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Chapter 1

Introduction

This compendium aims at providing a comprehensive overview of the main topics that ap-

pear in any well-structured course sequence in statistics for business and economics at the

undergraduate and MBA levels. The idea is to supplement either formal or informal statistic

textbooks such as, e.g., “Basic Statistical Ideas for Managers” by D.K. Hildebrand and R.L.

Ott and “The Practice of Business Statistics: Using Data for Decisions” by D.S. Moore,

G.P. McCabe, W.M. Duckworth and S.L. Sclove, with a summary of theory as well as with

a couple of extra examples. In what follows, we set the road map for this compendium by

describing the main steps of statistical analysis.

4

Introduction

Download free eBooks at bookboon.com



Statistics for Business and Economics

 
7 

Statistics is the science and art of making sense of both quantitative and qualitative data.

Statistical thinking now dominates almost every field in science, including social sciences such

as business, economics, management, and marketing. It is virtually impossible to avoid data

analysis if we wish to monitor and improve the quality of products and processes within a

business organization. This means that economists and managers have to deal almost daily

with data gathering, management, and analysis.

1.1 Gathering data

Collecting data involves two key decisions. The first refers to what to measure. Unfortu-

nately, it is not necessarily the case that the easiest-to-measure variable is the most relevant

for the specific problem in hand. The second relates to how to obtain the data. Sometimes

gathering data is costless, e.g., a simple matter of internet downloading. However, there are

many situations in which one must take a more active approach and construct a data set

from scratch.

Data gathering normally involves either sampling or experimentation. Albeit the latter

is less common in social sciences, one should always have in mind that there is no need for a

lab to run an experiment. There is pretty of room for experimentation within organizations.

And we are not speaking exclusively about research and development. For instance, we could

envision a sales competition to test how salespeople react to different levels of performance

incentives. This is just one example of a key driver to improve quality of products and

processes.

Sampling is a much more natural approach in social sciences. It is easy to appreciate

that it is sometimes too costly, if not impossible, to gather universal data and hence it makes

sense to restrict attention to a representative sample of the population. For instance, while

census data are available only every 5 or 10 years due to the enormous cost/effort that it

involves, there are several household and business surveys at the annual, quarterly, monthly,

and sometimes even weekly frequency.

5
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1.2 Data handling

Raw data are normally not very useful in that we must normally do some data manipulation

before carrying out any piece of statistical analysis. Summarizing the data is the primary

tool for this end. It allows us not only to assess how reliable the data are, but also to

understand the main features of the data. Accordingly, it is the first step of any sensible

data analysis.

Summarizing data is not only about number crunching. Actually, the first task to trans-

form numbers into valuable information is invariably to graphically represent the data. A

couple of simple graphs do wonders in describing the most salient features of the data. For

example, pie charts are essential to answer questions relating to proportions and fractions.

For instance, the riskiness of a portfolio typically depends on how much investment there

is in the risk-free asset relative to the overall investment in risky assets such as those in

the equity, commodities, and bond markets. Similarly, it is paramount to map the source

of problems resulting in a warranty claim so as to ensure that design and production man-

agers focus their improvement efforts on the right components of the product or production

process.

The second step is to find the typical values of the data. It is important to know, for

example, what is the average income of the households in a given residential neighborhood if

you wish to open a high-end restaurant there. Averages are not sufficient though, for interest

may sometimes lie on atypical values. It is very important to understand the probability

of rare events in risk management. The insurance industry is much more concerned with

extreme (rare) events than with averages.

The next step is to examine the variation in the data. For instance, one of the main

tenets of modern finance relates to the risk-return tradeoff, where we normally gauge the

riskiness of a portfolio by looking at how much the returns vary in magnitude relative to

their average value. In quality control, we may improve the process by raising the average

6
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quality of the final product as well as by reducing the quality variability. Understanding

variability is also key to any statistical thinking in that it allows us to assess whether the

variation we observe in the data is due to something other than random variation.

The final step is to assess whether there is any abnormal pattern in the data. For instance,

it is interesting to examine nor only whether the data are symmetric around some value but

also how likely it is to observe unusually high values that are relatively distant from the bulk

of data.

1.3 Probability and statistical inference

It is very difficult to get data for the whole population. It is very often the case that it is

too costly to gather a complete data set about a subset of characteristics in a population,

either because of economic reasons or because of the computational burden. For instance, it

is impossible for a firm that produces millions and millions of nails every day to check each

one of their nails for quality control. This means that, in most instances, we will have to

examine data coming from a sample of the population.

7
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As a sample is just a glimpse of the entire population, it will entail some degree of uncer-

tainty to the statistical problem. To ensure that we are able to deal with this uncertainty, it

is very important to sample the data from its population in a random manner, otherwise

some sort of selection bias might arise in the resulting data sample. For instance, if you wish

to assess the performance of the hedge fund industry, it does not suffice to collect data about

living hedge funds. We must also collect data on extinct funds for otherwise our database

will be biased towards successful hedge funds. This sort of selection bias is also known as

survivorship bias.

The random nature of a sample is what makes data variability so important. Probability

theory essentially aims to study how this sampling variation affects statistical inference,

improving our understanding how reliable our inference is. In addition, inference theory is

one of the main quality-control tools in that it allows to assess whether a salient pattern

in data is indeed genuine beyond reasonable random variation. For instance, some equity

fund managers boast to have positive returns for a number of consecutive periods as if this

would entail unrefutable evidence of genuine stock-picking ability. However, in a universe of

thousands and thousands of equity funds, it is more than natural that, due to sheer luck,

a few will enjoy several periods of positive returns even if the stock returns are symmetric

around zero, taking positive and negative values with equal likelihood.

8
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Chapter 2

Data description

The first step of data analysis is to summarize the data by drawing plots and charts as well

as by computing some descriptive statistics. These tools essentially aim to provide a better

understanding of how frequent the distinct data values are, and of how much variability

there is around a typical value in the data.

2.1 Data distribution

It is well known that a picture tells more than a million words. The same applies to any

serious data analysis for graphs are certainly among the best and most convenient data

descriptors. We start with a very simple, though extremely useful, type of data plot that

reveals the frequency at which any given data value (or interval) appears in the sample. A

frequency table reports the number of times that a given observation occurs or, if based

on relative terms, the frequency of that value divided by the number of observations in the

sample.

Example A firm in the transformation industry classifies the individuals at managerial

positions according to their university degree. There are currently 1 accountant, 3 adminis-

trators, 4 economists, 7 engineers, 2 lawyers, and 1 physicist. The corresponding frequency

table is as follows.

9
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degree accounting business economics engineering law physics

value 1 2 3 4 5 6

counts 1 3 4 7 2 1

relative frequency 1/18 1/6 2/9 7/18 1/9 1/18

Note that the degree subject that a manager holds is of a qualitative nature, and so it is not

particularly meaningful if one associates a number to each one of these degrees. The above

table does so in the row reading ‘value’ according to the alphabetical order, for instance.

The corresponding plot for this type of categorical data is the bar chart. Figure 2.1 plots

a bar chart using the degrees data in the above example. This is the easiest way to identify

particular shapes of the distribution of values, especially concerning data dispersion. Least

data concentration occurs if the envelope of the bars forms a rectangle in that every data

value appears at approximately the same frequency.

10
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In statistical quality control, one very often employs bar charts to illustrate the reasons

for quality failures (in order of importance, i.e., frequency). These bar charts (also known

as Pareto charts in this particular case) are indeed very popular for highlighting the natural

focus points for quality improvement.

Bar charts are clearly designed to describe the distribution of categorical data. In a similar

vein, histograms are the easiest graphical tool for assessing the distribution of quantitative

data. It is often the case that one must first group the data into intervals before plotting a

histogram. In contrast to bar charts, histogram bins are contiguous, respecting some sort of

scale.

0
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3

4
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6

7

8

accounting business economics engineering law physics

Figure 2.1: Bar chart of managers’ degree subjects

2.2 Typical values

There are three popular measures of central tendency: mode, mean, and median. The mode

refers to the most frequent observation in the sample. If a variable may take a large number

of values, it is then convenient to group the data into intervals. In this instance, we define the

11
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mode as the midpoint of the most frequent interval. Even though the mode is a very intuitive

measure of central tendency, it is very sensitive to changes, even if only marginal, in data

values or in the interval definition. The mean is the most commonly-used type of average

and so it is often referred to simply as the average. The mean of a set of numbers is the sum

of all of the elements in the set divided by the number of elements: i.e., X̄N = 1
N

∑N
i=1 Xi. If

the set is a statistical population, then we call it a population mean or expected value. If the

data set is a sample of the population, we call the resulting statistic a sample mean. Finally,

we define the median as the number separating the higher half of a sample/population from

the lower half. We can compute the median of a finite set of numbers by sorting all the

observations from lowest value to highest value and picking the middle one.

Example Consider a sample of MBA graduates, whose first salaries (in $1,000 per annum)

after graduating were as follows.

75 86 86 87 89 95 95 95 95 95

96 96 96 97 97 97 97 98 98 99

99 99 99 100 100 100 105 110 110 110

115 120 122 125 132 135 140 150 150 160

165 170 172 175 185 190 200 250 250 300

The mean salary is about $126,140 per annum, whereas the median figure is exactly $100,000

and the mode amounts to $95,000. Now, if one groups the data into 8 evenly distributed

bins between the minimum and maximum values, both the median and mode converge to

same value of about $91,000 (i.e., the midpoint of the second bin).

The mean value plays a major role in statistics. Although the median has several ad-

vantages over the mean, the latter is easier to manipulate for it involves a simple linear

combination of the data rather than a non-differentiable function of the data as the median.

In statistical quality control, for instance, it is very common to display a means chart (also

known as x-bar chart), which essentially plots the mean of a variable through time. We

12
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say that a process is in statistical control if the means vary randomly but in a stable fash-

ion, whereas it is out of statistical control if the plot shows either a dramatic variation or

systematic changes.

2.3 Measures of dispersion

While measures of central tendency are useful to understand what are the typical values

of the data, measures of dispersion are important to describe the scatter of the data or,

equivalently, data variability with respect to the central tendency. Two distinct samples

may have the same mean or median, but different levels of variability, or vice-versa. A

proper description of data set should always include both of these characteristics. There are

various measures of dispersion, each with its own set of advantages and disadvantages.

We first define the sample range as the difference between the largest and smallest values

in the sample. This is one of the simplest measures of variability to calculate. However, it

depends only on the most extreme values of the sample, and hence it is very sensitive to

outliers and atypical observations. In addition, it also provides no information whatsoever

about the distribution of the remaining data points. To circumvent this problem, we may

think of computing the interquartile range by taking the difference between the third and first

quartiles of the distribution (i.e., subtracting the 25th percentile from the 75th percentile).

This is not only a pretty good indicator of the spread in the center region of the data, but

it is also much more resistant to extreme values than the sample range.

We now turn our attention to the median absolute deviation, which renders a more

comprehensive alternative to the interquartile range by incorporating at least partially the

information from all data points in the sample. We compute the median absolute deviation

by means of md |Xi − md(X)|, where md(·) denotes the median operator, yielding a very

robust measure of dispersion to aberrant values in the sample. Finally, the most popular

measure of dependence is the sample standard deviation as defined by the square root of

the sample variance: i.e., sN =
√

1
N−1

∑N
i=1

(
Xi − X̄N

)2
, where X̄N is the sample mean.

13

Data description

Download free eBooks at bookboon.com



Statistics for Business and Economics

 
16 

The main advantage of variance-based measures of dispersion is that they are functions of

a sample mean. In particular, the sample variance is the sample mean of the square of the

deviations relative to the sample mean.

Example Consider the sample of MBA graduates from the previous example. The

variance of their first salary after graduating is about $2,288,400,000 per annum, whereas

the standard deviation is $47,837. The range is much larger, amounting to 300, 000 −

75, 000 = 225, 000 per annum. The huge difference between these two measures of dispersion

suggests the presence of extreme values in the data. The fact that the interquartile range is

150,000+150,000
2

− 96,000+96,000
2

= 54, 000—and hence closer the the standard deviation—seems

to corroborate this interpretation. Finally, the median absolute deviation of the sample is

only 10,000 indicating that the aberrant values of the sample are among the largest (rather

than smallest) values.
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In statistical quality control, it is also useful to plot some measures of dispersion over

time. The most common are the R and S charts, which respectively depict how the range

and the standard deviation vary over time. The standard deviation is also informative in a

means chart for the interval [mean value ± two standard deviations] contains about 95% of

the data if their histogram is approximately bell-shaped (symmetric with a single peak). An

alternative is to plot control limits at the mean value ± three standard deviations, which

should include all of the data inside. These procedures are very useful in that they reduce

the likelihood of a manager to go fire-fighting every short-term variation in the means chart.

Only variations that are very likely to reflect something out of control will fall outside the

control limits.

A well-designed statistical quality-control system should take both means and dispersion

charts into account for it is possible to improve on quality by reducing variability and/or

by increasing average quality. For instance, a chef that reduces cooking time on average by

5 minutes, with 90% of the dishes arriving 10 minutes earlier and 10% arriving 40 minutes

later, will probably not make the owner of the restaurant very happy.

15
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Chapter 3

Basic principles of probability

3.1 Set theory

There are two fundamental sets, namely, the universe U and the empty set ∅. We say they

are fundamental because ∅ ⊆ A ⊆ U for every set A.

Taking the difference between sets A and B yields a set whose elements are in A but

not in B: A − B = {x | x ∈ A and x /∈ B}. Note that A − B is not necessarily the

same as B − A. The union of A and B results in a set whose elements are in A or in B:

A∪B = {x |x ∈ A or x ∈ B}. Naturally, if an element x belongs to both A and B, then it is

also in the union A∪B. In turn, the intersection of A and B individuates only the elements

that both sets share in common: A ∩ B = {x |x ∈ A and x ∈ B}. Last but not least, the

complement Ā of A defines a set with all elements in the universe that are not in A, that is

to say, Ā = U − A = {x | x /∈ A}.

Example Suppose that you roll a die and take note of the resulting value. The universe

is the set with all possible values, namely, U = {1, 2, 3, 4, 5, 6}. Consider the following two

sets: A = {1, 2, 3, 4} and B = {2, 4, 6}. It then follows that A − B = {1, 3}, B − A = {6},

A ∪ B = {1, 2, 3, 4, 6}, and A ∩ B = {2, 4}.

If A and B are complementing sets, i.e., A = B̄, then A−B = A, B−A = B, A∪B = U,

and A ∩ B = ∅. Figure 3.1 illustrates how one may represent sets using a Venn diagram.

16
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Figure 3.1: Venn diagram representing sets A (oval in blue and purple) and B (oval in red
and purple) within the universe (rectangle box). The intersection A ∩ B of A and B is in
purple, whereas the overall area in color (i.e., red, blue, and purple) corresponds to the union
set A ∪B. The complement of A consists of the areas in grey and red, whereas the areas in
grey and blue define the complement of B.

Properties The union and intersection operators are symmetric in that A ∪ B = B ∪ A

and A ∩ B = B ∩ A. They are also transitive in that (A ∪ B) ∪ C = A ∪ (B ∪ C) and

(A ∩ B) ∩ C = A ∩ (B ∩ C).

From the above properties, it is straightforward to show that the following identities hold:

(I1) A∪ (B ∩C) = (A∪B)∩ (A∪C), (I2) A∩ (B ∪C) = (A∩B)∪ (A∩C), (I3) A∩∅ = ∅,

(I4) A ∪ ∅ = A, (I5) A ∩ B = Ā ∪ B̄, (I6) A ∪ B = Ā ∩ B̄, and (I7) A = A.

3.2 From set theory to probability

The probability counterpart for the universe in set theory is the sample space S. Similarly,

probability focus on events, which are subsets of possible outcomes in the sample space.

Example Suppose we wish to compute the probability of getting an even value in a die

roll. The sample space is the universe of possible outcomes S = {1, 2, 3, 4, 5, 6}, whereas the

event of interest corresponds to the set {2, 4, 6}.

1719 
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To combine events, we employ the same rules as for sets. Accordingly, the event A ∪ B

occurs if and only if we observe an outcome that belongs to A or to B, whereas the event

A∩B occurs if and only if both A and B happen. It is also straightforward to combine more

than two events in that ∪n
i=1Ai occurs if and only if at least one of the events Ai happens,

whereas ∩n
i=1Ai holds if and only if every event Ai occur for i = 1, . . . , n. In the same vein,

the event Ā occurs if and only if we do not observe any outcome that belongs to the event

A. Finally, we say that two events are mutually exclusive if A ∩ B = ∅, that is to say, they

never occur at the same time. Mutually exclusive events are analogous to mutually exclusive

sets in that their intersection is null.

18
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3.2.1 Relative frequency

Suppose we repeat a given experiment n times and count how many times, say nA and

nB, the events A and B occur, respectively. It then follows that the relative frequency of

event A is fA = nA/n, whereas it is fB = nB/n for event B. In addition, if events A and

B are mutually exclusive (i.e., A ∩ B = ∅), then the relative frequency of C = A ∪ B is

fC = (nA + nB)/n = fA + fB.

The relative frequency of any event is always between zero and one. Zero corresponds

to an event that never occurs, whereas a relative frequency of one means that we always

observe that particular event. The relative frequency is very important for the fundamental

law of statistics (also known as the Glivenko-Cantelli theorem) says that, as the number of

experiments n grows to infinity, it converges to the probability of the event: fA → Pr(A).

Chapter 5 discusses this convergence in more details.

Example The Glivenko-Cantelli theorem is the principle underlying many sport compe-

titions. The NBA play-offs are a good example. To ensure that the team with the best odds

succeed, the playoffs are such that a team must win a given number of games against the

same adversary before qualifying to the next round.

3.2.2 Event probability

It now remains to define what we exactly mean with the notion of probability. We associate

a real number to the probability of observing the event A, denoted by Pr(A), satisfying the

following properties:

P1 0 ≤ Pr(A) ≤ 1;

P2 Pr(S) = 1;

P3 Pr(A ∪ B) = Pr(A) + Pr(B) if A ∩ B = ∅;

19
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P4 Pr(∪n
i=1Ai) =

∑n
i=1 Pr(Ai) if the collection of events {Ai, i = 1, . . . , n} is pairwise

mutually exclusive even if n → ∞.

It is easy to see that P4 follows immediately from P3 if we restrict attention to a finite

number of experiments (n < ∞). From properties P1 to P4, it is possible to derive some

important results concerning the different ways we may combine events.

Result It follows from P1 to P4 that

(a) Pr(∅) = 0,

(b) Pr(Ā) = 1 − Pr(A),

(c) Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B), and

(d) Pr(A) ≤ Pr(B) if A ⊆ B.

Proof : (a) By definition, the probability of event A is the same as the probability of the

union of A and ∅, viz. Pr(A) = Pr(A ∪ ∅). However, A and ∅ are mutually exclusive events

in that A∩∅ = ∅, implying that Pr(A) = Pr(A)+Pr(∅) by P3. (b) By definition, A∪Ā = S

and A ∩ Ā = ∅, and so Pr(S) = Pr(A ∪ Ā) = Pr(A) + Pr(Ā) = 1 by P2 and P3. (c) It

is straightforward to observe that A ∪ B = A ∪ (B ∩ Ā) and that A ∩ (B ∩ Ā) = ∅ for the

event within parentheses consists of all outcomes in B that are not in A. It thus ensues that

Pr(A ∪ B) = Pr
(
A ∪ (B ∩ Ā)

)
= Pr(A) + Pr(B ∩ Ā). We now decompose the event B into

outcomes that belong and not belong to A: B = (A∩B)∪ (B ∩ Ā). There is no intersection

between these two terms, hence Pr(B)−Pr(A∩B) = Pr(B∩Ā), yielding the result. (d) The

previous decomposition reduces to B = A ∪ (B ∩ Ā) given that A ∩ B = A. It then follows

that Pr(B) = Pr(A) + Pr(B ∩ Ā) ≤ Pr(A) in view that any probability is nonnegative. �

3.2.3 Finite sample space

A finite sample space must have only a finite number of elements, say, {a1, a2, . . . , an}. Let

pj denote the probability of observing the corresponding event {aj}, for j = 1, . . . , n. It is

easy to appreciate that 0 ≤ pj ≤ 1 for all j = 1, . . . , n and that
∑n

j=1 pj = 1 given that the
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events (a1, . . . , an) span the whole sample space. As the latter are also mutually exclusive,

it follows that Pr(A) = pj1 + . . . , +pjk
=

∑k
r=1 pjr for A = {aj1 , . . . , ajk

}, with 1 ≤ k ≤ n.

Example: The sample space corresponding to the value we obtain by throwing a die is

{1, 2, 3, 4, 5, 6} and the probability pj of observing any value j ∈ {1, . . . , 6} is equal to 1/6.

In general, if every element in the sample space is equiprobable, then the probability of

observing a given event is equal to the ratio between the number of elements in the event

and the number of elements in the sample space.

Examples

(1) Suppose the interest lies on the event of observing a value above 4 in a die throw. There

are only two values in the sample space that satisfy this condition, namely, {5, 6}, and hence

the probability of this event is 2/6 = 1/3.

(2) Consider now flipping twice a coin and recording the heads and tails. The resulting

sample space is {HH,HT, TH, TT}. As the elements of the sample space are equiprobable,

the probability of observing only one head is #{HT,TH}
#{HH,HT,TH,TT} = 2/4 = 1/2.

These examples suggest that the most straightforward manner to compute the proba-

bility of a given event is to run experiments in which the elements of the sample space are

equiprobable. Needless to say, it is not always very easy to contrive such experiments. We

illustrate this issue with another example.

Example: Suppose one takes a nail from a box containing nails of three different sizes.

It is typically easier to grab a larger nail than a small one and hence such an experiment

would not yield equiprobable outcomes. However, the alternative experiment in which we

first numerate the nails and then draw randomly a number to decide which nail to take

would lead to equiprobable results.
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3.2.4 Back to the basics: Learning how to count

The last example of the previous section illustrates a situation in which it is straightforward

to redesign the experiment so as to induce equiprobable outcomes. Life is tough, though,

and such an instance is the exception rather than the rule. For instance, a very common

problem in quality control is to infer from a small random sample the probability of observing

a given number of defective goods within a lot. This is evidently a situation that does not

automatically lead to equiprobable outcomes given the sequential nature of the experiment.

To deal with such a situation, we must first learn how to count the possible outcomes using

some tools of combinatorics.

Multiplication Consider that an experiment consists of a sequence of two procedures,

say, A and B. Let nA and nB denote the number of ways in which one can execute A and B,

respectively. It then follows that there is n = nA nB ways of executing such an experiment.

In general, if the experiment consists of a sequence of k procedures, then one may run it in

n =
∏k

i=1 ni different ways.
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Addition Suppose now that the experiment involves k procedures in parallel (rather

than in sequence). This means that we either execute the procedure 1 or the procedure 2

or . . . or the procedure k. If ni denotes the number of ways that one may carry out the

procedure i ∈ {1, . . . , k}, then there are n = n1 + · · · + nk =
∑k

i=1 ni ways of running such

an experiment.

Permutation Suppose now that we have a set of n different elements and we wish to

know the number of sequences we can construct containing each element once, and only once.

Note that the concept of sequence is distinct from that of a set, in that order of appear-

ance matters. For instance, the sample space {a, b, c} allows for the following permutations

(abc, acb, bac, bca, cab, cba). In general, there are n! =
∏n−1

j=0 (n − j) possible permutations

out of n elements because there are n options for the first element of the sequence, but only

n− 1 options for the second element, n− 2 options for the third element and so on until we

have only one remaining option for the last element of the sequence. There is also a more

general meaning for permutation in combinatorics for which we form sequences of k different

elements from a set of n elements. This means that we have n options for the first element

of the sequence, but then n− 1 options for the second element and so on until we have only

n−k+1 options for the last element of the sequence. It thus follows that we have n!/(n−k)!

permutations of k out of n elements in this broader sense.

Combination This is a notion that only differs from permutation in that ordering does

not matter. This means that we just wish to know how many subsets of k elements we can

construct out of a set of n elements. For instance, it is possible to form the following subsets

with two elements of {a, b, c, d}: {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. Note that

{b, a} does not count because it is exactly the same subset as {a, b}. This suggests that, in

general, the number of combinations is inferior to the number of permutations because one

must count only one of the sequences that employ the same elements but with a different

ordering. In view that there are n!/(n− r)! permutations of k out of n elements and k! ways
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to choose the ordering of these k elements, the number of possible combinations of k out of

n elements is (
n

k

)
=

n!

(n − k)! k!
.

Before we revisit the original quality control example, it is convenient to illustrate the

use of the above combinatoric tools through another example.

Example: Suppose there is a syndicate with 5 engineers and 3 economists. How many

committees of 3 people one can form with exactly 2 engineers? Well, we must form commit-

tees of 2 engineers and 1 economist. There are
(
5
2

)
ways of choosing 2 out of 5 engineers,

whereas there are
(
3
1

)
ways of choosing 1 out of 3 economists. Altogether, this means that

one can form
(
5
2

)(
3
1

)
= 30 committees with 2 engineers and 1 economist out of a group of 5

engineers and 3 economists.

We are now ready to reconsider the quality control problem of inferring the number of

defective goods within a lot. Suppose, for instance, that a lot has n objects of which nd are

defective and that we draw a sample of k elements of which kd are defective. We first note

that there are
(

n
k

)
ways of choosing k elements from a lot of n goods, whereas there are

(
nd

kd

)

ways of combining kd defective goods from a total of nd defective goods within the lot as

well as
(

n−nd

k−kd

)
ways of choosing (k − kd) elements out of the (n − nd) non-defective goods

within the lot. Accordingly, the probability of observing kd defective goods within a sample

of k goods is (
k
kd

)(
n−nd

k−kd

)
(

n
k

) (3.1)

if there are nd defective goods within a lot of n objects.

3.2.5 Conditional probability

We denote by Pr(A|B) the probability of event A given that we have already observed event

B. Intuitively, conditioning on the realization of a given event has the effect of reducing the
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sample space from S to the sample space spanned by B.

Examples

(1) Suppose that we throw a die twice. In the first throw, we observe a value equal to 6

and we wish to know what is the probability of observing a value of 2 in the second throw.

In this instance, the fact that we have observed a value of 6 in the first throw has no impact

in the value we will observe in the second throw for the two events are independent. This

means that the first value brings about no information about the second throw and hence

the probability of observing a value of 2 in the second throw given that we have observed

a value of 6 in the first throw remains the same as before, that is to say, the probability of

observing a value of 2: 1/6.
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(2) Next, consider A = {(x1, x2)|x1 + x2 = 10} = {(5, 5), (6, 4), (4, 6)} and B =

{(x1, x2)|x1 > x2} = {(2, 1), (3, 2), (3, 1), · · · , (6, 5)}. The probability of A is Pr(A) =

3/36 = 1/12, whereas the probability of B is Pr(B) = 15/36. In addition, the probabil-

ity of observing both A and B is Pr(A ∩ B) = 1/36. It thus turns out that the probability

of observing A given B is Pr(A|B) = 1/15 = Pr(A ∩ B)/Pr(B), whereas the probability of

observing B given A is Pr(B|A) = 1/3 = Pr(A ∩ B)/Pr(A).

It is obviously not by chance that, in general, Pr(A|B) = Pr(A∩B)/Pr(B), for Pr(B) > 0.

By conditioning on event B we are restricting the sample space to B and hence we must

consider the probability of observing both A and B and then normalize by the measure of

event B. It is as if we were computing the relative frequency at which the event A occurs

given the outcomes that are possible within event B. This notion makes sense even if we

consider unconditional events. Indeed, the unconditional probability of A is the conditional

probability of A given the sample space S, i.e., Pr(A|S) = Pr(A ∩ S)/Pr(S) = Pr(A).

Finally, it is also interesting to note that we may decompose the probability of A∩B into a

conditional probability and a marginal probability, namely, Pr(A ∩ B) = Pr(A|B) Pr(B) =

Pr(B|A) Pr(A).

Example: Suppose that a computer lab has 4 new and 2 old desktops running Windows

as well as 3 new and 1 old desktops running Linux. What is the probability of a student

to randomly sit in front of a desktop running Windows? What is the likelihood that this

particular desktop is new given that it runs Windows? Well, there are 10 computers in the

lab of which 6 run Windows. This means that the answer of the first question is 3/5, whereas

Pr(new|Windows) = Pr(new ∩ Windows)/Pr(Windows) = (4/10)/(6/10) = 2/3.

Figure 3.2.5 illustrates a situation in which the events A and B are mutually exclusive and

hence A∩B = ∅. In this instance, the probability of both events occurring is obviously zero

and so are both conditional probabilities, i.e., Pr(A∩B) = 0 ⇒ Pr(A|B) = Pr(B|A) = 0. In
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contrast, Figure 3.3 depicts another polar case: A ⊂ B. Now, Pr(A ∩ B) = Pr(A), whereas

Pr(A|B) = Pr(A)/Pr(B) and Pr(B|A) = 1.

Decomposing a joint probability into the product of a conditional probability and of a

marginal probability is a very useful tool, especially if one combines it with partitions of the

sample space. Let B1, . . . , Bk denote a partition of the sample space S, that is to say,

(a) Bi ∩ Bj = ∅, 1 ≤ i �= j ≤ k

(b) ∪k
i=1Bi = S

(c) Pr(Bi) > 0, 1 ≤ i ≤ k.

This partition yields the decomposition A = (A ∩ B1) ∪ (A ∩ B2) ∪ . . . ∪ (A ∩ Bk) for any

event A ∈ S. The nice thing about partitions is that they are mutually exclusive and hence

(A∩Bi)∩ (A∩Bj) = ∅ for any 1 ≤ i �= j ≤ k. This means that Pr(A) =
∑k

i=1 Pr(A∩Bi) =

∑i=1
k Pr(A|Bi) Pr(Bi).

Figure 3.2: Venn diagram representing two mutually exclusive events A (oval in blue) and
B (oval in red) within the sample space (rectangle box).
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Figure 3.3: Venn diagram representing events A (oval in purple) and B (oval in red and
purple) within the sample space (rectangle box) such that A ∩ B = A.

For instance, if we define the sample space by the possible outcomes of a die throw, we

may think of several distinct partitions as, for example,

(a) Bi = {i} for i = 1, . . . , 6

(b) B1 = {1, 3, 5}, B2 = {2, 4, 6}

(c) B1 = {1, 2}, B2 = {3, 4, 5}, B3 = {6}.

Example: Consider a lot of 100 frying pans of which 20 are defective. Define the events A =

{first frying pan is defective} and B = {second frying pan is defective} within a context of

sequential sampling without reposition. The probability of observing event B naturally

depends on whether the first frying pan is defective or not. Now, there are only two possible

outcomes in that the first frying pan is either defective or not. This suggests a very simple

partition of the sample space based on A and Ā, giving way to Pr(B) = Pr(B|A) Pr(A) +

Pr(B|Ā) Pr(Ā). In particular, Pr(B|A) = 19/99 for there are only 19 defective frying pans

left among the remaining 99 frying pans if A is true. Similarly, Pr(B|Ā) = 20/99, whereas

Pr(A) = 1/5 and Pr(Ā) = 1−Pr(A) = 4/5. We thus conclude that Pr(B) = 19
99

1
5
+ 20

99
4
5

= 1
5
.
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In some instances, we cannot observe some events, and hence we must infer whether

they are true or false given the available information. For instance, if you are in a building

with no windows and someone arrives completely soaked with a broken umbrella, it sounds

reasonable to infer that it is raining outside even if you cannot directly observe the weather.

The Bayes rule formalizes how one should conduct such an inference based on conditional

probabilities:

Pr(Bi|A) =
Pr(A|Bi) Pr(Bi)∑k

j=1 Pr(A|Bj) Pr(Bj)
i = 1, · · · , k

where B1, . . . , Bk is a partition of the sample space. In the example above, we cannot

observe whether it is raining, but we may partition the sample space (i.e., weather) into

B = {it is raining} and B̄ = {it is not raining}, and then calculate the probability of B given

that we observe event A = {someone arrives completely soaked with a broken umbrella}.
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The Bayes rule has innumerable applications in business, economics and finance. For

instance, imagine you are the market maker for a given stock and that there are both

informed and uninformed traders in the market. In contrast to informed traders, you do not

know whether news are good or bad and hence you must infer it from the trades you observe

in order to adjust your bid and ask quotes accordingly. If you observe much more traders

buying than selling, then you will assign a higher probability to good news. If traders are

selling much more than buying, then the likelihood of bad news rises. The Bayes rule is the

mechanism at which you learn whether news are good or bad by looking at trades.

3.2.6 Independent events

Consider for a moment two mutually exclusive events A and B. Knowing about A gives

loads of information about the likelihood of event B. In particular, if A occurs, we know for

sure that event B did not occur. More formally, the conditional probability of B given that

we observe A is Pr(B|A) = Pr(A ∩ B)/Pr(A) = 0 given that A ∩ B = ∅ (see Figure 3.2.5).

We thus conclude that A and B are dependent events given that knowing about one entails

complete information about the other. Following this reasoning, it makes sense to associate

independence with lack of information content. We thus say that A and B are independent

events if and only if Pr(A|B) = Pr(A). The latter condition means that Pr(A ∩ B) =

Pr(A|B) Pr(B) = Pr(A) Pr(B), which in turn is equivalent to say that Pr(B|A) = Pr(B)

given that Pr(A∩B) = Pr(B|A) Pr(A) as well. Intuitively, if A and B are independent, the

probability of observing A (or B) does not depend on whether B (or A has occurred) and

hence conditioning on the sample space (i.e., looking at the unconditional distribution) or

on the event B makes no difference.

Example: Consider a lot of 10,000 pipes of which 10% comes with some sort of in-

dentation. Suppose we randomly draw two pipes from the lot and define the events A1 =

{first pipe is in perfect conditions} and A2 = {second pipe is in perfect conditions}. If sam-

pling is with reposition, then events A1 and A2 are independent and so Pr(A1 ∩ A2) =
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Pr(A1) Pr(A2) = (0.9)2 = 0.81. However, if sampling is without reposition, then Pr(A1 ∩

A2) = Pr(A2|A1) Pr(A1) = 0.9 8,999
9,999

, which is very marginally different from 0.81.

This example illustrates well a situation in which the events are not entirely independent,

though assuming independence would simplify a lot the computation of the joint probability

at the expenses of a very marginal cost due to the large sample. This is just to say that

sometimes it pays off to assume independence between events even if we know that, in

theory, they are not utterly independent.

Problem set

Exercise 1. Show that

Pr(A ∪ B ∪ C) = Pr(A) + Pr(B) + Pr(C)

− Pr(A ∩ B) − Pr(A ∩ C) − Pr(B ∩ C)

+ Pr(A ∩ B ∩ C).

Solution We employ a similar decomposition to the one in the proof of (c). In particular,

(A ∪ B) ∪ C = (A ∪ B) ∪ (C ∩ A ∪ B). As the intersection is null,

Pr(A ∪ B ∪ C) = Pr(A ∪ B) + Pr(C ∩ A ∪ B).

We now decompose the event C into outcomes that belong and not belong to A ∪ B:

C =
(
C ∩ (A ∪ B)

)
∪

(
C ∩ A ∪ B

)
,

yielding Pr
(
C ∩ A ∪ B

)
= Pr(C) − Pr

(
C ∩ (A ∪ B)

)
. So far, we have that

Pr(A ∪ B ∪ C) = Pr(A ∪ B) + Pr(C) − Pr
(
C ∩ (A ∪ B)

)

= Pr(A) + Pr(B) + Pr(C) − Pr(A ∩ B) − Pr
(
C ∩ (A ∪ B)

)
.

It remains to show that the last term equals to Pr(A ∩ C) + Pr(B ∩ C) − Pr(A ∩ B ∩ C).

To appreciate this, it suffices to see that C ∩ (A∪B) = (A∩C)∪ (B ∩C), which gives way
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to Pr
(
C ∩ (A ∪ B)

)
= Pr(A ∩ C) + Pr(B ∩ C) − Pr

(
(A ∩ C) ∩ (B ∩ C)

)
by P3. The last

term is obviously equivalent to Pr(A ∩ B ∩ C), completing the proof. �

Exercise 2. Consider two events A e B. Show that the probability that only one of these

events occurs is Pr(A ∪ B) − Pr(A ∩ B).

Solution Let C denote the event in which we observe only one event between A or

B. It then consists of every possible outcome that it is in A ∪ B and not in A ∩ B. It

is straightforward to appreciate from a Venn diagram that C = (A ∪ B) − (A ∩ B) =

(A ∪ B) ∩ A ∩ B = (A ∩ B̄) ∪ (Ā ∩ B). The last representation is the easiest to manipulate

for it involves mutually exclusive events. In particular, it follows immediately from (c) that

Pr(C) = Pr(A) + Pr(B) − 2 Pr(A ∪ B) = Pr(A ∪ B) − Pr(A ∩ B). �

Exercise 3. There are three plants that produce a given screw: A, B, and C. Plant

A produces the double of screws than B and C, whose productions are at par. In addition,

quality control is better at plants A and B in that only 2% of the screws they produce

are defective as opposed to 4% in plant C. Suppose that we sample one screw from the

warehouse that collects all screws produced by A, B, and C. What is the probability that

the screw is defective? What is the probability that the defective screw is from plant A?

Solution: Let A = {screw comes from plant A}, B = {screw comes from plant B},

C = {screw comes from plant C}, and D = {screw is defective}. Given that A’s production

is twofold, it follows that Pr(A) = 1/2 and that Pr(B) = Pr(C) = 1/4. We now decompose

the event D according to whether the screw comes from A, B, or C. The latter forms

a partition because if a screw comes from a given plant it cannot come from any other

plant. In addition, there are only plants A, B, and C producing this particular screw. The

decomposition yields

Pr(D) = Pr(D|A) Pr(A) + Pr(D|B) Pr(B) + Pr(D|C) Pr(C)

= 0.02
1

2
+ 0.02

1

4
+ 0.04

1

4
= 0.025.
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To answer the second question, we must apply the Bayes rule for we do not observe whether

the screw comes from a given plant, but we do know whether it is defective or not. So,

the conditional probability that the screw is from A given that it is defective is Pr(A|D) =

0.02×1/2
0.02×1/2+0.02×1/4+0.04×1/4

= 0.01
0.01+0.005+0.01

= 2/5. �
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Chapter 4

Probability distributions

4.1 Random variable

Dealing with events and sample spaces is very intuitive, but it is not very easy to keep track

of things if the sample space is large. That is why we next introduce the notion of random

variable, which entails a much easier approach to probability theory.

Definition: X(s) is a random variable if X(·) is a function that assigns a real value to

every element s in the sample space S.

Example: Suppose we flip twice a coin and define the sample space as the sequence of

heads and tails, that is to say, S = {HH,HT, TH, TT}. Let X denote a random variable

equal to the number of heads:

X(s) =




0, if s ∈ {TT}

1, if s ∈ {HT, TH}

2, if s ∈ {HH}.

Note that every element in the sample space corresponds to exactly one value of the random

variable, though the latter may assume the same value for different elements of the sample

space.

4.1.1 Discrete random variable

If X is a discrete random variable, then it takes only a countable number of values. This

means that, in practice, we may consider a list of possible outcomes x1, . . . , xn (even if n →
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∞) for any discrete random variable X. Denoting the probability of observing a particular

value by pi ≡ p(xi) = Pr(X = xi), it follows that pi ≥ 0 for i = 1 . . . , n and that
∑n

i=1 pi = 1.

The function p(·) is known as the probability distribution function of the discrete random

variable. For instance, a random variable following a discrete uniform probability function

pi = 1/n, with n finite, is the random-variable counterpart of equiprobable events. Figure

4.1 displays the probability distribution function of a discrete uniform random variable over

the set {1, 2, . . . , 10}.

Example: Suppose that a mutual fund buys and holds a given stock as long as price

changes are nonnegative. Let stock prices follow a random walk such that the probability

of observing a negative price change is 2/5. Define the sample space S and the random

variable N according to the number of periods that are necessary to observe the mutual

fund unwinding its position: S = {1, 01, 001, 0001, . . .} and N = {1, 2, 3, 4, . . .}. It is easy

to see that N = n if and only if we observe a negative price change in the nth period after

(n−1) periods of nonnegative returns. In addition, the random walk hypothesis implies that

returns are independent over time, and so

Pr(N = n) =

(
3

5

)n−1
2

5
n = 1, 2, . . .

Just as a sanity check, let’s test whether the above probability function sums up to one if

we consider every possible outcome:

∞∑
n=1

Pr(N = n) =
2

5

(
1 +

3

5
+

9

25
+ · · ·

)
=

2

5

1

1 − 3/5
= 1.
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Figure 4.1: The left and right axes correspond to the probability distribution function and
cumulative probability distribution function of a uniform distribution over {1, 2, . . . , 10},
respectively.
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Binomial distribution

A Bernoulli essay is the simplest and most intuitive of all probability distribution functions.

It restricts attention to a binary random variable that takes value one with probability p,

otherwise it is equal to zero (with probability 1 − p). Consider now a random variable that

sums up the values of n independent Bernoulli essays. The probability distribution function

of such a variable is by definition binomial.

Example: Suppose that a production line results in defective products with probability

0.20. A random draw of three products leads to a sample space given by

S = {DDD,DDN,DND, NDD, NND, NDN, DNN, NNN},

where D and N refer to defective and non-defective products, respectively. The ordering

does not matter much in most situations and so the typical random variable of interest is

the number of defective goods X ∈ {0, 1, 2, 3}. The probability distribution function of X

then is p0 = 0.83, p1 = 3 × 0.2 × 0.82, p2 = 3 × 0.8 × 0.22, and p3 = 0.23.

In the example above, it is readily seen from the sample space that there is only one

manner to obtain either three defective goods or three non-defective goods. In contrast,

there are three different ways to observe either one or two defective products due to the fact

that the ordering does not matter. It is precisely the latter that explains why the binomial

distribution function involves the combinatoric tool of combination.

Definition: Consider an experiment in which the event A occurs with probability p =

Pr(A) and so Pr(Ā) = 1− p. Run such an experiment independently n times. The resulting

sample space is S = {all sequences a1, . . . , an}, where ai is either A or Ā for i = 1, . . . , n. The

random variable X that counts the number of times that the event A occurs has a binomial

distribution function B(n, p) with parameters n (namely, the number of independent essays)
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and p (namely, the probability of event A). The binomial distribution is such that

px = Pr(X = x) =

(
n

x

)
px (1 − p)n−x, x = 0, 1, · · · , n. (4.1)

To show that (4.2) is a probability distribution function, it suffices to confirm that it

sums up to one given that px > 0. As expected,

n∑
x=0

Pr(X = x) =
n∑

x=0

(
n

x

)
px (1 − p)n−x

= [p + (1 − p)]n = 1,

where the last equality comes from Newton’s binomial expansion (hence the name of the

distribution).

Problem set

Exercise 1. Paolo Maldini challenges Buffon for a series of 20 penalty kicks. In the first

10 penalty kicks, Maldini scores with probability 4/5. However, as from the 11th attempt,

Maldini’s age kicks in and the probability of scoring reduces to 1/2. Assuming that the

outcomes are independent among themselves, compute the probability that Maldini scores

exactly k goals.

Solution: Each penalty kick corresponds to a Bernoulli essay with probability p1 = 4/5

of success in the first 10 attempts and p2 = 1/2 from then on up to the 20th penalty kick.

We thus split the problem into scoring k1 goals in the first 10 attempts and k − k1 goals in

the second 10 penalty kicks. The former leads to a binomial distribution B(10, 4/5), whereas

the latter to a binomial B(10, 1/2). Putting together gives way to

(
10

k1

)
pk1

1 (1 − p1)
10−k1 ×

(
10

k − k1

)
pk−k1

2 (1 − p1)
10−k+k1

(
10

k1

)
0.8k1 0.210−k1 ×

(
10

k − k1

)
0.510.

It now remains to sum up the ways at which Maldini can score k goals by scoring exactly

k1 goals in the first 10 attempts. To this end, we must first consider whether k > 0 or not,
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yielding a probability of scoring k penalty kicks of

Pr(X = k) =

min{k,10}∑
k1=max{0,k−10}

(
10

k1

)
0.8k1 0.210−k1

(
10

k − k1

)
0.510.

We sum from max{0, k − 10} because if k > 10 then Maldini should score at least K − 10

in each series of 10 attempts. Similarly, we sum up to min{k, 10} because if k < 10, then

Maldini cannot score more than k goals in each series of penalty kicks. �

Exercise 2. Consider a random variable X ∈ {0, 1, 2, . . .} such that

Pr(X = t) = (1 − α)αt, t = 0, 1, 2, · · ·

(a) For which values of α (4.5) indeed is a probability distribution function?

(b) Show that for any positive integers s and t, Pr(X > s + t|X > s) = Pr(X ≥ t).

Solution:

(a) It follows from
∑∞

t=0 Pr(X = t) = 1 that (1 − α)
∑∞

t=0 αt = 1. The latter involves an

infinite sum of a geometric progression, which converges to (1−α)
∑∞

t=0 αt = (1−α) 1
1−α

= 1

only if α belongs to the unit interval.

(b) It follows from the fact that s + t ≥ s > 0 that

Pr(X > s + t|X > s) =
Pr(X > s + t)

Pr(X > s)
=

∑∞
r=s+t+1(1 − α)αr

∑∞
r=s+1(1 − α)αr

=

∑∞
r=s+t+1 αr

∑∞
r=s+1 αr

=
(1 − α)−1αs+t+1

(1 − α)−1αs+1
= αt.

To complete the proof, it suffices to show that Pr(X ≥ t) = αt. That is indeed the case

because

Pr(X ≥ t) =
∞∑
r=t

(1 − α)αr = (1 − α)
∞∑
r=t

αr

= (1 − α)
αt

1 − α
= αt,

where the penultimate equality comes from the fact that the infinite sum of a geometric

progression is equal to the first term of the progression divided by one minus the quotient

of the progression. �
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4.1.2 Cumulative probability distribution function

The goal not always lies on computing a pointwise probability. We are very often interested

in understanding how likely it is to observe a range of values, e.g., the probability of observing

X ≤ x. This motivates us to define the cumulative distribution function as

FX(x) = Pr(X ≤ x) =
∑

j

p(xj), ∀xj ≤ x.

Note that FX is a nondecreasing step function in x given that FX(x1) ≤ FX(x2) if x1 ≤ x2.

In addition, the cumulative distribution function belongs to the unit interval given that

limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1. Finally, if X ∈ {x1, x2, . . . |x1 < x2 < . . .}, then

Pr(X = xn) = Pr(X ≤ xn) − Pr(X ≤ xn−1) = FX(xn) − FX(xn−1).

Example: Let X ∈ {x1, x2, x3} with p(x1) = 1
3
, p(x2) = 1

6
, and p(x3) = 1

2
. The cumulative

distribution function then reads

FX(x) =




0, if −∞ < x < x1

1/3 if x1 ≤ x < x2

1/2 if x2 ≤ x < x3

1 if x3 ≤ x < ∞.
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4.1.3 Continuous random variable

We say that a random variable is continuous if the probability of observing any particular

value in the real line is zero. Accordingly, the notion of probability distribution function is

meaningless and we have to come up with something a bit different, though with a similar

interpretation. The analog of the probability distribution function for continuous random

variables is the probability density function. To understand the latter, we first note that,

within the context of continuous random variables, it only makes sense to talk about the

probability of observing a value within a given interval. The probability density function

then measures the mass of probability of an infinitesimal interval, that is to say, Pr(x < X <

x + ∆x) for a very small ∆x > 0. In the following definition, we formalize such a notion.

Definition: The probability density function fX(·) of a random variable X is such that

(a) fX(x) ≥ 0, ∀x ∈ R

(b)
∫ +∞
−∞ fX(x) dx = 1

(c) Pr(a ≤ X ≤ b) =
∫ b

a
fX(x) dx for −∞ < a < b < +∞.

Note that condition (a) corresponds to the restriction that the probability distribution

function is positive for every element in the sample space, whereas (b) is analogous to the

imposition that the probability distribution function sums up to one if evaluated at every

element in the sample space. Finally, (c) reflects the fact that the probability of observing a

particular value is zero given that Pr(X = x0) =
∫ x0

x0
fX(x) dx = 0. Of course, the fact that

an event A has probability zero does not mean that it is impossible to observe it. It just

means that it is improbable. For instance, imagine that we are measuring how much time

one takes to run 100 meters. The probability of observing a value of precisely 10 seconds is

zero ex-ante, for there is a continuum of values around 10 seconds, though it could well take

exactly 10 seconds ex-post. A corollary is that

Pr(a ≤ X ≤ b) = Pr(a < X ≤ b) = Pr(a < X < b) = Pr(a ≤ X < b).
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Examples

(1) Let a random variable satisfy the following probability density function

fX(x) =





2x, if 0 < x < 1

0, otherwise.

We first note that fX(x) ≥ 0 for any value of x ∈ R and that

∫ +∞

−∞
fX(x) dx =

∫ 1

0

fX(x) dx =

∫ 1

0

2x dx = x2
∣∣1
0

= 1.

In addition, if we wish to compute the probability of observing a given interval, say, x ≤ 1/2,

then it follows that

Pr

(
X ≤ 1

2

)
=

∫ 1/2

0

2x dx = x2
∣∣1/2

0
=

1

4
.

Finally, we may also compute the conditional probability of observing a value within an

interval given that we know it belongs to a larger interval. For instance,

Pr

(
X ≤ 1

2

∣∣∣∣
1

3
≤ X ≤ 2

3

)
=

Pr
(

1
3
≤ x ≤ 1

2

)

Pr
(

1
3
≤ x ≤ 2

3

) =
x2|1/2

1/3

x2|2/3
1/3

=
5

12
.

(2) Let X denote a random variable with density function fX(x) =




α x−3, if 1 ≤ x ≤ 3

0 otherwise.

It is easy to appreciate that fX(x) ≥ 0 for all x ∈ R as long as α ≥ 0. In addition, to ensure

that it integrates up to one over the real line, α must equal 9/4 given that

∫ 3

1

α x−3 dx = − α

2 x2

∣∣∣
3

1
=

4 α

9
.

As before, the interest sometimes lies on calculating the probability of observing X within

a given interval. The cumulative distribution function of a continuous random variable is

FX(x) = Pr(X ≤ x) =

∫ x

−∞
fX(u) du.

The cumulative distribution function is a nondecreasing continuous function given that

FX(x1) ≤ FX(x2) if x1 ≤ x2. The continuity is in contrast with the step-like feature in

the case of discrete random variables. It is as if the height of the steps shrink to zero
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as the random variables moves from a discrete to a continuous nature, so that FX be-

comes a continuous function. Given that we are now treating with a continuous random

variable, the sum of the pointwise probabilities becomes the integral of the density func-

tion. As before, FX is such that limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1. In ad-

dition, Pr(x0 ≤ X ≤ x1) = Pr(X ≤ x1) − Pr(X ≤ x0) = FX(x1) − FX(x0) for any

−∞ < x0 ≤ x1 < ∞. Finally, it also follows from the definition of an integral that

fX(x) = d
dx

FX(x) = F ′
X(x) for every x ∈ R.

Examples

(1) Let X denote a random variable with cumulative distribution function

FX(x) =





1 − e−x, if x ≥ 0

0, if x < 0.

It is evident that limx→−∞ FX(x) = 0 and that limx→∞ FX(x) = 1, whereas differentiating

the cumulative distribution function gives way to fX(x) = F ′
X(x) =





e−x, if x ≥ 0

0, if x < 0.
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(2) Let X denote an exponential random variable with density function

fX(x) =





λ e−λ x, if x ≥ 0

0, if x < 0.

Note that the previous example is a particular case of the exponential distribution with

λ = 1. Now, consider the probability of observing X within the interval (t, t + 1):

Pr(t < X < t + 1) = FX(t + 1) − FX(t) =

∫ t+1

t

λ e−λ x dx

= − e−λ x
∣∣t+1

t
= e−λ t(1 − e−λ).

Letting α = e−λ then yields Pr(t < X < t + 1) = (1 − α) αt, which is the probability

distribution function of the memoryless discrete random variable of the second exercise of

the problem set in Section 4.1.

(3) Let X denote a random variable with density function

fX(x) =




6 x (1 − x), if 0 ≤ x ≤ 1

0 otherwise.

As before, it is easy to see that fX(x) ≥ 0 for every x ∈ R and that
∫ 1

0
6 x (1 − x) dx =

(3 x2 − 2 x3)|10 = 3 − 2 = 1. As for the cumulative distribution function, integrating the

density function up to x yields

FX(x) =




0, if x < 0

x2 (3 − 2x) if 0 ≤ x ≤ 1

1 if x > 1.

We may employ the latter to compute the probability of observing a value within an interval

as well as a conditional probability as, e.g.,

Pr

(
X ≤ 1

2

∣∣∣∣
1

3
< X <

2

3

)
=

(3x2 − 2x3)|1/2
1/3

(3x2 − 2x3)|2/3
1/3

=
3/4 − 1/4 − 1/3 + 2/27

4/3 − 16/27 − 1/3 + 2/27
=

10

13
.

Uniform distribution

The simplest continuous distribution function is the uniform. It essentially dictates that

intervals of same length are equiprobable within the support of the random variable, say
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[α, β]. The corresponding density function is

fX(x) =



.

1/(β − α) if α ≤ x ≤ β

0 otherwise,

which implies that Pr(a ≤ X ≤ b) = b−a
β−α

= FX(b)−FX(a) with −∞ < α ≤ a ≤ b ≤ β < ∞.

Finally, the cumulative distribution function reads

FX(x) =





0 if −∞ < x < α

x/(β − α) if α ≤ x ≤ β

1 if β < x ≤ ∞

Example: Let X denote a random variable that is uniformly distributed in the unit

interval. The density function then is

fX(x) =




1
2

if 0 ≤ x ≤ 1

0 otherwise,

whereas the cumulative distribution function is

FX(x) =




0 if −∞ < x < 0

x if 0 ≤ x ≤ 1

1 if 1 < x < ∞.

There are several applications for the uniform distribution. For instance, if we wish

to generate a random variable from a particular distribution, we may always start with a

uniform distribution and then transform it to obtain the desired distribution. This is possible

because, for any random variable X with cumulative distribution function FX , FX(X) has

a uniform distribution in the unit interval. More advanced applications include resampling

techniques (e.g., bootstrap) and prior distributions in Bayesian analysis.

4.1.4 Functions of random variables

Consider a random variable X : s �→ X(s) = x for any s ∈ S and a transformation

H : x �→ H(x) = y that maps a realization x of the random variable X into a real value
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y ∈ R. Instead of transforming the realization x, one may also transform the random

variable X, giving way to another random variable Y = H(X) : s �→ H[X(s)]. Given

that the randomness of Y is completely due to X, it is possible to compute the probability

distribution of Y if we know the probability distribution function of X.

Example: Let Y = H(X) = 2X +1 with X following a standard exponential distribution

fX(x) = e−x 1(x > 0), where 1(A) is an indicator function that takes value one if A is true,

zero otherwise. Given that X is positive, the support of Y is given by the interval [1,∞). It

then follows that

FY (y) = Pr(Y ≤ y) = Pr(2X + 1 ≤ y) = Pr

(
X ≤ y − 1

2

)

= FX

(
y − 1

2

)
=

∫ (y−1)/2

0

e−x dx =
(
−e−x

)∣∣(y−1)/2

0
= 1 − e(1−y)/2.
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In general, we deal with transformations of a random variable according to whether the

latter is discrete or random. If X is a discrete random variable, then it is easy to appreciate

that a random variable Y = H(X) will also be discrete regardless of the transformation H.

Letting X ∈ {x1, · · · , xn, · · · } yields Y ∈ {y1 = H(x1), · · · , yn = H(xn), · · · }. In addition,

Pr(Y = yi) = Pr(X = xi) if the transformation H is such that each y corresponds to a

unique value x.

Example: Let X ∈ {−1, 0, 1} with Pr(X = −1) = 1/3, Pr(X = 0) = 1/2, and Pr(X =

1) = 1/6. If Y = X2, then Pr(Y = 0) = 1/2 and Pr(Y = 1) = 1/2.

Letting xik denote the values of X such that H(xik) = yi for every k ∈ {1, 2, . . .} leads

to Pr(Y = yi) =
∑∞

k=1 Pr(X = xik).

Example: Let X ∈ {1, 2, . . . , n, . . .} with Pr(X = n) = 2−n and let

Y =




1 if X is even,

−1 if X is odd.

It thus follows that Pr(Y = 1) = 1
4

+ 1
16

+ · · · = 1/4
1−1/4

= 1
3

and hence Pr(Y = −1) = 2
3
.

If X is a continuous random variable, then Y = H(X) is not necessarily continuous

for discreteness can arise depending on the transformation H. Naturally, any continuous

transformation preserves the continuity of the random variables.

Example: Let X denote a random variable in the real line and

Y =




−1 if X < 0,

1 if X ≥ 0.

In this instance, Pr(Y = yi) =
∫

A
fX(x) dx, where A denotes the event about X that

corresponds to {Y = yi}, that is to say, A is either the negative real line or the nonnegative

real line.

In general, to derive the probabilistic structure of Y given X, we must first compute the
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distribution function FY (y) = Pr(Y ≤ y) by means of the events in X that correspond to

{Y ≤ y} and then differentiate with respect to y to obtain the density function fY . Finally,

we must also determine the support of Y by seeking the values of y for which fY (y) > 0.

Example: Let X denote a continuous random variable with density function

fX(x) =





2x if 0 < x < 1,

0 otherwise.
(4.2)

Letting Y = H(X) = 3X + 1 then yields

FY (y) = Pr(Y ≤ y) = Pr(3X + 1 ≤ y) = Pr

(
X ≤ y − 1

3

)

=

∫ (y−1)/3

0

fX(x) dx =

∫ (y−1)/3

0

2x dx = x2
∣∣(y−1)/3

0

=

(
y − 1

3

)2

= (1 − y)2/9.

The density function then is fY (y) = F ′
Y (y) = 2

9
(y − 1), whereas the support of Y is given

by the interval (1, 4) for y = 3x + 1 with 0 < x < 1 to ensure that both fX and fY are

bounded away from zero.

As an alternative, if H is differentiable and strictly monotone, we could also determine

FY by noting that x = H−1(y) and hence

{H(X) ≤ y} ∼




{X ≤ H−1(y)} if H is strictly increasing

{X ≥ H−1(y)} if H is strictly decreasing.

It then suffices to appreciate that

FY (y) = Pr(Y ≤ y) = Pr [H(X) ≤ y] = Pr
[
H ≷ H−1(y)

]

=




1 − FX [H−1(y)] if H is strictly decreasing,

FX [H−1(y)] if H is strictly increasing.

As for the density function,

fY (y) =
d

dy
FY (y) =

∣∣∣∣
dFX

dx

dx

dy

∣∣∣∣ = fX(x)

∣∣∣∣
dx

dy

∣∣∣∣ ,
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where x = H−1(y).

Examples

(1) Let us revisit the previous example in which the density function of X is given by (4.2)

and Y = H(X) = 3X + 1. The cumulative distribution function of Y is FY (y) = Pr(Y ≤

y) = F [(y − 1)/3], whereas the density function is fY (y) = fX(x)
∣∣∣ dx

dy

∣∣∣, with x = (y − 1)/3.

It then follows that fY (y) = 2
9
(y − 1). Just as a sanity check, we next check whether the

latter integrates to one over the support of Y . If x ∈ (0, 1), then Y = 3X + 1 ∈ (1, 4) and so

∫ 4

1

fY (y) dy =
(
y2/9 − 2y/9

)∣∣4
1

=
16

9
− 8

9
− 1

9
+

2

9
= 1.

(2) Letting now Y = H(X) = e−X yields

FY (y) = Pr(Y ≤ y) = Pr(e−X ≤ y) = Pr(X ≥ − ln y)

=

∫ 1

− ln y

2x dx =
(
x2

)∣∣1
− ln y

= 1 − (− ln y)2.

Differentiating with respect to y then leads to fY (y) = F ′
Y (y) = −(2 ln y)/y. As for the

support, we confirm that Y ∈ (1/e, 1) by showing that
∫ 1

1/e
−2 ln y

y
dy = 1. Needless to

say, applying the alternative methods results in the same expressions for the cumulative

distribution and density functions. Indeed,

FY (y) = Pr(Y ≤ y) = Pr(X ≥ − ln y) = 1 − FX(− ln y),

whereas fY (y) = fX(x)
∣∣∣ dx

dy

∣∣∣ = −(2 ln y)/y given that x = − ln y.

(3) Let X denote a random variable with density function

fX(x) =




1/2 if − 1 < x < 1

0 otherwise.

The cumulative distribution function of Y = X2 then is

FY (y) = Pr(Y ≤ y) = Pr(X2 ≤ y) = Pr(−√
y ≤ X ≤ √

y) = FX(
√

y) − FX(−√
y),
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whereas the density function is

fY (y) = F ′
Y (y) =

fX(
√

y)

2
√

y)
−

fX(−√
y)

−2
√

y
=

1

2
√

y
[fX(

√
y) + fX(−√

y)]

=
1

2
√

y

(
1

2
+

1

2

)
=

1

2
√

y

with a support given by the unit interval.

50

Probability distributions

Download free eBooks at bookboon.com



Statistics for Business and Economics

 
53 

4.2 Random vectors and joint distributions

A random vector X = (X1, . . . , Xn) is a vector of, say n, random variables. There are

three types of random vectors: continuous, discrete, and mixed. The latter is essentially

a vector including both continuous and discrete random variables, and hence we will fo-

cus only on continuous and discrete random vectors. In what follows, we will consider a

bivariate random vector (X, Y ), though extending the discussion to n-dimensional random

vectors is straightforward. The joint probability distribution function of a discrete bivari-

ate random vector (X, Y ) is p(x, y) = Pr(X = x, Y = y), where X ∈ {x1, . . . , xn, . . .} and

Y = {y1, . . . , yn, . . .}. Similarly, the joint density function of a continuous bivariate random

vector (X, Y ) is fXY (x, y) ∼ Pr (x ≤ X ≤ x + ∆x, y ≤ Y ≤ y + ∆y) for small enough ∆x

and ∆y. As before, the density function is such that fXY (x, y) ≥ 0 for every (x, y) ∈ R2 and

that
∫ ∞
−∞

∫ ∞
−∞ fXY (x, y) dx dy = 1.

Examples

(1) Suppose there are two shoemakers in a shop. The first does at best 5 shoes in a given

month, whereas the second takes more time to make a shoe and hence does at most 3 shoes

per month. Let X ∈ {0, 1, . . . , 5} and Y ∈ {0, 1, . . . , 3} denote the number of shoes by the

first and second shoemakers in a given month, with probabilities given by

X = 0 1 2 3 4 5

Y = 0 0 0.01 0.03 0.05 0.07 0.09

1 0.01 0.02 0.04 0.05 0.06 0.08

2 0.01 0.03 0.05 0.05 0.05 0.06

3 0.01 0.02 0.04 0.06 0.06 0.05

If the interest lies on the event B = {X > Y }, for instance, it then suffices to sum up the

probabilities that appear in boldface, resulting in Pr(B) = 3/4.

(2) The shop owner is a bit concerned with the amount of leather each shoemaker employs

per month. Let X and Y now denote the quantity of leather the first and second shoemakers
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spend, respectively. The shop owner is so miser that he gauges with infinite precision how

much leather the shoemakers use, and so we may assume that (X, Y ) is a continuous bivariate

random variable. In addition, the joint density function is given by

fXY (x, y) =





α if 5 ≤ x ≤ 10 and 4 ≤ y ≤ 9

0 otherwise.

We first compute α by integrating the density function over R2:

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) dx dy = 1

∫ 9

4

∫ 10

5

α dx dy =

∫ 9

4

(αx)|10
5 dy =

∫ 9

4

5α dy

= (5αy)|94 = 25α = 1,

implying that α = 1/25. Next, let’s compute how likely is the event B = {X > Y } that the

first shoemaker employs more leather than the second shoemaker:

Pr(B) = 1 − Pr(X ≤ Y ) = 1 −
∫ 9

5

∫ y

5

1

25
dx dy

= 1 − 1

25

∫ 9

5

(y − 5) dy =
17

25
.

The first integral is over the interval [5, 9] because it is impossible to observe Y ≥ X if

4 ≤ Y < 5 given that X ≥ 5, whereas the second integral is over the interval [5, y] because

X cannot exceed the value that we observe for Y given that Y ≥ X.

(3) Let (X, Y ) denote a bivariate random variable with joint density function

fXY (x, y) =




x2 + xy/3 if ) < x < 1 and 0 < y < 2

0 otherwise.

We first show that the above density function integrates to one:

∫ 1

0

∫ 2

0

(
x2 +

1

3
xy

)
dy dx =

∫ 1

0

(
x2y +

1

6
xy2

)∣∣∣∣
2

0

dx

=

∫ 1

0

(
2x2 +

2

3
x

)
dx =

(
2

3
x3 +

1

3
x2

)∣∣∣∣
1

0

=
2

3
+

1

3
= 1.
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We next illustrate how to compute the likelihood of an event that involves both X and Y ,

say, the probability of observing {X + Y ≤ 1}:

Pr(X + Y ≤ 1) = Pr(Y ≤ 1 − X)

=

∫ 1

0

∫ 1−x

0

(
x2 +

1

3
xy

)
dy dx =

∫ 1

0

(
x2y +

1

6
xy2

)∣∣∣∣
1−x

0

dx

=

∫ 1

0

[
x2(1 − x) +

1

6
x(1 − x)2

]
dx =

∫ 1

0

[
x2 − x3 +

1

6
(x − 2x2 + x3)

]
dx

=

∫ 1

0

(
2

3
x2 − 5

6
x3 +

1

6
x

)
dx =

(
2

9
x3 − 5

24
x4 +

1

12
x

)∣∣∣∣
1

0

=
2

9
− 5

24
+

1

12
=

16 − 15 + 6

72
=

7

72
.

In general, it follows that the joint probability distribution function of a continuous

random vector X = (X1, . . . , Xn) is given by

FX(x) = Pr(X ≤ x) =

∫ x1

−∞
· · ·

∫ xn

−∞
fX(x1, . . . , xn) dx1 · · · dxn,

with x = (x1, . . . , xn), whereas the joint density function is

fX(x) =
∂

∂x′ FX(x) =
∂n

∂x1 · · · ∂xn

FX(x1, . . . , xn).
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4.3 Marginal distributions

Knowing the joint distribution function FXY of (X, Y ) also implies the knowledge of the

marginal distributions FX and FY of X and Y , respectively. After all, it contains all in-

formation about the probabilistic structure of both X and Y . To extract the marginal

distributions of X and Y , it suffices to ‘integrate’ the other random variable out of the joint

distribution. We employ quotation marks because integrating out a discrete random vari-

able, say Y , corresponds to summing the joint probability for all possible values of Y given

that any of these values may occur. Letting Bj = {X = x, Y = yj} for j = 1, 2, . . . then

yields p(x) = Pr(X = x) = Pr(B1 or · · · or Bn or · · · ) =
∑∞

j=1 p(x, yj), given that these

events are all mutually exclusive.

As for continuous random variables, the marginal density function of X is

fX(x) ∼ Pr(x ≤ X ≤ x + ∆x) for a very small ∆x > 0

= Pr(x ≤ X ≤ x + ∆x,−∞ < Y < ∞) =

∫ ∞

−∞
fXY (x, y) dy,

and hence

Pr(a < X < b) = Pr(a < X < b,−∞ < Y < ∞) =

∫ b

a

∫ ∞

−∞
fXY (x, y) dy dx.

Examples

(1) Let (X, Y ) denote a bivariate random vector with joint density given by

fXY (x, y) =




2(x + y − 2xy) if 0 < x, y < 1

0 otherwise.

We first confirm that (4.3) indeed is a density function by showing that it integrates to one:

∫ 1

0

∫ 1

0

2(x + y − 2xy) dx dy =

∫ 1

0

(
x2 + 2xy − 2x2y

)∣∣1
0

dy

=

∫ 1

0

dy = 1.

It is evident from the above derivations that the marginal distributions of X and Y are both

uniform in the unit interval, even though their joint distribution is not uniform.
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(2) Let (X, Y ) denote a uniform random variable in the rectangle [αX , βX ] × [αY , βY ]. The

joint density function then is

fXY (x, y) =





1
(βX−αX)(βY −αY )

if αX < x < βX , αY < y < βY

0 otherwise.

Integrating X out yields a uniform density function in the interval [αY , βY ] for Y , whereas

integrating the latter out gives way to a uniform distribution function for X in the interval

[αX , βX ].

(3) Suppose now that (X, Y ) is uniform in B = {(x, y) : 0 < x < 1, x2 < y < x}. It follows

from the fact that the area of B is
∫ 1

0
(x − x2) dx = 1

6
that

fXY (x, y) =





6 if (x, y) ∈ B

0 if (x, y) /∈ B,

otherwise the joint density would integrate to something different from one. The marginal

density of X then is fX(x) =
∫ x

x2 6 dy = 6 x(1− x) for 0 ≤ x ≤ 1, whereas the marginal of Y

is fY (y) =
∫ √

y

y
6 dx = 6(

√
y − y) for 0 ≤ y ≤ 1.

The above examples illustrate that a uniform joint distribution does not ensure uniform

marginals, just as uniform marginals do not imply a uniform joint distribution.

4.4 Conditional density function

In the case of discrete random variables, by definition, it suffices to compute the ratio between

the probability of observing both events and the probability of observing the conditioning

event, so that p(x|y) = p(x, y)/p(y) if p(y) > 0 and p(y|x) = p(x, y)/p(x) if p(x) > 0. Note

that the conditional probability meets all of the conditions for a probability distribution

function, namely, it is nonnegative for all values of x and sums up to one given that

∞∑
i=1

p(xi|y) =
∞∑
i=1

p(xi, y)

p(y)

=
1

p(y)

∞∑
i=1

p(xi, y) =
p(y)

p(y)
= 1.
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Example: Let us revisit the example of the two shoemakers and compute the prob-

ability of the first shoemaker to produce two shoes in a given month given that the second

shoemaker has also produced two shoes. By the definition of conditional probability, it

suffices to compute the ratio between the probability of observing both events and the prob-

ability of observing the conditioning event, so that

Pr(X = 2|Y = 2) =
Pr(X = 2, Y = 2)

Pr(Y = 2)
=

0.05

0.25
=

1

5
.

As for continuous random variables, it is easy to see that the same applies to density

functions given that they proxy for the probability of observing the random variable within an

interval of infinitesimal length. It thus ensues that fX|Y (x|y) = fXY (x, y)/fY (y) if fY (y) > 0

and that fY |X(y|x) = fXY (x, y)/fX(x) if fX(x) > 0. As before, the conditional density

function indeed is a density function in that fX|Y (x|y) ≥ 0 for every x ∈ R and

∫ ∞

−∞
fX|Y (x|y) dx =

∫ ∞

−∞

fXY (x, y)

fY (y)
dx

=
1

fY (y)

∫ ∞

−∞
fXY (x, y) dx =

fY (y)

fY (y)
= 1.

Example: Let (X,Y ) denote a random vector with joint density function given by

fXY (x, y) =




x2 + 1
3
xy if (x, y) ∈ [0, 1] × [0, 2]

0 otherwise.

The conditional density of X given Y then is

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

x2 + 1
3
xy∫ 1

0

(
x2 + 1

3
xy

)
dx

=
x2 + 1

3
xy(

1
3
x3 + 1

6
x2y

)∣∣1
0

=
x2 + 1

3
xy

1
3

+ y
6

=
6x2 + 2xy

2 + y
,

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2.

4.5 Independent random variables

There is a nice correspondence between independent events and independent random vari-

ables. The condition that Pr(A ∩ B) = Pr(A)Pr(B) translates into p(x, y) = p(x)p(y) if
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X and Y are discrete random variables and into fXY (x, y) = fX(x)fY (y) if X and Y are

continuous random variables. That is to say, independence ensues if and only if the joint

probability/density is the product of the marginals. In addition, we can also define indepen-

dence by means of conditional probabilities/densities in that independence holds if and only

if (a) p(x|y) = p(x, y)/p(y) = p(x) and p(y|x) = p(x, y)/p(x) = p(y) if X and Y are discrete;

and (b) fX|Y (x|y) = fXY (x, y)/fY (y) = fX(x) and fY |X(y|x) = fXY (x, y)/fX(x) = fY (y) if

X and Y are continuous.

Examples

(1) Let X and Y denote the time it takes to observe a transaction for two stocks, with joint

density function given by

fXY (x, y) =




exp [−(x + y)] if x ≥ 0, y ≥ 0

0 otherwise.

It is easy to see that fXY (x, y) = fX(x)fY (y), with fX(x) = e−x for x > 0 and fY (y) = e−y

for y > 0, and hence X and Y are independent random variables.

(2) Let now X and Y denote random variables with joint density given by fXY (x, y) = 8xy

for 0 ≤ x ≤ y ≤ 1. Although it is easy to decompose fXY into the product of functions that

depend exclusively on either X or Y , there is no way to get rid of the dependence in the

support. The fact that X is always inferior to Y is what makes the two random variables

dependent.

Finally, it is interesting to observe more closely how the link between independent events

and independent random variables works. Let A and B denote independent events concerning

the random variables X and Y , respectively. Equivalence follows from the fact that

Pr(A ∩ B) =

∫ ∫

A∩B

fXY (x, y) dx dy =

∫ ∫

A∩B

fX(x)fY (y) dx dy

=

∫

A

fX(x) dx

∫
BfY (y) dy = Pr(A)Pr(B).
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4.6 Expected value, moments, and co-moments

Another way to characterize a distribution is through its moments. The first moment refers to

the expected value of the distribution, whereas the second moment relates to the dispersion of

the distribution. There is also room for higher-order moments in that there are distributions

with an infinite number of moments. For instance, the third moment tells us whether the

distribution is asymmetric around the expected value, whilst the fourth moment determines

how thick the tails of the distribution are, that is to say, how likely it is to observe an extreme

realization regardless of whether to the right or to the left of the expected value.
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4.6.1 Expected value

The first moment of a distribution is known as expected value or population mean. As the

name implies, it entails a typical value for the distribution. Before formalizing the notion of

expected value, it is convenient to start with an example to motivate the discussion.

Example: Gimli proposes a game to his friend Legolas with prizes in gold pieces as in the

table below. In addition, if Legolas decides to play, he must pay beforehand one gold piece

to Gimli.

die throw 1 2 3 4 5 6

Legolas’ payoff -3 -2 -1 1 2 5

Legolas’ expected payoff then is the average payoff minus the entry costs, that is to say,

E(Legolas’ payoff) = 1
6
(5 + 2 + 1 − 1 − 2 − 3) − 1 = −2

3
. This means that the game is not

very fair to Legolas given that, on average, he will have to pay 2/3 of a gold piece to Gimli.

To make the game fair, Legolas would have to bargain down the entry cost to 1/3.

In the above example, it is easy to compute the expected value because the outcomes

of a die throw are equiprobable and hence it suffices to compute the arithmetic mean of

the possible outcomes. In general, the values that the random variable can assume are

not equiprobable and hence we must weigh by their mass of probability. We do that by

applying the expectation operator E(·) to the random variable of interest. In the case of

discrete random variables, the expectation operator is such that E(X) =
∑∞

i=1 xip(xi). If

the latter series does not converge to some finite value, then we say that the distribution has

no expected value.

Examples

(1) Let X ∼ B(n, p), so that Pr(X = x) =
(

n
x

)
px (1 − p)n−x. The expected value of a
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binomial distribution is

E(X) =
n∑

x=0

x Pr(X = x) =
n∑

x=0

x

(
n

x

)
px (1 − p)n−x

=
n∑

x=1

x

(
n

x

)
px (1 − p)n−x =

n∑
x=1

x
n!

x!(n − x)!
px (1 − p)n−x

=
n∑

x=1

n!

(x − 1)!(n − x)!
px (1 − p)n−x.

Letting k = x − 1 then yields

E(X) = n

n−1∑
k=0

(
n − 1

k

)
pk+1 (1 − p)n−k−1

= np
n−1∑
k=0

(
n − 1

k

)
pk(1 − p)n−1−k = np

given that
(

n−1
k

)
pk(1− p)n−1−k is the probability distribution function of a B(n− 1, p). Note

that the expected value of the binomial distribution corresponds to the absolute frequency

at which we observe a value equal to one.

(2) Suppose that a given trading strategy normally entails a weekly return S, though it

may profit less if there is a sequence of bad news. More precisely, the return reduces to

0 < R < S if there are up to two bad news, and to L < 0 if there are three or more

bad news over the week. The probability of observing a bad news is 1/20 in any given

trading day of the week. Let now X ∈ {L, R, S} and B ∈ {1, 2, 3, 4, 5} denote the weekly

return of this trading strategy and the number of bad news over the week, respectively.

The latter is a binomial random variable with probability distribution function given by
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Pr(B = k) =
(

5
k

)
(1/20)k (19/20)n−k, and hence the expected value of X is

E(X) = Pr(B = 0) S + [Pr(B = 1) + Pr(B = 2)] R + Pr(B ≥ 3) L

= (19/20)5 S +
[
5(1/20)(19/20)4 + 10(1/20)2(19/20)3

]
R

+
[
10(1/20)3(19/20)2 + 5(1/20)4(19/20) + (1/20)5

]
L

= (19/20)5S + 5(1/20)(19/20)3 [19/20 + 2(1/20)] R

+ (1/20)3
[
10(19/20)2 + 5(1/20)(19/20) + (1/20)2

]
L

= 0.7737809 S + 0.2250609 R + 0.0011581 L.

Note that the weights assigned to each outcome of the weekly return sum up to one for they

correspond to their probability of occurring.

As for continuous random variables, the expectation operator is such that E(X) =

∫ ∞
−∞ xfX(x) dx. As before, if the function g(x) = xfX(x) is not integrable, then the dis-

tribution features no expected value.
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Examples

(1) Let X denote a uniform random variable in the interval [α, β]. In view that the density

function is

fX(x) =





1
β−α

if α < x < β

0 otherwise

it follows that

E(X) =

∫ β

α

x

β − α
dx =

(
x2/2

β − α

)∣∣∣∣
β

α

=
β2 − α2

2(β − α)
=

(β − α)(β + α)

2(β − α)
=

β + α

2
.

This makes sense for the uniform continuous distribution is analogous to the case of equiprob-

able events and hence it suffices to take the arithmetic mean of the lower and upper limits

of the support.

(2) Let X denote a random variable with density function given by

fX(x) =




x/225 if 0 ≤ x ≤ 15

(30 − x)/225 if 15 ≤ x ≤ 30

0 otherwise.

The expected value then is

E(X) =

∫ 15

0

x2

225
dx +

∫ 30

15

(30 − x)x

225
dx =

1

225

[(
x3

3

)∣∣∣∣
15

0

+

(
15x2 − x3

3

)∣∣∣∣
30

15

]

=
1

152

(
153

3
+ 15 × 302 − 153 − 303

3
+

153

3

)
= 5 + 60 − 15 − 40 + 5 = 15.

This result is pretty intuitive given that the density function looks like a symmetric triangle

with peak at 15.

Suppose now we wish to derive the expected value of Y = H(X). The expectation

operator is such that

E(Y ) =




∑∞
i=1 yip(yi) if discrete

∫ ∞
−∞ yfY (y) dy if continuous

=




∑∞
i=1 H(xi)p(xi) if discrete

∫ ∞
−∞ H(x)fX(x) dx if continuous.

This means that there is no need to derive the distribution of Y to compute its expected

value. It suffices to compute the expectation of H(X) given the density function of X.
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Example: In some situations, the interest lies on the magnitude of the random variable

regardless of the sign it takes. Suppose, for instance, that X has a double exponential density

given by

fX(x) =





1
2
ex if x ≤ 0

1
2
e−x if x ≥ 0,

which is symmetric around zero. Now, the expected value of Y = |X| is

E(Y ) =

∫ ∞

−∞
|x| fX(x) dx =

1

2

[∫ 0

−∞
|x| ex dx +

∫ ∞

0

|x| ex dx

]

=
1

2

[∫ 0

−∞
(−x)ex dx +

∫ ∞

0

xe−x dx

]
=

∫ ∞

0

xe−x dx = 1,

where the last equality follows from integration by parts. Alternatively, one can compute

the expected value of Y by first deriving its distribution. In particular,

FY (y) = Pr(Y ≤ y) = Pr(|X| ≤ y) = Pr(−y ≤ X ≤ y) = 2 Pr(0 ≤ X ≤ y)

= 2

∫ y

0

fX(x) dx = 2

∫ y

0

e−x dx =
(
−e−x

)∣∣y
0

= 1 − e−y,

giving way to fY (y) = e−y for y ≥ 0 and to E(Y ) =
∫ ∞

0
yfY (y) dy =

∫ ∞
0

ye−y dy = 1.

It is possible to compute the expected value of a function of a random vector, say Z =

H(X, Y ), along the same lines. More precisely,

E(Z) =




∑∞
i=1 zip(zi) if discrete

∫ ∞
−∞ zfZ(z) dz if continuous

=




∑∞
i=1 H(xi, yi)p(xi, yi) if discrete

∫ ∞
−∞ H(x, y)fXY (x, y) dx dy if continuous,

which avoids the derivation of the probability/density function of Z. Apart from that, the

expectation operator has two other interesting properties. First, it is a linear operator in

that E(aX + b) = a
∑n

i=1 E(Xi)+ b for any fixed constants a and b, if X =
∑n

i=1 Xi. Second,

if the random variables are independent, then the expectation of their product is equal to

the product of their expectations. This means that, if X and Y are independent, then

E(XY ) = E(X)E(Y ). The examples below employ these properties to derive expectations.

Examples

(1) A binomial distribution B(n, p) results from the sum of the outcomes of a sequence
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of n independent Bernoulli essays with probability p. Let Yi denote the outcome of each of

these Bernoulli essays (i = 1, . . . , n), taking value one with probability p, otherwise zero.

The expected value of X then is E(X) = E(Y1 + Y2 + · · · + Yn) =
∑n

i=1 E(Yi) = np.

(2) Let D denote the weekly demand for apple crumbles, with probability distribution

function pn = Pr(D = n). Let C denote the cost of baking a unit of apple crumble and E

the cost of keeping one apple crumble. Suppose that we sell each apple crumble at a price

P and that our initial stock is of N apple crumbles. It then follows that our profit Π in a

given week is a random variable given by

Π =





N(P − C) if D ≥ N

DP − NC − (N − D)E if D < N

because in the latter case we produce N apple crumbles, sell D and then stock the ones that

we are not able to sell during the week. This means that

Π =




N(P − C) with probability Pr(D ≥ N) = 1 − Pr(D < N)

D(P + E) − N(C + E) with probability Pr(D < N)

and hence

E(Π) = N(P − C) Pr(D ≥ N) + E [D(P + E) − N(C + E)|D < N ] Pr(D < N)

= N(P − C)
∞∑

n=N+1

pn + (P + E)
N∑

n=0

n pn − N(C + E)
N∑

n=0

pn

= N(P − C)

[
1 −

N∑
n=0

pn

]
+ (P + E)

N∑
n=0

n pn − N(C + E)
N∑

n=0

pn

= N(P − C) + (P + E)
N∑

n=0

n pn − [N(C + E) + N(P − C)]
N∑

n=0

pn

= N(P − C) + (P + E)
N∑

n=0

n pn − N(P + E)
N∑

n=0

pn

= N(P − C) − (P + E)
N∑

n=0

(N − n)pn.
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If, for instance, Pr(D = n) = 1
10

for n ∈ {0, 1, . . . , 9}, it then ensues that

E(Π) = N(P − C) − (P + E)
N∑

n=0

N − n

10
= N(P − C) − P + E

10

[
N(N + 1) −

N∑
n=0

n

]

= N(P − C) − P + E

10

[
N(N + 1) − N(N + 1)

2

]
= N(P − C) − P + E

10

N(N + 1)

2

= N(P − C) − N(N + 1)(P + E)

20
.

The above naturally only holds if N ≤ 9, which makes sense given that it seems unreasonable

to start the week with more than the maximum demand for apple crumbles.

The expectation operator is a linear operator and hence it is extremely easy to deal

with affine functions of a random variable. Although we have already shown that it is

also straightforward to handle non-affine functions of random variables, it is important to

note that E[g(X)] �= g[E(X)] in general. For instance, the next example illustrates that

E(X2) ≥ [E(X)]2 for any random variable X.
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Example: Let X denote a random variable that takes value either 1 or -1 with probability

1/2. Given that it is symmetric around zero, the expected value of X is obviously zero and

hence [E(X)]2 = 0. In contrast, the expected value of its square exceeds zero given that

E(X2) = (1 + 1)1/2 = 1.

4.6.2 Variance, covariance, and correlation

The variance measures the amount of variation and dispersion of a random variable around

the mean value. This information is paramount to any problem of statistical inference. In

finance, we are not only interested in the expected return of an investment, but also in how

risky it is. Most people prefer an investment that entails a return of 10% for sure than

one with a return of either 30% or -20% with probability 1/2 despite the fact that both

investments have en expected return of 10%. The most basic measure of risk is given by the

variance, which gauges the average magnitude of the deviations with respect to the mean

value by means of a quadratic transformation: var(X) = E [X − E(X)]2.

We could of course employ the absolute value rather than the square to measure the

magnitude of the deviation. The advantage of using squares is that it is differentiable as

opposed to the absolute value and that it is very easy to compute by means of the expectation

operator. The drawback is that taking squares potentiates the extreme values, if any, in the

data. Another disadvantage of the variance is that it is not in the same unit of the random

variable. This is however easy to remedy in that we can always consider the standard

deviation of the random variable, namely, the square root of the variance, so as to recover

the original unit of measurement.

The variance is also known as the second centered moment of the distribution. We say it

is centered because we are looking at deviations around the first moment (i.e., the expected

value). It relates to the second moment because of the focus on the second power of the

random variable. It is interesting to note that we can also write the variance as a function
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of the first two (uncentered) moments of the distribution given that

var(X) = E [X − E(X)]2 = E
(
X2 − 2XE(X) + [E(X)]2

)

= E(X2) − 2 E(X)E(X) + [E(X)]2 = E(X2) − [E(X)]2.

The properties of the expectation operator are very helpful to compute the second uncentered

moment of the distribution in view that it is not necessary to find the distribution of the

square of the random variable. Indeed,

E(X2) =





∑∞
i=1 x2

i p(xi) if X is discrete
∫ ∞
−∞ x2fX(x) dx if X is continuous

The properties of the expectation operator also imply a couple of properties for the

variance. First, the variance of an affine function of X is proportional to the variance of

X. In particular, var(aX + b) = a2 var(X) for any fixed constants a and b given that

both the second moment and the square of the first moment will depend on the square of

the slope coefficient a2 and the fact that we take deviations with respect to the expected

value will take care of the intercept b. Second, in the event that X and Y are independent

random variables, the variance of the sum is equal to the sum of the variances, that is to

say, var(X + Y ) = var(X) + var(Y ). In what follows, we demonstrate both properties by

showing that var(aX + b + cY ) = a2 var(X) + c2 var(Y ) if X and Y are independent:

var(aX + b + cY ) = E [aX + b + cY − E(aX + b + cY )]2

= E [aX + b + cY − a E(X) − b − c E(Y )]2

= E {a[X − E(X)] + c[Y − E(Y )]}2

= E
{
a2 [X − E(X)]2 + 2ac [X − E(X)][Y − E(Y )] + c2 [Y − E(Y )]2

}

= a2 var(X) + c2 var(Y ) + 2ac E[X − E(X)][Y − E(Y )].

To show that the last term is equal to zero, it suffices to appreciate that

E[X − E(X)][Y − E(Y )] = E(XY ) − 2 E(X)E(Y ) + E(X)E(Y ) = 0 (4.3)
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given that independence between X and Y implies that the expectation of the product is

the product of the expectations.

Equation (4.3) suggests a simple measure of dependence between two random variables

based on how their deviations relative to the mean co-vary. Bearing that in mind, we define

the covariance between X and Y as

cov(X, Y ) = E[X − E(X)][Y − E(Y )] = E(XY ) − E(X)E(Y ).

The intuition is simple. If the deviations of X − E(X) tend to have the same sign as the

deviations Y −E(Y ), we then say that X and Y co-move together and hence their covariance

is positive. In contrast, the covariance is negative if the deviations tend to have opposite

signs. It is possible to show that the covariance is a measure of linear dependence and

hence independence implies zero covariance (or, equivalently, orthogonality), though zero

covariance does not necessarily imply independence.
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Another drawback of the covariance is that it has a strange unit. It is in units of X times

units of Y , compromising a bit interpretability. The easiest remedy for that is to standardize

the deviations of X and Y with respect to their means by their standard deviation, giving

way to the correlation:

corr(X, Y ) =
cov(X, Y )√

var(X) var(Y )
.

The latter has no unit in contrast to the covariance. In addition, standardizing by the

standard deviation is also convenient for it makes the two deviations comparable. The

correlation also has some very nice properties. First, it is at most one in magnitude, that is,

−1 ≤ corr(X, Y ) ≤ 1. Second, as the covariance, the correlation is equal to zero if and only

if X and Y are orthogonal (or, equivalently, linearly independent). Third, as in the variance

and the covariance, the correlation is also based on expectations and hence we can employ

all of the apparatus that comes with the expectation operator.

Examples

(1) A survey classify the degree of customers’ satisfaction, say X, into a scale from 0

to 10. The answers to the survey indicate a symmetric probability distribution given by

p0 = p10 = 0.05, p1 = p2 = p8 = p9 = 0.15, p3 = . . . = p7 = 0.06. The expected degree of

satisfaction then is E(X) = (1+2+8+9)× 0.15+ (3+4+5+6+7)× 0.06+10× 0.05 = 5,

which makes sense given that the distribution is symmetric around 5. We next compute the

second moment of the customers’ satisfaction, namely,

E(X2) = (1 + 4 + 64 + 81) × 0.15 + (9 + 16 + 25 + 36 + 49) × 0.06 + 100 × 0.05 = 35.6,

implying a variance of var(X) = E(X2) − [E(X)]2 = 35.6 − 25 = 10.6 and a standard

deviation of 3.25.

(2) Let X denote a binomial random variable B(n, p) with an expected value of E(X) = np.

Instead of computing the second moment directly from E(X2) =
∑n

x=0 x2
(

n
p

)
px(1 − p)n−x,

we will take advantage of the definition of the binomial distribution as a sequence of n

independent Bernoulli essays with probability p. Let Yi, with i ∈ {1, . . . , n}, denote these
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Bernoulli essays. It then follows that var(X) = var (
∑n

i=1 Yi) =
∑n

i=1 var(Yi) given that all

the covariances are zero due to the independence between the Bernoulli essays. Now, the

variance of Yi is var(Yi) = E(Y 2
i )−[E(Yi)]

2 = p−p2 = p (1−p) and hence var(X) = n p (1−p).

(3) Let X denote a uniform random variable in the interval [α, β]: i.e., X ∼ U(α, β). We

know that the expected value of X is E(X) = (α + β)/2, whereas the second moment is

E(X2) =

∫ β

α

x2

β − α
dx =

[
x3

3(β − α)

]∣∣∣∣
β

α

=
β3 − α3

3(β − α)
.

The variance of X then reads

var(X) =
β3 − α3

3(β − α)
− (α + β)2

4
=

4(β3 − α3) − 3(β − α)(α + β)2

12(β − α)

=
4 β3 − 4 α3 − 3 β3 + 3 α3 − 6 α β2 + 6 α2 β − 3 α2 β + 3 α β2

12(β − α)

=
β3 − α3 − 3 α β2 + 3 α2 β

12(β − α)
=

(β − α)3

12(β − α)
=

(β − α)2

12
,

which makes sense in that, as a measure of dispersion, it depends on the square (Euclidean)

distance between the support bounds.

(4) Let (X, Y ) denote a bivariate random variable with density function

fXY (x, y) =




2 if 0 ≤ x < y ≤ 1

0 otherwise.

The marginal densities then are fX(x) =
∫ 1

x
2 dy = 2(1 − x) for 0 ≤ x ≤ 1 and fY (y) =

∫ y

0
2 dx = 2y for 0 ≤ y ≤ 1, with expected values of E(X) =

∫ 1

0
2x(1 − x) dx = 1

3
and

E(Y ) =
∫ 1

0
2y2 dy = 2

3
, respectively. As for the moments of second order, we start with the

covariance, namely,

cov(X, Y ) = E(XY ) − E(X) E(Y ) =

∫ 1

0

∫ y

0

2xy dx dy − 1

3

2

3
=

1

4
− 2

9
=

1

36
.

As for the variances, it follows that

var(X) = E(X2) − [E(X)]2 =

∫ 1

0

2x2(1 − x) dx − 1

9
=

1

6
− 1

9
=

1

18

var(Y ) = E(Y 2) − [E(Y )]2 =

∫ 1

0

2y3 dy − 4

9
=

1

2
− 4

9
=

1

18
,
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and hence the correlation between X and Y amounts to 1/2.

The covariance is such that cov(aX + b, cY + d) = accov(X, Y ). The intercepts b and d

have no impact in the covariance because it deals with deviations with respect to the mean

value and the latter obviously shifts with b and d as much as X and Y , respectively. Further,

the correlation is completely invariant to any affine transformation in that corr(aX + b, cY +

d) = corr(X, Y ). The extra level of robustness stems from the fact that we standardize the

deviations by the standard deviation, which changes with a and c in the same proportion as

X and Y , respectively.

4.6.3 Higher-order moments

In general, we define the kth uncentered moment of a distribution as

µk = E(Xk) =




∑∞
i=1 xk

i p(xi) if X is discrete
∫ ∞
−∞ xkfX(x) dx if X is continuous.

Similarly, we define the centered moments as µ̄k = E[X − E(X)]k. However, in most sit-

uations, we prefer to standardize the random variable not only by subtracting the mean,

but also by dividing by the standard deviation, so as to obtain a quantity that is compara-

ble across different random variables. For instance, we define skewness and kurtosis as the

standardized third and fourth moments, respectively:

sk(X) = E

[
X − E(X)√

var(X)

]3

and k(X) = E

[
X − E(X)√

var(X)

]4

.

The former gauges how asymmetric is the distribution relative to its mean value, whereas

the latter measures how thick the left and right tails are. For instance, it is very well

documented that stock returns display negative skewness and very high kurtosis, reflecting

the fact that extreme negative returns are more frequent than extreme positive returns. In

contrast, changes in exchange rates are typically symmetric around zero, though they also

exhibit very high kurtosis implying thick tails.
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4.7 Discrete distributions

In this section, we briefly review the discrete distributions we have seen in the previous sec-

tions and introduce a couple of other distribution functions that are often useful in practice.

4.7.1 Binomial

Consider a sequence of n independent experiments in which the event A may occur with

probability p = Pr(A). The resulting sample space is S = {all sequences a1, . . . , an}, where

ai is either A or Ā for i = 1, . . . , n. The random variable X that counts the number of

times that the event A occurs has a binomial distribution function B(n, p) with parameters

n (namely, the number of independent essays) and p (namely, the probability of event A).

The binomial distribution is such that

Pr(X = x) =

(
n

x

)
px (1 − p)n−x, x = 0, 1, · · · , n. (4.4)

The expected value of a binomial distribution is np, whereas the variance is np(1−p). Figure

4.2 depicts the probability distribution function and cumulative distribution function of a

binomial random variable with n = 10 and p = 0.25.
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Figure 4.2: The left and right axes correspond to the probability distribution function and
cumulative probability distribution function of a binomial random variable with n = 10 and
p = 0.25, respectively.

There are two common violations of the binomial law. The first comes in the form of

dependent Bernoulli essays, whereas the second stems from Bernoulli essays with different

probabilities. An example of the latter is the Exercise 1 in Section 4.1.1. As for the former,

dependence in the essays may entail a very strong impact in the probability distribution

function, much more than changing probabilities. Suppose, for instance, the Bernoulli essays

exhibit positive dependence. The sum of their values X = Y1 + Y2 + . . . + Yn will then have

a variance of var(X) =
∑n

i=1 var(Yi) + 2
∑n

i=2 Cov(Y1, Yi). The first term is equal to the

variance of the binomial distribution np(1 − p), which will be dominated by the second

term given that we are summing up n positive covariances. So, under positive/negative
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dependence, the binomial distribution would under/overestimate the true variance of X. In

contrast, changing probabilities will always overestimate the true variance of X as the first

(very extreme!) example illustrates.

Examples

(1) Let X = Y1 + . . . + Y20, where Y1, . . . , Y10 are always equal to one and Y11, . . . , Y20 are

always equal to zero. The true variance of X is zero, though we would estimate a probability

of 1/2 under the assumption that X is binomial and hence a variance of 5.

(2) Let X =
∑50

i=1 Yi+
∑100

i=51 Yi, where the first and second terms form binomial distributions

B(50, 0.3) and B(50, 0.7), respectively. Assuming a binomial distribution with the average

probability of p = 0.5 yields an expected value of 50 and a variance of 25. Now, we know

from Exercise 1 in Section 4.1.1 that the true probability distribution function of X is

Pr(X = k) =

min(k,50)∑
k1=max(0,k−50)

(
50

k1

)
0.3k10.750−k1

(
50

k − k1

)
0.7k−k10.350−k+k1

=

min(k,50)∑
k1=max(0,k−50)

(
50

k1

)(
50

k − k1

)
0.350−k+2k10.750+k−2k1 ,

implying a variance of about 21.

The binomial distribution has a number of applications in practice. The most fruitful

financial application is the binomial tree model of asset returns for derivatives pricing. The

simplest binomial tree assumes that stock returns are independent over time taking value

either ∆ or −∆ with probability 1/2. Running such a model for a large number of periods

yield the same solution for the price of a derivative as the Black-Scholes model. This is

not surprising given that a binomial distribution B(n, p) converges to a normal distribution

N
(
np, np(1− p)

)
as the number of periods n increases (see Figure 4.3). To make the model

more realistic, the most advanced versions of the binomial tree may include time-varying

probabilities and/or dependence over time, which of course contradict the assumptions of

the binomial distribution.
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Figure 4.3: The probability distribution function of a binomial random variable resembles
more and more the symmetric bell shape of a normal distribution as the number of essays
increases. The plots refer to binomial distributions with p = 0.25 and n ∈ {10, 15, 20}.

Before applying the binomial distribution, we must make sure that the assumptions of

constant probability and independence hold. For instance, if we perform a survey by phone

between 16:00 and 20:00, the binomial distribution is probably not a good idea given that

it is very likely that the audience changes with the time of the day, especially before and

after working hours. Similarly, we cannot assume a binomial distribution if the interest lies

on the number of stocks with negative returns in a given week. These are not independent

events in that there are common factors that affect different stocks at the same time (e.g.,

the energy sector depends heavily on the price of oil).
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4.7.2 Hypergeometric

The hypergeometric distribution arises in situations in which we draw a sample of n units

from a population of size N consisting of two distinct groups of size N1 and N − N1, with

n < min(N1, N2), and we define X as the number of units in either one of the groups, say

the first group. We know from Section 3.2.4 that the probability of any event A is given by

the ratio of the number of possible outcomes in A to the total number of possible outcomes.

Accordingly,

Pr(X = x) =

(
N1

x

)(
N−N1

n−x

)
(

N
n

) with 0 ≤ x ≤ n

given that there are
(

N1

x

)
ways of choosing x from the N1 units of the first group,

(
N−N1

n−x

)
ways

of choosing the remaining n − x units from the second group, and
(

N
n

)
ways of choosing a

sample of n units from a population of size N . Figure 4.4 displays the probability distribution

function and cumulative distribution function of a hypergeometric random variable with

N = 50, N1 = 25, and n = 10.
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Figure 4.4: The left and right axes respectively correspond to the probability distribution
function and cumulative probability distribution function of a hypergeometric random vari-
able with N = 50, N1 = 25, and n = 10.

The hypergeometric distribution has an expected value of E(X) = nN1/N and variance

of var(X) = n N1

N

(
1 − N1

N

)
N−n
N−1

. If the population size is much larger than the sample size

(i.e., N � n), the hypergeometric converges to a binomial distribution with probability

p = N1/N . Although the binomial approximation entails exactly the same expected value,

the variance differs by a small-sample correction factor N−n
N−1

. This happens because the

only difference between the binomial and hypergeometric distributions is that the binomial

samples with reposition, whereas the hypergeometric samples without reposition and hence

the probability changes in a very particular way as we keep sampling the population. See

the quality control problem in the end of Section 3.2.4, for instance.
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Example: Consider a population of 87 financial analysts in which 13 are from one of the

largest financial institutions in the world. Suppose we wish to form a committee with 10

financial analysts, but there is a concern that too many could come from this big institution.

A rough estimate based on the binomial distribution for the probability of observing two

financial analysts from the above financial institution is

Pr(X = 2)
B∼

(
10

2

)(
13

87

)2(
74

87

)8

∼= 0.275,

whereas the true probability given by the hypergeometric is

Pr(X = 2) =

(
13
2

)(
74
8

)
(
87
10

) ∼= 0.294.

4.7.3 Geometric

The setup of the geometric distribution is similar to that of the binomial. We conduct

independent essays with probability p of success. In contrast to the binomial, the interest

lies on how many essays are necessary to observe the next success. This means that we fix

the number of success to one and let instead the number of essays to vary randomly. Letting

X denote a geometric random variable yields

Pr(X = x) = p(1 − p)x−1 with x = 1, 2, 3, · · ·

The name of the distribution comes from the fact that the cumulative probability distribution

function depends on the sum of a geometric progression. Figure 4.5 plots the probability

distribution function and cumulative distribution function of a geometric random variable

with p = 0.25.

Summing all possible outcomes yields

∞∑
x=1

Pr(X = x) =
∞∑

x=1

p(1 − p)x−1 =
p

1 − (1 − p)
= 1.

Along the same lines, it is possible to show that the expected value and variance of the

geometric distribution are respectively 1/p and (1−p)/p2. In addition, Exercise 2 of Section
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4.1.1 shows that a geometric random variable has no memory and hence the link with the

exponential distribution in (4.8).

Figure 4.5: The left and right axes correspond to the probability distribution function and
cumulative probability distribution function of a geometric random variable with p = 0.25,
respectively.

4.7.4 Negative binomial

The last variation of the binomial distribution is the negative binomial. It has this name for

it inverts the problem of the binomial distribution in that X denotes the number of Bernoulli

essays that are necessary to observe k successes. If you wish, the negative binomial extends

the geometric distribution in that we wait for k rather than only one success to occur. The
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probability distribution function of the negative binomial is

Pr(X = x)

(
x − 1

k − 1

)
pk(1 − p)x−k with x ≥ k.

Note that we employ the combination
(

x−1
k−1

)
because we know that the last essay must

result in a success. A negative binomial variate has an expected value of k/p, with variance

of k(1 − p)/p2. Figure 4.6 displays the probability distribution function and cumulative

distribution function of a negative binomial random variable with p = 0.25 and k = 3.
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Figure 4.6: The left and right axes correspond to the probability distribution function and
cumulative probability distribution function of a negative binomial random variable with
p = 0.25 and k = 3, respectively.

4.7.5 Poisson

The Poisson distribution provides the simplest way to model events that occur at random over

time. It assumes that there is a constant arrival rate within a time interval and that events

are independent over time. There are a handful of applications for the Poisson distribution

in practice. Electricity providers could well employ a Poisson distribution to model the

occurrence of electrical tempests in the areas they serve (though storms could exhibit spatial

dependence). Call centers typically assume a Poisson distribution for the number of phone

calls they receive within a given interval of time (though there could exist an underlying event

triggering many calls at approximately the same time, see example below). Commercial
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banks normally employ a Poisson distribution to model how many clients will default on

their loan payments within a given month (though it is hard to argue for independence in

periods of financial distress).

Let X denote the number of events that occur within a given time interval. We say that

X has a Poisson distribution with arrival rate λ if its probability distribution function is

given by

Pr(X = x) =
e−λλx

x!
, with x = 0, 1, 2, · · ·

The arrival rate of λ is relative to the time interval of reference. For instance, if we are

dealing with an arrival rate λ per minute, then we expect 5λ events within a 5-minute time

interval. It turns out that both the expected value and variance of a Poisson are equal to

λ. Figure 4.7 portraits the probability distribution function and cumulative distribution

function of a Poisson random variable with an arrival rate of lambda = 5.

Example: To make the emergency call center more efficient, we must model the number of

incoming telephone calls to the emergency number so as to better understand the likelihood

of events such as more than 10 phone calls within a 5-minute time interval. We would

presumably expect that the number of incoming calls between 18:00 and 19:00 is larger than

the number of phone calls between 04:00 and 05:00. This implies that the arrival rate of

emergency calls is different depending on the time of the day and hence we have to apply

different Poisson distributions for different time periods.

Although the Poisson distribution seems very different from the binomial distribution,

there is a close link between them. To see why, let’s think about we would model the type

of situation that calls for a Poisson distribution by means of a binomial distribution. The

first step is to split the time interval of reference into n very short subintervals of equal

length. The idea is to have small enough subintervals so as to ensure that the probability

of observing more than one event within a subinterval is negligible in comparison with the

probability of at most one occurrence. In other words, there is either 0 or 1 event in each
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subinterval. This paves the way to the use of a binomial distribution given that we can now

model this sequence of subintervals as a sequence of Bernoulli trials.

It remains to decide upon the probability p of observing the event, which should somehow

relate to the arrival rate λ of the Poisson distribution. We know that, on average, there are

λ ∆t events within a time interval of length ∆t. Splitting ∆t into n subintervals of time

yields on average np events within ∆t. It now suffices to equate the expected number of

events under the binomial assumption with the arrival rate of the Poisson distribution to

obtain p = λ ∆t
n

. Next, we consider a random variable X that counts the number of events

within a time interval of length, say, ∆t = 1.

Figure 4.7: The left and right axes correspond to the probability distribution function and
cumulative probability distribution function of a Poisson with an arrival rate of λ = 5,
respectively.
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We first compute from the binomial distribution the probability of not observing any

event: Pr(X = 0) = (1 − p)n =
(
1 − λ

n

)n
. However, we may think of imposing n → ∞ so as

to ensure that the subintervals are small enough. This leads to Pr(X = 0) = e−λ. We next

compute a recursive relation for the probability distribution function under the binomial

assumption, namely,

Pr(X = k) =

(
n

k

)
pk(1 − p)n−k

=
n!

k!(n − k)!
pk−1(1 − p)n−k+1 p

1 − p

=

(
n

k − 1

)
pk−1(1 − p)n−k+1 n − k + 1

k

p

1 − p

=
(n − k + 1)p

k(1 − p)
Pr(X = k − 1)

=
λ − (k − 1)p

k(1 − p)
Pr(X = k − 1)

given that p = λ/n. Taking limits (n → ∞ or, equivalently, p → 0) then yields Pr(X = k) =

λ
k

Pr(X = k− 1). In particular, Pr(X = 1) = λ e−λ for k = 1, Pr(X = 2) = λ2

2
e−λ for k = 2,

and so on. In general, Pr(X = k) = λk

k!
e−λ just as in the Poisson distribution.

84

Probability distributions

Download free eBooks at bookboon.com



Statistics for Business and Economics

 
87 

The above discussion about the intimate link between the binomial and Poisson distri-

butions is interesting because it motivates why so many credit institutions employ a Poisson

distribution to model the arrival rate of credit defaults. Although the binomial distribution

is theoretically more suitable, it is difficult to handle the probability distribution function of

a binomial random variable if n is too large. As the probability of a credit default is typically

very small (at least in a developed economy and in periods of normal activity), this is the

ideal setup for a Poisson approximation of the binomial distribution.

4.8 Continuous distributions

In this section, we briefly review the few continuous distributions that we have seen in the

previous sections. In addition, we introduce a series of other continuous distributions, most

of them deriving from the normal distribution. Also known as the Gaussian distribution,

the latter is the most important distribution in statistics not only because it is often a good

assumption in practice, but also because it naturally arises in theory to approximate the

distribution of the sample mean of any random variable (regardless of its distribution). This

last result is known as the central limit theorem, which we will study in Section 5.2.

4.8.1 Uniform

This is the continuous counterpart of equiprobable events in that any interval of a given

length within the support of the distribution will have exactly the same probability. More

formally, let X denote a uniform random variable in the interval [α, β], with density function

fX(x) =




1
β−α

, if α ≤ x ≤ β

0, otherwise.

We have already shown that the expected value of a uniform random variable is given by

the average between the upper and lower limits of the support, i.e., E(X) = α+β
2

, whereas

the variance is var(X) = (β−α)2

12
.

Example: Suppose that the delay of a given tram is uniformly distributed between 0 and
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20 minutes during winter. This means that the probability of observing a delay of at least

8 minutes is

Pr(X ≥ 8) = 1 − Pr(X ≤ 8) = 1 − FX(8)

=

∫ 20

8

1

20
dx = 1 −

∫ 8

0

1

20
dx

= 1 − 8

20
=

12

20
= 3/5.

4.8.2 Exponential

The exponential distribution arises in a setting very similar to the one of the Poisson distri-

bution. The difference is that the interest now lies on the time spell we must wait to observe

the next event. As in the Poisson context, we assume that events are independent over time

and the arrival rate is constant. Applications abound in quality control, including fatigue

and reliability analysis. In finance, there is a new strand of the literature that aims to model

the time between trades so as to better understand market activity. In addition, it is also

interesting to observe how much time it takes to observe a change in prices for it conveys

information about market volatility. Finally, labor economists are keen on carrying out du-

ration analyses so as to study unemployment spells and time to promotions. In general, the

exponential distribution plays a major role in duration analysis regardless of whether the

duration has an economic, financial or quality-control interpretation.

The density function of an exponential variate is fX(x) = 1
λ

e−λx with x > 0 (zero

otherwise), whereas the survival function SX(x) = 1 − FX(x) = Pr(X > x) is given by

Pr(X > x) =

∫ ∞

x

fX(t) dt = 1 −
∫ x

0

1

λ
e−t/λ dt = e−x/λ.

This naturally means that the cumulative distribution function is FX(x) = 1−e−x/λ, though

it is more common in duration analysis to talk about the survival function. Both the expected

value and the standard deviation of the exponential distribution are equal to λ, which reminds

us again of the Poisson distribution whose expected value is equal to the variance. Figure
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4.8 portraits the probability density and distribution functions of a standard exponential

random variable (i.e., λ = 1).

As aforementioned, the exponential distribution somewhat resembles the geometric dis-

tribution in that it features no memory given that

Pr(X > s + t|X > s) =
Pr(X > s + t)

Pr(X > s)
=

e−(s+t)/λ

e−s/λ
= e−t/λ = Pr(X > t).

The probability of waiting another interval of time of at least t is constant regardless of how

much we have been waiting for.
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Figure 4.8: The left and right axes respectively correspond to the probability density and dis-
tribution functions of a standard exponential random variable, that is to say, an exponential
with λ = 1.
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4.8.3 Normal and related distributions

The normal (or Gaussian) is the fundamental distribution in statistics not only because it

naturally appears in a wide array of situation, but also because of the central limit theorems

that ensure it provides a good approximation in large samples for the sample mean of almost

any random variable. The normal distribution is also easy to manipulate for a number of

reasons. First, it is completely characterized by its mean and variance, which we denote by

µ and σ2, respectively. Second, in contrast to the distributions we have seen so far, there is

no connection between the mean and variance of a Gaussian variate. This confers an extra

level of flexibility to the normal distribution, explaining why it seems to work well in all sorts

of situations. Third, the normal distribution is close under affine transformations in that a

linear combination of Gaussian random variables is also Gaussian.
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The density function of a normal random variable is given by

fX(x) =
1√

2 π σ2
exp

[
−1

2

(
x − µ

σ

)2
]

with −∞ < x < ∞.

We denote a normal random variable with mean µ and variance σ2 by X ∼ N (µ, σ2).

There is no closed-form solution for the cumulative distribution function of a normal random

variable and hence we must tabulate it. Naturally, it would be impossible to evaluate the

distribution function of X ∼ N (µ, σ2) for every value in the real line and for every mean-

variance combination.

Figure 4.9: The left and right axes correspond to the probability density and distribution
functions of a standard normal random variable, respectively.

To circumvent this problem, we tabulate only the standard normal distribution N (0, 1),

which has zero mean and unit interval, given that we can obtain any other normal distribution
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by means of a simple affine transformation: Z = X−µ
σ

∼ N (0, 1) if X ∼ N (µ, σ2). The

standard normal distribution and density play such a major role in statistics that we denote

them by Φ(·) and φ(·), respectively. The latter is φ(z) = 1√
2π

exp
(
−1

2
z2

)
for z ∈ R. Figure

4.9 displays the probability density and distribution functions of a standard normal random

variable.

The normal distribution is symmetric and hence all odd centered moments are equal

to zero. In contrast, the variance of the normal distribution determines the magnitude

of every even centered moment. For instance, the kurtosis of the normal distribution is

k(X) = E
[

X−µ
σ

]4
= E(Z4) = 3 and that’s why some people refer to k(X) − 3 as excess

kurtosis. Figure 4.10 shows precisely how increasing the dispersion affects the shape of a

normal density function and hence the probability of observing extreme realizations.

Figure 4.10: The probability density function of a normal random variable with zero mean
and standard deviation σ ∈ {1, 2, 3}.
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Figure 4.11: The first panel plots the probability density and distribution functions of a
chi-square random variable in the left and right axes, respectively. The second panel shows
how the shape of the chi-square density changes with the degrees of freedom.

The normal distribution gives way to a number of interesting distributions depending

on how we transform it. In what follows, we discuss two distributions that derive from the

Gaussian distribution and are of particular interest in the context of statistical inference.

The first is the chi-square distribution, which consists of the sum of a number of squared

independent standard normal random variables. Let Zi ∼ N (0, 1) denote a sequence of

mutually independent standard normal distributions for i = 1, . . . , N . It then follows that

χ2
N =

∑N
i=1 Z2

i is a chi-square distribution with N degrees of freedom. The mean of χ2
N is N ,

whereas its variance is twofold amounting to 2N . The chi-square is important in a number

of situations. For instance, the chi-square distribution arises in a very natural manner if

we wish to compute the probability that a standard normal random variable belongs to

a symmetric interval around zero. Figure 4.11 not only plots the probability density and

distribution functions of a chi-square random variable, but also shows how it changes with

the degrees of freedom.
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Figure 4.12: The first panel plots the probability density and distribution functions of a
t-student random variable in the left and right axes, respectively. The second panel shows
how the shape of t-student density varies with the degrees of freedom.

The second is the t-student distribution, which stems from a ratio of a standard normal

distribution to the square root of an independent chi-square distribution divided by its

degrees of freedom. In particular, we denote a t-student with N degrees of freedom by tN =

Z0√
1
N

N
i=1 Z2

i

, where Zi’s are independent standard normal distributions for i = 0, 1, . . . , N .

The t-student is symmetric around the origin and hence has mean zero. In turn, the variance

of a t-student random variable is N/(N − 2), with N denoting the degrees of freedom. It is

easy to see that the variance is ill-defined if there are not enough degrees of freedom in that

N ≤ 2 implies a negative variance. This is true in general for the t-student distribution in

that the kth moment exists if and only if the degrees of freedom exceed k. We will see later

that the t-student distribution is paramount to hypothesis testing under the assumption of

normality.

Figure 4.12 depicts the probability density and distribution functions of a t-student ran-

dom variable with 3 degrees of freedom in the first panel, whereas the second panel illustrates

how the shape of its density changes with the degrees of freedom. In particular, it is notice-

able that the t-student converges to a standard normal distribution as the degrees of freedom

increase.
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Chapter 5

Random sampling

They way we collect the data is extremely important because, ideally, we would like to end

up with a random sample. The latter consists of independent and identically distributed

(iid) observations from the population. This is the ideal setup for two reasons. If data are

independent, then it is easy to characterize the joint distribution because it is equivalent to

the product of the marginals. In addition, if the data come from a common distribution,

the marginals are all identical, thereby depending on the same vector θ of parameters. We

formalize these ideas using the joint density function of a random sample X = (X1, . . . , XN),

namely, fX(x1, . . . , xN) =
∏N

i=1 fXi
(xi) =

∏N
i=1 fX(xi; θ). The first equality follows from in-

dependence, whereas the second ensues from the fact that the elements of the random sample

are identically distributed. We typically represent a random sample by Xi ∼ iid fX(·; θ) for

i = 1, . . . , N .

Data collection is not easy. It is indeed quite difficult to design a data sampling procedure

that is free of any bias. The most common problems in business and economics relate

to censorship, selection, survivorship, and no-answer biases. Censorship bias takes place

whenever we cannot observe data within a given interval. For instance, if there are price

limits in a stock exchange, we cannot observe stock prices either above the upper limit or

below the lower limit given by the maximum daily oscillation. In such a context, censoring

may occur for, even if the equilibrium price moves above or below the limits, we observe at

most a price at one of the limits. The similar problem arises in exchange-rate target zones.
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The only difference is that a successful speculative attack against the currency may cause

the break of the target zone (i.e., price limits). A very different situation in which censorship

plays a major role is in labor economics. For instance, if we are measuring how much time it

takes for an individual to obtain a promotion, our data set will invariably include individuals

who haven’t been promoted yet. So, the most we can say is that the time to promotion of

these individuals is larger than the number of periods we have been observing them in our

sample.

Selection bias occurs in the event that the sampling procedure is such that the data

tend to come from a specific group within the population. For instance, in most developing

countries, women must decide whether they join the work force or stay at home full time

taking care of the house chores, whereas men rarely have such an option. This means that we

cannot directly compare the salary of male and female workers. They are different not only

in gender, but also because female workers have taken a previous decision to join the labor

market, whereas men didn’t. Taking such a decision shows some degree of ambition and

determination that is probably correlated with productivity and hence with salary. That is

why a simple comparison of wage differentials will normally underestimate the discrimination

against women in the labor market. The same reasoning applies to immigrants, as well. The

simple fact that they have taken a previous decision to migrate, while others in the same

situation didn’t, indicates that they form a different group (perhaps more ambitious, focused,

and determined). In finance, selection bias may also affect asset returns through a liquidity

(rather than competition) channel. Illiquid assets by definition trade less frequently than

liquid assets and hence they are much more likely to exhibit price staleness. If transaction

prices do not change, then the return is zero. However, zero returns are not really reflecting

the true change in the value of the asset in that they are merely an artifact due to illiquidity.

This means that we cannot treat zero returns and nonzero returns in the same way.

Survivorship bias arises whenever we are looking at a sample of individuals/firms/units

resulting from some sort of competition. Although it is much more natural to think about
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survivorship bias in biology, where evolution establishes intense competition among different

genes, examples abound in economics, finance, and management. For instance, hedge funds

that perform poorly end up managing less funds that those doing well. As most indices

are weighted by assets under management, they tend to reflect more the performance of

the hedge funds that perform well over time, overestimating the overall performance in the

industry. In fact, hedge funds that perform systematically poorly end up closing their doors,

thereby disappearing from databases at a certain point in time. Survivorship bias then arises

very strongly if we collect data by sampling the returns of all funds that currently exist since

some date in the past. To avoid such a bias, we must first choose the starting data and then

collect the data of all funds were operational since then. In this way, the data set would

include not only the successful funds that are still in action, but also those that did do very

well and ceased to exist.

The no-answer bias is very common in surveys. People who have strong opinions, es-

pecially negative, are typically much more inclined to answer a survey. That’s why most

lecturers are very keen to publicize teaching evaluation surveys to students. If they don’t,

it is very likely that the answers will have a negative bias for students that do not have

many criticisms will presumably not bother to answer the survey as much as the students

who are not happy. In work environments, we could well argue that workaholics tend not to

respond work-unrelated surveys (e.g., menu of the eatery) for they prefer to dedicate their

time to more productive tasks (it is also very likely that they bring their own sandwich from

home to spend less time in lunch breaks!). This means that work-unrelated surveys will not

represent entirely the views of the population in the firm due to the lack of answers from

the workaholics.

Example: Suppose a commercial bank would like to work out how many days on average

it takes to process a cheque. The cost of sampling all cheques is prohibitively high and hence

the person in charge decides to draw a sample of 1,000 cheques. The snag is how to draw a
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random sample given that we cannot simply tag all cheques with a number and then draw

from a discrete uniform distribution. One solution is to draw every mth cheque that the

bank processes until we observe 1,000 cheques. This type of sampling is not entirely random

in that we will never observe two consecutive cheques (from the same firm, perhaps!) in the

sample, but it should do the trick reasonably well.

The above example illustrates well the fact that random sampling is an abstract notion.

In some situations, it is virtually impossible to draw a completely random sample, and hence

we must do with samples that are “ random enough”. The next series of examples are more

concrete in that they establish alternative procedures to draw a random sample in all sort

of setups.
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Examples

(1) Suppose a marketing firm wishes to interview 1,000 households in a town. One solution

is to draw from a discrete uniform distribution random numbers that identify households

given their addresses (or post codes). The interviewer then visit the address between 15:00

and 18:00 and, if no one answer, that we eliminate that address and replace by another

drawn at random from the same discrete uniform distribution.

(2) Suppose a bookstore in the university campus wishes to evaluate the stock of textbooks

before the beginning of the term. We may draw a random number that identifies a given

location in the shelves and then check the textbook in that location as well as the 50 closest

textbooks.

(3) A manager would like to assess the performance of the cleaning staff. Her assistant

comes up with two assessment strategies. The first involves inspecting 15 offices completely

at random, whereas the second strategy chooses one office at random from each of the three

floors of the building and then inspect them as well as the 9 offices closest to each of them.

The time to completion is the same for both strategies despite the fact the second strategy

inspects the double of offices. The manager decides for the first strategy for it really entails a

random sample. She rightly explains to her assistant that, even though the second strategy

seems more efficient at first glance, it is less convenient for it would not generate a random

sample. The reason is simple. The allocation of the cleaning staff is typically by wing and

floor, and hence, by restricting attention to a given area of the floor (i.e., the neighborhood

of the sampled office), she would risk to assess the work of a particular subset of janitors

rather than the overall performance of the cleaning staff.

5.1 Sample statistics

Let X = (X1, . . . , XN) denote a random sample with density function fX(·; θ). We don’t

know the true value of the vector θ of population parameters and so the goal is to infer

it from the realization of the random sample, say, x = (x1, . . . , xn). Note that x is just
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one possible realization for the random sample X with probability mass given by the joint

density function evaluate at x, namely, fX(x; θ) =
∏N

i=1 fX(xi; θ).

Example: Let the random variable X come from a discrete uniform distribution that takes

integer values between 1 and 6. This means that the sample space is {1, 2, 3, 4, 5, 6}, whose

elements are drawn with probability 1/6. Suppose now that we take three random samples

of three observations, say (1, 1, 4), (2, 4, 5), and (2, 3, 2). Their sample means are respectively

2, 11/3, and 7/3, though the expected value of X is (1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2.

What we wish to illustrate with the above example is that the sample mean is also a

random variable, whose distribution depends on the distribution from which we draw the

random sample. Accordingly, the value we observe for the sample mean varies with the

sample we actually draw. Each different sample yields a distinct value for the sample mean.

Needless to say, this holds for any function g(X) = g(X1, . . . , XN) of the sample, which

we call sample statistic. To conduct inference, we must always bear in mind that a sample

statistic is random and hence we must determine its distribution, which we call sampling

distribution.

Example: Let X = (X1, . . . , XN) denote a random sample from a normal distribution

with mean µ and variance σ2, i.e., Xi ∼ iid N (µ, σ2). The sample mean X̄N = 1
N

∑N
i=1 Xi is

a random variable with expected value

E(X̄N) = E

(
1

N

N∑
i=1

Xi

)
=

1

N

N∑
i=1

E(Xi) =
1

N

N∑
i=1

µ =
1

N
(Nµ) = µ

and variance

var(X̄N) = var

(
1

N

N∑
i=1

Xi

)
=

1

N2

N∑
i=1

var(Xi) =
1

N2

N∑
i=1

σ2 =
1

N2
(Nσ2) = σ2/N.

Finally, as the sample mean is a linear combination of normal random variables, it is also

normal. We thus conclude that X̄N ∼ N (µ, σ2/N), which differs from the normal distribution

from which we draw the sample.
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In the next section, we will show that, as long as the sample size is large enough, normality

is often a very good approximation for most sampling distributions, even if the distribution

from which we draw the sample is not normal (and even unknown). The next example

concludes this section by depicting such a situation.

Example: The number of transactions on the Macau stock market is on average of 62,000

trades per week with a standard deviation of 7,000. Suppose now that we take note of the

number of transactions per week within a year. The expected value of the sample mean is

E(X̄N) = 62, 000 trades per week, with a variance of var(X̄N) = 7, 0002/52 = 942, 307.69

given that there are 52 weeks in a year. The normal approximation for the sample mean

distribution yields a probability of observing a sample mean at least two standard deviations

away from its mean, i.e., Pr
(∣∣∣ X̄N−62,000

942,307.69

∣∣∣ > 2
)
, of about 5%.
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5.2 Large-sample theory

In this section, we will discuss how to approximate the sampling distribution of a statistic in

general. In particular, we will talk about asymptotic approximations in that we will let the

sample size grow to infinity. Although these results hold only in the limit, we will see that

they often provide a good guidance to the behavior of most statistics as long as the sample

size is large enough. What is ‘large enough’ will of course depend on the task at hand. If we

employ asymptotic results to approximate the distribution of the mean of a random sample

coming from a uniform distribution, large enough could mean even 5 observations.

We first discuss what we mean by limit theory in the context of random variables. In

particular, we establish several modes of convergence for sequences of random variables.

Next, we establish some convergence results for sample means given that they play a major

role in statistics. There are two asymptotic results that permeate almost any problem of

statistical inference: Laws of large numbers say that sample means converge (in some sense

that we will precise in the next section) to the population mean, whereas central limit

theorems single out the conditions under which we can approximate the distribution of a

sample mean with a normal distribution.

5.2.1 Modes of convergence

Let X1, X2, . . . denote a sequence of random variables, which we denote simply by XN despite

of the abuse of notation. We say that XN converges in probability to a constant a, which

we denote by XN
p−→ a, if limN→∞ Pr(|XN − a| < ε) = 1 for any ε > 0. We call a the

probability limit of XN , which we denote by plimN→∞XN = a. The probability limit is a

natural generalization of the mathematical notion of a limit. A stronger mode of convergence

follows if we switch the order of the limit and probability operators. Indeed, it is much

more stringent to impose that Pr (limN→∞ XN = a) = 1 for it constrains the function that

the random variables in the sequence XN use to map the sample space to the real line.

This is what we call almost sure convergence or, equivalently, convergence with probability
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one, which we denote by XN
a.s.−→ a. Mean squared convergence denotes a situation in

which a sequence XN of random variables converge in mean square to a constant a in that

limN→∞ E(XN − a)2 = 0. We then say that a is the mean square limit of the sequence XN

and write XN
m.s.−→ a.

These modes of convergence admit various extensions. For instance, we can consider the

convergence to a random variable by writing that XN
fmc−→ X if and only if XN − X

fmc−→ 0,

where fmc ∈ {p, a.s., m.s} denotes your favorite mode of convergence. In addition, we

can also think of sequences of random vectors (or matrices) rather than sequences of scalar

random variables. In this event, it suffices to apply your favorite mode of convergence

element-wise.

The modes of convergence we have seen so far are pretty strong in that the sequence of

random variables in the limit becomes degenerate given that it converges to a simple constant

(without any form of randomness). In contrast, convergence in distribution deals with limit-

ing distributions. We say that XN converges in distribution to X if limN→∞ FXN
(x) = FX(x)

for any x ∈ R. We call FX the asymptotic (or limiting) distribution of XN and denote this

mode of convergence by XN
d−→ X or XN

d−→ FX .

Convergence in distribution is the weakest of the convergence definitions in that we con-

strain only the distribution of the random variable and not the values it take. In particular,

it is possible to show that

XN
a.s.−→ X

XN
m.s.−→ X


 ⇒ XN

p−→ X ⇒ XN
d−→ X.

As before, we can also extend the notion of convergence in distribution to a multivariate

setting (i.e., to random vectors).

Finally, we conclude this section by showing how to manipulate and combine the different

modes of convergence. We first note that g(XN)
p−→ g(X) if XN

p−→ X and that g(XN)
d−→

g(X) if XN
d−→ X provided that g(·) is a continuous function. This pair of results is known

as the continuous mapping theorem. The Slutsky theorem is one of the various applications
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of the continuous mapping theorem, ensuring not only that XN +YN
d−→ X +a if XN

d−→ X

and YN
p−→ a, but also that XNYN

p−→ 0 if XN
d−→ X and YN

p−→ 0. Finally, it is easy to

see that AN XN
d−→ A X if XN

d−→ X and AN
p−→ A, as well.

Example: Let XN denote a k-dimensional random vector such that XN
p−→ µ and

√
N(XN − µ)

d−→ Z, where µ is a vector of constants and Z is a random vector with

some known distribution. Let now α(·) : Rk �→ Rr denote a multivariate function with

continuous first-order derivatives. It then follows from a simple first-order Taylor expansion

that
√

N
(
α(XN) − α(µ)

)
d−→ A Z, where A = ∂α(µ)

∂µ′ . To appreciate why, note that the

first-order Taylor expansion is α(XN) = α(µ)+ ∂α(µ∗)
∂µ′ (XN −µ) with µ∗ = λµ+(1−λ)XN

for some λ in the unit interval. Multiplying both sides by
√

N then yields the result given

that µ∗
p−→ µ for any λ provided that XN

p−→ µ.

The above example illustrates the delta method, which consists of a useful tool to derive

the asymptotic distribution of a known function of a statistic. It is interesting to note that,

even though the example assumes that XN converges in probability to a vector of constants,

it suffices to multiply by
√

N to avoid the convergence in probability and obtain convergence

in distribution. The next section discusses more thoroughly the conditions under which this

may happen in the context of sample means.

5.2.2 Limit theory for sample means

We can write most statistics of interest as sample means. For instance, the sample variance

is the sample mean of the squared deviations with respect to the mean value in the sample.

This means that we can learn a lot about the asymptotic behavior of most statistics if

we understand well what happens with a generic sample mean in large samples. In what

follows, we will discuss two sorts of asymptotic results: Laws of large numbers (LLN) handle

convergence in probability and almost sure convergence, whereas central limit theorems

(CLT) deal with convergence in distribution for sample means.
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We start with Chebyshev’s weak law of large numbers, which posits that X̄N ≡ 1
N

∑N
i=1 Xi

p−→

µ if limN→∞ E(X̄N) = µ and limN→∞ var(X̄N) = 0. It is easy to see why this result hold by

noting that these moment conditions essentially ensure convergence in mean square, which

in turn implies convergence in probability. Also, the above result does not require a random

sampling given that we are not necessarily imposing that E(Xi) is constant for i = 1, . . . , N .

If we compute the sample mean of a random sample, it then suffices to assume that E |X| < ∞

to obtain X̄N
p−→ µ ≡ E(X). We will refer to this result as Khintchine’s weak law of large

numbers for random samples. By imposing a slightly more stringent condition, it is also

possible to show that the sample mean almost surely converge to the true mean of a random

sample (also known as Kolmogorov’s strong law of large numbers).

Finally, we tackle the asymptotic distribution of a sample mean by means of Lindeberg-

Lévy central limit theorem, which says that
√

N(X̄N − µ)
d−→ N (0, σ2) as long as Xi is iid

with E |Xi|2 < ∞. To sum up, a sample mean X̄N of iid random variables with finite mean

and variance is such that X̄N
a.s.−→ µ (due to LLN) and

√
N(X̄N − µ)

d−→ N (0, σ2) (due to

CLT).

There is a whole bunch of different laws of large numbers and central limit theorems that

deal with all sorts of settings. Extensions include, among others, LLN and CLT for random

variables that are dependent and/or non-identically distributed as well as for random vectors

and matrices. Although there is not much gain in showing/memorizing all the different

conditions under which we can derive either a LLN or a CLT, it is important to know that

such results exist for a wide array of situations.

Example: Let us revisit the last example of Section 5.1. Assuming that the number of

transactions per week on the Macau stock exchange is iid over time, with some finite mean

and variance, ensures that the normal approximation for the distribution of the sample

mean will work well in practice. However, it is sort of risky to assume that the number of

transactions per week is independent over time. A simple inspection of a time series plot
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for such a series would typically indicate that market activity cluster over time. Although

this does not affect the application of Chebyshev’s weak LLN, we must consider a CLT

that allows for dependence over time. There are indeed several central limit theorems that

relax the assumption of independence (which we will not review here given that they impose

primitive conditions that restrict the dependence between observations in quite complicated

manners).
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Chapter 6

Point and interval estimation

An estimator is a statistic that we employ to estimate an unknown population parameter

such as, for example, a population mean. It is also a random variable in that its value

depends on the particular realization of the sample. A parameter estimate then is the value

that we observe for an estimator given the sample. The next example illustrates the fact

that we can always think of many different estimators for a given quantity.

Example: Let X denote a Gaussian random variable with mean 1/3 and unknown

variance, that is, X ∼ N (1/3, σ2). Suppose that we draw a random sample of 5 observations

with values: x1 = 1
3
, x2 = 1

4
, x3 = 1

2
, x4 = 1

3
, and x5 = 2

9
. We could estimate the population

mean by any of the following estimators:

1. µ̂1 = X1, which produces an estimate of 1
3
;

2. µ̂2 = X1+X4

2
, which entails an estimate of 1

3
;

3. µ̂3 = X2, giving way to an estimate of 1
4
; and

4. µ̂4 = X̄5 = 1
5

∑5
i=1 Xi, leading to an estimate of 59

180
.

Needless to say, the list above is not exhaustive at all and many other estimators exist

for the population mean. That’s exactly why we must come up with some criteria to choose

between estimators. Sections 6.1.1 to 6.1.3 discuss some intuitive criteria, whereas Sections

6.1.4 and 6.1.5 describe the two most popular estimation methods in statistics. Regardless of
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the method we employ, the usual estimation procedure involves three steps. First, we must

draw/observe a random sample from the population of interest. Second, we must calculate

a point estimate of the parameter. By point estimation, we mean assigning a unique value

to the estimate as opposed to an interval of possible values as in interval estimation. Third,

we must compute a measure of variability for the estimator that accounts for the sampling

variation in the data. This often takes the form of computing confidence intervals.

In what follows, we first discuss point estimation and then turn attention to the more

interesting problem of interval estimation. We say interval estimation is more interesting for

it allows us to bridge the two main strands of statistical inference, namely, estimation and

hypothesis testing.

6.1 Point estimation

We denote by θ̂N a point estimator of θ based on a sample of N observations, though we will

sometimes omit the dependence on the sample size to simplify notation. We next define in

a more formal manner what we mean by point estimator.

Consider a sample X(N) = (X1, . . . , XN) of N random variables that we denote by Xi

for i = 1, . . . , N . We know that a statistic is a function of the sample X(N) and we define

a point estimator as a statistic θ̂N ≡ θ̂(X(N)) ≡ θ̂(X1, . . . , XN) that we employ to infer the

value of a parameter θ of the joint distribution of X(N) = (X1, . . . , XN). The parameter

estimate is the realization of the estimator, that is to say, θ̂N ≡ θ̂(x1, . . . , xN). Note the

abuse of notation in that we refer to both estimator and estimate as θ̂N .

There are several possible estimators for any parameter θ and hence we will discuss in

what follows the sort of properties we would like our estimator to hold. In particular, we will

start with the definition of the mean squared error of a given estimator so as to motivate

the discussion about unbiasedness, consistency, and efficiency.
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6.1.1 Mean squared error

As there are many candidate estimators for a given population parameter, it seems paramount

to rank them through some measure of precision. The most popular measure is the mean

squared error, which gauges the average distance of the estimator to the true parameter

value by means of a quadratic distance. For a sample X(N), the error of the estimator

θ̂N ≡ θ̂(X(N)) is given by θ̂N − θ. Note that the estimation error depends not only on the

estimator, but also on the particular sample we observe. Different samples will give distinct

point estimates for the population parameter of interest.

Definition: The mean squared error of θ̂N is MSE(θ̂N , θ) = E(θ̂N − θ)2.

The intuition for a measure such as the MSE is straightforward. We square the estima-

tion error before taking averages in order to avoid negative values canceling out with positive

values. It thus measure how far, on average, the set of estimates are from the population pa-

rameter of interest. The nicest thing about the mean squared error is that we can decompose

it into two readily interpretable components:

MSE(θ̂N , θ) = E(θ̂N − θ)2 = E
[
θ̂N − E(θ̂N) + E(θ̂N) − θ

]2

= E
{[

θ̂N − E(θ̂N)
]2

+
[
E(θ̂N) − θ

]2

− 2
[
θ̂N − E(θ̂N)

] [
E(θ̂N) − θ

]}

= E
[
θ̂N − E(θ̂N)

]2

+ E
[
E(θ̂N) − θ

]2

− 2 E
[
θ̂N − E(θ̂N)

] [
E(θ̂N) − θ

]

= var(θ̂N) +
[
E(θ̂N) − θ

]2

− 2 E
[
θ̂N − E(θ̂N)

] [
E(θ̂N) − θ

]

= var(θ̂N) +
[
E(θ̂N) − θ

]2

.

This decomposition clarifies that the mean squared error is the sum of the variance of the

estimator and the squared bias of the estimator. The variance indicates how far, on average,

the set of estimates are from their expected value and hence it is a measure of precision of

the estimator. We denote the square root of the variance of an estimator by standard error

(rather than standard deviation). In contrast, we define the bias of θ̂N as E(θ̂N) − θ, that
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is to say, the difference between the average estimate and θ or, equivalently, the average

estimation error. The bias thus measures how accurate is the estimator. We will later show

that there is a bias-variance tradeoff, which translates into a trade-off between accuracy and

precision.

We say that θ̂ is an unbiased estimator of θ if and only if E(θ̂N) = θ. The bias is a

property of the estimator, not of the estimate. Ideally, we would like to have the most

accurate and precise estimator. The next definition formalizes this idea by setting up the

MSE criterion for choosing between estimators.

Definition: Let Θ denote the parameter space that collects all possible values for the

population parameter θ. Consider two estimators θ̂1 and θ̂2 for θ. We say that θ̂1 is more

efficient than θ̂2 if MSE(θ̂1, θ) ≤ MSE(θ̂2, θ) for every θ ∈ Θ and MSE(θ̂1, θ) < MSE(θ̂2, θ)

for at least one value of θ ∈ Θ.
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Example: Let X(N) = (X1, . . . , XN) denote a random sample of iid N (µ, σ2), whose

parameters we estimate by means of µ̂N = 1
N

∑N
i=1 Xi and σ̃2

N = 1
N−1

∑N
i=1(Xi − µ̂N)2,

respectively. Both estimators are unbiased in that E(µ̂N) = 1
N

∑N
i=1 E(Xi) = µ and that

E(σ̃2
N) = E

[
1

N − 1

N∑
i=1

(Xi − µ̂N)2

]
= E

[
1

N − 1

N∑
i=1

(
X2

i − 2Xiµ̂N + µ̂2
N

)
]

= E

[
1

N − 1

(
N∑

i=1

X2
i − 2 µ̂N

N∑
i=1

Xi +
N∑

i=1

µ̂2
N

)]

= E

[
1

N − 1

(
N∑

i=1

X2
i − 2 µ̂N (N µ̂N) + N µ̂2

N

)]

= E

[
1

N − 1

(
N∑

i=1

X2
i − N µ̂2

N

)]
=

1

N − 1

[
E

(
N∑

i=1

X2
i

)
− N E(µ̂2

N)

]

=
1

N − 1

[
N E(X2

i ) − N E(µ̂2
N)

]
=

N

N − 1

[
(µ2 + σ2) −

(
µ2 +

σ2

N

)]

=
N

N − 1

(
1 − 1

N

)
σ2 = σ2

as the second uncentered moment of any random variable is the sum of the square of the

first moment and the variance, i.e., E(X2) = [E(X)]2 + var(X). See below for the derivation

of the variance of µ̂N . Unbiasedness means that the mean squared error of µ̂N and σ̃2
N are

just their variance. The variance of µ̂ is

E (µ̂N − µ)2 = E

(
1

N

N∑
i=1

Xi − µ

)2

= E

[
1

N

N∑
i=1

(Xi − µ)

]2

= E

[
1

N2

∑
1≤i,j≤N

(Xi − µ)(Xj − µ)

]
=

1

N2

∑
1≤i,j≤N

E[(Xi − µ)(Xj − µ)]

=
1

N2

[
N∑

i=1

var(Xi) + 2
∑

1≤i<j≤n

cov(Xi, Xj)

]
=

σ2

N
,

given that independence ensures that cov(Xi, Xj) = 0 for all 1 ≤ i �= j ≤ N . It is also

possible to show that, under normality, the variance of σ̃2
N is given by

E
(
σ̂2

N − σ2
)2

=
2

N − 1
σ4.

We require normality for it ensures that the fourth moment depends only on σ2. Consider

now the following alternative variance estimator: σ̂2
N = 1

N

∑N
i=1(Xi − µ̂N)2. This estimator

110

Point and interval estimation

Download free eBooks at bookboon.com



Statistics for Business and Economics

 
112 

is obviously biased in that E(σ̂2
N) = E

(
N−1

N
σ̃2

N

)
= N−1

N
σ2. As for the variance, we employ

the same trick to show that

var(σ̂2
N) = var

(
N − 1

N
σ̃2

N

)
=

(
N − 1

N

)2

var(σ̃2
N)

=

(
N − 1

N

)2
2

N − 1
σ4 =

2(N − 1)

N2
σ4.

This means that the mean squared error of σ̂2
N is

MSE(σ̂2
N , σ2) =

2(N − 1)

N2
σ4 +

(
N − 1

N
σ2 − σ2

)2

=

[
2(N − 1)

N2
+

1

N2

]
σ4

=

(
2(N − 1) + 1

N2

)
σ4 =

2N − 1

N2
σ4,

which is strictly inferior to the mean squared error of σ̃2
N . In the MSE sense, it then follows

that σ̂2
N is superior to σ̃2

N as an estimator of σ2.

6.1.2 Unbiasedness

Although it seems very reasonable to compare estimators purely on the basis of the mean

squared error, it is very often the case that there exists no best estimator. The reason is that

the class of all possible estimators is too large. One way to make the selection of estimators

tractable is to restrict the search to a specific class of estimators. A natural choice is the

collection of all unbiased estimators.

Definition: An estimator θ̂N is a best unbiased estimator of θ if E(θ̂N) = θ for all θ ∈ Θ

and var(θ̂N) ≤ var(θ̃N) for any other unbiased estimator θ̃N such that E(θ̃N) = θ.

The above definition does not help us much in the sense that it does not provides much

information about the best unbiased estimator. The next result adds to this discussion by

establishing a lower bound for the variance of any estimator. It is known as the Cramér-Rao

inequality.

Theorem: Let X(N) = (X1, . . . , XN) denote a random vector with joint probability
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density function f(X(N); θ). Consider an estimator θ̂N of θ such that

∂

∂θ
E(θ̂N) =

∫ ∞

−∞

∂

∂θ

[
θ̂Nf(X(N); θ)

]
dX(N)

and var(θ̂) < ∞. It then follows that

var(θ̂) ≥
∂
∂θ

E(θ̂)

E
[

∂
∂θ

ln f(X(N); θ)
]2 .

It is easy to see that the numerator of the right-hand side of the above inequality is equal

to one if the estimator is unbiased, whereas the denominator depends on the expected value

of the first derivative of the logarithm of the joint density function. We call the latter the

score function, which will play a key role in Section 6.1.5.

6.1.3 Consistency

Although it makes sense to impose unbiasedness, there are biased estimators that achieve

better mean squared errors as we have seen in the example of Section 6.1.1. The most

important is to nail the parameter θ down as the sample size increases. In that example,

for instance, σ̃2
N is asymptotically unbiased in that the bias shrinks to zero as the sample

size N goes to infinity. As the Nobel prize winner Clive Granger once said, “If you cannot

get it right as the sample size grows to infinity, you shouldn’t be in the business”. The next

definition formalizes this notion by introducing the concept of consistent estimators.

Definition: Let Θ denote the parameter space and {θ̂N ; N ≥ 1} denote a sequence of

estimators of the population parameter θ ∈ Θ indexed by the sample size N . In particular,

let θ̂N denote an estimator based on the first N observations of a sample (X1, X2, . . .) from

a given probability distribution f(x; θ). The sequence θ̂N is (weakly) consistent on Θ if and

only if, for all θ ∈ Θ and for all ε > 0, it holds that limN→∞ Pr(|θ̂N − θ| ≥ ε) = 0.

So, a consistent estimator converges in probability to the true value of the population

parameter. There is no problem in using a different notion of convergence. If we are talking
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about convergence in mean square then we say the estimator is consistent in mean square.

Similarly, a strongly consistent estimator converges almost surely to the true value of the

parameter.

Example: Suppose that X1, X2, . . . is a sequence of random variables drawn from a

N (µ, σ2) distribution. To estimate µ based on the first N observations, we usually use the

sample mean θ̂N = (X1 + . . . + XN)/N , which is an unbiased estimator with variance of

σ2/N . Given that linear combinations of normal variates are also normal, θ̂n is normal with

mean µ and variance σ2/N and hence
√

N (θ̂N − µ)/σ has a standard normal distribution.

It then follows that

Pr(θ̂N − µ ≥ ε) = Pr

(
√

N
θ̂N − µ

σ
≥

√
N

ε

σ

)
= 1 − Φ

(√
N

ε

σ

)
→ 0

as N tends to infinity, for any fixed ε > 0. Similarly, Pr(θ̂N − µ ≤ −ε) → 0. Therefore, the

sequence θ̂ of sample mean is consistent for the population mean µ.
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In the above example, it is easy to prove consistency due to the normality assumption.

In general problem, it is not easy to find the exact distribution of θ̂N and hence establishing

consistency in a direct manner becomes intractable. That’s why most proofs of consistency

are based on the Chebychev inequality. Applying the latter to an estimator θ̂N yields

Pr(|θ̂N − θ| ≥ ε) ≤ E|θ̂N − θ|2

ε2
.

As a consequence, it suffices to show that the mean squared error of θ̂N converges to zero (or,

equivalently, that θ̂N is asymptotically unbiased and its variance shrinks to zero). Another

useful result to prove consistency is the continuous mapping theorem, which dictates that,

if θ̂N is consistent for θ, then g(θ̂N) is consistent for g(θ) if g(·) is a continuous real-valued

function.

In the next sections, we discuss two methods for deriving consistent estimators of a

population parameter. The first is the method of moments, which impose assumptions only

on the moments of the distribution. This means that it does not require us to know the

joint distribution of the data, only the moments. In contrast, the second method requires

the specification of the joint distribution and, as such, it takes advantage of the whole

probabilistic structure to derive efficient estimators for the population parameters.

6.1.4 Method of moments

The method of moments relies on the very simple idea of matching sample moments with

their population counterparts. Let (X1, . . . , XN) denote a random sample with marginal

probability density functions given by f(Xi; θ) with θ = (θ1, . . . , θk)
′. Assume that the first

k moments of Xi exist, that is to say, E(Xk
i ) ≡ µk(θ) < ∞. The moments naturally depend

on the parameter vector θ = (θ1, . . . , θk)
′, and so we can equate the first k sample moments

to the corresponding k population moments to solve for (θ1, . . . , θk):

1

N

N∑
i=1

Xi = µ1(θ),
1

N

N∑
i=1

X2
i = µ2(θ), . . . ,

1

N

N∑
i=1

Xk
i = µk(θ).
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The above forms a system of k equations with k incognita, and hence it suffices to solve for

(θ1, . . . , θk) as a function of the sample moments.

Examples

(1) Consider a random sample (X1, . . . , XN) from a normal distribution with mean µ and

variance σ2. Using the method of moments, we equate the first two sample and population

moments giving way to µ̂N = 1
N

∑N
i=1 Xi and 1

N

∑N
i=1 X2

i = µ̂2
N + σ̂2

N . The latter leads to

σ̂2
N = 1

N

∑N
i=1 X2

i − µ̂2
N = 1

N

∑N
i=1(Xi − µ̂N)2.

(2) Suppose that (X1, . . . , XN) is a random sample drawn from an exponential distribution

with parameter λ. The methods of moments would suggest employing the sample mean as

an estimator of λ.

(3) Suppose that (X1, . . . , XN) is a random sample from a negative binomial distribution

with parameters k and p. The methods of moments lands us with 1
N

∑N
i=1 Xi = k/p and

1
N

∑N
i=1 X2

i = k(1 − p)/p2. Solving for k and p then yields

k̂N =

(
1
N

∑N
i=1 Xi

)2

1
N

∑N
i=1 Xi(1 + Xi)

and p̂N =
1
N

∑N
i=1 Xi

1
N

∑N
i=1 Xi(1 + Xi)

.

6.1.5 Maximum likelihood

The method of moments uses only a subset of the joint distribution moments and hence

it cannot be as efficient as an estimator that exploits the whole information given by the

joint distribution. The price to pay for the latter is that it is easier to misspecify the joint

distribution than a couple of moments. For instance, economic theory speaks only about

expectations (and hence moments), without much to say about distributions (unless as a

simplifying assumption to make the model tractable).

Consider a ransom sample (X1, . . . , XN) drawn from a probability density function given

by f(Xi; θ), where θ = (θ1, . . . , θk)
′. We define the likelihood function as

L(θ; X) =
N∏

i=1

f(Xi; θ).
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In other words, the likelihood function is equivalent to the joint density of the data but for

the argument. While the joint density is a function of the random variables (X1, . . . , XN)

given a parameter vector θ, the likelihood inverts the problem and considers a function of

the parameter vector θ given the sample we observe (X1, . . . , XN).

The maximum likelihood (ML) estimator θ̂N then searches for the parameter value that

maximize the probability of observing the sample (X1, . . . , XN), resulting in

θ̂N = argmax
θ∈Θ

L(θ; X) = argmax
θ∈Θ

N∏
i=1

f(Xi; θ).

In view that monotone transformation do not alter the maximization problem, we prefer to

take the logarithm of the likelihood function so as to end up with a sum of log-densities for

it is always easier to manipulate sums rather than products. This yields

θ̂N = argmax
θ∈Θ

lnL(θ; X) = argmax
θ∈Θ

N∑
i=1

ln f(Xi; θ).

So, to find the ML estimator, we must equate the score vector ∂
∂θ′ ln f(X; θ) to zero.

The maximum likelihood method entails a number of interesting properties for the esti-

mator. First, it is invariant to parameter transformations in that, if θ̂ is the ML estimator of

θ, then the ML estimator of g(θ) is g(θ̂) for any function g of θ. Second, the ML estimator

is very easy to deal with in large samples for it is asymptotically normal. Third, under cer-

tain weak regularity conditions, the ML estimator is asymptotically unbiased and efficient

in that it achieves the lower bound given by the Cramér-Rao inequality as the sample size

goes to infinity.

Examples

(1) Consider a random sample (X1, . . . , XN) from a binomial model with probability p. The

likelihood is L(p; X) =
∑N

i=1

(
n
xi

)
pxi(1 − p)N−xi and hence the score function is

∂

∂p
lnL(p; X) =

∑N
i=1 Xi

p
− N −

∑N
i=1 Xi

1 − p
.

Equating the score function to zero yields p̂N = 1
N

∑N
i=1 Xi.

(2) Suppose that (X1, . . . , XN) is a random sample drawn from a Poisson distribution with
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arrival rate λ. The first-order condition for the maximization of the log-likelihood function

then is

∂

∂λ
lnL(λ; X)

∣∣∣∣
λ=λN

=
∂

∂λ

N∑
i=1

ln

(
e−λλXi

Xi!

)∣∣∣∣∣
λ=λN

=
∂

∂λ

N∑
i=1

[−λ + Xi ln λ − ln(Xi!)]

∣∣∣∣∣
λ=λN

=
∂

∂λ

[
−Nλ + ln λ

N∑
i=1

Xi −
N∑

i=1

ln(Xi!)

]∣∣∣∣∣
λ=λN

=

∑N
i=1 Xi

λ̂N

− N = 0,

giving way to λ̂N = 1
N

∑N
i=1 Xi as the maximum likelihood estimator.

(3) Suppose that (X1, . . . , XN) is a random sample from a normal distribution with mean

µ and variance σ2. The first-order conditions are ∂
∂µ

lnL(µ, σ2; X) = 1
σ2

∑N
i=1(Xi − µ) and

∂
∂σ2 lnL(µ, σ2; X) = − N

2σ2 + 1
2σ4

∑N
i=1(Xi − µ)2 yielding the following maximum likelihood

estimators for the mean and variance: µ̂N = 1
N

∑N
i=1 Xi and σ̂2

N = 1
N

∑N
i=1(Xi − µ̂N)2,

respectively.
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To show that the maximum likelihood estimator is consistent and efficient, we must

impose some regularity conditions. First, maximization of the likelihood function is over a

compact parameter space Θ ⊂ Rk and the true parameter vector θ is in the interior of the

parameter space. Second, the average log-likelihood function sN(θ) ≡ 1
N

∑N
i=1 lnL(θ; Xi)

converges almost surely to its expected value for all possible parameter values, that is to say,

sN(θ)
a.s.−→ Eθ0 [sN(θ)] ≡ s∞(θ, θ0) for every θ ∈ Θ, where the expectation is taken over the

joint distribution function evaluated at the true parameter value θ0 ∈ Θ. Third, sN(θ) is

continuous in θ ∈ Θ, and hence the sample holds for Eθ0 [sN(θ)]. Fourth, the latter has a

unique maximum in θ ∈ Θ.

We are now ready to show that θ̂N converges almost surely to the true value θ0 of

the population parameter vector. We start by noting that θ̂N for sure exists given that a

continuous function always has a maximum in a compact set. Second, for any θ �= θ0, it

follows that Eθ0 [lnL(θ; X) − lnL(θ0; X)] ≤ ln Eθ0 [L(θ; X)/L(θ0; X)] due to the Jensen’s

inequality as the logarithmic function is concave. However,

Eθ0 [L(θ; X)/L(θ0; X)] =

∫ ∞

−∞

L(θ; x)

L(θ0; x)
L(θ0; x) dx = 1

and hence Eθ0 [lnL(θ; X) − lnL(θ0; X)] ≤ 0. We now first divide both sides by N to yield

Eθ0 [sN(θ) − sN(θ0)] ≤ 0 and then take limits to obtain s∞(θ, θ0) ≤ s∞(θ0, θ0) almost surely

by the uniform convergence assumption. Further, the identification assumption ensures that

the inequality is strict if θ �= θ0, whereas s∞(θ̂N , θ0) ≥ s∞(θ0, θ0) by construction given that

θ̂N maximizes the average log-likelihood. Altogether, this means that θ̂N
a.s.−→ θ0, proving

strong consistency.

The weak consistency of the maximum likelihood estimator is much easier in that it

suffices to show that the mean of the ML estimator converges to the true value of the

parameter, while its variance shrinks to zero. The regularity conditions we must impose to

ensure weak consistency (i.e., convergence in probability) are indeed much milder than what

we assume to achieve strong consistency (i.e., almost sure convergence). In what follows, we
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derive the asymptotic mean and variance of the ML estimator and then derive its asymptotic

normality under the assumption that sN(θ) is twice continuously differentiable.

We first take the derivative of sN(θ) with respect to θ to find the score function, which

we then equate to zero to find maximum of the log-likelihood function, namely,

∂

∂θ′ sN(θ) =
1

N

N∑
i=1

∂

∂θ′ lnL(θ; Xi) = 0.

Although we denote the score function by ∂
∂θ′ sN(θ), note that it depends on X and hence

it is also a random vector with the same dimension as the vector θ of parameters. The first

step of the proof is to show that the score function is on average zero for any θ ∈ Θ. This

is indeed the case as long as ∂
∂θ′ L(θ; Xi) is bounded, and so we can switch the order of

differentiation and integration

Eθ

[
∂

∂θ′ lnL(θ; Xi)

]
=

∫ ∞

−∞

∂

∂θ′ lnL(θ; xi)L(θ; xi) dxi =

∫ ∞

−∞

∂
∂θ′ L(θ; xi)

L(θ; xi)
L(θ; xi) dxi

=

∫ ∞

−∞

∂

∂θ′ L(θ; xi) dxi =
∂

∂θ′

∫ ∞

−∞
L(θ; xi) dxi =

∂

∂θ′ 1 = 0.

We next apply a Taylor expansion to the score function evaluated at the ML estimator,

which is equal to zero given the first-order condition:

0 =
∂

∂θ′ L(θ̂N ; X) =
∂

∂θ′ L(θ0; X) +
∂

∂θ∂θ′ L(θ∗; X) (θ̂N − θ0),

where θ∗ ∈ [θ0, θ̂N ]. It is straightforward to show that Hθ∗ ≡ ∂
∂θ∂θ′ L(θ∗; X) is invertible

and thus
√

N (θ̂N − θ0) = −H−1
θ∗

√
N ∂

∂θ′ L(θ0; X). Note that Hθ∗ = 1
N

∑N
i=1

∂
∂θ∂θ′ L(θ∗; Xi)

and hence it does satisfy a strong law of large numbers provided that the variance of

∂
∂θ∂θ′ L(θ∗; Xi) is finite. In addition, we know that the ML estimator is strongly consistent in

that θ̂ converges almost surely to θ0, implying that θ∗ converges as well to θ0. Altogether,

this means that the random matrix Hθ∗ converges to Eθ0

[
1
N

∑N
i=1

∂
∂θ∂θ′ L(θ0; Xi)

]
< ∞

almost surely.

It now remains to study the asymptotic behavior of
√

N ∂
∂θ′ L(θ0; X). In view that we

have already seen that the latter has mean zero for any θ ∈ Θ, it is reasonable to assume there
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is a central limit theorem that applies. Letting I∞(θ0) ≡ limN→∞ var
(√

N ∂
∂θ′ L(θ0; X)

)

then yields I−1
∞ (θ0)

√
N ∂

∂θ′ L(θ0; X)
d−→ N (0, Ik), where Ik is a k-dimensional identity ma-

trix and I∞(θ0) is known as the information matrix.1 Combining all of the above ingredients

gives way to

√
N(θ̂N − θ0)

d−→ N
(
0,H−1

∞ (θ0)I∞(θ0)H−1
∞ (θ0)

)
.

To demonstrate that the variance of the ML estimator achieves the Cramér-Rao lower bound

and hence it is efficient, it suffices to show that I∞(θ0) = −H−1
∞ (θ0). To do so, we first

differentiate both sides of
∫ ∞
−∞

∂
∂θ′ lnL(θ; xi)L(θ; xi) dxi = 0 with respect to θ, yielding

∫ ∞

−∞

∂

∂θ∂θ′ lnL(θ; xi)L(θ; xi) dxi +

∫ ∞

−∞

∂

∂θ′ lnL(θ; xi)
∂

∂θ
L(θ; xi) dxi = 0

⇒ Eθ

[
∂

∂θ∂θ′ lnL(θ; xi)

]
+ Eθ

{[
∂

∂θ′ lnL(θ; xi)

] [
∂

∂θ
lnL(θ; xi)

]}
= 0

⇒ Eθ

[
1

N

N∑
i=1

∂

∂θ∂θ′ lnL(θ; xi)

]
= − 1

N

N∑
i=1

Eθ

{[
∂

∂θ′ lnL(θ; xi)

] [
∂

∂θ
lnL(θ; xi)

]}

⇒ Eθ [H(θ)] = −Eθ

{
N

[
∂

∂θ′ lnL(θ; X)

] [
∂

∂θ
lnL(θ; X)

]}

given that the scores ∂
∂θ

lnL(θ; xi) and ∂
∂θ

lnL(θ; xj) are uncorrelated for 1 ≤ i �= j ≤ N .

Finally, taking limits yield the result.

6.2 Interval estimation

It is obviously useful to know the expected value of a random variable, but ideally we must

also have some idea of variability. For instance, it is always good news to hear that one of

our investments is giving on average 10% of return per month. However, it is even more

comforting to know that it has an expected return of 10% ± 1%. The idea is to derive a

1 Although we have spoken about joint distributions, we have not explicitly introduced any multivariate
distribution. A multivariate normal distribution depends on a vector of means µ and a covariance matrix Σ.
The elements of µ correspond to the individuals means, whereas the elements in the main diagonal of Σ refer
to the individual variances. The off-diagonal elements of Σ denote the covariance between the components
of the random vector. So, if a random vector X = (X1, . . . , Xk) is multivariate normal with a covariance
matrix given by the k-dimensional identity matrix Ik, then Xi and Xj are independent for any i �= j. In
general, if X ∼ N (µ,Σ), then a vector of linear combinations of the elements of X is also multivariate
normal, namely, AX ∼ N (Aµ, AΣA′).
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measure of precision from the sampling distribution of the sample mean (or any other point

estimator). In this way, we may provide a range of values within which we expect the mean

of the distribution to belong rather than give only a point estimate.

Examples

(1) Let X ∼ N (µ, σ2) with σ2 known. We estimate µ by means of the sample mean X̄N ,

whose sampling distribution is X̄N ∼ N (µ, σ2/N). To establish a confidence interval around

the sample mean in which the true value of µ belongs with 95% of probability, we first note

that
√

N(X̄N −µ)/σ is standard normal and hence Pr
(√

N
∣∣X̄N − µ

∣∣ /σ ≤ 1.96
)

= 95%. It

then follows that

Pr

(√
N

∣∣∣∣
X̄N − µ

σ

∣∣∣∣ ≤ 1.96

)
= Pr

(
X̄N − 1.96

σ√
N

≤ µ ≤ X̄N + 1, 96
σ√
N

)
= 0, 95

This result holds exactly only because of normality and because we know the value of the

variance. In large samples, the above confidence interval nevertheless provides a good ap-

proximation because the central limit theorem and the weak law of large numbers ensure that

the sampling distribution converges to a normal distribution, whereas the sample variance

converges in probability to the true variance as N → ∞, respectively.

(2) Let X = (X1, . . . , Xn) denote a random sample of Bernoulli essays that take value one

with probability p, zero otherwise. To estimate the probability p, a natural estimator is the

relative frequency p̂N = 1
N

∑N
i=1 Xi, which is unbiased given that

E(p̂N) =
1

N

N∑
i=1

E(Xi) =
1

N
(Np) = p.

This means that the mean squared error of the relative frequency corresponds to its variance,

which is given by

E (p̂N − p)2 = E

[
1

N

N∑
i=1

(Xi − p)

]2

=
1

N
E(X − p)2 =

1

N
var(X) =

1

N
p (1 − p).

Note that the variance shrinks to zero as N → ∞, confirming that the relative frequency is

a consistent estimator in that it converges in probability to the probability p. The central
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limit theorem says that the binomial converges to a normal distribution as the sample size

grows. Given that
∑N

i=1 Xi has by definition a binomial distribution with expected mean

Np and variance Np(1 − p), it follows that p̂N weakly converges to a normal distribution

with mean p and variance p (1−p)/N . Accordingly, the probability p belongs to the interval

[
p̂N − 1.96

√
p̂N(1 − p̂N)/N, p̂N + 1.96

√
p̂N(1 − p̂N)/N

]

with 95% of confidence. As before, we are using not only the central limit theorem to justify

asymptotic normality, but also the law of large numbers to ensure that we estimate the

variance consistently by plugging in p̂N in lieu of p.
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It is interesting to review what happens under normality just to fix some ideas. So,

let Xi ∼ iid N (µ, σ2) for i = 1, . . . , N . We know that the sample mean X̄N has expected

value µ and variance σ2/N . In addition, as it is a linear combination of normal variates,

X̄N ∼ N (µ, σ2/N) or, equivalently,
√

N (X̄ − µ)/σ ∼ N (0, 1). The snag is that, in general,

the standard deviation σ is unknown and hence we can at best replace it with a consistent

estimator. For instance, the maximum likelihood estimator of the variance of a normal

distribution is

σ̂2
N =

1

N

N∑
i=1

(Xi − X̄N)2 =
1

N

N∑
i=1

(
X2

i − 2XiX̄N + X̄2
N

)

=
1

N

N∑
i=1

X2
i − 2 X̄N

1

N

N∑
i=1

Xi + X̄2
N =

1

N

N∑
i=1

X2
i − 2X̄2

N + X̄2
N

=
1

N

N∑
i=1

X2
i − X̄2

N ,

with an expected value of

E(σ̂2
N) = E

(
1

N

N∑
i=1

X2
i − X̄2

N

)
= E(X2) − E(X̄2

N)

= µ2 + σ2 − µ2 − σ2/N = σ2(1 − 1/N) =
N − 1

N
σ2 N↑∞−→ σ2.

Although it is asymptotically unbiased, the ML estimator is biased in small samples. As we

know, to find an unbiased estimator for the variance of a normal distribution, it suffices to

multiply the ML estimator by a factor of N/(N − 1), giving way to

σ̃2
N =

N

N − 1
σ̂2

N =
1

N − 1

N∑
i=1

(Xi − X̄N)2.

Intuitively, we subtract one from the denominator because we have already lost one degree

of freedom due to the estimation of the mean.

The nice thing about assuming normality is that it allows us to say something about the

distribution of σ̃2
N and hence about the exact distribution of the sample mean. To appreciate
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that, we first note that

σ̃2
N =

1

N − 1

N∑
i=1

(Xi − X̄N)2 =
1

N − 1

N∑
i=1

[
(Xi − µ) − (X̄N − µ)

]2

=
1

N − 1

N∑
i=1

[
(Xi − µ)2 − 2(Xi − µ)(X̄N − µ) + (X̄N − µ)2

]

=
1

N − 1

[
N∑

i=1

(Xi − µ)2 − 2
N∑

i=1

(Xi − µ)(X̄N − µ) +
N∑

i=1

(X̄N − µ)2

]

=
1

N − 1

[
N∑

i=1

(Xi − µ)2 − 2N(X̄N − µ)2 + N(X̄N − µ)2

]

=
1

N − 1

[
N∑

i=1

(Xi − µ)2 − N(X̄N − µ)2

]

=
1

N − 1

N∑
i=1

(Xi − µ)2 − N

N − 1
(X̄N − µ)2.

Dividing both sides by the variance then yields

(N − 1)
σ̃2

N

σ2
=

N∑
i=1

(
Xi − µ

σ

)2

− N

(
X̄N − µ

σ

)2

=
N∑

i=1

(
Xi − µ

σ

)2

−
(

X̄N − µ

σ/
√

N

)2

.

Both terms within brackets refer to squared standard normal random variables and hence

have chi-square distributions. Moreover, it is possible to show that (N − 1) σ̃2
N/σ2 is a chi-

square random variable with N − 1 degrees of freedom. Bearing that in mind, we now turn

attention to

√
N

X̄N − µ

σ̃N

=

√
N(X̄N − µ)/σ

σ̃N/σ
,

whose distribution is t-student with N − 1 degrees of freedom given that the numerator is

standard normal and the denominator is a chi-square divided by its degrees of freedom.2

Altogether, this means that, under normality, we can construct an exact confidence interval

for the mean value of the distribution. In particular, it follows that

Pr

(∣∣∣∣
√

N
X̄N − µ

σ̃N

∣∣∣∣ ≤ tN−1(1 − α/2)

)
= 1 − α,

2 It is also possible to show that, under normality, the random variables in the numerator and denominator
are independent.
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where tN−1(1−α/2) is the (1−α/2) percentile of a t-student with N −1 degrees of freedom.

For instance, to construct a 95% confidence interval, we set α to 5% and hence we must look

at the 97.5% percentile of the t-student. As the latter distribution is symmetric, the 97.5%

percentile is equal to the absolute value of the 2.5% percentile, so that µ will belong to the

interval
[
X̄N + tN−1(α/2)σ̃N/

√
N, X̄N + tN−1(1 − α/2)σ̃N/

√
N

]
with a probability of 95%.

If normality does not hold, then we must in general employ the central limit theorem and

the law of large numbers to justify the asymptotic approximation of the confidence interval

based on the normal distribution. Let Xi ∼ iid FX(µ, σ2) for i = 1, . . . , N . Standardizing

the sample mean then yields

√
N

X̄N − µ

σ̃N

=
√

N
X̄N − µ

σ

σ

σ̃N

d−→ N (0, 1)

given that the central limit theorem dictates that the first term of the right-hand side of the

equality is asymptotically standard normal and consistency ensures that the second term

converges in probability to one as N → ∞. Actually, the same result follows for any other

consistent variance estimator. This means that µ ∈ [X̄N +zα/2 σ̃N/
√

N, X̄N +z1−α/2 σ̃N/
√

N ]

with probability 1 − α, where zα/2 and z1−α/2 are the α/2 and (1 − α/2) percentiles of the

standard normal distribution. As before, due to the symmetry of the normal distribution, it

turns out that zδ = −z1−δ for any 0 ≤ δ ≤ 1.
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Chapter 7

Hypothesis testing

We know from previous chapters that, whenever we try to infer a quantity, the resulting

estimate varies with the sample. The random nature of any sample statistic is such that

we should always think twice before interpreting a result. For instance, we might wonder

whether a sample mean of 11 confirms or not a hypothesized value of 10 for the population

mean. The answer of course lies on the typical variation of the data. If the standard deviation

is very small, say 0.01, then a sample mean of 11 is pretty far away from 10. We probably

would conclude differently if the standard deviation were large, say 5. Building confidence

intervals is just a first step to answer this type of questions. Significance (or hypothesis)

testing provides a much more general tool for this sort of task. In particular, it allows us to

check on how strong the statistical evidence is in favor of or against a hypothesis about the

data (e.g., whether the true mean is 10 given that the sample mean is 11).

Significance testing starts with a partition of the probability space into two regions: the

null hypothesis H0 and the alternative hypothesis H1. The former consists of all events for

which the relation of interest holds, whereas the alternative hypothesis is simply the negation

of the null. The idea is to observe the data seeking for evidence against the null hypothesis.

Note that a statistical test can at best contradict the null hypothesis. However, failing to

reject the null hypothesis does not necessarily mean that we should accept it, just that we do

not have enough material to reject it. The testing strategy then is to develop a statistic that

should reflect the relation of interest as hypothesized by the null. This means that we will
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have to derive the sampling distribution of some test statistic conditioning on the fact that

the null holds. To make this task easier, we normally define the null as the simplest case. For

instance, it is much easier to compute the distribution for the sample mean by setting the

population mean to 10 rather than considering any value different from 10. In general, the

alternative hypothesis typically reflects a change/impact in the process/population, while

the null hypothesis indicates the absence of a change or impact.

Examples

(1) Suppose we wish to test whether the true population mean µ exceeds 15. We can then

define the null hypothesis as H0 : µ > 15 and the alternative hypothesis as H1 : µ ≤ 15.

This is a directional test given that we are attempting to evince deviations with respect to a

particular direction. We could thus consider a statistical test that rejects the sample mean if

it belongs to a given interval. Intuitively, to determine the latter, we should appreciate that

it does not suffice to observe a sample mean below 15 to reject the null. The reason is simple.

As a consistent estimator, the sample mean should provide us a value in the neighborhood

of the true mean. If the latter is 15.1, for instance, then it is likely that we will observe a

sample mean below 15 even though the null hypothesis hold.

(2) Suppose now the interest lies on testing whether µ = 15. We then define the null

hypothesis as H0 : µ = 15 given that it is easier to derive the distribution of the sample mean

if we know the true value of the population mean. In contrast to the previous example, testing

H0 involves no direction in that we should observe both positive and negative deviations

with respect to 15 (instead of only negative) in our attempt to reject the null hypothesis. As

before, because of sampling variation, we should consider a test in which we reject the null

if the sample mean is either too large or too small relative to 15. Needless to say, we should

define ‘too large’ and ‘too small’ according to the distribution of the sample mean just as we

have done for confidence intervals in the previous chapter.

To understand whether the value we observe for a sample statistic is plausible or not,
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given the amount of randomness we specify in the null hypothesis, we must hinge our analysis

on the distribution of that sample statistic under the null. For instance, most people would

not reject the null hypotheses in the above example if the sample mean were 14.9999, though

most would reject the null in the second example if observing a sample mean of 500. As

we mention in the second example, to find the appropriate rejection region, we must follow

a procedure very similar to that we have used in the previous chapter to obtain confidence

intervals. Indeed, the first step in the derivation of a statistical testing procedure is to obtain

a rejection region by fixing a significance level for the test. Just as a confidence interval of

95% will on average miss the true value of the parameter 5% of the times, a test with 95%

significance level will incorrectly reject the null hypothesis at most 5% of the times.
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The main difference between confidence intervals and tests is that there is only one type

of error in the former, i.e., missing the true value of the parameter. In contrast, there are

two sources of errors within hypothesis testing. We can either commit an error of type I or

an error of type II. The first arises if we reject the null hypothesis even though it is true,

whereas the second refers to the event of failing to reject a false null. To sum up, if we denote

by R the event of rejecting the null hypothesis H0, then Pr(type I error) = Pr(R |H0 is true)

and Pr(type II error) = Pr(R̄ |H0 is false) with R̄ denoting the complement event of R and

hence a non-rejection of the null.

Note that we treat these errors in a very asymmetric fashion in that we fix only the

maximum tolerable probability of a type I error, e.g., Pr(type I error) ≤ α% if the signifi-

cance level is of (1 − α)%. It turns out that it is impossible to control both errors at the

same type and hence the best we can do is to find a statistical procedure that minimizes the

chances of an error of type II given a fixed probability of an error of type I. Alternatively, we

could think of doing the contrary, that is to say, fixing the probability of a type II error and

then obtain the testing procedure that minimizes the likelihood of a type I error. Although

there is no logical reason to do so (i.e., fixing the error of type I), there is a moral reason

(who said moral does not play a role in science?) as advocated by two of the most eminent

statisticians of all times, namely, Jerzy Neyman (1894-1981) and Egon Pearson (1895-1980).

The motivation for their idea of fixing the type I error rests on a jury trial. Most people

would agree with Neyman and Pearson that it is preferable to free a guilty criminal than to

put an innocent in jail. We thus fix the probability of committing a type I error for it is

more damaging than the type II error.

Example We may see a pregnancy test as a statistical procedure that decides whether

there is enough evidence supporting pregnancy. As statistical procedure can at best reject

the null hypothesis, this means that the null of a pregnancy test is actually the absence of

pregnancy. Most people would agree that a false negative is potentially more damaging than
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a false positive. This is in line with the Neyman-Pearson solution in that a false positive

corresponds to a type I error (rejecting a true null), whereas a false negative refers to a type

II error (failing to reject a false null).

In what follows, we first show how to derive the rejection region for sample means. We

then introduce the concepts of size, level and power of a test, which derive from the type

I and type II errors. Next, we introduce the notion of p-value, which somehow gauges the

strength of the evidence against the null hypothesis. Computing p-values is an alternative

to setting ex-ante the significance level of the test and hence a rejection region. Finally,

in the lasts section, we discuss hypothesis testing in a more general fashion by assuming a

likelihood approach.

7.1 Rejection region for sample means

We motivate this section with a simple example. A pharmaceutical lab is running clinic

trials to assess whether a new medicine to control the levels of cholesterol indeed works

better than the current medicine in the market. The clinical trials consider two groups of

100 patients. Group A takes the new medicine, whereas group B are subject to the standard

treatment. To evaluate the relative performance of the new medicine, the lab measures

the difference in the cholesterol decrease between groups A and B (in percentage points).

The null hypothesis of interest is that, on average, there is no difference between the two

treatments: H0 : µA−B = 0.

The most natural estimator for the mean difference between the results of groups A and B

is the difference between their sample means (or, equivalently, the sample mean difference).

We must now ask ourselves whether a sample difference of, say, 1.06 is plausible given a

standard deviation of, say, 2 under the null of zero mean difference. The idea is very similar

to what we do if we wish to construct a confidence interval. The central limit theorem

ensures that we can approximate the sampling distribution of the sample mean difference in
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large samples by a standard Gaussian distribution if we subtract its mean and divide by its

standard deviation. The null hypothesis says that the mean difference is zero, while saying

nothing about the standard deviation. The standard error of the sample mean difference is

the standard deviation divided by the square root of the sample size, so that it amounts to

1/5. Letting zq denote the qth percentile of a standard normal distribution then yields

Pr

(∣∣∣∣
µ̂A−B − 0

1/5

∣∣∣∣ > z1−α/2

∣∣∣∣ H0

)
= Pr

(
|µ̂A−B| >

z1−α/2

5

∣∣∣ H0

)
∼= α.

This suggests rejecting at the 5% significance level if |µ̂A−B| > 1
5
z1−α/2 = 1.96

5
= 0.392. The

sample mean difference of 1.06 is obviously superior to 0.392 and hence we conclude that

the two treatments entail different performances.
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The above test is two-sided in that it looks whether both positive and negative deviations

are large. The fact that the sample mean difference is positive also indicates that the new

medicine performs relatively better. To confirm that, we must test a directional null hypothe-

sis by means of one-sided tests. So, if we change the null to H0 : µA−B > 0, only large negative

deviations will contradict the null hypothesis. It then follow from Pr
(
µ̂A−B < zα

5

∣∣ H0

) ∼= α

that the rejection region is (−∞, zα

5
]. Note that the αth percentile of the standard normal

distribution is negative (zα < 0) for any α < 1/2. In contrast, if we define the null hypoth-

esis as H0 : µA−B < 0, then we would have to worry only about large positive sample mean

differences, yielding [ z1−α

5
,∞) as a rejection region given that Pr

(
µ̂A−B > z1−α

5

∣∣ H0

) ∼= α.

Figure 7.1 illustrates the main standard normal percentiles for testing purposes.

Let us now consider the general two-sided case in which we wish to test the null that the

population mean of a random sample X = (X1, . . . , XN) is equal to µ0. In what follows, we

consider three different setups. The first and second settings respectively assume normality

with known and unknown variances, whereas the third imposes no specific distribution for

the data. Regardless of the data distribution, the sample mean is on average equal to µ0

under the null hypothesis, with variance σ2/N .

Normality, known variance: If Xi ∼ iid N (µ, σ2) with a known variance σ2, it follows

that X̄N−µ0

σ/
√

N
is standard normal and hence the rejection region at the α significance level is

(−∞, µ0 + σ√
N

zα/2] ∪ [µ0 + σ√
N

z1−α/2,∞). Note that the above intervals are symmetric in

that z1−α/2 = −zα/2 for any 0 < α < 1.

Normality, unknown variance: If Xi ∼ iid N (µ, σ2) with a unknown variance σ2,

it follows that X̄N−µ0

σ/
√

N
is t-student with N − 1 degrees of freedom. The rejection region at

the α significance level is (−∞, µ0 + σ√
N

t
(α/2)
N−1 ] ∪ [µ0 + σ√

N
t
(α/2)
N−1 ,∞), where t

(q)
d denote the

qth percentile of the t-student with d degrees of freedom. Note that the above intervals

are symmetric given that t
(1−α/2)
d = −t

(α/2)
d for any 0 < α < 1 regardless of the number of

degrees of freedom.
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Figure 7.1: The area in yellow corresponds to 1% of the probability mass of a standard
normal distribution (i.e., 0.5% in the lower tail plus 0.5% in the upper tail), whereas the
area in yellow and blue responds for 5% of the probability mass (i.e., 2.5% in the lower tail
plus 2.5% in the upper tail). Finally, the area in pink entails another 2.5% of the probability
mass in each of the tails, so that the area in yellow, blue and pink amounts to 10% of the
probability mass of a standard normal distribution.

Unknown distribution: If Xi ∼ iid fX(µ, σ2) with a unknown variance σ2, it follows

from the central limit theorem that X̄N−µ0

σ/
√

N
converges in distribution to a standard normal

as the sample size grows. The asymptotic rejection region at the α significance level then is

(−∞, µ0 + σ√
N

zα/2] ∪ [µ0 + σ√
N

z1−α/2,∞).

Adapting the above rejection intervals to one-sided tests is pretty straightforward. It

suffices to take the interval of interest and replace α/2 by α in the percentile of the sampling

distribution. For instance, under normality and unknown variance, the rejection region for

the one-sided test for H0 : µ > µ0 against H1 : µ ≤ µ0 is [µ0 + σ√
N

t
(1−α)
N−1 ,∞), whereas we

would reject H0 : µ < µ0 if the test statistic falls within (−∞, µ0 + σ√
N

t
(α)
N−1]. The critical
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value that defines the rejection region for the one-sided test depends on µ0 just as the two-

sided test, despite the fact we define the null hypothesis through an inequality rather than

equality. By conditioning the test statistic on µ0, we are essentially taking the least favorable

situation within the alternative hypothesis, that is to say, the value of µ ∈ H1 that is closest

to the null hypothesis. It turns out that considering the least favorable situation within the

alternative hypothesis alleviates the probability of committing a type II error.

Example: A barista prepares a sequence of 16 espressos, taking note of how much time it

takes to pour the best possible expresso. As the sample mean time amounts to 26 seconds,

the barista concludes that the expresso machine is too fast and decides to fine-tune it in order

to increase the preparation time by 2 seconds. The quality-control manager disagrees with

the barista for the following reasons. First, the sample size is too small. Second, the sample

is not entirely random given that the barista prepares the espressos in a straight sequence.

Third, the barista is not accounting for the randomness of the data. The sample standard

deviation is indeed quite palpable, at 6 seconds. Fourth, it could be more interesting to

fine-tune the expresso machine so as to reduce the variability of the preparation time rather

than to increase the mean time. To substantiate her argument, the quality-control manager

tests whether the mean time is equal to 28 within a random sample context. The difference

between the hypothesized and sample means is equal to 2 seconds. The following large-

sample approximation then holds

Pr

(√
16

∣∣∣∣
X̄16 − 28

6

∣∣∣∣ > z1−α/2

∣∣∣∣ H0 : µ = 28

)
∼= 1 − Φ(z1−α/2) + Φ(−z1−α/2)

= 1 − Φ(z1−α/2) + Φ(zα/2)

= 1 − (1 − α/2) + α/2 = α,

where Φ(·) denotes the cumulative distribution function of a standard normal. Setting α to

5% then yields a test that rejects the null H0 : µ = 28 if the sample mean does not belong

to the interval
[
28 ± 3×1.96

2

]
. This is not the case here as the sample mean is 26 seconds and

so there is no statistical reason to believe that the expresso machine requires adjustment.
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7.2 Size, level, and power of a test

In this section, we extend the discussion to a more general setting in which we are interested

in a parameter θ of the distribution (not necessarily the mean). As before, the derivation of

a testing procedure involves two major steps. The first is to obtain a test statistic that is

able to distinguish the null from the alternative hypothesis. For instance, if we are interested

in the arrival rate of a Poisson distribution, it is then natural to focus either on the sample

mean or on the sample variance.1 The second is to derive the rejection region for the test

statistic. The rejection region depends of course on the level of significance α, which denotes

the upper limit for the probability of committing a type I error. A similar concept is given by

the (exact/asymptotic) size of a test, which corresponds to the (exact/limiting) probability

of observing a type I error.

In general, we are only able to compute the size of a test if both null and alternative

hypotheses are simple, that is to say, they involve only one value for the parameter vector

H0 : θ = θ0 against H1 : θ = θ1. Unfortunately, most situations refer to at least one

composite hypothesis, e.g., H0 : θ = θ0 against H1 : θ < θ0 or H0 : θ = θ0 against H1 : θ > θ0

or H0 : θ = θ0 against H1 : θ �= θ1 or H0 : θ ≥ θ0 against H1 : θ < θ0 or H0 : θ ≤ θ0 against

H1 : θ > θ0. Note that it does not make much sense to think about a situation in which the

null hypothesis is composite and the alternative is simple. It is always easier to derive the

distribution of the test statistic for a given value of the parameter (rather than an interval),

and so it would payoff to invert the hypotheses.

Well, both level and size relate to the type I error. To make it fair, we will now define a

concept that derives from the probability of committing a type II error. The power of a test

is the probability of correctly rejecting the null hypothesis, namely,

Pr(R |H0 is false) = 1 − Pr(R̄ |H0 is false) = 1 − Pr(type II error)

So, we should attempt to obtain the most powerful test as possible if we wish to minimize

1 Recall that if X is a Poisson with arrival rate λ, then E(X) = var(X) = λ.
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the likelihood of having a type II error. In general, the power of a test is a function of the

value of the parameter vector under the alternative. The power function degenerates to a

constant only in the event of a simple alternative hypothesis, viz. H1 : θ = θ1. To work out

the logic of the derivation of the power, let’s revisit the barista example from the previous

section.

Example: Suppose that it actually takes on average 24 seconds for pouring a perfect

expresso. In the previous section, we have computed a large-sample approximation under

the null for the distribution of the sample mean. We now derive the asymptotic power of

the means test at the α level of significance conditioning on µ = 24.
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The probability of falling into the rejection region is

Pr

(√
16

∣∣∣∣
X̄16 − 28

6

∣∣∣∣ > 1.96

∣∣∣∣ µ = 24

)

= 1 − Pr

(
2

∣∣∣∣
X̄16 − 28

3

∣∣∣∣ ≤ 1.96

∣∣∣∣ µ = 24

)

= 1 − Pr
(
28 − 2.94 ≤ X̄16 ≤ 28 + 2.94

∣∣ µ = 24
)

= 1 − Pr
(
25.06 ≤ X̄16 ≤ 30.94

∣∣ µ = 24
)

= 1 − Pr

(√
16

25.06 − 24

6
≤

√
16

X̄16 − 24

6
≤

√
16

30.94 − 24

6

∣∣∣∣ µ = 24

)

∼= 1 −
[
Φ

(
6.94

3/2

)
− Φ

(
1.06

3/2

)]

= 1 − 0.999998142 + 0.760113176 = 0.760115034.

Note that this power figure holds only asymptotically for we are taking the normal approxi-

mation for the unknown distribution of the sample mean.

In general, to compute the (asymptotic) power function of a two-sided means test, it

suffices to appreciate that the probability of rejecting the null for µ = µ1 �= µ0 is

Pr

(√
N

∣∣∣∣
X̄N − µ0

σ̂N

∣∣∣∣ > z1−α/2

∣∣∣∣ µ = µ1

)

= 1 − Pr

(√
N

∣∣∣∣
X̄N − µ0

σ̂N

∣∣∣∣ ≤ z1−α/2

∣∣∣∣ µ = µ1

)

= 1 − Pr

(
−z1−α/2 ≤

√
N

X̄N − µ0

σ̂N

≤ z1−α/2

∣∣∣∣ µ = µ1

)

= 1 − Pr

(
µ0 − z1−α/2

σ̂N√
N

≤ X̄N ≤ µ0 + z1−α/2
σ̂N√
N

∣∣∣∣ µ = µ1

)

= 1 − Pr

(
µ0 − µ1 − z1−α/2

σ̂N√
N

≤ X̄N − µ1 ≤ µ0 − µ1 + z1−α/2
σ̂N√
N

∣∣∣∣ µ = µ1

)

= 1 − Pr

(√
N

µ0 − µ1

σ̂N

− z1−α/2 ≤
√

N
X̄N − µ1

σ̂N

≤
√

N
µ0 − µ1

σ̂N

+ z1−α/2

∣∣∣∣ µ = µ1

)

∼= 1 − Φ

(√
N

µ0 − µ1

σ̂N

+ z1−α/2

)
+ Φ

(√
N

µ0 − µ1

σ̂N

− z1−α/2

)
.

Note that the power function converges to one as the sample size increases provided that

µ �= µ1 because both cumulative distribution functions converge to the same value (namely,

±1 depending on whether µ0 ≷ µ1).
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It is straightforward to deal with one-sided tests as well. For instance, for a means

test of H0 : µ = µ0 against H1 : µ > µ0, the test statistic is X̄N−µ0

σN/
√

N
with an asymptotic

critical value given by the (1 − α)th percentile of the standard normal distribution given

that Pr
(

X̄N−µ0

σN/
√

N
> z1−α

)
∼= α under the null hypothesis. Letting µ1 > µ0 denote a mean

value under the alternative yields a power of

Pr

(√
N

X̄N − µ0

σ̂N

> z1−α

∣∣∣∣ µ = µ1

)
= 1 − Pr

(
X̄N ≤ µ0 + z1−α

σ̂N√
N

∣∣∣∣ µ = µ1

)

= 1 − Pr

(
X̄N − µ1 ≤ µ0 − µ1 + z1−α

σ̂N√
N

∣∣∣∣ µ = µ1

)

= 1 − Pr

(
X̄N − µ1

σ̂N/
√

N
≤ µ0 − µ1

σ̂N/
√

N
+ z1−α

∣∣∣∣ µ = µ1

)

∼= 1 − Φ

(√
N

µ0 − µ1

σ̂N

+ z1−α

)
.

As before, power converges to one as the sample size increases. This property is known

as consistency. We say a test is consistent if it has asymptotic unit power for any fixed

alternative.

In the previous chapter, we have seen that it is typically very difficult to obtain efficient

estimators if we do not restrict attention to a specific class (e.g., class of unbiased estimators).

The same problem arises if we wish to derive a uniformly most powerful test at a certain

significance level. Unless we confine attention to simple null and alternative hypotheses, it

is not possible to derive optimal tests without imposing further restrictions. To appreciate

why, it suffices to imagine a situation in which we wish to test H0 : θ = θ0 against H1 : θ �= θ0.

It is easy to see that the one-sided test for H0 : θ = θ0 against H0 : θ > θ0 is more powerful

than the two-sided test if θ = θ1 > θ0, just as the one-sided test for H0 : θ = θ0 against

H0 : θ < θ0 is more powerful than the two-sided test if θ = θ1 < θ0.

Figure 7.2 illustrates this fact by plotting the power functions of one-sided tests for

H0 : θ = θ0 against either H1 : θ < θ0 or H1 : θ > θ0 at the α and α/2 level of significance.

The power of the one-sided tests are inferior to their levels of significance for values of θ that

strongly contradict the alternative hypothesis (e.g., large positive values for H1 : θ < θ0).
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0

α/2

α

power

θ0 θ

H1 : θ < θ0, level α/2
H1 : θ < θ0, level α

H1 : θ > θ0, level α/2
H1 : θ > θ0, level α

Figure 7.2: Power functions of one-sided tests for H0 : θ = θ0

This is natural, though not acceptable for a test of H0 : θ = θ0, because these tests are not

designed to look at deviations from the null in both directions. That’s exactly why we prefer

to restrict attention to unbiased tests, that is to say, tests whose power are always above

size. Applying such a criterion to the above situation clarifies why most people would prefer

the two-sided test instead of one of the one-sided tests. To obtain the power function of a

two-sided test of H0 : θ = θ0, it suffices to sum up the power function of the one-sided tests

at α/2 significance level against H1 : θ > θ0 and H1 : θ < θ0.
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7.3 Interpreting p-values

The Neyman-Pearson paradigm leads to a dichotomy in the context of hypothesis testing

in that we can either reject or not the null hypothesis given a certain significance level.

We would expect however that there are rejections and rejections. How far a test statistic

extends into the rejection region should intuitively convey some information about the weight

of the sample evidence against the null hypothesis. To measure how much evidence we have

against the null, we employ the concept of p-value, which refers to the probability under the

null that the value of the test statistic is at least as extreme as the one we actually observe

in the sample. Smaller p-values correspond to more conclusive sample evidence given that

we impose the null. In other words, the p-value is the smallest significance level at which we

would reject the null hypothesis given the observed value of the test statistic.

Computing p-values is like taking the opposite route we take to derive a rejection region.

To obtain the latter, we fix the level of significance α in the computation of the critical values.

To find a p-value of an one-sided test, we compute the tail probability of the test statistic by

evaluating the corresponding distribution at the sample statistic. As for two-sided tests, we

must just multiply the one-sided p-value by two if the sampling distribution is symmetric.

The main difference between the level of significance and the p-value is that the latter is a

function of the sample, whereas we the former is a fixed probability that we choose ex-ante.

For instance, the p-value of an asymptotic means test is

Pr

(√
N

X̄N − µ0

σ̂N

>
√

N
x̄N − µ0

σ̂N

)
= 1 − Φ

(√
N

x̄N − µ0

σ̂N

)

if the alternative hypothesis is H1 : µ > µ0, whereas it is

Pr

(√
N

X̄N − µ0

σ̂N

<
√

N
x̄N − µ0

σ̂N

)
= Φ

(√
N

x̄N − µ0

σ̂N

)

for H1 : µ < µ0. As for two-sided tests, the p-value reads

2 Pr

(√
N

X̄N − µ0

σ̂N

>
√

N

∣∣∣∣
x̄N − µ0

σ̂N

∣∣∣∣
)

= 2

[
1 − Φ

(√
N

∣∣∣∣
x̄N − µ0

σ̂N

∣∣∣∣
)]
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for H1 : µ �= µ0. To better understand how we compute p-values, let’s revisit the barista

example one more time.

Example: Under the null distribution that it takes on average 28 seconds for pouring

a perfect expresso, the asymptotic normal approximation for the distribution of the sample

mean implies the following p-value for a sample mean of 26 seconds:

2 Pr

(√
16

X̄16 − 28

6
>

√
16

∣∣∣∣
x̄16 − 28

6

∣∣∣∣
∣∣∣∣ H0 : µ = 28

)
∼= 2

[
1 − Φ

(
4

∣∣∣∣
26 − 28

6

∣∣∣∣
)]

= 2[1 − Φ(4/3)] = 2(1 − 0.90878878)

= 0.18242244.

This means that we cannot reject the null hypothesis at the usual levels of significance (i.e.,

1%, 5% and 10%). We must be ready to consider a level of significance of about 18.25% if

we really wish to reject the null.

Before concluding this section, it is useful to talk about what p-value is not about. First,

it is not about the probability that the null hypothesis is true. We could never produce

such a probability. We compute the p-value under the null and hence it cannot say anything

about how likely the null hypothesis is. In addition, it does not make any sense to compute

the probability of a hypothesis given that the latter is not a random variable. Second, a large

p-value does not necessarily imply that the null is true. It just means that we don’t have

enough evidence to reject it. Third, the p-value does not say anything about the magnitude

of the deviation with respect to the null hypothesis. To sum up, the p-value entails the

confidence that we may have in the null hypothesis to explain the result we actually observe

in the sample.

7.4 Likelihood-based tests

The discussion in Section suggests that it is very often the case there is no uniformly most

powerful test for a given set of null and alternative hypotheses. It turns nonetheless out that
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likelihood-based tests typically yield very powerful tests in a wide array of situations. In

particular, if it exists, a uniformly most powerful (unbiased) test is very often equivalent to a

likelihood-based test. This means that likelihood methods entail not only efficient estimators,

but also a framework to build satisfactory tests.

Let θ ∈ Θ ⊂ Rk denote a k-dimensional parameter vector of which the likelihood L(θ; X)

is a function. Consider the problem of testing the composite null hypothesis H0 : θ ∈ Θ0

against the composite alternative hypothesis H0 : θ ∈ Θ−Θ0. We now define the likelihood

ratio as

λ(X) ≡ maxθ∈Θ0 L(θ; X)

maxθ∈Θ L(θ; X)
=

L(θ̂
(0)

N ; X)

L(θ̂N ; X)
,

where θ̂
(0)

N and θ̂N are the restricted and unrestricted maximum likelihood estimators, re-

spectively. The restricted optimization means that we search for the parameter vector that

maximizes the log-likelihood function only within the null parameter space Θ0, whereas the

unrestricted optimization yields the usual ML estimator of θ.
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The intuition for a likelihood-ratio test is very simple. In the event that the null hypoth-

esis is true, the unrestricted optimization will (in the limit as N → ∞) yield a value for

the parameter vector within Θ0 and hence the log-likelihood ratio will take a unit value. If

the null is false, then the unrestricted optimization will yield a value for θ ∈ Θ − Θ0 and

hence the ratio will take a value below one. This suggests a rejection region of the form

{X : λ(X) ≤ Cα} for some constant 0 ≤ Cα ≤ 1 that depends on the significance level α.

Example: Let X denote a random sample from a normal distribution with mean µ and

variance σ2. Suppose that the interest lies on testing the null hypothesis H0 : µ = µ0

against the alternative H1 : µ �= µ0 by means of likelihood methods. As the (unre-

stricted) likelihood function is (2πσ2)−N/2 exp
[

1
2σ2

∑N
i=1(Xi − µ)2

]
, the (unrestricted) max-

imum likelihood estimators for µ and σ2 are the sample mean X̄N and sample variance σ̂2
N .

In contrast, confining attention to the null hypothesis yields a restricted likelihood func-

tion of (2πσ2)−N/2 exp
[

1
2σ2

∑N
i=1(Xi − µ0)

2
]

with restricted ML estimators given by µ0 and

σ̃2
N = 1

N

∑N
i=1(Xi − µ0)

2. It then follows that the likelihood ratio is

λ(X) =
(2πσ̃2

N)−N/2 exp
[

1
2σ̃2

N

∑N
i=1(Xi − µ0)

2
]

(2πσ̂2
N)−N/2 exp

[
1

2σ2
N

∑N
i=1(Xi − X̄N)2

]

=

[
1
N

∑N
i=1(Xi − µ0)

2
]−N/2

exp
[

N N
i=1(Xi−µ0)2

2 N
i=1(Xi−µ0)2

]

[
1
N

∑N
i=1(Xi − X̄N)2

]−N/2

exp
[

N N
i=1(Xi−X̄N )2

2 N
i=1(Xi−X̄N )2

]

=

[∑N
i=1(Xi − µ0)

2
]−N/2

exp(N/2)
[∑N

i=1(Xi − X̄N)2
]−N/2

exp(N/2)

=

[ ∑N
i=1(Xi − µ0)

2

∑N
i=1(Xi − X̄N)2

]−N/2

.

To compute the critical value kα of the rejection region, we must first derive the distribution

of λ(X) under the null distribution. This may look like a daunting task, but it is actually

straightforward for we can write the numerator of the fraction as

N∑
i=1

(Xi − µ0)
2 =

N∑
i=1

(Xi − X̄N + X̄N − µ0)
2 =

N∑
i=1

(Xi − X̄N)2 − N(X̄N − µ0)
2,
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which implies that

λ(X) =

[
1 +

N(X̄N − µ0)
2

∑N
i=1(Xi − X̄N)2

]−N/2

.

Well, now it suffices to appreciate that the likelihood ratio is a monotone decreasing function

of
√

N(X̄N −µ0)/sN given that the fraction within brackets is the square of the latter divided

by N − 1. It then follows from
√

N(X̄N − µ0)/sN ∼ tN−1 that a rejection region of the form

{X :
∣∣∣√N(X̄N − µ0)/sN

∣∣∣ ≥ tN−1(1−α/2)}, where tN−1(1−α/2) is the (1−α/2)th percentile

of a t-student distribution with N − 1 degrees of freedom, yields a test with a significance

level of α.

The above example shows that it is possible to compute the rejection rate of a likelihood

ratio test by looking at whether it depends exclusively on a statistic with a known sampling

distribution. In general, however, it is very difficult to derive the exact sampling distribution

of the likelihood ratio and so we must employ asymptotic approximations. Assume, for

instance, that X = (X1, . . . , XN) is a random sample from a distribution Fθ and that we

wish to test H0 : θ = θ0 against H0 : θ �= θ0. The fact that the unrestricted ML estimator is

consistent under both the null and alternative hypotheses ensures that lnL(θ0; X) admits a

Taylor expansion around θ̂N :

lnL(θ0; X) = lnL(θ̂N ; X) +
∂

∂θ
lnL(θ̂N ; X)(θ0 − θ̂N) +

1

2

∂2

∂θ2
lnL(θ̂N ; X)(θ0 − θ̂N)2

+
1

6

∂3

∂θ3
lnL(θ∗; X)(θ0 − θ̂N)3,

where θ∗ = λθ0 + (1 − λ)θ̂N for 0 ≤ λ ≤ 1. The definition of the ML estimator is such

that the first derivative of the log-likelihood function is zero, whereas the fact that θ̂N is a

√
N−consistent estimator ensures that the last term of the expansion converges to zero at

a very fast rate. It then follows that

−2 ln λ(X) = 2
(
lnL(θ̂N ; X) − lnL(θ0; X

)
∼= − ∂2

∂θ2
L(θ̂N ; X)(θ̂N − θ0)

2. (7.1)

Now, we know that under the null
√

N(θ̂N − θ0) weakly converges to a normal distribution

144

Hypothesis testing

Download free eBooks at bookboon.com



Statistics for Business and Economics

 
146 

with mean zero and variance given by the inverse of the information matrix

I∞(θ0) ≡ − lim
N→∞

1

N

∂2

∂θ2
L(θ̂N ; X).

This means that LR = −2 ln λ(X) is asymptotically chi-square with one degree of freedom

for the right-hand side of (7.1) is the square of a standard normal variate. This suggests

that a test that rejects the null hypothesis if the likelihood ratio LR ≥ χ2
1(1 − α), where

the latter denotes the (1 − α)th percentile of the chi-square distribution with one degree of

freedom, is asymptotically of level α.

Example: Let Xi ∼ iid Poisson(λ) for i = 1, . . . , N and define the null and alternative

hypotheses as H0 : λ = λ0 and H1 : λ �= λ0, respectively. The likelihood ratio then is

LR = −2 ln λ(X) = −2 ln
exp(−Nλ0) λ

N
i=1 Xi

0

exp(−Nλ̂N) λ̂
N
i=1 Xi

N

= −2N
[
(λ0 − λ̂N) − λ̂N ln(λ0/λ̂N)

]
d−→ χ2

1,

where λ̂N = 1
N

∑N
i=1 Xi is the ML estimator of the Poisson arrival rate.
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We next extend this result to a more general setting as well as derive two additional

likelihood-based tests that are asymptotically equivalent to the likelihood ratio test. We

start by establishing some notation. Let Θ0 = {θ : R(θ) = 0, θ ∈ Θ}, where R(θ) = 0

represents a system of r nonlinear equations concerning θ. For instance, we could think of

testing whether θ1 + θ2 = 1 and θ3 = . . . = θk = 0, giving way to a system of r = k − 1

restrictions of the form R(θ) = (θ1 + θ2 − 1, θ3, . . . , θk)
′ = 0. Recall that the unrestricted

maximum likelihood estimator θ̂N is such that
√

N(θ̂N − θ)
d−→ N (0, I−1

∞ (θ)) and that

the score function is such that 1√
N

∂
∂θ′ lnL(θ; X)

d−→ N (0, I∞(θ)), where I∞(θ) is the

information matrix. In contrast, the restricted maximum likelihood estimator θ̃N maximizes

the log-likelihood function subject to R(θ) = 0 (and so it does not equate the score function

to zero for it has to account for the Lagrange multiplier term).

Along the same lines as before, the likelihood ratio is

LR = −2 ln λ(X) = 2
(
lnL(θ̂N ; X) − lnL(θ̃N ; X

)

∼= (θ̂N − θ̃N)′
[
− ∂

∂θ∂θ′L(θ̂N ; X)

]
(θ̂N − θ̃N) (7.2)

given that, under the null, a Taylor expansion is admissible for both estimators are consistent

and hence close to each other. Now, it is possible to show that, under the null, the asymptotic

variance of
√

N(θ̂N − θ̃N) is

lim
N→∞

[
− 1

N

∂

∂θ∂θ′L(θ̂N ; X)

]−1

.

This implies that the right-hand side of (7.2) converges in distribution to a chi-square with

r degrees of freedom. To appreciate why, it suffices to observe that θ̂N and θ̃N respectively

estimate k and k − r free parameters, so that their difference concerns only r elements.

Figure 7.3 shows that the likelihood ratio test gauges the difference between the criterion

function that we maximize either with or without constraints. It also illustrate two alter-

native routes to assess whether the data is consistent with the constraints in the parameter

space. The first is to measure the difference between the restricted and unrestricted ML
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estimators or, equivalently, to evaluate whether the unrestricted ML estimator satisfies the

restriction in the null hypothesis. This testing strategy gives way to what we call Wald tests.

The second route is to evaluate whether the score function of the constrained ML estimator

is close to zero. The motivation lies on the fact that, in the limit, it is completely costless to

impose a true null. This translates into a Lagrange multiplier in the vicinity of zero, so that

the first-order condition reduces to equating the score function to zero. Lagrange multiplier

tests rely then on measuring how different from zero is the score function evaluated at the

constrained ML estimator.

lnL(θ,X)

lnL(θ̂N ,X)

lnL(θ̃N ,X)

θ̃N θ̂N θ

Figure 7.3: Likelihood-based tests based on unrestricted and restricted ML estimators (θ̂N

and θ̃N , respectively). The log-likelihood test measures the difference between the con-
strained and unconstrained log-likelihood functions, whereas the Wald test gauges the dif-
ference between the unrestricted and restricted ML estimators. The Lagrange multiplier
test assesses the magnitude of the constrained score function by focusing on the slope of
the green line. The zero slope of the red line reflects the fact that the unconstrained score
function is equal to zero by definition.
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We first show how to compute Wald tests and then discuss Lagrange multiplier tests. As

usual, we will derive the necessary asymptotic theory by means of Taylor expansions. Wald

tests are about whether the unconstrained ML estimator meets the restrictions in the null

hypothesis and so we start with a Taylor expansion of R(θ) around θ̂N , namely,

R(θ) ∼= R(θ̂N) + Rθ(θ − θ̂N) with Rθ =
∂

∂θ′R(θ).

It is now evident that
√

N [R(θ̂N) − R(θ)] will converge to a multivariate normal distri-

bution with mean zero and covariance matrix given by Rθ I−1
∞ (θ) R′

θ.
2 Well, if the null is

true, we expect that the (unrestricted) ML estimator will approximately satisfy the system

of nonlinear restrictions in that R(θ̂N) ∼= 0. This suggests gauging whether the mag-

nitude of R(θ̂N) deviates from zero significantly as a way of testing H0 against H1. In

particular, we know that
√

NR(θ̂N)
d−→ N (0, Rθ I−1

∞ (θ) R′
θ) under the null and hence

it suffices to take a quadratic form of
√

NR(θ̂N) normalized by its covariance matrix to

end up with an asymptotically chi-square distribution with r degrees of freedom, namely,

W ≡ N R(θ̂N)′[Rθ I−1
∞ (θ) R′

θ]
−1R(θ̂N)

d−→ χr. Note that by taking a quadratic form we

automatically avoid negative and positive deviations from zero to cancel out. The asymp-

totic Wald test then rejects the null at the α significance level if W ≥ χ2
r(1 − α), where

the latter denotes the (1 − α)th percentile of the chi-square distribution with r degrees of

freedom.

Example: Let Xi ∼ iid B(1, p) for i = 1, . . . , N . Define the null and alternative hypotheses

as H0 : p = p0 and H1 : p �= p0, respectively. The unconstrained maximum likelihood

estimator of p is the sample mean p̂N =
∑N

i=1 Xi, whose variance is p(1− p)/N . Applying a

central limit theorem then yields

W = N
(p̂N − p0)

2

p̂N(1 − p̂N)

d−→ χ2
1

suggesting us to reject the null at the α significance level if W ≥ χ2
1(1 − α).

2 See Footnote 1 in Section 6.1.5 for a very brief discussion about the multivariate normal distribution.
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We now turn our attention to the Lagrange multiplier test. The score function ∂
∂θ′ lnL(θ; X)

is on average zero for any θ ∈ Θ and hence it is zero also for any θ ∈ Θ0. In addition, the

variance of the score function is under the null equal to

var

(
∂

∂θ′ lnL(θ; X)

∣∣∣∣ θ ∈ Θ0

)
= −E

[
∂

∂θ∂θ′ lnL(θ; X)

∣∣∣∣ θ ∈ Θ0

]
≡ IN(θ),

which in the limit coincides with the information matrix I∞(θ). It thus follows that

LM = ∂
∂θ′ lnL(θ̃N ; X)′I−1

N (θ̃N) ∂
∂θ′ lnL(θ̃N ; X)

d−→ χ2
r

and hence we must reject the null hypothesis if LM ≥ χ2
r(1−α) to obtain an asymptotic test

of level α. Note that the chi-square distribution has r degrees of freedom even though θ̃N

has k−r free parameters. This is because the score of the k−r free parameters must equate

to zero, remaining only r dimensions for the score function to vary (i.e., those affected by

the restrictions).

Example: Let’s revisit the previous example in which X = (X1, . . . , XN) with Xi ∼

iid B(1, p) for i = 1, . . . , N . The LM test statistic for H0 : p = p0 against H1 : p �= p0 then is

LM = N
(p̂N − p0)

2

p0(1 − p0)

d−→ χ2
1

given that the score function evaluated at p0 is (p̂N−p0)/[p0(1−p0)/N ] and the corresponding

information matrix is N/[p0/(1 − p0)]. We would thus reject the null if LM ≥ χ2
1(1 − α) to

obtain an asymptotic test at the α level of significance.

In the above example, it is evident that the Wald and LM tests are asymptotically

equivalent for the difference between their denominators shrink to zero under the null as the

sample mean p̂N converges almost surely to p0. This asymptotic equivalence actually holds

in general, linking not only Wald and LM tests but also likelihood ratio tests. This should

come with no surprise given that the three statistics intuitively carry the same information

as it is easily seen in Figure 7.3.
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