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Preface 

Our objective has been to write a text that would come into the statistics 
market between the two texts written by Paul G. Hoel (or the two texts 
written by John E. Freund). We have tried to cover most of the material in 
their mathematical statistics books, but we have used mathematics only 
slightly mojre difficult than that used in their elementary books. Calculus is 
used only ijn sections where the argument is difficult to develop without it; 
although tips puts the calculus student at an advantage, we have made a 
special effort to design these sections so that a student without calculus can 
also follow^ 

By requiring a little more mathematics than many other elementary 
texts we haye been able to treat many important topics normally covered only 
by books ill mathematical statistics: for example, the relation of sampling 
and inference to the theory of probability and random variables. Another 
objective has been to show the logical relation between topics that have often 
appeared ir texts as separate and isolated chapters: for example, the equiv¬ 
alence of interval estimation and hypothesis testing, of the t test and F test, 
and of analjysis of variance and regression using dummy variables. In every 
case our motivation has been twofold: to help the student appreciate—indeed 
enjoy—the junderlying logic, and to help him arrive at answers to practical 
problems, j 

We haje placed high priority on the regression model, not only because 
regression is widely regarded as the most powerful tool of the practicing 
statistician, .but also because it provides a good focal point for understanding 
such related techniques as correlation and analysis of variance. 

Our orjginal aim was to write an introduction to statistics for economic 
students, but as our efforts increased, so it seems did our ambitions. Ac- 
cordingly, tjiis book is now written for students in economics and other social 
sciences, for business schools, and for service courses in statistics provided 
by mathematics departments. Some of the topics covered are typically 
omitted frojm introductory courses, but are of interest to such a broad 
audience: for example, multiple comparisons, multiple regression, Bayesian 
decisions, a id game theory. 

vii 



viii PREFACE 

A statistics text aimed at several audiences—including students with and 
without calculus—raises major problems of evenness and design. The text 
itself is kept simple, with the more difficult interpretations and developments 
reserved for footnotes and starred sections. In all instances these are optional; 
a special effort has been made to allow the more elementary student to skip 
these completely without losing continuity. Moreover, some of the finer 
points are deferred to the instructor’s manual. Thus the instructor is allowed, 
at least to some degree, to tailor the course to his students’ background. 

Problems are also starred (*) if they are more difficult, or set with an 
arrow (=>) if they introduce important ideas taken up later in the text, or 
bracketed () if they duplicate previous problems, and thus provide optional 

exercise only. 
Our experience has been that this is about the right amount of material 

for a two-semester course; a single semester introduction is easily designed 
to include the first 7, 8, or 9 chapters. We have also found that majors in 
economics who may be pushed a bit harder can cover the first 10 chapters in 
one semester. This has allowed us in the second semester to use our forth¬ 
coming Econometrics text which provides more detailed coverage of the 
material in Chapters 11 to 15 of this book, plus additional material on serial 
correlation, identification, and other econometric problems. 

So many have contributed to this book that it is impossible to thank 
them all individually. However, a special vote of thanks should go, without 
implication, to the following for their thoughtful reviews: Harvey J. Arnold, 
David A. Belsley, Ralph A. Bradley, Edward Greenberg, Leonard Kent, 
R. W. Pfouts, and especially Franklin M. Fisher. We are also indebted to our 
teaching assistants and the students in both mathematics and economics at 
the University of Western Ontario and Wesleyan (Connecticut) who suggested 
many improvements during a two-year classroom test. 

London, Ontario, Canada 

September, 1968 

Thomas H. Wonnacott 

Ronald J. Wonnacott 
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chapter I 

Introduction 

The worn “statistics” originally meant the collection of population and 
economic information vital to the state. From that modest beginning, 
statistics has grown into a scientific method of analysis now applied to all 
the social anjd natural sciences, and one of the major branches of mathe¬ 
matics. The present aims and methods of statistics are best illustrated with 
a familiar example. 

1-1 EXAMPLE 

Before every presidential election, the pollsters try to pick the winner; 
specifically, jhey try to guess the proportion of the population that will 
vote for each candidate. Clearly, canvassing all voters would be a hopeless 
task. As the only alternative, they survey a sample of a few thousand in the 
hope that thej sample proportion will be a good estimate of the total popula¬ 
tion proportion. This is a typical example of statistical inference or statistical 

induction: the (voting) characteristics of an unknown population are inferred 
from the (vo ;ing) characteristics of an observed sample. 

As any pollster will admit, it is an uncertain business. To be sure of the 
population, 4ne has to wait until election day when all votes are counted. 
Yet if the sampling is done fairly and adequately, we can have high hopes 
that the sample proportion will be close to the population proportion. This 
allows us to estimate the unknown population proportion n from the ob¬ 
served sample proportion (P), as follows: 

with crucial 
we that we a 

it — P ± a small error d-1) 

questions being, “How small is this error?” and “How sure are 
e right?” 

1 



2 INTRODUCTION 

Since this typifies the very core of the book, we state it more precisely 

in the language of Chapter 7 (where the reader will find the proof and a 

fuller understanding). 

If the sampling is random and large enough, we can state with 95% 

confidence that 

7T = P ± 1.96JiLLzJt} (1-2) 

where tt and P are the population and sample proportion, and n is the sample 

size. 

As an illustration of how this formula works, suppose we have sampled 

1,000 voters, with 600 choosing the Democratic candidate. With this sample 

proportion of .60, equation (1-2) becomes 

or approximately 

77 = .60 ± 1.96 
.60(1 - .60) 

1000 

77 = .60 db .03 (1-3) 

Thus, with 95% confidence, we estimate the population proportion voting 

Democrat to be between .57 and .63. 

This is referred to as a confidence interval, and making estimates of this 

kind will be one of our major objectives in this book. The other objective 

is to test hypotheses. For example, suppose we wish to test the hypothesis 

that the Republican candidate will win the election. On the basis of the 

information in equation (1-3) we would reject this claim; it is no surprise 

that a sample result that pointed to a Democratic majority of 57 to 63% of 

the vote will also allow us to reject the hypothesis of a Republican victory. 

In general, there is a very close association of this kind between confidence 

intervals and hypothesis tests; indeed, we will show that in many instances 

they are equivalent procedures. 

We pause to make several other crucial observations about equation 

(1-3). 

1. The estimate is not made with certainty; we are only 95 % confident. 

We must concede the possibility that we are wrong—and wrong because we 

were unlucky enough to draw a misleading sample. Thus, even if less than 

half the population is in fact Democratic, it is still possible, although un¬ 

likely, for us to run into a string of Democrats in our sample. In such circum¬ 

stances, our conclusion (1-3) would be dead wrong. Since this sort of bad 

luck is possible, but not likely, we can be 95% confident of our conclusion. 

2. Luck becomes less of a factor as sample size increases; the more 

voters we canvass, the less likely we are to draw a predominantly Democratic 
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sample fromj a Republican population. Hence, the more precise our predic¬ 

tion. Formally, this is confirmed in equation (1-2); in this formula we note 

that the errir term decreases with sample size. Thus, if we increased our 

sample to 10,000 voters, and continued to observe a Democratic proportion 

of .60, our 95% confidence interval would become the more precise: 

.60 ±,01 (1-4) 

3. Suppjose our employer indicates that 95% confidence is not good 

enough. “Come back when you are 99% sure of your conclusion.” We now f 

have two options. One is to increase our sample size; as a result of this 

additional ctjst and effort we will be able to make an interval estimate with 

the precision, of (1-4) but at a higher level of confidence. But if the additional o 

resources for further sampling are not available, then we can increase our 

confidence ojily by making a less precise statement—i.e., that the proportion 
of Democrats is 

.60 ± .02 

The less we commit ourselves to a precise prediction, the more confident 

we can be tljat we are right. In the limit, there are only two ways that we 

can be certaip of avoiding an erroneous conclusion. One is to make a state¬ 

ment so imprecise that it cannot be contradicted.1 The other is to sample the 

whole population2; but this is not statistics—it is just counting. Meaningful 

statistical conclusions must be prefaced by some degree of uncertainty. 

1-2 INDUCTION AND DEDUCTION 

Figure lj-1 illustrates the difference between inductive and deductive 

reasoning. Induction involves arguing from the specific to the general, or 

(in our caseFfrom the sample to the population. Deduction is the reverse— 

arguing front the general to the specific, i.e., from the population to the 

sample.3 Equation (1-1) represents inductive reasoning; we are arguing from 

a sample proportion to a population proportion. But this is only possible 

1E g, 77 = .50 ± .50. 

2 Or, almost ttje whole population. Thus it would not be necessary to poll the whole 

population to determine the winner of an election; it would only be necessary to continue 

canvassing unti one candidate comes up with a majority. (It is always possible, of course, 

that some peop e change their mind between the sample survey and their actual vote, but 
we don’t deal with this issue here.) 

3 The student can easily keep these straight with the help of a little Latin, and recognition 
that the population is the point of reference. The prefix in means “into” or “towards.” 

Thus fi/duction s arguing towards the population. The prefix de means “away from.” Thus 

Eduction is arguing away from the population. Finally, statistical mference is based 
on mduction. 
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FIG. 1-1 Induction and deduction contrasted, (a) Induction (statistical inference). 

(b) Deduction (probability). 

if we study the simpler problem of deduction first. Specifically, in equation 

(1-1), we note that the inductive statement (that the population proportion 

can be inferred from the sample proportion) is based on a prior deduction 

(that the sample proportion is likely to be close to the population proportion). 

Chapters 2 through 5 are devoted to deduction. This involves, for 

example, the study of probability, which is useful for its own sake, (e.g., in 
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Game Theory); but it is even more useful as the basis for statistical induction 

dealt with ih Chapters 7 through 10. In short, in the first 6 chapters we ask, 

“With a given population, how will a sample behave? Will the sample be 

‘on target’I’ Only when this deductive issue is resolved can we move to 

questions of statistical inference. This involves, in the later chapters, turning 

the argumek around and asking “How precisely can we make inferences 

about an unknown population from an observed sample?” 

1-3 WHY SAMPLE? 

We sample, rather than study the whole population, for any one of 
three reasonjs. 

(1) Lirrfited resources. 

(2) Limited data available. 

(3) Destructive testing. 

1. Limited resources almost always play some part. Tn our example of 

preelection polls, funds were not available to observe the whole population; 
but this is not the only reason for sampling. 

2. Sometimes there is only a small sample available, no matter what cost 

may be incurred. For example, an anthropologist may wish to test the theory 

that the two civilizations on islands A and B have developed independently, 

with their oWn distinctive characteristics of weight, height, etc. But there is 

no way in which he can compare the two civilizations in toto. Instead he 

must make ap inference from the small sample of the 50 surviving inhabitants 

of island A |nd the 100 surviving inhabitants of island B. The sample size 

is fixed by nature, rather than by the researcher’s budget. 

There ap many examples in business. An allegedly more efficient 

machine may be introduced for testing, with a view to the purchase of addi¬ 

tional similar units. The manager of quality control simply cannot wait 

around to observe the entire population this machine will produce. Instead 

a sample run must be observed, with the decision on efficiency based on an 
inference fropi this sample. 

3. Sampling may involve destructive testing. For example, suppose we 

have produced a thousand light bulbs and wish to know their average life. 

It would be folly to insist on observing the whole population of bulbs until 
they burn ouft. 

1-4 HOW TO SAMPLE 

In statistics, as in business or any other profession, it is essential to 

distinguish between bad luck and bad management. For example, suppose a 
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man bets you S100 at even odds that you will get an ace (i.e., 1 dot) in rolling 

a die. You accept the challenge, roll an ace, and he wins. He’s a bad manager 

and you’re a good one; he has merely overcome his bad management with 

extremely good luck. Your only defense against this combination is to get 

him to keep playing the game—with your dice. 
If we now return to our original example of preelection polls, we note 

that the sample proportion of Democrats may badly misrepresent the 

population proportion for either (or both) of these reasons. No matter how 

well managed and designed our sampling procedure may be, we may be 

unlucky enough to turn up a Democratic sample from a Republican popula¬ 

tion. Equation (1-2) relates to this case; it is assumed that the only complica¬ 

tion is the luck of the draw, and not mismanagement. From that equation 

we confirm that the best defense against bad luck is to “keep playing”; by 

increasing our sample size, we improve the reliability of our estimate. 

The other problem is that sampling can be badly mismanaged or biased. 

For example, in sampling a population of voters, it is a mistake to take their 

names from a phone book, since poor voters who often cannot afford 

telephones are badly underrepresented. 
Other examples of biased samples are easy to find and often amusing. 

“Straw polls” of people on the street are often biased because the interviewer 

tends to select people that seem civil and well dressed; the surly worker or 

harassed mother is overlooked. A congressman can not rely on his mail as 

an unbiased sample of his constituency, for this is a sample of people with 

strong opinions, and includes an inordinate number of cranks and members 

of pressure groups. 
The simplest way to ensure an unbiased sample is to give each member 

of the population an equal chance of being included in the sample. This, in 

fact, is our definition of a “random” sample.4 For a sample to be random, 

it cannot be chosen in a sloppy or haphazard way; it must be carefully 

designed. A sample of the first thousand people encountered on a New York 

street corner will not be a random sample of the U.S. population. Instead, 

it is necessary to draw some of our sample from the West, some from the 

East, and so on. Only if our sample is randomized, will it be free of bias and, 

equally important, only then will it satisfy the assumptions of probability 

theory, and allow us to make scientific inferences of the form of (1-2). 

In some circumstances, the only available sample will be a nonrandom 

one. While probability theory often cannot be strictly applied to such a 

sample, it still may provide the basis for a good educated guess—or what we 

might term the art of inference. Although this art is very important, it cannot 

be taught in an elementary text; we, therefore, consider only scientific 

4 Strictly speaking, this is called “simple random sampling,” to distinguish it from more 

complex types of random sampling. 
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inference based on the assumption that samples are random. The techniques 
for ensurt lg this are discussed further in Chapter 6. C 

FURTHER READINGS 
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SerfcalLa,nid95O0SbOrn’ R-’“Stra^in P°ker> ^ and ^r.” 

5. Sloijiim, M. J., Sampling.” Simon and Shuster Paperback, 1966. 



chapter 2 

Descriptive Statistics for Samples 

2-1 INTRODUCTION 

We have already discussed the primary purpose of statistics—to make 

an inference to the whole population from a sample. As a preliminary step, 

the sample must be simplified, and reduced to a few descriptive numbers; 

each is called a sample statistic.1 
In the very simple example of Chapter 1, the pollster would record the 

answers of the 1000 people in his sample, obtaining a sequence such as 

D D R D R. . . . where D and R represent Democrat and Republican. The 

best way of describing this sample by a single number is the statistic P, the 

sample proportion of Democrats; this will be used to make an inference 

about 77, the population proportion. Admittedly, this statistic is trivial to 

compute. In the sample of the previous chapter, computing the sample 

proportion (.60) required only a count of the number voting Democrat 

(600), followed by a division by sample size, (n = 1,000). 
We now turn to the more substantial computations of statistics to 

describe two other samples. 

(a) The results when a die is thrown 50 times. 

(b) The average height of a sample of 200 American men. 

2-2 FREQUENCY TABLES AND GRAPHS 

(a) Discrete Example 

Each time we toss the die, we record the number of dots X, which takes 

on the values 1, 2, . . . , 6. A is called a “discrete” random variable because 

it assumes only a finite (or countably infinite) number of values. 

1 Later, we shall have to define a statistic more rigorously; but for now, this will suffice. 
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Table 2-1 Results of Tossing a Die 50 Times 

6, 2, 2, 3,5, 1,2, 6,.4, 2. 

The 50 throws yield a string of 50 numbers such as given in Table 2-1. 

To simplify, we keep a running tally of each of the six possible outcomes 

in Table 2-2| In column 3 we note that 9 is the frequency / (or total number 

of times) that we rolled a 1; i.e., we obtained this outcome on 9/50 of our 

tosses. Fornjally, this proportion (.18) is called relative frequency (fin)' it 
is computeddn column 4. 

Table 2- 2 Calculation of the Frequency, and Relative Frequency of the 
Number of Dots in 50 Tosses of a Die 

(1) 

Number of Dots 

(2) 

Tally 

(3) 

Frequency (/) 

(4) 
Relative Frequency 

(M 

mj 
rm 
ma 
rm 
rm 
rm 

mi 
rrn 
i 
in 
TH4 

9 
12 
6 
8 

10 
5 

.18 

.24 
.12 
.16 
.20 
.10 

jo. 

•SO 

If =50 =„ 

where £ / is “the sum of all /” 
I (f/n) = 1.00 

The information in column 3 is called a “frequency distribution/’ and 

is graphed ml Figure 2-1. The “relative frequency distribution” in column 4 

can be similarly graphed; the student who does so will note that the two 

pntical except for the vertical scale. Hence, a simple change of 

transforms Figure 2-1 into a relative frequency distribution. 

graphs are id 

vertical scale 

This now givis us an immediate picture of the sample result. 

(b) Continuous Example 

Suppose ~~rr^jthat a sample of 200 men is drawn from a certain population, 

with the height of each recorded in inches. The ultimate aim will be an in- 

ference about the average height of the whole population; but first we must 
efficiently summarize and describe our sample. 
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Pjq.> 2-1 Frequency and relative frequency distribution of the results of a sample of 50 

tosses of a die. 

In this example, height (in inches) is our random variable X. In this 
case, X is continuous; thus an individual’s height might be any value, such 
as 64.328 inches.2 It no longer makes sense to talk about the frequency of 
this specific value of X; chances are we’ll never again observe anyone exactly 
64.328 inches tall. Instead we can tally the frequency of heights within a 

Table 2-3 Frequency, and Relative Frequency of the Heights of a Sample 
of 200 Men 

Cell 

No. 

(1) 

Cell 
Boundaries 

(2) 

Cell 
Midpt 

(3) 

Tally 

(4) 

Frequency, 

f 

(5) 
Relative 

Frequency 

//« 

1 55.5-58.5 57 II 2 .010 

2 58.5-61.5 60 mi ii 7 .035 

3 61.5-64.5 63 rmmimdrm ii 22 .110 

4 66 13 .065 

5 69 44 .220 

6 72 36 .180 

7 75 32 .160 

8 78 13 .065 

9 81 21 .105 

10 82.5-85.5 84 10 .050 

2 / = 200 = n y flu = 1-00 

2 We shall overlook the fact that although height is conceptually continuous, in practice 

the measured height is rounded to a few decimal places at most, and is therefore discrete. 
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class or cell, (e.g., 58.5" to 61.5") as in column 3 of Table 2-3. Then the 

frequency and relative frequency are tabulated as before. 

The cells have been chosen somewhat arbitrarily, but with the following 
convenience > in mind. 

1. The number of cells is a reasonable compromise between too much 
detail and too little. 

2. Each cell midpoint, which hereafter will represent all sample values 
in the cell, i$ a convenient whole number. 

The grouping of the 200 observations into cells is illustrated in Figure 

2-2, where ep.ch observation is represented by a dot. For simplicity, we have 

assumed thit the observations are recorded exactly, rather than being 

I ;; 

I I I I I I I I I I I 

57 60 63 66 69 72 75 78 81 84 Height 

FIG. 2-2 The grouping of observations into cells, illustrating the first two columns of 

Table 2-3. 

rounded ofF.j (Rounding, to the nearest integer, for example, may in fact be 

regarded as a preliminary grouping into cells of width 1.) 

The grouped data is then graphed in Figure 2-3. This frequency dis¬ 

tribution, oij so-called histogram, uses bars to represent frequencies as a 

reminder that the observations occurred throughout the cell, and not just 
at the midpoint. 

We nov^ turn to the question of how we may characterize a sample 

frequency distribution with a single descriptive measure, or sample statistic. 
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In fact, there are two highly useful descriptions: the first is the central point 

of the distribution and the second is its spread. 

2-3 CENTERS (MEASURES OF LOCATION) 

There are several different concepts of the “center” of a frequency 

distribution. Three of these, the mode, the median, and the mean, are 

discussed below. We shall start with the simplest. 

(a) The Mode3 

This is defined as the most frequent value. In our example of heights, 

the mode is 69 inches, since this cell has the greatest frequency, or highest 

bar in Figure 2-3. Generally, the mode is not a good measure of central 

tendency, since it often depends on the arbitrary grouping of the data. 

(The student will note that, by redefining cell boundaries, the mode can be 

shifted up or down considerably.) It is also possible to draw a sample where 

the largest frequency (highest bar in the group) occurs at two (or even more) 

heights; this unfortunate ambiguity is left unresolved, and the distribution 

is “bimodal.” 

(b) The Median 

This is the 50th percentile; i.e., the value below which half the values 

in the sample fall. Since it splits the observations into two halves, it is some¬ 

times called the middle value. In the sample of 200 shown in Figure 2-2, 

the median (say, 71.46) is most easily derived by reading off the 100th value4 

from the left; but if the only information available is the frequency distribu¬ 

tion in Figure 2-3, it must be calculated choosing an appropriate value 

within the median cell.5 

3 “Mode” means fashion, in French. 
4 Or 101st value. This ambiguity is best resolved by defining the median as the average of 

the 100th and 101st values. In a sample with an odd number of observations, this ambiguity 

does not arise. 
5 The median cell is clearly the 6th, since this leaves 44% (i.e., 88) of the sample values 

below and 38 % (i.e., 76) above. The median value can be closely approximated by moving 
through this median cell from left to right to pick up another 6% of the observations. 

Since this cell includes 18% of the observations, we move 6/18 of the way through this 

cell. Thus our median approximation is 70.5 + (6/18 x 3) = 71.5. 



(c) The Mean (X) 

This is 

This is the 

*2, • • • , *n) 

CENTERS 13 

m 
sometimes called the arithmetic mean, or simply the average, 

host common central measure. The original observations (Xu 
are simply summed, then divided by n. Thus 

X = - O^t + x2 + ■ ■ ■ + xn) 
n n 

Definition. x = I y x 
n 7*. 1 (2-la) 

where Xt represents the ith value of X, and 4 means “equals, by definition.” 

aVe!iage our sarnple could be computed by summing all 
00 observations and dividing by 200. However, this tedious calculation can 

be greatly sinjphfied by using the grouped data in Table 2-3. Let ft represent 

the number of observations in cell 1, where each observation may be ap¬ 

proximated6 py the cell midpoint, xx. Similar approximations hold for all 
the other cells too, so that 

A((*i 
n 

+ X1 + ' * ‘ + XX) + (%2 + X2 + * * * x2) 
fi times f-2 times 

+ •'■+(*10 + 
/xo times 

where ~ represents approximate equality; it follows that 

1 

In genera 

width. Note that 

the observed valuks X,. 

{fixi + f2x2 + * • */io^io} 

fio _ ~ xi + — x2 -f 
n n 

-ip) 
t’=i \n / 

M) (2-1 b) 

In approximating each observed value by the midpoint of its cell, we sometimes err 

moon ,y’F0me!iT TtiVely; but unless ™ are very unlucky, ttese errors wTtend 
EVGu *1the unluck,est case> however, the error must be smaller than half the cell 

w,a,h k„,. rw Wmidpoints are designated by the small to dia^^Sl 

UNlVbwlfV USURIES 

CARN EG 1 E-LI ELLON UN'VERSITY 
PITTSBURGH, PENNSYLVANIA 15213 
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CENTERS 

where (fjn) 1= relative frequency in the ith cell, and m = number of cells. 
We number: this equation (2-lb) to emphasize that it is the equivalent 
formulation of (2-la), appropriate for grouped data. In our example, the 
calculation <j>F (2-lb) is based on the data in Table 2-3, and is shown in 
column 3 of Table 2-4. We can think of this as a “weighted” average, with 
each x valuejweighted appropriately by its relative frequency. 

(d) Comparijon of Mean, Median and Mode 

These three measures of center are compared in Figure 2-4. In part a we 
show a distribution which has a single peak and is symmetric (i.e., one half 
is the mirroj image of the other); in this case all three central measures 
coincide. But when the distribution is skewed to the right as in b, the median 

Mode X 
Median 
Mean 
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falls to the right of the mode; with the long scatter of observed values strung 

out in the right hand tail, it is generally necessary to move from the mode 

to the right to pick up half the observations. Moreover, the mean will generally 

lie even further to the right, as explained in the next section. 

Interpreting the Mean by an Analogy from Physics. The 200 observations 

in the sample of heights appear in Figure 2-2 as points along the X-axis. If 

we think of these observations as masses (each observation a one pound 

mass, for example), and the X-axis as a weightless supporting rod, we might 

ask where this rod balances. Our intuition suggests “the center.” 

The precise balancing point, also called the center of gravity, is given by 

the formula 

which is exactly the formula for the mean. Thus we are quite justified in 

thinking of the sample mean as the “balancing point” of the data, and 

representing it in graphs as a fulcrum A- 
It can easily be seen why the mean lies to the right of the median in a 

right-skewed distribution, as shown in Figure 2-4b. Experiment by trying to 

balance at the median. Fifty percent of the observed values now lie on either 

side, but the observations to the right tend to be further distant, tilting the 

distribution to the right. Balance can be achieved only by placing the fulcrum 

(mean) to the right of the median. 

PROBLEMS 

2-1 Show the mean, mode, and median in our example in Figure 2-3. Is the 

mode a good central measure in this case ? 

2-2 Find the mean, median, and mode of the following sample of litter sizes. 

Graph the frequency distribution. 

7 4 10 9 15 12 7 

8 11 4 14 10 5 14 

1 10 8 12 6 5 

2-3 Sort the following data into 8 cells, whose midpoints are 55, 60 . . . 90. 

55.31 81.47 64.90 70.88 86.02 77.25 76.73 84.21 56.02 

84.92 90.23 78.01 88.05 73.37 87.09 57.41 85.43 

74.76 86.51 86.37 76.15 88.64 84.71 66.05 83.91 
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lately what are the mean, median, and mode? Graph the 
distribution. r 

DEVIATIONS 17 

Approxirrii 

frequency! 

2 4 °f ProbIem 2-3 int0 4 celIs> whose midpoints are 60, 70, 
oU, 90. Then answer the same questions as in Problem 2-3. 

F the answers t0 the previous two problems in the following 
2-5 Summariz 

table. 

Mean Median Mode 

Original data 

(exact values) 

—Fane grouping 

(Problem 2-3) 

—Coarse grouping 

(Problem 2-4) 

77.78 81.47 Not defined 

} 

(a) Do yon see why the mode is not a good measure? 

(b) Wdl cjtarse grouping always give worse approximations (for the 

mean and median) than tine grouping, or will it do so usually ? 

2-4 DEVIATIONS (MEASURES OF SPREAD) 

Al.thougb r*af hei8ht may be the most important characteristic 
(statistic) of thejsample, it is also important to know how spread out or varied 
are the sample observations. 

As with measures of center, we find that there are several measures of 
4f1 * WA ctort xtjiTU ~ ‘_1 . spread; we star with the simplest 

(a) The rahge is simply the distance between the largest and smallest 
value. 

Range = largest-smallest observation 

For men’s heights the range is 30. It may be fairly criticized on the grounds 

that it tells us nothing about the distribution except where it ends And these 

two extreme values may be very unreliable. We therefore turn to measures of 
spread which ta ce account of all observations. 

The average deviation, as its name implies, is found by calculating the 

deviation of eaA observed value (X{) from the mean (X); these deviations 

(A,. X) are thpn averaged by summing and dividing by n. Although this 
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sounds like a promising measure, in fact it is worthless; positive deviations 
always cancel negative deviations, leaving an average of zero.7 This sign 
problem can be avoided by ignoring all negative signs and taking the average 

of the absolute values of the deviations, as follows. 

(b) The Mean Absolute Deviation = - 2 \Xf - X\ (2-4) 
V / V\ A — 1 

Intuitively, this is a good measure of spread; the problem is that it is mathe¬ 
matically intractable.8 We therefore turn to an alternative means of avoiding 

the sign problem—namely, squaring each deviation. 

(c) Mean Squared Deviation (MSD) = - 2 (^ “ xf 
M i = l 

(2-5a) 

If we use grouped data as in Table 2-4, this formula becomes 

Mean Squared Deviation 2(^ 
i=l - Mf) (2-5b) 

This is a good measure, provided we wish only to describe the sample. But 
typically we shall want to go one step further, and use this to make a statistical 
inference about the population. For this purpose it is better to use the divisor 
n - 1 rather than9 n. The resulting sample statistic is referred to as the vari¬ 

ance. 

(d) Variance, s2 
a 1 
“ n - 1 

i & - x)2 (2-6) 

7 This may be proved as follows: 

Average deviation = - ^ (T? — X) ^ 
n ^=l 

n ** 

= -XXi~~ ("X) n ^ n 

= X-X=0 

Average deviation = 0 ^ ^ 

8 One difficulty is the problem of differentiating the absolute value function. 
9 Technically, this makes the sample variance an unbiased estimator of the population 

variance. See Chapter 7. 
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es of MSD and j2 are calculated in Table 2-4, again exploiting 
2s of grouped data.10 

fyard deviation is the square root of the variance. 

(2-10) 

Note that by. taking the square root, we compensate for having squared 
terms ln defining variance in (2-6), so that, is reduced to the same units as the 
X observations. 

In conclusion, the sample mean Jis the most common measure of center 
and the sample standard deviation j the most common measure of spread 
Borrowing the language of physics, we refer to X and 52 as the first and 
second moments of the sample. 

PROBLEMS1 

2-6 Computejthe variance of the data of Problem 2-2: 

(a) Using the definition (2-6). (b) Using the easier formula (2-7). 

2-7 For^he gf°uPe^ data of Problem 2-4, compute the range, mean absolute 
deviation, ancf 

(2-8)1 For the 
standard deviation, 

grouped data of Problem 2-3, compute the standard deviation. 

teatody donefaren‘heSeS 316 °Pti°na'’ S'nCe C,0SeI>' ParaM Problems the Mudont 

2-5 LINEAr| TRANSFORMATIONS (CODING) 

(a) Change of Origin 

.. SupP°S®iat the men s heights in our example are measured relative to 
a norm” of 69 inches, (i.e., 5 feet 9 inches). Since Xt denotes the old 

10 Strictly to simpjlify the calculations, r2 is often computed from the following formula. 

= (2-7a) 

For grouped data 

This computation 

this becomes 

H4fi-nX*} 
n - 1 

!is shown in the last two columns of Table 2-4. 

(2-7b) 

A “a mat iwu cuiumns or laoie z-4 

,d mfretanr(n'v6hflW (2'7a) are e<luimlen1- We may forget the common divisor („ - l), and merely prove! 

The left side is V p,. - Xf = £ (Xf - 2XtX + Xs) 

= Ix?-2XZx( + zx* 
= z xi - 2X(nX) + nX* 

~ 2 Xf — nX* = right side 

(2-8) 

(2-9) 
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in inches (eg., 83), let ^ denote the new measure (e.g., 14). The two measures 

are related by the equation 
X’ = X, - 69 l2"11) 

In nonmathematical terms, this new measurement is simply “the number of 

inches an individual is taller ( + ) or shorter (-) than 69 inches. It is easy to 

guess that the mean using this new measure is just 69 less than the mean using 

the old measure, i.e.: - 
T = X - 69 (2~12) 

On the other hand, the spread of our observations will be exactly the same, 

regardless of which measurement is used, i.e.: 

, _ c (2-13) 
Sx' — sx 

New X[ = Xi - 69 

FIG. 2-5 Change of origin (shift). 

These two points are illustrated in Figure 2-5 and may be stated in theorem 

form as follows:11 

11 Proof: To prove (2-15) consider 

but from (2-14) 

= - 2 (*, - a) 
n ^ 

V> 

= X - a 

To prove (2-16) it will be enough to prove the equality of variances. 

= -2-VUX-a)- (X-a)f 

By (2-14) and (2-15) 
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If X! = Xt - a 

then X' — X — a 

and = Sx 

(b) Change of Scale 

‘trintaT” °ifeiheaLt J^denotert1* “ T" Standard name> for sample 
T ! 6 *he "eW he,Sht in trintals> a" old height of 

New Xi* = 

FIG, 2-6 Change of scale (shrink). 

Xt = 81 inchesjwould be converted to X* = 27 trintals, and generally 

X* - Li 
(2-17) 

inches^ ^ ^ ^ heighttrintals is Just V3 the mean height in 

= ** (2-18) 

terrrom Fig”e M ,he ”*"d”d d“»“»»® ■'» 

^x* — isx 

These two points can be stated generally as 
(2-19) 

Theorem II 

If X? - bxf (2-20) 

then X*=bX (2-21) 
and Sj. = \b\ sx ) (2-22) 

foh-T£S,"?'S *"*•-'*»**«.«.»m„.nexercise 
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(c) General Linear Transformations 

It is now appropriate to combine the above two theorems into one. 

Consider the general linear12 transformation: 

Theorem III 

a + bXi 

a + bX 

, ,,, (2-25) 
and sY — 1^1 sx 

observations (Xt) are linearly transformed (mto 

by the factor ,*|. with no effect 

from a. 

(d) Application to Coding 

In future chapters we shall draw upon this theory of linear transforma- 

,io„ — However, i, *» b.ve ™Tab 
applied to find a simpler computat.on of X and than that shown 

2-4 This involves three steps. 

1. Code all the * values into a new set of T; values. Our computations 

will be most simplified if we use the formula 

X- — one of the cell midpoints (2-26) 

^ “ cell width 

In our example of students’ heights, this becomes 

>'.-J!Lr?-(=rK)*' 
This is clearly a linear transformation of the form of (2-23), with 

„ = -V = -23 

(2-27) 

given any values of „ and b, the graph „f y ~ + Mf is« straiSht 

line (with slope b and T-intercept a). f ,,, . i 

13 More precisely, stretched if 1*1 > 1, but shrunk ,f 1*1 < !• 
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Moreover, it is evident that when Xi — 69, Yt — 0. Furthermore, as Xi 

progresses by steps of 3, 7Z progresses in unit steps. With these guidelines 
we can fill in the appropriate Y values in column 2 of Table 2-5; diagrammati- 

cally, this coding is illustrated in Figure 2-7. 
2. Compute the mean and standard deviation of the Y values. We note 

in the successive columns of Table 2-5 how easily this is now done. With 
F and Sy now in hand, we are in a position to: 

3. Translate this mean and standard deviation back into X values. This 
involves applying the theory of linear transformations (Theorem III) to 

(2-27). 

M=r) + *T-V (2-28) 

and 

Sr = isx (2-29) 

From (2-28) 
X = 3 ? + 69 (2-30) 

- 71.80 

From (2-29) 
sx = 3jf (2-31) 

= 6.35 

Thus the simple coded computation of X and sx is complete. 

PROBLEMS 

(2-9) By coding the heights shown in Table 2-5 from inches (X) into feet 
(7), compute X and sx. Show your linear transformation with a 
diagram similar to Figure 2-7. Why is the coding used in the text 

preferred ? 
2-10 Use coding to find the mean and standard deviation of the data in 

Problem 2-4. 

2-11 Find the mean of the following: 

239510 239250 239860 239360 
239480 239430 239230 239680 
239370 239290 239850 

{Hint. It is natural to simply drop the first 3 digits of every 
number, and just work with the numbers 510, 250, .... This is 
mathematically justified—it is just the linear transformation 7=7- 

239,000) 
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2-12 To show that nonlinear transformations are trickier, see if this is true. 
If 7 L X2, then F = X2, when there are three values of Xt—1, 3, 5. 

(2-13) Using coding, find the mean and standard deviation of 
(a) Tjhe data of Problem 2-3. 
(b) The data of Problem 2-2. 

(2-14) Find the mean and standard deviation of the following sample of 50 
executive ages. Graph the relative frequency distribution. 

35 46 63 69 54 50 62 68 38 40 
55 43 42 59 45 44 57 47 48 46 
43 64 49 36 59 60 42 60 42 38 
51 50 66 63 57 56 51 38 61 54 
50 44 48 69 64 37 56 53 62 52 

Review Problems 

2-15 The weekly wage rates for 5 major industrial groupings are listed 
below. Find the average weekly wage. 

‘ industry 

% olj employment 
Weekly wage 

30% 25 
$120 150 

2-16 Suppose the number of children was recorded for each of 25 families, 
obtaining the following data: 

2, 4, 1, 0, 1, 3, 0, 4, 2, 6, 0, 0, 2, 3, 1, 5, 4, 
0, 3, 1, 2, 5, 3, 4, 1. 

(a) Construct a frequency table and graph. 
(b) Find the sample mean and standard deviation. 

(2-17) The following table* gives the actual percent of farmland that was 
harvested (as opposed to pasture, woodlot, etc.) in the U.S.A. in 1959, 
according to region. Compute the percentage harvested in the U.S.A. 
as a whole. 

* Source. Statistical Abstract of the United States, 1963, pp. 625, 614. 
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Region 
Amount of Farmland 

(millions of acres) Percent Harvested 

North 421 46.7 
South 357 21.0 
Mountain 264 8.7 
Pacific 80 18.8 

U.S.A. 1,122 ? 

2-18 A certain species of beetle was sampled, yielding the following 10 
lengths, in centimeters: 1.5, 1.0, 1.2, 1.0, 1.1, 1.0, 1.6, 1.2, 1.4, 2.0. 
Find the median, mean, range, variance, and standard deviation 
(a) For the original lengths. 
(b) If the lengths are expressed in mm (1 cm = 10 mm). 
(c) If the lengths are expressed as “centimeters above a standard beetle 
height of 1.1,” (i.e., the sample values become +.4, —.1, .1, — .1, 

...). 

2-19 Throw a die 100 times (or else simulate this by consulting the random 
numbers in Appendix Table Ha). Graph the relative frequency dis¬ 
tribution, and calculate the sample mean 
(a) After 10 throws; 
(b) After 25 throws; 
(c) After 100 throws; 
(d) After millions of throws (guess). 



chap :er 3 

3-1 INTRODUCTION 

In the next four chapters we make deductions about a sample from 
known population; this is a necessary prelude to the induction involved i: 

apters 7 to 10, where we shall make inferences about an unknown popula 
tion from a i observed sample. r r 

If the population of American voters is 55% Democrat, we cannot b. 
certain that pxactly the same percentage of Democrats will occur in a randon 
sample. Nevertheless, it is “likely” that “close to” this percentage will tun 
up in our simple. Our objective is to define “likely” and “close to” mort 
precisely; iri this way we shall be able to make useful predictions. First 

owever, wd must lay a good deal of ground work. Predictions in the face 
of uncertamty or chance require a knowledge of the laws of probability, and 
this chapter rs devoted exclusively to their development. We start with the 
simplest exajnples tossing coins and rolling dice. 

Consjdejr again our example in Chapter 1, in which the reader gambled 
against rolling an ace on a die. This gamble was based on the judgement that 
this outcome was unlikely. Now let’s be more specific, and try to define its 
probability precisely. Intuitively, since this is but one of six equally probable 
outcomes, wfe might (correctly) guess its probability to be one in six or 
one-sixth—pfovided it is an honest die. Alternatively we might say that if 
the die were thrown a large number of times, the relative frequency (of rolling 
an ace) wou|d approach one-sixth (as in Problem 2-19). This is a useful 
operational approach; thus, if we suspect that this die is not, in fact, a fair 
one, we couM test by tossing it many times, and observing whether or not 
the relative frequency of this outcome approached one sixth 

This definition of probability as “the limit of relative frequency,” is 
formally statdd as: M J 

27 
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Definition 

A 771 
Pr (^) A Jim - 

«->oo '* 

(3-1) 

where ey is the outcome (‘ ace ) u , 
n is the total number of times that the trial is repeated (die is 
Wl is the number of times that the outcome e1 occurs, [also called «(^i) or 

the frequency / of ex] 

- is therefore the relative frequency of ex 
n 

We shall use this definition of probability because it provides the clearest 
intuitive idea. However, you will find in Section 3-6 that it involves conceptual 
difficulties; thus, if you choose to study probability further you will soon be 
forced to turn to the axiomatic approach. 

PROBLEMS 

3-1 (a) Throw a thumbtack 50 times. Define tossing “the point up as ex. 

Record your results as in the following table, and keep a permanent 

record for future reference. 

Trial Number Frequency of “Ups” Relative Frequency 
(„) Point Up? (n,) Accumulated («i/«) 



ELEMENTARY PROPERTIES 29 

(b) Show your results on the following graph: 

(c) What jis your best guess of the probability of tossing the point up ? 
Of tossing the point down? 

3-2 In tossing1 a coin, define a “head” as e±; and proceed as in 3-1 (a) and 
(b), tossijg it 100 times. (Record your results for use in Chapter 9.) 

3-3 Roll a die 100 times. Define rolling a four as e4, and proceed as in 
3-1 (a) and (b). (Record your results for future use. You may use the 
same data as in Problem 2-19.) 

3-4 Roll a pair of dice, and define the event E to occur if you get a total of 
7 or 11. Repeat 50 times, as in 3-1 (a) and (b). What is your estimate 
of Pr (£")? Can you derive Pr (E) theoretically, in order to be exact, 
and also skve the empirical work? 

3-2 ELEMENTARY PROPERTIES OF PROBABILITY 

We generalize by considering an experiment with N elementary outcomes 
(el9 e2, . . . , . . . , eN). The relative frequency njn of any outcome e.t 
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Next we note that the frequencies of all possible outcomes sum to n. 

«i + n2 + • • • n v = n 

Dividing this equation by n, we find that all the relative frequencies sum to 1. 

- + -+••• + 
n n n 

This same relation is true in the limit, so that 

Pr (<?!> + Pr (e2) + • • • Pr (ex) = 1 (3-4) 

3-3 EVENTS AND THEIR PROBABILITIES 

(a) The Outcome Set—An Example 

In the previous section, the die example was an experiment where the 
outcomes el9 e29 . . . , e6 were numerical, and involved no complications. 
Usually, an experiment will have a more complex set of outcomes. 

For example, suppose the experiment consists of 
flipping a coin three times (or, equivalently, flipping 
three coins at once). A typical outcome (designated 
as e4) is the sequence H, T, T. The list of all possible 
outcomes, or outcome set, is shown in Figure 3-1. 
Since most experiments of interest to the practical 
statistician are sampling experiments, the outcome 
set is also often known as the sample space S. 

We note several features. The order in which the 
set of eight outcomes {el9 e2, . . . , e8} is listed doesn’t 
matter. Whenever this is the case, it is a mathematical 
convention to use curly brackets. Thus the two out¬ 
come sets {el9 e2, . . . , e8} and {e2, el9 e8, . . . , <?5} are 
the same set. 

However, since (H, H, T) and (H, T, H) are separate and distinct out¬ 
comes, the order in which H and T appear is an essential feature; in this case 
we use round brackets and call the result an ordered triple. 

Finally, we note that an experimental outcome involves an entire 
ordered triple. It is tempting to try to tear each triple into three parts, and 
think of 24 outcomes. This mistake is avoided by writing down a dot for each 
of the 8 elementary outcomes. (Hereafter, we shall often refer to outcomes 
as “points” for short.) 

C~ \ 
• (H, H, H) = e\ 

• (H, H, T) = <?2 

. (H, T, H) = <?3 

• (H, T, T) = e4 

• (T, H, H) = e5 

• (T, H, T) = e6 

• (T, T, H) = e7 

. (T, T, T) = e8 

_J 
FIG. 3-1 Outcome set 

in flipping a coin three 

times. 
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To simplify calculations without restricting our concepts in any way, 
let us suppose that the coin is fairly tossed, so that all 8 outcomes are equally 
probable. Since all 8 probabilities must sum to 1 according to (3-4) we have 

Pie,) = P{e2) = • • • = P(e8) = i O5) 

(b) Events 

Continuing the example of 3 coins, consider the event 

£: at least 2 heads 

This event ihcludes outcomes el9 <?a, e8, and e5 in Figure 3-1. We might say 

Outcome set, or 
sample space, S 

PIG. 3-2 An event as a subset of points within an outcome set. 

the event £ is the collection of points {el9 <?2, e3, <?5} as in Figure 3-2. In fact, 
this is a convenient way to generally define an event: 

Definition _ , _ 

An event £ is a subset of the outcome set S (3-6) 

We now ask “What is the probability of £?” Using the definition of 
limiting relative frequency, we may write 

Pr (£) = lim — (3-7) 
■ n -+ oc ft 

frequency of £. But of course £ occurs whenever the outcomes 
e5 occur. Thus 

nE = n 1 + ^2 + }h + w5 
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and from (3-7) 

Pr (£) = lim Wl + + ns + n5 
n 

= Hm /«! + «.+ '!* + «s\ 
\« rt n n) 

= Pr fe) + Pr (e2) + Pr (ea) + Pr (e5) (3-8; 

=8+i+l+i=t 

Table 3-1 Several Events in the Experiment of Figure 3-1 (Tossing 3 Coins) 

Three alternative ways of naming an event 

(4) 

Probability 

(1) 
Arbitrary 

Symbol 

for Event 

(2) 

Description 

(3) 

Outcome List 

E At least 2 heads iei? e2-> e3> ^5} 1/8 + 1/8 + 1/8 -f 1/8 = 1/2 
F Second coin head, 

followed by tail {^2? ^5} 1/4 
G Fewer than 2 heads {^4, £g, 67, £g} 1/2 
H All coins the same 1/4 
I No heads tes) 1/8 
h Exactly 1 head {e4, e6, ev} 3/8 
h Exactly 2 heads te2> *3, £5} 3/8 
h Exactly 3 heads W) 1/8 
J Less than 2 tails tei, e2, *3, ^5} 4/8 

The obvious generalization of (3-8) is that the probability of an event 
is the sum of the probabilities of all the points (or outcomes) included in 
that event, that is 

Pr (E) = 2 Pr (e<) (3-9) 

summing over just those outcomes ^ which are in E. We note an analogy 
between mass (in physics) and probability: the mass of an object is the sum 
of the masses of all the atoms in that object; the probability of an event is 
the sum of the probabilities of all the outcomes included in that event. 

Various events are considered in Table 3-1; all the outcomes included 
in each event are listed in column 3. Since the probability of each outcome 
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simple ThiCvalueaofnth°frhe-Pr0bability °f each event in 4 is very 
events in Jl is tlble Tn f frh ^ W6 COnsider the first a»d last 
ua , i V 1 bl In fact’ they are the same event; although this mav not 

been dear immediately from the description, the list mfkes it obvkms. 

(c) Combin ing Events 

* A,S an ?xamPle’ we mi§ht ask for the probability of “G or H ” that is 
.ha. there ,,11 be lee, ,h.„ 2 head, „ J (", Lb) 

3-3 VenP diagrams. illustrating probability of combined events (The rectanrie in 

“G and H”; (c) I u / shaded. 

^^ iea0tei b> “G “ H>" a»d may be read “G union 7T’ as 
well as G or H. From the lists of Table 3-1 it can be seen that 

G u H = {e4, e„, e„ es, ex}. 

In general, for any two events G, /f: 

Definition. 

G w H = set of points which are in G, or in or in both. 

this definition 
in G u its 

(3-10) 

dA.S *rl~ *h"Jn.,F.rit3“-. “IM '«»•<»«* C- „ r* ~ 111 U»U cUCS 

Since five of the eight equiprobable outcomes are included 
probability is 5/8. 
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Similarly, we might be interested in the event “G and H," that is, that 
there will be fewer than 2 heads, and all coins the same. This is clearly a much 
more restricted combined event; any outcome must satisfy both G and H, 

rather than either G or H. Again, we can use a Venn diagram as in Figure 
3-36; this shows clearly that there is only one outcome (3 tails) that qualifies. 
This combined event is denoted by G n H, and may be read G intersect H 

as well as “G and H." The lists of G and H in Table 3-1 confirm that 

n r\ H 

since the only outcome appearing in both lists is e8. Hence the probability 
of G n H is 1/8. In general, for any 2 events G, H 

Definition. 

G n H = set of points which are in both G and H. (3-11) 

(d) Probabilities of Combined Events 

We have already shown how Pr (G U H) may be found from the Venn 
diagram in Figure 3-3. Now we should like to develop a formula. First con¬ 
sider a pair of events that do not have any points in common, such as / 
and J from Table 3-1. (We also say that they are mutually exclusive, or do 
not overlap). From Figure 3-3c it is obvious that 

pr (/ u J) = Pr (/) + Pr (J) O12) 
5 _ 1 l 4 
8 — 8 m 8 

But this simple addition does not always work. For example 

Pr (G U H) # Pr (G) + Pr (H) (3-13) 

t^S + f 

What has gone wrong in this case? Since G and H overlap, in summing 
Pr (G) and Pr (H) we count the intersection G n H twice; this is why (3-13) 
overestimates. This is easily corrected; subtracting Pr(G O H) eliminates 

1 To remember when vj or n is used, it may help to recall that y stands for “«nl0m 

and that n resembles the letter “A” in the word “and.” These technical symbols are u e 

to avoid the ambiguity that might occur if we used ordinary :Eng'!S,!1Jr 
sentence "E u F has 5 points” has a precise meaning, but the informal E or F has 5 po 

is ambiguous. 
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this double counting. Thus, we have showi 

Pr (G u H) = Pr (G) + Pr (ff) - pr (G n H) 

In our examjple 
■4- -2- — i 
18 ft 

Formula (3-14) is in fact quite general, and applies to any two events It 

where G and H overlap. It also applies in cases like 
(3-12) wherej/and /do not overlap; hence Pr(7 D J) = 0 and this last term 
disappears ijh.i, <3-,4) is appii.d. Fot „pl,L ^ 

Theorem. 1 

j Pr (I u J) = pr (/) + pr ^ 

j if / and J are mutually exclusive (3-15) 

I-—.. 
But it must be recognized that this is just a special case of (3-14). 

no ov C°1IeT0n °Jseveral events is defined as mutually exclusive if there is 
erlap ue., if no outcome belongs to more than one event. For ex- 

ample, m Table 3-1, events /, 71( and 7, are mutually exclusive; but E F, 
and / are notj, because E and F overlap at e2 ’ 

“covers” thK°? °f T* {/’ 7l> 7*> 7«> is mutually exclusive, and also 
In generalH I h 6 SamP® SpaCe 5' W® therefore cal1 ft a partition of S. 

Definition. 

A partition of a sample space S’ is a collection 

of mutually exclusive events 4} whose 

union is the whole sample space 5. (3-16) 

/ u 4 u I2 • • • u 4 = S’ 

Thus a partition completely divides the sample space into nonoverlapping 
events, as illustrated in Figure 3-46. s 

. 4 note consists of exactly those points which are not 
n E. We therefore could call G the “complement of ” or “not E ” and 

denote it by E. And in general, for any event E 

Definition. 

E - points in sample space not in E. (3-17) 
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FIG. 3-4 Venn diagrams to illustrate definitions, (a) Ex andl_E2 are mutually exclusive; 

0) E±, E2> . . . , £« form a partition; (c) E shaded, (Note. {E, E} form a girtition). SamPle 
space S in each case is represented by rectangle 

An event and its complement {£, E} form a very simple partition. 
Because these events are mutually exclusive, by (3-15) 

Pr (E U £) = Pr (E) + Pr (£) (3“18) 

and since {E, E} form a partition 

Pr (E U E) = 1 (349) 

Substituting (3-19) into (3-18) 

1 = Pr (E) + Pr (E) 

This yields a solution for Pr (E) in terms of Pr (E): 

Theorem. Pr (E) = 1 — Pr (E) (3-20) 

As an example, consider the probability of getting at least one head. The 
complement is “no heads,” and is very simple to calculate. Thus 

Pr (at least one head) = 1 - Pr (no heads) 
i 
8 

z 

This is not the only way to answer this question, but it is by far the simplest, 
since Pr (no heads) is so easy to evaluate. The student should be on the alert 
for similar problems: the key words to watch for are “at least,” “more than, 
“less than,” “no more than,” etc. 
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PROBLEMS 

3-5 Supposp a penny and nickel are thrown on the table, 
(a) The, outcome set may be listed conveniently: 

(penny, nickel) 

\ ✓ 

• (H, H) = ^ 

• (H, T) = e2 

• (T, H) = e3 

*(T,T) = 

Satisfy yourself that all 4 outcomes are equally likely, in 2 ways: 

1. Philosophical argument. Obviously et and c2 are equally likely 
because jthey differ only m what happens to the symmetric nickel 
Snmlarly c3 and c4 are equally likely. Finally, e, and c3 are equally 

nenrf* ^ d,ffer only in what happens to the symmetric 
penny. Thus all 4 outcomes are equally likely. 

Z Empirical argument. Have everyone in the class repeat the experiment 
10 times so that a large amount of data can be pooled. Is the relative 
frequency of each outcome about 1/4? 

(b) Consider the following alternate outcome set [which is recognized 
as just a reduction of the outcome set in (a)]. 

• Both heads 
• Both tails 

• One of each 

Are Utese: three outcomes equally likely? What are their probabilities' 
(c) What ms the probability of at least one head? Answer using th< 
two alternate outcome sets, and verify that you get the same answer 

e outcome set of Problem 3-5(a) could alternatively be written as 

Nickel 
Penny H T 

H • (H, H) • (H, T) 
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In the same way, list the outcome set when a pair of dice are 
thrown—one red, one white. Then calculate the probability of 
(1) A total of 4 dots. 
(2) A total of 7 dots. 
(3) A total of 7 or 11 dots (as in Problem 3-4). 
(4) A double. 
(5) A total of at least 8 dots. 
(6) A double 3. 
(7) A 1 on one die, 5 on the other. 
(8) Would you get the same answers to (1)—(7) if the dice were both 
painted white? In particular, compare the chance of a {3, 3} combina¬ 
tion to the chance of a (1, 5} combination. 

3-7 Suppose the coin of Figure 3-1 were not fairly thrown, and that over 
the long run, the following relative frequencies were observed 

e Pr (e) 

• (H H H) .15 
• (H H T) .10 
• (H T H) .10 
• (H T T) .15 
• (T H H) .15 
• (T H T) .10 
• (T T H) .10 
• (TTT) .15 

Recalling the definitions of Table 3-1, 

G: fewer than 2 heads 
H\ all coins the same 

find the following probabilities. {Hint. Use (3-9) and a Venn diagram.) 
(a) Pr (G); Pr (H); Pr (G U H); Pr (G n H) 

(b) Verify that (3-14) holds true. 
Let us further define 

K: fewer than 2 tails 
L: some coins different 

Then find 
(c) Pr (K) ; Pr (L); Pr (K U L); Pr (K n L) 

(d) Verify that (3-14) holds true. 
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3-8 (a) List Jhe sample space of 4 coins tossed simultaneously. 
(b) Define events A: all coins the same 

B: precisely 1 head 
C: at least 2 heads 

Evaluate Pr (A) 4- Pr (B) 4- Pr (C). Do these events 
form a partition? 

(c) Redejfine A as “all tails.” Do A, B, C now form a partition? What 
is Pr {A) 14- Pr (B) 4- Pr (C) ? 

3-9 When a doin is fairly tossed 4 times, let Y denote the number of changes 
in sequence. For example, the outcome H T H H may be written 
H/T/HH| where the two changes in sequence are indicated by slashes; 
similarly^ the outcome H/TTT has only 1 change. What is 
(a) Pr (t= 1) 
(b) Pr(|=2) 
(c) Do the events of (a) and (b) form a partition? 

3-10 (a) Wha^ is the probability of at least one head when 4 coins are 
tossed? | 

(b) Whaj is the probability of at least one head when 10 coins are 
tossed? j 

=> 3-111 Supppse a class of 100 students consists of several groups, in the 
following proportions: 

Men Women 

17 
Taking math —*l. 

100 

Not _23 

taking math 100 

If a ^student is chosen by lot to be class president, what is the 
chance th^e student will be: 
(a) A ma|n? 
(b) A woman ? 
(c) Takirg math? 
(d) A man, or taking math? 
(e) A man, and taking math? 
(f) If the class president in fact turned out to be a man, what is the 
chance that he is taking math? Not taking math? 

1 Problems preceded by arrows are important, because they introduce a later section in 
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=>3-12 The students of a certain school engage in various sports in the 
following proportions: 

Football, 30% of all students. 
Basketball, 20%. 
Baseball, 20%. 
Both football and basketball, 5%. 
Both football and baseball, 10%. 
Both basketball and baseball, 5%. 
All three sports, 2%. 

If a student is chosen by lot for an interview, what is the chance 
that he will be: 
(a) An athlete (playing at least one sport) ? 
(b) A football player only? 
(c) A football player or a baseball player? 

If an athlete is chosen by lot, what is the chance that he will be: 
(d) A football player only ? 
(e) A football player or a baseball player? 

Hint. Use a Venn diagram. 
(f) Use your result in (a) to generalize (3-14). 

3-4 CONDITIONAL PROBABILITY 

Continuing with the experiment of fairly tossing 3 coins, suppose that 
the tossing is completed, and we are informed that there were fewer than.2 
heads, i.e., that event G had occurred. Given this condition, what is the 
probability that event / (no heads) occurred? This is an example of “con¬ 
ditional probability,” and is denoted as Pr (7/G), or “the probability of /, 
given G.” 

The problem may be solved by keeping in mind that our relevant 
outcome set is reduced to G. From Figure 3-5 it is evident that Pr (IjG) = 1/4. 

The second illustration in this figure shows the conditional probability 
of H (all coins the same), given G (less than 2 heads). Our knowledge of G 
means that the only relevant part of //is H n G (“no heads” = I) and thus 
Pr (H/G) = 1/4. This example is immediately recognized as equivalent to 
the preceding one; we are just asking the same question in two different ways. 

Suppose Pr (G), Pr (.H), and Pr (G n H) have already been computed for 
the original sample space S. It may be convenient to have a formula for 
Pr (H/G) in terms of them. We therefore turn to the definition (3-1) of 
probability as relative frequency. We imagine repeating the experiment n 
times, with G occurring n(G) times, of which H also occurs n(H n G) times. 
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Knowledge that^G 
has occurred makes 
this original sample' 
space S irrelevant. 

G, which now 
becomes the new 
sample space. ! 

/; this event inc|udes 
one of four equM 
probable outcomes 
in sample space G. - 
Thus Pr(I/G) S %. 

! • e? G, which becomes 
new sample space. 

^Knowledge that G 
! • e\ has occurred makes 
v—^ I ^_the original sample 

space S (including 
outcome ex in H) 
irrelevant. 

H fl Q, the only 
relevant part of H. 

FIG. 3-5 yemtoBwmstojUuMjate^W probability, (a) Pr(//G). (b) Pr(M/G 
JNote Pr{HjG) is identical to Pr(//G). 

The ratio is the conditional relative frequency, and in the limit 

Pr (MIG) ~ lim Mg.n G1 
n-*oo n(G) 

On dividing numerator and denominator by n, we obtain 

Pr(H/G) = lim—- n GlH 
»-«o n(G)/n 

Pr (H/G) 
Pr (H n G) 

"" Pr (G) 

* "ig“y f0”’ ob'““d b» ™ 

Pr (H n G) = pr (G) Pr (H/G) 

PROBLEMS 

(3'13) fj.P 31 coins over and over again, recording your results as in the 
I oil owing table. 

Imbihilbf ti0?in^ ^ neXt’ We Sha" aSSUme al‘events under consideration have nonzero 
probabilities. This permits us to divide legitimately by various probabilities at will. 
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Conditional 

Trial Accumulated If G Occurs, Accumulated Relative 

Number G Frequency Then H Also Frequency Frequency 

n Occurs? n(G) Occurs? n{H n G) rt{H G)jn{G) 

1 No 0 

2 Yes 1 Yes 1 1.00 

3 No 1 

4 Yes 2 No 1 .50 

5 Yes 3 Yes 2 .67 

After 50 trials, is the relative frequency n(H n G)jn(G) close to 

the probability calculated theoretically in the previous section? (If 

not, it is because of insufficient trials, so pool the data from the whole 

class.) 
3-14 Using the unfair coins and definitions of Problem 3-7, calculate 

(a) Pr (GIH) 
(b) Pr (HIG) 
(c) Pr (KIL) 

(d) Pr (R!L) 
3-15 (a) A consumer may buy brand X or brand Y but not both. T e 

probability of buying brand X is .06, and brand Y is .15. Given that 

the consumer bought either X or Y, what is the probability that he 

bought brand X? 
(b) If events A and B are mutually exclusive (and of course non¬ 

empty, i.e., include at least one possible outcome), is it always true 

Pr (A/A u B)= [Pr (A)]/[Pr {A) + Pr (5)]? 

3-16 A bowl contains 3 red chips (numbered Rlf R2, and 2 white chips 

(numbered Wl9 W2). A sample of 2 chips is drawn, one after the other. 

List the sample space. For each of the following events, diagram t e 

subset of outcomes included and find its probability. 

(a) Second chip is red. 

(b) First chip is red. 
(c) Second chip is red, given the first chip is red. 

(d) First chip is red, given the second chip is red. 

(e) Both chips are red. . 
Then note the following features, which are perhaps intuitive y 

obvious also: 
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(1) the answers to (a) and (b) agree, as do the answers to (c) and (d) 

(3} ^tension of part (2): if 3 chips are drawn what is the probability tfco* kn o .^ ^iawn wacu is me pn 
hat jill 3 are red? Can you now generalize Theorem (3-23)? 

(317) tThat°:!CardS ^ draWn fr°m ^ °rdinary dCCk* What is the Probability 

(a) They are both aces? 

(b) They are the two black aces? 

, .. (AC) Tey are both honor cards (a«=, king, queen, jack or ten)? 

3-18 A poker hand (5 cards) is drawn from an ordinary'deck of cards 
What, is the chance of drawing, in order, 
(a) 2jaces, then 3 kings? 

(b) 2>aces, then 2 kings, finally a queen? 

(c) 4jaces, then a king? 

Whatis the chance of drawing, in any order whatsoever, 
(d) 4jaces and a king? 

(e) 4 aces ? 

TfVk S a k"!d” 4 aces’ or 4 kings, or 4 jacks, etc.)? 
It the j5 cards are drawn with replacement (i ~ -1 • • «, , u ~ , ; .yi.e., each card is replaced 
rn the deck before drawing the next card, so that it is no longer a real 

poker ^1) what is the probability of drawing, in any order 
(g) Exactly 4 aces? J 

3-19 A sup My of 10 light bulbs contains 2 defective bulbs. If the bulbs 

pI5ked Up ln random order, what is the chance that 
Tlje first two bulbs are good? 

(b) TIje first defective bulb was picked 6th ? 

(c) The first defective bulb was not picked until the 9th? 

* 3-20 Two dice are thrown. Let 
E: firs: die is 5 

I is 7 F: tot 

G: tot 1 is 10 

(Ca)TrfeSerperV“)Pr°babilltieS ^ dkgrams- Show that: 

(b) Pr |(G/E) * Pr (G). 

Sated CT that * {EIF) = ^ (E)- D° y°U tWnk this is closely related to (a), or just an accident? y 

3-21 If E anjdy are any 2 mutually exclusive events (and both are non- 
empty, sot course), what can be said about Pr (.E/F)7 

3-22 A comjpany employs 100 persons-75 men and 25 women The 

accounting department provides jobs for 12% of the men and 20% 
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of the women. If a name is chosen at random from the accounting 

department, what is the probability that it is a man? That it is a 

woman? 

3-23 (Bayes’ Theorem). In a population of workers, suppose 40% are 

grade school graduates, 50% are high school graduates, and 10% are 

college graduates. Among the grade school graduates, 10% are un¬ 

employed, among the high school graduates, 5% are unemployed, 

and among the college graduates 2% are unemployed. 

If a worker is chosen at random and found to be unemployed, 

what is the probability that he is 

(a) A grade school graduate ? 

(b) A high school graduate? 

(c) A college graduate ? 
(This problem is important as an introduction to Chapter 15; therefore 

its answer is given in full.) 
Answer. Think of probability as proportion of the population, if you 

like. 
Classes of Workers 

C1 C2 C3 

In the new sample space shaded, (3-22) gives 

(a) Pr (CJE) = 
.040 

.067 
.597 

(b) Pr(C2/£) = ^|= .373 

(c) Pr(C3/£)=^|= .030 

check, sum = 1 1.000 
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Notes on Bayes’ Theorem. Problem 3-23 is an example of Bayes’ 
Theorem, which may be stated as follows: 

Certain “causes” (education levels) Q, C2, . . . Cn, have prior 
probabilities Pr (Q). In a sense the causes produce an “effect” E 
(unemployment) not with certainty, but with conditional probabilities 

Pr (E/CX Using conditional probability manipulations, one calculates 

eventually the probability of a cause given the effect, Pr (CjE): 

Given Deduced 

Pr (Qj 

Pr (EjQ)J - Pr (CJE) 

=> 3-24 In a certain country, it rains 40% of the days and shines 60% of the 

days. A Barometer manufacturer, in testing his instrument in the lab, 

has fourjd that it sometimes errs: on rainy days it erroneously predicts 

“shine”jl0% of the time, and on shiny days it erroneously predicts 
“rain” 30% of the time. 

(a) In predicting tomorrow’s weather before looking at the barometer, 

the (pricjr) chance of rain is 40%. After looking at the barometer and 

seeing it predict “rain,” what is the (posterior) chance of rain? 

(b) Whet is the posterior chance of rain if an improved barometer 

(error rates of 10 and 20% respectively) predicts “rain”? 

(c) Wh^t is the posterior chance of shine if the improved barometer 
predicts “rain”? 

3-5 INDEPENDENCE 

In ProblenJ 3-20 we noticed that Pr (F/E) = Pr (F). This means that the 

chance of F, knowing F, is exactly the same as the chance of F, without 

knowing E; or,1 knowledge of E does not change the probability of F at all. 

It seems reasonable, therefore, to call F statistically independent of E. In 

fact, this is the^asis for the general definition: 

Definition. 

An event F is called statistically independent 

of an event E if Pr (F/E) = Pr (F) 

Of course, |n the case of events G and F, where F(G/E) ^ P(G), we wpuld 

say that G was| statistically dependent on E. In this case, knowledge of E 
changes the probability of G. 
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We now develop the consequences of F being independent of E. Sub¬ 

stituting (3-22) in (3-24), we obtain 

Pr (F HE) Ti. / r\ 

hence 
Pr (F) 

= Pr (F) 

Pr (F n F) = Pr (F) Pr (E) 

We can reverse this argument, and work backwards from (3-25) as 

follows: 

Pr (f Fi E) _ _ 
Pr (F) 

Pr (£) 

Pr (E/F) = Pr (F) (3-26) 

That is, E is independent of F whenever F is independent of E. In other 

words, the result in Problem 3-20(c) above was no accident. In view of this 

symmetry, we may henceforth simply state that E and F are statistically 

independent of each other, whenever any of the three logically equivalent 

statements (3-24), (3-25), or (3-26) is true. Usually, statement (3-25) is 

the preferred form, in view of its symmetry. Sometimes, in fact, this “multi¬ 

plication formula” is taken as the definition of statistical independence. 

But this is just a matter of taste. 

Notice that so far we have insisted on the phrase “statistical inde¬ 

pendence,” in order to distinguish it from other forms of independence— 

philosophical, logical, or whatever. For example, we might be tempted to 

say that in our dice problem, F was “somehow” dependent on E because the 

total of the two tosses depends on the first die. This vague notion of depend¬ 

ence is of no use to the statistician, and will be considered no further. But 

let it serve as a warning that statistical independence is a very precise concept, 

defined by (3-24), (3-25), or (3-26) above. 

Now that we clearly understand statistical independence, and agree that 

this is the only kind of independence we shall consider, we shall run no risk 

of confusion if we are lazy and drop the word “statistical.” 

Our results so far are summarized as follows: 

General Theorem 

Special Case 

Pr (E v F) 

= Pr (F) + Pr (F) — Pr (F n F) 

= Pr (F) + Pr (F) 

if E and F mutually 

exclusive; i.e., 

if Pr (F n F) = 0 

Pr (F n F) 

= Pr (F) • Pr (F/F) 

= Pr (F) • Pr (F) 

if F and F are 

independent; i.e., 

if Pr (F/F) - Pr (F) 
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PROBLEMS 

3-25 Three coins are fairly tossed. 

E1: first two coins are heads; 

E% \ last coin is a head; , 

Es: all three coins are heads. 

Try to answer the following questions intuitively (does knowledge of 

the condition affect your betting odds?). Then verify by drawing the 

sample space and calculating the relevant probabilities for (3-24). 
(a) Are Jq and E2 independent? 

(b) Are and Es independent? 

3-26 Repeat Problem 3-25 Using the three unfair coins whose sample space 

is as follows (compare Problem 3-7). 

e Pr (<?) 

■ (H H H) .15 

(HHT) .10 

• (H T H) .10 

(HTT) .15 

•(Til II) .15 
• (T II T) .10 

(TTH) .10 

• (T T T) .15 

3-27 A certainjelectronic mechanism has 2 bulbs which have been observed 

on or offjwith the following long-run relative frequencies: 

On .15 .45 

Off .10 .30 

This ;able means, for example, that both bulbs were simultaneously 
off 30 percent of the time. 

(a) Is “b^ilb 1 on” independent of “bulb 2 on”? / 

(b) Is “bulb 1 off” independent of “bulb 2 on”? 

3-28 A single card is drawn from a deck of cards, and let 

E: it is an ace 

F: it is a heart. 
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Are E and .F independent, when we use 

(a) An ordinary 52-card deck. 

(b) An ordinary deck, with all the spades deleted. 

(c) An ordinary deck, with all the spades from 2 to 9 deleted. 

3-6 OTHER VIEWS OF PROBABILITY 

In Section 3-1 we defined probability as the limit of relative frequency. 

There are several other approaches, including symmetric probability, 

axiometric probability, and subjective probability. 

(a) Symmetric Probability 

The physical symmetry of a fair die assures us that all six of its outcomes 

are equally probable. Thus 

Pr {ej) = Pr (e2) = • • • = Pr (e6) 

In order that these six probabilities sum to one, each must be 1/6, 

(compare to (3-5)). 
In general, for an experiment having N equally likely outcomes or 

points, for each point e} 

Pr (es) = - 
5 N 

Then, for an event E consisting of NE points, the probability is given 

by (3-9) as 

Pr (£) = 2 Pr (e,) = NE ■ ^ 

where the summation extends only over points in E (NE in number). 

Thus, for equally probable outcomes 

Pr (E) Ne 

N 
(3-27) 

For example, in rolling a fair die consider the event 

E: number of dots is an even number. 

E consists of three of the six equiprobable elementary outcomes (2, 4, or 6 

dots); thus its probability is 3/6. 
Symmetric probability theory begins with (3-27) as the definition of 

probability, and gives a simpler development than our earlier relative 
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frequency approach. However, our earlier analysis was more general; 

although the Examples we cited often involved equiprobable outcomes, the 

theory we developed was in no way limited to such cases. In reviewing it, 

you should confirm that it may be applied whether or not outcomes are 

equiprobable, special attention should be given to those cases (e.g., Problem 

3-26) where outcomes were not equiprobable. 
Not only is symmetric probability limited because it lacks generality, it 

also has a major philosophical weakness. Note how the definition of proba¬ 

bility in (3-2't) involves the phrase “equally probable”; we are guilty of 

circular reasoning. 
Our own relative frequency approach to probability suffers from the 

same philosophical weakness. We might ask what sort of limit is meant in 

equation (3-1J? It is logically possible that the relative frequency njn behaves 

badly, even iA the limit; for example, no matter how often we toss a die, it 

is just conceivable that the ace will keep turning up every time, making 

lim njn = 1. Therefore, we should qualify equation (3-1) by stating that the 

limit occurs 4rith high probability, not logical certainty. In using the concept 

of probability in the definition of probability, we are again guilty of circular 

reasoning. | 

(b) Axiomatic Objective Probability 

The only philosophically sound approach, in fact, is an abstract axio¬ 

matic approach. In a simplified version, the following properties are taken 

as axioms: 

Axioms. . ; 

Pr (<?,;) > 0 (3-2) repeated 

Pr (eL) + Pr (e„) ■ • • + Pr (ey) = 1 (3-4) repeated 

Pr (£) = 2 Pr (et) (3-9) repeated 

Then the other properties, such as (3-1), (3-3), and (3-20) are theorems 

derived from these axioms—with axioms and theorems together comprising 

a system of analysis that appropriately describes probability situations such 

as die tossing, etc. . 
Equation (3-1) is particularly important, and is known as the law of 

large numbers. Equations (3-3) and (3-20) may be proved very easily, so 

easily in fadt that we shall give the proof to illustrate how nicely this axio¬ 

matic theor} can be developed. We can prove even stronger results: for any 

event E, I 
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Theorems. 

(3-28), like (3-2) 

(3-29), like (3-3) 

(3-30), repeating 

(3-20) 

Proof. According to axioms (3-9) and (3-2), Pr (E) is the sum of positive 
terms, and is therefore positive; thus (3-28) is proved. 

To prove (3-30), we write out axiom (3-4): 

Pr (*i) + Pr (e2) + • - + Pr (eN) = 1 

Terms for E Terms for E 

According to (3-9), this is just 

Pr (E) + Pr (E) = 1 (3-31) 

from which (3-30) follows. 

In (3-28) we proved that every probability is positive or zero. In particu¬ 

lar Pr (E) is positive or zero; substituting this into (3-31) ensures that: 

Pr (E) <1 1 (3-29) proved. 

Thus our above theorems are established; other theorems may similarly 
be derived. J 

0 < Pr (E) 

Pr (E) < 1 

Pr (E) = 1 — pr (£) 

(c) Subjective Probability 

Sometimes called personal probability, this is an attempt to deal with 

events that cannot be repeated, even conceptually, and hence cannot be 

given any frequency interpretation. For example, consider events such as 

an increase in the stock market average tomorrow, or the overthrow of a 

certain government within the next month. These events are described by the 

layman as “likely” or “unlikely,” even though there is no hope of estimating 

this by observing their relative frequency. Nevertheless, their likelihood 

vitally influences policy decisions, and as a consequence must be estimated 

in some rough-and-ready way. It is only then that decisions can be made 
on what risks are worth taking. 

To answer this practical need, an axiomatic theory of personal proba- 

u ha^,been develoPed- Roughly speaking, personal probability is defined 
by the odds one would give in betting on an event; we shall find this a useful 
concept later in decision theory (Chapter 15). 
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Review Problems 

3-29 A tetrahedral (four-sided) die has been loaded. Find Pr (e4) if possible, 

given thej following conditions. (If the problem is impossible, state so ) 
(a) Pr Op = .2; Pr (e2) = .4; Pr (e3) = .1 

(b) Pr (<p = A; Pr (e2) = .4; Pr (e3) = .3 

(c) Pr fe) = .6; Pr (e3) = .2 

(d) Pr (eA = .7; Pr (e2) = .5 

3-30 In a famjly of 3 children, what is the chance of 
(a) At least one boy ? 

(b) At bast 2 boys ? 

(c) At lepst 2 boys, given at least one boy? 

(d) At least 2 boys, given that the eldest is a boy? 

3-31 Suppose jthat the last 3 customers out of a restaurant all lose their 

hat-checks, so that the girl has to hand back their 3 hats in random 
order. What is the probability 

(a) That jno man will get the right hat? 

(b) That ^exactly 1 man will ? 

(c) That exactly 2 men will? 

(d) That all 3 men will? 

3-32 What is t ie probability that 
(a) 3 people picked at random have different birthdays? 

(b) A roomful of 30 people all have different birthdays? 

(c) In a ijoomful of 30 people there is at least one pair with the same 
birthday ?{ 

3-33 A bag contains a thousand coins, one of which has heads on both 

sides. A coin is drawn at random. What is the probability that it is the 

loaded coin, if it is flipped and turns up heads without fail 
(a) 3 times in a row 

(b) 10 tiirjes in a row 

(c) 20 timjes in a row. 

Je/eat ^rpb|em wJlen the loaded coin in the bag has both H and 
^ r i- t js biased so that the probability of H is 3/4. 



chapter 4 

Random Variables and 
Their Distributions 

4-1 DISCRETE RANDOM VARIABLES 

Again consider the experiment of fairly tossing 3 coins. Suppose that 

our only interest is the total number of heads. This is an example of a random 

variable or variate and is customarily denoted by a capital letter thus: 

X = the total number of heads (4-1) 

The possible values of X are 0, 1, 2, 3; however, they are not equally 

likely. To find what the probabilities are, it is necessary to examine the original 

sample space in Figure 4-1. Thus, for example, the event “two heads” 

(X = 2) consists of 3 of the 8 equiprobable outcomes; hence its probability 

is 3/8. Similarly, the probability of each of the other events is computed. 

Thus in Figure 4-1 we obtain the probability function of X. 
The mathematical definition of a random variable is a numerical¬ 

valued function defined over a sample space.” But for our purposes we can 

be less abstract; it is sufficient to observe that: 

A discrete random variable takes on various values 
with probabilities specified in its probability function. 

(4-2) 

In our specific example, the random variable X (number of heads) takes on 

the values 0. 1, 2, 3, with probabilities specified by the probability function 

in Figure 4-1 b.1 

1 Although the intuitive definition (4-2) will serve our purposes well enough, it is not always 

as satisfactory as the more rigorous mathematical definition which stresses the random 

variable’s relation to the original sample space. Thus, for example, in tossing 3 coins, 

the random variable Y = total number of tails, is seen to be a different random variable 

from X = total number of heads. Yet X and Y have the same probability distribution 

52 
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s § 

0 12 3 a 

-(b) 

FIG. 4-1 (a) X, the random variable “number of heads in three tosses.” (b) Graph of the 

probability function. 

In the general case of defining a probability function, as in Figure 4-2, 

we begin by considering in the original sample space events such as (X = 0)* 

(X = 1), . . . . in general (X = x); (note that capital Xrepresents the random 

variable, andjsmall x a specific value it may take). For these events we cal¬ 

culate the probabilities and denote2 them p(0), p( 1),. , .p(x).... This 

probability functionp(x) may be presented equally well in any of 3 ways: 

1. Table form, as in Figure 4-1 a. 

2. Graph form, as in Figure 4-1 &. 

3. By formula, as in Equation (4-7) given later on. 

The purpbse of a random variable is clear from Figures 4-1 and 4-2: 
~ 1 I....—-..... ..1*— .ii__ 

and anyone whomsed the loose definition (4-2) might be deceived into thinking that they 

were the same rdndom variable. In conclusion, there is more to a random variable than its 
probability function. 

