 738 57 852 57 967
380 381 382 383 384	58 206 58 320	58 104 58 218 58 331	58 001 58 115 58 229 58 343 58 456	58 127 58 240 58 354	58 1 38	58 035 58 149 58 263 58 377 58 490	58 161 58 274 58 388	58 058 58 172 58 286 58 399 58 512	58 184	58 195 58 309
385 386 387 388 388 389	58 659 58 771 58 883	58 894	58 569 58 681 58 794 58 906 59 017	58 692 58 805 58 917	58 591 58 704 58 816 58 928 59 040	58 827 58 939	58 726	58 625 58 737 58 850 58 961 59 073	58 973	58 647 58 760 58 872 58 984 59 995
390 391 392 393 394	59 218 59 329	59 229 59 340 59 450		59 251 59 362 59 472	59 151 59 262 59 373 59 483 59 594	59 162 59 273 59 384 59 494 59 605	59 506	59 295 59 406 59 517	59 195 59 306 59 417 59 528 59 638	59 207 59 318 59 428 59 539 59 649
395 396 397 398 399	59 770 59 879 59 988	59 780 59 890 59 999		59 802 59 912 60 021	59 813 59 923 60 032	59 715 59 824 59 934 60 043 60 152	59 726 59 835 59 945 60 054 60 163	59 737 59 846 59 956 60 065 60 173	59 966 60 076	59 759 59 868 59 977 60 086 60 195
400	60 206	60 217	60 228	60 239	60 249	60 260	60 271	60 282	60 293	60 304

No.	0	1	2	3	4	5	6	7	8	9
400 401 402 403 404	60 314 60 423 60 531	60 325 60 433 60 541	60 336 60 444 60 552	60 239 60 347 60 455 60 563 60 670	60 358 60 466 60 574	60 369 60 477 60 584	60 379 60 487 60 595	60 282 60 390 60 498 60 606 60 713	60 401 60 509 60 617	60 412 60 520 60 627
405 406 407 408 409	60 853 60 959 61 066	60 863 60 970 61 077	60 874 60 981 61 087	60 778 60 885 60 991 61 098 61 204	60 895 61 002 61 109	60 906 61 01 3 61 119	60 917 61 023 61 130	60 821 60 927 61 034 61 140 61 247	60 938 61 045 61 151	60 949 61 055 61 162
410 411 412 413 414	61 384 61 490 61 595	61 395 61 500 61 606	61 405 61 511 61 616	61 310 61 416 61 521 61 627 61 731	61 426 61 532 61 637	61 437 61 542 61 648	61 448 61 553 61 658	61 352 61 458 61 563 61 669 61 773	61 469 61 574 61 679	61 479 61 584 61 690
415 416 417 418 419	61 909 62 014 62 118	61 920 62 024 62 128	61 930 62 034 62 138	61 836 61 941 62 045 62 149 62 252	61 951 62 055 62 159	61 962 62 066 62 170	61 972 62 076 62 180	61 878 61 982 62 086 62 190 62 294	61 993 62 097 62 201	62 003 62 107 62 211
420 421 422 423 424	62 428 62 531 62 634	62 439 62 542 62 644	62 449 62 552 62 655	62 356 62 459 62 562 62 665 62 767	62 469 62 572 62 675	62 480 62 583 62 685	62 490 62 593 62 696	62 397 62 500 62 603 62 706 62 808	62 511 62 61 3 62 716	62 521 62 624 62 726
425 426 427 428 429	62 941 63 043 03 144	62 951 63 053 63 155	62 961 63 063 63 165	62 870 62 972 63 073 63 175 63 276	62 982 63 083 63 185	62 992 63 094 63 195	63 002 63 104 63 205	62 910 63 012 63 114 63 215 63 317	63 022 63 124 63 225	63 033 63 134 63 236
430 431 432 433 434	63 448 63 548 63 649	63 458 63 558 63 659	63 468 63 568 63 669	63 377 63 478 63 579 63 679 63 779	63 488 63 589 63 689	63 498 63 599	63 508 63 609	63 417 63 518 63 619 63 719 63 819	63 528 63 629	63 538 63 639
435 436 437 438 439	63 949 64 048 64 147	63 959 64 058 64 157	63 969 64 068 64 167	63 879 63 979 64 078 64 177 64 276	63 988 64 088 64 187	63 998 64 098 64 197	64 008 64 108 64 207	63 919 64 018 64 118 64 217 64 316	64 028 64 128 64 227	64 038 64 137 64 237
440 411 442 443 444	64 444 64 542 64 640	64 454 64 552 64 650	64 464 64 562 64 660	64 375 64 473 64 572 64 670 64 768	64 483 64 582 64 680	64 493 64 591 64 689	64 503 64 601 64 699	64 414 64 513 64 611 64 709 64 807	64 523 64 621 64 719	64 532 64 631 64 729
445 446 447 448 449	64 933 65 031 65 128	64 943 65 040 65 137	64 953 65 050 65 147	64 865 64 963 65 060 65 157 65 254	64 972 65 070 65 167	64 982 65 079 65 176	64 992 65 089 65 186	64 904 65 002 65 099 65 196 65 292	65 01 1 65 108 65 205	65 021 65 118 65 215
450	65 321	65 331	65 341	65 350	65 360	65 369	65 379	65 389	65 398	65 408

No.	0	1	2	3	4	5	6	7	8	9
450 451 452 453 454	65 418 65 514 65 610	65 331 65 427 65 523 65 619 65 715	65 437 65 533 65 629	65 447 65 543 65 639	65 552 65 648	05 400 65 562 65 658	65 379 65 475 65 571 65 667 65 763	65 485 65 581 65 6 7 7	05 495 65 591 65 686	65 504 65 600 65 606
455 456 457 458 459	65 896 65 992 66 087	65 811 65 906 66 001 66 096 66 191	65 916 66 01 1 66 106	65 925 66 020 66 115	66 0 30 66 1 2 4	05 944 66 039 66 134	65 858 65 954 66 049 66 143 66 238	65 963 66 058 66 153	65 973 66 068 66 162	05 982 60 077 66 172
460 461 462 463 464	66 370 66 464 66 558	66 285 66 380 66 474 66 567 66 661	66 <u>389</u> 66 <u>483</u> 66 <u>577</u>	66 <u>398</u> 66 <u>492</u> 66 <u>5</u> 86	66 408 66 502 66 596	66 417 66 511 66 605	66 332 66 427 66 521 66 614 66 708	66 436 66 530 66 621	66 445 66 539 66 633	66 455 66 549 66 612
465 466 467 468 469	66 839 66 932 67 025	66 755 66 848 66 941 67 034 67 127	66 857 66 950 67 043	66 867 66 960 67 052	66 876 66 969 67 062	66 885 66 978 67 07 1	66 801 66 894 66 987 67 080 67 173	66 904 66 997 67 089	66 91 3 67 006 67 099	66 922 67 015 67 108
470 471 472 473 474	67 302 67 394 67 486 67 578	67 219 67 311 67 403 67 495 67 587	67 321 67 41 3 67 504 67 596	67 330 67 422 67 514 67 605	67 339 67 431 67 523 67 614	67 348 67 440 67 532	67 265 67 357 67 449 67 541 67 633	67 367 67 459 67 550	67 376 67 468 67 560	67 385 67 477 67 569
475 476 477 478 479	67 761 67 852 67 943	67 679 67 770 67 861 67 952 68 043	67 779 67 870 67 961	67 788 67 879 67 970	67 797 67 888 67 979	67 897 67 988	67 724 67 815 67 906 67 997 68 088	67 916 68 006	67 925 68 01 5	67 934 68 024
480 481 482 483 484	68 215 68 305 68 395 68 485	68 133 68 224 68 314 68 404 68 494	68 233 68 323 68 413 68 502	68 242 68 332 68 422 68 511	68 251 68 341 68 431 68 520	68 260 68 350 68 440 68 529	68 178 68 269 68 359 68 449 68 538	68 278 68 368 68 458 68 547	68 287 68 377 68 467 68 556	68 296 68 386 68 476 68 565
485 486 487 488 489	68 664 68 753 68 842	68 583 68 673 68 762 68 851 68 940	68 68 1 68 77 1 68 860	68 690 68 780 68 869	68 699 68 789 68 878	68 708 68 797 68 886	68 628 68 717 68 806 68 895 68 984	68 726 68 815 68 904	68 735 68 824 68 913	68 744 68 833 68 922
490 491 492 493 494	69 108 69 197 69 285	69 028 69 117 69 205 69 294 69 381	69 126 69 214 69 302	69 135 69 223 69 311	69 144 69 232 69 320	69 064 69 152 69 241 69 329 69 417	69 249 69 338	69 170 69 258 69 346	69 179 69 267 69 355	69 188 69 276 69 364
495 496 497 498 499	69 548 69 636	69 644 69 7 32	69 566 69 653 69 740	69 574 69 662 69 749	69 583 69 671 69 758	69 5 04 69 592 69 679 69 767 69 854	69 601 69 688 69 775	69 609 69 697 69 784	69 618 69 705 69 793	69 627 69 714 69 801
500	69 897	69 906	69 914	69 923	69 9 32	69 940	69 9.19	69 958	69 966	69 975

No.	0	1	2	3	4	5	6	7	8	9
500 501 502 503 504	69 984 70 070 70 157	69 906 69 992 70 079 70 165 70,252	70 001 70 088 70 174	70 010 70 096 70 183	70 018 70 105 70 191	70 027 70 114 70 200	70 036 70 122 70 209	69 958 70 044 70 131 70 217 70 303	70 053 70 140 70 226	70 062 70 148 70 234
505 506 507 508 509	70 41 5 70 501 70 586	70 338 70 424 70 509 70 595 70 680	70 432 70 518 70 603	70 441 70 526 70 012	70 449 70 535	70 458 70 544 70 629	70 467 70 552 70 638	70 389 70 475 70 501 70 646 70 731	70 484 70 569 70 655	70 578 70 663
510 511 512 513 514	70 842 70 927 71 012	70 766 70 851 70 935 71 020 71 105	70 859 70 944 71 029	70 952 71 037	70 876	70 885 70 969 71 054	70 893 70 978 71 063	70 S17 70 902 70 986 71 071 71 155	70 910 70 995 71 079	70 919 71 003 71 088
515 516 517 518 519	71 265 71 349 71 433	71 189 71 273 71 357 71 441 71 525	71 282 71 366 71 450	71 290 71 374 71 458	71 299 71 383 71 466	71 307 71 391 71 475	71 315 71 399 71 483	71 240 71 324 71 408 71 492 71 575	71 332 71 416 71 500	71 341 71 425 71 508
520 521 522 523 524	71 684 71 767 71 850	71 609 71 692 71 775 71 858 71 941	71 700 71 784 71 867	71 709 71 792 71 875	71 717 71 800 71 883	71 725 71 809 71 892	71 734 71 817 71 900	71 659 71 742 71 825 71 908 71 991	71 750 71 834 71 917	71 759 71 842 71 925
525 526 527 528 529	72 099 72 181 72 263	72 024 72 107 72 189 72 272 72 354	72 115 72 198 72 280	72 123 72 206 72 288	72 214 72 296	72 140 72 222 72 304	72 148 72 230 72 313	72 074 72 156 72 239 72 321 72 403	72 165 72 247 72 329	72 173 72 255 72 337
530 531 532 533 534	72 509 72 591 72 673	72 436 72 518 72 599 72 681 72 762	72 526 72 607 72 689	72 534 72 616 72 697	72 542 72 624 72 705	72 550 72 632 72 713	72 640 72 722	72 567 72 648	72 656 72 738	72 583 72 665 72 746
535 536 537 538 539	72 916 72 997 73 978		72 933 73 014 73 094	72 941 73 022 73 102	72 949 73 030 73 111	72 957 73 038 73 119	72 965 73 046 73 127	72 892 72 973 73 054 73 135 73 215	72 981 73 062 73 143	72 989 73 070
540 541 542 543 544	73 400 73 480	73 247 73 328 73 408 73 488 73 568	73 255 73 336 73 416 73 496 73 576	73 263 73 344 73 424 73 504 73 584	73 352 73 432 73 512	73 440	73 368 73 448 73 528	73 296 73 376 73 456 73 536 73 616	73 384 73 464 73 544	73 312 73 392 73 472 73 552 73 032
545 546 547 548 549		73 886	73 735 73 815 73 894		73 751 73 830 73 910	73 759 73 838 73 918	73 767 73 846 73 926	73 S54	73 783 73 862 73 941	73 791 73 870 73 949
550	74 036	74 044	74 052	74 060	74 068	74 076	74 084	74 092	74 099	74 107

No.	0	1	2	3	4	5	6	7	8	9
550 551 552 553 554	74 115 74 194 74 273	74 044 74 123 74 202 74 280 74 359	74 131 74 210 74 288	74 1 39	74 147 74 225 74 304	74 155 74 233 74 312	74 084 74 162 74 241 74 320 74 398	74 170 74 249 74 327	74 178 74 257 74 335	74 107 74 180 74 265 74 343 74 421
555 556 557 558 559	74 507 74 586 74 663	74 593	74 679	74 687	74 539 74 617 74 695	74 547 74 624 74 702	74 476 74 554 74 632 74 710 74 788	74 562 74 640 74 718	74 570 74 648 74 726	74 578
560 561 562 563 564	74 896 74 974 75 051	74 827 74 904 74 981 75 059 75 136	74 912 74 989 75 066	74 997 75 074	74 927 75 005	74 935 75 012 75 089	74 865 74 943 75 020 75 097 75 174	74 950 75 028 75 105	74 958 75 035 75 113	75 043
565 566 567 568 569	75 282 75 358 75 435	75 213 75 289 75 366 75 442 75 519	75 297 75 374 75 459	75 305 75 381 75 458	75 312 75 389	75 320 75 397	75 251 75 328 75 404 75 481 75 557	75 335 75 412 75 488	75 266 75 343 75 420 75 496 75 572	75 351 75 427
570 571 572 573 574	75 664 75 740	75 595 75 671 75 747 75 823 75 899	75 679 75 755 75 831		75 694 75 770 75 846	75 702 75 778	75 861		75 724 75 800 75 876	75 732 75 808 75 884
575 576 577 578 578 579	76 042 76 118 76 193	75 974 76 050 76 125 76 200 76 275	76 057 76 133 76 208	76 065 76 140 76 215	76 072 76 148 76 223	76 080 76 155 76 230	76 012 76 087 76 163 76 238 76 313	76 095 76 170 76 245	76 103 76 178 76 253	76 110 76 185
580 581 582 583 584	76418	76 350 76 425 76 500 76 574 76 649	76 433 76 507 76 582	76 440	76 448 76 522 76 597	76 455 76 530 76 604	76 388 76 462 76 537 76 612 76 686	76 470 76 545 76 619	76 477 76 552	76 485 1
585 586 587 588 588 589	76 864 76 938	76 723 76 797 76 871 76 945 77 019	76 879 76 953	76 886 76 960	76 893 76 967	76 827 76 901 76 975	76 760 76 834 76 908 76 982 77 056	76 842 76 916 76 989	76 849 76 923 76 997	76 856 76 930 77 004
590 591 592 593 594	77 232 77 305	77 093 77 166 77 240 77 313 77 386	77 173 77 247 77 320	77 107 77 181 77 254 77 327 77 401	77 188 77 262 77 335	77 195 77 269	77 129 77 203 77 276 77 349 77 422	77 210 77 283	77 217 77 291 77 304	77 151 77 225 77 298 77 371 77 444
595 596 597 598 599	77 525 77 597 77 670	77 459 77 532 77 605 77 677 77 750	77 539 77 612 77 685	77 546 77 619 77 692	77 554 77 627 77 699	77 488 77 561 77 634 77 706 77 779	77 568 77 641	77 503 77 576 77 648 77 721 77 793	77 583 77 650	77 590
600	77 815	77 822	77 830	77 837	77 844	77 S5 I	77 859	77 866	77 873	77 880

1 I

-Z

No.	0	1	2	3	4	5	6	7	8	9
600 601 602 603 604	77 887	77 967 78 039	77 902	77 909 77 981 78 053	77 844 77 916 77 988 78 061 78 132	77 924	77 931 78 003 78 075	77 866 77 938 78 010 78 082 78 154	77 945	77 952 78 025
605 606 607 608 609	78 247 78 319 78 390	78 183 78 254 78 326 78 398 78 469	78 262 78 333 78 405	78 269 78 340 78 412	78 276 78 347 78 419	78 355	78 290 78 362 78 433	78 226 78 297 78 369 78 440 78 512	78 305 78 376 78 447	78 240 78 312 78 383 78 455 78 526
610 611 612 613 614	78 533 78 604 78 675 78 746 78 817	78 682 78 753	78 547 78 618 78 689 78 760 78 831	78 696 78 767	78 704	78 640 78 711 78 781	78 647 78 718 78 789	78 583 78 654 78 725 78 796 78 866	78 661 78 732 78 803	78 668 78 7 39
615 616 617 618 619	79 099	78 895 78 965 79 036 79 106 79 176	78 972 79 043 79 113	78 979 79 050 79 120	78 916 78 986 79 057 79 127 79 197	78 993 79 064 79 134	78 930 79 000 79 071 79 141 79 211	79 078 79 148	78 944 79 014 79 085 79 155 79 225	78 951 79 021 79 092 79 162 79 232
620 621 622 623 624	79 309	79 386 79 456	79 323	79 330 79 400	79 337 79 407 79 477	79 344 79 414	79 351 79 421 79 491	79 288 79 358 79 428 79 498 79 567	79 295 79 365 79 435 79 505 79 574	79 302 79 372 79 442 79 511 79 581
625 626 627 628 629	79 588 79 657 79 727 79 796 79 865	79 664 79 734	79 810	79 678 79 748 79 817		79 692 79 761 79 831	79 768 79 837	79 637 79 706 79 775 79 844 79 913	79 782 79 851	79 650 79 720 79 789 79 858 79 927
630 631 632 633 634	So 003 So 072 So 140	79 941 80 010 80 079 80 147 80 216	80 017 80 085 80 154	80 024 80 092 80 161	80 030 80 099 80 168	80 037 80 106 80 175	80 044 80 113 80 182	79 982 80 051 80 120 80 188 80 257	80 058 80 127 80 195	80 065 80 1 34 80 202
635 636 637 638 639	80 346 80 4 14 80 4 82	80 284 80 353 80 421 80 489 80 557	80 359 80 428 80 496	80 366 80 434 80 502	80 373 80 441 80 509	80 380 80 448 80 516	80 387 80 455 80 523	80 325 80 393 80 462 80 530 80 598	80 400 80 468 80 536	80 407 80 475 80 543
640 641 642 643 644	80 686 80 754 80 821	80 625 80 693 80 760 80 828 80 895	80 699 80 767 80 835	80 706 80 774 80 841	80 713 80 781 80 848	80 720 80 787 80 855	80 726 80 794 80 862	80 665 80 733 80 801 80 868 80 936	So 740 So SoS So 875	80 747 80 814 80 882
645 646 647 648 649	81 023 81 090 81 158	80 963 81 030 81 097 81 164 81 231	81 037 81 104 81 171	81 043 81 111 81 178	81 050 81 117 81 184	81 057 81 124 81 191	81 064 81 131 81 198	81 003 81 070 81 137 81 204 81 271	81 077 81 144 81 211	81 084 81 151 81 218
650	81 291	81 298	81 305	81 311	81 318	81 325	81 331	81 338	81 345	81 351

No.	0	1	2	3	4	5	6	7	8	
										9
650 651 652 653 654	81 358 81 425 81 491	81 298 81 365 81 431 81 498 81 564	81 371 81 438 81 505	81 378 81 445 81 511	81 385 81 451 81 518	81 391 81 458 81 525	81-331 81-398 81-465 81-531 81-598	81 405 81 471 81 538	81 411 81 478 81 544	81 418 81 485 81 551
655 656 657 658 659	81 690 81 757 81 823	81 631 81 697 81 763 81 829 81 895	81 704 81 770 81 836	81 710 81 776 81 842	81 717 81 783 81 849	81 723 81 790 81 856	81 664 81 730 81 796 81 862 81 928	81 737 81 803 81 869	81 743 81 809 81 875	81 750 81 816 81 882
660 661 662 663 664	82 020 82 086 82 151	81 961 82 027 82 092 82 158 82 223	-82 033 82 099 82 164	82 040 82 105 82 171	82 046 82 112 82 178	82 053 82 119 82 184	81 994 82 060 82 125 82 191 82 256	82 066 82 132 82 197	82 073 82 138 82 204	82 079 82 145 82 210
665 666 667 668 669	82 347 82 413 82 478	82 289 82 354 82 419 82 484 82 549	82 360 82 426 82 491	82 367 82 432 82 497	82 373 82 439 82 504	82 445 82 510	82 321 82 387 82 452 82 517 82 582	82 458 82 523	82 400 82 465 82 530	82 406 82 47 1 82 536
670 671 672 673 674	82 672 82 737 82 802 82 866	82 614 82 679 82 743 82 808 82 872	82 685 82 750 82 814 82 879	82 692 82 756 82 821 82 885	82 698 82 763 82 827 82 892	82 705 82 769 82 834	82 646 82 711 82 776 82 840 82 905	82 718 82 782 82 847	82 724 82 789 82 853	82 730 82 795 82 860
675 676 677 678 679	82 995 83 059 83 123	82 937 83 001 83 065 83 129 83 193	83 008 83 072 83 136	83014 83078 83142	83 020 83 085 83 149	83 027 83 091 83 155	82 969 83 033 83 097 83 161 83 225	83 040 83 104 83 168	83 046 83 110 83 174	83 052 83 117 83 181
680 681 682 683 684	83 315 83 378	83 257 83 321 83 385 83 448 83 512	83 327 83 391	83 398	83 340 83 404	83 347 83 410 83 474	83 289 83 353 83 417 83 480 83 544	83 359 83 423 83 487	83 366 83 429 83 493	83 372 83 436 83 499
685 686 687 688 689	83 632 83 696 83 759	83 575 83 639 83 702 83 765 83 828	83 645 83 708 83 771	83 651 83 715 83 778	83 658 83 721 83 784	83 664 83 727 83 790	83 607 83 670 83 734 83 797 83 860	83 677 83 740 83 803	83 683 83 746 83 809	83 689 83 753 83 816
690 691 692 693 694	83 948 84 011 84 073	83 891 83 954 84 017 84 080 84 142	83 960 84 023 84 086	83 967 84 029 84 092	83 973 84 036 84 098	83 979 84 042 84 105 84 167	83 923 83 985 84 048 84 111 84 173	83 992 84 055 84 117 84 180	83 998 84 061 84 123 84 186	84 004 84 067 84 1 30 84 1 92
695 696 697 698 699	84 261 84 323 84 386	84 205 84 267 84 330 84 392 84 454	84 273 84 336 84 398	84 280 84 342 84 404	84 286 84 348 84 410	84 292 84 354 84 417	84 236 84 298 84 361 84 423 84 485	84 305 84 367 84 429	84 311 84 373 84 435	84 317 84 379 84 442
700	84 510	84 516	84 522	84 528	84 535	84 541	84 547	84 553	84 559	84 566

No.	0	1	2	3	4	5	6	7	8	9
700 701 702 703 704	84 572 84 634 84 696	84 578 84 640 84 702	84 522 84 584 84 646 84 708 84 770	84 590 84 652 84 714	84 597 84 658 84 720	84 603 84 665 84 726	84 609 84 671 84 733	84 615	84 683 84 745	84 628
705 706 707 708 709	84 880 84 942 85 003	84 887 84 948 85 009	84 831 84 893 84 954 85 016 85 077	84 899 84 960 85 022	85 028	84 911 84 973	84 917 84 979 85 040	84 924 84 985	84 868 84 930 84 991 85 052 85 114	84 936 84 997
710 711 712 713 714	85 187 85 248 85 309	85 193 85 254	85 138 85 199 85 260 85 321 85 382	85 205	85 211	85 217 85 278 85 339	85 224 85 285 85 345	85 291	85 236 85 297 85 358	85 181 85 242 85 303 85 364 85 425
715 716 717 718 719	85 491 85 552 85 612	05010	85 443 85 503 85 564 85 625 85 63	05031	85 516 85 576	85 522 85 582 85 643	85 588 85 649	85 534 85 594	85 600 85 661	85 516
720 721 722 723 724	85 854 85 914	85 860 85 920	85 745 85 806 85 866 85 926 85 986	85 872 85 932		85 884 85 944	85 890 85 950	85 896 85 956	85 781 85 842 85 902 85 962 86 022	85 908 85 968
725 726 727 728 729	86 094 86 153 86 213	86 100 86 159 86 219	86 046 86 106 86 165 86 225 86 285	86 112 86 171 86 231	86 118 86 177	86 124 86 183 86 243	86 130 .86 189 86 249	86 136 86 195 86 255	86 082 86 141 86 201 86 261 86 320	86 147 86 207 86 267
730 731 732 733 734	86 392 86 451 86 510	86 398 86 457 86 516	86 344 86 404 86 463 86 522 86 581	86 410 86 469 86 528	86 415 86 475 86 534	86 421 86 481 86 540	86 427 86 487	86 433 86 493 86 552	86 380 86 439 86 499 86 558 86 617	86 445 86 504
735 736 737 738 739	86 688 86 747 86 806	86 694 86 753 86 812	86 641 86 700 86 750 86 817 86 876	86 705 86 764 86 823	86 711 86 770 86 829	86 717 86 776 86 835	86 723 86 782 86 841	86 729 86 788 86 847	86 676 86 735 86 794 86 853 86 911	86 741 86 800 86 859
740 741 742 743 744	86 982 87 040 87 099	86 988 87 046 87 105	86 935 86 994 87 052 87 111 87 169	86 999 87 058 87 116	87 005 87 064 87 122	87 011 87 070 87 128	87 017 87 075 87 134	87 023 87 081 87 140	86 970 87 029 87 087 87 146 87 204	87 035 87 093
745 746 747 748 749	87 274 87 332 87 390	87 280 87 338 87 396	87 227 87 286 87 344 87 402 87 460	87 291 87 349 87 408	87 297 87 355 87 413	87 303 87 361 87 419	87 309 87 367 87 425	87 315	87 262 87 320 87 379 87 437 87 495	87 326
750	87 506	87 512	87 518	87 523	87 529	87 535	87 541	87 547	87 552	87 558

No.	0	1	2	3	4	5	6	7	8	9
750- 751 752 753 754	87 564 87 622 87 679	87 512 87 570 87 628 87 685 87 743	87 576 87 633 87 691	87 581 87 639 87 697	87 587 87 645 87 703	87 593 87 651 87 708	87 541 87 599 87 656 87 714 87 772	87 604 87 662 87 720	87 610 87 668 87 7 20	87.616 87.674 87.774
755 756 757 758 759	87 852 87 910 87 967	87 800 87 858 87 915 87 973 88 030	87 864 87 921 87 978	87 869 87 927 87 984	87 875 87 933 87 990	87 823 87 881 87 938 87 996	87 829 87 887 87 944 88 001 88 058	87 835 87 892 87 950 88 007	87 841 87 898 87 955 88 013	87 846 87 904 87 961 88 018
760 761 762 763 764	88 138 88 195 88 252 88 309	88 087 88 144 88 201 88 258 88 315	88 150 88 207 88 264 88 321	88 156 88 213 88 270 88 326	88 161 88 218 88 275 88 332	88 167 88 224 88 281	88 116 88 173 88 230 88 287 88 343	88 178 88 235 88 292	88 184 88 241 88 298	88 190 88 247 88 301
765 766 767 768 769	88 423 88 480 88 536	88 372 88 429 88 485 88 542 88 598	88 434 88 491 88 547	88 440 88 497 88 553	88 446 88 502 88 559	88 451 88 508 88 561	88 400 88 457 88 513 88 570 88 627	88 463 88 519 88 576	88 468 88 525 88 581	88 474 88 530 88 587
770 771 772 773 774	88 705 88 762 88 818	88 655 88 711 88 767 88 824 88 880	88 717 88 773 88 829	88 722 88 779 88 835	88 728 88 784 88 840	88 7 34 88 790 88 846	88 683 88 739 88 795 88 852 88 908	88 745 88 801 88 857	88 750 88 807 88 863	88 756 88 812 88 868
775 776 777 778 779	88 986 89 042 89 098	88 936 88 992 89 048 89 104 89 159	88 997 89 053 89 109	89 003 89 059 89 115	89 009 89 064 89 120	89 014 89 070 89 126	88 964 89 020 89 076 89 131 89 187	89 025 89 081 89 137	89 031 89 087 89 143	89 037 89 092 89 148
780 781 782 783 784	89 265 89 321 89 376	89 215 89 271 89 326 89 382 89 437	89 276 89 332 89 387	89 282 89 337 89 393	89 287 89 343 89 398	89 293 89 348 89 404	89 243 89 298 89 354 89 409 89 465	89 304 89 360 89 415	89 310 89 365 89 421	89 315 89 371 89 420
785 786 787 788 788 789	89 542 89 597 89 653	89 492 89 548 89 603 89 658 89 713	89 553 89 609 89 664	89 559 89 614 89 669	89 564 89 620 89 675	89 570 89 625 89 680	89 520 89 575 89 631 89 686 89 741	89 581 89 636 89 691	89 <u>5</u> 86 89 642 89 697	89 592 89 647 89 702
790 - 791 792 793 794	89 873 89 927	89 768 89 823 89 878 89 933 89 988	89 883 89 938	S9 SS9 S9 944	89 894 89 949	89 845 89 900 89 955	89 796 89 851 89 905 89 960 90 015	89 856 89 911 89 966	89 862 89 916 89 971	89 867 89 922 89 977
795 796 797 798 799	90 09 1 90 146 90 200	90 042 90 097 90 151 90 206 90 260	90 102 90 157 90 211	90 108 90 162 90 217	90 113 90 168 90 222	90 119 90 173 90 227	90 069 90 124 90 179 90 233 90 287	90 129 90 184 90 238	90 135 90 189 90 244	90 140 90 195 90 249
800	90 309	90 314	90 320	90 325	90 331	90 3 36	90 342	90 347	90 352	90 358

No.	0	1	2	3	4	5	6	7	8	9
800 801 802 803 804	90 363 90 417 90 472	90 369 90 423 90 477	90 374 90 428 90 482	90 325 90 380 90 434 90 488 90 542	90 385 90 439 90 493	90 390 90 445 90 499	90 396 90 450 90 504	90 347 90 401 90 455 90 509 90 563	90 407 90 461 90 515	90 412 90 466 90 520
805 806 807 808 809	90 634 90 687 90 741	90 639 90 693 90 747	90 644 90 698 90 752	90 596 90 650 90 703 90 757 90 811	90 655 90 709 90 763	90 660 90 714 90 768	90 666 90 720 90 773	90 617 90 671 90 725 90 779 90 832	90 677 90 730 90 784	90 682 90 736 90 789
810 811 812 813 814	90 902 90 956 91 009	90 907 90 961 91 014	90 91 3 90 966 91 020	90 865 90 918 90 972 91 025 91 078	90 924 90 977 91 030	90 929 90 982 91 036	90 934 90 988 91 041	90 886 90 940 90 993 91 046 91 100	90 945 90 998 91 052	90 950 91 004 91 057
815 816 817 818 819	91 169 91 222 91 275	91 174 91 228 91 281	91 180 91 233 91 286	91 132 91 185 91 238 91 291 91 344	91 190 91 243 91 297	91 196 91 249 91 302	91 201 91 254 91 307	91 153 91 206 91 259 91 312 91 365	91 212 91 265 91 318	91 217 91 270 91 323
820 S21 S22 S23 S24	91 434 91 487 91 540	91 440 91 492 91 545	91 445 91 498 91 551	91 397 91 450 91 503 91 556 91 609	91 508 91 561	91 461 91 514 91 566	91 466 91 519 91 572	91 418 91 471 91 524 91 577 91 630	91 477 91 529 91 582	91 482 91 535 91 587
825 826 827 828 829	91 698 91 751 91 803	91 703 91 756 91 808	91 709 91 761 91 814	91 661 91 714 91 766 91 819 91 871	91 719 91 772 91 824	91 724 91 777 91 829	91 730 91 782 91 834	91 682 91 735 91 787 91 840 91 892	91 740 91 793 91 845	91 745 91 798 91 850
830 831 832 833 834	91 960 92 01 2 92 065	91 965 92 018 92 070	91 971 92 023 92 075	91 924 91 976 92 028 92 080 92 132	91 981 92 033 92 085	91 986 92 038 92 091	91 991 92 044 92 096	91 944 91 997 92 049 92 101 92 153	92 002 92 054 92 106	92 007 92 059 92 111
835 836 837 838 839	92 221 92 273 92 324	92 226 92 278 92 330	92 231 92 283 92 335	92 184 92 236 92 288 92 340 92 392	92 241 92 293 92 345	92 247 92 298 92 350	92 252 92 304 92 355	92 205 92 257 92 309 92 361 92 41 2	92 262 92 314 92 366	92 267 92 319 92 371
840 841 842 843 844	92 480 92 531 92 583	92 485 92 536 92 588	92 490 92 542 92 593	92 443 92 495 92 547 92 598 92 650	92 500 92 552 92 603	92 609	92 511 92 562 92 614		92 521 92 572 92 624	92 526 92 578 92 629
845 846 847 848 849	92 737 92 788 92 840	92 742 92 793 92 845	92 747 92 799 92 850	92 701 92 752 92 804 92 855 92 906	92 758 92 809 92 860	92 763 92 814 92 865	92 768 92 819 92 870	92 722 92 773 92 824 92 875 92 927	92 778 92 829 92 881	92 783 92 834 92 886
850	92 942	92 947	92 952	92 957	92 962	92 967	92 973	92 978	92 983	92 988

No.	0	1	2	3	4	ʻ 5	6	7	8	9
850 851 852 853 854	92 993 93 044 93 095	92 988 93 049 93 100	93 003 93 054 93 105	92 957 93 008 93 059 93 110 93 161	93013 93064 93115	93 018 93 069 93 120	92 973 93 024 93 075 93 125 93 176	93 029 93 080 93 131	93 034 93 085 93 136	9303) 93090 93141
855 856 857 858 859	93 247 93 298 93 349	93 252 93 303 93 354	93 258 93 308 93 359	93 212 93 263 93 313 93 364 93 414	93 268 93 318 93 309	93 323 93 374	93 227 93 278 93 328 93 379 93 430	93 334 93 384	93 339 93 389	93 344 93 394
860 861 862 863 864	93 500 93 551 93 601	93 505 93 556 93 606	93 510 93 561 93 611	93 465 93 515 93 566 93 616 93 666	93 57 I 93 62 I	93 526 93 576 93 626	93 480 93 531 93 581 93 631 93 682	93 536 93 586 93 636	93 541 93 591 93 641	93 540 93 596 93 646
865 866 867 868 869	93752 93802 93852	93 757 93 807 93 857	93 762 93 812 93 862	93 717 93 767 93 817 93 867 93 917	93 772 93 822 93 872	93 777 93 827 93 877	93 732 93 782 93 832 93 882 93 932	93 787 93 837 93 887	93 792 93 842 93 892	93 797 93 847 93 897
870 871 872 873 874	94 002 94 052 94 101	94 007 94 057 94 106	94 012 94 062 94 111	93 967 94 017 94 067 94 116 94 166	94 022 94 072 94 121	94 027 94 077 94 126	93 982 94 032 94 082 94 131 94 181	94 037 94 086 94 136	94 042 94 091 94 141	94 047 94 096 94 146
875 876 877 878 878 879	94 250 94 300 94 349	94 255 94 305 94 354	94 260 94 310 94 359		94 270 94 320 94 369	94 275 94 325 94 374	94 231 94 280 94 330 94 379 94 429	94 285 94 335 94 384	94 290 94 340 94 389	94 295 94 345 94 394
880 881 882 883 883 884	94 498 94 547 94 596	94 503 94 552 94 601	94 507 94 557 94 606	94 463 94 512 94 562 94 611 94 660	94 567 94 616	94 522 94 571 94 621	94 47 ⁸ 94 527 94 576 94 626 94 675	94 532 94 581 94 630	94 537 94 586 94 635	94 542 94 591 94 640
885 886 887 888 888 889	94 743 94 792 94 841	94 748 94 797 94 846	94 753 94 802 94 851	94 709 94 758 94 807 94 856 94 905	94 763 94 812	94 768 94 817 94 866	94 724 94 773 94 822 94 871 94 919	94 778 94 827 94 876	94 783 94 832 94 880	94 787 94 836 94 885
890 891 892 893 894	94 988 95 036 95 085	94 993 95 041 95 090	94 998 95 046 95 095	94 954 95 002 95 051 95 100 95 148	95 007 95 056 95 105	95 012 95 061 95 109	94 968 95 017 95 066 95 114 95 163	95 022 95 071 95 119	95 027 95 075 95 124	95 032 95 080 95 129
895 896 897 898 898	95 231 95 279 95 328	95 236 95 284 95 3 <u>3</u> 2	95 240 95 289 95 337	95 197 95 245 95 294 95 342 95 390	95 250 95 299 95 347	95 255 95 303 95 352	95 211 95 260 95 308 95 357 95 405	95 265 95 313 95 361	95 270 95 318 95 366	95 274 95 323 95 371
900	95 424	95 429	95 434	95 439	95 444	95 448	95 453	95 458	95 463	95 468

