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ON LIE ALGEBRAS OF PRIME CHARACTERISTIC

George B. Seligman
Princeton University

In no respect has the structure theory of Lie algebras of prime
characteristic achleved the degree of completeness of the theory for char-
acteristic zero. Almost as Inadequate is our knowledge concerning those
Lie algebras which are restricted in the sense of Jacobson [13]1. In par-
ticular, the deflnition of semi-simplicity as the absence of non-trivial
solvable 1deals 1s insufficient to assure a direct decomposition into
simple ideals. It is to be hoped that many of the unsolved problems would
be brought closer to solutlon by the determination of the simple Lie alge-
bras of prime characteristic. In any case, their determination is gen-
erally regarded as a problem of the highest interest in the fleld. The
purpose of the present memolr is to demonstrate the applicability, under
certaln restrictions on the algebra and the base fleld, of the techniques
used in the determination of all simple Lie algebras of characteristic
zero. The more general problem remalns unsolved, although 1t is known
that the classification presented here 1s incomplete even for restricted
Lie algebras ([3], [8], [9], [16]; the algebra of [8] 1s restricted, al-
though the author does not discuss it from thils aspect).

It follows from the work of Killing [21] and Cartan [2] that a semi-
simple Lle algebra over an algebralcally closed field of characteristic
zero 1s a direct sum of simple 1deals, and that all simple algebras can be
determined. A seemingly indispensable tool in this theory is a symmetric
bilinear form, the KILLING FORM, which 1s non-degenerate on every semi-
simple algebra of characteristic zero.

When we pass to base filelds of prime characteristic, we find that
the Killing form of a semi-simple algebra may be degenerate; 1n fact, this
18 the case for an entire class of (restricted) simple Lie algebras, the
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faculty of the Graduate School of Yale Unlversity in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.
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paper.

Received by the editors March 16, 1955.



2 SELIGMAN

WITT ALGEBRAS [3], [9]. However, if we confine our attention to those
algebras with non-degenerate Killing forms, much of the effectiveness of
the classical techniques 1s restored. It i1s a generallzation of thls class
of algebras that the author has treated, namely those restricted Lie alge-
bras 1L possessing no abelian ideals and having a restricted representa-
tion x —» U(x) such that the form (x, y) = Tr(U(x)U(y)) is non-
degenerate on L. The base fileld is required to be algebraically closed
and of characteristic p > 7. Of these last restrictlions, the former is
natural in order to make possible the root-system technlque; the latter
could probably be replaced by "p > 3", 1n which case the work of §§6-14
would become even more cumbersome.

In §§1 and 2, we show that 1t follows from work of Zassenhaus [33]
and Dieudonné [6] that this class of algebras 1s actually a generalization
of those with non-degenerate Killing form. 1In §3, the Cartan decomposition
i1s Introduced and hitherto unpublished proof's by Zassenhaus and Jacobson
of some of its properties are presented. §4 is devoted to two important
observations by Jacobson on representations of low-dimensional algebras,
and to thelr use in the reconstructlon of essential portions of the
classical root-theory. The remaining portions are reproduced by ele-
mentary considerations in §5, up to the expression of all roots as linear
combinations, with coefflcients in the prime field, of a llnearly inde-
pendent subset of roots.

In §6, we introduce and classify SIMPLE systems of roots analogous
to those of Dynkin [7]. Sultably chosen, these will eventually be the
Invariants by means of which the simple algebras are classified. The ex-
i1stence of simple systems 1s shown In §7 by giving a procedure for en-
larging a given simple system. This procedure is also useful in §§8-14,
where it 1s shown that if a simple system of roots is INDECOMPOSABLE in
the sense of Dynkin and is MAXTMAL in a certain sense, then it determines,
with & single exceptlion, the complete set of roots which can be written
as linear comblnations of its members. §15 glves a procedure for choosing
a maximal simple system of roots in any algebra subject to our conditlons
and includes a proof that such a system for a simple algebra 1s necessarily
indecomposable. In §16 we show that the complete system of roots deter-
mines a simple algebra up to lsomorphlsm, hence that the maximal simple
system also determines the algebra, with the exception mentioned above.
§817 and 18 consist of discussions of examples of algebras in the iso-
morphism classes previously determined. The bibliography includes several



ON LIE ALGEBRAS OF PRIME CHARACTERISTIC 3

references which may be regarded as superfluous with regard to the content
of this paper, but which are listed for the sake of completeness.

It might be mentioned that while the Internal structure of algebras
subject to our assumptions 1s falrly well determined, thelr behavior
relative to representations and extensions displays properties which
create special problems. For lnstance, each of them has a restricted rep-
resentation which is not completely reducible [10]. Recent unpublished
work of C. W. Curtis on the 1lrreducible restricted representations has re-
vealed further complications in that respect as well.

It 13 to be hoped that part of the author's debt to Professor Nathan
Jacobson willl be Indicated by acknowledging the key steps in the argument
for which he 1s responsible. Also very beneflclal were several conversa-
tions with Professor Hans Zassenhaus. Finally, the author wishes to thank
C. W. Curtis, W. H. Mills and H. C. Wang for reading the manuscript and
for many helpful suggestions.

I. DEFINITIONS

A LTIE AIGEBRA L over a field F 1s a finlte-dimensional vector
space over F 1n which there 1s defined a bilinear product I[xyl:[xy] €L
for all x, y € L, and [xy] satisfles the following identitiles:

Anticommutativity: [xx] = 0 for all x e L.
Jacobi identity: [[xylz]l + [[yzlx] + [[zx]y] = 0 for all
X, ¥, 2 € L.

From [xx] = 0, we see that [xy] = - [yx] for all x, y € L. For
o0=1I[x+y, x+3] = [xx] + [xy] + [yx] + [yy] = (xy] + [yx].

Let V be a finite-dimensional vector space over F, and let E(V)
be the assoclatlive algebra of all endomorphisms of V. A llnear mapping
U of L into E(V) 1is called & REPRESENTATION of L in V 1f
U(lxyl) = [U(x)U(y)] = U(x)U(y) - U(y)U(x) for all x, y € L.

If x e L, the mepping ead(x): y —> [yx] 1s a linear mapping of
L into 1tself, and 1s in fact a representation of L, called the ADJOINT
REPRESENTATION of L. Moreover, ad(x) has the property of being a
DERIVATION of L, 1.e., a mapping D satisfying I[yz]lD = [yD, z] +
[y, zD] for all y, z € L. For the powers of a derivation D we have
the ldentity

Wﬂf=ZiOQ)mﬂzf4L
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Therefore if F has prime characteristlic p, we have
[yﬂDp=[wf,z]+[y,mPL

or D° 1s a derivation. If D = ad(x) for some x € L, D 1s called
an INNER DERIVATION.

An IDEAL, J in L 1s a subspace such that [JL]Ig J, where [JL]
denotes the set of all sums z:[xiyi], Xy €J, yg €L. J 1s ABELIAN 1if
[JJ] = (0). L 1s called SEMI-SIMPLE if 1L contalns no non-zero abelian
ideals. 1 1is SIMPLE if 1 contains no 1deals other than L and (0),

and 1f [IL] = L.
Dieudonné has recently published the following result: ([6])

THEOREM 1.1. (Dieudonné). Let L be a semi-simple
Lle algebra over a fleld F. Let there be deflned
on L a non-degenerate symmetric bilinear form

(x, y) such that ([xyl, z) = (x, [yz]) for all
X, ¥, 2 In L. Then L 1s a direct sum of simple
ideals Li:

L=L1+L2+"'+I‘k'

When F 1s of characteristic zero, L 1s seml-simple 1if and only
if the KILLING FORM Tr(ad(x)ad(y)) 1s non-degenerate on L. Since this
form 1s ASSOCIATIVE in the sense of Th. 1.1, L 1s a direct sum of simple
1deals. The classical structure theory for semi-simple Llie algebras 1s
thus reduced to the determination of all simple Lie algebras. In the case
vhere F 1s algebralcally closed, the theory has been completed in this
sense (Killing [21]; Cartan [2]; van der Waerden [26]; Witt [28]; Dynkin
[7]). Nearly complete results in the general case have been obtained by
Landherr [22], [23]; Jacobson [11], [14], [19], [20]; and Tomber (25].

It 1s well known that the Killing form of an ideal J in L 1is
the restriction to J of the Killing form of L. If L has non-degener-
ate Killing form, the simple direct summands of Th. 1.1 are pairwise
orthogonal with respect to this form. It follows that each Ly has non-
degenerate Kllling form. Another property of algebras with non-degenerate
Killing form is the following, proved by Zassenhaus [33]:
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THEOREM 1.2. (Zassenhaus). If L has non-degenerate
Killing form, then every derivation of L 1s inner.

The CENTER C of L 1s the set of all x ¢ L such that [xy] = ¢
for all y ¢ L. C 1s evidently an abellan 1deal in L. Since algebrus
with non-degenerate Killing forms are semi-simple, C = (0) if L has
non-degenerate Killing form.

IT. RESTRICTED LIE ALGEBRAS

Let us assume now that F 18 of prime characteristic p. The Lie
algebra 1 1s called RESTRICTED if it 1s closed under an operation
x —» x[p], satisfying the following conditions:

(1) (ax)[p] = px[p]’ ael, xelL;
(2) [x, y[p]] = x(ad(y))P, x, y € L;
(3) (x + y)[p] = x[p] + Y[p] + zli):: si(xl Y): X, ¥y el

where 1s;(x, y) 1s the coefficient of )}'1 in x(ad(Qkx + y))p-1-

In keepling with the motivatlion for its definition, we shall write
xP instead of x'P'. The notlons of restricted ideal, restricted homo-
morphism, etc., are now clear. We shall use the term ORDINARY to refer
to ideals, homomorphisms, etc., for which the properties of p-closure
and preservation of the p-th powers are not required. In particular, a
representation U of L 1s a RESTRICTED REPRESENTATION if U(xP) =
(U(x))P? for all x e L.

We shall be concerned 1n this paper with restricted Lie algebras L
which are seml-simple (in either the ordinary or the restricted sense)
and which possess a restricted representation U such that the form
(x, y) = Tr(U(x)U(y)) 1s non-degenerate on L. If L 1s seml-simple
in the ordinary sense, 1t clearly contalns no restricted abellan ideals.
Conversely, let A be an ordinary abelian ideal in L. Then aP ¢ C
for all a € A, and A + C 1s a restricted abellan ideal. Thus the two
senses of seml-simplicity coincide. By Th. 1.1, if L satlsfles our
conditions L 1s a direct sum of simple ordinary ldeals L1 + L2 + eee + Lk'
Let x, ¢ L,, and let xlp =Fy + eee ¥y ¥g €Ly If ¥; $ 0 for
some j > 1, then [xjyj] # 0 for some xg € Lj' Thus

0 = [xjx1] = xjad(xl) = xjad(xl)p = [xjxlp] = [xjyjl,
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a contradiction. Consequently each L1 i1s restricted.

The restriction of U to each of the Li defines a restricted rep-
resentation of L1 with non-degenerate trace form. Thus the problem of
the structure of seml-simple algebras subject to the above conditions is
reduced to the determination of all simple ILie algebras subject to these
conditions. We shall present a solution to the latter problem for alge-
bralcally closed flelds of sufficlently high characteristic.

These results will have as corollary the structure of ordinary semi-
simple Lie algebras with non-degenerate Killing form. For if L 1s such
an algebra with x e L, then ad(x)P 1s a derivation of L. By Th. 1.2,
there exlsts a (unique) ¥y € L. such that ad(x)P = ad(y). If we set
y = xp, L becomes a restricted Lie algebra, and the adjolnt representa-
tion 1s restricted and has non-degenerate trace form. The simple ildeals
in the direct decomposition of L again have non-degenerate Killing forms.

III. THE CARTAN DECOMPOSITION

The base fleld 18 now assumed to be algebralcally closed. A Lie
algebra H 1s called NILPOTENT if the sequence

H, [HH], [(HHIH], [[(HHIHIH],

terminates in (0). A subalgebra H of a Lie algebra L 1s called a
CARTAN SUBAIGEBRA if

(1) H 1s nilpotent;
(2) xel, [xHl® H 1mplies x € H.

The existence and properties of Cartan subalgebras are summarized in the
following theorem, one proof of which may be found in [33]:

THEOREM 3.1. Let L be a Lle algebra over F.

Then L contalns a Cartan subalgebra H. We can
write L = H + La + ... + Lg, a direct sum of
spaces Ly, where N is a functionon H to F
and L4 18 the set of all x € L such that
x(A(h) - ad(h))™® = 0 for some m 2 0 and all
heH. For A =0 we have L, = H, and

[Lolal =Ly N # 0. [LlLa] QLo If

Ly # 0, N 1s called a root of L with respect to
H and LR i1s called the root-space belonging to
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the root A . If H 1s abelian, all roots N are
linear functions on H to F.

THEOREM 3.2 (Zassenhaus). Let L be a Lie algebra
over F, and let U be a representation of L such
that the form Tr(U(x)U(y)) 1s non-degenerate on L.
Then every Cartan subalgebra of L 1s abellan.

PROOF. Let H be a Cartan subalgebra. L = H +3 _ o poot Ly Write

(x, y) for Tr(U(x)U(y)). Let h € H, e, € Ly, a # 0. By Th. 3.1,

ey =£[hiea 1 1, hy € H, e, 1 L,- Therefore

(h, e,) = (n, Ein,elt))) = T(nny1, oM.

Similarly, ((hhyl, eéi)) -z ([hhi]hj], eéi’j)), and one can ewrlg_r_llsggl_l_y
express (h, ea) as a sum of terms (z, fa), f, €L, zc¢ H® = [[HH] ... H].
But H® = (0) for some m. Therefore (h, ea) = 0. It follows that the
restriction to H of the form (x, y) 1s non-degenerate on H.

If [HH] # (0), there is an element 2z 4 0 1in [HH] such that
[zH] = (0). Let U; Dbe an irreducible representation of H of degree

£y By Schur's lemma U,(z) = Ailfi is a scalar. Zassenhaus (30] has
also shown that each Uy(h), h ¢ H, has a single eligenvalue My (n).

We can choose a basls for the representation space V relative to
which
U, (h) 0
U(h) =
' \
* Ur(h,

for all h € H, where the Ui are irreducible representations of H.

Now (z, h) = E; Tr(U;(2)U;(h)) = &, Ny Tr(U; (h)) = T, £, Am, (n). Since
z ¢ [HH], Tr(Uy(z)) = £4% = 0. Thus (z, H) = (0), contradicting the
non-degeneracy of the form on H. Consequently H 1is abellan.

THEOREM 3.3 (Jacobson). If L 1s a restricted Lie
algebra and U 1s a restricted representation with
non-degenerate trace form, the mapping h —>» hP

is a semi-linear automorphism of any Cartan subalgebra
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H, 1i.e., hP =0 only1f h = 0 (h e H).
PROOF. Choosing a basis for V as in the proof of Th. 3.2, we have

U](h)p 0
U(nP) = um)P - '
* U.(n)?

Thus if zP = 0, we have Uj_(z)p = 0, and the single eigenvalue
/ui(z) = 0. Since H 1s commutative, by Th. 3.2, Ui(z) =,Mi(z)If = 0.
i

Thus Tr(Ui(z)Ui(h)) =0 and (z, h) = 0 for all h € H. Therefore
z = 0, as in the proof of Th. 3.2.

THEOREM 3.% (Jacobson). Let L be a restricted

Lie algebra over F, and let U be a restricted
representation of 1. with non-degenerate trace
form. Then I[xh] = a(h)x, for all x, €L, h e H.

k
PROOF. Por sufficlently large ':, we have xa(a(h) - ad))? =0 for
k k

k-1
all heH or amPx, = [xnp’ ], where nP = (¥ )P, kx> 1. It
follows from Th. 3.3 and recent work of Jacobson [17]) that H has a basis

Nie
h,, ..., h, such that hip =hy, '€ 1< r. Thus ot(hi)p Xy = [xdhll,
1€ 1< r, and since ad(h1 )P = ad(hi), the eigenvalue a(hi) of
ad(hi) satisfles a(hi)p = a(hi). Therefore [x hy] = a(hy)x,,

1€ 14€r, and the theorem 1s proved.