This notation, like any other, may be regarded simply as an abbreviation for convenience. 

Thus, for example,/?(3) is short for Pr (X = 3), which in turn is short for “the probability 

that the number f>f heads is three.” Note that when X = 3 is abbreviated to 3, Pr is corre¬ 
spondingly abbreviated to p. 
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FIG. 4-2 A general random variable X as a mapping of the original outcome set onto a 

condensed set of numbers. (The set of numbers illustrated is 0, 1, 2, , the set of positive 

integers. We really ought to be more general, however, allowing both negative values and 

fractional (or even irrational) values as well. Thus our notation, strictly speaking, should 

be xv x2, . . . , xit . . . rather than 0, 1, 2, . . . , x, . . . .) 

a complicated sample space (outcome set) is reduced to a much smaller, 

numerical sample space. The original sample space is introduced to enable 

us to calculate the probability functionp(x) for the new space; having served 

its purpose, the old unwieldy space is then forgotten. The interesting questions 

can be answered very easily in the new space. For example, referring to 

Figure 4-3, what is the probability of 1 head or fewer? We simply add up the 

relevant probabilities in the new sample space 

Pr (X < 1) = p(0) + p( 1) = i + I = i (4-2) 

(H, H, T) 

(H, HrH) 

1 X P(x) 

H 
X HP % 

•2 % 
•3 % 

FIG. 4-3 The event X < 1 in both sample spaces, illustrating the easier calculation in 

the new sample space. 
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Mmp“es'3eC°Uld ^ ^ ^ ^ tr°UbIe’ in the °ri»"a' 

EXAMPLE 

In the 

changes in t 

is 1, becaus^ 

same experiment of 3 fair tosses of a coin, let Y = number of 

:ie sequence. For example, for the sequence HTT, the value of Y 

‘there IS one changeover from H to T. In Figure 4-4 we use the 

FIG. 4-4 The 
random variable Y (“number of changes in sequence of 3 tosses of a coin”) 

and its probability distribution. 

function/)^y|el°Ped '° define th'S randora var'able and its probability 

PROBLEMS: 

In each fse: tabulate the probability function of the random variable 
by first constructing a sample space of the experimental outcomes. 

4-1 In 4 fair tosses of a coin, let 

(a) X — number of heads. 

(b) Y — lumber of changes in sequence. 

4-2 Let X be the total number of dots showing when two fair dice are tossed. 

4-3 Two boxes each contain 6 slips of paper numbered 1 to 6. Two slips of 

paper arejdrawn one from each of the boxes. Let X be the difference 
between the numbers drawn (absolute value). 
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4-4 To review Chapter 2, consider the experiment of tossing 3 coins, ithe 

number of heads X may beO, 1,2, or 3. Repeat this experiment 50 times 

to obtain 50 values of X, so that you can 

(a) Construct a relative frequency table of X. 

(b) Graph this relative frequency table. 

(c) Calculate the sample X from (2-lb). 
(d) Calculate the mean squared deviation from (2-5b). 

(e) Ifthe experiment were repeated millions of times, tow a va 

1. The relative frequencies tend? 

2. X tend? 
3. MSD (mean squared deviation) tend? 

4. s2 tend? 

4-2 MEAN AND VARIANCE 

In Chapter 3 we defined probability as limiting relative frequency. Now 

we notice the close relation between the relative frequency table 

Problem 4-4 and the probability table calculated in Figure 4-1, for toss g 

3 coins Ifthe sample size were increased without limit, (i.e if we continue 

L toss ad infinitum), the relative frequency table would settle down to 

th£ ’Fromth'ereTadve frequency table (Problem 4-4), we calculated the mean 

X and variance r2 of our sample*. It is natural to calculate analogous popula- 

, L from tba probability tab.e, and call .ban,.». ».«" P, “ 
of the probability distribution p{x), or of the random variable X itself. 

Thus 

Population mean, fi — ^xp(x) 
(4-3) cf. (2-lb) 

Population variance, o2 = ^ 0r _ /d2p(x) cf* (2'5b^ 

results, as follows: 
03220 11232 11221 22213 133JZ 

12212 12121 11233 21112 11213 

4 Strictly speaking, we calculated the mean squared deviation, rather than A However, as 

n _> oo, they become practically indistinguishable. 
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For our e jample of tossing three coins, we compute p and <72 in Table 4-1.5 

Note the analogy here to our calculations in Table 2-4. 
We call fi the “population mean,” since it is based on the population of 

all possible tcjsses of the coins. On the other hand, the mean X is called a 
“sample meatj,” since it is based on a mere sample of tosses drawn from the 

parent population of all possible tosses. Similarly o2 and s2 represent popula¬ 

tion and sample variance, respectively. A clear distinction between population 

and sample vklues is crucial; we return to this point in Chapters 6 and 7. 

Table 4-1! Calculation of the Mean and Variance of a Random Variable 

Given 

Probability 

Function 

Calculation 

of p from 
(4-3) Calculation of o2 from (4-4) 

Easier Calculation 

of a2. Using 

(4-5) 

x p(x) x p(x) (x - p) (x - p)2 (x - pf p(x) x2 p(x) 

0 V/8 0 -3/2 9/4 9/32 0 

1 3/8 *' 3/8 - -1/2 1/4 3/32 3/8 

12/8 
2 3/8 6/8 +1/2 1/4 3/32 

3 1/8 3/8 +3/2 9/4 9/32 9/8 

p = 12/8 

| = 1.50 

n2 = 24/32 

= .75 

V x2 p(x) — 24/8 

p2 = 18/8 

o2 =* 6/8 

Since the definitions of p and a2 parallel those of X and s2, we find 

parallel interpretations. We continue to think of the mean p as a weighted 

average, usiifg probability weights rather than relative frequency weights. 

The mean is Also a fulcrum and center. The standard deviation is a measure of 

spread. 

5 The computation of g2 is often simplified by using: 

a2 = x2p(x) — /a2 (4-5) 

This formula, with its proof, is analogous to (2-7). The computation is illustrated in the 

last column ofYable 4-1. 

Proof that\(4-5) is equivalent to (4-4). Reexpress (4-4) as: 

(72 = 2 (x2 - 2/-IX + /l2) p(x) 

and noting that p is a constant: 

= 2a;2P& “ 2 ^p(x) + ^2P 

Since £ *p(x) = P and 2P^ = 1 > we have 

a2 = ^ x2p(x) — 2p(p) + p2(l) 

= p(x) - P? (4'5^ ProVed 
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When a random variable is linearly transformed, the new mean and 

variance behave in exactly the same way as when sample observations were 

transformed in Section 2-5 (the proof is quite analogous and is left as an 

exercise). For future reference, we state these results in Table 4-2. 

We could write out verbally all the information in this table, working across 
the rows, as follows: 

Table 4-2 Linear Transformation (Y) of a Random Variable (X) 

Random Variable Mean Variance Standard Deviation 

X 

Y= a +bX 
!lx 

flY = a + bfix 
4 

4 = *yv Gx 

gy ~ \b\ ox 

“Consider the random variable X, with mean (xx and variance a\. 

If we define a new random variable Y as a linear function of X (specifically 

Y = a bX), then the mean of Y will be a + b/xx, and its variance 
will be b2o2x” 

PROBLEMS 

4-5 Compute fx and a2 for the probability distributions in Problem 4-1. 

As a check, compute cr2 in 2 ways—from the definition (4-4), and from 
the easy formula (4-5). 

(4-6) Compute [x and a2 for the random variables of 

(a) Problem 4-2. 

(b) Problem 4-3. 

4-7 Letting X — the number of dots rolled on a fair die, find /xx and ax. 

If Y = 2X + 4, calculate juY and aY in 2 ways: 

(a) By tabulating the probability function of Y, then using (4-3) and 
(4-5). 

(b) By Table 4-2. 

(4-8) A bowl contains tags numbered from 1 to 10. There are ten 10’s, nine 

9’s, etc. Let X denote the number on a tag drawn at random. 

(a) Make a table of its probability function. 

(b) Find jux and ax. 

4-9 A student is given 4 questions, each with a choice of 3 answers. Let 

Wbe the number of correct answers when the student has to guess each 

answer. Compute the probability function and the mean and variance 
of X. 
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=>4-10 Let jT be a random variable with mean jjl and standard deviation or. 
What are the mean and standard deviation of Z, where Z'= -i-- ? 

(This ijntroduces section 4-5.) a 

4-11 Suppose that the whole population of American families yields the 

following table for family size. (For simplicity, the data is slightly 

altered by truncating at 6.) 

No. Chi dren 

Proportion 
of families 

.43 .18 17 .11 .06 .03 

Source. Statistical Abstract of U.S., 1963, p. 41. 

(a) Let X be the number of children in a family selected at random. 

(This selection may be done by lots: imagine each family being 

represented on a slip of paper, the slips well mixed, and then one slip 

drawnj) The probability function of X is given in the table, of course. 

Find [Ax 2-dd gx. 

(b) N(j>w let a child be selected at random (rather than a family), and 

let Y Ije the number of children in his family. (This selection may be 

done l|y a teacher, for example, who picks a child by lot from the 

registej- of children.) What are the possible values of F? Complete the 

probability table, and compute juY and gt. 

(c) Is jkx or fiY more properly called the “average family size”? 

4-3 BINOMIAL DISTRIBUTION 

There are many types of discrete random variables. We shall study 

one—the binpmial—as an example of how a general formula can be developed 

- for the probability function p(x). 

The classical example of a binomial variable is 

X = number of heads in n tosses of a coin 

In order to generalize, we shall speak of n independent “trials,” each resulting 

in either “success” or “failure,” with respective probabilities nr and (1 — tt). 

Then the to ;al number of successes X is defined as a binomial random 

variable. 

There are many practical random variables of this type, some of which 

are listed in Table 4-3. We shall now derive a simple formula for the probability 
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Table 4-3 Examples of Binomial Variables 

“Trial” “Success” “Failure” 7T n X 

Tossing a fair coin Head Tail 1/2 n tosses Number of 
heads 

Birth of a child Boy Girl Practically 

1/2 
Family size Number of 

boys in 
family 

Throwing 2 dice 7 dots Anything 
else 

6/36 n throws Number of 
sevens 

Drawing a voter in 
a poll 

Democrat Republican Proportion of 
Democrats 
in the 
population 

Sample size Number of 
Democrats 
in the sample 

The history of one 
atom which may 
radioactively 
decay during a 
certain time period 

Decay No change Very small Very large, 
the number 
of atoms in 
the sample 

Number of 
radioactive 
decays 

function p(x). First, consider the special case in which we compute the 

probability of getting 3 heads in tossing 5 coins (Figure 4-5a). Each point in 

our outcome set is represented as a sequence of five of the letters S (success) 

and F (failure). We concentrate on the event three heads (X = 3), and show 

all outcomes that comprise this event. In each of these outcomes S appears 

(a) (b) 

FIG. 4-5 Computing binomial probability, (a) Special case: 3 heads in 5 tosses of a 

coin. (b) General case: x successes in n trials. 
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three times, and F twice. Since the probability of S is n- and F is (1 

sshseFFisbfbility °f the sequen°e Ingeneral’theProbability of 
SS • • • S FF • * • F 77 ' 77 (1 — 77-) • (1 —7T) 

iS 77 * 77 

x tinges n ~ x times 

» 0 ~ 77) • (1 — 77) • • • 

77^(1 - n)n~x 

bein§ jUStifled by the ‘dependence of the trials" We 

example, thej probabilit7oTsFSsV? 6Vent ^ ^ ^ pr°babi,itl For 

The same factors appear; they are only ordered differently. 

two can be arranged. This number of ways is designated as 

' 1 or CL 1 
0 v3 

and is6 

To summarize 

Our event 

vj> 

\>0 5! 

p!(5-3)! 
V 

= 10 

or, in general 

'ri 

includes 
'X = 3) 

nl 

xj x! (n — x)\ 

outcomes, eacljL with a probability 

(X=x) 

= am) rr3(\ — n) 

Hence its probability is; 

'5 
7(3) = Pr (X =| 3) = 

1)3/i\2 _ _1_ 

= jSl 

rize Wi 

“(1 ~ *rV 

7T%1 - 77)’ 

10 
32 

We summarize With Figure 4-6. 
6 This formula is de 

- C) ?P(1 - n-)"-* (4-7) 

designatedsifsi", * *° fi" Sve Spots with fiveobject*. 

and so on; thus th<j number of options we have is : 5 i“.2 ‘l°= ^ SP°'’4 the SeCOnd> 
I * (4-6) 

{com V/) 
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As a final example, we return to our previous experiment of tossing 

three fa. coins. wJ i the probability of two heads? Each toss is an n 

dependent ,ri,l in which— 1/2. Noting also that „ = 3 and , - 2, «e have 

Pr (X = 2) (i)2(i) 
3-2 __ 3! 3 _ A 

2! 1! 
Gr = (4-8) 

a confirmation of a previous result. 

and S3 all of which appear as SVxm ™“y f djstiP ishedj and appear as the single 

in (4-6), (e.g t hf invofves serious double counting. How much? 

^TeTollfcounted ,il = 31 limes beea-wei 

tinguish between Sx S* an^ Yearly we double Lnted 2 1 = 2! times because we 

ways ^^"e^^ktinguish between F, and F„ when in fact we cannot. 

When (4-6) Z double-counting in both these ways, we have 

'5\ _5!_5! 
312! 31(5-3)1 
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PROBLEMS 

Note th 

tabulated in 

4-12 (a) 

at 1 |, as well as the complete binomial distribution p(x) are 

Table III of the Appendix, for your optional use. 

onstruct a diagram similar to Figure 4-6 to obtain the probability 

function for the number of heads X when 4 coins are tossed; use 

general tt. 
(b) Then set tt = to obtain the results for a fair coin. 

(c) I?rom (b), calculate p and cr2. 

(d) Graph the probability function of (b), showing p. 

4-13 A ball is drawn from a bowl containing 2 red, 1 blue, and 7 black 

balls] The ball is replaced, and a second ball is drawn, and so on until 

3 balls have been drawn (sampling with replacement). 

(a) Let X = the total number of red balls drawn. Tabulate its proba¬ 

bility function. Find p and ex2. Graph. 

(b) Repeat (a), for Y = the total number of blue balls drawn. 

4-14 Check the probability function of Problem 4-9 using the formulas of 

this Section. 

(4-15) In rolling 3 dice, let X be the number of aces that occur. Tabulate the 

probability function of X. Find p and ex2. Graph. 

4-16 On a’blind toss of a dart, suppose the probability of hitting the target 

is 1/1 What is the probability that in 6 tosses you will hit the target 

exactly 2 times? At most 2 times? At least 3 times? 

:=> 4-17 Onkhe basis of these questions, can you guess the mean of a general 

binojnial variable, in terms of n and tt? Can you guess the variance? 

(This leads into Chapter 6-6.) 

*4-18x (For calculus students only, leading into section 4-5). Graph the 

function f(t) = e~tV2, showing its 

(a) Symmetry. 

(b) Asymptotes. 

(c) Maximum. 

(d) Joints of inflection. 

4-4 CONTINUOUS DISTRIBUTIONS 

Chap In 

graphed wi 

ter 2 we saw how a continuous quantity such as height was best 

h a relative frequency histogram. The histogram of heights of 

1 Starred problems are optional, since they are more theoretical and/or difficult than the 

rest. 
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Figure 2-3 is reproduced in Figure 4-la below. (For purposes of illustration, 
we measure height in feet, rather than inches. Furthermore, the y-axis has 
been shrunk to the same scale as the ar-axis.) Note that in Figure 4-7a relative 
frequency is given by the height of each bar; but since its width (or base) is 
1/4, its area (height times width) is numerically only 1/4 as large. Thus we 
can’t use area in this figure to represent relative frequency, since it would 
badly understate. In fact, if we wish area to represent relative frequency each 

| 1.00F- 

I 0.751- 
a> 

a> 0.50 

0.25 h- 

7 Height (ft) 

FIG. 4-7 Relative frequency histogram (a) transformed into relative frequency density in 

(b) making total area = 1. 

height must be increased fourfold. This is done in Figure 4-lb, where the 
area of each bar is relative frequency, and the height of each bar is called 
relative frequency density. 

In general 

i.e.. 

(relative frequency density)(cell width) = (relative frequency) 

area of any bar = relative frequency. 

There is but one more important observation. In Figure 4-la, the heights 
sum to one (the sum of all relative frequencies must be one). From the 



7 Height (ft) 
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numerical equivalence of height in Figure 4-7a to area in Figure 4-lb, it 

follows that the areas in Figure 4-76 must also sum to one. And this is a key 

characteristic of a density function in statistics: it encloses an area numerically 

equal to 1. 
In Figure 4-8 we show what happens to the relative frequency density of 

a continuous random variable as 

1. Sample size increases. 

2. Cell size decreases. 

With a small sample, chance fluctuations influence the picture. But as sample 

size increases, chance is averaged out, and relative frequencies settle down to 

probabilities. At the same time, the increase in sample size allows a finer 

definition of cells. While the area remains fixed at 1, the relative frequency 

density becomes approximately a curve, the so-called probability density 

function, which we shall refer to simply as the probability function, designated 

pipe). 
If we wish to compute the mean and variance from Figure 4-8c, the 

discrete formulas (4-3) and (4-4) can be applied. But if we are working with 

the probability density function in Figure 4-Sd, then integration (which 

calculus students will recognize is the limiting case of summation) must be 

used; if a and b are the limits of*, then (4-3) and (4-4) become 

Mean, /< ; 

Variance, 

=f Ja ^ 

a2 = (x — A)2 p(x) dx 
Ja 

x p(x) dx 

b 

(4-9) 

(4-10) 

All the theorems that we state about discrete random variables are 

equally valid for continuous random variables, with summations replaced by 

integrals. Proofs are also very similar. Therefore, to avoid tedious duplication, 

we give theorems for discrete random variables only, leaving it to the reader 

to supply the continuous case himself, if he so desires. 

4-5 THE NORMAL DISTRIBUTION 

For many random variables, the probability density function is a specific 

bell-shaped curve, called the normal curve, or Gaussian curve, as shown in 



j THE NORMAL DISTRIBUTION 67 

Figures 4-9 to 4-12. It is the single most useful probability function in 
statistics. Many variables are normally distributed; for example, errors that 
are made in measuring physical and economic phenomena often are normally 
distributed. Ip addition, there are other useful probability functions (such as 
the binomial] which often can be approximated by the normal curve. 

(a) Standard Normal Distribution 

The probability function of the standard normal variable 

p(z) = __ e-X: 
V277 

The constant 1/V2ir is a scale factor required to make the total area 1. The 
symbols tt atd e denote important mathematical constants, approximately 
3.14 and 2.7. 8 respectively. We draw the normal curve in7 Figure 4-9 to 

Unit square 

FIQ* 4-9 (a) Standard normal curve. (b) Vertical axis rescaled. 

reach a maxinjium at z — 0. We confirm in (4-11) that this is so: as we move 
to the left or right of 0, z2 increases; since its negative exponent is increasing 

7 r9n Problem 4-11 you may have confirmed that the graph of (4-11) is that shown in Figure 

The mathematical constant tt = 3.14 is not to be confused with the used in 
Section 4-3 to designate probability of success. 
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in size,/?(z) decreases. Moreover, the further we move away from zero, the 

morep(z) decreases; as z takes on very large (positive or negative) values, 

the negative exponent in (4-11) becomes very large and p(z) approaches zero. 

Finally, this curve is symmetric. Since z appears only in squared form, —z 

generates the same probability in (4-11) as + z. This confirms the shape 

of this standard normal curve as we have drawn it in Figure 4-9. The mean and 

variance of Z can be calculated by integration using (4-9) and (4-10); since 

P(z) 

FIG. 4-10 Probability enclosed by the normal curve between 0 and z0. 

this requires calculus, we quote the results without proof: 

M'Z = 0 

az = 1 

It is for this very reason, in fact, that Z is called a standard normal variable. 

Later when we speak of “standardizing” any variable, this is precisely what 

we mean: shifting it so that its mean is 0 and shrinking (or stretching) it so 

that its standard deviation (or variance) is one. 
The probability (area) enclosed by the normal curve between the mean 

(0) and any specified value (say z0) also requires calculus to evaluate precisely, 

but may be easily pictured in Figure 4-10. 
This evaluation of probability, done once and for all, has been recorded 

in Table IV of the Appendix. Students without calculus can think of this as 

accumulating the area of the approximating rectangles, as in Figure 4-8c. 

To illustrate this table, consider the probability that Z falls between .6 

and 1.3, as shown in Figure 4-11 a. From Table IV in the Appendix we note 

that the probability that Z falls between 0 and .6 is .2257; similarly the proba¬ 

bility that Z falls between 0 and'1.3 is .4032. We require the difference in 

these two, namely: 

Pr (.6 < Z < 1.3) = .4032 - .2257 = .1775 

In Figure 4-11 b we consider the probability that Z falls between 1 and +2. 

Because of the symmetry of the normal curve, the probability that Z falls 
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<1.3) (-1< Z<2) 

■2 -I] 0 1 2 2 

(a) 

FIG. 4-11 Standard normal probabilities. 

between 0 an!d --1 is identical to the probability between 0 and + 1, which is 

.3413. In this instance we add this to the probability of Z between 0 and 

2—namely /772—which yields 

Pr (-1 < Z < 2) = .3413 + .4772 = .8185 

Finally, the Student may confirm that the probability enclosed between one 

standard deviation above and below the mean (—1 < Z < +1) is .6826, or 

just over 2/3J of the area of the normal curve. 

PROBLEMS 

4-19 If Z is i standard normal variable, use Appendix Table IV to evaluate: 

(a) Pr (—2 < Z < +2). 

(b) Pr!(— go <Z< 1.64). 

(c) PrV—2.33 <Z< oo). 

(d) Prj(—2 < Z). 

(e) Prj(Z < 2). 

4-20 (a) If pr (-z0 < Z < z0) = .95, what is s0? 

(b) If Pr (~20 < Z < zQ) = .99, what is z0? 

(b) General Normal Distribution 

If a random variable X has a normal probability curve, with mean ^ 

and standard deviation o', it probability function is8 written: 

p(x) = (4-12) 
7T(J 

8 To prove that (4-12) is centered at /r, we note that the peak of the curve occurs when the 

negative exponent attains its smallest value 0, i.e., when x — /r. It may also be shown that 

(4-12) is scaled by the factor a. Finally, it is bell shaped for the same reasons given in 

part (a). 
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We notice that in the very special case in which ^ = 0 and a — 1, (4-12) 

reduces to the standard normal distribution (4-11). But more important, 

regardless of what [a and a may be, we can translate any normal variable 
X in (4-12) into the standard form (4-11) by defining: 

General normal variate 

P(x) = — 

V2xcr 

FIG. 4-12 Linear transformation of any normal variable into the standard normal 

variable. 

Z is recognized as just a linear transformation of X, as shown in Figure 4-12. 

Notice that whereas the mean and standard deviation of a general normal 

variate X can take on any values, the standard normal variate Z is unique_ 

with mean 0 and standard deviation 1 as proved in Problem 4-10. 

To evaluate any normal variate X, we therefore translate X into Z, 

and then evaluate Z in the standard normal table (Appendix Table IV). 

For example, suppose that V is normal, with ^ = 100 and cr = 5. What is 

the probability of getting an X value of 110 or more? That is, we wish to 
evaluate 

Pr (V > 110) (4-14) 

First (4-14) can be written equivalently9 as 

(4-15) 

9 Any inequality is preserved if both sides are diminished by the same amount (100) and 
divided by the same positive amount (5). 
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which, noting (4-13), is 

Pr (Z > 2) (4-16) 

We see that (4-16) is the standardized form of (4-14), and from fable IV 

we evaluate this probability to be .0228. Moreover, the standardized form 

(4-16) allows a clearer interpretation of our original question; in fact, we 

were asking “What is the probability of getting a normal value at least two 

standard deviations above the mean?” The answer is: very small—afeout one 

in fifty. [ 

As a final example, suppose a bolt picked at random from a production 

line has a length X which is a normal random variable with mean 10 cm and 

standard deviation 0.2 cm. What is the probability that its length will be 

between 9.9 and 10.1 cm? That is 

-) 

These palculations confirm our earlier observation from Figure 4-12: 

although there is any number of normal curves, there is only one standard 

normal curve. This is fortunate; instead of requiring a whole book of tables, 

we only need one (Appendix Table IV). 

Pr (9.9 < V< 10.1) 

This may b s written in the standardized form 

,, 19.9 - 10 ^ X - 10 ^ 10.1 - 

\ .2 .2 ~ 2 

= Pr(-.50 < Z < .50) 

PROBLEMS 

4-21 Draw ja diagram similar to Figure 4-12 for both the examples solved in 

the text directly above. Shade the area being evaluated. 

If X is normal, calculate: 

(a) Pr (4.5 < V < 6.5) where [ax — 5 and ax = 1 

(b) Pr (X < 800) where fix = 400 and ax = 200 

(c) Pr (800 < X) where fjjx ==:: 400 and (fx = 200 

4-23 Suppose that a population of men’s heights is normally distributed 

with aj mean of 68 inches, and standard deviation of 3 inches. Find the 

proportion of the men who 

(a) A|e over 6 feet 

(b) Ap under 5 feet 6 inches 

(c) Ate between 5 feet 6 inches and 6 feet. 

To chpck your 3 answers, see whether they sum to 1. 
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4-6 A FUNCTION OF A RANDOM VARIABLE 

Looking again at the experiment of tossing three coins, let us suppose 

that there is a reward R depending upon the number X of heads we toss. 

Formally, we might state that R is a function of X, or 

R = g(X) 

Now let us suppose that the specific form of this function is 

R = (X- l)2 

which is equally well given by Table 4-4. 

Table 4-4 Tabled Form of the Function R = (X — l)2 

Value of R 
Value of V r =<?(*') = (* - l)2 

0 (0 - l)2 = 1 

1 (1 - l)2 = 0 
2 (2 - l)2 = 1 
3 (3 - l)2 = 4 

The values of R are customarily rearranged in order as shown in the 

third column of Table 4-5. Furthermore, the values of R have certain proba¬ 

bilities which may be deduced from the previous probabilities of X, (just as the 

probabilities of X were deduced from the probabilities in our original sample 

Table 4-5 Calculation of the Probability of Each R Value 
from the Probabilities of Various X Values 

CD 
X 

(2) 
p{x) 

(3) 
r =g(x) 

(4) 

p{r) 

(5) 
rp(r) 

■ 0 1/8—^ 3/8 0 

• 1 3/8 ' 1 4/8 4/8 

• 2 3/8 _ • 4 1/8 4/8 

• 3 1/8 ^ 

Vr — 1 
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space, in Figuie 4-1). Thus we note from Table 4-4 that two values pf X, 

(0 or 2) give ris^ to an R value of 1. This is indicated with arrows in Table 4-5. 

The third and fourth column in this table show the probability distribution 

of R. The last column shows the calculation of the mean of R. s 

R is a random variable; although it has been “derived” from X, it has 

all the properties of an ordinary random variable. The mean of R can be 

computed from its probability distribution, as in Table 4-5, and is found to 

be 1.0. But if it is more convenient, the answer can be derived from the 

probability distribution of X, as in Table 4-6. 

Table 4-6 Mean of R = (X - l)2, calculated from p(x) 

X g(x) p(x) gig0 pix) 

0 1 1/8 1/8 

1 0 3/8 0 

2 1 3/8 3/8 

3 4 1/8 4/8 

o
 II 

oo 
go" 

II 03 

It is easy to see why this works; in a disguised way we are calculating 

[ar in the sanie way as in Table 4-5. The first and third lines of Table 4-6 

appear together as the second line of Table 4-5. Also, the second and fourth 

lines of Tablej 4-6 correspond to the first and third lines of Table 4-5. Thus 

Table 4-6 contains precisely the same information as Table 4-5; it therefore 

yields the sairje value for pR. The only difference in the two tables is that 4-6 

is ordered according to X values, while 4-5 is ordered (and condensed) 

according to .rc values. 
This example can be generalized, as follows. If Xis a random variable, 

and g is anyffunction, then R = g(X) is a random variable. pR may be 

calculated eitjier from the probability function of R, or alternatively from 

the probability function of X according to 

Theorem 
Vr = ^gix)pix) 

x 

(4-17a) 

4-7 NOTATION 

Some ne 

of the mean. 

W notation will help us better understand the various viewpoints 

(For any random variable, X let us say, all the following terms 
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mean exactly the same thing:10 

fix — mean of X 

— average X 

= expectation of X 

= E(X), the expected value of X 

The term E(X) is introduced because it is useful as a reminder that it represents 
a weighted sum, i.e., 

E(x) = 2 * K*) (4-3) 
x 

With this new notation, result (4-17a) can be written 

E(R) = 2 g(x) p(x) (4-17b) 
X 

Finally, we recall that R was just an abbreviation for g(X), so that we may 

equally well write (4-17b) in an easily remembered form: 

Theorem 
E[g{X)] = ^g{x) p(x) (4.17C) 

X 

As an example of this notation, we may write 

E(X - pf = J O ~ [if p(x) (4-18) 

By (4-4), 

E(X — p)2 — o'2 (449) 

Thus we see that o'2 may be regarded as just a kind of expectation—namely, 
the expectation of the random variable (X—ju)2. 

PROBLEMS 

4-24 As in Problem 4-1, let X be the number of heads when 4 coins are 
fairly flipped. 

(a) If R(X) — X2 — 3X, find its probability function, and /uR and g%. 
(b) Find E\X -2\ in 2 ways: 

(1) Using the probability function of \X - 2|; and 

(2) Using the probability function of X in (4-17) 
(c) Find E{X2) 

(d) Find E(X — fix)2. Is this related to ax in any way? 

The reason for the plethora of names is historical. For example, gamblers and economists 

use the term “expected gain,” meteorologists use the term “mean annual rainfall,” and 
teachers use the term “average grade.” 
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(4-25) Repeat! 4-24, letting X be the number of changes in sequence when 

4 coins) are tossed. 

4-26 The time T, in seconds, required for a rat to run a maze, is a random 

variabb with the following probability function. 

t pit) 

* 22 .1 
t 23 .1 

24 .3 
25 .2 
26 .2 
27 .1 ' 

(a) Find the average time. 
(b) Suppose the rat is rewarded with 1 biscuit for each second faster 

than 25. (For example, if he takes just 23 seconds, he gets a reward 

of 2 biscuits. Of course, if he takes 25 seconds or longer, he gets no 

reward.) What is the rat’s average reward? 

Review Problems 

4-27 In a ricent presidential election, 60 % of the voters went Democratic, 

40 % went Republican. If Gallup took a sample of 5 voters at random, 

find ! 
(a) The probability that the sample would be all Democrats. 

(b) Tine probability that the sample would correctly forecast the 

election winner, i.e., that a majority of the sample would be 

Democratic. 
(c) In what way is a sample of 5 better than a sample of 1 ? 

4-28 Three! coins are independently flipped; let X = number of heads. 

Make! a table of the probability function, and find px an^ a<x 

assuming 

(a) T ie coins are fair. 
(b) T ie last coin is biased, coming “heads up” 3/4 of the time. 

4-29 Suppose the amount of cereal in a package cannot be weighed exactly. 

In fact, it is a normally distributed random variable, with p — 10.10 

oz. arid o' — .040 oz. On the package is claimed, net weight, 10 oz. 

(a) What proportion of the packages are underweight? 

(b) Tt> what value must the mean p be raised in order that only 1/10 

of 1 °X of the packages be underweight? 



76 RANDOM VARIABLES 

4-30 Eight volunteers had their breathing capacity measured before and 

after a certain treatment. The data might have looked like this: 

Person 
Breathing Capacity 

Before After Improvement 

A 2750 2850 + 100 
B 2360 2380 +20 
C 2950 2800 -150 
D 
E 

Let us concentrate on whether a given person improves or 

deteriorates, i.e., whether the sign of the improvement is + or —. 

Supposing that treatment has no effect, on average, what is the 

probability that there will be 6 or more + signs? (Assume that 

measurements are so precise that a tie is practically impossible.) 

(4-31) A person performs a task 3 times in succession. He learns rapidly, 

so that his chance of error is 1/2 the first time, 1/4 the second time, 
and 1/6 the third time. 

We assume that he learns equally well from his successes and 

failures, so that the three trials may be considered independent. 

(a) Find the probability table and mean of A = the total number of 
errors. 

(b) What is the probability of more than 1 error? 

*4-32 (Requires calculus) 

A random variable X is continuous, and has a probability function 

p(x) = fs2 0 < x < 2 

= 0 otherwise 
(a) Graph p(x). 

(b) Find the mean, median, and mode. Are they in the order you 
expect ? 

(c) Find a2. 
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Two Random Variables 

5-1 DISTRIBUTIONS 

The first section is a simple extension of the last two chapters. The main 

problem will be to recognize the old ideas behind the new names. Therefore 

we outline this( section in Table 5-1, as both an introduction and review. 

Table 5-, | Review of Section 5-1, Showing the Origins of the Ideas 

O] 
d Idea Application (new terminology) 

(G n H) 

applied to 
Pr (X = 2 n1 
Pr (X = x n 

__-_i 

Joint probability function 
(3-11) 

y = 'f . PV< ' (5-2a) 
Y y) in general p(x, y) in general (5-2b) 

p 
Pr (H\G) = —l 

applied to i 

Pr(X = 2 IY\ 
Pt(X = a?/K 

r (H n G) 
Pr(G) (3-22) Conditional probability function 

= ]) P(2/Y = 1) 

= y) in general p(xj Y = y) or p{x[y) 

Event F is indepe 

Pr (.FJE 

or Pr(E n F)\ 

ndent of E if Variable X is independent of Y if 

~ pr (F) (3-24) p{xjy) == p(x) 

— Pr(E) Pr(F) or p(x, y) = p{x)p(y) 

(3-25) 

~ ----1-——-—------L_ 

77 
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(a) Joint Probability 

In the experiment of tossing a coin three times, let us define (on our 

single sample space) two random variables: 

X — number of heads 

Y = number of changes in sequence 

Table 5-2 Two Random Variables Defined on the Original 
Sample Space 

(1) 
Outcomes 

e 

(2) 
Corresponding 

X value 

(3) 
Corresponding 

Y value 

• HHH 3 0 
f7f77/77777//>^ 

IpHHT] 
war//////////. L ^ 2 1 

• HTH^ b 2 2 

i v HTT 1 1 

Ly = 1 
2 1 

• THT J 1 2 

• TTH 1 1 

• TTT 0 0 

We might be interested in the probability of 2 heads and 1 change of 

sequence occurring together. As usual, we refer to the sample space of the 

experiment (in column 1 of Table 5-2), and look for the intersection of these 

two events, obtaining 
Pr (X = 2 n Y = 1) = 2/8 (5-1) 

For convenience Pr (I=2n Y = 1) is abbreviated top(2, 1) (5-2a) 

Similarly we could computep(0, 0),p(0, 1),/>(0» 2),/>(l, 2) ■ • • , obtain¬ 

ing in Table 5-3 what is called the joint (or bivariate) probability function 

of X and Y. 
The formal definition is 

p(x9 2/)APr(i=xnf = 2/) (5-2b) 

The general case is illustrated in Figure 5-1. The events X = 0, X — 1, 

X — 2 . . . form a partition of the sample space, shown schematically as a 
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|Table 5-3 p(x, y), The Joint Probability of Xand 
Y in Three Tosses of a Coin. 

y = value of Y -*■ 
[x = value of X 0 1 2 pip) i 

0 1/8 0 0 1/8 

1 0 2/8 1/8 3/8 

2 0 2/8 1/8 3/8 

3 ? 1/8 0 0 1/8 

p{y) 
-> 

2/8 4/8 2/8 1 V 

horizontal sliding. Similarly, the events Y = 0, Y = 1 . . . form a partition 

shown as a vertical slicing of the sample space. The intersection of the horizon¬ 

tal slice X = h and the vertical slice Y = y is the even* (X — x n Y — y). 

Its probability is collected into p(x, y) in the table. 

This table, or specifically Table 5-3, may be graphed, but we run into 

some typographical difficulties in trying to represent 3 dimensions on a 

two-dimensioijial piece of paper. We shall suggest some possible ways to 

resolve this difficulty. First, since the outlay of the x and y in Table 5-3 is 

arbitrary, we shall change it for convenience, running x across and y up as in 

Figure 5-2a (this is the custom in analytic geometry). Then the functional 

values/?(a;, y)*may be plotted in the direction of an axis which we imagine 

Original sample space 

FIG. 5-1 Two’random variables (X, Y), showing their sample space and joint proba- 

I bility function. 



80 TWO RANDOM VARIABLES 

(c) 

FIG. 5-2 Various graphic presentations of the bivariate probability function of Table 5-3. 
{a) Realignment of the axes, (b) p(x, y) is represented by a line segment “coming up out of 

the paper.” (c) p(x, y) is represented by the size of the dot. 

coming up out of the paper, as in Figure 5-2b, or the functional value may 

be represented by the size of the dot, as in Figure 5-2c. 

(b) Marginal Probability Function 

Suppose we are interested only in X, yet have to work with the joint 

probability function of X and Y. How can we compute the probability 

function of X, for example p(2) = Pr (X = 2)? 

It appears that the probability of this event (i.e., the horizontal slice 

X = 2 in the schematic sample space of Figure 5-1) is the sum of the proba¬ 

bilities of all those chunks comprising it, i.e., 

p(2) = p{2, 0) + p(2, 1) + p(2, 2) + p(2, 3) + * • * p{2, y) + * * * (5-3) 

= 2 P(2, y) (5-4) 
V 

and in general, for any given 



DISTRIBUTIONS 81 

For example, this idea may be applied to Table 5-3. We thus find, 

pi. 2) = 0 + I + i = I 

and place this sum in the right-hand margin. Similarly, p(x) is computed for 

every x, thus providing the whole column in the right-hand margin. This is 

sometimes calleji the marginal probability distribution of X, to describe how 

it was obtained^ But, of course, it is just the ordinary probability function of 

X (which could pave been found without any reference to 7, as indeed it was 

in Figure 4-1). 

In conclusijon, the word “marginal” has no specific technical meaning. 

It simply describes how the probability distribution of X may be calculated 

when another variable 7 is in play; a row sum is calculated and placed “in 

the margin.” 

In an identical way we calculate p{y), the (marginal) probability distri¬ 

bution of 7; th s is set out in the marginal row of Table 5-3; each element in 

this row is the mm of the column above. Finally, we note as expected, the 

exact correspondence of this marginal probability distribution of 7 with the 

probability distribution of 7calculated in Figure 4-4 without any reference 

whatsoever to X. 

(c) Conditional Probability Function 

In the example of tossing three coins, we might wish to know the proba¬ 

bilities of various numbers of heads, given one change in sequence. And, in 

general, it is oftjen of interest to know the probability distribution of 7, when 

7 is given. Thip, let us suppose that 7 is known to be 1. The conditional 

probability dis|ribution of X, given 7=1, is designated as p{xjY = 1). 

How is it to bej evaluated ? 

Clearly, we should examine the vertical slice for 7 = 1, shown in Figure 

5-1 generally, or Table 5-3 specifically. The appropriate vertical slice for 

7 = 1 appears' as the third column in Table 5-3; it is reproduced as the 

second column in Table 5-4 below. The problem is that the joint probabilities 

in this column jdo not sum to 1, hence they cannot represent a probability 

distribution. They do, however, give us the relative probabilities of various 

X values. Thusj if we know 7 = 1, we know that X cannot be 0 or 3, but X 

values of 1 or 

conditional prcj 

column. How 

; are equally probable. Intuitively, therefore, we arrive at the 

bability distribution of X given 7 = 1 as shown in the third 

(lid we get these numbers? Since all elements in column 2 

summed to onjy 1/2, we simply doubled them all. The result (column 3) 

must sum to 1 *| hence it is a bona fide probability distribution. 
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Table 5-4 Derivation of the Conditional Dis¬ 
tribution of X, Given Y = 1 

Values of X p(x, 1) p(xjY = 1) 

0 0 0 
1 2/8 1/2 
2 2/8 1/2 

3 0 0 

Sum = Pr (Y = 1) Sum = 1 V 

= p(D 
= 1/2 

Formally, doubling all elements in column 2 is justified rigorously by the 

theory in Chapter 3, where conditional probability was found to be: 

Pr WG) = Frf,pG) (3-22) 

rr w repeated 

We merely substitute for G and H, events defined in terms of random 
variables, as follows: 

For H, substitute (.X = x) 

For G, substitute (7=1) ^ ^ 
Thus 

Pr (X = x/Y = 1) = — g n Y = 1) 

Using new notation 

p(x/Y = 1) = 

Pr (Y = 1) 

p(x, 1) 

In our example, y?(l) = 1/2, so that (5-7) becomes 

p(xl Y = 1) = 2p{x, 1) 

thus justifying the doubling in Table 5-4. 

The generalization of (5-7) is clearly 

pixjY = y)= (5.9) 
p(y) 

The conditional probability distribution may be further abbreviated to 
p(xfy), giving 

(5-10) 

Note how similar this is to equation (3-22). 
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Since the 

83 

conditional distribution is a bona fide distribution, it can be 
used for example to obtain the conditional mean 

(d) Independence 

E(X/Y — y) or fix/y = £ x p(x/y) (5-11) 

We defin^ the independence of 2 random variables by extending the 

concept of thejindependence of 2 events developed in Chapter 3. 

Definition 

Tye random variables Xand Yare called independent 

if for every x and y, the events (X = x) and ( Y = y) are 

independent. 
(5-12) 

The consequences are easily derived. From (3-25) we know that the 
independence df events (X = x) and (Y = y) means that 

i.e., 
|>r (X = X n Y = y) = Pr (X = x) Pr (Y = y) 

p(x,y) = p(x)p(y) (5-13) 

Returning, to our example, we easily show that X and Y are not in¬ 

dependent. FoiJ independence, (5-13) must hold for every (x, y) combination. 

We ask whether it holds, for example, when x = 0 and y = 0? The answer 

is no; from thejprobabilities in Table 5-3, (5-13) is shown to be violated since 

PROBLEMS 

-1-^1 
8 7*= 8 

2 
8 8 

5-1 In 4 tosses of a coin, again let 

X — number of heads 

T = number of changes of sequence 

List the samplej space, and then find 

(a) The bivariate probability function; illustrate with a dot graph as in 
Figure 5-2c. 

(b) The (marginal) probability function of X. 

(c) The mean and variance of X. 

(d) The conditional probability function p(x/Y = 2). 

(e) The conditional mean and variance of X, given 7=2. 
(f) Are X and 7independent? 
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5-2 Suppose X and Y have the following joint probability function 

\y 
X \ 2 4 6 

5 .10 .20 .10 

10 .15 .30 .15 

Answer the same questions as in Problem 5-1. 

5-3 Suppose X and Y have the following joint distribution 

\y 
1 2 3 

0 .1 .1 0 

1 .1 .4 .1 

2 0 .1 .1 

^ A* * 
Answer the same questions as in Problem 5-1. 

5-2 FUNCTIONS OF TWO RANDOM VARIABLES 

In Section 4-7, we analyzed a derived random variable R which was 

some function of an (original) random variable X: 

R = g(X) (5-14) 

In this chapter we shall analyze a derived variable T which is some function 

of a pair of random variables X, Y: 

T = g(X, Y) (5-15) 

The concepts and proofs of this section will therefore run parallel to those 

of the previous chapter, the main difference being that the joint probability 

function p(x, y) will replace the probability function p(x). 

We shall be particularly interested in the distribution and mean of the 

new variable T. 

Example 

Following our normal procedure, we develop the argument in terms of 

simple examples, and then generalize. To use our example of tossing three 
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coins, shown in Figure 5-3, suppose S is just the sum1 of X and 7. In this 
specific case (j>-15) becomes: 

s = x + Y (5-16) 

We use the symbol S in (5-16) rather than Tto emphasize that this function 

of X and Y is a very special case of (5-15), being a simple sum. 

In Figure 5-3, we show how p(s), the probability function of S may be 

derived directjy from the original sample space, or indirectly by means of 

the joint probability function p(x, y). In either case, the result is the same. 

FIG. 5-3 F "wo views of the derivation of the probability function of S = X + Y 
(a) Directly 

(b) Using the joint probability function of X and Y as an intermediate condensation 

Original sample! space Intermediate Final sample space 

s p{s) 

0 1/8 

2 2/8 

3 4/8 

1 To give some njotivation as to why this random variable might be of practical interest, 
we may reinterpret the tossing of 3 coins as “having 3 children,” and then consider X = 

number of girls ajid Y = number of sex changes. Since girls are more expensive to clothe 

than boys, and sjmce sex changes interfere with the convenient passing on of clothing 

from one child to the next child, we might interpret 5 = X + Y as a rough index of the 

clothing costs for ;he family. Of course, a weighted average of X and Y might be even more 
appropriate. 
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On the one hand, consider the direct derivation in Figure 5-3a. To 

illustrate, we note that four of the eight equiprobable outcomes are associated 

with S = 3. Hence p{3) = Pr(S = 3) is 4/8. Other S probabilities are 

similarly evaluated. 
On the other hand, in Figure 5-36, p(3) may be evaluated indirectly, by 

first deriving the joint probability function p{x, y). Then the three circled 

(x9 y) combinations all yield S = 3, and the sum of their probabilities is 4/8. 

The expectation E(S) may similarly be derived in two ways. On the one 

hand, applying (4-3) directly to the probability distribution of 8, we have, 

by definition: 

E(S) = 2 5 P(s) (5“17) 

= 0(|) + 1(0) + 2(f) + 3(f) + 4(|) 

= 2| 

On the other hand, we may arrive at the same result by using the joint 

distribution of X and Y. Specifically, we wonder if (4-17c) can be extended 

to: 

E(S) = E(X + Y) = 2 (x + y) p(x, y) (5-18) 
x,y 

= (0 + 0)(i) + (0 + 1)(0) 

+ (1 + 0)(0) + (1 + l)(f) • • • 

+ (1 + 2)(|) + (2 + l)(f) + (2 + 0)(f) 

= 2J, the same result derived in (5-17). 

So (5-18) does, in fact, work—at least in this example. Why? The last 

3 terms of (5-18) amount to 

3(s + 8 +s) == 3(f) 

which is the same as the second last term of (5-17). Continuing in this fashion, 

we see that (5-18) is just a disguised form of the more condensed form 

(5-17). 
In a similar way we could prove generally 

Theorem. If T = g(JF, Y) is any function of two random variables, then 

(5-19) 

[compare (4-17c)]. 
For an example of how this works for a more complicated function of 

X and Y, we return to the tossing of three coins, and consider 

T = X2 - 27 (5-20) 
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Following th| method of Figure 5-3(a), we can derive the following 

probability distribution for T: 

Calculation of E{T), using (5-17) 

t pH) tpiO 

-3 1/8 -3/8 

-1 2/8 -2/8 

0 2/8 0 

2 2/8 4/8 

9 1/8 9/8 

E = 1 V E{T) = 1 

from which E{T) is directly calculated to be 1. 

Alternatively, we could calculate E(T) from (5-19), using p{x>y) as 

given in Table) 5-3. Thus, noting (5-20): 

E(T) = 1 (*2 - 2v) p(x> y) 
x ,y 

= (02 - 2(0»(l/8) + (O2 - 2(1))(0) + (o2 - 2(2))(0) 

+ (l2 - 2(0))(0) • • • + (32 - 2(2))(0) 

= 1. 

PROBLEMS 

5-4 Let U =i X(X + Y) 

kJ(L-8)(F-4) 

where Ju and Y have the same joint distribution as in Problem 5-2, 

namely 5 

(a) Find the distribution of U, and from this its mean. 

(b) Find the mean of U using (5-19). 

(c) Find E{V). 
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(5-5) Let U = XY — 1 

V= (X- 1)(F — 2) 

where X and Y have the same joint distribution as in Problem 5-3, 

namely 

1 2 

0 .1 .1 
1 .1 .4 

2 0 .1 

(a) Find the distribution of U, and from this its mean. 

(b) Find the mean of U using (5-19). 

(c) Find E{V). 

5-3 COVARIANCE 

This is a measure of the degree to which two variables are linearly 

related. As an example, consider the joint probability function of Table 5-5, 

graphed in Figure 5-4a. We notice some tendency for these two variables 

to move together (i.e., a large X tends to be associated with a large Y; and a 

small X with a small Y). 
Our measure of how the variables move together should be independent 

of our choice of origin. It will, therefore, be convenient in Figure 5-4b to 

translate both axes from the (0, 0) origin to px and (jly (which are calculated 

to be 3 and 3); this means defining two new variables 

X — fJLX and Y — fly 

Now suppose we multiply the new coordinate values together, 

(X — [*x)(Y — fly) 

Table 5-5 Joint Probability p(x, y) 

1 .1 0 0 0 0 ' , 
2 0 .2 0.1 0 ‘ ‘ ^ 

3 0 0 .2 0 0 ' 6 
4 0 .1 0 .2 0 .3 
5 0 0 0 0 .1 , \ v S • 
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FIG. 5-4 Tran; lation of axes, (a) Original, (b) Axes translated to the center of the dis¬ 
tribution. 

For any poinj in quadrant I in Figure 5-4b both its (X - px) coordinate 
and (Y — pr) coordinate will be positive; hence this product will be positive. 
It will also be Positive for any point in the third quadrant, since both factors 
are negative. Hut for points in the other two quadrants the product is nega¬ 
tive. If we sum all of these, attaching the appropriate probability weights to 
each, i.e., j 

22 O - PxXv - py) y) (5-21) 
m ■?/ 

In our example, the heavier probability weights appear in quadrants I 
and III; thus the positive terms in this calculation will outweight the negative. 
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Consequently, covariance will be positive,2 indicating, as expected, some 
tendency for the variables to move together. Alternatively, if the larger 
probabilities had occurred in quadrants II and IV, covariance would be 
negative, indicating the tendency for X and Y to move in opposite directions. 
Finally, had the probabilities been evenly distributed in the four quadrants, 
there would be no discernible tendency for X and Y to move together and, 

as expected, their covariance would be zero. 
We notice that (5-21) is equivalent to the following formal definition.3 

Definition. 

Covariance of X and Y, 

°xy = — t*x)(Y ~ Py) 

2 Calculated as follows: 

a = (—2)(—2)(.l) + (-1)(-1)(.2) + (-l)(+l)(.l) + (+l)(-l)(.l) 
+ (+1)(+1)(.2) + (+2)(+2)(.l) = +1.0 

3 The computation of oXY may often be simplified by using 

ax7 = E(XY) - fixfiY O2* 

This formula, with its proof, is analogous to (4-5): 

<4 = E(X2) - /4 (5-24 

Proof of (5-23): beginning with (5-21), 

aXY ~ 22 (x “ ~~ ^ 
X V 

=11 (xy — xy,Y — y\xx + fixMy^P^X} ^ 

= yy\xv p(x»y) ~ P'Y a xP(x, y) - fix 22 y) + pxPy 22^> y) 

XV * » * y * * (5.25 

In the second term, we find that 

and by (5-5). 

22 * />(*. y) = l *[" !p<-x> ^"1 
x y x \_V J 

= yx pw 

Similarly, in the third term of (5-25), 

22 y p(x> ^ = ^5'27) 
x y 

Finally, in the last term of (5-25), 

22 = 1 
x y 

Thus (5-25) reduces to 

xy p(x, y) — pY(Px) ~ Px^Py) + PxPy 

= E(XY) - pxpT (5‘23> Proved 
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The variance 
being the co| 

Since a 

of X [ref. (4-19)] is recognized as just a special case of this, 
ariance of X with itself. 

'Ay measures the extent to which the two variables move together, 
we find it plausible (indeed, it may be proved4) that 

Theoreni. 

If X and Y are independent, aXY = 0 (5-28) 

PROBLEM^ 

5-6 For the following joint probability table. 

A 0 1 2 

0 .2 .2 0 
1 0 .4 .2 

Calculate axy 
(a) Frpm the definition (5-22). 
(b) From the easier formula (5-23). 

(5-7) Repea| Problem 5-6, for the following joint probability distribution: 

4 Proof. If X anq 

Thus (5-21) beci 

x \ 0 1 2 

0 ~4.- 0" .4 
1 
2 .2 .2 . 
_:../ . 

5-8 Suppose X and Thave the following joint distribution: 

0: 

cL* 
otr- ^ 

\y 
X \ 1 2 

1 .40 .10 
2 .20 .05 
3 .20 .05 

Y are independent, then 

p(x,y) =p(%)p(y) 
mes 

axr = 22(x - - i“r)p(x) p(y) 
= f2 (x - px^pwi i2 & ~ Pr) p(y^ 
= 0.0 = 0 

(5-13) repeated 

(5-28) proved 
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(a) Find p(x) and p(y); then by verifying that p{x)p(y) =p(x,y) 
confirm that X and Y are independent [ref. equation (5-13)]. 

(b) What is aXYl 

5-9 (a) Referring to Problems 5-4 and 5-5, is it true that E(V) = aXYl 
(b) Referring to Problem 5-1, find 

(1) <Lyf 

(2) E(X + 7). 

*5-10 

\y 
X \ 0 1 2 

0 .1 .3 .1 

1 .2 .1 .2 

(a) Find the probability function of X and the probability function 

of 7. Compute E(X) and E(Y). 
(b) Are X and 7 independent? 
(c) Calculate <yXY. 
(d) Which statements are true, for any X and 7? 

(1) If X and 7 are independent, then aXY must be zero. 
(2) If aXY = 0, then X and 7 must be independent. 

5-11 In a certain gambling game, a pair of honest three-sided dice are 

thrown. Let 
Xx = number on first die 
X2 = number on the second die 
The joint probability distribution of X1 and X2 is, of course 

\a2 
1 2 3 

1 1/9 1/9 1/9 
2 1/9 . 
3 

The total number of dots S is: 

S = Xx -f- X2 

(a) Find the distribution of S, and its mean and variance. 
(b) Find the mean and variance of Xx and X2. 
(c) Do you see the relation between (a) and (b) ? 
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5-12 Suppose the gambling game of Problem 5-11 is complicated by 
using leaded dice, as follows: 

Assumij 
distribU 
Proble 

*1 p(x i) 

1 .4 1 .5 
2 .3 2 .4 
3 .3 3 .1 

|ng that the dice are tossed independently, tabulate the joint 
tion of Xx and X2, and then answer the same questions as in 

5-11. m 

5-4 LINEAEj COMBINATION OF TWO RANDOM VARIABLES 

(a) Mean 

First, wejtake leave of more complicated functions, and return to the 
simple example of Section 5-2 in which S was just the sum of X and Y. 
When we calculated E(S) the student’s suspicions may have been aroused; 
the mean of S, (2)4) turned out to simply the sum of the mean of X, (1)4) 
and the meanj of Y, (1). Moreover, this was exactly the conclusion in the 
problems. In ijact, for any X and T, it may be proved5 that 

Theorem. 
E(X + Y) = E(X) + E(Y) (5-29) 

Mathematicians often refer to this important property as the “additivity” 
or “linearity” of the expectation operator. It may be easily generalized to 
cover the case-of a “weighted sum” 

5 Proof For S = 

Considering 

by (5-5) 

W=aX+ bY (5-30) 

X + T, (5-19) becomes 

e(x + y) = 22 (x + y) p(x, y) 
x y 

= 22 xp(x> y"> + 22 y p(x> ^ 
xv x y 

the first term, we may write it as 

22 xp(x> ^ = 237 E p(x> ^)] 
xv x y 

= 2 xpw 
X 

= E(X) 

Similarly the secqnd term reduces to E(Y), so that 

E(X+ Y) — E{X) + E( Y) (5-29) proved 
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where a and b are any two constants. W is also known as a “linear combina- 
/tion of X and 7.” For example, S = 7 + 7 is just the special case in which 

a = b = 1. As another example, the average of two random numbers X and 
7 is (X + Y)l2 = Y% X + /1> 7, which is just a weighted sum with weights 
1/2. Similarly, any weighted average is just a linear combination with a and 
b satisfying a + b = 1. 

We might guess that if we know the average of X and the average of 7, 
we might plug these into (5-30) to find the average of W. Fortunately this 
simple operation is always justified; thus6 

. Theorem. 

E( W) = E(aX + bY) = aE(X) + bE{ 7) (5-31) 

As a review, the student should compare (5-19) and (5-31). Both provide 
a means of calculating the expected value of a function of X and 7. However, 
(5-19) applies to any function of X and 7, whereas (5-31) is restricted to linear 
functions only. When we are dealing with this restricted class of linear 
functions, (5-31) is generally preferred to (5-19) because it is much simpler. 
Whereas evaluation of (5-19) involves working through the whole joint prob¬ 
ability distribution of Xand 7 (e.g., Table 5-3), (5-31) requires only the mar¬ 
ginal distributions of X and 7 (e.g., the last row and column of that table). 

(b) Variance 

Again, we consider a simple sum first, and any linear combination 
later. The variance of a sum is a little more complicated than its mean. It 
may be proved7 that 

Theorem. 

var (X + 7) = var X + var 7 + 2 cov (V, 7) (5-32) 

6 Since the proof parallels the proof of (5-29), it is left as an exercise. 

7 Proof. It is time to simplify our proofs by using brief notation such as E( W) rather than 

the awkward ^ wp(v;), or the even more awkward w(%, y) p(x, y). First, from 

(4-19), ® y 
var S — E(S — /iis)2 

Substituting for S and p,s, 

var 5 = E[(X + 7) - (px + pY)f 

— E[(X — f.ix) + (7 — /^F)]2 

= EUX- ^f + 2(X - fix)(Y -/ir) + (r-frf] 

each of these is a random variable 

Realizing that (5-31) holds for any random variables, 

var S = E{X — pxf + 2E(X - /ux)(Y - fiY) + E(Y - pYf 

= \arX +2 cov (X, 7) + var 7 (5-32) proved 
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jnd cov (X, Y) are alternate notations for a* and re¬ 
spectively. AiJ interesting simplification occurs when X and Y have zero 
covariance (are "uncorrelated”); this occurs whenever X and Y are inde- 
pendent, for example in the dice Problems 5-11 and 5-12 Then (5-32) 
simplifies to: 1 w J 

Corollary,[ 

If AT and Y are uncorrelated, 

var (X + Y) = var X + var Y (5-33) 

Finally, 0-32) may be generalized to any linear combination.8 

Theorem. ■ 

vaij (aX + bY) = a2 var X + b2 var Y + lab cov (X, Y) (5-34) 

This and the ojther theorems of this section are summarized in Table 5-6 a 
very important table for future reference. The general function g(X, Y) is 
dealt with m t|e first row, while the succeeding rows represent increasingly 
restricted special cases. 6 J 

Table 5-6 Summary of the Mean and Variance of Various Functions 
of the Random Variables X and Y 

Function of 

X and Y 

1. Any function 

g(X Y) 

Mean and 

Variance 
Derived by: 

2. Linear combina¬ 

tion aX + b Y 1 

3. Simple sum 
X 4- Y 

4. Function of ond 

variable, aX ; 

Row 1 

Mean 

E[g(X Y)] 

= Hg(x*y)p{v,y) 
(5-19) 

Variance 

x,v 

Setting 

a — b = 1 

in row 2 

Setting b — 0 

in row 2 

E{aX + bY) 
= aE(X) + bE( Y) 

(5-31) 

E(X + Y) 

= E(X) + E(Y) 
(5-29) 

~E(aX) ~~YE(X) 
(ref. Table 4-2) 

Var (aX -f- b Y) ~ 

= a2 var X + b2 var Y 
+ 2ab cov (X, Y) 

-(5-34) 
var {X -f- Y) 

= var X + var Y 
+ 2 cov (X, Y) 

(5-32) 
var (aX) = a2 var X 

(Table 4-2) 

srof of (5-32)> *• is ieft as an “■ N°te a,s°(5-34> 



96 TWO RANDOM VARIABLES 

Example 

Suppose 

letting 

we choose a family at random from a certain population, 

B — number of boys in the family 

G = number of girls in the family 

so that C = B + G = number of children. 

Suppose it is known that 

E(B) = 1.2 var B = 2.0 

£(£) = 1.1 var G = 2.2 

cov (B, G) = 0.3 

Then we can calculate the average number of children, and the variance: 

From (5-29) 
E(C) = 1.2 + 1.1 = 2.3 

From (5-32) 
var fCl = 2.0 + 2.2 + 2(0.3) = 4.8 

PROBLEMS 

5-13 Continuing Problems 5-11 and 5-12, suppose the pair of 3-sided dice 
are not only loaded, but dependent, so that the joint probability 

1 

2 
3 

1 

.1 

.1 

.1 

2 

.1 

.1 

.1 

3 

.1 

.2 

.1 

X 
H 

7 

't 

.1 Sb ,0 

(a) Find the distribution of S (the total number of dots), and its 

mean and variance. 
(b) Find the mean and variance of and of X2. 
(c) Find the covariance of and X2, and then verify tha ( - ) 

and (5-32) hold true. 

(5-14) When a coin is fairly tossed 3 times, let 
X = number of heads on the first two coins 

Y = number of heads on the last coin 

Z = total number of heads 



LINEAR COMBINATION 97 

(a) Ap X and Y independent? What is their covariance ? 

(b) Fpr each of X, Y, and Z, find the distribution, mean, and vari¬ 
ance. 

(c) Verify that (5-29) and (5-32) hold true. 

(5-15) Repeaj 

tossed 
jt Problem 5-14 for a coin (Problem 3-26) which is not fairly 

i> having in fact the following sample space: 

e Pr(e) 

(H H H) > .15 
. (H H T) ‘ .10 

. (HTH) .10 

. (H T T) .15 

. (T H H) .15 

. (T H t) .10 

. (T T H) .10 

. (T T T) .15 

5-16 The stpdents of a certain large class wrote 2 exams, each time ob¬ 

taining a distribution of grades, with the following characteristics! 

1st ejtam, Xx 
2nd fxam, X2 

(a) Average, X 

(b) ^eighted 

average W 

Class 

Mean 

f* 

Standard 

Deviation 

a 
Variance 

a2 

50 20 ? covariance 
80 20 ? <r12 = 50 
? ? ? 

? ? 7 

Fiji in the blanks in the table, assuming 

(a) The instructor calculated a simple average of the two grades 
X = (^ + 3Q/2 

(b) The instructor thought the second exam was twice as important, 
so took a weighted average 

W = %Xx + §X2 

5-17 Repeat Problem 5-16, if the covariance is -200. How might you 

interpret such a negative covariance ? What has it done to the variance 
of the average grade ? 

(5-18) Repeat Problem 5-16, if the covariance is 0. 
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Review Problems 

5-19 If X and Y have the following joint probability function 

\ y 
X \ 5 6 7 

5 .1 .3 .1 

6 .1 .1 .3 

Find the probability distribution and mean of 

(a) X. 

(b) 7. 

(c) The sum S' = X + Y. 
(d) Y, given X = 5. 

(e) Are X and Y independent? Briefly, why? 

(f) Find Pr(X < Y). 

5-20 In a small community of ten working couples, yearly income (in 

thousands of dollars) has the following distribution: 

Couple Man’s Income Wife’s Income 

1 10 5 

2 15 15 

3 15 10 

4 10 10 

5 10 10 

6 15 5 

7 20 10 

8 15 10 

9 20 15 

10 20 10 

A couple is drawn by lot to represent the community at a con¬ 

vention. Let M and IF be the (random) income of the man and wife 

respectively. Find: 
(a) The bivariate probability distribution, and its dot graph. 

(b) The probability distribution of M; also and a\r 
(c) The probability distribution of W\ also fiw and a\v. 
(d) The covariance aMW. 
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(e) E(W/M =10), E(WjM = 20). Note that as M increases, the 

conditjonal mean of W increases too. This is another expression of the 

“positijve relation” between M and W. 
(f) If C represents the total combined income of the man and wife, 

what is its mean and variance? 

(g) WJiat is Pr (C > 25) ? 

(h) If income is taxed a straight 20 percent, what is the mean and 

variance of the tax on a couple’s income? 

(i) If jthe income of a couple is taxed according to the following 

progressive tax table, what is the mean and variance of the tax? 

Combined Income Tax 

10 1 

15 2 

20 3 

25 5 

30 7 

35 10 

40 13 

(5-21) Ten people in a room have the following heights and weights 

Person Height (inches) Weight (pounds) 

a. 
For a 

(a) 
(b) 
(c) T 

(d) T 

(e) E\ 

A 70 150 

B 65 140 

C 65 150 

D 75 160 

E 70 150 

F 70 140 

G 65 140 

H 75 150 

I 75 160 

J 70 160 

person drawn by lot (with height H and weight W), find: 

e bivariate probability distribution, and graph it. 

e probability distribution of H, and its mean and variance. 

jie probability distribution of W9 and its mean and variance, 

tie covariance, <?HW’ 
W\H = 65), E(WIH = 70), E{WIH = 75). 
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(As height increases, the conditional mean weight increases, which is 

another view of the positive covariance of H and W.) 
(f) Are H and W independent? 

(g) If a “size index” / were defined as 

/ = 2H + 3 W 

find the mean, variance and standard deviation of /; then find the 

distribution of / and verify directly. 

5-22 Suppose a game involves dropping 3 coins on the table—a nickel, a 

dime, and a quarter. Each coin that lands “heads up” you are allowed 

to keep, so that the possible reward R ranges from 0 to 40^. 

(a) List the sample space. 

(b) What is the distribution of R, its mean, and variance? 

We shall now work through an alternate way to find the mean and 

variance of R, without going to the trouble of finding its exact distribu¬ 

tion. To begin with, let us define 

Thus 

X1 = the nickel’s contribution to the reward 

X2 = the dime’s contribution to the reward 

Xz = the quarter’s contribution to the reward 

R = Xx + X2 + X3 (5-35) 

(c) What is the distribution of Xl9 its mean, and variance? 

(d) Similarly find the distribution, mean, and variance of X2 and Xz. 
(e) Apply (5-29) and (5-33) to find E(R) and var (R). 

(5-23) Continuing, suppose that instead of 3 coins, there were 4 coins 

dropped on the table—a nickel, a dime, and 2 quarters. Answer the 

same questions as in Problem 5-22. 

5-24 Continuing Problem 5-22, suppose that instead of 3 coins, we dropped 

3 nickels, 2 dimes, and 5 quarters. What is the range, mean, and 

variance of R7 

=> 5-25 A bowl contains 6 chips numbered from 1 to 6. One chip is selected 

at random and then a second is selected (random sampling without 

replacement). Let Xx and X2 be the first and second numbers drawn. 

(a) Tabulate the joint probability function of X± and X2. 
(b) Tabulate the (marginal) probability functions of X1 and X2. 
(c) Are X1 and X2 independent? 

(d) What is the covariance of X1 and X2 ? 

(e) Find the mean and variance of X1 and X2. 
(f) Find the mean and variance of S = X1 + X2 in two different ways. 
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5-26 Repeat Problem 5-25 with the following change. The first chip is 

drawA and recorded, then replaced in the bowl before the second is 

drawn (random sampling with replacement). Isn’t this sampling 

problem (with replacement) mathematically identical to tossing a die 

twice? 

5-27 Let F be the total number of dots showing when 10 fair dice are 

tossed. 

(a) \*|hat are the mean and variance of 7? 

(b) Wlmt; is the range of possible values of F? 

5-28 j 
(a) A bowl contains 50 chips numbered 0, and 50 chips numbered 1. 

A sample of two chips is drawn with replacement; the sum is denoted 

by S.jTabulate the probability function of S. What are the mean and 

variance of S'? 

(b) Repeat for a sample of three chips. 

(c) Rjepeat for a sample of five chips. 

(d) Do you recognize the probability functions in (a), (b), and (c)? 



chapter 6 

Sampling 

6-1 INTRODUCTION 

In the last three chapters we have analyzed probability and random 
variables; we shall now employ this essential theory to answer the basic 
deductive question in statistics: “What can we expect of a random sample 
drawn from a known population?” 

We have already met several examples of sampling: the poll of voters 
sampled from the population of all voters; the sample of light bulbs drawn 
from the whole production of bulbs; a sample of men’s heights drawn from 
the whole population; a sample of 2 chips drawn from a bowl of chips 
(Problem 5-25). All of these are sampling without replacement; an individual 
once sampled, is out. Since he is no longer part of the population he cannot 
appear again in the sample. On the other hand, sampling with replacement 
involves returning any sampled individual to the population. The population 
remains constant; hence any individual may appear more than once in a 
sample, as in Problems 5-26 and 5-28. Polls of voters are typically samples 
without replacement; but there is no reason why a poll could not be taken 
with replacement. Thus no record would be kept of those already selected, 
and, for example, John Q. Smith of Cincinnati might vote twice in the poll—a 
privilege he will not enjoy on election day. 

As defined earlier, a random sample is one in which each individual in 
the population is equally likely to be sampled. There are several ways to 
actually carry out the physical process of random sampling. For example, 
suppose a random sample is to be drawn from the population of students 
in the classroom. 

1. The most graphic method is to put each person’s name on a card¬ 
board chip, mix all these chips in a large bowl and then draw the sample. 

2. A more practical method is to assign each person a number, and then 
draw a random sample of numbers. Thus for a population of less than a 
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hundred, 2-digit numbers suffice. A random 2-digit number may be obtained 

by throwingja 10-sided die twice, or by consulting a table of random numbers 

(Appendix Tpble II) and reading off a pair of digits for each individual 
required in the sample. 

These tw-o sampling methods are mathematically equivalent. Method 2 

is simpler to jemploy, hence it is used in practical sampling. However, the 

first method i| conceptually easier to deal with and to visualize; consequently 

in our theoretical development of random sampling, we talk of drawing 

chips from a.bowl. Moreover, if we are studying men’s heights, then the 

height alone H all that is required on the chip and the man’s name is irrelevant. 

Hence we canj view the population simply as a collection of numbered chips 
in a bowl, which is stirred and then sampled. 

How can-random sampling be mathematically specified? If we draw one 

chip at random, its number can be regarded as a random variable taking on 

values that range over the whole population of chip values, with probabilities 

corresponding to the relative frequencies in the population. 

As an example, suppose a population of 80 million men’s heights has 

the frequency ^distribution shown in Table 6-1. For future reference, we also 

compute p arjd a2 from Table 6-1, and call them the mean and variance 

of X, where J represents the parent population of men’s heights. 

Table 6-1 A Population of Men’s Heights1 

(1) 
Height 

(Midpoint of cell) 

(2) (3) 
Relative 

Frequency, 
X Frequency also p(x) 

51 825,000 .01 
54 791,000 .01 
57 2,369,000 .03 
60 5,505,000 .07 
63 9,483,000 .12 
66 16,087,000 .20 
69 20,113,000 .25 
72 14,480,000 .18 
75 7,891,000 .10 
78 1,633,000 .02 
81 823,000 

2 = 80,000,000 

.01 

S = l.oo 

1 We approximate^ each height by the cell midpoint to keep concepts simple. To be more 

precise, we ought to have used a very fine subdivision of height into many cells, as in Figure 
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From (4-3): 

SAMPLING 

p = 51 (.01) + 54(.01) • • • 81 (.01) = 67.8 

From (4-4): 
a2 _ (5i _ 67.8)2(.01) + (54 - 67.8)2(.01) ■ • • + (81 - 67.8)2(.01) = 28.4 

a = 5.3 

Random sampling from this population is equivalent mathematically to 
placing the 80 million chips of column 2 in a bowl with each chip carrying 
the s value shown in column 1. The first chip selected at random can take on 
any of these x values, with probabilities shown in column 3. This random 
variable we designate as X,; the second draw is designated as the random 
variable X2, and so on. But each of these random variables Xl9 X2, . . ,Xn 
(together representing our sample of n chips) has the same probability dis¬ 
tribution p(x), the distribution of the parent population; that is2 

p{xx) = p(x2) = p(x3) = • • • p{xn) (6-1) 

This equality, of course, holds true if we sample with replacement, since the 
second chip is drawn from exactly the same bowlful as is the first chip, etc. 
Fortunately, (6-1) also holds true for sampling without replacement, even 
though Xl5 X2,. . . Xn are now dependent; since this is not at all obvious, we 

must show why. „ r , .u 
We have already noted that the distribution of X1 is the same as the 

distribution of the population. However, the conditional distribution of X2 
given X± is not the same. Once that first sample value has been taken from the 
population (and not replaced), the population changes3, along with relative 
frequencies (probabilities). Thus X2 is dependent on Xlf or to restate, t e 
conditional distribution of X2 will depend on the value of X} selected m the 
first draw. But this is not the issue in (6-1). In that equation p(x2) is the 
distribution of X2, which is not the conditional distribution, but rather the 
marginal distribution of X2—without any condition, i.e., without any knowl¬ 
edge of Xv And if we have no knowledge of X1 and consider the distribution 
of X2 there is no reason for it to differ from the distribution of Xr 

Our intuition in this case is a good guide. We could formally confirm 
this result by considering the full table showing the joint probability function 
of X, and X2. It is symmetric around its main diagonal; hence although 
conditional distributions (rows or columns) vary in this table, the marginal 

2 Strictly speaking A6-1) is not precise enough. It would be more accurate to let^ denote 

the probability function of Xltp2 of X2, etc., and then write 

Pl(x) = p2(x) = psix) • • • s pn(x) ee p{x) 

where = means “identically equal for all:r* 
3 In our example, with a population of 80 million heights, 

practical consequence. But with smaller populations it might. 

this change would be of no 
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distributions bf X± and of X2 are necessarily identical. (See Problem 5-25b.) 
Thus equation (6-1) holds true, even in the case of sampling without replace¬ 

ment. 
Before leaving Table 6-1, we have one further observation. When the 

parent population is extremely large, such as 80 million, sampling without 
replacement is practically the same as sampling with replacement. It hardly 
matters whether the individual sampled is replaced in the population or 
not—one individual hardly changes the frequencies in column 2 or the relative 
frequencies i i column 3. 

Thus the second draw (X2) will be practically independent of the first 
(Xj). This leads us to the conclusion that sampling without replacement from 
an infinite population is equivalent to sampling with replacement, this is 
important eijough that we shall return to it in Section 6-5. 

Conclusion. Any population to be sampled may be simulated by a 
bowl of chips, with the following mathematical characteristics: 

1. The lumber on the first chip drawn is a random variable Xlt with a 
distribution dentical to the distribution of the population random variable X. 

2. The sample of n chips gives us n random variables (Xl9 X2, . . . Xn). 
Each Xi has the same (marginal) distribution—that of the population X. 
This fundamental characteristic (6-1) holds in all cases—regardless of sample 
replacement or population size. However, the independence of Xlt X2, . . . Xn 
is a more cdmplex issue. If the population is finite and sampling is without 
replacement!, then the Xt- are dependent, since the conditional distribution 
of any Xt depends on the previous X values drawn. In all other cases the 
Xi are independent; for simplicity, we shall assume this independence in the 
rest of the book (except Section 6-5). 

6-2 SAMPLE SUM 

Now we are ready to use the heavy artillery drawn up in Chapter 5. 
First consider 5, the sum of the sample observations, defined as: 

j S±X1 + X2 + X*+--- + Xn (6-2) 

The expected value of S is obtained by using4 Theorem (5-29), as: 

E(S) = E(XJ + E(X2) + • * • 4- E(Xn) (6-3) 

4 E(S) = E(X1 + X2 +--f Xn) = EMX^ + X2 H-+ Xn_y + Xn] 

by Theorem (p-29): = E(Xx + X2 4- ’ ‘ ' + W_1) + E(Xn) 
= El(Xx + T2 + * • • + Tn_2) + + E(Xn) 

Again by Theorem (5-29): = E(X1 + X2 + • • ■ + Xn^2) + E(Xn_j) + £(Xn) 

= E(XP + E(X2) + • • • + E(Xn) 

This generalization of the special two-variable case in (5-29) is an example of proof by 

induction. 
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Noting from (6-1) that each Xl9 X2y . . . Xn has the same distribution as the 
population, it follows that each has the same mean as the population (fi). 
(6-3) can therefore be written: 

E(S) — ft + ft + # * • + ft 

E(S) = nfi (6-4) 

f*s = (6-5) 

Thus, the expected value of a sample sum is simply the mean of the parent 
population times the sample size. 

In the same way, the variance of S is obtained by using Theorem (5-33): 

var S' = var (X, + X2 + • • • + X„) 

= var X1 + var X2 + • • • + var (6-6) 

Note that this depends on the assumed independence of Xu X2, Xn. 
Again, since all the X1, X2, .. . Xn have the same distribution as the popula¬ 
tion, they also have the variance <ra of the population. Thus (6-6) becomes: 

var S = a2 + cr2 -f- • • • 4. a2 

= no2 
or 

(6-7) 

= V n a (6-8) 

Formulas (6-5) and (6-8) are illustrated in Figure 6-1 a. As another example, 
suppose a machine produces a population of bicycle chain links with 
average length ^ = .40 inch and standard deviation a = .02 inch. A chain 
is made by joining together a random sample of 100 of these links. Its length 
Sis a random variable, fluctuating from sample to sample. Its expected length 

fts — n!-1 — 100(.40) = 40.0 inches 

Moreover, because our sample is drawn from an infinite population, Xlt 
X2, ... X100 are independent. Therefore, we may apply (6-8) to compute 
the standard deviation of S. 

as — Vw a = 10(.02) = .20 inch 

The student will notice that this is an example of statistical deduction; 
characteristics of a sample (fts, as) have been deduced from known charac- 
teristics (/f, a) of the parent population. 

We pause to interpret (6-5) and (6-8) intuitively. It was no surprise that 

was n times But why should as be only Vn times <r? Typically, a sample 
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1 (b) 
FIG. 6-1 {a) Relation of the sample sum S' to the parent population, (b) Relation of the 

sample mean X to the parent population. 

sum (e.g. ch|in) will include some individuals (links) which are oversized, 

and some whjch are undersized so that some cancellation occurs. Thus while 

the spread in the chain (os) does exceed the spread in an individual link (o), 
it is substantially less than it would be if the errors in all the links were 

accumulated without cancellation (no). 

6-3 the sample mean 

Recall the definition of the sample mean, 

- a 1 

X — ~ (Xi + A2 -f • • • + Xn) (2-la) repeated 

1 c 
= ,(6-9) 

We recognize that X is just a linear transformation of S, and hence X can 
easily be analyzed in terms of S. 
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It is important to remember that X, as well as S, is a random variable 

that fluctuates from sample to sample. It seems intuitively clear that X will 

fluctuate about the same central value as an individual observation, but with 

less deviation because of “averaging out.” We thus find plausible the formulas 

(6-10) 

(6-11) 

Proof. First, for the mean, we apply the last row of Table 5-6 to (6-9). 

1 
Mx ~ ~ Ms 

n 
and from (6-5) 

= - (nfi) 
n 

fix = M (6-10) Proved 

Now, for the variance, we apply the last row of Table 5-6 to (6-9) again. 

and from (6-7) 

o 2_ 
X n 

(6-12) 

Oj, = -j=. (6-11) proved 
\n 

Formulas (6-10) and (6-11) are illustrated in Figure 6-1 b. A graph of the 

distribution of the sample mean for n = 9 and n = 25 is left as an exercise; 

this will confirm how this distribution concentrates about fi as sample size 

increases. 
We review this section by reconsidering a familiar problem the rolling 

of a die. Two rolls (Xlt X2) can be regarded as a sample of 2 taken from the 

infinite population of all possible rolls of the die. This is also equivalent to a 

sampling of 2 chips from a bowl, as discussed in Problem 5-26. The probabil¬ 

ity distribution of the parent population is shown in Table 6-2a, along with 

its mean (/u) and standard deviation (<r). 
Because this experiment has such simple probability characteristics, we 

can also compute the probability distribution of S and of X for a sample of 

2 rolls of the die as shown in Table 6-2b; the moments of both S and X are 

also calculated in this table. 



Table 6-2 (a) Probability Distribution of the Roll of a Die (Population) 

X p(x) xp{x) 

1 1/6 1/6 
2 1/6 2/6 
3 1/6 3/6 
4 1/6 4/6 
5 1/6 5/6 
6 1/6 6/6 

P = 21/6 = 3.5 
similarly 

Table 6-2 .(b) Probability Distribution of the Sample £ and X, with n = 2 

(1)d 
!- 

(2) (3) (4) (5). 
Outcome S jet or 
Sample S] Dace 

i 

First Second Sum Mean 
Die D^ ie X Probability sp{s) ali />(;£) 

i I 
2 1 1/36 2/36 1/36 

.0,2)' 

•(2, d; 
i 

j 
3 1.5 2/36 6/36 3/36 

.0,3)' 
| 

• (2, 2) 4 2 3/36 12/36 6/36 
• (3, 1) 

5 2.5 4/36 
6 3 5/36 
7 3.5 6/36 

36 equiprol >able 8 4 5/36 
outcom^ >s 9 4.5 4/36 

i 10 5 3/36 

i 11 5.5 2/36 
.(6, 6) 

: | 
1 

12 6 1/36 
..si . , . 

~~ 252/36 [ig = 126/36 
= 7.0 = 3.5 

similarly similarly 

aS = 2-4 ax = 1.2 
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Table 6-2 (c) Alternative Calculation of Mean and Variance 

Moment 

Direct 
Calculation 

from Table 6-2b 

On the Other Hand, This Relevant Formula 
Gives the Short-cut Calculation (using population 

[jl and a from Table 6-2a) 

Vs 7.0 (6-5) Vs = nV = 2(3.5) = 7 

as 2.4 (6-8) as = V n g = V2(1.71) = 2.4 

VI 3.5 (6-10) vx = v = 3.5 

a 1.71 

aX 1.2 (6-11) 
ai = V=n 

(N
 

II ||<
N
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(b) 

FIG. 6-2 Throwing a die twice (a specific illustration of Fig. 6-1). (a) Relation of the 

sample sum S to the parent population. (b) Relation of the sample mean X to the parent 

population. {Note. In order to facilitate graphing, the probabilities were converted to 

probability densities, so that they would all have the same comparable area — 1.) 

no 
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In Table 6-2c we show how these moments could have been obtained 

more simply using the formulas of this section. Finally, this die-tossing 

example is summarized in Figure 6-2. 

PROBLEMS j 

6-1 True or false? If false, correct the errors: 
When a die is rolled twice, the average of the 2 numbers (X) is a 

random’variable having an expectation of 3|, the sameexpectation as 

for a sitigle roll X. This illustrates [1% ~ 
The range of X is from l to 6, also the same as for a single roll X. 

Howevejr, X does not take on all values equally likely—the extreme 

values ire rare. Thus X has a smaller standard deviation than X, 

illustrating ot — aj\Jn. 
Inc dentally, this illustrates why the range of a random variable is 

a better jmeasure of spread than the standard deviation. 

6-2 True or j false? If false, correct the errors: 
If fO men were randomly sampled from the population of Table 

6-1, and then laid end to end, the expectation of the total length would 

be ’nix =L 678 inches. The total length would vary (from sample to 

sample)^ with a standard deviation of no = 53 inches. 

On* the other hand, if the 10 men in the random sample were 

averagek, the expectation of the average would be /i = 67.8 inches, and 

its standard deviation would be o — 5.3 inches. This is how the long 

and short men in the sample tend to “average out,” making Xfluctuate 

less than a single observation. 

6-3 (Classroom Exercise) 
(a) Make a relative frequency (probability) graph of the population of 

heights uf the men in the class. 
(b) Talie a few random samples of size 4 (with replacement), showing 

how in each sample the tall students tend to be offset byjhort students. 

(c) For each sample, calculate X. Plot the values of X and conipare 

to ! 
6-4 The population of employees in a certain large office building has 

weights’ distributed around a mean of 150 pounds, with a standard 

deviation of 20 pounds. A random group of 25 employees get in the 

elevator each morning. Find the mean and variance of: 

(a) Th| total weight S. 
(b) The average weight X. 

=> 6-5 A boAl is full of many chips, one-third marked 2, one-third marked 4, 

and one-third marked 6. 
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(a) When one chip is drawn, let X be its number. Find fx and a, (the 
population mean and standard deviation.) 

(b) When a sample of 2 chips is drawn, let X be the sample mean'. Find 
(1) The probability table of X. 

(2) From this calculate and crx; check your answers using 
(6-10) and (6-11). 

(c) Repeat (b) for a sample of 3 chips. 

(d) Graph p(x) for each case above, i.e., for sample size n = 1, 2, 3, 

Comparison is facilitated by using probability density, i.e., by using a 

bar graph with probability = area = (height) (width). 

As n increases, notice thatp{x) becomes more concentrated around 
ix. What else is happening to the shape of pix)1} 

6-4 THE CENTRAL LIMIT THEOREM 

In the preceding section we found the mean and standard deviation of X. 
The one question we have not yet addressed is the shape of its distribution. 
We consider two cases. 

(a) The Distribution of the Sample Mean When the Population 
is Normal 

In this case X is exactly normal. This follows from a theorem on linear 
combinations, which we quote without proof: 

If A and Tare normal, then any linear combination 

Z = aX + b Y is also a normal random variable. (6-13) 

With a normal population ^each observation in a sample Xl9 X2, ... Xn is 
normal. The sample mean X can be written as a linear combination of these 
n normal variables, 

X = -X1 + -X2 ■ ■ ■ + - X 
n n n 

(6-14) 

so that (6-13) can be used to establish that X is normal. Finally, we re¬ 

emphasize that its distribution concentrates about a as sample size n increases 
(ref. 6-11). r 

(b) The Distribution of X When the Population is Not Normal 

It is surprising that, even in this case, most of the same conclusions 

follow. As an example, consider the bowl of 3 kinds of chips in Problem 6-5. 
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This is obviously a nonnormal population; in fact, it is a rectangular distribu¬ 

tion. As a largir and larger sample is taken, the distribution of X is graphed5 

in Figure 6-3al As well as the increasing concentration of this distribution, 

we notice the tendency to the normal bell shape, 

This same tendency to the normal shape occurs for the sample of dice 

throws (n = L, 2, 3, . . . throws from a population of all possible throws), 

as shown in Fjigurc 6-3b. 
Finally, in Figure 6-3c a third population is shown, having chips num¬ 

bered 2, 4, arid 6, with proportions 1/4, 1/4, and 1/2. Sample means from 

this populatioh also show the same tendency to normality. 

These three examples display an astonishing pattern—the sample mean 

becomes normally distributed as n grows, no matter what the parent popula¬ 

tion is. This pattern is of such central importance that mathematician^ have 

formulated it as 

The Central Limit Theorem. As the sample size n 
increases, the distribution of the mean, X, of a 

sample taken from practically6 any population 

approaches a normal distribution, (with mean n 

and standard deviation ajVn)• 

(6-15) 

The central limit theorem is not only remarkable, but very practical as 

well. For it completely specifies the distribution of X in large samples, and is 

therefore the (key to large-sample statistical inference. In fact, as a rule of 

thumb it has peen found that usually when the size n reaches about 10. or 20, 

the distribution of X is practically normal. This is certainly the case in the 3 

examples of Figure 6-3. _ 
In conclusion, we can assume that X is normal for any sample taken 

from a normal population, and for large samples taken from practically any 

population. With our previous conclusions on the mean and standard, devia¬ 

tion of X, welcan now be very specific in our deduction about a sample mean 

taken from ajknown population. 

Example j 

Considej the marks of all students on a statistics test. If the marks have 

a normal distribution with a mean of 72 and standard deviation of 9, compare 

5 The student Mas already done the first 3 graphs of Figure 6-3a (in Problem 6-5), and the 

first 2 graphs df Figure 6-3b (in Table 6-2). The rest of the graphs may be similarly cal¬ 

culated. 
6 The one qualification is that the population have finite variance. For a proof of this 
theorem, see, for example, P. Ffoel, Introduction to Mathematical Statistics, 3rd ed., 

pp. 143-5, JohA Wiley & Sons, 1962. 
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(a) (b) (c) 

FIG. 6-3 The limiting normal shape for p{x). {a) Bowl of three kinds of chips, (b) Bowl of 
six kinds of chips (or die), (c) Bowl of three kinds of chips of different frequency. 

(1) the probability that any one student will have a mark over 78 with (2) 
the probability that a sample of 10 students will have an average mark over 78. 

1. The probability that a single student will have a mark over 78 is 
found by standardizing the normal population 

Pr(X > 78) = PF/--H > 
\ M 

X - n 78 - 72\ W 

r 7 
= Pr (Z > .67) = [50 - .2486 = .2514. 
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2. Now cd 
above we kno^j 

ajy/n — 9/V10 

nsider the distribution of the sample mean. From the theorems 
y it is normal, with a mean of 72 and a standard deviation 

From this we calculate the probability of a sample mean 
exceeding 78 t(| be: 

Pr (X > 78) Pr 
X - fi 78 - 72\ 

9/VToj c/V” 
= Pr (Z > 2.11) 

= .0174 (6-16) 

FIG. 6-4 Comparison of probabilities for the population and for the sample mean. 

Hence, although there is a reasonable chance (about 1/4) that a single 
student will ge:: over 78, there is very little chance (about 1/60) that a sample 
average of ten! students will perform this well. This is shown in Figure 6-4. 

PROBLEMS 

6-6 The weights of packages filled by a machine are normally distributed 
about ^ mean of 25 ounces, with a standard deviation of one ounce. 
What is the probability that n packages from the machine will have 
an average weight of less than 24 ounces if n = 1, 4, 16, 64? 

6-7 Suppose that the education level among adults in a certain country 
has a mean of 11.1 years, and a variance of 9. What is the probability 
that in la random survey of 100 adults you will find an average level 
of schooling between 10 and 12? 

6-8 Does the central limit theorem (6-15) also hold true for the 
sum? Justify briefly. 
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6-9 An elevator is designed with a load limit of 2000 lb. It claims a capacity 
of 10 persons. If the weights of all the people using the elevator are 
normally distributed with a mean of 185 lb and a standard deviation 
of 22 lb, what is the probability that a group of 10 persons will exceed 
the load limit of the elevator? 

6-10 Suppose that bicycle chain links have lengths distributed around a 
mean = .50 cm, with a standard deviation a = .04 cm. The manu¬ 
facturer’s standards require the chain to be between 49 and 50 cm long. 
(a) If chains are made of 100 links, what proportion of them meets 
the standards? 
(b) If chains are made of only 99 links, what proportion now meets 
the standards? How many links should be put in a chain? 
(c) Using 99 links, to what value must a be reduced (how much must 
the quality control on the links be improved) in order to have 90 
percent of the chains meet the standards? 

(6-11) The amount of pocket money that persons in a certain city carry has 
a nonnormal distribution with a mean of $9.00 and a standard devia¬ 
tion of $2.50. What is the probability that a group of 225 individuals 
will be carrying a total of more than $2100? 

6-12 In Problems 6-6 to 6-11, the variance formulas required that the n 

individuals in the sample were independently drawn. Do you think 
this is a questionable assumption? Why? 

*6-13 A farmer has 9 wheatfields planted. The distribution of yield from 
each field has a mean of 1000 bushels and variance 20,000. Further¬ 
more, the yields of any 2 fields are correlated, because they share the 
same weather conditions, weed control, etc; in fact the covariance is 
10,000. Letting S denote the total yield from all 9 fields, find 
(a) The mean and variance of S. [Hint. How must the footnote proof 
to (5-32) be adjusted ?] 
(b) Pr (S < 8,000), assuming S is normal. 

*6-5 SAMPLING FROM A FINITE POPULATION, 
WITHOUT REPLACEMENT 

In the preceding analysis, we have assumed either sampling with replace¬ 
ment, or alternatively, sampling from an infinite population—in which case 
it doesn’t matter whether we replace or not. This leaves one remaining 
possibility—sampling from a finite population, without replacement. 

* This is a starred section, and like a starred problem, it is optional; the student may 
skip it without loss of continuity. 
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We havj: already argued in Section 6-1 that all the X, in a sample of n 
observations W, X,, . . . ri wj|i th„ ,_“ S,amP e ot H (y v v \ m, , /li 111 d sample ot n 

whetheT or °jiot^we^r J ^ the Same (mar8inal> distribution 

(«!s",,Lp e<l"at,“(W) “■ •« th“ 

~ nP (6-5) repeated 

(6-10) repeated 
And similarly 

ftx — [A 

Onthe other jhand, the variance of the sample mean does depend on whether 
not we replace; it is easy to see why. Suppose we sample 10 of the heights 

e male |tudents on a college campus; suppose further that the first 
student we sample is the star of the basketball team (say Lew Akifdor at 
7 feet 1 inch). Clearly, we now face the problem of a sample average that is 
off target ^specifically, too high. If we replace, then in the next 9 men 

further’ A^iA™ UP sa"^ ™ further off tarbet on the high side. But if we don’t replace, then we don’t have 
o worry aboht Alcindor again. In summary, sampling without replacement 

yields a more eliable sample mean (i.e„ Xhas less variance), blSSE* 
values once sampled, cannot return to haunt us again 

menfthr?5 T “T™1 ™S f f°ll0WS- If We SamPIe without replace- 

v.,,„nce of S jind X above, b»od „„ ,he independence ,!s„mp““do « 

modi«7.o bo 

var S = or| = no2 

(sampling without 
replacement) 

N 

N - 1 
(6-17) 

where N - population size, and n = sample size. Furthermore 16-121 

which also asstjmed replacement—must be similarly modified to: 

var X = g\ — 
n 

(sampling without 
replacement) 

'N — n 

N - 1 
(6-18) 

Although we dcj not prove these two formulas, we interpret them: 

of X wlflT VarifnCe 0f J7jthout ^placement (6-18) is less than the variance 
intiiv rePf6™"1 <6-12); (tWs is the formal confirmation of our 
intuitive examp e of heights of college students). This occurs because the 
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‘reduction factor,” 
(N - n\ 

\N - 1/ 

(6-19) 

aDDearing in (6-18) is less than one. [Unless of course, the sample size n 
fs only one. In this case, no distinction can be made between replacement 

and nonreplacement, and (6-12) and (6-18) must necessarily coincide^ 

If you have wondered where the 1 came from in the denominator, you can 

seJthat it is necessary, in order to logically make (6-12) and (6-18) equivalent, 

thev must be, for a sample size of one.] 
2 When n = N, the sample coincides with the whole population, every 

time Hence every sample mean must be the same-the population mean. 

The variance of the sample mean, being a measure of its spread 
This is reflected in (6-19) having a zero numerator; and var X in.(6-18) 

becomes zero (Note that with replacement this is not the case—in t is 

instance, n = N does not guarantee that the sample and the population are 

3. On the other hand, when n is much smaller than N, (e.g., whcn200 

men are sampled from 80 million), then (6-19) is practically 1, so that v 

Tpra^call/the same as with replacement. This, of eo^se 
common sense - if the population is very large, it makes very little difference 

whXr or n0uhe observations are thrown back in again before continuing 

sampling. 

PROBLEMS 

*6-14 In the game of bridge, cards are allotted points as follows 

Cards Po‘nts 

All cards below jack 

Jack 

Queen 

King 

Ace 

0 
1 
2 
3 

4 

(a) For the population of 52 cards, find the mean number of points, 

and the variance. , f -nfc ya 
(b) In a randomly dealt hand of 13 cards, the number of_pomt Zis a 

random variable. What are the mean and variance of Y. (Bndg 

players beware: no points counted for distribution). 
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(c) What is Pr (Y > 13)? (Hint. The distribution shape is approximately 

normal,; as we might hope from the central limit theorem). 

*6-15 Rework Problem 6-9, assuming the population of people using the 

elevator is no longer very large, but rather 

(a) N 4 500. ;; 

(b) N 4 50. 

6-6 SAMPLING FROM BERNOULLI POPULATIONS 

We have5 examined the distribution of a sample mean and a sample sum; 

the final statistic that we study is the one referred to in our poll of U.S. voters 

in Chapter 1 j the sample proportion P. 

(a) The Bernoulli Population 

First, Je must be clear on the population from which the sample is 

drawn. We conceive of this as being made up of a large number of individuals, 

Table 6-3 A Bernoulli Variable 

Frequency p(x) X p(pc) 

Republican 0 

Democrat 5 1 

66,000,000 

84,000,000 

66,000,000 

150,000,000 
84,000,000 

150,000,000 

= .44 

.56 .56 

2 = 150,000,000 .56 

all marked D or R (Democrat or Republican). We can make this look like 

the familiar powl of chips by relabelling each D with a 1 and each R with a 0. 

voting population of 150 million is comprised of 84 million 

Democrats sjnd 66 million Republicans, the population probability distribu¬ 

tion would be as shown in Table 6-3. ^ 
The population proportion rr of Democrats is .56, which is also the 

probability,;in sampling one individual at random, that a Democrat will be 

chosen. This-is called a “Bernoulli” population and its distribution is graphed 

later in Figtire 6-6a. This is the simplest kind of probability distribution, 
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lumped at only two values—0 and 1. (Note that this population is as far from 

being normal as any that we will encounter). Its mean and variance are easily 

computed in Table 6-4. In our example, ft — .56, and a — .5 

The reason that the arbitrary values of 0 and 1 were assigned to the 

population is now clear. This ensures that ^ and tt coincide. 

Table 6-4 Calculation of // and a2 for a Bernoulli Population 

X p(x) x p(x) {x - //.) (x - ju)2p(x) 

0 (1 - TT) 0 -TT (-7t)2(1 - tt) 

1 TT TT 1 — TT (1 — TT)2TT 

= tt (6-20) 

O'2 = 77(1 - 77) (6-21) 

cr = V 77(1 — 77) (6-22) 

(b) Bernoulli Sampling 

We now ask, “What can we expect of a sample drawn from this sort of 

population?” The population is so large that even without replacement, the 

n observations are practically independent; the probability of choosing a 

Democrat remains practically .56 regardless of whether or not we replace. 

If we take a sample of n = 50 let us say, we might obtain, for example, 
the following 50 numbers: 

011010010111...Oil (6-23) 

The sample sum, of course, will be just the number of Democrats in the 

sample. We recall encountering this before as a binomial random variable in 

Table 4-3; thus a binomial random variable is simply a sample sum in 
disguise. 

Why is this interesting coincidence of any practical value? Suppose we 

wish to calculate the binomial probability of at least 30 Democrats in 50 

trials. We could evaluate the probability of exactly 30 Democrats, of 31, 32, 

and so on. This would require a major computational effort: not only are 

some twenty odd probabilities involved, but in addition, each is extremely 

difficult to calculate.7 But we recognize that this is equivalent to calculating 

7 As an exercise, the student should consider whether it is feasible to evaluate the prob¬ 
ability of getting 30 Democrats in a sample of 50, which is: 

(30) ('56)30(-44)20 
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the probability that S, the sample sum taken from a Bernoulli population, 

is at least 30 jn a sample of 50. This is very easy to calculate, because in the 

previous section we have completely described the distribution of any sample 

sum. 

Sin fact is approximately normally distributed,8 with the following mean 

and variance: 

From (6-5). 

from (6-20). 

From (6-7), 

Binomial mean 

and using (6-21). 

cr| = mr(\ — 7r) 

i as = Vn7r(l — 77) Binomial standard deviation 

Hence the probability of at least 30 Democrats in a sample of 50 is: 

Pr (S ^ 30) 

which, in standardized form is 

us > 30 - 28N 
Pr (Z > .58) (6-26) 

To confirm tl|e usefulness of this normal approximation to the binomial, the 

student should compare this simple solution with the calculations involved 

in evaluating some twenty-odd expressions, each like the one in the footnote 

on p. 120. "the normal approximation to the binomial is graphed9 in 

Figure 6-5. 

8 For large n, by the central limit theorem. A useful rule of thumb is that n should be large 

enough to mak^ nn > 5 and n( 1 — 77) > 5. If n is large, yet n is so small that tin < 5, 

then there is a fetter approximation than the normal, called the Poisson distribution. 

9 This graph clearly indicates that a better approximation to the binomial histogram, would 

be the area under the curve above 29.5, not 30. This peculiarity arises from trying to ap¬ 

proximate a discrete variable with a continuous one, and is therefore called the continuity 
correction. Our better approximation is 

Us ^ 29-5 .43) ~ .334 

To keep the anilysis uncluttered, this continuity correction is ignored in the rest of the 

book. 
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s = number of Democrats in sample 

FIG. 6-5 Normal approximation to the binomial. (Compare Fig. 6-la.) 

We now turn to the second major issue of this section: with 77 known, 

what is the distribution of the sample proportion P? 
Just as the total number of successes is merely the sample sum in 

disguise, so the sample proportion is merely the sample mean in disguise: 

P = - = X (6-28) 
n 

All our theory developed for X, can now be applied to determine the distribu¬ 

tion of the sample statistic P. Thus, from (6-10) and (6-20) the mean of P is: 

(6-29) 

From this we note that, on the average, the sample proportion P is on target, 

i.e., its average value is equal to the population proportion—which (we shall 

see in Chapter 8) it will be used to estimate. But any specific sample P will 

be subject to sampling variation and will typically fall above or below n. 

From (6-11) and (6-22) we discover that its standard deviation is 

aF 
Itt(1 — 77) 

V n 
(6-30) 

Finally, since P is a sample mean, its distribution is normal for large samples 

(central limit theorem). 

As an example, consider the population of voters shown in Figure 6-6a. 
What is the probability that in a random sample of 50 voters between 50 

and 60 percent will be Democrats? From (6-29) and (6-30) 

ftp = 77 = .56 

Ml - 77) _ /.56(1 - .56) ^ 

V n V 50 
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These two valjies, along with our knowledge that P is normal, completely 

define the distribution of P shown in Figure 6-6b. Even though our popula¬ 

tion was novtjhere near normal, our sample statistic P is approximately 

normal. 

p(x) 

I.oo U 

50 

* 1.0 
fj, = 7r = .56 

a — ~yV(i - 7rj = .50 

(a) 

/Pr (.50 < P< .60) = .5208 

= Um=, 

FIG. 6-6 Relation of the sample proportion to the population proportion (compare 

Fig. 6-1 b). (aj Population of voters. (b) In a sample of 50 voters, distribution of P. 

The evaluation of the area of this normal distribution between .50 and 

.60 is now a straightforward matter: 

Pr (.50 

PROBLEMS 

< P < .60) 
.56 P fiP .60 — .56' 

,070 Op 

= Pr (—.857 < Z < .572) 

= .5208 

.070 

(Note that if you want high accuracy in your answers, you should make 

continuity corrections.) 
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6-16 Suppose Gallup takes a poll of 1000 voters from a population which 

is 56 percent Democratic. Letting P be the sample proportion, find 

(a) Pr (.52 < P < .60). 

(b) Pr (P > .5), i.e., the probability that the sample will correctly 

predict the election. Note how we are beginning to answer the 

problems raised in Chapter 1. 

6-17 In tossing a fair coin 50 times, what is the probability that the propor¬ 

tion of heads will exceed .55? 

6-18 If a fair die is rolled 100 times, what is the probability that at least one 

quarter of these are aces? Answer two ways: 

(a) Pr {P > i) 

(b) Pr (total number of aces > 25) 

(6-19) What is the chance that of the first 100 babies born in the New Year, 

more than 60 will be boys? 

6-20 What is the chance that of the first 8 babies born in the New Year, 

more than 6 will be boys? Answer two ways: 

(a) Exactly, using the binomial distribution. 

(b) Approximately, using the normal distribution. 

6-7 SUMMARY OF SAMPLING THEORY 

(a) General Sampling 

1. The distribution of the sample mean X is approximately normal for 

large samples—say n > 10 or 20 as a rule of thumb. (Moreover, if the 

population is near normal, then a much smaller sample will be approximately 

normal.) 

2. X will have an expectation equal to /u, the population expectation. 

3. If we sample without replacement, X will have a variance equal to: 

— T N — n 

n |_N - 1 

If the population (N) is very large, this reduces to, approximately: 

Y; 
n 

which is also the formula for variance when we sample with replacement. 

Thus we may write: 
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Which is a useful abbreviation for “J is normally distributed, with mean a 
and variance a2/n^ 

(b) Bernoulli Sampling 

If we 4ply this sampling theory to a special population—chips coded 

and then we have the solution to the proportion problem. The sample 

proportion is just a disguised X, and the population proportion tt is just 
a disguised /i, so that J 

N 
(6-32) 

again assumi ig n is sufficiently large. 

Review Problems 

6-21 Five men, selected at random from a normal population with mean 

weight (i - 160 lb and cr = 20 lb, get on an elevator. What is the 
probability that 

(a) Al| five men weigh more than 170? 

(b) Tly average weight is more than 170? 

(c) The total weight is more than 850? 

(d) Give an intuitive reason why your answers are related. 

at a carnival Pa^s $1 t0 Play a game (roulette) with the 
following payoff: 

6-22 

Y ==! Gross Winning Net Winning = Y - 1 

0 
$2 

-1 

+ 1 

Probability 

20/38 

18/38 

(a) What is the average net winning in a game? 

(b) Whjat is his approximate chance of ending up a loser (net loss) 
if he pl^ys the game : 

(1) ;5 times? 

(2) l25times? 

(3) |l25 times? 

(c) Hoy could you get an exact answer for (b)l ? 

(d) Hoy many times should he play is he wants to be 99 V certain of 
losing? j 
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6"3 (a)' Suppose^hat in a certain election, the U.S. an,, CaHf^ia are 
alike in their proportion of Democrats, tt, the only difference bung 
that the U.S. is about 10 times as large a population. In ordei to g 
an equally reliable estimate of ir, the U.S. sample should be 

as large as the California sample. 
(b) A certain length is measured with an error, which we suppose 

for simplicity to be +2" or -2", equally likely. A sample of n inde¬ 

pendent measurements is taken. The sample sum S could possibly be m 

error as much as_. However, S is likely (95 %) to be m error by 
'ror0l“a„ ”-. Fore..,nple,ror»-100. »„ ,„o,S ... 

1. Worst possible error = —-— 

2. Likely error <- . _ . 

=> 6-24 Let X be the sample mean when a die is thrown 1000 times. Intultive y 

we feel “fairly certain” that X is “quite close” to ft. More precisely, 

calculate _ ., 
Pr O - .1 < X < p + .1) 

(6-25) In making up a budget, a housewife rounds out to the nearest 1 Of 

( (a) If the8budget consists of 200 items, what is the chance that the 

rounding error will exceed Sl.00? 

(b) Briefly state the assumptions necessary in answer (a). 

(6-26) Suppose there are five men in a room, whose heights in inches are 

62, 65, 68, 65, 65. One man is drawn at random with his heigh 

(a) ” Graph the probability function of X, i.e., the population distribu¬ 

tion. Find its mean ft, and variance a2. ... . . 
Suppose a sample of two men is drawn, with replacement, and 

the sample mean X is calculated. 
(b) Construct a table of the probability function of X. (Hint. List the 

possible samples, i.e., the sample space. Are the outcomes equa y 

likely 9 For each outcome, calculate X.)__ 

(e) Check your answers to (d) using the equations of-thisnhapjer. 

(f) Is the following a valid interpretation of these formulas? If not, 

correct it: 
X fluctuates around sometimes larger, sometimes smaller, but 

exactly equal to n on the average, (jig = ft). X, the average o n 

observations, does not fluctuate as much as a single observation 

however (cr\ = < <*). This is to be expected becausea 

sample a large observation will often be “cancelled out by a 
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(6-27) 

*6-28 
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imall observation, or at least swamped by the rest of the gbserva- 
jions which will be more typical. 

!lt!whr0bl7' 6'26 f0r a SampIe 0f 2 men drawn wi!h™t replace- 
| y is this sampling without replacement preferable7 

In Chapter 3 it was stated that relative frequency in the long run is 

vey likely to be “close to” probability. To make this statement 

O ” I' "i 0» "8 °f * diT°r k‘ or actjs in 10,000 throws, and calculate 

Pi- (I — .01 <P<i + .01) 



chapter 7 

Estimation I 

7-1 INTRODUCTION 

Before beginning statistical induction, we pause in Table 7-1 to review 

the concepts of sample and population. 
It is essential to remember that the population is fixed, so that its mean 

M and variance <r* are constants (though generally unknown). These are 

called population parameters. _ 
By contrast, the sample mean X and sample varianceis are random 

variables, varying from sample to sample,_with a certain probability distribu¬ 

tion. For example, the distribution of X was found to be approximately 

N (u, a2jn) in Chapter 6. A random variable such as X ors which 

calculated from the observations in a sample is given the technical name 

5aW,/Asa specific example of statistical inference, suppose we wish to estimate 

the average height of American men on a large Midwestern campus. is 

population mean p is a fixed, but unknown parameter. We estimate it by 

taking a sample of 36 students, and compute the sampie mean A' let u 

suppose this turns out to be 68 inches. We shall see in the next section that th, 

is our best sinele estimate or “point estimate” of /*. But we also know, from 

Table 7-1 Review of Sample versus Population 

Random Sample is a Random Subset of the Population 

1. Relative frequencies />/« Probabilities pipe) 

are used to compute are used to compute 

2 X and s2 ft and cr2 

which are examples of which are examples of 

3. Random statistics, or Fixed parameters, or 

4. Estimators Targets 

128 
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the theory of our previous chapter that unless we are extremely lucky in our 

sample this estimate X will not be exactly on target, but rather a bit high or 

a bit low. Technically, X is distributed around p—above and below it—us 

shown in Figure 6-16. Tf we want to be reasonably confident that our inference 

is correct, wejcannot estimate p to be precisely equal to our observed X; 
instead we mu 

confidence inte< 
-known as a M: estimate that p is bracketed by some interval 

val—-of the following form. 

fi — X ± an error allowance (7-1) 

As an example, we might estimate 

ft = 68 ± 3 inches (7-2) 

t in evaluating the right-hand side of (7-1), there is no problem 

tor X; this is a simple calculation of the average of the sample 

values. The problem is the evaluation of the error allowance. 

In this section we will show that we can be very specific in our interval 

We observe thg 

with the estim 

estimate of //,j because we could be specific about the distribution of X 
around p in the previous chapter. To keep inferences simple, we assume X 
is normally distributed according to the assumptions of Section 6-3, so that 
its distribution is that of Figure 7-1. 

First we must decide: “How confident do we wish to be that our interval 

estimate is right—that it does bracket pV It is common to choose 95% 

confidence; in 'other words, we will be using a technique that will give Us, in 

the long run, a correct interval estimate 19 times out of 20. 

To get a c|>nfidencejevel of 95 %, we select the smallest range under the 

normal distribution of X that will just enclose a 95 % probability. Obviously, 

this is the middle chunk, leaving 2J% probability excluded in each tail, as 

shown in Figure 7-1. From our normal tables, we note that this involves 

going above ahd below the mean by 1.96 standard deviations of X. We 
therefore write’ 

pjr U- l.967=< X<fi + 1.964=1 =95% (7-3) 
I \ V" \'n' ' 

The bracketed inequalities may be solved for ju, “turned around” so to 

speak, obtaining the equivalent statement:1 

A"- 1.96 </< < x + 1.96 =95% 
7" 

(7-4) 

1 To prove (7-4) more directly, we could begin by standardizing X, which then has the 
standard normal distribution. Thus from the standard normal tables: 

Pr 

( 
1.96 < 

X 

ai\/ 

it 
■4 <1.96 

)- 
95 (7-5) 

In (7-5) the bracketed inequalities may be solved for it, obtaining the equivalent inequalities 

Pr | X - 1.96 < ft < A' + 1.96 
v/i Vf 

(7-6) 

(7-4) proved 



M - 1.96 H+1.96-^ 
yn 

which is 
also fix 

FIG. 7-1 Distribution of sample mean X ~ N [fi, (a2{n)]. (Note, fi is an unknown constant; 

we don’t know what its value is; all we know is that, whatever /u may be, the variable X is 

distributed around it as shown in this diagram.) 

and so on; 
(so far, all 
bracket ft) 

His one miss 

His twentieth 

These are the 
statistician’s 
interval 
estimates. 

FIG. 7-2 Construction of twenty interval estimates: a typical result. 

130 
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We muit be exceedingly careful not to misinterpret (7-4). a has not 

changed its character m the course of this algebraic manipulation. It has not 

become a variable; it remains a population constant. Equation (7-4), like 

(7 3), is a probability statement^about the random variable X, or more pre¬ 

cisely, the “rjandom interval” JT - 1.96(ff/V«) to JP + 1.96(«r/V«). It is this 
interval that lories, not p. 1 ’ 

To apprec ate this fundamental point, let’s return to our problem of 

constructing ;an interval estimate of average men’s heights on our large 

campus. Moreover to clearly illustrate what is going on, suppose wfc have 

some supernatural knowledge of the population p (which we know to be 

69 inches) an) p (which we know to be 6 inches). Now let’s just observe what 

happens when the statistician (poor mortal that he is) tries to estimate a 

using (7-4) above Just for the sake of illustration, let’s suppose he makes 20 

such interva lest, mates, each time from a different random sample of 36 
Figure 7-2 illustrates his typical experience. 

that that dfg-;am we show the distribution of the sample mean. We know 
at Jf is normal with mean equa[ to the population p (69) and standard 

deviation eqdal to <r/V« = 6/^36 = 1 inch. Thus from (7-3) we know 

Inches^1"6 ™ pi'°bablIity that any x wil1 fal1 in the range 67 to 71 

um ®Utfthe TuTT d0esn,t kn0W this; he blind'y takes his first random 
i p e; fr2OIe iWhlCh he comPutes the first mean to be 70. From (7-4) he 

calculates2 the appropriate 95% confidence interval for p: ^ 

70 ± 1.96 — 
V 36 

= 68 to 72 

(7-71 

(7-8) 

This interval estimate for p is the first one shown in Figure 7-2. We note 

at m is rstj effort, the statistician is right; p is enclosed in this interval 

In hls secon|d sample, the statistician happens to draw a shorter group 

tion of'f7U4 S’h'a y C°mPUneS *2 ‘° be 68 inCheS’ Fr0m a similar ™*lu P tion of (7-4) he comes up with h,s second interval estimate shown in the 

£° °n' ^ °bSerVe tha‘ "ineteen °f these twenty estimates 
bracket the constant p. Only one-the twelfth-does not; in this case he 
missed the mark, and was wrong. 

v7e frn^T and" l^nC difU,ty T' In evaluating (7-4) the ^"'sti'dan has an observed 
value for X and kpows that sample size n is 36. But there is one value he does not l now 

, the population^ standard deviation. All he can do is guess at it, and his best guess is' 

m lenTh e S,hanidaId d!!'a"on’s’ which we suppose he computes to be 6 inches. We deal 
g wi h this problem later; but for now we can rest assured that v will be a reason 

able approximation for a in this problem. reason- 
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We can easily see why he was right most of the time. For each interval 
estimate h i simply adding and subtracting 2 inches to h.s sample mean 
bu“is the same ±2 inches that defines the range ab around ^ Thus, if 
a„d only if he observes a sample mean within the range ab, wi 1 his interval 

Ornate bracket „. Nineteen of his twenty sample 
ab and in all these instances his interval estimate was r g . g 
only in the one instance when he observed a sample mean outside (i.e., 

">lj)'ln practice, of course, a statistician does not take many samples—he 

would 1, on. (.■§■, *,)■ And one. ,lus, nc.r.,1 J 
is either right or wrong; this interval brackets fi or [t does n°*- But. 1 
important p'o.nt to recognize is that the statistician is using a 
95°/ probability of success; this follows because there is a /op 7 
hafhis observed X will fa,, within the range ab, and as -o-quencei h 

interval estimate will bracket This is what is meant by a 95 % cadence 
interval: the statistician knows that m the long run, 95 /0 of the intervals 

constructs in this way will bracket //. 
To review, we briefly emphasize the main points. 

1 The population parameter is constant, and remains constant. It is the 

interval estimate that is a random variable, because X ,s a random variable 
As long as V is a random variable that can take on a whole range of values, 

k referred to as an “estimator” of //. __ 
2. But once the sample has been observed and A takes on^one specific 

value (eg S, = 70 inches) it is then called an “estimate of /*. Since it s 

no longer ’a random variable, probability state" iHs no 
valid. For this reason when the estimate x is substituted mtc(7-4), it is^ 
longer called a 95% probability statement, but rather a 95% 

interval: ^ __ ._—.--- 

S-\.96-j=</> <s + 1-96-J= (7‘9) 
Vn vn 

Thus, our deduction in (7-4) that Vis within 1.96u/V« of ju ts “turn«l around 

into the induction that ^ is within l.96«r/V» of the observed *. (7-9) is some- 

times abbreviated to __-— 

95 % confidence interval: 

notential value. 
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where z 025 isjthe critical value leaving 2\% probability in the upper tail of 

the standard]normal distribution. ,, 
To recapitulate, once X is observed to be then the “die is cast, gnd the 

interval estimate (7-9) will be either right for certain, or wrong for certain. 

3. Because of our omniscience, we know that the statistician erred only 

in his twelftlj try. But he has no idea which estimates, if any, are wrong. All 

he knows is that he will be right 95 % of the time, in the lo_ng run. 

4. As sample size is increased, the distribution of X becomes more 

concentrate^ around"p (aj\ln decreases as n increases), and the confidence 

interval narrows (becomes more precise). 
5. If wd wish to be more confident—e.g., 99% confident of our con¬ 

clusions then we must leave less of the probability in each tail in Figure 7-2; 

thus the ranke ab increases. Hence our interval estimate becomes less precise. 

Note how this point and the one preceding verify our casual observations in 

Chapter 1. ] . ■ 
6. An inference about the population parameter p was feasible because 

we knew the distribution of its estimator X. This raises an interesting question, 

“It is not pjossible that there are other statistics (for example, the sample 

median) thaf could be used to estimate p ? Why did we use the sample mean ? 

Intuitively, It seems preferable to estimate a mean with a mean. But there are 

stronger reasons, given in the next section. 

PROBLEM'S 
| 

7-1 An anthropologist measured the heights (in inches) of a random sample 

of 100 men from a certain population, and found the sample mean 

and variance to be 71 and 9 respectively. 
(a) Find a 95 % confidence interval for the mean height p of the whole 

population. 
(b) F nd a 99% confidence interval. 

7-2 A research study examines the consumption expenditures (in thousands 

of dollars) of a random sample of 50 American families (all at the same 

income and asset level). The sample mean is 5.2 and the standard 

deviation is .72. Construct a 95% confidence interval for the mean 

consumption of all American families (at this income and asset level). 

7-3 The reaction times of 150 randomly selected drivers were found to have 

a mean of .83 sec and standard deviation of .20 sec. Find a 95% 

confidence interval for the mean reaction time of the whole population 

of drivers. 
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(7-4) From a very large class in statistics, the following 40 marks were 
randomly selected; 

71 74 65 72 64 42 62 62 58 82 

49 83 58 65 68 60 76 86 74 53 

78 64 55 87 56 50 71 58 57 75 

58 86 64 56 45 73 54 86 70 73 

Construct a 95 % confidence interval for the average mark of the 

whole class. {Hint. Reduce your work to manageable proportions by 

grouping into cells of width 5.) 

7-5 What is the probability that a statistician who constructs 20 independent 

95% confidence intervals will err: 

(a) Once (as in our example in Section 7-1)? 

(b) Not at all? 

(c) More than once? 

7-2 DESIRABLE PROPERTIES OF ESTIMATORS 

To be perfectly general, we consider any population parameter 6, and 

denote an estimator for it by 6. (In our special example in the preceding 

section, p is the population parameter 6, and X is its estimator 6). We would 

like the random variable 6 to vary within only a narrow range around its 

fixed target 6; (thus in our example in Figure 7-2, we should like the distribu¬ 

tion of X to be concentrated around ju, as close to fa as possible). We develop 

this notion of closeness in several ways. 

(a) No Bias 

An unbiased estimator is one that is, on the average, right on target, as 

shown in Figure l-3a. Formally, we state 

Definition. 
nr.-%—:—:---:-1 

(7-11) 0 is an unbiased estimator of 6 if E(§) = 6 

For example, X is an unbiased estimator of //, because 

E{X) = n (6-10) repeated 

Of course, an estimator 6 is called biased if E0) is different from d; in 
fact, bias is defined as this difference: 

Definition. 

bias B = E0) - 6 (7-12) 
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(b) 

FIG. 7-3 Comparison of a biased and unbiased estimator, (a) Unbiased estimator. 
(b) Biased estimator. 

Bias is illustrated in Figure 7-3b. The distribution of 6 is “off target”; since 

E{u) exceeds 6, there will be a tendency for 6 to over-estimate 6. 

As an example of a biased estimator, the sample mean squared deviation 

MSD=Uz(v-v)2 (7.i3) 

(2-5a) repeated 

will on the average underestimate <r2, the population variance.4 But if we 

inflate it jus^a little, by dividing by n — 1 instead of n, we obtain the sample 
variance 

= *)2 ..(7-14) 

t (2-6) repeated 

which has been proved an unbiased estimator of o'2. (When we say “has been 

proved,” we inean that it has been proved in advanced texts. If it has been 

proved in /A/j text, we shall usually say “we have proved.”) The student who 

4 This underestimation can be seen very easily in the case of n = 1. Then T coincides with 
w so that Eq. ,(7-13) gives MSD = 0, which is an obvious underestimate of a2. 

n ,*?n .thC f0tnr h!nd’ (7'14)’ when n = g^es .92 = 0/0, which is undefined. 
Biit this is not a<drawback; in fact, it is a good way to warn the unwary that since a sample 

of just one observation has no “spread,” it cannot estimate the population variance u2 
(assuming fi is unknown, of course) 



136 ESTIMATION 

P(6) 

(b) 

FIG. 7-4 A comparison of an efficient and inefficient estimator (both are unbiased). 

(a) Efficient. (b) Inefficient. 

was puzzled by our division by n - 1 in defining s2 in Chapter 2 can now see 

why: we want to use this sample variance as an unbiased estimator of the 

population variance. . 
Both the sample mean and median are unbiased estimators ol p in a 

normal population; thus, in judging which is to be preferred, we must 

examine their other characteristics. 

(b) Efficiency 

As well as being on target on the average, we should also like the distribu¬ 

tion of an estimator 6 to be concentrated, that is, to have a small ^variance. 

This is the notion of efficiency, shown in Figure 7-4. We describe 6 as more 

efficient because it has smaller variance. A useful relative measure of the 

efficiency of two unbiased5 estimators is: 

Definition. ____ 
* a var ^ n i 

Relative efficiency of 6 compared to 0 = 

5 For biased estimators, the definition of efficiency is 

e(§ - ef 

E{d - 6? 

which of course is (7-15) if both estimators have 0 bias. 
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An estimatorj which is more efficient than any other is called absolutely 
efficient, or sijnply “efficient.” 

Finally, ye are in a position to pass judgement on the merits of the 

sample meanjand median as estimators of ft. In sampling from a normal 

population, ^ has been proved to be the efficient estimator of p. We have 

already established that its variance is a2/n. On the other hand, the sample 

median has been shown to have, for large n, a variance of 

(7r/2)(cx» (7-16) 

Hence in a large sample, the relative efficiency of the sample mean compared 
to the median is derived from (7-15) as: 

(7T/2)(a2ln) 

j °2I n 
Because it is hjalf again more efficient, X is preferred. It will give us a point 

estimate that will tend to be closer to the target or, it will give us a more 

precise (i.e., srnaller range) interval estimate. Of course, by increasing sample 

size (n) we can reduce the variance of either estimator. Therefore, an alterna¬ 

tive way of looking at the greater efficiency of the sample mean is to recognize 

that the sample median will yield as accurate a point or interval estimate only 

if we take a la|ger sample. Hence, using the sample mean is more efficient, 

because it costs less to sample; note how the economic and statistical defini- 

7t/2~ 1.5 (7-17) 

tions of efficiency coincide. 

(c) Consistency 

Roughly speaking, a consistent estimator is one that concentrates pom- 

u, arget as sample size increases indefinitely, as sketched in 

he limiting case, as the sample size becomes infinite, a con- 

pletely on its 

Figure 7-5. In 

sistent estimator 0 will provide a perfect point estimate of the target 6. 

We now s :ate consistency more precisely. Just as the variance was a 

good measure of the spread of a distribution about its mean, so the 

mean squared error = E0 — 6)2 (7-18) 

is a good measdre of how the distribution of 8 is spread about its target value 
6. Consistency requires this to be zero in the limit: 

Definition. ! 

8 is consistent6 if E{0 

as n -* oo 
Of 0 

(7-19) 

6 T|hj «6fini-10n lsjsometimes caIIed “consistency in mean-square.” It implies a condition 
called “consistency in probability”: for any positive <5 (no matter how small), 

pr (10 — 0\ < <5) 1 (7-20) 
as n oo 

as the definition of consistency. This is often taken 
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consistent.™ jBut it is not a good estimator; the sample mean is preferred 
because it is jboth consistent and efficient. 

As a final ^example, the sample MSD is a consistent estimator of a2. It 
is true that ft is a biased estimator; but as n — co , this bias disappears, 
i.e., d is asymptotically unbiased.11 Since it can also be proven that its variance 
tends to zer0j the conditions of corollary (7-22) are satisfied. This concept of 
a biased, yet consistent estimator is a very important one—for example in 
econometrics b ’ 

PROBLEMS 

7-6 True cjr false? If false , correct it. 

(a) The sample proportion P is an unbiased estimator of the popula¬ 
tion proportion n. ; 

(b) fi a random variable (varying from sample to sample), and is 
used tcj estimate the parameter X. 

7-7 Based on a sample of 2 observations, consider the two estimators of /i: 

x — (D^i + (4)^2 
and 

w = (i)Xi + (DX, ^ 
(a) Prc|ve they are unbiased. ‘ ^ 

(b) What is the efficiency of W relative to XI Which estimator is 
preferable? 

7-8 A farmpr has a square field, whose area he wants to estimate. When 
e measures the length of the field, he makes a random error, so that 

his observed length 02 is a normal variate centered at 200 (the true but 
unknown value) with «r = 20. Worried about his possible error, he 
decides:to take a second observation 02 and average. But he is in a 
dilemmp as to how to proceed: 

(1) Shojuld he average 01 and 02, and then square? or 
(2) Should he square first, and then average? 
Mathem [atically, it’s a question whether 

m is best 

h!'?°aPnrre COnSifency’ "? use corollar>' (y-22'. noting (hat the sample median has bias, and a variant -1 • ’ . ° p 

11 To establish this, we note that 
:e glven by (7-16) which approaches zero. 

Thus MSD a: 
as n -> oo. 

MSD = 

" - oo. Sinceis unbiased (for any n), it follows that MSD is unbiased 
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(a) Are methods (1) and (2) really different, or are they just 2 different 

ways of saying the same thing? 
(Hint. Try a couple of actual values, like 0X = 230 and 02 — 200, and 

work out (1) and (2).) 
(b) If they are different, which has less bias? 
(Hints This problem will actually be easier if you avoid arithmetic 
by generalizing from a length of 200 feet to a length of /*, and also use 
general a. Furthermore, the normality is irrelevant to questions of 
expectation. Finally, try using equation (4-5): E(X2) = /x2 + o'2.) 
(c) Generalize answer (b) to a sample of n measurements. 

7-9 As in Problem 6-5b, consider a bowl full of many chips one-third 
marked 2, one-third marked 4, and one-third marked 6. When a 
sample of 2 chips is drawn, construct the probability table of X, and 

hence 
(a) Show (once more) that X is an unbiased estimator of fi. 
(b) Is (2X + 1) an unbiased estimator of (2p + 1)? 
(c) Is (X)2 an unbiased estimator of /x2? (Compare Problem 7-8.) 

(d) Is 1IX an unbiased estimator of l//x? 
How could you have answered parts (a), (b), and (c) theoretically, 

without going through all the computations? 

7-10 To illustrate bias very concretely, consider a sample of n = 2 tosses 
from the population of all tosses of a fair die. The population moments 

are easily computed: 

= 3.5 35/12 

We shall study sample estimators in 2 ways. 
(a) Empirical approach (Monte-Carlo technique). Repeat the experi¬ 
ment many times. (You can simulate the roll of 2 dice with the 
random digits of Appendix Table II. If each student does it, say, 5 
times, and the results from the class au pooled, this would save work.) 

The result will be a table like: 

Result of _ 
2 Tosses X MSD 

(3, 1) 2 
(2, 5) 3.5 

1 2 
2\ 4| 

Averages 9 9 9 
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It max be convenient to array the data in a relative frequency table. 
Then answer 

(1) Ejoes X average close to fal 

(2) Does s2 average close to o2 ? 

(3) Does MSD average close to cr2? 

(b) Theoretical approach. In (a), if the experiment were repeated 

endlessly, the relative frequencies would settle down to probabilities. 

But tljesG probabilities can be calculated very easily, by exploiting the 

symmetry of the dice. After calculating the relevant probability table, 
find 

(1) e[x) ~ ^ 

(2) E(s2) = <t2 

(3) £(MSD) =L cr2 

*7-3 MAXIMUM-LIKELIHOOD ESTIMATION (MLE) 

(a) Introduction 

The nextj question is, “Does some technique exist for finding estimators 

with these attractive characteristics?” The maximum-likelihood method is 

the technique that statisticians most often use. We introduce it with an 

example of sampling from a Bernoulli population; to be concrete, suppose we 

flip a biased coin 10 times in order to estimate n, the population proportion12 

of heads, ancj get 4 heads. We shall temporarily forget the common-sense 

solution (estimate it with the sample proportion P = 4/10) in order to 
develop some'general ideas. 

^ With 4 ont of 10 heads before us, we ask, “Is .1 a reasonable estimate of 

77 ? 77 wer| .1, then the probability of four heads (successes) in our ten 
tosses (trials) would be, according to the binomial formula 

(") ^(1 - *)"-* « (^(.l)4^)6 = .011 

In other words, if w = . 1, there is only about one chance in a hundred 
that we woulc get the sample we observed. 

Similarly, we might ask ourselves how likely our result of four heads 

would be if w were .8. The student can verify that the probability of getting 

4 heads from his sort of population is only .006; again it seems implausible 

that a popula :ion with n = .8 would yield the sample result we observed. 

12 This is also, of course, the population probability of heads. But, for simplicity we refer 
hereafter only to the “proportion.” 
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Similarly, we consider all the other possible values for 7r, in each case 

asking how likely it is that this tt would yield the sample that we iri fact 

observed. The results are shown in the first column of Table 7-2, and graphed 

fully in Figure 7-6. We refer to this as the likelihood function, when the 

sample values of 4 and 10 are fixed, and the only variable in the function is 

the hypothetical value of tt. For emphasis, we often write this as a function of 

tt alone: ; 

LM = ~ 71 f 

The maxiijnum likelihood estimate (77 = .4) is the value maximizing this 

likelihood function. In general: 

Definition.] 

The MLE is the hypothetical population value which 
niaximizes the likelihood of the observed sample. 

(7-23) 

We note: 

(a) The sample proportion P is our MLE of the population proportion 

tt; it is often, but not always the case that the corresponding sample value is 

the MLE of the population parameter. 

(b) Figure 7-6 is the likelihood function for the particular sample we 

observed, (i.e. j 4 heads in 10 tosses). A different sample result would call for 

a different likelihood function, and hence a different MLE. 

L(ir) 

Gives Hypothetical values of 
maximum population proportion, 7r 

L(ir) 

FIG. 7-6 An example of a likelihood function. the likelihood function that various 

hypothetical population proportions would yield the sample we observed. 
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L(ir) or p(x; tt) 

FIG. 7-7 The binomial probability function p(x; rr) plotted against both x and n. 

In Figure 7-7 this discussion is related to our previous deductions about 

the binomial in Chapters 3, 4, and 6. In this figure we graph the binomial 

probabilitiesp(x; «, tt). [Since n is set at 10 regardless, this function is referred 

to simply asp(x; tt)]. In earlier chapters we regarded tt fixed and x variable, 

as in slice a; thus the dotted function shows the probability of various num¬ 

bers of heads if the population proportion is given as .8. In this chapter we 

regard x—the observed sample result—as fixed, while the population n is 

thought of as taking on a whole set of hypothetical values; thus slice b shows 

the likelihood that various possible population proportions would yield 4 

heads. Slices in the a direction are referred to as probability functions, while 

slices in the b direction are called likelihood functions. 

We now generalize maximum likelihood estimation. (A summary of our 

results is shown in the last three columns of Table 7-2 for reference.) 

(b) General Binomial 

It is very easy to show that our result in the previous section was no 

accident, and that the maximum likelihood estimate of the binomial tt is 

always the sample proportion P. 

Given any observed sample of x successes in n trials, the likelihood 

function is 

- *)-• (7-24) 
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With calculus it can easily be shown13 that the maximum value of this likeli¬ 

hood function pccurs when tt — xjn — P. Thus 

MLE of tt — P, the sample proportion. 

We argued in Chapter 1 that it is reasonable to use the sample proportion 

to estimate the population proportion; but in addition to its intuitive appeal, 

we now add the more rigorous justification of maximum likelihood: a popula¬ 

tion with 7t = i? would generate with the greatest likelihood the sample we 

observed. 

(c) MLE of th j Mean (/<a) of any Normal Population 

Suppose we have drawn a sample (xl9 x2y x3) from a parent population 

which is of); our problem is to find the MLE of the unknown /i for this 

sample. Becaus]e the population is normal, the probability of getting any 

value x, given a population mean // is: 

p(x;/{) = -U= 

v 2ttG2 

(7-26) 

Specifically, the probability that we would get the value xx that we observed 

in our first samjple draw is 

P(x i;/*) = 
V 2.770' 

,-(l/2<r )(an-fiV (7-27) 

while the probabilities of drawing the values x2 and x3 are, respectively 

1 
p(x2;fi) 

\! 2 77O2 

g—(l/2a 

13 To find where is a maximum, set the derivative equal to zero. 

dL^) 1 I n _ x)(l _ nyi-x-1(_!) + xttx-\\ - 7r)n-x] = 0 

(7-28) 

(7-25) 

Dividing by 1 — ttY(7-25) becomes: 

— 7r(n — x) -f ^(1 — tt) = 0 

— tin + X = 0 

x 
71 = - 

n 

You can easily confirm that this is a maximum (rather than a minimum or inflection point). 
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FIG. 7-8 Maximum likelihood estimation of the mean 0) of a normal population, based 

on three sample observations (x±, x,2, x3). (a) Small likelihood L(/x*), the product of the 

three ordinates. (b) Large likelihood L(jx0). 

and 

_£-(1/2<72)(£3-/i)2 

V2-77(T2 

(7-29) 

We assume as usual that Xt, X2, and Xa are independent so that the 

joint probability function is the product of (7-27), (7-28), and (7-29): 

P(xi, x2t x3\p) = n 
3 

1 
t'=l W2 

^ g—<l/2or2) (—ji)2 

77 cr 

(7-30) 

where n means “the product of,” just as J means “the sum of.” But in our 

estimation problem the sample values xt are fixed and only /x is thought of as 

varying over hypothetical values; we shall speculate on these various possible 

values of /x, with a view to selecting the most plausible. Thus (7-30) can be 
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written as a likelihood function of fi: 

m = n 
W2 

e-{ll'2<T*){Xi-nY 

7TG‘ 
(7-31) 

lTvG| ff ^ 1S d£<!ned aS the ^Pothetical value of p, which maximizes the 

con^ocd ^Ct'°n (7‘31)- ItS VaIue may be derived with ca.culu^but we 
consider onljz a geometric interpretation in Figure 7-8. 

We “try but” two hypothetical values of p. We note that a population 

kt ^ n0t ^ likdy t0 yidd the sarr>ple we ob- 
x 7i e 7h! oltat r 'tleS °f ^ and ** are lar6e’ the Probability of 

tu ‘he ordinate above x3) is very small because it is so far distant from 

Clth mefn0 I'4 °f all.thr? Probabilities [i.e., the likelihood of a population 
the Othe ,^*igenerating the sample (xI; x2, a;3)] is therefore quite small. On 
t other hanij a population with mean p0 as in Figure 7-8 b ismore likely to 
generate the sample values. Since the x values are collectively closer to « 
they have a greater joint probability. Thus the likelihood 7 greater for 

than for P*i indeed, very little additional shift in p0 is apparentfy required 

be lkehh00d of the samPIe- lt seems that the MLE If pmight 
be the sample,mean-,,e„ the average value of *l, *„ and *3; this dn in 
fact, be prove<jl, as in Problem 7-12. * 

FinaI1y> t’fe reader who has carefully learned that p is a fixed population 

L aTarfarbrihW0 h°,W “ appear in the hkelihood function (7-31) 
7>s in foct fitn 7 :,mply 3 math,ematicaI eonvenience. The true value of 
hs n’7 to ’ ' Bu SmCe “ 18 unknown’ in MLE we must consider all of 

,he wa>',o d°,hii «>° 

(d) MLE of any Parameter from any Population 

We now state MLE in its full generality. A sample (xx, ig 
rawn from a population with probability function p(x; 0), where 0 is”any 

unknown population parameter that we wish to estimate. From our definition 
of random samUng (with replacement, or from an infinite population) the 

• ' T6 ‘"ifmT1!’ eaCh W‘th the Probability function p(x{; 0); hence’ the 
joint probability of the whole sample is obtained by multiptytog 

T(xi, x, x„; 0) = p(Xil 0) p(x2; 0) ■ ■ ■ p(xn; 0) 

= n>(x,;0) (7-32) 

to^hvnotw^ f6 .obse™ef Sample V3lUeS aS flxed’ and ask’ “Which of all 
the hypothetical values of 0 maximizes this probability?” This is emphasized 
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by renaming (7-32) the likelihood function. 

m = fl A*<;0) (7'33) 
i=1 

The MLE is that hypothetical value of d that maximizes this likelihood 

function. 

(e) Maximum Likelihood vs Method of Moments Estimation 

(MLE versus MME) 

In the analysis above, we have estimated a population proportion with 

a sample proportion, and a population mean with a sample mean. Why not 

always use this technique, and estimate any population parameter with the 

corresponding sample value ? This is known as method of moments estimation 

(MME). Its great advantage is that is it plausible and easy to understand. 

Moreover, MLE and MME often coincide. ^ _ . 
But suppose the two methods do differ (as m Problem 7-14). In such a 

circumstance MLE is usually superior. The intuitive appeal of ^ME is more 

than offset by the following impressive advantages of MLE. Since MLt 

the population value most likely to generate the sample values observed, it is 

in some sense the population value that “best matches” the observed sample. 

In addition, under broad conditions MLE has the following asymptotic 

properties: 

1. Efficient, with smaller variance than any other estimators. 

2. Consistent, that is, asymptotically unbiased, with variance tending 

t0 Z£3Normally distributed, with easily computed mean and variance; hence 

it may be readily used to make inferences. 

For example, we have already seen that these three properties are true 

for X the MLE of /,< in a normal population. [Property 3 follows rom 

Theorem (6-13); Property 2 follows from (6-10) and (6-11); Property is 

proved in advanced texts, and has been alluded to in (7-17).J 
We emphasize that these properties are asymptotic, that is, true tor 

large samples as n - oo. But for the small samples often used by economists 

for example, MLE is not necessarily best. 

PROBLEMS 

*7-11 Following Figure 7-6, graph the likelihood function for a sample of 

6 heads in 8 tosses of a coin; show the MLE. 
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* IVC/VUliNU 

7-12 Derivej the MLE of// for a normal population, using calculus 
(a) Deri 

for the normal distribution, assuming fi is pve the MLE of <r2 
knownj. 

(b) Is jt unbiased? 

7-14 As N ■+ 1 delegates arrived at a convention, they were given successive 

tags mUbered 0 1,2, 3, ... TV. In order to estimate the unknown 

numbej- N a brief walk in the corridor provided a sample of 5 tags 
numbered 37, 16, 44, 43, 22. s ’ 

jat is the MME of m Is it biased ? 

jat is the MLE of m Is it biased? 

(a) Wlj 
(b) Wh 

FURTHER READING 

For a detailed description of the virtues of MLE, see for example 

1. Wilks, 4 S. Mathematical Statistics, New York: John Wiley & Sons (1%2) 
2. Lmdgreh, B. W. Statistical Theory, New York: Macmillan (1959). " 



chapter 8 

Estimation II 

8-1 DIFFERENCE IN TWO MEANS 

In the previous chapter, we used a sample mean to estimate a population 

mean. In this chapter we will develop several other similar examples of how 

a sample statistic is used to estimate a population parameter. 
Whenever two population means are to be compared, it is usually their 

difference that is important, rather than their absolute values. Thus we often 

wish to estimate 
fa - fa (8~J) 

A reasonable estimate of this difference in population means is the difference 

in sample means _ 
Xx - X2 (8"2) 

(Assuming normality of the parent populations, this is the maximum likeli¬ 

hood estimator, with many attractive properties.) 
Again, because of the error in point estimates, we are typically interested 

in an interval estimate. Its development is comparable to the argument in 

Section 7-1, and involves two steps: the distribution of our estimator 

(X1 — x2) must be deduced; then this can be “turned around” to make an 

inference about the population parameter (fa -fa)- 
First, how is the estimator (Xx - X2) distributed? From (6-31) we know 

that the first sample mean Xx is approximately normally distributed around 

the population mean fa as follows. 

Xx ~ N(fa, ay fa) (8"3) 

where a\ represents the variance of the first population, and fa the size of 

the sample drawn. Similarly 

A2 ~ N(fa, alln2) (8“4) 

150 
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Probability density 

(hi ~ M2) (*\ “ *2) 

FIG. 8-1 Distribution of (X1 — X2). 

Independency of the two sampling procedures will ensure that the two 

random variables X1 and X2 are independent; hence (5-31), (5-34), and 
(6-13) can be applied directly: 11 

(X, 1 U2) = (1)^ + (~l)X2 ~ Nifr - p2f a\jnx + or|/«2) (8-5) 

This distribution of (Xx — X2) is shown in Figure 8-1. Equation (8-5) is 

exactly true, ^assuming that both populations are normal; it still remains 

approximately true (by the central limit theorem) for large samples from 

practically aqy populations. 

_ Under these conditions, our knowledge in (8-5) of how the estimator 

— X2) behaves can now be turned around to construct the confidence 

When ax and|Cr2 have a common value, say a, the 95% confidence interval 
for (^ — ju.2) becomes: 

(*i ~x2)±\ .96a l~ -f — (8-7) 
V Wi w2 

The variances of the two populations, a\ and a\ in (8-6) are usually 

not known; tile best the statistician can do is guess at them, with the variances 

sf and s\ he observed in his two samples. Provided his sample is large, this 

is an accurate enough approximation; but with a small sample, this introduces 

a new source of error. The student will recall that this same problem was 
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encountered in estimating a single population mean in Section 7-1. In the 

next section we shall give a solution for these problems of small-sample 

estimation. 

PROBLEMS 

8-1 A random sample of 100 workers in one large plant took an average of 

12 minutes to complete a task, with a standard deviation of 2 minutes. 

A random sample of 50 workers in a second large plant took an average 

of 11 minutes to complete the task, with a standard deviation of 3 

minutes. Construct a 95% confidence interval for the difference between 

the two population averages. 

8-2 Two samples of 100 seedlings were grown with two different fertilizers. 

One sample had an average height of 10 inches and a standard deviation 

of 1 inch. The second sample had an average height of 10.5 inches and 

a standard deviation of 3 inches. Construct a confidence interval for the 

difference between the average population heights (/u1 — /u2) 

(a) At the 95 % level of confidence. 

(b) At the 90% level of confidence. 

8-3 A random sample of 60 students was taken in two different universities. 

The first sample had an average mark of 77 and a standard deviation of 

6. The second sample had an average mark of 68 and a standard 

deviation of 10. 

(a) Find a 95% confidence interval for the difference between the mean 

marks in the two universities. 
(b) What increase in the sample size would be necessary to cut the error 

allowance by 1/2? 
(c) What increase in the sample size would be necessary to reduce the 

error allowance to 1.0? 

8-2 SMALL SAMPLE ESTIMATION: THE / DISTRIBUTION 

We shall assume in this section that the populations are normal. 

(a) One Mean, ^ 

In estimating a population mean fi from a sample mean X, the statistician 

generally has no information on the population standard deviation a; hence 

he uses the estimator 5, the sample standard deviation. Substituting this into 
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Normal, same as t 
with d.f. = oo 

4 I r 

t.025 = 4.30 

FIG. 8-2 ' The standard normal distribution and the t distribution compared. 

t. 025 = 1-96 

“ z.025 

(7-10), he estimates the 95% confidence interval for fx as, 

ft X i 2.025 

V" 
(8-8) 

Provided his jsample is large (at least 25-50, depending on the precision 

required), this will be a reasonably accurate approximation. But with a 

smaller sample size, this substitution introduces an appreciable source of 

error. Hence if he wishes to remain 95 % confident, his interval estimate 
must be broadened. How much? ,4 . - 

Recall thpt X has a normal distribution; when a is known, we may 
standardize, obtaining 

Z = 
X - IX 

ai'Jn 
(8-9) 

where Z is thp standard normal variable. By analogy, we introduce a new 
“Student1 r” variable, defined as 

t 4= 
X ft 

(8-10) 

The similarity of these two variables is immediately evident. The only 

difference is t|iat Z involves a, which is generally unknown; but t involves 

s, which can always be calculated from an observed sample. The precise 

distribution of t, like Z, has been derived by mathematicians and is shown 

in Table V of the Appendix. The distribution of t is compared to Z in Figure 
8-2. 

1 This t variable >was first introduced by Gosset writing under the pseudonym “Student,” 

and later proved^valid by R. A. Fisher. We make no attempt to develop the entire proof, 

because it is not very instructive. It can be found in almost any mathematical statistics text. 
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(We must emphasize a break in notation. Until now, capital letters 

denoted random variables, while small letters denoted their realized values. 

But from now on, in order to conform to common usage, we shall entirely 

forget this convention; to represent either random variables_or realized 

values, we shall use small letters t and 5, and capital letters X, X, Z, P, etc.) 

As expected, the t distribution is more spread out than the normal, 

since the use of ^ rather than a introduces a degree of uncertainty. Moreover, 

while there is one standard normal distribution, there is a whole family of 

/ distributions. With small sample size, this distribution is considerably more 

spread out than the normal; but as sample size increases, the t distribution 

approaches the normal, and for samples of about 50 or more, the normal 

becomes a very accurate approximation. 

The distribution of t is not tabled according to sample size («), but 

rather according to “degrees of freedom,” the divisor in s2. Thus, in cal¬ 

culating .s'2 we may write2: 

d.f. = degrees of freedom = n — 1 (8-11) 

For example, for a sample with n = 3, then d.f. = 2, and we find from 

Appendix Table V that the critical t value which leaves 2J% probability 

in the upper tail is 

ko25 = 4.30 

This is shown in Figure 8-2. By symmetry, it follows that for any observed t 

Pr (-4.30 < t < 4.30) = 95% (8-12) 

Substituting for t according to (8-10): 

Pr (_4.30 < < 4.30i = 95 % (8-13) 
\ sls/n > 

This deduction can now be “turned around” into the following inference: 

for a sample of size 3, the 95 % confidence interval for p is 

fi = X± 4.30 4= (3-14) 
_ V” 
2 The phrase “degrees of freedom” is explained in the following intuitive way: 

Originally there are n degrees of freedom in a sample of n observations. But one 

degree of freedom is used up in calculating X, leaving only n — 1 degrees of freedom for 

the residuals (Xt — X) to calculate s2. 
For example, consider a sample of two observations, 21 and 15, say. Since X — 18, 

the residuals are +3 and -3, the second residual necessarily being just the negative of the 

first. While the first residual is “free,” the second is strictly determined; hence there is only 

1 degree of freedom in the residuals. 
Generally, for a sample of size n, it may be shown that if the first n - 1 residuals are 

specified, then the last residual is automatically determined by the requirement that the sum 

of all residuals be zero, i.e., — X) — 0. 
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For a general’ sample size n, the 95 % confidence interval for ^ is 

(8-15) 

where / isj the critical t value leaving 2i% of the probability in the 
upper tail, with n — 1 degrees of freedom. 

To sum tip, we note the similarity of t estimation in (8-15) and normal 

estimation in (7-10). The only difference is that an observed sample value (s) 

is substituted for a, and as a consequence a critical t value must be substituted 
for the normal value. 

An important practical question js: “When do we use the / distribution 

and when do We use the normal?” If o' is known, the normal distribution is 

used; but if crps unknown, then the f distribution is theoretically appropri¬ 

ate regardles| of sample size. However, if the sample size is large, the normal 

is an accurate fnough approximation3 of the t. So in practice the t distribution 

is used only for small samples when a is unknown—and the normal is used 

otherwise. The r distribution has one additional requirement: the parent popula¬ 

tion from whicif the sample is drawn is assumed normal. (But normality is a 

requirement for all our small-sample estimation, even if <y is known. Recall 

from Chapter 7 that inference about a nonnormal population was validated 
by the central jimit theorem only if the sample size was large.) 

As sample size (n) decreases, estimation becomes less precise (i.e. 

interval estimates become wider). The two reasons for this are clearly dis¬ 

tinguished in (8-15). First, the divisor yfn becomes smaller. This appears in 

(7-10) as well a|> in (8-15); thus even if a is known and inference is based on 

the normal distribution, the error allowance increases and the interval 

estimate becoirjes wider as a consequence. The secondary reason for loss of 

precision occurfe if j must be substituted for an unknown a. The smaller the 

sample, the more the appropriate t distribution will depart from the normal* 

and the more spread the t distribution, the broader the interval estimate. ’ 

(b) Difference in Two Population Means (px ~ p2) 

We shall as sume, as often occurs in practice, that even though the two 

populations majy have different means, they have a common variance u2. 

3 This may be verged from Table V. For example, a 95% confidence interval constructed 
from a sample of size 61 should use a critical / value of 2.00; but the use of the normal value 
ot 1.96 as an approximation involves very little (2%) error. 

Aswescando|nthei.025colUmnin Table V, these critical values approach * = 1 96 
this verifies Figure 8-2, where the t distributions approach the normal ' ' 
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When (j~ is known, (8-7) is appropriate. When unknown, cr2 must be esti¬ 

mated. The appropriate estimate is to add up all the squared deviations from 

both samples, and then divide by the degrees of freedom (n1 - 1) + (w2 - 0, 

to obtain an unbiased estimator called the pooled sample variance: 

1 
20V- V)'2 + 2(-W- V)2 . . (8-16) 

(»i + n, — 2) 

where Xti represents the ith observation in the first sample. Substitution of 

s for a in (8-7) requires that the t distribution also be used, obtaining the 

95% confidence interval: 

(8-17) 

where t 09, is the critical t value with d.f. = nx + n2 

PROBLEMS 

8-4 Sixteen weather stations at random locations in a state measure rain¬ 

fall. In 1967, they recorded an average of 10 inches- and standard 

deviation of 1.5 inch. For the mean rainfall for the state, 

(a) Construct a 95% confidence interval. 

(b) Construct a 99 % confidence interval. 

8-5 100 cars on a thruway were clocked at an average speed of 69 m.p.h., 

with a standard deviation of 4 m.p.h. Construct a 95 % confidence 

interval for the mean speed of all cars on this thruway. 

(8-6) A random sample of 4 students in a large statistics course received the 

following marks: 56, 70, 55, 59. Construct a 95% confidence interval 

for the average mark of all students in the course. 

8-7 From a sample of five random normal numbers from Table lib find 

a 95% confidence interval for the mean of the population. 

8-8 Five people selected at random had their breathing capacity measured 

before and after a certain treatment, obtaining the following data: 

Breathing Capacity 

Person Before (A) After (Y) Improvement 

A 2750 

B 2360 

C 2950 

D 2830 

E 2250 

2850 + 100 

2380 +20 

2800 -150 

2860 + 30 

2300 + 50 
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Let ^xj(and py) be the mean capacity of the whole population before 
(and after) treatment. 

(a) What is the (point) estimate of the mean improvement (fjr v-)? 

(b) Construct a 95% confidence interval for {fjtY - px). 

8-9 Tn a rapdom sample of 10 football players, the average age was 27 

and thejsum of squared deviations was 300. In a random sample of 20 

hockey players, the average age was 25 and the sum of squared devia¬ 

tions w|s 450. Estimate, with a 95 % confidence interval, the difference 
in the population means, assuming cr1 = a2. 

-10 Given tjie following random samples from 2 populations: 

nY = 25 Xx = 60.0 

X, = 68.0 

and assume a1 = a.2 

Find a 95% confidence interval for {fil — ^2). 

8-11 Derive tie confidence interval (8-14) from (8-13). (Hint. Use practically 

the same method as in the footnote to equation (7-4).) 

8-12 Derive the confidence interval (8-6) from (8-5). 

8-3 ESTIMATING POPULATION PROPORTIONS' THE 
ELECTION PROBLEM ONCE AGAIN 

In_Sectioji 6-6, we saw that a sample proportion P is just a sample 
mean X in disguise. For example, if we observe 4 Democrats in a sample 
of 10, then r 

P ~ X ^ in" (i + i + o + 0 + 0 + 1 + 0 + 1 + 0 + 0) = 
Similarly, the population proportion v is just the population mean ,, in 

disguise. The amplest method of deriving an interval estimate for a pro¬ 

portion is therefore to modify (7-10), the interval estimate for a mean. Thus 
the 95 % confidence interval for rr is 

it = P ± 1.96 M1 ~ ^ (8-18) 
V n 

Wewnfirm that (8-18) is just a recasting of (7-10). X is replaced by P, and 

\ o jn (the standai d deviation of X) is replaced by Xtt(] — 77)//? [the standard 
deviation of P, as given in (6-30)]. 

But we seejm to have reached an impasse; the unknown rr appears in the 

right-hand side of (8-18). Fortunately, the situation has a remedy: substitute 
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the sample P for * in the right side of (8-18). This is a strategy we have used 

before, when we substituted 5 for a in the confidence interval for fi. Again, 

this approximation introduces another source of error; but with a large 

sample size, this is no great problem. Thus: 

For large samples, the 95% confidence inter¬ 

val for it is: 

\P{ 1 ~ P) 
- ±2.025 ^ n 

where ~ 025 is the critical value leaving 2\% of the probability in the upper 

tail. As an example, the voter poll of Section 1-1 used this formula. 

* For small samples, there are several options. The simplest is to read 

the interval estimate for tt from Figure 8-4, a table which is constructed 

in the following manner. The first step is the mathematical deduction of how 

the variable estimator P is distributed, for any population tt. This is shown 

for a sample size 20 in Figure 8-3. Thus, for example, if tt = .4, then the 

sample P has the dotted distribution shown in this diagram, and there is a 

95% probability that any P calculated from a random sample of 20 will lie 

in the interval ab. For each possible value of tt, such a probability function 

of P defines two critical points like a and b. When all such points are joined, 

the result is the two curves enclosing a 95 % probability band. 
This description of how the statistic P is related to the population tt 

can of course be “turned around” to draw a statistical inference about tt 

from a given sample P. For example, if we have observed a sample proportion 

pi _ 11 /20 = . 55, then the 95 % confidence interval for tt is defined by fg, the 

Probability 
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.4 .5 .6 
Sample P 

FIG. 8-4 95 %j confidence intervals for population proportions (*). [Reproduced with 

If CPoe^rnc0enof F'd eSTr, E' ?' ^rS°n fr°m C' ^ C^er and E' S' “the Use of Confidence ot Fiducial Limits Illustrated in the Case of the Binomial,” Biometrika 26 
1 (1954), p. 404.] 

width of this probability band above Px. i.e. 

.31 < 77 < .77 (8-20) 

Whereas the ’(deduced) probability interval is defined in the horizontal 
direction of t|e P axis, the (induced) confidence interval is defined in the 
vertical direction of the tt axis. 

Thls ls same log*c we have used in deriving confidence intervals 
before We wi 1 nevertheless pause briefly to review, because this is a more 
generalized argument than we have previously encountered. Suppose the 
true value of tt is 4; then there is a probability of 95% that a sample P will 
fall between a And b. If and only if it does (e.g., P,) will the confidence interval 
we construct bracket the true * of .4. We are therefore using an estimation 
procedure which ,s 95% probable to bracket the true value of and thus 
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yield a correct statement. But we must recognize the 5 % probability that the 

sample P will fall beyond a or b (e.g., P8); in this case our interval estimate 

will not bracket tt = .4, and our conclusion will be wrong. 
Why is this a more general theory of confidence interval estimation ? 