No.	0	1	2	3	4	5	6	7	8	9
900 901 902 903 904	95 472 95 521 95 569	95 429 95 477 95 525 95 574 95 622	95 482 95 530 95 578	95 487 95 535 95 583	95 444 95 492 95 540 95 588 95 636	95 497 95 545	95 453 95 501 95 550 95 598 95 646	95 506 95 554 95 602	95 511 95 559 95 607	95 516 95 564
905 906 907 908 909	95 713 95 761 95 809	95 670 95 718 95 766 95 813 95 861	95 722 95 770 95 818	95 727 95 775 95 823	95 684 95 732 95 780 95 828 95 875	95 737 95 785 95 832	95 694 95 742 95 789 95 837 95 885	95 746 95 794 95 842	95 751 95 799 95 847	95 756
910 911 912 913 914	95 952 95 999 96 047	95 909 95 957 96 004 96 052 96 099	95 961 96 009 96 057	95 966 96 014 96 061	95 971 96 019 96 066	95 976 96 023 96 071	95 933 95 980 96 028 96 076 96 123	95 985 96 033 96 080	95 990 96 038 96 085	95 995 96 042 96 090
915 916 917 918 919	96 190 96 237 96 284	96 147 96 194 96 242 96 289 96 336	96 199 96 246 96 294	96 204 96 251 96 298	96 209 96 256 96 303	96 21 3 96 261 96 308	96 171 96 218 96 265 96 313 96 360	96 223 96 270 96 317	96 227 96 275 96 322	96 232 96 280 96 327
920 921 922 923 924	96 426 96 473 96 520	96 384 96 431 96 478 96 525 96 572	96 435 96 483 96 530	96 440 96 487 96 534	96 445 96 492 96 539	96 450 96 497 96 544	96 407 96 454 96 501 96 548 96 595	96 459 96 506 96 553	96 464 96 511 96 558	96 468 96 515 96 562
925 926 927 928 929	96 661 96 708 96 755	96 619 96 666 96 713 96 759 96 806	96 670 96 717 96 764	96 675 96 722 96 769	96 680 96 727 96 774	96 685 96 731 96 778	96 642 96 689 96 736 96 783 96 830	96 694 96 741 96 788	96 699 96 745 96 792	96 703 96 750 96 797
930 931 932 933 934	96 895 96 942 96 988	96 853 96 900 96 946 96 993 97 039	96 904 96 951 96 997	96 909 96 956 97 002	96 914 96 960 97 007	96 918 96 965 97 011	96 876 96 923 96 970 97 016 97 063	96 928 96 974 97 021	96 932 96 979 97 025	96 937
935 936 937 938 939	97 128 97 174 97 220	97 086 97 132 97 179 97 225 97 271	97 137 97 183 97 230	97 142 97 188 97 234	97 146 97 192 97 239	97 151 97 197 97 243	97 109 97 155 97 202 97 248 97 294	97 160 97 206 97 253	97 165 97 211 97 257	97 169 97 216 97 262
940 941 942 943 944	97 359 97 405 97 451	97 317 97 364 97 410 97 456 97 502	97 368 97 414 97 460	97 373 97 419 97 465	97 377 97 424	97 382 97 428 97 474 97 520	97 340 97 387 97 433 97 479 97 525	97 391 97 437 97 483 97 529	97 396 97 442 97 488 97 534	97 400 97 447 97 493 97 539
945 946 947 948 949	97 589 97 635 97 681	97 548 97 594 97 640 97 685 97 731	97 598 97 644 97 690	97 603 97 649 97 695	97 607 97 653 97 699	97 612 97 658 97 704	97 571 97 617 97 663 97 708 97 754	97 621 97 667 97 713	97 626 97 672 97 717	97 630 97 676 97 722
950	97 772	97 777	97 782	97 786	97 791	97 795	97 800	97 804	97 809	97 813

No.	0	1	2	3	4	5	6	7	8	9
950 951 952 953 954	97 864 97 909	97 868 97 914	97 873 97 918	97 786 97 832 97 877 97 923 97 968	97 882 97 928	97 841 97 886 97 932	97 800 97 845 97 891 97 937 97 982	97 850 97 896 97 941	97 855 97 900 97 940	97 859 97 905 97 950
955 956 957 958 959	98 046 98 091 98 137	98 050 98 096 98 141	98 055 98 100 98 146	98 014 98 059 98 105 98 150 98 195	98 064 98 109 98 155	98 008 98 114 98 159	98 028 98 073 98 118 98 164 98 209	98 078 98 123 98 168	98 082 98 127 98 173	98 087 98 132 98 177
960 961 962 963 964	98 272 98 318 98 363	98 277 98 322 98 367	98 327	98 286 98 331 98 376	98 336	98 295 98 340 98 385	98 254 98 299 98 345 98 390 98 435	98 304 98 349 98 394	98 308 98 354 98 399	98 313 98 358 98 403
965 966 967 968 969	98 498 98 543 98 588	98 502 98 547 98 592	98 507 98 552 98 597	98 466 98 511 98 556 98 601 98 646	98 516 98 561 98 605	98 520 98 565 98 610	98 480 98 525 98 570 98 614 98 659	98 529 98 574 98 619	98 534 98 579 98 623	98 538 98 583 98 628
970 971 972 973 974	98 722 98 767 98 811	98 726 98 771 98 816	98 731 98 776	98 69 1 98 7 35 98 780 98 825 98 869	98 740 98 784	98 744 98 789 98 834	98 704 98 749 98 793 98 838 98 883	98 753 98 798 98 843	98 758 98 802 98 847	98 762 98 807 .98 851
975 976 977 978 979	98 945 98 989 99 034	98 949 98 994 99 038	98 954 98 998 99 043	98 914 98 958 99 003 99 047 99 092	98 963 99 007 99 052	98 967 99 012 99 056	98 927 98 972 99 016 99 061 99 105	98 976 99 021 99 065	98 981 99 025 99 069	98 985 99 029 99 074
980 981 982 983 984	99 211 99 255	99 216 99 260	99 220 99 264	99 136 99 180 99 224 99 269 99 313	99 229 99 273	99 189 99 233 99 277	99 149 99 193 99 238 99 282 99 326	99 198 99 242 99 286	99 202 99 247 99 291	99 207 99 251 99 295
985 986 987 988 989	99 388 99 432 99 476	99 392 99 436 99 480	99 396 99 441 99 484	99 357 99 401 99 445 99 489 99 533	99 405 99 449 99 493	99 410 99 454 99 498	99 370 99 414 99 458 99 502 99 546	99 419 99 463 99 506	99 423 99 467 99 511	99 427 99 471 99 515
990 991 992 993 994	99 607 99 65 1 99 695	99 612 99 656 99 699	99 616 99 660 99 704	99 577 99 621 99 664 99 708 99 752	99 625 99 669 99 712	99 629 99 673 99 717 99 760	99 590 99 634 99 677 99 721 99 765	99 638 99 682 99 726 99 769	99 642 99 686 99 730 99 774	99 647 99 691 99 734 99 778
995 996 997 998 999	99 870 99 91 3	99 874 99 917	99 878 99 922	99 795 99 839 99 883 99 926 99 970	99 887 99 930	99 848 99 891 99 935	99 808 99 852 99 896 99 939 99 983	99 856 99 900 99 944	99 861 99 904 99 948	99 805 99 909 99 952
1000	00 000	00 004	00 009	00 01 3	00 017	00 0 2 2	00 0 26	00 0 30	00 035	00 039

.

TABLE II

LOGARITHMS

OF THE

TRIGONOMETRIC FUNCTIONS

TT TREAT

Coloran 1

0	0	
4	4	

0°

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	U										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	11	log sin	d.	log tan	d.	log cot	log cos	11 1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0						10.000 00	o 60		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	i .	TO	= 68= ==		5.685.57		1.31.1.13	10.000 00	50		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5.086.60		5 986 60		4.013.40				
$ \begin{array}{c} 1 & 0 & 0.237 & 0.3 & 1.2493 \\ 5 & 0 & 0.384 & 5.4 & 0.01 \\ 1 & 0 & 6.437 & 7.010 \\ 1 & 0 & 6.437 & 7.010 \\ 1 & 0 & 6.437 & 7.010 \\ 1 & 0 & 6.437 & 7.010 \\ 1 & 0 & 6.536 & 66 \\ 5 & 5709 & 1.068 & 577 \\ 1 & 0 & 6.536 & 66 \\ 5 & 5709 & 1.068 & 577 \\ 1 & 0 & 6.538 & 56 \\ 5 & 5709 & 1.10 \\ 1 & 0 & 6.638 & 57 \\ 1 & 0 & 6.638 & 57 \\ 1 & 0 & 6.638 & 57 \\ 1 & 0 & 6.638 & 57 \\ 1 & 0 & 6.638 & 57 \\ 1 & 0 & 6.638 & 57 \\ 1 & 0 & 6.638 & 57 \\ 1 & 0 & 6.747 & 75 \\ 1 & 0 & 6.747 & 75 \\ 1 & 0 & 6.747 & 77 \\ 1 & 2.3779 & 6.747 & 76 \\ 1 & 0 & 6.747 & 75 \\ 2 & 0 & 6.747 & 76 \\ 1 & 0 & 6.747 & 75 \\ 3 & 1.144 & 3 \\ 1 & 1 & 0.0000 & 0 \\ 1 & 0 & 6.747 & 75 \\ 3 & 2.088 & 10 & 0.000 & 0 \\ 1 & 0 & 6.747 & 75 \\ 3 & 2.088 & 10 & 0.000 & 0 \\ 1 & 0 & 6.747 & 75 \\ 3 & 2.088 & 10 & 0.000 & 0 \\ 1 & 0 & 6.747 & 75 \\ 3 & 2.088 & 10 & 0.000 & 0 \\ 1 & 0 & 6.606 & 32 \\ 2 & 0 & 6.816 & 72 & 297 \\ 3 & 0 & 6.816 & 72 & 297 \\ 3 & 0 & 6.816 & 72 & 297 \\ 3 & 0 & 6.816 & 72 & 297 \\ 3 & 0 & 6.816 & 72 & 297 \\ 3 & 0 & 6.9616 & 2243 \\ 3 & 0.610 & 2243 & 3.0639 & 13 & 10.000 & 0 \\ 3 & 0 & 6.940 & 85 & 2483 & 3.0639 & 13 & 10.000 & 0 \\ 3 & 0 & 6.940 & 85 & 2483 & 3.0436 & 10.000 & 0 \\ 3 & 0 & 6.940 & 85 & 2438 & 3.0436 & 10.000 & 0 \\ 3 & 0 & 6.940 & 85 & 2438 & 3.0436 & 10.000 & 0 \\ 3 & 0 & 7.007 & 79 & 2111 & 7.0250 & 2021 & 2.0720 & 10.000 & 0 \\ 3 & 0 & 7.007 & 20211 & 7.007 & 79 & 2118 & 2.902 & 10.0000 & 0 \\ 4 & 0 & 7.027 & 0 & 20211 & 7.007 & 20211 & 2.0070 & 0 \\ 5 & 0 & 7.100 & 51 & 1772 & 7.06579 & 1773 & 2.934 & 21 & 10.000 & 0 & 50 \\ 5 & 0 & 7.107 & 79 & 1772 & 7.06579 & 1773 & 2.934 & 21 & 10.000 & 0 & 50 \\ 5 & 0 & 7.107 & 79 & 1772 & 7.06579 & 1.000 & 0 & 10 \\ 1 & 0 & 7.0270 & 1.1772 & 7.0473 & 1337 & 2.934 & 21 & 10.000 & 0 & 10 \\ 1 & 0 & 7.270 & 1.1377 & 7.110 & 27 & 1.237 & 1.0570 & 1.0000 & 10 \\ 2 & 0 & 7.110 & 91 & 1772 & 7.100 & 51 & 1377 & 2.010 & 10 & 10.0000 & 10 \\ 3 & 0 & 7.110 & 71 & 1377 & 7.110 & 77 & 2.839 & 71 & 10.0000 & 10 \\ 3 & 0 & 7.110 & 71 & 1377 & 7.110 & 7.113 & 2.713 & 2.710 & 10.0000 & 10 \\ 3 & 0 & 7.220 & 0 & 1337 &$				17010			3.837 30				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							3.712.37	10.000 00			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1							10.000 00	IO		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			7919			3.536 27	10.000 00	0 59		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				6694		6694		10,000,00	50		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5799		5799					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				5110		5116					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-1575							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								10.000 00	IO		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	-		3779	6.76.1.76	3779	3,235 24	10.000.00	0.58		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			3476		3476					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	0.799.52	3218	6.821.70	3218					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				2997		2997					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								10.000 00			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3							10,000 00	0 57		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2348		2348					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				2227							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					7.028 00			IO.000 00			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					7.047 30		2.952 70	IO.000 00	10		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	0	7.065 79		7.065.79		2.934 21	IO,000 00	o 56		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		to						10.000 00	50		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					7.116.94						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		40					2.867 27	10.000 00	20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50					2.852 03	10,000 00	IO		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0	7.10270		7,162 70		2.837 30	IO.000 00	0 55		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10						10.000.00	50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1							10,000 00	40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30					2.795 91	10,000 00	30		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		7.217 05		7.217 05		2.78295	IQ.000 00	20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50	7.229.64		7.229 64		2.770 30	10,000 00	10		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	0	7.241 88		7.241 88		2.758 12	10.000 00	0 54		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	7.25378	-	7.253 78	-	2.746 22	10.000 00	50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20			7.205 36		2.734 64	IO,COO OO	40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L _										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	0	7.308 82		7.308 82		2.691 18	10.000.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7.319.04		7 319 04						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7.329.03		7 329 03						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			7.338 79		7.338 7 ·						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			7.340 33								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		7.300 82	895	·	895					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					7.375 77		2.624 23				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7.35454	860							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7.393 14	844		843					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				827		827					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9			812		812					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l '								1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						782					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						769					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40							20		
10 o 7.40373 7.40373 2.530 27 10.000 0 0 3		50						10.000 00	IO		
	10	0	7.40373	/30	7.46373	130	2.530 27	10,000 00	o 50		
log cos d. log cot d. log tan log sin	1	99	log cos	d.	log cot	d.	log tan	log sin	11 1		

89°

		() ⊃		
log sin	d.	log tan	d.	log cot	bg cr s
7.463 73	717	7.46373	718	2.536 27	IC.C.O.S
7.470.90	707	7.470.91	706	2.529.69	IO.GOPTO
7.477 97	694	7.477 97 7.484 92	005	2.522.03	IO.OCEDER
7.484 9 1 7.491 75	684	7.491 76	684	2.515 08 2.508 24	10.000 0
7.498 49	674	7.498.49	673	2.501 51	10.000 ()
7.505 12	663	7.505 12	663	2.494 88	10,000 CH
7.51165	653	7.511 65	653		
7.518 08	643	7.518 09	644	2.488 35 2.481 91	I0.000 0
7.524 42	634	7.524 43	634	2.475.57	IO.000 0 IO.000 0
7.530 67	625	7.530 67	624	2,469 33	I0.000 0
7.536 83	616 608	7.536 83	616 608	2.463 17	10.000 0
7.542 91		7.54291		2.457 09	I0.000 0
7.548 90	599	7.548 90	599	2.451 10	10,000 0
7.554 81	591	7.554 81	591	2,45110	10.000 0
7.560 64	583	7.560 64	583	2.439.30	10.000 0
7.566 39	575	7.566 39	575 568	2.433 61	10,000 0
7.57206	567 561	7.57207	560	2,427 93	10.000 0
7.577 67	553	7.577 67	553	2,422 33	I0,000 0
7.583 20	535	7.583 20		2.416.80	I0.000 0
7.588 66	540	7.588 67	547 539	2.411 33	IO.000 0
7.594 06	533	7.594.06	539	2.405.94	I0,000 00
7.599 39	526	7.599 39	527	2,400 61	I0.000 0
7.604 65	520	7.604.66	520	2.395 34	I0.000 00
7.609 85	514	7.609 86	514	2.390 14	10,000 00
7.614 99	508	7.61500	508	2.385 00	10.000 00
7.620 07	502	7.620.08	502	2.379 92	10.000 00
7.625 09 7.630 06	497	7.625 10 7.630 06	496	2.374 90	I0.000 00 I0.000 00
7.63196	490	7.634 97	491	2.369 94 2.365 03	10,000 00
7.639 82	486	7.639 82	485	2,360 18	IO.000 00
7.644 61	479	7.644 62	480	2.355 38	I0.000 00
7.649 36	475	7.649 37	475	2.355 30	10.000 00
7.654 06	470	7.654 06	469	2.345 94	I0.000 00
7.658 70	464	7.658 71	465	2.341 29	10.000 00
7.663 30	460	7.663 30	459	2.336 70	IO.000 00
7.667 8.4	454	7.667 85	455	2.332 15	I0.000 00
7.672 35	451	7.672.35	450 445	2.327 65	IO.000 00
7.676 80	445	7.676 80	445	2.323 20	10,000 00
7.681 21	441 436	7.681 21	-137	231879	IO 000 00
7.685 57	430	7.685 58	432	2.31.4.42	9,999.90
7.689 89	432	7.689 90	428	2.310 10	9.999 9
7.694 17	424	7.694 18	424	2.305 82	9.999.99
7.698 11	-++	7.698 12	110	2,301 58	9.000 00

10

11

12

10

20

30

40 50

50

10 20

30 40

50 13

> 10 20

30

40 50

30

40

50

10

30

40

50

20

30

40

50

10

20

30

40

50

IO

20

30

40

50

0

10

20

30

40

50

11

14

15

16 0

17

18

19

20

1

7.698 41

7.702 61

7.706 76

7.710 88

7.714 96

7.719 00

7.723 00

7.726 97

7.730 90

7.73479

7.738 65

7.742 48

7.746 27

7.750 03

7.753 76

7.757 45

7.761 12

7.76475

log cos

420

416

412

408

404

400 2.276 99 7.723 01 396 397 7.726 97 2.273 03 393 393 389 386 2.269 10 7.730 90 390 2.265 20 7.734 80 7.738 66 383 7.742 48 379 7.746 28 376 7.750 04 373 369 7.753 77 7.757 46 2.242 54 367 7.701 13 363 7.764 76 d. d. log cot log tan

419

416

411

408

404

401

2.301 58

2.297 39

2.293 23

2,289 12

2.285 04

7.698 42

7.702 61

7.706 77

7.71088

7.71496

7.71900

89°

۰.

23

50

49

48

+7

46

45

44

43

42

41

40

p 11

40

30

40

IO

40

IO

40

40

30

9.099 99

9.999 99

9.999 99

log sin

11 p

24				()			
'	"	log sin	d.	log tan	d.	log cot	log cos	11 1
20	0	7.764 75	267	7.764 76	067	2.235 24	9.999 99	o 40
	IO	7.768 36	361	7.768 37	361	2,231 63	9.999 99	50
	20	7.771 93	357 355	7.77194	357 355	2,228 06	9.999 99	40
	30	7.775 48	351	7.775 49	351	2.224 51 2.221 00	9,999 99 9,999 99	30 20
	40 50	7.778 99 7.782 48	349	7.779 00 7.782 49	349	2.217 51	9.999 99	10
21	0	7.785 94	346	7.785.95	346	2.214 05	9.999.99	0 39
	IO	7.789.38	344	7.789.38	343	2.210 62	9.999 99	50
	20	7.792 78	340	7.792 79	341 338	2.207 21	9.999 99	40
	30	7.796 16	338 336	7.796 17	335	2,203 83	9.999 99	30
	10	7.799 52 7.802 8.1	332	7.799 52 7.802 85	333	2.200 48 2.197 15	9.999 99 9.999 99	20 I0
- 20	50	7.806 15	331	7.806 15	330	2.193 85	9.999 99	0 38
	10	7.809.42	327	7.809.43	328	2.193 03	9.999 99	50
	20	7.81268	326	7,812 69	326	2.187 31	9.999 99	40
	30	7.815 91	323 320	7.81591	322 321	2.184 09	9.999 99	30
	40	7.819 11	318	7.819 12	318	2.180 88	9.999 99	20
	50	7.822 29	316	7,822 30	316	2.177 70	9.999 99	10 0 37
23	0	7.825 45	314	7.825.46	314	2.174 54	9.999 99	
	10 20	7.828 59 7.831 70	311	7.828 60 7.831 71	311	2.171 40 2.168 29	9.999 99 9.999 99	50 40
	30	7.834 79	309	7.834 80	309	2,165 20	9.999 99	30
	40	7.83479 7.83786	307 305	7.837 87	307 305	2.162 13	9.999 99	20
	50	7.840 91	302	7.840 92	302	2,159 08	9.999 99	IO
24	0	7.843 93	301	7.843 94	301	2.156 06	9.999 99	o 36
	10	7.846 94	298	7.846 95	299	2.153 05	9.999 99	50
	20 30	7.849 92 7.852 89	297	7.849 94 7.852 90	296	2.150 07 2.147 10	9.999 99 9.999 99	40 30
	40	7.855 83	294	7.855 84	294	2.141 16	9.999 99	20
	50	7.858 76	293 290	7.858 77	293 290	2.141 23	9.999 99	IO
25	0	7.861 66	280	7.861 67	289	2.138 33	9.999 99	o 35
	IO	7.864 55	286	7.864 56	287	2.135 44	9.999 99	50
	20	7.867.41	285	7.867 43	284	2.132 57	9.999 99	40
	30 40	7.870 26 7.873 09	283	7.870 27 7.873 10	283	2,12973 2,12690	9.999 99 9.999 99	30 20
	50	7.875 90	281 280	7.875 91	281 280	2.124 09	9.999 99	IO
26	0	7.878 70		7.87871		2.121 29	9.999 99	0 34
	10	7.881 47	277	7.881 48	277	2.118 52	9.999 99	50
	20	7.884 23	276 274	7.884 24	276 274	2.11576	9.999 99	40
	30	7.886 97 7.889 69	272	7.886 98	272	2.113 02	9.999 99	30 20
	40 50	7.892 40	271	7.889 <i>7</i> 0 7.89241	271	2.110 30 2.107 59	9.999 99 9.999 99	10
27	0	7.895 09	269	7.895 10	269	2.104 90	9.999 99	0 33
	10	7.897 76	267	7.897 77	267	2.102 23	9.999 99	50
	20	7.900 41	265 264	7.900 43	266	2.099 57	9.999 99	40
	30	7.903 05	263	7.903 07	264 262	2.096 93	9.999 99	30
	40	7.905 68 7.908 29	261	7.905 69	261	2.094 3I 2.091 70	9.999 99	20 IO
28	50 0	7.910 88	259	7.908 30 7.910 89	259	2.091 /0	9.999 99	0 32
1	10		258		258	2.086 53	9.999 99 9.999 99	50
	20	7.913 46 7.916 02	256	7.913 47 7.916 03	256	2.083 97	9.999 99	40
1	30	7.918 57	255	7.918 58	255	2.081 42	9.999 99	30
	40	7.921 10	253 252	7.921 11	253 252	2.078 89	9.999 98	20
	50	7.923 62	250	7.923 63	250	2.076 37	9.999 98	10 0 31
29	0	7.926 12	249	7.926 13	249	2.073 87	9.999 98	
	I0 20	7.928 61 7.931 08	247	7.928 62 7.931 10	248	2.071 38 2.068 90	9.999 98 9.999 98	50 40
	30	7.933 54	246	7.933 56	246	2.066 44	9.999 98	30
	40	7.935 99	245 243	7.936 01	245 243	2.063 99	9.999 98	20
	50	7.938 42	243	7.938 ++	243	2.061 56	9.999 98	IO
30	0	7.940 84		7.940 86		2.059 14	9.999 98	o 30
1	"	log cos	d.	log cot	d.	log tan	log sin	11 1

89°	8	9	0
-----	---	---	---

· '' log sin d. log tan d. log con · '' 30 0 7.040.54 2.11 7.040.66 2.00 2.059.14 0.000.016 50 10 7.043.54 2.33 7.043.66 2.00 2.059.14 0.000.016 50 30 7.045.64 2.35 7.049.64 2.36 2.051.04 0.000.016 30 31 0 7.052.77 2.33 7.047.74 2.33 2.041.90 0.000.016 30 30 7.052.71 2.31 2.041.90 0.000.06 30 2.090.06 30 30 7.052.71 2.31 2.042.57 9.090.06 30 30 7.050.73 2.32 7.060.74 2.203.38 0.090.06 2.02 30 7.060.87 2.26 7.066.82 2.27 2.033.38 9.090.06 2.02 30 7.075.00 2.22 2.022.16 9.090.08 2.02 30 7.060.03 2.26 2.012.75 9.090.96 0 2.27	0 ° 25										
10 7.033 50 210 7.033 60 230 7.033 60 230 7.033 60 230 7.034 61 230 7.034 61 230 7.034 61 230 7.034 61 230 7.034 61 230 7.035 71 231 7.035 71 233 7.035 71 233 7.044 90 9.090 98 10 10 7.055 71 231 7.057 71 231 7.042 93 2.037 75 9.090 98 50 9.090 98 50 30 7.050 73 230 7.050 23 7.050 06 227 7.006 22 7.070 90 2.033 95 9.090 98 50 7.070 90 2.033 95 9.090 98 50 7.070 84 2.023 86 0.000 98 30 7.075 50 2.23 2.023 86 0.000 98 30 50 7.075 52 2.23 2.023 86 0.000 98 30 50 7.075 52 223 2.023 16 0.000 98 30 50 7.075 52 223 2.023 16 0.000 98 30 50 7.075 52 223 2.023	1	11	log sin	d.	log tan	d.	log cot	log cos	11 1		
10 7.943 26 2.99 7.943 26 2.39 7.945 64 2.38 2.263 14 9.99 14 30 30 7.945 64 2.38 2.264 14 9.99 14 30 30 50 7.952 70 2.36 2.264 16 9.99 94 30 30 31 0 7.957 14 2.37 7.952 70 2.33 2.044 26 9.99 948 50 30 7.957 31 231 2.049 25 9.99 948 30 30 7.968 37 2.20 7.950 42 2.33 2.043 36 9.99 948 30 2.03 9.99 948 30 2.03 9.99 948 30 2.03 9.99 948 30 2.03 9.99 948 30 2.03 9.99 948 30 30 7.97 14 2.20 86 9.99 948 30 30 7.97 14 2.20 86 9.99 948 30 30 30 30 30 7.97 50 2.23 2.02 86 9.99 948 10 30 30 7.97 82 220 <th>30</th> <th>0</th> <th>7.940 84</th> <th>211</th> <th>7.940 86</th> <th>0.10</th> <th>2.059 1.4</th> <th>9.991 5</th> <th>0.30</th>	30	0	7.940 84	211	7.940 86	0.10	2.059 1.4	9.991 5	0.30		
200 7.945 64 9.99 238 237 235 7.945 64 236 2.051 60 2.051 60 9.09 0.43 9.00 0.99 4 30 30 2.051 60 9.09 0.43 9.00 0.99 4 30 2.051 60 9.09 0.43 9.00 0.99 30 30 2.051 60 2.051 60 9.09 0.46 9.09 0.96 50 30 7.952 74 323 2.042 37 7.959 73 9.99 0.48 30 50 30 7.90 73 30 7.90 73 30 7.90 74 7.90 73 2.21 75 30 7.90 74 7.90 74 2.23 70 32 2.02 37 05 9.99 0.96 9.99 0.68 30 2.02 30 7.90 74 30 2.23 30 9.99 0.96 30 2.25 30 2.03 36 9.99 0.96 2.25 30 2.03 36 30 9.99 0.96 30 2.25 30 2.01 35 30 9.99 0.96 30 2.27 30 2.02 31 30 2.03 36 30 2.17 30 2.12		IO	7.934 25		7.943 26		2,056 7.1				
30 7.948 62 237 7.959 30 236 2.021 60 0.940 13 20 30 7.952 74 233 7.952 70 236 2.041 60 9.949 93 10 10 7.957 14 231 7.957 14 231 2.042 57 9.999 98 50 20 7.959 73 230 7.957 14 231 2.042 37 9.999 98 10 20 7.962 33 220 7.900 50 223 7.900 50 2.237 69 9.999 98 10 30 7.968 87 226 7.900 50 223 7.971 14 225 2.028 61 9.999 98 10 30 7.968 87 223 7.975 62 223 2.021 86 9.999 98 10 30 7.968 03 220 7.976 52 222 2.021 86 9.999 98 10 30 7.968 03 220 7.976 52 221 2.021 56 9.999 98 10 30 7.968 05 211 7.976 22 212		20	7.945 64		7.945 66			-			
40 7.959 30 235 7.952 70 234 2.0.47 44 9.999 98 10 31 0 7.952 74 233 7.955 10 233 2.0.47 44 9.999 98 50 30 7.952 73 233 7.957 73 231 2.0.42 57 9.999 98 50 30 7.962 73 230 7.959 74 231 2.0.42 57 9.999 98 10 30 7.964 32 228 7.994 74 232 2.033 88 9.999 98 228 50 7.966 87 7.976 88 2.23 2.023 16 9.999 98 228 10 7.9773 72 223 2.023 16 9.999 98 10 20 7.968 72 2.1775 24 222 2.023 16 9.999 98 10 21 7.977 84 231 7.977 84 231 2.021 16 9.999 98 10 2.17 20 7.968 25 210 2.011 75 9.999 98 10 2.1 2.001 6 9.999 98 10 <th></th> <th>30</th> <th>7.948 02</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		30	7.948 02								
31 0 7.955 cols 233 2.20,44 90 9.9940.48 0 219 10 7.957 41 231 2.20,27 9.9949.48 5.0 30 7.962 91 232 7.959 74 231 2.20,27 9.9949.48 5.0 30 7.960 60 228 7.960 62 223 2.033 8 9.9949.68 3.0 310 7.966 87 226 7.966 89 227 2.033 8 9.9949.68 50 320 7.966 87 226 7.966 89 227 2.033 8 9.9949.68 50 30 7.976 50 223 2.028 86 9.999.96 50 25 30 7.977 84 221 2.028 25 200 9.999.96 50 20 30 7.982 92 220 2.01775 9.999.96 50 227 30 7.982 92 210 2.01775 9.999.96 30 20 30 7.982 92 210 2.01775 9.999.96 30 20 30 7.996 34 211 7.997 34		50	7.95274		7.95270		2.047 24	9.999 98	IO		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	31	0	7.955 08		7.955 10		2.04490	9.949.98	0 29		
20 7.95973 230 7.95974 231 2.00366 9.099.98 10 30 7.96432 223 7.964205 231 2.0350 9.099.98 10 312 0 7.96687 226 7.96689 227 2.03111 9.099.98 10 30 7.97337 224 7.97734 222 2.02316 9.099.98 10 30 7.97560 223 7.97784 222 2.02436 9.099.98 10 50 7.96803 220 7.98225 220 2.01775 9.099.96 10 30 7.98260 231 2.01755 9.099.96 30 30 7.98260 216 7.08672 216 2.013 9.999.96 30 30 7.98260 214 7.999.36 214 2.00069 9.999.96 10 20 7.99520 212 7.997.34 212 2.004.78 9.099.96 20 30 8.00154<		10	7.957.41		7.957 43		2.042 57	9.999 98	50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							2.037 95				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00			227		227					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	32	0	7.968 87	226	7.968 89	225	2.031 11	9.999 98	o 28		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			1				9,999 98	50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7.973 37	223							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7.975 60	222							
			7.977 82		7.977 84						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00			220		220					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	0		219		219	2.01775	9.999 98			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		-			50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				214		21.4	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34			212		212					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				211		212					
40 $8.003 63$ 50 2009 8.005 71 208 $8.003 65$ 209 2009 1.994 20 207 $1.994 20$ 9.999 98 $9.999 98$ 0.999 98 200 10 35 6 $8.007 79$ 206 206 8.007 81 207 $8.007 81$ 1.992 19 207 $9.999 98$ 9.999 98 10 207 10 $8.007 79$ 208 206 8.011 90 208 $8.007 81$ 8.011 93 203 206 8.01 93 203 204 $1.990 13$ 1.988 07 203 1.988 07 203 1.988 07 203 1.988 07 203 203 1.988 07 203 1.988 07 203 1.988 07 203 203 1.988 07 203 1.988 07 203 1.988 07 9.999 98 201 201 1.988 07 203 1.999 98 201 201 201 201 201 201 201 201 201 201 201 201 201 202 202 201 201 202 202 202 201 202 202 203 203 203 204 204 201			7.999 43		7.999.46		2.000 54				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				209		209					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				208		209					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0-			208		207					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 50			206		206					
208.011 902058.011 932041.088 079.099 9840308.015 982038.016 002031.084 009.999 9830508.018 012018.020 042011.098 079.999 9810308.020 022018.020 042011.997 969.999 9850108.020 022018.020 042011.977 959.999 9850208.024 021998.024 051981.975 959.999 9850308.026 011988.028 011971.977 959.999 9820308.026 011988.029 981971.977 959.999 9820308.025 901978.029 981971.970 029.999 98203708.031 921958.031 941961.966 669.999 970233708.033 871948.035 841931.962 239.999 97020308.035 811948.035 841931.966 309.999 9710308.043 501908.043 531901.956 479.999 9710308.043 501908.043 531901.956 479.999 9720308.043 501878.043 531901.956 479.999 9720308.047 201898.047 321891.955 889.999 9720308.045 105<				205		206					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		40									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	90			201	÷	201					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 30			201		201					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				199		200	1.977 95				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					8.024.05	198					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						198					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			197							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	97			196		196					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04			195		196	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.033 87	194		194	· · · ·				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									30		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		-	191					0 30		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00			190		190					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				189		189					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					8.047 32				30		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					8.051.08				20		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									IO		
10 8.056 63 185 8.056 66 185 1.043 34 9.000 97 50 20 8.058 48 185 8.056 66 185 1.041 49 9.090 97 40 30 8 o60 31 183 8.058 51 183 1.039 60 9.090 97 30 40 8.062 14 183 8.062 17 183 1.039 60 9.090 97 20 50 8.065 78 182 8.063 99 182 1.030 01 9.090 97 20 40 8.065 78 182 8.063 89 182 1.036 01 9.090 97 10 40 8.065 78 182 8.065 81 1.934 19 9.099 97 0 20 40 8.065 78 182 8.065 81 1.934 19 9.099 97 0 20	20								0 21		
20 8.053 0.35 185 8.053 5.1 185 1.041 40 9.099 97 40 30 8 060 31 183 8.058 51 183 1.041 40 9.099 97 30 40 8.062 14 183 8.062 17 183 1.039 00 9.090 97 20 50 8.063 96 182 8.062 17 182 1.035 01 9.090 97 20 40 8.065 78 182 8.065 81 1.2 1.036 01 9.090 97 10 40 8.065 78 182 8.065 81 1.934 19 9.0990 97 20	00			0					50		
20 8.056.46 18.3 8.056.54 18.3 1.034.49 90.997 30 30 8.060.214 18.3 8.060.34 18.3 1.039.60 90.909.97 20 40 8.063.96 18.2 8.063.99 18.2 1.037.83 9.090.97 20 50 8.065.78 18.2 8.065.81 1.937.01 9.999.97 10 40 0 8.065.78 1.02 1.934.19 9.999.97 10						185					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				183		183					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						183	1.937 83				
40 o 8.06578 182 8.06581 182 1.93419 9.99997 o 20							1.935 01		IO		
1 11 log cos d. log cot d. log tan log sin // /	40			182		182			o 20		
	1	11	log cos	d.	log cot	d.	log tan	log sin	97 9		

.

26			() °			
1 11	log sin	d,	log tan	d,	log cot	log cos	11 1
40 0	8.065 78	180	8.065 81	180	1.934 19	9.999 97	o 20
IO	8.067 58	180	8.067.61	180	1.932 39	9.999 97	50
20	8.009 38 8.071 17	179	8.069.41 8.071.20	179	1.930 59 1.928 80	9.999 97	40
30 40	8.072.95	178	8.072 99	179	1.927 02	9.999 97 9.999 97	20
50	8.07473	178 177	8.07470	177 177	1.925 24	9.999 97	IO
41 o	8.076 50	170	8.076 53	176	I.923 47	9.999 97	0 19
IO	8.078 26 8.080 02	170	8.078 29	176	1.921 71	9.999 97	50
20 30	8.081 76	174	8.080 05 8.081 80	175	1.919 95 1.918 20	9•999 97 9•999 97	40 30
40	8.083 50	174 174	8.083 54	174	1.91646	9.999 97	20 .
50	8.085 24	172	8.085 27	173 173	1.91473	9.999 97	10
$42 \circ$	8.086 96	172	8.087.00	172	1.91300	9.999 97	0 18
10 20	8.088 68 8.090 40	172	8,088 72 8,090 43	171	1.911 28 1.909 57	9•999 97 9•999 97	50 40
30	8.092 10	170	8.092 1.4	171	1.907 86	9.999.97	30
40	8.093 80	170 170	8.093 84	170 169	1.906 16	9.999 97	20
50 43 0	8.095 50	108	8.095 53	169	1.904 47	9.999 97	10 0 17
	8.097 18 8.098 86	168	8.097 22 8.098 90	168	1,902 78	9.999 97	
10 20	8,100 54	168	8.100 57	167	1.901 10 1.899 43	9 . 999 9 7 9.999 9 7	50 40
30	8,102 20	166 166	8.102 24	167 166	1.897 76	9.999 97	30
40	8.103 86 8.105 52	166	8.103 90 8.105 55	165	1.896 10	9.999 97	20 I0
50 11 0	8.107 17	165	8.105 55	165	1.894 45 1.892 80	9,999 96 9,999 96	0 16
IO	8.108 81	164	8.108 8.4	165	1.891 16	9.999 90 9.999 96	50
20	8.110 44	163	8.110.48	164	1.889.52	9.999 96	40
30	8.11207	163 163	8.11211	163 162	1.887 89	9.999 96	30
40 50	8.11370 8.11531	161	8.11373 8.11535	162	1.886 27 1.884 65	9.999 96 9.999 96	20 10
45 0	8.11693	162	8.116.96	161	1.883 04	9.999 96 9.999 96	0 15
IO	8.118 53	160	8.118 57	161	1.881 43	9.999 96	50
20	8.120 13	160	8.120 17	160	1.879.83	9.999 96	40
30	8.12172	159 159	8.121 76	159 159	1.878 24	9.999 96	30 20
40 50	8.123 31 8,124 89	158	8.123 35 8.124 93	158	1.876 65 1.875 07	9.999 96 9.999 96	IO
46 0	8.126.47	158	8.126 51	158	1.873 50	9.999 96	0 14
IO	8.128 04	157	8.128 08	157	1.871 92	9.999 96	50
20	8.129.61	157 150	8.12965	157 150	1.870 35	9.999 96	40
30 40	8.131 17 8.132 72	155	8.131 21 8.132 76	155	1.868 79 1.867 24	9.999 96 9.999 96	30 20
50	8.134 27	155	8.134 31	155	1.865 69	9.999 96	IO
47 0	8.135 81	154	8.135 85	154	1.864 15	9.999 96	o 13
IO	8.137 35	154	8.137 39	154	1.862 61	9.999 96	50
20 30	8.138 88	153 153	8.138 92	153 153	1.861.08	9.999 96 9.999 96	40
	8.140 41 8.141 93	152	8.140.45 8.141.97	152	1.859 55 1.858 03	9,999 96	30 20
50	8.143 44	151 151	8.14348	152	1.856 52	9.999 96	IO
48 0	8.144 95	151	8.145 00	152 150	1.853 oo	9.999 96	o 12
IO	8.146.46	150	8.146 50	150	1.853 50	9.999 96	50
20 30	8.147 90 8.149 45	140	8.148 00 8.149 50	150	1.852 00 1.850 50	9.999 96 9.999 96	40 30
-10	8.150 94	I49	8 1 50 99	149	I.849 OI	9.999 96	20
50	8.152 43	149 148	8.152 47	148 148	1.847 53	9.999 90	10
4 9 o	8.153.01	147	8.153 95	148	1.846 05	9.999 96	0 11
10 20	8.155 38 8.150 85	147	8.155 43 8.156 oo	1.47	1.844 57 1.843 10	9 . 999 96 9 . 969 96	50 40
30	8.158 32	147	8.158 30	140	1.841 64	9.999 96	30
-10	8.15973	140 145	8.159 82	146 146	1.840 18	9.999.95	20
50 50 50	8.101 23	145	8.101 28	145	1.83872	9.999 95	10 0 10
	8.16268		8.16273		1.837 27	9.999 95	
	log cos	d.	log cot	d.	log tan	log sin	

89°

51	Iog si 0 8.162 (10 8.164 (2 8.164 (30 8.167 (40 8.168 (50 8.169 (0 8.171 2 10 8.172 7	68 145 13 144 57 143 57 143 143 143 16 143	log tan 8.162 7 8.164 1 8.165 6 8.167 0 8.168 4	^{'3} 14. 7 14.	4 I.837	27 9.9	g cos	11	2'
51	10 8.164 1 20 8.165 5 30 8.167 6 40 8.168 4 50 8.169 8 0 8.171 2 10 8.172 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.164 1 8.165 6 8.167 0	7 I.4.	TRam	27 9.9			
52 52 52 53 53	0 8.183 87 0 8.185 25 0 8.186 62 0 8.187 98 0 8.189 35 0 8.189 35 0 8.190 71	142 1 1 141 2 140 2 140 2 140 2 140 2 139 138 138 137 136 137 136	8.169 9 8.171 3 8.172 7 8.174 10 8.175 57 8.176 37 8.176 37 8.179 76 8.181 15 8.182 54 8.185 30 8.186 57 8.188 04 8.189 40 8.190 76	$ \begin{bmatrix} 14\\ 8\\ 8\\ 1 \end{bmatrix} \begin{bmatrix} 14\\ 14\\ 14\\ 3\\ 142\\ 3\\ 142\\ 5\\ 142\\ 142\\ 142\\ 140\\ 140\\ 140\\ 139\\ 139\\ 139\\ 138\\ 138\\ 138\\ 137\\ 136\\ 137\\ 136\\ 136\\ 136\\ 136\\ 136\\ 136\\ 136\\ 136$	1.834 1.832 1.833 1.833 1.830 1.825 1.827 1.823 1.824 1.825 1.826 1.826 1.826 1.826 1.816 1.816 1.816 1.816 1.8147 1.8149 1.8149 1.8149 1.8140	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00.05 00000000	0 50 40 20 10 50 40 30 20 10 50 40 30 20 10 50 40 30 20 10 50 40 30 20 10 50 40 50 40 50 10 50 50 40 50 50 50 10 50 50 50 50 50 50 50 50 50 5	10 9 8 7
36 44 50 50 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50	 B.102 có B.102 có B.103 41 B.104 76 B.106 10 B.107 44 B.108 77 B.200 13 B.201 43 B.201 43 B.202 75 B.204 07 B.205 38 B.206 69 B.208 co B.200 30 B.210 60 B.211 89 B.213 19 B.214 47 B.215 76 B.217 03 	135 135 135 134 134 133 133 133 132 132 132 131 131 130 130 129 129 128 129 127 128	8.192 12 8.193 47 8.194 47 8.194 47 8.196 16 8.197 49 8.200 16 8.201 49 8.202 81 8.204 13 8.205 44 8.205 44 8.205 36 8.209 36 8.210 66 8.211 95 8.213 24 8.214 53 8.215 81 8.217 00	136 135 134 135 133 134 133 132 132 132 132 131 131 130 130 129 129 129 129 129	1.809 2 1.807 8 1.807 5 1.805 5 1.805 1 1.801 17 1.709 84 1.709 84 1.709 5 1.704 56 1.704 56 1.705 87 1.704 64 1.780 34 1.786 35 1.786 76 1.785 47 1.784 10 1.784 10 1.784 201	4 9.994 9 9.995 3 9.995 9 9.995 4 9.999 4 9.999 7 9.999 9 9.999 9 9.999 9 9.999 9 9.999 9 9.999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 9.9	9.95 9.95 9.95 9.95 9.95 9.95 9.95 9.95	40 30 20 10 50 50 50 10 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 6	
57 0 10 20 30 40 50 58 0 10 20 30 40 50 59 0 10 20 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60	8.218 31 8.219 58 8.220 85 8.222 83 8.224 63 8.225 88 8.227 13 8.228 38 8.229 62 8.230 86 8.232 10 8.233 33 8.234 56 8.235 78 8.237 78 8.239 44 8.230 44 8.240 65 8.241 86	127 127 126 126 125 125 125 125 124 124 124 123 123 122 122 122 122 122 122 122 122	8.218 37 8.219 64 8.220 91 8.222 17 8.223 17 8.223 43 8.224 60 8.225 95 8.227 20 8.227 20 8.228 44 8.220 68 8.230 02 8.231 62 8.232 16 8.233 30 8.234 62 8.235 85 8.237 07 8.238 20 8.239 50 8.240 71 8.241 92	128 127 120 120 120 120 120 125 124 124 124 124 124 124 124 124 124 124	$\begin{array}{c} 1.70261\\ 1.78163\\ 1.78036\\ 1.77010\\ 1.77783\\ 1.77057\\ 1.77531\\ 1.77405\\ 1.77280\\ 1.77156\\ 1.77032\\ 1.70908\\ 1.70984\\ 1.70684\\ 1.70684\\ 1.70658\\ 1.70415\\ 1.70223\\ 1.70415\\ 1.70223\\ 1.70415\\ 1.70223\\ 1.70415\\ 1.70223\\ 1.70415\\ 1.70538\\ 1.70415\\ 1.70223\\ 1.70415\\ 1.70223\\ 1.70415\\ 1.70520\\ 1.7580808\\ 1.75808\\ $	0.999 (9.999 (9.999 9 9.999	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
1 11	log cos	d. 1	log cot	d,	log tan	log sin		'	

.

1°

	_		-		L			
	11	log sin	d.	log tan	d.	log cot	log cos	11 1
- 0) 0	8.241 86	I 20	8.241 92	121	1.758 08	9.999 93	o 60
	IO	8,243 06	120	8.243 13	I 20	1.756 87	9.999 93	50
	20	8.2.44 26	120 120	8.244 33	120	1.755 67	9.999.93	40
1	30	8.245.46	110	8.245 53	119	1.754 47	9.999 93	30
	40	8.246.65	120	8.240.72	119	1.753 28	9.999 93	20
	50	8.247 85	118	8.247 91	119	1.752 09	9.999 93	IO
1	0	8.249 03	119	8.249 10	119	1.750 90	9.999 93	0 59
	IO	8.250 22	118	8.250 29	118	I.7497I	9.999 93	50
	20	8.251 40	118	8.251 47	118	1.748 53	9.999 93	40
	30	8.252 58	II7	8.252.65 8.253.82	117	1.747 35 1.746 18	9.999 93	30
1.01	40 50	8.25375 8.25493	118	8,255.00	118	1.745 00	9.999 93 9.999 93	20 IO
2			I 16	8.256 16	116			
		8.256 09	117		I17	1.743 84	9.999 93	
1	10 20	8.257 26	116	8.257 33 8.258 49	116	1.742 67	9.999 93	50
	30	8.258 42 8.259 58	116	8.259.65	116	1.741 51 1.740 35	9.999 93 9.999 93	40 30
	40	8.260 74	116	8.260 81	116	1.739 19	9.999 93	20
	50	8.261 89	115	8,261 96	115	1.738 04	9.999 93	IO
3		8.263 04	115	8.263 12	116	1.736 88	9.999 93	0 57
	IO	8.264 19	115	8.264 26	114	1.735 74	9.999 93	
	20	8.265 33	II4	8.265 41	115	1.734 59	9.999 93	50 40
	30	8,266 48	115	8.266 55	114	1.733 45	9.999 93	30
	40	8.267 61	113	8.267 69	114	1.732 31	9.999 93	20
	50	8.268 75	114 113	8,268 82	113 114	1.731 18	9.999 93	IO
4	. 0	8,269 88	113	8.269 96	113	1.730 04	9.999 92	0 56
1	IO	8.271 01		8.271 09		1.728 91	9.999 92	50
	20	8.272 14	113 112	8,272 21	112 113	1.727 79	9.999 92	40
1	30	8.273 26	112 112	8.273 34	113 112	1.726 66	9.999 92	30
1	40	8.274 38	II2	8.274 46	II2	1.725 54	9.999 92	20
	50	8.275 50	III	8.275 58	III	1.724 42	9.999 92	IO
- õ	0	8.276 61	112	8.276 69	III	1.723 31	9.999 92	0 55
	IO	8.277 73 8.278 83	LIO	8,277 80	III	1.722 20	9.999 92	50
	20	8.278 83	III	8.278 91	III	1.721 09	9.999 92	40
	30	8.279 94	IIO	8.280 02 8.281 12	IIO	1.719.98 1.718.88	9.999 92	30
	-10 50	8.281 0.4 8.282 15	III	8.282 23	III	1.710 00	9.999 92 9.999 92	20 IO
6			109		109			
	-	8.283 24	IIO	8.283 32	IIO	1.71668	9.999 92	0 54
	10 20	8.284 34	109	8.284.42	109	1.715 58	9.999 92	50
1	30	8.285 43 8.286 52	109	8.285 51 8.280 60	109	1.714 49 1.713 40	9.999 92 9.999 92	40 30
	40	8.287 61	109	8.287 69	109	1.71231	9.999 92	20
	50	8,288 69	108	8.288 77	108	1.711 23	9.999 92	IO
1 7	0	8.28977	108	8.289 86	109	1.71014	9.999 92	0 53
	TO	8.290 85	108	8.290 94	108	1.709.06	9.999 92 9.999 92	50
	20	8.291 93	108	8.292 01	107	1.707.99	9.999 92	40
	30	8.293.00	107	8.293 09	108	1.706 91	9.999 92	30
	40	8.294 07	107 106	8.294 16	107 107	1.705 84	9.999 92	20
	50	8.295 1.4	100	8.295 23	107	1.704 77	9.999 92	IO
8	0	8,296 21	106	8.296 29	107	1.70371	9.999 92	o 52
	IO	8.297 27		8.297 36		1.702 64	9.999 91	50
	20	8.298 33	106 106	8,298 42	106 105	1.701 58	9.999 91	40
	30	8.299 39	105	8.299 47	105	1.700 53	9.999 91	30
	40	8.300 44	105	8.300 53	105	1.699.47	9.999 91	20 I0
0	50	8.301 50	105	8.301 58	105	1.698.42	9.999 91	
9	0	8.302 55	104	8.302 63	105	1.697 37	9.999 91	0 51
	IO	8.303 59	105	8.303 68	105	1.696 32	9.999 91	50
	20	8,304.64	105	8.304 73	103	1.695 27	9.999 91	40
	30 40	8.305 68 8.300 72	101	8.305 77 8.306 81	104	1.694 23 1.693 19	9.999 91 9.999 91	30 20
	50	8.307 76	104	8.307 85	104	1.003 19	9.999 91 9.999 91	10
10		8.308 79	103	8.308 88	103	1.691 12	9.999 91 9.999 91	0 50
		0.300 79		0.300.00			2.229.21	
1	11	log cos	d,	log cot	d.	log tan	log sin	11 1
-	-							

88°

' '' log sin d. log tan d. log ost '' ' 10 0 8300 83 103 8308 83 103 1.660 05 9.690 11 50 20 8310 85 103 8308 85 103 1.660 05 9.690 11 50 20 8311 85 103 1.680 05 9.690 91 10 50 11 0 8.314 05 102 1.685 05 9.690 91 10 40 11 0 8.315 97 102 8.316 06 102 1.683 94 9.690 91 10 40 12 0 8.331 00 101 8.331 11 101 1.687 04 9.690 91 10 12 0 8.321 03 100 8.331 12 100 1.697 87 9.690 90 0 45 12 0 8.322 03 100 8.332 13 100 1.677 87 9.690 90 0 45 12 0 8.324 03 100 8.332				-						
10 o 8.308 79 8.300 80 0 104 8.300 82 8.310 80 103 8.310 80 103 8.311 93 102 8.300 82 8.310 80 8.311 93 103 104 1.050 05 103 1.056 05 103 1.056 05 103 1060 11 9.000011 100 0 50 11 0 8.310 80 8.311 93 102 8.310 80 8.314 93 102 103 8.310 90 102 1.056 05 8.310 90 102 9.000011 8.315 97 102 9.000011 8.315 97 102 9.000011 8.315 97 102 9.000011 8.315 07 101 1.058 93 102 9.000011 8.315 07 101 9.000011 8.315 07 101 9.000011 8.315 07 101 1.058 93 8.310 00 102 9.000011 8.315 07 101 9.000011 8.315 07 101 9.000011 8.315 07 101 9.000001 8.330 100 1.058 93 8.320 02 9.000011 8.331 101 9.000001 100 9.00001 100 9.000001 100 12 0 8.322 03 8.320 02 100 8.332 13 100 1.077 87 100 9.00000 9.00000 0 4.8 10.01 13 0 8.327 02 90 8.332 13 100 1.077 87 10.078 8 9.0090 00 9.0000 50 14 0 8.332 02 100 8.332 13 100 1.071 87 10.078 8 9.0999 90 0 47 15 0 8.332 02 100 8.332 10 <th>1</th> <th>"</th> <th>log sin</th> <th>d.</th> <th>log tan</th> <th>d.</th> <th>log cot</th> <th>log cos</th> <th>11</th> <th>1</th>	1	"	log sin	d.	log tan	d.	log cot	log cos	11	1
10 8.300 82 8.110 88 104 100 8.11 88 102 8.000 92 8.110 85 102 104 8.110 95 102 8.000 92 8.110 85 102 104 8.110 95 102 105 8.110 95 102 105 8.110 95 102 105 8.110 95 102 105 8.110 95 8.110 95 102 105 8.110 95 102 105 8.110 95 102 105 8.110 95 102 105 8.110 95 100 105 8.110 95 8.110 95 100 102 8.110 95 8.110 95 100 103 8.110 101 8.121 100 105 10.168 95 100 106 8.120 95 100 105 8.120 101 105 8.120 100 105 10 105 8.120 100 105 10 105 8.120 100 105 10 105 10 105 8.120 100 105 10 <	10		° 00° 70		9 229 00					
	10			104	Ū.	IO4		9.00001	0	50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				103		103				
						103				
50 $8,314,93$ 102 $8,314,93$ 102 $8,314,93$ 102 $8,314,93$ 102 $8,314,93$ 102 $1,685,97$ $9099,91$ 10 $4,91$ 10 $8,315,97$ 102 $8,317,06$ 102 $1,683,94$ $90,000,01$ 100 $90,99,91$ 0 49 30 $8,316,00$ 101 $8,316,00$ 102 $1,683,92$ $90,000,01$ 100 50 $8,320,02$ 101 $8,321,12$ 101 $1,683,04$ $90,000,01$ 100 12 0 $8,321,03$ 100 $8,321,12$ 100 $1,679,87$ $90,000,01$ 100 10 $8,322,03$ 100 $8,322,13$ 100 $1679,87$ $90,000,00$ 50 50 $8,325,03$ 100 $8,321,13$ 100 $1677,87$ $90,000,00$ 100 50 $8,325,03$ 100 $8,321,13$ 100 $1677,87$ $90,000,00$ 100 50 $8,325,03$ 99 $8,327,11$ 90 $1672,89$ $9999,90$ 0 47 30 $8,329,02$ 99 $8,329,02$ 98 $1,660,02$ $999,90,00$ 10 10 $8,332,02$ 97 $1,666,63$ $9099,90,00$ 100 50 $8,332,02$ 97 $1,666,63$ $9099,90,00$ 100 10 $8,332,02$ 97 $1,666,63$ $9099,90,00$ 100 10 $8,332,02$ 97 $1,666,63$ $9099,90,00$ 100 10 $8,332,72$ 97 <th></th> <th></th> <th></th> <th></th> <th></th> <th>102</th> <th></th> <th></th> <th>- 30</th> <th></th>						102			- 30	
		50				103				
	11	0	8.314 95		8.315 05				ł	40
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		IO	8,315 97		8.316 06		1.50			
		20	8.316 99		8.317 08					
					8.318 09					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0						1.079.88	9.909.91	IO	
	12			100	-		1.678 88	9.999 90	0	48
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
				100						
13 o $8,327 02$ 100 $8,327 11$ 100 $1.672 89$ $9.999 90$ o 4.77 10 $8,328 01$ 99 $8,328 11$ 100 $1.672 89$ $9.999 90$ 5.0 20 $8,328 09$ 99 $8,330 06$ 98 $1.671 00$ $9.999 90$ 5.0 30 $8,329 08$ 99 $8,330 06$ 98 $1.666 02$ $9.999 90$ 5.0 40 $8,332 02$ 97 $8.332 05$ 99 $1.666 93$ $9.999 90$ 5.0 10 $8.332 02$ 97 $8.332 05$ 97 $1.666 93$ $9.999 90$ 5.0 20 $8.334 88$ 98 $8.331 98$ 98 $1.665 52$ $9.999 90$ 5.0 30 $8.337 79$ 97 $8.337 89$ 97 $1.662 11$ $9.999 90$ 0.415 10 $8.337 79$ 97 $8.337 89$ 97 $1.662 11$ $9.999 90$ 0.415 20 $8.338 85$ 97 $8.337 89$ 97 $1.662 11$ $9.999 90$ 0.415							1.074.07			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13			100	-	99			1	17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						IOO				·# 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						98			50	
40 8.33 0 06 98 8.33 1 05 99 8.33 2 05 99 1.668 94 9.999 90 10 14 0 8.33 2 92 97 8.33 2 05 97 1.666 93 9.999 90 10 10 8.33 90 98 8.33 4 00 98 1.666 03 9.999 90 40 20 8.33 85 97 8.33 90 98 1.666 02 9.999 90 40 30 8.33 85 97 8.33 90 97 1.663 20 9.999 90 40 50 8.337 79 96 8.337 89 97 1.662 11 9.699 90 10 10 8.338 75 97 8.339 82 96 1.660 14 9.999 90 40 30 8.341 64 96 8.347 78 97 1.662 21 9.699 90 50 30 8.341 64 96 8.347 78 96 1.659 22 9.699 90 40 10 8.344 50 95 8.344 61 95 1.655 39		30							30	
50 $8.331 95$ 99 $8.332 05$ 99 $1.667 95$ $9.999 90$ 10 14 0 $8.333 300$ 98 $8.333 00$ 98 $1.666 03$ $9.999 90$ 0 46 10 $8.333 300$ 98 $8.334 98$ 98 $1.666 03$ $9.999 90$ 0 40 20 $8.333 85$ 97 $8.335 95$ 97 $1.664 05$ $9.999 90$ 40 8.338 85 97 $8.330 92$ 97 $1.663 08$ $9.999 90$ 40 8.339 72 96 $8.339 82$ 96 $1.665 114$ $9.999 90$ 0 45 20 $8.339 72$ 96 $8.339 82$ 96 $1.665 114$ $9.999 90$ 40 30 $8.341 64$ 96 $8.341 74$ 96 $1.657 30$ $9.999 90$ 40 40 $8.342 50$ 95 $8.344 61$ 95 $1.655 39$ $9.999 80$ 0 41 10 $8.345 46$ 95 $8.341 70$ 95 $1.655 39$ $9.999 80$ 50 50 50		40								
		50	8.331 95		8.332 05				IO	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	0	8.332 92		8.333 02			9.999.90	0	46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		IO	8.333.90	-	8.334 00				50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.334 88		8.334 98					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30	8.335 85		8.335 95			9,999.90		
							1.663 08			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19			-			1.661 1.4	9.999 90		45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1.659 22			
50 8.343 55 95 8.343 66 90 1.650 34 9.099 80 10 10 8.345 46 96 8.344 61 95 1.655 39 9.099 80 0 44 20 8.345 46 95 8.345 16 95 1.652 34 9.099 80 0 44 30 8.347 35 95 8.347 16 95 1.652 34 9.099 80 30 40 8.348 30 95 8.347 16 95 1.652 54 9.099 80 30 50 8.349 24 94 8.348 30 95 1.650 65 9.099 80 10 10 8.351 12 94 8.352 17 94 1.649 71 9.999 80 50 20 8.352 09 93 8.351 12 94 8.351 23 94 1.645 77 9.999 80 50 20 8.355 92 93 8.351 0 93 1.645 00 9.099 80 10 30 8.355 78 93 8.355 90 93 1							1,658 26	9.999.90		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				95	8.343.66			0.000 80		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16			95		95				11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0			96		95				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				94	8.316 51	95			.10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					8.347.46		1.053.49			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		40	8.348 30		8.348.40					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50						9,999 89	IO	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	0	8.350 18		8.350 29			9.999 89	0	43
20 8.352 06 8.352 09 94 93 8.352 17 8.351 10 94 93 1.647 83 1.646 90 9.099 80 9.699 80 40 30 8.352 99 93 8.353 10 93 1.646 90 9.699 80 30 50 8.354 85 93 8.353 10 93 1.645 07 9.699 80 50 50 8.357 85 93 8.354 97 94 1.645 03 9.699 80 0 42 10 8.356 71 93 8.357 75 93 1.642 53 9.699 80 0 42 20 8.357 64 93 8.358 56 92 8.357 75 93 1.642 25 9.699 80 30 30 8.358 56 92 8.358 57 92 1.641 33 9.699 80 30 40 8.359 48 92 8.350 51 92 1.641 94 9.699 80 30 50 8.361 32 92 8.361 43 92 1.638 57 9.699 84 40 10 8.362 23 91 8.36		10	8.351 12		8.351 23			9.999 89	50	
30 8.352 99 93 8.353 10 92 1.646 90 9.090 99 30 50 8.353 92 93 8.354 93 94 1.645 07 9.999 89 20 50 8.354 85 93 8.354 97 94 1.645 03 9.999 89 10 10 8.355 78 93 8.355 90 92 1.644 10 9.999 89 0 42 20 8.356 71 93 8.357 75 93 8.357 75 93 1.642 25 9.999 80 40 30 8.358 56 92 8.358 57 92 1.641 13 9.099 80 40 40 8.359 18 92 8.358 57 92 1.641 04 9.999 80 40 40 8.359 18 92 8.358 59 92 1.641 04 9.999 80 40 50 8.360 40 92 8.365 79 92 1.642 42 9.999 80 10 10 8.361 32 91 8.362 35 92 1.639 49 9.999 80 0 41 10 8.361 32 91 8.363 23<					8.352 17					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					8.353 10		1.646 90			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10								F	.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10					92				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					8.356 82	03		9,999 89	50	
40 8.359.48 92 8.359.59 92 1.640.40 9.699.89 20 19 0 8.360.40 92 8.360.51 92 1.639.49 9.999.89 10 10 8.366.23 91 8.361.43 92 1.638.57 9.999.89 0 41 10 8.362.23 91 8.363.26 91 1.637.05 9.999.88 40 30 8.364.05 91 8.365.26 91 1.638.63 30.999.88 40 40 8.364.95 91 8.365.96 91 1.634.02 9.999.88 40 50 8.365.87 91 8.365.99 91 1.634.01 9.999.88 40 50 8.365.87 91 8.365.99 91 1.634.01 9.999.88 10 20 0 8.366.78 91 8.366.89 90 1.633.11 9.999.88 10 20 0 8.366.78 91 8.366.89 90 1.633.11 9.999.88 0 40					°•35775			9.999 89	30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					8.350 50	92		9,999 89	20	
19 0 8.361 32 92 8.361 43 92 1.633 47 9.909 89 0 41 10 8.362 23 91 8.362 35 92 1.637 65 9.999 88 50 20 8.363 14 91 8.363 20 91 1.636 74 9.999 88 40 30 8.364 95 91 8.365 20 91 1.638 74 9.999 88 40 40 8.364 95 91 8.365 87 91 1.634 92 9.999 88 20 50 8.365 87 91 8.365 99 91 1.634 01 9.999 88 10 20 8.366 78 91 8.366 89 90 1.633 11 9.999 88 040								9.999 89		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19					-			0	41
20 8.363 14 30 91 8.364 05 8.363 26 91 91 1.635 26 1.635 74 91 9.999 88 30 40 40 8.364 05 91 8.365 87 8.364 17 91 8.365 08 1.633 83 91 9.090 88 1.634 02 30 20 8.366 78 91 8.366 78 8.365 89 91 91 8.365 89 1.633 11 9.999 88 9.099 88 10 20 8.366 78 91 8.366 89 8.366 89 90 1.633 11 9.999 88 0 40				91		-			50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-40	
40 8.364 96 91 8.365 08 91 1.634 92 9.999 88 20 50 8.365 87 91 8.365 99 91 1.634 01 9.999 88 10 20 0 8.366 78 91 8.366 89 90 1.633 11 9.999 88 0 40		30					1.635 83	9.999 88	30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40	8.36.1 96		8.365 08		1.634 92			
20 o 8.36678 8.36689 1.03311 9.999 co		50	8.365 87		8.365 99		1.634 01			10
/ // log cos d. log cot d. log tan log sin // /	20	0	8.366 78	91	8.366 89	90	1.633 11	9.999 88	0	40
10g cos d, 10g cot d, 10g tan 10g tan			1		1		logtan	log sin	11	P
	,	,,	log cos	d,	log cot	a.	log tan	TOB PIT		_

°

88°

°

-								
1	11	log sin	d,	log tan	d.	log cot	log cos	11 1
20	0	8.366 78		8.366 89	91	1.633 11	9.999 88	o 4 0
	IO	8.367 68	90	8.307 80	-	1.632 20	9.999 88	50
1	20	8.358 58	90	8.308 70	90	1.631 30	9.999 88	40
	30	8.369.48	90 90	8.309.00	90 90	1.630.40	9.999 88	30
1	40	8.370 38	90	8.370 50	90	1.629 50	9.999 88	20
	50	8.371 28	89	8.37140	89	1.628 00	9.999 88	IO
21	0	8.372 17	89	8.37229	89	1.627 71	9.999 88	o 39
	10	8.373 06	89	8.373 18	90	1.626 82	9.999 88	50
	20	8.373 95	89	8.374 08	89	1.025.92	9.999 88	40
	30	8.374 84	89	8.374 97	88	1.625 03	9.999 88	30
	40	8.37573	89	8.375 85	89	1 624 15	9.999 88 9.999 88	20 10
	50	8.370.62	88	8.370 7.4	88	1.623 20		
22	0	8.377 50	88	8,377 62	88	1.622 33	9.999 88	0 38
	CI	8.378 38	88	8.378 50	88	1.621 50	9.999 88	50
	20	8.379 20	88	8.379.38	88	1.620.62	9.999 88	40
	30	8.380 14 8.381 01	87	8.380 26 8.381 1.4	88	1.61974 1.61880	9.999 87 9.999 87	30 20
	40 50	8.381.89	88	8.382.02	88	1.617 98	9.999 87	10
23	50	8.38276	87	8.332.89	87	1.617 11	9.999 87	0 37
			87	0 .	87	1.616 24		
	10 20	8.383 63 8.384 50	87	8.383 76 8.384 63	87	1.010 24	9.999 87 9.999 87	50 40
	30	8.385 37	87	8.385 50	87	1.614 50	9.999 87	30
	40	8,386 24	87	8.386 36	86	1.613 04	9.999 87	20
1	50	8.387 10	86 86	8.387 23	87 86	1.61277	9.999 87	IO
24	0	8.387 96	86	8.388 09	86	1.611.91	9.999 87	o 36
	IO	8.388 82		8,388 95		1.611 05	9.999 87	50
1	20	8.389.68	86	8.389 81	86 86	1.610 19	9.999 87	40
	30	8.390 54	86 85	8.390 67	86	1.609 33	9.999 87	30
	40	8.391 39	86	8.391 53	85	1.608.47	9.999 87	20
	50	8.392 25	85	8.392 38	85	1,607 02	9.999 87	IO
25	0	8.393 10	85	8.393 23	83	1,606 77	9.999 87	0 35
1	IO	8.393 95	85	8.394 08	85	1.605 92	9.999 87	50
1	20	8.394 80	85	8.394 93	85	1.605 07	9.999 87	40
	30	8.395 65	84	8.39578	85	1.604 22	9.999 87	. 30
	40	8,396 49	85	8.396 63	84	1.603 37	9.999 87	20
0.0	50	8.397 34	84	8.397 47	85	1.602 53	9.999 86	IO
26	0	8.398 18	84	8.398 32	84	1.601 68	9.999 86	0 34
1	IO	8.399 02	84	8.399 16	84	1.600 84	9.999 86	50
1	20	8.399 86	8.1	8.400.00	83	1,000 00	9.999 86	40
	30 40	8.400 70 8.401 53	83	8.400 83 8.401 67	84	1.599 17 1.598 33	9.999 86 9.999 86	30 20
1	50	8.402 37	84	8.402.51	84	1.597 50	9.999 86	IO
27	0	8.403.20	83	8.403 34	83	1.596 66	9.999 86	0 33
		8,404 03	83	8.404 17	83	1.595 83	9.999 86	50
	10 20	8,404 03	83	8.405.00	83	1.595 03	9.999 86	40
	30	8.405 69	83	8.405 83	83	1.594 17	9.999 86	30
	40	8.406 51	82	8.406 65	82	1.593 35	9.999 86	20
	50	8.407 34	83 82	8.407.48	83 82	1.592 52	9.999 86	IO
28	0	8.408 16	82	8.408 30	83	1.591 70	9.999 86	o 32
	IO	8,408.98	82	8,409 13	82	1.590 87	9.999 86	50
	20	8.109 80	82 82	8.409.95	82 82	1.590.05	9.999 86	40
	30	8.41062	82	8.41077	81 81	1.539 23	9.999 86	30
	40	8.411 44	81	8.411 58	82	1.588 42	9.999 86	20 I0
	50	8.412 25	81	8.412.40	81	1.587 00	9.999 86	1
29	0	8.41307	81	8.413 21	82	1.586 79	9.999 85	0 31
	IO	8.41388	81	8.41403	81	1.585 97	9.999 85	50
	20	8,414 69	81	8.414 84	81	1.585 16	9.999 85	40
	30 40	8.415 50 8.416 31	81	8.415 65 8,416 46	81	1.584 35	9.999 85	30 20
	50	8.417 11	80	8.417 26	80	1.583 54 1.582 74	9.999 85	10
30	0	8.417 92	81	8.418 07	81	1.581 93	9.999 85	0 30
		0.41/92		0.410 07		1.301.93	2.299.03	
1	11	log cos	d,	log cot	d.	log tan	log sin	11 1
-		108 000		108 000			1	

88°

88	8	8	С
----	---	---	---

					1 °			31
	, ,,	log sin	d.	log tan	d.	log cot	log et.	
- 30) 0	8.417 92	80	8.418 07	80	1.581.03	9.111 7	
	IO	8.41872	80	8.418 87	80	1.581 13	0.111.1.1	1
	20	8.419 52	80	8.419.07	18	1.580 33	9.411	
1	30 40	8,420 32 8,421 12	80	8.420.48 8.421.27	79 80	1.579.53	90000 -	
	50	8.421.92	80	8.42207	80	1.57873 1.57793	9.494 S	202
31		8.422.72	So	8.422.87	80	1.577 13	9.9999	~ 29
	IO	8.423 51	79	8.423.06	79	1.576 34	9.999985	
	20	8.424 30	79 80	8.424.46	03	1.575 54	9.999 55	5 4
	30	8.425 10	79	8.425 25	79 79	I.57475	9.999 85	30
	40 50	8.425 89	78	8.420 04 8.420 83	79	1.573.95	9.999 85	20
1 32		8,427 46	79	8.427 62	79	1.573 17	9.99985	IO
10-	IO	8.428 25	79	8.428.40	73	1.572 38	9.999 84	0.28
	20	8.429.03	78	8.429 19	79	1.571 00 1.570 81	9.999 84 9.999 84	50
	30	8.429 82	79	8.429.97	78	1.570 03	9.999 84	40 30
-	40	8.430.60	78 78 78	8.430 75	78 79	1.569.25	9.999 84	20
00	50	8.431 38	78	8.431 54	78	. 1.568 40	9.999 84	IO
-33		8.432 16	77	8,432 32	77	1.567.69	9.999 8.1	0 27
	10 20	8.432 93	78	8.433.09	78	1.560.91	9.999 84	50
1	30	8.43371 8.43448	77 78	8.433 87 8.434 64	77 78	1.565 36 1.565 36	9.999 84 9.999 84	40 30
	40	8.435 26	78	8.435 42		1.504 58	9.999 8.1	20
	50	8.436 03	77 77	8.430 19	77 77	1.503 81	9.999 8.4	IO
34	0	8.436 80	77	8.436.96	77	1.563.04	9.999 84	o 26
	10	8.437 57	77	8.437 73	77	1.562 27	9 999 84	50
	20	8.438 34	76	8.438 50	77	1.501 50	9.999984	40
	30 40	8.439 10 8.439 87	77	8,439 27 8,440 03	70	1.500 73 1.559 97	9.999 84 9.999 84	30 20
	50	8.440.63	76	8.440.80	77	1.559 97	9.999.64	IO
35	0	8.441 39	76	8.441 56	70	1.558 44	9.999 83	0 25
	10	8.442 16	77	8.442 32	76 -6	1.557 68	9.999 83	50
	20	8.442.92	76 76	8.443.08	76 76	1.556 92	9.999 83	40
	30	8.443.67	75	8.443 84	76	1.556 16	9.999 83	30
	40 50	8.444 43 8.445 19	76	8.444 60 8.445 36	76	1.555 40 1 554 64	9.999 83 9.999 83	20 10
36		8.445 94	75	8.446 II	75	1.553 89	9.999 83	0 24
00	10	8,446.69	75	8.446 86	75	1.553 14	9.999 83	50
	20	8.447.45	76	8.447 62	76	1.552 38	9.999 83	40
1	30	8.447 45 8.448 20	75 75	8.448 37	75 75	1.551.63	9.999 83	30
	40	8.448 95	73	8.449.12	75	1.550.88	9.999 83	20
37	50	8.449.69	75	8.449 87	74	1.550 13	9.999 83	10 0 23
1.57	0	8.450 44	75	8.45061	75	1.54939	9.999 83	
	10 20	8.451 19 8.451 93	74	8.451 36 8.452 10	74	1.548 64 1.547 90	9.999 83 9.999 83	50 40
	30	8.452 67	74	8.452 85	75	1.547 15	9.999 83	30
	40	8.453.41	74 74 .	8.453 59	74 74	1.540.41	9.999 82	20
	50	8.454 15	74 .	8.454 33	74	1.545 07	9.999 82	
- 38	0	8.454 89	74	8.455 07	74	1.544.93	9.999 82	
	IO	8.455.63	74	8.455 81	7.4	1.544 IQ	9.999 82 9.999 82	50 40
	20 30	8.456 37 8.457 10	73	8.450 55 8.457 28	73	1.543 45 1.542 72	9.999 82	30
	40	8.457 84	74	8.458 02	74	1 541 98	9.999 82	20
	30	8.458 57	73 73	8.458 75	73 73	1.541.25	9.999 82	IO
39	0	8.459 30	. 73	8.459.48	73	1.540 52	9.999 82	o 21
	10	8.460 03	73	8.460 21	73	1.53979	9.949 82	50
	20	8.460.76	73	8.460 94 8.461 67	73	1.539 00	9 999 82 9.999 82	40 30
	30 40	8.461 49 8.462 22	73	8.462.40	73	1.537 00	9.999.52	20
	50	8.462 94	72 72	8.463 12	72 73	1.536 88	9.9 19 82	IO
4 0	0	8.463 66	10	8,463 85	13	1.536 15	9.999 82	0.20
'	11	log cos	d.	log cot	d,	log tan	log sin	11 1

88

32 1									
'	**	log sin	d.	log tan	d.	log cot	log cos	11 1	
40	0	8.463 66		8.463.85		1.536 15	9.999 82	o 20	
	IO	8.464 39	73	8.464.57	72	1.535 43	9.999 82	50	
	20	8.465 11	72 72	8.465 29	72 73	1.53471	9.999 82	40	
	30	8.465 83	72	8.466.02	72	1.533 98	9.999 81	30	
I.	40 50	8.466 55 8.467 27	72	8,466 74 8.467 45	71	1.533 26 1.532 55	9.999 81 9.999 81	20 10	
41	0	8.467.99	72	8,468 17	72	1.531 83	9.999 81	0 19	
1 11	10	8.468 70	71	8.468 89	72	1.531 11	9.999 81	50	
	20	8.469.42	72	8.469.60	71	1.530 40	9.999 81	40	
	30	8.470 13	71	8.470 32	72	1.529 68	9.999 81	30	
	40	8.470 84	71 71	8.471 03	71 71	1.528 97	9.999 81	20	
	50	8.471 55	71	8.471 74	71	1.528 26	9.999 81	IO	
42	0	8.472 26	71	8.472.45	71	1.527 55	9.999 81	0 18	
	IO	8.472.97	71	8.473 16	71	1,526 84	9.999 81	50	
	20	8.473 68	71	8.473 87	71	1.526 13	9.999 81	40	
	30 40	8.474 39 8.475 09	70	8.474 58 8.475 28	70	1.525 42	9.999 81 9.999 81	30	
	50	8.475 80	71	8.475 99	71	1.524 /2	9.999 81	10	
43	0	8,176 50	70	8.476 69	70	1.523 31	9.999 81	0 17	
	IO	8.477 20	70		71	1.522 60	9.999 80	50	
	20	8.477.90	70	8,477 40 8,478 10	70	1.521 90	9.999 80	40	
	30	8.477 90 8.478 60	70 70	8.478 80	70 70	1.521 20	9.999 80	30	
	40	8.479 30	70	8.479 50	70	1.520 50	9.999 80	20	
	50	8.480 00	69	8.480 20	69	1.51981	9,999 80	10	
44	0	8,480 69	70	8,480 89	70	1.519 11	9.999 80	0 16	
1	IO	8.481 39	69	8.481 59	69	1.518.41	9.999 80	50	
1	20	8.482.08 8.482.78	70	8,482 28 8,482 98	70	1.517 72 1.517 02	9.999 80 9.999 80	40 30	
	30 40	8.483.47	69	8.483.67	69	1.516 33	9.999 80	20	
	50	8.484 16	69	8.484 36	69	1.515 64	9.999 80	10	
45	0	8.484 85	69	8.485.05	69 69	1.514 95	9.999 80	0 15	
	IO	8.485 54	69 68	8.48574		1.514 26	9.999 80	50	
	20	8,186 22	69	8,486 43	69 68	1.513 57	9.999 80	40	
	30	8.486.91	69	8.487 11	69	1.51289	9.999 80	30	
1	40	8.487 60 8.488 28	68	8.487 80	69	1.512 20	9.99979	20 10	
10	50		68	8.488.49	68	1.511 51	9.999 79		
46	0	8.488 96	69	8.489 17	68	1.510 83	9.99979		
1	10 20	8.489 65 8.490 33	68	8.489 85 8.490 53	68	1.510 15 1.509 47	9.99979 9.99979	50 40	
	30	8.491 01	68	8,491 21	68	1.508 79	9.999 79	30	
1 - I	40	8.491 69	68 67	8.491 89	68 68	1.508 11	9.999 79	20	
L	50	8.492 36	68	8.492 57	68	1.507 43	9.999 79	IO	
47	0	8.493 04	68	8.493 25	68	1.506 75	9.99979	o 13	
	IO	8.49372	67	8.493.93		1.506 07	9.99979	50	
	20	8.494 39	67	8,494 60	67 68	1.505 40	9.999 79	40	
	30 40	8.495 06 8.495 74	67 68	8.495 28 8.495 95	67	1.504 72 1.504 05	9•999 79 9•999 79	30 20	
	50	8.496.41	67	8.496 62	67	1.503 38	9.99979	IO	
48	0	8.497 08	67	8.497 29	67	1,502 71	9.999 79	0 12	
	10	8.497 75	67	8.497 96	67	1.502.04	9.99979	50	
	20	8,198 12	67 66	8.498 63	67	1.501 37	9.99978	40	
	30	8.499 08	67	8.499 30	67 67	1.500 70	9.999 78	30	
	40	8.49975	67	8.499.97	66	1.500 03	9.999 78	20 10	
10	50	8,500 42	66	8.500 63	67	1.499 37	9.99978		
49	0	8.501 08	66	8.501 30	66	1.498 70	9.999 78		
	10 20	8.501 74	67	8.501.96	67	1.498 04	9.999 78 9.999 78	50 40	
	20 30	8.502.41 8.503.07	66	8.502 63 8.503 29	66	1.497 37 1.496 71	9.999 78	30	
	30 40	8.50373	66 66	8.503 95	66 66	1.496 05	9.999 78	20	
	50	8.504 39	65	8.504 61	66	1.495 39	9.999 78	IO	
50	0	8.505 04		8.505 27		1.494 73	9.999 78	o 10	
1	"	log cos	d,	log cot	d.	log tan	log sin	11 1	

1	"	log sin	d.	log tan	d.	log cot	log cos	11	1
50	0	8.505 04	66	8.505 27	66	I.494 73	0.00073	0	10
	IO	8.505 70	66	8.505 93	65	1.494 08	9.4075	50	
	20	8,506 36	65	8.506 58	66	1.493.42	9.000 73	.10	- 1
	30 40	8.507 01 8.507 67	66	8.507 2.4 8.507 89	65	1,49270 1,49211	9.00073	30	- 1
	50	8,508 32	65	8.508 55	66	1.491.45	9.39977 9.99977	20 10	- 1
51	0	8.508 97	65 66	8.509 20	65	I.190 80	9.99977	0	9
	10	8,509 63		8.509 85	65	1.490 15	9.99977	50	
	20	8.510 28	65 64	8.510 50	65 65	1.489 50	9.99977	40	- 1
	30	8.510 92	65	8.511 13	65	1.488 85	9.999 77	30	
	40	8.511 57 8.512 22	65	8.511 80 8.512 43	65	1,488 20 1,487 55	9.99977	20 10	
52	50 0	8.512 87	65	8.513 10	05	1,486 90	9-99977 9-99977	0	8
0	10	8.513 51	64	8.51374	64	1.486 26		1	0
	20	8.514 16	65	8.514 39	65	1.485 01	9•999 77 9•999 77	50 40	
	30	8.514 80	64 64	8.515 03	64 65	1.484 97	9.999 77	30	
	40	8.515 44	65	8.515 68	64	1.484 32	9.999 77	20	
	50	8.516 09	6.4	8.516 32	6.1	1.483.68	9.99977	10	_
53	0	8.51673	64	8.51696	64	1,483 0.4	9.99977	0	4
1	10	8.517 37 8.518 01	6.4	8.517 60 8.518 24	6.4	I.482.40	9.999 76	50	
	20 30	8.518 64 8.518 64	63	0.510 24 8.518 88	6.4	1,48176 1,48112	9.999 76 9.999 76	.40 .30	
	40	8.519 28	64 64	8.519 52	64 63	1.480.48	9.99970	20	
	50	8.51992	63	8.520 15	64	1.47985	9.99976	IO	
54	0	8.520 55	6.4	8.520 79	64	1.479 21	9.99976	0	6
	IO	8.521 19	63	8.521.43	63	1.478 57	9.999 76	50	
	20	8.521 82	63	8.522.06	63	I.477 94	9.99976	-40	
	30 40	8.522.45 8.523.08	63	8.522 69 8.523 32	63	1.477 31 1.476 68	9.99976 9.99970	30	
	50	8,523 71	63	8.523.96	64	1.476.04	9.99970	IO	
55	0	8.52434	63	8.524 59	63	1.475 41	9.999 76	0	5
	IO	8.524.97	63	8,525 22	63	1.47478	9.999 76	50	
	20	8.525 60	63 63	8.525 8.4	62 63	I.474 I6	9.99976	-10	
	30	8.526 23	62	8.526.47	63	1.473 53	9.99975	30	
	40 50	8.526 85 8.527 48	63	8.527 10 8.527 72	62	1.472 90 1.472 28	9.99975 9.99975	20 I0	
56	0	8.528 10	62	8.528 35	63	1.471 65	9.99975	0	+
	10	8.528 73	63	8.528 97	02	1,47103	9.99975	50	
	20	8,529 35	62	8.529.60	63	1.470.40	9.99975	40	
	30	8.529 97	62 62	8.530 22	62 62	1.469 78	9.99975	30	
1	.10	8.530 59	62	8.530 8.4	62	I.469 I6	9.99975	20 IO	
	50	8.531 21	62	8.531 46	62	1.468 5.4	9.99975	0	3
57	0	8.531 83	62	8.532 08	62	1.467.92	9.99975		
	10 20	8.532.45	61	8.532 70	62	1.467 30 1.400 08	9.99975 9.99975	50 40	
	20 30	8.533 o6 8.533 68	62	8.533 32 8.533 93	61	1.466 07	9.94975	30	
	40	8.534 29	61 62	8.534 55	62 61	1.465.45	9.999 75	20	
	50	8.534 91	61	8.535 16	62	I.404 84	9.99974	IO	
58	0	8.535 52	62	8.535 78	61	1,464 22	9.99974	0	2
	IO	8.536 14	61	8.536 39	61	1.403 61	9.99974	50 40	
	20	8.536 75	61	8.537 00	62	1.463.00 1.452.38	9.99974 9.99974	30	
	30 40	8.537 36 8.537 97	61	8.537 62 8.538 23	61	1.401 77	9.99974	20	
	50	8.538 58	61 61	8.538 84	61 61	1.401 10	9.999.74	IO	
59		8.539 19	60	8.539.45	60	I 460 55	9.999 74	0	1
	IO	8.53979	61	8.540.05	61	1.459.95	9.99974	50	
	20	8.5.40.40	61	8.540 60	61	1.459 34	9.99974	40	
	30	8.54101	60	8.541 27 8.541 87	60	1.458 73 1.458 13	0.00974	20	
	.40 50	8.541 61 8.542 22	61	8.542.48	61	1.457 52	9.999 74	10	
60		8.542 82	60	8.543 08	60	1.450 42	9.999 74	0	Ō
'	"	log cos	d.	log cot	d.	log tan	log sin		1

°

°

 2°

	1				1	~			1
Ľ	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0 1 2 3 4	8.24 903 8.25 609 8.26 304	8.24 192 8.24 910 8.25 616 8.26 312 8.26 996	1.75 090 1.74 384 1.73 088	9-99 993 9-99 993 9-99 993	8.54 042 8.54 999 8.55 354	8.54 308 8.54 669 8.55 027 8.55 382 8.55 734	1.45 331 1.44 973 1.44 018	9.99 973 9.99 973 9.99 972	60 59 58 57 56
5 6 7 8 9	8.28 324 8.28 977 8.29 621	8.27 669 8.28 332 8.28 980 8.29 629 8.30 263	1.71 008 1.71 014 1.70 371	9.99 992 9.99 992 9.99 992	8.56 400 8.56 743 8.57 084	8.56 083 8.50 429 8.56 773 8.57 114 8.57 452	1.43 571 1.43 227 1.42 886	9.99 971 9.99 970 9.99 970	55 54 53 52 51
10 11 12 13 14 15 16 17	8.31 495 8.32 103 8.32 702 8.33 292 8.33 875 8.34 450	8.32 711 8.33 302 8.33 886*	1.68 495 1.07 888 1.67 289 1.66 698 1.66 114 1.65 539	9.99 991 9.99 990 9.99 990 9.99 990 9.99 990 9.99 989	8.58 089 8.58 419 8.58 747 8.59 072 8.59 395	8.57 788 8.53 121 8.58 451 8.58 779 8.59 105 8.59 428 8.59 749 8.60 068	I.41 879 I.41 549 I.41 221 I.40 895 I.40 572 I.40 251	9.99 968 9.99 968 9.99 967 9 . 99 967	50 49 48 47 46 45 45 44 43
18 19 20 21 22	8.35 578 8.30 131 8.36 678 8.37 217 8.37 750	8.35 590 8.30 143 8.36 689 8.37 229 8.37 762	1.64 410 1.63 857 1.63 311 1.62 771 1.62 238	9.99 989 9.99 989 9.99 988 9.99 988 9.99 988 9.99 988	8.60 349 8.60 662 8.60 973 8.61 282 8.61 589	8,60 384 8,60 698 8,61 009 8,61 319 8,61 526	1.39 616 1.39 302 1.38 991 1.38 681 1.38 374	9.99 965 9.99 964 9.99 964 9.99 963 9.99 963	42 41 40 39 38
23 24 25 20 27 28 29	8.38 796 8.39 310 8.39 818 8.40 320 8.40 815	8.38 289 8.33 809 8.39 323 8.39 832 8.40 334 8.40 830 8.41 321	1.61 191 1.60 677 1.60 168 1.59 666 1.59 170	9.99 987 9.99 987 9.99 986 9.99 986 9.99 986	8.62 196 8.62 497 8.62 795 8.63 091 8.63 385	8.62 834	1 37 766 1.37 465 1.37 166 1.36 869 1.36 574	9.99 962 9.99 961 9.99 961 9.99 960 9.99 960	37 36 35 34 33 32 31
30 31 32 33 34 35 36	8.42 272 8.42 746 8.43 216 8.43 680 8.44 139	8.42 287 8.42 762 8.43 232 8.43 696 8.44 156	1.57 238 1.56 768 1.56 304 1.55 844	9.99 985 9.99 984 9.99 984 9.99 984 9.99 984	8.64 256 8.64 543 8.64 827 8.65 110 8.65 391	8.64 009 8.64 298 8.64 585 8.64 870 8.65 154 8.65 435	1.35 702 1.35 415 1.35 130 1.34 846 1.34 565	9.99 958 9.90 957 9.99 956 9.99 956	30 29 28 27 26 25
30 37 38 39 40	8.45 044 8.45 489 8.45 930 8.46 366	8.45 061 8.45 507 8.45 948 8.46 385	1.55 389 1.54 939 1.54 493 1.54 052 1.53 615	9.99 983 9.99 982 9.99 982	8.65 947 8.66 223 8.66 497 8.66 769	8.65 715 8.65 993 8.66 269 8.66 543 8.66 816	1.34 007 1.33 731 1.33 457 1.33 184	9.99 955 9.99 954 9.99 954 9.99 953	24 23 22 21 20
41 42 43 44 45	8.47 226 8.47 650 8.43 009 8.48 485	8.47 245 8.47 669 8.48 089 8.48 505	1.52 331 1.51 911 1.51 495	9.99 981 9.99 981 9.99 980 9.99 980	8.67 308 8.67 575 8.67 841 8.68 104	8.68 154	1.32 644 1.32 376 1.32 110 1.31 846	9.99 952 9.99 951 9.99 951 9.99 950	19 18 17 16 15
40 47 48 49 50	8.49 304 8.49 708 8.50 108 8.50 504		1.50 271 1.49 870 1.49 473	9.99 979 9.99 979 9.99 978 9.99 978	8.68 880 8.69 144 8.69 400	8.68 678 8.68 938 8.69 196 8.69 453	1.31 062 1.30 804 1.30 547	9.99 949 9.99 948 9.99 948 9.99 947	14 13 12 11 10
51 52 53 54 55	8.50 897 8.51 287 8.51 673 8.52 055 8.52 434	8.50 920 8.51 310 8.51 096 8.52 079 8.52 459	I.40 080 I.48 690 I.48 304 I.47 92I I.47 54I	9.99 977 9.99 977 9.99 977 9.99 977 9.99 976 9.99 976	8.69 654 8.69 907 8.70 159 8.70 409 8.70 658	8.69 708 8.69 962 8.70 214 8.70 465 8.70 714	1.30 292 1.30 038 1.29 786 1.29 535 1.29 286	9.99 946 9.99 946 9.99 945 9.99 944 9.99 944	98 76 5
56 57 58 59 60	8.53 183 8.53 552 8.53 919	8.52 835 8.53 208 8.53 578 8.53 945 8.54 308	1.46 792 1.46 422 1.46 055	9.99 975 9.99 974 9.99 974	8.71 151 8.71 395 8.71 638	8.70 962 8.71 208 8.71 453 8.71 697 8.71 940	1.28 702 1.28 547 1.28 303	9.99 942 9.99 941	4 3 2 1 0
	log cos		log tan	log sin	log cos	log cot		log sin	-,
4	105 003	Tat. 211	Contraction of the	-05 514	105 003		Water and Party of the Party of	105 CIII	
		88				87			

ິງ	0
્	

1			
t			

			1	2			-		
'	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0 1	8.71 880 8.72 120	8.71 940 8.72 181	1.28 060 1.27 819	9.99 940 9.99 940	8.84 358	8.84 464	1.15 530	1.99 894	60
2	8.72 359	8.72 420	1.27 580	9.99 940	8.84 539 8.84 718	8.84 645	1.15 354 1.15 174	911 093 9110 012	59 58
3	8.72 597	8.72 659	I.27 341	9.99 938	8.84 897	8.85 006	1.14 9 14	9.91 91	57
4	8.72 834 8.73 069	8.72 896 8.73 132	1.27 104 1.26 868	9.99 938 9.99 937	8.85 075 8.85 252	8.85 165	1.1.4 815	9.9.1 ° 91	50
56	8.73 303	8.73 366	1.26 634	9.99 937 9.99 936	8.85 429	8.85 363 8.85 540	1.14 037	9.99 %,) 9.99 %)	55 54
7 8	8.73 535	8.73 600	I.26 400	9.99 936	8.85 605	8.85 717	1.14 283	4.49 8 3	53
9	8.73 767 8.73 997	8.73 832 8.74 063	1.26 108 1.25 937	9.99 935 9.99 934	8.85 780 8.85 955	8.85 843	1 14 167 1.13 931	9.04 c 17 9.99 octo	52 51
10	8.74 226								
II	8.74 454	8.74 292 8.74 521	1.25 708 1.25 479	9.99 934	8.86 128 8.86 301	8.86 243 8.86 417	1.13 757 1.13 583	9.99 885 9.99 88.t	50 49
12	8.74 680	8.74 748	1.25 252	9.99 932	8.86 474	8.86 591	1.13 409	9.99 853	-48
13 14	8.74 906 8.75 130	8.74 974 8.75 199	1.25 026 1.24 801	9.99 932 9.99 931	8.86 645 8.86 816	8.86 763 8.86 935	1.13 237	9.99 882 9.99 881	-47 -40
15	8.75 353	8.75 423	1.24 577	9.99 930	8.86 987	8.87 100	1.12 894	9.99 880	45
16	8.75 575	8.75 645	1.24 355	9.99 929	8.87 156	8.87 277	1.12 723	9.99 879	4.4
17 18	8.75 795 8.76 015	8.75 867 8.76 087	1.24 133 1.23 913	9.99 929 9.99 928	8.87 325 8.87 494	8.87 447 8.87 016	1.12 553 1.12 384	9.99 879 9.99 878	43 42
1 9	8.76 234	8.76 306	1.23 694	9.99 927	8.87 661	8.87 785	1.12 215	9.99 877	41
20	8.76 451	8.76 525	1.23 475	9.99 926	8.87 829	8.87 953	1.12 047	9.99 876	40
21	8.76 667	8.76 742	1.23 258	9.99 926	8.87 995	8.88 120	1.II 000	9.99 875	39
22 23	8.76 883 8.77 097	8.76 958 8.77 173	1.23 042 1.22 827	9.99 925 9.99 924	8.88 161 8.88 326	8.88 287 8.88 453	1.11 713 1.11 547	9.99 874 9.99 873	38
24 24	8.77 310	8.77 387	1.22 613	9.99 924	8.88 490	8.88 618	I.II 382		37 36
25	8.77 522	8.77 600	1.22 400	9.99 923	8.88 654	8.88 783	1.11 217	9.99 871	35
26 27	8.77 733	8.77 811 8.78 022	1.22 189 1.21 978	9.99 922 9.99 921	8.88 817	8.88 948	1.11 052	9.99 870 9.99 869	34
28	8.77 943 8.78 152	8.78 232	1.21 970	9.99 921	8.89 142	8.89 274		9.99 868	33 32
29	8.78 360	8.78 441	1.21 559	9.99 920	8.89 304	8.89 437	1.10 563		31
30	8.78 568	8.78 649	1.21 351	9.99 919	8.89 464	8.89 598		9.99 866	30
31	8.78 774	8.78 855	1.21 145	9.99 918	8.89 025	8.89 700	1.10 240	9.99 865 9.99 864	29 28
32 33	8.78 979 8.79 183	8.79 061 8.79 266	1.20 939 1.20 734	9.99 917 9.99 917	8.89 943	8.89 920 8 90 080		9.99.804	20
34	8.79 386	8.79 470	1.20 530	9.99 916	8.90 102	8.90 240	1.09 700	9.99 802	26
35	8.79 588	8.79 673	I.20 327	9.99 915	8.90 260 8.90 417	8.90 394	1.09 601 1.09 443	9.99 801 9.99 860	25 2.1
36 37	8.79 789 8.79 990	8.79 875 8.80 076	1.20 125 1.19 924	9.99 914 9.99 913	8.90 574	8.90 557 8.90 715 8.90 872	1.09 443	9.99 859	23
38	8.80 189	8.80 277	1.19723	9.99 913	8.90 730	8.90 872	1.09 128	9.99 858	22 2I
39	8.80 388	8.80 476	1.19 524	9.99 912	8.90 885	δ.9I 029			
40	8.80 585	8.80 674 8.80 872	1.19 326	9.99 911		8.91 185 8.91 340	1.08 815		20 19
41 42	8.80 782 8.80 978	8.81 068	1.19 128 1.18 932	9.99 910 9.99 909	8.91 349	δ.91 495	1.08 505	9.99 854 9.99 854	18
43	8.81 173	8.81 264	1.18 736	9.99 909	8.91 502	8.91 050	1.08 350		17 10
44	8.81 367	8.81 459	1.18 541	9.99 908	8.91 655 8.91 807	8.91 803 8.91 957	1.08 197	9.99 852 9.99 851	15
45 46	8.81 560 8.81 752	8.81 653 8.81 840	1.18 347 1.18 154	9.99 907 9.99 906	8.91 959	8.92 110	1.07 840	9.99 850	I.;
47	8.81 944	8.82 038	1.17 962	9.99 905	8.92 110	8.92 262	1.07 733	9.99 848 9.99 847	13
48 49	8.82 134	8.82 230 8.82 420	1.17 770 1.17 580	9.99 904 9.99 904	8.92 261 8.92 411	8.42 414 8.42 565	1.07 580	9.93 840	11
50							1.07 204	0.09 8.45	10
50	8.82 513 8.82 701	8.82 610 8.82 799	1.17 390 1.17 201	9.99 903 9.99 902	8.92 561 8.92 710	8.92 860	1.07 134	9.99.045	4
52	8.82 888	8.82 987	1.17 013	9.99 901	8.92 859	8.03 010	1.00.0.4	9.11843	7 CL
53 54	8.83 075 8.83 261	8.83 175 8.83 361	1.16 825 1.16 639	9.99 900 9.99 899	8.93 007 8.93 154	8.93 105 8.93 313	1.00 (35	9.69-642 9.69-641	0
55	8.83 446	8.83 547	1.16 453	9.99 899	8.93 301	8.03 402	1.00 53*	9.49 840	5
50	8.83 630	8.83 732	1.16 208	9.99 898	8.43 448	0.43 604	1.00 3 /1	9.97 31	.† 3
57 58	8.83 813 8.83 996	8.83 916 8.84 100	1.16 084 1.15 900	9.99 897 9.99 896	8.93 594	.03750 8.93913	1.00 244	4.11 57	2
59	8.84 177	8,84 282	1.15 718	9.99 895	8.93 740 8.93 885	0.04 (49	1.05 151	1.11 5	I
60	8.84 358	8.84 464	1.15 536	9.99 89.4	8.94 030	8.94 1 15	1.05 1=5	1.11.24	0
	log cos	log cot	log tan	log sin	log cos	log cht	log tan	loz	1
		8	6°			8	5		
		0	0			0	-		

36		5°				(6		
'	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0 1 2 3 4 5 6 7 8	8.94 174 8.94 317 8.94 461 8.94 603 8.94 746 8.94 887 8.95 029	8.94 195 8.94 340 8.94 485 8.94 630 8.94 773 8.94 917 8.95 060 8.95 202 8.95 344	1.05 660 1.05 515 1.05 370 1.05 227 1.05 083 1.04 940 1.04 798	9.99 833 9.99 832 9.99 831 9.99 830 9.99 829 9.99 828 9.99 827	9.02 0.13 9.02 163 9.02 283 9.02 402 9.02 520 9.02 639 9.02 757	9.02 162 9.02 283 9.02 404 9.02 525 9.02 045 9.02 766 9.02 885 9.03 005 9.03 124	0.97 717 0.97 596 0.97 475 0.97 355 0.97 234 0.97 115 0.96 995	9.99 760 9.99 759 9.99 757 9.99 756	60 59 58 57 56 55 54 53 52
9 10 11 12	8.95 310 8.95 450 8.95 589	8.95 486 8.95 627 8.95 767 8.95 908	1.04 514 1.04 373 1.04 233	9.99 824 9.99 823 9.99 822	9.02 992 9.03 109 9.03 226	9.03 242 9.03 361 9.03 479 9.03 597	0.96 758 0.96 639 0.96 521	9.99 749 9.99 748 9.99 747	51 50 49 48
13 14 15 16 17 18 19	8.95 867 8.96 005 8.96 143 8.96 280 8.96 417 8.96 553	8.96 0.47 8.96 187 8.96 325 8.96 464 8.96 602 8.96 739 8.96 877	1.03 953 1.03 813 1.03 675 1.03 536 1.03 398	9.99 820 9.99 819 9.99 817 9.99 817 9.99 815 9.99 814	9.03 458 9.03 574 9.03 690 9.03 805 9.03 920 9.04 034	9.03 597 9.03 714 9.03 832 9.03 948 9.04 065 9.04 181 9.04 297 9.04 413	0.96 286 0.96 168 0.96 052 0.95 935 0.95 819 0.95 703	9.99 744 9.99 742 9.99 741 9.99 740 9.99 740 9.99 738 9.99 737	47 46 45 44 43 42 41
20 21 22 23 24 25 25 27 28 29	8.97 095 8.97 229 8.97 363 8.97 496 8.97 629 8.97 762 8.97 894	8.97 150 8.97 285 8.97 421 8.97 556 8.97 691 8.97 825 8.97 959 8.98 092	1.02 715 1.02 579 1.02 444 1.02 309 1.02 175 1.02 041	9.99 810 9.99 809 9.99 808 9.99 807 9.99 806 9.99 804 9.99 803 9.99 803	9.04 376 9.04 490 9.04 603 9.04 715 9.04 828 9.04 940 9.05 052 9.05 164	9.04 528 9.04 643 9.04 758 9.04 873 9.04 987 9.05 101 9.05 214 9.05 328 9.05 441 9.05 553	0.95 242 0.95 127 0.95 013 0.94 899 0.94 786 0.94 672 0.94 559	9.99 733 9.99 731 9.99 730 9.99 728 9.99 727 9.99 726 9.99 724 9.99 723	40 39 38 37 36 35 34 33 32 31
30 31 32 33 34 35 36 37 38 39	8.98 419 8.98 549 8.98 679 8.98 808 8.98 937 8.99 066 8.99 194	8.98 490 8.98 622 8.98 753 8.98 884 8.99 015 8.99 145		9.99 798 9.99 797 9.99 796 9.99 795 9.99 793 9.99 792 9.99 791 9.99 799	9.05 497 9.05 607 9.05 717 9.05 827 9.05 937 9.06 046 9.06 155 9.06 264	9.05 666 9.05 778 9.05 890 9.06 002 9.06 113 9.06 224 9.06 335 9.06 445 9.06 556 9.06 666	0.94 222 0.94 110 0.93 998 0.93 887 0.93 776 0.93 665 0.93 555 0.93 444	9.99 718 9.99 717 9.99 716 9.99 714 9.99 713 9.99 711 9.99 710 9.99 708	30 29 28 27 26 25 24 23 22 21
40 41 42 43 44 45 46 47 48 10	8.99 577 8.99 704 8.99 830 8.99 956 9.00 082 9.00 207 9.00 332 9.00 456	8.99 662 8.99 791 8.99 919 9.00 046 9.00 174 9.00 301 9.00 427 9.00 553 9.00 679 9.00 805	1.00 209 1.00 081 0.99 954 0.99 826 0.99 699 0.99 573 0.99 447 0.99 321	9.99 786 9.99 785 9.99 783 9.99 782 9.99 781 9.99 780 9.99 778 9.99 777	9.06 696 9.06 804 9.06 911 9.07 018 9.07 124 9.07 231 9.07 337	9.06 775 9.06 885 9.06 994 9.07 103 9.07 211 9.07 320 9.07 428 9.07 536 9.07 643	0.93 006 0.92 897 0.92 789 0.92 680 0.92 572 0.92 464 0.92 357	9.99 702 9.99 701 9.99 699 9.99 698 9.99 696 9.99 695 9.99 693	20 19 18 17 16 15 14 13 12 11
49 50 51 52 53 54 55 56 57 58 59	9.00 704 9.00 828 9.00 951 9.01 074 9.01 196 9.01 318 9.01 440 9.01 561 9.01 682	9.00 805 9.01 930 9.01 055 9.01 179 9.01 303 9.01 427 9.01 550 9.01 673 9.01 796 9.01 918 9.02 040	0.99 070 0.98 945 0.98 821 0.98 697 0.98 573 0.98 573 0.98 450 0.98 327 0.98 204 0.98 082	9.99 775 9.99 773 9.99 772 9.99 771 9.99 769 9.99 768 9.99 767 9.99 765 9.99 764	9.07 548 9.07 053 9.07 758 9.07 863 9.07 968 9.08 072 9.08 176 9.08 280 9.08 383	9.07 751 9.07 858 9.07 964 9.08 071 9.08 177 9.08 283 9.08 389 9.08 495 9.08 600 9.08 705 9.08 810	0.92 142 0.92 036 0.91 929 0.91 823 0.91 717 0.91 611 0.91 505 0.91 400 0.91 295	9.99 690 9.99 689 9.99 687 9.99 687 9.99 684 9.99 684 9.99 683 9.99 681 9.99 680 9.99 680	10 98 76 5 4 32 1
60	9.01 923	9.02 162	0.97 838	9.99 761	9.08 589	9.08 914	0.91 086	9.99 675	0
	log cos	log cot	log tan	log sin	log cos	log cot	log tan	log sin	1
		84	4° (8	3		

		7	10	_			8		37
P	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0 1 2 3 4 5	9.08 795 9.08 897	9.09 019 9.09 123 9.09 227 9.09 330	0.90 877 0.90 773	9.99 675 9.99 674 9.99 672 9.99 670 9.99 669 9.99 667	9.14 445 9.14 535 9.14 624 9.14 714	9.14 780 9.14 872 9.14 903 9.15 054 9.15 145 9.15 236	0.85 128 0.85 037 0.84 9.49 0.84 855	9.97574 9.99572 9.99570 9.99568	60 59 50 57 57
6 7 8 9	9.09 202 9.09 304 9.09 405 9.09 506	9.09 537 9.09 6.40 9.09 7.42 9.09 845	0.90 463 0.90 360 0.90 258 0.90 155	9.99 666 9.99 664 9.99 663 9.99 661	9.14 891 9.14 980 9.15 069 9.15 157	9.15 327 9.15 417 9.15 508 9.15 598	0.84 673 0.84 583 0.84 492 0.84 492	9:99 565 9:69 563 9:99 501 9:99 559	55 54 53 52 51
10 11 12 13 14 15 16 17 18 19	9.09 707 9.09 807 9.09 907 9.10 006 9.10 106 9.10 205 9.10 304 9.10 402	9.09 947 9.10 049 9.10 150 9.10 252 9.10 353 9.10 454 9.10 555 9.10 656 9.10 756 9.10 856	0.89 951 0.89 850 0.89 748 0.89 647 0.89 546 0.89 546 0.89 344 0.89 344	9.99 658 9.99 656 9.99 655 9.99 653 9.99 653 9.99 651 9.99 650	9.15 333 9.15 421 9.15 508 9.15 596 9.15 683 9.15 770 9.15 857 9.15 944	9.15 688 9.15 777 9.15 867 9.15 956 9.16 046 9.16 135 9.16 224 9.16 312 9.16 401 9.16 489	0.84 223 0.84 133 0.84 044 0.83 954 0.83 865 0.83 776 0.83 688 0.83 599	9.99 556 9.99 554 9.99 552 9.99 550 9.99 548 9.99 546 9.99 545 9.99 543	50 49 48 47 40 45 44 43 42 41
20 21 22 23 24 25 26 27 28 29	9.10 697 9.10 795 9.10 893 9.10 990 9.11 087 9.11 184 9.11 281 9.11 377	9.10 956 9.11 056 9.11 155 9.11 254 9.11 353 9.11 452 9.11 551 9.11 649 9.11 747 9.11 845	0.88 944 0.88 845 0.88 746 0.88 746 0.88 547 0.88 548 0.88 449 0.88 351 0.88 253	9.99 642 9.99 640 9.99 638 9.99 637 9.99 635	9.16 203 9.16 289 9.16 374 9.16 460 9.16 545 9.16 631 9.16 716 9.16 801	9.16 577 9.16 665 9.16 753 9.16 8.11 9.16 928 9.17 016 9.17 103 9.17 190 9.17 277 9.17 303	0.83 335 0.83 247 0.83 159 0.83 072 0.82 984 0.82 897 0.82 810 0.82 723	9.99 537 9.99 535 9.99 533 9.99 532 9.99 532 9.99 530 9.99 528 9.99 526 9.99 524	40 39 38 37 36 35 34 33 32 31
30 31 32 33 34 35 36 37 38 39	9.11 666 9.11 761 9.11 857 9.11 952 9.12 047 9.12 142 9.12 236 9.12 331	9.11 943 9.12 0.10 9.12 138 9.12 235 9.12 332 9.12 428 9.12 525 9.12 621 9.12 717 9.12 813	0.87 960 0.87 862 0.87 765 0.87 668 0.87 572 0.87 572 0.87 475 0.87 379 0.87 283	9.99 625 9.99 624 9.99 622 9.99 620	9.17 055 9.17 139 9.17 223 9.17 307 9.17 391 9.17 474 9.17 558 9.17 641	9.17 450 9.17 536 9.17 522 9.17 702 9.17 708 9.17 794 9.17 880 9.17 965 9.18 051 9.18 136 9.18 136	0.82 404 C.82 378 0.82 292 0.82 206 0.82 120 0.82 035 0.81 949 0.81 864	9.99 518 9.99 517 9.99 515 9.99 513 9.99 511 9.99 509 9.99 507 9.99 505	30 20 28 27 20 25 24 23 22 21
40 ⁴¹ ⁴² ⁴³ ⁴⁴ ⁴⁵ ⁴⁶ ⁴⁷ ⁴⁸ ⁴⁹	9.12 612 9.12 706 9.12 799 9.12 892 9.12 985 9.13 078 9.13 171 9.13 263	9.12 909 9.13 004 9.13 099 9.13 194 9.13 289 9.13 384 9.13 478 9.13 573 9.13 667 9.13 761	0.86 996 0.86 901 0.86 806 0.86 711 0.86 616 0.86 522 0.86 427 0.86 333	9.99 607 9.99 605 9.99 603 9.99 601 9.99 600 9.99 598	9.17 890 9.17 973 9.18 055 9.18 137 9.18 220 9.18 302 9.18 383 9.18 465	9.18 306 9.18 391 9.18 475 9.18 560 9.18 644 9.18 728 9.18 812 9.18 896 9.18 979 9.19 063	0.81 609 0.81 525 0.81 440 0.81 356 0.81 272 0.81 188 0.81 104 0.81 021	9.99.449 9.99.447 9.99.495 9.99.494 9.99.494 9.99.492 9.99.440 9.99.488 9.99.488 9.99.488	20 19 18 17 10 15 14 13 12 11
50 51 52 53 54 55 56 57 58 59	9.13 539 9.13 630 9.13 722 9.13 813 9.13 904 9.13 994 9.14 085 9.14 175	9.13 854 9.13 948 9.14 041 9.14 134 9.14 227 9.14 227 9.14 320 9.14 412 9.14 504 9.14 597 9.14 688	0.86 052 0.85 959 0.85 866 0.85 773 0.85 680 0.85 588 0.85 588 0.85 496 0.85 403	9.99 591 9.99 589 9.99 588 9.99 586 9.99 584 9.99 582 9.99 581 9.99 579	9.18 709 9.18 790 9.18 871 9.18 952 9.19 033 9.19 113 9.19 193 9.19 273 9.19 353	9.19 1.46 9.19 220 9.19 312 9.19 395 9.19 478 9.19 561 9.19 643 9.19 725 9.10 807 9.19 889	0.80 771 0.80 688 0.80 605 0.80 522 0.80 439 0.80 357 0.80 275 0.80 193 0.80 111	9.99 480 9.99 478 9.99 479 9.99 474 9.99 472 9.99 472 9.99 470 9.99 470 9.99 470 9.09 408 9.00 409 9.01 464	10 9 8 7 0 5 4 3 2 1
60		9.14 780				9.19 971			0
	log cos	log cot	log tan	log sin	log cos	log cot	log tan	log sin	
		82				81			

81°

1	38		9°					10°		
j	1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
	0		9.19 971					0.75 368		60
1	1 2		9.20 053 9.20 134					0.75 294 0.75 22I		59 58
	3	9.19 672	9.20 210	0.79 784	9.99 456	9.24 181	9.24 853	0.75 147	9.99 328	57
1	4		9.20 297 9.20 378					0.75 074		56 55
	6	9.19 909	9.20 459	0.79 541	9.99 450	9.24 395	9.25 073	0.74 927	9.99 322	54
	7 8		9.20 540 9.20 621					0.74 854	9.99 319 9.99 317	53 52
	9		9.20 701					0.74 708		51
	10	9.20 223	9.20 782	0.79 218	9.99 442	9.24 677	9.25 365	0.74 635	9.99 313	50
	II		9.20 862			9.24 748	9.25 437	0.74 563	9.99 310	49
ĺ	12 13		9.20 942 9.21 022		9.99 430			0.74 440		-18 -17
Į	14		9.21 102					0.74 345		46
	15 16		9.21 182 9.21 261					0.74 273 0.74 201		45 44
	17	9.20 768	9.21 341	0.78 659	9.99 427	9.25 168	9.25 871	0.74 129	9.99 297	43
1	18 19		9.21 420 9.21 499					0.74 057 0.73 985		42 41
	20 21	9.21 070	9.21 578 9.21 657	0.78 343	9.99.419	9.25 445	9.26 158	0.73 914 0.73 842	9.99 288	40 39
	22	9.21 153	9.21 736	0.78 264	9.99 417	9.25 514	9.26 229	0.73 771	9.99 285	38
	23 24		9.21 814 9.21 893					0.73 699 0.73 628		37 36
	25	9.21 382	9.21 971	0.78 029	9.99 4II	9.25 721	9.26 443	0.73 557	9.99 278	35
	20 27		9.22 0.49 9.22 1.27					0.73 486		34
	28	9.21 610	9.22 205	0.77 795	9.99 404	9.25 927	9.26 655	0.73 345	9.99 271	33 32
	29	9.21 685	9.22 283	0.77 717	9.99 402	9.25 995	9.26 726	0.73 274	9.99 269	31
	30		9.22 361			9.26 063				30
	31 32		9.22 438 9.22 516			9.26 I3I 9.26 I99				29 28
	33	9.21 987	9.22 593	0.77 407	9.99 394	9.26 267	9.27 008	0.72 992	9.99 260	27
	34		9.22 670					0.72 922 0.72 852		26
	35 36		9.22 747 9.22 824					0.72 782		25 24
	37		9.22 901					0.72 712		23
	38 39		9.22 977 9.23 054					0.72 643 0.72 573		22 2I
	40	0.22 500	9.23 130	0.76 870	9.00 370	9.26 739	0.27 406	0.72 504	0.09 2.13	20
	41	9.22 583	9.23 206	0.76 794	9.99 377	9.26 806	9 27 566	0.72 434	9.99 241	19
	42 43		9.23 283 9.23 359					0.72 365		18 17
	43		9.23 435					0.72 227		16
	45		9.23 510					0.72 158		15
	46 47		9.23 586 9.23 661					0.72 089		14 13
	48	9.23 098	9.23737	0.76 263	9.99 362			0.71 951		12
	49		9.23 812					0.71 883		II
	50 51		9.23 887 9.23 962					0.71 814 0.71 746		10
and and a	52	9.23 390	9.24 037	0.75 963	9.99 353	9.27 537	9.28 323	0.71 677	9.99 214	8
	53		9.24 II2 9.24 I86					0.71 609 0.71 541		7
	54 55		9.24 261		-			0.71 473	1	5
	56	9.23 679	9.24 335	0.75 665	9.99 344	9.27 799	9.28 595	0.71 405 0.71 338	9.99 204	- 4
	57 58		9.24 410 9.24 484			9.27 804	9.28 730	0.71 338	9.99 202	3
	59	9.23 895	9.24 558	0.75 442	9.99 337			0.71 202		I
	60	9.23 967	9.24 632	0.75 368	9.99 335	9.28 060	9.28 865	0.71 135	9.99 195	0
		log cos	log cot	log tan	log sin	log cos	log cot	log tan	log sin	1
			80)°			7	9 ິ		
			-							

°

 10°

°

78°

		11	0		12				39
1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	1
0 1 2 3 4 5 6 7 8 9	9.28 125 9.28 190 9.28 254 9.28 319 9.28 384 9.28 384 9.28 448 9.28 512 9.28 577	9.29 134 9.29 201 9.29 208 9.29 335	0.71 007 0.71 000 0.70 933 0.70 860 0.70 799 0.70 732 0 70 665 0.70 598	9.99 192 9.99 190 9.99 187 9.99 185 9.99 182 9.99 180 9.99 177 9.99 175	9.31 9.57 9.31 966 9.32 025 9.32 084 9.32 143 9.32 202 9.32 202	$\begin{array}{c} 0.32 & 7.47 \\ 9.32 & 810 \\ 0.32 & 872 \\ 9.32 & 933 \\ 9.32 & 995 \\ 9.33 & 057 \\ 9.33 & 119 \\ 9.33 & 180 \\ 9.33 & 242 \\ 9.33 & 303 \end{array}$	0.07 15 0.07 0.7 0.7 005 0.05 443 0.05 ad1 0.65 820 0.65 758	000000 0000033 0000032 000002 000002 000002 000000	60 535 57 5 + 3 2 I
10 11 12 13 14 15 16 17 18 19	9.29 024 9.29 087 9.29 150 9.29 214	9.29 535 9.29 601 9.29 608 9.29 734 9.29 800 9.29 800 9.29 932 9.29 932 9.30 064 9.30 130	0.70 I34 0.70 008 0.70 002 0.69 936	9.99 162 9.99 160 9.99 157 9.99 155 9.99 152 9.99 150	9.32 553 9.32 612 9.32 670 9.32 728 9.32 786 9.32 844	9.33 742 9.33 853	0.66 574 0.66 513 0.66 452 0.66 301 0.65 330 0.66 269 0.66 208	9.99 011 9.99 003 9.99 005 9.99 002 9.94 000 9.94 000 9.98 007 9.98 004	50 49 48 47 45 45 44 43 42 41
20 21 22 23 24 25 26 27 28 29	9.29.403 9.29.466 9.29.529 9.29.591 9.29.654 9.29.716 9.29.779 9.29.841	9.30 195 9.30 201 9.30 320 9.30 391 9.30 457 9.30 522 9.30 587 9.30 652 9.30 652 9.30 717 9.30 782	0.69 739 0.69 674 0.69 609 0.69 543 0.69 478 0.69 413 0.69 348 0.69 283	9.99 142 9.99 140 9.99 137 9.99 135 9.99 132 9.99 130 9.99 130 9.99 127	9.32 960 9.33 018 9.33 075 9.33 133 9.33 190 9.33 248 9.33 305 9.33 362	9.33 974 9.34 034 9.34 095 9.34 155 9.34 215 9.34 276 9.34 336 9.34 396 9.34 456	0.65 966 0.65 905 0.65 845 0.65 785 0.65 724 0.65 664 0.65 604 0.65 544	9.93 683 9.98 680 9.98 978 9.98 975 9.98 975 9.98 972 9.98 957	40 39 38 37 35 35 34 33 32 31
30 31 32 33 34 35 36 37 38 39	9.30 028 9.30 090 9.30 151	9.30 975 9.31 040 9.31 104 9.31 168 9.31 233 9.31 297 9.31 361	0.69 089 0.69 025 0.68 960	9.99 117 9.99 114 9.99 112 9.99 109 9.99 106 9.99 104 9.99 101	9.33 591 9.33 647 9.33 704 9.33 701	$\begin{array}{c} 9.34 57^6\\ 9.34 635\\ 9.34 635\\ 9.34 695\\ 9.34 755\\ 9.34 814\\ 9.34 814\\ 9.34 874\\ 9.34 933\\ 9.34 992\\ 9.35 051\\ 9.35 111\end{array}$	0.65 365 0.65 305 0.65 245 0.65 186 0.65 126 0.65 067 0.65 008	9.98 955 9.98 953 9.98 950 9.98 947 9.98 944 9.98 941 9.98 938 9.98 936	30 20 23 27 26 25 24 23 22 21
40 41 42 43 44 45 46 47 48 49	9.30 643 9.30 704 9.30 765 9.30 826 9.30 887 9.30 947 9.31 008 9.31 068	9.31 743 9.31 806 9.31 870 9.31 933	0.68 448 0.68 384 0.68 321 0.68 257 0.68 130 0.68 057 0.68 007	9.99 083 9.99 080 9.99 078 9.99 075	9.34 156 9.34 212 9.34 258 9.34 324 9.34 380 9.34 380	$\begin{array}{c} 9.35 & 170\\ 9.35 & 229\\ 9.35 & 288\\ 9.35 & 347\\ 9.35 & 405\\ 9.35 & 405\\ 9.35 & 5^{2}3\\ 9.35 & 5^{8}1\\ 9.35 & 5^{8}1\\ 9.35 & 5^{6}9\\ 9.35 & 698\end{array}$	0.64 771 0.64 712 0.64 553 0.64 595 0.64 535 0.64 535 0.64 477 0.64 419	9.98 927 0.98 924 9.93 924 9.98 921 9.98 91 9.98 913 9.93 910 9.93 907	20 19 18 17 16 15 14 13 12 11
50 51 52 53 54 55 56 57 58 59	9.31 250 9.31 310 9.31 370 9.31 430	$\begin{array}{c} 9.32 & 122\\ 9.32 & 185\\ 9.32 & 248\\ 9.32 & 311\\ 9.32 & 373\\ 9.32 & 436\\ 9.32 & 498\\ 9.32 & 561\\ 9.32 & 623\\ 9.32 & 685\\ \end{array}$	0.67 815 0.67 752 0.67 689 0.67 627		$\begin{array}{c} 9.34 \ 713 \\ 9.34 \ 769 \\ 0.34 \ 824 \\ 9.34 \ 879 \\ 9.34 \ 879 \\ 9.34 \ 934 \\ 9.34 \ 989 \\ 9.35 \ 044 \\ 9.35 \ 099 \\ 9.35 \ 154 \end{array}$	0.30 279	0.64 185 0.64 127 0.04 009 0.04 011 0.63 053 0.03 045 0.03 045 0.03 779 0.03 721	9,05 C 18 9,98 899 9,98 893 9,98 893 9,98 897 9,98 807 9,98 74 9,97 75 9,1 775	10 0 5 4 3 2 1
60	9.31 788 log cos	9.32 7.47 log cot	0.67 253 log tan	9.99 040 log sin	9.35 200 log cos	9.30-330 log ont	0.03 /04 log tan	log sin	0

13°

4°

' log sin log cot log	40		TC				T.	T		
1 0.33 23 0.43 0.43 0.43 0.44	1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	1
5 9.33 481 9.46 6.04 5.53 5.53 7 9.35 5.90 9.67 7.63 5.90 9.68 5.90 9.93 6.04 7.64 9.35 6.04 6.05 9.048 6.05 9.93 6.04 9.04 8.55 9.93 6.01 9.05 6.01 9.05 6.01 9.05 6.01 0.05 8.14 9.08 6.05 9.33 6.01 0.05 8.14 9.08 6.05 9.35 8.11 9.04 6.05 9.04 6.65 50 11 9.35 6.05 9.05 6.05 9.06 6.05 9.06 6.05 9.46 6.05 9.46 6.05 9.46 6.05 9.06 6.05 9.06 6.06 <th>1 2 3</th> <td>9.35 263 9.35 318 9.35 373</td> <td>9.36 394 9.36 452 9.36 509</td> <td>0.63 606 0.63 548 0.03 491</td> <td>9.98 869 9.98 867 9.98 864</td> <td>9.38 418 9.38 469 9.38 519</td> <td>9.39 731 9.39 785 9.39 838</td> <td>0.60 269 0.60 215 0.60 162</td> <td>9.98 687 9.98 684 9.98 681</td> <td>59 58 57</td>	1 2 3	9.35 263 9.35 318 9.35 373	9.36 394 9.36 452 9.36 509	0.63 606 0.63 548 0.03 491	9.98 869 9.98 867 9.98 864	9.38 418 9.38 469 9.38 519	9.39 731 9.39 785 9.39 838	0.60 269 0.60 215 0.60 162	9.98 687 9.98 684 9.98 681	59 58 57
11 c_{33}^{23} 566 c_{36}^{23} 666 c_{63}^{23} 621 c_{64}^{23} 626 c_{57}^{23} 625 c_{57}^{23} 626 c_{57}^{23} 626 c_{57}^{23} 626 c_{57}^{23} 627 c_{57}^{23} 628 c_{57}^{23} 62	5678	9.35 481 9.35 536 9.35 590 9.35 644	9.36 624 9.36 681 9.36 738 9.36 795	0.63 376 0.63 319 0.63 262 0.63 205	9.98 858 9.98 855 9.98 852 9.98 849	9.38 620 9.38 670 9.38 721 9.38 771	9.39 945 9.39 999 9.40 052 9.40 100	0.60 055 0.60 001 0.59 948 0.59 894	9.98 675 9.98 671 9.98 668 9.98 665	55 54 53 52
	11 12 13 14 15 16 17 18	9.35 806 9.35 860 9.35 914 9.35 908 9.36 022 9.36 075 9.36 129 9.36 182	9.36 966 9.37 023 9.37 080 9.37 137 9.37 137 9.37 193 9.37 250 9.37 306 9.37 363	0.63 034 0.62 977 0.62 920 0.62 863 0.62 807 0.62 750 0.62 694 0.62 637	9.98 840 9.98 837 9.98 834 9.98 831 9.98 828 9.98 825 9.98 822 9.98 819	9.38 921 9.38 971 9.39 021 9.39 071 9.39 121 9.39 170 9.39 220 9.39 270	9.40 266 9.40 319 9.40 372 9.40 425 9.40 478 9.40 531 9.40 584 9.40 636	0.59 734 0.59 681 0.59 628 0.59 575 0.59 522 0.59 469 0.59 416 0.59 364	9.98 656 9.98 652 9.98 649 9.98 646 9.98 643 9.98 643 9.98 640 9.98 636 9.98 633	49 48 47 46 45 44 43 42
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20 21 22 23 24 25 26 27 28	9.36 289 9.36 342 9.36 305 9.36 449 9.36 502 9.36 555 9.36 668 9.36 668 9.36 660 9.36 713	9.37 476 9.37 532 9.37 588 9.37 644 9.37 700 9.37 756 9.37 812 9.37 868 9.37 924	0.62 524 0.62 468 0.62 412 0.62 356 0.62 300 0.62 244 0.62 188 0.62 132 0.62 076	9.98 813 9.98 810 9.98 807 9.98 807 9.98 801 9.98 798 9.98 795 9.98 795 9.98 792 9.98 789	9.39 369 9.39 418 9.39 467 9.39 517 9.39 566 9.39 615 9.39 664 9.39 713 9.39 762	9.40 742 9.40 795 9.40 847 9.40 900 9.40 952 9.41 005 9.41 057 9.41 109 9.41 161	0.59 258 0.59 205 0.59 153 0.59 100 0.59 048 0.58 995 0.58 943 0.58 891 0.58 839	9.98 627 9.98 623 9.98 620 9.98 617 9.98 614 9.98 610 9.98 607 9.98 604 9.98 604	40 39 38 37 36 35 34 33 32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 32 33 34 35 36 37 38	9.36 871 9.36 924 9.36 976 9.37 028 9.37 081 9.37 133 9.37 185 9.37 237	9.38 091 9.38 147 9.38 202 9.38 257 9.38 313 9.38 368 9.38 423 9.38 479	0.61 909 0.61 853 0.61 798 0.61 743 0.61 687 0.61 687 0.61 532 0.61 577 0.61 521	9.98 780 9.98 777 9.98 774 9.98 771 9.98 768 9.98 765 9.98 762 9.98 759	9.39 909 9.39 958 9.40 006 9.40 055 9.40 103 9.40 152 9.40 200 9.40 249	9.41 318 9.41 370 9.41 422 9.41 474 9.41 526 9.41 578 9.41 629 9.41 681	0.58 682 0.58 630 0.58 578 0.58 526 0.58 474 0.58 422 0.58 371 0.58 319	9.98 591 9.98 588 9.98 584 9.98 581 9.98 578 9.98 574 9.98 571 9.98 571 9.98 568	29 28 27 26 25 24 23 22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41 42 43 44 45 46 47 48	9.37 393 9.37 445 9.37 445 9.37 549 9.37 600 9.37 652 9.37 703 9.37 755	9.38 644 9.38 699 9.38 754 9.38 808 9.38 863 9.38 918 9.38 972 9.39 027	0.61 356 0.61 301 0.61 246 0.61 192 0.61 137 0.61 082 0.61 028 0.60 973	9.98 750 9.98 746 9.98 743 9.98 749 9.98 737 9.98 737 9.98 734 9.98 731 9.98 728	9.40 394 9.40 442 9.40 490 9.40 538 9.40 586 9.40 586 9.40 682 9.40 730	9.41 836 9.41 887 9.41 030 9.41 990 9.42 041 9.42 093 9.42 144 9.42 195	0.58 164 0.58 113 0.58 061 0.58 010 0.57 959 0.57 907 0.57 856 0.57 805	9.98 558 9.98 555 9.98 551 9.98 548 9.98 545 9.98 545 9.98 541 9.98 538 9.98 535	19 18 17 16 15 14 13 12
60 9.38 368 9.39 677 0.60 323 9.98 690 9.41 300 9.42 805 0.57 195 9.98 494 0 log cos log cot log tan log sin log cos log cot log sin '	51 52 53 54 55 57	9.37 909 9.37 900 9.38 011 9.38 062 9.38 113 9.38 164 9.38 215 9.38 260	9.39 190 9.39 245 9.39 299 9.39 353 9.39 497 9.39 401 9.39 515 9.39 50	0.60 810 0.60 755 0.60 701 0.60 547 0.60 593 0.60 539 0.60 485 0.60 431	9 98 719 9.98 715 9.98 712 9.98 709 9.98 709 9.98 703 9.98 703 9.98 700 9.98 607	9.40 873 9.40 921 9.40 968 9.41 016 9.41 063 0.41 111 9.41 158 9.41 205	9.42 348 9.42 344 9.42 450 9.42 501 9.42 552 9.42 603 9.42 653 9.42 053 9.42 704	0.57 052 0.57 001 0.57 550 0.57 499 0.57 448 0.57 397 0.57 347 0.57 347	9.98 525 9.98 521 9.98 518 9.98 515 9.98 515 9.98 511 9.98 508 9.98 505 9.98 505	9 8 7 6 5 4 3 2
log cos log cot log tau log sin log cos log cot log tau log sin										0
		log cos	log cot	log tan	log sin	log cos	log cot	log tan	log sin	,
(0)		ALANCE AT L 1	M				r.	15		
			10)				9		

-	~	\cap
- E	ົ	~
1	\mathbf{U}	

16°

						11			
1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cra	
0 1 2 3 4	9.41 300 9.41 347 9.41 394 9.41 441 9.41 488		0.57 195 0.57 144 0.57 094 0.57 043 0.56 993	9.98 491 9.98 488 9.98 484	9.44 078 9.44 122 9.44 166		0.54 203 0.54 155 0.54 1 15	949-2-1 947-277 949-273	60 55 55
5 6 7 8 9		9.43 057 9.43 108 9.43 158 9.43 208 9.43 258	0.56 943 0.56 892 0.56 842 0.56 792 0.56 742	9.98 474 9.98 471 9.98 467	9-44 297 9-44 341 9-44 385	9.45 987 9.40 035 9.40 082 9.40 130 9.46 177	0.53 9/5 0.53 918 0.53 870	9490-2412 9498-259 9498-253	2 4 3 4 5
10 11 12 13 14 15 16 17 18 19	9.41 861 9.41 908 9.41 954	9.43 308 9.43 358 9.43 408 9.43 458 9.43 558 9.43 558 9.43 557 9.43 657 9.43 707 9.43 756	0.56 642 0.56 592 0.56 542 0.56 492 0.56 442 0.56 393	9.98 453 9.98 450 9.98 447 9.98 447 9.98 443 9.98 440 9.98 436	9.44 516 9.44 559 9.44 002 9.44 646 9.44 689 9.44 733 9.44 770 9.44 819	9.46 224 9.46 271 9.46 319 9.46 360 9.46 413 9.46 460 9.46 507 9.46 554 9.46 601 9.46 048	0.53 729 0.53 681 0.53 634 0.53 587 0.53 540 0.53 440 0.53 399	9.98 244 9.98 240 9.98 237 9.98 233 9.98 229 9.98 220 9.98 222 9.98 218	50 49 48 47 49 45 44 43 42 41
20 21 22 23 24 25 20 27 28 29	9.42 278 9.42 324 9.42 370 9.42 416 9.42 461 9.42 507	9.43 806 9.43 855 9.43 905 9.43 954 9.44 004 9.44 004 9.44 102 9.44 102 9.44 151 9.44 201 9.44 201	$\begin{array}{c} 0.56 & 194 \\ 0.56 & 145 \\ 0.56 & 095 \\ 0.55 & 996 \\ 0.55 & 947 \\ 0.55 & 898 \\ 0.55 & 8.49 \\ 0.55 & 759 \\ 0.55 & 759 \\ 0.55 & 759 \end{array}$	9.98 422 9.98 419 9.98 415 9.98 412 9.98 409 9.98 405 9.98 402 9.98 402 9.98 398	9.44 948 9.44 992 9.45 035 9.45 077 9.45 120 9.45 163 9.45 200 9.45 249	9.46 694 9.46 741 9.46 788 9.46 885 9.46 885 9.46 928 9.46 928 9.47 921 9.47 021 9.47 021 9.47 068 9.47 114	0.53 259 0.53 212 0.53 165 0.53 119 0.53 072 0.53 025 0.52 979	9.98 207 9.98 20.4 9.98 200 9.98 196 9.98 192 9.98 182 9.98 185 9.98 181	40 39 38 37 30 35 34 33 32 31
30 31 32 33 34 35 30 37 38 39	9.42 690 9.42 735 9.42 781 9.42 826 9.42 872 9.42 872 9.42 977 9.42 962 9.43 008 9.43 053 9.43 098	9.44 592 9.44 641 9.44 690	$\begin{array}{c} 0.55 & 701 \\ 0.55 & 652 \\ 0.55 & 603 \\ 0.55 & 555 \\ 0.55 & 505 \\ 0.55 & 456 \\ 0.55 & 468 \\ 0.55 & 359 \\ 0.55 & 310 \\ 0.55 & 262 \end{array}$	9.98 370 9.98 366 9.98 363	9.45 377 9.45 419 9.45 462 9.45 504 9.45 547 9.45 589 9.45 632 9.45 674	9.47 160 9.47 207 9.47 253 9.47 299 9.47 346 9.47 392 9.47 438 9.47 484 9.47 530 9.47 576	0.52 793 0.52 747 0.52 701 0.52 654 0.52 608 0.52 562 0.52 516 0.52 470	9.98 170 9.98 106 9.98 102 9.98 152 9.98 155 9.98 155 9.98 151 9.98 147 9.98 144	30 29 28 27 20 25 24 23 22 21
40 ⁴¹ ⁴² ⁴³ ⁴⁴ ⁴⁵ ⁴⁶ ⁴⁷ ⁴⁸ ⁴⁹	9.43 188 9.43 233 9.43 278 9.43 3 ² 3 9.43 3 ⁶ 7 9.43 4 ¹ 2 9.43 457 9.43 5 ⁰ 2	9.44 933 9.44 981 9.45 029 9.45 078 9.45 126	0.55 16.4 0.55 116 0.55 067	9.98 352 9.98 349 9.98 345 9.98 342 9.98 338	9.45 801 9.45 843 9.45 885 9.45 927 9.45 969 9.46 011	9.47 622 9.47 668 9.47 714 9.47 760 9.47 866 9.47 852 9.47 852 9.47 897 9.47 943 9.47 989 9.48 035	0.52 332 0.52 286 0.52 240 0.52 194 0.52 148 0.52 103 0.52 057	9.98 132 9.98 129 9.98 125 9.98 121 9.98 121 9.98 117 9.98 113 9.98 110	20 19 18 17 16 15 14 13 12 11
50 51 52 53 54 55 50 57 5 8 59	9.43 591 9.43 635 9.43 680 9.43 724 9.43 769	9.45 271 9.45 319 9.45 367 9.45 415 9.45 463 9.45 511 9.45 559 9.45 566 9.45 654	0.54 681 0.54 633 0.54 585 0.54 537	9.98 320 9.98 317 9.98 313 9.98 309 9.98 300 9.98 302 9.98 202 9.98 295 9.98 291 9.98 288	9.46 220 9.46 202 9.46 303 9.46 386 9.46 386 9.40 48 9.46 409 9.46 511	9.48 126 9.48 171 9.48 217 9.48 262	0.51 874 0.51 829 0.51 783 0.51 738 0.51 093 0.51 047	9,48 040 9,98 087 9,98 083 9,98 074	10 08 70 54 32 1
60	9.44 034	9.45 750	0.54 250	9.98 284	9.46 594			9.98 000	0
	log cos	log cot	log tan	log sin	log cos	log cot	log tan	log sin	1

 74°

73

4 I

4	1	2		
5			ì	
i				1

log cos

9.48 371 9.50 485 0.49 515 9.97 886

9.48 490 9.50 616 0.49 384 9.97 874

9.48 607 9.50 746 0.49 254 9.97 861

9.48 803 9.50 962 0.49 038 9.97 841

9.48 920 9.51 092 0.48 908 9.97 829 9.48 959 9.51 135 0.48 865 9.97 825

9.48 998 9.51 178 0.48 822 9.97 821

log tan

9.48 411 9.50 529 0.49 471

9.48 450 9.50 572 0.49 428

9.48 529 9.50 659 0.49 341

9.48 568 9.50 703 0.49 297

9.48 647 9.50 789 0.49 211

9.48 686 9.50 833 0.49 167

9.48 725 9.50 876 0.49 124

9.48 764 9.50 919 0.49 081

9.18 8.12 9.51 005 0.48 995

9.48 881 9.51 048 0.48 952

log cot

12		1	7			1	.8°	
9	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos
0 1 2 3 4 5 6 7 8 9	9.46 035 9.46 676 9.46 717 9.46 758 9.46 800 9.46 800 9.46 841 9.46 882 9.46 923	9.48 579 9.48 624 9.48 669 9.48 714 9.48 759 9.48 804 9.48 849 9.48 894	0.51 466 0.51 421 0.51 376 0.51 331 0.51 286 0.51 241 0.51 196 0.51 151 0.51 106 0.51 061	9.98 056 9.98 052 9.98 048 9.98 044 9.98 040 9.98 036 9.98 032 9.98 032 9.98 029	9.49 037 9.49 076 9.49 115 9.49 153 9.49 192 9.49 231 9.49 269 9.49 308	9.51 221 9.51 264 9.51 306 9.51 349 9.51 392 9.51 435 9.51 478 9.51 520	0.48 822 0.48 779 0.48 736 0.48 694 0.48 651 0.48 655 0.48 565 0.48 522 0.48 480 0.48 487	9.97 817 9.97 812 9.97 808 9.97 804 9.97 800 9.97 796 9.97 792 9.97 788
10 11 12 13 14 15 16 17 18 19	9.47 045 9.47 086 9.47 127 9.47 168 9.47 209 9.47 249 9.47 290 9.47 330	9.49 029 9.49 073 9.49 118 9.49 163 9.49 207 9.49 252 9.49 296 9.49 341	0.50 927 0.50 882 0.50 837 0.50 793	9.98 017 9.98 013 9.98 009 9.98 005 9.98 001 9.97 997 9.97 993 9.97 989	9.49 424 9.49 462 9.49 500 9.49 539 9.49 577 9.49 615 9.49 654 9.49 692	9.51 648 9.51 691 9.51 734 9.51 776 9.51 819 9.51 861 9.51 903 9.51 946	0.48 394 0.48 352 0.48 309 0.48 266 0.48 224 0.48 181 0.48 139 0.48 097 0.48 054 0.48 012	9.97 775 9.97 771 9.97 767 9.97 763 9.97 759 9.97 754 9.97 750 9.97 746
20 21 22 23 24 25 26 27 28 29	9.47 452 9.47 492 9.47 533 9.47 573 9.47 613 9.47 654 9.47 694 9.47 734	9.49 696 9.49 740	0.50 526 0.50 481 0.50 437 0.50 393 0.50 348 0.50 304 0.50 260 0.50 216	9.97 954	9.49 806 9.49 844 9.49 882 9.49 920 9.49 958 9.49 996 9.50 034 9.50 072	9.52 073 9.52 115 9.52 157 9.52 200 9.52 242 9.52 284 9.52 326 9.52 368	0.47 960 0.47 927 0.47 885 0.47 843 0.47 843 0.47 758 0.47 758 0.47 716 0.47 674 0.47 674 0.47 590	9.97 734 9.97 729 9.97 725 9.97 721 9.97 717 9.97 713 9.97 708 9.97 704
30 31 32 33 34 35 36 37 38 39	9.47 854 9.47 894 9.47 934 9.47 974 9.48 014 9.48 054 9.48 094 9.48 133	9.49 872 9.49 916 9.59 004 9.50 048 9.50 092 9.50 136 9.50 180 9.50 223 9.50 267	0.50 084 0.50 040 0.49 996 0.49 952 0.49 908 0.49 864 0.49 820 0.49 777	9.97 942 9.97 938 9.97 934 9.97 930 9.97 926 9.97 922 9.97 918 9.97 914 9.97 910 9.97 906	9.50 185 9.50 223 9.50 261 9.50 298 9.50 336 9.50 374 9.50 411 9.50 449	9.52 494 9.52 536 9.52 578 9.52 620 9.52 661 9.52 703 9.52 745 9.52 787	0.47 548 0.47 506 0.47 464 0.47 422 0.47 380 0.47 339 0.47 297 0.47 255 0.47 213 0.47 171	9.97 691 9.97 687 9.97 683 9.97 679 9.97 679 9.97 670 9.97 670 9.97 666 9.97 662
40 41 42 43	9.48 252 9.48 292 9.48 332	9.50 355 9.50 398 9.50 442	0 49 689 0.49 645 0.49 602 0.49 558	9.97 898 9.97 894 9.97 890	9.50 561 9.50 598 9.50 635	9.52 912 9.52 953 9.52 995	0.47 130 0.47 088 0.47 047 0.47 005 0.46 063	9.97 649 9.97 645 9.97 640

9.97 882

9.97 878

9.97 870 9.97 866

9.97 857

9.97 853

9.97 849

9.97 845

9.97 837

9.97 833

log sin

9.97 606

9.97 602

9.97 584

log sin

9.50 673 9.53 037 0.46 963 9.97 636

9.50 710 9.53 078 0.46 922 9.97 632

9.50 747 9.53 120 0.46 880 9.97 628

9.50 784 9.53 161 0.46 839 9.97 623 9.50 821 9.53 202 0.46 798 9.97 610 9.50 858 9.53 244 0.46 756 9.97 615

9.50 896 9.53 285 0.46 715 9.97 610

9.51 007 9.53 409 0.46 591 9.97 597

9.51 043 9.53 450 0.46 550 9.97 593

9.51 080 9.53 492 0.46 508 9.97 589

9.51 154 9.53 574 0.46 426 9.97 580

9.51 191 9.53 615 0.46 385 9.97 576

9.51 227 9.53 656 0.46 344 9.97 571

9.51 264 9.53 697 0.46 303 9.97 567

0.46 673

log tan

9.50 933 9.53 327

log cos

9.50 970 9.53 368 0.46 632

9.51 117 9.53 533 0.46 467

log cot

2.1

II

6

I

-1	\mathbf{n}	
	4	
	.0	

\sim	0	
63.	63	
6.		

1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0	9.51 264			9.97 567	9.53 405	9.50 107	0.43 893	9.97 299	60
1 2	9.51 301 9.51 338			9.97 563 9.97 558	9.53 440 9.53 475	9.56 140 9.50 185	0.43 054	9.17.204 9.17.289 9.17.2.5	59
3	9.51 374	9.53 820	0.46 180	9.97 554	9.53 509	9.50 224	0.43 770	4-17-2-5	58 57
4	9.51.411		0.46 139	9.97 550	9.53 544	9.50 264		9.97 280	50
5	9.51 447 9.51 484		0.46 098	9.97 545 9.97 541	9.53 578 9.53 013	9.50 303 9.50 342		9.97 276 9.97 271	55 54
7 8	9.51 520	9.53 984	0.46 016	9.97 536	9.53 647	9.56 381	0.43 019	9.47 210	53
9	9.51 557 9.51 593		0.45 975 0.45 935	9.97 532 9.97 528	9.53 682 9.53 716	9.56 .420 9.56 459	0.43 580	9.97 21 2	52 51
10		9.54 106		9.97 523	9.53 751				
II		9.54 147	0.45 853	9.97 523	9.53 785	9.56 537	0.43 502	9.97 240	50 49
12 13	9.51 702 9.51 738	9.54 187 9.54 228	0.45 813	9.97 515 9.97 510	9.53 819 9.53 854		0.43 424	9.97 243	-13
13 I4	9.51 730	9.54 269		9.97 506	9.53 888		0.43 385 0.43 340		47 40
15	9.51 811		0.45 691	9.97 50 1	9.53 922	9.56 693	0.43 307	9.97 229	45
10 17	9.51 8.47 9.51 883	9.54 350 9.54 390		9.97 497	9.53 957 9.53 991	9.56 732	0.43 268	9.97 224	44 43
18	9.51 919	9.54 43 ^I	0.45 569	9.97 488	9.54 025	9.56 810	0.43 190	9.97 220 9.97 215	42
19	9.51 955	9.54 471	0.45 529	9.97 484	9.54 059	9,56 849	0 43 151	9.97 210	14.
20	9.51 991	9.54 512		9.97 479		9.56 887			40
2I 22	9.52 027 9.52 063	9.54 552 9.54 593		9.97 475	9.54 127 9.54 161	9.50 920 9.56 965		9.97 201 9.97 196	39 38
23	9.52 099	9.54 633	0.45 367	9.97 466	9.54 195	9.57 00.4	0.42 996	9.97 192	37
24	9.52 135		0.45 327	9.97 461	9.54 229		0,42 958		30
25 26	9.52 171 9.52 207	9•54 714 9•54 754	0.45 286 0.45 246	9.97 457 9.97 453	9.54 263 9.54 297	9.57 120	0.42 919		35 34
27	9.52 242	9.54 794 9.54 ⁸ 35	0.45 206	9.97 44 ⁸	9.54 331	9.57 158	0.42 8.42	9.97 173	33
28 29	9.52 278 9.52 314	9.54 °35 9.54 ⁸ 75	0.45 165 0.45 125	9.97 444 9.97 439	9.54 365 9.54 399	9.57 107 9.57 235	0.42 803		32 31
30	9.52 350			9.97 435	0 51 122	0.57.271	0.12.726	9.97 159	30
31	9.52 385	9.54 955	0.45 045	9.97 430	9.54 466	9.57 312	012 688	9.97 154	29
32 33	9.52 421 9.52 456	9.54 995 9.55 935	0.45 005 0.44 965	9.97 426 9.97 421	9.54 500 9.54 534			9.97 149	28 27
34	9.52 430		0.44 925	9.97 417	9.54 507	9.57 428	0.42 572	9.97 1.40	20
35	9.52 527	9.55 115	0.44 885	9.97 412	9.54 601	9.57 466	0.42 534	9.97 135 9.97 130 9.97 120 9.97 121	25 24
36 37	9.52 563 9.52 598	9.55 155 9.55 195	0.44 845	9,97 408 9,97 403	9.54 635 9.54 668	9.57 543	0.42 490	9.97 120	23
38	9.52 634	9.55 235	0.44 765	9.97 403 9.97 399	9.54 702	9.57 581	0.42 410	9.97 121	22 21
39	9.52 669		0.44 725	9.97 394	9.54 735				20
40 41	9.52 705 9.52 740	9.55 315 9.55 355	0,44 685	9.97 390 9.97 3 ⁸ 5				9.97 111	19
41	9.52775	9.55 395	0.44 605	9.97 381	9.54 836	9.57 734	0.42 200	9.97 102	18
43	9.52 811 9.52 846		0.44 566	9.97 376 9.97 372	9.54 809	9.57 772	0.12 100	9.97 097 9.97 092	17 10
44 45	9.52 881		0,44 ,486	9.97 367	9.54 936	9.57 849	0.42 151	0.97 087	15
46	9.52 916	9.55 554	0.44 446	9.97 363	9.54 969	9.57 887	0.42 11	3 9.97 083	14 13
47 48	9.52 951 9.52 986	9.55 593	0.44 407	9.97 35 ⁸ 9.97 353	0.55.020	0 27 002	0.12.023	9.97 073	I2
49	9.53 021	9.55 673	0.44 327	9.97 349	9.55 009	9.58 001	0.41 999	9.97 008	II
50	9.53 056		0.44 288	9.97 344	9.55 102	9.58 039	0.41 961	0.07 063	10
51	9.53 092	9.55 752	0,44 248	9.97 340 9.97 335	9.55 136	9.58 077 9.58 115	0.41 923	3 9 97 059 5 9.07 054	8
52 53	9.53 126	9.55 831	0.44 169	9.97 331	9.55 202	9.5 <u>8</u> 153	0.41 84	7 9.97 049	7
54	9.53 196	9.55 870	0.44 130		9.55 235			9.07 044 I 9.07 039	5
55 56	9.53 231 9.53 266	9.55 910			9.55 268 9.55 301	9.58 207	0.41 73.	3 9.47 035	4
50 57 58	9.53 301	9.55 989	0.44 011	9.97 312	9.55 334	9.58 30.1	0.41 09	5 9.97 030 8 9.97 025	3
58 59	9.53 336	5 9.56 028			9.55 367	9.58 342	0.41 65	0 9.17 020	Ĩ
60		_						2 9. 7 015	0
	log cos	5 9.56 107 log cot	log tan	log sin	log cos		log tan		1
Conservation of the local division of the lo	108 008	108 000	0)			and the second second	9		
		1	0			0	0		

44	21 °			2	2°		
'	log sin log tan log cot log	g cos	log sin	log tan	log cot	log cos	
0 1 2 3 4 5 5 7 8 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 010 7 005 7 001 6 996 6 991 6 986 6 981	9.57 389 9.57 420 9.57 451 9.57 482 9.57 514 9.57 545 9.57 576 9.57 607	9,60 641 9,60 677 9,60 714 9,60 750 9,60 786 9,60 823 9,60 859 9,60 895 9,60 931 9,60 967	0.39 323 0.39 286 0.39 250 0.39 214 0.39 177 0.39 141 0.39 105 0.39 069	9.96 711 9.96 706 9.96 701 9.96 696 9.96 691 9.96 686 9.96 681 9.96 676	60 59 58 57 56 55 54 53 52 51
10 11 12 13 14 15 16 17 18 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 962 6 957 6 952 6 947 6 942 6 937 6 932 6 932 6 927	9.57 700 9.57 731 9.57 762 9.57 793 9.57 824 9.57 855 9.57 885 9.57 916	9.61 004 9.61 040 9.61 076 9.61 112 9.61 148 9.61 184 9.61 220 9.61 256 9.61 292 9.61 328	0.38 960 0.38 924 0.38 888 0.38 852 0.38 816 0.38 780 0.38 744 0.38 708	9.96 660 9.96 655 9.96 650 9.96 645 9.96 645 9.96 634 9.96 629 9.96 624	50 49 48 47 46 45 45 44 43 42 41
20 21 22 23 24 25 26 27 28 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 912 6 907 6 903 6 898 6 893 6 888 6 888 6 883	9.58 008 9.58 039 9.58 070 9.58 101 9.58 131 9.58 162 9.58 192 9.58 223	9.61 364 9.61 400 9.61 436 9.61 472 9.61 508 9.61 579 9.61 615 9.61 651 9.61 687	0.38 600 0.38 564 0.38 528 0.38 492 0.38 456 0.38 421 0.38 385 0.38 349	9.96 608 9.96 603 9.96 598 9.96 593 9.96 588 9.96 582 9.96 577 9.96 572	40 39 38 37 36 35 34 33 3 ² 3 ¹
30 31 32 33 34 35 36 37 38 39	9.56 568 9.59 725 0.40 275 9.9 9.56 599 9.59 762 0.40 238 9.9 9.56 631 9.59 799 0.40 201 9.9	6 863 6 858 6 853 6 848 6 843 6 843 6 838 6 833 6 833 6 828	9.58 314 9.58 345 9.58 375 9.58 406 9.58 436 9.58 467 9.58 497	9.61 901 9.61 936 9.61 972 9.62 008	0.38 242 0.38 206 0.38 170 0.38 135 0.38 099 0.38 064 0.38 028	9.96 556 9.96 551 9.96 546 9.96 541 9.96 535 9.96 533 9.96 525 9.96 525	30 29 28 27 26 25 24 23 22 21
40 41 42 43 44 45 46 47 48 49	9,56 822 9,56 619 0,39 981 9,9 9,56 854 9,66 0,56 0,39 9,44 9,9 9,56 886 9,60 0,30 0,39 9,07 9,9 9,56 9,17 9,66 1,30 0,39 870 9,9 9,56 9,49 9,66 1,66 0,39 834 9,9	6 813 6 808 6 803 6 798 6 793 6 783 6 783 6 778	9.58 618 9.58 648 9.58 678 9.58 709 9.58 709 9.58 739 9.58 769 9.58 799 9.58 829	9.62 079 9.62 114 9.62 150 9.62 185 9.62 221 9.62 256 9.62 292 9.62 327 9.62 362 9.62 398	0.37 886 0.37 850 0.37 815 0.37 779 0.37 744 0.37 708 0.37 673 0.37 638	9.96 504 9.96 498 9.96 493 9.96 488 9.96 483 9.96 477 9.96 472 9.96 467	20 19 . 18 17 16 15 14 13 12 11
50 51 52 53 54 55 50 57 58 59 60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 762 6 757 6 752 6 747 6 747 6 742 6 737 6 732 6 732 6 727 6 722	9.58 919 9.58 949 9.58 979 9.59 009 9.59 039 9.59 059 9.59 059 9.59 128 9.59 158	9.62 + 33 9.62 + 68 9.62 504 9.62 539 9.62 574 9.62 609 9.62 645 9.62 680 9.62 715 9.62 750	0.37 532 0.37 496 0.37 461 0.37 426 0.37 391 0.37 355 0.37 355 0.37 320 0.37 285 0.37 250	9.96 451 9.96 445 9.96 445 9.96 435 9.96 435 9.96 424 9.96 424 9.96 413 9.96 408	10 9 8 7 6 5 4 3 2 1
60	9.57 358 9.60 641 0.39 359 9.9 log cos log cot log tan log	6 7 17 g sin	9.59 188 log cos	9.62 785 log cot	0.37 215 log tan	9.96 403 log sin	0
	68 [°]	5 210	108.008		7 ⁰	ing sill	
	00			0	1		

0	9	0
~	υ	

		2	<u>3°</u>			2	4°		45
	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	1
0 1 2 3 4 5 6 7 8 9	9.59 2.47 9.59 277 9.59 307 9.59 336	9.62 820 9.62 855 9.62 890 9.62 926 9.62 961 9.62 996	0.37 145 0.37 110 0.37 074 0.37 039 0.37 004 0.36 969 0.36 934	9.96 397 9.96 392 9.96 387 9.96 381 9.96 376 9.96 370	9.60 988 9.61 016 9.61 045 9.61 073 9.61 101 9.61 120 9.61 158	9.64 858 9.64 892 9.64 926 9.64 900 9.64 900 9.65 028 9.65 042 9.65 042 9.65 130 9.65 164	0.35 108 0.35 074 0.35 040 0.35 000 0.34 072 0.34 938 0.34 938 0.34 904 0.34 870	9.60 007 9.90 002 9.90 056 9.90 056 9.90 056 9.90 050 9.90 034 9.90 020	60
10 11 12 13 14 15 16 17 18 19	9.59 514 9.59 543 9.59 573 9.59 602 9.59 632 9.59 661 9.59 690 9.59 720	9.63 135 9.63 170 9.63 205 9.63 240 9.63 275 9.63 310 9.63 345 9.63 379 9.63 414 9.63 449	0.36 830 0.36 795 0.36 760 0.36 725 0.36 690 0.36 655 0.36 621 0.36 586	9.96 338 9.96 333 9.96 327 9.96 322 9.96 316 9.96 311 9.96 305	9.61 214 9.61 242 9.61 270 9.61 298 9.61 326 9.61 354 9.61 382 9.61 411 9.61 438	$\begin{array}{c} 9.65 & 197\\ 9.65 & 231\\ 9.65 & 205\\ 9.65 & 209\\ 9.65 & 333\\ 9.65 & 366\\ 9.65 & 400\\ 9.65 & 434\\ 9.65 & 407\\ 9.65 & 501 \end{array}$	0.34 803 0.34 709 0.34 735 0.34 701 0.34 667 0.34 634 0.34 600 0.34 566 0.34 556	9.96 017 9.96 011 9.96 000 9.95 000 9.95 988 9.95 982 9.95 977	50 40 47 47 47 45 44 45 44 43 42 41
20 21 22 23 24 25 26 27 28 29	9.59 895 9.59 924 9.59 954 9.59 983 9.60 012		0.36 481 0.36 447 0.36 412 0.36 377 0.36 343 0.36 308 0.36 274 0.36 239	9.96 289 9.96 284 9.96 278 9.96 273 9.96 267 9.96 262 9.96 256	9.61 494 9.61 522 9.61 550 9.61 578 9.61 606 9.61 634 9.61 662 9.61 689 9.61 717	9.65 535 9.05 568 9.65 636 9.65 636 9.65 703 9.65 736 9.65 736 9.65 770 9.65 803 9.65 837	0.34 465 0.34 432 0.34 398 0.34 364 0.34 331 0.34 207 0.34 204 0.34 204 0.34 230 0.34 197	9.95 954 9.95 948 0.95 942 9.95 937 9.95 931 9.95 925 9.95 920 9.95 914	40 39 38 37 36 35 34 33 3 ² 3 ¹
30 31 32 33 34 35 36 37 38 39	9.60 099 9.60 128 9.60 157 9.60 186 9.60 215 9.60 244 9.60 273 9.60 302	9.63 830 9.63 865 9.63 899 9.63 934 9.63 968 9.64 037 9.64 037 9.64 072 9.64 106 9.64 140	0.36 135 0.36 101 0.36 066 0.36 032 0.35 997 0.35 963 0.35 928 0.35 894	9.96 234 9.96 229 9.96 223 9.96 218 9.96 212 9.96 207 9.96 201 9.96 196	9.61 800 9.61 828 9.61 856 9.61 883 9.61 911 9.61 939 9.61 900 9.61 904	9.65 870 9.65 904 9.65 937 9.65 971 9.66 004 9.66 038 9.66 071 9.66 104 9.66 138 9.66 171	0.34 006 0.34 003 0.34 029 0.33 996 0.33 962 0.33 929 0.33 896 0.33 862	0.95 897 0.95 891 9.95 885 9.95 879 9.95 873 9.95 868 9.95 862 9.95 856	30 29 28 27 20 25 24 23 22 21
40 41 42 43 44 45 46 47 48 49	9.60 388 9.60 417 9.60 446 9.60 474 9.60 503 9.60 532 9.60 561	9.64 175 9.64 209 9.64 243 9.64 278 9.64 312 9.64 346 9.64 381 9.64 415 9.64 443	0.35 791 0.35 757 0.35 757 0.35 688 0.35 688 0.35 654 0.35 619 0.35 585	9.96 185 9.96 179 9.96 174 9.96 168 9.96 162 9.96 157 9.96 151 9.96 146 9.96 140 9.96 135	9.62 076 9.62 104 9.62 131 9.62 150 9.62 186 9.62 214 9.62 241 9.62 208	9,66 204 9,66 238 9,66 271 9,66 304 9,66 337 9,66 371 9,66 404 0,66 437 9,66 470 9,66 503	0.33 762 0.33 720 0.33 669 0.33 663 0.33 629 0.33 590 0.33 593 0.33 593	9.95 839 9.95 833 9.95 827 9.95 821 9.95 821 9.95 815 6.95 810 9.95 804 9.95 804 9.05 798	20 10 15 17 10 15 14 13 12 11
50 51 52 53 54 55 56 57 58 59	9.60 675 9.60 704 9.60 732 9.60 701 9.60 789 9.60 818 9.60 846 9.60 875	9.64 517 9.64 552 9.64 586 9.64 620 9.64 620 9.64 654 9.64 688 9.64 722 9.64 756 9.64 790 9.64 824	0.35 448 0.35 414 0.35 380 0.35 346 0.35 312 0.35 278 0.35 244 0.35 210	9.96 123 9.96 118 9.96 112 9.96 107 9.96 101 9.96 095 9.96 030 9.96 084	9.62 350 9.62 377 9.62 405 9.62 432 9.62 432 9.62 439 9.62 430 9.62 513 9.62 513 9.62 541 9.62 508	9,66 537 9,66 570 9,66 636 9,66 636 9,66 702 9,66 702 9,66 703 9,66 703 9,66 811 9,66 834	0.33 430 0.33 397 0.33 364 0.33 331 0.33 208 0.33 208 0.33 208 0.33 232 0.33 10 1	0.05 780 0.15 775 0.15 775 0.15 77 0.15 75 0.15 75	10 0 5 7 6 5 4 1 1
60	9.60 931		0.35 142		9.62 595		0.33 I33		0
	log cos	log cot	log tan	log sin	log cos	log cot	log tan	log in	
		6	6°			6	5		

46		2	5°			2	6°		
1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0 I 2 3 4 5 6 7 8 9	9.62 622 9.62 649 9.62 676 9.62 703 9.62 730 9.62 737 9.62 757 9.62 811	9.66 867 9.66 933 9.66 933 9.66 900 9.60 999 9.67 032 9.67 05 9.67 05 9.67 098 9.67 131 9.67 153	0.33 100 0.33 067 0.33 034 0.33 001 0.32 968 0.32 935 0.32 902 0.32 869	9.95 722 9.95 716 9.95 710 9.95 704 9.95 698 9.95 692 9.95 686	9.64 210 9.64 236 9.64 262 9.64 288 9.64 313 9.64 339 9.64 305 9.64 391	9.68 818 9.68 850 9.68 850 9.68 914 9.68 949 9.68 973 9.69 010 9.69 010 9.69 042 9.69 074 9.69 106	0.31 150 0.31 118 0.31 086 0.31 054 0.31 022 0.30 990 0.30 958 0.30 926	9.95 360 9.95 354 9.95 348 9.95 341 9.95 335 9.95 329 9.95 323	60 59 58 57 56 55 54 53 52 51
10 11 12 13 14 15 16 17 18 19	$\begin{array}{c} 9.62\ 865\\ 9.62\ 892\\ 9.62\ 913\\ 9.62\ 945\\ 9.62\ 972\\ 9.62\ 972\\ 9.63\ 026\\ 9.63\ 026\\ 9.63\ 052\\ 9.63\ 079\end{array}$	9.67 196 9.67 229 9.07 252 9.07 252 9.07 327 9.67 360 9.67 393 9.67 426 9.67 458	0.32 804 0.32 771 0.32 738 0.32 705 0.32 673 0.32 640 0.32 607 0.32 574	9.95 668 9.95 663 9.95 657 9.95 651 9.95 645 9.95 639 9.95 633 9.95 627 9.95 621	$\begin{array}{c} 9.64 & 4.42 \\ 9.64 & 4.68 \\ 9.64 & 4.94 \\ 9.64 & 5.19 \\ 9.64 & 5.45 \\ 9.64 & 5.71 \\ 9.64 & 5.96 \\ 9.64 & 622 \\ 9.64 & 647 \end{array}$	9.69 138 9.69 170 9.69 202 9.69 234	0.30 862 0.30 830 0.30 798 0.30 766 0.30 734 0.30 702 0.30 671 0.30 639 0.30 607	9.95 304 9.95 298 9.95 292 9.95 286 9.95 279 9.95 273 9.95 267 9.95 261	50 49 48 47 46 45 44 43 42 41 43 42 41
20 21 22 23 24 25 26 27 28 29	9 63 159 9.63 186 9.63 213 9.63 239 9.63 266 9.63 292 9.63 319 9.63 345	9.67 524 9.67 556 9.67 589 9.67 622 9.67 654 9.67 687 9.67 719 9.67 752 9.67 785 9.67 817	0.32 444 0.32 411 0.32 378 0.32 346 0.32 313 0.32 281 0.32 248 0.32 215	9.95 603 9.95 597 9.95 591 9.95 585 9.95 579 9.95 573 9.95 567 9.95 567	9.64 724 9.64 749 9.64 775 9.64 800 9.64 826 9.64 851 9.64 877 9.64 902	9.69 457 9.69 488 9.69 520 9.69 552 9.69 584 9.69 615 9.69 647 9.69 679 9.69 710 9.69 712	0.30 480 0.30 448 0.30 416 0.30 385 0.30 353 0.30 321 0.30 290	9.95 236 9.95 229 9.95 223 9.95 217 9.95 211 9.95 201 9.95 198	40 39 38 37 36 35 34 33 32 31
30 31 32 33 34 35 36 37 38 39	9.63 425 9.63 451 9.63 478 9.63 504 9.63 531 9.63 557 9.63 583 9.63 583	9.67 850 9.67 882 9.67 915 9.67 947 9.67 980 9.68 012 9.68 014 9.68 077 9.68 109 9.68 142	0.32 118 0.32 085 0.32 053 0.32 020 0.31 988 0.31 956 0.31 923 0.31 891	9.95 543 9.95 537 9.95 531 9.95 525 9.95 519 9.95 513	9.64 978 9.65 003 9.65 029 9.65 054 9.65 079 9.65 104 9.65 130 9.65 155	9.69 774 9.69 805 9.69 837 9.69 868 9.69 900 9.69 932 9.69 963 9.69 995 9.70 026 9.70 026	0.30 163 0.30 132 0.30 100 0.30 068 0.30 037 0.30 005 0.29 974	9.95 173 9.95 167 9.95 160 9.95 154 9.95 154 9.95 141 9.95 135 9.95 129	30 29 28 27 26 25 24 23 22 21
40 41 42 43 44 45 46 47 48 49	9.63 689 9.63 715 9.63 741 9.63 767 9.63 794 9.63 820 9.63 846	9.68 17.4 9.68 206 9.68 239 9.68 27 1 9.68 303 9.68 303 9.68 308 9.68 400 9.68 422 9.68 45	0.31 794 0.31 761 0.31 729 0.31 697 0.31 664 0 31 632 0.31 600 0.31 568	9.95 482 9.95 476 9.95 470 9.95 464 9.95 458 9.95 452 9 95 446 9.95 446	9.65 230 9.65 255 9.65 281 9.65 306 9.65 331 9.65 356 9.65 381 9.65 381	9.70 089 9.70 121 9.70 152 9.70 184 9.70 215 9.70 247 9.70 278 9.70 309 9.70 341 9.70 372	0.29 879 0.29 848 0.29 816 0.29 785 0.29 753 0.29 722 0.29 651 0.29 659	9.95 084 9.95 078	20 19 18 17 16 15 14 13 12 11
50 51 52 53 54 55 57 58 59 60	9.63 950 9.63 976 9.64 002 9.64 028 9.64 054 9.04 08 9.64 106 9.64 132 9.64 158	9.68 497 9.68 529 9.68 561 9.68 593 9.68 626 9.68 626 9.68 658 9.68 690 9.68 722 9.68 754 9.68 754 9.68 818	0.31 503 0.31 471 0.31 439 0.31 407 0.31 374 0.31 374 0.31 342 0.31 310 0.31 278 0.31 246 0.31 214	$\begin{array}{c} 9.95 \ 427\\ 9.95 \ 421\\ 9.95 \ 415\\ 9.95 \ 409\\ 9.95 \ 403\\ 9.95 \ 307\\ 9.95 \ 301\\ 9.95 \ 384\\ 9.95 \ 378\\ 9.95 \ 372\\ \end{array}$	9.65 481 9.65 506 9.65 531 9.65 556 9.65 580 9.65 605 9.65 630 9.65 655 9.65 680	9.70 404 9.70 435 9.70 466 9.70 498 9.70 529 9.70 560 9.70 502 9.70 623 9.70 654 9.70 685 9.70 717	0.29 565 0.29 534 0.29 502 0.29 471 0.29 440 0.20 408 0.29 377 0.29 346 0.29 315	9.95 046 9.95 039 9.95 033 9.95 027 9.95 020 9.95 014 9.95 001 9.95 001 9.94 995	10 9 8 7 6 5 4 3 2 1 1 0
	log cos	log cot	log tan	log sin	log cos	log cot	log tan	log sin	
		64	1 °				3°	9	

-

27°

\sim	0	
	Ω.	
6.1		

1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0	9.65 705	9.70 717			9.07 101	9.72 567			60
I 2	9.65 729 9.65 754	9.70 748		9.94 982 9.94 975	9.67 185 9.67 208	9.72 567 9.72 598	0.27 4 =	0.04 587	59
3	9.65 779	9.70 779 9.70 810	0.29 190	9.94 975	9.67 232	9.72 028 9.72 059	0.27 372	1. 14 500 9. 14 573	53
4	9.65 804	9.70 8.41	0.29 159	9.94 962	9.67 256	9.72 089	0.27 311	9.04 507	50
5	9.65 828	9.70 873	0.29 127	9 94 956	9.67 280	9.72 720	0.27 250	9-14 500	55
	9.65 853 9.65 878	9.70 904 9.70 935	0.29 090	9•94 949 9•94 943	9.67 303 9.67 327	9.72 750	0.27 2 ₅ 0 0.27 220	9.94 553	54 53
7 8	9.65 902	9.70 966	0.29 034	9.94 936	9.67 350 9.67 374	9.72 811	0.27 180	9.94 5.10	52
9	9.65 927	9.70 997	0.29 003	9.94 930	9.67 374	9.72 841	0.27 159	9-94-533	51
10	9.65 952	9.71 028		9.94 923	9.67 398		0.27 128	9.94 520	50
11 12		9.71 059 9.71 090		9.94 917 9.94 911	9.67 421 9.67 445	9.72 902 9.72 932		9.94 51) 9.94 513	49 43
13	9.66 025	9.71 121	0.28 879	9.94 904	9.67 468	9.72 963	0.27 037	9.94 506	47
14	9.66 050	9.71 153		9.94 898		9.72 993			40
15 16	9.66 075	9.71 184 9.71 215		9.94 891 9.94 885	9.67 515		0.26 977 0.26 946		45
17	9.66 124	9.71 246		9.94 878	9.67 539 9.67 562	9.73 084			44 43
18	9.66 148	9.71 277	0.28 723	9.94 871	9.67 586	9.73 114	0.26 836	9-94 472	42
19	9.66 173	9.71 308	0.28 092	9.94 865	9.07 009	9.73 144	0,20 850	9.94 405	+I
20	9.66 197	9.71 339	0.28 661	9.94 858		9.73 175			40
2I 22	9.66 221	9.71 370 9.71 401	0.28 500	9.94 852 9.94 845	9.67 680	9.73 205 9.73 235	0.20 795	9.94 451 9.94 445	39 38
23	9.66 270	9.71 431	0.28 569	9.94 839	9.67 703	9.73 265	0.26 735	9.94 438	37
24	9.66 295	9.71 462		9.94 832		9.73 295		9.94 4 3I	36
25 26	9.66 319 9.66 343	9.71 493	0.28 507 0.28 476	9.94 826 9.94 819		9.73 326 9.73 356			35 34
27	9.66 368	9.71 555	0.28 445	9.94 813	9.67 796	9.73 386	0.26 614	9.94 410	33
28	9.66 392		0.28 414	9.94 806		9.73 416			32 31
29	9.66 416	9.71 617	0.28 383	9.94 799		9.73 446			
30		9.71 648				9.73 476 9.73 507			30 29
31 32		9.71 679 9.71 709		9.94 786 9.94 780	9.67 913	9.73 507	0.20 493	9.94 305	28
33	9.66 513	9.71 740	0.28 260	9.94 773	9.67 936	9.73 567	0.26 433	9.94 369	27
34	9.66 537		0.28 229			9.73 597		9.94 362	26 25
35 36	9.66 562 9.66 586	9.71 833	0.28 198 0.28 167	9.94 760 9.94 753		9.73 627		9.94 335	24
37 38	9.66 610	9.71 863	0.28 137	9.94 747	9.68 029	9.73 687	0.26 313	9.94 342	23
38 39	9.66 634 9.66 658		0.28 106	9.94 740 9.94 734		9.73 717 9.73 747			22 21
									20
40 41	9.66 682	9.71 955 9.71 986		9.94 727 9.94 720	9.00 090	9.73 777 9.73 807	0.20 223	9.94 321	19
42	9.66 731	9.72 017	0.27 983	9.94 714	9.68 144	9.73 837	0.20 103	9.94 307	18
43	9.66 755	9.72 048	0.27 952	9.94 707	9.68 167	9.73 807 9.73 897	0.26 133	9,94 300	17 10
44	9.66 779		0.27 922	9.94 700		9.73 997			15
45 46	9.66 827	9.72 140	0.27 860	9.94 687	9.68 237	9.73 957	0.26 043	9.94 279	14
47 48	9.66 851	9.72 170	0.27 830	9.94 680	9.68 260	9.73 987 9.74 017	0.20 013	9.94 273	13 12
40 49	9.66 875	9.72 201 9.72 231	0.27 799	9.94 674 9.94 667	9.68 305	9.74 047	0.25 953	9.94 259	II
50					0.68 228	9.74 077	0.25 023	9.94 252	10
50 51	9.66 922	9.72 262 9.72 293		9.94 660 9.94 654	0.68 351	0.71 107	0.25 893	9.94 245	9
52	9.66 970	9.72 323	0.27 677	9.94 647	9.68 374	9.74 137	0.25 863 0.25 834	9.94 238 9.94 231	8
53	9.66 994 9.67 018	9.72 354 9.72 384	0.27 646 0.27 616	9.94 640 9.94 634	9.68 397 9.68 420	9.74 100 9.74 196	0.25 804	9.94 224	6
54 55	9.67 012				9.68 443	9.7.1 226	0.25 774	9.94 217	5
56	9.67 006	9.72 445	0.27 555	9.94 620	9.68 460	9.74 250	0.25 744	9.94 210	4 3
57 5 ⁸	9.67 090	9.72 476	0.27 524 0.27 494	9.94 614 9.94 607	9.08 .189	9.74 280 9.74 310	0.25 084	0.04 I /0	2
5° 59	9.67 113	9.72 537	0.27 494	9.94 600	9.68 534	9.7.4 345	0.25 055		I
60	9.67 161	9.72 567			9.68 557	9.74 375	0.25 025	9.94 1.2	0
-	log cos	log cot	log tan	log sin	log cos	log cot	log tan	log sin	1
			-			G	1		
62° 61									

-17

48		2	9°		30°				
1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0 I 2 3 4	9.68 603 9.68 625 9.68 648	9.74 405 9.74 435 9.74 465 9.74 494	0.25 565 0.25 535 0.25 506	9.94 161 9.94 154	9.69 919 9.69 941 9.69 963 9.69 984	9.76 173 9.76 202 9.76 231 9.76 261	0.23 798 0.23 709 0.23 739	9.93 746 9.93 738 9.93 731 9.93 724	60 59 58 57 56
56 78 9	9.68 694 9.68 716 9.68 739	9.74 554 9.74 5 ⁸ 3	0.25 387	9.94 I40 9.94 I33	9.70 028 9.70 050 9.70 072 9.70 093	9.76 319 9.76 348 9.76 377 9.76 406	0.23 710 0.23 681 0.23 652 0.23 623 0.23 594	9.93 709 9.93 702 9.93 695 9.93 687	55 54 53 52 51
10 11 12 13 14 15 16 17 18 19	9.68 807 9.68 829 9.68 852 9.68 875 9.68 897 9.68 920 9.68 942 9.68 95	9.74 732 9.74 762 9.74 791 9.74 821 9.74 851 9.74 880 9.74 910	0.25 298 0.25 208	9.94 098 9.94 090 9.94 083 9.94 076 9.94 069 9.94 062 9.94 055	9.70 137 9.70 159 9.70 180 9.70 202 9.70 224 9.70 245 9.70 267 9.70 288	9.76 464 9.76 493 9.76 522 9.76 551 9.76 580 9.76 609 9.76 639 9.76 668	0.23 478	9.93 673 9.93 665 9.93 658 9.93 650 9.93 643 9.93 643 9.93 636 9.93 628 9.93 621	50 49 48 47 46 45 41 43 42 41
20 21 22 23 24 25 26 27 28 29	9.69 032 9.69 055 9.69 077 9.69 100 9.69 122 9.69 144 9.69 167 9.69 189	9.74 998 9.75 028 9.75 058 9.75 087 9.75 117 9.75 146 9.75 176 9.75 205	0.25 031 0.25 002 0.24 972 0.24 942 0.24 913 0.24 883 0.24 854 0.24 824 0.24 795 0.24 765	9.94 034 9.94 027 9.94 020 9.94 012 9.94 005 9.93 998 9.93 991 9.93 984	9.70 353 9.70 375 9.70 396 9.70 418 9.70 439 9.70 461 9.70 482 9.70 504	9.76 754 9.76 783 9.76 812 9.76 841 9.76 870 9.76 899 9.76 928 9.76 957		9.93 599 9.93 591 9.93 5 ⁸ 4 9.93 577 9.93 5 ⁶ 9 9.93 5 ⁶ 2 9.93 554 9.93 547	40 39 38 37 36 35 34 33 32 31
30 31 32 33 34 35 36 37 38 39	9.69 256 9.69 279 9.69 301 9.69 323 9.69 345 9.69 368 9.69 390 9.69 412	9.75 294 9.75 323 9.75 353 9.75 382 9.75 411 9.75 441 9.75 470	0.24 647 0.24 618 0.24 589 0.24 559 0.24 530 0.24 500	9.93 963 9.93 955 9.93 948 9.93 941 9.93 934 9.93 927 9.93 920	9.70 568 9.70 590 9.70 611 9.70 633 9.70 654 9.70 675 9.70 697 9.70 718	9.77 044 9.77 073 9.77 101 9.77 130 9.77 159 9.77 188 9.77 217	0.22 985 0.22 956 0.22 927 0.22 899 0.22 870 0.22 841 0.22 812 0.22 783 0.22 754 0.22 754	9.93 525 9.93 517 9.93 510 9.93 502 9.93 495 9.93 487 9.93 487 9.93 480	30 29 28 27 26 25 24 23 . 22 21
40 41 42 43 44 45 46 47 48 49	9.69 479 9.69 501 9.69 523 9.69 545 9.69 567 9.69 589 9.69 611 9.69 633	9.75 5 ⁸⁸ 9.75 617 9.75 647 9.75 676 9.75 705 9.75 705 9.75 735 9.75 764	0.24 265 0.24 236 0.24 207	9.93 891 9.93 884 9.93 876 9.93 869 9.93 862 9.93 855 9.93 847	9.70 782 9.70 803 9.70 824 9.70 846 9.70 867 9.70 888 9.70 909 9.70 931	9.77 332 9.77 361 9.77 390 9.77 418 9.77 447 9.77 476 9.77 505 9.77 533	0.22 495	9.93 450 9.93 442 9.93 435 9.93 427 9.93 420 9.93 412 9.93 405 9.93 397	20 19 18 17 16 15 14 13 12 11
50 51 52 53 54 55 56 57 58 59 60	9.69 699 9.69 721 9.69 743 9.09 765 9.69 787 9.69 809 9.69 831 9.69 853 9.69 853	9.75 881 9.75 910 9.75 939 9.75 969 9.75 998 9.76 027 9.76 036 9.76 036 9.76 115	0.24 CO2 0.23 973 0.23 944 0.23 914 0.23 885	9.93 819 9.93 811 9.93 804 9.93 797 9.93 789 9.93 782 9.93 775 9.93 768 9.93 760	9.70 994 9.71 015 9.71 036 9.71 058 9.71 058 9.71 079 9.71 100 9.71 121 9.71 142 9.71 163	9.77 677 9.77 706 9.77 734 9.77 753 9.77 791 9.77 820 9.77 849	0.22 266 0.22 237 0.22 209 0.22 180 0.22 151	9.93 375 9.93 367 9.93 360 9.93 352 9.93 3.14 9.93 337 9.93 329 9.93 322 9.93 314	10 98 76 5 4 3 2 1
60	9.69 897 log cos	9.76 144 log cot	0.23 856 log tan	9.93 753 log sin	9.71 184 log cos	9.77 877 log cot	0.22 123 log tan	9.93 307 log sin	0
	60° 59°								

9	1	0
υ	1	

1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0	9.71 184	9.77 877	0.22 123	9.93 307	9.72 421	9.79 379			60
I	9.71 205		0.22 094	9.93 299	9.72 111	9.79 007	0.20 .12	4.12031	59
23	9.71 226 9.71 247	9.77 935 9.77 963	0.22 005	9.93 291 9.93 284	9.72 401	9.79 035 9.79 063	0.20 31 5	9.12 . 25	53
4	9.71 268		0,22 008	9.93 276	9.72 502	9.79 691	0.20 337	9. (2.51)	57
56	9.71 289	9.78 020	0.21 980		9.72 522		0.20 201	4.42 1 3	55
	9.71 310	9.78 0.49	0.21 951	9.93 261	9.72 542	0.70 717	0.20.252	0.02.70	54
7 8	9.71 331 9.71 352	9.78 077	0.21 923 0.21 894	9.93 253	9.72 562	9.79 776	0.20 224	9.92 787 9.92 779	53
9	9.71 352	9.78 135	0.21 805	9.93 246 9.93'238	9.72 582 9.72 602	9.79 832	0.20 195	9.92 779 9.92 771	52
10				-					
II	9.71 393 9.71 414	9.78 163 9.78 192	0.21 808	9.93 230 9.93 223	9.72 022	9.79 860 9.79 888	0.20 140	9.92 703	50
12	9.71 435		0.21 780	9.93 215	9.72 663	9.79 916	0.20 08.1	9.92 7.17	49 48
13	9.71 456		0.21 751		9.72 683	9.79 944	0.20 056	9.92 739	47
14	9.71 477		0.21 723	9.93 200		9.79 972			40
15 16	9.71 498 9.71 519	9.78 300	0.21 694 0.21 666	9.93 192 9.93 184	9.72 723	9.80 000 9.80 028	0.20 000	9 .92 723 9.92 715	45
17	9.71 539	9.78 363	0.21 637	9.93 104	9.72 743	9.80 020	0.19 9/2	9.92 707	44 43
18	9.71 560	9.78 391	0.21 609	9.93 169	9.72 783	9.80 08.4	0.19 916	9.92 699	42
19	9.71 581	9.78 419	0.21 581	9.93 161	9.72 803	9.80 112	0.19 888	9.92 691	41
20	9.71 602		0.21 552	9.93 154	9.72 823	9.80 140	0.19 860	9.92 683	40
21	9.71 622	9.78 476	0.21 524	9.93 146	9.72 843	9.80 168	0.19 832	9.92 675	39
22 23	9.71 643 9.71 664	9.78 505 9.78 533	0.21 495	9.93 138 9.93 131		9.80 195 9.80 223			38 37
24	9.71 685	9.78 562		9.93 I23		9.80 251			30
25	9.71 705		0.21 410			9.80 279			35
26	9.71 726	9.78 618	0.21 382	9.93 108	9.72 942	9.80 307	0.19 093	9.92 635	34
27 28	9.71 747	9.78 647	0.21 353	9.93 100		9.80 335			33
20	9.71 767 9.71 788	9.78 675 9.78 704	0.21 325 0.21 296	9.93 092 9.93 084	9.72 902	9.80 303 9.80 391	0.19 037		32 31
									-
30 31	9.71 809 9.71 829		0.21 268 0.21 240			9.80 419 9.80 447			30 29
32		9.78 789			9.73 041 9.73 001	9.80 474	0.19 555	9.92 587	28
33		9.78 817	0.21 183		9.73 081	9.80 502	0.10.498	9.92 579	27
34	9.71 891	9.78 845		9.93 0.46	9.73 101				20
35	9.71 911		0.21 126		9.73 121	9.80 558 9.80 580	0.19 442	9.92 503	25 24
36 37	9.71 932 9.71 952		0.21 090	9.93 030	9.73 100	9.80 614	0.19 380	9.92 540	23
37 38	9.71 973	9.78 959	0.21 041	9.93 01.4	9.73 180	9.80 6.42	0.19 358	9.92 538	22
39	9.71 994	9.78 987	0,21 013	9.93 007	9.73 200	9.80 669	0.19 331	9.92 530	21
40	9.72 014	9.79 015	0.20 985	9.92 999	9.73 219	9.80 697	0.19 303	9.92 522	20
.4 I	9.72 034	9.79 0.13	0.20 957	9.92 991	9.73 239	9.80 725	0.19 275	9.92 514 9.92 500	19 18
42	9.72 055		0.20 928 0.20 900		9.73 259	9.80 753 9.80 781	0.19 247	9.92 500	17
43 44	9.72 096		0.20 872		9.73 298	9.80 808	0.19 192	9.92 490	10
45	9.72 116		0.20 8.4.4	9.92 960	9.73 318	9.80 836	0.19 104	9.92 482	15
46	9.72 137		0.20 815	9.92 952	9.73 337	9.80 864	0.19 130	9.92.473	14
-47 -48	9.72 157	9.79 213	0.20 787 0.20 759	9.92 944 9.92 936	9.73 357 9.73 377	9.80 892	0.19 103	9.92.405	13 12
40	9.72 177 9.72 198	9.79 241	0.20 739	9.92 930	9.73 396		0.19 053		II
50						9.80 975	0.10.025	9.92.1.11	10
51	9.72 218 9.72 238		0.20 703 0.20 674		9.73 410	9.81 003	0.18 997	0.02 433	9
52	9.72 239	9.79 354	0.20 646	9.92 905	9.73 455	9.81 030	0.18 070	0.92.4-5	5
53	9.72 279		0.20 618		9.73 474	9.81 058	0.18 042		ΰ
54	· 9.72 299		0,20 590 0.20 562		9.73 494	0.81 113	0.18 837	9.92.400	5
55 56	9.72 320 9.72 340	9.79 43° 9.79 466	0.20 502	9.92 874	9.73 533	9.81 141	0.18 850	0.02392	-4
57	9.72 360	9.79 495	0.20 505	9.92 866	0.73 552	0.81 I00	0.18 831	4.92 304	3
57 58	9.72 381	9.79 523	0.20 477	9.92 858 9.92 850	9.73 572	9.81 195 9.81 224	0.18 770	9.42 307	I
59	9.72 401	9.79 551	0.20 449						0
60	9.72 421		0.20 421			9.81 252		0.92 350 log sin	
	log cos	log cot	log tan	log sin	log cos	log cot	log tan	tog stil	-
		5	8 °			5	7-		

33°

50

 34°

							-		The second second
1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0	9.73 611	9.81 252	0.18 748	9.92 359		9.82 899		9.91 857	60
I 2	9.73 030	9.81 279 9.81 307	0.18 693	9.92 351 9.92 343	9.74 775 9.74 794		0.17 074 0.17 047	9.91 849 9.91 840	59 58
3	9.73 669	9.81 335	0.18 605	9.92 335	9.74 812	9.82 980	0,17 020	9.91 832	57
4			0.18 638	9.92 326	9.74 831			9.91 823	56
5	9.73 7°8 9.73 727	9.81 390	0.18 610	9.92 318 9.92 310		9.83 035 9.83 062		9.91 815 9.91 806	55 54
7	9.73 747	9.81 445	0.18 555	9.92 302	9.74 887	9.83 089	0.16 911	9.91 798	53
9	9.73 700	9.81 473 9.81 500	0.18 527	9.92 293 9.92 285			0.16 883 0.16 856		52 51
10									50
II	9.73 824	9.81 528 9.81 556	0.18 444	9.92 277 9.92 269	9.74 961	9.83 198	0.16 829 0.16 802	9.91 772 9.91 763	49
I2	9.73 8.43	9.81 583	0.18 417	9.92 260	9.74 980	9.83 225	0.16 775	9.91 755	-48
13 1.1		9.81 011 9.81 638	0.18 389		9.74 999	9.83 252	0.10 748 0.10 720	9.91 746 9.91 738	47 46
15		9.81 666	-				0.16 693		45
16 17		9.81 693				9.83 334	0.16 666	9.91 720	-44
18		9.81 721 9.81 748			9.75 073 9.75 091	9.83 388	0.16 639 0.16 612	9.91 712 9.91 703	+3 +2
19	9.73 978	9.81 776	0.18 224	9.92 202		9.83 415	0.16 585	9.91 695	41
20		9.81 803					0.16 558		40
2I 22	9.74 017	9.81 831 9.81 858	0.18 169	9.92 186			0.16 530		39
23		9.81 886			9.75 184	9.83 524	0.16 503 0.16 476	9.91 660 9.91 660	3 ⁸ 37
24	9.7.1 07.4	9.81 913	0.18 087	9.92 161	9.75 202	9.83 551	0.16 449	9.91 651	36
25 26	9.74 003 9.74 II3	9.81 941	0.18 059 0.18 032		9.75 221 9.75 239		0.16 422 0.16 395	9.91 643 9.91 634	35
27 28	9.74 132	9.81 996	0.18 004		9.75 239	9.83 632	0.16 368	9.91 034 9.91 625	34 33
28 29	9.74 151		0.17 977	9.92 127	9.75 276	9.83 659	0.16 341	9.91 617	32
		9.82 051					0.16 31.4		31
30 31	9.74 189 9.74 208	9.82 078 9.82 106	0.17 922	9.92 III 9.92 IO2	9.75 313	9.83 713	0,16 287 0,16 260	9.91 599	30 29
32	9.74 227	9.82 133	0.17 867		9.75 350	9.83 768	0.16 232	9.91 591	29
33	9.74 246	9.82 161 9.82 188	0.17 839	9.92 086	9.75 368	9.83 795	0.16 205 0.16 178	9.91 573	27
34 35		9.82 215			9.75 386 9.75 405			9.91 565 9.91 556	26 25
36	9.74 3°3	9.82 243	0.17 757	9.92 060	9.75 423	9.83 876	0.16 124	9.91 547	2.1
37 38	9.74 322 9.74 341	9.82 270 9.82 298		9.92 052 9.92 044	9.75 441 9.75 459		0.16 097 0.16 070	9.91 538	23 22
39		9.82 325		9.92 035	9.75 478	9.83 957	0.16 043	9.91 521	21
40	9.74 379	9.82 352	0.17 648	9.92 027	9.75 .196		0.16 016	9.91 512	20
41	9.74 398	9.82 380	0,17 620	9.92 018	9.75 514	9.84 011	0.15 989	9.91 50.4	19
42 43	9.74 417 9.74 436	9.82 407 9.82 435	0.17 593	9.92 010 9.92 002	9.75 533 9.75 551		0.15 962 0.15 935	9.91 495 9.91 486	18 17
44		9.82 455		9.91 993		9.84 092		9.91 477	16
45		9.82 489		9.91 985	9.75 587		0.15 881	9.91 469	15
46 47	9.74 493 9.74 512	9.82 517 9.82 544	0.17 483 0.17 456	9.91 976		9.84 1.40 9.84 173	0.15 854	9.91 460 9.91 451	14 13
48	9.74 53I	9.82 571	0.17 429	9.91 959	9.75 6.42	9.84 200	0.15 800	9.91 442	12
49	9.74 549	9.82 599	0.17 401	9.91 951	9.75 660	9.84 227	0.15 773	9.91 433	II
50	9.74 568	9.82 626	0.17 374			9.84 254	0.15 746	9.91 425	10
51 52	9.74 587 9.74 606	9.82 653 9.82 681	0.17 347 0.17 319	9.91 934 9.91 925	9.75 696 9.75 714	9.84 280	0.15 720 0.15 693	9.91 416 9.91 407	9 8
53	9.74 625	9.82 708	0.17 292	9.91 917	9.75 733	9.84 334	0.15 666	9.91 398	7
54	9.74 644		0.17 265		9.75 751		0.15 639		6
55 50	9.74 681	9.82 762 9.82 790	0.17 210	9.91 891	9.75 769 9.75 787		0.15 612	9.91 381 9.91 372	5
57	9.74 700	9.82 817	0.17 183	9.91 883	9.75 805	9.84 442	0.15 558	9.91 363	3
58 59		9.82 844 9.82 871			9.75 823 9.75 841	9.84 469 9.84 496	0.15 531	9.91 354 9.91 345	2 1
60		9.82 899			9.75 859	9.84 523		9.91 336	0
	log cos	log cot	log tan	log sin	log cos	log cot	log tan	log sin	,
		50	The Party Name of Street of Str				<u>50</u>		

 56°

ົງ	K	0
υ	J	•

_		-				0	0		0
'	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0 1 2 3 4	9.75 859 9.75 877 9.75 895 9.75 913 9.75 931	9.84 523 9.84 550 9.84 576 9.84 603 9.84 630	0.15 450 0.15 424 0.15 397	9.91 336 9.91 328 9.91 319 9.91 310 9.91 301	9.76 922 9.76 939 9.76 957 9.76 974 9.76 974	9.86 120 9.80 153 9.86 179 9.86 200 9.86 232	0.13 47 0.13 - 21 0.13 704	9.40 706 C400 717 9.61 777 0.10 770 1.40 750	60 59 57 57
56 78 9	9.75 949 9.75 957 9.75 985 9.76 003 9.76 021		0.15 343 0.15 316 0.15 289 0.15 262 0.15 236	9.91 292 9.91 283 9.91 274 9.91 266 9.91 257	9.77 009 9.77 020 9.77 043 9.77 061 9.77 078	9.86 259 9.86 285 9.86 312 9.86 338 9.86 365	0.13 741 0.13 715 0.13 683 0.13 662 0.13 635	9.40 750 9.40 741 9.40 741 9.90 741 9.90 742	50 55 54 53 54 54 54 54 54
10 11 12 13 14 15 16	9.76 039 9.76 057 9.76 075 9.76 093 9.76 111 9.76 129 9.76 146	9.84 791 9.84 818 9.84 845 9.84 872 9.84 872 9.84 899 9.84 925 9.84 925	0.15 075 0.15 048	9.91 248 9.91 239 9.91 230 9.91 230 9.91 221 9.91 212 9.91 203 9.91 194	9.77 095 9.77 112 9.77 130 9.77 147 9.77 164 9.77 181 9.77 199	9.86 551	0.13 608 0.13 582 0.13 555 0.13 529 0.13 502 0.13 470 0.13 449	9.90 704 9.90 604 9.90 685 9.90 670 9.90 657 9.90 657 9.90 648	50 49 48 47 49 45 45 44
17 18 19 20	9.76 164 9.76 182 9.76 200 9.76 218	9.84 979 9.85 006 9.85 033 9.85 059 9.85 086	0.14 994 0.14 967 0.14 941	9.91 185 9.91 176 9.91 167 9.91 158	9.77 216 9.77 233 9.77 250 9.77 268	9.80 603 9.86 630 9.86 656	0.13 423 0.13 397 0.13 370 0.13 344	9.90 630 9.90 630 9.90 620 9.90 611	43 42 41 40
21 22 23 24 25 20 27	9.76 236 9.76 253 9.76 27 I 9.76 289 9.76 307 9.76 324 9.76 342	9.85 113 9.85 140 9.85 106 9.85 193 9.85 220	0.14 887 0.14 800 0.14 834	9.91 149 9.91 141 9.91 132 9.91 123 9.91 114 9.91 105 9.91 000	9.77 285 9.77 302 9.77 319 9.77 336 9.77 353 9.77 370 9.77 3 ⁸ 7	9.86 736 9.86 762 9.86 789	0.13 291 0.13 264 0.13 238 0.13 211 0.13 185	9.90 602 9.90 562 9.90 583 9.90 574 9.90 565 9.90 555 9.90 546	39 38 37 36 35 34 33
28 29 30 31 32	9.76 360 9.76 378 9.76 395 9.76 413 9.76 431	9.85 273 9.85 300 9.85 327 9.85 327 9.85 354	0.14 727 0.14 700 0.14 673 0.14 646 0.14 620	9.91 087 9.91 078 9.91 069 9.91 000 9.91 051	9.77 405 9.77 422	9.86 808 9.86 894 9.86 921 9.86 947	0.13 132 0.13 100	9.90 537 9.90 527 9.90 518 9.90 509	32 31 30 20 28
33 34 35 36 37 38 39	9.76 448 9.76 466 9.76 484 9.76 501 9.76 519 9.76 537 9.76 554	9.85 407 9.85 434 9.85 460 9.85 487 9.85 514	0.14 593 0.14 566	9.91 042 9.91 033 9.91 023 9.91 023 9.91 014 9.91 005 9.90 996 9.90 987	9.77 490 9.77 507 9.77 524 9.77 541 9.77 558 9.77 575 9.77 592	9.87 000 9.87 027 9.87 053 9.87 079 9.87 106		9.90 490 9.90 480 9.90 471 9.90 472 9.90 452 9.90 452 9.90 433	27 26 25 24 23 22 21
40 41 42 43 44 45 46 47 48 40	9.76 572 9.76 590 9.76 607 9.76 625 9.76 642 9.76 660 9.76 660 9.76 695 9.76 712 9.76 712	9.85 780	0.14 380 0.14 353 0.14 320 0.14 300 0.14 273 0.14 240	9.90 978 9.90 969 9.90 960 9.90 951 9.90 942 9.90 933 9.90 924 9.90 915 9.90 906 9.90 896	9.77 043	0.87 211 9.87 238 0.87 204 9.87 200 9.87 317 9.87 317 9.87 343 9.87 300 9.87 300	0.12 789 0.12 702	9.90 415 9.90 465 9.90 390 9.90 380 9.90 380 9.90 377 9.90 303	20 10 15 17 10 15 14 13 12 11
49 50 51 52 53 54 55 55 55	9.76 747 9.76 765 9.76 782 9.76 800 9.76 817 9.76 835 9.76 835	9.85 860 9.85 887 9.85 913 9.85 940 9.85 967 9 85 963 9.86 020	0.14 140 0.14 113 0.14 087 0.14 060 0.14 033 0.14 007 0.13 980		9.77 778 9.77 795 9.77 812 9.77 829 9.77 846 9.77 862 9.77 879	0.87 448 9.87 475 9.87 501 9.87 527 9.87 554 9.87 580	0.12 552 0.12 525 0.12 499 0.12 473 0.12 473 0.12 449 0.12 420 0.12 394	9.90 330 9.40 320 9.40 311 9.60 301 9.60 242	10 ,' 8 7 5 4 3
57 58 59 60	9.76 870 9.76 887 9.76 904 9.76 922 log cos	9.86 046 9.86 073 9.86 100 9.86 120 log cot	0.13 927 0.13 900	9.90 823 9.90 814 9.90 805 9.90 796 log sin	9.77 913 9.77 930	9.87 659 9.87 655 9.87 711 log cot			2 I 0
A CARACTER OF			4 °			5	30		

37°

38°

		Ų	•			<u> </u>	-		
1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0	9.77 946	9.87 711	0.12 289	9.90 235	9.78 934	9.89 281	0.10 719	9.89 653	60
I	9.77 963	9.87 738	0.12 262	9.90 225	9.78 950	9.89 307	0.10 693	9.89 643	59
2			0.12 236		9.78 907		0.10 667	9.89 633	58
3	9.77 997 9.78 013	9.87 790 9.87 817	0.12 210	9.90 206 9.90 I97	9.78 983 9.78 999	9.89 359 9.89 385	0.10 641 0.10 615	9.89 624 9.89 614	57
	9.78 030		0.12 103	9.90 197	9.79 015	9.89 411	0.10 589	9.89 604	
56	9.78 047	9.87 869	0.12 131	9.90 178	9.79 031	9.89 437	0.10 563	9.89 594	55 54
7 8	9.78 063	9.87 895	0.12 105	9.90 168	9.79 047	9.89 463	0.10 537	9.89 584	53
		9.87 922	0.12 078	9.90 159	9.79 063	9.89 489		9.89 574	52
9	9.78 097	9.87 948	0.12 052	9.90 149	9.79 079	9.89 515	0.10 485	9.89 564	51
10	9.78 113	9.87 974	0.12 026	9.90 139	9.79 095	9.89 541	0.10 459	9.89 554	50
II	9.78 130	9.88 000		9.90 130	9.79 III	9.89 567	0.10 433	9.89 544	49
I2		9.88 027	0.11 973	9.90 120	9.79 128	9.89 593	0.10 407	9.89 534	48
13 14	9.78 163	9.88 053 9.88 079	0.11 021	9.90 III 9.90 IOI	9.79 I.44 9.79 I60		0.10 381 0.10 355	9.89 524 9.89 514	47 46
15		9.88 105				9.89 671			45
16			0.11 869			9.89 697			43
17	9.78 230	9.88 158	0.11 842	9.90 072	9.79 208	9.89 723	0.10 277	9.89 485	43
18		9.88 184			9.79 224		0.10 251		42
19	9.78 263	9.88 210	0.11 790	9.90 053	9.79 240	9.89 775	0.10 225	9.89 465	4I
20	9.78 280	9,88 236	0.11 76.4	9.90 043		9.89 801			40
21	9.78 296	9.88 262	0.11 738	9.90 034	9.79 272	9.89 827	0.10 173	9.89 445	39
22 23	9.78 313	9.88 289 9.88 315	0.11 711	9.90 024	9.79 288		0.10 147		38
23 24	9.78 329	9.88 341	0.11 650	9.90 014 9.90 005	9.79 304 9.79 319	9.89 879	0.10 095	9.89 115	37 36
25	9.78 362	9.88 367		9.89 995	9.79 335		0.10 069		35
26	9.78 379	9.88 393	0.11 607	9.89 985	9.79 351	9.89 957	0.10 043	9.89 395	34
27	9.78 395	9.88 420	0.11 580	9.89 976	9.79 367	9.89 983	0.10 017	9.89 385	33
28	9.78 412		0.11 554	9.89 966	9.79 383		0.09 991	9.89 375	32
29	9.78 428	9.88 472	0.11 528	9.89 936	9.79 399	9.90 035	0.09 965	9.89 364	31
30	9.78 445	9.88 498	0.11 502	9.89 947		9.90 061		9.89 354	30
31	9.78 401	9.88 524	0.11 476		9.79 43I	9.90 086	0.09 914	9.89 344	29
32 33	9.70 470	9.88 550 9.88 577	0.11 450	9.89 927 9.89 918	9.79 447 9.79 463	9.90 1 12 9.90 138	0.09 862	9.89 334 9.89 324	28 27
34	9.78 510	9.88 603	0.11 397	9.89 908	9.79 403	9.90 150	0.09 836	9.89 314	26
35	9.78 527	9.88 629		9.89 898	9.79 494		0.09 810	9.89 304	25
36	9.78 543		0.11 345	9.89 888	9.79 510	9.90 216	0.09 784	9.89 294	24
37	9.78 560	9.88 681	0.11 319	9.89 879	9.79 526	9.90 242 9.90 268		9.89 284	23
38 39	9.78 576	9.88 707 9.88 733	0.11 293	9.89 869 9.89 859	9.79 542 9.79 558		0.09 732 0.09 706	9.89 274 9.89 264	22 21
40	9.78 609		0.II 24I	9.89 849	9.79 573		0.09 680	9.89 254	20
41 42	9.78 625 9.78 642	9.88 786	0.11 214 0.11 188	9.89 840 9.89 830	9.79 589 9.79 605	9.90 346 9.90 371	0.09 054	9.89 244 9.89 233	19 18
43	9.78 658	9.88 838	0.11 162	9.89 820	9.79 621	9.90 371	0.09 603	9.89 223	17
44	9.78 674		ó.11 136	9.89 810	9.79 636	9.90 423	0.09 577	9.89 213	16
45	9.78 691		0.11 110		9.79 652	9.90 449		9.89 203	15
46	9.78 707		0.11 084	9.89 791	9.79 668	9.90 475	0.09 525	9.89 193	14
47 48	9.78 723 9.78 739	0.83 058	0.11 058 0.11 032	9.89 781 9.89 771	9.79 684 9.79 699	9.90 501 9.90 527	0.09 499 0.09 473	9.89 183 9.89 173	13 12
49	9.78 756	9.88 994	0.11 006	9.89 761	9.79 715	9.90 527	0.09 4/3	9.89 162	II
50								0.80 170	10
51	9.78 772 9.78 788		0.10 980	9.89 752 9.89 742	9.79 731 9.79 746	9.90 578	0.09 422	9.89 152 9.89 142	9
52	9.78 805	9.89 073		9.89 732	9.79 740	9.90 630	0.09 370		8
53	9.78 821	9.89 099	0.10 901	9.89 722	9.79 778	9.90 656	0.09 344	9.89 122	7
54	9.78 837		0.10 875	9.89 712	9.79 793	9.90 682	0.09 318	9.89 112	6
55	9.78 853 9.78 860	9.89 151	0.10 849	9.89 702	9.79 809	9.90 708	0.09 292	9.89 101 9.89 091	5
56 57		9.89 177 9.89 203	0.10 823	9.89 693 9.89 683	9.79 825	9.90 734	0.09 200	9.89.091	4
58	9.78 902	9.89 229		9.89 673	9.79 856	9.90 759 9.90 785	0.09 215		2
59	9.78 918	9.89 255	0.10 745	9.89 663	9.79 872	9.90 811	0.09 189	9.89 060	I
60	9.78 934	9.89 281	0.10 719	9.89 653	9.79 887	9.90 837	0.09 163	9.89 050	0
	log cos	log cot	log tan	log sin	log cos	log cot	log tan	log sin	1
PROVIDENT AC		~	00			~	10		

 52°

 51°

39°

°

-						-			23
	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0	9.79 887		0.09 163	9.89 050	9.80 807	9.92 38 I	0.07 010	9.08 425	60
2	9.79 903		0.09 137	9.89 040 9.89 030	9.80 822 9.80 837		0.07 5 13	9 00 415 9- 404	51
3	9.79 934		0.09 086 0.09 060		9.80 852	9.92 458	0.07 512	6.8 544	57
4	9.79 950		0.09 034	9.89 009 9.88 999	9.80 807 9.80 882	9.92 484	0.07 51	0.00 000	5'
6	9.79 981	9.90 992	0.09 008	9.88 989	9.80 897	9.92 535	0.07 41	(1 1 3	5.5
·7 8	9.79 996	9.91 018 9.91 043		9.88 978 9.88 958	9.80 912 9.80 927	9.92 501	0.07 130	0 251	5
9	9.80 027	9.91 009	0.08 931	9.88 958	9.80 942		0.07 413	9.00 3.0	54
10	9.80 043	9.91 095	0.08 905	9.88 9.48	9.80 957	9.92 638		-	50
II	9.80 058	9.91 121	0.08 879	9.88 937	9.80 972	9.92 663	0.07 337	805 88.0	40
12 13	9.80 074 9.80 089	9.91 147 9.91 172	0.08 853	9.88 927 9.88 917	9.80 987 9.81 002	- 9.92 689 - 0.02 715	0.07 311	9.88 24d 9.88 287	4
1.4	9.80 105	9.91 198	0.08 802	9.88 906	9.81 017		0.07 200		47 40
15 16	9.80 120 9.80 136		0.08 776	9.88 896 9.88 886	9.81 032			9.88 260	45
17	9.80 151	9.91 276	0.08 724	9.88 875	9.81 047 9.81 061	9.92 792 9.92 817	0.07 208 0.07 183		44
18	9.80 166 9.80 182	9.91 301	0,08 699	9.88 865		9.92 843	0.07 157	9.88 234	43
19		9.91 327	0.08 673	9.88 855	9.81 091		0.07 132		41
20 21	9.80 197 9.80 213	9.91 353 9.91 379	0.08 647	9.88 844 9.88 834	9.81 106 9.81 121	9.92 894	0.07 100	9.88 212	40
22	9.80 228	9.91 379	0.08 596	9.88 824		9,92 920 9,92 945	0.07 055	9.88 201 9.88 191	39 33
23	9.80 244 9.80 259	9.91 430	0.08 570 0.08 544	9.88 813	9.81 151	9.92 971	0.07 029	9.88 180	37
24 25	9.80 239	9.91 450	0.08 518	9.88 793		9.92 996 9.93 022	0.07 00.1	9.88 169 9.88 158	30
26	9.80 290	9.91 507	0.08 493	9.88 782	9.81 195	9.93 048	0.00 970	9.88 148	35 34
27 28	9.80 305 9.80 320	9.91 533 9.91 559	0.08 467 0.08 441	9.88 772 9.88 761	9.81 210	9.93 073 9.93 099	0.06 927	9.88 137 9.88 126	33
29	9.80 336		0.08 415	9.88 751	9.81 229		0.06 876	9.88 115	32 31
30	9.80 351	9.01 610	0.08 390	9.88 7.41	9.81 254	9.93 150	0.06 850	9.88 105	30
31	9.80 366	9.91 636	0.08 364	9.88 730	9.81 269	9.93 175	0.06 825	9.88 094	29
32 33	9.80 382 9.80 397	9.91 662 9.91 688	0.08 338	9.88 720 9.88 709	9.81 284	9.93 201 9.93 227	0.06 799	9.88 083 9.88 072	20 27
34	9.80 412		0.08 287	9.88 699	9.81 314	9.93 252	0.00 748	9.88 001	20
35	9.80 428		0.08 261	9.88 688	9.81 328	9.93 278	0.06 722	9.88 051	25
36 37	9.80 443 9.80 458	9.91 765 9.91 791	0.08 235	9.88 678 9.88 668	9.81 343 9.81 358	9.93 303 9.93 329	0.06 607	9.88 040 9.88 029	24
38	9.80 473	9.91 816	0.08 184	9.88 657	9.81 372	9.93 354	0.00 6.40	9.88 018	22
39	9.80 489		0.08 158	9.88 647	9.81 387	9.93 380	0.06 620		21
40 41	9.80 504 9.80 519	9.91 868 9.91 893	0.08 132	9.88 636 9.88 626	9.81 402 9.81 417		0.06 594	9.87 996 9.87 985	20 19
42	9.80 534	9.91 919	0.08 081	9.88 615		9.93 457 9.93 482	0.00 543	9.87 975	12
43	9.80 550	9.91 945 9.91 971	0.08 055 0.08 029	9.88 605 9.88 594	9.81 446 9.81 401	9.93 482 9.93 508	0.06 518	9.87 954	17 10
44 45	9.80 565 9.80 580	9.91 971		9.88 584	9.81 475		0.06 407	9.87 9.12	15
46	9.80 595	9.92 022	0.07 978	9.88 573	9.81 400	9.93 559	0.00 441	9.87 031	1.4
47 48	9.80 610 9.80 625	9.92 048 9.92 073	0.07 952	9.88 563 9.88 552	9.81 505 9.81 519	9.93 584 9.93 610	0.00 300	9.87 909	13
49	9.80 641	9.92 099	0.07 901	9.88 542	9.81 534	9.93 636	0.05 35.4	9.87 893	11
50	9.80 656	9.92 125	0.07 875	9.88 531	9.81 549	9.93 661	0.06 339	9.87 857	10
51	9.80 671	9.92 150	0.07 850	9.88 521	9.81 563 9.81 578	9.03 687	0.00 313	0.27 877 0.27 805	2
52 53	9.80 686 9.80 701	9.92 176 9.92 202	0.07 824	9.88 510 9.88 499	9.81 5/2	9.93 733	0.05 202	4.07 255	7
54	9.80 716	9.92 227	0.07 773	9.88 489	9.81 007	9.93 703	0.06 237	9.57 844	0
55 56	9.80 731 9.80 746	9.92 253 9.92 279	0.07 747 0.07 72I	9.88 478 9.88 468	0.81 630		0.00 I /)	0.97 833	5
57	9.80 762	9.92 304	0.07 696	9.88 .157	9.81 651	9.93 3.40	0.00 100	9. 7 811	3
58	9.80 777 9.80 792	9.92 330 9.92 356	0.07 670	9.88 447 9.88 436		9.93 805 9.93 c /I		9.07 E	10
59 60	9.80 807		0.07 619			0.03 015		9. 7 77	0
	log cos	log cot	log tan	log sin	log cos	log cot	log tan	lorsn	
	109 005			105 511	105 000	49	-		
		50)			48)		

54		4	1			4	2°		
1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0 1 2 3 4 5 6 7 8 9	9.81 709 9.81 723 9.81 738 9.81 752 9.81 767 9.81 781 9.81 796 9.81 810	9.93 916 9.93 942 9.93 967 9.93 993 9.94 018 9.94 044 9.94 009 9.94 095 9.94 120 9.94 146	0.06 058 0.06 033 0.06 007 0.05 982 0.05 982 0.05 956 0.05 905 0.05 880	9.87 767 9.87 755 9.87 755 9.87 745 9.87 734 9.87 723 9.87 712 9.87 701 9.87 690	9.82 565 9.82 579 9.82 593 9.82 607 9.82 621 9.82 635 9.82 635	9.95 545	0.04 531 0.04 505 0.04 480 0.04 455 0.04 429 0.04 404 0.04 378 0.04 353		60 59 58 57 56 55 54 53 52 51
10 11 12 13 14 15 16 17 18 19	9.81 854 9.81 868 9.81 882 9.81 897 9.81 911 9.81 926 9.81 940	9.94 248 9.94 273 9.94 299 9.94 324 9.94 350 9.94 375	0.05 803 0.05 778 0.05 752 0.05 727 0.05 701 0.05 676 0.05 650	9.87 657 9.87 646 9.87 635 9.87 624 9.87 613 9.87 601 9.87 590 9.87 579	9.82 705 9.82 719 9.82 733 9.82 747 9.82 761 9.82 775 9.82 788	9.95 698 9.95 723 9.95 748 9.95 774 9.95 774 9.95 799 9.95 825 9.95 850 9.95 875 9.95 901 9.95 926	0.04 277 0.04 252 0.04 226 0.04 201 0.04 175 0.04 150 0.04 125	9.86 982 9.86 970 9.86 959 9.86 947 9.86 936 9.86 924 9.86 913 9.86 902	50 49 48 47 46 45 45 44 43 42 41
20 21 22 23 24 25 26 27 28 29	9,82 012 9,82 026 9,82 041 9,82 055 9,82 059 9,82 084 9,82 098	$\begin{array}{c} 9.94 \ 426\\ 9.94 \ 45^2\\ 9.94 \ 477\\ 9.94 \ 503\\ 9.94 \ 528\\ 9.94 \ 528\\ 9.94 \ 554\\ 9.94 \ 579\\ 9.94 \ 604\\ 9.94 \ 630\\ 9.94 \ 655\\ \end{array}$	0.05 548 0.05 523 0.05 497 0.05 472 0.05 472 0.05 446 0.05 421 0.05 396 0.05 370	9.87 524 9.87 513 9.87 501 9.87 490 9.87 479 9.87 468	9.82 844 9.82 858 9.82 872 9.82 885 9.82 885 9.82 899 9.82 913 9.82 927 9.82 941	9.95 952 9.95 977 9.96 002 9.96 028 9.96 053 9.96 078 9.96 104 9.96 129 9.96 155 9.96 180	0.04 023 0.03 998 0.03 972 0.03 947 0.03 922 0.03 896 0.03 871 0.03 845	9.86 855 9.86 844 9.86 832 9.86 821 9.86 809 9.86 798 9.86 786	40 39 38 37 36 35 34 33 3 ² 3 ¹
30 31 32 33 34 35 36 37 38 39	9.82 141 9.82 155 9.82 169 9.82 184 9.82 198 9.82 212 9.82 226 9.82 240	9.94 681 9.94 706 9.94 732 9.94 757 9.94 783 9.94 808 9.94 834 9.94 859 9.94 884 9.94 910	0.05 294 0.05 268 0.05 243 0.05 217 0.05 192 0.05 192 0.05 141 0.05 116	9.87 434 9.87 423 9.87 412 9.87 401 9.87 390 9.87 378 9.87 367 9.87 356	9.82 982 9.82 996 9.83 010 9.83 023 9.83 037 9.83 051 9.83 065 9.83 078		0.03 769 0.03 744 0.03 719 0.03 693 0.03 668 0.03 643 0.03 617 0.03 592	9.86 752 9.86 740 9.86 728 9.86 717 9.86 705 9.86 694 9.86 682	30 29 28 27 20 25 24 23 22 21
40 41 42 43 44 45 46 47 48 49	9.82 283 9.82 297 9.82 311 9.82 326 9.82 340 9.82 354 9.82 368 9.82 382	9.94 935 9.94 961 9.94 986 9.95 012 9.95 037 9.95 062 9.95 068 9.95 113 9.95 139 9.95 164	0.05 039 0.05 014 0.04 988 0.04 963 0.04 963 0.04 912 0.04 887 0.04 861	9.87 322 9.87 311 9.87 300 9.87 288 9.87 277 9.87 266 9.87 255 9.87 243	9.83 120 9.83 133 9.83 147 9.83 161 9.83 174 9.83 188 9.83 202 9.83 215	9.96 459 9.96 484 9.96 510 9.96 535 9.96 560 9.96 586 9.96 611 9.96 636 9.96 662 9.96 687	0.03 516 0.03 490 0.03 465 0.03 440 0.03 414 0.03 389 0.03 364 0.03 338	9.86 635 9.86 624 9.86 612 9.86 600 9.86 589 9.86 577 9.86 565 9.86 554	20 19 18 17 10 15 14 13 12 11
50 51 52 53 54 55 50 57 58 59	9.82 424 9.82 439 9.82 453 9.82 467 9.82 481 9.82 495 9.82 495 9.82 509 9.82 523	9.95 190 9.95 215 9.95 240 9.95 201 9.95 201 9.95 317 9.95 342 9.95 368 9.95 393 9.95 418	0.04 785 0.04 760 0 04 734 0.04 709 0.04 683 0.04 658 0.04 658 0.04 632 0.04 607	9.87 209 9.87 108 9.87 187 9.87 175 9.87 175 9.87 164 9.87 153 9.87 141 9.87 130	9.83 256 9.83 270 9.83 283 9.83 297 9.83 310 9.83 324 9.83 338 9.83 351	9.96 814 9.96 839	0.03 262 0.03 237 0.03 212 0.03 186 0.03 161 0.03 136 0.03 110 0.03 085	9.86 518 9.86 507 9.86 495 9.86 483 9.86 472 9.86 472 9.86 460 9.86 448 9.86 436	10 9 8 7 6 5 4 3 2 1
60	9.82 551		0.04 550			9.96 966			0
	log c os	log cot	log tan	log sin	log cos	log cot	log tan	log sin	
		4	8			4	7 °		

°

Λ	9 0
4	0

		_	0			±	4		22
1	log sin	log tan	log cot	log cos	log sin	log tan	log cot	log cos	
0 1 2 3	9.83 378 9.83 392 9.83 405 9.83 419	9.96 991 9.97 016 9.97 042	0.03 034 0.03 009 0.02 984 0.02 958	9.86 413 9.86 401 9.86 389 9.86 377	9.84 203	9.98 484 9.98 50) 9.98 534 9.98 590	0.01 516 0.01 511 0.01 50 0.01 50 0.01 50	9.05 003 9. 5 C C I 9. 5 C C I	60 59 58 57
4 5 6 7 8 0	9.83 432 9.83 446 9.83 459 9.83 473 9.83 486 9.83 500	9.97 067 9.97 092 9.97 118 9.97 143 9.97 168 9.97 193	0.02 933 0.02 908 0.02 882 0.02 857 0.02 832 0.02 807	9.86 366 9.86 354 9.86 342 9.86 330 9.86 318 9.86 306	9.84 229 9.84 242 9.84 255 9.84 209 9.84 282 9.84 295	9.98 585 9.98 610 9.98 635 9.98 661 9.98 686	0.01 415 0.01 300 0.01 305 0.01 339 0.01 314	9.15145 9.85632 9.85620 9.85608 9.85590	55 55 54 53 52
9 10 11 12 13 14 15 16 17 18 19	9.83 513 9.83 527 9.83 527 9.83 540 9.83 554 9.83 554 9.83 597 9.83 594 9.83 594 9.83 608 9.83 608 9.83 608	9.97 219 9.97 244	0.02 781 0.02 756 0.02 756 0.02 731 0.02 705 0.02 680 0.02 655 0.02 604 0.02 579 0.02 553	9.86 295 9.86 283	9.84 295 9.84 308 9.84 321 9.84 334 9.84 347 9.84 360 9.84 373 9.84 385 9.84 385 9.84 411 9.84 411	9.98 711 9.98 737 9.98 762 9.98 787 9.98 882 9.98 883 9.98 863 9.98 863 9.98 913 9.98 939 9.98 939	0.01 239 0.01 263 0.01 238 0.01 213 0.01 188 0.01 102 0.01 137 0.01 112 0.01 087 0.01 061 0.01 036	9.85 571 9.85 559 9.85 547 9.85 534 9.85 522 9.85 510	51 50 49 48 47 46 45 44 43 42 41
20 21 22 23 24 25 26 27 28 29	9.83 648 9.83 661 9.83 661 9.83 674 9.83 683 9.83 701 9.83 715 9.83 728 9.83 741 9.83 755 9.83 755 9.83 768		0.02 528 0.02 503 0.02 477 0.02 452 0.02 427 0.02 427 0.02 402 0.02 376 0.02 351 0.02 326 0.02 320	9.86 176 9.86 164 9.86 152 9.86 152 9.86 128 9.86 128 9.86 116 9.86 104 9.86 092 9.80 080 9.86 080 9.86 088	9.84 437	9.98 989 9.99 015 9.99 040 9.99 065 9.99 090 9.99 116 9.99 141	0.01 011 0.00 985 0.00 960 0.00 935 0.00 910 0.00 884 0.00 859 0.00 834	9.85 448 9.85 430 9.85 423 9.85 411 9.85 309 9.85 386 9.85 374 9.85 301	40 39 38 37 36 35 34 33 32 31
30 31 32 33 34 35 36 37 38 39	$\begin{array}{c} 9.83\ 781\\ 9.83\ 795\\ 9.83\ 808\\ 9.83\ 821\\ 9.83\ 834\\ 9.83\ 834\\ 9.83\ 861\\ 9.83\ 861\\ 9.83\ 867\\ 9.83\ 867\\ 9.83\ 807\\ 9.83\ 901 \end{array}$	9.97 725 9.97 750 9.97 750 9.97 801 9.97 826 9.97 826 9.97 851 9.97 877 9.97 902 9.97 902 9.97 927 9.97 953	0.02 275 0.02 230 0.02 224 0.02 109 0.02 174 0.02 140 0.02 123 0.02 098 0.02 073 0.02 047	9.86 056 9.86 044 9.86 032 9.86 020 9.86 008 9.85 996 9.85 984 9.85 972 9.85 960 9.85 948	9.84 643 9.84 656	9.99 267 9.99 293 9.99 318 9.99 343 9.99 368 9.99 394	0,00 707 0,00 682 0,00 657 0,00 632 0,00 606 0,00 581	9.85 274 9.85 262 9.85 250 9.85 237 9.85 225	30 20 28 27 26 25 24 23 22 22 21
40 41 42 43 44 45 46 47 48 49	9.83 914 9.83 927 9.83 940 9.83 954 9.83 954 9.83 967 9.83 980 9.83 993 9.84 006 9.84 020 9.84 020	9.98 003 9.98 029 9.98 054 9.98 079 9.98 104	0.01 870 0.01 845 0.01 820	$\begin{array}{c} 9.85 \ 936\\ 9.85 \ 924\\ 9.85 \ 912\\ 9.85 \ 900\\ 9.85 \ 888\\ 9.85 \ 876\\ 9.85 \ 876\\ 9.85 \ 851\\ 9.85 \ 851\\ 9.85 \ 839\\ 9.85 \ 827\end{array}$	9.84 694 9.84 707 9.84 720 9.84 733 9.84 745 9.84 745 9.84 771 9.84 774 9.84 774 9.84 796 9.84 809	9.99 520 9.99 545 9.99 570 9.99 596 9.99 621	0.00 430 0.00 430	9.85 187 9.85 175	20 19 18 17 16 15 14 13 12 11
50 51 52 53 54 55 56 57 58	9.84 046 9.84 059 9.84 072 9.84 085 9.84 098 9.84 112 9.84 112 9.84 138 9.84 151		0.01 769	9.85 815 9.85 803 9.85 791 9.85 779 9.85 766 9.85 754 9.85 742 9.85 730 9.85 730 9.85 718	9.84 822 9.84 835 9.84 847 9.84 800 9.84 873 9.84 885 9.84 885 9.84 898 9.84 998 9.84 911 9.84 923	9.99 773 9.99 708 9.09 823 9.09 848 9.09 874 9.09 899 9.09 924 9.09 924	0.00 051	9.84 999 9.84 950 9.84 974	10 98 70 54 32 1
59 60	9.84 164 9.84 177	9.98 458 9.98 484	0.01 542 0.01 516	9.85 706 9.85 093 log sin	9.84 936 9.84 949 log cos	9.99 975 0.00 000 log cot	0.00 025 0.00 000 log tan	9.84 (01 0.84 04) log sin	0
	log cos	log cot	log tan	tog sitt	108 005				
		4	6 °			4	5°		

TABLE III (a)

NATURAL SINES

-	State of the local division of the local div		-		-				-	-
Deg.	0′	6′	12′	18′	24'	30′	36′	42'	48′	54′
0	0000	0017	0035	0052	0070	0087	0105	0122	0140	0157
1	0175	0192	0209	0227	0244	0262	0279	0297	0314	0332
2	0349	0366	0384	0401	0419	0436	0454	0471	0488	0506
3	0523	0541	0558	0576	0593	0610	0628	0645	0663	0680
4	0698	0715	0732	0750	0767	0785	0802	0819	0837	0854
5	0872	0889	0906	0924	0941	0958	0976	0993	1011	1028
6	1045	1063	1080	1097	1115	1132	1149	1167	1184	1201
7	1219	1236	1253	1271	1288	1305	1323	1340	1357	1374
8	1392	1409	1426	1444	1461	1478	1495	1513	1530	1547
9	1564	1582	1599	1616	1633	1650	1668	1685	1702	1719
10	1736	1754	1771	1788	1805	1822	1840	1857	1874	1891
11	1908	1925	1942	1959	1977	1994	2011	2028	2045	2062
12	2079	2096	2113	2130	2147	2164	2181	2198	2215	2232
13	2250	2267	2284	2300	2317	2334	2351	2368	2385	2402
14	2419	2436	2453	2470	2487	2504	2521	2538	2554	2571
15	2588	2605	2622	2639	2656	2672	2689	2706	2723	2740
16	2756	2773	2790	2807	2823	2840	2857	2874	2890	2907
17	2924	2940	2957	2974	2990	3007	3024	3040	3057	3074
18	3090	3107	3123	3140	3156	3173	3190	3206	3223	3239
19	3256	3272	3289	3305	3322	3338	3355	3371	3387	3404
20	3420	3437	3453	3469	3486	3502	3518	3535	3551	3567-
21	3584	3600	3616	3633	3649	3665	3681	3697	3714	3730
22	3740	3762	3778	3795	3811	3827	3843	3859	3875	3891
23	3907	3923	3939	3955	3971	3987	4003	4019	4035	4051
24	4067	4083	4099	4115	4131	4147	4163	4179	4195	4210
25	4226	4242	4258	4274	4289	4305	4321	4337	4352	4368
-5 26 27 28 29	4220 4384 4540 4695 4848	4399 4555 4710 4863	4250 4415 4571 4726 4879	4274 4431 4586 4741 4894	4289 4446 4602 4756 4909	4305 4462 4617 4772 4924	4321 4478 4633 4787 4939	4337 4493 4648 4802 4955	435~ 4509 4664 4818 4970	4300 4524 4679 4833 4985
30	5000	5015	5030	5045	5060	5075	5090	5105	5120	5135
31	5150	5165	5180	5195	5210	5225	5240	5255	5270	5284
32	5299	5314	5329	5344	5358	5373	5388	5402	5417	5432
33	5440	5461	5476	5490	5505	5519	5534	5548	5563	5577
34	5592	5606	5621	5635	5650	5664	5678	5693	5707	5721
35	5736	5759	5764	5779	5793	5807	5821	5835	5850	5864
36	5878	5892	5906	5920	5934	5948	5962	5976	5990	6004
37	6018	6032	6046	6060	6074	6088	6101	6115	6129	6143
38	6157	6170	6184	6198	6211	6225	6239	6252	6266	6280
39	6293	6307	6320	6334	6347	6361	6374	6388	6401	6414

.

A DESCRIPTION OF TAXABLE			_		-				_	57
Deg.	0′	6′	12′	18′	24'	30′	36′	42′	48'	54'
40	6428	6441	6455	6468	6481	6494	6508	(521	6534	6547
41	6561	6574	6587	6600	6613	6626	6639	0052	6065	6678
42	6691	6704	6717	6730	6743	6756	6769	0782	6794	6887
43	6820	6833	6845	6858	6871	6884	6896	0909	6921	6934
44●	6947	6959	6972	6984	6997	7009	7022	7034	7046	7059
45	7071	7083	7096	7108	7120	7133	7145	7157	7169	7181
46	7193	7206	7218	7230	7242	7254	7206	7278	7290	7302
47	7314	7325	7337	7349	7361	7373	7385	7396	7408	7420
48	7431	7443	7455	7466	7478	7490	7501	7513	7524	7536
49	7547	7558	7570	7581	7593	7604	7645	7627	7638	7649
50	7660	7672	7683	7694	7705	7716	7727	7738	7749	7760
51	7771	7782	7793	7804	7815	7826	7837	7848	7859	7869
52	7880	7891	7902	7912	7923	7934	7944	7955	7965	7976
53	7986	7997	8007	8018	8028	8039	8049	8059	8070	8080
54	8090	8100	8111	8121	8131	8141	8151	8161	8171	8181
55	8192	8202	8211	8221	8231	8241	8351	8261	8271	8281
56	8290	8300	8310	8320	8329	8339	8348	8358	8368	8377
57	8387	8396	8406	8415	8425	8434	8443	8453	8462	8471
58	8480	8490	8499	8508	8517	8526	8536	8545	8554	8563
59	8572	8581	8590	8599	8607	8616	8625	8634	8643	8652
60	8660	8669	8678	8686	8695	8704	8712	8721	8729	8738
61	8746	8755	8763	8771	8780	8788	8796	8805	8813	8821
62	8829	8838	8846	8854	8862	8870	8878	8886	8894	8902
63	8910	8918	8926	8934	8942	8949	8957	8965	8973	8980
64	8988	8996	9003	9011	9018	9026	9033	9041	9048	9056
65	9063	9070	9078	9085	9092	9100	9107	9114	9121	9128
66	9135	9143	9150	9157	9164	9171	9178	9184	9191	9198
67	9205	9212	9219	9225	9232	9239	9245	9252	9259	9265
68	9272	9278	9285	9291	9298	9304	9311	9317	9323	9330
69	9336	9342	9348	9354	9361	9367	9373	9379	9385	9391
70	9397	9403	9409	9415	9421	9426	9432	9438	9444	9449
71	9455	9461	9466	9472	9478	9483	9489	9494	9500	9505
72	9511	9516	9521	9527	9532	- 9537	9542	9548	9553	9558
73	9563	9568	9573	9578	9583	9588	9593	9598	9603	9608
74	9613	9617	9622	9627	9632	9636	9641	9646	9650	9655
.75	9659	9664	9668	9673	9677	9681	9686	9690	9694	9000
76	9703	9707	9711	9715	9720	9724	9728 .	9732	97 30	9740
77	9744	9748	9751	9755	9759	9763	9767	9770	9774	9778
78	9781	9785	9789	9792	9796	9799	980 3	9806	9810	9813
79	9816	9820	9823	9826	98295	9833	9836.	9839	9842	9845
80	9848	9851	9854	9\$57	9860	9863	9866	9869	9871	9874
81	9877	9880	9882	9885	9888	9890	9893	9895	5898	9900
82	9903	9905	9907	9910	9912	9914	9917	9919	9921	9923
83	9925	9928	9930	9932	9934	9936	9938	9940	9942	9943
84	• 9945	9947	9949	9951	9952	9954	9956	9957	9959	9900
85	9962	9963	9965	9966	9968	9969	9971	9972	9973	9974
86	9976	9977	9978	9979	9980	9981	9982	9983	0984	995
87	9986	9987	9988	9989	9990	9990	9991	9992	0093	9993
88	9994	9995	9995	9996	9996	9997	9997	9997	0098	9998
89	9998	9999	9999	9999	9999	1.000	1.000	1.000	1.000	1.000

---- a

~

TABLE III (b)

NATURAL COSINES •

Deg.	Ο′	6′	12 [°]	18′	24'	30′	36′	42'	48′	54′
0	1.000	1.000	1.000	1.000	1.000	9999	9999	9999	9999	9999
1	9998	9998	9998	9997	9997	9997	9996	9996	9995	9995
2	9994	9993	9993	9992	9991	9990	9990	9989	9988	9987
3	9986	9985	9984	9983	9982	9981	9980	9979	9978	9977
4	9976	9974	9973	9972	9971	9969	9968	9966	9965	9963
56 78 9	9962 9945 9925 9903 9877	9960 9943 9923 9900 9874	9959 9942 9921 9898 9871	9957 9940 9919 9895 9869	9956 9938 9917 9893 9866	9954 9936 9914 9890 9863	9952 9934 9912 9888 9860	9951 9932 9910 9885 9857	9949 9930 9907 9882 9854	9947 9928 9905 9880 9851
10	9848	9845	9842	9839	9836	9833	9829	9826	9823	9820
11	9816	9813	9810	9806	9803	9799	9796	9792	9789	9785
12	9781	9778	9774	9770	9767	9763	9759	9755	9751	9748
13	9744	9740	9736	9732	9728	9724	9720	9715	9711	9707
14	97°3	9699	9694	9690	9686	9681	9677	9673	9668	9664
15	9659	9655	9650	9646	9641	9636	9632	9627	9622	9617
16	9613	9608	9603	9598	9593	9588	9583	9578	9573	9568
17	9563	9558	9553	9548	9542	9537	9532	9527	9521	9516
18	9511	9505	9500	9494	9489	9483	9478	9472	9466	9461
19	9455	9449	9444	9438	9432	9426	9421	9415	9409	9403
20	9397	9391	9385	9379	9373	9367	9361	9354	9348	9342
21	9336	9330	9323	9317	9311	9304	9298	9291	9285	9278
22	9272	9265	9259	9252	9245	9239	9232	9225	9219	9212
23	9205	9198	9191	9184	9178	9171	9164	9157	9 150	9143
24	9135	9128	9121	9114	9107	9100	9092	9085	9 07 8	9070
25 26 27 28 29	9063 8988 8910 8829 8746	9056 8980 8902 8821 8738	9048 8973 8894 8813 8729	9041 8965 8886 8805 8721	9033 8957 8878 8796 8712	9026 8949 8870 8788 8788 8704	9018 8942 8862 8780 8695	9011 8934 8854 8771 8686	9003 8926 8846 8763 8678	8996 8918 8838 8755 8669
30	8660	8652	8643	8634	8625	8616	8607	8599	8590	8581
31	8572	8563	8554	8545	8536	8526	8517	8508	8499	8490
32	8480	8471	8462	8453	8443	8434	8425	8415	8406	8396
33	8387	8377	8368	8358	8348	8339	8329	8320	8310	8300
34	8290	8281	8271	8261	8251	8241	8231	8221	8211	8202
35	8192	8181	8171	8161	8151	8141	8131	8121	8111	8100
36	8090	8080	8070	8059	8049	8039	8028	8018	8007	7997
37	7986	7976	7965	7955	7944	7934	7923	7912	7902	7891
38	7880	7869	7859	7848	7837	7826	7815	7804	7793	7782
39	7771	7760	7749	7 738	7727	7716	7705	7694	7683	7672

-										59
Deg.	0′	6′	12'	18′	24'	30′	36′	42'	48′	54'
40	7660	7649	7638	7627	7615	7604	7593	7581	7570	7559
41	7547	7536	7524	7513	7501	7490	7478	7406	7455	7443
42	7431	7420	7408	7396	7385	7373	7361	7349	7337	7325
43	7314	7302	7290	7278	7266	7 ² 54	7242	7230	7218	7200
44	7193	7181	7169	7157	7145	7 ¹ 33	7120	7108	7096	7083
45	7071	7059	7046	7034	7022	7009	6997	6984	6972	6959
46	6947	6934	6921	6909	6896	6884	6871	6858	6845	6833
47	6820	6807	6794	6782	6769	6756	6743	6730	6717	6704
48	6691	6678	6665	6652	6639	6626	6613	6600	6587	6574
49	6561	6547	6534	6521	6508	6494	6481	6468	6455	6441
50	6428	6414	6401	6388	6374	6361	6347	6334	6320	6307
51	6293	6280	6266	6252	6239	6225	6211	6198	6184	6170
52	6157	6143	6129	6115	6101	6088	6074	6060	6046	6032
53	6018	6004	5990	5976	5962	5948	5934	5920	5906	5892
54	5878	5864	5850	5835	5821	5807	5793	5779	5764	5750
55	5736	5721	5707	5693	5678	5664	5650	5635	5621	5606
56	5592	5577	5563	5548	3534	5519	5505	5490	5476	5461
57	5446	5432	5417	5402	5388	5373	5358	5344	5329	5314
58	5299	5284	5270	5255	5240	5225	5210	5195	5180	5165
59	5150	5135	5120	5105	5090	5075	5060	5045	5030	5015
60	5000	4985	4970	4955	4939	4924	4909	4894	4879	4863
61	4848	4833	4818	4802	4787	4772	4756	4741	4726	4710
62	4695	4679	4664	4648	4633	4617	4602	4586	4571	4555
63	4540	4524	4509	4493	4478	4462	4446	4431	4415	4399
64	4384	4368	4352	4337	4321	4305	4289	4274	4258	4242
65	4226	4210	4195	4179	4163	4147	4131	4115	4099	4083
66	4067	4051	4035	4019	4003	3987	3971	3955	3939	3923
67	3907	3891	3875	3859	3843	3827	3811	3795	3778	3762
68	3746	. 3730	3714	3697	3681	3665	3649	3633	3616	3600
69	3584	3567	3551	3535	3518	3502	3486	3469	3453	3437
70	3420	3404	3387	3371	3355	3338	3322	3305	3289	3272
71	3256	3239	3223	3206	3190	3173	3156	3140	3123	3107
72	3090	3074	3057	3040	3024	3007	2990	2974	2957	2940
73	2924	2907	2890	2874	2857	2840	2823	2807	2790	2773
74	2756	2740	2723	2706	2689	2672	2656	2639	2622	2605
75	2588	2571	2554	2538	2521	2504	2487	2470	2453	2430
76	2419	2402	2385	2368	2351	2334	2317	2300	2284	2267
77	2250	2233	2215	2198	2181	2164	2147	2130	2113	2096
78	2079	2062	2045	2028	2011	1994	1977	1959	1942	1925
79	1908	1891	1874	1857	1840	1822	1805	1788	1771	1754
80	1736	1719	1702	1685	1668	1650	1633	1616	1599	1582
81	1564	1547	1530	1513	1495	1478	1461	1444	1420	1409
82	1392	1374	1357	1340	1323	1305	1288	1271	1253	1236
83	1219	1201	1184	1167	1149	1132	1115	1097	1080	1063
84	1045	1028	1011	0993	0976	0958	0941	0924	0900	0889
85	0872	0854	0837	0819	0802	0785	0767	0750	0732	0715
86	0698	0680	0663	0645	0628	0610	0593	0570	0558	0541
87	0523-	0506	0488	0471	0454	0436	0419	0401	0384	0360
88	0349	0332	0314	0297	0279	0262	0244	0227	0209	0192
89	0175	0157	0140	0122	0105	0087	0070	0052	0035	0017

TABLE III (c)

NATURAL TANGENTS

Deg.	0′	6′	12′	18′	24′	30′	36'	42'	48'	54′
0	.0000	0017	0035	0052	0070	0087	0105	0122	0140	0157
1	.0175	0192	0209	0227	0244	0262	0279	0297	0314	0332
2	.0319	0367	0384	0402	0419	0437	0454	0472	0489	0507
3	.0524	0542	0559	0577	0594	0612	0629	0647	0664	0682
4	.0699	0717	0734	0752	0769	0787	0805	0822	0840	0857
5	.0875	0892	0910	0928	0945	0963	0981	0998	1016	1033
6	.1051	1069	1086	1104	1122	1139	1157	1175	1192	1210
7	.1228	1246	1263	1281	1299	1317	1334	1352	1370	1388
8	.1405	1423	1441	1459	1477	1495	1512	1530	1548	1566
9	.1584	1602	1620	1638	1655	1673	1691	1709	1727	1745
10	.1763	1781	1799	1817	1835	1853	1871	1890	1908	1926
11	.1944	1962	1980	1998	2016	2035	2053/	2071	2089	2107
12	.2126	2144	2162	2180	2199	2217	2235	2254	2272	2290
13	.2309	2327	2345	2364	2382	2401	2419	2438	2456	2475
14	.2493	2512	2530	2549	2568	2586	2605	2623	2642	2661
15	.2679	2698	2717	2736	2754	2773	2792	2811	2830	2849
16	.2867	2886	2905	2924	2943	2962	2981	3000	3019	3038
17	.3057	3076	3096	3115	3134	3153	3172	3191	3211	3230
18	.3249	3269	3288	3307	3327	3346	3365	3385	3404	3424
19	.3443	3463	3482	3502	3522	3541	3561	3581	3600	3620
20	.3640	3659	3679	3699	3719	3739	3759	3779	3799	3819
21	.3839	3859	3879	3899	3919	3939	3959	3979	4000	4020
22	.4040	4061	4081	4101	4122	4142	4163	4183	4204	4224
23	.4245	4265	4286	4307	4327	4348	4369	4390	4411	4431
24	.4452	4473	4494	4515	4536	4557	4578	4599	4621	464 2
25	.4663	4684	4706	4727	4748	4770	4791	4813	4834	4856
26	.4877	4899	4921	4942	4964	4986	5008	5029	5051	5073
27	.5095	5117	5139	5161	5184	5206	5228	5250	5272	5295
28	.5317	5340	5362	5384	5407	5430	5452	5475	5498	5520
29	.5543	5566	55 ⁸ 9	5612	5635	5658	5681	5704	5727	5750
30	-5774	5797	5820	5844	5867	5890	5914	5938	5961	5985
31	.6009	6032	6056	6080	6104	6128	6152	6176	6200	6224
32	.6249	6273	6297	6322	6346	6371	6395	6420	6445	6469
33	.6494	6519	6544	6569	6594	6619	6644	6669	6694	6720
34	.6745	6771	6796	6822	6847	6873	6899	6924	6950	6976
35	.7002	7028	7054	7080	7107	7133	7159	7186	7212	7239
36	.7265	7292	7319	7346	7373	7400	7427	7454	7481	7508
37	.7536	7563	7590	7618	7646	7673	7701	7729	7757	7785
38	.7813	7841	7869	7898	7926	7954	7983	8012	8040	8069
39	.8098	8127	8156	8185	8214	8243	8273	8302	8332	8361

pa-									_	01
Deg.	0′.	6"	12′	18′	24′	30′	36′	42'	48′	54'
40	.8391	8421	8451	8481	8511	8541	8571	8001	8032	8002
41	.8693	8724	8754	8785	8810	8847	8878	8010	8941	8972
42	.9004	9036	9067	9099	9131	9163	9195	9228	9200	9293
43	.9325	9358	9391	9424	9457	9490	9523	9550	9590	9523
44	.9657	9691	9725	9759	9793	9827	9801	0850	9930	9005
45	1.0000	0035	0070	0105	0141	0176	0212	0247	0283	0319
46	1.0355	0392	0428	0464	0501	0538	0575	0612	0649	0080
47	1.0724	0761	0799	0837	0875	0913	0951	0990	1028	1007
48	1.1106	1145	1184	1224	1203	1303	1343	1383	1423	1463
49	1.1504	1544	1585	1626	1607	1708	1750	1792	1833	1875
50	1.1918	1960	2002 [°]	2045	2088	2131	2174	2218	2261	2305
51	1.2349	2393	2437	2482	2527	2572	2017	2662	2708	2753
52	1.2799	2846	2892	2938	2985	3032	3079	3127	3175	3222
53	1.3270	3319	3367	3416	3465	3514	3594	3613	3663	3713
54	1.3764	3814	3865	3916	3968	4019	4071	4124	4176	4229
55	1.4281	4335	4388	4442	4496	4550	4605	4659	4715	4770
56	1.4826	4882	4938	4994	5051	5108	5166	5224	5282	5340
57	1.5399	5458	5517	5577	5637	5697	5757	5818	5880	5941
58	1.6003	6066	6128	6191	6255	6319	6383	6447	6512	0577
59	1.6643	6709	6775	6842	6909	6977	7045	7113	7182	7251
60	1.7321	7391	7461	7532	7603	7675	7747	7820	7893	7966
61	1.8040	8115	8190	8265	8341	8418	8495	8572	8050	8728
62	1.8807	8887	8967	9047	9128	9210	9292	9375	9458	9542
63	1.9626	9711	9797	9883	9970	0057	0145	0233	0323	0413
64	2.0503	0594	0686	0778	0872	0965	1000	1155	1251	1348
65	2.1445	1543	1642	1742	1842	1943	2045	2148	2251	2355
66	2.2460	2566	2673	2781	2889	2998	3109	3220	3332	3445
67	2.3559	3673	3789	3906	4023	4142	4262	4383	4504	4627
68	2.4751	4876	5002	5129	5257	5386	5517	5649	5782	5916
69	2.6051	6187	6325	6464	6605	6746	6889	7°34	7179	7326
70	2.7475	7625	7776	7929	8083	8239	8397	8556	8716	8878
71	2.9042	9208	9375	9544	9714	9887	0061	0237	0415	0595
72	3.0777	0961	1146	1334	1524	1716	1910	2100	2305	2500
73	3.2709	2914	3122	3332	3544	3759	3977	4197	4420	4046
74	3.4874	5105	5339	5576	5816	6059	6305	6554	6806	7002
75	3.7321	7583	7848	8118	8391	8667	8947	9232	9520	9812
70	4.0108	0408	0713	1022	1335	1653	1976	2303	2035	2972
77	4.3315	3662	4015	4374	4737	5107	5483	5864	6252	6646
78	4.7046	7453	7867	8288	8716	9152	9594	0045	0504	0970
79	5.1446	1929	2422	2924	3435	3955	4486	5020	5578	6140
80	5.6713	7297	7894	8502	9124	9758	0405	T066	1742	2432
81	6.3138	3859	4596	5350	6122	6912	7920	8548	9395	0204
82	7.1154	2066	3002	3962	4947	5958	6996	8062	9158	0285
83	8.1443	2636	3863	5126	6427	7769	9152	0579	2052	3572
84	9.5144	9.677	9.845	10.02	10.20	10.39	10.58	10.78	10.99	11.20
85	11.43	11.66	11.91	12.16	12.43	12.71		13.30	13.62	13.05
86	14.30	14.67	15.06	`1546	15.89	16.35		17.34	17 89	18.40
87	19.08	19.74	20.45	21.20	22.02	22.90		24.90	26.03	27.27
88	28.64	30.14	31.82	33.69	35.80	38.19		44.07	47.74	52.08
89	57.29	63.66	71.62	81.85	95.49	114.0		191.0	286.5	573 °

TABLE III (d)

NATURAL COTANGENTS

Deg.	0′	6′	12′	18′	24'	30′	36′	42′	48′	54′
0 I	Inf. 57.29	573.0 52.08	286.5 47.74	191.0 44.07	143.2 40.92	114.6 38.19	95.49 35.80	81.85 33.69	71.62 31.82	63.66 30.14
2	28.64	27.27	26.03	24.90	23.86	22.90	22.02	21,20	20.45	19.74
3	19.08	18.46	17.89	17.34	16.83	16.35	15.89	15.46	15.06	14.67
4	14.30	13.95	13.62	13.30	13.00	12.71	12.43	12.16	11.91	11.66
5	11.43	11,20	10.99	10.78	10.58	10.39	10.20	10.02	9.845	9.677
6	9.5144	3572	2052	0579	9152	7769	6427	5126	3863	2636
7	8.1443	0285	9158	S062	6996	5958	4947	3962	3002	2066
8	7.1154	0264	9395	8548	7920	6912	6122	5350	4596	3859
9	6.3138	2432	1742	1066	0405	\$ 9758	9124	8502	7894	7297
10	5.6713	6140	5578	5026	4486	3955	3435	2924	2422	1929
II	5.1446	0970	0504	0045	9594	9152	8716	8288	7867	7453
12	4.7046	6646	6252	5864	5483	5107	4737	4374	4015	3662
13	4.3315	2972	2635	2303	1976	1653	1335	1022	0713	0408
14	4.010S	9812	9520	9232	8947	8667	8391	8118	7848	7583
15	3.7321	7062	6806	6554	6305	6059	5816	5576	5339	5105
16	3.4874	4646	4420	4197 2106	3977	3759	3544	3332	3122 1146	2914 0961
17 18	3.2709	2506	2305		1910	1716 9887	1524 9714	$\frac{1334}{9544}$		9208
19	3.0777 2.9042	0595 8878	0415 8716	0237 8556	8397	8239	8083	7929	9375 7776	7625
20 21	2.7475 2.6051	7326	7179 5782	7034 5649	6889	6746 5386	6605 5257	6464 5129	6325 5002	6187 4876
22	2.4751	4627	4504	4383	5517	4142	4023	3906	3789	3673
23	2.3559	3445	3332	3220	3109	2998	2889	2781	2673	2566
24	2.2460	2355	2251	2148	2045	1943	1842	1742	1642	1543
25	2.1445	1348	1251	1155	1060	0965	0872	0778	0686	0594
26	2.0503	0413	0323	0233	0145	0057	9970	9883	9797	9711
27 28	1.9626	9542 8728	9458	9375	9292	9210 8418	9128 8341	9047 8265	8967 8190	8887 8115
20	1.8807 1.8040	7966	8650 7893	8572 7820	8495	7675	7603	7532	7461	7391
										-
30 31	1.7321 1.6643	7251 6577	7182 6512	7113 6447	7045 6383	6977 6319	6909 6255	6842 6191	6775 6128	6709 6066
32	1.6003	5941	5880	5818	5757	5697	5637	5577	5517	5458
33	1.5399	5340	5282	5224	5166	5108	5051	4994	4938	4882
34	1.4826	4770	4715	4659	4605	4550	4496	4442	4388	4335
35	1.4281	4229	4176	4124	4071	4019	3968	3916	3865	3814
36	1.3764	3713	3663	3613	356.4	3514	3465	3416	3367	3319
37 38	1.3270 1.2799	3222	3175 2708	3127 2662	3079 2617	3032 2572	2985 2527	2938	2892 2437	2846 2393
39	1.2349	2305	2261	2218	2174	2131	2088	2045	2002	1960

DT											63
	Deg.	0′	6′	12'	18′	24'	30′	36′	42'	48'	54'
	40 41 42 43 44 45	1.1918 1.1504 1.1106 1.0724 1.0355 1.0000	1875 1463 1067 0686 0319 0.9965	1833 1423 1028 0649 0283	1792 1383 0990 0612 0247 0.0806	1750 1343 0951 0575 0212 0.0861	1708 1303 0913 0538 0176	1667 1263 0875 0501 0141 0.9793	1626 1224 0837 0464 0105	1585 1184 0790 0428 0070	1544 1145 0761 0392 0035
	46 47 48 49	.9657 .9325 .9004 .8693	9623 9293 8972 8662	9590 9260 8941 8632	9556 9228 8910 8601	9523 9195 8878 8571	9490 9163 8847 8541	9457 9131 8816 8511	9424 9099 8785 8481	0.9725 9391 9007 8754 8451	9358 9036 8724 8421
	50	.8391	8361	8332	8302	8273	8243	8214	8185	8156	8127
	51	.8098	8069	8040	8012	7983	7954	7926	7898	7869	7841
	52	.7813	7785	7757	7729	7701	7673	7646	7618	7590	7503
	53	.7536	7508	7481	7454	7427	7400	7373	7346	7319	7292
	54	.7265	7239	7212	7186	7159	7133	7107	7080	7054	7028
	55	.7002	6976	6950	6924	6899	6873	6847	6822	6796	6771
	56	.6745	6720	6694	6669	6644	6619	6594	6569	6544	6519
	57	.6494	6469	6445	6420	6395	6371	6346	6322	6297	6273
	58	.6249	6224	6200	6176	6152	6128	6104	6080	6056	6032
	59	.6009	5985	5961	5938	5914	5890	5867	5844	5820	5797
and the second second	60	·5774	5750	5727	5704	5681	5658	5635	5612	5589	5566
	61	·5543	5520	5498	5475	5452	5430	5407	5384	5362	5340
	62	·5317	5295	5272	5250	5228	5206	5184	5161	5139	5117
	63	·5095	5073	5051	5029	5008	4986	4964	4942	4921	4899
	64	·4877	4856	4834	4813	4791	4770	4748	4727	4706	4684
	65	.4663	4642	4621	4599	4578	4557	4536	4515	4494	4473
	66	.4452	4431	4411	4390	4369	4348	4327	4307	4286	4265
	67	.4245	4224	4204	4183	4163	4142	4122	4101	4081	4061
	68	.4040	4020	4000	3979	3959	3939	3919	3899	3879	3859
	69	.3839	3819	3799	3779	3759	3739	3719	3699	3679	3659
A REAL PROPERTY OF	70	.3640	3620	3600	3581	3561	3541	3522	3502	3482	3463
	71	.3443	3424	3404	3385	3365	3346	3327	3307	3288	3269
	72	.3249	3230	3211	3191	3172	3153	3134	3115	3096	3076
	73	.3057	3038	3019	3000	2981	2962	2943	2924	2905	2886
	74	.2867	2849	2830	2811	2792	2773	2754	2736	2717	2698
	75	.2679	2661	2642	2623	2605	2586	2568	2549	2530	2512
	76	.2493	2475	2456	2438	2419	2401	2382	2364	2345	2327
	77	.2309	2290	2272	2254	2235	2217	2199	2180	2162	2144
	78	.2126	2107	2089	2071	2053	2035	2016	1998	1980	1962
	79	.1944	1926	1908	1890	1871	1853	1835	1817	1799	1781
	80	.1763	1745	1727	1709	1691	1673	1655	1638	1620	1002
	81	.1584	1566	1548	1530	1512	1495	1477	1459	1441	1423
	82	.1405	1388	1370	1352	1334	1317	1299	1281	1263	1240
	83	.1228	1210	1192	1175	1157	1139	1122	1104	1086	1009
	84	.1051	1033	1016	0998	0981	0963	0945	0928	0910	0892
	85	.0875	0857	0840	0822	0805	0787	0769	0752	0734	0717
	86	.0699	0682	0664	0647	0629	0612	0594	0577	0559	0542
	87	.0524	0507	0489	0472	0454	0437	0419	0402	0384	0307
	88	.0349	0332	0314	0297	0279	0202	0244	0227	0209	0102
	89	.0175	0157	0140	0122	0105	0087	0070	0052	0035	0017

.

-

.

A Martin and
ETURN CIRCULATION DEPARTMENT
OAN PERIOD 1 2 6
4
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS RENEWALS AND FECHARGES MAY DE WARDS 1 DAYS PRIOR TO DUE DATE. LOAN PERIODS ARE 1 WEIFIG 3-MUNITHS, AND LYEAR. RENEWALS, CALL (415) 6425405
LOAN PERIODS ARE 1 10 642-0405 RENEWALS: CALL (415) 642-0405 DUE AS STAMPED BELOW
AUG 1 3 1991
MAPR WE 2001991
UNIVERSITY OF CALIFORNIA, BERKELEY
FORM NO. DD6, 60m, 1/83 BERKELLT, C
LD21 Clink 5, 74 General Library University of California Berkeley

A CONTRACT OF A

.

GENERAL LIBRARY - U.C. BERKELEY

