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Preface

Every closed surface admits a geometry of constant curvature, and may be clas-
sified topologically either by its fundamental group or by its Euler characteristic
and orientation character. It is generally expected that all closed 3-manifolds
have decompositions into geometric pieces, and are determined up to homeo-
morphism by invariants associated with the fundamental group (whereas the
Euler characteristic is always 0). In dimension 4 the Euler characteristic and
fundamental group are largely independent, and the class of closed 4-manifolds
which admit a geometric decomposition is rather restricted. For instance, there
are only 11 such manifolds with finite fundamental group. On the other hand,
many complex surfaces admit geometric structures, as do all the manifolds
arising from surgery on twist spun simple knots.

The goal of this book is to characterize algebraically the closed 4-manifolds
that fibre nontrivially or admit geometries, or which are obtained by surgery
on 2-knots, and to provide a reference for the topology of such manifolds and
knots. In many cases the Euler characteristic, fundamental group and Stiefel-
Whitney classes together form a complete system of invariants for the homo-
topy type of such manifolds, and the possible values of the invariants can be
described explicitly. If the fundamental group is elementary amenable we may
use topological surgery to obtain classifications up to homeomorphism. Surgery
techniques also work well “stably” in dimension 4 (i.e., modulo connected sums
with copies of S2 ×S2 ). However, in our situation the fundamental group may
have nonabelian free subgroups and the Euler characteristic is usually the min-
imal possible for the group, and it is not known whether s-cobordisms between
such 4-manifolds are always topologically products. Our strongest results are
characterizations of infrasolvmanifolds (up to homeomorphism) and aspherical
manifolds which fibre over a surface or which admit a geometry of rank > 1
(up to TOP s-cobordism). As a consequence 2-knots whose groups are poly-Z
are determined up to Gluck reconstruction and change of orientations by their
groups alone.

We shall now outline the chapters in somewhat greater detail. The first chapter
is purely algebraic; here we summarize the relevant group theory and present
the notions of amenable group, Hirsch length of an elementary amenable group,
finiteness conditions, criteria for the vanishing of cohomology of a group with
coefficients in a free module, Poincaré duality groups, and Hilbert modules over
the von Neumann algebra of a group. The rest of the book may be divided into
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three parts: general results on homotopy and surgery (Chapters 2-6), geometries
and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18).

Some of the later arguments are applied in microcosm to 2-complexes and PD3 -
complexes in Chapter 2, which presents equivariant cohomology, L2 -Betti num-
bers and Poincaré duality. Chapter 3 gives general criteria for two closed 4-
manifolds to be homotopy equivalent, and we show that a closed 4-manifold M
is aspherical if and only if π1(M) is a PD4 -group of type FF and χ(M) = χ(π).
We show that if the universal cover of a closed 4-manifold is finitely dominated
then it is contractible or homotopy equivalent to S2 or S3 or the fundamental
group is finite. We also consider at length the relationship between fundamental
group and Euler characteristic for closed 4-manifolds. In Chapter 4 we show
that a closed 4-manifold M fibres homotopically over S1 with fibre a PD3 -
complex if and only if χ(M) = 0 and π1(M) is an extension of Z by a finitely
presentable normal subgroup. (There remains the problem of recognizing which
PD3 -complexes are homotopy equivalent to 3-manifolds). The dual problem of
characterizing the total spaces of S1 -bundles over 3-dimensional bases seems
more difficult. We give a criterion that applies under some restrictions on the
fundamental group. In Chapter 5 we characterize the homotopy types of total
spaces of surface bundles. (Our results are incomplete if the base is RP 2 ). In
particular, a closed 4-manifold M is simple homotopy equivalent to the total
space of an F -bundle over B (where B and F are closed surfaces and B is
aspherical) if and only if χ(M) = χ(B)χ(F ) and π1(M) is an extension of
π1(B) by a normal subgroup isomorphic to π1(F ). (The extension should split
if F = RP 2 ). Any such extension is the fundamental group of such a bundle
space; the bundle is determined by the extension of groups in the aspherical
cases and by the group and Stiefel-Whitney classes if the fibre is S2 or RP 2 .
This characterization is improved in Chapter 6, which considers Whitehead
groups and obstructions to constructing s-cobordisms via surgery.

The next seven chapters consider geometries and geometric decompositions.
Chapter 7 introduces the 4-dimensional geometries and demonstrates the limi-
tations of geometric methods in this dimension. It also gives a brief outline of
the connections between geometries, Seifert fibrations and complex surfaces. In
Chapter 8 we show that a closed 4-manifold M is homeomorphic to an infra-
solvmanifold if and only if χ(M) = 0 and π1(M) has a locally nilpotent normal
subgroup of Hirsch length at least 3, and two such manifolds are homeomorphic
if and only if their fundamental groups are isomorphic. Moreover π1(M) is then
a torsion free virtually poly-Z group of Hirsch length 4 and every such group is
the fundamental group of an infrasolvmanifold. We also consider in detail the
question of when such a manifold is the mapping torus of a self homeomorphism
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of a 3-manifold, and give a direct and elementary derivation of the fundamental
groups of flat 4-manifolds. At the end of this chapter we show that all ori-
entable 4-dimensional infrasolvmanifolds are determined up to diffeomorphism
by their fundamental groups. (The corresponding result in other dimensions
was known).

Chapters 9-12 consider the remaining 4-dimensional geometries, grouped ac-
cording to whether the model is homeomorphic to R4 , S2 × R2 , S3 × R or is
compact. Aspherical geometric 4-manifolds are determined up to s-cobordism
by their homotopy type. However there are only partial characterizations of
the groups arising as fundamental groups of H2 × E2 -, S̃L × E1 -, H3 × E1 - or
H2 × H2 -manifolds, while very little is known about H4 - or H2(C)-manifolds.
We show that the homotopy types of manifolds covered by S2 ×R2 are deter-
mined up to finite ambiguity by their fundamental groups. If the fundamental
group is torsion free such a manifold is s-cobordant to the total space of an S2 -
bundle over an aspherical surface. The homotopy types of manifolds covered by
S3×R are determined by the fundamental group and first nonzero k -invariant;
much is known about the possible fundamental groups, but less is known about
which k -invariants are realized. Moreover, although the fundamental groups
are all “good”, so that in principle surgery may be used to give a classification
up to homeomorphism, the problem of computing surgery obstructions seems
very difficult. We conclude the geometric section of the book in Chapter 13
by considering geometric decompositions of 4-manifolds which are also map-
ping tori or total spaces of surface bundles, and we characterize the complex
surfaces which fibre over S1 or over a closed orientable 2-manifold.

The final five chapters are on 2-knots. Chapter 14 is an overview of knot theory;
in particular it is shown how the classification of higher-dimensional knots may
be largely reduced to the classification of knot manifolds. The knot exterior is
determined by the knot manifold and the conjugacy class of a normal generator
for the knot group, and at most two knots share a given exterior. An essen-
tial step is to characterize 2-knot groups. Kervaire gave homological conditions
which characterize high dimensional knot groups and which 2-knot groups must
satisfy, and showed that any high dimensional knot group with a presentation
of deficiency 1 is a 2-knot group. Bridging the gap between the homological and
combinatorial conditions appears to be a delicate task. In Chapter 15 we inves-
tigate 2-knot groups with infinite normal subgroups which have no noncyclic
free subgroups. We show that under mild coherence hypotheses such 2-knot
groups usually have nontrivial abelian normal subgroups, and we determine all
2-knot groups with finite commutator subgroup. In Chapter 16 we show that if
there is an abelian normal subgroup of rank > 1 then the knot manifold is either
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s-cobordant to a S̃L×E1 -manifold or is homeomorphic to an infrasolvmanifold.
In Chapter 17 we characterize the closed 4-manifolds obtained by surgery on
certain 2-knots, and show that just eight of the 4-dimensional geometries are
realised by knot manifolds. We also consider when the knot manifold admits
a complex structure. The final chapter considers when a fibred 2-knot with
geometric fibre is determined by its exterior. We settle this question when the
monodromy has finite order or when the fibre is R3/Z3 or is a coset space of
the Lie group Nil3 .

This book arose out of two earlier books of mine, on “2-Knots and their Groups”
and “The Algebraic Characterization of Geometric 4-Manifolds”, published by
Cambridge University Press for the Australian Mathematical Society and for
the London Mathematical Society, respectively. About a quarter of the present
text has been taken from these books. 1 However the arguments have been
improved in many cases, notably in using Bowditch’s homological criterion for
virtual surface groups to streamline the results on surface bundles, using L2 -
methods instead of localization, completing the characterization of mapping
tori, relaxing the hypotheses on torsion or on abelian normal subgroups in
the fundamental group and in deriving the results on 2-knot groups from the
work on 4-manifolds. The main tools used here beyond what can be found in
Algebraic Topology [Sp] are cohomology of groups, equivariant Poincaré duality
and (to a lesser extent) L2 -(co)homology. Our references for these are the books
Homological Dimension of Discrete Groups [Bi], Surgery on Compact Manifolds
[Wl] and L2 -Invariants: Theory and Applications to Geometry and K -Theory
[Lü], respectively. We also use properties of 3-manifolds (for the construction
of examples) and calculations of Whitehead groups and surgery obstructions.

This work has been supported in part by ARC small grants, enabling visits
by Steve Plotnick, Mike Dyer, Charles Thomas and Fang Fuquan. I would
like to thank them all for their advice, and in particular Steve Plotnick for
the collaboration reported in Chapter 18. I would also like to thank Robert
Bieri, Robin Cobb, Peter Linnell and Steve Wilson for their collaboration, and
Warren Dicks, William Dunbar, Ross Geoghegan, F.T.Farrell, Ian Hambleton,
Derek Holt, K.F.Lai, Eamonn O’Brien, Peter Scott and Shmuel Weinberger for
their correspondance and advice on aspects of this work.

Jonathan Hillman

1See the Acknowledgment following this preface for a summary of the textual bor-
rowings.
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Chapter 1

Group theoretic preliminaries

The key algebraic idea used in this book is to study the homology groups
of covering spaces as modules over the group ring of the group of covering
transformations. In this chapter we shall summarize the relevant notions from
group theory, in particular, the Hirsch-Plotkin radical, amenable groups, Hirsch
length, finiteness conditions, the connection between ends and the vanishing of
cohomology with coefficients in a free module, Poincaré duality groups and
Hilbert modules.

Our principal references for group theory are [Bi], [DD] and [Ro].

1.1 Group theoretic notation and terminology

We shall write Z for the ring of integers and for the augmentation module of a
group, and otherwise write Z for the free (abelian) group of rank 1. Let F (r)
be the free group of rank r .

Let G be a group. Then G′ and ζG denote the commutator subgroup and
centre of G, respectively. The outer automorphism group of G is Out(G) =
Aut(G)/Inn(G), where Inn(G) ∼= G/ζG is the subgroup of Aut(G) consist-
ing of conjugations by elements of G. If H is a subgroup of G let NG(H)
and CG(H) denote the normalizer and centralizer of H in G, respectively.
The subgroup H is a characteristic subgroup of G if it is preserved under all
automorphisms of G. In particular, I(G) = {g ∈ G | ∃n > 0, gn ∈ G′}
is a characteristic subgroup of G, and the quotient G/I(G) is a torsion free
abelian group of rank β1(G). A group G is indicable if there is an epimorphism
p : G → Z , or if G = 1. The normal closure of a subset S ⊆ G is 〈〈S〉〉G , the
intersection of the normal subgroups of G which contain S .

If P and Q are classes of groups let PQ denote the class of (“P by Q”) groups
G which have a normal subgroup H in P such that the quotient G/H is in
Q, and let ℓP denote the class of (“locally P ”) groups such that each finitely
generated subgroup is in the class P . In particular, if F is the class of finite
groups ℓF is the class of locally finite groups. In any group the union of all
the locally-finite normal subgroups is the unique maximal locally-finite normal
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subgroup. Clearly there are no nontrivial homomorphisms from such a group to
a torsion free group. Let poly-P be the class of groups with a finite composition
series such that each subquotient is in P . Thus if Ab is the class of abelian
groups poly-Ab is the class of solvable groups.

Let P be a class of groups which is closed under taking subgroups. A group
is virtually P if it has a subgroup of finite index in P . Let vP be the class
of groups which are virtually P . Thus a virtually poly-Z group is one which
has a subgroup of finite index with a composition series whose factors are all
infinite cyclic. The number of infinite cyclic factors is independent of the choice
of finite index subgroup or composition series, and is called the Hirsch length
of the group. We shall also say that a space virtually has some property if it
has a finite regular covering space with that property.

If p : G → Q is an epimorphism with kernel N we shall say that G is an
extension of Q = G/N by the normal subgroup N . The action of G on N
by conjugation determines a homomorphism from G to Aut(N) with kernel
CG(N) and hence a homomorphism from G/N to Out(N) = Aut(N)/Inn(N).
If G/N ∼= Z the extension splits: a choice of element t in G which projects to a
generator of G/N determines a right inverse to p. Let θ be the automorphism
of N determined by conjugation by t in G. Then G is isomorphic to the
semidirect product N ⋊θ Z . Every automorphism of N arises in this way, and
automorphisms whose images in Out(N) are conjugate determine isomorphic
semidirect products. In particular, G ∼= N × Z if θ is an inner automorphism.

Lemma 1.1 Let θ and φ automorphisms of a group G such that H1(θ; Q)−1
and H1(φ; Q) − 1 are automorphisms of H1(G; Q) = (G/G′) ⊗ Q. Then the
semidirect products πθ = G⋊θ Z and πφ = G⋊φ Z are isomorphic if and only
if θ is conjugate to φ or φ−1 in Out(G).

Proof Let t and u be fixed elements of πθ and πφ , respectively, which map
to 1 in Z . Since H1(πθ; Q) ∼= H1(πφ; Q) ∼= Q the image of G in each group
is characteristic. Hence an isomorphism h : πθ → πφ induces an isomorphism
e : Z → Z of the quotients, for some e = ±1, and so h(t) = ueg for some g in
G. Therefore h(θ(h−1(j)))) = h(th−1(j)t−1) = uegjg−1u−e = φe(gjg−1) for all
j in G. Thus θ is conjugate to φe in Out(G).

Conversely, if θ and φ are conjugate in Out(G) there is an f in Aut(G) and a
g in G such that θ(j) = f−1φef(gjg−1) for all j in G. Hence F (j) = f(j) for
all j in G and F (t) = uef(g) defines an isomorphism F : πθ → πφ .
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A subgroup K of a group G is ascendant if there is an increasing sequence of
subgoups Nα , indexed by ordinals ≤ i, such that N0 = K , Nα is normal in
Nα+1 if α < i, Nβ = ∪α<βNα for all limit ordinals β ≤ i and Ni = G. If i is
finite K is subnormal in G. Such ascendant series are well suited to arguments
by transfinite induction.

1.2 Matrix groups

In this section we shall recall some useful facts about matrices over Z.

Lemma 1.2 Let p be an odd prime. Then the kernel of the reduction modulo
(p) homomorphism from SL(n,Z) to SL(n,Fp) is torsion free.

Proof This follows easily from the observation that if A is an integral matrix
and k = pvq with q not divisible by p then (I+prA)k ≡ I+kprA mod (p2r+v),
and kpr 6≡ 0 mod (p2r+v) if r ≥ 1.

The corresponding result for p = 2 is that the kernel of reduction mod (4) is
torsion free.

Since SL(n,Fp) has order (Πj=n−1
j=0 (pn − pj))/(p − 1), it follows that the order

of any finite subgroup of SL(n,Z) must divide the highest common factor of
these numbers, as p varies over all odd primes. In particular, finite subgroups
of SL(2,Z) have order dividing 24, and so are solvable.

Let A =
(

0 −1
1 0

)
, B =

(
0 1
−1 1

)
and R = ( 0 1

1 0 ). Then A2 = B3 = −I and
A4 = B6 = I . The matrices A and R generate a dihedral group of order 8,
while B and R generate a dihedral group of order 12.

Theorem 1.3 Let G be a nontrivial finite subgroup of GL(2,Z). Then G
is conjugate to one of the cyclic groups generated by A, A2 , B , B2 , R or
RA, or to a dihedral subgroup generated by one of the pairs {A,R}, {A2, R},
{A2, RA}, {B,R}, {B2, R} or {B2, RB}.

Proof If M ∈ GL(2,Z) has finite order then its characteristic polynomial has
cyclotomic factors. If the characteristic polynomial is (X ± 1)2 then M = ∓I .
(This uses the finite order of M .) If the characteristic polynomial is X2 − 1
then M is conjugate to R or RA. If the characteristic polynomial is X2 + 1,
X2 −X + 1 or X2 +X + 1 then it is irreducible, and the corresponding ring of
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algebraic numbers is a PID. Since any Z-torsion free module over such a ring
is free it follows easily that M is conjugate to A, B or B2 .

The normalizers in SL(2,Z) of the subgroups generated by A, B or B2 are
easily seen to be finite cyclic. Since G ∩ SL(2,Z) is solvable it must be cyclic
also. As it has index at most 2 in G the theorem follows easily.

Although the 12 groups listed in the theorem represent distinct conjugacy
classes in GL(2,Z), some of these conjugacy classes coalesce in GL(2,R). (For
instance, R and RA are conjugate in GL(2,Z[12 ]).)

Corollary 1.3.1 Let G be a locally finite subgroup of GL(2,Q). Then G is
finite, and is conjugate to one of the above subgroups of GL(2,Z).

Proof Let L be a finitely generated subgroup of rank 2 in Q2 . If G is finite
then ∪g∈GgL is finitely generated, G-invariant and of rank 2, and so G is
conjugate to a subgroup of GL(2,Z). In general, as the finite subgroups of G
have bounded order G must be finite.

The main results of this section follow also from the fact that PSL(2,Z) =
SL(2,Z)/〈±I〉 is a free product (Z/2Z) ∗ (Z/3Z), generated by the images
of A and B . (In fact 〈A,B | A2 = B3, A4 = 1〉 is a presentation for
SL(2,Z).) Moreover SL(2,Z)′ ∼= PSL(2,Z)′ is freely generated by the im-
ages of B−1A−1BA = ( 2 1

1 1 ) and BAB−1A−1 = ( 1 1
1 2 ), while the abelianizations

are generated by the images of AB−1 = ( 1 0
1 1 ). (See §6.2 of [Ro].)

Let Λ = Z[t, t−1] be the ring of integral Laurent polynomials. The next theorem
is a special case of a classical result of Latimer and MacDuffee.

Theorem 1.4 There is a 1-1 correspondance between conjugacy classes of
matrices in GL(n,Z) with irreducible characteristic polynomial ∆(t) and iso-
morphism classes of ideals in Λ/(∆(t)). The set of such ideal classes is finite.

Proof Let A ∈ GL(n,Z) have characteristic polynomial ∆(t) and let R =
Λ/(∆(t)). As ∆(A) = 0, by the Cayley-Hamilton Theorem, we may define an
R-module MA with underlying abelian group Zn by t.z = A(z) for all z ∈ Zn .
As R is a domain and has rank n as an abelian group MA is torsion free and of
rank 1 as an R-module, and so is isomorphic to an ideal of R. Conversely every
R-ideal arises in this way. The isomorphism of abelian groups underlying an
R-isomorphism between two such modules MA and MB determines a matrix
C ∈ GL(n,Z) such that CA = BC . The final assertion follows from the
Jordan-Zassenhaus Theorem.
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1.3 The Hirsch-Plotkin radical

The Hirsch-Plotkin radical
√
G of a group G is its maximal locally-nilpotent

normal subgroup; in a virtually poly-Z group every subgroup is finitely gen-
erated, and so

√
G is then the maximal nilpotent normal subgroup. If H is

normal in G then
√
H is normal in G also, since it is a characteristic subgroup

of H , and in particular it is a subgroup of
√
G.

For each natural number q ≥ 1 let Γq be the group with presentation

〈x, y, z | xz = zx, yz = zy, xy = zqyx〉.
Every such group Γq is torsion free and nilpotent of Hirsch length 3.

Theorem 1.5 Let G be a finitely generated torsion free nilpotent group of
Hirsch length h(G) ≤ 4. Then either

(1) G is free abelian; or

(2) h(G) = 3 and G ∼= Γq for some q ≥ 1; or

(3) h(G) = 4, ζG ∼= Z2 and G ∼= Γq × Z for some q ≥ 1; or

(4) h(G) = 4, ζG ∼= Z and G/ζG ∼= Γq for some q ≥ 1.

In the latter case G has characteristic subgroups which are free abelian of rank
1, 2 and 3. In all cases G is an extension of Z by a free abelian normal
subgroup.

Proof The centre ζG is nontrivial and the quotient G/ζG is again torsion
free, by Proposition 5.2.19 of [Ro]. We may assume that G is not abelian,
and hence that G/ζG is not cyclic. Hence h(G/ζG) ≥ 2, so h(G) ≥ 3 and
1 ≤ h(ζG) ≤ h(G) − 2. In all cases ζG is free abelian.

If h(G) = 3 then ζG ∼= Z and G/ζG ∼= Z2 . On choosing elements x and y
representing a basis of G/ζG and z generating ζG we quickly find that G is
isomorphic to one of the groups Γq , and thus is an extension of Z by Z2 .

If h(G) = 4 and ζG ∼= Z2 then G/ζG ∼= Z2 , so G′ ⊆ ζG. Since G may be
generated by elements x, y, t and u where x and y represent a basis of G/ζG
and t and u are central it follows easily that G′ is infinite cyclic. Therefore
ζG is not contained in G′ and G has an infinite cyclic direct factor. Hence
G ∼= Z × Γq , for some q ≥ 1, and thus is an extension of Z by Z3 .

The remaining possibility is that h(G) = 4 and ζG ∼= Z . In this case G/ζG
is torsion free nilpotent of Hirsch length 3. If G/ζG were abelian G′ would

Geometry & Topology Monographs, Volume 5 (2002)
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also be infinite cyclic, and the pairing from G/ζG ×G/ζG into G′ defined by
the commutator would be nondegenerate and skewsymmetric. But there are no
such pairings on free abelian groups of odd rank. Therefore G/ζG ∼= Γq , for
some q ≥ 1.

Let ζ2G be the preimage in G of ζ(G/ζG). Then ζ2G ∼= Z2 and is a characteris-
tic subgroup of G, so CG(ζ2G) is also characteristic in G. The quotient G/ζ2G
acts by conjugation on ζ2G. Since Aut(Z2) = GL(2,Z) is virtually free and
G/ζ2G ∼= Γq/ζΓq ∼= Z2 and since ζ2G 6= ζG it follows that h(CG(ζ2G)) = 3.
Since CG(ζ2G) is nilpotent and has centre of rank ≥ 2 it is abelian, and so
CG(ζ2G) ∼= Z3 . The preimage in G of the torsion subgroup of G/CG(ζ2G)
is torsion free, nilpotent of Hirsch length 3 and virtually abelian and hence is
abelian. Therefore G/CG(ζ2G) ∼= Z .

Theorem 1.6 Let π be a torsion free virtually poly-Z group of Hirsch length
4. Then h(

√
π) ≥ 3.

Proof Let S be a solvable normal subgroup of finite index in π . Then the
lowest nontrivial term of the derived series of S is an abelian subgroup which
is characteristic in S and so normal in π . Hence

√
π 6= 1. If h(

√
π) ≤ 2 then√

π ∼= Z or Z2 . Suppose π has an infinite cyclic normal subgroup A. On
replacing π by a normal subgroup σ of finite index we may assume that A is
central and that σ/A is poly-Z . Let B be the preimage in σ of a nontrivial
abelian normal subgroup of σ/A. Then B is nilpotent (since A is central and
B/A is abelian) and h(B) > 1 (since B/A 6= 1 and σ/A is torsion free). Hence
h(
√
π) ≥ h(

√
σ) > 1.

If π has a normal subgroup N ∼= Z2 then Aut(N) ∼= GL(2,Z) is virtually free,
and so the kernel of the natural map from π to Aut(N) is nontrivial. Hence
h(Cπ(N)) ≥ 3. Since h(π/N) = 2 the quotient π/N is virtually abelian, and
so Cπ(N) is virtually nilpotent.

In all cases we must have h(
√
π) ≥ 3.

1.4 Amenable groups

The class of amenable groups arose first in connection with the Banach-Tarski
paradox. A group is amenable if it admits an invariant mean for bounded C-
valued functions [Pi]. There is a more geometric characterization of finitely
presentable amenable groups that is more convenient for our purposes. Let X
be a finite cell-complex with universal cover X̃ . Then X̃ is an increasing union

Geometry & Topology Monographs, Volume 5 (2002)



1.4 Amenable groups 9

of finite subcomplexes Xj ⊆ Xj+1 ⊆ X̃ = ∪n≥1Xn such that Xj is the union
of Nj <∞ translates of some fundamental domain D for G = π1(X). Let N ′

j

be the number of translates of D which meet the frontier of Xj in X̃ . The

sequence {Xj} is a Følner exhaustion for X̃ if lim(N ′
j/Nj) = 0, and π1(X) is

amenable if and only if X̃ has a Følner exhaustion. This class contains all finite
groups and Z , and is closed under the operations of extension, increasing union,
and under the formation of sub- and quotient groups. (However nonabelian free
groups are not amenable.)

The subclass EA generated from finite groups and Z by the operations of
extension and increasing union is the class of elementary amenable groups. We
may construct this class as follows. Let U0 = 1 and U1 be the class of finitely
generated virtually abelian groups. If Uα has been defined for some ordinal α
let Uα+1 = (ℓUα)U1 and if Uα has been defined for all ordinals less than some
limit ordinal β let Uβ = ∪α<βUα . Let κ be the first uncountable ordinal. Then
EA = ℓUκ .

This class is well adapted to arguments by transfinite induction on the ordinal
α(G) = min{α|G ∈ Uα}. It is closed under extension (in fact UαUβ ⊆ Uα+β )
and increasing union, and under the formation of sub- and quotient groups. As
Uκ contains every countable elementary amenable group, Uλ = ℓUκ = EA if
λ > κ. Torsion groups in EA are locally finite and elementary amenable free
groups are cyclic. Every locally-finite by virtually solvable group is elementary
amenable; however this inclusion is proper.

For example, let Z∞ be the free abelian group with basis {xi | i ∈ Z} and let G
be the subgroup of Aut(Z∞) generated by {ei | i ∈ Z}, where ei(xi) = xi+xi+1

and ei(xj) = xj if j 6= i. Then G is the increasing union of subgroups isomor-
phic to groups of upper triangular matrices, and so is locally nilpotent. However
it has no nontrivial abelian normal subgroups. If we let φ be the automorphism
of G defined by φ(ei) = ei+1 for all i then G⋊φZ is a finitely generated torsion
free elementary amenable group which is not virtually solvable.

It can be shown (using the Følner condition) that finitely generated groups
of subexponential growth are amenable. The class SA generated from such
groups by extensions and increasing unions contains EA (since finite groups and
finitely generated abelian groups have polynomial growth), and is the largest
class of groups over which topological surgery techniques are known to work in
dimension 4 [FT95]. There is a finitely presentable group in SA which is not
elementary amenable [Gr98], and a finitely presentable amenable group which
is not in SA [BV05].
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10 Chapter 1: Group theoretic preliminaries

A group is restrained if it has no noncyclic free subgroup. Amenable groups
are restrained, but there are finitely presentable restrained groups which are
not amenable [OS02]. There are also infinite finitely generated torsion groups.
(See §14.2 of [Ro].) These are restrained, but are not elementary amenable. No
known example is also finitely presentable.

1.5 Hirsch length

In this section we shall use transfinite induction to extend the notion of Hirsch
length (as a measure of the size of a solvable group) to elementary amenable
groups, and to establish the basic properties of this invariant.

Lemma 1.7 Let G be a finitely generated infinite elementary amenable group.
Then G has normal subgroups K < H such that G/H is finite, H/K is free
abelian of positive rank and the action of G/H on H/K by conjugation is
effective.

Proof We may show that G has a normal subgroup K such that G/K is
an infinite virtually abelian group, by transfinite induction on α(G). We may
assume that G/K has no nontrivial finite normal subgroup. If H is a subgroup
of G which contains K and is such that H/K is a maximal abelian normal
subgroup of G/K then H and K satisfy the above conditions.

In particular, finitely generated infinite elementary amenable groups are virtu-
ally indicable.

If G is in U1 let h(G) be the rank of an abelian subgroup of finite index in G.
If h(G) has been defined for all G in Uα and H is in ℓUα let

h(H) = l.u.b.{h(F )|F ≤ H, F ∈ Uα}.
Finally, if G is in Uα+1 , so has a normal subgroup H in ℓUα with G/H in U1 ,
let h(G) = h(H) + h(G/H).

Theorem 1.8 Let G be an elementary amenable group. Then

(1) h(G) is well defined;

(2) If H is a subgroup of G then h(H) ≤ h(G);

(3) h(G) = l.u.b.{h(F ) | F is a finitely generated subgroup of G};

(4) if H is a normal subgroup of G then h(G) = h(H) + h(G/H).
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1.5 Hirsch length 11

Proof We shall prove all four assertions simultaneously by induction on α(G).
They are clearly true when α(G) = 1. Suppose that they hold for all groups
in Uα and that α(G) = α+ 1. If G is in ℓUα so is any subgroup, and (1) and
(2) are immediate, while (3) follows since it holds for groups in Uα and since
each finitely generated subgroup of G is a Uα -subgroup. To prove (4) we may
assume that h(H) is finite, for otherwise both h(G) and h(H) + h(G/H) are
∞, by (2). Therefore by (3) there is a finitely generated subgroup J ≤ H with
h(J) = h(H). Given a finitely generated subgroup Q of G/H we may choose a
finitely generated subgroup F of G containing J and whose image in G/H is
Q. Since F is finitely generated it is in Uα and so h(F ) = h(H)+h(Q). Taking
least upper bounds over all such Q we have h(G) ≥ h(H) + h(G/H). On the
other hand if F is any Uα -subgroup of G then h(F ) = h(F ∩H) + h(FH/H),
since (4) holds for F , and so h(G) ≤ h(H) + h(G/H), Thus (4) holds for G
also.

Now suppose that G is not in ℓUα , but has a normal subgroup K in ℓUα such
that G/K is in U1 . If K1 is another such subgroup then (4) holds for K and K1

by the hypothesis of induction and so h(K) = h(K ∩K1) + h(KK1/K). Since
we also have h(G/K) = h(G/KK1)+h(KK1/K) and h(G/K1) = h(G/KK1)+
h(KK1/K1) it follows that h(K1)+h(G/K1) = h(K)+h(G/K) and so h(G) is
well defined. Property (2) follows easily, as any subgroup of G is an extension
of a subgroup of G/K by a subgroup of K . Property (3) holds for K by the
hypothesis of induction. Therefore if h(K) is finite K has a finitely generated
subgroup J with h(J) = h(K). Since G/K is finitely generated there is a
finitely generated subgroup F of G containing J and such that FK/K = G/K .
Clearly h(F ) = h(G). If h(K) is infinite then for every n ≥ 0 there is a finitely
generated subgroup Jn of K with h(Jn) ≥ n. In either case, (3) also holds
for G. If H is a normal subgroup of G then H and G/H are also in Uα+1 ,
while H ∩K and KH/H = K/H ∩K are in ℓUα and HK/K = H/H ∩K and
G/HK are in U1 . Therefore

h(H) + h(G/H) = h(H ∩K) + h(HK/K) + h(HK/H) + h(G/HK)

= h(H ∩K) + h(HK/H) + h(HK/K) + h(G/HK).

Since K is in ℓUα and G/K is in U1 this sum gives h(G) = h(K) + h(G/K)
and so (4) holds for G. This completes the inductive step.

Let Λ(G) be the maximal locally-finite normal subgroup of G.

Theorem 1.9 There are functions d and M from Z≥0 to Z≥0 such that if G
is an elementary amenable group of Hirsch length at most h and Λ(G) is its
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12 Chapter 1: Group theoretic preliminaries

maximal locally finite normal subgroup then G/Λ(G) has a maximal solvable
normal subgroup of derived length at most d(h) and index at most M(h).

Proof We argue by induction on h. Since an elementary amenable group
has Hirsch length 0 if and only if it is locally finite we may set d(0) = 0 and
M(0) = 1. Assume that the result is true for all such groups with Hirsch length
at most h and that G is an elementary amenable group with h(G) = h+ 1.

Suppose first that G is finitely generated. Then by Lemma 1.7 there are normal
subgroups K < H in G such that G/H is finite, H/K is free abelian of rank
r ≥ 1 and the action of G/H on H/K by conjugation is effective. (Note that
r = h(G/K) ≤ h(G) = h + 1.) Since the kernel of the natural map from
GL(r,Z) to GL(r,F3) is torsion free, by Lemma 1.2, we see that G/H embeds
in GL(r,F3) and so has order at most 3r

2
. Since h(K) = h(G) − r ≤ h the

inductive hypothesis applies for K , so it has a normal subgroup L containing
Λ(K) and of index at most M(h) such that L/Λ(K) has derived length at
most d(h) and is the maximal solvable normal subgroup of K/Λ(K). As Λ(K)
and L are characteristic in K they are normal in G. (In particular, Λ(K) =
K ∩ Λ(G).) The centralizer of K/L in H/L is a normal solvable subgroup of
G/L with index at most [K : L]![G : H] and derived length at most 2. Set
M(h+1) = M(h)!3(h+1)2 and d(h+1) = M(h+1)+2+d(h). Then G.Λ(G) has
a maximal solvable normal subgroup of index at most M(h + 1) and derived
length at most d(h + 1) (since it contains the preimage of the centralizer of
K/L in H/L).

In general, let {Gi | i ∈ I} be the set of finitely generated subgroups of G.
By the above argument Gi has a normal subgroup Hi containing Λ(Gi) and
such that Hi/Λ(Gi) is a maximal normal solvable subgroup of Gi/Λ(Gi) and
has derived length at most d(h + 1) and index at most M(h + 1). Let N =
max{[Gi : Hi] | i ∈ I} and choose α ∈ I such that [Gα : Hα] = N . If Gi ≥ Gα
then Hi∩Gα ≤ Hα . Since [Gα : Hα] ≤ [Gα : Hi∩Gα] = [HiGα : Hi] ≤ [Gi : Hi]
we have [Gi : Hi] = N and Hi ≥ Hα . It follows easily that if Gα ≤ Gi ≤ Gj
then Hi ≤ Hj .

Set J = {i ∈ I | Hα ≤ Hi} and H = ∪i∈JHi . If x, y ∈ H and g ∈ G then there
are indices i, k and k ∈ J such that x ∈ Hi , y ∈ Hj and g ∈ Gk . Choose l ∈ J
such that Gl contains Gi ∪ Gj ∪ Gk . Then xy−1 and gxg−1 are in Hl ≤ H ,
and so H is a normal subgroup of G. Moreover if x1, . . . , xN is a set of coset
representatives for Hα in Gα then it remains a set of coset representatives for
H in G, and so [G;H] = N .

Let Di be the d(h + 1)th derived subgroup of Hi . Then Di is a locally-finite
normal subgroup of Gi and so, by an argument similar to that of the above
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1.6 Modules and finiteness conditions 13

paragraph ∪i∈JDi is a locally-finite normal subgroup of G. Since it is easily
seen that the d(h + 1)th derived subgroup of H is contained in ∪i∈JDi (as
each iterated commutator involves only finitely many elements of H ) it follows
that HΛ(G)/Λ(G) ∼= H/H ∩ Λ(G) is solvable and of derived length at most
d(h+ 1).

The above result is from [HL92]. The argument can be simplified to some
extent if G is countable and torsion-free. (In fact a virtually solvable group
of finite Hirsch length and with no nontrivial locally-finite normal subgroup
must be countable, by Lemma 7.9 of [Bi]. Moreover its Hirsch-Plotkin radical
is nilpotent and the quotient is virtually abelian, by Proposition 5.5 of [BH72].)

Lemma 1.10 Let G be an elementary amenable group. If h(G) = ∞ then
for every k > 0 there is a subgroup H of G with k < h(H) <∞.

Proof We shall argue by induction on α(G). The result is vacuously true if
α(G) = 1. Suppose that it is true for all groups in Uα and G is in ℓUα . Since
h(G) = l.u.b.{h(F )|F ≤ G, F ∈ Uα} either there is a subgroup F of G in Uα
with h(F ) = ∞, in which case the result is true by the inductive hypothesis, or
h(G) is the least upper bound of a set of natural numbers and the result is true.
If G is in Uα+1 then it has a normal subgroup N which is in ℓUα with quotient
G/N in U1 . But then h(N) = h(G) = ∞ and so N has such a subgroup.

Theorem 1.11 Let G be an elementary amenable group of finite cohomolog-
ical dimension. Then h(G) ≤ c.d.G and G is virtually solvable.

Proof Since c.d.G <∞ the group G is torsion free. Let H be a subgroup of
finite Hirsch length. Then H is virtually solvable and c.d.H ≤ c.d.G so h(H) ≤
c.d.G. The theorem now follows from Theorem 1.9 and Lemma 1.10.

1.6 Modules and finiteness conditions

Let G be a group and w : G → Z/2Z a homomorphism, and let R be a
commutative ring. Then ḡ = (−1)w(g)g−1 defines an anti-involution on R[G].
If L is a left R[G]-module L shall denote the conjugate right R[G]-module with
the same underlying R-module and R[G]-action given by l.g = ḡ.l , for all l ∈ L
and g ∈ G. (We shall also use the overline to denote the conjugate of a right
R[G]-module.) The conjugate of a free left (right) module is a free right (left)
module of the same rank.

We shall also let Zw denote the G-module with underlying abelian group Z
and G-action given by g.n = (−1)w(g)n for all g in G and n in Z .
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14 Chapter 1: Group theoretic preliminaries

Lemma 1.12 [Wl65] Let G and H be groups such that G is finitely pre-
sentable and there are homomorphisms j : H → G and ρ : G → H with
ρj = idH . Then H is also finitely presentable.

Proof Since G is finitely presentable there is an epimorphism p : F → G from
a free group F (X) with a finite basis X onto G, with kernel the normal closure
of a finite set of relators R. We may choose elements wx in F (X) such that
jρp(x) = p(wx), for all x in X . Then ρ factors through the group K with
presentation 〈X | R,x−1wx,∀x ∈ X〉, say ρ = vu. Now uj is clearly onto,
while vuj = ρj = idH , and so v and uj are mutually inverse isomomorphisms.
Therefore H ∼= K is finitely presentable.

A group G is FPn if the augmentation Z[G]-module Z has a projective reso-
lution which is finitely generated in degrees ≤ n, and it is FP if it has finite
cohomological dimension and is FPn for n = c.d.G. It is FF if moreover
Z has a finite resolution consisting of finitely generated free Z[G]-modules.
“Finitely generated” is equivalent to FP1 , while “finitely presentable” implies
FP2 . Groups which are FP2 are also said to be almost finitely presentable.
(There are FP groups which are not finitely presentable [BB97].) An elemen-
tary amenable group G is FP∞ if and only if it is virtually FP , and is then
virtually constructible and solvable of finite Hirsch length [Kr93].

If the augmentation Q[π]-module Q has a finite resolution F∗ by finitely gen-
erated projective modules then χ(π) = Σ(−1)idimQ(Q⊗πFi) is independent of
the resolution. (If π is the fundamental group of an aspherical finite complex K
then χ(π) = χ(K).) We may extend this definition to groups σ which have a
subgroup π of finite index with such a resolution by setting χ(σ) = χ(π)/[σ : π].
(It is not hard to see that this is well defined.)

Let P be a finitely generated projective Z[π]-module. Then P is a direct
summand of Z[π]r , for some r ≥ 0, and so is the image of some idempotent
r×r-matrix M with entries in Z[π]. The Kaplansky rank κ(P ) is the coefficient
of 1 ∈ π in the trace of M . It depends only on P and is strictly positive if
P 6= 0. The group π satisfies the Weak Bass Conjecture if κ(P ) = dimQQ⊗πP .
This conjecture has been confirmed for linear groups, solvable groups, groups of
cohomological dimension ≤ 2 over Q and PD3 -groups. (See [Ec01] for further
details.)

The following result from [BS78] shall be useful.

Theorem 1.13 (Bieri-Strebel) Let G be an FP2 group with G/G′ infinite.
Then G is an HNN extension with finitely generated base and associated sub-
groups.
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1.6 Modules and finiteness conditions 15

Proof (Sketch – We shall assume that G is finitely presentable.) Let h :
F (m) → G be an epimorphism, and let gi = h(xi) for 1 ≤ i ≤ m. We may
assume that gm has infinite order modulo the normal closure of {gi | 1 ≤
i < m}. Since G is finitely presentable the kernel of h is the normal closure
of finitely many relators, of weight 0 in the letter xm . Each such relator is a
product of powers of conjugates of the generators {xi | 1 ≤ i < m} by powers of
xm . Thus we may assume the relators are contained in the subgroup generated
by {xjmxix−jm | 1 ≤ i ≤ m, −p ≤ j ≤ p}, for some sufficiently large p. Let
U be the subgroup of G generated by {gjmgig−jm | 1 ≤ i ≤ m, −p ≤ j < p},
and let V = gmUg

−1
m . Let B be the subgroup of G generated by U ∪ V and

let G̃ be the HNN extension with base B and associated subgroups U and
V presented by G̃ = 〈B, s | sus−1 = τ(u) ∀u ∈ U〉, where τ : U → V is
the isomorphism determined by conjugation by gm in G. There are obvious
epimorphisms ξ : F (m+ 1) → G̃ and ψ : G̃ → G with composite h. It is easy
to see that Ker(h) ≤ Ker(ξ) and so G̃ ∼= G.

In particular, if G is restrained then it is an ascending HNN extension.

A ring R is weakly finite if every onto endomorphism of Rn is an isomorphism,
for all n ≥ 0. (In [H2] the term “SIBN ring” was used instead.) Finitely
generated stably free modules over weakly finite rings have well defined ranks,
and the rank is strictly positive if the module is nonzero. Skew fields are weakly
finite, as are subrings of weakly finite rings. If G is a group its complex group
algebra C[G] is weakly finite, by a result of Kaplansky. (See [Ro84] for a proof.)

A ring R is (regular) coherent if every finitely presentable left R-module has a
(finite) resolution by finitely generated projective R-modules, and is (regular)
noetherian if moreover every finitely generated R-module is finitely presentable.
A group G is regular coherent or regular noetherian if the group ring R[G] is
regular coherent or regular noetherian (respectively) for any regular noetherian
ring R. It is coherent as a group if all its finitely generated subgroups are
finitely presentable.

Lemma 1.14 If G is a group such that Z[G] is coherent then every finitely
generated subgroup of G is FP∞ .

Proof Let H be a subgroup of G. Since Z[H] ≤ Z[G] is a faithfully flat
ring extension a left Z[H]-module is finitely generated over Z[H] if and only if
the induced module Z[G] ⊗H M is finitely generated over Z[G]. It follows by
induction on n that M is FPn over Z[H] if and only if Z[G] ⊗H M is FPn
over Z[G].
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16 Chapter 1: Group theoretic preliminaries

If H is finitely generated then the augmentation Z[H]-module Z is finitely
presentable over Z[H]. Hence Z[G]⊗H Z is finitely presentable over Z[G], and
so is FP∞ over Z[G], since that ring is coherent. Hence Z is FP∞ over Z[H],
i.e., H is FP∞ .

Thus if either G is coherent (as a group) or Z[G] is coherent (as a ring) every
finitely generated subgroup of G is FP2 . As the latter condition shall usually
suffice for our purposes below, we shall say that such a group is almost coherent.
The connection between these notions has not been much studied.

The class of groups whose integral group ring is regular coherent contains the
trivial group and is closed under generalised free products and HNN extensions
with amalgamation over subgroups whose group rings are regular noetherian,
by Theorem 19.1 of [Wd78]. If [G : H] is finite and G is torsion free then Z[G]
is regular coherent if and only if Z[H] is. In particular, free groups and surface
groups are coherent and their integral group rings are regular coherent, while
(torsion free) virtually poly-Z groups are coherent and their integral group
rings are (regular) noetherian.

1.7 Ends and cohomology with free coefficients

A finitely generated group G has 0, 1, 2 or infinitely many ends. It has 0 ends
if and only if it is finite, in which case H0(G; Z[G]) ∼= Z and Hq(G; Z[G]) = 0
for q > 0. Otherwise H0(G; Z[G]) = 0 and H1(G; Z[G]) is a free abelian group
of rank e(G)− 1, where e(G) is the number of ends of G [Sp49]. The group G
has more than one end if and only if it is a nontrivial generalised free product
with amalgamation G ∼= A ∗C B or an HNN extension A ∗C φ where C is a
finite group. In particular, it has two ends if and only if it is virtually Z if and
only if it has a (maximal) finite normal subgroup F such that G/F ∼= Z or D ,
where D = (Z/2Z) ∗ (Z/2Z) is the infinite dihedral group [St - see also DD].

If G is a group with a normal subgroup N , and A is a left Z[G]-module there
is a Lyndon-Hochschild-Serre spectral sequence (LHSSS) for G as an extension
of G/N by N and with coefficients A:

E2 = Hp(G/N ;Hq(N ;A)) ⇒ Hp+q(G;A),

the rth differential having bidegree (r, 1 − r). (See Section 10.1 of [Mc].)

Theorem 1.15 [Ro75] If G has a normal subgroup N which is the union of
an increasing sequence of subgroups Nn such that Hs(Nn; Z[G]) = 0 for s ≤ r
then Hs(G; Z[G]) = 0 for s ≤ r .
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1.7 Ends and cohomology with free coefficients 17

Proof Let s ≤ r . Let f be an s-cocycle for N with coefficients Z[G], and
let fn denote the restriction of f to a cocycle on Nn . Then there is an
(s− 1)-cochain gn on Nn such that δgn = fn . Since δ(gn+1|Nn − gn) = 0
and Hs−1(Nn; Z[G]) = 0 there is an (s − 2)-cochain hn on Nn with δhn =
gn+1|Nn−gn . Choose an extension h′n of hn to Nn+1 and let ĝn+1 = gn+1−δh′n .
Then ĝn+1|Nn = gn and δĝn+1 = fn+1 . In this way we may extend g0 to an
(s − 1)-cochain g on N such that f = δg and so Hs(N ; Z[G]) = 0. The
LHSSS for G as an extension of G/N by N , with coefficients Z[G], now gives
Hs(G; Z[G]) = 0 for s ≤ r .

Corollary 1.15.1 The hypotheses are satisfied if N is the union of an increas-
ing sequence of FPr subgroups Nn such that Hs(Nn; Z[Nn]) = 0 for s ≤ r .
In particular, if N is the union of an increasing sequence of finitely generated,
one-ended subgroups then G has one end.

Proof We have Hs(Nn; Z[G]) = Hs(Nn; Z[Nn]) ⊗ Z[G/Nn] = 0, for all s ≤ r
and all n, since Nn is FPr .

If the successive inclusions are finite this corollary may be sharpened further.

Theorem (Gildenhuys-Strebel) Let G = ∪n≥1Gn be the union of an in-
creasing sequence of FPr subgroups. Suppose that [Gn+1 : Gn] < ∞ and
Hs(Gn; Z[Gn]) = 0 for all s < r and n ≥ 1. If G is not finitely generated then
Hs(G;F ) = 0 for every free Z[G]-module F and all s ≤ r .

The enunciation of this theorem in [GS81] assumes also that c.d.Gn = r for
all n ≥ 1, and concludes that c.d.G = r if and only if G is finitely generated.
However the argument establishes the above assertion.

Theorem 1.16 Let G be a finitely generated group with an infinite restrained
normal subgroup N of infinite index. Then e(G) = 1.

Proof Since N is infinite H1(G; Z[G]) ∼= H0(G/N ;H1(N ; Z[G])), by the
LHSSS. If N is finitely generated H1(N ; Z[G]) ∼= H1(N ; Z[N ])⊗Z[G/N ], with
the diagonal G/N -action. Since G/N is infinite H1(G; Z[G]) = 0. If N is lo-
cally one-ended or locally virtually Z and not finitely generated H1(N ; Z[G]) =
0, by Theorem 1.15 and the Gildenhuys-Strebel Theorem, respectively. In all
of these cases e(G) = 1.

There remains the possibility that N is locally finite. If e(G) > 1 then G ∼=
A ∗C B or A ∗C φ with C finite, by Stallings’ characterization of such groups.
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18 Chapter 1: Group theoretic preliminaries

Suppose G ∼= A ∗C B . Since N is infinite there is an n ∈ N − C . We may
suppose that n = gag−1 for some a ∈ A and g ∈ G, since elements of finite
order in A ∗C B are conjugate to elements of A or B , by Theorem 6.4.3 of
[Ro]. If n 6∈ A we may suppose g = g1 . . . gk with terms alternately from A−C
and B − C , and gk ∈ B . Let n′ = g0ng

−1
0 , where g0 ∈ A− C if k is odd and

g0 ∈ B − C if k is even (or if n ∈ A). Since N is normal n′ ∈ N also, and since
N is restrained w(n, n′) = 1 in N for some nontrivial word w ∈ F (2). But
this contradicts the “uniqueness of normal form” for such groups. A similar
argument shows that G cannot be A ∗C φ. Thus G must have one end.

In particular, a countable restrained group N is either elementary amenable and
h(N) ≤ 1 or is an increasing union of finitely generated, one-ended subgroups.

The second cohomology of a group with free coefficients (H2(G;R[G]), R = Z
or a field) shall play an important role in our investigations.

Theorem (Farrell) Let G be a finitely presentable group. If G has an ele-
ment of infinite order and R = Z or is a field then H2(G;R[G]) is either 0 or
R or is not finitely generated.

Farrell also showed in [Fa74] that if H2(G; F2[G]) ∼= Z/2Z then every finitely
generated subgroup of G with one end has finite index in G. Hence if G is also
torsion free then subgroups of infinite index in G are locally free. Bowditch has
since shown that such groups are virtually the fundamental groups of aspherical
closed surfaces ([Bo04] - see §8 below).

We would also like to know when H2(G; Z[G]) is 0 (for G finitely presentable).
In particular, we expect this to be so if G has an elementary amenable, normal
subgroup E such that either h(E) = 1 and G/E has one end or h(E) = 2 and
[G : E] = ∞ or h(E) ≥ 3, or if G is an ascending HNN extension over a finitely
generated, one-ended base. Our present arguments for these two cases require
stronger finiteness hypotheses, and each use the following result of [BG85].

Theorem (Brown-Geoghegan) Let G be an HNN extension B∗φ in which the
base B and associated subgroups I and φ(I) are FPn . If the homomorphism
from Hq(B;Z[G]) to Hq(I;Z[G]) induced by restriction is injective for some
q ≤ n then the corresponding homomorphism in the Mayer-Vietoris sequence
is injective, so Hq(G;Z[G]) is a quotient of Hq−1(I;Z[G]).

We begin with the case of “large” elementary amenable normal subgroups.
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1.7 Ends and cohomology with free coefficients 19

Theorem 1.17 Let G be a finitely presentable group with a locally virtually
indicable, restrained normal subgroup E of infinite index. Suppose that either
E is abelian of rank 1 and G/E has one end or E is torsion free, elementary
amenable and h(E) > 1 or E is almost coherent and has a finitely generated,
one-ended subgroup. Then Hs(G; Z[G]) = 0 for s ≤ 2.

Proof If E is abelian of positive rank and G/E has one end then G is 1-
connected at ∞ by Theorem 1 of [Mi87], and so Hs(G; Z[G]) = 0 for s ≤ 2, by
[GM86].

Suppose next that E is torsion free, elementary amenable and h(E) > 1. Then
G has one end, so Hs(G; Z[G]) = 0 for s ≤ 1. If E is virtually solvable it has a
nontrivial characteristic abelian subgroup A. If h(A) = 1 then we may assume
that A = 〈〈a〉〉G , so G/A is finitely presentable. As E/A is infinite G/A has
one end, by Theorem 1.16, and so H2(G; Z[G]) = 0 as before. If A ∼= Z2 then
H2(A; Z[G])) ∼= Z[G/A]. Otherwise, A has Z2 as a subgroup of infinite index
and so H2(A; Z[G]) = 0. If E is not virtually solvable Hs(E; Z[G]) = 0 for all
s, by Proposition 3 of [Kr93’]. (The argument applies even if E is not finitely
generated.) In all cases, an LHSSS argument gives H2(G; Z[G]) = 0.

We may assume henceforth that E is almost coherent and is an increasing
union of finitely generated one-ended subgroups En ⊆ En+1 · · · ⊆ E = ∪En .
Since E is locally virtually indicable there are subgroups Fn ≤ En such that
[En : Fn] < ∞ and which map onto Z . Since E is almost coherent these
subgroups are FP2 . Hence they are HNN extensions over FP2 bases Hn , by
Theorem 1.13, and the extensions are ascending, since E is restrained. Since
En has one end Hn is infinite and so has one or two ends.

Suppose that Hn has two ends, for all n ≥ 1. Then En is elementary amenable,
h(En) = 2 and [En+1 : En] < ∞, for all n ≥ 1. Hence E is elemen-
tary amenable and h(E) = 2. If E is finitely generated it is FP2 and so
Hs(G; Z[G]) = 0 for s ≤ 2, by an LHSSS argument. This is also the case
if E is not finitely generated, for then Hs(E; Z[G]) = 0 for s ≤ 2, by the
Gildenhuys-Strebel Theorem, and we may again apply an LHSSS argument.

Otherwise we may assume that Hn has one end, for all n ≥ 1. In this case
Hs(Fn; Z[Fn]) = 0 for s ≤ 2, by the Brown-Geoghegan Theorem. Therefore
Hs(G; Z[G]) = 0 for s ≤ 2, by Theorem 1.15.

The theorem applies if E is almost coherent and elementary amenable, since
elementary amenable groups are restrained and locally virtually indicable. It
also applies if E =

√
G is large enough, since finitely generated nilpotent
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20 Chapter 1: Group theoretic preliminaries

groups are virtually poly-Z . Similar arguments show that if h(
√
G) ≥ r then

Hs(G; Z[G]) = 0 for s < r , and if also [G :
√
G] = ∞ then Hr(G; Z[G]) = 0.

Are the hypotheses that E be almost coherent and locally virtually indicable
necessary? Is it sufficient that E be restrained and be an increasing union of
finitely generated, one-ended subgroups?

Theorem 1.18 Let G = B∗φ be an HNN extension with FP2 base B and
associated subgroups I and φ(I) = J , and which has a restrained normal
subgroup N ≤ 〈〈B〉〉. Then Hs(G; Z[G]) = 0 for s ≤ 2 if either

(1) the HNN extension is ascending and B = I ∼= J has one end; or

(2) N is locally virtually Z and G/N has one end; or

(3) N has a finitely generated subgroup with one end.

Proof The first assertion follows immediately from the Brown-Geogeghan
Theorem.

Let t be the stable letter, so that tit−1 = φ(i), for all i ∈ I . Suppose that
N ∩ J 6= N ∩ B , and let b ∈ N ∩ B − J . Then bt = t−1bt is in N , since N is
normal in G. Let a be any element of N ∩ B . Since N has no noncyclic free
subgroup there is a word w ∈ F (2) such that w(a, bt) = 1 in G. It follows from
Britton’s Lemma that a must be in I and so N ∩B = N ∩ I . In particular, N
is the increasing union of copies of N ∩B .

Hence G/N is an HNN extension with base B/N ∩B and associated subgroups
I/N ∩ I and J/N ∩ J . Therefore if G/N has one end the latter groups are
infinite, and so B , I and J each have one end. If N is virtually Z then
Hs(G; Z[G]) = 0 for s ≤ 2, by an LHSSS argument. If N is locally virtually Z
but is not finitely generated then it is the increasing union of a sequence of two-
ended subgroups and Hs(N ; Z[G]) = 0 for s ≤ 1, by the Gildenhuys-Strebel
Theorem. Since H2(B; Z[G]) ∼= H0(B;H2(N ∩ B; Z[G])) and H2(I; Z[G]) ∼=
H0(I;H2(N ∩ I; Z[G])), the restriction map from H2(B; Z[G]) to H2(I; Z[G])
is injective. If N has a finitely generated, one-ended subgroup N1 , we may
assume that N1 ≤ N ∩ B , and so B , I and J also have one end. Moreover
Hs(N ∩ B; Z[G]) = 0 for s ≤ 1, by Theorem 1.15. We again see that the
restriction map from H2(B; Z[G]) to H2(I; Z[G]) is injective. The result now
follows in these cases from the Brown-Geoghegan Theorem.

The final result of this section is Theorem 8.8 of [Bi].

Theorem (Bieri) Let G be a nonabelian group with c.d.G = n. Then
c.d.ζG ≤ n− 1, and if ζG has rank n− 1 then G′ is free.
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1.8 Poincaré duality groups 21

1.8 Poincaré duality groups

A group G is a PDn -group if it is FP , Hp(G; Z[G]) = 0 for p 6= n and
Hn(G; Z[G]) ∼= Z . The “dualizing module” Hn(G; Z[G]) = ExtnZ[G](Z,Z[G])

is a right Z[G]-module, with G-action determined by a homomorphism w =
w1(G) : G → Aut(Z) ∼= Z× . The group is orientable (or is a PD+

n -group) if
w is trivial, i.e., if Hn(G; Z[G]) is isomorphic to the augmentation module Z.
(See [Bi].)

The only PD1 -group is Z . Eckmann, Linnell and Müller showed that every
PD2 -group is the fundamental group of a closed aspherical surface. (See Chap-
ter VI of [DD].) Bowditch has since found a much stronger result, which must
be close to the optimal characterization of such groups [Bo04].

Theorem (Bowditch) Let G be an FP2 group and F a field. Then G is
virtually a PD2 -group if and only if H2(G;F [G]) has a 1-dimensional G-
invariant subspace.

In particular, this theorem applies if H2(G; Z[G]) ∼= Z , for then the image of
H2(G; Z[G]) in H2(G; F2[G]) under reduction mod (2) is such a subspace.

The following result corresponds to the fact that an infinite covering space of a
PL n-manifold is homotopy equivalent to a complex of dimension < n [St77].

Theorem (Strebel) Let H be a subgroup of infinite index in a PDn -group
G. Then c.d.H < n.

Let S be a ring. If C is a left S -module and R is a subring of S let C|R be
the left R-module underlying C . If A is a left R-module the abelian group
HomR(S|R, A) has a natural left S -module structure given by ((sf)(s′) =
f(s′s) for all f ∈ HomR(S|R, A) and s, s′ ∈ S . The groups HomR(C|R, A)
and HomS(C,HomR(S|R, A)) are naturally isomorphic, for the maps I and J
defined by I(f)(c)(s) = f(sc) and J(θ)(c) = θ(c)(1) for f : C → A and θ :
C → HomR(S,A) are mutually inverse isomorphisms. When K is a subgroup
of π , R = Z[K] and S = Z[π] we may write C|K for C|R , and the module
HomZ[K](Z[π]|K , A) is said to be coinduced from A. The above isomorphisms
give rise to Shapiro’s Lemma. In our applications π/K shall usually be infinite
cyclic and S is then a twisted Laurent extension of R.

If G is a group and A is a left Z[G]-module let A|1 be the Z[G]-module with the
same underlying group and trivial G-action, and let AG = HomZ(Z[G], A) be
the module of functions α : G→ A with G-action given by (gα)(h) = g.α(hg)
for all g, h ∈ G. Then A|1G is coinduced from a module over the trivial group.
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22 Chapter 1: Group theoretic preliminaries

Theorem 1.19 Let π be a PDn -group with a normal subgroup K such that
π/K is a PDr -group. Then K is a PDn−r -group if and only if it is FP[n/2] .

Proof The condition is clearly necessary. Assume that it holds. After pass-
ing to a subgroup of index 2, if necessary, we may assume that G = π/K is
orientable. It is sufficient to show that the functors Hs(K;−) from left Z[K]-
modules to abelian groups commute with direct limit, for all s ≤ n, for then
K is FPn−1 [Br75], and the result follows from Theorem 9.11 of [Bi] (and an
LHSSS corner argument to identify the dualizing module), Since K is FP[n/2]

we may assume s > n/2. If A is a Z[K]-module and W = HomZ[K](Z[π], A)

then Hs(K;A) ∼= Hs(π;W ) ∼= Hn−s(π;W ), by Shapiro’s Lemma and Poincaré
duality.

Let Ag be the left Z[K]-module with the same underlying group as A and
K -action given by k.a = σ(g)kσ(g)−1a for all a ∈ A, g ∈ G and k ∈ K . The
Z[K]-epimorphisms pg : W → Ag given by pg(f) = f(σ(g)) for all f ∈W and
g ∈ G determine an isomorphism W ∼= Πg∈GAg . Hence they induce Z-linear
isomorphisms Hq(K;W ) ∼= Πg∈GHq(K;Ag) for q ≤ [n/2], since C∗ has finite
[n/2]-skeleton. The Z-linear homomorphisms tq,g : Ag ⊗Z[K] Cq → A⊗Z[K] Cq
given by tq,g(a ⊗ c) = w(σ(g))a ⊗ σ(g)c for all a ∈ A and c ∈ Cq induce
isomorphisms Hq(K;Ag) ∼= Hq(K;A) for all q ≥ 0 and g ∈ G. Let uq,g =
tq,g(pg ⊗ idCq). Then uq,g(fσ(h)−1 ⊗ σ(h)c) = uq,gh(f ⊗ c) for all g, h ∈ G,
f ∈W , c ∈ Cq and q ≥ 0. Hence these composites determine isomorphisms of
left Z[G]-modules Hq(K;W ) ∼= AGq , where Aq = Hq(A ⊗Z[K] C∗) = Hq(K;A)
(with trivial G-action) for q ≤ [n/2].

Let D(L) denote the conjugate of a left Z[G]-module L with respect to the
canonical involution. We shall apply the homology LHSSS

E2
pq = Hp(G;D(Hq(K;W )) ⇒ Hp+q(π;W ).

Poincaré duality for G and another application of Shapiro’s Lemma now give
Hp(G;D(AGq )) ∼= Hr−p(G;AGq ) ∼= Hr−p(1;Aq), since AGq is coinduced from a
module over the trivial group. If s > [n/2] and p + q = n − s then q ≤ [n/2]
and so Hp(G;AGq ) ∼= Aq if p = r and is 0 otherwise. Thus the spectral sequence

collapses to give Hn−s(π;W ) ∼= Hn−r−s(K;A). Since homology commutes with
direct limits this proves the theorem.

The finiteness condition cannot be relaxed further when r = 2 and n = 4, for
Kapovich has given an example of a pair ν < π with π a PD4 -group, π/ν a
PD2 -group and ν finitely generated but not FP2 [Ka98].
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The most useful case of this theorem is when G ∼= Z . The argument of the first
paragraph of the theorem shows that if K is any normal subgroup such that
π/K ∼= Z then Hn)K;A) ∼= H0(π;W ) = 0, and so c.d.K < n. (This weak
version of Strebel’s Theorem suffices for some of the applications below.)

Let R be a ring. An R-chain complex has finite k-skeleton if it is chain homo-
topy equivalent to a complex P∗ with Pj a finitely generated free R-module
for j ≤ k . If R is a subring of S and C∗ is an S -chain complex then C∗ is
R-finitely dominated if C∗|R is chain homotopy equivalent to a finite projec-
tive R-chain complex. The argument of Theorem 1.19 extends easily to the
nonaspherical case as follows. (See Chapter 2 for the definition of PDn -space.)

Theorem 1.19 ′ Let M be a PDn -space, p : π1(M) → G be an epimorphism

with G a PDr -group and ν = Ker(p). If C∗(M̃ )|ν has finite [n/2]-skeleton

C∗(M̃ ) is Z[ν]-finitely dominated and Hs(Mν ; Z[ν]) ∼= Hn−r−s(Mν ; Z[ν]) for
all s.

If M is aspherical then Mν = K(ν, 1) is a PDn−r -space, by Theorem 1.19. In
Chapter 4 we shall show that this holds in general.

Corollary 1.19.1 If either r = n−1 or r = n−2 and ν is infinite or r = n−3
and ν has one end then M is aspherical.

1.9 Hilbert modules

Let π be a countable group and let ℓ2(π) be the Hilbert space completion of
C[π] with respect to the inner product given by (Σagg,Σbhh) = Σagbg . Left
and right multiplication by elements of π determine left and right actions of
C[π] as bounded operators on ℓ2(π). The (left) von Neumann algebra N (π) is
the algebra of bounded operators on ℓ2(π) which are C[π]-linear with respect to
the left action. By the Tomita-Takesaki theorem this is also the bicommutant
in B(ℓ2(π)) of the right action of C[π], i.e., the set of operators which commute
with every operator which is right C[π]-linear. (See pages 45-52 of [Su].) We
may clearly use the canonical involution of C[π] to interchange the roles of left
and right in these definitions.

If e ∈ π is the unit element we may define the von Neumann trace on N (π)
by the inner product tr(f) = (f(e), e). This extends to square matrices over
N (π) by taking the sum of the traces of the diagonal entries. A Hilbert N (π)-
module is a Hilbert space M with a unitary left π -action which embeds iso-
metrically and π -equivariantly into the completed tensor product H⊗̂ℓ2(π) for
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24 Chapter 1: Group theoretic preliminaries

some Hilbert space H . It is finitely generated if we may take H ∼= Cn for
some integer n. (In this case we do not need to complete the ordinary ten-
sor product over C.) A morphism of Hilbert N (π)-modules is a π -equivariant
bounded linear operator f : M → N . It is a weak isomorphism if it is injective
and has dense image. A bounded π -linear operator on ℓ2(π)n = Cn ⊗ ℓ2(π)
is represented by a matrix whose entries are in N (π). The von Neumann
dimension of a finitely generated Hilbert N (π)-module M is the real num-
ber dimN (π)(M) = tr(P ) ∈ [0,∞), where P is any projection operator on
H ⊗ ℓ2(π) with image π -isometric to M . In particular, dimN (π)(M) = 0 if
and only if M = 0. The notions of finitely generated Hilbert N (π)-module
and finitely generated projective N (π)-module are essentially equivalent, and
arbitrary N (π)-modules have well-defined dimensions in [0,∞] [Lü].

A sequence of bounded maps between Hilbert N (π)-modules

M
j−−−−→ N

p−−−−→ P

is weakly exact at N if Ker(p) is the closure of Im(j). If 0 →M → N → P → 0
is weakly exact then j is injective, Ker(p) is the closure of Im(j) and Im(p) is
dense in P , and dimN (π)(N) = dimN (π)(M) + dimN (π)(P ). A finitely gener-
ated Hilbert N (π)-complex C∗ is a chain complex of finitely generated Hilbert
N (π)-modules with bounded C[π]-linear operators as differentials. The re-

duced L2 -homology is defined to be H̄
(2)
p (C∗) = Ker(dp)/Im(dp+1). The pth

L2 -Betti number of C∗ is then dimN (π)H̄
(2)
p (C∗). (As the images of the dif-

ferentials need not be closed the unreduced L2 -homology modules H
(2)
p (C∗) =

Ker(dp)/Im(dp+1) are not in general Hilbert modules.)

See [Lü] for more on modules over von Neumann algebras and L2 invariants of
complexes and manifolds.

[In this book L2 -Betti number arguments shall replace the localization argu-
ments used in [H2]. However we shall recall the definition of safe extension used
there. An extension of rings Z[G] < Φ is a safe extension if it is faithfully flat,
Φ is weakly finite and Φ⊗Z[G] Z = 0. It was shown there that if a group has a
nontrivial elementary amenable normal subgroup whose finite subgroups have
bounded order and which has no nontrivial finite normal subgroup then Z[G]
has a safe extension.]
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Chapter 2

2-Complexes and PD3-complexes

This chapter begins with a review of the notation we use for (co)homology
with local coefficients and of the universal coefficient spectral sequence. We
then define the L2 -Betti numbers and present some useful vanishing theorems
of Lück and Gromov. These invariants are used in §3, where they are used to
estimate the Euler characteristics of finite [π,m]-complexes and to give a con-
verse to the Cheeger-Gromov-Gottlieb Theorem on aspherical finite complexes.
Some of the arguments and results here may be regarded as representing in
microcosm the bulk of this book; the analogies and connections between 2-
complexes and 4-manifolds are well known. We then review Poincaré duality
and PDn -complexes. In §5-§9 we shall summarize briefly what is known about
the homotopy types of PD3 -complexes.

2.1 Notation

Let X be a connected cell complex and let X̃ be its universal covering space. If
H is a normal subgroup of G = π1(X) we may lift the cellular decomposition of
X to an equivariant cellular decomposition of the corresponding covering space
XH . The cellular chain complex of XH with coefficients in a commutative
ring R is then a complex C∗ = C∗(XH) of left R[G/H]-modules, with respect
to the action of the covering group G/H . A choice of lifts of the q -cells of X
determines a free basis for Cq , for all q , and so C∗ is a complex of free modules.
If X is a finite complex G is finitely presentable and these modules are finitely
generated. If X is finitely dominated, i.e., is a retract of a finite complex, then
G is again finitely presentable, by Lemma 1.12. Moreover the chain complex
of the universal cover is chain homotopy equivalent over R[G] to a complex of
finitely generated projective modules [Wl65]. The Betti numbers of X with
coefficients in a field F shall be denoted by βi(X;F ) = dimFHi(X;F ) (or just
βi(X), if F = Q).

The ith equivariant homology module of X with coefficients R[G/H] is the left
module Hi(X;R[G/H]) = Hi(C∗), which is clearly isomorphic to Hi(XH ;R) as
an R-module, with the action of the covering group determining its R[G/H]-
module structure. The ith equivariant cohomology module of X with coeffi-
cients R[G/H] is the right module H i(X;R[G/H]) = H i(C∗), where C∗ =
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HomR[G/H](C∗, R[G/H]) is the associated cochain complex of right R[G/H]-
modules. More generally, if A and B are right and left Z[G/H]-modules (re-
spectively) we may define Hj(X;A) = Hj(A ⊗Z[G/H] C∗) and Hn−j(X;B) =
Hn−j(HomZ[G/H](C∗, B)). There is a Universal Coefficient Spectral Sequence
(UCSS) relating equivariant homology and cohomology:

Epq2 = ExtqR[G/H](Hp(X;R[G/H]), R[G/H]) ⇒ Hp+q(X;R[G/H]),

with rth differential dr of bidegree (1 − r, r).

If J is a normal subgroup of G which contains H there is also a Cartan-Leray
spectral sequence relating the homology of XH and XJ :

E2
pq = TorR[G/H]

p (Hq(X;R[G/H]), R[G/J ]) ⇒ Hp+q(X;R[G/J ]),

with rth differential dr of bidegree (−r, r − 1). (See [Mc] for more details on
these spectral sequences.)

If M is a cell complex let cM : M → K(π1(M), 1) denote the classifying map for
the fundamental group and let fM : M → P2(M) denote the second stage of the
Postnikov tower for M . (Thus cM = cP2(M)fM .) A map f : X → K(π1(M), 1)
lifts to a map from X to P2(M) if and only if f∗k1(M) = 0, where k1(M)
is the first k -invariant of M in H3(π1(M);π2(M)). In particular, if k1(M) =
0 then cP2(M) has a cross-section. The algebraic 2-type of M is the triple
[π, π2(M), k1(M)]. Two such triples [π,Π, κ] and [π′,Π′, κ′] (corresponding to
M and M ′ , respectively) are equivalent if there are isomorphisms α : π → π′

and β : Π → Π′ such that β(gm) = α(g)β(m) for all g ∈ π and m ∈ Π
and β∗κ = α∗κ′ in H3(π;α∗Π′). Such an equivalence may be realized by
a homotopy equivalence of P2(M) and P2(M

′). (The reference [Ba] gives a
detailed treatment of Postnikov factorizations of nonsimple maps and spaces.)

Throughout this book closed manifold shall mean compact, connected TOP
manifold without boundary. Every closed manifold has the homotopy type of
a finite Poincaré duality complex [KS].

2.2 L2-Betti numbers

Let X be a finite complex with fundamental group π . The L2 -Betti numbers

of X are defined by β
(2)
i (X) = dimN (π)(H̄

(2)
2 (X̃)) where the L2 -homology

H̄
(2)
i (X̃) = H̄i(C

(2)
∗ ) is the reduced homology of the Hilbert N (π)-complex

C
(2)
∗ = ℓ2⊗Z[π]C∗(X̃) of square summable chains on X̃ . They are multiplicative

in finite covers, and for i = 0 or 1 depend only on π . (In particular, β
(2)
0 (π) = 0
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2.2 L2 -Betti numbers 27

if π is infinite.) The alternating sum of the L2 -Betti numbers is the Euler
characteristic χ(X) [At76].

It may be shown that β
(2)
i (X) = dimN (π)Hi(N (π)⊗Z[π]C∗(X̃)), and this formu-

lation of the definition applies to arbitrary complexes [CG86, Lü]. (However we

may have β
(2)
i (X) = ∞.) These numbers are finite if X is finitely dominated,

and the Euler characteristic formula holds if also π satisfies the Strong Bass

Conjecture [Ec96]. In particular, β
(2)
i (π) = dimN (π)Hi(π;N (π)) is defined for

any group, and β
(2)
2 (π1(X)) ≤ β

(2)
2 (X). (See Theorems 1.35 and 6.54 of [Lü].)

Lemma 2.1 Let π = H∗φ be a finitely presentable group which is an ascend-

ing HNN extension with finitely generated base H . Then β
(2)
1 (π) = 0.

Proof Let t be the stable letter and let Hn be the subgroup generated by H
and tn , and suppose that H is generated by g elements. Then [π : Hn] = n,

so β
(2)
1 (Hn) = nβ

(2)
1 (π). But each Hn is also finitely presentable and generated

by g + 1 elements. Hence β
(2)
1 (Hn) ≤ g + 1, and so β

(2)
1 (π) = 0.

In particular, this lemma holds if π is an extension of Z by a finitely generated
normal subgroup. We shall only sketch the next result (Theorem 7.2(6) of [Lü])
as we do not use it in an essential way. (See however Theorems 5.8 and 9.9.)

Theorem 2.2 (Lück) Let π be a group with a finitely generated infinite
normal subgroup ∆ such that π/∆ has an element of infinite order. Then

β
(2)
1 (π) = 0.

Proof (Sketch) Let ρ ≤ π be a subgroup containing ∆ such that ρ/∆ ∼=
Z . The terms in the line p + q = 1 of the homology LHSSS for ρ as an
extension of Z by ∆ with coefficients N (ρ) have dimension 0, by Lemma
2.1. Since dimN (ρ)M = dimN (π)(N (π)⊗N (ρ) M) for any N (ρ)-module M the
corresponding terms for the LHSSS for π as an extension of π/∆ by ∆ with
coefficients N (π) also have dimension 0 and the theorem follows.

The hypothesis “π/∆ has an element of infinite order” can be relaxed to “π/∆
is infinite” [Ga00]. The following result also derives from [Lü].

Theorem 2.3 Let π be a group with an ascendant subgroup N such that

β
(2)
i (N) = 0 for all i ≤ s. Then β

(2)
i (π) = 0 for all i ≤ s.
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Proof Let N = N0 < N1 < ... < Ni = π be an ascendant sequence. Then

we may show by transfinite induction on α that β
(2)
i (Nα) = 0 for all i ≤ s

and α ≤ i, using parts (2) and (3) of Theorem 7.2 of [Lü] for the passages to
successor ordinals and to limit ordinals, respectively.

In particular, we obtain the following result from page 226 of [Gr]. (Note also
that the normal closure in π of an amenable ascendant subgroup is amenable.)

Corollary 2.3.1 (Gromov) Let π be a group with an infinite amenable nor-

mal subgroup A. Then β
(2)
i (π) = 0 for all i.

Proof If A is an infinite amenable group β
(2)
i (A) = 0 for all i [CG86].

2.3 2-Complexes and finitely presentable groups

If a group π has a finite presentation P with g generators and r relators then
the deficiency of P is def(P ) = g − r , and def(π) is the maximal deficiency of
all finite presentations of π . Such a presentation determines a finite 2-complex
C(P ) with one 0-cell, g 1-cells and r 2-cells and with π1(C(P )) ∼= π . Clearly
def(P ) = 1 − χ(P ) = β1(C(P )) − β2(C(P )) and so def(π) ≤ β1(π) − β2(π).
Conversely every finite 2-complex with one 0-cell arises in this way. In general,
any connected finite 2-complex X is homotopy equivalent to one with a single
0-cell, obtained by collapsing a maximal tree T in the 1-skeleton X [1] .

We shall say that π has geometric dimension at most 2, written g.d.π ≤ 2, if
it is the fundamental group of a finite aspherical 2-complex.

Theorem 2.4 Let X be a connected finite 2-complex with fundamental group

π . Then β
(2)
2 (X) ≥ β

(2)
2 (π), with equality if and only if X is aspherical.

Proof Since we may construct K = K(π, 1) by adjoining cells of dimen-
sion ≥ 3 to X the natural homomorphism H̄2(cX) is an epimorphism, and so

β
(2)
2 (X) ≥ β

(2)
2 (π). Since X is 2-dimensional π2(X) = H2(X̃ ; Z) is a subgroup

of H̄
(2)
2 (X̃), with trivial image in H̄

(2)
2 (K̃). If moreover β

(2)
2 (X) = β

(2)
2 (π) then

H̄2(cX) is an isomorphism, by Lemma 1.13 of [Lü], so π2(X) = 0 and X is
aspherical.

Corollary 2.4.1 Let π be a finitely presentable group. Then def(π) ≤ 1 +

β
(2)
1 (π) − β

(2)
2 (π). If def(π) = 1 + β

(2)
1 (π) then g.d.π ≤ 2.
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2.3 2-Complexes and finitely presentable groups 29

Proof This follows from the theorem and the L2 -Euler characteristic formula,
applied to the 2-complex associated to an optimal presentation for π .

Let G = F (2)×F (2). Then g.d.G = 2 and def(G) ≤ β1(G)−β2(G) = 0. Hence
〈u, v, x, y | ux = xu, uy = yu, vx = xv, vy = yv〉 is an optimal presentation,
and def(G) = 0. The subgroup N generated by u, vx−1 and y is normal

in G and G/N ∼= Z , so β
(2)
1 (G) = 0, by Lemma 2.1. Thus asphericity need

not imply equality in Theorem 2.4, in general. (Note also that since u and y
generate a rank two abelian subgroup N is not free. It follows from Corollary
8.6 of [Bi] that N is not FP2 , and so F (2) × F (2) is not almost coherent.)

Theorem 2.5 Let π be a finitely presentable group such that β
(2)
1 (π) = 0.

Then def(π) ≤ 1, with equality if and only if g.d.π ≤ 2 and β2(π) = β1(π)− 1.

Proof The upper bound and the necessity of the conditions follow as in Corol-
lary 2.4.1. Conversely, if they hold and X is a finite aspherical 2-complex with
π1(X) ∼= π then χ(X) = 1 − β1(π) + β2(π) = 0. After collapsing a maximal
tree in X we may assume it has a single 0-cell, and then the presentation read
off the 1- and 2-cells has deficiency 1.

This theorem applies if π is finitely presentable and is an ascending HNN ex-
tension with finitely generated base H , or has an infinite amenable normal

subgroup. In the latter case β
(2)
i (π) = 0 for all i, by Theorem 2.3. Thus if X

is a finite aspherical 2-complex with π1(X) ∼= π then χ(X) = 0, and so the
condition β2(π) = β1(π) − 1 is redundant.

[Similarly, if Z[π] has a safe extension Ψ and C∗ is the equivariant cellular
chain complex of the universal cover X̃ then Ψ ⊗Z[π] C∗ is a complex of free
left Ψ-modules with bases corresponding to the cells of X . Since Ψ is a safe
extension Hi(X; Ψ) = Ψ⊗Z[π]Hi(X; Z[π]) = 0 for all i, and so again χ(X) = 0.]

Corollary 2.5.1 Let π be a finitely presentable group with an FP2 normal
subgroup N such that π/N ∼= Z . Then def(π) = 1 if and only if N is free.

Proof If def(π) = 1 then g.d.π ≤ 2, by Theorem 2.5, and so N is free by
Corollary 8.6 of [Bi]. The converse is clear.

In fact it suffices to assume that N is finitely generated (rather than FP2 )
[Ko06]. (See Corollary 4.3.1 below.)

The next result is a version of the “Tits alternative” for coherent groups of coho-
mological dimension 2. For each m ∈ Z let Z∗m be the group with presentation
〈a, t | tat−1 = am〉. (Thus Z∗0

∼= Z and Z∗−1
∼= Z ⋊−1 Z .)

Geometry & Topology Monographs, Volume 5 (2002)



30 Chapter 2: 2-Complexes and PD3 -complexes

Theorem 2.6 Let π be a finitely generated group such that c.d.π = 2. Then
π ∼= Z∗m for some m 6= 0 if and only if it is almost coherent and restrained
and π/π′ is infinite.

Proof The conditions are easily seen to be necessary. Conversely, if π is
almost coherent and π/π′ is infinite π is an HNN extension with FP2 base
H , by Theorem 1.13. The HNN extension must be ascending as π has no
noncyclic free subgroup. Hence H2(π; Z[π]) is a quotient of H1(H; Z[π]) ∼=
H1(H; Z[H])⊗Z[π/H], by the Brown-Geoghegan Theorem. Now H2(π; Z[π]) 6=
0, since c.d.π = 2, and so H1(H; Z[H]) 6= 0. Since H is restrained it must
have two ends, so H ∼= Z and π ∼= Z∗m for some m 6= 0.

Does this remain true without any such coherence hypothesis?

Corollary 2.6.1 Let π be a finitely generated group. Then the following are
equivalent:

(1) π ∼= Z∗m for some m ∈ Z ;

(2) π is torsion free, elementary amenable, FP2 and h(π) ≤ 2;

(3) π is elementary amenable and c.d.π ≤ 2;

(4) π is elementary amenable and def(π) = 1; and

(5) π is almost coherent and restrained and def(π) = 1.

Proof Condition (1) clearly implies the others. Suppose (2) holds. We may
assume that h(π) = 2 and h(

√
π) = 1 (for otherwise π ∼= Z , Z2 = Z∗1 or

Z∗−1 ). Hence h(π/
√
π) = 1, and so π/

√
π is an extension of Z or D by

a finite normal subgroup. If π/
√
π maps onto D then π ∼= A ∗C B , where

[A : C] = [B : C] = 2 and h(A) = h(B) = h(C) = 1, and so π ∼= Z⋊−1Z .
But then h(

√
π) = 2. Hence we may assume that π maps onto Z , and so π is

an ascending HNN extension with finitely generated base H , by Theorem 1.13.
Since H is torsion free, elementary amenable and h(H) = 1 it must be infinite
cyclic and so (2) implies (1). If (3) holds π is solvable, by Theorems 1.11, and
1.9, and so (1) follows from [Gi79]. If def(π) = 1 then π is an ascending HNN

extension with finitely generated base, so β
(2)
1 (π) = 0, by Lemma 2.1. Hence

(4) and (5) each imply (1) by Theorems 2.5 and 2.6.

Note that (3) ⇒ (2) if π is FP2 , so we may then avoid [Gi79]. Are these
conditions equivalent to “π is almost coherent and restrained and c.d.π ≤ 2”?
Note also that if def(π) > 1 then π has noncyclic free subgroups [Ro77].
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Let X be the class of groups of finite graphs of groups, all of whose edge and
vertex groups are infinite cyclic. Kropholler has shown that a finitely generated,
noncyclic group G is in X if and only if c.d.G = 2 and G has an infinite cyclic
subgroup H which meets all its conjugates nontrivially. Moreover G is then
coherent, one ended and g.d.G = 2 [Kr90’].

Theorem 2.7 Let π be a finitely generated group such that c.d.π = 2. If π
has a nontrivial normal subgroup E which is either elementary amenable or
almost coherent, locally virtually indicable and restrained then π is in X and
either E ∼= Z or π/π′ is infinite and π′ is abelian.

Proof If E is elementary amenable it is virtually solvable, by Theorem 1.11,
since c.d.E ≤ c.d.π . Otherwise finitely generated subgroups of E are metabelian,
by Theorem 2.6 and its Corollary, and so all words in E of the form [[g, h], [g′, h′]]
are trivial. Hence E is metabelian also. Therefore A =

√
E is nontrivial, and

as A is characteristic in E it is normal in π . Since A is the union of its finitely
generated subgroups, which are torsion free nilpotent groups of Hirsch length
≤ 2, it is abelian. If A ∼= Z then [π : Cπ(A)] ≤ 2. Moreover Cπ(A)′ is free,
by Bieri’s Theorem. If Cπ(A)′ is cyclic then π ∼= Z2 or Z⋊−1Z ; if Cπ(A)′

is nonabelian then E = A ∼= Z . Otherwise c.d.A = c.d.Cπ(A) = 2 and so
Cπ(A) = A, by Bieri’s Theorem. If A has rank 1 then Aut(A) is abelian, so
π′ ≤ Cπ(A) and π is metabelian. If A ∼= Z2 then π/A is isomorphic to a
subgroup of GL(2,Z), and so is virtually free. As A together with an element
t ∈ π of infinite order modulo A would generate a subgroup of cohomologi-
cal dimension 3, which is impossible, the quotient π/A must be finite. Hence
π ∼= Z2 or Z⋊−1Z . In all cases π is in X , by Theorem C of [Kr90’].

If c.d.π = 2, ζπ 6= 1 and π is nonabelian then ζπ ∼= Z and π′ is free, by Bieri’s
Theorem. On the evidence of his work on 1-relator groups Murasugi conjectured
that if G is a finitely presentable group other than Z2 and def(G) ≥ 1 then
ζG ∼= Z or 1, and is trivial if def(G) > 1, and he verified this for classical link
groups [Mu65]. Theorems 2.3, 2.5 and 2.7 together imply that if ζG is infinite
then def(G) = 1 and ζG ∼= Z .

It remains an open question whether every finitely presentable group of coho-
mological dimension 2 has geometric dimension 2. The following partial answer
to this question was first obtained by W.Beckmann under the additional as-
sumptions that π is FF and c.d.π ≤ 2 (cf. [Dy87’]).

Theorem 2.8 Let π be a finitely presentable group. Then g.d.π ≤ 2 if and
only if c.d.Qπ ≤ 2 and def(π) = β1(π) − β2(π).
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Proof The necessity of the conditions is clear. Suppose that they hold and
that C(P ) is the 2-complex corresponding to a presentation for π of maximal

deficiency. The cellular chain complex of C̃(P ) gives an exact sequence

0 → K = π2(C(P )) → Z[π]r → Z[π]g → Z[π] → Z → 0.

Extending coefficients to Q gives a similar exact sequence, with kernel Q⊗ZK
on the left. As c.d.Qπ ≤ 2 the image of Q[π]r in Q[π]g is projective, by
Schanuel’s Lemma. Therefore the inclusion of Q ⊗Z K into Q[π]r splits, and
Q⊗ZK is projective. Moreover dimQ(Q⊗Z[π]K) = 0, and so Q⊗ZK = 0, since
the Weak Bass Conjecture holds for π [Ec86]. Since K is free as an abelian

group it imbeds in Q ⊗Z K , and so is also 0. Hence C̃(P ) is contractible, and
so C(P ) is aspherical.

The arguments of this section may easily be extended to other highly connected
finite complexes. A [π,m]f -complex is a finite m-dimensional complex X with

π1(X) ∼= π and with (m − 1)-connected universal cover X̃ . Such a [π,m]f -
complex X is aspherical if and only if πm(X) = 0. In that case we shall say
that π has geometric dimension at most m, written g.d.π ≤ m.

Theorem 2.4 ′ Let X be a [π,m]f -complex and suppose that β
(2)
i (π) = 0 for

i < m. Then (−1)mχ(X) ≥ 0. If χ(X) = 0 then X is aspherical.

In general the implication in the statement of this theorem cannot be re-

versed. For S1 ∨ S1 is an aspherical [F (2), 1]f -complex and β
(2)
0 (F (2)) = 0,

but χ(S1 ∨ S1) = −1 6= 0.

One of the applications of L2 -cohomology in [CG86] was to show that if X is
a finite aspherical complex such that π1(X) has an infinite amenable normal
subgroup A then χ(X) = 0. (This generalised a theorem of Gottlieb, who
assumed that A was a central subgroup [Go65].) We may similarly extend
Theorem 2.5 to give a converse to the Cheeger-Gromov extension of Gottlieb’s
Theorem.

Theorem 2.5 ′ Let X be a [π,m]f -complex and suppose that π has an infinite
amenable normal subgroup. Then X is aspherical if and only if χ(X) = 0.

2.4 Poincaré duality

The main reason for studying PD-complexes is that they represent the ho-
motopy theory of manifolds. However they also arise in situations where the
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geometry does not immediately provide a corresponding manifold. For instance,
under suitable finiteness assumptions an infinite cyclic covering space of a closed
4-manifold with Euler characteristic 0 will be a PD3 -complex, but need not be
homotopy equivalent to a closed 3-manifold. (See Chapter 11.)

A PDn -space is a space homotopy equivalent to a cell complex which satisfies
Poincaré duality of formal dimension n with local coefficients. If X is a PDn -
space with fundamental group π then C∗(X̃) is Z[π]-finitely dominated, so π is
FP2 . The PDn -space X is finite if C∗(X̃) is Z[π]-chain homotopy equivalent
to a finite free Z[π]-complex. It is a PDn -complex if it is finitely dominated.
This is so if and only if π is finitely presentable [Br72, Br75]. Finite PDn -
complexes are homotopy equivalent to finite complexes. (Note also that a cell
complex X is finitely dominated if and only if X×S1 is finite. See Proposition
3 of [Ra95].) Although PDn -complexes are most convenient for our purposes,
the broader notion of PDn -space is occasionally useful. All the PDn -complexes
that we consider shall be connected.

Let P be a PDn -complex. We may assume that P = Po ∪ Dn , where Po
is a complex of dimension ≤ max{3, n − 1} [Wl67]. If C∗ is the cellular
chain complex of P̃ the Poincaré duality isomorphism may be described in
terms of a chain homotopy equivalence C∗ ∼= Cn−∗ , which induces isomor-
phisms from Hj(C∗) to Hn−j(C∗), given by cap product with a generator [P ]
of Hn(P ;Zw1(P )) = Hn(Z̄ ⊗Z[π1(P )] C∗). (Here the first Stiefel-Whitney class
w1(P ) is considered as a homomorphism from π1(P ) to Z/2Z .) From this point
of view it is easy to see that Poincaré duality gives rise to (Z-linear) isomor-
phisms from Hj(P ;B) to Hn−j(P ; B̄), where B is any left Z[π1(P )]-module
of coefficients. (See [Wl67] or Chapter II of [Wl] for further details.) If P is
a Poincaré duality complex then the L2 -Betti numbers also satisfy Poincaré
duality. (This does not require that P be finite or orientable!)

A group G is a PDn -group (as defined in Chapter 1) if and only if K(G, 1) is
a PDn -space. For every n ≥ 4 there are PDn -groups which are not finitely
presentable [Da98].

Dwyer, Stolz and Taylor have extended Strebel’s Theorem to show that if H is
a subgroup of infinite index in π1(P ) then the corresponding covering space PH
has homological dimension < n; hence if moreover n 6= 3 then PH is homotopy
equivalent to a complex of dimension < n [DST96].

2.5 PD3-complexes

In this section we shall summarize briefly what is known about PDn -complexes
of dimension at most 3. It is easy to see that a connected PD1 -complex must
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be homotopy equivalent to S1 . The 2-dimensional case is already quite diffi-
cult, but has been settled by Eckmann, Linnell and Müller, who showed that
every PD2 -complex is homotopy equivalent to a closed surface. (See Chapter
VI of [DD]. This result has been further improved by Bowditch’s Theorem.)
There are PD3 -complexes with finite fundamental group which are not homo-
topy equivalent to any closed 3-manifold [Th77]. On the other hand, Turaev’s
Theorem below implies that every PD3 -complex with torsion free fundamental
group is homotopy equivalent to a closed 3-manifold if every PD3 -group is a
3-manifold group. The latter is so if the Hirsch-Plotkin radical of the group is
nontrivial (see §7 below), but remains open in general.

The fundamental triple of a PD3 -complex P is (π1(P ), w1(P ), cP∗[P ]). This is
a complete homotopy invariant for such complexes. (See also §6 and §9 below.)

Theorem (Hendriks) Two PD3 -complexes are homotopy equivalent if and
only if their fundamental triples are isomorphic.

Turaev has characterized the possible triples corresponding to a given finitely
presentable group and orientation character, and has used this result to deduce
a basic splitting theorem [Tu90].

Theorem (Turaev) A PD3 -complex is irreducible with respect to connected
sum if and only if its fundamental group is indecomposable with respect to free
product.

Wall has asked whether every PD3 -complex whose fundamental group has in-
finitely many ends is a proper connected sum [Wl67]. Since the fundamental
group of a PDn -space is FP2 it is the fundamental group of a finite graph
of (finitely generated) groups in which each vertex group has at most one end
and each edge group is finite, by Theorem VI.6.3 of [DD]. Starting from this
observation, Crisp has given a substantial partial answer to Wall’s question
[Cr00].

Theorem (Crisp) Let P be an indecomposable PD+
3 -complex. If π1(P ) is

not virtually free then it has one end, and so P is aspherical.

The arguments of Turaev and Crisp extend to PD3 -spaces in a straightforward
manner. Together they that if P is a PD3 -space π = π1(P ) is virtually torsion
free, and if π is indecomposable and has more than one end it is virtually
free. However it need not be free. There is a finite PD3 -complex with π ∼=
S3 ∗Z/2Z S3 and double cover homotopy equivalent to L(3, 1)♯L(3, 1) , giving a
counter-example to the above question of Wall [Hi04].
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2.6 The spherical cases

Let P be a PD3 -space with fundamental group π . The Hurewicz Theorem,
Poincaré duality and a choice of orientation for P together determine an iso-
morphism π2(P ) ∼= H1(π; Z[π]). In particular, π2(P ) = 0 if and only if π is
finite or has one end.

The possible PD3 -complexes with π finite are well understood.

Theorem 2.9 [Wl67] Let X be a PD3 -complex with finite fundamental
group F . Then

(1) X̃ ≃ S3 , F has cohomological period dividing 4 and X is orientable;

(2) the first nontrivial k -invariant k(X) generates H4(F ; Z) ∼= Z/|F |Z .

(3) the homotopy type of X is determined by F and the orbit of k(M) under
Out(F ) × {±1}.

Proof Since the universal cover X̃ is also a finite PD3 -complex it is homotopy
equivalent to S3 . A standard Gysin sequence argument shows that F has
cohomological period dividing 4. Suppose that X is nonorientable, and let C be
a cyclic subgroup of F generated by an orientation reversing element. Let Z̃ be
the nontrivial infinite cyclic Z[C]-module. Then H2(XC ; Z̃) ∼= H1(XC ; Z) ∼= C ,
by Poincaré duality. But H2(XC ; Z̃) ∼= H2(C; Z̃) = 0, since the classifying map
from XC = X̃/C to K(C, 1) is 3-connected. Therefore X must be orientable
and F must act trivially on π3(X) ∼= H3(X̃ ; Z).

The image of the orientation class of X generates H3(F ; Z) ∼= Z/|F |Z . The
Bockstein β : H3(F ; Q/Z) → H4(F ; Z) is an isomorphism, since Hq(F ; Q) = 0
for q > 0, and the bilinear pairing from H3(F ; Z)×H4(F ; Z) to Q/Z given by
(h, c) 7→ β−1(c)(h) is nonsingular. Each generator g of H3(F ; Z) determines
an unique kg ∈ H4(F ; Z) such that β−1(kg)(g) = 1

|F | mod Z. The element

corresponding to cX∗[X] is the first nontrivial k -invariant of X . Inner au-
tomorphisms of F act trivially on H4(F ; Z), while changing the orientation
of X corresponds to multiplication by −1. Thus the orbit of k(M) under
Out(F ) × {±1} is the significant invariant.

We may construct the third stage of the Postnikov tower for X by adjoining
cells of dimension greater than 4 to X . The natural inclusion j : X → P3(X)
is then 4-connected. If X1 is another such PD3 -complex and θ : π1(X1) → F
is an isomorphism which identifies the k -invariants then there is a 4-connected
map j1 : X1 → P3(X) inducing θ , which is homotopic to a map with image
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in the 4-skeleton of P3(X), and so there is a map h : X1 → X such that j1 is
homotopic to jh. The map h induces isomorphisms on πi for i ≤ 3, since j
and j1 are 4-connected, and so the lift h̃ : X̃1 ≃ S3 → X̃ ≃ S3 is a homotopy
equivalence, by the theorems of Hurewicz and Whitehead. Thus h is itself a
homotopy equivalence.

The list of finite groups with cohomological period dividing 4 is well known.
Each such group F and generator k ∈ H4(F ; Z) is realized by some PD+

3 -
complex [Sw60, Wl67]. (See also Chapter 11 below.) In particular, there is
an unique homotopy type of PD3 -complexes with fundamental group S3 , but
there is no 3-manifold with this fundamental group [Mi57].

The fundamental group of a PD3 -complex P has two ends if and only if P̃ ≃
S2 , and then P is homotopy equivalent to one of the four S2 × E1 -manifolds
S2 × S1 , S2×̃S1 , RP 2 × S1 or RP 3♯RP 3 . The following simple lemma leads
to an alternative characterization.

Lemma 2.10 Let P be a finite dimensional complex with fundamental group
π and such that Hq(P̃ ; Z) = 0 for all q > 2. If C is a subgroup of π then
Hs+3(C; Z) ∼= Hs(C;π2(P )) for all s ≥ 1.

Proof Since H2(P̃ ; Z) ∼= π2(P ) this follows by devissage applied to the ho-
mology of C∗(P̃ ), considered as a chain complex over Z[C].

Theorem 2.11 Let P be a PD3 -space whose fundamental group π has a
nontrivial finite normal subgroup N . Then either P is homotopy equivalent to
RP 2 × S1 or π is finite.

Proof We may clearly assume that π is infinite. Then Hq(P̃ ; Z) = 0 for q > 2,
by Poincaré duality. Let Π = π2(P ). The augmentation sequence

0 → A(π) → Z[π] → Z → 0

gives rise to a short exact sequence

0 → HomZ[π](Z[π],Z[π]) → HomZ[π](A(π),Z[π]) → H1(π; Z[π]) → 0.

Let f : A(π) → Z[π] be a homomorphism and ζ be a central element of π .
Then f.ζ(i) = f(i)ζ = ζf(i) = f(ζi) = f(iζ) and so (f.ζ−f)(i) = f(i(ζ−1)) =
if(ζ − 1) for all i ∈ A(π). Hence f.ζ − f is the restriction of a homomorphism
from Z[π] to Z[π]. Thus central elements of π act trivially on H1(π; Z[π]).
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If n ∈ N the centraliser γ = Cπ(〈n〉) has finite index in π , and so the covering
space Pγ is again a PD3 -complex with universal covering space P̃ . Therefore

Π ∼= H1(γ; Z[γ]) as a (left) Z[γ]-module. In particular, Π is a free abelian
group. Since n is central in γ it acts trivially on H1(γ; Z[γ]) and hence via
w(n) on Π. Suppose first that w(n) = 1. Then Lemma 2.10 gives an exact
sequence

0 → Z/|n|Z → Π → Π → 0,

where the right hand homomorphism is multiplication by |n|, since n has finite
order and acts trivially on Π. As Π is torsion free we must have n = 1.

Therefore if n ∈ N is nontrivial it has order 2 and w(n) = −1. In this case
Lemma 2.10 gives an exact sequence

0 → Π → Π → Z/2Z → 0,

where the left hand homomorphism is multiplication by 2. Since Π is a free
abelian group it must be infinite cyclic. Hence P̃ ≃ S2 and P̃ /(Z/2Z) ≃
RP 2 . The theorem now follows, since any self homotopy equivalence of RP 2 is
homotopic to the identity (compare Theorem 4.4 of [Wl67]).

If π1(P ) has a finitely generated infinite normal subgroup of infinite index then
it has one end, and so P is aspherical. We shall discuss this case next.

2.7 PD3-groups

As a consequence of the work of Turaev and Crisp the study of PD3 -complexes
reduces largely to the study of PD3 -groups. It is not yet known whether all such
groups are 3-manifold groups, or even whether they must be finitely presentable.
The fundamental groups of aspherical 3-manifolds which are Seifert fibred or are
finitely covered by surface bundles may be characterized among all PD3 -groups
in simple group-theoretic terms.

Theorem 2.12 Let G be a PD3 -group with a nontrivial FP2 normal sub-
group N of infinite index. Then either

(1) N ∼= Z and G/N is virtually a PD2 -group; or

(2) N is a PD2 -group and G/N has two ends.

Proof Let e be the number of ends of N . If N is free then H3(G; Z[G]) ∼=
H2(G/N ;H1(N ; Z[G])). Since N is finitely generated and G/N is FP2 this
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is in turn isomorphic to H2(G/N ; Z[G/N ])(e−1) . Since G is a PD3 -group we
must have e − 1 = 1 and so N ∼= Z . We then have H2(G/N ; Z[G/N ]) ∼=
H3(G; Z[G]) ∼= Z , so G/N is virtually a PD2 -group, by Bowditch’s Theorem.

Otherwise c.d.N = 2 and so e = 1 or ∞. The LHSSS gives an isomorphism
H2(G; Z[G]) ∼= H1(G/N ; Z[G/N ]) ⊗ H1(N ; Z[N ]) ∼= H1(G/N ; Z[G/N ])e−1 .
Hence either e = 1 or H1(G/N ; Z[G/N ]) = 0. But in the latter case we
have H3(G; Z[G]) ∼= H2(G/N ; Z[G/N ]) ⊗ H1(N ; Z[N ]) and so H3(G; Z[G])
is either 0 or infinite dimensional. Therefore e = 1, and so H3(G; Z[G]) ∼=
H1(G/N ; Z[G/N ])⊗H2(N ; Z[N ]). Hence G/N has two ends and H2(N ; Z[N ])
∼= Z , so N is a PD2 -group.

We shall strengthen this result in Theorem 2.17 below.

Corollary 2.12.1 A PD3 -space P is homotopy equivalent to the mapping
torus of a self homeomorphism of a closed surface if and only if there is an
epimorphism φ : π1(P ) → Z with finitely generated kernel.

Proof This follows from Theorems 1.19, 2.11 and 2.12.

If π1(P ) is infinite and is a nontrivial direct product then P is homotopy
equivalent to the product of S1 with a closed surface.

Theorem 2.13 Let G be a PD3 -group. If S is an almost coherent, restrained,
locally virtually indicable subgroup then S is virtually solvable. If S has infinite
index in G it is virtually abelian.

Proof Suppose first that S has finite index in G, and so is again a PD3 -
group. Since S is virtually indicable we may assume without loss of generality
that β1(S) > 0. Then S is an ascending HNN extension H∗φ with finitely
generated base. Since G is almost coherent H is finitely presentable, and since
H3(S; Z[S]) ∼= Z it follows from Lemma 3.4 of [BG85] that H is normal in S
and S/H ∼= Z . Hence H is a PD2 -group, by Theorem 2.12. Since H has no
noncyclic free subgroup it is virtually Z2 and so S and G are virtually poly-Z .

If [G : S] = ∞ then c.d.S ≤ 2, by Strebel’s Theorem. Let J be a finitely
generated subgroup of S . Then J is FP2 and virtually indicable, and hence is
virtually solvable, by Theorem 2.6 and its Corollary. Since J contains a PD2 -
group, by Corollary 1.4 of [KK05], it is virtually abelian. Hence S is virtually
abelian also.
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As the fundamental groups of virtually Haken 3-manifolds are coherent and
locally virtually indicable, this implies the “Tits alternative” for such groups
[EJ73]. A slight modification of the argument gives the following corollary.

Corollary 2.13.1 A PD3 -group G is virtually poly-Z if and only if it is
coherent, restrained and has a subgroup of finite index with infinite abelianiza-
tion.

If β1(G) ≥ 2 the hypothesis of coherence is redundant, for there is then an
epimorphism p : G → Z with finitely generated kernel, by [BNS87], and the
kernel is then FP2 by Theorem 1.19.

The argument of Theorem 2.13 and its corollary extend to show by induction
on m that a PDm -group is virtually poly-Z if and only if it is restrained and
every finitely generated subgroup is FPm−1 and virtually indicable.

Theorem 2.14 Let G be a PD3 -group. Then G is the fundamental group of
an aspherical Seifert fibred 3-manifold or a Sol3 -manifold if and only if

√
G 6= 1.

Moreover

(1) h(
√
G) = 1 if and only if G is the group of an H2 ×E1 - or S̃L-manifold;

(2) h(
√
G) = 2 if and only if G is the group of a Sol3 -manifold;

(3) h(
√
G) = 3 if and only if G is the group of an E3 - or Nil3 -manifold.

Proof The necessity of the conditions is clear. (See [Sc83’], or §2 and §3 of
Chapter 7 below.) Certainly h(

√
G) ≤ c.d.

√
G ≤ 3. Moreover c.d.

√
G = 3

if and only if [G :
√
G] is finite, by Strebel’s Theorem. Hence G is virtually

nilpotent if and only if h(
√
G) = 3. If h(

√
G) = 2 then

√
G is locally abelian,

and hence abelian. Moreover
√
G must be finitely generated, for otherwise

c.d
√
G = 3. Thus

√
G ∼= Z2 and case (2) follows from Theorem 2.12.

Suppose now that h(
√
G) = 1 and let C = CG(

√
G). Then

√
G is torsion free

abelian of rank 1, so Aut(
√
G) is isomorphic to a subgroup of Q× . Therefore

G/C is abelian. If G/C is infinite then c.d.C ≤ 2 by Strebel’s Theorem and
√
G

is not finitely generated, so C is abelian, by Bieri’s Theorem, and hence G is
solvable. But then h(

√
G) > 1, which is contrary to our hypothesis. Therefore

G/C is isomorphic to a finite subgroup of Q× ∼= Z∞⊕ (Z/2Z) and so has order
at most 2. In particular, if A is an infinite cyclic subgroup of

√
G then A is

normal in G, and so G/A is virtually a PD2 -group, by Theorem 2.12. If G/A
is a PD2 -group then G is the fundamental group of an S1 -bundle over a closed
surface. In general, a finite torsion free extension of the fundamental group of
a closed Seifert fibred 3-manifold is again the fundamental group of a closed
Seifert fibred 3-manifold, by [Sc83] and Section 63 of [Zi].
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The heart of this result is the deep theorem of Bowditch. The weaker character-
ization of fundamental groups of Sol3 -manifolds and aspherical Seifert fibred
3-manifolds as PD3 -groups G such that

√
G 6= 1 and G has a subgroup of

finite index with infinite abelianization is much easier to prove [H2]. There is
as yet no comparable characterization of the groups of H3 -manifolds, although
it may be conjectured that these are exactly the PD3 -groups with no noncyclic
abelian subgroups. (Note also that it remains an open question whether every
closed H3 -manifold is finitely covered by a mapping torus.)

Nil3 - and S̃L-manifolds are orientable, and so their groups are PD+
3 -groups.

This can also be seen algebraically, as every such group has a characteristic
subgroup H which is a nonsplit central extension of a PD+

2 -group β by Z . An
automorphism of such a group H must be orientation preserving.

Theorem 2.14 implies that if a PD3 -group G is not virtually poly-Z then its
maximal elementary amenable normal subgroup is Z or 1. For this subgroup
is virtually solvable, by Theorem 1.11, and if it is nontrivial then so is

√
G.

Lemma 2.15 Let G be a group such that c.d.G = 2 and let K be an ascendant
FP2 subgroup of G. Then either [G : K] is finite or K is free.

Proof We may assume that K is not free, and so c.d.K = c.d.G = 2. Suppose
first that K is normal in G. Then G/K is locally finite, by Corollary 8.6 of
[Bi], and so G is the increasing union of a (possibly finite) sequence of FP2

subgroups K = U0 < U1 < . . . such that [Ui+1 : Ui] is finite, for all i ≥ 0. It
follows from the Kurosh subgroup theorem that if U ≤ V are finitely generated
groups and [V : U ] is finite then V has strictly fewer indecomposable factors
than U unless both groups are indecomposable. (See Lemma 1.4 of [Sc76]).
Hence if K is a nontrivial free product then [G : K] is finite. Otherwise K
has one end, and so Hs(Ui; Z[Ui]) = 0 for s ≤ 1 and i ≥ 0. Since K is FP2 ,
the successive indices are finite and c.dUi = 2 = c.d.G for all i ≥ 0 the union
is finitely generated, by the Gildenhuys-Strebel Theorem. Hence the sequence
terminates and [G : K] is again finite.

If K = K0 < K1 < . . .Ki = G is an ascendant chain then [Kα+1 : Kα] < ∞
for all α, by the argument just given. Let ω be the union of the finite ordinals
in i. Then ∪α<ωKα is finitely generated, by the Gildenhuys-Strebel Theorem,
and so ω is finite. Hence the chain is finite, and so [G : K] <∞.

Theorem 2.16 Let G be a PD3 -group with an ascending sequence of sub-
groups K0 < K1 < . . . such that Kn is normal in Kn+1 for all n ≥ 0. If
K = K0 is one-ended and FP2 then the sequence is finite and either [Kn : K]
or [G : Kn] is finite, for all n ≥ 0.
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Proof Suppose that [K1 : K] and [G : K1] are both infinite. Since K has
one end it is not free and so c.d.K = c.d.K1 = 2, by Strebel’s Theorem. Hence
there is a free Z[K1]-module W such that H2(K1;W ) 6= 0, by Proposition
5.1 of [Bi]. Since K is FP2 and has one end Hq(K;W ) = 0 for q = 0 or
1 and H2(K;W ) is an induced Z[K1/K]-module. Since [K1 : K] is infinite
H0(K1/K;H2(K;W )) = 0, by Lemma 8.1 of [Bi]. The LHSSS for K1 as an
extension of K1/K by K now gives Hr(K1;W ) = 0 for r ≤ 2, which is a
contradiction. A similar argument applies to the other terms of the sequence.

Suppose that [Kn : K] is finite for all n ≥ 0 and let K̂ = ∪n≥0Kn . If c.d.K̂ = 2

then [K̂ : K] <∞, by Lemma 2.15. Thus the sequence must be finite.

Corollary 2.16.1 Let G be a PD3 -group with an FP2 subgroup H which
has one end and is of infinite index in G. Let H0 = H and Hi+1 = NG(Hi)
for i ≥ 0. Then Ĥ = ∪Hi is FP2 and has one end, and either c.d.Ĥ = 2 and
NG(Ĥ) = Ĥ or [G : Ĥ] <∞ and G is virtually the group of a surface bundle.

Proof This follows immediately from Theorems 2.12 and 2.16.

Corollary 2.16.2 If G has a subgroup H which is a PD2 -group with χ(H) =
0 (respectively, < 0) then either it has such a subgroup which is its own nor-
malizer in G or it is virtually the group of a surface bundle.

Proof If c.d.Ĥ = 2 then [Ĥ : H] < ∞, so Ĥ is a PD2 -group, and χ(H) =
[Ĥ : H]χ(Ĥ).

It is possible to use the fact that Out(H) is virtually torsion free instead of
appealing to [GS81] to prove this corollary.

Theorem 2.17 Let G be a PD3 -group with a nontrivial FP2 subgroup H
which is ascendant and of infinite index in G. Then either H ∼= Z and H is
normal in G or G is virtually poly-Z or H is a PD2 -group, [G : NG(H)] <∞
and NG(H)/H has two ends.

Proof Let H = H0 < H1 < · · · < Hi = G be an ascendant sequence and let
γ = min{α < i | [Hα : H] = ∞}. Let Ĥ = ∪α<γHα . Then h.d.Ĥ ≤ 2 and so

[G : Ĥ] = ∞. Hence c.d.Ĥ ≤ 2 also, by Strebel’s Theorem, and so either H is
free or [Ĥ : H] <∞, by Lemma 2.15.

If H is not free then c.d.Ĥ = 2 and Ĥ is FP2 , normal and of infinite index
in Hγ . Therefore [G : Hγ ] <∞ and so Hγ is a PD3 -group, by Theorem 2.16.

Geometry & Topology Monographs, Volume 5 (2002)



42 Chapter 2: 2-Complexes and PD3 -complexes

Hence Ĥ is a PD2 -group and Hγ/Ĥ has two ends, by Theorem 2.12. Since

[Ĥ : H] < ∞ it follows easily that H is a PD2 -group, [G : NG(H)] <∞ and
NG(H)/H has two ends.

If H ∼= F (r) for some r > 1 then γ and [Ĥ : H] are finite, since [Hn : H]
divides χ(H) = 1 − r for all n < γ . A similar argument shows that Hγ/Ĥ is
not locally finite. Let K be a finitely generated subgroup of Hγ which contains

Ĥ as a subgroup of infinite index. Then K/Ĥ is virtually free, by Theorem 8.4
of [Bi], and so K is finitely presentable. In particular, χ(K) = χ(Ĥ)χ(K/Ĥ).
Now χ(K) ≤ 0 (see §9 of [KK05]). Since χ(Ĥ) < 0 this is only possible if
χ(K/Ĥ) ≥ 0, and so K/Ĥ is virtually Z . Hence we may assume that Hγ is
the union of an increasing sequence N0 = H < N1 ≤ . . . of finitely generated
subgroups with Ni/H virtually Z , for i ≥ 1. For each i ≥ 1 the group Ni

is FP2 , c.d.Ni = 2, Hs(Ni; Z[Ni]) = 0 for s ≤ 1 and [Ni+1 : Ni] is finite.
Therefore Hγ is finitely generated, by the Gildenhuys-Strebel Theorem.

In particular, Hγ is virtually a semidirect product Ĥ ⋊ Z , and so it is FP2

and c.d.Hγ = 2. Hence Hγ is a PD2 -group, by the earlier argument. But

PD2 -groups do not have normal subgroups such as Ĥ . Therefore if H is free
it is infinite cyclic: H ∼= Z . Since

√
Hα is characteristic in Hα it is normal

in Hα+1 , for each α < i. Transfinite induction now shows that H ≤
√
G.

Therefore either
√
G ∼= Z , so H ∼= Z and is normal in G, or G is virtually

poly-Z , by Theorem 2.14.

If H is a PD2 -group NG(H) is the fundamental group of a 3-manifold which is
double covered by the mapping torus of a surface homeomorphism. There are
however Nil3 -manifolds with no normal PD2 -subgroup (although they always
have subnormal copies of Z2 ).

The original version of this result assumed that H is subnormal in G. (See
[BH91] for a proof not using [Bo04] or [KK05].)

2.8 Subgroups of PD3-groups and 3-manifold groups

The central role played by incompressible surfaces in the geometric study of
Haken 3-manifolds suggests strongly the importance of studying subgroups of
infinite index in PD3 -groups. Such subgroups have cohomological dimension
≤ 2, by Strebel’s Theorem.

There are substantial constraints on 3-manifold groups and their subgroups.
Every finitely generated subgroup of a 3-manifold group is the fundamental
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group of a compact 3-manifold (possibly with boundary), by Scott’s Core The-
orem [Sc73], and thus is finitely presentable and is either a 3-manifold group or
has finite geometric dimension 2 or is a free group. If the Thurston Geometriza-
tion Conjecture is true every aspherical closed 3-manifold is Haken, hyperbolic
or Seifert fibred. The groups of such 3-manifolds are residually finite [He87],
and the centralizer of any element in the group is finitely generated [JS79].
Solvable subgroups of such groups are virtually poly-Z [EJ73].

In contrast, any group of finite geometric dimension 2 is the fundamental group
of a compact aspherical 4-manifold with boundary, obtained by attaching 1- and
2-handles to D4 . On applying the reflection group trick of Davis [Da83] to the
boundary we see that each such group embeds in a PD4 -group. For instance,
the product of two nonabelian PD+

2 -groups contains a copy of F (2)×F (2), and
so is a PD+

4 -group which is not almost coherent. No PD4 -group containing
a Baumslag-Solitar group 〈x, t | txpt−1 = xq〉 is residually finite, since this
property is inherited by subgroups. Thus the question of which groups of finite
geometric dimension 2 are subgroups of PD3 -groups is critical.

Kapovich and Kleiner have given an algebraic Core Theorem, showing that
every one-ended FP2 subgroup H in a PD3 -group G is the “ambient group”
of a PD3 -pair (H,S) [KK05]. Using this the argument of [Kr90a] may be
adapted to show that every strictly increasing sequence of centralizers in G
has length at most 4 [Hi06]. (The finiteness of such sequences and the fact
that centralizers in G are finitely generated or rank 1 abelian are due to Castel
[Ca04].) With the earlier work of Kropholler and Roller [KR88, KR89, Kr90,
Kr93] it follows that if G has a subgroup H ∼= Z2 and

√
G = 1 then it splits

over a subgroup commensurate with H . It also follows easily from the algebraic
Core Theorem that no nontrivial Baumslag-Solitar relation holds in G [KK05].
(One might ask “which X -groups are subgroups of PD3 -groups?”.)

The geometric conclusions of Theorem 2.14 and the coherence of 3-manifold
groups suggest that Theorems 2.12 and 2.17 should hold under the weaker
hypothesis that N be finitely generated. (Compare Theorem 1.19.) It is known
that F (2) × F (2) is not a subgroup of any PD3 -group [KR89]. This may be
regarded as a weak coherence result.

Is there a characterization of virtual PD3 -groups parallel to Bowditch’s Theo-
rem? (It may be relevant that homology n-manifolds are manifolds for n ≤ 2.
High dimensional analogues are known to be false. For every k ≥ 6 there are
FPk groups G with Hk(G; Z[G]) ∼= Z but which are not virtually torsion free
[FS93].)
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2.9 π2(P ) as a Z[π]-module

Let P be a PD3 -space with fundamental group π and orientation character
w . If π is finite π2(P ) = 0 and cP∗[P ] ∈ H3(π;Zw) is essentially equivalent
to the first nontrivial k -invariant of P , as outlined in Theorem 2.9. Suppose
that π is infinite. If N is another PD3 -space and there is an isomorphism
θ : ν = π1(N) → π such that w1(N) = θ∗w then π2(N) ∼= θ∗π2(P ) as Z[ν]-
modules. If moreover k1(N) = θ∗k1(P ) (modulo automorphisms of the pair
(ν, π2(N))) then P2(N) ≃ P2(P ). Since we may construct these Postnikov
2-stages by adjoining cells of dimension ≥ 4 it follows that there is a map
f : N → P such that π1(f) = θ and π2(f) is an isomorphism. The homology
of the universal covering spaces Ñ and P̃ is 0 above degree 2, and so f is a
homotopy equivalence, by the Whitehead Theorem. Thus the homotopy type
of P is determined by the triple (π,w, k1(P )). One may ask how cP∗[P ] and
k1(P ) determine each other.

There is a facile answer: in Turaev’s realization theorem for homotopy triples
the element of H3(π;Zw) is used to construct a cell complex X by attaching
2- and 3-cells to the 2-skeleton of K(π, 1). If C∗ is the cellular chain complex
of X̃ then k1(X) is the class of

0 → π2(X) → C2/∂C3 → C1 → C0 → Z → 0

in H3(π;π2(X)) = Ext3Z[π](Z, π2(X)). Conversely, a class κ ∈ Ext3Z[π](Z,Π)
corresponds to an extension

0 → Π → D2 → D1 → D0 → Z → 0,

with D1 and D0 finitely generated free Z[π]-modules. Let D∗ be the complex
D2 → D1 → D0 , with augmentation ε to Z. If κ = k1(P ) for a PD3 -

complex P then TorZ[π]
3 (Zw,D∗) ∼= H3(P2(P ); Zw) ∼= Z (where Tor denotes

hyperhomology), and the augmentation then determines a class in H3(π; Zw)
(up to sign). Can these connections be made more explicit? Is there a natural
homomorphism from H3(π;H1(π; Z[π])) to H3(π;Zw)?

If P is a 3-manifold which is the connected sum of a 3-manifold whose funda-
mental group is free of rank r with s ≥ 1 aspherical 3-manifolds then π2(P ) is
a finitely generated free Z[π]-module of rank r + s − 1 [Sw73]. We shall give
a direct homological argument that applies for PD3 -spaces with torsion free
fundamental group, and we shall also compute H2(P ;π2(P )) for such spaces.
(This cohomology group arises in studying homotopy classes of self homotopy
equivalences of P [HL74].)
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Theorem 2.18 Let P be a PD3 -space with torsion free fundamental group
π and orientation character w = w1(P ). Then

(1) if π is a nontrivial free group π2(P ) is finitely generated and of projective
dimension 1 as a left Z[π]-module and H2(P ;π2(P )) ∼= Z ;

(2) if π is not free π2(P ) is a finitely generated free Z[π]-module, c.d.π = 3,
H3(cP ; Zw) is a monomorphism and H2(P ;π2(P )) = 0;

(3) P is homotopy equivalent to a finite PD3 -complex if and only if π is
finitely presentable and FF .

Proof As observed in §2.6 above, π2(P ) ∼= H1(π; Z[π]) as a left Z[π]-module.

Since π is finitely generated it is a free product of finitely many indecomposable
groups, and since π is torsion-free the latter either have one end or are infinite
cyclic. If π is free of rank r there is a short exact sequence of left modules

0 → Z[π]r → Z[π] → Z → 0.

If r 6= 0 then H0(π; Z[π]) = 0, so dualizing gives an exact sequence of right
modules

0 → Z[π] → Z[π]r → H1(π; Z[π]) → 0.

The exact sequence of homology with these coefficients includes the sequence

0 → H1(P ;H1(π; Z[π])) → H0(P ; Z[π]) → H0(P ; Z[π]r)

in which the right hand map is 0, and so H1(P ;H1(π; Z[π])) ∼= H0(P ; Z[π]) = Z .
Hence H2(P ;π2(P )) ∼= H1(P ;π2(P )) = H1(P ;H1(π; Z[π])) ∼= Z , by Poincaré
duality. As π is finitely presentable and projective Z[F (r)]-modules are free
[Ba64] P is homotopy equivalent to a finite PD3 -complex.

If π is not free then it is the fundamental group of a finite graph of groups
G in which all the vertex groups are finitely generated and have one end and
all the edge groups are trivial. It follows from the Mayer-Vietoris sequences
of Theorems 2.10 and 2.11 of [Bi] that H1(π; Z[π]) is a free right Z[π]-module
with basis corresponding to the edges of G . As H2(P ; Z[π]) = H1(P ; Z[π]) = 0
and π2(P ) is a finitely generated free module it follows that H2(P ;π2(P )) = 0.

We may assume that P is 3-dimensional. The cellular chain complex of P̃ is
chain homotopy equivalent to a finitely generated projective Z[π]-complex

0 → C3 → C2 → C1 → C0 → 0,

and we may assume that Ci is free if i ≤ 2. Then the sequences

0 → Z2 → C2 → C1 → C0 → Z → 0

and 0 → C3 → Z2 → π2(P ) → 0
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are exact, where Z2 is the module of 2-cycles in C2 . Attaching 3-cells to P
along a basis for π2(P ) gives an aspherical 3-dimensional complex K with
fundamental group π . The inclusion of P into K may be identified with cP ,
and clearly induces monomorphisms H3(P ;A) → H3(π;A) for any coefficient
module A. Hence c.d.π = 3.

If π is FF there is a finite free resolution

0 → D3 → D2 → D1 → D0 → Z → 0.

Therefore Z2 is finitely generated and stably free, by Schanuel’s Lemma. Since
π2(P ) is free Z2

∼= π2(P )⊕C3 and so C3 is also stably free. Hence if moreover π
is finitely presentable then P is homotopy equivalent to a finite PD3 -complex.
The converse is clear, by the above construction of K(π, 1) ≃ K .

If π is not torsion free then the projective dimension of π2(P ) is infinite. Never-
theless, if P is a PD3 -complex π is virtually torsion free, by Crisp’s Theorem,
and so we have the following corollary.

Corollary 2.18.1 Let P be a PD3 -complex. Then the Z[π1(P )]-module
π2(P ) is finitely presentable.

If P is a P 2 -irreducible closed 3-manifold H2(P ;π2(P )) ∼= Z if π is virtually
free, and is 0 otherwise [HL74]. To what extent does Theorem 2.18 extend to
all PD3 -spaces?
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Chapter 3

Homotopy invariants of
PD4-complexes

The homotopy type of a 4-manifold M is largely determined (through Poincaré
duality) by its algebraic 2-type and orientation character. In many cases the
formally weaker invariants π1(M), w1(M) and χ(M) already suffice. In §1 we
give criteria in such terms for a degree-1 map between PD4 -complexes to be a
homotopy equivalence, and for a PD4 -complex to be aspherical. We then show
in §2 that if the universal covering space of a PD4 -complex is homotopy equiv-
alent to a finite complex then it is either compact, contractible, or homotopy
equivalent to S2 or S3 . In §3 we obtain estimates for the minimal Euler charac-
teristic of PD4 -complexes with fundamental group of cohomological dimension
at most 2 and determine the second homotopy groups of PD4 -complexes real-
izing the minimal value. The class of such groups includes all surface groups
and classical link groups, and the groups of many other (bounded) 3-manifolds.
The minima are realized by s-parallelizable PL 4-manifolds. In §4 we show that
if χ(M) = 0 then π1(M) satisfies some stringent constraints, and in the final
section we define the reduced intersection pairing.

3.1 Homotopy equivalence and asphericity

Many of the results of this section depend on the following lemma, in conjunc-
tion with use of the Euler characteristic to compute the rank of the surgery
kernel. (Lemma 3.1 and Theorem 3.2 derive from Lemmas 2.2 and 2.3 of [Wa].)

Lemma 3.1 Let R be a ring and C∗ be a finite chain complex of projective
R-modules. If Hi(C∗) = 0 for i < q and Hq+1(HomR(C∗, B)) = 0 for any left
R-module B then Hq(C∗) is projective. If moreover Hi(C∗) = 0 for i > q then
Hq(C∗) ⊕

⊕
i≡q+1 (2) Ci

∼=
⊕

i≡q (2) Ci .

Proof We may assume without loss of generality that q = 0 and Ci = 0
for i < 0. We may factor ∂1 : C1 → C0 through B = Im∂1 as ∂1 = jβ ,
where β is an epimorphism and j is the natural inclusion of the submodule
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B . Since jβ∂2 = ∂1∂2 = 0 and j is injective β∂2 = 0. Hence β is a 1-
cocycle of the complex HomR(C∗, B). Since H1(HomR(C∗, B)) = 0 there is
a homomorphism σ : C0 → B such that β = σ∂1 = σjβ . Since β is an
epimorphism σj = idB and so B is a direct summand of C0 . This proves the
first assertion.

The second assertion follows by an induction on the length of the complex.

Theorem 3.2 Let M and N be finite PD4 -complexes. A map f : M → N
is a homotopy equivalence if and only if π1(f) is an isomorphism, f∗w1(N) =
w1(M), f∗[M ] = ±[N ] and χ(M) = χ(N).

Proof The conditions are clearly necessary. Suppose that they hold. Up
to homotopy type we may assume that f is a cellular inclusion of finite cell
complexes, and so M is a subcomplex of N . We may also identify π1(M) with

π = π1(N). Let C∗(M), C∗(N) and D∗ be the cellular chain complexes of M̃ ,

Ñ and (Ñ , M̃ ), respectively. Then the sequence

0 → C∗(M) → C∗(N) → D∗ → 0

is a short exact sequence of finitely generated free Z[π]-chain complexes.

By the projection formula f∗(f∗a ∩ [M ]) = a ∩ f∗[M ] = ±a ∩ [N ] for any
cohomology class a ∈ H∗(N ; Z[π]). Since M and N satisfy Poincaré du-
ality it follows that f induces split surjections on homology and split injec-
tions on cohomology. Hence Hq(D∗) is the “surgery kernel” in degree q − 1,
and the duality isomorphisms induce isomorphisms from Hr(HomZ[π](D∗, B))

to H6−r(D∗ ⊗ B), where B is any left Z[π]-module. Since f induces iso-
morphisms on homology and cohomology in degrees ≤ 1, with any coeffi-
cients, the hypotheses of Lemma 3.1 are satisfied for the Z[π]-chain com-
plex D∗ , with q = 3, and so H3(D∗) = Ker(π2(f)) is projective. Moreover
H3(D∗) ⊕

⊕
i oddDi

∼=
⊕

i evenDi . Thus H3(D∗) is a stably free Z[π]-module
of rank χ(E,M) = χ(M) − χ(E) = 0. Hence H3(D∗) = 0, since group rings
are weakly finite, and so f is a homotopy equivalence.

If M and N are merely finitely dominated, rather than finite, then H3(D∗) is a
finitely generated projective Z[π]-module such that H3(D∗)⊗Z[π]Z = 0. If the

Wall finiteness obstructions satisfy f∗σ(M) = σ(N) in K̃0(Z[π]) then H3(D∗)
is stably free, and the theorem remains true. The theorem holds as stated
for arbitrary PD4 -spaces if π satisfies the Weak Bass Conjecture. (Similar
comments apply elsewhere in this section.)

We shall see that when N is aspherical and f = cM we may drop the hypotheses
that f∗w1(N) = w1(M) and f has degree ±1.
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Corollary 3.2.1 (Ha87) Let N be orientable. Then a map f : N → N which
induces automorphisms of π1(N) and H4(N ; Z) is a homotopy equivalence.

Any self-map of a geometric manifold of semisimple type (e.g., an H4 -, H2(C)-
or H2 × H2 -manifold) with nonzero degree is a homotopy equivalence [Re96].

If X is a cell complex with fundamental group π then π2(X) ∼= H2(X; Z[π]) ,
by the Hurewicz Theorem for X̃ , and so there is an evaluation homomorphism
ev : H2(X; Z[π]) → HomZ[π](π2(X),Z[π]) . The latter module may be identified

with H0(π;H2(X̃ ; Z[π])), the π -invariant subgroup of the cohomology of X̃
with coefficients Z[π]).

Lemma 3.3 Let M be a PD4 -space with fundamental group π and let Π =
π2(M). Then Π ∼= H2(M ; Z[π]) and there is an exact sequence

0 → H2(π; Z[π]) → H2(M ; Z[π])
ev−−−−→ HomZ[π](Π,Z[π]) → H3(π; Z[π]) → 0.

Proof This follows from the Hurewicz Theorem, Poincaré duality and the
UCSS, since H3(M ; Z[π]) ∼= H1(M̃ ; Z) = 0.

Exactness of much of this sequence can be derived without the UCSS. When
π is finite the sequence reduces to the Poincaré duality isomorphism π2(M) ∼=
HomZ[π](π2(M),Z[π]).

Let ev(2) : H2
(2)(M̃) → HomZ[π](π2(M), ℓ2(π)) be the analogous evaluation

defined on the unreduced L2 -cohomology by ev(2)(f)(z) = Σf(g−1z)g for
all square summable 2-cocycles f and all 2-cycles z representing elements of
H2(X; Z[π]) ∼= π2(M). Part of the next theorem is implicit in [Ec94].

Theorem 3.4 Let M be a PD4 -complex with fundamental group π . Then

(1) if β
(2)
1 (π) = 0 and M is finite or π satisfies the Weak Bass Conjecture

then χ(M) ≥ 0;

(2) Ker(ev(2)) is closed;

(3) if β
(2)
2 (M) = β

(2)
2 (π) then H2(cM ; Z[π]) : H2(π; Z[π]) → H2(M ; Z[π]) is

an isomorphism.

Proof Since M is a PD4 -complex β
(2)
i (M) = β

(2)
4−i(M) for all i. If M is

finite or π satisfies the Weak Bass Conjecture the alternating sum of the L2 -

Betti numbers gives the Euler characteristic [Ec96], and so χ(M) = 2β
(2)
0 (π)−

2β
(2)
1 (π) + β

(2)
2 (M). Hence χ(M) ≥ β

(2)
2 (M) ≥ 0 if β

(2)
1 (π) = 0.
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Let z ∈ C2(M̃) be a 2-cycle and f ∈ C
(2)
2 (M̃) a square-summable 2-cocycle. As

||ev(2)(f)(z)||2 ≤ ||f ||2||z||2 , the map f 7→ ev(2)(f)(z) is continuous, for fixed
z . Hence if f = limfn and ev(2)(fn) = 0 for all n then ev(2)(f) = 0.

The inclusion Z[π] < ℓ2(π) induces a homomorphism from the exact sequence
of Lemma 3.3 to the corresponding sequence with coefficients ℓ2(π). (See §1.4 of

[Ec94]. Note that we may identify H0(π;H2(M̃ ;A)) with HomZ[π](π2(M), A)

for A = Z[π] or ℓ2(π) since M̃ is 1-connected.) As Ker(ev(2)) is closed and
ev(2)(δg)(z) = ev(2)(g)(∂z) = 0 for any square summable 1-chain g , the ho-

momorphism ev(2) factors through the reduced L2 -cohomology H̄2
(2)(M̃). If

β
(2)
2 (M) = β

(2)
2 (π) the classifying map cM : M → K(π, 1) induces weak isomor-

phisms on reduced L2 -cohomology H̄ i
(2)(π) → H̄ i

(2)(M̃) for i ≤ 2. In particular,

the image of H̄2
(2)(π) is dense in H̄2

(2)(M̃). Since ev(2) is trivial on H̄2
(2)(π) and

Ker(ev(2)) is closed it follows that ev(2) = 0. Since the natural homomorphism
from HomZ[π](π2(M),Z[π]) to HomZ[π](π2(M), ℓ2(π)) is a monomorphism it
follows that ev = 0 also and so H2(cM ; Z[π]) is an isomorphism.

This gives a complete and natural criterion for asphericity (which we state as a
separate theorem for consistency with the enumeration of results in the original
version of this book).

Theorem 3.5 Let M be a PD4 -complex with fundamental group π . Then

M is aspherical if and only if Hs(π; Z[π]) = 0 for s ≤ 2 and β
(2)
2 (M) = β

(2)
2 (π).

Proof The conditions are clearly necessary. If they hold then H2(M ; Z[π]) ∼=
H2(π; Z[π]) = 0 and so M is aspherical, by Poincaré duality.

Corollary 3.5.1 The PD4 -complex M is finite and aspherical if and only if
π is a finitely presentable PD4 -group of type FF and χ(M) = χ(π).

If β2(π) 6= 0 this follows from Theorem 3.2. For we may assume π and M are
orientable, on replacing π by K = Ker(w1(M)) ∩ Ker(w1(π)) and M by MK .
As H2(cM ; Z) is onto it is an isomorphism, so cM has degree ±1, by Poincaré
duality. Is M always aspherical if π is a PD4 -group and χ(M) = χ(π)?

Corollary 3.5.2 If χ(M) = β
(2)
1 (π) = 0 and Hs(π; Z[π]) = 0 for s ≤ 2 then

M is aspherical and π is a PD4 -group.
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Corollary 3.5.3 If π ∼= Zr then χ(M) ≥ 0, with equality only if r = 1, 2 or
4.

Proof If r > 2 then Hs(π; Z[π]) = 0 for s ≤ 2.

Is it possible to replace the hypothesis “β
(2)
2 (M) = β

(2)
2 (π)” in Theorem 3.5 by

“β2(M
+) = β2(Ker(w1(M)))”, where p+ : M+ → M is the orientation cover?

It is easy to find examples to show that the homological conditions on π cannot
be relaxed further.

Theorem 3.5 implies that if π is a PD4 -group and χ(M) = χ(π) then cM∗[M ]
is nonzero. If we drop the condition χ(M) = χ(π) this need not be true. Given
any finitely presentable group G there is a closed orientable 4-manifold M with
π1(M) ∼= G and such that cM∗[M ] = 0 in H4(G; Z). We may take M to be the
boundary of a regular neighbourhood N of some embedding in R5 of a finite
2-complex K with π1(K) ∼= G. As the inclusion of M into N is 2-connected
and K is a deformation retract of N the classifying map cM factors through cK
and so induces the trivial homomorphism on homology in degrees > 2. However
if M and π are orientable and β2(M) < 2β2(π) then cM must have nonzero
degree, for the image of H2(π; Q) in H2(M ; Q) then cannot be self-orthogonal
under cup-product.

Theorem 3.6 Let π be a PD4 -group of type FF . Then def(π) < 1− 1
2χ(π).

Proof Suppose that π has a presentation of deficiency d ≥ 1− 1
2χ(π), and let

X be the corresponding finite 2-complex. Then β
(2)
2 (π) − β

(2)
1 (π) ≤ β

(2)
2 (X) −

β
(2)
1 (π) = χ(X) = 1 − d. Since we also have β

(2)
2 (π) − 2β

(2)
1 (π) = χ(π) and

χ(π) ≥ 2 − 2d it follows that β
(2)
1 (π) ≤ d− 1. Hence β

(2)
2 (X) = 0. Therefore

X is aspherical, by Theorem 2.4, and so c.d.π ≤ 2. But this contradicts the
hypothesis that π is a PD4 -group.

Note that if χ(π) is odd the conclusion does not imply that def(π) ≤ −1
2χ(π).

Is def(π) ≤ 0 for any PD4 -group π? This bound is best possible for groups
with χ = 0, since there is a poly-Z group Z3 ⋊A Z , where A ∈ SL(3,Z), with
presentation 〈s, x, | sxs−1x = xsxs−1, s3x = xs3〉.
The hypothesis on orientation characters in Theorem 3.2 is often redundant.

Theorem 3.7 Let f : M → N be a 2-connected map between finite PD4 -
complexes with χ(M) = χ(N). If H2(N ; F2) 6= 0 then f∗w1(N) = w1(M),
and if moreover N is orientable and H2(N ; Q) 6= 0 then f is a homotopy
equivalence.
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Proof Since f is 2-connected H2(f ; F2) is injective, and since χ(M) = χ(N)
it is an isomorphism. Since H2(N ; F2) 6= 0, the nondegeneracy of Poincaré
duality implies that H4(f ; F2) 6= 0, and so f is a F2 -(co)homology equivalence.
Since w1(M) is characterized by the Wu formula x ∪ w1(M) = Sq1x for all x
in H3(M ; F2), it follows that f∗w1(N) = w1(M).

If H2(N ; Q) 6= 0 then H2(N ; Z) has positive rank and H2(N ; F2) 6= 0, so N
orientable implies M orientable. We may then repeat the above argument with
integral coefficients, to conclude that f has degree ±1. The result then follows
from Theorem 3.2.

The argument breaks down if, for instance, M = S1×̃S3 is the nonorientable
S3 -bundle over S1 , N = S1 × S3 and f is the composite of the projection of
M onto S1 followed by the inclusion of a factor.

We would like to replace the hypotheses above that there be a map f : M → N
realizing certain isomorphisms by weaker, more algebraic conditions. If M and
N are closed 4-manifolds with isomorphic algebraic 2-types then there is a 3-
connected map f : M → P2(N). The restriction of such a map to Mo = M\D4

is homotopic to a map fo : Mo → N which induces isomorphisms on πi for
i ≤ 2. In particular, χ(M) = χ(N). Thus if fo extends to a map from M
to N we may be able to apply Theorem 3.2. However we usually need more
information on how the top cell is attached. The characteristic classes and the
equivariant intersection pairing on π2(M) are the obvious candidates.

The following criterion arises in studying the homotopy types of circle bundles
over 3-manifolds. (See Chapter 4.)

Theorem 3.8 Let E be a PD4 -complex with fundamental group π and such
that H4(fE;Zw1(E)) is a monomorphism. A PD4 -complex M is homotopy
equivalent to E if and only if there is an isomorphism θ from π1(M) to π
such that w1(M) = w1(E)θ , there is a lift ĉ : M → P2(E) of θcM such that
ĉ∗[M ] = ±fE∗[E] and χ(M) = χ(E).

Proof The conditions are clearly necessary. Conversely, suppose that they
hold. We shall adapt to our situation the arguments of Hendriks in analyzing
the obstructions to the existence of a degree 1 map between PD3 -complexes
realizing a given homomorphism of fundamental groups. For simplicity of no-
tation we shall write Z̃ for Zw1(E) and also for Zw1(M)(= θ∗Z̃), and use θ to
identify π1(M) with π and K(π1(M), 1) with K(π, 1). We may suppose the
sign of the fundamental class [M ] is so chosen that ĉ∗[M ] = fE∗[E].
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Let Eo = E\D4 . Then P2(Eo) = P2(E) and may be constructed as the union
of Eo with cells of dimension ≥ 4. Let

h : Z̃ ⊗Z[π] π4(P2(Eo), Eo) → H4(P2(Eo), Eo; Z̃)

be the w1(E)-twisted relative Hurewicz homomorphism, and let ∂ be the con-
necting homomorphism from π4(P2(Eo), Eo) to π3(Eo) in the exact sequence of
homotopy for the pair (P2(Eo), Eo). Then h and ∂ are isomorphisms since fEo

is 3-connected, and so the homomorphism τE : H4(P2(E); Z̃) → Z̃ ⊗Z[π] π3(Eo)
given by the composite of the inclusion

H4(P2(E); Z̃) = H4(P2(Eo); Z̃) → H4(P2(Eo), Eo; Z̃)

with h−1 and 1 ⊗Z[π] ∂ is a monomorphism. Similarly Mo = M\D4 may
be viewed as a subspace of P2(Mo) and there is a monomorphism τM from
H4(P2(M); Z̃) to Z̃ ⊗Z[π] π3(Mo). These monomorphisms are natural with
respect to maps defined on the 3-skeleta (i.e., Eo and Mo ).

The classes τE(fE∗[E]) and τM(fM∗[M ]) are the images of the primary ob-
structions to retracting E onto Eo and M onto Mo , under the Poincaré
duality isomorphisms from H4(E,Eo;π3(Eo)) to H0(E\Eo; Z̃ ⊗Z[π] π3(Eo)) =

Z̃ ⊗Z[π] π3(Eo) and H4(M,Mo;π3(Mo)) to Z̃ ⊗Z[π] π3(Mo), respectively. Since
Mo is homotopy equivalent to a cell complex of dimension ≤ 3 the restriction of
ĉ to Mo is homotopic to a map from Mo to Eo . Let ĉ♯ be the homomorphism
from π3(Mo) to π3(Eo) induced by ĉ|Mo . Then (1 ⊗Z[π] ĉ♯)τM (fM∗[M ]) =
τE(fE∗[E]). It follows as in [Hn77] that the obstruction to extending ĉ|Mo :
Mo → Eo to a map d from M to E is trivial.

Since fE∗d∗[M ] = ĉ∗[M ] = fE∗[E] and fE∗ is a monomorphism in degree 4 the
map d has degree 1, and so is a homotopy equivalence, by Theorem 3.2.

If there is such a lift ĉ then c∗Mθ
∗k1(E) = 0 and θ∗cM∗[M ] = cE∗[E].

3.2 Finitely dominated covering spaces

In this section we shall show that if a PD4 -complex M has a finitely domi-
nated, infinite regular covering space then either M is aspherical or its universal
covering space is homotopy equivalent to S2 or S3 . In Chapters 4 and 5 we
shall see that such manifolds are close to being total spaces of fibre bundles.

Theorem 3.9 Let M be a PD4 -complex with fundamental group π , and let
Mν be the covering space associated to ν = Ker(p), where p : π → G is an
epimorphism. Suppose that Mν is finitely dominated. Then
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(1) G has finitely many ends;

(2) if Mν is acyclic then it is contractible and M is aspherical;

(3) if G has one end and ν is infinite and FP3 then M is aspherical and Mν

is homotopy equivalent to an aspherical closed surface or to S1 ;

(4) if G has one end and ν is finite but Mν is not acyclic then Mν ≃ S2 or
RP 2 ;

(5) G has two ends if and only if Mν is a PD3 -complex.

Proof We may clearly assume that G is infinite. As Z[G] has no nonzero
left ideal (i.e., submodule) which is finitely generated as an abelian group
HomZ[G](Hq(Mν ; Z),Z[G]) = 0 for all q ≥ 0, and so the bottom row of the
UCSS for the covering p is 0. From Poincaré duality and the UCSS we find
that H4(Mν ; Z) = H0(G; Z[G]) = 0 and H1(G; Z[G]) ∼= H3(Mν ; Z). As this
group is finitely generated, and as G is infinite, G has one or two ends. Simi-
larly, H2(G; Z[G]) is finitely generated and so H2(G; Z[G]) ∼= Z or 0.

If Mν is acyclic D∗ = Z[G] ⊗Z[π] C∗(M̃) is a resolution of the augmentation
Z[G]-module Z and Hq(D∗) ∼= H4−q(Mν ; Z). Hence G is a PD4 -group, and so

Hs(M̃ ; Z) = Hs(Mν ; Z[ν]) = H−s(Mν ; Z[ν]) = 0 for s > 0, by Theorem 1.19 ′ .
Thus Mν is contractible and so M is aspherical.

Suppose that G has one end. If H2(G; Z[G]) ∼= Z then G is virtually a PD2 -
group, by Bowditch’s Theorem, and so Mν is a PD2 -complex, by [Go79]. In

general, C∗(M̃ )|ν is chain homotopy equivalent to a finitely generated projective
Z[ν]-chain complex P∗ and H3(Mν ; Z) = H4(Mν ; Z) = 0. If ν is FP3 then the
augmentation Z[ν]-module Z has a free resolution F∗ which is finitely generated
in degrees ≤ 3. On applying Schanuel’s Lemma to the exact sequences

0 → Z2 → P2 → P1 → P0 → Z → 0

and 0 → ∂F3 → F2 → F1 → F0 → Z → 0

derived from these two chain complexes we find that Z2 is finitely generated as a
Z[ν]-module. Hence Π = π2(M) = π2(Mν) is also finitely generated as a Z[ν]-
module and so Homπ(Π,Z[π]) = 0. If moreover ν is infinite then Hs(π; Z[π]) =
0 for s ≤ 2, so Π = 0, by Lemma 3.3, and M is aspherical. If H2(G; Z[G]) = 0
a spectral sequence corner argument then shows that H3(G; Z[G]) ∼= Z and
Mν ≃ S1 . (See the following theorem.)

If ν is finite but Mν is not acyclic then the universal covering space M̃ is
also finitely dominated but not contractible, and Π = H2(M̃ ; Z) is a nontrivial

finitely generated abelian group, while H3(M̃ ; Z) = H4(M̃ ; Z) = 0. If C is a
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finite cyclic subgroup of π there are isomorphisms Hn+3(C; Z) ∼= Hn(C; Π), for
all n ≥ 4, by Lemma 2.10. Suppose that C acts trivially on Π. Then if n is
odd this isomorphism reduces to 0 = Π/|C|Π. Since Π is finitely generated,
this implies that multiplication by |C| is an isomorphism. On the other hand,
if n is even we have Z/|C|Z ∼= {a ∈ Π | |C|a = 0}. Hence we must have C = 1.
Now since Π is finitely generated any torsion subgroup of Aut(Π) is finite. (Let
T be the torsion subgroup of Π and suppose that Π/T ∼= Zr . Then the natural
homomorphism from Aut(Π) to Aut(Π/T ) has finite kernel, and its image is
isomorphic to a subgroup of GL(r,Z), which is virtually torsion free.) Hence
as π is infinite it must have elements of infinite order. Since H2(π; Z[π]) ∼= Π̄,
by Lemma 3.3, it is a finitely generated abelian group. Therefore it must be
infinite cyclic, by Corollary 5.2 of [Fa74]. Hence M̃ ≃ S2 and ν has order at
most 2, so Mν ≃ S2 or RP 2 .

Suppose now that Mν is a PD3 -complex. After passing to a finite covering of
M , if necessary, we may assume that Mν is orientable. Then H1(G; Z[G]) ∼=
H3(Mν ; Z), and so G has two ends. Conversely, if G has two ends we may
assume that G ∼= Z , after passing to a finite covering of M , if necessary. Hence
Mν is a PD3 -complex, by [Go79].

The hypotheses that M be a PD4 -complex and Mν be finitely dominated can
be relaxed to requiring that M be a PD4 -space and C∗(M̃ ) be Z[ν]-finitely
dominated, and the appeal to [Go79] can be avoided. (See Theorem 4.1.) Is
the hypothesis in (3) that ν be FP3 redundant?

Corollary 3.9.1 The covering space Mν is homotopy equivalent to a closed
surface if and only if it is finitely dominated and H2(G; Z[G]) ∼= Z .

In this case M has a finite covering space which is homotopy equivalent to the
total space of a surface bundle over an aspherical closed surface. (See Chapter
5.)

Corollary 3.9.2 The covering space Mν is homotopy equivalent to S1 if and
only if it is finitely dominated, G has one end, H2(G; Z[G]) = 0 and ν is a
nontrivial finitely generated free group.

Proof If Mν ≃ S1 then it is finitely dominated and M is aspherical, and the
conditions on G follow from the LHSSS. The converse follows from part (3) of
Theorem 3.9, since ν is infinite and FP .
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In fact any finitely generated free normal subgroup F of a PDn -group π must
be infinite cyclic. For π/FCπ(F ) embeds in Out(F ), so v.c.d.π/FCπ(F ) ≤
v.c.d.Out(F (r)) < ∞. If F is nonabelian then Cπ(F ) ∩ F = 1 and so π/F
is an extension of π/FCπ(F ) by Cπ(F ). Hence v.c.d.π/F < ∞. Since F is
finitely generated π/F is FP∞ . Hence we may apply Theorem 9.11 of [Bi], and
an LHSSS corner argument gives a contradiction.

In the simply connected case “finitely dominated”, “homotopy equivalent to a
finite complex” and “having finitely generated homology” are all equivalent.

Corollary 3.9.3 If H∗(M̃ ; Z) is finitely generated then either M is aspherical

or M̃ is homotopy equivalent to S2 or S3 or π1(M) is finite.

This was first stated (for π1(M) satisfying a homological finiteness condition)
in [Ku78]. We shall examine the spherical cases more closely in Chapters 10 and
11. (The arguments in these chapters may apply also to PDn -complexes with
universal covering space homotopy equivalent to Sn−1 or Sn−2 . The analogues
in higher codimensions appear to be less accessible.)

The following variation on the aspherical case shall be used in Theorem 4.8,
but belongs naturally here.

Theorem 3.10 Let ν be a nontrivial FP3 normal subgroup of infinite index
in a PD4 -group π , and let G = π/ν . Then either

(1) ν is a PD3 -group and G has two ends;

(2) ν is a PD2 -group and G is virtually a PD2 -group; or

(3) ν ∼= Z , Hs(G; Z[G]) = 0 for s 6= 3 and H3(G; Z[G]) ∼= Z .

Proof Since c.d.ν < 4, by Strebel’s Theorem, ν is FP and hence G is
FP∞ . The E2 terms of the LHS spectral sequence with coefficients Q[π] can
then be expressed as Epq2 = Hp(G; Q[G]) ⊗ Hq(ν; Q[ν]). If Hj(G; Q[G]) and

Hk(ν; Q[ν]) are the first nonzero such cohomology groups then Ejk2 persists to
E∞ and hence j + k = 4. Therefore Hj(G; Q[G])⊗H4−j(ν; Q[ν]) ∼= Q, and so
Hj(G; Q[G]) ∼= H4−j(ν; Q[ν]) ∼= Q. If G has two ends it is virtually Z , and then
ν is a PD3 -group, by Theorem 9.11 of [Bi]. If H2(ν; Q[ν]) ∼= H2(G; Q[G]) ∼= Q
then ν and G are virtually PD2 -groups, by Bowditch’s Theorem. Since ν is
torsion free it is then a PD2 -group. The only remaining possibility is (3).

In case (1) π has a subgroup of index ≤ 2 which is a semidirect product H⋊θZ
with ν ≤ H and [H : ν] <∞. Is it sufficient that ν be FP2? Must the quotient
π/ν be virtually a PD3 -group in case (3)?
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Corollary 3.10.1 If K is FP2 and is ascendant in ν where ν is an FP3

normal subgroup of infinite index in the PD4 -group π then K is a PDk -group
for some k < 4.

Proof This follows from Theorem 3.10 together with Theorem 2.17.

What happens if we drop the hypothesis that the covering be regular? It follows
easily from Theorem 2.18 that a PD3 -complex has a finitely dominated infinite
covering space if and only if its fundamental group has one or two ends [Hi07].
We might conjecture that if a PD4 -complex M has a finitely dominated infinite
covering space M̂ then either M is aspherical or M̃ is homotopy equivalent
to S2 or S3 or M has a finite covering space which is homotopy equivalent
to the mapping torus of a self homotopy equivalence of a PD3 -complex. (In
particular, π1(M) has one or two ends.) In [Hi07] we extend the arguments

of Theorem 3.9 to show that if π1(M̂ ) is FP3 and ascendant in π the only

other possibility is that π1(M̂ ) has two ends, h(
√
π) = 1 and H2(π; Z[π]) is

not finitely generated. This paper also considers in more detail FP ascendant
subgroups of PD4 -groups, corresponding to the aspherical case.

3.3 Minimizing the Euler characteristic

It is well known that every finitely presentable group is the fundamental group
of some closed orientable 4-manifold. Such manifolds are far from unique, for
the Euler characteristic may be made arbitrarily large by taking connected
sums with simply connected manifolds. Following Hausmann and Weinberger
[HW85] we may define an invariant q(π) for any finitely presentable group π
by

q(π) = min{χ(M)|M is a PD4 complex with π1(M) ∼= π}.
We may also define related invariants qX where the minimum is taken over the
class of PD4 -complexes whose normal fibration has an X -reduction. There
are the following basic estimates for qSG , which is defined in terms of PD+

4 -
complexes.

Lemma 3.11 Let π be a finitely presentable group with a subgroup H of
finite index and let F be a field. Then

(1) 1 − β1(H;F ) + β2(H;F ) ≤ [π : H](1 − defπ);

(2) 2 − 2β1(H;F ) + β2(H;F ) ≤ [π : H]qSG(π);
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(3) qSG(π) ≤ 2(1 − def(π));

(4) if H4(π;F ) = 0 then qSG(π) ≥ 2(1 − β1(π;F ) + β2(π;F )).

Proof Let C be the 2-complex corresponding to a presentation for π of max-
imal deficiency and let CH be the covering space associated to the subgroup
H . Then χ(C) = 1 − defπ and χ(CH) = [π : H]χ(π). Condition (1) follows
since β1(H;F ) = β1(CH ;F ) and β2(H;F ) ≤ β2(CH ;F ).

Condition (2) follows similarly on considering the Euler characteristics of a
PD+

4 -complex M with π1(M) ∼= π and of the associated covering space MH .

The boundary of a regular neighbourhood of a PL embedding of C in R5 is a
closed orientable 4-manifold realizing the upper bound in (3).

The image of H2(π;F ) in H2(M ;F ) has dimension β2(π;F ), and is self-
annihilating under cup-product if H4(π;F ) = 0. In that case β2(M ;F ) ≥
2β2(π;F ), which implies (4).

Condition (2) was used in [HW85] to give examples of finitely presentable su-
perperfect groups which are not fundamental groups of homology 4-spheres.
(See Chapter 14 below.)

If π is a finitely presentable, orientable PD4 -group we see immediately that
qSG(π) ≥ χ(π). Multiplicativity then implies that q(π) = χ(π) if K(π, 1) is a
finite PD4 -complex.

For groups of cohomological dimension at most 2 we can say more.

Theorem 3.12 Let X be a PD4 -space with fundamental group π such that
c.d.π ≤ 2, and let C∗ = C∗(X; Z[π]). Then

(1) C∗ is Z[π]-chain homotopy equivalent to D∗⊕L[2]⊕D4−∗ , where D∗ is a
projective resolution of Z, L[2] is a finitely generated projective module
L concentrated in degree 2 and D4−∗ is the conjugate dual of D∗ , shifted
to terminate in degree 2;

(2) π2(X) ∼= L⊕H2(π; Z[π]) ;

(3) χ(X) ≥ 2χ(π), with equality if and only if L = 0;

(4) HomZ[π](H2(π; Z[π]),Z[π]) = 0.

Proof The chain complex C∗ gives a resolution of the augmentation module

0 → Im(∂C2 ) → C1 → C0 → Z → 0.
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Let D∗ be the corresponding chain complex with D0 = C0 , D1 = C1 and
D2 = Im(∂C2 ). Since c.d.π ≤ 2 and D0 and D1 are projective modules D2 is
projective, by Schanuel’s Lemma. Therefore the epimorphism from C2 to D2

splits, and so C∗ is a direct sum C∗ ∼= D∗⊕(C/D)∗ . Since X is a PD4 -complex
C∗ is chain homotopy equivalent to C4−∗ . The first two assertions follow easily.

On taking homology with simple coefficients Q, we see that χ(X) = 2χ(π) +
dimQQ⊗πL. Hence χ(X) ≥ 2χ(π). Since π satisfies the Weak Bass Conjecture
[Ec86] and L is projective L = 0 if and only if dimQQ ⊗π L = 0.

Let δ : D2 → D1 be the inclusion. Then H2(π; Z[π]) = Cok(δ†), where δ† is

the conjugate transpose of δ . Hence HomZ[π](H2(π; Z[π]),Z[π]) = Ker(δ††) .

But δ†† = δ , which is injective, and so HomZ[π](H2(π; Z[π]),Z[π]) = 0.

The appeal to the Weak Bass Conjecture may be avoided if X and K(π, 1) are
homotopy equivalent to finite complexes. For then L is stably free, and so is 0
if and only if Z ⊗Z[π] L = 0, since group rings are weakly finite.

Similar arguments may be used to prove the following variation.

Addendum Suppose that c.d.Rπ ≤ 2 for some ring R. Then R⊗ π2(M) ∼=
P⊕H2(π;R[π]) , where P is a projective R[π]-module, and χ(M) ≥ 2χ(π;R) =
2(1 − β1(π;R) + β2(π;R)) . If R is a subring of Q then χ(M) = 2χ(π;R) if
and only if π2(M) ∼= H2(π; Z[π]) .

There are many natural examples of 4-manifolds with π1(M) = π having non-
trivial torsion and such that c.d.Qπ ≤ 2 and χ(M) = 2χ(π). (See Chapters 10
and 11.) However all the known examples satisfy v.c.d.π ≤ 2.

Corollary 3.12.1 If H2(π; F2) 6= 0 the Hurewicz homomorphism from π2(M)
to H2(M ; F2) is nonzero.

Proof By the addendum to the theorem, H2(M ; F2) has dimension at least
2β2(π), and so cannot be isomorphic to H2(π; F2) unless both are 0.

Corollary 3.12.2 If π = π1(P ) where P is an aspherical finite 2-complex then
q(π) = 2χ(P ). The minimum is realized by an s-parallelizable PL 4-manifold.

Proof If we choose a PL embedding j : P → R5 , the boundary of a regular
neighbourhood N of j(P ) is an s-parallelizable PL 4-manifold with fundamen-
tal group π and with Euler characteristic 2χ(P ).
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By Theorem 2.8 a finitely presentable group is the fundamental group of an
aspherical finite 2-complex if and only if it has cohomological dimension ≤ 2
and is efficient, i.e. has a presentation of deficiency β1(π; Q) − β2(π; Q). It is
not known whether every finitely presentable group of cohomological dimension
2 is efficient.

In Chapter 5 we shall see that if P is an aspherical closed surface and M is
a closed 4-manifold with π1(M) ∼= π then χ(M) = q(π) if and only if M is
homotopy equivalent to the total space of an S2 -bundle over P . The homotopy
types of such minimal 4-manifolds for π may be distinguished by their Stiefel-
Whitney classes. Note that if π is orientable then S2 × P is a minimal 4-
manifold for π which is both s-parallelizable and also a projective algebraic
complex surface. Note also that the conjugation of the module structure in the
theorem involves the orientation character of M which may differ from that of
the PD2 -group π .

Corollary 3.12.3 If π is the group of an unsplittable µ-component 1-link
then q(π) = 0.

If π is the group of a µ-component n-link with n ≥ 2 then H2(π; Q) = 0 and
so q(π) ≥ 2(1 − µ), with equality if and only if π is the group of a 2-link. (See
Chapter 14.)

Corollary 3.12.4 If π is an extension of Z by a finitely generated free normal
subgroup then q(π) = 0.

In Chapter 4 we shall see that if M is a closed 4-manifold with π1(M) such an
extension then χ(M) = q(π) if and only if M is homotopy equivalent to a man-
ifold which fibres over S1 with fibre a closed 3-manifold with free fundamental
group, and then π and w1(M) determine the homotopy type.

Finite generation of the normal subgroup is essential; F (2) is an extension of
Z by F (∞), and q(F (2)) = 2χ(F (2)) = −2.

Let π be the fundamental group of a closed orientable 3-manifold. Then π ∼=
F ∗ν where F is free of rank r and ν has no infinite cyclic free factors. Moreover
ν = π1(N) for some closed orientable 3-manifold N . If M0 is the closed 4-
manifold obtained by surgery on {n}×S1 in N×S1 then M = M0♯(♯

r(S1×S3)
is a smooth s-parallelisable 4-manifold with π1(M) ∼= π and χ(M) = 2(1− r).
Hence qSG(π) = 2(1 − r), by Lemma 3.11.

The arguments of Theorem 3.12 give stronger results in this case also.
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Theorem 3.13 Let M be a PD4 -space whose fundamental group π is a
PD3 -group such that w1(π) = w1(M). Then χ(M) > 0 and there are finitely
generated projective Z[π]-modules P and P ′ such that π2(M)⊕P ∼= A(π)⊕P ′ ,
where A(π) is the augmentation ideal of Z[π]

Proof For any left Z[π]-module N let eiN = ExtiZ[π](N,Z[π]), to simplify
the notation. The cellular chain complex for the universal covering space of M
gives exact sequences

0 → C4 → C3 → Z2 → H2 → 0 (3.1)

and 0 → Z2 → C2 → C1 → C0 → Z → 0. (3.2)

Since π is a PD3 -group the augmentation module Z has a finite projective
resolution of length 3. On comparing sequence 3.2 with such a resolution and
applying Schanuel’s lemma we find that Z2 is a finitely generated projective
Z[π]-module. Since π has one end, the UCSS reduces to an exact sequence

0 → H2 → e0H2 → e3Z → H3 → e1H2 → 0 (3.3)

and isomorphisms H4 ∼= e2H2 and e3H2 = e4H2 = 0. Poincaré duality implies
that H3 = 0 and H4 ∼= Z . Hence sequence 3.3 reduces to

0 → H2 → e0H2 → e3Z → 0 (3.4)

and e1H2 = 0. Hence on dualizing the sequence 3.1 we get an exact sequence
of right modules

0 → e0H2 → e0Z2 → e0C3 → e0C4 → e2H2 → 0. (3.5)

Schanuel’s lemma again implies that e0H2 is a finitely generated projective
module. Therefore we may splice together 3.1 and the conjugate of 3.4 to get

0 → C4 → C3 → Z2 → e0H2 → Z → 0. (3.6)

(Note that we have used the hypothesis on w1(M) here.) Applying Schanuel’s
lemma once more to the pair of sequences 3.2 and 3.6 we obtain

C0 ⊕ C2 ⊕ C4 ⊕ Z2
∼= e0H2 ⊕ C1 ⊕ C3 ⊕ Z2.

Hence e0H2 is projective, and dimQQ ⊗ e0H2 = χ(M). Since sequence 3.15 is
exact e0H2 maps onto Z, and so is nonzero. Therefore χ(M) > 0, since PD3 -
groups satisfy the Weak Bass Conjecture [Ec01]. Since π is a PD3 -group,
e3Z ∼= Z and so the final assertion follows from sequence 3.4 and Schanuel’s
Lemma.

Can Theorem 3.13 be extended to all torsion free 3-manifold groups, or more
generally to all free products of PD3 -groups?
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Addendum If π is a finitely presentable PD3 -group then q(π) = 2.

Proof If M is a PD4 -complex with π1(M) ∼= π the image of H2(π; F2) un-
der the monomorphism induced by cM is self-annihilating with respect to cup
product into H4(M ; F2). Hence β2(M ; F2) ≥ 2β1(π; F2), and so q(π) ≥ 2.

Let N be a PD3 -complex with fundamental group π . We may suppose that
N = No ∪D3 , where No ∩D3 = S2 . Let M = No × S1 ∪ S2 ×D2 . Then M is
a PD4 -complex, χ(M) = 2 and π1(M) ∼= π . Hence q(π) = 2.

There has been some related work estimating the difference χ(M) − |σ(M)|
where M is a closed orientable 4-manifold M with π1(M) ∼= π and where
σ(M) is the signature of M . In particular, this difference is always ≥ 0 if

β
(2)
1 (π) = 0. (See [JK93] and §3 of Chapter 7 of [Lü].) The minimum value of

this difference (p(π) = min{χ(M)− |σ(M)|}) is another numerical invariant of
π , which is studied in [Ko94].

3.4 Euler Characteristic 0

In this section we shall consider the interaction of the fundamental group and
Euler characteristic from another point of view. We shall assume that χ(M) = 0
and show that if π is an ascending HNN extension then it satisfies some very
stringent conditions. The groups Z∗m shall play an important role. We shall
approach our main result via several lemmas.

We begin with a simple observation relating Euler characteristic and fundamen-
tal group which shall be invoked in several of the later chapters. Recall that if
G is a group then I(G) is the minimal normal subgroup such that G/I(G) is
free abelian.

Lemma 3.14 Let M be a PD4 -space with χ(M) ≤ 0. If M is orientable
then H1(M ; Z) 6= 0 and so π = π1(M) maps onto Z . If H1(M ; Z) = 0 then π
maps onto D .

Proof The covering space MW corresponding to W = Ker(w1(M)) is ori-
entable and χ(MW ) = 2− 2β1(MW ) + β2(MW ) = [π : W ]χ(M) ≤ 0. Therefore
β1(W ) = β1(MW ) > 0 and so W/I(W ) ∼= Zr for some r > 0. Since I(W ) is
characteristic in W it is normal in π . As [π : W ] ≤ 2 it follows easily that
π/I(W ) maps onto Z or D .
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Note that if M = RP 4♯RP 4 , then χ(M) = 0 and π1(M) ∼= D , but π1(M)
does not map onto Z .

Lemma 3.15 Let M be a PD+
4 -complex such that χ(M) = 0 and π = π1(M)

is an extension of Z∗m by a finite normal subgroup F , for some m 6= 0. Then
the abelian subgroups of F are cyclic. If F 6= 1 then π has a subgroup of finite
index which is a central extension of Z∗n by a nontrivial finite cyclic group,
where n is a power of m.

Proof Let M̂ be the infinite cyclic covering space corresponding to the sub-
group I(π). Since M is compact and Λ = Z[Z] is noetherian the groups

Hi(M̂ ; Z) = Hi(M ; Λ) are finitely generated as Λ-modules. Since M is ori-
entable, χ(M) = 0 and H1(M ; Z) has rank 1 they are Λ-torsion modules,

by the Wang sequence for the projection of M̂ onto M . Now H2(M̂ ; Z) ∼=
Ext1Λ(I(π)/I(π)′,Λ), by Poincaré duality. There is an exact sequence

0 → T → I(π)/I(π)′ → I(Z∗m) ∼= Λ/(t−m) → 0,

where T is a finite Λ-module. Therefore Ext1Λ(I(π)/I(π)′,Λ) ∼= Λ/(t − m)
and so H2(I(π); Z) is a quotient of Λ/(mt − 1), which is isomorphic to Z[ 1

m ]
as an abelian group. Now I(π)/Ker(f) ∼= Z[ 1

m ] also, and H2(Z[ 1
m ]; Z) ∼=

Z[ 1
m ] ∧ Z[ 1

m ] = 0. (See page 334 of [Ro].) Hence H2(I(π); Z) is finite, by an
LHSSS argument, and so is cyclic, of order relatively prime to m.

Let t in π generate π/I(π) ∼= Z . Let A be a maximal abelian subgroup of
F and let C = Cπ(A). Then q = [π : C] is finite, since F is finite and
normal in π . In particular, tq is in C and C maps onto Z , with kernel J , say.
Since J is an extension of Z[ 1

m ] by a finite normal subgroup its centre ζJ has
finite index in J . Therefore the subgroup G generated by ζJ and tq has finite
index in π , and there is an epimorphism f from G onto Z∗mq , with kernel
A. Moreover I(G) = f−1(I(Z∗mq )) is abelian, and is an extension of Z[ 1

m ] by
the finite abelian group A. Hence it is isomorphic to A⊕Z[ 1

m ]. (See page 106
of [Ro].) Now H2(I(G); Z) is cyclic of order prime to m. On the other hand
H2(I(G); Z) ∼= (A ∧A) ⊕ (A⊗ Z[ 1

m ]) and so A must be cyclic.

If F 6= 1 then A is cyclic, nontrivial, central in G and G/A ∼= Z∗mq .

Lemma 3.16 Let M be a finite PD4 -complex with fundamental group π .
Suppose that π has a nontrivial finite cyclic central subgroup F with quotient
G = π/F such that g.d.G = 2, e(G) = 1 and def(G) = 1. Then χ(M) ≥ 0. If
χ(M) = 0 and Ξ = Fp[G] is a weakly finite ring for some prime p dividing |F |
then π is virtually Z2 .
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Proof Let M̂ be the covering space of M with group F , and let cq be the
number of q -cells of M , for q ≥ 0. Let C∗ = C∗(M ; Ξ) = Fp ⊗ C∗(M) be

the equivariant cellular chain complex of M̂ with coefficients Fp and let Hp =

Hp(M ; Ξ) = Hp(M̂ ; Fp). For any left Ξ-module H let eqH = ExtqΞ(H,Ξ).

Since M̂ is connected and F is cyclic H0
∼= H1

∼= Fp and since G has one end
Poincaré duality and the UCSS give H3 = H4 = 0, an exact sequence

0 → e2Fp → H2 → e0H2 → e2H1 → H1 → e1H2 → 0

and an isomorphism e2H2
∼= Fp . Since g.d.G = 2 and def(G) = 1 the augmen-

tation module has a resolution

0 → Ξr → Ξr+1 → Ξ → Fp → 0.

The chain complex C∗ gives four exact sequences

0 → Z1 → C1 → C0 → Fp → 0,

0 → Z2 → C2 → Z1 → Fp → 0,

0 → B2 → Z2 → H2 → 0

and 0 → C4 → C3 → B2 → 0.

Using Schanuel’s Lemma several times we find that the cycle submodules Z1

and Z2 are stably free, of stable ranks c1 − c0 and c2 − c1 + c0 , respectively.
Dualizing the last two sequences gives two new sequences

0 → e0B2 → e0C3 → e0C4 → e1B2 → 0

and 0 → e0H2 → e0Z2 → e0B2 → e1H2 → 0,

and an isomorphism e1B2
∼= e2H2

∼= Fp . Further applications of Schanuel’s
Lemma show that e0B2 is stably free of rank c3 − c4 , and hence that e0H2 is
stably free of rank c2 − c1 + c0 − (c3 − c4) = χ(M). Since Ξ maps onto the field
Fp the rank must be non-negative, and so χ(M) ≥ 0.

If χ(M) = 0 and Ξ = Fp[G] is a weakly finite ring then e0H2 = 0 and so
e2Fp = e2H1 is a submodule of Fp ∼= H1 . Moreover it cannot be 0, for otherwise
the UCSS would give H2 = 0 and then H1 = 0, which is impossible. Therefore
e2Fp ∼= Fp .

Since G is torsion free and indicable it must be a PD2 -group, by Theorem
V.12.2 of [DD]. Since def(G) = 1 it follows that G ∼= Z2 or Z ⋊−1 Z , and
hence that π is also virtually Z2 .

The hypothesis on Ξ is satisfied if G is an extension of an amenable group
by a free normal subgroup [AO’M02]. In particular, this is so if G′ is finitely
generated, by Corollary 4.3.1.
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We may now give the main result of this section.

Theorem 3.17 Let M be a finite PD4 -complex whose fundamental group π
is an ascending HNN extension with finitely generated base B . Then χ(M) ≥ 0,
and hence q(π) ≥ 0. If χ(M) = 0 and B is FP2 and finitely ended then either
π has two ends or π ∼= Z∗m or Z ∗m ⋊(Z/2Z) for some m 6= 0 or ±1 or π is
virtually Z2 or M is aspherical.

Proof The L2 Euler characteristic formula gives χ(M) = β
(2)
2 (M) ≥ 0, since

β
(2)
i (M) = β

(2)
i (π) = 0 for i = 0 or 1, by Lemma 2.1.

Let φ : B → B be the monomorphism determining π ∼= B∗φ . If B is finite
then φ is an automorphism and so π has two ends. If B is FP2 and has one
end then Hs(π; Z[π]) = 0 for s ≤ 2, by the Brown-Geoghegan Theorem. If
moreover χ(M) = 0 then M is aspherical, by Corollary 3.5.2.

If B has two ends then it is an extension of Z or D by a finite normal subgroup
F . As φ must map F isomorphically to itself, F is normal in π , and is the
maximal finite normal subgroup of π . Moreover π/F ∼= Z∗m , for some m 6= 0,
if B/F ∼= Z , and is a semidirect product Z ∗m ⋊(Z/2Z), with a presentation
〈a, t, u | tat−1 = am, tut−1 = uar, u2 = 1, uau = a−1〉, for some m 6= 0 and
some r ∈ Z , if B/F ∼= D . (On replacing t by a[r/2]t, if necessary, we may
assume that r = 0 or 1.)

Suppose first that M is orientable, and that F 6= 1. Then π has a subgroup
σ of finite index which is a central extension of Z∗mq by a finite cyclic group,
for some q ≥ 1, by Lemma 3.15. Let p be a prime dividing q . Since Z∗mq is a
torsion free solvable group the ring Ξ = Fp[Z∗mq ] has a skew field of fractions
L, which as a right Ξ-module is the direct limit of the system {Ξθ | 0 6= θ ∈ Ξ},
where each Ξθ = Ξ, the index set is ordered by right divisibility (θ ≤ φθ) and
the map from Ξθ to Ξφθ sends ξ to φξ [KLM88]. In particular, Ξ is a weakly
finite ring and so π is virtually Z2 , by Lemma 3.16.

If M is nonorientable then either w1(M)|F is injective, so π ∼= Z ∗m ⋊(Z/2Z),
or π is virtually Z2 .

Is M still aspherical if B is assumed only finitely generated and one ended?

Corollary 3.17.1 Let M be a finite PD4 -complex such that χ(M) = 0 and
π = π1(M) is almost coherent and restrained. Then either π has two ends or
π ∼= Z∗m or Z∗m ⋊(Z/2Z) for some m 6= 0 or ±1 or π is virtually Z2 or M
is aspherical.
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Proof Let π+ = Ker(w1(M)). Then π+ maps onto Z , by Lemma 3.14, and so
is an ascending HNN extension π+ ∼= B∗φ with finitely generated base B . Since
π is almost coherent B is FP2 , and since π has no nonabelian free subgroup
B has at most two ends. Hence Lemma 3.16 and Theorem 3.17 apply, so either
π has two ends or M is aspherical or π+ ∼= Z∗m or Z ∗m ⋊(Z/2Z) for some
m 6= 0 or ±1. In the latter case

√
π is isomorphic to a subgroup of the additive

rationals Q, and
√
π = Cπ(

√
π). Hence the image of π in Aut(

√
π) ≤ Q× is

infinite. Therefore π maps onto Z and so is an ascending HNN extension B∗φ ,
and we may again use Theorem 3.17.

Does this corollary remain true without the hypothesis that π be almost co-
herent?

There are nine groups which are virtually Z2 and are fundamental groups of
PD4 -complexes with Euler characteristic 0. (See Chapter 11.) Are any of the
semidirect products Z ∗m ⋊(Z/2Z) with |m| > 1 realized by PD4 -complexes
with χ = 0? If π is restrained and M is aspherical must π be virtually
poly-Z ? (Aspherical 4-manifolds with virtually poly-Z fundamental groups
are characterized in Chapter 8.)

Let G is a group with a presentation of deficiency d and w : G → {±1} be
a homomorphism, and let 〈xi, 1 ≤ i ≤ m | rj , 1 ≤ j ≤ n〉 be a presentation
for G with m − n = d. We may assume that w(xi) = +1 for i ≤ m− 1. Let
X = ♮m(S1×D3) if w = 1 and X = (♮m−1(S1×D3))♮(S1×̃D3) otherwise. The
relators rj may be represented by disjoint orientation preserving embeddings
of S1 in ∂X , and so we may attach 2-handles along product neighbourhoods,
to get a bounded 4-manifold Y with π1(Y ) = G, w1(Y ) = w and χ(Y ) =
1 − d. Doubling Y gives a closed 4-manifold M with χ(M) = 2(1 − d) and
(π1(M), w1(M)) isomorphic to (G,w).

Since the groups Z∗m have deficiency 1 it follows that any homomorphism
w : Z∗m → {±1} may be realized as the orientation character of a closed 4-
manifold with fundamental group Z∗m and Euler characteristic 0. What other
invariants are needed to determine the homotopy type of such a manifold?

3.5 The intersection pairing (added in 2007)

Let X be a PD4 -complex with fundamental group π and let w = w1(X). In
this section it shall be convenient to work with left modules. Thus if L is a left
Z[π]-module we shall let L† = HomZ[π](L,Z[π]) be the conjugate dual module.

If L is free, stably free or projective so is L† .
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Let H = H2(X; Z[π]) and Π = π2(X), and let D : H → Π and ev : H → Π†

be the Poincaré duality isomorphism and the evaluation homomorphism, re-
spectively. The cohomology intersection pairing λ : H × H → Z[π] is defined
by λ(u, v) = ev(v)(D(u)), for all u, v ∈ H . This pairing is w-hermitian:
λ(gu, hv) = gλ(u, v)h̄ and λ(v, u) = λ(u, v) for all u, v ∈ H and g, h ∈ π .
Since λ(u, e) = 0 for all u ∈ H and e ∈ E = H2(π; Z[π]) the pairing λ induces
a pairing λX : H/E × H/E → Z[π], which we shall call the reduced intersec-
tion pairing. The adjoint homomorphism λ̃X : H/E → (H/E)† is given by
λ̃X([v])([u]) = λ(u, v) = ev(v)(D(u)), for all u, v ∈ H . It is a monomorphism,
and λX is nonsingular if λ̃X is an isomorphism.

Lemma 3.18 Let X be a PD4 -complex with fundamental group π , and let
E = H2(π; Z[π]) .

(1) If λX is nonsingular then H3(π; Z[π]) embeds as a submodule of E† ;

(2) if λX is nonsingular and H2(cX ; Z[π]) splits then E† ∼= H3(π; Z[π]) ;

(3) if H3(π; Z[π]) = 0 then λX is nonsingular;

(4) if H3(π; Z[π]) = 0 and Π is a finitely generated projective Z[π]-module
then E = 0;

(5) if H1(π; Z[π]) and Π are projective then c.d.π = 4.

Proof Let p : Π → Π/D(E) and q : H → H/E be the canonical epimor-
phisms. Poincaré duality induces an isomorphism γ : H/E ∼= Π/D(E). It is
straightforward to verify that p†(γ†)−1λ̃Xq = ev . If λX is nonsingular then λ̃X
is an isomorphism, and so Coker(p†) = Coker(ev). The first assertion follows
easily, since Coker(p†) ≤ E† .

If moreover H2(cX ; Z[π]) splits then so does p, and so E† ∼= Coker(p†).

If H3(π; Z[π]) = 0 then ev is an epimorphism and so p† is an epimorphism.
Since p† is also a monomorphism it is an isomorphism. Since ev and q are
epimorphisms with the same kernel it folows that λ̃X = γ†(p†)−1 , and so λ̃X
is also an isomorphism.

If Π is finitely generated and projective then so is Π† , and Π ∼= Π†† . If moreover
H3(π; Z[π]) = 0 then Π ∼= H ∼= E⊕Π† . Hence E is also finitely generated and
projective, and E ∼= E†† = 0.

If H1(π; Z[π]) and Π are projective then we may obtain a projective resolution
of Z of length 4 from C∗ = C∗(X̃) by replacing C3 and C4 by C3 ⊕ Π and
C4 ⊕H1(π; Z[π]), respectively, and modifying ∂3 and ∂4 appropriately. Since
H3(X; Z[π]) ∼= H1(π; Z[π]) it is also projective. It follows from the UCSS that
H4(π; Z[π]) 6= 0. Hence c.d.π = 4.
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In particular, the cohomology intersection pairing is nonsingular if and only if
H2(π; Z[π]) = H3(π; Z[π]) = 0. If X is a 4-manifold counting intersections of
generic immersions of S2 in X̃ gives an equivalent pairing on Π.

We do not know whether the hypotheses in this lemma can be simplified. For in-
stance, is H2(π; Z[π])† always 0? Does “Π projective” imply that H3(π; Z[π]) =
0? Projectivity of Π† and H2(π; Z[π]) = 0 together do not imply this. For
if π is a PD+

3 -group and w = w1(π) there are finitely generated projective
Z[π]-modules P and P ′ such that Π⊕P ∼= A(π)⊕P ′ , where A(π) is the aug-
mentation ideal of Z[π], by Theorem 3.13, and so Π† is projective. However
H3(π; Z[π]) ∼= Z 6= 0.

The module Π is finitely generated if and only if π is of type FP3 . As observed
in the proof of Theorem 2.18, if π is a free product of infinite cyclic groups and
groups with one end and is not a free group then H1(π; Z[π]) is a free Z[π]-
module. An argument similar to that for part(5) of the lemma shows that
c.d.π ≤ 5 if and only if π is torsion-freee and p.d.Z[π]Π ≤ 2.

If Y is a second PD4 -complex we write λX ∼= λY if there is an isomorphism
θ : π ∼= π1(Y ) such that w1(X) = w1(Y )θ and a Z[π]-module isomorphism
Θ : π2(X) ∼= θ∗π2(Y ) inducing an isometry of cohomology intersection pair-
ings. If f : X → Y is a 2-connected degree-1 map the “surgery kernel”
K2(f) = Ker(π2(f)) and “surgery cokernel” K2(f) = Cok(H2(f ; Z[π])) are
finitely generated and projective, and are stably free if X and Y are finite
complexes, by Lemma 2.2 of [Wa]. (See also Theorem 3.2 above.) Moreover
cap product with [X] induces an isomorphism from K2(f) to K2(f). The
pairing λf = λ|K2(f)×K2(f) is nonsingular, by Theorem 5.2 of [Wa].
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Chapter 4

Mapping tori and circle bundles

Stallings showed that if M is a 3-manifold and f : M → S1 a map which
induces an epimorphism f∗ : π1(M) → Z with infinite kernel K then f is
homotopic to a bundle projection if and only if M is irreducible and K is
finitely generated. Farrell gave an analogous characterization in dimensions
≥ 6, with the hypotheses that the homotopy fibre of f is finitely dominated
and a torsion invariant τ(f) ∈ Wh(π1(M)) is 0. The corresponding results
in dimensions 4 and 5 are constrained by the present limitations of geometric
topology in these dimensions. (In fact there are counter-examples to the most
natural 4-dimensional analogue of Farrell’s theorem [We87].)

Quinn showed that if the base B and homotopy fibre F of a fibration p : M → B
are finitely dominated then the total space M is a Poincaré duality complex
if and only if both the base and fibre are Poincaré duality complexes. (The
paper [Go79] gives an elegant proof for the case when M , B and F are finite
complexes. The general case follows on taking products with copies of S1 to
reduce to the finite case and using the Künneth theorem.)

We shall begin by giving a purely homological proof of a version of this result,
for the case when M and B are PD-spaces and B = K(G, 1) is aspherical.
The homotopy fibre F is then the covering space associated to the kernel of the
induced epimorphism from π1(M) to G. Our algebraic approach requires only
that the equivariant chain complex of F have finite [n/2]-skeleton. In the next
two sections we use the finiteness criterion of Ranicki and the fact that Novikov
rings associated to finitely generated groups are weakly finite to sharpen this
finiteness hypotheses when B = S1 , corresponding to infinite cyclic covers of
M . The main result of §4.4 is a 4-dimensional homotopy fibration theorem
with hypotheses similar to those of Stallings and a conclusion similar to that
of Quinn and Gottlieb. The next two sections consider products of 3-manifolds
with S1 and covers associated to ascendant subgroups.

We shall treat fibrations of PD4 -complexes over surfaces in Chapter 5, by a
different, more direct method. In the final section of this chapter we consider
instead bundles with fibre S1 . We give conditions for a PD4 -complex to fibre
over a PD3 -complex with homotopy fibre S1 , and show that these conditions
are sufficient if the fundamental group of the base is torsion free but not free.
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4.1 PDr -covers of PDn-spaces

Let M be a PDn -space and p : π = π1(M) → G an epimorphism with G a
PDr -group, and let Mν be the covering space corresponding to ν = Ker(p).
If M is aspherical and ν is FP[n/2] then ν is a PDn−r -group and Mν =
K(ν, 1) is a PDn−r -space, by Theorem 9.11 of [Bi]. In general, there are
isomorphisms Hq(Mν ; Z[ν]) ∼= Hn−r−q(Mν ; Z[ν]), by Theorem 1.19 ′ . However
in the nonaspherical case it is not clear that there are such isomorphisms induced
by cap product with a class in Hn−r(Mν ; Z[ν]). If M is a PDn -complex and
ν is finitely presentable Mν is finitely dominated, and we could apply the
Gottlieb-Quinn Theorem to conclude that Mν is a PDn−r -complex. We shall
give instead a purely homological argument which does not require π or ν to
be finitely presentable, and so applies under weaker finiteness hypotheses.

A group G is a weak PDr -group if Hq(G; Z[G]) ∼= Z if q = r and is 0 otherwise
[Ba80]. If r ≤ 2 a group is a weak PDr -group if and only if it is virtually a
PDr -group. This is easy for r ≤ 1 and is due to Bowditch when r = 2
[Bo04]. Barge has given a simple homological argument to show that if G is a
weak PDr -group, M is a PDn -space and ηG ∈ Hr(M ; Z[G]) is the image of
a generator of Hr(G; Z[G]) then cap product with [Mν ] = ηG ∩ [M ] induces
isomorphisms with simple coefficients [Ba80]. We shall extend his argument
to the case of arbitrary local coefficients, using coinduced modules to transfer
arguments about subgroups and covering spaces to contexts where Poincaré
duality applies,

All tensor products N ⊗ P in the following theorem are taken over Z.

Theorem 4.1 Let M be a PDn -space and p : π = π1(M) → G an epimor-

phism with G a weak PDr -group, and let ν = Ker(p). If C∗(M̃ ) is Z[ν]-finitely
dominated then Mν is a PDn−r -space.

Proof Let C∗ be a finitely generated projective Z[π]-chain complex which is

chain homotopy equivalent to C∗(M̃). Since C∗(M̃) is Z[ν]-finitely dominated
there is a finitely generated projective Z[ν]-chain complex E∗ and a pair of Z[ν]-
linear chain homomorphisms θ : E∗ → C∗|ν and φ : C∗|ν → E∗ such that θφ ∼
IC∗

and φθ ∼ IE∗
. Let Cq = HomZ[π](Cq,Z[π]) and Eq = HomZ[ν](Eq,Z[ν]),

and let Ẑ[π] = HomZ[ν](Z[π]|ν ,Z[ν]) be the module coinduced from Z[ν]. Then

there are isomorphisms Ψ : Hq(E∗) ∼= Hq(C∗; Ẑ[π]), determined by θ and
Shapiro’s Lemma.

The complex Z[G]⊗Z[π] C∗ is an augmented complex of finitely generated pro-
jective Z[G]-modules with finitely generated integral homology. Therefore G
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is of type FP∞ , by Theorem 3.1 of [St96]. Hence the augmentation Z[G]-
module Z has a resolution A∗ by finitely generated projective Z[G]-modules.
Let Aq = HomZ[G](Aq,Z[G]) and let η ∈ Hr(A∗) = Hr(G; Z[G]) be a genera-
tor. Let εC : C∗ → A∗ be a chain map corresponding to the projection of p onto
G, and let ηG = ε∗Cη ∈ Hr(C∗; Z[G]). The augmentation A∗ → Z determines
a chain homotopy equivalence p : C∗ ⊗ A∗ → C∗ ⊗ Z = C∗ . Let σ : G → π be
a set-theoretic section.

We may define cup-products relating the cohomology of Mν and M as follows.

Let e : Ẑ[π]⊗Z[G] → Z[π] be the pairing given by e(α⊗g) = σ(g).α(σ(g)−1) for
all α : Z[π] → Z[ν] and g ∈ G. Then e is independent of the choice of section σ

and is Z[π]-linear with respect to the diagonal left π -action on Ẑ[π]⊗Z[G]. Let
d : C∗ → C∗⊗C∗ be a π -equivariant diagonal, with respect to the diagonal left
π -action on C∗ ⊗ C∗ , and let j = (1 ⊗ εC)d : C∗ → C∗ ⊗A∗ . Then pj = IdC∗

and so j is a chain homotopy equivalence. We define the cup-product [f ]∪ηG in
Hp+r(C∗) = Hp+r(M ; Z[π]) by [f ]∪ηG = e#d

∗(Ψ([f ])×ηG) = e#j
∗(Ψ([f ])×η)

for all [f ] ∈ Hp(E∗) = Hp(Mν ; Z[ν]).

If C is a left Z[π]-module let D = HomZ[ν](C|ν ,Z[π]) have the left G-action
determined by (gλ)(c) = σ(g)λ(σ(g)−1c) for all c ∈ C and g ∈ G. If C is free
with basis {ci|1 ≤ i ≤ n} there is an isomorphism of left Z[G]-modules Θ :
D ∼= (|Z[π]|G)n given by Θ(λ)(g) = (σ(g).λ(σ(g)−1c1), . . . , σ(g).λ(σ(g)−1cn))
for all λ ∈ D and g ∈ G, and so D is coinduced from a module over the trivial
group.

Let Dq = HomZ[ν](Cq|ν ,Z[π]) and let ρ : E∗ ⊗ Z[G] → D∗ be the Z-linear
cochain homomorphism defined by ρ(f⊗g)(c) = σ(g)fφ(σ(g)−1c) for all c ∈ Cq ,
λ ∈ Dq , f ∈ Eq , g ∈ G and all q . Then the G-action on Dq and ρ are
independent of the choice of section σ , and ρ is Z[G]-linear if Eq ⊗ Z[G] has
the left G-action given by g(f ⊗ g′) = f ⊗ gg′ for all g, g′ ∈ G and f ∈ Eq .

If λ ∈ Dq then λθq(Eq) is a finitely generated Z[ν]-submodule of Z[π]. Hence
there is a family of homomorphisms {fg ∈ Eq|g ∈ F}, where F is a finite
subset of G, such that λθq(e) = Σg∈F fg(e)σ(g) for all e ∈ Eq . Let λg(e) =
σ(g)−1fg(φσ(g)θ(e))σ(g) for all e ∈ Eq and g ∈ F . Let Φ(λ) = Σg∈Fλg ⊗ g ∈
Eq ⊗Z[G]. Then Φ is a Z-linear cochain homomorphism. Moreover [ρΦ(λ)] =
[λ] for all [λ] ∈ Hq(D∗) and [Φρ(f⊗g)] = [f⊗g] for all [f⊗g] ∈ Hq(E∗⊗Z[G]),
and so ρ is a chain homotopy equivalence. (It is not clear that Φ is Z[G]-linear
on the cochain level, but we shall not need to know this).

We now compare the hypercohomology of G with coefficients in the cochain
complexes E∗ ⊗ Z[G] and D∗ . On one side we have Hn(G;E∗ ⊗ Z[G]) =
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Hn
tot(HomZ[G](A∗, E∗ ⊗ Z[G])), which may be identified with Hn

tot(E
∗ ⊗ A∗)

since Aq is finitely generated for all q ≥ 0. This is in turn isomorphic to
Hn−r(E∗) ⊗ Hr(G; Z[G]) ∼= Hn−r(E∗), since G acts trivially on E∗ and is a
weak PDr -group.

On the other side we have Hn(G;D∗) = Hn
tot(HomZ[G](A∗,D∗)). The cochain

homomorphism ρ induces a morphism of double complexes from E∗ ⊗ A∗ to
HomZ[G](A∗,D∗) by ρpq(f ⊗ α)(a) = ρ(f ⊗ α(a)) ∈ Dp for all f ∈ Ep , α ∈ Aq

and a ∈ Aq and all p, q ≥ 0. Let ρ̂p([f ]) = [ρpr(f × η)] ∈ Hp+r(G;D∗) for
all [f ] ∈ Hp(E∗). Then ρ̂p : Hp(E∗) → Hp+r(G;D∗) is an isomorphism, since
[f ] 7→ [f × η] is an isomorphism and ρ is a chain homotopy equivalence. Since
Cp is a finitely generated projective Z[π]-module Dp is a direct summand of a
coinduced module. Therefore H i(G;Dp) = 0 for all i > 0, while H0(G;Dp) =
HomZ[π](Cp,Z[π]), for all p ≥ 0. Hence Hn(G;D∗) ∼= Hn(C∗) for all n.

Let f ∈ Ep , a ∈ Ar and c ∈ Cp , and suppose that η(a) = Σngg . Since
ρ̂p([f ])(a)(c) = ρ(f ⊗ η(a))(c) = Σngσ(g)fφ(σ(g)−1c) = ([f ]∪ η)(c, a) it follows
that the homomorphisms from Hp(E∗) to Hp+r(C∗) given by cup-product with
ηG are isomorphisms for all p.

Let [M ] ∈ Hn(M ; Zw) be a fundamental class for M , and let [Mν ] = ηG∩[M ] ∈
Hn−r(M ; Zw ⊗ Z[G]) = Hn−r(Mν ; Zw|ν ). Then cap product with [Mν ] induces
isomorphisms Hp(Mν ; Z[ν]) ∼= Hn−r−p(Mν ; Z[ν]) for all p, since c ∩ [Mν ] =

(c ∪ ηG) ∩ [M ] in Hn−r−p(M ; Z[π]) = Hn−r−p(Mν ; Z[ν]) = Hn−r−p(M̃ ; Z) for
c ∈ Hp(Mν ; Z[ν]). Thus Mν is a PDn−r -space.

Theorems 1.19 ′ and 4.1 together give the following version of the Gottlieb-
Quinn Theorem for covering spaces.

Corollary 4.1.1 Let M be a PDn -space and p : π = π1(M) → G an epimor-
phism with G a PDr -group, and let ν = Ker(p). Then Mν is a PDn−r -space

if and only if C∗(M̃)|ν has finite [n/2]-skeleton.

Proof The conditions are clearly necessary. Conversely, if Mν has finite [n/2]-
skeleton then C∗ is Z[ν]-finitely dominated, by Theorem 1.19 ′ , and hence is a
PDn−r -space, by Theorem 4.1.

Corollary 4.1.2 The space Mν is a PDn−r -complex if and only if it is ho-
motopy equivalent to a complex with finite [n/2]-skeleton and ν is finitely
presentable.
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Corollary 4.1.3 If π is a PDr -group M̃ is a PDn−r -complex if and only if
Hq(M̃ ; Z) is finitely generated for all q ≤ [n/2].

Stark used Theorem 3.1 of [St96] with the Gottlieb-Quinn Theorem to deduce
that if M is a PDn -complex and v.c.d.π/ν < ∞ then π/ν is of type vFP ,
and therefore is virtually a PD-group. Is there a purely algebraic argument to
show that if M is a PDn -space, ν is a normal subgroup of π and C∗(M̃ ) is
Z[ν]-finitely dominated then π/ν must be a weak PD-group?

4.2 Novikov rings and Ranicki’s criterion

The results of the above section apply in particular when G = Z . In this
case however we may use an alternative finiteness criterion of Ranicki to get a
slightly stronger result, which can be shown to be best possible. The results of
this section are based on joint work with Kochloukova (in [HK07]).

Let π be a group, ρ : π → Z an epimorphism with kernel ν and t ∈ π an
element such that ρ(t) = 1. Let α : ν → ν be the automorphism determined
by α(h) = tht−1 for all h in ν . This automorphism extends to a ring automor-
phism (also denoted by α) of the group ring R = Z[ν], and the ring S = Z[π]
may then be viewed as a twisted Laurent extension, Z[π] = Z[ν]α[t, t

−1]. The

Novikov ring Ẑ[π]ρ associated to π and ρ is the ring of (twisted) Laurent se-

ries Σj≥aκjtj , for some a ∈ Z, with coefficients κj in Z[ν]. Multiplication of
such series is determined by conjugation in π : if g ∈ ν then tg = (tgt−1)t. If

π is finitely generated the Novikov rings Ẑ[π]ρ are weakly finite [Ko06]. Let

Ŝ+ = Ẑ[π]ρ and Ŝ− = Ẑ[π]−ρ .

An α-twisted endomorphism of an R-module E is an additive function h : E →
E such that h(re) = α(r)h(e) for all e ∈ E and r ∈ R, and h is an α-twisted
automorphism if it is bijective. Such an endomorphism h extends to α-twisted
endomorphisms of the modules S ⊗R E , Ê+ = Ŝ+ ⊗R E and Ê− = Ŝ− ⊗R E
by h(s ⊗ e) = tst−1 ⊗ h(e) for all e ∈ E and s ∈ S , Ŝ+ or Ŝ− , respectively.
In particular, left multiplication by t determines α-twisted automorphisms of
S ⊗R E , Ê+ and Ê− which commute with h.

If E is finitely generated then 1 − t−1h is an automorphism of Ê− , with in-
verse given by a geometric series: (1 − t−1h)−1 = Σk≥0t

−khk . (If E is not

finitely generated this series may not give a function with values in Ê− , and
t− h = t(1 − t−1h) may not be surjective). Similarly, if k is an α−1 -twisted
endomorphism of E then 1 − tk is an automorphism of Ê+ .
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If P∗ is a chain complex with an endomorphism β : P∗ → P∗ let P∗[1] be the
suspension and C(β)∗ be the mapping cone. Thus C(β)q = Pq−1 ⊕ Pq , and
∂q(p, p

′) = (−∂p, β(p) + ∂p′), and there is a short exact sequence

0 → P∗ → C(β)∗ → P∗[1] → 0.

The connecting homomorphisms in the associated long exact sequence of ho-
mology are induced by β . The algebraic mapping torus of an α-twisted self
chain homotopy equivalence h of an R-chain complex E∗ is the mapping cone
C(1 − t−1h) of the endomorphism 1 − t−1h of the S -chain complex S ⊗R E∗ .

Lemma 4.2 Let E∗ be a projective chain complex over R which is finitely
generated in degrees ≤ d and let h : E∗ → E∗ be an α-twisted chain homotopy
equivalence. Then Hq(Ŝ− ⊗S C(1 − t−1h)∗) = 0 for q ≤ d.

Proof There is a short exact sequence

0 → S ⊗R E∗ → C(1 − z−1h)∗ → S ⊗R E∗[1] → 0.

Since E∗ is a complex of projective R-modules the sequence

0 → Ê∗− → Ŝ− ⊗S C(1 − t−1h)∗ → Ê∗−[1] → 0

obtained by extending coefficients is exact. Since 1−t−1h induces isomorphisms
on Êq− for q ≤ d it induces isomorphisms on homology in degrees < d and an

epimorphism on homology in degree d. Therefore Hq(Ŝ− ⊗S C(1 − t−1h)∗) = 0
for q ≤ d, by the long exact sequence of homology.

The next theorem is our refinement of Ranicki’s finiteness criterion [HK07].

Theorem 4.3 Let C∗ be a finitely generated projective S -chain complex.
Then i!C∗ has finite d-skeleton if and only if Hq(Ŝ± ⊗S C∗) = 0 for q ≤ d.

Proof We may assume without loss of generality that Cq is a finitely generated
free S -module for all q ≤ d+ 1, with basis Xi = {cq,i}i∈I(q) . We may also
assume that 0 /∈ ∂i(Xi) for i ≤ d + 1, where ∂i : Ci → Ci−1 is the differential
of the complex. Let h± be the α±1 -twisted automorphisms of i!C∗ induced by
multiplication by z±1 in C∗ . Let fq(z

krcq,i) = (0, zk ⊗ rcq,i) ∈ (S ⊗R Cq−1) ⊕
(S ⊗R Cq). Then f∗ defines S -chain homotopy equivalences from C∗ to each
of C(1 − z−1h+) and C(1 − zh−).

Suppose first that k∗ : i!C∗ → E∗ and g∗ : E∗ → i!C∗ are chain homotopy equiv-
alences, where E∗ is a projective R-chain complex which is finitely generated
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in degrees ≤ d. Then θ± = k∗h±g∗ are α±1 -twisted self homotopy equiva-
lences of E∗ , and C(1− z−1h+) and C(1− zh−) are chain homotopy equivalent
to C(1 − z−1θ+) and C(1 − zθ−), respectively. Therefore Hq(Ŝ− ⊗S C∗) =

Hq(Ŝ− ⊗S C(1 − z−1θ+)) = 0 and Hq(Ŝ+ ⊗S C∗) = Hq(Ŝ+ ⊗S C(1 − zθ−)) = 0
for q ≤ d, by Lemma 5, applied twice.

Conversely, suppose that Hi(Ŝ±⊗SC∗) = 0 for all i ≤ k . Adapting an idea from
[BR88], we shall define inductively a support function suppX for λ ∈ ∪i≤d+1Ci
with values finite subsets of {zj}j∈Z so that

(1) suppX(0) = ∅;

(2) if x ∈ X0 then suppX(zjx) = zj ;

(3) if x ∈ Xi for 1 ≤ i ≤ d+ 1 then suppX(zjx) = zj.suppX(∂i(x));

(4) if s =
∑

j rjz
j ∈ S , where rj ∈ R, suppX(sx) = ∪rj 6=0suppX(zjx);

(5) if 0 ≤ i ≤ d+ 1 and λ =
∑

sx∈S,x∈Xi
sxx then

suppX(λ) = ∪sx 6=0,x∈Xi
suppX(sxx).

Then suppX(∂i(λ)) ⊆ suppX(λ) for all λ ∈ Ci and all 1 ≤ i ≤ d+ 1. Since
X = ∪i≤d+1Xi is finite there is a positive integer b such that

∪x∈Xi,i≤d+1suppX(x) ⊆ {zj}−b≤j≤b.
Define two subcomplexes C+ and C− of C which are 0 in degrees i ≥ d+ 2 as
follows:

(1) if i ≤ d+ 1 an element λ ∈ Ci is in C+ if and only if suppX(λ) ⊆
{zj}j≥−b ; and

(2) if i ≤ d+ 1 an element λ ∈ Ci is in C− if and only if suppX(λ) ⊆ {zj}j≤b .

Then ∪i≤d+1Xi ⊆ (C+)[d+1] ∩ (C−)[d+1] and so (C+)[d+1] ∪ (C−)[d+1] = C [d+1],
where the upper index ∗ denotes the ∗-skeleton. Moreover (C+)[d+1] is a
complex of free finitely generated Rα[z]-modules, (C−)[d+1] is a complex of
free finitely generated Rα[z−1]-modules, (C+)[d+1] ∩ (C−)[d+1] is a complex of
free finitely generated R-modules and

C [d+1] = S ⊗Rα[z] (C+)[d+1] = S ⊗Rα[z−1] (C−)[d+1].

Furthermore there is a Mayer-Vietoris exact sequence

0 → (C+)[d+1] ∩ (C−)[d+1] → (C+)[d+1] ⊕ (C−)[d+1] → C [d+1] → 0.

Thus the (d+ 1)-skeletons of C , C+ and C− satisfy “algebraic transversality”
in the sense of [Ra95].
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Then to prove the theorem it suffices to show that C+ and C− are each chain
homotopy equivalent over R to a complex of projective R-modules which is
finitely generated in degrees ≤ d. As in [Ra95] there is an exact sequence of
Rα[z

−1]-module chain complexes

0 → (C−)[d+1] → C [d+1] ⊕Rα[[z−1]] ⊗Rα[z−1] (C
−)[d+1] → Ŝ− ⊗S C

[d+1] → 0.

Let ĩ denot the inclusion of (C−)[d+1] into the central term. Inclusions on each
component define a chain homomorphism

j̃ : (C+)[d+1] ∩ (C−)[d+1] → (C+)[d+1] ⊕Rα[[z
−1]] ⊗Rα[z−1] (C−)[d+1]

such that the mapping cones of ĩ and j̃ are chain equivalent R-module chain
complexes. The map induced by ĩ in homology is an epimorphism in degree d
and an isomorphism in degree < d, since Hi(Ŝ− ⊗S C

[d+1]) = 0 for i ≤ d. In
particular all homologies in degrees ≤ d of the mapping cone of ĩ are 0. Hence
all homologies of the mapping cone of j̃ are 0 in degrees ≤ d. Then (C+)[d+1]

is homotopy equivalent over R to a chain complex of projectives over R whose
k -skeleton is a summand of (C+)[d] ∩ (C−)[d] . This completes the proof.

The argument for the converse is entirely due to Kochloukova.

As an application we shall give a quick proof of Kochloukova’s improvement of
Corollary 2.5.1.

Corollary 4.3.1 (Ko06) Let π be a finitely presentable group with a finitely
generated normal subgroup N such that π/N ∼= Z . Then def(π) = 1 if and
only if N is free.

Proof Let X be the finite 2-complex corresponding to an optimal presentation
of π . If def(G) = 1 then χ(X) = 0 and X is aspherical, by Theorem 2.5. Hence
C∗ = C∗(X̃) is a finite free resolution of the augmentation module Z. Let A±
be the two Novikov rings corresponding to the two epimorphisms ±p : π → Z
with kernel N . Then Hj(A±⊗Z[π]C∗) = 0 for j ≤ 1, by Theorem 4.3. But then
H2(A±⊗Z[π]C∗) is stably free, by Lemma 3.1. Since χ(A±⊗Z[π]C∗) = χ(C∗) =
χ(X) = 0 and the rings A± are weakly finite [Ko06] these modules are 0. Thus
Hj(A± ⊗Z[π] C∗) = 0 for all j , and so C∗|ν is chain homotopy equivalent to
a finite projective Z[ν]-complex, by Theorem 2 of [Ra95]. In particular, N is
FP2 and hence is free, by Corollary 8.6 of [Bi].

The converse is clear.
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4.3 Infinite cyclic covers

The mapping torus of a self homotopy equivalence f : X → X is the space
M(f) = X × [0, 1]/ ∼, where (x, 0) ∼ (f(x), 1) for all x ∈ X . The function
p([x, t]) = e2πit defines a map p : M(f) → S1 with homotopy fibre X , and the
induced homomorphism p∗ : π1(M(f)) → Z is an epimorphism if X is path-
connected. Conversely, let E be a connected cell complex and let f : E → S1

be a map which induces an epimorphism f∗ : π1(E) → Z , with kernel ν . Then
Eν = E ×S1 R = {(x, y) ∈ E × R | f(x) = e2πiy}, and E ≃ M(φ), where
φ : Eν → Eν is the generator of the covering group given by φ(x, y) = (x, y+1)
for all (x, y) in Eν .

Theorem 4.4 Let M be a finite PDn -space with fundamental group π and
let p : π → Z be an epimorphism with kernel ν . Then Mν is a PDn−1 -space if
and only if χ(M) = 0 and C∗(M̃ν) = C∗(M̃)|ν has finite [(n − 1)/2]-skeleton.

Proof If Mν is a PDn−1 -space then C∗(M̃ν) is Z[ν]-finitely dominated [Br72].
In particular, H∗(M ; Λ) = H∗(Mν ; Z) is finitely generated. The augmentation
Λ-module Z has a short free resolution 0 → Λ → Λ → Z → 0, and it follows
easily from the exact sequence of homology for this coefficient sequence that
χ(M) = 0 [Mi68]. Thus the conditions are necessary.

Suppose that they hold. Let A± be the two Novikov rings corresponding to
the two epimorphisms ±p : π → Z with kernel ν . Then Hj(A± ⊗Z[π] C∗) = 0
for j ≤ [(n − 1)/2], by Theorem 4.3. Hence Hj(A± ⊗Z[π] C∗) = 0 for j ≥
n− [(n−1)/2], by duality. If n is even there is one possible nonzero module, in
degree m = n/2. But then Hm(A± ⊗Z[π] C∗) is stably free, by the finiteness of
M and Lemma 3.1. Since χ(A± ⊗Z[π] C∗) = χ(C∗) = χ(M) = 0 and the rings
A± are weakly finite [Ko06] these modules are 0. Thus Hj(A± ⊗Z[π] C∗) = 0
for all j , and so C∗|ν is chain homotopy equivalent to a finite projective Z[ν]-
complex, by Theorem 4.4. Thus the result follows from Theorem 4.1.

When n is odd [n/2] = [(n − 1)/2], so the finiteness condition on Mν agrees
with that of Corollary 4.1.1 (for G = Z ), but it is slightly weaker if n is even.
Examples constructed by elementary surgery on simple n-knots show that the
FP[(n−1)/2] condition is best possible, even when π ∼= Z and ν = 1.

Corollary 4.4.1 Under the same hypotheses on M and π , if n 6= 4 then Mν

is a PDn−1 -complex if and only if it is homotopy equivalent to a complex with
finite [(n− 1)/2]-skeleton.
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Proof If n ≤ 3 every PDn−1 -space is a PDn−1 -complex, while if n ≥ 5 then
[(n− 1)/2] ≥ 2 and so ν is finitely presentable.

If n ≤ 3 we need only assume that M is a PDn -space and ν is finitely generated.

It remains an open question whether every PD3 -space is finitely dominated.
The arguments of [Tu89] and [Cr00] on the factorization of PD3 -complexes
into connected sums are essentially homological, and so every PD3 -space is a
connected sum of aspherical PD3 -spaces and a PD3 -complex with virtually
free fundamental group. Thus the question of whether every PD3 -space is
finitely dominated reduces to whether every PD3 -group is finitely presentable.

4.4 The case n = 4

If M(f) is the mapping torus of a self homotopy equivalence of a PD3 -space
then χ(M) = 0 and π1(M) is an extension of Z by a finitely generated normal
subgroup. These conditions characterize such mapping tori, by Theorem 4.4.
We shall summarize various related results in the following theorem.

Theorem 4.5 Let M be a finite PD4 -space whose fundamental group π is
an extension of Z by a finitely generated normal subgroup ν . Then

(1) χ(M) ≥ 0, with equality if and only if H2(Mν ; Q) is finitely generated;

(2) χ(M) = 0 if and only if Mν is a PD3 -space;

(3) if χ(M) = 0 then M is aspherical if and only if ν is a PD3 -group if and
only if ν has one end;

(4) if M is aspherical then χ(M) = 0 if and only if ν is a PD3 -group if and
only ν is FP2 .

Proof Since C∗(M̃) is finitely dominated and QΛ = Q[t, t−1] is noetherian
the homology groups Hq(Mν ; Q) are finitely generated as QΛ-modules. Since
ν is finitely generated they are finite dimensional as Q-vector spaces if q < 2,
and hence also if q > 2, by Poincaré duality. Now H2(Mν ; Q) ∼= Qr ⊕ (QΛ)s

for some r, s ≥ 0, by the Structure Theorem for modules over a PID. It follows
easily from the Wang sequence for the covering projection from Mν to M , that
χ(M) = s ≥ 0.

The space Mν is a PD3 -space if and only if χ(M) = 0, by Theorem 4.4.

If χ(M) = 0 and M is aspherical then K(ν, 1) ≃ Mν is a PD3 -complex, so
ν is a PD3 -group. If ν is a PD3 -group it has has one end. If ν has one end
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Hs(π; Z[π]) = 0 for s ≤ 2, by an LHS spectral sequence argument. Since ν is

finitely generated β
(2)
1 (π) = 0, by Lemma 2.1. Therefore if χ(M) = 0 and ν

has one end M is aspherical, by Corollary 3.5.2.

If M is aspherical and χ(M) = 0 then ν is a PD3 -group. If ν is a PD3 -group
it is FP2 . If M is aspherical and ν is FP2 then ν is a PD3 -group, by Theorem
1.19 (or Theorem 4.4), and so χ(M) = 0.

In particular, if χ(M) = 0 then q(π) = 0. This observation and the bound
χ(M) ≥ 0 were given in Theorem 3.17. (They also follow on counting bases for
the cellular chain complex of Mν and extending coefficients to Q(t).)

If χ(M) = 0 and ν is finitely presentable then Mν is a PD3 -complex. However
Mν need not be homotopy equivalent to a finite complex. If M is a simple PD4 -
complex and a generator of Aut(Mν/M) ∼= π/ν has finite order in the group of
self homotopy equivalences of Mν then M is finitely covered by a simple PD4 -
complex homotopy equivalent to Mν × S1 . In this case Mν must be homotopy
finite by [Rn86].

If π ∼= ν ⋊ Z is a PD4 -group with ν finitely generated then χ(π) = 0 if and
only if ν is FP2 , by Theorem 4.5. However the latter conditions need not hold.
Let F be the orientable surface of genus 2. Then G = π1(F ) has a presentation
〈a1, a2, b1, b2 | [a1, b1] = [a2, b2]〉. The group π = G × G is a PD4 -group, and
the subgroup ν ≤ π generated by the images of (a1, a1) and the six elements
(x, 1) and (1, x), for x = a2 , b1 or b2 , is normal in π , with quotient π/ν ∼= Z .
However χ(π) = 4 6= 0 and so ν cannot be FP2 .

It can be shown that the finitely generated subgroup N of F (2)×F (2) defined
after Theorem 2.4 has one end. However H2(F (2)×F (2); Z[F (2)×F (2)]) 6= 0.
(Note that q(F (2) × F (2)) = 2, by Corollary 3.12.2.)

Corollary 4.5.1 Let M be a finite PD4 -space with χ(M) = 0 and whose
fundamental group π is an extension of Z by a normal subgroup ν . If π has
an infinite cyclic normal subgroup C which is not contained in ν then the
covering space Mν with fundamental group ν is a PD3 -complex.

Proof We may assume without loss of generality that M is orientable and
that C is central in π . Since π/ν is torsion-free C ∩ ν = 1, and so Cν ∼= C× ν
has finite index in π . Thus by passing to a finite cover we may assume that
π = C × ν . Hence ν is finitely presentable and so Theorem 4.5 applies.
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80 Chapter 4: Mapping tori and circle bundles

Since ν has one or two ends if it has an infinite cyclic normal subgroup, Corol-
lary 4.5.1 remains true if C ≤ ν and ν is finitely presentable. In this case ν is
the fundamental group of a Seifert fibred 3-manifold, by Theorem 2.14.

Corollary 4.5.2 Let M be a finite PD4 -space with χ(M) = 0 and whose fun-
damental group π is an extension of Z by a finitely generated normal subgroup
ν . If ν is finite then it has cohomological period dividing 4. If ν has one end
then M is aspherical and so π is a PD4 -group. If ν has two ends then ν ∼= Z ,
Z ⊕ (Z/2Z) or D = (Z/2Z) ∗ (Z/2Z). If moreover ν is finitely presentable the
covering space Mν with fundamental group ν is a PD3 -complex.

Proof The final hypothesis is only needed if ν is one-ended, as finite groups
and groups with two ends are finitely presentable. If ν is finite then M̃ ≃ S3

and so the first assertion holds. (See Chapter 11 for more details.) If ν has one
end we may use Theorem 4.5. If ν has two ends and its maximal finite normal
subgroup is nontrivial then ν ∼= Z ⊕ (Z/2Z), by Theorem 2.11 (applied to the
PD3 -complex Mν ). Otherwise ν ∼= Z or D .

In Chapter 6 we shall strengthen this Corollary to obtain a fibration theorem
for 4-manifolds with torsion free elementary amenable fundamental group.

Corollary 4.5.3 Let M be a finite PD4 -space with χ(M) = 0 and whose
fundamental group π is an extension of Z by a normal subgroup ν ∼= F (r).
Then M is homotopy equivalent to a closed PL 4-manifold which fibres over
the circle, with fibre ♯rS1 × S2 if w1(M)|ν is trivial, and ♯rS1×̃S2 otherwise.
The bundle is determined by the homotopy type of M .

Proof Since Mν is a PD3 -complex with free fundamental group it is homotopy
equivalent to N = ♯rS1 × S2 if w1(M)|ν is trivial and to ♯rS1×̃S2 otherwise.
Every self homotopy equivalence of a connected sum of S2 -bundles over S1 is
homotopic to a self-homeomorphism, and homotopy implies isotopy for such
manifolds [La]. Thus M is homotopy equivalent to such a fibred 4-manifold,
and the bundle is determined by the homotopy type of M .

It is easy to see that the natural map from Homeo(N) to Out(F (r)) is onto. If a
self homeomorphism f of N = ♯rS1×S2 induces the trivial outer automorphism
of F (r) then f is homotopic to a product of twists about nonseparating 2-
spheres [Hn]. How is this manifest in the topology of the mapping torus?
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Corollary 4.5.4 Let M be a finite PD4 -space with χ(M) = 0 and whose
fundamental group π is an extension of Z by a torsion free normal subgroup ν
whose indecomposable factors are isomorphic to fundamental groups of Haken,
hyperbolic or Seifert fibred 3-manifolds. Then M is homotopy equivalent to a
closed PL 4-manifold which fibres over the circle.

Proof There is a homotopy equivalence f : N →Mν , where N is a 3-manifold
whose irreducible factors are as above, by Turaev’s Theorem. (See §5 of Chapter
2.) Let t : Mν → Mν be the generator of the covering transformations. Then
there is a self homotopy equivalence u : N → N such that fu ∼ tf . As each
irreducible factor of N has the property that self homotopy equivalences are
homotopic to PL homeomorphisms (by [Hm], Mostow rigidity or [Sc83]), u is
homotopic to a homeomorphism [HL74], and so M is homotopy equivalent to
the mapping torus of this homeomorphism.

The hypothesis that M be finite is redundant in each of the last two corol-
laries, since K̃0(Z[π]) = 0. (See Theorem 6.3.) All PD3 -complexes have
virtually torsion free fundamental group, by Crisp’s Theorem, and all known
PD3 -complexes with torsion free fundamental group are homotopy equivalent
to connected sums of such 3-manifolds.

If the irreducible connected summands of the closed 3-manifold N = ♯iNi are
P 2 -irreducible and sufficiently large or have fundamental group Z then every
self homotopy equivalence of N is realized by an unique isotopy class of home-
omorphisms [HL74]. However if N is not aspherical then it admits nontrivial
self-homeomorphisms (“rotations about 2-spheres”) which induce the identity
on ν , and so such bundles are not determined by the group alone.

Let f : M → E be a homotopy equivalence, where E is a finite PD4 -complex
with χ(E) = 0 and fundamental group π = ν ⋊ Z , where ν is finitely pre-
sentable. Then w1(M) = f∗w1(E) and cE∗f∗[M ] = ±cE∗[E] in H4(π;Zw1(E)).
Conversely, if χ(M) = 0 and there is an isomorphism θ : π1(M) ∼= π such that
w1(M) = θ∗iw and θ1∗cM∗[M ] = cE∗[E] then Eν and Mν are PD3 -complexes,
by Theorem 4.5. A Wang sequence argument as in the next theorem shows
that the fundamental triples of Eν and Mν are isomorphic, and so they are
homotopy equivalent, by Hendrik’s Theorem. What additional conditions are
needed to determine the homotopy type of such mapping tori? Our next result
is a partial step in this direction.

Theorem 4.6 Let E be a finite PD4 -complex with χ(E) = 0 and whose
fundamental group π is an extension of Z by a finitely presentable normal sub-
group ν which is not virtually free. Let Π = H2(π; Z[π]) . A PD4 -complex M
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is homotopy equivalent to E if and only if χ(M) = 0, there is an isomorphism
θ from π1(M) to π such that w1(M) = w1(E)θ , θ∗−1k1(M) and k1(E) gener-
ate the same subgroup of H3(π; Π) under the action of Out(π) ×AutZ[π](Π) ,
and there is a lift ĉ : M → P2(E) of θcM such that ĉ∗[M ] = ±fE∗[E] in
H4(P2(E);Zw1(E)).

Proof The conditions are clearly necessary. Suppose that they hold. The in-
finite cyclic covering spaces N = Eν and Mν are PD3 -complexes, by Theorem
4.5, and π2(E) ∼= Π and π2(M) ∼= θ∗Π, by Theorem 3.4. The maps cN and cE
induce a homomorphism between the Wang sequence for the fibration of E over
S1 and the corresponding Wang sequence for K(π, 1). Since ν is not virtually
free H3(cN ;Zw1(E)) is a monomorphism. Hence H4(cE ;Zw1(E)) and a fortiori
H4(fE;Zw1(E)) are monomorphisms, and so Theorem 3.8 applies.

As observed in the first paragraph of §9 of Chapter 2, the conditions on θ and
the k -invariants also imply that Mν ≃ Eν .

The original version of this book gave an exposition of the extension of Barge’s
argument to local coefficients for the case when G ∼= Z , instead of the present
Theorem 4.1, and used this together with an L2 -argument, instead of the
present Theorem 4.3, to establish the results corresponding to Theorem 4.5
for the case when ν was FP2 .

4.5 Products

If M = N × S1 , where N is a closed 3-manifold, then χ(M) = 0, Z is a
direct factor of π1(M), w1(M) is trivial on this factor and the Pin− -condition
w2 = w2

1 holds. These conditions almost characterize such products up to
homotopy equivalence. We need also a constraint on the other direct factor of
the fundamental group.

Theorem 4.7 Let M be a finite PD4 -complex whose fundamental group π
has no 2-torsion. Then M is homotopy equivalent to a product N ×S1 , where
N is a closed 3-manifold, if and only if χ(M) = 0, w2(M) = w1(M)2 and there
is an isomorphism θ : π → ν × Z such that w1(M)θ−1|Z = 0, where ν is a
(2-torsion free) 3-manifold group.

Proof The conditions are clearly necessary, since the Pin− -condition holds
for 3-manifolds.
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If these conditions hold then the covering space Mν with fundamental group ν
is a PD3 -complex, by Theorem 4.5 above. Since ν is a 3-manifold group and
has no 2-torsion it is a free product of cyclic groups and groups of aspherical
closed 3-manifolds. Hence there is a homotopy equivalence h : Mν → N , where
N is a connected sum of lens spaces and aspherical closed 3-manifolds, by
Turaev’s Theorem. (See §5 of Chapter 2.) Let φ generate the covering group
Aut(M/Mν) ∼= Z . Then there is a self homotopy equivalence ψ : N → N
such that ψh ∼ hφ, and M is homotopy equivalent to the mapping torus
M(ψ). We may assume that ψ fixes a basepoint and induces the identity on
π1(N), since π1(M) ∼= ν × Z . Moreover ψ preserves the local orientation,
since w1(M)θ−1|Z = 0. Since ν has no element of order 2 N has no two-sided
projective planes and so ψ is homotopic to a rotation about a 2-sphere [Hn].
Since w2(M) = w1(M)2 the rotation is homotopic to the identity and so M is
homotopy equivalent to N × S1 .

Let ρ be an essential map from S1 to SO(3), and let M = M(τ), where
τ : S1 × S2 → S1 × S2 is the twist map, given by τ(x, y) = (x, ρ(x)(y)) for
all (x, y) in S1 × S2 . Then π1(M) ∼= Z × Z , χ(M) = 0, and w1(M) = 0,
but w2(M) 6= w1(M)2 = 0, so M is not homotopy equivalent to a product.
(Clearly however M(τ2) = S1 × S2 × S1 .)

To what extent are the constraints on ν necessary? There are orientable 4-
manifolds which are homotopy equivalent to products N×S1 where ν = π1(N)
is finite and is not a 3-manifold group. (See Chapter 11.) Theorem 4.1 implies
that M is homotopy equivalent to a product of an aspherical PD3 -complex
with S1 if and only if χ(M) = 0 and π1(M) ∼= ν × Z where ν has one end.

There are 4-manifolds which are simple homotopy equivalent to S1×RP 3 (and
thus satisfy the hypotheses of our theorem) but which are not homeomorphic
to mapping tori [We87].

4.6 Ascendant subgroups

In this brief section we shall give another characterization of aspherical PD4 -
complexes with finite covering spaces which are homotopy equivalent to map-
ping tori.

Theorem 4.8 Let M be a PD4 -complex. Then M is aspherical and has a
finite cover which is homotopy equivalent to a mapping torus if and only if
χ(M) = 0 and π = π1(M) has an ascendant FP3 subgroup G of infinite index
and such that Hs(G; Z[G]) = 0 for s ≤ 2. In that case G is a PD3 -group,
[π : Nπ(G)] <∞ and e(Nπ(G)/G) = 2.
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Proof The conditions are clearly necessary. Suppose that they hold and
that G = G0 < G1 < ... < Gi = π is an ascendant sequence. Let γ =
min{α | [Gα : G] = ∞}. Transfinite induction using the LHS spectral sequence
with coefficients Z[π] and Theorem 1.15 shows that Hs(π;Z[π]) = 0 for s ≤ 2.

If γ is finite then β
(2)
1 (Gγ) = 0, since it has a finitely generated normal sub-

group of infinite index [Ga00]. Otherwise γ is the first infinite ordinal, and

[Gj+1 : Gj ] < ∞ for all j < γ . In this case β
(2)
1 (Gn) = β

(2)
1 (G)/[Gn : G] and

so limn→∞ β
(2)
1 (Gn) = 0. It then follows from Theorems 6.13 and 6.54(7) of

[Lü] that β
(2)
1 (Gγ) = 0. In either case it then follows that β

(2)
1 (Gα) = 0 for all

γ ≤ α ≤ i by Theorem 2.3 (which is part of Theorem 7.2 of [Lü]). Hence M
is aspherical, by Theorem 3.5.

On the other hand Hs(Gγ ;W ) = 0 for s ≤ 3 and any free Z[Gγ ]-module W ,
so c.d.Gγ = 4. Hence [π : Gγ ] < ∞, by Strebel’s Theorem. Therefore Gγ is a
PD4 -group. In particular, it is finitely generated and so γ < ∞. If γ = β + 1
then [Gβ : G] < ∞. It follows easily that [π : Nπ(G)] < ∞. Hence G is a
PD3 -group and Nπ(G)/G has two ends, by Theorem 3.10.

The hypotheses on G could be replaced by “G is a PD3 -group”, for then
[π : G] = ∞, by Theorem 3.12.

We shall establish an analogous result for PD4 -complexes M such that χ(M) =
0 and π1(M) has an ascendant subgroup of infinite index which is a PD2 -group
in Chapter 5.

4.7 Circle bundles

In this section we shall consider the “dual” situation, of PD4 -complexes which
are homotopy equivalent to the total space of a S1 -bundle over a 3-dimensional
base N . Lemma 4.9 presents a number of conditions satisfied by such spaces.
(These conditions are not all independent.) Bundles c∗Nξ induced from S1 -
bundles over K(π1(N), 1) are given equivalent characterizations in Lemma 4.10.
In Theorem 4.11 we shall show that the conditions of Lemmas 4.9 and 4.10
characterize the homotopy types of such bundle spaces E(c∗N ξ), provided π1(N)
is torsion free but not free.

Since BS1 ≃ K(Z, 2) any S1 -bundle over a connected base B is induced from
some bundle over P2(B). For each epimorphism γ : µ → ν with cyclic kernel
and such that the action of µ by conjugation on Ker(γ) factors through multi-
plication by ±1 there is an S1 -bundle p(γ) : X(γ) → Y (γ) whose fundamental
group sequence realizes γ and which is universal for such bundles; the total
space E(p(γ)) is a K(µ, 1) space (cf. Proposition 11.4 of [Wl]).
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Lemma 4.9 Let p : E → B be the projection of an S1 -bundle ξ over a
connected cell complex B . Then

(1) χ(E) = 0;

(2) the natural map p∗ : π = π1(E) → ν = π1(B) is an epimorphism with
cyclic kernel, and the action of ν on Ker(p∗) induced by conjugation in
π is given by w = w1(ξ) : π1(B) → Z/2Z ∼= {±1} ≤ Aut(Ker(p∗));

(3) if B is a PD-complex w1(E) = p∗(w1(B) + w);

(4) if B is a PD3 -complex there are maps ĉ : E → P2(B) and
y : P2(B) → Y (p∗) such that cP2(B) = cY (p∗)y , yĉ = p(p∗)cE and
(ĉ, cE)∗[E] = ±G(fB∗[B]) where G is the Gysin homomorphism from
H3(P2(B);Zw1(B)) to H4(P2(E);Zw1(E));

(5) If B is a PD3 -complex cE∗[E] = ±G(cB∗[B]), where G is the Gysin
homomorphism from H3(ν;Z

wB ) to H4(π;ZwE );

(6) Ker(p∗) acts trivially on π2(E).

Proof Condition(1) follows from the multiplicativity of the Euler characteris-
tic in a fibration. If α is any loop in B the total space of the induced bundle
α∗ξ is the torus if w(α) = 0 and the Klein bottle if w(α) = 1 in Z/2Z ; hence
gzg−1 = zǫ(g) where ǫ(g) = (−1)w(p∗(g)) for g in π1(E) and z in Ker(p∗).
Conditions (2) and (6) then follow from the exact homotopy sequence. If the
base B is a PD-complex then so is E , and we may use naturality and the
Whitney sum formula (applied to the Spivak normal bundles) to show that
w1(E) = p∗(w1(B) + w1(ξ)). (As p∗ : H1(B; F2) → H1(E; F2) is a monomor-
phism this equation determines w1(ξ).)

Condition (4) implies (5), and follows from the observations in the paragraph
preceding the lemma. (Note that the Gysin homomorphisms G in (4) and (5)
are well defined, since H1(Ker(γ);ZwE ) is isomorphic to ZwB , by (3).)

Bundles with Ker(p∗) ∼= Z have the following equivalent characterizations.

Lemma 4.10 Let p : E → B be the projection of an S1 -bundle ξ over a
connected cell complex B . Then the following conditions are equivalent:

(1) ξ is induced from an S1 -bundle over K(π1(B), 1) via cB ;

(2) for each map β : S2 → B the induced bundle β∗ξ is trivial;

(3) the induced epimorphism p∗ : π1(E) → π1(B) has infinite cyclic kernel.
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If these conditions hold then c(ξ) = c∗BΞ, where c(ξ) is the characteristic class
of ξ in H2(B;Zw) and Ξ is the class of the extension of fundamental groups
in H2(π1(B);Zw) = H2(K(π1(B), 1);Zw), where w = w1(ξ).

Proof Condition (1) implies condition (2) as for any such map β the com-
posite cBβ is nullhomotopic. Conversely, as we may construct K(π1(B), 1) by
adjoining cells of dimension ≥ 3 to B condition (2) implies that we may extend
ξ over the 3-cells, and as S1 -bundles over Sn are trivial for all n > 2 we may
then extend ξ over the whole of K(π1(B), 1), so that (2) implies (1). The equiv-
alence of (2) and (3) follows on observing that (3) holds if and only if ∂β = 0
for all such β , where ∂ is the connecting map from π2(B) to π1(S

1) in the ex-
act sequence of homotopy for ξ , and on comparing this with the corresponding
sequence for β∗ξ .

As the natural map from the set of S1 -bundles over K(π, 1) with w1 = w (which
are classified by H2(K(π, 1);Zw)) to the set of extensions of π by Z with π
acting via w (which are classified by H2(π;Zw)) which sends a bundle to the
extension of fundamental groups is an isomorphism we have c(ξ) = c∗B(Ξ).

If N is a closed 3-manifold which has no summands of type S1 ×S2 or S1×̃S2

(i.e., if π1(N) has no infinite cyclic free factor) then every S1 -bundle over N
with w = 0 restricts to a trivial bundle over any map from S2 to N . For if ξ is
such a bundle, with characteristic class c(χ) in H2(N ; Z), and β : S2 → N is
any map then β∗(c(β∗ξ) ∩ [S2]) = β∗(β∗c(ξ) ∩ [S2]) = c(ξ) ∩ β∗[S2] = 0, as the
Hurewicz homomorphism is trivial for such N . Since β∗ is an isomorphism in
degree 0 it follows that c(β∗ξ) = 0 and so β∗ξ is trivial. (A similar argument
applies for bundles with w 6= 0, provided the induced 2-fold covering space Nw

has no summands of type S1 × S2 or S1×̃S2 .)

On the other hand, if η is the Hopf fibration the bundle with total space S1×S3 ,
base S1 ×S2 and projection idS1 × η has nontrivial pullback over any essential
map from S2 to S1 × S2 , and is not induced from any bundle over K(Z, 1).
Moreover, S1 × S2 is a 2-fold covering space of RP 3♯RP 3 , and so the above
hypothesis on summands of N is not stable under passage to 2-fold coverings
(corresponding to a homomorphism w from π1(N) to Z/2Z ).

Theorem 4.11 Let M be a PD4 -complex and N a PD3 -complex whose
fundamental group is torsion free but not free. Then M is homotopy equivalent
to the total space of an S1 -bundle over N which satisfies the conditions of
Lemma 4.10 if and only if
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(1) χ(M) = 0;

(2) there is an epimorphism γ : π = π1(M) → ν = π1(N) with Ker(γ) ∼= Z ;

(3) w1(M) = (w1(N) + w)γ , where w : ν → Z/2Z ∼= Aut(Ker(γ)) is
determined by the action of ν on Ker(γ) induced by conjugation in π ;

(4) k1(M) = γ∗k1(N) (and so P2(M) ≃ P2(N) ×K(ν,1) K(π, 1));

(5) fM∗[M ] = ±G(fN∗[N ]) in H4(P2(M);Zw1(M)), where G is the Gysin
homomorphism in degree 3.

If these conditions hold then M has minimal Euler characteristic for its funda-
mental group, i.e. q(π) = 0.

Remark The first three conditions and Poincaré duality imply that π2(M) ∼=
γ∗π2(N), the Z[π]-module with the same underlying group as π2(N) and with
Z[π]-action determined by the homomorphism γ .

Proof Since these conditions are homotopy invariant and hold if M is the
total space of such a bundle, they are necessary. Suppose conversely that they
hold. As ν is torsion free N is the connected sum of a 3-manifold with free
fundamental group and some aspherical PD3 -complexes [Tu90]. As ν is not free
there is at least one aspherical summand. Hence c.d.ν = 3 and H3(cN ;Zw1(N))
is a monomorphism.

Let p(γ) : K(π, 1) → K(ν, 1) be the S1 -bundle corresponding to γ and let
E = N ×K(ν,1) K(π, 1) be the total space of the S1 -bundle over N induced by
the classifying map cN : N → K(ν, 1). The bundle map covering cN is the
classifying map cE . Then π1(E) ∼= π = π1(M), w1(E) = (w1(N) + w)γ =
w1(M), as maps from π to Z/2Z , and χ(E) = 0 = χ(M), by conditions (1)
and (3). The maps cN and cE induce a homomorphism between the Gysin
sequences of the S1 -bundles. Since N and ν have cohomological dimension 3
the Gysin homomorphisms in degree 3 are isomorphisms. Hence H4(cE ;Zw1(E))
is a monomorphism, and so a fortiori H4(fE;Zw1(E)) is also a monomorphism.

Since χ(M) = 0 and β
(2)
1 (π) = 0, by Theorem 2.3, part (3) of Theorem 3.4

implies that π2(M) ∼= H2(π; Z[π]). It follows from conditions (2) and (3) and
the LHSSS that π2(M) ∼= π2(E) ∼= γ∗π2(N) as Z[π]-modules. Conditions (4)
and (5) then give us a map (ĉ, cM ) from M to P2(E) = P2(N)×K(ν,1) K(π, 1)
such that (ĉ, cM )∗[M ] = ±fE∗[E]. Hence M is homotopy equivalent to E , by
Theorem 3.8.

The final assertion now follows from part (1) of Theorem 3.4.
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As π2(N) is a projective Z[ν]-module, by Theorem 2.18, it is homologically
trivial and so Hq(π; γ∗π2(N) ⊗ Zw1(M)) = 0 if q ≥ 2. Hence it follows
from the spectral sequence for cP2(M) that H4(P2(M);Zw1(M)) maps onto

H4(π;Zw1(M)), with kernel isomorphic to H0(π; Γ(π2(M))) ⊗ Zw1(M)), where
Γ(π2(M)) = H4(K(π2(M), 2); Z) is Whitehead’s universal quadratic construc-
tion on π2(M). (See Chapter I of [Ba’].) This suggests that there may be
another formulation of the theorem in terms of conditions (1-3), together with
some information on k1(M) and the intersection pairing on π2(M). If N is
aspherical conditions (4) and (5) are vacuous or redundant.

Condition (4) is vacuous if ν is a free group, for then c.d.π ≤ 2. In this
case the Hurewicz homomorphism from π3(N) to H3(N ;Zw1(N)) is 0, and so
H3(fN ;Zw1(N)) is a monomorphism. The argument of the theorem would then
extend if the Gysin map in degree 3 for the bundle P2(E) → P2(N) were a
monomorphism. If ν = 1 then M is orientable, π ∼= Z and χ(M) = 0, so
M ≃ S3 × S1 . In general, if the restriction on ν is removed it is not clear that
there should be a degree 1 map from M to such a bundle space E .

It would be of interest to have a theorem with hypotheses involving only M ,
without reference to a model N . There is such a result in the aspherical case.

Theorem 4.12 A finite PD4 -complex M is homotopy equivalent to the total
space of an S1 -bundle over an aspherical PD3 -complex if and only if χ(M) = 0
and π = π1(M) has an infinite cyclic normal subgroup A such that π/A has
one end and finite cohomological dimension.

Proof The conditions are clearly necessary. Conversely, suppose that they
hold. Since π/A has one end Hs(π/A; Z[π/A]) = 0 for s ≤ 1 and so an LHSSS

calculation gives Ht(π; Z[π]) = 0 for t ≤ 2. Moreover β
(2)
1 (π) = 0, by Theorem

2.3. Hence M is aspherical and π is a PD4 -group, by Corollary 3.5.2. Since A
is FP∞ and c.d.π/A <∞ the quotient π/A is a PD3 -group, by Theorem 9.11
of [Bi]. Therefore M is homotopy equivalent to the total space of an S1 -bundle
over the PD3 -complex K(π/A, 1).

Note that a finitely generated torsion free group has one end if and only if it is
indecomposable as a free product and is neither infinite cyclic nor trivial.

In general, if M is homotopy equivalent to the total space of an S1 -bundle
over some 3-manifold then χ(M) = 0 and π1(M) has an infinite cyclic normal
subgroup A such that π1(M)/A is virtually of finite cohomological dimension.
Do these conditions characterize such homotopy types?
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Chapter 5

Surface bundles

In this chapter we shall show that a closed 4-manifold M is homotopy equiv-
alent to the total space of a fibre bundle with base and fibre closed surfaces if
and only if the obviously necessary conditions on the Euler characteristic and
fundamental group hold. When the base is S2 we need also conditions on the
characteristic classes of M , and when the base is RP 2 our results are incom-
plete. We shall defer consideration of bundles over RP 2 with fibre T or Kb
and ∂ 6= 0 to Chapter 11, and those with fibre S2 or RP 2 to Chapter 12.

5.1 Some general results

If B , E and F are connected finite complexes and p : E → B is a Hurewicz
fibration with fibre homotopy equivalent to F then χ(E) = χ(B)χ(F ) and the
long exact sequence of homotopy gives an exact sequence

π2(B) → π1(F ) → π1(E) → π1(B) → 1

in which the image of π2(B) under the connecting homomorphism ∂ is in the
centre of π1(F ). (See page 51 of [Go68].) These conditions are clearly homotopy
invariant.

Hurewicz fibrations with base B and fibre X are classified by homotopy classes
of maps from B to the Milgram classifying space BE(X), where E(X) is the
monoid of all self homotopy equivalences of X , with the compact-open topology
[Mi67]. If X has been given a base point the evaluation map from E(X) to
X is a Hurewicz fibration with fibre the subspace (and submonoid) E0(X) of
base point preserving self homotopy equivalences [Go68].

Let T and Kb denote the torus and Klein bottle, respectively.

Lemma 5.1 Let F be an aspherical closed surface and B a closed smooth
manifold. There are natural bijections from the set of isomorphism classes of
smooth F -bundles over B to the set of fibre homotopy equivalence classes of
Hurewicz fibrations with fibre F over B and to the set

∐
[ξ]H

2(B; ζπ1(F )ξ),
where the union is over conjugacy classes of homomorphisms ξ : π1(B) →
Out(π1(F )) and ζπ1(F )ξ is the Z[π1(F )]-module determined by ξ .
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Proof If ζπ1(F ) = 1 the identity components of Diff(F ) and E(F ) are
contractible [EE69]. Now every automorphism of π1(F ) is realizable by a dif-
feomorphism and homotopy implies isotopy for self diffeomorphisms of surfaces.
(See Chapter V of [ZVC].) Therefore π0(Diff(F )) ∼= π0(E(F )) ∼= Out(π1(F )),
and the inclusion of Diff(F ) into E(F ) is a homotopy equivalence. Hence
BDiff(F ) ≃ BE(F ) ≃ K(Out(π1(F ), 1), so smooth F -bundles over B and
Hurewicz fibrations with fibre F over B are classified by the (unbased) homo-
topy set

[B,K(Out(π1(F ), 1))] = Hom(π1(B), Out(π1(F )))/ ∽,

where ξ ∽ ξ′ if there is an α ∈ Out(π1(F )) such that ξ′(b) = αξ(b)α−1 for all
b ∈ π1(B).

If ζπ1(F ) 6= 1 then F = T or Kb. Left multiplication by T on itself induces
homotopy equivalences from T to the identity components of Diff(T ) and
E(T ). (Similarly, the standard action of S1 on Kb induces homotopy equiv-
alences from S1 to the identity components of Diff(Kb) and E(Kb). See
Theorem III.2 of [Go65].) Let α : GL(2,Z) → Aut(T ) ≤ Diff(T ) be the
standard linear action. Then the natural maps from the semidirect product
T ⋊α GL(2,Z) to Diff(T ) and to E(T ) are homotopy equivalences. There-
fore BDiff(T ) is a K(Z2, 2)-fibration over K(GL(2,Z), 1). It follows that
T -bundles over B are classified by two invariants: a conjugacy class of ho-
momorphisms ξ : π1(B) → GL(2,Z) together with a cohomology class in
H2(B; (Z2)ξ). A similar argument applies if F = Kb.

Theorem 5.2 Let M be a PD4 -complex and B and F aspherical closed
surfaces. Then M is homotopy equivalent to the total space of an F -bundle
over B if and only if χ(M) = χ(B)χ(F ) and π = π1(M) is an extension of
π1(B) by π1(F ). Moreover every extension of π1(B) by π1(F ) is realized by
some surface bundle, which is determined up to isomorphism by the extension.

Proof The conditions are clearly necessary. Suppose that they hold. If
ζπ1(F ) = 1 each homomorphism ξ : π1(B) → Out(π1(F )) corresponds to
an unique equivalence class of extensions of π1(B) by π1(F ), by Proposition
11.4.21 of [Ro]. Hence there is an F -bundle p : E → B with π1(E) ∼= π real-
izing the extension, and p is unique up to bundle isomorphism. If F = T then
every homomorphism ξ : π1(B) → GL(2,Z) is realizable by an extension (for
instance, the semidirect product Z2 ⋊ξ π1(B)) and the extensions realizing ξ
are classified up to equivalence by H2(π1(B); (Z2)ξ). As B is aspherical the
natural map from bundles to group extensions is a bijection. Similar arguments
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5.2 Bundles with base and fibre aspherical surfaces 91

apply if F = Kb. In all cases the bundle space E is aspherical, and so π is
an FF PD4 -group. Such extensions satisfy the Weak Bass Conjecture, by
Theorem 5.7 of [Co95]. Hence M ≃ E , by Corollary 3.5.1.

Such extensions (with χ(F ) < 0) were shown to be realizable by bundles in
[Jo79].

5.2 Bundles with base and fibre aspherical surfaces

In many cases the group π1(M) determines the bundle up to diffeomorphism
of its base. Lemma 5.3 and Theorems 5.4 and 5.5 are based on [Jo94].

Lemma 5.3 Let G1 and G2 be groups with no nontrivial abelian normal
subgroup. If H is a normal subgroup of G = G1 × G2 which contains no
nontrivial direct product then either H ≤ G1 × {1} or H ≤ {1} ×G2 .

Proof Let Pi be the projection of H onto Gi , for i = 1, 2. If (h, h′) ∈ H ,
g1 ∈ G1 and g2 ∈ G2 then ([h, g1], 1) = [(h, h′), (g1, 1)] and (1, [h′, g2]) are in
H . Hence [P1, P1]× [P2, P2] ≤ H . Therefore either P1 or P2 is abelian, and so
is trivial, since Pi is normal in Gi , for i = 1, 2.

Theorem 5.4 Let π be a group with a normal subgroup K such that K and
π/K are PD2 -groups with trivial centres.

(1) If Cπ(K) = 1 and K1 is a finitely generated normal subgroup of π then
Cπ(K1) = 1 also.

(2) The index [π : KCπ(K)] is finite if and only if π is virtually a direct
product of PD2 -groups.

Proof (1) Let z ∈ Cπ(K1). If K1 ≤ K then [K : K1] < ∞ and ζK1 = 1.
Let M = [K : K1]!. Then f(k) = k−1zMkz−M is in K1 for all k in K . Now
f(kk1) = k−1

1 f(k)k1 and also f(kk1) = f(kk1k
−1k) = f(k) (since K1 is a

normal subgroup centralized by z ), for all k in K and k1 in K1 . Hence f(k) is
central in K1 , and so f(k) = 1 for all k in K . Thus zM centralizes K . Since
π is torsion free we must have z = 1. Otherwise the image of K1 under the
projection p : π → π/K is a nontrivial finitely generated normal subgroup of
π/K , and so has trivial centralizer. Hence p(z) = 1. Now [K,K1] ≤ K∩K1 and
so K ∩K1 6= 1, for otherwise K1 ≤ Cπ(K). Since z centralizes the nontrivial
normal subgroup K ∩K1 in K we must again have z = 1.
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(2) Since K has trivial centre KCπ(K) ∼= K ×Cπ(K) and so the condition is
necessary. Suppose that f : G1 ×G2 → π is an isomorphism onto a subgroup
of finite index, where G1 and G2 are PD2 -groups. Let H = K ∩ f(G1 ×G2).
Then [K : H] <∞ and so H is also a PD2 -group, and is normal in f(G1×G2).
We may assume that H ≤ f(G1), by Lemma 5.3. Then f(G1)/H is finite and
is isomorphic to a subgroup of f(G1 × G2)/K ≤ π/K , so H = f(G1). Now
f(G2) normalizes K and centralizes H , and [K : H] < ∞. Hence f(G2)
has a subgroup of finite index which centralizes K , as in part (1). Hence
[π : KCπ(K)] <∞.

It follows immediately that if π and K are as in the theorem whether

(1) Cπ(K) 6= 1 and [π : KCπ(K)] = ∞;

(2) [π : KCπ(K)] <∞; or

(3) Cπ(K) = 1

depends only on π and not on the subgroup K . In [Jo94] these cases are labeled
as types I, II and III, respectively. (In terms of the action ξ : π/K → Out(K):
if Im(ξ) is infinite and Ker(ξ) 6= 1 then π is of type I, if Im(ξ) is finite then π
is of type II, and if ξ is injective then π is of type III.)

Theorem 5.5 Let π be a group with a normal subgroup K such that K and
π/K are PD2 -groups with trivial centres and such that Cπ(K) 6= 1. Then π
has at most one other nontrivial finitely generated normal subgroup K1 6= K
which contains no nontrivial direct product and is such that π/K1 is torsion
free. In that case K1 ∩K = 1 and [π : KCπ(K)] <∞.

Proof Let p : π → π/K be the quotient epimorphism. Then p(Cπ(K)) is a
nontrivial normal subgroup of π/K , since K ∩ Cπ(K) = ζK = 1. Suppose
that K1 < π is a nontrivial finitely generated normal subgroup which contains
no nontrivial direct product and is such that π/K1 is torsion free. Let Σ =
K1 ∩ (KCπ(K)). Since Σ is normal in KCπ(K) ∼= K×Cπ(K) and Σ ≤ K1 we
must have either Σ ≤ K or Σ ≤ Cπ(K), by Lemma 5.3.

If Σ ≤ K then p(K1) ∩ p(Cπ(K)) = 1, and so p(K1) centralizes the nontrivial
normal subgroup p(Cπ(K)) in π/K . Therefore K1 ≤ K and so [K : K1] <∞.
Since π/K1 is torsion free we find K1 = K .

If Σ ≤ Cπ(K) then K1 ∩ K = 1. Hence [K,K1] = 1, since each subgroup is
normal in π , and so K1 ≤ Cπ(K). Moreover [π/K : p(K1)] <∞ since p(K1) is
a nontrivial finitely generated normal subgroup of π/K , and so K1 and Cπ(K)
are PD2 -groups and [π : KCπ(K)] =]π/K : p(Cπ(K))] ≤ [π/K : p(K1)] <∞.
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If K1 6= K and K2 is another such subgroup of π then K2 also has finite index
in Cπ(K), by the same argument. Since π/K1 and π/K2 are torsion free it
follows that K1 = K2 .

Corollary 5.5.1 [Jo93] Let α and β be automorphisms of π , and suppose
that α(K) ∩K = 1. Then β(K) = K or α(K). In particular, Aut(K ×K) ∼=
Aut(K)2 ⋊ (Z/2Z).

Groups of type I have an unique such normal subgroup K , while groups of
type II have at most two such subgroups, by Theorem 5.5. We shall obtain a
somewhat weaker result for groups of type III as a corollary of Theorem 5.6.

We shall use the following corollary in Chapter 9.

Corollary 5.5.2 Let π be a PD4 -group such that
√
π = 1. Then the following

conditions are equivalent:

(1) π has a subgroup ρ ∼= α× β where α and β are PD2 -groups;

(2) π has a normal subgroup σ ∼= K × L of finite index where K and L are
PD2 -groups and [π : Nπ(K)] ≤ 2;

(3) π has a subgroup τ such that [π : τ ] ≤ 2 and τ ≤ G×H where G and
H are virtually PD2 -groups.

Proof Suppose that (1) holds. Then [π : ρ] < ∞, by Strebel’s Theorem. Let
N be the intersection of the conjugates of ρ in π . Then N is normal in π and
[π : N ] <∞. We shall identify α ∼= α×{1} and β ∼= {1}×β with subgroups of
π . Let K = α∩N and L = β∩N . Then K and L are PD2 -groups, K∩L = 1
and σ = K.L ∼= K×L is normal in N and has finite index in π . Moreover N/K
and N/L are isomorphic to subgroups of finite index in β and α, respectively,
and so are also PD2 -groups. If

√
π = 1 all these groups have trivial centre,

and so any automorphism of N must either fix K and L or interchange them,
by Theorem 5.5. Hence σ is normal in π and [π : Nπ(K)] ≤ 2.

If (2) holds then Nπ(K) = Nπ(L). Let τ = Nπ(K) and let pG : τ → G =
τ/Cπ(K) and pH : τ → H = τ/Cπ(L) be the natural epimorphisms. Then
pG|K , pH |L and (pG, pH) are injective and have images of finite index in G, H
and G×H respectively. In particular, G and H are virtually PD2 -groups.

If (3) holds let α = τ ∩ (G × {1}) and β = τ ∩ ({1} × H). Then α and β
have finite index in G and H , respectively, and are torsion free. Hence they
are PD2 -groups and clearly α ∩ β = 1. Therefore ρ = α.β ∼= α× β .

Geometry & Topology Monographs, Volume 5 (2002)



94 Chapter 5: Surface bundles

It can be shown that these three conditions remain equivalent under the weaker
hypothesis that π be a PD4 -group which is not virtually abelian (using Lemma
9.4 for the implication (1) ⇒ (3)).

Theorem 5.6 Let π be a group with normal subgroups K and K1 such that
K , K1 and π/K are PD2 -groups, π/K1 is torsion free and χ(π/K) < 0. Then
either K1 = K or K1 ∩K = 1 and π ∼= K ×K1 or χ(K1) < χ(π/K).

Proof Let p : π → π/K be the quotient epimorphism. If K1 ≤ K then
K1 = K , as in Theorem 5.5. Otherwise p(K1) has finite index in π/K and so
p(K1) is also a PD2 -group. As the minimum number of generators of a PD2 -
group G is β1(G; F2), we have χ(K1) ≤ χ(p(K1)) ≤ χ(π/K). We may assume
that χ(K1) ≥ χ(π/K). Hence χ(K1) = χ(π/K) and so p|K1 is an epimorphism.
Therefore K1 and π/K have the same orientation type, by the nondegeneracy
of Poincaré duality with coefficients F2 and the Wu relation w1 ∪ x = x2 for
all x ∈ H1(G; F2) and PD2 -groups G. Hence K1

∼= π/K . Since PD2 -groups
are hopfian p|K1 is an isomorphism. Hence [K,K1] ≤ K ∩ K1 = 1 and so
π = K.K1

∼= K × π/K .

Corollary 5.6.1 [Jo99] There are only finitely many such subgroups K < π .

Proof We may assume that ζK = 1 and π is of type III. If ρ is an epimorphism
from π to Z/χ(π)Z such that ρ(K) = 0 then χ(Ker(ρ)/K) ≤ χ(K). Since π
is not a product K is the only such subgroup of Ker(ρ). Since χ(K) divides
χ(π) and Hom(π,Z/χ(π)Z) is finite the corollary follows.

The next corollary follows by elementary arithmetic.

Corollary 5.6.2 If χ(K) = −1 and π/K1 is a PD2 -group then either K1 = K
or π ∼= K ×K1 .

Corollary 5.6.3 Let M and M ′ be the total spaces of bundles ξ and ξ′ with
the same base B and fibre F , where B and F are aspherical closed surfaces
such that χ(B) < χ(F ). Then M ′ is diffeomorphic to M via a fibre-preserving
diffeomorphism if and only if π1(M

′) ∼= π1(M).

Compare the statement of Melvin’s Theorem on total spaces of S2 -bundles
(Theorem 5.13 below.)

We can often recognise total spaces of aspherical surface bundles under weaker
hypotheses on the fundamental group.
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Theorem 5.7 Let M be a PD4 -complex with fundamental group π . Then
the following conditions are equivalent:

(1) M is homotopy equivalent to the total space of a bundle with base and
fibre aspherical closed surfaces:

(2) π has an FP2 normal subgroup K such that π/K is a PD2 -group and
π2(M) = 0;

(3) π has a normal subgroup N which is a PD2 -group, π/N is torsion free
and π2(M) = 0.

Proof Clearly (1) implies (2) and (3). Conversely they each imply that π has
one end and so M is aspherical. If K is an FP3 normal subgroup in π and
π/K is a PD2 -group then K is a PD2 -group, by Theorem 1.19. If N is a
normal subgroup which is a PD2 -group then π/N is virtually a PD2 -group,
by Theorem 3.10. Since it is torsion free it is a PD2 -group and so the theorem
follows from Theorem 5.2.

If ζN = 1 then π/N is an extension of Cπ(N) by a subgroup of Out(N).
Thus we may argue instead that v.c.d.π/N <∞ and π/N is FP∞ , so π/N is
virtually a PD2 -group, by Theorem 9.11 of [Bi].

Kapovich has given an example of an aspherical closed 4-manifold M such that
π1(M) is an extension of a PD2 -group by a finitely generated normal subgroup
which is not FP2 [Ka98].

Theorem 5.8 Let M be a PD4 -complex whose fundamental group π has
an ascendant FP2 subgroup G of infinite index with one end and such that
χ(M) = 0. Then M is aspherical. If moreover c.d.G = 2 and χ(G) 6= 0 then
G is a PD2 -group and either [π : Nπ(G)] < ∞ or there is a subnormal chain
G < J < K ≤ π such that [π : K] <∞ and K/J ∼= J/G ∼= Z .

Proof The argument of the first paragraph of the proof of Theorem 4.8 applies
equally well here to show that M is aspherical.

Assume henceforth that c.d.G = 2 and χ(G) < 0. If G < G̃ < Gγ and c.d.G̃ =
2 then [G̃ : G] < ∞, by Lemma 2.15. Hence G̃ is FP and [G̃ : G] ≤ |χ(G)|,
since χ(G) = [G̃ : G]χ(G̃). We may assume that G̃ is maximal among all
groups of cohomological dimension 2 in an ascendant chain from G to π . Let
G = G0 < G1 < ... < Gi = π be such an ascendant chain, with G̃ = Gn for
some finite ordinal n. Then [Gn+1 : G] = ∞ and c.d.Gn+1 ≥ 3.
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If G̃ is normal in π then G̃ is a PD2 -group and π/G̃ is virtually a PD2 -group,
by Theorem 3.10. Moreover [π : Nπ(G)] < ∞, since G̃ has only finitely many
subgroups of index [G̃ : G]. Therefore π has a normal subgroup K ≤ Nπ(G)
such that [π : K] <∞ and K/G is a PD+

2 -group.

Otherwise, replacing Gn+1 by the union of the terms Gα which normalize G̃
and reindexing, if necessary, we may assume that G̃ is not normal in Gn+2 . Let
h be an element of Gn+2 such that hG̃h−1 6= G̃, and let H = G̃.hG̃h−1 . Then
G̃ is normal in H and H is normal in Gn+1 , so [H : G̃] = ∞ and c.d.H = 3.
Moreover H is FP , by Proposition 8.3 of [Bi], and Hs(H; Z[H]) = 0 for s ≤ 2,
by an LHSSS argument.

If c.d.Gn+1 = 3 then Gn+1/H is locally finite, by Theorem 8.2 of [Bi]. Hence
it is finite, by the Gildenhuys-Strebel Theorem. Therefore Gn+1 is FP and
Hs(Gn+1; Z[Gn+1]) = 0 for s ≤ 2. Since Gn+1 is also ascendant in π it is
a PD3 -group, [π : Nπ(Gn+1)] < ∞ and Nπ(Gn+1)/Gn+1 has two ends, by
Theorem 4.8. Hence Gn+1/G̃ has two ends also, and G̃ is a PD2 -group, by
Theorem 2.12. We may easily find subgroups J ≤ Gn+1 and K ≤ Nπ(Gn+1)
such that G < J < K , J/G ∼= K/J ∼= Z and [π : K] <∞.

If c.d.Gn+1 = 4 then [π : Gn+1] is again finite and Gn+1 is a PD4 -group.
Hence the result follows as for the case when G̃ is normal in π .

Corollary 5.8.1 If χ(M) = 0, G is a PD2 -group, χ(G) 6= 0 and G is normal
in π then M has a finite covering space which is homotopy equivalent to the
total space of a surface bundle over T .

Proof Since G is normal in π and M is aspherical M has a finite covering
which is homotopy equivalent to a K(G, 1)-bundle over an aspherical orientable
surface, as in Theorem 5.7. Since χ(M) = 0 the base must be T .

If π/G is virtually Z2 then it has a subgroup of index at most 6 which maps
onto Z2 or Z⋊−1Z .

Let G be a PD2 -group such that ζG = 1. Let θ be an automorphism of G
whose class in Out(G) has infinite order and let λ : G→ Z be an epimorphism.
Let π = (G×Z)⋊φZ where φ(g, n) = (θ(g), λ(g)+n) for all g ∈ G and n ∈ Z .
Then G is subnormal in π but this group is not virtually the group of a surface
bundle over a surface.

If π has an ascendant subgroup G which is a PD2 -group with χ(G) = 0 then√
G ∼= Z2 is ascendant in π and hence contained in

√
π . In this case h(

√
π) ≥ 2

and so either Theorem 8.1 or Theorem 9.2 applies, to show that M has a finite
covering space which is homotopy equivalent to the total space of a T -bundle
over an aspherical closed surface.
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5.3 Bundles with aspherical base and fibre S2 or RP 2

Let E+(S2) denote the connected component of idS2 in E(S2), i.e., the sub-
monoid of degree 1 maps. The connected component of idS2 in E0(S

2) may be
identified with the double loop space Ω2S2 .

Lemma 5.9 Let X be a finite 2-complex. Then there are natural bijections
[X;BO(3)] ∼= [X;BE(S2)] ∼= H1(X; F2) ×H2(X; F2).

Proof As a self homotopy equivalence of a sphere is homotopic to the identity
if and only if it has degree +1 the inclusion of O(3) into E(S2) is bijective
on components. Evaluation of a self map of S2 at the basepoint determines
fibrations of SO(3) and E+(S2) over S2 , with fibre SO(2) and Ω2S2 , respec-
tively, and the map of fibres induces an isomorphism on π1 . On comparing the
exact sequences of homotopy for these fibrations we see that the inclusion of
SO(3) in E+(S2) also induces an isomorphism on π1 . Since the Stiefel-Whitney
classes are defined for any spherical fibration and w1 and w2 are nontrivial on
suitable S2 -bundles over S1 and S2 , respectively, the inclusion of BO(3) into
BE(S2) and the map (w1, w2) : BE(S2) → K(Z/2Z, 1) ×K(Z/2Z, 2) induces
isomorphisms on πi for i ≤ 2. The lemma follows easily.

Thus there is a natural 1-1 correspondance between S2 -bundles and spherical
fibrations over such complexes, and any such bundle ξ is determined up to
isomorphism over X by its total Stiefel-Whitney class w(ξ) = 1+w1(ξ)+w2(ξ).
(From another point of view: if w1(ξ) = w1(ξ

′) there is an isomorphism of the
restrictions of ξ and ξ′ over the 1-skeleton X [1] . The difference w2(ξ)−w2(ξ

′)
is the obstruction to extending any such isomorphism over the 2-skeleton.)

Theorem 5.10 Let M be a PD4 -complex and B an aspherical closed surface.
Then the following conditions are equivalent:

(1) π1(M) ∼= π1(B) and χ(M) = 2χ(B);

(2) π1(M) ∼= π1(B) and M̃ ≃ S2 ;

(3) M is homotopy equivalent to the total space of an S2 -bundle over B .

Proof If (1) holds then H3(M̃ ; Z) = H4(M̃ ; Z) = 0, as π1(M) has one end,

and π2(M) ∼= H2(π; Z[π]) ∼= Z , by Theorem 3.12. Hence M̃ is homotopy
equivalent to S2 . If (2) holds we may assume that there is a Hurewicz fibra-
tion h : M → B which induces an isomorphism of fundamental groups. As
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the homotopy fibre of h is M̃ , Lemma 5.9 implies that h is fibre homotopy
equivalent to the projection of an S2 -bundle over B . Clearly (3) implies the
other conditions.

We shall summarize some of the key properties of the Stiefel-Whitney classes
of such bundles in the following lemma.

Lemma 5.11 Let ξ be an S2 -bundle over a closed surface B , with total space
M and projection p : M → B . Then

(1) ξ is trivial if and only if w(M) = p∗w(B);

(2) π1(M) ∼= π1(B) acts on π2(M) by multiplication by w1(ξ);

(3) the intersection form on H2(M ; F2) is even if and only if w2(ξ) = 0;

(4) if q : B′ → B is a 2-fold covering map with connected domain B′ then
w2(q

∗ξ) = 0.

Proof (1) Applying the Whitney sum formula and naturality to the tangent
bundle of the B3 -bundle associated to ξ gives w(M) = p∗w(B)∪p∗w(ξ). Since
p is a 2-connected map the induced homomorphism p∗ is injective in degrees
≤ 2 and so w(M) = p∗w(B) if and only if w(ξ) = 1. By Lemma 5.9 this is so
if and only if ξ is trivial, since B is 2-dimensional.

(2) It is sufficient to consider the restriction of ξ over loops in B , where the
result is clear.

(3) By Poincaré duality, the intersection form is even if and only if the Wu
class v2(M) = w2(M) + w1(M)2 is 0. Now

v2(M) = p∗(w1(B) + w1(ξ))
2 + p∗(w2(B) + w1(B) ∪ w1(ξ) + w2(ξ))

= p∗(w2(B) + w1(B) ∪ w1(ξ) + w2(ξ) + w1(B)2 + w1(ξ)
2)

= p∗(w2(ξ)),

since w1(B) ∪ η = η2 and w1(B)2 = w2(B), by the Wu relations for B . Hence
v2(M) = 0 if and only if w2(ξ) = 0, as p∗ is injective in degree 2.

(4) We have q∗(w2(q
∗ξ) ∩ [B′]) = q∗((q∗w2(ξ)) ∩ [B′]) = w2(ξ) ∩ q∗[B′], by the

projection formula. Since q has degree 2 this is 0, and since q∗ is an isomorphism
in degree 0 we find w2(q

∗ξ) ∩ [B′] = 0. Therefore w2(q
∗ξ) = 0, by Poincaré

duality for B′ .

Melvin has determined criteria for the total spaces of S2 -bundles over a compact
surface to be diffeomorphic, in terms of their Stiefel-Whitney classes. We shall
give an alternative argument for the cases with aspherical base.
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Lemma 5.12 Let B be a closed surface and w be the Poincaré dual of w1(B).
If u1 and u2 are elements of H1(B; F2) − {0, w} such that u1.u1 = u2.u2 then
there is a homeomorphism f : B → B which is a composite of Dehn twists
about two-sided essential simple closed curves and such that f∗(u1) = u2 .

Proof For simplicity of notation, we shall use the same symbol for a simple
closed curve u on B and its homology class in H1(B; F2). The curve u is
two-sided if and only if u.u = 0. In that case we shall let cu denote the
automorphism of H1(B; F2) induced by a Dehn twist about u. Note also that
u.u = u.w and cv(u) = u+ (u.v)v for all u and two-sided v in H1(B; F2).

If B is orientable it is well known that the group of isometries of the intersection
form acts transitively on H1(B; F2), and is generated by the automorphisms
cu . Thus the claim is true in this case.

If w1(B)2 6= 0 then B ∼= RP 2♯Tg , where Tg is orientable. If u1.u1 = u2.u2 = 0
then u1 and u2 are represented by simple closed curves in Tg , and so are
related by a homeomorphism which is the identity on the RP 2 summand. If
u1.u1 = u2.u2 = 1 let vi = ui + w . Then vi.vi = 0 and this case follows from
the earlier one.

Suppose finally that w1(B) 6= 0 but w1(B)2 = 0; equivalently, that B ∼= Kb♯Tg ,
where Tg is orientable. Let {w, z} be a basis for the homology of the Kb
summand. In this case w is represented by a 2-sided curve. If u1.u1 = u2.u2 = 0
and u1.z = u2.z = 0 then u1 and u2 are represented by simple closed curves
in Tg , and so are related by a homeomorphism which is the identity on the Kb
summand. The claim then follows if u.z = 1 for u = u1 or u2 , since we then
have cw(u).cw(u) = cw(u).z = 0. If u.u 6= 0 and u.z = 0 then (u+z).(u+z) = 0
and cu+z(u) = z . If u.u 6= 0, u.z 6= 0 and u 6= z then cu+z+wcw(u) = z . Thus
if u1.u1 = u2.u2 = 1 both u1 and u2 are related to z . Thus in all cases the
claim is true.

Theorem 5.13 (Melvin) Let ξ and ξ′ be two S2 -bundles over an aspherical
closed surface B . Then the following conditions are equivalent:

(1) there is a diffeomorphism f : B → B such that ξ = f∗ξ′ ;

(2) the total spaces E(ξ) and E(ξ′) are diffeomorphic; and

(3) w1(ξ) = w1(ξ
′) if w1(ξ) = 0 or w1(B), w1(ξ) ∪ w1(B) = w1(ξ

′) ∪ w1(B)
and w2(ξ) = w2(ξ

′).

Proof Clearly (1) implies (2). A diffeomorphism h : E → E′ induces an
isomorphism on fundamental groups; hence there is a diffeomorphism f : B →
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B such that fp is homotopic to p′h. Now h∗w(E′) = w(E) and f∗w(B) =
w(B). Hence p∗f∗w(ξ′) = p∗w(ξ) and so w(f∗ξ′) = f∗w(ξ′) = w(ξ). Thus
f∗ξ′ = ξ , by Theorem 5.10, and so (2) implies (1).

If (1) holds then f∗w(ξ′) = w(ξ). Since w1(B) = v1(B) is the character-
istic element for the cup product pairing from H1(B; F2) to H2(B; F2) and
H2(f ; F2) is the identity f∗w1(B) = w1(B), w1(ξ) ∪ w1(B) = w1(ξ

′) ∪ w1(B)
and w2(ξ) = w2(ξ

′). Hence(1) implies (3).

If w1(ξ) ∪ w1(B) = w1(ξ
′) ∪ w1(B) and w1(ξ) and w1(ξ

′) are neither 0 nor
w1(B) then there is a diffeomorphism f : B → B such that f∗w1(ξ

′) = w1(ξ),
by Lemma 5.12 (applied to the Poincaré dual homology classes). Hence (3)
implies (1).

Corollary 5.13.1 There are 4 diffeomorphism classes of S2 -bundle spaces if
B is orientable and χ(B) ≤ 0, 6 if B = Kb and 8 if B is nonorientable and
χ(B) < 0.

See [Me84] for a more geometric argument, which applies also to S2 -bundles
over surfaces with nonempty boundary. The theorem holds also when B = S2

or RP 2 ; there are 2 such bundles over S2 and 4 over RP 2 . (See Chapter 12.)

Theorem 5.14 Let M be a PD4 -complex with fundamental group π . The
following are equivalent:

(1) π 6= 1 and π2(M) ∼= Z .

(2) M̃ ≃ S2 ;

(3) M has a covering space of degree ≤ 2 which is homotopy equivalent to
the total space of an S2 -bundle over an aspherical closed surface;

If these conditions hold the kernel K of the natural action of π on π2(M) is a
PD2 -group.

Proof Suppose that (1) holds. If π is finite and π2(M) ∼= Z then M̃ ≃ CP 2 ,
and so admits no nontrivial free group actions, by the Lefshetz fixed point
theorem. Hence π must be infinite. Then H0(M̃ ; Z) = Z , H1(M̃ ; Z) = 0

and H2(M̃ ; Z) = π2(M), while H3(M̃ ; Z) ∼= H1(π; Z[π]) and H4(M̃ ; Z) = 0.
Now HomZ[π](π2(M),Z[π]) = 0, since π is infinite and π2(M) ∼= Z . Therefore
H2(π; Z[π]) is infinite cyclic, by Lemma 3.3, and so π is virtually a PD2 -group,

by Bowditch’s Theorem. Hence H3(M̃ ; Z) = 0 and so M̃ ≃ S2 . If C is a finite

cyclic subgroup of K then Hn+3(C; Z) ∼= Hn(C;H2(M̃ ; Z)) for all n ≥ 2, by
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Lemma 2.10. Therefore C must be trivial, so K is torsion free. Hence K is
a PD2 -group and (3) now follows from Theorem 5.10. Clearly (3) implies (2)
and (2) implies (1).

A straightfoward Mayer-Vietoris argument may be used to show directly that
if H2(π; Z[π]) ∼= Z then π has one end.

Lemma 5.15 Let X be a finite 2-complex. Then there are natural bijections
[X;BSO(3)] ∼= [X;BE(RP 2)] ∼= H2(X; F2).

Proof Let (1, 0, 0) and [1 : 0 : 0] be the base points for S2 and RP 2 re-
spectively. A based self homotopy equivalence f of RP 2 lifts to a based self
homotopy equivalence F+ of S2 . If f is based homotopic to the identity then
deg(f+) = 1. Conversely, any based self homotopy equivalence is based homo-
topic to a map which is the identity on RP 1 ; if moreover deg(f+) = 1 then
this map is the identity on the normal bundle and it quickly follows that f
is based homotopic to the identity. Thus E0(RP

2) has two components. The
homeomorphism g defined by g([x : y : z]) = [x : y : −z] is isotopic to the iden-
tity (rotate in the (x, y)-coordinates). However deg(g+) = −1. It follows that
E(RP 2) is connected. As every self homotopy equivalence of RP 2 is covered
by a degree 1 self map of S2 , there is a natural map from E(RP 2) to E+(S2).

We may use obstruction theory to show that π1(E0(RP
2)) has order 2. Hence

π1(E(RP 2)) has order at most 4. Suppose that there were a homotopy ft
through self maps of RP 2 with f0 = f1 = idRP 2 and such that the loop ft(∗)
is essential, where ∗ is a basepoint. Let F be the map from RP 2 × S1 to
RP 2 determined by F (p, t) = ft(p), and let α and β be the generators of
H1(RP 2; F2) and H1(S1; F2), respectively. Then F ∗α = α⊗ 1 + 1 ⊗ β and so
(F ∗α)3 = α2 ⊗ β which is nonzero, contradicting α3 = 0. Thus there can be
no such homotopy, and so the homomorphism from π1(E(RP 2)) to π1(RP

2)
induced by the evaluation map must be trivial. It then follows from the exact
sequence of homotopy for this evaluation map that the order of π1(E(RP 2)) is
at most 2. The group SO(3) ∼= O(3)/(±I) acts isometrically on RP 2 . As the
composite of the maps on π1 induced by the inclusions SO(3) ⊂ E(RP 2) ⊂
E+(S2) is an isomorphism of groups of order 2 the first map also induces an
isomorphism. It follows as in Lemma 5.9 that there are natural bijections
[X;BSO(3)] ∼= [X;BE(RP 2)] ∼= H2(X; F2).

Thus there is a natural 1-1 correspondance between RP 2 -bundles and orientable
spherical fibrations over such complexes. The RP 2 -bundle corresponding to an
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orientable S2 -bundle is the quotient by the fibrewise antipodal involution. In
particular, there are two RP 2 -bundles over each closed aspherical surface.

Theorem 5.16 Let M be a PD4 -complex and B an aspherical closed surface.
Then the following conditions are equivalent:

(1) π1(M) ∼= π1(B) × (Z/2Z) and χ(M) = χ(B);

(2) π1(M) ∼= π1(B) × (Z/2Z) and M̃ ≃ S2 ;

(3) M is homotopy equivalent to the total space of an RP 2 -bundle over B .

Proof Suppose that (1) holds, and let w : π1(M) → Z/2Z be the projection
onto the Z/2Z factor. Then the covering space associated with the kernel of w

satisfies the hypotheses of Theorem 5.10 and so M̃ ≃ S2 .

If (2) holds the homotopy fibre of the map h from M to B inducing the
projection of π1(M) onto π1(B) is homotopy equivalent to RP 2 . The map h
is fibre homotopy equivalent to the projection of an RP 2 -bundle over B , by
Lemma 5.15.

If E is the total space of an RP 2 -bundle over B , with projection p, then
χ(E) = χ(B) and the long exact sequence of homotopy gives a short exact
sequence 1 → Z/2Z → π1(E) → π1(B) → 1. Since the fibre has a product
neighbourhood, j∗w1(E) = w1(RP

2), where j : RP 2 → E is the inclusion of
the fibre over the basepoint of B , and so w1(E) considered as a homomorphism
from π1(E) to Z/2Z splits the injection j∗ . Therefore π1(E) ∼= π1(B)×(Z/2Z)
and so (1) holds, as these conditions are clearly invariant under homotopy.

We may use the above results to refine some of the conclusions of Theorem 3.9
on PD4 -complexes with finitely dominated covering spaces.

Theorem 5.17 Let M be a PD4 -complex with fundamental group π , and let
p : π → G be an epimorphism with FP2 kernel ν . Suppose that H2(G; Z[G]) ∼=
Z . Then the following conditions are equivalent:

(1) HomZ[π](π2(M),Z[π]) = 0;

(2) C∗(M̃ )|ν has finite 2-skeleton;

(3) the associated covering space Mν is homotopy equivalent to a closed
surface;

(4) M has a finite covering space which is homotopy equivalent to the total
space of a surface bundle over an aspherical closed surface.
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Proof By Bowditch’s Theorem G is virtually a PD2 -group. Hence π has
one end and H2(π; Z[π]) ∼= Z , if ν is finite, and is 0 otherwise, by an LHSSS
argument.

If (1) holds π2(M) ∼= H2(π; Z[π]), by Lemma 3.3. If (2) holds π2(M) ∼=
H2(Mν ; Z[ν]) ∼= H0(Mν ; Z[ν]), by Theorem 1.19 ′ . In either case, if ν is finite
π2(M) ∼= Z , while if ν is infinite π2(M) = 0 and M is aspherical. Condition
(3) now follows from Theorems 5.10, 5.16 and 1.19, and (4) follows easily.

If (4) holds then π is infinite and π2(M) = π2(Mν) ∼= Z or is 0, and so (1)
holds.

The total spaces of such bundles with base an aspherical surface have mini-
mal Euler characteristic for their fundamental groups (i.e. χ(M) = q(π)), by
Theorem 3.12 and the remarks in the paragraph preceding it.

The FP2 hypothesis is in general necessary, as observed after Theorem 5.7. (See
[Ka98].) However it may be relaxed when G is virtually Z2 and χ(M) = 0.

Theorem 5.18 Let M be a finite PD4 -complex with fundamental group π .
Then M is homotopy equivalent to the total space of a surface bundle over T
or Kb if and only if π is an extension of Z2 or Z⋊−1Z (respectively) by a
finitely generated normal subgroup ν and χ(M) = 0.

Proof The conditions are clearly necessary. If they hold the covering space
Mν associated to the subgroup ν is homotopy equivalent to a closed surface, by
Corollaries 4.5.2 and 2.12.1. The result then follows from Theorems 5.2, 5.10
and 5.16.

In particular, if π is the nontrivial extension of Z2 by Z/2Z then q(π) > 0.

5.4 Bundles over S2

Since S2 is the union of two discs along a circle, an F -bundle over S2 is
determined by the homotopy class of the clutching function in π1(Diff(F )).
(This group is isomorphic to ζπ1(F ) and hence to H2(S2; ζπ1(F )).) On the
other hand, if M is a PD4 -complex then cellular approximation gives bijections
H2(M ; Z) = [M ;CP∞] = [M ;CP 2], and a map f : M → CP 2 factors through
CP 2 − D4 ∼ S2 if and only if deg(f) = 0. Thus if u ∈ H2(M ; Z) and i2
generates H2(S2; Z) then u = f∗i2 for some f : M → S2 if and only if u2 = 0.
The map is uniquely determined by u, by Theorem 8.4.11 of [Sp].
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Theorem 5.19 Let M be a PD4 -complex with fundamental group π and
F a closed surface. Then M is homotopy equivalent to the total space of an
F -bundle over S2 if and only if χ(M) = 2χ(F ) and

(1) (when χ(F ) < 0 and w1(F ) = 0) π ∼= π1(F ) and w1(M) = w2(M) = 0;
or

(2) (when χ(F ) < 0 and w1(F ) 6= 0) π ∼= π1(F ), w1(M) 6= 0 and w2(M) =
w1(M)2 = (c∗Mw1(F ))2 ; or

(3) (when F = T ) π ∼= Z2 and w1(M) = w2(M) = 0, or π ∼= Z ⊕ (Z/nZ)
for some n > 0 and, if n = 1 or 2, w1(M) = 0; or

(4) (when F = Kb) π ∼= Z⋊−1Z , w1(M) 6= 0 and w2(M) = w1(M)2 = 0,
or π has a presentation 〈x, y | yxy−1 = x−1, y2n = 1〉 for some n > 0,
where w1(M)(x) = 0 and w1(M)(y) = 1; or

(5) (when F = S2 ) π = 1 and the index σ(M) = 0; or

(6) (when F = RP 2) π = Z/2Z , w1(M) 6= 0 and there is a class u of infinite
order in H2(M ; Z) and such that u2 = 0.

Proof Let pE : E → S2 be such a bundle. Then χ(E) = 2χ(F ) and
π1(E) ∼= π1(F )/∂π2(S

2), where Im(∂) ≤ ζπ1(F ) [Go68]. The characteristic
classes of E restrict to the characteristic classes of the fibre, as it has a product
neighbourhood. As the base is 1-connected E is orientable if and only if the
fibre is orientable. Thus the conditions on χ, π and w1 are all necessary. We
shall treat the other assertions case by case.

(1) and (2) If χ(F ) < 0 any F -bundle over S2 is trivial, by Lemma 5.1. Thus
the conditions are necessary. Conversely, if they hold then cM is fibre homotopy
equivalent to the projection of an S2 -bundle ξ with base F , by Theorem 5.10.
The conditions on the Stiefel-Whitney classes then imply that w(ξ) = 1 and
hence that the bundle is trivial, by Lemma 5.11. Therefore M is homotopy
equivalent to S2 × F .

(3) If ∂ = 0 there is a map q : E → T which induces an isomorphism of
fundamental groups, and the map (pE, q) : E → S2 × T is clearly a homotopy
equivalence, so w(E) = 1. Conversely, if χ(M) = 0, π ∼= Z2 and w(M) = 1
then M is homotopy equivalent to S2 × T , by Theorem 5.10 and Lemma 5.11.

If χ(M) = 0 and π ∼= Z ⊕ (Z/nZ) for some n > 0 then the covering space
MZ/nZ corresponding to the torsion subgroup Z/nZ is homotopy equivalent
to a lens space L, by Corollary 4.5.2. As observed in Chapter 4 the manifold
M is homotopy equivalent to the mapping torus of a generator of the group
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of covering transformations Aut(MZ/nZ/M) ∼= Z . Since the generator induces
the identity on π1(L) ∼= Z/nZ it is homotopic to idL , if n > 2. This is also
true if n = 1 or 2 and M is orientable. (See Section 29 of [Co].) Therefore M
is homotopy equivalent to L× S1 , which fibres over S2 via the composition of
the projection to L with the Hopf fibration of L over S2 . (Hence w(M) = 1
in these cases also.)

(4) As in part (3), if π1(E) ∼= Z⋊−1Z = π1(Kb) then E is homotopy equivalent
to S2 × Kb and so w1(E) 6= 0 while w2(E) = 0. Conversely, if χ(M) =
0, π ∼= π1(Kb), M is nonorientable and w1(M)2 = w2(M) = 0 then M is
homotopy equivalent to S2 × Kb. Suppose now that π and w1 satisfy the
second alternative (corresponding to bundles with ∂ 6= 0). Let q : M+ → M
be the orientation double cover. Then M+ satisfies the hypotheses of part (3),
and so there is a map p+ : M+ → S2 with homotopy fibre T . Now H2(q; Z) is
an epimorphism, since H3(Z/2Z; Z) = H2(Z/2Z;H1(M+; Z)) = 0. Therefore
p+ = pq for some map p : M → S2 . Comparison of the exact sequences of
homotopy for p+ and p shows that the homotopy fibre of p must be Kb. As
in Theorem 5.2 above p is fibre homotopy equivalent to a bundle projection.

(5) There are just two S2 -bundles over S2 , with total spaces S2 × S2 and
S2×̃S2 = CP 2♯ − CP 2 , respectively. Thus the conditions are necessary. If
M satisfies these conditions then H2(M ; Z) ∼= Z2 and there is an element u
in H2(M ; Z) which generates an infinite cyclic direct summand and has square
u∪u = 0. Thus u = f∗i2 for some map f : M → S2 . Since u generates a direct
summand there is a homology class z in H2(M ; Z) such that u ∩ z = 1, and
therefore (by the Hurewicz theorem) there is a map z : S2 → M such that fz
is homotopic to idS2 . The homotopy fibre of f is 1-connected and has π2

∼= Z ,
by the long exact sequence of homotopy. It then follows easily from the spectral
sequence for f that the homotopy fibre has the homology of S2 . Therefore f
is fibre homotopy equivalent to the projection of an S2 -bundle over S2 .

(6) Since π1(Diff(RP 2)) = Z/2Z (see page 21 of [EE69]) there are two RP 2 -
bundles over S2 . Again the conditions are clearly necessary. If they hold we
may assume that u generates an infinite cyclic direct summand of H2(M ; Z)
and that u = g∗i2 for some map g : M → S2 . Let q : M+ → M be the
orientation double cover and g+ = gq . Since H2(Z/2Z; Z) = 0 the second
homology of M is spherical. Thus there is a map z = qz+ : S2 → M such
that gz = g+z+ is homotopic to idS2 . Hence the homotopy fibre of g+ is S2 ,
by case (5). Since the homotopy fibre of g has fundamental group Z/2Z and
is double covered by the homotopy fibre of g+ it is homotopy equivalent to
RP 2 . It follows as in Theorem 5.16 that g is fibre homotopy equivalent to the
projection of an RP 2 -bundle over S2 .
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Theorems 5.2, 5.10 and 5.16 may each be rephrased as giving criteria for maps
from M to B to be fibre homotopy equivalent to fibre bundle projections. With
the hypotheses of Theorem 5.19 (and assuming also that ∂ = 0 if χ(M) = 0)
we may conclude that a map f : M → S2 is fibre homotopy equivalent to a
fibre bundle projection if and only if f∗i2 generates an infinite cyclic direct
summand of H2(M ; Z).

It follows from Theorem 5.10 that the conditions on the Stiefel-Whitney classes
are independent of the other conditions when π ∼= π1(F ). Note also that the
nonorientable S3 - and RP 3 -bundles over S1 are not T -bundles over S2 , while
if M = CP 2♯CP 2 then π = 1 and χ(M) = 4 but σ(M) 6= 0. See Chapter 12
for further information on parts (5) and (6).

5.5 Bundles over RP 2

Since RP 2 = Mb ∪ D2 is the union of a Möbius band Mb and a disc D2 , a
bundle p : E → RP 2 with fibre F is determined by a bundle over Mb which
restricts to a trivial bundle over ∂Mb, i.e. by a conjugacy class of elements of
order dividing 2 in π0(Homeo(F )), together with the class of a gluing map over
∂Mb = ∂D2 modulo those which extend across D2 or Mb, i.e. an element of a
quotient of π1(Homeo(F )). If F is aspherical π0(Homeo(F )) ∼= Out(π1(F )),
while π1(Homeo(F )) ∼= ζπ1(F ) [Go65].

We may summarize the key properties of the algebraic invariants of such bundles
with F an aspherical closed surface in the following lemma. Let Z̃ be the non-
trivial infinite cyclic Z/2Z -module. The groups H1(Z/2Z; Z̃), H1(Z/2Z; F2)
and H1(RP 2; Z̃) are canonically isomorphic to Z/2Z .

Lemma 5.20 Let p : E → RP 2 be the projection of an F -bundle, where F is
an aspherical closed surface, and let x be the generator of H1(RP 2; Z̃). Then

(1) χ(E) = χ(F );

(2) ∂(π2(RP
2)) ≤ ζπ1(F ) and there is an exact sequence of groups

0 → π2(E) → Z
∂−−−−→ π1(F ) → π1(E) → Z/2Z → 1;

(3) if ∂ = 0 then π1(E) has one end and acts nontrivially on π2(E) ∼= Z , and
the covering space EF with fundamental group π1(F ) is homeomorphic
to S2 × F , so w1(E)|π1(F ) = w1(EF ) = w1(F ) (as homomorphisms from
π1(F ) to Z/2Z ) and w2(EF ) = w1(EF )2 ;

(4) if ∂ 6= 0 then χ(F ) = 0, π1(E) has two ends, π2(E) = 0 and Z/2Z acts
by inversion on ∂(Z);
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(5) p∗x3 = 0 ∈ H3(E; p∗Z̃).

Proof Condition (1) holds since the Euler characteristic is multiplicative in
fibrations, while (2) is part of the long exact sequence of homotopy for p.
The image of ∂ is central by [Go68], and is therefore trivial unless χ(F ) = 0.
Conditions (3) and (4) then follow as the homomorphisms in this sequence are
compatible with the actions of the fundamental groups, and EF is the total
space of an F -bundle over S2 , which is a trivial bundle if ∂ = 0, by Theorem
5.19. Condition (5) holds since H3(RP 2; Z̃) = 0.

Let π be a group which is an extension of Z/2Z by a normal subgroup G, and
let t ∈ π be an element which maps nontrivially to π/G = Z/2Z . Then u = t2

is in G and conjugation by t determines an automorphism α of G such that
α(u) = u and α2 is the inner automorphism given by conjugation by u.

Conversely, let α be an automorphism of G whose square is inner, say α2(g) =
ugu−1 for all g ∈ G. Let v = α(u). Then α3(g) = α2(α(g)) = uα(g)c−1 =
α(α2(g)) = vα(g)v−1 for all g ∈ G. Therefore vu−1 is central. In particular, if
the centre of G is trivial α fixes u, and we may define an extension

ξα : 1 → G→ Πα → Z/2Z → 1

in which Πα has the presentation 〈G, tα | tαgt−1
α = α(g), t2α = u〉. If β is

another automorphism in the same outer automorphism class then ξα and ξβ
are equivalent extensions. (Note that if β = α.ch , where ch is conjugation by
h, then β(α(h)uh) = α(h)uh and β2(g) = α(h)uh.g.(α(h)uh)−1 for all g ∈ G.)

Lemma 5.21 If χ(F ) < 0 or χ(F ) = 0 and ∂ = 0 then an F -bundle
over RP 2 is determined up to isomorphism by the corresponding extension of
fundamental groups.

Proof If χ(F ) < 0 such bundles and extensions are each determined by an
element ξ of order 2 in Out(π1(F )). If χ(F ) = 0 bundles with ∂ = 0 are
the restrictions of bundles over RP∞ = K(Z/2Z, 1) (compare Lemma 4.10).
Such bundles are determined by an element ξ of order 2 in Out(π1(F )) and
a cohomology class in H2(Z/2Z; ζπ1(F )ξ), by Lemma 5.1, and so correspond
bijectively to extensions also.

Lemma 5.22 Let M be a PD4 -complex with fundamental group π . A map
f : M → RP 2 is fibre homotopy equivalent to the projection of a bundle over
RP 2 with fibre an aspherical closed surface if π1(f) is an epimorphism and
either
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(1) χ(M) ≤ 0 and π2(f) is an isomorphism; or

(2) χ(M) = 0, π has two ends and π3(f) is an isomorphism.

Proof In each case π is infinite, by Lemma 3.14. In case (1) H2(π; Z[π]) ∼= Z

(by Lemma 3.3) and so π has one end, by Bowditch’s Theorem. Hence M̃ ≃ S2 .
Moreover the homotopy fibre of f is aspherical, and its fundamental group is a
surface group. (See Chapter X for details.) In case (2) M̃ ≃ S3 , by Corollary

4.5.2. Hence the lift f̃ : M̃ → S2 is fibre homotopy equivalent to the Hopf
map, and so induces isomorphisms on all higher homotopy groups. Therefore
the homotopy fibre of f is aspherical. As π2(M) = 0 the fundamental group of
the homotopy fibre is a (torsion free) infinite cyclic extension of π and so must
be either Z2 or Z⋊−1Z . Thus the homotopy fibre of f is homotopy equivalent
to T or Kb. In both cases the argument of Theorem 5.2 now shows that f is
fibre homotopy equivalent to a surface bundle projection.

5.6 Bundles over RP 2 with ∂ = 0

If we assume that the connecting homomorphism ∂ : π2(E) → π1(F ) is trivial
then conditions (2), (3) and (5) of Lemma 5.20 simplify to conditions on E and
the action of π1(E) on π2(E). These conditions almost suffice to characterize
the homotopy types of such bundle spaces; there is one more necesssary condi-
tion, and for nonorientable manifolds there is a further possible obstruction, of
order at most 2.

Theorem 5.23 Let M be a PD4 -complex and let m : Mu → M be the
covering associated to κ = Ker(u), where u : π = π1(M) → Aut(π2(M)) is
the natural action. Let x be the generator of H1(Z/2Z; Z̃). If M is homo-
topy equivalent to the total space of a fibre bundle over RP 2 with fibre an
aspherical closed surface and with ∂ = 0 then π2(M) ∼= Z , u is surjective,
w2(Mu) = w1(Mu)

2 and u∗x3 has image 0 in H3(M ; F2). Moreover the homo-
morphism from H2(M ;Zu) to H2(S2;Zu) induced by a generator of π2(M) is
onto. Conversely, if M is orientable these conditions imply that M is homo-
topy equivalent to such a bundle space. If M is nonorientable there is a further
obstruction of order at most 2.

Proof The necessity of most of these conditions follows from Lemma 5.20.
The additional condition holds since the covering projection from S2 to RP 2

induces an isomorphism H2(RP 2;Zu) ∼= H2(S2;Zu) = H2(S2; Z).
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Suppose that they hold. Let g : S2 → P2(RP
2) and j : S2 → M represent

generators for π2(P2(RP
2)) and π2(M), respectively. After replacing M by a

homotopy equivalent space if necessary, we may assume that j is the inclusion
of a subcomplex. We may identify u with a map from M to K(Z/2Z, 1), via
the isomorphism [M,K(Z/2Z, 1)] ∼= Hom(π,Z/2Z). The only obstruction to
the construction of a map from M to P2(RP

2) which extends g and lifts u
lies in H3(M,S2;Zu), since u∗π2(RP

2)) ∼= Zu . This group maps injectively to
H3(M ;Zu), since restriction maps H2(M ;Zu) onto H2(S2;Zu), and so this
obstruction is 0, since its image in H3(M ;Zu) is u∗k1(RP

2) = u∗x3 = 0.
Therefore there is a map h : M → P2(RP

2) such that π1(h) = u and π2(h) is
an isomorphism. The set of such maps is parametrized by H2(M,S2;Zu).

As Z/2Z acts trivially on π3(RP
2) ∼= Z the second k -invariant of RP 2 lies in

H4(P2(RP
2);Z). This group is infinite cyclic, and is generated by t = k2(RP

2).
(See §3.12 of [Si67].) The obstruction to lifting h to a map from M to P3(RP

2)
is h∗t. Let n : P̃2(RP

2) → P2(RP
2) be the universal covering, and let z be a

generator of H2(P̃2(RP
2); Z) ∼= Z . Then h lifts to a map hu : Mu → P̃2(RP

2),
so that nhu = hm. (Note that hu is determined by h∗uz , since P̃2(RP

2) ≃
K(Z, 2).)

The covering space Mu is homotopy equivalent to the total space of an S2 -
bundle q : E → F , where F is an aspherical closed surface, by Theorem 5.14.
Since κ acts trivially on π2(Mu) the bundle is orientable (i.e., w1(q) = 0)
and so q∗w2(q) = w2(E) + w1(E)2 , by the Whitney sum formula. Therefore
q∗w2(q) = 0, since w2(Mu) = w1(Mu)

2 , and so w2(q) = 0, since q is 2-
connected. Hence the bundle is trivial, by Lemma 5.11, and so Mu is homotopy
equivalent to S2×F . Let jF and jS be the inclusions of the factors. Then hujS
generates π2(P2). We may choose h so that hujF is null homotopic. Then h∗uz
is Poincaré dual to jF∗[F ], and so h∗uz

2 = 0, since jF∗[F ] has self intersection
0. As n∗t is a multiple of z2 , it follows that m∗h∗t = 0.

If M is orientable m∗ = H4(m; Z) is a monomorphism and so h∗t = 0. Hence
h lifts to a map f : M → P3(RP

2). As P3(RP
2) may be constructed from

RP 2 by adjoining cells of dimension at least 5 we may assume that f maps M
into RP 2 , after a homotopy if necessary. Since π1(f) = u is an epimorphism
and π2(f) is an isomorphism f is fibre homotopy equivalent to the projection
of an F -bundle over RP 2 , by Lemma 5.22.

In general, we may assume that h maps the 3-skeleton M [3] to RP 2 . Let w
be a generator of H2(P2(RP

2); Z̃) ∼= H2(RP 2; Z̃) ∼= Z and define a function
µ : H2(M ;Zu) → H4(M ; Z) by µ(g) = g ∪ g + g ∪ h∗w for all g ∈ H2(M ;Zu).
If M is nonorientable H4(M ; Z) = Z/2Z and µ is a homomorphism. The sole
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obstruction to extending h|M [3] to a map f : M → RP 2 is the image of h∗t in
Coker(µ), which is independent of the choice of lift h. (See §3.24 of [Si67].)

Are these hypotheses independent? A closed 4-manifold M with π = π1(M)
a PD2 -group and π2(M) ∼= Z is homotopy equivalent to the total space of an
S2 -bundle p : E → B , where B is an aspherical closed surface. Therefore if
u is nontrivial Mu ≃ E+ , where q : E+ → B+ is the bundle induced over a
double cover of B . As w1(q) = 0 and q∗w2(q) = 0, by part (3) of Lemma
5.11, we have w1(E

+) = q∗w1(B
+) and w2(E

+) = q∗w2(B
+), by the Whitney

sum formula. Hence w2(Mu) = w1(Mu)
2 . (In particular, w2(Mu) = 0 if M is

orientable.) Moreover since c.d.π = 2 the condition u∗x3 = 0 is automatic. (It
shall follow directly from the results of Chapter 10 that any such S2 -bundle
space with u nontrivial fibres over RP 2 , even if it is not orientable.)

On the other hand, if Z/2Z is a (semi)direct factor of π the cohomology of
Z/2Z is a direct summand of that of π and so the image of x3 in H3(π; Z̃) is
nonzero.

Is the obstruction always 0 in the nonorientable cases?
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Chapter 6

Simple homotopy type and surgery

The problem of determining the high-dimensional manifolds within a given
homotopy type has been successfully reduced to the determination of normal
invariants and surgery obstructions. This strategy applies also in dimension
4, provided that the fundamental group is in the class SA generated from
groups with subexponential growth by extensions and increasing unions [FT95].
(Essentially all the groups in this class that we shall discuss in this book are
in fact virtually solvable.) We may often avoid this hypothesis by using 5-
dimensional surgery to construct s-cobordisms.

We begin by showing that the Whitehead group of the fundamental group is
trivial for surface bundles over surfaces, most circle bundles over geometric 3-
manifolds and for many mapping tori. In §2 we define the modified surgery
structure set, parametrizing s-cobordism classes of simply homotopy equiva-
lences of closed 4-manifolds. This notion allows partial extensions of surgery ar-
guments to situations where the fundamental group is not elementary amenable.
Although many papers on surgery do not explicitly consider the 4-dimensional
cases, their results may often be adapted to these cases. In §3 we comment
briefly on approaches to the s-cobordism theorem and classification using sta-
bilization by connected sum with copies of S2 × S2 or by cartesian product
with R.

In §4 we show that 4-manifolds M such that π = π1(M) is torsion free virtually
poly-Z and χ(M) = 0 are determined up to homeomorphism by their funda-
mental group (and Stiefel-Whitney classes, if h(π) < 4). We also characterize
4-dimensional mapping tori with torsion free, elementary amenable fundamen-
tal group and show that the structure sets for total spaces of RP 2 -bundles
over T or Kb are finite. In §5 we extend this finiteness to RP 2 -bundle spaces
over closed hyperbolic surfaces and show that total spaces of bundles with fibre
S2 or an aspherical closed surface over aspherical bases are determined up to
s-cobordism by their homotopy type. (We shall consider bundles with base or
fibre geometric 3-manifolds in Chapter 13.)
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6.1 The Whitehead group

In this section we shall rely heavily upon the work of Waldhausen in [Wd78].
The class of groups Cl is the smallest class of groups containing the trivial group
and which is closed under generalised free products and HNN extensions with
amalgamation over regular coherent subgroups and under filtering direct limit.
This class is also closed under taking subgroups, by Proposition 19.3 of [Wd78].
If G is in Cl then Wh(G) = K̃(Z[G]) = 0, by Theorem 19.4 of [Wd78]. The
argument for this theorem actually shows that if G ∼= A ∗C B and C is regular
coherent then there are “Mayer-Vietoris” sequences:

Wh(A)⊕Wh(B)→Wh(G)→K̃0(Z[C])→K̃0(Z[A])⊕K̃0(Z[B])→K̃0(Z[G])→0

and similarly if G ∼= A∗C . (See Sections 17.1.3 and 17.2.3 of [Wd78].)

The class Cl contains all free groups and poly-Z groups and the class X of
Chapter 2. (In particular, all the groups Z∗m are in Cl.) Since every PD2 -
group is either poly-Z or is the generalised free product of two free groups with
amalgamation over infinite cyclic subgroups it is regular coherent, and is in Cl.
Hence homotopy equivalences between S2 -bundles over aspherical surfaces are
simple. The following extension implies the corresponding result for quotients
of such bundle spaces by free involutions.

Theorem 6.1 Let π be a semidirect product ρ⋊ (Z/2Z) where ρ is a surface
group. Then Wh(π) = 0.

Proof Assume first that π ∼= ρ× (Z/2Z). Let Γ = Z[ρ]. There is a cartesian
square expressing Γ[Z/2Z] = Z[ρ× (Z/2Z)] as the pullback of the reduction of
coefficients map from Γ to Γ2 = Γ/2Γ = Z/2Z[ρ] over itself. (The two maps
from Γ[Z/2Z] to Γ send the generator of Z/2Z to +1 and −1, respectively.)
The Mayer-Vietoris sequence for algebraic K -theory traps K1(Γ[Z/2Z]) be-
tween K2(Γ2) and K1(Γ)2 . (See Theorem 6.4 of [Mi].) Now since c.d.ρ = 2
the higher K -theory of R[ρ] can be computed in terms of the homology of ρ
with coefficients in the K -theory of R (cf. the Corollary to Theorem 5 of the
introduction of [Wd78]). In particular, the map from K2(Γ) to K2(Γ2) is onto,
while K1(Γ) = K1(Z) ⊕ (ρ/ρ′) and K1(Γ2) = ρ/ρ′ . It now follows easily that
K1(Γ[Z/2Z]) is generated by the images of K1(Z) = {±1} and ρ × (Z/2Z),
and so Wh(ρ× (Z/2Z)) = 0.

If π = ρ ⋊ (Z/2Z) is not such a direct product it is isomorphic to a discrete
subgroup of Isom(X) which acts properly discontinuously on X , where X = E2

or H2 . (See [EM82], [Zi].) The singularities of the corresponding 2-orbifold
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X/π are either cone points of order 2 or reflector curves; there are no corner
points and no cone points of higher order. Let |X/π| be the surface obtained
by forgetting the orbifold structure of X/π , and let m be the number of cone
points. Then χ(|X/π|) − (m/2) = χorb(X/π) ≤ 0, by the Riemann-Hurwitz
formula [Sc83’], so either χ(|X/π|) ≤ 0 or χ(|X/π|) = 1 and m ≥ 2 or |X/π| ∼=
S2 and m ≥ 4.

We may separate X/π along embedded circles (avoiding the singularities) into
pieces which are either (i) discs with at least two cone points; (ii) annuli with
one cone point; (iii) annuli with one boundary a reflector curve; or (iv) surfaces
other than D2 with nonempty boundary. In each case the inclusions of the
separating circles induce monomorphisms on orbifold fundamental groups, and
so π is a generalized free product with amalgamation over copies of Z of groups
of the form (i) ∗m(Z/2Z) (with m ≥ 2); (ii) Z ∗ (Z/2Z); (iii) Z ⊕ (Z/2Z); or
(iv) ∗mZ , by the Van Kampen theorem for orbifolds [Sc83]. The Mayer-Vietoris
sequences for algebraic K -theory now give Wh(π) = 0.

The argument for the direct product case is based on one for showing that
Wh(Z ⊕ (Z/2Z)) = 0 from [Kw86].

Not all such orbifold groups arise in this way. For instance, the orbifold fun-
damental group of a torus with one cone point of order 2 has the presentation
〈x, y | [x, y]2 = 1〉. Hence it has torsion free abelianization, and so cannot be a
semidirect product as above.

The orbifold fundamental groups of flat 2-orbifolds are the 2-dimensional crys-
tallographic groups. Their finite subgroups are cyclic or dihedral, of order
properly dividing 24, and have trivial Whitehead group. In fact Wh(π) = 0 for
π any such 2-dimensional crystallographic group [Pe98]. (If π is the fundamen-
tal group of an orientable hyperbolic 2-orbifold with k cone points of orders
{n1, . . . nk} then Wh(π) ∼= ⊕k

i=1Wh(Z/niZ) [LS00].)

The argument for the next result is essentially due to F.T.Farrell.

Theorem 6.2 If π is an extension of π1(B) by π1(F ) where B and F are
aspherical closed surfaces then Wh(π) = K̃0(Z[π]) = 0.

Proof If χ(B) < 0 then B admits a complete riemannian metric of constant
negative curvature −1. Moreover the only virtually poly-Z subgroups of π1(B)
are 1 and Z . If G is the preimage in π of such a subgroup then G is either
π1(F ) or is the group of a Haken 3-manifold. It follows easily that for any n ≥ 0
the group G × Zn is in Cl and so Wh(G × Zn) = 0. Therefore any such G
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is K -flat and so the bundle is admissible, in the terminology of [FJ86]. Hence
Wh(π) = K̃0(Z[π]) = 0 by the main result of that paper.

If χ(B) = 0 then this argument does not work, although if moreover χ(F ) = 0
then π is poly-Z , so Wh(π) = K̃0(Z[π]) = 0 by Theorem 2.13 of [FJ]. We
shall sketch an argument of Farrell for the general case. Lemma 1.4.2 and
Theorem 2.1 of [FJ93] together yield a spectral sequence (with coefficients in
a simplicial cosheaf) whose E2 term is Hi(X/π1(B);Wh′j(p

−1(π1(B)x))) and
which converges to Wh′i+j(π). Here p : π → π1(B) is the epimorphism of the
extension and X is a certain universal π1(B)-complex which is contractible and
such that all the nontrivial isotropy subgroups π1(B)x are infinite cyclic and
the fixed point set of each infinite cyclic subgroup is a contractible (nonempty)
subcomplex. The Whitehead groups with negative indices are the lower K -
theory of Z[G] (i.e., Wh′n(G) = Kn(Z[G]) for all n ≤ −1), while Wh′0(G) =
K̃0(Z[G]) and Wh′1(G) = Wh(G). Note that Wh′−n(G) is a direct summand
of Wh(G×Zn+1). If i+j > 1 then Wh′i+j(π) agrees rationally with the higher
Whitehead group Whi+j(π). Since the isotropy subgroups π1(B)x are infinite
cyclic or trivial Wh(p−1(π1(B)x) × Zn) = 0 for all n ≥ 0, by the argument
of the above paragraph, and so Wh′j(p

−1(π1(B)x)) = 0 if j ≤ 1. Hence the

spectral sequence gives Wh(π) = K̃0(Z[π]) = 0.

A closed 3-manifold is a Haken manifold if it is irreducible and contains an
incompressible 2-sided surface. It is an open question whether every closed
irreducible orientable 3-manifold with infinite fundamental group is virtually
Haken. (Non-orientable 3-manifolds are Haken.) Every virtually Haken 3-
manifold is either Haken, hyperbolic or Seifert-fibred, by [CS83] and [GMT96],
and so either has an infinite solvable fundamental group or may be decomposed
along a finite family of disjoint incompressible tori and Klein bottles so that
the complementary components are Seifert fibred or hyperbolic.

A closed irreducible 3-manifold is a graph manifold if either it has solvable
fundamental group or it may be decomposed along a finite family of disjoint
incompressible tori and Klein bottles so that the complementary components
are Seifert fibred.

Theorem 6.3 Let π = ν ⋊θ Z where ν is torsion free and is the fundamental
group of a closed 3-manifold N which is a connected sum of graph manifolds.
Then ν is regular coherent and Wh(π) = K̃0(Z[π]) = 0.

Proof The group ν is a generalized free product with amalgamation along
poly-Z subgroups (1, Z2 or Z⋊−1Z ) of polycyclic groups and fundamental
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groups of Seifert fibred 3-manifolds (possibly with boundary). The group rings
of torsion free polycyclic groups are regular noetherian, and hence regular co-
herent. If G is the fundamental group of a Seifert fibred 3-manifold then it has
a subgroup Go of finite index which is a central extension of the fundamental
group of a surface B (possibly with boundary) by Z . We may assume that G is
not solvable and hence that χ(B) < 0. If ∂B is nonempty then Go ∼= Z×F and
so is an iterated generalized free product of copies of Z2 , with amalgamation
along infinite cyclic subgroups. Otherwise we may split B along an essential
curve and represent Go as the generalised free product of two such groups, with
amalgamation along a copy of Z2 . In both cases Go is regular coherent, and
therefore so is G, since [G : Go] <∞ and c.d.G <∞.

Since ν is the generalised free product with amalgamation of regular coherent
groups, with amalgamation along poly-Z subgroups, it is also regular coher-
ent. Let Ni be an irreducible summand of N and let νi = π1(Ni). If Ni

is Haken then νi is in Cl. Otherwise Ni is a Seifert fibred 3-manifold which
is not sufficiently large, and the argument of [Pl80] extends easily to show
that Wh(νi × Zs) = 0, for any s ≥ 0. Since K̃0(Z[νi]) is a direct sum-
mand of Wh(νi × Z), it follows that in all cases K̃0(Z[νi]) = Wh(νi) = 0.
The Mayer-Vietoris sequences for algebraic K -theory now give firstly that
Wh(ν) = K̃0(Z[ν]) = 0 and then that Wh(π) = K̃0(Z[π]) = 0 also.

All 3-manifold groups are coherent as groups [Hm]. If we knew that their group
rings were regular coherent then we could use [Wd78] instead of [FJ86] to give
a purely algebraic proof of Theorem 6.2, for as surface groups are free products
of free groups with amalgamation over an infinite cyclic subgroup, an extension
of one surface group by another is a free product of groups with Wh = 0,
amalgamated over the group of a surface bundle over S1 . Similarly, we could
deduce from [Wd78] that Wh(ν⋊θZ) = 0 for any torsion free group ν = π1(N)
where N is a closed 3-manifold whose irreducible factors are Haken, hyperbolic
or Seifert fibred.

Theorem 6.4 Let µ be a group with an infinite cyclic normal subgroup A
such that ν = µ/A is torsion free and is a free product ν = ∗1≤i≤nνi where each
factor is the fundamental group of an irreducible 3-manifold which is Haken,
hyperbolic or Seifert fibred. Then Wh(µ) = Wh(ν) = 0.

Proof (Note that our hypotheses allow the possibility that some of the factors
νi are infinite cyclic.) Let µi be the preimage of νi in µ, for 1 ≤ i ≤ n. Then
µ is the generalized free product of the µi ’s, amalgamated over infinite cyclic
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subgroups. For all 1 ≤ i ≤ n we have Wh(µi) = 0, by Lemma 1.1 of [St84] if
K(νi, 1) is Haken, by the main result of [FJ86] if it is hyperbolic, by an easy
extension of the argument of [Pl80] if it is Seifert fibred but not Haken and by
Theorem 19.5 of [Wd78] if νi is infinite cyclic. The Mayer-Vietoris sequences
for algebraic K -theory now give Wh(µ) = Wh(ν) = 0 also.

Theorem 6.4 may be used to strengthen Theorem 4.11 to give criteria for a
closed 4-manifold M to be simple homotopy equivalent to the total space of an
S1 -bundle, if the irreducible summands of the base N are all virtually Haken
and π1(M) is torsion free.

6.2 The s-cobordism structure set

Let M be a closed 4-manifold with fundamental group π and orientation
character w : π → {±1}, and let G/TOP have the H -space multiplication
determined by its loop space structure. Then the surgery obstruction maps
σ4+i = σM4+i : [M ×Di, ∂(M × Di);G/TOP, {∗}] → Ls4+i(π,w) are homomor-
phisms. If π is in the class SA then Ls5(π,w) acts on STOP (M), and the
surgery sequence

[SM ;G/TOP ]
σ5−→ Ls5(π,w)

ω−→ STOP (M)
η−→ [M ;G/TOP ]

σ4−→ Ls4(π,w)

is an exact sequence of groups and pointed sets, i.e., the orbits of the action
ω correspond to the normal invariants η(f) of simple homotopy equivalences
[FQ, FT95]. As it is not yet known whether 5-dimensional s-cobordisms over
other fundamental groups are products, we shall redefine the structure set by
setting

SsTOP (M) = {f : N →M | N a TOP 4−manifold, f a simple h.e.}/≈,
where f1 ≈ f2 if there is a map F : W →M with domain W an s-cobordism
with ∂W = N1 ∪ N2 and F |Ni

= fi for i = 1, 2. If the s-cobordism theorem
holds over π this is the usual TOP structure set for M . We shall usually write
Ln(π,w) for Lsn(π,w) if Wh(π) = 0 and Ln(π) if moreover w is trivial. When
the orientation character is nontrivial and otherwise clear from the context we
shall write Ln(π,−).

The homotopy set [M ;G/TOP ] may be identified with the set of normal maps
(f, b), where f : N →M is a degree 1 map and b is a stable framing of TN⊕f∗ξ ,
for some TOP Rn -bundle ξ over M . (If f : N →M is a homotopy equivalence,
with homotopy inverse h, we shall let f̂ = (f, b), where ξ = h∗νN and b is the
framing determined by a homotopy from hf to idN .) The Postnikov 4-stage
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of G/TOP is homotopy equivalent to K(Z/2Z, 2) ×K(Z, 4). Let k2 generate
H2(G/TOP ; F2) ∼= Z/2Z and l4 generate H4(G/TOP ; Z) ∼= Z . The function
from [M ;G/TOP ] to H2(M ; F2)⊕H4(M ; Z) which sends f̂ to (f̂∗(k2), f̂

∗(l4))
is an isomorphism.

The Kervaire-Arf invariant of a normal map ĝ : N2q → G/TOP is the image of
the surgery obstruction in L2q(Z/2Z,−) = Z/2Z under the homomorphism in-
duced by the orientation character, c(ĝ) = L2q(w1(N))(σ2q(ĝ)). The argument
of Theorem 13.B.5 of [Wl] may be adapted to show that there are universal
classes K4i+2 in H4i+2(G/TOP ; F2) (for i ≥ 0) such that

c(ĝ) = (w(M) ∪ ĝ∗((1 + Sq2 + Sq2Sq2)ΣK4i+2)) ∩ [M ].

Moreover K2 = k2 , since c induces the isomorphism π2(G/TOP ) = Z/2Z . In
the 4-dimensional case this expression simplifies to

c(ĝ) = (w2(M) ∪ ĝ∗(k2) + ĝ∗(Sq2k2))[M ] = (w1(M)2 ∪ ĝ∗(k2))[M ].

The codimension-2 Kervaire invariant of a 4-dimensional normal map ĝ is
kerv(ĝ) = ĝ∗(k2). Its value on a 2-dimensional homology class represented
by an immersion y : Y → M is the Kervaire-Arf invariant of the normal map
induced over the surface Y .

The structure set may overestimate the number of homeomorphism types within
the homotopy type of M , if M has self homotopy equivalences which are not
homotopic to homeomorphisms. Such “exotic” self homotopy equivalences may
often be constructed as follows. Given α : S2 → M , let β : S4 → M be the
composition αηSη , where η is the Hopf map, and let s : M → M ∨ S4 be the
pinch map obtained by shrinking the boundary of a 4-disc in M . Then the
composite fα = (idE ∨ β)s is a self homotopy equivalence of M .

Lemma 6.5 [No64] Let M be a closed 4-manifold and let α : S2 →M be a

map such that α∗[S2] 6= 0 in H2(M ; F2) and α∗w2(M) = 0. Then kerv(f̂α) 6= 0
and so fα is not normally cobordant to a homeomorphism.

Proof There is a class u ∈ H2(M ; F2) such that α∗[S2].u = 1, since α∗[S2] 6=
0. As low-dimensional homology classes may be realized by singular manifolds
there is a closed surface Y and a map y : Y → M transverse to fα and
such that f∗[Y ] = u. Then y∗kerv(f̂α)[Y ] is the Kervaire-Arf invariant of the
normal map induced over Y and is nontrivial. (See Theorem 5.1 of [CH90] for
details.)
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The family of surgery obstruction maps may be identified with a natural trans-
formation from L0 -homology to L-theory. (In the nonorientable case we must
use w-twisted L0 -homology.) In dimension 4 the cobordism invariance of
surgery obstructions (as in §13B of [Wl]) leads to the following formula.

Theorem 6.6 [Da05] There are homomorphisms I0 :H0(π;Zw)→L4(π,w)
and κ2 : H2(π; F2) → L4(π,w) such that for any f̂ : M → G/TOP the surgery
obstruction is σ4(f̂) = I0cM∗(f̂∗(l4) ∩ [M ]) + κ2cM∗(kerv(f̂) ∩ [M ])

In the orientable case the signature homomorphism from L4(π) to Z is a left
inverse for I0 : Z → L4(π), but in general I0 is not injective. This formula can
be made somewhat more explicit as follows. Let KS(M) ∈ H4(M ; F2) be the
Kirby-Siebenmann obstruction to lifting the TOP normal fibration of M to a
vector bundle. If M is orientable and (f, b) : N →M is a degree 1 normal map
with classifying map f̂ then

(KS(M) − (f∗)−1KS(N) − kerv(f̂)2)[M ] ≡ (σ(M) − σ(N))/8 mod (2).

(See Lemma 15.5 of [Si71] - page 329 of [KS].)

Theorem 6.6 ′ [Da05] If f̂ = (f, b) where f : N → M is a degree 1 map
then the surgery obstructions are given by

σ4(f̂) = I0((σ(N) − σ(M))/8) + κ2cM∗(kerv(f̂ ) ∩ [M ]) if w = 1, and

σ4(f̂) = I0(KS(N)−KS(M)+kerv(f̂ )2)+κ2cM∗(kerv(f̂)∩ [M ]) if w 6= 1.

(In the latter case we identify H4(M ; Z), H4(N ; Z) and H4(M ; F2) with
H0(π;Zw) = Z/2Z .)

The homomorphism σ4 is trivial on the image of η , but in general we do not
know whether a 4-dimensional normal map with trivial surgery obstruction
must be normally cobordant to a simple homotopy equivalence. (See however
[Kh07].) In our applications we shall always have a simple homotopy equiv-
alence in hand, and so if σ4 is injective we can conclude that the homotopy
equivalence is normally cobordant to the identity.

A more serious problem is that it is not clear how to define the action ω in
general. We shall be able to circumvent this problem by ad hoc arguments in
some cases. (There is always an action on the homological structure set, defined
in terms of Z[π]-homology equivalences [FQ].)

If we fix an isomorphism iZ : Z → L5(Z) we may define a function Iπ : π →
Ls5(π) for any group π by Iπ(g) = g∗(iZ(1)), where g∗ : Z = L5(Z) → Ls5(π) is
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induced by the homomorphism sending 1 in Z to g in π . Then IZ = iZ and Iπ
is natural in the sense that if f : π → H is a homomorphism then L5(f)Iπ =
IHf . As abelianization and projection to the summands of Z2 induce an iso-
morphism from L5(Z ∗ Z) to L5(Z)2 [Ca73], it follows easily from naturality
that Iπ is a homomorphism (and so factors through π/π′ ) [We83]. We shall
extend this to the nonorientable case by defining I+

π :Ker(w) → Ls5(π;w) as
the composite of IKer(w) with the homomorphism induced by inclusion.

Theorem 6.7 Let M be a closed 4-manifold with fundamental group π and
let w = w1(M). Given any γ ∈ Ker(w) there is a normal cobordism from idM
to itself with surgery obstruction I+

π (γ) ∈ Ls5(π,w).

Proof We may assume that γ is represented by a simple closed curve with a
product neighbourhood U ∼= S1 × D3 . Let P be the E8 manifold [FQ] and
delete the interior of a submanifold homeomorphic to D3 × [0, 1] to obtain
Po . There is a normal map p : Po → D3 × [0, 1] (rel boundary). The surgery
obstruction for p×idS1 in L5(Z) ∼= L4(1) is given by a codimension-1 signature
(see §12B of [Wl]), and generates L5(Z). Let Y = (M\intU)× [0, 1]∪Po×S1 ,
where we identify (∂U) × [0, 1] = S1 × S2 × [0, 1] with S2 × [0, 1] × S1 in
∂Po × S1 . Matching together id|(M\intU)×[0,1] and p × idS1 gives a normal
cobordism Q from idM to itself. The theorem now follows by the additivity of
surgery obstructions and naturality of the homomorphisms I+

π .

Corollary 6.7.1 Let λ∗ : Ls5(π) → L5(Z)d = Zd be the homomorphism
induced by a basis {λ1, ..., λd} for Hom(π,Z). If M is orientable, f : M1 →M
is a simple homotopy equivalence and θ ∈ L5(Z)d there is a normal cobordism
from f to itself whose surgery obstruction in L5(π) has image θ under λ∗ .

Proof If {γ1, ..., γd} ∈ π represents a “dual basis” for H1(π; Z) modulo torsion
(so that λi(γj) = δij for 1 ≤ i, j ≤ d), then {λ∗(Iπ(γ1)), ..., λ∗(Iπ(γd))} is a
basis for L5(Z)d .

If π is free or is a PD+
2 -group the homomorphism λ∗ is an isomorphism [Ca73].

In most of the other cases of interest to us the following corollary applies.

Corollary 6.7.2 If M is orientable and Ker(λ∗) is finite then SsTOP (M) is
finite. In particular, this is so if Coker(σ5) is finite.
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Proof The signature difference maps [M ;G/TOP ] = H4(M ; Z) ⊕H2(M ; F2)
onto L4(1) = Z and so there are only finitely many normal cobordism classes
of simple homotopy equivalences f : M1 → M . Moreover, Ker(λ∗) is fi-
nite if σ5 has finite cokernel, since [SM ;G/TOP ] ∼= Zd ⊕ (Z/2Z)d . Sup-
pose that F : N → M × I is a normal cobordism between two simple ho-
motopy equivalences F− = F |∂−N and F+ = F |∂+N . By Theorem 6.7
there is another normal cobordism F ′ : N ′ → M × I from F+ to itself with
λ∗(σ5(F

′)) = λ∗(−σ5(F )). The union of these two normal cobordisms along
∂+N = ∂−N ′ is a normal cobordism from F− to F+ with surgery obstruc-
tion in Ker(λ∗). If this obstruction is 0 we may obtain an s-cobordism W by
5-dimensional surgery (rel ∂ ).

The surgery obstruction groups for a semidirect product π ∼= G ⋊θ Z , may be
related to those of the (finitely presentable) normal subgroup G by means of
Theorem 12.6 of [Wl]. If Wh(π) = Wh(G) = 0 this theorem asserts that there
is an exact sequence

. . . Lm(G,w|G)
1−w(t)θ∗−→ Lm(G,w|G) → Lm(π,w) → Lm−1(G,w|G) . . . ,

where t generates π modulo G and θ∗ = Lm(θ,w|G). The following lemma is
adapted from Theorem 15.B.1 of [Wl].

Lemma 6.8 Let M be the mapping torus of a self homeomorphism of an
aspherical closed (n − 1)-manifold N . Suppose that Wh(π1(M)) = 0. If the
homomorphisms σNi are isomorphisms for all large i then so are the σMi .

Proof This is an application of the 5-lemma and periodicity, as in pages 229-
230 of [Wl].

The hypotheses of this lemma are satisfied if n = 4 and π1(N) is square root
closed accessible [Ca73], or N is orientable and β1(N) > 0 [Ro00], or is hyper-
bolic or virtually solvable [FJ], or admits an effective S1 -action with orientable
orbit space [St84, NS85]. It remains an open question whether aspherical closed
manifolds with isomorphic fundamental groups must be homeomorphic. This
has been verified in higher dimensions in many cases, in particular under geo-
metric assumptions [FJ], and under assumptions on the combinatorial structure
of the group [Ca73, St84, NS85]. We shall see that many aspherical 4-manifolds
are determined up to s-cobordism by their groups.

There are more general “Mayer-Vietoris” sequences which lead to calculations
of the surgery obstruction groups for certain generalized free products and HNN
extensions in terms of those of their building blocks [Ca73, St87].
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Lemma 6.9 Let π be either the group of a finite graph of groups, all of whose
vertex groups are infinite cyclic, or a square root closed accessible group of
cohomological dimension 2. Then I+

π is an epimorphism. If M is a closed 4-
manifold with fundamental group π the surgery obstruction maps σ4(M) and
σ5(M) are epimorphisms.

Proof Since π is in Cl we have Wh(π) = 0 and a comparison of Mayer-
Vietoris sequences shows that the assembly map from H∗(π; Lw0 ) to L∗(π,w)
is an isomorphism [Ca73, St87]. Since c.d.π ≤ 2 and H1(Ker(w); Z) maps onto
H1(π;Zw) the component of this map in degree 1 may be identified with I+

π . In
general, the surgery obstruction maps factor through the assembly map. Since
c.d.π ≤ 2 the homomorphism cM∗ : H∗(M ;D) → H∗(π;D) is onto for any local
coefficient module D , and so the lemma follows.

The class of groups considered in this lemma includes free groups, PD2 -groups
and the groups Z∗m . Note however that if π is a PD2 -group w need not be
the canonical orientation character.

6.3 Stabilization and h-cobordism

It has long been known that many results of high dimensional differential topol-
ogy hold for smooth 4-manifolds after stabilizing by connected sum with copies
of S2 × S2 [CS71, FQ80, La79, Qu83]. In particular, if M and N are h-
cobordant closed smooth 4-manifolds then M♯(♯kS2 × S2) is diffeomorphic
to N♯(♯kS2 × S2) for some k ≥ 0. In the spin case w2(M) = 0 this is an
elementary consequence of the existence of a well-indexed handle decompo-
sition of the h-cobordism [Wa64]. In Chapter VII of [FQ] it is shown that
5-dimensional TOP cobordisms have handle decompositions relative to a com-
ponent of their boundaries, and so a similar result holds for h-cobordant closed
TOP 4-manifolds. Moreover, if M is a TOP 4-manifold then KS(M) = 0 if
and only if M♯(♯kS2 × S2) is smoothable for some k ≥ 0 [LS71].

These results suggest the following definition. Two 4-manifolds M1 and M2 are
stably homeomorphic if M1♯(♯

kS2×S2) and M2♯(♯
lS2×S2) are homeomorphic,

for some k , l ≥ 0. (Thus h-cobordant closed 4-manifolds are stably homeo-
morphic.) Clearly π1(M), w1(M), the orbit of cM∗[M ] in H4(π1(M);Zw1(M))
under the action of Out(π1(M)), and the parity of χ(M) are invariant under
stabilization. If M is orientable σ(M) is also invariant.

Kreck has shown that (in any dimension) classification up to stable homeo-
morphism (or diffeomorphism) can be reduced to bordism theory. There are
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three cases: If w2(M̃) 6= 0 and w2(Ñ ) 6= 0 then M and N are stably homeo-
morphic if and only if for some choices of orientations and identification of the
fundamental groups the invariants listed above agree (in an obvious manner).
If w2(M) = w2(N) = 0 then M and N are stably homeomorphic if and only if
for some choices of orientations, Spin structures and identification of the fun-
damental group they represent the same element in ΩSpinTOP

4 (K(π, 1)). The
most complicated case is when M and N are not Spin, but the universal covers
are Spin. (See [Kr99], [Te] for expositions of Kreck’s ideas.)

We shall not pursue this notion of stabilization further (with one minor excep-
tion, in Chapter 14), for it is somewhat at odds with the tenor of this book.
The manifolds studied here usually have minimal Euler characteristic, and of-
ten are aspherical. Each of these properties disappears after stabilization. We
may however also stabilize by cartesian product with R, and there is then the
following simple but satisfying result.

Lemma 6.10 Closed 4-manifolds M and N are h-cobordant if and only if
M ×R and N ×R are homeomorphic.

Proof If W is an h-cobordism from M to N (with fundamental group π =
π1(W )) then W × S1 is an h-cobordism from M × S1 to N × S1 . The torsion
is 0 in Wh(π×Z), by Theorem 23.2 of [Co], and so there is a homeomorphism
from M×S1 to N×S1 which carries π1(M) to π1(N). Hence M×R ∼= N×R.
Conversely, if M ×R ∼= N ×R then M ×R contains a copy of N disjoint from
M × {0}, and the region W between M × {0} and N is an h-cobordism.

6.4 Manifolds with π1 elementary amenable and χ = 0

In this section we shall show that closed manifolds satisfying the hypotheses of
Theorem 3.17 and with torsion free fundamental group are determined up to
homeomorphism by their homotopy type. As a consequence, closed 4-manifolds
with torsion free elementary amenable fundamental group and Euler character-
istic 0 are homeomorphic to mapping tori. We also estimate the structure sets
for RP 2 -bundles over T or Kb. In the remaining cases involving torsion com-
putation of the surgery obstructions is much more difficult. We shall comment
briefly on these cases in Chapters 10 and 11.

Theorem 6.11 Let M be a closed 4-manifold with χ(M) = 0 and whose
fundamental group π is torsion free, coherent, locally virtually indicable and
restrained. Then M is determined up to homeomorphism by its homotopy
type. If moreover h(π) = 4 then every automorphism of π is realized by a self
homeomorphism of M .
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Proof By Theorem 3.17 either π ∼= Z or Z∗m for some m 6= 0, or M is
aspherical, π is virtually poly-Z and h(π) = 4. Hence Wh(π) = 0, in all
cases. If π ∼= Z or Z∗m then the surgery obstruction homomorphisms are
epimorphisms, by Lemma 6.9. We may calculate L4(π,w) by means of Theorem
12.6 of [Wl], or more generally §3 of [St87], and we find that if π ∼= Z or Z∗2n

then σ4(M) is in fact an isomorphism. If π ∼= Z∗2n+1 then there are two normal
cobordism classes of homotopy equivalences h : X → M . Let ξ generate the
image of H2(π; F2) ∼= Z/2Z in H2(M ; F2) ∼= (Z/2Z)2 , and let j : S2 → M
represent the unique nontrivial spherical class in H2(M ; F2). Then ξ2 = 0,
since c.d.π = 2, and ξ ∩ j∗[S2] = 0, since cM j is nullhomotopic. It follows
that j∗[S2] is Poincaré dual to ξ , and so v2(M) ∩ j∗[S2] = ξ2 ∩ [M ] = 0.
Hence j∗w2(M) = j∗v2(M) + (j∗w1(M))2 = 0 and so fj has nontrivial normal
invariant, by Lemma 6.5. Therefore each of these two normal cobordism classes
contains a self homotopy equivalence of M .

If M is aspherical, π is virtually poly-Z and h(π) = 4 then STOP (M) has just
one element, by Theorem 2.16 of [FJ]. The theorem now follows.

Corollary 6.11.1 Let M be a closed 4-manifold with χ(M) = 0 and funda-
mental group π ∼= Z , Z2 or Z⋊−1Z . Then M is determined up to homeomor-
phism by π and w(M).

Proof If π ∼= Z then M is homotopy equivalent to the total space of an S3 -
bundle over S1 , by Theorem 4.2, while if π ∼= Z2 or Z⋊−1Z it is homotopy
equivalent to the total space of an S2 -bundle over T or Kb, by Theorem 5.10.

Is the homotopy type of M also determined by π and w(M) if π ∼= Z∗m for
some |m| > 1?

We may now give an analogue of the Farrell and Stallings fibration theorems
for 4-manifolds with torsion free elementary amenable fundamental group.

Theorem 6.12 Let M be a closed 4-manifold whose fundamental group π is
torsion free and elementary amenable. A map f : M → S1 is homotopic to a
fibre bundle projection if and only if χ(M) = 0 and f induces an epimorphism
from π to Z with finitely generated kernel.

Proof The conditions are clearly necessary. Suppose that they hold. Let
ν = Ker(π1(f)), let Mν be the infinite cyclic covering space of M with funda-
mental group ν and let t : Mν → Mν be a generator of the group of covering
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transformations. By Corollary 4.5.2 either ν = 1 (so Mν ≃ S3 ) or ν ∼= Z (so
Mν ≃ S2 × S1 or S2×̃S1 ) or M is aspherical. In the latter case π is a torsion
free virtually poly-Z group, by Theorem 1.11 and Theorem 9.23 of [Bi]. Thus
in all cases there is a homotopy equivalence fν from Mν to a closed 3-manifold
N . Moreover the self homotopy equivalence fνtf

−1
ν of N is homotopic to a

homeomorphism, g say, and so f is fibre homotopy equivalent to the canonical
projection of the mapping torus M(g) onto S1 . It now follows from Theo-
rem 6.11 that any homotopy equivalence from M to M(g) is homotopic to a
homeomorphism.

The structure sets of the RP 2 -bundles over T or Kb are also finite.

Theorem 6.13 Let M be the total space of an RP 2 -bundle over T or Kb.
Then STOP (M) has order at most 32.

Proof As M is nonorientable H4(M ; Z) = Z/2Z and as β1(M ; F2) = 3 and
χ(M) = 0 we have H2(M ; F2) ∼= (Z/2Z)4 . Hence [M ;G/TOP ] has order 32.
Let w = w1(M). It follows from the Shaneson-Wall splitting theorem (Theorem
12.6 of [Wl]) that L4(π,w) ∼= L4(Z/2Z,−)⊕L2(Z/2Z,−) ∼= (Z/2Z)2 , detected
by the Kervaire-Arf invariant and the codimension-2 Kervaire invariant. Simi-
larly L5(π,w) ∼= L4(Z/2Z,−)2 and the projections to the factors are Kervaire-
Arf invariants of normal maps induced over codimension-1 submanifolds. (In
applying the splitting theorem, note that Wh(Z ⊕ (Z/2Z)) = Wh(π) = 0, by
Theorem 6.1 above.) Hence STOP (M) has order at most 128.

The Kervaire-Arf homomorphism c is onto, since c(ĝ) = (w2 ∪ ĝ∗(k2)) ∩ [M ],
w2 6= 0 and every element of H2(M ; F2) is equal to ĝ∗(k2) for some normal
map ĝ : M → G/TOP . Similarly there is a normal map f2 : X2 → RP 2 with
σ2(f2) 6= 0 in L2(Z/2Z,−). If M = RP 2 ×B , where B = T or Kb is the base
of the bundle, then f2× idB : X2×B → RP 2×B is a normal map with surgery
obstruction (0, σ2(f2)) ∈ L4(Z/2Z,−)⊕L2(Z/2Z,−). We may assume that f2

is a homeomorphism over a disc ∆ ⊂ RP 2 . As the nontrivial bundles may be
obtained from the product bundles by cutting M along RP 2×∂∆ and regluing
via the twist map of RP 2 × S1 , the normal maps for the product bundles may
be compatibly modified to give normal maps with nonzero obstructions in the
other cases. Hence σ4 is onto and so STOP (M) has order at most 32.

In each case H2(M ; F2) ∼= H2(π; F2), so the argument of Lemma 6.5 does not
apply. However we can improve our estimate in the abelian case.
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Theorem 6.14 Let M be the total space of an RP 2 -bundle over T . Then
L5(π,w) acts trivially on the class of idM in STOP (M).

Proof Let λ1, λ2 : π → Z be epimorphisms generating Hom(π,Z) and let
t1, t2 ∈ π represent a dual basis for π/(torsion) (i.e., λi(tj) = δij for i = 1, 2).
Let u be the element of order 2 in π and let ki : Z ⊕ (Z/2Z) → π be the
monomorphism defined by ki(a, b) = ati + bu, for i = 1, 2. Define splitting
homomorphisms p1, p2 by pi(g) = k−1

i (g − λi(g)ti) for all g ∈ π . Then piki =
idZ⊕(Z/2Z) and pik3−i factors through Z/2Z , for i = 1, 2. The orientation
character w = w1(M) maps the torsion subgroup of π onto Z/2Z , by Theorem
5.13, and t1 and t2 are in Ker(w). Therefore pi and ki are compatible with
w , for i = 1, 2. As L5(Z/2Z,−) = 0 it follows that L5(k1) and L5(k2) are
inclusions of complementary summands of L5(π,w) ∼= (Z/2Z)2 , split by the
projections L5(p1) and L5(p2).

Let γi be a simple closed curve in T which represents ti ∈ π . Then γi
has a product neighbourhood Ni

∼= S1 × [−1, 1] whose preimage Ui ⊂ M is
homeomorphic to RP 2 × S1 × [−1, 1]. As in Theorem 6.13 there is a nor-
mal map f4 : X4 → RP 2 × [−1, 1]2 (rel boundary) with σ4(f4) 6= 0 in
L4(Z/2Z,−). Let Yi = (M\intUi) × [−1, 1] ∪ X4 × S1 , where we identify
(∂Ui) × [−1, 1] = RP 2 × S1 × S0 × [−1, 1] with RP 2 × [−1, 1] × S0 × S1

in ∂X4 × S1 . If we match together id(M\intUi)×[−1,1] and f4 × idS1 we ob-
tain a normal cobordism Qi from idM to itself. The image of σ5(Qi) in
L4(Ker(λi), w) ∼= L4(Z/2Z,−) under the splitting homomorphism is σ4(f4).
On the other hand its image in L4(Ker(λ3−i), w) is 0, and so it generates the
image of L5(k3−i). Thus L5(π,w) is generated by σ5(Q1) and σ5(Q2), and so
acts trivially on idM .

Does L5(π,w) act trivially on each class in STOP (M) when M is an RP 2 -
bundle over T or Kb? If so, then STOP (M) has order 8 in each case. Are these
manifolds determined up to homeomorphism by their homotopy type?

6.5 Bundles over aspherical surfaces

The fundamental groups of total spaces of bundles over hyperbolic surfaces
all contain nonabelian free subgroups. Nevertheless, such bundle spaces are
determined up to s-cobordism by their homotopy type, except when the fibre
is RP 2 , in which case we can only show that the structure sets are finite.
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Theorem 6.15 Let M be a closed 4-manifold which is homotopy equivalent
to the total space E of an F -bundle over B where B and F are aspherical
closed surfaces. Then M is s-cobordant to E and M̃ is homeomorphic to R4 .

Proof Since π1(B) is either an HNN extension of Z or a generalised free
product F ∗Z F ′ , where F and F ′ are free groups, π×Z is a square root closed
generalised free product with amalgamation of groups in Cl. Comparison of
the Mayer-Vietoris sequences for L0 -homology and L-theory (as in Proposition
2.6 of [St84]) shows that STOP (E × S1) has just one element. (Note that even
when χ(B) = 0 the groups arising in intermediate stages of the argument all
have trivial Whitehead groups.) Hence M × S1 ∼= E × S1 , and so M is s-
cobordant to E by Lemma 6.10 and Theorem 6.2. The final assertion follows
from Corllary 7.3B of [FQ] since M is aspherical and π is 1-connected at ∞
[Ho77].

Davis has constructed aspherical 4-manifolds whose universal covering space is
not 1-connected at ∞ [Da83].

Theorem 6.16 Let M be a closed 4-manifold which is homotopy equivalent
to the total space E of an S2 -bundle over an aspherical closed surface B . Then
M is s-cobordant to E , and M̃ is homeomorphic to S2 ×R2 .

Proof Let π = π1(E) ∼= π1(B). Then Wh(π) = 0, and H∗(π; Lw0 ) ∼= L∗(π,w),
as in Lemma 6.9. Hence L4(π,w) ∼= Z ⊕ (Z/2Z) if w = 0 and (Z/2Z)2

otherwise. The surgery obstruction map σ4(E) is onto, by Lemma 6.9. Hence
there are two normal cobordism classes of maps h : X → E with σ4(h) =
0. The kernel of the natural homomorphism from H2(E; F2) ∼= (Z/2Z)2 to
H2(π; F2) ∼= Z/2Z is generated by j∗[S2], where j : S2 → E is the inclusion
of a fibre. As j∗[S2] 6= −0, while w2(E)(j∗[S2]) = j∗w2(E) = 0 the normal
invariant of fj is nontrivial, by Lemma 6.5. Hence each of these two normal
cobordism classes contains a self homotopy equivalence of E .

Let f : M → E be a homotopy equivalence (necessarily simple). Then there is a
normal cobordism F : V → E× [0, 1] from f to some self homotopy equivalence
of E . As I+

π is an isomorphism, by Lemma 6.9, there is an s-cobordism W
from M to E , as in Corollary 6.7.2.

The universal covering space W̃ is a proper s-cobordism from M̃ to Ẽ ∼=
S2 × R2 . Since the end of Ẽ is tame and has fundamental group Z we may
apply Corollary 7.3B of [FQ] to conclude that W̃ is homeomorphic to a product.

Hence M̃ is homeomorphic to S2 ×R2 .
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Let ρ be a PD2 -group. As π = ρ × (Z/2Z) is square-root closed accessi-
ble from Z/2Z , the Mayer-Vietoris sequences of [Ca73] imply that L4(π,w) ∼=
L4(Z/2Z,−) ⊕ L2(Z/2Z,−) and that L5(π,w) ∼= L4(Z/2Z,−)β , where w =
pr2 : π → Z/2Z and β = β1(ρ; F2). Since these L-groups are finite the struc-
ture sets of total spaces of RP 2 -bundles over aspherical surfaces are also finite.
(Moreover the arguments of Theorems 6.13 and 6.14 can be extended to show
that σ4 is an epimorphism and that most of L5(π,w) acts trivially on idE ,
where E is such a bundle space.)
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Chapter 7

Geometries and decompositions

Every closed connected surface is geometric, i.e., is a quotient of one of the
three model 2-dimensional geometries E2 , H2 or S2 by a free and properly
discontinuous action of a discrete group of isometries. Much current research
on 3-manifolds is guided by Thurston’s Geometrization Conjecture, that ev-
ery closed irreducible 3-manifold admits a finite decomposition into geometric
pieces. In §1 we shall recall Thurston’s definition of geometry, and shall de-
scribe briefly the 19 4-dimensional geometries. Our concern in the middle third
of this book is not to show how this list arises (as this is properly a question
of differential geometry; see [Is55], [Fi], [Pa96] and [Wl85,86]), but rather to
describe the geometries sufficiently well that we may subsequently characterize
geometric manifolds up to homotopy equivalence or homeomorphism. In §2 we
relate the notions of “geometry of solvable Lie type” and “infrasolvmanifold”.
The limitations of geometry in higher dimensions are illustrated in §3, where
it is shown that a closed 4-manifold which admits a finite decomposition into
geometric pieces is (essentially) either geometric or aspherical. The geometric
viewpoint is nevertheless of considerable interest in connection with complex
surfaces [Ue90,91, Wl85,86]. With the exception of the geometries S2 × H2 ,

H2 × H2 , H2 × E2 and S̃L × E1 no closed geometric manifold has a proper
geometric decomposition.

A number of the geometries support natural Seifert fibrations or compatible
complex structures. In §4 we characterize the groups of aspherical 4-manifolds
which are orbifold bundles over flat or hyperbolic 2-orbifolds. We outline what
we need about Seifert fibrations and complex surfaces in §5 and §6.
Subsequent chapters shall consider in turn geometries whose models are con-
tractible (Chapters 8 and 9), geometries with models diffeomorphic to S2 ×R2

(Chapter 10), the geometry S3×E1 (Chapter 11) and the geometries with com-
pact models (Chapter 12). In Chapter 13 we shall consider geometric structures
and decompositions of bundle spaces. In the final chapter of the book we shall
consider knot manifolds which admit geometries.
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7.1 Geometries

An n-dimensional geometry X in the sense of Thurston is represented by a pair
(X,GX ) where X is a complete 1-connected n-dimensional Riemannian mani-
fold and GX is a Lie group which acts effectively, transitively and isometrically
on X and which has discrete subgroups Γ which act freely on X so that Γ\X
has finite volume. (Such subgroups are called lattices.) Since the stabilizer of
a point in X is isomorphic to a closed subgroup of O(n) it is compact, and so
Γ\X is compact if and only if Γ\GX is compact. Two such pairs (X,G) and
(X ′, G′) define the same geometry if there is a diffeomorphism f : X → X ′

which conjugates the action of G onto that of G′ . (Thus the metric is only
an adjunct to the definition.) We shall assume that G is maximal among Lie
groups acting thus on X , and write Isom(X) = G, and Isomo(X) for the com-
ponent of the identity. A closed manifold M is an X-manifold if it is a quotient
Γ\X for some lattice in GX . Under an equivalent formulation, M is an X-
manifold if it is a quotient Γ\X for some discrete group Γ of isometries acting
freely on a 1-connected homogeneous space X = G/K , where G is a connected
Lie group and K is a compact subgroup of G such that the intersection of
the conjugates of K is trivial, and X has a G-invariant metric. The manifold
admits a geometry of type X if it is homeomorphic to such a quotient. If G is
solvable we shall say that the geometry is of solvable Lie type. If X = (X,GX )
and Y = (Y,GY ) are two geometries then X × Y supports a geometry in a
natural way; however the maximal group of isometries GX×Y may be strictly
larger than GX ×GY .

The geometries of dimension 1 or 2 are the familiar geometries of constant cur-
vature: E1 , E2 , H2 and S2 . Thurston showed that there are eight maximal
3-dimensional geometries (E3 , Nil3 , Sol3 , S̃L, H2 × E1 , H3 , S2 × E1 and S3 .)
Manifolds with one of the first five of these geometries are aspherical Seifert
fibred 3-manifolds or Sol3 -manifolds. These are determined among irreducible
3-manifolds by their fundamental groups, which are the PD3 -groups with non-
trivial Hirsch-Plotkin radical. There are just four S2 × E1 -manifolds. It is not
yet known whether every aspherical 3-manifold whose fundamental group con-
tains no rank 2 abelian subgroup must be hyperbolic, and the determination
of the closed H3 -manifolds remains incomplete. Nor is it known whether every
3-manifold with finite fundamental group must be spherical. For a detailed and
lucid account of the 3-dimensional geometries see [Sc83’].

There are 19 maximal 4-dimensional geometries; one of these (Sol4m,n) is in fact
a family of closely related geometries, and one (F4 ) is not realizable by any
closed manifold [Fi]. We shall see that the geometry is determined by the fun-
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damental group (cf. [Wl86, Ko92]). In addition to the geometries of constant
curvature and products of lower dimensional geometries there are seven “new”
4-dimensional geometries. Two of these are modeled on the irreducible Rieman-
nian symmetric spaces CP 2 = U(3)/U(2) and H2(C) = SU(2, 1)/S(U(2) ×
U(1)). The model for the geometry F4 is C×H2 . The component of the iden-
tity in its isometry group is the semidirect product R2 ×α SL(2,R), where α is
the natural action of SL(2,R) on R2 . This group acts on C ×H2 as follows:
if (u, v) ∈ R2 and A =

(
a b
c d

)
∈ SL(2,R) then (u, v)(w, z) = (u − vz + w, z)

and A(w, z) = ( w
(cz+d)2

, az+bcz+d) for all (w, z) ∈ C × H2 . The other four new

geometries are of solvable Lie type, and shall be described in §2 and §3.
In most cases the model X is homeomorphic to R4 , and the corresponding ge-
ometric manifolds are aspherical. Six of these geometries (E4 , Nil4 , Nil3 ×E1 ,
Sol4m,n , Sol40 and Sol41 ) are of solvable Lie type; in Chapter 8 we shall show man-
ifolds admitting such geometries have Euler characteristic 0 and fundamental
group a torsion free virtually poly-Z group of Hirsch length 4. Such manifolds
are determined up to homeomorphism by their fundamental groups, and every
such group arises in this way. In Chapter 9 we shall consider closed 4-manifolds
admitting one of the other geometries of aspherical type (H3 × E1 , S̃L × E1 ,
H2 × E2 , H2 × H2 , H4 , H2(C) and F4 ). These may be characterised up to
s-cobordism by their fundamental group and Euler characteristic. However it
is unknown to what extent surgery arguments apply in these cases, and we do
not yet have good characterizations of the possible fundamental groups. Al-
though no closed 4-manifold admits the geometry F4 , there are such manifolds
with proper geometric decompositions involving this geometry; we shall give
examples in Chapter 13.

Three of the remaining geometries (S2×E2 , S2×H2 and S3×E1) have models
homeomorphic to S2×R2 or S3×R. (Note that we shall use En or Hn to refer
to the geometry and Rn to refer to the underlying topological space.) The final
three (S4 , CP2 and S2 × S2 ) have compact models, and there are only eleven
such manifolds. We shall discuss these nonaspherical geometries in Chapters
10, 11 and 12.

7.2 Infranilmanifolds

The notions of “geometry of solvable Lie type” and “infrasolvmanifold” are
closely related. We shall describe briefly the latter class of manifolds, from
a rather utilitarian point of view. As we are only interested in closed mani-
folds, we shall frame our definitions accordingly. We consider the easier case of

Geometry & Topology Monographs, Volume 5 (2002)



134 Chapter 7: Geometries and decompositions

infranilmanifolds in this section, and the other infrasolvmanifolds in the next
section.

A flat n-manifold is a quotient of Rn by a discrete torsion free subgroup of
E(n) = Isom(En) = Rn ⋊α O(n) (where α is the natural action of O(n) on
Rn). A group π is a flat n-manifold group if it is torsion free and has a nor-
mal subgroup of finite index which is isomorphic to Zn . (These are necessary
and sufficient conditions for π to be the fundamental group of a closed flat
n-manifold.) The action of π by conjugation on its translation subgroup T (π)
(the maximal abelian normal subgroup of π) induces a faithful action of π/T (π)
on T (π). On choosing an isomorphism T (π) ∼= Zn we may identify π/T (π)
with a subgroup of GL(n,Z); this subgroup is called the holonomy group of π ,
and is well defined up to conjugacy in GL(n,Z). We say that π is orientable
if the holonomy group lies in SL(n,Z); equivalently, π is orientable if the flat
n-manifold Rn/π is orientable or if π ≤ E(n)+ = Rn ⋊α SO(n). If two dis-
crete torsion free cocompact subgroups of E(n) are isomorphic then they are
conjugate in the larger group Aff(Rn) = Rn⋊αGL(n,R), and the correspond-
ing flat n-manifolds are “affinely” diffeomorphic. There are only finitely many
isomorphism classes of such flat n-manifold groups for each n.

A nilmanifold is a coset space of a 1-connected nilpotent Lie group by a discrete
subgroup. More generally, an infranilmanifold is a quotient π\N where N is a
1-connected nilpotent Lie group and π is a discrete torsion free subgroup of the
semidirect product Aff(N) = N ⋊α Aut(N) such that π ∩N is a lattice in N
and π/π ∩ N is finite. Thus infranilmanifolds are finitely covered by nilmani-
folds. The Lie group N is determined by

√
π , by Mal’cev’s rigidity theorem,

and two infranilmanifolds are diffeomorphic if and only if their fundamental
groups are isomorphic. The isomorphism may then be induced by an affine
diffeomorphism. The infranilmanifolds derived from the abelian Lie groups Rn

are just the flat manifolds. It is not hard to see that there are just three 4-
dimensional (real) nilpotent Lie algebras. (Compare the analogous argument of
Theorem 1.4.) Hence there are three 1-connected 4-dimensional nilpotent Lie
groups, R4 , Nil3 ×R and Nil4 .

The group Nil3 is the subgroup of SL(3,R) consisting of upper triangular

matrices [r, s, t] =




1 r t
0 1 s
0 0 1


 . It has abelianization R2 and centre ζNil3 =

Nil3
′ ∼= R. The elements [1, 0, 0], [0, 1, 0] and [0, 0, 1/q] generate a discrete

cocompact subgroup of Nil3 isomorphic to Γq , and these are essentially the
only such subgroups. (Since they act orientably on R3 they are PD+

3 -groups.)
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The coset space Nq = Nil3/Γq is the total space of the S1 -bundle over S1×S1

with Euler number q , and the action of ζNil3 on Nil3 induces a free action
of S1 = ζNil/ζΓq on Nq . The group Nil4 is the semidirect product R3 ⋊θ R,
where θ(t) = [t, t, t2/2]. It has abelianization R2 and central series ζNil4 ∼=
R < ζ2Nil

4 = Nil4
′ ∼= R2 .

These Lie groups have natural left invariant metrics. (See [Sc83’].) The in-
franilmanifolds corresponding to R4 , Nil4 and Nil3 × R are the E4 -, Nil4 -
and Nil3 ×E1 -manifolds. (The isometry group of E4 is the semidirect product
R4 ×α O(4); the group Nil4 is the identity component for its isometry group,
while Nil3 × E1 admits an additional isometric action of S1 .)

7.3 Infrasolvmanifolds

The situation for (infra)solvmanifolds is more complicated. An infrasolvmani-
fold is a quotient M = Γ\S where S is a 1-connected solvable Lie group and Γ is
a closed torsion free subgroup of the semidirect product Aff(S) = S⋊αAut(S)
such that Γo (the component of the identity of Γ) is contained in the nilrad-
ical of S (the maximal connected nilpotent normal subgroup of S ), Γ/Γ ∩ S
has compact closure in Aut(S) and M is compact. The pair (S,Γ) is called a
presentation for M , and is discrete if Γ is a discrete subgroup of Aff(S), in
which case π1(M) = Γ. Every infrasolvmanifold has a presentation such that
Γ/Γ ∩ S is finite [FJ97], but Γ need not be discrete, and S is not determined

by π . (For example, Z3 is a lattice in both R3 and Ẽ(2)+ = C ⋊α̃ R, where
α̃(t)(z) = e2πitz for all t ∈ R and z ∈ C.)

Working in the context of real algebraic groups, Baues has shown in [Ba04] that

(1) every infrasolvmanifold has a discrete presentation with finite holonomy;
and

(2) infrasolvmanifolds with isomorphic fundamental groups are diffeomor-
phic.

He has also given a new construction which realizes each torsion-free virtu-
ally poly-Z group as the fundamental group of an infrasolvmanifold, a result
originally due to Auslander and Johnson [AJ76]. Farrell and Jones had shown
earlier that there are always presentations with finite holonomy, and estab-
lished (b) in all dimensions except perhaps 4. However there is not always an
affine diffeomorphism [FJ97]. (An ad hoc argument which covers most of the
4-dimensional cases, using the Mostow orbifold bundle associated to a presen-
tation of an infrasolvmanifold (see §5 below) and standard 3-manifold theory is
given in Theorem 8.9 below.)
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An important special case includes most infrasolvmanifolds of dimension ≤ 4
(and all infranilmanifolds). Let T+

n (R) be the subgroup of GL(n,R) consisting
of upper triangular matrices with positive diagonal entries. A Lie group S is
triangular if is isomorphic to a closed subgroup of T+

n (R) for some n. The
eigenvalues of the image of each element of S under the adjoint representation
are then all real, and so S is of type R in the terminology of [Go71]. (It can
be shown that a Lie group is triangular if and only if it is 1-connected and
solvable of type R.) Two infrasolvmanifolds with discrete presentations (Si,Γi)
where each Si is triangular (for i = 1, 2) are affinely diffeomorphic if and
only if their fundamental groups are isomorphic, by Theorem 3.1 of [Le95].
The translation subgroup S ∩ Γ of a discrete pair with S triangular can be
characterised intrinsically as the subgroup of Γ consisting of the elements g ∈ Γ
such that all the eigenvalues of the automorphisms of the abelian sections of the
lower central series for

√
Γ induced by conjugation by g are positive [De97].

Since S and Γo are each contractible, X = Γo\S is contractible also. It can
be shown that π = Γ/Γo acts freely on X , and so is the fundamental group
of M = π\X . (See Chapter III.3 of [Au73] for the solvmanifold case.) Since
M is aspherical π is a PDm group, where m is the dimension of M ; since
π is also virtually solvable it is thus virtually poly-Z of Hirsch length m, by
Theorem 9.23 of [Bi], and χ(M) = χ(π) = 0. Conversely, any torsion free
virtually poly-Z group is the fundamental group of a closed smooth manifold
which is finitely covered by the coset space of a lattice in a 1-connected solvable
Lie group [AJ76].

Let S be a connected solvable Lie group of dimension m, and let N be its
nilradical. If π is a lattice in S then it is torsion free and virtually poly-Z of
Hirsch length m and π ∩N =

√
π is a lattice in N . If S is 1-connected then

S/N is isomorphic to some vector group Rn , and π/
√
π ∼= Zn . A complete

characterization of such lattices is not known, but a torsion free virtually poly-
Z group π is a lattice in a connected solvable Lie group S if and only if π/

√
π

is abelian. (See Sections 4.29-31 of [Rg].)

The 4-dimensional solvable Lie geometries other than the infranil geometries
are Sol4m,n , Sol40 and Sol41 , and the model spaces are solvable Lie groups with
left invariant metrics. The following descriptions are based on [Wl86]. The Lie
group is the identity component of the isometry group for the geometries Sol4m,n
and Sol41 ; the identity component of Isom(Sol40) is isomorphic to the semidirect
product (C ⊕R) ⋊γ C

× , where γ(z)(u, x) = (zu, |z|−2x) for all (u, x) in C ⊕R
and z in C× , and thus Sol40 admits an additional isometric action of S1 , by
rotations about an axis in C ⊕R ∼= R3 , the radical of Sol40 .
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Sol4m,n = R3 ⋊θm,n
R, where m and n are integers such that the polynomial

fm,n = X3−mX2+nX−1 has distinct roots ea , eb and ec (with a < b < c real)
and θm,n(t) is the diagonal matrix diag[eat, ebt, ect]. Since θm,n(t) = θn,m(−t)
we may assume that m ≤ n; the condition on the roots then holds if and only if
2
√
n ≤ m ≤ n. The metric given by ds2 = e−2atdx2 + e−2btdy2 + e−2ctdz2 + dt2

(in the obvious global coordinates) is left invariant, and the automorphism of
Sol4m,n which sends (x, y, z, t) to (px, qy, rz, t) is an isometry if and only if p2 =

q2 = r2 = 1. Let G be the subgroup of GL(4,R) of bordered matrices
(
D ξ
0 1

)
,

where D = diag[±eat,±ebt,±ect] and ξ ∈ R3 . Then Sol4m,n is the subgroup of
G with positive diagonal entries, and G = Isom(Sol4m,n) if m 6= n. If m = n
then b = 0 and Sol4m,m = Sol3 × E1 , which admits the additional isometry
sending (x, y, z, t) to (z, y, x,−t), and G has index 2 in Isom(Sol3 ×E1). The
stabilizer of the identity in the full isometry group is (Z/2Z)3 for Sol4m,n if m 6=
n and D8 × (Z/2Z) for Sol3 ×R. In all cases Isom(Sol4m,n) ≤ Aff(Sol4m,n).

In general Sol4m,n = Sol4m′,n′ if and only if (a, b, c) = λ(a′, b′, c′) for some λ 6= 0.
Must λ be rational? (This is a case of the “problem of the four exponentials” of
transcendental number theory.) If m 6= n then Fm,n = Q[X]/(fm,n) is a totally
real cubic number field, generated over Q by the image of X . The images of X
under embeddings of Fm,n in R are the roots ea , eb and ec , and so it represents
a unit of norm 1. The group of such units is free abelian of rank 2. Therefore
if λ = r/s ∈ Q× this unit is an rth power in Fm,n (and its rth root satisfies
another such cubic). It can be shown that |r| ≤ log2(m), and so (modulo the
problem of the four exponentials) there is a canonical “minimal” pair (m,n)
representing each such geometry.

Sol40 = R3 ⋊ξ R, where ξ(t) is the diagonal matrix diag[et, et, e−2t]. Note
that if ξ(t) preserves a lattice in R3 then its characteristic polynomial has
integral coefficients and constant term −1. Since it has et as a repeated root
we must have ξ(t) = I . Therefore Sol40 does not admit any lattices. The metric
given by the expression ds2 = e−2t(dx2 + dy2) + e4tdz2 + dt2 is left invariant,
and O(2)×O(1) acts via rotations and reflections in the (x, y)-coordinates and
reflection in the z -coordinate, to give the stabilizer of the identity. These actions
are automorphisms of Sol40 , so Isom(Sol40) = Sol40⋊(O(2)×O(1)) ≤ Aff(Sol40).
The identity component of Isom(Sol40) is not triangular.

Sol41 is the group of real matrices {




1 y z
0 t x
0 0 1


 : t > 0, x, y, z ∈ R}. The

metric given by ds2 = t−2((1+x2)(dt2+dy2)+t2(dx2+dz2)−2tx(dtdx+dydz))
is left invariant, and the stabilizer of the identity is D8 , generated by the
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isometries which send (t, x, y, z) to (t,−x, y,−z) and to t−1(1,−y,−x, xy−tz).
These are automorphisms. (The latter one is the restriction of the involution
Ω of GL(3,R) which sends A to J(Atr)−1J , where J reverses the order of
the standard basis of R3 .) Thus Isom(Sol41) ∼= Sol41 ⋊ D8 ≤ Aff(Sol41). The
orientation-preserving subgroup is isomorphic to the subgroup G of GL(3,R)
generated by Sol41 and the diagonal matrices diag[−1, 1, 1] and diag[1, 1,−1].
(Note that these diagonal matrices act by conjugation on Sol41 .)

Closed Sol4m,n - or Sol41 -manifolds are clearly infrasolvmanifolds. The Sol40 case

is more complicated. Let γ̃(z)(u, x) = (ezu, e−2Re(z)x) for all (u, x) in C ⊕ R
and z in C . Then Ĩ = (C ⊕ R) ⋊γ̃ C is the universal covering group of
Isom(Sol40). If M is a closed Sol40 -manifold its fundamental group π is a
semidirect product Z3 ⋊θZ , where θ(1) ∈ GL(3,Z) has two complex conjugate
eigenvalues λ 6= λ̄ with |λ| 6= 0 or 1 and one real eigenvalue ρ such that
|ρ| = |λ|−2 . (See Chapter 8.) If M is orientable (i.e., ρ > 0) then π is a lattice
in Sπ = (C⊕R)⋊θ̃R < Ĩ , where θ̃(r) = γ̃(rlog(λ)). In general, π is a lattice in

Aff(Sπ+). The action of Ĩ on Sol40 determines a diffeomorphism Sπ+/π ∼= M ,
and so M is an infrasolvmanifold with a discrete presentation.

We shall see in Chapter 8 that every orientable 4-dimensional infrasolvmanifold
is diffeomorphic to a geometric 4-manifold, but the argument uses the Mostow
fibration and is differential-topological rather than differential-geometric.

7.4 Geometric decompositions

An n-manifold M admits a geometric decomposition if it has a finite collection
of disjoint 2-sided hypersurfaces S such that each component of M − ∪S is
geometric of finite volume, i.e., is homeomorphic to Γ\X , for some geometry
X and lattice Γ. We shall call the hypersurfaces S cusps and the components
of M − ∪S pieces of M . The decomposition is proper if the set of cusps is
nonempty.

Theorem 7.1 If a closed 4-manifold M admits a geometric decomposition
then either

(1) M is geometric; or

(2) M has a codimension-2 foliation with leaves S2 or RP 2 ; or

(3) the components of M − ∪S all have geometry H2 × H2 ; or

(4) the components of M − ∪S have geometry H4 , H3 × E1 , H2 × E2 or

S̃L × E1 ; or
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(5) the components of M − ∪S have geometry H2(C) or F4 .

In cases (3), (4) or (5) χ(M) ≥ 0 and in cases (4) or (5) M is aspherical.

Proof The proof consists in considering the possible ends (cusps) of complete
geometric 4-manifolds of finite volume. The hypersurfaces bounding a com-
ponent of M − ∪S correspond to the ends of its interior. If the geometry is
of solvable or compact type then there are no ends, since every lattice is then
cocompact [Rg]. Thus we may concentrate on the eight geometries S2 × H2 ,

H2 × E2 , H2 × H2 , S̃L × E1 , H3 × E1 , H4 , H2(C) and F4 . The ends of a
geometry of constant negative curvature Hn are flat [Eb80]; since any lattice
in a Lie group must meet the radical in a lattice it follows easily that the ends
are also flat in the mixed euclidean cases H3 ×E1 , H2 ×E2 and S̃L×E1 . Sim-
ilarly, the ends of S2 ×H2 -manifolds are S2 ×E1 -manifolds. Since the elements
of PSL(2,C) corresponding to the cusps of finite area hyperbolic surfaces are
parabolic, the ends of F4 -manifolds are Nil3 -manifolds. The ends of H2(C)-
manifolds are also Nil3 -manifolds [Ep87], while the ends of H2 ×H2 -manifolds
are Sol3 -manifolds in the irreducible cases [Sh63], and graph manifolds whose
fundamental groups contain nonabelian free subgroups otherwise. Clearly if
two pieces are contiguous their common cusps must be homeomorphic. If the
piece is not a reducible H2 × H2 -manifold then the inclusion of a cusp into the
closure of the piece induces a monomorphism on fundamental group.

If M is a closed 4-manifold with a geometric decomposition of type (2) the
inclusions of the cusps into the closures of the pieces induce isomorphisms on
π2 , and a Mayer-Vietoris argument in the universal covering space M̃ shows
that M̃ is homotopy equivalent to S2 . The natural foliation of S2 × H2 by
2-spheres induces a codimension-2 foliation on each piece, with leaves S2 or
RP 2 . The cusps bounding the closure of a piece are S2 × E1 -manifolds, and
hence also have codimension-1 foliations, with leaves S2 or RP 2 . Together
these foliations give a foliation of the closure of the piece, so that each cusp is a
union of leaves. The homeomorphisms identifying cusps of contiguous pieces are
isotopic to isometries of the corresponding S2 ×E1 -manifolds. As the foliations
of the cusps are preserved by isometries M admits a foliation with leaves S2

or RP 2 . (In other words, it is the total space of an orbifold bundle over a
hyperbolic 2-orbifold, with general fibre S2 . See §5 below.)

If at least one piece has an aspherical geometry other than H2 × H2 then all
do and M is aspherical. Since all the pieces of type H4 , H2(C) or H2 × H2

have strictly positive Euler characteristic while those of type H3×E1 , H2×E2 ,
S̃L × E1 or F4 have Euler characteristic 0 we must have χ(M) ≥ 0.
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If in case (2) M admits a foliation with all leaves homeomorphic then the
projection to the leaf space is a submersion and so M is the total space of an
S2 -bundle or RP 2 -bundle over a hyperbolic surface. In particular, the covering
space Mκ corresponding to the kernel κ of the action of π1(M) on π2(M) ∼= Z
is the total space of an S2 -bundle over a hyperbolic surface. In Chapter 9
we shall show that S2 -bundles and RP 2 -bundles over aspherical surfaces are
geometric. This surely holds also for orbifold bundles (defined in the next
section) over flat or hyperbolic 2-orbifolds, with general fibre S2 .

If an aspherical closed 4-manifold has a nontrivial geometric decomposition
with no pieces of type H2 × H2 then its fundamental group contains nilpotent
subgroups of Hirsch length 3 (corresponding to the cusps).

Is there an essentially unique minimal decomposition? Since hyperbolic surfaces
are connected sums of tori, and a punctured torus admits a complete hyperbolic
geometry of finite area, we cannot expect that there is an unique decomposition,
even in dimension 2. Any PDn -group satisfying Max-c (the maximal condition
on centralizers) has an essentially unique minimal finite splitting along virtually
poly-Z subgroups of Hirsch length n−1, by Theorem A2 of [Kr90]. (The Max-
c condition has since been removed [SS].) A compact non-positively curved
n-manifold (n ≥ 3) with convex boundary is either flat or has a canonical
decomposition along totally geodesic closed flat hypersurfaces into pieces which
are Seifert fibred or codimension-1 atoroidal [LS00]. Which 4-manifolds with

geometric decompositions admit such metrics? (Closed S̃L × E1 -manifolds do
not [Eb82].)

Closed H4 - or H2(C)-manifolds admit no proper geometric decompositions,
since their fundamental groups have no noncyclic abelian subgroups [Pr43]. A
similar argument shows that closed H3×E1 -manifolds admit no proper decom-
positions, since they are finitely covered by cartesian products of H3 -manifolds
with S1 . Thus closed 4-manifolds with a proper geometric decomposition in-
volving pieces of types other than S2 × H2 , H2 × E2 , H2 × H2 or S̃L × E1 are
never geometric.

Many S2 × H2 -, H2 × H2 -, H2 × E2 - and S̃L × E1 -manifolds admit proper
geometric decompositions. On the other hand, a manifold with a geometric
decomposition into pieces of type H2×E2 need not be geometric. For instance,
let G = 〈u, v, x, y | [u, v] = [x, y]〉 be the fundamental group of T♯T , the closed
orientable surface of genus 2, and let θ : G → SL(2,Z) be the epimorphism
determined by θ(u) =

(
0 −1
1 0

)
, θ(x) =

(
0 1
−1 1

)
, Then the semidirect product

π = Z2 ⋊θ G is the fundamental group of a torus bundle over T♯T which has a

Geometry & Topology Monographs, Volume 5 (2002)



7.5 Orbifold bundles 141

geometric decomposition into two pieces of type H2 ×E2 , but is not geometric,
since π does not have a subgroup of finite index with centre Z2 .

It is easily seen that each S2 × E1 -manifold may be realized as the end of a
complete S2×H2 -manifold with finite volume and a single end. However, if the
manifold is orientable the ends must be orientable, and if it is complex analytic
then they must be S2 × S1 . Every flat 3-manifold is a cusp of some complete
H4 -manifold with finite volume [Ni98]. However if such a manifold has only one
cusp the cusp cannot have holonomy Z/3Z or Z/6Z [LR00]. The fundamental

group of a cusp of an S̃L × E1 -manifold must have a chain of abelian normal
subgroups Z < Z2 < Z3 ; not all orientable flat 3-manifold groups have such
subgroups. The ends of complete, complex analytic H2 × H2 -manifolds with
finite volume and irreducible fundamental group are orientable Sol3 -manifolds
which are mapping tori, and all such may be realized in this way [Sh63].

Let M be the double of To × To , where To = T − intD2 is the once-punctured
torus. Since To admits a complete hyperbolic geometry of finite area M ad-
mits a geometric decomposition into two pieces of type H2 × H2 . However as
F (2) × F (2) has cohomological dimension 2 the homomorphism of fundamental
groups induced by the inclusion of the cusp into To × To has nontrivial kernel,
and M is not aspherical.

7.5 Orbifold bundles

An n-dimensional orbifold B has an open covering by subspaces of the form
Dn/G, where G is a finite subgroup of O(n). The orbifold B is good if
B = Γ\M , where Γ is a discrete group acting properly discontinuously on
a manifold M ; otherwise it is bad. A good orbifold B is aspherical if B = Γ\M
with M aspherical. Let F be a closed manifold. An orbifold bundle with gen-
eral fibre F over B is a map f : M → B which is locally equivalent to a
projection G\(F ×Dn) → G\Dn , where G acts freely on F and effectively
and orthogonally on Dn .

If the base B has a finite regular covering B̂ which is a manifold, then p
induces a fibre bundle projection p̂ : M̂ → B̂ with fibre F , and the action
of the covering group maps fibres to fibres. Conversely, if p1 : M1 → B1 is a
fibre bundle projection with fibre F1 and G is a finite group which acts freely
on M1 and maps fibres to fibres then passing to orbit spaces gives an orbifold
bundle p : M = G\M1 → B = H\B1 with general fibre F = K\F1 , where
H is the induced group of homeomorphisms of B1 and K is the kernel of the
epimorphism from G to H .
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Theorem 7.2 [Cb] Let M be an infrasolvmanifold. Then there is an orbifold
bundle p : M → B with general fibre an infranilmanifold and base a flat
orbifold.

Proof Let (S,Γ) be a presentation for M and let R be the nilradical of S .
Then A = S/R is a 1-connected abelian Lie group, and so A ∼= Rd for some
d ≥ 0. Since R is characteristic in S there is a natural projection q : Aff(S) →
Aff(A). Let ΓS = Γ∩S and ΓR = Γ∩R. Then the action of ΓS on S induces
an action of the discrete group q(ΓS) = RΓS/R on A. The Mostow fibration for
M1 = ΓS\S is the quotient map to B1 = q(ΓS)\A, which is a bundle projection
with fibre F1 = ΓR\R. Now Γo is normal in R, by Corollary 3 of Theorem 2.3
of [Rg], and ΓR/Γo is a lattice in the nilpotent Lie group R/Γo . Therefore F1

is a nilmanifold, while B1 is a torus.

The finite group Γ/ΓS acts on M1 , respecting the Mostow fibration. Let Γ =
q(Γ), K = Γ ∩ Ker(q) and B = Γ\A. Then the induced map p : M → B is an
orbifold bundle projection with general fibre the infranilmanifold F = K\R =
(K/Γo)\(R/Γo), and base a flat orbifold.

We shall call p : M → B the Mostow orbifold bundle corresponding to the
presentation (S,Γ). In Theorem 8.9 we shall use this construction to show that
orientable 4-dimensional infrasolvmanifolds are determined up to diffeomor-
phism by their fundamental groups, with the possible exception of manifolds
having one of two virtually abelian groups.

7.6 Realization of virtual bundle groups

Every extension of one PD2 -group by another may be realized by some surface
bundle, by Theorem 5.2. The study of Seifert fibred 4-manifolds and singu-
lar fibrations of complex surfaces lead naturally to consideration of the larger
class of torsion free groups which are virtually such extensions. Johnson has
asked whether such “ virtual bundle groups” may be realized by aspherical
4-manifolds.

Theorem 7.3 Let π be a torsion free group with normal subgroups K < G <
π such that K and G/K are PD2 -groups and [π : G] < ∞. Then π is the
fundamental group of an aspherical closed smooth 4-manifold which is the total
space of an orbifold bundle with general fibre an aspherical closed surface over
a 2-dimensional orbifold.
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Proof Let p : π → π/K be the quotient homomorphism. Since π is torsion
free the preimage in π of any finite subgroup of π/K is a PD2 -group. As the
finite subgroups of π/K have order at most [π : G], we may assume that π/K
has no nontrivial finite normal subgroup, and so is the orbifold fundamental
group of some 2-dimensional orbifold B , by the solution to the Nielsen realiza-
tion problem for surfaces [Ke83]. Let F be the aspherical closed surface with
π1(F ) ∼= K . If π/K is torsion free then B is a closed aspherical surface, and
the result follows from Theorem 5.2. In general, B is the union of a punctured
surface Bo with finitely many cone discs and regular neighborhoods of reflector
curves (possibly containing corner points). The latter may be further decom-
posed as the union of squares with a reflector curve along one side and with
at most one corner point, with two such squares meeting along sides adjacent
to the reflector curve. These suborbifolds Ui (i.e., cone discs and squares) are
quotients of D2 by finite subgroups of O(2). Since B is finitely covered (as an
orbifold) by the aspherical surface with fundamental group G/K these finite
groups embed in πorb

1 (B) ∼= π/K , by the Van Kampen Theorem for orbifolds.

The action of π/K on K determines an action of π1(Bo) on K and hence
an F -bundle over Bo . Let Hi be the preimage in π of πorb1 (Ui). Then Hi

is torsion free and [Hi : K] < ∞, so Hi acts freely and cocompactly on X2 ,
where X2 = R2 if χ(K) = 0 and X2 = H2 otherwise, and F is a finite covering
space of Hi\X2 . The obvious action of Hi on X2 × D2 determines a bundle
with general fibre F over the orbifold Ui . Since self homeomorphisms of F
are determined up to isotopy by the induced element of Out(K), bundles over
adjacent suborbifolds have isomorphic restrictions along common edges. Hence
these pieces may be assembled to give a bundle with general fibre F over the
orbifold B , whose total space is an aspherical closed smooth 4-manifold with
fundamental group π .

We shall verify in Theorem 9.8 that torsion free groups commensurate with
products of two centreless PD2 -groups are also realizable.

We can improve upon Theorem 5.7 as follows.

Corollary 7.3.1 Let M be a closed 4-manifold M with fundamental group
π . Then the following are equivalent.

(1) M is homotopy equivalent to the total space of an orbifold bundle with
general fibre an aspherical surface over an E2 - or H2 -orbifold;

(2) π has an FP2 normal subgroup K such that π/K is virtually a PD2 -
group and π2(M) = 0;
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(3) π has a normal subgroup N which is a PD2 -group and π2(M) = 0.

Proof Condition (1) clearly implies (2) and (3). Conversely, if they hold the
argument of Theorem 5.7 shows that K is a PD2 -group and N is virtually a
PD2 -group. In each case (1) now follows from Theorem 7.3.

It follows easily from the argument of part (1) of Theorem 5.4 that if π is a
group with a normal subgroup K such that K and π/K are PD2 -groups with
ζK = ζ(π/K) = 1, ρ is a subgroup of finite index in π and L = K ∩ ρ then
Cρ(L) = 1 if and only if Cπ(K) = 1. Since ρ is virtually a product of PD2 -
groups with trivial centres if and only if π is, Johnson’s trichotomy extends to
groups commensurate with extensions of one centreless PD2 -group by another.

Theorem 7.3 settles the realization question for groups of type I. (For suppose
π has a subgroup σ of finite index with a normal subgroup ν such that ν and
σ/ν are PD2 -groups with ζν = ζ(σ/ν) = 1. Let G = ∩hσh−1 and K = ν ∩G.
Then [π : G] <∞, G is normal in π , and K and G/K are PD2 -groups. If G is
of type I then K is characteristic in G, by Theorem 5.5, and so is normal in π .)
Groups of type II need not have such normal PD2 -subgroups - although this
is almost true. It is not known whether every type III extension of centreless
PD2 -groups has a characteristic PD2 -subgroup (although this is so in many
cases, by the corollaries to Theorem 5.6).

If π is an extension of Z2 by a normal PD2 -subgroup K with ζK = 1 then
Cπ(K) =

√
π , and [π : KCπ(K)] < ∞ if and only if π is virtually K × Z2 , so

Johnson’s trichotomy extends to such groups. The three types may be charac-
terized by (I)

√
π ∼= Z , (II)

√
π ∼= Z2 , and (III)

√
π = 1. As these properties

are shared by commensurate torsion free groups the trichotomy extends further
to torsion free groups which are virtually such extensions. There is at present
no uniqueness result corresponding to Theorem 5.5 for such subgroups K < π ,
and (excepting for groups of type II) it is not known whether every such group
is realized by some aspherical closed 4-manifold. (In fact, it also appears to be
unknown in how many ways a 3-dimensional mapping torus may fibre over S1 .)

The Johnson trichotomy is inappropriate if ζK 6= 1, as there are then nontrivial
extensions with trivial action (θ = 1). Moreover Out(K) is virtually free and so
θ is never injective. However all such groups π may be realized by aspherical
4-manifolds, for either

√
π ∼= Z2 and Theorem 7.2 applies, or π is virtually

poly-Z and is the fundamental group of an infrasolvmanifold. (See Chapter 8.)

Aspherical virtual surface bundles over 2-orbifolds are determined up to fibre-
preserving diffeomorphism by their fundamental groups, subject to conditions
on χ(F ) and χorb(B) analogous to those of §2 of Chapter 5 [Vo77].
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7.7 Seifert fibrations

A 4-manifold S is Seifert fibred if it is the total space of an orbifold bundle with
general fibre a torus or Klein bottle over a 2-orbifold. (In [Zn85], [Ue90,91] it
is required that the general fibre be a torus. This is always so if the manifold is
orientable.) It is easily seen that χ(S) = 0. (In fact S is finitely covered by the
total space of a torus bundle over a surface. This is clear if the base orbifold is
good, and also holds if the base is bad, by the result of Ue quoted below.)

Let p : S → B be a Seifert fibration with closed aspherical base, and let
j : F → S be the inclusion of the fibre over the basepoint of B . Let H =
j∗(π1(F )) and A =

√
H ∼= Z2 . Then j∗ : π1(F ) → π = π1(S) is injective, A

is a normal subgroup of π and π/A is virtually a surface group. If moreover
B is hyperbolic H is the unique maximal solvable normal subgroup of π , and√
π = A. Let α : π/A → Aut(A) ∼= GL(2,Z) be the homomorphism induced

by conjugation in π , A = Q ⊗Z

√
π the corresponding Q[π/A]-module and

eQ(p) ∈ H2(π/A;A) the class corresponding to π as an extension of π/A by A.
We shall call α and eQ(p) the action and the (rational) Euler class of the Seifert
fibration, respectively. (When A =

√
π we shall write eQ(π) for eQ(p)). Let π̂

be a normal subgroup of finite index in π which contains A and such that π̂/A is
a PD+

2 -group. Then H2(π/A;A) ∼= H0(π/π̂;H2(π̂/A;A)) ∼= H0(π/π̂;A/ÎA),
where Î is the augmentation ideal of Q[π̂/A]. It follows that restriction to
subgroups of finite index which contain A is injective, and so whether eQ(p)
is 0 or not is invariant under passage to such subgroups. If α(π̂) = 1 (so α
has finite image) then H2(π/A;A) ≤ A ∼= Q2 . (Note that if the general fibre
is the Klein bottle the action is diagonalizable, with image of order ≤ 4, and
H2(π/A;A) ∼= Q or 0. The action and the rational Euler class may also be
defined when the base is not aspherical, but we shall not need to do this.)

If X is one of the geometries Nil4 , Nil3×E1 , Sol3×E1 , S2×E2 , H2×E2 , S̃L × E1

or F4 its model space X has a canonical foliation with leaves diffeomorphic to
R2 and which is preserved by isometries. (For the Lie groups Nil4 , Nil3×R and
Sol3 ×R we may take the foliations by cosets of the normal subgroups ζ2Nil

4 ,
ζNil3×R and Sol3

′
.) These foliations induce Seifert fibrations on quotients by

lattices. All S3 × E1 -manifolds are also Seifert fibred. Case-by-case inspection
of the 74 flat 4-manifold groups shows that all but three have rank 2 free abelian
normal subgroups, and the representations given in [BBNSW] may be used to
show that the corresponding manifolds are Seifert fibred. The exceptions are
the semidirect products G6 ⋊θ Z where θ = j , cej and abcej . (See §3 of
Chapter 8 for definitions of these automorphisms.) Closed 4-manifolds with
one of the other geometries are not Seifert fibred. (Among these, only Sol4m,n
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(with m 6= n), Sol40 , Sol41 and H3 × E1 have closed quotients M = Γ\X with
χ(M) = 0, and for these the lattices Γ do not have Z2 as a normal subgroup.)

The relationship between Seifert fibrations and geometries for orientable 4-
manifolds is as follows [Ue90,91]:

Theorem (Ue) Let S be a closed orientable 4-manifold which is Seifert fibred
over the 2-orbifold B . Then

(1) If B is spherical or bad S has geometry S3 × E1 or S2 × E2 ;

(2) If B is euclidean then S has geometry E4 , Nil4 , Nil3 ×E1 or Sol3 ×E1 ;

(3) If B is hyperbolic then S is geometric if and only if the action α has

finite image. The geometry is then H2×E2 if eQ(π1(S)) = 0 and S̃L × E1

otherwise.

(4) If B is hyperbolic then S has a complex structure if and only if B is
orientable and S is geometric.

Conversely, excepting only two flat 4-manifolds, any orientable 4-manifold ad-
mitting one of these geometries is Seifert fibred.

If the base is aspherical S is determined up to diffeomorphism by π1(S); if
moreover the base is hyperbolic or S is geometric of type Nil4 or Sol3 × E1

there is a fibre-preserving diffeomorphism.

We have corrected a minor oversight in [Ue90]; there are in fact two orientable
flat 4-manifolds which are not Seifert fibred. If the base is bad or spherical then
S may admit many inequivalent Seifert fibrations. (See also §10 of Chapter 8
and §2 of Chapter 9 for further discussion of the euclidean base and hyperbolic
base cases, respectively.)

In general, 4-manifolds which are Seifert fibred over aspherical bases are deter-
mined up to diffeomorphism by their fundamental groups. This was first shown
by Zieschang for the cases with base a hyperbolic orbifold with no reflector
curves and general fibre a torus [Zi69], and the full result is due to Vogt [Vo77].
Kemp has shown that a nonorientable aspherical Seifert fibred 4-manifold is ge-
ometric if and only if its orientable double covering space is geometric [Ke]. (See
also Theorems 9.4 and 9.5). Closed 4-manifolds which fibre over S1 with fibre a
small Seifert fibred 3-manifold are also determined by their fundamental groups
[Oh90]. This class includes many nonorientable Seifert fibred 4-manifolds over
bad, spherical or euclidean bases, but not all. It may be true in general that a
Seifert fibred 4-manifold is geometric if and only if its orientable double covering
space is geometric.
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The homotopy type of a S2×E2 -manifold is determined up to finite ambiguity by
its fundamental group (which is virtually Z2 ), Euler characteristic (which is 0)
and Stiefel-Whitney classes. There are just nine possible fundamental groups.
Six of these have infinite abelianization, and the above invariants determine
the homotopy type in these cases. (See Chapter 10.) The homotopy type of a
S3×E1 -manifold is determined by its fundamental group (which has two ends),
Euler characteristic (which is 0), orientation character w1 and first k -invariant
in H4(π;π3). (See Chapter 11.)

Let S be a Seifert fibred 4-manifold with base an euclidean orbifold, and let
π = π1(S). Then χ(S) = 0 and π is solvable of Hirsch length 4, and so S
is homeomorphic to an infrasolvmanifold, by Theorem 6.11 and [AJ76]. Every
such group π is the fundamental group of some Seifert fibred geometric 4-
manifold, and so S is in fact diffeomorphic to an infrasolvmanifold [Vo77]. (See
Chapter 8.§9 and Theorem 8.10 below.) The general fibre must be a torus if
the geometry is Nil4 or Sol3 × E1 .

As H2 × E2 - and S̃L × E1 -manifolds are aspherical, they are determined up to
homotopy equivalence by their fundamental groups. (See Chapter 9.) Theorem
7.3 specializes to give the following characterization of the fundamental groups
of Seifert fibred 4-manifolds over hyperbolic bases.

Theorem 7.4 A group π is the fundamental group of a closed 4-manifold
which is Seifert fibred over a hyperbolic 2-orbifold if and only if it is torsion
free,

√
π ∼= Z2 , π/

√
π is virtually a PD2 -group and the maximal finite normal

subgroup of π/
√
π has order at most 2.

If
√
π is central (ζπ ∼= Z2) the corresponding Seifert fibred manifold M(π)

admits an effective torus action with finite isotropy subgroups.

7.8 Complex surfaces and related structures

In this section we shall summarize what we need from [BPV], [Ue90,91], [Wl86]
and [GS], and we refer to these sources for more details.

A complex surface shall mean a compact connected nonsingular complex ana-
lytic manifold S of complex dimension 2. It is Kähler (and thus diffeomorphic
to a projective algebraic surface) if and only if β1(S) is even. Since the Kähler
condition is local, all finite covering spaces of such a surface must also have β1

even. If S has a complex submanifold L ∼= CP 1 with self-intersection −1 then
L may be blown down: there is a complex surface S1 and a holomorphic map
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p : S → S1 such that p(L) is a point and p restricts to a biholomorphic isomor-
phism from S−L to S1−p(L). In particular, S is diffeomorphic to S1♯CP 2 . If
there is no such embedded projective line L the surface is minimal. Excepting
only the ruled surfaces, every surface has an unique minimal representative.

For many of the 4-dimensional geometries (X,G) the identity component Go of
the isometry group preserves a natural complex structure on X , and so if π is a
discrete subgroup of Go which acts freely on X the quotient π\X is a complex
surface. This is clear for the geometries CP2 , S2×S2 , S2×E2 , S2×H2 , H2×E2 ,
H2 × H2 and H2(C). (The corresponding model spaces may be identified with
CP 2 , CP 1 ×CP 1 , CP 1 ×C , CP 1 ×H2 , H2 ×C , H2 ×H2 and the unit ball
in C2 , respectively, where H2 is identified with the upper half plane.) It is also

true for Nil3 × E1 , Sol40 , Sol41 , S̃L × E1 and F4 . In addition, the subgroups
R4×̃U(2) of E(4) and U(2) × R of Isom(S3 × E1) act biholomorphically on
C2 and C2 − {0}, respectively, and so some E4 - and S3 × E1 -manifolds have
complex structures. No other geometry admits a compatible complex structure.
Since none of the model spaces contain an embedded S2 with self-intersection
−1 any complex surface which admits a compatible geometry must be minimal.

Complex surfaces may be coarsely classified by their Kodaira dimension κ,
which may be −∞, 0, 1 or 2. Within this classification, minimal surfaces may
be further classified into a number of families. We have indicated in parentheses
where the geometric complex surfaces appear in this classification. (The dashes
signify families which include nongeometric surfaces.)

κ = −∞: Hopf surfaces (S3 × E1 , -); Inoue surfaces (Sol40 , Sol41 );

rational surfaces (CP2 , S2 × S2 ); ruled surfaces (S2 × E2 , S2 × H2 , -).

κ = 0: complex tori (E4 ); hyperelliptic surfaces (E4); Enriques surfaces (-);

K3 surfaces (-); Kodaira surfaces (Nil3 × E1 ).

κ = 1: minimal properly elliptic surfaces (S̃L × E1 , H2 × E2 ).

κ = 2: minimal (algebraic) surfaces of general type (H2 × H2 , H2(C), -).

A Hopf surface is a complex surface whose universal covering space is home-
omorphic to S3 × R ∼= C2 − {0}. Some Hopf surfaces admit no compatible
geometry, and there are S3 × E1 -manifolds that admit no complex structure.
The Inoue surfaces are exactly the complex surfaces admitting one of the ge-
ometries Sol40 or Sol41 . (A theorem of Bogomolov asserts that every minimal
complex surface S with κ = −∞, β1(S) = 1 and β2(S) = 0 is either a Hopf
surface or an Inoue surface. See [Tl94] for a complete proof.)
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A rational surface is a complex surface birationally equivalent to CP 2 . Minimal
rational surfaces are diffeomorphic to CP 2 or to CP 1×CP 1 . A ruled surface is
a complex surface which is holomorphically fibred over a smooth complex curve
(closed orientable 2-manifold) of genus g > 0 with fibre CP 1 . Rational and
ruled surfaces may be characterized as the complex surfaces S with κ(S) = −∞
and β1(S) even. Not all ruled surfaces admit geometries compatible with their
complex structures.

A complex torus is a quotient of C2 by a lattice, and a hyperelliptic surface is
one properly covered by a complex torus. If S is a complex surface which is
homeomorphic to a flat 4-manifold then S is a complex torus or is hyperelliptic,
since it is finitely covered by a complex torus. Since S is orientable and β1(S)
is even π = π1(S) must be one of the eight flat 4-manifold groups of orientable
type and with π ∼= Z4 or I(π) ∼= Z2 . In each case the holonomy group is cyclic,
and so is conjugate (in GL+(4,R)) to a subgroup of GL(2,C). (See Chapter
8.) Thus all of these groups may be realized by complex surfaces. A Kodaira
surface is finitely covered by a surface which fibres holomorphically over an
elliptic curve with fibres of genus 1.

An elliptic surface S is a complex surface which admits a holomorphic map p
to a complex curve such that the generic fibres of p are diffeomorphic to the
torus T . If the elliptic surface S has no singular fibres it is Seifert fibred, and
it then has a geometric structure if and only if the base is a good orbifold.
An orientable Seifert fibred 4-manifold over a hyperbolic base has a geometric
structure if and only if it is an elliptic surface without singular fibres [Ue90].
The elliptic surfaces S with κ(S) = −∞ and β1(S) odd are the geometric
Hopf surfaces. The elliptic surfaces S with κ(S) = −∞ and β1(S) even are
the cartesian products of elliptic curves with CP 1 .

All rational, ruled and hyperelliptic surfaces are projective algebraic surfaces, as
are all surfaces with κ = 2. Complex tori and surfaces with geometry H2 × E2

are diffeomorphic to projective algebraic surfaces. Hopf, Inoue and Kodaira
surfaces and surfaces with geometry S̃L × E1 all have β1 odd, and so are not
Kähler, let alone projective algebraic.

An almost complex structure on a smooth 2n-manifold M is a reduction of
the structure group of its tangent bundle to GL(n,C) < GL+(2n,R). Such a
structure determines an orientation on M . If M is a closed oriented 4-manifold
and c ∈ H2(M ; Z) then there is an almost complex structure on M with first
Chern class c and inducing the given orientation if and only if c ≡ w2(M) mod
(2) and c2 ∩ [M ] = 3σ(M) + 2χ(M), by a theorem of Wu. (See the Appendix
to Chapter I of [GS] for a recent account.)
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A symplectic structure on a closed smooth manifold M is a closed nondegenerate
2-form ω . Nondegenerate means that for all x ∈ M and all u ∈ TxM there is
a v ∈ TxM such that ω(u, v) 6= 0. Manifolds admitting symplectic structures
are even-dimensional and orientable. A condition equivalent to nondegeneracy
is that the n-fold wedge ω∧n is nowhere 0, where 2n is the dimension of M .
The nth cup power of the corresponding cohomology class [ω] is then a nonzero
element of H2n(M ; R). Any two of a riemannian metric, a symplectic structure
and an almost complex structure together determine a third, if the given two
are compatible. In dimension 4, this is essentially equivalent to the fact that
SO(4)∩Sp(4) = SO(4)∩GL(2,C) = Sp(4)∩GL(2,C) = U(2), as subgroups of
GL(4,R). (See [GS] for a discussion of relations between these structures.) In
particular, Kähler surfaces have natural symplectic structures, and symplectic
4-manifolds admit compatible almost complex tangential structures. However
orientable Sol3 × E1 -manifolds which fibre over T are symplectic [Ge92] but
have no complex structure (by the classification of surfaces) and Hopf surfaces
are complex manifolds with no symplectic structure (since β2 = 0).
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Chapter 8

Solvable Lie geometries

The main result of this chapter is the characterization of 4-dimensional infra-
solvmanifolds up to homeomorphism, given in §1. All such manifolds are either
mapping tori of self homeomorphisms of 3-dimensional infrasolvmanifolds or
are unions of two twisted I -bundles over such 3-manifolds. In the rest of the
chapter we consider each of the possible 4-dimensional geometries of solvable
Lie type.

In §2 we determine the automorphism groups of the flat 3-manifold groups,
while in §3 and §4 we determine ab initio the 74 flat 4-manifold groups. There
have been several independent computations of these groups; the consensus re-
ported on page 126 of [Wo] is that there are 27 orientable groups and 48 nonori-
entable groups. However the tables of 4-dimensional crystallographic groups in
[B-Z] list only 74 torsion free groups. As these computer-generated tables give
little insight into how these groups arise, and as the earlier computations were
never published in detail, we shall give a direct and elementary computation,
motivated by Lemma 3.14. Our conclusions as to the numbers of groups with
abelianization of given rank, isomorphism type of holonomy group and orienta-
tion type agree with those of [B-Z]. (We have not attempted to make the lists
correspond.)

There are infinitely many examples for each of the other geometries. In §5
we show how these geometries may be distinguished, in terms of the group
theoretic properties of their lattices. In §6, §7 and §8 we consider mapping
tori of self homeomorphisms of E3 -, Nil3 - and Sol3 -manifolds, respectively. In
§9 we show directly that “most” groups allowed by Theorem 8.1 are realized
geometrically and outline classifications for them, while in §10 we show that
“most” 4-dimensional infrasolvmanifolds are determined up to diffeomorphism
by their fundamental groups.

8.1 The characterization

In this section we show that 4-dimensional infrasolvmanifolds may be charac-
terized up to homeomorphism in terms of the fundamental group and Euler
characteristic.
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Theorem 8.1 Let M be a closed 4-manifold with fundamental group π and
such that χ(M) = 0. The following conditions are equivalent:

(1) π is torsion free and virtually poly-Z and h(π) = 4;

(2) h(
√
π) ≥ 3;

(3) π has an elementary amenable normal subgroup ρ with h(ρ) ≥ 3, and
H2(π;Z[π]) = 0; and

(4) π is restrained, every finitely generated subgroup of π is FP3 and π
maps onto a virtually poly-Z group Q with h(Q) ≥ 3.

Moreover if these conditions hold M is aspherical, and is determined up to
homeomorphism by π , and every automorphism of π may be realized by a self
homeomorphism of M .

Proof If (1) holds then h(
√
π) ≥ 3, by Theorem 1.6, and so (2) holds. This

in turn implies (3), by Theorem 1.17. If (3) holds then π has one end, by

Lemma 1.15, and β
(2)
1 (π) = 0, by Corollary 2.3.1. Hence M is aspherical,

by Corollary 3.5.2. Hence π is a PD4 -group and 3 ≤ h(ρ) ≤ c.d.ρ ≤ 4. In
particular, ρ is virtually solvable, by Theorem 1.11. If c.d.ρ = 4 then [π : ρ]
is finite, by Strebel’s Theorem, and so π is virtually solvable also. If c.d.ρ = 3
then c.d.ρ = h(ρ) and so ρ is a duality group and is FP [Kr86]. Therefore
Hq(ρ; Q[π]) ∼= Hq(ρ; Q[ρ]) ⊗ Q[π/ρ] and is 0 unless q = 3. It then follows
from the LHSSS for π as an extension of π/ρ by ρ (with coefficients Q[π]) that
H4(π; Q[π]) ∼= H1(π/ρ; Q[π/ρ])⊗H3(ρ; Q[ρ]). Therefore H1(π/ρ; Q[π/ρ]) ∼= Q,
so π/ρ has two ends and we again find that π is virtually solvable. In all cases
π is torsion free and virtually poly-Z , by Theorem 9.23 of [Bi], and h(π) = 4.

If (4) holds then π is an ascending HNN extension π ∼= B∗φ with base FP3

and so M is aspherical, by Theorem 3.16. As in Theorem 2.13 we may deduce
from [BG85] that B must be a PD3 -group and φ an isomorphism, and hence
B and π are virtually poly-Z . Conversely (1) clearly implies (4).

The final assertions follow from Theorem 2.16 of [FJ], as in Theorem 6.11 above.

Does the hypothesis h(ρ) ≥ 3 in (3) imply H2(π; Z[π]) = 0? The examples
F × S1 × S1 where F = S2 or is a closed hyperbolic surface show that the
condition that h(ρ) > 2 is necessary. (See also §1 of Chapter 9.)

Corollary 8.1.1 The 4-manifold M is homeomorphic to an infrasolvmanifold
if and only if the equivalent conditions of Theorem 8.1 hold.
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Proof If M is homeomorphic to an infrasolvmanifold then χ(M) = 0, π is
torsion free and virtually poly-Z and h(π) = 4. (See Chapter 7.) Conversely, if
these conditions hold then π is the fundamental group of an infrasolvmanifold,
by [AJ76].

It is easy to see that all such groups are realizable by closed smooth 4-manifolds
with Euler characteristic 0.

Theorem 8.2 If π is torsion free and virtually poly-Z of Hirsch length 4 then
it is the fundamental group of a closed smooth 4-manifold M which is either a
mapping torus of a self homeomorphism of a closed 3-dimensional infrasolvman-
ifold or is the union of two twisted I -bundles over such a 3-manifold. Moreover,
the 4-manifold M is determined up to homeomorphism by the group.

Proof The Eilenberg-Mac Lane space K(π, 1) is a PD4 -complex with Euler
characteristic 0. By Lemma 3.14, either there is an epimorphism φ : π → Z , in
which case π is a semidirect product G⋊θZ where G = Ker(φ), or π ∼= G1∗GG2

where [G1 : G] = [G2 : G] = 2. The subgroups G, G1 and G2 are torsion
free and virtually poly-Z . Since in each case π/G has Hirsch length 1 these
subgroups have Hirsch length 3 and so are fundamental groups of closed 3-
dimensional infrasolvmanifolds. The existence of such a manifold now follows
by standard 3-manifold topology, while its uniqueness up to homeomorphism
was proven in Theorem 6.11.

The first part of this theorem may be stated and proven in purely algebraic
terms, since torsion free virtually poly-Z groups are Poincaré duality groups.
(See Chapter III of [Bi].) If π is such a group then either it is virtually nilpotent
or

√
π ∼= Z3 or Γq for some q , by Theorems 1.5 and 1.6. In the following sections

we shall consider how such groups may be realized geometrically. The geometry
is largely determined by

√
π . We shall consider first the virtually abelian cases.

8.2 Flat 3-manifold groups and their automorphisms

The flat n-manifold groups for n ≤ 2 are Z , Z2 and K = Z⋊−1Z , the Klein
bottle group. There are six orientable and four nonorientable flat 3-manifold
groups. The first of the orientable flat 3-manifold groups G1 - G6 is G1 = Z3 .
The next four have I(Gi) ∼= Z2 and are semidirect products Z2 ⋊T Z where
T = −I ,

(
0 −1
1 −1

)
,

(
0 −1
1 0

)
or

(
0 −1
1 1

)
, respectively, is an element of finite order

in SL(2,Z). These groups all have cyclic holonomy groups, of orders 2, 3, 4

Geometry & Topology Monographs, Volume 5 (2002)



154 Chapter 8: Solvable Lie geometries

and 6, respectively. The group G6 is the group of the Hantzsche-Wendt flat
3-manifold, and has a presentation

〈x, y | xy2x−1 = y−2, yx2y−1 = y−2〉.
Its maximal abelian normal subgroup is generated by x2, y2 and (xy)2 and
its holonomy group is the diagonal subgroup of SL(3,Z), which is isomorphic
to (Z/2Z)2 . (This group is the generalized free product of two copies of K ,
amalgamated over their maximal abelian subgroups, and so maps onto D .)

The nonorientable flat 3-manifold groups B1 - B4 are semidirect products
K ⋊θ Z , corresponding to the classes in Out(K) ∼= (Z/2Z)2 . In terms of
the presentation 〈x, y | xyx−1 = y−1〉 for K these classes are represented by
the automorphisms θ which fix y and send x to x, xy, x−1 and x−1y , respec-
tively. The groups B1 and B2 are also semidirect products Z2 ⋊T Z , where
T =

(
1 0
0 −1

)
or ( 0 1

1 0 ) has determinant −1 and T 2 = I . They have holonomy
groups of order 2, while the holonomy groups of B3 and B4 are isomorphic to
(Z/2Z)2 .

All the flat 3-manifold groups either map onto Z or map onto D . The methods
of this chapter may be easily adapted to find all such groups. Assuming these
are all known we may use Sylow theory and some calculation to show that there
are no others. We sketch here such an argument. Suppose that π is a flat 3-
manifold group with finite abelianization. Then 0 = χ(π) = 1+β2(π)−β3(π), so
β3(π) 6= 0 and π must be orientable. Hence the holonomy group F = π/T (π) is
a subgroup of SL(3,Z). Let f be a nontrivial element of F . Then f has order
2, 3, 4 or 6, and has a +1-eigenspace of rank 1, since it is orientation preserving.
This eigenspace is invariant under the action of the normalizer NF (〈f〉), and
the induced action of NF (〈f〉) on the quotient space is faithful. Thus NF (〈f〉)
is isomorphic to a subgroup of GL(2,Z) and so is cyclic or dihedral of order
dividing 24. This estimate applies to the Sylow subgroups of F , since p-groups
have nontrivial centres, and so the order of F divides 24. If F has a nontrivial
cyclic normal subgroup then π has a normal subgroup isomorphic to Z2 and
hence maps onto Z or D . Otherwise F has a nontrivial Sylow 3-subgroup C
which is not normal in F . The number of Sylow 3-subgroups is congruent to
1 mod (3) and divides the order of F . The action of F by conjugation on
the set of such subgroups is transitive. It must also be faithful. (For otherwise
∩g∈F gNF (C)g−1 6= 1. As NF (C) is cyclic or dihedral it would follow that F
must have a nontrivial cyclic normal subgroup, contrary to hypothesis.) Hence
F must be A4 or S4 , and so contains V ∼= (Z/2Z)2 as a normal subgroup.
Suppose that G is a flat 3-manifold group with holonomy A4 . It is easily seen
that G6 is the only flat 3-manifold group with holonomy (Z/2Z)2 , and so we
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may assume that the images in SL(3,Z) of the elements of order 2 are diagonal
matrices. It then follows easily that the images of the elements of order 3
are (signed) permutation matrices. (Solve the linear equations wu = vw and
wv = uvw in SL(3,Z), where u = diag[1,−1,−1] and v = diag[−1,−1, 1].)
Hence G has a presentation of the form
〈Z3, u, v, w | ux = xu, yuy = u, zuz = u, xvx = v, yvy = v, zv = vz,wx = zw,

wy = xw,wz = yw,wu = vw, u2 = x,w3 = xaybzc, (uw)3 = xpyqzr〉.

It may be checked that no such group is torsion-free. Therefore neither A4 nor
S4 can be the holonomy group of a flat 3-manifold.

We shall now determine the (outer) automorphism groups of each of the flat
3-manifold groups. Clearly Out(G1) = Aut(G1) = GL(3,Z). If 2 ≤ i ≤ 5 let
t ∈ Gi represent a generator of the quotient Gi/I(Gi) ∼= Z . The automorphisms
of Gi must preserve the characteristic subgroup I(Gi) and so may be identified
with triples (v,A, ǫ) ∈ Z2 × GL(2,Z) × {±1} such that ATA−1 = T ǫ and
which act via A on I(Gi) = Z2 and send t to tǫv . Such an automorphism is
orientation preserving if and only if ǫ = det(A). The multiplication is given
by (v,A, ǫ)(w,B, η) = (Ξv + Aw,AB, ǫη), where Ξ = I if η = 1 and Ξ =
−T ǫ if η = −1. The inner automorphisms are generated by (0, T, 1) and
((T − I)Z2, I, 1).

In particular, Aut(G2) ∼= (Z2⋊αGL(2,Z))×{±1}, where α is the natural action
of GL(2,Z) on Z2 , for Ξ is always I if T = −I . The involution (0, I,−1) is
central in Aut(G2), and is orientation reversing. Hence Out(G2) is isomorphic
to ((Z/2Z)2 ⋊Pα PGL(2,Z)) × (Z/2Z), where Pα is the induced action of
PGL(2,Z) on (Z/2Z)2 .

If n = 3, 4 or 5 the normal subgroup I(Gi) may be viewed as a module over the
ring R = Z[t]/(φ(t)), where φ(t) = t2+t+1, t2+1 or t2−t+1, respectively. As
these rings are principal ideal domains and I(Gi) is torsion free of rank 2 as an
abelian group, in each case it is free of rank 1 as an R-module. Thus matrices
A such that AT = TA correspond to units of R. Hence automorphisms of
Gi which induce the identity on Gi/I(Gi) have the form (v,±Tm, 1), for some
m ∈ Z and v ∈ Z2 . There is also an involution (0, ( 0 1

1 0 ) ,−1) which sends
t to t−1 . In all cases ǫ = det(A). It follows that Out(G3) ∼= S3 × (Z/2Z),
Out(G4) ∼= (Z/2Z)2 and Out(G5) = Z/2Z . All these automorphisms are
orientation preserving.

The subgroup A of G6 generated by {x2, y2, (xy)2} is the maximal abelian
normal subgroup of G6 , and G6/A ∼= (Z/2Z)2 . Let a, b, c, d, e, f , i and
j be the automorphisms of G6 which send x to x−1, x, x, x, y2x, (xy)2x, y, xy
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and y to y, y−1, (xy)2y, x2y, y, (xy)2y, x, x, respectively. The natural homo-
morphism from Aut(G6) to Aut(G6/A) ∼= GL(2,F2) is onto, as the images of
i and j generate GL(2,F2), and its kernel E is generated by {a, b, c, d, e, f}.
(For an automorphism which induces the identity on G6/A must send x to
x2py2q(xy)2rx, and y to x2sy2t(xy)2uy . The images of x2 , y2 and (xy)2 are
then x4p+2 , y4t+2 and (xy)4(r−u)+2 , which generate A if and only if p = 0
or −1, t = 0 or −1 and r = u − 1 or u. Composing such an automorphism
appropriately with a, b and c we may acheive p = t = 0 and r = u. Then
by composing with powers of d, e and f we may obtain the identity automor-
phism.) The inner automorphisms are generated by bcd (conjugation by x)
and acef (conjugation by y). Then Out(G6) has a presentation

〈a, b, c, e, i, j | a2 = b2 = c2 = e2 = i2 = j6 = 1, a, b, c, e commute, iai = b,

ici = ae, jaj−1 = c, jbj−1 = abc, jcj−1 = be, j3 = abce, (ji)2 = bc〉.
The generators a, b, c, and j represent orientation reversing automorphisms.
(Note that jej−1 = bc follows from the other relations. See [Zn90] for an
alternative description.)

The group B1 = Z×K has a presentation

〈t, x, y | tx = xt, ty = yt, xyx−1 = y−1〉.
An automorphism of B1 must preserve the centre ζB1 (which has basis t, x2 )
and I(B1) (which is generated by y). Thus the automorphisms of B1 may be
identified with triples (A,m, ǫ) ∈ Υ2 × Z× {±1}, where Υ2 is the subgroup of
GL(2,Z) consisting of matrices congruent mod (2) to upper triangular matrices.
Such an automorphism sends t to taxb , x to tcxdym and y to yǫ , and induces
multiplication by A on B1/I(B1) ∼= Z2 . Composition of automorphisms is
given by (A,m, ǫ)(B,n, η) = (AB,m + ǫn, ǫη). The inner automorphisms are
generated by (I, 1,−1) and (I, 2, 1), and so Out(B1) ∼= Υ2 × (Z/2Z).

The group B2 has a presentation

〈t, x, y | txt−1 = xy, ty = yt, xyx−1 = y−1〉.
Automorphisms of B2 may be identified with triples (A, (m,n), ǫ), where A ∈
Υ2 , m,n ∈ Z , ǫ = ±1 and m = (A11 − ǫ)/2. Such an automorphism sends
t to taxbym , x to tcxdyn and y to yǫ , and induces multiplication by A on
B2/I(B2) ∼= Z2 . The automorphisms which induce the identity on B2/I(B2)
are all inner, and so Out(B2) ∼= Υ2 .

The group B3 has a presentation

〈t, x, y | txt−1 = x−1, ty = yt, xyx−1 = y−1〉.
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An automorphism of B3 must preserve I(B3) ∼= K (which is generated by
x, y) and I(I(B3)) (which is generated by y). It follows easily that Out(B3) ∼=
(Z/2Z)3 , and is generated by the classes of the automorphisms which fix y and
send t to t−1, t, tx2 and x to x, xy, x, respectively.

A similar argument using the presentation

〈t, x, y | txt−1 = x−1y, ty = yt, xyx−1 = y−1〉
for B4 shows that Out(B4) ∼= (Z/2Z)3 , and is generated by the classes of the
automorphisms which fix y and send t to t−1y−1, t, tx2 and x to x, x−1, x,
respectively.

8.3 Flat 4-manifold groups with infinite abelianization

We shall organize our determination of the flat 4-manifold groups π in terms
of I(π). Let π be a flat 4-manifold group, β = β1(π) and h = h(I(π)).
Then π/I(π) ∼= Zβ and h + β = 4. If I(π) is abelian then Cπ(I(π)) is a
nilpotent normal subgroup of π and so is a subgroup of the Hirsch-Plotkin
radical

√
π , which is here the maximal abelian normal subgroup T (π). Hence

Cπ(I(π)) = T (π) and the holonomy group is isomorphic to π/Cπ(I(π)).

h = 0 In this case I(π) = 1, so π ∼= Z4 and is orientable.

h = 1 In this case I(π) ∼= Z and π is nonabelian, so π/Cπ(I(π)) = Z/2Z .
Hence π has a presentation of the form

〈t, x, y, z | txt−1 = xza, tyt−1 = yzb, tzt−1 = z−1, x, y, z commute〉,
for some integers a, b. On replacing x by xy or interchanging x and y if
necessary we may assume that a is even. On then replacing x by xza/2 and y
by yz[b/2] we may assume that a = 0 and b = 0 or 1. Thus π is a semidirect
product Z3 ⋊T Z , where the normal subgroup Z3 is generated by the images

of x, y and z , and the action of t is determined by a matrix T =
(

I2 0
(0,b) −1

)
in

GL(3,Z). Hence π ∼= Z × B1 = Z2 ×K or Z × B2 . Both of these groups are
nonorientable.

h = 2 If I(π) ∼= Z2 and π/Cπ(I(π)) is cyclic then we may again assume
that π is a semidirect product Z3 ⋊T Z , where T =

(
1 0
µ U

)
, with µ = ( ab ) and

U ∈ GL(2,Z) is of order 2, 3, 4 or 6 and does not have 1 as an eigenvalue. Thus
U = −I2 ,

(
0 −1
1 −1

)
,

(
0 −1
1 0

)
or

(
0 −1
1 1

)
. Conjugating T by

(
1 0
ν I2

)
replaces µ by

µ+ (I2 − U)ν . In each case the choice a = b = 0 leads to a group of the form
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π ∼= Z × G, where G is an orientable flat 3-manifold group with β1(G) = 1.
For each of the first three of these matrices there is one other possible group.
However if U =

(
0 −1
1 1

)
then I2 − U is invertible and so Z × G5 is the only

possibility. All seven of these groups are orientable.

If I(π) ∼= Z2 and π/Cπ(I(π)) is not cyclic then π/Cπ(I(π)) ∼= (Z/2Z)2 . There
are two conjugacy classes of embeddings of (Z/2Z)2 in GL(2,Z). One has
image the subgroup of diagonal matrices. The corresponding groups π have
presentations of the form

〈t, u, x, y | tx = xt, tyt−1 = y−1, uxu−1 = x−1, uyu−1 = y−1, xy = yx,

tut−1u−1 = xmyn〉,
for some integers m, n. On replacing t by tx−[m/2]y[n/2] if necessary we may
assume that 0 ≤ m,n ≤ 1. On then replacing t by tu and interchanging x and
y if necessary we may assume that m ≤ n. The only infinite cyclic subgroups of
I(π) which are normal in π are the subgroups 〈x〉 and 〈y〉. On comparing the
quotients of these groups π by such subgroups we see that the three possibilities
are distinct. The other embedding of (Z/2Z)2 in GL(2,Z) has image generated
by −I and ( 0 1

1 0 ). The corresponding groups π have presentations of the form

〈t, u, x, y | txt−1 = y, tyt−1 = x, uxu−1 = x−1, uyu−1 = y−1, xy = yx,

tut−1u−1 = xmyn〉,
for some integers m, n. On replacing t by tx[(m−n)/2] and u by ux−m if
necessary we may assume that m = 0 and n = 0 or 1. Thus there two such
groups. All five of these groups are nonorientable.

Otherwise, I(π) ∼= K , I(I(π)) ∼= Z and G = π/I(I(π)) is a flat 3-manifold
group with β1(G) = 2, but with I(G) = I(π)/I(I(π)) not contained in G′

(since it acts nontrivially on I(I(π))). Therefore G ∼= B1 = Z ×K , and so has
a presentation

〈t, x, y | tx = xt, ty = yt, xyx−1 = y−1〉.
If w : G → Aut(Z) is a homomorphism which restricts nontrivially to I(G)
then we may assume (up to isomorphism of G) that w(x) = 1 and w(y) = −1.
Groups π which are extensions of Z × K by Z corresponding to the action
with w(t) = w (= ±1) have presentations of the form

〈t, x, y, z | txt−1 = xza, tyt−1 = yzb, tzt−1 = zw, xyx−1 = y−1zc, xz = zx,

yzy−1 = z−1〉,
for some integers a, b. Any group with such a presentation is easily seen to be
an extension of Z ×K by a cyclic normal subgroup. However conjugating the
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fourth relation leads to the equation

txt−1tyt−1(txt−1)−1 = txyx−1t−1 = ty−1zct−1 = tyt−1(tzt−1)c

which simplifies to xzayzbz−ax−1 = (yzb)−1zwc and hence to zc−2a = zwc .
Hence this cyclic normal subgroup is finite unless 2a = (1 − w)c.

Suppose first that w = 1. Then z2a = 1 and so we must have a = 0. On
replacing t by tz[b/2] and x by xz[c/2] , if necessary, we may assume that 0 ≤
b, c ≤ 1. If b = 0 then π ∼= Z × B3 or Z × B4 . Otherwise, after further
replacing x by txz if necessary we may assume that c = 0. The three remaining
possibilities may be distinguished by their abelianizations, and so there are three
such groups. In each case the subgroup generated by {t, x2, y2, z} is maximal
abelian, and the holonomy group is isomorphic to (Z/2Z)2 .

If instead w = −1 then z2(c−a) = 1 and so we must have a = c. On replacing
y by yz[b/2] and x by xz[c/2] if necessary we may assume that 0 ≤ b, c ≤ 1. If
b = 1 then after replacing x by txy , if necessary, we may assume that a = 0.
If a = b = 0 then π/π′ ∼= Z2 ⊕ (Z/2Z)2 . The remaining two possibilities both
have abelianization Z2⊕(Z/2Z), but one has centre of rank 2 and the other has
centre of rank 1. Thus there are three such groups. The subgroup generated
by {ty, x2, y2, z} is maximal abelian, and the holonomy group is isomorphic to
(Z/2Z)2 . All of these groups π with I(π) ∼= K are nonorientable.

h = 3 In this case π is uniquely a semidirect product π ∼= I(π) ⋊θ Z , where
I(π) is a flat 3-manifold group and θ is an automorphism of I(π) such that the
induced automorphism of I(π)/I(I(π)) has no eigenvalue 1, and whose image in
Out(I(π)) has finite order. (The conjugacy class of the image of θ in Out(I(π))
is determined up to inversion by π .)

Since T (I(π)) is the maximal abelian normal subgroup of I(π) it is normal in
π . It follows easily that T (π) ∩ I(π) = T (I(π)). Hence the holonomy group of
I(π) is isomorphic to a normal subgroup of the holonomy subgroup of π , with
quotient cyclic of order dividing the order of θ in Out(I(π)). (The order of the
quotient can be strictly smaller.)

If I(π) ∼= Z3 then Out(I(π)) ∼= GL(3,Z). If T ∈ GL(3,Z) has finite order n
and β1(Z

3 ⋊T Z) = 1 then either T = −I or n = 4 or 6 and the characteristic
polynomial of T is (t+1)φ(t) with φ(t) = t2 +1, t2 + t+1 or t2 − t+1. In the
latter cases T is conjugate to a matrix of the form

(−1 µ
0 A

)
, where A =

(
0 −1
1 0

)
,(

0 −1
1 −1

)
or

(
0 −1
1 1

)
, respectively. The row vector µ = (m1,m2) is well defined

mod Z2(A+ I). Thus there are seven such conjugacy classes. All but one pair
(corresponding to

(
0 −1
1 1

)
and µ /∈ Z2(A+ I)) are self-inverse, and so there are
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six such groups. The holonomy group is cyclic, of order equal to the order of T .
As such matrices all have determinant −1 all of these groups are nonorientable.

If I(π) ∼= Gi for 2 ≤ i ≤ 5 the automorphism θ = (v,A, ǫ) must have ǫ = −1,
for otherwise β1(π) = 2. We have Out(G2) ∼= ((Z/2Z)2⋊PGL(2,Z))×(Z/2Z).
The five conjugacy classes of finite order in PGL(2,Z) are represented by the
matrices I ,

(
0 −1
1 0

)
, ( 0 1

1 0 ),
(

1 0
0 −1

)
and

(
0 1
−1 1

)
. The numbers of conjugacy

classes in Out(G2) with ǫ = −1 corresponding to these matrices are two, two,
two, three and one, respectively. All of these conjugacy classes are self-inverse.
Of these, only the two conjugacy classes corresponding to ( 0 1

1 0 ) and the three
conjugacy classes corresponding to

(
1 0
0 −1

)
give rise to orientable groups. The

holonomy groups are all isomorphic to (Z/2Z)2 , except when A =
(

0 −1
1 0

)
or(

0 1
−1 1

)
, when they are isomorphic to Z/4Z or Z/6Z ⊕ Z/2Z , respectively.

There are five orientable groups and five nonorientable groups.

As Out(G3) ∼= S3 × (Z/2Z), Out(G4) ∼= (Z/2Z)2 and Out(G5) = Z/2Z , there
are three, two and one conjugacy classes corresponding to automorphisms with
ǫ = −1, respectively, and all these conjugacy classes are closed under inversion.
The holonomy groups are dihedral of order 6, 8 and 12, respectively. The six
such groups are all orientable.

The centre of Out(G6) is generated by the image of ab, and the image of ce
in the quotient Out(G6)/〈ab〉 generates a central Z/2Z direct factor. The
quotient Out(G6)/〈ab, ce〉 is isomorphic to the semidirect product of a normal
subgroup (Z/2Z)2 (generated by the images of a and c) with S3 (generated
by the images of ia and j ), and has five conjugacy classes, represented by
1, a, i, j and ci. Hence Out(G6)/〈ab〉 has ten conjugacy classes, represented by
1, ce, a, ace, i, cei, j, cej, ci and cice = ei. Thus Out(G6) itself has between 10
and 20 conjugacy classes. In fact Out(G6) has 14 conjugacy classes, of which
those represented by 1, ab, ace, bce, i, cej , abcej and ei are orientation preserv-
ing, and those represented by a, ce, cei, j, abj and ci are orientation reversing.
All of these classes are self inverse, except for j and abj , which are mutually
inverse (j−1 = ai(abj)ia). The holonomy groups corresponding to the classes
1, ab, ace and bce are isomorphic to (Z/2Z)2 , those corresponding to a and ce
are isomorphic to (Z/2Z)3 , those corresponding to i, ei, cei and ci are dihedral
of order 8, those corresponding to cej and abcej are isomorphic to A4 and the
one corresponding to j has order 24. There are eight orientable groups and five
nonorientable groups.

All the remaining cases give rise to nonorientable groups.

I(π) ∼= Z×K . If a matrix A in Υ2 has finite order then as its trace is even the
order must be 1, 2 or 4. If moreover A does not have 1 as an eigenvalue then
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either A = −I or A has order 4 and is conjugate (in Υ2) to
(−1 1
−2 1

)
. Each of the

four corresponding conjugacy classes in Υ2 × {±1} is self inverse, and so there
are four such groups. The holonomy groups are isomorphic to Z/nZ ⊕ Z/2Z ,
where n = 2 or 4 is the order of A.

I(π) ∼= B2 . As Out(B2) ∼= Υ2 there are two relevant conjugacy classes
and hence two such groups. The holonomy groups are again isomorphic to
Z/nZ ⊕ Z/2Z , where n = 2 or 4 is the order of A.

I(π) ∼= B3 or B4 . In each case Out(H) ∼= (Z/2Z)3 , and there are four outer
automorphism classes determining semidirect products with β = 1. (Note that
here conjugacy classes are singletons and are self-inverse.) The holonomy groups
are all isomorphic to (Z/2Z)3 .

8.4 Flat 4-manifold groups with finite abelianization

There remains the case when π/π′ is finite (equivalently, h = 4). By Lemma
3.14 if π is such a flat 4-manifold group it is nonorientable and is isomorphic
to a generalized free product J ∗φ J̃ , where φ is an isomorphism from G < J
to G̃ < J̃ and [J : G] = [J̃ : G̃] = 2. The groups G, J and J̃ are then flat 3-
manifold groups. If λ and λ̃ are automorphisms of G and G̃ which extend to J
and J̃ , respectively, then J∗φ J̃ and J∗λ̃φλ J̃ are isomorphic, and so we shall say

that φ and λ̃φλ are equivalent isomorphisms. The major difficulty in handling
these cases is that some such flat 4-manifold groups split as a generalised free
product in several essentially distinct ways.

It follows from the Mayer-Vietoris sequence for π ∼= J ∗φ J̃ that H1(G; Q)
maps onto H1(J ; Q)⊕H1(J̃ ; Q), and hence that β1(J) +β1(J̃) ≤ β1(G). Since
G3 , G4 , B3 and B4 are only subgroups of other flat 3-manifold groups via
maps inducing isomorphisms on H1(−; Q) and G5 and G6 are not index 2
subgroups of any flat 3-manifold group we may assume that G ∼= Z3 , G2 ,
B1 or B2 . If j and j̃ are the automorphisms of T (J) and T (J̃) determined
by conjugation in J and J̃ , respectively, then π is a flat 4-manifold group if
and only if Φ = jT (φ)−1j̃T (φ) has finite order. In particular, the trace of Φ
must have absolute value at most 3. At this point detailed computation seems
unavoidable. (We note in passing that any generalised free product J ∗G J̃ with
G ∼= G3 , G4 , B3 or B4 , J and J̃ torsion free and [J : G] = [J̃ : G] = 2 is
a flat 4-manifold group, since Out(G) is then finite. However all such groups
have infinite abelianization.)

Suppose first that G ∼= Z3 , with basis {x, y, z}. Then J and J̃ must have
holonomy of order ≤ 2, and β1(J) + β1(J̃) ≤ 3. Hence we may assume that
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J ∼= G2 and J̃ ∼= G2 , B1 or B2 . In each case we have G = T (J) and G̃ = T (J̃).
We may assume that J and J̃ are generated by G and elements s and t,
respectively, such that s2 = x and t2 ∈ G̃. We may also assume that the action
of s on G has matrix j =

(
1 0
0 −I

)
with respect to the basis {x, y, z}. Fix an

isomorphism φ : G → G̃ and let T = T (φ)−1j̃T (φ) =
(
a δ
γ D

)
be the matrix

corresponding to the action of t on G̃. (Here γ is a 2 × 1 column vector, δ is
a 1 × 2 row vector and D is a 2 × 2 matrix, possibly singular.) Then T 2 = I
and so the trace of T is odd. Since j ≡ I mod (2) the trace of Φ = jT is also
odd, and so Φ cannot have order 3 or 6. Therefore Φ4 = I . If Φ = I then
π/π′ is infinite. If Φ has order 2 then jT = Tj and so γ = 0, δ = 0 and
D2 = I2 . Moreover we must have a = −1 for otherwise π/π′ is infinite. After
conjugating T by a matrix commuting with j if necessary we may assume that
D = I2 or

(
1 0
0 −1

)
. (Since J̃ must be torsion free we cannot have D = ( 0 1

1 0 ).)
These two matrices correspond to the generalized free products G2 ∗φ B1 and
G2 ∗φ G2 , with presentations

〈s, t, z | st2s−1 = t−2, szs−1 = z−1, ts2t−1 = s−2, tz = zt〉
and 〈s, t, z | st2s−1 = t−2, szs−1 = z−1, ts2t−1 = s−2, tzt−1 = z−1〉,

respectively. These groups each have holonomy group isomorphic to (Z/2Z)2 .
If Φ has order 4 then we must have (jT )2 = (jT )−2 = (Tj)2 and so (jT )2

commutes with j . It can then be shown that after conjugating T by a matrix
commuting with j if necessary we may assume that T is the elementary matrix
which interchanges the first and third rows. The corresponding group G2 ∗φB2

has a presentation

〈s, t, z | st2s−1 = t−2, szs−1 = z−1, ts2t−1 = z, tzt−1 = s2〉.
Its holonomy group is isomorphic to the dihedral group of order 8.

If G ∼= B1 or B2 then J and J̃ are nonorientable and β1(J) + β1(J̃) ≤ 2.
Hence J and J̃ are B3 or B4 . Since neither of these groups contains B2 as an
index 2 subgroup we must have G ∼= B1 . In each case there are two essentially
different embeddings of B1 as an index 2 subgroup of B3 or B4 . (The image of
one contains I(Bi) while the other does not.) In all cases we find that j and j̃
are diagonal matrices with determinant −1, and that T (φ) =

(
M 0
0 ±1

)
for some

M ∈ Γ2 . Calculation now shows that if Φ has finite order then M is diagonal
and hence β1(J ∗φ J̃) > 0. Thus there are no flat 4-manifold groups (with
finite abelianization) which are generalized free products with amalgamation
over copies of B1 or B2 .

If G ∼= G2 then β1(J) + β1(J̃) ≤ 1, so we may assume that J ∼= G6 . The
other factor J̃ must then be one of G2 , G4 , G6 , B3 or B4 , and then every
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amalgamation has finite abelianization. In each case the images of any two
embeddings of G2 in one of these groups are equivalent up to composition with
an automorphism of the larger group. In all cases the matrices for j and j̃
have the form

(±1 0
0 N

)
where N4 = I ∈ GL(2,Z), and T (φ) =

(
ǫ 0
0 M

)
for some

M ∈ GL(2,Z). Calculation shows that Φ has finite order if and only if M is
in the dihedral subgroup D8 of GL(2,Z) generated by the diagonal matrices
and ( 0 1

1 0 ). (In other words, either M is diagonal or both diagonal elements of
M are 0.) Now the subgroup of Aut(G2) consisting of automorphisms which
extend to G6 is (Z2 ⋊αD8)×{±1}. Hence any two such isomorphisms φ from
G to G̃ are equivalent, and so there is an unique such flat 4-manifold group
G6 ∗φ J̃ for each of these choices of J̃ . The corresponding presentations are

〈u, x, y | xux−1 = u−1, y2 = u2, yx2y−1 = x−2, u(xy)2 = (xy)2u〉,
〈u, x, y | yx2y−1 = x−2, uy2u−1 = (xy)2, u(xy)2u−1 = y−2, x = u2〉,

〈u, x, y | xy2x−1 = y−2, yx2y−1 = ux2u−1 = x−2, y2 = u2, yxy = uxu〉,
〈t, x, y | xy2x−1 = y−2, yx2y−1 = x−2, x2 = t2, y2 = (t−1x)2, t(xy)2 = (xy)2t〉

and 〈t, x, y | xy2x−1 = y−2, yx2y−1 = x−2, x2 = t2(xy)2, y2 = (t−1x)2,

t(xy)2 = (xy)2t〉,
respectively. The corresponding holonomy groups are isomorphic to (Z/2Z)3 ,
D8 , (Z/2Z)2 , (Z/2Z)3 and (Z/2Z)3 , respectively.

Thus we have found eight generalized free products J ∗G J̃ which are flat 4-
manifold groups with β = 0. The groups G2 ∗φB1 , G2 ∗φG2 and G6 ∗φG6 are
all easily seen to be semidirect products of G6 with an infinite cyclic normal
subgroup, on which G6 acts nontrivially. It follows easily that these three
groups are in fact isomorphic, and so there is just one flat 4-manifold group
with finite abelianization and holonomy isomorphic to (Z/2Z)2 .

The above presentations of G2 ∗φ B2 and G6 ∗φ G4 are in fact equivalent; the
function sending s to y , t to yu−1 and z to uy2u−1 determines an isomorphism
between these groups. Thus there is just one flat 4-manifold group with finite
abelianization and holonomy isomorphic to D8 .

The above presentations of G6 ∗φ G2 and G6 ∗φ B4 are also equivalent; the
function sending x to xt−1 , y to yt and u to xy−1t determines an isomorphism
between these groups (with inverse sending x to uy−1x−2 , y to ux−1 and t to
xuy−1 ). (This isomorphism and the one in the paragraph above were found by
Derek Holt, using the program described in [HR92].) The translation subgroups
of G6 ∗φ B3 and G6 ∗φ B4 are generated by the images of U = (ty)2 , X = x2 ,
Y = y2 and Z = (xy)2 (with respect to the above presentations). In each case
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the images of t, x and y act diagonally, via the matrices diag[−1, 1,−1, 1],
diag[1, 1,−1,−1] and diag[−1,−1, 1,−1], respectively. However the maximal
orientable subgroups have abelianization Z⊕(Z/2)3 and Z⊕(Z/4Z)⊕(Z/2Z),
respectively, and so G6 ∗φ B3 is not isomorphic to G6 ∗φ B4 . Thus there are
two flat 4-manifold groups with finite abelianization and holonomy isomorphic
to (Z/2Z)3 .

In summary, there are 27 orientable flat 4-manifold groups (all with β > 0), 43
nonorientable flat 4-manifold groups with β > 0 and 4 (nonorientable) flat 4-
manifold groups with β = 0. (We suspect that the discrepancy with the results
reported in [Wo] may be explained by an unnoticed isomorphism between two
examples with finite abelianization.)

8.5 Distinguishing between the geometries

Let M be a closed 4-manifold with fundamental group π and with a geometry
of solvable Lie type. We shall show that the geometry is largely determined
by the structure of

√
π . (See also Proposition 10.4 of [Wl86].) As a geometric

structure on a manifold lifts to each covering space of the manifold it shall suffice
to show that the geometries on suitable finite covering spaces (corresponding
to subgroups of finite index in π) can be recognized.

If M is an infranilmanifold then [π :
√
π] < ∞. If it is flat then

√
π ∼= Z4 ,

while if it has the geometry Nil3 × E1 or Nil4 then
√
π is nilpotent of class 2

or 3 respectively. (These cases may also be distinguished by the rank of ζ
√
π .)

All such groups have been classified, and may be realized geometrically. (See
[De] for explicit representations of the Nil3 × E1 - and Nil4 -groups as lattices
in Aff(Nil3 ×R) and Aff(Nil4), respectively.)

If M is a Sol4m,n - or Sol40 -manifold then
√
π ∼= Z3 . Hence h(π/

√
π) = 1 and so

π has a normal subgroup of finite index which is a semidirect product
√
π⋊θZ .

It is easy to give geometric realizations of such subgroups.

Theorem 8.3 Let π be a torsion-free group with
√
π ∼= Z3 and such that

π/
√
π ∼= Z . Then π is the fundamental group of a Sol4m,n - or Sol40 -manifold.

Proof Let t ∈ π represent a generator of π/
√
π , and let θ be the automor-

phism of
√
π ∼= Z3 determined by conjugation by t. Then π ∼= √

π ⋊θ Z . If
the eigenvalues of θ were roots of unity of order dividing k then the subgroup
generated by

√
π and tk would be nilpotent, and of finite index in π . Therefore
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we may assume that the eigenvalues κ, λ, µ of θ are distinct and that neither
κ nor λ is a root of unity.

Suppose first that the eigenvalues are all real. Then the eigenvalues of θ2 are
all positive, and θ2 has characteristic polynomial X3 −mX2 + nX − 1, where
m = trace(θ2) and n = trace(θ−2). Since

√
π ∼= Z3 there is a monomorphism

f :
√
π → R3 such that fθ = Ψf , where Ψ = diag[κ, λ, µ] ∈ GL(3,R). Let

F (g) =
(
I3 f(n)
0 1

)
, for g ∈ √

π . If ν =
√
π we extend F to π by setting

F (t) =
(

Ψ 0
0 1

)
. In this case F defines a discrete cocompact embedding of π in

Isom(Sol4m,n). (See Chapter 7.§3. If one of the eigenvalues is ±1 then m = n
and the geometry is Sol3 × E1 .)

If the eigenvalues are not all real we may assume that λ = κ̄ and µ 6= ±1.
Let Rφ ∈ SO(2) be rotation of R2 through the angle φ = Arg(κ). There is

a monomorphism f :
√
π → R3 such that fθ = Ψf where Ψ =

(
|κ|Rφ 0

0 µ

)
.

Let F (n) =
(
I3 f(n)
0 1

)
, for n ∈ √

π , and let F (t) =
(

Ψ 0
0 1

)
. Then F defines a

discrete cocompact embedding of π in Isom(Sol40).

If M is a Sol4m,n -manifold the eigenvalues of θ are distinct and real. The
geometry is Sol3 × E1(= Sol4m,m for any m ≥ 4) if and only if θ has 1 as a
simple eigenvalue. If M is a Sol40 -manifold two of the eigenvalues are complex
conjugates, and none are roots of unity.

The groups of E4 -, Nil3 × E1 - and Nil4 -manifolds also have finite index sub-
groups σ ∼= Z3 ⋊θ Z . We may assume that all the eigenvalues of θ are 1, so
N = θ−I is nilpotent. If the geometry is E4 then N = 0; if it is Nil3×E1 then
N 6= 0 but N2 = 0, while if it is Nil4 then N2 6= 0 but N3 = 0. (Conversely,
it is easy to see that such semidirect products may be realized by lattices in the
corresponding Lie groups.)

Finally, if M is a Sol41 -manifold then
√
π ∼= Γq for some q ≥ 1 (and so is

nonabelian, of Hirsch length 3). Every group π ∼= Γq ⋊θ Z may be realized
geometrically. (See Theorem 8.7 below.)

If h(
√
π) = 3 then π is an extension of Z or D by a normal subgroup ν which

contains
√
π as a subgroup of finite index. Hence either M is the mapping

torus of a self homeomorphism of a flat 3-manifold or a Nil3 -manifold, or it is
the union of two twisted I -bundles over such 3-manifolds and is doubly covered
by such a mapping torus. (Compare Theorem 8.2.)

We shall consider further the question of realizing geometrically such torsion
free virtually poly-Z groups π (with h(π) = 4 and h(

√
π) = 3) in §9.
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8.6 Mapping tori of self homeomorphisms of E3 -manifolds

It follows from the above that a 4-dimensional infrasolvmanifold M admits one
of the product geometries of type E4 , Nil3 × E1 or Sol3 × E1 if and only if
π1(M) has a subgroup of finite index of the form ν × Z , where ν is abelian,
nilpotent of class 2 or solvable but not virtually nilpotent, respectively. In
the next two sections we shall examine when M is the mapping torus of a
self homeomorphism of a 3-dimensional infrasolvmanifold. (Note that if M is
orientable then it must be a mapping torus, by Lemma 3.14 and Theorem 6.11.)

Theorem 8.4 Let ν be the fundamental group of a flat 3-manifold, and let
θ be an automorphism of ν . Then

(1)
√
ν is the maximal abelian subgroup of ν and ν/

√
ν embeds in Aut(

√
ν);

(2) Out(ν) is finite if and only if [ν :
√
ν] > 2;

(3) the kernel of the restriction homomorphism from Out(ν) to Aut(
√
ν) is

finite;

(4) if [ν :
√
ν] = 2 then (θ|√ν)2 has 1 as an eigenvalue;

(5) if [ν :
√
ν] = 2 and θ|√ν has infinite order but all of its eigenvalues are

roots of unity then ((θ|√ν)2 − I)2 = 0.

Proof It follows immediately from Theorem 1.5 that
√
ν ∼= Z3 and is thus

the maximal abelian subgroup of ν . The kernel of the homomorphism from ν
to Aut(

√
ν) determined by conjugation is the centralizer C = Cν(

√
ν). As

√
ν

is central in C and [C :
√
ν] is finite, C has finite commutator subgroup, by

Schur’s Theorem (Proposition 10.1.4 of [Ro]). Since C is torsion free it must
be abelian and so C =

√
ν . Hence H = ν/

√
ν embeds in Aut(

√
ν) ∼= GL(3,Z).

(This is just the holonomy representation.)

If H has order 2 then θ induces the identity on H ; if H has order greater than
2 then some power of θ induces the identity on H , since

√
ν is a characteristic

subgroup of finite index. The matrix θ|√ν then commutes with each element of
the image of H in GL(3,Z), and the remaining assertions follow from simple
calculations, on considering the possibilities for π and H listed in §3 above.

Corollary 8.4.1 The mapping torus M(φ) = N ×φ S
1 of a self homeomor-

phism φ of a flat 3-manifold N is flat if and only if the outer automorphism
[φ∗] induced by φ has finite order.
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If N is flat and [φ∗] has infinite order then M(φ) may admit one of the other
product geometries Sol3 × E1 or Nil3 × E1 ; otherwise it must be a Sol4m,n -,
Sol40 - or Nil4 -manifold. (The latter can only happen if N = R3/Z3 , by part
(v) of the theorem.)

Theorem 8.5 Let M be a closed 4-manifold with a geometry of solvable Lie
type and fundamental group π . If

√
π ∼= Z3 and π/

√
π is an extension of D

by a finite normal subgroup then M is a Sol3 × E1 -manifold.

Proof Let p : π → D be an epimorphism with kernel K containing
√
π as a

subgroup of finite index, and let t and u be elements of π whose images under
p generate D and such that p(t) generates an infinite cyclic subgroup of index
2 in D . Then there is an N > 0 such that the image of s = tN in π/

√
π

generates a normal subgroup. In particular, the subgroup generated by s and√
π is normal in π and usu−1 and s−1 have the same image in π/

√
π . Let θ

be the matrix of the action of s on
√
π , with respect to some basis

√
π ∼= Z3 .

Then θ is conjugate to its inverse, since usu−1 and s−1 agree modulo
√
π .

Hence one of the eigenvalues of θ is ±1. Since π is not virtually nilpotent
the eigenvalues of θ must be distinct, and so the geometry must be of type
Sol3 × E1 .

Corollary 8.5.1 If M admits one of the geometries Sol40 or Sol4m,n with m 6=
n then it is the mapping torus of a self homeomorphism of R3/Z3 , and so
π ∼= Z3 ⋊θ Z for some θ in GL(3,Z) and is a metabelian poly-Z group.

Proof This follows immediately from Theorems 8.3 and 8.4.

We may use the idea of Theorem 8.2 to give examples of E4 -, Nil4 -, Nil3 ×E1 -
and Sol3 × E1 -manifolds which are not mapping tori. For instance, the groups
with presentations

〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, uxu−1 = x−1, u2 = y, uzu−1 = z−1,

v2 = z, vxv−1 = x−1, vyv−1 = y−1〉,
〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, u2 = x, uyu−1 = y−1, uzu−1 = z−1,

v2 = x, vyv−1 = v−4y−1, vzv−1 = z−1〉
and 〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, u2 = x, v2 = y,

uyu−1 = x4y−1, vxv−1 = x−1y2, uzu−1 = vzv−1 = z−1〉
are each generalised free products of two copies of Z2 ⋊−I Z amalgamated over
their maximal abelian subgroups. The Hirsch-Plotkin radicals of these groups
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are isomorphic to Z4 (generated by {(uv)2, x, y, z}), Γ2 × Z (generated by
{uv, x, y, z}) and Z3 (generated by {x, y, z}), respectively. The group with
presentation

〈u, v, x, y, z | xy = yx, xz = zx, yz = zy, u2 = x, uz = zu, uyu−1 = x2y−1,

v2 = y, vxv−1 = x−1, vzv−1 = v4z−1〉
is a generalised free product of copies of (Z⋊−1Z)×Z (generated by {u, y, z})
and Z2⋊−IZ (generated by {v, x, z, }) amalgamated over their maximal abelian
subgroups. Its Hirsch-Plotkin radical is the subgroup of index 4 generated by
{(uv)2, x, y, z}, and is nilpotent of class 3. The manifolds corresponding to
these groups admit the geometries E4 , Nil3 × E1 , Sol3 × E1 and Nil4 , respec-
tively. However they cannot be mapping tori, as these groups each have finite
abelianization.

8.7 Mapping tori of self homeomorphisms of Nil3 -manifolds

Let φ be an automorphism of Γq , sending x to xaybzm and y to xcydzn for
some a, . . . , n in Z. The induced automorphism of Γq/I(Γq) ∼= Z2 has matrix
A = ( a cb d ) ∈ GL(2,Z) and φ(z) = zdet(A) . (In particular, the PD3 -group
Γq is orientable, as already observed in §2 of Chapter 7, and φ is orientation
preserving, by the criterion of page 177 of [Bi], or by the argument of §3 of
Chapter 18 below.) Every pair (A,µ) in the set GL(2,Z) × Z2 determines an
automorphism (with µ = (m,n)). However Aut(Γq) is not the direct product
of GL(2,Z) and Z2 , as

(A,µ)(B, ν) = (AB,µB + det(A)ν + qω(A,B)),

where ω(A,B) is biquadratic in the entries of A and B . The natural map p :
Aut(Γq) → Aut(Γq/ζΓq) = GL(2,Z) sends (A,µ) to A and is an epimorphism,
with Ker(p) ∼= Z2 . The inner automorphisms are represented by qKer(p),
and Out(Γq) is the semidirect product of GL(2,Z) with the normal subgroup
(Z/qZ)2 . (Let [A,µ] be the image of (A,µ) in Out(Γq). Then [A,µ][B, ν] =
[AB,µB + det(A)ν].) In particular, Out(Γ1) = GL(2,Z).

Theorem 8.6 Let ν be the fundamental group of a Nil3 -manifold N . Then

(1) ν/
√
ν embeds in Aut(

√
ν/ζ

√
ν) ∼= GL(2,Z);

(2) ν̄ = ν/ζ
√
ν is a 2-dimensional crystallographic group;

(3) the images of elements of ν̄ of finite order under the holonomy
representation in Aut(

√
ν̄) ∼= GL(2,Z) have determinant 1;
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(4) Out(ν̄) is infinite if and only if ν̄ ∼= Z2 or Z2 ⋊−I (Z/2Z);

(5) the kernel of the natural homomorphism from Out(ν) to Out(ν̄) is finite.

(6) ν is orientable and every automorphism of ν is orientation preserving.

Proof Let h : ν → Aut(
√
ν/ζ

√
ν) be the homomorphism determined by

conjugation, and let C = Ker(h). Then
√
ν/ζ

√
ν is central in C/ζ

√
ν and

[C/ζ
√
ν :

√
ν/ζ

√
ν] is finite, so C/ζ

√
ν has finite commutator subgroup, by

Schur’s Theorem (Proposition 10.1.4 of [Ro].) Since C is torsion free it fol-
lows easily that C is nilpotent and hence that C =

√
ν . This proves (1) and

(2). In particular, h factors through the holonomy representation for ν̄ , and
gzg−1 = zd(g) for all g ∈ ν and z ∈ ζ

√
ν , where d(g) = det(h(g)). If g ∈ ν

is such that g 6= 1 and gk ∈ ζ
√
ν for some k > 0 then gk 6= 1 and so g

must commute with elements of ζ
√
ν , i.e., the determinant of the image of g

is 1. Condition (4) follows as in Theorem 8.4, on considering the possible finite
subgroups of GL(2,Z). (See Theorem 1.3.)

If ζν 6= 1 then ζν = ζ
√
ν ∼= Z and so the kernel of the natural homomorphism

from Aut(ν) to Aut(ν̄) is isomorphic to Hom(ν/ν ′, Z). If ν/ν ′ is finite this
kernel is trivial. If ν̄ ∼= Z2 then ν =

√
ν ∼= Γq , for some q ≥ 1, and the kernel

is isomorphic to (Z/qZ)2 . Otherwise ν̄ ∼= Z⋊−1Z , Z×D or D ⋊τ Z (where τ
is the automorphism of D = (Z/2Z) ∗ (Z/2Z) which interchanges the factors).
But then H2(ν̄; Z) is finite and so any central extension of such a group by Z
is virtually abelian, and thus not a Nil3 -manifold group.

If ζν = 1 then ν/
√
ν < GL(2,Z) has an element of order 2 with determinant

−1. No such element can be conjugate to ( 0 1
1 0 ) , for otherwise ν would not be

torsion free. Hence the image of ν/
√
ν in GL(2,Z) is conjugate to a subgroup of

the group of diagonal matrices
(
ǫ 0
0 ǫ′

)
, with |ǫ| = |ǫ′| = 1. If ν/

√
ν is generated

by
(

1 0
0 −1

)
then ν/ζ

√
ν ∼= Z⋊−1Z and ν ∼= Z2 ⋊θ Z , where θ =

(−1 r
0 −1

)
for

some nonzero integer r , and N is a circle bundle over the Klein bottle. If
ν/

√
ν ∼= (Z/2Z)2 then ν has a presentation

〈t, u, z | u2 = z, tzt−1 = z−1, ut2u−1 = t−2zs〉,
and N is a Seifert bundle over the orbifold P (22). It may be verified in each
case that the kernel of the natural homomorphism from Out(ν) to Out(ν̄) is
finite. Therefore (5) holds.

Since
√
ν ∼= Γq is a PD+

3 -group, [ν :
√
ν] < ∞ and every automorphism of Γq

is orientation preserving ν must also be orientable. Since
√
ν is characteristic

in ν and the image of H3(
√
ν; Z) in H3(ν; Z) has index [ν :

√
ν] it follows easily

that any automorphism of ν must be orientation preserving.
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In fact every Nil3 -manifold is a Seifert bundle over a 2-dimensional euclidean
orbifold [Sc83’]. The base orbifold must be one of the seven such with no
reflector curves, by (3).

Theorem 8.7 Let θ = (A,µ) be an automorphism of Γq and π = Γq ⋊θ Z .
Then

(1) If A has finite order h(
√
π) = 4 and π is a lattice in Isom(Nil3 × E1);

(2) if A has infinite order and equal eigenvalues h(
√
π) = 4 and π is a lattice

in Isom(Nil4);

(3) Otherwise
√
π = Γq and π is a lattice in Isom(Sol41).

Proof Let t ∈ π represent a generator for π/Γq ∼= Z . The image of θ in
Out(Γq) has finite order if and only if A has finite order. If Ak = 1 for some
k ≥ 1 the subgroup generated by Γq and tkq is isomorphic to Γq × Z . If A
has infinite order and equal eigenvalues then A2 is conjugate to ( 1 n

0 1 ), for some
n 6= 0, and the subgroup generated by Γq and t2 is nilpotent of class 3. In
each of these cases π is virtually nilpotent, and may be embedded as a lattice
in Isom(Nil3 × E1) or Isom(Nil4) [De].

Otherwise the eigenvalues α, β of A are distinct and not ±1. Let e, f ∈ R2

be the corresponding eigenvectors. Let (1, 0) = x1e+ x2f , (0, 1) = y1e+ y2f ,

µ = z1e+ z2f and h = 1
q (x2y1 − x1y2). Let F (x) =




1 x2 0
0 1 x1

0 0 1


, F (y) =




1 y2 0
0 1 y1

0 0 1


, F (z) =




1 0 h
0 1 0
0 0 1


 and F (t) =



αβ z2 0
0 α z1
0 0 1


. Then F de-

fines an embedding of π as a lattice in Isom(Sol41).

Theorem 8.8 The mapping torus M(φ) = N ×φ S
1 of a self homeomorphism

φ of a Nil3 -manifold N is orientable, and is a Nil3 × E1 -manifold if and only
if the outer automorphism [φ∗] induced by φ has finite order.

Proof Since N is orientable and φ is orientation preserving (by part (6) of
Theorem 8.6) M(φ) must be orientable.

The subgroup ζ
√
ν is characteristic in ν and hence normal in π , and ν/ζ

√
ν

is virtually Z2 . If M(φ) is a Nil3 × E1 -manifold then π/ζ
√
ν is also virtually

abelian. It follows easily that that the image of φ∗ in Aut(ν/ζ
√
ν) has finite
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order. Hence [φ∗] has finite order also, by Theorem 8.6. Conversely, if [φ∗] has
finite order in Out(ν) then π has a subgroup of finite index which is isomorphic
to ν ×Z , and so M(φ) has the product geometry, by the discussion above.

Theorem 4.2 of [KLR83] (which extends Bieberbach’s theorem to the virtually
nilpotent case) may be used to show directly that every outer automorphism
class of finite order of the fundamental group of an E3 - or Nil3 -manifold is
realizable by an isometry of an affinely equivalent manifold.

Theorem 8.9 Let M be a closed 4-manifold which admits one of the geome-
tries Nil4 or Sol41 . Then M is the mapping torus of a self homeomorphism of
a Nil3 -manifold if and only if it is orientable.

Proof If M is such a mapping torus then it is orientable, by Theorem 8.8.
Conversely, if M is orientable then π = π1(M) has infinite abelianization, by
Lemma 3.14. Let p : π → Z be an epimorphism with kernel K , and let t be
an element of π such that p(t) generates Z . If K is virtually nilpotent of class
2 we are done, by Theorem 6.12. (Note that this must be the case if M is a
Sol41 -manifold.) If K is virtually abelian then K ∼= Z3 , by part (5) of Theorem
8.4. The matrix corresponding to the action of t on K by conjugation must
be orientation preserving, since M is orientable. It follows easily that π is
nilpotent. Hence there is another epimorphism with kernel nilpotent of class 2,
and so the theorem is proven.

Corollary 8.9.1 Let M be a closed Sol41 -manifold with fundamental group
π . Then β1(M) ≤ 1 and M is orientable if and only if β1(M) = 1.

Proof The first assertion is clear if π is a semidirect product Γq ⋊θ Z , and
then follows in general. Hence if p : π → Z is an epimorphism Ker(p) must be
virtually nilpotent of class 2 and the result follows from the theorem.

If M is a Nil3 × E1 - or Nil4 -manifold then β1(π) ≤ 3 or 2, respectively, with
equality if and only if π is nilpotent. In the latter case M is orientable, and
is a mapping torus, both of a self homeomorphism of R3/Z3 and also of a self
homeomorphism of a Nil3 -manifold. We have already seen that Nil3 × E1 -
and Nil4 -manifolds need not be mapping tori at all. We shall round out this
discussion with examples illustrating the remaining combinations of mapping
torus structure and orientation compatible with Lemma 3.14 and Theorem 8.9.
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As the groups have abelianization of rank 1 the corresponding manifolds are
mapping tori in an essentially unique way. The groups with presentations

〈t, x, y, z | xz = zx, yz = zy, txt−1 = x−1, tyt−1 = y−1, tzt−1 = yz−1〉,
〈t, x, y, z | xyx−1y−1 = z, xz = zx, yz = zy, txt−1 = x−1, tyt−1 = y−1〉

and 〈t, x, y, z | xy = yx, zxz−1 = x−1, zyz−1 = y−1, txt−1 = x−1, ty = yt,

tzt−1 = z−1〉
are each virtually nilpotent of class 2. The corresponding Nil3 × E1 -manifolds
are mapping tori of self homeomorphisms of R3/Z3 , a Nil3 -manifold and a flat
manifold, respectively. The latter two of these manifolds are orientable. The
groups with presentations

〈t, x, y, z | xz = zx, yz = zy, txt−1 = x−1, tyt−1 = xy−1, tzt−1 = yz−1〉
and 〈t, x, y, z | xyx−1y−1 = z, xz = zx, yz = zy, txt−1 = x−1, tyt−1 = xy−1〉
are each virtually nilpotent of class 3. The corresponding Nil4 -manifolds are
mapping tori of self homeomorphisms of R3/Z3 and of a Nil3 -manifold, respec-
tively.

The group with presentation

〈t, u, x, y, z | xyx−1y−1 = z2, xz = zx, yz = zy, txt−1 = x2y, tyt−1 = xy,

tz = zt, u4 = z, uxu−1 = y−1, uyu−1 = x, utu−1 = t−1〉
has Hirsch-Plotkin radical isomorphic to Γ2 (generated by {x, y, z}), and has
finite abelianization. The corresponding Sol41 -manifold is nonorientable and is
not a mapping torus.

8.8 Mapping tori of self homeomorphisms of Sol3 -manifolds

The arguments in this section are again analogous to those of §6.

Theorem 8.10 Let σ be the fundamental group of a Sol3 -manifold. Then

(1)
√
σ ∼= Z2 and σ/

√
σ ∼= Z or D ;

(2) Out(σ) is finite.

Proof The argument of Theorem 1.6 implies that h(
√
σ) > 1. Since σ is not

virtually nilpotent h(
√
σ) < 3. Hence

√
σ ∼= Z2 , by Theorem 1.5. Let F̃ be

the preimage in σ of the maximal finite normal subgroup of σ/
√
ν , let t be an

element of σ whose image generates the maximal abelian subgroup of σ/F̃ and
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let τ be the automorphism of F̃ determined by conjugation by t. Let σ1 be
the subgroup of σ generated by F̃ and t. Then σ1

∼= F̃ ⋊τ Z , [σ : σ1] ≤ 2, F̃ is
torsion free and h(F̃ ) = 2. If F̃ 6= √

σ then F̃ ∼= Z⋊−1Z . But extensions of Z
by Z⋊−1Z are virtually abelian, since Out(Z⋊−1Z) is finite. Hence F̃ =

√
σ

and so σ/
√
σ ∼= Z or D .

Every automorphism of σ induces automorphisms of
√
σ and of σ/

√
σ . Let

Out+(σ) be the subgroup of Out(σ) represented by automorphisms which in-
duce the identity on σ/

√
σ . The restriction of any such automorphism to√

σ commutes with τ . We may view
√
σ as a module over the ring R =

Z[X]/(λ(X)), where λ(X) = X2 − tr(τ)X + det(τ) is the characteristic poly-
nomial of τ . The polynomial λ is irreducible and has real roots which are not
roots of unity, for otherwise

√
σ ⋊τ Z would be virtually nilpotent. Therefore

R is a domain and its field of fractions Q[X]/(λ(X)) is a real quadratic num-
ber field. The R-module

√
σ is clearly finitely generated, R-torsion free and

of rank 1. Hence the endomorphism ring EndR(
√
σ) is a subring of R̃, the

integral closure of R. Since R̃ is the ring of integers in Q[X]/(λ(X)) the group
of units R̃× is isomorphic to {±1} × Z . Since τ determines a unit of infinite
order in R× the index [R̃× : τZ ] is finite.

Suppose now that σ/
√
σ ∼= Z . If f is an automorphism which induces the

identity on
√
σ and on σ/

√
σ then f(t) = tw for some w in

√
σ . If w is in the

image of τ − 1 then f is an inner automorphism. Now
√
σ/(τ − 1)

√
σ is finite,

of order det(τ − 1). Since τ is the image of an inner automorphism of σ it
follows that Out+(σ) is an extension of a subgroup of R̃×/τZ by

√
σ/(τ−1)

√
σ .

Hence Out(σ) has order dividing 2[R̃× : τZ ]det(τ − 1).

If σ/
√
σ ∼= D then σ has a characteristic subgroup σ1 such that [σ : σ1] = 2,√

σ < σ1 and σ1/
√
σ ∼= Z =

√
D . Every automorphism of σ restricts to an

automorphism of σ1 . It is easily verified that the restriction from Aut(σ) to
Aut(σ1) is a monomorphism. Since Out(σ1) is finite it follows that Out(σ) is
also finite.

Corollary 8.10.1 The mapping torus of a self homeomorphism of a Sol3 -
manifold is a Sol3 × E1 -manifold.

The group with presentation

〈x, y, t | xy = yx, txt−1 = x3y2, tyt−1 = x2y〉
is the fundamental group of a nonorientable Sol3 -manifold Σ. The nonori-
entable Sol3 ×E1 -manifold Σ× S1 is the mapping torus of idΣ and is also the
mapping torus of a self homeomorphism of R3/Z3 .
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The groups with presentations

〈t, x, y, z | xy = yx, zxz−1 = x−1, zyz−1 = y−1, txt−1 = xy, tyt−1 = x,

tzt−1 = z−1〉,
〈t, x, y, z | xy = yx, zxz−1 = x2y, zyz−1 = xy, tx = xt, tyt−1 = x−1y−1,

tzt−1 = z−1〉,
〈t, x, y, z | xy = yx, xz = zx, yz = zy, txt−1 = x2y, tyt−1 = xy, tzt−1 = z−1〉
and 〈t, u, x, y | xy = yx, txt−1 = x2y, tyt−1 = xy, uxu−1 = y−1,

uyu−1 = x, utu−1 = t−1〉
have Hirsch-Plotkin radical Z3 and abelianization of rank 1. The corresponding
Sol3×E1 -manifolds are mapping tori in an essentially unique way. The first two
are orientable, and are mapping tori of self homeomorphisms of the orientable
flat 3-manifold with holonomy of order 2 and of an orientable Sol3 -manifold,
respectively. The latter two are nonorientable, and are mapping tori of ori-
entation reversing self homeomorphisms of R3/Z3 and of the same orientable
Sol3 -manifold, respectively.

8.9 Realization and classification

Let π be a torsion free virtually poly-Z group of Hirsch length 4. If π is
virtually abelian then it is the fundamental group of a flat 4-manifold, by the
work of Bieberbach, and such groups are listed in §2-§4 above.

If π is virtually nilpotent but not virtually abelian then
√
π is nilpotent of class

2 or 3. In the first case it has a characteristic chain
√
π
′ ∼= Z < C = ζ

√
π ∼= Z2 .

Let θ : π → Aut(C) ∼= GL(2,Z) be the homomorphism induced by conjugation
in π . Then Im(θ) is finite and triangular, and so is 1, Z/2Z or (Z/2Z)2 . Let
K = Cπ(C) = Ker(θ). Then K is torsion free and ζK = C , so K/C is a
flat 2-orbifold group. Moreover as K/

√
K acts trivially on

√
π
′

it must act
orientably on

√
K/C , and so K/

√
K is cyclic of order 1, 2, 3, 4 or 6. As

√
π

is the preimage of
√
K in π we see that [π :

√
π] ≤ 24. (In fact π/

√
π ∼= F or

F ⊕ (Z/2Z), where F is a finite subgroup of GL(2,Z), excepting only direct
sums of the dihedral groups of order 6, 8 or 12 with (Z/2Z) [De].) Otherwise
(if

√
π
′ � ζ

√
π) it has a subgroup of index ≤ 2 which is a semidirect product

Z3 ⋊θ Z , by part (5) of Theorem 8.4. Since (θ2 − I) is nilpotent it follows that
π/

√
π = 1, Z/2Z or (Z/2Z)2 . All these possibilities occur.

Such virtually nilpotent groups are fundamental groups of Nil3×E1 - and Nil4 -
manifolds (respectively), and are classified in [De]. Dekimpe observes that π
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has a characteristic subgroup Z such that Q = π/Z is a Nil3 - or E3 -orbifold
group and classifies the torsion free extensions of such Q by Z . There are 61
families of Nil3 × E1 -groups and 7 families of Nil4 -groups. He also gives a
faithful affine representation for each such group.

We shall sketch an alternative approach for the geometry Nil4 , which applies
also to Sol4m,n , Sol40 and Sol41 . Each such group π has a characteristic subgroup

ν of Hirsch length 3, and such that π/ν ∼= Z or D . The preimage in π of
√
π/ν

is characteristic, and is a semidirect product ν⋊θ Z . Hence it is determined up
to isomorphism by the union of the conjugacy classes of θ and θ−1 in Out(ν),
by Lemma 1.1. All such semidirect products may be realized as lattices and
have faithful affine representations.

If the geometry is Nil4 then ν = C√
π(ζ2

√
π) ∼= Z3 , by Theorem 1.5 and

part (5) of Theorem 8.4. Moreover ν has a basis x, y, z such that 〈z〉 = ζ
√
π

and 〈y, z〉 = ζ2
√
π . As these subgroups are characteristic the matrix of θ

with respect to such a basis is ±(I +N), where N is strictly lower triangular
and n21n32 6= 0. (See §5 above.) The conjugacy class of θ is determined by
(det(θ), |n21|, |n32|, [n31 mod (n32)]). (Thus θ is conjugate to θ−1 if and only if
n32 divides 2n31 .) The classification is more complicated if π/ν ∼= D .

If the geometry is Sol4m,n for some m 6= n then π ∼= Z3 ⋊θ Z , where the
eigenvalues of θ are distinct and real, and not ±1, by Corollary 8.5.1. The
translation subgroup π ∩ Sol4m,n is Z3 ⋊A Z , where A = θ or θ2 is the least
nontrivial power of θ with all eigenvalues positive, and has index ≤ 2 in π .
Conversely, every such group is a lattice in Isom(Sol4m,n), by Theorem 8.3.
The conjugacy class of θ is determined by its characteristic polynomial ∆θ(t)
and the ideal class of ν ∼= Z3 , considered as a rank 1 module over the order
Λ/(∆θ(t)), by Theorem 1.4. (No such θ is conjugate to its inverse, as neither
1 nor -1 is an eigenvalue.)

A similar argument applies for Sol40 , where we again have π ∼= Z3 ⋊θ Z . Al-
though Sol40 has no lattice subgroups, any semidirect product Z3 ⋊θ Z where
θ has a pair of complex conjugate roots which are not roots of unity is a lat-
tice in Isom(Sol40), by Theorem 8.3. Such groups are again classified by the
characteristic polynomial and an ideal class.

If the geometry is Sol41 then
√
π ∼= Γq for some q ≥ 1, and either ν =

√
π or

ν/
√
π = Z/2Z and ν/ζ

√
π ∼= Z2 ⋊−I (Z/2Z). (In the latter case ν is uniquely

determined by q .) Moreover π is orientable if and only if β1(π) = 1. In
particular, Ker(w1(π)) ∼= ν⋊θ Z for some θ ∈ Aut(ν). Let A = θ|√π and let A
be its image in Aut(

√
π/ζ

√
π) ∼= GL(2,Z). If ν =

√
π the translation subgroup
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π∩Sol41 is T = Γq ⋊B Z , where B = A or A2 is the least nontrivial power of A
such that both eigenvalues of A are positive. If ν 6= √

π the conjugacy class of
A is only well-defined up to sign. If moreover π/ν ∼= D then A is conjugate to
its inverse, and so det(A) = 1, since A has infinite order. We can then choose
θ and hence A so that T =

√
π ⋊A Z . In all cases we find that [π : T ] divides

4. (Note that Isom(Sol41) has 8 components.)

Conversely, any torsion-free group with a subgroup of index ≤ 2 which is such
a semidirect product ν ⋊θ Z (with [ν : Γq] ≤ 2 and ν as above) and which is
not virtually nilpotent is a lattice in Isom(Sol41), by an argument extending
that of Theorem 8.7. (See [Hi07’].) The conjugacy class of θ is determined up
to a finite ambiguity by the characteristic polynomial of A, but classification
of the nonorientable groups (i.e., those with π/ν ∼= D) seems difficult.

In the remaining case Sol3×E1 the subgroup ν is one of the four flat 3-manifold
groups Z3 , Z2 ⋊−I Z , B1 or B2 , and θ|√ν has distinct real eigenvalues, one
being ±1. The index of the translation subgroup π ∩ (Sol3 × R) in π divides
8. (Note that Isom(Sol3 × E1) has 16 components.) Conversely any torsion-
free group with a subgroup of index ≤ 2 which is such a semidirect product
ν ⋊θ Z is a lattice in Isom(Sol3 × E1), by an argument extending that of
Theorem 8.3. (See [Hi07’].) The groups with π/ν ∼= Z may again be classified
in terms of conjugacy classes of matrices, but classification of the groups with
π/ν ∼= D seems difficult. (The number of subcases to be considered makes any
classification an uninviting task. See however [Cb].)

8.10 Diffeomorphism

Geometric 4-manifolds of solvable Lie type are infrasolvmanifolds (see §3 of
Chapter 7), and infrasolvmanifolds are the total spaces of orbifold bundles
with infranilmanifold fibre and flat base, by Theorem 7.2. Baues showed that
infrasolvmanifolds are determined up to diffeomorphism by their fundamental
groups [Ba04]. In dimensions ≤ 3 this follows from standard results of low
dimensional topology. We shall show that related arguments also cover most
4-dimensional orbifold bundle spaces. The following theorem extends the main
result of [Cb] (in which it was assumed that π is not virtually nilpotent).

Theorem 8.11 Let M and M ′ be 4-manifolds which are total spaces of orb-
ifold bundles p : M → B and p′ : M ′ → B′ with fibres infranilmanifolds F and
F ′ (respectively) and bases flat orbifolds, and suppose that π1(M) ∼= π1(M

′) ∼=
π . If π is virtually abelian and β1(π) = 1 assume that π is orientable. Then
M and M ′ are diffeomorphic.
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Proof We may assume that d = dim(B) ≤ d′ = dim(B′). Suppose first that
π is not virtually abelian or virtually nilpotent of class 2. Then all subgroups
of finite index in π have β1 ≤ 2, and so 1 ≤ d ≤ d′ ≤ 2. Moreover π has
a characteristic nilpotent subgroup ν̃ such that h(π/ν̃) = 1, by Theorems 1.5
and 1.6. Let ν be the preimage in π of the maximal finite normal subgroup
of π/ν̃ . Then ν is a characteristic virtually nilpotent subgroup (with

√
ν = ν̃ )

and π/ν ∼= Z or D . If d = 1 then π1(F ) = ν and p : M → B induces this
isomorphism. If d = 2 the image of ν in πorb1 (B) is normal. Hence there is an
orbifold map q from B to the circle S1 or the reflector interval I such that qp is
an orbifold bundle projection. A similar analysis applies to M ′ . In either case,
M and M ′ are canonically mapping tori or unions of two twisted I -bundles,
and the theorem follows via standard 3-manifold theory.

If π is virtually nilpotent it is realized by an infranilmanifold M0 [De]. Hence
we may assume that M ′ = M0 , d′ = 4, h(

√
π) = 4 and

√
π
′ ∼= Z or 1. If d = 0

or 4 then M is also an infranilmanifold and the result is clear. If there is an
orbifold bundle projection from B to S1 or I then M is a mapping torus or a
union of twisted I -bundles, and π is a semidirect product κ⋊Z or a generalized
free product with amalgamation G ∗J H where [G : J ] = [H : J ] = 2. The
model M0 then has a corresponding structure as a mapping torus or a union
of twisted I -bundles, and we may argue as before.

If β1(π) + d > 4 then πorb1 (B) maps onto Z , and so B is an orbifold bundle
over S1 . Hence the above argument applies. If there is no such orbifold bundle
projection then d 6= 1. Thus we may assume that d = 2 or 3 and that β1(π) ≤
4 − d. (If moreover β1(π) = 4 − d and there is no such projection then π′ ∩
π1(F ) = 1 and so π is virtually abelian.) If d = 2 then M is Seifert fibred.
Since M ′ is an infranilmanifold (and π cannot be one of the three exceptional
flat 4-manifold groups G6 ⋊θ Z with θ = j , cej or abcej ) it is also Seifert
fibred, and so M and M ′ are diffeomorphic, by [Vo77].

If d = 3 then π1(F ) ∼= Z . The group π has a normal subgroup K such that
π/K ∼= Z or D , by Lemma 3.14. If π1(F ) < K then πorb1 (B) maps onto Z
or D and we may argue as before. Otherwise π1(F ) ∩ K = 1, since Z and
D have no nontrivial finite normal subgroups, and so π is virtually abelian. If
β1(π) = 1 then π1(F )∩π′ = 1 (since π/K does not map onto Z ) and so π1(F )
is central in π . It follows that p is the orbit map of an S1 -action on M . Once
again, the model M0 has an S1 -action inducing the same orbifold fundamental
group sequence. Orientable 4-manifolds with S1 -action are determined up to
diffeomorphism by the orbifold data and an Euler class corresponding to the
central extension of πorb1 (B) by Z [Fi78]. Thus M and M ′ are diffeomorphic.
It is not difficult to determine the maximal infinite cyclic normal subgroups of
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the flat 4-manifold groups π with β1(π) = 0, and to verify that in each case
the quotient maps onto D .

It is highly probable that the arguments of Fintushel can be extended to all
4-manifolds which admit smooth S1 -actions, and the theorem is surely true
without any restrictions on π . (Note that the algebraic argument of the final
sentence of Theorem 8.11 does not work for nine of the 30 nonorientable flat
4-manifold groups π with β1(π) = 1.)

If π is orientable then it is realized geometrically and determines the total space
of such an orbifold bundle up to diffeomorphism. Hence orientable smooth
4-manifolds admitting such orbifold fibrations are diffeomorphic to geometric
4-manifolds of solvable Lie type. Is this also so in the nonorientable case?
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Chapter 9

The other aspherical geometries

The aspherical geometries of nonsolvable type which are realizable by closed
4-manifolds are the “mixed” geometries H2 × E2 , S̃L × E1 , H3 × E1 and the
“semisimple” geometries H2 × H2 , H4 and H2(C). (We shall consider the ge-

ometry F4 briefly in Chapter 13.) Closed H2 × E2 - or S̃L × E1 -manifolds are
Seifert fibred, have Euler characteristic 0 and their fundamental groups have
Hirsch-Plotkin radical Z2 . In §1 and §2 we examine to what extent these
properties characterize such manifolds and their fundamental groups. Closed
H3 × E1 -manifolds also have Euler characteristic 0, but we have only a conjec-
tural characterization of their fundamental groups (§3). In §4 we determine the
mapping tori of self homeomorphisms of geometric 3-manifolds which admit
one of these mixed geometries. (We return to this topic in Chapter 13.) In
§5 we consider the three semisimple geometries. All closed 4-manifolds with
product geometries other than H2 × H2 are finitely covered by cartesian prod-
ucts. We characterize the fundamental groups of H2 × H2 -manifolds with this
property; there are also “irreducible” H2×H2 -manifolds which are not virtually
products. Little is known about manifolds admitting one of the two hyperbolic
geometries.

Although it is not yet known whether the disk embedding theorem holds over
lattices for such geometries, we can show that the fundamental group and Euler
characteristic determine the manifold up to s-cobordism (§6). Moreover an
aspherical orientable closed 4-manifold which is finitely covered by a geometric
manifold is homotopy equivalent to a geometric manifold (excepting perhaps if

the geometry is H2 × E2 or S̃L × E1).

9.1 Aspherical Seifert fibred 4-manifolds

In Chapter 8 we saw that if M is a closed 4-manifold with fundamental group π
such that χ(M) = 0 and h(

√
π) ≥ 3 then M is homeomorphic to an infrasolv-

manifold. Here we shall show that if χ(M) = 0, h(
√
π) = 2 and [π :

√
π] = ∞

then M is homotopy equivalent to a 4-manifold which is Seifert fibred over a
hyperbolic 2-orbifold. (We shall consider the case when χ(M) = 0, h(

√
π) = 2

and [π :
√
π] <∞ in Chapter 10.)
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Theorem 9.1 Let M be a closed 4-manifold with fundamental group π . If
χ(M) = 0 and π has an elementary amenable normal subgroup ρ with h(ρ) = 2
and such that either H2(π; Z[π]) = 0 or ρ is torsion free and [π : ρ] = ∞ then
M is aspherical and ρ is virtually abelian.

Proof Since π has one end, by Corollary 1.15.1, and β
(2)
1 (π) = 0, by Theorem

2.3, M is aspherical if also H2(π; Z[π]) = 0, by Corollary 3.5.2. In this case ρ
is torsion free and of infinite index in π , and so we may assume this henceforth.
Since ρ is torsion free elementary amenable and h(ρ) = 2 it is virtually solvable,
by Theorem 1.11. Therefore A =

√
ρ is nontrivial, and as it is characteristic

in ρ it is normal in π . Since A is torsion free and h(A) ≤ 2 it is abelian, by
Theorem 1.5.

If h(A) = 1 then A is isomorphic to a subgroup of Q and the homomorphism
from B = ρ/A to Aut(A) induced by conjugation in ρ is injective. Since
Aut(A) is isomorphic to a subgroup of Q× and h(B) = 1 either B ∼= Z or
B ∼= Z⊕(Z/2Z). We must in fact have B ∼= Z , since ρ is torsion free. Moreover
A is not finitely generated and the centre of ρ is trivial. The quotient group
π/A has one end as the image of ρ is an infinite cyclic normal subgroup of
infinite index. If h(A) = 2 then as π/A is finitely generated and infinite π is
not elementary amenable of Hirsch length 2. In either case Hs(π; Z[π]) = 0 for
s ≤ 2, by Theorem 1.17, and so M is aspherical and π is a PD4 -group.

It remains to show that ρ is virtually abelian. Suppose that h(A) = 1. As A is a
characteristic subgroup every automorphism of ρ restricts to an automorphism
of A. This restriction from Aut(ρ) to Aut(A) is an epimorphism, with kernel
isomorphic to A, and so Aut(ρ) is solvable. Let C = Cπ(ρ) be the centralizer
of ρ in π . Then C is nontrivial, for otherwise π would be isomorphic to a
subgroup of Aut(ρ) and hence would be virtually poly-Z . But then A would
be finitely generated, ρ would be virtually abelian and h(A) = 2. Moreover
C ∩ ρ = ζρ = 1, so Cρ ∼= C × ρ and c.d.C + c.d.ρ = c.d.Cρ ≤ c.d.π = 4. The
quotient group π/Cρ is isomorphic to a subgroup of Out(ρ).

If c.d.Cρ ≤ 3 then as C is nontrivial and h(ρ) = 2 we must have c.d.C = 1 and
c.d.ρ = h(ρ) = 2. Therefore C is free and ρ is of type FP [Kr86]. By Theorem
1.13 ρ is an ascending HNN group with base a finitely generated subgroup
of A and so has a presentation 〈a, t | tat−1 = an〉 for some nonzero integer
n. We may assume |n| > 1, as ρ is not virtually abelian. The subgroup of
Aut(ρ) represented by (n− 1)A consists of inner automorphisms. Since n > 1
the quotient A/(n − 1)A ∼= Z/(n − 1)Z is finite, and as Aut(A) ∼= Z[1/n]×

it follows that Out(ρ) is virtually abelian. Therefore π has a subgroup σ of

Geometry & Topology Monographs, Volume 5 (2002)



9.1 Aspherical Seifert fibred 4-manifolds 181

finite index which contains Cρ and such that σ/Cρ is a finitely generated free
abelian group, and in particular c.d.σ/Cρ is finite. As σ is a PD4 -group it
follows from Theorem 9.11 of [Bi] that Cρ is a PD3 -group and hence that ρ is
a PD2 -group. We reach the same conclusion if c.d.Cρ = 4, for then [π : Cρ]
is finite, by Strebel’s Theorem, and so Cρ is a PD4 -group. As a solvable
PD2 -group is virtually Z2 our original assumption must have been wrong.

Therefore h(A) = 2. As every finitely generated subgroup of ρ is either iso-
morphic to Z ⋊−1 Z or is abelian [ρ : A] ≤ 2.

The group Z∗n (with presentation 〈a, t | tat−1 = an〉) is torsion free and
solvable of Hirsch length 2, and is the fundamental group of a closed orientable
4-manifold M with χ(M) = 0. (See Chapter 3.) Thus the hypothesis that the
subgroup ρ have infinite index in π is necessary for the above theorem. Do the
other hypotheses imply that ρ must be torsion free?

Theorem 9.2 Let M be a closed 4-manifold with fundamental group π . If
h(
√
π) = 2, [π :

√
π] = ∞ and χ(M) = 0 then M is aspherical and

√
π ∼= Z2 .

Proof As Hs(π; Z[π]) = 0 for s ≤ 2, by Theorem 1.17, M is aspherical, by
Theorem 9.1. We may assume henceforth that

√
π is a torsion free abelian

group of rank 2 which is not finitely generated.

Suppose first that [π : C] = ∞, where C = Cπ(
√
π). Then c.d.C ≤ 3, by

Strebel’s Theorem. Since
√
π is not finitely generated c.d.

√
π = h(

√
π) +

1 = 3, by Theorem 7.14 of [Bi]. Hence C =
√
π , by Theorem 8.8 of [Bi], so

the homomorphism from π/
√
π to Aut(

√
π) determined by conjugation in π

is a monomorphism. Since
√
π is torsion free abelian of rank 2 Aut(

√
π) is

isomorphic to a subgroup of GL(2,Q) and therefore any torsion subgroup of
Aut(

√
π) is finite, by Corollary 1.3.1. Thus if π′

√
π/

√
π is a torsion group π′

√
π

is elementary amenable and so π is itself elementary amenable, contradicting
our assumption. Hence we may suppose that there is an element g in π′ which
has infinite order modulo

√
π . The subgroup 〈√π, g〉 generated by

√
π and

g is an extension of Z by
√
π and has infinite index in π , for otherwise π

would be virtually solvable. Hence c.d.〈√π, g〉 = 3 = h(〈√π, g〉), by Strebel’s
Theorem. By Theorem 7.15 of [Bi], L = H2(

√
π; Z) is the underlying abelian

group of a subring Z[m−1] of Q, and the action of g on L is multiplication by a
rational number a/b, where a and b are relatively prime and ab and m have the
same prime divisors. But g acts on

√
π as an element of GL(2,Q)′ ≤ SL(2,Q).

Since L =
√
π∧√

π , by Proposition 11.4.16 of [Ro], g acts on L via det(g) = 1.
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Therefore m = 1 and so L must be finitely generated. But then
√
π must also

be finitely generated, again contradicting our assumption.

Thus we may assume that C has finite index in π . Let A <
√
π be a subgroup of√

π which is free abelian of rank 2. Then A1 is central in C and C/A is finitely
presentable. Since [π : C] is finite A has only finitely many distinct conjugates
in π , and they are all subgroups of ζC . Let N be their product. Then N is a
finitely generated torsion free abelian normal subgroup of π and 2 ≤ h(N) ≤
h(
√
C) ≤ h(

√
π) = 2. An LHSSS argument gives H2(π/N ; Z[π/N ]) ∼= Z , and

so π/N is virtually a PD2 -group, by Bowditch’s Theorem. Since
√
π/N is a

torsion group it must be finite, and so
√
π ∼= Z2 .

Corollary 9.2.1 Let M be a closed 4-manifold with fundamental group π .
Then M is homotopy equivalent to one which is Seifert fibred with general fibre
T or Kb over a hyperbolic 2-orbifold if and only if h(

√
π) = 2, [π :

√
π] = ∞

and χ(M) = 0.

Proof This follows from the theorem together with Theorem 7.3.

9.2 The Seifert geometries: H2 × E2 and S̃L × E1

A manifold with geometry H2 ×E2 or S̃L×E1 is Seifert fibred with base a hy-
perbolic orbifold. However not all such Seifert fibred 4-manifolds are geometric.
We shall show that geometric Seifert fibred 4-manifolds may be characterized
in terms of their fundamental groups. With [Vo77] Theorems 9.5 and 9.6 imply
the main result of [Ke].

Theorem 9.3 Let M be a closed H3 × E1 -, S̃L × E1 - or H2 × E2 -manifold.
Then M has a finite covering space which is diffeomorphic to a product N×S1 .

Proof If M is an H3 × E1 -manifold then π = π1(M) is a discrete cocompact
subgroup of G = Isom(H3 × E1). The radical of this group is Rad(G) ∼= R,
and Go/Rad(G) ∼= PSL(2,C), where Go is the component of the identity in
G. Therefore A = π ∩ Rad(G) is a lattice subgroup, by Proposition 8.27 of
[Rg]. Since R/A is compact the image of π/A in Isom(H3) is again a discrete
cocompact subgroup. Hence

√
π = A ∼= Z . Moreover π preserves the foliation

of the model space by euclidean lines, so M is an orbifold bundle with general
fibre S1 over an H3 -orbifold with orbifold fundamental group π/

√
π .

On passing to a 2-fold covering space, if necessary, we may assume that π ≤
Isom(H3)×R and (hence) ζπ =

√
π . Projection to the second factor maps

√
π

Geometry & Topology Monographs, Volume 5 (2002)



9.2 The Seifert geometries: H2 × E2 and S̃L × E1 183

monomorphically to R. Hence on passing to a further finite covering space, if
necessary, we may assume that π ∼= ν×Z , where ν = π/

√
π ∼= π1(N) for some

closed orientable H3 -manifold N . (Note that we do not claim that π = ν×Z as
a subgroup of PSL(2,R)×R.) The foliation of H3×R by lines induces an S1 -
bundle structure on M , with base N . As such bundles (with aspherical base)
are determined by their fundamental groups, M is diffeomorphic to N × S1 .

Similar arguments apply in the other two cases. If G = Isom(X) where X =

H2 × E2 or S̃L × E1 , then Rad(G) ∼= R2 , and Go/R
2 ∼= PSL(2,R). The

intersection A = π ∩ Rad(G) is again a lattice subgroup, and the image of
π/A in PSL(2,R) is a discrete cocompact subgroup. Hence

√
π = A ∼= Z2

and π/
√
π is virtually a PD2 -group. If X = S̃L × E1 then (after passing to a

2-fold covering space, if necessary) we may assume that π ≤ Isom(S̃L)×R. If
X = H2 × E2 then PSL(2,R) × R2 is a cocompact subgroup of Isom(X), so
π∩PSL(2,R)×R2 has finite index in π . In each case projection to the second
factor maps

√
π monomorphically and π preserves the foliation of the model

space by copies of the euclidean factor. As before, M is virtually a product.

In general, there may not be such a covering which is geometrically a cartesian
product. Let ν be a discrete cocompact subgroup of Isom(X) where X = H3

or S̃L which admits an epimorphism α : ν → Z . Define a homomorphism
θ : ν × Z → Isom(X × E1) by θ(g, n)(x, r) = (g(x), r + n + α(g)

√
2) for all

g ∈ ν , n ∈ Z , x ∈ X and r ∈ R. Then θ is a monomorphism onto a discrete
subgroup which acts freely and cocompactly on X×R, but the image of θ(ν×Z)
in E(1) has rank 2.

Lemma 9.4 Let π be a finitely generated group with normal subgroups A ≤
N such that A is free abelian of rank r , [π : N ] < ∞ and N ∼= A × N/A .
Then there is a homomorphism f : π → E(r) with image a discrete cocompact
subgroup and such that f |A is injective.

Proof Let G = π/N and M = Nab ∼= A⊕(N/AN ′). Then M is a finitely gen-
erated Z[G]-module and the image of A in M is a Z[G]-submodule. Extending
coefficients to the rationals Q gives a natural inclusion QA ≤ QM , since A is
a direct summand of M (as an abelian group), and QA is a Q[G]-submodule
of QM . Since G is finite Q[G] is semisimple, and so QA is a Q[G]-direct
summand of QM . Let K be the kernel of the homomorphism from M to QA
determined by a splitting homomorphism from QM to QA, and let K̃ be the
preimage of K in π . Then K is a Z[G]-submodule of M and M/K ∼= Zr ,
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since it is finitely generated and torsion free of rank r . Moreover K̃ is a nor-
mal subgroup of π and A ∩ K̃ = 1. Hence H = π/K̃ is an extension of G
by M/K and A maps injectively onto a subgroup of finite index in H . Let
T be the maximal finite normal subgroup of H . Then H/T is isomorphic to
a discrete cocompact subgroup of E(r), and the projection of π onto H/T is
clearly injective on A.

Theorem 9.5 Let M be a closed 4-manifold with fundamental group π . Then
the following are equivalent:

(1) M is homotopy equivalent to a H2 × E2 -manifold;

(2) π has a finitely generated infinite subgroup ρ such that [π : Nπ(ρ)] <∞,√
ρ = 1, ζCπ(ρ) ∼= Z2 and χ(M) = 0;

(3)
√
π ∼= Z2 , [π :

√
π] = ∞, [π : Cπ(

√
π)] <∞, eQ(π) = 0 and χ(M) = 0.

Proof If M is a H2 ×E2 -manifold it is finitely covered by B× T , where B is
a closed hyperbolic surface. Thus (1) implies (2), on taking ρ = π1(B).

If (2) holds M is aspherical and so π is a PD4 -group, by Theorem 9.1. Let
C = Cπ(ρ). Then C is also normal in ν = Nπ(ρ), and C∩ρ = 1, since

√
ρ = 1.

Hence ρ×C ∼= ρ.C ≤ π . Now ρ is nontrivial. If ρ were free then an argument
using the LHSSS for H∗(ν; Q[ν]) would imply that ρ has two ends, and hence
that

√
ρ = ρ ∼= Z . Hence c.d.ρ ≥ 2. Since moreover Z2 ≤ C we must have

c.d.ρ = c.d.C = 2 and [π : ρ.C] < ∞. It follows easily that
√
π ∼= Z2 and

[π : Cπ(
√
π)] <∞. Moreover π has a normal subgroup K of finite index which

contains
√
π and is such that K ∼= √

π×K/
√
π . In particular, eQ(K) = 0 and

so eQ(π) = 0. Thus (2) implies (3).

If (3) holds M is homotopy equivalent to a manifold which is Seifert fibred over
a hyperbolic orbifold, by Corollary 9.2.1. Since eQ(π) = 0 this manifold has a
finite regular covering which is a product B × T , with π1(T ) =

√
π . Let H be

the maximal solvable normal subgroup of π . Since π/
√
π has no infinite solvable

normal subgroup H/
√
π is finite, and since π is torsion free the preimage of

any finite subgroup of π/
√
π is

√
π or Z ⋊−1 Z . Then [H :

√
π] ≤ 2, π1(B)

embeds in π/H as a subgroup of finite index and π/H has no nontrivial finite
normal subgroup. Therefore there is a homomorphism h : π → Isom(H2) with
kernel H and image a discrete cocompact subgroup, by the solution to the
Nielsen realization problem for surfaces [Ke83]. By the lemma there is also a
homomorphism f : π → E(2) which maps

√
π to a lattice. The homomorphism

(h, f) : π → Isom(H2 ×E2) is injective, since π is torsion-free, and its image is
discrete and cocompact. Therefore it is a lattice, and so (3) implies (1).
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A similar argument may be used to characterize S̃L × E1 -manifolds.

Theorem 9.6 Let M be a closed 4-manifold with fundamental group π . Then
the following are equivalent:

(1) M is homotopy equivalent to a S̃L × E1 -manifold;

(2)
√
π ∼= Z2 , [π :

√
π] = ∞, [π : Cπ(

√
π)] <∞, eQ(π) 6= 0 and χ(M) = 0.

Proof (Sketch) These conditions are clearly necessary. If they hold M is
aspherical and π has a normal subgroup K of finite index which is a central
extension of a PD+

2 -group G by
√
π . Let e(K) ∈ H2(G;Z2) ∼= Z2 be the class

of this extension. There is an epimorphism λ : Z2 → Z such that λ♯(e(K)) = 0
in H2(G;Z), and so K/Ker(λ) ∼= G × Z . Hence K ∼= ν × Z , where ν is a

S̃L-manifold group. Let A <
√
π be an infinite cyclic normal subgroup of π

which maps onto K/ν , and let H be the preimage in π of the maximal finite
normal subgroup of π/A. Then [H : A] ≤ 2, ν embeds in π/H as a subgroup
of finite index and π/H has no nontrivial finite normal subgroup. Hence π/H

is a S̃L-orbifold group, by Satz 2.1 of [ZZ82]. (This is another application of
[Ke83]). A homomorphism f : π → E(1) which is injective on H and with
image a lattice may be constructed and the sufficiency of these conditions may
then be established as in Theorem 9.5.

Corollary 9.6.1 A group π is the fundamental group of a closed H2 ×E2 - or
S̃L×E1-manifold if and only if it is a PD4 -group,

√
π ∼= Z2 and π acts on

√
π

through a finite subgroup of GL(2,Z). The geometry is H2 × E2 if and only if
eQ(π) = 0.

Corollary 9.6.2 (Kemp) An aspherical Seifert fibred 4-manifold is geometric
if and only if it is finitely covered by a geometric 4-manifold.

A closed 4-manifold M is an H2 × E2 -manifold if and only if it is both Seifert
fibred and also the total space of an orbifold bundle over a flat 2-orbifold and
with general fibre a hyperbolic surface, for the two projections determine a
direct product splitting of a subgroup of finite index, and so eQ(π) = 0.

9.3 H3 × E1 -manifolds

An argument related to that of Theorem 9.4 (using Mostow rigidity instead of
[Ke83]) shows that a 4-manifold M with fundamental group π is homotopy
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equivalent to an H3 × E1 -manifold if and only if χ(M) = 0,
√
π = Z and

π has a normal subgroup of finite index which is isomorphic to ρ × Z where
ρ is a discrete cocompact subgroup of PSL(2,C). If every PD3 -group is the
fundamental group of an aspherical closed 3-manifold and if every atoroidal
aspherical closed 3-manifold is hyperbolic we could replace the last assertion
by the more intrinsic conditions that ρ have one end (which would suffice with
the other conditions to imply that M is aspherical and hence that ρ is a PD3 -
group), no noncyclic abelian subgroups and

√
ρ = 1 (which would imply that

any irreducible 3-manifold with fundamental group ρ is atoroidal). Similarly, a
group G should be the fundamental group of an H3×E1 -manifold if and only if
it is torsion free and has a normal subgroup of finite index isomorphic to ρ×Z
where ρ is a PD3 -group with

√
ρ = 1 and no noncyclic abelian subgroups.

The foliation of H3 × R by copies of H3 induces a codimension 1 foliation of
any closed H3 × E1 -manifold. If all the leaves are compact, then it is either a
mapping torus or the union of two twisted I -bundles. Is this always the case?

Theorem 9.7 Let M be a closed H3 × E1 -manifold. If ζπ ∼= Z then M is
homotopy equivalent to a mapping torus of a self homeomorphism of an H3 -
manifold; otherwise M is homotopy equivalent to the union of two twisted
I -bundles over H3 -manifold bases.

Proof There is a homomorphism λ : π → E(1) with image a discrete cocom-
pact subgroup and with λ(

√
π) 6= 1, by Lemma 9.4. Let K = Ker(λ). Then

K ∩√
π = 1, so K is isomorphic to a subgroup of finite index in π/

√
π . There-

fore K ∼= π1(N) for some closed H3 -manifold, since it is torsion free. If ζπ = Z
then Im(λ) ∼= Z (since ζD = 1); if ζπ = 1 then Im(λ) ∼= D . The theorem now
follows easily.

9.4 Mapping tori

In this section we shall use 3-manifold theory to characterize mapping tori with
one of the geometries H3 × E1 , S̃L × E1 or H2 × E2 .

Theorem 9.8 Let φ be a self homeomorphism of a closed 3-manifold N which
admits the geometry H2×E1 or S̃L. Then the mapping torus M(φ) = N×φS

1

admits the corresponding product geometry if and only if the outer automor-
phism [φ∗] induced by φ has finite order. The mapping torus of a self homeo-
morphism φ of an H3 -manifold N admits the geometry H3 × E1 .
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Proof Let ν = π1(N) and let t be an element of π = π1(M(φ)) which projects

to a generator of π1(S
1). If M(φ) has geometry S̃L × E1 then after passing

to the 2-fold covering space M(φ2), if necessary, we may assume that π is a

discrete cocompact subgroup of Isom(S̃L)×R. As in Theorem 9.3 the intersec-
tion of π with the centre of this group is a lattice subgroup L ∼= Z2 . Since the
centre of ν is Z the image of L in π/ν is nontrivial, and so π has a subgroup
σ of finite index which is isomorphic to ν × Z . In particular, conjugation by
t[π:σ] induces an inner automorphism of ν .

If M(φ) has geometry H2×E2 a similar argument implies that π has a subgroup
σ of finite index which is isomorphic to ρ×Z2 , where ρ is a discrete cocompact
subgroup of PSL(2,R), and is a subgroup of ν . It again follows that t[π:σ]

induces an inner automorphism of ν .

Conversely, suppose that N has a geometry of type H2 × E1 or S̃L and that
[φ∗] has finite order in Out(ν). Then φ is homotopic to a self homeomorphism
of (perhaps larger) finite order [Zn80] and is therefore isotopic to such a self
homeomorphism [Sc85,BO91], which may be assumed to preserve the geomet-
ric structure [MS86]. Thus we may assume that φ is an isometry. The self
homeomorphism of N × R sending (n, r) to (φ(n), r + 1) is then an isometry
for the product geometry and the mapping torus has the product geometry.

If N is hyperbolic then φ is homotopic to an isometry of finite order, by Mostow
rigidity [Ms68], and is therefore isotopic to such an isometry [GMT03], so the
mapping torus again has the product geometry.

A closed 4-manifold M which admits an effective T -action with hyperbolic base
orbifold is homotopy equivalent to such a mapping torus. For then ζπ =

√
π

and the LHSSS for homology gives an exact sequence

H2(π/ζπ; Q) → H1(ζπ; Q) → H1(π; Q).

As π/ζπ is virtually a PD2 -group H2(π/ζπ; Q) ∼= Q or 0, so ζπ/ζπ ∩ π′ has
rank at least 1. Hence π ∼= ν ⋊θ Z where ζν ∼= Z , ν/ζν is virtually a PD2 -
group and [θ] has finite order in Out(ν). If moreover M is orientable then it
is geometric ([Ue90,91] - see also §7 of Chapter 7). Note also that if M is a

S̃L × E1 -manifold then ζπ =
√
π if and only if π ≤ Isomo(S̃L × E1).

Let F be a closed hyperbolic surface and α : F → F a pseudo-Anasov home-
omorphism. Let Θ(f, z) = (α(f), z̄) for all (f, z) in N = F × S1 . Then
N is an H2 × E1 -manifold. The mapping torus of Θ is homeomorphic to an
H3 × E1 -manifold which is not a mapping torus of any self-homeomorphism of
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an H3 -manifold. In this case [Θ∗] has infinite order. However if N is a S̃L-
manifold and [φ∗] has infinite order then M(φ) admits no geometric structure,
for then

√
π ∼= Z but is not a direct factor of any subgroup of finite index.

If ζν ∼= Z and ζ(ν/ζν) = 1 then Hom(ν/ν ′, ζν) embeds in Out(ν), and thus
ν has outer automorphisms of infinite order, in most cases [CR77].

Let N be an aspherical closed X3 -manifold where X3 = H3 , S̃L or H2×E1 , and
suppose that β1(N) > 0 but N is not a mapping torus. Choose an epimorphism
λ : π1(N) → Z and let N̂ be the 2-fold covering space associated to the
subgroup λ−1(2Z). If ν : N̂ → N̂ is the covering involution then µ(n, z) =
(ν(n), z̄) defines a free involution on N × S1 , and the orbit space M is an
X3 × E1 -manifold with β1(M) > 0 which is not a mapping torus.

9.5 The semisimple geometries: H2 × H2 , H4 and H2(C)

In this section we shall consider the remaining three geometries realizable by
closed 4-manifolds. (Not much is known about H4 or H2(C).)

Let P = PSL(2,R) be the group of orientation preserving isometries of H2 .
Then Isom(H2×H2) contains P ×P as a normal subgroup of index 8. If M is
a closed H2×H2 -manifold then σ(M) = 0 and χ(M) > 0, and M is a complex
surface if (and only if) π1(M) is a subgroup of P ×P . It is reducible if it has a
finite cover isometric to a product of closed surfaces. The fundamental groups
of such manifolds may be characterized as follows.

Theorem 9.9 A group π is the fundamental group of a reducible H2 × H2 -
manifold if and only if it is torsion free,

√
π = 1 and π has a subgroup of finite

index which is isomorphic to a product of PD2 -groups.

Proof The conditions are clearly necessary. Suppose that they hold. Then π is
a PD4 -group and has a normal subgroup of finite index which is a direct product
K.L ∼= K × L, where K and L are PD2 -groups and ν = Nπ(K) = Nπ(L) has
index at most 2 in π , by Corollary 5.5.2. After enlarging K and L, if necessary,
we may assume that L = Cπ(K) and K = Cπ(L). Hence ν/K and ν/L have no
nontrivial finite normal subgroup. (For if K1 is normal in ν and contains K as a
subgroup of finite index then K1∩L is finite, hence trivial, and so K1 ≤ Cπ(L).)
The action of ν/L by conjugation on K has finite image in Out(K), and so
ν/L embeds as a discrete cocompact subgroup of Isom(H2), by the Nielsen
conjecture [Ke83]. Together with a similar embedding for ν/K we obtain a
homomorphism from ν to a discrete cocompact subgroup of Isom(H2 × H2).
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If [π : ν] = 2 let t be an element of π − ν , and let j : ν/K → Isom(H2) be an
embedding onto a discrete cocompact subgroup S . Then tKt−1 = L and con-
jugation by t induces an isomorphism f : ν/K → ν/L. The homomorphisms
j and j ◦ f−1 determine an embedding J : ν → Isom(H2 ×H2) onto a discrete
cocompact subgroup of finite index in S × S . Now t2 ∈ ν and J(t2) = (s, s),
where s = j(t2K). We may extend J to an embedding of π in Isom(H2 ×H2)
by defining J(t) to be the isometry sending (x, y) to (y, s.x). Thus (in either
case) π acts isometrically and properly discontinuously on H2×H2 . Since π is
torsion free the action is free, and so π = π1(M), where M = π\(H2×H2).

Corollary 9.9.1 Let M be a H2 × H2 -manifold. Then M is reducible if and
only if it has a 2-fold covering space which is homotopy equivalent to the total
space of an orbifold bundle over a hyperbolic 2-orbifold.

Proof That reducible manifolds have such coverings was proven in the the-
orem. Conversely, an irreducible lattice in P × P cannot have any nontrivial
normal subgroups of infinite index, by Theorem IX.6.14 of [Ma]. Hence an
H2 × H2 -manifold which is finitely covered by the total space of a surface bun-
dle is virtually a cartesian product.

Is the 2-fold covering space itself such a bundle space over a 2-orbifold? In
general, we cannot assume that M is itself fibred over a 2-orbifold. Let G be a
PD2 -group with ζG = 1 and let x be a nontrivial element of G. A cocompact
free action of G on H2 determines a cocompact free action of

π = 〈G×G, t | t(g1, g2)t−1 = (xg2x
−1, g1) for all (g1, g2) ∈ G×G, t2 = (x, x)〉

on H2 × H2 , by (g1, g2).(h1, h2) = (g1.h1, g2.h2) and t.(h1, h2) = (x.h2, h1),
for all (g1, g2) ∈ G ×G and (h1, h2) ∈ H2 ×H2 . The group π has no normal
subgroup which is a PD2 -group. (Note also that if G is orientable π\(H2×H2)
is a compact complex surface.)

We may use Theorem 9.9 to give several characterizations of the homotopy
types of such manifolds.

Theorem 9.10 Let M be a closed 4-manifold with fundamental group π .
Then the following are equivalent:

(1) M is homotopy equivalent to a reducible H2 × H2 -manifold;

(2) π has an ascendant subgroup G which is FP2 , has one end and such that
Cπ(G) is not a free group, π2(M) = 0 and χ(M) 6= 0;
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(3) π has a subgroup ρ of finite index which is isomorphic to a product of
two PD2 -groups and χ(M)[π : ρ] = χ(ρ) 6= 0.

(4) π is virtually a PD4 -group,
√
π = 1 and π has a torsion free subgroup

of finite index which is isomorphic to a nontrivial product σ × τ where
χ(M)[π : σ × τ ] = (2 − β1(σ))(2 − β1(τ)).

Proof As H2 × H2 -manifolds are aspherical (1) implies (2), by Theorem 9.8.

Suppose now that (2) holds. Then π has one end, by transfinite induction, as in
Theorem 4.8. Hence M is aspherical and π is a PD4 -group, since π2(M) = 0.

Since χ(M) 6= 0 we must have
√
π = 1. (For otherwise β

(2)
i (π) = 0 for

all i, by Theorem 2.3, and so χ(M) = 0.) In particular, every ascendant
subgroup of π has trivial centre. Therefore G ∩ Cπ(G) = ζG = 1 and so
G × Cπ(G) ∼= ρ = G.Cπ(G) ≤ π . Hence c.d.Cπ(G) ≤ 2. Since Cπ(G) is
not free c.d.G × Cπ(G) = 4 and so ρ has finite index in π . (In particular,
[Cπ(Cπ(G)) : G] is finite.) Hence ρ is a PD4 -group and G and Cπ(G) are
PD2 -groups, so π is virtually a product. Thus (2) implies (1), by Theorem 9.9.

It is clear that (1) implies (3). If (3) holds then on applying Theorems 2.2 and
3.5 to the finite covering space associated to ρ we see that M is aspherical,
so π is a PD4 -group and (4) holds. Similarly, M is asperical if (4) holds. In
particular, π is a PD4 -group and so is torsion free. Since

√
π = 1 neither σ

nor τ can be infinite cyclic, and so they are each PD2 -groups. Therefore π is
the fundamental group of a reducible H2 × H2 -manifold, by Theorem 9.9, and
M ≃ π\H2 ×H2 , by asphericity.

The asphericity of M could be ensured by assuming that π be PD4 and
χ(M) = χ(π), instead of assuming that π2(M) = 0.

For H2 × H2 -manifolds we can give more precise criteria for reducibility.

Theorem 9.11 Let M be a closed H2×H2 -manifold with fundamental group
π . Then the following are equivalent:

(1) π has a subgroup of finite index which is a nontrivial direct product;

(2) Z2 < π ;

(3) π has a nontrivial element with nonabelian centralizer;

(4) π ∩ ({1} × P ) 6= 1;

(5) π ∩ (P × {1}) 6= 1;

(6) M is reducible.
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Proof Since π is torsion free each of the above conditions is invariant under
passage to subgroups of finite index, and so we may assume without loss of
generality that π ≤ P × P . Suppose that σ is a subgroup of finite index in
π which is a nontrivial direct product. Since χ(σ) 6= 0 neither factor can be
infinite cyclic, and so the factors must be PD2 -groups. In particular, Z2 < σ
and the centraliser of any element of either direct factor is nonabelian. Thus
(1) implies (2) and (3).

Suppose that (a, b) and (a′, b′) generate a subgroup of π isomorphic to Z2 .
Since centralizers of elements of infinite order in P are cyclic the subgroup of
P generated by {a, a′} is infinite cyclic or is finite. We may assume without
loss of generality that a′ = 1, and so (2) implies (4). Similarly, (2) implies (5).

Let g = (g1, g2) ∈ P ×P be nontrivial. Since centralizers of elements of infinite
order in P are infinite cyclic and CP×P (〈g〉) = CP (〈g1〉) × CP (〈g2〉) it follows
that if Cπ(〈g〉) is nonabelian then either g1 or g2 has finite order. Thus (3)
implies (4) and (5).

Let K1 = π∩ ({1}×P ) and K2 = π∩ (P ×{1}). Then Ki is normal in π , and
there are exact sequences

1 → Ki → π → Li → 1,

where Li = pri(π) is the image of π under projection to the ith factor of P×P ,
for i = 1 and 2. Moreover Ki is normalised by L3−i , for i = 1 and 2. Suppose
that K1 6= 1. Then K1 is non abelian, since it is normal in π and χ(π) 6= 0. If
L2 were not discrete then elements of L2 sufficiently close to the identity would
centralize K1 . As centralizers of nonidentity elements of P are abelian, this
would imply that K1 is abelian. Hence L2 is discrete. Now L2\H2 is a quotient
of π\H ×H and so is compact. Therefore L2 is virtually a PD2 -group. Now
c.d.K2 + v.c.d.L2 ≥ c.d.π = 4, so c.d.K2 ≥ 2. In particular, K2 6= 1 and so a
similar argument now shows that c.d.K1 ≥ 2. Hence c.d.K1 ×K2 ≥ 4. Since
K1×K2

∼= K1.K2 ≤ π it follows that π is virtually a product, and M is finitely
covered by (K1\H2) × (K2\H2). Thus (4) and (5) are equivalent, and imply
(6). Clearly (6) implies (1).

The idea used in showing that (4) implies (5) and (6) derives from one used in
the proof of Theorem 6.3 of [Wl85].

If Γ is a discrete cocompact subgroup of P × P such that M = Γ\H2 × H2

is irreducible then Γ ∩ P × {1} = Γ ∩ {1} × P = 1, by the theorem. Hence
the natural foliations of H2 ×H2 descend to give a pair of transverse foliations
of M by copies of H2 . (Conversely, if M is a closed Riemannian 4-manifold
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with a codimension 2 metric foliation by totally geodesic surfaces then M has
a finite cover which either admits the geometry H2 × E2 or H2 × H2 or is the
total space of an S2 or T -bundle over a closed surface or is the mapping torus
of a self homeomorphism of R3/Z3 , S2 × S1 or a lens space [Ca90].)

An irreducible H2×H2 -lattice is an arithmetic subgroup of Isom(H2×H2), and
has no nontrivial normal subgroups of infinite index, by Theorems IX.6.5 and
14 of [Ma]. Such irreducible lattices are rigid, and so the argument of Theorem
8.1 of [Wa72] implies that there are only finitely many irreducible H2 × H2 -
manifolds with given Euler characteristic. What values of χ are realized by
such manifolds?

Examples of irreducible H2 ×H2 -manifolds may be constructed as follows. Let
F be a totally real number field, with ring of integers OF . Let H be a skew field
which is a quaternion algebra over F such that H ⊗σ R ∼= M2(R) for exactly
two embeddings σ of F in R. If A is an order in H (a subring which is also
a finitely generated OF -submodule and such that F.A = H ) then the quotient
of the group of units A× by ±1 embeds as a discrete cocompact subgroup of
P × P , and the corresponding H2 × H2 -manifold is irreducible. (See Chapter
IV of [Vi].) It can be shown that every irreducible, cocompact H2 × H2 -lattice
is commensurable with such a subgroup.

Much less is known about H4 - or H2(C)-manifolds. If M is a closed orientable
H4 -manifold then σ(M) = 0 and χ(M) > 0 [Ko92]. If M is a closed H2(C)-
manifold it is orientable and χ(M) = 3σ(M) > 0 [Wl86]. The isometry group
of H2(C) has two components; the identity component is SU(2, 1) and acts via
holomorphic isomorphisms on the unit ball

{(w, z) ∈ C2 : |w|2 + |z|2 < 1}.

No closed H4 -manifold admits a complex structure. There are only finitely
many closed H4 - or H2(C)-manifolds with a given Euler characteristic. (See
Theorem 8.1 of [Wa72].) The 120-cell space of Davis is a closed orientable H4 -
manifold with χ = 26 and β1 = 24 > 0 [Da85], so all positive multiples of 26 are
realized. (See also [CM05].) Examples of H2(C)-manifolds due to Mumford and
Hirzebruch have the homology of CP 2 (so χ = 3), and χ = 15 and β1 > 0,
respectively [HP96]. It is not known whether all positive multiples of 3 are
realized. Since H4 and H2(C) are rank 1 symmetric spaces the fundamental
groups can contain no noncyclic abelian subgroups [Pr43]. In each case there
are cocompact lattices which are not arithmetic. At present there are not even
conjectural intrinsic characterizations of such groups. (See also [Rt] for the
geometries Hn and [Go] for the geometries Hn(C).)
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Each of the geometries H2 × H2 , H4 and H2(C) admits cocompact lattices
which are not almost coherent. (See §1 of Chapter 4 above, [BM94] and [Ka98],
respectively.) Is this true of every such lattice for one of these geometries?
(Lattices for the other geometries are coherent.)

9.6 Miscellany

A homotopy equivalence between two closed Hn - or Hn(C)-manifolds of dimen-
sion ≥ 3 is homotopic to an isometry, by Mostow rigidity [Ms68]. Farrell and
Jones have established “topological” analogues of Mostow rigidity, which apply
when the model manifold has a metric of nonpositive sectional curvature and
dimension ≥ 5. By taking cartesian products with S1 , we can use their work
in dimension 4 also.

Theorem 9.12 Let X4 be a geometry of aspherical type. A closed 4-manifold
M with fundamental group π is s-cobordant to an X4 -manifold if and only if
π is isomorphic to a cocompact lattice in Isom(X4) and χ(M) = χ(π).

Proof The conditions are clearly necessary. If they hold cM : M → π\X is a
homotopy equivalence, by Theorem 3.5. If X4 is of solvable type cM is homo-
topic to a homeomorphism, by Theorem 8.1. In most of the remaining cases
(excepting only S̃L × E1 - see [Eb82]) the geometry has nonpositive sectional
curvatures, so Wh(π) = Wh(π × Z) = 0 and M × S1 is homeomorphic to
(π\X) × S1 [FJ93’]. Hence M and π\X are s-cobordant, by Lemma 6.10.

The case X4 = S̃L × E1 follows from [NS85] if π ≤ Isomo(S̃L × E1), so that

π\(S̃L×R) admits an effective T -action, and from [HR05] in general.

If M is an aspherical closed 4-manifold with a geometric decomposition π =
π1(M) is built from the fundamental groups of the pieces by amalgamation
along torsion free virtually poly-Z subgroups. As the Whitehead groups of the
geometric pieces are trivial (by the argument of [FJ86]) and the amalgamated
subgroups are regular noetherian it follows from the K -theoretic Mayer-Vietoris
sequence of Waldhausen that Wh(π) = 0. If the pieces all have geometry H4 or
H3×E1 , with at least one piece of type H4 , then M has a metric of nonpositive
curvature and a similar argument applies [HR05].

For the semisimple geometries we may avoid the appeal to L2 -methods to estab-
lish asphericity as follows. Since χ(M) > 0 and π is infinite and residually finite
there is a subgroup σ of finite index such that the associated covering spaces
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Mσ and σ\X are orientable and χ(Mσ) = χ(σ) > 2. In particular, H2(Mσ; Z)
has elements of infinite order. Since the classifying map cMσ : Mσ → σ\X is
2-connected it induces an isomorphism on H2 and hence is a degree-1 map, by
Poincaré duality. Therefore it is a homotopy equivalence, by Theorem 3.2.

Theorem 9.13 An aspherical closed 4-manifold M which is finitely covered
by a geometric manifold is homotopy equivalent to a geometric 4-manifold.

Proof The result is clear for infrasolvmanifolds, and follows from Theorems
9.5 and 9.6 if the geometry is H2 ×E2 or S̃L×E1 , and from Theorem 9.9 if M
is finitely covered by a reducible H2×H2 -manifold. It holds for the other closed
H2 × H2 -manifolds and for the geometries H4 and H2(C) by Mostow rigidity.
If the geometry is H3 ×E1 then

√
π ∼= Z and π/

√
π is virtually the group of a

H3 -manifold. Hence π/
√
π acts isometrically and properly discontinuously on

H3 , by Mostow rigidity. Moreover as the hypotheses of Lemma 9.4 are satisfied,
by Theorem 9.3, there is a homomorphism λ : π → D < Isom(E1) which maps√
π injectively. Together these actions determine a discrete and cocompact

action of π by isometries on H3 ×R. Since π is torsion free this action is free,
and so M is homotopy equivalent to an H3 × E1 -manifold.

The result holds also for S4 and CP2 , but is not yet clear for S2×E2 or S2×H2 .
It fails for S3 × E1 or S2 × S2 . In particular, there is a closed nonorientable
4-manifold which is doubly covered by S2 ×S2 but is not homotopy equivalent
to an S2 × S2 -manifold. (See Chapters 11 and 12.)

If π is the fundamental group of an aspherical closed geometric 4-manifold

then β
(2)
s (π) = 0 for s = 0 or 1, and so β

(2)
2 (π) = χ(π), by Theorem 1.35

of [Lü]. Therefore def(π) ≤ min{0, 1 − χ(π)}, by Theorems 2.4 and 2.5. If π
is orientable this gives def(π) ≤ 2β1(π) − β2(π) − 1. When β1(π) = 0 this
is an improvement on the estimate def(π) ≤ β1(π) − β2(π) derived from the
ordinary homology of a 2-complex with fundamental group π . (In particular,
the fundamental group of Mumford’s pseudo-CP 2 has deficiency ≤ −2.)
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Chapter 10

Manifolds covered by S2 × R2

If the universal covering space of a closed 4-manifold with infinite fundamental
group is homotopy equivalent to a finite complex then it is either contractible
or homotopy equivalent to S2 or S3 , by Theorem 3.9. The cases when M
is aspherical have been considered in Chapters 8 and 9. In this chapter and
the next we shall consider the spherical cases. We show first that if M̃ ≃ S2

then M has a finite covering space which is s-cobordant to a product S2 ×B ,
where B is an aspherical surface, and π is the group of a S2 ×E2 - or S2 ×H2 -
manifold. In §2 we show that there are only finitely many homotopy types of
such manifolds for each such group π . In §3 we show that all S2 - and RP 2 -
bundles over aspherical closed surfaces are geometric. We shall then determine
the nine possible elementary amenable groups (corresponding to the geometry
S2 × E2 ). Six of these groups have infinite abelianization, and in §5 we show
that for these groups the homotopy types may be distinguished by their Stiefel-
Whitney classes. After some remarks on the homeomorphism classification, we
conclude by showing that every 4-manifold whose fundamental group is a PD2 -
group admits a 2-connected degree-1 map to the total space of an S2 -bundle.
For brevity, we shall let X2 denote both E2 and H2 .

10.1 Fundamental groups

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S2 rests on Bowditch’s Theorem, via Theorem 5.14.

Theorem 10.1 Let M be a closed 4-manifold with fundamental group π .
Then the following conditions are equivalent:

(1) π is virtually a PD2 -group and χ(M) = 2χ(π);

(2) π 6= 1 and π2(M) ∼= Z ;

(3) M has a covering space of degree dividing 4 which is s-cobordant to
S2 ×B , where B is an aspherical closed orientable surface;

(4) M is virtually s-cobordant to an S2 × X2 -manifold.

If these conditions hold then M̃ is homeomorphic to S2 ×R2 .
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Proof If (1) holds then π2(M) ∼= Z , by Theorem 5.10, and so (2) holds. If
(2) holds then the covering space associated to the kernel of the natural action
of π on π2(M) is homotopy equivalent to the total space of an S2 -bundle ξ
over an aspherical closed surface with w1(ξ) = 0, by Lemma 5.11 and Theorem
5.14. On passing to a 2-fold covering space, if necessary, we may assume that
w2(ξ) = w1(M) = 0 also. Hence ξ is trivial and so the corresponding covering
space of M is s-cobordant to a product S2 × B with B orientable. Moreover
M̃ ∼= S2 ×R2 , by Theorem 6.16. It is clear that (3) implies (4) and (4) implies
(1).

This follows also from [Fa74] instead of [Bo04] if we know also that χ(M) ≤ 0.
If π is infinite and π2(M) ∼= Z then π may be realized geometrically.

Theorem 10.2 Let M be a closed 4-manifold with fundamental group π and
such that π2(M) ∼= Z . Then π is the fundamental group of a closed manifold
admitting the geometry S2 × E2 , if π is virtually Z2 , or S2 × H2 otherwise.

Proof If π is torsion free then it is itself a surface group. If π has a nontrivial
finite normal subgroup then it is a direct product Ker(u) × (Z/2Z), where
u : π → {±1} = Aut(π2(M)) is the natural homomorphism. (See Theorem
5.14). In either case π is the fundamental group of a corresponding product of
surfaces. Otherwise π is a semidirect product Ker(u) ⋊ (Z/2Z) and is a plane
motion group, by a theorem of Nielsen ([Zi]; see also Theorem A of [EM82]).
This means that there is a monomorphism f : π → Isom(X2) with image a
discrete subgroup which acts cocompactly on X , where X is the Euclidean or
hyperbolic plane, according as π is virtually abelian or not. The homomorphism
(u, f) : π → {±I} × Isom(X2) ≤ Isom(S2 ×X2) is then a monomorphism onto
a discrete subgroup which acts freely and cocompactly on S2 ×R2 . In all cases
such a group may be realised geometrically.

The orbit space of the geometric action of π described above is a cartesian
product with S2 if u is trivial and fibres over RP 2 otherwise.

10.2 Homotopy type

In this section we shall extend an argument of Hambleton and Kreck to show
that there are only finitely many homotopy types of PD4 -complexes with given
fundamental group and universal cover homotopy equivalent to S2 .

We shall first show that the orientation character and the action of π on π2

determine each other.
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Lemma 10.3 Let M be a PD4 -complex with fundamental group π 6= 1 and
such that π2(M) ∼= Z . Then H2(π; Z[π]) ∼= Z and w1(M) = u + v , where
u : π → Aut(π2(M)) = Z/2Z and v : π → Aut(H2(π; Z[π])) = Z/2Z are the
natural actions.

Proof Since π 6= 1 it is infinite, by Theorem 10.1. Thus HomZ[π](π2(M),Z[π])

= 0 and so Poincaré duality determines an isomorphism D : H2(π; Z[π]) ∼=
π2(M), by Lemma 3.3. Let w = w1(M). Then gD(c) = (−1)w(g)cg−1 =
(−1)v(g)+w(g)c for all c ∈ H2(π; Z[π]) and g ∈ π , and so u = v + w .

Note that u and w1(M) are constrained by the further conditions that K =
Ker(u) is torsion free and Ker(w1(M)) has infinite abelianization if χ(M) ≤ 0.
If π < Isom(X2) is a plane motion group then v(g) detects whether g ∈ π
preserves the orientation of X2 . In particular, if π ∼= K × Z/2Z then v =
w1(K). If π is torsion free then M is homotopy equivalent to the total space
of an S2 -bundle ξ over an aspherical closed surface B , and the equation u =
w1(M) + v follows from Lemma 5.11.

Let βu be the Bockstein operator associated with the exact sequence of coeffi-
cients

0 → Zu → Zu → F2 → 0,

and let βu be the composition with reduction mod (2). In general βu is NOT
the Bockstein operator for the untwisted sequence 0 → Z → Z → F2 → 0, and
βu is not Sq1 , as can be seen already for cohomology of the group Z/2Z acting
nontrivially on Z .

Lemma 10.4 Let M be a PD4 -complex with fundamental group π and such
that π2(M) ∼= Z . If π has nontrivial torsion Hs(M ; F2) ∼= Hs(π; F2) for s ≤ 2.
The Bockstein operator βu : H2(π; F2) → H3(π;Zu) is onto, and reduction
mod (2) from H3(π;Zu) to H3(π; F2) is a monomorphism. The restriction of
k1(M) to each subgroup of order 2 is nontrivial. Its image in H3(M ;Zu) is 0.

Proof Most of these assertions hold vacuously if π is torsion free, so we may
assume that π has an element of order 2. Then M has a covering space M̂
homotopy equivalent to RP 2 , and so the mod-2 Hurewicz homomorphism from
π2(M) to H2(M ; F2) is trivial, since it factors through H2(M̂ ; F2). Since we
may construct K(π, 1) from M by adjoining cells to kill the higher homotopy
of M the first assertion follows easily.

The group H3(π;Zu) has exponent dividing 2, since the composition of restric-
tion to H3(K; Z) = 0 with the corestriction back to H3(π;Zu) is multiplication
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by the index [π : K]. Consideration of the long exact sequence associated to the
coefficient sequence shows that βu is onto. If f : Z/2Z → π is a monomorphism

then f∗k1(M) is the first k -invariant of M̃/f(Z/2Z) ≃ RP 2 , which generates
H3(Z/2Z;π2(M)) = Z/2Z . The final assertion is clear.

As M has a finitely covering space which is homotopy equivalent to S2 × B ,
where B is a closed orientable surface, w2(M) restricts to 0 in H2(M̃ ; F2) and
so is in the image of H2(cM ; F2). The Wu formulae for M then imply that the
total Stiefel-Whitney class w(M) is in the image of H∗(cM ; F2).

Theorem 10.5 Let M be a PD4 -complex such that π2(M) ∼= Z . There are
only finitely many homotopy types of PD4 -complexes X with π1(X) ∼= π =
π1(M) and π2(X) ∼= Z , and at most two with the algebraic 2-type of M .

Proof As [π : K] ≤ 2 and c.d.K = 2 an LHSSS calculation shows that
H3(π;π2(M)) is finite, so there are only finitely many possiblities for the first
k -invariant. The algebraic 2-type [π, π2(M), k1(M)] determines P = P2(M),
the second stage of the Postnikov tower for M . Let p : P̃ ≃ K(Z, 2) → P be
the universal covering of P .

The action of π on π2(M) also determines w1(M), by Lemma 10.3. As fM :
M → P is 3-connected we may define a class w in H1(P ; Z/2Z) by f∗Mw =
w1(M). Let SPD4 (P ) be the set of “polarized” PD4 -complexes (X, f) where
f : X → P is 3-connected and w1(X) = f∗w , modulo homotopy equivalence
over P . (Note that as π is one-ended the universal cover of X is homotopy
equivalent to S2 ). Let [X] be the fundamental class of X in H4(X;Zw). It
follows as in Lemma 1.3 of [HK88] that given two such polarized complexes
(X, f) and (Y, g) there is a map h : X → Y with gh = f if and only if
f∗[X] = g∗[Y ] in H4(P ;Zw). Since X̃ ≃ Ỹ ≃ S2 and f and g are 3-connected
such a map h must be a homotopy equivalence.

From the Cartan-Leray homology spectral sequence for the classifying map
cP : P → K = K(π, 1) we see that there is an exact sequence

0 → H2(π;H2(P̃ ) ⊗ Zw)/Im(d2
5,0) → H4(P ;Zw)/J → H4(π;Zw),

where J = H0(π;H4(P̃ ; Z)⊗Zw)/Im(d2
3,2 +d4

5,0) is the image of H4(P̃ ; Z) ⊗ Zw

in H4(P ;Zw). On comparing this spectral sequence with that for cX we see
that H3(f ;Zw) is an isomorphism and that f induces an isomorphism from
H4(X;Zw) to H4(P ;Zw)/J . Hence J ∼= Coker(H4(f ;Zw)) = H4(P,X;Zw) ∼=
H0(π;H4(P̃ , X̃ ; Z) ⊗ Zw), by the exact sequence of homology with coefficients
Zw for the pair (P,X). Since H4(P̃ , X̃ ; Z) ∼= Z as a π -module this cokernel is Z
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if w = 0 and Z/2Z otherwise. In other words, p and fM induce an isomorphism
H0(π;H4(P̃ ; Zw)) ⊕H4(M ; Zw) = H0(π; Zw) ⊕H4(M ; Zw) ∼= H4(P ; Zw).

Let µ = fM∗[M ] ∈ H4(P ; Zw). We shall show that there are at most 2 orbits of
fundamental classes of such polarized complexes under the action of the group
G of (based) self homotopy equivalences of P which induce the identity on π
and π2(P ). This is clear if w 6= 0, so we may assume that w = 0. (In this case
E2

04 = H0(π; Z) = Z and so d2
32 = d2

50 = 0, since Hi(π; Z) is finite for i > 2.)

Suppose first that u = 0, so π is a PD+
2 -group and k1(M) = 0. Let S =

K(π, 1) and C = CP∞ = K(Z, 2). Then P ≃ S×C , so [P,P ] ∼= [P, S]× [P,C]
and G ∼= [S,C]. The group structure on [S,C] is determined by the loop-
space multiplication m : C × C → C ≃ ΩK(Z, 3). This is characterized by
the property m∗z = z ⊗ 1 + 1 ⊗ z , where z is a generator of H2(CP∞; Z).
The action of G on P is given by g̃(s, c) = (s,m(g(s), c)) for all g ∈ G and
(s, c) ∈ S × C .

Let σ and γ be fundamental classes for S and CP 1 , respectively. The inclusion
of CP 1 into C induces a bijection [S,CP 1] = [S,C], and the degree of a rep-
resentative map of surfaces determines an isomorphism d : [S,C] = H2(π; Z).
Let j : S × CP 1 → S × C be the natural inclusion. Then ω = j∗(σ ⊗ γ) is
the image of the fundamental class of S × C in H4(P ; Zw) and ω ≡ µ mod-
ulo H0(π;H4(P̃ ; Z)w). Since g̃∗σ = σ + d(g)γ and g̃∗γ = γ , it follows that
g̃∗ω = ω + d(g)m∗[γ ⊗ γ].

Since m∗(z2) = z2 ⊗ 1 + 2z ⊗ z + 1 ⊗ z2 and the restriction of z2 to CP 1 is
trivial it follows that m∗(z2)([γ ⊗ γ]) = 2, and so m∗[γ ⊗ γ] = 2[CP 2], where
[CP 2] is the canonical generator of H4(CP

∞; Z). Hence there are two G-orbits
of elements in H4(P ; Zw) whose images agree with µ modulo H0(π;H4(P̃ ; Z)).

In general let MK and PK denote the covering spaces corresponding to the sub-
group K , and let GK be the group of self homotopy equivalences of PK . Lifting
self homotopy equivalences defines a homomorphism from G to GK , which may
be identified with the restriction from H2(π;Zu) to H2(K; Z) ∼= Z , and which
has image of index ≤ 2 (see [Ts80]). Let q : PK → P and qM : MK → M be
the projections. Then q∗fMK∗[MK∗] = 2µ modulo H0(π;H4(P̃ ; Z)). It follows
easily that if g ∈ G and d(g|K) = d then g̃∗(µ) = µ+ d[CP 2]. Thus there are
again at most two G-orbits of elements in H4(P ; Zw) whose images agree with
µ modulo H0(π;H4(P̃ ; Z)w). This proves the theorem.

If π is torsion free it is a PD2 -group and so k1(M) = 0. Each such PD4 -
complex is homotopy equivalent to the total space of an S2 -bundle, and there
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are two such bundle spaces M for each possible group and orientation character,
distinguished by whether w2(M) = 0 or w2(M) 6= 0. (See §5.3.)
If π has an unique subgroup of order 2 then u and w each split the inclusion
of this subgroup and π ∼= K × (Z/2Z). The kernel of the restriction from
H3(π; Zu) to H3(Z/2Z; Zu) is H1(Z/2Z;H2(K; Z) ⊗ Zu) ∼= Z/2Z . Each such
PD4 -complex is homotopy equivalent to the total space of an RP 2 -bundle,
and there are two such bundle spaces M for each group, again distinguished
by w2(M). Can it be seen a priori that the k -invariant must be standard?

Is the homotopy type of M always determined by π1(M) and w(M)? We
may view the classifying map cM : M → K(π, 1) as a fibration with fibre S2

and orientation character w1(cM ) = u. This is induced from the universal S2 -
fibration over BE(S2) by a map h : K(π, 1) → BE(S2), and u = π1(cBE(S2)h).
Since k1(M) is the first obstruction to a cross-section of cM , it is also the
(twisted) Euler class of this S2 -fibration, and so it reduces mod (2) to w3(cM ) ∈
H3(π; F2). Conversely, w3(cM ) determines k1(M), since reduction mod (2) is
injective, by Lemma 10.4. Is the map h determined by w(M)? Is every such
PD4 -complex homotopy equivalent to a geometric 4-manifold? What is the role
of the exotic class in H3(BE(S2); F2)? Are there any such PD4 -complexes for
which the image of this class under h∗ is nonzero?

10.3 Bundle spaces are geometric

All S2×X2 -manifolds are total spaces of orbifold bundles over X2 -orbifolds. We
shall determine the S2 - and RP 2 -bundle spaces among them in terms of their
fundamental groups, and then show that all such bundle spaces are geometric.

Lemma 10.6 Let J = (A, θ) ∈ O(3) × Isom(X2) be an isometry of order 2
which is fixed point free. Then A = −I . If moreover J is orientation reversing
then θ = idX or has a single fixed point.

Proof Since any involution of R2 (such as θ) must fix a point, a line or be
the identity, A ∈ O(3) must be a fixed point free involution, and so A = −I .
If J is orientation reversing then θ is orientation preserving, and so must fix a
point or be the identity.

Theorem 10.7 Let M be a closed S2 ×X2 -manifold with fundamental group
π . Then

(1) M is the total space of an orbifold bundle with base an X2 -orbifold and
general fibre S2 or RP 2 ;
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(2) M is the total space of an S2 -bundle over a closed aspherical surface if
and only if π is torsion free;

(3) M is the total space of an RP 2 -bundle over a closed aspherical surface
if and only if π ∼= (Z/2Z) ×K , where K is torsion free.

Proof (1) The group π is a discrete subgroup of Isom(S2 × X2) = O(3) ×
Isom(X2) which acts freely and cocompactly on S2 ×R2 . In particular, N =
π ∩ (O(3) × {1}) is finite and acts freely on S2 , so has order ≤ 2. Let p1 and
p2 be the projections of Isom(S2 ×X2) onto O(3) and Isom(X2), respectively.
Then p2(π) is a discrete subgroup of Isom(X2) which acts cocompactly on R2 ,
and so has no nontrivial finite normal subgroup. Hence N is the maximal finite
normal subgroup of π . Projection of S2 × R2 onto R2 induces an orbifold
bundle projection of M onto p2(π)\R2 and general fibre N\S2 . If N 6= 1 then
N ∼= Z/2Z and π ∼= (Z/2Z) × K , where K = Ker(u) is a PD2 -group, by
Theorem 5.14.

(2) The condition is clearly necessary. (See Theorem 5.10). The kernel of the
projection of π onto its image in Isom(X2) is the subgroup N . Therefore if π
is torsion free it is isomorphic to its image in Isom(X2), which acts freely on
R2 . The projection ρ : S2 × R2 → R2 induces a map r : M → π\R2 , and we
have a commutative diagram:

S2 ×R2 ρ−−−−→ R2

yf
yf̄

M = π\(S2 ×R2)
r−−−−→ π\R2

where f and f̄ are covering projections. It is easily seen that r is an S2 -bundle
projection.

(3) The condition is necessary, by Theorem 5.16. Suppose that it holds. Then
K acts freely and properly discontinuously on R2 , with compact quotient. Let
g generate the torsion subgroup of π . Then p1(g) = −I , by Lemma 10.6. Since
p2(g)

2 = idR2 the fixed point set F = {x ∈ R2 | p2(g)(x) = x} is nonempty,
and is either a point, a line, or the whole of R2 . Since p2(g) commutes with
the action of K on R2 we have KF = F , and so K acts freely and properly
discontinuously on F . But K is neither trivial nor infinite cyclic, and so we
must have F = R2 . Hence p2(g) = idR2 . The result now follows, as K\(S2×R2)
is the total space of an S2 -bundle over K\R2 , by part (1), and g acts as the
antipodal involution on the fibres.
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If the S2×X2 -manifold M is the total space of an S2 -bundle ξ then w1(ξ) = u
and is detected by the determinant: det(p1(g)) = (−1)w1(ξ)(g) for all g ∈ π .

The total space of an RP 2 -bundle over B is the quotient of its orientation dou-
ble cover (which is an S2 -bundle over B ) by the fibrewise antipodal involution
and so there is a bijective correspondance between orientable S2 -bundles over
B and RP 2 -bundles over B .

Let (A, β,C) ∈ O(3) × E(2) = O(3) × (R2 ⋊ O(2)) be the S2 × E2 -isometry
which sends (v, x) ∈ S2 ×R2 to (Av,Cx+ β).

Theorem 10.8 Let M be the total space of an S2 - or RP 2 -bundle over T or
Kb. Then M admits the geometry S2 × E2 .

Proof Let Ri ∈ O(3) be the reflection of R3 which changes the sign of the ith

coordinate, for i = 1, 2, 3. If A and B are products of such reflections then the
subgroups of Isom(S2 × E2) generated by α = (A, ( 1

0 ) , I) and β = (B, ( 0
1 ) , I)

are discrete, isomorphic to Z2 and act freely and cocompactly on S2 × R2 .
Taking

(1) A = B = I ;

(2) A = R1R2, B = R1R3 ;

(3) A = R1, B = I ; and

(4) A = R1, B = R1R2

gives four S2 -bundles ηi over the torus. If instead we use the isometries α =

(A,
(

1
2
0

)
,
(

1 0
0 −1

)
) and β = (B, ( 0

1 ) , I) we obtain discrete subgroups isomorphic

to Z⋊−1Z which act freely and cocompactly. Taking

(1) A = R1, B = I ;

(2) A = R1, B = R2R3 ;

(3) A = I,B = R1 ;

(4) A = R1R2, B = R1 ;

(5) A = B = I ; and

(6) A = I,B = R1R2

gives six S2 -bundles ξi over the Klein bottle.

To see that these are genuinely distinct, we check first the fundamental groups,
then the orientation character of the total space; consecutive pairs of genera-
tors determine bundles with the same orientation character, and we distinguish
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these by means of the second Stiefel-Whitney classes, by computing the self-
intersections of cross-sections. (See Lemma 5.11.(2). We shall use the stereo-
graphic projection of S2 ⊂ R3 = C × R onto Ĉ = C ∪ {∞}, to identify the
reflections Ri : S2 → S2 with the antiholomorphic involutions:

z
R17−→z, z

R27−→ − z, z
R37−→z−1.

Let T = {(s, t) ∈ R2|0 ≤ s, t ≤ 1} be the fundamental domain for the standard
action of Z2 on R2 . A section σ : T → S2 × R2 of the projection to R2 over
T such that σ(1, t) = ασ(0, t) and σ(s, 1) = βσ(s, 0) induces a section of ξi .

As the orientable cases (η1 , η2 , ξ1 and ξ2 ) have been treated in [Ue90] we may
concentrate on the nonorientable cases. In the case of η3 each fixed point P of
A determines a section σP with σP (s, t) = (P, s, t). Since A fixes a circle on
S2 it follows that sections determined by distinct fixed points are isotopic and
disjoint. Therefore σ · σ = 0, so v2(M) = 0 and hence w2(η3) = 0.

We may define a 1-parameter family of sections for η4 by

σλ(s, t) = ((1 − λ)(2t − 1) + λ(4t2 − 2))eπiλ(s− 1
2
).

Now σ0 and σ1 intersect transversely in a single point, corresponding to s = 1/2
and t = (1 +

√
5)/4. Hence σ · σ = 1, so v2(M) 6= 0 and w2(η4) 6= 0.

The remaining cases correspond to S2 -bundles over Kb with nonorientable total
space. We now take K = {(s, t) ∈ R2|0 ≤ s ≤ 1, |t| ≤ 1

2} as the fundamental
domain for the action of Z⋊−1Z on R2 . In this case it suffices to find σ : K →
S2 ×R2 such that σ(1, t) = ασ(0,−t) and σ(s, 1

2) = βσ(s,−1
2 ).

The cases of ξ3 and ξ5 are similar to that of η3 : there are obvious one-parameter
families of disjoint sections, and so w2(ξ3) = w2(ξ5) = 0. However w1(ξ3) 6=
w1(ξ5). (In fact ξ5 is the product bundle).

The functions σλ(s, t) = λ(2s − 1 + it) define a 1-parameter family of sections
for ξ4 such that σ0 and σ1 intersect transversely in one point, so that σ ·σ = 1.
Hence v2(M) 6= 0 and so w2(ξ4) 6= 0.

For ξ6 the functions σλ(s, t) = λ(2s−1)t+i(1−λ)(4t2−1) define a 1-parameter
family of sections such that σ0 and σ1(s, t) intersect transversely in one point,
so that σ · σ = 1. Hence v2(M) 6= 0 and so w2(ξ6) 6= 0.

Thus these bundles are all distinct, and so all S2 -bundles over T or Kb are
geometric of type S2 × E2 .

Adjoining the fixed point free involution (−I, 0, I) to any one of the above ten
sets of generators for the S2 -bundle groups amounts to dividing out the S2
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fibres by the antipodal map and so we obtain the corresponding RP 2 -bundles.
(Note that there are just four such RP 2 -bundles - but each has several distinct
double covers which are S2 -bundles).

Theorem 10.9 Let M be the total space of an S2 - or RP 2 -bundle over a
closed hyperbolic surface. Then M admits the geometry S2 × H2 .

Proof Let Tg be the closed orientable surface of genus g , and let Tg ⊂ H2 be
a 2g -gon representing the fundamental domain of Tg . The map Ω : Tg → T

that collapses 2g − 4 sides of Tg to a single vertex in the rectangle T induces
a degree 1 map Ω̂ from Tg to T that collapses g− 1 handles on T g to a single
point on T . (We may assume the induced epimorphism from

π1(Tg) = 〈a1, b1, . . . , ag, bg | Πg
i=1[ai, bi] = 1〉

to Z2 kills the generators aj, bj for j > 1). Hence given an S2 -bundle ξ over
T with total space Mξ = Γξ\(S2 ×E2), where

Γξ = {(ξ(h), h) | h ∈ π1(T )} ≤ Isom(S2 × E2)

and ξ : Z2 → O(3) is as in Theorem 10.8, the pullback Ω̂∗(ξ) is an S2 -bundle
over Tg , with total space MξΩ = ΓξΩ\(S2×H2), where ΓξΩ = {(ξΩ̂∗(h), h) | h ∈
Π1(T

g)} ≤ Isom(S2 × H2). As Ω̂ is of degree 1 it induces monomorphisms in
cohomology, so w(ξ) is nontrivial if and only if w(Ω̂∗(ξ)) = Ω̂∗w(ξ) is nontrivial.
Hence all S2 -bundles over T g for g ≥ 2 are geometric of type S2 × H2 .

Suppose now that B is the closed surface #3RP 2 = T#RP 2 = Kb#RP 2 .
Then there is a map Ω̂ : T#RP 2 → RP 2 that collapses the torus summand to
a single point. This map Ω̂ again has degree 1 and so induces monomorphisms
in cohomology. In particular Ω̂∗ preserves the orientation character, that is
w1(Ω̂

∗(ξ)) = Ω̂∗w1(RP
2) = w1(B), and is an isomorphism on H2 . We may

pull back the four S2 -bundles ξ over RP 2 along Ω̂ to obtain the four bundles
over B with first Stiefel-Whitney class w1(Ω̂

∗ξ) either 0 or w1(B).

Similarly there is a map Υ̂ : Kb#RP 2 → RP 2 that collapses the Klein bot-
tle summand to a single point. This map Υ̂ has degree 1 mod 2 so that
Υ̂∗w1(RP

2) has nonzero square since w1(RP
2)2 6= 0. Note that in this case

Υ̂∗w1(RP
2) 6= w1(B). Hence we may pull back the two S2 -bundles ξ over

RP 2 with w1(ξ) = w1(RP
2) to obtain a further two bundles over B with

w1(Υ̂
∗(ξ))2 = Υ̂∗w1(ξ)

2 6= 0, as Υ̂ is a ring monomorphism.

There is again a map Θ̂ : Kb#RP 2 → Kb that collapses the Klein bottle
summand to a single point. Once again Θ̂ is of degree 1 mod 2 so that we
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may pull back the two S2 -bundles ξ over Kb with w1(ξ) = w1(Kb) along Θ̂ to
obtain the remaining two S2 -bundles over B . These two bundles Θ̂∗(ξ) have
w1(Θ̂

∗(ξ)) 6= 0 but w1(Θ̂
∗(ξ))2 = 0; as w1(Kb) 6= 0 but w1(Kb)

2 = 0 and Θ̂∗

is a monomorphism.

Similar arguments apply to bundles over #nRP 2 where n > 3.

Thus all S2 -bundles over all closed aspherical surfaces are geometric. Further-
more since the antipodal involution of a geometric S2 -bundle is induced by an
isometry (−I, idH2) ∈ O(3) × Isom(H2) we have that all RP 2 -bundles over
closed aspherical surfaces are geometric.

An alternative route to Theorems 10.8 and 10.9 would be to first show that
orientable 4-manifolds which are total spaces of S2 -bundles are geometric, then
deduce that RP 2 -bundles are geometric (as above); and finally observe that
every S2 -bundle space double covers an RP 2 -bundle space.

The other S2 × X2 -manifolds are orbifold bundles over flat or hyperbolic orb-
ifolds, with general fibre S2 . In other words, they have codimension-2 foliation
whose leaves are homeomorphic to S2 or RP 2 . Is every such closed 4-manifold
geometric?

If χ(F ) < 0 or χ(F ) = 0 and ∂ = 0 then every F -bundle over RP 2 is geometric,
by Lemma 5.21 and the remark following Theorem 10.2.

However it is not generally true that the projection of S2 ×X onto S2 induces
an orbifold bundle projection from M to an S2 -orbifold. For instance, if ρ and
ρ′ are rotations of S2 about a common axis which generate a rank 2 abelian
subgroup of SO(3) then (ρ, (1, 0)) and (ρ′, (0, 1)) generate a discrete subgroup
of SO(3)×R2 which acts freely, cocompactly and isometrically on S2×R2 . The
orbit space is homeomorphic to S2 ×T . (It is an orientable S2 -bundle over the
torus, with disjoint sections, detemined by the ends of the axis of the rotations).
Thus it is Seifert fibred over S2 , but the fibration is not canonically associated
to the metric structure, for 〈ρ, ρ′〉 does not act properly discontinuously on S2 .

10.4 Fundamental groups of S2 × E2-manifolds

We shall show first that if M is a closed 4-manifold any two of the conditions
“χ(M) = 0”, “π1(M) is virtually Z2” and “π2(M) ∼= Z” imply the third, and
then determine the possible fundamental groups.

Theorem 10.10 Let M be a closed 4-manifold with fundamental group π .
Then the following conditions are equivalent:
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(1) π is virtually Z2 and χ(M) = 0;

(2) π has an ascendant infinite restrained subgroup and π2(M) ∼= Z ;

(3) χ(M) = 0 and π2(M) ∼= Z ; and

(4) M has a covering space of degree dividing 4 which is homeomorphic to
S2 × T .

(5) M is virtually homeomorphic to an S2 × E2 -manifold.

Proof If π is virtually a PD2 -group and either χ(π) = 0 or π has an ascen-
dant infinite restrained subgroup then π is virtually Z2 . Hence the equivalence
of these conditions follows from Theorem 10.1, with the exception of the asser-
tions regarding homeomorphisms, which then follow from Theorem 6.11.

We shall assume henceforth that the conditions of Theorem 10.10 hold, and shall
show next that there are nine possible groups. Seven of them are 2-dimensional
crystallographic groups, and we shall give also the name of the corresponding
E2 -orbifold, following Appendix A of [Mo]. (The restriction on finite subgroups
eliminates the remaining ten E2 -orbifold groups from consideration).

Theorem 10.11 Let M be a closed 4-manifold such that π = π1(M) is
virtually Z2 and χ(M) = 0. Let A and F be the maximal abelian and maximal
finite normal subgroups (respectively) of π . If π is torsion free then either

(1) π = A ∼= Z2 (the torus); or

(2) π ∼= Z⋊−1Z (the Klein bottle).
If F = 1 but π has nontrivial torsion and [π : A] = 2 then either

(3) π ∼= D × Z ∼= (Z ⊕ (Z/2Z)) ∗Z (Z ⊕ (Z/2Z)), with the presentation
〈s, x, y | x2 = y2 = 1, sx = xs, sy = ys〉 (the silvered annulus); or

(4) π ∼= D ⋊τ Z ∼= Z ∗Z (Z ⊕ (Z/2Z)), with the presentation
〈t, x | x2 = 1, t2x = xt2〉 (the silvered Möbius band); or

(5) π ∼= (Z2) ⋊−I (Z/2Z) ∼= D ∗Z D , with the presentations
〈s, t, x | x2 = 1, xsx = s−1, xtx = t−1, st = ts〉 and (setting y = xt)
〈s, x, y | x2 = y2 = 1, xsx = ysy = s−1〉 (the pillowcase S(2222)).
If F = 1 and [π : A] = 4 then either

(6) π ∼= D ∗Z (Z ⊕ (Z/2Z)), with the presentations
〈s, t, x | x2 = 1, xsx = s−1, xtx = t−1, tst−1 = s−1〉 and
(setting y = xt) 〈s, x, y | x2 = y2 = 1, xsx = s−1, ys = sy〉 (D(22)); or
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(7) π ∼= Z ∗Z D , with the presentations
〈r, s, x | x2 = 1, xrx = r−1, xsx = rs−1, srs−1 = r−1〉 and
(setting t = xs) 〈t, x | x2 = 1, xt2x = t−2〉 (P (22)).
If F is nontrivial then either

(8) π ∼= Z2 ⊕ (Z/2Z); or

(9) π ∼= (Z⋊−1Z) × (Z/2Z).

Proof Let u : π → {±1} = Aut(π2(M)) be the natural homomorphism. Since
Ker(u) is torsion free it is either Z2 or Z⋊−1Z ; since it has index at most 2
it follows that [π : A] divides 4 and that F has order at most 2. If F = 1 then
A ∼= Z2 and π/A acts effectively on A, so π is a 2-dimensional crystallographic
group. If F 6= 1 then it is central in π and u maps F isomorphically to Z/2Z ,
so π ∼= (Z/2Z) × Ker(u).

Each of these groups may be realised geometrically, by Theorem 10.2. It is easy
to see that any S2×E2 -manifold whose fundamental group has infinite abelian-
ization is a mapping torus, and hence is determined up to diffeomorphism by its
homotopy type. (See Theorems 10.8 and 10.12). We shall show next that there
are four affine diffeomorphism classes of S2 ×E2 -manifolds whose fundamental
groups have finite abelianization.

Let Ω be a discrete subgroup of Isom(S2 × E2) = O(3) × E(2) which acts
freely and cocompactly on S2 × R2 . If Ω ∼= D ∗Z D or D ∗Z (Z ⊕ (Z/2Z))
it is generated by elements of order 2, and so p1(Ω) = {±I}, by Lemma 10.6.
Since p2(Ω) < E(2) is a 2-dimensional crystallographic group it is determined
up to conjugacy in Aff(2) = R2 ⋊ GL(2,R) by its isomorphism type, Ω is
determined up to conjugacy in O(3)×Aff(2) and the corresponding geometric
4-manifold is determined up to affine diffeomorphism.

Although Z ∗Z D is not generated by involutions, a similar argument applies.

The isometries T = (τ,
(

0
1
2

)
,
(−1 0

0 1

)
) and X = (−I,

(
1
2
1
2

)
,−I) generate a

discrete subgroup of Isom(S2×E2) isomorphic to Z ∗ZD and which acts freely
and cocompactly on S2 × R2 , provided τ2 = I . Since x2 = (xt2)2 = 1 this
condition is necessary, by Lemma 10.6. We shall see below that we may assume
that T is orientation preserving, i.e., that det(τ) = −1. (The isometries T 2

and XT generate Ker(u)). Thus there are two affine diffeomorphism classes of
such manifolds, corresponding to the choices τ = −I or R3 .

None of these manifolds fibre over S1 , since in each case π/π′ is finite. However
if Ω is a S2 × E2 -lattice such that p1(Ω) ≤ {±I} then Ω\(S2 ×R2) fibres over
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RP 2 , since the map sending (v, x) ∈ S2×R2 to [±v] ∈ RP 2 is compatible with
the action of Ω. If p1(Ω) = {±I} the fibre is ω\R2 , where ω = Ω∩({1}×E(2));
otherwise it has two components. Thus three of these four manifolds fibre over
RP 2 (excepting perhaps only the case Ω ∼= Z ∗Z D and R3 ∈ p1(Ω)).

10.5 Homotopy types of S2 × E2 -manifolds

Our next result shows that if M satisfies the conditions of Theorem 10.10 and
its fundamental group has infinite abelianization then it is determined up to
homotopy by π1(M) and its Stiefel-Whitney classes.

Theorem 10.12 Let M be a closed 4-manifold with χ(M) = 0 and such that
π = π1(M) is virtually Z2 . If π/π′ is infinite then M is homotopy equivalent
to an S2 × E2 -manifold which fibres over S1 .

Proof The infinite cyclic covering space of M determined by an epimorphism
λ : π → Z is a PD3 -complex, by Theorem 4.5, and therefore is homotopy
equivalent to

(1) S2 × S1 (if Ker(λ) ∼= Z is torsion free and w1(M)|Ker(λ) = 0),

(2) S2×̃S1 (if Ker(λ) ∼= Z and w1(M)|Ker(λ) 6= 0),

(3) RP 2 × S1 (if Ker(λ) ∼= Z ⊕ (Z/2Z)) or

(4) RP 3♯RP 3 (if Ker(λ) ∼= D).

Therefore M is homotopy equivalent to the mapping torus M(φ) of a self
homotopy equivalence of one of these spaces.

The group of free homotopy classes of self homotopy equivalences E(S2×S1) is
generated by the reflections in each factor and the twist map, and has order 8.
The group E(S2×̃S1) has order 4 [KR90]. Two of the corresponding mapping
tori also arise from self homeomorphisms of S2 × S1 . The other two have
nonintegral w1 . The group E(RP 2 × S1) is generated by the reflection in the
second factor and by a twist map, and has order 4. As all these mapping tori
are also S2 - or RP 2 -bundles over the torus or Klein bottle, they are geometric
by Theorem 10.8.

The group E(RP 3♯RP 3) is generated by the reflection interchanging the sum-
mands and the fixed point free involution (cf. page 251 of [Ba’]), and has order 4.
Let α = (−I, 0,

( −1 0
0 1

)
), β = (I, ( 1

0 ) , I) γ = (I, ( 0
1 ) , I) and δ = (−I, ( 0

1 ) , I)
Then the subgroups generated by {α, β, γ}, {α, β, δ}, {α, βγ} and {α, βδ},
respectively, give the four RP 3♯RP 3 -bundles. (Note that these may be distin-
guished by their groups and orientation characters).
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A T -bundle over RP 2 with ∂ = 0 which does not also fibre over S1 has
fundamental group D ∗Z D , while the group of a Kb-bundle over RP 2 which
does not also fibre over S1 is D ∗Z (Z ⊕ (Z/2Z)) or Z ∗Z D .

When π is torsion free every homomorphism from π to Z/2Z arises as the
orientation character for some M with fundamental group π . However if π ∼=
D×Z or D⋊τZ the orientation character must be trivial on all elements of order
2, while if F 6= 1 the orientation character is determined up to composition with
an automorphism of π .

Theorem 10.13 Let M be a closed 4-manifold with χ(M) = 0 and such that
π = π1(M) is an extension of Z by an infinite FP2 normal subgroup N with
a nontrivial finite normal subgroup F . Then M is homotopy equivalent to the
mapping torus of a self homeomorphism of RP 2 × S1 .

Proof The covering space MN corresponding to the subgroup N is a PD3 -
space, by Theorem 4.5. Therefore MN ≃ RP 2 × S1 , by Theorem 2.11. Since
every self-homotopy equivalence of RP 2×S1 is homotopic to a homeomorphism
M is homotopy equivalent to a mapping torus.

The possible orientation characters for the groups with finite abelianization
are restricted by Lemma 3.14, which implies that Ker(w1) must have infinite
abelianization. For D ∗Z D we must have w1(x) = w1(y) = 1 and w1(s) = 0.
For D ∗Z (Z ⊕ (Z/2Z)) we must have w1(s) = 0 and w1(x) = 1; since the
subgroup generated by the commutator subgroup and y is isomorphic to D×Z
we must also have w1(y) = 0. Thus the orientation characters are uniquely
determined for these groups. For Z ∗Z D we must have w1(x) = 1, but w1(t)
may be either 0 or 1. As there is an automorphism φ of Z ∗Z D determined by
φ(t) = xt and φ(x) = x we may assume that w1(t) = 0 in this case.

In all cases, to each choice of orientation character there corresponds a unique
action of π on π2(M), by Lemma 10.3. However the homomorphism from π to
Z/2Z determining the action may differ from w1(M). (Note also that elements
of order 2 must act nontrivially, by Theorem 10.1).

We shall need the following lemma about plane bundles over RP 2 in order to
calculate self intersections here and in Chapter 12.

Lemma 10.14 The total space of the R2 -bundle p over RP 2 with w1(p) = 0
and w2(p) 6= 0 is S2×R2/〈g〉, where g(s, v) = (−s,−v) for all (s, v) ∈ S2×R2 .
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Proof Let [s] and [s, v] be the images of s in RP 2 and of (s, v) in N =
S2 × R2/〈g〉, respectively, and let p([s, v]) = [s], for s ∈ S2 and v ∈ R2 .
Then p : N → RP 2 is an R2 -bundle projection, and w1(N) = p∗w1(RP

2), so
w1(p) = 0. Let σt([s]) = [s, t(x, y)], where s = (x, y, z) ∈ S2 and t ∈ R. The
embedding σt : RP 2 → N is isotopic to the 0-section σ0 , and σt(RP

2) meets
σ0(RP

2) transversally in one point, if t > 0. Hence w2(p) 6= 0.

Lemma 10.15 Let M be the S2 ×E2 -manifold with π1(M) ∼= Z ∗Z D gener-

ated by the isometries (−I,
(

0
1
2

)
,
(−1 0

0 1

)
) and (−I,

(
1
2
1
2

)
,−I). Then v2(M) =

U2 and U4 = 0 in H4(M ; F2).

Proof This manifold is fibred over RP 2 with fibre Kb, with projection p, say.

As the involution (

(
1
2
1
2

)
,−I) of R2 fixes e =

(
1
4
1
4

)
there is a section given

by σ([s]) = [s, e], for all s ∈ S2 . Hence H2(M ; F2) has a basis represented by
the fibre Kb and σ(RP 2), with self-intersection numbers 0 and 1, respectively.
(See Lemma 10.14). Thus [Kb] is characteristic for the intersection pairing, and
v2(M) is the Poincaré dual to [Kb]. The cohomology class U ∈ H1(M ; F2) is
induced from the generator of H1(RP 2; F2), so U4 = 0. The projection formula
gives p∗(U2 ∩ σ∗[RP 2]) = 1 and p∗(U2 ∩ [Kb]) = 0, and so v2(M) = U2 .

This lemma is used below to compute some products in H∗(Z∗ZD; F2). Ideally,
we would have a purely algebraic argument.

Theorem 10.16 Let M be a closed 4-manifold such that π2(M) ∼= Z and
β1(M) = χ(M) = 0, and let π = π1(M). Let U be the cohomology class in
H1(π; F2) corresponding to the action u : π → Aut(π2(M)).

(1) If π ∼= D ∗Z D or D ∗Z (Z ⊕ (Z/2Z)) then

H∗(M ; F2) ∼= F2[S, T, U ]/(S2 + SU, T 2 + TU,U3),

where S, T and U have degree 1;

(2) if π ∼= Z ∗Z D then

H∗(M ; F2) ∼= F2[S,U, V,W ]/I,

where S,U have degree 1, V has degree 2 and W has degree 3, and
I = (S2, SU, SV,U3, UV,UW,V W,V 2 + U2V, V 2 + SW,W 2);

(3) v2(M) = U2 and k1(M) = βu(U2) ∈ H3(π;Zu), in all cases.
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Proof We shall consider the three possible fundamental groups in turn. Recall
that βu : H2(π; F2) → H3(π;Zu) is onto and reduction mod (2) from H3(π;Zu)
to H3(π; F2) is a monomorphism, by Lemma 10.4.

D ∗Z D : Since x, xs and xt have order 2 in D ∗Z D they act nontrivially,
and so K = 〈s, t〉 ∼= Z2 . Let S, T, U be the basis for H1(π; F2) determined
by the equations S(t) = S(x) = T (s) = T (x) = U(s) = U(t) = 0. It follows
easily from the LHSSS for π as an extension of Z/2Z by K that H2(π; F2) has
dimension ≤ 4. We may check that the classes {U2, US,UT, ST} are linearly
independent, by restriction to the cyclic subgroups generated by x, xs, xt and
xst. Therefore they form a basis of H2(π; F2). The squares S2 and T 2 must
be linear combinations of the above basis elements. On restricting such linear
combinations to subgroups as before we find that S2 = US and T 2 = UT .
Now Hs(π; F2) ∼= Hs(M ; F2) for s ≤ 2, by Lemma 10.4. It follows easily from
the nondegeneracy of Poincaré duality that U2ST 6= 0 in H4(M ; F2), while
U3S = U3T = U4 = 0, so U3 = 0. Hence the cohomology ring H∗(M ; F2) is
isomorphic to the ring F2[S, T, U ]/(S2 +SU, T 2 +TU,U3). Moreover v2(M) =
U2 , since (US)2 = USU2 , (UT )2 = UTU2 and (ST )2 = STU2 . An element of
π has order 2 if and only if it is of the form xsmtn for some (m,n) ∈ Z2 . It is
easy to check that the only linear combination aU2+bUS+cUT+dST which has
nonzero restriction to all subgroups of order 2 is U2 . Hence k1(M) = βu(U2).

D ∗Z (Z ⊕ (Z/2Z)) : Since x, xs and xt have order 2 in D ∗Z (Z ⊕ (Z/2Z))
they act nontrivially, and so K = 〈s, t〉 ∼= Z⋊−1Z . Let S, T, U be the basis
for H1(π; F2) determined by the equations S(t) = S(x) = T (s) = T (x) =
U(s) = U(t) = 0. We again find that {U2, US,UT, ST} forms a basis for
H2(π; F2) ∼= H2(M ; F2), and may check that S2 = US and T 2 = UT , by
restriction to the subgroups generated by {x, xs}, {x, xt} and K . As before,
the nondegeneracy of Poincaré duality implies that H∗(M ; F2) is isomorphic to
the ring F2[S, T, U ]/(S2 + SU, T 2 + TU,U3), while v2(M) = U2 . An element
of π has order 2 if and only if it is of the form xsmtn for some (m,n) ∈
Z2 , with either m = 0 or n even. Hence U2 and U2 + ST are the only
elements of H2(π; F2) with nonzero restriction to all subgroups of order 2.
Now H1(π;Zu) ∼= Z ⊕ (Z/2Z) and H1(π; F2) ∼= (Z/2Z)3 . Since π/K = Z/2Z
acts nontrivially on H1(K; Z) it follows from the LHSSS with coefficients Zu

that H2(π;Zu) ≤ E0,2
2 = Z/2Z . As the functions f(xasmtn) = (−1)an and

g(xasmtn) = (1− (−1)a)/2 define crossed homomorphisms from G to Zu (i.e.,
f(wz) = u(w)f(z) + f(w) for all w , z in G) which reduce mod (2) to T and
U , respectively, H2(π;Zu) is generated by βu(S) and has order 2. We may
check that βu(S) = ST , by restriction to the subgroups generated by {x, xs},
{x, xt} and K . Hence k1(M) = βu(U2) = βu(U2 + ST ).
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Z ∗Z D : If π ∼= Z ∗Z D then π/π′ ∼= (Z/4Z) ⊕ (Z/2Z) and we may assume
that K ∼= Z⋊−1 Z is generated by r and s. Let σ : Z/2Z → π be the
inclusion of the subgroup 〈x〉, which splits the projection onto π/K , and let
S,U be the basis for H1(π; F2) determined by the equations S(x) = U(s) = 0.
Then S2 = Sq1S = 0, since S is the mod-(2) reduction of the homomorphism
S̃ : π → Z/4Z given by S̃(s) = 1 and S̃(x) = 0. Let f : π → F2 be the
function defined by f(k) = f(rsk) = f(xrk) = f(xrsk) = 0 and f(rk) =
f(sk) = f(xk) = f(xsk) = 1 for all k in the (normal) subgroup generated by
r2 and s2 . Then U(g)S(h) = f(g) + f(h) + f(gh) = δf(g, h) for all g, h ∈ π ,
and so US = 0 in H2(π; F2). In the LHSSS all differentials ending on the
bottom row must be 0, since π is a semidirect product of Z/2Z with the
normal subgroup K . Since Hp(Z/2Z;H1(K; F2)) = 0 for all p > 0, it follows
that Hn(π; F2) has dimension 2, for all n ≥ 1. We may assume that H2(π; F2)
has a basis {U2, V }, where V |K generates H2(K; F2) and σ∗V = 0. Since
π is virtually a PD2 -group and its finite subgroups are cyclic cup product
with U induces isomorphisms Hn(π; F2) ∼= Hn+1(π; F2) for all n ≥ 3, and an
epimorphism for n = 2, by Farrell periodicity [Fa77’]. Hence SV = 0, since
U(SV ) = (US)V = 0, and V 2 = aU4 + bU2V , for some a, b. In fact a = 0,
since σ∗(V ) = 0 while σ∗U4 6= 0 in H4(π; F2). It then follows from Lemma
10.15 that V 2 = U2V , and so H∗(π; F2) ∼= F2[S,U, V ]/(S2, SU, SV, V 2 +U2V ).

The nondegeneracy of Poincaré duality implies that H∗(M ; F2) is generated by
S,U (in degree 1), V (in degree 2) and an element W in degree 3 such that
SW 6= 0 and UW = 0. Moreover the image of U4 in H4(M ; F2) must be 0,
and so v2(M) = U2 . Hence the image of U3 in H3(M ; F2) must also be 0,
since U3U = U3S = 0 in H4(M ; F2), and so H∗(M ; F2) ∼= F2[S,U, V,W ]/I .
Now k1(M) has image 0 in H3(M ; F2) and nonzero restriction to subgroups of
order 2. Therefore k1(M) = βu(U2).

The example M = RP 2 × T has v2(M) = 0 and k1(M) 6= 0, and so in general
k1(M) need not equal βu(v2(M)). Is it always βu(U2)?

Corollary 10.16.1 The covering space associated to Ker(u) is homeomorphic
to S2 ×T if π ∼= D ∗Z D and to S2 ×Kb if π ∼= D ∗Z (Z ⊕ (Z/2Z)) or Z ∗Z D .

Proof Since K is Z2 or Z⋊−1Z these assertions follow from Theorem 6.11, on
computing the Stiefel-Whitney classes of the double cover. Since D ∗Z D acts
orientably on the euclidean plane R2 we have w1(M) = U , by Lemma 10.3,
and so w2(M) = v2(M) + w1(M)2 = 0. Hence the double cover is S2 × T . If
π ∼= D∗Z (Z⊕(Z/2Z)) or Z∗ZD then w1(M)|K = w1(K), while w2(M)|K = 0,
so the double cover is S2 ×Kb, in both cases.
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The S2×E2 -manifolds with groups D∗ZD and D∗Z (Z⊕(Z/2Z)) are unique up
to affine diffeomorphism. In each case there is at most one other homotopy type
of closed 4-manifold with this fundamental group and Euler characteristic 0, by
Theorems 10.5 and 10.16 and the remark following Theorem 10.13. Are the two
affine diffeomorphism classes of S2 ×E2 -manifolds with π ∼= Z ∗Z D homotopy
equivalent? There are again at most 2 homotopy types. In summary, there
are 22 affine diffeomorphism classes of closed S2 × E2 -manifolds (representing
at least 21 homotopy types) and between 21 and 24 homotopy types of closed
4-manifolds covered by S2 ×R2 and with Euler characteristic 0.

10.6 Some remarks on the homeomorphism types

In Chapter 6 we showed that if π is Z2 or Z⋊−1Z then M must be homeomor-
phic to the total space of an S2 -bundle over the torus or Klein bottle, and we
were able to estimate the size of the structure sets when π has Z/2Z as a direct
factor. The other groups of Theorem 10.11 are not “square-root closed acces-
sible” and we have not been able to compute the surgery obstruction groups
completely. However the Mayer-Vietoris sequences of [Ca73] are exact mod-
ulo 2-torsion, and we may compare the ranks of [SM ;G/TOP ] and L5(π,w1).
This is sufficient in some cases to show that the structure set is infinite. For in-
stance, the rank of L5(D×Z) is 3 and that of L5(D×̃Z) is 2, while the rank of
L5(D ∗Z (Z⊕ (Z/2Z)), w1) is 2. (The groups L∗(π)⊗Z[12 ] have been computed
for all cocompact planar groups π [LS00]). If M is orientable and π ∼= D×Z or
D⋊τZ then [SM ;G/TOP ] ∼= H3(M ; Z)⊕H1(M ; F2) ∼= H1(M ; Z)⊕H1(M ; F2)
has rank 1. Therefore STOP (M) is infinite. If π ∼= D ∗Z (Z ⊕ (Z/2Z))
then H1(M ; Q) = 0, H2(M ; Q) = H2(π; Q) = 0 and H4(M ; Q) = 0, since
M is nonorientable. Hence H3(M ; Q) ∼= Q, since χ(M) = 0. Therefore
[SM ;G/TOP ] again has rank 1 and STOP (M) is infinite. These estimates do
not suffice to decide whether there are infinitely many homeomorphism classes
in the homotopy type of M . To decide this we need to study the action of
the group E(M) on STOP (M). A scheme for analyzing E(M) as a tower of
extensions involving actions of cohomology groups with coefficients determined
by Whitehead’s Γ-functors is outlined on page 52 of [Ba’].

10.7 Minimal models (added in 2007)

Let X be a PD4 -complex with fundamental group π . A PD4 -complex Z is a
model for X if there is a 2-connected degree-1 map f : X → Z . It is strongly
minimal if λX = 0. A strongly minimal PD4 -complex Z is minimal with
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214 Chapter 10: Manifolds covered by S2 ×R2

respect to the partial order on PD4 -complexes given by X ≥ Y if Y is a model
for X .

We shall show that every PD4 -complex with fundamental group a PD2 -group
π has a strongly minimal model which is the total space of an S2 -bundle over
the surface F ≃ K(π, 1). (More generally, a PD4 -complex X has a strongly
minimal model if and only if λX is nonsingular and Cok(H2(cX ; Z[π])) is a
finitely generated projective Z[π]-module [Hi06’].)

The group Z/2Z acts on CP∞ via complex conjugation, and so a homomor-
phism u : π → Z/2Z determines a product action of π on F̃ × CP∞ . Let
L = Lπ(Zu, 2) = (F̃ × CP∞)/π be the quotient space. Projection on the first
factor induces a map qu = cL : L→ F . In all cases the fixed point set of the ac-
tion of u on CP∞ is connected and contains RP∞ . Thus qu has cross-sections
σ , and any two are isotopic. Let j : CP∞ → L be the inclusion of the fibre
over the basepoint of F . If u is trivial Lπ(Zu, 2) ∼= F × CP∞ .

The (co)homology of L with coefficients in a Z[π]-module is split by the ho-
momorphisms induced by qu and σ . In particular, H2(L; Zu) ∼= H2(F ; Zu) ⊕
H2(CP∞; Z), with the projections to the summands induced by σ and j . Let
ωF be a generator of H2(F ; Zw1(F )) ∼= Z, and let φ be a generator of H2(F ; Zu).
If u = w1(F ) choose φ = ωF ; otherwise H2(F ; Zu) has order 2. Let [c]2 de-
note the reduction mod (2) of a cohomology class c (with coefficients Zw1(F )

or Zu ). Then [φ]2 = [ωF ]2 in H2(F ; Z/2Z). Let ιu ∈ H2(L; Zu) generate the
complementary Z summand. Then (ιu)

2 and ιu ∪ q∗uφ generate H4(L; Z).

The space L = Lπ(Zu, 2) is a generalized Eilenberg-Mac Lane complex of type
(Zu, 2) over K(π, 1), with characteristic element ιu . Homotopy classes of maps
from spaces X into L compatible with a fixed homomorphism θ : π1(X) → π
correspond bijectively to elements of H2(X; Zuθ), via the correspondance f ↔
f∗ιu . (See Chapter III.§6 of [Ba’]). In particular, Eπ(L) is the subgroup of
H2(L; Zu) consisting of elements of the form ±(ιu + kφ), for k ∈ Z. (Such
classes restrict to generators of H2(L̃; Z) ∼= Z).

Let p : E → F be an S2 -bundle over F . Then Ẽ ∼= F̃ × S2 and p may
be identified with the classifying map cE . If Eu is the image of F̃ × CP 1 in
L and pu = qu|Eu then pu is an S2 -bundle over F with w1(pu) = u, and
w2(pu) = v2(Eu) = 0, since cross-sections determined by distinct fixed points
are isotopic and disjoint. (From the dual point of view, the 4-skeleton of L is
Eu ∪CP 1 j(CP 2) = Eu ∪η D4 , where η ∈ π3(Eu) ∼= π3(S

2) is the Hopf map).

Theorem 10.17 Let p : E → F be an S2 -bundle over F and let X be a
PD4 -complex with π1(X) ∼= π = π1(F ). Let u = w1(X) + c∗Xw1(F ) and let
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x ∈ H2(X; Zu) be such that (x ∪ c∗XωF )[X] = 1. Then there is a 2-connected
degree-1 map h : X → E such that cE = cXh if and only if (c∗X )−1w1(X) =
(c∗E)−1w1(E), [x]22 = 0 if v2(E) = 0 and [x]22 = [x]2 ∪ c∗X [ωF ]2 otherwise.

Proof Compatibility of the orientation characters is clearly necessary in order
that the degree be defined as an integer; we assume this henceforth. Since cX is
2-connected there is an α ∈ H2(X; Zc

∗

X
w1(F )) such that cX∗α = [F ], and since

Zu ⊗ Zc
∗

X
w1(F ) ∼= Zw1(X) there is an x ∈ H2(X; Zu) such that x ∩ [X] = α,

by Poincaré duality. Hence (x ∪ c∗XωF ) ∩ [X] = 1. Clearly either [x]22 = 0 or
[x]22 = [x]2 ∪ c∗X [ωF ]2 .

The map f : E → L = Lπ(Zu, 2) corresponding to a class f∗ιu ∈ H2(E; Zu)
which restricts to a generator for H2(S2; Z) induces isomorphisms on π1 and
π2 , and so f = fE . (We may vary this map by composition with a self homotopy
equivalence of L, replacing f∗ιu by f∗ιu + kf∗φ). Note also that f∗Eιu ∪ c∗EωF
generates H4(E; Zw1(X)) ∼= Z.

The action of π on π3(E) ∼= π3(S
2) = ΓW (Z) is given by ΓW (u), and so is

trivial. Therefore the third stage of the Postnikov tower for E is a simple
K(Z, 3)-fibration over L, determined by a map κ : L→ K(Z, 4) corresponding
to a class in H4(L; Z). If L(m) is the space induced by κm = ι2u+mιu∪φ then

L̃(m) is induced from L̃ ≃ CP∞ by the canonical generator of H4(CP∞), and

so H3(L̃(m); Z) = H4(L̃(m); Z) = 0, by a spectral sequence argument. Hence
ΓW (Z) ∼= π3(L(m)) = Z.

The map fE factors through a map gE : E → L(m) if and only if f∗Eκm = 0. We
then have π3(gE) = ΓW (fE), which is an isomorphism. Thus gE is 4-connected,
and so is the third stage of the Postnikov tower for E . If v2(E) = 0 then f∗Eι

2
u =

2kf∗E(ιu ∪φ) for some k ∈ Z, and so fE factors through L(−2k); otherwise fE
factors through L(−2k−1), and thus these spaces provide models for the third
stages P3(E) of such S2 -bundle spaces. The self homotopy equivalence of L
corresponding to the class ±(ιu + kφ) in H2(L; Zu) carries κm = ι2u +mιu ∪ φ
to κm±2k , and thus cL(m) is fibre homotopy equivalent to cL(0) if m is even
and to cL(1) otherwise.

Since P3(E) may also be obtained from E by adjoining cells of dimension
≥ 5, maps from a complex X of dimension at most 4 to E compatible with
θ : π1(X) → π correspond to maps from X to P3(E) compatible with θ
and thus to elements y ∈ H2(X; Zuθ) such that [y]22 = 0 if v2(E) = 0 and
[y]22 = [y]2 ∪ c∗X [ωF ]2 otherwise.

Geometry & Topology Monographs, Volume 5 (2002)



216 Chapter 10: Manifolds covered by S2 ×R2

If g : X → E is a 2-connected degree 1 map then x = g∗f∗Eιu satisfies the
conditions of the theorem, since cX ∼ cEg , which factors through P3(E). Con-
versely, let x be such a class. Then x = h∗f∗Eιu for some h : X → E such that
cEh = cX and (f∗Eιu ∪ c∗EωF )h∗[X] = (x ∪ c∗XωF )[X] = 1. Thus π1(h) is an
isomorphism and h is a degree 1 map, and so h is 2-connected, by Lemma 2.2
of [Wa].

We shall summarize related work on the homotopy types of PD4 -complexes
whose fundamental groups have cohomological dimension ≤ 2.

Theorem (Hi06’) There is a strongly minimal model for X if and only if
H3(π; Z[π]) = 0 and HomZ[π](π2(X),Z[π]) is a finitely generated projective

Z[π]-module. If Z is strongly minimal π2(Z) ∼= H2(π; Z[π]) and λZ = 0, and
if v2(X) = 0 and Z is a model for X then v2(Z) = 0.

These conditions hold if c.d.π ≤ 2, and then χ(Z) = q(π), by Theorem 3.12.
The strongly minimal PD4 -complexes with π free, F (r) ⋊ Z or a PD2 -group
are given by Theorems 14.9, 4.5 and 5.10, respectively. (See also Theorem
10.17.) In general, we do not know whether the minimal model is unique.

Theorem (Hi06’) Let π be a finitely presentable group with c.d.π ≤ 2. Two
PD4 -complexes X and Y with fundamental group π , w1(X) = w1(Y ) = w
and π2(X) ∼= π2(Y ) are homotopy equivalent if and only if X and Y have a
common strongly minimal model Z and λX ∼= λY . Moreover λX is nonsingular
and every nonsingular w-hermitean pairing on a finitely generated projective
Z[π]-module is the reduced intersection pairing of some such PD4 -complex.

In particular, a Spin4 -manifold with fundamental group a PD2 -group π has a
well-defined strongly minimal model and so two such Spin4 -manifolds X and
Y are homotopy equivalent if and only if λX ∼= λY .
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Chapter 11

Manifolds covered by S3 × R

In this chapter we shall show that a closed 4-manifold M is covered by S3 ×R
if and only if π = π1(M) has two ends and χ(M) = 0. Its homotopy type is
then determined by π and the first nonzero k -invariant k(M). The maximal
finite normal subgroup of π is either the group of a S3 -manifold or one of the
groups Q(8a, b, c) × Z/dZ with a, b, c and d odd. (There are examples of the
latter type, and no such M is homotopy equivalent to a S3 × E1 -manifold.)
The possibilities for π are not yet known even when F is a S3 -manifold group
and π/F ∼= Z . Solving this problem may involve first determining which k -
invariants are realizable when F is cyclic; this is also not yet known.

Manifolds which fibre over RP 2 with fibre T or Kb and ∂ 6= 0 have universal
cover S3 × R. In §6 we determine the possible fundamental groups, and show
that an orientable 4-manifold M with such a group and with χ(M) = 0 must
be homotopy equivalent to a S3 × E1 -manifold which fibres over RP 2 .

As groups with two ends are virtually solvable, surgery techniques may be
used to study manifolds covered by S3 × R. However computing Wh(π) and
L∗(π;w1) is a major task. Simple estimates suggest that there are usually
infinitely many nonhomeomorphic manifolds within a given homotopy type.

11.1 Invariants for the homotopy type

The determination of the closed 4-manifolds with universal covering space ho-
motopy equivalent to S3 is based on the structure of groups with two ends.

Theorem 11.1 Let M be a closed 4-manifold with fundamental group π .
Then M̃ ≃ S3 if and only if π has two ends and χ(M) = 0. If so

(1) M is finitely covered by S3 × S1 and so M̃ ∼= S3 ×R ∼= R4\{0};

(2) the maximal finite normal subgroup F of π has cohomological period
dividing 4, acts trivially on π3(M) ∼= Z and the corresponding covering
space MF has the homotopy type of an orientable finite PD3 -complex;

(3) if v : π → Aut(H1(π; Z[π])) is the natural action and w = w1(M) then
the action u : π → Aut(π3(M)) is given by u = v + w ;
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(4) the homotopy type of M is determined by π , w1(M) and the orbit of
the first nontrivial k -invariant k(M) ∈ H4(π;Zu) under Out(π)×{±1};

(5) the restriction of k(M) to H4(F ; Z) is a generator;

(6) if π/F ∼= Z then H4(π;π3(M)) ∼= H4(F ; Z) ∼= Z/|F |Z .

Proof If M̃ ≃ S3 then H1(π; Z[π]) ∼= Z and so π has two ends. Hence
π is virtually Z . The covering space MA corresponding to an infinite cyclic
subgroup A is homotopy equivalent to the mapping torus of a self homotopy
equivalence of S3 ≃ M̃ , and so χ(MA) = 0. As [π : A] < ∞ it follows that
χ(M) = 0 also.

Suppose conversely that χ(M) = 0 and π is virtually Z . Then H3(M̃ ; Z) ∼= Z

and H4(M̃ ; Z) = 0. Let MZ be an orientable finite covering space with fun-
damental group Z . Then χ(MZ) = 0 and so H2(MZ ; Z) = 0. The homology

groups of M̃ = M̃Z may be regarded as modules over Z[t, t−1] ∼= Z[Z]. Mul-

tiplication by t − 1 maps H2(M̃ ; Z) onto itself, by the Wang sequence for the

projection of M̃ onto MZ . Therefore HomZ[Z](H2(M̃ ; Z),Z[Z]) = 0 and so

π2(M) = π2(MZ) = 0, by Lemma 3.3. Therefore the map from S3 to M̃
representing a generator of π3(M) is a homotopy equivalence. Since MZ is

orientable the generator of the group of covering translations Aut(M̃/MZ) ∼= Z

is homotopic to the identity, and so MZ ≃ M̃ × S1 ≃ S3 × S1 . Therefore
MZ

∼= S3 × S1 , by surgery over Z . Hence M̃ ∼= S3 ×R.

Let F be the maximal finite normal subgroup of π . Since F acts freely on M̃ ≃
S3 it has cohomological period dividing 4 and MF = M̃/F is a PD3 -complex.
In particular, MF is orientable and F acts trivially on π3(M). The image of the
finiteness obstruction for MF under the “geometrically significant injection” of
K0(Z[F ]) into Wh(F × Z) of [Rn86] is the obstruction to MF × S1 being a
simple PD-complex. If f : MF → MF is a self homotopy equivalence which
induces the identity on π1(MF ) ∼= F and on π3(MF ) ∼= Z then f is homotopic
to the identity, by obstruction theory. (See [Pl82].) Therefore π0(E(MF )) is
finite and so M has a finite cover which is homotopy equivalent to MF × S1 .
Since manifolds are simple PDn -complexes MF must be finite.

The third assertion follows from the Hurewicz Theorem and Poincaré duality, as
in Lemma 10.3. The first nonzero k -invariant lies in H4(π;Zu), since π2(M) =
0 and π3(M) ∼= Zu , and it restricts to the k -invariant for MF in H4(F ; Z).
Thus (4) and (5) follow as in Theorem 2.9. The final assertion follows from the
LHSSS (or Wang sequence) for π as an extension of Z by F , since π/F acts
trivially on H4(F ;Zu).
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The list of finite groups with cohomological period dividing 4 is well known
(see [DM85]). There are the generalized quaternionic groups Q(2na, b, c) (with
n ≥ 3 and a, b, c odd), the extended binary tetrahedral groups T ∗

k , the extended
binary octahedral groups O∗

k , the binary icosahedral group I∗ , the dihedral
groups A(m, e) (with m odd > 1), and the direct products of any one of these
with a cyclic group Z/dZ of relatively prime order. (In particular, a p-group
with periodic cohomology is cyclic if p is odd and cyclic or quaternionic if
p = 2.) We shall give presentations for these groups in §2.
Each such group F is the fundamental group of some PD3 -complex [Sw60].
Such Swan complexes for F are orientable, and are determined up to homotopy
equivalence by their k -invariants, which are generators of H4(F ; Z) ∼= Z/|F |Z ,
by Theorem 2.9. Thus they are parametrized up to homotopy by the quotient
of (Z/|F |Z)× under the action of Out(F )×{±1}. The set of finiteness obstruc-
tions for all such complexes forms a coset of the “Swan subgroup” of K̃0(Z[F ])
and there is a finite complex of this type if and only if the coset contains 0.
(This condition fails if F has a subgroup isomorphic to Q(16, 3, 1) and hence if
F ∼= O∗

k×(Z/dZ) for some k > 1, by Corollary 3.16 of [DM85].) If X is a Swan
complex for F then X×S1 is a finite PD+

4 -complex with π1(X×S1) ∼= F ×Z
and χ(X × S1) = 0.

Theorem 11.2 Let M be a closed 4-manifold such that π = π1(M) has two
ends and with χ(M) = 0. Then the group of unbased homotopy classes of self
homotopy equivalences of M is finite.

Proof We may assume that M has a finite cell structure with a single 4-cell.
Suppose that f : M → M is a self homotopy equivalence which fixes a base
point and induces the identity on π and on π3(M) ∼= Z . Then there are no
obstructions to constructing a homotopy from f to idfM on the 3-skeleton M0 =
M\intD4 , and since π4(M) = π4(S

3) = Z/2Z there are just two possibilities
for f . It is easily seen that Out(π) is finite. Since every self map is homotopic
to one which fixes a basepoint the group of unbased homotopy classes of self
homotopy equivalences of M is finite.

If π is a semidirect product F ⋊θZ then Aut(π) is finite and the group of based
homotopy classes of based self homotopy equivalences is also finite.

11.2 The action of π/F on F

Let F be a finite group with cohomological period dividing 4. Automorphisms
of F act on H∗(F ; Z) and H∗(F ; Z) through Out(F ), since inner automor-
phisms induce the identity on (co)homology. Let J+(F ) be the kernel of the
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action on H3(F ; Z), and let J(F ) be the subgroup of Out(F ) which acts by
±1.

An outer automorphism class induces a well defined action on H4(S; Z) for each
Sylow subgroup S of F , since all p-Sylow subgroups are conjugate in F and
the inclusion of such a subgroup induces an isomorphism from the p-torsion of
H4(F ; Z) ∼= Z/|F |Z to H4(S; Z) ∼= Z/|S|Z , by Shapiro’s Lemma. Therefore
an outer automorphism class of F induces multiplication by r on H4(F ; Z) if
and only if it does so for each Sylow subgroup of F , by the Chinese Remainder
Theorem.

The map sending a self homotopy equivalence h of a Swan complex XF for F
to the induced outer automorphism class determines a homomorphism from the
group of (unbased) homotopy classes of self homotopy equivalences E(XF ) to
Out(F ). The image of this homomorphism is J(F ), and it is a monomorphism
if |F | > 2, by Corollary 1.3 of [Pl82]. (Note that [Pl82] works with based
homotopies.) If F = 1 or Z/2Z the orientation reversing involution of XF

(≃ S3 or RP 3 , respectively) induces the identity on F .

Lemma 11.3 Let M be a closed 4-manifold with universal cover S3×R, and
let F be the maximal finite normal subgroup of π = π1(M). The quotient π/F
acts on π3(M) and H4(F ; Z) through multiplication by ±1. It acts trivially if
the order of F is divisible by 4 or by any prime congruent to 3 mod (4).

Proof The group π/F must act through ±1 on the infinite cyclic groups
π3(M) and H3(MF ; Z). By the universal coefficient theorem H4(F ; Z) is iso-
morphic to H3(F ; Z), which is the cokernel of the Hurewicz homomorphism
from π3(M) to H3(MF ; Z). This implies the first assertion.

To prove the second assertion we may pass to the Sylow subgroups of F , by
Shapiro’s Lemma. Since the p-Sylow subgroups of F also have cohomological
period 4 they are cyclic if p is an odd prime and are cyclic or quaternionic
(Q(2n)) if p = 2. In all cases an automorphism induces multiplication by a
square on the third homology [Sw60]. But −1 is not a square modulo 4 nor
modulo any prime p = 4n+ 3.

Thus the groups π ∼= F ⋊ Z realized by such 4-manifolds correspond to outer
automorphisms in J(F ) or J+(F ). We shall next determine these subgroups
of Out(F ) for F a group of cohomological period dividing 4. If m is an integer
let l(m) be the number of odd prime divisors of m.

Z/dZ = 〈x | xd = 1〉.
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Out(Z/dZ) = (Z/dZ)× . Hence J(Z/dZ) = {s ∈ (Z/dZ)× | s2 = ±1}.
J+(Z/dZ) = (Z/2Z)l(d) if d 6≡ 0 mod (4), (Z/2Z)l(d)+1 if d ≡ 4 mod (8),
and (Z/2Z)l(d)+2 if d ≡ 0 mod (8).

Q(8) = 〈x, y | x2 = y2 = (xy)2〉.

An automorphism of Q = Q(8) induces the identity on Q/Q′ if and only if it
is inner, and every automorphism of Q/Q′ lifts to one of Q. In fact Aut(Q) is
the semidirect product of Out(Q) ∼= Aut(Q/Q′) ∼= SL(2,F2) with the normal
subgroup Inn(Q) = Q/Q′ ∼= (Z/2Z)2 . Moreover J(Q) = Out(Q), generated
by the images of the automorphisms σ and τ , where σ sends x and y to y and
xy , respectively, and τ interchanges x and y .

Q(8k) = 〈x, y | x4k = 1, x2k = y2, yxy−1 = x−1〉, where k > 1.

All automorphisms of Q(8k) are of the form [i, s], where (s, 2k) = 1, [i, s](x) =
xs and [i, s](y) = xiy , and Aut(Q(8k)) is the semidirect product of (Z/4kZ)×

with the normal subgroup 〈[1, 1]〉 ∼= Z/4kZ .

Out(Q(8k)) = (Z/2Z)⊕((Z/4kZ)×/(±1)), generated by the images of the [0, s]
and [1,1]. The automorphism [i, s] induces multiplication by s2 on H4(Q(2n);Z)
[Sw60]. Hence J(Q(8k)) = (Z/2Z)l(k)+1 if k is odd and (Z/2Z)l(k)+2 if k is
even.

T ∗
k = 〈Q(8), z | z3k

= 1, zxz−1 = y, zyz−1 = xy〉, where k ≥ 1.

Let ρ be the automorphism which sends x, y and z to y−1 , x−1 and z2 respec-
tively. Let ξ , η and ζ be the inner automorphisms determined by conjugation
by x, y and z , respectively (i.e., ξ(g) = xgx−1 , and so on). Then Aut(T ∗

k ) has
the presentation

〈ρ, ξ, η, ζ | ρ2.3k−1
= η2 = ζ3 = (ηζ)3 = 1, ρζρ−1 = ζ2, ρηρ−1 = ζ−1ηζ = ξ〉.

An induction on k gives 43k

= 1 +m3k+1 for some m ≡ 1 mod (3). Hence the
image of ρ generates Aut(T ∗

k /T
∗
k
′) ∼= (Z/3kZ)× , and so Out(T ∗

k ) ∼= (Z/3kZ)× .
The 3-Sylow subgroup generated by z is preserved by ρ, and it follows that
J(T ∗

k ) = Z/2Z (generated by the image of ρ3k−1
).

O∗
k = 〈T ∗

k , w | w2 = x2, wxw−1 = yx, wzw−1 = z−1〉, where k ≥ 1.

(Note that the relations imply wyw−1 = y−1 .) As we may extend ρ to an au-
tomorphism of O∗

k via ρ(w) = w−1z2 the restriction from Aut(O∗
k) to Aut(T ∗

k )
is onto. An automorphism in the kernel sends w to wv for some v ∈ T ∗

k , and
the relations for O∗

k imply that v must be central in T ∗
k . Hence the kernel
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is generated by the involution α which sends w, x, y, z to w−1 = wx2, x, y, z ,
respectively. Now ρ3k−1

= σα, where σ is conjugation by wz in O∗
k , and so

the image of ρ generates Out(O∗
k). The subgroup 〈u, x〉 generated by u = xw

and x is isomorphic to Q(16), and is a 2-Sylow subgroup. As α(u) = u5 and
α(x) = x it is preserved by α, and H4(α|〈u,x〉; Z) is multiplication by 25. As
H4(ρ|〈z〉; Z) is multiplication by 4 it follows that J(O∗

k) = 1.

I∗ = 〈x, y | x2 = y3 = (xy)5〉.

The map sending the generators x, y to ( 2 0
1 3 ) and y = ( 2 2

1 4 ), respectively, in-
duces an isomorphism from I∗ to SL(2,F5). Conjugation in GL(2,F5) induces
a monomorphism from PGL(2,F5) to Aut(I∗). The natural map from Aut(I∗)
to Aut(I∗/ζI∗) is injective, since I∗ is perfect. Now I∗/ζI∗ ∼= PSL(2,F5) ∼=
A5 . The alternating group A5 is generated by 3-cycles, and has ten 3-Sylow
subgroups, each of order 3. It has five subgroups isomorphic to A4 generated by
pairs of such 3-Sylow subgroups. The intersection of any two of them has order
3, and is invariant under any automorphism of A5 which leaves invariant each
of these subgroups. It is not hard to see that such an automorphism must fix
the 3-cycles. Thus Aut(A5) embeds in the group S5 of permutations of these
subgroups. Since |PGL(2,F5)| = |S5| = 120 it follows that Aut(I∗) ∼= S5 and
Out(I∗) = Z/2Z . The outer automorphism class is represented by the matrix
ω = ( 2 0

0 1 ) in GL(2,F5).

Lemma 11.4 [Pl83] J(I∗) = 1.

Proof The element γ = x3y = ( 1 1
0 1 ) generates a 5-Sylow subgroup of I∗ .

It is easily seen that ωγω−1 = γ2 , and so ω induces multiplication by 2 on
H2(Z/5Z; Z) ∼= H1(Z/5Z; Z) = Z/5Z . Since H4(Z/5Z; Z) ∼= Z/5Z is gen-
erated by the square of a generator for H2(Z/5Z; Z) we see that H4(ω; Z) is
multiplication by 4 = −1 on 5-torsion. Hence J(I∗) = 1.

In fact H4(ω; Z) is multiplication by 49 [Pl83].

A(m, e) = 〈x, y | xm = y2e

= 1, yxy−1 = x−1〉, where e ≥ 1 and m > 1 is odd.

All automorphisms of A(m, e) are of the form [s, t, u], where (s,m) = (t, 2) = 1,
[s, t, u](x) = xs and [s, t, u](y) = xuyt . Out(A(m, e)) is generated by the
images of [s, 1, 0] and [1, t, 0] and is isomorphic to (Z/2e)×⊕((Z/mZ)×/(±1)).
J(A(m, 1)) = {s ∈ (Z/mZ)× | s2 = ±1}/(±1),

J(A(m, 2)) = (Z/2Z)l(m) , J(A(m, e)) = (Z/2Z)l(m)+1 if e > 2.
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Q(2na, b, c) = 〈Q(2n), u | uabc = 1, xuab = uabx, xucx−1 = u−c, yuac = uacy,
yuby−1 = u−b〉, where a, b and c are odd and relatively prime, and either
n = 3 and at most one of a, b and c is 1 or n > 3 and bc > 1.

An automorphism of G = Q(2na, b, c) must induce the identity on G/G′ .
If it induces the identity on the characteristic subgroup 〈u〉 ∼= Z/abcZ and
on G/〈u〉 ∼= Q(2n) it is inner, and so Out(Q(2na, b, c)) is a subquotient of
Out(Q(2n)) × (Z/abcZ)× . In particular, Out(Q(8a, b, c)) ∼= (Z/abcZ)× , and
J(Q(8a, b, c)) ∼= (Z/2Z)l(abc) . (We need only consider n = 3, by §5 below.)

As Aut(G ×H) = Aut(G) ×Aut(H) and Out(G×H) = Out(G) × Out(H) if
G and H are finite groups of relatively prime order, we have J+(G×Z/dZ) =
J+(G)×J+(Z/dZ). In particular, if G is not cyclic or dihedral J(G×Z/dZ) =
J+(G × Z/dZ) = J(G) × J+(Z/dZ). In all cases except when F is cyclic or
Q(8) × Z/dZ the group J(F ) has exponent 2 and hence π has a subgroup of
index at most 4 which is isomorphic to F × Z .

11.3 Extensions of D

We shall now assume that π/F ∼= D , and so π ∼= G ∗F H , where [G : F ] =
[H : F ] = 2. Let u, v ∈ D be a pair of involutions which generate D and let
s = uv . Then s−nusn = us2n , and any involution in D is conjugate to u or to
v = us. Hence any pair of involutions {u′, v′} which generates D is conjugate
to the pair {u, v}, up to change of order.

Theorem 11.5 Let M be a closed 4-manifold with χ(M) = 0, and such that
there is an epimorphism p : π = π1(M) → D with finite kernel F . Let û and
v̂ be a pair of elements of π whose images u = p(û) and v = p(v̂) in D are
involutions which together generate D . Then

(1) M is nonorientable and û, v̂ each represent orientation reversing loops;

(2) the subgroups G and H generated by F and û and by F and v̂ , respec-
tively, each have cohomological period dividing 4, and the unordered pair
{G,H} of groups is determined up to isomorphisms by π alone;

(3) conversely, π is determined up to isomorphism by the unordered pair
{G,H} of groups with index 2 subgroups isomorphic to F as the free
product with amalgamation π = G ∗F H ;

(4) π acts trivially on π3(M);

(5) the restrictions of k(M) generate the groups H4(G; Z) and H4(H; Z),
and H4(π; Z) ∼= {(ζ, ξ) ∈ (Z/|G|Z) ⊕ (Z/|H|Z) | ζ ≡ ξ mod (|F |)} ∼=
(Z/2|F |Z) ⊕ (Z/2Z).
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Proof Let ŝ = ûv̂ . Suppose that û is orientation preserving. Then the sub-
group σ generated by û and ŝ2 is orientation preserving so the corresponding
covering space Mσ is orientable. As σ has finite index in π and σ/σ′ is finite
this contradicts Lemma 3.14. Similarly, v̂ must be orientation reversing.

By assumption, û2 and v̂2 are in F , and [G : F ] = [H : F ] = 2. If F
is not isomorphic to Q × Z/dZ then J(F ) is abelian and so the (normal)
subgroup generated by F and ŝ2 is isomorphic to F × Z . In any case the
subgroup generated by F and ŝk is normal, and is isomorphic to F × Z if k
is a nonzero multiple of 12. The uniqueness up to isomorphisms of the pair
{G,H} follows from the uniqueness up to conjugation and order of the pair of

generating involutions for D . Since G and H act freely on M̃ they also have
cohomological period dividing 4. On examining the list above we see that F
must be cyclic or the product of Q(8k), T (v) or A(m, e) with a cyclic group
of relatively prime order, as it is the kernel of a map from G to Z/2Z . It is
easily verified that in all such cases every automorphism of F is the restriction
of automorphisms of G and H . Hence π is determined up to isomorphism as
the amalgamated free product G∗F H by the unordered pair {G,H} of groups
with index 2 subgroups isomorphic to F (i.e., it is unnecessary to specify the
identifications of F with these subgroups).

The third assertion follows because each of the spaces MG = M̃/G and MH =

M̃/H are PD3 -complexes with finite fundamental group and therefore are ori-
entable, and π is generated by G and H .

The final assertion follows from a Mayer-Vietoris argument, as for parts (5) and
(6) of Theorem 11.1.

Must the spaces MG and MH be homotopy equivalent to finite complexes?

In particular, if π ∼= D the k -invariant is unique, and so any closed 4-manifold
M with π1(M) ∼= D and χ(M) = 0 is homotopy equivalent to RP 4♯RP 4 .

11.4 S3 × E1 -manifolds

With the exception of O∗
k (with k > 1), A(m, 1) and Q(2na, b, c) (with either

n = 3 and at most one of a, b and c being 1 or n > 3 and bc > 1) and their
products with cyclic groups, all of the groups listed in §2 have fixed point free
representations in SO(4) and so act freely on S3 . (Cyclic groups, the binary
dihedral groups D∗

4m = A(m, 2), with m odd, and D∗
8k = Q(8k, 1, 1), with

k ≥ 1 and the three binary polyhedral groups T ∗
1 , O∗

1 and I∗ are subgroups
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of S3 .) We shall call such groups S3 -groups. The k -invariants in H4(F ; Z)
corresponding to such S3 -manifolds S3/F are said to be linear. If F is cyclic
then every Swan complex for F is homotopy equivalent to a lens space. If F =
Q(2k) or T ∗

k for some k > 1 then S3/F is the unique finite Swan complex for
F [Th80]. For the other noncyclic S3 -groups the corresponding S3 -manifold is
unique, but in general there may be other finite Swan complexes. (In particular,
there are exotic finite Swan complexes for T ∗

1 .)

Let N be a S3 -manifold with π1(N) = F . Then the projection of Isom(N)
onto its group of path components splits, and the inclusion of Isom(N) into
Diff(N) induces an isomorphism on path components. Moreover if |F | >
2 isometries which induce the identity outer automorphism are isotopic to
the identity, and so π0(Isom(N)) maps injectively to Out(F ). The group
π0(Isom(N)) has order 2 or 4, except when F = Q(8)× (Z/dZ), in which case
it has order 6 (if d = 1) or 12 (if d > 1). (See [Mc02].)

Theorem 11.6 Let M be a closed 4-manifold with χ(M) = 0 and π =
π1(M) ∼= F ⋊θ Z , where F is finite. Then M is homeomorphic to a S3 × E1 -
manifold if and only if M is the mapping torus of a self homeomorphism of a
S3 -manifold with fundamental group F , and such mapping tori are determined
up to homeomorphism by their homotopy type.

Proof Let p1 and p2 be the projections of Isom(S3×E1) = O(4)×E(1) onto
O(4) and E(1) respectively. If π is a discrete subgroup of Isom(S3×E1) which
acts freely on S3 ×R then p1 maps F monomorphically and p1(F ) acts freely
on S3 , since every isometry of R of finite order has nonempty fixed point set.
Moreover p2(π) is a discrete subgroup of E(1) which acts cocompactly on R,
and so has no nontrivial finite normal subgroup. Hence F = π∩(O(4)×{1}). If
π/F ∼= Z and t ∈ π represents a generator of π/F then conjugation by t induces
an isometry θ of S3/F , and M ∼= M(θ). Conversely any self homeomorphism
of a S3 -manifold is isotopic to an isometry of finite order, and so the mapping
torus is homeomorphic to a S3 × E1 -manifold. The final assertion follows from
Theorem 3 of [Oh90].

If s is an integer such that s2 ≡ ±1 mod (d) there is an isometry of the
lens space L(d, s) inducing multiplication by s, and the fundamental group
of the mapping torus is (Z/dZ) ⋊s Z . No other automorphisms of Z/dZ are
realized by isometries of L(d, s). (However (Z/dZ) ⋊s Z may also be realized
by mapping tori of self homotopy equivalences of other lens spaces.) If d > 2
a closed 4-manifold with this group and Euler characteristic 0 is orientable if
and only if s2 ≡ 1 mod (d).

Geometry & Topology Monographs, Volume 5 (2002)



226 Chapter 11: Manifolds covered by S3 × R

If F is a noncyclic S3 -group there is an unique orbit of linear k -invariants
under the action of Out(F ) × {±1}, and so for each θ ∈ Aut(F ) at most one
homeomorphism class of S3×E1 -manifolds has fundamental group π = F ⋊θZ .

Suppose now that G and H are S3 -groups with index 2 subgroups isomorphic to
F . If F , G and H are each noncyclic then the corresponding S3 -manifolds are
uniquely determined, and we may construct a nonorientable S3 × E1 -manifold
with fundamental group π = G ∗F H as follows. Let u and v : S3/F → S3/F
be the covering involutions with quotient spaces S3/G and S3/H , respectively,
and let φ = uv . (Note that u and v are isometries of S3/F .) Then U([x, t]) =
[u(x), 1 − t] defines a fixed point free involution on the mapping torus M(φ)
and the quotient space has fundamental group π . A similar construction works
if F is cyclic and G ∼= H or if G is cyclic.

11.5 Realization of the invariants

Let F be a finite group with cohomological period dividing 4, and let XF

denote a finite Swan complex for F . If θ is an automorphism of F which
induces ±1 on H3(F ; Z) there is a self homotopy equivalence h of XF which
induces [θ] ∈ J(F ). The mapping torus M(h) is a finite PD4 -complex with
π1(M) ∼= F ⋊θ Z and χ(M(h)) = 0. Conversely, every PD4 -complex M with
χ(M) = 0 and such that π1(M) is an extension of Z by a finite normal subgroup
F is homotopy equivalent to such a mapping torus. Moreover, if π ∼= F × Z
and |F | > 2 then h is homotopic to the identity and so M(h) is homotopy
equivalent to XF × S1 .

The question of interest here is which such groups π (and which k -invariants
in H4(F ; Z)) may be realized by closed 4-manifolds. Since every PDn -complex
may be obtained by attaching an n-cell to a complex which is homologically of
dimension < n, the exotic characteristic class of the Spivak normal fibration of a
PD3 -complex X in H3(X; F2) is trivial. Hence every 3-dimensional Swan com-
plex XF has a TOP reduction, i.e., there are normal maps (f, b) : N3 → XF .
Such a map has a “proper surgery” obstruction λp(f, b) in Lp3(F ), which is 0 if
and only if (f, b)×idS1 is normally cobordant to a simple homotopy equivalence.
In particular, a surgery semicharacteristic must be 0. Hence all subgroups of
F of order 2p (with p prime) are cyclic, and Q(2na, b, c) (with n > 3 and
b or c > 1) cannot occur [HM86]. As the 2p condition excludes groups with
subgroups isomorphic to A(m, 1) with m > 1 and as there are no finite Swan
complexes for O∗

k with k > 1, the cases remaining to be decided are when
F ∼= Q(8a, b, c) × Z/dZ , where a, b and c are odd and at most one of them
is 1. The main result of [HM86] is that in such a case F × Z acts freely and
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properly “with almost linear k -invariant” if and only if some arithmetical con-
ditions depending on subgroups of F of the form Q(8a, b, 1) hold. (Here almost
linear means that all covering spaces corresponding to subgroups isomorphic to
A(m, e)×Z/dZ or Q(8k)×Z/dZ must be homotopy equivalent to S3 -manifolds.
The constructive part of the argument may be extended to the 4-dimensional
case by reference to [FQ].)

The following more direct argument for the existence of a free proper action
of F × Z on S3 × R was outlined in [KS88], for the cases when F acts freely
on an homology 3-sphere Σ. Let Σ and its universal covering space Σ̃ have
equivariant cellular decompositions lifted from a cellular decomposition of Σ/F ,
and let Π = π1(Σ/F ). Then C∗(Σ) = Z[F ]⊗ΠC∗(Σ̃) is a finitely generated free
Z[F ]-complex, and may be realized by a finite Swan complex X . The chain map
(over the epimorphism : Π → F ) from C∗(Σ̃) to C∗(X̃) may be realized by a
map h : Σ/F → X , since these spaces are 3-dimensional. As h×idS1 is a simple
Z[F ×Z]-homology equivalence it has surgery obstruction 0 in Ls4(F ×Z), and
so is normally cobordant to a simple homotopy equivalence. For example, the
group Q(24, 313, 1) acts freely on an homology 3-sphere (see §6 of [DM85]). Is
there an explicit action on some Brieskorn homology 3-sphere?

Although Q(24, 13, 1) cannot act freely on any homology 3-sphere [DM85], there
is a closed orientable 4-manifold M with fundamental group Q(24, 13, 1)×Z , by
the argument of [HM86]. The infinite cyclic cover MF is finitely dominated; is
the Farrell obstruction to fibration in Wh(π1(M)) nonzero? No such 4-manifold
can fibre over S1 , since Q(24, 13, 1) is not a 3-manifold group.

If F = T ∗
k (with k > 1), Q(2nm) or A(m, 2) (with m odd) F × Z can only

act freely and properly on R4\{0} with the linear k -invariant. This follows
from Corollary C of [HM86’] for A(m, 2). Since Q(2nm) contains A(m, 2) as
a normal subgroup this implies that the restriction of the k -invariant for a
Q(2nm) action to the cyclic subgroup of order m must also be linear. The
nonlinear k -invariants for T ∗

k (with k > 1) and Q(2n) have nonzero finiteness
obstruction. As the k -invariants of free linear representations of Q(2nm) are
given by elements in H4(Q(2nm); Z) whose restrictions to Z/mZ are squares
and whose restrictions to Q(2n) are squares times the basic generator (see page
120 of [Wl78]), only the linear k -invariant is realizable in this case also. However
in general it is not known which k -invariants are realizable. Every group of the
form Q(8a, b, c)×Z/dZ×Z admits an almost linear k -invariant, but there may
be other actions. (See [HM86, 86’] for more on this issue.)

When F = Q(8), T ∗
k , O∗

1 , I∗ or A(pi, e) (for some odd prime p and e ≥ 2)
each element of J(F ) is realized by an isometry of S3/F [Mc02]. The study of
more general groups may largely reduce to the case when F is cyclic.
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Theorem 11.7 Let M be a PD4 -complex with χ(M) = 0 and π1(M) ∼=
F⋊θZ , where F is a noncyclic S3 -group, and with k(M) linear. If the covering
space associated to C ⋊θ|C Z is homotopy equivalent to a S3 ×E1 -manifold for
all characteristic cyclic subgroups C < F then so is M .

Proof Let N = S3/F be the S3 -manifold with k(N) = k(M), and let NC =
S3/C for all subgroups C < F . We may suppose that F = G × Z/dZ where
G is an S3 -group with no nontrivial cyclic direct factor. If C = Z/dZ then
NC

∼= L(d, 1), and so θ|C = ±1. Hence θ is in J(G)×{±1}. If G ∼= Q(8), T ∗
1 ,

O∗
1 , I∗ or A(pi, 2) then π0(Isom(N)) = J(G) (if d = 1) or J(G) × {±1} (if

d > 1) [Mc02]. If G ∼= T ∗
k with k > 1 then NζF

∼= L(3k−12d, 1), so θ|ζF = ±1,
and the nontrivial isometry of N induces the involution of ζF . In the remaining
cases F has a characteristic cyclic subgroup C ∼= Z/4kdZ of index 2, and F
acts on C through σ(c) = cs for c ∈ C , where s ≡ −1 mod (4k) and s ≡ 1
mod (d). Hence NC

∼= L(4kd, s). Restriction induces an epimorphism from
J(N) to J(C)/〈σ〉 with kernel of order 2, and which maps π0(Isom(N)) onto
π0(Isom(NC))/〈σ〉. In all cases θ is realized by an isometry of N . Since
E(N) ∼= Out(F ) the result now follows from Theorem 11.6.

When F is cyclic all generators of H4(F ; Z) are linear, and the natural question
is whether k(M) and k(L(d, s)) agree, if M is a 4-manifold with χ(M) = 0 and
π1(M) ∼= (Z/dZ)⋊sZ . If so, every 4-manifold with χ(M) = 0, π1(M) ∼= F⋊θZ
for some S3 -group F and k(M) linear is homotopy equivalent to a S3 × E1 -
manifold. It would suffice to show that the mapping torus of the self-homotopy
equivalence of L(d, r) inducing multiplication by s on Z/dZ is a simple PD4 -
complex only when s = ±r±1 .

When π/F ∼= D we have π ∼= G ∗F H , and we saw earlier that if G and H are
S3 -groups and F is noncyclic π is the fundamental group of a S3×E1 -manifold.
However if F is cyclic but neither G nor H is cyclic there may be no geometric
manifold realizing π . If the double covers of G\S3 and H\S3 are homotopy
equivalent π is realised by the union of two twisted I -bundles via a homotopy
equivalence, which is a finite (but possibly nonsimple?) PD4 -complex with
χ = 0. For instance, the spherical space forms corresponding to G = Q(40) and
H = Q(8) × (Z/5Z) are doubly covered by L(20, 1) and L(20, 9), respectively,
which are homotopy equivalent but not homeomorphic. The spherical space
forms corresponding to G = Q(24) and H = Q(8)×(Z/3Z) are doubly covered
by L(12, 1) and L(12, 5), respectively, which are not homotopy equivalent.

In each case it remains possible that some extensions of Z or D by normal
S3 -subgroups may be realized by manifolds with nonlinear k -invariants.
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11.6 T - and Kb-bundles over RP 2 with ∂ 6= 0

Let p : E → RP 2 be a bundle with fibre T or Kb. Then π = π1(E) is an
extension of Z/2Z by G/∂Z , where G is the fundamental group of the fibre and
∂ is the connecting homomorphism. If ∂ 6= 0 then π has two ends, F is cyclic
and central in G/∂Z and π acts on it by inversion, since π acts nontrivially on
Z = π2(RP

2).

If the fibre is T then π has a presentation of the form

〈t, u, v | uv = vu, un = 1, tut−1 = u−1, tvt−1 = uavǫ, t2 = ubvc〉,
where n > 0 and ǫ = ±1. Either

(1) F is cyclic, π ∼= (Z/nZ) ⋊−1 Z and π/F ∼= Z ; or

(2) F = 〈s, u | s2 = um, sus−1 = u−1〉; or (if ǫ = −1)

(3) F is cyclic, π = 〈s, t, u | s2 = t2 = ub, sus−1 = tut−1 = u−1〉 and
π/F ∼= D .

In case (2) F cannot be dihedral. If m is odd F ∼= A(m, 2) while if m = 2rk
with r ≥ 1 and k odd F ∼= Q(2r+2k). On replacing v by u[a/2]v , if necessary,
we may arrange that a = 0, in which case π ∼= F × Z , or a = 1, in which case

π = 〈t, u, v | t2 = um, tut−1 = u−1, vtv−1 = tu, uv = vu〉,
so π/F ∼= Z .

If the fibre is Kb then π has a presentation of the form

〈t, u, w | uwu−1 = w−1, un = 1, tut−1 = u−1, twt−1 = uawǫ, t2 = ubwc〉,
where n > 0 is even (since Im(∂) ≤ ζπ1(Kb)) and ǫ = ±1. On replacing t by
ut, if necessary, we may assume that ǫ = 1. Moreover, tw2t−1 = w±2 since w2

generates the commutator subgroup of G/∂Z , so a is even and 2a ≡ 0 mod (n),
t2u = ut2 implies that c = 0, and t.t2.t−1 = t2 implies that 2b ≡ 0 mod (n).
As F is generated by t and u2 , and cannot be dihedral, we must have n = 2b.
Moreover b must be even, as w has infinite order and t2w = wt2 . Therefore

(4) F ∼= Q(8k), π/F ∼= D and

π = 〈t, u, w | uwu−1 = w−1, tut−1 = u−1, tw = uawt, t2 = u2k〉.
In all cases π has a subgroup of index at most 2 which is isomorphic to F ×Z .

Each of these groups is the fundamental group of such a bundle space. (This
may be seen by using the description of such bundle spaces given in §5 of
Chapter 5.) Orientable 4-manifolds which fibre over RP 2 with fibre T and
∂ 6= 0 are mapping tori of involutions of S3 -manifolds, and if F is not cyclic
two such bundle spaces with the same group are diffeomorphic [Ue91].
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Theorem 11.8 Let M be a closed orientable 4-manifold with fundamental
group π . Then M is homotopy equivalent to an S3 ×E1 -manifold which fibres
over RP 2 if and only χ(M) = 0 and π is of type (1) or (2) above.

Proof If M is an orientable S3 ×E1 -manifold then χ(M) = 0 and π/F ∼= Z ,
by Theorem 11.1 and Lemma 3.14. Moreover π must be of type (1) or (2) if
M fibres over RP 2 , and so the conditions are necessary.

Suppose that they hold. Then M̃ ∼= R4\{0} and the homotopy type of M is

determined by π and k(M), by Theorem 11.1. If F ∼= Z/nZ then MF = M̃/F
is homotopy equivalent to some lens space L(n, s). As the involution of Z/nZ
which inverts a generator can be realized by an isometry of L(n, s), M is
homotopy equivalent to an S3 × E1 -manifold which fibres over S1 .

If F ∼= Q(2r+2k) or A(m, 2) then F × Z can only act freely and properly
on R4\{0} with the “linear” k -invariant [HM86]. Therefore MF is homotopy
equivalent to a spherical space form S3/F . The class in Out(Q(2r+2k)) repre-
sented by the automorphism which sends the generator t to tu and fixes u is
induced by conjugation in Q(2r+3k) and so can be realized by a (fixed point
free) isometry θ of S3/Q(2r+2k). Hence M is homotopy equivalent to a bundle
space (S3/Q(2r+2k)) × S1 or (S3/Q(2r+2k)) ×θ S

1 if F ∼= Q(2r+2k). A simi-
lar conclusion holds when F ∼= A(m, 2) as the corresponding automorphism is
induced by conjugation in Q(23d).

With the results of [Ue91] it follows in all cases that M is homotopy equivalent
to the total space of a torus bundle over RP 2 .

Theorem 11.8 makes no assumption that there be a homomorphism u : π →
Z/2Z such that u∗(x)3 = 0 (as in §5 of Chapter 5). If F is cyclic or A(m, 2)
this condition is a purely algebraic consequence of the other hypotheses. For
let C be a cyclic normal subgroup of maximal order in F . (There is an unique
such subgroup, except when F = Q(8).) The centralizer Cπ(C) has index 2 in
π and so there is a homomorphism u : π → Z/2Z with kernel Cπ(C).

When F is cyclic u factors through Z and so the induced map on cohomology
factors through H3(Z; Z̃) = 0.

When F ∼= A(m, 2) the 2-Sylow subgroup is cyclic of order 4, and the inclusion
of Z/4Z into τ induces isomorphisms on cohomology with 2-local coefficients.
In particular, Hq(F ; Z̃(2)) = 0 or Z/2Z according as q is even or odd. It

follows easily that the restriction from H3(π; Z̃(2)) to H3(Z/4Z; Z̃(2)) is an

isomorphism. Let y be the image of u∗(x) in H1(Z/4Z; Z̃(2)) = Z/2Z . Then
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y2 is an element of order 2 in H2(Z/4Z; Z̃(2)⊗Z̃(2)) = H2(Z/4Z;Z(2)) ∼= Z/4Z ,
and so y2 = 2z for some z ∈ H2(Z/4Z;Z(2)). But then y3 = 2yz = 0 in

H3(Z/4Z; Z̃(2)) = Z/2Z , and so u∗(x)3 has image 0 in H3(π; Z̃(2)) = Z/2Z .
Since x is a 2-torsion class this implies that u∗(x)3 = 0.

Is there a similar argument when F is a generalized quaternionic group?

If M is nonorientable, χ(M) = 0 and has fundamental group π of type (1)
or (2) then M is homotopy equivalent to the mapping torus of the orientation
reversing self homeomorphism of S3 or of RP 3 , and does not fibre over RP 2 .
If π is of type (3) or (4) then the 2-fold covering space with fundamental group
F × Z is homotopy equivalent to a product L(n, s) × S1 . However we do not
know which k -invariants give total spaces of bundles over RP 2 .

11.7 Some remarks on the homeomorphism types

In this brief section we shall assume that M is orientable and that π ∼= F ⋊θZ .
In contrast to the situation for the other geometries, the Whitehead groups of
fundamental groups of S3×E1 -manifolds are usually nontrivial. Computation of
Wh(π) is difficult as the Nil groups occuring in the Waldhausen exact sequence
relating Wh(π) to the algebraic K -theory of F seem intractable.

We can however compute the relevant surgery obstruction groups modulo 2-
torsion and show that the structure sets are usually infinite. There is a Mayer-
Vietoris sequence Ls5(F ) → Ls5(π) → Lu4(F ) → Ls4(F ), where the superscript
u signifies that the torsion must lie in a certain subgroup of Wh(F ) [Ca73].
The right hand map is (essentially) θ∗ − 1. Now Ls5(F ) is a finite 2-group and
Lu4(F ) ∼ Ls4(F ) ∼ ZR mod 2-torsion, where R is the set of irreducible real
representations of F (see Chapter 13A of [Wl]). The latter correspond to the
conjugacy classes of F , up to inversion. (See §12.4 of [Se].) In particular, if
π ∼= F × Z then Ls5(π) ∼ ZR mod 2-torsion, and so has rank at least 2 if
F 6= 1. As [ΣM,G/TOP ] ∼= Z mod 2-torsion and the group of self homotopy
equivalences of such a manifold is finite, by Theorem 11.3, there are infinitely
many distinct topological 4-manifolds simple homotopy equivalent to M . For
instance, as Wh(Z ⊕ (Z/2Z)) = 0 [Kw86] and L5(Z ⊕ (Z/2Z),+) ∼= Z2 , by
Theorem 13A.8 of [Wl], the set STOP (RP 3×S1) is infinite. Although all of the
manifolds in this homotopy type are doubly covered by S3 ×S1 only RP 3 ×S1

is itself geometric. Similar estimates hold for the other manifolds covered by
S3 ×R (if π 6= Z ).
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Chapter 12

Geometries with compact models

There are three geometries with compact models, namely S4 , CP2 and S2 × S2 .
The first two of these are easily dealt with, as there is only one other geometric
manifold, namely RP 4 , and for each of the two projective spaces there is one
other (nonsmoothable) manifold of the same homotopy type. With the geom-
etry S2 × S2 we shall consider also the bundle space S2×̃S2 . There are eight
S2 × S2 -manifolds, seven of which are total spaces of bundles with base and
fibre each S2 or RP 2 , and there are two other such bundle spaces covered by
S2×̃S2 .

The universal covering space M̃ of a closed 4-manifold M is homeomorphic
to S2 × S2 if and only if π = π1(M) is finite, χ(M)|π| = 4 and w2(M̃) = 0.

(The condition w2(M̃ ) = 0 may be restated entirely in terms of M , but at
somewhat greater length.) If these conditions hold and π is cyclic then M
is homotopy equivalent to an S2 × S2 -manifold, except when π = Z/2Z and
M is nonorientable, in which case there is one other homotopy type. The
F2 -cohomology ring, Stiefel-Whitney classes and k -invariants must agree with
those of bundle spaces when π ∼= (Z/2Z)2 . However there remains an ambiguity
of order at most 4 in determining the homotopy type. If χ(M)|π| = 4 and

w2(M̃ ) 6= 0 then either π = 1, in which case M ≃ S2×̃S2 or CP 2♯CP 2 , or
M is nonorientable and π = Z/2Z ; in the latter case M ≃ RP 4♯CP 2 , the

nontrivial RP 2 -bundle over S2 , and M̃ ≃ S2×̃S2 .

The number of homeomorphism classes within each homotopy type is at most
two if π = Z/2Z and M is orientable, two if π = Z/2Z , M is nonorientable

and w2(M̃) = 0, four if π = Z/2Z and w2(M̃) 6= 0, at most four if π ∼= Z/4Z ,
and at most eight if π ∼= (Z/2Z)2 . We do not know whether there are enough
exotic self homotopy equivalences to account for all the normal invariants with
trivial surgery obstruction. However a PL 4-manifold with the same homotopy
type as a geometric manifold or S2×̃S2 is homeomorphic to it, in (at least)
nine of the 13 cases. (In seven of these cases the homotopy type is determined
by the Euler characteristic, fundamental group and Stiefel-Whitney classes.)

For the full details of some of the arguments in the cases π ∼= Z/2Z we refer to
the papers [KKR92], [HKT94] and [Te95].
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12.1 The geometries S4 and CP2

The unique element of Isom(S4) = O(5) of order 2 which acts freely on S4 is
−I . Therefore S4 and RP 4 are the only S4 -manifolds. The manifold S4 is
determined up to homeomorphism by the conditions χ(S4) = 2 and π1(S

4) = 1
[FQ].

Lemma 12.1 A closed 4-manifold M is homotopy equivalent to RP 4 if and
only if χ(M) = 1 and π1(M) = Z/2Z .

Proof The conditions are clearly necessary. Suppose that they hold. Then
M̃ ≃ S4 and w1(M) = w1(RP

4) = w , say, since any orientation preserving self

homeomorphism of M̃ has Lefshetz number 2. Since RP∞ = K(Z/2Z, 1) may
be obtained from RP 4 by adjoining cells of dimension at least 5 we may assume
cM = cRP 4f , where f : M → RP 4 . Since cRP 4 and cM are each 4-connected
f induces isomorphisms on homology with coefficients Z/2Z . Considering the
exact sequence of homology corresponding to the short exact sequence of coef-
ficients

0 → Zw → Zw → Z/2Z → 0,

we see that f has odd degree. By modifying f on a 4-cell D4 ⊂ M we may
arrange that f has degree 1, and the lemma then follows from Theorem 3.2.

This lemma may also be proven by comparison of the k -invariants of M and
RP 4 , as in Theorem 4.3 of [Wl67].

By Theorems 13.A.1 and 13.B.5 of [Wl] the surgery obstruction homomorphism
is determined by an Arf invariant and maps [RP 4;G/TOP ] onto Z/2Z , and
hence the structure set STOP (RP 4) has two elements. (See the discussion of
nonorientable manifolds with fundamental group Z/2Z in Section 6 below for
more details.) As every self homotopy equivalence of RP 4 is homotopic to the
identity [Ol53] there is one fake RP 4 . The fake RP 4 is denoted ∗RP 4 and is
not smoothable [Ru84].

There is a similar characterization of the homotopy type of the complex pro-
jective plane.

Lemma 12.2 A closed 4-manifold M is homotopy equivalent to CP 2 if and
only if χ(M) = 3 and π1(M) = 1.
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12.2 The geometry S2 × S2 235

Proof The conditions are clearly necessary. Suppose that they hold. Then
H2(M ; Z) is infinite cyclic and so there is a map fM : M → CP∞ = K(Z, 2)
which induces an isomorphism on H2 . Since CP∞ may be obtained from CP 2

by adjoining cells of dimension at least 6 we may assume fM = fCP 2g , where
g : M → CP 2 and fCP 2 : CP 2 → CP∞ is the natural inclusion. As H4(M ; Z)
is generated by H2(M ; Z), by Poincaré duality, g induces an isomorphism on
cohomology and hence is a homotopy equivalence.

In this case the surgery obstruction homomorphism is determined by the dif-
ference of signatures and maps [CP 2;G/TOP ] onto Z . The structure set
STOP (CP 2) again has two elements. Since [CP 2, CP 2] ∼= [CP 2, CP∞] ∼=
H2(CP 2; Z), by obstruction theory, there are two homotopy classes of self ho-
motopy equivalences, represented by the identity and by complex conjugation.
Thus every self homotopy equivalence of CP 2 is homotopic to a homeomor-
phism, and so there is one fake CP 2 . The fake CP 2 is also known as the
Chern manifold Ch or ∗CP 2 , and is not smoothable [FQ]. Neither of these
manifolds admits a nontrivial fixed point free action, as any self map of CP 2

or ∗CP 2 has nonzero Lefshetz number, and so CP 2 is the only CP2 -manifold.

12.2 The geometry S2 × S2

The manifold S2 ×S2 is determined up to homotopy equivalence by the condi-
tions χ(S2 ×S2) = 4, π1(S

2 ×S2) = 1 and w2(S
2 ×S2) = 0, by Theorem 5.19.

These conditions in fact determine S2 ×S2 up to homeomorphism [FQ]. Hence
if M is an S2 × S2 -manifold its fundamental group π is finite, χ(M)|π| = 4

and w2(M̃) = 0.

The isometry group of S2×S2 is a semidirect product (O(3)×O(3))⋊ (Z/2Z).
The Z/2Z subgroup is generated by the involution τ which switches the factors
(τ(x, y) = (y, x)), and acts on O(3) × O(3) by τ(A,B)τ = (B,A) for A,B ∈
O(3). In particular, (τ(A,B))2 = id if and only if AB = I , and so such an
involution fixes (x,Ax), for any x ∈ S2 . Thus there are no free Z/2Z -actions
in which the factors are switched. The element (A,B) generates a free Z/2Z -
action if and only if A2 = B2 = I and at least one of A,B acts freely, i.e. if A or
B = −I . After conjugation with τ if necessary we may assume that B = −I ,
and so there are four conjugacy classes in Isom(S2 × S2) of free Z/2Z -actions.
(The conjugacy classes may be distinguished by the multiplicity (0, 1, 2 or 3)
of 1 as an eigenvalue of A.) In each case the projection onto the second factor
gives rise to a fibre bundle projection from the orbit space to RP 2 , with fibre
S2 .
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If the involutions (A,B) and (C,D) generate a free (Z/2Z)2 -action (AC,BD)
is also a free involution. By the above paragraph, one element of each of these
ordered pairs must be −I . It follows easily that (after conjugation with τ if
necessary) the (Z/2Z)2 -actions are generated by pairs (A,−I) and (−I, I),
where A2 = I . Since A and −A give rise to the same subgroup, there are two
free (Z/2Z)2 -actions. The orbit spaces are the total spaces of RP 2 -bundles
over RP 2 .

If (τ(A,B))4 = id then (BA,AB) is a fixed point free involution and so BA =
AB = −I . Since (A, I)τ(A,−A−1)(A, I)−1 = τ(I,−I) every free Z/4Z -action
is conjugate to the one generated by τ(I,−I). The orbit space does not fibre
over a surface. (See below.)

In the next section we shall see that these eight geometric manifolds may be
distinguished by their fundamental group and Stiefel-Whitney classes. Note
that if F is a finite group then q(F ) ≥ 2/|F | > 0, while qSG(F ) ≥ 2. Thus S4 ,
RP 4 and the geometric manifolds with |π| = 4 have minimal Euler character-
istic for their fundamental groups (i.e., χ(M) = q(π)), while S2 ×S2/(−I,−I)
has minimal Euler characteristic among PD+

4 -complexes realizing Z/2Z .

12.3 Bundle spaces

There are two S2 -bundles over S2 , since π1(SO(3)) = Z/2Z . The total space
S2×̃S2 of the nontrivial S2 -bundle over S2 is determined up to homotopy
equivalence by the conditions χ(S2×̃S2) = 4, π1(S

2×̃S2) = 1, w2(S
2×̃S2) 6= 0

and σ(S2×̃S2) = 0, by Theorem 5.19. However there is one fake S2×̃S2 . The
bundle space is homeomorphic to the connected sum CP 2♯ − CP 2 , while the
fake version is homeomorphic to CP 2♯−∗CP 2 and is not smoothable [FQ]. The
manifolds CP 2♯CP 2 and CP 2♯ ∗ CP 2 also have π1 = 0 and χ = 4. However
it is easily seen that any self homotopy equivalence of either of these manifolds
has nonzero Lefshetz number, and so they do not properly cover any other
4-manifold.

Since the Kirby-Siebenmann obstruction of a closed 4-manifold is natural with
respect to covering maps and dies on passage to 2-fold coverings, the nons-
moothable manifold CP 2♯ − ∗CP 2 admits no nontrivial free involution. The
following lemma implies that S2×̃S2 admits no orientation preserving free in-
volution, and hence no free action of Z/4Z or (Z/2Z)2 .

Lemma 12.3 Let M be a closed 4-manifold with fundamental group π =
Z/2Z and universal covering space M̃ . Then

Geometry & Topology Monographs, Volume 5 (2002)
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(1) w2(M̃) = 0 if and only if w2(M) = u2 for some u ∈ H1(M ; F2); and

(2) if M is orientable and χ(M) = 2 then w2(M̃) = 0 and so M̃ ∼= S2 × S2 .

Proof The Cartan-Leray cohomology spectral sequence (with coefficients F2)

for the projection p : M̃ →M gives an exact sequence

0 → H2(π; F2) → H2(M ; F2) → H2(M̃ ; F2),

in which the right hand map is induced by p and has image in the subgroup
fixed under the action of π . Hence w2(M̃) = p∗w2(M) is 0 if and only if
w2(M) is in the image of H2(π; F2). Since π = Z/2Z this is so if and only if
w2(M) = u2 for some u ∈ H1(M ; F2).

Suppose that M is orientable and χ(M) = 2. Then H2(π; Z) = H2(M ; Z) =
Z/2Z . Let x generate H2(M ; Z) and let x̄ be its image under reduction modulo
(2) in H2(M ; F2). Then x̄∪ x̄ = 0 in H4(M ; F2) since x∪x = 0 in H4(M ; Z).
Moreover as M is orientable w2(M) = v2(M) and so w2(M) ∪ x̄ = x̄ ∪ x̄ = 0.
Since the cup product pairing on H2(M ; F2) ∼= (Z/2Z)2 is nondegenerate it

follows that w2(M) = x̄ or 0. Hence w2(M̃) is the reduction of p∗x or is
0. The integral analogue of the above exact sequence implies that the natural
map from H2(π; Z) to H2(M ; Z) is an isomorphism and so p∗(H2(M ; Z)) = 0.

Hence w2(M̃ ) = 0 and so M̃ ∼= S2 × S2 .

Since π1(BO(3)) = Z/2Z there are two S2 -bundles over the Möbius band Mb
and each restricts to a trivial bundle over ∂Mb. Moreover a map from ∂Mb to
O(3) extends across Mb if and only if it homotopic to a constant map, since
π1(O(3)) = Z/2Z , and so there are four S2 -bundles over RP 2 = Mb ∪ D2 .
(See also Theorem 5.10.)

The orbit space M = (S2×S2)/(A,−I) is orientable if and only if det(A) = −1.
If A has a fixed point P ∈ S2 then the image of {P}×S2 in M is an embedded
projective plane which represents a nonzero class in H2(M ; F2). If A = I or
is a reflection across a plane the fixed point set has dimension > 0 and so this
projective plane has self intersection 0. As the fibre S2 intersects this projective
plane in one point and has self intersection 0 it follows that v2(M) = 0 and so
w2(M) = w1(M)2 in these two cases. If A is a rotation about an axis then the
projective plane has self intersection 1, by Lemma 10.14. Finally, if A = −I
then the image of the diagonal {(x, x)|x ∈ S2} is a projective plane in M with
self intersection 1. Thus in these two cases v2(M) 6= 0. Therefore, by part
(1) of the lemma, w2(M) is the square of the nonzero element of H1(M ; F2)
if A = −I and is 0 if A is a rotation. Thus these bundle spaces may be
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distinguished by their Stiefel-Whitney classes, and every S2 -bundle over RP 2

is geometric.

The group E(RP 2) of self homotopy equivalences of RP 2 is connected and
the natural map from SO(3) to E(RP 2) induces an isomorphism on π1 , by
Lemma 5.15. Hence there are two RP 2 -bundles over S2 , up to fibre homotopy
equivalence. The total space of the nontrivial RP 2 -bundle over S2 is the quo-
tient of S2×̃S2 by the bundle involution which is the antipodal map on each
fibre. If we observe that S2×̃S2 ∼= CP 2♯ − CP 2 is the union of two copies of
the D2 -bundle which is the mapping cone of the Hopf fibration and that this
involution interchanges the hemispheres we see that this space is homeomorphic
to RP 4♯CP 2 .

There are two RP 2 -bundles over RP 2 . (The total spaces of each of the latter
bundles have fundamental group (Z/2Z)2 , since w1 : π → π1(RP

2) = Z/2Z
restricts nontrivially to the fibre, and so is a splitting homomorphism for the ho-
momorphism induced by the inclusion of the fibre.) They may be distinguished
by their orientation double covers, and each is geometric.

12.4 Cohomology and Stiefel-Whitney classes

We shall show that if M is a closed connected 4-manifold with finite funda-
mental group π such that χ(M)|π| = 4 then H∗(M ; F2) is isomorphic to the
cohomology ring of one of the above bundle spaces, as a module over the Steen-
rod algebra A2 . (In other words, there is an isomorphism which preserves
Stiefel-Whitney classes.) This is an elementary exercise in Poincaré duality
and the Wu formulae.

The classifying map induces an isomorphism H1(π; F2) ∼= H1(M ; F2) and a
monomorphism H2(π; F2) → H2(M ; F2). If π = 1 then M is homotopy equiv-
alent to S2 × S2 , S2×̃S2 or CP 2♯CP 2 , and the result is clear.

π = Z/2Z In this case β2(M ; F2) = 2. Let x generate H1(M ; F2). Then
x2 6= 0, so H2(M ; F2) has a basis {x2, u}. If x4 = 0 then x2u 6= 0, by Poincaré
duality, and so H3(M ; F2) is generated by xu. Hence x3 = 0, for otherwise
x3 = xu and x4 = x2u 6= 0. Therefore v2(M) = 0 or x2 , and clearly v1(M) = 0

or x. Since x restricts to 0 in M̃ we must have w2(M̃) = v2(M̃ ) = 0. (The
four possibilities are realized by the four S2 -bundles over RP 2 .)

If x4 6= 0 then we may assume that x2u = 0 and that H3(M ; F2) is generated
by x3 . In this case xu = 0. Since Sq1(x3) = x4 we have v1(M) = x, and

Geometry & Topology Monographs, Volume 5 (2002)



12.5 The action of π on π2(M) 239

v2(M) = u+ x2 . In this case w2(M̃ ) 6= 0, since w2(M) is not a square. (This
possibility is realized by the nontrivial RP 2 -bundle over S2 .)

π ∼= (Z/2Z)2 In this case β2(M ; F2) = 3 and w1(M) 6= 0. Fix a basis {x, y}
for H1(M ; F2). Then {x2, xy, y2} is a basis for H2(M ; F2), since H2(π; F2)
and H2(M ; F2) both have dimension 3.

If x3 = y3 then x4 = Sq1(x3) = Sq1(y3) = y4 . Hence x4 = y4 = 0 and
x2y2 6= 0, by the nondegeneracy of cup product on H2(M ; F2). Hence x3 =
y3 = 0 and so H3(M ; F2) is generated by {x2y, xy2}. Now Sq1(x2y) = x2y2

and Sq1(xy2) = x2y2 , so v1(M) = x+ y . Also Sq2(x2) = 0 = x2xy , Sq2(y2) =
0 = y2xy and Sq2(xy) = x2y2 , so v2(M) = xy . Since the restrictions of x
and y to the orientation cover M+ agree we have w2(M

+) = x2 6= 0. (This
possibility is realized by RP 2 ×RP 2 .)

If x3 , y3 and (x + y)3 are all distinct then we may assume that (say) y3 and
(x+y)3 generate H3(M ; F2). If x3 6= 0 then x3 = y3+(x+y)3 = x3+x2y+xy2

and so x2y = xy2 . But then we must have x4 = y4 = 0, by the nondegeneracy
of cup product on H2(M ; F2). Hence Sq1(y3) = y4 = 0 and Sq1((x + y)3) =
(x + y)4 = x4 + y4 = 0, and so v1(M) = 0, which is impossible, as M is
nonorientable. Therefore x3 = 0 and so x2y2 6= 0. After replacing y by x+ y ,
if necessary, we may assume xy3 = 0 (and hence y4 6= 0). Poincaré duality
and the Wu relations then give v1(M) = x + y , v2(M) = xy + x2 and hence
w2(M

+) = 0. (This possibility is realized by the nontrivial RP 2 -bundle over
RP 2 .)

π = Z/4Z In this case β2(M ; F2) = 1 and w1(M) 6= 0, and similar arguments
give H∗(M ; F2) ∼= F2[w, x, y]/(w

2, wx, x2 + wy, xy, x3, y2), where w , x and y
have degree 1, 2 and 3 respectively; hence Sq1x = 0 and Sq1y = wy .

Note that if π ∼= (Z/2Z)2 the ring H∗(M ; F2) is generated by H1(M ; F2) and
so determines the image of [M ] in H4(π; F2).

In all cases, a class x ∈ H1(M ; F2) such that x3 = 0 may be realized by a map
from M to K(Z/2Z, 1) = RP∞ which factors through P2(RP

2). However
there are such 4-manifolds which do not fibre over RP 2 .

12.5 The action of π on π2(M)

Let M be a closed 4-manifold with finite fundamental group π and orienta-
tion character w = w1(M). The intersection form S(M̃ ) on Π = π2(M) =

H2(M̃ ; Z) is unimodular and symmetric, and π acts w-isometrically (that is,
S(ga, gb) = w(g)S(a, b) for all g ∈ π and a, b ∈ Π).
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The two inclusions of S2 as factors of S2 × S2 determine the standard basis
for π2(S

2 × S2). Let J = ( 0 1
1 0 ) be the matrix of the intersection form • on

π2(S
2×S2), with respect to this basis. The group Aut(±•) of automorphisms of

π2(S
2×S2) which preserve this intersection form up to sign is the dihedral group

of order eight, and is generated by the diagonal matrices and J or K =
(

0 1
−1 0

)
.

The subgroup of strict isometries has order four, and is generated by −I and
J . (Note that the isometry J is induced by the involution τ .)

Let f be a self homeomorphism of S2 × S2 and let f∗ be the induced auto-
morphism of π2(S

2 × S2). The Lefshetz number of f is 2 + trace(f∗) if f
is orientation preserving and trace(f∗) if f is orientation reversing. As any
self homotopy equivalence which induces the identity on π2 has nonzero Lef-
shetz number the natural representation of a group π of fixed point free self
homeomorphisms of S2 × S2 into Aut(±•) is faithful.

Suppose first that f is a free involution, so f2
∗ = I . If f is orientation preserving

then trace(f∗) = −2 so f∗ = −I . If f is orientation reversing then trace(f∗) =
0, so f∗ = ±JK = ±

(
1 0
0 −1

)
. Note that if f ′ = τfτ then f ′∗ = −f∗ , so after

conjugation by τ , if necessary, we may assume that f∗ = JK .

If f generates a free Z/4Z -action the induced automorphism must be ±K .
Note that if f ′ = τfτ then f ′∗ = −f∗ , so after conjugation by τ , if necessary,
we may assume that f∗ = K .

Since the orbit space of a fixed point free action of (Z/2Z)2 on S2 × S2 has
Euler characteristic 1 it is nonorientable, and so the action is generated by two
commuting involutions, one of which is orientation preserving and one of which
is not. Since the orientation preserving involution must act via −I and the
orientation reversing involutions must act via ±JK the action of (Z/2Z)2 is
essentially unique.

The standard inclusions of S2 = CP 1 into the summands of CP 2♯ − CP 2 ∼=
S2×̃S2 determine a basis for π2(S

2×̃S2) ∼= Z2 . Let J̃ =
(

1 0
0 −1

)
be the matrix

of the intersection form •̃ on π2(S
2×̃S2) with respect to this basis. The group

Aut(±•̃) of automorphisms of π2(S
2×̃S2) which preserve this intersection form

up to sign is the dihedral group of order eight, and is also generated by the
diagonal matrices and J = ( 0 1

1 0 ). The subgroup of strict isometries has order
four, and consists of the diagonal matrices. A nontrivial group of fixed point
free self homeomorphisms of S2×̃S2 must have order 2, since S2×̃S2 admits
no fixed point free orientation preserving involution. If f is an orientation
reversing free involution of S2×̃S2 then f∗ = ±J . Since the involution of
CP 2 given by complex conjugation is orientation preserving it is isotopic to a
selfhomeomorphism c which fixes a 4-disc. Let g = c♯idCP 2 . Then g∗ =

(−1 0
0 1

)
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and so g∗Jg−1
∗ = −J . Thus after conjugating f by g , if necessary, we may

assume that f∗ = J .

All self homeomorphisms of CP 2♯CP 2 preserve the sign of the intersection
form, and thus are orientation preserving. With part (2) of Lemma 12.3, this
implies that no manifold in this homotopy type admits a free involution.

12.6 Homotopy type

The quadratic 2-type of M is the quadruple [π, π2(M), k1(M), S(M̃ )]. Two
such quadruples [π,Π, κ, S] and [π′,Π′, κ′, S′] with π a finite group, Π a finitely
generated, Z-torsion free Z[π]-module, κ ∈ H3(π; Π) and S : Π × Π → Z a
unimodular symmetric bilinear pairing on which π acts ±-isometrically are
equivalent if there is an isomorphism α : π → π′ and an (anti)isometry β :
(Π, S) → (Π′, (±)S′) which is α-equivariant (i.e., such that β(gm) = α(g)β(m)
for all g ∈ π and m ∈ Π) and β∗κ = α∗κ′ in H3(π, α∗Π′). Such a quadratic 2-
type determines homomorphisms w : π → Z× = Z/2Z (if Π 6= 0) and v : Π →
Z/2Z by the equations S(ga, gb) = w(g)S(a, b) and v(a) ≡ S(a, a) mod (2),
for all g ∈ π and a, b ∈ Π. (These correspond to the orientation character

w1(M) and the Wu class v2(M̃ ) = w2(M̃), of course.)

Let γ : A → Γ(A) be the universal quadratic functor of Whitehead. Then the
pairing S may be identified with an indivisible element of Γ(HomZ(Π,Z)). Via
duality, this corresponds to an element Ŝ of Γ(Π), and the subgroup generated
by the image of Ŝ is a Z[π]-submodule. Hence π3 = Γ(Π)/〈Ŝ〉 is again a
finitely generated, Z-torsion free Z[π]-module. Let B be the Postnikov 2-
stage corresponding to the algebraic 2-type [π,Π, κ]. A PD4 -polarization of
the quadratic 2-type q = [π,Π, κ, S] is a 3-connected map f : X → B , where
X is a PD4 -complex, w1(X) = wπ1(f) and f̃∗(Ŝ eX) = Ŝ in Γ(Π). Let SPD4 (q)
be the set of equivalence classes of PD4 -polarizations of q , where f : X → B ∼
g : Y → B if there is a map h : X → Y such that f ≃ gh.

Theorem 12.4 [Te] There is an effective, transitive action of the torsion
subgroup of Γ(Π) ⊗Z[π] Z

w on SPD4 (q).

Proof (We shall only sketch the proof.) Let f : X → B be a fixed PD4 -
polarization of q . We may assume that X = K ∪g e4 , where K = X [3] is the
3-skeleton and g ∈ π3(K) is the attaching map. Given an element α in Γ(Π)
whose image in Γ(Π)⊗Z[π]Z

w lies in the torsion subgroup, let Xα = K∪g+α e4 .
Since π3(B) = 0 the map f |K extends to a map fα : Xα → B , which is again a
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PD4 -polarization of q . The equivalence class of fα depends only on the image
of α in Γ(Π) ⊗Z[π] Z

w . Conversely, if g : Y → B is another PD4 -polarization
of q then f∗[X]−g∗[Y ] lies in the image of Tors(Γ(Π)⊗Z[π]Z

w) in H4(B;Zw).
See [Te] for the full details.

Corollary 12.4.1 If X and Y are PD4 -complexes with the same quadratic
2-type then each may be obtained by adding a single 4-cell to X [3] = Y [3] .

If w = 0 and the Sylow 2-subgroup of π has cohomological period dividing 4
then Tors(Γ(Π) ⊗Z[π] Z

w) = 0 [Ba88]. In particular, if M is orientable and π
is finite cyclic then the equivalence class of the quadratic 2-type determines the
homotopy type [HK88]. Thus in all cases considered here the quadratic 2-type
determines the homotopy type of the orientation cover.

The group Aut(B) = Aut([π,Π, κ]) acts on SPD4 (q) and the orbits of this
action correspond to the homotopy types of PD4 -complexes X admitting such
polarizations f . When q is the quadratic 2-type of RP 2 × RP 2 this action is
nontrivial. (See below in this paragraph. Compare also Theorem 10.5.)

The next lemma shall enable us to determine the possible k -invariants.

Lemma 12.5 Let M be a closed 4-manifold with fundamental group π =
Z/2Z and universal covering space S2 × S2 . Then the first k -invariant of M
is a nonzero element of H3(π;π2(M)).

Proof The first k -invariant is the primary obstruction to the existence of a
cross-section to the classifying map cM : M → K(Z/2Z, 1) = RP∞ and is the
only obstruction to the existence of such a cross-section for cP2(M) . The only
nonzero differentials in the Cartan-Leray cohomology spectral sequence (with

coefficients Z/2Z ) for the projection p : M̃ →M are at the E∗∗
3 level. By the

results of Section 4, π acts trivially on H2(M̃ ; F2), since M̃ = S2 ×S2 . There-
fore E22

3 = E22
2

∼= (Z/2Z)2 and E50
3 = E50

2 = Z/2Z . Hence E22
∞ 6= 0, so E22

∞
maps onto H4(M ; F2) = Z/2Z and d12

3 : H1(π;H2(M̃ ; F2)) → H4(π; F2) must
be onto. But in this region the spectral sequence is identical with the corre-
sponding spectral sequence for P2(M). It follows that the image of H4(π; F2) =
Z/2Z in H4(P2(M); F2) is 0, and so cP2(M) does not admit a cross-section.
Thus k1(M) 6= 0.

If π = Z/2Z and M is orientable then π acts via −I on Z2 and the k -
invariant is a nonzero element of H3(Z/2Z;π2(M)) = (Z/2Z)2 . The isometry
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which transposes the standard generators of Z2 is π -linear, and so there are
just two equivalence classes of quadratic 2-types to consider. The k -invariant
which is invariant under transposition is realised by (S2 × S2)/(−I,−I), while
the other k -invariant is realized by the orientable bundle space with w2 = 0.
Thus M must be homotopy equivalent to one of these spaces.

If π = Z/2Z , M is nonorientable and w2(M̃) = 0 then H3(π;π2(M)) = Z/2Z
and there is only one quadratic 2-type to consider. There are four equivalence
classes of PD4 -polarizations, as Tors(Γ(Π) ⊗Z[π] Z

w) ∼= (Z/2Z)2 . The corre-
sponding PD4 -complexes are all of the form K∪f e4 , where K = (S2×RP 2)−
intD4 is the 3-skeleton of S2 × RP 2 and f ∈ π3(K). (In all cases H1(M ; F2)
is generated by an element x such that x3 = 0.) Two choices for f give to-
tal spaces of S2 -bundles over RP 2 , while a third choice gives RP 4♯S1RP 4 ,
which is the union of two disc bundles over RP 2 , but is not a bundle space
and is not geometric. There is a fourth homotopy type which has nontriv-
ial Browder-Livesay invariant, and so is not realizable by a closed manifold
[HM78]. The product space S2 ×RP 2 is characterized by the additional condi-
tions that w2(M) = w1(M)2 6= 0 (i.e., v2(M) = 0) and that there is an element
u ∈ H2(M ; Z) which generates an infinite cyclic direct summand and is such
that u ∪ u = 0. (See Theorem 5.19.) The nontrivial nonorientable S2 -bundle
over RP 2 has w2(M) = 0. The manifold RP 4♯S1RP 4 also has w2(M) = 0, but
it may be distinguished from the bundle space by the Z/4Z -valued quadratic
function on π2(M) ⊗ (Z/2Z) introduced in [KKR92].

If π = Z/2Z and w2(M̃) 6= 0 then H3(π1;π2(M)) = 0, and the quadratic
2-type is unique. (Note that the argument of Lemma 12.5 breaks down here
because E22

∞ = 0.) There are two equivalence classes of PD4 -polarizations,
as Tors(Γ(Π) ⊗Z[π] Z

w) = Z/2Z . They are each of the form K ∪f e4 , where
K = (RP 4♯CP 2) − intD4 is the 3-skeleton of RP 4♯CP 2 and f ∈ π3(K). The
bundle space RP 4♯CP 2 is characterized by the additional condition that there
is an element u ∈ H2(M ; Z) which generates an infinite cyclic direct summand
and such that u∪u = 0. (See Theorem 5.19.) In [HKT94] it is shown that any

closed 4-manifold M with π = Z/2Z , χ(M) = 2 and w2(M̃) 6= 0 is homotopy
equivalent to RP 4♯CP 2 .

If π ∼= Z/4Z then H3(π;π2(M)) ∼= Z2/(I − K)Z2 = Z/2Z , since Σk=4
k=1f

k
∗ =

Σk=4
k=1K

k = 0. The k -invariant is nonzero, since it restricts to the k -invariant
of the orientation double cover. In this case Tors(Γ(Π) ⊗Z[π] Z

w) = 0 and so
M is homotopy equivalent to (S2 × S2)/τ(I,−I).
Finally, let π ∼= (Z/2Z)2 be the diagonal subgroup of Aut(±•) < GL(2,Z), and
let α be the automorphism induced by conjugation by J . The standard gen-
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erators of π2(M) = Z2 generate complementary π -submodules, so that π2(M)
is the direct sum Z̃ ⊕ α∗Z̃ of two infinite cyclic modules. The isometry β = J
which transposes the factors is α-equivariant, and π and V = {±I} act non-
trivially on each summand. If ρ is the kernel of the action of π on Z̃ then
α(ρ) is the kernel of the action on α∗Z̃ , and ρ ∩ α(ρ) = 1. Let jV : V → π be
the inclusion. As the projection of π = ρ ⊕ V onto V is compatible with the
action, H∗(jV ; Z̃) is a split epimorphism and so H∗(V ; Z̃) is a direct sum-
mand of H∗(π; Z̃). This implies in particular that the differentials in the
LHSSS Hp(V ;Hq(ρ; Z̃)) ⇒ Hp+q(π; Z̃) which end on the row q = 0 are all 0.
Hence H3(π; Z̃) ∼= H1(V ; F2) ⊕H3(V ; Z̃) ∼= (Z/2Z)2 . Similarly H3(π;α∗Z̃) ∼=
(Z/2Z)2 , and so H3(π;π2(M)) ∼= (Z/2Z)4 . The k -invariant must restrict to
the k -invariant of each double cover, which must be nonzero, by Lemma 12.5.
Let KV , Kρ and Kα(ρ) be the kernels of the restriction homomorphisms from
H3(π;π2(M)) to H3(V ;π2(M)), H3(ρ;π2(M)) and H3(α(ρ);π2(M)), respec-
tively. Now H3(ρ; Z̃) = H3(α(ρ);α∗Z̃) = 0, H3(ρ;α∗Z̃) = H3(α(ρ); Z̃) =
Z/2Z and H3(V ; Z̃) = H3(V ;α∗Z̃) = Z/2Z . Since the restrictions are epimor-
phisms |KV | = 4 and |Kρ| = |Kα(ρ)| = 8. It is easily seen that |Kρ ∩Kα(ρ)| =

4. Moreover Ker(H3(jV ; Z̃)) ∼= H1(V ;H2(ρ; Z̃)) ∼= H1(V ;H2(ρ; F2)) restricts
nontrivially to H3(α(ρ); Z̃) ∼= H3(α(ρ); F2), as can be seen by reduction mod-
ulo (2), and similarly Ker(H3(jV ;α∗Z̃)) restricts nontrivially to H3(ρ;α∗Z̃).
Hence |KV ∩ Kρ| = |KV ∩ Kρ| = 2 and KV ∩ Kρ ∩ Kα(ρ) = 0. Thus
|KV ∪ Kρ ∪ Kα(ρ)| = 8 + 8 + 4 − 4 − 2 − 2 + 1 = 13 and so there are at
most three possible k -invariants. Moreover the automorphism α and the isom-
etry β = J act on the k -invariants by transposing the factors. The k -invariant
of RP 2×RP 2 is invariant under this transposition, while that of the nontrivial
RP 2 bundle over RP 2 is not, for the k -invariant of its orientation cover is not
invariant. Thus there are two equivalence classes of quadratic 2-types to be
considered. Since Tors(Γ(Π) ⊗Z[π] Z

w) ∼= (Z/2Z)2 there are four equivalence
classes of PD4 -polarizations of each of these quadratic 2-types. In each case
the quadratic 2-type determines the cohomology ring, since it determines the
orientation cover (see §4). The canonical involution of the direct product in-
terchanges two of these polarizations in the RP 2 ×RP 2 case, and so there are
seven homotopy types of PD4 -complexes X with π ∼= (Z/2Z)2 and χ(X) = 1.
Can the Browder-Livesay arguments of [HM78] be adapted to show that the
two bundle spaces are the only such 4-manifolds?

12.7 Surgery

We may assume that M is a proper quotient of S2 × S2 or of S2×̃S2 , so
|π|χ(M) = 4 and π 6= 1. In the present context every homotopy equivalence is
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simple since Wh(π) = 0 for all groups π of order ≤ 4 [Hg40].

Suppose first that π = Z/2Z . Then H1(M ; F2) = Z/2Z and χ(M) = 2,
so H2(M ; F2) ∼= (Z/2Z)2 . The F2 -Hurewicz homomorphism from π2(M) to
H2(M ; F2) has cokernel H2(π; F2) = Z/2Z . Hence there is a map β : S2 →M

such that β∗[S2] 6= 0 in H2(M ; F2). If moreover w2(M̃) = 0 then β∗w2(M) =

0, since β factors through M̃ . Then there is a self homotopy equivalence fβ of
M with nontrivial normal invariant in [M ;G/TOP ], by Lemma 6.5. Note also
that M is homotopy equivalent to a PL 4-manifold (see §6 above).

If M is orientable [M ;G/TOP ] ∼= Z⊕(Z/2Z)2 . The surgery obstruction groups
are L5(Z/2Z,+) = 0 and L4(Z/2Z,+) ∼= Z2 , where the surgery obstructions
are determined by the signature and the signature of the double cover, by
Theorem 13.A.1 of [Wl]. Hence it follows from the surgery exact sequence that

STOP (M) has four elements. Since w2(M̃) = 0 (by Lemma 12.3) there is a
self homotopy equivalence fβ of M with nontrivial normal invariant and so
there are at most two homeomorphism classes within the homotopy type of M .
Any α ∈ H2(M ; F2) is the codimension-2 Kervaire invariant of some homotopy
equivalence f : N →M . We then have KS(N) = f∗(KS(M)+α2), by Lemma
15.5 of [Si71]. We may assume that M is PL. If w2(M) = 0 then KS(N) =
f∗(KS(M)) = 0, and so N is homeomorphic to M [Te97]. On the other hand if
w2(M) 6= 0 there is an α ∈ H2(M ; F2) such that α2 6= 0 and then KS(N) 6= 0.
Thus there are three homeomorphism classes of orientable closed 4-manifolds
with π = Z/2Z and χ = 2. One of these is a fake (S2 × S2)/(−I,−I) and is
not smoothable.

Nonorientable closed 4-manifolds with fundamental group Z/2Z have been clas-
sified in [HKT94]. If M is nonorientable then [M ;G/TOP ] ∼= (Z/2Z)3 , the
surgery obstruction groups are L5(Z/2Z,−) = 0 and L4(Z/2Z,−) = Z/2Z ,
and σ4(ĝ) = c(ĝ) for any normal map ĝ : M → G/TOP , by Theorem 13.A.1
of [Wl]. Therefore σ4(ĝ) = (w1(M)2 ∪ ĝ∗(k2))[M ], by Theorem 13.B.5 of [Wl].
(See also §2 of Chapter 6 above.) As w1(M) is not the reduction of a class
in H1(M ; Z/4Z) its square is nonzero and so there is an element ĝ∗(k2) in
H2(M ; F2) such that this cup product is nonzero. Hence STOP (M) has four
elements. There are two homeomorphism types within each homotopy type if
w2(M̃ ) = 0; if w2(M̃ ) 6= 0 (i.e., if M ≃ RP 4♯CP 2 ) there are four corresponding
homeomorphism types [HKT94]. Thus there are eight homeomorphism classes
of nonorientable closed 4-manifolds with π = Z/2Z and χ = 2.

The image of [M ;G/PL] in [M ;G/TOP ] is a subgroup of index 2 (see Section
15 of [Si71]). It follows that if M is the total space of an S2 -bundle over RP 2

any homotopy equivalence f : N → M where N is also PL is homotopic to
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a homeomorphism. (For then STOP (M) has four elements, and the nontrivial
element of the image of SPL(M) is represented by an exotic self homotopy
equivalence of M . The case M = S2 × RP 2 was treated in [Ma79]. See
also [Te97] for the cases with π = Z/2Z and w1(M) = 0.) This is also true
if M = S4 , RP 4 , CP 2 , S2 × S2 or S2×̃S2 . The exotic homeomorphism
types within the homotopy type of RP 4♯CP 2 (the nontrivial RP 2 -bundle over
S2 ) are RP 4♯ ∗ CP 2 , ∗RP 4♯CP 2 , which have nontrivial Kirby-Siebenmann
invariant, and (∗RP 4)♯ ∗ CP 2 , which is smoothable [RS97]. (It was earlier
shown that (∗RP 4♯ ∗ CP 2)♯(S2 × S2) ∼= (RP 4♯CP 2)♯(S2 × S2) [HKT94].)

When π ∼= Z/4Z or (Z/2Z)2 the manifold M is nonorientable, since χ(M) = 1.
As the F2 -Hurewicz homomorphism is 0 in these cases Lemma 6.5 does not
apply to give any exotic self homotopy equivalences.

If π ∼= Z/4Z then [M ;G/TOP ] ∼= (Z/2Z)2 and the surgery obstruction groups
L4(Z/4Z,−) and L5(Z/4Z,−) are both 0, by Theorem 3.4.5 of [Wl76]. Hence
STOP (M) has four elements. Since w2(M) 6= 0 there is a homotopy equivalence
f : N → M where KS(N) 6= KS(M). It follows from Theorem 2.4 of [Da05]
that any self-homeomorphism of M which induces the identity on π has trivial
normal invariant. Since the geometric example admits a self-homeomorphism
inducing the nontrivial automorphism of π there is another such manifold N
with KS(N) = 0 which is not homeomorphic to the geometric example. Thus
there are either three or four homeomorphism classes of closed 4-manifolds with
π ∼= Z/4Z and χ = 1. In all cases the orientable double covering space has triv-
ial Kirby-Siebenmann invariant and so is homeomorphic to (S2×S2)/(−I,−I).
If π ∼= (Z/2Z)2 then [M ;G/TOP ] ∼= (Z/2Z)4 and the surgery obstruction
groups are L5((Z/2Z)2,−) = 0 and L4((Z/2Z)2,−) = Z/2Z , by Theorem
3.5.1 of [Wl76]. Since w1(M) is a split epimorphism L4(w1(M)) is an isomor-
phism, so the surgery obstruction is detected by the Kervaire-Arf invariant. As
w1(M)2 6= 0 we find that STOP (M) has eight elements. Thus there are at most
56 homeomorphism classes of closed 4-manifolds with π ∼= (Z/2Z)2 and χ = 1.
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Chapter 13

Geometric decompositions of bundle
spaces

We begin by considering which closed 4-manifolds with geometries of euclidean
factor type are mapping tori of homeomorphisms of 3-manifolds. We also show
that (as an easy consequence of the Kodaira classification of surfaces) a complex
surface is diffeomorphic to a mapping torus if and only if its Euler characteristic
is 0 and its fundamental group maps onto Z with finitely generated kernel, and
we determine the relevant 3-manifolds and diffeomorphisms. In §2 we consider
when an aspherical 4-manifold which is the total space of a surface bundle
is geometric or admits a geometric decomposition. If the base and fibre are
hyperbolic the only known examples are virtually products. In §3 we shall give
some examples of torus bundles over closed surfaces which are not geometric,
some of which admit geometric decompositions of type F4 and some of which
do not. In §4 we apply some of our earlier results to the characterization of
certain complex surfaces. In particular, we show that a complex surfaces fibres
smoothly over an aspherical orientable 2-manifold if and only if it is homotopy
equivalent to the total space of a surface bundle. In the final two sections we
consider first S1 -bundles over geometric 3-manifolds and then the existence of
symplectic structures on geometric 4-manifolds.

13.1 Mapping tori

In §3-5 of Chapter 8 and §3 of Chapter 9 we used 3-manifold theory to char-
acterize mapping tori of homeomorphisms of geometric 3-manifolds which have
product geometries. Here we shall consider instead which 4-manifolds with
product geometries or complex structures are mapping tori.

Theorem 13.1 Let M be a closed geometric 4-manifold with χ(M) = 0
and such that π = π1(M) is an extension of Z by a finitely generated normal
subgroup K . Then K is the fundamental group of a geometric 3-manifold.

Proof Since χ(M) = 0 the geometry must be either an infrasolvmanifold
geometry or a product geometry X3×E1 , where X3 is one of the 3-dimensional
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geometries S3 , S2 ×E1 , H3 , H2 ×E1 or S̃L. If M is an infrasolvmanifold then
π is torsion free and virtually poly-Z of Hirsch length 4, so K is torsion free
and virtually poly-Z of Hirsch length 3, and the result is clear.

If X3 = S3 then π is a discrete cocompact subgroup of O(4)×E(1). Since O(4)
is compact the image of π in E(1) is infinite, and thus has no nontrivial finite
normal subgroup. Therefore K is a subgroup of O(4)×{1}. Since π acts freely
on S3 × R the subgroup K acts freely on S3 , and so K is the fundamental
group of an S3 -manifold. If X3 = S2 × E1 then π is virtually Z2 . Hence K
has two ends, and so K ∼= Z , Z ⊕ (Z/2Z) or D , by Corollary 4.5.2. Thus K
is the fundamental group of an S2 × E1 -manifold.

In the remaining cases X3 is of aspherical type. The key point here is that
a discrete cocompact subgroup of the Lie group Isom(X3 × E1) must meet
the radical of this group in a lattice subgroup. Suppose first that X3 = H3 .
After passing to a subgroup of finite index if necessary, we may assume that
π ∼= H × Z < PSL(2,C) × R, where H is a discrete cocompact subgroup of
PSL(2,C). If K ∩ ({1} ×R) = 1 then K is commensurate with H , and hence
is the fundamental group of an X -manifold. Otherwise the subgroup generated
by K ∩H = K ∩ PSL(2,C) and K ∩ ({1} × R) has finite index in K and is
isomorphic to (K ∩ H) × Z . Since K is finitely generated so is K ∩ H , and
hence it is finitely presentable, since H is a 3-manifold group. Therefore K∩H
is a PD2 -group and so K is the fundamental group of a H2 × E1 -manifold.

If X3 = H2 × E1 then we may assume that π ∼= H × Z2 < PSL(2,R) × R2 ,
where H is a discrete cocompact subgroup of PSL(2,R). Since such groups
do not admit nontrivial maps to Z with finitely generated kernel K ∩H must
be commensurate with H , and we again see that K is the fundamental group
of an H2 × E1 -manifold.

A similar argument applies if X3 = S̃L. We may assume that π ∼= H × Z
where H is a discrete cocompact subgroup of Isom(S̃L). Since such groups H
do not admit nontrivial maps to Z with finitely generated kernel K must be
commensurate with H and so is the fundamental group of a S̃L-manifold.

Corollary 13.1.1 Suppose that M has a product geometry X × E1 . If X3 =
E3 , S3 , S2 × E1 , S̃L or H2 × E1 then M is the mapping torus of an isometry
of an X3 -manifold with fundamental group K . If X3 = Nil3 or Sol3 then K
is the fundamental group of an X3 -manifold or of a E3 -manifold. If X3 = H3

then K is the fundamental group of a H3 - or H2 × E1 -manifold.

Proof In all cases π is a semidirect product K⋊θZ and may be realised by the
mapping torus of a self homeomorphism of a closed 3-manifold with fundamental
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group K . If this manifold is an X3 -manifold then the outer automorphism class
of θ is finite (see Chapters 8 and 9) and θ may then be realized by an isometry
of an X3 -manifold. Infrasolvmanifolds are determined up to diffeomorphism by
their fundamental groups [Ba04], as are S̃L×E1 - and H2×E2 -manifolds [Vo77].
This is also true of S2 × E2 - and S3 × E1 -manifolds, provided K is not finite
cyclic, and when K is cyclic every such S3 ×E1 -manifold is a mapping torus of
an isometry of a suitable lens space [Oh90]. Thus if M is an X3 ×E1 -manifold
and K is the fundamental group of an X3 -manifold M is the mapping torus of
an isometry of an X3 -manifold with fundamental group K .

There are (orientable) Nil3 × E1 - and Sol3 × E1 -manifolds which are mapping
tori of self homeomorphisms of flat 3-manifolds, but which are not mapping tori
of self homeomorphisms of Nil3 - or Sol3 -manifolds. (See Chapter 8.) There
are analogous examples when X3 = H3 . (See §4 of Chapter 9.)

We may now improve upon the characterization of mapping tori up to homotopy
equivalence from Chapter 4.

Theorem 13.2 Let M be a closed 4-manifold with fundamental group π .
Then M is homotopy equivalent to the mapping torus M(Θ) of a self home-
omorphism of a closed 3-manifold with one of the geometries E3 , Nil3 , Sol3 ,
H2 × E1 , S̃L or S2 × E1 if and only if

(1) χ(M) = 0;

(2) π is an extension of Z by a finitely generated normal subgroup K ; and

(3) K has a nontrivial torsion free abelian normal subgroup A.

If π is torsion free M is s-cobordant to M(Θ), while if moreover π is solvable
M is homeomorphic to M(Θ).

Proof The conditions are clearly necessary. Since K has an infinite abelian
normal subgroup it has one or two ends. If K has one end then M is aspherical
and so K is a PD3 -group, by Theorem 4.1 and the Addendum to Theorem
4.5. Condition (3) then implies that M ′ is homotopy equivalent to a closed
3-manifold with one of the first five of the geometries listed above, by Theorem
2.14. If K has two ends then M ′ is homotopy equivalent to S2 × S1 , S2×̃S1 ,
RP 2 × S1 or RP 3♯RP 3 , by Corollary 4.5.2.

In all cases K is isomorphic to the fundamental group of a closed 3-manifold N
which is either Seifert fibred or a Sol3 -manifold, and the outer automorphism
class [θ] determined by the extension may be realised by a self homeomorphism
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Θ of N . The manifold M is homotopy equivalent to the mapping torus M(Θ).
Since Wh(π) = 0, by Theorems 6.1 and 6.3, any such homotopy equivalence is
simple.

If K is torsion free and solvable then π is virtually poly-Z , and so M is
homeomorphic to M(Θ), by Theorem 6.11. Otherwise N is a closed H2 × E1 -

or S̃L-manifold. As H2 × E1 has a metric of nonpositive sectional curvature,
the surgery obstruction homomorphisms σNi are isomorphisms for i large in
this case, by [FJ93’]. This holds also for any irreducible, orientable 3-manifold

N such that β1(N) > 0 [Ro00], and therefore also for all S̃L-manifolds, by
the Dress induction argument of [NS85]. Comparison of the Mayer-Vietoris
sequences for L0 -homology and L-theory (as in Proposition 2.6 of [St84]) shows

that σMi and σM×S1

i are also isomorphisms for i large, and so STOP (M(Θ)×S1)
has just one element. Therefore M is s-cobordant to M(Θ).

Mapping tori of self homeomorphisms of H3 - and S3 -manifolds satisfy condi-
tions (1) and (2). In the hyperbolic case there is the additional condition

(3-H) K has one end and no noncyclic abelian subgroup.

If every PD3 -group is a 3-manifold group and the geometrization conjecture for
atoroidal 3-manifolds is true then the fundamental groups of closed hyperbolic
3-manifolds may be characterized as PD3 -groups having no noncyclic abelian
subgroup. Assuming this, and assuming also that group rings of such hyperbolic
groups are regular coherent, Theorem 13.2 could be extended to show that a
closed 4-manifold M with fundamental group π is s-cobordant to the mapping
torus of a self homeomorphism of a hyperbolic 3-manifold if and only these
three conditions hold.

In the spherical case the appropriate additional conditions are

(3-S) K is a fixed point free finite subgroup of SO(4) and (if K is not cyclic)
the characteristic automorphism of K determining π is realized by an isometry
of S3/K ; and

(4-S) the first nontrivial k -invariant of M is “linear”.

The list of fixed point free finite subgroups of SO(4) is well known. (See
Chapter 11.) If K is cyclic or Q × Z/pjZ for some odd prime p or T ∗

k then
the second part of (3-S) and (4-S) are redundant, but the general picture is not
yet clear [HM86].
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The classification of complex surfaces leads easily to a complete characterization
of the 3-manifolds and diffeomorphisms such that the corresponding mapping
tori admit complex structures. (Since χ(M) = 0 for any mapping torus M we
do not need to enter the imperfectly charted realm of surfaces of general type.)

Theorem 13.3 Let N be a closed orientable 3-manifold with π1(N) = ν
and let θ : N → N be an orientation preserving self diffeomorphism. Then
the mapping torus M(θ) admits a complex structure if and only if one of the
following holds:

(1) N = S3/G where G is a fixed point free finite subgroup of U(2) and the
monodromy is as described in [Kt75] ;

(2) N = S2 × S1 (with no restriction on θ);

(3) N = S1 × S1 × S1 and the image of θ in SL(3,Z) either has finite order
or satisfies the equation (θ2 − I)2 = 0;

(4) N is the flat 3-manifold with holonomy of order 2, θ induces the identity
on ν/ν ′ and the absolute value of the trace of the induced automorphism
of ν ′ ∼= Z2 is at most 2;

(5) N is one of the flat 3-manifolds with holonomy cyclic of order 3, 4 or 6
and θ induces the identity on H1(N ; Q);

(6) N is a Nil3 -manifold and either the image of θ in Out(ν) has finite order
or M(θ) is a Sol41 -manifold;

(7) N is a H2 × E1 - or S̃L-manifold, ζν ∼= Z and the image of θ in Out(ν)
has finite order.

Proof The mapping tori of these diffeomorphisms admit 4-dimensional geome-
tries, and it is easy to read off which admit complex structures from [Wl86].
In cases (3), (4) and (5) note that a complex surface is Kähler if and only if
its first Betti number is even, and so the parity of this Betti number should be
invariant under passage to finite covers. (See Proposition 4.4 of [Wl86].)

The necessity of these conditions follows from examining the list of complex
surfaces X with χ(X) = 0 on page 188 of [BPV], in conjunction with Bogo-
molov’s theorem on surfaces of class V II0 . (See [Tl94] for a clear account of
the latter result.)

In particular, N must be Seifert fibred and most orientable Seifert fibred 3-
manifolds (excepting only the orientable H2 ×E1 -manifolds with nonorientable
base orbifolds, RP 3♯RP 3 and the Hantzsche-Wendt flat 3-manifold) occur.
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Moreover, in most cases (with exceptions as in (3), (4) and (6)) the image
of θ in Out(ν) must have finite order. Some of the resulting 4-manifolds arise
as mapping tori in several distinct ways. The corresponding result for com-
plex surfaces of the form N × S1 for which the obvious smooth S1 -action is
holomorphic was given in [GG95]. In [EO94] it is shown that if N is a ratio-
nal homology 3-sphere then N × S1 admits a complex structure if and only if
N is Seifert fibred, and the possible complex structures on such products are
determined.

Conversely, the following result is very satisfactory from the 4-dimensional point
of view.

Theorem 13.4 Let X be a complex surface. Then X is diffeomorphic to the
mapping torus of a self diffeomorphism of a closed 3-manifold if and only if
χ(X) = 0 and π = π1(X) is an extension of Z by a finitely generated normal
subgroup.

Proof The conditions are clearly necessary. Sufficiency of these conditions
again follows from the classification of complex surfaces, as in Theorem 13.3.

13.2 Surface bundles and geometries

Let p : E → B be a bundle with base B and fibre F aspherical closed surfaces.
Then p is determined up to bundle isomorphism by the group π = π1(E). If
χ(B) = χ(F ) = 0 then E has geometry E4 , Nil3 × E1 , Nil4 or Sol3 × E1 , by
Ue’s Theorem. When the fibre is Kb the geometry must be E4 or Nil3 × E1 ,
for then π has a normal chain ζπ1(Kb) ∼= Z <

√
π1(Kb) ∼= Z2 , so ζ

√
π has

rank at least 2. Hence a Sol3 × E1 - or Nil4 -manifold M is the total space of a
T -bundle over T if and only if β1(π) = 2. If χ(F ) = 0 but χ(B) < 0 then E
need not be geometric. (See Chapter 7 and §3 below.)

We shall assume henceforth that F is hyperbolic, i.e. that χ(F ) < 0. Then
ζπ1(F ) = 1 and so the characteristic homomorphism θ : π1(B) → Out(π1(F ))
determines π up to isomorphism, by Theorem 5.2.

Theorem 13.5 Let B and F be closed surfaces with χ(B) = 0 and χ(F ) < 0.
Let E be the total space of the F -bundle over B corresponding to a homomor-
phism θ : π1(B) → Out(π1(F )). Then E virtually has a geometric decomposi-
tion if and only if Ker(θ) 6= 1. Moreover

(1) E admits the geometry H2 × E2 if and only if θ has finite image;
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(2) E admits the geometry H3 × E1 if and only if Ker(θ) ∼= Z and Im(θ)
contains the class of a pseudo-Anasov homeomorphism of F ;

(3) otherwise E is not geometric.

Proof Let π = π1(E). Since E is aspherical, χ(E) = 0 and π is not solvable

the only possible geometries are H2 × E2 , H3 × E1 and S̃L × E1 . If E has a
proper geometric decomposition the pieces must all have χ = 0, and the only
other geometry that may arise is F4 . In all cases the fundamental group of each
piece has a nontrivial abelian normal subgroup.

If Ker(θ) 6= 1 then E is virtually a cartesian product N × S1 , where N is
the mapping torus of a self diffeomorphism ψ of F whose isotopy class in
π0(Diff(F )) ∼= Out(π1(F )) generates a subgroup of finite index in Im(θ).
Since N is a Haken 3-manifold it has a geometric decomposition and hence so
does E . The mapping torus N is an H3 -manifold if and only if ψ is pseudo-
Anasov. In that case the action of π1(N) ∼= π1(F ) ⋊ψ Z on H3 extends to
an embedding p : π/

√
π → Isom(H3), by Mostow rigidity. Since

√
π 6= 1 we

may also find a homomorphism λ : π → D < Isom(E1) such that λ(
√
π) ∼= Z .

Then Ker(λ) is an extension of Z by F and is commensurate with π1(N),
so is the fundamental group of a Haken H3 -manifold, N̂ say. Together these
homomorphisms determine a free cocompact action of π on H3×E1 . If λ(π) ∼=
Z then M = π\(H3 × E1) is the mapping torus of a self homeomorphism of
N̂ ; otherwise it is the union of two twisted I -bundles over N̂ . In either case
it follows from standard 3-manifold theory that since E has a similar structure
E and M are diffeomorphic.

If θ has finite image then π/Cπ(π1(F )) is a finite extension of π1(F ) and so
acts properly and cocompactly on H2 . We may therefore construct an H2×E2 -
manifold with group π and which fibres over B as in Theorems 7.3 and 9.9.
Since such bundles are determined up to diffeomorphism by their fundamental
groups E admits this geometry.

Conversely, if a finite cover of E has a geometric decomposition then we may
assume that the cover is itself the total space of a surface bundle over the
torus, and so we may assume that E has a geometric decomposition and that
B ∼= S1 × S1 . Let φ = π1(F ). Suppose first that E has a proper geometric
decomposition. Then π = π1(E) ∼= A ∗C B or A∗C , where C is solvable and of
Hirsch length 3, and where A is the fundamental group of one of the pieces of
E . Note that

√
A 6= 1. Let Ā = A/A ∩ φ, B̄ = B/B ∩ φ and C̄ = C/C ∩ φ.

Then π̄ = π/φ ∼= Z2 has a similar decomposition as Ā ∗C̄ B̄ or Ā∗C̄ . Now
C ∩ φ = 1 or Z , since χ(F ) < 0. Hence C̄ ∼= Z2 and so Ā = C̄ = B̄ . In

Geometry & Topology Monographs, Volume 5 (2002)



254 Chapter 13: Geometric decompositions of bundle spaces

particular, Im(θ) = θ(A). But as
√
A ∩ φ ≤ √

φ = 1 and
√
A and A ∩ φ are

normal subgroups of A it follows that
√
A and A ∩ φ commute. Hence θ(A)

is a quotient of A/
√
A.(A ∩ φ), which is abelian of rank at most 1, and so

Ker(θ) 6= 1.

If E admits the geometry H2 × E2 then
√
π = π ∩ Rad(Isom(H2 × E2)) =

π ∩ ({1} ×R2) ∼= Z2 , by Proposition 8.27 of [Rg]. Hence θ has finite image.

If E admits the geometry H3×E1 then
√
π = π∩({1}×R) ∼= Z , by Proposition

8.27 of [Rg]. Hence Ker(θ) ∼= Z and E is finitely covered a cartesian product
N × S1 , where N is a hyperbolic 3-manifold which is also an F -bundle over
S1 . The geometric monodromy of the latter bundle is a pseudo-Anasov diffeo-
morphism of F whose isotopy class is in Im(θ).

If ρ is the group of a S̃L×E1 -manifold then
√
ρ ∼= Z2 and

√
ρ∩K ′ 6= 1 for all

subgroups K of finite index, and so E cannot admit this geometry.

In particular, if χ(B) = 0 and θ is injective E admits no geometric decompo-
sition.

We shall assume henceforth that B is also hyperbolic. Then χ(E) > 0 and
π1(E) has no solvable subgroups of Hirsch length 3. Hence the only possible
geometries on E are H2 ×H2 , H4 and H2(C). (These are the least well under-
stood geometries, and little is known about the possible fundamental groups of
the corresponding 4-manifolds.)

Theorem 13.6 Let B and F be closed hyperbolic surfaces, and let E be
the total space of the F -bundle over B corresponding to a homomorphism
θ : π1(B) → Out(π1(F )). Then the following are equivalent:

(1) E admits the geometry H2 × H2 ;

(2) E is finitely covered by a cartesian product of surfaces;

(3) θ has finite image.

If Ker(θ) 6= 1 then E does not admit either of the geometries H4 or H2(C).

Proof Let π = π1(E) and φ = π1(F ). If E admits the geometry H2 × H2 it
is virtually a cartesian product, by Corollary 9.9.1, and so (1) implies (2).

If π is virtually a direct product of PD2 -groups then [π : Cπ(φ)] < ∞, by
Theorem 5.4. Therefore the image of θ is finite and so (2) implies (3).

If θ has finite image then Ker(θ) 6= 1 and π/Cπ(φ) is a finite extension of φ.
Hence there is a homomorphism p : π → Isom(H2) with kernel Cπ(φ) and
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with image a discrete cocompact subgroup. Let q : π → π1(B) < Isom(H2).
Then (p, q) embeds π as a discrete cocompact subgroup of Isom(H2 × H2),
and the closed 4-manifold M = π\(H2 × H2) clearly fibres over B . Such
bundles are determined up to diffeomorphism by the corresponding extensions
of fundamental groups, by Theorem 5.2. Therefore E admits the geometry
H2 × H2 and so (3) implies (1).

If θ is not injective Z2 < π and so E cannot admit either of the geometries H4

or H2(C), by Theorem 9 of [Pr43].

If F is orientable and of genus g its mapping class group Mg = Out(π1(F )) has
only finitely many conjugacy classes of finite groups [Ha71]. With the finiteness
result for H4 - and H2(C)-manifolds of [Wa72], this implies that only finitely
many orientable bundle spaces with given Euler characteristic are geometric. In
Corollary 13.7.2 we shall show that no such bundle space is homotopy equivalent
to a H2(C)-manifold. Is there one which admits the geometry H4? If Im(θ)
contains the outer automorphism class determined by a Dehn twist on F then
E admits no metric of nonpositive sectional curvature [KL96].

If E has a proper geometric decomposition the inclusions of the cusps induce
monomorphisms on π1 and the pieces are reducible H2×H2 -manifolds. However
E need not be geometric. (There are examples with B and F of genus 2 and
Im(θ) ∼= D .)

Every closed orientable H2×H2 -manifold has a 2-fold cover which is a complex
surface, and has signature 0. Conversely, if E is a complex surface and p is a
holomorphic submersion then σ(E) = 0 implies that the fibres are isomorphic,
and so E is an H2 × H2 -manifold [Ko99]. This is also so if p is a holomorphic
fibre bundle. (See §V.6 of [BPV].) Any holomorphic submersion with base of
genus at most 1 or fibre of genus at most 2 is a holomorphic fibre bundle [Ks68].
There are such holomorphic submersions in which σ(E) 6= 0 and so which are
not virtually products. (See §V.14 of [BPV].) The image of θ must contain the
outer automorphism class determined by a pseudo-Anasov homeomorphism and
not be virtually abelian [Sh97].

Orientable H4 -manifolds also have signature 0, but no closed H4 -manifold ad-
mits a complex structure.

If B and E are orientable σ(E) = −θ∗τ ∩ [B], where τ ∈ H2(Mg; Z) is induced
from a universal class in H2(Sp2g(Z); Z) via the natural representation of Mg

as symplectic isometries of the intersection form on H1(F ; Z) ∼= Z2g . ([Me73]
- see [En98, Ho01] for alternative approaches.) In particular, if g = 2 then
σ(E) = 0, since H2(M2; Q) = 0.
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13.3 Geometric decompositions of torus bundles

In this section we shall give some examples of torus bundles over closed surfaces
which are not geometric, some of which admit geometric decompositions of type
F4 and some of which do not.

We show first that there is no closed 4-manifold with the geometry F4 . If G =
Isom(F4) and Γ < G is an F4 -lattice then Γ∩Rad(G) is a lattice in Rad(G) ∼=
R2 , and Γ/Γ ∩ Rad(G) is a discrete cocompact subgroup of G/Rad(G), by
Proposition 8.27 of [Rg]. Hence

√
Γ = Γ ∩ Rad(G) ∼= Z2 and Γ/

√
Γ is a

subgroup of finite index in GL(2,Z). Therefore v.c.d.Γ = 3 and so Γ\F 4 is
not a closed 4-manifold. As observed in Chapter 7, such quotients are Seifert
fibred, and the base is a punctured hyperbolic orbifold. Thus if M is a compact
manifold with boundary whose interior is an F4 -manifold of finite volume the
double DM = M ∪∂ M is Seifert fibred over a hyperbolic base but is not
geometric, since

√
π ∼= Z2 but [π : Cπ(

√
π)] is infinite.

The orientable surface of genus 2 can be represented as a double in two distinct
ways; we shall give corresponding examples of nongeometric torus bundles which
admit geometric decompositions of type F4 .

1. Let F (2) be the free group of rank two and let γ : F (2) → SL(2,Z)
have image the commutator subgroup SL(2,Z)′ , which is freely generated
by ( 2 1

1 1 ) and ( 1 1
1 2 ). The natural surjection from SL(2,Z) to PSL(2,Z) in-

duces an isomorphism of commutator subgroups. (See §2 of Chapter 1.) The
parabolic subgroup PSL(2,Z)′ ∩ Stab(0) is generated by the image of ( 1 0

6 1 ).
Hence [Stab(0) : PSL(2,Z)′ ∩ Stab(0)] = 6 = [PSL(2,Z) : PSL(2,Z)′],
and so PSL(2,Z)′ has a single cusp, represented by 0. The quotient space
PSL(2,Z)′\H2 is the once-punctured torus. Let N ⊂ PSL(2,Z)′\H2 be
the complement of an open horocyclic neighbourhood of the cusp. The dou-
ble DN is the closed orientable surface of genus 2. The semidirect product
Γ = Z2 ⋊γ F (2) is a lattice in Isom(F4), and the double of the bounded man-
ifold with interior Γ\F 4 is a torus bundle over DN .

2. Let δ : F (2) → SL(2,Z) have image the subgroup which is freely gen-
erated by U = ( 1 0

2 1 ) and V = ( 1 2
0 1 ). Let δ̄ : F (2) → PSL(2,Z) be the

composed map. Then δ̄ is injective and [PSL(2,Z) : δ̄(F (2))] = 6. (Note that
δ(F (2)) and −I together generate the level 2 congruence subgroup.) Moreover
[Stab(0) : δ̄(F (2)) ∩ Stab(0)] = 2. Hence δ̄(F (2)) has three cusps, represented
by 0, ∞ and 1, and δ̄(F (2))\H2 is the thrice-punctured sphere. The corre-
sponding parabolic subgroups are generated by U , V and V U−1 , respectively.
Doubling the complement N of disjoint horocyclic neighbourhoods of the cusps
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in δ̄(F (2))\H2 again gives a closed orientable surface of genus 2. The presen-
tation for π1(DN) derived from this construction is

〈U, V,U1, V1, s, t | s−1Us = U1, t
−1V t = V1, V U

−1 = V1U
−1
1 〉,

which simplifies to the usual presentation 〈U, V, s, t | s−1V −1sV = t−1U−1tU〉.
The semidirect product ∆ = Z2 ⋊δ F (2) is a lattice in Isom(F4), and the
double of the bounded manifold with interior ∆\F 4 is again a torus bundle
over DN .

3. If G is an orientable PD2 -group which is not virtually Z2 and λ : G →
SL(2,Z) is a homomorphism whose image is infinite cyclic then π = Z2 ⋊λG is
the fundamental group of a closed orientable 4-manifold which is fibred over an
orientable hyperbolic surface but which has no geometric decomposition at all.
(The only possible geometries are F4 , H2 × E2 and S̃L × E1 . We may exclude
pieces of type F4 as Im(λ) has infinite index in SL(2,Z), and we may exclude

pieces of type H2 × E2 or S̃L × E1 as Im(λ) ∼= Z is not generated by finite
subgroups.)

13.4 Complex surfaces and fibrations

It is an easy consequence of the classification of surfaces that a minimal compact
complex surface S is ruled over a curve C of genus ≥ 2 if and only if π1(S) ∼=
π1(C) and χ(S) = 2χ(C). (See Chapter VI of [BPV].) We shall give a similar
characterization of the complex surfaces which admit holomorphic submersions
to complex curves of genus ≥ 2, and more generally of quotients of such surfaces
by free actions of finite groups. However we shall use the classification only to
handle the cases of non-Kähler surfaces.

Theorem 13.7 Let S be a complex surface. Then S has a finite covering
space which admits a holomorphic submersion onto a complex curve, with base
and fibre of genus ≥ 2, if and only if π = π1(S) has normal subgroups K < π̂
such that K and π̂/K are PD+

2 -groups, [π : π̂] < ∞ and [π : π̂]χ(S) =
χ(K)χ(π̂/K) > 0.

Proof The conditions are clearly necessary. Suppose that they hold. Then S
is aspherical, by Theorem 5.2. In particular, π is torsion free and π2(S) = 0,
so S is minimal. After enlarging K if necessary we may assume that π/K has
no nontrivial finite normal subgroup. Let Ŝ be the finite covering space corre-
sponding to π̂ . Then β1(Ŝ) ≥ 4. If β1(Ŝ) were odd then Ŝ would be minimal
properly elliptic, by the classification of surfaces. But then either χ(S) = 0 or
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Ŝ would have a singular fibre and the projection of Ŝ to the base curve would
induce an isomorphism on fundamental groups [CZ79]. Hence β1(Ŝ) is even
and so Ŝ and S are Kähler. (See Theorem 4.3 of [Wl86].) Since π/K is not
virtually Z2 it is isomorphic to a discrete group of isometries of the upper half

plane H2 and β
(2)
1 (π/K) 6= 0. Hence there is a properly discontinuous holo-

morphic action of π/K on H2 and a π/K -equivariant holomorphic map from
the covering space SK to H2 , with connected fibres, by Theorems 4.1 and 4.2
of [ABR92]. Let B and B̂ be the complex curves H2/(π/K) and H2/(π̂/K),
respectively, and let h : S → B and ĥ : Ŝ → B̂ be the induced maps. The
quotient map from H2 to B̂ is a covering projection, since π̂/K is torsion free,
and so π1(ĥ) is an epimorphism with kernel K .

The map h is a submersion away from the preimage of a finite subset D ⊂ B .
Let F be the general fibre and Fd the fibre over d ∈ D . Fix small disjoint discs
∆d ⊂ B about each point of D , and let B∗ = B−∪d∈D∆d , S

∗ = h−1(B∗) and
Sd = h−1(∆d). Since h|S∗ is a submersion π1(S

∗) is an extension of π1(B
∗) by

π1(F ). The inclusion of ∂Sd into Sd−Fd is a homotopy equivalence. Since Fd
has real codimension 2 in Sd the inclusion of Sd − Fd into Sd is 2-connected.
Hence π1(∂Sd) maps onto π1(Sd).

Let md = [π1(Fd)] : Im(π1(F ))]. After blowing up S∗ at singular points of
Fd we may assume that Fd has only normal crossings. We may then pull h|Sd

back over a suitable branched covering of ∆d to obtain a singular fibre F̃d with
no multiple components and only normal crossing singularities. In that case
F̃d is obtained from F by shrinking vanishing cycles, and so π1(F ) maps onto
π1(F̃d). Since blowing up a point on a curve does not change the fundamental
group it follows from §9 of Chapter III of [BPV] that in general md is finite.

We may regard B as an orbifold with cone singularities of order md at d ∈ D .
By the Van Kampen theorem (applied to the space S and the orbifold B ) the
image of π1(F ) in π is a normal subgroup and h induces an isomorphism from
π/π1(F ) to πorb1 (B). Therefore the kernel of the canonical map from πorb1 (B) to
π1(B) is isomorphic to K/Im(π1(F )). But this is a finitely generated normal
subgroup of infinite index in πorb1 (B), and so must be trivial. Hence π1(F )
maps onto K , and so χ(F ) ≤ χ(K).

Let D̂ be the preimage of D in B̂ . The general fibre of ĥ is again F . Let F̂d
denote the fibre over d ∈ D̂ . Then χ(Ŝ) = χ(F )χ(B)+Σd∈ bD(χ(F̂d)−χ(F )) and

χ(F̂d) ≥ χ(F ), by Proposition III.11.4 of [BPV]. Moreover χ(F̂d) > χ(F ) unless
χ(F̂d) = χ(F ) = 0, by Remark III.11.5 of [BPV]. Since χ(B̂) = χ(π̂/K) < 0,
χ(Ŝ) = χ(K)χ(π̂/K) and χ(F ) ≤ χ(K) it follows that χ(F ) = χ(K) < 0 and
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χ(F̂d) = χ(F ) for all d ∈ D̂ . Therefore F̂d ∼= F for all d ∈ D̂ and so ĥ is a
holomorphic submersion.

Similar results have been found independently by Kapovich and Kotschick
[Ka98, Ko99]. Kapovich assumes instead that K is FP2 and S is aspheri-
cal. As these hypotheses imply that K is a PD2 -group, by Theorem 1.19, the
above theorem applies.

We may construct examples of such surfaces as follows. Let n > 1 and C1 and
C2 be two curves such that Z/nZ acts freely on C1 and with isolated fixed
points on C2 . The quotient of C1 × C2 by the diagonal action is a complex
surface S and projection from C1 × C2 to C2 induces a holomorphic mapping
from S onto C2/(Z/nZ) with critical values corresponding to the fixed points.

Corollary 13.7.1 The surface S admits such a holomorphic submersion onto
a complex curve if and only if π/K is a PD+

2 -group.

Corollary 13.7.2 No bundle space E is homotopy equivalent to a closed
H2(C)-manifold.

Proof Since H2(C)-manifolds have 2-fold coverings which are complex sur-
faces, we may assume that E is homotopy equivalent to a complex surface S .
By the theorem, S admits a holomorphic submersion onto a complex curve.
But then χ(S) > 3σ(S) [Li96], and so S cannot be a H2(C)-manifold.

The relevance of Liu’s work was observed by Kapovich, who has also found a
cocompact H2(C)-lattice which is an extension of a PD+

2 -group by a finitely
generated normal subgroup, but which is not almost coherent [Ka98].

Similar arguments may be used to show that a Kähler surface S is a minimal
properly elliptic surface with no singular fibres if and only if χ(S) = 0 and
π = π1(S) has a normal subgroup A ∼= Z2 such that π/A is virtually torsion
free and indicable, but is not virtually abelian. (This holds also in the non-
Kähler case as a consequence of the classification of surfaces.) Moreover, if S
is not ruled it is a complex torus, a hyperelliptic surface, an Inoue surface, a
Kodaira surface or a minimal elliptic surface if and only if χ(S) = 0 and π1(S)
has a normal subgroup A which is poly-Z and not cyclic, and such that π/A
is infinite and virtually torsion free indicable. (See Theorem X.5 of [H2].)

We may combine Theorem 13.7 with some observations deriving from the clas-
sification of surfaces for our second result.
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Theorem 13.8 Let S be a complex surface such that π = π1(S) 6= 1. If S is
homotopy equivalent to the total space E of a bundle over a closed orientable
2-manifold then S is diffeomorphic to E .

Proof Let B and F be the base and fibre of the bundle, respectively. Sup-
pose first that χ(F ) = 2. Then χ(B) ≤ 0, for otherwise S would be simply-
connected. Hence π2(S) is generated by an embedded S2 with self-intersection
0, and so S is minimal. Therefore S is ruled over a curve diffeomorphic to B ,
by the classification of surfaces.

Suppose next that χ(B) = 2. If χ(F ) = 0 and π 6∼= Z2 then π ∼= Z ⊕
(Z/nZ) for some n > 0. Then S is a Hopf surface and so is determined up to
diffeomorphism by its homotopy type, by Theorem 12 of [Kt75]. If χ(F ) = 0
and π ∼= Z2 or if χ(F ) < 0 then S is homotopy equivalent to S2 × F , so
χ(S) < 0, w1(S) = w2(S) = 0 and S is ruled over a curve diffeomorphic to F .
Hence E and S are diffeomorphic to S2 × F .

In the remaining cases E and F are both aspherical. If χ(F ) = 0 and χ(B) ≤
0 then χ(S) = 0 and π has one end. Therefore S is a complex torus, a
hyperelliptic surface, an Inoue surface, a Kodaira surface or a minimal properly
elliptic surface. (This uses Bogomolov’s theorem on class V II0 surfaces [Tl94].)
The Inoue surfaces are mapping tori of self-diffeomorphisms of S1 × S1 × S1 ,
and their fundamental groups are not extensions of Z2 by Z2 , so S cannot be
an Inoue surface. As the other surfaces are Seifert fibred 4-manifolds E and S
are diffeomorphic, by [Ue91].

If χ(F ) < 0 and χ(B) = 0 then S is a minimal properly elliptic surface. Let
A be the normal subgroup of the general fibre in an elliptic fibration. Then
A ∩ π1(F ) = 1 (since π1(F ) has no nontrivial abelian normal subgroup) and
so [π : A.π1(F )] < ∞. Therefore E is finitely covered by a cartesian product
T × F , and so is Seifert fibred. Hence E and S are diffeomorphic, by [Ue].

The remaining case (χ(B) < 0 and χ(F ) < 0) is an immediate consequence of
Theorem 13.7, since such bundles are determined by the corresponding exten-
sions of fundamental groups. (See Theorem 5.2.)

A simply-connected smooth 4-manifold which fibres over a 2-manifold must
be homeomorphic to CP 1 × CP 1 or CP 2♯CP 2 . (See Chapter 12.) Is there
such a surface of general type? (No surface of general type is diffeomorphic to
CP 1 × CP 1 or CP 2♯CP 2 [Qi93].)

Corollary 13.8.1 If moreover the base has genus 0 or 1 or the fibre has genus
2 then S is finitely covered by a cartesian product.
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Proof A holomorphic submersion with fibre of genus 2 is the projection of a
holomorphic fibre bundle and hence S is virtually a product, by [Ks68].

Up to deformation there are only finitely many algebraic surfaces with given
Euler characteristic > 0 which admit holomorphic submersions onto curves
[Pa68]. By the argument of the first part of Theorem 13.1 this remains true
without the hypothesis of algebraicity, for any such complex surface must be
Kähler, and Kähler surfaces are deformations of algebraic surfaces. (See The-
orem 4.3 of [Wl86].) Thus the class of bundles realized by complex surfaces is
very restricted. Which extensions of PD+

2 -groups by PD+
2 -groups are realized

by complex surfaces (i.e., not necessarily aspherical)?

The equivalence of the conditions “S is ruled over a complex curve of genus
≥ 2”, “π = π1(S) is a PD+

2 -group and χ(S) = 2χ(π) < 0” and “π2(S) ∼= Z ,
π acts trivially on π2(S) and χ(S) < 0” also follows by an argument similar to
that used in Theorems 13.7 and 13.8. (See Theorem X.6 of [H2].)

If π2(S) ∼= Z and χ(S) = 0 then π is virtually Z2 . The finite covering space
with fundamental group Z2 is Kähler, and therefore so is S . Since β1(S) > 0
and is even, we must have π ∼= Z2 , and so S is either ruled over an elliptic
curve or is a minimal properly elliptic surface, by the classification of complex
surfaces. In the latter case the base of the elliptic fibration is CP 1 , there
are no singular fibres and there are at most 3 multiple fibres. (See [Ue91].)
Thus S may be obtained from a cartesian product CP 1 × E by logarithmic
transformations. (See §V.13 of [BPV].) Must S in fact be ruled?

If π2(S) ∼= Z and χ(S) > 0 then π = 1, by Theorem 10.1. Hence S ≃ CP 2

and so S is analytically isomorphic to CP 2 , by a result of Yau. (See Theorem
I.1 of [BPV].)

13.5 S1-Actions and foliations by circles

For each of the geometries X4 = S3×E1 , H3×E1 , S̃L×E1 , Nil3×E1 , Sol3×E1 ,
Nil4 and Sol41 the real line R is a characteristic subgroup of the radical of
Isom(X4). (However the translation subgroup of the euclidean factor is not

characteristic if X4 = S̃L×E1 or Nil3×E1 .) The corresponding closed geometric
4-manifolds are foliated by circles, and the leaf space is a geometric 3-orbifold,
with geometry S3 , H3 , H2 ×E1 , E3 , Sol3 , Nil3 and Sol3 , respectively. In each
case it may be verified that if π is a lattice in Isom(X4) then π ∩ R ∼= Z . As
this characteristic subgroup is central in the identity component of the isometry
group such manifolds have double coverings which admit S1 -actions without
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fixed points. These actions lift to principal S1 -actions (without exceptional
orbits) on suitable finite covering spaces. (This does not hold for all S1 -actions.
For instance, S3 admits non-principal S1 -actions without fixed points.)

Closed E4 -, S2×E2 - or H2×E2 -manifolds all have finite covering spaces which
are cartesian products with S1 , and thus admit principal S1 -actions. However
these actions are not canonical. (There are also non-canonical S1 -actions on

many S̃L×E1 - and Nil3×E1 -manifolds.) No other closed geometric 4-manifold
is finitely covered by the total space of an S1 -bundle. For if a closed manifold
M is foliated by circles then χ(M) = 0. This excludes all other geometries
except Sol4m,n and Sol40 . If moreover M is the total space of an S1 -bundle and
is aspherical then π1(M) has an infinite cyclic normal subgroup. As lattices in
Isom(Sol4m,n) or Isom(Sol40) do not have such subgroups these geometries are
excluded also. Does every geometric 4-manifold M with χ(M) = 0 nevertheless
admit a foliation by circles?

In particular, a complex surface has a foliation by circles if and only if it admits
one of the above geometries. Thus it must be Hopf, hyperelliptic, Inoue of
type S±

N... , Kodaira, minimal properly elliptic, ruled over an elliptic curve or a
torus. With the exception of some algebraic minimal properly elliptic surfaces
and the ruled surfaces over elliptic curves with w2 6= 0 all such surfaces admit
S1 -actions without fixed points.

Conversely, the total space E of an S1 -orbifold bundle ξ over a geometric 3-
orbifold is geometric, except when the base B has geometry H3 or S̃L and the
characteristic class c(ξ) has infinite order. More generally, E has a (proper)

geometric decomposition if and only if B is a S̃L-orbifold and c(ξ) has finite
order or B has a (proper) geometric decomposition and the restrictions of c(ξ)
to the hyperbolic pieces of B each have finite order.

Total spaces of circle bundles over aspherical Seifert fibred 3-manifolds and
Sol3 -manifolds have a characterization parallel to that of Theorem 13.2.

Theorem 13.9 Let M be a closed 4-manifold with fundamental group π .
Then:

(1) M is simple homotopy equivalent to the total space E of an S1 -bundle
over an aspherical closed Seifert fibred 3-manifold or a Sol3 -manifold if
and only if χ(M) = 0 and π has normal subgroups A < B such that
A ∼= Z , π/A is torsion free and B/A is abelian.
If B/A ∼= Z and is central in π/A then M is s-cobordant to E . If B/A
has rank at least 2 then M is homeomorphic to E .
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(2) M is s-cobordant to the total space E of an S1 -bundle over the mapping
torus of a self homeomorphism of an aspherical surface if and only if
χ(M) = 0 and π has normal subgroups A < B such that A ∼= Z , π/A is
torsion free, B is finitely generated and π/B ∼= Z .

Proof (1) The conditions are clearly necessary. If they hold then h(
√
π) ≥

h(B/A) + 1 ≥ 2, and so M is aspherical. If h(
√
π) = 2 then

√
π ∼= Z2 , by

Theorem 9.2. Hence B/A ∼= Z and H2(π/B; Z[π/B]) ∼= Z , so π/B is virtually
a PD2 -group, by Bowditch’s Theorem. Since π/A is torsion free it is a PD3 -
group, and so is the fundamental group of a closed Seifert fibred 3-manifold, N
say, by Theorem 2.14. As Wh(π) = 0, by Theorem 6.4, M is simple homotopy
equivalent to the total space E of an S1 -bundle over N .

If moreover B/A is central in π/A then N admits an effective S1 -action, and
E×S1 is an S1×S1 -bundle over N . Hence M×S1 is homeomorphic to E×S1

(see Remark 3.4 of [NS85]), and so M is s-cobordant to E . If B/A has rank
at least 2 then h(

√
π) > 2 and so π is virtually poly-Z . Hence π/A is the

fundamental group of a E3 -, Nil3 - or Sol3 -manifold and M is homeomorphic
to such a bundle space E , by Theorem 6.11.

(2) The conditions are again necessary. If they hold then B/A is infinite, so B
has one end and hence is a PD3 -group, by Theorem 4.5. Since B/A is torsion
free it is a PD2 -group, by Bowditch’s Theorem, and so π/A is the fundamental
group of a mapping torus, N say. As Wh(π) = 0, by Theorem 6.4, M is simple
homotopy equivalent to the total space E of an S1 -bundle over N . Since π×Z
is square root closed accessible M ×S1 is homeomorphic to E×S1 [Ca73], and
so M is s-cobordant to E .

If B/A ∼= Z and π/B acts nontrivially on B/A is M s-cobordant to E?

Simple homotopy equivalence implies s-cobordism for such bundles over other
Haken bases (with square root closed accessible fundamental group or with
β1 > 0 and orientable) using [Ca73] or [Ro00]. However we do not yet have
good intrinsic characterizations of the fundamental groups of such 3-manifolds.

If M fibres over a hyperbolic 3-manifold N then χ(M) = 0,
√
π ∼= Z and π/

√
π

has one end, finite cohomological dimension and no noncyclic abelian subgroups.
Conversely if π satisfies these conditions then ρ = π/

√
π is a PD3 -group, by

Theorem 4.12, and
√
ρ = 1. It may be conjectured that every such PD3 -group

(with no nocyclic abelian subgroups and trivial Hirsch-Plotkin radical) is the
fundamental group of a closed hyperbolic 3-manifold. If so, Theorem 13.9 may
be extended to a characterization of such 4-manifolds up to s-cobordism, using
Theorem 10.7 of [FJ89] instead of [NS85].
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13.6 Symplectic structures

If M is a closed orientable 4-manifold which fibres over an orientable surface
and the image of the fibre in H2(M ; R) is nonzero then M has a symplectic
structure [Th76]. The homological condition is automatic unless the fibre is
a torus; some such condition is needed, as S3 × S1 is the total space of a T -
bundle over S2 but H2(S3 × S1; R) = 0, so it has no symplectic structure. If
the base is also a torus then M admits a symplectic structure [Ge92]. Closed
Kähler manifolds have natural symplectic structures. Using these facts, it is
easy to show for most geometries that either every closed geometric manifold is
finitely covered by one admitting a symplectic structure or no closed geometric
manifold admits any symplectic structure.

If M is orientable and admits one of the geometries CP2 , S2 × S2 , S2 × E2 ,
S2×H2 , H2×E2 , H2×H2 or H2(C) then it has a 2-fold cover which is Kähler,
and therefore symplectic. If it admits E4 , Nil4 , Nil3 ×E1 or Sol3 ×E1 then it
has a finite cover which fibres over the torus, and therefore is symplectic. If all
H3 -manifolds are virtually mapping tori then H3 ×E1 -manifolds would also be
virtually symplectic. However, the question is not settled for this geometry.

As any closed orientable manifold with one of the geometries S4 , S3×E1 , Sol4m,n
(with m 6= n), Sol40 or Sol41 has β2 = 0 no such manifold can be symplectic.

Nor are closed S̃L × E1 -manifolds [Et01]. The question appears open for the
geometry H4 , as is the related question about bundles. (Note that symplectic
4-manifolds with index 0 have Euler characteristic divisible by 4, by Corollary
10.1.10 of [GS]. Hence covering spaces of odd degree of the Davis 120-cell space
provide many examples of nonsymplectic H4 -manifolds.)

If N is a 3-manifold which is a mapping torus then S1 ×N fibres over T , and
so admits a symplectic structure. Taubes has asked whether the converse is
true; if S1 × N admits a symplectic structure must N fibre over S1? More
generally, one might ask which 4-dimensional mapping tori and S1 -bundles are
symplectic?

Which manifolds with geometric decompositions are symplectic?
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Chapter 14

Knots and links

In this chapter we introduce the basic notions and constructions of knot theory.
Many of these apply equally well in all dimensions, and for the most part we
have framed our definitions in such generality, although our main concern is with
2-knots (embeddings of S2 in S4 ). In particular, we show how the classification
of higher dimensional knots may be reduced (essentially) to the classification
of certain closed manifolds, and we give Kervaire’s characterization of high
dimensional knot groups. In the final sections we comment briefly on links and
the groups of links, homology spheres and their groups.

14.1 Knots

The standard orientation of Rn induces an orientation on the unit n-disc Dn =
{(x1, . . . xn) ∈ Rn | Σx2

i ≤ 1} and hence on its boundary Sn−1 = ∂Dn , by the
convention “outward normal first”. We shall assume that standard discs and
spheres have such orientations. Qualifications shall usually be omitted when
there is no risk of ambiguity. In particular, we shall often abbreviate X(K),
M(K) and πK (defined below) as X , M and π , respectively.

An n-knot is a locally flat embedding K : Sn → Sn+2 . (We shall also use the
terms “classical knot” when n = 1, “higher dimensional knot” when n ≥ 2 and
“high dimensional knot” when n ≥ 3.) It is determined up to (ambient) isotopy
by its image K(Sn), considered as an oriented codimension 2 submanifold of
Sn+2 , and so we may let K also denote this submanifold. Let rn be an orienta-
tion reversing self homeomorphism of Sn . Then K is invertible, +amphicheiral
or −amphicheiral if it is isotopic to rK = rn+2K , Kρ = Krn or −K = rKρ,
respectively. An n-knot is trivial if it is isotopic to the composite of equatorial
inclusions Sn ⊂ Sn+1 ⊂ Sn+2 .

Every knot has a product neighbourhood: there is an embedding j : Sn ×D2

onto a closed neighbourhood N of K , such that j(Sn × {0}) = K and ∂N is
bicollared in Sn+2 [KS75,FQ]. We may assume that j is orientation preserving,
and it is then unique up to isotopy rel Sn × {0}. The exterior of K is the
compact (n + 2)-manifold X(K) = Sn+2 − intN with boundary ∂X(K) ∼=
Sn × S1 , and is well defined up to homeomorphism. It inherits an orientation
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from Sn+2 . An n-knot K is trivial if and only if X(K) ≃ S1 ; this follows from
Dehn’s Lemma if n = 1, is due to Freedman if n = 2 ([FQ] - see Corollary
17.1.1 below) and is an easy consequence of the s-cobordism theorem if n ≥ 3.

The knot group is πK = π1(X(K)). An oriented simple closed curve isotopic
to the oriented boundary of a transverse disc {j} × S1 is called a meridian for
K , and we shall also use this term to denote the corresponding elements of π .
If µ is a meridian for K , represented by a simple closed curve on ∂X then
X ∪µ D2 is a deformation retract of Sn+2 − {∗} and so is contractible. Hence
π is generated by the conjugacy class of its meridians.

Assume for the remainder of this section that n ≥ 2. The group of pseu-
doisotopy classes of self homeomorphisms of Sn×S1 is (Z/2Z)3 , generated by
reflections in either factor and by the map τ given by τ(x, y) = (ρ(y)(x), y) for
all x in Sn and y in S1 , where ρ : S1 → SO(n+ 1) is an essential map [Gl62,
Br67, Kt69]. As any self homeomorphism of Sn×S1 extends across Dn+1×S1

the knot manifold M(K) = X(K)∪(Dn+1×S1) obtained from Sn+2 by surgery
on K is well defined, and it inherits an orientation from Sn+2 via X . Moreover
π1(M(K)) ∼= πK and χ(M(K)) = 0. Conversely, suppose that M is a closed
orientable 4-manifold with χ(M) = 0 and π1(M) is generated by the conjugacy
class of a single element. (Note that each conjugacy class in π corresponds to
an unique isotopy class of oriented simple closed curves in M .) Surgery on a
loop in M representing such an element gives a 1-connected 4-manifold Σ with
χ(Σ) = 2 which is thus homeomorphic to S4 and which contains an embedded
2-sphere as the cocore of the surgery. We shall in fact study 2-knots through
such 4-manifolds, as it is simpler to consider closed manifolds rather than pairs.

There is however an ambiguity when we attempt to recover K from M =
M(K). The cocore γ = {0} × S1 ⊂ Dn+1 × S1 ⊂ M of the original surgery is
well defined up to isotopy by the conjugacy class of a meridian in πK = π1(M).
(In fact the orientation of γ is irrelevant for what follows.) Its normal bundle
is trivial, so γ has a product neighbourhood, P say, and we may assume that
M − intP = X(K). But there are two essentially distinct ways of identifying
∂X with Sn×S1 = ∂(Sn×D2), modulo self homeomorphisms of Sn×S1 that
extend across Sn×D2 . If we reverse the original construction of M we recover
(Sn+2,K) = (X ∪j Sn ×D2, Sn × {0}). If however we identify Sn × S1 with
∂X by means of jτ we obtain a new pair

(Σ,K∗) = (X ∪jτ Sn ×D2, Sn × {0}).
It is easily seen that Σ ≃ Sn+2 , and hence Σ ∼= Sn+2 . We may assume that
the homeomorphism is orientation preserving. Thus we obtain a new n-knot
K∗ , which we shall call the Gluck reconstruction of K . The knot K is reflexive
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if it is determined as an unoriented submanifold by its exterior, i.e., if K∗ is
isotopic to K , rK , Kρ or −K .

If there is an orientation preserving homeomorphism from X(K1) to X(K) then
K1 is isotopic to K , K∗ , Kρ or K∗ρ. If the homeomorphism also preserves
the homology class of the meridians then K1 is isotopic to K or to K∗ . Thus
K is determined up to an ambiguity of order at most 2 by M(K) together with
the conjugacy class of a meridian.

A Seifert hypersurface for K is a locally flat, oriented codimension 1 subman-
ifold V of Sn+2 with (oriented) boundary K . By a standard argument these
always exist. (Using obstruction theory it may be shown that the projection
pr2j

−1 : ∂X → Sn × S1 → S1 extends to a map p : X → S1 [Ke65]. By
topological transversality we may assume that p−1(1) is a bicollared, proper
codimension 1 submanifold of X . The union p−1(1) ∪ j(Sn × [0, 1]) is then
a Seifert hypersurface for K .) We shall say that V is minimal if the natural
homomorphism from π1(V ) to πK is a monomorphism.

In general there is no canonical choice of Seifert surface. However there is one
important special case. An n-knot K is fibred if there is such a map p : X → S1

which is the projection of a fibre bundle. (Clearly K∗ is then fibred also.) The
exterior is then the mapping torus of a self homeomorphism θ of the fibre F
of p, called the (geometric) monodromy of the bundle. Such a map p extends
to a fibre bundle projection q : M(K) → S1 , with fibre F̂ = F ∪Dn+1 , called
the closed fibre of K . Conversely, if M(K) fibres over S1 then the cocore γ is
homotopic (and thus isotopic) to a cross-section of the bundle projection, and
so K is fibred. If the monodromy is represented by a self-homeomorphism of
finite order then it has nonempty fixed point set, and the closed monodromy
θ̂ has finite order. However the results of [Hn] and [La] may be used to show
that the closed monodromy of the spun trefoil knot σ31 has finite order, but as
π1(F ) ∼= F (2) has no automorphism of order 6 [Me74] there is no representative
of finite order with nonempty fixed point set.

14.2 Covering spaces

Let K be an n-knot. Then H1(X(K); Z) ∼= Z and Hi(X(K); Z) = 0 if
i > 1, by Alexander duality. The meridians are all homologous and generate
π/π′ = H1(X; Z), and so determine a canonical isomorphism with Z . Moreover
H2(π; Z) = 0, since it is a quotient of H2(X; Z) = 0.

We shall let X ′(K) and M ′(K) denote the covering spaces corresponding to
the commutator subgroup. (The cover X ′/X is also known as the infinite
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cyclic cover of the knot.) Since π/π′ = Z the (co)homology groups of X ′ are
modules over the group ring Z[Z], which may be identified with the ring of
integral Laurent polynomials Λ = Z[t, t−1]. If A is a Λ-module, let zA be the
Z-torsion submodule, and let eiA = ExtiΛ(A,Λ).

Since Λ is noetherian the (co)homology of a finitely generated free Λ-chain
complex is finitely generated. The Wang sequence for the projection of X ′ onto
X may be identified with the long exact sequence of homology corresponding
to the exact sequence of coefficients

0 → Λ → Λ → Z → 0.

Since X has the homology of a circle it follows easily that multiplication by
t− 1 induces automorphisms of the modules Hi(X; Λ) for i > 0. Hence these
homology modules are all finitely generated torsion Λ-modules. It follows that
HomΛ(Hi(X; Λ),Λ) is 0 for all i, and the UCSS collapses to a collection of
short exact sequences

0 → e2Hi−2 → H i(X; Λ) → e1Hi−1 → 0.

The infinite cyclic covering spaces X ′ and M ′ behave homologically much like
(n+1)-manifolds, at least if we use field coefficients [Mi68, Ba80]. If Hi(X; Λ) =
0 for 1 ≤ i ≤ (n+1)/2 then X ′ is acyclic; thus if also π = Z then X ≃ S1 and
so K is trivial. All the classifications of high dimensional knots to date assume
that π = Z and that X ′ is highly connected.

When n = 1 or 2 knots with π = Z are trivial, and it is more profitable to
work with the universal cover X̃ (or M̃ ). In the classical case X̃ is contractible
[Pa57]. In higher dimensions X is aspherical only when the knot is trivial
[DV73]. Nevertheless the closed 4-manifolds M(K) obtained by surgery on 2-
knots are often aspherical. (This asphericity is an additional reason for choosing
to work with M(K) rather than X(K).)

14.3 Sums, factorization and satellites

The sum of two knots K1 and K2 may be defined (up to isotopy) as the n-knot
K1♯K2 obtained as follows. Let Dn(±) denote the upper and lower hemispheres
of Sn . We may isotope K1 and K2 so that each Ki(D

n(±)) contained in
Dn+2(±), K1(D

n(+)) is a trivial n-disc in Dn+2(+), K2(D
n(−)) is a trivial

n-disc in Dn+2(−) and K1|Sn−1 = K2|Sn−1 (as the oriented boundaries of
the images of Dn(−)). Then we let K1♯K2 = K1|Dn(−) ∪ K2|Dn(+) . By van
Kampen’s theorem π(K1♯K2) = πK1∗ZπK2 where the amalgamating subgroup
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is generated by a meridian in each knot group. It is not hard to see that
X ′(K1♯K2) ≃ X ′(K1) ∨ X ′(K2) and so in particular π(K1♯K2)

′ ∼= π(K1)
′ ∗

π(K2)
′ .

The knot K is irreducible if it is not the sum of two nontrivial knots. Every
knot has a finite factorization into irreducible knots [DF87]. (For 1- and 2-
knots whose groups have finitely generated commutator subgroups this follows
easily from the Grushko-Neumann theorem on factorizations of groups as free
products.) In the classical case the factorization is essentially unique, but for
each n ≥ 3 there are n-knots with several distinct such factorizations [BHK81].
Essentially nothing is known about uniqueness (or otherwise) of factorization
when n = 2.

If K1 and K2 are fibred then so is their sum, and the closed fibre of K1♯K2 is the
connected sum of the closed fibres of K1 and K2 . However in the absence of an
adequate criterion for a 2-knot to fibre, we do not know whether every summand
of a fibred 2-knot is fibred. In view of the unique factorization theorem for
oriented 3-manifolds we might hope that there would be a similar theorem for
fibred 2-knots. However the closed fibre of an irreducible 2-knot need not be
an irreducible 3-manifold. (For instance, the Artin spin of a trefoil knot is an
irreducible fibred 2-knot, but its closed fibre is (S2 × S1)♯(S2 × S1).)

A more general method of combining two knots is the process of forming satel-
lites. Although this process arose in the classical case, where it is intimately
connected with the notion of torus decomposition, we shall describe only the
higher-dimensional version of [Kn83]. Let K1 and K2 be n-knots (with n ≥ 2)
and let γ be a simple closed curve in X(K1), with a product neighbourhood
U . Then there is a homeomomorphism h which carries Sn+2− intU ∼= Sn×D2

onto a product neighbourhood of K2 . The knot Σ(K2;K1, γ) is called the
satellite of K1 about K2 relative to γ . We also call K2 a companion of hK1 .
If either γ = 1 or K2 is trivial then Σ(K2;K1, γ) = K1 . If γ is a merid-
ian for K1 then Σ(K2;K1, γ) = K1♯K2 . If γ has finite order in πK1 let q
be that order; otherwise let q = 0. Let w be a meridian in πK2 . Then
πK ∼= (πK2/〈〈wq〉〉) ∗Z/qZ πK1 , where w is identified with γ in πK1 , by Van
Kampen’s theorem.

14.4 Spinning and twist spinning

The first nontrivial examples of higher dimensional knots were given by Artin
[Ar25]. We may paraphrase his original idea as follows. As the half space
R3

+ = {(w, x, y, z) ∈ R4 | w = 0, z ≥ 0} is spun about the axis A = {(0, x, y, 0)}
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it sweeps out the whole of R4 , and any arc in R3
+ with endpoints on A sweeps

out a 2-sphere.

Fox incorporated a twist into Artin’s construction [Fo66]. Let r be an integer
and choose a small (n+2)-disc Bn+2 which meets K in an n-disc Bn such that
(Bn+2, Bn) is homeomorphic to the standard pair. Then Sn+2 − intBn+2 =
Dn ×D2 , and we may choose the homeomorphism so that ∂(K − intBn) lies
in ∂Dn × {0}. Let ρθ be the self homeomorphism of Dn × D2 that rotates
the D2 factor through θ radians. Then ∪0≤θ<2π(ρrθ(K − intBn) × {θ}) is a
submanifold of (Sn+2 − intBn+2) × S1 homeomorphic to Dn × S1 and which
is standard on the boundary. The r-twist spin of K is the (n + 1)-knot τrK
with image

τrK = ∪0≤θ<2π(ρrθ(K − intBn) × {θ})) ∪ (Sn−1 ×D2)

in Sn+3 = ((Sn+2 − intBn+2) × S1) ∪ (Sn+1 ×D2).

The 0-twist spin is the Artin spin σK = τ0K , and πσK ∼= πK . The group of
τrK is obtained from πK by adjoining the relation making the rth power
of (any) meridian central. Zeeman discovered the remarkable fact that if
r 6= 0 then τrK is fibred, with geometric monodromy of order dividing r ,
and the closed fibre is the r-fold cyclic branched cover of Sn+2 , branched
over K [Ze65]. Hence τ1K is always trivial. Twist spins of −amphicheiral
knots are −amphicheiral, while twist spinning interchanges invertibility and
+amphicheirality [Li85].

If K is a classical knot the factors of the closed fibre of τrK are the cyclic
branched covers of the prime factors of K , and are Haken, hyperbolic or Seifert
fibred. With some exceptions for small values of r , the factors are aspherical,
and S2 × S1 is never a factor [Pl84]. If r > 1 and K is nontrivial then τrK is
nontrivial, by the Smith Conjecture.

For other formulations and extensions of twist spinning see [GK78], [Li79],
[Mo83,84] and [Pl84’].

14.5 Ribbon and slice knots

An n-knot K is a slice knot if it is concordant to the unknot; equivalently, if
it bounds a properly embedded (n + 1)-disc ∆ in Dn+3 . Such a disc is called
a slice disc for K . Doubling the pair (Dn+3,∆) gives an (n + 1)-knot which
meets the equatorial Sn+2 of Sn+3 transversally in K ; if the (n+ 1)-knot can
be chosen to be trivial then K is doubly slice. All even-dimensional knots are
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slice [Ke65], but not all slice knots are doubly slice, and no adequate criterion
is yet known. The sum K♯−K is a slice of τ1K and so is doubly slice [Su71].

An n-knot K is a ribbon knot if it is the boundary of an immersed (n+1)-disc
∆ in Sn+2 whose only singularities are transverse double points, the double
point sets being a disjoint union of discs. Given such a “ribbon” (n + 1)-disc
∆ in Sn+2 the cartesian product ∆×Dp ⊂ Sn+2 ×Dp ⊂ Sn+2+p determines a
ribbon (n+ 1 + p)-disc in Sn+2+p . All higher dimensional ribbon knots derive
from ribbon 1-knots by this process [Yn77]. As the p-disc has an orientation
reversing involution this easily imples that all ribbon n-knots with n ≥ 2 are
−amphicheiral. The Artin spin of a 1-knot is a ribbon 2-knot. Each ribbon
2-knot has a Seifert hypersurface which is a once-punctured connected sum of
copies of S1 × S2 [Yn69]. Hence such knots are reflexive. (See [Su76] for more
on geometric properties of such knots.)

An n-knot K is a homotopy ribbon knot if it is a slice knot with a slice disc
whose exterior W has a handlebody decomposition consisting of 0-, 1- and
2-handles. The dual decomposition of W relative to ∂W = M(K) has only
(n + 1)-, (n + 2)- and (n + 3)-handles, and so the inclusion of M into W
is n-connected. (The definition of “homotopically ribbon” for 1-knots used
in Problem 4.22 of [GK] requires only that this latter condition be satisfied.)
More generally, we shall say that K is π1 -slice if the inclusion of X(K) into
the exterior of some slice disc induces an isomorphism on fundamental groups.

Every ribbon knot is homotopy ribbon and hence slice [Hi79], while if n ≥ 2
every homotopy ribbon n-knot is π1 -slice. Nontrivial classical knots are never
π1 -slice, since the longitude of a slice knot is nullhomotopic in the exterior of
a slice disc. It is an open question whether every classical slice knot is ribbon.
However in higher dimensions “slice” does not even imply “homotopy ribbon”.
(The simplest example is τ231 - see below.)

Two 2-knots K0 and K1 are s-concordant if there is a concordance K : S2 ×
[0, 1] → S4 × [0, 1] whose exterior is an s-cobordism (rel ∂ ) from X(K0) to
X(K1). (In higher dimensions the analogous notion is equivalent to ambient
isotopy, by the s-cobordism theorem.)

14.6 The Kervaire conditions

A group G has weight 1 if it has an element whose conjugates generate G. Such
an element is called a weight element for G, and its conjugacy class is called a
weight class for G. If G is solvable then it has weight 1 if and only if G/G′ is
cyclic, for a solvable group with trivial abelianization must be trivial.

Geometry & Topology Monographs, Volume 5 (2002)



274 Chapter 14: Knots and links

If π is the group of an n-knot K then

(1) π is finitely presentable;

(2) π is of weight 1;

(3) H1(π; Z) = π/π′ ∼= Z ; and

(4) H2(π; Z) = 0.

Kervaire showed that any group satisfying these conditions is an n-knot group,
for every n ≥ 3 [Ke65]. These conditions are also necessary when n = 1 or
2, but are then no longer sufficient, and there are as yet no corresponding
characterizations for 1- and 2-knot groups. If (4) is replaced by the stronger
condition that def(π) = 1 then π is a 2-knot group, but this condition is not
necessary [Ke65]. (See §9 of this chapter, §4 of Chapter 15 and §4 of Chapter 16
for examples with deficiency ≤ 0.) Gonzalez-Acuña has given a characterization
of 2-knot groups as groups admitting certain presentations [GA94]. (Note also
that if π is a high dimensional knot group then q(π) ≥ 0, and q(π) = 0 if and
only if π is a 2-knot group.)

Every knot group has a Wirtinger presentation, i.e., one in which the relations
are all of the form xj = wjx0w

−1
j , where {xi, 0 ≤ i ≤ n} is the generating set

[Yj70]. If K is a nontrivial 1-knot then πK has a Wirtinger presentation of
deficiency 1. A group has such a presentation if and only if it has weight 1 and
has a deficiency 1 presentation P such that the presentation of the trivial group
obtained by adjoining the relation killing a weight element is AC-equivalent to
the empty presentation [Yo82’]. Any such group is the group of a 2-knot which
is a smooth embedding in the standard smooth structure on S4 [Le78]. The
group of a nontrivial 1-knot K has one end [Pa57], so X(K) is aspherical, and
X(K) collapses to a finite 2-complex, so g.d.πK = 2. If π is an n-knot group
then g.d.π = 2 if and only if c.d.π = 2 and def(π) = 1, by Theorem 2.8.

Since the group of a homotopy ribbon n-knot (with n ≥ 2) is the fundamental
group of a (n + 3)-manifold W with χ(W ) = 0 and which can be built with
0-, 1- and 2-handles only, such groups also have deficiency 1. Conversely, if a
finitely presentable group π has weight 1 and and deficiency 1 then we use such
a presentation to construct a 5-dimensional handlebody W = D5 ∪{h1

i }∪ {h2
j}

with π1(∂W ) = π1(W ) ∼= π and χ(W ) = 0. Adjoining another 2-handle h
along a loop representing a weight class for π1(∂W ) gives a homotopy 5-ball B
with 1-connected boundary. Thus ∂B ∼= S4 , and the boundary of the cocore of
the 2-handle h is clearly a homotopy ribbon 2-knot with group π . (In fact any
group of weight 1 with a Wirtinger presentation of deficiency 1 is the group of
a ribbon n-knot, for each n ≥ 2 [Yj69] - see [H3].)
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The deficiency may be estimated in terms of the minimum number of generators
of the Λ-module e2(π′/π′′). Using this observation, it may be shown that if
K is the sum of m+ 1 copies of τ231 then def(πK) = −m [Le78]. There are
irreducible 2-knots whose groups have deficiency −m, for each m ≥ 0 [Kn83].

A knot group π has two ends if and only if π′ is finite. We shall determine all
such 2-knots in §4 of Chapter 15. Nontrivial torsion free knot groups have one
end [Kl93]. There are also many 2-knot groups with infinitely many ends. The
simplest is perhaps the group with presentation

〈a, b, t | a3 = b7 = 1, ab = b2a, ta = a2t〉.
It is evidently an HNN extension of the metacyclic group generated by {a, b},
but is also the free product of such a metacyclic group with πτ231 , amalgamated
over a subgroup of order 3 [GM78].

14.7 Weight elements, classes and orbits

Two 2-knots K and K1 have homeomorphic exteriors if and only if there is
a homeomorphism from M(K1) to M(K) which carries the conjugacy class of
a meridian of K1 to that of K (up to inversion). In fact if M is any closed
orientable 4-manifold with χ(M) = 0 and with π = π1(M) of weight 1 then
surgery on a weight class gives a 2-knot with group π . Moreover, if t and u
are two weight elements and f is a self homeomorphism of M such that u is
conjugate to f∗(t±1) then surgeries on t and u lead to knots whose exteriors
are homeomorphic (via the restriction of a self homeomorphism of M isotopic
to f ). Thus the natural invariant to distinguish between knots with isomorphic
groups is not the weight class, but rather the orbit of the weight class under
the action of self homeomorphisms of M . In particular, the orbit of a weight
element under Aut(π) is a well defined invariant, which we shall call the weight
orbit. If every automorphism of π is realized by a self homeomorphism of
M then the homeomorphism class of M and the weight orbit together form
a complete invariant for the (unoriented) knot. (This is the case if M is an
infrasolvmanifold.)

For oriented knots we need a refinement of this notion. If w is a weight element
for π then we shall call the set {α(w) | α ∈ Aut(π), α(w) ≡ w mod π′} a strict
weight orbit for π . A strict weight orbit determines a transverse orientation for
the corresponding knot (and its Gluck reconstruction). An orientation for the
ambient sphere is determined by an orientation for M(K). If K is invertible or
+amphicheiral then there is a self homeomorphism of M which is orientation
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preserving or reversing (respectively) and which reverses the transverse orien-
tation of the knot, i.e., carries the strict weight orbit to its inverse. Similarly,
if K is −amphicheiral there is an orientation reversing self homeomorphism of
M which preserves the strict weight orbit.

Theorem 14.1 Let G be a group of weight 1 and with G/G′ ∼= Z . Let t be
an element of G whose image generates G/G′ and let ct be the automorphism
of G′ induced by conjugation by t. Then

(1) t is a weight element if and only if ct is meridianal;

(2) two weight elements t, u are in the same weight class if and only if there
is an inner automorphism cg of G′ such that cu = cgctc

−1
g ;

(3) two weight elements t, u are in the same strict weight orbit if and only if
there is an automorphism d of G′ such that cu = dctd

−1 and dctd
−1c−1

t

is an inner automorphism;

(4) if t and u are weight elements then u is conjugate to (g′′t)±1 for some
g′′ in G′′ .

Proof The verification of (1-3) is routine. If t and u are weight elements then,
up to inversion, u must equal g′t for some g′ in G′ . Since multiplication by
t − 1 is invertible on G′/G′′ we have g′ = khth−1t−1 for some h in G′ and k
in G′′ . Let g′′ = h−1kh. Then u = g′t = hg′′th−1 .

An immediate consequence of this theorem is that if t and u are in the same
strict weight orbit then ct and cu have the same order. Moreover if C is the
centralizer of ct in Aut(G′) then the strict weight orbit of t contains at most
[Aut(G′) : C.Inn(G′)] ≤ |Out(G′)| weight classes. In general there may be
infinitely many weight orbits [Pl83’]. However if π is metabelian the weight
class (and hence the weight orbit) is unique up to inversion, by part (4) of the
theorem.

14.8 The commutator subgroup

It shall be useful to reformulate the Kervaire conditions in terms of the auto-
morphism of the commutator subgroup induced by conjugation by a meridian.
An automorphism φ of a group G is meridianal if 〈〈g−1φ(g) | g ∈ G〉〉G = G.
If H is a characteristic subgroup of G and φ is meridianal the induced au-
tomorphism of G/H is then also meridianal. In particular, H1(φ) − 1 maps
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H1(G; Z) = G/G′ onto itself. If G is solvable an automorphism satisfying the
latter condition is meridianal, for a solvable perfect group is trivial.

It is easy to see that no group G with G/G′ ∼= Z can have G′ ∼= Z or D . It
follows that the commutator subgroup of a knot group never has two ends.

Theorem 14.2 [HK78, Le78] A finitely presentable group π is a high dimen-
sional knot group if and only if π ∼= π′ ⋊θZ for some meridianal automorphism
θ of π′ such that H2(θ) − 1 is an automorphism of H2(π

′; Z).

If π is a knot group then π′/π′′ is a finitely generated Λ-module. Levine and
Weber have made explicit the conditions under which a finitely generated Λ-
module may be the commutator subgroup of a metabelian high dimensional
knot group [LW78]. Leaving aside the Λ-module structure, Hausmann and
Kervaire have characterized the finitely generated abelian groups A that may
be commutator subgroups of high dimensional knot groups [HK78]. “Most”
can occur; there are mild restrictions on 2- and 3-torsion, and if A is infinite
it must have rank at least 3. We shall show that the abelian groups which are
commutator subgroups of 2-knot groups are Z3 , Z[12 ] (the additive group of
dyadic rationals) and the cyclic groups of odd order. (See Theorems 15.7 and
15.12.) The commutator subgroup of a nontrivial classical knot group is never
abelian.

Hausmann and Kervaire also showed that any finitely generated abelian group
could be the centre of a high dimensional knot group [HK78’]. We shall show
that the centre of a 2-knot group is either Z2 , torsion free of rank 1, finitely
generated of rank 1 or is a torsion group. (See Theorems 15.7 and 16.3. In all
known cases the centre is Z2 , Z ⊕ (Z/2Z), Z , Z/2Z or 1.) A classical knot
group has nontrivial centre if and only if the knot is a torus knot [BZ]; the
centre is then Z .

Silver has given examples of high dimensional knot groups π with π′ finitely
generated but not finitely presentable [Si91]. He has also shown that there are
embeddings j : T → S4 such that π1(S

4 − j(T ))′ is finitely generated but
not finitely presentable [Si97]. However no such 2-knot groups are known. If
the commutator subgroup is finitely generated then it is the unique HNN base
[Si96]. Thus knots with such groups have no minimal Seifert hypersurfaces.

The first examples of high dimensional knot groups which are not 2-knot groups
made use of Poincaré duality with coefficients Λ. Farber [Fa77] and Levine
[Le77] independently found the following theorem.
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Theorem 14.3 (Farber, Levine) Let K be a 2-knot and A = H1(M(K); Λ).
Then H2(M(K); Λ) ∼= e1A, and there is a nondegenerate Z-bilinear pairing
[ , ] : zA× zA→ Q/Z such that [tα, tβ] = [α, β] for all α and β in zA.

Most of this theorem follows easily from Poincaré duality with coefficients Λ,
but some care is needed in order to establish the symmetry of the pairing.
When K is a fibred 2-knot, with closed fibre F̂ , the Farber-Levine pairing is
just the standard linking pairing on the torsion subgroup of H1(F̂ ; Z), together
with the automorphism induced by the monodromy.

In particular, Farber observed that the group π with presentation

〈a, t | tat−1 = a2, a5 = 1〉
is a high dimensional knot group but if ℓ is any nondegenerate Z-bilinear pairing
on π′ ∼= Z/5Z with values in Q/Z then ℓ(tα, tβ) = −ℓ(α, β) for all α, β in π′ ,
and so π is not a 2-knot group.

Corollary 14.3.1 [Le78] H2(π
′; Z) is a quotient of HomΛ(π′/π′′,Q(t)/Λ) .

In many cases every orientation preserving meridianal automorphism of a tor-
sion free 3-manifold group is realizable by a fibred 2-knot.

Theorem 14.4 Let N be a closed orientable 3-manifold whose prime factors
are virtually Haken or S1 ×S2 . If K is a 2-knot such that (πK)′ ∼= ν = π1(N)
then M(K) is homotopy equivalent to the mapping torus of a self homeomor-
phism of N . If θ is a meridianal automorphism of ν then π = ν ⋊θ Z is a
2-knot group if and only if θ fixes the image of the fundamental class of N in
H3(ν; Z).

Proof The first assertion follows from Corollary 4.6.1. The classifying maps
for the fundamental groups induce a commuting diagram involving the Wang
sequences of M(K) and π from which the necessity of the fundamental class
condition follows easily. (It is vacuous if ν is a free group.)

If θ∗(cN∗[N ]) = cN∗[N ] then θ may be realized by an orientation preserving self
homotopy equivalence g of N [Sw74]. Let N = P♯R where P is a connected
sum of copies of S1 × S2 and R has no such factors. By the Splitting The-
orem of [La74], g is homotopic to a connected sum of homotopy equivalences
between the irreducible factors of R with a self homotopy equivalence of P .
Every virtually Haken 3-manifold is either Haken, hyperbolic or Seifert-fibred,
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by [CS83] and [GMT96], and self homotopy equivalences of such manifolds are
homotopic to homeomorphisms, by [Hm], Mostow rigidity and [Sc83], respec-
tively. A similar result holds for P = ♯r(S1 × S2), by [La74]. Thus we may
assume that g is a self homeomorphism of N . Surgery on a weight class in the
mapping torus of g gives a fibred 2-knot with closed fibre N and group π .

If Thurston’s Geometrization Conjecture is true then it would suffice to assume
that N is a closed orientable 3-manifold with π1(N) torsion free. The mapping
torus is determined up to homeomorphism among fibred 4-manifolds with fibre
N by its homotopy type if N is hyperbolic, Seifert fibred or if its prime factors
are Haken or S1 ×S2 , since homotopy implies isotopy in each case, by Mostow
rigidity, [Sc85, BO91] and [HL74], respectively.

Yoshikawa has shown that a finitely generated abelian group is the base of
some HNN extension which is a high dimensional knot group if and only if
it satisfies the restrictions on torsion of [HK78], while if a knot group has a
non-finitely generated abelian base then it is metabelian. Moreover a 2-knot
group π which is an HNN extension with abelian base is either metabelian
or has base Z ⊕ (Z/βZ) for some odd β ≥ 1 [Yo86, Yo92]. We shall show
that in the latter case β must be 1, and so π has a deficiency 1 presentation
〈t, x | txnt−1 = xn+1〉. (See Theorem 15.14.) No nontrivial classical knot
group is an HNN extension with abelian base. (This is implicit in Yoshikawa’s
work, and can also be deduced from the facts that classical knot groups have
cohomological dimension ≤ 2 and symmetric Alexander polynomial.)

14.9 Deficiency and geometric dimension

J.H.C.Whitehead raised the question “is every subcomplex of an aspherical 2-
complex also aspherical?” This is so if the fundamental group of the subcomplex
is a 1-relator group [Go81] or is locally indicable [Ho82] or has no nontrivial
superperfect normal subgroup [Dy87]. Whitehead’s question has interesting
connections with knot theory. (For instance, the exterior of a ribbon n-knot
or of a ribbon concordance between classical knots is homotopy equivalent to
such a 2-complex. The asphericity of such ribbon exteriors has been raised in
[Co83] and [Go81].)

If the answer to Whitehead’s question is YES, then a high dimensional knot
group has geometric dimension at most 2 if and only if it has deficiency 1 (in
which case it is a 2-knot group). For let G be a group of weight 1 and with
G/G′ ∼= Z . If C(P ) is the 2-complex corresponding to a presentation of defi-
ciency 1 then the 2-complex obtained by adjoining a 2-cell to C(P ) along a loop
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representing a weight element for G is 1-connected and has Euler characteristic
1, and so is contractible. The converse follows from Theorem 2.8. On the other
hand a positive answer in general implies that there is a group G such that
c.d.G = 2 and g.d.G = 3 [BB97].

If the answer is NO then either there is a finite nonaspherical 2-complex X such
that X ∪f D2 is contractible for some f : S1 → X or there is an infinite as-
cending chain of nonaspherical 2-complexes whose union is contractible [Ho83].
In the finite case χ(X) = 0 and so π = π1(X) has deficiency 1; moreover, π
has weight 1 since it is normally generated by the conjugacy class represented

by f . Such groups are 2-knot groups. Since X is not aspherical β
(2)
1 (π) 6= 0,

by Theorem 2.4, and so π′ cannot be finitely generated, by Lemma 2.1.

A group is called knot-like if it has abelianization Z and deficiency 1. If the
commutator subgroup of a classical knot group is finitely generated then it is
free. Using the result of Corollary 2.5.1 above and the fact that the Novikov
completions of Z[G] with respect to epimorphisms from G onto Z are weakly
finite Kochloukova has shown that this holds more generally for all knot-like
groups [Ko06]. (See Corollary 4.3.1 above.) This answers an old question of
Rapaport, who established this in the 2-generator, 1-relator case [Rp60].

In particular, if the group of a fibred 2-knot has a presentation of deficiency
1 then its commutator subgroup is free. Any 2-knot with such a group is s-
concordant to a fibred homotopy ribbon knot. (See §6 of Chapter 17.) As
S2 × S1 is never a factor of the closed fibre of a nontrivial twist spin τrK
[Pl84], it follows that if r > 1 and K is nontrivial then def(πτrK) ≤ 0 and
τrK is not a homotopy ribbon 2-knot.

If a knot group has a 2-generator 1-relator Wirtinger presentation it is an HNN
extension with free base and associated subgroups [Yo88]. This paper also gives
an example π with g.d.π = 2 and a deficiency 1 Wirtinger presentation which
also has a 2-generator 1-relator presentation but which is not such an HNN
extension (and so has no 2-generator 1-relator Wirtinger presentation).

The next result is a consequence of Theorem 2.5, but the argument below is
self contained.

Lemma 14.5 If G is a group with def(G) = 1 and e(G) = 2 then G ∼= Z .

Proof The group G has an infinite cyclic subgroup A of finite index, since
e(G) = 2. Let C be the finite 2-complex corresponding to a presentation of
deficiency 1 for G, and let D be the covering space corresponding to A. Then
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D is a finite 2-complex with π1(D) = A ∼= Z and χ(D) = [π : A]χ(C) = 0.
Since H2(D; Z[A]) = H2(D̃; Z) is a submodule of a free Z[A]-module and is of
rank χ(D) = 0 it is 0. Hence D̃ is contractible, and so G must be torsion free
and hence abelian.

It follows immediately that def(πτ231) = 0, since πτ231
∼= (Z/3Z) ⋊−1 Z .

Moreover, if K is a classical knot such that π′ finitely generated but nontrivial
then H1(π; Z[π]) = 0, and so X(K) is aspherical, by Poincaré duality.

Theorem 14.6 Let K be a 2-knot. Then π = πK ∼= Z if and only if
def(π) = 1 and π2(M(K)) = 0.

Proof The conditions are necessary, by Theorem 11.1. If they hold then

β
(2)
j (M) = β

(2)
j (π) for j ≤ 2, by Theorem 6.54 of [Lü], and so 0 = χ(M) =

β
(2)
2 (π) − 2β

(2)
1 (π). Now β

(2)
1 (π) − β

(2)
2 (π) ≥ def(π) − 1 = 0, by Corollary

2.4.1. Therefore β
(2)
1 (π) = β

(2)
2 (π) = 0 and so g.d.π ≤ 2, by the same Corol-

lary. In particular, the manifold M is not aspherical. Hence H1(π; Z[π]) ∼=
H3(M ; Z[π]) 6= 0. Since π is torsion free it is indecomposable as a free product
[Kl93]. Therefore e(π) = 2 and so π ∼= Z , by Lemma 14.5.

In fact K must be trivial ([FQ] - see Corollary 17.1.1). A simpler argument
is used in [H1] to show that if def(π) = 1 then π2(M) maps onto H2(M ; Λ),
which is nonzero if π′ 6= π′′ .

14.10 Asphericity

The outstanding property of the exterior of a classical knot is that it is aspher-
ical. Swarup extended the classical Dehn’s lemma criterion for unknotting to
show that if K is an n-knot such that the natural inclusion of Sn (as a factor
of ∂X(K)) into X(K) is null homotopic then X(K) ≃ S1 , provided πK is
accessible [Sw75]. Since it is now known that finitely presentable groups are
accessible [DD], it follows that the exterior of a higher dimensional knot is as-
pherical if and only if the knot is trivial. Nevertheless, we shall see that the
closed 4-manifolds M(K) obtained by surgery on 2-knots are often aspherical.

Theorem 14.7 Let K be a 2-knot. Then M(K) is aspherical if and only if
π = πK is a PD4 -group, which must then be orientable.
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Proof The condition is clearly necessary. Suppose that it holds. Let M+ be
the covering space associated to π+ = Ker(w1(π)). Then [π : π+] ≤ 2, so
π′ < π+ . Since π/π′ ∼= Z and t− 1 acts invertibly on H1(π

′; Z) it follows that
β1(π

+) = 1. Hence β2(M
+) = 0, since M+ is orientable and χ(M+) = 0.

Hence β2(π
+) is also 0, so χ(π+) = 0, by Poincaré duality for π+ . Therefore

χ(π) = 0 and so M must be aspherical, by Corollary 3.5.1.

We may use this theorem to give more examples of high dimensional knot groups
which are not 2-knot groups. Let A ∈ GL(3,Z) be such that det(A) = −1,
det(A−I) = ±1 and det(A+I) = ±1. The characteristic polynomial of A must
be either f1(X) = X3−X2−2X+1, f2(X) = X3−X2+1, f3(X) = X3f1(X

−1)
or f4(X) = X3f2(X

−1). (There are only two conjugacy classes of such matrices,
up to inversion, for it may be shown that the rings Z[X]/(fi(X)) are principal
ideal domains.) The group Z3 ⋊A Z satifies the Kervaire conditions, and is a
PD4 -group. However it cannot be a 2-knot group, since it is nonorientable.
(Such matrices have been used to construct fake RP 4s [CS76’].)

Is every (torsion free) 2-knot group π with Hs(π; Z[π]) = 0 for s ≤ 2 a PD4 -
group? Is every 3-knot group which is also a PD+

4 -group a 2-knot group? (Note
that by Theorem 3.6 such a group cannot have deficiency 1.)

We show next that knots with such groups cannot be a nontrivial satellite.

Theorem 14.8 Let K = Σ(K2;K1, γ) be a satellite 2-knot. If πK is a PD4 -
group then K = K1 or K2 .

Proof Let q be the order of γ in πK1 . Then πK ∼= πK1 ∗C B , where B =
πK2/〈〈wq〉〉, and C is cyclic. Since πK is torsion free q = 0 or 1. Suppose that
K 6= K1 . Then q = 0, so C ∼= Z , while B 6= C . If πK1 6= C then πK1 and
B have infinite index in πK , and so c.d.πK1 ≤ 3 and c.d.B ≤ 3, by Strebel’s
Theorem. A Mayer-Vietoris argument then gives 4 = c.d.πK ≤ 3, which is
impossible. Therefore K1 is trivial and so K = K2 .

In particular if πK is a PD4 -group then K is irreducible.

14.11 Links

A µ-component n-link is a locally flat embedding L : µSn → Sn+2 . The
exterior of L is X(L) = Sn+2\intN(L), where N(L) ∼= µSn ×D2 is a regular
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neighbourhood of the image of L, and the group of L is πL = π1(X(L)). Let
M(L) = X(L)∪µDn+1 ×S1 be the closed manifold obtained by surgery on L.

An n-link L is trivial if it bounds a collection of µ disjoint locally flat 2-
discs in Sn . It is split if it is isotopic to one which is the union of nonempty
sublinks L1 and L2 whose images lie in disjoint discs in Sn+2 , in which case
we write L = L1 ∐ L2 , and it is a boundary link if it bounds a collection of
µ disjoint hypersurfaces in Sn+2 . Clearly a trivial link is split, and a split
link is a boundary link; neither implication can be reversed if µ > 1. Knots
are boundary links, and many arguments about knots that depend on Seifert
hypersurfaces extend readily to boundary links. The definitions of slice and
ribbon knots and s-concordance extend naturally to links.

A 1-link is trivial if and only if its group is free, and is split if and only if its
group is a nontrivial free product, by the Loop Theorem and Sphere Theorem,
respectively. (See Chapter 1 of [H3].) Gutiérrez has shown that if n ≥ 4 an
n-link L is trivial if and only if πL is freely generated by meridians and the
homotopy groups πj(X(L)) are all 0, for 2 ≤ j ≤ (n + 1)/2 [Gu72]. His
argument applies also when n = 3. While the fundamental group condition is
necessary when n = 2, we cannot yet use surgery to show that it is a complete
criterion for triviality of 2-links with more than one component. We shall settle
for a weaker result.

Theorem 14.9 Let M be a closed 4-manifold with π1(M) free of rank r and
χ(M) = 2(1 − r). If M is orientable it is s-cobordant to ♯r(S1 × S3), while if
it is nonorientable it is s-cobordant to (S1×̃S3)♯(♯r−1(S1 × S3)).

Proof We may assume without loss of generality that π1(M) has a free basis
{x1, ...xr} such that xi is an orientation preserving loop for all i > 1, and
we shall use cM∗ to identify π1(M) with F (r). Let N = ♯r(S1 × S3) if M
is orientable and let N = (S1×̃S3)♯(♯r−1(S1 × S3)) otherwise. (Note that
w1(N) = w1(M) as homomorphisms from F (r) to {±1}.) Since c.d.π1(M) ≤ 2
and χ(M) = 2χ(π1(M)) we have π2(M) ∼= H2(F (r); Z[F (r)]), by Theorem

3.12. Hence π2(M) = 0 and so π3(M) ∼= H3(M̃ ; Z) ∼= D = H1(F (r); Z[F (r)]),
by the Hurewicz theorem and Poincaré duality. Similarly, we have π2(N) = 0
and π3(N) ∼= D .

Let cM = gMhM be the factorization of cM through P3(M), the third stage
of the Postnikov tower for M . Thus πi(hM ) is an isomorphism if i ≤ 3 and
πj(P3(M)) = 0 if j > 3. As K(F (r), 1) = ∨rS1 each of the fibrations gM
and gN clearly have cross-sections and so there is a homotopy equivalence
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k : P3(M) → P3(N) such that gM = gNk . (See Section 5.2 of [Ba].) We
may assume that k is cellular. Since P3(M) = M ∪ {cells of dimension ≥ 5}
it follows that khM = hNf for some map f : M → N . Clearly πi(f) is an

isomorphism for i ≤ 3. Since the universal covers M̃ and Ñ are 2-connected
open 4-manifolds the induced map f̃ : M̃ → Ñ is an homology isomorphism,
and so is a homotopy equivalence. Hence f is itself a homotopy equivalence.
As Wh(F (r)) = 0 any such homotopy equivalence is simple.

If M is orientable [M,G/TOP ] ∼= Z , since H2(M ; Z/2Z) = 0. As the surgery
obstruction in L4(F (r)) ∼= Z is given by a signature difference, it is a bijection,
and so the normal invariant of f is trivial. Hence there is a normal cobordism
F : P → N × I with F |∂−P = f and F |∂+P = idN . There is another
normal cobordism F ′ : P ′ → N × I from idN to itself with surgery obstruction
σ5(P

′, F ′) = −σ5(P,F ) in L5(F (r)), by Theorem 6.7 and Lemma 6.9. The
union of these two normal cobordisms along ∂+P = ∂−P ′ is a normal cobordism
from f to idN with surgery obstruction 0, and so we may obtain an s-cobordism
W by 5-dimensional surgery (rel ∂ ).

A similar argument applies in the nonorientable case. The surgery obstruction
is then a bijection from [N ;G/TOP ] to L4(F (r),−) = Z/2Z , so f is normally
cobordant to idN , while L5(Z,−) = 0, so L5(F (r),−) ∼= L5(F (r− 1)) and the
argument of [FQ] still applies.

Corollary 14.9.1 Let L be a µ-component 2-link such that πL is freely
generated by µ meridians. Then L is s-concordant to the trivial µ-component
link.

Proof Since M(L) is orientable, χ(M(L)) = 2(1− µ) and π1(M(L)) ∼= πL =
F (µ), there is an s-cobordism W with ∂W = M(L) ∪ M(µ), by Theorem
14.9. Moreover it is clear from the proof of that theorem that we may assume
that the elements of the meridianal basis for πL are freely homotopic to loops
representing the standard basis for π1(M(µ)). We may realise such homotopies
by µ disjoint embeddings of annuli running from meridians for L to such stan-
dard loops in M(µ). Surgery on these annuli (i.e., replacing D3 ×S1× [0, 1] by
S2×D2×[0, 1]) then gives an s-concordance from L to the trivial µ-component
link.

A similar strategy may be used to give an alternative proof of the higher di-
mensional unlinking theorem of [Gu72] which applies uniformly for n ≥ 3. The
hypothesis that πL be freely generated by meridians cannot be dropped en-
tirely [Po71]. On the other hand, if L is a 2-link whose longitudes are all null
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homotopic then the pair (X(L), ∂X(L)) is homotopy equivalent to the pair
(♯µS1 ×D3, ∂(♯µS1 ×D3)) [Sw77], and hence the Corollary applies.

There is as yet no satisfactory splitting criterion for higher-dimensional links.
However we can give a stable version for 2-links.

Theorem 14.10 Let M be a closed 4-manifold such that π = π1(M) is
isomorphic to a nontrivial free product G∗H . Then M is stably homeomorphic
to a connected sum MG♯MH with π1(MG) ∼= G and π1(MH) ∼= H .

Proof Let K = KG ∪ [−1, 1] ∪KH/(∗G ∼ −1,+1 ∼ ∗H), where KG and KH

are K(G, 1)- and K(H, 1)-spaces with basepoints ∗G and ∗H (respectively).
Then K is a K(π, 1)-space and so there is a map f : M → K which induces an
isomorphism of fundamental groups. We may assume that f is transverse to
0 ∈ [−1, 1], so V = f−1(0) is a submanifold of M with a product neighbourhood
V × [−ǫ, ǫ]. We may also assume that V is connected, by the arc-chasing
argument of Stallings’ proof of Kneser’s conjecture. (See page 67 of [Hm].) Let
j : V → M be the inclusion. Since fj is a constant map and π1(f) is an
isomorphism π1(j) is the trivial homomorphism, and so j∗w1(M) = 0. Hence
V is orientable and so there is a framed link L ⊂ V such that surgery on L
in V gives S3 [Li62]. The framings of the components of L in V extend to
framings in M . Let W = M× [0, 1]∪L×D2×[−ǫ,ǫ]×{1} (µD

2×D2× [−ǫ, ǫ]), where
µ is the number of components of L. Note that if w2(M) = 0 then we may

choose the framed link L so that w2(W ) = 0 also [Kp79]. Then ∂W = M ∪M̂ ,

where M̂ is the result of surgery on L in M . The map f extends to a map
F : W → K such that π1(F |cM ) is an isomorphism and (F |cM )−1(0) ∼= S3 .

Hence M̂ is a connected sum as in the statement. Since the components of
L are null-homotopic in M they may be isotoped into disjoint discs, and so
M̂ ∼= M♯(♯µS2 × S2). This proves the theorem.

Note that if V is a homotopy 3-sphere then M is a connected sum, for V ×R
is then homeomorphic to S3 ×R, by 1-connected surgery.

Theorem 14.11 Let L be a µ-component 2-link with sublinks L1 and L2 =
L\L1 such that there is an isomorphism from πL to πL1 ∗ πL2 which is com-
patible with the homomorphisms determined by the inclusions of X(L) into
X(L1) and X(L2). Then X(L) is stably homeomorphic to X(L1 ∐ L2).

Proof By Theorem 14.10, M(L)♯(♯aS2 × S2) ∼= N♯P , where π1(N) ∼= πL1

and π1(P ) ∼= πL2 . On undoing the surgeries on the components of L1 and L2 ,
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respectively, we see that M(L2)♯(♯
aS2×S2) ∼= N♯P̄ , and M(L1)♯(♯

aS2×S2) ∼=
N̄♯P , where N̄ and P̄ are simply connected. Since undoing the surgeries on
all the components of L gives ♯aS2 ×S2 ∼= N̄♯P̄ , N̄ and P̄ are each connected
sums of copies of S2 × S2 , so N and P are stably homeomorphic to M(L1)
and M(L2), respectively. The result now follows easily.

Similar arguments may be used to show that, firstly, if L is a 2-link such
that c.d.πL ≤ 2 and there is an isomorphism θ : πL → πL1 ∗ πL2 which
is compatible with the natural maps to the factors then there is a map fo :
M(L)o = M(L)\intD4 →M(L1)♯M(L2) such that π1(fo) = θ and π2(fo) is an
isomorphism; and secondly, if moreover fo extends to a homotopy equivalence
f : M(L) → M(L1)♯M(L2) and the factors of πL are either classical link
groups or are square root closed accessible then L is s-concordant to the split
link L1∐L2 . (The surgery arguments rely on [AFR97] and [Ca73], respectively.)
However we do not know how to bridge the gap between the algebraic hypothesis
and obtaining a homotopy equivalence.

14.12 Link groups

If π is the group of a µ-component n-link L then

(1) π is finitely presentable;

(2) π is of weight µ;

(3) H1(π; Z) = π/π′ ∼= Zµ ; and

(4) (if n > 1) H2(π; Z) = 0.

Conversely, any group satisfying these conditions is the group of an n-link, for
every n ≥ 3 [Ke 65’]. (Note that q(π) ≥ 2(1 − µ), with equality if and only
if π is the group of a 2-link.) If (4) is replaced by the stronger condition that
def(π) = µ (and π has a deficiency µ Wirtinger presentation) then π is the
group of a (ribbon) 2-link which is a sublink of a (ribbon) link whose group is
a free group. (See Chapter 1 of [H3].) The group of a classical link satisfies
(4) if and only if the link splits completely as a union of knots in disjoint
balls. If subcomplexes of aspherical 2-complexes are aspherical then a higher-
dimensional link group group has geometric dimension at most 2 if and only if
it has deficiency µ (in which case it is a 2-link group).

A link L is a boundary link if and only if there is an epimorphism from π(L) to
the free group F (µ) which carries a set of meridians to a free basis. If the lat-
ter condition is dropped L is said to be an homology boundary link. Although
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sublinks of boundary links are clearly boundary links, the corresponding result
is not true for homology boundary links. It is an attractive conjecture that
every even-dimensional link is a slice link. This has been verified under addi-
tional hypotheses on the link group. For a 2-link L it suffices that there be a
homomorphism φ : πL → G where G is a high-dimensional link group such
that H3(G; F2) = H4(G; Z) = 0 and where the normal closure of the image of
φ is G [Co84]. In particular, sublinks of homology boundary 2-links are slice
links.

A choice of (based) meridians for the components of a link L determines a ho-
momorphism f : F (µ) → πL which induces an isomorphism on abelianization.
If L is a higher dimensional link H2(πL; Z) = H2(F (µ); Z) = 0 and hence f in-
duces isomorphisms on all the nilpotent quotients F (µ)/F (µ)[n]

∼= πL/(πL)[n] ,
and a monomorphism F (µ) → πL/(πL)[ω] = πL/ ∩n≥1 (πL)[n] [St65]. (In par-
ticular, if µ ≥ 2 then πL contains a nonabelian free subgroup.) The latter map
is an isomorphism if and only if L is a homology boundary link. In that case
the homology groups of the covering space X(L)ω corresponding to πL/(πL)[ω]

are modules over Z[πL/(πL)[ω]] ∼= Z[F (µ)], which is a coherent ring of global
dimension 2. Poincaré duality and the UCSS then give rise to an isomorphism
e2e2(πL/(πL)[ω]) ∼= e2(πL/(πL)[ω]), where ei(M) = ExtiZ[F (µ)](M,Z[F (µ)]),
which is the analogue of the Farber-Levine pairing for 2-knots.

The argument of [HK78’] may be adapted to show that every finitely generated
abelian group is the centre of the group of some µ-component boundary n-link,
for any µ ≥ 1 and n ≥ 3. However the centre of the group of a 2-link with more
than one component must be finite. (All known examples have trivial centre.)

Theorem 14.12 Let L be a µ-component 2-link. If µ > 1 then

(1) πL has no infinite amenable normal subgroup;

(2) πL is not an ascending HNN extension over a finitely generated base.

Proof Since χ(M(L)) = 2(1 − µ) the L2 -Euler characteristic formula gives

β
(2)
1 (πL) ≥ µ − 1. Therefore β

(2)
1 (πL) 6= 0 if µ > 1, and so the result follows

from Lemma 2.1 and Corollary 2.3.1.

In particular, the exterior of a 2-link with more than one component never
fibres over S1 . (This is true of all higher dimensional links: see Theorem 5.12
of [H3].) Moreover a 2-link group has finite centre and is never amenable. In
contrast, we shall see that there are many 2-knot groups which have infinite
centre or are solvable.
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The exterior of a classical link is aspherical if and only the link is unsplittable,
while the exterior of a higher dimensional link with more than one component
is never aspherical [Ec76]. Is M(L) ever aspherical?

14.13 Homology spheres

A closed connected n-manifold M is an homology n-sphere if Hq(M ; Z) = 0
for 0 < q < n. In particular, it is orientable and so Hn(M ; Z) ∼= Z . If π is the
group of an homology n-sphere then

(1) π is finitely presentable;

(2) π is perfect, i.e., π = π′ ; and

(3) H2(π; Z) = 0.

A group satisfying the latter two conditions is said to be superperfect. Every
finitely presentable superperfect group is the group of an homology n-sphere,
for every n ≥ 5 [Ke69], but in low dimensions more stringent conditions hold.
As any closed 3-manifold has a handlebody structure with one 0-handle and
equal numbers of 1- and 2-handles, homology 3-sphere groups have deficiency
0. Every perfect group with a presentation of deficiency 0 is superperfect, and is
an homology 4-sphere group [Ke69]. However none of the implications “G is an
homology 3-sphere group” ⇒ “G is finitely presentable, perfect and def(G) =
0” ⇒ “G is an homology 4-sphere group” ⇒ “G is finitely presentable and
superperfect” can be reversed, as we shall now show.

Although the finite groups SL(2,Fp) are perfect and have deficiency 0 for each
prime p ≥ 5 [CR80] the binary icosahedral group I∗ = SL(2,F5) is the only
nontrivial finite perfect group with cohomological period 4, and thus is the only
finite homology 3-sphere group.

Let G = 〈x, s | x3 = 1, sxs−1 = x−1〉 be the group of τ231 and let H =
〈a, b, c, d | bab−1 = a2, cbc−1 = b2, dcd−1 = c2, ada−1 = d2〉 be the Higman
group [Hg51]. Then H is perfect and def(H) = 0, so there is an homology
4-sphere Σ with group H . Surgery on a loop representing sa−1 in Σ♯M(τ231)
gives an homology 4-sphere with group π = (G ∗H)/〈〈sa−1〉〉. Then π is the
semidirect product ρ⋊H , where ρ = 〈〈G′〉〉π is the normal closure of the image
of G′ in π . The obvious presentation for this group has deficiency -1. We shall
show that this is best possible.

Let Γ = Z[H]. Since H has cohomological dimension 2 [DV73’] the augmenta-
tion ideal I = Ker(ε : Γ → Z) has a short free resolution

C∗ : 0 → Γ4 → Γ4 → I → 0.

Geometry & Topology Monographs, Volume 5 (2002)



14.13 Homology spheres 289

Let B = H1(π; Γ) ∼= ρ/ρ′ . Then B ∼= Γ/Γ(3, a + 1) as a left Γ-module and
there is an exact sequence

0 → B → A→ I → 0,

in which A = H1(π, 1; Γ) is a relative homology group [Cr61]. Since B ∼=
Γ ⊗Λ (Λ/Λ(3, a + 1)), where Λ = Z[a, a−1], there is a free resolution

0 → Γ
(3,a+1)−−−−−→ Γ2

“
a+1
−3

”

−−−−−→ Γ → B → 0.

Suppose that π has deficiency 0. Evaluating the Jacobian matrix associated
to an optimal presentation for π via the natural epimorphism from Z[π] to Γ
gives a presentation matrix for A as a module [Cr61, Fo62]. Thus there is an
exact sequence

D∗ : · · · → Γn → Γn → A→ 0.

A mapping cone construction leads to an exact sequence of the form

D1 → C1 ⊕D0 → B ⊕ C0 → 0

and hence to a presentation of deficiency 0 for B of the form

D1 ⊕ C0 → C1 ⊕D0 → B.

Hence there is a free resolution

0 → L→ Γp → Γp → B → 0.

Schanuel’s Lemma gives an isomorphism Γ1+p+1 ∼= L ⊕ Γp+2 , on comparing
these two resolutions of B . Since Γ is weakly finite the endomorphism of Γp+2

given by projection onto the second summand is an automorphism. Hence
L = 0 and so B has a short free resolution. In particular, TorΓ2 (R,B) = 0 for
any right Γ-module R. But it is easily verified that if B ∼= Γ/(3, a + 1)Γ is
the conjugate right Γ-module then TorΓ2 (B,B) 6= 0. Thus our assumption was
wrong, and def(π) = −1 < 0.

Let Ak = (F2
5)
k and Gk = Ak ⋊ I∗ , where I∗ acts diagonally on Ak with

respect to the standard action on F2
5 . Since I∗ is superperfect and H1(I

∗;Ak) =
H0(I

∗;Ak) = 0 an LHSSS argument shows that Gk is perfect and H2(G; Z) is
a quotient of H0(I

∗;H2(Ak; Z)). Since Ak is abelian H2(Ak; Z) ∼= Ak ∧Ak , so
H0(I

∗;H2(Ak; Z)) = 0 and thus Gk is superperfect. Let Hk be the subgroup
generated by Ak and h =

(−1 −1
0 −1

)
. Then [Gk : Hk] = 12 and β1(Hk; F5) = 1.

Since Hk/Ak is cyclic and h−1 acts invertibly on Ak we have Hp(Hk/Ak;Ak) =
0 for all p ≥ 0. Since Hk is a semidirect product it follows that H2(Hk; F5) ∼=
H0(Hk/Ak;Ak ∧Ak)⊕H2(Hk/Ak; F5) ∼= Cok(h∧h−1)⊕F5 . Hence β2(Hk; F5)=
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k2 + 1. Applying parts (1) and (2) of Lemma 3.11 we find that defGk < 0 if
k > 3 and qSG(Gk) > 2 if k > 4. In the latter case Gk is not realized by any
homology 4-sphere. (This example derives from [HW85].)

Our example of an homology 4-sphere group with negative deficiency is “very
infinite” in the sense that the Higman group H has no finite quotients, and
therefore no finite-dimensional representations over any field [Hg51]. Livingston
has constructed examples with arbitrarily large negative deficiency, which are
extensions of I∗ by groups which map onto Z . His argument uses only homo-
logical algebra for infinite cyclic covers [Li05].

Does every finite homology 4-sphere group have deficiency 0? The group G1

has the deficiency -1 presentation

〈x, y, e | x2 = y3 = (xy)5, xex−1 = yey−1, ey2e = yey〉.
This group has order 3000 and is perhaps the smallest finite superperfect group
which is not known to have deficiency 0 nor to be an homology 4-sphere group.

Kervaire’s criteria may be extended further to the groups of links in homology
spheres. Unfortunately, the condition χ(M) = 0 is central to most of our
arguments, and is satisfied only by the manifolds arising from knots in homology
4-spheres.
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Chapter 15

Restrained normal subgroups

It is plausible that if K is a 2-knot whose group π = πK has an infinite
restrained normal subgroup N then either π′ is finite or π ∼= Φ (the group of
Fox’s Example 10) or M(K) is aspherical and

√
π 6= 1 or N is virtually Z and

π/N has infinitely many ends. In this chapter we shall give some evidence in this
direction. In order to clarify the statements and arguments in later sections, we
begin with several characterizations of Φ, which plays a somewhat exceptional
role. In §2 we assume that N is almost coherent and locally virtually indicable,
but not locally finite. In §3 we assume that N is abelian of positive rank
and almost establish the tetrachotomy in this case. In §4 we determine all
such π with π′ finite, and in §5 we give a version of the Tits alternative for
2-knot groups. In §6 we shall complete Yoshikawa’s determination of the 2-knot
groups which are HNN extensions over abelian bases. We conclude with some
observations on 2-knot groups with infinite locally finite normal subgroups.

15.1 The group Φ

Let Φ ∼= Z∗2 be the group with presentation 〈a, t | tat−1 = a2〉. This group is
an ascending HNN extension with base Z , is metabelian, and has commutator
subgroup isomorphic to Z[12 ]. The 2-complex corresponding to this presentation
is aspherical and so g.d.Φ = 2.

The group Φ is the group of Example 10 of Fox, which is the boundary of the
ribbon D3 in S4 obtained by “thickening” a suitable immersed ribbon D2 in
S3 for the stevedore’s knot 62 [Fo62]. Such a ribbon disc may be constructed by
applying the method of §7 of Chapter 1 of [H3] to the equivalent presentation
〈t, u, v | vuv−1 = t, tut−1 = v〉 for Φ (where u = ta and v = t2at−1 ).

Theorem 15.1 Let π be a 2-knot group such that c.d.π = 2 and π has a
nontrivial normal subgroup E which is either elementary amenable or almost
coherent, locally virtually indicable and restrained. Then either π ∼= Φ or π is
an iterated free product of (one or more) torus knot groups, amalgamated over
central subgroups. In either case def(π) = 1.
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Proof If π is solvable then π ∼= Z∗m , for some m 6= 0, by Corollary 2.6.1.
Since π/π′ ∼= Z we must have m = 2 and so π ∼= Φ.

Otherwise E ∼= Z , by Theorem 2.7. Then [π : Cπ(E)] ≤ 2 and Cπ(E)′ is
free, by Bieri’s Theorem. This free subgroup must be nonabelian for otherwise
π would be solvable. Hence E ∩ Cπ(E)′ = 1 and so E maps injectively to
H = π/Cπ(E)′ . As H has an abelian normal subgroup of index at most 2 and
H/H ′ ∼= Z we must in fact have H ∼= Z . It follows easily that Cπ(E) = π , and
so π′ is free. The further structure of π is then due to Strebel [St76]. The final
observation follows readily.

The following alternative characterizations of Φ shall be useful.

Theorem 15.2 Let π be a 2-knot group with maximal locally finite normal
subgroup T . Then π/T ∼= Φ if and only if π is elementary amenable and
h(π) = 2. Moreover the following are equivalent:

(1) π has an abelian normal subgroup A of rank 1 such that π/A has two
ends;

(2) π is elementary amenable, h(π) = 2 and π has an abelian normal sub-
group A of rank 1;

(3) π is almost coherent, elementary amenable and h(π) = 2;

(4) π ∼= Φ.

Proof Since π is finitely presentable and has infinite cyclic abelianization it
is an HNN extension π ∼= H∗φ with base H a finitely generated subgroup of
π′ , by Theorem 1.13. Since π is elementary amenable the extension must be
ascending. Since h(π′/T ) = 1 and π′/T has no nontrivial locally-finite normal
subgroup [π′/T :

√
π′/T ] ≤ 2. The meridianal automorphism of π′ induces

a meridianal automorphism on (π′/T )/
√
π′/T and so π′/T =

√
π′/T . Hence

π′/T is a torsion free rank 1 abelian group. Let J = H/H ∩T . Then h(J) = 1
and J ≤ π′/T so J ∼= Z . Now φ induces a monomorphism ψ : J → J and
π/T ∼= J∗ψ . Since π/π′ ∼= Z we must have J∗ψ ∼= Φ.

If (1) holds then π is elementary amenable and h(π) = 2. Suppose (2) holds.
We may assume without loss of generality that A is the normal closure of
an element of infinite order, and so π/A is finitely presentable. Since π/A
is elementary amenable and h(π/A) = 1 it is virtually Z . Therefore π is
virtually an HNN extension with base a finitely generated subgroup of A, and
so is coherent. If (3) holds then π ∼= Φ, by Corollary 3.17.1. Since Φ clearly
satisfies conditions (1-3) this proves the theorem.

Corollary 15.2.1 If T is finite and π/T ∼= Φ then T = 1 and π ∼= Φ.
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15.2 Almost coherent, restrained and locally virtually indicable

We shall show that the basic tetrachotomy of the introduction is essentially
correct, under mild coherence hypotheses on πK or N . Recall that a restrained
group has no noncyclic free subgroups. Thus if N is a countable restrained
group either it is elementary amenable and h(N) ≤ 1 or it is an increasing
union of finitely generated one-ended groups.

Theorem 15.3 Let K be a 2-knot whose group π = πK is an ascending
HNN extension over an FP2 base H with finitely many ends. Then either π′

is finite or π ∼= Φ or M(K) is aspherical.

Proof This follows from Theorem 3.17, since a group with abelianization Z
cannot be virtually Z2 .

Is M(K) still aspherical if we assume only that H is finitely generated and
one-ended?

Corollary 15.3.1 If H is FP3 and has one end then π′ = H and is a PD+
3 -

group.

Proof This follows from Lemma 3.4 of [BG85], as in Theorem 2.13.

Does this remain true if we assume only that H is FP2 and has one end?

Corollary 15.3.2 If π is an ascending HNN extension over an FP2 base H
and has an infinite restrained normal subgroup A then either π′ is finite or
π ∼= Φ or M(K) is aspherical or π′ ∩A = 1 and π/A has infinitely many ends.

Proof If H is finite or A ∩H is infinite then H has finitely many ends (cf.
Corollary 1.15.1) and Theorem 15.3 applies. Therefore we may assume that H
has infinitely many ends and A∩H is finite. But then A 6≤ π′ , so π is virtually
π′×Z . Hence π′ = H and M(K)′ is a PD3 -complex. In particular, π′∩A = 1
and π/A has infinitely many ends.

In §4 we shall determine all 2-knot groups with π′ finite. If K is the r-twist
spin of an irreducible 1-knot then the rth power of a meridian is central in π
and either π′ is finite or M(K) is aspherical. (See §3 of Chapter 16.) The final
possibility is realized by Artin spins of nontrivial torus knots.
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Theorem 15.4 Let K be a 2-knot whose group π = πK is an HNN extension
with FP2 base B and associated subgroups I and φ(I) = J . If π has a

restrained normal subgroup N which is not locally finite and β
(2)
1 (π) = 0 then

either π′ is finite or π ∼= Φ or M(K) is aspherical or N is locally virtually Z
and π/N has infinitely many ends.

Proof If π′∩N is locally finite then it follows from Britton’s lemma (on normal
forms in HNN extensions) that either B∩N = I∩N or B∩N = J∩N . Moreover
N 6≤ π′ (since N is not locally finite), and so π′/π′ ∩ N is finitely generated.
Hence B/B ∩ N ∼= I/I ∩ N ∼= J/J ∩ N . Thus either B = I or B = J and
so the HNN extension is ascending. If B has finitely many ends we may apply
Theorem 15.3. Otherwise B∩N is finite, so π′∩N = B∩N and N is virtually
Z . Hence π/N is commensurable with B/B ∩N , and e(π/N) = ∞.

If π′∩N is locally virtually Z and π/π′∩N has two ends then π is elementary
amenable and h(π) = 2, so π ∼= Φ. Otherwise we may assume that either
π/π′ ∩N has one end or π′ ∩N has a finitely generated, one-ended subgroup.
In either case Hs(π; Z[π]) = 0 for s ≤ 2, by Theorem 1.18, and so M(K) is
aspherical, by Theorem 3.5.

Note that β
(2)
1 (π) = 0 if N is amenable. Every knot group is an HNN extension

with finitely generated base and associated subgroups, by Theorem 1.13, and
in all known cases these subgroups are FP2 .

Theorem 15.5 Let K be a 2-knot such that π = πK has an almost coherent,
locally virtually indicable, restrained normal subgroup E which is not locally
finite. Then either π′ is finite or π ∼= Φ or M(K) is aspherical or E is abelian
of rank 1 and π/E has infinitely many ends or E is elementary amenable,
h(E) = 1 and π/E has one or infinitely many ends.

Proof Let F be a finitely generated subgroup of E . Since F is FP2 and
virtually indicable it has a subgroup of finite index which is an HNN extension
over a finitely generated base, by Theorem 1.13. Since F is restrained the HNN

extension is ascending, and so β
(2)
1 (F ) = 0, by Lemma 2.1. Hence β

(2)
1 (E) = 0

and so β
(2)
1 (π) = 0, by Theorem 7.2 of [Lü].

If every finitely generated infinite subgroup of E has two ends, then E is
elementary amenable and h(E) = 1. If π/E is finite then π′ is finite. If π/E
has two ends then π is almost coherent, elementary amenable and h(π) = 2,
and so π ∼= Φ, by Theorem 15.2. If E is abelian and π/E has one end, or if E

Geometry & Topology Monographs, Volume 5 (2002)



15.2 Almost coherent, restrained and locally virtually indicable 295

has a finitely generated, one-ended subgroup and π is not elementary amenable
of Hirsch length 2 then Hs(π; Z[π]) = 0 for s ≤ 2, by Theorem 1.17. Hence
M(K) is aspherical, by Theorem 3.5.

The remaining possibilities are that either π/E has infinitely many ends or that
E is locally virtually Z but nonabelian and π/E has one end.

Does this theorem hold without any coherence hypothesis? Note that the other
hypotheses hold if E is elementary amenable and h(E) ≥ 2. If E is elementary
amenable, h(E) = 1 and π/E has one end is H2(π; Z[π]) = 0?

Corollary 15.5.1 Let K be a 2-knot with group π = πK . Then either π′ is
finite or π ∼= Φ or M(K) is aspherical and

√
π ∼= Z2 or M(K) is homeomorphic

to an infrasolvmanifold or h(
√
π) = 1 and π/

√
π has one or infinitely many

ends or
√
π is locally finite.

Proof Finitely generated nilpotent groups are polycyclic. If π/
√
π has two

ends we may apply Theorem 15.3. If h(
√
π) = 2 then

√
π ∼= Z2 , by Theorem

9.2, while if h > 2 then π is virtually poly-Z , by Theorem 8.1.

Under somewhat stronger hypotheses we may assume that π has a nontrivial
torsion free abelian normal subgroup.

Theorem 15.6 Let N be a group which is either elementary amenable or is
locally FP3 , virtually indicable and restrained. If c.d.N ≤ 3 then N is virtually
solvable.

Proof Suppose first that N is locally FP3 and virtually indicable, and let
E be a finitely generated subgroup of N which maps onto Z . Then E is an
ascending HNN extension H∗φ with FP3 base H and associated subgroups.
If c.d.H = 3 then H3(H; Z[E]) ∼= H3(H; Z[H]) ⊗H Z[E] 6= 0 and the homo-
morphism H3(H; Z[E]) → H3(H; Z[E]) in the Mayer-Vietoris sequence for the
HNN extension is not onto, by Lemma 3.4 and the subsequent Remark 3.5
of [BG85]. But then H4(E; Z[E]) 6= 0, contrary to c.d.N ≤ 3. Therefore
c.d.H ≤ 2, and so H is elementary amenable, by Theorem 2.7. Hence N is
elementary amenable, and so is virtually solvable by Theorem 1.11.

In particular, ζ
√
N is a nontrivial, torsion free abelian characteristic subgroup

of N . A similar argument shows that if N is locally FPn , virtually indicable,
restrained and c.d.N ≤ n then N is virtually solvable.
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15.3 Abelian normal subgroups

In this section we shall consider 2-knot groups with infinite abelian normal
subgroups. The class with rank 1 abelian normal subgroups includes the groups
of torus knots and twist spins, the group Φ, and all 2-knot groups with finite
commutator subgroup. If there is such a subgroup of rank > 1 the knot manifold
is aspherical; this case is considered further in Chapter 16.

Theorem 15.7 Let K be a 2-knot whose group π = πK has an infinite
abelian normal subgroup A. Then r = h(A) ≤ 4 and

(1) if π′ is finitely generated then so is A;

(2) if r = 1 either π′ is finite or π ∼= Φ or M(K) is aspherical or e(π/A) = ∞;

(3) if r = 1, A ≤ ζπ′ and e(π/A) = ∞ then A and
√
π are virtually Z ;

(4) if r = 1 and A 6≤ π′ then M(K) is a PD+
3 -complex, and is aspherical if

and only if e(π′) = 1;

(5) if r = 2 then A ∼= Z2 and M(K) is aspherical;

(6) if r = 3 then A ∼= Z3 , A ≤ π′ and M(K) is homeomorphic to an
infrasolvmanifold;

(7) if r = 4 then A ∼= Z4 and M(K) is homeomorphic to a flat 4-manifold.

Proof If π′ is finitely generated and A ∩ π′ is infinite then M is aspherical
and π′ is the fundamental group of a Seifert fibred 3-manifold or is virtually
poly-Z , by Theorems 4.5 and 2.14. Thus A must be finitely generated.

The four possibilities in case (2) correspond to whether π/A is finite or has one,
two or infinitely many ends, by Theorem 15.5. These possibilities are mutually
exclusive; if e(π/A) = ∞ then a Mayer-Vietoris argument as in Lemma 14.8
implies that π cannot be a PD4 -group.

Suppose that r = 1, and A ≤ ζπ′ . Then A is a module over Z[π/π′] ∼= Λ. Let
z ∈ A have infinite order, and let B = 〈〈z〉〉π . Then B is a cyclic Λ-module,
and so there is an integer e ≥ 1 such that C = eB = 〈〈ze〉〉π is Z-torsion free.
If [

√
π : C] = ∞ then π/C has an infinite, restrained normal subgroup and so

π/C has one or two ends, by Theorem 1.16. Hence either M(K) is aspherical or
π ∼= Φ, as before. In either case π/A has one or two ends. Let K = π′/C . If K
is finite π/C has two ends and so π ∼= Φ. If K is finitely generated and infinite
π/C has one end and so M(K) is aspherical. If K is not finitely generated
we may write K as an increasing union of finitely generated subgroups K =
∪n≥1Kn . Let S be an infinite cyclic subgroup of C and let G = π′/S . Then G
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is an extension of K by C/S , and so is an increasing union G = ∪Gn , where
Gn is an extension of Kn by C/S . If C is not finitely generated C/S is an
infinite abelian normal subgroup. Therefore if some Gn is finitely generated it
has one end, and so H1(Gn;F ) = 0 for any free Z[Gn]-module F . Otherwise
we may write Gn as an increasing union of finitely generated subgroups Gn =
∪m≥1Gnm , where Gnm is an extension of Kn by a finite cyclic group Z/dmZ ,
dm divides dm+1 for all m ≥ 1, and C/S = ∪Z/dmZ . Let u be a generator
of the subgroup Z/d1Z , and let Ḡn = Gn/〈u〉 and Ḡnm = Gnm/〈u〉 for all
m ≥ 1. Then Ḡn1

∼= Kn , and so Ḡn ∼= Kn × (C/d−1
1 S). Since Kn is finitely

generated and C/d−1
1 S is infinite we again find that H1(Ḡn;F ) = 0 for any

free Z[Ḡ]-module F . It now follows from Theorem 1.15 that H1(Ḡ;F ) = 0 for
any free Z[Ḡ]-module F . An application of the LHSSS for π′ as an extension
of Ḡ by the normal subgroup d−1

1 S ∼= Z then gives Hs(π′; Z[π]) = 0 for s ≤ 2.
Another LHSSS argument then gives Hs(π; Z[π]) = 0 for s ≤ 2 and so M(K)
is aspherical. In particular, π/A must have one end. Thus if (3) holds C must
be finitely generated. Hence C , A and

√
π are virtually Z .

Suppose next that r = 1 and A is not contained in π′ . Let x1, . . . xn be a set
of generators for π and let s be an element of A which is not in π′ . As each
commutator [s, xi] is in π′ ∩ A it has finite order, ei say. Let e = Πei . Then
[se, x] = se(xs−1x−1)e = (sxs−1x−1)e , so se commutes with all the generators.
The subgroup generated by {se} ∪ π′ has finite index in π and is isomorphic
to Z × π′ , so π′ is finitely presentable. Hence M(K)′ is an orientable PD3 -
complex, and is aspherical if and only if π′ has one end, by Theorem 4.5. (In
particular, A is finitely generated.)

If r = 2 then A ∼= Z2 and M(K) is aspherical by Theorem 9.2. If r > 2
then r ≤ 4, A ∼= Zr and M(K) is homeomorphic to an infrasolvmanifold by
Theorem 8.1. In particular, π is virtually poly-Z and h(π) = 4. If r = 3 then
A ≤ π′ , for otherwise h(π/π′ ∩ A) = 2, which is impossible for a group with
abelianization Z . If r = 4 then [π : A] < ∞ and so M(K) is homeomorphic
to a flat 4-manifold.

It remains an open question whether abelian normal subgroups of PDn groups
must be finitely generated. If this is so, Φ is the only 2-knot group with an
abelian normal subgroup of positive rank which is not finitely generated.

Are there similar constraints on
√
π? The difficulties are when h(

√
π) = 1 and

e(π/
√
π) = 1 or ∞.

Corollary 15.7.1 If A has rank 1 its torsion subgroup T is finite, and if
moreover π′ is infinite and π′/A is finitely generated T = 1.
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Little is known about the rank 0 case. All the other possibilities allowed by this
theorem occur. (We shall consider the cases with rank ≥ 2 further in Chapter
16.) In particular, if π is torsion free and π′∩A = 1 then π′ is a free product of
PD+

3 -groups and free groups, and the various possibilities (π′ finite, e(π′) = 1
or e(π′) = ∞) are realized by twists spins of classical knots. Is every 2-knot K
such that ζπ 6≤ π′ and π is torsion free s-concordant to a fibred knot?

Corollary 15.7.2 If π′ finitely generated and infinite then A is free abelian
and either π′ ∩ A = 1 or M(K)′ is homotopy equivalent to an aspherical
Seifert fibred 3-manifold or M(K) is homeomorphic to an infrasolvmanifold. If
moreover π′ ∩A has rank 1 then ζπ′ 6= 1.

Proof As π′∩A is torsion free Aut(π′∩A) is abelian. Hence π′∩A ≤ ζπ′ .

We may construct examples of 2-knots with groups π such that ζπ′ 6= 1 as
follows. Let N be a closed 3-manifold such that ν = π1(N) has weight 1 and
ν/ν ′ ∼= Z , and let w = w1(N). Then H2(N ;Zw) ∼= Z . Let Me be the total
space of the S1 -bundle over N with Euler class e ∈ H2(N ;Zw). Then Me is
orientable, and π1(Me) has weight 1 if e = ±1 or if w 6= 0 and e is odd. In
such cases surgery on a weight class in Me gives S4 , so Me

∼= M(K) for some
2-knot K .

In particular, we may take N to be the result of 0-framed surgery on a 1-knot.
If the 1-knot is 31 or 41 (i.e., is fibred of genus 1) then the resulting 2-knot
group has commutator subgroup Γ1 . If instead we assume that the 1-knot is
not fibred then N is not fibred [Ga87] and so we get a 2-knot group π with
ζπ ∼= Z but π′ not finitely generated. For examples with w 6= 0 we may take
one of the nonorientable surface bundles with group 〈t, ai, bi (1 ≤ i ≤ n) |
Π[ai, bi] = 1, tait

−1 = bi, tbit
−1 = aibi (1 ≤ i ≤ n)〉, where n is odd. (When

n = 1 we get the third of the three 2-knot groups with commutator subgroup
Γ1 . See Theorem 16.13.)

Theorem 15.8 Let K be a 2-knot with a minimal Seifert hypersurface, and
such that π = πK has an abelian normal subgroup A. Then A ∩ π′ is finite
cyclic or is torsion free, and ζπ is finitely generated.

Proof By assumption, π = HNN(H;φ : I ∼= J) for some finitely presentable
group H and isomorphism of φ of subgroups I and J , where I ∼= J ∼= π1(V )
for some Seifert hypersurface V . Let t ∈ π be the stable letter. Either H∩A =
I∩A or H∩A = J∩A (by Britton’s Lemma). Hence π′∩A = ∪n∈Ztn(I∩A)t−n
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is a monotone union. Since I∩A is an abelian normal subgroup of a 3-manifold
group it is finitely generated, by Theorem 2.14, and since V is orientable I ∩A
is torsion free or finite. If A ∩ I is finite cyclic or is central in π then A ∩ I =
tn(A ∩ I)t−n , for all n, and so A ∩ π′ = A ∩ I . (In particular, ζπ is finitely
generated.) Otherwise A ∩ π′ is torsion free.

This argument derives from [Yo92,97], where it was shown that if A is a finitely
generated abelian normal subgroup then π′ ∩A ≤ I ∩ J .

Corollary 15.8.1 Let K be a 2-knot with a minimal Seifert hypersurface. If
π = πK has a nontrivial abelian normal subgroup A then π′∩A is finite cyclic
or is torsion free. Moreover ζπ ∼= 1, Z/2Z , Z , Z ⊕ (Z/2Z) or Z2 .

The knots τ041 , the trivial knot, τ331 and τ631 are fibred and their groups
have centres 1, Z , Z ⊕ (Z/2Z) and Z2 , respectively. A 2-knot with a minimal
Seifert hypersurface and such that ζπ = Z/2Z is constructed in [Yo82]. This
paper also gives an example with ζπ ∼= Z , ζπ < π′ and such that π/ζπ has
infinitely many ends. In all known cases the centre of a 2-knot group is cyclic,
Z ⊕ (Z/2Z) or Z2 .

15.4 Finite commutator subgroup

It is a well known consequence of the asphericity of the exteriors of classical
knots that classical knot groups are torsion free. The first examples of higher
dimensional knots whose groups have nontrivial torsion were given by Mazur
[Mz62] and Fox [Fo62]. These examples are 2-knots whose groups have finite
commutator subgroup. We shall show that if π is such a group π′ must be a
CK group, and that the images of meridianal automorphisms in Out(π′) are
conjugate, up to inversion. In each case there is just one 2-knot group with
given finite commutator subgroup. Many of these groups can be realized by
twist spinning classical knots. Zeeman introduced twist spinning in order to
study Mazur’s example; Fox used hyperplane cross sections, but his examples
(with π′ ∼= Z/3Z ) were later shown to be twist spins [Kn83’].

Lemma 15.9 An automorphism of Q(8) is meridianal if and only if it is
conjugate to σ .

Proof Since Q(8) is solvable an automorphism is meridianal if and only if the
induced automorphism of Q(8)/Q(8)′ is meridianal. It is easily verified that all
such elements of Aut(Q(8)) ∼= (Z/2Z)2 ⋊ SL(2,F2) are conjugate to σ .
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Lemma 15.10 All nontrivial automorphisms of I∗ are meridianal. Moreover
each automorphism is conjugate to its inverse. The nontrivial outer automor-
phism class of I∗ cannot be realised by a 2-knot group.

Proof Since the only nontrivial proper normal subgroup of I∗ is its centre
(ζI∗ = Z/2Z ) the first assertion is immediate. Since Aut(I∗) ∼= S5 and the
conjugacy class of a permutation is determined by its cycle structure each au-
tomorphism is conjugate to its inverse. Consideration of the Wang sequence for
the projection of M(K)′ onto M(K) shows that the meridianal automorphism
induces the identity on H3(π

′; Z), and so the nontrivial outer automorphism
class cannot occur, by Lemma 11.4.

The elements of order 2 in A5
∼= Inn(I∗) are all conjugate, as are the elements

of order 3. There are two conjugacy classes of elements of order 5.

Lemma 15.11 An automorphism of T ∗
k is meridianal if and only if it is con-

jugate to ρ3k−1
or ρ3k−1

η . All such automorphisms have the same image in
Out(T ∗

k ).

Proof Since T ∗
k is solvable an automorphism is meridianal if and only if the

induced automorphism of T ∗
k /(T

∗
k )′ is meridianal. Any such automorphism is

conjugate to either ρ2j+1 or to ρ2j+1η for some 0 ≤ j < 3k−1 . (Note that 3
divides 22j−1 but does not divide 22j+1−1.) However among them only those
with 2j + 1 = 3k−1 satisfy the isometry condition of Theorem 14.3.

Theorem 15.12 Let K be a 2-knot with group π = πK . If π′ is finite then
π′ ∼= P × (Z/nZ) where P = 1, Q(8), I∗ or T ∗

k , and (n, 2|P |) = 1, and the
meridianal automorphism sends x and y in Q(8) to y and xy , is conjugation
by a noncentral element on I∗ , sends x, y and z in T ∗

k to y−1 , x−1 and z−1 ,
and is −1 on the cyclic factor.

Proof Since χ(M(K)) = 0 and π has two ends π′ has cohomological period
dividing 4, by Theorem 11.1, and so is among the groups listed in §2 of Chapter
11. As the meridianal automorphism of π′ induces a meridianal automorphism
on the quotient by any characteristic subgroup, we may eliminate immediately
the groups O∗(k) and A(m, e) and direct products with Z/2nZ since these all
have abelianization cyclic of even order. If k > 1 the subgroup generated by x
in Q(8k) is a characteristic subgroup of index 2. Since Q(2na) is a quotient of
Q(2na, b, c) by a characteristic subgroup (of order bc) this eliminates this class
also. Thus there remain only the above groups.
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Automorphisms of a group G = H × J such that (|H|, |J |) = 1 correspond to
pairs of automorphisms φH and φJ of H and J , respectively, and φ is merid-
ianal if and only if φH and φJ are. Multiplication by s induces a meridianal
automorphism of Z/mZ if and only if (s − 1,m) = (s,m) = 1. If Z/mZ is a
direct factor of π′ then it is a direct summand of π′/π′′ = H1(M(K); Λ) and
so s2 ≡ 1 modulo (m), by Theorem 14.3. Hence we must have s ≡ −1 modulo
(m). The theorem now follows from Lemmas 15.9-15.11.

Finite cyclic groups are realized by the 2-twist spins of 2-bridge knots, while
Q(8), T ∗

1 and I∗ are realized by τ331 , τ431 and τ531 , respectively. As the
groups of 2-bridge knots have 2 generator 1 relator presentations the groups of
these twist spins have 2 generator presentations of deficiency 0. In particular,
πτr31 has the presentation 〈a, t | tat−1 = at2at−2, tra = atr〉.
The groups with π′ ∼= Q(8) × (Z/nZ) also have such optimal presentations:

〈t, a | ta2t−1 = a−2, tant−1 = ant2ant−2〉.
For let x = an , y = tant−1 and z = a4 . Then xz = zx, y = txt−1 and the
relations imply tyt−1 = x−1y , tzt−1 = z−1 and y2 = x−2 . Hence yz = zy and
x2 = (x−1y)2 . It follows easily that x4 = 1, so zn = 1, and π′ ∼= Q(8)×(Z/nZ)
(since n is odd). Conjugation by tx induces the meridianal automorphism of
Theorem 15.12. When n = 1 the generators correspond to those of the above
presentation for πτ331 . These groups are realized by fibred 2-knots [Yo82], but
if n > 1 no such group can be realized by a twist spin. (See §3 of Chapter 16.)
An extension of the twist spin construction may be used to realize such groups
by smooth fibred knots in the standard S4 , if n = 3, 5, 11, 13, 19, 21 or 27
[Kn88,Tr90]. Is this so in general?

The other groups are realized by the 2-twist spins of certain pretzel knots [Yo82].
If π′ ∼= T ∗

k × (Z/nZ) then π has a presentation

〈s, x, y, z | x2 = (xy)2 = y2, zα = 1, zxz−1 = y, zyz−1 = xy,

sxs−1 = y−1, sys−1 = x−1, szs−1 = z−1〉,
where α = 3kn. This is equivalent to the presentation

〈s, x, y, z | zα = 1, zxz−1 = y, zyz−1 = xy, sxs−1 = y−1, szs−1 = z−1〉.
For conjugating zxz−1 = y by s gives z−1y−1z = sys−1 , so sys−1 = x−1 ,
while conjugating zyz−1 = xy by s gives x = yxy , so x2 = (xy)2 , and conju-
gating this by s gives y2 = (xy)2 . On replacing s by t = xzs we obtain the
presentation

〈t, x, y, z | zα = 1, zxz−1 = y, zyz−1 = xy, txt−1 = xy, tzt−1 = yz−1〉.
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We may use the second and final relations to eliminate the generators x and
y to obtain a 2-generator presentation of deficiency -1. (When n = k = 1 we
may relate this to the above presentation for πτ431 by setting a = zx2 .) Are
there presentations of deficiency 0?

If π′ ∼= I∗ × (Z/nZ) then π ∼= I∗ × (π/I∗) and π has a presentation

〈t, w | twnt−1 = wnt2wnt−2, t5wn = wnt5, tw10t−1 = w−10〉.
For if G is the group with this presentation t 7→ t and a 7→ wn defines a
homomorphism from πτ531 to G, and so the first two relations imply that
w10n = 1, since a10 = 1 in (πτ531)

′ . (In particular, if n = 1 the third relation
is redundant.) Since G′ is generated by the conjugates of w the final relation
implies that w10 is central in G′ . We assume that (n, 30) = 1 and so there is
an integer p such that np ≡ 1 mod (10). Then t 7→ t and w 7→ ap defines an
epimorphism from G to πτ531 . Since the image of w in G/〈〈wn〉〉 clearly has
order n it follows that G′ ∼= π′ , and conjugation by t induces the meridianal
automorphism of Theorem 15.12. Thus π has a 2-generator presentation of
deficiency -1. Are there presentations of deficiency 0?

If P = 1 or Q(8) the weight class is unique up to inversion, while T ∗
k and I∗

have 2 and 4 weight orbits, respectively, by Theorem 14.1. If π′ = T ∗
1 or I∗

each weight orbit is realized by a branched twist spun torus knot [PS87].

The group πτ531
∼= Z × I∗ = Z × SL(2,F5) is the common member of two

families of high dimensional knot groups which are not otherwise 2-knot groups.
If p is a prime greater than 3 then SL(2,Fp) is a finite superperfect group. Let
ep = ( 1 1

0 1 ). Then (1, ep) is a weight element for Z×SL(2,Fp). Similarly, (I∗)m

is superperfect and (1, e5, . . . , e5) is a weight element for G = Z × (I∗)m , for
any m ≥ 0. However SL(2,Fp) has cohomological period p− 1 (see Corollary
1.27 of [DM85]), while ζ(I∗)m ∼= (Z/2Z)m and so (I∗)m does not have periodic
cohomology if m > 1.

Kanenobu has shown that for every n > 0 there is a 2-knot group with an
element of order exactly n [Kn80].

15.5 The Tits alternative

An HNN extension (such as a knot group) is restrained if and only if it is
ascending and the base is restrained. The class of groups considered in the next
result probably includes all restrained 2-knot groups.

Theorem 15.13 Let π be a 2-knot group. Then the following are equivalent:

Geometry & Topology Monographs, Volume 5 (2002)



15.6 Abelian HNN bases 303

(1) π is restrained, locally FP3 and locally virtually indicable;

(2) π is an ascending HNN extension H∗φ where H is FP3 , restrained and
virtually indicable;

(3) π is elementary amenable and has a nontrivial torsion-free normal sub-
group N ;

(4) π is elementary amenable and has an abelian normal subgroup of rank
> 0;

(5) π is elementary amenable and is an ascending HNN extension H∗φ where
H is FP2 ;

(6) π′ is finite or π ∼= Φ or π is torsion free virtually poly-Z and h(π) = 4.

Proof Condition (1) implies (2) by Theorem 1.13. If (2) holds then either
π′ is finite or π ∼= Φ or π′ = H and is a PD3 -group, by Theorem 15.3 and
Corollary 15.3.1. In the latter case H has a subgroup of finite index which maps
onto Z2 , since it is virtually indicable and admits a meridianal automorphism.
Hence H is virtually poly-Z , by Corollary 2.13.1 (together with the remark
following it). Hence (2) implies (6). If (3) holds then either Hs(π; Z[π]) = 0 for
all s ≥ 0 or N is virtually solvable, by Proposition 3 of [Kr93’]. Hence either
π is torsion free virtually poly-Z and h(π) = 4, by Theorem 8.1, or (4) holds.
Conditions (4) and (5) imply (6) by Theorems 1.17 and 15.2, and by Theorem
15.3, respectively. On the other hand (6) implies (1-4).

In particular, if K is a 2-knot with a minimal Seifert hypersurface, πK is
restrained and the Alexander polynomial of K is nontrivial then either π ∼= Φ
or π is torsion free virtually poly-Z and h(π) = 4.

15.6 Abelian HNN bases

We shall complete Yoshikawa’s study of 2-knot groups which are HNN exten-
sions with abelian base. The first four paragraphs of the following proof outline
the arguments of [Yo86,92]. (Our contribution is the argument in the final
paragraph, eliminating possible torsion when the base has rank 1.)

Theorem 15.14 Let π be a 2-knot group which is an HNN extension with
abelian base. Then either π is metabelian or it has a deficiency 1 presentation
〈t, x | txnt−1 = xn+1〉 for some n > 1.
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Proof Suppose that π = A∗φ = HNN(A;φ : B → C) where A is abelian.
Let j and jC be the inclusions of B and C into A, and let φ̃ = jCφ. Then
φ̃− j : B → A is an isomorphism, by the Mayer-Vietoris sequence for homology
with coefficients Z for the HNN extension. Hence rank(A) = rank(B) = r ,
say, and the torsion subgroups TA, TB and TC of A, B and C coincide.

Suppose first that A is not finitely generated. Since π is finitely presentable
and π/π′ ∼= Z it is also an HNN extension with finitely generated base and
associated subgroups, by the Bieri-Strebel Theorem (1.13). Moreover we may
assume the base is a subgroup of A. Considerations of normal forms with
respect to the latter HNN structure imply that it must be ascending, and so π
is metabelian [Yo92].

Assume now that A is finitely generated. Then the image of TA in π is a
finite normal subgroup N , and π/N is a torsion free HNN extension with base
A/TA ∼= Zr . Let jF and φF be the induced inclusions of B/TB into A/TA,
and let Mj = |det(jF )| and Mφ = |det(φF )|. Applying the Mayer-Vietoris
sequence for homology with coefficients Λ, we find that tφ̃− j is injective and
π′/π′′ ∼= H1(π; Λ) has rank r as an abelian group. Now H2(A; Z) ∼= A ∧ A
(see page 334 of [Ro]) and so H2(π; Λ) ∼= Cok(t ∧2 φ̃ − ∧2j) has rank

(r
2

)
.

Let δi(t) = ∆0(Hi(π; Λ)), for i = 1 and 2. Then δ1(t) = det(tφF − jF ) and
δ2(t) = det(tφF ∧ φF − jF ∧ jF ). Moreover δ2(t

−1) divides δ1(t), by Theorem
14.3. In particular,

(r
2

)
≤ r , and so r ≤ 3.

If r = 0 then clearly B = A and so π is metabelian. If r = 2 then
(r
2

)
= 1

and δ2(t) = ±(tMφ −Mj). Comparing coefficients of the terms of highest and
lowest degree in δ1(t) and δ2(t

−1), we see that Mj = Mφ , so δ2(1) ≡ 0 mod
(2), which is impossible since |δ1(1)| = 1. If r = 3 a similar comparison of
coefficients in δ1(t) and δ2(t

−1) shows that M3
j divides Mφ and M3

φ divides
Mj , so Mj = Mφ = 1. Hence φ is an isomorphism, and so π is metabelian.

There remains the case r = 1. Yoshikawa used similar arguments involving
coefficients FpΛ instead to show that in this case N ∼= Z/βZ for some odd
β ≥ 1. The group π/N then has a presentation 〈t, x | txnt−1 = xn+1〉 (with
n ≥ 1). Let p be a prime. There is an isomorphism of the subfields Fp(Xn)
and Fp(Xn+1) of the rational function field Fp(X) which carries Xn to Xn+1 .
Therefore Fp(X) embeds in a skew field L containing an element t such that
tXnt−1 = Xn+1 , by Theorem 5.5.1 of [Cn]. It is clear from the argument of
this theorem that the group ring Fp[π/N ] embeds as a subring of L, and so
this group ring is weakly finite. Therefore so is the subring Fp[Cπ(N)/N ]. It
now follows from Lemma 3.16 that N must be trivial. Since π is metabelian if
n = 1 this completes the proof.
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15.7 Locally finite normal subgroups

Let K be a 2-knot such that π = πK has an infinite locally finite normal

subgroup T , which we may assume maximal. As π has one end and β
(2)
1 (π) = 0,

by Gromov’s Theorem (2.3), H2(π; Z[π]) 6= 0. For otherwise M(K) would be
aspherical and so π would be torsion free, by Theorem 3.5. Moreover T < π′

and π/T is not virtually Z , so e(π/T ) = 1 or ∞. (No examples of such 2-knot
groups are known, and we expect that there are none with e(π/T ) = 1.)

If H1(T ;R) = 0 for some subring R of Q and Z[π/T ] embeds in a weakly
finite ring S with an involution extending that of the group ring, which is flat
as a right Z[π/T ]-module and such that S ⊗Z[π/T ] Z = 0 then either π/T

is a PD+
4 -group over R or H2(π/T ;R[π/T ]) 6= 0, or e(π/T ) = ∞, by the

Addendum to Theorem 2.7 of [H2]. This applies in particular if π/T has a
nontrivial locally nilpotent normal subgroup U/T , for then U/T is torsion free.
(See Proposition 5.2.7 of [Ro].) Moreover e(π/T ) = 1. An iterated LHSSS
argument shows that if h(U/T ) > 1 or if U/T ∼= Z and e(π/U) = 1 then
H2(π/T ; Q[π/T ]) = 0. (This is also the case if h(U/T ) = 1, e(π/U) = 1 and
π/T is finitely presentable, by Theorem 1 of [Mi87] with [GM86].) Thus if
H2(π/T ; Q[π/T ]) 6= 0 then U/T is abelian of rank 1 and either e(π/U) = 2
(in which case π/T ∼= Φ, by Theorem 15.2), e(π/U) = 1 (and U/T not finitely
generated and π/U not finitely presentable) or e(π/U) = ∞. As Aut(U/T )
is then abelian U/T is central in π′/T . Moreover π/U can have no nontrivial
locally finite normal subgroups, for otherwise T would not be maximal in π ,
by an easy extension of Schur’s Theorem (Proposition 10.1.4 of [Ro]).

Hence if π has an ascending series whose factors are either locally finite or
locally nilpotent then either π/T ∼= Φ or h(

√
π/T ) ≥ 2 and so π/T is a PD+

4 -
group over Q. Since J = π/T is elementary amenable and has no nontrivial
locally finite normal subgroup it is virtually solvable and h(J) = 4, by Theorem
1.11. It can be shown that J is virtually poly-Z and J ′ ∩

√
J ∼= Z3 or Γq for

some q ≥ 1. (See Theorem VI.2 of [H1].) The possibilities for J ′ are examined
in Theorems VI.3-5 and VI.9 of [H1]. We shall not repeat this discussion here
as we expect that if G is finitely presentable and T is an infinite locally finite
normal subgroup such that e(G/T ) = 1 then H2(G; Z[G]) = 0.

The following lemma suggests that there may be a homological route to showing
that solvable 2-knot groups are virtually torsion free.

Lemma 15.15 Let G be an FP2 group with a torsion normal subgroup T
such that either G/T ∼= Z∗m for some m 6= 0 or G/T is virtually poly-Z . Then
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T/T ′ has finite exponent as an abelian group. In particular, if π is solvable
then T = 1 if and only if H1(T ; Fp) = 0 for all primes p.

Proof Let C∗ be a free Z[G]-resolution of the augmentation module Z which
is finitely generated in degrees ≤ 2. Since Z[G/T ] is coherent [BS79], T/T ′ =
H1(Z[G/T ] ⊗G C∗) is finitely presentable as a Z[G/T ]-module. If T/T ′ is
generated by elements ti of order ei then Πei is a finite exponent for T/T ′ .

If π is solvable then so is T , and T = 1 if and only if T/T ′ = 1. Since T/T ′

has finite exponent T/T ′ = 1 if and only if H1(T ; Fp) = 0 for all primes p.

Note also that Fp[Z∗m] is a coherent Ore domain of global dimension 2, while
if J is a torsion free virtually poly-Z group then Fp[J ] is a noetherian Ore
domain of global dimension h(J). (See §4.4 and §13.3 of [Pa].)
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Chapter 16

Abelian normal subgroups of rank
≥ 2

If K is a 2-knot such that h(
√
πK) = 2 then

√
πK ∼= Z2 , by Corollary 15.5.1.

The main examples are the branched twist spins of torus knots, whose groups
usually have centre of rank 2. (There are however examples in which

√
π is

not central.) Although we have not been able to show that all 2-knot groups
with centre of rank 2 are realized by such knots, we have a number of partial
results that suggest strongly that this may be so. Moreover we can characterize
the groups which arise in this way (obvious exceptions aside) as being the
3-knot groups which are PD+

4 -groups and have centre of rank 2, with some
power of a weight element being central. The strategy applies to other twist
spins of prime 1-knots; however in general we do not have satisfactory algebraic
characterizations of the 3-manifold groups involved. If h(

√
πK) > 2 then M(K)

is homeomorphic to an infrasolvmanifold. We shall determine the groups of such
knots and give optimal presentations for them in §4 of this chapter. Two of
these groups are virtually Z4 ; in all other cases h(

√
πK) = 3.

16.1 The Brieskorn manifolds M(p, q, r)

Let M(p, q, r) = {(u, v,w) ∈ C3 | up + vq + wr = 0} ∩ S5 . Thus M(p, q, r) is a
Brieskorn 3-manifold (the link of an isolated singularity of the intersection of
n algebraic hypersurfaces in Cn+2 , for some n ≥ 1). It is clear that M(p, q, r)
is unchanged by a permutation of {p, q, r}.

Let s = hcf{pq, pr, qr}. Then M(p, q, r) admits an effective S1 -action given
by z(u, v,w) = (zqr/su, zpr/sv, zpq/sw) for z ∈ S1 and (u, v,w) ∈ M(p, q, r),
and so is Seifert fibred. More precisely, let ℓ = lcm{p, q, r}, p′ = lcm{q, r},
q′ = lcm{p, r} and r′ = lcm{p, q}, s1 = qr/p′ , s2 = pr/q′ and s3 = pq/r′ and
t1 = ℓ/p′ , t2 = ℓ/q′ and t3 = ℓ/r′ . Let g = (2+(pqr/ℓ)− s1− s2− s3)/2. Then
M(p, q, r) = M(g; s1(t1, β1), s2(t2, β2), s3(t3, β3)), in the notation of [NR78],
where the coefficients βi are determined modulo ti by the equation

e = −(qrβ1 + prβ2 + pqβ3)/ℓ) = −pqr/ℓ2
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for the generalized Euler number. (See [NR78].) If p−1 + q−1 + r−1 ≤ 1 the
Seifert fibration is essentially unique. (See Theorem 3.8 of [Sc83’].) In most
cases the triple {p, q, r} is determined by the Seifert structure of M(p, q, r).
(Note however that, for example, M(2, 9, 18) ∼= M(3, 5, 15) [Mi75].)

The map f : M(p, q, r) → CP1 given by f(u, v,w) = [up : vq] is constant on
the orbits of the S1 -action, and the exceptional fibres are those above 0, −1
and ∞ in CP1 . In particular, if p, q and r are pairwise relatively prime f is
the orbit map and M(p, q, r) is Seifert fibred over the orbifold S2(p, q, r). The
involution c of M(p, q, r) induced by complex conjugation in C3 is orientation
preserving and is compatible with f and complex conjugation in CP1 .

The 3-manifold M(p, q, r) is a S3 -manifold if and only if p−1 + q−1 + r−1 > 1.
The triples (2, 2, r) give lens spaces. The other triples with p−1 +q−1 +r−1 > 1
are permutations of (2, 3, 3), (2, 3, 4) or (2, 3, 5), and give the three CK 3-
manifolds with fundamental groups Q(8), T ∗

1 and I∗ . The manifolds M(2, 3, 6),
M(3, 3, 3) and M(2, 4, 4) are Nil3 -manifolds; in all other cases M(p, q, r) is a

S̃L-manifold (in fact, a coset space of S̃L [Mi75]), and
√
π1(M(p, q, r)) ∼= Z .

If p, q and r are pairwise relatively prime M(p, q, r) is a Z-homology 3-sphere.

Let A(u, v,w) = (u, v, e2πi/rw) and g(u, v,w) = (u, v)/(|u|2 + |v|2), for (u, v,w)
∈ M(p, q, r). Then A generates a Z/rZ -action which commutes with the
above S1 -action, and these actions agree on their subgroups of order r/s. The
projection to the orbit space M(p, q, r)/〈A〉 may be identified with the map
g : M(p, q, r) → S3 , which is an r-fold cyclic branched covering, branched over
the (p, q)-torus link. (See Lemma 1.1 of [Mi75].)

16.2 Rank 2 subgroups

In this section we shall show that an abelian normal subgroup of rank 2 in a
2-knot group is free abelian and not contained in the commutator subgroup.

Lemma 16.1 Let ν be the fundamental group of a closed H2 × E1 -, Sol3 - or
S2 × E1 -manifold. Then ν admits no meridianal automorphism.

Proof The fundamental group of a closed Sol3 - or S2 × E1 -manifold has a
characteristic subgroup with quotient having two ends. If ν is a lattice in
Isom+(H2 × E1) then

√
ν ∼= Z and either

√
ν = ζν and is not contained in ν ′

or Cν(
√
ν) is a characteristic subgroup of index 2 in ν . In none of these cases

can ν admit a meridianal automorphism.
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Theorem 16.2 Let K be a 2-knot whose group π = πK has an abelian
normal subgroup A of rank 2. Then π is a PD+

4 -group, A ∼= Z2 , π′ ∩A ∼= Z ,
π′ ∩ A ≤ ζπ′ ∩ I(π′), [π : Cπ(A)] ≤ 2 and π′ = π1(N), where N is a Nil3 -

or S̃L-manifold. If π is virtually solvable then M(K) is homeomorphic to a
Nil3×E1 -manifold. If π is not virtually solvable then M(K) is s-cobordant to

the mapping torus M(Θ) of a self homeomorphism Θ of a S̃L-manifold; M(Θ)

is a S̃L × E1 -manifold if ζπ ∼= Z2 .

Proof The first two assertions follow from Theorem 9.2, where it is also shown
that π/A is virtually a PD2 -group. If A < π′ then π/A has infinite abelian-
ization and so maps onto some planar discontinuous group, with finite kernel
[EM82]. As the planar discontinuous group is virtually a surface group it has a
compact fundamental region. But no such group has abelianization Z . (This
follows for instance from consideration of the presentations given in Theorem
4.5.6 of [ZVC].) Therefore π′ ∩ A ∼= Z . If τ is the meridianal automorphism
of π′/I(π′) then τ − 1 is invertible, and so cannot have ±1 as an eigenvalue.
Hence π′ ∩A ≤ I(π′). In particular, π′ is not abelian.

The image of π/Cπ(A) in Aut(A) ∼= GL(2,Z) is triangular, since π′ ∩ A ∼= Z
is normal in π . Therefore as π/Cπ(A) has finite cyclic abelianization it must
have order at most 2. Thus [π : Cπ(A)] ≤ 2, so π′ < Cπ(A) and π′ ∩A < ζπ′ .
The subgroup H generated by π′ ∪ A has finite index in π and so is also a
PD+

4 -group. Since A is central in H and maps onto H/π′ we have H ∼=
π′ × Z . Hence π′ is a PD+

3 -group with nontrivial centre. As the nonabelian
flat 3-manifold groups either admit no meridianal automorphism or have trivial
centre, π′ = π1(N) for some Nil3 - or S̃L-manifold N , by Theorem 2.14 and
Lemma 16.1.

The manifold M(K) is s-cobordant to the mapping torus M(Θ) of a self home-
omorphism of N , by Theorem 13.2. If N is a Nil3 -manifold M(K) is homeo-
morphic to M(Θ), by Theorem 8.1, and M(K) must be a Nil3 ×E1 -manifold,
since the groups of Sol41 -manifolds do not have rank 2 abelian normal subgroups,
while the groups of Nil4 -manifolds cannot have abelianization Z , as they have
characteristic rank 2 subgroups contained in their commutator subgroups.

We may assume also that M(Θ) is Seifert fibred over a 2-orbifold B . If moreover
ζπ ∼= Z2 then B must be orientable, and the monodromy representation of
πorb1 (B) in Aut(ζπ) ∼= GL(2,Z) is trivial. Therefore if N is an S̃L-manifold

and ζπ ∼= Z2 then M(Θ) is a S̃L × E1 -manifold, by Theorem B of [Ue91] and
Lemma 16.1.
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If (p, q, r) = (2, 3, 5) or (2, 3, 7) (so that pqr − qr − pr − pq = ±1) then ν =
π1(M(p, q, r)) has a presentation

〈a1, a2, a3, h | ap1 = aq2 = ar3 = a1a2a3 = h〉.
(See [Mi75].) The involution c of M(p, q, r) induces the automorphism c∗
of ν determined by c∗(a1) = a−1

1 , c∗(a2) = a−1
2 and c∗(h) = h−1 . (Hence

c∗(a3) = a2a
−1
3 a−1

2 .) Surgery on the mapping torus of c gives rise to a 2-knot
whose group ν ⋊c∗ Z has an abelian normal subgroup A = 〈t2, h〉. If r = 5
then h2 = 1 and A is central, but if r = 7 then A ∼= Z2 and is not central.

The only virtually poly-Z 2-knot groups with noncentral rank 2 abelian normal
subgroups are the groups π(b, ǫ) discussed in §4 below.

Theorem 16.3 Let π be a 2-knot group such that ζπ has rank r > 0. If ζπ
has nontrivial torsion it is finitely generated and r = 1. If r > 1 then ζπ ∼= Z2 ,
ζπ′ = π′ ∩ ζπ ∼= Z , and ζπ′ ≤ π′′ .

Proof The first assertion follows from Theorem 15.7. If ζπ had rank greater
than 2 then π′ ∩ ζπ would contain an abelian normal subgroup of rank 2,
contrary to Theorem 16.2. Therefore ζπ ∼= Z2 and π′ ∩ ζπ ∼= Z . Moreover
π′ ∩ ζπ ≤ π′′ , since π/π′ ∼= Z . In particular π′ is nonabelian and π′′ has

nontrivial centre. Hence π′ is the fundamental group of a Nil3 - or S̃L-manifold,
by Theorem 16.2, and so ζπ′ ∼= Z . It follows easily that π′ ∩ ζπ = ζπ′ .

The proof of this result in [H1] relied on the theorems of Bieri and Strebel,
rather than Bowditch’s Theorem.

16.3 Twist spins of torus knots

The commutator subgroup of the group of the r-twist spin of a classical knot
K is the fundamental group of the r-fold cyclic branched cover of S3 , branched
over K [Ze65]. The r-fold cyclic branched cover of a sum of knots is the con-
nected sum of the r-fold cyclic branched covers of the factors, and is irreducible
if and only if the knot is prime. Moreover the cyclic branched covers of a prime
knot are either aspherical or finitely covered by S3 ; in particular no summand
has free fundamental group [Pl84]. The cyclic branched covers of prime knots
with nontrivial companions are Haken 3-manifolds [GL84]. The r-fold cyclic
branched cover of a simple nontorus knot is a hyperbolic 3-manifold if r ≥ 3,
excepting only the 3-fold cyclic branched cover of the figure-eight knot, which is
the Hanztsche-Wendt flat 3-manifold [Du83]. The r-fold cyclic branched cover
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of the (p, q)-torus knot kp,q is the Brieskorn manifold M(p, q, r) [Mi75]. (In
particular, there are only four r-fold cyclic branched covers of nontrivial knots
for any r > 2 which have finite fundamental group.)

Theorem 16.4 Let M be the r-fold cyclic branched cover of S3 , branched
over a knot K , and suppose that r > 2 and that

√
π1(M) is infinite. Then K

is uniquely determined by M and r , and either K is a torus knot or K ∼= 41

and r = 3.

Proof As the connected summands of M are the cyclic branched covers of the
factors of K , any homotopy sphere summand must be standard, by the proof
of the Smith conjecture. Therefore M is aspherical, and is either Seifert fibred
or is a Sol3 -manifold, by Theorem 2.14. It must in fact be a E3 -, Nil3 - or S̃L-
manifold, by Lemma 16.1. If there is a Seifert fibration which is preserved by
the automorphisms of the branched cover the fixed circle (the branch set of M )
must be a fibre of the fibration (since r > 2) which therefore passes to a Seifert
fibration of X(K). Thus K must be a (p, q)-torus knot, for some relatively
prime integers p and q [BZ]. These integers may be determined arithmetically
from r and the formulae for the Seifert invariants of M(p, q, r) given in §1.
Otherwise M is flat [MS86] and so K ∼= 41 and r = 3, by [Du83].

All the knots whose 2-fold branched covers are Seifert fibred are torus knots or
Montesinos knots. (This class includes the 2-bridge knots and pretzel knots,
and was first described in [Mo73].) The number of distinct knots whose 2-
fold branched cover is a given Seifert fibred 3-manifold can be arbitrarily large
[Be84]. Moreover for each r ≥ 2 there are distinct simple 1-knots whose r-fold
cyclic branched covers are homeomorphic [Sa81, Ko86].

If K is a fibred 2-knot with monodromy of finite order r and if (r, s) = 1 then
the s-fold cyclic branched cover of S4 , branched over K is again a 4-sphere
and so the branch set gives a new 2-knot, which we shall call the s-fold cyclic
branched cover of K . This new knot is again fibred, with the same fibre and
monodromy the sth power of that of K [Pa78, Pl86]. If K is a classical knot
we shall let τr,sK denote the s-fold cyclic branched cover of the r-twist spin of
K . We shall call such knots branched twist spins, for brevity.

Using properties of S1 -actions on smooth homotopy 4-spheres, Plotnick obtains
the following result [Pl86].

Theorem (Plotnick) A 2-knot is fibred with periodic monodromy if and only
if it is a branched twist spin of a knot in a homotopy 3-sphere.
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Here “periodic monodromy” means that the fibration of the exterior of the knot
has a characteristic map of finite order. It is not in general sufficient that the
closed monodromy be represented by a map of finite order. (For instance, if K
is a fibred 2-knot with π′ ∼= Q(8)× (Z/nZ) for some n > 1 then the meridianal
automorphism of π′ has order 6, and so it follows from the observations above
that K is not a twist spin.)

In our application in the next theorem we are able to show directly that the
homotopy 3-sphere arising there may be assumed to be standard.

Theorem 16.5 A group G which is not virtually solvable is the group of a
branched twist spin of a torus knot if and only if it is a 3-knot group and a
PD+

4 -group with centre of rank 2, some nonzero power of a weight element
being central.

Proof If K is a cyclic branched cover of the r-twist spin of the (p, q)-torus
knot then M(K) fibres over S1 with fibre M(p, q, r) and monodromy of order
r , and so the rth power of a meridian is central. Moreover the monodromy
commutes with the natural S1 -action on M(p, q, r) (see Lemma 1.1 of [Mi75])
and hence preserves a Seifert fibration. Hence the meridian commutes with
ζπ1(M(p, q, r)), which is therefore also central in G. Since (with the above
exceptions) π1(M(p, q, r)) is a PD+

3 -group with infinite centre and which is
virtually representable onto Z , the necessity of the conditions is evident.

Conversely, if G is such a group then G′ is the fundamental group of a Seifert
fibred 3-manifold, N say, by Theorem 2.14. Moreover N is “sufficiently com-
plicated” in the sense of [Zi79], since G′ is not virtually solvable. Let t be an
element of G whose normal closure is the whole group, and such that tn is cen-
tral for some n > 0. Let θ be the automorphism of G′ determined by t, and let
m be the order of the outer automorphism class [θ] ∈ Out(G′). By Corollary
3.3 of [Zi79] there is a fibre preserving self homeomorphism τ of N inducing [θ]
such that the group of homeomorphisms of Ñ ∼= R3 generated by the covering
group G′ together with the lifts of τ is an extension of Z/mZ by G′ , and
which is a quotient of the semidirect product Ĝ = G/〈〈tn〉〉 ∼= G′ ⋊θ (Z/nZ).
Since the self homeomorphism of Ñ corresponding to the image of t has finite
order it has a connected 1-dimensional fixed point set, by Smith theory. The
image P of a fixed point in N determines a cross-section γ = {P} × S1 of
the mapping torus M(τ). Surgery on γ in M(τ) gives a 2-knot with group G
which is fibred with monodromy (of the fibration of the exterior X ) of finite
order. We may then apply Plotnick’s Theorem to conclude that the 2-knot is
a branched twist spin of a knot in a homotopy 3-sphere. Since the monodromy
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respects the Seifert fibration and leaves the centre of G′ invariant, the branch
set must be a fibre, and the orbit manifold a Seifert fibred homotopy 3-sphere.
Therefore the orbit knot is a torus knot in S3 , and the 2-knot is a branched
twist spin of a torus knot.

Can we avoid the appeal to Plotnick’s Theorem in the above argument?

If p, q and r are pairwise relatively prime then M(p, q, r) is an homology
sphere and the group π of the r-twist spin of the (p, q)-torus knot has a central
element which maps to a generator of π/π′ . Hence π ∼= π′ × Z and π′ has
weight 1. Moreover if t is a generator for the Z summand then an element h
of π′ is a weight element for π′ if and only if ht is a weight element for π . This
correspondance also gives a bijection between conjugacy classes of such weight
elements. If we exclude the case (2, 3, 5) then π′ has infinitely many distinct
weight orbits, and moreover there are weight elements such that no power is
central [Pl83]. Therefore we may obtain many 2-knots whose groups are as in
Theorem 16.5 but which are not themselves branched twist spins by surgery on
weight elements in M(p, q, r) × S1 .

If K is a 2-knot with group as in Theorem 16.5 then M(K) is aspherical, and
so is homotopy equivalent to M(K1) for some K1 which is a branched twist
spin of a torus knot. If we assume that K is fibred, with irreducible fibre, we
get a stronger result. The next theorem is a version of Proposition 6.1 of [Pl86],
starting from more algebraic hypotheses.

Theorem 16.6 Let K be a fibred 2-knot such that πK has centre of rank 2,
some power of a weight element being central. Suppose that the fibre is irre-
ducible. Then M(K) is homeomorphic to M(K1), where K1 is some branched
twist spin of a torus knot.

Proof Let F be the closed fibre and φ : F → F the characteristic map.
Then F is a Seifert fibred manifold, as above. Now the automorphism of F
constructed as in Theorem 16.5 induces the same outer automorphism of π1(F )
as φ, and so these maps must be homotopic. Therefore they are in fact isotopic
[Sc85, BO91]. The theorem now follows.

We may apply Plotnick’s theorem in attempting to understand twist spins of
other knots. As the arguments are similar to those of Theorems 16.5 and 16.6,
except in that the existence of homeomorphisms of finite order and “homotopy
implies isotopy” require different justifications, while the conclusions are less
satisfactory, we shall not give prooofs for the following assertions.
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Let G be a 3-knot group such that G′ is the fundamental group of a hyperbolic
3-manifold and in which some nonzero power of a weight element is central. If
the 3-dimensional Poincaré conjecture is true then we may use Mostow rigidity
to show that G is the group of some branched twist spin K of a simple non-torus
knot. Moreover if K1 is any other fibred 2-knot with group G and hyperbolic
fibre then M(K1) is homeomorphic to M(K). In particular the simple knot
and the order of the twist are uniquely determined by G.

Similarly if G′ is the fundamental group of a Haken 3-manifold which is not
Seifert fibred and the 3-dimensional Poincaré conjecture is true then we may
use [Zi82] to show that G is the group of some branched twist spin of a prime
non-torus knot. If moreover all finite group actions on the fibre are geometric
the prime knot and the order of the twist are uniquely determined by G′ [Zi86].

16.4 Solvable PD4-groups

If π is a 2-knot group such that h(
√
π) > 2 then π is virtually poly-Z and

h(π) = 4, by Theorem 8.1. In this section we shall determine all such 2-knot
groups.

Lemma 16.7 Let G be torsion free and virtually poly-Z with h(G) = 4
and G/G′ ∼= Z . Then G′ ∼= Z3 or G6 or

√
G′ ∼= Γq (for some q > 0) and

G′/
√
G′ ∼= Z/3Z or 1.

Proof Let H = G/
√
G′ . Then H/H ′ ∼= Z and h(H ′) ≤ 1, since

√
G′ =

G′ ∩
√
G and h(G′ ∩

√
G) ≥ h(G) − 1 ≥ 2. Hence H ′ = G′/

√
G′ is finite.

If
√
G′ ∼= Z3 then G′ ∼= Z3 or G6 , since these are the only flat 3-manifold

groups which admit meridianal automorphisms.

If
√
G′ ∼= Γq for some q > 0 then ζ

√
G′ ∼= Z is normal in G and so is central

in G′ . Using the known structure of automorphisms of Γq , it follows that the
finite group G′/

√
G′ must act on

√
G′/ζ

√
G′ ∼= Z2 via SL(2,Z) and so must

be cyclic. Moreover it must have odd order, and hence be 1 or Z/3Z , since
G/

√
G′ has infinite cyclic abelianization.

Such a group G is the group of a fibred 2-knot if and only if it is orientable, by
Theorems 14.4 and 14.7.
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Theorem 16.8 Let π be a 2-knot group with π′ ∼= Z3 , and let C be the
image of the meridianal automorphism in SL(3,Z). Then ∆C(t) = det(tI−C)
is irreducible, |∆C(1)| = 1 and π′ is isomorphic to an ideal in the domain R =
Λ/(∆C(t)). Two such groups are isomorphic if and only if the polynomials are
equal (after inverting t, if necessary) and the ideal classes then agree. There are
finitely many ideal classes for each such polynomial and each class (equivalently,
each such matrix) is realized by some 2-knot group. Moreover

√
π = π′ and

ζπ = 1. Each such group π has two strict weight orbits.

Proof Let t be a weight element for π and let C be the matrix of the action
of t by conjugation on π′ , with respect to some basis. Then det(C − I) = ±1,
since t−1 acts invertibly. Moreover if K is a 2-knot with group π then M(K) is
orientable and aspherical, so det(C) = +1. Conversely, surgery on the mapping
torus of the self homeomorphism of S1 ×S1 × S1 determined by such a matrix
C gives a 2-knot with group Z3 ⋊C Z .

The Alexander polynomial of K is the characteristic polynomial ∆K(t) =
det(tI − C) which has the form t3 − at2 + bt − 1, for some a and b = a ± 1.
It is irreducible, since it does not vanish at ±1. Since π′ is annihilated by
∆K(t) it is an R-module; moreover as it is torsion free it embeds in Q ⊗ π′ ,
which is a vector space over the field of fractions Q ⊗ R. Since π′ is finitely
generated and π′ and R each have rank 3 as abelian groups it follows that π′

is isomorphic to an ideal in R. Moreover the characteristic polynomial of C
cannot be cyclotomic and so no power of t can commute with any nontrivial
element of π′ . Hence

√
π = π′ and ζπ = 1.

By Lemma 1.1 two such semidirect products are isomorphic if and only if the
matrices are conjugate up to inversion. The conjugacy classes of matrices in
SL(3,Z) with given irreducible characteristic polynomial ∆(t) correspond to
the ideal classes of Λ/(∆(t)), by Theorem 1.4. Therefore π is determined by
the ideal class of π′ , and there are finitely many such 2-knot groups with given
Alexander polynomial.

Since π′′ = 1 the final observation follows from Theorem 14.1.

We shall call 2-knots with such groups Cappell-Shaneson 2-knots.

Lemma 16.9 Let ∆a(t) = t3 − at2 + (a − 1)t − 1 for some a ∈ Z. Then
every ideal in the domain R = Λ/(∆a(t)) can be generated by 2 elements as
an R-module.
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Proof In this lemma “cyclic” shall mean “cyclic as an R-module” or equiva-
lently “cyclic as a Λ-module”. Let M be an ideal in R. We shall show that we
can choose a nonzero element x ∈M such that M/(Rx+ pM) is cyclic, for all
primes p. The result will then follow via Nakayama’s Lemma and the Chinese
Remainder Theorem.

Let D be the discriminant of ∆a(t). Then D = a(a− 2)(a− 3)(a− 5)− 23. If
p does not divide D then ∆a(t) has no repeated roots modulo p. If p divides
D choose integers αp , βp such that ∆a(t) ≡ (t − αp)

2(t − βp) modulo (p),
and let Kp = {m ∈ M | (t − βp)m ∈ pM}. If βp 6≡ αp modulo (p) then
Kp = (p, t− αp)M and has index p2 in M .

If βp ≡ αp modulo (p) then α3
p ≡ 1 and (1−αp)

3 ≡ −1 modulo (p). Together
these congruences imply that 3αp ≡ −1 modulo (p), and hence that p = 7
and αp ≡ 2 modulo (7). If M/7M ∼= (Λ/(7, t − 2))3 then the automorphism
τ of M/49M induced by t is congruent to multiplication by 2 modulo (7).
But M/49M ∼= (Z/49Z)3 as an abelian group, and so det(τ) = 8 in Z/49Z,
contrary to t being an automorphism of M . Therefore

M/7M ∼= (Λ/(7, t − 2)) ⊕ (Λ/(7, (t − 2)2))

and K7 has index 7 in M , in this case.

The set M −∪p|DKp is nonempty, since

1

7
+ Σp|D,p 6=7

1

p2
<

1

7
+

∫ ∞

2

1

t2
dt < 1.

Let x be an element of M − ∪p|DKp which is not Z-divisible in M . Then
N = M/Rx is finite, and is generated by at most two elements as an abelian
group, since M ∼= Z3 as an abelian group. For each prime p the Λ/pΛ-
module M/pM is an extension of N/pN by the submodule Xp generated by
the image of x and its order ideal is generated by the image of ∆a(t) in the
P.I.D. Λ/pΛ ∼= Fp[t, t−1].

If p does not divide D the image of ∆a(t) in Λ/pΛ is square free. If p|D and
βp 6= αp the order ideal of Xp is divisible by t− αp . If β7 = α7 = 2 the order
ideal of X7 is (t− 2)2 . In all cases the order ideal of N/pN is square free and
so N/pN is cyclic. By the Chinese Remainder Theorem there is an element
y ∈ M whose image is a generator of N/pN , for each prime p dividing the
order of N . The image of y in N generates N , by Nakayama’s Lemma.

In [AR84] matrix calculations are used to show that any matrix C as in Theorem
16.8 is conjugate to one with first row (0, 0, 1). (The prime 7 also needs special
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consideration in their argument.) This is equivalent to showing that M has
an element x such that the image of tx in M/Zx is indivisible, from which
it follows that M is generated as an abelian group by x, tx and some third
element y . Given this, it is easy to see that the corresponding Cappell-Shaneson
2-knot group has a presentation

〈t, x, y, z | xy = yx, xz = zx, txt−1 = z, tyt−1 = xmynzp, tzt−1 = xqyrzs〉.
Since p and s must be relatively prime these relations imply yz = zy . We may
reduce the number of generators and relations on setting z = txt−1 .

Lemma 16.10 Let π be a finitely presentable group such that π/π′ ∼= Z , and
let R = Λ or Λ/pΛ for some prime p ≥ 2. Then

(1) if π can be generated by 2 elements H1(π;R) is cyclic as an R-module;

(2) if def(π) = 0 then H2(π;R) is cyclic as an R-module.

Proof If π is generated by two elements t and x, say, we may assume that
the image of t generates π/π′ and that x ∈ π′ . Then π′ is generated by the
conjugates of x under powers of t, and so H1(π;R) = R⊗Λ (π′/π′′) is generated
by the image of x.

If X is the finite 2-complex determined by a deficiency 0 presentation for π then
H0(X;R) = R/(t− 1) and H1(X;R) are R-torsion modules, and H2(X;R) is
a submodule of a finitely generated free R-module. Hence H2(X;R) ∼= R, as
it has rank 1 and R is an UFD. Therefore H2(π;R) is cyclic as an R-module,
since it is a quotient of H2(X;R), by Hopf’s Theorem.

If M(K) is aspherical H2(π;R) ∼= Ext1R(H1(π;R), R), by Poincaré duality and
the UCSS. In particular, if R = Λ/pΛ for some prime p ≥ 2 then H1(π;R) and
H2(π;R) are non-canonically isomorphic.

Theorem 16.11 Let π = Z3 ⋊C Z be the group of a Cappell-Shaneson 2-
knot, and let ∆(t) = det(tI − C). Then π has a 3 generator presentation of
deficiency −2. Moreover the following are equivalent.

(1) π has a 2 generator presentation of deficiency 0;

(2) π is generated by 2 elements;

(3) def(π) = 0;

(4) π′ is cyclic as a Λ-module.
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Proof The first assertion follows immediately from Lemma 16.9. Condition
(1) implies (2) and (3), since def(π) ≤ 0, by Theorem 2.5, while (2) implies
(4), by Lemma 16.10. If def(π) = 0 then H2(π; Λ) is cyclic as a Λ-module,

by Lemma 16.10. Since π′ = H1(π; Λ) ∼= H3(π; Λ) ∼= Ext1Λ(H2(π; Λ),Λ), by
Poincaré duality and the UCSS, it is also cyclic and so (3) also implies (4). If
x generates π′ as a Λ-module it is easy to see that π has a presentation

〈t, x | xtxt−1 = txt−1x, t3xt−3 = t2xat−2txbt−1x〉,
for some integers a, b, and so (1) holds.

In fact Theorem A.3 of [AR84] implies that any such group has a 3 generator
presentation of deficiency -1, as remarked before Lemma 16.10.

Since ∆(t) is irreducible the Λ-module π′ is determined by the Steinitz-Fox-
Smythe row ideal (t− n,m+ np) in the domain Λ/(∆(t)). (See Chapter 3 of
[H3].) Thus π′ is cyclic if and only if this ideal is principal. In particular, this
is not so for the concluding example of [AR84], which gives rise to the group
with presentation

〈t, x, y, z | xz = zx, yz = zy, txt−1 = y−5z−8, tyt−1 = y2z3, tzt−1 = xz−7〉.

Let G(+) and G(−) be the extensions of Z by G6 with presentations

〈t, x, y | xy2x−1y2 = 1, txt−1 = (xy)∓1, tyt−1 = x±1〉.
In each case, using the final relation to eliminate the generator x gives a 2-
generator presentation of deficiency 0, which is optimal, by Theorem 2.5.

Theorem 16.12 Let π be a 2-knot group with π′ ∼= G6 . Then π ∼= G(+) or
G(−). In each case π is virtually Z4 , π′ ∩ ζπ = 1 and ζπ ∼= Z .

Proof Since Out(G6) is finite π is virtually G6×Z and hence is virtually Z4 .
The groups G(+) and G(−) are the only orientable flat 4-manifold groups with
π/π′ ∼= Z . The next assertion (π′∩ζπ = 1) follows as ζG6 = 1. It is easily seen
that ζG(+) and ζG(−) are generated by the images of t3 and t6x−2y2(xy)−2 ,
respectively, and so in each case ζπ ∼= Z .

The group G(+) is the group of the 3-twist spin of the figure eight knot (G(+) ∼=
πτ341 .) Although G(−) is the group of a fibred 2-knot, by Theorem 14.4, it
can be shown that no power of any weight element is central and so it is not
the group of any twist spin. (This also follows from Theorem 16.4 above.)
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Theorem 16.13 Let π be a 2-knot group with π′ ∼= Γq for some q > 0, and
let θ be the image of the meridianal automorphism in Out(Γq). Then either
q = 1 and θ is conjugate to [

(
1 −1
1 0

)
, 0] or [( 1 1

1 2 ) , 0], or q is odd and θ is
conjugate to [( 1 1

1 0 ) , 0] or its inverse. Each such group π has two strict weight
orbits.

Proof If (A,µ) is a meridianal automorphism of Γq the induced automor-
phisms of Γq/ζΓq ∼= Z2 and tors(Γq/Γ

′
q)

∼= Z/qZ are also meridianal, and so
det(A−I) = ±1 and det(A)−1 is a unit modulo (q). Therefore q must be odd
and det(A) = −1 if q > 1, and the characteristic polynomial ∆A(X) of A must
be X2−X+1, X2−3X+1, X2−X−1 or X2+X−1. Since the corresponding
rings Z[X]/(∆A(X)) are isomorphic to Z[(1+

√
−3)/2] or Z[(1+

√
5)/2]), which

are PIDs, A is conjugate to one of
(

1 −1
1 0

)
, ( 1 1

1 2 ), ( 1 1
1 0 ), or ( 1 1

1 0 )−1 =
(

0 1
1 −1

)
,

by Theorem 1.4. Now [A,µ][A, 0][A,µ]−1 = [A,µ(I − det(A)A)−1] in Out(Γq).
(See §7 of Chapter 8.) As in each case I − det(A)A is invertible, it follows
that θ is conjugate to [A, 0] or to [A−1, 0] = [A, 0]−1 . Since π′′ ≤ ζπ′ the final
observation follows from Theorem 14.1.

The groups Γq are discrete cocompact subgroups of the Lie group Nil3 and
the coset spaces are S1 -bundles over the torus. Every automorphism of Γq is
orientation preserving and each of the groups allowed by Theorem 16.13 is the
group of some fibred 2-knot, by Theorem 14.4. The group of the 6-twist spin
of the trefoil has commutator subgroup Γ1 and monodromy [

(
1 −1
1 0

)
, 0]. In all

the other cases the meridianal automorphism has infinite order and the group
is not the group of any twist spin.

The groups with commutator subgroup Γ1 have presentations

〈t, x, y | xyxy−1 = yxy−1x, txt−1 = xy, tyt−1 = w〉,
where w = x−1 , xy2 or x (respectively), while those with commutator subgroup
Γq with q > 1 have presentations

〈t, u, v, z | uvu−1v−1 = zq, tut−1 = v, tvt−1 = zuv, tzt−1 = z−1〉.
(Note that as [v, u] = t[u, v]t−1 = [v, zuv] = [v, z]z[v, u]z−1 = [v, z][v, u], we
have vz = zv and hence uz = zu also.) These are easily seen to have 2
generator presentations of deficiency 0 also.

The other Nil3 -manifolds which arise as the closed fibres of fibred 2-knots are
Seifert fibred over S2 with 3 exceptional fibres of type (3, βi), with βi = ±1.
Hence they are 2-fold branched covers of S3 , branched over a Montesinos link
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K(0|e; (3, β1), (3, β2), (3, β3)) [Mo73]. If e is even this link is a knot, and is
invertible, but not amphicheiral. (See §12E of [BZ].)

Let π(e, η) be the group of the 2-twist spin of K(0|e; (3, 1), (3, 1), (3, η)).

Theorem 16.14 Let π be a 2-knot group such that
√
π′ ∼= Γq (for some

q ≥ 1) and π′/
√
π′ ∼= Z/3Z . Then q is odd and π ∼= π(e, η), where e is even

and η = 1 or −1.

Proof It follows easily from Lemma 16.7 that ζ
√
π′ = ζπ′ and G = π′/ζπ′

is isomorphic to Z2 ⋊−B (Z/3Z), where B =
(

0 1
−1 1

)
. This is the orbifold

fundamental group of S(3, 3, 3), and is a discrete subgroup of Isom(E2). As
π′ is a torsion free central extension of G by Z it has a presentation

〈h, x, y, z, | x3η = y3 = z3 = h, xyz = he〉
for some η = ±1 and e ∈ Z. The image of h in π′ generates ζπ′ , and the images
of x−1y and yx−1 in G = π′/〈h〉 form a basis for the translation subgroup
T (G) ∼= Z2 . Hence

√
π′ is generated by x−1y , yx−1 and h. Since π′/(π′)2 ∼=

Z/(2, e − 1) and π′ admits a meridianal automorphism e must be even, and
since [yx−1, x−1y] = h3e−2−η we find that q = 3e− 2 − η , and so q is odd.

The isometry group E(2) = Isom(E2) = R2 ⋊O(2) embeds in the affine group
Aff(2) = R2 ⋊ GL(2,R). The normalizer of G in Aff(2) is the semidirect
product of the dihedral subgroup of GL(2,Z) generated by B and R = ( 0 1

1 0 )
with the normal subgroup (I + B)−1Z2 , and its centralizer there is trivial.
It follows from the Bieberbach theorems (and is easily verified directly) that
Aut(G) ∼= NAff(2)(G). Let b, r, k represent the classes of (0, B), (0, R) and

((−1
3 ,

1
3), I) in Out(G). Then Out(G) ∼= S3 × (Z/2Z ), and has a presentation

〈b, r, k | b2 = r2 = k3 = 1, br = rb, bkb = rkr = k−1〉
Since π′/π′′ is finite Hom(π′, ζπ′) = 1 and so the natural homomorphism from
Out(π′) to Out(G) is injective. As each of the automorphisms b, r and k
lifts to an automorphism of π′ this homomorphism is an isomorphism. On
considering the effect of an automorphism of π′ on its characteristic quotients
π′/

√
π′ = G/T (G) ∼= Z/3Z and G/G′ = (Z/3Z)2 , we see that the only outer

automorphism classes which contain meridianal automorphisms are rb, rbk
and rbk2 . Since these are conjugate in Out(G) and π′ ∼= π(e, η)′ the theorem
follows, by Lemma 1.1.

As H1(π; Λ/3Λ) ∼= H2(π; Λ/3Λ) ∼= (Λ/(3, t + 1))2 the presentations

〈t, x, y | x3 = y3 = (x1−3ey)−3η, txt−1 = x−1, tyt−1 = xy−1x−1〉
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are optimal, by Lemma 16.10. The subgroup A = 〈t2, x3〉 < π(e, η) is abelian
of rank 2 and normal but is not central.

We may refine the conclusions of Theorem 15.7 as follows. If K is a 2-knot
whose group π has an abelian normal subgroup of rank ≥ 3 then either K is
a Cappell-Shaneson 2-knot or πK ∼= G(+) or G(−).
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Chapter 17

Knot manifolds and geometries

In this chapter we shall attempt to characterize certain 2-knots in terms of
algebraic invariants. As every 2-knot K may be recovered (up to orientations
and Gluck reconstruction) from M(K) together with the orbit of a weight
class in π = πK under the action of self homeomorphisms of M , we need
to characterize M(K) up to homeomorphism. After some general remarks on
the algebraic 2-type in §1, and on surgery in §2, we shall concentrate on three
special cases: when M(K) is aspherical, when π′ is finite and when g.d.π = 2.

When π is torsion free and virtually poly-Z the surgery obstructions vanish,
and when it is poly-Z the weight class is unique. The surgery obstruction groups
are notoriously difficult to compute if π has torsion. However we can show
that there are infinitely many distinct 2-knots K such that M(K) is simple
homotopy equivalent to M(τ231); if the 3-dimensional Poincaré conjecture is
true among these knots only τ231 has a minimal Seifert hypersurface. If π = Φ
the homotopy type of M(K) determines the exterior of the knot; the difficulty
here is in finding a homotopy equivalence from M(K) to a standard model.

In the final sections we shall consider which knot manifolds are homeomorphic
to geometric 4-manifolds or complex surfaces. If M(K) is geometric then either
K is a Cappell-Shaneson knot or the geometry must be one of E4 , Nil3 × E1 ,
Sol41 , S̃L × E1 , H3 × E1 or S3 × E1 . If M(K) is homeomorphic to a complex
surface then either K is a branched twist spin of a torus knot or M(K) admits

one of the geometries Nil3 × E1 , Sol40 or S̃L × E1 .

17.1 Homotopy classification of M(K)

Let K and K1 be 2-knots and suppose that α : π = πK → πK1 and
β : π2(M) → π2(M1) determine an isomorphism of the algebraic 2-types of
M = M(K) and M1 = M(K1). Since the infinite cyclic covers M ′ and M ′

1 are
homotopy equivalent to 3-complexes there is a map h : M ′ → M ′

1 such that
π1(h) = α|π and π2(h) = β . If π = πK has one end then π3(M) ∼= Γ(π2(M))
and so h is a homotopy equivalence. Let t and t1 = α(t) be corresponding
generators of Aut(M ′/M) and Aut(M ′

1/M1), respectively. Then h−1t−1
1 ht is
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a self homotopy equivalence of M ′ which fixes the algebraic 2-type. If this is
homotopic to idM ′ then M and M1 are homotopy equivalent, since up to ho-
motopy they are the mapping tori of t and t1 , respectively. Thus the homotopy
classification of such knot manifolds may be largely reduced to determining the
obstructions to homotoping a self-map of a 3-complex to the identity.

We may use a similar idea to approach this problem in another way. Under
the same hypotheses on K and K1 there is a map fo : M − intD4 → M1

inducing isomorphisms of the algebraic 2-types. If π has one end π3(fo) is an
epimorphism, and so fo is 3-connected. If there is an extension f : M → M1

then it is a homotopy equivalence, as it induces isomorphisms on the homology
of the universal covering spaces.

If c.d.π ≤ 2 the algebraic 2-type is determined by π , for then π2(M) ∼=
H2(π; Z[π]), by Theorem 3.12, and the k -invariant is 0. In particular, if π′

is free of rank r then M(K) is homotopy equivalent to the mapping torus of a
self-homeomorphism of ♯rS1 × S2 , by Corollary 4.5.1. On the other hand, the
group Φ has resisted attack thus far.

The related problem of determining the homotopy type of the exterior of a 2-
knot has been considered in [Lo81], [Pl83] and [PS85]. The examples considered
in [Pl83] do not test the adequacy of the algebraic 2-type for the present prob-
lem, as in each case either π′ is finite or M(K) is aspherical. The examples
of [PS85] probably show that in general M(K) is not determined by π and
π2(M(K)) alone.

17.2 Surgery

The natural transformations IG : G → Ls5(G) defined in Chapter 6 clearly
factor through G/G′ . If α : G → Z induces an isomorphism on abelianization
the homomorphism ÎG = IGα

−1I−1
Z is a canonical splitting for L5(α).

Theorem 17.1 Let K be a 2-knot. If Ls5(πK) ∼= Z and N is simple homotopy
equivalent to M(K) then N is s-cobordant to M(K).

Proof Since M = M(K) is orientable and [M,G/TOP ] ∼= H4(M ; Z) ∼= Z
the surgery obstruction map σ4 : [M(K), G/TOP ] → Ls4(πK) is injective, by
Theorem 6.6. The image of L5(Z) under ÎπK acts trivially on STOP (M(K)),
by Theorem 6.7. Hence there is a normal cobordism with obstruction 0 from
any simple homotopy equivalence f : N →M to idM .
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Corollary 17.1.1 (Freedman) A 2-knot K is trivial if and only if πK ∼= Z .

Proof The condition is clearly necessary. Conversely, if πK ∼= Z then M(K)
is homeomorphic to S3 × S1 , by Theorem 6.11. Since the meridian is unique
up to inversion and the unknot is clearly reflexive the result follows.

Theorem 17.1 applies if π is square root closed accessible [Ca73], or if π is a
classical knot group [AFR97].

Surgery on an s-concordance K from K0 to K1 gives an s-cobordism from
M(K0) to M(K1) in which the meridians are conjugate. Conversely, if M(K)
and M(K1) are s-cobordant via such an s-cobordism then K1 is s-concordant
to K or K∗ . In particular, if K is reflexive then K and K1 are s-concordant.

Lemma 17.2 Let K be a 2-knot. Then K has a Seifert hypersurface which
contains no fake 3-cells.

Proof Every 2-knot has a Seifert hypersurface, by the standard obstruction
theoretical argument and TOP transversality. Thus K bounds a locally flat 3-
submanifold V which has trivial normal bundle in S4 . If ∆ is a homotopy 3-cell
in V then ∆×R ∼= D3 ×R, by simply connected surgery, and the submanifold
∂∆ of ∂(∆ ×R) = ∂(D3 × R) is isotopic there to the boundary of a standard
3-cell in D3 ×R which we may use instead of ∆.

The modification in this lemma clearly preserves minimality. (Every 2-knot has
a closed Seifert hypersurface which is a hyperbolic 3-manifold [Ru90], and so
contains no fake 3-cells, but these are rarely minimal.)

17.3 The aspherical cases

Whenever the group of a 2-knot K contains a sufficiently large abelian normal
subgroup M(K) is aspherical. This holds for most twist spins of prime knots.

Theorem 17.3 Let K be a 2-knot with group π = πK . If
√
π is abelian of

rank 1 and e(π/
√
π) = 1 or if h(

√
π) ≥ 2 then M̃(K) is homeomorphic to R4 .

Proof If
√
π is abelian of rank 1 and π/

√
π has one end M is aspherical,

by Theorem 15.5, and π is 1-connected at ∞, by Theorem 1 of [Mi87]. If
h(
√
π) = 2 then

√
π ∼= Z2 and M is s-cobordant to the mapping torus of a self

homeomorphism of a S̃L-manifold, by Theorem 16.2. If h(
√
π) ≥ 3 then M

is homeomorphic to an infrasolvmanifold, by Theorem 8.1. In all cases, M̃ is
contractible and 1-connected at ∞, and so is homeomorphic to R4 [Fr82].
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Is there a 2-knot K with M̃(K) contractible but not 1-connected at ∞?

Theorem 17.4 Let K be a 2-knot such that π = πK is torsion free and
virtually poly-Z . Then K is determined up to Gluck reconstruction by π
together with a generator of H4(π; Z) and the strict weight orbit of a meridian.

Proof If π ∼= Z then K must be trivial, and so we may assume that π is
torsion free and virtually poly-Z of Hirsch length 4. Hence M(K) is aspherical
and is determined up to homeomorphism by π , and every automorphism of π
may be realized by a self homeomorphism of M(K), by Theorem 6.11. Since
M(K) is aspherical its orientation is determined by a generator of H4(π; Z).

This theorem applies in particular to the Cappell-Shaneson 2-knots, which
have an unique strict weight orbit, up to inversion. (A similar argument ap-
plies to Cappell-Shaneson n-knots with n > 2, provided we assume also that
πi(X(K)) = 0 for 2 ≤ i ≤ (n+ 1)/2.)

Theorem 17.5 Let K be a 2-knot with group π = πK . Then K is s-
concordant to a fibred knot with closed fibre a S̃L-manifold if and only if π′

is finitely generated, ζπ′ ∼= Z and π is not virtually solvable. The fibred knot
is determined up to Gluck reconstruction by π together with a generator of
H4(π; Z) and the strict weight orbit of a meridian.

Proof The conditions are clearly necessary. If they hold then M(K) is as-
pherical, by Theorem 15.7, so every automorphism of π is induced by a self
homotopy equivalence of M(K). Moreover as π is not virtually solvable π′ is

the fundamental group of a S̃L-manifold. Therefore M(K) is determined up
to s-cobordism by π , by Theorem 13.2. The rest is standard.

Branched twist spins of torus knots are perhaps the most important examples
of such knots, but there are others. (See Chapter 16.) Is every 2-knot K such
that π = πK is a PD+

4 -group determined up to s-concordance and Gluck
reconstruction by π together with a generator of H4(π; Z) and a strict weight
orbit? Is K s-concordant to a fibred knot with aspherical closed fibre if and
only if π′ is finitely generated and has one end? (This is so if π′ ∼= π1(N) for
some irreducible 3-manifold N with β1(N) > 0, for then we may use [Ro00].)
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17.4 Quasifibres and minimal Seifert hypersurfaces

Let M be a closed 4-manifold with fundamental group π . If f : M → S1

is a map which is transverse to p ∈ S1 then V̂ = f−1(p) is a codimension
1 submanifold with a product neighbourhood N ∼= V̂ × [−1, 1]. If moreover
the induced homomorphism f∗ : π → Z is an epimorphism and each of the
inclusions j± : V̂ ∼= V̂ × {±1} ⊂W = M\V × (−1, 1) induces monomorphisms
on fundamental groups then we shall say that V̂ is a quasifibre for f . The
group π is then an HNN extension with base π1(W ) and associated subgroups
j±∗(π1(V̂ ), by Van Kampen’s Theorem. Every fibre of a bundle projection is
a quasifibre. We may use the notion of quasifibre to interpolate between the
homotopy fibration theorem of Chapter 4 and a TOP fibration theorem. (See
also Theorem 6.12 and Theorem 17.7.)

Theorem 17.6 Let M be a closed 4-manifold with χ(M) = 0 and such that
π = π1(M) is an extension of Z by a finitely generated normal subgroup ν . If
there is a map f : M → S1 inducing an epimorphism with kernel ν and which
has a quasifibre V̂ then the infinite cyclic covering space Mν associated with
ν is homotopy equivalent to V̂ .

Proof As ν is finitely generated the monomorphisms j±∗ must be isomor-
phisms. Therefore ν is finitely presentable, and so Mν is a PD3 -complex, by
Theorem 4.5. Now Mν

∼= W × Z/ ∼, where (j+(v), n) ∼ (j−(v), n + 1) for all
v ∈ V̂ and n ∈ Z . Let j̃(v) be the image of (j+(v), 0) in Mν . Then π1(j̃) is
an isomorphism. A Mayer-Vietoris argument shows that j̃ has degree 1, and
so j̃ is a homotopy equivalence.

One could use duality instead to show that Hs = Hs(W,∂±W ; Z[π]) = 0 for
s 6= 2, while H2 is a stably free Z[π]-module, of rank χ(W,∂±W ) = 0. Since
Z[π] is weakly finite this module is 0, and so W is an h-cobordism.

Corollary 17.6.1 Let K be a 2-knot with group π = πK . If π′ is finitely
generated and K has a minimal Seifert hypersurface V such that every self
homotopy equivalence of V̂ is homotopic to a homeomorphism then M(K) is
homotopy equivalent to M(K1), where M(K1) is a fibred 2-knot with fibre V .

Proof Let j−1
+ : M(K)′ → V̂ be a homotopy inverse to the homotopy equiva-

lence j+ , and let θ be a self homeomorphism of V̂ homotopic to j−1
+ j− . Then

j+θj
−1
+ is homotopic to a generator of Aut(M(K)′/M(K)), and so the mapping

torus of θ is homotopy equivalent to M(K). Surgery on this mapping torus
gives such a knot K1 .
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If a Seifert hypersurface V for a 2-knot has fundamental group Z then the
Mayer-Vietoris sequence for H∗(M(K); Λ) gives H1(X

′) ∼= Λ/(ta+−a−), where
a± : H1(V ) → H1(S

4 − V ). Since H1(X) = Z we must have a+ − a− = ±1. If
a+a− 6= 0 then V is minimal. However one of a+ or a− could be 0, in which
case V may not be minimal. The group Φ is realized by ribbon knots with
such minimal Seifert hypersurfaces (homeomorphic to S2 ×S1 − intD3 ) [Fo62].
Thus minimality does not imply that π′ is finitely generated.

It remains an open question whether every 2-knot has a minimal Seifert hyper-
surface, or indeed whether every 2-knot group is an HNN extension with finitely
presentable base and associated subgroups. (There are high dimensional knot
groups which are not of this type [Si91, 96].) Yoshikawa has shown that there
are ribbon 2-knots whose groups are HNN extensions with base a torus knot
group and associated subgroups Z but which cannot be expressed as HNN
extensions with base a free group [Yo88].

An argument of Trace implies that if V is a Seifert hypersurface for a fibred
n-knot K then there is a degree-1 map from V̂ = V ∪Dn+1 to the closed fibre
F̂ [Tr86]. For the embedding of V in X extends to an embedding of V̂ in M ,
which lifts to an embedding in M ′ . Since the image of [V̂ ] in Hn+1(M ; Z) is
Poincaré dual to a generator of H1(M ; Z) = Hom(π,Z) = [M,S1] its image in
Hn+1(M

′; Z) ∼= Z is a generator. In particular, if K is a fibred 2-knot and F̂
has a summand which is aspherical or whose fundamental group is a nontrivial
finite group then π1(V ) cannot be free. Similarly, as the Gromov norm of a 3-
manifold does not increase under degree 1 maps, if F̂ is a H3 -manifold then V̂
cannot be a graph manifold [Ru90]. Rubermann observes also that the “Seifert

volume” of [BG84] may be used instead to show that if F̂ is a S̃L-manifold
then V̂ must have nonzero Seifert volume. (Connected sums of E3 -, S3 -, Nil3 -,
Sol3 -, S2 × E1 - or H2 × E1 -manifolds all have Seifert volume 0 [BG84].)

17.5 The spherical cases

Let π be a 2-knot group with commutator subgroup π′ ∼= P × (Z/(2r + 1)Z),
where P = 1, Q(8), T ∗

k or I∗ . The meridianal automorphism induces the
identity on the set of irreducible real representations of π′ , except when P =
Q(8). (It permutes the three nontrivial 1-dimensional representations when
π′ ∼= Q(8), and similarly when π′ ∼= Q(8) × (Z/nZ).) It then follows as in
Chapter 11 that Ls5(π) has rank r + 1, 3(r + 1), 3k−1(5 + 7r) or 9(r + 1),
respectively. Hence if π′ 6= 1 then there are infinitely many distinct 2-knots
with group π , since the group of self homotopy equivalences of M(K) is finite.
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The simplest nontrivial such group is π = (Z/3Z) ⋊−1 Z . If K is any 2-
knot with this group then M(K) is homotopy equivalent to M(τ231). Since
Wh(Z/3Z) = 0 [Hi40] and L5(Z/3Z) = 0 [Ba75] we have Ls5(π) ∼= L4(π

′) ∼= Z2 ,
but we do not know whether Wh(π) = 0.

Theorem 17.7 Let K be a 2-knot with group π = πK such that π′ ∼= Z/3Z ,
and which has a minimal Seifert hypersurface. Then K is fibred.

Proof Let V be a minimal Seifert hypersurface for K . Then we may assume
V is irreducible. Let V̂ = V ∪D3 and W = M(K)\V × (−1, 1). Then W is an
h-cobordism from V̂ to itself. (See the remark following Theorem 6.) Therefore
W ∼= V̂ × I , by surgery over Z/3Z . (Note that Wh(Z/3Z) = L5(Z/3Z) = 0.)
Hence M fibres over S1 and so K is fibred also.

Free actions of Z/3Z on S3 are conjugate to the standard orthogonal action,
by a result of Rubinstein (see [Th]). If the 3-dimensional Poincaré conjecture
is true the closed fibre must be the lens space L(3, 1), and so K must be
τ231 . None of the other 2-knots with this group could have a minimal Seifert
surface, and so they would all be further counter-examples to the most natural
4-dimensional analogue of Farrell’s fibration theorem. We do not know whether
any of these knots (other than τ231 ) is PL in some PL structure on S4 .

Let F be an S3 -group, and let W = (W ; j±) be an h-cobordism with home-
omorphisms j± : N → ∂±W , where N = S3/F . Then W is an s-cobordism
[KS92]. The set of such s-cobordisms from N to itself is a finite abelian group
with respect to stacking of cobordisms. All such s-cobordisms are products if
F is cyclic, but there are nontrivial examples if F ∼= Q(8) × (Z/pZ), for any
odd prime p [KS95]. If φ is a self-homeomorphism of N the closed 4-manifold
Zφ obtained by identifying the ends of W via j+φj

−1
− is homotopy equivalent

to M(φ). However if Zφ is a mapping torus of a self-homeomorphism of N
then W is trivial. In particular, if φ induces a meridianal automorphism of F
then Zφ ∼= M(K) for an exotic 2-knot K with π′ ∼= F and which has a minimal
Seifert hypersurface, but which is not fibred with geometric fibre.

17.6 Finite geometric dimension 2

Knot groups with finite 2-dimensional Eilenberg-Mac Lane complexes have de-
ficiency 1, by Theorem 2.8, and so are 2-knot groups. This class includes all
classical knot groups, all knot groups with free commutator subgroup and all
knot groups in the class X (such as those of Theorems 15.1 and 15.14).
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Theorem 17.8 Let K be a 2-knot. If πK is a 1-knot group or an X -group
then M(K) is determined up to s-cobordism by its homotopy type.

Proof This is an immediate consequence of Lemma 6.9, if π is an X -group.
If π is a nontrivial classical knot group it follows from Theorem 17.1, since
Wh(πK) = 0 [Wd78] and Ls5(πK) ∼= Z [AFR97].

Does the conclusion of this theorem hold whenever g.d.πK = 2?

Corollary 17.8.1 A ribbon 2-knot K with group Φ is determined by the
oriented homotopy type of M(K).

Proof Since Φ is metabelian s-cobordism implies homeomorphism and there
is an unique weight class up to inversion, so the knot exterior is determined by
the homotopy type of M(K), and since K is a ribbon knot it is −amphicheiral
and is determined by its exterior.

Examples 10 and 11 of [Fo62] are ribbon knots with group Φ, and are mirror
images of each other. Although they are −amphicheiral they are not invertible,
since their Alexander polynomials are asymmetric. Thus they are not isotopic.
Are there any other 2-knots with this group? In particular, is there one which
is not a ribbon knot?

Theorem 17.9 A 2-knot K with group π = πK is s-concordant to a fibred
knot with closed fibre ♯r(S1 × S2) if and only if def(π) = 1 and π′ is finitely
generated. Moreover any such fibred 2-knot is reflexive and homotopy ribbon.

Proof The conditions are clearly necessary. If they hold then π′ ∼= F (r), for
some r ≥ 0, by Corollary 4.3.1. Then M(K) is homotopy equivalent to a PL
4-manifold N which fibres over S1 with fibre ♯r(S1 × S2), by Corollary 4.5.1.
Moreover Wh(π) = 0, by Lemma 6.3, and π is square root closed accessible, so
Iπ is an isomorphism, by Lemma 6.9, so there is an s-cobordism W from M
to N , by Theorem 17.1. We may embed an annulus A = S1 × [0, 1] in W so
that M ∩A = S1 ×{0} is a meridian for K and N ∩A = S1 ×{1}. Surgery on
A in W then gives an s-concordance from K to such a fibred knot K1 , which
is reflexive [Gl62] and homotopy ribbon [Co83].

The group of isotopy classes of self homeomorphisms of ♯r(S1×S2) which induce
the identity in Out(F (r)) is generated by twists about nonseparating 2-spheres,
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and is isomorphic to (Z/2Z)r . Thus given a 2-knot group π ∼= F (r) ⋊α Z
there are 2r corresponding homotopy types of fibred knot manifolds M(K). Is
every automorphism of π induced by a self-homeomorphism of each such fibred
manifold? If so, the knot is determined (among such fibred knots) up to finite
ambiguity by its group together with the weight orbit of a meridian. (However,
the group π31 has infinitely many weight orbits [Su85].) Is every such group
the group of a ribbon knot?

If K = σk is the Artin spin of a fibred 1-knot then M(K) fibres over S1 with
fibre ♯r(S2 × S1). However not all such fibred 2-knots arise in this way. It
follows easily from Lemma 1.1 and the fact that Out(F (2)) ∼= GL(2,Z) that
there are just three knot groups G ∼= F (2) ⋊ Z , namely π31 (the trefoil knot
group), π41 (the figure eight knot group) and the group with presentation

〈x, y, t | txt−1 = y, tyt−1 = xy〉.
(Two of the four presentations given in [Rp60] present isomorphic groups.) The
Alexander polynomial of the latter example is t2−t−1, which is not symmetric,
and so this is not a classical knot group. (See also [AY81, Rt83].)

Theorem 17.9 implies there is a slice disc ∆ for K such that the inclusion of
M(K) into D5 −∆ is 2-connected. Is K itself homotopy ribbon? (This would
follow from “homotopy connectivity implies geometric connectivity”, but our
situation is just beyond the range of known results.)

Theorem 17.10 Let K be a π1 -slice 2-knot with group π = πK , and let
M = M(K). Then H3(cM ′ ; Z) = 0. If moreover π′ is finitely generated then it
is free, and def(π) = 1.

Proof Let R be an open regular neighbourhood in D5 of a π1 -slice disc ∆.
Since cM factors through D5 − R the first assertion follows from the exact
sequence of homology (with coefficients Λ) for the pair (D5 −R,M).

If π′ is finitely generated M ′ is a PD3 -space, by Theorem 4.5. Hence the
image of [M ′] in H3(π

′; Z) determines a projective homotopy equivalence of
modules C2/∂1(C1) ≃ A(π′), by the argument of Theorem 4 of [Tu90]. (The
implication used here does not need π′ finitely presentable.) If this image is 0
then idA(π′) ∼ 0, so A(π′) is projective and c.d.π′ ≤ 1. Therefore π′ is free and
so def(π) = 1.

A similar argument shows that if K has a minimal Seifert hypersurface V and
π ∼= B∗φ is an ascending HNN extension with base B = π1(V ) then B is free.
If moreover π is restrained then B ∼= Z or 1 and so π ∼= Φ or Z .

Does the group of a π1 -slice 2-knot always have deficiency 1?
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17.7 Geometric 2-knot manifolds

The 2-knots K for which M(K) is homeomorphic to an infrasolvmanifold are
essentially known. There are three other geometries which may be realized by
such knot manifolds. All known examples are fibred, and most are derived
from twist spins of classical knots. However there are examples (for instance,
those with π′ ∼= Q(8) × (Z/nZ) for some n > 1) which cannot be constructed
from twist spins. The remaining geometries may be eliminated very easily; only
H2 × E2 and S2 × E2 require a little argument.

Theorem 17.11 Let K be a 2-knot with group π = πK . If M(K) admits
a geometry then the geometry is one of E4 , Nil3 × E1 , Sol40 , Sol41 , Sol4m,n (for

certain m 6= n only), S3 ×E1 , H3 ×E1 or S̃L×E1 . All these geometries occur.

Proof The knot manifold M(K) is homeomorphic to an infrasolvmanifold if
and only if h(

√
π) ≥ 3, by Theorem 8.1. It is then determined up to home-

omorphism by π . We may then use the observations of §10 of Chapter 8 to
show that M(K) admits a geometry of solvable Lie type. By Lemma 16.7 and
Theorems 16.12 and 16.14 π must be either G(+) or G(−), π(e, η) for some
even b and ǫ = ±1 or π′ ∼= Z3 or Γq for some odd q . We may identify the
geometry on looking more closely at the meridianal automorphism.

If π ∼= G(+) or G(−) then M(K) admits the geometry E4 . If π ∼= π(e, η)
then M(K) is the mapping torus of an involution of a Nil3 -manifold, and so
admits the geometry Nil3 × E1 . If π′ ∼= Z3 then M(K) is homeomorphic to
a Sol4m,n - or Sol40 -manifold. More precisely, we may assume (up to change of
orientations) that the Alexander polynomial of K is X3 − (m−1)X2 +mX−1
for some integer m. If m ≥ 6 all the roots of this cubic are positive and the
geometry is Sol4m−1,m . If 0 ≤ m ≤ 5 two of the roots are complex conjugates

and the geometry is Sol40 . If m < 0 two of the roots are negative and π has a
subgroup of index 2 which is a discrete cocompact subgroup of Sol4m′,n′ , where

m′ = m2 − 2m+ 2 and n′ = m2 − 4m+ 1, so the geometry is Sol4m′,n′ .

If π′ ∼= Γq and the image of the meridianal automorphism in Out(Γq) has finite
order then q = 1 and K = τ631 or (τ631)

∗ = τ6,531 . In this case M(K) admits
the geometry Nil3×E1 . Otherwise (if π′ ∼= Γq and the image of the meridianal
automorphism in Out(Γq) has infinite order) M(K) admits the geometry Sol41 .

If K is a branched r-twist spin of the (p, q)-torus knot then M(K) is a S3 × E1 -

manifold if p−1+q−1+r−1 > 1, and is a S̃L×E1 -manifold if p−1+q−1+r−1 < 1.
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(The case p−1+q−1+r−1 = 1 gives the Nil3×E1 -manifold M(τ631).) The man-
ifolds obtained from 2-twist spins of 2-bridge knots and certain other “small”
simple knots also have geometry S3 × E1 . Branched r-twist spins of simple
(nontorus) knots with r > 2 give H3 × E1 -manifolds, excepting M(τ341) ∼=
M(τ3,241), which is the E4 -manifold with group G(+).

Every orientable H2×E2 -manifold is double covered by a Kähler surface [Wl86].
Since the unique double cover of a 2-knot manifold M(K) has first Betti number
1 no such manifold can be an H2×E2 -manifold. (If K is fibred we could instead
exclude this geometry by Lemma 16.1.) Since π is infinite and χ(M(K)) = 0 we
may exclude the geometries S4 , CP2 and S2×S2 , and H4 , H2(C), H2×H2 and
S2×H2 , respectively. The geometry S2×E2 may be excluded by Theorem 10.10
or Lemma 16.1 (no group with two ends admits a meridianal automorphism),
while F4 is not realized by any closed 4-manifold.

In particular, no knot manifold is a Nil4 -manifold or a Sol3 × E1 -manifold,
and many of the other Sol4m,n -geometries do not arise in this way. The knot
manifolds which are infrasolvmanifolds or have geometry S3×E1 are essentially
known, by Theorems 8.1, 11.1, 15.12 and §4 of Chapter 16. The knot is uniquely
determined up to Gluck reconstruction and change of orientations if π′ ∼= Z3

(see Theorem 17.4 and the subsequent remarks above), Γq (see §3 of Chapter
18) or Q(8) × (Z/nZ) (since the weight class is then unique up to inversion).
If it is fibred with closed fibre a lens space it is a 2-twist spin of a 2-bridge
knot [Te89]. The other knot groups corresponding to infrasolvmanifolds have
infinitely many weight orbits.

Corollary 17.11.1 If M(K) admits a geometry then it fibres over S1 .

Proof This is clear if M(K) is an S3 × E1 -manifold or an infrasolvmanifold,

and follows from Corollary 13.1.1 if the geometry is S̃L × E1 .

If M(K) is a H3 × E1 -manifold we refine the argument of Theorem 9.3. Since
π/π′ ∼= Z and

√
π = π ∩ ({1} × R) 6= 0 we may assume π ≤ Isom(H3) ×R ,

and so π′ ≤ Isom(H3) × {1}. Hence π′ is the fundamental group of a closed
H3 -manifold, N say, and M(K) is the quotient of N×R by the action induced
by a meridian. Thus M(K) is a mapping torus, and so fibres over S1 .

If the geometry is H3 ×E1 is M(K) ∼= M(K1) for some branched twist spin of
a simple non-torus knot? (See §3 of Chapter 16.)
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Corollary 17.11.2 If M(K) is Seifert fibred it is a S̃L × E1 -, Nil3 × E1 - or
S3 × E1 -manifold.

Proof If the base is hyperbolic the action has finite image by Theorem 16.2,
and so the corollary follows from Theorem 17.11 and Ue’s Theorem.

It may be shown that if k is a nontrivial 1-knot and r ≥ 2 then M(τrk) is
geometric if and only if k is simple, and has a proper geometric decomposition
if and only if k is prime but not simple. (The geometries of the pieces are then

H2 ×E2 , S̃L×E1 or H3 ×E1 .) This follows from the fact that the r-fold cyclic
branched cover of (S3, k) admits an equivariant JSJ decomposition, and has
finitely generated π2 if and only if k is prime.

17.8 Complex surfaces and 2-knot manifolds

If a complex surface S is homeomorphic to a 2-knot manifold M(K) then S
is minimal, since β2(S) = 0, and has Kodaira dimension κ(S) = 1, 0 or −∞,
since β1(S) = 1 is odd. If κ(S) = 1 or 0 then S is elliptic and admits a

compatible geometric structure, of type S̃L × E1 or Nil3 × E1 , respectively
[Ue90,91, Wl86]. The only complex surfaces with κ(S) = −∞, β1(S) = 1
and β2(S) = 0 are Inoue surfaces, which are not elliptic, but admit compatible
geometries of type Sol40 or Sol41 , and Hopf surfaces [Tl94]. An elliptic surface
with Euler characteristic 0 has no exceptional fibres other than multiple tori.

If M(K) has a complex structure compatible with a geometry then the geome-

try is one of Sol40 , Sol41 , Nil3×E1 , S3×E1 or S̃L×E1 , by Theorem 4.5 of [Wl86].
Conversely, if M(K) admits one of the first three of these geometries then it
is homeomorphic to an Inoue surface of type SM , an Inoue surface of type

S
(+)
N,p,q,r;t or S

(−)
N,p,q,r or an elliptic surface of Kodaira dimension 0, respectively.

(See [In74], [EO94] and Chapter V of [BPV].)

Lemma 17.12 Let K be a branched r-twist spin of the (p, q)-torus knot.
Then M(K) is homeomorphic to an elliptic surface.

Proof We shall adapt the argument of Lemma 1.1 of [Mi75]. (See also [Ne83].)
Let V0 = {(z1, z2, z3) ∈ C3\{0}|zp1 + zq2 + zr3 = 0}, and define an action of
C× on V0 by u.v = (uqrz1, u

prz2, u
pqz3) for all u in C× and v = (z1, z2, z3)

in V0 . Define functions m : V0 → R+ and n : V0 → m−1(1) by m(v) =
(|z1|p + |z2|q + |z3|r)1/pqr and n(v) = m(v)−1.v for all v in V0 . Then the
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map (m,n) : V0 → m−1(1) × R+ is an R+ -equivariant homeomorphism, and
so m−1(1) is homeomorphic to V0/R

+ . Therefore there is a homeomorphism
from m−1(1) to the Brieskorn manifold M(p, q, r), under which the action of
the group of rth roots of unity on m−1(1) = V0/R

+ corresponds to the group
of covering homeomorphisms of M(p, q, r) as the branched cyclic cover of S3 ,
branched over the (p, q)-torus knot [Mi75]. The manifold M(K) is the mapping
torus of some generator of this group of self homeomorphisms of M(p, q, r). Let
ω be the corresponding primitive rth root of unity. If t > 1 then tω generates
a subgroup Ω of C× which acts freely and holomorphically on V0 , and the
quotient V0/Ω is an elliptic surface over the curve V0/Ω. Moreover V0/Ω is
homeomorphic to the mapping torus of the self homeomorphism of m−1(1)
which maps v to m(tω.v)−1.tω.v = ωm(t.v)−1t.v . Since this map is isotopic to
the map sending v to ω.v this mapping torus is homeomorphic to M(K). This
proves the Lemma.

The Kodaira dimension of the elliptic surface in the above lemma is 1, 0 or −∞
according as p−1 + q−1 + r−1 is < 1, 1 or > 1. In the next theorem we shall
settle the case of elliptic surfaces with κ = −∞.

Theorem 17.13 Let K be a 2-knot. Then M(K) is homeomorphic to a Hopf
surface if and only if K or its Gluck reconstruction is a branched r-twist spin
of the (p, q)-torus knot for some p, q and r such that p−1 + q−1 + r−1 > 1.

Proof If K = τr,skp,q then M(K) is homeomorphic to an elliptic surface, by
Lemma 17.13, and the surface must be a Hopf surface if p−1 + q−1 + r−1 > 1.

If M(K) is homeomorphic to a Hopf surface then π has two ends, and there
is a monomorphism h : π = πK → GL(2,C) onto a subgroup which contains
a contraction c (Kodaira - see [Kt75]). Hence π′ is finite and h(π′) = h(π) ∩
SL(2,C), since det(c) 6= 1 and π/π′ ∼= Z . Finite subgroups of SL(2,C) are
conjugate to subgroups of SU(2) = S3 , and so are cyclic, binary dihedral or
isomorphic to T ∗

1 , O∗
1 or I∗ . Therefore π ∼= πτ2k2,n , πτ331 , πτ431 or πτ531 ,

by Theorem 15.12 and the subsequent remarks. Hopf surfaces with π ∼= Z or π
nonabelian are determined up to diffeomorphism by their fundamental groups,
by Theorem 12 of [Kt75]. Therefore M(K) is homeomorphic to the manifold of
the corresponding torus knot. If π′ is cyclic there is an unique weight orbit. The
weight orbits of τ431 are realized by τ2k3,4 and τ431 , while the weight orbits of
T ∗

1 are realized by τ2k3,5 , τ3k2,5 , τ531 and τ5,231 [PS87]. Therefore K agrees
up to Gluck reconstruction with a branched twist spin of a torus knot.
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The Gluck reconstruction of a branched twist spin of a classical knot is another
branched twist spin of that knot, by §6 of [Pl84’].

Elliptic surfaces with β1 = 1 and κ = 0 are Nil3 × E1 -manifolds, and so a
knot manifold M(K) is homeomorphic to such an elliptic surface if and only if
πK is virtually poly-Z and ζπK ∼= Z2 . For minimal properly elliptic surfaces
(those with κ = 1) we must settle for a characterization up to s-cobordism.

Theorem 17.14 Let K be a 2-knot with group π = πK . Then M(K) is
s-cobordant to a minimal properly elliptic surface if and only if ζπ ∼= Z2 and
π′ is not virtually poly-Z .

Proof If M(K) is a minimal properly elliptic surface then it admits a compat-

ible geometry of type S̃L×E1 and π is isomorphic to a discrete cocompact sub-
group of Isomo(S̃L)×R, the maximal connected subgroup of Isomo(S̃L×E1),
for the other components consist of orientation reversing or antiholomorphic
isometries. (See Theorem 3.3 of [Wl86].) Since π meets ζ(Isomo(S̃L) ×R)) ∼=
R2 in a lattice subgroup ζπ ∼= Z2 and projects nontrivially onto the second
factor π′ = π ∩ Isomo(S̃L) and is the fundamental group of a S̃L-manifold.
Thus the conditions are necessary.

Suppose that they hold. Then M(K) is s-cobordant to a S̃L × E1 -manifold

which is the mapping torus M(Θ) of a self homeomorphism of a S̃L-manifold,
by Theorem 16.2. As Θ must be orientation preserving and induce the identity
on ζπ′ ∼= Z the group π is contained in Isomo(S̃L) × R. Hence M(Θ) has a
compatible structure as an elliptic surface, by Theorem 3.3 of [Wl86].

An elliptic surface with Euler characteristic 0 is a Seifert fibred 4-manifold,
and so is determined up to diffeomorphism by its fundamental group if the
base orbifold is euclidean or hyperbolic [Ue90,91]. Using this result (instead of
[Kt75]) together with Theorem 16.6 and Lemma 17.12 it may be shown that if
M(K) is homeomorphic to a minimal properly elliptic surface and some power
of a weight element is central in πK then M(K) is homeomorphic to M(K1),
where K1 is some branched twist spin of a torus knot. However in general
there may be infinitely many algebraically distinct weight classes in πK and
we cannot conclude that K is itself such a branched twist spin.
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Chapter 18

Reflexivity

The most familiar invariants of knots are derived from the knot complements,
and so it is natural to ask whether every knot is determined by its complement.
This has been confirmed for classical knots [GL89]. Given a higher dimensional
knot there is at most one other knot (up to change of orientations) with home-
omorphic exterior. The first examples of non-reflexive 2-knots were given by
Cappell and Shaneson [CS76]; these are fibred with closed fibre R3/Z3 . Gor-
don gave a different family of examples [Go76], and Plotnick extended his work
to show that no fibred 2-knot with monodromy of odd order is reflexive. It is
plausible that this may be so whenever the order is greater than 2, but this is
at present unknown.

We shall consider 2-knots which are fibred with closed fibre a geometric 3-
manifold. A nontrivial cyclic branched cover of S3 , branched over a knot,
admits a geometry if and only if the knot is a prime simple knot. The geometry
is then S̃L, S3 , H3 , E3 or Nil3 . We shall show that no branched r-twist spin of
such a knot is ever reflexive, if r > 2. (Our argument also explains why fibred
knots with monodromy of order 2 are reflexive). If the 3-dimensional Poincaré
conjecture is true then all fibred 2-knots with monodromy of finite order are
branched twist spins, by Plotnick’s theorem (see Chapter 16). The remain-
ing three geometries may be excluded without reference to this conjecture, by
Lemma 16.1.

This chapter is based on joint work with Plotnick and Wilson (in [HP88] and
[HW89], respectively).

18.1 Reflexivity for fibred 2-knots

Let N be a closed oriented 3-manifold and θ an orientation preserving self
diffeomorphism of N which fixes a basepoint P and induces a meridianal au-
tomorphism of ν = π1(N). Let

M = M(θ) = N ×θ S
1 = N × [0, 1]/((n, 0) ∼ (θ(n), 1)),

and let t be the weight element of π = π1(M) = ν⋊θ∗Z represented by the loop
sending [u] = e2πiu to [∗, u] in the mapping torus, for all 0 ≤ u ≤ 1. The image
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C = {P} × S1 of this loop is the canonical cross-section of the mapping torus.
Let Ñ be the universal covering space of N , and let θ̃ be the lift of θ which
fixes some chosen basepoint. Let M̂ = Ñ×θ̃S

1 be the (irregular) covering space
corresponding to the subgroup of π generated by t. This covering space shall
serve as a natural model for a regular neighbourhood of C in our geometric
arguments below.

Choose an embedding J : D3 × S1 → M onto a regular neighbourhood R of
C . Let Mo = M − intR and let j = J |∂D3×S1 . Then Σ = Mo ∪j S2 × D2

and Στ = Mo ∪jτ S2 ×D2 are homotopy 4-spheres and the images of S2 ×{0}
represent 2-knots K and K∗ with group π .

If K is reflexive there is a homeomorphism f of X = X(K) which (up to
changes of orientations) restricts to the nontrivial twist τ on ∂X ∼= S2 × S1 .
(See §1 of Chapter 14). This extends to a homeomorphism of (M,C) via the
“radial” extension of τ to D3 × S1 . If f preserves the homology class of
the meridians (i.e., if it induces the identity on π/π′ ) then we may assume this
extension fixes C pointwise. Now ∂X ∼= S2×AS

1 , where A is the restriction of
the monodromy to ∂(N − intD3) ∼= S2 . Roughly speaking, the local situation -
the behaviour of f and A on D3×S1 - determines the global situation. Assume
that f is a fibre preserving self homeomorphism of D3 ×A S

1 which induces a
linear map B on each fibre D3 . If A has infinite order, the question as to when
f “changes the framing”, i.e., induces τ on ∂D3 ×A S

1 is delicate. (See §2 and
§3 below). But if A has finite order we have the following easy result.

Lemma 18.1 Let A in SO(3) be a rotation of order r ≥ 2 and let B in
O(3) be such that BAB−1 = A±1 , so that B induces a diffeomorphism fB of
D3 ×A S

1 . If fB changes the framing then r = 2.

Proof We may choose coordinates for R3 so that A = ρs/r , where ρu is the
matrix of rotation through 2πu radians about the z -axis in R3 , and 0 < s < r .
Let ρ : D3 ×A S1 → D3 × S1 be the diffeomorphism given by ρ([x, u]) =
(ρ−su/r, θ), for all x ∈ D3 and 0 ≤ u ≤ 1.

If BA = AB then fB([x, u])=[Bx, u] and ρfBρ
−1(x, u)=(ρ−su/rBρsu/rx, u). If

r ≥ 3 then B = ρv for some v , and so ρfBρ
−1(x, u) = (Bx, u) does not change

the framing. But if r = 2 then A = diag[−1,−1, 1] and there is more choice for
B . In particular, B = diag[1,−1, 1] acts dihedrally: ρ−uBρu = ρ−2uB , and so
ρ−ufBρu(x, u) = (ρ−ux, u), i.e. ρ−ufBρu is the twist τ .

If BAB−1 = B−1 then fB([x, u]) = [Bx, 1 − u]. In this case ρfBρ
−1(x, u) =

(ρ−s(1−u)/rBρsu/rx, 1 − u). If r ≥ 3 then B must act as a reflection in the
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first two coordinates, so ρfBρ
−1(x, u) = (ρ−s/rBx, 1 − u) does not change

the framing. But if r = 2 we may take B = I , and then ρfBρ
−1(x, u) =

(ρ(u−1)/2ρu/2x, 1 − u) = (ρ(u− 1
2
)x, 1 − u), which after reversing the S1 factor is

just τ .

Note this explains why r = 2 is special. If α2 = id the diffeomorphism of
N ×α S

1 sending [x, θ] to [x, 1− θ] which “turns the bundle upside down” also
changes the framing. This explains why 2-twist spins (in any dimension) are
reflexive.

Lemma 18.2 Let τ be the nontrivial twist map of S3 × S1 . Then τ is not
homotopic to the identity.

Proof Let p be the projection of S3 × S1 onto S3 . The suspension of pτ ,
restricted to the top cell of Σ(S3×S1) = S2∨S4∨S5 is the nontrivial element of
π5(S

4), whereas the corresponding restriction of the suspension of p is trivial.
(See [CS76], [Go76]).

The hypotheses in the next lemma seem very stringent, but are satisfied by
most aspherical geometric 3-manifolds.

Lemma 18.3 Suppose that Ñ ∼= R3 and that every automorphism of ν which
commutes with θ∗ is induced by a diffeomorphism of N which commutes with
θ . Suppose also that for any homeomorphism ω of N which commutes with
θ there is an isotopy γ from id eN to θ̃ which commutes with the lift ω̃ . Then
no orientation preserving self homeomorphism of M which fixes C pointwise
changes the framing.

Proof Let h be an orientation preserving self homeomorphism of M which
fixes C pointwise. Suppose that h changes the framing. We may assume that
h|R is a bundle automorphism and hence that it agrees with the radial extension
of τ from ∂R = S2 × S1 to R. Since h∗(t) = t we have h∗θ∗ = θ∗h∗ . Let
ω be a basepoint preserving self diffeomorphism of N which induces h∗ and
commutes with θ . Then we may define a self diffeomorphism hω of M by
hω([n, s]) = [ω(n), s] for all [n, s] in M = N ×θ S

1 .

Since hω∗ = h∗ and M is aspherical, h and hω are homotopic. Therefore the
lifts ĥ and ĥω to basepoint preserving maps of M̂ are properly homotopic.
Let ω̃ be the lift of ω to a basepoint preserving map of Ñ . Note that ω̃ is
orientation preserving, and so is isotopic to id eN .
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Given an isotopy γ from γ(0) = id eN to γ(1) = θ̃ we may define a diffeomor-

phism ργ : Ñ × S1 → M̃ by ργ(x, e
2πit) = [γ(t)(x), t]. Now ρ−1

γ ĥωργ(l, [u]) =

(γ(u)−1ω̃γ(u)(l), [u]). Thus if γ(t)ω̃ = ω̃γ(t) for all t then ρ−1
γ ĥωργ = ω̃× idS1 ,

and so ĥ is properly homotopic to idcM .

Since the radial extension of τ and ρ−1
γ ĥργ agree on D3×S1 they are properly

homotopic on R3 × S1 and so τ is properly homotopic to the identity. Now τ
extends uniquely to a self diffeomorphism τ of S3 × S1 , and any such proper
homotopy extends to a homotopy from τ to the identity. But this is impossible,
by Lemma 18.2. Therefore h cannot change the framing.

Note that in general there is no isotopy from idN to θ .

We may use a similar argument to give a sufficient condition for knots con-
structed from mapping tori to be −amphicheiral. As we shall not use this
result below we shall only sketch a proof.

Lemma 18.4 Let N be a closed orientable 3-manifold with universal cover
Ñ ∼= R3 . Suppose now that there is an orientation reversing self diffeomorphism
ψ : N → N which commutes with θ and which fixes P . If there is a path γ
from I to Θ = Dθ(P ) which commutes with Ψ = Dψ(P ) then each of K and
K∗ is −amphicheiral.

Proof The map ψ induces an orientation reversing self diffeomorphism of M
which fixes C pointwise. We may use such a path γ to define a diffeomorphism
ργ : Ñ × S1 → M̃ . We may then verify that ρ−1

γ ĥργ is isotopic to Ψ × idS1 ,

and so ρ−1
γ ĥργ |∂D3×S1 extends across S2 ×D2 .

18.2 Cappell-Shaneson knots

Let A ∈ SL(3,Z) be such that det(A − I) = ±1. The Cappell-Shaneson
knot determined by A is −amphicheiral, since inversion in each fibre gives an
involution of M(K) fixing a circle, which readily passes to orientation reversing
fixed point free involutions of (Σ,K) and (Σ∗,K∗). However such knots are
not invertible, for the Alexander polynomial is det(XI − A), which has odd
degree and does not vanish at ±1, and so cannot be symmetric.

Cappell and Shaneson showed that if none of the eigenvalues of the monodromy
of such a knot are negative then it is not reflexive. In a footnote they observed
that the two knots obtained from a matrix A in SL(3,Z) such that det(A −
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I) = ±1 and with negative eigenvalues are equivalent if and only if there is a
matrix B in GL(3,Z) such that AB = BA and the restriction of B to the
negative eigenspace of A has negative determinant. We shall translate this
matrix criterion into one involving algebraic numbers and settle the issue by
showing that up to change of orientations there is just one reflexive Cappell-
Shaneson 2-knot.

We note first that on replacing A by A−1 if necessary (which corresponds to
changing the orientation of the knot) we may assume that det(A− I) = +1.

Theorem 18.5 Let A ∈ SL(3,Z) satisfy det(A − I) = 1. If A has trace −1
then the corresponding Cappell-Shaneson knot is reflexive, and is determined
up to change of orientations among all 2-knots with metabelian group by its
Alexander polynomial X3 +X2 − 2X − 1. If the trace of A is not −1 then the
corresponding Cappell-Shaneson knots are not reflexive.

Proof Let a be the trace of A. Then the characteristic polynomial of A is
fa(X) = X3 − aX2 + (a − 1)X − 1 = X(X − 1)(X − a + 1) − 1. It is easy
to see that fa is irreducible; indeed, it is irreducible modulo (2). Since the
leading coefficient of fa is positive and fa(1) < 0 there is at least one positive
eigenvalue. If a > 5 all three eigenvalues are positive (since fa(0) = −1,
fa(

1
2 ) = (2a − 11)/8 > 0 and fa(1) = −1). If 0 ≤ a ≤ 5 there is a pair of

complex eigenvalues.

Thus if a ≥ 0 there are no negative eigenvalues, and so γ(t) = tA + (1 − t)I
(for 0 ≤ t ≤ 1) defines an isotopy from I to A in GL(3,R). Let h be a
self homeomorphism of (M,C) such that h(∗) = ∗. We may assume that h is
orientation preserving and that h∗(t) = t. Since M is aspherical h is homotopic
to a map hB , where B ∈ SL(3,Z) commutes with A. Hence K is not reflexive,
by Lemma 18.3.

We may assume henceforth that a < 0. There are then three real roots λi , for
1 ≤ i ≤ 3, such that a − 1 < λ3 < a < λ2 < 0 < 1 < λ1 < 2. Note that the
products λi(λi − 1) are all positive, for 1 ≤ i ≤ 3.

Since the eigenvalues of A are real and distinct there is a matrix P in GL(3,R)
such that Ã = PAP−1 is the diagonal matrix diag[λ1, λ2, λ3]. If B in GL(3,Z)
commutes with A then B̃ = PBP−1 commutes with Ã and hence is also
diagonal (as the λi are distinct). Suppose that B̃ = diag[β1, β2, β3]. We may
isotope PAP−1 linearly to diag[1,−1,−1]. If β2β3 > 0 for all such B then
PBP−1 is isotopic to I through block diagonal matrices and we may again
conclude that the knot is not reflexive. On the other hand if there is such a B
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with β2β3 < 0 then the knot is reflexive. On replacing B by −B if necessary
we may assume that det(B) = +1 and the criterion for reflexivity then becomes
β1 < 0.

If a = −1 the ring Z[X]/(f−1(X)) is integrally closed. (For the discriminant
D of the integral closure R̃ of R = Z[X]/(f−1(X)) divides 49, the discriminant
of f−1(X), and 49/D = [R̃ : R]2 . As the discriminant must be greater than
1, by a classical result of Minkowski, this index must be 1). As this ring has
class number 1 (see the tables of [AR84]) it is a PID. Hence any two matrices
in SL(3,Z) with this characteristic polynomial are conjugate, by Theorem 1.4.
Therefore the knot group is unique and determines K up to Gluck reconstruc-
tion and change of orientations, by Theorem 17.5. Since B = −A − I has
determinant 1 and β1 = −λ1 − 1 < 0, the corresponding knot is reflexive.

Suppose now that a < −1. Let F be the field Q[X]/(fa(X)) and let λ be
the image of X in F . We may view Q3 as a Q[X]-module and hence as a
1-dimensional F -vector space via the action of A. If B commutes with A
then it induces an automorphism of this vector space which preserves a lattice
and so determines a unit u(B) in OF , the ring of integers in F . Moreover
det(B) = NF/Qu(B). If σ is the embedding of F in R which sends λ to λ1

and P and B are as above we must have σ(u(B)) = β1 .

Let U = O×
F be the group of all units in OF , and let Uν , Uσ , U+ and U2

be the subgroups of units of norm 1, units whose image under σ is positive,
totally positive units and squares, respectively. Then U ∼= Z2 × {±1}, since
F is a totally real cubic number field, and so [U : U2] = 8. The unit −1 has
norm −1, and λ is a unit of norm 1 in Uσ which is not totally positive. Hence
[U : Uν ] = [Uν ∩Uσ : U+] = 2. It is now easy to see that there is a unit of norm
1 that is not in Uσ (i.e., Uν 6= Uν ∩ Uσ ) if and only if every totally positive
unit is a square (i.e., U+ = U2 ).

The image of X(X − 1) in F is λ(λ − 1), which is totally positive and is a
unit (since X(X − 1)(X − a+ 1) = 1 + fa(X)). Suppose that it is a square in
F . Then φ = λ − (a − 1) is a square (since λ(λ − 1)(λ − (a − 1)) = 1). The
minimal polynomial of φ is g(Y ) = Y 3 + (2a − 3)Y 2 + (a2 − 3a + 2)Y − 1. If
φ = ψ2 for some ψ in F then ψ is a root of h(Z) = g(Z2) and so the minimal
polynomial of ψ divides h. This polynomial has degree 3 also, since Q(ψ) = F ,
and so h(Z) = p(Z)q(Z) for some polynomials p(Z) = Z3 + rZ2 + sZ + 1 and
q(Z) = Z3 + r′Z2 + s′Z − 1 with integer coefficients. Since the coefficients
of Z and Z5 in h are 0 we must have r′ = −r and s′ = −s. Comparing
the coefficients of Z2 and Z4 then gives the equations 2s − r2 = 2a − 3 and
s2 − 2r = a2 − 3a + 2. Eliminating s we find that r(r3 + (4a − 6)r − 8) = −1
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and so 1/r is an integer. Hence r = ±1 and so a = −1 or 3, contrary to
hypothesis. Thus there is no such matrix B and so the Cappell-Shaneson knots
corresponding to A are not reflexive.

The other fibred 2-knots with closed fibre a flat 3-manifold have group G(+)
or G(−). We shall show below that one of these (τ341 ) is not reflexive. The
question remains open for the other knots with these groups.

18.3 Nil3-fibred knots

The group Nil = Nil3 is a subgroup of SL(3,R) and is diffeomorphic to R3 ,
with multiplication given by [r, s, t][r′, s′, t′] = [r + r′, s + s′, rs′ + t + t′]. (See
Chapter 7). The kernel of the natural homomorphism from AutLie(Nil) to
AutLie(R

2) = GL(2,R) induced by abelianization (Nil/Nil′ ∼= R2 ) is isomor-
phic to HomLie(Nil, ζNil) ∼= R2 . The set underlying the group AutLie(Nil)
is the cartesian product GL(2,R)×R2 , with (A,µ) = (( a cb d ) , (m1,m2)) acting
via (A,µ)([r, s, t]) =

[ar + cs, br + ds,m1r +m2s+ (ad− bc)t+ bcrs+ ab

(
r

2

)
+ cd

(
s

2

)
].

The Jacobian of such an automorphism is (ad − bc)2 , and so it is orientation
preserving. Let (B, ν) = (

(
g j
h k

)
, (n1, n2)) be another automorphism, and let

η(A,B) = (abg(1 − g) + cdh(1 − h) − 2bcgh, abj(1 − j) + cdk(1 − k) − 2bcjk).

Then (A,µ)◦(B, ν)=(AB,µB+det(A)ν+ 1
2η(A,B)). In particular, AutLie(Nil)

is not a semidirect product of GL(2,R) with R2 . For each q > 0 in Z the
stabilizer of Γq in AutLie(Nil) is the subgroup GL(2,Z)× (q−1Z2), and this is
easily verified to be Aut(Γq). (See §7 of Chapter 8). Thus every automorphism
of Γq extends to an automorphism of Nil . (This is a special case of a theorem of
Malcev on embeddings of torsion free nilpotent groups in 1-connected nilpotent
Lie groups - see [Rg]).

Let the identity element [0, 0, 0] and its images in Nq = Nil/Γq be the base-
points for Nil and for these coset spaces. The extension of each automorphism
of Γq to Nil induces a basepoint and orientation preserving self homeomor-
phism of Nq .

If K is a 2-knot with group π = πK and π′ ∼= Γq then M = M(K) is home-
omorphic to the mapping torus of such a self homeomorphism of Nq . (In fact,
such mapping tori are determined up to diffeomorphism by their fundamental
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groups). Up to conjugacy and involution there are just three classes of merid-
ianal automorphisms of Γ1 and one of Γq , for each odd q > 1. (See Theorem
16.13). Since π′′ ≤ ζπ′ it is easily seen that π has just two strict weight orbits.
Hence K is determined up to Gluck reconstruction and changes of orientation
by π alone, by Theorem 17.5. (Instead of appealing to 4-dimensional surgery to
realize automorphisms of π by basepoint and orientation preserving self home-
omorphisms of M we may use the S1 -action on Nq to construct such a self
homeomorphism which in addition preserves the fibration over S1 ).

We shall show that the knots with π′ ∼= Γ1 and whose characteristic polynomials
are X2 −X + 1 and X2 − 3X + 1 are not reflexive, while for all other groups
the corresponding knots are reflexive.

The polynomial X2 −X + 1 is realized by τ631 and its Gluck reconstruction.
Since the trefoil knot 31 is strongly invertible τ631 is strongly +amphicheiral
[Li85]. The involution of X(τ631) extends to an involution of M(τ631) which
fixes the canonical section C pointwise and does not change the framing of the
normal bundle, and hence (τ631)

∗ is also +amphicheiral. (We shall see below
that these knots are distinct).

Lemma 18.6 Let K be a fibred 2-knot with closed fibre N1 and Alexander
polynomial X2 − 3X + 1. Then K is +amphicheiral.

Proof Let Θ = (A, (0, 0)) be the automorphism of Γ1 with A = ( 1 1
1 2 ). Then

Θ induces a basepoint and orientation preserving self diffeomorphism θ of N1 .
Let M = N1 ×θ S

1 and let C be the canonical section. A basepoint and
orientation preserving self diffeomorphism ψ of N1 such that ψθψ−1 = θ−1

induces a self diffeomorphism of M which reverses the orientations of M and
C . If moreover it does not twist the normal bundle of C then each of the
2-knots K and K∗ obtained by surgery on C is +amphicheiral. We may check
the normal bundle condition by using an isotopy from Θ to idNil to identify
M̂ with Nil × S1 .

Thus we seek an automorphism Ψ = (B,µ) of Γ1 such that ΨΘtΨ
−1 = Θ−1

t ,
or equivalently ΘtΨΘt = Ψ, for some isotopy Θt from Θ0 = idNil to Θ1 = Θ.

Let P =
(

0 −1
1 0

)
. Then PAP−1 = A−1 , or APA = P . It may be checked

that the equation Θ(P, µ)Θ = (P, µ) reduces to a linear equation for µ with
unique solution µ = −(2, 3). Let Ψ = (P,−(2, 3)) and let h be the induced
diffeomorphism of M .

As the eigenvalues of A are both positive it lies on a 1-parameter subgroup,
determined by L = ln(A) = m

(
1 −2
−2 −1

)
, where m = (ln((3+

√
5)/2))/

√
5. Now
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PLP−1 = −L and so P exp(tL)P−1 = exp(−tL) = (exp(tL)−1 , for all t. We
seek an isotopy Θt = (exp(tL), vt) from idNil to Θ such that ΘtΨΘt = Ψ for
all t. It is easily seen that this imposes a linear condition on vt which has an
unique solution, and moreover v0 = v1 = (0, 0).

Now ρ−1hρ(x, u) = (Θ1−uΨΘu(x), 1 − u) = (ΨΘ1−uΘu, 1 − u). Since exp((1 −
u)L) exp(uL) = exp(L) the loop u 7→ Θ1−uΘu is freely contractible in the group
AutLie(Nil). It follows easily that h does not change the framing of C .

Instead of using the one-parameter subgroup determined by L = ln(A) we may
use the polynomial isotopy given by At =

(
1 t
t 1+t2

)
, for 0 ≤ t ≤ 1. A similar

argument could be used for the polynomial X2 −X + 1.

On the other hand, the polynomial X2 + X − 1 is not symmetric and so the
corresponding knots are not +amphicheiral. Since every automorphism of Γq
is orientation preserving no such knot is −amphicheiral or invertible.

Theorem 18.7 Let K be a fibred 2-knot with closed fibre Nq .

(1) If the fibre is N1 and the monodromy has characteristic polynomial X2−
X + 1 or X2 − 3X + 1 then K is not reflexive;

(2) If the fibre is Nq (q odd) and the monodromy has characteristic polyno-
mial X2 ±X − 1 then K is reflexive.

Proof As τ631 is shown to be not reflexive in §4 below, we shall concentrate
on the knots with polynomial X2 − 3X + 1, and then comment on how our
argument may be modified to handle the other cases.

Let Θ, θ and M = N1 ×θ S
1 be as in Lemma 18.6, and let M̂ = Nil×Θ S

1 be
as in §1. We shall take [0, 0, 0, 0] as the basepoint of M̂ and its image in M as
the basepoint there.

Suppose that Ω = (B, ν) is an automorphism of Γ1 which commutes with Θ.
Since the eigenvalues of A are both positive the matrix A(u) = uA + (1 −
u)I is invertible and A(u)B = BA(u), for all 0 ≤ u ≤ 1. We seek a path
of the form γ(u) = (A(u), µ(u)) with commutes with Ω. On equating the
second elements of the ordered pairs γ(u)Ω and Ωγ(u) we find that µ(u)(B −
det(B)I) is uniquely determined. If det(B) is an eigenvalue of B then there is
a corresponding eigenvector ξ in Z2 . Then BAξ = ABξ = det(B)Aξ , so Aξ
is also an eigenvector of B . Since the eigenvalues of A are irrational we must
have B = det(B)I and so B = I . But then ΩΘ = (A, νA) and ΘΩ = (A, ν),
so ν(A − I) = 0 and hence ν = 0. Therefore Ω = idNil and there is no
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difficulty in finding such a path. Thus we may assume that B − det(B)I is
invertible, and then µ(u) is uniquely determined. Moreover, by the uniqueness,
when A(u) = A or I we must have µ(u) = (0, 0). Thus γ is an isotopy from
γ(0) = idNil to γ(1) = Θ (through diffeomorphisms of Nil) and so determines

a diffeomorphism ργ from R3 × S1 to M̂ via ργ(r, s, t, [u]) = [γ(u)([r, s, t]), u].

A homeomorphism f from Σ to Στ carrying K to Kτ (as unoriented subman-
ifolds) extends to a self homeomorphism h of M which leaves C invariant, but
changes the framing. We may assume that h preserves the orientations of M
and C , by Lemma 18.6. But then h must preserve the framing, by Lemma
18.3. Hence there is no such homeomorphism and such knots are not reflexive.

If π ∼= πτ631 then we may assume that the meridianal automorphism is Θ =
(
(

1 −1
1 0

)
, (0, 0)). As an automorphism of Nil , Θ fixes the centre pointwise, and

it has order 6. Moreover (( 0 1
1 0 ) , (0, 0) is an involution of Nil which conjugates

Θ to its inverse, and so M admits an orientation reversing involution. It can
easily be seen that any automorphism of Γ1 which commutes with Θ is a power
of Θ, and the rest of the argument is similar.

If the monodromy has characteristic polynomial X2 ± X − 1 we may assume
that the meridianal automorphism is Θ = (D, (0, 0)), where D = ( 1 1

1 0 ) or its
inverse. As Ω = (−I, (−1, 1)) commutes with Θ (in either case) it determines
a self homeomorphism hω of M = Nq ×θ S

1 which leaves the meridianal circle
{0} × S1 pointwise fixed. The action of hω on the normal bundle may be

detected by the induced action on M̂ . In each case there is an isotopy from
Θ to Υ =

(
1 0
0 −1

)
which commutes with Ω, and so we may replace M̂ by the

mapping torus Nil ×Υ S1 . (Note also that Υ and Ω act linearly under the
standard identification of Nil with R3 ).

Let R(u) ∈ SO(2) be rotation through πu radians, and let v(u) = (0, u),

for 0 ≤ u ≤ 1. Then γ(u) =
(

1 v(u)
0 R(u)

)
defines a path γ in SL(3,R) from

γ(0) = idNil to γ(1) = Υ which we may use to identify the mapping torus of
Υ with R3 × S1 . In the “new coordinates” hω acts by sending (r, s, t, e2πiu)
to (γ(u)−1Ωγ(u)(r, s, t), e2πiu). The loop sending e2πiu in S1 to γ(u)−1Ωγ(u)
in SL(3,R) is freely homotopic to the loop γ1(u)

−1Ω1γ1(u), where γ1(u) =(
1 0
0 R(u)

)
and Ω1 = diag[−1,−1, 1]. These loops are essential in SL(3,R),

since on multiplying the latter matrix product on the left by diag[−1, 1,−1] we

obtain
(

1 0
0 R(2u)

)
. Thus hω induces the twist τ on the normal bundle of the

meridian, and so the knot is equivalent to its Gluck reconstruction.

The other fibred 2-knots with closed fibre a Nil3 -manifold have group π(b, ǫ),
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for some even b and ǫ = ±1. The 2-twist spins of Montesinos knots are reflexive
(by Lemma 18.1). Are the other knots with these groups also reflexive?

It has been shown that for many of the Cappell-Shaneson knots at least one of
the (possibly two) corresponding smooth homotopy 4-spheres is the standard
S4 [AR84]. Can a similar study be made in the Nil cases?

18.4 Other geometrically fibred knots

We shall assume henceforth throughout this section that k is a prime simple
1-knot, i.e., that k is either a torus knot or a hyperbolic knot.

Lemma 18.8 Let A and B be automorphisms of a group π such that AB =
BA, A(h) = h for all h in ζπ and the images of Ai and B in Aut(π/ζπ) are
equal. Let [A] denote the induced automorphism of π/π′ . If I−[A] is invertible
in End(π/π′) then B = Ai in Aut(π).

Proof There is a homomorphism ǫ : π → ζπ such that BA−i(x) = xǫ(x) for
all x in π . Moreover ǫA = ǫ, since BA = AB . Equivalently, [ǫ](I − [A]) = 0,
where [ǫ] : π/π′ → ζπ is induced by ǫ. If I − [A] is invertible in End(π/π′)
then [ǫ] = 0 and so B = Ai .

Let p = ap′ , q = bq′ and r = p′q′c, where (a, qc) = (b, pc) = 1. Let A denote
both the canonical generator of the Z/rZ action on the Brieskorn manifold
M(p, q, r) given by A(u, v,w) = (u, v, e2πi/rw) and its effect on π1(M(p, q, r)).
The image of the Seifert fibration of M(p, q, r) under the projection to the
orbit space M(p, q, r)/〈A〉 ∼= S3 is the Seifert fibration of S3 with one fibre
of multiplicity p and one of multiplicity q . The quotient of M(p, q, r) by the
subgroup generated by Ap

′q′ may be identified with M(p, q, p′q′). We may
display the factorization of these actions as follows:

M(p, q, r)
/S1

−−−−→ S2(p, q, r)
y

y

M(p, q, p′q′)
/S1

−−−−→ S2(p, q, p′q′)
y

y

(S3, (p, q))
/S1

−−−−→ S2
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Sitting above the fibre in S3 of multiplicity p in both M ’s we find q′ fibres
of multiplicity a, and above the fibre of multiplicity q we find p′ fibres of
multiplicity b. But above the branch set, a principal fibre in S3 , we have one
fibre of multiplicity c in M(p, q, r), but a principal fibre in M(p, q, p′q′).

We have the following characterization of the centralizer of A in Aut(π).

Theorem 18.9 Assume that p−1 + q−1 + r−1 ≤ 1, and let A be the automor-
phism of π = π1(M(p, q, r)) of order r induced by the canonical generator of
the branched covering transformations. If B in Aut(π) commutes with A then
B = Ai for some 0 ≤ i < r .

Proof The 3-manifold M = M(p, q, r) is aspherical, with universal cover R3 ,
and π is a central extension of Q(p, q, r) by an infinite cyclic normal subgroup.
Here Q = Q(p, q, r) is a discrete planar group with signature ((1 − p′)(1 −
q′)/2; a . . . a, b . . . b, c) (where there are q′ entries a and p′ entries b). Note
that Q is Fuchsian except for Q(2, 3, 6) ∼= Z2 . (In general, Q(p, q, pq) is a
PD+

2 -group of genus (1 − p)(1 − q)/2).

There is a natural homomorphism from Aut(π) to Aut(Q) = Aut(π/ζπ). The
strategy shall be to show first that B = Ai in Aut(Q) and then lift to Aut(π).
The proof in Aut(Q) falls naturally into three cases.

Case 1. r = c. In this case M is a homology 3-sphere, fibred over S2 with three
exceptional fibres of multiplicity p, q and r . Thus Q ∼= ∆(p, q, r) = 〈q1, q2, q3 |
qp1 = qq2 = qr3 = q1q2q3 = 1〉, the group of orientation preserving symmetries of
a tesselation of H2 by triangles with angles π/p, π/q and π/r . Since Zr is
contained in S1 , A is inner. (In fact it is not hard to see that the image of A
in Aut(Q) is conjugation by q−1

3 . See §3 of [Pl83]).

It is well known that the automorphisms of a triangle group correspond to
symmetries of the tessellation (see Chapters V and VI of [ZVC]). Since p, q
and r are pairwise relatively prime there are no self symmetries of the (p, q, r)
triangle. So, fixing a triangle T , all symmetries take T to another triangle.
Those that preserve orientation correspond to elements of Q acting by inner
automorphisms, and there is one nontrivial outerautomorphism, R say, given
by reflection in one of the sides of T . We can assume R(q3) = q−1

3 .

Let B in Aut(Q) commute with A. If B is conjugation by b in Q then
BA = AB is equivalent to bq3 = q3b, since Q is centreless. If B is R followed
by conjugation by b then bq3 = q−1

3 b. But since 〈q3〉 = Zr in Q is generated
by an elliptic element the normalizer of 〈q3〉 in PSL(2,R) consists of elliptic
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elements with the same fixed point as q3 . Hence the normalizer of 〈q3〉 in Q
is just 〈q3〉. Since r > 2 q3 6= q−1

3 and so we must have bq3 = q3b, b = qi3 and
B = Ai . (Note that if r = 2 then R commutes with A in Aut(Q)).

Case 2. r = p′q′ so that Zr ∩ S1 = 1. The map from S2(p, q, p′q′) to S2 is
branched over three points in S2 . Over the point corresponding to the fibre
of multiplicity p in S3 the map is p′ -fold branched; it is q′ -fold branched over
the point corresponding to the fibre of multiplicity q in S3 , and it is p′q′ -fold
branched over the point ∗ corresponding to the branching locus of M over S3 .

Represent S2 as a hyperbolic orbifold H2/∆(p, q, p′q′). (If (p, q, r) = (2, 3, 6)
we use instead the flat orbifold E2/∆(2, 3, 6)). Lift this to an orbifold structure
on S2(p, q, p′q′), thereby representing Q = Q(p, q, p′q′) into PSL(2,R). Lifting
the Zp′q′ -action to H2 gives an action of the semidirect product Q⋊ Zp′q′ on
H2 , with Zp′q′ acting as rotations about a point ∗̃ of H2 lying above ∗. Since
the map from H2 to S2(p, q, p′q′) is unbranched at ∗̃ (equivalently, Zr∩S1 = 1),
Q ∩ Zp′q′ = 1. Thus Q ⋊ Zp′q′ acts effectively on H2 , with quotient S2 and
three branch points, of orders p, q and p′q′ .

In other words, Q⋊ Zp′q′ is isomorphic to ∆(p, q, p′q′). The automorphism A
extends naturally to an automorphism of ∆, namely conjugation by an element
of order p′q′ , and B also extends to Aut(∆), since BA = AB .

We claim B = Ai in Aut(∆). We cannot directly apply the argument in Case
1, since p′q′ is not prime to pq . We argue as follows. In the notation of Case 1,
A is conjugation by q−1

3 . Since BA = AB , B(q3) = q−1
3 B(q3)q3 , which forces

B(q3) = qj3 . Now q−1
3 B(q2)q3 = AB(q2) = B(q−1

3 )B(q2)B(q3) = q−j3 B(q2)q
j
3 ,

or B(q2) = q1−j3 B(q3)q
j−1
3 . But B(q2) is not a power of q3 , so q1−j3 = 1, or

j ≡ 1 modulo (r). Thus B(q3) = q3 . This means that the symmetry of the
tessellation that realizes B shares the same fixed point as A, so B is in the
dihedral group fixing that point, and now the proof is as before.

Case 3. r = p′q′c (the general case). We have Zp′q′c contained in Aut(π), but
Zp′q′c ∩ S1 = Zc , so that Zc is the kernel of the composition

Zr → Out(π) → Out(Q).

Let Q̄ be the extension corresponding to the abstract kernel Zp′q′ → Out(Q).
(The extension is unique since ζQ = 1). Then Q̄ is a quotient of the semidirect
product Q(p, q, r) ⋊ (Z/rZ) by a cyclic normal subgroup of order c.

Geometrically, this corresponds to the following. The map from S2(p, q, r) to
S2 is branched as in Case 2, over three points with branching indices p, q and
p′q′ . This time, represent S2 as H2/∆(p, q, p′q′). Lift to an orbifold structure
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on S2(p, q, r) with one cone point of order c. Lifting an elliptic element of order
r in ∆(p, q, r) to the universal orbifold cover of S2(p, q, r) gives Zr contained
in Aut(Q(p, q, r)) defining the semidirect product. But Q(p, q, r)∩Zr = Zc , so
the action is ineffective. Projecting to Zp′q′ and taking the extension Q̄ kills
the ineffective part of the action. Note that Q(p, q, r) and Zr inject into Q̄.

As in Case 2, Q̄ ∼= ∆(p, q, r), A extends to conjugation by an element of
order r in Q̄, and B extends to an automorphism of Q(p, q, r) ⋊ Zr , since
BA = AB . Now (q3, p

′q′) in Q(p, q, r) ⋊ Zr normally generates the kernel of
Q(p, q, r)⋊Zr → Q̄, where q3 is a rotation of order c with the same fixed point
as the generator of Zr . In other words, A in Aut(Q(p, q, r)) is such that Ap

′q′

is conjugation by q3 . Since BAp
′q′ = Ap

′q′B the argument in Case 2 shows that
B(q3) = q3 . So B also gives an automorphism of Q̄, and now the argument of
Case 2 finishes the proof.

We have shown that B = Ai in Aut(Q). Since A in Aut(π) is the monodromy
of a fibred knot in S4 (or, more directly, since A is induced by a branched cover
of a knot in a homology sphere), I − [A] is invertible. Thus the Theorem now
follows from Lemma 18.8.

Theorem 18.10 Let k be a prime simple knot in S3 . Let 0 < s < r , (r, s) = 1
and r > 2. Then τr,sk is not reflexive.

Proof We shall consider separately the three cases (a) k a torus knot and the
branched cover aspherical; (b) k a torus knot and the branched cover spherical;
and (c) k a hyperbolic knot.

Aspherical branched covers of torus knots. Let K = τr,s(kp,q) where r > 2
and M(p, q, r) is aspherical. Then X(K) = (M(p, q, r) − intD3) ×As S1 , M =
M(K) = M(p, q, r)×AsS1 and π = πK ∼= π1(M(p, q, r))⋊AsZ . If K is reflexive
there is a homeomorphism f of X which changes the framing on ∂X . Now
kp,q is strongly invertible - there is an involution of (S3, kp,q) fixing two points
of the knot and reversing the meridian. This lifts to an involution of M(p, q, r)
fixing two points of the branch set and conjugating As to A−s , thus inducing
a diffeomorphism of X(K) which reverses the meridian. By Lemma 18.1 this
preserves the framing, so we can assume that f preserves the meridian of K .

Since M(p, q, r) is an aspherical Seifert fibred 3-manifold ˜M(p, q, r) ∼= R3 and
all automorphisms of π1(M(p, q, r)) are induced by self-diffeomorphisms [Hm].
Hence f must be orientation preserving also, as all self homeomorphisms of
S̃L-manifolds are orientation preserving [NR78]. The remaining hypothesis of
Lemma 18.3 is satisfied, by Theorem 18.9. Therefore there is no such self
homeomorphism f , and K is not reflexive.
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Spherical branched covers of torus knots. We now adapt the previous argu-
ment to the spherical cases. The analogue of Theorem 18.9 is valid, except for
(2, 5, 3). We sketch the proofs.

(2, 3, 3): M(2, 3, 3 = S3/Q(8). The image in Aut(Q(8)/ζQ(8)) ∼= S3 of the
automorphism A induced by the 3-fold cover of the trefoil knot has order 3 and
so generates its own centralizer.

(2, 3, 4): M(2, 3, 4) = S3/T ∗
1 . In this case the image of A in Aut(T ∗

1 ) ∼= S4

must be a 4-cycle, and generates its own centralizer.

(2, 3, 5): M(2, 3, 5) = S3/I∗ . In this case the image of A in Aut(I∗) ∼= S5 must
be a 5-cycle, and generates its own centralizer.

(2, 5, 3): We again have I∗ , but in this case A3 = I , say A = (123)(4)(5).
Suppose BA = AB . If B fixes 4 and 5 then it is a power of A. But B may
transpose 4 and 5, and then B = AiC , where C = (1)(2)(3)(45) represents the
nontrivial outer automorphism class of I∗ .

Now let K = τr,s(kp,q) as usual, with (p, q, r) one of the above four triples, and
let M = M(p, q, r) ×As S1 . As earlier, if K is reflexive we have a homeomor-
phism f which preserves the meridian t and changes the framing on D3×AsS1 .
Let M̂ = S3×Âs S

1 be the cover of M corresponding to the meridian subgroup,

where Â is a rotation about an axis. Let f be a basepoint preserving self homo-
topy equivalence of M such that f∗(t) = t in π . Let B in Aut(π1(M(p, q, r))
be induced by f∗ , so BAs = AsB . The discussion above shows that B = Asi

except possibly for (2, 5, 3). But if B represented the outer automorphism of I∗

then after lifting to infinite cyclic covers we would have a homotopy equivalence
of S3/I∗ inducing C , contradicting Lemma 11.4. So we have an obvious fibre
preserving diffeomorphism fB of M .

The proof that f̂B is homotopic to idcM is exactly as in the aspherical case. To

see that f̂B is homotopic to f̂ (the lift of f to a basepoint preserving proper

self homotopy equivalence of M̂ ) we investigate whether fB is homotopic to
f . Since π2(M) = 0 we can homotope fB to f on the 2-skeleton of M . On
the 3-skeleton we meet an obstruction in H3(M ;π3) ∼= H3(M ; Z) = Z , since
M has the homology of S3 × S1 . But this obstruction is detected on the
top cell of M(p, q, r) and just measures the difference of the degrees of f and
fB on the infinite cyclic covers [Ol53]. Since both f and fB are orientation
preserving homotopy equivalences this obstruction vanishes. On the 4-skeleton
we have an obstruction in H4(M ;π4) = Z/2Z , which may not vanish. But this

obstruction is killed when we lift to M̂ , since the map from M̂ to M has even
degree, proving that f̂B ≃ f̂ .
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We now use radial homotopies on S3 × S1 to finish, as before.

Branched covers of hyperbolic knots. Let k be hyperbolic. Excluding N3(41)
(the 3-fold cyclic branched cover of the figure eight knot), N = Nr(k) is a
closed hyperbolic 3-manifold, with 〈α〉 ∼= Z/rZ acting by isometries. As usual,
we assume there is a homeomorphism f of M = M(τr,s(k)) which changes the
framing on D3 ×As S1 . As in the aspherical torus knot case, it shall suffice to
show that the lift f̂ on M̂ is properly homotopic to a map of (R3×S1,D3×S1)
that does not change the framing on D3 × S1 .

Letting B = f∗ on ν = π1(N), we have BAsB−1 = A±s , depending on whether
f∗(t) = t±1 in π = ν ⋊As Z . There is an unique isometry β of N realizing the
class of B in Out(ν), by Mostow rigidity, and βαsβ−1 = α±s . Hence there is
an induced self diffeomorphism fβ of M = N ×αs S1 . Note that f∗ = (fβ)∗ in
Out(π), so f is homotopic to fβ . We cannot claim that β fixes the basepoint
of N , but β preserves the closed geodesic fixed by αs .

Now M̂ = H3 ×α̂s S1 where α̂s is an elliptic rotation about an axis L, and
f̂β is fibrewise an isometry β̂ preserving L. We can write H3 = R2 × L (non-
metrically!) by considering the family of hyperplanes perpendicular to L, and
then β̂ is just an element of O(2)×E(1) and α̂s is an element of SO(2)×{1}.
The proof of Lemma 18.1, with trivial modifications, shows that, after picking
coordinates and ignoring orientations, f̂β is the identity. This completes the
proof of the theorem.

The manifolds M(p, q, r) with p−1 + q−1 + r−1 < 1 are coset spaces of S̃L
[Mi75]. Conversely, let K be a 2-knot obtained by surgery on the canonical
cross-section of N ×θ S

1 , where N is such a coset space. If θ is induced by an
automorphism of S̃L which normalizes ν = π1(N) then it has finite order, since
NfSL(ν)/ν ∼= NPSL(2,R)(ν/ζν)/(ν/ζν). Thus if θ has infinite order we cannot
expect to use such geometric arguments to analyze the question of reflexivity.
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Abh. Math. Sem. Univ. Hamburg 4 (1925), 174-177.

[AY81] Asano, K. and Yoshikawa, K. On polynomial invariants of fibred 2-knots,
Pacific J. Math. 97 (1981), 267-269.

[At76] Atiyah, M.F. Elliptic operators, discrete groups and von Neumann algebras,
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[Br72] Browder, W. Poincaré spaces, their normal fibrations and surgery,
Inventiones Math. 17 (1972), 191-202.

[Br75] Brown, K.S. A homological criterion for finiteness,
Comment. Math. Helvetici 50 (1975), 129-135.

[BG85] Brown, K.S. and Geoghegan, R. Cohomology with free coefficients of the
fundamental group of a graph of groups,
Comment. Math. Helvetici 60 (1985), 31-45.

[BM70] Burde, G. and Murasugi, K. Links and Seifert fibre spaces,
Duke Math. J. 37 (1970), 89-93.

[Ca90] Cairns, G. Compact 4-manifolds that admit totally umbilic metric foliations,
in Differential Geometry and its Applications (Brno 1989)
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Index

Expressions beginning with Greek
characters and non-alphabetic symbols
are listed at the end of this index.

(A, β,C) (isometry of S2 × E2 ), 202
A(m, e) (metacyclic group

of order 2em), 222
A(π) (augmentation ideal

of Z[π]), 36
action (of a Seifert fibration), 145
admits a geometry, 132
algebraic 2-type

([π, π2(M), k1(M)]), 26
algebraic mapping torus, 74
almost coherent, 16
almost complex structure, 149
almost finitely presentable (FP2 ), 14
almost linear k -invariant, 227
amenable group, 8
amphicheiral knot, 267
Artin spin of a knot (σK ), 272
ascendant, 5
aspherical (orbifold), 141
automorphisms of Γq , 168

B1 −B4 (nonorientable flat
3-manifold groups), 154

BE(X) (classifying space), 89
bad (orbifold), 141
Bieri’s Theorem

(Theorem 8.8 of [Bi]), 20
Bieri-Strebel Theorem [BS78], 14
Bogomolov’s Theorem, 148
boundary link, 283
Bowditch’s Theorem, 21
branched twist spin, 311
Brieskorn manifold

(M(p, q, r)), 307
Brown-Geoghegan Theorem

[BG85], 18

c(ĝ) (Kervaire-Arf invariant

of ĝ : M → G/TOP ), 117
cM : M → K(π1(M), 1)

(classifying map), 26
CP2 (geometry of complex

projective plane), 234
Ch = ∗CP 2 (the fake

complex projective plane), 235
CG(H) (centralizer

of a subgroup), 3
Cl (Waldhausen’s class

of groups), 112
canonical cross-section, 338
Cappell-Shaneson knot, 315
Cartan-Leray spectral sequence, 26
centre of a group G (ζG), 3
characteristic subgroup, 3
classifying map

(cM : M → K(π1(M), 1)), 26
closed fibre, 269
closed manifold, 26
codimension-2 Kervaire invariant, 117
coherent group, 15
coherent ring, 15
cohomology intersection pairing, 67
coinduced (module), 21
commutator subgroup

of a group G (G′ ), 3
companion, 271
complex surface, 147, 257
complex torus, 149
conjugate M̄ of a module M , 13
connecting homomorphism

∂ : π2(B) → π1(F ), 89
Crisp’s Theorem [Cr00], 34
cusp, 138

D (infinite dihedral group
(Z/2Z) ∗ (Z/2Z)), 16

deficiency (def(P ), def(π)), 28
dimN (π)(M) (von Neumann

dimension of M ), 24
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doubly slice knot, 272

e(G) (number of ends of the group
G, = 0, 1, 2 or ∞), 16

eQ(π) (Euler class of an aspherical
Seifert fibration), 145

En (flat geometry), 134
E(n) (isometry group of En ), 134
E(X), E0(X) (space of self

homotopy equivalences), 89
EA (class of elementary amenable

groups), 9
ev , ev(2) (evaluation homomorphisms),

49
elementary amenable, 9
elliptic surface, 149, 259, 334
ends (and H1(G;Z[G])), 16
equivariant (co)homology, 25
Euler class (of a Seifert fibration), 145
evaluation homomorphism (ev , ev(2) ),

49
extension of groups, 4
exterior of a knot (X(K), X ), 267

fα (self homotopy equivalence
of a closed 4-manifold), 117

fM : M → P2(M) (second map
of Postnikov tower), 26

FF , FP , FPn (finiteness
conditions), 14

F (r) (free group), 3
F4 (geometry of TH2 ), 133, 256
Farrell’s Theorem [Fa74], 18
fibration theorem, 123
fibred knot, 269
finite k -skeleton, 23
finite PDn -complex, 33
finite PDn -space, 33
finitely dominated

(chain complex), 23
flat manifold, 134
flat n-manifold group, 134
foliation by circles, 262
Følner exhaustion, 9
fundamental triple

(of a PD3 -complex), 34

g.d. (geometric dimension), 28
G1 −G6 (orientable flat

3-manifold groups), 153
G(±) (flat 2-knot groups), 318
generalized Eilenberg-Mac Lane

space, 214
geometric decomposition, 138
geometric dimension

of a group (g.d.), 28
geometry, 132
Gildenhuys-Strebel Theorem, 17
Gluck reconstruction of a knot K

(K∗ ), 268
good (orbifold), 141
graph manifold, 114
Gromov’s Theorem (§8.A of [Gr]), 28

H2 × H2 (semisimple product
geometry), 188

H4 , H2(C) (rank 1 geometries), 192
H2 × E2 (product geometry), 182
H3 × E1 (product geometry), 185
Hi(X ;R[G/H ]), Hi(X ;R[G/H ])

(equivariant (co)homology), 25
h(G) (Hirsch length

of a group G), 10
Haken 3-manifold, 114
Hantzsche-Wendt flat 3-manifold

group (G6 ), 154
Hendrik’s Theorem [Hn], 34
Hilbert N (π)-module, 23
Hilbert N (π)-complex, 24
Hirsch length of a group

(h(G)), 4, 10
Hirsch-Plotkin radical of a group G

(
√
G), 7

homology 4-sphere, 288
holonomy group, 134
homotopy ribbon knot, 273
Hopf surface, 148, 334
hyperelliptic surface, 149

I(G) = {g ∈ G | ∃n > 0, gn ∈ G′} , 3
I∗ (binary icosahedral group), 222
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Iπ (homomorphism
from H1(π; Z) to Ls

1(π)), 118
I+
π (homomorphism

from Ker(w) to Ls
1(π,w)), 119

indicable group, 3
infinite cyclic covering space

(Eν , X ′(K), M ′(K)), 77, 269
infinite dihedral group

(D = (Z/2Z) ∗ (Z/2Z)), 16
infranilmanifold, 134
infrasolvmanifold, 135, 175
Inoue surface, 148, 334
intersection pairing, 66
invertible knot, 267
irreducible knot, 271
Isom(X), 132

J+(F ) (kernel of action of Out(F )
on H3(F ; Z)), 219

J(F ), (automorphisms of F inducing
±1 on H3(F ; Z)), 220

Johnson’s trichotomy
(surface bundle groups), 92

k1(M) (first k -invariant), 26
Kaplansky rank (κ(P )), 14
Kb (Klein bottle), 89
kp,q ((p, q)-torus knot), 311
kerv(ĝ) (codimension-2 Kervaire

invariant of ĝ), 117
Kervaire-Arf invariant, 117
knot, 267
knot group (πK ), 268
knot-like group, 280
knot manifold (M(K)), 268
Kodaira surface, 149

ℓP (locally P ), 3
ℓ2(π) (L2 -completion of C[π]), 23
L2 -Betti number, 24, 26
L2 -homology, 24
lattice, 132
linear k -invariant, 225
link, 282
link group, 283,286
LHSSS (Lyndon-Hochschild-Serre

spectral sequence), 16
locally P (ℓP ), 3
locally finite, 3
Lück’s Theorem [Lü94], 27

Mb (Möbius band), 106
M(K) (closed manifold

arising from a knot K ), 268
M(f) (mapping torus of a self

homotopy equivalence f ), 77
M(p, q, r) (Brieskorn manifold), 307
mapping torus, 77, 186, 247
maximal finite normal subgroup

(of a group with two ends), 16
Mayer-Vietoris sequence

of Waldhausen, 112
Melvin’s Theorem, 99
meridian, 268
meridianal automorphism, 276
minimal complex surface, 148
minimal model

(for a PD4 -complex), 213
minimal Seifert hypersurface, 269
monodromy, 269
morphism of Hilbert N (π)-module, 24
Mostow orbifold bundle, 142
Mostow rigidity, 193

n-dimensional geometry, 132
Nil3 × E1 (nilpotent Lie geometry),

134, 164
Nil4 (nilpotent Lie geometry),

135, 164
N (π) (von Neumann algebra of π), 23
n-knot, 267
NG(H) (normalizer of a subgroup), 3
nilradical, 135
normal closure of S in G

(〈〈S〉〉G ), 3
nonsingular (of λX ), 67
Novikov ring, 73

Out(G) (group of outer
automorphism classes), 3

O∗
1 (binary octahedral group), 221

O∗
k (extended binary octahedral
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group), 221
orbifold bundle, 141
orientable PDn -group

(PD+
n -group), 21

outer automorphism group, 3

P (= PSL(2,R)), 188
P2(M) (second stage

of Postnikov tower), 26
PD3 -complex (3-dimensional

Poincaré duality complex), 33
PD3 -group, 37
PDn -complex, 33

PD
(+)
n -group, 21

PDn -space, 33
PD4 -polarization, 198
piece (of a geometric

decomposition), 138
Plotnick’s Theorem [Pl86], 311
Poincaré duality, 32
poly-, 4
problem of the four exponentials, 137
proper geometric decomposition, 138

q(π), qSG(π) (minimal
Euler characteristic), 57

Q(2na, b, c) (generalized
quaternionic group), 223

Q(8k) (quaternionic group
of order 8k), 221

quadratic 2-type
([π, π2(M), k1(M), S(M̃)]), 241

quasifibre, 327
quaternion group (Q(8)), 221

rational surface, 149
reduced intersection pairing

(λX ), 67
reduced L2 -homology, 24
reducible (H2 × H2 -manifold), 188
reflexive knot, 268
regular coherent ring, 15
regular noetherian ring, 15
restrained (group), 10
ribbon knot, 273

ruled surface, 149

SA (class generated by groups
of subexponential growth), 9

S1 -actions, 261
S3 -group, 225
SPD

4 (P ) (polarized
PD4 -complexes), 198

Ss
TOP (M) (s-cobordism

structure set), 116
S4 (spherical geometry), 234
S2 × S2 (compact

product geometry), 235
Sol4m,n , Sol3 × E1 , (solvable

Lie geometries), 137, 164
Sol40 (solvable Lie geometry),

137, 164
Sol41 (solvable Lie geometry),

137, 165
S3 × E1 (2-ended spherical-euclidean

product geometry), 224
S2 × E2 (1-ended spherical-euclidean

product geometry), 200, 205
S2 × H2 (spherical-hyperbolic

product geometry), 200

S̃L × E1 , 182
safe extension, 24
satellite, 271
s-concordant, 273
Seifert fibred (4-manifold), 145
Seifert hypersurface, 269
semidirect product (G×θZ ), 4
slice knot, 272
solvable Lie type, 132, 175
spin (Artin) of a knot (σK ), 272
split link, 283
stably homeomorphic, 121
strict weight orbit, 275
Strebel’s Theorem [St77], 21
strongly minimal, 213
subnormal, 5
sum of knots (K1♯K2 ), 270
surface bundles, 89, 252
surgery exact sequence, 116
Swan complex, 219
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symplectic structure, 150, 264

T (torus), 89
T ∗

1 (binary tetrahedral group), 221
T ∗

k (extended binary tetrahedral
group), 221

T (π) (translation subgroup),
134, 136

Tits alternative, 29, 39, 302
translation subgroup (T (π)), 134, 136
triangular (solvable Lie group), 136
trivial knot, 267
trivial link, 283
Turaev’s Theorem [Tu90], 34
twist spin of a knot (τrK ), 272
type I, II, III (Johnson’s trichotomy

for surface bundle groups), 92
type R (solvable Lie group), 136

UCSS (universal coefficient
spectral sequence), 26

Ue’s Theorem, 146
unreduced L2 -homology, 24

vP (virtually P ), 4
virtually (qualifying a property

of a group or space), 4
von Neumann dimension of a

Hilbert module (dimN (π)M ), 24

Waldhausen’s Mayer-Vietoris
sequence for K -theory, 112

Weak Bass Conjecture
(κ(P ) = dimQQ⊗π P ), 14

weak isomorphism, 24
weak PDr -group, 70
weakly exact, 24
weakly finite (ring), 15
weight (class, element), 273
weight orbit, 275
Whitehead quadratic functor

(Γ(−)), 241
Whitehead’s question, 279

X -group, 31
X(K) (knot exterior), 267

XH (covering space with
fundamental group H ), 25

X-manifold, 132

Zw (w -twisted integers), 13
Z∗m (group with presentation

〈a, t | tat−1 = am〉), 29
Z×−1Z (fundamental group

of Klein bottle, ∼= Z∗−1), 29

Greek characters

α-twisted endomorphism, 73
βi(−) (Betti number), 25

β
(2)
i (−) (L2 -Betti number), 26
βu (u-twisted Bockstein), 197
ηG (cohomology class), 70
Φ (∼= Z∗2 , 2-knot group), 291
Γ(−) (Whitehead quadratic

functor), 241
Γq (nilpotent group), 7
κ(P ) (Kaplansky rank), 14
λX (reduced intersection

pairing), 67
Λ = Z[Z] ∼= Z[t, t−1]

(Laurent polynomial ring), 6
πK (knot group), 268
π1 -slice, 273
π(e, η) (group of 2-twist spin

of Montesinos knot), 320
[π,m]f -complex, 32
σK (Artin spin of K ), 272
τ (the twist of S2 × S1 ), 83
τrK (r -twist spin

of a knot K ), 272
τr,sK (branched twist spin

of a knot K ), 311
χ(π) (Euler characteristic

of vFP group π), 14
ζG (centre of a group), 3
ζ2G (ζ2G/ζG = ζ(G/ζG)), 8

Non-alphabetic symbols

boundary ∂ : π2(B) → π1(F )
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(connecting homomorphism), 89
double angle brackets 〈〈 〉〉: 〈〈S〉〉G

(normal closure of S in G), 3
overbar ¯: anti-involution ḡ = w(g)g−1 ,

conjugate module M , 13
prime ′ : commutator subgroup G′ ,

maximal abelian cover X ′ , 3, 269
semidirect product: G⋊θZ , 4
sharp ♯: sum of knots K1♯K2 , 270
star ∗ : K∗ (Gluck reconstruction

of a knot K ), 268
surd

√
:
√
G (Hirsch-Plotkin

radical of a group G), 7

tilde ˜: X̃ (universal cover), 25
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