In previous instances (e.g., estimating a population mean, ft) we constructed 

a confidence interval symmetrically about our point estimate X. But in 

estimating tt, no such symmetry is generally involved.4 For example, with 

our observed sample proportion P, = .55, the confidence interval (8-20) we 

constructed for tt was not symmetric about our point estimate .55. 

The 95% probability band in Figure 8-3 is set out in Figure 8-4, along 

with the similar bands appropriate for other sample sizes. This neater 

diagram is used to construct 95 % confidence intervals for tt. 

As an example, if we have observed a P — .6 in a sample of 15, the 95 % 

confidence interval for 7r is approximately 

.32 < TT < .84 

For the same P = .6 in a larger sample of 100, the 95% confidence 

interval for tt is narrower: 

.50 < tt < .70 

Alternatively, with such a large sample, (8-19) could have been used, with 

the same result, i.e., 

TT .60 ± 1.96 / 
V 

, (-6)(.4) 

100 

= .60 ± .10 

Finally, there is a third method of estimating tt that we introduce, not 

so much for its practical value as for its illustration of this useful principle: 

with a little imagination, several alternative methods of solving a problem 

can often be developed, and the most appropriate one to use in a given set 

of circumstances is a matter of judgment. 
Let us be conservative, and ask: what is the maximum width of the 

interval estimate in (8-18), i.e., what is the maximum value that the error 

4 The student may have wondered why the 95% probability band does not converge on he 

two end points O and R. It is true that one half of this band (made up of all points s mdar 

to b) does intersect the P axis at 0; this means that if n is zero (e.g., no Socialists ini the . ■). 
then any sample P must also be zero (no Socialists in the sample). But the other half of this 

band does noHntersect the „ axis at 0; instead it intersects at h. This means that an observed 

P of zero (e.g., no Socialists in a sample) does not necessarily imply that n is zero (no 

Socialists in the U.S.). 
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11 J, ,7T(1 — 7T) 

allowance 1.96 /-1 can have? It is easily shown5 that the maximum 
I \ n J 

value of 7t( 1 j— 7r) is 1/4. 

Then (848), theD5% confidence interval for tt (with a large sample), 
can be written 

= P ± 1.96 

or simply: 

a ! n 
(8-21) 

But this is assuming the worst; if, in fact, tt is not 1/2, then rr(\ - tt) is less 

than 1/4, an|l our interval estimate need not be this wide; or to restate, 

(8-21) is an interval estimate for tt with at least a 95% level of confidence. 

For example^ this very simple formula is sometimes used in political polls 

where it is known on the basis of historical experience that the proportion of 

Democrats is] close to 1/2. In these circumstances (8-21) becomes a very 
accurate approximation. 

For completeness, we write the 95 % confidence interval for the difference 
in 2 proportions: 

Fqr large n, 

r2) = (P - P ) ± 1.96 Pid ~Pi) . p20 -P2) 

This is derived in essentially the same way as (8-6). 

° The simplest Way is with calculus, setting the derivative of n(i — tt) equal to zero. 

To prove itjwithout calculus, we may simply graph f{ir) = tt(1 — v), as follows 

Note that for either extreme value of tt (1 or 0) the value of f(n) is zero; and if 

then tt(\ — tr) reaches its maximum value because of symmetry of the parabola. 
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PROBLEMS 

8-13 Construct a 95% confidence interval for ir, the proportion of Repub¬ 

lican voters in the U.S., if there were 4820 Republicans in a random 

sample of 10,000. 

8-14 In a random sample of tires produced by a certain company, 20% 

did not meet the company’s standards. Construct a 95 % confidence 

interval for the proportion rr (in the whole population of tires) 

which do not meet the standards, 

(a) If the sample size n = 10. 

(b) If n = 25. 

(c) rf n = 2500. 

(8-15) By talking to 15 voters you discover that only 3 favor a certain 

candidate. Construct a 95% confidence interval for the proportion 

of all voters favoring this candidate. 

(8-16) In a random sample of 100 British smokers, 28 preferred brand X. 

Construct a 95 % confidence interval to estimate the proportion of all 

British smokers who prefer X. 

8-17 In a survey of U.S. consumer intentions, 498 families in a random 

sample of 2500 indicated that they intended to buy a new car within 

a year. Construct a 95% confidence interval for the proportion of all 

U.S. families intending a new car purchase. 

(a) Answer two ways: 

(1) Using the usual formula (8-19). 

(2) Using the simplified formula (8-21). 

(b) If the sample P had been .40, would the error in (a2) have been 

greater? 

8-18 If 7T = 3/4, what is the precise percentage error introduced by using 

(8-21) rather than (8-19)? Does this suggest that (8-21) is a reasonable 

approximation, provided 1/4 < tt < 3/4? 

8-19 A sample of 100 cars was taken in each of 2 cities. In one city 72 of 

the cars passed the safety test; in the second only 66 passed. Construct 

a 95% confidence interval for the difference between the proportions 

of safe cars in the two cities. 

8-20 A sample of 3182 voters yielded the following frequency table,* 

relating their attitudes to Senator Joseph McCarthy and their vote 

in 1948. Construct a 95% confidence interval for (^ — tt2), where 

* From S. M. Lipset, “The Radical Right” in Bell, Daniel, ed. The New American Right, 

New York Criterion Books [1955]. 
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is the broportion of all Democrat voters who were pro-McCarthy, 

and 772 Js the proportion of Republican voters who were pro-McCarthy. 

Attitude to 

McCarthy 

-> 
11958 

jVote Pro Anti 

Democrat 506 1381 
Republican 563 732 

(8-21) In an urban survey of 1000, 790 favored certain legislation. In a rural 

survey bf 300, 180 opposed the same legislation. 

Construct a 99% confidence interval for the difference between 

the prc portions of city and country voters who favor the legislation. 

*8-4 ESTIMATING THE VARIANCE OF A NORMAL 

POPULATION: THE CHI-SQUARE DISTRIBUTION 

There is cne further example of a confidence interval, interesting not so 
much for its practical value6 as for the insight it provides. 

Consider ja normal population N(ja9 a2) with both p and a2 unknown. 

So far we have estimated <x2 with v2 only as a means of finding a confidence 

interval for ^.jNow suppose, on the other hand, that our primary interest is 

in <r2, rather tljan //. For example, we may wish to ask “How much variance 

is there in Japan’s balance of payments?” in order to get some indication 

of the country’s requirement of foreign exchange reserves. Or, we may ask 

“What is the jvariance of farm income?” in order to evaluate whether a 

policy aimed at stabilizing farm income is necessary.7 To estimate variance 

we shall assutjie that the random variable (e.g., farm income) is normally 
distributed; iFso, how do we proceed? 

We have klready seen, in Section 7-2, that s2 is an unbiased estimator 

of <r2; but to construct an interval estimate for <x2 we must ask: “how is the 

estimator s2 distributed around o'2?” To answer this, it is customary to 

6 One reason that the confidence interval for a2 is of limited practical use is that it depends 

crucially on the assumption that the parent population is normal. By contrast, most of the 

confidence intervals for means remain approximately true even if the parent population is 
nonnormal; such; confidence intervals are called robust. 

Income stabilization policies are almost always designed to stabilize income around a 

reasonably high level. Thus they aim both at reducing variance (rr2) and raising average 
income (/a). Here! we concentrate only on the variance problem. 



164 ESTIMATION II 

FIG. 8-5 Distribution of the modified chi-square, C2. 

define a new variable: 

C2 = (8-23) 
CT“ 

Of course, when 52 = cr2, this ratio is 1; thus our question can be rephrased: 
“how is C2 distributed around 1 ?” 

C2 is called a modified Chi-square variable, with n — 1 degrees of free¬ 
dom.8 It has been proved by advanced calculus that the distribution of C2 is 
that of Figure 8-5; critical values are given in Appendix Table VI. 

Since its numerator v2 and denominator a2 are both positive, the variable 
C2 is also always positive, with its distribution falling to the right of zero in 
Figure 8-5. For small sample values we note that it is also skewed to the 
right; but as n gets large, this skewness disappears and the C2 distribution 
approaches normality. Since s2 is an unbiased estimator of a2, this implies 
that the expected value of each of these C2 distributions is 1. Moreover as 
sample size increases C2 becomes more and more heavily concentrated 
around 1, indicating that ^2 is becoming an increasingly accurate estimator 

of a2. 
With this deduction of how the estimator s2 is distributed around its 

target cr2, we may now infer a 95% confidence interval for a2 using our now- 
familiar technique. We illustrate with sample size n = 11 (d.f. = 10). From 

8 C2 is comprised of the constant parameter cr2, and the variable s2. Thus it has the same 

degrees of freedom as s2 [explained in the footnote to equation (8-11)]. 
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Figure 8-5, or more precisely from Table VI, we find the critical points 

cutting off 2j% of the distribution in each tail; thus 

Pr 1.325 < - < 2.051 = 95% 

Solving for af, we obtain the equivalent statement 

Pr — < cr2<- 
\2.Q5 .3 

—) =95°/t 
.325/ 

(8-24) 

(8-25) 

If the observed value of turns out to be 3.6, then the 95% confidence 
interval for of is 

1.76 < o'2 < 11.1 (8-26) 

We note that This is another example of an asymmetrical confidence interval. 

In general, the upper and lower critical values of C2 are denoted C2025 

ancJ C.975 and; the 95 % confidence interval is written 

s* 9 s* 

c1* < a < 

PROBLEMS' 

*8-22 If a sample of 25 IQ scores from a certain population has = 120, 

construct a 95 % confidence interval for the population a2. 

*8-23 From the sample of Problem 8-6, construct a 95 % confidence interval 
for o2 . 

Review Problems 

8-24 Two machines are used to produce the same good. In 400 articles 

produced by machine A, 16 were substandard. In the same length of 

time, the second machine produced 600 articles, and 60 were sub¬ 

standard. Construct 95% confidence intervals for 

(a) tt19 the true proportion of substandard articles from the first 
machini. 

(b) tr2, jthe true proportion of substandard articles from the second 
machine. 

(c) Thej difference between the two proportions {tt1 — 7r2). 
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8-25 To determine the effectiveness of a certain vitamin supplement, the 

following data were obtained: 

Table of weight increases (in grams) for 2 groups of 3 mice. 

Control Group Treated Group 

\j r y 18 ' 

1 r 19 4 16 

,/ 14. : 2? 

Assume that oy = <r2, and that the mice are not paired [i.e., the 

first row of data (12 and 18) does n ot come from mice that are related 

by kinship, or anything else]. Construct a 95% confidence interval 

for the “vitamin effect,” //.2 — 

8-26 Suppose a psychologist runs 6 people through a certain experiment. 

In order to find the effect on heart rate, he collects the following data: 

Heart Rate—Beats per Minute 

Person Before Experiment After Experiment 

Smith 

Jones 

Gunther 

Wilson 

Pestritto 

Seaforth 

Suppose that it is known that people as a whole have an average 

heart rate approximately normally distributed, with mean 73. 

Calculate a 95 % confidence interval for the effect of the experi¬ 

ment on heart rate. 

8-27 A certain scientist concluded his study in fertility control as follows: 
“So far one result has emerged from the before-and-after survey, and 

it is a key measure of the outcome: at the end of 1962, 14.2% of the 

women in the sample were pregnant, and at the end of 1963 (after 

the birth-control campaign) 11.4% of the women (in a second in e‘ 

pendent sample) were pregnant, a decline of about one fifth. 

If the samples (both before and after) included 2500 women, 

what statistical qualification would you add to the above statement, 

in order to make its meaning clearer ? 
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Hypothesis Testing 

9-1 TESTING A SIMPLE HYPOTHESIS 

We beg n with a very simple example, in order to keep the philosophical 

issues clear J Suppose that I am gambling with a die, and lose whenever the 

die shows ate. After 100 throws I notice that I have suffered an inordinate 

number of losses—27 aces. This makes me suspect that my opponent is using 

a loaded diej; specifically, T begin to wonder whether this is one of the crooked 

dice recently advertised as giving aces one-guart^ (] 
Is my Suspicion well-founded, so that I should make an accusation, 

and terminate the game? My decision should depend on several factors. 

1. Hovi much did I trust my opponent even before I began the game 

(prior to collecting the evidence)? For example, if I am playing with a sharp¬ 

looking character I have just met on a Mississippi steamboat T will be more 

inclined to terminate the game than if I am playing with an old and trusted 

friend. 
2. What are my potential losses involved in making a wrong decision? 

I may be p aying with very attractive odds in my favor; if the die is, after 

all, a true ojne, then T will have a good deal to lose if I erroneously conclude 

that it is crooked and terminate the game. 
3. Does the evidence itself (27 aces in 100 tosses) indicate that T am being 

cheated? 

If ques:ions (1) and (2) can be answered, even roughly, then it is useful 

to put this whole problem into the larger framework of decision theory 

(Chapter l|). However, in many practical problems, the first two questions 

cannot easily be answered; using a medical example, what is the cost of 

making the wrong decision and certifying a drug which has serious side 

effects? In jmany instance^ it is only question (3) than can be answered by 

167 
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the scientist, and it is this limited but extremely important question which we 
address in this chapter. 

First, state the two conflicting hypotheses as precisely (mathematically) 
as possible. The hypothesis that the die is fair is really a statement that the 
Bernoulli population of all possible throws has a proportion of aces equal to 
1/6. This is the hypothesis of “no cheating” or “nothing out of the ordinary.” 
Customarily, it is called the null hypothesis, 

H0:tt = 1/6 = .167 (9-1) 

The other hypothesis is that the probability of an ace is 1/4; this is customarily 
called the alternate hypothesis, 

Hp.rr = 1/4 = .25 (9-2) 

Suppose that even before evidence was collected—before we started 
throwing the die—the following plausible decision rule was suggested. After 
100 throws, we should: 

Accept H0 if no more than 20 aces occur 

(i.e., if observed P < .20) 
(9-3) 

Reject H0 (i.e., accept H±) if more than 

20 aces occur (P > .20) 

This decision rule is shown in Figure 9-1 a. The value .20 which separates 
the two regions is often called the critical point, while P > .20 is referred to 
as the critical range, denoting observed values of P that will lead us to reject 
#0- When H0 is rejected, we call the results statistically significant. 

Of course, this rule will not always lead to the right decision, because 
of chance fluctuation (bad luck). We can hope, however, that the probability 
of error is small. To find out how small we apply probability analysis, as 
in Figure 9-1A 

First, how well will rule R work if H0 is true? The distribution of P is 
then concentrated around its mean value .167, with only a small probability 
that an observed P will be greater than .20, causing R to give the wrong 
answer (“reject //„”). We now ask, “How small is the probability of this 
error ?” Recall from Chapter 6 that a sample proportion P has an approximate 
normal distribution, with 

n 
(9-4) 
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error is therefore calculated by evaluating the normal distribution in Figure 
94 c lying to the left of .20. Since the mean and standard deviation of this 

distribution are 
[J,p = 7T = .25 (9-6) 

<r,,_ H1 - ^ = .043 (9-7) 
V n 

it follows that: 
IP — /Lip .20 — .25\ 

Pr(F<.20/H0 — Fr( J* < ^ ) (9-8) 

= Pr(Z < -1.15) 

= .13 = fS, let us say (9-9) 

This error of accepting H0 when it is false is called a type II error, with its 

probability denoted p. 
The terminology of testing is reviewed in Table 9-1. Note that the 

probabilities in each row must sum to 1; this must follow, so long as we use 
a rule (like R) which involves the decision either2 to accept or reject H0. 

We now recall that our decision rule R in (9-1) was determined arbi¬ 
trarily. We now ask: “Is there a better decision rule, i.e., a better critical 
point for our test than P = .20?” Of course, we should like to make the 
probabilities of error (a and p) as small as possible, but these two objectives 
conflict. This is illustrated in Figure 9-2, which is a condensed version of 

Table 9-1 Possible Errors in Hypothesis Testing 

State of the world Decision 

Accept H() Reject H0 

If H0 is true Correct decision. 
Probability = 1 — a; 

corresponds to 
“confidence level” 

Type I error. 
Probability = oc; 

also called 
“significance level” 

If H0 is false Type II error. Correct decision. 

(H1 true) Probability = p Probability =1 — 0; 
also called “power” 

2 Of course other more complicated decision rules may be used. For example, the statistician 

may decide to suspend judgement if the observed P is in the region around .20 (say .18 < 

p <; .22). If he observes an ambiguous P in this range, he would then undertake a second 
stage of sampling—which might yield a clear-cut decision, or might lead to further stages of 

sequential sampling. 
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Accept Hq Reject Hq 

Distribution of P 
if Hq true if Hn false 

Hq: tt= .167 

2 .25 
A 

Hy. 7r = .25 

FIG. 9-2 Illustration of how reducing a increases /? (compare with Fig. 9-1). 

Figure 9-1, except that the critical point has been moved up from .20 to .22. 
As we hope, this does reduce oc; but it also increases /?. Moreover, we note 
that the only way to eliminate oc is to move the critical point far enough to 
the right, but a^ we do so ($ approaches 1; i.e., our test becomes “powerless” 
since we can njo longer reject even the most dishonest die. Similarly, it is 
easy to confirmf that any attempt to reduce ft (by lowering the critical point 
below .20) will increase a. In statistics, as in economics, the problem is 
trading off conflicting objectives. 

The only way to reduce both a and j3 is to increase the sample size. 
From equation^ (9-4) it is clear that an increase in n will reduce the spread 
of P, concentrating its distribution more closely around its central value. 
Thus if n is increased from 100 to 200, we obtain the result shown in Figure 
9-3. The only difference in this test and the one shown in Figure 9-1 is the 
increase in sample size; note how it reduces both a and /?. 

These principles are illustrated with an interesting legal analogy. In a 
murder trial, the jury is being asked to decide between H0, the hypothesis 
that the accused is innocent, and the alternate H1, that he is guilty. A type 
I error is committed if an innocent man is condemned (innocence is rejected), 
while a type II ^rror occurs if a guilty man is set free (innocence is accepted). 
The judge’s admonition to the jury that “guilt must be proved (i.e., innocence 
rejected) beyond a reasonable doubt” means that oc should be kept very 
small. There have been many legal reforms (for example, in limiting the 
evidence that can be used against an accused man) which have been designed 
to reduce oc, the probability that an innocent man will be condemned. But 
these same reforms have increased /?, the probability that a guilty man will 
evade punishment. There is no way of pushing oc down to zero, and insuring 
absolutely against convicting an innocent man without letting every defendant 
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Accept Ho Reject Ho 

p 

7TO | 7T1 

FIG. 9-3 How a and are both reduced by increasing sample size (compare with Fig. 9-1). 

go free, thus raising ft to 1 and making the trial meaningless (powerless). 
It should also be noted that historically a and ft have been both reduced by 
improved crime detection—i.e., by increased available evidence brought to 
bear on H0. 

Returning to the statistical problem, we conclude that (short of raising 
more funds for increasing sample size) we are left with the problem of how 
best to balance, or trade off, a and /3. Whenever possible the answer should 
take into consideration the factors mentioned at the outset of the chapter. 

1. The relative prior likelihood of the two competing hypotheses. To 
use an earlier example: if your opponent is a trusted friend, rather than a 
complete stranger, your greater prior confidence in F70 will make you more 
reluctant to reject it; thus you will keep oc small. 

2. The relative cost of making each type of error. To use the same 
example: suppose the cost of making a type I error (and accusing an old 
friend of being a cheat) is high, while the cost of making a type II error is 
relatively low (you continue to bet against a crooked die—but it is only for 
peanuts); in these circumstances, your greater concern about making a type I 
error will lead you to reduce oc to a relatively small value, even though ft is 
increased as a consequence. Or, drawing on our legal analogy, we may in¬ 
terpret legal reforms designed to protect the innocent (i.e., reduce a) as a 
reflection of the judgement that the cost of type I errors (condemning 
innocent men) exceeds the cost of type II errors (allowing the guilty to go 
free). 
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The difficulty is that, in a great deal of scientific inquiry, these questions 
cannot be answered with any precision; but because type I errors are usually 
quite serious, a is set at a small value—usually 5 % or 1 %. Then the test rule 

is constructed on this basis. 
We illustrate with our die-tossing example how hypotheses are typically 

tested. Three steps are involved. 

1. The null hypothesis H0 and the alternative are formally stated, 
as in (9-1) and (9-2). At the same time, the sample size (e.g., 100) and the 
significance df the test (e.g., a = 5 %) are set. 

2. We now assume that the null hypothesis H0 is true. And we ask: 
“What can we expect of a sample drawn from this kind of world?” This 
question is answered in our die-tossing example thus: if H0 is true, then there 
is a probability of only 5 % that we will observe a sample P greater than .228. 
This critical value (.228) is determined as follows. We note from Appendix 
Table IV that a Z value of 1.64 cuts a 5% tail off the standard normal 
distribution.’This critical Z value is translated into a P value: 

P ~ 77 = 7 = 1.64 (9-10) 
U1 - 7T) 

V n 

and for the value of tt = 1/6: 

1 'I, = 1.64 (9-11) 
/(1/6)(5/6) 

V 100 

which yields the critical value of P = .228. The resulting test R* is shown 
in Figure 9-4. This shows us what to expect of a sample P, if H0 is true. (At 
this stage, tile probability of a type II error (/?) and the power of this test 
(1 — ^) maj also be calculated, but this is not always done. As an exercise, 
the reader Should confirm that ft = .31 and the power of the test is .69.) 
With the rulje R* now established, there remains only the last automatic step. 

3. The Sample is taken, and P observed. We now ask: “Is this P con- 
sistent with H0V If it is not (i.e., P > .228) we reject H„. 

As an Example, recall that in our 100 tosses, we rolled 27 aces. This 
observed P U .27 is in such conflict with H0 that it cannot be “reasonably” 

attributed to chance and H0 is rejected. 

Summaryl Whereas in our first test (R) we arbitrarily specified the 
critical value (.20) and solved for a, in this more typical hypothesis test 
(P*) we specify a (.05) and solve for the critical value. Note that the “95% 
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Accept Hq 

FIG. 9-4 Construction of a test of Hq, the hypothesis that tt = .167, at a 5% significance 
level (a = .05) with a sample n = 100. 

confidence level” of this test is similar to the concept of 95 % confidence 
used in interval estimation. We set up the test in Figure 9-4 on the assumption 
that H0 is true. If this is so, there is a 95 % probability that P will be observed 
below .228, and we will (correctly) accept H0. Thus we are using a method 
in which there is a 95% probability that we will be right when H0 is true. 

There is another way of looking at this testing procedure. If we get an 
observed P exceeding .228, there are two explanations. 

1. Hq is true, but we have been exceedingly unlucky and got a very 
improbable sample P. (We’re born to be losers; even when we bet with odds 
of 19 to 1 in our favor, we still lose); or 

2. H0 is not true after all; the die is crooked, and it is no surprise that 
we rolled so many aces. 

Being reasonable, we opt for the second explanation. Although the 
first explanation is conceivable, it is not as plausible as the second. But we 
are left in some doubt; it is just possible that the first explanation is the correct 
one. For this reason we qualify our conclusion “to be at the 5% significance 
level (type I error level).” 

PROBLEMS 

9-1 Fill in the blanks. 

Consider the problem facing a radar operator whose job is to detect 
enemy aircraft. When something irregular appears on the screen, he 
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must decic e between 

L0: all is well; only a bit of interference on the screen. 
L1: an attack is coming. 

In this cast, the type-;— error is a “false alarm,” and the type  _ 
error is a- “missed alarm.” To reduce both a and ft, the electronic 
equipmentjis made as reliable and sensitive as possible. 

9-2 (a) To test whether a die has a fair number of aces, using n = 100 
construct ^ test, at the 1 % significance level, of 

Hq'.tt = .167 

versus H1:tt = .25 

(b) What /?? 

9-3 (a) Construct the appropriate test of 

H0: cjiin unbiased, versus the alternative Hx: Pr (heads) = .60 
using :a 25% level of significance. Assume a sample of 100 
tossesj 

(b) Do the( sample results you observed in Problem 3-2 lead you to 
reject H„1 About how many students in your class will mistakenly 
reject HQ1 - 

(c) What is /? for this test ? Interpret. 

9-4 (a) To test whether a die has a fair number of aces, using n =100 
construct ah appropriate test, at the 5 % significance level, of 

H0: rr ~ .167 

versus Hx \ n = .300 

(b) What a|e a and j3 for this test? 

(c) Compared with the test developed in the text in Figure 9-4, is 
(1) Thejcritical value different? 
(2) a different? 
(3) j3 different? 

HYPOTHESES 

In our die-tossing example we have assumed that there is only one way 
in which a die caji be crooked (i.e., r, = 1/4). Thus the alternative hypothesis 
Hi was a simple^one. But usually there is no way of knowing how heavily 
the die may be biased against us. Thus our alternative hypothesis Hx (crooked 
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die) would be a composite hypothesis, embracing a whole set of possibilities. 

Hl: 7T = .17 

7T = .18 

7T = .19 (9-12) 

including our previous, simple alternative: 

7T = .25 

To summarize, we wish to test 

H„:tt = -167 (9-13) 

against the composite alternative 

H1\tt > .167 (9-14) 

Since there are many alternatives included in Hlt we can no longer evaluate 
8 as simply as in the previous section. But note that H0 is still a simp e 
hypothesis; thus the evaluation of a has not been complicated. There is now, 
therefore, an even stronger case for concentrating on a, which we set at 
05- we shall return to an evaluation of the more complicated values later. 

’ With this significance level of .05 given, the reader should now develop 
as an exercise the appropriate decision rule for accepting or rejecting H„. 

Note that this is identical to rule developed in Figure 9-4. Since the rule 
is based on the level of significance selected, (« = .05 m both cases), it is 
entirely independent of any considerations of /3. But while the forma tes 
may remain the same, there are two major changes in its interpretation. 

(b) The Power Function 

With a simple alternative H„ 0 was a single probability value. With 
a composite Hx there are now many possible values of -n, each giving a 
different 8. We show three such calculations in Figure 9-5; each involves 

evaluating the area under a curve, lying to the left of th® g'‘ical 7a u! 
/p _ 228). Thus the middle curve shows how the sample P will be distribute 
if the true ir is .25 and yields /3 = 31 %. To interpret: if rr is in fact .25, then 
there is a probability of 31 % that an observed P will be less than our critical 
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.228 
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Critical value 

Distribution of P if 

Distribution of P if 
7T = .18; then 
S3 = .80 

Distribution of P if 
7T = .30; then 
0 = .05 

Hi: 7r > .167 

FIG. 9-5 Calculation of 0, the probability of type II error, (n = 100). 

pnd we will erroneously conclude that the die is fair (accept value of .228- 

#„). 
Table 9-2 lias been constructed using a whole set of possible values of 

7r; t^le corresponding /? values are shown in column 2, and the power of the 
test (1 - ft is sjhown in column 3; this is the probability that we will correctly 
reject a crooked die. If a dishonest gambler uses a die which always turns up 
an ace, he knojws he will be quickly found out, and the game abandoned; 
the more crooked the die he uses, the greater your “power” to uncover him 
as a cheat Th^ less crooked the die, (i.e., as we move down this column) 
the more difficult it becomes to reject it. The dishonest gambler will recognize 
this, and will prefer to get you to play against a slightly crooked die. The 
power of this tjest is thus seen to be our ability to uncover a crooked die; 
and if it is onlv slightly biased, our test has little power, and it becomes 
almost impossible to distinguish between the two conflicting hypotheses. 
This is confirmed from the last, limiting line in Table 9-2. Here the value of 
77 is H0, and to reject H0 would be wrong. The probability of this was a = 5°/ 
by definition. ‘ 

The “power function” is graphed in Figure 9-6. Clearly we should like a 
power function pat begins very close to the baseline, since its initial height is 
a, the level of significance, which we wish to keep low. At the same time, we 
wish the power function to be very steep; the more rapidly it rises, the 
greater is our power to distinguish between competing hypotheses. 
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Table 9-2 £ and Power Function for the Test R* 

(Test of Fair Die, at 5 % Level of Significance) 

(1) 

Possible Values 

Of 7T 

(2) 

Probability of (Erroneously) 

Accepting H0 

P 

(3) 

Probability of Correctly 

Rejecting H0 
Power = 1-/3 

.32 .02 .98 

.30 .05 .95 

.28 .12 .88 

.26 .23 .77 

.24 .39 .61 

.22 .58 .42 

.20 .76 .26 

.18 .89 .11 

.17 .94 .06 

Limit (.167) (.95) (.05) = a 

(c) A Warning About Accepting H0 

This introduces a second reason for interpreting our test in this section 
(with a composite H±) differently from our test in the previous section (with 
a simple It is now possible that this die is only slightly biased (w = .18). 
If this is in fact the case, it is very likely (/? = .89) that we will observe P in 
the range below .228. R* tells us to accept H0 (true die); but this is a mistake. 
At the same time the evidence is not strong enough to reject H0. What to do? 

Power =1-/3 

FIG. 9-6 Graph of the power function of Table 9-2, for the test Rt of the fair die at the 

5% significance level. 
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(d) Prob-valuje 

The proh-value4 is defined as 

Prdb-value - Pr (th* samPle value would be as extreme) 

j _vas the value we actually observed/#0/ (9-15) 
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For the gambling example, in tossing a die 100 times and observing the 

proportion of aces to be P — .27, we have 

prob-value = Pr (P i> .27/ff0) 

= Pr 
.27 - .167' 

aP - 5/3600 

= Pr (Z ^ 2.77) 

= .0028 

(9-16) 

(9-17) 

This calculation is very similar to the calculation of a, and is shown in Figure 
9-7o. We further note that if the observed value of P is extremeghe pro ^ 
value is very small. Thus the prob-value measures the credibility ofH* It s » 

excellent way for the scientist to summarize what the data says about 

nUU K±n of Prob-value to testmg 7/. may be seen in Ftgure 9-76. 

FIG. 9-7 Prob-value for the gambling example; H0 is rr \jbani1 sample size is 00. 

W C3“ <- 
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jb-value is smaller than a, the observed value of P is in the reiec- 
f the test, i.e., J 

Reject H0 iff prob-value < a 
_ (9-18) 

To restate thjs, we recall that the prob-value is a measure of the credibility 
of tfc; if thiSjCredibihty sinks below a, then ff0 must be rejected. 

Figure 9-7 shows yet another interpretation: the prob-value is the smallest 
possible valuj of a at which H0 may be rejected. 

To conclude, a major criticism of the traditional hypothesis testing of 
Section 9-1 isjthat a is set rather arbitrarily, and the simple decision to reject 
or not reject does not allow the sample to “tell us” all that it might 
Prob-value is therefore the preferred way of stating the result of a hypothesis 
test. Then eafh reader can set his own level of significance « at whatever 
value he deems appropriate, and make his own decision to reject H„ if the 
prob-value <V [If the prob-value > a, he should suspend judgement for 
the reasons ci.ed in Section 9-2(c) above.] 

Another Example. 

linings with a 
another type 

Suppose that an auto firm has been using brake 
stopping distance of 90 feet. The firm is considering a switch to 

f>f lining, which is similar in all other respects, but alleged to 
have a shorte| stopping distance. In a test run the new linings are installed 
on 64 cars; the average stopping distance is 87 feet, with a standard deviation 
of 16 feet. In four job of quality control, you are asked to evaluate whether 
or not the nevf lining is better 

Let | 

ft = average stopping distance for the population of new lininas 
and test 1 6 

against the alternative 
Ho '/u — 90 

< 90 

Moling that Ae observed X is 87, you calculate the prob-value, using a 
method similar to (9-16): ’ e 

prob-value = Pr (X ^ 87/7/„) (9.19) 

In other words,, this is the probability that Twill be as extreme as the value 
you observed i.e 3 feet or more below the hypothetical value of 90 feet. 
Translating (9-19) into Z values, we have 

prob-value = Pr / X-fiS<81 - 90' 

“ 16/V6V 
= Pr (Z <. —1.5) 

= 067 (9-20) 
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You report therefore that there is evidence that the new linings are better, 
since there is only a 6.7% probability that you would get such extreme 
test results from an equivalent product. Thus you leave the decision to the 
vice-president. If he uses a 10% significance level, he will switch to the new 
linings. But if he uses a 5 % significance level, he will not switch. 

(e) How to Select H0 

So far we have tested a simple H0 against both a simple and composite 
Cases occasionally occur when both H0 and H1 are composite. As an 

example, suppose we are asking whether American men are more likely to 
vote Democratic than American women. The null hypothesis (that voting 

preference is the same) contains many simple hypotheses. 

H0:ttm = ttw = .50 

^ 77AV ” *51 

7Tyi = 7TW — X, 0<X< l 

where ttm and ttw represent the proportion of men and women voting 

Democratic. . 
Moreover, the alternate hypothesis is even more composite. 

Hi• tt'm == an<^ ^ *50 

77M = .52 and ttw == .50 

ttm = .52 and = .49 

7tm = x and ttw = y 0 < x < 1 

0 < y < 1 

x > y 

Additional complications are now involved, above and beyond those 
introduced when only Hx was composite. Indeed it is difficult to know where 
to start. The key is to define a new population parameter 3—the difference 

between voting preferences. Specifically 

d — TTyi TT^y 

5 We refer to H0 as one-dimensional, and as two-dimensional. 
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The null hyp ^thesis becomes 

Ho:S = 0 (9-21) 

against the composite alternative 

#i:<5>0 (9-22) 

For large samples, a test can now be constructed on the basis of the difference 
m the samplejproportions, PM - Pw. 

As this illustration makes clear, the null hypothesis may sometimes be 
uninteresting,: and one that we neither believe nor wish to establish It is 
selected becaijse of its simplicity. It is the alternative H1 that we are trying to 
establish, andj we prove Hx by rejecting H0. We can see now why statistics is 
sometimes cajled “the science of disproof.” H0 cannot be proven;6 and Hx 

can be proved only by disproving (rejecting) H0. It follows that if we wish to 
prove some proposition, we call it H± and set up the contrary hypothesis H0 
as the “straw |man” we hope to destroy. 

Another Example. Suppose that the research engineers in an electronics 
company claim that they have developed a new television tube superior to the 
old, which ha| an average lifetime of 12,400 hours. They ask you to prove 
its superiority. You wish to establish, 

> 12,400 

where // is the average lifetime of all new tubes. The “straw man” you hope 
to destroy is that this tube is no better, i.e., 

H0:ju = 12,400 

The new tube is then tested in the hope that the observed sample mean will be 
significantly greater than 12,400. If it is, then H0 is rejected and Hx is estab¬ 
lished. 

This example emphasizes our earlier warning against accepting H0. 

Suppose the sample mean X is slightly above ju0, yielding a prob-value of 
20%. If the vice president specifies the significance level oc at 5 %, the evidence 
is not strong enough to allow us to reject H0. But we cannot accept H0 either, 
for two reasons: (1) we did not believe it in the first place; it was set up simply 
as a “straw min” we hoped to knock over in order to establish Hx\ (2) the 
tests suggest M is wrong, (although not as strongly as we would have liked). 
We therefore opt to withhold judgement, simply quoting the prob-value, and 
wait for furthe * evidence. 

6 See Section 9-2 (c) above. 
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PROBLEMS 

9-5 A certain type of seed has always grown to a mean height of 8.5 inches. 

A sample of 49 seeds grown under new conditions has a mean height 

of 8.8 inches and a standard deviation of 1 inch. 

(a) At the 5% significance level, test the hypothesis that the new 

conditions grow no better plants. 

(b) Graph the power function of this test. 

9-6 Whereas the power function of our die test involved graphing all the 

(1 _ values in column 3 of Table 9-2, an “operating characteristics 

curve” (OCC) is defined by graphing all values (column 2). Draw 

the operating characteristics curve for this test, and compare it with 

the power function in Figure 9-6. What is the most desirable shape for 

an OCC? 

9-7 A man makes the implausible claim that the average yearly salary of 

men in a certain profession is only $6600. A random sample of 150 

men in that profession shows a mean salary of $6730 with a standard 

deviation of S900. 
(a) Calculate the prob-value, and interpret. 

(b) At a 5% level of significance would you reject the man’s claim? 

(c) At a 1 % level of significance, would you reject his claim? 

Would you therefore accept it? Explain your answer. 

9-8 A coffee shop sells on the average 320 cups of coffee per day, with a 

standard deviation of 40. After advertising, they find that on 7 days 

they sell an average of 350 cups. 
(a) Has advertising left their business unchanged ? Calculate the prob- 

value. 
(b) If the owner of the coffee shop specifies that the type I error of 

the test (significance level) is to be 5%, do you reject the hypothesis 

that business is unchanged? 
(c) What assumptions have you made implicitly in parts (a) and (b) ? 

Under what conditions are they questionable? 
*(d) If coffee sales can be observed for 25 days, what would the average 

sales have to be in order to justify a statement that business had 

improved, at the 5% significance level? 

9-9 In order to compare the yearly incomes in two professions a survey 

was made among 100 men in each. In one sample the mean income is 

$6000 with a standard deviation of $700; in the second sample the 

\/ mean is $6200 with a standard deviation of $400. To weigh the claim 

that the mean salary in the second profession is no larger than m the 
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first profession, calculate the prob-value. (Hint. Use the theory on dif¬ 
ferences in means developed in Chapter 8.) 

(9-10) Record's show that in a random sample of 100 hours a machine 

produced an hourly average of 678 articles with a standard deviation 
. n i -i* . .. . . 

of 25. After a safety device was installed, in a random sample of 500 

hours tjhe machine produced an hourly average of 674 articles with 

a standard deviation of 5. Pointing to the drop of 4 articles per hour 

in the ^sample mean, management claimed the safety device was 

reducing production. The union countered that the drop of 4 articles 
was “irjerely statistical fluctuation.” 

(a) To Objectively summarize the evidence on whether production is 
left unchanged, calculate the prob-value. 

(b) If tjie arbitration board decides that a = 1 % is a fair level of 

significance (type I error), do they rule in favor of management or 
union? 

*9-11 At a 5^% significance level, test the hypothesis that the following 

sample is drawn from a population of.random digits. 

1212 0 8 6 1 2 4 5.1 2 4 8 4 4 3 0 2 

SupposJ that the alternate hypothesis is that there is a bias towards 
small digits. 

*9-12 The output of all machines in a factory is substandard 4% of the time. 

A machine suspected of being inferior produces X substandard 

articles jm 400. How small would X have to be in order to reject the 

machin^ as inferior at the 5 % significance level ? 

9-3 TWO-SIlj>ED TESTS 

In the previous section we asked whether men voters were more heavily 

Democratic thcjn women. Suppose instead we ask whether men voters are 

more or less Democratic than women. In either case we use the same simple 
null hypothesis r 

H0\d = 0 (9-23) 

But where in (5-22) we used a one-sided alternative 

> 0 

we now must u >e the two-sided alternative 

lt .x -. ... f*5 > 0, or 
Hl\6 0, which is equivalent to 

<5 < 0 
(9-24) 

We reject Ha if our sample estimate of 6 is significantly greater than or less 
than 0. We test77„ “from both sides.” 



186 HYPOTHESIS TESTING 

As a second illustration, suppose we are again testing the trueness of a 

die. But instead of testing a suspect die we are betting against, suppose we 

work in quality control in a die-making factory. We are now just as con¬ 

cerned about a die that shows too few aces, as one which shows too many. 

Our appropriate test involves: 

H0:tt = .167 (9-25) 

(9-13) repeated 

against the two-sided alternative 

(tt > .167, or 
H1\tt 7^ .167, i.e., (9-26) 

(tt < .167 

[compare with (9-14)]. The critical region (for rejecting H0) must now also be 

two-sided. For a level of significance a = 5% this is shown in Figure 9-8b; 

Ho 

Reject Ho 

(a) 

(b) 

FIG 9-8 A one-sided and two-sided test of a die compared, {a) A one-sided test of 

= .167 against the alternative Hx:ir > .167 (Fig. 9-4 repeated). (b) A two-sided test 

of Hq\tt — .167 against the alternative Hl:tt ^ .167. 
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an equal area (2£ %) is cut off each tail in order to keep the critical region for 

rejecting H0 as large as possible. Thus: 

Reject H0 if \Z\ 
P - 7T0 

> 1.96 /t70(1 - TTq) 

v n 

(9-27) 

where tt0 is .157, the null hypothesis value of tt. Equation (9-27) simply asks 

whether P differs from tt0 by a critical amount—on either the high side or 

the low side. The final question is “How do we recognize when to use a two- 

tailed test or a one-tailed test?” The one-tailed test is recognized by an 

asymmetrical phrase like “more than, less than, at least, no more than, better, 

worse, ...” and so on. Thus our first test of whether the probability of an 

ace on the gimbler’s die was more than one sixth, required a one-sided test. 

PROBLEMS 

9-13 Test h\:tt = 1/2 versus Hx\ir ^ 1/2 where tt is the probability of 

tossing k thumbtack “point up.” Use a 5% level of significance, and 

use the tample observations of Problem 3-1. 

(a) Aft$r 10 tosses. 

(b) Aft^r 100 tosses. 

9-14 Referring to Problem 9-7, suppose that the man’s claim that ju0 = 6600 

is no lopger implausibly low, i.e., suppose the alternate hypothesis is 

two-sided: Hy./u > 6600 or ju < 6600. 
Using now a two-sided test of H0, and also a two-sided prob-value, 

answer the same questions as in Problem 9-7. 

9-4 THE RELATION OF HYPOTHESIS TESTS TO 
CONFIDENCE INTERVALS 

(a) Two-sided Hypothesis Tests 

In this section we shall reach a very important conclusion: a confidence 

interval can toe used to test any hypothesis; in fact, the two procedures are 

equivalent. We illustrate with an example. 
Suppose a firm has been producing a light bulb with an average life of 

800 hours. It wishes to test a new bulb. A sample of 25 new bulbs has an 

average life !of 810 hours (A), with a standard deviation of 30 hours (j). 

Noting that because of our small sample we should use the t, rather than the 



Confidence interval 

‘■»25 
= 2.06 -|2. = 12 

-y/25 

(b) 

FIG. 9-9 Comparison of two-sided hypothesis test with confidence interval (using a 
sample with ^ = 810 and s = 30). (a) Test of H0:/u0 = 800 versus 800. (6) 

Confidence interval for //. 

7 More specifically “i/0 should not be rejected.” To simplify the exposition in this section 
and avoid double negatives, we shall use “accept H0,” rather than “do not reject H0”— 

although as we have pointed out earlier, the latter (weaker) conclusion may be the only 
one justified. 
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2. Alternatively, the sample result could be used to construct a confidence 
fi. Using the same 95 /0 level of confidence, this confidence 
n i • /c\ •« ' *j- 

interval for 
interval is defined in (8-15) as: 

or 

X ± ^.025 ~7= 

; V" 

30 
810 ± 2.06 

V2$ 

798 <fi< 822 

(9-34) 

(9-35) 
This is showji in Figure 9-9b. 

The observed X of 810 falls in the acceptable region defined in the 
hypothesis tejst in Figure 9-9a; hence is acceptable. At the same time, in 
Figure 9-9b ye note that //0 falls within the confidence interval. 

This is thje key point: if and only if falls within this confidence interval, 
will it be an acceptable hypothesis. This is clear from the diagram, since the 
interval we ujse is the same length in both cases: it is constructed by adding 

and subtracting precisely Jhe same error allowance (/_026 s/^/n = 12). 
Provided the sample mean X and ju0 differ by less than this, ju0 will fall in the 
confidence interval, and will also be an acceptable hypothesis. This holds for 
any ^0. (To cbnfirm, note that ju0 = 797.6 would be just barely contained in 
the confidence interval at the bottom; at the same time this hypothetical 
value would sjhift our acceptable region to the left in the top diagram to the 
point where our sample X = 810 would just barely remain in that region. 
But any smafler hypothetical value of p will fall outside our confidence 
region and be rejected.) 

It can be^proven, in general, that8 

H0 is accepted if and only if the relevant confidence 

interval contains H0 (9-36) 

8 For a general |lgebraic proof (rather than geometric interpretation) for (9-36), consider 

the basis of bothjthe confidence interval and hypothesis test. (We illustrate with the normal 
test of X, but oil jr remarks are equally valid for most tests.) With 95 

X - a 

probability. 

ajV n 
< 1.96 (9-37) 

In deciding whetper to accept the null hypothesis ju0, we first fix /*0, and then see whether 
the observed X satisfies this inequality. 

In constructing a confidence interval, we first observe X; then the values of ju which 
satisfy (9-37) for|n our confidence interval. //0 will be in the confidence interval if and only 
if the hypothesis j//0 is accepted, for in both cases we have 

X — [i0 

t/V n 
< 1.96 
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noting, of course, that the level of confidence (e.g., 95%) must match the 

level of type I error (level of significance, 5%). 

*(b) One-sided Hypothesis Tests 

Equation (9-36) remains true for a one-sided test of a hypothesis, 
provided, of course, that we use a one-sided confidence interval, as shown in 
Figure 9-10. Using the same sample result, we see that the observed X of 
810 falls in the acceptable region defined in the hypothesis test in Figure 
9-10a; hence ju0 is acceptable. At the same time, in Figure 9-106 we note that 
/u0 falls within the confidence interval. This illustrates once more that H0 is 
accepted if and only if the confidence interval contains H0. 

The reasons for one-sided hypothesis tests have been established at 
length in this chapter. These same reasons justify the use of one-sided con¬ 
fidence intervals too. Suppose, for example that the federal government is 
considering construction of a multipurpose dam in a river basin. Suppose 

Accept ijLq 

800 810.3 
(a) 

Hypothetical Observed 
M0 X 

Confidence interval 

799.7 810 

£.05 VY 

= 1.71 
30 

Y25 

(b) 

= 10.3 

FIG 9-10 Comparison of one-sided hypothesis test and confidence interval (using same 

sample result as Fig. 9-9). (a) Test of = 800 versus > 800. (b) Confidence 
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further that( the cost of this installation is S100 million. The problem is: 
would the benefits from the project exceed this cost? 

To get cn idea of irrigation benefits, suppose we run a careful calculation 

of the operation of a random sample of 25 farmers in the river basin and 

estimate that the net profit (per 100 acres) will increase on the average by 

$810 (with a standard deviation of $30). To simplify the exposition we have 

used the same numbers as in Figures 9-9 and 9-10, except that A7 and p now 
refer to the average increase in profit. 

The best point estimate of p (average profit increase) is 810. But if we 

use this in o|ir benefit calculations, we will take no account of its reliability; 

i.e., it may pe way too high, or way too low. Now consider the alternative 

estimate of |799.7, the critical point in our one-sided confidence interval in 

Figure 9-10. jWe can be 95% confident that this figure understates. We don’t 

know by ho| much, but this doesn’t matter; the point is that we are almost 

certain that j this underestimates benefits. Suppose we use similar under¬ 

estimates °f(Other benefits (flood control, recreation, etc.) and that these9 

sum to $110 pillion. We can now be very confident that benefits exceed costs, 

since at eacljt stage we have consciously underestimated benefits. From a 

policy point pf view this is a much stronger conclusion than that the “best 

estimate” of] benefits is $120 million, since the reliability of this estimate 

remains a mystery. (This strategy clearly has a major drawback. An under¬ 

statement of penefits may reduce the estimated benefits below cost—in which 
case we wouljd have to start all over again.) 

Thus, b)j cooking the case” against our conclusion, it is strengthened. 

Economists ojften apply this general philosophy in another way by selecting 

adverse assumptions in order to strengthen a policy conclusion; they may 

use one-sided confidence intervals in the future for the same reason. 

(c) The Conf dence Interval as a General Technique 

The read;r may ask: “Doesn’t (9-36) reduce hypothesis testing to a very 

simple adjundt of interval estimation?” In a sense this is true. Whenever a 

confidence interval has been constructed, it can immediately be used to test 

any null hypothesis: the hypothesis is accepted if and only if it is in the con¬ 

fidence interval. To emphasize this point, we can restate (9-36) in an equiva¬ 
lent form: 1 n 

9 I.e., the presen' 

of discount, andj 

also important a 

A confidence interval may be regarded as just 
the set of acceptable hypothesesT (9-38) 

value of these accumulated benefits. Issues such as the appropriate rate 
or the extent to which benefits must exceed costs to justify the project 

|>nsiderations; but we concentrate here on the statistical issues. 
are 
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The next question is whether, in view of this, our study of hypothesis 

testing in this chapter has been a waste of time. Why not simply construct the 

(single) appropriate confidence interval, and use this to test any null hypothe¬ 

sis that anyone may suggest ?There is a good deal of validity to this conclusion; 

nevertheless, our brief study of hypothesis testing has been necessary for the 

following reasons: 

1 Historically, hypothesis testing has been frequently used in physical 

and social science research. This technique must be understood to be evaluated; 

specifically the nature of type I and type II error and the warnings about 

accepting H0 must be understood. 
2. Certain hypotheses have no corresponding simple confidence interval, 

and are consequently tested on their own. 
3. The calculation of a prob-value provides additional information not 

available if the hypothesis is tested from a confidence interval. . 
4. Hypothesis testing plays an important role in statistical decision 

theory, developed in Chapter 15. 

PROBLEMS 

9-15 Three different sources claim that the average income in a certain 

profession is S7200, S6000, and S6400 respectively. You find from a 

sample of 16 persons in the profession that their mean salary is S6030 

and the standard deviation is S570. 
(a) At the 5 % significance level, test each of the three hypotheses, one 

at a time. ^ 
(b) Construct a 95% confidence interval for //. Then test each ot the 

3 hypotheses by simply noting whether it is included in the confidence 

interval. 
(9-16) A sample of 8 students made the following marks: 3, 9, 6, 6, 8 7, 8, 9. 

Assume the population of marks is normal. At a 5% level of signifi¬ 

cance, which of the following hypotheses about the mean mark (fi) 

would you reject? 

(a) = 8. 

(b) fi0 = 6.3. 

(c) yi0 = 4. 

*9-17 As in the second example of Section 9-2(e), suppose a standar 

process of manufacturing television tubes has a mean of 12,400 hours. 

The engineers have found a new process which they hope is better 

than the old standard. To establish this, a sample of 100 tubes from a 
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new process has a mean of 12,760 hours, and a standard deviation of 

4000jhours. 

(a) Construct a one-sided confidence interval for the new /u. 
(b) Calculate the prob-value associated with the null hypothesis of 

no improvement. 

(c) At the 5 % level of significance, do you reject the null hypothesis? 

9-5 CONCLUSIONS 

Hypothesis testing is a technique that must be used with great care, 

for several reasons. First, the construction of a confidence interval is usually 

preferred to an hypothesis test; the interval gives a clearer picture of the 

observed sample result, whereas a test merely indicates whether or not the 

sample is statistically significant. 

Second,! there are real problems—especially with a small sample—in 

accepting ar implausible H0; instead, the prob-value of the test should be 

calculated. r!his provides a clear and immediate picture of how well the 

statistical results match i/0, leaving the rejection decision to the reader. 

Finally,! rejection of H0 does not answer the question “Is there any 

practical eccjnomic (as opposed to statistically significant) difference between 

our sample Result and H0T' This is the broader question of decision theory, 

developed irl Chapter 15. 

Review Problems 

9-18 Four coins are tossed together 144 times. The average number of 

heads is 2.2. To answer a gambler who fears the coins are biased 

towards heads, calculate the prob-value associated with the null 

hypothesis of fair coins. 

9-19 A saijnple of 784 men and 820 women in 1962 showed that 30 percent 

of the men and 22 percent of the women stated they were against the 

JohnjBirch Society. The majority had no opinion. 

(a) Letting 7tm and 7rw be the population proportion of men and 

women respectively who are against the Society, construct a 95% 

confidence interval for the difference (7rM — 7rw). 

(b) What is the prob-value for the null hypothesis that (7tm — 7rw) = 

o? ; 
(c) At the 5% significance level, is the difference between men and 

women statistically significant ? (i.e., do you reject the null hypothesis) ? 

(d) Would you judge this difference to be of sociological significance? 

T 

1 
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(9-20) Of 400 randomly selected townspeople in a certain city, 184 favored 

a certain presidential candidate. Of 100 randomly selected students in 

the same city, 40 favored the candidate, 

(a) To judge whether the student population and town population 

have the same proportion favoring the candidate, calculate the prob- 

value. 

(b) Is the difference in the students and townspeople statistically 

significant, at the 5 % level ? 

9-21 To complete a certain task a sample of 100 workers in one plant took 

an average of 12 minutes, and a standard deviation of 2.5 minutes. 

A sample of 100 workers in a second plant took an average of 11 

minutes, and a standard deviation of 2.1 minutes. 

(a) Construct a 95 % confidence interval for the difference in the two 

population means. 

(b) Calculate the prob-value for the null hypothesis that the two 

population means are the same. 

(c) Is the difference in the two sample means statistically significant 

at the 5% level? 

9-22 By talking to a random sample of 50 students, suppose you find that 

27 percent support a certain candidate for student government. To 

what extent does this invalidate the claim that only 20% of all the 

students support the candidate? 



chapter IO 

Analysis of Variance 

10-1 INTRODUCTION 

In the list three chapters we have made inferences about one population 

mean; moreover, in Section 8-1 we extended this to the difference in two 

population means. Now we compare r means, using techniques commonly 

called analysis of variance.1 Since the development of this technique becomes 

complicatediand mathematical, we shall give a plausible, intuitive description 

of what is involved, rather than rigorous proofs. 

10-2 ONEiFACTOR ANALYSIS OF VARIANCE 

As an Example, suppose that three machines (A, B, and C) are being 

compared. Because these machines are operated by men, and for other 

inexplicable reasons, output per hour is subject to chance fluctuation. In the 

hope of “averaging out” and thus reducing the effect of chance fluctuation, a 

random sari|ple of 5 hours is obtained from each machine and set out in 

Table 10-1, along with the mean of each sample. 

Of the many questions which might be asked, the simplest are set out in 

Table 10-2. 

1 To keep the argument simple, we assume (among other things) that there is an equal size 
sample («) drawn from each of the r populations. While such balanced samples are typical 

in the experimental sciences (such as biology and psychology), they are often impossible in 

the nonexpertlental sciences (e.g., economics and sociology). While analysis of variance 

can be extended to take account of these circumstances, regression analysis (dealt with in 

Chapters 11 tc 14) is an equally good—and often preferred—technique. But regardless of 

its limitations,ianalysis of variance is an enlightening way of introducing regression. 

195 
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Table 10-1 Sample Output of Three Machines 

Machine, or 
Sample Number Sample from Machine z xt 

i = 1 48.4 49.7 48.7 48.5 47.7 48.6 

= 2 56.1 56.3 56.9 57.5 55.1 56.4 

= 3 52.1 51.1 51.6 52.1 51.1 51.6 

Average X = X — 52.2 

Table 10-2 

Question How It Is Answered 

(a) Are the machines different ? Analysis of Variance Table (test of 
hypothesis) 

(b) How much are the machines Multiple comparisons (simultaneous 

different? confidence intervals) 

(a) Hypothesis Test 

The first question is “Are the machines really different?” That is, are 

the sample means in Table 10-1 different because of differences in the 

underlying population means (where /q represents the lifetime performance 

of machine i). Or may these differences in X{ be reasonably attributed to 

chance fluctuations alone? To illustrate, suppose we collect three samples 

from one machine, as shown in Table 10-3. As expected, sample statistical 

fluctuations cause small differences in sample means even though the ^w’s are 

Table 10-3 Three Samples of the Output of One Machine 

Sample Number Sample Values Xt 

/ = 1 51.7 53.0 52.0 51.8 51.0 51.9 

= 2 52.1 52.3 52.9 53.6 51.1 52.4 

= 3 52.8 51.8 52.3 52.8 51.8 52.3 



ONE-FACTOR ANALYSIS OF VARIANCE 197 

identical. So the question may be rephrased, “Are the differences in JFof Table 
10-1 of the same order as those of Table 10-3 (and thus attributable to chance 
fluctuation), hr are they large enough to indicate a difference in the under- 
ymg n s? The latter explanation seems more plausible; but how do we 

H rrtl s-v ** _ 1 i. .1 rt 

in the population means 

develop a formal test ? 

As befor|, the hypothesis of “no difference’ 
becomes the pull hypothesis, 

= P* = fa (10-1) 

The alternate hypothesis is that some (but not necessarily all) of the w’s are 
different, ! 

Hi'fa fij for some i and j (10-2) 

To develop a plausible test of this hypothesis we first require a numerical 
measure of thf degree to which the sample means differ. We therefore take 
the three sample means in the last column of Table 10-1 and calculate their 
variance. Usinjg formula (2-6) (and being very careful to note that we are 
calculating the variance of the sample means and not the variance of all 
values in the hjible), we have 

1 - Tf s% — 

(ri" 1) 

= i 2 K48-6 - 52.2)2 + (56.4 - 52.2)2 + (51.6 - 52.2)2] 

= 115 

where r = numjber of rows (i.e., the number of sample means), and 

(10-3) 

! x = average * = = 52.2 (10-4) 
'-1 

Yet s\ does not tell the whole story; for example, consider the data of 
Table 10-4, which has the same s% as Table 10-1, yet more erratic machines 
that produce large chance fluctuations within each row. The implications of 

Table 10-4 Samples of the Production of Three 
Different Machines 

Machine 
_i 

Sample Output from Machine i 

H | 54.6 45.7 56.7 37.7 48.3 48.6 
= 2i i 53.4 57.5 54.3 52.3 64.5 56.4 
= 3 L 56.7 44.7 50.6 56.5 49.5 51.6 

X = 52.2 
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this are shown in Figure 10-1. In Figure 10-ln, the machines are so erratic 
that all sample outputs could be drawn from the same population i.e the 
differences in sample means may be explained by chance. On t e o er an , 

the (same) differences in sample means can hardly be explained by chance in 
Figure 10-16, because the machines in this case are not erratic 

We now have our standard of comparison. In Figure 10-1 (b) we cone u e 
the ^’s are different—and reject #0—because the variance in sample means 

(s%) is large relative to the chance fluctuation. 
How can we measure this chance fluctuation? Intuitively, we seem to be 

interpreting it as the spread (or variance) of observed values witbn eac 
sample. Thus we compute the variance within the first sample in Table 10-1, 

sl = 
(n — 1) i-1 

= .52 

2 (xu - xj 
(48.4 - 48.6)2 + 

(10-5) 

where X,, is the /th observed value in the first sample. 

FIG. 10-1 (a) Graph of Table 10-4. (b) Graph of Table 10-1. The populations appear to 
be different. 
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Similarly)we compute the variance or chance fluctuation within the 
second (j|) an d third samples (s2). The simple average of these 

n2 _ 1 v . -52 + .87 + .25 
SV jL si ~~ 0 

r i=i 3 
.547 (10-6) 

becomes the rjieasure of chance fluctuation—and is referred to as “pooled 
variance.” Fr<j>m each of the r samples, we have a sample variance with 
(n — 1) degrees of freedom, so that the pooled variance s2p has r(n — 1) 
degrees of freedom. The key question can now be stated. Is s% large relative 
to *J? 

In practicfe, we examine the ratio 

(10-7) 

called the “variance ratio.” n is introduced into the numerator so that, 
whenever H0 i]s true, this ratio will have, on the average, a value near 1; 
however, becajise of statistical fluctuation, it will sometimes be above one, 
and sometimes below. 

If H0 is noc true (and the /Fs are not the same) then ns2x will be relatively 
large compareji to s2p, and the F value in (10-7) will be greater than 1. 
Formally, H0 is rejected if the computed value of F is significantly greater 
than 1. | 

Before developing this test further, we interpret (10-7) from another 
point of view. Suppose that our samples are drawn from three normal 
populations wijh the same variance; (in fact, these assumptions are necessary 
for the formal tjest below). If in addition, H0 is true, and the three population 
means are the,same, then the division of our data into three samples is 
meaningless. All observations could be viewed as one large sample drawn 
from a single population. Now consider three alternative ways of estimating 
o’2, the variance of that population. 

1. The most obvious way is to estimate it by computing the variance of 
the one large sample. 

2. The second way is to estimate it by averaging the variances within 
each of the 3 safnples as in (10-5) and (10-6). This is the s2 in the denominator 
of (10-7). 

3. Infer o’2 from s\, the observed variance of sample means. Recall 
from Chapter 6 how the variance of sample means is related to the variance 
of the population: 

or 

2 tf2 
ax — (10-8) 

n (6-12) repeated 

o’2 = na2x (10-9) 
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This suggests estimating cr2 as ns%, which is recognized as the numerator of 

(10-7). We note that we are estimating population variance by “blowing up” 

the observed variance of the sample means. 

To recapitulate: if H0 is true, we can estimate cr2 by three valid methods. 

Considering only the last two, we note that one appears in the numerator of 

(10-7), the other in the denominator; they should be about equal, and their 

ratio close to 1. [This establishes why n was introduced into the numerator of 

(10-7).] But if H0 is not true, the denominator will still reflect only chance 

fluctuation, but the numerator will be a blow-up of the differences between 

means; and this ratio will consequently be large. 
The formal test of H0, like any other test, requires knowledge of the 

distribution of the observed statistic—in this case F—if H0 is true. This is 

shown in Figure 10-2. The critical F05 value, cutting off 5% of the upper tail 

of the distribution is also shown. Thus, if H0 is true there is only a 5% proba¬ 

bility that we would observe an F value exceeding 3.89, and consequently 

reject H0. It is conceivable, of course, that H0 is true and we were very 

unlucky; but we choose the more plausible explanation that H0 is false. 

To illustrate this procedure, let us reconsider the three sets of sample 

results shown in Tables 10-1, 10-3, and 10-4, and in each case ask whether the 

machines exhibit differences that are statistically significant. In other words, 

in each case we test H0\jux = //2 == against the alternative that they are 

not equal. For the data in Table 10-3, an evaluation of (10-7) yields: 

F = U& = = .64 (10-10) 
si -547 

Since this is below the critical F05 value of 3.89, we conclude that the 

observed differences in means can reasonably be explained by chance 

fluctuations. (This is no surprise; recall that we generated these three samples 

in Table 10-3 from the same machine.) 

FIG. 10-2 The distribution of F when ff0 is true (with 2, 12 degrees of freedom). 
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For the data in Table 10-4, the F ratio is 

77 4 
=2.17 00-ID 

In this case, ;he difference between sample means (and consequently the 

numerator) is much greater. But so is the chance fluctuation (reflected in a 

large denominator). Again, the F value is less than the critical value 3.89. 

However,] for the data in Table 10-1, the F ratio is 

77 4 

F== 4547 s 141 °°"l2) 

In this case, the difference in sample means is very large relative to the chance 

fluctuation, making the F ratio far exceed the critical value 3.89, so that H0 
is rejected. 

These three formal tests confirm our earlier intuitive conclusions. Table 

10-1 provides the only case in which we conclude that the underlying popula¬ 
tions have different means. 

(b) The F Distribution 

This distribution is so important for later applications, it is worth 

considering injsome detail. The F distribution shown in Figure 10-2 is only 

one of many; there is a different distribution depending on degrees of freedom 

(r — 1) in the ijumerator, and degrees of freedom [r(n — 1)] in the denomina¬ 

tor. Intuitively, we can see why this is so. The more degrees of freedom in 

calculating botjh numerator and denominator, the closer these two estimates 

of variance will likely be to their target cr2; thus the more closely their ratio 

will concentrate around 1. This is illustrated in Figure 10-3. 

We could present a whole set of F tables, each corresponding to a 

different combination of degrees of freedom. For purposes of practical testing, 

however, only the critical 5 % or 1 % points are required, and are set out in 

Table VII in tjie Appendix. From this table, we confirm the critical point 
of 3.89 used in Figure 10-2. 

(c) The ANOJA Table 

This sectiop is devoted to a summary shorthand of how these calculations 

are usually done. The model is summarized in Table 10-5. We confirm in 

column 2 that all samples are assumed drawn from normal populations with 

the same variaice <r2—but, of course, means that may, or may not, differ, 

(Indeed it is ths possible differences in means that are being tested). 
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FIG. 10-3 The F distribution, with various degrees of freedom in numerator and de¬ 

nominator. Note how the critical point (for rejecting H0) moves toward 1 as degrees of 

freedom increase. 

The resulting calculations are conveniently laid out in Table 10-6, called 

an ANOVA table—an obvious shorthand for ANalysis Of VAriance. This 

is mostly a bookkeeping arrangement, with the first row showing calculations 

of the numerator of the F ratio, and the second row the denominator; in 

(b) part of this table we evaluate the specific example of the three machines in 

Table 10-1. 
In addition, this table provides two handy intermediate checks on our 

calculations. One is on degrees of freedom in column 3. The other is on sums 

Table 10-5 Summary of Assumptions 

\ 

r 

(1) 
, ** Population 

(2) 
Assumed Distribution 

(3) 
Observed Sample Values 

N(f* i, u2) Xu (j = i • • •*) 

^ 2 N(f.l2, O'2) X2j (; = 1 • ■n) 

^ 3 

N(/.iz,' o'2) x3j 0 = i- -n) 

. w'A 
In generally, 

Nv '" /;L 
-TN-/— 

NO«2) Xu 0 = 1- ■■n) 

>■ w 
% * 

- /<, for any / 
these means are not all equal 
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of squares in column 2; the sum of squares between rows plus the sum of 

squares within rows adds up to the total sum of squares.2 When any variation 

is divided by the appropriate degrees of freedom, the result is variance. 

The variance between rows is “explained” by the fact that the rows may 

come from different parent populations (e.g., machines perform differently). 

The variance within rows is “unexplained” because it is the random or chance 

variation that cannot be systematically explained (by differences in machines). 

Thus F is sometimes referred to as the variance ratio. 

explained variance ^ 

unexplained variance 

2 Proved as follows. The difference, or deviation of any observed value (Xij) from the mean 

of all observed values (X), can be broken down into two parts. 

Total deviation = explained deviation + unexplained deviation 
_ ( _ = _ 

(V.;-T)=(V. -X)+(XiJ -X,) ! (10-13) 

Thus, using Table 10-1 as an example, the third observation in the second sample 

(56.9) is 4.7 greater than X = 52.2. This total deviation can be broken down into 

(56.9 - 52.2) = (56.4 - 52.2) + (56.9 - 56.4) 

4.7 = 4.2 + .5 

Thus most of this total deviation is explained by the machine (4.2), while very little (.5) is 

unexplained, due to random fluctuations. Clearly (10-13) must always be true, since the 

two occurrences of Xt cancel. 
Square both sides of (10-13) and sum over all / and /: 

22 (V - *)2 = 22 X -*)2 + 2 22 (V - X)(*n - V) + 22 (*„■ - v>2 
' 1 * ' ' ? (10-14) 

On the right side, the middle (cross product) term is 

2 ^ — A") J (xu ~ ’ which must be zero since 
7=1 L 1 = 1 

the algebraic sum of deviations about the mean is always zero. 

Furthermore, the first term on the right side of (10-14) is: 

2 F 2 X - =”2X- 
j=i Li^l_J 7=1 

independent of / 

Substituting these two conclusions back into (10-14), we have: 

22 <*., - IV =«2 (*< ~ v2 + 22 o«, - v>2 
i j 7 i i 

Total variation = explained variation + unexplained variation. 

(10-15) 

(10-16) 
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This suggests a possible means of strengthening this F test. Suppose that these 

three machines are sensitive to differences in temperature. Why not introduce 

temperature explicitly into the analysis ? If some of the previously unexplained 

variation car| now be explained by temperature, the denominator of (10-17) 

will be reduced. With the larger F value that results we will have a more 

powerful testjof the machines (i.e., we will be in a stronger position to reject 

o). Thus th<| introduction of other explanations of variance will assist us in 

detecting whether one specific influence (machine) is important. This brings 
us to two-way ANOVA in Section 10-3. 

*(d) Confidence Intervals 

diffifu,ties with hypothesis tests cited in Chapter 9 hold true in the 
ANOVA casej as well. It may not be too enlightening to ask whether popula¬ 

tion means djffer; by increasing sample size enough,.such a difference can 

nearly always be established—even though it is too small to be of any 

practical or economic importance. Again, it may be more important to find 
out by how much do population means differ?” 

If we warned to compare only two machines in Table 10-1, this would 

be an easy duestion to_ answer: just construct a confidence interval for 

\^i ~ ^2) usir|g (^i — X2) and the t distribution: 

1 . 1 
(f1! ^2) — (Xx — X2) ± t 025sp - -f (10-18) 

(8-17) repeated 

In (8-17),, s% was the variance pooled from the two samples. However, 

it is more reasonable to use all the information available, and pool the 

variance from! all three samples as in (10-6), obtaining = .547 with 

4 -f 4 + 4 = 12 degrees of freedom. Thus the 95% confidence interval is 

fi ~ fa) = (48.6 - 56.4) ± 2.179 V. 547VFT1 

Similar confidence intervals for ^ and for may be 

constructed f<j>r a total of three intervals [or for r populations]; in our 
example, thes^ intervals are: W 

(Fi ~ fa) = -7.8 ± 1.0 (a) 

(fa — fa) = —3.0 ± 1.0 (b) (10-19) 

0*2 - = +4.8 ± 1.0 (C) 

The results of jhis piece-by-piece approach are summarized in Table 10-7. 
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Table 10-7 Differences in Population Means (/o - /q) 
Estimated from Sample Means (X{ — Xf). 95% Level 

of Confidence in Each Interval Estimate 

*(e) Simultaneous Confidence Intervals: Multiple Comparisons 

There is just one difficulty with the above approach. Although we can be 

95% confident of each individual statement [e.g., 1049(a)], we can be far 

less confident that the whole system of statements (10-19) is true; there are 

three ways in which this could go wrong. 
The level of confidence in the system (10-19) would be reduced to 

(.95)3 = §57^ if the three individual statements were independent. But in 

fact they are not; for example, they all involve the common term sP. Thus if 

our observed sp is high, all three interval estimates in (10-19) will be wide as a 

consequence. The problem is how to allow for this dependence in order to 

obtain the correct simultaneous confidence coefficient for the whole system. 

In fact, this problem is usually stated the other way around: how much wider 

must the individual intervals in (10-19) be in order to yield a 95% level of 

confidence that all are simultaneously true? 
Of the many solutions, we quote without proof the simplest, due to 

Scheffe;3 with 95% confidence, all the following statements4 are true. 

(mi - ft)=(Si - *.) ± s» 2 (a) 

(Ml - Mb) = (Vi - x3) ± y/F\Z 2 (b) (10'20) 

__. _ l) 
(Mz - Ms) = (X* ~ Xs) ± VF.os s„ /-2 (c) 

3 H. Scheffe, The Analysis of Variance, p. 66-73, New York: John Wiley, 1959. 
4 And some other statements as well—as we shall see in (10-26). In fact if we were interested 

only in the three comparisons of means in (10-20), our interval estimates could be made 

slightly narrower. 
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where j 

F05 = th| critical value of F (with r - 1 and r(n - 1) d.f.) leaving 5% 

inj the upper tail. 

si — the pooled sample variance, as calculated in Table 10-6 or equa¬ 
tion (10-6) 

r — number of rows (means) to be compared. 

n — each sample size. 

We notej the similarity of statements (10-20) and (10-19). For the 

machines in Table 10-1, the actual simultaneous confidence intervals are 

hi - P* = (48.6 - 56.4) ± VI89 (.74)V|(2) 

= -7.8 ± 1.3 (a) 

H - Ms = -3.0 ± 1.3 (b) (10-21) 

A a “ — 4.8 ± 1.3 (c) 

These ca.culations are summarized in Table 10-8. As expected, the 

width of the Confidence interval is greater than in Table 10-7 (compare 1.3 

versus 1.0). Injdeed, it is this increased width (vagueness) that makes us 95% 

confident that all statements are true. 

As a bomjis, this theory can be used to make any number of comparisons 

of means, called “contrasts.” A “contrast of means” is defined as a linear 

combination, or weighted sum, with weights that add to zero: 

2 cm 
i=i 

r 

IQ = 0 (10-22) 
i=1 

provided 

Table 10-8 Differences in Population Means (^? — /q) 

Estimated from Sample Means (Xt - X^. 95 % Level 
of Confidence in All Interval Estimates. (Compare with 

Table 10-7.) 
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For example, the simplest contrast is the difference 

fa — fa ~ (+l)/^i + (— l)fa + (0)^3 (10-23) 

It was this contrast that was estimated in (10-21a). Another interesting 

contrast is the difference between fa and the average of fa and fa\ 

fa — Fa) — (-f-1)/^ |)fi2 + ( \)fa (10-24) 

There is no limit to the number of contrasts. It is no surprise that each 

contrast of the population means will be estimated by the same contrast of 

the sample means, plus or minus an error allowance. (10-2la) is one example. 

As another example, the contrast of means given in (10-24) is estimated as 

!H - K - iMz = (X -IXz- iXa) ± s/FZ sv \ (10-25) 

The general statement, from which (10-20) and (10-25) were derived, is 

With 95% confidence, all 
contrasts are bracketed by the bounds: 

\r ~ 1X2 
n 

(10-26) 

provided only that 2 Q = 0 t0 satisfy the definition of “contrast.” As before 

si is pooled variance, and Fm is the critical value of F. 

When we examine (10-26) more carefully, we discover that this defines a 

set of 95 % simultaneous confidence intervals which includes not only the 

three statements in (10-20) but also statements like (10-25), and indeed an 

infinite number of contrasts that can be constructed. The student may 

justifiably wonder “How can we be 95% confident of an infinite number of 

statements?” The answer is: because these statements are dependent. Thus, 

for example, once we have made the first two statements in (10-21), our 

intuition tells us that the third is likely to follow. Moreover, once these three 

statements are made, intervals like (10-25) tend to follow, and can be added 

with little damage to our level of confidence. As the number of statements or 

contrasts grows and grows, each new statement tends to become simply a 

restatement of contrasts already specified, and essentially no damage is done 

to our level of confidence. Thus, it can be mathematically confirmed that the 

entire (infinite) set of contrasts in (10-26) are all simultaneously estimated at 

a 95 % level of confidence. 
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PROBLEMS 

10-1 A sample of 4 workers was drawn at random from two different 

industries, with their average annual income (in $00) recorded, as 

follows: 

Industry A 66 62 65 63 

Industry B 58 56 53 61 
vvH 

(a) Usiijig first a t-test (as in Chapter 8) and then an ANOVA P-test, 

calculate whether or not there is a statistically significant difference 

in income at the 5 % level. 

(b) Are the t and F tests exactly equivalent? Can you see why the t2 

distribudon is often referred to as the F distribution with 1 degree of 

freedom in the numerator? 

*(c) Usihg first the t distribution (8-17), and then the F distribution 

(10-20), construct a 95 % confidence interval for the difference in mean 

income^ in the two industries. 

=> 10-2 Twelve plots of land are randomly divided into 3 groups. The first 

is held ^s a control group while 2 fertilizers A and B are applied to the 

other 2'groups. Yield is observed to be: 

Control, C 60 64 65 55 

A 75 70 66 69 

B 74 78 72 68 

(a) Atj a 5% significance level, does fertilizer affect yield? 

*(b) Construct a table of differences in means, similar to Table 10-8, 

starring the differences that are statistically significant. 

*(c) Cqn you be 95 % confident that the two fertilizers have a different 

effect ? 

*(d) Wpat is the difference between a contrast of means, and a 

weighted average of means? 

=> 10-3 You have observed the income (Y) of a sample of men and women 

in a certain occupation to be: 

Women Men 

48 60 

56 70 

50 62 

54 48 

(a) At a 5% level of significance, can you reject the null hypothesis 

that mean income is the same for men and women? 

i 
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*(b) Construct a 95 % confidence interval for the difference in the two 

means. 

Since this problem is important later in Chapter 13 we state its solution, 

(a) Y1 = 52 F2 = 60 F = 56 

ANOVA Table 

Source Variation d.f. variance 

Between 

sexes 128 1 128 128 
= 2.67 = F 

48 
Residual 288 6 48 

Total 416 7 

F is less than the critical value of 5.99, thus not statistically signi¬ 

ficant. 

*(b) Evaluate the first equation in (10-20); or, more simply (10-18), 

noting that f. 026 = Vi7.05 

C«i - (*t) = (52 - 60) ± 2.45V48V2/4 

= —8 ± 12 

This also confirms the answer in (a); since this interval includes zero, 

this is not statistically significant. 

*10-4 Referring to the machine example of Table 10-1 and ANOVA Table 

10-6(b), use equation (10-26) to incidentally solve the following 

problem: 

Suppose one factory is to be outfitted entirely with machines of 

the first type. Suppose a second factory is to be outfitted with 

machines of the second and third types, in the proportions 30% and 

70%. Find a 95% confidence interval for the difference in mean 

production for the 2 factories. 

10-5 From each of three large classes, 50 students were sampled, with the 

following results: 

Class Average Grade X Standard Deviation, ^ 

A 68 11 

B 73 12 

C 70 8 

Test whether the classes are equally good at a 5 % significance level. 
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10-3 TWO-FACTOR ANALYSIS OF VARIANCE 

(a) The ANOVA Table 

We have Already seen that the F test on the differences in machines given 

(10-17) woujld be strengthened if the unexplained variance could be reduced. 

We suggested^, for example, that if some unexplained variance is due to 

temperature, jthis might be taken into account; or if some unexplained 

variance is due to the human factor, we shall see how this might be adjusted 

for. Suppose that the sample outputs given in Table 10-4 were produced by 

five different ijiachinists—with each machinist producing one of the sample 

values on each machine. This data, reorganized according to a two-way 

classification (by machine and operator), is shown in Table 10-9. It is necessary 

to complicate pur notation somewhat. We are now interested in the average 

of each operator (X each column average) as well as the average of each 
machine (X{_,leach row average5). 

Now the jpicture is clarified; some operators are efficient (the first and 

fourth), some are not. The machines are not that erratic after all; there is just 

a wide differer.ee in the efficiency of the operators. If we can explicitly adjust 

for this, it willjreduce our unexplained (or chance) variation in the denomina¬ 

tor of (10-17);isince the numerator will remain unchanged, the F ratio will be 

larger as a consequence, perhaps allowing us to reject H0. To sum up, it 

appears that another influence (difference in operators) was responsible for a 

Table 10-9 Sa 
in Tab! 

mples of Production (X^) of Three Different Machines (as given 
le 10-4, but now arranged according to machine operator) 

5 The dot indica 

suppresses the su 

',Op 

Machine j 

erator 
—>> 

j -1 2 3 4 5 

& 

Machine 
Average 

T. 

56.7 45.7 48.3 54.6 37.7 48.6 
2; | 64.5 53.4 54.3 57.5 52.3 56.4 
3; 

■-—-! 
56.7 50.6 49.5 56.5 44.7 51.6 

Operator avd rage 

—id 
59.3 49.9 50.7 56.2 44.9 X = 52.2 

ys the subscript over which summation occurs. For example, the dot 

jbscript j in Xim = - J Xu. 
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lot of extraneo us noise in our simple one-way analysis in the previous section; 

by removing this noise, we hope to get a much more powerful test of our 
machines. 

The analysis is an extension of the one-factor ANOVA, and is sum¬ 

marized in Table 10-10. Of course, the small letter c represents the number 

of columns in Table 10-9, and replaces n in Table 10-4. As before, the com¬ 

ponent sources of variation shown in column 2 sum to the total variation 
at the bottom of this column, i.e., 

2 2ixu 4 = c% (Xi, - Xf + rj?(Xj - Xf 
i—1 j'—l I i—\ j | 

Total variation = machine (row) + operator (column) 
variation variation 

+ 2 2 (Xa - Xi. - X., + Xf (10-27) 
i—\J=X 

1 + random variation 

We note that operator variation is defined like machine variation; the only 

difference is thjat this is defined as the variation exhibited by column means. 

(10-27) is established by a complex set of manipulations, parallel to those 

used to establish (10-16) in the simpler case. (The last term—the random 

variation—in 00-27) may seem a bit puzzling; it will be interpreted below.) 

(b) Testing Hypotheses 

With the total variation broken down into components in (10-27), we 

can now test whether there is a significant difference in machines, or whether 

there is a significant difference in operators; in either test the extraneous 
influence of the other factor will be taken into account. 

On the one hand, we test for differences in machines by constructing 
the ratio 

— _ variance explained by machines 

MSSm unexplained variance 
(10-28) 

which, if Hq is |rue, has an F distribution. Thus, if the observed F calculated 

in (10-28) exceeds the critical F value we may reject the null hypothesis, 

concluding that there is a difference in population row means. 

Our calculations are shown in full in Table 10-11, whence (10-28) is 
evaluated as: 

77 4 
^ = — = 13.1 (10-29) 

Since this exceeds the critical6 F value of 4.46, we reject the null hypothesis 

6 2 and 8 d.f., and 5% significance. 

UNIVERSITY LIBRARIES 
CARNEGIE-MELLON UNIVERSITY, 

PITTSBURGH, PENNSYLVANIA 15213 
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Table 10-11 Two-Way ANOVA, for Observations Given in Table 10-9 

(1) 

Source 

(2) 

Variation; 

(SS) 

(3) 

d.f. 

(4) 

Variance; 

(MSS) 

(5) 

F 

(6) 

Critical 

F 

Between machines 154.8 2 77.4 13.1 4.46 

Between operators 381.6 4 95.4 16.2 3.84 

Residual variation 47.3 8 5.9 

Total 583.7 V 14 V 

that the machines are similar. We now compare this with our test in (10-11), 
where we could not reject the null hypothesis. The numerator remains 
unchanged, but the chance variation in the denominator is much smaller, 
since the effect of differing operators has been netted out. This has given us 
greater statistical leverage,7 allowing rejection of the null hypothesis. 

Similarly, we might test the null hypothesis that the operators perform 
equally well. Once again F is the ratio of an explained to an unexplained 
variance; but this time, of course, the numerator is the variance estimated 

from column differences. Thus 

variance explained by operators 
F =------ 

unexplained variance 
0 = 9JA = 16.2 (10-30) 

MSS,, 5.9 

In this case, the “machine” noise has been isolated; as a consequence we get 
a strong test of how operators compare. Since our observed F value of 16.2 
exceeds the critical F value8 of 3.S4, we reject the null hypothesis, concluding 

that machinists do differ. 
There is one issue that we passed over quickly, that still requires clarifica¬ 

tion. In our one-factor test we calculated unexplained variation by looking 
at the spread of n observed values within a category, or cell, e.g., within a 
whole row in Table 10-4. But in the two-way test (Table 10-9) we have split 
our observations columnwise, as well as rowwise; this has left us with on y 

7 Strictly speaking, we have a stronger test because we have gained more by reducing 
unexplained variance than we have lost because our degrees of freedom in the denominator 

havebeen reduced by 4. (The student will observe that if we are short of degrees of freedom 

i.e., if we are near the top of F Table VII, loss of degrees of freedom may be serious.) 

8 Different than in the previous test since degrees of freedom are now 4 and 8. 
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I|>n in each cell. Thus, for example, there is only a single observa¬ 
tion (57.5) of how much output is produced by operator 4 on machine 2. 
Variation caij no longer be computed within that cell. What should we do? 

We ask. i“If there were no random error, how would we predict the —> — - ".unuum uiui, iiuw wuuiu we preaict tne 
output of operator 4 on machine 2?” We note, informally, that this is a A i ..aiaj.cu many, UlcU LlLls IS a 

better-than-ajerage machine (X2, = 56.4) and a relatively efficient operator 
(XA = 56.2). On both counts we would predict output to be above average. 
This strategy tan easily be formalized to predict jf2t4. We can do this for each 
cell, with the. random element estimated as the difference in our observed 
value (Xif) and the corresponding predicted value This yields a whole 
set of randonj elements, whose sum of squares is precisely the unexplained 
variation9 SS • (the last term in equation (10-27), also appearing in column 2 
of Table 10-1(|); divided by d.f., this becomes the unexplained variance used 
in the denominator of both tests in this section. 

One finaljwarning: in computing predicted output $ij9 we assume that 
there is no interaction between the two factors as would occur, for example, 
if certain operjators like some machines, and dislike others; such interaction 
would requirej a more complex model, and more sample observations. The 

(10-31) 

(10-32) 

9 Predicted value AU is defined as 

^ij ~ X + adjustment reflecting machine performance + adjustment 
reflecting operator performance 

= Jr + 0;.. - x) + (X . - x) 

Specifically, in oyr example 

^>4 = 52.2 + (56.4 - 52.2) + (56.2 - 52.2) 

= 52.2 -j- 4.2 + 4.0 = 60.4 

Thus, our prediction of the performance of operator 4 on machine 2 is calculated by 

adjusting average performance (52.2) by the degree to which this machine is above average 
(4.2) and the degree to which this operator is above average (4.0). 

Cancelling x values in (10-32): 

%u = %i. + %.i - % (10-33) 

ljement, being the difference between the observed and expected, becomes: and the random el 

plained—the resul 

Unexplained 

%ij — Xjj — Xit — X'j + X (10-34) 

We emphasize th^t this random element is output left unexplained after adjustment for 
both machine i arid operator j. 

In our example 

X, 24 57.5 - 60.4 = -2.9 (10-35) 

Thus, this observed output is 2.9 units below what we expected, and must be left unex- 
nlottiorl. fha ♦♦anTilf -_X3- , _ ___ 

jvaiidiiun 

elements as defined in (10-34). 

^ of random influences, 

variation (SSJ is recognized to be the sum of squares of all random 
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two-way analysis of variance developed in this section is based on the assump¬ 

tion that interaction does not exist. 

*(c) Multiple Comparisons 

Turning from hypothesis tests to confidence intervals, we may write a 

statement for two-factor ANOVA which is quite similar to (10-26): 

With 95 % confidence, all contrasts in row means 

fall within the bounds: (10 36) 

2 Qft = 2 CA ± v 

where 

f Q5 = the critical value of F, with (r — 1) and {r — l)(c — 1) d.f. 

Sp = VmSS~, as calculated in Table 10-10, column 4 

r = number of rows 

c = number of columns 

Note that (10-36) differs from (10-26) because unexplained variance s* 

is now smaller, making the confidence interval more precise. 
As an example, consider the machines of Table 10-9, analyzed in ANOVA 

Table 10-11. With 95% confidence, all the following statements are true: 

— (^2 = (48.6 56.4) zb V4.46 V5.9 Vt(2) 

IH-P*** “7-8 ± 4’5* 
p, - ^3 = -3.0 =b 4.5. (10-37) 

2 — ^3 = 4.8 ± 4.5* 

and all other possible contrasts 

[Intervals that do not overlap zero are starred to indicate their statistical 

significance: thus H0 (no difference in means) would be rejected in these 

cases—another illustration of how confidence intervals may be used to test 

hypotheses.] . 
Of course, we could contrast the column means equally well, by simply 

interchanging r and c in equation (10-36). As an example, how do the 
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operators of Table 10-9 compare, when analyzed in ANOVA Table 10-11? 

With 95% confidence, all the following statements are true: 

'■h - ft = (59.3 - 49.9) ± V3.84 JTs) 71(2) 

Mi fjj% = 9.4 zb 7.8* 

■T $ — 8.6 i 7.8* 

Mi = 3.1 zb 7.8 

Mi /^5 = 14.4 zb 7.8* 

jM2 /^3 — —0.8 zb 7.8 

(10-38) 
and all other possible contrasts, of the form 

| I Oft = I cjt., ± 5.5 

For example, * 

a.d^ + iL4 _ Hl±Jh = (55.4 _ 47.4) ± 5.575/6 

= 8.0 ± 5.0* j 

This last contj-ast might be of interest if workers 1, 3, and 4 are men, and 

workers 2 and: 5 are women; thus the average difference in men and women 
has been estimated, as a bonus. 

The first jpart of equation (10-38)—all differences in means—can be 
presented mope concisely, in Table 10-12. 

T>ble 10-12 Differences in Operator Means fij - /nj 
[Estimated from the sample means (X j - X j). To 
construct 95% simultaneous confidence intervals, take 
the listed value ±7.8. Statistically significant differences 

are starred. 1 
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PROBLEMS 

10-6 To refine the experimental design of Problem 10-2, suppose the twelve 

plots of land are on 4 farms (3 plots on each). Moreover, you suspect 

that there may be a difference in fertility between farms. You now 

retabulate the data in Problem 10-2, according to fertilizer and farm 

as follows. 

Farm 

Fertilizer"--. 1 2 3 4 

Control C 60 64 65 55 

A 69 75 70 66 

B 72 74 78 68 

(a) Reanalyze whether or not the fertilizers differ, at the 5% sig¬ 

nificance level. 

(b) Is there, after all, a difference in the fertility of the four farms? 

(Use a 5 % significance level.) 

*(c) Construct a table of differences in fertilizers similar to Table 

10-12, starring differences that the statistically significant; also con¬ 

struct a table of differences in farms. 

(10-7) Three men work on an identical task of packing boxes. The number of 

boxes packed by each in 3 given hours is shown in the table below. 

\Man 

Hour^'. A B C 

11-12 A.M. 21 18 21 

1-2 P.M. 22 22 25 

4-5 p.m. 17 16 18 

(a) Test whether each factor is statistically significant at the 5 % level. 

*(b) For the factors which are statistically significant, construct a 

table of simultaneous 95% confidence intervals as in Table 10-12. 

10-8 Five children were tested for pulse rate before and after a certain 

television program, with the following results: 

Before After 

A 96 104 

B 102 112 

C 108 112 

D 89 93 

E 85 89 
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(a) Test whether pulse rate changes, at the 5% significance level. 

(b) Construct a 95 % confidence interval for the change in pulse rate 
for the population of all children. 

10-9 Rewcjrk Problem 10-8 using the following technique (matched £-test) 
First, tabulate the change in pulse rate: 

>re (X) After (F) Difference D ~ (F — X) 

96 104 + 8 \ 
102 112 + 10 
108 112 +4 1 

A sample to estimate 

89 93 +4 I 

li I 

85 89 +4 J 

The sample of £>’s fluctuates around the true difference A. Now apply 
equation (8-15). 



chapter 11 

Introduction to Regression 

Our first example of statistical inference (in Chapter 7) was estimating 

the mean of a single population. This was followed (Chapter 8) by a compari¬ 

son of two population means. Finally (Chapter 10) r population means^were 

compared, using analysis of variance. We now consider the question Can 

the analysis be improved upon if the r populations do not fall in unordered 

categories, but are ranked numerically?” 
For example, it is easy to see how the analysis of variance could be used 

to examine whether wheat yield depended on 7 different kinds of fertilizer. 

Now we wish to consider whether yield depends on 7 different amounts of 

fertilizer; in this case, fertilizer application is defined in a numerical scale. 

If yield (7) that follows from various fertilizer applications (X) is plotted, a 

scatter similar to Figure 1-11 might be observed. From this scatter it is clear 

Y 

1 i i i J_I-1-1—x 
100 200 300 400 500 600 700 

Fertilizer (Ib/acre) 

FIG. 11-1 Observed relation of wheat yield to fertilizer application. 

1 By extending Problem 10-2. 

220 
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tnt of fertilizer does matter. Moreover, it should be possible to that the amop 

define how fertilizer affects yield—i.e., define an equation describing the 

dependence off* Y on X. Estimating an equation is of course equivalent 

geometrically |to fitting a curve through this scatter, the so-called regression 

of Y on X. Ttiis regression will be a simple mathematical model, useful as a 

brief and precise description, or as a means of predicting the yield Y"for a 

given amount! of fertilizer X. Regression is the most useful of all statistical 

techniques. As another example, in economics it provides a means of defining 

how the quantity of a good demanded depends on its price, or how consump¬ 

tion depends on income. 

This chapter is devoted exclusively to how a straight line may best be 

fitted. The characteristics of this line (e.g., its slope) may be subjected to 

statistical tests of significance; but these issues are deferred to Chapter 12. 

Furthermore,! it is possible that Y is related to X in a more complicated 

nonlinear way; but these issues are not dealt with here. Instead we assume 

that the appropriate description is a straight line. 

11-1 AN EXAMPLE 

Since wheat yield depends on fertilizer, it is referred to as the “dependent” 

variable Y; since fertilizer application is not dependent on yield, but instead 

is determined* by the experimenter, it is referred to as the “independent” 

variable X. Suppose funds are available for only seven experimental observa¬ 

tions, so thatj the experimenter sets A at seven different values, taking only 

one observation Y in each case, shown in Figure 11-2 and Table 11-1, 
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Table 11-1 Experimental Data 

Relating Yield of Wheat to the 

Amount of Applied Fertilizer, as in 

Figure 11-2 

X 
Fertilizer 

(lb/acre) 

Y 
Yield 

(bu/acre) 

100 40 

200 45 

300 50 

400 65 

500 70 

600 70 

700 80 

We first of all note that if the points were exactly in a line, as in Figure 

H-3a, then the fitted line could be drawn in with a ruler “by eye” perfectly 

accurately. Even if the points were nearly in a line, as in Figure 11-3b, fitting 

by eye would be reasonably satisfactory. But in the highly scattered case, as 

in Figure 11-3c, fitting by eye is too subjective and too inaccurate. Further¬ 

more, fitting by eye requires plotting all the points first. If there were 100 

Y Y 

-x 
(a) 

Y I 

-X 
(b) 

• • 

1--X 

(c) 

FIG. 11-3 Various degrees of scatter. 
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experimental observations this would be very tedious, and an algebraic 
technique wjnch an electronic computer could solve would be preferable. 

The foil jawing sections set forth various algebraic methods for fitting a 
line, successively more sophisticated and satisfactory. 

11-2 POSSIBLE CRITERIA FOR FITTING A LINE 

^ It is; tim<} to ask more precisely “What is a good fit?” The answer surely 
is, a fit that makes the total error small.” One typical error is shown in 
Figure 11-4. It is defined as the vertical distance from the observed Y to the 
fitted hne i.e., ( - T,:), where Y,- is the “fitted value of Y” or the ordinate 
o he line. We note that the error is positive when the observed Y{ is above 
the hne and negative when the observed Yi is below the line. 

f, “T * tentat>ve criterion, consider a fitted line which minimizes 
the total of all these errors, 

I (li-i) 

But this critefion works badly. Using this criterion, the two lines shown in 
igure 11-5 fit the observations equally well, even though the fit in Figure 

1 l-5a is intuitively a good one, and the fit in Figure 11-56 is a very bad one. 
e problem js one of sign; in both cases positive errors just offset negative 

errors, leaving their sum equal to zero. This criterion must be rejected, since 
it provides no. distinction between bad fits and good ones. 

2. There jare two ways of overcoming the sign problem. The first is to 
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minimize the sum of the absolute values of the errors, 

l\Yi-ti\ (n'2) 

Since large positive errors are not allowed to offset large negative ones, 

this criterion would rule out bad fits like Figure 11-56. However, it still has a 

drawback. It is evident in Figure 11-6, that the fit in part b satisfies this 

criterion better than the fit in part a; (£ IT “ y<lls 3’ rather than4). In 

fact, the reader can satisfy himself that the line in part b joining the two end 

points satisfies this criterion better than any other line. But it is not a good 

common-sense solution to the problem, because it pays no attention what¬ 

ever to the middle point. The fit in part a is preferable because it takes 

account of all points. 

FIG. 11-6 
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tn 3' As J teCOnd way t0 overcome the sign problem, we finally propose 
to minimiz^ the sum of the squares of the errors, ■ P 

X(L - L)2 ' (n.3) 
This is the jamous “least squares” criterion; its justifications include: 

(a) Squaring overcomes the sign problem by making all errors positive 
( ) Squaring emphasizes the large errors, and in trying to satisfy this 
ri erioji large errors are avoided if at all possible. Hence all points are 

taken ii)to account, and the fit in Figure 1 \-6a is selected by this criterion 
in preference to Figure 11-66. y cruerion 

(c) The algebra of least squares is very manageable. 

(d) There are two important theoretical justifications for least squares 
developed m the next chapter. squares, 

11-3 THE jLEAST SQUARES SOLUTION 

Our scajter of observed X and Y values from Table 11-1 is graphed in 
Figure 1 l-7a; Our objective is to fit a line g P in 

This involves three steps: 
T — flu + bX 

(11-4) 

,S/;j I?."8'816 ^ in‘° deviations 'ts mean; i.e„ define a new variable x, sd that: 

x — X — X (11-5) 

stedifto IK"6 S!,0W,h0W,this inv°«v<* a geometric translation of axis 
similar to the procedure developed in Section 5-3, where both axes were 

ranslated to sjtudy covariance. The new * value becomes positive or negative 

ependmg onj whether X was above or below X. There is no change fn the 

thellme. j'nterCept ° d,fferS from the originaI «o. but the slope b remains 

One of t^e advantages of measuring X( as deviations from their central 

Xisun hatnwfe,Can m°reexPlicit'y ask‘hequestion “Howis Yaffected when 
X is unusually large, or unusually small?” In addition, the mathematics will 

be simplified because the sum of the new x values equals zero,2 

__ X xi = 0 
2 Proof: 

X = X (u - X) 

= X xt - nX 

Noting that the njean X is defined as X x- 

(11-6) 

it follows that ^ X{ = nX and 

2 xi = nX - nX = 0 (11-6) proved 
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y 

FIG. 11-7 Translation 
of axis, (a) Regression, using original variables. (6) Regression, 

translating X. 

Step 2. Fit the line in Figure 11-76; i.e., fit the line 

Y = a + bx (11-7) 

to this scatter by select,ng the values for * and 6 that satisfy the least squares 

criterion, i.e., select those values of a and b that minimize 

ZiYi-ftY (11"8) 

Since the fitted value t{ is on our estimated line (11-7) 

?i = a + bXi (11_9) 

When this is substituted into (11-8), the problem becomes one of selecting 

a and b to minimize the sum of squares, 

S(a, b) = ^(Yi — a — bxt)2 
(11-10) 
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The notation S(a, b) is used to emphasize that this expression depends on a 

and b. As a aid b vary (i.e., as various lines are tried), S(a, b) will vary too, 

and we ask at! what value of a and b it will be a minimum. This will give us 

our optimum (least squares) line. 
The simplest minimization technique is calculus, and it will be used m 

the next paragraph. [Readers without calculus can minimize (11-10) with the 

more cumbersome algebra of Appendix 11-1, and rejoin us where the resulting 

theorem is stated below.] 
Minimiz ng S(a, b) requires setting its partial derivatives with respect to 

a and b equal to zero. In the first instance, setting the partial derivative with 

respect to a equal to zero: 

$HYt-a-bx,y = l2(-iXYi-a 
01 

Dividing through by -2 and rearranging: 

2 Yi - na - b = 0 

Noting that % xt = 0 by (11-6), we can solve for a. 

bx,)l = 0 (11-11) 

(11-12) 

a — or a = Y (11-13) 

Thus our leait squares estimate of a is simply the average value of Y, referring 

to Figure 1 li-7, we see that this ensures that our fitted regression line must 

pass througi the point (X, F), which may be interpreted as the center of 

gravity of thee sample of n points. 
It is also necessary to set the partial derivative of (11-10) with respect 

to b equal to zero, 

T 2 (Yi - a - bxtf = 2 2(-*,)(yj -a - bx$ = 0 
ob 

1 A(» bx,) = 0 

(11-14) 

(11-15) 

Rearrangini 

Noting that 2X< 

2 Y^, ~ “ 2 x< - b 2 x] 

0, we can solve for b. 

2 Ytx, 
b = 

2*1 

(11-16) 
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Our resu 

Theorem 
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Its3 in (11-13) and (11-16) are important enough to restate as: 

With x values measured as deviations from 

their mean, the least squares values of a 

and b are 

a = F (11-13) 

2 YjXj 

Ixi 
b = (11-16) 

For the ^xample problem in Table 11-1, a and b are calculated in the 

first five columns in Table 11-2; (the last three columns may be ignored 

until the next chapter). It follows that the least-squares equation is: 

Y = 60 + .068# (11-17) 

This fitted line is graphed in Figure 11-76. 

Step 3. uf desired, this regression can now be retranslated back into 

our original frame of reference in Figure ll-la. Express (11-17) in terms of 

the original Rvalues: 

Y = 60 + .068(X - X) 

= 60 + .068(JT - 400) 

= 60 + .068X - 27.2 

F= 32.8 + .068X (11-18) 

This fitted link is graphed in Figure 11-la. 

A comparison of (11-17) and (11-18) confirms that the slope of our 

fitted regression (b — .068) remains the same; the only difference is in the 

intercept. Moreover, we note how easily the original intercept (aQ = 32.8) 

may be recovered. 

An estim-ate of yield for any given fertilizer application is now easily 

derived from jour least squares equation (11-18). For example, if 350 lb of 

fertilizer is tope applied, our best estimate of yield is 

Y — 32.8 + .068 (350) — 56.6 bushels/acre 

The alternative least squares equation (11-17) yields exactly the same result. 

When X = 3q0, then x — —50, and 

Y= 60 + .068 (-50) 56.6 

3 To be perfectly rigorous, we could have shown that when the partial derivatives are set 

equal to zero, we actually do have a minimum sum of squares—rather than a maximum, 

saddle point or jocal minimum. 
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PROBLEMS 

(Save your work in the next three chapters, for future reference.) 

11-1 Suppose a random sample of 5 families had the following income and 

savings: 

Family Income Y Savings S 

A $8,000 $600 

B 11,000 1200 

C 9,000 1000 

D 6,000 700 

E 6,000 300 

(a) Estimate and graph the regression line of savings S on income Y. 

(b) Interpret the intercepts a and a0. 

11-2 Use the data of Problem 11-1 to regress consumption C on income Y. 

(Economists define C — Y — S.) 

11-3 To interpret the regression slope b, use equation (11-18) to answer 

the following questions. 

(a) About how much is the yield increased for every pound of fertilizer 

applied? 

(b) If wheat were worth $2 per bushel and fertilizer cost $.25 per 

pound, would it be economical to apply fertilizer? 

(c) To what price approximately would fertilizer have to drop to 

make it economical? 

[The answer to (a) is simply the slope b. Economists refer to b as the 

“marginal” effect of fertilizer x on yield F.] 

=> 11-4 If we translated both X and Y into deviations x and y (just as X 

was translated in Figure 11-7&), then 

(a) What would the new ^/-intercept be? Would the slope remain the 

same ? Does not this imply that the fitted regression equation is simply 

y — bx 

(b) Prove that J xiyi — ^ x{Yi9 hence we may alternatively write b 

in terms of deviations as 

l^y, 
2* 

*11-5 (Requires calculus.) Suppose X is left in its original form, rather than 

being translated into x (deviations from the mean). 
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(a) Write out the sum of squared deviations as in (11-10), in terms of 
a0 and p. 

j equal to zero the partial derivatives with respect to a0 and b, 
thus obtaining two so-called “normal” equations. 

(c) Evaluate these two normal equations using the data in Problem 

11-1 anp solve for and b. Do you get the same answer? 

(d) Compare the two alternative methods of solution. 

; 11-6 Suppose four firms had the following profits and research expenditures. 

1 
i 
1 

Firm; 
Profit, P 

(thousands of dollars) 
Research Expenditure, R 

(thousands of dollars) 

1 i 50 40 
2 : 60 40 

3 I i 40 30 

41 
50 50 

-—:  -——i--—L_ 

(a) Fit p regression line of P on R. 

(b) Does this regression line “show how research generates profits?” 
Criticize. 

APPENDIX 1-1 AN ALTERNATIVE DERIVATION OF LEAST 

SQUARES ESTIMATES OF a AND b, 

WITHOUT CALCULUS 

Before estimating a and b, it is necessary to solve the theoretical problem 

of minimizing kn ordinary quadratic function of one variable b, of the form 

f(b) = k2b2 + kxb + k0 (11-19) 

i are constants, with k2 > 0. 

e algebraic manipulation, (11-19) may be written as 

where k2i k1} k\ 

With a litt 

app Note that b 

hope of minim 

the first term, 

minimized when 

m +itj+(*• -<»-m> 
'ears in the first term, but not in the second. Therefore our 

.zing the expression lies in selecting a value of b to minimize 

peing a square and hence never negative, the first term will be 
it is zero, that is, when 

b + — = 0 
2k, 

(11-21) 
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then 

b = (H-22) 
2 k2 

This result is shown graphically in Figure 11-8. To restate, a quadratic 

function of the form (11-19) is minimized by setting 

(coefficient of first power) ^ 2^ 

2 (coefficient of second power) 

With this theorem in hand, let us return to the problem of selecting 

values for a and b to minimize 

S(a,b) = 2l(Yi-a)-bxiY (11-24) 

It will be useful to manipulate this, as follows: 

S(a, b) = 2 [( Yt - af - 2b( Y{ - a)xi + (11-25) 

= 2(Yt - aY - 2b2(Yi - a)x, + h2 (n'26) 

In the middle term, consider 

2(Yi-d)xi = 2 Yfli-a 2*i 

= 2 Ytx( + 0 

Using this to rewrite the middle term of (11-26) we have 

S(a, b) = 2 ('Y, - ay -2b 2 Y& + b* 2 *5 (11'27) 

This is a useful recasting of (11-24), because the first term contains a alone, 
while the last 2 terms contain b alone. To find the value of a which minimizes 
(11-27) only the first term is relevant. This may be written 

2 (rt - ay = 2 Yf -2a2.Yi + na2 

FIG. 11-8 The minimization of a quadratic function. 
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According to (11-23), this is minimized when 

a = 
■(-2 2 Y,) 2 Y, 

2n 
(11-13) proved 

To find tjie value of b which minimizes (11-27), only the last two terms 

are relevant. According to (11-23), this is minimized when 

-(-2 2 >>,-) _ X Ytx, 

2 2*? X* 
(11-16) proved 

* 



chapter 12 

Regression Theory 

12-1 THE MATHEMATICAL MODEL 

So far we have only mechanically fitted a line. This yielded a and b, 

which are descriptive statistics of the sample, (like X in Chapter 2); now we 

wish to make inferences about the parent population (like our inferences 

about n in Chapter 7). Specifically we must consider the mathematical model 

which allows us to run tests of significance on a and b. 

Turning back to the example in Section 11-1, suppose that the experi¬ 

ment could be repeated many times at a fixed value of Even though 

fertilizer application is fixed from experiment to experiment, we would not 

observe exactly the same yield each time. Instead, there would be some 

statistical fluctuation of the T’s, clustered about a central value. We can 

think of the many possible values of Y forming a population; the probability 

function of Y for a given x we shall call1 p(Y/x). Moreover, there will be a 

similar probability function for Y at any other experimental level of x. One 

possible sequence of Y populations is shown in Figure 12-1*3. There would 

obviously be mathematical problems involved in analyzing such a population. 

To keep the problem manageable, we make a reasonable set of assumptions 

about the regularity of these populations, as shown in Figure 12-1 b. We 

assume the probability functions p(YJx*) have 

1. The same variance a2 for all xy and 

2. Means E(Yt) lying on a straight line, known as the true regression 

line: 
E(Yi) = y. + ^xi (12-1) 

1 Remember that our notation conventions are different from Chapters 4 to 7. Now a 

capital letter denotes an original observation and a small letter denotes its deviation from 

the mean. 
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The population parameters a and (3 specify the line; they are to be estimated 

from sample information. We also assume that 
3. The random variables Y{ are statistically independent. For example, 

a large valu| of Y1 does not tend to make F2 large; i.e., F2 is “unaffected” 

by Yv 

These assumptions may be written more concisely as: 

The random variables Y{ are statistically independent, 

with 

mean = a + fixx 

— and variance = 

(12-2) 
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On occasion, ft is useful to describe the deviation of Yt from its expected 

value as the error or disturbance term et, so that the model may alternatively 
be written J 

Yt- = oc + fix; + et 

where the et are independent random variables, with 

mean = 0 

and variance = a2 

(12-3) 

02-4) 

We note that the distributions of Y and e are identical, except that 

their means differ. In fact, the distribution of e is just the distribution of Y 
translated onto a zero mean. 

No assumption is made yet about the shape of the distribution of e 

(normal, or otherwise). We therefore refer to assumptions (12-4) as the 

weak set , we shall derive as many results as possible from these, before 
adding a more restrictive normality assumption later. 

12-2 THE NATURE OF THE ERROR TERM 

Now let us consider in more detail the “purely random” part of Yt, the 

error or disturbance term e{. Why does it exist? Or, why doesn’t a precise 

and exact value of Yi follow, once the value of xi is given? 

The error may be regarded as the sum of two components: 

(a) Measurement Error 

There are various reasons why Y may be measured incorrectly. In 

measuring wheat yield, there may be an error due to sloppy harvesting or 

inaccurate weighing. If the example is a study of the consumption of families 

at various income levels, the measurement error in consumption might consist 
of budget and reporting inaccuracies. 

(b) Stochastic Error 

This occurs because of the inherent irreproducibility of biological and 

social phenomena. Even if there were no measurement error, continuous 

repetition of our wheat experiment using exactly the same amount of fertilizer 

would result in different yields; these differences are unpredictable and are 
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called stochastic differences. They may be reduced by tighter experimental 

control—for example, by holding constant soil conditions, amount of water 

etc. But complete control is impossible—seeds, for example, cannot be 

duplicated. Stochastic error may be regarded as the influence on Y of many 

omitted varia bles, each with an individually small effect. 

In the social sciences, controlled experiments are usually not possible. 

For example! an economist cannot hold U.S. national income constant for 

several years while he examines the effect of interest rate on investment. 

Since he canAot neutralize extraneous influences by holding them constant, 

his best alterlative is to take them explicitly into account, by regressing Y 

on x and the extraneous factors. This is a useful technique for reducing 

stochastic errpr; it is called “multiple regression” and is discussed fully in 
the next chapter. 

12-3 ESTIMATING a AND 0 

Supposephat our true regression Y = a + fix is the dotted line shown 

in Figure 12-1 This will remain unknown to the statistician, whose job it is 

to estimate ltjas best he can by observing x and Y. Suppose at the first level 

xu the stochastic error ex takes on a negative value, as shown in the diagram; 

he will observe the Y and a; combination at Pv Similarly, suppose his only 

other two observations are P2 and P3, resulting from positive values of e. 



REGRESSION THEORY 238 

Further, suppose the statistician estimates the true line by fitting a least 

squares line Y = a + bx, applying the method of Chapter 11 to the only 

information he has—points Pl9 P2, and P3. He would then come up with the 

solid estimating line in this figure. This is a critical diagram; before proceed¬ 

ing, the reader should be sure he can clearly distinguish between the true 

regression and its surrounding e distribution on the one hand, and the 

estimated regression line on the other. 
Unless the statistician is very lucky indeed, it is obvious that his esti¬ 

mated line will not be exactly on the true population line. The best he can 

hope for is that the least squares method of estimation will be close to the 

target. Specifically, we now ask: “How is the estimator a distributed around 

its target a, and b around its target f$T 

12-4 THE MEAN AND VARIANCE OF a AND b 

We shall show that the random estimators a and b have the following 

moments: 

(12-5) 

(12-6) 

(12-7) 

(12-8) 

where <72 is the variance of the error (the variance of Y). We note from (12-5) 

and (12-7) that both a and b are unbiased estimators of a and ft. Because of 

its greater importance we shall concentrate on the slope estimator &, rather 

than a, for the rest of the chapter. 

Proof of (12-7) and (12-8). The formula for b in (11-16) may be re- 

written as 

b = ^ (—) Y{ 
^ \k J 

(12-9) 

where 

1! (12-10) 

Thus 

6=2 = W,Y, + • • * * w Y vv n * n 
(12-11) 

where 

w; =- (12-12) 
k 

E(a) = a 

c;2 
var (a) = — 

E(b) = j8 

(72 

var (b) = 
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Since each ^ ifc a fixed constant, so is each w€. Thus from (12-11) we establish 

the important!conclusion, 

b is a weighted sum (i.e., a linear combination) 
of the random variables T* 

(12-13) 

Hence by (5-31) we may write 

E(b\ = w&YJ + wtE(Yt) ■■■ + w„E(Yn) = £ wtE{Yt) (12-14) 

Moreover, ndting that the variables Yt are assumed independent, by (5-34) 

we may write 

j (b) = \\'l var Y1 + • • • + < var Yn = ^w2i var Yt (12-15) 

For the mean, from (12-14) and (12-1) 

and noting (12-12) 

E(b) = 2 wda + fail 

= a J + ft 2 W 

£W = 72^ + 72(^- 
k k / 

but 2 is zvro, according to (11-6). Thus 
j 

E(b) = 0 + £ 
k 

From (12-10) 
E(b) = 0 

For the variance, from (12-15) and (12-2) 

var (b) = 2 

_ Y — ^2 

Z/c2 

(12-16) 

(12-17) 

(12-18) 

(12-7) proved 

(12-19) 

(12-20) 

Again noting (12-10), 

var (b) = —5 

(12-21) 

(12-8) proved 

A similar derivation of the mean and variance of a is left as an exercise, 
completing the proof. We observe from (12-12) that in calculating b, the 
weight H’j attached to the Y, observation is proportional to the deviation .r;. 
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Hence the outlying observations will exert a relatively heavy influence in 
the calculation of b. 

*12-5 THE GAUSS-MARKOV THEOREM 

This is the major justification of using the least squares method in the 
linear regression model. 

Gauss-Markov Theorem. Within the class of linear 
unbiased estimators of /5 (or a), the least squares 
estimator has minimum variance. 

(12-22) 

This theorem is important because it follows even from the weak set of 

assumptions (12-4), and hence requires no assumption of the shape of the 

distribution of the error term. A proof may be found in most mathematical 
statistics texts. 

To interpret this important theorem, consider b, the least squares 

estimator of ft. We have already seen in (12-13) that it is a linear estimator, 

and we restrict ourselves to linear estimators because they are easy to analyze 

and understand. We restrict ourselves even further, as shown in Figure 12-3; 

within this set of linear estimators we consider only the limited class that are 

unbiased. The least squares estimator not only is in this class, according to 

(12-7), but of all the estimators in this class it has the minimum variance. 

It is often, therefore, referred to as the “best linear unbiased estimator.” 

The Gauss-Markov theorem has an interesting corollary. As a special 

case of regression, we might ask what happens if we are explaining F, but 

FIG. 12-3 Diagram of the restricted class of estimators considered in the Gauss-Markov 
theorem. 
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p — 0 in (12-2), so that no independent variable x comes into play. From 

(12-2), a is the mean of the Y population (fi). Moreover, from (11-13) its 

least squares ejtimator is Y. Thus.Jhe least squares estimator of a population 

mean (ft) is tie sample mean (Y), and the Gauss-Markov theorem^fully 

applies: the sample mean is the best linear unbiased estimator of a population 

mean. 
It must be emphasized that the Gauss-Markov theorem is restricted, 

applying only'to estimators that are both linear and unbiased. It follows that 

there may be a biased or nonlinear estimator that is better (i.e., has smaller 

variance) than the least squares estimator. For example, to estimate a 

population me an, the sample median is a nonlinear estimator. It is better than 

the sample muan for certain kinds of nonnormal populations. The sample 

median is just one example of a whole collection of nonlinear statistical 

methods knoin as “distribution-free” or “nonparametric” statistics. These 

are expressly designed for inference when the population cannot be assumed 

to be normally distributed. 

12-6 THE DISTRIBUTION OF b 

With thel mean and variance of b established in (2-7) and (2-8), we now 

ask: “What i the shape of the distribution of bV If we add (for the first 

time) the string assumption that the Yt are normal, and recall that b is a 

linear combination of the Tz, it follows that b will also be normal from 

(6-13). But e\|en without assuming the Yf are normal, as sample size increases 

the distribution of b will usually approach normality t this can be justified by 

a generalized! form2 of the central limit theorem (6-15). 
We are iow in a position to graph the distribution of b in Figure 12-4, 

in order to develop a clear intuitive idea of how this estimator varies from 

sample to sajmple. First, of course, we note that (12-7) established that b 
is an unbiased estimator, so that the distribution of b is centered on its 

target ft. j 
The interpretation of the variance (12-8) is more difficult. Suppose that 

the experiment had been badly designed with the X/s, close together. This 

makes the deviations small; hence 2 sma11* Therefore o2l^x2, the 

variance of^from (12-8) is large and b is a comparatively unreliable estimator. 

To check the intuitive validity of this, consider the scatter diagram in Figure 

12-5a. The bunching of the U’s means that the small part of the line being 

2 The central imit theorem (6-15) concerned the normality of the sample mean X, In 

Problem 6-8 it was seen to apply equally well to the sample sum S. It applies also to a 

1 weighted sum !of random variables such as b in (12-13), under most conditions. See for 

example, D. a! S. Fraser, Nonparametric Statistics, New York: John Wiley, 1957. Similarly 

the normality of a is justified. 
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P(b) 

FIG. 12-4 The probability distribution of the estimator b. 

Y 

Y ss a + 0x 

(a) X 

Y= a+ /3x 
Unknown true 

regression 

Y = a + bx 
Estimated 
regression 

(b) 

FIG- 12-5 (fl) Unreliable estimate when Xt are very close. (b) More reliable fit becau 
Xi are spread out. 
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investigated is obscured by the error e, making the slope estimate b very 

unreliable. In his specific instance, our estimate has been pulled badly out 

of line by the errors in particular, the one indicated by the arrow. 

By contrast, in Figure 12-56 we show the case where the JTs are reason¬ 

ably spread oi t. Even though the error e remains the same, the estimate b 
is much more ^liable, because errors no longer exert the same leverage. 

As a concrete example, suppose we wish to examine how sensitive 

Canadian imports ( Y) are to the international value of the Canadian dollar 

0). A much mjore reliable estimate should be possible using the period 1948 

to 1962 when ?the Canadian dollar was flexible (and took on a range of 

values) than irj the period before or since when this dollar was fixed (and 

only allowed to fluctuate within a very narrow range). 

12-7 CONFIDENCE INTERVALS AND TESTING HYPOTHESES 
ABOUT p 

With the rjiean, variance and normality of the estimator b established, 

statistical inferences about p are now in order. Our argument will be similar 

to the inference about fj, in Section 8-2. First standardize the estimator 6, 
obtaining 

Z = 
b-P 

"7 _e!_ 

v2 
(12-23) 

where Z ~ /V(0 

Since cr2, the variance of Y is generally unknown, it is estimated with 

1). 

s2 = I lYt - ZY (12-24) 

where Z is thejfitted value of Y on the estimated regression line: i.e. 

s* is often referre 

The divisor (.n 
unbiased estimal 

estimator b is no 

fi — a + bxt (12-25) 

d to as “residual variance,” a term similarly used in ANOVA. 

- 2) is used in (12-24) rather than n in order to make s2 an 

tor3 of cr2. When this substitution of s2 for cr2 is made, the 

longer normal, but instead has the slightly more spread-out 

3 As argued in thej footnote to equation (8-11). But in the present calculation of s2, two 

estimators a and h are required; thus there remain two fewer degrees of freedom for A 

Hence (n - 2) is the divisor in s2, and also the degrees of freedom of the subsequent t 
distribution in (12-]26). 
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t distribution: 

(12-26) b - P 

VZ*? 

For the t distribution to be strictly valid, we require the strong assumption 

that the distribution of is normal. From (12-26) we may now proceed to 

construct a confidence interval or test an hypothesis. 

(a) Confidence Intervals 

Again letting 1.025 denote the t 

in the upper tail, 

Pr ( t 025 

value which leaves 2|% of the distribution 

< t < /.025) = -95 (12-27) 

Substituting for t from (12-26) 

Pr / b ~ 13 < t —'.025 <• i -- ^ *.025 

1$ 

.95 (12-28) 

The inequalities within the bracket may be reexpressed 

Pr b - t 025 

V2 
S < f$ < b + 1.025 

J 
= .95 (12-29) 

which yields 

The 95% confidence interval4 for /S: 

P = b ± 1.025 T 

(12-30) 

where 1.025 has (n - 2) degrees of freedom. 
For our example of wheat yield in the previous chapter, the confidence 

interval for (the effect of fertilizer on yield) is computed as follows. 5 is 

evaluated in the last three columns of Table 11-2. Also noting the values 

4 Using a similar argument, and noting (12-6), the 95% confidence interval for a is. 

* = *±'.0254= (12'31) 
v n 

We note that this is very similar to the confidence interval for /t given by equation (8-15). 
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for b and 2 x\ calculated in that table, our 95% confidence interval (12-30) 
becomes 

= .068 ± 2.571 —Ilf8 ■ 
7280,00a 

= .068 ± .017 

.051 < jS < .085 .. (12-32) 

Testing hypotheses. A two-sided test of any hypothesis may be carried 
out simply by noting whether or not the confidence interval (12-30) contains 
that hypothesis. For example, the hypothesis typically tested is the null 
hypothesis. 

Ho'ft == 0 (12-33) 

i.e., using our example, that fertilizer has no effect on yield. In testing this 
against the twc -sided alternative 

Hi-ft 9*0 (12-34) 

Hq must be rejected at a 5% significance level, since the null value of zero 
is not containejd in (12-32). 

Since fertilizer is expected to favorably affect yield, it seems more 
appropriate to test (12-33) against the one-sided alternative: 

Hi:ft>0 (12-35) 

The first step if to calculate the t statistic under the assumption that H0 is 
true. From (124-26) and (12-33) this reduces to 

(12-36) 

(12-37) 

Since this obseiied value exceeds the critical t.06 value of 2.015, H0 is rejected 
in favor of the conclusion that fertilizer favorably affects yield. 

12-8 PREDICTION INTERVAL FOR Y0 

If we plan one new application of 550 pounds of fertilizer (x0 = 150) 
how do we predict the resulting yield? 

The best point estimate will be the corresponding fitted Y value on our 
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A 

FIG. 12-6 How the estimator F0 is related to the target E(Y0). 

estimated regression line, i.e.: 

Y0 = a + bx0 (12-38) 

= 60 + .068(150) = 70.2 bu/acre (12-39) 

But as a point estimate, this will almost certainly involve some error because, 
for example, of errors made in calculating a and b. Figure 12-6 illustrates 
the effect of these errors; the true regression is shown, along with an estimated 
regression. Note how the fitted Y0 in this case underestimates. In Figure 12-7 
the true regression is again shown along with several estimated regressions 
fitted from several possible sets of sample data. The fitted value is sometimes 
too low, sometimes too high, but on the average, just right. 

The important observation in Figure 12-7 is that if x0 were further to 

A 

FIG. 12-7 70 as an unbiased estimator of FCFq). 
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the right, thenj our estimates would be spread out over an even wider range. 

On the other hand if rr0 were further to the left and closer to its central value 

of zero then our estimates would be less spread out. Moreover, it is the error 

in b that causes this; thus such an error in the slope b will do little harm in 

a prediction, *iven an average amount of fertilizer; but any prediction of 

the effect of an extreme amount of fertilizer will be thrown badly into error. 

Formally, it may be shown that5 the 95% prediction interval for an in¬ 

dividual Y observation is 

(12-42) 

where f025 ha^ (n — 2) d.f. 

For exarrple, we can now construct a prediction interval for yield if 

550 lb/acre ofjfertilizer were applied. With a 95% chance of being right we 
predict: 

+ 1 
i i so2 

70.2 ± 2.571(3.48), /- + — 
V 7 280,000 

60.3 < Fo < 80.1 . (12-43) 

This prediction interval is shown in Figure 12-8. Moreover, the same calcula¬ 

tion for all possible x0 values yields the dotted band of prediction intervals, 

expanding as moves farther away from its central value of zero. 

It should jbe emphasized that x0 may be any value of x. If x0 lies among 

the observed yalues xx • • • xn9 the process is called “interpolation.” If x0 is 

one of the values xx • • • xn, the process might be called, “using also the other 

values of x tojsharpen our knowledge of this one population at a?0.” if x0 is 

beyond xx or hn9 then the process is called “extrapolation.” The techniques 

5 Without going Jnto the proof of (12-42), we sketch its plausibility. The variance involved 
in a prediction is! roughly 

var = var (a) + var (b)x\ + var (Y) (12-40) 

that is, the variance of a, plus the variance of b weighted with a?2, plus the inherent variance 

of any Y observation. This last source of error must be included of course; even if a and $ 

were known exactly, the prediction of Y0 would still be subject to error. 

Into (12-40) we substitute (12-6), (12-8), and (12-2) 

var = + yz| ^ 

1* 

+1 (12-41) 

When 5 is substituted for or, (12-42) follows. 
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Y 

FIG. 12-8 Prediction interval for Y0. 

developed in this section may be used for extrapolation, but only with con^ 

siderable caution—as we shall see in the next section. 

PROBLEMS 

12-1 Construct a 95% confidence interval for the regression coefficient p in 

(a) Problem 11-1. 

(b) Problem 11-2. 

12-2 Which of the following hypotheses does the data of Problem 11-1 

prove to be unacceptable at the 5% level of significance? 

(a) P = 0 

(b) P = 1/2 

(c) p = .l 

(d) p = --I 
12-3 At the 1 % level of significance, use the data of Problem 11-1 to test 

the hypothesis that savings does not depend on income, against the 

alternative hypothesis that savings increases with income. 

12-4 Using the data of Problem 11-1, what is your 95% prediction interval 

for the savings of a family with an income of 

(a) $6,000 
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(b) S8,d00 

(c) $10,boo 
(d) $12,000 

(e) Which of these four intervals is least precise? Most precise? 

(f) How is the answer to (b) related to the confidence interval found 
from (12-31) ? 

12-5 Suppose^ you are trying to explain how the interest rate (/) affects 

investment (1) in the U.S. Would you prefer to take observations of i 

and I ov£r a period in which the authorities were trying to hold interest 

constant’ or a period in which it is allowed to vary widely? 

12-9 DANGERS OF EXTRAPOLATION 

There are* two dangers in extrapolation, which we might call “mathe¬ 

matical and j practical. In both cases, there is no sharp division between 

safe interpolation and dangerous extrapolation. Rather, there is continually 

increasing dan-ger of misinterpretation as x0 gets further and further from its 
central value. ’ 

(a) Mathematical Danger 

It was emphasized in the previous section that prediction intervals get 

larger as x0 moves away from zero. This is true, even if all the assumptions 

underlying ouf mathematical model hold exactly. 

(b) Practical Danger 

In practice it must be recognized that a mathematical model is never 

absolutely correct. Rather, it is a useful approximation. In particular, one 

cannot take seriously the hypothesis that the population means are strung 

out in an exactly straight line. If we consider the fertilizer example, it is likely 

that the true relation increases initially, but then bends down eventually as 

a “burning poi^it” is approached, and the crop is overdosed. This is illustrated 

in Figure 12-9 which is an extension of Figure 11-2 with the scale appropri¬ 

ately reduced. In the region of interest, from 0 to 700 pounds, the relation 

is practically a straight line, and no great harm is done in assuming the linear 

model. However, if the linear model is extrapolated far beyond this region 

of experimentation, the result becomes meaningless. 
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FIG. 12-9 Comparison of linear and nonlinear models. 

There are “nonlinear” models available, if they seem more appropriate. 

Moreover statistical tests are available to help determine whether or not 

they are appropriate. These topics are covered in more advanced texts. 

*12-10 MAXIMUM LIKELIHOOD ESTIMATION 

Sections 12-1 to 12-5 including the Gauss-Markov justification of least 

squares required no assumption of the normality of the error term (i.e., 

normality of 7). In Sections 12-6 to 12-9, the normality assumption was 

required only for small sample estimation—and this because of a quite 

general principle that small sample estimation requires a normally distributed 

parent population to validate the t distribution. In these last two sections we 

make the strong assumption of a normally distributed error throughout. On 

this premise, we derive the maximum likelihood estimates of a and /?, i.e., 

those hypothetical population values of a and /? more likely than any others 

to generate the sample values we observed. These MLE of a and /? turn out 

to be the least squares estimates; thus maximum likelihood provides a second 

justification for using least squares. 
Before addressing the algebraic derivation, it is best to clarify what is 

going on with a bit of geometry. Specifically, why should the maximum 

likelihood line fit the data well? To simplify, assume a sample of only three 

observations (P1, Pz, P3)- 
First, let us try out the line shown in Figure 12-KFr. (Before examining 

it carefully, we note that it seems to be a pretty bad fit for our three observed 

points.) Temporarily, suppose this were the true regression line; then the 

distribution of errors would be centered around it as shown. The likelihood 

that such a population would give rise to the samples we observed is the 

probability density that we would get the particular set of three e values 

shown in this diagram. The probability density of the three values is shown 
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The disturbance term, are eollec.ivei, smaller, with their probability dens,,, 

.,o ‘-^-“irpiirxtd'; 
populations. How likely is each to give ^ ^ outj by moving the 

Geometrically, our problem wou e , by moving the regression 

population through all its possi e v all possible positions in space. 
Ine and its surrounding e distribution p. In each case 

Each position involves a different se^ of ^ ^ evaluated. For our MLE we 

the likelihood of observing i, 2, 3 maximizes this likelihood. It is 

S ■» ,SrPr„e - 

shall be able to show that the two comet e. derived from our 
There are two other pomts worth noting. TheMLt.so^ ^ 

three sample observation5;anotheir sat 0 Sa™ ^ The second point is more 

certainly give rise to another MLE: our sample depends on 

subtle. The likelihood of any P°Pulatl° ? J~ f the shape of the e 

no, ,h. s,z. of lire « S", H0.“er. i. cat be shown 

SS3K-'- do, -;o^ ^ 

’“ while geometry has clarified ihe »,g£ 
means of arriving at the specific J Je' a sample of size «, 
done algebraically. For generality, suppose that we P 

rather than just 3. We wish to know 
(12-44) 

p{Yx, IV • • Yn) 

,h, likelihood o, probability den.il, of .he sample 
fune,ion of .he possible popular,™ value, of « d and 

the probability density of the first value of Y, which 

-(l/2a2)[Fi-(a+^a;i)]_ (12-45) 

v 2ttG‘ 

This is Simp,, .he 
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The independence of the Y values justifies multiplying all these proba¬ 

bilities together to find (12-44). Thus 

U2 

A) 

_ — (l/2cr2)[Ti— 

= 11 

exponentials 

exponents 

7T(yi U2 

e-(l/2a2)[Y2-U-, pxz)f 

■V 2 770” 

41/2a)[Yl-(a+pxi)r 

Lv' 2 77O'" 

(12-46) 

where f[ represents the product of n factors. Using the familiar rule for 

the product in (12-46) can be reexpressed by summing 

hTi, y2,. . . , Yn) -bs?I 
L(-l/2<r2)[Yl-(a-pxi)y (12-47) 

Recall tjiat the observed 7’s are given. We are speculating on various 

values of a, ft, and cx2. To emphasize this, we rename (12-47) the likelihood 

function 

L(a, /?, o2) = 
(2tto2) 

,2\n/2 

e-(l/2<T2)Z[Y-a~pxty (12-48) 

We now ask which values of a and 0 make L largest? The only place a and 

0 appear is ifi the exponent; moreover, maximizing a function with a negative 

exponent involves minimizing the exponent. Hence our problem is to choose 

a and 0 in order to 
minimize [Y{ — a — /foj2 (12-49) 

Moreover, his provides the maximum likelihood solution for y. and 0, 

regardless’of the value of a. This is the proposition suggested in the geo¬ 

metrical analysis in Figure 12-10; no matter what is assumed about the 

spread of thje distribution, the maximum likelihood line is not affected by it. 

But anleven more important conclusion follows from comparing equa¬ 

tion (12-49) ;with equation (11-10). Maximum likelihood estimates are identical 

to least squares estimates. The selection of least squares estimates a and b 

to minimizi (11-10) is identical to the selection of maximum likelihood 

estimates of a and 0 to minimize (12-49). The only difference is that we ve 

called our istimates different names. This establishes our other important 

theoretical justification of the least squares method: it is the estimate that 

follows from applying maximum likelihood techniques to a model with 

normally distributed error. 

ca ■ el for any a and b. 
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*12-11 THE CHARACTERISTICS OF THE INDEPENDENT 

VARIABLE 

So far it has been assumed that the independent variable a; takes on a 

given set of fixed values (for example, fertilizer application was set at certain 

specified levels). But in many cases x cannot be controlled in this way. Thus 

if we are examining the effect of rainfall on yield, it must be recognized that 

x (ramfa11) ls a random variable, completely outside our control The sur¬ 
prising thing is that the same MLE follows whether * is fixed or a random 
variable, if we assume [as well as (12-4)], that 

1. The distribution of x does not depend on a, /5, or cr2. 

2. The distribution of e is independent of x, being 7^(0, a2) 
for every x{. } 

(12-50) 

02-51) 

The likelihood of our sample now involves the probability of observing 

both x and Y. If the *, are independent, the likelihood function is 

L = WxMYiK))[p{xMYzK)]' ' • (12-52) 

Because of the normality assumption (12-51), 

L = p(ay) -,J— e-'1/2"2,(r'-2^a'<,2n(.r,)-!— g-u/a^uy-a-n^)2... 
vW (,2-53) 

Collecting the exponents 

L = p(.rx)p(;r2) • • • —L- (, 2_54) 

Since p(x) does not depend on the parameters a, /?, and <j'z according to 

(12-50), the problem of maximizing this likelihood function with respect to 

these parameters reduces to the minimization of the same exponent as before. 

This holds true, in fact, even if the x, are not independent, and are determined 

by a joint probability distribution; then (12-54) becomes: 

L(oc, /9, a2) = p(Xl, ,r )--- e-(i/2«2) n2.55x 
(27rcr2)n/2 ( ’ 

again requiring the same (least squares) minimization of the exponent. 

We conclude that MLE and least squares coincide regardless of whether 

the independent variable x is fixed, or a random variable—if x is independent 

of the error and parameters in the equation being estimated. This greatly 
generalizes the application of the regression model. 



chapter 13 

Multiple Regression 

13-1 INTRODUCTORY EXAMPLE 

Suppose that the fertilizer and wheat yield observations in Chapter 11 

were taken it several different agricultural experiment stations across the 

country. Even if soil conditions and temperatures were essentially the same 

in all these kreas, we still might ask, “Can’t part of the fluctuation in Y 

(i.e., the disturbance term e) be explained by varying levels of rainfall in 

different areis?” A better prediction of wheat yield may be possible if both 

fertilizer and rainfall are examined. Notice how this argument is similar to 

the one useff in two factor ANOVA: if the error e can be reduced by taking 

rainfall R into account, we will get a better explanation of how the other 

variables are= related. The observed levels of rainfall are shown in Table 13-1, 

along with the original observations of wheat yield and fertilizer from 

Table 11-1. | 

Table 13-1 Observed Wheat Yield, 
Fertilizer Application, and Rainfall 

Y X Z 

Wheat Yield Fertilizer Rainfall 

(bu/acre) (lb/acre) (inches) 

40 100 36 

45 200 33 

50 300 37 

65 400 37 

70 500 34 

70 600 32 

80 700 36 

255 
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13-2 THE MATHEMATICAL MODEL 

The multiple regression technique used to describe how a dependent 

variable is related to two or more independent variables is in fact only an 

extension of the simple regression analysis of the previous two chapters. 

Yield Y is now to be regressed on the two independent variables, or “re¬ 

gressors, fertilizer X and rainfall Z. Let us suppose it is reasonable to argue 
that the model is of the form 

E(Yi) = a + + yzf (13-1) 

with both regressors x and z measured as deviations from their means. 

Geometrically this equation is a plane1 in the three-dimensional space shown 

in Figure 13-1. For any given combination of rainfall and fertilizer (xt, zt), 

the expected yield E(Y\) is the point on this plane directly above, shown 

as a hollow dot. Of course, the observed value of Y, shown as a solid dot, is 

very unlikely to fall precisely on this plane. For example, our particular 

observed Y{ at this fertilizer/rainfall combination is somewhat greater than 

its expected value, and is shown as the solid dot lying directly above this 

plane. The difference between any observed and expected value of Yt is the 

FIG. 13-1 Scatter of observed points about the true regression plane. 

1 It is a plane because it is linear in .r and z. Looked at from another point of view we 

could say that (13-1) is linear in a, /?, and y. In fact, this latter linearity assumption is the 

more important of the two, since we are involved in estimating a, /?, and y; it is this as¬ 
sumption that keeps our estimating equations (13-4) linear. 
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stochastic or pror term ev Thus any observed value 72 may be expressed as 

its expected value plus this disturbance term 

y. = a + Px, + yzi + et (13-2) 

with our assumptions about e the same as in Chapter 12. 

P is geometrically interpreted as the slope of the plane as we move in a 

direction parallel to the (x, 7) plane, i.e., keep 2 constant; thus /? is the 

marginal effect of fertilizer x on yield 7. Similarly y is geometrically inter¬ 

preted as the slope of the plane as we move in a direction parallel to the (z, 7) 

plane, i.e., k|ep a? constant; hence y is the marginal effect of z on 7. 

13-3 LEAST SQUARES ESTIMATION 

Least squares estimates are derived by selecting the estimates of a, /?, 

and y that m nimize the sum of the squared deviations between the observed 

7's and the fitted 7's; i.e., minimize2 

2(Yi ~ a - bx, - cztf ! (l3"3> 

where a, b, and c are our estimators of a, /?, and y. This is done with calculus 

by setting thp partial derivatives of this function with respect to a, b, and c 

2 Maximum likelihood estimates of cc, 0, and y are derived in the same way as in the simple 

regression case} again this coincides with least squares. Geometrically, this involves trying 

out all possible hypothetical regression planes in Figure 13-1, and selecting that one that 

is most likely t\> generate the solid-dot sample values we actually observed. 
But first, liote that Figure 13-1 involves 3 parameters (a, (3, and y), and 3 variables 

(T, .r, and z), however, there is one additional variable in our system—p{ Yjz)—which 

has not yet beim plotted. It may appear that there is no way of forcing 4 variables into 

a three-dimensional space, but this is not so. For example, economists often plot 3 variables 

(labor, capital, and output) in a two-dimensional labor-capital space by introducing the 

third output variable as a system of isoquants. Those for whom this is a familiar exercise 

should have li tie trouble in graphing four variables [7, x, 2, and p(Yjx, z)] in a three- 

dimensional (T, -c, and z) space by introducing the fourth variable [p(Y/x, z)] as a system 

of isoplanes. Ifach of these isoplanes represents (7, xy z) combinations that are equi- 

probable (i.e.,I for which the probability density of 7 is constant). Thus the complete 

geometric mocjel is the regression plane shown in Figure 13-1, with isoprobability planes 

stacked above land below it. Our assumptions about the error term (12-4) gaurantee that 

the isoprobability planes will be parallel to the true regression plane. 
For MLB, we introduce the additional assumption that the error configuration is 

normal. Thenlwe shift around a hypothetical regression plane along with its associated 

set of parallel improbability planes. In each position the probability density of the observed 

sample of points is evaluated by examining the isoprobability plane on which each point 

lies, and multiplying these together. That hypothetical regression which maximizes this 

likelihood is chosen. The algebra resembles the simple case in Section 12-10; it is easy to 

show that this;results in minimizing the sum of squares (13-3). 
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equal to zero, (or algebraically by a technique similar to that used in Appen¬ 

dix 11-1). the result is the following three estimating equations: 

a = F 

2 Y&i = b 2 + C 2 Xfo (13-4) 

2 Yizi = bj^xizi + 

Again, not| that the intercept estimate a is the mean of Y. The second and 

third equatjons may be solved for b and c. These calculations are shown in 

Table 13-2.jand yield the fitted multiple regression equation. 

PROBLEMS 

13-1 Suppose a random sample of 5 families yielded the following data (an 
extension of Problem 11-1) 

(a) E 

Family Savings S Income Y Assets W 

A $ 600 S 8,000 
--li_ 

$12,000 
B 1,200 11,000 6,000 
C 1,000 9,000 6,000 
D 700 6,000 3,000 
E 300 6,000 18,000 

^stimate the multiple regression equation of 5 on Y and W. 

(b) E oes the coefficient of Y differ from the answer to Problem 11-1 (a)? 

Whic.i coefficient better illustrates the relation of S to T? 

(c) For a family with assets of $5000 and income of $8000, what would 

you predict savings to be? 

(d) Calculate the residual sum of squares, and residual variance s2. 

(e) A|*e you satisfied with the degrees of freedom you have for s2 in 
this problem? Explain. 

13-2 Suppose a random sample of 5 families yielded the following data (an 
extension of Problem 11-1) 

Fa mily 

A 

B 

C 

D 
E 

Savings S 

S 600 

1,200 

1,000 

700 

300 

Income Y 

$ 8,000 
11,000 
9,000 

6,000 

6,000 

Number of 

Children N 

5 

2 
1 
3 

4 
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(a) Estimate the multiple regression of S' on Y and N. 

(b) For a family with 5 children and income of $6000, what would 

you predict savings to be? 

*13-3 Combining the data of Problems 13-1 and 13-2, we obtain the following 

table 

Number of 

Family Savings S Income Y Assets W Children N 

A $ 600 $ 8,000 512,000 5 

B 1,200 11,000 6,000 2 

C 1,000 9,000 6,000 1 

D 700 6,000 3,000 3 

E 300 6,000 18,000 4 

Measuring the independent variables as deviations from the mean, we 

wish to estimate the regression equation 

S = a + ft/ + y\v + bn 

(a) Generalizing (13-4), use the least squares criterion to derive the 

system of 4 equations needed to estimate the four parameters. 

(b) Using a table such as Table 13-2, calculate the estimates of the four 

parameters. 

13-4 MULTICOLLINEARITY 

(a) In Simple Regression 

In Figure 12-5# it was shown how our estimate b became unreliable if 

the X/s were closely bunched, i.e., if the regressor X had little variation. It 

will be instructive to consider the limiting case, where the X?s are concentrated 

on one single value X0, as in Figure 13-2. Then b is not determined at all 

There are any number of differently sloped lines passing through (X, Y) which 

fit equally well—for each line in Figure 13-2, the sum of squared_deviations 

is the same, since the deviations are measured vertically from (X, Y). This 

geometric fact has an algebraic counterpart. If all X* = X, then all = 0, 

and the term involving b in (11-10) is zero; hence the sum of squares does not 

depend on b at all. It follows that any b will do equally well in minimizing the 

sum of squares. An alternative way of looking at the same problem is that 
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since all xt art zero, X in the denominator of (11-16) is zero, and b is not 

defined. j 
In conclusion, when the values of X show little or no variation, then the 

effect of X on Y can no longer be sensibly investigated. But if the problem is 

predicting 7-J-rather than investigating F’s dependence on X— this bunching 

of the X values doesn’t matter provided we stick to this same value ofX All 

the lines in Figure 13-2 predict Y equally well. The best prediction is Y, and 

all these lines give us that result. 

(b) In Multiple Regression 

Again consider the limiting case where the values of the independent 

variables X and Z are completely bunched up on a line L, as in Figure 13-3. 

FIG. 13-3 Multicollinearity. 
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This means that all the observed points in our scatter lie in the vertical plane 

running up through L. You can think of three-dimensional space as a room 

in a house; the observations are not scattered throughout this room, but 

instead lie embedded in an extremely thin pane of glass standing vertically 
on the floor. 

In explaining Y, multicollinearity makes us lose one dimension. In the 

earlier case of simple regression, our best fit for Y was not a line, but rather 

a point (x, Y); in this multiple regression case our best fit for Yis not a plane, 

but rather the line F. To get F, just fit the least squares line through the 

points on the vertical pane of glass. The problem is identical to the one shown 

in Figure 11-2; in one case a line is fitted on a flat pane of glass, in the 

other case, on a flat piece of paper. This regression line Fis therefore our best 

fit for Y. As long as we stick to the same combination of X and Z—i.e., so long 

as we confine ourselves to predicting Y values on that pane of glass—no 

special problems3 arise. We can use the regression F on the glass to predict Y 

in exactly the same way as we did in the simple regression analysis of Chapter 

11. But there is no way to examine how X affects Y. Any attempt to define /?, 

the marginal effect of X on Y (holding Z constant), involves moving off that 

pane of glass, and we have no sample information whatsoever on what the 

world out there looks like. Or, to put it differently, if we try to explain Y with 

a plane—rather than a line F—we find there are any number of planes 

running through F (e.g., tt1 and tt2) which do an equally good job. Since each 

passes through F, each yields an identical sum of squared deviations; thus 

each provides an equally good fit. This is confirmed in the algebra in the nor¬ 

mal equations (13-4). When Xis a linear function of Z (i.e., when x is a linear 

function of z) it may be shown that the last two equations are not independent, 

and cannot be solved uniquely for b and c.4 

Now let’s be less extreme in our assumptions and consider the near- 

limiting case, where z and x are almost on a line, (i.e., where all our observa¬ 

tions in the room lie very close to a vertical pane of glass). In this case, a 

plane may be fitted to our observations, but the estimating procedure is very 

3 In practice, there would be a problem in getting the regression line F, since computer 
routines typically break down in the face of perfect multicollinearity. 

4 Two equations can usually be solved for two unknowns, but not always. For example, 
suppose that John’s age (X) is twice Harry’s (F). Then we can write 

X=2Y 
or 

5X=10Y (13-5) 

Note that these two equations tell us the same thing. We have two equations with two 

unknowns, but they don’t generate a unique solution, because they don’t give us indepen¬ 
dent information. The second just restates what the first told us. 
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unstable; it tjecomes very sensitive to random errors, reflected in large 

variance of thj estimators b and c. Thus, even though X may really affect Y, 

its statistical significance can’t be established because the standard deviation 

of b is so large. This is analogous to the argument in the simple regression 

case in Sectio|i 12-6. 

When the independent variables X and Z are collinear, or nearly so, it is 

called the problem of multicollinearity. For prediction purposes, it does not 

hurt provided) there is no attempt to predict for values of X and Z removed 

from their lind of collinearity. But structural questions cannot be answered— 

the relation of Y to either X or Z cannot be sensibly investigated. 

Example 1 

In our wheat yield example, suppose that X is (as before) the amount of 

fertilizer measured in pounds per acre, and that the statistician makes the 

incredibly foolish error of defining another independent variable Z as the 

amount of fertilizer measured in ounces per acre. Since any weight measured 

in ounces must be sixteen times its measurement in pounds: 

Z = 16X (13-6) 

exactly. Thus ill combinations of X and Z must fall on this straight line, and 

we have an example of perfect multicollinearity. Now if we try to fit5 a 

regression plane to the observations of yield and fertilizer given in Table 11-1, 

one possible answer would be our original regression given in (11-18): 

Y = 32.8 + .068X + OZ (13-7) 

But an equally satisfactory solution would follow from substituting (13-6) 

into (13-7): r 

Y= 32.8 + OX + .00425Z 

Another equivalent answer would be to make a partial substitution for X in 

(13-7) as follows: 

Y = 32.8 + .068[AX + (1 - A)X] 

= 32.8 + .068 [AX + (1 - A)(A)Z] 

Y = 32.8 + .068AX + .00425(1 - A)Z (13-8) 

(13-8) is a whole family of planes depending on the arbitrary value assigned 

to A. In fact, a 1 these three-dimensional planes are equivalent expressions for 

5 The computer program would probably “hang up” trying to divide by zero. So we 

suppose the calculations are handcrafted. 
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our simple two-dimensional relationship between fertilizer and yield. While 
all give the same correct prediction of 7, no meaning can be attached to 
whatever coefficients of X and Z we may come up with. 

Example 2 

While the previous extreme example may have clarified some of the 
theoretical issues, no statistician would make that sort of error in model 
specification. Instead, more subtle difficulties arise. In economics, for example, 
suppose demand for a group of goods is being related to prices and income, 
with the overall price index being the first independent variable. Suppose 
aggregate income measured in money terms is the second independent 
variable. Since this is real income multiplied by the same price index, the 
problem of multicollinearity may become a serious one. The solution is to 
use real income, rather than money income, as the second independent 
variable. This is a special case of a more general warning: in any multiple 
regression in which price is one independent variable, beware of other 
independent variables measured in prices. 

The problem of multicollinearity may be solved if there happens to be 
prior information about the relation of 0 and y. For example, if it is known 

a priori that 
y = 50 (13-9) 

then this information will allow us to uniquely determine the regression plane, 
even in the case of perfect collinearity. This is evident from the geometry of 
Figure 13-3. Given a fixed relation between our two slopes (0 and y) there is 
only one regression plane tt which can be fitted to pass through F. This is 
confirmed algebraically. Using (13-9), our model (13-2) can be written 

7, = a + + 50*, + e, (13-10) 

= a + P&i + 5z,) + e{ (13-11) 

It is natural to define a new variable 

Wi = xi + 5z, (13-12) 

Thus (13-11) becomes 
Yi = a -F pWi 4- et (13-13) 

and a regression of Y on w will yield estimates a and b. Finally, if we wish an 
estimate of y, it is easily computed using (13-9): 

c = 5b (13-14) 
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13-5 INTERPRETING AN ESTIMATED REGRESSION 

Suppose the multiple regression 

Y = a + b1X1 + b2X2 + b3X3 + biXi 

is fitted to 25 Observations of Y and the X’s. The least squares estimates often 
are published: in the form, for example: 

Y= 10.6* + 28.4X4 + 4.OX2 + I2JX3 + .84X, (13-15) 

(-So = 2.6) (s± = 11.4) (s2 = 1.5) (s3 = 14.1) (s4 = .76) 

(ti = 4.1) (4 = 2.5) (4 = 2.6) (4 = .9) (4=U) 

The bracketed information is used in assessing the reliability of the least 
squares fit, either in a confidence interval or hypothesis test. 

The true| effect of Xx on Y is the unknown population parameter 
we estimate it with the sample estimator bv While the unknown is fixed, 
our estimator £4 is a random variable, differing from sample to sample. The 
properties of L may be established, just as the properties of b were established 
in the previous chapter. Thus bx may be shown to be normal—again provided 
the sample si^e is large, or the error term is normal. bx can also be shown to 
be unbiased, with its mean The magnitude of error involved in estimation 
is reflected injthe standard deviation of b1 which, let us suppose, is estimated 
to be £4 = 11|.4 as given in the first bracket below equation (13-15), and 
shown in Figtire 13-4. When bx is standardized with this estimated standard 
deviation, it will have a t distribution. 

To recapitulate: we don’t know all we know is that whatever it may 
be, our estimator b± is distributed around it, as shown in Figure 13-4. This 
knowledge ofjhow closely bx estimates ^ can, of course, be “turned around” 
to infer a 95 percent confidence interval for ^ from our observed sample b± 
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as follows: 

ft = ft d= Fo255l 

= 28.4 ± 2.09(11.4) (13-16) 

= 28.4 ± 23.8 

[n = 25 is the sample size, k = 5 is the number of parameters already 

estimated in (13-15), and f025 is the critical t value with n - k degrees of 

freedom.] Similar confidence intervals can be constructed for the other fts. 

If we turn to testing hypotheses, extreme care is necessary to avoid very 

strange conclusions. Suppose it has been concluded on theoretical grounds 

that X1 should positively influence Y, and we wish to see if we can statistically 

confirm this relation. This involves a one-tailed test of the null hypothesis, 

H0:P1 = 0 (13-17) 

against the alternative 
/ftiftX) (13-18) 

If H0 is true, ft will be centered on ft = 0, and there will be only a 5% 

probability of observing a t value exceeding 1.72; this defines our rejection 

region in Figure 13-5a. Our observed t value [2.5 as shown below equation 

(13-15)] falls in this region; hence we reject H0, thus confirming (at a 5% 

significance level) that Y is positively related to Xv 
The similar t values [also shown for the other estimators below (13-15)] 

can be used for testing the null hypothesis on the other parameters. As we 

see in Figure 13-56, the null hypothesis ft = 0 can also be rejected, but a 

similar conclusion is not warranted for ft and ft. We conclude therefore that 

p(&i) 

- f.05 

Do not reject Hq Reject H0 

\y\ _- 
0 4 h t2 Other t values 

(b) 

FIG. 13-5 (a) Test of ft. (b) Test of other fts. 
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the results are {‘statistically significant” for Xx and X2; the evidence is that Y 
is related to ealh. But the results are not statistically significant for X3 and X4. 

As long a I we confine ourselves to rejecting hypotheses—as with ft and 

ft—we won’t Encounter too much difficulty. But if we accept the null hypoth¬ 

esis about ft a lid ft, we may run into a lot of trouble of the sort first encoun¬ 

tered in Chapiter 9. Since this is so important in regression analysis, the 

argument is reviewed for emphasis. 
While it Is true, for example, that our t coefficient for X3 (.9) is not 

“statistically significant,” this does not prove there is no relationship between 

X3 and 7. It is easy to see why. Suppose that we have strong theoretical 

grounds for believing that Y is positively related to X3. In (13-15) this belief 

is confirmed: 7 is related to X3 by a positive coefficient. Thus our statistical 

evidence is consistent with our prior belief (even though it is not as strong as 

we might like ‘it to be).6 To accept the null hypothesis ft = 0 and conclude 

that X3 doesnit affect 7, would be in direct contradiction to both our prior 

belief and the Statistical evidence. We would be reversing a prior belief even 

though the statistical evidence weakly confirmed it. It would have been better 

had we not even looked at the evidence. And we note that this remains true 

for any positive t value, although as t becomes smaller, our statistical con¬ 

firmation becomes weaker. Only if t is zero or negative, do the statistical 

results contradict our prior belief. 
It follows from this, that if we had strong prior grounds for believing 

X3 and X4 to be positively related to 7, they should not be dropped from the 

estimating equation (13-15); instead they should be retained, with all the 

pertinent information on their t values. 
It must be emphasized that those who have accepted hypotheses have 

not necessarily erred in this way. But that risk has been run by anyone who 

has mechanically accepted a null hypothesis because the t value was not 

statistically significant. The difficulty is especially acute—as in the case we’ve 

cited—when the null hypothesis was introduced strictly for convenience 

(because it wfts simple), and not because there is any reason to believe it in 

the first placet It becomes less acute if there is some expectation that H0 is 

trUe—i.e., if there are theoretical grounds for concluding that 7 and X are 

unrelated. Suppose for illustration that we expect a priori that H0 is true; in 

such a case, a weak observed relationship (e.g., t = .6) would be in some 

conflict with our prior expectation of no relationship. But it is not a serious 

conflict, and jeasily explained by chance. Hence resolving it in favor of our 

prior expecta 

a reasonable 

6 Perhaps becau 

how Y is relate’ 

is small, and th 

ion and continuing to use H0 as a working hypothesis might be 

judgment. 

se of too small a sample. Thus 12.7 may be a very accurate description of 

!d to X»\ but our t value is not statistically significant because our sample 
standard deviation of our estimator (ft = 14.1) is large as a consequence. 
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We conclude once again, that classical statistical theory provides in¬ 

complete grounds for accepting H0; acceptance must be based also on extra- 
statistical judgment, with prior belief playing a key role. 

Prior belief plays a less critical role in the rejection of an hypothesis; but 

it is by no means irrelevant. Suppose, for example that although you believed 

Y to be related to Xlf *3, and *4, you didn’t really expect it to be related to 

X2; someone had just suggested that you “try on” X2 at a 5 % level of signifi¬ 

cance. This means that if H0 (no relation) is true, there is a 5 % chance of 

ringing a false alarm. If this is the only variable “tried on,” then this is a risk 

we can live with. However, if many such variables are “tried on” in a multiple 

regression the chance of a false alarm increases dramatically.7 Of course, this 

risk can be kept small by reducing the level of error for each t test from 5 

to 1 % or less. This has led some authors to suggest a 1 % level of significance 

with the variables just being “tried on,” and a 5% level of significance with 

the other variables expected to affect Y. Using this criterion we would 

conclude that the relation of Y and X4 is statistically significant; but the 

relation of Y to X2 is not despite its higher t value—because there are no 
prior grounds for believing it.8 

To sum up: hypothesis tests require 

1. Good judgment, and good prior theoretical understanding of the 
model being tested; 

2. An understanding of the assumptions and limitations of the statistical 
techniques. 

PROBLEMS 

13-4 Suppose a multiple regression of Y on three independent variables 

yields the following estimate, based on a sample of n = 30: 

7=25.1 + 1.2*! + 1.0*2 - 0.50*3 

Standard deviations (2.1) (1.5) (1.3) (.060) 
r-values (11.9) ( ) ( ) ( ) 

95% confidence limits (±4.3) ( ) ( ) ( ) 

7 Suppose, for simplicity, that the t tests for the significance of the several variables (say k 

of them) were independent. Then the probability of no error at all is (.957. For k = 10, 

for example, this is .60, making the probability of some error (some false alarm) as high 
as .40. b 
8 Anyone who thinks he would never wish to use such a double standard might suppose that 

7is the U.S. price level, A4is U.S. wages, and the number of rabbits in South Australia. 
With the t values shown in equation (13-15), what would he do? 
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(a) Fill jin the blank spaces in the above estimate. 

(b) TheTollowing are either true or false. If false, correct. 

(1) The coefficient of Xx is estimated to be 1.2. Other scientists 

might collect other samples and calculate other estimates. The 

distribution of these estimates would be centered around the true 

value of 1.2. Therefore the estimator is called unbiased. 

(2) ff there were strong prior reasons for believing that Xx does not 

influence Y, it is reasonable to reject the null hypothesis fa — 0 at 
the p % level of significance. . 

(3) If there were strong prior reasons for believing that X2 does 

influence Y, it is reasonable to use the estimated coefficient 1.0 

rathjer than accept the null hypothesis fa = 0. 

13-6 DUMMY VARIABLES 

There are two major categories of statistical information: cross section 

and time serbs. For example, econometricians estimating the consumption 

function9 sonjietimes use a detailed breakdown of the consumption of in¬ 

dividuals at prious income levels at one point in time (cross section); 

sometimes they examine how total consumption is related to national 

income over j. number of time periods (time series); and sometimes they use 

a combination of the two. In this section we develop a method that is especially 

useful in analysing time series data; as we shall see, it also has important 

applications i i cross-section studies as well. 

(a) Introductory Example 

Suppose jwe wish to investigate how the public purchase of government 

bonds (B) is rfelated to national income (7). A hypothetical scatter of annual 

observations of these two variables is shown for Canada in Figure 13-6, and 

in Table 13-3j. It is immediately evident that the relationship of bonds to 

income follows two distinct patterns—one applying in wartime (1940-5), 
the other in peacetime. 

The nornjtal relation of B to Y (say Lx) is subject to an upward shift (L2) 

during wartime; heavy bond purchases in those years is explained not by Y 
alone, but also by the patriotic wartime campaign to induce public bond 

purchases. B therefore should be related to Y and another variable—war (W). 
But this is on y a categorical, or indicator variable. It does not have a whole 

9 i.e., how consumption expenditures are related to income. 
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FIG. 13-6 Hypothetical scatter of public purchases of bonds (B) and national income (Y). 

range of values, but only two: on the one hand, we arbitrarily set its value 

at 1 for all wartime years; on the other hand we set its value at 0 for all 

peacetime years. Since W is either “on” or “off,” it is referred to as a “coun¬ 

ter” or “dummy” variable. Our model is: 

B = u. + PY+yW+e (13-19) 

where 

W — 1 for wartime years, 

= 0 for peacetime years. 

This single equation is seen to be equivalent to the following two equations: 

B — a + f$Y + y + e for wartime . (13-20) 

B — a + @Y + e for peacetime (13-21) 

W may also be called a “switching” variable. With war and peace, we 

switch back and forth between (13-20) and (13-21). 

We note that y represents the effect of wartime on bond sales; and ft 
represents the effect of income changes. (The latter is assumed to remain the 

same in war or peace.) The important point to note is that one multiple 

regression of B on Y and W as in (13-19) will yield the two estimated lines 

shown in Figure 13-6; is the estimate of the peacetime function (13-21), and 

L2 is the estimate of the wartime function (13-20). 

Complete calculations for our example are set out in Table 13-3, and the 

procedure is interpreted in Figure 13-7. Since all observations are W — 0, 

or W — 1, the scatter is spread only in the two vertical planes tt1 and itz. 
Estimation involves a multiple (least squares) regression fit of (13-19) to this 
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FTG. 13-7 Multiple regression with a dummy variable (fV). 

scatter. The resulting fitted plane 

B = a + bY + cW (13-22) 

can be visualized as a plane resting on its two supporting buttresses tt1 and 

The slopes of and L2 are (by assumption) equal10 to the common value 

b, and c is the estimated wartime shift. 

10 This restriction means that L± and L2 are not independently fitted. In other words, our 

least squares plane (13-22) is fitted first; and L2 are simply “read off” this plane. Thus 
Lx does not represent a least squares fit to the left-hand scatter, nor does L2 represent a 
least squares fit to the right-hand scatter. 

Thus the dummy variable method of fitting a single multiple regression plane and then 

reading off LY and L2, can be compared to the alternative method of independently fitting 

two simple regression lines to the two scatters in Figure 13-7. Our model would be: 

B = ax + + e1 for wartime 

B = a2 + /?2T + <?2 for peacetime, 

and the estimated slopes (pt and /?2) would generally not be the same. 

(cont’d) 
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In a dummy variable model—as in any regression problem—it is im¬ 

portant to unc erstand why both variables Y and W must be included. Even 

if our only interest is in B and Y, their relationship cannot be properly 

estimated unless W is taken into account. In other words, since experimental 

control over the “nuisance” variable W is not possible, its effects must 

explicitly be removed in the regression analysis. To ignore this variable is to 

invite a bias ir our estimators, as well as an increased variance. To see how 

bias occurs, consider what happens if W is ignored, so that our scatter 

involves only the two dimensions B and Y. Geometrically this involves 

projecting the’three-dimensional scatter in Figure 13-7 onto the two-dimen¬ 

sional B-Y plane, as in Figure 13-8<2. This is immediately recognized as the 

same scatter plotted in Figure 13-6; we also reproduce from that diagram 

Lx and L%, ou| estimated multiple regression using W as a dummy variable. 

If we calculate L3, the simple regression of B on Y, it clearly has too great a 

slope. This upjward bias is due to the fact that war years tended to be high 

income years :|thus on the right-hand side of this scatter, higher bond sales 

that should be attributed in part to wartime would be (erroneously) attributed 

to income alone. 

A similar jerror is to be expected in any investigation of B and W which 

ignores Y. Wjfth no Y dimension, our scatter in Figure 13-7 would be 

projected onto’ the B-W plane, as in Figure 13-86. In this diagram the only 

way to estimate the wartime effect is to look at the difference in sample 

means,11 which is too large. This upward bias would be due to the same cause: 

higher bond sales that should be attributed in part to higher income would 

be (erroneously) attributed to wartime alone. 

This example has illustrated the general nature of dummy variables. 

This can be applied to a wide variety of problems, but one of the most 

useful applica:ions is in removing seasonal shifts in time series data, as 
explained next. 

Estimates ogfour parameters are required for this model, rather than the three in the 

dummy variable rnodel (13-19); thus one advantage of the dummy model is that it conserves 

one extra degree of freedom. The disadvantage of the dummy model is that it requires an 

additional prior restriction—that the two slopes are equal. But this is not always a dis¬ 

advantage. For instance, in our example it may be better to assume the two slopes equal 

than to independently fit a wartime function to only five observations. The very small 
wartime sample nay yield a very unreliable estimate of slope, and it may make better sense 
to pool all the dgta to estimate one slope coefficient. 

11 This is equivalent to a simple regression of B on W. Because of the peculiar scatter 

involved, this regression line would pass through these two means; thus their difference 
represents the effect of Won B. 
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B 

x 

x 

Average B (wartime)—*~ x 
X 

X 

5.55 Average B (peacetime) 

Estimate of y, the effect of wartime on B. 
(Compare this biased estimate (3.45) with the 
unbiased estimate (2.43) in L% in part (a)I 

0 
1 
1 W 

(b) 

FIG. 13-8 Error when one explanatory variable is ignored, (a) Biased estimate of slope 

(the effect of Y) because the categorical variable W is ignored. (b) Biased estimate of the 

effect of IF because the numerical variable I" is ignored. 

(b) Seasonal Adjustment 

To illustrate, consider a spectacular example from real life. Suppose we 

wish to examine how department store sales of jewelry increase over time. 

When we plot quarterly sales (in Table 13-4) against time as in Figure 13-9a, 
we note how sales shoot up every fourth quarter because of Christmas. 

Since we are interested in the long-term secular increase in sales, these 

strange Christmas observations should be discounted. This calls for a dummy 
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Source: Dominion Bureau of Statistics, Ottawa. 

variable12 Q4 (for fourth quarter) so that our model is 

S = A) + PiT + ftzQz + e (13-23) 

Even this model may not be adequate. If allowance should also be made for 

shifts in the other quarters, dummies Q2 and Q3 should be added. A dummy 

12 There are three points in the analysis at which we might conclude that explicit account 

should be taken of seasonal swings. We may expect a strong seasonal influence from prior 

theoretical reasoning. Or, such an influence may be discovered after we plot the scatter. 

Finally, it may be discovered by examining residuals after the regression is fitted. Clearly 
those observations indicated by arrows (in Figure 13-9a) have consistently high residuals. 

To explain this, we look for something they have in common. Their common property is 

that they all occur in the fourth quarter. Hence the fourth quarter is introduced as a dummy 

regressor. This technique of “squeezing the residuals till they talk” is important in every 

kind of regression, not just time series; used with discretion, it indicates which further 

regressors may pe introduced in order to reduce bias and residual variance. 
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FIG. 13-9 Secular growth in Canadian jewelry sales, with and without seasonal ad¬ 

justment. (a) Inadequate simple regression of S on Talone. (b) Multiple regression of S on 

T, including seasonal adjustment. 

ft is not needed for the first quarter, because ft, ft, and ft measure the 

shift from a first quarter base. (Whether or not to include the various 

regressors ft, ft, ft, can be decided on statistical grounds, by testing for 

statistical significance. It is common to include them all in such a test, and 

reject or accept them as a group. But such a statistical test on data as extreme 

as ours would be superfluous.) Our modified model is now 

S’ = * + PiT + (Aft + Aft + Aft) + e (13-24) 

The least squares fit13 is graphed in Figure 13-96. Notice that our 

seasonal adjustment is exactly the same every year, i.e., each year there is 

13 The least squares fit to this model was calculated by a method similar to that of Table 

13-3. Equation system (13-4) was extended to a system of 5 estimating equations for the 

5 unknowns. 
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the same upwjard shift (ft) in our fit between the first and second quarters. 

(These seasonal shift coefficients need not always be positive, as in our 
example.) 

By contrast, the simple regression of -Son T without quarterly adjustment 

is graphed in -igure 13-9a. It is a poor fit, with large residual variance. Even 

worse, the calculated slope showing the relation of S to T is biased, for the 

same reasons as in the bond example of part (a). 

(c) Seasonal Adjustment without Dummies (Moving Average) 

Dummy variables are not the only means of seasonally adjusting data. 

Another comAion method is to take a moving average (over a whole year) of 

the time series, as shown in Table 13-5. Note how the wild seasonal swing at 

Christmas is ironed out in this averaging process. The desired relation of* sales 

to time can now be estimated by a simple regression of seasonally adjusted 
S' on T. 

It is interesting to compare this method with the dummy variable 

alternative. Ai apparent disadvantage is that a total of three observations 

are lost at th e beginning and end of the time series, in order to get the 

moving average started and finished. However, although it is less evident, 

the same loss is involved in using dummy variables, since three degrees of 

freedom are lqst in estimating the shift coefficients ft, ft, and ft. 

An advartage of the moving average method is that it is not necessary 

to assume a constant seasonal shift; thus the adjustment for any quarter 

Table 13-5 Moving Average 

S (Unadjusted) 

S' (Adjusted by Four 
Quarter Moving 

Average) 

1 24 
2 29 

1957 3 29 
4 50 
1 24. 
2 30 

1958 3 29 
4 51 

|(24 + 29 + 29 + 50) = 33 
1(29 + 29 + 50 + 24) = 33 

= 33.25 
= 33.25 
= 33.5 
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varies from year to year. The advantage of dummy variables is that both 

seasonal shifts and the relation of S to T are estimated simultaneously in the 

same regression. (A moving average adjustment is only the first stage in a 

two-step process; only after it is completed can S' be regressed on T.) 
Another advantage is that the dummy coefficients (02, ft, anci ft) give an 

index of the average seasonal shift, and tests of significance on them can 

easily be undertaken using standard procedures. 

PROBLEMS 

13-5 Referring to the jewelry sales in Figure 13-9, predict the sales S for the 

next quarter (T = 17, the first quarter of 1961) 

(a) Using the simple regression of S on T alone; 

(b) Using the multiple regression of S on T, including seasonal adjust¬ 

ment. Is this any better than (a)? 

13-6 Referring to the two years of jewelry sales in Table 13-5, 

(a) Compute the simple regression of S' (adjusted) on T; 
(b) Compute the simple regression of S (unadjusted) on T; 
(c) Of the 2 slopes in (a) and (b), 

(1) Which do you think better shows the time trend of sales? 

(2) Which agrees more closely with the slope bx — .075 estimated 

by using seasonal dummies? 

13-7 Referring to the jewelry sales in Table 13-4, consider the eight quarters 

from the 4th to the 11th quarter. Supposing this were the only data 

available: 
(a) Fit a simple regression line of S on T7, without quarterly adjustment; 

(b) Is your slope estimate (time trend) unbiased? Why? 

13-8 Referring to Figures 13-6 and 13-8a, suppose the last 4 years are 

missing. If a simple regression of B on Y is calculated (ignoring W), 
will the bias of the slope be less or greater than before (when all the 

years were used)? Why? 

13-7 REGRESSION, ANALYSIS OF VARIANCE, AND 
ANALYSIS OF COVARIANCE 

(a) Regression with Dummies Equivalent to Analysis of Variance or 

Analysis of Covariance 

If all the independent variables are categorical (dummy) variables, then 

regression analysis is essentially the familiar analysis of variance (ANOVA). 
This can be proved in general; but it is more instructive to illustrate it in 
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the simplest c|se of one independent dummy variable. In Problem 10-3 we 

applied analysis of variance to the problem of whether the income (F) of 

men and women differs. Dummy regression could alternatively have been 
used, with a model of the form: 

where 
Y — a + @G + e 

<7 = 0 for men 

= 1 for women. (13-25) 

The data js analyzed in Table 13-6. We find the same value {b = —8) 
for the difference in groups that we found in Problem 10-3 (F1 - f2 = -8), 

Note also that'in both tests the^residual variance (48) is the same; so is the 

standard errorjof estimate (V48 V1/2). Hence the two procedures are seen 
to be identical^ 

We referred to our earlier example of explaining bond sales, as a regres¬ 

sion on a numerical variable (income) and a dummy variable (wartime). 

This could alternatively be described as a combination of standard regression 

analysis and analysis of variance. Technically, this combination is referred 

to as analysis of covariance (ANOCOVA), although this term is often 

reserved for ccses in which the effect of the dummy variable (wartime) is 

of prime interest and the other variable (income) is explicitly introduced 

only to remove its noise effects (i.e., to prevent the sort of error shown in 
Figure 13-8 b). 

Another application of the analysis of covariance might be a study of 

the effects of racial discrimination on income; here the major concern would 

be the effect on income of the dummy variable (negro versus white), with a 

simultaneous regression on other numerical variables (years of experience, 

education, etc.3 simply a means of keeping these other influences from 
biasing the result. 

(b) Summary 

Multiple regression is an extremely useful tool with many broad applica¬ 

tions. We defi le three special cases, distinguished by the nature of the 
independent variables: 

1. “Standard regression” is regression on only numerical variables. 

2. ANOVA is equivalent to regression on only categorical (dummy) 
variables. 

3. ANOCOVA (analysis of covariance) is regression on both categorical 
and numerical Variables 
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SlOtoirn€qrrre C°mpared USing the hypothetical data of Figures 
13 10 to 13-13, which show the possible ways that mortality may be ana wed 

see 14=5,r,n ,he proc“7 - -- 
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mortal,ty rate ,s explained solely by higher income. UK' 

applied with a line fitted ,o the scatter in Figure 13-11 

of Figure ,3-10 9 * aPP"ed’ “ ’S to use the ungrouped data 
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.v.M^life'yS;*^ L'" r'fr<»i» line 
Yet if China is graphed I«t ^ 

nationality does matter. Thus’, the conclusion denend be concluded that 
nationality variable. ’ pends on the arbitrary ordering of our 



Younger Middle Older 

Age group 

FIG. 13-11 x is grouped into classifications, and ANOVA may be used. 

Nationality X 

FIG. 13-12 X is categorical, and ANOVA must be used. 

282 



REGRESSION, ANALYSIS OF VARIANCE AND COVARIANCE 283 

FIG. 13-13 Analysis of covariance for a categorical variable (nationality) and numerical 

variable (income). 

In sumirary, standard regression is the more powerful tool whenever 

the independent variable X is numerical and the dependence of Y on X can 

be described by a simple function. Analysis of variance is appropriate if the 

independent variable is a set of unordered categories. 

PROBLEMS 

13-9 

*13-10 

13-11 

Construct a confidence interval for /3 using the data in Table 13-6. 

Compare this with the answer to Problem 10-36. 

Jsing the data in Problem 10-2, estimate the regression of yield on 

ertil|zer type, using two dummies. Compare with your answer to 

Problem 10-2. 
rhe following is the result of a test of gas consumption on a sample 

-\f f rare 

Miles Per Gallon Engine Horsepower 

Make A 21 210 

18 240 

15 310 

Make B 20 220 

18 260 

15 320 

(a) Determine the difference in the performance (miles per gallon) 

of tie two makes, allowing for horsepower differences. 

(b) Graph your results as in Figure 13-13. 
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(13-12) (a) Based on the following sample information, use the analysis of 

covariance to describe how education is related to father’s income 
and place of residence. 

(b) Graph your results. 

Years of Formal Father’s Income 

Education (E) (F) 

Urban Sample 15 $8,000 
18 11,000 
12 9,000 
16 12,000 

Rural Sample 13 $5,000 
10 3,000 
11 6,000 
14 10,000 



chapter 14 

Correlation 

14-1 SIMP LE CORRELATION 

Simple regression analysis showed us how variables are linearly related; 

correlation aialysis will show us the degree to which variables are linearly 

related. In regression analysis, a whole mathematical function is estimated 

(the regressiojn equation); but correlation analysis yields only one number— 

an index designed to give an immediate picture of how closely two variables 

move together. In correlation analysis, we need not worry about cause and 

effect relations. Correlation between X and Y can be estimated regardless 

of whether: (a) X affects Y, or vice versa; (b) both affect each other; or (c) 

neither directjy affects the other, but they move together because some third 

variable influences both. Although correlation is a less powerful technique 

than regression, the two are so closely related mathematically that correlation 
often becomes a useful aid in regression analysis. 

(a) The Popu lation Correlation Coefficient p (rho) 

In equation (5-22) we have already defined a useful index of how two 

random variables move together: aXY, the covariance of X and Y. The 
variables usedj there were deviations from the mean: 

X~^x 

Y — jUy 04-1) 

It will be usefjul to express these deviations in terms of fully standardized 
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units; i.e., define the new variables: 

X — u 

y-M: 

(14-2) 

Correlation pvr is similar to covariance aXY in (5-22), the only difference 

being that the variables in (14-2) replace those in (14-1). Thus 

Population correlation 

This will be interpreted more fully in Section 14-1 (c) below; for now we turn 

our attention to r, the sample correlation coefficient used to estimate this 

(generally) unknown population p. 

(b) The Sample Correlation Coefficient r 

By analogy with (14-3) 

Sample correlation 

A 1 1-tx( - X\IYt - 7\ (14-4) 

r-XY n —llrA A sr ! 

Now consider an intuitive development of this index; (because of the simi¬ 

larity of the two concepts, some of this interpretation will closely paralle 

the development of covariance in Chapter 5-3). As our example, we use t e 

marks on a verbal (7) and mathematical (X) test scored by a sample of eight 

college students. Each student's performance is represented by a dot on the 

scatter shown in Figure 14-lu; this information is set out in the first two 

columns of Table 14-1. . 
Since we are after a single measure of how closely these variables are 

related, our index should be independent of our choice of origin. So we shift 

both axes in Figure 14-16, with both x and y now defined as deviations from 

the mean; i.e., A 
z = X - if and y = Y — Y (14-5) 

Values of the translated variables are shown in columns 3 and 4 of Table 14-1. 
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Suppose;we multiply the x and y coordinate values for each student, 
and sum them all. This (2 %y) gives us a good measure of how math and 
verbal results; tend to move together. Whenever an observation such as Px 
falls in the first quadrant in Figure 14Tb, both its x and y coordinates will 
be positive, and their product xy positive. This also holds true for any ob¬ 
servation in tne third quadrant, with both coordinates negative. The product 
is negative only for observations such as Pz in the second or fourth quadrant, 
(one coordinate positive, the other negative). If X and Y move together, 
most observations will fall in the first and third quadrants; consequently 
most products xy will be positive, as will their sum—a reflection of the 
positive relati Dnship between X and Y. But if X and Y are negatively related, 
(i.e., when one rises the other falls), the original scatter will run downhill 
rather than i.phi 11; most observations will fall in the second and fourth 
quadrants, yielding a negative value for our 2 XV index. We conclude that 
as an index of correlation, ^xy at least carries the right sign. Moreover, 
when there iss no relationship between X and T, and our observations are 
distributed evjenly over the four quadrants, positive and negative terms will 
cancel, and this index will be zero. 

There are just two ways that 2 xy can be improved. First it depends on 
the units in which x and y are measured. (Suppose the math test had been 
marked out of 50 instead of 100; a; values and our 2 XV index would be only 
half as large-j-even though the degree to which verbal and mathematical 
performance Is related would not have changed.) This difficulty is avoided 
by measuring; both x and y in terms of standard units; i.e., both x and y 
are divided by their observed standard deviations. 

Xj - X 

Ny 

_ ? U4-6) 

Sy 

where, of coujrse, 

4 = -L-i I (V - Y2 
n — 1 

and 

4 =—f-rKv, - yf 
n — 1 

This step is shown in Figure 14-1 c. 

(14-7) 

Our new index 2 °xy_i has only one remaining flaw: it is dependent on 

sample size, (puppose we observed exactly the same sort of scatter from a 
sample of double the size; our index would also double, even though the 
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FIG. 14-2 Scatter diagrams and their associated correlation coefficients. 

picture of how these variables move together is the same.) To avoid this 
problem we divide by the sample size n—or rather n — 1, the divisor in 
(14-7). This yields the sample correlation coefficient: 

'• = -7 2 Mi 
n — 1 

(14-8) 

which is recognized to be our definition in (14-4). r may be expressed in 
terms of the original observations (Xi9 TJ, by substituting sx and Sy in 



(14-7) into ( 

Example 

The dat| 
coefficient bet 

Some id 

4-4) and cancelling (n 

SIMPLE CORRELATION 

1): 

*KY, - Y) 

XfZ(Y, - Yf 
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: (14-9) 

in Table 14-1 are applied to (14-9) to calculate the correlation 
ween the math and verbal scores of our sample of eight students. 

654 

/(1304)(836) 
= .62 (14-10) 

lea of how r behaves is given in Figure 14-2; especially note 
diagram b. When there is a perfect linear association, the product of the 
coordinates ijn every case is positive; thus, their sum (and the resulting co¬ 
efficient of correlation) is as large as possible. The same argument holds for 
the perfect inverse relation of Y and X shown in diagram d. This suggests 
that r has anjupper limit of +1 and a lower limit of -1. (This is proved in 
Section (f) below.) 

Finally qompare diagrams e and/. Our calculation of r in either case is 
zero, becaus^ positive products of the coordinates are offset by negative 
ones. Yet whjen we examine the two scatters, no relation between X and Y 

is confirmed ijn e—but a strong relation is evident in /; in this case a knowledge 
of X will tell jus a great deal about Y. A zero value for r therefore does not 

ation”; rather, it means “no linear relation.” Thus correlation 
of linear relation only; it is of no use in describing nonlinear 

imply “no re 
is a measure 

relations. This brings us to the next critical question: “In calculating r, 

what can we Infer about the underlying population p?” 

(c) Inference from r to 

Before we can draw any statistical inference about p from our sample 
statistic r, we must clarify our assumptions about the parent population 
from which our sample was drawn. In our example, this would be the math 
and verbal mirks scored by all college entrants. 

This population might appear as in Figure 14-3, except that there would, 
of course, be many more dots in this scatter, each representing another 
student. If w| subdivide both X and Y into class intervals, the area in our 
diagram will jbe divided up in a checkerboard pattern. From the relative 



292 CORRELATION 

FIG. 14-3 Bivariate population scattergram (math and verbal scores). 

frequency (sampling probability) in each of the squares, the histogram in 
Figure 14-4 is constructed.1 The histogram would have approximately the 
shape of the probability density in Figure 14-5. To conclude: in examining 
a random student, neither his math score X nor his verbal score Y is pre¬ 
determined; both are random variables. Compare this with our example in 
Chapter 11, where one variable (fertilizer) was predetermined. 

This distribution in Figure 14-5 is called “bivariate normal.” This 
means that the conditional distribution of X or of Y is always normal. 
Specifically, if we slice the surface at any value of 7, (say 70), the shape of 
the resulting cross section is normal. Similarly, if we select any X value 
(say X0) and slice the surface in this other direction, the resulting cross section 

is also normal. 
It is worthwhile pausing briefly to consider the alternative way that the 

bivariate normal population shown in three dimensions in Figure 14-5 can 
be graphed in two dimensions. Instead of slicing the surface vertically as we 
did in that diagram, slice it horizontally as in Figure 14-6. The resulting 

FTG. 14-4 Bivariate population histogram. 

1 Our example is of a finite population, but a similar argument would apply for an infinite 

population. Moreover, instead of using heights for probabilities, we could use dots of 

different sizes; see Figure 5-4a. 
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probability density. This “isoprobability” curve is marked “c” in the two 

dimensional k, Y space in Figure 14-7; isoprobability ellipses defined when 

this surface i| sliced horizontally at higher and lower levels are also shown. 

(Once again, many social scientists will recognize this as the familiar strategy 

of forcing a Three-dimensional function into a two-dimensional space by 

showing one tariable as a set of isoquants, isobars, or whatever.) It will also 

be useful in figure 34-7 to mark the major axis (d) common to all these 

isoprobability ellipses. If the bivariate normal distribution concentrates about 

its major axis, p increases. Several examples of populations, and their 

associated correlation coefficients p are shown in Figure 14-8. 

Provider that the parent population is bivariate normal, inferences 

about the population p can easily be made from a sample correlation r. 

Recall the inferences about tt from P in Chapter 8. Using the same reasoning 

that established Figure 8-4, Figure 14-9 is constructed. Thus from any 

sample r, a 9*5% confidence interval for the population p can be found. For 

example, if a sample of 25 students has r = .80, the 95% confidence interval 

I P(Y,X) 

1 X 

FIG.! 14-6 An isoprobability ellipse from a bivariate normal surface. 





SIMPLE CORRELATION 295 

FIG. 14-9 95vo confidence bands for correlation p in a bivariate normal population, for 

various sample sizes n. (This chart is reproduced with the permission of Professor E. S. 

Pearson from JF. N. David, Tables of the Ordinates and Probability Integral of the Distri¬ 

bution of the Correlation Coefficient in Small Samples, Cambridge University Press, 1938.) 
j t ■ 

for p is read vertically as 
.58 < p < .90 (14-11) 

Becausi of space limitations, we shall concentrate in the balance of this 

chapter on sample correlations, and ignore the corresponding population 

correlations But each time a sample correlation is introduced, it should be 

recognized mat an equivalent population correlation is defined similarly, and 

inferences niay be made about it from the sample correlation. 

PROBLE 

14-1 

S 
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From the above random sample of 5 son and father heights, find 
(a) The sample correlation r; 

(b) The 95% confidence interval for the population correlation p; 

(c) At the 5% significance level, can you reject the hypothesis that 
p = 0? 

14-2 From the following sample of student grades, 

Student First Test X Second Test Y 

A 80 90 
B 60 70 
C 40 40 
D 30 40 
E 40 60 

(a) Calculate r; and find a 95% confidence interval for p; 

(b) Calculate the regression of Y on X, and find a 95 % confidence 
interval for /?; 

(c) Graph the 5 data points and the estimated regression line; 

(d) At the 5% significance level, can you reject 

(1) The null hypothesis p = 0? 

(2) The null hypothesis fi — 0? 

(d) Correlation and Regression 

If regression and correlation analysis were both applied to the same 

scatter of math (X) and verbal (T) scores, how would they be related? 

Specifically, consider the relation between the estimated correlation r, and 

the estimated regression slope b. In Problem 1 l-4(b) it was confirmed that 

b = 
2 xv 
I*2 

and from (14-9) noting that both x and y are defined as deviations 

(14-12) 

r = 2xv 
'JlJylly* 

When (14-12) is divided by (14-13) 

(14-13) 
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If we divide both the numerator and denominator inside the square root sign 

by n — 1 

- = /2 ?/2A/7 — 0 = Fr 

r \ 2 #2/(w ~ I) Ay 
(14-15) 

(14-16) 

This close correspondence of b and r will play an important role in the 

argument later. Note that if either r or b is zero, the other will also be zero. 

(e) Explained- and Unexplained Variation 

In Figure 14-10 we reproduce our sample of math (V) and verbal (F) 

scores, along !with the fitted regression of Y on X, calculated in a straight¬ 

forward way from the information set out in Table 14-1. Now, if we wished 

to predict a Student’s verbal score (T) without knowing X, then the best 

prediction wokild be the average observed value (F). At xi9 it is clear from 

this diagram that we would make a very large error—namely (Yi — T), the 

deviation in X from its mean. However, once our regression equation has 

been calculated, we predict Y to be Note how this reduces our error, 

since (Yi — F)—the large part of our deviation—is now “explained.” This 

leaves only a! relatively small “unexplained” deviation Yi — The total 

yf- Y- total 
deviation 

Fj - = deviation not 
explained by regression 

Yi — Y = deviation 
explained by regression 

FIG. 14-10 The value of regression in reducing variation in Y. 
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deviation of Y is the sum: 

(Yi-Y) = ( t, -¥)+(¥;- ?t), for any i (14-17) 

total deviation = explained deviation + unexplained deviation 

It follows that 

2(T- = - >0 + 2 (Yi - Yi) (14-18) 

What is surprising is that this same equality holds when these deviations are 

squared, i.e. 

2(Yt- Yf = j - ^)2 + 2 (rf - tf (14-19) 

or, total variation = explained variation + unexplained variation 

where variation is defined as the sum of squared deviations. Recall a very 

similar conclusion proved in analysis of variance (10-16); (14-19) can be 

established in much the same way.2 

Since we may write, according to Problem 11 -4(a), 

(L - Y) = yt = bxi (14-21) 

it is often convenient to rewrite (14-19) as 

' 2 (Y, - Yf = b* 2 ^ + 2 (Yt - (14-22) 

total variation = variation explained by X + unexplained variation 

This equation makes explicit the fact that explained variation is that ac¬ 

counted for by the estimated regression coefficient b. This procedure of 

decomposing total variation and analyzing its components is called “analysis 

of variance applied to regression.” The components of variance are displayed 

in the ANOVA Table 14-2 similar to Table 10-6, (bearing in mind3 that we 

2 For proof, square both sides of (14-17), and sum over all values of /: 

2 {¥, -Yf= 2 [(7 - F) + (Y, - y,)p 
= 2 (Y, - Yf + 2 (Yt — 'Y't + 22 (Y, - F)( Y - Y,) (14-20) 

The last term can be rewritten using (14-21): 

IbJ'XXY, - Y,) 

But this sum vanishes: in fact it was set equal to zero in the normal equation (11-15) used 

to estimate our regression line. Thus the last term in (14-20) disappears, and (14-19) is 
proved. This same theorem can similarly be proved in the general case of multiple regression. 

A further justification of the least squares technique (not mentioned in Chapter 11) 

is that it results in this useful relation between explained, unexplained, and total variation. 

3 And also noting that our terminology for degrees of freedom has changed, e.g., the total 

number of sample observations is now designated simply as n, rather than nr. 
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(a) General 
Table 14-2 ANOVA Table for Linear Regression 

Source of Variation 
Degrees of 

Variation Freedom (d.f.) 

| V (f — Y)2 
Explained (by regression) ~ ^ ^ *2 1 

Unexplained residual) £ (- YJ2 n - 2 

Total 2(Tr-F)2 n- 1 

(b) For Sample of Verbal and Math Scores (Table 14-1) 

Variance 

b2 J - 
I(T, - E)a 

n - 2 

Sources of Variation Variation 
Degrees of 

Freedom (d.f.) Variance 

Explained (by regression) 328 1 328 
Unexplained (residual) 

Total 

508 6 84.7 

836 A/ 7 V 

are now explajning Y, rather than X). From this, a null hypothesis test on /S 

may be constructed; as before, the question is whether the ratio of the ex¬ 

plained variaijce to unexplained variance is sufficiently greater than 1 to 

reject the hypothesis that Y is unrelated to X. Specifically, a test Of the 
hypothesis 

Ho'-P = 0, (14-23) 
involves forming the ratio 

p __ variance explained by regression 

unexplained variance 

&22>? 
(14-24) 

A 5% significance test involves finding the critical F value which leaves 5% 

of the distribution in the right-hand tail. If the sample F value calculated 
from (14-24) exceeds this, reject the hypothesis. 

We must jmphasize that this is just an alternate way of testing the null 

hypothesis (14J-23). The first method—using the t distribution to find the 

confidence interval for (3 (as in Section 12-7)—is usually preferable. 
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Note that the F and t distributions are related, in general, by 

F= t2 

where there is one degree of freedom in the numerator of F. Since the F 

calculated in (14-24) is just the t2 of (12-36), the ANOVA E-test of this 

section is justified. 

Example 

In Table 14-2(b) the ANOVA calculations are presented for our verbal 

and math score example. (The necessary computational details are shown on 

the bottom of Table 14-1.) To test 0 = 0, (14-24) is evaluated to be: 

F = = 3 87 (14-25) 
84.7 

Since this falls short of 5.99, the critical 5% point of F, we do not reject the 

null hypothesis. 
The same test of 0 = 0 could be equivalently done using (12-36): 

9.2/v'l304 

Since this falls short of 2.45, (the critical value leaving a total of 5 % in both 

tails of the t distribution), the null hypothesis is not rejected. Since r2 = F, 

(both for the calculated and for the critical values), the same conclusion 

must follow from both tests. 
Alternatively, a 95% confidence interval for 0 could be constructed 

from (12-30): 
0 = .50 ± (2.45) .254 

= .50 ± .62 

This includes the value /} = 0, once more confirming that H0 cannot be 

rejected. (Of course, this inconclusive result may be partly due to the smallness 

of the sample.) 

(f) Interpretation of Correlation 

These variations in Y are now related to r. It follows from (14-14) that 
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Substituting this value for b in (14-22) 

y(y<- Yf = r2^y? + 2iYi- L)s (14-27) 

Noting that T y* is by definition £ (T, - T)2, the solution for r2 is 

y.(Y,~ Y?-i(Yt-w = ;.2 

SIX - Yf 
Finally, we cm reexpress the numerator by noting (14-19). Thus 

^ (y. - Yf explained variation of Y 

1 ~ ^ (Yi - Yf ~~ total variation of Y 

This equation provides a clear intuitive interpretation of r2. (Note that 

this is the square of the correlation coefficient r, often called the coefficient 

of determination.) It is the proportion of the total variation in Y explained 

hv fitting, the'regression. Since the numerator cannot exceed the denominator, 

the maximum value of the right-hand side of (14-29) is 1. Since the maximum 

value of r* is 1, the limits on r are ±1. These two limits were illustrated in 

Figure 14-2F in part (b), r = 1 and all observations lie on a straight line 

running upliill; in part (d), r = -1 and this perfect inverse correlation 

reflects the fact that all observations lie on a straight line running downhill. 

In either caJe, a regression fit will explain all the variation in Y. 
When /! = 0 (and r2 = 0) the explained variation of Y is zero and a 

regression line explains nothing; i.e., the regression line will be parallel to 

the X-axis, idth b = 0. Thus r = 0 and b = 0 are seen to be equivalent ways 

of formally ’stating “no observed linear relation between X and Y. 

(g) Regression Analysis Applied to a Bivariate Normal Population 

In Table 14-1 a regression was calculated for sample values assumed 

taken from!a bivariate normal population. We now ask: “Is the h we cal¬ 

culated an Estimator of a population or does p even exist? For a bivariate 

normal population, does there exist a true regression line of Y on XI It 

will now be shown that the answer is yes. 
Our assumed bivariate normal population is shown m Figure 14-11 as 

a set of isobrobability ellipses, with major axis d. Now consider the straight 

line Y = J+ PX, defined by joining points of vertical tangency such as 

and P9. Each of these vertical tangents defines a cross section slice of Y 

which is nlrmal. Concentrating on the slice through PXQX, for example, we 
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Math score X 

FIG. 14-11 Two regression lines found from the isoprobability ellipses. 

see that the mean of these Y values occurs at the point of tangency P. • at 

t is point our vertical line touches its highest isoprobability ellipse, and the 

highest point on any normal curve is at the mean. Thus we see that the means 

of the Y populations lie on the straight line Y = a + pX. Next, the variance 

ot the Y populations can be shown to be constant.4 Thus the assumptions of 

the regression model (12-2) are satisfied by a bivariate normal (correlation) 

population. The line Y — a + /9JT may therefore be regarded as a true linear 
regression of Y on X. 

Thus if we know a student’s math score and we wish to predict his verbal 

score this regression line would be appropriate, (e.g., if his math score 

weie T1; we would predict his verbal score to be PJ. It is important to fully 

slSiSd,rr,SHem 'ae a CUri°,US C°fdusion' since in Fig^ 14-5 the size of each cross section 
slice differs depending on the value of X0. However each slice p(X„, Y) must be adjusted 

by division by/,(*„) in order to define the conditional distribution of Y. Thus recalling 

he argument in Section 5-1 (c), and in particular equation (5-10), the conditional distribu8 

P(YIX0) 
P(X0, Y) 

In fact, this adjustment makes all the conditional distributions 
thus have the same variance. 

of Y “look alike,” and 
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understand why we would not predict Q1; i.e., we do not use the major axis 

of the ellipse (line d) for prediction, even though this represents “equivalent” 

performance cn the two tests. Since this student is far above average in 

mathematics, an equivalent verbal score seems too optimistic a prediction. 

Recall that there is a large random element involved in performance. There 

are a lot of students who will do well in one exam, but poorly in the other; 

technically, p is less than 1 for this population. Therefore, instead of pre¬ 

dicting at Qlt (we are more moderate and predict at Px—a sort of average5 

of “equivalent^ performance Qx and “average” performance piY. 

This is the origin of the term regression. Whatever a student’s score in 

math, there will be a tendency for his verbal score to “regress” toward 

mediocrity (i.e’., the average).6 It is evident from Figure 14-11 that this is 

equally true fo|r a student with a math score below average; in this case the 

predicted verbal score regresses upward toward the average. 

Another nteresting observation is that the correlation coefficient 

between X and Y is unique (i.e., pXY *s identically pF Y); but there are two 

regressions, the regression of Y on X and the regression of X on Y. This is 

immediately evident if we ask how we would predict a student’s math score 

(.X) if we kneW his verbal score (e.g., F<5). 

Exactly thje same argument holds. Equivalent performance (point Q& on 

line d) is a baa predictor; since he has done very well in the verbal test, we 

would expect him to do less well in math, although still better than average. 

Thus, the best prediction is P6 on the line X — a * + 7, the regression 

of X (math) on Y (verbal). This is the direct analogue to our regression of 

Y on X, but ir this case our regression is defined by joining points (P6, P4, 

etc.) of horizontal, rather than vertical tangency. Each of these horizontal 

tangents defines a normal conditional distribution of X, given Y; each of 

these distributions has the same variance, with its mean lying on this regres¬ 

sion line thus'satisfying our conditions of a true regression of X on Y; 

hence least sqilares values a* and b* are used to estimate a* and ft*. 

5 P1 is in fact a weighted average of Qx and juY> with weights depending on p. Thus in the 

limiting case in which p = 1, X and Y are perfectly correlated, and we would predict Y 

at Qv At the other limit, in which p = 0, we can learn nothing about likely performance 

on one test from the result of the other, and we would predict Y at /uY. But for all cases 

between these two limits, we predict using both Qx and juY; and the greater the p, the 
more heavily Q1 is weighted. 
6 A classical case, encountered by Pearson & Lee (Biometrika, 1903), involved trying to 

predict a son’s he ght from his father’s height. If the father is a giant the son is likely to be 

tall; but there ar^ good reasons for expecting him to be shorter than his father. (For 

example, how tal! was his mother? And his grandparents? An so on.) So the prediction 
for the son was derived by “regressing” his father’s height towards the population average. 
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Math score X 

FIG. 14-12 Regressions estimated from a sample of verbal and math scores. 

Example 

Our sample of eight student’s scores shown in Figure 14-1 and Table 

14-1 was, by assumption, drawn from a bivariate normal population as 

shown in Figure 14-11. We have already estimated p with 

r = .62 (14-10) repeated 

And from Table 14-1, we estimated Y — a + fiX with 

Y = 50 + .50x (14-30) 

= 20 + .50A (14-31) 

We now estimate X = a* + /S* Y. The coefficients in this simple regression 

of X on Y are calculated in Table 14-1; this involves using the estimating 

equations (11-13) and (11-16), taking care to interchange Xand Ythroughout. 

Thus 

A = 60 + .78y 

= 60 + .78(7- 7) (14-32) 

= 21 + .78 7 (14-33) 

The two estimated regressions (14-31) and (14-33) are shown in Figure 

14-12. Thus, for example, the predicted verbal score of a student with a math 

result of 90 is 65; and the predicted math score of a student with a verbal 

result of 30 is 44.4. 
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(h) When Coirelation, When Regression? 

Both the standard regression and correlation models require that Y be 

a random variable. But the two models differ in the assumptions made 

about X. The regression model makes few assumptions about X, but the 

more restrictive correlation model of this chapter requires that X be a random 

variable, having with 7a bivariate normal distribution. We therefore con¬ 

clude that the standard regression model has wider application. Regression 

may be used tor example to describe the fertilizer-yield problem m Chapter 

11 where X Was fixed, or the bivariate normal population of X and Y m 

this chapter. However, the standard correlation model describes only the 

latter. (It is tr ue that r2 can be calculated even when X is fixed as an indication 

of how effectively regression reduces variation; but r cannot be used for 

inferences about p in Figure 14-9.) . 
In addit on, regression answers more interesting questions. Like cor¬ 

relation, it indicates if two variables move together; but it also estimates 

how. Moreover, it can be shown that a key issue in correlation analysis t e 

test of the ni 11 hypothesis 

H0: p = 0 04-34) 

can be answered directly from regression analysis by testing the equivalent 

null hypothesis 

H0:@ = 0 O4-35) 

Thus rejection of /? = 0 implies rejection of p = 0, and the conclusion that 

correlation does not exist between X and Y. If this is the only correlation 

question, thjen it can be answered by the regression test of (14-35), and 

there is no rjeed to introduce correlation analysis at all. 
Since regression answers a broader and more interesting set of questions, 

(and some correlation questions as well), it becomes the preferred technique; 

correlation js useful primarily as an aid to understanding regression, and as 

an auxiliary! tool. 

(i) “Nonsense” Correlations 

In intei preting correlation, one must keep firmly in mind that absolutely 

no claim is tnade that this necessarily indicates cause and effect. For pxample 

suppose thlt the correlation of teachers’ salaries and the consumption ol 

liquor over I a period of years turns out to be .98. This would not prove that 
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teachers drink; nor would it prove that liquor sales increase teachers’ salaries. 

Instead, both variables moved together, because both are influenced by a 

third variable—long-run growth in national income. If only third factors of 

this kind could be kept constant-or their effects fully discounted—then 

correlation would become more meaningful. This is the objective of partial 
correlation in the next section. 

Correlations such as the above are often called “nonsense” correlations. 

It would be more accurate to say that the observed mathematical correlation 

is real enough, but any naive inference of cause and effect is nonsense 

Moreover, it should be recognized that the same charge can also be leveled at 

the conclusions sometimes drawn from regression analysis. For example, a 

regression applied to teachers’ salaries and liquor sales would also yield a 

statistically significant b coefficient. Any inference of cause and effect from 
this would still be nonsense. 

Although correlation and regression cannot be used as proof of cause 

and effect, these techniques are very useful in two ways. First, they may 

provide further confirmation of a relation that theory tells us should exist 

(e.g., prices depend on wages). Second, they are often helpful in suggesting 

causal relations that were not previously suspected. For example when 

cigarette smoking was found to be highly correlated with lung cancer, 

possible links between the two were investigated further. This included more 

correlation studies in which third factors were more rigidly controlled, as 

well as extra-statistical studies such as experiments with animals and 
chemical theories. 

PROBLEMS 

14-3 For the following random sample of 5 shoes, find 

(a) The proportion of the variation in Y explained by regression on X, 
(b) The proportion unexplained. 

(c) Whether Y depends on W, at the 5 % significance level. Answer this 

in three alternate ways—using the Ftest, t test, and a 95% confidence 
interval. 

X — Cost of Shoe Y = Months of Wear 

10 8 
15 10 
10 6 
20 12 
20 9 



SIMPLE CORRELATION 307 

14_4 Supposed bivariate normal distribution of scores is perfectly symmetric, 

with p 4 .50 and with isoprobability ellipses as follows: 

Y 

True or jFalse? If false, correct it. 

(a) The; regression curve of Y on X is 

Y = 80 + .5(X - 80) 

(b) The regression line of Y on X has graph as follows: 

Y 

(c) The. variance of Y is 1/4 the variance of X. 

(d) The, proportion of the Y variation explained by X is only 1/4. 

j (e) Thus the residual Y values (after fitting X) would have 3/4 the 

i variance of the original Y values., 

14-5 Let b aijid 'b# be the sample regression slopes of Y on X, and X on Y, 

for any given scatter of points. 

True or False? If false, correct it. 

(a) b = 

(b) b* 

(c) bb 
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(d) If b > 1, then b* < J necessarily. 

(e) If b < 1, then b* > 1 necessarily. 

14-6 In the following graph of 4 students’ marks find geometrically (without 

doing any algebraic calculations): 

(a) The regression line of Y on X. 

(b) The regression line of X on Y. 

(c) The correlation r {Hint. Problem 14-5c). 

(d) The predicted T-score of a student with T-score of 70. 

(e) The predicted T-score of a student with T-score of 70. 

40 60 80 
Term grade X 

14-2 PARTIAL CORRELATION 

As soon as we move from the simple two-variable case to relations 

which involve more than two variables, complications arise. To illustrate, 

consider a simple three-variable example: suppose that yield of hay (T) 

depends on spring temperature (X) and rainfall (Z). 

Following the techniques of Chapter 13 we could fit the following 

regression plane to a scatter of observations of T, X, and Z: 

Y = a + bX -j- cZ (14-36) 

Recall how we interpreted the multiple regression coefficient: b estimates 

how T is related to X if Z were constant. The partial correlation coefficient 

rxY z ^ a similar concept. It estimates how X and T move together if Z 

were held constant. (For convenience variables T, X, and Z are often defined 

as variables 1, 2, and 3; thus rYx.z becomes r12.3, the partial correlation of 

the first two variables, when the third is assumed constant.) 

While the previous sections of this chapter correspond to the simple 

regression analysis of Chapter 12, the partial correlation analysis in this 

section corresponds to the multiple regression analysis of Chapter 13. Thus we 
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could embark here on a whole chapter on partial correlation, and a long 

one at that, filowever, since we have argued in the previous section that 

correlation is ‘relatively less important, we cotifine ourselves to a brief 

intuitive introduction to this concept, and how it may be used. 

The following assumptions are generally made about the parent popula¬ 

tion. The distribution of X, T, and Z is multivariate normal. This implies 

that for! any v|lue of Z, the conditional distribution of 7 and X is bivariate 

normal |as shojvn in Figure 14-5. pYx.z is defined as the simple correlation 

of this conditional joint distribution of X and Y. 

In computing its estimator rYX.z a problem arises. Since Z is a random 

variable, it is feimply not possible to fix a single value Z0 and sample the 

corresponding'conditional distribution of X and 7. Thus, unless the sample 

is extremely large, it is unlikely that more than a single 7, X, Z0 combination 

involving Z0 Will be observed. The alternative is to compute rYX.z as the 

correlation of Yand Xafter the influence of Z has been removed from each.7 

Thi resulting partial correlation rXY>z can, after considerable manipula¬ 

tion, be* expressed as the simple correlation of Y and X (rYX), adjusted by 

applying the tjwo simple correlations involving Z (namely rxz and rYZ) as 

follows i 

rr*.z = ~=^d=rzslM== (14-40) 

Vl — X 1 “ r\z 
This formula shows explicitly that there need be no close correspondence 

between the martial and simple correlation coefficient; however, in the 

special case that both X and 7 are completely uncorrelated with Z (i.e., 

rxz = rYZ == 0), then (14-40) reduces to: 

! rYX.Z"rYX (14-41) 

and, as we would expect, the partial and simple correlation coefficients are 

the sam|e. 
It is instructive to note what happens at the other extreme when X 

becomes perfectly correlated with Z. In this case fYx.z cannot be calculated 

7 By the~finfluerce” of Z on Y we mean the fitted regression of Ton Z: 

| Y=a + bZ (14-37) 

By “removing tlie influence,” we mean subtracting the fitted from the observed Y value, 

obtaining the residual deviation: 

u = Y - Y = Y' - a - bZ (14-38) 

which is recogn zed to be that part of T not explained by Z. Similarly, we obtain v, the 

residual deviation of X from its fitted value on Z. The partial correlation coefficient jXY.z 
is the sin pie correlation of u and v, thus: 

rXY-Z 
(14-39) 
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since rxz = 1 and the denominator of (14-40) becomes zero as a con¬ 

sequence. This is recognized as the multicollinearity problem of Chapter 13, 

where the corresponding multiple regression estimate b could not be defined! 

The parallel statistical properties of b and rYXZ can be extended 

further: rejection of the hypothesis that /? = 0 in Chapter 13 is equivalent to 

rejecting the null hypothesis that pYx.z = 0- Again, one reason for empha¬ 

sizing regression analysis is confirmed: multiple regression will not only 

answer its own set of regression questions, but also partial correlation 
questions as well. 

14-3 MULTIPLE CORRELATION 

A partial correlation coefficient may be computed for each independent 

variable in a multiple regression. In addition, one single overall index of 

value of fitting the multiple regression equation can be defined: the multiple 

correlation coefficient, R, is the simple correlation coefficient of the observed 

Y and the corresponding fitted Y Thus, if our estimated regression is: 

then 
f = a + bX + cZ (14-42) 

(14-43) 

This has all the nice algebraic properties of any simple correlation. In 
particular, we note (14-29) which takes the form 

r2 — 2 (~ Yf — explained variation of Y 

2 — Yf total variation of Y ^ 

Note that this is identical to r2 if there is only one regressor (independent 

variable). If there is more than one regressor, then the numerator represents 

the variation of Y explained by all of them [with Y estimated from the full 

multiple regression (e.g., (14-42)]. Thus, as we add additional explanatory 

variables to our model, by watching how fast R2 increases we can immediately 

see in (14-44) how helpful these variables are in improving our explanation 

of Y. Our conclusion is the same as in simple correlation: one of the major 

values of calculating R2 is to clarify how successfully our regression explains 
the variation in Y. 

It remains, finally, to relate this to our /-test of multiple regression 

coefficients, using our example in (13-15). We could extend (14-22) to 

Total variation = variation explained by (X1 • • • Z3) + additional 

variation explained by X4 + unexplained variation (14-45) 

We could set this up in an ANOVA table like Table 10-10, and construct the 
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I F = gjditional variance explained by X, 

| unexplained variance (14-46) 

£7 vOr°^2,w“ t 7/ of ,h“ ob- 
included)1 re Jessor X Simileril b 7 °f the slSmficance of the (last 
for each VthPnP “ ^ we could instruct an observed F ratio 

PROBI.KMS ^ 

M'7 it!h^0f :Pr°blem 13'J ^ *»*n&SU> income Y and 

(a) rctj?, the simple correlation of 5 and Y. 

H rst>.w, the partial correlation of 5 and Y, holding Infixed 

c A the multiple correlation of S on 7 and m 

(1)' Y 7onc°n °f *he Variation of 5 which is explained by 

| (2) By Y and W. 

^°TU.rin® and (c)> ’s R larger than r in this problem’ Is 
R ijtecesparily larger than r always ? p ’ ls 

°r/4'F Tf' 3 better measure of “how 5 and Y are related 
other things being equal’’’ are related> 

,4-! ,he d“ »f prow™■» - -■ 
*14-9 Foljowujig Problem 14-7(d), find 

afa™eC’r"”“ of lhe ,ar“"n br ■>« •«)■»» of w 

!e&j,P7ro!,“ 'ta 

i7p7|o™i5S(°b"r“d0m ,,e ““ f°r ,TO 
(d) Usm£ parts fa), (b), and (c), calculate the variance ratio F to 
es the statistical significance of adding W to the regression model. 

pse rucp.lp ^ »«« ^ 

*14-10 Repdat tjie steps of Problem 14-9 to find the t-value to test the 

an tf^'ca S18nificance of adding F as a regressor aft^ 

Using, Of course,, - ±Vf, with 1 degree of freedom in the numerator. 



chapter 15 

Decision Theory 

This chapter is devoted to making decisions in the face of uncertainty 

A large part oPf the discussion involves Bayesian methods, which are not o y 

usS for Ae°r own sake, but also sharpen our understanding of the lim.ta- 

tinnc nf classical statistics. 

15-1 PRIOR AND POSTERIOR DISTRIBUTIONS 

Problem 3-24b on Bayes’ theorem is important enough to repeat, in a 

slightly0altered form. If we" were to predict tomorrow’s weather before con¬ 

sulting a barometer, we would use Table 15-1. 

Table 15-1 Prior Probabilities 

State 6 Rain (0x) Shine (02) 

Prior probability p(0) j .40 .60 

But we can do better, by using a barometer characterized by Table 15-2: 

Table 15-2 Conditional Probabilities 

State 6 
Shine (02) 

Prediction * Rain (@x) 

“Rain” 

“Shine’ 
Oh) 

’ (*2) 

•90 
.10 

.20 

.80 

2 1.00 1.00 
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PRIOR AND POSTERIOR DISTRIBUTIONS 

Table 15 -3 Posterior Probabilities, p{0\x) 

313 

State 0 

Posterior probability 

p{0r rain”) 

Rain (0X) Shine (02) 

.75 .25 

it is observed that the barometer’s prediction is “rain," 
I ■ 4 4 111 

the 

probabilities df Table 15-1 are no longer relevant, and should be replaced 

by Table 15-3! 
-ecatl that this was derived, diagrammatically, by combining 

,>i a|d 15-2 into Figure 15-1. The new sample space is “rain” with 

the relative size of these two hatched areas explaining the two posterior 

probabilities ih Table 15-3. 
Since this is so important, we now write down its full formal con- 

tVe use (5-10) to express the probability of rain and “rain” as 

p(6 1, ay) = ■ p(?hl6i\ l15-1) 

= (,4)(,9) = .3S’ '(15-2) 

the probability of the state shine and the prediction “rain” is 

/.(^..r,■ (15-3) 

= (.611.2) = .12 (15-4) 

These twb calculations define the hatched areas in Figure 15-1. Comparing 

areas we bonJlude that it is three times as likely for a “rain” prediction to be 

associated wijth rain, as with shine. Formally, the hatched area in Figure 

15-1 becbmed the new sample space, within which we calculate the new 

(conditional) probabilities. 
l _ . 1 ** __4-U 

Similarly 

To do ttiis, we note that 

n(“rain”) 

Predictipn x 

p(x i) == .36 + .12 — .48 (15-5) 

State 0 

Rain (.4) Shine (.6) 

Shine' 

“pain” 
(hatched) 

(Original 
r sample 

space 

FIG. 15-1 How posterior probabilities are determined. 

UNIVERSITY LIBRARIES 
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p(0i, %i) _ .36 

P(zi) -48 

P(02, a?i) = 32 

p{x\) *48 

(15-6) 

(15-7) 

When this new (hatched) sample space has its probabilities blown up in 
this way by using the divisor p(x1), the result is the posterior probability 
distribution in Table 15-3. This is often written in the more convenient and 
general form 

p(0/x) = Kg, = m P(x/6) 
p(x) p(x) 

(15-8) 

To keep the mathematical manipulations in perspective, we repeat the 
physical interpretation for emphasis. Before the evidence (barometer) is seen, 
the prior probabilities p(6) give the proper betting odds on the weather. But 
after the evidence is in we can do better; the posterior probabilities p{djx) 
now give the proper betting odds. (This may be intuitively grasped by 
appealing to the relative frequency interpretation. Of all the times the 
barometer registers “rain,” in what proportion will rain actually occur? 
The answer is 75 %.) As a simple summary, we note that the prior probability 
distribution is adjusted by the empirical evidence to yield the posterior 
distribution. Schematically: 

PROBLEMS 

15-1 A factory has 3 machines (0l9 02, and 03) making bolts. The newer the 
machine, the larger and more accurate it is, according to the following 
table: 

Machine —>■ 0X (oldest) 02 03 (newest) 

Proportion of total 
output produced 
by this machine 10% 40% 50% 

Rate of defective 
bolts it produces 5% 2% 1% 
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Thus!, for example, 03 produces half of the factory’s output, and of all 
the Jolts fe3 produces, 1% are defective. 
(a) Suppose a bolt is selected at random; before it is examined, what 
is thl chance it was produced by machine 0J 7 By 02? By 03? 
(b) Suppose the bolt is examined and found defective; after this 

examination, what is the chance it was produced by machine 6J By 

02?By0l? " , 
^ 15-2 Suppose a man is drawn at random from a roomful of ten people, 

whote heights 0 have the following distribution: 

I I 0 (inches) p(0) 

70 .1 

71 .3 

72 .2 

73 .2 
74 .1 

75 .1 

(a) |Graph this (prior) distribution of <9. 
(b) :Suppose also that a crude measuring device is available, that makes 

errors With the following distribution: 

e (error in inches) p(e) 

I -2 .1 
-1 -2 

0 .4 

l -2 

Surely this can help us to be more accurate in estimating the man s 

height 1 For example, suppose his measured height using this crude 

device *is * = 74 inches. We now have further information about 0; 

i el this measurement changes the probabilities for 0 from the prior 

distribution p(6) to a posterior distribution pid/x = 74). Calculate and 

griph |his posterior distribution. 

15-2 cjpTIMAL DECISIONS 

(a) Example 

Sutlposl a salesman regularly sells umbrellas or lemonade on Saturday 

afternoins It football games. To keep matters simple, suppose he has just 
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three possible options (actions, at): 

ax = sell only umbrellas; 

a2 = sell some umbrellas, some lemonade; 

a% = sell only lemonade. 

f he chooses ax and it rains, his profit is $20; but if it shines, he loses $10 
It will be more convenient to describe everything as a loss (negative profit); 
thus his losses will be -20 or +10 respectively. F 

If he chooses action a.2 or a3, there will also be certain losses. All this 
m ormation may be assembled conveniently in the following loss table: 

Table 15-4 Loss Function l{a, 0) 

Suppose further that the probability distribution (long-run relative frequency) 
ot the weather is as shown in Table 15-5, 

Table 15-5 Probability Distribution 
of 6 

State 6 Rain Shine 

Probability p(0) .20 .80 

What is the best action for the salesman to take? (You are urged to work 
this out, before reading on; it will be easier that way.) 

Solution. If he chooses +, what could he expect his loss to be, on the 
average . Intuitively, we calculate the expected loss if he chooses a1: 

Ua i) = — 20(.20) + 10(.80) = 4 (15-10) 
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We recogniz| this as the concept of expected value,1 as given by (4-17): 

= K<*i, Ql) P(di) + /(«1, 02) p(d2) = J l(ax, 6) p(d) (15-11) 

Similarly, we evaluate ° 

L(a2) = 5 (.20) + 5 (.80) = 5 (15-12) 

In general 
L(a3) = 25( 20) - 7(.80) = -.6 

L(a) = 2 Ka, 0) p(0) 
e 

(15-13) 

(15-14) 

Thejoptimal action is seen to be a3, which minimizes the expected loss; 

in fact, this isjthe only option that allows any expected profit. To summarize, 

we assemble all our information and calculations in Table 15-6: 

Table 15-6 Calculation of the Optimal Action a 

p{0) .20 .80 

-20 10 
5 5 

25 -7 

L(a) = expected loss 

-.6 x- minimum 

Loss function l(a, 6) 

(b) Generalization 

It hardly ^seems necessary to state that this problem can be generalized 

to any number of states 6 or actions a (even an infinite number, as in the 

next section) The objective remains the same: to minimize expected loss. 
We now pause to consider: 

L Tile pjobabilitiesy?(0), and 
2. The loss function l(a, d). 

For thosei who:wish to review, we give an alternative intuitive calculation. In, say, 100 
days he would get about 20 rainy days at $-20 each, yielding $-400; and about 80 shiny 

days, at $ + 10 each, yielding $ + 800—for a sum of about $+400 in 100 days, or an average 
of $4 per diiy. 6 
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FIG. 15-2 The logic of Bayesian decisions to minimize expected loss. 

The probabilities p(6). These of course should represent the best 

possible intelligence on the subject. For example, suppose the salesman 

moves to another state, with weather probabilities as given in Table 15-1. 

If he has no barometer, he will have to use the (prior) probabilities in this 

table. But if he can consult the barometer (described in Table 15-2), then of 

course the posterior probabilities p(0fx) in Table 15-3 should be used. (See 

Problem 15-3.) 
The logic of Bayesian inference is laid out in the block diagram, Figure 

15-2. Incidentally, in the calculation of the average loss L(a) in (15-14) it 

would not hurt to use kp(6) instead ofp(6) as weights, where k is any constant 

(independent of d and a). For kp(d) would generate losses kL(a), which 

would rank in the same order as the true losses L(a), and hence point to the 

same correct optimizing action. This is a very useful observation. Thus, for 

example, our umbrella salesman need not undertake the last step in cal¬ 

culating the posterior probabilities of rain p(d/xi) in (15-6) and (15-7); he 

can forget about the denominator p(%i), and use (15-2) and (15-4) instead 

without affecting his decision.2 
The loss function, l(a, d). In our example, we assumed that monetary 

loss is the appropriate consideration. This may be valid enough if the decision 

is made (“game is played”) over and over again: whatever minimizes the 

expected loss in each game will minimize total expected loss in the long run. 

2 i.e., attaching weights of .36 and .12 to his losses would yield the same result as weights 

of .75 and .25. 
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Yet ther^ are some decisions that are made only once, and then expected 

monetary losjs may not be the right criterion. To illustrate: suppose you 
were offered {tax-free) a choice between 

(15-15) 
(a) SI00,000 for sure, or 

(b) a i/2 chance (lottery ticket) on a S210,000 prize. 

Most people ^would prefer choice (a), even though its expected monetary 

M00,000 (1) = Si00,000 

is less than that of choice (b): 

vS210,000 (1/2) = S 105,000 

(15-16) 

The reason isjthat most people value the first hundred thousand much more 

than the secojid. (The student should speculate on how he would spend the 

first huncjred ^thousand. Once these purchases have been made, less exciting 

opportunities jwould be available for spending the second hundred thousand; 

the sporty ca^has already been bought, and so on.) Such a decision should 

be based ijiot on money itself as in (15-16), but rather on a subjective valuation 

of money;, or,the “utility'’ of money. As an illustration, Figure 15-3 shows 

one author’s subjective evaluation3 U(M). Since utility is the more appropri¬ 

ate measure, the decision should be based on expected utility, rather than 

expected jnonfey. Using Figure 15-3, the expected utilities of the two choices 

(a) ux (1) 

(b) «2(i) 1.4*1 (4) 
(15-17) 

which is a, cle^r victory lor choice (a). In decision situations, a loss-of-utility 

function of this kind should typically be used as our loss function l(a9 d)' 
hereafter jve shall interpret losses in this way. 

U2 = 1.4mi 

100,000 210,000 
M (dollars) 

____ FIG. 15-3 Author’s subjective evaluation of money. 

3 This utility! cur^e is hiehly personal, and temporary. It is defined empirically for an in- 
dividual by joking him which bets he prefers. In other words, many bets like (15-15) are 
used to define uti ity, rather than vice-versa. 
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PROBLEMS 

15-3 Using the losses of Table 15-4, calculate the optimal action if 

(a) The only available probabilities are the prior probabilities of Table 

15-1. 
(b) The barometer reads “rain” (so that the posterior probabilities of 

Table 15-3 are relevant). 

(c) The barometer reads “shine.” 

(d) Is the following a true or false summary of questions (a) to (c) 

above? If false correct it. 

If the salesman must choose his action (order his merchandise) 

before consulting a barometer, then a2 (umbrellas and lemonade) is 

best. However, if the barometer can be consulted first, then the salesman 

should 

Choose al (umbrellas) if the barometer predicts “rain.” 

Choose (lemonade) if the barometer predicts “shine.” 

But a bright salesman could have seen this obvious solution without 

going to all the trouble of learning about Bayesian decisions. 

15-4 A farmer has to decide whether to sell his corn for use A or use B. 

His losses depend on its water content, (determined by the mill during 

processing, after the farmer’s decision has been made) according to 

the following table. 

(a) If his only additional information is that, through long past 

experience his corn has been classified as dry one third of the time, 

what should his decision be? 

(b) Suppose he has developed a rough-and-ready means of determining 

whether it is wet or dry—a method which is correct 3/4 of the time 

regardless of the state of nature. If this indicates that his corn is “dry” 

what should his decision be? How much is this method worth, i.e., how 

much does it reduce his expected loss? 



Let p, — distance student / lives from origin 

a — distance of school from origin 
Thus 

; (xi — a) — distance of student i from school 

(a) )Yhep is the optimum place (mean, median, mode, midrange?) to 
build the school in order to 

(1) . Minimize the distance that the farthest student has to walk. 

(2) ^ Minimize the total walking done, i.e., minimize the sum of the 
i absolute deviations: 

*(3); Minimize the sum of the squared deviations: 

| j 2 (xi ~ a)2 

(Htfit. (talculus suggests differentiating with respect to a, setting the 
result equal to zero.) 

(4) | Maximize the number of students who live where the school is 
ibuiljt, and do not have to walk at all. 

(b) t>oes^ the following accurately reflect your conclusions in ques¬ 
tion (a) above? If not, correct it. 

tin (2) we are concerned only about the total walking done; walking 

is considered a loss, no matter who does it. In (1), on the other hand, 

only the Walking done by the two extreme people is considered a loss; 

walk ng cjone by any others is of no concern whatsoever. (3) is a com¬ 

promise-we imply that although all walking is some kind of loss, the 

mord a student has walked, the greater his loss in walking one more 

mile. Thus the person who walks 3 miles (xf - a = 3) contributes 9 to 

the loss 1 unction, whereas the person who walks 1 mile contributes 
only 1. 
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15-3 ESTIMATION AS A DECISION 

In our earlier example the states 6 (rain and shine) and actions a were 

categorical (i.e., nonnumerical). But this was not an essential part of the 

theory; in this section we consider a numerical example. 

Example 

Suppose the judge at a beauty contest is asked to guess the height 0 

of the first contestant, whom he has never seen. Yet he is not in complete 

ignorance; suppose he knows that the heights of contestants follow the 

probability distribution p(6) shown in Figure 15-4. 

6 (inches) p(.0) 

64 .1 

65 .1 

66 .2 

67 .2 

68 .3 

69 .1 

FIG. 15-4 

P(d) 

. 1 

:_ll J_ 
64 66 68 

Prior distribution of heights 0. 

(i) Suppose, in order to encourage an intelligent guess, the judge is to 

be fined Si if he makes a mistake (no matter how large or small); “a miss is 

as good as a mile.” What should the rational judge guess? 

(ii) Suppose the rules become more severe, by fining the judge $.r for 

an error of x inches; the greater his error, the greater his loss. What is his 

rational guess? 
(iii) Suppose the rules are made even more severe, by fining the judge 

Saf2 for an error of x inches; this is the same as (b), except that the loss 

becomes more severe as his error increase. What is his rational guess now? 

Solution, (i) The most likely (modal) value 68. 

(ii) The median value 67. 

(iii) The mean value 66.8. 

Thus (i), (ii), and (iii) are like (4), (2), and (3) in the schoolhouse Problem 

15-5, with the same solution. 
To translate this into the familiar language of decision theory, the girl’s 

height is the state of nature 9, and the guessed height (estimate) is the action 
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a to be taken1. The fine the judge must pay is the loss function l{a, 6); since 

a and 0 are Numerical, the loss function is most conveniently given by a 

formula,1 rather than a table. Each of the 3 loss functions, along with its 

corresponding optimal estimator, is shown in Table 15-7. 

TabiT 15-7 How the Optimal Estimator of 0 Depends on the 
Loss Function 

If the Loss Function /(a, 6) is: 

(i) 0 if a = 0 exactly. 
1 otherwise 
(“the 0-1 loss function”) 

(iff \a - 0| 
(iii) (a — O)2 

Then the Corresponding 

Optimal Estimator a is: 

Mode of p(6) 

Median 

Mean 

The “quadratic” loss function (iii) is the one that is usually used in 

decision theory. It is graphed in Figure 15-5. It is justified not only by its 

intuitivi appeal, but also by its attractive mathematical properties. For 

example, it is easily differentiated (an important requirement in minimization 

problems); on the other hand (i) obviously cannot be differentiated, nor can 

(ii), since if is an absolute value function. 
We reeinphasize that the probability distributionp(d) used in the decision 

processj ought to reflect the best available information. Thus we, may be 

forced fo u^e the prior distribution p(6) if we have not yet collected any data, 

but after dita is collected, the posterior distribution p{d/x) is appropriate. 

FIG. 15-5 The quadratic loss function. 
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PROBLEMS 

These are extensions of Problem 15-2. 

15-6 Suppose you have to guess the height of the man drawn in Problem 15-2 

with only the prior distributionp{8) known. Find the optimal estimate 

(a) Assuming l(a, B) = 0 if a = 6 

otnerwise. (15-18) 
(b) Assuming l(a, B) = \a - 0|. (15_19) 

(c) Assuming /(a, 0) = (a - 0)2. (15-20) 

15-7 Repeat Problem 15-6, after the man’s height has been crudely measured 

as a; - 74, so that the posterior distribution p(8jx) is relevant. 

15-4 ESTIMATION: BAYESIAN VERSUS CLASSICAL 

This comparison is best shown with an extended example, illustrated in 
rigure 15-6; from this we shall draw conclusions later. 

(a) Example 

Suppose it is essential to estimate the length 8 of a beetle accidentally 

caught m a delicate piece of machinery. A measurement * is possible, using 

a device which is subject to some error; suppose * is normally distributed 

about the true value 8, with a = 1. Suppose x turns out to be 20 mm 

Question (a). What is the classical 95% confidence interval for 8^ 

Solution. Our information on the sampling distribution of*, i.e„ 

p(x/B) = N(B, cr2), specifically N(B, 1) (15-21) 

can be “turned around” to construct the following confidence interval for 8: 

0 = 20 ± 1.96(1) 

= 20 ± 1.96 (15-221 
and, of course: ^ ^ 

point estimate of B = 20 (15-23) 

. ®“est,on (*)• Suppose we take the effort to find out from a biologist 
that the population of all beetles has a normally-distributed length, with 

mean 80 - 25 mm and variance uj = 4. How can this be used to define a 
posterior distribution of 0? 

Solution. It will be useful to develop a general formula applying for 

any 0O, ir0, etc., and then solve it for our specific example. Since our prior 
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distribut on i 

and the distri 

p(d) = N(0o, it*) 

bution of our empirical evidence x is: 

p(x/e) = N(d, a2) 

325 

(15-24) 

(15-21) 

repeated 

it can bd shown4 that the posterior distribution is also normal; specifically: 

p(0/x) = N(ab, a) (15-36) 

we can use (15 

4 (15-24) alnd (15-21) may be written: 

p(0) == 

p(x/0) = 

(15-25) 

(15-26) 

where Kx land and other similar constants introduced in this footnote are of a form not 

critical to!the argument. Since 
p(x, 0) = p{6)p(xjd) 

i-25) and (15-26) to write 

p(x, 0) = AT1^2e-U/2)[(l/(T^(02-200o+^)+{l/o2)(*2-2a:0+02)] 

Now consider Only the exponent, which may be rearranged to 

Let 

Finally we use 

and 

(integrating to 

I l-l O + o 

= b 
°o a 

Using thejse definitions, the exponent (15-29) can be written 

-hi 
2 abd + KA 

= - - 1(6 ~ abf + K5] 
2 a 

this to write (] 5-28) as 

p(x, 6) = Kf. 

p(x, 6) p(d[x) = 

p(x) 
— X e-(ll2a){0-abr 

(15-27) 

(15-28) 

(15-29) 

(15-30) 

(15-31) 

(15-32) 

(15-33) 

(15-34) 

(15-35) 

This means that 0, given x, is a normal variable with mean ab and variance a, provided 

a appears appropriately in K7. But it must, sincep(6/x) is a bona fide probability function 

1), and K7 is just the scale factor necessary to ensure this. 
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where 

~ — ”7 H—« 

Now apply this to our example. Since 

it follows that 

and 

Thus: 

°o = 4 

a2 — 1 

0o = 25 

x = 20 

5 

4 

b = 
25 20 

4 + 1 

105 

4 

mean = ab — 21.0 

variance = a = .8 

(15-37) 

(15-38) 

Hence the posterior distribution may be formally written 

p(dlx = 20) = N(21,.S) (15-39) 

compared with the prior: 

p(0) = N(25,4) (15-40) 

The Bayesian logic is shown in Figure 15-6. A prior distribution is 

adjusted to take account of observed data (x), with the weight attached to the 

observed x depending on its probability p(x/d). The result is the posterior 

distribution, with mean (21) falling, as expected, between the prior mean (25) 

and the observed value (20). (As a bonus, variance is reduced in the posterior 

distribution. Although this does not always happen, it is evident that it must 

happen for normal distributions; for (15-37) shows that the posterior variance 

a is less than a% and also less than a2 incidentally.) 

Question (c). With the posterior distribution (15-39) now in hand, 

defining a Bayesian estimate of 0 requires only a loss function. Suppose this 

is the quadratic loss function; what is the Bayesian point estimator of 0? 

Find also the 95 % probability interval for 0. 
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Bayesian 95% probability interval —► 
21 ± 1.96v^8 

327 

p{6) — N(6q, Oq2) = JV(25,4) 

Class cal 95% confidence interval-> 

k ± 1.9(6 <7 = 20 ± 1.96 

Based only Ion [ the evidence and its distribution: 

P(x/0) = N(9,<r2) = N(d,l) 

Solution 

the optimum 

FIG 15-6 Bayesian versus classical estimation. 

For the quadratic loss function, the posterior mean (21) is 

oosterini* jf.sUmat®r- (Note that because p(6[x) is normal, this is also the 
posterior median and mode, so that all the loss functions in Table 15-7 

yield the same answer. This is reassuring, and frequently happens in practice ) 

• 'T'rUCt a 950/o Probability interval, we know from (15-39) that 

interval^ T* = 2°’th£re ‘S a 95 % Probability that 6 will fall in the 

21 ± 1.96 V!? 
= 21 ± 1.76 

Note tha| thi^j is narrower (more precise) than the classical interval (15-22) 
reflecting,the value of the prior information p(6). 

PROBLEMS 

15-8 As d 

O2 

ur means of measuring (beetles) becomes more and more precise 
> U),. show that in the posterior distributionp(6jx). 

the mean 

variance (15-41) 
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In other words, if we use an errorless measuring device, we can be 

certain that the true 6 will be its measured value x. 

i5_9 Using Figure 15-6, what would you expect intuitively of the posterior 

mean if two independent measurements of the beetle had yielded an 

average of 20 mm? (For an extension of your answer, see the section 

immediately following.) 

(b) Generalization 

Suppose that a sample of n independent measurements xltxt, •••>*» 

can be taken rather than just a single x. Using the sample mean x, what now 

is the Bayesian estimate of 6 ? In particular, what happens as we get more and 

more observations (n oo) ? . 
This problem may be solved, using (15-36) to (15-38) with one important 

change. Since our data now is x instead of x we must make this substitution 

in (15-38), and also substitute 

(15-42) a 

n 

1 
-U" 

2 ' -2 a 

for <r2 in (15-37) and (15-38). [Of course, (15-42) is just the variance of a 

sample mean when a2 is the variance of a single observation.] Thus, our 

generalized definition of a and b in (15-36) is. 

(15-43) 

(15-44) 

(15-45) 

(15-46) 

(15-47) 

(15-48) 

(15-49) 

for n = 1, this reduces to (15-37) 

ci n’o cy 

for n = 1, this reduces to (15-38) 

In the limit, as sample size n co: 

1 ^ n_ 

a <J2 

nx 

Incidentally, exactly these same results follow, whether n oo, or 

00 

Thus, evaluating (15-36): 
posterior mean == ab — x 

a2 
posterior variance = a — — 

Again the normality of this posterior distribution ensures that its mean, 

mode, and median coincide. Hence, regardless of which loss function we may 
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Bayesian estimator of 0 x 

95 % probability interval — x ± 1.96 -p 

(15-50) 

(15-51) 

I I 
We conclude that, as n -> oo, Bayesian estimation approaches the classical. 

This is exactly as it should be: as more and more data are collected, less and 

Table 15-8 Relation of Classical and Bayesian Estimation. (Although Normality 
i i$ Assumed, Results are Instructive for Other Cases Too) 

And Gets the Answer 

Procedure Point and Requires, In Our 

to Interval Along With Example In the Limit, as 

Estimate 6 Estimates Observed x (« = 1) n —> oo or o-J —> oc 

Classical Point estimate 20 X 

i Confidence p(x/6) 20 ± 1.96 x ± 1.96 —= 

interval Vn 

Bayesian Point estimate p(x/0), p(6) 21 Same as classical 

and loss function 

Probability p(xl0),p(6) 21 ± 1.76 Same as classical 

interval 

less weight peed be attached to prior information; and with an unlimited 

sample, priog information is completely disregarded, as in classical estimation. 

The classical and Bayesian approaches are compared in more detail in Table 

15-8. 
We novr turn to the other condition that leads to the same result. Bayes 

estimatdrs a so approach the classical if prior information is very vague (i.e., 

if -> oo, is stated in (15-47). Thus the less the prior distribution tells us, 

the less weight we attach to it. To sum up, the two reasons for completely 

disregarding prior information are (1) if present data is in unlimited supply, 

or (2) if| prior information is useless. 

(c) Is B Fixed or Variable? 

In this chapter we regard the target to be estimated as a random variable— 

for example [the beetle’s length 0 in Figure 15-6. Yet in all preceding chapter^, 
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we have regarded the target as a fixed parameter—for example, the average 

height fi of American men. Nevertheless, we may often find it useful to think 

of fj, as having a subjective probability distribution—with this being a descrip¬ 

tion of the betting odds we would give that p is bracketed by any two given 

values (see the description of subjective probability in Section 3-6). In the 

problem of men’s heights it may be helpful to boil down our best prior 

knowledge of /jl into a prior subjective distribution of ju. Then the posterior 

subjective distribution of /i would reflect how the sampling data changed the 

betting odds. 

PROBLEMS 

5-10 Following the beetle example in Section 15-4(b), suppose that: 

= 100 

60 = 25 

and a sample of 4 independent observations on the trapped beetle 

yields an average length x of 20 mm. 

(a) Calculate the Bayesian point estimate for 6, the length of the beetle. 

For two reasons this estimate is closer to the observed value of 20 than 

the Bayesian estimate (21) in Figure 15-6. Explain. 

(b) Calculate the Bayesian 95% probability interval for Q. 

5-11 Suppose that, in a random sample of 10 students on an American 

college campus, you find only one is a Democrat. Which would you 

rather quote as your “best estimate” of the proportion tt of Democrats 

in the population (whole campus): 

(a) The classical estimate, 

x 1 
P = - = - = .10, 

n 10 

(b) The Bayesian estimate which, assuming this subjective prior dis¬ 
tribution : 

p(tt) 



CRITIQUE OF BAYESIAN METHODS 331 

aihd a quadratic loss function, yields5 the estimate 

*' +-• = 4 = .25 
n + 6 16 

15-5 CRITIQUE OF BAYESIAN METHODS 

(a) Strength 

Bayesiaji inference is the optimal statistical method (in the sense of 

minimizing loss of utility) if there is a known prior distribution p(6) and loss 

function l(a\ d). Compared to classical methods, Bayesian methods often 

yield shortel* interval estimates (e.g., Table 15-8), more credible point 

estimates (e.jg.. Problem 15-11), and more appropriate hypothesis tests (e.g., 

Problenj 15-13 below). Bayesian methods are particularly useful in the social 

sciences; and, business, where sample size is often very small, and Bayesian 

methods differ considerably from the classical methods. 

(b) Weakness 

The ma or criticism of Bayesian estimation is that it is highly subjective. 

The priorp(d) and loss function l{a, 6) are usually not known6—nor is there 

often any hope at all of specifying them exactly. For example, what is the 

loss function for an economist measuring a population’s unemployment rate, 

with inevitable statistical error? We have already seen that this is not as 

serious I difficulty as it seems at first glance, since in many problems any of 

the three loss functions of Table 15-7 lead to the same Bayes estimator. 

Then s^lectijng the “wrong” loss function would still lead to the right 

estimator. 1 
Th^ other information required—the prior distribution /?(&)—usually 

remainsmnknown too. Moreover, there are often difficulties in interpreting 

6 as a rindoin variable; an economist cannot regard the unemployment rate 

Q as a random variable (as though it is drawn from a bowlful of chips). 

Instead ’he must think of/;(0) as a subjective distribution reflecting his prior 

betting bdds on 6. But he may not view even this as entirely satisfactory. 

Since Btayesian techniques require a rough-and-ready specification of 

these unknown functions, they do indeed involve subjective judgments. The 

5 For proof, sie for example, Lindgren, B. W., Statistical Theory, 2nd Ed. New York: 

Macmillan, 1957. 
6 The other recuired information for Bayesian inference is p(xfO), the distribution of sample 

data x. But th s can often be borrowed from classical statistics. [For example, recall how 

we borrowed £ classical deduction in (15-42).] 
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interesting observation however, is that classical methods which require no 

such explicit specifications, are by no means free of the same subjective 

elements. One of the major contributions of the Bayesian method has been 

to lay bare the assumptions implicit in classical techniques. As we shall see 

in the next section, some of these fare badly when exposed; in extreme cases 

any intelligent guess is substantially better.7 

*(c) Classical Methods as Bayesian Methods in Disguise 

Suppose a Bayesian wishes to estimate 6 with no prior knowledge. In 

desperation he might use the “equiprobable” prior: 

p(6) = c, a constant (15-52) 

Further suppose that, rather than using the familiar and attractive quadratic 

loss function, he opts for the 0-1 loss function. He thus will estimate 6 with 

the mode of the posterior distribution: 

But because of (15-52): 

p(6/x) = 
p(d) p(x/d) 

p(x) 
(15-53) 

(15-8) repeated 

c 
p(x/d) (15-54) 

To find the mode, he finds the value of 6 which makes p(6/x) largest. But 

since the bracketed term [c/p(x)] doesn’t depend on 6, he only needs to find: 

the value of 6 which makes p(x/6) largest (15-55) 

But this statement is recognized as just the definition of the classical MLE.8 

From this, we conclude that a classical statistician who uses MLE is 

getting the same result as a Bayesian using the 0-1 loss function and an 

“equiprobable” prior. This seems a very unflattering description of MLE, 

since neither this prior nor this loss function is easy to justify. But in many 

cases, MLE is not nearly this restrictive. Ifp(d/x) is unimodal and symmetric, 

as it often is, then its mean, mode and median coincide; in such circumstances 

MLE is equivalent to Bayesian estimation using any of our three loss 
functions. 

As if the discussion of MLE above has not been damaging enough, we 

consider an even more questionable application. Suppose we are estimating 

7 A further criticism of Bayesian methods is that there is too great a cost of computing 

Bayesian estimates (not to mention learning about them); but this criticism is being 
weakened with the advent of better computer programs. 

8 Note that in developing MLE in Section 7-3, the notation p(x; 6) was used, equivalent 
to p(xjB) used here. 
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a population proportion tt (as in Problem 15-11). It has been proved9 that 

a classical statistician using MLE will arrive at the same result (estimating 

tt with x/n) as a Bayesian using the quadratic loss function and the prior 
distribution shown in Figure 15-7. 

This prior distribution is obviously hopeless, the worst we have yet 

encountered. (It means that a huge majority of students are Republican, or 

a huge^ majority are Democratic.) We recall that we may have been un¬ 

comfortable about the prior distribution graphed in Problem 15-11; but it 

p(tt) 

FIG. 15-7 

was vastly better than this. This explains why MLE can occasionally give a 

very strange result in a small sample; our intuition was correct in leading us 
to reject it in Problem 15-11. 

In poncjlusion, although MLE has many attractive characteristics [see 

Section 7-3(e)], these are large sample properties; in small sample estimation, 
it should be used with great caution. 

*15-6 HYPOTHESIS TESTING AS A BAYESIAN DECISION 

(a) Example 

Sujjposj there are two species of beetle. Species S0 is harmless, while 

species jSi isj a serious pest, requiring an expensive insecticide. A beetle is 

sighted in apew, as yet uninfested territory; but this sighting provides no 

9 Again, tee for example, Lindgren, B. W„ Statistical Theory, 2nd Ed., New York- 
Macmillan 1967. 
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information useful in establishing whether the beetle was S0 or Sv Should 

insecticide be used or not? 
To answer this question, we need to know the costs l{a, 0) of a wrong 

decision, and the probabilities p(6) of it being one species or the other; 

these are given in Table 15-9. Obviously action a0 (don’t spray) is appropriate 

if the state of nature is S0 (harmless beetle) while ax is appropriate if the state 

is Sv 
Question (a). Should we spray, or not ? 
Solution. It will be convenient to generalize the loss table, calling l(ai9 0,-) = 

for short. As always, we calculate the expected losses L(a), by weighting 

Table 15-9 Probabilities of States of Nature, and 
Loss Function 

elements in each row of this table by their appropriate probabilities: 

L(a0) = p(Go)loo + p(0j)lOi (15-56) 

= (.7)5 + (.3)100 = 33.5 

and 
L(ai) = (.7)15 + (.3)15 = 15 •<— min 

Thus the optimal action is ax: spray. 
We see that this problem may be expressed in terms of hypothesis 

testing: action a0 (don’t spray) may be interpreted1 as accepting H0 (harmless 

beetle), while action ax (spray) may be interpreted as accepting Hx (harmful 

beetle). 
Question (b). Suppose that prior information about the beetles is that 

species S0 is 9 times as common as Sv Given this new information about 

p(d), what is the optimum action? 
Solution. Don’t spray, as shown in Table 15-10. 

In this case the harmful species is so rare, that it is better to take the 

risk,” i.e., assume the beetle is harmless as our working hypothesis. 
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Table 15-10 Calculation of Optimal Action, 
a priori 

pm .9 .1 

'^'\^State 6 So 
Action « (Ho) w L(a) 

«0 
(Don’t spray) 

5 100 14.5 «- min 

Gi 
(Spray) 

15 15 15 

Question (c). So far we have assumed no statistical information on the 

beetle that ijas been sighted. Now suppose it has been captured, with its 

length measured as 27 mm. Suppose further that the two species are dis¬ 

tinguishable by their lengths, which are normal random variables with er = 4, 

and means &0 = 25 and = 30 respectively. What now is the best action, 

posteriori? [Assumep(6) and losses given in Table 15-9.] 

Solution. ! It will be most instructive to develop a general solution, leaving 

substitution !of particulars to the end. Losses are calculated as in (15-56), 

substituting ihe appropriate posterior probabilitiesp(0lx) forp(0): 

L(a0) = p(0olx)loo + />(0i/*)/ol (15-57) 

Similarly 

L{(h) = p(B0lx)l10 + p(0 i/*)/i 

We chopse Action a0 if and only if 

L(a0) < L(ax) 

(15-58) 

(15-59) 

Substituting! (15-57) and (15-58) into (15-59), and collecting like terms, we 

pterion: choose a0 iff 

(15-60) 

obtain the criterion: choose a0 iff 

piOiMVoi ^iil ^ p0olx)Uio A>ol 

The bracketed quantities 

and 

a i 
r0 = l 10 

r — / 
ri — *01. 

loo 05-61) 

ln 05-62) 

are called regrets. It is easy to see why: the regret if the beetle is harmless 

(r0) is the extra loss incurred if we used the wrong action—i.e., sprayed (a{), 

rather than lot sprayed (a0). Evaluating (15-61) we see that r0 is 15 — 5 = 10, 

the difference in column elements in Table (15-10). Our much larger regret 
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/*! 100 15 represents our net loss if we employ the wrong action (don’t 
spray) on a beetle that turns out to be harmful. 

Returning to (15-60), it may now be written in terms of regrets: 

i.e., 
p{Ol!x)r1 < p(60/x) r0 (15-63) 

P(0ilx) < £o 

P(0 o/x) 
(15-64) 

The posterior probabilities in this equation can now be expressed in 
full using (15-8), and noting that p(x) cancels, 

P(0i) p(x/61) < ro 

P(6o) p(x/60) 
(15-65) 

Recall that this is our criterion for action a0 (don’t spray), interpreted as 

acceptance of HQ: (beetle harmless, 6 = 0O). An appropriate cross-multipli¬ 

cation of (15-65) leads us to an important theorem, called the 

Bayesian Likelihood-Ratio Criterion: 

Accept H0 iff 

P(xj01) r0 p(60) 

P(x/O0) 'fi/?(<91) 

(15-66) 

where r{ is the regret if 6{ is true, p(di) is the prior distribution, and p(x/6 
is the distribution of the observed data. 

As stated earlier, p(xjdt) is often borrowed directly from classical deduc¬ 

tion, and is the distribution of the estimator x, given the parameter 0 

Specifically, it appeared in maximum likelihood estimation in Section 7-3 as 

the likelihood function. Thus the left-hand side of (15-66) is called the 
“likelihood ratio.” 

This criterion is certainly reasonable. If dx is a sufficiently implausible 

explanation of the data [i.e.,/?^/^) is sufficiently less than/?(a/0o)], then the 

likelihood ratio will be small enough to satisfy this inequality. Thus H0 will 
be accepted, as it should be. 

To illustrate further, consider the very simple case in which the regrets 

(penalties for error) are assumed equal, and the prior probabilities p(60) 

and/?($!) are also assumed equal. The right-hand side of (15-66) becomes 1; 

thus H0 is accepted if the likelihood of (90 generating the sample [p(xl60)] is 

greater than the likelihood of generating the sample [p(x/01)]. Otherwise, 

the alternative H1 is accepted. In simplest terms: we select the hypothesis 

which is more likely to generate the observed x. In this sense, this could be 

viewed as hypothesis testing, within a maximum likelihood context, shown 



p(x/6o) p(x/01) 

Accept Ho Accept Hi 

(b) 

FIG. 15-3 Hypothesis testing, using the Bayesian likelihood ratio [special case when 

r0 = r/and p(d2) = p(Q^)l (a) For any pixfO^. (6) If pix/O^ = N(6it a). 

10In fact; normality is not required; the two distributions need only be unimodal and 
symmetric. 
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for accepting H0—becomes 

-(l/2a)(x-e1)‘ 

-a/2<T2)(x-e0 )£ 

P(6o) 

ri P(61) 
(15-68) 

This may be reduced11 to: accept Ha iff 

* < log + ®L±ic 
0i - e0 U p(0i)J 2 

(15-69) 

(The logarithms used throughout this section are natural logarithms, to the 

base e. The common logarithms of appendix Table VIII can be converted 

to natural logarithms by multiplying by 2.30.) We note that the right-hand 

side of (15-69) is independent of x\ as in all hypothesis tests, this can be 

evaluated prior to observing x. At the same time it does depend, as expected, 

on background information p(6) and regrets. Moreover, when r0 = rx and 

P(0q) = p(01), then the log term disappears and this reduces to the special 
case (15-67). 

Finally, the particular problem of the beetle spray can now be solved. 

Substituting the information given in question (c) and Table 15-9 into 

(15-69) yields: accept H0 iff 

^ 16. P0(.7)7 , „ . 
x < — log —— + 27.5 

5 L85(.3)J 

< 3.2 log 
\25.5/ 

+ 27.5 

(15-75) 

(15-76) 

< 3.2( —1.29) + 27.5 

__ < 234 
11 Details: taking logarithms of (15-68): 

(15-77) 

(15-78) 

-?(x-e1f + -(x-e0f<K (15-70) 

Rearranging (15-70): 

76 = log 
ri P(°i) 

(20^ - 20o* - OP + V) < K 

(15-71) 

(15-72) 

i.e., accept H0 iff: 
2(6, - 60)x- - (6,2 - 602) < 2o*K 

.. . °a r I (Of - eg) 
6, _ e0 + 2(6, - e0) 

Using the definition of K in (15-71), (15-74) may be written as (15-69). 

(15-73) 

(15-74) 
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je Observed a 27 mm beetle, this condition is violated, and we reject 
0. But what does seem strange is the critical value in (15-78): even if the 

beetle T6rC I25 “mT?xaptly 8°’ the len§th we wouId expect of a harmless 

k ^ Stm SP^y\With fUrther th°U§ht We see that this answer 
s afteij all reasonable. The heavy damage involved if the beetle turns out 

to be harmful induces us to spray to avoid this risk. [From (15-75) we confirm 

" fact the relatlve SIze of the two regrets that explains this result.] 

(b) Comparison with Classical Methods 

Th6 Bayesian hypothesis testing described here involves only two 
competing hypotheses //„ and //, (two states of nature d„ and 6^, one of 

teSnv'Ift51' Chr - ThiS analySiS iS °f limked SC°pe> Since hyP°th“is testing often involves a composite H,. Thus we have covered only that 
materia1 parjillelmg the first section of Chapter 9. In recalling that classical 
test, we note that it had the advantage of being far simpler; but it was also 
less satisfactory It used only the probability function p(xjB), while the 
Bayesian mejhod also exploits the prior distribution p{6) and regrets (the 
loss function); we have seen m the last section how important both these 
can be ih selling up an appropriate test. Restated, the classical method sets 
“ - 5 of 1 /—sometimes arbitrarily, sometimes with implicit reference to 
vague considerations of loss and prior belief. Bayesians would argue that 
these considerations should be explicitly introduced—with all the assumptions 
exposed,j and. open to criticism and improvement. 

PROBLEMS 
I , ■ 

15-12 U^ingj?(0) and losses given in Table 15-10: 

(aj Reconstruct the hypothesis test of question (c) above. With your 
measurement of 27 mm, what would you do ? Why does our argument 
in the last paragraph (spray even if beetle is 25 mm) no longer hold? 
( j Suppose that species S0 and Sl were equally frequent. Would that 
alter your decision? 

(C)| Ho^v frequent would species S„ have to be in order to alter your 
decpsioh? J 

15-13 Supposp a psychiatrist has to classify people as sick or well (hospi¬ 
talized or not) on the basis of a psychological test. The test scores are 
nofmaMy d.stnbuted, with 0=8, and mean 80 = 100 if they are well 
.° 1 120 if they are sick. The losses (regrets) of a wrong classifica- 
tiofi ari obvious: if a healthy person is hospitalized, resources are 
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wasted and the person himself may even be hurt by the treatment. 

Yet the other loss is even worse: if a sick person is not hospitalized, 

he may do damage, conceivably fatal. Suppose this second loss is 

considered roughly five times as serious. From past records it has been 

found that of the people taking the test, 60% are sick and 40% are 

healthy. 
(a) (1) What should be the critical score above which the person is 

classified as sick? Then 
(2) What is a? (Probability of type I error). 

(3) What is /3? (Probability of type II error). 
(b) (1) Ifa classical test is used, arbitrarily setting a = 5%, what then 

will be the critical score? Then 

(2) What is/5? . 
(3) By how much has the average loss increased by using this 

less-than-optimal method? 
(c) What would we have to assume the ratio of the two regrets to be 

in order to arrive at a Bayesian test having a = 5%? Do you think 

it is reasonable? 

*15-7 GAME THEORY 

At this point we leave the general argument of this book to consider a 

rather interesting branch of decision theory. Recall that the concept of 

probability was developed in Chapter 3 as a groundwork for the statistical 

deduction and induction that followed. Game theory is not part of this 

statistical theory; rather, it illustrates a quite different application of the 

concept of probability. 
Game theory is a way of analyzing conflict situations. These may arise, 

for example, in poker, business, or politics; thus our conflicting parties 

might be card players playing for insignificant stakes, oligopolists playing to 

remain in business, or military leaders engaged in a desperate set of moves 

and countermoves. 

(a) Strictly Determined Games 

The players employ strategies. Because a player can choose his strategy, 

he has some control over the outcome of the game. But he is not in complete 

control; the outcome will also depend on the strategy of his opponent 

The way the outcome of the game is related to the strategy of both 

players is shown in Table 15-11; this is called the “payoff matrix,” and defines 
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Table 15-11 An Example of a Payoff 
Matrix for A (Loss Function for B) 

B's Strategies 

/Es 

Strategies 

1 2 3 

1 25 6 11 
2 20 10 18 
3 11 7 5 

the payoff goihg to player A. Thus if A selects strategy 2 and B strategy 1, 
A received 20. there might also be a payoff matrix for B, similarly dependent 
on the strategics selected by the two players. However, to keep the discussion 
simple, sujppoie that this is a “zero-sum” game—i.e., what A gains, B loses. 
Thus, Talple lb-11 defines not only the gain matrix for A, but also the loss 
matrix (of losi function) for B. A should be selecting a strategy to make the 
outcome L large as possible, while B should be trying to keep the outcome 

as small as possible. 
Obviously B will have no interest in playing the game shown in Table 

15-11 since helcan do nothing but lose. So we might think of a payoff matrix 
normally ■ involving some positive elements (where B pays A) and some 
negative inesffwhere A pays B). Alternatively, in order to induce B to play 
the game shoin in Table 15-11, A might bribe B $12 for each time he plays. 
This is the assumption we now make, in order to keep our payoff matrix 
all-positive for easier geometric interpretation. The question is “With this 
$12 side payment, is it in 5’s interest to play this game?” 

If a player can select his strategy after he knows how his opponent has 
committed himself, his appropriate strategy is obvious and the game becomes 
a trivial One. Tor example, if it is known that B has chosen strategy 3, A 
will just 'scad column 3, select the largest payoff (18) and then play that 
strategy Tile essence of game theory, however, is that each player must 
commit himself without knowledge of his opponent’s decision; he only 
knows the payoff matrix. We further assume that the game is repeated many 
times. Tlje oijly clues a player has about his opponent’s strategy must come 
from observing his past pattern of play. 

In these circumstances A finds the continuous play of strategy 1 un- 
attractiv^. It is true that this row has the largest possible payoff ($25). But 
this requires p’s cooperation in playing his strategy 1, and it is clearly not 
in B’s irterelt to cooperate. Indeed if B observes that A is continuously 
playing strategy 1, he will select strategy 2, thus keeping the payoff down to 
6. A fines strategy 3 similarly unattractive; B will counter with strategy 3, 
reducing A*s payoff to only 5. A chooses strategy 2; the very best play by B 
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will still yield A a payoff of 10. Now review why A chose strategy 2. He 

calculated the minimum value in each row—and then selected the largest of 

these minimum values. This maximum of the row minima is called the 
“maximin.” 

Now consider the problem from £’s point of view. Recall that he wants 

to keep the payoff as low as possible. Strategy 1 is ill-advised; when A observes 

him playing this, he will counter with 1, leaving B with a loss of $25. Strategy 

3 is also rejected—it may cost him $18. He selects strategy 2; the most it 

can cost him is $10. Note that B calculates the maximum value of each 

column, and then selects the smallest of these. This minimum of the column 

maxima is called the “minimax.” Note that in this special case minimax 

occurs at the same point as maximin, with a payoff of 10. In this game, 

A will play his strategy 2, and B will play his strategy 2; this is called a 

“strictly determined” game—because minimax and maximin coincide. 

This is illustrated in Figure 15-9, a diagram of the payoff matrix with 

each payoff measured vertically. At X we note a “saddle point,” which is 
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both the largest element in its column and the smallest element in its row. 

When such aj saddle point exists, it is both maximin and minimax. 

Summary. j In this strictly determined game, both A and B will play 

strategy 2. The payoff (from B to A) is always 10, so that it is clearly a game 

B will wish to play if he is bribed $12 to do so. 

PROBL 

15-14 What is the appropriate strategy for each opponent, in the following 

games!; in each case decide which player the game favors. 

® I 
! B 

i 

i. 



344 DECISION THEORY 

(b) Mixed Strategies 

Let us now try to apply the theory of part (a) to the following game: 

Table 15-12 

B 
1 2 3 

3 6 2 

_A _A 8 

Minimax Maximin 

A would select his strategy 2; this is the row with the largest minimum value 

(maximin = 4); at the same time B would select his strategy 1; this is the 

column with the smallest maximum value (minimax = 5). But now problems 

arise; because minimax and maximin do not coincide, there is no saddle 

point. Such a game is not strictly determined, with each playing only one 

strategy; it is easy to see why. B begins by playing column 1, while A plays 

row 2; the payoff is 5. Now B observes, that as long as A is playing row 2, 

he can do better by playing column 2, thus reducing the payoff to 4. But 

when B switches to column 2, it is now in ^4’s interest to switch to row 1, 

raising the payoff to 6. As an exercise the student should confirm that a whole 

series of such moves and countermoves are set into play—eventually drawing 

the players in a circle around to the initial position. Then a new cycle begins. 

This will continue until the players recognize a fundamental point. Once 

a player allows his strategy to be predicted, he will be hurt. Thus, for example, 

when A’s strategy becomes clear, he can be hurt by B. What is his defense? 

A’s best plan is to keep B guessing. Thus if A determines his strategy by 

a chance process, B will be unable to predict what he will do. For example, 

A might toss a coin, playing row 1 if heads, or row 2 if tails. He is using a 

“mixed strategy,” weighting each row with a probability of .50. Now B 
doesn’t know what to expect; the only question left for A is whether this 

50/50 mix is the best set of odds to use. 

The best mix of strategies for A is determined in Figure 15-10. Along 

the horizontal axis we consider various probabilities that A may attach to 

playing row 1. This is all A has to select; once this is determined (e.g., if 
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p = A’s probabilities for playing row 1 

FIG. lf|-10 Determination of 4’s mixed strategy (for game shown in Table 15-12). 

A sets p — : /3), then the probability attached to playing row 2 is also 

determined (1 — 1/3 = 2/3). 
Vertically, we plot the expected value of the game—which, of course, 

not only depends on the probabilities A may select, but also on what B may 

do. If B playJ only column 1, then the expected value of the game is a function 

only of the probability A may select; this appears in this diagram as the line 

Vv It is worjh examining in detail. 
At the extreme left, if A sets p = 0 (i.e., never plays row 1, but always 

plays row 2); then the value of the game is 5. On the other hand, at the 

extreme right, if A sets p = 1 (and always plays row 1), then Vx = 3. Or if 

A sets/? = l|/2, then 

V1 = 3(1/2) 4- 5(1/2) = 4 (15-79) 

Generally, for any probability p that A may select: 

| v1 = 3(p) + 5(1 -p) = 5 - 2p (15-80) 

The forjn of (15-80) confirms that Vx is a straight line function of p, the 

probability A selects. Similarly, if B plays only column 2, then 

V2 = 6p + 4(1 - p) = 4 + 2p (15-81) 

Or, if B plays only column 3, then 

F3 = 2p + 8(1 -p) = 8 - 6p (15-82) 

These last two equations are also graphed in Figure 15-10. 
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The game is now laid out for A to analyze, with his problem being to 

select p. If he selects p = 1/8, his opponent will counter by always playing 

2, and keep the expected value of the game at 4J. [This is shown geometrically, 

and confirmed by evaluating (15-81) settingp = 1/8.] Or if A selects/- = 1/2, 

B will counter with 1, thus keeping the expected value of the game down to 

4. Since A is dealing with an opponent who will be selecting strategies to 

keep V low, the expected value of the game from A’s point of view is shown 

as the hatched line in Figure 15-10. The best A can do, therefore, is to select 

p — 1/4. This guarantees V = 4J; moreover, note that this is the intersection 

of Vx and V2. Thus this is the value of the game regardless of whether B 
plays 1 or 2. This geometric solution may be read from Figure 15-10, or 

determined algebraically by setting V1 = Vp, using (15-80) and (15-81): 

5 - 2p = 4 + 2p (15-83) 

P = l (15-84) 

Finally, this value of p is substituted back into (15-81) for the value of the 
game: 

F2 = 4 + 2Q) — 4J (15-85) 

Thus A decides to attach a probability of 1/4 to playing row 1. How 

does he put this into practice? There are several possibilities; for example, 

he might toss 2 coins. If they both come up heads (probability 1/4), then he 

plays row 1; if not, he plays row 2. If this game is repeated many times, A 
will insure that he receives an average payoff which will tend towards 4\—and 

there is nothing B can do to reduce this. All B can hope for is that A has bad 

luck; (e.g., by the luck of the toss, A plays row 1 when B is playing column 1). 

This sort of bad luck can reduce A’s average winning below 4\ if the game is 

played only a few times (or A’s good luck can raise his average winnings 

above 4J); but as the game is played over and over, the element of bad luck 

tends to fade out. 

PROBLEMS 

=> 15-15 (a) Let’s play a variation on matching coins. Each of us will choose 

heads or tails, independently and secretly. I’ll pay you S30 if I show 

tails and you show heads. I’ll pay you $10 if I show heads and you 

show tails. Finally, to make it fair, you pay me $20 if we match (i.e., 

both show heads, or both show tails). Do you want to play? Why? 

(b) What are the optimal strategies of the two players in an ordinary 
game of matching pennies? (Recall that in this game, one player gets 

the pennies if they match, the other gets them if they don’t match.) 
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wduld jyou still toss your penny in such a game, rather than secretly 

selecting a head or tail? Why? 

15-16 Yoli find yourself on a long sea voyage. You wish to match pennies, 

bull yoAr companion wants to play cards. He therefore suggests a 

corhprdmise. You choose heads or tails while he selects an ace. If 

yoii selject a head he pays you $15, $4, $-5, and $1 respectively, 

defending on whether he’s chosen the spade, heart, diamond or club 

ace. If you select a tail, he pays you $—10, $—2, $1, and $—5, again 

depending on which ace he’s chosen. 

(a) ' Do!you agree to play? Why? What strategies? 

(b) l If you were to play this game five times and found you had won 

$5,! what would you conclude? 

(c) 'Are there any two lines in your diagram that do not intersect? 

Frdm tjoth the diagram and the payoff matrix, show that, no matter 

what the circumstances, it is always preferable for him to select the 

club acp instead of the heart ace (i.e., the heart strategy is “dominated 

by’’ the club strategy). By initially examining the payoff matrix, 

cogldn! he have dropped the heart strategy from all further consid¬ 

eration? 

(c) Concl usiotis 

In solving for the best game strategy, the first step is to test whether 

maximin and minimax coincide. If they do, this is a strictly determined 

game, and the single strategy to be used by each player is determined. 

If mmimjax and maximin do not coincide, the game is not strictly 

determined. Mixed strategies are called for, and are determined in simple 

cases geometrically or algebraically as we have illustrated. In more complex 

cases, more advanced mathematical techniques are required; but rather than 

extending the, mechanical solution, it is more important to consider the 

fundamental philosophy and assumptions underlying game theory: 

1. player using his best mixed strategy can guarantee a certain ex¬ 

pected value for the game, regardless of what his opponent may do. However, 

this is only the value towards which the average of many games will tend. 

If the game 

payoff. 

2. Once 

s only played a few times, luck may raise or lower this 

the optimal mixed strategy is determined (e.g., p = 1/2), the 

play is dictated by a random process (tossing a coin). It is simply not good 

enough to decide to play each strategy half the time—for example, alternating 

1, then 2,1 the! 1, then 2, and so on. Once the opponent observes this pattern, 
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he can predict your next play, and hurt you. Note in the simplest game of 

matching pennies (Problem 5-15b), how badly a player would be hurt if he 

interchanged heads and tails rather than tossed the coin. Once an intelligent 

opponent observed this pattern, he could win every time. Each player must 

be unpredictable, by deciding his play be chance. 

3. The theory of games is a very conservative strategy. It is appropriate 

if a game is being replayed many times against an intelligent strategist, who 

is out to get you, knows the payoff matrix, and can observe your strategy 

mix. If these conditions are not met, chances are you can find a better 

strategy than game play. To illustrate, consider an extreme example. Your 
payoff is: 

Opponent 

You 

1 2 

1 

2 

$4,000 Si 

$4 $2 minimax 

= maximin. 

Since maximin and minimax coincide, both you and your opponent should 

play strategy 2 every time. But on the first play, your opponent plays strategy 

1! This means either that he is a fool, or unaware of the payoff matrix (and 

that $4,000 debacle that he faces). It doesn’t matter which; in these circum¬ 

stances you drop game strategy, play row 1 and punish your opponent for 

his stupidity or ignorance. 

Game theory also should not be used in games against nature. As an 

example, suppose you are trying to decide whether to hold a picnic indoors 

or outdoors. 

Nature 

Rain Not Rain 

1 2 

Indoors 1 

You hold picnic: 

Outdoors 2 

100 0 

0 1,000 

Your profit depends on both where the picnic is held, and the weather. 

You can easily confirm that game theory means selecting p — 10/11, with an 
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expected profit of just over $90. These odds mean that you will probably 
hold the picnic indoors. J 

Something clearly has gone wrong. An intuitive glance at the payoff 

matrix suggests you should go outdoors, providing there is a reasonable 

expectation jhat it won’t rain. Game strategy is inappropriate because it is 

based oh thp false premise that nature is an opponent—determining the 

weather With the sole objective of ruining your picnic (i.e., minimizing V) 

.I"S‘ef.d’ Lnatir^. odds are det«rmined independently; and let us suppose 
that theprobability is 4/5 that it will not rain. With these odds, you should 

be holding the picnic outdoors, with an expected profit of: 

1000(f) (15-86) 

The more complicated game solution is dead wrong in this case, because one 

of the key gaine theory assumptions (nature is intelligent and out to get you) 

simply does not hold. The student will immediately see that the simpler 

so mion (1546) is required; and this of course is the Bayesian, or expected 
value, solution outlined in Section 15-2. 

In conclusion, if a prior distribution p(6) does not exist independently 

but rathef is cjetermined by a hostile opponent, then game theory is appropri¬ 

ate, ut even under these conditions it may be too conservative a line of 

play, unless tjhe opponent is highly intelligent and informed. On the other 

hand, \f p(B) is determined independently (e.g., rain versus shine), then 
Bayesian Imetjiods are required. 
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Table I Squares 

i I j n2 Vn VlON 

i. 00 I 1.0000 1.00000 3.16228 

i.i 31 1.0201 1.00499 3.17805 i.i 32 1.0404 1.00995 3.19374 i.i 33 1.0609 1.01489 3.20936 

l.< )4 1.0816 1.01980 3.22490 
l.< 35 1.1025 1.02470 3.24037 l.( )6 1.1236 1.02956 3.25576 

l.< >7 1.1449 1.03441 3.27109 l.( ̂8 1.1664 1.03923 3.28634 
1.09 1.1881 1.04403 3.30151 

1.1 0 1.2100 1.04881 3.31662 

1.11 1.2321 1.05357 3.33167 
1.12 1.2544 1.05830 3.34664 
1.3 1.2769 1.06301 3.36155 

1.14 1.2996 1.06771 3.37639 
1.115 1.3225 1.07238 3.39116 
1.16 
> 

1.3456 1.07703 3.40588 

1.17 1.3689 1.08167 3.42053 
1.3924 1.08628 3.43511 up 1.4161 1.09087 3.44964 

1.20 1.4400 1.09545 3.46410 

1.21 1.4641 1.10000 3.47851 
1.2 r 1.4884 1.10454 3.49285 
1.2 P 1.5129 1.10905 3.50714 

1.2 4 1.5376 1.11355 3.52136 
1.2 p 1.5625 1.11803 3.53553 
1.2< P 1.5876 1.12250 3.54965 

1.2: 7 1.6129 1.12694 3.56371 
1.2! 8 1.6384 1.13137 3.57771 
1.2! 

r 
1.6641 1.13578 3.59166 

hL 1.6900 1.14018 3.60555 

1.3] 1.7161 1.14455 3.61939 
1.3: > r 1.7424 1.14891 3.63318 
1.33 1.7689 1.15326 3.64692 

1.3-5 1.7956 1.15758 3.66060 
1.3£ li.8225 1.16190 3.67423 
1.3£ 1.8496 1.16619 3.68782 

1.37 1.8769 1.17047 3.70135 
1.38 1.9044 1.17473 3.71484 

1.9321 1.17898 3.72827 

1.46 1.9600 1.18322 3.74166 

1.41 1.9881 1.18743 3.75500 
1.42 210164 1.19164 3.76829 
1.43 2 0449 1.19583 3.78153 

1.44 2 0736 1.20000 3.79473 
1.45 2 1025 1.20416 3.80789 
1.46 2 1316 1.20830 3.82099 

1.47 2 1609 1.21244 3.83406 
1.48 2; 1904 1.21655 3.84708 
1.49 2j 2201 1.22066 3.86005 

1.50 2 

0
 

0
 

»o 
j
n

 1.22474 3.87298 

N k_I Vn VlON 

and Square Roots 

N N2 Vn VlON 

1.50 2.2500 1.22474 3.87298 

1.51 
1.52 
1.53 

2.2801 
2.3104 
2.3409 

1.22882 
1.23288 
1.23693 

3.88587 
3.89872 
3.91152 

1.54 
1.55 
1.56 

2.3716 
2.4025 
2.4336 

1.24097 
1.24499 
1.24900 

3.92428 
3.93700 
3.94968 

1.57 
1.58 
1.59 

2.4649 
2.4964 
2.5281 

1.25300 
1.25698 
1.26095 

3.96232 
3.97492 
3.98748 

1.60 2.5600 1.26491 4.00000 

1.61 
1.62 
1.63 

2.5921 
2.6244 
2.6569 

1.26886 
1.27279 
1.27671 

4.01248 
4.02492 
4.03733 

1.64 
1.65 
1.66 

2.6896 
2.7225 
2.7556 

1.28062 
1.28452 
1.28841 

4.04969 
4.06202 
4.07431 

1.67 
1.68 
1.69 

2.7889 
2.8224 
2.8561 

1.29228 
1.29615 
1.30000 

4.08656 
4.09878 
4.11096 

1.70 2.8900 1.30384 4,12311 

1.71 
1.72 
1.73 

2.9241 
2.9584 
2.9929 

1.30767 
1.31149 
1.31529 

4.13521 
4.14729 
4.15933 

1.74 
1.75 
1.76 

3.0276 
3.0625 
3.0976 

1.31909 
1.32288 
1.32665 

4.17133 
4.18330 
4.19524 

1.77 
1.78 
1.79 

3.1329 
3.1684 
3.2041 

1.33041 
1.33417 
1.33791 

4.20714 
4.21900 
4.23084 

1.80 1 3.2400 1.34164 4.24264 

1.81 
1.82 
1.83 

3.2761 
3.3124 
3.3489 

1.34536 
1.34907 
1.35277 

4.25441 
4.26615 
4.27785 

1.84 
1.85 
1.86 

3.3856 
3.4225 
3.4596 

1.35647 
1.36015 
1.36382 

4.28952 
4.30116 
4.31277 

1.87 
1.88 
1.89 

3.4969 
3.5344 
3.5721 

1.36748 
1.37113 
1.37477 

4.32435 
4.33590 
4.34741 

1.90 3.6100 1.37840 4.35890 

1.91 
1.92 
1.93 

3.6481 
3.6864 
3.7249 

1.38203 
1.38564 
1.38924 

4.37035 
4.38178 
4.39318 

1.94 
1.95 
1.96 

3.7636 
3.8025 
3.8416 

1.39284 
1.39642 
1.40000 

4.40454 
4.41588 
4.42719 

1.97 
1.98 
1.99 

3.8809 
3.9204 
3.9601 

1.40357 
1.40712 
1.41067 

4.43847 
4.44972 
4.46094 

2.00 4.0000 1.41421 4.47214 

N N2 Vn VlON 
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Table I (Continued) 

N N2 v/K VlON 

2.00 4.0000 1.41421 4.47214 

2.01 4.0401 1.41774 4.48330 
2.02 4.0804 1.42127 4.49444 
2.03 4.1209 1.42478 4.50555 

2.04 4.1616 1.42829 4.51664 
2.05 4.2025 1.43178 4.52769 
2.06 4.2436 1.43527 4.53872 

2.07 4.2849 1.43875 4.54973 
2.08 4.3264 1.44222 4.56070 
2.09 4.3681 1.44568 4.57165 

2.10 4.4100 1.44914 4.58258 

2.11 4.4521 1.45258 4.59347 
2.12 4.4944 1.45602 4.60435 
2.13 4.5369 1.45945 4.61519 

2.14 4.5796 1.46287 4.62601 
2.15 4.6225 1.46629 4.63681 
2.16 4.6656 1.46969 4.64758 

2.17 4.7089 1.47309 4.65833 
2.18 4.7524 1.47648 4.66905 
2.19 4.7961 1.47986 4.67974 

2.20 4.8400 1.48324 4.69042 

2.21 4.8841 1.48661 4.70106 
2.22 4.9284 1.48997 4.71169 
2.23 4.9729 1.49332 4.72229 

2.24 5.0176 1.49666 4.73286 
2.25 5.0625 1.50000 4.74342 
2.26 5.1076 1.50333 4.75395 

2.27 5.1529 1.50665 4.76445 
2.28 5.1984 1.50997 4.77493 
2.29 5.2441 1.51327 4.78539 

2.30 5.2900 1.51658 4.79583 

2.31 5.3361 1.51987 4.80625 
2.32 5.3824 1.52315 4.81664 
2.33 5.4289 1.52643 4.82701 

2.34 5.4756 1.52971 4.83735 
2.35 5.5225 1.53297 4.84768 
2.36 5.5696 1.53623 4.85798 

2.37 5.6169 1.53948 4.86826 
2.38 5.6644 1.54272 4.87852 
2.39 5.7121 1.54596 4.88876 

2.40 5.7600 1.54919 
‘ 

4.89898 

2.41 5.8081 1.55242 4.90918 
2.42 5.8564 1.55563 4.91935 
2.43 5.9049 1.55885 4.92950 

2.44 5.9536 1.56205 4.93964 
2.45 6.0025 1.56525 4.94975 
2.46 6.0516 1.56844 4.95984 

2.47 6.1009 1.57162 4.96991 
2.48 6.1504 1.57480 4.97996 
2.49 6.2001 1.57797 4.98999 

2.50 6.2500 1.58114 5.00000 

N N2 Vn VTon 

N N2 VN VTon 

2.50 6.2500 1.58114 5.00000 

2.51 
2.52 
2.53 

6.3001 
6.3504 
6.4009 

1.58430 
1.58745 
1.59060 

5.00999 
5.01996 
5.02991 

2.54 
2.55 
2.56 

6.4516 
6.5025 
6.5536 

1.59374 
1.59687 
1.60000 

5.03984 
5.04975 
5.05964 

2.57 
2.58 
2.59 

6.6049 
6.6564 
6.7081 

1.60312 
1.60624 
1.60935 

5.06952 
5.07937 
5.08920 

2,60 6.7600 1.61245 5.09902 

2.61 
2.62 
2.63 

6.8121 
6.8644 
6.9169 

1.61555 
1.61864 
1.62173 

5.10882 
5.11859 
5.12835 

2.64 
2.65 
2.66 

6.9696 
7.0225 
7.0756 

1.62481 
1.62788 
1.63095 

5.13809 
5.14782 
5.15752 

2.67 
2.68 
2.69 

7.1289 
7.1824 
7.2361 

1.63401 
1.63707 
1.64012 

5.16720 
5.17687 
5.18652 

2.70 7.2900 1.64317 5.19615 

2.71 
2.72 
2.73 

7.3441 
7.3984 
7.4529 

1.64621 
1.64924 
1.65227 

5.20577 
5.21536 
5.22494' 

2.V4 
2.75 
2.76 

7.5076 
7.5625 
7.6176 

1.65529 
1.65831 
1.66132 

5.23450 
5.24404 
5.25357 

2.77 
2.78 
2.79 

7.6729 
7.7284 
7.7841 

1.66433 
1.66733 
1.67033 

5.26308 
5.27257 
5.28205 

2.80 7.8400 1.67332 5.29150 

2.81 
2.82 
2.83 

7.8961 
7.9524 
8.0089 

1.67631 
1.67929 
1.68226 

5.30094 
5.31037 
5.31977 

2.84 
2.85 
2.86 

8.0656 
8.1225 
8.1796 

1.68523 
1.68819 
1.69115 

5.32917 
5.33854 
5.34790 

2.87 
2.88 
2.89 

8.2369 
8.2944 
8.3521 

1.69411 
1.69706 
1.70000 

5.35724 
5.36656 
5.37587 

2.90 8.4100 1.70294 5.38516 

2.91 
2.92 
2.93 

8.4681 
8.5264 
8.5849 

1.70587 
1.70880 
1.71172 

5.39444 
5.40370 
5.41295 

2.94 
2.95 
2.96 

8.6436 
8.7025 
8.7616 

1.71464 
1.71756 
1.72047 

5.42218 
5.43139 
5.44059 

2.97 
2.98 
2.99 

8.8209 
8.8804 
8.9401 

1.72337 
1.72627 
1.72916 

5.44977 
5.45894 
5.46809 

3.00 9.0000 1.73205 5.47723 

N N2 Vn 1 vTon 
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Table T 

N rT ; n2 VN VTon 

s.ob 9.0000 1.73205 5.47723 

3.0ll 9.0601 1.73494 5.48635 
3.0: b 9.1204 1.73781 5.49545 
3.0. i 9.1809 1.74069 5.50454 

3.04 9.2416 1.74356 5.51362 
3.0:5 9.3025 1.74642 5.52268 
3.06 9.3636 1.74929 5.53173 

3.0 - 9.4249 1.75214 5.54076 
3.08 9.4864 1.75499 5.54977 
3.0|9 9.5481 1.75784 5.55878 

3.10 9.6100 1.76068 5.56776 

3.11 9.6721 1.76352 5.57674 
3.12 9.7344 1.76635 5.58570 
3.13 9.7969 1.76918 5.59464 

3.14 9.8596 1.77200 5.60357 
3.15 9.9225 1.77482 5.61249 
3.1 6 9.9856 1.77764 5.62139 

3.1 7 10.0489 1.78045 5.63028 
3.1 8 10.1124 1.78326 5.63915 
3.1 9 10.1761 1.78606 5.64801 

lil 0 10.2400 1.78885 5.65685 

3.: :i 10.3041 1.79165 5.66569 
3.: 12 10.3684 1 1.79444 5.67450 
3.1 !3 10.4329 1.79722 5.68331 

3.: !4 10.4976 1.80000 5.69210 
33 5 10.5625 1.80278 5.70Q88 
3.: !6 10.6276 1.80555 5:70964 

3.: 17 10.6929 1.80831 5.71839 
3.28 10.7584 1.81108 5.72713 
3.29 10.8241 1.81384 5.73585 

3.30 10.8900 1.81659 5.74456 

3ii 10.9561 1.81934 5.75326 
3.: 52 11.0224 1.82209 5.76194 
3.; 
r 

11.0889 1.82483 5.77062 

3.: 54 11.1556 1.82757 5.77927 
3.: 55 11.2225 1.83030 5.78792 
3.; 56 11.2896 1.83303 5.79655 

3.37 11.3569 1.83576 5.80517 
3.38 11.4244 1.83848 5.81378 
3.39 11.4921 1.84120 5.82237 

3,f0 11.5600 1.84391 5.83095 

3.41 11.6281 1.84662 5.83952 
3.42 11.6964 1.84932 5.84808 
3.43 11.7649 1.85203 5.85662 

3.44 11.8336 1.85472 5.86515 
3.45 11.9025 1.85742 5.87367 
3.k6 11.9716 1.86011 5.88218 

3J47 12.0409 1.86279 5.89067 
3 48 12.1104 1.86548 5.89915 
3]49 12.1801 1.86815 5.90762 

3 50 | 12.2500 1.87083 5.91608 

K I N2 VNv VlbN 
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N N2 VN VlON 

3.50 12.2500 1.87083 5.91608 

3.51 
3.52 
3.53 

12.3201 
12.3904 
12.4609 

1.87350 
1.87617 
1.87883 

5.92453 
5.93296 
5.94138 

3.54 
3.55 
3.56 

12.5316 
12.6025 
12.6736 

1.88149 
1.88414 
1.88680 

5.94979 
5.95819 
5.96657 

3.57 
3.58 
3.59 

12.7449 
12.8164 
12.8881 

1.88944 
1.89209 
1.89473 

5.97495 
5.98331 
5.99166 

3.60 12.9600 1.89737 6.00000 

3.61 
3.62 
3.63 

13.0321 
13.1044 
13.1769 

1.90000 
1.90263 
1.90526 

6.00833 
6.01664 
6.02495 

3.64 
3.65 
3.66 

13.2496 
13.3225 
13.3956 

1.90788 
1.91050 
1.91311 

6.03324 
6.04152 
6.04979 

3.67 
3.68 
3.69 

13.4689 
13.5424 
13.6161 

1.91572 
1.91833 
1.92094 

6.05805 
6.06630 
6.07454 

3.70 13-6900 1.92354 6.08276 

3.71 
3.72 
3.73 

13.7641 
13.8384 
13.9129 

1.92614 
1.92873 
1.93132 

6.09098 
6.09918 
6.10737 

3.74 
3.75 
3.76 

13.9876 
14.0625 
14.1376 

1.93391 
1.93649 
1.93907 

6.11555 
6.12372 
6.13188 

3.77 
3.78 
3.79 

14.2129 
14.2884 
14.3641 

1.94165 
1.94422 
1.94679 

6.14003 
6.14817 
6.15630 

3.80 14.4400 1.94936 6.16441 

3.81 
3.82 
3.83 

14.5161 
14.5924 
14.6689 

1.95192 
1.95448 
1.95704 

6.17252 
6.18061 
6.18870 

3.84 
3.85 
3.86 

14.7456 
14.8225 
14.8996 

1.95959 
1.96214 
1.96469 

6.19677 
6.20484 
6.21289 

3.87 
3.88 
3.89 

14.9769 
15.0544 
15.1321 

1.96723 
1.96977 
1.97231 

6.22093 
6.22896 
6.23699 

3.90 15.2100 1.97484 6.24500 

3.91 
3.92 
3.93 

15.2881 
15.3664 
15.4449 

1.97737 
1.97990 
1.98242 

6.25300 
6.26099 
6.26897 

3.94 
3.95 
3.96 

15.5236 
15.6025 
15.6816 

1.98494 
1.98746 
1.98997 

6.27694 
6.28490 
6.29285 

3.97 
3.98 
3.99 

15.7609 
15.8404 
15.9201 

1.99249 
1.99499 
1.99750 

6.30079 
6.30872 
6.31664 

4.00 16.0000 2.00000 6.32456 

N N2 VN vTon 
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4.00 16.0000 2.00000 6.32456 

4.01 
4.02 
4.03 

16.0801 
16.1604 
16.2409 

2.00250 
2.00499 
2.00749 

6.33246 
6.34035 
6.34823 

4.04 
4.05 
4.06 

16.3216 
16.4025 
16.4836 

2.00998 
2.01246 
2.01494 

6.35610 
6.36396 
6.37181 

4.07 
4.08 
4.09 

16.5649 
16.6464 
16.7281 

2.01742 
2.01990 
2.02237 

6.37966 
6.38749 
6.39531 

4.10 16.8100 2.02485 6.40312 

4.11 
4.12 
4.13 

16.8921 
16.9744 
17.0569 

2.02731 
2.02978 
2.03224 

6.41093 
6.41872 
6.42651 

4.14 
4.15 
4.16 

17.1396 
17.2225 
17.3056 

2.03470 
2.03715 
2.03961 

6.43428 
6.44205 
6.44981 

4.17 
4.18 
4.19 

17.3889 
17.4724 
17.5561 

2.04206 
2.04450 
2.04695 

6.45755 
6.46529 
6.47302 

4.20 17.6400 2.04939 6.48074 

4.21 
4.22 
4.23 

17.7241 
17.8084 
17.8929 

2.05183 
2.05426 
2.05670 

6.48845 
6.49615 
6.50384 

4.24 
4.25 
4.26 

17.9776 
18.0625 
18.1476 

2.05913 
2.06155 
2.06398 

6.51153 
6.51920 
6.52687 

4.27 
4.28 
4.29 

18.2329 
18.3184 
18.4041 

2.06640 
2.06882 
2.07123 

6.53452 
6.54217 
6.54981 

4.30 18.4900 2.07364 6.55744 

4.31 
4.32 
4.33 

18.5761 
18.6624 
18.7489 

2.07605 
2.07846 
2.08087 

6.56506 
6.57267 
6.58027 

4.34 
4.35 
4.36 

18.8356 
18.9225 
19.0096 

2.08327 
2.08567 
2.08806 

6.58787 
6.59545 
6.60303 

4.37 
4.38 
4.39 

19.0969 
19.1844 
19.2721 

2.09045 
2.09284 
2.09523 

6.61060 
6.61816 
6.62571 

4.40 19.3600 2.09762 6.63325 

4.41 
4.42 
4.43 

19.4481 
19.5364 
19.6249 

2.10000 
2.10238 
2.10476 

6.64078 
6.64831 
6.65582 

4.44 
4.45 
4.46 

19.7136 
19.8025 
19.8916 

2.10713 
2.10950 
2.11187 

6.66333 
6.67083 
6.67832 

4.47 
4.48 
4.49 

19.9809 
20.0704 
20.1601 

2.11424 
2.11660 
2.11896 

6.68581 
6.69328 
6.70075 

4.50 20.2500 2.12132 6.70820 

N N2 Vn VlON 
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N N2 Vn VlON 

4.50 20.2500 2.12132 6.70820 

4.51 
4.52 
4.53 

20.3401 
20.4304 
20.5209 

2.12368 
2.12603 
2.12838 

6.71565 
6.72309 
6.73053 

4.54 
4.55 
4.56 

20.6116 
20.7025 
20.7936 

2.13073 
2.13307 
2.13542 

6.73795 
6.74537 
6.75278 

4.57 
4.58 
4.59 

20.8849 
20.9764 
21.0681 

2.13776 
2.14009 
2.14243 

6.76018 
6.76757 
6.77495 

4.60 21.1600 2.14476 6.78233 

4.61 
4.62 
4.63 

21.2521 
21.3444 
21.4369 

2.14709 
2.14942 
2.15174 

6.78970 
6.79706 
6.80441 

4.64 
4.65 
4.66 

21.5296 
21.6225 
21.7156 

2.15407 
2.15639 
2.15870 

6.81175 
6.81909 
6.82642 

4.67 
4.68 
4.69 

21.8089 
21.9024 
21.9961 

2.16102 
2.16333 
2.16564 

6.83374 
6.84105 
6.84836 

4.70 22.0900 2.16795 6.85565 

4.71 
4.72 
4.73 

22.1841 
22.2784 
22.3729 

2.17025 
2.17256 
2.17486 

6.86294 
6.87023 
6.87750 

4.74 
4.75 
4.76 

22.4676 
22.5625 
22.6576 

2.17715 
2.17945 
2.18174 

6.88477 
6.89202 
6.89928 

4.77 
4.78 
4.79 

22.7529 
22.8484 
22.9441 

2.18403 
2.18632 
2.18861 

6.90652 
6.91375 
6.92098 

4.80 23.0400 2.19089 6.92820 

4.81 
4.82 
4.83 

23.1361 
23.2324 
23.3289 

2.19317 
2.19545 
2.19773 

6.93542~ 
6.94262 
6.94982 

4.84 
4.85 
4.86 

23.4256 
23.5225 
23.6196 

2.20000 
2.20227 
2.20454 

6.95701 
6.96419 
6.97137 

4.87 
4.88 
4.89 

23.7169 
23.8144 
23.9121 

2.20681 
2.20907 
2.21133 

6.97854 
6.98570 
6.99285 

4.90 24.0100 2.21359 7.00000 

4.91 
4.92 
4.93 

24.1081 
24.2064 
24.3049 

2.21585 
2.21811 
2.22036 

7.00714 
7.01427 
7.02140 

4.94 
4.95 
4.96 

24.4036 
24.5025 
24.6016 

2.22261 
2.22486 
2.22711 

7.02851 
7.03562 
7.04273 

4.97 
4.98 
4.99 

24.7009 
24.8004 
24.9001 

2.22935 
2.23159 
2.23383 

7.04982 
7.05691 
7.06399 

5.00 25.0000 2.23607 7.07107 
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sjoo 25.0000 2.23607 7.07107 

5 01 
5J02 
5 03 

25.1001 
25.2004 
25.3009 

2.23830 
2.24054 
2.24277 

7.07814 
7.08520 
7.09225 

5 04 
5J05 
5.06 

.25.4016 
25.5025 
25.6036 

2.24499 
2.24722 
2.24944 

7.09930/ 
7.10634 
7.11337 

5.'07 
5'08 
5.j09 

25.7049 
25.8064 
25.9081 

2.25167 
2.25389 
2.25610 

7.12039 
7.12741 
7.13442 

5. [10 26.0100 2.25832 7.14143 

5-jll 
5.12 
5.13 

26.1121 
26.2144 
26.3169 

2.26053 
2.26274 
2.26495 

7.14843 
7.15542 
7.16240 

514 
515 
5.16 

26.4196 
26.5225 
26.6256 

2.26716 
2.26936 
2.27156 

7.16938 
7.17635 
7.18331 

26.7289 
26.8324 
26.9361 

2.27376 
2.27596 
2.27816 

7.19027 
7.19722 
7.20417 

5.20 27.0400 2.28035 7.21110 

5.h 
5.22 
5.^3 

27.1441 
27.2484 
27.3529 

2.28254 
2.28473 
2.28692 

7.21803 
7.22496 
7.23187 

5.k 
5.25 
5.56 

27.4576 
27.5625 
27.6676 

2.28910 
2.29129 
2.29347 

7.23878 
7.24569 
7.25259 

5.27 
5.28 
5.29 

27.7729 
27.8784 
27.9841 

2.29565 
2.29783 
2.30000 

7.25948 
7.26636 
7.27324 

5.^0 1 28.0900 2.30217 7.28011 

5.3! 
5.32 
5.33 

28.1961 
28.3024 
28.4089 

2.30434 
2.30651 
2.30868 

7.28697 
7.29383 
7.30068 

5.34 
5.35 
5.36 

28.5156 
28.6225 
28.7296 

2.31084 
2.31301 
2.31517 

7.30753 
7.31437 
7.32120 

5.37 
5.38 
5.^9 

28.8369 
28.9444 
29.0521 

2.31733 
2.31948 
2.32164 

7.32803 
7.33485 
7.34166 

r».io 29.1600 2.32379 7.34847 

5.41 
5.42 
5.43 

29.2681 
29.3764 
29.4849 

2.32594 
2.32809 
2.33024 

7.35527 
7.56206 
7.36885 

5.44 
5.45 
5.46 

29.5936 
29.7025 
29.8116 

2.33238 
2.33452 
2.33666 

7.37564 
7.58241 
7.58918 

5.47 
sis 
5.f9 

29.9209 
50.0304 
30.1401 

2.33880 
2.34094 
2.34307 

7.39594 
7.40270 
7.40945 

5io 30.2500 2.34521 7.41620 

T I N2 VN VTon 
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5.50 30.2500 2.34521 7.41620 

5.51 
5.52 
5.53 

30.3601 
30.4704 
30.5809 

2.34734 
2.34947 
2.35160 

7.42294 
7.42967 
7.43640 

5.54 
5.55 
5.56 

30.6916 
30.8025 
30.9136 

2.35372 
2.35584 
2.35797 

7.44312 
7.44983 
7.45654 

5.57 
5.58 
5.59 

31.0249 
31.1364 
31.2481 

2.36008 
2.36220 
2.36432 

7.46324 
7.46994 
7.47663 

5.60 31.3600 2.36643 7.48331 

5.61 
5.62 
5.63 

31.4721 
31.5844 
31.6969 

2.36854 
2.37065 
2.37276 

7.48999 
7.49667 
7.50333 

5.64 
5.65 
5.66 

31.8096 
51.9225 
32.0356 

2.37487 
2.37697 
2.37908 

7.50999 
7.51665 
7.52330 

5.67 
5.68 
5.69 

32.1489 
32.2624 
32.3761 

2.38118 
2.38328 
2.38537 

7.52994 
7.53658 
7.54321 

5.70 32.4900 2.38747 7.54983 

5.71 
5.72 
5.73 

32.6041 
32.7184 
32.8329 

2.38956 
2.39165 
2.39374 

7.55645 
7.56307 
7.56968 

5.74 
5.75 
5.76 

32.9476 
33.0625 
33.1776 

2.39583 
2.39792 
2.40000 

7.57628 
7.58288 
7.58947 

5.77 
5.78 
5.79 

33.2929 
53.4084 
33.5241 

2.40208 
2.40416 
2.40624 

. 

7.59605 
7.60263 
7.60920 

5.80 33.6400 2.40832 7.61577 

5.81 
5.82 
5.83 

33.7561 
33.8724 
33.9889 

2.41039 
2.41247 
2.41454 

7.62234 
7.62889 
7.63544 

5.84 
5.85 
5.86 

34.1056 
34.2225 
34.3396 

2.41661 
2.41868 
2.42074 

7.64199 
7.64853 
7.65506 

5.87 
5.88 
5.89 

34.4569 
34.5744 
34.6921 

2.42281 
2.42487 
2.42693 

7.66159 
7.66812 
7.67463 

5.00 34.8100 2.42899 7.68115 

5.91 
5.92 
5.93 

34.9281 
35.0464 
35.1649 

2.43105 
2.43311 
2.43516 

7.68765 
7.69415 
7.70065 

5.94 
5.95 
5.96 

35.2836 
35.4025 
35.5216 

2.43721 
2.43926 
2.44131 

7.70714 
7.71362 
7.72010 

5.97 
5.98 
5.99 

35.6409 
35.7604 
35.8801 

2.44336 
2.44540 
2.44745 

7.72658 
7.73305 
7.73951 

6.00 36.0000 2.44949 7.74597 

N N2 Vn VTon 

355 



Table I (Continued) 

N N2 Vn Vi on 

6.00 36.0000 2.44949 7.74597 

6.01 
6.02 
6.03 

36.1201 
36.2404 
36.3609 

2.45153 
2.45357 
2.45561 

7.75242 
7.75887 
7.76531 

6.04 
6.05 
6.06 

36.4816 
36.6025 
36.7236 

2.45764 
2.45967 
2.46171 

7.77174 
7.77817 
7.78460 

6.07 
6.08 
6.09 

36.8449 
36.9664 
37.0881 

2.46374 
2.46577 
2.46779 

7.79102 
7.79744 
7.80385 

6.10 37.2100 2.46982 7.81025 

6.11 
6.12 
6.13 

37.3321 
37.4544 
37.5769 

2.47184 
2.47386 
2.47588 

7.81665 
7.82304 
7.82943 

6.14 
6.15 
6.16 

37.6996 
37.8225 
37.9456 

2.47790 
2.47992 
2.48193 

7.83582 
7.84219 
7.84857 

6.17 
6.18 
6.19 

38.0689 
38.1924 
38.3161 

2.48395 
2.48596 
2.48797 

7.85493 
7.86130 
7.86766 

6.20 38.4400 2.48998 7.87401 

6.21 
6.22 
6.23 

38.5641 
38.6884 
38.8129 

2.49199 
2.49399 
2.49600 

7.88036 
7.88670 
7.89303 

6.24 
6.25 
6.26 

38.9376 
39.0625 
39.1876 

2.49800 
2.50000 
2.50200 

7.89937 
7.90569 
7.91202 

6.27 
6.28 
6.29 

39.3129 
39.4384 
39.5641 

2.50400 
2.50599 
2.50799 

7.91833 
7.92465 
7.93095 

6.30 39.6900 2.50998- 7.93725 

6.31 
6.32 
6.33 

39.8161 
39.9424 
40.0689 

2.51197 
2.51396 
2.51595 

7.94355 
7.94984 
7.95613 

6.34 
6.35 
6.36 

40.1956 
40.3225 
40.4496 

2.51794 
2.51992 
2.52190 

7.96241 
7.96869 
7.97496 

6.37 
6.38 
6.39 

40.5769 
40.7044 
40.8321 

2.52389 
2.52587 
2.52784 

7.98123 
7.98749 
7.99375 

6.40 40.9600 2.52982 8.00000 

6.41 
6.42 
6.43 

41.0881 
41.2164 
41.3449 

2.53180 
2.53377 
2.53574 

8.00625 
8.01249 
8.01873 

6.44 
6.45 
6.46 

41.4736 
41.6025 
41.7316 

2.53772 
2.53969 
2.54165 

8.02496 
8.03119 
8.03741 

6.47 
6.48 
6.49 

41.8609 
41.9904 
42.1201 

2.54362 
2.54558 
2.54755 

8.04363 
8.04984 
8.05605 

6.50 42.2500 2.54951 8.06226 

N N2 Vn VTon 
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6.50 42.2500 2.54951 8.06226 

6.51 
6.52 
6.53 

42.3801 
42.5104 
42.6409 

2.55147 
2.55343 
2.55539 

8.06846 
8.07465 
8.08084 

6.54 
6.55 
6.56 

42.7716 
42.9025 
43.0336 

2.55734 
2.55930 
2.56125 

8.08703 
8.09321 
8.09938 

6.57 
6.58 
6.59 

43.1649 
43.2964 
43.4281 

2.56320 
2.56515 
2.56710 

8.10555 
8.11172 
8.11788 

6.60 43.5600 2.56905 8.12404 

6.61 
6.62 
6.63 

43.6921 
43.8244 
43.9569 

2.57099 
2.57294 
2.57488 

8.13019 
8.13634 
8.14248 

6.64 
6.65 
6.66 

44.0896 
44.2225 
44.3556 

2.57682 
2.57876 
2.58070 

8.14862 
8.15475 
8.16088 

6.67 
6.68 
6.69 

44.4889 
44.6224 
44.7561 

2.58263 
2.58457 
2.58650 

8.16701 
8.17313 
8.17924 

6.70 44.8900 2.58844 ; 8.18535 

6.71 
6.72 
6.73 

45.0241 
45.1584 
45.2929 

2.59037 
2.59230 
2.59422 

8.19146 
8.19756 
8.20366 

6.74 
6.75 
6.76 

45.4276 
45.5625 
45.6976 

2.59615 
2.59808 
2.60000 

8.20975 
8.21584 
8.22192 

6.77 
6.78 
6.79 

45.8329 
45.9684 
46.1041 

2.60192 
2.60384 
2.60576 

8.22800 
8.23408 
8.24015 

6.80 46.2400 2.60768 8.24621 

6.81 
6.82 
6.83 

46.3761 
46.5124 
46.6489 

2.60960 
2.61151 
2.61343 

8.25227 
8.25833 
8.26438 

6.84 
6.85 
6.86 

46.7856 
46.9225 
47.0596 

2.61534 
2.61725 
2.61916 

8.27043 
8.27647 
8.28251 

6.87 
6.88 
6.89 

47.1969 
47.3344 
47.4721 

2.62107 
2.62298 
2.62488 

8.28855 
8.29458 
8.30060 

6.90 47.6100 2.62679 8.30662 

6.91 
6.92 
6.93 

47.7481 
47.8864 
48.0249 

2.62869 
2.63059 
2.63249 

8.31264 
8.31865 
8.32466 

6.94 
6.95 
6.96 

48.1636 
48.3025 
48.4416 

2.63439 
2.63629 
2.63818 

8.33067 
8.33667 
8.34266 

6.97 
6.98 
6.99 

48.5809 
48.7204 
48.8601 

2.64008 
2.64197 
2.64386 

8.34865 
8.35464 
8.36062 

7.00 49.0000 2.64575 8.36660 

N N2 Vn VlON 
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Table I 

_ N N? \ X 1 Viox 

7.0i d 49.000 0 2.6457 5 8.36660 
7.0 J 
7.01 
7.0’ 

1 49.140 
2 ! 49.280 
► S 49.420! 

1 2.6476 
4 2.6495 
9 2.6514 

4 8.37257 
3 8.37854 
1 8.38451 

7.04 
705 
7[06 

49.56K 
49.702' 
49.8431 

5 2.65331 
> 2.655 li 
> 2.6570J 

9 8.39047 
3 8.39643 
7 8.40238 

7lo7 
7.08 
7.09 

49.984S 
50.1264 
50.2681 

> 2.6589£ 
• 2.6608£ 

2.66271 

5 8.40833 
5 8.41427 

8.42021 
7.io 50.4100 2.66458 ; 8.42615 
7.11 
7.12 
7.3 

50.5521 
50.6944 
50.8369 

2.66646 
2.66833 
2.67021 

8.43208 
8.43801 
8.44393 

7.14 

7f 

50.9796 
51.1225 
$1.2656 

2.67208 
2.67395 
2.67582 

8.44985 
8.45577 
8.46168 

7.17 
7.18 
7.1l9 

—- r 

51.4089 
51.5524 
51.6961 

2.67769 
2.67955 
2.68142 

8.46759 
8.47349 
8.47939 

7.20 51.8400 2.68328 8.48528 ’ 
7.21 
7.22 
7.23 

51.9841 
52.1284 
52.2729 

2.68514 
2.68701 
2.68887 

8.49117 
8.49706 
8.50294 

7.24 
7.25 
7.25 

52.4176 
52.5625 
52.7076 

2.69072 
2.69258 
2.69444 

8.50882 
8.51469 
8.52056 

7.27 
7.28 
7.29 

52.8529 
52.9984 
53.1441 

2.69629 
2.69815 
2.70000 

8.52643 
8.53229 
8.53815 

7.30 5^.2900 2.70185 8.54400- 
7.31 
7.32! 
7.33 

53.4361 
5.3.5824 
5^.7289 

2.70370 
2.70555 
2.70740 

8.54985" 
8.55570 
8.56154 

7.34 
7.35 
7.36 

548756 
54>0225 
54|1696 

2.70924 
2.71109 
2.71293 

8.56738 
8.57321 
8.57904 

7.37 
7.38 : 
7.39 j 

54^3169 
54J4644 
54j6121 

2.71477 
2.71662 
2.71846 

8.58487 
8.59069 
8.59651 

7.40 54.7600 2.72029 ~i 8.60233* 

7.41 : 1 
7.42 ! ; 
7.43 ; • 

54.9081 
55.0564 ; 
55.2049 ] 

2.72213 1 
2.72397 l 
2.72580 ? 

8.60814* 
8.61394 
8.61974 

7.44 l 
7.45 1 
7.46 £ 

35.3536 : 
>5.5025 : 
55.6516 : 

2.72764 £ 
2.72947 5 
2.73130 £ 

8.62554 
8.63134 
5.63713 

7A7 ; £ 
7.48 ! £ 
7.49 j £ 

55.8009 2 
15.9504 5 
56.: 001 2 

2.73313 £ 
2.73496 8 
! .'73679 8 

5.64292 
1.64870 
.65448 

~7.5o1 1 '6.2500 ~2 !.73861 |8 .66025 

N ! If VN Cion 
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(Continued) 

N N2 VN VTon 
7.5C > 56.250! 0 2.7386 1 8.66025 
7.51 
7.52 
7.53 

56.400: 
: 56.550' 

56.700< 

1 2,7404' 
1 2.7422< 
9 2.7440i 

1 8.66603 
5 8.67179 
3 8.67756 

7.54 
7.55 
7.56 

56.8511 
57.002£ 
57,1531: 

5 2.7459] 
5 2.7477£ 
5 2.7495£ 

l 8.68332 
5 8.68907 
5 8.69483 

7.57 
7.58 
7.59 

57.3049 
57.4564 
57.6081 

’ 2.75136 
2.75318 
2.75500 

5 8.70057 
1 8.70632 
1 8.71206 

7.60 57.7600 2.75681 8.71780 
Til" 
7.62 
7.63 

57.9121 
58.0644 
58.2169 

2.75862 
2.76043 
2.76225 

8.72353 
8.72926 
8.73499 

7.64 
7.65 
7.66 

58.3696 
58.5225 
58.6756 

2.76405 
2.76586 
2.76767 

8.74071 
8.74643 
8.75214 

7.67 
7.68 
7.69 

58.8289 
58.9824 
59.1361 

2.76948 
2.77128 
2.77308 

8.75785 
8.76356 
8.76926 

T70~ 59.2900 2.77489 8.77496* 
7.71 
7.72 
7.73 

59.4441 
59.5984 
59.7529 

2.77669 
2.77849 
2.78029 

Tt8066~ 
8.78635 
8.79204 

7.74 
7.75 
7.76 

59.9076 
60.0625 
60.2176 

2.78209 
2.78388 

! 2.78568 

8.79773 
8.80341 
8.80909 

7.77 
7.78' 
7.79 

60.3729 
60.5284 
60.6841 

2.78747 
2.78927 
2.79106 

8.81476 
8.82043 
8.82610 

Ts<r 60.8400 2.79285 8.83176* 
~7.81 
7.82 
7.83 

60.9961 
61.1524 
61.3089 

2.79464 
2.79643 
2.79821 

8.83742 
8.84308 
8.84873 

7.84 
7.85 
7.86 

61.4656 
61.6225 
61.7796 

2.80000 
2.80179 
2.80357 

8.85438 
8.86002 
8.86566 

7.87 
7.88 
7.89 

61.9369 
62.0944 
62.2521 

2.80535 
2.80713 
2.80891 

8.87130 
8.87694 
3.88257 

7.90 62.4100 2.81069 8.88819 
*7.91 ~ 
7.92 1 
7.93 1 

62.5681 
62.7264 
62.8849 : 

2.81247 ~ 
2.81425 j 
2.81603 J 

8.89382 
3.89944 
3.90505 

7.94 < 
7.95 ( 
7.96 ( 

53.0436 ; 
53.2025 : 
53.361 6 ; 

2.81780 £ 
2.81957 £ 
2.82135 £ 

3.91067 
3.91628 
2.92188 

7.97 £ 
7.98 e 
7.99 £ 

53.5209 : 
53.6804 ; 
53.8401 2 

2.82312 ? 
2.82489 £ 
2.82666 8 

5.92749 
! .93308 
1.93868 

ImhT ~6 54.0000 2 2.82843 1 .94427 
N N2 Vn Cion 



Table I (Continued) 

XT 
N2 Vn ' /Ton 

8.00 6 14.0000 2 1.82843 8 .94427 

8.01 ( 
8.02 f 
8.03 ( 

54.1601 2 
54.3204 7 
54.4809 7 

283019 8 
>.83196 8 
>.83373 £ 

1.94986 
> .95545 
S .96103 

8.04 < 
8.05 i 
8.06 i 

54.6416 7 
54.8025 7 
64.9636 7 

2.83549 £ 
2.83725 £ 
2.83901 ? 

S .96660 
i.97218 
5.97775 

8.07 
8.08 
8.09 

65 1249 : 
65.2864 
65.4481 

2.84077 1 
2.84253 i 
2.84429 i 

3.98332 
8.98888 
8.99444 

8.10 65.6100 2.84605 9.00000 

8.11 
8.12 
8.13 

65.7721 
65.9344 
66.0969 

2.84781 
2.84956 
2.85132 

9.00555 
9.01110 
9.01665 

8.14 
8.15 
8.16 

66.2596 
66.4225 
66.5856 

2.85307 
2.85482 
2.85657 

9.02219 
9.02774 
9.03327 

8.17 
8.18 
8.19 

66.7489 
66.9124 
67.0761 

2.85832 
2.86007 
2.86182 

9.03881 
9.04434 
9.04986 

8.20 67.2400 2.86356 9.05539 

8.21 
8.22 
8.23 

67.4041 
67.5684 
67.7329 

2.86531 
2.86705 
2.86880 

9.06091 
9.06642 
9.07193 

8.24 
8.25 
8.26 1 

67.8976 
68.0625 
68.2276 ! 

2.87054 
2.87228 
2.87402 

9.07744 
9.08295 
9.08845 

8.27 
8.28 
8.29 

68.3929 
68.5584 
68.7241 

2.87576 
2.87750 
2.87924 

9.09395 
9.09945 
9.10494 

8.30 68.8900 2.88097 9.11043 

8.31 
8.32 
8.33 

69.0561 
69.2224 
69.3889 

2.88271 
2.88444 
2.88617 

9.11592 
9.12140 
9.12688 

8.34 
8.35 
8.36 

69.5556 
69.7225 
69.8896 

2.88791 
2.88964 
2.89137 

9.13236 
9.13783 
9.14330 

8.37 
8.38 
8.39 

70.0569 
70.2244 
70.3921 

2.89310 
2.89482 
2.89655 

9.14877 
9.15423 
9.15969 

8.40 70.5600 i 2.89828 ; 9.16515 

8.41 
8.42 
8.43 

70.7281 
70.8964 
71.064S 

2.9000C 
t 2.9017^ 
> 2.9034? 

) 9.17061 
> 9.17606 
5 9.18150 

8.44 
8;4S 
8.46 

71.233* 
i 71.402' 
; 71.57K 

5 2.90511 
5 2.9068! 
5 2.9086 

7 9.18695 
> 9.19239 
1 9.19783 

8.47 
8.45 
8.45 

> 71.740! 
i 71.910 
) 72.080 

9 2.9103 
4 2.9120 
1 2.9137 

3 9.20326 
4 9.20869 
6 ] 9.21412 

8.51 (T 72.250 0 2.9154 8 9.21954 

N 1 N2 \ Ton 

N N2 \/N N / ION 

8.50 7 2.2500 2 .91548 \9, .21954 

8.51 7 
8.52 7 
8.53 7 

'2.4201 2 
7.5904 2 
7.7609 2 

.91719 9 
1.91890 9 
292062 9 

.22497 

.23038 

.23580 

8.54 7 
8.55 ; 
8.56 ; 

7.9316 2 
7.1025 2 
73.2736 2 

>.92233 9 
>.92404 9 
>.92575 S 

'.24121 
>.24662 
>.25203 

8.57 : 
8.58 ' 
8.59 

73.4449 
73.6164 
73.7881 

2.92746 1 
2.92916 1 
2.93087 ! 

>.25743 
>.26283 
>.26823 

8.60 73.9600 2.93258 ! >.27362 

8.61 
8.62 
8.63 

74.1321 
74.3044 
74.4769 

2.93428 1 
2.93598 
2.93769 

9.27901 
9.28440 
9.28978 

8.64 
8.65 
8.66 

74.6496 
74.8225 
74.9956 

2.93939 
2.94109 
2.94279 

9.29516 
9.30054 
9.30591 

8.67 
8.68 
8.69 

75.1689 
75.3424 
75.5161 | 

2.94449 
2.94618 
2.94788 | 

9.31128 
9.31665 
9.32202 

8.70 75.6900 2.94958 9.32738 

8.71~ 
8.72 
8.73 

75.8641 
76.0384 
76.2129 

~2.9512/T 
2.95296 
2.95466 

9.33274 
9.33809 
9.34345 

8.74 
8.75 
8.76 

76.3876 
76.5625 
76.7576 

2.95635 
2.95804 
2.95973 ! 

9.34880 
9.35414 
9.35949 

8.77 
8.78 
8.79 

76.9129 
77.0884 
77.2641 

2.96142 
2.96311 
2.96479 

9.36483 
9.37017 
9.37550 

8.80 77.4400 2.96648 9.38083 

TiT 
8.82 
8.83 

77.6161 
77.7924 
77.9689 

2.96816 
2.96985 
2.97153 

9.38616 
9.39149 
9.39681 

8.84 
8.85 
8.86 

78.1456 
78.3225 
78.4996 

2.97321 
2.97489 
2.97658 

9.40213 
9.40744 
9.41276 

8.87 
8.88 
8.89 

78.6769 
78.8544 
79.0321 

2.97825 
2.97993 
2.98161 

9.41807 
9.42338 
9.42868 

8.90 79.2100 i 2.98329 ’ 9.43398 

~8.91 
8.92 
8.93 

79.3881 
79.5664 
79.7441 

2.98496 
l 2.98664 
> 2.9883] 

~ 9.43928 
t 9.44458 
L 9.44987 

8.94 
8.95 
8.96 

79.923* 
i 80.102i 
i 80.2811 

5 2.9899? 
5 2.9916* 
5 2.9933; 

1 9.45516 
5 9.46044 
5 9.46573 

8.97 
8.9£ 
8.9! 

' 80.460' 
5 80.640 
) 80.820 

9 2.9950' 
4 2.9966 
1 2.9983 

0 9.47101 
6 9.47629 
3 9.48156 

9.(X [) 81.000 0 3.0000 0 9.48683 

N N2 \/N VTon 

358 



Table 1 (Continued) 

N N2 \ 'n vTon 

Jp.00 81.0000 3.00000 9.48683 

9.01 
9.02 
9.03 

81.1801 
81.3604 
81.5409 

3.00167 
3.00333 
3.00500 

9.49210 
9.49737 
9.50263 

q
q

o
 

81.7216 
81.9025 
82.0836 

3.00666 
3.00832 
3.00998 

9.50789 
9.51315 
9.51840 

^
 oo o

\ 
q
o
q

 
—

0
\<

3
\~

0
t~

 

82.2649 
82.4464 
82.6281 

3.01164 
3.01330 
3.01496 

9.52365 
9.52890 
9.53415 

^.10 82.8100 3.01662 9.55939 

9-11 
9.12 
9.13 

82.9921 
! 83.1744 

83.3569 

3.01828 
3.01993 
3.02159 

9.54465 
9.54987 
9.55510 

9.14 
9.15 I 
9.16 

83.5396 
83.7225 
83.9056 

3.02324 
3.02490 
3.02655 

9.56033 
9.56556 
9.57079 

9.17 
9.18 
9.19 

84.0889 
84.2724 
84.4561 

3.02820 
3.02985 
3.03150 

9.57601 
9.58123 
9.58645 

9|.20 84.6400 3.03315 9.59166 

9.21 
9.22 
9.23 

84.8241 
85.0084 
85.1929 

3.03480 
3.03645 
3.03809 

9.59687 
9.60208 
9.60729 

9.24 
9-25 
9.26 

85.3776 
85.5625 
85.7476 

3.03974 
3.04138 
3.04302 

9.61249 
9.61769 
9.62289 

9.27 
9.28 
9.29 

85.9329 
86.1184 
86.3041 

3.04467 
3.04631 
3.04795 

9.62808 
9.63328 
9.63846 

9.30 86.4900 3.04959 9.64365 

9.31 
9.32 
9.33 

86.6761 
86.8624 
87.0489 

3.05123 
3.05287 
3.05450 

9.64883 
9.65401 
9.65919 

9.34 
9 35 
9.36 

87.2356 
87.4225 
87.6096 

3.05614 
3.05778 
3.05941 

9.66437 
9.66954 
9.67471 

9.37 
9 38 
9f39 

87.7969 
87.9844 
88.1721 

3.06105 
3.06268 
3.06431 

9.67988 
9.68504 
9.69020 

9U0 88.3600 3.06594 9.69536 

9^.41 
9.42 
9143 

88.5481 
88.7364 
88.9249 

3.06757 
3.06920 
3.07083 

9.70052 
9.70567 
9.71082 

9.44 
9:45 
9;46 

89.1136 
89.3025 
89.4916 

3.07246 
3.07409 
3.07571 

9.71597 
9.72111 
9.72625 

947 
9*48 
9149 

89.6809 
89.8704 
90.0601 

3.07734 
3.07896 
3.08058 

9.73139 
9.73653 
9.74166 

9!50 1 90.2500 3.08221 9.74679 

jN 
i N2 VN \/10X 

-U. 

X X2 Vn Vh)N 
9.50 90.2500 3.08221 9.74679 

9.51 
9.52 
9.53 

90.4401 
90.6504 
90.8209 

3.08383 
3.08545 
3.08707 

9.75192 
9.75705 
9.76217 

9.54 
9.55 
9.56 

91.0116 
91.2025 
91.3956 

3.08869 
3.09031 
3.09192 

9.76729 
9.77241 
9.77753 

9.57 
9.58 
9.59 

91.5849 
91.7764 
91.9681 

3.09354 
3.09516 
3.09677 

9.78264 
9.78775 
9.79285 

9.60 92.1600 3.09839 9.79796 

9.61 
9.62 
9.63 

92.3521 
92.5444 
92.7369 

3.10000 
3.10161 
3.10322 

9.80506 
9.80816 
9.81326 

9.64 
9.65 
9.66 

92.9296 
93.1225 
93.3156 

3.10483 
3.10644 
3.10805 

9.81855 
9.82344 
9.82853 

9.67 
9.68 
9.69 

93.5089 
93.7024 
93.8961 

3.10966 
3.11127 
3.11288 

9.83362 
9.83870 
9.84378 

9.70 94.0900 3.11448 9.84886 

9.71 
9.72 
9.75 

94.2841 
94.4784 
94.6729 

3.11609 
3.11769 
3.11929 

9.85593 
9.85901 
9.86408 

9.74 
9.75 
9.76 

94.8676 
95.0625 
95.2576 

3.12090 
3.12250 
3.12410 

9.86914 
9.87421 
9.87927 

9.77 
9.78 
9.79 

95.4529 
95.6484 
95.8441 

3.12570 
3.12750 
3.12890 

9.88433 
9.88939 
9.89444 

9.80 96.0400 3.13050 9.89949 

9.81 
9.82 
9.83 

96.2561 
96.4324 
96.6289 

3.13209 
3.13369 
3.13528 

9.90454 
9.90959 
9.91464 

9.84 
9.85 
9.86 

96.8256 
97.0225 
97.2196 

3.13688 
3.13847 
3.14006 

9.91968 
9.92472 
9.92975 

9.87 
9.88 
9.89 

97.4169 
97.6144 
97.8121 

5.14166 
3.14325 
3.14484 

9.93479 
9.95982 
9.94485 

9.90 98.0100 3.14643 9.94987 

9.91 
9.92 
9.93 

98.2081 
98.4064 
98.6049 

3.14802 
3.14960 
3.15119 

9.95490 
9.95992 
9.96494 

9.94 
9.95 
9.96 

98.8036 
99.0025 
99.2016 

3.15278 
3.15436 
3.15595 

9.96995 
9.97497 
9.97998 

9.97 
9.98 
9.99 

99.4009 
99.6004 
99.8001 

3.15753 
3.15911 
3.16070 

9.98 490 
9.08990 
9.99500 

10.00 100.000 3.16228 10.0009 

X X2 vx 3 fox 



Table IIa Random Digits 

39 65 76 45 45 19 90 69 64 61 20 26 36 31 62 58 24 97 14 97 95 06 70 99 00 

73 71 23 70 90 65 97 60 12 11 31 56 34 19 19 47 83 75 51 33 30 62 38 20 46 

72 20 47 33 84 51 67 47 97 19 98 40 07 17 66 23 05 09 51 80 59 78 11 52 49 

75 17 25 69 17 17 95 21 78 58 24 33 45 77 48 69 81 84 09 29 93 22 70 45 80 

37 48 79 88 74 63 52 06 34 30 01 31 60 10 27 35 07 79 71 53 28 99 52 01 41 

02 89 08 16 94 85 53 83 29 95 56 27 09 24 43 21 78 55 09 82 72 61 88 73 61 

87 18 15 70 07 37 79 49 12 38 48 13 93 55 96 41 92 45 71 51 09 18 25 58 94 

98 83 71 70 15 89 09 39 59 24 00 06 41 41 20 14 36 59 25 47 54 45 17 24 89 

10 08 58 07 04 76 62 16 48 68 58 76 17 14 86 59 53 11 52 21 66 04 18 72 87 

47 90 56 37 31 71 82 13 50 41 27 55 10 24 92 28 04 67 53 44 95 23 00 84 47 

93 05 31 03 07 34 18 04 52 35 74 13 39 35 22 68 95 23 92 35 36 63 70 35 33 

21 89 11 47 99 11 20 99 45 18 76 51 94 84 86 13 79 93 37 55 98 16 04 41 67 

95 18 94 06 97 27 37 83 28 71 79 57 95 13 91 09 61 87 25 21 56 20 11 32 44 

97 08 31 55 73 10 65 81 92 59 77 31 61 95 46 20 44 90 32 64 26 99 76 75 63 

69 26 88 86 13 59 71 74 17 32 48 38 75 93 29 73 37 32 04 05 60 82 29 20 25 

41 47 10 25 03 87 63 93 95 17 81 83 83 04 49 77 45 85 50 51 79 88 01 97 30 

91 94 14 63 62 08 61 74 51 69 92 79 43 89 79 29 18 94 51 23 14 85 11 47 23 

80 06 54 18 47 08 52 85 08 40 48 40 35 94 22 72 65 71 08 86 50 03 42 99 36 

67 72 77 63 99 89 85 84 46 06 64 71 06 21 66 89 37 20 70 01 61 65 70 22 12 

59 40 24 13 75 42 29 72 23 19 06 94 76 10 08 81 30 15 39 14 81 83 17 16 33 

63 62 06 34 41 79 53 36 02 95 94 61 09 43 62 20 21 14 68 86 84 95 48 46 45 

78 47 23 53 90 79 93 96 38 63 34 85 52 05 09 85 43 01 72 73 14 93 87 81 40 

87 68 62 15 43 97 48 72 66 48 53 16 71 13 81 59 97 50 99 52 24 62 20 42 31 

47 60 92 10 77 26 97 05 73 51 88 46 38 03 58 72 68 49 29 31 75 70 16 08 24 

56 88 87 59 41 06 87 37 78 48 65 88 69 58 39 88 02 84 27 83 85 81 56 39 .38 

22 17 68 65 84 87 02 22 57 51 68 69 80 95 44 11. 29 01 95 80 49 34 35 86 47 

19 36 27 59 46 39 77 32 77 09 79 57 92 36 59 89 74 39 82 15 08 58 94 34 74 

16 77 23 02 77 28 06 24 25 93 22 45 44 84 11 87 80 61 65 31 09 71 91 74 25 

78 43 76 71 61 97 67 63 99 61 80 45 67 93 82 59 73 19 85 23 53 33 65 97 21 

03 28 28 26 08 69 30 16 09 05 53 58 47 70 93 66 56 45 65 79 45 56 20 19 47 

04 31 17 21 56 33 73 99 19 87 26 72 39 27 67 53 77 57 68 93 60 61 97 22 61 

61 06 98 03 91 87 14 77 43 96 43 00 65 98 50 45 60 33 01 07 98 99 46 50 47 

23 68 35 26 00 99 53 93 61 28 52 70 05 48 34 56 65 05 61 86 90 92 10 70 80 

15 39 25 70 99 93 86 52 77 65 15 33 59 05 28 22 87 26 07 47 86 96 98 29 06 

58 71 96 30 24 18 46 23 34 27 85 13 99 24 44 49 18 09 79 49 74 16 32 23 02 

93 22 53 64 39 07 10 63 76 35 87 03 04 79 88 08 13 13 85 51 55 34 57 72 69 

78 76 58 54 74 92 38 70 96 92 52 06 79 79 45 82 63 18 27 44 69 66 92 19 09 

61 81 31 96 82 00 57 25 60 59 46 72 60 18 77 55 66 12 62 11 08 99 55 64 57 

42 88 07 10 05 24 98 65 63 21 47 21 61 88 32 27 80 30 21 60 10 92 35 36 12 

77 94 30 05 39 28 10 99 00 27 12 73 73 99 12 49 99 57 94 82 96 88 57 17 91 
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Table \\b Random Normal Numbers, p = 0, a = 1 

0.464 
0.060 
1.486 
1.022 
1.394 

0 137 
-2 526 
-0 354 
-0 472 
-0j555 

2.455 
-0.531 
-0.634 

1.279 
0.046 

-0.323 
-0.194 

0.697 
3.521 
0.321 

-0.068 
0.543 
0.926 
0.571 
2.945 

0.296 
-1.558 

1.375 
-1.851 

1.974 

-0.288 
0.187 
0.785 
0.194 

-0.258 

1.298 
-1.190 
-0.963 

1.192 
0.412 

0.241 

0.022 
-0.853 
— 0.501 

0.439 

— 0.957 
0.525 

-1.865 
-0.273 
-0.035 

0.906 
1.179 

— 1.501 
— 0.690 

1.372 

-0.513 
-1.055 

^-0.488 
0.756 
0.225 

-0.525 
0.007 

-0.162 
-1.618 

0.378 

0.595 0.881 
0.769 0.971 

-0.136 1.033 
-0.345 -0.511 

0.761 0.181 

-0.934 
0.712 
0.203 

-2.051 
-0.736 

1.579 
1.090 
0.448 

-0.457 
0.960 

0.161 
-0.631 

0.748 
-0.218 
-1.530 

-1.885 
-0.255 
-0.423 

0.857 
-0.260 

0.371 
-0.702 
-0.432 
-0,465 

0.120 
-0.482 
-1.376 
—1.010 
-0.005 

1.393 

1.678 
-0.150 

0.598 
-0.899 
-1. '63 

-0.057 
1.356 

-0.918 
0.012 

-0.911 

-1.229 -0.486 
-0.561 -0.256 

1.598 0.065 
-0.725 1.147 

1.231 -0.199 

0.856 
-0.212 

0.415 
-0.121 
-0.246 

-0.491 
0.219 

-0.169 
1.096 
1.239 

-1.983 
0.779 
0.313 
0.481 

-2.574 ■; 

-2.830 
0.953 

-0.973 
-1.691 
-0.558 

-0.238 
-0.869 
-1.016 

0.417 
0.056 

-1.787 
-0.105 
-1.339 

1.041 
0.279 

-0.?61 
-0.375 

1.827 
0.535 

— 2.$56 

1.237 
-1.384 
-0.959 

0.731 
0.717 

1.046 -0.508 
0.360 —0.992 
0.424 0.969 
1.377 0.983 

-0.873 -1.096 

-1.630 
-0.116 
-1.141 
-1.330 
— 1.396 

-0.146 
-1.698 
- 1.041 

1.620 
1.047 

-0.392 
-2.832 

0.362 
-1.040 

0.089 

-0.627 
-1.108 
-1.726 

0.524 
— 0.573 

0.561 
-2.357 

1.956 
-0.281 

0.932 
-1.805 
-1.186 

0.658 
-0.439 
-1.399 

-2.008 
i I.T80 
-1.141 

0.358 
-0.230 

-1.633 
1.114 
1.151 

— 1.939 
0.385 

0.542 0.250 
0.882 1.265 

-1.210 -0.927 
0.891 -0.227 

— 0.649 -0.577 

-0.166 
-0.202 

0.425 
0.602 
0.237 

0.032 
0.151 
0.290 
0.873 

-0.289 

0.079 
-0.376 
— 0.902 
-0.437 

0.513 

0.471 
-0.310 

0.610 
-0.220 

0.738. 

-1.029 
0.479 
1.709 

-0.057 
-0.300 

0.199 
0.159 
2.273 
0.041 

-1.132 

0.208 
' 0-272 
; 0.606 
1-0.307 
— 2.oj?8 

— 1-083 
— 0.313 

0.606 
0.121 
0.921 

-0.219 -0.291 
0.084 —2.828 

-0,747 0.247 
0.790 -0.584 
0.145 0.446 

1.221 
-0.439 

1.291 
0.541 

-1.661 

1.119 
-0.792 

0.063 
0.484 
1.045 

0.004 
-1.275 
-1.793 
-0.986 
-1.363 

-2.015 
-0.623 
-0.699 

0.481 
-0.586 

-0.594 
-1.047 
-1.347 

0.996 
-1.023 

0.768 
0.375 

-0.513 
0.292 
1.026 

0.0^9 
-1.6;58 

1-0.344 
i-0.521 
j 2.9^0 

— 1.473 ' 
-0.851 

0.210 
1.266 

-0.574 

0.034 -2.127 
0,234 -0.656 

-0.736 1.041 
-1.206 —0.899 
-0.491 -1.114 

0.665 
0.340 
0.008 
0.110 
1.297 

0.084 
-0.086 

0.427 
-0.528 
-1.433 

-0.880 
-0.158 
-0.831 
-0.813 
-1.345 

-0.579 
-0.120 

0,191 
0.071 

-3.001 

0.55J 
0.418 
0.074 
0.524 
0.479 

-1.334 
-0.287 

0.161 
-1.346 
-1.250 ■ 

1.2^8 
-0.144 
-0.886 

0.193 
-0.199 

-0.568 
-0.254 
-0.921 
-1.202 
-0.288 

-0.109 
0.574 

-0.509 
0.394 
1.810 

-0.515 
-0.451 

1.410 
-1.045 

1.378 

-0.566 
-1.181 
-0.518 

0.843 
0.584 

2.923 
-1.190 

0.192 
0.942 
1.216 

0.500 
-0.318 
-0.432 

1.045 
0.733 

0.359 ‘ 
-0.094 

1.501 
0.031 
0.402 

0.326 
1.114 
1.068 
0.772 
0.226 

0.630 - 
0.375 ■ 

-1.420 
-0.151 - 
-0.309 

-0.537 
-1.9^1 

0.489 
-0.243 

0.531 

0.782 
0.247 

-1.711 
-0.430 

0.416 

0.060 
-0.491 
-1.186 
-0.762 
-1.541 

0.499 
0.665 
0.754 
0.298 
1.456 

-0.431 
-0.135 
-0.732 

1.049 
2.040 

1.705 
-0.145 
— 0.066 

1.810 
-0.124 

1.164 
— 0.498 

1.006 
2.885 
0.196 

0.884 
0.457 ' 

-0.798 
-0.768 

0.023 

-0.298 
1.064 
0.162 

-0.129 
-1.204 

0.424 - 
0.593 
0.862 - 
0.235 - 

-0.853 

-0.444 
' 0.658 ■ 
'-0 885 • 
-0 628 ■ 

0.402 

1 r 

0.593 
-1.127 
-0.142 
-0.023 ■ 

0.777 

0.993 -0.106 
-1.407 -1.579 ■ 
-0.504 0.532 
-0.463 —0.899 ■ 

0.833 0.410 - 

0.116 
-1.616 

1.381 
-0.394 ■ 
-0.349 ■ 

0.484 ■ 
1.458 
0.022 • 

-0.538 
-1.094 

-1.272 
1.262 

-0.281 
1.707 ■ 
0.580 

1.066 
0.736 

-0.342 
-0.188 

1.395 

1.097 
-0.916 

1.222 
-1.153 

1.298 
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n x 

1 0 

1 

2 0 

1 

2 

3 0 

i 
v ‘*2 

.05 

/Table lllb Individual Binomial Probabilities p(x) 

950C 
:050C 

.10 .15 .20 
7T 

•25 .30 • 35 .40 .45 .50 

• 9000 .8500 .8000 .7500 .7000 .6500 .6000 5500 50nn 

■ 00 .1500 .2000 .2500 .3000 .3500 .4000 .4500 , .5000 

■9025 .8100 .7225 
•095^ .1800 .2550 
•0025* .0100 .0225 

I ~ I 
.8574 .7290 .6141 
4354' .2430 .3251 

f'071j .0270 .0574 
3 I .0001 ‘ .0010 .0034 

4 0 

1 
2 
3 
4 

5 0 

1 

2 
3 
4 

6 0 
1 

2 
3 
4 

5 
6 

7 0 
1 

2 
3 
4 

5 
6 
7 

1 J ! 
/I45j .6561 .5220 
4715} .2916 .3685 
•0135; .0486 .0975 
■0005: .0036 .0115 
.0000 , .0001 .0005 

•7738 ; .5905 .4437 

.2036’ .3280 .3915 
•0214 , .0729 .1382 
•0011 j .0081 .0244 
■0000 ‘ .0004 .0022 

•6400 .5625 .4900 .4225 .3600 .3025 .2500 

'32*^ '375° '420° 4550 -4800 -4950 -5000 
•0400 .0625 .0900 .1225 .1600 .2025 .2500 

.5120 .4219 .3430 .2746 .2160 .1664 .1250 
•3840 .4219 .4410 .4436 .4320 .4084 3750 
•0960 .1406 .1890 .2389 .2880 .3341 3750 

•0080 .0156 .0270 .0429 .0640. .091 l'"*J250 

•4096 .3164 .2401 .1785 .1296 .0915 0625 

H76 Imo '4U6 3845 J4S6 -2995 -2500 .1536 .2109 .2646 .3105 .3456 .3675 3750 
.0256 .0469 .0756 .1115 .1536 .2005 /o 

•0016 .0039 .0081 .0150 .0256 .0410 .0625 

.3277 .2373 .1681 .1160 .0778 .0503 0312 

3955 - 36°2 3124 '2592- .3059 .1562 
■2048 .2637 .3087 .3364 3456 .3369 3125 
■0512 .0879 .1323 .1811 ^2304 .2757 M25 
.0064 .0146 .0284 .0488 ^768 .1128 4562 

■0600 |.0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312 

■ 7351 ! .5314 .3771 .2621 .1780 .1176 .0754 0467 0277 ni« 

$ fSS S 3S S :S s i 
? F - = S S s £ i £ 
T ;= ■= =■ = = = r = s 
.698 
.25^ 

.040 
:oo:i 
.000 

.OOOi 

.0001 

.00Q< 

3206 -2097 -1335 -0824 .0490 .0280 0152 0078 

0 2097 2751 ful ^ ^ ^ ™ 2S 1Z4U .2097 .2753 .3115 .3177 .2985 2613 21/tn 
0230 .0617 .1147 .1730 .2269 .2679 2903 

0026 .0109 .0287 .0577 .0972 .1442 4935 .2388 .2734 

3002 .0012 .0043 .0115 .0250 .0466 .0774 1172 1641 

inm a001 '°004 -0013 0036 -0084 -0172 0320 0347 
°° 0000 ■000° -OOOI -0002 .0006 .0016 .0037 0078 

n > -5°. interchange n and (1 - n). 

363 



Table IIIb (Continued) 

n 

8 

.05 .10 .15 .20 .25 

.6634 .4305 .2725 .1678 .1001 

.2793 .3826 .3847 .3355 .2670 

.0515 .1488 .2376 .2936 .3115 

.0054 .0331 .0839 .1468 .2076 

.0004 .0046 .0185 .0459 .0865 

30 .35 .40 .45 .50 

.0576 .0319 .0168 .0084 .0039 
.1977 .1373 .0896 .0548 .0312 
2965 .2587 .2090 .1569 .1094 
.2541 .2786 .2787 .2568 .2188 
.1361 .1875 .2322 .2627 .2734 

5 .0000 .0004 .0026 

6 .0000 .0000 .0002 

7 .0000 .0000 .0000 

8 .0000 .0000 .0000 

0 .6302 .3874 .2316 

1 .2985 .3874 .3679 

2 .0629 .1722 .2597 

3 .0077 .0446 .1069 

4 .0006 .0074 .0283 

5 .0000 .0008 .0050 

6 .0000 .0001 .0006 

7 .0000 .0000 .0000 

8 .0000 .0000 .0000 

9 .0000 .0000 .0000 

0 .5987 .3487 .1969 

1 .3151 .3874 .3474 

2 .0746 .1937 .2759 

3 .0105 .0574 .1298 

4 .0010 .0112 .0401 

5 .0001 .0015 .0085 

6 .0000 .0001 .0012 
7 .0000 .0000 .0001 
8 .0000 .0000 .0000 
9 .0000 .0000 .0000 

10 .0000 .0000 .0000 

0092 .0231 .0467 .0808 .1239 .1719 .2188 
0011 0038 .0100 .0217 .0413 .0703 .1094 
.0001 .0004 .0012 .0033 .0079 .0164 .0312 
.0000 .0000 .0001 .0002 .0007 .0017 .0039 

.1342 .0751 .0404 .0207 .0101 .0046 .0020 

.3020 .2253 .1556 .1004 .0605 .0339 .0176 
.3020 .3003 .2668 .2162 .1612 .1110 .0703 
1762 .2336 .2668 .2716 .2508 .2119 .1641 

‘.0661 .1168 .1715 .2194 .2508 .2600 .2461 

.0165 .0389 .0735 .1181 .1672 .2128 .2461 

.0028 .0087 .0210 .0424 .0743 .1160 .1641 

.0003 .0012 .0039 .0098 .0212 .0407 .0703 

.0000 .0001 .0004 .0013 .0035 .0083 .0176 

.0000 .0000 .0000 .0001 .0003 .0008 .0020 

.1074 .0563 .0282 .0135 .0060 .0025 .0010 

.2684 .1877 .1211 .0725 .0403 .0207 .0098 

.3020 .2816 .2335 .1757 .1209 .0763 .0439 

.2013 .2503 .2668 .2522 .2150 .1665 .1172 

.0881 .1460 .2001 .2377 .2508 .2384 .2051 

0264 0584 .1029 .1536 .2007 .2340 .2461 
.0055 .0162 .0368 .0689 .1115 .1596 .2051 
.0008 .0031 .0090 .0212 .0425 .0746 .1172 
.0001 .0004 .0014 .0043 .0106 .0229 .0439 
0000 0000 .0001 .0005 .0016 .0042 .0098 
.0000 .0000 .0000 .0000 .0001 .0003 .0010 

364 





Table IIIr (Continued) 

n .05 .10 .15 

8 1 .3366 .5695 .7275 

2 .0572 .1869 .3428 

3 .0058 .0381 .1052 

4 .0004 .0050 .0214 

5 .0000 .0004 .0029 

7T 

.20 .25 .30 .35 .40 

.8322 .8999 .9424 .9681 .9832 

.4967 .6329 .7447 .8309 .8936 

.2031 .3215 .4482 .5722 .6846 

.6563 .1138 .1941 .2936 .4059 

.0104 .0273 .0580 .1061 .1737 

.45 

.9916 

.9368 

.7799 

.5230 

.2604 

.50 

.9961 
.9648 
.8555 

.6367 

.3633 

6 .0000 .0000 .0002 .0012 .0042 .0113 .0253 .0498 .0885 .1445 
7 .0000 .0000 .0000 .0001 .0004 .0013 .0036 .0085 .0181 .0352 
8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039 

9 1 
2 
3 
4 
5 

.3698 .6126 .7684 .8658 .9249 .9596 .9793 .9899 .9954 .9980 

.0712 .2252 .4005 .5638 .6997 .8040 .8789 .9295 .9615 .9805 
0084 0530 .1409 .2618 .3993 .5372 .6627 .7682 .8505 .9102 
.0006 .0083 .0339 .0856 .1657 .2703 .3911 .5174 .6386 .7461 
.0000 .0009 .0056 .0196 .0489 .0988 .1717 .2666 .3786 .5000 

6 
7 
8 
9 

0000 0001 .0006 .0031 .0100 .0253 .0536 .0994 .1658 .2539 
‘.0000 .0000 .0000 .0003 .0013 .0043 .0112 .0250 .0498 .0898 
.0000 .0000 .0000 .0000 .0001 .0004 .0014 .0038 .0091 .0195 
.0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020 

10 1 
2 
3 
4 
5 

4013 6513 .8031 .8926 .9437 .9718 .9865 .9940 .9975 .9990 
.0861 .2639 .4557 .6242 .7560 .8507 .9140 .9536 .9767 .9893 
.0115 .0702 .1798 .3222 .4744 .6172 .7384 .8327 .9004 .9453 
0010 0128 .0500 .1209 .2241 .3504 .4862 .6177 .7340 .8281 
'.0001 .0016 .0099 .0328 .0781 .1503 .2485 .3669 .4956 .6230 

6 
7 
8 
9 

10 

.0000 

.0000 

.0000 

.0000 

.0000 

.0001 .0014 

.0000 .0001 

.0000 .0000 

.0000 .0000 

.0000 .0000 

.0064 .0197 

.0009 .0035 

.0001 .0004 

.0000 .0000 

.0000 .0000 

.0473 .0949 

.0106 .0260 

.0016 .0048 

.0001 .0005 

.0000 .0000 

.1662 

.0548 

.0123 

.0017 

.0001 

.2616 .3770 
.1020 .1719 
.0274 .0547 
.0045 .0107 
.0003 .0010 
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Table IV Areas for a Standard Normal Distribution 



Table V Student’s t Critical Points 

point 

Pr 

d.f.^x .10 .05 .025 .01 .005 

1 3.078 6.314 12.706 31.821 63.657 

2 1.886 2.920 4.303 6.965 9.925 

3 1.638 2.353 3.182 4.541 5.841 

4 1.533 2.132 2.776 3.747 4.604 

5 1.476 2.015 2.571 3.365 4.032 

6 1.440 1.943 4.447 3.143 3.707 

7 1.415 1.895 2.365 2.998 3.499 

8 1.397 1.860s 2.306 2.896 3.355 

9 1.383 1.833 2.262 2.821 3.250 

10 1.372 1.812 2.228 2.764 3.169 

11 1.363 1.796 2.201 2.718 3.106 

12 1.356 1.782 2.179 2.681 3.055 

13 1.350 1.771 2.160 2.650 3.012 

14 1.345 1.761 2.145 2.624 2.977 

15 1.341 1.753 2.131 2.602 2.947 

16 1.337 1.746 2.120 2.583 2.921 

17 1.333 1.740 2.110 2.567 2.898 

18 1.330 1.734 2.101 2.552 2.878 

19 1.328 1.729 2.093 2.539 2.861 

20 1.325 1.725 2.086 2.528 2.845 

21 1.323 1.721 2.080 2.518 2.831 

22 1.321 1.717 2.074 2.508 2.819 

23 1.319 1.714 2.069 2.500 2.807 

24 1.318 1.711 2.064 2.492 2.797 

25 1.316 1.708 2.060 2.485 2.787 

26 1.315 1.706 2.056 2.479 2.779 

27 1.314 1.703 2.052 2.473 2.771 

28 1.313 1.701 2.048 2.467 2.763 

29 1.311 1.699 2.045 2.462 2.756 

30 1.310 1.697 2.042 2.457 2.750 

40 1.303 1.684 2.021 2.423 2.704 

60 1.296 1.671 2.000 2.390 2.660 

120 1.289 1.658 1.980 2.358 2.617 

oo 1.282 1.645 1.960 2.326 2.576 
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Table VI C2 Critical Points* (C2 = *2/d.f.) 

Pr 
df\ c 95 .99 .975 .95 .90 .10 .05 .025 .01 .005 

1 .00 0039 .00016 .00098 .0039 .0158 2.71 3.84 5.02 6.63 7.88 

2 .00 501 .0101 .0253 .0513 .1054 2.30 3.00 3.69 4.61 5.30 

3 .0239 .0383 .0719 .117 .195 2.08 2.60 3.12 3.78 4.28 

4 .0317 .0743 .121 .178 .266 1.94 2.37 2.79 3.32 3.72 

5 .08 23 .111 .166 .229 .322 1.85 2.21 2.57 3.02 3.35 

6 ,ii 3 .145 .206 .273 .367 1.77 2.10 2.41 2.80 3.09 

7 .14 1 Ml .241 .310 .405 1.72 2.01 2.29 2.64 2.90 

8 .16 8 .206 .272 .342 .436 1.67 1.94 2.19 2.51 2.74 

9 .ii 3 .232 .300 .369 .463 1.63 1.88 2.11 2.41 2.62 

10 ■2i 6 .256 .325 .394 .487 1.60 1.83 2.05 2.32 2.52 

11 .21 7 .278 .347 .416 .507 1.57 1.79 1.99 2.25 2.43 

12 2i 6 .298 .367 .435 .525 1.55 1.75 1.94 2.18 2.36 

13 .274 .316 .385 .453 .542 1.52 1.72 1.90 2.13 2.29 

14 .2^1 .333 .402 .469 .556 1.50 1.69 1.87 2.08 2.24 

15 .307 .349 .417 .484 .570 1.49 1.67 1.83 2.04 2.19 

16 .321 .363 .432 .498 .582 1.47 1.64 1.80 2.00 2.14 

18 .3-2 18 .390 .457 .522 .604 1.44 1.60 1.75 1.93 2.06 

20 .3J h .413 .480 .543 .622 1.42 1.57 1.71 1.88 2.00 

24 .412 .452 .517 .577 .652 1.38 1.52 1.64 1.79 1.90 

30 .4|0 .498 .560 .616 .687 1.34 1.46 1.57 1.70 1.79 

40 .5 8 .554 .611 .663 .726 1.30 1.39 1.48 1.59 1.67 

60 .5< n .625 .675 .720 .774 1.24 1.32 1.39 1.47 1.53 

120 , .6*9 .724 .763 .798 .839 1.17 1.22 1.27 1.32 1.36 
oo l.oi 0 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 

Interpola 
* To obtai 

tion 
tn crit 

should be performed using reciprocals of the degrees of freedom, 
ical values of multiply the critical value of C2 by (d.f.) 
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Table VIII Common Logarithms* 

vV 0 1 2 3 4 5 6 7 8 9 
— 

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 " 11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 14 1461 . 1492 1523 1553 1584 1614 1644 1673 1703 1732 15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 
20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 
40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 
45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 
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Table VIII (Continued) 

N 

UUUJ 

8921 
8976 
9031 
9085 
9138 
9191 
9243 
9294 
9345 
9395 
9445 

y i 2 3 4 5 6 7 8 9 

4| 7412 7419 7427 7435 7443 7451 7459 7466 7474 2 7490 7497 7505 7513 7520 7528 7536 7543 7551 9j 7566 7574 7582 7589 7597 7604 7612 7619 7627 4j 7642 7649 7657 7664 7672 7679 7686 7694 7701 9( 7716 7723 7731 7738 7745 7752 7760 7767 7774 2f 7789 7796 7803 7810 7818 7825 7832 7839 7846 3, 7860 7868 7875 7882 7889 7896 7903 7910 7917 4s 7931 7938 7945 7952 7959 7966 7973 7980 7987 3} 8000 8007 8014 8021 8028 8035 8041 8048 8055 8069 8075 8082 8089 8096 8102 8109 8116 8122 T 8136 8142 8149 8156 8162 8169 8176 8182 8189 5: 8202 8209 8215 8222 8228 8235 8241 8248 8254 | 8267 8274 8280 8287 8293 8299 8306 8312 8319 j 8331 8338 8344 8351 8357 8363 8370 8376 8382 8395 8401 8407 8414 8420 8426 8432 8439 8445 
( 8457 8463 8470 8476 8482 8488 8494 8500 8506 ; 8519 8525 8531 8537 8543 8549 8555 8561 8567 , 8579 8585 8591 8597 8603 8609 8615 8621 8627 j 8639 8645 8651 8657 8663 8669 8675 8681 8686 , 8698 8704 8710 8716 8722 8727 8733 8739 8745 
. 8756 8762 8768 8774 8779 8785 8791 8797 8802 ! 8814 8820 8825 8831 8837 8842 8848 8854 8859 8871 8876 8882 8887 8893 8899 8904 8910 8915 

8927 8932 8938 8943 [ 8949 8954 1 8960 8965 9971 8982 8987 8993 8998 9004 9009 9015 9020 9025 9036 9042 9047 9053 9058 9063 9069 9074 9079 9090 9096 9101 9106 9112 9117 9122 9128 9133 : 9143 9149 9154 9159 9165 9170 9175 9180 9186 9196 9201 9206 9212 9217 9222 9227 9232 9238 | 9248 9253 9258 9263 9269 9274 9279 9284 9289 j 9299 9304 9309 9315 9320 9325 9330 9335 9340 9350 9355 9360 9365 9370 9375 9380 9385 9390 i 9400 9405 9410 9415 9420 9425 9430 9435 9440 ; 9450 9455 9460 9465 9469 9474 9479 9484 9489 9499 9504 9509 9513 9518 9523 9528 9533 9538 : 9547 9552 9557 9562 9566 9571 9576 9581 9586 9595 9600 9605 9609 9614 9619 9624 9628 9633 9643 9647 9652 9657 9661 9666 9671 9675 9680 9689 9694 9699 9703 9708 9713 9717 9722 9727 
i 9736 9741 9745 9750 9754 9759 9763 9768 9773 59782 9786 9791 9795 9800 9805 9809 9814 9818 9827 9832 9836 9841 9845 9850 9854 9859 9863 9872 9877 9881 9886 9890 9894 9899 9903 9908 9917 9921 9926 9930 9934 9939 9943 9948 9952 
19961 

i- 

9965 9969 9974 9978 9983 9987 9991 9996 

, nc unv,, me power to winch 10 must be raised to yield V.” Thus log 100 = 
2 because m 100. In this table, only the “mantissa” (the digits to the right 

?eciiyifl1^ \s Slven for each log- The characteristic (the integer to the leffof 
the decimal) is ljforexample log 19.1 = 1.281. Log A-^requires the characteristic 

flaractenstlc 2> log 100 X characteristic 3, and so on. Thus 
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376 APPENDIX 

CITATIONS FOR TABLES 

I. Reproduced, by permission, from the Wiley Trigonometric Tables, John 

Wiley and Sons, 1945. . 
II (a) Reproduced, by permission, from R. C. Clelland et al., Basic Statistics 

with Business Applications, John Wiley and Sons, 1966. 
(b) Reproduced, by permission, from the RAND Corporation. 

III. Reproduced, by permission, from the Chemical Rubber Company Standard 

Mathematical Tables, 16th Student Edition. . . ~ , 
IV. Reproduced, by permission, from P. Hoel, Elementary Statistics, 2nd 

Edition, John Wiley and Sons, 1966. 
V. Reproduced, by permission, from R. Fisher and F. Yates, Statistical Tables, 

Oliver and Boyd, Edinburgh, 1938. 
VI. Reproduced, by permission, from W. J. Dixon and F. J. Massey, Introduction 

to Statistical Analysis, 2nd Edition, McGraw-Hill, 1957. 
VII Reproduced, by permission, from Statistical Methods, 6th Edition by 

George W. Snedecor and William G. Cochrane, 1967, by the Iowa State 

University Press, Ames, Iowa. - , 
VIII. Reproduced from John E. Freund, Modern Elementary Statistics 3rd 

Edition, © 1967, by permission of Prentice-Hall Inc., Englewood Cliffs, 

New Jersey. 



Answers to Odd-Numbered Probh 

The studen 
given answers 
merely for| the 
in error b^caus 

it is not expected always to calculate the answer as precisely as the 
elow. These answers are given to a fairly high degree of precision 

benefit of those who want if; even so, the last digit may be slightly 
^ of slide rule inaccuracy. b J 

ems 
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37g answers to odd-numbered problems 

2-1 Mode < median < mean. The mode 2-15 121.50 
is not a bad central measure in this case, 

which is not very asymmetrical. 2-l7 2-]^yo (NOT .952/4) 

2-3 77.4, 81.25, 85 

60 70 80 90 

3-1 (c) y (authors’ answer = ^ = -46) 

,-^1 
n 1 

Mean I Median I Mode 

77.78 81.47 

11A 81.25 

hardly 
defined 

coarse 78.4 

(a) Mode depends too much on the 
degree of grouping. 

(b) Usually, but not always, does the 
coarse grouping give worse ap¬ 
proximations. 

2-7 range = 30 or 40 

MAD = 8.58 

3-5 (b) not equally likely; 1/4, 1/4, 1/2 

(c) 3/4 

3-7 (a) .50, .30, .65, .15 

(c) .50, .70, .85, .35 

3-9 (a) A = .375 

(b) A = -375 

(c) No 

3-11 (a) .40 (e) .17 

(c) .55 40 — ) 

(d) .78 

114.0 = 10.67 3-15 (a) 

2-9 Text coding is preferred because it has 
integral and small values of y, which are 

easy to compute. 

2-11 239, 483 

2-i3 (a) 77.4, 5^ AM = 11.0 

(b) 8.60, VlT4 = 3.8 

(b) Yes. Pr {A!A U B) = 

Pr 04) _ Pr 04) 
Pr (A u B) Pr (A) + Pr 0®) 

3-17 (a) A x A = six = -0046 

(bi Ax A=^-e-=ooo76 

(c) x if = .143 



ANSWERS TO ODD-NUMBERED PROBLEMS 

3-19 (a) x — If- — .62 

(b) [% x; J x J- x | x J x f 

(c) 

A = -089 

x i x | 

3-21 0 

3-25 (a) Yes. Pr (E. n E,) 

P i, _ i . i 
C"5 3 — 4 2 

= A = .022 

Pr (El) Pr (E2), 

(b) No. ljr (Ex n E3) 

^ Pr (Ex) Pr (Eg), 

.e., o- 5^ 1 . 1 

3-27 (a) Yes 

(b) Ves 

3-29 (a) *3 

(b) mpossible conditions—there must 
be anj error of specification. 

(c) j) < Pr (e4) < .2 

(d) impossible conditions. 

sdm = 1 

;ooi 
3-33 (a) t—— t= .0079 

.126 

(b) 

kr J 

.506 

tosses, 
.001 

.001 + — (.999) 

(c) 999 

See tow t|he probabilities grow toward 
certainty as n > x. 

(b) y p{y) 

379 

4-3 

1 X p(x) 

0 1/16 
1 4/16 
2 6/16 
3 4/16 
4 1/16 

16/16 

a; /’O) 

0 6/36 
1 10/36 
2 8/36 
3 6/36 
4 4/36 
5 2/36 

0 2/16 
1 6/16 
2 6/16 
3 2/16 

16/16 

36/36 ' 

4-5 (a) /( = 2 a2 = l 

(b)/t=1.5 rr2 =-.75 

°A' = Vfl = 1.7 

(b), (c) = 11 ay = 3.4 

4-7 (a) /.xx = 3.5 _ v 12 

4-9 X | p(x) 

0 16/81 = .198 
1 32/81 = .395 
2 24/81 = .296 
3 8/81 = .099 
4 1/81 = .012 

81/81 

(i = t = 1.33 
a2 = f = .89 

4-11 (a) ftx = 1.36 

(b) 

(c) iix 

3.15 O' y 

= V2.43 = 1.56 

= V2A6 = 1.47 



380 ANSWERS TO ODD-NUMBERED PROBLEMS 

4-13 (a) p{x) = ,2X .83~x 4-15 p(x) = 

X p(x) 

0 64/125 = .512 
1 48/125 = .384 
2 12/125 = .096 
3 1/125 = .008 

1.00 

p = .60 
ct2 = .48 

(b) p(x) — j j Ax .93~x 
’ x ' 

p{x) 

X />< 

0 125/216 
1 75/216 
2 15/216 
3 1/216 

216/216 

// = 4 = .50 
<j2 = if — -41 

0,6 If 
0.4- 

p(x) - T 

0.2 - 

4-17 p = fin 

a2 = nn(l — t 

4-19 (a) .9544 
(b) .9495 ~ .9. 
(c) .9901 ~ .9* 
(d) .9772 
(e) .9772 " x 



ANSWERS TO ODD-NUMBERED PROBLEMS 381 

.692 ]' 
4-31 (a) e Pr (e) X p(x) 

I51 
> sum = 1 

.SSS 15/48 0 15/48 
.657 J .SSF 3/48 1 23/48 

.SFS 5/48 2 9/48 

X p(->') r p(r) .SI^F 1/48 3 1/48 

.FSS 15/48 
48/48 

0 2/16 -2 12/16 .FSF 3/48 

1 6/16 .FFS 5/48 

2 6/16 0 4/16 .FFF 1/48 

3 
i 

2/16 
48/48 

!. 
16/16 16/16 // - P — 12 = .92 

j (note = i + 4 + c) 

1 = -1.5 (b) 10/48 = .21 

a\, =t 12/16 = .75 

.j 0 2/16 2 

1 1, 6/16 1 
i 2 6/16 0 

t 3 2/16 1 

j I }x = 12/16 

(c) W2) = 3 

(d) \E(X ~ nf = 3/4 = a 2Y of course 

4-27 (a) j.65 

(b) t 2 j .6X A5~x = .683 

(c) |A sanple of 5 has a 68% chance 
[of correctly predicting, whereas a 

jsingle observation has only a 60% 

chan'ce. 

4-29 (a) 1.0062 

(b)! 10.124 

Y = \X- 2| f >-l (a) 

P(y) ypiy) V 
0 1 2 

6/16 0 0 1/16 
8/16 8/16 1 2/16 2/16 
2/16 4/16 2 2/16 2/16 

- 

16/16 p = 12/16 
3 2/16 2/15 

4 1/16 

Pi *) II*- 2| | \x - 2| p(x) 
= 

0 2 4 

rr"T.rr 

0 2 4 

(b) 

3 pip) 

1/16 

4/16 

2/16 6/16 

4/16 

1/16 



382 ANSWERS TO ODD-NUMBERED PROBLEMS 

(c) 2, 1 

(d) .r p(xj Y = 2) 

1 1/3 
2 1/3 

3 1/3 

(e) 2, 2/3 

(f) No. For example, 

p(0f 1) t* px(0)py(l). 

5-3 (a) 

0 2 4 

2 

4 

x 

(b) x p{x) 

0 .2 

1 .6 

2 .2 

• (c) 1, .4 

(d) x p(x) 

0 1/6 

1 4/6 

2 1/6 

(e) 1, 1/3 

(f) No, because, for example, 

P(0, 3) ^Px(0)Py{3) 

-5 (a) 

(b) 1.2 

(c) .2 

5-7 -.6 

5-9 (a) Yes 

(b) (i) 0, because of symmetry 

(ii) E(X) + E(Y) = 3£ 

5-11 (a) j p(s) 

2 1/9 

3 2/9 

4 3/9 

5 2/9 

6 1/9 

^ = 4 

= 4/3 

(b) For X1 and X2 

p = 2, a2 = 2/3 

(c) E(X1 + Y2) = £(^) + E(X2) 

var (X± + X2) = Var + Var X 

5-13 (a) s' p(s) 

2 .1 

3 • .2 

4 .3 
5 

6 

ps = 4.10, = 1.29 

(b) px — 2.00, ct| = .60 

P2 = 2.10, <x| = .69 

p = 1.2 (c) cov (Yl5 Y2) = 0 by symmetry 
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5-15 (a) (d) y I p(ij/X = 5) 

2 ! .10 .15 

A- - 
\X ana Y are dependent 

P.v r1 = .05 
(b) h,x =t 1.0 4 = 

.50 

4 -5 4 = 
.25 

J 1.5 4 = .85 

65 Id 

70 If. 5 1200/9 

= 133.3 

Negative coj/ariance means that a high 

first grade X1 tends to be followed by a low 

second grade X2- This may be because a 

student who cjoes well on the first exam 

becomes overconfident and fails to study 

for the second exam. Similarly, a student 

who does poorly on the first exam may 

study very hari for the second. 

The negative covariance makes the 

average grade? less fluctuating (a = 10 
instead oifl5).? 

5-19 (a) 

5 .2 

6 .4 

7 .4 

I1 X | fl y 

(c) 5 I • p(s) 

(e) No, because (b) and (d) are 

different 

(f) -7 

5-21 (a) \w 

h \ 140 150 160 

.1 

.2 .1 

.1 .2 

(b) h p(h) 

65 .3 

70 A 

75 .3 

fl]j — 70 

(c) >v p{w) 

140 .3 

150 .4 
160 .3 

ks= 11.7 

f^W - ^0 fijy — 60 

(d) 20 

(e) 143.3, 156.7 

(f) No, because csHW 0 
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(g) = 590 ( — lpH + 3fiw) 
Oj = 840 (=4<t|z + 9cTjr 

+ 12<jjtte) 

(Tj = 29.0 ( = V840) 

coded 

/ I />(/) I /' = (/ - 600)/10 I !>(/') 

550 .2 -5 -1.0 

560 .1 -4 - .4 

570 0 -3 0 
580 .1 -2 - .2 

590 .2 -1 - .2 

600 .1 0 0 
610 0 1 0 
620 .1 2 .2 
630 .2 3 .6 

-1.0 

(c) .r1 p(xx) 

0 1/2 

5 1/2 

^ = 5/2 o-f = 25/4 

(d) /«2 = 10/2 o'! = 100/4 

= 25/2 <j| = 625/4 

ju4 = 25/2 <rf = 625/4 

(e) = 65/2 ^ = 1375/4 

= 32.5 = 343.75 

5-25 (a) (b) 

Pj- = 600 + 10( 

Similarly, a| = 

-1.0) = 590 

840 
\x2 

xX 1 2 • • • 6 P(x i) 

5* 10* 25* 25* 1 0 1/30 • • • 1/30 1/6 

l l 1 2 1/30 0 1/6 

(H H H H) 

•(H H H T) 

* (H H T H) 

* (H H T T) 6 1/30 0 1/6 

•(H T H H) 

etc. p(x2) 1/6 1/6 ■ 1/6 1 

(b) r p(r) 

0 1/16 

5 1/16 

10 1/16 

15 1/16 

20 0 
25 2/16 

30 

85 1/16 

(c) No, because, for example, 

p(l, 1) 5^Px(l)pY(l) 

i.e., 0 7^ J ' 6 

(d) -7/12 = -.58 

(e) 3.5, 35/12 = 2.92 

(f) ps = 7.0 (=/a1 + p2) 

<r| = 28/6 (=t;f + a\ + 2<t12) 

= 4.67 

— 32,5 
= 343.75 

Or compute from p(s) directly 

(the hard way). 



5-27 (a) 35, 350/12 = 29.2 

(b j 60 - 10 = 50 

ANSWERS TO ODD-NUMBERED PROBLEMS 

6-13 (a) 9000 and 900,000 

(b) .147 

385 

6-1 Correction: In the last sentence, 

interchakge .standard deviation” with 
“range.’ 

6-5 (a)i 4, V8/3 = 1.63 

(b) p(x) 

(c) 

1/9 

2/9 

3/9 

2/9 

1/9 

Px *= 4 

ax V8/6 = 1.154 

/>(*) 

1= V8/9 = .943 

(d)| See tig. 6-3(a). 

(6-7 Prj(-3.£7 < Z < 3.00) = .9987 

6-9 .01 54 

6-11 077 

\ 

6-15 (a) .014 

(b) .008 X 

6-17 .24 

6-19 .018 (.023 without continuity correc¬ 

tion) 

6-21 (a) (.309)5 = .0028 

(b) .131 

(c) .131 

(d) Since 850 = 170 x 5, (b) and (c) 

are asking exactly the same event. 

On the other hand, event (b) 

occurs whenever (a) occurs, and 

some other times as well. 

6-23 (a) Equally 

(b) 2«, 3.92V« 

200, 39.2 

6-25 (a) Pr \Z\ > 
100 

V(200)(8 
= .016 

6-27 (a) 

p(x) 

0.6 

0.4 
0.2 

0 Mr M 
62 65 

X 
68 

fi = 65, a2 = 18/5 = 3.6 

(b) x p(x) 

63.5 

65 

66.5 

(c) 

p(x) 
0.4 
0.2 

0 \r lLi 
62 65 

x 
68 
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(d) px = 65 = p 

(e) 

a% = 1.35 = -[- 
2 4 

(3) 
7-1 (a) 71 ± 1.96 —= = 71 ± .59 

VlOO 

7-3 .83 ± .032 

7-5 (a) 20(it)19(21o) 

(b) (|f)20 

(c) 1 — (sum of answers above) 

Answers (a) and (b) can be roughly 

approximated by the normal, as .39 and .30 

(or .243, if you like). The correct values are 

.377 and .358, respectively. 

7-7 (b) 9/10. Hence X is preferable. 

7-9 x p(x) xp(x) 

X (i;)2 (x)2p(x) 

2 4 4/9 
3 9 18/9 
4 16 48/9 
5 25 50/9 
6 36 36/9 

E(X2) = 156/9 5* p2 
Bias = E(X2) - p2 

= 156/9 - 42 
= 4/3 

(d) Similarly, 

E{\IX) * \jp 

Bias = .274 - .250 

= .024 

Theoretically, 

(a) unbiased, by (6-10) 

(b) unbiased, by Table 4-2 

(c) biased; by (4-5), for any random 

variable: 

E(X2) - p2 = g2 

In particular, for X: 

E(X2) — p2 = Gj 

i.e., bias = g2% 

= 4/3 

2 1/9 2/9 
3 2/9 6/9 
4 3/9 12/9 
5 2/9 10/9 

6 1/9 6/9 

(a) E{X) = 36/9 = p 

X 2x -(- 1 (2» + l)p(x) 

2 5 5/9 
3 7 14/9 
4 9 27/9 
5 11 22/9 
6 13 13/9 

E(2X + 1) = 81/9 = 2p + 1 
unbiased 

7-11 



7-13 (a) 

(b) 

ANSWERS TO ODD-NUMBERED PROBLEMS 387 

, 2 <Fi - 
J I 
Yes. Proof: 

f 
= L 2 £(*< - ;w) 

== I y (72 

t _ /(.72)(.28) ( (.66)(.34) 
8-19 .06 ± 1.96 / —+ -yoT" 

.060 ± .128 

8-21 .39 ±2.58 1^1»l + (4« 
y iooo 300 

.390 ± .080 

8-1 1 ± 1.96V.22 = 1 ± .92 

8-3 (a) 

(b) 

(c) 

8-5 69 

8-23 
47.3 

3J2 

47.3 
C a2 < —- i.e., 15.2 < o2 < 658 

.072 

9 -j- *1.96 v7136/60 — 9 ± 2.96 

Factor of 4, so that n — 240. 

n = 522 

± 1.^8(4/Vl00) = 69 ± .784 

8-25 4 ± 2.776 V52/4V1/3 + 1/3 

= 4 ± 8.17 

8-27 (ttj - tt2) = (.142 - .114) 

/(.142)(.858) t (.114)(.886) 

± L96y 2500 + 2500 

i.e., tt-i — ^2 = -028 ± .018 

Att .028 ± .018 

ThuS V = .142 

i.e., relative decline = 20% ± 13% 

Although the best guess for the decline is 

j | one-fifth, when sampling fluctuation is 

8-7 Supposing a and /t are both unknown, allowed for, with 95% confidence we can 

use x ± 2.77WV5 

8-9. 2 ± 2.CJ48V750/28V1/10 + 1/20 

only say that the relative decline was 

between 7% and 33%. 

8-13 4820 ± 1.96V (.482)(.518)/10,000 
— .4820 ± .0098 

8-15 .04 < 7 < .49 

8-17 (a) .19] 

.1992 ± .98/V2500 
I =.1992 ± .0196 

(t) No. The closer P is to .5, the 
closer approximation will (8-21) 

be!. 

92 ± 1.96 V (.199)(.801)/2500 
= .1992 ± .0157 

)-l I, II 

P - .50 
9-3 (a) Reject H0 iff ^ y > -67 

100- 

i.e., P > .533 

(b) About 25% of the students will 
make erroneous rejections of H0. 

(c) .085 



answers to odd-numbered problems 

9-5 (a) Reject H0 iff 

A' - 8.5 
> 1.645 i.e., X > 8.74 

Since X = 8.8, reject H0. (It would 
be more accurate to use the t 
critical value of 1.68.) 

9-7 (a) Prob-value = .04 (z = 1.77) j.e., 
if the claim ($6600) is true, the 
chance of getting a sample as 
extreme as this ($6730) is only 4 %. 

(b) Yes. 

(c) I would not reject. However, if 
possible, I would avoid accepting 
H0, in order to avoid the risk of 
a type II error. 

9-9 .007 (z = 2.48) 

9-11 Reject H0 (z = 

= .010). 
,34 and prob-value 

9-13 (a) Three answers: 

(i) Using the normal approxima¬ 
tion, (which is very rough), 
reject H0 if 

P < .19 or P > .81 

(ii) Using Fig. 8-4, (which is also 
rough), reject H0 if 

P < .14 or P > .86 

(iii) Since P is very discrete 
(tenths), it is better to use the 
binomial Table II. It is seen 
that a 5 % test is not possible. 

The best that can be done is a 
2.16% test: 

Reject H0 if P = 0, .1, .9, or 1.0, 
i.e., if P < .1 or P > .9 

(b) Reject H0 if 

P < .402 or P > .598 

Again, because of the discrete 
nature of P, it would be better to 
state the answer: 

Reject H0 if 

P ^ -40 or P > .60 

Then a is found by continuity 
correction to be 5.7% (z = 1.90). 

(a) reject (t = 8.2) 
accept (t — .21) 
reject (t = 2.60) 

(b) 5726 < //, < 6334 
Therefore reject, accept, reject. 

(a) 12,100 < fA, 

(b) 18.4% 

(c) You cannot reject H0, for either 
reason (a) or (b). 

9-19 (a) .080 ± .043 

(b) prob-value <.001 (z = 3.7) 

(c) The sample difference is statisti¬ 
cally significant at the 5% level. 

(d) The sociological significance of the 
difference in populations is a rela¬ 
tive matter. 

9-21 (a) 1 ± .64 

(b) .002 (z = 3.08) 

(c) Yes 
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10-1 (a) \t = 3.68 
7'44\/4\. V 

\ 6 / \4/ 

I eus t = 2.45. 

<1 
Therefore 

[reject H0. 

F = 
4 x 24.5 

44/6 
= 13.36 

Therefore 

and t2025 — F06 

[exceeds F05 = 5.99. 

[reject Ft0. 

(b) jsinccj t2 = F 

!we see in this particular case that 

the tpst using t gives exactly the 

jsamejconclusion as the test using F. 

jMathematicians have proved in 

'general that whenever Fhas 1 and 

k df, and t has k df, then t2 and 

F hajve exactly the same distribu¬ 

tion. 

(c) 

10-5 F 4 

7 ± 2.45V44/6V2/4 = 7 ± 4.7 

50(1 14/18) 

(329/3) 
= 2.89 

which 

Therefor] 

|alls 
do not reject ff0. 

10-7 (a) hour 

F = 

short of F05 = 3.06. 

factor: 

27 

10/12 
- 32.4 

exceeds F05 = 6.94. Therefore 

reject H0. 

Man. factor: 

F = 
16/3 

10/12 
= 6.4 

falls'short of F05 = 6.94. There¬ 

fore !do not reject H0. 

(b) For hour factor, the confidence 

allowance is ±2.77 for the follow¬ 
ing differences in n: 

1 2 3 

1 -3* 3* 

i 6* 
3 

10-9 95 confidence interval: 

- /ux = 6 ± 2.77^8/5 

= 6 ± 3.5 

.*. reject H0 at 5 % level. 

11-1 (a) S = 760 + ^y 

= 760 + .144 y 

or = -396 + .144y 

(b) a = S760 = estimate of savings 

of the average person. 

a0 — S —396 = estimate of sav¬ 

ings of a person with zero income. 

However, this is extrapolating 

recklessly. 

11-3 (a) .068 bushel (all units are “per 

acre”). 

(b) Not economical (net return = 
13.64 - 254). 

(c) 13.6° 

11-5 (a) S(a0, b) = 2(7, - a0 “ bX{)2 

(b) ^ = ~2 2(y* ~ a» ~bx^ =0 

±= -2 2xo'.-«o-*x) 
= 0 
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(c) c?0 = —396, b — .144, as before 

(d) The method in the text is easier 

than the method in this problem. 

(c) 878 

7863/2 = 3931. 

(e) Two degrees of freedom for s2 

are almost too few. It would be 

better to collect more data. This 

scarcity of data is even more 

acute in Problem 13-3. -■ 

12-1 (a) p 
2.6 _ .0388 

— — i 3.18 /- 
18 yj 18 

= .144 ± .148 

- l5A ± 3 ,g /-0388 

= .856 ± .148 

Note that /?* = 1 — /?, and the error 

allowances for 8* and 8 are the same. 

13-3 (a) (1) 760 = a 

2.6 = 18b - 18c 

(3) -6.3 18Z? + 144c 

+ ,024<7 

(4) -.0017 - —.001b + .024c 

+-000010<7 

(b) a = 760 

12-3 t = ——. = 3.1 
V.0388/18 

which falls short of t 0 

fore do not reject H0. 
4.54. There- 

c = -.0242 

12-5 It is preferable to observe / in a period 13-5 (a) 36.7 
of wide fluctuation. (b) 25.5, which is much better. 

13-7 (a) 5 
269 52.5 

(T- 7.5) 

(a) S — 760 + . 115y - .029w 

(b) Coefficient of y is .115, which is 

less than the former value, .144. 

The multiple correlation coeffi¬ 
cient is the proper measure of 

“the relation of S to Y, other 

things being equal.” The simple 

correlation coefficient measures 

the relation of S to Y, taking no 

account of W. In fact, Wis (neg¬ 

atively) correlated with both S 

and Y, and thereby produces a 
misleadingly high correlation be¬ 

tween S and Y themselves. 

(b) There is serious bias caused by 

the fact that we started at a 

seasonal high (Christmas), so 
that of course the time trend is 

downwards. 

-8 ± -2.45V48/2 
-8 ± 12.0 

13-11 Make (3 is better by .38 mpg. 
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14-1 

14-3 

14-5 

14-7 

(a!) 24/V (44)(34) = .62 

(fcJ> — .jl9 < p < .95 

(c) No! 

(k) 35^/(100)(20) - .62 

(6) .38= 

(J) p 3= 4.7 while F 05 = 10.13 

t == 2.2 while 6025 

B L .35 ± .51 

3.18 

Fo 

noi 

r any of these 3 reasons, do 

reject H0. 

(b) alone is false, and should be: 
“if b < 1, no strict conclusion 

can 

GO' 
(b) -9^2 

(b) .9^2 

(k) .76, .984 

be drawn about /;, 

15-3 (a) ax 

(b) a, 

(c) 

(d) False. It should be: 

“Action ax is best when ‘rain’ is 

predicted, and also when no 

prediction is possible. Action a3 

is best when ‘shine’ is predicted. 

Action a2 is never best,” 

15-5 (a) Midrange, median, mean, mode, 

(b) Correct. 

15-7 (a) Mode, 73 or 74 

(b) Median, 73 to 74 

(c) Mean, 73.5 

15-9 Closer to 20, because the data are 

twice as reliable. 

15-11 (a) is less believable, because it puts 

complete faith in a very small 

and unreliable sample. 

(e) R2. > r2 necessarily 

(f) rSY W 

14-9 (ja) .22 

(b) .0 6 

Oc) 1J2 

id) m 
(c) "j5.3 

15-1 a) .11, -4, .5 

» .218, .44, .28 

15-13 (a) 103.54, a = .33, p = .020 

(b) 113.12, a = .05, p = .195 

Average loss increases by a factor 

of 3.16. 

(c) r0lr1 = 4j\, which is unreason¬ 

able. 

15-15 (a) You do not want to play, because 

the value of the game is 10/8 to 

me, which I could win by using 

the strategy mix: H played 5/8 of 
the time, T played 3/8. 

(b) Each play H and Tequally often, 

which results in a zero payoff. I 
would secretly choose my penny 

only if my opponent was also 

secretly choosing and seemed 

easy to outwit. 





ossary of Important Symbols 

Symbol 

(a) English Letters 

a estimate 

anova! 

b I 

| Meaning 

Letters 

estimated regression intercept 

analysis of variance 

estimated regression slope 

aias 

lumber of columns in analysis of 

Definition or Other 
Important Reference 

(11-7), (1143) 

Table 10-6 

(11-7), (1146), (1243) 

(7-12) 

! variance, or (10-27) 

estimated regression coefficient (13-3) 
c constant coefficient in a contrast (10-22) 
c2 modified chi-square variable (8-23) 
d.f. 1 degrees of freedom (8-11) 
e | regression error (12-3), (12-4) 
E (also F, <7, etc.) = event (3-6) 
E r ot E 

expected value of X — nx 

variance ratio 

null hypothesis 

(3-17) 
E(X) 

(4-17b) 
F 

(10-7), (10-17). 
(14-24) 

#0 (9-1) 
Hi a Iternate hypothesis (9-2) 
iff if and only if 

li celihood function L{ ) (7-24), (12-48) 
MLE maximum likelihood estimate(tion) Table 7-2 
MSD mean squared deviation (2-5), (7-13) 

393 
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Definition or Other 

Symbol Meaning Important Reference 

X i realized) value of X. After Chapter 8 
this distinction between capital and 
little letters is forgotten (7-9) 

Z standard normal variable, or (4-13), (8-9) 

a second regressor Table 13-1 

generally reserved for population parameters as follows: 

a probability of type I error, or 
population regression intercept 

(9-18) 
(12-3) 

P probability of type II error, or 
population regression slope 

(9-9) 
(12-3) 

y population regression coefficient (13-1) 

e any population parameter (7-11) 

8 sample estimator of 6 (7-11) 

population mean (4_3), (4-10), (4-17a) 

7T population proportion (1-2), (4-7), (6-20) 

TT product of (7-30) 

j 
Pxy j population correlation of X and Y (14-3) 

a population standard deviation (4-4) 

a* | population variance (4-4), (4-5), (4-19) 

0Xy population covariance of X and Y (5-21), (5-22), (5-23) 

2 j sum of Table 2-2 

(c) Otter Mathematical Symbols 

e\jf E or F, or both (3-10) 

E nF E and F (3-11) 

i 
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_A 

equals, by definition (2-la) 

approximately equals (2-lb) 
is distributed as (6-31) 

(d) Greek Alphabet 

Letters Names 

English 

Equivalent Letters Names 

English 

Equivalent 

Aa Alpha a Nr Nu n 
B/5 Beta b Xi X 

I> Gamma g O o Omicron 0 
A <5 Delta d II 77 Pi P 
Ee Epsilon e P P Rho r 
Z£ Zeta z 2a Sigma s 
H i! Eta — Tr Tau t 
ee Theta — Tv Upsilon u or y 
h Iota i Phi _ 
K*r Kappa k Xz Chi _ 
A 2 Lambda 1 Psi _ 
M fi Mu m Qoj Omega — 



Index 

Absolute devations, 18, 224 

Alternate hypothesis, 168 

Analysis of covariance, 278 

Analysis) of variance (ANOVA), 195 

assumptions, 202 

confidence jintervals, 206, 216 

hypothesis jtest, 196, 213 
interaction; 215 

one factor, 1195 

regression,'applied to, 298 
coifiparejl to, 195, 278 

sum of squares, 204 

table, j201, fell, 299 

two factorsj 211 

variation, 204; see also Variation 

Average, see ilean; Measures of location 

Bayesian methods, 312 

classical method compared, 324, 332 

79 
confidence Intervals, 327, 329 
cost, 3]31 | 

critique, 331 

decisions, 315 

estimation, *322 

by interval, 327, 329 

and|MLE, 332 

game theory compared, 349 
hypothesis tests, 333 

large sample, 328 

likelihood ratio test, 336 
loss function, 315, 318, 323 

prior and posterior probability, 312 
strength, 33\ 

subjective nature, 331 

utility function, 319 
weakness, 331 

Bayes’ theorenji, 44, 312 

Bell, Daniel, 162 

Bernoulli population, 119, 125 
mean and variance, 120 

Best linear unbiased estimator, 240 
Bias, 134 

in regression, if some variable is 

ignored, 273 

of sample MSD, 135 
in sampling, 6 

see also Unbiasedness 

Binomial distribution, 59 

coefficients, table, 362 

cumulative table, 365 
mean, 121 

normal approximation, 121 
sample sum, as a, 120 

table, 363 

trial, 59 

variance, 121 

Bivariate distribution, 78 

normal, 292, 301 

C- statistic, 164, 368 

Centers, 12 

Central limit theorem, 113 
for binomial, 121 

for regression, 241 

Chi-square variable, modified, 164 
table, 368 

Classical versus Bayesian estimation, 
324,339 

Coding, 22 

Collinearity, see Multicollinearity 
Complementary event, 35 

Composite hypothesis, 175, 182 

Confidence interval, acceptable hypothe¬ 

ses, as set of, 2, 191, 216 
in analysis of variance, 205, 216 

397 
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Confidence interval (cont.) 

Bayesian, 327. 329 

for correlation, 293 

for difference in several means, 206, 

216 
for difference in two means, large 

sample, 150 

small sample, 155, 205 
for difference in two proportions, 161 

example. 2 

hypothesis test, relation to, 187 

for mean, large sample, 129, 132 

small sample, 152 

meaning of, 2, 131 
for means, several, see Confidence 

interval, for difference 

one-sided type, 190 
for proportion, large sample, 2, 157 

small sample, 158 

for proportions, difference, 161 

random interval, as a, 131 
for regression coefficients, multiple, 

266 

simple, 244 

for variance, 163 

Consistency, 137, 148 

Continuity correction, 121 

Continuous distributions, 63 

Continuous variable, 9 

Contrast of means, 207, 216 

Controlled experiments, 237 

Correlation, 285 

assumptions, 291 

calculation, 288 

confidence interval, 293 

covariance, compared to, 286 

hypothesis test, 305 

independence, relation to, 91 

interpretation, 286, 291, 300 

multiple, 310 

partial, 306, 308 

population, 285 
regression, compared to, 285, 296, 301, 

305 

sample, 286 

simple, 285 

Counted data, see Bernoulli population; 

Binomial distribution 

Counter variable, 120, 157, 270; see also 

Dummy variable regression 

Covariance, 88, 286 

and independence, 91 

Criteria for fitting a line, 223 
Critical point in hypothesis testing, 168 

Cross section information, 269 

Decision theory, 312 

Deduction, 3, 106 

Degrees of freedom, 154 

in analysis of variance, 199 
in multiple regression, 259, 273, 311 

in simple regression, 243 

in single sample, 154 

in two samples, 156 

Density function, 64 
Dependence, statistical, see Independence 

Destructive testing, 5 

Deviations, 17 
Difference in means and proportions, see 

Confidence Interval, for difference 

Discrete variable, 8, 52 
Distribution, see Probability functions 

Dummy variable regression, 269 

and analysis of covariance, 279 

and ANOVA, 278 

compared to moving average, 277 

for seasonal adjustment, 274 

Efficiency, 136 
economic and statistical equivalence 

of, 137 
of MLE, asymptotically, 148 

of sample mean and median, 137 

Error, confidence interval allowance, 1, 

129; see also Confidence interval 

in hypothesis testing, 169 

in regression model, 236 
residual, after fitting, in ANOVA, 215 

in regresson, 243, 275, 297 

Estimate, interval, see Confidence 

interval 

point, 128 
Bayesian, 322 
Bayesian versus classical, 324 

estimator, compared to, 132 

and loss function, 323 

properties of, 134 

Estimating (least-squares) equations, in 

multiple regression, 259 

in simple regression, 227 
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INDEX 

. i 
Events, 31 

independent, 45 

intersection of, 34 

mutually exclusive, 34 

ExUpi"4n3L Expected value; Mean 

Expected value, definition, 74 
of a Action of random vartables, 73, 

of a game, 345 _ . 
of a linear combination, 93 

JfalosS’316 
of a simple mean, 108, H' 

Fistatislic, ANOVA use, 199,204,213 

distribution, 201 

1 regression use, 299, 311 
Son to 1,209, 300, 311 

table, 370 
Fishcl, B- A., 153 in ANOVA, fitted'(predicted) value, in ANUV 

! I 215 _ 
! in regression, 223, 245, 303 
base|r,D.A S 241 
M’ D;A« ^see also Relative frequency 

! of'two random variables, 84 

' Game theory, 340 ,, taq 
Bhyesian solution, compar 

i cinservative,astoo,348 
I loss (payoff) ft" 341 
. ^nimaxandmax.m.n,342,347 

Mature as opponent, 348 

Saddle point, 342 

| Strategies, dominated, 347 

! 1 mixed, 344, 347 

krictly'determined games, 340 

Gaussian distribution, see Normal 

| variable 

dauss-Markov theorem- 240 
dlossary of symbols, 393 

dossett, W. S„ 153 

i 11 

Huff, Darrell, 7 
Hypothesis test, 167 

in ANOVA, 196,213 

216 
critical point, 168 
errors of type land II, 169, 

in multiple regression, -6 

one-sided, 168, 190 

power, 170, 176 

prob-value, 179 

in regression, 245, 4vv 

for seasonal influence, 276 

two-sided, 185, 187 -Mnll 
see also Confidence interval, Null 

hypothesis 

Independence, statistical, 45 
covariance, relation to, 91 

of events, 45 

nf variables, 83 

Induction and inference, 1,3; see ah 
Confidence interval 

cy Isoprobability ellipses, 293 

Joint distribution, see Bivariate distribu- 

tion 

Law of large numbers, 49 
Least squares in regression 225 

attractive properties, 225 

calculations, 228 

coefficients, 229 
equations, 227, 259 
in multiple regression 257 

T ikelihood function, 143, 230 
Selihood ratio test Bayesian, 336 

Lindgren, B. W., 149, 33 means, 
Linear combination, contrast 

207 . , 
of random variables, 9 

Linea^tran^formaiioiu °I a normal 

variable, 70 
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Logarithms, 375 

Loss function, 315, 318, 323,341 

McDonald, J 7 

Maxinuun Likelihood Estimates (MLE) 

as Bayesfan estimates, 332 

of binomial 141, I42 ,44 

geometric interpretation, 147 251 
ifsamPle Properties, 148 ' 

ast^squares, equivalence to, 250, 253, 

of mean (normal), 142 )4« 

versus method of moments ms 
n multiple regression, 257 
7 P.'«a mole, in general, 142 147 

of proportion, 141, 142,144 
m regression, 250 

MeTn,ofTP!e‘'eflciencies.333 

conditional, 83 

confidence interval for, Ke Cnnfi t 
interval Confidence 

^mear combination, 58> 93 

°f Population 56, 66, 103 
Posterior, 328 

of random variable, 56, 66, 29 
of egression coefficients, 238 
f sample proportion, 122 

or sample sum, 106 
°f sum, 86, 93 

Me"n:tra7:rraf,i37Ue;SamP'emean 
and consistency I3g Is 

'■elated to bias a’nd variance 138 

bLVl35red‘,eViati°n(MS13^]* 

^an sum of squares, 203 
Measures of location, 12 N 
Measures of spread, 17 

Median of sample, 12 

as Bayesian estimator, 323 
efficiency, 137 Op 

unbiased estimator, 136 °u 

Minimax and maximin, 342 347 
Mode, 12 ’ A347 par 

as Bayesian estimator 3^ S 

as MLE estimator, 332 Pari 

Moments, 16 19 

jssfisas"**" 
Monte Carlo, 140 

n Partial correlation, 310 
treatment, 264 

J3 and Jast refiressor, 311 
> and regression, 310 

and variation, 310 

Multiple regression, 255 

ANOVA, relation to, 255 278 283 
bias reduced, 273 ’ 4/8, 283 

calculations, 258 

confidence intervals, 266 
error reduced, 237 

estimating equations, 259 
hypothesis tests, 266 

interpretation, 265 

Last squares estimation 257 
mathematical model, 256 

■ree Regression t0’ 308 

Nonparametric statistics, 241 
Nonsense correlations, 305 
Normal equations, 227, 259 
Normal variable, Z 66 

SSI"7,“ 
6 relation to, 153 J55 
table, 367 

for random variables, 52 132 
for regressors, 225 234 ’ 
switch, 154, 

Null hypothesis, 168 

danger m accepting, 178, 267 
danger m rejecting, 179 

Operating characteristics curve 184 
Outcome set, 30 ’ 184 

Parameters of population, 128 
glossary, 395 

Partial correlation, 308 

assumptions, 309 
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computation, 309 

regression,! relation to, 308 

Partition of sample space, 35 

Payoff matrix, 341 

Point estimatp, see Estimate, point 

Poissonj distribution, 121 

Pooled yariahce, 156, 199 

Population, 1*02 

mean and variance, 56, 66, 103 

Posterior mein, 328 

Posteridr probabilities, 45, 312, 326 

Poster!dr variance, 328 

Power of hypothesis test, 170, 176 

Prediction interval in regression, 245 

Prior information in regression, 267 

Prior probabilities, 45, 312, 331 

and posterior probabilities, 314, 326, 

I29 J 
Probability, 27 

axionpatic‘,’49 

conditional, 40 

personal, f?0, 330, 331 

relative frequency, as limit of, 27, 41 

subjective,!50, 330, 331 

symmetric^ 48 

Probability density function, 66 

Probability functions (distributions), 

binomial, 59 

bivariate, 78 

conditional, 81, 104, 314 

continuous, 63 

discrete, 52 

joint, 78 * 

marginal, $0, 104 

normal, 67* 

personal, 330, 331 

posterior, ^12, 326 

prior; 312,*331 

Prob-value ot a test, 179 

relation tojsignificance level, 181 

Propert es of estimators, 134 

Proportions, ‘122; see also Confidence 

interval; Relative frequency 

Random digit table, 360 

Random normal numbers, 361 

Randonji sampling, 102 

Bernoulli, 119, 125 

definition,'6, 102 

examples, !l, 102, 103 

without replacement, 116, 124 

with replacement, 102, 124 

simulated, 26, 56, 105 

as subset of population, 128 

summary, 124 

see also Sampling 

Random variable, continuous, 63 

definition, 52 

derived, 72, 84 

discrete, 52 

function of, 72, 84 

regressor, 254 

Range of sample, 17 

Regression, 220, 234 

as ANOVA, 299 

assumptions, about dependent variable, 
235 

about error term, 236 

about independent variable, 254, 305 

bias, 273 ; 

bivariate normal population, 301 

confidence intervals, 243 

for a, 244 

for p, 244 

for y, etc., 266 

correlation, compared to, 285, 296, 

301,305 ’ 

error term, 236 

estimated coefficients, 229, 241 

fixed versus random independent 

variable, 254 

least squares estimation, 225 

likelihood function, 253, 254 

mathematical model, 234, 237 

model limitations, 249 

multiple, 255; see also Multiple re¬ 

gression 

nonlinear, 250 

parameters, 235 

prediction, 245, 303 

prediction interval, 245 

residuals, 237, 275, 297 

see also Multiple regression 

Regrets, 335 

Relative frequency, 9, 63, 103 

density, 64 

limit is probability, 27, 66 

Residuals, see Error; Variation 

Robustness, 163 
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Saddle point, 342 

Sample mean, 13, 107 

as Bayesian estimator, 323 

and central limit theorem, 113 

distribution, 109, 112 

efficiency, 137 

as estimator of p, 128, 136 

expected value, 108, 117 

as Gauss-Markov estimator, 241 

as linear transformation of sample 

sum, 107 

normally distributed, 112 

variance, 108, 117 

Sample proportion, as sample mean, 122, 

125; see also Relative frequency 

Sample space, 30 

Sample sum, 105 

distribution, 109, 115 

mean, 106, 117 

variance, 106, 117 

Sample variance, see Variance 

Sampling, 102 

bias, 6 

methods, 5 

reasons, 5 
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