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The scope of these notes is to present a soft and practical introduction to algebraic

geometry, i.e. with very few algebraic requirements but arriving soon to deep results and

concrete examples that can be obtained “by hand”. The notes are based on some basic

PhD courses (Milan 1998 and Florence 2000) and a summer course (Perugia 1998) that I

taught. I decided to produce these notes while preparing new similar courses (Milan and

Perugia 2001).

My approach consists of avoiding all the algebraic preliminaries that a standard al-

gebraic geometry course uses for affine varieties and thus start directly with projective

varieties (which are the varieties that have good properties). The main technique I use is

the Hilbert polynomial, from which it is possible to rigorously and intuitively introduce

all the invariants of a projective variety (dimension, degree and arithmetic genus). It is

also possible to easily prove the projective Nullstellensatz (from which the standard affine

Nullstellensatz can in fact be obtained).

The price to pay for this shortcut is that the way to produce the important results

(the most important one for practical purposes is the theorem about the dimension of the

fibers) is not always clear, since many results or even definitions have local nature. This

was in fact the eventual motivation to write these notes, to show that it is possible to

follow such a risky path in a coherent way. Moreover, if the students of a course have all

the delicate steps written down, it is possible for the teacher to avoid the too technical

results and concentrate on examples and intuitive results.

If the goal of theses notes is achieved, an interested student with very small knowledge

of commutative algebra (a sight to Chapter 0, devoted to preliminaries should be enough

to figure out the required background) should be able to acquire enough techniques to ma-

nipulate varieties and families and compute their dimensions. And if the student becomes

interested, he/she could then follow a more advanced text or course.

The present version contains the beginning of a second part which, if ever finished,

will eventually contain a first introduction to the theory of schemes.

I deeply thank many people, and very especially Sof́ıa Cobo, for pointing out many

misprints of previous versions.
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0. Algebraic background

We will recall in this chapter the main algebraic ingredients that the reader is as-

sumed to know as a minimum background for the rest of the notes. We will just give the

appropriate definitions, state the results and leave the proofs (for those for whom they are

new concepts) as exercises, as long as it looks reasonable to do so.

The key results the reader should know about ideals are collected in the following

exercise.

Exercise 0.1. Let R be a (commutative and unitary) ring and I an ideal.

(i) If I is maximal then I is prime.

(ii) The set
√
I := {F ∈ R | F d ∈ I for some d ∈ N} is an ideal of R.

(iii) If I is prime, then it is radical (i.e.
√
I = I).

(iv) If I = I1 ∩ . . . ∩ In then
√
I =
√
I1 ∩ . . . ∩

√
In.

(v) If I is prime and I1 ∩ . . . ∩ In ⊂ I then Ii ⊂ I for some i = 1, . . . , n.

(vi) If I is an ideal contained in a finite union of prime ideals, then I is contained in one

of those prime ideals.

(vii) If I is any ideal of R, then
√
I is the intersection of the prime ideals containing I.

[Hint: If f 6∈
√
I, use Zorn’s Lemma to find a maximal element of the set of ideals

J ⊃ I such that f 6∈
√
J , and prove that such a maximal element is a prime ideal]

(viii) If R′ is another ring, f : R′ → R is a ring homomorphism (we will always assume that

a ring homomorphism sends the unit element of R′ to the unit element of R) and I is

a prime ideal of R, then f−1(I) is a prime ideal of R′.

Definition. A primary ideal of a ring R is an ideal I with the property that if FG ∈ I
but G 6∈ I then there exists some d ∈ N such that F d ∈ I. It is immediate to see that if I

is primary, then P :=
√
I is a prime ideal. The ideal I is then said to be P -primary.

Exercise 0.2. Let I be an ideal of a ring R.

(i) Prove that if I is primary then
√
I is prime.

(ii) Find a counterexample showing that it is not true that an ideal whose radical is prime

is necessarily primary (the reader should be able to produce many examples after

section 2).

(iii) If
√
I is a maximal ideal, prove that I is a primary ideal.

(iv) If I = ∩iIi where each Ii is a P -primary ideal, then I is also P -primary.

(v) If R is a polynomial ring and I is generated by fm, f being an irreducible polynomial,

then I is (f)− primary.
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(vi) If R′ is another ring, f : R′ → R is a ring homomorphism and I is P -primary, then

f−1(I) is f−1(P )-primary (observe that from Exercise 0.1(viii) f−1(P ) is a prime

ideal).

We are going to work with polynomial rings over a field. The main result about these

rings is that all their ideals can be generated by a finite number of elements. This will be

a consequence of the so-called Hilbert’s bases theorem, which we will prove below.

Definition. A ring R is called a noetherian ring if any ideal of I admits a finite number

of generators, or equivalently if R does not contain an infinite strictly ascending chain of

ideals I1 ⊆/ I2 ⊆/ . . ..

Exercise 0.3. Prove that indeed the above two definitions are equivalent. [Hint: Observe

that the union of all the ideals in an ascending chain is an ideal].

Theorem 0.4 (Hilbert’s basis theorem). Let R be a noetherian ring. Then the polynomial

ring R[X] is noetherian.

Proof: Let I be an ideal of R[X]. We can assume I 6= R[X], since otherwise 1 would

be a generator of I. For each d ∈ N, the set Jd := {r ∈ R | r is the leading coefficient

of some polynomial of degree d in I} is easily seen to be an ideal of R (if we take the

convention that 0 ∈ Jd) and J1 ⊂ J2 ⊂ . . .. Since R is noetherian, there exists d0 ∈ N such

that Jd = Jd0 if d ≥ d0. On the other hand, we can find polynomials f1, . . . , fm ∈ I such

that each J0, . . . , Jd0 is generated by the leading coefficients of some (not necessarily all)

of these polynomials. Let us see that these polynomials generate I.

Take f ∈ I and let d be its degree. Assume first that d ≥ d0. Then the leading

coefficient of f is a linear combination (with coefficients in R) of the leading coefficients of

f1, . . . , fm. Multiplying each fi by Xd−deg fi we see that there exist monomials h1, . . . , hn ∈
R[X] such that f − h1f1 − . . . − hnfn (which is still in I) has degree strictly less than d.

Iterating the process we arrive to g1, . . . , gn ∈ R[X] such that f−g1f1−. . .−gnfn has degree

strictly less that d0. Hence we can assume d < d0. But since now Jd is generated by some

leading coefficients of f1, . . . , fn, we can find r1, . . . , rn ∈ R such that f − r1f1− . . .− rnfn
has degree strictly smaller than d. Iterating the process till degree zero we then find that

it is possible to write f as a linear combination of f1, . . . , fn , which concludes the proof.

Exercise 0.5. Prove a stronger result in case R is a field, namely that any ideal in K[X] is

principal, i.e. generated by one polynomial (a ring with this property is called a principal

ideal domain or PID for short). [Hint: Consider a nonzero polynomial of minimum degree
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of an ideal and prove, dividing by it, that any other polynomial of the ideal is a multiple

of it].

Exercise 0.6. Prove, using induction on n and the Hilbert’s basis theorem, that the

polynomial ring K[X1, . . . , Xn] is noetherian.

Exercise 0.7. Prove that, for any ideal I ⊂ K[X1, . . . , Xn], there exists some m ∈ N such

that
(√
I
)m ⊂ I (in fact this is true for any ideal of a noetherian ring).

Since we are going to work with projective varieties, we will necessarily work with

homogeneous polynomials. Let us briefly recall the main definitions and results that we

will use.

Definition. A graded ring is a ring S such that, as an additive group, is a direct sum

S =
⊕

d≥0 Sd, and the multiplication in S is compatible with the degree in the following

sense: if F ∈ Sd and G ∈ Se then FG ∈ Sd+e. A homogeneous element of S is an element

of some d, and d is called the degree of the element. Given any F ∈ S, it is possible to

write it in a unique way as F = Fr + . . . + Fd, with each Fi in Si and Fr, Fd 6= 0. The

nonzero elements among Fr, . . . , Fd are called the homogeneous components of F .

All the graded rings we will deal with throughout these notes will be obtained from

the simple example in which S = K[X0, . . . , Xn] (K being a field) and Sd is the set of

homogeneous polynomials of degree d (including also the zero polynomial).

Definition. A homogeneous ideal of a graded ring S is an ideal I ⊂ S such that for any

F ∈ I it holds that all the homogeneous components of F belong to I.

The main properties about graded rings and ideals, left as an exercise, are collected

in the following exercise.

Exercise 0.8. Let S be a graded ring and let I ⊂ S be an ideal.

(i) The ideal I is homogeneous if and only if I is generated by homogeneous elements.

(ii) If S is noetherian and I is homogeneous then I is generated by a finite number of

homogeneous elements.

(iii) If I is homogeneous then the quotient S/I has a natural structure of graded ring.

(iv) If I is homogeneous then it is prime if and only if for any F,G ∈ S homogeneous such

that FG ∈ I it holds that either F ∈ I or G ∈ I.

(v) If I is homogeneous then
√
I is also homogeneous.

(vi) If I is homogeneous then it is primary if and only if for any homogeneous F ∈ S such

that FG ∈ I it holds that either F ∈
√
I or G ∈ I.
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(vii) If I is homogeneous then it is radical if and only if for any homogeneous F ∈ S such

that F e ∈ I for some e ∈ N it holds that F ∈ I.

[Hint: the standard trick is to assume that some suitable element does not belong to

the appropriate ideal and then take the homogeneous component of smallest degree not

belonging to the ideal].

We will also need the following generalization.

Definition. A graded module over a graded ring S is a module M over S such that, as

a group M decomposes as a direct sum
⊕

d≥0Md such that if F ∈ Sd and m ∈ Me then

Fm ∈ Md+e. A graded homomorphism between two graded modules M and M ′ is an

S-homomorphism f : M →M ′ such that f(Md) ⊂M ′d for any d ∈ N.

Notation. For any a ∈ N, M(−a) will denote the graded S-module that, as a set, coincides

with the graded module M , but for which however we will take as homogeneous part of

degree d the homogeneous part of degree d− a of M , i.e. Md−a. In this way, for instance

the multiplication by a homogeneous element F ∈ Sd is a graded homomorphism between

M(−d) and M .
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1. Projective sets and their ideals; Weak Nullstellensatz

General notation. We fix a ground field K, which we will always assume to be alge-

braically closed (we will nevertheless recall this fact in the statement of the main theorems).

Let Pn denote the projective space of lines in the vector space Kn+1. An element of Pn

represented by the line generated by the nonzero vector v = (a0, . . . , an) ∈ Kn+1 will be

denoted by [v] = (a0 : . . . : an). When no confusion will arise, we will write just S for the

graded ring K[X0, . . . , Xn]. The maximal ideal (X0, . . . , Xn) will be denoted by M, and

often called the irrelevant ideal.

Let F ∈ K[X0, . . . , Xn] be a polynomial of degree d with homogeneous decomposition

F = F0 + . . .+ Fd. Given a point a = (a0 : . . . : an) ∈ Pn, we cannot define the expression

F (a) as F (a0, . . . , an), since it clearly depends on the choice of a vector representing a.

Indeed, a general representative for a will have the form (λa0, . . . , λan) (with λ 6= 0) and

then F ((λa0, . . . , λan)) = F0(λa0, . . . , λan) + . . . F (λa0, . . . , λan) = F0(a0, . . . , an) + . . .+

λdFd(a0, . . . , an), which clearly varies when λ varies. However, if F is homogeneous of

degree d, we have F (λa0, . . . , λan) = λdF (a0, . . . , an). Even if then F (a) is not defined

neither, it makes sense at least to say when it is zero, since obviously F (λa0, . . . , λan) = 0

for any λ 6= 0 if and only if F (a0, . . . , an). The main objects we are going to study will

be the subsets of a projective space defined as zeros of homogeneous polynomials. More

precisely:

Definition. A projective set X ⊂ Pn is a subset for which there exists a set of homogeneous

polynomials {Fj | j ∈ J} such that X = {p ∈ Pn | Fj(p) = 0 for all j ∈ J}.
For practical reasons, and in view of the previous observation, we will say that F (a) =

0 for a point a ∈ Pn and an arbitrary polynomial F ∈ K[X0, . . . , Xn] if and only if any

homogeneous component of F vanishes at a. With this convention we can make the

following definitions:

Definition. The projective set defined by a subset T ⊂ K[X0, . . . , Xn] will be V (T ) = {a ∈
Pn | F (a) = 0 for any F ∈ T}. The homogenous ideal of a subset X ⊂ Pn will be the ideal

I(X) = {F ∈ K[X0, . . . , Xn] | F (a) = 0 for any a ∈ X}. The graded ring of a projective

set X is the ring S(X) = K[X0, . . . , Xn]/I(X).

Proposition 1.1. The operators V and I satisfy the following properties:

(i) I(Pn) = {0} (for this we just need K to be infinite), I(∅) = K[X0, . . . , Xn], V ({0}) =

Pn, and V ({1}) = ∅.
(ii) If T ⊂ K[X0, . . . , Xn] and < T > is the ideal generated by T , then V (T ) = V (< T >).

In particular, any projective set can be defined by a finite number of equations.

(iii) If T ⊂ T ′ ⊂ K[X0, . . . , Xn], then V (T ′) ⊂ V (T ) ⊂ Pn.
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(iv) If {Tj}j∈J is a collection of subsets of K[X0, . . . , Xn] then V (
⋃
j∈J Tj) =

⋂
j∈J V (Tj).

(v) If {Ij}j∈J is a collection of ideals of K[X0, . . . , Xn] then V (
∑
j∈J Ij) =

⋂
j∈J V (Ij).

(vi) If I ⊂ K[X0, . . . , Xn] is any homogeneous ideal, then V (I) = V (
√
I).

(vii) If I, I ′ ⊂ K[X0, . . . , Xn] are two homogeneous ideals, then V (I ∩ I ′) = V (II ′) =

V (I) ∪ V (I ′).

(viii) For any X ⊂ Pn, I(X) is a homogeneous radical ideal. If X is a projective set, I(X)

is the maximum ideal defining X.

(ix) If X ⊂ X ′ ⊂ Pn then I(X ′) ⊂ I(X).

(x) If {Xj}j∈J is a collection of subsets of Pn, then I(
⋃
j∈J Xj) =

⋂
j∈J I(Xj).

(xi) For any X ⊂ Pn, X ⊂ V I(X), with equality if and only if X is a projective set. In

particular V I(X) is the minimum projective set containing X.

(xii) For any T ⊂ K[X0, . . . , Xn], T ⊂ IV (T ) and V IV (T ) = V (T ).

Proof: We will just prove the first part of (i), leaving the rest as an easy exercise. So we just

need to prove that any homogeneous polynomial vanishing at Pn is the zero polynomial.

We will prove it by induction on n, the case n = 0 being trivial. So assume n > 1

and write F = A0 + A1Xn + . . . AdX
d
n, with A0, A1, . . . , Ad ∈ K[X0, . . . , Xn1

] and Ad 6=
0. We thus know by induction hypothesis that we can find (a0 : . . . : an−1) such that

Ad(a0, . . . , an−1) 6= 0. But then the polynomial F (a0, . . . , an−1, Xn) ∈ K[Xn] is nonzero,

so it has a finite number of roots. Hence the fact that K in infinite implies that we can

find a point (a0 : . . . : an−1 : an) not vanishing on F .

Definition. Part (i), (iv) and (vii) of Proposition 1.1 show that the set of projective sets

satisfy the axioms to be the closed sets of a topology in Pn. This topology in which

the closed sets are exactly the projective sets is called the Zariski topology on Pn. The

intersection of a projective set with an open set will be called a quasiprojective set. The

topology induced by the Zariski topology on any quasiprojective set will be still called

Zariski topology on that quasiprojective variety.

Exercise 1.2. Prove that a basis for the Zariski topology on Pn is given by the open sets

of the form D(F ) = Pn \ V (F ), where F is a homogeneous polynomial.

We list now a series of examples of projective sets.

Example 1.3. Any linear subspace Λ of Pn is clearly a projective set, since it is defined

by homogeneous linear forms. In fact, the homogeneous ideal of Λ is generated by any set

of linear equations defining Λ. Indeed we can assume, after changing coordinates, that Λ is
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defined by the equations Xr+1 = . . . = Xn = 0. Thus we write any homogeneous homoge-

neous polynomial F ∈ I(Λ) in the form F = Xr+1Gr+1+. . .+XnGn+H(X0, . . . , Xr). Since

H belongs to I(Λ) (because F,Xr+1, . . . , Xn do), then it follows that H(a0, . . . , ar) = 0

for any a0, . . . , an ∈ K, which implies that H is the zero polynomial. Therefore F ∈
(Xr+1, . . . , Xn) and thus Xr+1, . . . , Xn generate the ideal I(Λ). Observe in particular that

S(Λ) ∼= K[X0, . . . , Xr] as graded rings. As a particular case of the above, any point of

Pn is a projective set. Therefore, by Proposition 1.1(vii), also any finite set of points is a

projective set.

Exercise 1.4. Prove that the homogeneous ideal of the set {(1 : 0 : 0), (0 : 1 : 0)} ⊂ P2

is (X2, X0X1). Interpret geometrically this result and find then the homogeneous ideal of

the set {(2 : 3 : −1), (1 : −2 : 2)}. Try to generalize the exercise to sets of three and four

points in P2 (now you will need to take care of the possible different configurations of the

points).

Example 1.5. Identify Pnm+m+n with the set of nonzero (n+1)×(m+1)-matrices modulo

scalars. Then the set of matrices of rank at most k is a projective set, since it defined

by the vanishing of all the minors of order k + 1, which are homogeneous polynomials of

degree k + 1 in the variables of Pnm+m+n. It is not at all trivial that the homogeneous

ideal of this projective set is generated by all these minors.

Exercise 1.6. Prove that, in the example above, the projective set of matrices of rank

one is in bijection with Pn × Pm via the map ϕn,m : Pn × Pm → Pnm+m+n (well) defined

by

ϕn,m((X0, . . . , Xn), (Y0 : . . . : Ym)) =

X0Y0 . . . X0Ym
...

. . .
...

XnY0 . . . XnYm


Prove also that ϕn,m maps any Pn×{q} and any {p}×Pm in linear subspaces of Pnm+m+n,

and the same changing Pn or Pm by any linear subspace of them.

Definition. The above map ϕn,m is called the Segre embedding of Pn×Pm, and its image

is called the Segre variety.

Example 1.7. In a similar way, we can identify P(n+2
2 )−1 = P

n(n+3)
2 with the set of

symmetric (n+1)×(n+1)-matrices modulo scalars and the set of matrices of rank at most

k is a projective set. It is again a non-trivial fact that its homogeneous ideal is generated

by the homogeneous polynomials of degree k+1 defined by all the (k+1)× (k+1)-minors.

In the case k = 1, identifying a symmetric matrix with the quadric it defines, we can also

regard the projective set of matrices of rank one as the set of double hyperplanes inside the

set of all quadrics in Pn. To be nasty, this identification of quadrics and matrices is only
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valid if chark 6= 2. And observe also that the point in P(n+2
2 )−1 corresponding to a quadric

defined by F =
∑
i,j aijXiXj has not coordinates aij , but 1

2
∂2F

∂Xi∂Xj
(which coincides with

aij only if i = j; otherwise it is 1
2aij).

Exercise 1.8. Prove that, in the example above, the projective set of matrices of rank

one is in bijection with Pn via the map ν2 : Pn → P(n+2
2 )−1 defined by

ν2(a0 : . . . : an) =

 a2
0 . . . a0an
...

. . .
...

ana0 . . . a2
n


More generally, consider the map νd : Pn → P(n+d

d )−1 defined by

νd(a0 : . . . : an) = (ad0 : ad−1
0 a1 : . . . : adn)

(where on the left hand side all possible monomials of degree d should appear). Prove

that νd is injective and that its image is a projective set defined by quadratic equations.

Label the coordinates in P(n+d
d )−1 by Xi1...id (0 ≤ i1 ≤ . . . ≤ id ≤ n) and identify a

point of coordinates {ai1...id} with the polynomial equation
∑
i1...id

d!
i1!...id!ai1...idXi1 . . . Xid

(assuming that charK is not positive and smaller than or equal to d). Prove that then

the image of νd is identified with the set of homogeneous polynomials (up to a scalar) of

degree d in the variables X0, . . . , Xn that are a d-th power of a linear form.

Definition. The above map νd is called the Veronese embedding of Pn of degree d, and its

image is called the Veronese variety. In the particular case n = 1, the Veronese variety is

called rational normal curve of degree d.

Exercise 1.9. Prove that the rational normal curve of degree d in Pd (parametrized by

X0 = td0, X1 = td−1
0 t1, . . . , Xd = td1) is defined by the vanishing of the minors of the matrix(

X0 X1 . . . Xd−1

X1 X2 . . . Xd

)
Example 1.10. As we already said, the ideal of a rational normal curve is generated by

the equations given in the above exercise. Let us prove it in the case d = 3 (the so-called

twisted cubic). The idea for this kind of problems is to use division (a refinement of which

is given by the so-called Gröbner basis, of which the interested reader can find a first

introduction for instance in [CLO]). So let X be the image of the map (t0 : t1) 7→ (t30 :

t20t1 : t0t
2
1 : t31) and take a homogeneous polynomial F ∈ K[X0, X1, X2, X3] that is in I(X)

(i.e. F (t30, t
2
0t1, t0t

2
1, t

3
1) = 0 in K[t0, t1]. Dividing F between X2

2 −X1X3 (which belongs to

I(X) and is monic in X2) with respect to X2 we get a relation

F = (X2
2 −X1X3)Q+X2A(X0, X1, X3) +B(X0, X1, X3)
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withQ, A and B homogeneous polynomials. We look now for a monic polynomial in I(X)

not depending on X2, and unfortunately we do not find any of degree two (which is the

degree of what we know to be the generators), so we are constrained to use the auxiliary

polynomial X3
1 −X2

0X3 and we divide by it (with respect to X1) the polynomials A and

B, obtaining:

A = (X3
1 −X2

0X3)G+X2
1A1(X0, X3) +X1A2(X0, X3) +A3(X0, X3)

B = (X3
1 −X2

0X3)H +X2
1B1(X0, X3) +X1B2(X0, X3) +B3(X0, X3)

(and again the polynomials G,H,A1, A2, A3, B1, B2, B3 are homogeneous). Using now that

F (t30, t
2
0t1, t0t

2
1, t

3
1) = 0 and making substitutions in the above relations we get

t50t
4
1A1(t30, t

3
1) + t30t

3
1A2(t30, t

3
1) + t0t

2
1A3(t30, t

3
1)+

+t40t
2
1B1(t30, t

3
1) + t20t1B2(t30, t

3
1) +B3(t30, t

3
1) = 0

Collecting monomials according to their exponents modulo three, we obtain then equalities

t50t
4
1A1(t30, t

3
1) + t20t1B2(t30, t

3
1) = 0

t30t
3
1A2(t30, t

3
1) +B3(t30, t

3
1) = 0

t0t
2
1A3(t30, t

3
1) + t40t

2
1B1(t30, t

3
1) = 0

which respectively imply (here you need to use Proposition 1.1(i))

B2(X0, X3) = −X0X3A1(X0, X3)

B3(X0, X3) = −X0X3A2(X0, X3)

A3(X0, X3) = −X0B1(X0, X3) = 0

A substitution of these relations in the expressions of F , A and B provides then

F = (X2
2 −X1X3)Q+X2(X3

1 −X2
0X3)G+ (X3

1 −X2
0X3)H+

(X2
1X2 −X0X1X3)A1 + (X1X2 −X0X3)A2 + (X0X2 −X2

1 )B1

This proves that F is in the ideal generated by the polynomialsX2
2−X1X3, X2(X3

1−X2
0X3),

X2
1X2 −X0X1X3, X1X2 −X0X3 and X0X2 −X2

1 (which are in turn in I(X)). Since all

of them are in the ideal generated by the minors of the matrix(
X0 X1 X2

X1 X2 X3

)
11



this proves that these minors generate I(X), as announced.

Exercise 1.11. Prove that the ideal I(X) canot be generated by just two homogeneous

polynomials. Show that, however, the projective set defined by the ideal I = (X0X2 −
X2

1 , X0X
2
3 − 2X1X2X3 + X3

2 ) is precisely the twisted cubic X. Prove the equality
√
I =

I(X).

Exercise 1.12. Prove that the homogeneous ideal of V (X0X2−X2
1 ) is the ideal generated

by X0X2 −X2
1 (this fact will be immediate after Theorem 3.17).

Exercise 1.13. Prove that the set X = {(t30 : t0t
2
1 : t31) | (t0 : t1) ∈ P1} is a projective set

of P2 and that I(X) is the ideal generated by the polynomial X0X
2
2 −X3

1 .

Exercise 1.14. Prove that X = {(t40 : t30t1 : t0t
3
1 : t41) ∈ P3 | (t0 : t1) ∈ P1} is a projective

set and that I(X) = (X0X3 −X1X2, X
3
1 −X2

0X2, X
3
2 −X1X

2
3 , X

2
1X3 −X0X

2
2 )

Example 1.15. As the reader was probably expecting, in this example we identify

P(n+1
2 )−1 = P

(n−1)(n+2)
2 with the set of skew symmetric (n+ 1)× (n+ 1) matrices modulo

scalars, and consider the projective set of matrices of rank at most k. But this time the

situation is quite different. First of all, a skew symmetric matrix has always even rank, so

the projective sets of matrices of rank 2k+ 1 will coincide with the set of matrices of rank

2k. And on the other hand the ideal of this set is not generated now by the most “visible”

equations. Consider for instance the case n = 3. Choose in P5 homogeneous coordinates

p01, p02, p03, p12, p13, p23 to represent the matrix
0 p01 p02 p03

−p01 0 p12 p13

−p02 −p12 0 p23

−p03 −p13 −p23 0


Then it seems sensible to describe the set X of matrices of rank two by the vanishing

of all the minors of order three. This provides homogeneous equations of degree three.

However, as we remarked before, a skew symmetric matrix will have rank less than three

if and only if it has rank less than four. And surprisingly enough, imposing rank less

than four is just given by only one equation: the vanishing of the determinant. And the

determinant looks a priori more complicated, since is homogeneous of degree four. But it

is not so, the determinant of a skew symmetric matrix is always a perfect square. In our

case, the determinant becomes (p01p23− p02p13 + p03p12)2, and hence X is just defined by

the quadratic equation p01p23 − p02p13 + p03p12. For arbitrary n, the situation is that a

skew-symmetric matrix has rank two if and only if all the principal minors of order four

are zero. But as in the case n = 4, these minors, being again the determinant of a skew-

symmetric matrix, are a perfect square of a quadratic form. Hence our projective set is
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defined by these quadratic forms, and in fact it is possible (but not trivial at all) to prove

that these forms generate the homogeneous ideal.

Example 1.16. The above example is in fact a particular case of a more general and

interesting construction, the Grassmannian of k-planes in Pn. The idea is to give a struc-

ture of projective set to the set G(k, n) of all the linear spaces of dimension k in Pn (we

will sometimes write G(k,M) to indicate the Grassmannian of k-planes in a projective

space M , when we want to make M explicit). Of course G(k, n) is trivial when k = 0 (the

Grassmannian is then just Pn) or k = n− 1 (the Grassmannian being the dual projective

space Pn∗). The key ingredient is the Plücker embedding G(k, n) → P(n+1
k+1)−1 that asso-

ciates to the linear space Λ generated by k+ 1 linearly independent points a0, . . . , ak ∈ Pn

the point in P(n+1
k+1)−1 whose coordinates are the maximal minors of the Plücker matrix a00 . . . a0n

...
...

ak0 . . . akn


(where the rows are the coordinates of the k + 1 points).

Exercise 1.17. Prove that the Plücker embedding is well defined (i.e. depends only on

Λ but not on the choice of the points a0, . . . , ak generating Λ) and that is injective.

We just need to see that the image of the Plücker embedding (which we will systematically

identify with G(k, n)) is a projective set. We first choose a good notation for the coordinates

in P(n+1
k+1)−1 (called Plücker coordinates). We will denote with pi0...ik (with 0 ≤ i0 < . . . <

ik ≤ n) to the coordinate that would correspond to the determinant of the (k+1)× (k+1)

matrix obtained by collecting the columns i0, . . . , ik in the Plücker matrix.

Exercise 1.18. Prove that G(k, n) ∩ V (pi0...ik) is the set of all k-planes meeting the

linear space of equations Xi0 = . . . = Xik = 0. Show with a counterexample that it is

not true however that any hyperplane in P(n+1
k+1)−1 intersected with G(k, n) has such a nice

geometrical description.

Let us study for instance the intersection of G(k, n) with D(p0...k) (see Exercise 1.2). It is

clear that a linear subspace Λ with p0...k 6= 0 admits a Plücker matrix of the form 1 . . . 0 a0 k+1 . . . a0n

...
. . .

...
...

...
0 . . . 1 ak k+1 . . . akn


Then the fact that a point of P(n+1

k+1)−1 belongs to G(k, n) ∩ D(p0...k) is equivalent to

say that we can multiply all the Plücker coordinates by a scalar (namely 1
p0...k

) so that

13



p0...k = 1, p0...̂i...k j = (−1)k−iaij (for i = 0, . . . , k and j = k + 1, . . . , n) and that the

rest of the Plücker coordinates, being minors of the above Plücker matrix, are polynomial

expressions in terms of the previous Plücker coordinates (to give a concrete example, for

k = 1, n = 3 one finds p01 = 1, p02 = a12, p03 = a13, p12 = −a02, p13 = −a03 and

p23 =
∣∣∣−p12p02

−p13
p03

∣∣∣ = −p12p03 + p13p02). Now the homogenization with respect to p0...k of

these last equations produce homogeneous equations for G(k, n) ∩ D(p0...k). Hence the

product of these polynomials with p0...k vanish on the whole G(k, n). Collecting all these

products when repeating the same procedure for all the Plücker coordinates we clearly

obtain a set of polynomials defining G(k, n), so that the Grassmannian is a projective set.

Observe that, even if we have been lucky in the case k = 1, n = 3 obtaining precisely what

we know to be the equation of G(k, n), in general we would obtain equations of degree

k+ 1. This is still fine for k = 1, but not for bigger k, since it can be proved that the ideal

of G(k, n) can be generated by quadratic polynomials. These quadratic polynomials can

be obtained in the following way. Repeating the previous trick, for any i0 < . . . < ik we

get a particular Plücker matrix for the elements of D(pi0...ik), and hence a particular way

of getting k+ 1 points generating the corresponding k-plane. Hence, collecting again what

we get for any coordinate, we get a bunch of points generating the k-plane. In the case

k = 1 it is not difficult to see that these points are the rows of the matrix
0 p01 . . . p0n

−p01 0 . . . p1n
...

. . .
...

−p0n −p1n . . . 0


Hence for an element of G(1, n) the rank of the above matrix must be two, and hence we

recover the situation of Example 1.15.

Exercise 1.19. Verify that in the cases n = 3 and n = 4 we find the above matrices and

that the corresponding quadratic equations define the respective Grassmannians of lines.

The above trick will produce however equations of degree k + 1, so that the situation

did not improve for k > 1. The idea now is to repeat the same trick “dually”, i.e. to

use the particular Plücker matrices found in each D(pi0...ik) to describe our k-planes as

intersection of n − k independent hyperplanes. Collecting now these hyperplanes when

varying the Plücker coordinate, we arrive to a dual description of our k-planes as the

intersection of a bunch of hyperplanes (the word “dual” is not used arbitrarily: what we

are in fact doing is to identify a k-plane in Pn as an (n − k − 1)-plane in Pn∗ and taking

its Plücker coordinates in the dual space). The condition that each of the points we found

previously belong to each of the hyperplanes we found now gives us the wanted quadratic

equations (called, as you can imagine, Plücker equations). To explain better how this
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works, let us turn again to the case k = 1, n = 3. In D(p01) we had (from the particular

Plücker matrix) any line generated by the points (1 : 0 : −p12 : −p13) and (0 : 1 : p02 : p03).

This is the line obtained by intersecting the planes (once we homogenize with respect to

p01) p12X0 − p02X1 + p01X2 = 0 and p13X0 − p03X1 + p01X3 = 0. But now imposing the

condition that the rows of the matrix
0 p01 p02 p03

−p01 0 p12 p13

−p02 −p12 0 p23

−p03 −p13 −p23 0


(which we know to generate the line with the given Plücker coordinates) are points of each

of the two planes above provide either a tautological relation or the condition p01p13 −
p02p13 + p03, p12 = 0. The interested reader can find for instance in the chapter 6 of [H]

an intrinsic interpretation of Grassmannians and their Plücker equations in terms of the

skew-symmetric product of a vector space.

Exercise 1.20. Use the last method to obtain the Plücker equations of G(1, 4), G(2, 4)

and G(2, 5). Why are the equations of G(1, 4) and G(2, 4) so similar?

It is clear that the same projective set X can be described by many different sets of

equations, the biggest one being I(X), which is a radical ideal. However it is not always

possible (and often neither convenient) to avoid non-radical ideals, since they arise in a

natural way (this is in fact the starting point of the theory of schemes). Let us see some

examples.

Example 1.21. Consider the conic C = V (X0X2 −X2
1 ) ⊂ P2. This is also the rational

normal curve of degree two, i.e. the set of points of the form (t20 : t0t1 : t21). You can

easily then see that the intersection with L = V (X2) consists of just the point (1 : 0 : 0),

which in some sense counts twice; for instance, substituting in the above parametrization

we get t21 = 0, which suggests that we get a double solution. In fact, L is tangent to C at

(1 : 0 : 0); even if we did not define yet this concept the reader could be already familiar

with this notion for plane curves or just for projective conics (if not, it should be enough

to dehomogenize with respect to X0 to obtain the parabola X2 = X2
1 , whose tangent line

at (0, 0) is obviously the line X2 = 0). Looking at Proposition 1.1 it looks clear that, in the

dictionary between projective sets and homogeneous ideals, intersections of sets correspond

to sums of ideals. But I(C) + I(L) = (X0X2 −X2
1 , X2) = (X2

1 , X2), which clearly is not

a radical ideal. This is due to the fact that the intersection of the conic and the line

consists of two “infinitely close points” (we will see in Example 3.6 that this expression

is more than intuitive). In fact the ideal (X2
1 , X2) keeps this infinitesimal information.

If you take a curve X = V (F ) ⊂ P2, the condition I(X) ⊂ I(C ∩ L) = (X1, X2) just
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means that X passes through the intersection point of C and L. However, the condition

I(X) ⊂ I(C) + I(L) means that “X passes through the intersection point in the direction

of L. To see this, the above condition means that we can write F (we will assume for

instance that F is irreducible) in the form F = aXd−1
0 X2+ terms of bigger degree with

respect to X1, X2. If a 6= 0, the reader with some knowledge of plane curves should

recognize immediately that this means that the tangent line of X at (1 : 0 : 0) is L (maybe

dehomogenizing with respect to X0 could also help). Hence the non-radical ideal contains

much more information about how the intersection was obtained than the ideal of the

intersection itself.

Example 1.22. It is not true however that non-radical ideals come always from tangential

intersections. Consider for instance the projective set X = {(t40 : t30t1 : t0t
3
1 : t41) ∈ P3 | (t0 :

t1) ∈ P1} of Exercise 1.14. If we intersect with the plane Π = V (X1 − X2) we obtain

four points corresponding to the four simple solutions of the equation t30t1 = t0t
3
1. Hence

we do not get any tangency in this intersection. However the ideal I(X) + (X1 −X2) =

(X1−X2, X0X3−X2
2 , X

3
2 −X2

0X2, X
3
2 −X2X

2
3 , X

2
2X3−X0X

2
2 ) is not radical (for instance

X2(X0 −X3) does not belong to it, but its square does). Hence this sum is not the ideal

of the four points (this can also be seen because in the plane V (X1 −X2) the four points

are the intersection of two conics, while in the above ideal we only find one conic on that

plane). The actual reason of this anomalous behavior (which is characteristic only of the

projective space) is very deep and far beyond the scope of these notes. What happens in this

particular case is that we are missing the monomial t20t
2
1, which geometrically corresponds

to the fact that X lives “naturally” in P4 (as a rational normal curve of degree four) rather

than in P3, where it is obtained by a linear projection of another set in P4. In general,

we obtain the same anomalous behavior when something is missing in the graded ring

of X (only if the “missing part” has degree one it is possible to give a clear geometric

interpretation as above).

Example 1.23. We will now consider one line moving to meet another one. Specifically,

fix the line L = V (X2, X3) ⊂ P3 and take another one Lt = V (X1, X3 − tX0). Clearly,

when t 6= 0 the two lines are skew and the ideal of their union is It = I(L ∪ Lt) =

(X2, X3)∩ (X1, X3− tX0) = (X1X2, X1X3, X2X3− tX0X2, X
2
3 − tX0X3). If instead t = 0,

then the two lines meet at one point and I(L ∪ L0) = (X2, X3) ∩ (X1, X3) = (X3, X1X2).

However we obtain a different result if we make t = 0 in the last expression for It. Indeed

I0 = (X1X2, X1X3, X2X3, X
2
3 ), which is non-radical. We will see later on that, when

regarding L ∪ L0 as a limit of L ∪ Lt it is more natural to consider I0 rather than its

radical.

The projective Hilbert’s Nullstellensatz (Theorem 3.17) will tell us that whenever we
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have a projective set defined by a non-radical ideal, the homogeneous ideal will be just

the radical of the given ideal (as it can be checked in the previous examples). For the

time being let us check this result for ideals defining the empty set (which in fact behave

slightly different with respect to the general case, since the ideal of the empty set would

be (1) rather than M).

Theorem 1.24 (Weak Hilbert’s Nullstellensatz). Let I be a homogeneous ideal. Then

V (I) = ∅ if and only if for all i = 0, . . . , n there exists di ∈ N such that Xdi
i ∈ I (or in

other words,
√
I ⊃M, i.e.

√
I = M or

√
I = (1)).

Proof: It is obvious that, if Xd0
0 , . . . , Xdn

n ∈ I then V (I) = ∅. Hence we only have to prove

that if there exists i ∈ {0, . . . , n} such that Xd
i 6∈ I for any d then V (I) 6= ∅. We will prove

it by induction. If n = 0, it is clear that if Xd
0 6∈ I for any d and I is homogeneous then

I = (0), so the statement follows immediately.

So assume n > 0 . For the sake of simplicity (and without loss of generality) we can

assume i = 0, i.e. Xd
0 6∈ I for any d. Consider I ′ = I ∩ K[X0, . . . , Xn−1]. It is easy to

see that I ′ is a homogeneous ideal of K[X0, . . . , Xn−1], and since Xd
0 6∈ I ′ for any d, from

induction hypothesis we have that there exists (a0, . . . , an−1) ∈ Kn \{(0, . . . , 0)} vanishing

at all polynomials of I ′. Consider now J = {F (a0, . . . , an−1, Xn) | F ∈ I}. Then J is an

ideal of K[Xn] (not necessarily homogeneous).

I claim that J is not the whole K[Xn]. If it were so, there would exist F ∈ I such

that F (a0, . . . , an−1, Xn) = 1. So we could write F = A0 + A1Xn + . . . AdX
d
n, with Ai ∈

K[X0, . . . , Xn−1], A1(a0, . . . , an−1) = . . . = Ad(a0, . . . , an−1) = 0 and A0(a0, . . . , an−1) 6=
0. On the other hand, we can always assume that (0 : . . . : 0 : 1) 6∈ V (I), since otherwise

there is nothing to prove. This means that we can find a homogeneous polynomial G ∈ I
which is monic in the variable Xn. We write now G = B0 +B1Xn + . . .+Be−1X

e−1
n +Xe

n

with Bj ∈ K[X0, . . . , Xn−1].

Let R ∈ K[X0, . . . , Xn−1] be the resultant of F and G with respect to the variable

Xn. In other words,

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 A1 . . . Ad 0 0 . . . 0
0 A0 . . . Ad−1 Ad 0 . . . 0

. . .

0 . . . 0 A0 A1 . . . Ad−1 Ad
B0 B1 . . . Be−1 1 0 . . . 0
0 B0 . . . Be−2 Be−1 1 0 . . . 0

. . .
. . .

0 . . . 0 B0 B1 . . . Be−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
It is then well-known that R ∈ I (in the above matrix, add to the first column the

second one multiplied by Xn, plus the third one multiplied by X2
n, and so on till the
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last one multiplied by Xd+e−1
n ; developing the resulting matrix by the first column you

will find that R is a linear combination of F and G). Therefore R ∈ I ′. But a direct

inspection at the above determinant defining the resultant shows that, when evaluating at

(a0, . . . , an−1), it becomes the determinant of a lower-triangular matrix, whose entries at

the main diagonal are all 1. Hence R(a0, . . . , an−1) = 1, which contradicts the fact that

R ∈ I ′. This proves the claim.

Therefore J is a proper ideal of K[Xn], and hence (exercise 0.5) it is generated by a

polynomial f(Xn) of positive degree (or f is zero). Since K is algebraically closed, f has

at least one root an ∈ K. This means that (a0 : . . . : an) ∈ V (I), which completes the

proof.

Remark 1.25. Of course the above result is false if K is not algebraically closed. For

instance, (X2
0 + X2

1 ) defines the empty set in the real projective line, and however is a

radical ideal.
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2. Irreducible components

Definition. A subset X ⊂ P of a topological space P is called irreducible if it satisfies any

of the following (clearly equivalent) properties:

(i) X cannot be expressed as a union X = Z1 ∪ Z2, with Z1 ⊆/ X and Z2 ⊆/ X closed

subsets of X (with the induced topology).

(ii) If X ⊂ Z1 ∪ Z2 (with Z1 and Z2 closed sets of P ) then either X ⊂ Z1 or X ⊂ Z2.

(iii) Any two nonempty open sets of X necessarily meet.

If P = Pn with the Zariski topology and X is a projective (resp. quasiprojective) set, then

X is called a projective (resp. quasiprojective) variety.

Even if this definition is done for arbitrary quasiprojective sets, the following two

lemmas will show that it is enough to study irreducibility for projective sets, and that this

is done by just inspecting the homogeneous ideal.

Lemma 2.1. Let X ⊂ Pn be a quasiprojective set and let X denote its Zariski closure.

(i) X is the intersection of X with some open set.

(ii) X is irreducible if and only if X is irreducible.

Proof: By definition, X = Y ∩ U , where Y ⊂ Pn is a closed subset containing X (and

hence X ⊂ Y ). From the chain of inclusions X ⊂ X ∩ U ⊂ Y ∩ U we immediately get (i).

Assume first that X is irreducible. If X ⊂ Z1 ∪ Z2 with Z1, Z2 closed subsets of Pn

then obviously X ⊂ Z1∪Z2, so that from the irreducibility of X either X ⊂ Z1 or X ⊂ Z2.

Intersecting with U we conclude that X is irreducible.

Assume now that X is irreducible. If X ⊂ Z1 ∪ Z2 with Z1, Z2 closed subsets of Pn,

then also X ⊂ Z1 ∪Z2, and hence either X ⊂ Z1 or X ⊂ Z2. Taking closures we conclude

that X is irreducible, which completes the proof of the lemma.

Lemma 2.2. A projective set X is irreducible if and only if its homogeneous ideal I(X)

is prime.

Proof: Assume first X is irreducible. Let F,G be homogeneous polynomials such that

FG ∈ I(X). Then clearly X ⊂ V (F )∪ V (G), so that the irreducibility implies that either

X ⊂ V (F ) or X ⊂ V (G). But the latter is equivalent to F ∈ I(X) or G ∈ I(X), which

proves that I(X) is prime.

Assume now that I(X) is prime and X ⊂ Z1∪Z2 with Z1, Z2 projective sets. Suppose

X 6⊂ Z1 and X 6⊂ Z2. Then I(Z1) 6⊂ I(X) and I(Z2) 6⊂ I(X). We can therefore find

homogeneous polynomials F ∈ I(Z1) and G ∈ I(Z2) none of them in I(X). But FG ∈
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I(Z1 ∪ Z2) ⊂ I(X), which contradicts the fact that I(X) is prime. This completes the

proof of the Lemma.

Exercise 2.3. Prove that linear spaces and the Segre and Veronese varieties are irreducible

sets.

We want to prove next that any projective set can be decomposed into irreducible

sets. Even if this can be checked directly (in the same spirit that Lemma 2.4 below), we

will derive it from existence of the primary decomposition, since we will need to use it later

on.

The following two lemmas will immediately imply the existence of a primary decom-

position for any homogeneous ideal.

Lemma 2.4. Any homogeneous ideal of S can be expressed as a finite intersection of

homogeneous irreducible ideals (a homogeneous ideal I will be called irreducible if I cannot

be expressed as I = I1 ∩ I2, with I ⊆/ I1 and I ⊆/ I2 homogeneous ideals).

Proof: Assume there exists a homogeneous ideal I that is not a finite intersection of

homogeneous irreducible ideals. In particular, I itself is not irreducible, so that it can be

expressed as a non-trivial intersection of two homogeneous ideals I1 and J1. From our

hypothesis, it is clear that both I1 and J1 cannot be a finite intersection of homogeneous

irreducible ideals. Assume for instance that I1 is not a finite intersection of homogeneous

irreducible ideals. Putting I1 instead of I in the previous reasoning, we will find I2 strictly

containing I1 and such that I2 is not a finite intersection of homogeneous irreducible ideals.

Iterating the process we would get an infinite chain I ⊆/ I1 ⊆/ I2 ⊆/ . . ., which contradicts

the fact that S is noetherian.

Lemma 2.5. Any homogeneous irreducible ideal is primary.

Proof: Let I be a homogeneous irreducible ideal, and assume that we have two ho-

mogeneous elements F,G ∈ S such that FG ∈ I. For each n ∈ N consider the ideal

In = {H ∈ S | HFn ∈ I}. Since we have a chain I = I0 ⊂ I1 ⊂ I2 ⊂ . . . and S is noethe-

rian, there exists an n ∈ N such that In = In+1. Now I claim that I = ((Fn)+I)∩J , where

J = {H ∈ S | FH ∈ I} (observe that both ideals in the intersection are homogeneous).

Assuming for a while that the claim is true, this would imply from the irreducibility of

I that either I = (Fn) + I (and hence Fn ∈ I) or I = J (and hence G ∈ I, since by

assumption G ∈ J). Therefore the statement will follow as soon as we will prove the

claim.

Take then H ∈ ((Fn) + I)∩ J . Hence FH ∈ I, and also we can write H = AFn +B,

with A ∈ S and B ∈ I. Multiplying by F this last equality we get AFn+1 = FH−FB ∈ I.
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Thus A ∈ In+1 = In, so that AFn ∈ I, which implies H ∈ I. This proves the non-trivial

inclusion of the claim, and hence the lemma.

Exercise 2.6. Prove that the ideal I = (X2
1 , X1X2, X

2
2 ) ⊂ K[X0, X1, X2] is primary, but

it is not irreducible, since it can be written as I = (X2
1 , X2) ∩ (X1, X

2
2 ) (if you want an

interpretation as at the end of Example 1.21, this decomposition is saying that a curve

which passes through the point (1 : 0 : 0) in two different tangent directions is necessarily

singular). Is this decomposition unique?

Theorem 2.7. Any homogeneous ideal I ⊂ S can be written as I = I1 ∩ . . . ∩ Is, where

each Ii is primary, the radicals
√
I1, . . . ,

√
Is are all different and for each i = 1, . . . , s

Ii 6⊃
⋂
j 6=i Ij . Moreover, the primary ideals in the decomposition such that their radical

is minimal among {
√
I1, . . . ,

√
Is} are uniquely determined by I, in the sense that they

appear in each decomposition as above.

Proof: It is clear from lemmas 2.4 and 2.5 that I can be written as a finite intersection

of primary ideals. The condition Ii 6⊃
⋂
j 6=i Ij can be easily obtained by just removing

from the decomposition any primary ideal containing the intersection of the others. Also,

from Exercise0.2(iv), the intersection of all the primary ideals with the same radical is also

primary, so that we can also assume that the radical ideal of the primary components are

all different. So we are only left to prove the uniqueness statement.

Assume thus that we have two decompositions I = I1 ∩ . . . ∩ Is = I ′1 ∩ . . . ∩ I ′t as

in the statement. Assume for instance that
√
Il is minimal among

√
I1, . . . ,

√
Is. Then√

Il 6⊃
⋂
j 6=l
√
Ij , by Exercise 0.1(v). We can then find F ∈

⋂
j 6=l
√
Ij not belonging to

Il. Thus since F 6∈
√
I =

⋂
j

√
I ′i it follows that we can find some i = 1, . . . , t such that

F 6∈
√
I ′i, and clearly we can take

√
I ′i to be minimal (since

√
I is the intersection of the

minimal ideals). Let us see that in this situation Il ⊂ I ′i.
Indeed, take G ∈ Il. Since there is a power F d of F belonging to

⋂
j 6=l Ij , then F dG

belongs to I = I ′1 ∩ . . . ∩ I ′t. In particular F dG ∈ I ′i. But F d 6∈ I ′i and therefore G ∈ I ′i.
We thus get the inclusion Il ⊂ I ′i, and in a similar way (since

√
I ′i was minimal) we get

that I ′i is contained in some Ij . But the irredundance of the decomposition implies then

Il = Ij and hence Il = I ′i, completing the proof of the theorem.

Definition. A primary decomposition as in the statement of Theorem 2.7 is called irre-

dundant. The primary ideals corresponding to non-minimal prime ideals appearing in an

irredundant decomposition are called embedded components of I. The radical ideals of the

primary components of an irredundant decomposition are called associated primes of the

ideal.
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A much stronger result is true (see Theorem 4.10) and in a wider context, but we just

proved here what we needed for our geometric purposes.

Exercise 2.8. Show that the ideal I0 of Example 1.23 has as primary decomposition

I0 = (X1, X3)∩ (X2, X3)∩ (X1− aX3, X2− bX3, X
2
3 ) for any choice of a, b ∈ K, and hence

the embedded primary component is not unique (the geometric interpretation is that the

ideal still “remembers” that the intersection point of the lines came from outside the plane

V (X3), and hence there is an embedded component at the point consisting of some a

tangent direction not contained in the plane; it does not matter which direction we take,

which explains why the embedded component is not unique).

The important consequence of Theorem 2.7 is the following result (which also explains

geometrically the uniqueness statement).

Corollary 2.9. Any projective set decomposes in a unique way as a finite union of irre-

ducible projective sets X = Z1 ∪ . . . ∪ Zs, with Zi 6⊂ Zj if i 6= j.

Proof: Let I(X) = I1 ∩ . . . ∩ Is a primary decomposition of I(X). Since I(X) is a

radical ideal, taking radicals in the above expression allows us to assume that I1, . . . , Is
are radical and hence prime. Removing redundant ideals we can assume that Ij 6⊂ Ii
if i 6= j. Writing Zi = V (Ii) for each i = 1, . . . , s, we have the wanted decomposition.

Indeed since X = Z1∪ . . .∪Zs, we have I(X) = I(Z1)∩ . . .∩I(Zs). Hence each Ii contains

I(Z1)∩ . . .∩ I(Zs), and thus Exercise 0.1(v) implies that it contains some I(Zj), which in

turn contains Ij . Therefore i = j and I(Zi) = Ii, so that Zi is irreducible.

In order to prove it is unique, assume there is another irredundant decomposition

X = Z ′1 ∪ . . . ∪Z ′t. Hence I(X) = I(Z ′1) ∩ . . . ∩ I(Z ′t) is another primary decomposition of

I(X) in which all the primary ideals are prime and minimal. The uniqueness statement in

Theorem 2.7 gives then a contradiction.

Definition. The sets Z1, . . . , Zr in the statement of the above corollary are called the

irreducible components of X.

Exercise 2.10. Find the irreducible components of V (X0X3−X1X2, X1X3−X2
2 ) [Hint:

Observe that the two equations belong to the homogeneous ideal of the twisted cubic].

In the primary decomposition of a homogeneous ideal, we can certainly have a primary

component defining the empty set. By the weak Nullstellensatz (Theorem 1.24), such a

component must be M-primary (and hence we will call it an irrelevant component. Notice

that there is at most one irrelevant component. We will show in the next results that we

can essentially “get rid” of irrelevant components.
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Lemma 2.11. Assume that an ideal I has an irrelevant component I ′ and write I = I0∩I ′,
where I0 is the intersection of the remaining components. Then I0 is the set of all the

polynomials F ∈ S such that Xa
i F ∈ I for some a ∈ N and any i = 0, . . . , n.

Proof: Since
√
I ′ = M, there is a ∈ N such that Xa

i ∈ I ′ for i = 0, . . . , n. Therefore, for

any F ∈ I0 and i = 0, . . . , n, we have that Xa
i F is in I ′∩I0, i.e. belongs to I. Reciprocally,

if Xa
i F belongs to I for i = 0, . . . , n, we have that it belongs to any non-irrelevant primary

component of I. But a non-irrelevant component of I cannot contain powers of all the

variables X0, . . . , Xn. Therefore, F must belong to any non-irrelevant component of I, i.e.

F must belong to I0.

Definition. The saturation of a homogeneous ideal I is defined as the set sat I of poly-

nomials F ∈ K[X0, . . . , Xn] such that Xa
i F ⊂ I for some a ∈ N. It can be viewed as the

maximum homogeneous ideal with the same dehomogenization as I with respect to any

variable. An ideal is called saturated if it coincides with its saturation.

Proposition 2.12. Let I ⊂ K[X0, . . . , Xn] be a homogeneous ideal.

(i ) There exists l0 such that Il = (sat I)l for l ≥ l0.

(ii ) A homogeneous ideal I ′ ⊂ K[X0, . . . , Xn] has the same saturation as I if and only if

Il = I ′l for l >> 0.

(iii) If F is a homogeneous polynomial, then I + (F ) and (sat I) + (F ) have the same

saturation.

Proof: Since I ⊂ sat I, to prove (i) it is enough to show that any element of sat I of

sufficiently high degree is also in I. For this, we fix first a set of generators F1, . . . , Fs

of sat I. Choosing the maximum exponent, we can assume that there exists a such that

Xa
i Fj belongs to I for any i = 0, . . . , n and j = 1, . . . , s. It is then clear that GFj ∈ I

for any homogeneous polynomial of degree at least (n + 1)a. Therefore, l0 = (n + 1)a +

max{degF1, . . . ,degFs} satisfies the required condition for (i).

For (ii), we first observe that (i) implies that two ideals with the same saturation

coincide for high degree. We thus need to prove the converse, which is also easy. Indeed,

let F be a polynomial in the saturation of I. This means that Xa
i F belongs to I for some

a. But we can take a big enough so that deg(Xa
i ) is bigger than the degree for which I

and I ′ coincide. Hence Xa
i F is also in i′, and therefore F is also in the saturation of I ′.

Part (iii) is also very easy. In fact, (i) implies that I and sat I coincide for big degree.

Therefore, I + (F ) and (sat I) + (F ) also coincide for big degree, and thus (ii) imply that

they have the same saturation.
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Exercise 2.13. Show that the ideal I(X) + (X1 −X2) in Example 1.22 is not saturated

and that its saturation is the homogeneous ideal of X ∩ V (X1 − X2). If you have some

energy left, you could wish to prove that the primary decomposition of I(X) + (X1 −X2)

is

(X0, X1, X2)∩(X1, X2, X3)∩(X0−X1, X1−X2, X2−X3)∩(X0+X1, X1−X2, X2+X3)∩Iλ

where Iλ = (X1 −X2, X3 − λX2, X2 − λX0, X
3
0 ), for any λ 6= 0, 1,−1.

Exercise 2.14. Show that, if L1 = V (X0, X1) and L2 = V (X2, X3), then I(L1 ∪ L2) +

(X1 − X2) = (X0, X1, X2) ∩ (X1, X2, X3) ∩ (X1 − X2, X0 − λX1, X3 − µX1, X
2
1 ) for any

λ, µ ∈ K. In particular, the ideal I(L1∪L2)+(X1−X2) is not saturated and its saturation

is the homogeneous ideal of (L1 ∪ L2) ∩ V (X1 −X2).

Although the following result will be a consequence of the results in section 9, we

prove it here in order to apply it in section 5.

Proposition 2.15. Let F,G ∈ K[X0, X1, X2] be two coprime homogeneous polynomials

of positive degree. Then the ideal I = (F,G) is saturated.

Proof: Since Id = sat(I)d for d >> 0, it is enough to prove the equality Id−1 = sat(I)d−1

whenever Id = sat(I)d. So let as take H ∈ sat(I)d−1, and let us prove that H belongs to

(F,G). Since, for i = 0, 1, 2, we have XiH ∈ sat(I)d = Id, we can write


X0H =A0F +B0G

X1H =A1F +B1G

X2H =A2F +B2G

(∗)

for some Ai, Bi ∈ K[X0, X1, X2]. Eliminating H in the equalities (*) we get another set of

equalities 
X1(A0F +B0G) =X0(A1F +B1G)

X2(A0F +B0G) =X0(A2F +B2G)

X2(A1F +B1G) =X1(A2F +B2G)

The coprimality of F,G, implies the existence of polynomials C0, C1, C2 ∈ K[X0, X1, X2]

such that 
A0X1 −A1X0 = C2G, B0X1 −B1X0 = −C2F

A0X2 −A2X0 = C1G, B0X2 −B2X0 = −C1F

A1X2 −A2X1 = C0G, B1X2 −B2X1 = −C0F

(∗∗)
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and C0X0 − C1X1 + C2X2 = 0. From this last equality, we get now (this is essentially

Exercise 9.7) the existence of D0, D1, D2 ∈ K[X0, X1, X2] such that
C2 =D1X0 −D0X1

C1 =D2X0 −D0X2

C0 =D2X1 −D1X2

Substituting in (**), we get, looking for example at the first rows,

A0X1 −A1X0 =(D1X0 −D0X1)G

B0X1 −B1X0 =− (D1X0 −D0X1)F

and this implies the existence of A,B ∈ K[X0, X1, X2] such that

A0 +D0X1G =AX0

B0 −D0F =BX0

Substituting these values of A0, B0 in the first row of (*), we get X0H = AFX0 +BGX0.

Therefore, H = AF +BG and hence H ∈ I, as wanted.

We end this chapter with an easy result that will show very useful later on.

Proposition 2.16. Let X,X ′ ⊂ Pn two projective sets such that there is a Zariski open

set U ⊂ Pn satisfying X ∩ U = X ′ ∩ U . Then the set of irreducible components of X

meeting U coincides with the set of irreducible components of X ′ meeting U .

Proof: Let Z be the complement of U . Then obviously X ∪ Z = X ′ ∪ Z. Clearly, the

irreducible decomposition of X ∪ Z consists of the irreducible components of Z and the

irreducible components of X not contained in Z (i.e. meeting U), and the same holds for

X ′∪Z. The uniqueness of the irreducible decomposition immediately completes the proof.

25



3. Hilbert polynomial. Nullstellensatz

Let I be a homogeneous ideal of S = K[X0, . . . , Xn]. Clearly, the graded part of

degree l of S/I is a vector space over K, and has finite dimension because it is a quotient

of Sl. We can then make the following:

Definition. Let I be a homogeneous ideal. The Hilbert function of I will be the map

hI : N → N defined by hI(l) = dimK(S/I)l. The Hilbert function hX of a projective set

X ⊂ Pn will be the Hilbert function of its homogeneous ideal I(X).

Warning: The above definition for the Hilbert function is different from the standard one

in the following sense. In general, the Hilbert function of a graded S-module M is defined

to be the map hM : N → N associating to any l the dimension of Pl, the graded part of

degree l of M . With this definition, the symbol hI will have a precise different meaning;

and what we called Hilbert function of I is in fact the Hilbert function of S/I. But since

we are never going to use the general definition, I preferred to use this incorrect notation,

since it is simpler to write hI rather than hS/I .

One of the main properties of the Hilbert function is that it is additive for exact

sequences, and hence is somehow compatible with the sum and intersection of ideals, in

the sense of the following lemma.

Lemma 3.1. Let I1, I2 be two homogeneous ideal of S. Then there exists an exact

sequence

0→ S/(I1 ∩ I2)→ S/I1 ⊕ S/I2 → S/(I1 + I2)→ 0

and therefore hI1∩I2(l) = hI1(l) + hI2(l)− hI1+I2(l) for all l ∈ Z.

Proof: Just define ϕ : S/(I1 ∩ I2)→ S/I1⊕S/I2 by ϕ(F + I1 ∩ I2) = (F + I1, F + I2) and

ψ : S/I1 ⊕ S/I2 → S/(I1 + I2) by ψ(G+ I1, H + I2) = (G−H + I1 + I2).

The importance of the Hilbert function is that, for large values of the degree l, it is

given by a polynomial. In the case of a projective set, the coefficients of this polynomial

for I(X) will encode much information of how a X is contained in the projective space

(and surprisingly enough, it also contains intrinsic information of X). The next lemma

shows that this polynomial we are looking for must be zero for the empty set.

Lemma 3.2. hI(l) = 0 for l >> 0 if and only if V (I) = ∅.

Proof: It is just a consequence of the weak Hilbert’s Nullstellensatz (Theorem 1.24).
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Lemma 3.3. Let I ⊂ be a homogeneous ideal. Write I = I0 ∩ I ′, where I ′ is (assum-

ing it exists) the M-primary component of I, and I0 the intersection of the remaining

components. Then hI(l) = hI0(l) for l >> 0.

Proof: This is immediate from Lemma 2.11 and Proposition 2.12. It is also a direct

consequence of Lemma 3.1 and the fact that both I ′ and I0 + I ′ are M-primary (because

their radical ideals are M, a maximal ideal), which allows us to apply Lemma 3.2.

We move now to what intuitively must be zero dimensional: finite sets of points.

We will see in the next examples and results that in this case there exists the wanted

polynomial, which is constant, and its value is the number of points.

Example 3.4. We consider the easiest case, when X is one point. We can assume, in a

suitable system of coordinates, that X = {(1 : 0 : . . . : 0)}. Then, as shown in Example 1 in

Chapter 1, I(X) = (X1, . . . , Xn) and S(X) ∼= K[X0] as graded rings. Therefore hX(l) = 1

for any l ∈ N.

Exercise 3.5. Prove that X = {(1 : 0 : 0 : . . . : 0), (0 : 1 : 0 : . . . : 0)}, has homoge-

neous ideal I(X) = (X0X1, X2, . . . , Xn), and graded ring S(X) ∼= K[X0, X1]/(X0X1), and

Hilbert function hX(l) = 2 for l ≥ 1, while hX(0) = 1. Conclude that the Hilbert function

of two different points in P2 is always like this.

Example 3.6. We consider now the ideal I = (X2
1 , X2, . . . , Xn) corresponding to “two

infinitely close points” (see Example 1.21). Then S/I ∼= K[X0, X1]/(X2
1 ) as graded rings,

and therefore again hI(l) = 2 if l ≥ 1 and hI(0) = 1. This shows that we again would

get the constant polynomial 2, and therefore this polynomial we are looking for can even

count infinitely close points.

Exercise 3.7. Compute the Hilbert function of three and four points in P2 and prove

that it is respectively constant 3 and 4 for l ≥ l0 for some l0. Discuss how small this l0

can be depending on the relative position of the points.

After all these examples confirming that our wanted result should be true, we will

prove it.

Proposition 3.8. Let X be the set of d points in Pn. Then hX(l) = d if l ≥ d − 1.

Reciprocally, if X is a projective set such that hX(l) = d for large values of l, then X is a

set of d points.

Proof: Let p1 = (a10 : . . . : a1n), . . . , pd = (ad0 : . . . : adn) be the points. Fixing

vectors representing them, we can then define, for each l ∈ N the evaluation map ϕl :

Sl → Kd associating to each homogeneous polynomial F ∈ Sl of degree l the d-uple
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(F (a10, . . . , a1n), . . . , F (ad0, . . . , adn)). Then since clearly I(X)l is the kernel of ϕl, we

have that S(X)l ∼=Imϕl. Hence our statement is equivalent to prove that ϕl is surjective

if l ≥ d − 1. It is clear that, for each i = 1, . . . , d and j 6= i we can find a linear

form Hi ∈ K[X0, . . . , Xn] vanishing on pi but not on any other pj . Then the product

Fi = Πj 6=iHj is a homogeneous form of degree d−1 vanishing at all the points of X except

pi. Fixing a homogeneous form G of degree l− d+ 1, we get that the images by ϕl of the

elements GF1, . . . , GFd generate Kd. This proves the surjectivity of ϕl for l ≥ d − 1 and

hence the first part of the proposition.

Reciprocally, assume that hX takes a constant value d for l >> 0. If X were not

finite, we could find Z ⊂ X consisting of d + 1 points and hence there is a surjection

S(X)→ S(Z). But, for large l the dimension of S(X)l is d while the dimension of S(Z)l
is d+ 1 (using the part we already proved), so that we have a contradiction. This proves

that X consists of a finite number of points. Of course, this number must be d, by the

first part of the proposition.

Exercise 3.9. Prove that, in the above proposition, hX(d − 2) 6= d if and only if the d

points are in a line.

Exercise 3.10. Prove that the Segre and Veronese varieties have Hilbert functions given

by polynomials.

Exercise 3.11. Prove that the Hilbert function of the projective set in Exercise 1.14

coincides for degree l ≥ 2 with the Hilbert function of the rational normal curve of degree

four in P4.

Our next goal will be to proof that, as suggested by all the previous examples, the

Hilbert function of any homogeneous ideal is given, for large values of the degree l, by a

polynomial. The idea will be to take successive sections with hyperplanes. But, as Example

1.22 (together with exercise 2.13) shows, we need to be careful because this method could

produce undesirable M-primary components.

Lemma 3.12. Let F be a homogeneous polynomial of degree d not contained in any asso-

ciated prime of an ideal I. Then there multiplication by F induces a graded monomorphism

(S/I)(−d) → S/I and hence there is a graded exact sequence 0 → (S/I)(−d) → S/I →
S/(I + (F ))→ 0. In particular hI+(F )(l) = hI(l)− hI(l − d)

Proof: Let I = Q1 ∩ . . . ∩ Qr be the homogeneous primary decomposition of I and let

P1, . . . , Pr be the respective associated primes. Take F not belonging to P1 ∪ . . . ∪ Pr.
To prove that the multiplication by F is injective we just need to show that, for any

homogeneous polynomial G, if FG ∈ I then G ∈ I. But this is immediate from our
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hypothesis. In fact FG ∈ I is equivalent to say that FG belongs to all the Qi’s (i =

1, . . . , r). But Qi being Pi-primary and F not belonging to Pi, this is equivalent to G ∈ Qi
for all i = 1, . . . , r. This is again equivalent to say G ∈ I, as wanted.

We are now ready to prove the polynomial behavior of the Hilbert function.

Theorem 3.13. Let I be a homogeneous ideal of S = K[X0, . . . , Xn]. Then there exists

a polynomial PI ∈ Q[T ] such that hI(l) = PI(l) for l >> 0.

Proof: We use induction on n. Obviously, for n = 0 there is nothing to prove since either

I = 0 and hence PI = 1 or I is M -primary and then PI = 0.

Assume now n > 0. If I is M-primary, there is nothing to prove since again we can

take PI to be the zero polynomial. So assume that I is not M-primary. Lemma 2.11 and

Proposition 2.12allow us to assume that M is not an associated prime of I. Hence we can

take a linear polynomial H not belonging to any associated prime of I, and so by Lemma

3.12 we see that the Hilbert function of J = I + (H) satisfies hJ(l) = hI(l) − hI(l − 1).

By changing coordinates we can assume H = Xn. Therefore, S/J ∼= K[X0, . . . , Xn−1]/J ′,

where J ′ is the set of all polynomials obtained from those of J after making the substitution

Xn = 0. Hence the Hilbert function of J as an ideal of S can be regarded as the Hilbert

function of J ′ as an ideal of K[X0, . . . , Xn−1]. Therefore by induction hypothesis, there

exists polynomial PJ [T ] ∈ Q[T ] such that hJ(l) = pJ(l) for l >> 0.

It is now easy to construct a polynomial Q(T ) ∈ Q[T ] such that Q(T )−Q(T − 1) =

PJ(T ). Indeed, if PJ has degree d, by observing that
(
T
0

)
, . . . ,

(
T
d

)
form a basis of the set

fo polynomial of Q[T ] of degree at most d, we can write PJ(T ) = a0

(
T
0

)
+ . . .+ad

(
T
d

)
, with

ai ∈ Q (although not needed to our purpose, it can be seen that the coefficients belong

actually to Z, since this property characterizes polynomials taking integral values over

Z). Then the polynomial Q(T ) = a0

(
T+1

1

)
+ . . . + ad

(
T+1
d+1

)
clearly satisfies the required

condition.

We consider now the difference c(l) = hI(l)−Q(l). From our construction, it follows

that c(l)−c(l−1) = 0 for l >> 0, which immediately implies that c takes a constant value,

say c0, for l >> 0. Therefore hI(l) coincides with the polynomial function Q(l) + c0 for

large values of l, which completes the proof.

Remark 3.14. The above theorem is true in the more general situation of a finitely gen-

erated graded module M over K[X0, . . . , Xn], with K not necessarily algebraically closed.

The proof can be done by just using the long exact sequence of graded modules

0→M ′ →M(−1)
·Xn−→M →M ′′ → 0
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where M ′ and M ′′ (which are now finitely generated graded modules over K[X0, . . . , Xn−1]

are defined respectively as kernel and cokernel. A simple induction argument completes

the proof (the lazy reader can check the details in [Mu]). I however preferred the above

proof since it provides a geometric interpretation of the Hilbert polynomial. Another proof

using Hilbert’s syzygy theorem will be given in Chapter 4.

Definition. The Hilbert polynomial of a homogeneous ideal I is the polynomial PI whose

existence was proved in Theorem 3.13. The Hilbert polynomial of a projective set X is the

polynomial PX of its homogeneous ideal I(X).

We can now translate into the language of Hilbert polynomials some of the results of

this section.

Proposition 3.15. The Hilbert polynomial satisfies the following properties:

(i) PI = 0 if and only if V (I) = ∅
(ii) If I = I0 ∩ I ′ with I0 the M-primary component of I and I ′ the intersection of the

other components of I. Then PI = PI′ .

(iii) PX is constant (and different from zero) if and only if X is a finite number of points.

Moreover, in this case PX is the number of points in X (see also Remark 5.3).

(iv) PI1∩I2 = PI1 + PI2 − PI1+I2 .

(v) If F is a homogeneous polynomial of degree d not contained in any relevant associated

prime of I, then PI+(F )(l) = PI(l)− PI(l − d).

Proof: Statement (i) is Lemma 3.2, (ii) is Lemma 3.3, (iii) is Proposition 3.8, (iv) is Lemma

3.1 and (v) is Lemma 3.12.

We prove now a lemma that will justify our definition of dimension in the next section,

and that will also help for the proof of the projective Hilbert’s Nullstellensatz.

Lemma 3.16. Let I be a non M-primary homogeneous ideal and consider the projective

set X = V (I). Then degPI is the maximum integer m such that any linear subspace of

Pn of codimension m meets X.

Proof: Let m be the degree of the Hilbert polynomial of I. By the weak Nullstellensatz

and Proposition 3.15(i), X 6= ∅ and m ≥ 0. Take a linear subspace A ⊂ Pn of codimension

r ≤ m, i.e. defined by r linearly independent forms H1, . . . ,Hr. Hence from the exact

sequence

(S/I)(−1)
·H1−→S/I → S/(I + (H1))→ 0

it clearly follows that PI+(H1)(l) ≥ PI(l) − PI(l − 1) for l >> 0. Since PI(l) − PI(l − 1)

is a polynomial of degree m− 1 with positive leading coefficient (m times the one of PI),
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it follows that PI+(H1) has degree at least m − 1. Iterating the process we find that the

Hilbert polynomial of I+ (H1, . . . ,Hr) has degree at least m− r ≥ 0, i.e. it is not the zero

polynomial. Again from Proposition 3.15(i) it follows that V (I + (H1, . . . ,Hr)) (which is

nothing but X ∩A) is not empty.

In order to complete the proof we just need to find a linear subspace of codimension

m + 1 not meeting X. To this purpose, we just need to use Proposition 3.15(v). Since

I is not M-primary, we can always find a linear form H1 not belonging to any relevant

associated prime of I, and hence the Hilbert polynomial of I+(H1) is PI(l)−PI(l−1), which

has degree m − 1. We can repeat the same procedure finding linear forms H1, . . . ,Hm+1

such that eventually the Hilbert polynomial of I + (H1, . . . ,Hm) is zero. This means, by

Proposition 3.15(i), that X does not meet V (H1, . . . ,Hm+1), which is a linear space of

codimension m+ 1.

Theorem 3.17 (Projective Hilbert’s Nullstellensatz). Let I be a non M-primary homoge-

neous ideal of S = K[X0, . . . , Xn], with K an algebraically closed field. Then I(V (I)) =
√
I.

Proof: Taking radicals in a primary decomposition of I, we find that
√
I = I1 ∩ . . . ∩ Ir,

where I1, . . . , Ir are prime ideals. Since I(V (I)) = I(V (I1))∩ . . .∩I(V (Ir)), it is clear that

it is enough to prove the theorem for prime ideals (since they are radical ideals).

Assume then that I is prime and take F ∈ I(V (I)) a homogeneous polynomial. If F

is not in I, then from Proposition 3.15(v) it follows that the Hilbert polynomial of I + (F )

has degree m− 1, where m is the degree of the Hilbert polynomial of I. But then Lemma

3.16 gives two contradictory results. On one hand, there exists a linear subspace of Pn of

codimension m not meeting V (I + (F )). And on the other hand, all linear subspaces of

Pn of codimension m should meet V (I). Since F ∈ I(V (I)), then V (I + (F )) = V (I) and

thus we have a contradiction.

Corollary 3.18. Let X = V (F ) and let F = F a11 . . . F ass be the decomposition of F into

irreducible factors (with Fi 6= Fj if i 6= j). Then I(X) = V (F ′), where F ′ = F1 . . . Fs. In

particular, I(X) = (F ) iff F is square-free.

Proof: It is an immediate consequence of the Nullstellensatz.

Exercise 3.19. Show that the Nullstellensatz is not true if the ground field is not

algebraically closed.

I just want to finish this chapter by remarking that the affine Nullstellensatz (which is

the standard one) can be obtained easily from the projective Nullstellensatz (see Theorems

14.2 and 14.4).
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4. Graded modules; resolutions and primary decomposition

In this chapter we present several important results about graded modules, some of

them generalizing what we have seen so far for ideals (for example the existence of the

Hilbert polynomial and the primary decomposition). Most of these results will be used

only at the end of these notes, when studying schemes. Therefore the reader interested just

in projective varieties can skip the whole chapter, although the part of resolutions (which

we will treat first) can be very instructive in a first approach to projective varieties.

Definition. A (finitely generated) free graded module over a graded ring S is a module

M generated by a finite set of homogeneous elements that are linearly independent over S

(called a basis of M).

Lemma 4.1. Let M be a graded module over S = K[X0, . . . , Xn].

(i) M is free if and only if M is isomorphic to a module of the form ⊕iS(−ai), with

ai ∈ N.

(ii) If S is noetherian and M is finitely generated, then any submodule of M is also finitely

generated.

Proof: If M is free and m1, . . . ,mr is a basis, set ai = degmi for each i = 1, . . . , r. We thus

have an isomorphism ϕ : ⊕iS(−ai) → M defined by ϕ(F1, . . . , Fr) = F1m1 + . . . Frmr.

Reciprocally, if there is a graded isomorphism ϕ : ⊕iS(−ai) → M , then the image of

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1) is a basis of M . This proves (i)

In order to proof (ii), let m1 . . . ,ms be a system of graded generators of M , and let

N be any submodule of M . We consider the set I of elements Fs ∈ S such that there

exists an element of the form F1m1 + . . . + Fsms in the submodule N . Clearly, I is an

ideal of S, and therefore it is finitely generated. Let n1, . . . , nr a set of elements of N such

that, if we write nj = Fj1m1 + . . .+ Fjsms, then F1s, . . . , Frs generate I. For any n ∈ N ,

we write it as n = F1m1 + . . . + Fsms, and we thus get (since Fs ∈ I) that we can write

Fs = G1F1s+ . . .+GrFrs for some G1, . . . , Gr ∈ S. This means that n−G1n1− . . .−Gsnr
is in the submodule N ′ generated by m1, . . . ,ms−1. We can repeat now the same trick for

N ′ instead of N . It is clear that, iterating the process (or using induction on s), we get a

finite set of generators for N .

Definition. A zerodivisor of a module M over a ring S is an element F ∈ S for which

there exists a non-zero element m ∈ M such that Fm = 0. A torsion-free module is a

module whose only zerodivisor is 0.
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Lemma 4.2. Let 0 → M
i−→P f−→N → 0 be an exact sequence of graded S-modules.

Then for any homogeneous F ∈ S that is not a zerodivisor of N the induced sequence

0→M/FM
i−→P/FP f−→N/FN → 0 is also exact.

Proof: Clearly f is surjective and Im i ⊂ ker f . Reciprocally, if the class p of p ∈ P modulo

FP is in ker f , then f(p) = Fn for some n ∈ N . Since f is surjective, there exists p′ ∈ P
such that f(p′) = n. Therefore p − Fp′ ∈ ker f , and hence there exists m ∈ M such that

p = i(m) + Pp′. This means that p = i(m). We thus have Im i = ker f .

It remains to prove that i is injective. So assume i(m) = 0 for some m ∈ M . This

means that i(m) = Fp for some p ∈ P . We now have 0 = fi(m) = Ff(p). Since F is not

a zerodivisor of N , then f(p) = 0, and therefore there exists m′ ∈M such that p = i(m′).

Hence i(m) = i(Fm′), and the injectivity of i implies m = Fm′, so that m = 0. This

completes the proof.

Theorem 4.3 (Hilbert’s syzygy theorem). For any finitely generated graded module M

over K[X0, . . . , Xn], there exists an exact sequence 0→ Pr → . . .→ P0 →M → 0 in which

P0, . . . , Pr are free modules. Moreover, it is possible to find such an exact sequence with

r ≤ n+ 1.

Proof: Let m1, . . . ,mr be a set of homogeneous generators of M , with respective de-

grees a1, . . . , ar. We have thus a surjective map P0 := ⊕ri=1S(−ai) → M defined by

(F1, . . . , Fr) 7→ F1m1 + . . . + Frmr. Let M0 be the kernel of that map. We can now

repeat the procedure to M0 (which is again a finitely generated graded module) to obtain

a surjection P1 → M0, where P1 is a free S-module. Iterating this process n times we

arrive to an exact sequence Pn → . . .→ P0 →M → 0, with P0, . . . , Pn free S-modules. If

Pn+1 is now the kernel of the left-hand side map, the theorem will follows if we prove the

following

Claim: If 0 → Pn+1 → Pn → . . . → P1 → P0 is any exact sequence of finitely generated

graded modules over S = K[X0, . . . , Xn] and P0, . . . , Pn are free, then also Pn+1 is free.

We will prove the claim by induction. In case n = 0, we first observe that P1 is torsion-

free since it is a submodule of P0. Let us see that this is enough to see that in this case P1

is also free. Indeed take m1, . . . ,mr to be a minimal set of homogeneous generators of P1,

and we have to prove that they are also linearly independent over K[X0]. So assume that

we have a non-trivial linear combination F1m1 + . . .+Frmr = 0 with F1, . . . , Fr ∈ K[X0].

Splitting that equality into its homogeneous components, we can assume that each Fi is

homogeneous, i.e. Fi = λiX
ai
0 , with λi ∈ K and ai ∈ N. We can also assume, reordering

the elements, that the non-zero coefficients are the first ones F1, . . . , Fs and that a1 is the

minimum among a1, . . . , as. We can thus divide the linear relation by Xa1
0 (because P1

is torsion-free) and get λ1m1 + λ2X
a2−a1
0 m2 + . . . + λsX

as−a1
0 ms = 0, with λ1 6= 0. This
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implies that m1 is a superfluous generator, which contradicts our assumption. Hence P1

is free.

So assume we know our claim to be true for n− 1. Denote by fi the map from Pi to

Pi−1 and by Mi−1 its image (so Mi = ker fi−1 ⊂ Pi−1 for i = 1, . . . , n). Applying Lemma

4.2 to the exact sequences

0→ Pn+1 → Pn →Mn → 0

0→Mn → Pn−1 →Mn−1 → 0
...

0→M2 → P1 →M1 → 0

(observe that Mi ⊂ Pi−1 for i = 1, . . . , n, so that they do not have zerodivisors) we get a

long exact sequence

0→ Pn+1/XnPn+1 → Pn/XnPn → . . .→ P2/XnP2 → P1/XnP1.

Since K[X0, . . . , Xn]/(Xn) ∼= K[X0, . . . , Xn−1] =: S′, any Pi/XnPi (i = 1, . . . , n) can

be regarded as a free graded S′-module, so that by induction hypothesis we have that

also Pn+1/XnPn+1 is free. Our scope is now to show that also Pn+1 is free. So take

m1, . . . ,mr ∈ Pn+1 such that there classes modulo XnPn+1 form a basis for Pn+1/XnPn+1.

We will prove that m1, . . . ,mr form a basis of Pn+1.

Let a bar denote classes modulo XnPn+1 for elements of Pn+1 and classes modulo

(Xn) for polynomials of S. Assume first that we have a non-trivial linear combination

F1m1 + . . . + Frmr = 0 with F1, . . . , Fr ∈ S. Since Pn+1 is torsion-free, we can assume

that not all F1, . . . , Fr are divisible by Xn (otherwise we can divide the linear relation

by the maximum common power of Xn). We therefore get another non-trivial relation

F 1m1 + . . . + F rmr = 0. Since m1, . . . ,mr form a basis for Pn+1/XnPn+1, we get that

F 1 = . . . = F r = 0, i.e. all the Fi’s are divisible by Xn, contrary to our assumptions. We

therefore proved that m1, . . . ,mr are linearly independent.

If m1, . . . ,mr were not a set of generators, we could find a homogeneous element

m ∈ P not depending on m1, . . . ,mr. We choose such m with minimum degree among

those satisfying that property. Since Pn+1/XnPn+1 is generated by m1, . . . ,mr, we get

that we can find a relation m = F1m1 + . . . + Frmr + xnm
′ with F1, . . . , Fr ∈ S and m′

in P . Since degm′ < degm, we can write m′ as a linear combination of m1, . . . ,mr, and

hence the same holds for m. This is a contradiction, which proves the claim and hence the

theorem.

Definition. An exact sequence like the one of Theorem 4.3 will be called a free resolution

of the module M . The integer r will be called the length of the resolution.
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We obtain from this corollary the existence in general of the Hilbert polynomial, even

if the ground field K is not algebraically closed.

Corollary 4.4. For any graded module M over K[X0, . . . , Xn] there exists a polynomial

PM ∈ Q[T ] such that dimKMl = PM (l) if l is big enough.

Proof: The result is clear if M is free. Indeed, if M ∼= ⊕iS(−ai), then dimKMl =

Σi dimK K[X0, . . . , Xn]l−ai = Σi
(
l−ai+n

n

)
(the latter equality being true only if l ≥ ai − n

for each i), and this is a polynomial in l with rational coefficients. If M is arbitrary,

take 0 → Pr → . . . → P0 → M → 0 to be a free resolution of M . Then dimKMl =

dimK(P0)l−dimK(P1)l+ . . .+(−1)r dimK(Pr)l, and as we have seen each of the summands

is given by a rational polynomial if l is big enough.

Warning: Observe that this notation is not consistent with the one we gave for ideals.

In fact, what we called PI should be written PS/I (which is in fact different from PI in

the sense we just described). We preferred however to use the first notation because it is

simpler, and it will not be easy to yield any confusion, since the Hilbert polynomial of I

as an S- module is not quite used.

Observe that a map
⊕s

j=1 S(−aj) →
⊕r

i=1(−bi) is given by an r × s matrix whose

(i, j)-entry is a homogeneous polynomial of degree aj−bi. Therefore giving a free resolution

is the same thing as giving a series of matrices A1, . . . , Ar with the condition kerAi =

ImAi+1 (in particular AiAi+1 = 0).

Example 4.5. Let us find a free resolution of the coordinate ring of the twisted cubic

X = {(t30 : t20t1 : t0t
2
1 : t31) ∈ P3 | (t0 : t1) ∈ P1}. We know (Example 1.10) that I(X) is

the ideal generated by X0X2 −X2
1 , X1X3 −X2

2 and X0X3 −X1X2. This yields the first

part of the resolution S(−2)3 f−→S → S(X) → 0, where f(A,B,C) = A(X0X2 − X2
1 ) +

B(X1X3−X2
2 ) +C(X0X3−X1X2). The key point is to find the kernel of f . We can find

immediately two elements (X2, X0,−X1) and (X3, X1,−X2) in the kernel, since there are

relations
X1(X0X3 −X1X2) = X2(X0X2 −X2

1 ) +X0(X1X3 −X2
2 )

X2(X0X3 −X1X2) = X3(X0X2 −X2
1 ) +X1(X1X3 −X2

2 ).
(∗)

We want to show that these elements generate the whole kernel. So assume there is a

relation

A(X0X2 −X2
1 ) +B(X1X3 −X2

2 ) + C(X0X3 −X1X2) = 0.

This implies in particular that C(X0X3 − X1X2) belongs to the prime ideal (X1, X2).

Since X0X3 − X1X2 6∈ (X1, X2), it follows that there exist polynomials D,E such that

C = DX1 + EX2. Making this substitution in the above relation and using (*) we get

(A+DX2 + EX3)(X0X2 −X2
1 ) + (B +DX0 + EX1)(X1X3 −X2

2 ) = 0.
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This implies the existence of a polynomial F such that

A+DX2 + EX3 = F (X1X3 −X2
2 )

B +DX0 + EX1 = −F (X0X2 −X2
1 )

We thus get

A = (−D − FX2)X2 + (−E + FX1)X3

B = (−D − FX2)X0 + (−E + FX1)X1

Since on the other hand we can write C = DX1 +EX2 = (D+ FX2)X1 + (E − FX1)X2,

we conclude that (A,B,C) is in the image of the map g : S(−3)2 → S(−2)3 defined by

g(P,Q) = (PX2 + QX3, PX0 + QX1,−PX1 − QX2). But this map is injective, since

PX2 +QX3 = 0 and PX0 +QX1 = 0 easily implies (X1X2 −X0X3)P = 0 and (X0X3 −
X1X2)Q = 0, and hence P = Q = 0. Since it is also obvious that Im g ⊂ ker f it follows

that we have a resolution

0→ S(−3)2 → S(−2)3 → S → S(X)→ 0.

As a consequence, dimK S(X)l = dimK Sl − 3 dimk Sl−2 + 2 dimK Sl−3 =
(
l+3
3

)
− 3
(
l+1
3

)
+

3
(
l
3

)
= 3l + 1, and the equality works for any l ≥ 0, as we already knew. Note that the

matrices here are

A1 = (X0X2 −X2
1 X1X3 −X2

2 X0X3 −X1X2 )

A2 =

 X2 X3

X0 X1

−X1 −X2


Observe that the entries of A1 are, up to a sign, the minors of A2.

Exercise 4.6. Find a free resolution for a set of two, three or four points in P2, and reob-

tain that the Hilbert polynomial is the number of points (of course, the type of resolution

will depend on the relative position of the points).

Exercise 4.7. Prove that the graded ring of the set X of Exercise 1.14 has a free resolution

of the type 0→ S(−5)→ S(−4)4 → S(−2)⊕ S(−3)3 → S → S(X)→ 0 (you will need to

be patient). Check its Hilbert polynomial with Exercise 3.11.

Exercise 4.8. Prove that the graded ring of the disjoint union of two lines in P3 has

a resolution of the type 0 → S(−4) → S(−3)4 → S(−2)4 → S → S(X) → 0, while the

graded ring of a line has a resolution 0→ S(−2)→ S(−1)2 → S → S(L)→ 0.
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We finish this section by generalizing to modules the primary decomposition given in

Chapter 2 for ideals. From now on S will be an arbitrary graded ring, and in fact our

proof will also work in the non homogeneous case.

Definition. A primary graded submodule of a graded S-module M is a graded submodule

N such that for any F ∈ S and m ∈ M such that Fm ∈ N then either m ∈ N or

there exists l ∈ N such that F lM ⊂ N (i.e. for any m′ ∈ M then F lm ∈ N). The set

P := {F ∈ S | F lM ⊂ N for some l ∈ N} is thus a homogeneous prime ideal, and N is

said to be P -primary.

Theorem 4.9. Let M be a noetherian graded S-module. Then any submodule N of M

admits a decomposition N = N1 ∩ . . .∩Nr such that each Ni is Pi-primary (with Pi 6= Pj
if i 6= j) and

⋂
j 6=iNj 6⊂ Ni.

Proof: It follows the same steps as for ideals. First using the noetherianity of M (since

it is finitely generated over a noetherian ring) we observe, as in Lemma 2.4 that N is a

finite intersection of irreducible modules (irreducible meaning not to be expressible as a

non-trivial intersection of two modules).

Next we imitate the proof of Lemma 2.5 to conclude that any irreducible module N

is primary. Indeed if we have F ∈ S and m ∈ M such Fm ∈ N , then we can write

N = (F lM +N) ∩ {m′ ∈ M | Fm′ ∈ N}, where l satisfies that {m′ ∈ M | F lm′ ∈ N} =

{m′ ∈M | F l+1m′ ∈ N}, and the proof is the same as in Lemma 2.5.

Finally, removing redundant components and gathering primary components with the

same prime, we eventually get the wanted decomposition.

Definition. A decomposition as in the statement of Theorem 4.9 will be called an irre-

dundant primary decomposition of N .

We prove now a uniqueness theorem for irredundant primary decompositions. Exercise

2.8 shows that it is the best possible result.

Theorem 4.10. Let N = N1∩. . .∩Nr be an irredundant primary decomposition in which

each Ni is Pi-primary. Then

(i) For each homogeneous m ∈M , the set Im := {F ∈ S | F lm ∈ N for some l ∈ N} is a

homogeneous ideal and Im =
⋂
m6∈Ni

Pi.

(ii) The set {P1, . . . , Pr} coincide with the set of ideal Im that are prime. In particular,

{P1, . . . , Pr} does not depend on the primary decomposition.

(iii) For each homogeneous F ∈ S, the set MF := {m ∈ M | F lm ∈ N for some l ∈ N} is

a graded submodule of M and MF =
⋂
F 6∈Pi

Ni.
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(iv) If Pi is minimal in the set {P1, . . . , Pr}, then Ni does not depend on the primary

decomposition.

Proof: To prove (i) it is enough to prove the equality Im =
⋂
m 6∈Ni

Pi. So let us prove the

double inclusion. The first inclusion is clear: if we have F ∈ Im, then some F lm is in N ,

hence in in any Ni, and if m 6∈ Ni it follows from the primality of Ni that F belongs to Pi.

Reciprocally, if F belongs to
⋂
m 6∈Ni

Pi, then for each i such that m 6∈ Ni we have F ∈ Pi,
so that there exists some F lim in Ni. Taking l to be the maximum of these li’s we obtain

that F lm is in any Ni not containing m. Since obviously F lm is in any Ni containing m,

we get F lm ∈ N1 ∩ . . . ∩Nr = N . Therefore F is in Im, which proves (i).

To prove (ii), we first observe that if some Im is prime, then it should coincide with

some Pi, by using Exercise 0.1(v) and the fact we just proved that Im is a finite intersection

of Pi’s. On the other hand, since the primary decomposition is irredundant, we can find

for each i = 1 . . . , r an element mi ∈
⋂
j 6=iNj \Ni, and therefore (i) implies Imi

= Pi.

The prove of (iii) is completely analogous to the proof of (i). Finally, the proof of

(iv) is like the end of the proof of (ii), with the difference that only if Pi is minimal in the

set {P1, . . . , Pr} it is possible to find Fi ∈
⋂
j 6=i Pj \ Pi (again Exercise 0.1(v) shows that⋂

j 6=i Pj ⊂ Pi if and only if Pi is contained in some Pj with j 6= i). We thus have that Ni
coincides with MFi

, and therefore it does not depend on the primary decomposition.

Definition. The prime ideals P1, . . . , Pr of the above theorem are called the associated

primes of the submodule N . The primary components corresponding to non-minimal prime

ideals are called embedded components of the submodule N .

Remark 4.11. From the above proof one could think that the primary decomposition

of N is related to the primary decomposition (in the sense of Chapter 2) of the ideal

{F ∈ S | FM ⊂ N} and more precisely that the primary components of the latter are

{F ∈ S | FM ∈ Ni}. However this is not true. Take for instance M = S/I ⊕ S/J ,

with I ⊂ J two prime ideals of S. Then (0) =
(
S/I ⊕ (0)

)
∩
(
S/J ⊕ (0)

)
is the primary

decomposition of (0), while {F ∈ S | FM = 0} = I.

Definition. A zerodivisor of a module M is an element F ∈ S for which there exists

m ∈M \ {0} such that Fm = 0.

Proposition 4.12. Let M be a noetherian graded module and let P1 . . . Pr be the asso-

ciated primes of a submodule N . Then P1 ∪ . . .∪Pr is the set of zerodivisors of M/N , i.e.

the elements F ∈ S for which there exists m ∈ M \N such that Fm ∈ N . In particular,

the set of zerodivisors of M is the union of the associated primes of (0).
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Proof: Let first F be a zerodivisor of M/N . Thus there exists an element m ∈ M \ N
such that Fm ∈ N . Since m 6∈ N , then there exists i = 1, . . . , r such that m 6∈ Ni. But on

the other hand Fm is in N , so that it belongs to Ni. Now the fact that Ni is Pi-primary

implies that F belongs to Pi.

Reciprocally, assume that we have F ∈ Pi for some i = 1, . . . , r. By Theorem 4.10(ii)

there exists some m ∈ M such that Pi = Im. Therefore there exists l ∈ N such that

F lm ∈ N , and we take l to be minimum satisfying this condition (l must be at least 1

because m 6∈ N since otherwise 1 ∈ Im). Thus F l−1m 6∈ N and F (F l−1m) = F lm ∈ N ,

which means that F is a zerodivisor of M/N .

Definition. The support of a module M is the projective set V (P1) ∪ . . . ∪ V (Pr), where

P1, . . . , Pr are the associated primes of (0).
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5. Dimension, degree and arithmetic genus

We introduce in this chapter the main invariants of a projective set, which will be

obtained form its Hilbert polynomial. We start with a very simple but useful remark (left

as an exercise), which will be implicitly used throughout these notes. It just says that the

invariants of a projective set X ⊂ Pn contained in some linear subspace H do not depend

on whether we regard X as a projective set in Pn or H.

Exercise 5.1. Let X ⊂ Pn be a projective set. Prove that the Hilbert polynomial (and

in fact the Hilbert function) of X is the same if X is considered as a projective set in Pm

(with m > n) when regarding Pn as a linear subspace of Pm.

The first main invariant, whose definition the reader should be hopefully guessing

after the previous chapter, is the dimension.

Definition. Let X ⊂ Pn be a projective set. The dimension of X will be the degree of the

Hilbert polynomial PX . More generally, we can speak of the dimension of an ideal I as

the degree of its Hilbert polynomial. A projective set of dimension one is called a curve,

while a set of dimension two is called a surface.

The following result states that we can in fact define the dimension by using the

Hilbert polynomial of any homogeneous ideal defining our projective set.

Lemma 5.2. Let I be a homogeneous ideal of K[X0, . . . , Xn] and let X = V (I) ⊂ Pn be

the projective set it defines. Then dimX is the degree of PI .

Proof: From Lemma 3.16 applied to I(X), the dimension of X is the maximum integer m

such that any linear subspace of Pn of codimension m meets X. But using again Lemma

3.16, now applied to I, we obtain that this integer coincides with the degree of PI .

Remark 5.3. Observe that this lemma allows to strengthen Proposition 3.15(iii), in the

sense that an ideal I has constant Hilbert polynomial if and only if V (I) is a finite number

of points. Indeed, since PI and PV (I) have the same degree, PI is constant if and only if

PV (I) is, and the latter is constant if and only if V (I) is a finite number of points.

Exercise 5.4. Prove that (fortunately!) this definition of dimension coincides for linear

spaces with the usual definition of dimension of a linear subspace.

Exercise 5.5. Prove that the Veronese variety (image of Pn) has dimension n, and that

the Segre variety (image of ϕn,m) has dimension n + m. In particular, a rational normal

curve has dimension 1.

Exercise 5.6. Show that, if F ∈ K[X0, . . . , Xn] is a homogeneous polynomial of positive

degree, then V (F ) has dimension n− 1.
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Proposition 5.7. The dimension of projective sets satisfies the following properties:

(i) If X ⊂ Y , then dimX ≤ dimY .

(ii) Let X be a projective set of dimension r and F a homogeneous polynomial not con-

taining any irreducible component of X. Then X ∩ V (F ) has dimension r − 1.

(iii) If X ⊂ Y , dimX = dimY and Y is irreducible, then X = Y .

(iv) The dimension of X is the maximum of the dimensions of the irreducible components

of X.

(v) The dimension of a projective set X is the maximum length r of a strictly increasing

chain Z0 ⊆/ Z1 ⊆/ . . . ⊆/ Zr of irreducible closed sets contained in X.

(vi) The dimension of a projective set X ⊂ Pn is the maximum integer m such that any

linear subspace of Pn of codimension m meets X.

(vii) The dimension of a projective set X is zero if and only if X is a finite number of

points.

(viii) If X has dimension r, then for any set of homogeneous polynomials F1, . . . , Fs (with

s ≤ r + 1), the projective set X ∩ V (F1, . . . , Fs) has dimension at least r − s (and

hence it is not empty if s ≤ r).

Proof: Part (i) is just a consequence of the natural surjection S(Y ) → S(X). For (ii),

we first obtain from Lemma 3.12 that the degree of the Hilbert polynomial of I + (F ) is

r− 1. But since V (I + (F )) = X ∩V (F ), it follows from Lemma 5.2 that the degree of the

Hilbert polynomial of I + (F ) is the dimension of X ∩ V (F ), thus proving (ii).

In order to prove (iii), assume X ⊆/ Y . Then I(Y ) ⊆/ I(X), so that we can find a

homogeneous polynomial F ∈ I(X) \ I(Y ). Hence X ⊂ Y ∩ V (F ). From (i) and (ii) we

conclude that then dimX ≤ dim(Y ∩ V (F )) = dimY − 1, which is a contradiction with

the assumption dimX = dimY .

As for (iv), let X = X1 ∪ . . . ∪ Xs be the decomposition of X into irreducible com-

ponents. We prove the assertion by induction on s, the case s = 1 being trivial. From

(i) we know that dimXi ≤ dimX for all i, so we just need to find a component with the

same dimension as X. Writing I(X) = I(X1 ∪ . . . ∪Xs−1) ∩ I(Xs) we can apply Lemma

3.1 to conclude that PX = PX1∪...∪Xs−1
+ PXs

− PI(X1∪...∪Xs−1)+I(Xs). But observe that

V (I(X1 ∪ . . . ∪Xs−1) + I(Xs)) = (X1 ∪ . . . ∪Xs−1) ∩Xs, and so by Lemma 5.2 it follows

that PI(X1∪...∪Xs−1)+I(Xs) has the same degree as P(X1∪...∪Xs−1)∩Xs
, i.e., the dimension

of (X1 ∪ . . . ∪Xs−1) ∩Xs (which from (iii) is strictly smaller than the dimension of Xs).

Thus in the above equality of polynomials, all of them have degree at most the dimension

of X, which implies that either Xs or X1 ∪ . . . ∪Xs−1 has the same dimension as X. We

conclude the proof of (iv) from our induction hypothesis.
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For (v), let r be the dimension of X. We know from (iii) that any chain as in the

statement has length at most r. Hence it is enough to find a chain whose length is exactly

r. We do it by induction on r. The case r = 0 is trivial, since we just need to take as

X0 any point of X. So assume r ≥ 1. By (iv) we can find an irreducible component Xr

of X of dimension r. Taking a homogeneous polynomial F not vanishing on Xr, we know

from (ii) that Xr ∩ V (F ) has dimension r − 1, so by induction hypothesis there is a chain

X0 ⊆/ . . . ⊆/ Xr−1 of irreducible sets contained in Xr ∩ V (F ). Since clearly Xr−1 ⊆/ Xr (for

they have different dimensions), we conclude the proof.

Finally, part (vi) is just Lemma 3.16, while part (vii) is a consequence of Proposition

3.15(iii), and part (viii) is an easy consequence of parts (ii) and (iv).

Observe that Proposition 5.7(v) shows that the dimension can be defined in purely

topological terms. We can therefore extend the notion of dimension to quasiprojective

sets.

Definition. The dimension of a quasiprojective set X is the maximum length r of a chain

Z0 ⊆/ Z1 ⊆/ . . . ⊆/ Zr of irreducible closed subsets of X.

Lemma 5.8. The dimension of a quasiprojective set is the dimension of its Zariski closure.

Proof: We will just use Lemma 2.1 to see that a quasiprojective set and its closure have

essentially the same chains of irreducible sets. So let X ⊂ Pn be a quasiprojective set and

let X be its Zariski closure. Then X = X ∩U for some open set in Pn. If Z0 ⊆/ Z1 ⊆/ . . . ,⊆
/ Zr is a chain of irreducible closed sets in X, then clearly Z0 ⊆/ Z1 ⊆/ . . . ⊆/ Zr is a chain

of irreducible closed sets in X. Hence dimX ≤ dimX.

For the other inequality we just need to be careful to take chains in X that do not

“disappear” when intersecting with U . To this purpose, we will need to slightly adapt

the proof of Proposition 5.7(v). So take an irreducible component Y of X of maximum

dimension r and write Z = Y \U . This is a closed subset of Y , and it is strictly contained

in Y , since otherwise removing Y from the components of X we will obtained a closed

subset containing X strictly smaller than X. In particular, dimZ < dimY = r.

With this set-up, we take a homogeneous polynomial F not vanishing neither on

Y nor on any component of Z (for instance, if Z 6= ∅, we can choose a point at each

component and take a hyperplane not passing through any of these points). We then

have that dimZ ∩ V (F ) = dimZ − 1 and dimY ∩ V (F ) = r − 1. We take Y ′ to be

an irreducible component of Y ∩ V (F ) of dimension r − 1, and Z ′ = Y ′ ∩ Z, which has

dimension at most r − 2. Repeating the same process for Y ′ and Z ′ and iterating (the

process will become trivial as soon as the “bad” subset Z becomes empty), we obtain a
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chain Z0 ⊆/ Z1 ⊆/ . . . ⊆/ Zr of irreducible sets of X all of them meeting U . Intersecting then

with U we get that dimX ≥ r, which completes the proof.

Proposition 5.9. A projective set X ⊂ Pn can be expressed as V (F ) (with F homoge-

neous polynomial of positive degree) if and only if any irreducible component of X has

dimension n− 1.

Proof: Assume first that X = V (F ) and write F = F a11 . . . F arr , a decomposition of F

into irreducible factors. Then X = V (F1) ∪ . . . ∪ V (Fr) is the decomposition of X into

irreducible components. We then just need that each of the V (Fi)’s has dimension n− 1,

but this is immediate from their Hilbert polynomial.

Assume now that all the irreducible components of X has dimension n − 1. If we

prove that each irreducible component has the form V (F ), then also X will be defined

by one polynomial (just the product of the polynomials defining the components). Hence

it is enough to prove that any irreducible variety of dimension n − 1 is defined by one

polynomial. So let X ⊂ Pn be a projective variety of dimension n− 1. In particular, I(X)

is not zero, so that there exist a homogeneous polynomial of positive degree in I(X). Since

I(X) is prime, one irreducible factor F of this polynomial should also belong to I(X). We

then have X ⊂ V (F ), and since V (F ) is irreducible and both X and V (F ) have dimension

n− 1, Proposition 5.7(iii) concludes the proof.

Definition. A hypersurface in Pn will be a projective set of the type V (F ), with F a homo-

geneous polynomial of positive degree. Equivalently, by Corollary 3.18, X is a hypersurface

if I(X) is generated by one polynomial.

We introduce now the second invariant, which the reader should also find intuitive.

Let X ⊂ Pn a projective set of dimension r. If H1 is the equation of a general hyperplane,

we have observed that X ∩ V (H1) has dimension r − 1. Moreover, if PX(l) = alr+

lower degree terms, then the Hilbert polynomial of I(X) + (H1) is PX(l) − PX(l − 1) =

ralr−1+ lower degree terms. Iterating the process, we then obtain that, for general linear

forms H1, . . . ,Hr, the intersection X ∩ V (H1, . . . ,Hr) consists of a finite set of points,

and that I(X) + V (H1, . . . ,Hr) has (constant) Hilbert polynomial r!a. As we have also

remarked, this constant should count the number of points, maybe with some multiplicity

(we will immediately make more precise this idea). It is then natural to make the following

definitions.

Definition. The degree of a projective set X ⊂ Pn of dimension r is degX = ar!, where a

is the coefficient of lr in the Hilbert polynomial of PX .
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Exercise 5.10. Prove that the degree of a hypersurface X ⊂ Pn is the degree of any

polynomial generating I(X).

Exercise 5.11. Prove that any linear subspace has degree 1.

Exercise 5.12. Prove that the degree of a Veronese variety (image of Pn under νd) is dn,

and the degree of a Segre variety is
(
n+m
n

)
=
(
n+m
m

)
. In particular, what we called rational

normal curve of degree d has indeed degree d.

Lemma 5.13. The degree satisfies the following properties:

(i) The degree of a union of two projective sets of different dimensions is the degree of

the set of maximum dimension.

(ii) The degree of the union of two projective sets of the same dimension is the sum of

the degrees of the two sets, provided that the two sets do not share components of

maximal dimension.

Proof: The proof is based on the exact sequence in Lemma 3.1

0→ S(X ∪ Y )→ S(X)⊕ S(Y )→ S/(I(X) + I(Y ))

If for instance dimX > dimY then the Hilbert polynomials of Y and I(X) + I(Y ) have

degree strictly smaller than the degree of PX (which is the dimension of X). Hence the

leading coefficients of the Hilbert polynomials of X ∪ Y and X (which have the same

dimension) are the same. As a consequence, X ∪ Y and X have the same degree, proving

(i).

If X and Y have now the same dimension, the hypothesis in (ii) implies that X ∩ Y
has dimension strictly less than dimX = dimY . Therefore, the Hilbert polynomial of

I(X) + I(Y ) has degree strictly less than dimX = dimY . Using the same exact sequence

we see that the leading coefficient of PX∪Y is the sum of the leading coefficients of PX and

PY , which completes the proof of the lemma.

Definition. The multiplicity of intersection of two projective sets X,Y ⊂ Pn at a point

p (assuming that p is an irreducible component of X ∩ Y ) is the value (which is constant

by Remark 5.3) of the Hilbert polynomial of the I(p)-primary component of I(X) + I(Y )

(note that from Theorem 2.7 the I(p)-primary component is independent on the primary

decomposition, since the fact that p is an irreducible component means that I(p) is a

minimal prime).

The following proposition shows (according to the philosophy of Example 1.21) that

two projective sets meet with multiplicity bigger than one at some point iff they share

some infinitesimal direction at the point
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Proposition 5.14. Let p ∈ Pn be a point and I an I(p)-primary ideal different from I(p).

Then it is possible to choose homogeneous coordinates in Pn such that p = (1 : 0 : . . . : 0)

and I ⊂ (X2
1 , X2, . . . , Xn). In particular, an I(p)-primary ideal I has Hilbert polynomial

PI = 1 if and only if I = I(p).

Proof: We can clearly assume p = (1 : 0 : . . . : 0) in some suitable reference, i.e.
√
I =

I(p) = (X1, . . . , Xn). We thus have (X1, . . . , Xn)d ⊂ I for some d ∈ N. Since by hypothesis

I ⊆/
√
I, the minimum integer d satisfying the above inclusion is at least 2. We can thus find

a monomial of degree d− 1 in the variables X1, . . . , Xn that is not in I. This immediately

implies that we can find a homogeneous polynomial H ∈ K[X1, . . . , Xn] of degree d − 2

such that its product by at least one of the variables X1, . . . , Xn is not in I.

We consider now the vector space V of the linear forms in the variables X1, . . . , Xn.

Inside this vector space, let W be the (proper) linear subspace consisting of the forms

whose multiplication with H is in I. After changing coordinates in V if necessary, we can

assume that Xr, . . . , Xn form a basis of W , for some r that is necessarily at least 2. Let us

see that with this choice of coordinates we have the wanted inclusion I ⊂ (X2
1 , X2, . . . , Xn).

Let F be any homogeneous polynomial in the ideal I and let m be its degree. We

can write F = A0X
m
0 +A1X

m−1
0 + . . .+Am, where each Ai is a homogeneous polynomial

of degree i in the variables X1, . . . , Xn. Obviously the constant A0 is zero, since F must

vanish at p, which is (1 : 0 : . . . : 0) in our coordinates. The wanted inclusion will hence

follow at once if we show that the linear form A1 does not depend on X1. For this, it is

enough to prove that A1 is in W , i.e. that A1H is in I. Since I is (X1, . . . , Xn)-primary

and Xm−1
0 is not in (X1, . . . , Xn), this is equivalent to prove that Xm−1

0 A1H is in I. This

follows now immediately from the equality Xm−1
0 A1H = HF −Xm−2

0 A2H − . . .−AmH,

after observing that each AiH on the right-hand side has degree at least d, so it is in

(X1, . . . , Xn)d, hence in I. This completes the proof.

The main geometrical meaning of the degree (which will be improved in Theorem

12.1(ii)) is the following.

Theorem 5.15. Let X ⊂ Pn be a projective set of dimension r and let H1, . . . ,Hr be

linear forms such that for each i = 1, . . . , r the hyperplane V (Hi) does not contain any

irreducible component of X ∩V (H1, . . . ,Hi−1). Then degX is the sum of the intersection

multiplicities of X and V (H1, . . . ,Hr) at their points of intersection.

Proof: From our hypothesis and Proposition 3.15(v), we get that I(X) + (H1, . . . ,Hr)

has Hilbert polynomial equal to degX. But on the other hand, if I1, . . . , Is are the non-

embedded components of I(X) + (H1, . . . ,Hr), then the points of intersection of X and

V (H1, . . . ,Hr) are p1 = V (I1), . . . , ps = V (Is) and the intersection multiplicity of X and

45



V (H1, . . . ,Hr) at pi is precisely PIi . Observe that if there is an embedded component

I ′ of I(X) + (H1, . . . ,Hr), then its radical must strictly contain some
√
Ii. Therefore

V (I ′) ⊆/ V (Ii) = {pi}, which implies that V (I ′) = ∅ and I ′ is thus necessarily M-primary.

Hence from Proposition 3.15(ii) we obtain that PI(X)+(H1,...,Hr) = PI1∩...∩Is . Having in

mind that each Ii + Ij defines {pi}∩ {pj} = ∅ (if i 6= j), and thus its Hilbert polynomial is

zero, we can use Proposition 3.15(iv) to conclude that PI1∩...∩Is = PI1 + . . .+ PIs , which

completes the proof.

Remark 5.16. Let C and D be plane curves not having common components and let

F,G ∈ K[X0, X1, X2] be the generators of I(C) and I(D). It is now an easy exercise to

prove Bézout’s theorem, i.e. that C ∩D consists of exactly deg(F ) ·deg(G) points counted

with multiplicity. But we can say much more. From Proposition 2.15, we now that the

ideal I = (F,G), whose Hilbert polynomial is deg(F ) · deg(G), is saturated. By Lemma

2.11, I has no irrelevant component, so that it decomposes as I = I1 ∩ . . . ∩ Ir, each Ii
representing a point pi of intersection with its corresponding multiplicity, From this, we

can recover a theorem of Max Noether stating that any homogeneous H ∈ K[X0, X1, X2]

representing a curve passing through the points pi with the structure given by Ii can be

written as H = AF + BG for some A,B ∈ K[X0, X1, X2] (this theorem is also known as

AF +BG Theorem).

This Theorem is used, for example, to prove the so-called Cayley-Bacharach, stating

that, if C does not contain any line and if a curve E of degree deg(F ) + deg(G)− 3 passes

through deg(F )·deg(G)−1 of the intersection points of C and D, it also passes through the

remaining one (the case deg(F ) = deg(G) = 3 is Chasles Theorem, which allows to prove

the associativity of the group law of an irreducible plane cubic). The trick is to take a line

L passing through this remaining point and avoiding any other intersection point of C and

D, hence meeting C in deg(F ) − 1 extra points. By Noether’s Theorem, the equation of

E ∪ L can be written as AF + BG, and in particular deg(B) = deg(F ) − 2 Since V (B)

contains those deg(F )− 1 extra points, necessarily B is divisible by the equation of L, an

therefore also A is (because F is not, by assumption). As a consequence, the equation of

E is a linear combination of F and G, which proves the result.

Exercise 5.17. Generalize Bézout’s theorem on the plane in the following way: if X ⊂
Pn is an irreducible projective set of dimension r and degree d, and if X1, . . . , Xr are

hypersurfaces of respective degrees d1, . . . , dr such that X∩X1∩ . . .∩Xr is a finite number

of points, then the number of points, counted with multiplicity, is dd1 . . . dr. Show that

the irreducibility condition for X (or, at least, to have all irreducible components of the

same dimension) is necessary. Observe that, in particular, this implies that, if I(X) + (F )

is nice enough (for instance if it is a radical ideal and X ∩ V (F ) has dimension r − 1) the
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intersection of X with the hypersurface V (F ) has degree ddegF . We will strengthen this

result in Proposition 10.10.

Observe that we have seen (Exercise 5.12) that the rational normal curve C = {(tn0 :

. . . : tnn)} ⊂ Pn has degree n. On the other hand, if we intersect C with a hypersurface X ⊂
Pn of degree d, then from Exercise 5.17 it follows that C ∩X consists of nd points counted

with multiplicity. This is intuitively clear, since I(X) is generated by a homogeneous

polynomial F ∈ K[X0, . . . , Xn] of degree d, and the intersection of C and X comes from

the solutions in P1 of the polynomial F (tn0 , . . . , t
n
n). But this is a homogeneous polynomial

of degree nd, so it has nd roots counted with multiplicity.

In a similar way, the set {(t40 : t30t1 : t0t
3
1 : t41)} ⊂ P3 should be a curve of degree

four (as can be deduced as once from Exercise 3.11), since the intersection with a general

plane comes from the roots of a homogenous polynomial of degree four. However in both

cases we do not know a priori that the two notions of multiplicity (as defined here and the

multiplicity of a root) coincide. They indeed coincide, but the proof its too technical to

be done here.

We finally introduce briefly the last main invariant of a projective set. It could seem

quite artificial at a first glance. However, the reader who is familiar with the theory of

algebraic curves (maybe under the name of Riemann surfaces) or just with the theory of

plane curves will find it more natural after Exercise 5.18. Moreover, we will see later on

that the arithmetic genus is in fact an intrinsic invariant of projective sets (Theorem 8.15).

Definition. Let X ⊂ Pn be a projective set. The arithmetic genus of X is the number

pa(X) := (−1)r(PX(0)− 1), where r is the dimension of X.

Exercise 5.18. Prove that the arithmetic genus of a plane curve of degree d is (d−1)(d−
2)/2.

Exercise 5.19. Prove that any Segre or Veronese variety has arithmetic genus zero.

The exact sequence in Lemma 3.1 allows to express the arithmetic genus of a union of

two projective sets X,Y ⊂ Pn in terms of the arithmetic genus of X, Y and X∩Y , provided

that this intersection is nice. The best situation is of course when I(X∩Y ) = I(X)+I(Y ).

The following exercises are a sample of how to deal with this method.

Exercise 5.20. Let C,D ⊂ Pn be two curves meeting at a points counted with multi-

plicity. Prove that the arithmetic genus of C ∪D is pa(C) + pa(D) + a− 1.

Exercise 5.21. Defining the arithmetic genus of any homogeneous ideal by just consid-

ering its Hilbert polynomial, prove that the ideal I0 = (X2
3 , X1X3, X2X3, X1X2) (which

appeared in Example 1.23) has arithmetic genus −1. Conclude that the arithmetic genus
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of all the ideals It (in the same exercise) is preserved, while the arithmetic genus of

V (It) = L ∪ Lt) varies (depending on whether t = 0 or not). Hence the arithmetic genus

is preserved when one considers ideals instead of the varieties they define. This shows why

sometimes embedded components are needed.
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6. Product of varieties

We will need to extend all the notions we have seen to products of projective spaces.

We first observe that via the Segre map we can still regard the product of two projective

spaces as a projective set. This can be clearly extended inductively to the product of

an arbitrary number of projective spaces, but we will restrict our attention to just the

product of two, not only because an easy iteration takes care of the general case, but also

and essentially that this will be the case that will be of interest to us.

It is usually better to use intrinsic equations inside products of two projective spaces,

and clearly these equations must be bihomogeneous (in the case of two projective spaces).

The following result states that this way of defining subsets is equivalent to defining pro-

jective sets.

Proposition 6.1. Consider Pn × Pm as a subset of Pnm+n+m via the Segre map. Then

any projective subset of Pnm+n+m that is contained in Pn×Pm is defined as the zero locus

of a set of bihomogeneous polynomials. Reciprocally, any subset of Pn×Pn defined as the

zero locus of a set of bihomogeneous polynomials is a projective set in Pnm+n+m.

Proof: Let X ⊂ Pn × Pm be a projective set of Pnm+n+m defined by homogeneous poly-

nomials F1, . . . , Fs ∈ K[Z00, Z01, . . . , Znm]. For each Fl (l = 1, . . . , s), the substitutions

Zij = XiYj provides a polynomial Gl ∈ K[X0, . . . , Xn, Y0, . . . , Ym], which is bihomoge-

neous of bidegree (dl, dl) if dl = degFl. It is then clear that X is defined in Pn × Pm as

the zero locus of these polynomials.

And reciprocally, suppose X ⊂ Pnm+n+m is defined by bihomogeneous polynomials.

First of all, observe that a bihomogeneous polynomial G ∈ K[X0, . . . , Xn, Y0, . . . , Ym] of

bidegree (a, b), with say a < b, vanishes exactly at the same locus as the polynomials

Xb−a
0 G, . . . ,Xb−a

n G. Hence we can assume that X is defined by bihomogeneous polyno-

mials G1, . . . , Gs ∈ K[X0, . . . , Xn, Y0, . . . , Ym] such that each Gl has bidegree (dl, dl). It is

then clear that each Gl can be obtained from a (not necessarily unique) homogeneous poly-

nomial Fl ∈ K[Z00, Z01, . . . , Znm] of degree dl by means of the substitutions Zij = XiYj .

Then X, as a subset of Pnm+n+m is defined by the polynomials F1, . . . , Fs plus the equa-

tions of the Segre variety (observe that it is strictly necessary to add these equations).

This completes the proof.

Exercise 6.2. Identifying V (X0X3 −X1X2) with the Segre embedding of P1 × P1, find

bihomogeneous equations of the twisted cubic (Example 1.10) and the curve of Exercise

1.14.

We include now as exercises a few representative examples of subsets inside products

that are in fact projective sets. Later on we will not prove (maybe neither mention)

49



that similar subsets are closed, hoping that the reader will have acquired the feeling that

naturally defined (in an algebraic way) subsets are always closed.

Exercise 6.3. Prove that the diagonal of Pn × Pn is a closed set.

Exercise 6.4. Prove that, for any choice of integers k, l, s, the subset of G(k, n)×G(l, n)

consisting of the pairs (Λ,Ω) such that dim(Λ ∩ Ω) ≥ s is a closed set (when considering

each Grassmannian inside its corresponding projective space via the Plücker embedding).

Exercise 6.5. Identifying P(n+d
d )−1 with the set of hypersurfaces of degree d in Pn, prove

that the subset of P(n+d
d )−1 × G(k, n) consisting of pairs (X,Λ) for which Λ ⊂ X is a

projective set.

We can now translate to the bihomogeneous case all the definitions and results that

we had for the homogeneous case.

Definition. The bihomogeneous ideal of a subset X ⊂ Pn × Pm will be the ideal I(X)

generated by all the bihomogeneous polynomials vanishing at all points of X.

Notation. Since we are going to use them very often, we will usually write, when no

confusion arises, S = K[Z00, Z01, . . . , Znm], S = K[X0, . . . , Xn, Y0, . . . , Ym] and will denote

by Φ to the map S → S defined by the substitutions Zij = XiYj . We will use a bar to

indicate that an ideal is in S. We will write M1 = (X0, . . . , Xn) and M2 = (Y0, . . . , Ym).

We remark that, with the above notation, if X ⊂ Pn×Pm, then its homogeneous ideal

I(X) is Φ−1(I(X)). It is not true however that I(X) is the ideal generated by Φ(I(X))

(as Exercise 6.2 shows). All this is implicit in the proof of Proposition 6.1.

Proposition 6.6. Bihomogeneous ideals satisfy the following properties:

(i) Every bihomogeneous ideal is a finite intersection of bihomogeneous primary ideals.

The minimal primes in this decomposition that do not define the empty set provides

the decomposition of V (I) into irreducible components.

(ii) A bihomogeneous ideal I defines the empty set if and only if I contains some power

of M1M2.

(iii) For any bihomogeneous ideal I there exists a polynomial P I ∈ Q[T1, T2] such that for

l1, l2 >> 0 it holds that P I(l1, l2) is the dimension as a K-vector space of the quotient

(S/I)l1,l2 .

Proof: The proof of the primary decomposition goes exactly as in the homogeneous case

(Lemmas 2.4 and 2.5), by just observing that all the ideals involved now in the proof are

bihomogeneous. One also proves as in Lemma 2.2 that V (I) is irreducible if and only if I
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is prime, so that the second part of (i) comes from the uniqueness of the decomposition of

a projective set into irreducible components.

As for (ii), it is clear that any ideal containing a power of M1M2 defines the empty

set. For the converse, assume that no power of M1M2 is contained in I. Then we can

assume after changing coordinates that no power of X0Y0 is contained in I. Consider now

I = Φ−1(I). Then no power of Z00 is contained in I. But then the weak Nullstellensatz

(Theorem 1.24) implies that V (I) 6= ∅. Since V (I) = V (I), this completes the proof of

(ii).

To prove (iii), we first observe that, as in the homogeneous case, parts (i) and (ii) allow

us to remove from the primary decomposition of I all the ideals defining the empty set.

We will prove the existence of the polynomial by induction on dimV (I). As just remarked,

if V (I) = ∅ there is nothing to prove since we can take P I = 0. So assume V (I) 6= ∅. In

particular, we can find a linear formH ∈ K[X0, . . . , Xn] such that no irreducible component

of V (J) is contained in V (H). Therefore the dimension of V (I)∩ V (H) is strictly smaller

than the dimension of V (I) (by Proposition 5.7(iii)). But we have also an exact sequence

0→ S/I(−1, 0)
·X0−→S/I → S/(I + (H))→ 0

(obtained as in Lemma 3.12). We can use now the induction hypothesis to obtain a

polynomial Q ∈ Q[T1, T2] measuring the dimension of (S/(I + (H)))l1,l2 for large values

of l1, l2. On the other hand, if I = Φ−1(I) we have that (S/I)l is isomorphic, via Φ, to

(S/I)l,l. Therefore (iii) will hold if and only if there exists a polynomial P I ∈ Q[T1, T2]

satisfying the conditions:

P I(T1, T2) = P I(T1 − 1, T2) +Q(T1, T2)

P I(T, T ) = PI(T )

(where PI is the Hilbert polynomial of I). Writing Q in the form Q(T1, T2) = A0(T2)
(
T1

0

)
+

A1(T2)
(
T1

1

)
+ . . . + Ad(T2)

(
T1

d

)
(recall the proof of Theorem 3.13) we see that P I must

take the form (in order to satisfy the first property) P I(T1, T2) = C(T2) + A0(T2)
(
T1

1

)
+

A1(T2)
(
T1

2

)
+ . . . + Ad(T2)

(
T1

d+1

)
for some C ∈ Q[T ]. But now the second condition is

equivalent to PI(T ) = C(T ) +A0(T )
(
T
1

)
+A1(T )

(
T
2

)
+ . . .+Ad(T )

(
T
d+1

)
, which univoquely

determines C and hence P I . This completes the proof of the proposition.

Definition. The polynomial P I whose existence has just been proved will be called the

Hilbert polynomial of the bihomogeneous ideal I.

Exercise 6.7. Find the Hilbert polynomial of the bihomogeneous ideals of the curves in

Exercise 6.2.
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Exercise 6.8. Translate to the bihomogeneous case the primary decomposition of Exer-

cise 2.10.

Remark 6.9. In contrast with the homogeneous case, in which there was at most only

one primary component defining the empty set (with radical M), this does not happen in

the bihomogeneous case. From Proposition 6.6(ii), if a primary ideal defines the empty

set then its radical contains M1 ∩M2. Since the radical is prime then we only get that

the radical of this primary ideal contains either M1 or M2. By abuse of notation, will say

that a primary bihomogeneous ideal is Mi-primary (i = 1, 2) if its radical contains Mi.

With this definition, a bihomogeneous primary ideal defines the empty set if and only if it

is M1-primary or M2-primary.

Example 6.10. To see an example of how the above remark affects to the primary

decomposition in the bihomogeneous case, consider in K[t0, t1, s0, s1] the ideal I = (t0s
3
1−

t1s
3
0, t0s1 − t1s0). It can be proved that

I = (t0, s0)∩(t1, s1)∩(t0−t1, s0−s1)∩(t0+t1, s0+s1)∩(t0, t1)∩(t0s1−t1s0, s
3
0, s

2
0s1, s0s

2
1, s

3
1)

Obviously each of the first four ideals represents a point while the last two ideals, even if

they are minimal, represent the empty set (that is the reason of the apparently redundant

condition in the statement of Proposition 6.6(i)). In fact, it can be seen that the above is

the unique primary decomposition for I (for instance consider I as a homogeneous ideal

rather than bihomogeneous, and then it has no embedded components, so it is possible

to use Theorem 2.7). To see the geometry of this example, the reader should have solved

correctly Exercise 6.2 and then take a look at Example 1.22 and Exercise 2.13.

In the same way as in the projective case, we have the following properties of the

Hilbert polynomial (some of them have been already proved implicitly).

Proposition 6.11. Let I ⊂ K[X0, . . . , Xn, Y0, . . . , Ym] be a bihomogeneous ideal and let

X = V (I) ⊂ Pn × Pm be the corresponding projective set.

(i) If F ∈ K[X0, . . . , Xn, Y0, . . . , Ym] is a bihomogeneous polynomial of bidegree (a, b)

not vanishing on any irreducible component of X, then the Hilbert polynomial of

J = I + (F ) is given by P J(T1, T2) = P I(T1, T2)− P I(T1 − a, T2 − b).
(ii) If I = Φ−1(I), then PI(T ) = P I(T, T ). In particular, PX(T ) = PX(T, T ).

(iii) If the total degree of P I is r, then the coefficient of T i1T
r−i
2 is non-negative for any

i = 0, . . . , d.

(iv) The (total) degree of P I is the dimension of X.

(v) (Bihomogeneous Nullstellensatz) If I is a bihomogeneous ideal not defining the empty

set, then IV (I) =
√
I.
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Proof: Part (i) is an immediate consequence of the exact sequence

0→ S/I(−a,−b) ·F−→S/I → S/J → 0

Part (ii) was already proved when showing the existence of the Hilbert polynomial in

Proposition 6.6(iii). Part (iii) is deduced iterating (i), since adding to I suitable bihomo-

geneous forms, i of them of bidegree (1, 0) and r− i of bidegree (0, 1) we get an ideal whose

Hilbert polynomial is constant and equal to i!(r − i)! times the coefficient. Part (iv) is an

easy consequence of (ii) and (iii). And finally the proof of part (v) goes exactly as the one

for Theorem 3.17 and we leave it as an exercise.

Definition. Given a projective set X ⊂ Pn×Pm of dimension r, we will call the multidegree

of X to the (r + 1)-uple of integers (d0, . . . , dr) such that the homogeneous part of degree

r of PX is
∑r
i=0

di
i!(r−i)!T

i
1T

r−i
2 . The number di (which is non-negative by part (iii) of the

above Proposition) represents the number of points, “counted with multiplicity”, in the

intersection of X with the pull-backs of sufficiently general linear subspaces, one of Pn of

codimension i and another one of Pm of codimension r − i.

Exercise 6.12. Prove that a projective set of Pn × Pm has the form V (F ) if and only if

all its irreducible components have dimension n+m− 1. Moreover, if F is square-free of

bidegree (a, b), then V (F ) has bidegree (a, b).

Exercise 6.13. Prove that the arithmetic genus of a curve of bidegree (a, b) in P1 × P1

is (a− 1)(b− 1).

Proposition 6.14. Let X ⊂ Pn, Y ⊂ Pm be two projective sets. Then the Hilbert

polynomial of X × Y in Pn × Pm is given by P (T1, T2) = PX(T1)PY (T2). As a corollary,

dim(X × Y ) = dimX + dimY .

Proof: Take l1, l2 ∈ N large enough so that dimS(X)l1 = PX(l1) and dimS(Y )l2 =

PY (l2). Call these dimensions respectively s and t. Take A1, . . . , As ∈ K[X0, . . . , Xn]l1
forming a basis modulo I(X), and B1, . . . , Bt ∈ K[Y0, . . . , Ym]l2 forming a basis modulo

I(Y ). We first remark that any polynomial in I(X) or I(Y ), regarded as a polynomial in

K[X0, . . . , Xn, Y0, . . . , Ym], clearly belongs to I(X × Y ).

Now, any homogeneous polynomial in K[X0, . . . , Xn, Y0, . . . , Ym] of bidegree (l1, l2)

can be written in the form
∑
PαQα with each Pα ∈ K[X0, . . . , Xn] homogeneous of degree

l1 and Qα ∈ K[Y0, . . . , Ym] homogeneous of degree l2 (e.g. decomposing the polynomial

into monomials). But now each Pα is a linear combination, modulo I(X), of A1, . . . , As,

while each Qα is a linear combination, modulo I(Y ), of B1, . . . , Bt. Therefore, the classes

of the products AiBj (i = 1, . . . , s, j = 1, . . . , t) generate S(X × Y ) as a vector space over
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K. The proposition will be proved as soon as we prove that these generators are linearly

independent.

Hence assume that there exist λij ∈ K (i = 1, . . . , s and j = 1, . . . , t) such that∑
i,j λijAiBj ∈ I(X × Y ). Fix for a while (x0 : . . . : xn) ∈ X. Then we have that the

polynomial
∑
i,j λijAi(x0, . . . , xn)Bj ∈ K[Y0, . . . , Ym] (which is homogeneous of degree l2

belongs to I(Y ). But this yields a linear relation of the classes of B1, . . . , Bt in S(Y )

with coefficients
∑
i λi1Ai(x0, . . . , xn), . . . ,

∑
i λitAi(x0, . . . , xn). Since these classes were

linearly independent (in fact a basis), we deduce that
∑
i λijAi(x0, . . . , xn) = 0 for all

j = i . . . , t. Since this was done for an arbitrary point (x0 : . . . : xn) ∈ X, it follows that

the polynomials
∑
i λijAi ∈ K[X0, . . . , Xn] (homogeneous of degree l1) belong to I(X) for

each j = 1, . . . , t. But again this provides linear relations of the classes of A1, . . . , As in

S(X), from which we obtain λij = 0 for i = 1, . . . , s and j = 1, . . . , t. This proves that the

classes of the products AiBj are independent and concludes the proof of the lemma.

Exercise 6.15. In the situation of the above proposition, prove that I(X×Y ) is generated

by the polynomials in I(X) and I(Y ).

Remark 6.16. For those who are familiar with the tensor product, the proof of the above

proposition is just showing that S(X × Y )l1,l2 is isomorphic to S(X)l1 ⊗ S(Y )l2 (via the

natural isomorphism K[X0, . . . , Xn]⊗K[Y0, . . . , Ym] ∼= K[X0, . . . , Xn, Y0, . . . , Ym]).
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7. Regular maps

Before making the rigorous definition of which maps we should allow between projec-

tive sets, let us study some examples to see what it is natural to require. The only maps

we have seen so far are the Segre and Veronese embeddings. To be consequents with their

names we should even allow them to be isomorphisms onto their images. Let us see what

consequences this would have.

Example 7.1. The Veronese maps are well-defined because they are defined by homoge-

neous polynomials of the same degree. This could look a good definition for a morphism,

but let us see that this is not the case. If we really want a Veronese embedding to be an

isomorphism onto its image, we should be able to define a reasonable inverse. Consider

the easiest nontrivial example, i.e. the double Veronese embedding of P1 as a conic in P2

given by (t0 : t1) 7→ (t20 : t0t1 : t21). The inverse over the image X = V (X0X2 −X2
1 ) can

be defined by (X0 : X1 : X2) 7→ (X0 : X1) when t0 6= 0 (i.e. X0 6= 0 on X), while for

t1 6= 0 (i.e. X2 6= 0) the definition could be (X0 : X1 : X2) 7→ (X1 : X2). Both definitions

coincide in the intersection of the two open sets D(X0) ∩ D(X2) ∩ X, just because the

equation of X says precisely that (X0 : X1) = (X1 : X2). And on the other hand, the two

open sets cover the whole X. As a consequence, we do not have a global definition for the

projection, but it is possible to cover X by open sets in such a way that the map has a

definition on those open sets by homogeneous polynomials.

Example 7.2. About the Segre embedding, it does not have a priori much sense to talk

about isomorphism, since precisely the algebraic structure of a product is given by this

embedding. But however we can extract some conclusion. For instance, consider the Segre

embedding of P1 × P1 defined by ϕ1,1((s0 : s1), (t0 : t1)) = (s0t0 : s0t1 : s1t0 : s1t1)). Its

image in P3 is the quadric Q := V (X0X3 − X1X2). As we said, we intend to use this

Segre embedding to view Q as the product P1×P1. It is then a natural aspiration to want

the projection maps to be considered as “allowable” maps. So let us see how they can be

described. The first projection, for instance, can be defined by (X0 : X1 : X2 : X3) 7→ (X0 :

X2), but this definition works only when t0 6= 0, i.e. outside the line V (X0, X2) (which is

contained in Q). But if t0 = 0, then t1 6= 0, and we can defined the second projection by

(X0 : X1 : X2 : X3) 7→ (X1 : X3). So we find again two alternative definitions of the map,

one outside V (X0, X2) and the other one outside V (X1, X3). And again both definitions

coincide in the intersection of the two open sets (which cover Q) because the equation of

Q says that (X0 : X2) = (X1 : X3).

Definition. A map f : X → Y between quasiprojective sets X ⊂ Pn and Y ⊂ Pm is said

to be a regular map (or simply a morphism) if every point in X has a neighborhood U ⊂ X
such that f(p) = (F0(p) : . . . : Fm(p)) for any p ∈ U (where F0, . . . , Fm ∈ K[X0, . . . , Xn]
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are homogeneous polynomials of the same degree not vanishing simultaneously at any point

of U). A bijective regular map f such that f−1 is also regular is called an isomorphism.

Example 7.3. It is not true in general that a bijective regular map is an isomorphism.

Consider the cuspidal cubic X = V (X0X
2
2 −X3

1 ) ⊂ P2 and the map f : P1 → X defined

by f(t0 : t1) = (t30 : t0t
2
1 : t31). It is clearly a regular bijective map. Let us see that however

its inverse is not regular. First of all, in the open set X2 6= 0 the inverse can be defined by

f−1(x0 : x1 : x2) = (x1 : x2). Assume for contradiction that in a neighborhood of (1 : 0 : 0)

we can find F0, F1 ∈ K[X0, X1, X2] homogeneous of the same degree, say d, such that

f−1(x0 : x1 : x2) = (F0(x0, x1, x2) : F1(x0, x1, x2)) (and hence in particular F0(1, 0, 0) 6= 0

since the inverse image of (1 : 0 : 0) is (1 : 0)). But then it holds that X1F1 − X2F0

vanishes on an open set of X, and hence on the whole X. In other words, X1F1 −X2F0

belongs to I(X). By Exercise 1.13, we have that X1F1−X2F0 = A(X0X
2
2 −X3

1 ) for some

homogeneous polynomial A. We can rewrite this equality as

X1(F1 +X2
1 ) = X2(F0 +X0X2)

from which we deduce that F1 = −X2
1 +BX2 and F0 = −X0X2 +BX1, for some homoge-

neous polynomial B. In particular F0(1, 0, 0) = A0(1, 0) = 0, which is absurd. Hence f−1

is not a morphism and f is not an isomorphism. In fact we will see later (see Theorem

8.15) that P1 and X are not isomorphic).

As we did for closed sets inside products, we invite the reader to check by hand in the

following exercises that the proposed maps are regular, and to believe without prove (but

having the right intuition) that others maps that will appear later on are also regular. Of

course the reader is free to refuse the invitation and check carefully the regularity of all

the maps throughout the notes.

Exercise 7.4. Prove that the Segre and Veronese maps are isomorphisms.

Exercise 7.5. Prove that the projection of Pn×Pm over any of its two factors is a regular

map.

Exercise 7.6. Prove that the linear projection from a linear subspace Λ ⊂ Pn of dimension

r defines a regular map Pn\Λ→ Pn−r−1. More generally, if Z is the set of k-spaces meeting

Λ, prove also that the map G(k, n) \Z → G(k, n− r− 1) is regular. The following exercise

will show how to define in an intrinsic way a linear projection.

Exercise 7.7. Let Λ be a linear of Pn of dimension r and let Z be the set of k-spaces

meeting Λ.

(i) Prove that the map G(k, n) \Z → G(k+ r+ 1, n), obtained by taking the linear span

with Λ, is a morphism.
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(ii) If Λ′ is a linear space of Pn of codimension r + 1, and Z ′ is the set of k′-spaces

containing Λ, then prove that the map Z ′ → G(k′ − r − 1,Λ′) (associating to each

k′-space containing Λ its intersection with Λ′) is an isomorphism.

Lemma 7.8. Let f : X → Y be a morphism of quasiprojective sets X ⊂ Pn, Y ⊂ Pm.

(i) The map f is continuous under the Zariski topology on X and Y . In particular, the

fiber f−1(q) over any point q ∈ Y is closed in X.

(ii) The graph map γf : X → Pn×Pm (defined by γf (p) = (p, f(p))) is regular and induces

an isomorphism between X and its image Γf (called the graph of f), which is a closed

set in X × Y (and therefore quasiprojective in Pn × Pm).

(iii) There exist a projective set X ′, a morphism f : X ′ → Y (Y being the Zariski closure

of Y ), an open subset U of X ′ and an isomorphism γ : X → U of quasiprojective sets

such that f = fγ.

Proof: Let W be a closed subset of Y . In order to prove that f−1(W ) is also closed in

X, take a point p 6∈ f−1(W ). We know then from the definition of morphism that in a

neighborhood U of p in X the map f is defined by homogeneous polynomials F0 . . . , Fm ∈
K[X0, . . . , Xn]. Let G1, . . . , Gs ∈ K[Y0, . . . , Ym] be now a set of generators of I(W ) (which

coincides with I(W )). Then clearly U ∩ f−1(W ) is defined in U by the polynomials

G1(F0, . . . , Fm), . . . , Gs(F0, . . . , Fm) ∈ K[X0, . . . , Xn]. Therefore U ∩ f−1(W ) is closed in

U , and thus we can find a neighborhood V of p in U (and hence also a neighborhood in

X) that does not meet f−1(W ). This shows that f−1(W ) is closed, and hence proves (i).

In order to prove (ii), we first check that the γf is regular. Indeed, any point of X

has by definition a neighborhood U in which f is defined by homogeneous polynomials

F0, . . . , Fm ∈ K[X0, . . . , Xn] of the same degree. Therefore, in the same neighborhood U ,

γf is defined, after the Segre embedding, by the products XiFj , which are all homogeneous

of the same degree (and not vanishing simultaneously at any point of U).

Let us see now that Γf is closed in X × Y . We take then (p, q) 6∈ Γf (i.e. f(p) 6= q).

Choose a neighborhood U ⊂ Pn of p such that f is defined in U ∩ X by homogeneous

polynomials F0, . . . , Fm ∈ K[X0, . . . , Xn] of the same degree, say d. Let Z ⊂ Pn × Pm be

the set defined by the 2× 2 minors of the matrix(
F0 . . . Fm
Y0 . . . Ym

)
.

Since these minors are bihomogeneous of bidegree (d, 1) in K[X0, . . . , Xn, Y0, . . . , Ym], Z is

a projective set, so that the intersection of U × Pm and the complement of Z in Pn × Pm

clearly defines on X × Y an open neighborhood of (p, q) not meeting Γf . Hence the graph

is a closed set in X × Y . Since X × Y is quasiprojective in Pn × Pm, then also the graph

is quasiprojective.
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Finally, it is clear that γf and the first projection are inverse to each other when

restricted to X and Γf , which concludes the proof of (ii).

And for (iii) it is enough to take as X ′ the Zariski closure of Γf , since the projection

to Pm is globally defined, and of course the image of this closure is contained in Y . This

completes the proof of the lemma.

Example 7.9. Let us see how the proof of the above lemma works in practice. So

consider the linear projection of P2 from the point p = (0 : 0 : 1). In equations, we have

f : P2 \ {p} → P1 defined by f(x0 : x1 : x2) = (x0 : x1). Hence the graph Γf ⊂ P2 × P1

is given by the pairs ((x0 : x1 : x2), (y0 : y1)) such that (x0, x1) 6= (0, 0) and (x0 : x1) =

(y0 : y1), the latter condition being equivalent to x0y1 = x1y0. Therefore Γf is an open

set of the projective set B = V (X0Y1 −X1Y0), and via the isomorphism P2 \ {p} ∼= Γf we

can extend f to the second projection map B → P1. Observe that the fiber by the first

projection of a point (x0 : x1 : x2) 6= p is the point ((x0 : x1 : x2), (x0 : x1)), while the fiber

of p = (0 : 0 : 1) is the set E = {p}×P1 (which becomes a line after the Segre embedding).

Interpreting as in Exercise 7.7 P1 with the pencil of lines through p we see that then the

fiber of each point q 6= p is identified with the line < p, q >, while E is naturally identified

with the pencil of lines through p. In other words, we have replaced p with the set of

directions through it (recall that we had an isomorphism B \ E = Γf ∼= P2 \ {p}). The

projective set B is called the blow-up of P2 along p and E is called the exceptional divisor.

It turns out that any regular map can be completed to a morphism between projective

varieties in a similar way, i.e. by a blow-up along the indeterminacy locus (see for instance

[H], Example 7.18).

Exercise 7.10. Prove that, via the Segre embedding, B is contained in a hyperplane

of P5, so that it can be considered as a surface in P4. Prove that any line of P2 passing

through p gives rise to a line inside B meeting E, while any line of P2 not passing through

p gives rise to a nondegenerate conic whose linear span does not meet E. Conclude that B

can then be described in the following way: Fix in P4 a line E and a nondegenerate conic

C in a plane skew with E, and fix also an isomorphism between E and B; then B consists

of the union of the lines joining a point of E with its corresponding point of C.

From part (iii) Lemma 7.8 and what we have remarked in the above example, it is

seems enough to study maps between projective sets. In fact, morphisms of projective sets

have the following nice and important property.

Theorem 7.11. Let f : X → Y be a regular map of projective sets X ⊂ Pn, Y ⊂ Pm.

Then, for any projective set Z ⊂ X, f(Z) is a projective set in Pm (i.e. f is a closed map

for the Zariski topology).
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Proof: Since Z is isomorphic to the graph of f|Z , which is closed in Pn × Pm (both things

by Lemma 7.8), it is enough to prove the theorem in the case in which X = Pn × Pm,

Y = Pm and f is the second projection.

So let Z ⊂ Pn×Pm be a closed set defined by bihomogeneous polynomials F1, . . . , Fs ∈
K[X0, . . . , Xn, Y0, . . . , Ym]. The image of Z will consist of points y = (y0 : . . . : ym) ∈ Pm

for which the homogeneous polynomials F1(X0, . . . , Xn, y), . . . , Fs(X0, . . . , Xn, y) define

a non-empty projective set in Pn. By the weak Nullstellensatz (Theorem 1.24), this is

equivalent to the fact that no power of the ideal M = (X0, . . . , Xn) is contained in the

ideal Iy generated by those polynomials. Therefore f(Z) will be the intersection of the

sets Wd := {y ∈ Pm | Md 6⊂ Iy}. Since an arbitrary intersection of closed sets is closed, it

is then enough to prove that each Wd is closed.

Write Fi =
∑
Gi;i0,...,inX

i0
0 . . . Xin

n (with Gi;i0,...,in ∈ K[Y0, . . . , Ym]) and let di be the

degree in X0, . . . , Xn of the polynomial Fi. The condition y ∈Wd is equivalent to say that

the elements of T = {Xj0
0 . . . Xjn

n Fi(X0, . . . , Xn, y) | i = 1, . . . , s and j0 + . . .+ jn = d−di}
do not form a basis for the vector space Sd of homogeneous polynomials of degree d.

The coordinates of those elements with respect to the base given by all the monomials of

degree d consist of (many) zeros and some numbers of the type Gi;i0,...,in(y0, . . . , yn). The

condition that T is not a basis is equivalent to the vanishing of the maximal minors of

the matrix formed by the coordinates of the elements of T . Hence this condition can be

expressed by homogeneous polynomials of K[Y0, . . . , Ym] (namely polynomial expressions

in the Gi;i0,...,in ’s). Therefore Wd is closed and the theorem is proved.

Remark 7.12. The above result is clearly false if we work in the category of affine sets.

The standard example is to take the affine hyperbola XY = 1 and project onto the x-axis.

Then the image is the whole affine line minus the point 0, which is not an affine set. The

situation can be even more complicated than what this example seems to suggest. Take

for instance the blow-up B of P2 along the point p = (0 : 0 : 1) (see Example 7.9) and

consider the projective set L = V (X0, Y0) ⊂ B. Now restrict the first projection map to

B \L. Its image is then P2 \
(
V (X0)\{p}

)
, i.e. an open set of P2 plus a point in its closure.

In general, one defines a constructible set as a set obtained as a projective set, minus a

projective set, to which previously one has removed a projective set, to which in turn one

has removed... (for instance the image we just have obtained is a constructible set). It

can be proved that, if one wants to work not only with projective sets but with a wider

category (including for instance quasiprojective sets or affine sets), the right category is

the category of constructible sets. In this category, the image of a constructible is always

constructible (see for instance [H], Theorem 3.16).

Remark 7.13. If you think that the situation cannot become worse than what we have
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just described, consider for a while what would happen if you drop the condition that

your field is algebraically closed. So take for instance the real numbers as the ground field

and consider now the example of the apparently innocent circumference X2 + Y 2 = 1.

When you project it to the x-axis what you get is the closed interval [−1, 1], which you

cannot define by just using equalities. You need in fact to use also inequalities, so the you

naturally arrives to the category of semialgebraic sets (naively those defined by equalities

and inequalities of polynomials). It is a hard theorem (which requires the theorem of

elimination of quantifiers in logic) that the image of any semialgebraic set is a semialgebraic

set. The reader interested in this theory can take a look at [BCR].

Exercise 7.14. Prove that any regular function f : X → K over a projective variety

X, where we identify K as the affine line consisting of P1 minus one point, is necessarily

constant (this is a kind of generalization of Liouville’s theorem over the complex numbers).

Example 7.15. One of the main applications of Theorem 7.11 is to use incidence diagrams

to prove that several sets obtained by eliminating quantifiers are projective. For instance,

if we consider inside P(n+d
d )−1 (the projective space of hypersurfaces of degree d in Pn) the

set Z of those hypersurfaces containing a k-plane, this is a projective set. Indeed, we know

from Exercise 6.5 that the subset of P(n+d
d )−1 × G(k, n) of pairs (Λ, X) for which Λ ⊂ X

is a closed set. Hence, its image in P(n+d
d )−1 under the first projection is also a closed set.

But this image is nothing but Z. We will see also later how to get estimates of dimensions

using incidence varieties.

Exercise 7.16. Prove that the set of cones is a closed set inside the projective space of

hypersurfaces of degree d in Pn. Idem for the set of reducible surfaces.

Example 7.17. Another application of both Lemma 7.8(iii) and Theorem 7.11 is that

they allow to define projective sets just on dense subsets. To see a concrete example, let

X ⊂ Pn be a projective set. If ∆ ⊂ X×X is the diagonal, then the mapX×X\∆→ G(1, n)

associating to each pair of points is regular (we leave the proof as an exercise). We know

then that it can be extended (after some isomorphism) to a regular map Z̃ → G(1, k). The

image is then a projective set SX ⊂ G(1, n), which contains as a dense subset the image

of the original map.

We prove now some first properties of morphisms among projective sets.

Proposition 7.18. Let f : X → Y be a morphism between projective sets X ⊂ Pn and

Y ⊂ Pm.

(i) If Z is an irreducible closed subset of X, then also f(Z) is irreducible.

(ii) For any closed subset Z ⊂ X, dim f(Z) ≤ dimZ. In particular, isomorphisms preserve

dimensions.
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(iii) For any k ∈ Z, the set Zk of points of Y whose fiber has dimension at least k is a

projective set.

Proof: Since the restriction of a morphism to any projective set is also a morphism, it is

clear that it is enough to prove (i) and (ii) in the case Z = X. So assume first that f(X)

(which is closed by Theorem 7.11) is a nontrivial union of two projective sets W1 and W2.

Then X will also be the nontrivial union of f−1(W1) and f−1(W2), which are closed by

Lemma 7.8(i). This contradicts the assumption that X is irreducible and proves that f(X)

is irreducible, i.e. (i).

To prove (ii), write r = dim f(Z). Take Z ′r ⊂ f(Z) an irreducible component of

f(Z) of dimension r. It could happen that f−1(Z ′r) is not irreducible, but its image is

Z ′r, which is irreducible. Therefore there exists an irreducible component Zr of f−1(Z ′r)

such that f(Zr) = Z ′r. We restrict our attention to the restriction f|Zr
: Zr → Z ′r. Take

now Z ′r−1 an irreducible set of Z ′r of dimension r− 1. By the same reason as above, there

is a component Zr−1 of f−1
|Zr

(Z ′r−1) mapping onto Z ′r−1 (and in particular Zr−1 ⊆/ Zr).
Iterating the process, we find a chain Z0 ⊆/ Z1 ⊆/ . . . ⊆/ Zr of irreducible sets of Z, so that

dimZ ≥ r, which proves (ii).

For part (iii) recall from Proposition 5.7(vi) that f−1(y) has dimension at least k if and

only if it meets all linear subspaces of Pn of codimension k. Hence Zk is the intersection of

all the sets ZΛ = f(X ∩Λ), as Λ varies in G(n−k, n). Since each ZΛ is closed by Theorem

7.11, (iii) follows immediately.

Exercise 7.19. Given a projective set X ⊂ Pn, prove that the set of linear spaces of

dimension k meeting X in a set of dimension at least r is a projective set of G(k, n) for

each r ∈ N.

We prove now a lemma, which will be crucial to prove the important Theorem 7.21

and will be also used in Chapter 8. It gives a very intuitive notion of dimension: it is the

dimension of a projective space to which it is possible to map our variety in such a way

that all fibers are finite.

Lemma 7.20. Let X ⊂ PnK be a projective set of dimension r and let F0, . . . , Fr ∈
K[X0, . . . , Xn] be homogeneous polynomials of the same degree d such that X does not

meet V (F0, . . . , Fr).

(i) The morphism f : X → PrK defined by

f(a0 : . . . : an) = (F0(a0, . . . , an) : . . . : Fr(a0, . . . , an))

is surjective.
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(ii) For any y ∈ Pr the fiber f−1(y) is a finite number of points.

(iii) If X is irreducible, for any homogeneous polynomial G ∈ K[X0, . . . , Xn] of degree d,

the image of the map f ′ : X → Pr+1
K defined by

f ′(a0 : . . . : an) = (F0(a0, . . . , an) : . . . : Fr(a0, . . . , an) : G(a0, . . . , Xn))

is an irreducible hypersurface in Pr+1
K not containing the point (0 : . . . : 0 : 1).

Proof: Let y ∈ Pr any point of Pr. After a linear change of coordinates (which will

change F0, . . . , Fr in other polynomials of degree d with the same property of defining a

projective set not meeting X), we can assume that y = (1 : 0 : . . . : 0). Then f−1(y) =

V (F1, . . . , Fr) ∩ X, which is not empty by Proposition 5.7(viii)). This proves (i). But

f−1(y) cannot have dimension at least one, since this would imply, by the same reason,

that V (F1, . . . , Fr) ∩X should meet V (F0), contrary to our hypothesis. Hence (ii) holds.

Part (iii) is analogous. Indeed we know that f ′(X) is irreducible and projective, and

its dimension is at most r. Since the inverse image of a line (i.e. the intersection of

r hyperplanes of Pr+1
K ) is the intersection of X with r hypersurfaces of PnK of degree d,

it follows that it is not empty. Hence any line meets the image of f ′, hence f ′(X) has

dimension r, and being irreducible it is an irreducible hypersurface (see Proposition 5.9).

The hypothesis X ∩ V (F0, . . . , Fr) = ∅ implies that the point (0 : . . . : 0 : 1) is not in the

image of f ′, as wanted.

The following result is a much stronger version of Proposition 5.7(ii). It will imply

that many statements about the dimension of projective sets can in fact be generalized to

any of the components of the projective set itself. This will allow us to work often just

locally instead of with the whole projective set we will be dealing with (for instance when

we will study the tangent space at a point).

Theorem 7.21. Let X ⊂ Pn be a projective variety of dimension r and let V (F ) be a

hypersurface not containingX. Then any irreducible component ofX∩V (F ) has dimension

r− 1. As a corollary, the components of the intersection of X with s hypersurfaces will all

have dimension at least r − s.

Proof: Let X ∩ V (F ) = X1 ∪ . . . ∪Xs be the decomposition into irreducible components.

Assume for contradiction that for instance dim(Xs) ≤ r − 2. Since Xs 6⊂ X1 ∪ . . . ∪Xs−1,

then I(X1) ∩ . . . ∩ I(Xs−1) 6⊂ I(Xs). We thus can find a homogeneous polynomial G ∈
I(X1) ∩ . . . ∩ I(Xs−1) \ I(Xs). After replacing F with F deg(G) and G with Gdeg(F ), we

can assume that F and G has the same degree. We now take a family F0, . . . , Fr = F of

homogeneous polynomials of degree d such that X ∩ V (F0, . . . , Fr) = ∅. We construct the

following morphisms:
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–The map Xs → Pr−1 defined by (F0 : . . . : Fr−1), which cannot be surjective because

dim(Xs) ≤ r−2. If P ∈ K[T0, . . . , Tr−1] is a nonzero homogeneous polynomial in the ideal

of the image, then it follows P (F0, . . . , Fr−1) ∈ I(Xs). Therefore P (F0, . . . , Fr−1)G ∈
I(X ∩ V (Fr)), hence there exists m such that P (F0, . . . , Fr−1)mGm ∈ I(X) + (Fr). We

can thus write

P (F0, . . . , Fr−1)mGm ≡ HFr (mod I(X)) (∗)

for some homogeneous polynomial H of degree say l.

–The map X → Pr+1 defined by (F l0 : . . . : F lr : Hd), whose image, by Lemma 7.20, is

an irreducible hypersurface not containing (0 : . . . : 0 : 1). Let Q ∈ K[T0, . . . , Tr+1] be the

equation of that hypersurface, which we write as a polynomial in Tr+1:

Q = Ae +Ae−1Tr+1 + . . .+A1T
e−1
r+1 +A0T

e
r+1

where each Ai is a homogeneous polynomial of degree i in K[T0, . . . , Tr], and A0 6= 0. We

thus have

Ae(F
l
0, . . . , F

l
r) +Ae−1(F l0, . . . , F

l
r)H

d + . . .+A1(F l0, . . . , F
l
r)H

d(e−1) +A0H
de ∈ I(X).

Multiplying by F der and taking congruences modulo I(X) (see (*)) we get

Ae(F
l
0, . . . , F

l
r)F

de
r +Ae−1(F l0, . . . , F

l
r)F

d(e−1)
r P (F0, . . . , Fr−1)mdGmd + . . .+

+A1(F l0, . . . , F
l
r)F

d
r P (F0, . . . , Fr−1)md(e−1)Gmd(e−1) +A0P (F0, . . . , Fr−1)mdeGmde ≡ 0.

This means that the polynomial

R := Ae(T
l
0, . . . , T

l
r)T

de
r +Ae−1(T l0, . . . , T

l
r)T

d(e−1)
r P (T0, . . . , Tr−1)mdTmdr+1 + . . .+

+A1(T l0, . . . , T
l
r)T

d
r P (T0, . . . , Tr−1)md(e−1)T

md(e−1)
r+1 +A0P (T0, . . . , Tr−1)mdeTmder+1

is in the ideal of the image of the map X → Pr+1 defined by (F0 : . . . : Fr : G). By

Lemma 7.20, that ideal is generated by an irreducible polynomial R′ that is monic in the

variable Tr+1, i.e. R is divisible by R′. Since modulo (Tr) the polynomial R is the nonzero

monomial A0P (T0, . . . , Tr−1)mdeTmder+1 , this means that modulo (Tr) the polynomial R′ is

also a monomial of the form T cr+1. Therefore R′ takes the form

R′ = Bc−1(T0, . . . , Tr)Tr +Bc−2(T0, . . . , Tr)TrTr+1 + . . .+B0(T0, . . . , Tr)TrT
c−1
r+1 + T cr+1

with each Bi homogeneous of degree i. This implies that

Bc−1(F0, . . . , Fr)Fr +Bc−2(F0, . . . , Fr)FrG+ . . .+B0(F0, . . . , Fr)FrG
c−1 +Gc ∈ I(X)
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so that G is in the radical of I(X) + (Fr), which is the ideal of X ∩V (Fr), contrary to the

assumption G /∈ I(Xs).

Remark 7.22. Observe that the above theorem does not imply that all the primary

components of I(X)+(F ) has dimension r−1. In fact Exercise 2.13 shows that this is not

true. If this example does not convince you because the extra component has dimension

−1, just take the same equations in K[X0, X1, X2, X3, X4] (i.e. consider a cone over the

curve X) to obtain a surface in P4 whose intersection with a hyperplane has an embedding

component (corresponding to the point (0 : 0 : 0 : 0 : 1), the vertex of the cone).

Remark 7.23. The proof of Theorem 7.21 can be adapted to prove that, if X ⊂ Pn×Pm

is irreducible of dimension r and F is a bihomogeneous outside I(X), then any irreducible

component of X ∩ V (F ) has dimension r− 1. If F has bidegree (a, a) then the result is in

fact an immediate consequence of Theorem 7.21, since then we can regard X∩V (F ) as the

intersection in Pnm+n+m of the image of X under the Segre embedding and a hypersurface

V (G), where G is a homogeneous polynomial of degree a whose restriction to Pn × Pm

coincides with F . If instead F has bidegree (a, b) for instance with a < b, we can also

conclude by observing that any component of V (F ) is a components of the intersection of

X with some V (Xb−a
i F ), i = 0, . . . , n. We will see in Proposition 10.9 a much stronger

generalization of Theorem 7.21.
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8. Properties of morphisms

We start this chapter by proving that the local definition of regular map can be

extended to a global definition when the source is the whole projective space.

Proposition 8.1. Let f : Pn → Pm be a regular map. Then there exist homogeneous

polynomials F0, . . . , Fm ∈ K[X0, . . . , Xn] of the same degree such that f(x0, . . . , xn) =

(F0(x0, . . . , xn) : . . . : Fm(x0, . . . , xn)) for any (x0 : . . . : xn) ∈ Pn.

Proof: From the definition of regular map, for any x = (x0 : . . . : xn) we can find

F0, . . . , Fm defining f in an open neighborhood of x. Dividing by the greatest common

divisor, we can assume that F0, . . . , Fm have no common irreducible factors. We take

now two arbitrary points x, x′ ∈ Pn, and want to prove that the corresponding (local)

homogeneous polynomials are proportional, in the sense that there exists λ ∈ K such that

F ′i = λFi for each i = 0, . . . ,m. We first observe that the matrix(
F0 . . . Fm
F ′0 . . . F ′m

)
has rank one at any point y in the (non-empty) intersection of the open neighborhoods

of x and x′. Therefore all the minors FiF
′
j − FjF ′i are zero in that open set, and hence

they are identically zero. In order to be able to use linear algebra, we have to regard the

homogeneous polynomials as elements of the field K = {AB | A and B are homogeneous

polynomials}. We thus now that there exists A
B ∈ K (we can assume A and B to be

coprime) such that AF ′i = BFi for each i = 0, . . . ,m. But since no factor of A (resp. B)

can divide neither B (resp. A) nor all the Fi’s (resp. F ′i ’s) it follows that A and B are

constants, just proving the proposition.

Exercise 8.2. Prove that any regular map f : Pn × Pm → Pr is globally defined by r + 1

bihomogeneous polynomials of the same bidegree.

The same proof as in Proposition 8.1 yields a stronger statement in case n = 1.

Proposition 8.3. Let f : U → Pn be a regular map defined on an open set U of P1. Then

there exists a morphism P1 → Pn such that its restriction to U coincides with f .

Proof: Let F0, . . . , Fn ∈ K[X0, X1] be homogeneous polynomials of the same degree, with

no common factors, defining f in some open set, maybe smaller than U . The difference

now with the proof of Proposition 8.1 is that the fact that F0, . . . , Fn has no common

factors is equivalent to say that there is no (a0 : a1) ∈ P1 vanishing at all of them (for

otherwise a1X0 − a0X1 would be a common factor). Hence we can repeat the proof of

Proposition 8.1 to conclude that the map defined by F0, . . . , Fn extends f .
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It seems natural that the dimension statements of Proposition 7.18 could be improved

in the sense that the dimension of the source of a (surjective) morphism must be the sum

of the dimension of the target plus the dimension of a general fiber. This is what we will

prove in the next theorem.

Theorem 8.4. Let f : X → Y be a surjective morphism between projective sets X ⊂ Pn

and Y ⊂ Pm.

(i) For any y ∈ Y , the fiber f−1(y) has dimension at least dimX−dimY . Moreover, if X

is irreducible, all the components of any f−1(y) have dimension at least dimX−dimY .

(ii) For k = dimX−dimY , the open set Y \Zk+1 of points of Y with k-dimensional fiber

is not empty (in other words, the dimension of X is the dimension of the image Y

plus the dimension of a general fiber).

(iii) If Y is irreducible and all the fibers of f are irreducible of the same dimension c, then

X is irreducible of dimension c+ dimY .

Proof: Clearly it is enough to prove (i) and (ii) when X is irreducible. Since from Lemma

7.20 and Proposition 5.7(vi) we have a morphism g : Y → Pm (where m = dimY ) having

finite fibers, it is enough to prove parts (i) and (ii) when Y is a projective space. Indeed,

given z ∈ Ps, if g−1(z) = {y1, . . . , yk}, then (gf)−1(z) = f−1(y1)∪. . .∪f−1(yk). Therefore,

since the above union is disjoint, the irreducible decomposition of (gf)−1(z) is the union

of the irreducible decompositions of f−1(y1), . . . , f−1(yk). Hence irreducible components

of fibers of f are irreducible components of fibers of gf and viceversa. And clearly as an

open set satisfying the statement in (ii) it is enough to take the inverse image by g of the

open set found for Pm.

So if f : X → Pm is a surjective morphism, the fiber over a point y ∈ Pm is isomorphic

to the intersection of the graph Γf ⊂ Pn×Pm with Pn×{y}. But the latter is just obtained

as the intersection of m bihomogeneous forms in K[X0, . . . , Xn, Y0, . . . , Ym] of bidegree

(0, 1). Hence part (i) and (ii) comes by Proposition 6.11 and Remark 7.23. Indeed, if the

bihomogeneous forms are good enough (it is enough to take them in an iterative way not

containing any irreducible component of the previous intersection) then their intersection

will define a point y ∈ Pm such that all the components of its fiber have dimension exactly

dimX −m. Hence the set Y \ Zk+1 is not empty, proving (ii). On the other hand, if at

some step the intersection is not good, the dimension of some component could remain the

same, hence we have that, for any y ∈ Pm, all the components of f−1(y) have dimension

at least dimX −m, proving (i).

In order to prove (iii) we go back to the situation in which Y is not necessarily Pm,

but making now the assumption that it is irreducible. For any irreducible component Zi of

X, consider either Y \f(Zi) if f|Zi
is not surjective or otherwise the open subset Vi ⊂ Y on
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which dim(f−1(y)∩Zi) = dimZi−dimY (which is not empty by part (ii)). Take y0 ∈
⋂
i Vi.

Since by assumption f−1(y0) is irreducible of dimension c, it follows that f−1(y0) (which

is the union of the fibers of all the f|Zi
’s) coincides with some f−1(y0)∩Zi0 . In particular,

f|Zi0
is surjective and c = dimZi0 − dimY . Hence from part (i) dim(f−1(y) ∩ Zi0) ≥ c

for any y ∈ Y . But since f−1(y) is irreducible of dimension c, it follows immediately that

f−1(y) = f−1(y) ∩ Zi0 for any y ∈ Y . In other words, all the fibers of f are contained in

Zi0 , which implies that Zi0 is the only irreducible component of X, and part (iii) is then

proved.

Exercise 8.5. Prove that G(k, n) is irreducible of dimension k(n − k) [Hint: some

induction argument could be very useful].

Exercise 8.6. For any k, n ∈ N, find a bound d(k, n) such that for any d ≥ d(k, n) there

exist hypersurfaces of degree d in Pn not containing any linear space of dimension k. For

n = 3, k = 1 find a sharp bound [Hint: it could be useful to prove that V (X3
0 +X3

1 +X3
2 +X3

3 )

contains a finite number of lines, namely 27].

Exercise 8.7. Prove that the projective set of matrices (n + 1) × (m + 1) of rank at

most k (see Example 1.7) is irreducible and has codimension (n + 1 − k)(m + 1 − k).

Find the corresponding codimension when the matrices are symmetric (Example 1.7) or

skew-symmetric (Example 1.15).

Exercise 8.8. Prove that the set of k-planes in Pn meeting a fixed linear space of

dimension r in a linear space of dimension at least s (with r+ k− n ≤ s ≤ min{k, r}) is a

projective variety of codimension (s+ 1)(n− k − r + s) in G(k, n).

Exercise 8.9. Prove that, for s = 0, the result in the above exercise remains true when

replacing the linear space of dimension r by an arbitrary variety of dimension r.

We want to generalize now Theorem 8.4 proving that not only the dimension of the

fiber is constant in an open set of the target, but even the whole Hilbert polynomial. For

this we will need to fix some general set-up.

Definition. The rational function field K(X) of a projective variety X ⊂ Pn is the field

consisting of the quotients of homogeneous elements of S(X) with the same degree.

If now we have a surjective morphism f : X → Y between two projective sets, after

replacing X with its graph we can assume that X is a projective set inside Pn × Pm and

that f is the restriction of the projection onto the second factor. We have then a natural

inclusion S(Y ) ↪→ S(X). If Y is irreducible, we can consider the (classes of) polynomials in

K[X0, . . . , Xn, Y0, . . . , Ym] as (classes of) polynomials in K(Y )[X0, . . . , Xn]. We can hence
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extend S(X) to a quotient Sf of the polynomial ring K(Y )[X0, . . . , Xn] by the ideal If

generated by the polynomials in I(X).

Definition. We will call the Hilbert function of the morphism f to the Hilbert function

hf of If , and the Hilbert polynomial of f to the Hilbert polynomial Pf of If (recall from

Remark 3.14 or Chapter 4 that the Hilbert polynomial exists even if the field K(Y ) is not

algebraically closed).

The main result is that the Hilbert function and polynomial of a regular map are

exactly the ones of a general fiber. We need however to be careful about our definition of

fiber.

Definition. The fiber ideal of a surjective morphism f : X → Y at a point y ∈ Y is the

ideal Iy obtained from If by substituting the variables Y0, . . . , Yn by the coordinates of y.

Observe that V (Iy) coincides with f−1(y) (as subsets in Pn), but it is not true in general

that I(f−1(y)) = Iy.

Example 8.10. Let us give an example to clarify the above concepts. Consider f : P1 →
P1 the map given by f(X0 : X1) = (X2

0 : X2
1 ). Its graph Γf ⊂ P1 × P1 is thus given

by V (X2
0Y1 − X2

1Y0). The ideal If ⊂ K(P1) is generated by X2
0 − X2

1
Y0

Y1
or Y1

Y0
X2

0 − X2
1

(depending on our convenience, we can choose whatever we want, since they are propor-

tional). This generator is irreducible and the Hilbert polynomial Pf of If is constant

equal to 2. In fact, also the Hilbert polynomial of the ideal Iy ⊂ K[X0, X1] generated by

Fy = X2
0y1 − X2

1y0 is two for any y = (y0 : y1) ∈ P1. But for y = (1 : 0) or y = (0 : 1)

(and only for these values), the polynomial Fy has a double root. This is just saying that

the fiber of f consists of two points for any y ∈ P1, the two points being infinitely close

for those two particular values.

Theorem 8.11. Let f : X → Y be a surjective morphism of projective sets, and assume

Y is irreducible.

(i) For any l >> 0, there exists an open set Vl ⊂ Y such that for any y ∈ Vl it holds

hy(l) = hf (l).

(ii) There exists an open set V ⊂ Y such that the Hilbert polynomial of Iy is Pf for any

y ∈ V .

Proof: Fix l ∈ N, and choose monomials M1, . . . ,Ms of degree l in X0, . . . , Xn such that

their classes modulo If form a basis of (Sf )l over K(Y ) (of course we can do so, since

the monomials of degree l generate (Sf )l). To prove (i) we will see that the classes of

M1, . . . ,Ms modulo Iy will be a basis of (S/Iy)l for y in a suitable open set Vl ⊂ Y .

We will see first under which conditions the classes of M1, . . . ,Ms generate (S/Iy)l.

We first observe that any monomial M of degree l can be written as G1M1 + . . .+GsMs+
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H1F1+. . .+HtFt, where G1, . . . , Gs ∈ K(Y ), H1, . . . ,H∈K(Y )[X0, . . . , Xn] and F1, . . . , Fs

is a system of generators of I(X). For the values of y in the open set VM consisting of

the points not vanishing at the denominators of G1, . . . , Gs, H1, . . . ,Ht, it also holds that

M can be written modulo Iy as a linear combination of M1, . . . ,Ms with coefficients in K.

The first open set V ′l we are looking for is just take the (finite) intersection of the open

sets VM .

To complete the proof of (i) we have to check the linear independency of the classes

of M1, . . . ,Ms modulo Iy over K. The fact that they are linearly independent modulo If
over K(Y ), is equivalent (knowing that they generate) to the fact that the linear subspace

of W ⊂ K(Y )[X0, . . . , Xn]l generated by the products of each Fi with all the monomials

of degree l−degFi (we take for this l bigger than the maximum of the degrees of the Fi’s)

has dimension
(
n+l
n

)
− s. This condition can be expressed by vanishing suitable minors of

a matrix with entries in K(Y ). Taking an open set Vl ⊂ V ′l in which no denominator of

the entries of this matrix vanishes, we get that for each y ∈ Vl the classes of M1, . . . ,Ms

modulo Iy over K are also linearly independent.

To prove (ii), we first take l0 such that for l ≥ l0 it holds hf (l) = Pf (l). We observe

that this l0 can be taken depending on the maximum negative twist appearing in a free

resolution of Sf as a graded K(Y )[X0, . . . , Xn]-module (recall that in Theorem 4.3 the

ground field did not need to be algebraically closed). It is not difficult to see (but we

will not check the details here) that such a resolution remains exact when specializing

for points y in an open set V ′ ⊂ Y . This means that also hy(l) = Py(l) if l ≥ l0 and

y ∈ V ′. Obviously, all these Hilbert polynomials have degree at most n, so that they are

determined by their values in n+ 1 points (if you want to be accurate, after shrinking the

open set of Y and using Theorem 8.4(ii) the degree is bounded by dimX − dimY ). It

is thus clear that the open set V = V ′ ∩
(⋂l0+n

l=l0
Vl
)

satisfies the wanted property. This

completes the proof.

Definition. A regular map f : X → Y is flat if the Hilbert polynomial of Iy is Pf for any

y ∈ Y .

Example 8.12. From this point of view Example 1.23 should be clearer now. First we

homogenize it to obtain a morphism of projective sets. We thus consider X ⊂ P3 × P1

defined by the ideal (X1X2, X1X3, Y0X2X3 − Y1X0X2, Y0X
2
3 − Y1X0X3) (it can be shown

that it is radical). We consider then the map f : X → P1 induced by the projection onto the

second factor. For any y 6= (1 : 0), the ideal Iy is the ideal of two skew lines, so with Hilbert

polynomial 2l+ 2, while for y = (1 : 0) we get the ideal I(1:0) = (X1X2, X1X3, X2X3, X
2
3 ),

which is not radical, but we observed in Exercise 5.21 that its Hilbert polynomial is also

2l + 2. Therefore f is a flat morphism.
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We end this chapter by proving that the arithmetic genus of a projective set is, despite

of its definition in terms of the Hilbert polynomial, invariant under isomorphisms. At a

first glance it could seem trivial, since, given a morphism X → Y , there are natural

isomorphisms between S(X)l and S(Γf )l,0, and between S(Y )l and S(Γf )0,l. However this

is not enough to conclude, since we only now that PΓf
(l1, l2) gives the dimension of S(Γf )

for big values of l1 and l2, but not necessarily for l1 = 0 or l2 = 0. The key observation will

be thus to observe that the graph of f , when intersected with hypersurfaces of bidegree

(0, 1) will never produce M2-primary components (see the Remark 6.9). We will prove

first some lemmas.

Lemma 8.13. Let f : X → Y be a regular map between to projective sets X ⊂ Pn and

Y ⊂ Pm. Assume that there exists an affine open set D(F ) ⊂ Pn such that f(X∩D(F )) ⊂
D(Y0) (i.e. the image is contained in an affine space). Then there exist homogeneous

forms F0, . . . , Fm ∈ K[X0, . . . , Xn] of the same degree such that f(x0 : . . . : xn) =

(F0(x0, . . . , xn) : . . . : Fm(x0, . . . , xn)) for any (x0 : . . . : xn) ∈ D(F ), and moreover

F0 can be taken to be a power of F .

Proof: For any x ∈ X ∩ D(F ) we can find a neighborhood X ∩ D(G) of x on which

f is defined by homogeneous polynomials G0, . . . , Gm ∈ K[X0, . . . , Xn]. Multiplying all

these polynomials by G and changing G by GG0 we can assume that G = G0 and that

G0(x′) = . . . = Gm(x′) = 0 if x′ 6∈ D(G). We can then cover X ∩D(F ) =
⋃
i(X ∩D(Gi0))

with open sets of the above form, i.e. such that on X ∩ D(Gi0) the map f is defined

by homogeneous polynomials Gi0, . . . , Gim. The obvious inclusion X ∩ (
⋂
i V (Gi0)) ⊂

V (F ) implies that F belongs to the homogeneous ideal of X ∩ (
⋂
i V (Gi0)), which by the

Nullstellensatz (Theorem 3.17) is the radical of the sum of I(X) and the ideal generated

by the Gi0’s. Hence we have an expression of the form F d = H +
∑
iHiGi0, where the

sum is finite, H ∈ I(X) and the Hi’s are homogeneous polynomials. It is then clear that

we can take Fj =
∑
iHiGij for each j = 0, . . . ,m. Indeed, for any x ∈ X ∩ D(F ) we

have that H(x) = 0, and that either Gi0(x) = . . . = Gim(x) = 0 (if x 6∈ D(Gi0)) or

f(x) = (Gi0(x) : . . . : Gim(x)) (if x ∈ D(Gi0)).

Lemma 8.14. Let f be a morphism between projective sets X ⊂ Pn and Y ⊂ Pm

and let Γf ⊂ Pn × Pm be its graph. For any s = 0, . . . ,m, consider the ideal J =

I(Γf ) + (Ys+1, . . . , Ym)

(i) If V (J) 6= ∅, then J has at most one M2-primary component, and necessarily with

radical M1 + M2.

(ii) If V (J) = ∅, then any primary component of J either contains M2 or is M1-primary.

Proof: For part (i), assume I(Γf ) + (Ys+1, . . . , Ym) = I ′ ∩ I0, with I ′ an M2-primary

component and I0 the intersection of the remaining components. Then we can find a
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bihomogeneous polynomial F ∈ I0 \ I ′. We take then an F of bidegree (a, b) with the

condition that b is minimum among all the bihomogeneous polynomials not belonging to

I ′ but belonging to all the primary components of I(Γf ) + (Ys+1, . . . , Ym) that are not

M2-primary. I claim that if
√
I0 6= M1 + M2 then b = 0.

Indeed, assume b > 0. Then we can write F = Y0G0 + . . . + YmGm for some homo-

geneous polynomials. Now the idea is to substitute in the above equality Y0, . . . , Ym with

a local representation F0, . . . , Fm for the map f , thus getting a polynomial with smaller

b. Clearly X is covered by principal sets D(F ′) as in the statement of Lemma 8.13 (i.e.

principal sets whose image by f is contained in some principal set). Therefore by the weak

Nullstellensatz (Theorem 1.24) I(X) and those F ′ generate an (X0, . . . , Xn)-primary ideal.

Since all the polynomials in I(X) are also in I(Γf ) (and hence in I ′) it follows that we

can find such an F ′ not in
√
I ′. In other words, in D(F ′) we have that f is defined by

homogeneous polynomials F ′0, . . . , F
′
m with F ′0 being a power of F ′. We can also multiply

if necessary all these polynomials by F ′ to conclude that the minors of the matrix(
Y0 . . . Ym
F ′0 . . . F ′m

)
belong to I(Γf ). Therefore, modulo I(Γf ) (and thus also modulo I ′) we have that F ′0F =

Y0F
′
0G0 + . . .+YmF

′
0Gm ≡ Y0(F ′0G0 + . . .+F ′mGm). Since F ′0F 6∈ I ′ (because I ′ is primary,

F ′ 6∈
√
I ′ and F 6∈ I ′) it follows that F ′0G0 + . . . + F ′mGm 6∈ I ′. In a similar way we then

get that Yi(F
′
0G0 + . . .+ F ′mGm) ≡ F ′iF modulo I(Γf ) for each i = 0 . . . ,m. This implies

that F ′0G0 + . . .+ F ′mGm belong to all the primary components of I(Γf ) + (Ys+1, . . . , Ym)

that are not M2-primary. Since it has bidegree (a′, b − 1), this is a contradiction, which

proves the claim.

We can therefore find a homogeneous polynomial F ∈ K[X0, . . . , Xn] such that, re-

garded as a polynomial in K[X0, . . . , Xn, Y0, . . . , Ym], does not belong to I ′ but belongs

to all the primary components of I(Γf ) + (Ys+1, . . . , Ym) that are not M2-primary. In

particular, F 6∈ I(Γf )+(Ys+1, . . . , Ym), but F ∈
√
I(Γf ) + (Ys+1, . . . , Ym). But, as F does

not depend on Y0, . . . , Ym, it follows that it belongs to
√
I(Γf ), which is a radical ideal.

Hence F ∈ I(Γf ) ⊂ I(Γf ) + (Ys+1, . . . , Ym) ⊂ I ′, and we thus get a contradiction. This

finishes the proof of (i).

As for (ii), let I ′ be a primary component of J = I(Γf ) + (Ys+1, . . . , Ym) and assume

it is not M1-primary and that M2 6⊂ I ′. This means that there exists a point a = (a0 : . . . :

an) ∈ Pn vanishing on all the polynomials of I ′ ∩ K[X0, . . . , Xn]. Since this ideal clearly

contains I(X) it follows that (a0 : . . . : an) ∈ X. Let F ′0, . . . , F
′
n represent f locally around

(a0 : . . . : an). As we have remarked in part (i), we can also assume that the minors of(
Y0 . . . Ym
F ′0 . . . F ′m

)
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belong to I(Γf ), and hence to I ′. In particular, since Ys+1, . . . , Ym are in I ′ and some

other Yi does not belong to I ′ (because we are assuming M2 6⊂ I ′), we conclude that

F ′s+1, . . . , F
′
m ∈
√
I ′ (because I ′ is primary). Thus F ′(a0, . . . , an) = . . . = F ′(a0, . . . , an) =

0, which implies that f(a) ∈ V (Ys+1, . . . , Ym). But then (a, f(a)) ∈ V (J), which is a

contradiction. This proves (ii) and hence the lemma.

Theorem 8.15. Let f be a morphism between projective sets X ⊂ Pn and Y ⊂ Pm and

let Γf ⊂ Pn × Pm be its graph.

(i) The Hilbert polynomials PX ∈ Q[T ] of X in Pn, and PΓf
∈ Q[T1, T2] of Γf in Pn×Pm

are related by PX(T ) = PΓf
(T, 0).

(ii) If f is an isomorphism, then pa(X) = pa(Y ).

Proof: We already observed that S(X)l and S(Γf )l,0 are canonically isomorphic. Hence it is

enough to prove that dimS(Γf )l,0 = PΓf
(l, 0) for big values of l. We first take a hyperplane

(which we assume to be V (Ym) after changing coordinates) in Pm not containing any

component of the image of f . In other words V (Ym), as a hypersurface in Pn × Pm, does

not contain any component of Γf . We then have an exact sequence

0→ S(Γf )(0,−1)
·Ym−→S(Γf )→ S/(I(Γf ) + (Ym))→ 0

proving that

dimS(Γf )l1,l2 − dimS(Γf )l1,l2−1 = dim (S/(I(Γf ) + (Ym)))l1,l2

for any l1, l2 (it is important that we do not need to assume l2 big enough). We just try

to repeat now the same procedure by intersecting with another hyperplane of Pm, but

we find immediately a problem: I(Γf ) + (Ym) could have embedded components. But

thanks to Lemma 8.14(i) we can find another hyperplane, say V (Ym−1) such that Ym−1 is

not in any associated prime of I(Γf ) + (Ym) except maybe in M1 + M2. But now, if I ′

is the (M1 + M2)-primary component of I(Γf ) + (Ym) and I0 is the rest of the primary

components, then we have an exact sequence

0→ S/I0(0,−1)
·Ym−1−→ S/I0 → S/I0 + (Ym−1))→ 0

And on the other hand the epimorphism S/I0 → S/(I(Γf ) + (Ym)) is an isomorphism

in bidegree (l1, l2) for l1 big enough (and again for any l2), since some power of M1 is

contained in I ′. And hence the same holds for the epimorphism S/(I0 + (Ym−1)) →
S/(I(Γf ) + (Ym−1, Ym)). As a consequence, we get

dim(S/(I(Γf )+(Ym)))l1,l2−dim I(Γf )+(Ym)))l1,l2−1 = dim (S/(I(Γf )+(Ym−1, Ym)))l1,l2
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for l1 big enough and any l2.

We then iterate this process, using always Lemma 8.14(i), until we arrive to some

I(Γf ) + (Yr, . . . , Ym) defining the empty set. And by Lemma 8.14(ii) all its components

either are M1-primary or contain M2. This means that

dim(S/(I(Γf ) + (Yr, . . . , Ym)))l1,l2 = 0

for l1 big enough and any l2, i.e. the dimension coincides with value of the Hilbert polyno-

mial. But now all the equalities we proved for the dimension, being also valid for the cor-

responding Hilbert polynomials, show that any time we have dimS(Γf )l1,l2 = PΓf
(l1, l2),

it also holds that dimS(Γf )l1,l2−1 = PΓf
(l1, l2 − 1). As a consequence, dimS(Γf )l1,0 =

PΓf
(l1, 0) for big values of l1, finishing the proof of (i).

Now part (ii) is an easy consequence of (i). Indeed (i) implies that pa(X) = pa(Γf ) and

pa(Y ) = pa(Γf−1). But clearly Γf and Γf−1 are isomorphic (just swapping coordinates),

and therefore pa(Γf ) = pa(Γf−1), proving (ii).
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9. Resolutions and dimension

We want to discuss in this chapter the relation between the length of a free resolution

of a graded module over S = K[X0, . . . , Xn] and the dimension of its support. Hence

the reader who skipped Chapter 4 is invited to either skip also this one or reconsider the

possibility of reading that chapter.

To give you an idea of what we want, take a look at the resolutions we got in Chapter

4. In Example 4.5, for the twisted cubic in P3 we got a resolution of length two, the

same of what you should have got in all the resolutions of Exercise 4.6 for sets of points

in P2. Hence the length of the resolution coincides with the codimension. Observe that

this is not always the case, since Exercise 4.7 or Exercise 4.8 give examples of curves

in P3 whose coordinate rings have a resolution of length three. On the other hand, if

F is a nonconstant homogeneous polynomial of degree d then there is a resolution 0 →
S(−d)

·F−→S → S/(F ) → 0, and hence its length is one, which is exactly the codimension

of any irreducible component of V (F ).

If we want to relate the length of a resolution to the dimension of the support of the

module we are studying, it is clear that first of all we will have to reduce ourselves to

resolutions that somehow are irredundant. Our first goal is thus to make this idea precise.

So assume that we have a free resolution

0→ Pr → Pr−1 → . . .→ P1 → P0 →M → 0

Taking kernels (as for instance in Theorem 4.3) we have small exact sequences

0→Mi+1 → Pi
fi−→Mi → 0

for i = 0, . . . , r, in which M0 = 0 and Mr = Pr. Each of this small pieces of resolutions

corresponds to the choice of a system of homogeneous generators of Mi (namely the image

by fi of a basis of Pi. The resolution will be not optimal if at some point we chose some

superfluous generator. Assume for instance that, if e1, . . . , es is a (homogeneous) basis

of Pi, fi(es) can be obtained from fi(e1), . . . , fi(es−1) as a linear combination fi(es) =

F1fi(e1) + . . .+ Fs−1fi(es−1), with F1, . . . , Fs−1 ∈ S homogeneous polynomials. Thus we

have that F1e1 + . . . + Fs−1es−1 − es is an element of ker fi = Mi+1 = Im fi+1 (and it is

homogeneous with the graduation defined in Pi). If e′1, . . . , e
′
t is now a basis of Pi+1, we can

find thus homogeneous polynomials G1, . . . , Gt ∈ S such that fi+1(G1e
′
1 + . . . + Gte

′
t) =

F1e1 + . . . + Fs−1es−1 − es. If A is the matrix defining fi+1 we thus have the following

identity

A

G1
...
Gt

 =


F1
...

Fs−1

−1
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This implies that at least one of the elements of the last row of A (as well as one of

the polynomials G1, . . . , Gt) is a nonzero constant. And in fact it is easy to see that the

existence of this constant characterizes the fact that one of the generators fi(e1), . . . , fi(es)

can be obtained from the others. This motivates the following definition.

Definition. A minimal resolution of a graded S-module M is a free resolution such that

none of the matrices defining the maps among the free modules contains nonzero constants,

or equivalently if all the elements of those matrices belong to the maximal ideal M.

Example 9.1. The resolutions in Example 4.5 and Exercise 4.7 (the latter because the

numbers force that no element of the matrices of the resolution have degree zero). If you

found reasonable resolutions in Exercise 4.6 then you also got minimal resolutions. In

particular, for four points in general position you should have obtained a resolution of the

type

0→ S(−4)→ S(−2)⊕ S(−2)→ S → S(X)

while if exactly three of the four points lie on a line, then the resolution takes the form

0→ S(−4)⊕ S(−3)→ S(−2)⊕ S(−2)⊕ S(−3)→ S → S(X)

but the part of the first map corresponding to S(−3)→ S(−3) is zero, so that the resolution

is indeed minimal.

If we have a non minimal resolution, it is always possible to extract from it a minimal

resolution. Keeping the previous notation and assumptions, assume also thatGt is constant

(recall that some of the Gi’s had to be a nonzero constant). We can thus write Pi+1 =

P ′i+1 ⊕ P ′′i+1, where P ′i+1 is the free module generated by e′1, . . . , e
′
t−1 and P ′′i is the free

module generated by G1e
′
1 + . . . + Gte

′
t. Similarly we can write Pi = P ′i ⊕ P ′′i , P ′i being

the free module generated by e1, . . . , es−1 and P ′′i being the module generated by F1e1 +

. . . + Fs−1es−1 − es. We have now that the map f ′i : P ′i → Mi (restriction of fi) is still a

surjective map, and its kernel is the image of the map f ′i+1 : P ′i+1 → P ′i (restriction of fi+1

followed by the natural projection from Pi to its direct summand P ′i . Moreover the kernel

of f ′i+1 is naturally isomorphic to the direct sum of P ′′i+1 and the kernel of fi+1. Therefore

still get a free resolution of M if we substitute Pi, Pi+1, fi and fi+1 with respectively P ′i ,

P ′i+1, f ′i and f ′i+1. Proceeding in such a way as many times as needed, we can remove all

the nonzero constants in the matrices of a resolution of any finitely generated module and

eventually get a minimal resolution.

We will prove next that there is only one minimal resolution up to isomorphism. To

that purpose, let us study first isomorphisms among free modules.
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Lemma 9.2. Let P =
⊕r

i=1 S(−ai) and Q =
⊕s

j=1 S(−bj) be two free modules. Then

the following are equivalent:

(i) P and Q are isomorphic.

(ii) r = s and there is a map P → Q defined by a matrix whose determinant is a nonzero

constant.

(iii) r = s and, after probably permuting the degrees, ai = bi for i = 1, . . . , r.

Moreover, a morphism between two isomorphic free modules is an isomorphism if and only

if it is injective. More precisely, in case ϕ : P → Q is not an isomorphism there is an r-uple

with some nonzero constant coordinate that is in kerϕ.

Proof: We prove the equivalences in a cyclic way.

(i) ⇒ (ii) Let ϕ : P → Q be an isomorphism, and let A and B be respectively be the

matrices associated to A and B. Since AB is the s × s identity matrix, it follows that A

has rank at least s when substituting the indeterminates X0, . . . , Xn by the coordinates of

any vector in Kn+1. Therefore s ≤ r. Similarly, BA is the r × r identity matrix, so that

r ≤ s and hence r = s. Now det(A) det(B) = 1, which implies that det(A) is a nonzero

constant.

(ii) ⇒ (iii) Let A be the matrix of a morphism P → Q such that det(A) is a nonzero

constant. It thus follows that some of the summands defining the determinant is also a

nonzero constant. By permuting the values of b1, . . . , br we can assume that the product

of the elements of the diagonal of A is a nonzero constant. This means that all the entries

of the diagonal have degree zero. But the degree of the (i, i)-entry if A is ai − bi, so that

ai = bi for i = 1, . . . , r.

(iii)⇒ (i) This is trivial.

For the last statement, it is enough to prove that a morphism ϕ from a free module

P to itself that is not an isomorphism has an element in the kernel as in the statement.

So it is convenient to re-write P as P =
⊕s

i=1 S(−ai)ri , with a1 < . . . < as and let A be

the matrix representing ϕ. We can write it in the way

A =


A11 A12 . . . A1s

0 A22 . . . A2s
...

. . .
...

0 0 . . . Ass


where each Ajk is an rk × rj matrix of homogeneous forms of degree ak − aj . Since

det(A) = det(A11) · · · det(Ass) ∈ K, the first part of the lemma proves that some det(Aii)

is zero. We can thus take the maximum t ∈ {1, . . . , s} such that det(Att) = 0. We consider
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now the free submodules Pt :=
⊕s

i=t S(−ai)ri ⊂ P and Pt+1 :=
⊕s

i=t+1 S(−ai)ri ⊂ Pt.

We have that Pt+1 and Pt are invariant by ϕ. The restriction of ϕ to Pt+1 is given by
At+1,t+1 At+1,t+2 . . . At+1,s

0 At+2,t+2 . . . At+2,s

...
. . .

...
0 0 . . . Ass


so that it is an isomorphism (again by the first part of the lemma). Similarly, the restriction

of ϕ to Pt = S(−at)rt ⊕ Pt+1 is not an isomorphism, and our goal is to find an element

of its kernel having at least one coordinate in the summand S(−at)rt that is a nonzero

constant. But this is easy, since Att is now an rt × rt matrix (of constant entries) whose

determinant is zero, and hence there exists a nonzero vector u ∈ Krt such that Attu = 0.

We then consider (u, 0) ∈ Pt = S(−at)rt ⊕ Pt+1, and have that ϕ(u, 0) = (0, v′), with

v′ ∈ Pt+1. Since ϕ is an isomorphism when restricted to Pt+1, there exists v ∈ Pt+1 such

that ϕ(v) = v′. The wanted element in the kernel of ϕ is thus (u,−v) (you should add

some zeros if you want to regard it as an uple in P . This completes the proof of the lemma.

Theorem 9.3. Let M,M ′ be two finitely generated graded S-modules and let

0→ Pr
fr−→Pr−1 → . . .→ P1

f1−→P0
f0−→M → 0

0→ P ′r
f ′0−→P ′r−1 → . . .→ P ′1

f ′1−→P ′0
f ′0−→M ′ → 0

be two free resolutions (we will allow some of the modules in the resolution to be zero, so

that both resolutions have the same length r).

(i) If there is a graded homomorphism ϕ : M → M ′, then there are maps ϕi : Pi → P ′i
such that the diagram

0→ Pr → Pr−1 → . . .→ P1 → P0 → M → 0
↓ ↓ ↓ ↓ ↓

0→ P ′r → P ′r−1 → . . .→ P ′1 → P ′0 → M ′ → 0

is commutative.

(ii) (Mapping cylinder construction) If ϕ is injective, the module M ′/ϕ(M) has a resolu-

tion

0→ Pr → Pr−1 ⊕ P ′r → . . .→ P0 ⊕ P ′1 → P ′0 →M ′/ϕ(M)→ 0

(iii) If M = M ′ and ϕ is the identity, and both resolutions of M are minimal, then each ϕi
is an isomorphism (and hence all the minimal resolutions of M have the same length,

which is at most n+ 1).

Proof: Part (i) is obtained from a simple diagram chasing. Fix a basis {e1, . . . , es} of

P0. Since f ′0 : P ′0 → M ′ is surjective, we can choose u′1, . . . , u
′
s ∈ P ′0 such that f ′0(u′i) =
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ϕ(f0(ei)), for i = 1, . . . , s. We can thus define ϕ0 : P0 → P ′0 by ϕ0(ei) = u′i. It is

immediate to see that ϕ0(ker f0) ⊂ ker f ′0, so that we can apply the above construction to

the epimorphisms P1 → ker f0 and P ′1 → ker f ′0, getting now ϕ1 : P1 → P ′1. Iterating the

process we arrive to the wanted commutative diagram.

Let us prove now (ii). It is clear that the composition ψ : P ′0 → M ′ → M ′/ϕ(M) is

an epimorphism. Assume v′0 ∈ P ′0 is in the kernel of ψ. This means that f ′0(v′0) = ϕ(m),

for some m ∈ M . Since f0 is surjective, there exists v0 ∈ P0 such that m = f0(v0).

Therefore f ′0(v′0) = ϕ(f0(v0)) = f ′0(ϕ0(v0)) and thus v′0 − ϕ0(v0) ∈ ker f ′0 = Im f ′1. We

find thus v′1 ∈ P ′1 such that v′0 − ϕ0(v0) = f ′1(v′1). Defining ψ0 : P0 ⊕ P ′1 → P ′0 by

ψ0(v0, v
′
1) = ϕ0(v0) + f ′1(v′1) we then see that kerψ = Imψ0. If ψ(v0, v

′
1) = 0, then

0 = f ′0(ϕ0(v0) + f ′1(v′1)) = ϕ(f0(v0)). Since ϕ is injective, we get that v0 ∈ ker f0 = Im f1,

and therefore there exists v1 ∈ P1 such that v0 = f1(v1). We thus have 0 = ϕ0(f1(v1)) +

f ′1(v′1) = f ′1(ϕ(v1) + v′1). We thus find now v′2 ∈ P ′2 such that ϕ(v1) + v′1 = f ′2(v′2). In other

words, we found the equality (v0, v
′
1) = (f1(v1),−ϕ(v1) + f ′2(v′2)).

We define in general (for i = 0, . . . , r) the maps ψi : Pi ⊕ P ′i+1 → Pi−1 ⊕ P ′i by

ψi(vi, v
′
i+1) = (fi(vi), (−1)iϕi(vi)+f

′
i+1(v′i+1)) (we write P ′j = Pj = 0 if j 6∈ {0, . . . , r}). We

clearly have that ψi ◦ ψi+1 = 0. On the other hand, if ψ(vi, v
′
i+1) = 0, then fi(vi) = 0 and

f ′i+1(v′i+1) = (−1)i+1ϕi(vi). From the first equality we get that there exists vi+1 ∈ Pi+1

such that vi = fi+1(vi+1), and substituting this in the second equality we have f ′i+1(v′i+1) =

(−1)i+1ϕi(fi+1(vi+1)) = (−1)i+1f ′i+1ϕi+1(vi+1). Therefore v′i+1 − (−1)i+1ϕi+1(vi+1) is in

the kernel of f ′i+1, so that it can be written as f ′i+2(v′i+2) for some v′i+2 ∈ P ′i+2. Hence

(vi, v
′
i+1) = ψi+1(vi+1, v

′
i+2). This shows that we have an exact sequence as in the state-

ment of part (ii).

For part (iii), observe that from part (i) we have maps ϕi : Pi → P ′i such that

ϕi−1 ◦ fi = f ′i ◦ϕi (we can write ϕ−1 := idM ) and maps ψi : P ′i → Pi such that ψi−1 ◦ f ′i =

fi ◦ ψi.

Let us prove that each ψi ◦ ϕi is injective by induction on i, the case i = −1 being

trivial. Assume ψi ◦ ϕi(vi) = 0 for some vi ∈ Pi. Then ψi−1 ◦ ϕi−1fi(vi) = 0, and

thus by induction hypothesis fi(vi) = 0. Therefore there exists vi+1 ∈ Pi+1 such that

vi = fi+1(vi+1). Since the resolution for M was minimal, this implies that vi is an uple of

homogeneous polynomials, none of them a nonzero constant, and this holds for any vi in

kerψi◦ϕi. But the last statement of Lemma 9.2 implies that, if ψi◦ϕi is not injective, then

we can find in ker(ψi ◦ ϕi) an uple with some nonzero constant as one of its coordinates.

This proves by contradiction that ψi ◦ ϕi is injective.

In a similar way, every ϕi ◦ψi is also injective. But now Lemma 9.2 implies that both

ψi ◦ ϕi and ϕi ◦ ψi are isomorphisms. This implies respectively that ϕi is injective and

surjective, and hence an isomorphism, as wanted.
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The fact that the length of a minimal resolution is at most n + 1 is an immediate

consequence of the Hilbert’s syzygy Theorem (Theorem 4.3) and the fact that from any

free resolution we can extract a minimal resolution.

Definition. If 0→ Pr
fr−→Pr−1 → . . .→ P1

f1−→P0
f0−→M → 0 is a minimal resolution of M ,

the module Mi := ker fi−1, i = 1, . . . , r + 1 is called the i-th syzygy module of M .

Remark 9.4. Unfortunately, under the hypothesis of Theorem 9.3 it is not true that

the injectivity of ϕ implies the injectivity of the maps ϕi (which would have considerably

simplify the proof of (iii)). Although there are numerous examples of this fact (take for

instance M ′ to be S and let M be any non-principal ideal), let us show a more clarifying

example (from the point of view of the result we are looking for). Let X ⊂ P3 be the

disjoint union of two lines L1 and L2. We obviously have an inclusion S(X) ↪→ S(L1) ⊕
S(L2), whose quotient is S/M (see Lemma 3.1). Exercise 4.8 provides us resolutions

0→ S(−4)→ S(−3)4 → S(−2)4 → S → S(X)→ 0, and 0→ S(−2)2 → S(−1)4 → S2 →
S(L1)⊕ S(L2)→ 0. We thus have a commutative diagram

0 → S(−4) → S(−3)4 → S(−2)4 → S → S(X) → 0
↓ ↓ ↓ ↓ ↓

0 → 0 → S(−2)2 → S(−1)4 → S2 → S(L1)⊕ S(L2) → 0

in which obviously the first vertical arrows cannot be injective. It is not difficult, however,

to see that the map cylinder construction provides (after removing one redundant summand

S) the following resolution

0→ S(−4)→ S(−3)4 → S(−2)6 → S(−1)4 → S → S/M→ 0

This last resolution is a particular case of what we are going to obtain now.

Proposition 9.5. Let F1, . . . , Fr ∈ S = K[X0, . . . , Xn] be homogeneous polynomials of

respective degrees d1, . . . , dr. If for each i = 1, . . . , r it holds that Fi is not in any associated

prime of (F1, . . . , Fi−1), then there is a minimal free resolution of S/(F1, . . . , Fr) of the

type

0→ Pr
fr−→Pr−1 → . . .→ P1

f1−→P0
f0−→S/(F1, . . . , Fr)→ 0

where Pi =
⊕

1≤j1<...<ji≤r

S(−dj1 − . . .− dji) (we write P0 = S) and, if {ej1...ji} is a basis of Pi

then fi(ej1...ji) =
∑i
k=1(−1)kFjkej1...ĵk...ji (a hat over an index means that it has been

removed).

Proof: We prove it by induction on r. If r = 1, the statement is just saying that we have

the known exact sequence 0→ S(−d1)
·F1−→S → S/(F1)→ 0.
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If we have now the result to be true for r − 1, we thus have a resolution

0→ P ′r−1

f ′r−1−→P ′r−2 → . . .→ P ′0
f ′0−→S/(F1, . . . , Fr−1)→ 0

with P ′i =
⊕

1≤j1<...<ji≤r−1

S(−dj1 − . . .− dji). Shifting degrees, we also get

0→ P ′r−1(−dr)
f ′r−1−→P ′r−2(−dr)→ . . .→ P ′0(−dr)

f ′0−→
(
S/(F1, . . . , Fr−1)

)
(−dr)→ 0

Since Fr in not in any associated prime of (F1, . . . , Fr−1) we thus get from Lemma 3.12

that there is an exact sequence

0→
(
S/(F1, . . . , Fr−1)

)
(−dr)

·Fr−→S/(F1, . . . , Fr−1)→ S/(F1, . . . , Fr)→ 0

Obviously this map induces a map between the two resolutions consisting of the multipli-

cation by Fr. The mapping cylinder construction (Theorem 9.3(ii)) provides now a free

resolution

0→ Pr
fr−→Pr−1 → . . .→ P1

f1−→P0
f0−→S/(F1, . . . , Fr)→ 0

where Pi = P ′i ⊕ P ′i−1(−dr) =
⊕

1≤j1<...<ji≤r

S(−dj1 − . . .− dji) (if in the last direct sum you

consider the summands in which ji 6= r you get P ′i , while those for which ji = r pro-

vide P ′i−1(−dr)). Finally, let us see that the map Pi → Pi−1 is the one of the state-

ment. So let ej1...ji an element of the basis of Pi. If ji 6= r, then ej1...ji can be re-

garded as an element of P ′i , and hence the proof of Theorem 9.3(ii) tells us that is image

is f ′i(ej1...ji), which by induction is indeed
∑i
k=1(−1)kFjkej1...ĵk...ji . If instead ji = r,

then ej1...ji can be identified with ej1...ji−1
∈ P ′i−1(−dr). But again the proof of The-

orem 9.3(ii) tells us that its image by fi must be the sum of (−1)i times the image

in P ′i−1 by the multiplication by Fr plus its image by f ′i in P ′i−2(−dr). Again by in-

duction hypothesis and the natural identification of Pi−1 as a sum of two pieces we get

f(ej1...ji) = (−1)iFrej1...ji−1r +
∑i−1
k=1(−1)kFjkej1...ĵk...ji−1r

, which is the wanted formula.

The fact that the resolution is minimal comes from the fact that the entries of the matrices

defining the maps fi are either zero or (up to a sign) any of the polynomials F1, . . . , Fr.

Definition. A set of polynomials F1, . . . , Fr as in the hypothesis of the above Proposition

is called a regular sequence. The resolution that we found for S/(F1, . . . , Fr) is called the

Koszul exact sequence associated to the regular sequence.

Example 9.6. If we take F1, . . . Fr to be any set of linearly independent linear forms,

then they form a regular sequence. Therefore we have a minimal resolution

0→ S(−r)→ S(−r − 1)r → . . .→ S(−1)r → S → S/(F1, . . . , Fr)→ 0
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(the number of copies of S(−i) is
(
r
i

)
). If r ≤ n, this gives a minimal resolution of the

graded ring of the linear space V (F1, . . . , Fr), and its length is thus the codimension of

this linear space. If r = n + 1, then the ideal (F1, . . . , Fn+1) is the maximal ideal M, so

that S/(F1, . . . , Fr) ∼= K. The projective set is this time empty, and although M is not its

homogeneous ideal, the length of the resolution we found is the maximum allowed by the

Hilbert’s syzygy Theorem, namely n + 1 (which is in fact the codimension of the empty

set, considered as a set of dimension −1).

Exercise 9.7. Find explicitly and prove by hand that there is an exact sequence 0 →
S(−3) → S(−2)3 → S(−1)3 → S → S/(X0, X1, X2) → 0 in any S = K[X0, . . . , Xn] with

n ≥ 2.

Proposition 9.8. A graded S-module M (S = K[X0, . . . , Xn]) has a minimal resolution

of length n+ 1 if and only if M has an M-primary component.

Proof: Let 0 → Pn+1 → Pn → . . . → P1 → P0 → M → 0 be a minimal resolution of

M . If Xn is not a zerodivisor of M , and write P i = Pi/XnPi, we have that 0→ Pn+1 →
Pn → . . . → P 1 → P 0 → M/XnM → 0 is a free resolution of M/XnM as a module over

S/(Xn) ∼= K[X0, . . . , Xn−1] (see Lemma 4.2 and its application in Theorem 4.3). On the

other hand, it is clear that the resolution is minimal, since reducing a matrix modulo Xn

can never produce nonzero constants. But this is a contradiction, since the length of a

minimal resolution in K[X0, . . . , Xn−1] can never exceed n.

This shows that Xn, and by the same reason any linear form, is a zerodivisor of M .

This implies that M is contained in the set of zerodivisors of M . By Proposition 4.12, the

set of zerodivisors of M is the union of the associated primes of a primary decomposition of

M . By Exercise 0.1(vi) we thus have that M is contained in some associated prime of M ,

and by its maximality it is therefore one of them. Thus there is an M-primary component

of M .

Reciprocally, if M has an M-primary component, then by Proposition 4.12 we know

that there exists m ∈M such that Ann(m) = M. This means, if m has degree d, that we

have an injection ϕ : S/M(−d)→M by assigning to the class of F ∈ S the product Fm.

Taking the minimal resolution

0→ Pn+1 → Pn → . . .→ P1 → P0 → S/M→ 0

found in Example 9.6 (conveniently shifted) and a minimal resolution

0→ P ′n+1 → P ′n → . . .→ P ′1 → P ′0 →M → 0

of M (in which we add as many P ′i = 0 as needed), Theorem 9.3(ii) provides a free

resolution

0→ Pn+1 → Pn ⊕ P ′n+1 → . . .→ P0 ⊕ P ′1 → P ′0 →M/(x)→ 0
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Since it has length n + 2, it follows that Pn+1 is redundant, so that the matrix defining

Pn+1 → Pn⊕P ′n+1 has some nonzero constants. Since the resolution of S/M was minimal,

we conclude that the matrix of Pn+1 → P ′n+1 has nonzero constants. In particular, P ′n+1

is not zero, and hence the resolution of M has length n+ 1.

Example 9.9. Observe that Proposition 9.8 implies that the curve of Exercise 4.7 does

not have good hyperplane sections. Indeed any linear form H not vanishing at X will

produce a minimal resolution of K[X0, X1, X2, X3]/(I(X) + (H)) of length three, and

hence I(X) + (H) will always have embedded components. Hence the behavior of the

hyperplane chosen in Example 1.22 was not special for the curve, but the general one.

Theorem 9.10. If a graded module M has a minimal resolution 0→ Pr → Pr−1 → . . .→
P1 → P0 →M → 0, then for any prime I in the support of M it holds dimV (I) ≥ n− r.

Proof: By the Hilbert’s syzygy Theorem, the smallest possible value is n−r = −1. But this

case is trivial. The case n = r comes from Proposition 9.8, since a prime with dimV (I) < 0

is necessarily M. So assume r ≤ n − 1, and suppose for contradiction that we have some

associated prime I of M with dimV (I) < n − r. Thus from Proposition 9.8 we can take

F1 ∈ S that is not a zerodivisor of M . In fact, it is enough to take F1 not belonging to

any associated prime to M (in particular, F1 6∈ I). By Theorem 9.3(ii) we get a resolution

of M/F1M of length r + 1. So we could iterate this n + 1 − r times until we arrive to a

minimal resolution of length n+ 1. But we will have to proceed carefully.

Specifically, given F1, . . . , Fi with i < n − r, we will take i+1 not only with the

condition that Fi+1 is not a zerodivisor of M/(F1, . . . , Fi)M –which guarantees by Theorem

9.3(ii)that M/(F1, . . . , Fi+1)M will have a minimal resolution of length r+ i+ 1– but also

that Fi+1 does not belong to any relevant associated prime of I+ (F1, . . . , Fi). This is just

imposing Fi+1 not to belong to a finite union of homogeneous prime ideals different from

M, so it is a non-empty condition.

We eventually get F1, . . . , Fn−r such that M/(F1, . . . , Fn−r)M has a minimal res-

olution of length n, and hence from Proposition 9.8 it should have no irrelevant com-

ponent. But let us see that the choice of F1, . . . , Ft forces the existence of such com-

ponent. Indeed, form our choice we have that dimV (I) ∩ V (F1, . . . , Fi+1 is either -1 or

dimV (I)∩V (F1, . . . , Fi−1. Since dimV (I) < n−r, we get that V (I)∩V (F1, . . . , Fn−r) =

∅. By the Weak Nullstellensatz (Theorem 1.24), it follows that a power of M is contained

in I + (F1, . . . , Fn−r).

On the other hand, the fact that I was an associated prime of M means that there

exists m ∈ M such that I = Ann(m). We would like to keep m different from zero when

quotienting at each step. This is not completely possible but almost. In fact, if m ∈ F1M ,
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then we can write m = F1m
′ for some other m′ ∈M . I claim that I = Ann(m′). Indeed,

one inclusion is obvious, and for the other, if G ∈ I, then 0 = Gm = F1Gm
′; but since

F1 was not a zerodivisor of M it follows that G ∈ Ann(m′). Since degm′ < degm, after

a finite number of steps we will be able to write I as the annihilator of an element whose

class modulo F1M is not zero. Iterating this, we can assume that I = Ann(m), such that

m is not zero modulo (F1, . . . , Fn−r)M .

Putting together what we got in the last two remarks, we see that there is a nonzero

element m ∈ M/(F1, . . . , Fn−r)M that is vanished by powers of X0, . . . , Xn. Changing

m by Xt
0m, where t is the maximum power of X0 that does not kill m, we can assume

that X0m = 0. Similarly, we can assume Xim = 0 for i = 0, . . . , n and m 6= 0. This

means that M ⊂ Ann(m) ⊆/ S. Therefore Ann(m) = M, and Proposition 4.12 implies now

that M/(F1, . . . , Fn−r)M has an irrelevant primary component. This yields the wanted

contradiction and finishes the proof of the theorem.

Proposition 9.11. Let F1, . . . , Fr ∈ S be non constant homogeneous polynomials. Then

the following are equivalent:

(i) F1, . . . , Fr form a regular sequence.

(ii) The Koszul sequence constructed in Proposition 9.5 is exact.

(iii) All the primary components of the ideal (F1, . . . , Fr) have dimension n− r.

(iv) dimV (F1, . . . , Fr) = n− r.

Proof: We will use induction on r and will prove the equivalences in a cyclic way.

(i)⇒ (ii) This is proved in Proposition 9.5.

(ii)⇒ (iii) It can be seen from the Koszul exact sequence that the Hilbert polynomial of

S/(F1, . . . , Fr) has degree n − r (in fact it is even simpler to use induction on r and/or

use the mapping cylinder construction). This shows that all the primary components of

(F1, . . . , Fr) have dimension at most n− r. On the other hand, Theorem 9.10 shows that

no primary component can have smaller dimension.

(iii)⇒ (iv) It is trivial

(iv) ⇒ (i) Since from Proposition 5.7(viii) we have dimV (F1, . . . , Fr−1) ≥ n − r + 1,

it necessarily follows that dimV (F1, . . . , Fr−1) = n − r + 1 (now from part (ii) of that

proposition). We can thus apply induction hypothesis, and therefore F1, . . . , Fr−1 form

a regular sequence and all the primary components of V (F1, . . . , Fr−1) have dimension

n − r + 1. Since dimV (F1, . . . , Fr) = n − r, it thus follows that Fr dos not vanish on

any component defined by those primary components. In other words, F1, . . . , Fr form a

regular sequence.
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Definition. An ideal generated by a set of polynomial F1, . . . , Fr like in Proposition 9.11 is

called a complete intersection ideal. Observe that the order of the polynomials is indifferent,

and that part (iii) implies in particular that the ideal has no embedded components.

A complete intersection set is a projective set whose homogeneous ideal is a complete

intersection.

Example 9.12. Any set of points in a line form a complete intersection. Also four

points in P2 in general position are the complete intersection of two conics. A set of three

points in P2 in general position is not a complete intersection, even if it can be defined by

two polynomials. Indeed V (X1X2, X0X1 + X0X2) = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)},
but its homogeneous ideal is (X0X1, X0X2, X1X2), which cannot be generated by two

polynomials. This is what is called a set-theoretical complete intersection.
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10. Ruled varieties

In this section we will use ruled varieties (i.e. varieties defined as union of linear

spaces) as a sample of how to use the results of Chapter 7. At the end we will give many

results only in a very intuitive way (some of them will be mentioned in the construction

of the Chow variety). The reader who is not quite convinced of reading this last part has

my permission to skip it, since it has been written essentially to my own pleasure.

The main construction of this chapter (which is a more rigorous definition of ruled

variety) is given in (the proof of) the following lemma.

Lemma 10.1. Let Z ⊂ G(k, n) be a variety of dimension r. Then the union in Pn of all

the k-planes parametrized by Z is an irreducible projective set X ⊂ Pn of dimension at

most r+ k. Moreover, the dimension of X is exactly r+ k if and only if through a general

point of X there pass only a finite number of k-planes of Z.

Proof: We just need to consider the incidence set ΣZ ⊂ Z × Pn consisting of pairs (Λ, x)

such that x ∈ Λ. This is clearly a projective set inside G(k, n) × Pn, and considering the

projection onto the first factor Theorem 8.4(iii) implies that ΣZ is irreducible of dimension

r + k. But now Proposition 7.18 applied to the second projection of ΣZ to Pn (whose

image is by definition X) implies that X is irreducible of dimension at most r + k. But

using again Theorem 8.4 (now for this second projection) we immediately obtain the last

part of the statement.

Example 10.2. Let X,Y ⊂ Pn be two projective varieties. Consider the map f :

X × Y → G(1, n) that associates to each pair of points the line passing through them.

This is a regular map (if X and Y meet there will be some points in which f is not defined,

but we can always use Lemma 7.8(iii) to replace f with a well-defined map). Then the

image of f is a projective variety JX,Y ⊂ G(1, n). The fiber of f has positive dimension

only for very particular choices of X and Y . For instance, if we can find points x ∈ X \ Y
and y ∈ Y \X (i.e. if X 6⊂ Y and Y 6⊂ X), then the fiber of the line L =< x, y > is finite,

since L∩X and L∩Y are necessarily finite. Hence in general dim JX,Y = dimX + dimY .

Thus the union J(X,Y ) of the lines of JX,Y (called the join variety of X and Y ) is a

variety of dimension at most dimX + dimY + 1. The following proposition shows that we

can say a lot if X and Y are contained in skew linear spaces.

Proposition 10.3. Let X,Y ⊂ Pn be projective varieties and assume there exists m ∈ N
such that X ⊂ V (Xm+1, . . . , Xn) and Y ⊂ V (X0, . . . , Xm).

(i) A point (a0 : . . . : an) belongs to J(X,Y ) if and only if (a0 : . . . : am : 0 . . . : 0) ∈ X
and (0 : . . . : 0 : am+1 : . . . : an) ∈ Y .
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(ii) The Hilbert function of J(X,Y ) is given by hJ(X,Y )(l) =
∑l
i=0 hX(i)hY (l − i).

(iii) dim J(X,Y ) = dimX + dimY + 1 and deg J(X,Y ) = degX · deg Y .

Proof: Part (i) is an immediate consequence of the fact that the point (a0 : . . . : an) is only

in one line meeting both V (Xm+1, . . . , Xn) and V (X0, . . . , Xm), namely the line spanned

by (a0 : . . . : am : 0 . . . : 0) and (0 : . . . : 0 : am+1 : . . . : an).

The proof of part (ii) is quite similar to the one of Proposition 6.14. A first difference

is that we write now any homogeneous polynomial F ∈ K[X0, . . . , Xn] as a sum
∑
PtQt

with Pt ∈ K[X0, . . . , Xm] and Qt ∈ K[Xm+1, . . . , Xn] still homogeneous. We choose thus

for each i = 0, . . . , l a basis {Aij}j of K[X0, . . . , Xm]i modulo I(X) ∩ K[X0, . . . , Xm]

(hence its cardinality is hX(i)) and a basis {Bit}t of K[Xm+1, . . . , Xn]i modulo I(Y ) ∩
K[Xm+1, . . . , Xn] (of cardinality hY (i)). Then clearly the classes of the products AijBl−i,t
(when i, j, t vary) define a system of generators of S(J(X,Y ))l (observe that part (i) implies

that the elements of I(X)∩K[X0, . . . , Xm] and I(Y )∩K[Xm+1, . . . , Xn] are in I(J(X,Y ))).

We just need to prove that the above generators actually form a basis. Assume thus

that there is a linear combination
∑
ijt λijtAijBl−i,t whose class modulo I(J(X,Y )) is zero.

Then, for any (a0 : . . . : am : 0 . . . : 0) ∈ X we have that
∑
ijt λijtAij(a0, . . . , am)Bl−i,t be-

longs to I(Y )∩K[Xm+1, . . . , Xn]. Since this is a homogeneous ideal in K[Xm+1, . . . , Xn], we

have that for each i = 0, . . . , l the homogeneous polynomial
∑
jt λijtAij(a0, . . . , am)Bl−i,t

is in I(Y ) ∩K[Xm+1, . . . , Xn]. But since the set {Bl−i,t}t is linearly independent modulo

I(Y ) ∩ K[Xm+1, . . . , Xn], it follows that for each i, t we have
∑
j λijtAij(a0, . . . , am) = 0.

This holds for any (a0 : . . . : am : 0 . . . : 0) ∈ X, so that
∑
j λijtAij is in I(X) ∩

K[X0, . . . , Xm]. Using now that the set {Aij}j is linearly independent modulo I(X) ∩
K[X0, . . . , Xm] we eventually get that λijt = 0 for any i, j, t, thus finishing the proof of

(ii).

In order to prove (iii) we cannot apply immediately (ii), since hX(i) and hY (i) coincides

respectively with PX(i) and PY (i) only for large values of i, say for i ≥ i0 (and small values

of i are always involved in the formula for hJ(X,Y )(l) independently of the value of l). But

we know that, for l >> 0 hJ(X,Y )(l) is given by a polynomial (of degree dimX+dimY +1,

since we have remarked in Example 10.2 that this is the dimension of the join of X and

Y ). Hence substituting for i < i0 hX(i) and hY (i) with respectively PX(i) and PY (i) in

the formula for hJ(X,Y )(l) in (ii), the difference with the Hilbert polynomial PJ(X,Y )(l) is

a polynomial of degree strictly less than the degree of PJ(X,Y )(l). It is enough then to find

the leading coefficient of
∑l
i=0 PX(i)PY (l − i).

Writing r := dimX, s := dimY , d := degX and e := deg Y , we have that PX(i) =
d
r! i

r+ terms of lower degree in i, and PY (i) = e
s! i

s+ terms of lower degree in i. There-

fore the term of maximum degree with respect to l in
∑l
i=0 PX(i)PY (l − i) will be the

one of
∑l
i=0

d
r! i

r e
s! (l − i)

s. But this term of maximum degree coincides with the one of
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de
∑l
i=0

(
i+r
r

)(
l−i+s
s

)
= de

(
l+r+s+1
r+s+1

)
(this latter purely combinatorial equality can be ob-

tained for instance from (ii) applied to X = Pr, Y = Ps, taking into account that the

Hilbert function of a projective space coincides with the Hilbert polynomial for any value

of the degree). From this we get that deg(J(X,Y )) = de, which finishes the proof of the

proposition.

Exercise 10.4. Prove that the ideal of J(X,Y ) is generated by the elements of I(X) ∩
K[X0, . . . , Xm] and I(Y ) ∩K[Xm+1, . . . , Xn].

Remark 10.5. It is not by chance that the proof of the above proposition is so similar

to the one of 6.14. In fact, considering X as a projective set in Pm and Y as a projective

set in Pn−m−1, the ideal of J(X,Y ) coincides as a set with I(X × Y ⊂ K[X0, . . . , Xn],

or equivalently S(J(X,Y )) coincides with S(X × Y )). The difference is that for the join

variety we consider the graded structure, while for the product we consider the bigraded

structure. In the language of tensor products, S(X)⊗S(Y ) can be endowed naturally with

two structures: as a bigraded ring is isomorphic to S(X ×Y )) (see Remark 6.16), while as

a graded ring is isomorphic to S(J(X,Y )).

Example 10.6. In the particular case when Y = V (Xm+1, . . . , Xn), we obtain a cone

over the projective set X ⊂ Pm, which will have the same degree as X. Observe that

in this case, the ideal of the cone in Pn is generated by the equations in K[X0, . . . , Xm]

defining I(X).

Example 7.17 can be considered as a particular case of join variety (namely when

X = Y ):

Exercise 10.7. If X is a projective variety, prove that the set SX of Example 7.17 is

also irreducible, and that it has dimension 2 dimX unless X is a linear subspace [Hint:

Characterize first a linear subspace as a projective variety such that the line through two

general point of it is contained inside the variety]. Conclude that the union of all the lines

of SX forms a projective variety of dimension at most 2 dimX+1. (The projective variety

S(X) is called the secant variety of X, and it can be proved that the linear projection

of any “reasonable” X from a point p ∈ Pn is an isomorphism if and only if p 6∈ S(X);

thus the exercise shows that any “reasonable” projective variety of dimension r can be

isomorphically projected into P2r+1, and in general it is not expected that it could be

isomorphically projected into P2r.

Exercise 10.8. Prove that the secant variety of a Segre variety, Veronese variety or

Grassmannian of lines has always dimension strictly less that the expected one [Hint: show

first that a matrix has rank at most two if and only if it can be written as a sum of two
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matrices of rank one, and find suitable generalizations for symmetric and skew-symmetric

matrices].

We see now a nice application of the join variety, which allows to strongly generalize

Theorem 7.21.

Proposition 10.9. Let X,Y ⊂ Pn be two projective varieties of respective dimensions r

and s. Then any irreducible component of X ∩ Y has dimension at least r + s− n.

Proof: We considerX and Y to be projective varieties contained in two skew n-planes inside

the same P2n+1 and take their join J(X,Y ) ⊂ P2n+1. Recall that a point (a0 : . . . : a2n+1)

belongs to J(X,Y ) if and only if (a0 : . . . : an) belongs to X and (an+1 : . . . : a2n+1) belongs

to Y . Thus we can associate to each point (a0 . . . : an) in X ∩ Y the point (a0 : . . . : an :

a0 : . . . : an) of J(X,Y ). It is immediate to check that this defines an isomorphism between

X∩Y (the intersection regarded in Pn) and J(X,Y )∩V (X0−Xn+1, . . . , Xn−X2n+1). Since

J(X,Y ) is irreducible of dimension r + s + 1 (from Proposition 10.3(iii)) the proposition

follows now from Theorem 7.21 applied to the second intersection.

In case the dimension of the intersection is the right one, we can say even more.

Proposition 10.10 (Bézout’s Theorem). Let X,Y ⊂ Pn be projective varieties of respec-

tive dimensions r and s. Then, if dim(X ∩ Y ) = r + s − n (i.e. the expected one) the

degree of the ideal I(X) + I(Y ) is degX · deg Y .

Proof: We keep the same set-up as in the proof of Proposition 10.9, and the idea is

to translate that proof into algebra. We know from Proposition 10.3(iii) that J(X,Y )

has degree degX · deg Y . Moreover, it is clear from Exercise 10.4 that, under the iso-

morphism K[X0, . . . , X2n+1]/(X0 −Xn+1, . . . , Xn −X2n+1) ∼= K[X0, . . . , Xn], the class of

the ideal I(J(X,Y )) becomes the ideal I(X) + I(Y ). But this means that I(J(X,Y )) +

(X0−Xn+1, . . . , Xn−X2n+1) and I(X) + I(Y ) have the same Hilbert polynomials (inside

the respective polynomial rings in which they are ideals). In particular, V (I(J(X,Y )) +

(X0 − Xn+1, . . . , Xn − X2n+1)) has dimension r + s − n. Since J(X,Y ) is irreducible of

dimension r + s + 1, this means that the successive intersections with the hyperplanes

V (X0−Xn+1), . . . , V (Xn−X2n+1) have the right dimension, and hence we can apply the

weak version of Bézout’s Theorem (see Exercise 5.17) to conclude that I(J(X,Y ))+(X0−
Xn+1, . . . , Xn −X2n+1) (and hence I(X) + I(Y )) has degree degX · deg Y , as wanted.

Remark 10.11. Proposition 10.3 illustrates a much more general fact. In fact, observe

that the map f : X × Y → G(1, n) (whose image is JX,Y ) is nothing but the Segre map

(after the Plücker embedding) when regarding X ⊂ Pm and Y ⊂ Pn−m−1. Indeed to each
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couple
(
(X0 : . . . : Xm), (Ym+1 : . . . : Yn), the map f associates the line spanned by the

rows of the matrix (
X0 . . . Xm 0 . . . 0
0 . . . 0 Ym+1 . . . Yn

)
and hence its Plücker coordinates are either zero or products of the type XiYj (all of them

in fact). Hence the degree of JX,Y (in the projective space P
n(n+3)

2 where G(1, n) lies in)

is degX · deg Y (see Proposition 10.3), which coincides with the degree of J(X,Y ) as a

subvariety in Pn. Let us justify why this is not casual. Writing r = dimX and s = dimY

as in the proof of Proposition 10.3, the degree of JX,Y should be the number of elements

in the intersection of JX,Y with r + s “nice” hyperplanes in P
n(n+3)

2 . But Exercise 1.18

tells us that a possible choice of a hyperplane (unfortunately not the general one) would

give, when intersected with G(1, n), the set of all the lines meeting a given linear space

Λ ⊂ Pn of codimension two. Consider now r + s linear subspaces Λ1, . . . ,Λr+s ⊂ Pn

of codimension two constructed in the following special way. Fix first A ⊂ Pn a linear

subspace of dimension n − r − s − 1 and a hyperplane H containing it. Then we take

Λ1, . . . ,Λr+s ⊂ Pn to be general hyperplanes in H that contain A (observe that the set

of hyperplanes in H with that property form a projective space of dimension r + s − 1).

Consider the hyperplanes H1, . . . ,Hr+s of P
n(n+3)

2 whose intersection with G(1, n) gives

the set of all the lines meeting respectively Λ1, . . . ,Λr+s. Then it is not difficult to see that

a line of JX,Y is in H1 ∩ . . . ∩Hr+s if and only if it meets A (although this is not true for

an arbitrary line of Pn). But since the degree of J(X,Y ) is degX deg Y , then a general A

should meet J(X,Y ) in exactly degX deg Y points, any of each belonging only to one line

of JX,Y . Hence JX,Y will meet H1 ∩ . . . ∩Hr+s in degX deg Y points. This explains why

its degree should be degX deg Y .

Of course there are two important lacks in the above justification (rather than proof).

The first one is that we were often assuming that a variety of degree d “should” meet a

general linear space of complementary dimension in exactly d points. This is not a serious

objection, since we will see in Theorem 12.1(ii) that this is so. There is however a second

objection, which is really serious: the choice of the hyperplanes H1 ∩ . . .∩Hr+s was quite

far to be general. I do not know a simple way of proving that this is not a problem (in fact

it would be enough to show that the intersection multiplicity will be one). But at least

I would like to present some more examples to convince the reader that the use of such

special hyperplanes always work fine.

Exercise 10.12. Consider the quadric Q = V (X0X3 −X1X2) ⊂ P3. Prove that the set

of lines contained in Q is, inside G(1, 3) ⊂ P5, the union of two conics.

Exercise 10.13. Generalizing the above exercise, prove that the set of k-planes in

ϕ1,k(P1 × Pk) ⊂ P2k+1, with k ≥ 2, is a rational normal curve inside some linear subspace
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of P(2k+2
2 )−1 [Hint: Prove first that any k-plane in the Segre variety has the form ϕ1,k({p}×

Pk).

Exercise 10.14. Let C ⊂ G(k, n) be a curve such that through a general point of Pn

there passes only one k-plane of C. [In fact it can be proved that if through a general

point of Pn there pass more than one line, then C is one of the conics in Exercise 10.12].

Reasoning like in Remark 10.11, justify that the degree of C should coincide with the

degree of the ruled variety obtained as the union of all the k-planes parametrized by C.

It is crucial in the above exercise that C is a curve. In fact, the situation for the

(special case of) join of two varieties described in Remark 10.11 is very particular, as we

see in the next example.

Exercise 10.14. Let f : P2 → G(1, 5) be the map that associates to each point (X0 :

X1 : X2) the line in P5 spanned by the rows of the matrix(
X0 X1 X2 0 0 0
0 0 0 X0 X1 X2

)
(i) Prove that f is a morphism, and that in fact coincides with the double Veronese

embedding into some linear subspace of dimension five in P14 (the projective space

containing G(1, 5)). Hence f is injective and Z := f(P2) has degree four.

(ii) Prove that the union of the lines of Z coincides with the Segre embedding of P2×P1,

and hence that it has degree three. Prove also that through any point of the Segre

variety there passes only one line of Z.

The reason why the degrees do not coincide in the above example is because the right

generalization of Exercise 10.14 is the following.

Exercise 10.15. Let Z ⊂ G(k, n) be a projective variety of dimension r and degree d

after the Plücker embedding. Assume that a general point of a general k-plane of Z is

contained in exactly a k-planes of Z. Use the same reasoning as in Remark 10.11 to justify

that a times the degree of the union of the k-planes of Z should coincide with the number

of k-planes of Z meeting a general linear space of codimension r + k.

Let us try to fully explain what is happening in the example of Exercise 10.14. We

know that the degree of Z ⊂ G(1, 5) ⊂ P14 is four, so that we should find this degree

when intersecting with two hyperplanes of P14. We will do it following the philosophy of

Remark 10.11. So we take two hyperplanes H1, H2 ⊂ P14 whose intersections with G(1, 5)

consist of the set of lines in P5 meeting respectively Λ1 and Λ2 (where Λ1 and Λ2 are two

linear spaces of P5 of codimension two, which we choose to meet in along a plane Π, or

equivalent to span a hyperplane H ⊂ P5). Hence G(1, 5) ∩H1 ∩H2 will consist of the set

of lines in P5 either meeting Π or contained in H. The number of lines of Z meeting a
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general plane Π is by Exercise 10.15 the degree of the union X of the lines of Z, i.e. three

(by Exercise 10.14). The rest of the degree comes then from the lines of Z contained in a

general hyperplane H ⊂ P5, as the following exercise confirms.

Exercise 10.16. With the notation of Exercise 10.14, prove that there is only one line

of Z in a general hyperplane of P5.

Exercise 10.17. Use the previous trick of taking special hyperplane sections to obtain

that the degree of G(1, 4) as a projective variety in P9 is five. [To give an idea of the com-

plexity of trying a general method, the formula for the degree of G(1, n) inside P
(n−1)(n+2)

2

is 1
n−1

(
2n−2
n

)
].

Another question, somehow reciprocal to the one we have been studying in this chap-

ter, would be to study the ruled variety obtained when intersecting a Grassmannian with

a series of hypersurfaces. Then from Bézout’s theorem (Exercise 5.17) the degree in the

projective space where the Grassmannian lies is known (if we know the degree of the

Grassmannian, which is not an easy task, as the previous exercise shows).

Example 10.18. The most trivial example consists of intersecting G(1, 3) with the

hyperplane V (p01) producing the set Z of lines of P3 meeting the line V (X0, X1). Clearly

Z has degree two (it is in fact a quadratic cone). But assume now that we only know that

Z is the intersection of G(1, 3) with some hypersurface of P5, and that we want to know

the degree of such hypersurface. One way to do it would be to observe that Z has degree

two, the same as the degree of G(1, 3), so that the degree of the hypersurface must be one.

But we have remarked that in general is not easy to find the degree of a Grassmannian.

We try then a geometric and tricky way. The wanted degree will be the number of points

in the intersection of the hypersurface with a general line. The trick is now to take the

line contained in G(1, 3) (hence again we are not playing fair, since the line is not general),

so that the intersection will coincide with the intersection of Z with the line. But a line

inside G(1, 3) is a pencil of lines passing through a point p and contained in a plane Π

containing p (see Exercise 10.19 below). Then the only line of Z in this pencil is the line

spanned by p and the intersection of V (X0, X1, ) with Π. Therefore this method, even if

not fair, gives again the right result.

Exercise 10.19. Let Λ1,Λ2 ∈ G(, k, n) ⊂ P(n+1
k )−1 be two k-planes in Pn. Prove that

the line in P(n+1
k )−1 generated by Λ1 and Λ2 is contained in G(k, n) if and only if Λ1 and

Λ2 meet in a linear space A of dimension k − 1 (or equivalently they span a linear space

B of dimension k + 1). Show that in this case the line in P(n+1
k )−1 will consist of the set

of k-planes containing A and contained in B.

Exercise 10.20. Repeat the computations of Example 10.18 for V (p0...k) in any G(k, n).
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11. Tangent spaces and cones; smoothness

Definition. The embedded projective Zariski tangent space TxX of a projective set X ⊂ Pn

at a point x ∈ X is the union of all the lines meeting X at x with multiplicity at least two.

Theorem 11.1. For any point x ∈ X ⊂ Pn, the tangent space TxX is a linear space

defined by the equations ∂F
∂X0

(x)X0 + . . .+ ∂F
∂Xn

(x)Xn = 0 as F varies in I(X). Moreover,

dimTxX has dimension at least the one of any component of X passing through x.

Proof: Take a line L meeting X at x and choose coordinates so that x = (1 : 0 : . . . : 0)

and L has equations X2 = . . . = Xn = 0. If L and X meet at x with multiplicity at least

two we can also assume, by Proposition 5.14, that I(X) ⊂ (X2
1 , X2, . . . , Xn). In particular,

for any F ∈ I(X) it holds that ∂F
∂X0

(x) = ∂F
∂X1

(x) = 0. Hence all the points of L satisfy the

equation ∂F
∂X0

(x)X0 + . . .+ ∂F
∂Xn

(x)Xn = 0.

Reciprocally, assume that all the points of L satisfy the equations ∂F
∂X1

(x)X1 + . . . +
∂F
∂Xn

(x)Xn = 0 for any F ∈ I(X) (observe that ∂F
∂X0

(x) = 0, since I(X) ⊂ (X1, . . . , Xn)).

This means that ∂F
∂X1

(x) = 0 for all F ∈ I(X), which is equivalent to say that F ∈
(X2

1 , X2, . . . , Xn). Hence again Proposition 5.14 allows us to conclude that TxX is linear

and defined by the stated equations (just change coordinates back).

To prove the dimension statement, assume after changing coordinates that x = (1 : 0 :

. . . : 0) and TxX has equations Xr+1 = . . . = Xn = 0 (and hence has dimension r). This

means that for each i = r + 1, . . . , n there is a homogeneous polynomial Fi ∈ I(X) (and

hence in particular in I(Z), where Z is any irreducible component of X passing through

x) such that Fi = Xdi
0 Xi + Gi, with Gi ∈ (X1, . . . , Xn)2. Hence we have the following

congruences modulo I(Z) + (X1, . . . , Xr):

(X
dr+1

0 +Ar+1,r+1)Xr+1 + . . . +Ar+1,nXn ≡ 0
...

. . .
...

An,r+1Xr+1 + . . . +(Xdn
0 +An,n)Xn ≡ 0

where the Ai,j ’s are homogeneous polynomials in K[X0, Xr+1, . . . , Xn] belonging to the

ideal (Xr+1, . . . , Xn). Consider the above congruences as a system of linear equations

with unknowns Xr+1, . . . , Xn. Let B be the matrix of the coefficients of the system, and

let F be its determinant. It is then clear that F is a homogeneous polynomial not vanishing

at x = (1 : 0 : . . . : 0). Multiplying this expression with the adjoint matrix of B we get

that FXr+1, . . . , FXn ∈ I(Z) + (X1, . . . , Xr). Hence X1, . . . , Xn are in the homogeneous

ideal of any irreducible component of Z ∩ V (X1, . . . , Xr) containing x. This implies that

Z ∩ V (X1, . . . , Xr) has only one component passing through x, consisting just of x. By
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Theorem 7.21, then Z has dimension at most r, which completes the proof of the theorem.

Definition. Let x be a point of a projective set X. The local dimension of X at x is the

maximum dimension of a component of X passing through x. Then x is called a smooth

point of X if dimTxX coincides with the local dimension of X at x. Otherwise (i.e. if the

dimension of TxX is bigger) x is called a singular point of X.

Proposition 11.2. Let x be a point of a projective set X ⊂ Pn of local dimension r.

(i) If I(X) is generated by homogeneous polynomials G1, . . . , Gs then x is singular if and

only if the rank of the matrix ( ∂Gi

∂Xj
)i=1,...,s; j=0,...,n is strictly smaller than n− r at x.

In particular, the singular locus of X is a closed subset.

(ii) If X ′ is the union of the irreducible components of X passing through x, then TxX =

TxX ′.

(iii) For any irreducible component Z of X, the set of smooth points of X contained in Z

is not empty (although valid in any characteristic, we will prove this only when the

ground field has characteristic zero).

Proof: It is easy to see that the fact that I(X) is generated by G1, . . . , Gs implies that the

gradient of any homogeneous polynomial in I(X) is a linear combination of the gradients

of G1, . . . , Gs. Then from the equations of TxX found in Theorem 11.1 we immediately

obtain (i).

Let X ′′ be the union of the irreducible components of X not passing through x. We

can then take G ∈ I(X ′′) \ I(x). Therefore FG ∈ I(X) for any F ∈ I(X ′). Hence the

gradient at x of any F ∈ I(X ′) is a nonzero multiple of the gradient of FG, which implies

that TxX ′ = TxX, i.e. (ii).

In order to prove (iii), observe that from (ii) it is enough to find smooth points of Z

not belonging to any other component of X. Hence we need to prove that the intersection

in Z of the set of smooth points and the set of points not belonging to other components

is not empty. Since Z is irreducible, both sets are open (from (i)) and the second set is

not empty, it is enough to prove that the set of smooth points of Z is not empty. Let r be

the dimension of Z.

From Proposition 5.7(vi) we can find a linear subspace of codimension r + 1, which

we can assume to be V (X0, . . . , Xr), not meeting Z. Therefore we have the morphism

f : Z → Pr with the properties of Lemma 7.20. In particular for each i = r + 1, . . . , n

we can find a monic polynomial Fi ∈ K[X0, . . . , Xr, Xi] in the variable Xi and belonging

to I(Z). We take Fi with minimum degree, say di, satisfying this condition. If all the
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points of Z were singular, then by (i) all the minors of the matrix ( ∂Fi

∂Xj
)i=r+1,...,n; j=0,...,n

should be in I(Z). But det( ∂Fi

∂Xj
)i=r+1,...,n; j=r+1,...,n = ∂Fr+1

∂Xr+1
. . . ∂Fn

∂Xn
. Since I(Z) is a

prime ideal, then some ∂Fi

∂Xi
belongs to I(Z). But if the characteristic of the field is zero,

then ∂Fi

∂Xi
is di times a monic polynomial in Xi of degree di − 1 belonging to I(Z). This

contradicts the minimality of di and completes the proof of the proposition.

Exercise 11.3. Prove that, in Examples 1.5, 1.7 and 1.15, a matrix of rank exactly k

is a smooth point of the projective variety of matrices of rank at most k. Conclude that

Segre and Veronese varieties, as well as Grassmannians of lines are smooth varieties.

Exercise 11.4. Prove that the subset in P(n+d
d )−1 (the space of all the hypersurfaces of

degree d in Pn) corresponding to singular hypersurfaces is a hypersurface of P(n+d
d )−1.

Exercise 11.5. Prove that the curve in Exercise 1.14 is smooth.

When a point is not smooth we have a better notion than the tangent space. The idea

is not to take only linear approximations to our variety at a point, but rather approxima-

tions of any degree. This is given by not just the first derivatives, but by the first nonzero

derivatives at a point. We start with a general definition.

Definition. Let F ∈ K[X0, . . . , X − n] be a homogeneous polynomial, x ∈ Pn any point

and r ≥ 0 an integer. We define Fr,x =
∑
i0+...in=r

∂r

∂i0 ...∂in
(x)Xi0

0 . . . Xin
n (which is defined

upto multiplication by a constant). If r is the smallest integer for which Fr,x in nonzero,

then we define Fx to be Fr,x. If I ⊂ K[X0, . . . , Xn] is a homogeneous ideal, we define

CxI to be the ideal generated by all the elements of the form Fx for some homogeneous

polynomial F ∈ I.

Lemma 11.6. Let I ⊂ K[X0, . . . , Xn] be a homogeneous ideal, and let x ∈ Pn be a point.

(i) CxI is the whole polynomial ring if and only if x 6∈ V (I).

(ii) If x ∈ X, CxI is a homogeneous ideal defining a cone CxX ⊂ Pn with vertex the point

x contained in TxX.

(iii) If G is any homogeneous polynomial, then Cx(I + (G)) = CxI + (Gx).

Proof: Part (i) is immediate from the definition. Parts (ii) and (iii) are easy exercises when

changing coordinates in such a way that x becomes the point of coordinates (1 : 0 : . . . : 0).

In this situation, for any homogeneous polynomial F , we regard it as a polynomial in the

variables X1, . . . , Xn, and Fx is then the nonzero homogeneous part of F with smallest

degree (and divided by the maximum possible power of X0).

Theorem 11.7. Let I ⊂ K[X0, . . . , Xn] be a homogeneous ideal, and let x ∈ Pn be a

point.
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(i) V (CxI) = {x} if and only if the only component of V (I) passing though x is {x}.

(ii) If r is the local dimension on V (I) at x, then V (CxI) has dimension r.

Proof: We will assume again that we took coordinates such that x = (1 : 0 : . . . : 0). If

V (I) = {x} ∪ Y , with Y 6⊃ x, we have, by the Nullstellensatz, that
√
I = (X1, . . . , Xn) ∩

I(Y ), and I(Y ) 6⊂ (X1, . . . , Xn). We can thus find a homogeneous polynomial G ∈ I(Y )

monic in X0, and also there are powers (GX1)a1 , . . . , (GXn)an that are in I. But then

automatically we have also Xa1
1 , . . . , Xan

n ∈ CxI, which implies V (CxI) = {x}.

For the other implication of (i), we will follow essentially the same steps as in the proof

of Theorem 11.1. First, if V (CxI) = {x}, using again the Nullstellensatz we know that

there is some integer a such that all the monomial of degree a in the variables X1, . . . , Xn

are in CxI. Let M1, . . . ,MN denote those monomials. By assumption, for each of them,

there is a homogeneous polynomial Fi ∈ I such that Fix = Mi (i = 1, . . . , N). This means

that for each i = 1, . . . , N we can write Fi = Xdi
0 Mi + Ai1M1 + . . . + AiNMN , with all

the Aij ’s in the ideal (X1, . . . , Xn). As in the proof of Theorem 11.1, we get a system of

congruences modulo I

(Xd1
0 −A11)M1− . . . −A1NMN ≡ 0

...
. . .

...
−AN1M1− . . . +(XdN

0 −ANN )MN ≡ 0

that implies FMi ∈ I for i = 1, . . . , N , where F is the determinant of the coefficients ma-

trix. Since clearly F (x) 6= 0, it follows that M1, . . . ,MN belong to any primary component

of I corresponding to components of V (I) passing through x. Hence there is only one such

primary component, and its radical is (X1, . . . , Xn).

The proof of (ii) will now follow easily from (i). Let s be the dimension of V (CxI).

We can thus find linear forms H1, . . . ,Hs vanishing at x such that V (CxI)∩V (H1, . . . ,Hs)

is just the point x (since V (CxI) is a cone of vertex x, identifying the set of lines passing

through x with Pn−1, we have that V (CxI) corresponds to a projective set of dimension

s − 1 in Pn−1, whose intersection with s general hyperplanes is therefore empty). From

Lemma 11.6(iii) we obtain that Cx(I + (H1, . . . ,Hs)) is just the point x. Part (i) implies

that also V
(
I + (H1, . . . ,Hs)

)
has {x} as the only irreducible component passing through

x. Since V
(
I + (H1, . . . ,Hs)

)
= V (I) ∩ V (H1, . . . ,Hs), it follows from Theorem 7.21 that

any component of X passing through x has dimension at most s. In other words, r ≤ s,

i.e. the local dimension of X at x is at most the dimension of CxX.

To see the other inequality, we proceed in the same way. We can find r linear forms

H1, . . . ,Hr such that X ∩ V (H1, . . . ,Hr) has only one component passing through x, and

this is just {x}. Using again Lemma 11.6(iii) and part (i) we get that CxX∩V (H1, . . . ,Hr)
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is just the point x. Theorem 7.21 implies now that CxX has dimension at most r, com-

pleting the proof of (ii).

Definition. If X ⊂ Pn is a projective set and x ∈ X is a point of it, the cone V (CxI(X))

is called the tangent cone of X at x, and it will be denoted by CxX.
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12. Transversality

Theorem 12.1. Let X ⊂ Pn be projective variety of dimension r and degree d.

(i) (Bertini’s Theorem) There exists an open subset U ⊂ Pn∗ such that, for any H ∈ U
and any smooth point x of X belonging to H, the projective set X ∩H is smooth at

x. In particular, if X is smooth or has only a finite number of singular points, the

intersection with a general hyperplane is smooth.

(ii) There exists a non-empty open subset V ⊂ G(n − r, n) such that, for any linear

subspace Λ ∈ V , the intersection of X and Λ consists exactly of d different points

(each counted with multiplicity one). In particular d is the maximum number of

points in the intersection (provided it is finite) of X with a linear space of dimension

n− r.

Proof: Let X0 be the open set of X consisting of its smooth points. We consider the

incidence variety I0 ⊂ X0 × Pn∗ formed by the set of pairs (x,H) for which H contains

the tangent space of X at x. We thus know (from Theorem 8.4(iii) together with Lemma

7.8(iii)) that I0 is irreducible of dimension r+(n− r−1) = n−1 (because the fibers of the

projection onto X0 are projective spaces of dimension n−r−1, corresponding to the set of

hyperplanes containing the tangent space at a point). Taking the Zariski closure of I0 in

X×Pn∗ we get a projective variety of dimension n−1. Therefore its projection to Pn∗ is a

proper closed subset. The complement of this closed set is the wanted open set U . Indeed,

for any smooth point x of X belonging to H, it is clear that the tangent space to X ∩H at

x must be contained in both TxX and H. Since TxX 6⊂ H, then dim(TxX ∩H) ≤ r − 1.

But then Proposition 11.2(i) implies that x is a smooth point of X ∩H, proving the first

part of (i). For the second part, it is just enough to intersect the above open set with the

open set of hyperplanes not passing through any singular point (this last open set is not

empty when the number of singular points is finite).

For the proof of (ii), we already know from Exercise 7.19 that we have an open set in

G(n − r, n) of linear spaces whose intersection with X has dimension zero, i.e. is a finite

number of points. Hence we know from Theorem 5.15 that this number of points, counted

with multiplicity, is d. So that we just need to prove that we can find a smaller open set

in which the intersection multiplicity is always one. By Proposition 5.14, a linear space Λ

will meet X at x with multiplicity at least two if and only if Λ and TxX share at least

one line passing through x. So we will just imitate the proof of part (i). We consider now

the incidence variety J0 ⊂ X0 × G(n − r, n) of pairs (x,Λ), where x is a smooth point

of X and Λ a linear space meeting TxX in at least one line through x. We now use the

projection of J0 onto X0 to obtain the dimension of J0. If we fix a smooth point x of

X, its fiber under this projection consists of the set of (n− r)-planes meeting TxX along
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a line passing through x. Identifying the set of (n − r)-planes passing through x with

G(n− r− 1, n− 1) (see Exercise 7.7) the fiber is then isomorphic to the set of (n− r− 1)-

planes in some Pn−1 meeting a fixed linear space of dimension r − 1. From Exercise 1.18

this is a hyperplane section of G(n− r− 1, n− 1). Therefore J0 is irreducible of dimension

r + dimG(n− r − 1, n− 1)− 1 = dimG(n− r, n)− 1. Hence the Zariski closure of J is a

projective set in X ×G(n− r, n) whose image under the second projection is necessarily a

proper closed subset of G(n − r, n). The complement of this closed subset is not still the

wanted open set, since after taking closures we can still find singular points. But another

easy dimension counting (see Exercise 8.9) shows that the set of (n−r)-planes meeting the

singular locus (which has dimension at most r − 1 by Proposition 11.2) is another proper

closed subset of G(n− r, n). The proof of the Theorem is now complete since we can take

the complement of the union of the proper closed sets that we have found.

Corollary 12.2. Let X ⊂ Pn be a projective variety of degree d and dimension r ≤ n−2.

Then there exists a non-empty open subset U ⊂ Pn such that for any p ∈ U the image of

X in Pn−1 under the linear projection from p has degree d. In particular, the cone over X

with vertex a general point has degree d.

Proof: We leave as an exercise to prove that the set of points p for which the image of X

has degree different from d is a closed set. So we just prove that there is good center of

projection p. For this purpose, take a linear subspace Λ (whose existence was proved in

Theorem 12.1(ii)) of dimension n− r meeting X exactly in d points. Take p to be a point

in Λ not contained in any line spanned by two out of the d points of X ∩ Λ (this p exists

since n− r ≥ 2). Therefore the projection from p yields a variety X ⊂ Pn−1 of dimension

r and such that the intersection with the (n− r − 1)-plane image of Λ consists of exactly

d different points. Since clearly the intersection of X with any other (n− r − 1)- plane, if

finite, consists of at most d points, it follows again from Theorem 12.1(ii) that degX = d,

as wanted.

Exercise 12.3. Let Z ⊂ G(n − r − 1, n) be the projective variety (of codimension one)

consisting of (n − r − 1)-planes meeting a projective variety X ⊂ Pn of dimension r and

degree d (see Exercise 8.9). Use Corollary 12.2 and the method of Example 10.18 to

conclude that, if Z is the intersection of G(n − r − 1, n) with a hypersurface, then this

hypersurface has degree d. [The hypothesis that Z is such an intersection is not restrictive

at all, since it can be proved that any subvariety of codimension one of any Grassmannian

is obtained as the intersection of the Grassmannian with some hypersurface].

Exercise 12.4. Prove that any projective variety of degree one is a linear subspace.
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Exercise 12.5. Let X ⊂ Pn be a smooth projective variety and dimension r.

(i) Prove that the set consisting of the tangent spaces at all the points of X forms a

projective variety in G(k, n).

(ii) Describe the above variety when X is the twisted cubic in P3.

(iii) More generally, if k ≥ r, prove that the union of all the k-planes of Pn containing

some tangent space of X is a projective variety in G(k, n) (when k = n − 1, the

corresponding variety X∗ ⊂ Pn∗ is called the dual variety of X).

(iv) Show that the “expected dimension” of X is n−1. Prove that indeed the dual variety

of a smooth curve is a hyperplane if and only if the curve is not contained in any

hyperplane.

(v) Find the equation of the dual variety of the twisted cubic. What is its singular locus?

One important application of the description of the degree given in Theorem 12.1(ii)

is the characterization of curves of minimal degree.

Theorem 12.6. Let X ⊂ Pn be an irreducible curve of degree d that it is not contained

in a hyperplane. Then d ≥ n, and equality holds if and only if X is a rational normal

curve.

Proof: The first part is easy. Just take n different points of X. They are contained in a

hyperplane H ⊂ Pn. Since X 6⊂ Pn and X is irreducible, the intersection of X and H must

consist of d points counted with multiplicities. Since there are at least n different points

in the intersection, it follows that d ≥ n.

Assume now d = n. Fix n− 1 points p1, . . . , pn−1 of X and let Λ ⊂ Pn be their linear

span. By the same reason as above, Λ has dimension n− 2 since X is not contained in a

hyperplane. Let us consider the pencil of hyperplanes containing Λ. As a subset of Pn∗,
this is a projective line, so that it can be identified with P1. For each element H of the

pencil, we know that H meets X in n points counted with multiplicity. And in fact the

general H meets X in a point different from p1, . . . , pn−1 (we know from Theorem 12.1

that the elements of the pencil for which we get n different points is an open set of P1;

and on the other hand, taking pn 6= p1, . . . , pn−1 we get a hyperplane in that open set).

We therefore get a morphism from an open set U ⊂ P1 to X, associating to each element

H of U the intersection point of X and H outside {p1, . . . , pn−1}. But then Proposition

8.3 implies that this morphism extends to a morphism f : P1 → X.

By Proposition 8.1, f is thus defined by homogeneous polynomials F0, . . . , Fn ∈
K[T0, T1] of the same degree. It is very reasonable to think that the degree of these

polynomials, say m, must be n, since any hyperplane in Pn corresponds to a linear combi-

nation of F0, . . . , Fn, which is still a homogeneous polynomial of degree m. Since any root

99



of such a polynomial provides a point of X meeting the hyperplane, and a homogeneous

polynomial of degree m in K[T0, T1] has m roots counted with multiplicity, m must be the

degree of X, i.e. n. However, we do not know that the multiplicity of a root corresponds

with the intersection multiplicity of X and the hyperplane at the corresponding point. The

idea will be thus to show that we can find a homogeneous polynomial in the linear span

of F0, . . . , Fn having only simple roots.

Assume for a while that we proved that m = n. Then F0, . . . , Fn would form a basis

of the space of homogeneous polynomials of degree n (they cannot be linearly dependent

over K, since this would imply that X is contained in a hyperplane). Therefore after a

linear change of coordinates in Pn we would obtain the curve defined by the set of all the

monomials of degree n (which form another basis of this space of polynomials). Therefore

X would be a rational normal curve, which is what we want to prove.

So let us prove m = n. Let V be the linear span in K[T0, T1]m of F0, . . . , Fn. I claim

that it is possible to find two polynomials F,G ∈ V without a common factor. Indeed we

pick F to be any element of V (although later on we will need to be more careful choosing

F ). And now, for each of the linear factors of F , the set of polynomials of V divisible by

this factor is a hyperplane in V (recall that F0, . . . , Fn do not share a common factor).

It is thus enough to take G in the complement of this finite set of hyperplanes of V . We

want to prove that there exists some λ ∈ K for which Pλ := F + λG has m different

roots. We know that Pλ has repeated roots if and only if its discriminant is zero. But its

discriminant in a polynomial in K[λ]. So if any Pλ has multiple roots then this discriminant

is zero. But this implies that Pλ, as a polynomial with coefficients in the field K(λ), has

also a multiple root. This means that we can write Pλ = Q(λ, T0, T1)2R(λ, T0, T1), with

Q,R ∈ K(λ)[T0, T1] and being homogeneous of positive degree in T0, T1. But removing

denominators it is easy to see that we can assume that Q and R are also polynomical in

in λ. But since Pλ has degree one in λ, then Q must have degree zero, i.e. do not depend

on λ. Hence we find that Q ∈ K[T0, T1] is a common factor for all the polynomials F +λG

when λ varies in K, which is impossible.

We therefore can find a polynomial in V having m different roots in P1. But this is

not still sufficient to conclude, since two of its roots might yield the same point of X. The

way of solving this is to be smarter when choosing F above. Observe first that the map

f : P1 → X is injective in an open set of P1. This means that the set of points of P1 for

which there exists a “partner” sharing the same image in X is finite. We can therefore

find a polynomial F ∈ V not vanishing at any of this finite number of points. Therefore,

only for a finite number of values of λ above we will have that F + λG vanishes at some

of those points. On the other hand, also for a finite number of values of λ we get that the

discriminant of F + λG is zero. Taking λ outside both finite sets, we get a polynomial in

V (which corresponds to a hyperplane H of Pn) with m different roots, each yielding a
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different point in the intersection of X and H. This means that the degree of X is at least

m, i.e. m ≥ n. Since clearly m ≤ n (otherwise F0, . . . , Fn would be linearly dependent

and X would be contained in a hyperplane) it follows m = n, which completes the proof

of the theorem.

An important application of the above theorem is the following result on the arithmetic

genus of curves.

Theorem 12.7. Let X ⊂ Pn be an irreducible curve. Then its arithmetic genus is non-

negative and it is zero if and only if X is isomorphic to P1.

Proof: Let m ∈ Z be big enough so that for l ≥ m it holds dimK S(X)l = PX(l). If d is

the degree of X, then dimK S(X)l = dl+ 1− pa(X) if l ≥ m. We now consider the m-uple

Veronese embedding νm of Pn. Since dimK S(X)m = dm+1−pa(X), it follows that νm(X)

spans a linear space of dimension N := dm − pa(X). We can therefore consider νm(X)

as an irreducible curve in PN not contained in any hyperplane. Since dimK S(X)ml =

dlm + 1 − pa(X) for each l ≥ 1, it follows that dimK S(νm(X))l = dml + 1 − pa(X).

Therefore, νm(X) has degree dm. But now Theorem 12.6 implies dm ≥ N , or equivalently

pa(X) ≥ 0.

On the other hand, if equality holds, then νm(X) must be a rational normal curve,

and hence it is isomorphic to P1. Since νm is also an isomorphism, it follows that X is also

isomorphic to P1. Reciprocally, if X is isomorphic to P1, then by Theorem 8.15 it holds

pa(X) = pa(P1) = 0. This proves the theorem.
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13. Parameter spaces

The Grassmannian of k-planes in Pn is a nice projective variety parametrizing a very

particular type of projective sets (as shown in Exercise 12.4, they are exactly those of

dimension k and degree one). The scope of this chapter is to explain (avoiding the deep

technicalities) how it is possible to find nice parameter spaces for all the projective sets

with the same invariants. Since the invariants of a projective set are codified in the

Hilbert polynomial, a natural possibility is to try to give an algebraic structure to the set

of projective sets with the same Hilbert polynomial. But on the other hand, the example

of G(k, n) seems to show that it is enough to consider the dimension and the degree. In

fact both approaches will be valid, and will give rise respectively to the Hilbert schemes

and to the Chow varieties, which we will study here.

The main idea to study Hilbert schemes is very simple. Assume we fix a polynomial

P ∈ Q[T ] for which we want to find the set of all the projective sets in Pn having P as

their Hilbert polynomial. If X ⊂ Pn has Hilbert polynomial PX = P , then we know that

there exists l0 ∈ N such that dim(S(X)l) = P (l) if l ≥ l0. In particular this implies that

for l ≥ l0 we know exactly the dimension of the subspace I(X)l of Sl = K[X0, . . . , Xn]l.

Moreover, for l big enough (for instance at least the maximum degree of the elements

of a set of generators for I(X)) the homogeneous part of degree l determines univoquely

the projective set X (it is not difficult to see that l ≥ degX is enough for this purpose).

Projectivizing, we can associate to each projective set X the linear subspace P(I(X)l) of

P(Sl), i.e. an element of a Grassmannian. The first problem is that l0 depends on each

particular X, so that it could happen that for each l we can find a projective set X with

Hilbert polynomial P and such that P(I(X)l) does not have the dimension predicted by

P . Fortunately it is not so. For instance, we have seen in Proposition 3.8 that when we are

dealing with d points (i.e. when P = d) we can take l0 = d− 1. In general the situation is

similar, and we have the following theorem (which we will not prove).

Theorem 13.1. Let P ∈ Q[T ] a polynomial and fix n ∈ N. Then there exists an integer

l0 such that for any projective set X ∈ Pn and any l ≥ l0 it holds that dim(S(X)l) = P (l)

and V (I(X)l) = X.

Proof: See for instance [Se].

The above theorem then shows that, writing n(l) = dim(Sl)−1 and k(l) = n(l)−P (l),

we have for any l ≥ l0 an injective map that associates to any projective set X ⊂ Pn with

PX = P an element of G(k(l), n(l)). Let us study this map in a very concrete and simple

example.
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Example 13.2. Consider the case n = 1 and P = 2, (i.e. sets of two points in P1). As just

remarked, Proposition 3.8 tells us that hX(1) = 2 for any set X of two points. But then

I(X)1 is zero, and thus it does not determine X. But clearly X is always determined I(X)2

(since in fact I(X) is generated by a homogeneous polynomial of degree two), so that we

can take l = 2. Thus we have an injective map that associates to any set X ⊂ P1 consisting

of two points the element of G(0, 2) = P(K[X0, X1]2) corresponding to the generator (up

to a constant) of I(X). But the image of this map is not the whole P(K[X0, X1]2), since a

homogenous polynomial of degree two determines two points if and only if its discriminant

is not zero. Therefore the set of pairs of points in P1 is parametrized by an open set of

the projective plane P(K[X0, X1]2). Once again, we would need to also consider infinitely

close points in order to obtain a projective parameter space.

Exercise 13.3. Prove that sets of d points in P1 are parametrized by an open set of Pd.

Example 13.4. It is not always the case that the subset in G(k(l), n(l)) parametrizing

projective sets with fixed Hilbert polynomial is dense in that Grassmannian. Consider now

for instance n = d = 2, i.e. pairs of points in P2. As in the case of P1, it is easy to see

that we can take l = 2, so that to any set X ⊂ P2 of two points we associate an element of

G(3, 5), namely the one corresponding to the linear system of conics passing through the

two points. It is clear by just dimensional reasons (pairs of points in P2 must depend on

four parameters, while G(3, 5) has dimension eight) that the image of the set of pairs of

points is not dense in G(3, 5). But it is also clear to see it directly, since a general web of

conics (i.e. a general element of G(3, 5)) defines the empty set, and only very particular

ones determine two points. In fact a necessary condition is that the web contains the

elements X0L,X1L,X2L, where L is the equation of the line passing through the points

of X. If, as in the previous example, we also consider infinitely close points, the condition

is also sufficient since then the two points are defined as the intersection of the line V (L)

with the conic defined by any element of the web not divisible by L. We have then shown

that the parameter space we are looking for is the image under the second projection of

the incidence variety I ⊂ P2∗ ×G(3, 5) consisting of the pairs (V (L), A) where A is a web

of conics such that X0L,X1L,X2L ∈ A. Using Theorem 8.4(iii) for the second projection

the reader can easily verify that we get that I is a projective variety of dimension four, and

that hence the parameter space of pairs of points in P2 is a projective variety of dimension

four.

Exercise 13.5. Imitate the above example to construct a space parametrizing conics in

P3 (i.e. projective sets contained in a plane and defined by a quadric equation inside the

plane). Show that this set is a projective variety when considering double lines in a plane

as conics. As in Exercise 8.6, study for which degrees d it holds that any surface in P3 of

degree d contains necessarily a conic.

103



The above examples are quite representative of the general situation. The general

parameter space of projective sets with fixed Hilbert polynomial will be, when we allow

degenerations, a projective set inside G(k(l), n(l)) (not necessarily irreducible).

Theorem 13.6. Let P ∈ Q[T ] a polynomial and n ∈ N a fixed integer. Then there

exists a projective set HP (Pn) ⊂ G(k(l), n(l)) (with the notation above) and an open set

H ′P (Pn) ⊂ HP (Pn) such that the ideal corresponding to any element of H ′P (Pn) has Hilbert

polynomial P .

Proof: We would like to identify inside Z ⊂ Pn×G(k(l), n(l)) the subset consisting of pairs

(x,P(A)) such that the ideal IA generated by A has Hilbert polynomial P and x ∈ V (IA).

For any P(A) ∈ G(k(l), n(l)) (where A is a linear subspace of Sl), write IA for the

ideal generated for A. Fix a set of generators G of A as a vector space over K (recall from

the description given for the equations of the Grassmannians that we can find generators

having as coordinates Plücker coordinates). In order to impose that the Hilbert function

of IA is defined by P for l′ ≥ l we just need to check that, for each e ≥ 0, the set of

products of a monomial of degree e by an element of G spans inside Sl+e a linear space of

dimension
(
n+l+e
l+e

)
− P (l+ e). What is a closed condition inside G(k(l), n(l)) is to impose

that this dimension is at most
(
n+l+e
l+e

)
− P (l+ e). Intersecting all these closed sets we get

a projective set in HP (Pn) ⊂ G(k(l), n(l)) with the property that for any P(A) in HP (Pn)

it it holds that dim(S/IA)l′ ≥ P (l′) for any l′ ≥ l.
To see that the subset H ′P (Pn) ⊂ HP (Pn) for which the above inequalities are equal-

ities is in fact an open set we need to work a little bit more, but it is based on an easy

observation. First of all, consider the second projection map from the incidence variety

in Pn × G(k(l), n(l)) of pairs (x,P(A)) for which x ∈ IA. Thus we see that the subset of

G(k(l), n(l)) of subspaces P(A) for which V (IA) has dimension exactly r := degP is locally

closed in G(k(l), n(l)). Hence the subset of HP (Pn) of subspaces for which dimV (IA) = r

is open. But the key observation is that then subspaces on this open set define ideals

with Hilbert polynomial of degree r, and thus univoquely determined by just r + 1 val-

ues. In other words, in the intersection of the r + 1 open sets defined respectively by the

conditions dim(S/IA)l′ = P (l′) for l′ = l, l + 1, . . . , l + r, then we get that automatically

dim(S/IA)l′ = P (l′) for any l′ ≥ l. Hence H ′P (Pn) is the intersection of a finite number of

open sets, so that it is open itself, just finishing the proof of the theorem.

We now introduce the other notion of parameter space, namely the Chow variety.

The main idea is to define any projective variety with just one equation in some other

space. This is done in the following way. Assume X ⊂ Pn is a projective variety of

dimension r and degree d. Then Exercise 8.9 implies that the set of linear spaces of
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dimension n − r − 1 meeting X is a hypersurface in G(n − r − 1, n). It can be proved

(but it is not trivial at all) that any hypersurface of a Grassmannian G(n − r − 1, n) is

the intersection of the Grassmannian with a hypersurface in P(n+1
r+1)−1, the projective space

in which G(n − r − 1, n) lies under the Plücker embedding. Moreover, the degree of this

hypersurface coincides with the degree of X (see Exercise 12.3). Therefore X is represented

by an element of P(S(G(n− r − 1, n))d).

Exercise 13.7. Let X ⊂ P3 be a plane curve of degree d defined by the equations X3 = 0

and F = 0, where F ∈ K[X0, X1, X2] is a homogeneous polynomial of degree d. Find

in a homogeneous polynomial G ∈ K[p01, p02, p03, p12, p13, p23] of degree d such that the

V (G) ∩G(1, 3) is the set of all the lines of P3 meeting X.

However in order to avoid the use of a nontrivial result such as the one above we will

use the same philosophy, but replacing G(n−r−1, n) with sets of n−r points generating it.

This would yield to an alternative construction of a Chow variety. The reader is invited to

produce the parallel construction of Chow variety arising from the use of the Grassmannian

(which is in fact much more natural). Observe that an equivalent way to ours would be to

replace G(n− r − 1, n) with sets of r + 1 hyperplanes defining it, as it is done in [H].

We thus consider U to be the open set of the product Pn × n−r). . . ×Pn consisting of

the sets of points whose linear span has dimension n − r − 1. It is an easy exercise to

prove that the subset of U consisting of sets of points whose linear span meets X is a

hypersurface in U . Therefore, its closure in Pn × n−r). . . ×Pn is defined by just one equation

FX ∈ K[X10, . . . , X1n, . . . , Xn−r−1,0, . . . , Xn−r−1,n] (as it was proved in Proposition 5.9

in the homogeneous case). Let us see that its multidegree is (d, . . . , d). So fix n − r − 1

general points p1, . . . , pn−r−1 ∈ Pn. When we substitute in FX n− r − 1 sets of variables

by the coordinates of p1, . . . , pn−r−1 (the order is not important) we obtain a homogeneous

polynomial G ∈ K[X0, . . . , Xn], which we want to prove to have degree d. The polynomial

G vanishes on those points whose span with p1, . . . , pn−r−1 meets X. In other words, G is

the equation of the cone over X with vertex the linear span of the points p1, . . . , pn−r−1.

Since the points are general, the degree of this cone is d (by Corollary 12.2), as wanted.

On the other hand, it is not difficult to see that FX must be irreducible, since V (FX) is

irreducible (because X is).

Definition. The multihomogeneous irreducible polynomial FX produced by the above

construction is called the Chow form of X.

Exercise 13.8. Find the Chow form of the curve of Exercise 13.7.

We therefore found a method to associate to each projective variety of any dimen-

sion r a unique equation FX ∈ K[X10, . . . , X1n, . . . , Xn−r−1,0, . . . , Xn−r−1,n] (unique up to

multiplication by a constant). We can then represent any projective variety of dimension r
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and degree d by a point in the projective space P defined by the multihomogeneous polyno-

mials of multidegree (d, . . . , d) in K[X10, . . . , X1n, . . . , Xn−r−1,0, . . . , Xn−r−1,n]. Our next

goal is to see that the set of all the elements of P corresponding to Chow forms has a nice

algebraic structure.

Theorem 13.9. Let Chr,d(Pn) ⊂ P the set of all Chow forms of varieties of dimension r

and degree d.

(i) The assignment X 7→ [FX ] ∈ Chr,d(Pn) is one-to-one.

(ii) Chr,d(Pn) is a quasiprojective set.

Proof: Given a Chow form FX , the intersection of V (FX) with the open set U ⊂ Pn ×
n−r). . . ×Pn defined above consists of those sets of n−r points whose linear span has dimension

n−r−1 and meets X. Obviously, a point p ∈ Pn is in X if and only if, for any (n−r−1)-

plane passing through p, any choice of n−r points spanning it defines a point of V (FX)∩U .

This immediately proves (i).

Following with the same idea, given any F ∈ P, we consider again V (F )∩U . In order

to see whether F = FX we need to find the points p ∈ Pn for which for any (n−r−1)-plane

passing through p and any choice of n− r points spanning it defines a point of V (F ) ∩U .

In other words, consider first the incidence variety IF ⊂ Pn ×
(
V (F ) ∩ U

)
consisting of

elements (p, p1, . . . , pn−r) such that p ∈< p1, . . . , pn−r > and let π be the projection to

the first factor. We are then interested in the points of Pn for which the fiber of π has

maximum dimension, i.e. (n− r− 1)(r+ 1) + (n− r)(n− r− 1) = (n+ 1)(n− r− 1). This

is then a closed subset X ⊂ Pn by Proposition 7.18(iii) (if you want to use it directly you

would need to take the Zariski closure of IF inside Pn×(Pn×n−r). . . ×Pn). We want to know

when F = FX . We would then need at least X to be a projective variety of dimension r

and degree d.

I claim that in fact it is enough to know that X has dimension r. Indeed as soon as X

has a component Y of dimension r, then V (F ) contains contains V (FY ) as a component.

Therefore F is divisible by FY . If we assume F to be irreducible (which is possible if we

restrict ourselves to an open set of P) then F = FY , from which necessarily Y is the whole

X and has degree d, as claimed.

So the above claim suggests us to consider the open set V ⊂ P of irreducible hyper-

surfaces and consider the incidence set I ⊂ V ×Pn×U of elements
(
[F ], p, (p1, . . . , pn−r)

)
for which (p1, . . . , pn−r) ∈ V (F ) and p ∈< p1, . . . , pn−r > (i.e.

(
p, (p1, . . . , pn−r)

)
∈ IF ).

Considering the projection q : I → P, Chr,d(Pn) consists of the points of V for which the

fiber over q has dimension r, so it is a quasiprojective set, as wanted.

Remark 13.10. We have constructed the above Chow variety Chr,d(Pn) (by the way the
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name is not very appropriate, since it is seldom irreducible) for irreducible varieties X. In

order to also allow reducible varieties (but with all components of dimension r), we should

also consider the images in P of the different products Chr,d1(Pn)× . . .×Chr,ds(Pn) with

d1 + . . .+ds = d (given by the multiplication of the corresponding Chow forms). But they

are still quasiprojective sets.

Definition. Abusing the notation, we will still denote by Chr,d(Pn) the quasiprojective set

(called Chow variety) parametrizing projective sets in Pn of pure dimension r and degree

d.

Even if it is conceptually simpler, the Chow variety is not as good as the Hilbert

scheme. For instance, in Ch1,2(P3), we would obtain pairs of meeting lines as a degen-

eration of smooth conics. But we know that this is not a good degeneration, since the

arithmetic genus is not the same. In fact, Chow varieties cannot “see” components of

smaller dimension (in particular embedded components). And this is why they do not

behave well under degenerations.
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14. Affine varieties vs projective varieties; sheaves

So far we have essentially concentrated on projective varieties instead affine varieties.

The reason was that global properties (degree, intersection results like Bézout’s theorem,...)

only hold for projective varieties, since they are “complete”, while affine varieties have

their points at infinity missing. However, there are some properties behaving well for

affine varieties (for instanced those regarding morphisms), even much better than in the

projective case. We want to analyze in this section some good properties of affine varieties,

which will be in fact crucial in order to define new concepts regarding projective varieties

(or a generalization of them). We start from the basic definitions.

Definition. An affine set in An is a subset defined as the zero locus V (T ) of a subset of

polynomials T ⊂ K[X1, . . . , Xn]. Reciprocally, given a subset X ⊂ An we defined its affine

ideal Ia(X) to be the set of all the polynomials of K[X1, . . . , Xn] vanishing at all the points

of X.

We have essentially the same properties for the operators V and Ia that we had in

the projective case (sometimes the situation is easier since we should not worry about

homogeneity). We collect them as an exercise.

Exercise 14.1. Prove the following properties:

(i) Ia(An) = {0} (again for this we just need K to be infinite) V ({0}) = An, and V ({1}) =

∅.

(ii) If T ⊂ K[X1, . . . , Xn] and < T > is the ideal generated by T , then V (T ) = V (< T >).

In particular, any affine set can be defined by a finite number of equations.

(iii) If T ⊂ T ′ ⊂ K[X1, . . . , Xn], then V (T ′) ⊂ V (T ) ⊂ Pn.

(iv) If {Tj}j∈J is a collection of subsets of K[X1, . . . , Xn] then V (
⋃
j∈J Tj) =

⋂
j∈J V (Tj).

(v) If {Ij}j∈J is a collection of ideals of K[X1, . . . , Xn] then V (
∑
j∈J Ij) =

⋂
j∈J V (Ij).

(vi) If I ⊂ K[X1, . . . , Xn] is any ideal, then V (I) = V (
√
I).

(vii) If I, I ′ ⊂ K[X1, . . . , Xn] are two ideals, then V (I ∩ I ′) = V (II ′) = V (I) ∪ V (I ′).

(viii) For any X ⊂ An, Ia(X) is a radical ideal. If X is an affine set, Ia(X) is the maximum

ideal defining X.

(ix) If X ⊂ X ′ ⊂ An then Ia(X ′) ⊂ Ia(X).

(x) If {Xj}j∈J is a collection of subsets of An, then Ia(
⋃
j∈J Xj) =

⋂
j∈J Ia(Xj).

(xi) For any X ⊂ An, X ⊂ V Ia(X), with equality if and only if X is an affine set. In

particular V Ia(X) is the minimum affine set containing X.

(xii) For any T ⊂ K[X0, . . . , Xn], T ⊂ IaV (T ) and V IaV (T ) = V (T ).
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(xiii) An affine set X ⊂ An is irreducible if and only if Ia(X) is a prime ideal.

As in the projective case, the main property of the operators V and Ia is the Nullstel-

lensatz. This can be obtained from the projective case (although usually one proves first

the affine case and deduce from it the projective theorem).

Theorem 14.2 (Weak Hilbert’s Nullstellensatz). Let I ⊆/ K[X1, . . . , Xn] be a proper ideal.

If K is algebraically closed, then V (I) 6= ∅.

Proof: Assume for contradiction that V (I) = ∅, and let us prove that then I is the whole

polynomial ring. If we choose a set of generators f1, . . . , fr of I, then it is clear that our

assumption is equivalent to the fact that there is no point (a1, . . . , an) ∈ Kn such that

fi(a1, . . . , an) = 0 for i = 1, . . . , r. Let Fi ∈ K[X0, . . . , Xn] be the homogenization of each

fi (i.e. Fi = Xdeg fi
0 fi(

X1

X0
, . . . , Xn

XO
)). It is then obvious that any point (a0 : . . . : an) ∈

V (F1, . . . , Fr) must satisfy a0 = 0, since otherwise (a1a0 , . . . ,
an
ao

) would vanish for f1, . . . , fr.

We thus have that X0 belongs to IV (F1, . . . , Fr). But then Theorem 3.17 implies that

there exists a power of X0 in the ideal (F1, . . . , Fr), i.e. we have a relation of the type

Xd
0 = G1F1 + . . .+GrFr, with G1, . . . , Gr ∈ K[X0, . . . , Xn]. Making X0 = 1 in the above

relation we get that 1 = g1f1 + . . . + grfr, with gi = Gi(1, X1, . . . , Xn) ∈ K[X1, . . . , Xn].

We thus get that 1 belongs to I, and hence I = K[X1, . . . , Xn], which completes the proof.

Exercise 14.3. Prove directly Theorem 14.2 following the following steps (parallel to

those of the proof of Theorem 1.24):

(i) Use induction on n (the case n = 1 being trivial from the assumption that K is

algebraically closed and the fact that k[X1] is a PID).

(ii) If f ∈ K[X1, . . . , Xn] is a non-constant polynomial, prove that it is possible to find

λ1, . . . , λn−1 ∈ K such that f(X1 + λ1Xn, . . . , Xn−1 + λn−1Xn, Xn) is monic in the

variable Xn (if fd is the homogeneous component of f of maximum degree, it will be

enough to find λ1, . . . , λn−1 ∈ K such that fd(λ1, . . . , λn−1, 1) 6= 0).

(iii) If n > 1 and I ⊆/ K[X1, . . . , Xn] is a proper ideal, from (ii) we can assume, after

changing coordinates that I contains a monic polynomial in Xn, say g; by induction

hypothesis, we can find a point (a1, . . . , an−1) vanishing at all the polynomials of

I ∩ K[X1, . . . , Xn−1]. Prove that {f(a1, . . . , an−1, Xn) | f ∈ I} is a proper ideal of

K[Xn] (if there exists f ∈ I such that f(a1, . . . , an−1, Xn) = 1, conclude that the

resultant of f and g with respect to Xn cannot vanish at (a1, . . . , an−1)).

(iv) Conclude from (iii) that there exists an ∈ K such that (a1, . . . , an−1, an) vanishes at

all the polynomials of I.
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Theorem 14.4 (Hilbert’s Nullstellensatz). Let I ⊂ K[X1, . . . , Xn] be any ideal. Then

IaV (I) =
√
I.

Proof: Since clearly IaV (I) ⊃
√
I, we just need to prove the other inclusion. The proof can

be obtained easily from the above weak Nullstellensatz by using the trick of Rabinowitsch.

Let f ∈ K[X1, . . . , Xn] be a polynomial in IaV (I), i.e. vanishing at all the points of

V (I). We add a new variable Xn+1 and consider the polynomial ring K[X1, . . . , Xn+1]. If

f1, . . . , fr ∈ K[X1, . . . , Xn] is a set of generators of I, it follows from the hypothesis on f

that the ideal of K[X1, . . . , Xn+1] generated by f1, . . . , fr and Xn+1f−1 defines the empty

set. Hence Theorem 14.2 implies that there exist g1, . . . , gr+1 ∈ K[X1, . . . , Xn+1] such that

1 = g1f1 + . . .+ grfr + gr+1(Xn+1f − 1)

We now make the substitution Xn+1 = 1
f at each of the polynomials g1, . . . , gr. If l is

the maximum exponent of f in the denominators of those substitutions, we can thus write

gi(X1, . . . , Xn,
1
f ) = hi

f l , with hi ∈ K[X1, . . . , Xn]. Therefore, making the substitution

Xn+1 = 1
f in the displayed equation and multiplying by f l we get the equality f l =

h1f1 + . . .+hrfr, just proving that f belongs to
√
I, finishing the proof of the theorem.

The most characteristic result for affine sets (which will be crucial for what follows)

was already proved implicitly in Lemma 8.13.

Theorem 14.5. Let X ⊂ An and Y ⊂ Am be affine sets and let g ∈ K[X1, . . . , Xn]. Then

any regular map X ∩D(g)→ Y is defined by m elements of K[X1, . . . , Xn]g. In particular,

any regular map X → Y is defined by m polynomials in K[X1, . . . , Xn].

Proof: For the last statement, just repeat the proof of Lemma 8.13, identifying An

with D(X0) ⊂ Pn and Am with D(Y0) ⊂ Pm. And now for the general case, we just

use the natural isomorphism D(g) → V (gXn+1 − 1) ⊂ An+1 defined by (x1, . . . , xn) 7→
(x1, . . . , xn,

1
g(x1,...,xn) ).

Definition. A regular function over a quasiprojective set is a regular map X → K, where

K is identified with the affine line. The set of regular functions over X will be denoted by

O(X).

As we have seen (Exercise 7.14), O(X) = K if X is a projective variety. In the affine

case, however, any regular map from X ⊂ An to K is defined (after Theorem 14.5) by

a polynomial in K[X1, . . . , Xn]. Since two polynomials define the same function on X if

and only if their difference lies in Ia(X), it follows that O(X) is naturally isomorphic to

K[X1, . . . , Xn]/Ia(X). Moreover, this quotient determines the isomorphism class of the

affine set, as the following result shows.
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Theorem 14.6. If X ⊂ An and Y ⊂ Am are affine sets, then there is a natural bijection

between the set of regular morphisms from X to Y and the set of homomorphisms of

K-algebras from O(Y ) to O(X). Moreover, this bijection defines a 1:1 correspondence

between isomorphisms of the affine sets and isomorphisms of the K-algebras. Hence there

is a natural bijection between the set of isomorphism classes of affine sets and the set of

isomorphism classes of finitely generated reduced K-algebras.

Proof: If f : X → Y is a regular morphism, we know that it is defined by the classes

(modulo Ia(X)) of m polynomial f1, . . . , fm ∈ K[X1, . . . , Xn]. We can thus define a homo-

morphism f∗ : O(Y ) → O(X) by assigning to the class of Yi (modulo Ia(Y )) the class of

fi (modulo Ia(X)). Viceversa, given a homomorphism of K-algebras ϕ : O(Y ) → O(X),

we can take f1, . . . , fm ∈ K[X1, . . . , Xn] representatives modulo Ia(X) of the respective

images by ϕ of the classes (modulo Ia(Y )) of Y1, . . . , Ym. It is clear that this defines

the wanted bijection. Since for morphisms defined on the appropriate affine sets it holds

(f ◦ g)∗ = g∗ ◦ f∗ and (idX)∗ = idO(X), then it follows immediately that this bijection

takes isomorphisms to isomorphisms.

For the last statement of the theorem, first observe that for any affine set X ⊂ An,

the K-algebra O(X) is finitely generated (by the classes of X1, . . . , Xn). Reciprocally, if A

is a finitely generated K-algebra, let α1, . . . , αn be a set of generators. We therefore have a

surjective homomorphism K[X1, . . . , Xn]→ A that associates to each Xi the generatorαi.

If I is the kernel of that map, then I is a radical ideal, because A is reduced. But then

the Hilbert’s Nullstellensatz implies that I = IaV (I), so that A is isomorphic to O(V (I)).

This completes the proof of the theorem.

Remark 14.7. From Theorem 14.5, it also follows that for any basic open set X ∩D(g)

(for short we will denote it DX(g)), its set of regular functions is naturally isomorphic to

O(X)g, the set of quotients f
gl

, with f ∈ O(X) and l ∈ N.

Exercise 14.8. Show that, if X = A2 \ {(0, 0)}, then O(X) is naturally isomorphic to

K[X1, X2]. [Hint: Given a regular function on X, restrict it to D(X1) and D(X2), use the

above remark and compare both restrictions].

We would like to have something like Theorem 14.6 for projective sets, i.e. find some

algebraic object characterizing a projective set up to isomorphism. This object cannot

be the set of regular functions, since the only regular functions of any projective variety

are the constant maps. This object cannot be neither the graded ring, since isomorphic

varieties can have non isomorphic graded rings (consider for instance two rational normal

curves of different degrees; they are isomorphic since both are isomorphic to P1, but their

Hilbert polynomials are different, so that their graded rings cannot be isomorphic). It
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seems therefore that the only way of solving this problem is to consider all the affine pieces

of a projective set in order to determine its isomorphism class. This is the motivation for

the following definition (which we will give with some generality).

Definition. A sheaf of K-algebras over a topological space X is a map O from the set of

open sets of X to the set of K-algebras satisfying the following conditions:

(i) O(∅) = 0.

(ii) If V ⊂ U are two open sets of X, there is a homomorphism of K-algebras (which we

will call restriction map) ρUV : O(U)→ O(V ) (we will often write ρUV (f) = f|V ).

(iii) For any open set U ⊂ X, ρUU is the identity map.

(iv) If W ⊂ V ⊂ U , then ρUW = ρVW
◦ ρUV .

(v) If an open set U is the union of open sets Ui (with i varying in an arbitrary set I),

and for each i ∈ I there is fi ∈ O(Ui) such that fi|Ui∩Uj
= fj |Ui∩Uj

for all i, j ∈ I,

then there exists a unique f ∈ O(U) such that f|Ui
= fi for any i ∈ I.

The elements of O(U) are called sections of the sheaf O over U . Clearly, this definition can

be extended to sheaves of rings, groups,... by just modifying conveniently the definition.

In particular, a sheaf of O-modules will consist of a sheaf F such that for each open set

U ⊂ X, F(U) is an O(U)-module, and for each V ⊂ U , the restriction map F(U)→ F(V )

is a homomorphism of O(U)-modules (note that the restriction map O(U)→ O(V ) for O
endows F(V ) with a structure of O(U)-module).

Exercise 14.9. Prove that, if an open set U of X is covered by a collection {Ui}i∈I of

open sets and there are f, g ∈ O(U) such that for each i ∈ I it holds f|Ui
= g|Ui

, then

f = g. [Hint: Use the fact that 0 ∈ O(U) is the only section whose restriction to each Ui
is zero].

Definition. If X is a quasiprojective set, the sheaf OX that associates to each open set

U ⊂ X the set of regular functions over U is a sheaf over X, called the structure sheaf of

the quasiprojective set.

The idea now is that two quasiprojective sets are isomorphic if and only if they have

isomorphic –in some sense– structure sheaves. This is what we want to do now. We first

observe, that if we have a regular map f : X → X ′ among two quasiprojective sets, then for

any open set U ′ ⊂ X ′ we have a homomorphism of K-algebras OX′(U ′)→ OX(f−1(U ′)).

This motivates the following definitions (in which you can take your favorite algebraic

structure for the sheaves).

Definition. Let X, Y be two topological spaces, let f : X → Y be a continuous map and

let F be a sheaf over X. Then the direct image sheaf f∗F is the sheaf over Y defined by
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(f∗F)(V ) = F(f−1(V )) (it is an easy exercise left to the reader that this is a sheaf with

the obvious restriction maps).

Definition. LetX be a topological space and let F , F ′ be two sheaves overX. A morphism

of sheaves ϕ : F → F ′ is a collection of homomorphisms (with respect to the structure

you chose) ϕU : F(U) → F ′(U) one for each open set U ⊂ X and such that they are

compatible with the restrictions: if V ⊂ U then ρ′UV ◦ ϕU = ϕV ◦ ρUV . The composition

of two morphisms is defined in the obvious way. An isomorphism of sheaves is a morphism

ϕ : F → F ′ such that there exists another morphisms ψ : F ′ → F satisfying ϕ ◦ ψ = idF ′

and ψ ◦ ϕ = idF .

We can state and prove now a generalization of Theorem 14.6.

Theorem 14.10. Let X and Y two quasiprojective varieties and let f : X → Y be a

regular map. Then f is an isomorphism if and only if the inverse image by f of any affine

open set of Y is affine and the natural morphism of sheaves OY → f∗OX is an isomorphism.

Proof: The “only if” part is obvious, so we will only proof the “if” part. We cover Y

by a collection {Vi} of affine open sets. For each i we write Ui = f−1(Vi), which is affine

by hypothesis. Also by hypothesis we have that f∗ : O(Vi) → O(Ui) is an isomorphism.

Therefore Theorem 14.6 implies that f|Ui
: Ui → Vi is an isomorphism. This immediately

implies that f is an isomorphism, as wanted.

Exercise 14.11. Show that, if X = A2 \ {(0, 0)} and f : X → A2 is the inclusion, then

the morphism OA2 → f∗OX is an isomorphism. Therefore the hypothesis about the inverse

image of the affine sets is necessary in the above theorem.

We finish this chapter with a technical result about sheaves that will be extremely

useful in the next chapters.

Proposition 14.12. Let X be a topological space with basis B. Assume that for each

U ∈ B we have a group F(U) (or ring, or any other algebraic structure). Assume also

that if we have V ⊂ U with V,U ∈ B then we have a homomorphism ρUV : F(U)→ F(V )

and that for W ⊂ V ⊂ U it holds ρUW = ρVW ◦ ρUV . Then there exists a unique (up to

isomorphism) sheaf F over X whose groups and restriction maps coincide with the given

ones for the open sets in B.

Proof: For any open set U ⊂ X, define F(U) as the subset of the product ΠV ∈B,V⊂UF(V )

consisting of elements ({sV }) for which ρVW (sV ) = sW if W ⊂ V ⊂ U and W,V ∈ B. It

is an easy but tedious exercise that F is a sheaf with the natural restriction maps, and

that it satisfies the conditions of the proposition.
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15. The local ring at a point

The idea of this chapter is to work with germs of functions around a point, in the

same sense as in analytic geometry. In fact we will see that it is possible to recover with

an algebraic language the notion of Taylor series.

Definition. Let X be a quasiprojective set and let x be a point of it. Consider the set of

pairs (U, f) such that U is an open set of X containing x and f is a regular function on

U . We say that two pairs (U ′, f ′) and (U ′′, f ′′) are equivalent if there exists another pair

(U, f) such that U ⊂ U ′ ∩ U ′′ and f ′|U = f ′′|U = s. This is an equivalence relation and an

equivalence class is called a germ of regular function at the point x. The set of germs of

regular functions of X is called the local ring of X at x, and will be denoted by OX,x.

Proposition 15.1. Let X be a quasiprojective set and let x be a point of it.

(i) If U ⊂ is an open set containing x, then OX,x = OU,x.

(ii) If X is an affine set with affine coordinate ring O(X) and Ix is the ideal of all the

regular functions vanishing at x, then OX,x is naturally isomorphic to the localization

(O(X))Ix .

(iii) If X is a projective set with coordinate ring S(X) and Ix is the class modulo I(X) of

the ideal I(x), then OX,x is naturally isomorphic to the localization (S(X))(Ix).

(iv) The ring OX,x is a local ring with maximal ideal Mx, the set of germs vanishing at x.

Proof: Part (i) is obvious from the definition of germ, while part (iv) is an immediate

consequence of (ii). Since parts (ii) and (iii) are proved in a similar way, we will only prove

part (iii).

Clearly an element F
G ∈ S(X)(Ix) defines the germ represented by the pair (D(G), FG ).

Reciprocally, if (U, f) represents a germ of regular function at x, then there exists homo-

geneous polynomials F,G of the same degree such that f is represented near x by F
G . It

is very easy to check that these two operations define maps between (S(X))(Ix) and OX,x
that are inverse to each other.

Definition. A germ of algebraic subset of a quasiprojective set X at a point x is an

equivalence class of quasiprojective set Y ⊂ X containing x, in which two subsets Y, Y ′ ⊂ X
are said to be equivalent if and only if they coincide when restricted to some open set of

X containing x.

It is clear that we can extend to germs most of the definitions and results that we

have for quasiprojective sets.
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Exercise 15.2. If Y ⊂ X is a germ of algebraic set of X, define its ideal Ix(Y ) ⊂ OX,x
as the set of germs of functions vanishing at Y . Reciprocally, for any set T of germs

of functions let Vx(T ) be the germ of algebraic set of X defined by the vanishing of the

elements of X.

(i) Prove that Ix and Vx satisfy the properties of Proposition 1.1.

(ii) Prove that a germ Y of algebraic subset is irreducible (in the obvious sense) if and only

if Ix(Y ) is prime. Show that any germ of algebraic subsets of X can be decomposed

in a unique non-trivial way as a union of irreducible germs.

(iii) Prove the local Nullstellensatz: IxVx(I) =
√
I.

(iv) We define the dimension of a germ of algebraic sets X as the one of any projective

set defining it and such that all of its components pass through x. Prove that the

dimension of X is the maximum length of a chain of prime ideals of OX,x (you will

need to adapt the proof of Proposition 5.7 by using Theorem 7.21).

With this point of view, observe that the proof of Theorem 11.1 shows that the

maximal ideal Mx of OX,x is generated by the classes modulo I(X) of r independent

linear forms generating a linear space meeting TxX (of dimension r) exactly at the point

x. It is interesting to observe that, instead of working modulo the whole ideal I(X), we

just used n− r polynomials in I(X) that define the tangent space. A posteriori, it will be

essentially the same (as germs), but in order to prove it we will need to keep for a while

this distinction.

Definition. Let X be a germ of algebraic subset of Pn at a point x, and assume that

X is smooth of local dimension r at x. A smooth system of equations of X at x is a

set of elements fr+1, . . . , fn ∈ Ix(X) ⊂ OPn,x such that their classes in Mx/M
2
x are

linearly independent (in other words, they generate TxX). A local system of parameters

for the smooth equations fr+1, . . . , fn at x is a set of r generators of the maximal ideal of

OPn,x/(fr+1, . . . , fn).

Theorem 15.3. Let X be a germ of algebraic set in Pn, let x ∈ X be a smooth point

with smooth equations fr+1, . . . , fn, and let u1, . . . , ur a local system of parameters for

them at x. Then for any f ∈ OPn,x/(fr+1, . . . , fn) there exists a unique formal series∑
ai1...irT

i1
1 . . . T irr such that for each s ∈ N it holds f −

∑
i1+...+ir≤s ai1...iru

i1
1 . . . uirr ∈

Ms+1
x .

Proof: We prove first the existence. Given f ∈ OPn,x/(fr+1, . . . , fn), we define a0...0 =

f(x). It thus follows that f − a0...0 belongs to Mx. It is thus possible to write f −
a0...0 = f1u1 + . . . + frur, for some f1, . . . , fr ∈ OX,x. We write now a10...0 = f1(x), . . .,

a0...01 = fr(x), and it follows that f − a0...0 − a10...0u1 − . . .− a0...01ur = (f1 − a10...0)u1 +
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. . .+ (fr − a0...01)ur is in M2
x. Therefore it can be written as

∑
i1+...+ir=2 fi1...iru

i1
1 . . . uirr .

Iterating this construction, we prove the existence of the formal series.

To prove the uniqueness, it is enough to prove it for the zero function. In other words,

we have to prove that if
∑
i1+...+ir≤s ai1...iru

i1
1 . . . uirr ∈ Ms+1

x for each s, then all the

coefficients ai1...ir are zero. This is equivalent to prove that if a homogeneous polynomial

P ∈ K[T1, . . . , Tr] verifies that P (u1, . . . , ur) is in Mx
x then P must be zero. Assume for

contradiction that we have such a nonzero polynomial P . If necessary, we change ur by

a general linear combination of u1, . . . , ur, and we can assume that P is monic in Tr. We

thus have a relation usr − f1u
s−1
r − . . . − fs ∈ Ms+1

x , where each fi is a homogeneous

polynomial of degree i in u1, . . . , ur−1. On the other hand, an element of Ms+1
x can be

written as usrf + g, where f is in Mx and g is in the ideal generated by (u1, . . . , ur−1. We

have then that usr(1− f) is in the ideal generated by u1, . . . , ur−1, and since 1− f 6∈Mx,

the same holds for usr. But this means that the local functions u1, . . . , ur vanish near x

exactly where u1, . . . , ur−1 do. This is impossible since u1, . . . , ur−1 cannot vanish only at

x.

Definition. The formal series that the previous theorem assigns to a local function f

near x ∈ X is called the Taylor series of the function f at the point x with respect to

fr+1, . . . , fn and u1, . . . , ur.

Proposition 15.4. If the Taylor series of a local function f at a smooth point x of a germ

of algebraic set X is zero, then the function itself is zero.

Proof: Let I ⊂ OPn,x/(fr+1, . . . , fn) be the set of local functions whose Taylor series is

zero. This is clearly an ideal of OPn,x/(fr+1, . . . , fn), and in fact it is I = ∩s≥0M
s
x. We

will prove by induction on the local dimension r of X at x that I is the zero ideal. If r = 0

there is nothing to prove.

Assume now that r > 0. We will consider X ′ to be the germ of algebraic set defined

as X ∩ V (ur). By Theorem 7.21, X ′ has local dimension r − 1 at x. Since TxX ′ is

contained in TxX ∩ TxV (ur), which has dimension r − 1, it follows that X ′ is smooth at

x and u1, . . . , ur−1 is a local system of parameters of X ′ at x. Hence, for any f ∈ I, since

its class modulo (ur) has also zero Taylor series, by induction hypothesis it follows that

f = gur for some g ∈ OPn,x/(fr+1, . . . , fn), and clearly g must also have a zero Taylor

series. The idea is to apply this to a set of generators of I.

Since OPn,x/(fr+1, . . . , fn) is noetherian, the ideal I has a finite set of generators, say

k1, . . . , ks. As we have remarked before, we can write ki = giur, for some gi ∈ I. We can
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thus write gi = hi1k1 + . . .+ hisks. There is therefore a matrix relation
1− h11ur −h12ur . . . −h1sur
−h21ur 1− h22ur . . . −h2sur

...
...

. . .
...

−hs1ur −hs2ur . . . 1− hssur



k1

k2
...
ks

 =


0
0
...
0


If h is the determinant of the left-hand matrix, the multiplication of the above expression

by the adjoint of that matrix yields hki = 0 for i = 1, . . . , s. Since h(x) = 1, it follows that

h is a unit in OPn,x/(fr+1, . . . , fn), and therefore k1 = . . . = ks = 0, which proves I = 0.

Corollary 15.5. Let X be a germ of algebraic set that is smooth at x, and let fr+1, . . . , fn

be a smooth system of equations. Then

(i) The ideal (fr+1, . . . , fn) ⊂ OPn,x is prime.

(ii) The germ V (fr+1, . . . , fn) coincides with X, and it has only one component.

(iii) The natural projection OPn,x/(fr+1, . . . , fn)→ OX,x is an isomorphism.

Proof: By Theorem 15.3 and Proposition 15.4, OPn,x/(fr+1, . . . , fn) is isomorphic to a

subring of K[[T1, . . . , Tr]], which is an integral domain. Therefore, (fr+1, . . . , fn) is a prime

ideal, proving (i). Since V (fr+1, . . . , fn) is therefore irreducible of dimension r and contains

X, which has also dimension r, they have to coincide, which proves (ii). Hence Ix(X) is

the radical of (fr+1, . . . , fn), but the latter being prime it coincides with its radical. This

proves (iii).

Theorem 15.6. Let X ⊂ Pn be a projective set and let x ∈ X be a smooth point.

Consider the map νx : OX,x \{0} → Z that assigns to each f ∈ OX,x \{0} the only integer

νx(f) such that f ∈Mνx(f)
x \Mνx(f)+1

x . Then

(i) νx(fg) = νx(f) + νx(g).

(ii) νx(f + g) ≥ min{νx(f), νx(g)}, with equality only if νx(f) 6= νx(g).

(iii) νx(f) > 0, if and only if f ∈Mx.

Proof: Since νx(f) can be defined as the order of a Taylor series of f with respect to any

local system of parameters, the proof is obvious.
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16. Introduction to affine and projective schemes

In this chapter, using the philosophy of the previous results, we will give a first ap-

proach to the theory of schemes. The definition we will give here is not the correct one,

but it will be enough to study schemes with support a quasiprojective set.

Example 16.1. We start by trying to give a precise structure in situations like Example

1.21, in which we have an ideal representing not only a point, but a tangent direction.

Putting this example in the affine plane we can consider the intersection of the parabola

V (X2 −X2
1 ) and its tangent line V (X2). We thus get the point (0, 0), but defined by the

ideal (X2
1 , X2). Since by Theorem 14.6 a radical ideal is the same as an affine set, and

the set of regular functions is the quotient of the polynomial ring by this ideal, we can

now define a new object that, as a set, consists of a single point, say (0, 0), but whose

set of regular functions is K[X1, X2]/(X2
1 , X2). In this way, a morphism from this object

to An should consist of a homomorphism ϕ : K[Y1, . . . , Yn] → K[X1, X2]/(X2
1 , X2). This

homomorphism will be determined by the image of each Yi, which will be the class of some

ai + biX1 (with ai, bi ∈ K). This can be regarded as a sort of Taylor expansion up to

degree one, indicating that the image of this new object consists not only of the image

of the point (0, 0) –which is the point (a1, . . . , an)– but also of the vector (b1, . . . , bn),

corresponding with the intuitive idea that our object represents not only a point, but also

a tangent direction.

In the case of the concrete Example 1.21, the new structure on the point (1 : 0 : 0) must

be given, in the flavor of Theorem 14.10 by defining a sheaf O that on each open set gives

the set of what we want to be now the regular functions. For instance, for D(X0) we have

to put the ring in the above case, which is nothing but the subring of
(
K[X0, X1, X2]/I

)
X0

(where I = (X2
1 , X2)) of quotients of a homogeneous element of degree say d by Xd

0 . In

a similar way, in the open set D(F ), with F homogeneous of degree e we define O(D(F )

as the subring of
(
K[X0, X1, X2]/I

)
F

of quotients of a homogeneous polynomial of some

degree de by F d. And for any open set U , O(U) can be defined as O(D(F )) for any D(F )

containing (1 : 0 : 0) and contained in U .

Definition. A scheme structure over a quasiprojective set Xred will be a sheaf of K-

algebras OX over Xred such that for each open set U ⊂ Xred the quotient of OX(U) by

the nilradical is OXred
(U). We will usually denote by X a scheme. The quasiprojective

set Xred will be called the (reduced) support of the scheme.

Definition. Let I ⊂ K[X1, . . . , Xn] an ideal and write Xred = V (I). For each f ∈
K[X1, . . . , Xn], we define OX(DXred

(f)) =
(
K[X1, . . . , Xn]/I

)
f
. Then this collection of

K-algebras satisfies the hypotheses of Proposition 14.12, so that it defines a sheaf of K-
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algebras OX over Xred. The sheaf OX induces a scheme structure over Xred, which we

will call the scheme induced by I.

Remark 16.2. Notice that, in the above definition, the projection K[X1, . . . , Xn] →
K[X1, . . . , Xn]/I induces epimorphisms in its localizations by polynomials. We thus have

a morphism of sheaves ϕ : OAn → i∗OX (where i : Xred ↪→ An is the inclusion map)

such that the maps ϕD(f) are all surjective. Observe that this latter condition does not

imply that all the maps ϕU are surjective. For instance, if X = Xred = V (X2) ⊂ A2 and

U = A2 \ {(0, 0)}, the map ϕU is the natural map K[X1, X2] → K[X1]X1 (see Exercise

14.11), which is not surjective.

Definition. An embedded scheme structure over an affine set Xred ⊂ An is a scheme

structure X such that there is a morphism of sheaves ϕ : OAn → i∗OX satisfying that, for

any f ∈ K[X1, . . . , Xn], the map ϕD(f) is surjective.

It is clear that any embedded scheme structure over Xred comes from an ideal I (pre-

cisely the kernel of ϕAn) and that two ideals define the same embedded scheme structure

if and only they are equal.

Definition. Let I ⊂ K[X0, . . . , Xn] a homogeneous ideal and letXred = V (I). For each ho-

mogeneous polynomial F ∈ K[X0, . . . , Xn], defineOX(DXred
(F )) =

(
K[X0, . . . , Xn]/I

)
(F )

.

Again this collection of K-algebras satisfies the hypotheses of Proposition 14.12, so that

it defines a sheaf of K-algebras OX over Xred. The sheaf OX induces a scheme structure

over Xred, which we will call the embedded scheme induced by I.

Remark 16.3. Notice that the above definition implies that the restriction of the scheme

X to the affine set D(Xi) is precisely the scheme constructed for the affine set defined by

the dehomogenization of I with respect to Xi.

Proposition 16.4. Any embedded scheme structure over a projective set Xred ⊂ Pn is

induced by a homogeneous ideal I ⊂ K[X0, . . . , Xn]. Moreover, the embedded scheme

structures defined by two ideals I and I ′ are the same if and only if I and I ′ have the same

saturation, i.e. if there exists l0 such that Il = I ′l for l ≥ l0.

Proof: Let X be an embedded scheme structure over Xred. We define I ⊂ K[X0, . . . , Xn]

to be the ideal generated by all the homogeneous polynomials G (of degree say d) such for

each i = 0, . . . , n, the quotient F
Xd

i

is in the kernel of ϕD(Xi). It is not difficult to see that

I induces the embedded scheme structure X.

On the other hand, if two homogeneous ideals , I ′ induce the same scheme structure

on Xred, then from Remark 16.3 it follows that the dehomogenizations of I and I ′ with

respect to Xi are the same for each i = 0, . . . , n. This is equivalent to say that I and I ′

have the same saturation, which completes the proof by using Proposition 2.12.
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We come now back to Remark 16.2, specifically to the fact that we can have a mor-

phism of sheaves that is surjective when evaluated at a basis of the topology but it is not

surjective when evaluated at all the open sets. This seems to be in contradiction with

Proposition 14.12 (at least heuristically). The reason is that the image of a morphism of

sheaves cannot be defined in its natural way. We will understand this better by comparing

it with the good behavior of kernels.

Exercise 16.5. Let ϕ : F → F ′ be a morphism of sheaves. Prove that the assignment

U 7→ ker(ϕU ) defines a sheaf over X.

Definition. The above sheaf is called the kernel of the morphism ϕ, and it is denoted by

Kerϕ. The morphism ϕ is said to be an injective morphism of sheaves if the sheaf Kerϕ
is the zero sheaf. By the previous exercise, this is equivalent to say that all the maps ϕU
are injective.

Example 16.6. Consider again the example of Remark 16.2, in which we had the inclusion

i : X = V (X2) ↪→ A2 and the morphism ϕ : O2
A → i∗OX of sheaves over A2. Consider the

open set U = A2\{(0, 0)}. We can cover U by the open sets U1 = D(X1) and U2 = D(X2).

We choose the elements 1
X1
∈ (i∗OX)(U1) and 0 ∈ (i∗OX)(U2) (observe that this last set

is fact zero). They are clearly in the respective images of ϕU1
and ϕU2

. On the other

hand they both restrict to zero in (i∗OX)(U1 ∩ U2). The only element in (i∗OX)(U) that

restricts to 1
X1

and 0 is 1
X1

. But the latter is not in the image of ϕU : K[X1, X2]→ K[X1]X1 .

Therefore the assignment U 7→ Im(ϕU ) does not satisfy the conditions to be a sheaf.

The way of solving our problem is quite natural. As we have observed (Proposition

14.12), a sheaf is determined by a basis of the topology, in other words by sufficiently

“small” open sets. However, this is not a natural notion (and the above example shows

that with a basis we cannot define the sheaf image). What is natural is to work with

sufficiently small open sets near a point, and this is what we are going to do. The example

to have in mind is the one of analytic functions, whose behavior in a sufficiently small

neighborhood at a point is given by its Taylor expansion, which is a germ of function.

This is what we are going to generalize now.

Definition. Let X be a topological space, fix x to be a point of it and let F be a sheaf

over X. Consider the set of pairs (U, s) such that U is an open set of X containing x and

s ∈ F(U). We say that two pairs (U ′, s′) and (U ′′, s′′) are equivalent if there exists another

pair (U, s) such that U ⊂ U ′ ∩ U ′′ and s′|U = s′′|U = s. This is an equivalence relation and

an equivalence class is called a germ of section of the sheaf F at the point x. The set of

germs of sections of F at the point x is called the stalk of the sheaf F at the point x and

it is denoted by Fx.
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Proposition 16.7. Let Xred ⊂ An be an affine set and let OX be the scheme structure

induced by an ideal I ⊂ R = K[X1, . . . , Xn]. If x is a point of X and Ix ⊂ R/I is the

maximal ideal corresponding to x, then the stalk of OX at x is naturally isomorphic to

the localization (R/I)Ix .

Proof: An element of (R/I)Ix is the quotient g
f of (the classes modulo I of) a polynomial

g and a polynomial f 6∈ Ix, i.e. f(x) 6= 0. We have thus the germ defined by the pair

(DX(f), gf ). This defines a natural map from (R/I)Ix to the stalk of OX at x, and it is

easy to see that it is a homomorphism. We have to construct now an inverse to this map.

Let (U, s) be a representative of a germ of OX at x. We can certainly take U to

be of the type U = DX(f) with f a regular function on X not vanishing at x (i.e. f 6∈
Ix). But since OX(DX(f)) is by definition (R/I)f , then s can be written as g

fm , which

represents in particular an element of (R/I)Ix . On the other hand, if (DX(f), g
fm ) and

(DX(f ′), g′

f ′m ) represent the same germ (clearly we can take the same exponent m in the

denominators), then there exists some DX(h) ⊂ DX(f) ∩DX(f ′) containing x on which
g
fm and g′

f ′m coincide as sections. The inclusion DX(h) ⊂ DX(ff ′) is equivalent to the

inclusion V (I+(ff ′)) ⊂ V (h), and therefore by the affine Nullstellensatz we find a relation

hs = kff ′ for some s ∈ N and k ∈ R/I. Hence, as elements of OX(DX(h)) = (R/I)h we

have ( g
fm )|DX(h) = kmf ′mg

hm and ( g′

f ′m )|DX(h) = kmfmg′

hm . Since they coincide, we have the

following sequence of equalities in (R/I)Ix :

g

fm
=
kmf ′mg

hm
=
kmfmg′

hm
=

g′

f ′m

This shows that we have a well-defined map from the stalk of OX at x and (R/I)Ix , and

it is very easy to check that it is the inverse of the above map.

Remark 16.8. The reader is probably wondering what Taylor expansions has to do

with all this. Consider on An the sheaf OAn of regular functions (which is the sheaf

structure corresponding to the zero ideal). If x = (0, . . . , 0), then OAn,x is the set of

quotients f
g , with f and g polynomials such that g(0, . . . , 0) 6= 0. It is then not difficult to

check that Ox is naturally contained in the set K[[X1, . . . , Xn]] of formal (infinite) series∑
ai1...inX

i1
1 . . . Xin

n . If K = C then the inclusion is given by the Taylor expansion of f
g at

the origin. In general, the inclusion is given by multiplying f by the formal inverse of g (it

can be seen that an element of K[X1, . . . , Xn] is invertible if and only if it does not vanish

at the origin). In general, if x is a smooth point of an affine set X of dimension r, it can

be seen that OX,x is also contained inside some ring K[Y1, . . . , Yr] (see [Sh]). This time

the inclusion is not natural, but it is obtained by taking the series expansion with respect

to some system of r parameters.
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Proposition 16.9. Let Xred ⊂ Pn be a projective variety and let OX be the scheme

structure induced by the homogeneous ideal I ⊂ S = K[X0, . . . , Xn]. If x is a point of

Xred and Ix ⊂ S/I is the prime ideal corresponding to x, then the stalk of OX at x is

naturally isomorphic to the localization (S/I)(Ix) consisting of quotients G
F , where F and

G are (classes modulo I of) homogeneous of the same degree and F 6∈ I.

Proof: It is straightforward, by just copying the proof of Proposition 16.7 or by restricting

OX to some D(Xi) containing x and using that this gives the scheme structure defined by

I(Xi), i.e. the dehomogenization of I with respect to Xi (see Remark 16.3).

The idea now is to create sheaves just from the stalks, in the same way as we created

them from a basis in (the proof of) Proposition 14.12. This analogy comes from the

following result.

Proposition 16.10. Let F be a sheaf over a topological space X. Then for any open

set U ⊂ X there is a natural isomorphism between the F(U) and the subset F+(U) of

Πx∈UFx consisting of uples (sx)x∈U such that for any x ∈ U there exists an open set

V ⊂ U containing x and an element s ∈ F(V ) with the property that, for any y ∈ V , the

germ sy is the equivalence class of (V, s).

Proof: It is clear that we have a homomorphism associating to each s ∈ F(U) the uple

(sx)x∈U in which for each x ∈ U the germ sx is given by the equivalence class of (U, s).

The fact that this homomorphism is bijective is precisely property (v) in the definition of

sheaf.

Definition. Let X be a topological space and let F be a map from the set of open sets of

X to the set of K-algebras (or groups, rings,...). If F satisfies properties (i)-(iv) of a sheaf

it is called a presheaf. As for sheaves, the notion of stalk of a presheaf at a point can be

defined in the same way. The sheaf associated to a presheaf F is the sheaf F+ constructed

in Proposition 16.10.

Exercise 16.11. Prove that F∗ is indeed a sheaf and that for each x ∈ X the stalk of

F+ at x coincides with the stalk of F at x.

Exercise 16.12. Prove that, given a morphism of sheafs ϕ : F → F ′ over a topological

space X, then the assignments U 7→ ImϕU and U 7→ cokerϕU are presheaves over X.

Definition. Let X be a topological space and let ϕ : F → F ′ be a morphism of sheaves.

Then the image sheaf Imϕ and the cokernel sheaf of ϕ are defined respectively as the

sheaves associated to the presheaves of Exercise 16.12. The morphism ϕ is said to be an

epimorphism of sheaves if Imϕ = F ′.
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We can now to prove that the morphism in Example 16.6 is actually an epimorphism.

But instead of having to explicitly compute the image sheaf, we can find a more direct

way by again looking at the stalks. The criterion is the following.

Proposition 16.13. Let X be a topological space and let ϕ : F → F ′ be a morphism of

sheaves. Then ϕ is an epimorphism if and only if for any x ∈ X the (well-defined) map

ϕx : Fx → F ′X that sends the class of (U, s) to the class of (U,ϕU (s)) is surjective.

Proof: It is an easy exercise to see that ϕx is well-defined for any x. If ϕ is an epimorphism,

then by definition Imϕ = F ′. This means that, for any x ∈ X and any germ s′x ∈ F ′x
represented by an equivalence class (U, s′) the element s′ ∈ F ′(U) is also in (Imϕ)(U).

This implies that, if for each y ∈ U the germ in y defined by (U, s′) is denoted by s′y, then

around each y ∈ U the germ s′y is given locally by a section in the image of some ϕV .

In particular, there exists an open set V containing x and a section s ∈ F(V ) such that

the germ s′x is the class of (V, ϕV (s)). Therefore s′x is the image by ϕx of the germ of Fx
represented by (V, s). This proves that ϕx is surjective for any x ∈ X.

Reciprocally, assume that all the maps ϕx are surjective. Take any open set U ⊂ X

and any section s′ ∈ F ′(U). To see that s′ is also in (Imϕ)(U) we need to prove that,

writing again s′x for the germ at x given by the class of (U, s′), for each x ∈ U this germ

is given locally by a section in the image of some ϕV . But this is now an immediate

consequence of the fact that ϕx is surjective.

This result implies immediately that for any embedded affine scheme structure the

morphism OAn → i∗OX is an epimorphism, since the epimorphism K[X1, . . . , Xn] →
K[X1, . . . , Xn]/I induces epimorphisms when localizing at any Ix for x 6∈ V (I). Since an

embedded projective scheme is locally an embedded affine scheme we also get epimorphisms

OPn → i∗OX in the projective case. We can therefore give the following general definition.

Definition. Let X, Y be scheme structures over affine or projective varieties Xred and

Yred. Assume Yred ⊂ Yred and let i be the inclusion map. Then Y is said to be a subscheme

of the scheme X if there is an epimorphism OX → i∗OY . The kernel of this epimorphism

is called the sheaf of ideals of the subscheme Y inside the scheme S.
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17. Vector bundles

This chapter is included to motivate the definition of coherent sheaf in the next chapter

(anyway it contains interesting material by itself). We start with some illustrative examples

that will naturally yield to the definition of vector bundle if we want to “glue” affine

equations.

Example 17.1. Let X ⊂ Pn be a hypersurface. Then we know that I(X) is generated by

some homogeneous polynomial F ∈ K[X0, . . . , Xn] of degree say d. This is fine, except from

the fact that F is not a function on Pn. However if we consider the intersection of X with

the affine space D(Xi), it is now defined by a true function, namely the dehomogenization

of F with respect of the variable Xi. Let us try to analyze why it is not possible to

glue all these functions to get a function on Pn. If we write the coordinates in D(Xi) as
X0

Xi
, . . . , Xi−1

Xi
, Xi+1

Xi
, . . . , Xn

Xi
, then the function defining X ∩ D(Xi) is F

Xd
i

. Therefore the

reason why we cannot glue together the functions on D(Xi) and D(Xj) is that the second

is obtained from the first one when multiplying by
Xd

i

Xd
j

.

If now X ⊂ Pn has arbitrary codimension r, one would have a priori the right to expect

that X could be defined by exactly r equations. We know that this is not always the case

(see for instance Example 1.10), and in fact this happens rarely (this is what we called

complete intersection in Chapter 9). However it is true that good sets X (for instance

smooth projective sets) enjoy that property locally around each point (this is implicitly

stated in the proof of Theorem 11.1). The question now is: is it possible somehow to glue

together those local functions in a similar way as in the previous example? Although the

answer is negative in general, we present a positive case in order to give a clearer idea of

what we mean.

Example 17.2. Let X ⊂ P2 be the subset consisting of the points (1 : 0 : 0), (0 : 1 : 0)

and (0 : 0 : 1). At each open set Ui := D(Xi), X ∩ Ui consists of one point, so its affine

ideal is generated by exactly two elements. More precisely, the ideals of X ∩ U0, X ∩ U1

and X∩U2 are respectively generated by X1

X0
, X2

X0
; X0

X1
, X2

X1
; and X0

X2
, X1

X2
. For any λ ∈ K\{0}

(the reader will understand soon why we do not take just λ = 1), it is possible to relate

the two first sets of generators by the expression

 X1

X0

X2

X0

 =

 (X1

X0
)2 0

(1− λ)X1X2

X2
0

λX1

X0

 X0

X1

X2

X1


and the matrix in the expression has entries regular in U0 ∩ U1 and is invertible in that
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open set. Similarly, there is a relation X0

X1

X2

X1

 =

λX2

X1
(1− λ)X0X2

X2
1

0 (X2

X1
)2

 X0

X2

X1

X2


Putting together the last two relations we get X1

X0

X2

X0

 =

 λX1X2

X2
0

(1− λ)X2

X0

λ(1− λ)(X2

X0
)2 (λ2 − λ+ 1)

X2
2

X0X1

 X0

X2

X1

X2


Thus if we want the matrix in this last relation to be invertible (and similar to the previous

ones), we have to take λ such that λ2− λ+ 1 = 0. This is possible since K is algebraically

closed (and observe also that λ(1 − λ) = 1 and in particular λ 6= 0, 1). We can therefore

use those matrices to “glue together” the local equations of the points.

I want to remark that the reader who does not feel comfortable with imaginary numbers

(as it is λ if K = C) can take different constants λ and λ′ in the two first matrices, and for

instance the choice λ′ = 1
1−λ will work (I decided not to do so, because then the natural

temptation is to take λ = 2, λ′ = −1, but this would not be honest in characteristic two).

Exercise 17.3. Repeat a similar trick for a set of four points in P2. Observe that the only

interesting case is when three and only three of the points are on a line (since otherwise

the ideal of the points is already generated by two homogeneous polynomials).

The following definition (if not already known by the reader) should look now very

natural.

Definition. A vector bundle of rank r over a quasiprojective set X is a set F together with

a map p : F→ X such that there exists a covering of X by a family of open sets {Ui}i∈I
satisfying the following conditions:

(i) For each i ∈ I there exists a bijection ϕi : p−1(Ui) → Ui × Kr such that for each

x ∈ Ui and v ∈ Kr pϕ−1
i (x, v) = x.

(ii) For each i, j ∈ I the map ϕij := ϕj ◦ϕ−1
i : (Ui ∩Uj)×Kr → (Ui ∩Uj)×Kr is defined

by ϕij(x, v) = (x,Aij(x)(v)), where Aij is an r × r matrix whose entries are regular

maps Ui ∩ Uj → K.

If r = 1, F is called a line bundle. The set X × Kr is called the trivial vector bundle of

rank r over X. We will usually write F|U to denote p−1(U) for an open set U ⊂ X.

Notation. A vector bundle is clearly defined by an open covering {Ui}i∈I and the matrices

Aij on each Ui∩Uj . Even if we will denote frequently a vector bundle with just a name F,

we will implicitly assume the map p, the open covering and the matrices to be also given.
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And reciprocally, we will also assume a vector bundle to be defined if we already have the

covering and the matrices.

The intuitive idea is that a vector bundle on X consists of assigning to each point of

X a vector space of dimension r, and that all these vector spaces are glued in a regular

way. In the definition we referred to F just as a set, but in fact the maps ϕi endow F

with a structure of abstract algebraic variety (in the same way for instance as abstract

differential manifolds are defined).

Example 17.4. Let us consider U ⊂ Pn×Kn+1 to be the subset of pairs (p, v) such that

v is a vector in the vector line of Kn+1 defining the point p ∈ Pn. Then the first projection

U→ Pn endows U with the structure of a line bundle over Pn (called the tautological line

bundle over Pn). Indeed, for any i = 0, . . . , n, we consider the open set D(Xi). Writing

any p ∈ D(Xi) as (a0 : . . . : ai−1 : 1 : ai+1 : . . . : an), we get that a a vector v ∈ Kn+1 such

that (p, v) ∈ U can be written in a unique way as v = (λa0, . . . , λai−1, λ, λai+1, . . . , λan).

We have therefore a bijection ψi : D(Xi)×K→ p−1(D(Xi)) given by

ψi
(
(b0 : . . . : bn), λ

)
=
(
(b0 : . . . : bn), (λ

b0
bi
, . . . , λ

bn
bi

)
)

The map ψ−1
j ◦ ψi : D(XiXj)×K→ D(XiXj)×K is thus defined by

ψ−1
j ◦ ψi

(
(b0 : . . . : bn), λ

)
=
(
(b0 : . . . : bn), λ

bj
bi

)
.

Since (b0 : . . . : bn) 7→ bj
bi

is a regular function over D(XiXj), the maps ϕi := ψ−1
i define a

line bundle structure over Pn.

Exercise 17.5. In a similar (and more general) way, consider the subset U ⊂ G(k, n)×
Kn+1 consisting of pairs (Λ, v) such that v is a vector in the (k + 1)-dimensional linear

subspace of Kn+1 defining Λ. Show that the second projection over G(k, n) defines on

U a structure of vector bundle of rank k + 1 (called the tautological subbundle of the

Grassmannian).

Since a vector bundle consists of defining a vector space at each point of X, it is very

natural to expect that we can define on vector bundles the same operations as in vector

spaces.

Definition. We define the dual of a vector bundle p : F→ X to be the vector bundle F∗

such that on each Ui (in the same open covering of X defining F) we have Ui × (Kr)∗.
The glueing Ui ∩ Uj × (Kr)∗ → Ui ∩ Uj × (Kr)∗ is defined by the dual of ϕij , i.e. by

(x, v) 7→ (x,A′ij(x)(v)), where A′ij is the transpose of the inverse of Aij (observe that since
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Aij(x) is an isomorphism for any x ∈ Ui ∩ Uj , the determinant of Aij is nowhere zero

function on Ui ∩ Uj , so that the entries of A′ij are also regular functions on Ui ∩ Uj). In a

similar way, it is possible to define the k-th symmetric product SkF of a vector bundle F

and the k-th skew-symmetric product
∧k

F of a vector bundle F.

Example 17.6. Consider for instance the dual U∗ of the tautological line bundle over Pn.

An element of U∗ can be regarded as the class of a pair (p, L) ∈ Pn × (Kn+1)∗, where two

pairs (p, L) and (p, L′) are identified if and only if L− L′ is identically zero on the vector

line of Kn+1 defining p. In other words, L can be interpreted as a linear form defined on

the line defining p. We have now identifications ψ′i : D(Xi) × K → U∗|D(Xi)
assigning to

each
(
(b0 : . . . : bn), λ

)
the pair consisting of the same point (b0 : . . . : bn) and the linear

form that assigns to the vector (b0, . . . , bn) the number λbi. Therefore

ψ′−1
j ◦ ψ′i

(
(b0 : . . . : bn), λ

)
=
(
(b0 : . . . : bn), λ

bi
bj

)
.

Example 17.7. Consider now the vector bundle SdU∗ over Pn. Since the symmetric

product of the linear forms is the vector space of homogeneous forms of degree d, we can

identify an element of SdU∗ with a pair of a point p ∈ Pn and a homogeneous form F of

degree d over the vector line of Kn+1 defining p. In this case we have identifications on

each D(XiXj) given by

(
(b0 : . . . : bn), λ

)
7→
(
(b0 : . . . : bn), λ(

bi
bj

)d
)
.

Remark 17.8. In the same vein, it is possible to define the direct sum of two vector

bundles, the tensor product of two vector bundles, or the vector bundle of homomorphisms

of two vector bundles. The only warning is that it is necessary to choose the same partition

for the two initial bundles. Of course this is possible, because if F|U is trivial for some

vector bundle F on X and some open set U of X, then clearly F|V is also trivial for any open

set V ⊂ U . Having this in mind, if F and F′ are two vector bundles over X of respective

ranks r and r′, with common open covering {Ui}i∈I and respective matrices Aij and A′ij ,

then we define the bundle Hom(F,F′) locally by the corresponding Ui ×Hom(Kr,Kr′).
If we identify a homomorphism from Kr to Kr′ with a r × r′-matrix M , the glueing

homomorphisms Hom(Kr,Kr′)→ Hom(Kr,Kr′) on each Ui ∩ Uj are then given by A 7→
A′ijAA

−1
ij

Definition. A regular section of a vector bundle p : F→ X is a map s : X → F such that

p ◦ s = idX and for each i ∈ I the map ϕi ◦ s : Ui → Ui ×Kr is regular.
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Example 17.9. The universal bundle of any Grassmannian does not have regular sections

apart from the zero section. Indeed assume there is a regular section s : G(k, n) → U.

Composing with the inclusion in G(k, n)×Kn+1 and projecting onto the second factor, we

then obtain a regular map G(k, n)→ Kn+1. But each of its components must be a regular

function on G(k, n), hence constant (after Exercise 7.14). Thus there exists v ∈ Kn+1

such that s(Λ) = (Λ, v). But v must be a vector in all the linear subspaces defining any

Λ ∈ G(k, n), so that necessarily v = (0, . . . , 0).

Example 17.10. Consider now the set of sections of the vector bundle SdU∗ over

Pn. If s : Pn → SdU∗ is such a section , then at each D(Xi) it is defined by s(p) =

(p, fi(p)), where fi : D(Xi) → K is a regular function, hence (after Theorem 14.5) a

polynomial in X0

Xi
, . . . , Xn

Xi
, or equivalently fi = Fi

X
ai
i

, where each Fi ∈ K[X0, . . . , Xn]

(i = 0, . . . , n) is a homogeneous polynomial of degree ai (we can clearly take ai ≥ d). The

compatibility conditions for SdU∗ we found in Example 17.7 say that for i 6= j it should

hold fj = fi(
Xi

Xj
)d, i.e. FjX

ai−d
i = FiX

aj−d
j . This means that (reducing denominators

in fi) we can take each ai equal to d and then Fi is the same polynomial F for each

i = 0, . . . , n. Therefore, the set of regular sections of SdU∗ is naturally identified with the

set of homogeneous polynomials of degree d in n+ 1 variables.

Exercise 17.11. Show that the set of sections of the vector bundle SdU∗ over G(k, n)

is also naturally identified with the set of homogeneous polynomials of degree d in n + 1

variables (if you find a reasonable way of solving this exercise, please tell me).

Remark 17.12. The set of regular sections of a vector bundle F over X is a module over

the ring O(X) of regular functions of X. Indeed let s : X → F be a regular section and

f : X → K a regular map. Then fs is defined as the map X → F which on each Ui is

determined by x 7→ ϕ−1
i (x, f(x)ψi(x)), ψi : Ui → Kr being the composition of ϕi ◦ s with

the second projection. In other words, since F is locally (via ϕi) like Ui ×Kr, then if s is

locally defined by x 7→ (x, ψi(x)), then fs is locally defined by x 7→ (x, f(x)ψi(x)). It is an

easy exercise to check that fs is globally defined as a regular section of F. In a similar way,

the sum of two regular sections s and s′, locally defined by maps ψi and ψ′i is defined by

adding at each point x the vectors ψi(x) and ψ′i(x). For instance the set of regular sections

of a vector bundle over a projective variety is a vector space. Example 17.10 and Exercise

17.11 show that the vector space of the regular sections of SdU∗ is naturally isomorphic

to the vector space of homogeneous polynomials of degree d in n+ 1 variables.

Exercise 17.13. Prove that the zero-locus of a regular section of a vector bundle over

X is closed in X. Conclude that two sections of a vector bundle over a quasiprojective

variety are equal if they coincide on an open set of X.
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Example 17.14. Example 17.2 shows that if X ⊂ P2 is a set of three points in general

position, then there exists a vector bundle on P2 having a regular section whose zero locus

is exactly X. Exercise 17.3 proves the same when X is a set of four points such that exactly

three of them lying on a line. If X is just one point, I(X) is generated by two linear forms,

so that X can be obtained as the zero locus of a regular section of U∗ ⊕U∗. Similarly, if

X is a set of two points I(X) is then generated by a linear form and a quadratic form, so

that X is the zero-locus of a regular section of U∗ ⊕ S2U∗. In the same way, d points on

a line are produced by a regular section of U∗⊕SdU∗, and four points in general position

are obtained as the zero-locus of a section of S2U∗ ⊕S2U∗. In general, it is true that any

finite set of points in P2 is the zero-locus of some vector bundle of rank two over P2.

Exercise 17.15. Consider the smooth quadric X = V (X0X1 + X2X3 + X2
4 ) ⊂ P4 and

the line L = V (X0, X2, X4) contained in it. Prove that there exists a vector bundle F on

Q with a section vanishing exactly at L. In fact it holds that there is a bijection among

the set of sections of F (up to multiplication by a constant) and the set of lines contained

in Q. If you can give a simple proof of it, I would be happy of seeing it.

Theorem 17.16. Let X be an affine variety and F a vector bundle of rank r over X.

Write P for the module of regular sections of F.

(i) For any f ∈ O(X), the set of sections of F|DX(f) is naturally isomorphic to Pf .

(ii) P is a finitely generated module over the ring O(X).

Proof: To prove (i), cover X with a finite number of open sets DX(fi) on which F is

trivial. If s is a regular section of F|DX(f), then each s|DX(ffi) is represented by r regular

functions on DX(ffi). Hence there exists an integer ai such that fais is a regular section

on DX(fi). Taking a to be the maximum of these ai, we get on each DX(fi) a regular

section fas. Since they glue together by the same glueing matrices for s we thus obtain

that fas is in fact a regular section s′ ∈ P . Therefore we can write s = s′

fa , which proves

(i).

For (ii) We still take a covering of X by open sets DX(fi) on which F is trivial. For

each i we define r regular sections s′i1, . . . , s
′
ir : DX(fi)→ FDX(fi) each s′ij is given by the

j-th coordinate vector, i.e. defined by x 7→ ϕ−1
i (x, (0, . . . , 0,

j)

1 , 0, . . . , 0)). By (i) we can

find ai ∈ Z such that sij := faii s
′
ij is a regular section of F. We claim that the sections sij

generate the module of all the regular sections of F.

Let s : X → F be a regular section of F. Restricted to each DX(fi), it can be written

in the form s = Σjhijsij , where the functions hij are regular on DX(fi). Taking bi to be

the maximum exponent of fi in the denominators of the hij ’s, we write then

f bii s = Σjgijsij
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with gij ∈ O(X) (both sides are equal on X since they coincide on the open set DX(fi)).

On the other hand, since
⋃
iDX(f bii ) = X, it follows that 1 = Σikif

bi
i for some ki ∈ O(X).

Therefore s can be written as s = Σikif
bi
i s. Substituting in the above displayed equation,

we prove that the sij ’s indeed generate the module of regular sections of F.

Notation. The module of regular sections of a vector bundle F → X will be denoted

by Γ(X,F). From what we have seen, the assignation U 7→ Γ(U,F|U ) (for each open set

U ⊂ X) defines a sheaf of OX -modules, which we will denote by F (the corresponding

calligraphic letter), and it is called the sheaf of sections of the vector bundle F. By abuse

of notation we will often write Γ(U,F) to indicate F(U). Some other standard notation is

to call OPn(d) for the sheaf of sections of the line bundle SdU∗ over Pn.

Theorem 17.16(i) shows that the set of sections of the restriction of F to DX(fi) is

the localization of the module Γ(X,F) at fi, and this localization is a free O(X)fi-module

of rank r. This also shows that, for each x ∈ X, if Ix ⊂ O(X) is the maximal ideal of

regular functions vanishing at x, then the vector space p−1(x) can be naturally identified

with Γ(X,F)/IxΓ(X,F) (notice that this is a module over O(X)/Ix ∼= K). On the other

hand, for any O(X)-module P it is possible to assign to each x ∈ X the vector space

P/IxP , so a natural question is to ask when such an assignment corresponds to a vector

bundle. Before giving an answer, we prove the following lemma.

Lemma 17.17. Let P be a finitely generated O(X)-module. Then for any k ∈ Z the set

Zk := {x ∈ X | dimK(P/IxP ) ≥ k} is a Zariski closed set of X.

Proof: Let x be a point outside Zk and fix a set of generators p1, . . . , ps of P . The fact

that x 6∈ Zk implies that, after changing order if necessary, the classes of pk, . . . , ps modulo

IxP linearly depend on the classes of p1, . . . , pk−1. In other words, we can find relations

pk = λk1p1 + . . .+ λk,k−1pk−1 + fk1p1 + . . .+ fksps

...

ps = λs1p1 + . . .+ λs,k−1pk−1 + fs1p1 + . . .+ fssps

with λi ∈ K and fij ∈ Ix (i.e. they are regular functions such that fij(x) = 0). In a

matricial way, the above relations yield

λk1 + fk1 . . . λk,k−1 + fk,k−1 −1 + fkk . . . fks
...

...
...

. . .
...

λs1 + fs1 . . . λs,k−1 + fs,k−1 fsk . . . −1 + fss




p1
...

pk−1

pk
...
ps


=



0
...
0
0
...
0
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But now if we write f = det

−1 + fkk . . . fks
...

. . .
...

fsk . . . −1 + fss

, it follows that for any

y ∈ DX(f), the classes of pk, . . . , ps modulo IyP still depend on the classes of p1, . . . , pk−1.

Hence x ∈ DX(f) ⊂ X \ Zk, which proves that X \ Zk is open.

Definition. Given a finitely generated O(X)-module, the minimum r ∈ Z for which

Zr \ Zr+1 6= ∅ is called the rank of the module.

Obviously, if P is the set of regular sections of some vector bundle over X of rank r,

then P has rank r and Zr+1 = ∅. Surprisingly enough, this property characterizes the set

of modules over O(X) that are obtained as regular sections of a vector bundle.

Definition. A projective module over a ring O is a module P satisfying the property that

for any epimorphism ϕ : M → N of modules, any homomorphism ψ : P → N can be lifted

to M , i.e. there exists a homomorphism φ : P →M such that ψ = ϕ ◦ φ.

Theorem 17.18. Let X be an affine variety, and let P be a finitely generated O(X)-

module of rank r. Then the following conditions are equivalent.

(i) There exists a vector bundle F of rank r over X such that Γ(X,F) is isomorphic to

P .

(ii) P is a projective module.

(iii) There exists a finitely generated O(X)-module P ′ such that P ⊕ P ′ is a free module.

(iv) For each x ∈ X, dimK(P/IxP ) = r.

Proof: We will prove all the implications in a cyclic way.

(i)⇒(ii) Let F be a vector bundle over X, and want to prove that P := Γ(X,F) is a

projective O(X)-module. So assume that we have an epimorphism ϕ : M → N of O(X)-

modules and a morphism ψ : P → N . By Theorem 17.16(i) each localization Pfi is

a free O(X)fi-module (of rank r). So localizing ϕ and ψ at each fi (and denoting the

corresponding morphism with the subindex i) we can define morphisms φi : Pfi → Mfi

such that ψi = ϕi ◦ φi. Considering the maximum exponent bi of the denominators of the

image by φi of a (finite) set of generators of P , we conclude that f bii φi defines a morphism

from P to M . As in the proof of the previous theorem, we have a relation 1 = Σikif
bi
i .

This allows us to define φ := Σikif
bi
i φi, which is a morphism from P to M such that

ψ = ϕ ◦ φ. This proves that P is a projective module.

(ii)⇒(iii) This is a standard result of commutative algebra. Let p1, . . . , pr be a finite set of

generators of P as an O(X)-module. We can thus define an epimorphism ϕ : O(X)⊕r → P

by ϕ(f1, . . . , fr) = f1p1 + . . . + frpr. If we consider the identity map of P as the map ψ
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in the definition of projective module, we thus get that there exists a homomorphism

φ : P → O(X)⊕r such that ϕ ◦ φ = idP . This easily implies that O(X)⊕r ∼= P ⊕ kerϕ.

(iii)⇒(iv) If P ⊕P ′ ∼= O(X)⊕s, it easily follows that dimK(P/IxP ) + dimK(P ′/IxP
′) = s

for any x ∈ X. But on the other hand if P and P ′ has respective ranks r and r′, then

r + r′ = s and dimK(P/IxP ) ≥ r, dimK(P ′/IxP
′) ≥ r′ for any x ∈ X. Thus the result

follows immediately.

(iv)⇒(i) Let x be any point of X. Since x 6∈ Xr+1, we can repeat the proof of Lemma

17.17 and find fx ∈ O(X) such that for any y ∈ DX(fx) the classes modulo IyP of r

of the generators of P generate P/IyP . But in the proof of Lemma 17.17 we have seen

more, namely that those r elements, say p1, . . . , pr actually generate Pfx as a module over

O(X)fx . On the other hand, if there were a linear relation g1p1 + . . . + grpr = 0 with

gi ∈ O(X)fx for all i = 1, . . . , r and with some gi 6= 0, then the Nullstellensatz would

imply that there exists y ∈ DX(fx) such that gi(y) 6= 0. But then the class of pi modulo

IyP would depend on the other r − 1 classes, implying that dimK(P/IyP ) ≤ r − 1, which

is absurd. Therefore Pfx is a free O(X)fx-module of rank r.

The geometric idea is now that we have an open covering ofX on which the localization

of P is free (hence representing a trivial vector bundle on each of the open sets), and we

need to glue together all these pieces in order to obtain a vector bundle. We thus consider

for each x the set DX(fx) × Kr, consider the disjoint union of all these sets and want to

quotient by a relation. For x 6= y, we want to identify DX(fxfy) × Kr ⊂ DX(fx) × Kr

with DX(fxfy) × Kr ⊂ DX(fy) × Kr via some map ϕxy. To this purpose assume that

p1, . . . , pr ∈ P is the O(X)fx -basis we chose for Pfx and that q1, . . . , qr ∈ P is the O(X)fx-

basis we chose for Pfy . Then they still form two O(X)fxfy -bases for Pfxfy . This means

that there is a relation  p1
...
pr

 = Axy

 q1
...
qr


where Axy is a matrix with entries in O(X)fxfy and nonzero determinant. We thus define

the wanted ϕxy by (z, v) 7→ (z,Axyv). It is now a straightforward computation that this

identification provides a vector bundle F over X whose set of regular sections is naturally

isomorphic to P .
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18. Coherent sheaves

In Theorem 17.18 we have seen that there is a correspondence among sheaves of

sections of vector bundles over an affine set X and finitely generated projective modules

over O(X). A natural question is to ask what (not necessarily projective) finitely generated

modules over O(X) correspond to. We will see that they correspond to a particular type

of modules, which we will call coherent.

The hint for this correspondence is in the proof of Theorem 17.18. A section of a vector

bundle F of rank r is defined locally by r regular functions on open sets,or equivalently

by maps to Kr. But for each x, the source Kr is naturally identified with P/IxP , where

P = Γ(X,F). Hence a section on an open set U can be viewed as a map s from U to the

disjoint union
∐
x∈U P/IxP such that the image of each x lies in its corresponding P/IxP .

The regularity condition can be expressed by saying that in some small open neighborhood

of x (on which the vector bundle is trivial) all the values of s glue together as a regular

function. Since there is a basis of open sets of X of the form DX(g), and the set of regular

functions is O(X)g, we can find some DX(g) on which F is trivial. We have therefore

identifications Γ(DX(g),F) ∼= (O(X)g)
r and (O(X)g)

r ∼= Pg (Pg being the set of quotients
s
gl

, with s ∈ P and l ∈ N), yielding a canonical identification Γ(DX(g),F) ∼= Pg. All this

yields the following generalization.

Proposition 18.1. Let X ⊂ An be an affine variety and let M be a module over O(X).

Then there exists a sheaf FM of OX -modules defined by assigning to each open set U ⊂ X
the module FM (U) consisting of the maps f : U →

∐
x∈U M/IxM such that for each

x ∈ U it holds f(x) ∈ M/IxM and there exists gx ∈ O(X) with the property that, on

DX(gx), f is defined by some mx ∈ Mgx , i.e. f(y) is the class modulo IyMgx of mx for

each y ∈ V . Moreover, for any basic open set DX(g), FM (DX(g)) is naturally isomorphic

to Mg. In particular, FM (X) is naturally isomorphic to M .

Proof: Proving that FM is a sheaf of OX -modules is so tedious (although straightforward)

that I leave it to the reader. About the last statement, it is clear that we have a homomor-

phism Mg → FM (DX(g)), associating to each m ∈ Mg the map f : X →
∐
x∈XM/IxM

that assigns to each x the class of m modulo IxM (observe that M/IxM is naturally iso-

morphic to the quotient of any Mg modulo IxMg). What we have to prove is that any

element f ∈ FM (Dx(g)) can be globally defined by an element on Mg.

So fix f ∈ FM (D(g)∩X). For each x ∈ X, take a basic open neighborhood DX(gx) ⊂
DX(g) of x such that on it f is defined by mx ∈ Mgx . Since DX(gx) = DX(glx) for any

l ∈ N, we can assume that we can write each mx like mx =
m′x
gx

, with m′x ∈ M . As usual,

it is possible to cover DX(g) with a finite number of open sets DX(gx). Indeed the fact

that DX(g) ⊂
⋃
xDX(gx) is equivalent to the intersection of X with the affine set defined
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by the polynomials gx be contained in V (g). And by the Hilbert’s Nullstellensatz, this is

in turn equivalent to the fact that a power of g is in the ideal generated by I(X) and the

polynomials gx (and hence a finite number of them is needed). We have thus a relation

gl = Σxhxgx, with hx ∈ O(X). It is then immediate to check that f can be represented

globally by
Σxhxm

′
x

gl
, which is an element of Mg.

Definition. A coherent sheaf over an affine variety X will be a sheaf of the form FM for

some finitely generated O(X)-module M . The rank of a coherent sheaf FM is the rank of

the module M .

We thus see that the study of sheaves over affine varieties is essentially the same as the

study of modules, and that those corresponding to sections of a vector bundle are exactly

the projective modules. Hence a good starting point for projective varieties could be to

try to produce in a similar way sheaves from graded modules.

For instance, if X ⊂ Pn is a projective variety, we start with S(X) as a module over

itself. If we expect a behavior similar to the affine case, this should produce the sheaf OX .

We observe that each Ui := DX(Xi) is an affine variety and that OUi is produced (via

the previous construction) by the dehomogenization with respect to Xi of the elements

of S(X). This dehomogenization can be identified with the set S(X)(Xi) of the quotients
F
Xd

i

, where d ∈ N and F is a homogeneous element of S(X) of degree d. But now there is

no natural way of identifying the ground field K from the homogeneous ideal of any point.

The key idea at this point is to observe that in the above definition of FM , since the map

f is locally well-defined around each x, one can substitute M/IxM by the localization

MIx and the same results hold. And now we find a nice identification: the localization of

S(X)(Xi) at the maximal ideal of a point x ∈ DX(Xi) is naturally isomorphic to the set of

quotients F
G , where F and G are homogeneous elements of S(X) of the same degree and

G does not belong to the homogeneous prime ideal Ix of x. This yields to the following

definition and construction.

Notation. Let M be a graded module over a graded ring S. If F ∈ S is a homogeneous

element of degree d, we denote with M(F ) to the module consisting of quotients m
F e , where

e ∈ N and m ∈ M is homogeneous of degree de. Similarly, if I is a prime homogeneous

ideal of S, M(I) will denote the ring of the quotients m
F , where m ∈ M and F ∈ S are

homogeneous of the same degree and F 6∈ I.

Proposition 18.2. Let X ⊂ Pn be a projective variety and let M be a graded S(X)-

module. Then there exists a sheaf of OX -modules FM consisting in assigning to each open

set U ⊂ X the set FM (U) of those maps U →
∐
x∈U M(Ix) such that for each x ∈ U it holds

f(x) ∈ M(Ix) and there exist some Gx ∈ K[X0, . . . , Xn] and m ∈ MGx
satisfying that, for
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any y ∈ D(Gx) ∩X, f(y) = m. Moreover, for any homogeneous G ∈ K[X0, . . . , Xn]. The

restriction of FM to the affine variety D(G) ∩ X coincides with the sheaf constructed in

Proposition 18.1 for the module M(G).

Proof: This is again tedious and straightforward, so I leave again the proof to the reader.

Definition. A coherent sheaf over a projective variety X is a sheaf of the form FM for

some finitely generated graded S(X)-module.

Exercise 18.3. Prove that, if X ⊂ Pn is a projective variety and M = O(X)r, then FM
is the sheaf of sections of the trivial bundle over X of rank r.

Example 18.4. Consider now the projective space Pn (thus with coordinate ring S =

K[X0, . . . , Xn]) and the S-module M = K[X0, . . . , Xn]/(X0, . . . , Xn) (which is obviously

isomorphic to K). For any i = 0, . . . , n, the module M(Xi) is zero. Indeed the class of any

λ ∈ K is the class of λXi (as an element of M) divided by Xi (as an element of S). Since

the class of Xi is zero in M , we get that M(Xi) is zero. Therefore the sheaf FM is zero at

any open set D(Xi), so it is the constant sheaf zero.

The question now is how to reconstruct the homogeneous module from the sheaf. It

cannot be done by taking global sections, since we have seen that some vector bundles

do not have nonzero regular sections. On the other hand, Example 18.4 shows that two

different modules can provide the same sheaf (obviously the zero module will yield the zero

sheaf). We have in fact the following.

Proposition 18.5. Let X ⊂ Pn be a projective variety and let M and M ′ be two finitely

generated graded S(X)-modules. Then the following are equivalent:

(i) M and M ′ define isomorphic sheaves.

(ii) For each i = 0, . . . , n, the S(X)(Xi)-modules M(Xi) and M ′(Xi)
are isomorphic.

(iii) There exists l0 ∈ N such that ⊕l≥l0Ml
∼= ⊕l≥l0M ′l as S(X)-modules.

Proof: Since (ii) means that the modules FM and FM ′ are isomorphic when restricted at

any D(Xi) ∩X, it is clear that (i) and (ii) are equivalent.

On the other hand, if (iii) holds then for any i = 0, . . . , n and any m′ ∈M(Xi), we can

clearly write m′ = m
Xl

i

for some l ≥ l0. Since thus Ml
∼= M ′l we have that m′ corresponds to

an element of M ′(Xi)
. And by symmetry any element of M ′(Xi)

has a counterpart in M(Xi).

Therefore (ii) holds.

So we are left to prove that (ii) implies (iii). Let m1, . . . ,mr be a system of generators

of M . Since each
mj

1 , as an element of M(Xi), corresponds to an element of M ′(Xi)
via an
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isomorphism φi, there exists some lij ∈ N such that X
lij
i φi(mj) ∈ M ′i . Since m1, . . . ,mr

generate M , it follows that there exists some l0 ∈ N such that ⊕l≥l0Ml is generated by

the elements X
lij
i mj . It is thus easy to show that there is a well-defined homomorphism

⊕l≥l0Ml → ⊕l≥l0M ′l sending each X
lij
i mj to X

lij
i φi(mj) ∈ M ′i . In a similar way one can

construct a homomorphism ⊕l≥l0M ′l → ⊕l≥l0Ml (maybe increasing the value of l0) that

is inverse of the other one. This completes the proof.

If we just want to reconstruct the graded ring of a projective variety from its sheaves,

we can find an idea at Example 17.10, since K[X0, . . . , Xn], which is the coordinate ring of

Pn, can be obtained as
⊕

d Γ(Pn, SdU∗). Thus we could wonder whether for any projective

variety X ⊂ Pn its graded ring is isomorphic to
⊕

d Γ(X,SdU∗|X). The following examples

will give an idea of how close this is to be true.

Example 18.6. Let X ⊂ P3 be the rational quartic X = {(t40 : t30t1 : t0t
3
1 : t41) ∈ P3 | (t0 :

t1) ∈ P1}. It is easy to see (using the natural substitution map K[X0, X1, X2, X3] →
K[T0, T1]) that S(X)l ∼= K[T0, T1]4l for l ≥ 2, while S(X)1 is (freely) generated by the

classes of X0, X1, X2, X3, so that it is isomorphic to the subspace of K[T0, T1] generated by

T 4
0 , T

3
0 T1, T0T

3
1 , T

4
1 . In other words, T 2

0 T
2
1 is missing. Let us see that however this missing

part can be obtained as a regular section of U∗|X . First of all, observe that X is covered

by the two open sets D(X0) and D(X3). On those open sets, the expression T 2
0 T

2
1 can be

obtained respectively as
X2

1

X0
= X0

X2
1

X2
0

and
X2

2

X3
= X3

X2
2

X2
3

. But if we glue the functions
X2

1

X2
0

and
X2

2

X2
3

by multiplying by X3

X0
we just get a regular section of U∗|X . What actually happens

in this example (the reader is not expected to completely understand at this point why) is

that X is isomorphic to P1, and U∗|X over X corresponds to S4U over P1, so that eventually⊕
d Γ(X,SdU∗|X) yields

⊕
dK[T0, T1]4d. So somehow

⊕
d Γ(X,SdU∗|X) “completes” some

“missing parts” of S(X).

Example 18.7. In view of the above example, one can also think that something similar

happens to the cubic X = {(t30 : t0t
2
1 : t31) ∈ P2 | (t0 : t1) ∈ P1}. Now the missing part

of S(X)1, which is isomorphic to a subspace of K[T0, T1]3 is T 2
0 T1. Now X is covered by

D(X0) and D(X2), and on D(X2) the expression T 2
0 T1 can be written as

X2
1

X2
= X2

X2
1

X2
.

However, on D(X0) it is not difficult to see that this expression cannot be obtained in such

a way. What happens now is that X is not isomorphic to P1 (see Example 7.3), so that

we cannot identify U∗|X over X with S3U over P1. And in fact it eventually happens that

S(X) is isomorphic to
⊕

d Γ(X,SdU∗|X).

Exercise 18.8. Decide whether the curve X = {(t40 : t20t
2
1 : t0t

3
1 : t41) ∈ P3 | (t0 : t1) ∈ P1}

behaves like in Example 18.6 or like in Example 18.7 with respect to the regular sections of

U∗|X (of course you are not expected to give any proof, since we did not do in the previous

examples).
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The word “coherent” for a sheaf comes from the fact that the global behavior of a

coherent sheaf can be derived from the local behavior at its points, i.e. by its stalks. To

see this, we need first to find out what the stalk of a coherent sheaf is in terms of the

module defining it.

Lemma 18.9. Let X be an affine variety and let FM be the coherent sheaf on X defined by

the O(X)-module M . If x is a point of X and I ⊂ O(X) is the maximal ideal corresponding

to x, then that the stalk of FM at x is naturally isomorphic to the localization MI .

Proof: It is a straightforward generalization of the proof of Proposition 16.7.

Lemma 18.10. Let X be a projective variety and let FM be the coherent sheaf on X

defined by the graded S(X)-module M . If x is a point of X and I ⊂ S(X) is the prime ideal

corresponding to x, then the stalk of FM at x is naturally isomorphic to the localization

M(I) consisting of quotients s
F , where s ∈ M and F 6∈ I are homogeneous of the same

degree.

Proof: It is the generalization of Proposition 16.9.

The following result gives an idea of the “coherence” of coherent sheaves with respect

to their stalks.

Theorem 18.11. Let F be a coherent sheaf over a quasiprojective variety X. Then F is

the sheaf of sections of a vector bundle F over X of rank r if and only if each stalk Fx is

a free OXx -module of rank r.

Proof: Clearly it is enough to show the result when X is affine. One implication is obvious,

since given a vector bundle Fon X, then for any x ∈ X we can take a neighborhood of

the type DX(f) such that the restriction of F to it is trivial. Therefore, if F is the sheaf

of sections of F, then the localization of M := F(X) in f is free of rank r. Hence the

localization in the ideal of x in O(X) (i.e. the stalk of F at x) is also free of rank r.

Reciprocally, assume that we have a coherent sheaf F such that for each x ∈ X the

localization of M := F(X) at the ideal Ix of x is free of rank r. Since M/IxM is naturally

isomorphic to the quotient by the maximal ideal of O(X)Ix of the localization MIx , it

immediately follows that dimK(M/IxM) = r for each x ∈ X. Theorem 17.18(iv) implies

thus that F is the sheaf of sections of a vector bundle over X.

Definition. A coherent sheaf as in Theorem 18.11 is called a locally free sheaf.

Since Lemma 18.10 forces us to work with localizations in primes, we can try to see

what happens when localizing at arbitrary prime ideals. This is what we do in the following

results.
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Proposition 18.12. Let X be an affine variety and let F be a coherent sheaf on X defined

by a module M . Given I ⊂ O(X) a prime ideal, let K(I) be the quotient field of O(X)/I

(or equivalently the quotient of O(X)I modulo its maximal ideal). Then the quotient of

MI modulo the maximal ideal of O(X)I is a vector space over K(I) whose dimension

coincides with the rank of the restriction of F to V (I). Therefore this dimension is the

dimension of M/IxM when x varies in an open set of V (I).

Proof: Let m1, . . . ,ms be a set of generators of M as an O(X)-module. The proof of

Lemma 17.17 shows that if for some point x ∈ V (I) we have that M/IxM is generated,

as a K-vector space, by the classes of r elements among m1, . . . ,ms, say m1, . . . ,mr, then

there exists some f 6∈ Ix such that mr+1, . . . ,ms are a linear combination of m1, . . . ,mr

with coefficients in O(X)f . Since therefore f 6∈ I, it follows that the classes of m1, . . . ,mr

generate MI/IMI as a K(I)-vector space. This shows that dimK(I)(MI/IMI) is bounded

by the rank of F|V (I).

But reciprocally, if the class of say mr modulo IMI depends linearly on the classes of

m1, . . . ,mr−1, this means that there exists some f 6∈ I such that fmr depends linearly on

m1, . . . ,mr−1 modulo IM . By the affine Nullstellensatz, we can find x ∈ V (I) such that

f(x) 6= 0. Therefore mr will depend linearly on m1, . . . ,mr−1 modulo IxM . This shows

now that the rank of F|V (I) is at most dimK(I)(MI/IMI), completing the proof.

Proposition 18.13. Let X be an projective variety and let F be a coherent sheaf on X

defined by a graded module M . Given I ⊂ S(X) a homogeneous prime ideal, let K(I)

be the set of quotients of the form F
G , with F,G ∈ O(X)/I homogeneous of the same

degree (equivalently K(I) is the quotient of O(X)(I) modulo its maximal ideal). Then the

quotient of M(I) modulo the maximal ideal of O(X)I is a vector space over K(I) whose

dimension coincides with the rank of the restriction of F to V (I).

Proof: Again it can be proved easily by either imitating the proof of Proposition 18.12 or

by using that result.
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19. Schemes

We are essentially ready to define the notion of scheme. Recall that we wanted to

allow some extra structure to quasiprojective sets (in the sense of Example 1.21, in which

we had a point together with some infinitesimal information). It seems clear a priori that

an affine scheme should consist of an arbitrary ideal I ⊂ K[X1, . . . , Xn] and that the

underlying affine set should be the set of maximal ideals of K[X1, . . . , Xn]/I. Similarly, to

have a projective scheme we would need a homogeneous ideal I ⊂ K[X0, . . . , Xn] and then

the points would correspond to some particular prime ideals of K[X0, . . . , Xn]/I. However,

Propositions 18.12 and 18.13 seem to suggest that if we consider all the prime ideals we get

some extra information. This is not actually a serious reason to include the set of primes

in the definition (because the mentioned extra information can be obtained a posteriori

from the maximal ideals). The true reason is that sometimes one needs to work with rings

with “few” maximal ideals. The following example will hopefully explain this idea.

Example 19.1. Let us interpret Example 1.23 (see also Example 8.12) in a different (but

more natural) context. The generators X1X2, X1X3, X2X3 − tX0X2, X
2
3 − tX0X3 of the

ideal It can be regarded now as polynomials in K[X0, X1, X2, X3, t] that are homogeneous

in X0, X1, X2, X3, hence defining a quasiprojective set Y ⊂ P3×A1. The second projection

defines a regular map f : Y → A1 and its fiber ideal for any t ∈ A1 is precisely It. As we

have seen, the ideal I0 has an embedded component, while for a general t (in fact if t 6= 0)

It is the disjoint union of two lines. Following the idea of Proposition 18.12, this general

behavior should be obtained when localizing K[t] at the zero ideal, i.e. when we consider

K(t), the quotient field of K[t]. Regard then the above equations as homogeneous equations

in the polynomial ring K(t)[X0, X1, X2, X3] with coefficients in the field K(t). In this case

the equality (X1X2, X1X3, X2X3− tX0X2, X
2
3 − tX0X3) = (X2, X3)∩ (X1, X3− tX0) still

holds (because t is just a non-zero element of the field K(t)), and then the ideal represents

the disjoint union of the lines V (X2, X3) and V (X1, X3 − tX0).

But if we want to study the infinitesimal behavior of the fiber of f at 0, we could have

localize K[t] at the prime ideal (t), or (see Remark 16.8) to consider its inclusion in K[[t]].

In both cases we get a ring with just two prime ideals: the maximal ideal (t) (the quotient

of which gives us two meeting lines plus one embedded point in P3
K) and the non-maximal

ideal (0), which gives us two skew lines in P3
K(t) (or in P3

K((t)) if we considered K[[t]]).

The geometric interpretation is that we have a formal infinitesimal deformation of the two

meeting lines plus the embedded point, but this deformation can be viewed only when

considering a non-maximal prime ideal. This kind of “virtual” deformations constitute the

main reason to consider all the prime ideals when defining a scheme.

Definition. The spectrum of a ring R is the set X = Spec(R) consisting of all the prime
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ideals of R, endowed with the topology (called the Zariski topology) in which the closed

sets are the sets of the form V (I) := {P ∈ Spec(R) | P ⊃ I} for some ideal I ⊂ R. An

affine scheme is the spectrum X of a ring R together with a sheaf of rings OX in which

OX(U) consists of the set of maps s : U →
∐
P∈U RP such that for each P ∈ U s(P ) ∈ RP

and there exists a neighborhood V of P and elements f, g ∈ R satisfying that for each

Q ∈ V it holds s(Q) = f
g (in particular g 6∈ Q).

Observe that the definition of the Zariski topology and the structure sheaf of an affine

scheme is completely analogous to the corresponding ones for affine sets. We thus have a

series of similar results.

Lemma 19.2. The following properties of an affine scheme X = Spec(R) hold:

(i) The sets D(f) := X \ V (f) with f ∈ R form a basis of the Zariski topology on X.

(ii) The closure of the set {P} is V (P ). In particular, {P} is closed if and only if P is a

maximal ideal.

(iii) If for any subset Z ⊂ X we write I(X) = {f ∈ R | f ∈ P for each P ∈ Z}
(i.e. I(X) =

⋃
P∈X P ), then the analogous properties to those of Proposition 1.1 are

satisfied.

(iv) For any ideal I ⊂ R, it holds IV (I) =
√
I.

(v) For each P ∈ X, the stalk of OX at P is naturally isomorphic to RP .

Proof: We leave almost everything as en exercise, and prove only part (iv), since maybe

the reader is scared thinking of having to prove some analog to the Nullstellensatz. By

definition, IV (I) =
⋃
P∈V (I) P =

⋂
P⊃I P , and this is

√
I by Exercise 0.1(vii).

Definition. A scheme is a topological space X endowed with a sheaf of rings OX (called

the structure sheaf of the scheme) such that X is covered by open sets U satisfying that

U together with OX|U is isomorphic to an affine scheme.

Definition. If S is a homogenous ring, we will call the projective spectrum of S to the set

Proj(S) of all the homogeneous prime ideals not containing all the homogenous elements of

positive degree, endowed with the Zariski topology in which the closed sets have the form

V (I) := {P ∈ Proj(S) | P ⊃ I}. And a projective scheme will be a projective spectrum

X = Proj(S) together with the structure sheaf OX assigning to each open set U the ring

OX(U) of maps s : U →
∐
P∈U R(P ) such that for each P ∈ U s(P ) ∈ R(P ) and there

exist an open neighborhood V of P and homogeneous elements F,G,∈ S such that for

each Q ∈ V it holds G 6∈ Q and s(Q) = F
G .

Proposition 19.3. With the above definition, X = Proj(S) becomes a scheme and,

more precisely, for any homogeneous F ∈ S it holds that D(F ) is an affine scheme with
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structure sheaf equal to OX|D(F ). In particular, for each P ∈ X, the stalk OX , P is

naturally isomorphic to S(P ).

Proof: It is just a standard straightforward computation.

Remark 19.4. It is clear that for affine schemes and projective schemes we can extend

our definitions (and properties) of coherent sheaves over affine or projective varieties. Even

if the whole theory below can be done for sufficiently general rings, I would prefer not to

reach such a deep degree of abstraction, so that we will restrict ourselves to rings that are

finitely generated K-algebras, i.e. the quotient of a polynomial ring by a arbitrary ideals.
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