COROLLARY 3.1. If o # 0 1s a root, - a 1s also

a root. L, and L_, have the same dimension.
PROOF. Let 0 # x, € Ly, 0 # x5 € Ly. Now x, = [xh] for some h e H,
ond  (x,, xa) = (xy, [xdh]) = ([x‘xa], h) = 0 unless A = - a, since
(xqx,] € Lyia (by the first step in the proof of Th. 3.2, (L., H) = (0)
if o f 0). If L_, = (0), we have (L, L) = (0), a contradiction.
For each non-zero x, € L,, there 1s x_, ¢ L_, such that .(xa, x_) # o.

Thus L, and L_, are dual spaces and have the same dimension.

(04

For each linear function A on H to F, the non-degeneracy of
(x, y) on H impllies the existence of an element hk € H such that
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(hy, h) = A(h) for all h e H. In particular, this 1s true if A 1is a
root with respect to H. We observe also that h_).= - hao hh+a =
hy+ ha’ hk7\= khk if k% 1s an element of F.

COROLLARY 3.2. If e, €L, e_, ¢L_,, then

le_jo,] = (e_,» €,)n .
PROOF. [e_aea] € L, = H. For all h ¢ H, (h, [e_aea]) = ([he_a], ca) =
a(h)(e_,, e,) = (h, (e_,, e dh ). Therefore [e_. 1 = (e_,, e, )h,, Dby
the proof of Th. 3.2.

IV. LEMMAS ON REPRESENTATIONS AND THEIR APPLICATIONS

In this sectlon we gilve two lemmas of Jacobson on the nature of
irreducible representatlons of Lie algebras of dimenslons two and three.
These are then used to obtaln useful information about Lle algebras of the
type under investligation.

LEMMA 4.1 (Jacobson). Let L be a two-dimensional

Lie algebra (not necessarily restricted) over F with
basis elements e and h and multlplication [eh] = e.
Let U be an irreducible representation of L. Then
elther U(e)p = 0 or U 1is equlvalent to the
p-dimensional representation W:

{o §0... 00
0080 ... 0
W(e) = . ,
\oo. 0 08§
$0 ..
) S e 000

O M1 0 ... 00
W(h) = )

o ... 6 A+p-2 ©
00 ... 0 O Mp-1y
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where A and & are elements of F.
P
PROOF. Since [(U(h), U(e)P] = [[[U(h)U(e)]U(e)] ... U(e)] = - [[U(e)U(e)]
... Ule)] = 0, wehave U(e)? = eI, a scalar. Similarly, U(h)P - U(h) =
PI 1s a scalar. If 0 = 0, we are done. We may therefore assume
a4 0.

In the Birkhoff-Witt algebra A = A(L), let B be the ideal gen-
erated by e’ - and ®P -n -f - Then A/B 1s an associative algebra
of dimension pe over F. U can be extended to a representation of A
such that U(1) = I. Since its kernel contains B, U induces a repre-
sentation of A/B. Since L can be embedded in A/B, this representation
is irreducible. Now take § ¢ F such that §P =@, take A such that
Ly P, and form W as above. W 1nduces an irreducible repre-
sentation of A/B of degree p, which 1s therefore the only irreducible
representation of A/B. Therefore U is equivalent to W. To see that
the representation W 1s irreducible, observe that W(h) has p dis-
tinct eigenvalues A, AN+ 1, ..., A +p - 1. Let Xyy +ee) X, Dbe a
basis for the representation space such that x1W(h) = (AN+ 1 - 1)x1,
1€ 1< p, xiw(e) = Sxiﬂ, 1£1< p, xpw(e) = 8x1- let & bea
non-zero invariant subspace. Then A contains an eigenvector v of
W(h), which must be of the form Rx; for some X, 1'4€$1€p, and
some scalar @ 4 0. Hence Xy cd , and by operating upon Xy with
powers of W(e), we see that ,8 contains the entire basis Xy X5, ...,xp.

LEMMA 4.2 (Jacobson). Let L be a three-dimensional
Lie algebra (not necessarily restricted) over F with
basis e, £, h, and [ef] = h, [fh] = 0 = [eh]. Let
U be a non-zero irreducible representation of L such
that U(e)? = 0 = U(F)P. Then U is equivalent to W:

00 ... 0
10 ... 0
W(f) = 020 0

©c © O

\oo vee 0 p-10
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’o 10 ... 0O
oOo01!1! 0... 0
W(e) = . )
6]
\0c0 ...00
wh) = Mp, ANePF.
PROOF. U(h) = NI 1is a scalar. If N =0, then [U(e)U(f)) = 0, and

Ue) = @I, U(f) = ¢I. But U(e)’ = PPI -0, or @= 0. Also @ =0,
and U would have to be the zero representation. Thus N ¢ 0. Let B
be the ideal in A = A(L) generated by eP, fP, and h - \. A/B hus
dimension p2, and U induces an irreducible representation of A/n.
However, W defines an irreduclble representation of A/B of degree p.
Therefore U 18 equlvalent to W. To see that W 1s lrreduclible, let
Xys Xps» +ee, X be a basis for the representation space such that

x,W(f) = 0, xiW(f) = (1 - 1)x1_1, 1> 1; xiw(e) = Xy, 1 <p; xpW(o) = 0.
Let & be an invariant subspace and let 0 $ v ¢ 4 . Let v = l’]x] +

¥2x2 +oeee + l’px . Let Xi be the first non-zero component, and con-
sider wW(e)P™1 = ‘lixp € . Thus x5 € ,& Now xpw(t‘)k = (p-1) ...
(p - k) Xp-k e,% , OSk®p-1, or contains the entire bnslis

xp, xp_], ceey Xqe Thus the representation is 1rreducible.

THEOREM 4.1 (Jacobson). Let L be as in Th. 3.4,
and let 0 $# @ be a root. Then if 8y € Ly

e P = o.

o

PROOF. If h e H, [he,’] = 0; therefore o’ ¢ H. Let h ¢ H, a(h) = 1.
Then e, and h form a two-dimensional algebra L, as in Lemma k.1.
Now (eap,h) = Tr(U(ea)pU(h)), and we can write the restriction of U to

L] in the form
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where the Ui are irreducible representations of Ll. By Lemma 4.1,
elther Ui(ea)p =0 or Ui 1s equivalent to the representation W of
that lemma for sultable A , 8 . 1In elther case, Tr(Ui(ea)pUi(h)) = 0,
S0 that (eap, h) = 0. It follows that (eap, h) = 0 whenever a(h) ¢ O.
If a(h) = 0, let h' € H, a(h') ¢ 0. Then «(h + h') $ 0, and

(egp, h) = (eap, h+h') - (eap, h') = 0. Therefore (eap’ H) = (0), or
e, = O-
COROLLARY 4.1. If ey and x, are in La’ then
/'-—'p-1 T
[[[xaea]ea] ... el = 0.

PROOF. For A e F, Ac, + x, € L. Therefore we have

p"l\
0 = (Aea + xa)p = Apeap + p"1[[xmem] cee ea] + AP‘zsa(xa, ea) + oee. + xap,

where the coefficients Si(xa' ea) e L. Since F 1s infinite, all co-
efflclents are zero, 1n particular that of Ap_1- (For details of the
expansion used, see [13].)

THEOREM 4.2 (Jacobson). If o $ 0 1s a root, then
alh,) ¢ o.

PROOF. Suppose af(h,) = 0. Let ofe,eL, Ote_ , eL_,, such that
(e_y» ©y) = 1. By Cor. 3.2, le_,, €,] = h,. Let L, be the 3-dimension-
al algebra spanned by e,, €_,, h,. For each irreduclible constituent Uy
of the restriction to L, of the representation U of L, we have
Ui(ea)p = 0, since U(ea)p = U(eap) = 0. Also, Ui(e_a)p = 0. Thus the
algebra L, and the representation U; are as in Lemma 4.2. Either Ui
1s a zero representation or Uy 1s equivalent to a representation of the
type of W. In either case, Tr(U,(e_, )U;(e,)) = 0. Therefore

(e_y» 8y) = Tr(U(e_,)U(e,)) = 0, a contradiction, and the theorem is

proved.

V. WEIGHTS AND ROOTS

Let H Dbe an abellan Lie algebra over F, U a representation of H
in V. As in the case of the adjolnt representation, we can decompose V
into a direct sum ,
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V=V, +2Av,\,

where N runs through a finlte set of linear functions on H to F and
Vp 1s the set of v e V such that v(A(h) - U(h))® = 0 for all h e H
when m 1s sufficilently large. The non-zero functions A with VA ¢ (0)
are called the WEIGHTS of the representation U. We shall assume 1n the
following that F 1s algebralcally closed and of characterlistic p > 2.

LEMMA 5.1 (Weyl-Jacobson). Let L, = H +{e, e},
where H 1s an abelian restricted Lle algebra, and
where (e h] = a(h)ey, le_hl = - a(hle_, a a
linear function on H. Assume also that [e_aea] =
h, ¢ H eand that a(h,) # 0. Let A be a welght of
a representation U of L, Then either all linear
forms A -kx (k =0, 1, ..., p - 1) are welghts,
or the set of weights of this form consists of dis-
joint arithmetic progression;( (gitih difference «a,

each symmetric about - a—m—%— @, In the follow-

o

ing sense: If A - ke 1s a weight, then

A(h ) A(n )
(/\-aﬁ—a)+ ((/\—-C;(}-la—c)’—a)-(A-ka))=

2 Alny)
A+ ka-———(h—)—a

i1s also a weight, and elther all the quantities

2)\(110,)
AN-kx, N-kx+oa, N-ke+2a, ..., A+kcx-——d-m;—)-—a
are welghts, or all the quantities
2A(h,)
A-X%x, AN -k -a, \N-%a--2a, ..., A+ka-—a-m;%—a

are wei%hts In eilther of these situations,
_('h—)— o will be called the MIDPOINT of the corre-

spondlng string of weights.



14 SELIGMAN

PROOF. Assume that not all A - ka are weights. Let M = A-xke be
a welght such that M - @ 1s not a weight. Let 0 f x ¢ V, the rep-
resentation space, such that xU(h) = M(h)x for all h ¢ H. Then

))

[}

xU(e_,)U(h)

"

x([U(e_,)U(h)] + U(M)U(e_,

)

- a(h)xU(e_,) + Mn)xu(e_,

(M- a)(h)xU(e_g,),

or xU(e_,) eV Thus xU(e_,) = ©.

cr) M-a’
Set x, = X, x, = xU(ey), +«.y Xy = xU(ea)i, .+« .« Then x;U(h) =
(M + ia)(h)xy for all h e H, and one also proves that

x,Ule_) = - 1(M + —(—i—;—)-a)(ha)xi_,, 1> o.

Since not all M + jo are weights, there exists r € p - 1 such that

xr# 0, Xp,q = 0. Then
r
0=2,.,Ule_,) = - (r+ 1)(M(h,) + 5 alh,))x,.
s1 < 2 M(h,) d the following 1ght
nce r<p-1,r=-—(mpa an e follow are we st
2 o - 2
M=A-%a, M+a, co.., M+ra= A - (kx - rla.
M(n,) Alh)
The midpoint 1s A -ka + 2 a = A - ka - a = - ¢ .
2 a(h,) ath,)

Similarly, 1f N = A + jo 1s a weight such that N + a 1s not
a welght, and 1f yU(h) = N(h)y for all h, the welghts include

N-=AN+jo, N-qa, «o., N-sa= A+ (j- s,

h 2N (b, The midpoint is again A Athy) If the t
where S = . e pO n S a1ln - x. e TWO
d”ia) dlﬁa,

strings of weights are not disjoint, then they must coincide; for other-
wise one of the following 1s the case: Either one of M + (r + 1)a,

M- o 1s a member of the second string, or one of N + a, 'N - (s + 1)
is a member of the first string. But M - o and N + a are not
weights by assumption. If M + (r + 1)a 1s in the second string, then
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so 1s

Nny) A(h,)
A'a‘(}g)—a)'* -WG-(M+(I‘+1)0))=
2 A(h,) 2 M(h,,)
=2A- o 4 a-"—(——?(rlg—)'+1)a=
(o4 [0 4
2A(h,) 2 A(h )
=2 - = o - A+ o+ ——ETHET a - 2ka - a =
[0 04

AN-k-ac=M-aq,

a contradiction. The remaining case 1s eliminated in similar fashlon,
completing the proof of the lemma.

COROLLARY 5.1. If L 1s as in Th. 3.4, o 1s a
root and ko 1s a welight for a representation of
L, = H+ {ey o} (constructed to fulfill the
conditions of lLemma 5.1), then - ko 1s also a
welght.

PROOF. We may assume not all ko are weights. Then the string of weights
of this form 1s symmetric about 0. Therefore it contains - ko.

LFMMA 5.2. Under the conditions of Th. 3.4, either
all multiples ka(k = 0, 1, ..., p - 1) of a root
a are roots, or 2a 1s not a root.

PROOF. Suppcse not all ko are roots, and that 2o 1s a root. Let L1
be as above, and let 2a, 3@, ..., rea be roots, (r + 1)a not a root.
Let L, =1L, + z§=1Lka' Since [LQIH] 1= L,, L, may be regarded as a
representation space for L,. 2z 1s a weight for this representation,
but - 2a .1s not. This contradicts Cor. 5.1.

THEOREM 5.1 (Jacobson). If not all multiples ko
of a root o are roots, then La is one-dimensional.

PROOF. Choose e, ¢ L,, e_, € L_,, such that (e_a, ea) =1. If
dim.L, > 1, there 1s a vector u, 40 1in L, such that (e_a, ua) = 0.
By Cor. 3.2, [use_,] = 0. Now (upe,] eL,, = {0) by Lemma 5.2. Thus
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—
1]

0= [[uaea]e (lee_,lu,] - [le_yu,le,] =

- a”-a o -

- [uaha] = - a(ha)ua,
a contradiction. Thus the theorem 1s proved.

THEOREM 5.2 (Jacobson). If p>» 3, not all multiples
of o are roots.

PROOF. Suppose all ko are roots, k=1, 2, ..., p = 1. Let

p-1
= (hy) +Zk=1 Lo

Since hka = kha, L1 is a subalgebra of 1, and the restriction of U
to L, defines a non-degenerate trace form on IL,. L, has the Cartan

subalgebra K = (h,).

Now let O # e o € L—a’ o ¢t Xy € Lka’ 1< k< p -1, and suppose
that [xka a} = O Let e, € L, be such that (e_d, ea) = 1. Let
Xy = xkd(ad(e )) By induction, xy € L(k+i)a’ and

[xge_o) = - 10k + D)atn )x, , -

In particular, x,_, €K, and (hy, xp_k) = (hy, [[xp x-0818])

a(hy)(ey, (X5 k28 1) = - alh,)(lee,], %, 5) = 0. Hence Xy = O
Therefore X #+ 0 Implies j ¢ p - k. Suppose xj t 0, xj+1 = 0. Then
a8 in the proof of Lemmsa 5.1,
0 = [xj+1e_a] = - (j+1)(k + %)a(ha)xj.
Therefore either j=p -1 or J = -2k (mod p). But j=p -1 1is
impossible, since j <€ p - k. Therefore j = - 2k (mod p).
Next suppose [xeae a] = 0 for some X, # 0 in L Set
8§ = - 20, Then [ex :]=0, where e_8=xa,x18—ea.

Letting k = P—;—'— in the sequence above and replacing o« by § , we have

j= - E(E%l) = -1, or j=p-1, which is impossible. Thus the

mapping Xoq —> [xzae a] is one-to-one of Lea into La' Therefore

dim.L,, 2 dim.L,,. By repetition,
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dim-La 2 dim.Laa 2 dim.sz cee 2 dim.La,
or dim.L, = dim.L, . Therefore the mapping ad(e_a) carries L,,
onto L,. In particular, e, = [yeae-a] for some y,, € L,,. Dut

1= ey e_y) = ([¥48 o) €y) = (Fpur le_egl) = O
a contradiction. This completes the proof.

THEOREM 5.3. Only O and ¢+ o are roots among
the integral multiples of a root «o.

PROOF. Suppose some ka 1s a root, k ¢ 0, 1, - 1. Since 2a 18 not

a root, we may assume that ko - o 18 not a root. Now let Kka,

(k + 1)x, ..., ra be roots, (r + 1)a not a root; then £§=ija is n
representation space for L1, as defined before. Moreover, j = 0 13
excluded from this sum; for if j = 0 were 1n the sum, so would be

elther all of j =1, 2, «¢ee, k, orallof j=%k,k +1, «e., -2, -1, 0.
But neither of t 2o 1s a root, so this is impossible. However, O 1is
the midpoint of the string of roots ka, (k + 1)a, ..., ry; 1in par-
ticular, this string contalns with every root lts negative. Assume

E%la 1s not a member; then nelther 1s - E%la = Egla. Wc observe

further that the string must contaln some Jo, 2 € j< Itﬂﬁ and we may
assume j 1s the largest integer with thils property. Then (j + 1)

is not a member of the string. Therefore we must have J = r, and the
string 1s jao, (j - 1)o, ..., ke. But now - jao 1s a member of the

string, and - j# 1 (mod p) for 0 %1€ j. Therefore the string con-
tains more than (j + 1) entries; in particular, it contalns (J - jlx = o,

and this 1s a contradiction. Therefore R%la =270 1sa root, and

o = 2(2'10) is also a root, in contradiction to Lemma 5.2. This com-
pletes the proof.

ILFAMA 5.3. Let p> 3. let «,R be roots,
Ote,el, 04 e,np € Ltﬁ . Let [eaen ] = 0=
leqe_n l. Then (hy, hg ) = O.

PROOF. By Ths. 5.1 and 5.2, we may assume (e, ©_5) = 1. Then
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0=I[leeqle_pl = - [lege_qa10,] - [le_pe log] =
= - [edhn] = - d(hﬂ)ea = - (hd’ ha )ea.

Thus (ha, hﬁ) = 0.

THEOREM 5.4. If « and 8 are roots, and if
p > 3, not all of the following are roots:
x-208,a-A,a, a+B, a+ 2. Therefore
no "connected" string of the form o + k@ con-
talns more than four roots.

PROOF. If all the above are roots, then 28 = (¢ + 28 ) - ¢ and

2(e +B )= (¢ +2@) + ¢ are not roots. By Lemma 5.3, (ha+2a » h,) =0,
or <ha’ ha) = - 2(ha, he ). AMlso (@ -28) ta are not roots, and

(h,, h,) = 2(h,, ha ). Therefore u4(h,, ha) =10, or (h, hg) = 0.

But then or(ha) = (ha’ ha) = 0, a contradiction. The second assertion

1s an immedlate consequence.

THEOREM 5.5. Iet p> 3, and let o and 3 be
roots, o ¢ -3 . Then [Lorl‘ﬂ]=La+a‘

PROOF. All root-spaces L, are one-dimenslonal, and [LofLﬁ le L. 8"
Therefore if o« + @ 18 not a root, [Ld'Lﬁ] = (0) = ch+n . If o +A
i1s a root, 1t suffices to show [eaea 1 # 0 for non-zero &y € Ly

epq € Lpy -

Since there are at most four consecutive roots of the form o + kA,
we can apply Lemma 5.1 to assert that the connected string contailning «
is an arithmetic progression with difference @ . If o - jB 1is a
member of this string, while o - (j + 1)# 1s not a root, let
0 ¢ xXq € Loz-j(s » and let xy = xoad(e,s )i, 1> o. As in the proof of
Lerma 5.1, X4 € La—(j-i)ﬂ and x4 = 0 only when a - (j - 1)8 1s no
longer a root. (For suppose o« - j@, ¢ - (j -1)8, ..., ¢ - (j -1)8

are roots, o - (] —(i - 1)B8 not a root; this string of roots has the
a(h
seme midpoint o - 5 L as does the string « - j@, a - (j - 1)A,

) .
eees @ - (§ -t)A of those roots a - (j - s)@ for vhich xg ¢ o.
Hence the strings coincide.) In particular, Xj t 0, xj +1 + 0. Now

xg = lea €L, A+0, and Xjr = }\[eaea] $# 0. Therefore
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[eaeB ] # 0, and the theorem is proved.

THEOREM 5.6. let o« and @ be roots, and let
the progression of roots of the form o + kA
containing o be

a-rA, v, x-N, 0, x+B , ..., x+qfl.
Q(ha)ho)

Then if p > 3, T, ,h, 7 " =r -q.
PROOF. Let O # Xo € Ly .., and let x; = Xsad(eq )l, 1> 0, where
Otep cLg. Let e 45 €L, (e 4, €n) =1. Then x4 € L, (1 y)q >
and as 1n the proof of Lemma 5.1,

[xy,06.a) =~ L+ 1)@-ra +2a)hy)x, 120

Now r+q+1%€%, X # 0 by Th. 5.5, and x = 0. Thus
r+q r+q+1

- (r+qgq+1)(x-1rA +£—2+—q-n)(hn )xr+q= 0 = a(h“) -%grs(ha )s

2(hyhg )
or W =7 - q.
THEOREM 5.7. If o and A3 are roots and p > 5,
all roots of the form o + k 1lie in the connected

string containing «.

PROOF. Let o + k@ be a root not in this string. We may assume that

a+ (k -1)8 1s not a root. The string o + kB, o+ (k + 1)B, ...,
@ +nB 1s symmetric about o - W . By Ths. 5.4 and 5.6, YV

is emong O, % 1, %2, & 3. n
If a(hn) = 0, then as in the proof of Th. 5.3, a ¢ 27’3 are
roots. However,
2(a+2”'® )(hy)
=2
a(h,) ’

which means by Th. 5.6, and the fact that p > 5 that a + 2 '@ - a = 27}

is a root, a contzra.dict:%on. A simllar contradiction is reached by
2(h,h
a’ s
assuming that W + 2, 1n the case of + 2 by replacing o by
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@ -A, and In the case of - 2 by replacing o by « +/8 (which we
know to be roots in these cases by Th. 5.6) and then applying the reason-
ing of the case a(hp ) = O.

2(hy,hpy )

Now when W = 1, any string of thils type 1s symmetric about

o - %m. As 1in the proof of Th. 5.3, eilther o - %ﬁ 1s a member of
such & string or the string contalns (o - %ﬁ) + R;—lﬂ = . In the

latter case, we have the connected string about o. Therefore o - %{3
1s a member of the string o + k@, ..., o + n@, and 1s in fact the
mldpoint. Now replace o by a - T;_'ﬂ and apply the case o:(hn) =0

to obtaln the same contradiction as before. One treats the cases
e(ha,hﬁ )

3, - 3 in simllar fashion.

= -1
zh@ sha j !
Let Ay Opy veey Ay be a maximal set of linearly independent roots.

Then every root can be expressed as & linear combination of these oy -
Moreover, hi = hai are linearly independent elements of H, and every

ha (¢ & root) can be expressed as a linear combination of the hi' Let
be the subsapce of H spanned by the h:L’ and let

H
L0=H0+zorarootl"

LEMMA 5.4. L, = [LLI.

0

PROOF. Let hr+1’ ey hj ¢ H be such that hy, ««o, hj 1s a basis for
H. Then every x € L 1s uniquely expressible in the form

J
X = Zj_:] xihi * 21 Aoy

where the N's are in F and [e_,e,] = h,. Now

[xhy] = Za Ao(hy e, € L,

[xea] = -Zi Ma(hi)ed +X-Q'hcf +Zﬂ#"a X“Nﬂaea'f'“ € Lo)

where N, € F, Ng, =0 1if and only if o +/M 1s not a root. Thus
[IL]& L,- Since h, =[e__,e_ 1] e [ILL], 1% 1 € r, and since
0 1 -0y o

oy = a(h, ) (e h ] € [IL] for all «, L, [IL] = L.
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By Th. 1.1, L = [ILL] = L, whenever L contains no abelian ideals
(and has non-degenerate trace form, of course). We shall assume that
this is the case in all that follows.

THEOREM 5.8. Let p > 3, and let P T R
be a maximal set of linearly 1ndependent roots with
respect to H( = Hy). Then any root o with respect
to H 1s a linear combination of the oy with co-
efficlents in the prime field contained in F.

PROOF. Let o = Z A\s%y, A, € F. By Th. 5.6, the quantitiles
2a(hy ) 2a (ny)t T 1
and , 1$1, j€ r, are integers modulo p, or are
@y (hy) ay (hy)
i1n the prime field contalned in F. Since the h1 span H, and since
(x, y) 1s non-degenerate on H, the matrix
Eaj(hi) _ 2(hi,hj)
Q’i(hi) (hi’hi)

1s non-singular. Thus the system of equatlons

2a(hy) =Zr‘ A 2as(hy) , T4 14 r
ag(my)  TI a(y) ’

has a unique solution in F, 1n fact, in the prime fleld Zp. Thus the
theorem 1s proved.

VI. SIMPLE SYSTEMS OF ROOTS

Throughout the followling 1t will be assumed that the characteristic
p of F 1s greater than 7, 1in order to avold ambiguities in the appli-
catlon of Th. 5.6. PFurther distinguishing of cases will make the tech-
niques applicable at characteristics 5 and 7.

IFMMA 6.1. Let o, Oy be roots, o, + ¢ oy
Let
2a,(hs)
Ay o= e Rt I s 1, j=1, 2,

where hj = ha as before. Then one of the
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following is the case:

12 215

Ap =1 = A5 Ay = -1 = Ay
Alp =2, Ay =15 Ay = -2, By = - 15
Ajg =15 Ayy =25 Byp = =1, Ay = = 25
Big =30 Byy = 15 Byp = =3 Ayy = - 15
Ap =1y Ay =35 Ay = =1, Ay = - 3.

PROOF. If A, = 0, then A,, = 0, since o:i(hj) = ay (hy). Now if
A, $# 0, then A,=t1, %2, or t3. If A, =2 or 3, then by
Th. 5.6, o, - @, end @, - 20, are roots, and as in the proof of Th.

5.4, A,, = 1. Likewlse, 1f A,, = -2, or - 3, A21 = - 1. By
symmetry, we need only eliminate the possibility A12 =1 = - A21. But
then o, - @, is a root by Th. 5.6, as is - (o; - @,) = o, - o;. But
Aaa-a1,a1 = - 3, where the notation 1s an extenslon of that used above;
by Th. 5.6, @, - &, + 3¢, =&, + 22, 1s a root, and by the proof of Th.
5.4, A12 = - 1, & contradiction. Thus the lemma 1s proved.

Let a4, oy, -+, &, Dbe a set of linearly Independent roots with
respect to the Cartan subalgebra H. Thls system 1is called SIMPLE 1if
@y - @; 1s not a root for any 1+ j, 1«1, j£ k. A simple system
of roots 1s DECOMPOSABLE if 1t splits into two subsystems S1, Se’ such
that a](he) =0 for all o, € 8;, @, € S,. Simple systems of roots
are represented by diagrams consisting of dots and lines, using dots to
Indicate the roots of the system and lines thelr relationships, au
follows:

If «,, @, are roots (dots), we connect them by

a single line if A =1,

12A21

a double line 1f A12A2l = 2,

a triple line if A12A21 = 3.

@, and o, are not connected directly by a line (passing Ehrough no
intermediate dot) 1f and only if A,, = 0. From the definition of a
simple system, it follows that Aij s among o0, -1, -2, -3 1If
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1 4 j. Thus Lemma 6.1 specilalizes to

LEMMA 6.2. There are three possible indecomposable
simple systems (1.s.s.) consisting of two roots,
namely:

Ayt 0—=0; B,: a==D; G,: dE==D-
LEMMA 6.3. The only possible 1.s.s. of three roots
are:

A .

§ Qe § ! O T=D
3 3 Bgy Gy

PROOF. Let @y Op, Oy be an 1.s.8. Suppose first that a, + o, is
not a root. By Lemma 5.3, A12 = A21 = 0. By indecomposabllity,
A13 t o, A23 t$ o.

CASE 1: A13A31 =1 = A23A32. This gives the dlagram A3.

CASE 2: A13A31 = 2, A23A32 =1, or !\.13A31 =1, A23A32 = 2. These
glve the dlagram B3, C3.

CASE 3: A13A31 =2 = A23A32. Assume first that A13 = - 2, A23 = - 2.
Then A 1= -1V = « Here and 1n the seuel we shall write

(N == 'Xk) for 21'5;1 >‘i°‘i’ Xi e F. By repeated applica-
tions of Th. 5.6, we see that the following are roots:
(ro1), (1o2), 112), (122), (012), (21 2),

(2 1 4), (22 4%)=12(112), a contradiction.

Now assume A13 = -2 = A32. Then A31 = -1 = A23, and the
roots include

(101), (1 02), (011), (021), (111), (112), (122),

(132), (133), (233), (23 4), (24 4)=2(22), a

contradiction. The case A31 = -2 = A23 1s eliminated
by symmetry.
Finally let A31 = -2 = A32, A13 = -1 = A23. The roots

include
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(ro01), (1 11), h21), (011), (2 01), (21 1),

(2 21), (22 2)=2(11), a contradlction.
Thus case 3 is impossible.

CASE b4: A13A31 = 3, A23A32 = 1. If A13 = - 3, A31 = - 1, and the
roots include

(ro1), (hoz2), (A 03), (2 03), (01 1), (1 11),

(v 12), (21 3), (223), (2214)=2012), a
contradiction.
If A13 = -1, A31 = - 3, the roots include

(101), (2 01), (301), (302), (011), (111),
(2 11), (2 12), (312), (b 12), (13), (L23),
(523 ), (52%4), (6 24), =2(312), a contradiction.

Thus case 4 1s impossible, as 1s
CASE 5: A13A31 =1, A23A32 = 3.

The remalning cases: A13A3] = 3, A23A32 = 23 A13A3‘ = 2,
A23A32 = 3; A13A31 =3 = A23A32 glve rise to sets of roots which in-
clude those of at least one of the subcases of Case 3, therefore are
contradictory.

There remains only the case where all Aji" 0. Then each

Aij 1s among - 1, - 2, - 3, and the roots include
(110), (1o1), (011), (11 1), (112), (21 2),

(2 2 2) =2(111), a contradiction.
This completes the proof of the lemma.

COROLLARY 6.1. The only 1.s.s. whose dlagram con-
tains a triple line is

G o __oJENR

2:
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IFEMMA 6.4. There 18 no 1.s.8. of the form:

11: 0 o—a—=D
: e =) 4 & & O_‘l—-()

Ie

Ih O S e 6

II1:
IIE: Qe Ormssmsen()
II3: L—‘) ) 0_1

IIk: [ o}

IIS: G — O < '’ O

PROOF. The proof will conslst of showlng that 1in each case we obtaln two
roots, one of which 1s twice the other. The techniques are those of the
proof of Lemma 6.3, involving repeated use of Th. 5.6. We suppress
monotonous computations, writing only the final steps.

I,. Label the diagram as shown:
e ——— e ORI e S e ——— 4
9 % %3 %o %oy Y
There are four possible cases: a) A, =-2-= Ar,r—l5 b) A, =-2=
Ap_q,ps c) Ay, =-2-= Apy,ps d) Ay, =-2-= Ap p_q+ Cases b) and
d) are equivalent by symmetry.
a) The roots include (1 2 2 ... 2 1) and 2(1 22 ... 2 1), a

contradiction.
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b) The roots include (1 2 ... 2) and 2(1 2 ... 2), a contra-
diction.
¢) The roots include (1 1 ... 1) and 2(1 1 ... 1), a contra-

diction. Thus I 1s eliminated.

1

I,. Label the diagram as shown:
m—.I_a;
DO ...
% % % Fp-3 %p_p %poq
There are two cases: a) A, = -2; b) Ay, = -2.
a) The roots include (1 22 ... 2 1 1) and 2(1 22 ... 21 1),
a contradiction.
b) The roots include (2 2 ... 2 1 1) and 2(2 2 ... 21 1), a

contradiction. Thus I is eliminated.

2
13. Since all quantities which are roots in the case of the dlagra

II3 are roots in thls case, we refer to II3 for the elimination of bo

cases I3 and II3.

I,. Label the dlagram as shown:

X — QD)
o (01

(e,
% 2 % % G

There are two cases: a) A23 = -2; b) A32 = - 2.

a) The roots include (1 2 32 1) and 2(1 2 3 2 1), a contra-
diction.

b} The roots Include (2 4 32 1) and 2(2 4 32 1), a contra-
diction. Thus Ih 1s eliminated.

II,. Label the dlagram as shown:

L

%p.3 Fpop Fpog

The roots include (1 1 22 ... 21 1) and 2(1 122 ...,.211), a
contradiction. This eliminates IIl.

II,. Label the diagram as shown:
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O -0
(!] (12 (!3 dl& d5

The roots include (1 2 32 1 2 1) and 2(1 2 32 1 2 1), a contradiction
This eliminates IIQ-

IT.,. Label the diagram as shown:

3

The roots include (1 1 ... 1) and 2(1 1 ... 1), a contradiction. This

eliminates II3 (and with 1it, I3).

IT,. Label the diagram as shown:

_Iae
o S—c O ¢ e e ) -0
o1

(04 612 oz3 Gh a5 (16 7

1

The roots include (1 2 3 4 32 1 2) and 2(1 2 3 4 32 1 2), a contra-
diction. This eliminates IIL-

II Label the diagram as shown:

[
Lo S e o Vel 0
@, o5 @ @, ag

1 2 3

5"

The roots include (1 2 3 4 5 6 4 2 3) and 2(1 2 3 456 42 3), a

contradiction. This eliminates II5 and completes the proof.

From L,emmas 6.2, 6.3 and 6.4 the following theorem 1s an easy conse-
quence ([7], p. 139).

THEOREM 6.1. Every 1.s.s. must have one of the follow-
ing diagrams:

Ar: O ¢ 0 ¢ Omemama)



28 SELIGMAN

H o O D
Br’ Cr [’
Dr: e Y o——L
G2: 6 ———1]
Fk o, ) S— -—C

VII. EXISTENCE OF SIMPLE SYSTEMS

We next demonstrate that L possesses a FUNDAMENTAL simple system
of roots, i.e., a simple system «,, -.., @, such that hyy, «-o) hr
form a baslis for H. The existence of such a system will follow from the
following lemme, which we shall use again later.

LEMMA T.1. Let Cpy eeey O be a simple system of
roots in L, and let « be a root independent of
Gy veey e Then we can form a string of roots

o, o - ai1, a - ai1 - aia, e, 8 , 1L 13‘ k, such

that /5-a1 is not a root for 1€ 1% k.

PROOF. Assume first that Ayy oeey O i1s indecomposable. If k = 1,
we form the string o, o - @, @ - 20, & - 3¢, and let /M@ Dbe the last
entry which 1s a root.

Now let k = 2. Then ., 9, 1s of type A2, ps  OT G2. In case
B,, we may assume A12 = -2, and in case G,, that A12 = - 3. We

may also assume that ¥ 1s a root obtained by o by subtracting a, a
sufficient number of times so that ¥ - @, 1s no longer a root. Then ¥

and a, form a simple system, which by Lemms 6.2 1s one of the following:
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0) o o 1) OO
¥ o, ¥ @,
2) —=—=» , A = - 2; 3) m===> , A = - 2;
X, 2 ’ 2,%
Y @, ’ ¥ o, ’
b) &=, Ay, = - 3; 5) A, = - 3.
¥ aa: ‘-,2 ’ ¥ (22, 2,(

A similar notatlon wlll be used throughout; e.g., A20) will refer
to the case

Qe , O o
o, o, L o,
and we shall put
2¥(hy) 2¥(hy )
A‘1=-——— A18=—_’ 141 <Kk,
£ )
ai(hi) x(h‘)

Then all the quantities of the form Aij’ A:L,l" At,i are determined
by the specification of the case (such as A,0)) except for A‘:' and
A-‘,1. We must subdivide further to treat all possible values for these
quantities as indicated in Lemma 6.1.

Aeo) If A"1 = -2 or -3, or if A1,‘. = -2 or -3, then
¥ - o, 1s not a root, and we can take P =7¥. (Since ¥, a,, o, form
an i.s.s., A‘” = - 3 and A1 ¥ = -3 ere impossible; however, we shall
F

in general omit observations of this nature.) Now suppose A“'1 = - 1=
Ay y- If ¥ -, 1s aroot, so1s ¥ - a; - @, by Th. 5.6, and by an-
other application of Th. 5.6, ¥ - oy is a root, a contradiction. A
similar contradiction results from assuming that ¥ - @, is a root in
the case A8,1 =0 = A“‘. In these cases, we take 8 =Y¥.

Next let A‘,1 =1. Then Y - @, 1s a root, as 1is Y - o, - dye
Ir ¥ - 2a, - @, 1s a root, so 1s ¥ - a,, a contradiction. If
¥ - -2x, 1s a root, so are ¥ - a, + @, ¥+ ®,, and K-cza, a
contradiction. Thus we take @ = ¥ - o, - ay,-

Now let A"’ =2. ¥ - 2, 1is a root, as is ¥ - 2a, - 2a,. If
¥ - 3¢, - 2o, 1s a root, so are X - o, - 2a,, \’—a1 +a,, ¥+ ay,

¥ - a,, a contradiction. If ¥ - 2z, - 3@, = § 1s a root, then
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Ag , = - 4, a contradiction. Thus we take B = ¥ - 22, - 2a,. Similar-
>
ly if Ay, =3, we can take R =¥-3a - 3a,-
)
A21) Here f(h‘) = cxz(hg) = aT(h1). Thus A,.,’1 = A]" =1, 0 or
-1, by Lemma 6.1. First let A‘1 =-1. If ¥- o, is a root, we
'y

know by Th. 5.6 that ¥ - 2a, 1s not a root. Irf ¥ - @, - o, is a
root, so 1s ¥ - a,, a contradiction. Thus ve take (8 = ¥ if ¥ - o
1s not a root and M = ¥ - a, if K-a1 is a root.

When A',1 = 0, elther ¥ - a, 1s a root or we take A =Y¥. 1In
the former case we can take 3 = ¥ - @,, as above. Now let A"1 =1,
Then ¥ - @, 1s a root. If ¥ - 22, 1s a root, so are Y - 2a, - a,
and ¥ - ®@,, & contradlction. Thus elther ¥ - @, - a, 1s a root or we
can take A =¥ - a,. In the former case, one may show in similar
fashion that we can take A = ¥ - o, - a,.

A,2) Here "(h‘) = 2a,(h,) = 2a,(h,). Therefore A‘-’] = -2, 0 or
2. 1If A‘.’1 = -2, wecan take B =%¥. If A".‘ = 0, we take
A =X or R =¥ - @, as in the corresponding subcase of A,1 ). If
A',1 = 2, we show as above that we can take A = ¥ - 2a, or

N =¥-c2a, - oy

A23) Here 2‘(h‘) = ae(ha) = a1(h1), and A"1 = -1, 0 or 1.
3 can be taken by the procedure of case Ap1). The same choice suffices
in the case A25).

Al) ‘S(h.‘) = 3a2(h2) = 3a1'(h1), and A.‘,,1 = -3, 0 or 3. The first
1s impossible by Lemma 6.3. If A"] = 0, we obtaln elther A =¥ or
A=Y - - When A‘,,1 =3, we teke M@ = ¥ - 3a,- However, all these
contradict Lemma 6.3, so the case Aeh) cannot occur.

BQO) (As indicated before, this 1s the case A, = -2 A, ¥ - 0.)
As in the case Aeo)’ we can restrict our attentlon to the cases ’
A‘,1 =1, 2, 3. When A"1 =1, ¥-20, - 2a2 is a root, and we can

take A = ¥ - 2a, - 20,. This glves an 1.s.s. not allowable under

Lemma 6.3. When A,"1 =2 or 3, ¥ - 2a, 1s a root, and Al-2a1,a2 = 4,
a contradiction.
1
B,1) ‘(h‘) = a,(h,) = 5 o, (h,). Hence Agy=-1,0 or 1. In

the first two cases, we can take A =¥, and obtaln a system in the
first case which is impossible by Lemma 6.3. In case A‘ l' =1, WwWe can
take B = f-o:1 - .

B,2) K(h‘) = 2a,(h,) = a,(h,). Therefore A =-1,0 or 1.

¥
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By Lemma 6.3, we cannot have  =¥. Therefore ¥ - @, 1s a root. If
A‘,1=—1 or 0O we can take @ =r—ar1. 1f A‘,,1=+1, then
elther we can take A = ¥ - a,, or ¥ - a, - o, 1s a root and we can
'ca.keﬁ:h’-aT—ae.

B,3) 2¥(hy) = a,(h,) = %ag(h1). Thus either Ay, = 0, or p = 1

and Ay¢, = &£ 3. If A‘1=O and ¥ - @, 1s a root, we can take
H 4
A - ¥ -oa, otherwise A =¥. Ay, = -3 1s impossible by Lemma 6.3.
td
If A‘,1 =3, ¥ -3¢, 1s a root, and Ar—3dl,ae = 4, a contradiction.
- =3 =

Byk) ¥(hy) = 305(hy) = 3 @y(hy). Then Ap, =0, and if ¥ -«
is a root, we take M@ = ¥ - a,; otherwise A = Y.

B,5) 3¥(hy) = ay(h,) = %—a1(h1)- Then Ay , =0, or p=11 and
A =+2, or p=17 and A =t 3. A = -2 and - 3 are im-
¥, 1 Y1 ¥,1

possible by Lemma 6.3. By the same lemme, X - o, 1s a root. When
A)’,l =0, ¥ - o, is also a root, a contradiction. If A‘,,1 =2, Wwe
can take @A = ¥ - 32, - 3a,. If A‘,1 =3, ¥ - 3a, 1s a root, and
At—3cx1,a2 = 5, a contradiction.

Gao) As in A20) and BQO), we need only consider A‘1 =1, 2, 3.

Now A =6, so ¥ - 2a 1s not a root and A 4 1. Then
t—2a1,o:2 1 %, 1
R =¥ - ka, —60:2 i1s a root, and ﬂ—ai 1s not a root for 1 =1, 2.
1
G,1) ¥(hy) = ay(hy) = oy (h)). Thus Ay, =-1,0 or 1. By

Lemma 6.3, we may assume that ¥ - a, is a root. Also, ¥ - 2a, is not
a root. It follows that Ay, =1, and we find R =YX - 2, - 3a,.
2

G22) Since ‘(h‘,) = %a1 (h1), we must have A‘ ; = 0. As before,
2
A = ¥ 1s impossible. Thus ¥ - @, and therefore ¥ - a,, 1is a
root, a contradiction.
1 )

Gp3) 2¥lhg) = ay(h,) = 3 o (h;). Either Ay, =0, or p=11 and
A =+2, or p=17 and A = % 3. A = -2 or -3 contra-
%1 X1 31
dicts Lemma 6.3. A"1 =2 or 3 implies that ¥ - 2a, 1s a root. But

At-eavaa = 5, & contradiction. If Ay, = 0, we may assume ¥ -«
1s a root. But then so is ¥ - a,, & contradiction.
Go4) ¥(hy) = 30,(h,) = a,(h;), or A.‘.,1 = -1, 0 or 1. As be-

fore, we may assume that A',‘ =1 and that Y - 2a; 18 not a root.
Then we find A =¥ - «,.
G25) 3\’(1’1() = aa(hz) = —]3-cx1(h1). Elther A‘,,1 =0, or p=17 and
Ay ;=t2, or p=13 and A‘,1=t3. As in G,3) we must have
A = 0. But then Y - @, cannot be a root, and we have an i1.s.s. which
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contradicts Lemma 6.3. Thls completes the proof for k = 2.

Now assume we have proved that 1t 1s possible to carry out the
process of the lemmsa for all 1.s.s. of (k - 1) roots (k2 3) and let

Cys vees O be an 1.s.8. which we shall label as shown:
Ak: [ e IR )
@ % -1 %
Bk: (€ O SR s ¢ I Ak-1k=_2'
@ @ oy @y ’
C e} O i T A - 2.
k 2 k,k-1
R T Fp-1 % ’
Xk -1
Dk’ Q) .
@ % k-2 %
F: o I ] e} A = - 2.
4 ? 23
o, a, oy a),
E6: G o OO
o, o, o:3 o), ag
E..(: Q=G> OO
o, o, ot3 @), a5 g
a, o, 0:3 @), o g o
Let o be a root independent of Gy woey Qe Since Ops eeey G
is an 1.s.s. of k - 1 roots, we can find a string of roots o - oy ,
1
@ -a; - oria, e, 8, 2 €1, %Xk, such that ¥ - o; 1s not a root for

1
2431 €£%k. Then ¥, &y, «-+, o form a simple system, which 1s inde-
composable unless A!,i =0, 24 1s% k.

Suppose first that Qs eees O is of type Ak' By Th. 6.1, the
system ¥, @5, ..., & has one of the following diagrams:
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—0
Q.

0 e O
¥ o o @y ¥

A2) CE==—D—— . 00 , Ao = - 2.
2
¥ oa ag ooy
A3) === o 0, Ay, = - 2.
¢
¥ o, o -1 %
Ak) o O o0 O= 7, G
@, oy e, % 4
A5) G o004 G I >, Ak,r="2‘
9 O3 ey o ¥
A6) o © ee. O- I >, A = -2,
%k
(12 CZ3 ak_1 (Yk

j'
A7) o O ... O o (kg 4)

I“
A8) o © «us O -0 (k2 %)
01

A9) Ow—o— () 0
%

j'(
A10) o O \ O O o

P
I\’
A11) o 0 0 o
@
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02 d3 dh 015 (16 07 (18
i ¥
A13) o ’e! o
C{a (13 Clu (15 o:6 037 (28

If Qys seey O is of type Bk’ then ¥, Apy woey O must have
one of the following dlagrams:

Bo) o O—0 ... &==D , Ap_; = - 2.
¥ o a @, ¥ ’

B1) [ S o ) . m, Ak"‘k--g
¥ a, oy g % ’

B2) o = o,k—h,Ash--e
@, a;

B3) ===—0 , k=3, A, =-2.

23

o, ag ¥

If a;, «.., @ 1s of type Cy, ¥, a,, ..., @ has one of the
following dlagrams:

Co) o O—0 ... T™—D , Ay, =-2.
¥ @, o Xy O ’
C1) O——mOm——0 .. =D , Ap ;= - 2.
Sk
1 @y oy e Y

C2) O™ , K = b, A = - 2.
Y T3

(12 a3 (Zh
C3) ==—p—o0 , k=23, A, = - 2.
32
@, a3 ¥

If Ay ooy O 1s of type Dk (k2 %), then ¥, Qs ooy O
1s one of the following:



Do)

D1)

D3)

D4 )

D5)

D6)

D7)

D8)

D9)

D10)
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i

¥

g2 %

(o 00 o

asi—nt
O O 3 <)
a, ot3 o), e

1

Qe O’ )
a, a3 @), e 1 4

QRO
!
o

2 %3 o O o
[
O—0 G TS
P O A 4
T
o) — A_o
@ @y o a5 @ ag
[
O O O O O
a, a3 @, a5 g ag ¥
[ S S e’
¥ A
Qensssned Jtmmmenn et
ot3 o, @ ¥

35
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D11) O O J—ﬁ),Ah‘="2'
oz3 o, @, X 4

Di2) a — O 0 , A‘ = - 2.

3
X @, @ o« ’

D13) O™ , A‘ y = - 2.
oy a, @), < ’
Er

Dik)

@, or3 a5

I
Di15) o ‘ Ormemeeme
-

If oy, <+, @ 1is of type F, then A ¢ @ys O3y Oy is one of the
following:

Fo)

!
]
n

9 D0, A,y =
¥ @ oy

1) o—p——Ow—o , A, = - 2.
¥ 23

(12 (13 C!h

F2)

r
:
d

o

o
1 1 o

If @, «-«+, o 1s of type E, then ¥, @y, +++, @ 18 one of the

following:
[0 4
Le

E60) o} o= -0 -0
@ @ @ d
%g
E61) ! o - W)
@ o @ A
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a6i——<yt
E62) O -0

a a [0 4 04

2 3 N
I

E63) ° O

2 %3 Oy

5
O
oz5 ¥

E70) o)
¥ A .
[
E71) o e -0 O -0 0
¥ a, oz3 a), a5 g
[“7
E72) o -0 0
a, a3 @), ag ag ¥
1"
EBO) o O—0 -0 e O )
¥ @ Ay @ @y
%g
'E81) Oo—— 0 - OO
1 1 a, a, @ g ¥ o

In each case, we demonstrate a root /3 obtained from ¥ through a

string of roots ¥ - a11, ¥ - ozi1 - aig, veey B, 1% 1,%< k, such that
A, @, ¢y, ++., o form a simple system.

A0) 1In case Ay,y = - 2, we have R =¥X. Ir Ag, =-1 or o
and K-al isaroot,“-a1—oz is also a root, as 1s ¥ - « a

2 2!
contradiction. Thus we have B =¥. There remain the cases A.‘ 1= 1

2 or 3. In each such case, ¥ - A,‘,,la1 is a root, but ¥ - (A;,’1 + 1)0:1
is not. This is clear if Ax,1 =2 or 3; when A.‘,1 =1, ¥- 2,

a root implies that ¥ - e, - @, 1s a root, as 1s Y - o, & contradic-
tion. A string of the prescribed form can be formed using Th. 5.6,
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leading to the root ¥ - Al’,1(°‘1 +oeee @)

Now suppose ¥ - (A + 1), - A‘”(cre +oeee + ak) i1s a root. Then
S0 are \’-(A‘,1+1)a A‘;1 "'+ak1) ceey x-(Ax1+1)a1-
A',]a2,x-(A',1-1)a —A.‘12, !—(A‘1—1)a +a,, ¥+ a, and
¥ - ¥y, 8 contradiction. By simllar reasoning, we see that we can take
A=Y - A‘,1(c¢1 +oae. + ak) (and thus that A‘” t 3).

A1), A2) AsinA21), A23), Ar’1=-1,o or 1. If A,1=-1
or 0, wecan take B =¥ unless ¥ - o, 1s a root. In the latter
case, if ¥ - a, - @, is aroot, j »1, sois ¥ - ¢:, and we can
teke A =¥ - o,. Now let Al’ =1. If ¥ -=20, 1s a root, so are
¥-2a, -a, and ¥ - a, a contradiction. If ¥-a - @, 1s a root,
so are Y- -@, -« 37 Y - - o, X - @3, & contradiction. It is

clearly impossible that ¥-o - oy be a root for j > 2. Thus we take
n=X-o.

A3) Here A,.,1 =-2, 0 or 2. In case A'. = - 2, we take
A =% . In case A‘, =o, we take @ = ¥ unless ¥ - a, 1s a root,
in which case we have = b’-ar Next let Ay, = 2. As in A1), A2),
’
we see that we can take {3 =¥ - 2qa,.
A4), A5) Here A‘,1=-1,o or 1. If A‘1=—1 or 0, the

assumption that ¥ - a1’ 1s a root leads to the cor’xclusion that ¥ - o,
is a root, as in A0). Thus /A3 = ¥ 1in these cases. When .L\.,“’I =
¥ - 2a, cannot be a root, and we can form a string to arrive at
¥-o - e - %_q2 which can be teken as our @ unless ¥ - ay = .
op_q - @ 18 a root. In the latter case, we take @ = ¥ -a, - ... -

i
-
-

-1 T %

A6) Here Agyy=-2,0 or 2. A.‘ ; = - 2 1s impossible. If
A‘-1 =0, we have B = ¥ as in Ak4), A5) If A‘ =2, we form a
string of roots of the desired type to arrive at 3 = ¥ - 2a, - ... - 20 _,.
It is readily checked that § - aj 1s not a root for 1 € j< k - 1. If
8- o 1snot a root, then §, a;, ..., @, form an impossible 1.s.s.
et N = S—ak =¥ - 20y = «ev - 20 4, - 0o Then B, o, ..., ¥
form an 1.8.8. of a type impossible by Lemma 6.L4.

A7) Here Ay, = -1, 0 or 1, andwe can again take P =¥
unless A‘r’1 = 1. In this case, ¥ - o, - o, is a root §; either we
can take B =8 or § - oy is a root. If 8—a3 is a root, so are
s-a3 - Q, S-ahst-oq -, -q, \'-a1 -, and ¥ -qa, a
contradiction. Thus we take B = § .
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A8) Again Ay, =-1,0 or 1, and A =¥ unless ‘1=1.
»
When Ay, = 1, we form a string leading to ¥ - a; - a, - oo - , =8§.
el
S-orj is not a root for j#¢k -1. If S-ak_1 is a root, so are

§- o, - @ and therefore § - @ 1in contradiction to the preceding
remark. Thus we take A = § .

A9) .l\.‘l =-1, 0 or 1; A‘1 = - 1 1s impossible, and we have
14 )

A= if A"1 = 0. When A\'ﬂ =1, we find A =¥ - a, - @, - o,

A10) As in A9), elther A‘,1 =0, A =¥ (which is impossible),

2

or A‘;‘ =1, B =Y -« -y - .

A11) Here elther A.‘ =0, A =¥, or Ay i =1, A = b’-cz‘ -
++s - ay, and the latter is impossible.

A12) Here elther A =0, B =¥, or A =1, B =%¥-qa -«

')1 "1 1 2

o33 both are impossible.

A13) Either A =0, A =¥, or A =1, B =¥-a, - ... -

¥1 ¥, ]

as; both are impossible.

Bo) Ay, = -2, -3 are impossible. If Ay, =-1 or 0, we

b4 2
have @ = ¥ as in A0). If A‘] is among 1, 2, 3, the roots in-
b

clude ¥ - A‘,’](oz1 + oo+ ) =%, and As,k = QA‘,1. This is im-
possible unless A‘,,, = 1. Then we have a string leading to ¥ - @, -
cee = O g V- @) - =0, - 20, ¥ - Ay = eee may - R0y, - 20,
cey ¥ -20) = el - 2oy = AR, and N - ay 1s not a root for 1€ i k.

B1) Here A‘,’1=—1,0 or 1. If Ay, =-1 or O and ¥ -«

$

is a root, we can take B = ¥ - @,. Thls gives an impossible system in
elther case. Hence either B = ¥ or A = 1. In the latter case,
¥- o, 1s a root, and ¥ - «, - o isanotaroot. for j # 2. If
¥- o, -a, 1s a root, so are f-al - 0y - 0 and B’-a‘ - a5, 8
contradiction. Thus we have B = ¥ - o, 1in this case.

B2) Again Agy=-1,0 or 1, and l’-a1 is not a root if

2

AI’,1 § 1. But then ¥, ®yy Oy 013, @), form an impossible i.s.s., so we

can assume A* 1 = 1. Then we form a string of the desired type leading
b

to ¥ - o - -0y - =Q, and are done.

B3) Again A'1=-1,o or 1. If A11="' or 0, we have
A=Y . If Ar,1 = 1, the roots include ¥ - o, -, - ay- We can take
B=¥-a -a, - oy unless ¥ - a; - o, -la3 1s a root; but then so

are ¥ - a, - 20, - 203, Y- @, - 2a, - a3, ¥-a, - Y Y - @,, a con-
tradiction.
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Co) As in Bo), we eliminate A‘,’1 = -3, -2, -1, 0 (in the latter
two cases by taking A =%). When Al’ﬂ =1, 2, 3, we find a string
of the desired type leading to B = ¥ - Ar‘”(?a] *oeee F 20 4+ ak),
and @ - a; 1s not a root for any Jj. This 1is only possible, by Lemma
6.4, when A)’,I = 1.

C1) A‘,1=-1, 0 or 1. As in B1), K'-a] i1s not a root unless
A'ﬂ =1, and we have A =Y. A‘,,1 # 1 1s therefore impossible by
Lemme 6.4. If A'K,1 =1 and k>3, we have 3 = ¥ - «, as a sult-
able root. When k = 3 and 5’—0:1—052 1s a root, so 1s t—aI-aQ—
@3, and we can take B =¥ - o - @y - Ay in this case.

C2) A“'1 =-2, 0 or 2. A‘,’1 = - 2 1s impossible. If A..,,1 = 0,
¥ - @, cannot be a root, and we agaln have an Impossible system. Thus
A!,l = 2, and we can form a string of the desired type leading to
A =YX-2a -2 - 2ay -, and B, «a, @y, G5 form an 1.s.s.

impossible by Th. 6.1. Therefore C2) is eliminated.

C3) Al{,1 = -2, 0 or 2, and A,‘,1 = - 2 1s impossible. If
A!‘,1 =0, wecan take B =¥ . If A.‘,’1 = 2, we can form a string to
arrive at ¥ - 2a, - 20, - o, = §. 1 8§ - @, 1s not a root, we take
A =& . Otherwise, we can take B = 8§ - o, -, = ¥- 30, - 3, - @,

Do) As in Bo), Co), A‘,,1 = -2 or -3 1s impossible. If
}'L‘.,1 = -1 or 0, we have R = ¥ . Otherwise, A"] =1, 2, 3, and
we can form a string of roots leading to ¥ - A.‘ﬂ(zal +oeee b2 o+
A+ ak), and take this root as our B . By Lemma 6.4, this implies

that Ay, = 1.

D1) A"1=-1,0 or 1. If A‘1=-1 or O and ‘o’—o:1 is
a root, ¥ - a, - @, must be a root, by Lemma 6.4. Then ¥ - @ - @, - Ay,
¥-a - a3, ¥ - @; are roots, a contradiction. Thus A =¥ 1f
Ay, =-1 or 0. Now let A‘,’1=1. Then teke @ =¥ - a . If

¥-a -o, 1is a root, so are ¥ - a; - qa, - o3, ¥ - a, -a3,l’-a3, a
contradiction. Clearly, @ - @y 18 not a root for j # 2.
D2), D3) By symmetry, we need only treat D2). Ay, =-1,0 or 1.
)
Now A.‘,1 = - 1 1s impossible, and when Ay, = O we have R =Y.
¢

Next let Ay, = 1. Then we have a string leading to B =Y¥- (a +
o, +a3+a,++a6), and A - oy is not a root for any ' j.

D4), D5) We treat D). A‘1=-1, 0O or 1. A‘.1=-1 1s again
) 2
impossible, and A = ¥ when A.‘,’1 = 0. When A‘,1 =1, we find
s
ﬂ=f—a1-a2—a3-ah-a5-a7.
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D6), D7) Here only Ayt = 1 1is possible, giving & = ¥ -, -
-+ —ag -ag in D6). But this system also violates Lemma 6.k.

D8)-D11) A"1 =-1,0 or 1. If A' = -1 or 0, we see that
¥ - @, cannot be a root. Now let A‘ = 1. In D8) and D10), we ob-
tailn A =Y - @y - o, - Q. D9) and D11) are symmetric with these cases.

D12), D13) Ag1=-2,0 or 2. The first two are impossible. In
Di12), we arrive at ﬂ = ¥ - 2at, - 2a, - 2@, which 1s also impossible.
D13) 1s treated symmetrically.

Di4), D15) A‘ ; =-1,0 or 1. Of the first two, only 0 1is
2
possible, and there B =¥ . For A‘1 =1, we obtaln A = ¥ - @, -
5

oy - ¥y - O in D14) and A =¥ - a -, -y -y in D15).
Fo) A‘,1 = -2, -3 are impossible. If A‘ = -1 or 0, we can
take A =¥ ; by Lemma 6.4, this elimlnates ‘ ;= -1 If A‘, =2

or 3, ¥ -2, and ¥ - 20, - 2a, = § are roots, and A"3 =4, a
contradiction. Thus A.‘,,1 = 1 remalns, and here we find A =¥ - ba, -
ba, - 80:3 - hau.

1) A.‘,,1 = -1, 0 or 1, the former two being impossible. When
A8,1 =1, wearriveat A =¥ - 2aty - 3@, - haa - 2@, . But this also
glves an Impossitle 1.s.s.

F2) A"1 =-1,0 or 1. If A.‘. =-1 or O, ¥ - @, cannot
be a root. But A = ¥ 1is likewise Impossible. Therefore A"’1 =1,
and we can take A = ¥ - a,. However, this 1i.s.s. is again impossible.
Eg0) Ar,1 = - 2, - 3 are impossible. If AK = -1 or 0, take
B -% . If A‘,,=1, 2, 3, we arrive at @ =U-A'1(ea + 30, +
bag + 3a) + 205 + 20¢), and this implies that Ay, = 1.
Eg1) A(1 =-1, 0 or 1. A8,1 = - 1 1s impossible. In case
Ag | = 0, we have N=YX-qa, since B = ¥ glves an impossible 1.s.s.
But B =¥ - o, also glves an impossible i.s.s. Thus only A"1 =1 1is

possible, and in this case we have /3 = ¥ - a,.
Eg2) Only Ay, = 0 1s possible, as in Eg1). Then we arrive at
2
(3=¥-a—a2—a3-ah—a5.
Eg3) Ag,, = O 1s possible, with A =X. If this is not the case,

then Ag, = 1, eand we can take A =¥ - 2a - 20, - 205 - @, - %
E703 Either A‘ =-1 or O and A =X, or A.‘]—l,e or 3,

and we obtain B8 =¥ - Arl(w1 + ba, + Sa3 + 6a + ha5 + 2ag + 3ag ).
This is only possible if A'ﬂ =1, by Lemma 6.k4.
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E,1) As in E.1), A = -1 or O 1is impossible. If A =1,
T 6 ¥,1 ¥
we have A =¥ - a,.
E,2) Here A = -1 or 0 is impossible. If A =1, we
T ¥, 1 Y1
arrive at A = ¥ - 20, - 20, - 20:3 - 2a), - Uy - A
Eg0) The only possible case 1s A'.,1 =0, # =X . For A‘.’1 = -1,

-2, -3 are eliminated as above, and otherwlise we find
A =Y- A".l(l}d] + 6a2 + 8a3 + 100, + 120t5 + Bag + 1+a7 + 6a8). But this
gilves an impossible 1.s.s8. for A‘.1 =1, 2, 3.

2’

Egl) As in E,1 ), the only tentative situation possible is

=1, 8 = ¥-a,. But this contradicts Lemma 6.k.

A 1

Y, 1

Thus the conclusions of the lemma hold by induction when Upy eeey O
1s indecomposable. We observe also that 1n case ¥, €- oy s ¥ - o -
1 1

'(-ai - e m oy = 3 1s the string of roots by which A

[04 “oe
1 1 }
2 1 8
was obtained from ¥, we can return from A to ¥ 1n the sense that

the value of An 1 assures us that A + oy is a root, elther that of
’+g 8

or that of A (the latter used only if o =ay )
s

A
ﬁ+ais’is—1 a’is s-1

assures us that # + gty is a root, until finally we arrive at
s s-1

¥ by such reasoning. This observation is verified by examining the

process by which B 1s obtained from ¥ in each of the above cases.

It follows that if § 1s a root such that S(hi) =0, 12 1<k, and if

A + 3% 1s a root, then ¥ +8, and consequently o + 8, 1s also a root.

Now assume that the simple system @iy cres decomposes into j
"pairwise orthogonal" indecomposable components. If j = 1, we have al-
ready proved the lemma. Suppose that we have proved the lemma for sys-
tems with (j - 1) indecomposable components, and let @y, -ev, @ be

an indecomposable component of o@., «.., @,. Let o -co, , ¢ -a, - o, ,

1 k i, i, i,

vy OOy = ees = Oy = ¥ be a string of roots, m+1siq§k, such
1 s

that ¥, « cees O form a simple system. Since Ay oeey O is

m+1’
indecomposable, we can form a string ¥, ¥ - oz‘1 y ¥ - a:j -a
1 1

m

jeﬁ A ]

¥ - @y = .. - @y = B of roots according to the procedures of the first
1 r

part of this proof, 1 € j; <€ m, such that AR, @y -+e, & form a simple

system.
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Now suppose that R - @ 1s a root, t > m. Since “t(hi) =0
for 12 1€ m we can apply the observation above to show that Y - o
1s a root, in contradiction to the construction of ¥ . Therefore,
A, Qpy ey O 1s a simple system, and Lemme 7.1 1s proved. An immediate
consequence 1s the following theorem:

THEOREM 7.1. Let L be a restricted Lle algebra
over F having a restricted representation with
non-degenerate trace form. If [LL] = L, then L
possesses a fundamental simple system of roots with
respect to any glven Cartan subalgebra H.

VIII. SYSTEMS OF TYPE A

THEOREM 8.1. Let Qys ey @ be an 1.s.s. of type
AL, labeled as in the proof of Lemma 7.1. Suppose
there 1s no 1.s.s. (!1, veey Br of r roots, each
linearly dependent on a;, ..., oy of type other

than A,. Suppose also that the matrix (ai(hj)),
141, j%r, 1s non-singular. Then pX(r + 1),

and every root expressible as a linear combination of
p 18 among the following and their nega-
tlves, where we use the conventions of §6 in writing

(A, A, - Ar) for )Ha1 + keaa + oeee + krar:

®yy ey @

(1 0 ee0 0), (01 0 «ve 0)y, wuey, (0 .u. O 1);
(110 ...0), (01 10...0), vvo, (0O ... 01 1);
(1110 ...0), .., (0 ... 01 11);

(v1 ...10), (011 ... 1);
(11 . 1);

except possibly when p|(r + 2), when the following
and their negatives may be roots:

o, = (123 ...1), (12 400 r=1re1), (12 .o, r-2 rrs1),
ceey (134 coap#1), (23 400 v re1).

In the former case there are r(r + 1) such roots: in
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the latter, (r + 1) (r + 2).

PROOF. Let « # 0 be a root, a= (@ ..-@,). If A, =0, let A, .
be the flrst non-zero coefflclent. Then Aa k = "~ Px+1 4 0. Hence

s
either o + @ or o - o 1s a root. By replacing o by - o If nec-

essary, we may assume that o - o is a root. Now Aoz—cx k-1 = 1» 80
k’

a - o - , 1s aroot. We repeat to arrive at a root R=a-o -
Qy_q = ++- - @ such that the coefficlent of «, in A 1s -1. 1If
r, £ 0, we take f3 = @. Thus In any case (3 1s linearly independent

of « «+y .. By Lemma 7.1, we can form a string of roots (3- ay
1

27 " r

ﬁ-ai1 —aie, cvey ﬂ—ai1 - e —cris =", 2$ij4 r, such that

Y, Opy eoey QA form a simple system. If this system is indecomposable,
1t must be of type Ar by assumption, and therefore 1s one of the
following:

A1) Y, S—c
¥ Oy %p1 %p
@y oy ¢, % ¥

The only other possibility is the decomposable system

A0) o O——0 ... Q=0
¥ 0 ay dp 9
Now 1f pl(r + 1), let hy=h, + 2h, + ... + vh,. Then hy ¢ O,

but oay(hy) = 0, 1€ 1= r. The matrix (o:i(hj)) is singular in this
case, contrary to assumption. Thus we see that p”r +1). Let

¥= (N, --+ Ap)y N, #0. Since -a, -a, 1sarocot, ¥ # - a,. If

¥4 @,, the pair (Afﬂ’ A, ,\’) must be one of the following, as in the
proof of Lemma T.1:

A1) Ay s Ay ) = (=1, - 1), (0, 0) or (1, 1).

A2) (Ayg 4> A1,r) = (-1, = 1), (0, 0) or (1, 1).

A0) (A‘,’,, A1".) = (-1, =1), (0, 0), (1, 1), (1, 2), (2, 1),
(-1, = 2), (-2, -1), (1, 3),°(3, 1),
(-1, -3), (-3, -1).

A1) Ag,1 =2\ - >‘2
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A‘,2=-1=-l1+212—k3
Ag3=0=- R +2N - A,
A"r=0=— kr-I +2kr.

Hence Xr_] = 2%, )‘r-e =3hps +oes Np = (v - l)kr, X1 = PAP + 1,

and A',I=(r+1)lr+2. Therefore kr'_'r_lT(Axn - 2). Agq = 1
‘I‘»=’I:7417’ xr—l =-§;§—]—, ooy X2=-—§—;—}—, A1 =ﬁ-. Now Al,\’= 1,
2 =A',*=211A1,‘ = X\, - 12 =F]:—1' Therefore r = - 2 (mod p),
and ¥=- (134 ...721 + 1).

Agq = O: x:f-=’x—?2~'1" xr-1=1-=—it'1" T 12=-2§—:}-, X1=-§E—}-
As before, 2=A',‘,=—'X2=2%—:—:—,r—1=r+1,2=o, a contra-
diction.

Agq = -1 lr=';1%1“’ cee 12=‘3£'+-+’ l,='2£:} ‘
2= - N\ - X2=5£;)1+;3r=6, or pl(r -2). If r =2, we have
‘(=—a1 - 0y If r» 2 and \'-ot1 1s a root, we see as 1n the case

A1) of the proof of Lemma 7.1 that ¥ - @y, @y eeep @, . form an 1.s.s.

GEE=D—0 ... O %)
r-2 %p-1

of a type impossible by Th. 6.1. Therefore ¥- @, 1s not a root, and
¥, Ay ooy @ form the impossible 1.s.s.

r-1
4
& % Fp2 Fp-oq
= 1 _ 1
A2) As in A1), we find A, = Ay - T Ap = FT(Ay -+ 1
= S -
cee, \2 = s7l(r - 1)A',1 -2), )\1 r+l(I‘A"I 1).
_ _ 1-pr _ r-1 - - _ _
Ag 1 = 1¢ A= A= T 0 2 = Age = IMA ¢ = )‘1 xr.'

r-1i

2 r+1i

5 r=-1=1r+ 1, a contradiction.
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-r - . - -
Ag, = O \r=§—+—1—=A',‘—2, p\(r+2), and ¥=(12 ... 1) =a
A"1=-1: X¥=-(11 .00 1)
1, _ 2 4 A
A0) )‘r= r+1 ¥ 17 lrﬂ T T+ ¥, A1 r+l /|
Ay, = 0: Then ¥ = 0, contrary to the choice of ¥ .
- . = = -r
A".I——]. Q'A't,f I‘+1A r
Ay = -3 ¥ - @, 1s not a root, lr 10, and ¥, a, ..o, o,

form the system

Gl =0 + ¢ s OO
L R

This 1is impossible if r 2 2 and contrary to assumption if r = 2.

Ab)’ =-2: r=r+1, acontradiction.
.AI,Y =-1; pl(r+2), and ¥=-(23 .,orr+ 1)
A‘” =-2; 2= A\’J ;EI; A, ¥ - %; r=r+ 1, a contradiction.
A"1 = - 3: )“r t¢0, Y- @, 1s not a root, and ¥, a;, -.., o,
form the 1i.s.s3.
R ~===—=0 .+ .+ Qe——O »
¥ o o ap 0,
which is impossible as 1n the case A, R 2l 3.
For A,‘ = 1, 2, 3, we cobtaln the negatives of these rocts. Thus

among the possible values for ¥ when @, 1s not a root, we have only
@, and - (v 1 o0 1)

¥-oa,: ¥+a, 1s a root, but ¥+ o, 1s not a root for j > 2.
"+a2+a3 1s a root, but f+o:2+a is not a root for j»4, j ¢ 3.
(For § =2, ¥ +2x, arootwould imply ¥ - o, a root; for j >3,
¥+ a, + @; aroot would imply ¥ + a; & root.) By successive applica-
tion of this type of reasoning, we obtain the string of roots

SYARTRY ¥+ Ay + oeee + Oy

[1] \'Y+a ‘+a +a

in which each member after ¥ 1s the only root obtainable from its
immediate predecessor by adding some ay 1<j&r. If .

x+a2+...+ar+aj is a root, 1 « j € r, so are \'+a2+...+

ap - ay = (1 o0 101 4ae 1), (1 e00 1001 vuu 1), cue,



ON LIE AIGEBRAS OF PRIME CHARACTERISTIC bt

J
(1 0 ees 01 vee 1)y weu, (100 01)=a, +a a contradiction if

1 r’
r»2. (If r=2, 1t 1s clear that ¥ + 2@, is not a root.) If
¥+a, + ... + @, +a, 1saroot, soare (1 ... 1 -1), (1 ... 10~ 1),

eesy (10 000 0=-1) = @, - @, a contradiction. Therefore the root A
is among the string [1]. In qur construction of 3, the coefficient of

@, was - 1 except when R = a. Therefore A = a 1is among the roots
(1 0...0), (110 .000), (1110 400 0), sue, (1 «uu 1)
¥=- (1 ...1): By the kind of reasoning applied above, we find

that /3 1s among the string
[2] = (1 eee 1), = (0 i 1 0)y wee, = (10 ... 0)

Now elther o =@, or a=f3+a1+...+ak,k‘r. If a=MMA, we
are done. If a= B + Oy 4 eee 4, then since the first non-zerc co-
efficient of o was assumed to be among - 1, - 2, - 3, we must have

k <m, where m 1s the number of non-zero coefficients of /3 1n the
k m

string [2]. Thus @ =- (0 ... 01 ... 10 ... 0), and a 1s among the
negatives of the roots listed.

Sultable application of Th. 5.6 shows that all quantities listed in
the "non-exceptional” 1list actually are roots.

When pl(r + 2), the following possible values for ¥ were also
encountered: - (1 3 4% ... r + 1), @y = (12 ...7), £(23% ...+ 1).
In each case, applications of Th. 5.6 show that o, is a root.

=-(134 ... P+ 1): As before, A 1s among

(31 ¥, ¥+ Uy ¥+ Gy + gy ey ¥+ Gy + @y + eee + Q.

Now either o= 8, or A + @, 1s a root. In the latter cage, ir
ﬁ=‘+a2+...+aj_1,j73, ﬂ+a1=_(02...j-1j+1...r+1).
Also roots are n—a1=-(223...j-lj+1...r+1),

m(223 e j =233+ i +1)y veey, =(2235 01+ 1),
(2335 .72 +1), =(2355 cear+1), =(1355.0.174+1) =
\'—aa, a contradiction. If ﬂ=¥+a2=-(12h...r+l), and
A+a, isaroot, soare AR-a =-(2245 ...r+1),

~(2235...7+1), -(2335 ...r+1), =-(2355 ...71+1),
-(1355...r+1)=‘-a3, agaln a contradiction. If A =¥ and
l'=‘+oz1 1s a root, soare B +a, +2x ==~ (014 .o r+ 1),



48

(11 s o2 +1), (144 o)== X¥-a
xr=0n,

Llist.

¥

3ince the coefficlent of «
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2}

= 2y /3 must be among

¥, ¥ + s ¥ + Oy + Qp_gs ooey X+ a, +a P

r-1

1

lncluded in our 1listing.

in A 1snot -1, a=R,

+(12.

a contradiction. Thus
and all possible values for o are negatives of members of the

and has been

a=M =Y.

¥ =+(23% ...pr+1): ¥ + ¢, 1s not a root for any j > 1, 8o
J
A=¥. Since the first coefficient of @ 1s not -~ 1,
If @, 1s a root, all the "exceptional" quantities are roots.

rompletes the proof of the theorem.

This

In succeeding theorems of this type,

;he observation that all listed quantities are roots willl be omitted.
't follows 1in each case by Th. 5.6.

IX. SYSTEMS OF TYPE D

THEOREM 9.1. Let oy, --., a,
D.(r & %), and suppose there 1is no 1.s.s. A,

of r roots, each linearly dependent on )

be an 1.8.8. of type
RN

s Oy

of type B, C, E or F. Then every root which is a

linear combination of a,, ..., o,

is among the follow-

Ing and thelr negatives, where Gy +vey @ 1s labeled

r
as 1n the proof of Lemma T.1:

(ro...0), (010...0), v.., (0O ... 01);

(10 ...0), ..., (0 ... 01

ey

0), (0 ... 010 1);

(11710 ...0), ¢eeoy, (O ... 011 10), (O ... 001101),

(0 ... 011 1);

(1110 ...0), ve., (O ... 0111t 10), (O...

(0 ... 01 111), (0O ... 0121 1);

(1 «e.10), (1 eeo101), (01 .. 1), (01
eey (012 0w 21 1)

(v eeo 1), (0 e 1 211), (1 .o 1221 1),
(12 ... 21 1),
There are 2r(r - 1) roots in all.

01

o 1 21

1

101),

1),
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PROOF. Let a be a root dependent on @;, ««:, Qpn: If the coefficient
of @, 1in a 1s not zero, take /3 = a. Otherwise, if oy has the
first non-zero coefficient, we proceed as in the proof of Th. 8.1 if
j4r-2; 1l.e., replacing o by - a 1if necessary, we form a string

of roots o - a; ;, +-ey @ - ;- ... - ={. A simllar procedure
is possible except when @ = £, @, , +PA,%,, with @, =-pA, ,. In this
case, replacing « by - a 1If necessary, we may assume that o - a,_,
1s a root, and then form the string «o, o - Qp_qs coey O = Oy, -
a, = A.

Now proceed according to Lemma 7.1 to obtain a root ¥ such that
¥, Tps +ory @ form a simple system. By the hypotheses, this can only
be one of the following:

I %pq
Do) 9‘ Otnsneeea) & &
@,  ay On_p ¥
I %pog
Dt) %——o—-—o
% Op  Onp Op

D8)

%

DY) OO ()

1°
Dik) o ¢ Ommmann)

o, a, oy, ¥

T B
D15) o ", e ®)
@ oy ag X

Do) Solving the equations obtained from the relations, we find that
¥= (N, «o0 AL is g?en1by A= AL A, 2N, = Apg = -ee =
;1, K1=A',1; and =-2-A‘,1(2...21 1). Thus A",{o.

A"1=-1: 2=A‘,‘=-A1,', or A“‘.s-z. Then ¥ - a, 1s
not a root, and ¥, @;, -++, @, ; form an 1.s.s. of type B,, contrary
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to assumptilon.

A =-2: Here X, a,) «++, @ form an 1.s8.s. of type C,, a

¥, 1 r-1 r
contradiction.

Agy=-3: 2=Ag, =-34 o =3, e contradiction.

For Ay, =1, 2, 3, replace ¥ by -¥. Then -¥, ap, --., @
form & simple system, with A-t,x = -1, =2, = 3. But this has just
been proved impossible.

D1) Unless ¥ = «,, (A.‘,,, ‘K) = (1, 1), (0, 0) or (-1, -1).

Wo find A, . = A, A, =2A,= = A, N =24+,
A‘,1=21r+2.
A'1 = 13 ﬁ 11 = 0, a contradiction.
(4
| g 2 .0 21 1)

A = 03
¥,
= . =3 = - = - D - = - - =
Mgy = - ’\r I R R R T ALY
5, & contradiction.

D8) (Axv ) = (1) (0, 0) o (-1, - 1), A, - 13+§‘-,
12=2l + 1, =27t +-3—,A‘,1=EA + 2.

1 1 _ _
A"1 =11: u37-§-, k.} -3;-; \2- x)“o'
% -7 ¥ "7 ASJ =gty = 1, & contradiction.
Ag 1= 0 l3 = -1 2=Agyg=-A; =1, acontradiction.
= . - - l - M = = - .3_ - g. =
. :3’111:; -1 Ag= -3 A e Ayx Ay ol =3 &
contxr ction.

| -

Dik) (Ag 1s Ay ) = (1, 1), (0, 0) or (-1, - 1), R = Ay +

3 _ 1 5
‘A3 = 2 hh + 1, xe = 2‘)‘ +§J xll 2&” + 2’ Ah "é_AX’1 -r .
- 12 =3 =102 =L -3 =2
Ar, 1 = 1: Ah = i l'l 5 2 A"' 5 A1 lt by Al"r i a
contradiction.

Mgy =0 Ay =-g52=Agg=-F A y=2 acontradiction.

= : = -1 = -3 2= = -3 _T - 13
Mgy =1t Ny=-p Mo=-F2=Agr=-3A ¢-ghy=3,
& contradiction.
D9) and Di5) are impossible by symmetry with D8) and Dik). Thus we
have either ¥ =oa, or ¥ =- (12 ...211).

¥ = @,;: In the following string of roots, a root immediately follow-
ing another is the only root which can be obtained from it by adding some
aj » § > 1. If there are two or more such roots, all of them will be
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enclosed in a bracket, and the next entry in the string is a bracket
containing all roots obtalnable from these by adding a single aj, j»a,
i1f more than one such root exists. The reasoning follows the lines of
the proof of Th. 8-1, and (@ 1is among these roots:

¥=(00...0), (110...0), vve, (1 ... 100),
[((1 o171 0), 1 cee 1 01)], (1 oae 1 1),
(1 eee 1 211), eeuey, (12 c0211).

Since the first coefficient of f i1is not -1, we have a = /3.

¥=-(12...211): As sbove, f3 1s a member of the string

¥==(012 ...211), =112 ...211), «.u,

- (1 e 211), = (1 voa), - (0 v v 0), = (10 ool 1 001)],
1

-0 ...100), vory, - (10 ... 0) = - a.

If ¢=#, o is among the negatives of the roots listed in the state-
ment of the theorem. Now let o = 3 + @y et Oy, k< r-1. If no
coefficlent of A 1s -2, then « 1s a root of the list if it is a

root, as in the proof of Th. 8.1. If some coefficient of A 1s - 2,

then o 1s amlczng the roots listed except when

R=-(1...12 ...211)., Inthis case, k€ r ~ 2, and

k k+1
a=-(0... 02 ...211). Alsoroots are - (0 ... 02 ... 21 1),
veey = (0 .01 1), (0 00e 01 1) = @, _, + @, & contradiction. If

k=1r -1, the coefficient of o S In o 1s non-zero, and we must
have B = - (1 ... 1 01), a = ®n._, - @, which 1s Impossible. Thus

« 1s among the roots cited in the theorem, and the theorem i1s proved.

X. SYSTEMS OF TYPE B

THEOREM 10.1. Let ®yy seey O be an 1.s.8. of

type Br and suppose there is no 1.s.s. R,, veey fsr
of r roots, each linearly dependent on @, ..., O,
of type C, G or F. Then if the system @,, ..., a,
1s labeled as 1n the proof of Lemma 7.1, every root
dependent on «a,;, ..., @, 1is among the following

r
and thelr negatives:
(10...0), (010 ...0), ev0e, (0 ... 001);
{(110...0),; «eo, (0 ... 011), (0...012);

(1t110...0), v00, (0 ... 01 11), (0...0112),
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(0 .. 01 22);

(1 «ec10), (01 vev 1), (01 veo12), vvoey, (012 ... 2);
(1 cee 1)y, (1 cvn 1 2), euey (1 2 ... 2).
There are or? roots in all.

PROOF. As in the proof of Th. 8.1, we find a root /3: A =« or
B=a-a -... -a, k<r, such that the coefficlent of o, in n

is non-zero. Then by Lemma 7.1 we find a string A3, /3 - @y
1
P-oy =0, veey B0y = eee -0y =x,2$1j$r, such that
1 1 ]
Y, Wy seey O form a simple system. We shall assume for the present

r
that ¥ # @;. If r =2, we can have:

BQO) o) o) B21) o——0

 § @, 4 @,
B,2) &= , A = - 2; B,3) === , A = -2,
2 1 “2, X,2 2 Y “2, 2,¥

B,0) If ¥ = (N Xe), we have A, = 12 = Ay ;» from the equa-
’
tions obtained as 1n earller cases. Since @, + @, 18 a root, Ay, =41,
4
X=1 (1 1). But then ¥ -, 1s a root, contrary to choice of ¥ .

Bp1) Ay 1s Apy) = (1, 2), (0, 0) or (-1, -2). A = A, +.;_,

2
A, - Agy - 1

Ag =1t Ny=0, A =4 Y- + @, & contradiction.

Ay = O A, = -1, N = - _;., %= - z(® + 2a,), a contradiction.

Agr= -1 Ny=-2 ).1=-§'—;2=A‘,‘=-%A1,‘.-2A2’¥=5,

a contradiction.

B22) (Ax,l’ A1,‘) = (1; 1), (0; O) or (" 1, - 1)- A] = Xa + 1,
AQ = A',] - 2.

A"1 =1: Ay =-1, Al = 0, contrary to cholce of ¥ .

Ax’«‘ = 0: A2=—2, 11 -1;‘3_(1 2)’

A¥’~|=—1: k2="3: 11="2;2=A',x=—2A1,‘ -‘3A2"=5:
e contradiction.

n

1
Bp3) Here ¥(hy) = g ay(hy), or A, ¢ = bAg,. Thus elther
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A‘,1=O=A1x or p= 11 a.nd(A 1’At)=(3’1) or (-3, -1).
In the former case we find ¥ = - —(o: + 20, ), & contradiction. 1In the
latter cases, either -¥ and o, or 1 a.nd @, form an 1.s.8. of
type G,, contrary to assumption.

Tus ¥=a, or ¥=-(12). If ¥=0a, A=0a, a +a, or
o, +2¢,, and o =M@ 1s among the roots listed. If ¥ = - (1 2),
then A =%, ¥ +a, or ¥ +20,. If A =%, then x=A3. If
/3=l'+a2, then ¢ =8 =- (1 1) or a=f3+al=-—(01). If
N =3+ 2a,, then ﬁ+a1=o, or ¢=( = - (1 0). In each case,
o 1s among the roots mentloned.

For r » 2, 'I', Cpy seey @ has one of the following diagrams:

Bo) o 00— ... &= , A, ; .= -2;
¥ «a ag @, %, ’
B1) vee =D, A, ;= - 2.
-1,r
Y a ag %y %L
BO) ‘Xr= XI,_ X1=Ar,1. Since &, + @, + ... + @, 1s
8 root, Ay, = &1 Y-+ (1 .+ 1). But then ¥ - a, 1s a root, a
contradiction.
B1) (A',.‘ A-l’r) = (1; l)) (0) O) or (' 1, - 1)' lr-l = 11‘ =

’
...=)\2, X1= p*t 1 lr+2=A',l.

Mgy =1 A= -1, A, = 0, a contradiction.

Am:O: ¥=-(2...2).

Agq = -1 A, = -3, 11=—2;2=A"‘.=-2A‘,\.-3A2,x=5,
a contradiction. Thus either ¥ = a, or ¥ =-(12 ... 2).

¥=a,: As in the proof of Th. 8.1, /3 1s in the following string:

¥= (10 .0.0), (110 e000), vee, (1 vuv 1), (1 «vu 1 2),
vee, (V2 400 2).

Since the leading coefficient of A isnot -1, a=1A.

¥=-(12...2): 3 1s among the following roots:
¥==(12...2), =(1 12 e002), see, = (1 v, ),
- (1 ... 0, ...,-(10...o)=—a1.

If =P, wearedone. If =7 +a + ...+ o the first k co-
efficients of (3 must be - 1. If the (k+1)st coefficient of (3 1is
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k
-2, then a=-2(0 «ec 01 «vs 1), a contradiction. Therefore o 1s
k

either of the form = (0 +sve O 1 see 1 2 oun aﬁ, of the form
k

= (0 vee 01 «es 1) orof the form - (0 .o. 01 +oe 1 0 ... 0). But all
roots of each of these forms are included in the statement of the theorem.

XI. SYSTEMS OF TYPE C

THEOREM 11.1. Let a,, ..., @, be an 1l.s.s. of
type C, (r 23), and suppose there is no i.s.s.
Ry, ooy /31, or r roots, linearly dependent on
of type PF. Then every root depend-
is among the following and

Qs sees @y
ent on Qpy eeey O
their negatlves:

(1 0...0), (010 .c0 0)y vouy, (0 cou 01);

r

(1170 ...0), vee, (0 «e.011), (0...0021);
(h110...0), e, (O e 011 1), (O ... 0121),

(0 ... 022 1);

(... 1 0), (01 ... 1), (01 «vo 1 21), ...,
(02 ... 21);
(v e 1), (1 e 1 21), o, (2 ceu 21 ).
There are or? roots in all.

PROOF. Let o be such & root. As in the proofs of Ths. 8.1 and 10.1,
we find a root ¥ = (11 Xr) such that ¥, @y, ++-, @, forma
gimple system. This must be one of the following:

Co) o O——0 ... &= , A, = - 2;
r-1 ’
Y @, oy @y O ’
C1) O———0=——0 ... &=, A, = - 2;
y =1 ’
¥ a oy @, , o,
C3) o—=Dp—o0 , A, = - 2.
32
@ oy 1

CO) ’Xr_1=2xr= 1['—2=...= A1=A¥1,x=%A‘,‘1(2 ._.21).
Since (2 ... 2 1) 1is a root, ¥ = x(2 ... 2 1).

c1) Ir ¥ + «,, then (Ar,w Ah") = (1, 1), (0, 0) or (-1, -1).
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We find An_, =2%,= App = «-o = Ayy N =2A,+ 1,
A‘,,1 =2 Ar + 2.
At,x = 1: kr = - -%—, XT = 0, contrary to assumption.
A1L1 =0 Ap=-1,¥=-(02...21)
= e = - ; = - = -
At’.‘ = = 1. Xr 2, 12 3, x-l 2v
2 = A',‘, = - 2A1,l’ - 3A2,Y = 5, a contradiction.
C3) (A‘,P' A]J() = (21 1); (0o, 0) or (-2, -1). “2 =2 13 + 1,
A, =203+ 2, Ay =2A3+3.
= 2: ==L = = 1: 2 = = - =3
A1 =2 Ry Rp =0 A= t5 2 m Ay = A -z gt
a contradiction.
= o = -3 = = -3 =3
Ay 1 = 0t Ag 55 2 = Ay o 5 Ay 4 =5, @& contradiction.
. P = =312 = - -2 -1l
Agy = - 2: A3--§3 A]- 3; 2 My " F Ay 5 @
contradiction.
Thus ¥ 1s one of a, = (10 ... 0), - (12 ... 2 1), £ (2 ... 2 1).
¥ - @, As 1in the preceding proofs the Intermediate root @ must
be among :
¥=(10..00), (1100 0)y weey (1 cav 1), (1 v 121),
(1 122 1), «ee, (12 cev 2 1),
Since the first coefficlent of /A 1s not .- 1, we have o =R .
¥=131 (2 . 21): Since ¥ + aj is not a root for any j » 1, and
since the first coefficlent of ¥ isnot -1, ¥ = B = a.
¥=-(12...21): As in previous cases, @ 1is among
¥=-(12 ...21), - (112 L 21), c.., = (1 12 1),
- (1 v 1), = (1 cee 1 0), veey, = (10O ... 0) = - @, .
Either @ = @ or o=@ +a + ... + o, where the first k co-
efficients of @ are - 1 and the (k+1)st 1s non-zero. But all such
quantities o are among the roots mentioned in the statement of the
theorem. Thus all possible roots o are mentioned, and the theorem 1is
proved.

XII.
THEOREM 12.1.

Let s @,
Then any root dependent on «,

SYSTEMS OF TYPE G

be an i.s.3. of type G.

and @, 1s among the

following and thelr negatives:
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(1 0), (o1
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), (1), (v 2), (13), (2 3).

There are 12 such roots in all.

PROOF. If «a = (/:1/02) is such a root, we may assume p, # 0, since
otherwlse a = t xy Then one of oo, a - dyy @ - 20‘2’ a - 30:2 is a
root ¥ such that ¥ and o, form a simple system. This is one of

the followilng:

Go) o o
¥ o
G2) =
¥ a

2

G1) Ow=—0
2 LIEN
,A‘,2=-2; G3) %==2,A2,‘=—2;
2 2
s Ay = - 3 G5) :r:r.—-ig,Ae’r=_3.

Gh) é-g

We assume for the present that

@) A, = A,

%

2

¥ 7. Let ¥ = (A, 12)-
32 = 3A',1, ¥ = A‘,,‘(z 3). Since (2 3) is a

root, ¥ = + (2 3).

G1) (A‘r,1; A‘:t) = (113)) (0: O) or (' 1) - 3)- A] = %AE + %’ )
A\, = 3A'.,1 - 2.

A‘1= 1: X2= 1 = 11,‘ = (1 1). Then Y—aa is a root, a

)

contradiction.

A',1 =0: & =-(2), and ¥ - a, 1s a root, a contradiction.

Ag = -1t ¥ =-(35); ¥ +a-= 8 1s a root, and A‘,2=-1+,
a contradiction.

G2) Here 3A',1 = QAT", or A‘,’1 = Ah‘ = 0. Then ¥ = - 2(1 2),
a contradiction.

G3) The coefficients 11, 32 are obtained from the same equations
as in G1), but now A1", = 6A‘, 1+ From G1), A‘,1 = 0 1s 1mpossible.

>

Thus either p = 11 and (A‘:T’ Ah‘) = (2, 1) or (-2, -1), or p=117
and (Ax,1} A|,‘) = (3) 1) or (- 3, - 1)'

Ay =2: ¥ = (34); alsoarootis (24)=2(12), acontra-
diction.

Agq = - 2: ¥ = -(58); alsoaroot is - (4 8) = - 4(1 2), a

contrediction.
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Ag 1 =31 ¥ = (57); (58) is also a root, contradicting the last
)
step above.

Ag,q = - 3t ¥ =-(711); alsoarootis ¥+ a, =8, and

As 0 = - 4, &a contradiction.
4

G4) Here (A.‘ 10 A .‘) = (1, 1), (0, 0) or (-1, - 1).
2 2 ’
%1=§X2+1, 'k2=3A‘,1 - 6.

Ay, 1 = 13 ¥ =-(13).
AA' ; = 0t ¥ = - (36)=-3(12), a contradiction.
?
Ag g = - 1: ¥ = -(59); also aroot is - (5 8), 1impossible by

G3).

G5) The equatlons are those of G1) and G3), with A1,‘ = 9A';1.
We must have elther A"1 =0, or p=17 and (A‘;l, A1") = (2, 1)
or (-2, -1), or p=13 and (A\'H’Ah“): (3, 1) or (-3, -1).
But all these possibilities have been eliminated in G3).

Thus ¥ 1is among o, = (1 0), - (1 3) and g (2 3).
¥=(10): o 1s among (1 o), (1 1), (1 2), (v 3).

¥= - (1 3): a 1is among - (1 3), - (1 2), - (1 1), - (1 0).
¥=+(23): a=¥ =4+ (2 3). Thus the theorem is proved.

XITI. SYSTEMS OF TYPE F

THEOREM 13.1. Let oy, Oy a3, a, be an 1.8.8. of
type F. Then every root dependent on oy Uy, a3,
@), 1s among the following thelr negatives:

(ro00), (01t 00), (OO10), (00O 1),
(1 1 00), (011 0),

(oo11), (01 20), (1110), (011 1),
(112 0), (1t 22 0),

(01 21), (01 22), (1 11), (v 121),
(1122), (1221),

(1222), (1231), (1232), (1242),
(1 342), (2342).

-

There are 48 such roots in all.
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PROOF. Let o be a root, and proceed from « to a root ¥ as in the
proofs of Ths. 8.1-11.1. ¥, %y a3, *), form a simple system, one of
the following:

Fo) o D=0 , Ay3 = - 2;
¥ @, a3 @),
M) o—ae—p——0 , A,, = - 2;
23
k-4 @, oy
Fo) « T —0 o, A,,=-2
23
o, ay @), ¥

Lot ¥ = (A A, A; M), ¥ 7 oy

- _ 3 = -
Fo) X3 =2 kl&’ 12 = 'é'A)_*: A] = kll»’ 7\1} : 2AK,1'
¥= A,’](Q 3 4 2). Since we know that (2 3 4 2) 1s a root,
¥= (234 2).

F1) (A‘,1’ A]}x) = (1, 1), (0, 0) or (-1, - 1). )s3 = 21;*:
k2=‘g—'hh, k1 = Ah"‘ 1, Ah=2(AX)1 "2)-

Ag = 1: ¥ = - (13 42)

’

A‘” = 0 ‘Az =-6; 2= AU,‘( = - 6A2,‘ = 6, a contradiction.
A‘.’1=-1: X2=-9: 11=—5;2=Ag,x="5A1,‘(-9A2,3’= 14,

a contradiction.
F2) (A‘,”, Aw) = (1, 2), (0, 0) or (-1, -2). ‘);3 =2%, + 1,
x2=%lh+1, x.|= ak'*l, “u=2(A‘,.‘ "])-

A(,] =1: ¥=(110), and ¥ - ag is a root, a contradiction.

A‘,,1 =0: ¥W=-(1232); agaln Y-a3 1s a root.

Agr1=-1: % = - (35Th)52=0Ag =4y -34 =10, a
contradiction.

Thus ¥ 41s among o, = (1 000), - (1 3% 2), ¢t (2 34 2).

¥= (100 0): Using the conventlons of the proof of Th. 9.1, the
intermediate root A must be one of the following:

(1000), (1 100), (1+110), [(1120) (1111)],
f(h220), (1 121)], [((1h221), (112 2)],

[((1222), (1231}, (1232), (1242), (1 34 2).
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A 1s among the roots listed.

Q
"

o
"

- (1 34 2); As above, 3 1s one of the following:
-(13%4%2), ~(t242), -(1232), [-(1222),«(1231),
(- (1t122), ~(1r2211)],[-(1121), -(1220)],

[-(1120), -(111 1)), -(1r110), -(r100), - (1000).

Moreover, whenever f + @y + e o0y 1s a root, k « 4, 1t 1s among
the roots expressible in terms of the system Uy a3, @), of type C3.
By Th. 11.1, 1t 1s given in the statement of that theorem. But all such
quantities are included in the statement of this theorem.

¥=41(2342): Hre A =X, and a =7 .
This completes the proof of the theorem.

XIV. SYSTEMS OF TYPE E

THEOREM 1%.1. Let @yy oeeey @ be an i.s.s8. of

type E, and let o be a root dependent on

@y, -+, @ o Then o« 1s one of the roots listed

below for the corresponding value of r, or one
of their negatives:

Eg: (tooo000), (01 0000), (0D0O1000), (ODOO100),
, (000001), (110000), (011000),
, {000110), (0o1001), (11100 0),

, (001110), (011001), (001101),

, (012101), (A"11110), (111101),
, (122101), (0111 11), (012111),

)
)
)
)
(t111700), (011110), (111001), (001 111),
)
)
), (111 1), 12111), (112211),
)

, (122211), (123211), (123212).

There are 72 roots in all.
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122101), {0001 1111), (000121 11),
06o12211), (11111100), (0111111 0),
111001), (01111101), (01 112101),
122101), (01222101), (0011111 1),

)

)
112111),(0o122111), (001 12211),

), (0o123211), (0012321 2),

)y 11111011), M 1112101),
122101), (11222101), (12222101),
T11111), (011 12111), (01122111),

112211), (01222111), (01 122211),

123211),(01123212), (01222211),
223211),(01233211), (01223212),
233212), (01234212), (01231431 2),

23L4322), (11111 111), C1112111),
122111), 111221 1), (11222111),

122211), (12222111), (11222211),

123211), (12a222211), (11223211),
123212), (12223211), (11223212),
233211), (12223212), (12233211),
233212), (12233212), (12333211),
23hb212), (12333212), (1223421 2),
234312), (12334212), (122314317 2),
23h322), 123kb212), (1 2334312),
234%322), (123%4k312), (1233%4322),
3h5312), (12344322), (12345322),
345313), (12345%422), (123%45323),
345423), (1234%56423), (1235642 3)
Lb56423), (13456L423), (2345642 3),
There are 240 roots in all.
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PROOF. As in the proof of Th. 9.1, we can obtain from the given root «
(or its negative) a root @ with non-zero first coefficlent, and from A
a root ¥ such that ¥, Cpy ooy Q& form a simple system. This 1s one
of the followlng:

r

[
E¢0) o o o 0
: | @ @y o o
[
¥ oy cx3 Q) a5
asr——ﬁ‘(
E62) o O 2, 0
a oy @y o

0——-1—(!14)——0——0
Eg3)

ETO) o
X @, a5 @ a5 o
P
E71) o ¥o! o O vo! 0
¥ o, oz3 @ o5 I
I %7
E72) O e o
@ o3 @ a5 o ¢
L™
Eg0) o o Vo W . Q)
¥ @ @y o a5 o
j
Egl) Ommmo: O S Qe
X a2 u3’ ah d5 d6 07
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Let ¥ = (N ... \,), and assume for the present that ¥ # o, .

63

L - 5
E6O) 15 = '2— AG, M = —3- 16, X3 = AG" 12 = '3— )‘6' AG = A*,1.

3
- booo . . 48 .
Ayq=-1t Ag=-1, N =-=2 Ay¥ she=33 T %
each of these 1s lmpossible.
Ay = -2 31 = - %; 2 = - % Ay - -g-, a contradiction.
A‘,’1 = - 33 11 = - h; 2= - hA“‘, = L4, a contradiction.
A.,‘,1 = 0: ¥ = 0, contrary to assumption.
Since A‘1 =1, 2,3 glve the negatives of the quantities shown
Impossible above, they are also impossible.
EE1) (Agqs Ay ) = (1, 1), (0, 0) or. (-1, -1 N5 =% A,
- = = 5 = =
%,‘--3- g Ay =22, A =3 A A -3 Ag + 1, Ag Agq - 2
. - =225 - 5 -3
Ay =tt N=-p A= -gie=fgy=-gh g-Thy-7,

and this 1s lmpossible.
- Os - .10, - .10 - 10
Ag = O A, 75 2= Agy Az,‘. , impossible.

At,1=-1: x1=—3, 12=—5,2—-A‘,r ,‘—5A2"¥=8
impossible.

wwl

E62) (A‘,-'J A1,r) = (1; 1): (0; 0) or (- 1, = 1). 15 =% 16 +

11}=215’ a3=315,x2 XG+3; h1=ix6+%y ks:hA‘I-Q.

= 1: = - =102 -3 - - =
Agy =12 Ng=-1, 11 T 2 = Ao Ay~ Pex =3
impossible.

A,‘,1=o:\’=—(123212).

B e =2 - 2 - l‘ = = -1 - | ey
A1 13 Ag 3 N 35 2= Agy 3 A,y ~ 3By

which 1s impossible.

E63) (Ag s A1‘) = (1, 1), (0, 0) or (-1, =1). Ay -% A -%.,

M3 A-g Atz l2‘ A 3 A =3 e h A -

. _ 2 _ =2, 2 _ 4
Agy =1t Ng = -3, A, —E, 2=3A ¢-7h "7 Impossible.
A‘,‘1 = 0: 'A5 =-g 2= ~3h impossible.
Agy=-1: Ag=-2-= A;2=- 2A, ¢ - 2A5 ¢ = 4, impossible.

Thus either ¥ = o, or ¥ = - (12321 2).
¥ = a;: With the convention of Th. 9.1, /3 1s among:

(rooo0o00), (110000), (111000) I [(111100),

1.
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(111001, (11 1110), (t11101)], [((v11111),
(1t12101)], [h12111), 122101)], [(122111),
(112211)], (122211), (123211), (123212).
=,3,

As before, o
¥=-(123212): A 1is among the following:

-(123212), -(123211), -(122211), [-(122111),
-1 221 1)), -1 21 11), (1221 01)], [-(0 111 11),
-t12101)], [-0C1r1110), -1 11101)], [-( 111 00),
-111001)], -111000), =(110000), =(1 0000 O0).

If o =3, the theorem holds for «. Otherwise, @ + o, isa
root; this 1s only the case when @B = -(1 1221 1), -{(t12111),
111 111), -112101), (111 110), =(111101),
-(111100), =(1t11001), -(111000), =(110000). Ineach
case, the theorem holds if o = @ + o, . Otherwise A+ o, +a, 1is a
root, and we continue to apply this reasoning to show that the theorem
holds for « 1in any case.

E;(O) Assume uf#a,. \6=% \7, X5=%—17, )\h=2)\7’
- - _ _ 3
A3 L3 A A - M-

A\,,1 0: ¥ = 0, impossible.
- . - 3. = 3 - 3 9
Ay, = = 1 A, =3 2=-2A =% 3 or 3 impossible.
A‘,,1 = - 2: )‘1 = -3; 2 = - 3A1", = 3, Impossible.
- . =-2 2=_2 =2
A‘,1 = - 32 xl =-52=-3 Ahb’ = 3» 1impossible.

As 1In pre‘vious cases, the above lmplles that A‘,1 =1, 2, 3 are
1mpossible.

EZ” (Ag, s Ay ) = (1) 15), (0, 0) orh(— 1, - 1). Ag =% y
Am3 A Am2An A= A A3 A A= A,
l’(“"g'(““l'n -2).

A‘,,1 =1 N = -

A = 0: A2=—

= -0 0= oL - =3
A W 2; 2= -z A -2 =3, impossible.

;72 = - hAe,‘ = L4, impossible. .
= - 1: = - = -6: 2= -L - =13
Ay g 1\, 5 N 6; 2 2 Ay g - 6hy = T
1mpossible.

E2) (Agqs Ay ) = (1, 1), (0, 0) or (-1, =1). Xg=%5 A

& nj—



ON LIE ALGEBRAS OF PRIME CHARACTERISTIC 65

A b A=2dy A =3y A3 M

_ 3
11=l7+1; k'("é'Arn'z‘
- 1. - - S P - =3

A",'l = 1 Aé = 1, XI = 55 2 = 5 A1", A6,‘ 5 impossible.

A =0: ¥=-(1234322).

o 5 5 11

Agq = -1 16=-3’al=—§;2=—§Ah(-3%J=“?’
impossible.

Thus elther ¥ = a, or ¥ = - (1234 322).

¥=a;: A 1s among the following roots:
(1ro00000), (117100000), (1110000), (1 111000),
{tr11100), 1111001, (1111 110), (1111101)],
(11111 11), 11210, [hr12111), (1122101)],
[h112211), (1122111), (12221001)],
[(h122211), 122211 1)),[(h2a22211), (1123211)],
[(1223211), (1123212)],[(1233211), (122321 2)],
(1233212), (1234212), (1234312), (1234322)

The grouping in brackets follows the established rule, and o = A.

¥=-(123%322): A 1is among the following roots:
-(1234322), -(1234312), -(123%212),
-(1233212),[-h223212), -(1233211)],
[(1123212), -(1223211)], [-(t123211),
“(1222211)], [-(1122211), -=(1222111)],
[-1112211), -(1122111), (12221 01)],
(-1112111), =1122101)], (-1 11111),
(1112101, -1 11110), -(0111101)),
[-(1111100), =(1111001)], -(t111000),
-(1110000), -(1100000), -(10000O0O0).

If o=, o 1s among the roots given in the statement of the
theorem. If o = # +a, + ... + o, @ 1s a linear combination of
Qpy eeey Opy 8 system of type E6, and therefore 1s among the roots
glven in the statement of the theorem for systems of type Eg. All such
roots are also given under the heading ET' Thus the theorem 1is true for
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systems of type E?'
2 4 ) L
E8°) \7=—3-18, 16"-3'18’ A5=2A8, xh—-é'kg; 13_-3-‘8’
A= Ngr A =5 Ay Ag=3ap . W=A, (23456%23). Since

(23456142 3) 1s readily shown to be a root, =+ 1.

xf\.',,1 t
EBI) If r ¥d1: (A‘.‘a A1,‘) = (1] 1)) (0, 0) or (‘ 1) - 1)'
L L
178%‘“8’ xs'-'?ng 15“218: Au’%’g: 13=-3—18,

2
N o=5Ag 1, Ag =34y, -6

Agq,=1: ¥ =-(3L456L23).

14

.ll.‘.,1 = 0: \2 = -6; 2 =~ 6A2,‘ = 6, 1mpossible.

A“'1 = - 1: la = -9, 11 = =-5; 2= - 5A1’r- 9A2,‘ = 14, d1mpossible

Thus ¥ 1éamong t(23456L423), -(13%56L423) and a.
¥=3:(23456423): a=MA =¥ 1is among the roots listed.
¥=-(13456423): (8@ 1s among the following roots:

~(13456%23), -(12456L423), -(123561L23),

-12346%23), -(12345423), [-(123%5323),

-(12345422)]), [-(12345313), -(12345322)],

[-(12345312), -(12344322)],

(-1 2344k 312), -(1233%4322)],

[-(12334%312), -{(123%4%212), -(1223%4322)],
[-(1223%312), -(12334%212), -(1123%4322)],
[-(11234312), -(12234212), -(12333212)],
(-(1,1234%212), -(12233212), -(12333211)],
[-(11233212), -(12223212), -(12233211)],
[-(11223212), =(11233211), -(12223211)],
[-(11123212), =(11223211), =(12222211)],
[-(v1123211), =(11222211), =(12222111)],
[=(1t 1122 2222101)],.

211), =(11222111), =(1
[~-h1112211), =(11122111), <(11222101)],

(11 112111), (1122101, [-(1111111),
11112100}, =111 11110), =(01111101)],

» P
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[-h1111100), =01 111001)], =(11111000),
-(11110000), -(11100000), -(11¢c0000 0),

-(10000000) = - .

Either o = p or o« 1s expressible in terms of the system Qs vees
ag of type E7- In elther case, o 1s among the roots of the statement
of the theorem.

¥=a: ao=p is among the following roots:
(rooooo0o00), (11000000), (1110000 0),
(111717°0000), (1 1111000), [(11111100),
(tr11r17000)], (1111 110), (111111071)],
(11111 11), (A 1112101)],

[(t1112111), (V11221 01)],

fh1v122111), 11112211), (11222101)],
[(h1222111), (11122211), (12222101)],
[((12222111), (11222211), (1112321 1)],
[(12222211), (11223211), (11123212)],
((12223211), (11233211), (1122321°2)],
[(12233211),{(11233212), (12223212)],
((h2333211), (12233212), (1123%4212)],
[(h2333212), (12234212), (1123431 2)],
[((h233%212), (12234%312), (1123%4322)],
(h2344212), (12334312), (12231%4322)],
(h2344312), (12334322)], [(12345312),

(1r234h322)], [(12345322), (1234531 3)],
[(123k5k22), 12345323)], (12345%k23),
(1r2346k23), (12356423), (124561%423),
(1345642 3).

Then o =8, and a 1s listed in the statement of the theorem.
Thus the proof of Th. 14.1 1is complete.
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XV. MAXIMAL SIMPLE SYSTEMS

THEOREM 15.1. Let oy, ..., @, be a simple system
of roots such that the matrix (ai(hj)) is non-
singular. Then there exlsts a simple system of roots
$,, ..., 8, each dependent on «,, ..., a, such
that every root expressible as a linear combination
of roots @, :.-, a, is expressible as a linear
combination of roots in an lndecomposable subsystem
of &§,, .-+, &,. Since each indecomposable
component of 81, ceey Sr has the property that the

matrix ( 8;(hy )), formed for §,, 3j in the given

component, 1s non-singular, we can even choose

81, veuy ‘r in such a fashion that any root is
among the roots of Ths. 8.1-14.1, corresponding to the
type A-G of the indecomposable component involved in
its expression.

PROOF. Among all simple systems of r roots linearly dependent on

Ay veey Qs consider only those which have an indecomposable component
of maximal rank, 1.e., consisting of a maximal number of roots. Among
such systems, conslider only those 1in which the subsystem of all roots
orthogonal to such a maximal component contalns in 1ts turn an inde-
composable component of maximal rank, and repeat the procedure until it

terminates. Denote any final system by B,, ..., B..

Now suppose ‘}, ey “é 1s an 1.s.3. Among the 1l.s.s.'s con-

siting of s roots each dependent on K}, ey Ks we 1ntroduce a

partial q;dering according to the type of the system, as follows:
=2: A<B<G.

=3: A<B<OC,

4: A<D<B<C«<PF.

=5,8>8 A<D<B<«OC.

=6, 7, 838 A<D<B<C<E.

u o u o on
n

If B4, +-+, By 18 any indecomposable component of B, -.., B,
and B, :+., By 18 maximal in the above ordering among i.s.s.'s de-
pendent on B,, «.-, B, take ( 81, ceey Sk) = (31, cee, Bk). Other-
wise replace (B, +«+, Bk) by an i.s.8. ( §,5 +oes Sk) which is
maximal among such systems. We must show that &,, ..., §,,
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Bisq? *++» Bp 18 & simple system. This is trivial when (8,, ..., §) =
(Bys ovvs Byl

In any other case, the choice of &, ..., §, and Ths. 8.1-1ka
assure that any root dependent on 81, ceny Sk 1s a member of the set
of roots given in the theorem corresponding to the type of &,, ..., ¥,.
ir %, ..., 8§ 1sof type A, then (8, ..., 8§,) = (B, +ve, By);
thus the exceptlonal case where p\(k + 2) 1s not encountered.

Now suppose that Bi - §.: .1s a root for some 1 > k. Since
sj(hai) =0 forall j, 1< J<k, Bi + Sj is also a root, as are

- By t Sj. By repeated use of the formula of Th. 5.6, we see that
8 - By 1s a root for each § 1in the roots of Ths. 8.1-14.1 for a sys-
tem of the type of §,, ..., &,. For instance, if § 1s a positive
root, we observe from the statements of those theorems that we can arrive
at § from § by & sequence of addlitlons and subtractions of roots
Ss, 1 < 8 <k, with each addition or subtractlion beilng justified by
Th. 5.6 in the sense that the value s*(h‘ ) tells us how many times

]

Ss may be added to a glven term §" or the sequence. Since

(8" - By)(hg ) = S*(hs ), we may add 8§, to 8§ - By as meny times
s s

as to 8". Thus we can arrive at $ - By from SJ - By by the same

sequence of additions and subtractions used to arrive at 8§ from Sj.

A similar procedure may be used if § 1s negative. In particular,

Bj - By 1s a root for some j, 1 < j < k. This is a contradiction, and

80 8, v, Sk, Bye1? *°+» Bp 8re a simple system.

If we carry out thls replacement procedure for each indecomposable
component of the simple system Bis eoey Br, we obtain a new simple sys-
tem 81, «++» &, satisfying the requirements by which the system
By» +++» B, was chosen. We shall call any simple system obtained by
this process a maximal simple system.

Let « be a root dependent on Cyy seey Oy therefore also on

§, ..., 8§,. 1r §,, ..., §, 1s indecomposable, the first part of
the theorem 1is trivial; the second part follows from Ths. 8.1-14.1. Now
suppose the theorem has been proved for maximal systems which decompose
into j - 1 1ndecomposable components, and suppose that 81, veey Sr
decomposes into J 1indecomposable components. