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About This Document

I often teach the MATH 501-502: Introduction to Real Analysis course at the
University of Louisville. The course is intended for a mix of mostly upper-level
mathematics majors with a smattering of other students from physics and engineer-
ing. These are notes I’ve compiled over the years. They cover the basic ideas of
analysis on the real line.

Prerequisites are a good calculus course, including standard differentiation and
integration methods for real functions, and a course in which the students must
read and write proofs. Some familiarity with basic set theory and standard proof
methods such as induction and contradiction is needed. The most important thing
is some mathematical sophistication beyond the basic algorithm- and computation-
based courses.

Feel free to use these notes for any purpose, as long as you give me blame or
credit. In return, I only ask you to tell me about mistakes. Any suggestions for
improvements and additions are very much appreciated. I can be contacted using
the email address on the Web page referenced below.

The notes are updated and corrected quite often. The date of the version
you’re reading is at the bottom-left of most pages. The latest version is available for
download at the Web address math.louisville.edu/∼lee/ira.

There are many exercises at the ends of the chapters. There is no general
collection of solutions.

Some early versions of the notes leaked out onto the Internet and they are being
offered by a few of the usual download sites. The early versions were meant for
me and my classes only, and contain many typos and a few — gasp! — outright
mistakes. Please help me expunge those escapees from the Internet by pointing
those who offer the older files to the latest version.
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CHAPTER 1

Basic Ideas

In the end, all mathematics can be boiled down to logic and set theory. Because
of this, any careful presentation of fundamental mathematical ideas is inevitably
couched in the language of logic and sets. This chapter defines enough of that
language to allow the presentation of basic real analysis. Much of it will be familiar
to you, but look at it anyway to make sure you understand the notation.

1. Sets

Set theory is a large and complicated subject in its own right. There is no time
in this course to touch on any but the simplest parts of it. Instead, we’ll just look
at a few topics from what is often called “naive set theory,” many of which should
already be familiar to you.

We begin with a few definitions.
A set is a collection of objects called elements. Usually, sets are denoted by the

capital letters A, B, · · · , Z. A set can consist of any type and number of elements.
Even other sets can be elements of a set. The sets dealt with here usually have real
numbers as their elements.

If a is an element of the set A, we write a ∈ A. If a is not an element of the set
A, we write a /∈ A.

If all the elements of A are also elements of B, then A is a subset of B. In this
case, we write A ⊂ B or B ⊃ A. In particular, notice that whenever A is a set, then
A ⊂ A.

Two sets A and B are equal, if they have the same elements. In this case we write
A = B. It is easy to see that A = B iff A ⊂ B and B ⊂ A. Establishing that both of
these containments are true is the most common way to show two sets are equal.

If A ⊂ B and A 6= B, then A is a proper subset of B. In cases when this is
important, it is written A $ B instead of just A ⊂ B.

There are several ways to describe a set.
A set can be described in words such as “P is the set of all presidents of the

United States.” This is cumbersome for complicated sets.
All the elements of the set could be listed in curly braces as S = {2, 0, a}. If the

set has many elements, this is impractical, or impossible.
More common in mathematics is set builder notation. Some examples are

P = {p : p is a president of the United states}
= {Washington, Adams, Jefferson, · · · , Clinton, Bush, Obama, Trump}

and
A = {n : n is a prime number} = {2, 3, 5, 7, 11, · · · }.

1-1



1-2 CHAPTER 1. BASIC IDEAS

In general, the set builder notation defines a set in the form
{formula for a typical element : objects to plug into the formula}.

A more complicated example is the set of perfect squares:
S = {n2 : n is an integer} = {0, 1, 4, 9, · · · }.

The existence of several sets will be assumed. The simplest of these is the
empty set, which is the set with no elements. It is denoted as ∅. The natural
numbers is the set N = {1, 2, 3, · · · } consisting of the positive integers. The set
Z = {· · · ,−2,−1, 0, 1, 2, · · · } is the set of all integers. ω = {n ∈ Z : n ≥ 0} =
{0, 1, 2, · · · } is the nonnegative integers. Clearly, ∅ ⊂ A, for any set A and

∅ ⊂N ⊂ ω ⊂ Z.

Definition 1.1. Given any set A, the power set of A, written P(A), is the set
consisting of all subsets of A; i.e.,

P(A) = {B : B ⊂ A}.
For example, P({a, b}) = {∅, {a}, {b}, {a, b}}. Also, for any set A, it is always

true that ∅ ∈ P(A) and A ∈ P(A). If a ∈ A, it is rarely true that a ∈ P(A), but it
is always true that {a} ⊂ P(A). Make sure you understand why!

An amusing example is P(∅) = {∅}. (Don’t confuse ∅ with {∅}! The former
is empty and the latter has one element.) Now, consider

P(∅) = {∅}
P(P(∅)) = {∅, {∅}}
P(P(P(∅))) = {∅, {∅}, {{∅}}, {∅, {∅}}}

After continuing this n times, for some n ∈N, the resulting set,
P(P(· · · P(∅) · · · )),

is very large. In fact, since a set with k elements has 2k elements in its power set,
there are 2222

= 65, 536 elements after only five iterations of the example. Beyond
this, the numbers are too large to print. Number sequences such as this one are
sometimes called tetrations.

2. Algebra of Sets

Let A and B be sets. There are four common binary operations used on sets.1
The union of A and B is the set containing all the elements in either A or B:

A ∪ B = {x : x ∈ A ∨ x ∈ B}.
The intersection of A and B is the set containing the elements contained in both

A and B:
A ∩ B = {x : x ∈ A ∧ x ∈ B}.

1In the following, some logical notation is used. The symbol ∨ is the logical nonexclusive “or.”
The symbol ∧ is the logical “and.” Their truth tables are as follows:

∧ T F
T T F
F F F

∨ T F
T T T
F T F
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Figure 1.1. These are Venn diagrams showing the four standard binary
operations on sets. In this figure, the set which results from the operation
is shaded.

The difference of A and B is the set of elements in A and not in B:

A \ B = {x : x ∈ A ∧ x /∈ B}.

The symmetric difference of A and B is the set of elements in one of the sets, but
not the other:

A4 B = (A ∪ B) \ (A ∩ B).

Another common set operation is complementation. The complement of a set A
is usually thought of as the set consisting of all elements which are not in A. But,
a little thinking will convince you this is not a meaningful definition because the
collection of elements not in A is not a precisely understood collection. To make
sense of the complement of a set, there must be a well-defined universal set U which
contains all the sets in question. Then the complement of a set A ⊂ U is Ac = U \ A.
It is usually the case that the universal set U is evident from the context in which it
is used.

With these operations, an extensive algebra for the manipulation of sets can
be developed. It’s usually done hand in hand with formal logic because the two
subjects share much in common. These topics are studied as part of Boolean algebra.2
Several examples of set algebra are given in the following theorem and its corollary.

Theorem 1.2. Let A, B and C be sets.

(a) A \ (B ∪ C) = (A \ B) ∩ (A \ C)
(b) A \ (B ∩ C) = (A \ B) ∪ (A \ C)

2George Boole (1815-1864)
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Proof. (a) This is proved as a sequence of equivalences.3

x ∈ A \ (B ∪ C) ⇐⇒ x ∈ A ∧ x /∈ (B ∪ C)
⇐⇒ x ∈ A ∧ x /∈ B ∧ x /∈ C

⇐⇒ (x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C)

⇐⇒ x ∈ (A \ B) ∩ (A \ C)

(b) This is also proved as a sequence of equivalences.
x ∈ A \ (B ∩ C) ⇐⇒ x ∈ A ∧ x /∈ (B ∩ C)

⇐⇒ x ∈ A ∧ (x /∈ B ∨ x /∈ C)

⇐⇒ (x ∈ A ∧ x /∈ B) ∨ (x ∈ A ∧ x /∈ C)

⇐⇒ x ∈ (A \ B) ∪ (A \ C)

�

Theorem 1.2 is a version of a pair of set equations which are often called DeMor-
gan’s Laws.4 The more usual statement of De Morgan’s Laws is in Corollary 1.3,
which is an obvious consequence of Theorem 1.2 when there is a universal set to
make complementation well-defined.

Corollary 1.3 (De Morgan’s Laws). Let A and B be sets.
(a) (A ∪ B)c = Ac ∩ Bc

(b) (A ∩ B)c = Ac ∪ Bc

3. Indexed Sets

We often have occasion to work with large collections of sets. For example, we
could have a sequence of sets A1, A2, A3, · · · , where there is a set An associated
with each n ∈ N. In general, let Λ be a set and suppose for each λ ∈ Λ there is a
set Aλ. The set {Aλ : λ ∈ Λ} is called a collection of sets indexed by Λ. In this case, Λ
is called the indexing set for the collection.

Example 1.1. For each n ∈N, let An = {k ∈ Z : k2 ≤ n}. Then
A1 = A2 =A3 = {−1, 0, 1}, A4 = {−2,−1, 0, 1, 2}, · · · ,

A61 = {−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}, · · ·
is a collection of sets indexed by N.

Two of the basic binary operations can be extended to work with indexed
collections. In particular, using the indexed collection from the previous paragraph,
we define ⋃

λ∈Λ

Aλ = {x : x ∈ Aλ for some λ ∈ Λ}

and ⋂
λ∈Λ

Aλ = {x : x ∈ Aλ for all λ ∈ Λ}.

De Morgan’s Laws can be generalized to indexed collections.
3The logical symbol ⇐⇒ is the same as “if, and only if.” If A and B are any two statements, then

A ⇐⇒ B is the same as saying A implies B and B implies A. It is also common to use iff in this way.
4Augustus De Morgan (1806–1871)

June 29, 2020 http://math.louisville.edu/∼lee/ira

http://www.math.louisville.edu/~lee/RealAnalysis/


4. FUNCTIONS AND RELATIONS 1-5

Theorem 1.4. If {Bλ : λ ∈ Λ} is an indexed collection of sets and A is a set, then

A \
⋃

λ∈Λ

Bλ =
⋂

λ∈Λ

(A \ Bλ)

and
A \

⋂
λ∈Λ

Bλ =
⋃

λ∈Λ

(A \ Bλ).

Proof. The proof of this theorem is Exercise 1.4. �

4. Functions and Relations

4.1. Tuples. When listing the elements of a set, the order in which they are
listed is unimportant; e.g., {e, l, v, i, s} = {l, i, v, e, s}. If the order in which n items
are listed is important, the list is called an n-tuple. (Strictly speaking, an n-tuple is
not a set.) We denote an n-tuple by enclosing the ordered list in parentheses. For
example, if x1, x2, x3, x4 are four items, the 4-tuple (x1, x2, x3, x4) is different from
the 4-tuple (x2, x1, x3, x4).

Because they are used so often, the cases when n = 2 and n = 3 have special
names: 2-tuples are called ordered pairs and a 3-tuple is called an ordered triple.

Definition 1.5. Let A and B be sets. The set of all ordered pairs
A× B = {(a, b) : a ∈ A ∧ b ∈ B}

is called the Cartesian product of A and B.5

Example 1.2. If A = {a, b, c} and B = {1, 2}, then
A× B = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.

and
B× A = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}.

Notice that A× B 6= B× A because of the importance of order in the ordered pairs.
A useful way to visualize the Cartesian product of two sets is as a table. The

Cartesian product A× B from Example 1.2 is listed as the entries of the following
table.

× 1 2
a (a, 1) (a, 2)
b (b, 1) (b, 2)
c (c, 1) (c, 2)

Of course, the common Cartesian plane from your analytic geometry course is
nothing more than a generalization of this idea of listing the elements of a Cartesian
product as a table.

The definition of Cartesian product can be extended to the case of more than
two sets. If {A1, A2, · · · , An} are sets, then

A1 × A2 × · · · × An = {(a1, a2, · · · , an) : ak ∈ Ak for 1 ≤ k ≤ n}
is a set of n-tuples. This is often written as

n

∏
k=1

Ak = A1 × A2 × · · · × An.

5René Descartes, 1596–1650

June 29, 2020 http://math.louisville.edu/∼lee/ira

http://www.math.louisville.edu/~lee/RealAnalysis/


1-6 CHAPTER 1. BASIC IDEAS

4.2. Relations.

Definition 1.6. If A and B are sets, then any R ⊂ A× B is a relation from A to B.
If (a, b) ∈ R, we write aRb.

In this case,
dom (R) = {a : (a, b) ∈ R for some b} ⊂ A

is the domain of R and
ran (R) = {b : (a, b) ∈ R for some a} ⊂ B

is the range of R. It may happen that dom (R) and ran (R) are proper subsets of A
and B, respectively.

In the special case when R ⊂ A× A, for some set A, there is some additional
terminology.

R is symmetric, if aRb ⇐⇒ bRa.
R is reflexive, if aRa whenever a ∈ dom (R).
R is transitive, if aRb ∧ bRc =⇒ aRc.
R is an equivalence relation on A, if it is symmetric, reflexive and transitive.
Example 1.3. Let R be the relation on Z×Z defined by aRb ⇐⇒ a ≤ b. Then

R is reflexive and transitive, but not symmetric.
Example 1.4. Let R be the relation on Z×Z defined by aRb ⇐⇒ a < b. Then

R is transitive, but neither reflexive nor symmetric.
Example 1.5. Let R be the relation on Z×Z defined by aRb ⇐⇒ a2 = b2. In

this case, R is an equivalence relation. It is evident that aRb iff b = a or b = −a.
4.3. Functions.

Definition 1.7. A relation R ⊂ A× B is a function if
aRb1 ∧ aRb2 =⇒ b1 = b2.

If f ⊂ A× B is a function and dom ( f ) = A, then we usually write f : A→ B
and use the usual notation f (a) = b instead of a f b.

If f : A→ B is a function, the usual intuitive interpretation is to regard f as a
rule that associates each element of A with a unique element of B. It’s not necessarily
the case that each element of B is associated with something from A; i.e., B may not
be ran ( f ). It’s also common for more than one element of A to be associated with
the same element of B.

Example 1.6. Define f : N → Z by f (n) = n2 and g : Z → Z by g(n) = n2.
In this case ran ( f ) = {n2 : n ∈ N} and ran (g) = ran ( f ) ∪ {0}. Notice that even
though f and g use the same formula, they are actually different functions.

Definition 1.8. If f : A→ B and g : B→ C, then the composition of g with f is
the function g ◦ f : A→ C defined by g ◦ f (a) = g( f (a)).

In Example 1.6, g ◦ f (n) = g( f (n)) = g(n2) = (n2)2 = n4 makes sense for all
n ∈N, but f ◦ g is undefined at n = 0.

There are several important types of functions.
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A B

a

b
c

f

f

f

A B

a

b
c

g

g

g

Figure 1.2. These diagrams show two functions, f : A→ B and g : A→
B. The function g is injective and f is not because f (a) = f (c).

Definition 1.9. A function f : A → B is a constant function, if ran ( f ) has a
single element; i.e., there is a b ∈ B such that f (a) = b for all a ∈ A. The function f
is surjective (or onto B), if ran ( f ) = B.

In a sense, constant and surjective functions are the opposite extremes. A
constant function has the smallest possible range and a surjective function has the
largest possible range. Of course, a function f : A → B can be both constant and
surjective, if B has only one element.

Definition 1.10. A function f : A→ B is injective (or one-to-one), if f (a) = f (b)
implies a = b.

The terminology “one-to-one” is very descriptive because such a function
uniquely pairs up the elements of its domain and range. An illustration of this
definition is in Figure 1.2. In Example 1.6, f is injective while g is not.

Definition 1.11. A function f : A → B is bijective, if it is both surjective and
injective.

A bijective function can be visualized as uniquely pairing up all the elements of
A and B. Some authors, favoring less pretentious language, use themore descriptive
terminology one-to-one correspondence instead of bijection. This pairing up of the
elements from each set is like counting them and finding they have the same number
of elements. Given any two sets, no matter how many elements they have, the
intuitive idea is they have the same number of elements if, and only if, there is a
bijection between them.

The following theorem shows that this property of counting the number of
elements works in a familiar way. (Its proof is left as Exercise 1.8.)
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A B

f

f
—1

f
—1

f

Figure 1.3. This is one way to visualize a general invertible function. First
f does something to a and then f−1 undoes it.

Theorem 1.12. If f : A→ B and g : B→ C are bijections, then g ◦ f : A→ C is a
bijection.

4.4. Inverse Functions.

Definition 1.13. If f : A→ B, C ⊂ A and D ⊂ B, then the image of C is the set
f (C) = { f (a) : a ∈ C}. The inverse image of D is the set f−1(D) = {a : f (a) ∈ D}.

Definitions 1.11 and 1.13work together in the followingway. Suppose f : A→ B
is bijective and b ∈ B. The fact that f is surjective guarantees that f−1({b}) 6= ∅.
Since f is injective, f−1({b}) contains only one element, say a, where f (a) = b. In
this way, it is seen that f−1 is a rule that assigns each element of B to exactly one
element of A; i.e., f−1 is a function with domain B and range A.

Definition 1.14. If f : A → B is bijective, the inverse of f is the function
f−1 : B→ A with the property that f−1 ◦ f (a) = a for all a ∈ A and f ◦ f−1(b) = b
for all b ∈ B.6

There is some ambiguity in the meaning of f−1 between 1.13 and 1.14. The
former is an operation working with subsets of A and B; the latter is a function
workingwith elements of A and B. It’s usually clear from the contextwhichmeaning
is being used.

Example 1.7. Let A = N and B be the even natural numbers. If f : A → B is
f (n) = 2n and g : B → A is g(n) = n/2, it is clear f is bijective. Since f ◦ g(n) =
f (n/2) = 2n/2 = n and g ◦ f (n) = g(2n) = 2n/2 = n, we see g = f−1. (Of course,
it is also true that f = g−1.)

Example 1.8. Let f : N→ Z be defined by

f (n) =

{
(n− 1)/2, n odd,
−n/2, n even

It’s quite easy to see that f is bijective and

f−1(n) =

{
2n + 1, n ≥ 0,
−2n, n < 0

6The notation f−1(x) for the inverse is unfortunate because it is so easily confused with the mul-
tiplicative inverse, ( f (x))−1. For a discussion of this, see [9]. The context is usually enough to avoid
confusion.
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Given any set A, it’s obvious there is a bijection f : A→ A and, if g : A→ B is a
bijection, then so is g−1 : B→ A. Combining these observations with Theorem 1.12,
an easy theorem follows.

Theorem 1.15. Let S be a collection of sets. The relation on S defined by

A ∼ B ⇐⇒ there is a bijection f : A→ B

is an equivalence relation.

4.5. Schröder-Bernstein Theorem. The following theorem is a powerful tool
in set theory, and shows that a seemingly intuitively obvious statement is sometimes
difficult to verify. It will be used in Section 5.

Theorem 1.16 (Schröder-Bernstein7). Let A and B be sets. If there are injective
functions f : A→ B and g : B→ A, then there is a bijective function h : A→ B.

B

A1 A2 A3

B1 B2 B3 B4 B5

A4 · · ·

· · ·

A5

A

f(A)

Figure 1.4. Here are the first few steps from the construction used in the
proof of Theorem 1.16.

Proof. Let B1 = B \ f (A). If Bk ⊂ B is defined for some k ∈N, let Ak = g(Bk)
and Bk+1 = f (Ak). This inductively defines Ak and Bk for all k ∈N. Use these sets
to define Ã =

⋃
k∈N Ak and h : A→ B as

h(x) =

{
g−1(x), x ∈ Ã
f (x), x ∈ A \ Ã

.

It must be shown that h is well-defined, injective and surjective.
To show h is well-defined, let x ∈ A. If x ∈ A \ Ã, then it is clear h(x) = f (x) is

defined. On the other hand, if x ∈ Ã, then x ∈ Ak for some k. Since x ∈ Ak = g(Bk),
we see h(x) = g−1(x) is defined. Therefore, h is well-defined.

To show h is injective, let x, y ∈ A with x 6= y.
If both x, y ∈ Ã or x, y ∈ A \ Ã, then the assumptions that g and f are injective,

respectively, imply h(x) 6= h(y).

7Felix Bernstein (1878–1956), Ernst Schröder (1841–1902)
This is often called the Cantor-Schröder-Bernstein or Cantor-Bernstein Theorem, despite the fact that it
was apparently first proved by Richard Dedekind (1831–1916).
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The remaining case is when x ∈ Ã and y ∈ A \ Ã. Suppose x ∈ Ak and
h(x) = h(y). If k = 1, then h(x) = g−1(x) ∈ B1 and h(y) = f (y) ∈ f (A) = B \ B1.
This is clearly incompatible with the assumption that h(x) = h(y). Now, suppose
k > 1. Then there is an x1 ∈ B1 such that

x = g ◦ f ◦ g ◦ f ◦ · · · ◦ f ◦ g︸ ︷︷ ︸
k− 1 f ’s and k g’s

(x1).

This implies
h(x) = g−1(x) = f ◦ g ◦ f ◦ · · · ◦ f ◦ g︸ ︷︷ ︸

k− 1 f ’s and k− 1 g’s

(x1) = f (y)

so that
y = g ◦ f ◦ g ◦ f ◦ · · · ◦ f ◦ g︸ ︷︷ ︸

k− 2 f ’s and k− 1 g’s

(x1) ∈ Ak−1 ⊂ Ã.

This contradiction shows that h(x) 6= h(y). We conclude h is injective.
To show h is surjective, let y ∈ B. If y ∈ Bk for some k, then h(Ak) = g−1(Ak) =

Bk shows y ∈ h(A). If y /∈ Bk for any k, y ∈ f (A) because B1 = B \ f (A), and
g(y) /∈ Ã, so y = h(x) = f (x) for some x ∈ A. This shows h is surjective. �

The Schröder-Bernstein theorem has many consequences, some of which are at
first a bit unintuitive, such as the following theorem.

Corollary 1.17. There is a bijective function h : N→N×N

Proof. If f : N → N×N is f (n) = (n, 1), then f is clearly injective. On the
other hand, suppose g : N×N→N is defined by g((a, b)) = 2a3b. The uniqueness
of prime factorizations guarantees g is injective. An application of Theorem 1.16
yields h. �

To appreciate the power of the Schröder-Bernstein theorem, try to find an
explicit bijection h : N→N×N.

5. Cardinality

There is a way to use sets and functions to formalize and generalize how we
count. For example, suppose we want to count how many elements are in the set
{a, b, c}. The natural way to do this is to point at each element in succession and
say “one, two, three.” What we’re doing is defining a bijective function between
{a, b, c} and the set {1, 2, 3}. This idea can be generalized.

Definition 1.18. Given n ∈ N, the set n = {1, 2, · · · , n} is called an initial
segment of N. The trivial initial segment is 0 = ∅. A set S has cardinality n, if there
is a bijective function f : S→ n. In this case, we write card (S) = n.

The cardinalities defined in Definition 1.18 are called the finite cardinal numbers.
They correspond to the everyday counting numbers we usually use. The idea can
be generalized still further.

Definition 1.19. Let A and B be two sets. If there is an injective function
f : A→ B, we say card (A) ≤ card (B).
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According to Theorem 1.16, the Schröder-Bernstein Theorem, if card (A) ≤
card (B) and card (B) ≤ card (A), then there is a bijective function f : A→ B. As
expected, in this case we write card (A) = card (B). When card (A) ≤ card (B), but
no such bijection exists, we write card (A) < card (B). Theorem 1.15 shows that
card (A) = card (B) is an equivalence relation between sets.

The idea here, of course, is that card (A) = card (B) means A and B have the
same number of elements and card (A) < card (B) means A is a smaller set than B.
This simple intuitive understanding has some surprising consequences when the
sets involved do not have finite cardinality.

In particular, the set A is countably infinite, if card (A) = card (N). In this case,
it is common to write card (N) = ℵ0.8 When card (A) ≤ ℵ0, then A is said to be a
countable set. In other words, the countable sets are those having finite or countably
infinite cardinality.

Example 1.9. Let f : N→ Z be defined as

f (n) =

{
n+1

2 , when n is odd
1− n

2 , when n is even .

It’s easy to show f is a bijection, so card (N) = card (Z) = ℵ0.
Theorem 1.20. Suppose A and B are countable sets.

(a) A× B is countable.
(b) A ∪ B is countable.

Proof. (a) This is a consequence of Corollary 1.17.
(b) This is Exercise 1.24. �

An alert reader will have noticed from previous examples that
ℵ0 = card (Z) = card (ω) = card (N)

= card (N×N) = card (N×N×N) = · · ·
A logical question is whether all sets either have finite cardinality, or are count-

ably infinite. That this is not so is seen by letting S = N in the following theorem.
Theorem 1.21 (Cantor). If S is a set, card (S) < card (P(S)).
Proof. Noting that

0 = card (∅) < 1 = card ({∅}) = card (P(∅)) ,

the theorem is apparently true when S is empty.
Suppose S 6= ∅. Since {a} ∈ P(S) for all a ∈ S, it follows that card (S) ≤

card (P(S)). Therefore, it suffices to prove there is no surjective function f : S→
P(S).

To see this, assume there is such a function f and let T = {x ∈ S : x /∈ f (x)}.
Since f is surjective, there is a t ∈ S such that f (t) = T. Either t ∈ T or t /∈ T.

If t ∈ T = f (t), then the definition of T implies t /∈ T, a contradiction. On
the other hand, if t /∈ T = f (t), then the definition of T implies t ∈ T, another
contradiction. These contradictions lead to the conclusion that no such function f
can exist. �

8The symbol ℵ is aleph, the first letter of the Hebrew alphabet. ℵ0 is usually pronounced “aleph
naught.”
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A set S is said to be uncountably infinite, or just uncountable, if ℵ0 < card (S).
Theorem 1.21 implies ℵ0 < card (P(N)), so P(N) is uncountable. In fact, the same
argument implies

ℵ0 = card (N) < card (P(N)) < card (P(P(N))) < · · ·
So, there are an infinite number of distinct infinite cardinalities.

In 1874 Georg Cantor9 [7] proved card (R) = card (P(N)) > ℵ0, where R

is the set of real numbers. (A version of Cantor’s theorem appears in Theorem
2.28 below.) This naturally led to the question whether there are sets S such that
ℵ0 < card (S) < card (R). Cantor spent many years trying to answer this question
and never succeeded. His assumption that no such sets exist came to be called the
continuum hypothesis.

The importance of the continuumhypothesiswas highlighted byDavidHilbert10
at the 1900 International Congress of Mathematicians in Paris, when he put it first
on his famous list of the 23 most important open problems in mathematics. Kurt
Gödel 11 proved in 1940 that the continuum hypothesis cannot be disproved using
standard set theory, but he did not prove it was true. In 1963 it was proved by Paul
Cohen 12 that the continuum hypothesis is actually unprovable as a theorem in
standard set theory.

So, the continuum hypothesis is a statement with the strange property that it is
neither true nor false within the framework of ordinary set theory. This means that
in the standard axiomatic development of set theory, the continuum hypothesis,
or a careful negation of it, can be taken as an additional axiom without causing
any contradictions. The technical terminology is that the continuum hypothesis is
independent of the axioms of set theory.

The proofs of these theorems are extremely difficult and entire broad areas of
mathematics were invented just to make their proofs possible. Even today, there
are some deep philosophical questions swirling around them. A more technical
introduction to many of these ideas is contained in the book by Ciesielski [10]. A
nontechnical and very readable history of the efforts by mathematicians to under-
stand the continuum hypothesis is the book by Aczel [1]. A shorter, nontechnical
account of Cantor’s work is in an article by Dauben [11].

6. Exercises

1.1. If a set S has n elements for n ∈ ω, then how many elements are in P(S)?

1.2. Is there a set S such that S ∩ P(S) 6= ∅?

1.3. Prove that for any sets A and B,
(a) A = (A ∩ B) ∪ (A \ B)
(b) A ∪ B = (A \ B) ∪ (B \ A) ∪ (A ∩ B) and that the sets A \ B, B \ A and

A ∩ B are pairwise disjoint.
(c) A \ B = A ∩ Bc.

9Georg Cantor (1845–1918)
10David Hilbert (1862–1943)
11Kurt Gödel (1906–1978)
12Paul Cohen (1934–2007)
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1.4. Prove Theorem 1.4.
1.5. For any sets A, B, C and D,

(A× B) ∩ (C× D) = (A ∩ C)× (B ∩ D)

and
(A× B) ∪ (C× D) ⊂ (A ∪ C)× (B ∪ D).

Why does equality not hold in the second expression?

1.6. Prove Theorem 1.15.
1.7. Suppose R is an equivalence relation on A. For each x ∈ A define Cx =
{y ∈ A : xRy}. Prove that if x, y ∈ A, then either Cx = Cy or Cx ∩ Cy = ∅. (The
collection {Cx : x ∈ A} is the set of equivalence classes induced by R.)

1.8. If f : A→ B and g : B→ C are bijections, then so is g ◦ f : A→ C.

1.9. Prove or give a counter example: f : X → Y is injective iff whenever A and B
are disjoint subsets of Y, then f−1(A) ∩ f−1(B) = ∅.

1.10. If f : A→ B is bijective, then f−1 is unique.

1.11. Prove that f : X → Y is surjective iff for each subset A ⊂ X, Y \ f (A) ⊂
f (X \ A).

1.12. Suppose that Ak is a set for each positive integer k.
(a) Show that x ∈ ⋂∞

n=1 (
⋃∞

k=n Ak) iff x ∈ Ak for infinitely many sets Ak.
(b) Show that x ∈ ⋃∞

n=1 (
⋂∞

k=n Ak) iff x ∈ Ak for all but finitely many of the
sets Ak.

The set ⋂∞
n=1 (

⋃∞
k=n Ak) from (a) is often called the superior limit of the sets Ak and⋃∞

n=1 (
⋂∞

k=n Ak) is often called the inferior limit of the sets Ak.

1.13. Given two sets A and B, it is common to let AB denote the set of all functions
f : B→ A. Prove that for any set A, card

(
2A
)
= card (P(A)). This is why many

authors use 2A as their notation for P(A).

1.14. Let S be a set. Prove the following two statements are equivalent:
(a) S is infinite; and,
(b) there is a proper subset T of S and a bijection f : S→ T.

This statement is often used as the definition of when a set is infinite.
1.15. If S is an infinite set, then there is a countably infinite collection of nonempty
pairwise disjoint infinite sets Tn, n ∈N such that S =

⋃
n∈N Tn.

1.16. Find an explicit bijection f : [0, 1]→ (0, 1).

1.17. If f : [0, ∞) → (0, ∞) and g : (0, ∞) → [0, ∞) are given by f (x) = x + 1 and
g(x) = x, then the proof of the Schrŏder-Bernstein theorem yields what bijection
h : [0, ∞)→ (0, ∞)?
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1.18. Using the notation from the proof of the Schröder-Bernstein Theorem, let
A = [0, ∞), B = (0, ∞), f (x) = x + 1 and g(x) = x. Determine h(x).

1.19. Using the notation from the proof of the Schröder-Bernstein Theorem, let
A = N, B = Z, f (n) = n and

g(n) =

{
1− 3n, n ≤ 0
3n− 1, n > 0

.

Calculate h(6) and h(7).

1.20. Suppose that in the statement of the Schröder-Bernstein theorem A = B = Z

and f (n) = g(n) = 2n. Following the procedure in the proof yields what function
h?

1.21. Find a function f : R \ {0} → R \ {0} such that f−1 = 1/ f .

1.22. Find a bijection f : [0, ∞)→ (0, ∞).

1.23. If f : A→ B and g : B→ A are functions such that f ◦ g(x) = x for all x ∈ B
and g ◦ f (x) = x for all x ∈ A, then f−1 = g.

1.24. If A and B are sets such that card (A) = card (B) = ℵ0, then card (A ∪ B) =
ℵ0.

1.25. If {An : n ∈N} is a collection of countable sets, then ⋃n∈N An is countable.

1.26. If ℵ0 ≤ card (S)), then there is an injective function f : S → S that is not
surjective.

1.27. If card (S) = ℵ0, then there is a sequence of pairwise disjoint sets Tn, n ∈N

such that card (Tn) = ℵ0 for every n ∈N and ⋃n∈N Tn = S.
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CHAPTER 2

The Real Numbers

This chapter concerns what can be thought of as the rules of the game: the axioms
of the real numbers. These axioms imply all the properties of the real numbers and,
in a sense, any set satisfying them is uniquely determined to be the real numbers.

The axioms are presented here as rules without very much justification. Other
approaches can be used. For example, a common approach is to begin with the
Peano axioms — the axioms of the natural numbers — and build up to the real
numbers through several “completions” of the natural numbers. It’s also possible
to begin with the axioms of set theory to build up the Peano axioms as theorems
and then use those to prove our axioms as further theorems. No matter how it’s
done, there are always some axioms at the base of the structure and the rules for
the real numbers are the same, whether they’re axioms or theorems.

We choose to start at the top because the other approaches quickly turn into
a long and tedious labyrinth of technical exercises without much connection to
analysis.

1. The Field Axioms

These first six axioms are called the field axioms because any object satisfying
them is called a field. They give the arithmetic properties of the real numbers.

A field is a nonempty set F along with two binary operations, multiplication
× : F×F→ F and addition + : F×F→ F satisfying the following axioms.1

Axiom 1 (Associative Laws). If a, b, c ∈ F, then (a + b) + c = a + (b + c) and
(a× b)× c = a× (b× c).

Axiom 2 (Commutative Laws). If a, b ∈ F, then a + b = b + a and a× b = b× a.

Axiom 3 (Distributive Law). If a, b, c ∈ F, then a× (b + c) = (a× b) + (a× c).

Axiom 4 (Existence of identities). There are 0, 1 ∈ F with 0 6= 1 such that
a + 0 = a and a× 1 = a, for all a ∈ F.

Axiom 5 (Existence of an additive inverse). For each a ∈ F there is−a ∈ F such
that a + (−a) = 0.

Axiom 6 (Existence of a multiplicative inverse). For each a ∈ F \ {0} there is
a−1 ∈ F such that a× a−1 = 1.

1Given a set A, a function f : A× A → A is called a binary operation. In other words, a binary
operation is just a function with two arguments. The standard notations of+(a, b) = a + b and×(a, b) =
a× b are used here. The symbol × is unfortunately used for both the Cartesian product and the field
operation, but the context in which it’s used removes the ambiguity.

2-1
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Although these axioms seem to contain most properties of the real numbers
we normally use, they don’t characterize the real numbers; they just give the rules
for arithmetic. There are many other fields besides the real numbers and studying
them is a large part of most abstract algebra courses.

Example 2.1. From elementary algebra we know that the rational numbers
Q = {p/q : p ∈ Z∧ q ∈N}

form a field. It is shown in Theorem 2.15 that
√

2 /∈ Q, so Q doesn’t contain all the
real numbers.

Example 2.2. Let F = {0, 1, 2} with addition and multiplication calculated
modulo 3. The addition and multiplication tables are as follows.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

It is easy to check that the field axioms are satisfied. This field is usually called Z3.
The following theorems, containing just a few useful properties of fields, are

presented mostly as examples showing how the axioms are used. More complete
developments can be found in any beginning abstract algebra text.

Theorem 2.1. Let F be a field.
(a) The additive and multiplicative identities of F are unique.
(b) If a, b ∈ F with b 6= 0, then −a and b−1 are unique.

Proof. Suppose e1 and e2 are both multiplicative identities in F. Then, accord-
ing to Axiom 4,

e1 = e1 × e2 = e2,
so the multiplicative identity is unique. The proof for the additive identity is
essentially the same.

Suppose b1 and b2 are both multiplicative inverses for b 6= 0. Then, using
Axioms 4 and 1,

b1 = b1 × 1 = b1 × (b× b2) = (b1 × b)× b2 = 1× b2 = b2.

This shows the multiplicative inverse in unique. The proof is essentially the same
for the additive inverse. �

Theorem 2.2 (Cancellation Laws). Let a, b, c ∈ F.
(a) a = b ⇐⇒ a + c = b + c
(b) Assume c 6= 0. Then a = b ⇐⇒ a× c = b× c.

Proof. To prove (a), first note that if a = b, then obviously a + c = b + c. To
prove the other direction, note that

a + c = b + c =⇒ a + c + (−c) = b + c + (−c) From above.
=⇒ a + (c + (−c)) = b + (c + (−c)) Axiom 1
=⇒ a + 0 = b + 0 Axiom 5
=⇒ a = b Axiom 4

and case (a) follows.
The multiplication case is proved similarly. �
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Theorem 2.3. Let F be a field with a, b ∈ F.
(a) a× 0 = 0
(b) −(−a) = a
(c) If a 6= 0, (a−1)−1 = a
(d) (−a)× b = a× (−b) = −(a× b)
(e) (−a)× (−b) = −(a× (−b)) = a× b

Proof. To prove (a), note that
a× 0 = a× (0 + 0) = a× 0 + a× 0,

where Axiom 1 and Axiom 4 have been used. Now use Theorem 2.2 to see a× 0 = 0.
To prove (b), note
− (−a) = −(−a) + 0 = −(−a) + (−a + a)

= (−(−a) + (−a)) + a = 0 + a = a,

where Axioms 1 and 4 were used.
Part (c) is proved similarly to (b).
Part (d) is Exercise 2.1 at the end of this chapter.
Part (e) follows from (d) and (b) because

(−a)× (−b) = −(a× (−b)) = −(−(a× b)) = a× b.

�

There are many other properties of fields which could be proved here, but they
correspond to the usual properties of the arithmetic learned in elementary school,
and more properly belong to an abstract algebra course, so we omit them. Some of
them are in the exercises.

From now on, the standard notations for algebra will usually be used; e. g., we
will allow ab instead of a× b, a− b for a + (−b) and a/b instead of a× b−1. We
assume as true the standard facts about arithmetic learned in elementary algebra
courses.

2. The Order Axiom

The axiom of this section gives the order and metric properties of the real
numbers. In a sense, the following axiom adds some geometry to a field.

Axiom 7 (Order axiom.). There is a set P ⊂ F such that
(a) If a, b ∈ P, then a + b, ab ∈ P.2
(b) If a ∈ F, then exactly one of the following is true:

a ∈ P, −a ∈ P or a = 0.

Any field F satisfying the axioms so far listed is naturally called an ordered field.
Of course, the set P is known as the set of positive elements of F. Using Axiom
7(b), we see F is divided into three pairwise disjoint sets: P, {0} and {−x : x ∈ P}.
The latter of these is, of course, the set of negative elements from F. The following
definition introduces familiar notation for order.

2Algebra texts would say is P is closed under addition and multiplication. In Chapter 5 we’ll use the
word “closed” with a different meaning. This is one of the cases where algebraists and analysts speak
different languages. Fortunately, the context usually erases confusion.
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Definition 2.4. We write a < b or b > a, if b− a ∈ P. The meanings of a ≤ b
and b ≥ a are now as expected.

Notice that a > 0 ⇐⇒ a = a− 0 ∈ P and a < 0 ⇐⇒ −a = 0− a ∈ P, so
a > 0 and a < 0 agree with our usual notions of positive and negative.

Our goal is to capture all the properties of the real numbers with the axioms.
The order axiom eliminates many fields from consideration. For example, Exercise
2.7 shows the field Z3 of Example 2.2 is not an ordered field. On the other hand,
facts from elementary algebra imply Q is an ordered field. As noted above, Q does
not contain all the real numbers, so the first seven axioms still don’t characterize
the real numbers.

Following are a few standard properties of ordered fields.
Theorem 2.5. Let F be an ordered field and a ∈ F. a 6= 0 iff a2 > 0.

Proof. (⇒) If a > 0, then a2 > 0 by Axiom 7(a). If a < 0, then −a > 0 by
Axiom 7(b) and a2 = 1a2 = (−1)(−1)a2 = (−a)2 > 0.

(⇐) Since 02 = 0, this is obvious. �

Theorem 2.6. If F is an ordered field and a, b, c ∈ F, then
(a) a < b ⇐⇒ a + c < b + c,
(b) a < b ∧ b < c =⇒ a < c,
(c) a < b ∧ c > 0 =⇒ ac < bc,
(d) a < b ∧ c < 0 =⇒ ac > bc.

Proof. (a) a < b ⇐⇒ b− a ∈ P ⇐⇒ (b + c)− (a + c) ∈ P ⇐⇒ a + c <
b + c.

(b) By supposition, both b− a, c− b ∈ P. Using the fact that P is closed under
addition, we see (b− a) + (c− b) = c− a ∈ P. Therefore, c > a.

(c) Since both b − a, c ∈ P and P is closed under multiplication, c(b − a) =
cb− ca ∈ P and, therefore, ac < bc.

(d) By assumption, b− a,−c ∈ P. Apply part (c) and Exercise 2.1. �

Theorem 2.7 (Two Out of Three Rule). Let F be an ordered field and a, b, c ∈ F. If
ab = c and any two of a, b or c are positive, then so is the third.

Proof. If a > 0 and b > 0, then Axiom 7(a) implies c > 0. Next, suppose a > 0
and c > 0. In order to force a contradiction, suppose b ≤ 0. In this case, Axiom 7(b)
shows

0 ≤ a(−b) = −(ab) = −c < 0,
which is impossible. �

Corollary 2.8. 1 > 0

Proof. Exercise 2.2. �

Corollary 2.9. Let F be an ordered field and a ∈ F. If a > 0, then a−1 > 0. If a < 0,
then a−1 < 0.

Proof. Exercise 2.3. �

An ordered field begins to look like what we expect for the real numbers. The
number line works pretty much as usual. Combining Corollary 2.8 and Axiom 7(a),
it follows that 2 = 1 + 1 > 1 > 0, 3 = 2 + 1 > 2 > 0 and so forth. By induction, it is
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seen there is a copy of N embedded in F. Similarly, there are also copies of Z and
Q in F. This shows every ordered field is infinite. But, there might be holes in the
line. For example if F = Q, numbers like

√
2, e and π are missing.

Definition 2.10. If F is an ordered field and a < b in F, then (a, b) = {x ∈
F : a < x < b} , (a, ∞) = {x ∈ F : a < x} and (−∞, a) = {x ∈ F : a > x} are
called open intervals. (The latter two are sometimes called open right and left rays,
respectively.)

The sets [a, b] = {x ∈ F : a ≤ x ≤ b} , [a, ∞) = {x ∈ F : a ≤ x} and
(−∞, a] = {x ∈ F : a ≥ x} are called closed intervals. (As above, the latter two are
sometimes called closed rays.)

[a, b) = {x ∈ F : a ≤ x < b} and (a, b] = {x ∈ F : a < x ≤ b} are half-open
intervals.

The difference between the open and closed intervals is that open intervals
don’t contain their endpoints and closed intervals contain their endpoints. In the
case of a ray, the interval only has one endpoint. It is incorrect to write a ray as
(a, ∞] or [−∞, a] because neither ∞ nor −∞ is an element of F. The symbols ∞ and
−∞ are just place holders telling us the intervals continue forever to the right or
left.

2.1. Metric Properties. The order axiom on a field F allows us to introduce the
idea of the distance between points in F. To do this, we begin with the following
familiar definition.

Definition 2.11. Let F be an ordered field. The absolute value function on F is a
function | · | : F→ F defined as

|x| =
{

x, x ≥ 0
−x, x < 0

.

The most important properties of the absolute value function are contained in
the following theorem.

Theorem 2.12. Let F be an ordered field and x, y ∈ F. Then
(a) |x| ≥ 0 and |x| = 0 ⇐⇒ x = 0;
(b) |x| = | − x|;
(c) −|x| ≤ x ≤ |x|;
(d) |x| ≤ y ⇐⇒ −y ≤ x ≤ y; and,
(e) |x + y| ≤ |x|+ |y|.

Proof. (a) The fact that |x| ≥ 0 for all x ∈ F follows from Axiom 7(b).
Since 0 = −0, the second part is clear.

(b) If x ≥ 0, then −x ≤ 0 so that | − x| = −(−x) = x = |x|. If x < 0, then
−x > 0 and |x| = −x = | − x|.

(c) If x ≥ 0, then −|x| = −x ≤ x = |x|. If x < 0, then −|x| = −(−x) = x <
−x = |x|.

(d) This is left as Exercise 2.4.
(e) Add the two sets of inequalities −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y| to see
−(|x|+ |y|) ≤ x + y ≤ |x|+ |y|. Now apply (d). This is usually called
the triangle inequality.

�
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2-6 CHAPTER 2. THE REAL NUMBERS

From studying analytic geometry and calculus, we are used to thinking of
|x − y| as the distance between the numbers x and y. This notion of a distance
between two points of a set can be generalized.

Definition 2.13. Let S be a set and d : S× S→ F satisfy
(a) for all x, y ∈ S, d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y,
(b) for all x, y ∈ S, d(x, y) = d(y, x), and
(c) for all x, y, z ∈ S, d(x, z) ≤ d(x, y) + d(y, z).

Then the function d is a metric on S. The pair (S, d) is called a metric space.

Ametric is a function which defines the distance between any two points of a
set.

Example 2.3. Let S be a set and define d : S× S→ S by

d(x, y) =

{
1, x 6= y
0, x = y

.

It can readily be verified that d is a metric on S. This simplest of all metrics is called
the discretemetric and it can be defined on any set. It’s not often useful.

Theorem 2.14. If F is an ordered field, then d(x, y) = |x− y| is a metric on F.

Proof. Use parts (a), (b) and (e) of Theorem 2.12. �

The metric on F derived from the absolute value function is called the standard
metric on F. There are other metrics sometimes defined for specialized purposes,
but we won’t have need of them. Metrics will be revisited in Chapter 9.

3. The Completeness Axiom

All the axioms given so far are obvious from beginning algebra, and, on the
surface, it’s not obvious they haven’t captured all the properties of the real numbers.
Since Q satisfies them all, the following theorem shows we’re not yet done.

Theorem 2.15. There is no α ∈ Q such that α2 = 2.

Proof. Assume to the contrary that there is α ∈ Q with α2 = 2. Then there are
p, q ∈N such that α = p/q with p and q relatively prime. Now,

(2.1)
(

p
q

)2
= 2 =⇒ p2 = 2q2

shows p2 is even. Since the square of an odd number is odd, p must be even; i. e.,
p = 2r for some r ∈ N. Substituting this into (2.1), shows 2r2 = q2. The same
argument as above establishes q is also even. This contradicts the assumption that p
and q are relatively prime. Therefore, no such α exists. �

Since we suspect
√

2 is a perfectly fine number, there’s still something missing
from the list of axioms. Completeness is the missing idea.

The Completeness Axiom is somewhat more complicated than the previous
axioms, and several definitions are needed in order to state it.

June 29, 2020 http://math.louisville.edu/∼lee/ira

http://www.math.louisville.edu/~lee/RealAnalysis/
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3.1. Bounded Sets.

Definition 2.16. A subset S of an ordered field F is bounded above, if there exists
M ∈ F such that M ≥ x for all x ∈ S, and it is bounded below, if there exists m ∈ F

such that m ≤ x for all x ∈ S. The elements M and m are called upper and lower
bounds for S, respectively. If S is bounded both above and below, it is a simply
called a bounded set.

There is no requirement in the definition that the upper and lower bounds for a
set are elements of the set. They can be elements of the set, but typically are not. For
example, if S = (−∞, 0), then [0, ∞) is the set of all upper bounds for S, but none
of them is in S. On the other hand, if T = (−∞, 0], then [0, ∞) is again the set of all
upper bounds for T, but in this case 0 is an upper bound which is also an element
of T.

A set need not have upper or lower bounds. For example S = (−∞, 0) has no
lower bounds, while P = (0, ∞) has no upper bounds. The integers, Z, has neither
upper nor lower bounds. If a set has no upper bound, it is unbounded above and, if it
has no lower bound, then it is unbounded below. In either case, it is usually just said
to be unbounded.

If M is an upper bound for the set S, then every x ≥ M is also an upper bound
for S. Considering some simple examples should lead you to suspect that among
the upper bounds for a set, there is one that is best in the sense that everything
greater is an upper bound and everything less is not an upper bound. This is the
basic idea of completeness.

Definition 2.17. Suppose F is an ordered field and S is bounded above in F. A
number B ∈ F is called a least upper bound of S if

(a) B is an upper bound for S, and
(b) if α is any upper bound for S, then B ≤ α.

If S is bounded below in F, then a number b ∈ F is called a greatest lower bound of S
if

(a) b is a lower bound for S, and
(b) if α is any lower bound for S, then α ≤ b.

Theorem 2.18. If F is an ordered field and A ⊂ F is nonempty, then A has at most
one least upper bound and at most one greatest lower bound.

Proof. Suppose u1 and u2 are both least upper bounds for A. Since u1 and u2
are both upper bounds for A, two applications of Definition 2.17 shows u1 ≤ u2 ≤
u1 =⇒ u1 = u2. The proof of the other case is similar. �

Definition 2.19. If A ⊂ F is nonempty and bounded above, then the least upper
bound of A is written lub A. When A is not bounded above, we write lub A = ∞.
When A = ∅, then lub A = −∞.

If A ⊂ F is nonempty and bounded below, then the greatest lower bound of
A is written glb A. When A is not bounded below, we write glb A = −∞. When
A = ∅, then glb A = ∞.3

3Some people prefer the notation sup A and inf A instead of lub A and glb A, respectively. They
stand for the supremum and infimum of A.
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Notice the symbol “∞” is not an element of F. Writing lub A = ∞ is just a
convenient way to say A has no upper bounds. Similarly lub ∅ = −∞ tells us ∅ has
every real number as an upper bound.

Theorem 2.20. Let A ⊂ F and α ∈ F. α = lub A iff (α, ∞) ∩ A = ∅ and for all
β < α, (β, α] ∩ A 6= ∅. Similarly, α = glb A iff (−∞, α) ∩ A = ∅ and for all β > α,
[α, β) ∩ A 6= ∅.

Proof. We will prove the first statement, concerning the least upper bound.
The second statement, concerning the greatest lower bound, follows similarly.

(⇒) If x ∈ (α, ∞) ∩ A, then α cannot be an upper bound of A, which is a
contradiction. If there is an β < α such that (β, α] ∩ A = ∅, then from above, we
conclude

∅ = ((β, α] ∩ A) ∪ ((α, ∞) ∩ A) = (β, ∞) ∩ A.
So, (α + β)/2 is an upper bound for A which is less than α = lub A. This contradic-
tion shows (β, α] ∩ A 6= ∅.

(⇐) The assumption that (α, ∞) ∩ A = ∅ implies α ≥ lub A. On the other
hand, suppose lub A < α. By assumption, there is an x ∈ (lub A, α] ∩ A. This is
clearly a contradiction, since lub A < x ∈ A. Therefore, α = lub A. �

An eagle-eyed reader may wonder why the intervals in Theorem 2.20 are (β, α]
and [α, β) instead of (β, α) and (α, β). Just consider the case A = {α} to see that
the theorem fails when the intervals are open. When lub A /∈ A or glb A /∈ A, the
intervals can be open, as shown in the following corollary.

Corollary 2.21. If A is bounded above and α = lub A /∈ A, then for all β < α,
(β, α) ∩ A is an infinite set. Similarly, if A is bounded below and α = glb A /∈ A, then for
all β > α, (α, β) ∩ A is an infinite set.

Proof. Let β < α. According to Theorem 2.20, there is an x1 ∈ (β, α] ∩ A.
By assumption, x1 < α. We continue by induction. Suppose n ∈ N and xn has
been chosen to satisfy xn ∈ (β, α) ∩ A. Using Theorem 2.20 as before to choose
xn+1 ∈ (xn, α) ∩ A. The set {xn : n ∈N} is infinite and contained in (α− ε, α) ∩ A.

The other statement in the corollary has a similar proof. �

When F = Q, Theorem 2.15 shows there is no least upper bound for A = {x :
x2 < 2} in Q. It seems Q has a hole where this least upper bound should be. Adding
the following completeness axiom enlarges Q to fill in the holes.

Axiom 8 (Completeness). Every nonempty set which is bounded above has a
least upper bound.

This is the final axiom. Any field F satisfying all eight axioms is called a complete
ordered field. We assume the existence of a complete ordered field, R, called the real
numbers.

In naive set theory it can be shown that if F1 and F2 are both complete ordered
fields, then they are the same, in the following sense. There exists a unique bijective
function i : F1 → F2 such that i(a + b) = i(a) + i(b), i(ab) = i(a)i(b) and a <
b ⇐⇒ i(a) < i(b). Such a function i is called an order isomorphism. The existence
of such an order isomorphism shows that R is essentially unique. More reading on
this topic can be done in some advanced texts [13, 14].

Every statement about upper bounds has a dual statement about lower bounds.
A proof of the following dual to Axiom 8 is left as an exercise.
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Corollary 2.22. Every nonempty subset of R which is bounded below has a greatest
lower bound.

In Section 4 it will be proved that there is an x ∈ R satisfying x2 = 2. This will
show R removes the deficiency of Q highlighted by Theorem 2.15. The Complete-
ness Axiom plugs up the holes in Q.

3.2. Some Consequences of Completeness. The property of completeness is
what separates analysis from geometry and algebra. Analysis requires the use
of approximation, infinity and more dynamic visualizations than algebra or clas-
sical geometry. The rest of this course is largely concerned with applications of
completeness.

Theorem 2.23 (Archimedean Principle ). If a ∈ R, then there exists na ∈N such
that na > a.

Proof. If the theorem is false, then a is an upper bound for N. Let β = lub N.
According to Theorem 2.20 there is an m ∈ N such that m > β− 1. But, this is a
contradiction because β = lub N < m + 1 ∈N. �

Some other variations on this theme are in the following corollaries.
Corollary 2.24. Let a, b ∈ R with a > 0.

(a) There is an n ∈N such that an > b.
(b) There is an n ∈N such that 0 < 1/n < a.
(c) There is an n ∈N such that n− 1 ≤ a < n.

Proof. (a) Use Theorem 2.23 to find n ∈N where n > b/a.
(b) Let b = 1 in part (a).
(c) Theorem 2.23 guarantees that S = {n ∈ N : n > a} 6= ∅. If n is the least

element of this set, then n− 1 /∈ S and n− 1 ≤ a < n. �

Corollary 2.25. If I is any interval from R, then I ∩Q 6= ∅ and I ∩Qc 6= ∅.

Proof. See Exercises 2.15 and 2.17. �

A subset of R which intersects every interval is said to be dense in R. Corollary
2.25 shows both the rational and irrational numbers are dense.

4. Comparisons of Q and R

All of the above still does not establish that Q is different from R. In Theo-
rem 2.15, it was shown that the equation x2 = 2 has no solution in Q. The following
theorem shows x2 = 2 does have solutions in R. Since a copy of Q is embedded in
R, it follows, in a sense, that R is bigger than Q.

Theorem 2.26. There is a positive α ∈ R such that α2 = 2.

Proof. Let S = {x > 0 : x2 < 2}. Then 1 ∈ S, so S 6= ∅. If x ≥ 2, then
Theorem 2.6(c) implies x2 ≥ 4 > 2, so S is bounded above. The Completeness
Axiom gives the existence of α = lub S > 1. It will be shown that α2 = 2.

Suppose first that α2 < 2. This assumption implies (2− α2)/(2α + 1) > 0.
According to Corollary 2.24, there is an n ∈N large enough so that

0 <
1
n
<

2− α2

2α + 1
⇐⇒ 0 <

2α + 1
n

< 2− α2.
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α1 = .α1(1) α1(2) α1(3) α1(4) α1(5) . . .
α2 = .α2(1) α2(2) α2(3) α2(4) α2(5) . . .
α3 = .α3(1) α3(2) α3(3) α3(4) α3(5) . . .
α4 = .α4(1) α4(2) α4(3) α4(4) α4(5) . . .
α5 = .α5(1) α5(2) α5(3) α5(4) α5(5) . . .
... ... ... ... ... ...

Figure 2.1. The proof of Theorem 2.28 is called the “diagonal argument”
because it constructs a new number z by working down the main diagonal
of the array shown above, making sure z(n) 6= αn(n) for each n ∈N.

Therefore, (
α +

1
n

)2
= α2 +

2α

n
+

1
n2 = α2 +

1
n

(
2α +

1
n

)
< α2 +

2α + 1
n

< α2 + (2− α2) = 2

contradicts the fact that α = lub S. Therefore, α2 ≥ 2.
Next, assume α2 > 2. In this case, choose n ∈N so that

0 <
1
n
<

α2 − 2
2α

⇐⇒ 0 <
2α

n
< α2 − 2.

Then (
α− 1

n

)2
= α2 − 2α

n
+

1
n2 > α2 − 2α

n
> α2 − (α2 − 2) = 2,

again contradicts that α = lub S.
Therefore, α2 = 2. �

Theorem 2.15 leads to the obvious question of how much bigger R is than Q.
First, note that since N ⊂ Q, it is clear that card (Q) ≥ ℵ0. On the other hand,
every q ∈ Q has a unique reduced fractional representation q = m(q)/n(q) with
m(q) ∈ Z and n(q) ∈N. This gives an injective function f : Q→ Z×N defined by
f (q) = (m(q), n(q)), and according to Theorem 1.20, card (Q) ≤ card (Z×N) =
ℵ0. The following theorem ensues.

Theorem 2.27. card (Q) = ℵ0.

In 1874, Georg Cantor first showed that R is not countable. The following proof
is his famous diagonal argument from 1891.

Theorem 2.28. card (R) > ℵ0.

Proof. It suffices to prove that card ([0, 1]) > ℵ0. If this is not true, then there
is a bijection α : N→ [0, 1]; i.e.,
(2.2) [0, 1] = {αn : n ∈N}.

Each x ∈ [0, 1] can be written in the decimal form x = ∑∞
n=1 x(n)/10n where

x(n) ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} for each n ∈ N. This decimal representation is not
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necessarily unique. For example,
1
2
=

5
10

=
4

10
+

∞

∑
n=2

9
10n .

In such a case, there is a choice of x(n) so it is constantly 9 or constantly 0 from
some N onward. When given a choice, we will always opt to end the number with
a string of nines. With this convention, the decimal representation of x is unique.
(Prove this!)

Define z ∈ [0, 1] by choosing z(n) ∈ {0, 1} such that z(n) 6= αn(n). Let z =
∑∞

n=1 z(n)/10n. Since z ∈ [0, 1], there is an n ∈ N such that z = αn. But, this is
impossible because z(n) differs from αn in the nth decimal place. This contradiction
shows card ([0, 1]) > ℵ0. �

Around the turn of the twentieth century these then-new ideas about infinite sets
were very controversial in mathematics. This is because some of these ideas are very
unintuitive. For example, the rational numbers are a countable set and the irrational
numbers are uncountable, yet between every two rational numbers is an uncountable
number of irrational numbers and between every two irrational numbers there is a
countably infinite number of rational numbers. It would seem there are either too
few or toomany gaps in the sets to make this possible. Such a seemingly paradoxical
situation flies in the face of our intuition, which was developed with finite sets in
mind.

This brings us back to the discussion of cardinalities and the Continuum
Hypothesis at the end of Section 1.5. Most of the time, people working in real
analysis assume the Continuum Hypothesis is true. With this assumption and
Theorem 2.28 it follows that whenever A ⊂ R, then either card (A) ≤ ℵ0 or
card (A) = card (R) = card (P(N)).4 SinceP(N) hasmanymore elements than N,
any countable subset of R is considered to be a small set, in the sense of cardinality,
even if it is infinite. This works against the intuition of many beginning students
who are not used to thinking of Q, or any other infinite set as being small. But it
turns out to be quite useful because the fact that the union of a countably infinite
number of countable sets is still countable can be exploited in many ways.5

In later chapters, other useful small versus large dichotomies will be found.

5. Exercises

2.1. Prove that if a, b ∈ F, where F is a field, then (−a)b = −(ab) = a(−b).

2.2. Prove 1 > 0.

2.3. Prove Corollary 2.9: If a > 0, then so is a−1. If a < 0, then so is a−1.

2.4. Prove |x| ≤ y iff −y ≤ x ≤ y.

4Since ℵ0 is the smallest infinite cardinal, ℵ1 is used to denote the smallest uncountable cardinal.
You will also see card (R) = c, where c is the old-style, (Fractur) German letter c, standing for the
“cardinality of the continuum.” Assuming the Continuum Hypothesis, it follows that ℵ0 < ℵ1 = c.

5See Problem 1.25 on page 1-14.
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2.5. Let F be an ordered field and a, b, c ∈ F. If ab = c and two of a, b and c are
negative, then the third is positive.

2.6. If S ⊂ R is bounded above, then
lub S = glb {x : x is an upper bound for S}.

2.7. Prove there is no set P ⊂ Z3 which makes Z3 into an ordered field.

2.8. If α is an upper bound for S and α ∈ S, then α = lub S.

2.9. Let A and B be subsets of R that are bounded above. Define A + B = {a + b :
a ∈ A ∧ b ∈ B}. Prove that lub (A + B) = lub A + lub B.

2.10. If A ⊂ Z is bounded below, then A has a least element.

2.11. If F is an ordered field and a ∈ F such that 0 ≤ a < ε for every ε > 0, then
a = 0.
2.12. Let x ∈ R. Prove |x| < ε for all ε > 0 iff x = 0.

2.13. If p is a prime number, then the equation x2 = p has no rational solutions.

2.14. If p is a prime number and ε > 0, then there are x, y ∈ Q such that x2 < p <
y2 < x2 + ε.

2.15. If a < b, then (a, b) ∩Q 6= ∅.

2.16. If q ∈ Q and a ∈ R \ Q, then q + a ∈ R \ Q. Moreover, if q 6= 0, then
aq ∈ R \Q.

2.17. Prove that if a < b, then there is a q ∈ Q such that a <
√

2q < b.

2.18. If F is an ordered field and x1, x2, . . . , xn ∈ F for some n ∈N, then∣∣∣∣∣ n

∑
i=1

xi

∣∣∣∣∣ ≤ n

∑
i=1
|xi|.(2.6)

2.19. Let F be an ordered field. (a) Prove F has no upper or lower bounds.
(b) Every element of F is both an upper and lower bound for ∅.

2.20. Prove Corollary 2.22.

2.21. Prove card (Qc) = c.

2.22. If A ⊂ R and B = {x : x is an upper bound for A}, then lub (A) = glb (B).
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CHAPTER 3

Sequences

We begin our study of analysis with sequences. There are several reasons for
starting here. First, sequences are the simplest way to introduce limits, the central
idea of calculus. Second, sequences are a direct route to the topology of the real
numbers. The combination of limits and topology provides the tools to finally prove
the theorems you’ve already used in your calculus courses.

1. Basic Properties

Definition 3.1. A sequence is a function a : N→ R.
Instead of using the standard function notation of a(n) for sequences, it is

usually more convenient to write the argument of the function as a subscript, an.
Example 3.1. Let the sequence an = 1− 1/n. The first few elements are a1 =

0, a2 = 1/2, a3 = 2/3, etc.
Example 3.2. Let the sequence bn = 2n. Then b1 = 2, b2 = 4, b3 = 8, etc.
Example 3.3. Let the sequence cn = 100− 5n so c1 = 95, c2 = 90, c3 = 85, etc.

Example 3.4. If a and r are nonzero constants, then a sequence given by c1 = a,
c2 = ar, c3 = ar2 and in general cn = arn−1 is called a geometric sequence. The
number r is called the ratio of the sequence. A geometric sequence can always be
recognized by noticing that cn+1

cn
= r for all n ∈ N. Example 3.2 is a geometric

sequence with a = r = 2.
Example 3.5. If a and d are constants with d 6= 0, then a sequence of the form

dn = a + (n− 1)d is called an arithmetic sequence. Another way of looking at this is
that dn is an arithmetic sequence if dn+1 − dn = d for all n ∈N. Example 3.3 is an
arithmetic sequence with a = 95 and d = −5.

Example 3.6. Some sequences are not defined by an explicit formula, but are
defined recursively. This is an inductive method of definition in which successive
terms of the sequence are defined by using other terms of the sequence. The most
famous of these is the Fibonacci sequence. To define the Fibonacci sequence, fn,
let f1 = 1, f2 = 1 and for n > 2, let fn = fn−2 + fn−1. The first few terms are
1, 1, 2, 3, 5, 8, 13, . . . . There actually is a simple formula that directly gives fn, and its
derivation is Exercise 3.14.

Example 3.7. These simple definitions can lead to complex problems. One
famous case is a hailstone sequence. Let h1 be any natural number. For n > 1,
recursively define

hn =

{
3hn−1 + 1, if hn−1 is odd
hn−1/2, if hn−1 is even .

3-1
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Lothar Collatz conjectured in 1937 that any hailstone sequence eventually settles
down to repeating the pattern 1, 4, 2, 1, 4, 2, . . . . Many people have tried to prove
this and all have failed.

It’s often inconvenient for the domain of a sequence to be N, as required by
Definition 3.1. For example, the sequence beginning 1, 2, 4, 8, . . . can be written
20, 21, 22, 23, . . . . Written this way, it’s natural to let the sequence function be 2n with
domain ω. As long as there is a simple substitution to write the sequence function
in the form of Definition 3.1, there’s no reason to adhere to the letter of the law. In
general, the domain of a sequence can be any set of the form {n ∈ Z : n ≥ N} for
some N ∈ Z.

Definition 3.2. A sequence an is bounded if {an : n ∈N} is a bounded set. This
definition is extended in the obvious way to bounded above and bounded below.

The sequence of Example 3.1 is bounded, but the sequence of Example 3.2 is
not, although it is bounded below.

Definition 3.3. A sequence an converges to L ∈ R if for all ε > 0 there exists
an N ∈ N such that whenever n ≥ N, then |an − L| < ε. If a sequence does not
converge, then it is said to diverge.

When an converges to L, wewrite limn→∞ an = L, or often, more simply, an → L.
Example 3.8. Let an = 1− 1/n be as in Example 3.1. We claim an → 1. To see

this, let ε > 0 and choose N ∈N such that 1/N < ε. If n ≥ N

|an − 1| = |(1− 1/n)− 1| = 1/n ≤ 1/N < ε,

so an → 1.
Example 3.9. The sequence bn = 2n of Example 3.2 diverges. To see this, suppose

not. Then there is an L ∈ R such that bn → L. If ε = 1, there must be an N ∈ N

such that |bn − L| < ε whenever n ≥ N. Choose n ≥ N. |L − 2n| < 1 implies
L < 2n + 1. But, then

bn+1 − L = 2n+1 − L > 2n+1 − (2n + 1) = 2n − 1 ≥ 1 = ε.

This violates the condition on N. We conclude that for every L ∈ R there exists
an ε > 0 such that for no N ∈N is it true that whenever n ≥ N, then |bn − L| < ε.
Therefore, bn diverges.

Definition 3.4. A sequence an diverges to ∞ if for every B > 0 there is an N ∈N

such that n ≥ N implies an > B. The sequence an is said to diverge to −∞ if −an
diverges to ∞.

When an diverges to ∞, we write limn→∞ an = ∞, or often, more simply, an →
∞.

A commonmistake is to forget that an → ∞ actuallymeans the sequence diverges
in a particular way. Don’t be fooled by the suggestive notation into treating ∞ as a
number!

Example 3.10. It is easy to prove that the sequence an = 2n of Example 3.2
diverges to ∞.

Theorem 3.5. If an → L, then L is unique.
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Proof. Suppose an → L1 and an → L2. Let ε > 0. According to Definition
3.2, there exist N1, N2 ∈ N such that n ≥ N1 implies |an − L1| < ε/2 and n ≥ N2
implies |an − L2| < ε/2. Set N = max{N1, N2}. If n ≥ N, then

|L1 − L2| = |L1 − an + an − L2| ≤ |L1 − an|+ |an − L2| < ε/2 + ε/2 = ε.

Since ε is an arbitrary positive number an application of Exercise 2.12 shows L1 =
L2. �

Theorem 3.6. an → L iff for all ε > 0, the set {n : an /∈ (L− ε, L + ε)} is finite.
Proof. (⇒) Let ε > 0. According to Definition 3.2, there is an N ∈N such that

{an : n ≥ N} ⊂ (L− ε, L + ε). Then {n : an /∈ (L− ε, L + ε)} ⊂ {1, 2, . . . , N − 1},
which is finite.

(⇐) Let ε > 0. By assumption {n : an /∈ (L− ε, L + ε)} is finite, so let N =
max{n : an /∈ (L− ε, L + ε)}+ 1. If n ≥ N, then an ∈ (L− ε, L + ε). By Definition
3.2, an → L. �

Corollary 3.7. If an converges, then an is bounded.

Proof. Suppose an → L. According to Theorem 3.6 there are a finite number of
terms of the sequence lying outside (L− 1, L + 1). Since any finite set is bounded,
the conclusion follows. �

The converse of this theorem is not true. For example, an = (−1)n is bounded,
but does not converge. The main use of Corollary 3.7 is as a quick first check to see
whether a sequence might converge. It’s usually pretty easy to determine whether
a sequence is bounded. If it isn’t, it must diverge.

The following theorem lets us analyze some complicated sequences by breaking
them down into combinations of simpler sequences.

Theorem 3.8. Let an and bn be sequences such that an → A and bn → B. Then
(a) an + bn → A + B,
(b) anbn → AB, and
(c) an/bn → A/B as long as bn 6= 0 for all n ∈N and B 6= 0.

Proof. (a) Let ε > 0. There are N1, N2 ∈ N such that n ≥ N1 im-
plies |an − A| < ε/2 and n ≥ N2 implies |bn − B| < ε/2. Define N =
max{N1, N2}. If n ≥ N, then
|(an + bn)− (A + B)| ≤ |an − A|+ |bn − B| < ε/2 + ε/2 = ε.

Therefore an + bn → A + B.
(b) Let ε > 0 and α > 0 be an upper bound for |an|. Choose N1, N2 ∈N such

that n ≥ N1 =⇒ |an − A| < ε/2(|B|+ 1) and n ≥ N2 =⇒ |bn − B| <
ε/2α. If n ≥ N = max{N1, N2}, then

|anbn − AB| = |anbn − anB + anB− AB|
≤ |anbn − anB|+ |anB− AB|
= |an||bn − B|+ |B||an − A|
< α

ε

2α
+ |B| ε

2(|B|+ 1)
< ε/2 + ε/2 = ε.
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(c) First, notice that it suffices to show that 1/bn → 1/B, because part (b) of
this theorem can be used to achieve the full result.

Let ε > 0. Choose N ∈ N so that the following two conditions are
satisfied: n ≥ N =⇒ |bn| > |B|/2 and |bn − B| < B2ε/2. Then, when
n ≥ N, ∣∣∣∣ 1

bn
− 1

B

∣∣∣∣ = ∣∣∣∣B− bn

bnB

∣∣∣∣ < ∣∣∣∣ B2ε/2
(B/2)B

∣∣∣∣ = ε.

Therefore 1/bn → 1/B.
�

If you’re not careful, you can easily read too much into the previous theorem
and try to use its converse. Consider the sequences an = (−1)n and bn = −an.
Their sum, an + bn = 0, product anbn = −1 and quotient an/bn = −1 all converge,
but the original sequences diverge.

It is often easier to prove that a sequence converges by comparing it with a
known sequence than it is to analyze it directly. For example, a sequence such as an =
sin2 n/n3 can easily be seen to converge to 0 because it is dominated by 1/n3. The
following theorem makes this idea more precise. It’s called the Sandwich Theorem
here, but is also called the Squeeze, Pinching, Pliers or Comparison Theorem in
different texts.

Theorem 3.9 (Sandwich Theorem). Suppose an, bn and cn are sequences such that
an ≤ bn ≤ cn for all n ∈N.

(a) If an → L and cn → L, then bn → L.
(b) If bn → ∞, then cn → ∞.
(c) If bn → −∞, then an → −∞.

Proof. (a) Let ε > 0. There is an N ∈ N large enough so that when
n ≥ N, then L− ε < an and cn < L + ε. These inequalities imply L− ε <
an ≤ bn ≤ cn < L + ε. Theorem 3.6 shows bn → L.

(b) Let B > 0 and choose N ∈ N so that n ≥ N =⇒ bn > B. Then
cn ≥ bn > B whenever n ≥ N. This shows cn → ∞.

(c) This is essentially the same as part (b).
�

2. Monotone Sequences

One of the problems with using the definition of convergence to prove a given
sequence converges is the limit of the sequence must be known in order to verify
that the sequence converges. This gives rise in the best cases to a “chicken and egg”
problem of somehow determining the limit before you even know the sequence
converges. In the worst case, there is no nice representation of the limit to use, so
you don’t even have a “target” to shoot at. The next few sections are ultimately
concerned with removing this deficiency from Definition 3.2, but some interesting
side-issues are explored along the way.

Not surprisingly, we begin with the simplest case.
Definition 3.10. A sequence an is increasing, if an+1 ≥ an for all n ∈ N. It is

strictly increasing if an+1 > an for all n ∈N.
A sequence an is decreasing, if an+1 ≤ an for all n ∈N. It is strictly decreasing if

an+1 < an for all n ∈N.
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If an is any of the four types listed above, then it is said to be amonotone sequence.

Notice the ≤ and ≥ in the definitions of increasing and decreasing sequences,
respectively. Many calculus texts use strict inequalities because they seem to better
match the intuitive idea of what an increasing or decreasing sequence should do.
For us, the non-strict inequalities are more convenient. A consequence of this is that
a constant sequence is both increasing and decreasing.

Theorem 3.11. A bounded monotone sequence converges.

Proof. Suppose an is a bounded increasing sequence and ε > 0. The Complete-
ness Axiom implies the existence of L = lub {an : n ∈N}. Clearly, an ≤ L for all
n ∈ N. According to Theorem 2.20, there exists an N ∈ N such that aN > L− ε.
Because the sequence is increasing, L ≥ an ≥ aN > L− ε for all n ≥ N. This shows
an → L.

If an is decreasing, let bn = −an and apply the preceding argument. �

The key idea of this proof is the existence of the least upper bound of the
sequence when the range of the sequence is viewed as a set of numbers. This
means the Completeness Axiom implies Theorem 3.11. In fact, it isn’t hard to prove
Theorem 3.11 also implies the Completeness Axiom, showing they are equivalent
statements. Because of this, Theorem 3.11 is often used as the Completeness Axiom
on R instead of the least upper bound property used in Axiom 8.

Example 3.11. The sequence en =
(

1 + 1
n

)n
converges.

Looking at the first few terms of this sequence, e1 = 2, e2 = 2.25, e3 ≈ 2.37,
e4 ≈ 2.44, it seems to be increasing. To show this is indeed the case, fix n ∈N and
use the binomial theorem to expand the product as

en =
n

∑
k=0

(
n
k

)
1
nk(3.1)

and

en+1 =
n+1

∑
k=0

(
n + 1

k

)
1

(n + 1)k .(3.2)

For 1 ≤ k ≤ n, the kth term of (3.1) is
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(
n
k

)
1
nk =

n(n− 1)(n− 2) · · · (n− (k− 1))
k!nk

=
1
k!

n− 1
n

n− 2
n
· · · n− k + 1

n

=
1
k!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k− 1
n

)
<

1
k!

(
1− 1

n + 1

)(
1− 2

n + 1

)
· · ·
(

1− k− 1
n + 1

)
=

1
k!

(
n

n + 1

)(
n− 1
n + 1

)
· · ·
(

n + 1− (k− 1)
n + 1

)
=

(n + 1)n(n− 1)(n− 2) · · · (n + 1− (k− 1))
k!(n + 1)k

=

(
n + 1

k

)
1

(n + 1)k ,

which is the kth term of (3.2). Since (3.2) also has one more positive term in the
sum, it follows that en < en+1, and the sequence en is strictly increasing.

Noting that 1/k! ≤ 1/2k−1 for k ∈N, we can bound the kth term of (3.1).(
n
k

)
1
nk =

n!
k!(n− k)!

1
nk

=
n− 1

n
n− 2

n
· · · n− k + 1

n
1
k!

<
1
k!

≤ 1
2k−1 .

Substituting this into (3.1) yields

en =
n

∑
k=0

(
n
k

)
1
nk

< 1 + 1 +
1
2
+

1
4
+ · · ·+ 1

2n−1

= 1 +
1− 1

2n

1− 1
2

< 3,

so en is bounded.
Since en is increasing and bounded, Theorem 3.11 implies en converges. Of

course, you probably remember from your calculus course that en → e ≈ 2.71828.
Theorem 3.12. An unbounded monotone sequence diverges to ∞ or −∞, depending

on whether it is increasing or decreasing, respectively.

Proof. Suppose an is increasing and unbounded. If B > 0, the fact that an is
unbounded yields an N ∈N such that aN > B. Since an is increasing, an ≥ aN > B
for all n ≥ N. This shows an → ∞.

The proof when the sequence decreases is similar. �
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3. Subsequences and the Bolzano-Weierstrass Theorem

Definition 3.13. Let an be a sequence and σ : N→N be a function such that
m < n implies σ(m) < σ(n); i.e., σ(n) is a strictly increasing sequence of natural
numbers. Then bn = a ◦ σ(n) = aσ(n) is a subsequence of an.

The idea here is that the subsequence bn is a new sequence formed from an old
sequence an by possibly leaving terms out of an. In other words, all the terms of bn
must also appear in an, and they must appear in the same order.

Example 3.12. Let σ(n) = 3n and an be a sequence. Then the subsequence aσ(n)
looks like

a3, a6, a9, . . . , a3n, . . .
The subsequence has every third term of the original sequence.

Example 3.13. If an = sin(nπ/2), then some possible subsequences are
bn = a4n+1 =⇒ bn = 1,

cn = a2n =⇒ cn = 0,
and

dn = an2 =⇒ dn = (1 + (−1)n+1)/2.

Theorem 3.14. an → L iff every subsequence of an converges to L.

Proof. (⇒) Suppose σ : N → N is strictly increasing, as in the preceding
definition. With a simple induction argument, it can be seen that σ(n) ≥ n for all n.
(See Exercise 3.8.)

Now, suppose an → L and bn = aσ(n) is a subsequence of an. If ε > 0, there
is an N ∈ N such that n ≥ N implies an ∈ (L − ε, L + ε). From the preceding
paragraph, it follows that when n ≥ N, then bn = aσ(n) = am for some m ≥ n. So,
bn ∈ (L− ε, L + ε) and bn → L.

(⇐) Since an is a subsequence of itself, it is obvious that an → L. �

Themain use of Theorem 3.14 is not to show that sequences converge, but, rather
to show they diverge. It gives two strategies for doing this: find two subsequences
converging to different limits, or find a divergent subsequence. In Example 3.13,
the subsequences bn and cn demonstrate the first strategy, while dn demonstrates
the second.

Even if a given sequence is badly behaved, it is possible there are well-behaved
subsequences. For example, consider the divergent sequence an = (−1)n. In this
case, an diverges, but the two subsequences a2n = 1 and a2n+1 = −1 are constant
sequences, so they converge.

Theorem 3.15. Every sequence has a monotone subsequence.

Proof. Let an be a sequence and T = {n ∈ N : m > n =⇒ am ≥ an}. There
are two cases to consider, depending on whether T is finite.

First, assume T is infinite. Define σ(1) = min T and assuming σ(n) is defined,
set σ(n + 1) = min T \ {σ(1), σ(2), . . . , σ(n)}. This inductively defines a strictly
increasing function σ : N→N. The definition of T guarantees aσ(n) is an increasing
subsequence of an.

Now, assume T is finite. Let σ(1) = max T + 1. If σ(n) has been chosen for
some n > max T, then the definition of T implies there is an m > σ(n) such that

June 29, 2020 http://math.louisville.edu/∼lee/ira

http://www.math.louisville.edu/~lee/RealAnalysis/


3-8 CHAPTER 3. SEQUENCES

am ≤ aσ(n). Set σ(n + 1) = m. This inductively defines the strictly increasing
function σ : N→N such that aσ(n) is a decreasing subsequence of an. �

If the sequence in Theorem 3.15 is bounded, then the corresponding monotone
subsequence is also bounded. Recalling Theorem 3.11, we arrive at the following
famous theorem.

Theorem 3.16 (Bolzano-Weierstrass). Every bounded sequence has a convergent
subsequence.

4. Lower and Upper Limits of a Sequence

There are an uncountable number of strictly increasing functions σ : N→N,
so every sequence an has an uncountable number of subsequences. If an converges,
then Theorem 3.14 shows all of these subsequences converge to the same limit. It’s
also apparent that when an → ∞ or an → −∞, then all its subsequences diverge in
the same way. When an does not converge or diverge to ±∞, the situation is a bit
more difficult because some subsequences may converge and others may diverge.

Example 3.14. Let Q = {qn : n ∈N} and α ∈ R. Since every interval contains
an infinite number of rational numbers, it is possible to choose σ(1) = min{k :
|qk − α| < 1}. In general, assuming σ(n) has been chosen, choose σ(n + 1) =
min{k > σ(n) : |qk − α| < 1/n}. Such a choice is always possible because Q∩ (α−
1/n, α + 1/n) \ {qk : k ≤ σ(n)} is infinite. This induction yields a subsequence
qσ(n) of qn converging to α.

If an is a sequence and bn is a convergent subsequence of an with bn → L,
then L is called an accumulation point of an. A convergent sequence has only one
accumulation point, but a divergent sequence may have many accumulation points.
As seen in Example 3.14, a sequence may have all of R as its set of accumulation
points.

To make some sense out of this, suppose an is a bounded sequence, and Tn =
{ak : k ≥ n}. Define

`n = glb Tn and µn = lub Tn.
Because Tn ⊃ Tn+1, it follows that for all n ∈N,

`1 ≤ `n ≤ `n+1 ≤ µn+1 ≤ µn ≤ µ1.(3.3)
This shows `n is an increasing sequence bounded above by µ1 and µn is a decreasing
sequence bounded below by `1. Theorem 3.11 implies both `n and µn converge. If
`n → ` and µn → µ, (3.3) shows for all n,

`n ≤ ` ≤ µ ≤ µn.(3.4)
Suppose bn → β is any convergent subsequence of an. From the definitions of

`n and µn, it is seen that `n ≤ bn ≤ µn for all n. Now (3.4) shows ` ≤ β ≤ µ.
The normal terminology for ` and µ is given by the following definition.
Definition 3.17. Let an be a sequence. If an is bounded below, then the lower

limit of an is
lim inf an = lim

n→∞
glb {ak : k ≥ n}.

If an is bounded above, then the upper limit of an is
lim sup an = lim

n→∞
lub {ak : k ≥ n}.
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When an is unbounded, the lower and upper limits are set to appropriate infinite
values, while recalling the familiar warnings about ∞ not being a number.

Example 3.15. Define

an =

{
2 + 1/n, n odd
1− 1/n, n even .

Then

µn = lub {ak : k ≥ n} =
{

2 + 1/n, n odd
2 + 1/(n + 1), n even ↓ 2

and

`n = glb {ak : k ≥ n} =
{

1− 1/n, n even
1− 1/(n + 1), n odd ↑ 1.

So,
lim sup an = 2 > 1 = lim inf an.

Suppose an is bounded above with Tn, µn and µ as in the discussion preceding
the definition. We claim there is a subsequence of an converging to lim sup an. The
subsequence will be selected by induction.

Choose σ(1) ∈N such that aσ(1) > µ1 − 1.
Suppose σ(n) has been selected for some n ∈ N. Since µσ(n)+1 = lub Tσ(n)+1,

there must be an am ∈ Tσ(n)+1 such that am > µσ(n)+1 − 1/(n + 1). Then m > σ(n)
and we set σ(n + 1) = m.

This inductively defines a subsequence aσ(n), where

µσ(n) ≥ µσ(n)+1 ≥ aσ(n) > µσ(n)+1 −
1

n + 1
.(3.5)

for all n. The left and right sides of (3.5) both converge to lim sup an, so the Squeeze
Theorem implies aσ(n) → lim sup an.

In the cases when lim sup an = ∞ and lim sup an = −∞, it is left to the reader
to show there is a subsequence bn → lim sup an.

Similar arguments can be made for lim inf an. Assuming σ(n) has been chosen
for some n ∈N, To summarize: If β is an accumulation point of an, then

lim inf an ≤ β ≤ lim sup an.

In case an is bounded, both lim inf an and lim sup an are accumulation points of an
and an converges iff lim inf an = limn→∞ an = lim sup an.

The following theorem has been proved.

Theorem 3.18. Let an be a sequence.
(a) There are subsequences of an converging to lim inf an and lim sup an.
(b) If α is an accumulation point of an, then lim inf an ≤ α ≤ lim sup an.
(c) lim inf an = lim sup an ∈ R iff an converges.
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5. Cauchy Sequences

Often the biggest problem with showing that a sequence converges using the
techniques we have seen so far is we must know ahead of time to what it converges.
This is the “chicken and egg” problem mentioned above. An escape from this
dilemma is provided by Cauchy sequences.

Definition 3.19. A sequence an is a Cauchy sequence if for all ε > 0 there is an
N ∈N such that n, m ≥ N implies |an − am| < ε.

This definition is a bit more subtle than it might at first appear. It sort of says
that all the terms of the sequence are close together from some point onward. The
emphasis is on all the terms from some point onward. To stress this, first consider a
negative example.

Example 3.16. Suppose an = ∑n
k=1 1/k for n ∈N. There’s a trick for showing

the sequence an diverges. First, note that an is strictly increasing. For any n ∈ N,
consider

a2n−1 =
2n−1

∑
k=1

1
k
=

n−1

∑
j=0

2j−1

∑
k=0

1
2j + k

>
n−1

∑
j=0

2j−1

∑
k=0

1
2j+1 =

n−1

∑
j=0

1
2
=

n
2
→ ∞

Hence, the subsequence a2n−1 is unbounded and the sequence an diverges. (To see
how this works, write out the first few sums of the form a2n−1.)

On the other hand, |an+1 − an| = 1/(n + 1) → 0 and indeed, if m is fixed,
|an+m − an| → 0. This makes it seem as though the terms are getting close together,
as in the definition of a Cauchy sequence. But, an is not a Cauchy sequence, as
shown by the following theorem.

Theorem 3.20. A sequence converges iff it is a Cauchy sequence.

Proof. (⇒) Suppose an → L and ε > 0. There is an N ∈ N such that n ≥ N
implies |an − L| < ε/2. If m, n ≥ N, then

|am − an| = |am − L + L− an| ≤ |am − L|+ |L− am| < ε/2 + ε/2 = ε.

This shows an is a Cauchy sequence.
(⇐) Let an be a Cauchy sequence. First, we claim that an is bounded. To see

this, let ε = 1 and choose N ∈N such that n, m ≥ N implies |an − am| < 1. In this
case, aN − 1 < an < aN + 1 for all n ≥ N, so {an : n ≥ N} is a bounded set. The set
finite set {an : n < N} is also bounded. Since {an : n ∈ N} is the union of these
two bounded sets, it too must be bounded.

Because an is a bounded sequence, Theorem 3.16 implies it has a convergent
subsequence bn = aσ(n) → L. Let ε > 0 and choose N ∈N so that n, m ≥ N implies
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|an − am| < ε/2 and |bn − L| < ε/2. If n ≥ N, then σ(n) ≥ n ≥ N and
|an − L| = |an − bn + bn − L|

≤ |an − bn|+ |bn − L|
= |an − aσ(n)|+ |bn − L|
< ε/2 + ε/2 = ε.

Therefore, an → L. �

The fact that Cauchy sequences converge is yet another equivalent version
of completeness. In fact, most advanced texts define completeness as “Cauchy
sequences converge.” This is convenient in general spaces because the definition
of a Cauchy sequence only needs the metric on the space and none of its other
structure.

A typical example of the usefulness of Cauchy sequences is given below.
Definition 3.21. A sequence xn is contractive if there is a c ∈ (0, 1) such that

|xk+1 − xk| ≤ c|xk − xk−1| for all k > 1. c is called the contraction constant.
Theorem 3.22. If a sequence is contractive, then it converges.

Proof. Let xk be a contractive sequence with contraction constant c ∈ (0, 1).
We first claim that if n ∈N, then

(3.6) |xn − xn+1| ≤ cn−1|x1 − x2|.
This is proved by induction. When n = 1, the statement is

|x1 − x2| ≤ c0|x1 − x2| = |x1 − x2|,
which is trivially true. Suppose that |xn − xn+1| ≤ cn−1|x1 − x2| for some n ∈ N.
Then, from the definition of a contractive sequence and the induction hypothesis,

|xn+1 − xn+2| ≤ c|xn − xn+1| ≤ c
(

cn−1|x1 − x2|
)
= cn|x1 − x2|.

This shows the claim is true in the case n + 1. Therefore, by induction, the claim is
true for all n ∈N.

To show xn is a Cauchy sequence, let ε > 0. Since cn → 0, we can choose N ∈N

so that

(3.7) cN−1

(1− c)
|x1 − x2| < ε.

Let n > m ≥ N. Then
|xn − xm| = |xn − xn−1 + xn−1 − xn−2 + xn−2 − · · · − xm+1 + xm+1 − xm|

≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xm+1 − xm|

Now, use (3.6) on each of these terms.

≤ cn−2|x1 − x2|+ cn−3|x1 − x2|+ · · ·+ cm−1|x1 − x2|
= |x1 − x2|(cn−2 + cn−3 + · · ·+ cm−1)
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Apply the formula for a geometric sum.

= |x1 − x2|cm−1 1− cn−m

1− c

< |x1 − x2|
cm−1

1− c
(3.8)

Use (3.7) to estimate the following.

≤ |x1 − x2|
cN−1

1− c

< |x1 − x2|
ε

|x1 − x2|
= ε

This shows xn is a Cauchy sequence and must converge by Theorem 3.20. �

Example 3.17. Let −1 < r < 1 and define the sequence sn = ∑n
k=0 rk. (You

no doubt recognize this as the sequence of partial sums geometric series from your
calculus course.) If r = 0, the convergence of sn is trivial. So, suppose r 6= 0. In this
case,

|sn+1 − sn|
|sn − sn−1|

=

∣∣∣∣ rn+1

rn

∣∣∣∣ = |r| < 1

and sn is contractive. Theorem 3.22 implies sn converges.
Example 3.18. Suppose f (x) = 2 + 1/x, a1 = 2 and an+1 = f (an) for n ∈N. It

is evident that an ≥ 2 for all n. Some algebra gives∣∣∣∣ an+1 − an

an − an−1

∣∣∣∣ = ∣∣∣∣ f ( f (an−1))− f (an−1)

f (an−1)− an−1

∣∣∣∣ = 1
1 + 2an−1

≤ 1
5

.

This shows an is a contractive sequence and, according to Theorem 3.22, an → L for
some L ≥ 2. Since, an+1 = 2 + 1/an, taking the limit as n→ ∞ of both sides gives
L = 2 + 1/L. A bit more algebra shows L = 1 +

√
2.

L is called a fixed point of the function f ; i.e. f (L) = L. Many approximation
techniques for solving equations involve such iterative techniques depending upon
contraction to find fixed points.

The calculations in the proof of Theorem 3.22 give the means to approximate
the fixed point to within an allowable error. Looking at line (3.8), notice

|xn − xm| < |x1 − x2|
cm−1

1− c
.

Let n→ ∞ in this inequality to arrive at the error estimate

|L− xm| ≤ |x1 − x2|
cm−1

1− c
.(3.9)

In Example 3.18, a1 = 2, a2 = 5/2 and c ≤ 1/5. Suppose we want to
approximate L to 5 decimal places of accuracy. It suffices to find n satisfying
|an − L| < 5× 10−6. Using (3.9), with m = 9 shows

|a1 − a2|
cm−1

1− c
≤ 1.6× 10−6.
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6. EXERCISES 3-13

Some arithmetic gives a9 ≈ 2.41421. The calculator value of
L = 1 +

√
2 ≈ 2.414213562,

confirming our estimate.

6. Exercises

3.1. Let the sequence an =
6n− 1
3n + 2

. Use the definition of convergence for a sequence
to show an converges.

3.2. If an is a sequence such that a2n → L and a2n+1 → L, then an → L.

3.3. Let an be a sequence such that a2n → A and a2n − a2n−1 → 0. Then an → A.

3.4. If an is a sequence of positive numbers converging to 0, then √an → 0.

3.5. Find examples of sequences an and bn such that an → 0 and bn → ∞ such that
(a) anbn → 0
(b) anbn → ∞
(c) limn→∞ anbn does not exist, but anbn is bounded.
(d) Given c ∈ R, anbn → c.

3.6. If xn and yn are sequences such that limn→∞ xn = L 6= 0 and limn→∞ xnyn
exists, then limn→∞ yn exists.

3.7. Determine the limit of an = n
√

n!. (Hint: If n is even, then show n! > (n/2)n/2.)

3.8. If σ : N→N is strictly increasing, then σ(n) ≥ n for all n ∈N.

3.9. Let an = ∑2n
k=n+1 1/k.

(a) Prove an is a Cauchy sequence.
(b) Determine limn→∞ an

3.10. Every unbounded sequence contains a monotonic subsequence.

3.11. Find a sequence an such that given x ∈ [0, 1], there is a subsequence bn of an
such that bn → x.

3.12. A sequence an converges to 0 iff |an| converges to 0.

3.13. Define the sequence an =
√

n for n ∈N. Show that |an+1 − an| → 0, but an
is not a Cauchy sequence.

3.14. Let fn be the Fibonacci sequence, as defined in Example 3.6, and φ = (1 +√
5)/2. Prove

fn =
φn − (−φ)−n

√
5

.(3.11)
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3-14 CHAPTER 3. SEQUENCES

(The number φ ≈ 1.61803 is known as the golden ratio and the expression given in
(3.11) is known as Binet’s formula.)

3.15. Let a1, . . . , an and b1, . . . , bn be real numbers. Then(
n

∑
k=1

akbk

)2

≤
(

n

∑
k=1

a2
k

)(
n

∑
k=1

b2
k

)
.(3.12)

(Hint: Let f (x) = (a1x − b1)
2 + · · · + (anx − bn)2.) This is called the Cauchy-

Schwarz inequality.

3.16. Suppose a sequence is defined by a1 = 0, a1 = 1 and an+1 = 1
2 (an + an−1) for

n ≥ 2. Prove an converges, and determine its limit.

3.17. If the sequence an is defined recursively by a1 = 1 and an+1 =
√

an + 1, then
show an converges and determine its limit.

3.18. Let a1 = 3 and an+1 = 2− 1/an for n ∈N. Analyze the sequence.

3.19. If an is a sequence such that limn→∞ |an+1/an| = ρ < 1, then an → 0.

3.20. If an is a sequence such that

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = ρ,

then |an|1/n → ρ. (This is sometimes called Cauchy’s second limit theorem.)

3.21. Prove that the sequence an = n3/n! converges.

3.22. Let an and bn be sequences. Prove that both sequences an and bn converge iff
both an + bn and an − bn converge.

3.23. Let an be a bounded sequence. Prove that given any ε > 0, there is an interval
I with length ε such that {n : an ∈ I} is infinite. Is it necessary that an be bounded?

3.24. A sequence an converges in the mean if an = 1
n ∑n

k=1 ak converges. Prove that
if an → L, then an → L, but the converse is not true. (This is sometimes called
Cauchy’s first limit theorem.)

3.25. Find a sequence xn such that for all n ∈ N there is a subsequence of xn
converging to n.

3.26. If an is a Cauchy sequence whose terms are integers, what can you say about
the sequence?

3.27. Show an = ∑n
k=0 1/k! is a Cauchy sequence.

3.28. If an is a sequence such that every subsequence of an has a further subsequence
converging to L, then an → L.

3.29. If a, b ∈ (0, ∞), then show n
√

an + bn → max{a, b}.
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3.30. If 0 < α < 1 and sn is a sequence satisfying |sn+1| < α|sn|, then sn → 0.

3.31. If c ≥ 1 in the definition of a contractive sequence, can the sequence converge?

3.32. If an is a convergent sequence and bn is a sequence such that |am − an| ≥
|bm − bn| for all m, n ∈N, then bn converges.

3.33. If an ≥ 0 for all n ∈N and an → L, then √an →
√

L.

3.34. If an is a Cauchy sequence and bn is a subsequence of an such that bn → L,
then an → L.

3.35. Let x1 = 3 and xn+1 = 2− 1/xn for n ∈N. Analyze the sequence.

3.36. Let an be a sequence. an → L iff lim sup an = L = lim inf an.

3.37. Is lim sup(an + bn) = lim sup an + lim sup bn?

3.38. If an is a sequence of positive numbers, then 1/ lim inf an = lim sup 1/an.
(Interpret 1/∞ = 0 and 1/0 = ∞)

3.39. lim sup(an + bn) ≤ lim sup an + lim sup bn

3.40. an = 1/n is not contractive.

3.41. The equation x3 − 4x + 2 = 0 has one real root lying between 0 and 1.
Find a sequence of rational numbers converging to this root. Use this sequence to
approximate the root to five decimal places.

3.42. Approximate a solution of x3 − 5x + 1 = 0 to within 10−4 using a Cauchy
sequence.

3.43. Prove or give a counterexample: If an → L and σ : N→N is bijective, then
bn = aσ(n) converges. Note that bn might not be a subsequence of an. (bn is called a
rearrangement of an.)
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CHAPTER 4

Series

Given a sequence an, in many contexts it is natural to ask about the sum of all
the numbers in the sequence. If only a finite number of the an are nonzero, this is
trivial—and not very interesting. If an infinite number of the terms aren’t zero, the
path becomes less obvious. Indeed, it’s even somewhat questionable whether it
makes sense at all to add an infinite list of numbers.

There are many approaches to this question. The method given below is the
most common technique. Others are mentioned in the exercises.

1. What is a Series?

The idea behind adding up an infinite collection of numbers is a reduction to
the well-understood idea of a sequence. This is a typical approach in mathematics:
reduce a question to a previously solved problem.

Definition 4.1. Given a sequence an, the series having an as its terms is the new
sequence

sn =
n

∑
k=1

ak = a1 + a2 + · · ·+ an.

The numbers sn are called the partial sums of the series. If sn → S ∈ R, then the
series converges to S, which is called the sum of the series. This is normally written as

∞

∑
k=1

ak = S.

Otherwise, the series diverges.
The notation ∑∞

n=1 an is understood to stand for the sequence of partial sums of
the series with terms an. When there is no ambiguity, this is often abbreviated to
just ∑ an. It is often convenient to use the notation

∞

∑
n=1

an = a1 + a2 + a3 + · · · .

Example 4.1. If an = (−1)n for n ∈ N, then s1 = −1, s2 = −1 + 1 = 0,
s3 = −1 + 1− 1 = −1 and in general

sn =
(−1)n − 1

2

does not converge because it oscillates between −1 and 0. Therefore, the series
∑(−1)n diverges.

4-1



4-2 Series

Example 4.2 (Geometric Series). Recall that a sequence of the form an = c rn−1

is called a geometric sequence. It gives rise to a series
∞

∑
n=1

c rn−1 = c + cr + cr2 + cr3 + · · ·

called a geometric series. The number r is called the ratio of the series.
Suppose an = rn−1 for r 6= 1. Then the partial sums are

s1 = 1, s2 = 1 + r, s3 = 1 + r + r2, . . .

In general, it can be shown by induction (or even long division of polynomials) that

sn =
n

∑
k=1

ak =
n

∑
k=1

rk−1 =
1− rn

1− r
.(4.1)

The convergence of sn in (4.1) depends on the value of r. Letting n → ∞, it’s
apparent that sn diverges when |r| > 1 and converges to 1/(1− r) when |r| < 1.
When r = 1, sn = n → ∞. When r = −1, it’s essentially the same as Example 4.1,
and therefore diverges. In summary,

∞

∑
n=1

c rn−1 =
c

1− r

for |r| < 1, and diverges when |r| ≥ 1. This is called a geometric serieswith ratio r.

Figure 4.1. Stepping to the wall.

2 1 01/2
distance from wall

steps

In some cases, the geometric series has an intuitively plausible limit. If you start
two meters away from a wall and keep stepping halfway to the wall, no number of
steps will get you to the wall, but a large number of steps will get you as close to
the wall as you want. (See Figure 4.1.) So, the total distance stepped has limiting
value 2. The total distance after n steps is the nth partial sum of a geometric series
with ratio r = 1/2 and c = 1.

The geometric series is so important, it deserves its own theorem.
Theorem 4.2 (Geometric Series). If c, r ∈ R with c 6= 0, then

∞

∑
n=1

crn−1 =
c

1− r

when |r| < 1 and diverges when |r| ≥ 1.

Example 4.3 (Harmonic Series). The series ∑∞
n=1 1/n is called the harmonic

series. It was shown in Example 3.16 that the harmonic series diverges.
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Example 4.4. The terms of the sequence

an =
1

n2 + n
, n ∈N.

can be decomposed into partial fractions as

an =
1
n
− 1

n + 1
.

If sn is the series having an as its terms, then s1 = 1/2 = 1− 1/2. We claim that
sn = 1− 1/(n + 1) for all n ∈N. To see this, suppose sk = 1− 1/(k + 1) for some
k ∈N. Then

sk+1 = sk + ak+1 = 1− 1
k + 1

+

(
1

k + 1
− 1

k + 2

)
= 1− 1

k + 2

and the claim is established by induction. Now it’s easy to see that
∞

∑
n=1

1
n2 + n

= lim
n→∞

(
1− 1

n + 2

)
= 1.

This is an example of a telescoping series. The name is apparently based on the
idea that the middle terms of the series cancel, causing the series to collapse like a
hand-held telescope.

The following theorem is an easy consequence of the properties of sequences
shown in Theorem 3.8.

Theorem 4.3. Let ∑ an and ∑ bn be convergent series.
(a) If c ∈ R, then ∑ c an = c ∑ an.
(b) ∑(an + bn) = ∑ an + ∑ bn.
(c) an → 0

Proof. Let An = ∑n
k=1 ak and Bn = ∑n

k=1 bk be the sequences of partial sums for
each of the two series. By assumption, there are numbers A and B where An → A
and Bn → B.

(a) ∑n
k=1 c ak = c ∑n

k=1 ak = cAn → cA.
(b) ∑n

k=1(ak + bk) = ∑n
k=1 ak + ∑n

k=1 bk = An + Bn → A + B.
(c) For n > 1, an = ∑n

k=1 ak −∑n−1
k=1 ak = An − An−1 → A− A = 0. �

Notice that the first two parts of Theorem 4.3 show that the set of all convergent
series is closed under linear combinations.

Theorem 4.3(c) is very useful because its contrapositive provides the most basic
test for divergence.

Corollary 4.4 (Going to Zero Test). If an 6→ 0, then ∑ an diverges.

Many students have made the mistake of reading too much into Corollary 4.4.
It can only be used to show divergence. When the terms of a series do tend to
zero, that does not guarantee convergence. Example 4.3, shows Theorem 4.3(c) is
necessary, but not sufficient for convergence.

Another useful observation is that the partial sums of a convergent series are a
Cauchy sequence. The Cauchy criterion for sequences can be rephrased for series
as the following theorem, the proof of which is Exercise 4.5.
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4-4 Series

Theorem 4.5 (Cauchy Criterion for Series). Let ∑ an be a series. The following
statements are equivalent.

(a) ∑ an converges.
(b) For every ε > 0 there is an N ∈N such that whenever n ≥ m ≥ N, then∣∣∣∣∣ n

∑
i=m

ai

∣∣∣∣∣ < ε.

2. Positive Series

Most of the time, it is very hard or impossible to determine the exact limit of
a convergent series. We must satisfy ourselves with determining whether a series
converges, and then approximating its sum. For this reason, the study of series
usually involves learning a collection of theorems that might answer whether a
given series converges, but don’t tell us to what it converges. These theorems are
usually called the convergence tests. The reader probably remembers a battery of
such tests from her calculus course. There is a myriad of such tests, and the standard
ones are presented in the next few sections, along with a few of those less widely
used.

Since convergence of a series is determined by convergence of the sequence
of its partial sums, the easiest series to study are those with well-behaved partial
sums. Series with monotone sequences of partial sums are certainly the simplest
such series.

Definition 4.6. The series ∑ an is a positive series, if an ≥ 0 for all n.
The advantage of a positive series is that its sequence of partial sums is non-

negative and increasing. Since an increasing sequence converges if and only if it is
bounded above, there is a simple criterion to determine whether a positive series
converges: it converges if and only if its partial sums are a bounded sequence. All
of the standard convergence tests for positive series exploit this criterion.

2.1. The Most Common Convergence Tests. All beginning calculus courses
contain several simple tests to determine whether positive series converge. Most of
them are presented below.

2.1.1. Comparison Tests. The most basic convergence tests are the comparison
tests. In these tests, the behavior of one series is inferred from that of another
series. Although they’re easy to use, there is one often fatal catch: in order to use
a comparison test, you must have a known series to which you can compare the
mystery series. For this reason, a wise mathematician collects example series for her
toolbox. The more samples in the toolbox, the more powerful are the comparison
tests.

Theorem 4.7 (Comparison Test). Suppose ∑ an and ∑ bn are positive series with
an ≤ bn for all n.

(a) If ∑ bn converges, then so does ∑ an.
(b) If ∑ an diverges, then so does ∑ bn.

Proof. Let An and Bn be the partial sums of ∑ an and ∑ bn, respectively. It
follows from the assumptions that An and Bn are increasing and for all n ∈N,
(4.2) An ≤ Bn.
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a1 + a2 + a3︸ ︷︷ ︸
≤2a2

+ a4 + a5 + a6 + a7︸ ︷︷ ︸
≤4a4

+ a8 + a9 + · · ·+ a15︸ ︷︷ ︸
≤8a8

+a16 + · · ·

a1︸︷︷︸
≥a2

+ a2 + a3︸ ︷︷ ︸
≥2a4

+ a4 + a5 + a6 + a7︸ ︷︷ ︸
≥4a8

+ a8 + a9 + · · ·+ a15︸ ︷︷ ︸
≥8a16

+a16 + · · ·

Figure 4.2. This diagram shows the groupings used in inequality (4.3).

If ∑ bn = B, then (4.2) implies B is an upper bound for An, and ∑ an converges.
On the other hand, if ∑ an diverges, An → ∞ and the Sandwich Theorem 3.9(b)

shows Bn → ∞. �

Example 4.5. Example 4.3 shows that ∑ 1/n diverges. If p ≤ 1, then 1/np ≥ 1/n,
and Theorem 4.7 implies ∑ 1/np diverges.

Example 4.6. The series ∑ sin2 n/2n converges because
sin2 n

2n ≤ 1
2n

for all n and the geometric series ∑ 1/2n = 1.

Theorem 4.8 (Cauchy’s Condensation Test1). Suppose an is a decreasing sequence
of nonnegative numbers. Then

∑ an converges iff ∑ 2na2n converges.

Proof. Since an is decreasing, for n ∈N,
2n+1−1

∑
k=2n

ak ≤ 2na2n ≤ 2
2n−1

∑
k=2n−1

ak.(4.3)

(See Figure 4.2.) Adding for 1 ≤ n ≤ m gives
2m+1−1

∑
k=2

ak ≤
m

∑
k=1

2ka2k ≤ 2
2m−1

∑
k=1

ak.(4.4)

Suppose ∑ an converges to S. The right-hand inequality of (4.4) shows ∑m
k=1 2ka2k <

2S and ∑ 2ka2k must converge. On the other hand, if ∑ an diverges, then the left-hand
side of (4.4) is unbounded, forcing ∑ 2ka2k to diverge. �

Example 4.7 (p-series). For fixed p ∈ R, the series ∑ 1/np is called a p-series.
The special case when p = 1 is the harmonic series. Notice

∑
2n

(2n)p = ∑
(

21−p
)n

is a geometric series with ratio 21−p, so it converges only when 21−p < 1. Since
21−p < 1 only when p > 1, it follows from the Cauchy Condensation Test that the
p-series converges when p > 1 and diverges when p ≤ 1. (Of course, the divergence
half of this was already known from Example 4.5.)

1The series ∑ 2na2n is sometimes called the condensed series associated with ∑ an.
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The p-series are often useful for the Comparison Test, and also occur in many
areas of advanced mathematics such as harmonic analysis and number theory.

Theorem 4.9 (Limit Comparison Test). Suppose ∑ an and ∑ bn are positive series
with

α = lim inf
an

bn
≤ lim sup

an

bn
= β.(4.5)

(a) If α ∈ (0, ∞) and ∑ an converges, then so does ∑ bn, and if ∑ bn diverges,
then so does ∑ an.
(b) If β ∈ (0, ∞) and ∑ an diverges, then so does ∑ bn, and if ∑ bn converges,
then so does ∑ an.

Proof. To prove (a), suppose α > 0. There is an N ∈N such that
n ≥ N =⇒ α

2
<

an

bn
.(4.6)

If n > N, then (4.6) gives
α

2

n

∑
k=N

bk <
n

∑
k=N

ak(4.7)

If ∑ an converges, then (4.7) shows the partial sums of ∑ bn are bounded and
∑ bn converges. If ∑ bn diverges, then (4.7) shows the partial sums of ∑ an are
unbounded, and ∑ an must diverge.

The proof of (b) is similar. �

The following easy corollary is the form this test takes in most calculus books.
It’s easier to use than Theorem 4.9 and suffices most of the time.

Corollary 4.10 (Limit Comparison Test). Suppose ∑ an and ∑ bn are positive
series with

α = lim
n→∞

an

bn
.(4.8)

If α ∈ (0, ∞), then ∑ an and ∑ bn either both converge or both diverge.

Example 4.8. To test the series ∑
1

2n − n
for convergence, let

an =
1

2n − n
and bn =

1
2n .

Then

lim
n→∞

an

bn
= lim

n→∞

1/(2n − n)
1/2n = lim

n→∞

2n

2n − n
= lim

n→∞

1
1− n/2n = 1 ∈ (0, ∞).

Since ∑ 1/2n = 1, the original series converges by the Limit Comparison Test.
2.1.2. Geometric Series-Type Tests. The most important series is undoubtedly

the geometric series. Several standard tests are basically comparisons to geometric
series.

Theorem 4.11 (Root Test). Suppose ∑ an is a positive series and

ρ = lim sup a1/n
n .

If ρ < 1, then ∑ an converges. If ρ > 1, then ∑ an diverges.
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Proof. First, suppose ρ < 1 and r ∈ (ρ, 1). There is an N ∈N so that a1/n
n < r

for all n ≥ N. This is the same as an < rn for all n ≥ N. Using this, it follows that
when n ≥ N,

n

∑
k=1

ak =
N−1

∑
k=1

ak +
n

∑
k=N

ak <
N−1

∑
k=1

ak +
n

∑
k=N

rk <
N−1

∑
k=1

ak +
rN

1− r
.

This shows the partial sums of ∑ an are bounded. Therefore, it must converge.
If ρ > 1, there is an increasing sequence of integers kn → ∞ such that a1/kn

kn
> 1

for all n ∈N. This shows akn > 1 for all n ∈N. By Theorem 4.4, ∑ an diverges. �

Example 4.9. For any x ∈ R, the series ∑ |xn|/n! converges. To see this, note
that according to Exercise 3.3.7,( |xn|

n!

)1/n
=

|x|
(n!)1/n → 0 < 1.

Applying the Root Test shows the series converges.
Example 4.10. Consider the p-series ∑ 1/n and ∑ 1/n2. The first diverges and

the second converges. Since n1/n → 1 and n2/n → 1, it can be seen that when ρ = 1,
the Root Test in inconclusive.

Theorem 4.12 (Ratio Test). Suppose ∑ an is a positive series. Let

r = lim inf
an+1

an
≤ lim sup

an+1

an
= R.

If R < 1, then ∑ an converges. If r > 1, then ∑ an diverges.
Proof. First, suppose R < 1 and ρ ∈ (R, 1). There exists N ∈ N such that

an+1/an < ρ whenever n ≥ N. This implies an+1 < ρan whenever n ≥ N. From
this it’s easy to prove by induction that aN+m < ρmaN whenever m ∈N. It follows
that, for n > N,

n

∑
k=1

ak =
N

∑
k=1

ak +
n

∑
k=N+1

ak

=
N

∑
k=1

ak +
n−N

∑
k=1

aN+k

<
N

∑
k=1

ak +
n−N

∑
k=1

aNρk

<
N

∑
k=1

ak +
aNρ

1− ρ
.

Therefore, the partial sums of ∑ an are bounded, and ∑ an converges.
If r > 1, then choose N ∈N so that an+1 > an for all n ≥ N. It’s now apparent

that an 6→ 0. �

In calculus books, the ratio test usually takes the following simpler form.
Corollary 4.13 (Ratio Test). Suppose ∑ an is a positive series. Let

r = lim
n→∞

an+1

an
.

If r < 1, then ∑ an converges. If r > 1, then ∑ an diverges.
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4-8 Series

From a practical viewpoint, the ratio test is often easier to apply than the root
test. But, the root test is actually the stronger of the two in the sense that there are
series for which the ratio test fails, but the root test succeeds. (See Exercise 4.11, for
example.) This happens because

lim inf
an+1

an
≤ lim inf a1/n

n ≤ lim sup a1/n
n ≤ lim sup

an+1

an
.(4.9)

To see this, note the middle inequality is always true. To prove the right-hand
inequality, choose r > lim sup an+1/an. It suffices to show lim sup a1/n

n ≤ r. As in
the proof of the ratio test, an+k < rkan. This implies

an+k < rn+k an

rn ,

which leads to
a1/(n+k)

n+k < r
( an

rn

)1/(n+k)
.

Finally,

lim sup a1/n
n = lim sup

k→∞
a1/(n+k)

n+k ≤ lim sup
k→∞

r
( an

rn

)1/(n+k)
= r.

The left-hand inequality is proved similarly.
2.2. Kummer-Type Tests.

This is an advanced section that can be omitted.
Most times the simple tests of the preceding section suffice. However, more

difficult series require more delicate tests. There dozens of other, more specialized,
convergence tests. Several of them are consequences of the following theorem.

Theorem 4.14 (Kummer’s Test). Suppose ∑ an is a positive series, pn is a sequence
of positive numbers and

(4.10) α = lim inf
(

pn
an

an+1
− pn+1

)
≤ lim sup

(
pn

an

an+1
− pn+1

)
= β

If α > 0, then ∑ an converges. If ∑ 1/pn diverges and β < 0, then ∑ an diverges.

Proof. Let sn = ∑n
k=1 ak, suppose α > 0 and choose r ∈ (0, α). There must be

an N > 1 such that
pn

an

an+1
− pn+1 > r, ∀n ≥ N.

Rearranging this gives
(4.11) pnan − pn+1an+1 > ran+1, ∀n ≥ N.

For M > N, (4.11) implies
M

∑
n=N

(pnan − pn+1an+1) >
M

∑
n=N

ran+1

pN aN − pM+1aM+1 > r(sM − sN−1)

pN aN − pM+1aM+1 + rsN−1 > rsM

pN aN + rsN−1

r
> sM
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Kummer-Type Tests 4-9

Since N is fixed, the left side is an upper bound for sM, and it follows that ∑ an
converges.

Next suppose ∑ 1/pn diverges and β < 0. There must be an N ∈N such that
pn

an

an+1
− pn+1 < 0, ∀n ≥ N.

This implies
pnan < pn+1an+1, ∀n ≥ N.

Therefore, pnan > pN aN whenever n > N and

an > pN aN
1
pn

, ∀n ≥ N.

Because N is fixed and ∑ 1/pn diverges, the Comparison Test shows ∑ an diverges.
�

Kummer’s test is powerful. In fact, it can be shown that, given any positive series,
a judicious choice of the sequence pn can always be made to determine whether it
converges. (See Exercise 4.18, [21] and [20].) But, as stated, Kummer’s test is not
very useful because choosing pn for a given series is often difficult. Experience has
led to some standard choices that work with large classes of series. For example,
Exercise 4.10 asks you to prove the choice pn = 1 for all n reduces Kummer’s test to
the standard ratio test. Other useful choices are shown in the following theorems.

Theorem 4.15 (Raabe’s Test). Let ∑ an be a positive series such that an > 0 for all n.
Define

α = lim sup
n→∞

n
(

an

an+1
− 1
)
≥ lim inf

n→∞
n
(

an

an+1
− 1
)
= β

If α > 1, then ∑ an converges. If β < 1, then ∑ an diverges.

Proof. Let pn = n in Kummer’s test, Theorem 4.14. �

When Raabe’s test is inconclusive, there are even more delicate tests, such as
the theorem given below.

Theorem 4.16 (Bertrand’s Test). Let ∑ an be a positive series such that an > 0 for
all n. Define

α = lim inf
n→∞

ln n
(

n
(

an

an+1
− 1
)
− 1
)
≤ lim sup

n→∞
ln n

(
n
(

an

an+1
− 1
)
− 1
)
= β.

If α > 1, then ∑ an converges. If β < 1, then ∑ an diverges.

Proof. Let pn = n ln n in Kummer’s test. �

Example 4.11. Consider the series

∑ an = ∑
(

n

∏
k=1

2k
2k + 1

)p

.(4.12)

It’s of interest to know for what values of p it converges.
An easy computation shows that an+1/an → 1, so the ratio test is inconclusive.
Next, try Raabe’s test. Manipulating

lim
n→∞

n
((

an

an+1

)p
− 1
)
= lim

n→∞

( 2n+3
2n+2

)p − 1
1
n
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4-10 Series

it becomes a 0/0 form and can be evaluated with L’Hospital’s rule.2

lim
n→∞

n2 ( 3+2 n
2+2 n

)p p
(1 + n) (3 + 2 n)

=
p
2

.

From Raabe’s test, Theorem 4.15, it follows that the series converges when p > 2
and diverges when p < 2. Raabe’s test is inconclusive when p = 2.

Now, suppose p = 2. Consider

lim
n→∞

ln n
(

n
(

an

an+1
− 1
)
− 1
)
= − lim

n→∞
ln n

(4 + 3 n)
4 (1 + n)2 = 0

and Bertrand’s test, Theorem 4.16, shows divergence.
The series (4.12) converges only when p > 2.

3. Absolute and Conditional Convergence

The tests given above are for the restricted case when a series has positive terms.
If the stipulation that the series be positive is thrown out, things becomes consider-
ably more complicated. But, as is often the case in mathematics, some problems can
be attacked by reducing them to previously solved cases. The following definition
and theorem show how to do this for some special cases.

Definition 4.17. Let ∑ an be a series. If ∑ |an| converges, then ∑ an is absolutely
convergent. If it is convergent, but not absolutely convergent, then it is conditionally
convergent.

Since ∑ |an| is a positive series, the preceding tests can be used to determine its
convergence. The following theorem shows that this is also enough for convergence
of the original series.

Theorem 4.18. If ∑ an is absolutely convergent, then it is convergent.

Proof. Let ε > 0. Theorem 4.5 yields an N ∈N such that when n ≥ m ≥ N,

ε >
n

∑
k=m
|ak| ≥

∣∣∣∣∣ n

∑
k=m

ak

∣∣∣∣∣ ≥ 0.

Another application Theorem 4.5 finishes the proof. �

Example 4.12. The series ∑ (−1)n+1/n is called the alternating harmonic series.
(See Figure 4.3.) Since the harmonic series diverges, we see the alternating harmonic
series is not absolutely convergent.

On the other hand, if sn = ∑n
k=1(−1)k+1/k, then

s2n =
n

∑
k=1

(
1

2k− 1
− 1

2k

)
=

n

∑
k=1

1
2k(2k− 1)

is a positive series that converges by the Comparison Test. Since |s2n − s2n−1| =
1/2n→ 0, Exercise 4.16 shows s2n−1 must also converge to the same limit. Therefore,
sn converges and ∑ (−1)n+1/n is conditionally convergent.

2See §5.2.
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Absolute and Conditional Convergence 4-11
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Figure 4.3. This plot shows the first 35 partial sums of the alternating
harmonic series. It can be shown it converges to ln 2 ≈ 0.6931, which is
the level of the dashed line. Notice how the odd partial sums decrease to
ln 2 and the even partial sums increase to ln 2.

To summarize: absolute convergence implies convergence, but convergence
does not imply absolute convergence.

There are a few tests that address conditional convergence. Following are the
most well-known.

Theorem 4.19 (Abel’s Test). Let an and bn be sequences satisfying
(a) sn = ∑n

k=1 ak is a bounded sequence.
(b) bn ≥ bn+1, ∀n ∈N

(c) bn → 0
Then ∑ anbn converges.

To prove this theorem, the following lemma is needed.
Lemma 4.20 (Summation by Parts). For every pair of sequences an and bn,

n

∑
k=1

akbk = bn+1

n

∑
k=1

ak −
n

∑
k=1

(bk+1 − bk)
k

∑
`=1

a`

Proof. Let s0 = 0 and sn = ∑n
k=1 ak when n ∈N. Then

n

∑
k=1

akbk =
n

∑
k=1

(sk − sk−1)bk

=
n

∑
k=1

skbk −
n

∑
k=1

sk−1bk

=
n

∑
k=1

skbk −
(

n

∑
k=1

skbk+1 − snbn+1

)

= bn+1

n

∑
k=1

ak −
n

∑
k=1

(bk+1 − bk)
k

∑
`=1

a`

�
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4-12 Series

Proof. To prove the theorem, suppose |∑n
k=1 ak| < M for all n ∈N. Let ε > 0

and choose N ∈N such that bN < ε/2M. If N ≤ m < n, use Lemma 4.20 to write∣∣∣∣∣ n

∑
`=m

a`b`

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
`=1

a`b` −
m−1

∑
`=1

a`b`

∣∣∣∣∣
=

∣∣∣∣∣bn+1

n

∑
`=1

a` −
n

∑
`=1

(b`+1 − b`)
`

∑
k=1

ak

−
(

bm

m−1

∑
`=1

a` −
m−1

∑
`=1

(b`+1 − b`)
`

∑
k=1

ak

)∣∣∣∣∣
Using (a) gives

≤ (bn+1 + bm)M + M
n

∑
`=m
|b`+1 − b`|

Now, use (b) to see

= (bn+1 + bm)M + M
n

∑
`=m

(b` − b`+1)

and then telescope the sum to arrive at
= (bn+1 + bm)M + M(bm − bn+1)

= 2Mbm

< 2M
ε

2M
< ε

This shows ∑n
`=1 a`b` satisfies Theorem 4.5, and therefore converges. �

There’s one special case of this theorem that’s most often seen in calculus texts.
Corollary 4.21 (Alternating Series Test). If cn decreases to 0, then the series

∑ (−1)n+1cn converges. Moreover, if sn = ∑n
k=1(−1)k+1ck and sn → s, then |sn − s| <

cn+1.

Proof. Let an = (−1)n+1 and bn = cn in Theorem 4.19 to see the series con-
verges to some number s. For n ∈N, let sn = ∑n

k=0(−1)k+1ck and s0 = 0. Since
s2n − s2n+2 = −c2n+1 + c2n+2 ≤ 0 and s2n+1 − s2n+3 = c2n+2 − c2n+3 ≥ 0,

It must be that s2n ↑ s and s2n+1 ↓ s. For all n ∈ ω,
0 ≤ s2n+1 − s ≤ s2n+1 − s2n+2 = c2n+2 and 0 ≤ s− s2n ≤ s2n+1 − s2n = c2n+1.

This shows |sn − s| < cn+1 for all n. �

Aseries such as that inCorollary 4.21 is called an alternating series. More formally,
if an is a sequence such that an/an+1 < 0 for all n, then ∑ an is an alternating series.
Informally, it just means the series alternates between positive and negative terms.

Example 4.13. Corollary 4.21 provides another way to prove the alternating
harmonic series in Example 4.12 converges. Figures 4.3 and 4.4 show how the partial
sums bounce up and down across the sum of the series.
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4. REARRANGEMENTS OF SERIES 4-13

Figure 4.4. Here is a more whimsical way to visualize the partial sums
of the alternating harmonic series.

4. Rearrangements of Series

This is an advanced section that can be omitted.
We want to use our standard intuition about adding lists of numbers when

working with series. But, this intuition has been formed by working with finite
sums and does not always work with series.

Example 4.14. Suppose ∑ (−1)n+1/n = γ so that ∑ (−1)n+12/n = 2γ. It’s
easy to show γ > 1/2. Consider the following calculation.

2γ = ∑ (−1)n+1 2
n

= 2− 1 +
2
3
− 1

2
+

2
5
− 1

3
+ · · ·

Rearrange and regroup.

= (2− 1)− 1
2
+

(
2
3
− 1

3

)
− 1

4
+

(
2
5
− 1

5

)
− 1

6
+ · · ·

= 1− 1
2
+

1
3
− 1

4
+ · · ·

= γ

So, γ = 2γ with γ 6= 0. Obviously, rearranging and regrouping of this series is a
questionable thing to do.

In order to carefully consider the problem of rearranging a series, a precise
definition is needed.

Definition 4.22. Let σ : N → N be a bijection and ∑ an be a series. The new
series ∑ aσ(n) is a rearrangement of the original series.
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4-14 Series

The problem with Example 4.14 is that the series is conditionally convergent.
Such examples cannot happen with absolutely convergent series. For the most part,
absolutely convergent series behave as we are intuitively led to expect.

Theorem 4.23. If ∑ an is absolutely convergent and ∑ aσ(n) is a rearrangement of
∑ an, then ∑ aσ(n) = ∑ an.

Proof. Let ∑ an = s and ε > 0. Choose N ∈ N so that N ≤ m < n implies
∑n

k=m |ak| < ε. Choose M ≥ N such that
{1, 2, . . . , N} ⊂ {σ(1), σ(2), . . . , σ(M)}.

If P > M, then ∣∣∣∣∣ P

∑
k=1

ak −
P

∑
k=1

aσ(k)

∣∣∣∣∣ ≤ ∞

∑
k=N+1

|ak| ≤ ε

and both series converge to the same number. �

When a series is conditionally convergent, the result of a rearrangement is hard
to predict. This is shown by the following surprising theorem.

Theorem 4.24 (Riemann Rearrangement). If ∑ an is conditionally convergent and
c ∈ R∪ {−∞, ∞}, then there is a rearrangement σ such that ∑ aσ(n) = c.

To prove this, the following lemma is needed.
Lemma 4.25. If ∑ an is conditionally convergent and

bn =

{
an, an > 0
0, an ≤ 0

and cn =

{
−an, an < 0
0, an ≥ 0

,

then both ∑ bn and ∑ cn diverge.

Proof. Suppose ∑ bn converges. By assumption, ∑ an converges, so Theorem
4.3 implies

∑ cn = ∑ bn −∑ an

converges. Another application of Theorem 4.3 shows

∑ |an| = ∑ bn + ∑ cn

converges. This is a contradiction of the assumption that ∑ an is conditionally
convergent, so ∑ bn cannot converge.

A similar contradiction arises under the assumption that ∑ cn converges. �

Proof. (Theorem 4.24) Let bn and cn be as in Lemma 4.25 and define the sub-
sequence a+n of bn by removing those terms for which bn = 0 and an 6= 0. Define
the subsequence a−n of cn by removing those terms for which cn = 0. The series
∑∞

n=1 a+n and ∑∞
n=1 a−n are still divergent because only terms equal to zero have been

removed from bn and cn.
Now, let c ∈ R and m0 = n0 = 0. According to Lemma 4.25, we can define the

natural numbers

m1 = min{n :
n

∑
k=1

a+k > c} and n1 = min{n :
m1

∑
k=1

a+k +
n

∑
`=1

a−` < c}.
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5. EXERCISES 4-15

If mp and np have been chosen for some p ∈N, then define

mp+1 = min

n :
p

∑
k=0

(
mk+1

∑
`=mk+1

a+` −
nk+1

∑
`=nk+1

a−`

)
+

n

∑
`=mp+1

a+` > c


and

np+1 = min

{
n :

p

∑
k=0

(
mk+1

∑
`=mk+1

a+` −
nk+1

∑
`=nk+1

a−`

)

+

np+1

∑
`=mp+1

a+` −
n

∑
`=np+1

a−` < c

 .

Consider the series
a+1 + a+2 + · · ·+ a+m1

− a−1 − a−2 − · · · − a−n1
(4.13)

+ a+m1+1 + a+m1+2 + · · ·+ a+m2
− a−n1+1 − a−n1+2 − · · · − a−n2

+ a+m2+1 + a+m2+2 + · · ·+ a+m3
− a−n2+1 − a−n2+2 − · · · − a−n3

+ · · ·
It is clear this series is a rearrangement of ∑∞

n=1 an and the way in which mp and np
were chosen guarantee that

0 <
p−1

∑
k=0

 mk+1

∑
`=mk+1

a+` −
nk

∑
`=nk+1

a−` +
mp

∑
k=mp+1

a+k

− c ≤ a+mp

and
0 < c−

p

∑
k=0

(
mk+1

∑
`=mk+1

a+` −
nk

∑
`=nk+1

a−`

)
≤ a−np

Since both a+mp → 0 and a−np → 0, the result follows from the Squeeze Theorem.
The argument when c is infinite is left as Exercise 4.30. �

A moral to take from all this is that absolutely convergent series are robust
and conditionally convergent series are fragile. Absolutely convergent series can
be sliced and diced and mixed with careless abandon without getting surprising
results. If conditionally convergent series are not handled with care, the results can
be quite unexpected.

5. Exercises

4.1. Prove Theorem 4.5.

4.2. If ∑∞
n=1 an is a convergent positive series, then does ∑∞

n=1
1

1+an
converge?

4.3. The series
∞

∑
n=1

(an − an+1) converges iff the sequence an converges.

4.4. Prove or give a counter example: If ∑ |an| converges, then nan → 0.
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4-16 Series

4.5. If the series a1 + a2 + a3 + · · · converges to S, then so does
a1 + 0 + a2 + 0 + 0 + a3 + 0 + 0 + 0 + a4 + · · · .(4.14)

4.6. Consider the series
1
2
+

1
3
+

1
22 +

1
32 +

1
23 +

1
33 +

1
24 +

1
34 + · · ·

Show that the ratio test is inconclusive with this series, but the root test is conclusive.
What is its sum?
4.7. If ∑∞

n=1 an converges and bn is a bounded monotonic sequence, then ∑∞
n=1 anbn

converges.

4.8. Let xn be a sequencewith range {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Prove that∑∞
n=1 xn10−n

converges and its sum is in the interval [0, 1].

4.9. Write 6.17272727272 · · · as a fraction.
4.10. Prove the ratio test by setting pn = 1 for all n in Kummer’s test.

4.11. Consider the series

1 + 1 +
1
2
+

1
2
+

1
4
+

1
4
+ · · · = 4.

Show that the ratio test is inconclusive for this series, but the root test gives a positive
answer.

4.12. For what values of p does
∞

∑
n=2

1
(n + 1) (ln(n + 2))p converge?

4.13. Does
1
3
+

1× 2
3× 5

+
1× 2× 3
3× 5× 7

+
1× 2× 3× 4
3× 5× 7× 9

+ · · ·

converge?

4.14. For what values of p does(
1
2

)p
+

(
1 · 3
2 · 4

)p
+

(
1 · 3 · 5
2 · 4 · 6

)p
+ · · ·

converge?

4.15. Find sequences an and bn satisfying:
(a) an > 0, ∀n ∈N and an → 0;
(b) Bn = ∑n

k=1 bk is a bounded sequence; and,
(c) ∑∞

n=1 anbn diverges.

4.16. Let an be a sequence such that a2n → A and a2n − a2n−1 → 0. Then an → A.

4.17. Prove Bertrand’s test, Theorem 4.16.
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5. EXERCISES 4-17

4.18. Let ∑ an be a positive series. Prove that ∑ an converges if and only if there is
a sequence of positive numbers pn and α > 0 such that

lim
n→∞

pn
an

an+1
− pn+1 = α.

(Hint: If s = ∑ an and sn = ∑n
k=1 ak, then let pn = (s− sn)/an.)

4.19. Prove that ∑∞
n=0

xn

n! converges for all x ∈ R.

4.20. Find all values of x for which ∑∞
k=0 k2(x + 3)k converges.

4.21. For what values of x does the series
∞

∑
n=1

(−1)n+1x2n−1

2n− 1
(4.20)

converge?

4.22. For what values of x does
∞

∑
n=1

(x + 3)n

n4n converge absolutely, converge condi-
tionally or diverge?

4.23. For what values of x does
∞

∑
n=1

n + 6
n2(x− 1)n converge absolutely, converge

conditionally or diverge?

4.24. For what positive values of α does ∑∞
n=1 αnnα converge?

4.25. Prove that ∑ cos
nπ

3
sin

π

n
converges.

4.26. For a series ∑∞
k=1 an with partial sums sn, define

σn =
1
n

n

∑
k=1

sn.

Prove that if ∑∞
k=1 an = s, then σn → s. Find an example where σn converges, but

∑∞
k=1 an does not. (If σn converges, the sequence is said to be Cesàro summable.)

4.27. If an is a sequence with a subsequence bn, then ∑∞
n=1 bn is a subseries of ∑∞

n=1 an.
Prove that if every subseries of ∑∞

n=1 an converges, then ∑∞
n=1 an converges abso-

lutely.

4.28. If ∑∞
n=1 an is a convergent positive series, then so is ∑∞

n=1 a2
n. Give an example

to show the converse is not true.
4.29. If an ≥ 0 for all n ∈N and there is a p > 1 such that limn→∞ npan exists and
is finite, then ∑∞

n=1 an converges. Is this true for p = 1?

4.30. Finish the proof of Theorem 4.24.
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4-18 Series

4.31. Leonhard Euler started with the equation
x

x− 1
+

x
1− x

= 0,

transformed it to
1

1− 1/x
+

x
1− x

= 0,

and then used geometric series to write it as

· · ·+ 1
x2 +

1
x
+ 1 + x + x2 + x3 + · · · = 0.(4.24)

Show how Euler did his calculation and find his mistake.
4.32. Let ∑ an be a conditionally convergent series and c ∈ R∪ {−∞, ∞}. There is
a sequence bn such that |bn| = 1 for all n ∈N and ∑ anbn = c.
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CHAPTER 5

The Topology of R

This chapter introduces the basic ideas of point-set topology on R. We’ll see
how a closer look the relation between limits and the standard metric reveal deeper
properties of R. These deeper properties are then used in subsequent chapters to
prove some of the standard theorems of analysis.

1. Open and Closed Sets

Definition 5.1. A set G ⊂ R is open if for every x ∈ G there is an ε > 0 such
that (x− ε, x + ε) ⊂ G. A set F ⊂ R is closed if Fc is open.

The idea is that about every point of an open set, there is some room inside the
set on both sides of the point. It is easy to see that any open interval (a, b) is an open
set because if a < x < b and ε = min{x− a, b− x}, then (x− ε, x + ε) ⊂ (a, b). It’s
obvious R itself is an open set.

On the other hand, any closed interval [a, b] is a closed set. To see this, it must be
shown its complement is open. Let x ∈ [a, b]c and ε = min{|x− a|, |x− b|}. Then
(x− ε, x + ε) ∩ [a, b] = ∅, so (x− ε, x + ε) ⊂ [a, b]c. Therefore, [a, b]c is open, and
its complement, namely [a, b], is closed.

A singleton set {a} is closed. To see this, suppose x 6= a and ε = |x− a|. Then
a /∈ (x− ε, x + ε), and {a}c must be open. The definition of a closed set implies {a}
is closed.

Open and closed sets can get much more complicated than the intervals exam-
ined above. For example, similar arguments show Z is a closed set and Zc is open.
Both have an infinite number of disjoint pieces.

A common mistake is to assume all sets are either open or closed. Most sets are
neither open nor closed. For example, if S = [a, b) for some numbers a < b, then no
matter the size of ε > 0, neither (a− ε, a + ε) nor (b− ε, b + ε) are contained in S or
Sc.

Theorem 5.2. Following are the basic properties of open sets.
(a) Both ∅ and R are open.
(b) The union of any collection of open sets is an open set.
(c) The intersection of a finite collection of open sets is open.

Proof. (a) ∅ is open vacuously. R is obviously open.
(b) If x ∈ ⋃λ∈Λ Gλ, then there is a λx ∈ Λ such that x ∈ Gλx . Since Gλx is

open, there is an ε > 0 such that x ∈ (x− ε, x + ε) ⊂ Gλx ⊂
⋃

λ∈Λ Gλ. This shows⋃
λ∈Λ Gλ is open.
(c) If x ∈ ⋂n

k=1 Gk, then x ∈ Gk for 1 ≤ k ≤ n. For each Gk there is an εk such
that (x− εk, x + εk) ⊂ Gk. Let ε = min{εk : 1 ≤ k ≤ n}. Then (x− ε, x + ε) ⊂ Gk
for 1 ≤ k ≤ n, so (x− ε, x + ε) ⊂ ⋂n

k=1 Gk. Therefore
⋂n

k=1 Gk is open. �
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Theword finite in part (c) of the theorem is important because the intersection of
an infinite number of open sets need not be open. For example, let Gn = (−1/n, 1/n)
for n ∈N. Then each Gn is open, but ⋂n∈N Gn = {0} is not.

Applying DeMorgan’s laws to the parts of Theorem 5.2 yields the next corollary.
Corollary 5.3. Following are the basic properties of closed sets.

(a) Both ∅ and R are closed.
(b) If {Fλ : λ ∈ Λ} is a collection of closed sets, then

⋂
λ∈Λ Fλ is closed.

(c) If {Fk : 1 ≤ k ≤ n} is a finite collection of closed sets, then
⋃n

k=1 Fk is closed.

Surprisingly, ∅ and R are both open and closed. They are the only subsets of R

with this dual personality. Sets that are both open and closed are sometimes said to
be clopen.

1.1. Topological Spaces. The preceding theorem provides the starting point
for a fundamental area of mathematics called topology. The properties of the open
sets of R motivated the following definition.

Definition 5.4. For X a set, not necessarily a subset of R, let T ⊂ P(X). The
set T is called a topology on X if it satisfies the following three conditions.

(a) X ∈ T and ∅ ∈ T .
(b) The union of any collection of sets from T is also in T .
(c) The intersection of any finite collection of sets from T is also in T .

The pair (X, T ) is called a topological space. The elements of T are the open sets of
the topological space. The closed sets of the topological space are those sets whose
complements are open.

It is easy to see both (X,P(X)) and (X, {X, ∅}) are topologies on X. The former
is called the discrete topology and the latter the trivial topology. Neither of these
topologies is very interesting.

If O = {G ⊂ R : G is open}, then Theorem 5.2 shows (R,O) is a topological
space and O is called the standard topology on R. While the standard topology is
the most widely used topology, there are many other possible topologies on R.
For example, R = {(a, ∞) : a ∈ R} ∪ {R, ∅} is a topology on R called the right
ray topology. The collection F = {S ⊂ R : Sc is finite} ∪ {∅} is called the finite
complement topology. The study of topologies is a huge area, further discussion of
which would take us too far afield. There are many fine books on the subject ([18])
to which one can refer.

1.2. Limit Points and Closure.

Definition 5.5. x0 is a limit point1 of S ⊂ R if for every ε > 0,
(x0 − ε, x0 + ε) ∩ S \ {x0} 6= ∅.

The derived set of S is
S′ = {x : x is a limit point of S}.

A point x0 ∈ S \ S′ is an isolated point of S.

1This use of the term limit point is not universal. Some authors use the term accumulation point.
Others use condensation point, although this is more often used for those cases when every neighborhood
of x0 intersects S in an uncountable set.
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Notice that limit points of S need not be elements of S, but isolated points of S
must be elements of S. In a sense, limit points and isolated points are at opposite
extremes. The definitions can be restated as follows:

x0 is a limit point of S iff ∀ε > 0 (S ∩ (x0 − ε, x0 + ε) \ {x0} 6= ∅)

x0 is an isolated point of S iff ∃ε > 0 (S ∩ (x0 − ε, x0 + ε) = {x0})
Example 5.1. If S = (0, 1], then S′ = [0, 1] and S has no isolated points.
Example 5.2. If T = {1/n : n ∈ Z \ {0}}, then T′ = {0} and all points of T are

isolated points of T.
Theorem 5.6. x0 is a limit point of S iff there is a sequence xn ∈ S \ {x0} such that

xn → x0.
Proof. (⇒) For each n ∈N choose xn ∈ S∩ (x0− 1/n, x0 + 1/n) \ {x0}. Then

|xn − x0| < 1/n for all n ∈N, so xn → x0.
(⇐) Suppose xn is a sequence from xn ∈ S \ {x0} converging to x0. If ε > 0, the

definition of convergence for a sequence yields an N ∈N such thatwhenever n ≥ N,
then xn ∈ S ∩ (x0 − ε, x0 + ε) \ {x0}. This shows S ∩ (x0 − ε, x0 + ε) \ {x0} 6= ∅,
and x0 must be a limit point of S. �

There is some common terminology making much of this easier to state. If
x0 ∈ R and G is an open set containing x0, then G is called a neighborhood of x0. The
observations given above can be restated in terms of neighborhoods.

Corollary 5.7. Let S ⊂ R.
(a) x0 is a limit point of S iff every neighborhood of x0 contains an infinite number
of points from S.
(b) x0 ∈ S is an isolated point of S iff there is a neighborhood of x0 containing
only a finite number of points from S.

Following is a generalization of Theorem 3.16.
Theorem 5.8 (Bolzano-Weierstrass Theorem). If S ⊂ R is bounded and infinite,

then S′ 6= ∅.
Proof. For the purposes of this proof, if I = [a, b] is a closed interval, let

IL = [a, (a + b)/2] be the closed left half of I and IR = [(a + b)/2, b] be the closed
right half of I.

Suppose S is a bounded and infinite set. The assumption that S is bounded
implies the existence of an interval I1 = [−B, B] containing S. Since S is infinite, at
least one of the two sets IL

1 ∩ S or IR
1 ∩ S is infinite. Let I2 be either IL

1 or IR
1 such

that I2 ∩ S is infinite.
If In is such that In ∩ S is infinite, let In+1 be either IL

n or IR
n , where In+1 ∩ S is

infinite.
In this way, a sequence of intervals, In, is defined such that for each n ∈ N,

In+1 ⊂ In, In ∩ S is infinite and the length of In is B/2n−2 → 0. Since In ∩ S is
infinite for each n, a sequence xn can be chosen satisfying xn ∈ In ∩ S for each n
and xn 6= xm when n 6= m.

This sequence xn converges. To see this, let ε > 0 and choose N ∈N such that
the length of IN is B/2N−2 < ε. If m > n ≥ N, then |xm − xn| < ε because both
xm and xn are in IN . This shows xn is a Cauchy sequence and must converge. If
xn → x0, then x0 ∈ S′. �
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Theorem 5.9. A set S ⊂ R is closed iff it contains all its limit points.

Proof. (⇒) Suppose S is closed and x0 is a limit point of S. If x0 /∈ S, then
Sc open implies the existence of ε > 0 such that (x0 − ε, x0 + ε) ∩ S = ∅. This
contradicts Corollary 5.7(a). Therefore, x0 ∈ S, and S contains all its limit points.

(⇐) Since S contains all its limit points, if x0 /∈ S, Corollary 5.7 implies there
must exist an ε > 0 such that (x0 − ε, x0 + ε) ∩ S = ∅. It follows from this that Sc is
open. Therefore S is closed. �

Definition 5.10. The closure of a set S is the set S = S ∪ S′.
For the set S of Example 5.1, S = [0, 1]. In Example 5.2, T = {1/n : n ∈

Z \ {0}} ∪ {0}. According to Theorem 5.9, the closure of any set is a closed set. A
useful way to think about this is that S is the smallest closed set containing S. This
is made more precise in Exercise 5.2.

1.3. Nested Sets.

Definition 5.11. A collection of sets {Sn : n ∈N} is said to be nested, if Sn+1 ⊂
Sn for all n ∈N.

Theorem 5.12. If {Fn : n ∈N} is a nested collection of nonempty closed and bounded
sets, then

⋂
n∈N Fn 6= ∅. Moreover, if lub Fn − glb Fn → 0, then there is y such that⋂

n∈N Fn 6= ∅ = {y}.
Proof. Form a sequence xn by choosing xn ∈ Fn for each n ∈N. Since the Fn

are nested, {xn : n ∈N} ⊂ F1, and the boundedness of F1 implies xn is a bounded
sequence. An application of Theorem 3.16 yields a subsequence yn of xn such that
yn → y. It suffices to prove y ∈ Fn for all n ∈N.

To do this, fix n0 ∈ N. Because yn is a subsequence of xn and xn0 ∈ Fn0 , it is
easy to see yn ∈ Fn0 for all n ≥ n0. Using the fact that yn → y, we see y ∈ F′n0

. Since
Fn0 is closed, Theorem 5.9 shows y ∈ Fn0 .

The proof of the second part of the theorem is left as Exercise 5.19 �

Theorem 5.12 is most often used in the following special case.
Corollary 5.13 (Nested Interval Theorem). If {In = [an, bn] : n ∈N} is a nested

collection of closed intervals such that limn→∞(bn − an) = 0, then there is an x ∈ R such
that

⋂
n∈N In = {x}.

Example 5.3. If In = (0, 1/n] for all n ∈N, then the collection {In : n ∈N} is
nested, but ⋂n∈N In = ∅. This shows the assumption that the intervals be closed in
the Nested Interval Theorem is necessary.

Example 5.4. If In = [n, ∞) then the collection {In : n ∈ N} is nested, but⋂
n∈N In = ∅. This shows the assumption that the lengths of the intervals be

bounded is necessary.

2. Covering Properties and Compactness on R

2.1. Open Covers.

2June 29, 2020 ©Lee Larson (Lee.Larson@Louisville.edu)
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Definition 5.14. Let S ⊂ R. A collection of open sets, O = {Gλ : λ ∈ Λ}, is an
open cover of S if S ⊂ ⋃G∈O G. If O′ ⊂ O is also an open cover of S, then O′ is an
open subcover of S from O.

Example 5.5. Let S = (0, 1) and O = {(1/n, 1) : n ∈ N}. We claim that O is
an open cover of S. To prove this, let x ∈ (0, 1). Choose n0 ∈N such that 1/n0 < x.
Then

x ∈ (1/n0, 1) ⊂
⋃

n∈N

(1/n, 1) =
⋃

G∈O
G.

Since x is an arbitrary element of (0, 1), it follows that (0, 1) =
⋃

G∈O G.
Suppose O′ is any infinite subset of O and x ∈ (0, 1). Since O′ is infinite, there

exists an n ∈ N such that x ∈ (1/n, 1) ∈ O′. The rest of the proof proceeds as
above.

On the other hand, ifO′ is a finite subset ofO, then let M = max{n : (1/n, 1) ∈
O′}. If 0 < x < 1/M, it is clear that x /∈ ⋃G∈O′ G, so O′ is not an open cover of
(0, 1).

Example 5.6. Let T = [0, 1) and 0 < ε < 1. If
O = {(1/n, 1) : n ∈N} ∪ {(−ε, ε)},

then O is an open cover of T.
It is evident that any open subcover of T from O must contain (−ε, ε), because

that is the only element of O which contains 0. Choose n ∈ N such that 1/n < ε.
Then O′ = {(−ε, ε), (1/n, 1)} is an open subcover of T from O which contains only
two elements.

Theorem 5.15 (Lindelöf Property). 3 If S ⊂ R and O is any open cover of S, then
O contains a subcover with a countable number of elements.

Proof. Let O = {Gλ : λ ∈ Λ} be an open cover of S ⊂ R. Since O is an open
cover of S, for each x ∈ S there is a λx ∈ Λ and numbers px, qx ∈ Q satisfying
x ∈ (px, qx) ⊂ Gλx ∈ O. The collection T = {(px, qx) : x ∈ S} is an open cover of
S.

Thinking of the collection T = {(px, qx) : x ∈ S} as a set of ordered pairs of
rational numbers, it is seen that card (T ) ≤ card (Q×Q) = ℵ0, so T is countable.

For each interval I ∈ T , choose a λI ∈ Λ such that I ⊂ GλI . Then
S ⊂

⋃
I∈T

I ⊂
⋃

I∈T
GλI

showsO′ = {GλI : I ∈ T } ⊂ O is an open subcover of S fromO. Also, card (O′) ≤
card (T ) ≤ ℵ0, so O′ is a countable open subcover of S from O. �

Corollary 5.16. Any open subset of R can be written as a countable union of pairwise
disjoint open intervals.

Proof. Let G be open in R. For x ∈ G let αx = glb {y : (y, x] ⊂ G} and βx =
lub {y : [x, y) ⊂ G}. The fact that G is open implies αx < x < βx. Define Ix =
(αx, βx).

3Ernst Leonard Lindelöf (1870–1946) was a Finnish mathematician.
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Then Ix ⊂ G. To see this, suppose x < w < βx. Choose y ∈ (w, βx). The
definition of βx guarantees w ∈ (x, y) ⊂ G. Similarly, if αx < w < x, it follows that
w ∈ G.

This shows O = {Ix : x ∈ G} has the property that G =
⋃

x∈G Ix.
Suppose x, y ∈ G and Ix ∩ Iy 6= ∅. There is no generality lost in assuming

x < y. In this case, there must be a w ∈ (x, y) such that w ∈ Ix ∩ Iy. We know
from above that both [x, w] ⊂ G and [w, y] ⊂ G, so [x, y] ⊂ G. It follows that
αx = αy < x < y < βx = βy and Ix = Iy.

From this we conclude O consists of pairwise disjoint open intervals.
To finish, apply Theorem 5.15 to extract a countable subcover from O. �

Corollary 5.16 can also be proved by a different strategy. Instead of using
Theorem 5.15 to extract a countable subcover, we could just choose one rational
number from each interval in the cover. The pairwise disjointness of the intervals
in the cover guarantee this will give a bijection between O and a subset of Q. This
method has the advantage of showing O itself is countable from the start.

2.2. Compact Sets. There is a class of sets forwhich the conclusion of Lindelöf’s
theorem can be strengthened.

Definition 5.17. An open coverO of a set S is a finite cover, ifO has only a finite
number of elements. The definition of a finite subcover is analogous.

Definition 5.18. A set K ⊂ R is compact, if every open cover of K contains a
finite subcover.

Theorem 5.19 (Heine-Borel). A set K ⊂ R is compact iff it is closed and bounded.

Proof. (⇒) Suppose K is unbounded. The collection O = {(−n, n) : n ∈N}
is an open cover of K. If O′ is any finite subset of O, then ⋃G∈O′ G is a bounded set
and cannot cover the unbounded set K. This shows K cannot be compact, and every
compact set must be bounded.

Suppose K is not closed. According to Theorem 5.9, there is a limit point x of K
such that x /∈ K. Define O = {[x− 1/n, x + 1/n]c : n ∈N}. Then O is a collection
of open sets and K ⊂ ⋃

G∈O G = R \ {x}. Let O′ = {[x − 1/ni, x + 1/ni]
c : 1 ≤

i ≤ N} be a finite subset of O and M = max{ni : 1 ≤ i ≤ N}. Since x is a
limit point of K, there is a y ∈ K ∩ (x− 1/M, x + 1/M). Clearly, y /∈ ⋃G∈O′ G =
[x− 1/M, x + 1/M]c, so O′ cannot cover K. This shows every compact set must be
closed.

(⇐) Let K be closed and bounded and let O be an open cover of K. Applying
Theorem 5.15, if necessary, we can assumeO is countable. Thus,O = {Gn : n ∈N}.

For each n ∈N, define

Fn = K \
n⋃

i=1

Gi = K ∩
n⋂

i=1

Gc
i .

Then Fn is a sequence of nested, bounded and closed subsets of K. Since O covers
K, it follows that ⋂

n∈N

Fn ⊂ K \
⋃

n∈N

Gn = ∅.
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According to the Corollary 5.12, the only way this can happen is if Fn = ∅ for some
n ∈N. Then K ⊂ ⋃n

i=1 Gi, and O′ = {Gi : 1 ≤ i ≤ n} is a finite subcover of K from
O. �

Compactness shows up in several different, but equivalent ways on R. We’ve
already seen several of them, but their equivalence is not obvious. The following
theorem shows a few of the most common manifestations of compactness.

Theorem 5.20. Let K ⊂ R. The following statements are equivalent to each other.
(a) K is compact.
(b) K is closed and bounded.
(c) Every infinite subset of K has a limit point in K.
(d) Every sequence {an : n ∈N} ⊂ K has a subsequence converging to an element

of K.
(e) If Fn is a nested sequence of nonempty relatively closed subsets of K, then⋂

n∈N Fn 6= ∅.

Proof. (a)⇐⇒ (b) is the Heine-Borel Theorem, Theorem 5.19.
That (b)⇒(c) is the Bolzano-Weierstrass Theorem, Theorem 5.8.
(c)⇒(d) is contained in the sequence version of the Bolzano-Weierstrass theo-

rem, Theorem 3.16.
(d)⇒(e) Let Fn be as in (e). For each n ∈N, choose an ∈ Fn ∩K. By assumption,

an has a convergent subsequence bn → b ∈ K. Each Fn contains a tail of the sequence
bn, so b ∈ F′n ⊂ Fn for each n. Therefore, b ∈ ⋂n∈N Fn, and (e) follows.

(e)⇒(b). Suppose K is such that (e) is true.
Let Fn = ((−∞,−n] ∪ [n, ∞)). Then Fn is a sequence of closed sets such that⋂

n∈N Fn = ∅. Since Fn ∩ K 6= ∅, ∀n ∈ N, a contradiction of (e) is evident.
Therefore, K must be bounded.

If K is not closed, then there must be a limit point x of K such that x /∈ K.
Define a sequence of closed and nested intervals by Fn = [x− 1/n, x + 1/n]. Then⋂

n∈N Fn = {x}, and Fn ∩ K 6= ∅. This contradiction of (e) shows that K must be
closed. �

These various ways of looking at compactness have been given different names
by topologists. Property (c) is called limit point compactness and (d) is called sequen-
tial compactness. There are topological spaces in which various of the equivalences
do not hold.

3. Relative Topologies and Connectedness

3.1. Relative Topologies. Another useful topological notion is that of a relative
or subspace topology. In our case, this amounts to using the standard topology on
R to induce a topology on a subset of R. The definition is as follows.

Definition 5.21. Let X ⊂ R. The set S ⊂ X is relatively open in X, if there is a set
G, open in R, such that S = G ∩ X. The set T ⊂ X is relatively closed in X, if there is
a set F, closed in R, such that S = F ∩ X. (If there is no chance for confusion, the
simpler terminology open in X and closed in X is usually used.)

It is left as exercises to show that if X ⊂ R and S consists of all relatively open
subsets of X, then (X,S) is a topological space and T is relatively closed in X, if
X \ T ∈ S . (See Exercises 5.12 and 5.13.)
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Example 5.7. Let X = [0, 1]. The subsets [0, 1/2) = X∩ (−1, 1/2) and (1/4, 1] =
X ∩ (1/4, 2) are both relatively open in X.

Example 5.8. If X = Q, then {x ∈ Q : −
√

2 < x <
√

2} = (−
√

2,
√

2) ∩Q =

[−
√

2,
√

2] ∩Q is both open and closed (clopen) relative to Q.
3.2. Connected Sets. One place where the relative topologies are useful is in

relation to the following definition.
Definition 5.22. A set S ⊂ R is disconnected if there are two open intervals U

and V such that U ∩V = ∅, U ∩ S 6= ∅, V ∩ S 6= ∅ and S ⊂ U ∪V. Otherwise, it
is connected. The sets U ∩ S and V ∩ S are said to be a separation of S.

In other words, S is disconnected if it can be written as the union of two disjoint
and nonempty sets that are both relatively open in S. Since both these sets are
complements of each other relative to S, they are both clopen in S. This, in turn,
implies S is disconnected if and only if it has a proper relatively clopen subset.

Example 5.9. Let S = {x} be a set containing a single point. S is connected
because there cannot exist nonempty disjoint open setsU and V such that S∩U 6= ∅
and S ∩V 6= ∅. The same argument shows that ∅ is connected.

Example 5.10. If S = [−1, 0) ∪ (0, 1], then U = (−2, 0) and V = (0, 2) are open
sets such that U ∩V = ∅, U ∩ S 6= ∅, V ∩ S 6= ∅ and S ⊂ U ∪V. This shows S is
disconnected.

Example 5.11. The sets U = (−∞,
√

2) and V = (
√

2, ∞) are open sets such
that U ∩V = ∅, U ∩Q 6= ∅, V ∩Q 6= ∅ and Q ⊂ U ∪V = R \ {

√
2}. This shows

Q is disconnected. In fact, the only connected subsets of Q are single points. Sets
with this property are often called totally disconnected.

The notion of connectedness is not really very interesting on R because the
connected sets are exactly what one would expect. It becomes more complicated in
higher dimensional spaces. The following theorem is not surprising.

Theorem 5.23. A nonempty set S ⊂ R is connected iff it is either a single point or an
interval.

Proof. (⇒) If S is not a single point or an interval, there must be numbers
r < s < t such that r, t ∈ S and s /∈ S. In this case, the sets U = (−∞, s) and
V = (s, ∞) are a disconnection of S.

(⇐) Itwas shown in Example 5.9 that a set containing a single point is connected.
So, assume S is an interval.

Suppose S is not connected with U and V forming a disconnection of S. Choose
u ∈ U ∩ S and v ∈ V ∩ S. There is no generality lost by assuming u < v, so that
[u, v] ⊂ S.

Let A = {x : [u, x) ⊂ U}.
We claim A 6= ∅. To see this, use the fact that U is open to find ε ∈ (0, v− u)

such that (u− ε, u + ε) ⊂ U. Then u < u + ε/2 < v, so u + ε/2 ∈ A.
Define w = lub A.
Since v ∈ V it is evident u < w ≤ v and w ∈ S.
Ifw ∈ U, then u < w < v and there is ε ∈ (0, v−w) such that (w− ε, w+ ε) ⊂ U

and [u, w + ε) ⊂ S because w + ε < v. This clearly contradicts the definition of w,
so w /∈ U.
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4. MORE SMALL SETS 5-9

If w ∈ V, then there is an ε > 0 such that (w− ε, w] ⊂ V. In particular, this
shows w = lub A ≤ w− ε < w. This contradiction forces the conclusion that w /∈ V.

Now, putting all this together, we see w ∈ S ⊂ U ∪V and w /∈ U ∪V. This is a
clear contradiction, so we’re forced to conclude there is no separation of S. �

4. More Small Sets

This is an advanced section that can be omitted.
We’ve already seen one way in which a subset of R can be considered small—if

its cardinality is at most ℵ0. Such sets are small in the set-theoretic sense. This
section shows how sets can be considered small in the metric and topological senses.

4.1. Sets of Measure Zero. An interval is the only subset of R for which most
people could immediately come up with some sort of measure—namely, its length.
This idea of measuring a set by length can be generalized. For example, we know
every open set can be written as a countable disjoint union of open intervals, so it is
natural to assign the sum of the lengths of its component intervals as the measure
of the set. Discounting some technical difficulties, such as components with infinite
length, this is how the Lebesgue measure of an open set is defined. It is possible to
assign a measure to more complicated sets, but we’ll only address the special case
of sets with measure zero, sometimes called Lebesgue null sets.

Definition 5.24. A set S ⊂ R has measure zero if given any ε > 0 there is a
sequence (an, bn) of open intervals such that

S ⊂
⋃

n∈N

(an, bn) and
∞

∑
n=1

(bn − an) < ε.

Such sets are small in the metric sense.
Example 5.12. If S = {a} contains only one point, then S has measure zero.

To see this, let ε > 0. Note that S ⊂ (a− ε/4, a + ε/4) and this single interval has
length ε/2 < ε.

There are complicated sets of measure zero, as we’ll see later. For now, we’ll
start with a simple theorem.

Theorem 5.25. If {Sn : n ∈N} is a countable collection of sets of measure zero, then⋃
n∈N Sn has measure zero.

Proof. Let ε > 0. For each n, let {(an,k, bn,k) : k ∈N} be a collection of intervals
such that

Sn ⊂
⋃

k∈N

(an,k, bn,k) and
∞

∑
k=1

(bn,k − an,k) <
ε

2n .

Then ⋃
n∈N

Sn ⊂
⋃

n∈N

⋃
k∈N

(an,k, bn,k) and
∞

∑
n=1

∞

∑
k=1

(bn,k − an,k) <
∞

∑
n=1

ε

2n = ε.

�

Combining this with Example 5.12 gives the following corollary.
Corollary 5.26. Every countable set has measure zero.
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5-10 CHAPTER 5. THE TOPOLOGY OF R

The rational numbers is a large set in the sense that every interval contains a
rational number. But we now see it is small in both the set theoretic and metric
senses because it is countable and of measure zero.

Uncountable sets of measure zero are constructed in Section 4.3.
There is some standard terminology associated with sets of measure zero. If a

property P is true, except on a set of measure zero, then it is often said “P is true
almost everywhere” or “almost every point satisfies P.” It is also said “P is true on a
set of full measure.” For example, “Almost every real number is irrational.” or “The
irrational numbers are a set of full measure.”

4.2. Dense and Nowhere Dense Sets. We begin by considering a way that a
set can be considered topologically large in an interval. If I is any interval, recall
from Corollary 2.25 that I ∩Q 6= ∅ and I ∩Qc 6= ∅. An immediate consequence of
this is that every real number is a limit point of both Q and Qc. In this sense, the
rational and irrational numbers are both uniformly distributed across the number
line. This idea is generalized in the following definition.

Definition 5.27. Let A ⊂ B ⊂ R. A is said to be dense in B, if B ⊂ A.
Both the rational and irrational numbers are dense in every interval. Corol-

lary 5.16 shows the rational and irrational numbers are dense in every open set.
It’s not hard to construct other sets dense in every interval. For example, the set of
dyadic numbers, D = {p/2q : p, q ∈ Z}, is dense in every interval — and dense in
the rational numbers.

On the other hand, Z is not dense in any interval because it’s closed and contains
no interval. If A ⊂ B, where B is an open set, then A is not dense in B, if A contains
any interval-sized gaps.

Theorem 5.28. Let A ⊂ B ⊂ R. A is dense in B iff whenever I is an open interval
such that I ∩ B 6= ∅, then I ∩ A 6= ∅.

Proof. (⇒) Assume there is an open interval I such that I ∩ B 6= ∅ and I ∩ A =
∅. If x ∈ I ∩ B, then I is a neighborhood of x that does not intersect A. Definition 5.5
shows x /∈ A′ ⊂ A, a contradiction of the assumption that B ⊂ A. This contradiction
implies that whenever I ∩ B 6= ∅, then I ∩ A 6= ∅.

(⇐) If x ∈ B ∩ A = A, then x ∈ A. Assume x ∈ B \ A. By assumption, for
each n ∈ N, there is an xn ∈ (x − 1/n, x + 1/n) ∩ A. Since xn → x, this shows
x ∈ A′ ⊂ A. It now follows that B ⊂ A. �

If B ⊂ R and I is an open interval with I ∩ B 6= ∅, then I ∩ B is often called a
portion of B. The previous theorem says that A is dense in B iff every portion of B
intersects A.

If A being dense in B is thought of as A being a large subset of B, then perhaps
when A is not dense in B, it can be thought of as a small subset. But, thinking of
A as being small when it is not dense isn’t quite so clear when it is noticed that
A could still be dense in some portion of B, even if it isn’t dense in B. To make A
be a truly small subset of B in the topological sense, it should not be dense in any
portion of B. The following definition gives a way to assure this is true.

Definition 5.29. Let A ⊂ B ⊂ R. A is said to be nowhere dense in B if B \ A is
dense in B.
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4. MORE SMALL SETS 5-11

The following theorem shows that a nowhere dense set is small in the sense
mentioned above because it fails to be dense in any part of B.

Theorem 5.30. Let A ⊂ B ⊂ R. A is nowhere dense in B iff for every open interval I
such that I ∩ B 6= ∅, there is an open interval J ⊂ I such that J ∩ B 6= ∅ and J ∩ A = ∅.

Proof. (⇒) Let I be an open interval such that I ∩ B 6= ∅. By assumption,
B \ A is dense in B, so Theorem 5.28 implies I ∩ (B \ A) 6= ∅. If x ∈ I ∩ (B \ A),
then there is an open interval J such that x ∈ J ⊂ I and J ∩ A = ∅. Since A ⊂ A,
this J satisfies the theorem.

(⇐) Let I be an open interval with I ∩ B 6= ∅. By assumption, there is an open
interval J ⊂ I such that J ∩ A = ∅. It follows that J ∩ A = ∅. Theorem 5.28 implies
B \ A is dense in B. �

Example 5.13. Let G be an open set that is dense in R. If I is any open interval,
then Theorem 5.28 implies I ∩ G 6= ∅. Because G is open, if x ∈ I ∩ G, then there is
an open interval J such that x ∈ J ⊂ G. Now, Theorem 5.30 shows Gc is nowhere
dense.

The nowhere dense sets are topologically small in the following sense.
Theorem 5.31 (Baire). If I is an open interval, then I cannot be written as a countable

union of nowhere dense sets.
Proof. Let An be a sequence of nowhere dense subsets of I. According to

Theorem 5.30, there is a bounded open interval J1 ⊂ I such that J1 ∩ A1 = ∅. By
shortening J1 a bit at each end, if necessary, it may be assumed that J1 ∩ A1 = ∅.
Assume Jn has been chosen for some n ∈N. Applying Theorem 5.30 again, choose
an open interval Jn+1 as above so Jn+1 ⊂ Jn and Jn+1 ∩ An+1 = ∅. Corollary 5.12
shows

I \
⋃

n∈N

An ⊃
⋂

n∈N

Jn 6= ∅

and the theorem follows. �

Theorem 5.31 is called the Baire category theorem because of the terminology
introduced by René-Louis Baire in 1899.4 He said a set was of the first category, if it
could be written as a countable union of nowhere dense sets. An easy example of
such a set is any countable set, which is a countable union of singletons. All other
sets are of the second category.5 Theorem 5.31 can be stated as “Any open interval is
of the second category.” Or, more generally, as “Any nonempty open set is of the
second category.”

A set is called a Gδ set, if it is the countable intersection of open sets. It is called
an Fσ set, if it is the countable union of closed sets. De Morgan’s laws show that the
complement of an Fσ set is a Gδ set and vice versa. It’s evident that any countable
subset of R is an Fσ set, so Q is an Fσ set.

On the other hand, suppose Q is a Gδ set. Then there is a sequence of open sets
Gn such that Q =

⋂
n∈N Gn. Since Q is dense, each Gn must be dense and Example

4René-Louis Baire (1874-1932) was a French mathematician. He proved the Baire category theorem
in his 1899 doctoral dissertation.

5Baire did not define any categories other than these two. Some authors call first category sets
meager sets, so as not to make readers fruitlessly wait for definitions of third, fourth and fifth category
sets.
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5-12 CHAPTER 5. THE TOPOLOGY OF R

5.13 shows Gc
n is nowhere dense. From De Morgan’s law, R = Q ∪ ⋃n∈N Gc

n,
showing R is a first category set and violating the Baire category theorem. Therefore,
Q is not a Gδ set. An immediate consequence is that the irrational numbers are a
Gδ set, but not an Fσ set.

Essentially the same argument shows any countable subset of R is a first cate-
gory set. The following protracted example shows there are uncountable sets of the
first category.

4.3. The Cantor Middle-Thirds Set. One particularly interesting example of
a nowhere dense set is the Cantor Middle-Thirds set, introduced by the German
mathematician Georg Cantor in 1884.6 It has many strange properties, only a few of
which will be explored here.

To start the construction of the Cantor Middle-Thirds set, let C0 = [0, 1] and
C1 = I1 \ (1/3, 2/3) = [0, 1/3] ∪ [2/3, 1]. Remove the open middle thirds of the
intervals comprising C1, to get

C2 =

[
0,

1
9

]
∪
[

2
9

,
1
3

]
∪
[

2
3

,
7
9

]
∪
[

8
9

, 1
]

.

Continuing in this way, if Cn consists of 2n pairwise disjoint closed intervals each of
length 3−n, construct Cn+1 by removing the open middle third from each of those
closed intervals, leaving 2n+1 closed intervals each of length 3−(n+1). This gives a
nested sequence of closed sets Cn each consisting of 2n closed intervals of length
3−n. (See Figure 5.1.) The Cantor Middle-Thirds set is

C =
⋂

n∈N

Cn.

Figure 5.1. Shown here are the first few steps in the construction of the
Cantor Middle-Thirds set.

Corollaries 5.3 and 5.12 show C is closed and nonempty. In fact, the latter is
apparent because {0, 1/3, 2/3, 1} ⊂ Cn for every n. At each step in the construction,
2n open middle thirds, each of length 3−(n+1) were removed from the intervals
comprising Cn. The total length of the open intervals removed was

∞

∑
n=0

2n

3n+1 =
1
3

∞

∑
n=0

(
2
3

)n
= 1.

Because of this, Example 5.13 implies C is nowhere dense in [0, 1].
6Cantor’s original work [6] is reprinted with an English translation in Edgar’s Classics on Fractals

[12]. Cantor only mentions his eponymous set in passing and it had actually been presented earlier by
others.
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C is an example of a perfect set; i.e., a closed set all of whose points are limit
points of itself. (See Exercise 5.26.) Any closed set without isolated points is perfect.
The Cantor Middle-Thirds set is interesting because it is an example of a perfect
set without any interior points. Many people call any bounded perfect set without
interior points a Cantor set. Most of the time, when someone refers to the Cantor
set, they mean C.

There is another way to view the Cantor set. Notice that at the nth stage of the
construction, removing the middle thirds of the intervals comprising Cn removes
those points whose base 3 representation contains the digit 1 in position n + 1.
Then,

C =

{
c =

∞

∑
n=1

cn

3n : cn ∈ {0, 2}
}

.(5.1)

So, C consists of all numbers c ∈ [0, 1] that can be written in base 3 without using
the digit 1.7

If c ∈ C, then (5.1) shows c = ∑∞
n=1 cn/3n for some sequence cn with range

in {0, 2}. Moreover, every such sequence corresponds to a unique element of C.
Define φ : C → [0, 1] by

φ(c) = φ

(
∞

∑
n=1

cn

3n

)
=

∞

∑
n=1

cn/2
2n .(5.2)

Since cn is a sequence from {0, 2}, then cn/2 is a sequence from {0, 1} and φ(c) can
be considered the binary representation of a number in [0, 1]. According to (5.1), it
follows that φ is a surjection and

φ(C) =

{
∞

∑
n=1

cn/2
2n : cn ∈ {0, 2}

}
=

{
∞

∑
n=1

bn

2n : bn ∈ {0, 1}
}

= [0, 1].

Therefore, card (C) = card ([0, 1]) > ℵ0.
The Cantor set is topologically small because it is nowhere dense and large

from the set-theoretic viewpoint because it is uncountable.
The Cantor set is also a set of measure zero. To see this, let Cn be as in the

construction of the Cantor set given above. Then C ⊂ Cn and Cn consists of 2n

pairwise disjoint closed intervals each of length 3−n. Their total length is (2/3)n.
Given ε > 0, choose n ∈N so (2/3)n < ε/2. Each of the closed intervals comprising
Cn can be placed inside a slightly longer open interval so the sums of the lengths of
the 2n open intervals is less than ε.

5. Exercises

5.1. If G is an open set and F is a closed set, then G \ F is open and F \ G is closed.

5.2. Let S ⊂ R and F = {F : F is closed and S ⊂ F}. Prove S =
⋂

F∈F F. This
proves that S is the smallest closed set containing S.

5.3. Let S and T be subsets of R. Prove or give a counterexample:
(a) A ∪ B = A ∪ B, and

7Notice that 1 = ∑∞
n=1 2/3n, 1/3 = ∑∞

n=2 2/3n, etc.
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5-14 CHAPTER 5. THE TOPOLOGY OF R

(b) A ∩ B = A ∩ B

5.4. If S is a finite subset of R, then S is closed.

5.5. For any sets A, B ⊂ R, define
A + B = {a + b : a ∈ A and b ∈ B}.

(a) If X, Y ⊂ R, then X + Y ⊂ X + Y.
(b) Find an example to show equalitymay not hold in the preceding statement.

5.6. Q is neither open nor closed.

5.7. A point x0 is a boundary point of S if whenever U is a neighborhood of x0,
then U ∩ S 6= ∅ and U ∩ Sc 6= ∅. The set of all boundary points of S is denoted by
∂S. Prove that a set S is open iff ∂S ∩ S = ∅.

5.8. (a) Every closed set can be written as a countable intersection of open sets.
(b) Every open set can be written as a countable union of closed sets.
In other words, every closed set is a Gδ set and every open set is an Fσ set.

5.9. Find a sequence of open sets Gn such that ⋂n∈N Gn is neither open nor closed.

5.10. A point x0 is an interior point of S if there is an ε > 0 such that (x0 − ε, x0 +
ε) ⊂ S. The set of all interior points of S is S◦. An open set G is called regular if
G = (G)◦. Find an open set that is not regular.

5.11. Let R = {(x, ∞) : x ∈ R} and T = R ∪ {R, ∅}. Prove that (R, T ) is a
topological space. This is called the right ray topology on R.

5.12. If X ⊂ R and S is the collection of all sets relatively open in X, then (X,S) is
a topological space.

5.13. If X ⊂ R and G is an open set, then X \ G is relatively closed in X.

5.14. For any set S, let F = {T ⊂ S : card (S \ T) ≤ ℵ0} ∪ {∅}. Then (S,F ) is a
topological space. This is called the finite complement topology.

5.15. An uncountable subset of R must have a limit point.

5.16. If S ⊂ R, then S′ is closed.

5.17. Prove that the set of accumulation points of any sequence is closed.

5.18. Prove any closed set is the set of accumulation points for some sequence.

5.19. Finish the proof of Theorem 5.12.

5.20. If an is a sequence such that an → L, then {an : n ∈N} ∪ {L} is compact.

5.21. If F is closed and K is compact, then F ∩ K is compact.
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5.22. If {Kα : α ∈ A} is a collection of compact sets, then ⋂α∈A Kα is compact.

5.23. Prove the union of a finite number of compact sets is compact. Give an example
to show this need not be true for the union of an infinite number of compact sets.

5.24. (a) Give an example of a set S such that S is disconnected, but S ∪ {1} is
connected. (b) Prove that 1 must be a limit point of S.

5.25. If K is compact and V is open with K ⊂ V, then there is an open set U such
that K ⊂ U ⊂ U ⊂ V.

5.26. If C is the Cantor middle-thirds set, then C = C′.

5.27. Prove that if x ∈ R and K is compact, then there is a z ∈ K such that
|x− z| = glb{|x− y| : y ∈ K}. Is z unique?

5.28. If K is compact and O is an open cover of K, then there is an ε > 0 such that
for all x ∈ K there is a G ∈ O with (x− ε, x + ε) ⊂ G.

5.29. Let f : [a, b]→ R be a function such that for every x ∈ [a, b] there is a δx > 0
such that f is bounded on (x− δx, x + δx). Prove f is bounded.

5.30. Is the function defined by (5.2) a bijection?

5.31. If A is nowhere dense in an interval I, then A contains no interval.

5.32. Use the Baire category theorem to show R is uncountable.

5.33. If G is a dense Gδ subset of R, then Gc is a first category set.
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CHAPTER 6

Limits of Functions

1. Basic Definitions

Definition 6.1. Let D ⊂ R, x0 be a limit point of D and f : D → R. The
limit of f (x) at x0 is L, if for each ε > 0 there is a δ > 0 such that when x ∈ D
with 0 < |x − x0| < δ, then | f (x) − L| < ε. When this is the case, we write
limx→x0 f (x) = L.

It should be noted that the limit of f at x0 is determined by the values of f near
x0 and not at x0. In fact, f need not even be defined at x0.

Figure 6.1. This figure shows a way to think about the limit. The graph of
f must not leave the top or bottomof the box (x0− δ, x0 + δ)× (L− ε, L+ ε),
except possibly the point (x0, f (x0)).

A useful way of rewording the definition is to say that limx→x0 f (x) = L iff
for every ε > 0 there is a δ > 0 such that x ∈ (x0 − δ, x0 + δ) ∩ D \ {x0} implies
f (x) ∈ (L− ε, L + ε). This can also be succinctly stated as

∀ε > 0 ∃δ > 0 ( f ( (x0 − δ, x0 + δ) ∩ D \ {x0} ) ⊂ (L− ε, L + ε) ) .

Example 6.1. If f (x) = c is a constant function and x0 ∈ R, then for any positive
numbers ε and δ,

x ∈ (x0 − δ, x0 + δ) ∩ D \ {x0} ⇒ | f (x)− c| = |c− c| = 0 < ε.

This shows the limit of every constant function exists at every point, and the limit is
just the value of the function.

1June 29, 2020 ©Lee Larson (Lee.Larson@Louisville.edu)
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2-2

4

8

Figure 6.2. The function from Example 6.3. Note that the graph is a line
with one “hole” in it.

Example 6.2. Let f (x) = x, x0 ∈ R, and ε = δ > 0. Then
x ∈ (x0 − δ, x0 + δ) ∩ D \ {x0} ⇒ | f (x)− x0| = |x− x0| < δ = ε.

This shows that the identity function has a limit at every point and its limit is just
the value of the function at that point.

Example 6.3. Let f (x) = 2x2−8
x−2 . In this case, the implied domain of f is D =

R \ {2}. We claim that limx→2 f (x) = 8.
To see this, let ε > 0 and choose δ ∈ (0, ε/2). If 0 < |x− 2| < δ, then

| f (x)− 8| =
∣∣∣∣2x2 − 8

x− 2
− 8
∣∣∣∣ = |2(x + 2)− 8| = 2|x− 2| < ε.

As seen in Figure 6.2, the graph of f is just the graph of y = 2x + 4 with a hole at
x = 2, so this limit is obvious.

Example 6.4. Let f (x) =
√

x + 1. Then the implied domain of f is D = [−1, ∞).
We claim that limx→−1 f (x) = 0.

To see this, let ε > 0 and choose δ ∈ (0, ε2). If 0 < x− (−1) = x + 1 < δ, then
| f (x)− 0| =

√
x + 1 <

√
δ <
√

ε2 = ε.

Figure 6.3. The function f (x) = |x|/x from Example 6.5.

Example 6.5. If f (x) = |x|/x for x 6= 0, then limx→0 f (x) does not exist. (See
Figure 6.3.) To see this, suppose limx→0 f (x) = L, ε = 1 and δ > 0. If L ≥ 0
and −δ < x < 0, then f (x) = −1 < L − ε. If L < 0 and 0 < x < δ, then
f (x) = 1 > L + ε. These inequalities show for any L and every δ > 0, there is an x
with 0 < |x| < δ such that | f (x)− L| > ε.
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Figure 6.4. This is the function from Example 6.6. The graph shown here
is on the interval [0.03, 1]. There are an infinite number of oscillations from
−1 to 1 on any open interval containing the origin.

There is an obvious similarity between the definitions of the limit of a sequence
and the limit of a function. The following theorem makes this similarity explicit,
and gives another way to prove facts about limits of functions.

Theorem 6.2. Let f : D → R and x0 be a limit point of D. limx→x0 f (x) = L iff
whenever xn is a sequence from D \ {x0} such that xn → x0, then f (xn)→ L.

Proof. (⇒) Suppose limx→x0 f (x) = L and xn is a sequence from D \ {x0} such
that xn → x0. Let ε > 0. There exists a δ > 0 such that | f (x)− L| < ε whenever
x ∈ (x0 − δ, x0 + δ) ∩ D \ {x0}. Since xn → x0, there is an N ∈N such that n ≥ N
implies 0 < |xn − x0| < δ. In this case, | f (xn)− L| < ε, showing f (xn)→ L.

(⇐) Suppose whenever xn is a sequence from D \ {x0} such that xn → x0,
then f (xn) → L, but limx→x0 f (x) 6= L. Then there exists an ε > 0 such that for
all δ > 0 there is an x ∈ (x0 − δ, x0 + δ) ∩ D \ {x0} such that | f (x)− L| ≥ ε. In
particular, for each n ∈ N, there must exist xn ∈ (x0 − 1/n, x0 + 1/n) ∩ D \ {x0}
such that | f (xn) − L| ≥ ε. Since xn → x0, this is a contradiction. Therefore,
limx→x0 f (x) = L. �

Theorem 6.2 is often used to show a limit doesn’t exist. Suppose we want to
show limx→x0 f (x) doesn’t exist. There are two strategies: find a sequence xn → x0
such that f (xn) has no limit; or, find two sequences yn → x0 and zn → x0 such
that f (yn) and f (zn) converge to different limits. Either way, the theorem shows
limx→x0 f (x) fails to exist.

In Example 6.5, we could choose xn = (−1)n/n so f (xn) oscillates between
−1 and 1. Or, we could choose yn = 1/n and zn = −1/n so so both sequences
converge to 0, f (xn)→ 1 and f (zn)→ −1.

Example 6.6. Let f (x) = sin(1/x), an = 1
nπ and bn = 2

(4n+1)π . Then an ↓ 0,
bn ↓ 0, f (an) = 0 and f (bn) = 1 for all n ∈N. An application of Theorem 6.2 shows
limx→0 f (x) does not exist. (See Figure 6.4.)

Theorem 6.3 (Squeeze Theorem). Suppose f , g and h are all functions defined
on D ⊂ R with f (x) ≤ g(x) ≤ h(x) for all x ∈ D. If x0 is a limit point of D and
limx→x0 f (x) = limx→x0 h(x) = L, then limx→x0 g(x) = L.

Proof. Let xn be any sequence from D \ {x0} such that xn → x0. According
to Theorem 6.2, both f (xn) → L and h(xn) → L. Since f (xn) ≤ g(xn) ≤ h(xn),

June 29, 2020 http://math.louisville.edu/∼lee/ira

http://www.math.louisville.edu/~lee/RealAnalysis/


6-4 CHAPTER 6. LIMITS OF FUNCTIONS
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Figure 6.5. This is the function from Example 6.7. The bounding lines
y = x and y = −x are also shown. There are an infinite number of
oscillations between −x and x on any open interval containing the origin.

an application of the Sandwich Theorem for sequences shows g(xn) → L. Now,
another use of Theorem 6.2 shows limx→x0 g(x) = L. �

Example 6.7. Let f (x) = x sin(1/x). Since −1 ≤ sin(1/x) ≤ 1 when x 6= 0,
we see that −|x| ≤ x sin(1/x) ≤ |x| for x 6= 0. Since limx→0 |x| = 0, Theorem 6.3
implies limx→0 x sin(1/x) = 0. (See Figure 6.5.)

Theorem 6.4. Suppose f : D → R and g : D → R and x0 is a limit point of D. If
limx→x0 f (x) = L and limx→x0 g(x) = M, then

(a) limx→x0( f + g)(x) = L + M,
(b) limx→x0(a f )(x) = aL, ∀a ∈ R,
(c) limx→x0( f g)(x) = LM, and
(d) limx→x0(1/ f )(x) = 1/L, as long as L 6= 0.

Proof. Suppose an is a sequence from D \ {x0} converging to x0. Then The-
orem 6.2 implies f (an) → L and g(an) → M. (a)-(d) follow at once from the
corresponding properties for sequences. �

Example 6.8. Let f (x) = 3x + 2. If g1(x) = 3, g2(x) = x and g3(x) = 2, then
f (x) = g1(x)g2(x) + g3(x). Examples 6.1 and 6.2 along with parts (a) and (c) of
Theorem 6.4 immediately show that for every x ∈ R, limx→x0 f (x) = f (x0).

In the same manner as Example 6.8, it can be shown for every rational function
f (x), that limx→x0 f (x) = f (x0) whenever x0 is in the domain of f .

2. Unilateral Limits

Definition 6.5. Let f : D → R and x0 be a limit point of (−∞, x0)∩D. f has L as
its left-hand limit at x0 if for all ε > 0 there is a δ > 0 such that f ((x0 − δ, x0) ∩ D) ⊂
(L− ε, L + ε). In this case, we write limx↑x0 f (x) = L.
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Let f : D → R and x0 be a limit point of D ∩ (x0, ∞). f has L as its right-hand
limit at x0 if for all ε > 0 there is a δ > 0 such that f (D∩ (x0, x0 + δ)) ⊂ (L− ε, L+ ε).
In this case, we write limx↓x0 f (x) = L.2

These are called the unilateral or one-sided limits of f at x0. When they are
different, the graph of f is often said to have a “jump” at x0, as in the following
example.

Example 6.9. As in Example 6.5, let f (x) = |x|/x. Then limx↓0 f (x) = 1 and
limx↑0 f (x) = −1. (See Figure 6.3.)

In parallel with Theorem 6.2, the one-sided limits can also be reformulated in
terms of sequences.

Theorem 6.6. Let f : D → R and x0.
(a) Let x0 be a limit point of D ∩ (x0, ∞). limx↓x0 f (x) = L iff whenever xn is a

sequence from D ∩ (x0, ∞) such that xn → x0, then f (xn)→ L.
(b) Let x0 be a limit point of (−∞, x0) ∩ D. limx↑x0 f (x) = L iff whenever xn is a

sequence from (−∞, x0) ∩ D such that xn → x0, then f (xn)→ L.

The proof of Theorem 6.6 is similar to that of Theorem 6.2 and is left to the
reader.

Theorem 6.7. Let f : D → R and x0 be a limit point of D.
lim

x→x0
f (x) = L ⇐⇒ lim

x↑x0
f (x) = L = lim

x↓x0
f (x)

Proof. This proof is left as an exercise. �

Theorem 6.8. If f : (a, b)→ R is monotone, then both unilateral limits of f exist at
every point of (a, b).

Proof. To be specific, suppose f is increasing and x0 ∈ (a, b). Let ε > 0 and
L = lub { f (x) : a < x < x0}. According to Corollary 2.21, there must exist an
x ∈ (a, x0) such that L− ε < f (x) ≤ L. Define δ = x0 − x. If y ∈ (x0 − δ, x0), then
L− ε < f (x) ≤ f (y) ≤ L. This shows limx↑x0 f (x) = L.

The proof that limx↓x0 f (x) exists is similar.
To handle the case when f is decreasing, consider − f instead of f . �

3. Continuity

Definition 6.9. Let f : D → R and x0 ∈ D. f is continuous at x0 if for every ε > 0
there exists a δ > 0 such that when x ∈ D with |x− x0| < δ, then | f (x)− f (x0)| < ε.
The set of all points at which f is continuous is denoted C( f ).

Several useful ways of rephrasing this are contained in the following theorem.
They are analogous to the similar statements made about limits. Proofs are left to
the reader.

Theorem 6.10. Let f : D → R and x0 ∈ D. The following statements are equivalent.
(a) x0 ∈ C( f ),

2Calculus books often use the notation limx↑x0 f (x) = limx→x0− f (x) and limx↓x0 f (x) =

limx→x0+ f (x).
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Figure 6.6. The function f is continuous at x0, if given any ε > 0 there
is a δ > 0 such that the graph of f does not leave the dashed rectangle
(x0− δ, x0 + d)× ( f (x0)− ε, f (x0) + ε). The difference between this figure
and Figure 6.1 is that in the former the point (x0, f (x0)) need not be in the
rectangle, or even on the graph of f .

(b) For all ε > 0 there is a δ > 0 such that
x ∈ (x0 − δ, x0 + δ) ∩ D ⇒ f (x) ∈ ( f (x0)− ε, f (x0) + ε),

(c) For all ε > 0 there is a δ > 0 such that
f ((x0 − δ, x0 + δ) ∩ D) ⊂ ( f (x0)− ε, f (x0) + ε).

Example 6.10. Define

f (x) =

{
2x2−8

x−2 , x 6= 2
8, x = 2

.

It follows from Example 6.3 that 2 ∈ C( f ).
There is a subtle difference between the treatment of the domain of the function

in the definitions of limit and continuity. In the definition of limit, the “target point,”
x0 is required to be a limit point of the domain, but not actually be an element of the
domain. In the definition of continuity, x0 must be in the domain of the function, but
does not have to be a limit point. To see a consequence of this difference, consider
the following example.

Example 6.11. If f : Z→ R is an arbitrary function, then C( f ) = Z. To see this,
let n0 ∈ Z, ε > 0 and δ = 1. If x ∈ Z with |x− n0| < δ, then x = n0. It follows that
| f (x)− f (n0)| = 0 < ε, so f is continuous at n0.

This leads to the following theorem.
Theorem 6.11. Let f : D → R and x0 ∈ D. If x0 is a limit point of D, then x0 ∈ C( f )

iff limx→x0 f (x) = f (x0). If x0 is an isolated point of D, then x0 ∈ C( f ).

Proof. If x0 is isolated in D, then there is an δ > 0 such that (x0 − δ, x0 + δ) ∩
D = {x0}. For any ε > 0, the definition of continuity is satisfied with this δ.

Next, suppose x0 ∈ D′.
The definition of continuity says that f is continuous at x0 iff for all ε > 0 there is

a δ > 0 such that when x ∈ (x0 − δ, x0 + δ) ∩ D, then f (x) ∈ ( f (x0)− ε, f (x0) + ε).
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The definition of limit says that limx→x0 f (x) = f (x0) iff for all ε > 0 there
is a δ > 0 such that when x ∈ (x0 − δ, x0 + δ) ∩ D \ {x0}, then f (x) ∈ ( f (x0)−
ε, f (x0) + ε).

Comparing these two definitions, it is clear that x0 ∈ C( f ) implies
lim

x→x0
f (x) = f (x0).

On the other hand, suppose limx→x0 f (x) = f (x0) and ε > 0. Choose δ ac-
cording to the definition of limit. When x ∈ (x0 − δ, x0 + δ) ∩ D \ {x0}, then
f (x) ∈ ( f (x0)− ε, f (x0) + ε). It follows from this that when x = x0, then f (x)−
f (x0) = f (x0)− f (x0) = 0 < ε. Therefore, when x ∈ (x0 − δ, x0 + δ) ∩ D, then
f (x) ∈ ( f (x0)− ε, f (x0) + ε), and x0 ∈ C( f ), as desired. �

Example 6.12. If f (x) = c, for some c ∈ R, then Example 6.1 and Theorem 6.11
show that f is continuous at every point.

Example 6.13. If f (x) = x, then Example 6.2 and Theorem 6.11 show that f is
continuous at every point.

Corollary 6.12. Let f : D → R and x0 ∈ D. x0 ∈ C( f ) iff whenever xn is a
sequence from D with xn → x0, then f (xn)→ f (x0).

Proof. Combining Theorem 6.11 with Theorem 6.2 shows this to be true. �

Example 6.14 (Dirichlet Function). Suppose

f (x) =

{
1, x ∈ Q

0, x /∈ Q
.

For each x ∈ Q, there is a sequence of irrational numbers converging to x, and for
each y ∈ Qc there is a sequence of rational numbers converging to y. Corollary 6.12
shows C( f ) = ∅.

Example 6.15 (Salt and Pepper Function). Since Q is a countable set, it can be
written as a sequence, Q = {qn : n ∈N}. Define

f (x) =

{
1/n, x = qn,
0, x ∈ Qc.

If x ∈ Q, then x = qn, for some n and f (x) = 1/n > 0. There is a sequence xn
from Qc such that xn → x and f (xn) = 0 6→ f (x) = 1/n. Therefore C( f ) ∩Q = ∅.

On the other hand, let x ∈ Qc and ε > 0. Choose N ∈ N large enough so
that 1/N < ε and let δ = min{|x − qn| : 1 ≤ n ≤ N}. If |x − y| < δ, there
are two cases to consider. If y ∈ Qc, then | f (y) − f (x)| = |0− 0| = 0 < ε. If
y ∈ Q, then the choice of δ guarantees y = qn for some n > N. In this case,
| f (y)− f (x)| = f (y) = f (qn) = 1/n < 1/N < ε. Therefore, x ∈ C( f ).

This shows that C( f ) = Qc.
It is a consequence of the Baire category theorem that there is no function f

such that C( f ) = Q. Proving this would take us too far afield.
The following theorem is an almost immediate consequence of Theorem 6.4.
Theorem 6.13. Let f : D → R and g : D → R. If x0 ∈ C( f ) ∩ C(g), then
(a) x0 ∈ C( f + g),
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6-8 CHAPTER 6. LIMITS OF FUNCTIONS

(b) x0 ∈ C(α f ), ∀α ∈ R,
(c) x0 ∈ C( f g), and
(d) x0 ∈ C( f /g) when g(x0) 6= 0.

Corollary 6.14. If f is a rational function, then f is continuous at each point of its
domain.

Proof. This is a consequence of Examples 6.12 and 6.13 used with Theorem
6.13. �

Theorem 6.15. Suppose f : D f → R and g : Dg → R such that f (D f ) ⊂ Dg. If
there is an x0 ∈ C( f ) such that f (x0) ∈ C(g), then x0 ∈ C(g ◦ f ).

Proof. Let ε > 0 and choose δ1 > 0 such that
g(( f (x0)− δ1, f (x0) + δ1) ∩ Dg) ⊂ (g ◦ f (x0)− ε, g ◦ f (x0) + ε).

Choose δ2 > 0 such that
f ((x0 − δ2, x0 + δ2) ∩ D f ) ⊂ ( f (x0)− δ1, f (x0) + δ1).

Then
g ◦ f ((x0 − δ2, x0 + δ2) ∩ D f ) ⊂ g(( f (x0)− δ1, f (x0) + δ1) ∩ Dg)

⊂ (g ◦ f (x0)− ε, g ◦ f (x0) + ε).

Since this shows Theorem 6.10(c) is satisfied at x0 with the function g ◦ f , it follows
that x0 ∈ C(g ◦ f ). �

Example 6.16. If f (x) =
√

x for x ≥ 0, then according to Problem 6.8, C( f ) =
[0, ∞). Theorem 6.15 shows f ◦ f (x) = 4

√
x is continuous on [0, ∞).

In similar way, it can be shown by induction that f (x) = xm/2n is continuous
on [0, ∞) for all m, n ∈ Z.

4. Unilateral Continuity

Definition 6.16. Let f : D → R and x0 ∈ D. f is left-continuous at x0 if for every
ε > 0 there is a δ > 0 such that f ((x0 − δ, x0] ∩ D) ⊂ ( f (x0)− ε, f (x0) + ε).

Let f : D → R and x0 ∈ D. f is right-continuous at x0 if for every ε > 0 there is
a δ > 0 such that f ([x0, x0 + δ) ∩ D) ⊂ ( f (x0)− ε, f (x0) + ε).

Example 6.17. Let the floor function be
bxc = max{n ∈ Z : n ≤ x}

and the ceiling function be
dxe = min{n ∈ Z : n ≥ x}.

The floor function is right-continuous, but not left-continuous at each integer, and
the ceiling function is left-continuous, but not right-continuous at each integer.

Theorem 6.17. Let f : D → R and x0 ∈ D. x0 ∈ C( f ) iff f is both right and
left-continuous at x0.

Proof. The proof of this theorem is left as an exercise. �
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f(x) = x2−4
x−2

1 2 43
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Figure 6.7. The function from Example 6.19. Note that the graph is a line
with one “hole” in it. Plugging up the hole removes the discontinuity.

According to Theorem 6.7, when f is monotone on an interval (a, b), the unilat-
eral limits of f exist at every point. In order for such a function to be continuous at
x0 ∈ (a, b), it must be the case that

lim
x↑x0

f (x) = f (x0) = lim
x↓x0

f (x).

If either of the two equalities is violated, the function is not continuous at x0.
In the case, when limx↑x0 f (x) 6= limx↓x0 f (x), it is said that a jump discontinuity

occurs at x0.
Example 6.18. The function

f (x) =

{
|x|/x, x 6= 0
0, x = 0

.

has a jump discontinuity at x = 0.
In the case when limx↑x0 f (x) = limx↓x0 f (x) 6= f (x0), it is said that f has a

removable discontinuity at x0. The discontinuity is called “removable” because in this
case, the function can be made continuous at x0 by merely redefining its value at
the single point, x0, to be the value of the two one-sided limits.

Example 6.19. The function f (x) = x2−4
x−2 is not continuous at x = 2 because 2

is not in the domain of f . Since limx→2 f (x) = 4, if the domain of f is extended to
include 2 by setting f (2) = 4, then this extended f is continuous everywhere. (See
Figure 6.7.)

Theorem 6.18. If f : (a, b)→ R is monotone, then (a, b) \ C( f ) is countable.

Proof. In light of the discussion above and Theorem 6.7, it is apparent that the
only types of discontinuities f can have are jump discontinuities.

To be specific, suppose f is increasing and x0, y0 ∈ (a, b) \ C( f ) with x0 < y0.
In this case, the fact that f is increasing implies

lim
x↑x0

f (x) < lim
x↓x0

f (x) ≤ lim
x↑y0

f (x) < lim
x↓y0

f (x).

This implies that for any two x0, y0 ∈ (a, b) \ C( f ), there are disjoint open intervals,
Ix0 = (limx↑x0 f (x), limx↓x0 f (x)) and Iy0 = (limx↑y0 f (x), limx↓y0 f (x)). For each
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x ∈ (a, b) \ C( f ), choose qx ∈ Ix ∩Q. Because of the pairwise disjointness of the
intervals {Ix : x ∈ (a, b) \ C( f )}, this defines an bijection between (a, b) \ C( f ) and
a subset of Q. Therefore, (a, b) \ C( f ) must be countable.

A similar argument holds for a decreasing function. �

Theorem 6.18 implies that a monotone function is continuous at “nearly every”
point in its domain. Characterizing the points of discontinuity as countable is the
best that can be hoped for, as seen in the following example.

Example 6.20. Let D = {dn : n ∈ N} be a countable set and define Jx = {n :
dn < x}. The function

(6.1) f (x) =

{
0, Jx = ∅
∑n∈Jx

1
2n Jx 6= ∅

.

is increasing and C( f ) = Dc. The proof of this statement is left as Exercise 6.9.

5. Continuous Functions

Up until now, continuity has been considered as a property of a function at a
point. There is much that can be said about functions continuous everywhere.

Definition 6.19. Let f : D → R and A ⊂ D. We say f is continuous on A if
A ⊂ C( f ). If D = C( f ), then f is continuous.

Continuity at a point is, in a sense, a metric property of a function because it
measures relative distances betweenpoints in the domain and image sets. Continuity
on a set becomes more of a topological property, as shown by the next few theorems.

Theorem 6.20. f : D → R is continuous iff whenever G is open in R, then f−1(G)
is relatively open in D.

Proof. (⇒) Assume f is continuous on D and let G be open in R. Let x ∈
f−1(G) and choose ε > 0 such that ( f (x)− ε, f (x) + ε) ⊂ G. Using the continuity
of f at x, we can find a δ > 0 such that f ((x − δ, x + δ) ∩ D) ⊂ G. This implies
that (x− δ, x + δ) ∩ D ⊂ f−1(G). Because x was an arbitrary element of f−1(G), it
follows that f−1(G) is open.

(⇐) Choose x ∈ D and let ε > 0. By assumption, the set f−1(( f (x)− ε, f (x) +
ε)) is relatively open in D. This implies the existence of a δ > 0 such that (x− δ, x +
δ) ∩D ⊂ f−1(( f (x)− ε, f (x) + ε). It follows from this that f ((x− δ, x + δ) ∩D) ⊂
( f (x)− ε, f (x) + ε), and x ∈ C( f ). �

A function as simple as any constant function demonstrates that f (G) need not
be open when G is open. Defining f : [0, ∞) → R by f (x) = sin x tan−1 x shows
that the image of a closed set need not be closed because f ([0, ∞)) = (−π/2, π/2).

Theorem 6.21. If f is continuous on a compact set K, then f (K) is compact.

Proof. Let O be an open cover of f (K) and I = { f−1(G) : G ∈ O}. By
Theorem 6.20, I is a collection of sets which are relatively open in K. Since I covers
K, I is an open cover of K. Using the fact that K is compact, we can choose a finite
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subcover of K from I , say {G1, G2, . . . , Gn}. There are {H1, H2, . . . , Hn} ⊂ O such
that f−1(Hk) = Gk for 1 ≤ k ≤ n. Then

f (K) ⊂ f

( ⋃
1≤k≤n

Gk

)
=

⋃
1≤k≤n

Hk.

Thus, {H1, H2, . . . , Hn} is a subcover of f (K) from O. �

Several of the standard calculus theorems giving properties of continuous
functions are consequences of Corollary 6.21. In a calculus course, K is usually a
compact interval, [a, b].

Corollary 6.22. If f : K → R is continuous and K is compact, then f is bounded.

Proof. By Theorem 6.21, f (K) is compact. Now, use the Bolzano-Weierstrass
theorem to conclude f is bounded. �

Corollary 6.23 (Maximum Value Theorem). If f : K → R is continuous and K
is compact, then there are m, M ∈ K such that f (m) ≤ f (x) ≤ f (M) for all x ∈ K.

Proof. According to Theorem 6.21 and the Bolzano-Weierstrass theorem, f (K)
is closed and bounded. Because of this, glb f (K) ∈ f (K) and lub f (K) ∈ f (K). It
suffices to choose m ∈ f−1(glb f (K)) and M ∈ f−1(lub f (K)). �

Corollary 6.24. If f : K → R is continuous and invertible and K is compact, then
f−1 : f (K)→ K is continuous.

Proof. Let G be open in K. According to Theorem 6.20, it suffices to show f (G)
is open in f (K).

To do this, note that K \ G is compact, so by Theorem 6.21, f (K \ G) is compact,
and therefore closed. Because f is injective, f (G) = f (K) \ f (K \ G). This shows
f (G) is open in f (K). �

Theorem 6.25. If f is continuous on an interval I, then f (I) is an interval.

Proof. If f (I) is not connected, there must exist two disjoint open sets, U
and V, such that f (I) ⊂ U ∪ V and f (I) ∩ U 6= ∅ 6= f (I) ∩ V. In this case,
Theorem 6.20 implies f−1(U) and f−1(V) are both open. They are clearly disjoint
and f−1(U)∩ I 6= ∅ 6= f−1(V)∩ I. But, this implies f−1(U) and f−1(V) disconnect
I, which is a contradiction. Therefore, f (I) is connected. �

Corollary 6.26 (Intermediate Value Theorem). If f : [a, b]→ R is continuous
and α is between f (a) and f (b), then there is a c ∈ [a, b] such that f (c) = α.

Proof. This is an easy consequence of Theorem 6.25 and Theorem 5.23. �

Definition 6.27. A function f : D → R has the Darboux property if whenever
a, b ∈ D and γ is between f (a) and f (b), then there is a c between a and b such that
f (c) = γ.

Calculus texts usually call the Darboux property the intermediate value property.
Corollary 6.26 shows that a function continuous on an interval has the Darboux
property. The next example shows continuity is not necessary for the Darboux
property to hold.
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Example 6.21. The function

f (x) =

{
sin 1/x, x 6= 0
0, x = 0

is not continuous, but does have the Darboux property. (See Figure 6.4.) It can be
seen from Example 6.6 that 0 /∈ C( f ).

To see f has the Darboux property, choose two numbers a < b.
If a > 0 or b < 0, then f is continuous on [a, b] and Corollary 6.26 suffices to

finish the proof.
On the other hand, if 0 ∈ [a, b], then there must exist an n ∈ Z such that

both 2
(4n+1)π , 2

(4n+3)π ∈ [a, b]. Since f ( 2
(4n+1)π ) = 1, f ( 2

(4n+3)π ) = −1 and f is
continuous on the interval between them, we see f ([a, b]) = [−1, 1], which is the
entire range of f . The claim now follows.

6. Uniform Continuity

Most of the ideas contained in this section will not be needed until we begin
developing the properties of the integral in Chapter 8.

Definition 6.28. A function f : D → R is uniformly continuous if for all ε > 0
there is a δ > 0 such that when x, y ∈ D with |x− y| < δ, then | f (x)− f (y)| < ε.

The idea here is that in the ordinary definition of continuity, the δ in the defini-
tion depends on both ε and the x at which continuity is being tested; i.e., δ is really
a function of both ε and x. With uniform continuity, δ only depends on ε; i.e., δ is
only a function of ε, and the same δ works across the whole domain.

Theorem 6.29. If f : D → R is uniformly continuous, then it is continuous.

Proof. This proof is left as Exercise 6.32. �

The converse is not true.
Example 6.22. Let f (x) = 1/x on D = (0, 1) and ε > 0. It’s clear that f is

continuous on D. Let δ > 0 and choose m, n ∈N such that m > 1/δ and n−m > ε.
If x = 1/m and y = 1/n, then 0 < y < x < δ and f (y) − f (x) = n − m > ε.
Therefore, f is not uniformly continuous.

Theorem 6.30. If f : D → R is continuous and D is compact, then f is uniformly
continuous.

Proof. Suppose f is not uniformly continuous. Then there is an ε > 0 such that
for every n ∈N there are xn, yn ∈ D with |xn − yn| < 1/n and | f (xn)− f (yn)| ≥ ε.
An application of the Bolzano-Weierstrass theorem yields a subsequence xnk of xn
such that xnk → x0 ∈ D.

Since f is continuous at x0, there is a δ > 0 such that whenever x ∈ (x0 −
δ, x0 + δ) ∩ D, then | f (x)− f (x0)| < ε/2. Choose nk ∈ N such that 1/nk < δ/2
and xnk ∈ (x0 − δ/2, x0 + δ/2). Then both xnk , ynk ∈ (x0 − δ, x0 + δ) and

ε ≤ | f (xnk )− f (ynk )| = | f (xnk )− f (x0) + f (x0)− f (ynk )|
≤ | f (xnk )− f (x0)|+ | f (x0)− f (ynk )| < ε/2 + ε/2 = ε,

which is a contradiction.
Therefore, f must be uniformly continuous. �
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The following corollary is an immediate consequence of Theorem 6.30.
Corollary 6.31. If f : [a, b]→ R is continuous, then f is uniformly continuous.

Theorem 6.32. Let D ⊂ R and f : D → R. If f is uniformly continuous and xn is a
Cauchy sequence from D, then f (xn) is a Cauchy sequence..

Proof. The proof is left as Exercise 6.39. �

Uniform continuity is necessary in Theorem 6.32. To see this, let f : (0, 1)→ R

be f (x) = 1/x and xn = 1/n. Then xn is a Cauchy sequence, but f (xn) = n is not.
This idea is explored in Exercise 6.34.

It’s instructive to think about the converse to Theorem 6.32. Let f (x) = x2,
defined on all of R. Since f is continuous everywhere, Corollary 6.12 shows f maps
Cauchy sequences to Cauchy sequences. On the other hand, in Exercise 6.38, it
is shown that f is not uniformly continuous. Therefore, the converse to Theorem
6.32 is false. Those functions mapping Cauchy sequences to Cauchy sequences
are sometimes said to be Cauchy continuous. The converse to Theorem 6.32 can be
tweaked to get a true statement.

Theorem 6.33. Let f : D → R where D is bounded. If f is Cauchy continuous, then
f is uniformly continuous.

Proof. Suppose f is not uniformly continuous. Then there is an ε > 0 and
sequences xn and yn from D such that |xn − yn| < 1/n and | f (xn)− f (yn)| ≥ ε.
Since D is bounded, the sequence xn is bounded and the Bolzano-Weierstrass
theorem gives a Cauchy subsequence, xnk . The new sequence

zk =

{
xn(k+1)/2 k odd
ynk/2 k even

is easily shown to be a Cauchy sequence. But, f (zk) is not a Cauchy sequence, since
| f (zk)− f (zk+1)| ≥ ε for all odd k. This contradicts the fact that f is Cauchy contin-
uous. We’re forced to conclude the assumption that f is not uniformly continuous
is false. �

7. Exercises

6.1. Prove lim
x→−2

(x2 + 3x) = −2.

6.2. Give examples of functions f and g such that neither function has a limit at a,
but f + g does. Do the same for f g.

6.3. Let f : D → R and a ∈ D′.
lim
x→a

f (x) = L ⇐⇒ lim
x↑a

f (x) = lim
x↓a

f (x) = L

6.4. Find two functions defined on R such that
0 = lim

x→0
( f (x) + g(x)) 6= lim

x→0
f (x) + lim

x→0
g(x).
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6-14 CHAPTER 6. LIMITS OF FUNCTIONS

6.5. If lim
x→a

f (x) = L > 0, then there is a δ > 0 such that f (x) > 0 when 0 <

|x− a| < δ.

6.6. If Q = {qn : n ∈N} is an enumeration of the rational numbers and

f (x) =

{
1/n, x = qn

0, x ∈ Qc

then limx→a f (x) = 0, for all a ∈ Qc.

6.7. Use the definition of continuity to show f (x) = x2 is continuous everywhere
on R.

6.8. Prove that f (x) =
√

x is continuous on [0, ∞).

6.9. If f is defined as in (6.1), then D = C( f )c.

6.10. If f : R→ R is monotone, then there is a countable set D such that the values
of f can be altered on D in such a way that the altered function is left-continuous at
every point of R.

6.11. Does there exist an increasing function f : R→ R such that C( f ) = Q?

6.12. If f : R→ R and there is an α > 0 such that | f (x)− f (y)| ≤ α|x− y| for all
x, y ∈ R, then show that f is continuous.

6.13. Suppose f and g are each defined on an open interval I, a ∈ I and a ∈
C( f ) ∩ C(g). If f (a) > g(a), then there is an open interval J such that f (x) > g(x)
for all x ∈ J.

6.14. If f , g : (a, b)→ R are continuous, then G = {x : f (x) < g(x)} is open.

6.15. If f : R→ R and a ∈ C( f ) with f (a) > 0, then there is a neighborhood G of
a such that f (G) ⊂ (0, ∞).

6.16. Let f and g be two functions which are continuous on a set D ⊂ R. Prove or
give a counter example: {x ∈ D : f (x) > g(x)} is relatively open in D.

6.17. If f , g : R → R are functions such that f (x) = g(x) for all x ∈ Q and
C( f ) = C(g) = R, then f = g.

6.18. Let I = [a, b]. If f : I → I is continuous, then there is a c ∈ I such that
f (c) = c.

6.19. Find an example to show the conclusion of Problem 6.18 fails if I = (a, b).

6.20. If f and g are both continuous on [a, b], then {x : f (x) ≤ g(x)} is compact.

6.21. If f : [a, b]→ R is continuous, not constant,

m = glb { f (x) : a ≤ x ≤ b} and M = lub { f (x) : a ≤ x ≤ b},
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then f ([a, b]) = [m, M].

6.22. Suppose f : R→ R is a function such that every interval has points at which
f is negative and points at which f is positive. Prove that every interval has points
where f is not continuous.

6.23. Let Q = {pn/qn : pn ∈ Z and qn ∈ N} where each pair pn and qn are
relatively prime. If

f (x) =

{
x, x ∈ Qc

pn sin
(

1
qn

)
, pn

qn
∈ Q

,

then determine C( f ).

6.24. If f : [a, b]→ R has a limit at every point, then f is bounded. Is this true for
f : (a, b)→ R?

6.25. Give an example of a bounded function f : R→ R with a limit at no point.

6.26. If f : R→ R is continuous and periodic, then there are xm, xM ∈ R such that
f (xm) ≤ f (x) ≤ f (xM) for all x ∈ R. (A function f is periodic, if there is a p > 0
such that f (x + p) = f (x) for all x ∈ R. The least such p is called the period of f .

6.27. A set S ⊂ R is disconnected iff there is a continuous f : S → R such that
f (S) = {0, 1}.

6.28. If f : R → R satisfies f (x + y) = f (x) + f (y) for all x and y and 0 ∈ C( f ),
then f is continuous.

6.29. Assume that f : R→ R is such that f (x + y) = f (x) f (y) for all x, y ∈ R. If f
has a limit at zero, prove that either limx→0 f (x) = 1 or f (x) = 0 for all x ∈ R \ {0}.

6.30. If F ⊂ R is closed, then there is an f : R→ R such that F = C( f )c.

6.31. If F ⊂ R is closed and f : F → R is continuous, then there is a continuous
function g : R→ R such that f = g on F.

6.32. If f : [a, b]→ R is uniformly continuous, then f is continuous.

6.33. A function f : R → R is periodic with period p > 0, if f (x + p) = f (x) for
all x. If f : R → R is periodic with period p and continuous on [0, p], then f is
uniformly continuous.

6.34. Prove that an unbounded function on a bounded open interval cannot be
uniformly continuous.

6.35. If f : D → R is uniformly continuous on a bounded set D, then f is bounded.

6.36. Prove Theorem 6.29.
6.37. Every polynomial of odd degree has a root.
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6.38. Show f (x) = x2, with domain R, is not uniformly continuous.

6.39. Prove Theorem 6.32.
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CHAPTER 7

Differentiation

1. The Derivative at a Point

Definition 7.1. Let f be a function defined on a neighborhood of x0. f is
differentiable at x0, if the following limit exists:

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.

Define D( f ) = {x : f ′(x) exists}.
The standard notations for the derivative will be used; e.g., f ′(x), d f (x)

dx , D f (x),
etc.

An equivalent way of stating this definition is to note that if x0 ∈ D( f ), then

f ′(x0) = lim
x→x0

f (x)− f (x0)

x− x0
.

(See Figure 1.)
This can be interpreted in the standard way as the limiting slope of the secant

line as the points of intersection approach each other.
Example 7.1. If f (x) = c for all x and some c ∈ R, then

lim
h→0

f (x0 + h)− f (x0)

h
= lim

h→0

c− c
h

= 0.

So, f ′(x) = 0 everywhere.
Example 7.2. If f (x) = x, then

lim
h→0

f (x0 + h)− f (x0)

h
= lim

h→0

x0 + h− x0

h
= lim

h→0

h
h
= 1.

So, f ′(x) = 1 everywhere.
Theorem 7.2. For any function f , D( f ) ⊂ C( f ).

Proof. Suppose x0 ∈ D( f ). Then

lim
x→x0

( f (x)− f (x0)) = lim
x→x0

f (x)− f (x0)

x− x0
(x− x0)

= f ′(x0) 0 = 0.

This shows limx→x0 f (x) = f (x0), and x0 ∈ C( f ). �

Of course, the converse of Theorem 7.2 is not true.
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7-2 CHAPTER 7. DIFFERENTIATION

Figure 7.1. These graphs illustrate that the two standard ways of writing
the difference quotient are equivalent.

Example 7.3. The function f (x) = |x| is continuous on R, but

lim
h↓0

f (0 + h)− f (0)
h

= 1 = − lim
h↑0

f (0 + h)− f (0)
h

,

so f ′(0) fails to exist.
Theorem 7.2 and Example 7.3 show that differentiability is a strictly stronger

condition than continuity. For a long time most mathematicians believed that every
continuous functionmust certainly be differentiable at some point. In the nineteenth
century, several researchers, most notably Bolzano and Weierstrass, presented
examples of functions continuous everywhere and differentiable nowhere.2 It has
since been proved that, in a technical sense, the “typical” continuous function is
nowhere differentiable [5]. So, contrary to the impression left by many beginning
calculus courses, differentiability is the exception rather than the rule, even for
continuous functions..

2. Differentiation Rules

Following are the standard rules for differentiation learned by every calculus
student.

Theorem 7.3. Suppose f and g are functions such that x0 ∈ D( f ) ∩ D(g).
(a) x0 ∈ D( f + g) and ( f + g)′(x0) = f ′(x0) + g′(x0).
(b) If a ∈ R, then x0 ∈ D(a f ) and (a f )′(x0) = a f ′(x0).
(c) x0 ∈ D( f g) and ( f g)′(x0) = f ′(x0)g(x0) + f (x0)g′(x0).
(d) If g(x0) 6= 0, then x0 ∈ D( f /g) and(

f
g

)′
(x0) =

f ′(x0)g(x0)− f (x0)g′(x0)

(g(x0))2 .

2Bolzano presented his example in 1834, but it was little noticed. The 1872 example of Weierstrass
is more well-known [3]. A translation of Weierstrass’ original paper [22] is presented by Edgar [12].
Weierstrass’ example is not very transparent because it depends on trigonometric series. Many more
elementary constructions have since been made. One such will be presented in Example 9.9.
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Proof. (a)

lim
h→0

( f + g)(x0 + h)− ( f + g)(x0)

h

= lim
h→0

f (x0 + h) + g(x0 + h)− f (x0)− g(x0)

h

= lim
h→0

(
f (x0 + h)− f (x0)

h
+

g(x0 + h)− g(x0)

h

)
= f ′(x0) + g′(x0)

(b)
lim
h→0

(a f )(x0 + h)− (a f )(x0)

h
= a lim

h→0

f (x0 + h)− f (x0)

h
= a f ′(x0)

(c)

lim
h→0

( f g)(x0 + h)− ( f g)(x0)

h
= lim

h→0

f (x0 + h)g(x0 + h)− f (x0)g(x0)

h
Now, “slip a 0” into the numerator and factor the fraction.

= lim
h→0

f (x0 + h)g(x0 + h)− f (x0)g(x0 + h) + f (x0)g(x0 + h)− f (x0)g(x0)

h

= lim
h→0

(
f (x0 + h)− f (x0)

h
g(x0 + h) + f (x0)

g(x0 + h)− g(x0)

h

)
Finally, use the definition of the derivative and the continuity of f and g at x0.

= f ′(x0)g(x0) + f (x0)g′(x0)

(d) It will be proved that if g(x0) 6= 0, then (1/g)′(x0) = −g′(x0)/(g(x0))
2. This

statement, combined with (c), yields (d).

lim
h→0

(1/g)(x0 + h)− (1/g)(x0)

h
= lim

h→0

1
g(x0 + h)

− 1
g(x0)

h

= lim
h→0

g(x0)− g(x0 + h)
h

1
g(x0 + h)g(x0)

= − g′(x0)

(g(x0)2

Plug this into (c) to see(
f
g

)′
(x0) =

(
f

1
g

)′
(x0)

= f ′(x0)
1

g(x0)
+ f (x0)

−g′(x0)

(g(x0))2

=
f ′(x0)g(x0)− f (x0)g′(x0)

(g(x0))2 .

�

Combining Examples 7.1 and 7.2 with Theorem 7.3, the following theorem is
easy to prove.

Corollary 7.4. A rational function is differentiable at every point of its domain.
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Theorem 7.5 (Chain Rule). If f and g are functions such that x0 ∈ D( f ) and
f (x0) ∈ D(g), then x0 ∈ D(g ◦ f ) and (g ◦ f )′(x0) = g′ ◦ f (x0) f ′(x0).

Proof. Let y0 = f (x0). By assumption, there is an open interval J containing
f (x0) such that g is defined on J. Since J is open and x0 ∈ C( f ), there is an open
interval I containing x0 such that f (I) ⊂ J.

Define h : J → R by

h(y) =


g(y)− g(y0)

y− y0
− g′(y0), y 6= y0

0, y = y0

.

Since y0 ∈ D(g), we see

lim
y→y0

h(y) = lim
y→y0

g(y)− g(y0)

y− y0
− g′(y0) = g′(y0)− g′(y0) = 0 = h(y0),

so y0 ∈ C(h). Now, x0 ∈ C( f ) and f (x0) = y0 ∈ C(h), so Theorem 6.15 implies
x0 ∈ C(h ◦ f ). In particular
(7.1) lim

x→x0
h ◦ f (x) = 0.

From the definition of h ◦ f for x ∈ I with f (x) 6= f (x0), we can solve for
(7.2) g ◦ f (x)− g ◦ f (x0) = (h ◦ f (x) + g′ ◦ f (x0))( f (x)− f (x0)).

Notice that (7.2) is also true when f (x) = f (x0). Divide both sides of (7.2) by
x− x0, and use (7.1) to obtain

lim
x→x0

g ◦ f (x)− g ◦ f (x0)

x− x0
= lim

x→x0
(h ◦ f (x) + g′ ◦ f (x0))

f (x)− f (x0)

x− x0

= (0 + g′ ◦ f (x0)) f ′(x0)

= g′ ◦ f (x0) f ′(x0).

�

Theorem 7.6. Suppose f : [a, b]→ [c, d] is continuous and invertible. If x0 ∈ D( f )
and f ′(x0) 6= 0 for some x0 ∈ (a, b), then f (x0) ∈ D( f−1) and

(
f−1)′ ( f (x0)) =

1/ f ′(x0).

Proof. Let y0 = f (x0) and suppose yn is any sequence in f ([a, b]) \ {y0} con-
verging to y0 and xn = f−1(yn). By Theorem 6.24, f−1 is continuous, so

x0 = f−1(y0) = lim
n→∞

f−1(yn) = lim
n→∞

xn.

Therefore,

lim
n→∞

f−1(yn)− f−1(y0)

yn − y0
= lim

n→∞

xn − x0

f (xn)− f (x0)
=

1
f ′(x0)

.

�

Example 7.4. It follows easily from Theorem 7.3 that f (x) = x3 is differentiable
everywhere with f ′(x) = 3x2. Define g(x) = 3

√
x. Then g(x) = f−1(x). Suppose

g(y0) = x0 for some y0 ∈ R. According to Theorem 7.6,

g′(y0) =
1

f ′(x0)
=

1
3x2

0
=

1
3(g(y0))2 =

1
3( 3
√

y0)2 =
1

3y2/3
0

.(7.3)
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If h(x) = x2/3, then h(x) = g(x)2, so (7.3) and the Chain Rule show

h′(x) =
2

3 3
√

x
, x 6= 0,

as expected.
In the same manner as Example 7.4, the usual power rule for differentiation can

be proved.
Corollary 7.7. Suppose q ∈ Q, f (x) = xq and D is the domain of f . Then f ′(x) =

qxq−1 on the set {
D, when q ≥ 1
D \ {0}, when q < 1

.

3. Derivatives and Extreme Points

As learned in calculus, the derivative is a powerful tool for determining the
behavior of functions. The following theorems form the basis formuch of differential
calculus. First, we state a few familiar definitions.

Definition 7.8. Suppose f : D → R and x0 ∈ D. f is said to have a relative
maximum at x0 if there is a δ > 0 such that f (x) ≤ f (x0) for all x ∈ (x0 − δ, x0 +
δ) ∩ D. f has a relative minimum at x0 if − f has a relative maximum at x0. If f has
either a relative maximum or a relative minimum at x0, then it is said that f has a
relative extreme value at x0.

The absolute maximum of f occurs at x0 if f (x0) ≥ f (x) for all x ∈ D. The
definitions of absolute minimum and absolute extreme are analogous.

Examples like f (x) = x on (0, 1) show that even the nicest functions need not
have relative extrema.

Theorem 7.9. Suppose f : (a, b) → R. If f has a relative extreme value at x0 and
x0 ∈ D( f ), then f ′(x0) = 0.

Proof. Suppose f (x0) is a relative maximum value of f . Then there must be a
δ > 0 such that f (x) ≤ f (x0) whenever x ∈ (x0 − δ, x0 + δ). Since f ′(x0) exists,
(7.4)

x ∈ (x0 − δ, x0) =⇒ f (x)− f (x0)

x− x0
≥ 0 =⇒ f ′(x0) = lim

x↑x0

f (x)− f (x0)

x− x0
≥ 0

and
(7.5)

x ∈ (x0, x0 + δ) =⇒ f (x)− f (x0)

x− x0
≤ 0 =⇒ f ′(x0) = lim

x↓x0

f (x)− f (x0)

x− x0
≤ 0.

Combining (7.4) and (7.5) shows f ′(x0) = 0.
If f (x0) is a relative minimum value of f , apply the previous argument to

− f . �

Suppose f : [a, b] → R is continuous. Corollary 6.23 guarantees f has both
an absolute maximum and minimum on the compact interval [a, b]. Theorem 7.9
implies these extrema must occur at points of the set

C = {x ∈ (a, b) : f ′(x) = 0} ∪ {x ∈ [a, b] : f ′(x) does not exist}.
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The elements of C are often called the critical points or critical numbers of f on [a, b].
To find the maximum and minimum values of f on [a, b], it suffices to find its
maximum and minimum on the smaller set C, which is often finite.

4. Differentiable Functions

Differentiation becomes most useful when a function has a derivative at each
point of an interval.

Definition 7.10. Let G be an open set. The function f is differentiable on an G
if G ⊂ D( f ). The set of all functions differentiable on G is denoted D(G). If f
is differentiable on its domain, then it is said to be differentiable. In this case, the
function f ′ is called the derivative of f .

The fundamental theorem about differentiable functions is the Mean Value
Theorem. Following is its simplest form.

Lemma 7.11 (Rolle’s Theorem). If f : [a, b]→ R is continuous on [a, b], differen-
tiable on (a, b) and f (a) = 0 = f (b), then there is a c ∈ (a, b) such that f ′(c) = 0.

Proof. Since [a, b] is compact, Corollary 6.23 implies the existence of xm, xM ∈
[a, b] such that f (xm) ≤ f (x) ≤ f (xM) for all x ∈ [a, b]. If f (xm) = f (xM), then f is
constant on [a, b] and any c ∈ (a, b) satisfies the lemma. Otherwise, either f (xm) < 0
or f (xM) > 0. If f (xm) < 0, then xm ∈ (a, b) and Theorem 7.9 implies f ′(xm) = 0.
If f (xM) > 0, then xM ∈ (a, b) and Theorem 7.9 implies f ′(xM) = 0. �

Rolle’s Theorem is just a stepping-stone on the path to the Mean Value Theorem.
Two versions of the Mean Value Theorem follow. The first is a version more general
than the one given in most calculus courses. The second is the usual version.4

Theorem 7.12 (Cauchy Mean Value Theorem). If f : [a, b]→ R and g : [a, b]→
R are both continuous on [a, b] and differentiable on (a, b), then there is a c ∈ (a, b) such
that

g′(c)( f (b)− f (a)) = f ′(c)(g(b)− g(a)).

Proof. Let
h(x) = (g(b)− g(a))( f (a)− f (x)) + (g(x)− g(a))( f (b)− f (a)).

Because of the assumptions on f and g, h is continuous on [a, b] and differentiable
on (a, b) with h(a) = h(b) = 0. Theorem 7.11 implies there is a c ∈ (a, b) such that
h′(c) = 0. Then

0 = h′(c) = −(g(b)− g(a)) f ′(c) + g′(c)( f (b)− f (a))

=⇒ g′(c)( f (b)− f (a)) = f ′(c)(g(b)− g(a)).

�

Corollary 7.13 (Mean Value Theorem). If f : [a, b]→ R is continuous on [a, b]
and differentiable on (a, b), then there is a c ∈ (a, b) such that f (b)− f (a) = f ′(c)(b− a).

Proof. Let g(x) = x in Theorem 7.12. �

3June 29, 2020 ©Lee Larson (Lee.Larson@Louisville.edu)
4Theorem 7.12 is also sometimes called the Generalized Mean Value Theorem.
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Section 4: Differentiable Functions 7-7

Figure 7.2. This is a “picture proof” of Corollary 7.13.

Many of the standard theorems of elementary calculus are easy consequences
of the Mean Value Theorem. For example, following are the usual theorems about
monotonicity.

First, recall the following definitions.
Definition 7.14. A function f : (a, b)→ R is increasing on (a, b), if a < x < y < b

implies f (x) ≤ f (y). It is decreasing, if − f is increasing. When it is increasing or
decreasing, it is monotone.

Notice with these definitions, a constant function is both increasing and de-
creasing. In the case when a < x < y < b implies f (x) < f (y), then f is strictly
increasing. The definition of strictly decreasing is analogous.

Theorem 7.15. Suppose f : (a, b) → R is a differentiable function. f is increasing
on (a, b) iff f ′(x) ≥ 0 for all x ∈ (a, b). f is decreasing on (a, b) iff f ′(x) ≤ 0 for all
x ∈ (a, b).

Proof. Only the first assertion is proved because the proof of the second is
pretty much the same with all the inequalities reversed.

(⇒) If x, y ∈ (a, b) with x 6= y, then the assumption that f is increasing gives
f (y)− f (x)

y− x
≥ 0 =⇒ f ′(x) = lim

y→x

f (y)− f (x)
y− x

≥ 0.

(⇐) Let x, y ∈ (a, b)with x < y. According to Theorem 7.13, there is a c ∈ (x, y)
such that f (y)− f (x) = f ′(c)(y− x) ≥ 0. This shows f (x) ≤ f (y), so f is increasing
on (a, b). �

Corollary 7.16. Let f : (a, b) → R be a differentiable function. f is constant iff
f ′(x) = 0 for all x ∈ (a, b).

It follows from Theorem 7.2 that every differentiable function is continuous.
But, it’s not true that a derivativemust be continuous.

Example 7.5. Let

f (x) =

{
x2 sin 1

x , x 6= 0
0, x = 0

.

We claim f is differentiable everywhere, but f ′ is not continuous.
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7-8 CHAPTER 7. DIFFERENTIATION

To see this, first note that when x 6= 0, the standard differentiation formulas
give that f ′(x) = 2x sin(1/x) − cos(1/x). To calculate f ′(0), choose any h 6= 0.
Then ∣∣∣∣ f (h)

h

∣∣∣∣ = ∣∣∣∣h2 sin(1/h)
h

∣∣∣∣ ≤ ∣∣∣∣h2

h

∣∣∣∣ = |h|
and it easily follows from the definition of the derivative and the Squeeze Theorem
(Theorem 6.3) that f ′(0) = 0.

Therefore,

f ′(x) =

{
0, x = 0
2x sin 1

x − cos 1
x , x 6= 0

.

Let xn = 1/2πn for n ∈N. Then xn → 0 and
f ′(xn) = 2xn sin(1/xn)− cos(1/xn)

=
1

πn
sin 2πn− cos 2πn = −1

for all n. Therefore, f ′(xn)→ −1 6= 0 = f ′(0), and f ′ is not continuous at 0.
But, derivatives do share one useful property with continuous functions; they

satisfy an intermediate value property. Compare the following theorem with Corol-
lary 6.26.

Theorem 7.17 (Darboux’s Theorem). If f is differentiable on an open set containing
[a, b] and γ is between f ′(a) and f ′(b), then there is a c ∈ [a, b] such that f ′(c) = γ.

Proof. If f ′(a) = f ′(b), then c = a satisfies the theorem. So, we may as well
assume f ′(a) 6= f ′(b). There is no generality lost in assuming f ′(a) < f ′(b), for,
otherwise, we just replace f with g = − f .

Figure 7.3. This could be the function h of Theorem 7.17.

Let h(x) = f (x)− γx so that D( f ) = D(h) and h′(x) = f ′(x)− γ. In particular,
this implies h′(a) < 0 < h′(b). Because of this, there must be an ε > 0 small enough
so that

h(a + ε)− h(a)
ε

< 0 =⇒ h(a + ε) < h(a)

and
h(b)− h(b− ε)

ε
> 0 =⇒ h(b− ε) < h(b).

(See Figure 7.3.) In light of these two inequalities and Theorem 6.23, there must
be a c ∈ (a, b) such that h(c) = glb {h(x) : x ∈ [a, b]}. Now Theorem 7.9 gives
0 = h′(c) = f ′(c)− γ, and the theorem follows. �

Here’s an example showing a possible use of Theorem 7.17.
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5. APPLICATIONS OF THE MEAN VALUE THEOREM 7-9

Example 7.6. Let

f (x) =

{
0, x 6= 0
1, x = 0

.

Theorem 7.17 implies f is not a derivative.
A more striking example is the following
Example 7.7. Define

f (x) =

{
sin 1

x , x 6= 0
1, x = 0

and g(x) =

{
sin 1

x , x 6= 0
−1, x = 0

.

Since

f (x)− g(x) =

{
0, x 6= 0
2, x = 0

does not have the intermediate value property, at least one of f or g is not a derivative.
(Actually, neither is a derivative because f (x) = −g(−x).)

5. Applications of the Mean Value Theorem

In the following sections, the standard notion of higher order derivatives is used.
To make this precise, suppose f is defined on an interval I. The function f itself can
be written f (0). If f is differentiable, then f ′ is written f (1). Continuing inductively,
if n ∈ ω, f (n) exists on I and x0 ∈ D( f (n)), then f (n+1)(x0) = d f (n)(x0)/dx.

5.1. Taylor’s Theorem. The motivation behind Taylor’s theorem is the attempt
to approximate a function f near a number a by a polynomial. The polynomial of
degree 0 which does the best job is clearly p0(x) = f (a). The best polynomial of
degree 1 is the tangent line to the graph of the function p1(x) = f (a) + f ′(a)(x− a).
Continuing in this way, we approximate f near a by the polynomial pn of degree n
such that f (k)(a) = p(k)n (a) for k = 0, 1, . . . , n. A simple induction argument shows
that

(7.6) pn(x) =
n

∑
k=0

f (k)(a)
k!

(x− a)k.

This is the well-known Taylor polynomial for f at a.
Many students leave calculus with the mistaken impression that (7.6) is the

important part of Taylor’s theorem. But, the important part of Taylor’s theorem is
the fact that in many cases it is possible to determine how large n must be to achieve
a desired accuracy in the approximation of f ; i. e., the error term is the important
part.

Theorem 7.18 (Taylor’s Theorem). If f is a function such that f , f ′, . . . , f (n) are
continuous on [a, b] and f (n+1) exists on (a, b), then there is a c ∈ (a, b) such that

f (b) =
n

∑
k=0

f (k)(a)
k!

(b− a)k +
f (n+1)(c)
(n + 1)!

(b− a)n+1.

5June 29, 2020 ©Lee Larson (Lee.Larson@Louisville.edu)
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2 4 6 8

-4

-2

2

4

n = 2

n = 4

n = 6

n = 8

n = 10

n = 20

y = cos(x)

Figure 7.4. Here are several of the Taylor polynomials for the function
cos(x), centered at a = 0, graphed along with cos(x).

Proof. Let the constant α be defined by

(7.7) f (b) =
n

∑
k=0

f (k)(a)
k!

(b− a)k +
α

(n + 1)!
(b− a)n+1

and define

F(x) = f (b)−
(

n

∑
k=0

f (k)(x)
k!

(b− x)k +
α

(n + 1)!
(b− x)n+1

)
.

From (7.7) we see that F(a) = 0. Direct substitution in the definition of F shows
that F(b) = 0. From the assumptions in the statement of the theorem, it is easy
to see that F is continuous on [a, b] and differentiable on (a, b). An application of
Rolle’s Theorem yields a c ∈ (a, b) such that

0 = F′(c) = −
(

f (n+1)(c)
n!

(b− c)n − α

n!
(b− c)n

)
=⇒ α = f (n+1)(c),

as desired. �

Now, suppose f is defined on an open interval I with a, x ∈ I. If f is n + 1 times
differentiable on I, then Theorem 7.18 implies there is a c between a and x such that

f (x) = pn(x) + R f (n, x, a),

where R f (n, x, a) = f (n+1)(c)
(n+1)! (x− a)n+1 is the error in the approximation.6

Example 7.8. Let f (x) = cos x. Suppose we want to approximate f (2) to 5
decimal places of accuracy. Since it’s an easy point to work with, we’ll choose a = 0.

6There are several different formulas for the error. The one given here is sometimes called the
Lagrange form of the remainder. In Example 8.4 a form of the remainder using integration instead of
differentiation is derived.
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5. APPLICATIONS OF THE MEAN VALUE THEOREM 7-11

Then, for some c ∈ (0, 2),

(7.8) |R f (n, 2, 0)| = | f
(n+1)(c)|
(n + 1)!

2n+1 ≤ 2n+1

(n + 1)!
.

A bit of experimentation with a calculator shows that n = 12 is the smallest n such
that the right-hand side of (7.8) is less than 5× 10−6. After doing some arithmetic,
it follows that

p12(2) = 1− 22

2!
+

24

4!
− 26

6!
+

28

8!
− 210

10!
+

212

12!
= −27809

66825
≈ −0.41615.

is a 5 decimal place approximation to cos(2). (A calculator gives the value cos(2) =
−0.416146836547142 which is about 0.00000316 larger, comfortably less than the
desired maximum error.)

But, things don’t alwayswork out thewaywemight like. Consider the following
example.

Example 7.9. Suppose

f (x) =

{
e−1/x2

, x 6= 0
0, x = 0

.

Figure 7.5 below has a graph of this function. In Example 7.11 below it is shown
that f is differentiable to all orders everywhere and f (n)(0) = 0 for all n ≥ 0. With
this function the Taylor polynomial centered at 0 gives a useless approximation.

5.2. L’Hôpital’s Rules and Indeterminate Forms. According to Theorem 6.4,
when limx→a f (x) and limx→a g(x) both exist, then

lim
x→a

f (x)
g(x)

=
limx→a f (x)
limx→a g(x)

as long as limx→a g(x) 6= 0. But, it is easy to find exampleswhere both limx→a f (x) =
0 and limx→a g(x) = 0 and limx→a f (x)/g(x) exists, as well as similar examples
where limx→a f (x)/g(x) fails to exist. Because of this, such a limit problem is said
to be in the indeterminate form 0/0. The following theorem allows us to determine
many such limits.

Theorem 7.19 (Easy L’Hôpital’s Rule). Suppose f and g are each continuous
on [a, b], differentiable on (a, b) and f (b) = g(b) = 0. If g′(x) 6= 0 on (a, b) and
limx↑b f ′(x)/g′(x) = L, where L could be infinite, then limx↑b f (x)/g(x) = L.

Proof. Let x ∈ [a, b), so f and g are continuous on [x, b] and differentiable on
(x, b). Cauchy’s Mean Value Theorem, Theorem 7.12, implies there is a c(x) ∈ (x, b)
such that

f ′(c(x))g(x) = g′(c(x)) f (x) =⇒ f (x)
g(x)

=
f ′(c(x))
g′(c(x))

.

Since x < c(x) < b, it follows that limx↑b c(x) = b. This shows that

L = lim
x↑b

f ′(x)
g′(x)

= lim
x↑b

f ′(c(x))
g′(c(x))

= lim
x↑b

f (x)
g(x)

.

�
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Several things should be noted about this theorem.
First, there is nothing special about the left-hand limit used in the statement of

the theorem. It could just as easily be written in terms of the right-hand limit.
Second, if limx→a f (x)/g(x) is not of the indeterminate form 0/0, then applying

L’Hôpital’s rule will usually give a wrong answer. To see this, consider

lim
x→0

x
x + 1

= 0 6= 1 = lim
x→0

1
1

.

Third, be careful with the flow of logic in the theorem! Consider

lim
x→0

x2 sin(1/x)
sin x

= lim
x→0

x
sin x

x sin(1/x) = 1× 0 = 0.

On the other hand, even though we have a 0/0 indeterminate form, blindly trying
to apply L’Hôpital’s Rule gives

lim
x→0

2x sin(1/x)− cos(1/x)
cos x

,

which does not exist.
Another case where the indeterminate form 0/0 occurs is in the limit at infinity.

That L’Hôpital’s rule works in this case can easily be deduced from Theorem 7.19.
Corollary 7.20. Suppose f and g are differentiable on (a, ∞) and

lim
x→∞

f (x) = lim
x→∞

g(x) = 0.

If g′(x) 6= 0 on (a, ∞) and limx→∞ f ′(x)/g′(x) = L, where L could be infinite, then
limx→∞ f (x)/g(x) = L.

Proof. There is no generality lost by assuming a > 0. Let

F(x) =

{
f (1/x), x ∈ (0, 1/a]
0, x = 0

and G(x) =

{
g(1/x), x ∈ (0, 1/a]
0, x = 0

.

Then
lim
x↓0

F(x) = lim
x→∞

f (x) = 0 = lim
x→∞

g(x) = lim
x↓0

G(x),

so both F and G are continuous at 0. It follows that both F and G are continuous on
[0, 1/a] and differentiable on (0, 1/a) with G′(x) = −g′(1/x)/x2 6= 0 on (0, 1/a)
and limx↓0 F′(x)/G′(x) = limx→∞ f ′(x)/g′(x) = L. The rest follows from Theorem
7.19. �

The other standard indeterminate form arises when
lim

x→∞
f (x) = ∞ = lim

x→∞
g(x).

This is called an ∞/∞ indeterminate form. It is often handled by the following
theorem.

Theorem 7.21 (Hard L’Hôpital’s Rule). Suppose that f and g are differentiable on
(a, ∞) and g′(x) 6= 0 on (a, ∞). If

lim
x→∞

f (x) = lim
x→∞

g(x) = ∞ and lim
x→∞

f ′(x)
g′(x)

= L ∈ R∪ {−∞, ∞},

then
lim

x→∞

f (x)
g(x)

= L.

June 29, 2020 http://math.louisville.edu/∼lee/ira

http://www.math.louisville.edu/~lee/RealAnalysis/


5. APPLICATIONS OF THE MEAN VALUE THEOREM 7-13

Proof. First, suppose L ∈ R and let ε > 0. Choose a1 > a large enough so that∣∣∣∣ f ′(x)
g′(x)

− L
∣∣∣∣ < ε, ∀x > a1.

Since limx→∞ f (x) = ∞ = limx→∞ g(x), we can assume there is an a2 > a1 such
that both f (x) > 0 and g(x) > 0 when x > a2. Finally, choose a3 > a2 such that
whenever x > a3, then f (x) > f (a2) and g(x) > g(a2).

Let x > a3 and apply Cauchy’s Mean Value Theorem, Theorem 7.12, to f and g
on [a2, x] to find a c(x) ∈ (a2, x) such that

(7.9) f ′(c(x))
g′(c(x))

=
f (x)− f (a2)

g(x)− g(a2)
=

f (x)
(

1− f (a2)
f (x)

)
g(x)

(
1− g(a2)

g(x)

) .

If

h(x) =
1− g(a2)

g(x)

1− f (a2)
f (x)

,

then (7.9) implies
f (x)
g(x)

=
f ′(c(x))
g′(c(x))

h(x).

Since limx→∞ h(x) = 1, there is an a4 > a3 such that whenever x > a4, then
|h(x)− 1| < ε. If x > a4, then∣∣∣∣ f (x)

g(x)
− L

∣∣∣∣ = ∣∣∣∣ f ′(c(x))
g′(c(x))

h(x)− L
∣∣∣∣

=

∣∣∣∣ f ′(c(x))
g′(c(x))

h(x)− Lh(x) + Lh(x)− L
∣∣∣∣

≤
∣∣∣∣ f ′(c(x))

g′(c(x))
− L

∣∣∣∣ |h(x)|+ |L||h(x)− 1|

< ε(1 + ε) + |L|ε = (1 + |L|+ ε)ε

can be made arbitrarily small through a proper choice of ε. Therefore
lim

x→∞
f (x)/g(x) = L.

The case when L = ∞ is done similarly by first choosing a B > 0 and adjusting
(7.9) so that f ′(x)/g′(x) > B when x > a1. A similar adjustment is necessary when
L = −∞. �

There is a companion corollary to Theorem 7.21 which is proved in the same
way as Corollary 7.20.

Corollary 7.22. Suppose that f and g are continuous on [a, b] and differentiable on
(a, b) with g′(x) 6= 0 on (a, b). If

lim
x↓a

f (x) = lim
x↓a

g(x) = ∞ and lim
x↓a

f ′(x)
g′(x)

= L ∈ R∪ {−∞, ∞},

then
lim
x↓a

f (x)
g(x)

= L.
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���	
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Figure 7.5. This is a plot of f (x) = exp(−1/x2). Notice how the graph
flattens out near the origin.

Example 7.10. If α > 0, then limx→∞ ln x/xα is of the indeterminate form ∞/∞.
Taking derivatives of the numerator and denominator yields

lim
x→∞

1/x
αxα−1 = lim

x→∞

1
αxα

= 0.

Theorem 7.21 now implies limx→∞ ln x/xα = 0, and therefore ln x increases more
slowly than any positive power of x.

Example 7.11. Let f be as in Example 7.9. (See Figure 7.5.) It is clear f (n)(x)
exists whenever n ∈ ω and x 6= 0. We claim f (n)(0) = 0. To see this, we first prove
that

lim
x→0

e−1/x2

xn = 0, ∀n ∈ Z.(7.10)

When n ≤ 0, (7.10) is obvious. So, suppose (7.10) is true whenever m ≤ n for
some n ∈ ω. Making the substitution u = 1/x, we see

lim
x↓0

e−1/x2

xn+1 = lim
u→∞

un+1

eu2 .(7.11)

The right-hand side is an ∞/∞ indeterminate form, so L’Hôpital’s rule can be used.
Since

lim
u→∞

(n + 1)un

2ueu2 = lim
u→∞

(n + 1)un−1

2eu2 =
n + 1

2
lim
x↓0

e−1/x2

xn−1 = 0

by the inductive hypothesis, Theorem 7.21 gives (7.11) in the case of the right-hand
limit. The left-hand limit is handled similarly. Finally, (7.10) follows by induction.

When x 6= 0, a bit of experimentation can convince the reader that f (n)(x)
is of the form pn(1/x)e−1/x2 , where pn is a polynomial. Induction and repeated
applications of (7.10) establish that f (n)(0) = 0 for n ∈ ω.
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6. Exercises

7.1. If
f (x) =

{
x2, x ∈ Q

0, otherwise ,

then show D( f ) = {0} and find f ′(0).

7.2. Let f be a function defined on some neighborhood of a with f (a) = 0. Prove
f ′(a) = 0 if and only if a ∈ D(| f |).

7.3. If f is defined on an open set containing x0, the symmetric derivative of f at x0
is defined as

f s(x0) = lim
h→0

f (x0 + h)− f (x0 − h)
2h

.

Prove that if f ′(x) exists, then so does f s(x). Is the converse true?

7.4. Let G be an open set and f ∈ D(G). If there is an a ∈ G such that limx→a f ′(x)
exists, then limx→a f ′(x) = f ′(a).

7.5. Suppose f is continuous on [a, b] and f ′′ exists on (a, b). If there is an x0 ∈
(a, b) such that the line segment between (a, f (a)) and (b, f (b)) contains the point
(x0, f (x0)), then there is a c ∈ (a, b) such that f ′′(c) = 0.

7.6. If ∆ = { f : f = F′ for some F : R→ R}, then ∆ is closed under addition and
scalar multiplication. (This shows the derivatives form a vector space.)

7.7. If
f1(x) =

{
1/2, x = 0
sin(1/x), x 6= 0

and
f2(x) =

{
1/2, x = 0
sin(−1/x), x 6= 0

,

then at least one of f1 and f2 is not in ∆.

7.8. Suppose f is differentiable everywhere and f (x + y) = f (x) f (y) for all
x, y ∈ R. Show that f ′(x) = f ′(0) f (x) and determine the value of f ′(0).

7.9. If I is an open interval, f is differentiable on I and a ∈ I, then there is a
sequence an ∈ I \ {a} such that an → a and f ′(an)→ f ′(a).

7.10. Use the definition of the derivative to find d
dx
√

x.

7.11. Let f be continuous on [0, ∞) and differentiable on (0, ∞). If f (0) = 0 and
| f ′(x)| ≤ | f (x)| for all x > 0, then f (x) = 0 for all x ≥ 0.

7.12. Suppose f : R→ R is such that f ′ is continuous on [a, b]. If there is a c ∈ (a, b)
such that f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.
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7.13. Prove or give a counter example: If f is continuous on R and differentiable
on R \ {0} with limx→0 f ′(x) = L, then f is differentiable on R.

7.14. Let f be continuous on [a, b] and differentiable on (a, b). If f (a) = α and
| f ′(x)| < β for all x ∈ (a, b), then calculate a bound for f (b).

7.15. Suppose that f : (a, b) → R is differentiable and f ′ is bounded. If xn is a
sequence from (a, b) such that xn → a, then f (xn) converges.

7.16. Let G be an open set and f ∈ D(G). If there is an a ∈ G such that limx→a f ′(x)
exists, then limx→a f ′(x) = f ′(a).

7.17. Prove or give a counter example: If f ∈ D((a, b)) such that f ′ is bounded,
then there is an F ∈ C([a, b]) such that f = F on (a, b).

7.18. Show that f (x) = x3 + 2x + 1 is invertible on R and, if g = f−1, then find
g′(1).

7.19. Suppose that I is an open interval and that f ′′(x) ≥ 0 for all x ∈ I. If a ∈ I,
then show that the part of the graph of f on I is never below the tangent line to the
graph at (a, f (a)).

7.20. Suppose f is continuous on [a, b] and f ′′ exists on (a, b). If there is an
x0 ∈ (a, b) such that the line segment between (a, f (a)) and (b, f (b)) contains the
point (x0, f (x0)), then there is a c ∈ (a, b) such that f ′′(c) = 0.

7.21. Let f be defined on a neighborhood of x.
(a) If f ′′(x) exists, then

lim
h→0

f (x− h)− 2 f (x) + f (x + h)
h2 = f ′′(x).

(b) Find a function f where this limit exists, but f ′′(x) does not exist.

7.22. If f : R → R is differentiable everywhere and is even, then f ′ is odd. If
f : R→ R is differentiable everywhere and is odd, then f ′ is even.7

7.23. Prove that ∣∣∣∣sin x−
(

x− x3

6
+

x5

120

)∣∣∣∣ < 1
5040

when |x| ≤ 1.

7.24. The exponential function ex is not a polynomial.

7A function g is even if g(−x) = g(x) for every x and it is odd if g(−x) = −g(x) for every x. Even
and odd functions are described as such because this is how g(x) = xn behaves when n is an even or
odd integer, respectively.
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CHAPTER 8

Integration

Contrary to the impression given by most calculus courses, there are many
ways to define integration. The one given here is called the Riemann integral or the
Riemann-Darboux integral, and it is the one most commonly presented to calculus
students.

1. Partitions

A partition of the interval [a, b] is a finite set P ⊂ [a, b] such that {a, b} ⊂ P. The
set of all partitions of [a, b] is denoted part ([a, b]). Basically, a partition should be
thought of as a way to divide an interval into a finite number of subintervals by
listing the points where it is divided.

If P ∈ part ([a, b]), then the elements of P can be ordered in a list as a = x0 <
x1 < · · · < xn = b. The adjacent points of this partition determine n compact
intervals of the form IP

k = [xk−1, xk], 1 ≤ k ≤ n. If the partition is understood from
the context, we write Ik instead of IP

k . It’s clear these intervals only intersect at their
common endpoints and there is no requirement they have the same length.

Since it’s inconvenient to always list each part of a partition, we’ll use the
partition of the previous paragraph as the generic partition. Unless it’s necessary
within the context to specify some other form for a partition, assume any partition
is the generic partition. (See Figure 1.)

If I is any interval, its length is written |I|. Using the notation of the previous
paragraph, it follows that

n

∑
k=1
|Ik| =

n

∑
k=1

(xk − xk−1) = xn − x0 = b− a.

The norm of a partition P is
‖P‖ = max{|IP

k | : 1 ≤ k ≤ n}.
In other words, the norm of P is just the length of the longest subinterval determined
by P. If |Ik| = ‖P‖ for every Ik, then P is called a regular partition.

Suppose P, Q ∈ part ([a, b]). If P ⊂ Q, then Q is called a refinement of P. When
this happens, we write P � Q. In this case, it’s easy to see that P � Q implies

x1

a b

x0 x2 x3 x4 x5

I1 I2 I3 I4 I5

Figure 8.1. The generic partition with five subintervals.
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8-2 CHAPTER 8. INTEGRATION

‖P‖ ≥ ‖Q‖. It also follows at once from the definitions that P ∪ Q ∈ part ([a, b])
with P� P∪Q and Q� P∪Q. The partition P∪Q is called the common refinement
of P and Q.

2. Riemann Sums

Let f : [a, b] → R and P ∈ part ([a, b]). Choose x∗k ∈ Ik for each k. The set
{x∗k : 1 ≤ k ≤ n} is called a selection from P. The expression

R ( f , P, x∗k ) =
n

∑
k=1

f (x∗k )|Ik|

is the Riemann sum for f with respect to the partition P and selection x∗k . The
Riemann sum is the usual first step toward integration in a calculus course and can
be visualized as the sum of the areas of rectangles with height f (x∗k ) and width |Ik|
— as long as the rectangles are allowed to have negative area when f (x∗k ) < 0. (See
Figure 8.2.)

Notice that given a particular function f and partition P, there are an uncount-
ably infinite number of different possible Riemann sums, depending on the selection
x∗k . This sometimes makes working with Riemann sums quite complicated.

Example 8.1. Suppose f : [a, b] → R is the constant function f (x) = c. If
P ∈ part ([a, b]) and {x∗k : 1 ≤ k ≤ n} is any selection from P, then

R ( f , P, x∗k ) =
n

∑
k=1

f (x∗k )|Ik| = c
n

∑
k=1
|Ik| = c(b− a).

Example 8.2. Suppose f (x) = x on [a, b]. Choose any P ∈ part ([a, b]) where
‖P‖ < 2(b− a)/n. (Convince yourself this is always possible.1) Make two specific

1This is with the generic partition

a bx1 x2
x3

x4x0

x⇤
1 x⇤

2 x⇤
3 x⇤

4

y = f(x)

Figure 8.2. The Riemann sumR ( f , P, x∗k
) is the sum of the areas of the

rectangles in this figure. Notice the right-most rectangle has negative area
because f (x∗4) < 0.
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selections l∗k = xk−1 and r∗k = xk. If x∗k is any other selection from P, then l∗k ≤ x∗k ≤
r∗k and the fact that f is increasing on [a, b] gives

R ( f , P, l∗k ) ≤ R ( f , P, x∗k ) ≤ R ( f , P, r∗k ) .

With this in mind, consider the following calculation.

R ( f , P, r∗k )−R ( f , P, l∗k ) =
n

∑
k=1

(r∗k − l∗k )|Ik|(8.1)

=
n

∑
k=1

(xk − xk−1)|Ik|

=
n

∑
k=1
|Ik|2

≤
n

∑
k=1
‖P‖2

= n‖P‖2

<
4(b− a)2

n

This shows that if a partition is chosen with a small enough norm, all the Riemann
sums for f over that partition will be close to each other.

In the special case when P is a regular partition, |Ik| = (b − a)/n, rk = a +
k(b− a)/n and

R ( f , P, r∗k ) =
n

∑
k=1

rk|Ik|

=
n

∑
k=1

(
a +

k(b− a)
n

)
b− a

n

=
b− a

n

(
na +

b− a
n

n

∑
k=1

k

)

=
b− a

n

(
na +

b− a
n

n(n + 1)
2

)
=

b− a
2

(
a

n− 1
n

+ b
n + 1

n

)
.

In the limit as n→ ∞, this becomes the familiar formula (b2− a2)/2, for the integral
of f (x) = x over [a, b].

Definition 8.1. The function f is Riemann integrable on [a, b], if there exists a
numberR ( f ) such that for all ε > 0 there is a δ > 0 so thatwhenever P ∈ part ([a, b])
with ‖P‖ < δ, then

|R ( f )−R ( f , P, x∗k ) | < ε

for any selection x∗k from P.
Theorem 8.2. If f : [a, b]→ R andR ( f ) exists, thenR ( f ) is unique.
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Proof. Suppose R1( f ) and R2( f ) both satisfy the definition and ε > 0. For
i = 1, 2 choose δi > 0 so that whenever ‖P‖ < δi, then

|Ri( f )−R ( f , P, x∗k ) | < ε/2,

as in the definition above. If P ∈ part ([a, b]) so that ‖P‖ < δ1 ∧ δ2, then
|R1( f )−R2( f )| ≤ |R1( f )−R ( f , P, x∗k ) |+ |R2( f )−R ( f , P, x∗k ) | < ε

and it followsR1( f ) = R2( f ). �

Theorem 8.3. If f : [a, b]→ R andR ( f ) exists, then f is bounded.

Proof. Left as Exercise 8.2. �

3. Darboux Integration

As mentioned above, a difficulty with handling Riemann sums is there are so
many different ways to choose partitions and selections that working with them
is unwieldy. One way to resolve this problem was shown in Example 8.2, where it
was easy to find largest and smallest Riemann sums associated with each partition.
However, that’s not always a straightforward calculation, so to use that idea, a little
more care must be taken.

Definition 8.4. Let f : [a, b]→ R be bounded and P ∈ part ([a, b]). For each Ik
determined by P, let

Mk = lub { f (x) : x ∈ Ik} and mk = glb { f (x) : x ∈ Ik}.
The upper and lower Darboux sums for f on [a, b] are

D ( f , P) =
n

∑
k=1

Mk|Ik| and D ( f , P) =
n

∑
k=1

mk|Ik|.

The following theorem is the fundamental relationship between Darboux sums.
Pay careful attention because it’s the linchpin holding everything together!

Theorem 8.5. If f : [a, b] → R is bounded and P, Q ∈ part ([a, b]) with P � Q,
then

D ( f , P) ≤ D ( f , Q) ≤ D ( f , Q) ≤ D ( f , P) .

Proof. Let P be the generic partition and let Q = P∪{x}, where x ∈ (xk0−1, xx0)
for some k0. Clearly, P� Q. Let

Ml = lub { f (x) : x ∈ [xk0−1, x]}
ml = glb { f (x) : x ∈ [xk0−1, x]}
Mr = lub { f (x) : x ∈ [x, xk0 ]}
mr = glb { f (x) : x ∈ [x, xk0 ]}

Then
mk0 ≤ ml ≤ Ml ≤ Mk0 and mk0 ≤ mr ≤ Mr ≤ Mk0
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so that
mk0 |Ik0 | = mk0

(
|[xk0−1, x]|+ |[x, xk0 ]|

)
≤ ml |[xk0−1, x]|+ mr|[x, xk0 ]|
≤ Ml |[xk0−1, x]|+ Mr|[x, xk0 ]|
≤ Mk0 |[xk0−1, x]|+ Mk0 |[x, xk0 ]|
= Mk0 |Ik0 |.

This implies

D ( f , P) =
n

∑
k=1

mk|Ik|

= ∑
k 6=k0

mk|Ik|+ mk0 |Ik0 |

≤ ∑
k 6=k0

mk|Ik|+ ml |[xk0−1, x]|+ mr|[x, xk0 ]|

= D ( f , Q)

≤ D ( f , Q)

= ∑
k 6=k0

Mk|Ik|+ Ml |[xk0−1, x]|+ Mr|[x, xk0 ]|

≤
n

∑
k=1

Mk|Ik|

= D ( f , P)

The argument given above shows that the theorem holds if Q has one more point
than P. Using induction, this same technique also shows the theorem holds when
Q has an arbitrarily larger number of points than P. �

The main lesson to be learned from Theorem 8.5 is that refining a partition
causes the lower Darboux sum to increase and the upper Darboux sum to decrease.
Moreover, if P, Q ∈ part ([a, b]) and f : [a, b]→ [−B, B], then,
−B(b− a) ≤ D ( f , P) ≤ D ( f , P ∪Q) ≤ D ( f , P ∪Q) ≤ D ( f , Q) ≤ B(b− a).

Therefore every Darboux lower sum is less than or equal to every Darboux upper sum.
Consider the following definition with this in mind.

Definition 8.6. The upper and lower Darboux integrals of a bounded function
f : [a, b]→ R are

D ( f ) = glb {D ( f , P) : P ∈ part ([a, b])}
and

D ( f ) = lub {D ( f , P) : P ∈ part ([a, b])},
respectively.

As a consequence of the observations preceding the definition, it follows that
D ( f ) ≥ D ( f ) always. In the case D ( f ) = D ( f ), the function is said to be Darboux
integrable on [a, b], and the common value is written D ( f ).

The following is obvious.
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Corollary 8.7. A bounded function f : [a, b]→ R is Darboux integrable if and only
if for all ε > 0 there is a P ∈ part ([a, b]) such that D ( f , P)−D ( f , P) < ε.

Which functions are Darboux integrable? The following corollary gives a first
approximation to an answer.

Corollary 8.8. If f ∈ C([a, b]), then D ( f ) exists.

Proof. Let ε > 0. According to Corollary 6.31, f is uniformly continuous, so
there is a δ > 0 such that whenever x, y ∈ [a, b] with |x − y| < δ, then | f (x) −
f (y)| < ε/(b− a). Let P ∈ part ([a, b]) with ‖P‖ < δ. By Corollary 6.23, in each
subinterval Ii determined by P, there are x∗i , y∗i ∈ Ii such that

f (x∗i ) = lub { f (x) : x ∈ Ii} and f (y∗i ) = glb { f (x) : x ∈ Ii}.
Since |x∗i − y∗i | ≤ |Ii| < δ, we see 0 ≤ f (x∗i )− f (y∗i ) < ε/(b− a), for 1 ≤ i ≤ n.
Then

D ( f )−D ( f ) ≤ D ( f , P)−D ( f , P)

=
n

∑
i=1

f (x∗i )|Ii| −
n

∑
i=1

f (y∗i )|Ii|

=
n

∑
i=1

( f (x∗i )− f (y∗i ))|Ii|

<
ε

b− a

n

∑
i=1
|Ii|

= ε

and the corollary follows. �

This corollary should not be construed to imply that only continuous func-
tions are Darboux integrable. In fact, the set of integrable functions is much more
extensive than only the continuous functions. Consider the following example.

Example 8.3. Let f be the salt and pepper function of Example 6.15. It was
shown that C( f ) = Qc. We claim that f is Darboux integrable over any compact
interval [a, b].

To see this, let ε > 0 and N ∈N so that 1/N < ε/2(b− a). Let
S = {qki

: 1 ≤ i ≤ m} = {q1, . . . , qN} ∩ [a, b]

and choose P ∈ part ([a, b]) such that ‖P‖ < ε/2m. Then

D ( f , P) =
n

∑
`=1

lub { f (x) : x ∈ I`}|I`|

= ∑
S∩I`=∅

lub { f (x) : x ∈ I`}|I`|+ ∑
qki
∈I`

lub { f (x) : x ∈ I`}|I`|

≤ 1
N
(b− a) + m‖P‖

<
ε

2(b− a)
(b− a) + m

ε

2m
= ε.
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Since f (x) = 0 whenever x ∈ Qc, it follows that D ( f , P) = 0. Therefore, D ( f ) =
D ( f ) = 0 and D ( f ) = 0.

4. The Integral

There are now two different definitions for the integral. It would be embar-
rassing, if they gave different answers. The following theorem shows they’re really
different sides of the same coin.2

Theorem 8.9. Let f : [a, b]→ R.
(a) R ( f ) exists iff D ( f ) exists.
(b) IfR ( f ) exists, thenR ( f ) = D ( f ).

Proof. (a) (=⇒) SupposeR ( f ) exists and ε > 0. By Theorem 8.3, f is bounded.
Choose P ∈ part ([a, b]) such that

|R ( f )−R ( f , P, x∗k ) | < ε/4

for all selections x∗k from P. From each Ik, choose xk and xk so that
Mk − f (xk) <

ε

4(b− a)
and f (xk)−mk <

ε

4(b− a)
.

Then

D ( f , P)−R ( f , P, xk) =
n

∑
k=1

Mk|Ik| −
n

∑
k=1

f (xk)|Ik|

=
n

∑
k=1

(Mk − f (xk))|Ik|

<
ε

4(b− a)
(b− a) =

ε

4
.

In the same way,
R ( f , P, xk)−D ( f , P) < ε/4.

Therefore,
D ( f )−D ( f )

= glb {D ( f , Q) : Q ∈ part ([a, b])} − lub {D ( f , Q) : Q ∈ part ([a, b])}
≤ D ( f , P)−D ( f , P)

<
(
R ( f , P, xk) +

ε

4

)
−
(
R ( f , P, xk)−

ε

4

)
≤ |R ( f , P, xk)−R ( f , P, xk)|+

ε

2

< |R ( f , P, xk)−R ( f ) |+ |R ( f )−R ( f , P, xk) |+
ε

2
< ε

Since ε is an arbitrary positive number, this shows D ( f ) exists and equals R ( f ),
which is part (b) of the theorem.

2Theorem 8.9 shows that the two integrals presented here are the same. But, there are many other
integrals, and not all of them are equivalent. For example, the well-known Lebesgue integral includes
all Riemann integrable functions, but not all Lebesgue integrable functions are Riemann integrable. The
Denjoy integral is another extension of the Riemann integral which is not the same as the Lebesgue
integral. For more discussion of this, see [13].
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(⇐=) Suppose f : [a, b] → [−B, B], D ( f ) exists and ε > 0. Since D ( f ) exists,
there is a P1 ∈ part ([a, b]), with points a = p0 < · · · < pm = b, such that

D ( f , P1)−D ( f , P1) <
ε

2
.

Set δ = ε/8mB. Choose P ∈ part ([a, b]) with ‖P‖ < δ and let P2 = P ∪ P1. Since
P1 � P2, according to Theorem 8.5,

D ( f , P2)−D ( f , P2) <
ε

2
.

Thinking of P as the generic partition, the interiors of its intervals (xi−1, xi)may
or may not contain points of P1. For 1 ≤ i ≤ n, let

Qi = {xi−1, xi} ∪ (P1 ∩ (xi−1, xi)) ∈ part (Ii) .

If P1 ∩ (xi−1, xi) = ∅, then D ( f , P) and D ( f , P2) have the term Mi|Ii| in com-
mon because Qi = {xi−1, xi}.

Otherwise, P1 ∩ (xi−1, xi) 6= ∅ and
D ( f , Qi) ≥ −B‖P2‖ ≥ −B‖P‖ > −Bδ.

Since P1 has m− 1 points in (a, b), there are at most m− 1 of the Qi not contained
in P.

This leads to the estimate

D ( f , P)−D ( f , P2) = D ( f , P)−
n

∑
i=1
D ( f , Qi) < (m− 1)2Bδ <

ε

4
.

In the same way,

D ( f , P2)−D ( f , P) < (m− 1)2Bδ <
ε

4
.

Putting these estimates together yields

D ( f , P)−D ( f , P) =(
D ( f , P)−D ( f , P2)

)
+
(
D ( f , P2)−D ( f , P2)

)
+ (D ( f , P2)−D ( f , P))

<
ε

4
+

ε

2
+

ε

4
= ε

This shows that, given ε > 0, there is a δ > 0 so that ‖P‖ < δ implies
D ( f , P)−D ( f , P) < ε.

Since
D ( f , P) ≤ D ( f ) ≤ D ( f , P) and D ( f , P) ≤ R ( f , P, x∗i ) ≤ D ( f , P)

for every selection x∗i from P, it follows that |R ( f , P, x∗i
)
−D ( f ) | < ε when ‖P‖ <

δ. We conclude f is Riemann integrable andR ( f ) = D ( f ). �

From Theorem 8.9, we are justified in using a single notation for bothR ( f ) and
D ( f ). The obvious choice is the familiar

∫ b
a f (x) dx, or, more simply,

∫ b
a f .

When proving statements about the integral, it’s convenient to switch back and
forth between the Riemann and Darboux formulations. Given f : [a, b] → R the
following three facts summarize much of what we know.
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(1)
∫ b

a f exists iff for all ε > 0 there is a δ > 0 and an α ∈ R such that
whenever P ∈ part ([a, b])with ‖P‖ < δ and x∗i is a selection from P, then∣∣R ( f , P, x∗i

)
− α
∣∣ < ε. In this case

∫ b
a f = α.

(2)
∫ b

a f exists iff ∀ε > 0∃P ∈ part ([a, b])
(
D ( f , P)−D ( f , P) < ε

)
(3) For any P ∈ part ([a, b]) and selection x∗i from P,

D ( f , P) ≤ R ( f , P, x∗i ) ≤ D ( f , P) .

5. The Cauchy Criterion

We now face a conundrum. In order to show that
∫ b

a f exists, we must know
its value. It’s often very hard to determine the value of an integral, even if the
integral exists. We’ve faced this same situation before with sequences. The basic
definition of convergence for a sequence, Definition 3.2, requires the limit of the
sequence be known. The path out of the dilemma in the case of sequences was the
Cauchy criterion for convergence, Theorem 3.20. The solution is the same here, with
a Cauchy criterion for the existence of the integral.

Theorem 8.10 (Cauchy Criterion). Let f : [a, b] → R. The following statements
are equivalent.

(a)
∫ b

a f exists.
(b) Given ε > 0 there exists P ∈ part ([a, b]) such that if P� Q1 and P� Q2,
then

|R ( f , Q1, x∗k )−R ( f , Q2, y∗k )| < ε(8.2)
for any selections from Q1 and Q2.

Proof. (=⇒) Assume
∫ b

a f exists. Let ε > 0. According to Definition 8.1,
there is a δ > 0 such that whenever P ∈ part ([a, b]) with ‖P‖ < δ, then |

∫ b
a f −

R
(

f , P, x∗i
)
| < ε/2 for every selection. If P � Q1 and P � Q2, then ‖Q1‖ < δ,

‖Q2‖ < δ and a simple application of the triangle inequality shows

|R ( f , Q1, x∗k )−R ( f , Q2, y∗k )|

≤
∣∣∣∣R ( f , Q1, x∗k )−

∫ b

a
f
∣∣∣∣+ ∣∣∣∣∫ b

a
f −R ( f , Q2, y∗k )

∣∣∣∣ < ε.

(⇐=) Let ε > 0 and choose P ∈ part ([a, b]) satisfying (b) with ε/2 in place of
ε.

We first claim that f is bounded. To see this, suppose it is not. Then it must be
unbounded on an interval Ik0 determined by P. Fix a selection {x∗k ∈ Ik : 1 ≤ k ≤ n}
and let y∗k = x∗k for k 6= k0 with y∗k0

any element of Ik0 . Then
ε

2
> |R ( f , P, x∗k )−R ( f , P, y∗k )| =

∣∣∣ f (x∗k0
)− f (y∗k0

)
∣∣∣ ∣∣Ik0

∣∣ .

But, the right-hand side can be made bigger than ε/2 with an appropriate choice of
y∗k0

because of the assumption that f is unbounded on Ik0 . This contradiction forces
the conclusion that f is bounded.
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Thinking of P as the generic partition and using mk and Mk as usual with
Darboux sums, for each k, choose x∗k , y∗k ∈ Ik such that

Mk − f (x∗k ) <
ε

4n|Ik|
and f (y∗k )−mk <

ε

4n|Ik|
.

With these selections,
D ( f , P)−D ( f , P)

= D ( f , P)−R ( f , P, x∗k ) +R ( f , P, x∗k )−R ( f , P, y∗k ) +R ( f , P, y∗k )−D ( f , P)

=
n

∑
k=1

(Mk − f (x∗k ))|Ik|+R ( f , P, x∗k )−R ( f , P, y∗k ) +
n

∑
k=1

( f (y∗k )−mk)|Ik|

≤
n

∑
k=1
|Mk − f (x∗k )| |Ik|+ |R ( f , P, x∗k )−R ( f , P, y∗k )|+

∣∣∣∣∣ n

∑
k=1

( f (y∗k )−mk)|Ik|
∣∣∣∣∣

<
n

∑
k=1

ε

4n|Ik|
|Ik|+ |R ( f , P, x∗k )−R ( f , P, y∗k )|+

n

∑
k=1

ε

4n|Ik|
|Ik|

<
ε

4
+

ε

2
+

ε

4
< ε

Corollary 8.7 implies D ( f ) exists and Theorem 8.9 finishes the proof. �

Corollary 8.11. If
∫ b

a f exists and [c, d] ⊂ [a, b], then
∫ d

c f exists.

Proof. Let P0 = {a, b, c, d} ∈ part ([a, b]) and ε > 0. Using Theorem 8.10,
choose a partition Pε such that P0 � Pε and whenever Pε � P and Pε � P′, then

|R ( f , P, x∗k )−R
(

f , P′, y∗k
)
| < ε.

Let P1
ε = Pε ∩ [a, c], P2

ε = Pε ∩ [c, d] and P3
ε = Pε ∩ [d, b]. Suppose P2

ε � Q1 and
P2

ε � Q2. Then P1
ε ∪Qi ∪ P3

ε for i = 1, 2 are refinements of Pε and
|R ( f , Q1, x∗k )−R ( f , Q2, y∗k ) | =

|R
(

f , P1
ε ∪Q1 ∪ P3

ε , x∗k
)
−R

(
f , P1

ε ∪Q2 ∪ P3
ε , y∗k

)
| < ε

for any selections. An application of Theorem 8.10 shows
∫ b

a f exists. �

6. Properties of the Integral

Theorem 8.12. If
∫ b

a f and
∫ b

a g both exist, then

(a) If α, β ∈ R, then
∫ b

a (α f + βg) exists and∫ b

a
(α f + βg) = α

∫ b

a
f + β

∫ b

a
g.

(b)
∫ b

a f g exists.
(c)

∫ b
a | f | exists.

Proof. (a) Let ε > 0. If α = 0, in light of Example 8.1, it is clear α f is integrable.
So, assume α 6= 0, and choose a partition Pf ∈ part ([a, b]) such that whenever
Pf � P, then ∣∣∣∣R ( f , P, x∗k )−

∫ b

a
f
∣∣∣∣ < ε

2|α| .
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Then
∣∣∣∣R (α f , P, x∗k )− α

∫ b

a
f
∣∣∣∣ =

∣∣∣∣∣ n

∑
k=1

α f (x∗k )|Ik| − α
∫ b

a
f

∣∣∣∣∣
= |α|

∣∣∣∣∣ n

∑
k=1

f (x∗k )|Ik| −
∫ b

a
f

∣∣∣∣∣
= |α|

∣∣∣∣R ( f , P, x∗k )−
∫ b

a
f
∣∣∣∣

< |α| ε

2|α|
=

ε

2
.

This shows α f is integrable and
∫ b

a α f = α
∫ b

a f .
Assuming β 6= 0, in the same way, we can choose a Pg ∈ part ([a, b]) such that

when Pg � P, then ∣∣∣∣R (g, P, x∗k )−
∫ b

a
g
∣∣∣∣ < ε

2|β| .

Let Pε = Pf ∪ Pg be the common refinement of Pf and Pg, and suppose Pε � P.
Then

|R (α f + βg, P, x∗k )−
(

α
∫ b

a
f + β

∫ b

a
g
)
|

≤ |α|
∣∣∣∣R ( f , P, x∗k )−

∫ b

a
f
∣∣∣∣+ |β| ∣∣∣∣R (g, P, x∗k )−

∫ b

a
g
∣∣∣∣ < ε

for any selection. This shows α f + βg is integrable and
∫ b

a (α f + βg) = α
∫ b

a f +

β
∫ b

a g.
(b) Claim: If

∫ b
a h exists, then so does

∫ b
a h2

To see this, suppose first that 0 ≤ h(x) ≤ M on [a, b]. If M = 0, the claim is
trivially true, so suppose M > 0. Let ε > 0 and choose P ∈ part ([a, b]) such that

D (h, P)−D (h, P) ≤ ε

2M
.

For each 1 ≤ k ≤ n, let

mk = glb {h(x) : x ∈ Ik} ≤ lub {h(x) : x ∈ Ik} = Mk.

Since h ≥ 0,

m2
k = glb {h(x)2 : x ∈ Ik} ≤ lub {h(x)2 : x ∈ Ik} = M2

k .
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Using this, we see

D
(

h2, P
)
−D

(
h2, P

)
=

n

∑
k=1

(M2
k −m2

k)|Ik|

=
n

∑
k=1

(Mk + mk)(Mk −mk)|Ik|

≤ 2M

(
n

∑
k=1

(Mk −mk)|Ik|
)

= 2M
(
D (h, P)−D (h, P)

)
< ε.

Therefore, h2 is integrable when h ≥ 0.
If h is not nonnegative, let m = glb {h(x) : a ≤ x ≤ b}. Then h−m ≥ 0, and

h−m is integrable by (a). From the claim, (h−m)2 is integrable. Since
h2 = (h−m)2 + 2mh−m2,

it follows from (a) that h2 is integrable.
Finally, f g = 1

4 (( f + g)2 − ( f − g)2) is integrable by the claim and (a).
(c) Claim: If h ≥ 0 is integrable, then so is

√
h.

To see this, let ε > 0 and choose P ∈ part ([a, b]) such that
D (h, P)−D (h, P) < ε2.

For each 1 ≤ k ≤ n, let

mk = glb {
√

h(x) : x ∈ Ik} ≤ lub {
√

h(x) : x ∈ Ik} = Mk.

and define
A = {k : Mk −mk < ε} and B = {k : Mk −mk ≥ ε}.

Then
(8.3) ∑

k∈A
(Mk −mk)|Ik| < ε(b− a).

Using the fact that mk ≥ 0, we see that Mk −mk ≤ Mk + mk, and

∑
k∈B

(Mk −mk)|Ik| ≤
1
ε ∑

k∈B
(Mk + mk)(Mk −mk)|Ik|(8.4)

=
1
ε ∑

k∈B
(M2

k −m2
k)|Ik|

≤ 1
ε

(
D (h, P)−D (h, P)

)
< ε

Combining (8.3) and (8.4), it follows that

D
(√

h, P
)
−D

(√
h, P

)
< ε(b− a) + ε = ε((b− a) + 1)

can be made arbitrarily small. Therefore,
√

h is integrable.
Since | f | =

√
f 2 an application of (b) and the claim suffice to prove (c). �
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Theorem 8.13. If
∫ b

a f exists, then

(a) If f ≥ 0 on [a, b], then
∫ b

a f ≥ 0.
(b) |

∫ b
a f | ≤

∫ b
a | f |

(c) If a ≤ c ≤ b, then
∫ b

a f =
∫ c

a f +
∫ b

c f .

Proof. (a) Since all the Riemann sums are nonnegative, this follows at once.
(b) It is always true that | f | ± f ≥ 0 and | f | − f ≥ 0, so by (a),

∫ b
a (| f |+ f ) ≥ 0

and
∫ b

a (| f | − f ) ≥ 0. Rearranging these shows −
∫ b

a f ≤
∫ b

a | f | and
∫ b

a f ≤
∫ b

a | f |.
Therefore, |

∫ b
a f | ≤

∫ b
a | f |, which is (b).

(c) By Corollary 8.11, all the integrals exist. Let ε > 0 and choose Pl ∈
part ([a, c]) and Pr ∈ part ([c, b]) such that whenever Pl � Ql and Pr � Qr, then,∣∣∣∣R ( f , Ql , x∗k )−

∫ c

a
f
∣∣∣∣ < ε

2
and

∣∣∣∣R ( f , Qr, y∗k )−
∫ b

c
f
∣∣∣∣ < ε

2
.

If P = Pl ∪ Pr and Q = Ql ∪Qr, then P, Q ∈ part ([a, b]) and P � Q. The triangle
inequality gives ∣∣∣∣R ( f , Q, x∗k )−

∫ c

a
f −

∫ b

c
f
∣∣∣∣ < ε.

Since every refinement of P has the form Ql ∪Qr, part (c) follows. �

There’s some notational trickery that can be played here. If
∫ b

a f exists, then we
define

∫ a
b f = −

∫ b
a f . With this convention, it can be shown∫ b

a
f =

∫ c

a
f +

∫ b

c
f(8.5)

no matter the order of a, b and c, as long as at least two of the integrals exist. (See
Problem 8.6.)

7. The Fundamental Theorem of Calculus

Many students leave their first calculus course with the impression that integra-
tion and differentiation are inverse operations. While there is a lot of truth to this,
the situation is a little more complicated. Presented below are two different versions
of the Fundamental Theorem of Calculus with slightly different viewpoints of the
relation between the two operations.

Theorem 8.14 (Fundamental Theorem of Calculus 1). Suppose f , F : [a, b]→ R

satisfy

(a)
∫ b

a f exists
(b) F ∈ C([a, b]) ∩ D((a, b))
(c) F′(x) = f (x), ∀x ∈ (a, b)

Then
∫ b

a f = F(b)− F(a).

Proof. Let ε > 0. According to (a) and Definition 8.1, P ∈ part ([a, b]) can be
chosen such that ∣∣∣∣R ( f , P, x∗k )−

∫ b

a
f
∣∣∣∣ < ε.
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for every selection from P. On each interval [xk−1, xk] determined by P, the func-
tion F satisfies the conditions of the Mean Value Theorem. (See Corollary 7.13.)
Therefore, for each k, there is an ck ∈ (xk−1, xk) such that

F(xk)− F(xk−1) = F′(ck)(xk − xk−1) = f (ck)|Ik|.
So, ∣∣∣∣∫ b

a
f − (F(b)− F(a))

∣∣∣∣ =
∣∣∣∣∣
∫ b

a
f −

n

∑
k=1

(F(xk)− F(xk−1)

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a
f −

n

∑
k=1

f (ck)|Ik|
∣∣∣∣∣

=

∣∣∣∣∫ b

a
f −R ( f , P, ck)

∣∣∣∣
< ε

and the theorem follows. �

Example 8.4. The Fundamental Theorem of Calculus can be used to give a
different form of Taylor’s theorem. As in Theorem 7.18, suppose f and its first n + 1
derivatives exist on [a, b] and

∫ b
a f (n+1) exists. There is a function R f (n, x, t) such

that
R f (n, x, t) = f (x)−

n

∑
k=0

f (k)(t)
k!

(x− t)k

for a ≤ t ≤ b. Differentiating both sides of the equation with respect to t, note that
the right-hand side telescopes, so the result is

d
dt

R f (n, x, t) = − (x− t)n

n!
f (n+1)(t).

Using Theorem 8.14 and the fact that R f (n, x, x) = 0 gives
R f (n, x, c) = R f (n, x, c)− R f (n, x, x)

=
∫ c

x

d
dt

R f (n, x, t) dt

=
∫ x

c

(x− t)n

n!
f (n+1)(t) dt,

which is the integral form of the remainder from Taylor’s formula.
Corollary 8.15 (Integration by Parts). If f , g ∈ C([a, b]) ∩ D((a, b)) and both

f ′g and f g′ are integrable on [a, b], then∫ b

a
f g′ +

∫ b

a
f ′g = f (b)g(b)− f (a)g(a).

Proof. Use Theorems 7.3(c) and 8.14. �

Suppose
∫ b

a f exists. By Corollary 8.11, f is integrable on every interval [a, x],
for x ∈ [a, b]. This allows us to define a function F : [a, b] → R as F(x) =

∫ x
a f ,

called the indefinite integral of f on [a, b].
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Theorem 8.16 (Fundamental Theorem of Calculus 2). Let f be integrable on [a, b]
and F be the indefinite integral of f . Then F ∈ C([a, b]) and F′(x) = f (x) whenever
x ∈ C( f ) ∩ (a, b).

Proof. To show F ∈ C([a, b]), let x0 ∈ [a, b] and ε > 0. Since
∫ b

a f exists,
there is an M > lub {| f (x)| : a ≤ x ≤ b}. Choose 0 < δ < ε/M and x ∈
(x0 − δ, x0 + δ) ∩ [a, b]. Then

|F(x)− F(x0)| =
∣∣∣∣∫ x

x0

f
∣∣∣∣ ≤ M|x− x0| < Mδ < ε

and x0 ∈ C(F).
Let x0 ∈ C( f )∩ (a, b) and ε > 0. There is a δ > 0 such that x ∈ (x0− δ, x0 + δ) ⊂

(a, b) implies | f (x)− f (x0)| < ε. If 0 < h < δ, then∣∣∣∣ F(x0 + h)− F(x0)

h
− f (x0)

∣∣∣∣ = ∣∣∣∣1h
∫ x0+h

x0

f − f (x0)

∣∣∣∣
=

∣∣∣∣1h
∫ x0+h

x0

( f (t)− f (x0)) dt
∣∣∣∣

≤ 1
h

∫ x0+h

x0

| f (t)− f (x0)| dt

<
1
h

∫ x0+h

x0

ε dt

= ε.

This shows F′+(x0) = f (x0). It can be shown in the same way that F′−(x0) = f (x0).
Therefore F′(x0) = f (x0). �

The right picture makes Theorem 8.16 almost obvious. Consider Figure 8.3.
Suppose x ∈ C( f ) and ε > 0. There is a δ > 0 such that

f ((x− d, x + d) ∩ [a, b]) ⊂ ( f (x)− ε/2, f (x) + ε/2).

Let
m = glb { f y : |x− y| < δ} ≤ lub { f y : |x− y| < δ} = M.

Apparently M−m < ε and for 0 < h < δ,

mh ≤
∫ x+h

x
f ≤ Mh =⇒ m ≤ F(x + h)− F(x)

h
≤ M.

Since M−m→ 0 as h→ 0, a “squeezing” argument shows

lim
h↓0

F(x + h)− F(x)
h

= f (x).

A similar argument establishes the limit from the left and F′(x) = f (x).
Example 8.5. The usual definition of the natural logarithm function depends

on the Fundamental Theorem of Calculus. Recall for x > 0,

ln(x) =
∫ x

1

1
t

dt.
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x x + h

M

m

Figure 8.3. This figure illustrates a “box” argument showing
lim
h→0

1
h

∫ x+h

x
f = f (x).

Since f (t) = 1/t is continuous on (0, ∞), Theorem 8.16 shows
d

dx
ln(x) =

1
x

.

It should also be noted that the notational convention mentioned above equation
(8.5) is used to get ln(x) < 0 when 0 < x < 1.

It’s easy to read too much into the Fundamental Theorem of Calculus. We are
tempted to start thinking of integration and differentiation as opposites of each
other. But, this is far from the truth. The operations of integration and antidifferen-
tiation are different operations, that happen to sometimes be tied together by the
Fundamental Theorem of Calculus. Consider the following examples.

Example 8.6. Let

f (x) =

{
|x|/x, x 6= 0
0, x = 0

It’s easy to prove that f is integrable over any compact interval, and that F(x) =∫ x
−1 f = |x| − 1 is an indefinite integral of f . But, F is not differentiable at x = 0 and

f is not a derivative, according to Theorem 7.17.
Example 8.7. Let

f (x) =

{
x2 sin 1

x2 , x 6= 0
0, x = 0

It’s straightforward to show that f is differentiable and

f ′(x) =

{
2x sin 1

x2 − 2
x cos 1

x2 , x 6= 0
0, x = 0

Since f ′ is unbounded near x = 0, it follows from Theorem 8.3 that f ′ is not
integrable over any interval containing 0.
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Example 8.8. Let f be the salt and pepper function of Example 6.15. It was
shown in Example 8.3 that

∫ b
a f = 0 on any interval [a, b]. If F(x) =

∫ x
0 f , then

F(x) = 0 for all x and F′ = f only on C( f ) = Qc. In particular, F′ and f disagree
on a dense subset of [a, b].

8. Change of Variables

Integration by substitution works side-by-side with the Fundamental Theorem
of Calculus in the integration section of any calculus course. Most of the time calcu-
lus books require all functions in sight to be continuous. In that case, a substitution
theorem is an easy consequence of the Fundamental Theorem and the Chain Rule.
(See Exercise 8.16.) More general statements are true, but they are harder to prove.

Theorem 8.17. If f and g are functions such that
(a) g is strictly monotone on [a, b],
(b) g is continuous on [a, b],
(c) g is differentiable on (a, b), and
(d) both

∫ g(b)
g(a) f and

∫ b
a ( f ◦ g)g′ exist,

then ∫ g(b)

g(a)
f =

∫ b

a
( f ◦ g)g′.(8.6)

Proof. Suppositions (a) and (b) show g is a bijection from [a, b] to an inter-
val [c, d]. The correspondence between the endpoints depends on whether g is
increasing or decreasing.

Let ε > 0.
From(d) andDefinition 8.1, there is a δ1 > 0 such thatwhenever P ∈ part ([a, b])

with ‖P‖ < δ1, then ∣∣∣∣R (( f ◦ g)g′, P, x∗i
)
−
∫ b

a
( f ◦ g)g′

∣∣∣∣ < ε

2
(8.7)

for any selection from P. Choose P1 ∈ part ([a, b]) such that ‖P1‖ < δ1.
Using the same argument, there is a δ2 > 0 such that whenever Q ∈ part ([c, d])

with ‖Q‖ < δ2, then ∣∣∣∣R ( f , Q, x∗i )−
∫ d

c
f
∣∣∣∣ < ε

2
(8.8)

for any selection from Q. As above, choose Q1 ∈ part ([c, d]) such that ‖Q1‖ < δ2.
Setting P2 = P1 ∪ {g−1(x) : x ∈ Q1} and Q2 = Q1 ∪ {g(x) : x ∈ P1}, it is

apparent that P1 � P2, Q1 � Q2, ‖P2‖ ≤ ‖P1‖ < δ1, ‖Q2‖ ≤ ‖Q1‖ < δ2 and g is a
bijection between P2 and Q2. From (8.7) and (8.8), it follows that∣∣∣∣∫ b

a
( f ◦ g)g′ −R

(
( f ◦ g)g′, P2, x∗i

)∣∣∣∣ < ε

2
and(8.9) ∣∣∣∣∫ d

c
f −R ( f , Q2, y∗i )

∣∣∣∣ < ε

2

for any selections from P2 and Q2.
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First, assume g is strictly increasing. Since g is a bijection between [a, b] and
[c, d], it’s clear P2 and Q2 have the same number of points. Label the points of P2 as
a = x1 < x2 < · · · < xn = b and those of Q2 as c = y0 < y1 < · · · < yn = d.

From (b), (c) and the Mean Value Theorem, for each i, choose ci ∈ (xi−1, xi)
such that

g(xi)− g(xi−1) = g′(ci)(xi − xi−1).(8.10)

Notice that {ci : 1 ≤ i ≤ n} is a selection from P2. and g(xi) = yi for 0 ≤ i ≤ n and
g(ci) ∈ (yi−1, yi) for 0 < i ≤ n, so g(ci) is a selection from Q2.

∣∣∣∣∫ g(b)

g(a)
f −

∫ b

a
( f ◦ g)g′

∣∣∣∣
=

∣∣∣∣∫ g(b)

g(a)
f −R ( f , Q2, g(ci)) +R ( f , Q2, g(ci))−

∫ b

a
( f ◦ g)g′

∣∣∣∣
≤
∣∣∣∣∫ g(b)

g(a)
f −R ( f , Q2, g(ci))

∣∣∣∣+ ∣∣∣∣R ( f , Q2, g(ci))−
∫ b

a
( f ◦ g)g′

∣∣∣∣
Use the triangle inequality, (8.9) and expand the second Riemann sum.

<
ε

2
+

∣∣∣∣∣ n

∑
i=1

f (g(ci)) (g(xi)− g(xi−1))−
∫ b

a
( f ◦ g)g′

∣∣∣∣∣
Apply the Mean Value Theorem, as in (8.10), and then use (8.9).

=
ε

2
+

∣∣∣∣∣ n

∑
i=1

f (g(ci))g′(ci) (xi − xi−1)−
∫ b

a
( f ◦ g)g′

∣∣∣∣∣
=

ε

2
+

∣∣∣∣R (( f ◦ g)g′, P2, ci
)
−
∫ b

a
( f ◦ g)g′

∣∣∣∣
<

ε

2
+

ε

2
= ε

and (8.6) follows.
Now assume g is strictly decreasing on [a, b]. Labeling yi = g(xi), as above, the

labeling is a little trickier because d = y0 > · · · > yn = c. With this in mind, the
proof is much the same as above, except there’s extra bookkeeping required to keep
track of the signs. From the Mean Value Theorem,

yi − yi−1 = g(xi)− g(xi−1)

= −(g(xi)− g(xi−1))(8.11)
= −g′(ci)(xi − xi−1),
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where ci ∈ (xi−1, xi) is as above. The rest of the proof is much like the case when g
is increasing.

∣∣∣∣∫ g(b)

g(a)
f −

∫ b

a
( f ◦ g)g′

∣∣∣∣
=

∣∣∣∣− ∫ g(a)

g(b)
f +R ( f , Q2, g(ci))−R ( f , Q2, g(ci))−

∫ b

a
( f ◦ g)g′

∣∣∣∣
≤
∣∣∣∣− ∫ g(b)

g(a)
f +R ( f , Q2, g(ci))

∣∣∣∣+ ∣∣∣∣−R ( f , Q2, g(ci))−
∫ b

a
( f ◦ g)g′

∣∣∣∣
Use (8.9), expand the second Riemann sum and apply (8.11).

<
ε

2
+

∣∣∣∣∣− n

∑
i=1

f (g(ci))(yi − yi−1)−
∫ b

a
( f ◦ g)g′

∣∣∣∣∣
=

ε

2
+

∣∣∣∣∣ n

∑
i=1

f (g(ci))g′(ci)(xi+1 − xi)−
∫ b

a
( f ◦ g)|g′|

∣∣∣∣∣
Use (8.9).

=
ε

2
+

∣∣∣∣R (( f ◦ g)g′, P2, ci
)
−
∫ b

a
( f ◦ g)g′

∣∣∣∣
<

ε

2
+

ε

2
= ε

The theorem has been proved. �

Example 8.9. Suppose we want to calculate
∫ 1
−1

√
1− x2 dx. Using the notation

of Theorem 8.17, let f (x) =
√

1− x2, g(x) = sin x and [a, b] = [−π/2, π/2]. In this
case, g is an increasing function. Then (8.6) becomes

∫ 1

−1

√
1− x2 dx =

∫ sin(π/2)

sin(−π/2)

√
1− x2 dx

=
∫ π/2

−π/2

√
1− sin2 x cos x dx

=
∫ π/2

−π/2
cos2 x dx

=
π

2
.
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On the other hand, it can also be done with a decreasing function. If g(x) = cos x
and [a, b] = [0, π], then∫ 1

−1

√
1− x2 dx =

∫ cos 0

cos π

√
1− x2 dx

= −
∫ cos π

cos 0

√
1− x2 dx

= −
∫ π

0

√
1− cos2 x(− sin x) dx

=
∫ π

0

√
1− cos2 x sin x dx

=
∫ π

0
sin2 x dx

=
π

2

9. Integral Mean Value Theorems

Theorem 8.18. Suppose f , g : [a, b]→ R are such that
(a) g(x) ≥ 0 on [a, b],
(b) f is bounded and m ≤ f (x) ≤ M for all x ∈ [a, b], and
(c)

∫ b
a f and

∫ b
a f g both exist.

There is a c ∈ [m, M] such that ∫ b

a
f g = c

∫ b

a
g.

Proof. Obviously,

m
∫ b

a
g ≤

∫ b

a
f g ≤ M

∫ b

a
g.(8.12)

If
∫ b

a g = 0, we’re done. Otherwise, let

c =

∫ b
a f g∫ b
a g

.

Then
∫ b

a f g = c
∫ b

a g and from (8.12), it follows that m ≤ c ≤ M. �

Corollary 8.19. Let f and g be as in Theorem 8.18, but additionally assume f is
continuous. Then there is a c ∈ (a, b) such that∫ b

a
f g = f (c)

∫ b

a
g.

Proof. This follows from Theorem 8.18 and Corollaries 6.23 and 6.26. �

Theorem 8.20. Suppose f , g : [a, b]→ R are such that
(a) g(x) ≥ 0 on [a, b],
(b) f is bounded and m ≤ f (x) ≤ M for all x ∈ [a, b], and
(c)

∫ b
a f and

∫ b
a f g both exist.
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There is a c ∈ [a, b] such that ∫ b

a
f g = m

∫ c

a
g + M

∫ b

c
g.

Proof. For a ≤ x ≤ b let

G(x) = m
∫ x

a
g + M

∫ b

x
g.

By Theorem 8.16, G ∈ C([a, b]) and

glb G ≤ G(b) = m
∫ b

a
g ≤

∫ b

a
f g ≤ M

∫ b

a
g = G(a) ≤ lub G.

Now, apply Corollary 6.26 to find c where G(c) =
∫ b

a f g. �

10. Exercises

8.1. Let f : [a, b]→ R be an unbounded function and P ∈ part ([a, b]). Prove
{R ( f , P, x∗i ) : x∗i is a selection from P}

is an unbounded set.
8.2. If f : [a, b]→ R andR ( f ) exists, then f is bounded.

8.3. Let
f (x) =

{
1, x ∈ Q

0, x /∈ Q
.

(a) Use Definition 8.1 to show f is not integrable on any interval.
(b) Use Definition 8.6 to show f is not integrable on any interval.

8.4. Suppose
∫ b

a f exists, and ε > 0. Prove there is a δ > 0 such that when
[c, d] ⊂ [a, b] with d− c < δ, then

∣∣∣∫ d
c f
∣∣∣ < ε.

8.5. Calculate
∫ 5

2 x2 using the definition of integration.

8.6. If at least two of the integrals exist, then∫ b

a
f =

∫ c

a
f +

∫ b

c
f

no matter the order of a, b and c.

8.7. If α > 0, f : [a, b]→ [α, β] and
∫ b

a f exists, then
∫ b

a 1/ f exists.

8.8. If f : [a, b] → [0, ∞) is continuous and D( f ) = 0, then f (x) = 0 for all
x ∈ [a, b].

8.9. If
∫ b

a f exists, then limx↓a
∫ b

x f =
∫ b

a f .

8.10. If f is monotone on [a, b], then
∫ b

a f exists.
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8.11. (a) Prove that for n ∈N,
n

∑
k=1

1
k + 1

< ln(n + 1) <
n

∑
k=1

1
k

.

(b) Prove that the sequence

γn =
n

∑
k=1

1
k
− ln n

converges.3

8.12. If f and g are integrable on [a, b], then∣∣∣∣∫ b

a
f g
∣∣∣∣ ≤ [(∫ b

a
f 2
)(∫ b

a
g2
)]1/2

.

(Hint: Expand
∫ b

a (x f + g)2 as a quadratic with variable x.)4

8.13. If f : [a, b]→ [0, ∞) is continuous, then there is a c ∈ [a, b] such that

f (c) =
(

1
b− a

∫ b

a
f 2
)1/2

.

8.14. If f (x) =
∫ x

1

dt
t
for x > 0, then f (xy) = f (x) + f (y) for x, y > 0.

8.15. If f (x) = ln(|x|) for x 6= 0, then f ′(x) = 1/x.

8.16. In the statement of Theorem 8.17, make the additional assumptions that f
and g′ are both continuous. Use the Fundamental Theorem of Calculus to give an
easier proof.

8.17. Find a function f : [a, b]→ R such that
(a) f is continuous on [c, b] for all c ∈ (a, b],
(b) limx↓a

∫ b
x f = 0, and

(c) limx↓a f (x) does not exist.

8.18. Find a bounded function solving Exercise 8.17.

3Its limit is the Euler-Mascheroni constant γ ≈ 0.57722.
4This is variously called the Cauchy inequality, Cauchy-Schwarz inequality, or the Cauchy-Schwarz-

Bunyakowsky inequality. Rearranging the last one, some people now call it the CBS inequality.
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CHAPTER 9

Sequences of Functions

1. Pointwise Convergence

We have accumulated much experience working with sequences of numbers.
The next level of complexity is sequences of functions. This chapter explores several
ways that sequences of functions can converge to another function. The basic starting
point is contained in the following definitions.

Definition 9.1. Suppose S ⊂ R and for each n ∈N there is a function fn : S→
R. The collection { fn : n ∈N} is a sequence of functions defined on S.

For each fixed x ∈ S, fn(x) is a sequence of numbers, and it makes sense to ask
whether this sequence converges. If fn(x) converges for each x ∈ S, a new function
f : S→ R is defined by

f (x) = lim
n→∞

fn(x).

The function f is called the pointwise limit of the sequence fn, or, equivalently, it is
said fn converges pointwise to f . This is abbreviated fn

S−→ f , or simply fn → f , if the
domain is clear from the context.

Example 9.1. Let

fn(x) =


0, x < 0
xn, 0 ≤ x < 1
1, x ≥ 1

.

Then fn → f where

f (x) =

{
0, x < 1
1, x ≥ 1

.

(See Figure 9.1.) This example shows that a pointwise limit of continuous functions
need not be continuous.

Example 9.2. For each n ∈N, define fn : R→ R by
fn(x) =

nx
1 + n2x2 .

(See Figure 9.2.) Clearly, each fn is an odd function and lim|x|→∞ fn(x) = 0. A
bit of calculus shows that fn(1/n) = 1/2 and fn(−1/n) = −1/2 are the extreme
values of fn. Finally, if x 6= 0,

| fn(x)| =
∣∣∣∣ nx
1 + n2x2

∣∣∣∣ < ∣∣∣ nx
n2x2

∣∣∣ = ∣∣∣∣ 1
nx

∣∣∣∣
implies fn → 0. This example shows that functions can remain bounded away from
0 and still converge pointwise to 0.

9-1
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0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 9.1. The first ten functions from the sequence of Example 9.1.

-3 -2 -1 1 2 3

-0.4

-0.2

0.2

0.4

Figure 9.2. The first four functions from the sequence of Example 9.2.

Example 9.3. Define fn : R→ R by

fn(x) =


22n+4x− 2n+3, 1

2n+1 < x < 3
2n+2

−22n+4x + 2n+4, 3
2n+2 ≤ x < 1

2n

0, otherwise

To figure out what this looks like, it might help to look at Figure 9.3.
The graph of fn is a piecewise linear function supported on [1/2n+1, 1/2n] and

the area under the isosceles triangle of the graph over this interval is 1. Therefore,∫ 1
0 fn = 1 for all n.

If x > 0, then whenever x > 1/2n, we have fn(x) = 0. From this it follows that
fn → 0.

The lesson to be learned from this example is that it may not be true that
limn→∞

∫ 1
0 fn =

∫ 1
0 limn→∞ fn.
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1

2

1

4

1

8

1

16
1

8

16

32

64

Figure 9.3. The first four functions fn → 0 from the sequence of Example 9.3.

1�1

1/2

1/4
1/8

Figure 9.4. The first ten functions of the sequence fn → |x| from Example 9.4.

Example 9.4. Define fn : R→ R by

fn(x) =

{
n
2 x2 + 1

2n , |x| ≤ 1
n

|x|, |x| > 1
n

.

(See Figure 9.4.) The parabolic section in the center was chosen so fn(±1/n) = 1/n
and f ′n(±1/n) = ±1. This splices the sections together at (±1/n,±1/n) so fn is
differentiable everywhere. It’s clear fn → |x|, which is not differentiable at 0.

This example shows that the limit of differentiable functions need not be differ-
entiable.
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9-4 CHAPTER 9. SEQUENCES OF FUNCTIONS

The examples given above show that continuity, integrability and differentiabil-
ity are not preserved in the pointwise limit of a sequence of functions. To have any
hope of preserving these properties, a stronger form of convergence is needed.

2. Uniform Convergence

Definition 9.2. The sequence fn : S → R converges uniformly to f : S → R on
S, if for each ε > 0 there is an N ∈ N so that whenever n ≥ N and x ∈ S, then
| fn(x)− f (x)| < ε.

In this case, we write fn
S
⇒ f , or simply fn ⇒ f , if the set S is clear from the

context.

a b

f(x)

f(x) + ε

f(x ε

fn(x)

Figure 9.5. | fn(x)− f (x)| < ε on [a, b], as in Definition 9.2.

The difference between pointwise and uniform convergence is that with point-
wise convergence, the convergence of fn to f can vary in speed at each point of S.
With uniform convergence, the speed of convergence is roughly the same all across
S. Uniform convergence is a stronger condition to place on the sequence fn than
pointwise convergence in the sense of the following theorem.

Theorem 9.3. If fn
S
⇒ f , then fn

S−→ f .

Proof. Let x0 ∈ S and ε > 0. There is an N ∈ N such that when n ≥ N, then
| f (x)− fn(x)| < ε for all x ∈ S. In particular, | f (x0)− fn(x0)| < ε when n ≥ N.
This shows fn(x0)→ f (x0). Since x0 ∈ S is arbitrary, it follows that fn → f . �

The first three examples given above show the converse to Theorem 9.3 is false.
There is, however, one interesting and useful case in which a partial converse is true.

Definition 9.4. If fn
S−→ f and fn(x) ↑ f (x) for all x ∈ S, then fn increases to f

on S. If fn
S−→ f and fn(x) ↓ f (x) for all x ∈ S, then fn decreases to f on S. In either

case, fn is said to converge to f monotonically.
The functions of Example 9.4 decrease to |x|. Notice that in this case, the

convergence is also happens to be uniform. The following theorem shows Example
9.4 to be an instance of a more general phenomenon.

Theorem 9.5 (Dini’s Theorem). 1 If

1Ulisse Dini (1845–1918) was an Italian mathematician.
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3. METRIC PROPERTIES OF UNIFORM CONVERGENCE 9-5

(a) S is compact,
(b) fn

S−→ f monotonically,
(c) fn ∈ C(S) for all n ∈N, and
(d) f ∈ C(S),

then fn ⇒ f .

Proof. There is no loss of generality in assuming fn ↓ f , for otherwise we
consider − fn and − f . With this assumption, if gn = fn − f , then gn is a sequence
of continuous functions decreasing to 0. It suffices to show gn ⇒ 0.

To do so, let ε > 0. Using continuity and pointwise convergence, for each x ∈ S
find an open set Gx containing x and an Nx ∈N such that gNx (y) < ε for all y ∈ Gx.
Notice that the monotonicity condition guarantees gn(y) < ε for every y ∈ Gx and
n ≥ Nx.

The collection {Gx : x ∈ S} is an open cover for S, so it must contain a finite
subcover {Gxi : 1 ≤ i ≤ n}. Let N = max{Nxi : 1 ≤ i ≤ n} and choose m ≥ N. If
x ∈ S, then x ∈ Gxi for some i, and 0 ≤ gm(x) ≤ gN(x) ≤ gNi (x) < ε. It follows
that gn ⇒ 0. �

1/2

1

1

2�1/n

fn(x) = xn

Figure 9.6. This shows a typical function from the sequence of Example 9.5.

Example 9.5. Let fn(x) = xn for n ∈ N, then fn decreases to 0 on [0, 1). If
0 < a < 1 Dini’s Theorem shows fn ⇒ 0 on the compact interval [0, a]. On the
whole interval [0, 1), fn(x) > 1/2 when 2−1/n < x < 1, so fn is not uniformly
convergent. (Why doesn’t this violate Dini’s Theorem?)

3. Metric Properties of Uniform Convergence

If S ⊂ R, let B(S) = { f : S → R : f is bounded}. For f ∈ B(S), define
‖ f ‖S = lub {| f (x)| : x ∈ S}. (It is abbreviated to ‖ f ‖, if the domain S is clear from
the context.) Apparently, ‖ f ‖ ≥ 0, ‖ f ‖ = 0 ⇐⇒ f ≡ 0 and, if g ∈ B(S), then
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‖ f − g‖ = ‖g− f ‖. Moreover, if h ∈ B(S), then
‖ f − g‖ = lub {| f (x)− g(x)| : x ∈ S}

≤ lub {| f (x)− h(x)|+ |h(x)− g(x)| : x ∈ S}
≤ lub {| f (x)− h(x)| : x ∈ S}+ lub {|h(x)− g(x)| : x ∈ S}
= ‖ f − h‖+ ‖h− g‖

Combining all this, it follows that ‖ f − g‖ is a metric2 on B(S).
The definition of uniform convergence implies that for a sequence of bounded

functions fn : S→ R,
fn ⇒ f ⇐⇒ ‖ fn − f ‖ → 0.

Because of this, the metric ‖ f − g‖ is often called the uniform metric or the sup-metric.
Many ideas developed using the metric properties of R can be carried over into this
setting. In particular, there is a Cauchy criterion for uniform convergence.

Definition 9.6. Let S ⊂ R. A sequence of functions fn : S → R is a Cauchy
sequence under the uniform metric, if given ε > 0, there is an N ∈N such that when
m, n ≥ N, then ‖ fn − fm‖ < ε.

Theorem 9.7. Let fn ∈ B(S). There is a function f ∈ B(S) such that fn ⇒ f iff fn is
a Cauchy sequence in B(S).

Proof. (⇒) Let fn ⇒ f and ε > 0. There is an N ∈N such that n ≥ N implies
‖ fn − f ‖ < ε/2. If m ≥ N and n ≥ N, then

‖ fm − fn‖ ≤ ‖ fm − f ‖+ ‖ f − fn‖ <
ε

2
+

ε

2
= ε

shows fn is a Cauchy sequence.
(⇐) Suppose fn is a Cauchy sequence in B(S) and ε > 0. Choose N ∈ N so

that ‖ fm − fn‖ < ε whenever m ≥ N and n ≥ N. In particular, for a fixed x0 ∈ S
and m, n ≥ N, | fm(x0)− fn(x0)| ≤ ‖ fm − fn‖ < ε shows the sequence fn(x0) is a
Cauchy sequence in R and therefore converges. Since x0 is an arbitrary point of S,
this defines an f : S→ R such that fn → f .

Finally, if m, n ≥ N and x ∈ S the fact that | fn(x)− fm(x)| < ε gives
| fn(x)− f (x)| = lim

m→∞
| fn(x)− fm(x)| ≤ ε.

This shows that when n ≥ N, then ‖ fn − f ‖ ≤ ε. We conclude that f ∈ B(S) and
fn ⇒ f . �

A collection of functions S is said to be complete under uniform convergence,
if every Cauchy sequence in S converges to a function in S . Theorem 9.7 shows
B(S) is complete under uniform convergence. We’ll see several other collections of
functions that are complete under uniform convergence.

Example 9.6. For S ⊂ R let L(S) be all the functions f : S → R such that
f (x) = mx + b for some constants m and b. In particular, let fn be a Cauchy
sequence in L([0, 1]). Theorem 9.7 shows there is an f : [0, 1]→ R such that fn ⇒ f .
In order to show L([0, 1]) is complete, it suffices to show f ∈ L([0, 1]).

To do this, let fn(x) = mnx + bn for each n. Then fn(0) = bn → f (0) and
mn = fn(1)− bn → f (1)− f (0).

2Definition 2.13
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Given any x ∈ [0, 1],
fn(x)− (( f (1)− f (0))x + f (0)) = mnx + bn − (( f (1)− f (0))x + f (0))

= (mn − ( f (1)− f (0)))x + bn − f (0)→ 0.

This shows f (x) = ( f (1) − f (0))x + f (0) ∈ L([0, 1]) and therefore L([0, 1]) is
complete.

Example 9.7. Let P = {p(x) : p is a polynomial}. The sequence of polynomials
pn(x) = ∑n

k=0 xk/k! increases to ex on [0, a] for any a > 0, so Dini’s Theorem shows
pn ⇒ ex on [0, a]. But, ex /∈ P , so P is not complete. (See Exercise 7.24.)

4. Series of Functions

The definitions of pointwise and uniform convergence are extended in the nat-
ural way to series of functions. If ∑∞

k=1 fk is a series of functions defined on a set
S, then the series converges pointwise or uniformly, depending on whether the
sequence of partial sums, sn = ∑n

k=1 fk converges pointwise or uniformly, respec-
tively. It is absolutely convergent or absolutely uniformly convergent, if ∑∞

n=1 | fn| is
convergent or uniformly convergent on S, respectively.

The following theorem is obvious and its proof is left to the reader.
Theorem 9.8. Let ∑∞

n=1 fn be a series of functions defined on S. If ∑∞
n=1 fn is absolutely

convergent, then it is convergent. If ∑∞
n=1 fn is absolutely uniformly convergent, then it is

uniformly convergent.

The next theorem is a restatement of Theorem 9.5 for series.
Theorem 9.9. If ∑∞

n=1 fn is a series of nonnegative continuous functions converging
pointwise to a continuous function on a compact set S, then ∑∞

n=1 fn converges uniformly
on S.

A simple, but powerful technique for showing uniform convergence of series is
the following.

Theorem 9.10 (Weierstrass M-Test). If fn : S→ R is a sequence of functions and
Mn is a sequence of numbers such that ‖ fn‖S ≤ Mn for all n ∈N and ∑∞

n=1 Mn converges,
then ∑∞

n=1 fn is absolutely uniformly convergent.

Proof. Let ε > 0 and sn be the sequence of partial sums of ∑∞
n=1 | fn|. Using

the Cauchy criterion for convergence of a series, choose an N ∈N such that when
n > m ≥ N, then ∑n

k=m Mk < ε. So,

‖sn − sm‖ = ‖
n

∑
k=m+1

fk‖ ≤
n

∑
k=m+1

‖ fk‖ ≤
n

∑
k=m

Mk < ε.

This shows sn is a Cauchy sequence and must converge according to Theorem 9.7.
�

Example 9.8. Let a > 0 and Mn = an/n!. Since

lim
n→∞

Mn+1

Mn
= lim

n→∞

a
n + 1

= 0,

the Ratio Test shows ∑∞
n=0 Mn converges. When x ∈ [−a, a],∣∣∣∣ xn

n!

∣∣∣∣ ≤ an

n!
.
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The Weierstrass M-Test now implies ∑∞
n=0 xn/n! converges absolutely uniformly on

[−a, a] for any a > 0. (See Exercise 9.4.)

5. Continuity and Uniform Convergence

Theorem 9.11. If fn : S → R is such that each fn is continuous at x0 and fn
S
⇒ f ,

then f is continuous at x0.

Proof. Let ε > 0. Since fn ⇒ f , there is an N ∈N such that whenever n ≥ N
and x ∈ S, then | fn(x)− f (x)| < ε/3. Because fN is continuous at x0, there is a
δ > 0 such that x ∈ (x0 − δ, x0 + δ) ∩ S implies | fN(x) − fN(x0)| < ε/3. Using
these two estimates, it follows that when x ∈ (x0 − δ, x0 + δ) ∩ S,

| f (x)− f (x0)| = | f (x)− fN(x) + fN(x)− fN(x0) + fN(x0)− f (x0)|
≤ | f (x)− fN(x)|+ | fN(x)− fN(x0)|+ | fN(x0)− f (x0)|
< ε/3 + ε/3 + ε/3 = ε.

Therefore, f is continuous at x0. �

The following corollary is immediate from Theorem 9.11.
Corollary 9.12. If fn is a sequence of continuous functions converging uniformly to

f on S, then f is continuous.

Example 9.1 shows that continuity is not preserved under pointwise conver-
gence. Corollary 9.12 establishes that if S is compact, then C(S) is complete under
the uniform metric.

The fact that C([a, b]) is closed under uniform convergence is often useful
because, given a “bad” function f ∈ C([a, b]), it’s often possible to find a sequence
fn of “good” functions in C([a, b]) converging uniformly to f . Following is the most
widely used theorem of this type.

Theorem 9.13 (Weierstrass Approximation Theorem). If f ∈ C([a, b]), then there
is a sequence of polynomials pn ⇒ f .

To prove this theorem, we first need a lemma.

Lemma 9.14. For n ∈N let cn =
(∫ 1
−1(1− t2)n dt

)−1
and

kn(t) =

{
cn(1− t2)n, |t| ≤ 1
0, |t| > 1

.

(See Figure 9.7.) Then
(a) kn(t) ≥ 0 for all t ∈ R and n ∈N;
(b)

∫ 1
−1 kn = 1 for all n ∈N; and,

(c) if 0 < δ < 1, then kn ⇒ 0 on (−∞,−δ] ∪ [δ, ∞).

Proof. Parts (a) and (b) follow easily from the definition of kn.
To prove (c) first note that

1 =
∫ 1

−1
kn ≥

∫ 1/
√

n

−1/
√

n
cn(1− t2)n dt ≥ cn

2√
n

(
1− 1

n

)n
.
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0.2
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0.8

1.0

1.2

Figure 9.7. Here are the graphs of kn(t) for n = 1, 2, 3, 4, 5.

Since
(

1− 1
n

)n
↑ 1

e , it follows there is an α > 0 such that cn < α
√

n.3 Letting
δ ∈ (0, 1) and δ ≤ t ≤ 1,

kn(t) ≤ kn(δ) ≤ α
√

n(1− δ2)n → 0

by L’Hospital’s Rule. Since kn is an even function, this establishes (c). �

A sequence of functions satisfying conditions such as those in Lemma 9.14 is
called a convolution kernel or a Dirac sequence.4 Several such kernels play a key role
in the study of Fourier series, as we will see in Theorems 10.5 and 10.13. The one
defined above is called the Landau kernel.5

We now turn to the proof of the theorem.

Proof. There is no generality lost in assuming [a, b] = [0, 1], for otherwise
we consider the linear change of variables g(x) = f ((b− a)x + a). Similarly, we
can assume f (0) = f (1) = 0, for otherwise we consider g(x) = f (x)− (( f (1)−
f (0))x− f (0), which is a polynomial added to f . We can further assume f (x) = 0
when x /∈ [0, 1].

Set

pn(x) =
∫ 1

−1
f (x + t)kn(t) dt.(9.1)

3Repeated application of integration by parts shows

cn =
n + 1/2

n
× n− 1/2

n− 1
× n− 3/2

n− 2
× · · · × 3/2

1
=

Γ(n + 3/2)√
πΓ(n + 1)

.

With the aid of Stirling’s formula, it can be shown cn ≈ 0.565
√

n→ ∞.
4Given two functions f and g defined on R, the convolution of f and g is the integral

f ? g(x) =
∫ ∞

−∞
f (t)g(x− t) dt.

The term convolution kernel is used because such kernels typically replace g in the convolution given
above, as can be seen in the proof of the Weierstrass approximation theorem.

5It was investigated by the German mathematician Edmund Landau (1877–1938).
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9-10 CHAPTER 9. SEQUENCES OF FUNCTIONS

To see pn is a polynomial, change variables in the integral using u = x + t to arrive
at

pn(x) =
∫ x+1

x−1
f (u)kn(u− x) du =

∫ 1

0
f (u)kn(x− u) du,

because f (x) = 0 when x /∈ [0, 1]. Notice that kn(x− u) is a polynomial in u with
coefficients being polynomials in x, so integrating f (u)kn(x− u) yields a polynomial
in x. (Just try it for a small value of n and a simple function f !)

Use (9.1) and Lemma 9.14(b) to see for δ ∈ (0, 1) that

(9.2) |pn(x)− f (x)| =
∣∣∣∣∫ 1

−1
f (x + t)kn(t) dt− f (x)

∣∣∣∣
=

∣∣∣∣∫ 1

−1
( f (x + t)− f (x))kn(t) dt

∣∣∣∣
≤
∫ 1

−1
| f (x + t)− f (x)|kn(t) dt

=
∫ δ

−δ
| f (x + t)− f (x)|kn(t) dt +

∫
δ<|t|≤1

| f (x + t)− f (x)|kn(t) dt.

We’ll handle each of the final integrals in turn.
Let ε > 0 and use the uniform continuity of f to choose a δ ∈ (0, 1) such that

when |t| < δ, then | f (x + t)− f (x)| < ε/2. Then, using Lemma 9.14(b) again,∫ δ

−δ
| f (x + t)− f (x)|kn(t) dt <

ε

2

∫ δ

−δ
kn(t) dt <

ε

2
.(9.3)

According to Lemma 9.14(c), there is an N ∈N so that when n ≥ N and |t| ≥ δ,
then kn(t) < ε

8(‖ f ‖+1)(1−δ)
. Using this, it follows that

(9.4)
∫

δ<|t|≤1
| f (x + t)− f (x)|kn(t) dt

=
∫ −δ

−1
| f (x + t)− f (x)|kn(t) dt +

∫ 1

δ
| f (x + t)− f (x)|kn(t) dt

≤ 2‖ f ‖
∫ −δ

−1
kn(t) dt + 2‖ f ‖

∫ 1

δ
kn(t) dt

< 2‖ f ‖ ε

8(‖ f ‖+ 1)(1− δ)
(1− δ) + 2‖ f ‖ ε

8(‖ f ‖+ 1)(1− δ)
(1− δ) =

ε

2

Combining (9.3) and (9.4), it follows from (9.2) that |pn(x) − f (x)| < ε for all
x ∈ [0, 1] and pn ⇒ f . �

Corollary 9.15. If f ∈ C([a, b]) and ε > 0, then there is a polynomial p such that
‖ f − p‖[a,b] < ε.

The theorems of this section can also be used to construct some striking examples
of functions with unwelcome behavior. Following is perhaps the most famous.

Example 9.9. There is a continuous f : R→ R that is differentiable nowhere.
Proof. Thinking of the canonical example of a continuous function that fails to

be differentiable at a point—the absolute value function—we start with a “sawtooth”
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function. (See Figure 9.8.)

s0(x) =

{
x− 2n, 2n ≤ x < 2n + 1, n ∈ Z

2n + 2− x, 2n + 1 ≤ x < 2n + 2, n ∈ Z

Notice that s0 is continuous and periodic with period 2 and maximum value 1.
Compress it both vertically and horizontally:

sn(x) =
(

3
4

)n
s0 (4nx) , n ∈N.

Each sn is continuous and periodic with period pn = 2/4n and ‖sn‖ = (3/4)n.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

1.0

Figure 9.8. s0, s1 and s2 from Example 9.9.

Finally, the desired function is

f (x) =
∞

∑
n=0

sn(x).

Since ‖sn‖ = (3/4)n, the Weierstrass M-test implies the series defining f is uni-
formly convergent and Corollary 9.12 shows f is continuous on R. We will show f
is differentiable nowhere.

Let x ∈ R, m ∈N and hm = 1/(2 · 4m).
If n > m, then hm/pn = 4n−m−1 ∈ ω, so sn(x± hm)− sn(x) = 0 and

f (x± hm)− f (x)
±hm

=
m

∑
k=0

sk(x± hm)− sk(x)
±hm

.(9.5)

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 9.9. The nowhere differentiable function f from Example 9.9. It is
periodic with period 2 and one complete period is shown.
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9-12 CHAPTER 9. SEQUENCES OF FUNCTIONS

On the other hand, if n < m, then a worst-case estimate is∣∣∣∣ sn(x± hm)− sn(x)
hm

∣∣∣∣ ≤ (3
4

)n
/
(

1
4n

)
= 3n.

This gives ∣∣∣∣∣m−1

∑
k=0

sk(x± hm)− sk(x)
±hm

∣∣∣∣∣ ≤ m−1

∑
k=0

∣∣∣∣ sk(x± hm)− sk(x)
±hm

∣∣∣∣
≤ 3m − 1

3− 1
<

3m

2
.(9.6)

Since sm is linear on intervals of length 4−m = 2 · hm with slope ±3m on those
linear segments, at least one of the following is true:∣∣∣∣ sm(x + hm)− s(x)

hm

∣∣∣∣ = 3m or
∣∣∣∣ sm(x− hm)− s(x)

−hm

∣∣∣∣ = 3m.(9.7)

Suppose the first of these is true. The argument is essentially the same in the second
case.

Using (9.5), (9.6) and (9.7), the following estimate ensues∣∣∣∣ f (x + hm)− f (x)
hm

∣∣∣∣ =
∣∣∣∣∣ ∞

∑
k=0

sk(x + hm)− sk(x)
hm

∣∣∣∣∣
=

∣∣∣∣∣ m

∑
k=0

sk(x + hm)− sk(x)
hm

∣∣∣∣∣
≥
∣∣∣∣ sm(x + hm)− sm(x)

hm

∣∣∣∣− m−1

∑
k=0

∣∣∣∣ sk(x + hm)− sk(x)
hm

∣∣∣∣
> 3m − 3m

2
=

3m

2
.

Since 3m/2→ ∞, it is apparent f ′(x) does not exist. �

There are many other constructions of nowhere differentiable continuous func-
tions. The first was published by Weierstrass [22] in 1872, although it was known
in the folklore sense among mathematicians earlier than this. (There is an English
translation of Weierstrass’ paper in [12].) In fact, it is now known in a technical
sense that the “typical” continuous function is nowhere differentiable [5].

6. Integration and Uniform Convergence

One of the recurring questions with integrals is when it is true that

lim
n→∞

∫
fn =

∫
lim

n→∞
fn.

This is often referred to as “passing the limit through the integral.” At some point in
her career, any student of advanced analysis or probability theory will be tempted to
just blithely pass the limit through. But functions such as those of Example 9.3 show
that some care is needed. A common criterion for doing so is uniform convergence.
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Theorem 9.16. If fn : [a, b] → R such that
∫ b

a fn exists for each n and fn ⇒ f on
[a, b], then ∫ b

a
f = lim

n→∞

∫ b

a
fn

.

Proof. Some care must be taken in this proof, because there are actually two
things to prove. Before the equality can be shown, it must be proved that f is
integrable.

To show that f is integrable, let ε > 0 and N ∈ N such that ‖ f − fN‖ <
ε/3(b− a). If P ∈ part ([a, b]), then

|R ( f , P, x∗k )−R ( fN , P, x∗k ) | = |
n

∑
k=1

f (x∗k )|Ik| −
n

∑
k=1

fN(x∗k )|Ik||(9.8)

= |
n

∑
k=1

( f (x∗k )− fN(x∗k ))|Ik||

≤
n

∑
k=1
| f (x∗k )− fN(x∗k )||Ik|

<
ε

3(b− a))

n

∑
k=1
|Ik|

=
ε

3
According to Theorem 8.10, there is a P ∈ part ([a, b]) such that whenever

P� Q1 and P� Q2, then
|R ( fN , Q1, x∗k )−R ( fN , Q2, y∗k ) | <

ε

3
.(9.9)

Combining (9.8) and (9.9) yields
|R ( f , Q1, x∗k )−R ( f , Q2, y∗k )|

= |R ( f , Q1, x∗k )−R ( fN , Q1, x∗k ) +R ( fN , Q1, x∗k )

−R ( fN , Q2, y∗k ) +R ( fN , Q2, y∗k )−R ( f , Q2, y∗k )|
≤ |R ( f , Q1, x∗k )−R ( fN , Q1, x∗k )|+ |R ( fN , Q1, x∗k )−R ( fN , Q2, y∗k )|

+ |R ( fN , Q2, y∗k )−R ( f , Q2, y∗k )|
<

ε

3
+

ε

3
+

ε

3
= ε

Another application of Theorem 8.10 shows that f is integrable.
Finally, when n ≥ N,∣∣∣∣∫ b

a
f −

∫ b

a
fn

∣∣∣∣ = ∣∣∣∣∫ b

a
( f − fn)

∣∣∣∣ < ∫ b

a

ε

3(b− a)
=

ε

3
< ε

shows that
∫ b

a fn →
∫ b

a f . �

Corollary 9.17. If ∑∞
n=1 fn is a series of integrable functions converging uniformly

on [a, b], then ∫ b

a

∞

∑
n=1

fn =
∞

∑
n=1

∫ b

a
fn

June 29, 2020 http://math.louisville.edu/∼lee/ira

http://www.math.louisville.edu/~lee/RealAnalysis/


9-14 CHAPTER 9. SEQUENCES OF FUNCTIONS

Use of this corollary is sometimes referred to as “reversing summation and
integration.” It’s tempting to do this reversal, but without some condition such as
uniform convergence, justification for the action is often difficult.

Example 9.10. It was shown in Example 4.2 that the geometric series
∞

∑
n=0

tn =
1

1− t
, −1 < t < 1.

In Exercise 9.3, you are asked to prove this convergence is uniform on any compact
subset of (−1, 1). Substituting −t for t in the above formula, it follows that

∞

∑
n=0

(−t)n ⇒
1

1 + t

on [0, x], when 0 < x < 1. Corollary 9.17 implies

ln(1 + x) =
∫ x

0

dt
1 + t

=
∞

∑
n=0

∫ x

0
(−t)n dt = x− x2 + x3 − x4 + · · · .

The same argument works when −1 < x < 0, so
ln(1 + x) = x− x2 + x3 − x4 + · · ·

when x ∈ (−1, 1).
Combining Theorem 9.16 with Dini’s Theorem, gives the following.
Corollary 9.18 (Monotone Convergence Theorem). If fn is a sequence of con-

tinuous functions converging monotonically to a continuous function f on [a, b], then∫ b
a fn →

∫ b
a f .

7. Differentiation and Uniform Convergence

The relationship between uniform convergence and differentiation is somewhat
more complex than those relationships we’ve already examined. First, because there
are two sequences involved, fn and f ′n, either of which may converge or diverge at
a point; and second, because differentiation is more “delicate” than continuity or
integration.

Example 9.4 is an explicit example of a sequence of differentiable functions
converging uniformly to a function which is not differentiable at a point. The
derivatives of the functions from that example converge pointwise to a function that
is not a derivative. Combining the Weierstrass Approximation Theorem (9.13) and
Example 9.9 pushes this to the extreme by showing the existence of a sequence of
polynomials converging uniformly to a continuous nowhere differentiable function.

The following theorem starts to shed some light on the situation.
Theorem 9.19. If fn is a sequence of derivatives defined on [a, b] and fn ⇒ f , then f

is a derivative.

Proof. For each n, let Fn be an antiderivative of fn. By considering Fn(x)− Fn(a),
if necessary, there is no generality lost with the assumption that Fn(a) = 0 for all n.

Let ε > 0. There is an N ∈N such that
m, n ≥ N =⇒ ‖ fm − fn‖ <

ε

b− a
.
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If x ∈ [a, b] and m, n ≥ N, then the Mean Value Theorem and the assumption that
Fm(a) = Fn(a) = 0 yield a c ∈ [a, x) such that

|Fm(x)− Fn(x)| = |(Fm(x)− Fn(x))− (Fm(a)− Fn(a))|
= | fm(c)− fn(c)| |x− a| ≤ ‖ fm − fn‖(b− a) < ε.(9.10)

This shows Fn is a Cauchy sequence in C([a, b]) and there is an F ∈ C([a, b]) with
Fn ⇒ F.

It suffices to show F′ = f . To do this, several estimates are established.
Let N ∈N so that

m, n ≥ N =⇒ ‖ fm − fn‖ <
ε

3
.

Notice this implies

‖ f − fn‖ ≤
ε

3
, ∀n ≥ M.(9.11)

For such m, n ≥ N and x, y ∈ [a, b] with x 6= y, another application of the Mean
Value Theorem gives∣∣∣∣ Fn(x)− Fn(y)

x− y
− Fm(x)− Fm(y)

x− y

∣∣∣∣
=

1
|x− y| |(Fn(x)− Fm(x))− (Fn(y)− Fm(y))|

=
1

|x− y| | fn(c)− fm(c)| |x− y| ≤ ‖ fn − fm‖ <
ε

3
.

Letting m→ ∞, it follows that∣∣∣∣ Fn(x)− Fn(y)
x− y

− F(x)− F(y)
x− y

∣∣∣∣ ≤ ε

3
, ∀n ≥ M.(9.12)

Fix n ≥ N and x ∈ [a, b]. Since F′n(x) = fn(x), there is a δ > 0 so that∣∣∣∣ Fn(x)− Fn(y)
x− y

− fn(x)
∣∣∣∣ < ε

3
, ∀y ∈ (x− δ, x + δ) \ {x}.(9.13)

Finally, using (9.12), (9.13) and (9.11), we see∣∣∣∣ F(x)− F(y)
x− y

− f (x)
∣∣∣∣
=

∣∣∣∣ F(x)− F(y)
x− y

− Fn(x)− Fn(y)
x− y

+
Fn(x)− Fn(y)

x− y
− fn(x) + fn(x)− f (x)

∣∣∣∣
≤
∣∣∣∣ F(x)− F(y)

x− y
− Fn(x)− Fn(y)

x− y

∣∣∣∣
+

∣∣∣∣ Fn(x)− Fn(y)
x− y

− fn(x)
∣∣∣∣+ | fn(x)− f (x)|

<
ε

3
+

ε

3
+

ε

3
= ε.
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This establishes that
lim
y→x

F(x)− F(y)
x− y

= f (x),

as desired. �

Corollary 9.20. If Gn ∈ C([a, b]) is a sequence such that G′n ⇒ g and Gn(x0)
converges for some x0 ∈ [a, b], then Gn ⇒ G where G′ = g.

Proof. Let G′n = gn and let Gn(x0) → α. For each n choose an antiderivative
Fn of gn such that Fn(a) = 0. Theorem 9.19 shows g is a derivative and an argument
similar to that in the proof of Theorem 9.19 shows Fn ⇒ F on [a, b], where F′ = g.
Since F′n − G′n = 0, Corollary (7.16) shows Gn(x) = Fn(x) + (Gn(x0) − Fn(x0)).
Define G(x) = F(x) + (α− F(x0)).

Let ε > 0 and x ∈ [a, b]. There is an N ∈N such that

n ≥ N =⇒ ‖Fn − F‖ < ε

3
and |Gn(x0)− α| < ε

3
.

If n ≥ N,
|Gn(x)− G(x)| = |Fn(x) + (Gn(x0)− Fn(x0))− (F(x) + (α− F(x0)))|

≤ |Fn(x)− F(x)|+ |Gn(x0)− α|+ |Fn(x0)− F(x0)|
<

ε

3
+

ε

3
+

ε

3
= ε

This shows Gn ⇒ G on [a, b] where G′ = F′ = g. �

Corollary 9.21. If fn is a sequence of differentiable functions defined on [a, b] such
that ∑∞

k=1 fk(x0) exists for some x0 ∈ [a, b] and ∑∞
k=1 f ′k converges uniformly, then(

∞

∑
k=1

f

)′
=

∞

∑
k=1

f ′

Proof. Left as an exercise. �

Example 9.11. Let a > 0 and fn(x) = xn/n!. Note that f ′n = fn−1 for n ∈ N.
Example 9.8 shows ∑∞

n=0 f ′n(x) is uniformly convergent on [−a, a]. Corollary 9.21
shows (

∞

∑
n=0

xn

n!

)′
=

∞

∑
n=0

xn

n!
.(9.14)

on [−a, a]. Since a is an arbitrary positive constant, (9.14) is seen to hold on all of R.
If f (x) = ∑∞

n=0 xn/n!, then the argument given above implies the initial value
problem {

f ′(x) = f (x)
f (0) = 1

As is well-known, the unique solution to this problem is f (x) = ex. Therefore,

ex =
∞

∑
n=0

xn

n!
.
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8. Power Series

8.1. The Radius and Interval of Convergence. One place where uniform con-
vergence plays a key role is with power series. Recall the definition.

Definition 9.22. A power series is a function of the form

f (x) =
∞

∑
n=0

an(x− c)n.(9.15)

Members of the sequence an are the coefficients of the series. The domain of f is the
set of all x at which the series converges. The constant c is called the center of the
series.

To determine the domain of (9.15), let x ∈ R \ {c} and use the Root Test to see
the series converges when

lim sup |an(x− c)n|1/n = |x− c| lim sup |an|1/n < 1

and diverges when
|x− c| lim sup |an|1/n > 1.

If r lim sup |an|1/n ≤ 1 for some r ≥ 0, then these inequalities imply (9.15) is
absolutely convergent when |x− c| < r. In other words, if

R = lub {r : r lim sup |an|1/n < 1},(9.16)
then the domain of (9.15) is an interval of radius R centered at c. The root test gives
no information about convergence when |x− c| = R. This R is called the radius of
convergence of the power series. Assuming R > 0, the open interval centered at c
with radius R is called the interval of convergence. It may be different from the domain
of the series because the series may converge at neither, one, or both endpoints of
the interval of convergence. 6

The ratio test can also be used to determine the radius of convergence, but, as
shown in (4.9), it will not work as often as the root test. When it does,

R = lub {r : r lim sup
∣∣∣∣ an+1

an

∣∣∣∣ < 1}.(9.17)

This is usually easier to compute than (9.16), and both will give the same value for
R, when they can both be evaluated.

In practice, the radius of convergence can most often determined by considering

R = lim
n→∞

an

an+1
or 1

R
= lim

n→∞
n
√
|an|.

The first of these limits is usually easier to calculate.
Example 9.12. Calling to mind Example 4.2, it is apparent the geometric power

series ∑∞
n=0 xn has center 0, radius of convergence 1 and domain (−1, 1).

Example 9.13. For the power series ∑∞
n=1 2n(x + 2)n/n, we compute

lim sup
(

2n

n

)1/n
= 2 =⇒ R =

1
2

.

6Some authors define the interval of convergence to be the same as what we call the domain.
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Since the series diverges when x = −2± 1
2 , it follows that the domain is the interval

of convergence (−5/2,−3/2).
Example 9.14. The power series ∑∞

n=1 xn/n has interval of convergence (−1, 1)
and domain [−1, 1). Notice it is not absolutely convergent when x = −1.

Example 9.15. The power series ∑∞
n=1 xn/n2 has interval of convergence (−1, 1),

domain [−1, 1] and is absolutely convergent on its whole domain.
The preceding is summarized in the following theorem.
Theorem 9.23. Let the power series be as in (9.15) and R be given by either (9.16) or

(9.17).
(a) If R = 0, then the domain of the series is {c}.
(b) If R > 0 the series converges absolutely at x when |c− x| < R and diverges at

x when |c− x| > R. In the case when R = ∞, the series converges everywhere.
(c) If R ∈ (0, ∞), then the series may converge at none, one or both of c− R and

c + R.
8.2. UniformConvergence of Power Series. The partial sums of a power series

are a sequence of polynomials converging pointwise on the domain of the series. As
has been seen, pointwise convergence is not enough to say much about the behavior
of the power series. The following theorem opens the door to a lot more.

Theorem 9.24. A power series converges absolutely and uniformly on compact subsets
of its interval of convergence.

Proof. There is no generality lost in assuming the series has the form of (9.15)
with c = 0. Let the radius of convergence be R > 0 and K be a compact sub-
set of (−R, R) with α = lub {|x| : x ∈ K}. Choose r ∈ (α, R). If x ∈ K, then
|anxn| < |anrn| for n ∈ N. Since ∑∞

n=0 |anrn| converges, the Weierstrass M-test
shows ∑∞

n=0 anxn is absolutely and uniformly convergent on K. �

The following two corollaries are immediate consequences of Corollary 9.12
and Theorem 9.16, respectively.

Corollary 9.25. A power series is continuous on its interval of convergence.
Corollary 9.26. If [a, b] is an interval contained in the interval of convergence for the

power series ∑∞
n=0 an(x− c)n, then∫ b

a

∞

∑
n=0

an(x− c)n =
∞

∑
n=0

an

∫ b

a
(x− c)n.

Example 9.16. Define7

f (x) =

{
sin x

x , x 6= 0
1, x = 0

.

Since limx→0 f (x) = 1, f is continuous everywhere. Suppose we want
∫ π

0 f with
an accuracy of five decimal places.

If x 6= 0,

f (x) =
1
x

∞

∑
n=1

(−1)n+1

(2n− 1)!
x2n−1 =

∞

∑
n=0

(−1)n

(2n + 1)!
x2n

7This is often called the sinc function. (It sounds the same as “sink.”)
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The latter series converges to f everywhere. Corollary 9.26 implies∫ π

0
f (x) dx =

∫ π

0

∞

∑
n=0

(−1)n

(2n + 1)!
x2n dx

=
∞

∑
n=0

(−1)n

(2n + 1)!

∫ π

0
x2n dx

=
∞

∑
n=0

(−1)n

(2n + 1)(2n + 1)!
π2n+1(9.18)

The latter series satisfies the Alternating Series Test. Since π15/(15× 15!) ≈ 1.5×
10−6, Corollary 4.21 shows∫ π

0
f (x) dx ≈

6

∑
n=0

(−1)n

(2n + 1)(2n + 1)!
π2n+1 ≈ 1.85194

The next question is: What about differentiability?
Notice that the continuity of the exponential function and L’Hospital’s Rule

give
lim

n→∞
n1/n = lim

n→∞
exp

(
ln n

n

)
= exp

(
lim

n→∞

ln n
n

)
= exp(0) = 1.

Therefore, for any sequence an,
lim sup |nan|1/n = lim sup n1/n|an|1/n = lim sup |an|1/n.(9.19)

Now, suppose the power series ∑∞
n=0 anxn has a nontrivial interval of conver-

gence, I. Formally differentiating the power series term-by-term gives a new power
series ∑∞

n=1 nanxn−1. According to (9.19) and Theorem 9.23, the term-by-term dif-
ferentiated series has the same interval of convergence as the original. Its partial
sums are the derivatives of the partial sums of the original series and Theorem 9.24
guarantees they converge uniformly on any compact subset of I. Corollary 9.21
shows

d
dx

∞

∑
n=0

anxn =
∞

∑
n=0

d
dx

anxn =
∞

∑
n=1

nanxn−1, ∀x ∈ I.

This process can be continued inductively to obtain the same results for all higher
order derivatives. We have proved the following theorem.

Theorem 9.27. If f (x) = ∑∞
n=0 an(x− c)n is a power series with nontrivial interval

of convergence, I, then f is differentiable to all orders on I with

f (m)(x) =
∞

∑
n=m

n!
(n−m)!

an(x− c)n−m.(9.20)

Moreover, the differentiated series has I as its interval of convergence.

8.3. Taylor Series. Suppose f (x) = ∑∞
n=0 anxn has I = (−R, R) as its interval

of convergence for some R > 0. According to Theorem 9.27,

f (m)(0) =
m!

(m−m)!
am =⇒ am =

f (m)(0)
m!

, ∀m ∈ ω.

Therefore,
f (x) =

∞

∑
n=0

f (n)(0)
n!

xn, ∀x ∈ I.
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This is a remarkable result! It shows that the values of f on I are completely
determined by its values on any neighborhood of 0. This is summarized in the
following theorem.

Theorem 9.28. If a power series f (x) = ∑∞
n=0 an(x− c)n has a nontrivial interval of

convergence I, then

f (x) =
∞

∑
n=0

f (n)(c)
n!

(x− c)n, ∀x ∈ I.(9.21)

The series (9.21) is called the Taylor series8 for f centered at c. The Taylor series
can be formally defined for any function that has derivatives of all orders at c, but, as
Example 7.9 shows, there is no guarantee it will converge to the function anywhere
except at c. Taylor’s Theorem 7.18 can be used to examine the question of pointwise
convergence. If f can be represented by a power series on an open interval I, then f
is said to be analytic on I.

8.4. The Endpoints of the Interval of Convergence. We have seen that at the
endpoints of its interval of convergence a power series may diverge or even abso-
lutely converge. A natural question when it does converge is the following: What is
the relationship between the value at the endpoint and the values inside the interval
of convergence?

Theorem 9.29 (Abel). A power series is continuous on its domain.
Proof. Let f (x) = ∑∞

n=0 an(x− c)n have interval of convergence I. If I = {c},
the theorem is vacuously true from Definition 6.9. If I = R, the theorem follows
from Corollary 9.25. So, assume its interval of convergence is R ∈ (0, ∞). It must be
shown that if f converges at an endpoint of I = (c− R, c + R), then f is continuous
at that endpoint.

It can be assumed c = 0 and R = 1. There is no loss of generality with either
of these assumptions because otherwise just replace f (x) with f ((x + c)/R). The
theorem will be proved for α = 1 since the other case is proved similarly.

Set s = f (1), s−1 = 0 and sn = ∑n
k=0 ak for n ∈ ω. For |x| < 1,

n

∑
k=0

akxk =
n

∑
k=0

(sk − sk−1)xk

=
n

∑
k=0

skxk −
n

∑
k=1

sk−1xk

= snxn +
n−1

∑
k=0

skxk − x
n−1

∑
k=0

skxk

= snxn + (1− x)
n−1

∑
k=0

skxk

When n→ ∞, since sn is bounded and |x| < 1,

f (x) = (1− x)
∞

∑
k=0

skxk.(9.22)

8When c = 0, it is often called the Maclaurin series for f .
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Since (1− x)∑∞
n=0 xn = 1, (9.22) implies

| f (x)− s| =
∣∣∣∣∣(1− x)

∞

∑
k=0

(sk − s)xk

∣∣∣∣∣ .(9.23)

Let ε > 0. Choose N ∈N such that whenever n ≥ N, then |sn − s| < ε/2. Choose
δ ∈ (0, 1) so

δ
N

∑
k=0
|sk − s| < ε/2.

Suppose x is such that 1− δ < x < 1. With these choices, (9.23) becomes

| f (x)− s| ≤
∣∣∣∣∣(1− x)

N

∑
k=0

(sk − s)xk

∣∣∣∣∣+
∣∣∣∣∣(1− x)

∞

∑
k=N+1

(sk − s)xk

∣∣∣∣∣
< δ

N

∑
k=0
|sk − s|+ ε

2

∣∣∣∣∣(1− x)
∞

∑
k=N+1

xk

∣∣∣∣∣ < ε

2
+

ε

2
= ε

It has been shown that limx↑1 f (x) = f (1), so 1 ∈ C( f ). �

Here is an example showing the power of these techniques.
Example 9.17. The series

∞

∑
n=0

(−1)nx2n =
1

1 + x2

has (−1, 1) as its interval of convergence. If 0 ≤ |x| < 1, then Corollary 9.17 justifies

arctan(x) =
∫ x

0

dt
1 + t2 =

∫ x

0

∞

∑
n=0

(−1)nt2n dt =
∞

∑
n=0

(−1)n

2n + 1
x2n+1.

This series for the arctangent converges by the alternating series test when x = 1, so
Theorem 9.29 implies

∞

∑
n=0

(−1)n

2n + 1
= lim

x↑1
arctan(x) = arctan(1) =

π

4
.(9.24)

A bit of rearranging gives the formula

π = 4
(

1− 1
3
+

1
5
− 1

7
+ · · ·

)
,

which is known as Gregory’s series for π.
Finally, Abel’s theorem opens up an interesting idea for the summation of series.

Suppose ∑∞
n=0 an is a series. The Abel sum of this series is

A
∞

∑
n=0

an = lim
x↑1

∞

∑
n=0

anxn.

Consider the following example.
Example 9.18. Let an = (−1)n so

∞

∑
n=0

an = 1− 1 + 1− 1 + 1− 1 + · · ·
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diverges. But,

A
∞

∑
n=0

an = lim
x↑1

∞

∑
n=0

(−x)n = lim
x↑1

1
1 + x

=
1
2

.

This shows the Abel sum of a series may exist when the ordinary sum does not.
Abel’s theorem guarantees when both exist they are the same.

Abel summation is one of many different summation methods used in areas
such as harmonic analysis. (For another see Exercise 4.26.)

Theorem 9.30 (Tauber). If ∑∞
n=0 an is a series satisfying

(a) nan → 0 and
(b) A ∑∞

n=0 an = A,
then ∑∞

n=0 an=A.

Proof. Let sn = ∑n
k=0 ak. For x ∈ (0, 1) and n ∈N,∣∣∣∣∣sn −

∞

∑
k=0

akxk

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
k=0

ak −
n

∑
k=0

akxk −
∞

∑
k=n+1

akxk

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
k=0

ak(1− xk)−
∞

∑
k=n+1

akxk

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
k=0

ak(1− x)(1 + x + · · ·+ xk−1)−
∞

∑
k=n+1

akxk

∣∣∣∣∣
≤ (1− x)

n

∑
k=0

k|ak|+
∞

∑
k=n+1

|ak|xk.(9.25)

Let ε > 0. According to (a) and Exercise 3.24, there is an N ∈N such that

n ≥ N =⇒ n|an| <
ε

2
and 1

n

n

∑
k=0

k|ak| <
ε

2
.(9.26)

Let n ≥ N and 1− 1/n < x < 1. Using the right term in (9.26),

(1− x)
n

∑
k=0

k|ak| <
1
n

n

∑
k=0

k|ak| <
ε

2
.(9.27)

Using the left term in (9.26) gives
∞

∑
k=n+1

|ak|xk <
∞

∑
k=n+1

ε

2k
xk

<
ε

2n
xn+1

1− x
(9.28)

<
ε

2
.

Combining (9.26) and (9.26) with (9.25) shows∣∣∣∣∣sn −
∞

∑
k=0

akxk

∣∣∣∣∣ < ε.

Assumption (b) implies sn → A. �
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9. Exercises

9.1. If fn(x) = nx(1− x)n for 0 ≤ x ≤ 1, then show fn converges pointwise, but
not uniformly on [0, 1].

9.2. Show sinn x converges uniformly on [0, a] for all a ∈ (0, π/2). Does sinn x
converge uniformly on [0, π/2)?

9.3. Show that ∑ xn converges uniformly on [−r, r] when 0 < r < 1, but not on
(−1, 1).

9.4. Prove ∑∞
n=0 xn/n! does not converge uniformly on R.

9.5. The series
∞

∑
n=0

cos nx
enx

is uniformly convergent on any set of the form [a, ∞) with a > 0.

9.6. A sequence of functions fn : S → R is uniformly bounded on S if there is an
M > 0 such that ‖ fn‖S ≤ M for all n ∈N. Prove that if fn is uniformly convergent
on S and each fn is bounded on S, then the sequence fn is uniformly bounded on S.

9.7. Let S ⊂ R and c ∈ R. If fn : S→ R is a Cauchy sequence, then so is c fn.

9.8. If S ⊂ R and fn, gn : S→ R are Cauchy sequences, then so is fn + gn.

9.9. Let S ⊂ R. If fn, gn : S→ R are uniformly bounded Cauchy sequences, then
so is fngn.

9.10. Prove or give a counterexample: If fn : [a, b]→ R is a sequence of monotone
functions converging pointwise to a continuous function f , then fn ⇒ f .

9.11. Prove there is a sequence of polynomials on [a, b] converging uniformly to a
nowhere differentiable function.
9.12. Prove Corollary 9.21.

9.13. If f is integrable on [−1, 1] and continuous at 0, then

lim
n→∞

∫ 1

−1
f (t)kn(t) dt = f (0).

9.14. If α ∈ (0, π), then show that

lim
n→∞

∫ π

α

sin nx
nx

dx = 0.

What about when α = 0?

9.15. If f is the nowhere differentiable function of Example 9.9, then what is
∫ 2

0 f ?
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9.16. Prove or give a counterexample: If a power series has (c− R, c + R) as its
interval of convergence for some R > 0 and the power series is absolutely convergent
at x = c− R, then it is absolutely convergent at x = c + R.

9.17. Estimate
∫ 1
−1 e−x2

dx to four decimal places.

9.18. Suppose an, n ∈ ω, is a bounded sequence of numbers. Show that
∞

∑
n=0

an

n!
xn(9.31)

converges to a differentiable function on R and find its derivative.

9.19. Prove π = 2
√

3
∞

∑
n=0

(−1)n

3n(2n + 1)
. (This is the Madhava-Leibniz series which

was used in the fourteenth century to compute π to 11 decimal places.) To how
many places must this series be added to get an 11 decimal place approximation of
π?

9.20. If exp(x) =
∞

∑
n=0

xn

n!
, then d

dx exp(x) = exp(x) for all x ∈ R.

9.21. Is
∞

∑
n=2

1
n ln n

Abel convergent?
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CHAPTER 10

Fourier Series

In the late eighteenth century, it was well-known that complicated functions
could sometimes be approximated by a sequence of polynomials. Some of the
leading mathematicians at that time, including such luminaries as Daniel Bernoulli,
Euler and d’Alembert began studying the possibility of using sequences of trigono-
metric functions for approximation. In 1807, this idea opened into a huge area
of research when Joseph Fourier used series of sines and cosines to solve several
outstanding partial differential equations of physics.1

In particular, he used series of the form
∞

∑
n=0

an cos nx + bn sin nx

to approximate his solutions. Series of this form are called trigonometric series, and
the ones derived from Fourier’s methods are called Fourier series. Much of the
mathematical research done in the nineteenth and early twentieth century was
devoted to understanding the convergence of Fourier series. This chapter presents
nothing more than the tip of that huge iceberg.

1. Trigonometric Polynomials

Definition 10.1. A function of the form

p(x) =
n

∑
k=0

αk cos kx + βk sin kx(10.1)

is called a trigonometric polynomial. The largest value of k such that |αk|+ βk| 6= 0 is
the degree of the polynomial. Denote by T the set of all trigonometric polynomials.

Evidently, all functions in T are 2π-periodic and T is closed under addition
and multiplication by real numbers. Indeed, it is a real vector space, in the sense of
linear algebra and the set {sin nx : n ∈N} ∪ {cos nx : n ∈ ω} is a basis for T . It is
also easy to see T is closed under differentiation.

The following theorem can be proved using integration by parts or trigonometric
identities.

Theorem 10.2. If m, n ∈ Z, then∫ π

−π
sin mx cos nx dx = 0,(10.2)

1Fourier’s methods can be seen in most books on partial differential equations, such as [4]. For
example, see solutions of the heat and wave equations using the method of separation of variables.
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∫ π

−π
sin mx sin nx dx =


0, m 6= n
0, m = 0 or n = 0
π m = n 6= 0

(10.3)

and
∫ π

−π
cos mx cos nx dx =


0, m 6= n
2π m = n = 0
π m = n 6= 0

.(10.4)

If p(x) is as in (10.1), then Theorem 10.2 shows

2πα0 =
∫ π

−π
p(x) dx,

and for k > 0,
παk =

∫ π

−π
p(x) cos kx dx, πβk =

∫ π

−π
p(x) sin kx dx.

Combining these, it follows that if

an =
1
π

∫ π

−π
p(x) cos nx dx and bn =

1
π

∫ π

−π
p(x) sin nx dx

for n ∈ ω, then

p(x) =
a0

2
+

∞

∑
n=1

an cos nx + bn sin nx.(10.5)

(Remember that all but a finite number of the an and bn are 0!)
At this point, the logical question is whether this same method can be used to

represent a more general 2π-periodic function. For any function f , integrable on
[−π, π], the coefficients can be defined as above; i.e., for n ∈ ω,

an =
1
π

∫ π

−π
f (x) cos nx dx and bn =

1
π

∫ π

−π
f (x) sin nx dx.(10.6)

The numbers an and bn are called the Fourier coefficients of f . The problem is whether
and in what sense an equation such as (10.5) might be true. This turns out to be
a very deep and difficult question with no short answer.2 Because we don’t know
whether equality in the sense of (10.5) is true, the usual practice is to write

f (x) ∼ a0

2
+

∞

∑
n=1

an cos nx + bn sin nx,(10.7)

indicating that the series on the right is calculated from the function on the left
using (10.6). The series is called the Fourier series for f .

Example 10.1. Let f (x) = |x|. Since f is an even functions and sin nx is odd,

bn =
1
π

∫ π

−π
|x| sin nx dx = 0

for all n ∈N. On the other hand,
2Many people, including me, would argue that the study of Fourier series has been the most

important area of mathematical research over the past two centuries. Huge mathematical disciplines,
including set theory, measure theory and harmonic analysis trace their lineage back to basic questions
about Fourier series. Even after centuries of study, research in this area continues unabated.
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Figure 10.1. This shows f (x) = |x|, s1(x) and s3(x), where sn(x) is the
nth partial sum of the Fourier series for f .

an =
1
π

∫ π

−π
|x| cos nx dx =

π, n = 0
2(cos nπ − 1)

n2π
, n ∈N

for n ∈ ω. Therefore,

|x| ∼ π

2
− 4 cos x

π
− 4 cos 3x

9π
− 4 cos 5x

25π
− 4 cos 7x

49π
− 4 cos 9x

81π
+ · · ·

(See Figure 10.1.)
There are at least two fundamental questions arising from (10.7): Does the

Fourier series of f converge to f ? Can f be recovered from its Fourier series, even if
the Fourier series does not converge to f ? These are often called the convergence
and representation questions, respectively. The next few sections will give some
partial answers.

2. The Riemann Lebesgue Lemma

We learned early in our study of series that the first and simplest convergence
test is to check whether the terms go to zero. For Fourier series, this is always the
case.

Theorem 10.3 (Riemann-Lebesgue Lemma). If f is a function such that
∫ b

a f exists,
then

lim
α→∞

∫ b

a
f (t) cos αt dt = 0 and lim

α→∞

∫ b

a
f (t) sin αt dt = 0.

Proof. Since the two limits have similar proofs, only the first will be proved.
Let ε > 0 and P be a generic partition of [a, b] satisfying

0 <
∫ b

a
f −D ( f , P) <

ε

2
.
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For mi = glb { f (x) : xi−1 < x < xi}, define a function g on [a, b] by g(x) = mi

when xi−1 ≤ x < xi and g(b) = mn. Note that
∫ b

a g = D ( f , P), so

0 ≤
∫ b

a
( f − g) <

ε

2
.(10.8)

Choose

α >
4
ε

n

∑
i=1
|mi|.(10.9)

Since f ≥ g,∣∣∣∣∫ b

a
f (t) cos αt dt

∣∣∣∣ = ∣∣∣∣∫ b

a
( f (t)− g(t)) cos αt dt +

∫ b

a
g(t) cos αt dt

∣∣∣∣
≤
∣∣∣∣∫ b

a
( f (t)− g(t)) cos αt dt

∣∣∣∣+ ∣∣∣∣∫ b

a
g(t) cos αt dt

∣∣∣∣
≤
∫ b

a
( f − g) +

∣∣∣∣∣ 1α n

∑
i=1

mi (sin(αxi)− sin(αxi−1))

∣∣∣∣∣
≤
∫ b

a
( f − g) +

2
α

n

∑
i=1
|mi|

Use (10.8) and (10.9).

<
ε

2
+

ε

2
= ε

�

Corollary 10.4. If f is integrable on [−π, π] with an and bn the Fourier coefficients
of f , then an → 0 and bn → 0.

3. The Dirichlet Kernel

Suppose f is integrable on [−π, π] and 2π-periodic on R, so the Fourier series
of f exists. The partial sums of the Fourier series are written as sn( f , x), or more
simply sn(x) when there is only one function in sight. To be more precise,

sn( f , x) =
a0

2
+

n

∑
k=1

(ak cos kx + bk sin kx) .

Notice sn is a trigonometric polynomial of degree at most n.
We begin with the following calculation.
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Figure 10.2. The Dirichlet kernel Dn(s) for n = 1, 4, 7.

sn(x) =
a0

2
+

n

∑
k=1

(ak cos kx + bk sin kx)

=
1

2π

∫ π

−π
f (t) dt +

n

∑
k=1

1
π

∫ π

−π
( f (t) cos kt cos kx + f (t) sin kt sin kx) dt

=
1

2π

∫ π

−π
f (t)

(
1 +

n

∑
k=1

2(cos kt cos kx + sin kt sin kx)

)
dt

=
1

2π

∫ π

−π
f (t)

(
1 +

n

∑
k=1

2 cos k(x− t)

)
dt

Substitute s = x− t and use the assumption that f is 2π-periodic.

=
1

2π

∫ π

−π
f (x− s)

(
1 + 2

n

∑
k=1

cos ks

)
ds(10.10)

The sequence of trigonometric polynomials from within the integral,

Dn(s) = 1 + 2
n

∑
k=1

cos ks,(10.11)

is called the Dirichlet kernel. Its properties will prove useful for determining the
pointwise convergence of Fourier series.

Theorem 10.5. The Dirichlet kernel has the following properties.
(a) Dn(s) is an even 2π-periodic function for each n ∈N.
(b) Dn(0) = 2n + 1 for each n ∈N.
(c) |Dn(s)| ≤ 2n + 1 for each n ∈N and all s.

(d) 1
2π

∫ π

−π
Dn(s) ds = 1 for each n ∈N.
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10-6 CHAPTER 10. FOURIER SERIES

(e) Dn(s) =
sin(n + 1/2)s

sin s/2
for each n ∈N and s/2 not an integer multiple of

π.

Proof. Properties (a)–(d) follow from the definition of the kernel.
The proof of property (e) uses some trigonometric manipulation. Suppose

n ∈N and s 6= mπ for any m ∈ Z.

Dn(s) = 1 + 2
n

∑
k=1

cos ks

Use the facts that the cosine is even and the sine is odd.

=
n

∑
k=−n

cos ks +
cos s

2
sin s

2

n

∑
k=−n

sin ks

=
1

sin s
2

n

∑
k=−n

(
sin

s
2

cos ks + cos
s
2

sin ks
)

=
1

sin s
2

n

∑
k=−n

sin(k +
1
2
)s

Since sin(−k + 1/2) = − sin((k− 1) + 1/2), all but one of the terms in this sum
cancel each other.

=
sin(n + 1

2 )s
sin s

2

�

According to (10.10),

sn( f , x) =
1

2π

∫ π

−π
f (x− t)Dn(t) dt.

Figure 10.3. This graph shows D50(t) and the envelope y = ±1/ sin(t/2).
As n gets larger, the Dn(t) fills the envelope more completely.
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This is similar to a situationwe’ve seen beforewithin the proof of theWeierstrass
approximation theorem, Theorem 9.13. The integral given above is a convolution
integral similar to that used in the proof of Theorem 9.13, although the Dirichlet
kernel isn’t a convolution kernel in the sense of Lemma 9.14 because it doesn’t satisfy
conditions (a) and (c) of that lemma. (See Figure 10.3.)

4. Dini’s Test for Pointwise Convergence

Theorem 10.6 (Dini’s Test). Let f : R→ R be a 2π-periodic function integrable on
[−π, π] with Fourier series given by (10.7). If there is a δ > 0 and s ∈ R such that∫ δ

0

∣∣∣∣ f (x + t) + f (x− t)− 2s
t

∣∣∣∣ dt < ∞,

then
a0

2
+

∞

∑
k=1

(ak cos kx + bk cos kx) = s.

Proof. Since Dn is even,

sn(x) =
1

2π

∫ π

−π
f (x− t)Dn(t) dt

=
1

2π

∫ 0

−π
f (x− t)Dn(t) dt +

1
2π

∫ π

0
f (x− t)Dn(t) dt

=
1

2π

∫ π

0
( f (x + t) + f (x− t)) Dn(t) dt.

By Theorem 10.5(d) and (e),

sn(x)− s =
1

2π

∫ π

0
( f (x + t) + f (x− t)− 2s) Dn(t) dt

=
1

2π

∫ π

0

f (x + t) + f (x− t)− 2s
t

· t
sin t

2
· sin(n +

1
2
)t dt.

Since t/ sin t
2 is bounded on (0, π), the Riemann-Lebesgue Lemma (Theorem 10.3)

shows sn(x)− s→ 0 as n→ ∞. Now use Corollary 8.11 to finish the proof. �

Example 10.2. Suppose f (x) = x for −π < x < π, f (π) = 0 and f is 2π-
periodic on R. This function is often called a sawtooth wave. Since f is odd, an = 0
for all n. Integration by parts gives bn = (−1)n+12/n for n ∈N. Therefore,

f ∼
∞

∑
n=1

(−1)n+1 2
n

sin nx.

For x ∈ (−π, π), let 0 < δ < min{π − x, π + x}. (This is just the distance from x
to closest endpoint of (−π, π).) Using Dini’s test, we see∫ δ

0

∣∣∣∣ f (x + t) + f (x− t)− 2x
t

∣∣∣∣ dt =
∫ δ

0

∣∣∣∣ x + t + x− t− 2x
t

∣∣∣∣ dt = 0 < ∞,

so
∞

∑
n=1

(−1)n+1 2
n

sin nx = x for − π < x < π.(10.12)

In particular, when x = π/2, (10.12) gives another way to derive (9.24). When
x = π, the series converges to 0, which is the middle of the “jump” for f .
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Figure 10.4. This plot shows the function of Example 10.2 and s8(x) for
that function.

This behavior of converging to the middle of a jump discontinuity is typical. To
see this, denote the one-sided limits of f at x by

f (x−) = lim
t↑x

f (t) and f (x+) = lim
t↓x

f (t),

and suppose f has a jump discontinuity at x with

s =
f (x−) + f (x+)

2
.

Guided by Dini’s test, consider∫ δ

0

∣∣∣∣ f (x + t) + f (x− t)− 2s
t

∣∣∣∣ dt

=
∫ δ

0

∣∣∣∣ f (x + t) + f (x− t)− f (x−)− f (x+)

t

∣∣∣∣ dt

≤
∫ δ

0

∣∣∣∣ f (x + t)− f (x+)

t

∣∣∣∣ dt +
∫ δ

0

∣∣∣∣ f (x− t)− f (x−)
t

∣∣∣∣ dt

If both of the integrals on the right are finite, then the integral on the left is also
finite. This amounts to a proof of the following corollary.

Corollary 10.7. Suppose f : R→ R is 2π-periodic and integrable on [−π, π]. If
both one-sided limits exist at x and there is a δ > 0 such that both∫ δ

0

∣∣∣∣ f (x + t)− f (x+)

t

∣∣∣∣ dt < ∞ and
∫ δ

0

∣∣∣∣ f (x− t)− f (x−)
t

∣∣∣∣ dt < ∞,

then the Fourier series of f converges to
f (x−) + f (x+)

2
.

The Dini test given above provides a powerful condition sufficient to ensure
the pointwise convergence of a Fourier series. One would be tempted to think a
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Figure 10.5. This is a plot of s19( f , x), where f is defined by (10.13).

consequence is that the Fourier series of a continuous function must converge to
that function at points of continuity. Unfortunately, this is not true. In Section 6, a
continuous function whose Fourier series diverges is constructed. In fact, there are
integrable functions with everywhere divergent Fourier series [16].

In addition to Dini’s test, there is a plethora of ever more abstruse conditions
that can be proved in a similar fashion to show pointwise convergence.

5. Gibbs Phenomenon

For x ∈ [−π, π) define

f (x) =

{ |x|
x , 0 < |x| < π

0, x = −π, 0
(10.13)

and extend f 2π-periodically to all of R. This function is often called a square wave.
A straightforward calculation gives

f ∼ 4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

.

Corollary 10.7 shows sn(x)→ f (x) everywhere. This convergence cannot be uni-
form because all the partial sums are continuous and f is discontinuous at every
integer multiple of π. A plot of s19(x) is shown in Figure 10.5. Notice the higher
peaks in the oscillation of sn(x) just before and after the jump discontinuities of f .
This behavior is not unique to f , as it can also be seen in Figure 10.4. If a function has
different one-sided limits at a point, the partial sums of its Fourier series will always
have such higher peaks near that point. This behavior is called Gibbs phenomenon.3

Instead of doing a general analysis of Gibbs phenomenon, we’ll only analyze
the simple case shown in the square wave f . It’s basically a calculus exercise.

3It is named after the American mathematical physicist, J. W. Gibbs, who pointed it out in 1899. He
was not the first to notice the phenomenon, as the BritishmathematicianHenryWilbrahamhad published
a little-noticed paper on it in 1848. Gibbs’ interest in the phenomenon was sparked by investigations
of the American experimental physicist A. A. Michelson who wrote a letter to Nature disputing the
possibility that a Fourier series could converge to a discontinuous function. The ensuing imbroglio is
recounted in a marvelous book by Paul J. Nahin [19].
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Figure 10.6. This is a plot of s9( f , x), where f is defined by (10.13).

To locate the peaks in the graph, differentiate the partial sums.

s′2n−1(x) =
d

dx
4
π

n

∑
k=1

sin(2k− 1)x
2k− 1

=
4
π

n

∑
k=1

cos(2k− 1)x

It is left as Exercise 10.13 to show this has a closed form.
s′2n−1(x) =

2
π

sin 2nx
sin x

Looking at the numerator, we see s′2n−1(x) has critical numbers at x = kπ/2n
for k ∈ Z. In the interval (0, π), s2n−1(kπ/2n) is a relative maximum for odd k and
a relative minimum for even k. (See Figure 10.6.) The value s2n−1(π/2n) is the
height of the left-most peak. What is the behavior of these maxima?

From Figure 10.7 it appears they have an asymptotic limit near 1.18. To prove
this, consider the following calculation.

s2n−1

( π

2n

)
=

4
π

n

∑
k=1

sin
(
(2k− 1) π

2n
)

2k− 1

=
2
π

n

∑
k=1

sin
(
(2k−1)π

2n

)
(2k−1)π

2n

π

n

Figure 10.7. This is a plot of sn( f , π/2n) for n = 1, 2, · · · , 100. The dots
come in pairs because s2n−1( f , π/2n) = s2n( f , π/2n).
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The last sum is a midpoint Riemann sum for the function sin x/x on the interval
[0, π] using a regular partition of n subintervals. Example 9.16 shows

2
π

∫ π

0

sin x
x

dx ≈ 1.17898.

Since f (0+) − f (0−) = 2, this is an overshoot of a bit less than 9%. There is a
similar undershoot on the other side. It turns out this is typical behavior at points
of discontinuity [23].

6. A Divergent Fourier Series

Nineteenth century mathematicians, including Fourier, Cauchy, Euler, Weier-
strass, Lagrange and Riemann, had computed the Fourier series for many functions.
They believed from these examples that the Fourier series of a continuous function
must converge to that function. Fourier went far beyond this claim in his impor-
tant 1822 book Théorie Analytique de la Chaleur, by asserting that any function could
be represented by linear combinations of functions of the form sin nt and cos nt.
Cauchy even published a flawed proof of this “fact.” It took almost a century and a
half to develop a clear understanding of what’s really going on.

In 1873, Paul du Bois-Reymond, partially settled the question by giving the
construction of a continuous function whose Fourier series diverges at a point [2].
It was finally shown in 1966 by Lennart Carleson [8] that the Fourier series of a
continuous function converges to that function everywhere with the exception of a
set of measure zero. At nearly the same time Kahane and Katznelson [15] showed
that given any set of measure zero there is a continuous function whose Fourier
series diverges on that set.

The problems around the convergence of Fourier series motivated a huge
amount of research that is still going on today. In this section, we look at the
tip of that iceberg by presenting a continuous function F(t) whose Fourier series
fails to converge when t = 0.

6.1. The Conjugate Dirichlet Kernel.

Lemma 10.8. If m, n ∈ ω and 0 < |t| < π for k ∈ Z, then
n

∑
k=m

sin kt =
cos(m− 1

2 )t− cos(m + 1
2 )t

2 sin t
2

.

Proof.
n

∑
k=m

sin kt =
1

sin t
2

n

∑
k=m

sin
t
2

sin kt

=
1

sin t
2

n

∑
k=m

(
cos

(
k− 1

2

)
t− cos

(
k +

1
2

)
t
)

=
cos

(
m− 1

2

)
t− cos

(
n + 1

2

)
t

2 sin t
2

�
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Definition 10.9. The conjugate Dirichlet kernel4 is

D̃n (t) =
n

∑
k=1

sin kt, n ∈N.(10.14)

We’ll not havemuchuse for the conjugateDirichlet kernel, except as a convenient
way to refer to sums of the form (10.14).

Lemma 10.8 immediately gives the following bound.

Corollary 10.10. If 0 < |t| < π, then

∣∣D̃n (t)
∣∣ ≤ 1∣∣sin t

2

∣∣ .
6.2. A SawtoothWave. If the function f (x) = (π− x)/2 on [0, 2π) is extended

2π-periodically to R, then the graph of the resulting function is a sawtooth wave.
(See Example 10.2.) It has a particularly nice Fourier series:

π − x
2
∼

∞

∑
k=1

sin kx
k

.

According to Corollary 10.7
∞

∑
k=1

sin kx
k

=

{
0, x = 2nπ, n ∈ Z

f (x), otherwise .

We’re interested in various partial sums of this series.

Lemma 10.11. If m, n ∈ ω with m ≤ n and 0 < |t| < 2π, then∣∣∣∣∣ n

∑
k=m

sin kt
k

∣∣∣∣∣ ≤ 1
m
∣∣sin t

2

∣∣ .
Proof.∣∣∣∣∣ n

∑
k=m

sin kt
k

∣∣∣∣∣ =
∣∣∣∣∣ n

∑
k=m

(
D̃k (t)− D̃k−1 (t)

) 1
k

∣∣∣∣∣
Use summation by parts.

=

∣∣∣∣∣ n

∑
k=m

D̃k (t)
(

1
k
− 1

k + 1

)
+

D̃n (t)
n + 1

− D̃n−1 (t)
m

∣∣∣∣∣
≤
∣∣∣∣∣ n

∑
k=m

D̃k (t)
(

1
k
− 1

k + 1

)∣∣∣∣∣+
∣∣∣∣ D̃n (t)

n + 1

∣∣∣∣+ ∣∣∣∣ D̃n−1 (t)
m

∣∣∣∣
4In this case, the word “conjugate” does not refer to the complex conjugate, but to the harmonic

conjugate. They are related by Dn (t) + iD̃n (t) = 1 + 2 ∑n
k=1 ekit.
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Apply Corollary 10.10.

≤ 1
2 sin t

2

(
n

∑
k=m

(
1
k
− 1

k + 1

)
+

1
n + 1

+
1
m

)

=
1

2 sin t
2

(
1
m
− 1

n + 1
+

1
n + 1

+
1
m

)
=

1
m sin t

2
.

�

Proposition 10.12. If n ∈N and 0 < |t| < π, then∣∣∣∣∣ n

∑
k=1

sin kt
k

∣∣∣∣∣ ≤ 1 + π.

Proof. ∣∣∣∣∣ n

∑
k=1

sin kt
k

∣∣∣∣∣ =
∣∣∣∣∣∣ ∑
1≤k≤ 1

t

sin kt
k

+ ∑
1
t <k≤n

sin kt
k

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ ∑
1≤k≤ 1

t

sin kt
k

∣∣∣∣∣∣+
∣∣∣∣∣∣ ∑

1
t <k≤n

sin kt
k

∣∣∣∣∣∣
≤ ∑

1≤k≤ 1
t

kt
k
+

1
1
t sin t

2

≤ ∑
1≤k≤ 1

t

t +
1

1
t

2
π

t
2

≤ 1 + π

�

6.3. A Continuous Functionwith aDivergent Fourier Series. The goal in this
subsection is to construct a continuous function F such that

lim sup sn(F, 0) = ∞.

This implies sn(F, 0) does not converge.
Example 10.3. The first step in the construction is to define a sequence of trigono-

metric polynomials that form the building blocks for F.

fn(t) =
1
n
+

cos t
n− 1

+
cos 2t
n− 2

+ · · ·+ cos(n− 1)t
1

− cos(n + 1)t
1

− cos(n + 2)t
2

− · · · − cos 2nt
n

Three facts about partial sums of fn will be important in what follows.
Since fn is a trigonometric polynomial of degree 2n, direct substitution shows

m ≥ 2n =⇒ sm( fn, 0) = fn(0) = 0.(10.15)
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Noting which terms cancel when t = 0, we see

1 ≤ m < 2n =⇒ sm( fn, 0) > 0.(10.16)

Finally,

0 ≤ m < n =⇒ sm( fn, 0) =
m

∑
k=0

1
n− k

.(10.17)

Rearrange the sum in the definition of fn and use the cosine sum identity to see

fn(t) =
n

∑
k=1

cos(n− k)t− cos(n + k)t
k

= 2 sin nt
n

∑
k=1

sin kt
k

.

This closed form for fn combined with Proposition 10.12 implies the sequence of
functions fn is uniformly bounded:

| fn(t)| =
∣∣∣∣∣2 sin nt

n

∑
k=1

sin kt
k

∣∣∣∣∣ ≤ 2 + 2π.(10.18)

At last, the main function can be defined.

F(t) =
∞

∑
n=1

f2n3 (t)
n2

The Weierstrass M-Test along with (10.18) implies F is uniformly convergent
and therefore continuous on R. Consider

s2m3 (F, 0) =
1

2π

∫ π

−π
F(t)D2m3 (t) dt

=
1

2π

∫ π

−π

∞

∑
n=1

f2n3 (t)
n2 D2m3 (t) dt

The uniform convergence allows the sum and integration to be reordered.

=
∞

∑
n=1

1
n2

1
2π

∫ π

−π
f2n3 (t)D2m3 (t) dt

=
∞

∑
n=1

1
n2 s2m3

(
f2n3 , 0

)
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Use (10.15), (10.16), (10.17) and the fact that ∑n
k=1 1/k > ln n (cf. Exercise 8.11).

=
∞

∑
n=m

1
n2 s2m3

(
f2n3 , 0

)
>

1
m2 s2m3

(
f2m3 , 0

)
=

1
m2

2m3

∑
k=1

1
k

>
1

m2 ln 2m3

= m ln 2

This implies, lim sup sn(F, 0) ≥ limm→∞ m ln 2 = ∞, so sn(F, 0) does not converge.

7. The Fejér Kernel

The basic question here is how to recover a function from its Fourier coefficients.
In the previous several sections, we’ve seen that pointwise convergence of the partial
sums won’t always work—even for continuous functions. A different method is
required. Instead of looking at the sequence of partial sums, consider a rolling
average instead:

σn( f , x) =
1

n + 1

n

∑
k=0

sn( f , x).

The trigonometric polynomials σn( f , x) are called the Cesàro means of the partial
sums.5 If limn→∞ σn( f , x) exists, then the Fourier series for f is said to be (C, 1)
summable at x. The idea is that this averaging will “smooth out” the partial sums,
making them more nicely behaved. It is not hard to show that if sn( f , x) converges
at some x, then σn( f , x) will converge to the same thing. But there are sequences
for which σn( f , x) converges and sn( f , x) does not (cf. Exercises 3.24 and 4.26).

As with sn(x), we’ll simply write σn(x) instead of σn( f , x), when it is clear
which function is being considered.

We start with a calculation.

5Ernesto Cesàro, 1859-1906, was an Italian mathematician. He introduced the (C, n) summation
methods in 1890.
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σn(x) =
1

n + 1

n

∑
k=0

sk(x)

=
1

n + 1

n

∑
k=0

1
2π

∫ π

−π
f (x− t)Dk(t) dt

=
1

2π

∫ π

−π
f (x− t)

1
n + 1

n

∑
k=0

Dk(t) dt(*)

=
1

2π

∫ π

−π
f (x− t)

1
n + 1

n

∑
k=0

sin(k + 1/2)t
sin t/2

dt

=
1

2π

∫ π

−π
f (x− t)

1
(n + 1) sin2 t/2

n

∑
k=0

sin t/2 sin(k + 1/2)t dt

Use the identity 2 sin A sin B = cos(A− B)− cos(A + B).

=
1

2π

∫ π

−π
f (x− t)

1/2
(n + 1) sin2 t/2

n

∑
k=0

(cos kt− cos(k + 1)t) dt

The sum telescopes.

=
1

2π

∫ π

−π
f (x− t)

1/2
(n + 1) sin2 t/2

(1− cos(n + 1)t) dt

Use the identity 2 sin2 A = 1− cos 2A.

=
1

2π

∫ π

−π
f (x− t)

1
(n + 1)

(
sin n+1

2 t
sin t

2

)2

dt(**)

The Fejér kernel is the sequence of functions highlighted above;6 i.e.,

Kn(t) =
1

(n + 1)

(
sin n+1

2 t
sin t

2

)2

, n ∈N.(10.19)

Comparing the lines labeled (*) and (**) in the previous calculation, we see another
form for the Fejér kernel is

Kn(t) =
1

n + 1

n

∑
k=0

Dk(t).(10.20)

Once again, we’re confronted with a convolution integral containing a kernel:

σn(x) =
1

2π

∫ π

−π
f (x− t)Kn(t) dt.

Theorem 10.13. The Fejér kernel has the following properties.7

(a) Kn(t) is an even 2π-periodic function for each n ∈N.
(b) Kn(0) = n + 1 for each n ∈ ω.

6Lipót Fejér, 1880-1959, was a Hungarian mathematician. He introduced the Fejér kernel in 1904.
7Compare this theorem with Lemma 9.14.
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Figure 10.8. A plot of K5(t), K8(t) and K10(t).

(c) Kn(t) ≥ 0 for each n ∈N.
(d) 1

2π

∫ π
−π Kn(t) dt = 1 for each n ∈ ω.

(e) If 0 < δ < π, then Kn ⇒ 0 on [−π, δ] ∪ [δ, π].
(f) If 0 < δ < π, then

∫ δ
−π Kn(t) dt→ 0 and

∫ π
δ Kn(t) dt→ 0.

Proof. Theorem 10.5 and (10.20) imply (a), (b) and (d). Equation (10.19)
implies (c).

Let δ be as in (e). In light of (a), it suffices to prove (e) for the interval [δ, π].
Noting that

0 < sin(δ/2) ≤ sin(t/2) ≤ 1

on [δ, π], it follows that for δ ≤ t ≤ π,

Kn(t) =
1

(n + 1)

(
sin n+1

2 t
sin t

2

)2

≤ 1
(n + 1)

(
1

sin t
2

)2

≤ 1
(n + 1)

1
sin2 δ

2

→ 0

It follows that Kn ⇒ 0 on [δ, π] and (e) has been proved.
Theorem 9.16 and (e) imply (f). �

Theorem 10.14 (Fejér). If f : R → R is 2π-periodic, integrable on [−π, π] and
continuous at x, then σn(x)→ f (x).
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10-18 CHAPTER 10. FOURIER SERIES

Proof. Since f is 2π-periodic and
∫ π
−π f (t) dt exists, so does

∫ π
−π

∫
( f (x− t)−

f (x)) dt. Theorem 8.3 gives an M > 0 so | f (x− t)− f (x)| < M for all t.
Let ε > 0 and choose δ > 0 such that | f (x)− f (y)| < ε/3 whenever |x− y| < δ.

By Theorem 10.13(f), there is an N ∈N so that whenever n ≥ N,
1

2π

∫ δ

−π
Kn(t) dt <

ε

3M
and 1

2π

∫ π

δ
Kn(t) dt <

ε

3M
.

We start calculating.

|σn(x)− f (x)| =
∣∣∣∣ 1
2π

∫ π

−π
f (x− t)Kn(t) dt− 1

2π

∫ π

−π
f (x)Kn(t) dt

∣∣∣∣
=

1
2π

∣∣∣∣∫ π

−π
( f (x− t)− f (x))Kn(t) dt

∣∣∣∣
=

1
2π

∣∣∣∣∫ −δ

−π
( f (x− t)− f (x))Kn(t) dt +

∫ δ

−δ
( f (x− t)− f (x))Kn(t) dt

+
∫ π

δ
( f (x− t)− f (x))Kn(t) dt

∣∣∣∣
≤
∣∣∣∣ 1
2π

∫ −δ

−π
( f (x− t)− f (x))Kn(t) dt

∣∣∣∣+ ∣∣∣∣ 1
2π

∫ δ

−δ
( f (x− t)− f (x))Kn(t) dt

∣∣∣∣
+

∣∣∣∣ 1
2π

∫ π

δ
( f (x− t)− f (x))Kn(t) dt

∣∣∣∣
<

M
2π

∫ −δ

−π
Kn(t) dt +

1
2π

∫ δ

−δ
| f (x− t)− f (x)|Kn(t) dt +

M
2π

∫ π

δ
Kn(t) dt

< M
ε

3M
+

ε

3
1

2π

∫ δ

−δ
Kn(t) dt + M

ε

3M
< ε

This shows σn(x)→ f (x). �

Theorem 10.14 gives a partial solution to the representation problem.
Corollary 10.15. Suppose f and g are continuous and 2π-periodic on R. If f and g

have the same Fourier coefficients, then they are equal.
Proof. By assumption, σn( f , t) = σn(g, t) for all n and Theorem 10.14 implies

0 = σn( f , t)− σn(g, t)→ f − g.

�

In the case of continuous functions, the convergence is uniform, rather than
pointwise.

Theorem 10.16 (Fejér). If f : R→ R is 2π-periodic and continuous, then σn(x) ⇒
f (x).

Proof. By Exercise 6.33, f is uniformly continuous. This can be used to show
the calculation within the proof of Theorem 10.14 does not depend on x. The details
are left as Exercise 10.15. �

A perspicacious reader will have noticed the similarity between Theorem 10.16
and the Weierstrass Approximation Theorem 9.13. In fact, the Weierstrass Ap-
proximation Theorem can be proved from Theorem 10.16 using power series and
Theorem 9.24. (See Exercise 10.16.)
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Figure 10.9. These plots illustrate the functions of Example 10.4. On the
left are shown f (x), s8(x) and σ8(x). On the right are shown f (x), σ3(x),
σ5(x) and σ20(x). Compare this with Figure 10.4.

Example 10.4. As in Example 10.2, let f (x) = x for −π < x ≤ π and extend f
to be periodic on R with period 2π. Figure 10.9 shows the difference between the
Fejér and classical methods of summation. Notice that the Fejér sums remain much
more smoothly affixed to the function and do not show Gibbs phenomenon.

8. Exercises

10.1. Prove Theorem 10.2.
10.2. Suppose f : R→ R is 2π-periodic and integrable on [−π, π]. If b− a = 2π,
then

∫ b
a f =

∫ π
−π f .

10.3. Let f : [−π, π)→ R be a function with Fourier coefficients an and bn. If f is
odd, then an = 0 for all n ∈ ω. If f is even, then bn = 0 for all n ∈N.

10.4. If f (x) = sgn(x) on [−π, π), then find the Fourier series for f .

10.5. Is
∞

∑
n=1

sin nx the Fourier series of some function?

10.6. Let f (x) = x2 when −π ≤ x < π and extend f to be 2π-periodic on all of R.
Use Dini’s Test to show sn( f , x)→ f (x) everywhere.

10.7. Suppose f is a 2π-periodic function such that

f ∼ a0

2
+

∞

∑
n=1

an cos nx + bn sin nx.

Prove ( a0

2

)2
+

∞

∑
n=1

a2
n + b2

n ≤
∫ π

−π
f 2.

10.8. Let f (x) = π− |x| on [−π, π] and extend f periodically to all of R. Show the
Fourier series of f is uniformly convergent on R.

June 29, 2020 http://math.louisville.edu/∼lee/ira

http://www.math.louisville.edu/~lee/RealAnalysis/


10-20 CHAPTER 10. FOURIER SERIES

10.9. Use Exercise 10.6 to prove π2

6
=

∞

∑
n=1

1
n2 .

10.10. Use the Fourier series for |x| to prove
∞

∑
n=1

1
n2 =

π2

6
.

10.11. If
a0

2
+

∞

∑
n=1

an cos nx + bn sin nx ⇒ f(10.22)

on [−π, π), then the series on the left side of (10.22) is the Fourier series for f .

10.12. If f : R → R is periodic with period p and continuous on [0, p], then f is
uniformly continuous.

10.13. Prove
n

∑
k=1

cos(2k− 1)t =
sin 2nt
2 sin t

for t 6= kπ, k ∈ Z and n ∈N. (Hint: 2 ∑n
k=1 cos(2k− 1)t = D2n(t)− Dn(2t).)

10.14. The function g(t) = t/ sin(t/2) is undefined whenever t = 2nπ for some
n ∈ Z. Show that it can be redefined on the set {2nπ : n ∈ Z} to be periodic and
uniformly continuous on R.

10.15. Prove Theorem 10.16.
10.16. Prove the Weierstrass approximation theorem using Fourier series and
Taylor’s theorem.

10.17. If f (x) = x for −π ≤ x < π, can the Fourier series of f be integrated
term-by-term on (−π, π) to obtain the correct answer?

10.18. Suppose f is a 2π-periodic function such that

f ∼ a0

2
+

∞

∑
n=1

an cos nx + bn sin nx.

Prove ( a0

2

)2
+

∞

∑
n=1

a2
n + b2

n ≤
∫ π

−π
f 2.

This is called Bessel’s inequality.

10.19. Suppose f is 2π-periodic, integrable and decreasing on [0, 2π). Show that
f ∼ a0

2
+

∞

∑
n=1

an cos nx + bn sin nx, where bn ≥ 0 for all n.

The following exercises explore the relationship between Fourier series and
differentiation.
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8. EXERCISES 10-21

10.20. Let f : R→ R be 2π-periodic and integrable on [−π, π]. If f is differentiable
at some point, then the Fourier series for f converges to f at that point.

10.21. If f (x) = x for −π ≤ x < π, can the Fourier series of f be differentiated
term-by-term on (−π, π) to obtain the correct answer?

10.22. Let f be a 2π-periodic function such that f ′ is continuous. If an and bn are
the Fourier coefficients of f , then

∞

∑
n=1
|an| < ∞ and

∞

∑
n=1
|bn| < ∞.

Moreover, nan → 0 and nbn → 0.

10.23. If f satisfies the conditions of Exercise 10.22, then the Fourier series of f
converges absolutely and to f uniformly.

10.24. Let f be 2π-periodic with a continuous second derivative. Then

f ′(x) =
∞

∑
n=1

nbn cos nx− nan sin nx

and this is the Fourier series of f ′.
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Index

A ∑∞
n=1, Abel sum, 9-21

ℵ0, cardinality of N, 1-11
Sc, complement of S, 1-3
c, cardinality of R, 2-11
D (.) Darboux integral, 8-5
D (.) . lower Darboux integral, 8-5
D (., .) lower Darboux sum, 8-4
D (.) . upper Darboux integral, 8-5
D (., .) upper Darboux sum, 8-4
\, set difference, 1-3
Dn (t) Dirichlet kernel, 10-5
D̃n (t) conjugate Dirchlet kernel, 10-11
∈, element, 1-1
6∈, not an element, 1-1
∅, empty set, 1-2
⇐⇒ , logically equivalent, 1-4

Kn(t) Fejér kernel, 10-16
Fσ , F sigma set, 5-11
BA, all functions f : A→ B, 1-13
Gδ, G delta set, 5-11
glb , greatest lower bound, 2-7
iff, if and only if, 1-4
=⇒ , implies, 1-4
<, ≤, >, ≥, 2-3
∞, infinity, 2-7
∩, intersection, 1-3
∧, logical and, 1-2
∨, logical or, 1-2
lub , least upper bound, 2-7
n, initial segment, 1-10
N, natural numbers, 1-2
ω, nonnegative integers, 1-2
part ([a, b]) partitions of [a, b], 8-1
→ pointwise convergence, 9-1
P(A), power set, 1-2
Π, indexed product, 1-5
R, real numbers, 2-8
R (.) Riemann integral, 8-3
R (., ., .) Riemann sum, 8-2
⊂, subset, 1-1
(, proper subset, 1-1
⊃, superset, 1-1
), proper superset, 1-1

∆, symmetric difference, 1-3
×, product (Cartesian or real), 1-5, 2-1
T , trigonometric polynomials, 10-1
⇒ uniform convergence, 9-4
∪, union, 1-2
Z, integers, 1-2
Abel’s test, 4-11
absolute value, 2-5
accumulation point, 3-8
almost every, 5-10
alternating harmonic series, 4-10
Alternating Series Test, 4-12
and ∧, 1-2
Archimedean Principle, 2-9
axioms of R

additive inverse, 2-1
associative laws, 2-1
commutative laws, 2-1
completeness, 2-8
distributive law, 2-1
identities, 2-1
multiplicative inverse, 2-1
order, 2-3

Baire category theorem, 5-11
Baire, René-Louis, 5-11
Bertrand’s test, 4-9
Bolzano-Weierstrass Theorem, 3-8, 5-3
bound

lower, 2-7
upper, 2-7

bounded, 2-7
above, 2-7
below, 2-7

Cantor, Georg, 1-12
diagonal argument, 2-10
middle-thirds set, 5-12

cardinality, 1-10
countably infinite, 1-11
finite, 1-10
uncountably infinite, 1-12

Cartesian product, 1-5
Cauchy

A-2



Index A-3

condensation test, 4-5
continuous, 6-13
criterion, 4-3
Mean Value Theorem, 7-6
sequence, 3-10

Cauchy-Schwarz Inequality, 8-22
ceiling function, 6-8
clopen set, 5-2
closed set, 5-1
closure of a set, 5-4
Cohen, Paul, 1-12
compact, 5-6

equivalences, 5-7
comparison test, 4-4
completeness, 2-6
composition, 1-6
connected set, 5-8
continuous, 6-5

Cauchy, 6-13
left, 6-8
right, 6-8
uniformly, 6-12

continuum hypothesis, 1-12, 2-11
convergence

pointwise, 9-1
uniform, 9-4

convolution kernel, 9-9
critical number, 7-5
critical point, 7-5

Darboux
integral, 8-5
lower integral, 8-5
lower sum, 8-4
Theorem, 7-8
upper integral, 8-5
upper sum, 8-4

De Morgan’s Laws, 1-4
dense set, 2-9, 5-10

irrational numbers, 2-9
rational numbers, 2-9

derivative, 7-1
chain rule, 7-3
rational function, 7-3

derived set, 5-2
De Morgan’s Laws, 1-4
diagonal argument, 2-10
differentiable function, 7-6
Dini

Test, 10-7
Theorem, 9-4

Dirac sequence, 9-9
Dirichlet

conjugate kernel, 10-11
function, 6-7
kernel, 10-5

disconnected set, 5-8

extreme point, 7-5

Fejér
kernel, 10-16
theorem, 10-17

field, 2-1
complete ordered, 2-8

field axioms, 2-1
finite cover, 5-6
floor function, 6-8
Fourier series, 10-2
full measure, 5-10
function, 1-6

bijective, 1-7
composition, 1-6
constant, 1-7
decreasing, 7-7
differentiable, 7-6
even, 7-16
image of a set, 1-8
increasing, 7-7
injective, 1-7
inverse, 1-8
inverse image of a set, 1-8
monotone, 7-7
odd, 7-16
one-to-one, 1-7
onto, 1-7
salt and pepper, 6-7
surjective, 1-7

Fundamental Theorem of Calculus, 8-13, 8-15

geometric sequence, 3-1
Gibbs phenomenon, 10-9
Gödel, Kurt, 1-12
golden ratio, 3-13
greatest lower bound, 2-7

Heine-Borel Theorem, 5-6
Hilbert, David, 1-12

indexed collection of sets, 1-4
indexing set, 1-4

infinity ∞, 2-8
initial segment, 1-10
integers, 1-2
integral

Cauchy criterion, 8-9
change of variables, 8-17

integration by parts, 8-14
intervals, 2-5
irrational numbers, 2-9
isolated point, 5-2

Kummer’s test, 4-8

least upper bound, 2-7
left-hand limit, 6-4
limit

left-hand, 6-4
right-hand, 6-4
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unilateral, 6-4
limit comparison test, 4-6
limit point, 5-2
limit point compact, 5-7
Lindelöf property, 5-5
L’Hôpital’s Rules, 7-11

Maclaurin series, 9-20
meager, 5-11
Mean Value Theorem, 7-6
metric, 2-6

discrete, 2-6
space, 2-6
standard, 2-6

n-tuple, 1-5
natural numbers, 1-2
Nested Interval Theorem, 5-4
nested sets, 5-4
nowhere dense, 5-10

open cover, 5-5
finite, 5-6

open set, 5-1
or ∨, 1-2
order isomorphism, 2-8
ordered field, 2-3
ordered pair, 1-5
ordered triple, 1-5

partition, 8-1
common refinement, 8-1
generic, 8-1
norm, 8-1
refinement, 8-1
selection, 8-2

Peano axioms, 2-1
perfect set, 5-12
portion of a set, 5-10
power series, 9-17

analytic function, 9-20
center, 9-17
domain, 9-17
geometric, 9-17
interval of convergence, 9-17
Maclaurin, 9-20
radius of convergence, 9-17
Taylor, 9-20

power set, 1-2

Raabe’s test, 4-9
ratio test, 4-7
rational function, 6-8
rational numbers, 2-2, 2-9
real numbers, R, 2-8
relation, 1-6

domain, 1-6
equivalence, 1-6
function, 1-6

range, 1-6
reflexive, 1-6
symmetric, 1-6
transitive, 1-6

relative maximum, 7-5
relative minimum, 7-5
relative topology, 5-7
relatively closed set, 5-7
relatively open set, 5-7
Riemann

integral, 8-3
Rearrangement Theorem, 4-14
sum, 8-2

Riemann-Lebesgue Lemma, 10-3
right-hand limit, 6-4
Rolle’s Theorem, 7-6
root test, 4-6

salt and pepper function, 6-7, 8-17
Sandwich Theorem, 3-4
Schröder-Bernstein Theorem, 1-9
sequence, 3-1

accumulation point, 3-8
bounded, 3-2
bounded above, 3-2
bounded below, 3-2
Cauchy, 3-10
contractive, 3-11
convergent, 3-2
decreasing, 3-4
divergent, 3-2
Fibonacci, 3-1, 3-13
functions, 9-1
geometric, 3-1
hailstone, 3-1
increasing, 3-4
lim inf, 3-8
limit, 3-2
lim sup, 3-8
monotone, 3-4
recursive, 3-1
subsequence, 3-7

sequentially compact, 5-7
series, 4-1

Abel’s test, 4-11
absolutely convergent, 4-10
alternating, 4-12
alternating harmonic, 4-10
Alternating Series Test, 4-12
Bertrand’s test, 4-9
Cauchy Criterion, 4-3
Cauchy’s condensation test, 4-5
Cesàro summability, 4-17
comparison test, 4-4
conditionally convergent, 4-10
convergent, 4-1
divergent, 4-1
Fourier, 10-2
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Index A-5

geometric, 4-2
Gregory’s, 9-21
harmonic, 4-2
Kummer’s test, 4-8
limit comparison test, 4-6
p-series, 4-5
partial sums, 4-1
positive, 4-4
Raabe’s test, 4-9
ratio test, 4-7
rearrangement, 4-13
root test, 4-6
subseries, 4-17
summation by parts, 4-11
telescoping, 4-3
terms, 4-1

set, 1-1
clopen, 5-2
closed, 5-1
compact, 5-6
complement, 1-3
complementation, 1-3
dense, 5-10
difference, 1-3
element, 1-1
empty set, 1-2
equality, 1-1
Fσ , 5-11
Gδ, 5-11
intersection, 1-2
meager, 5-11
nowhere dense, 5-10
open, 5-1
perfect, 5-12
proper subset, 1-1
subset, 1-1
symmetric difference, 1-3
union, 1-2

square wave, 10-9
subcover, 5-5
subspace topology, 5-7
summation

Abel, 9-21
by parts, 4-11
Cesàro, 4-17

Taylor series, 9-20
Taylor’s Theorem, 7-9

integral remainder, 8-14
topology, 5-2

finite complement, 5-14
relative, 5-14
right ray, 5-2, 5-14
standard, 5-2

totally disconnected set, 5-8
trigonometric polynomial, 10-1

unbounded, 2-7
uniform continuity, 6-12

uniform metric, 9-6
Cauchy sequence, 9-6
complete, 9-6

unilateral limit, 6-4

Weierstrass
Approximation Theorem, 9-8, 10-18
M-Test, 9-7
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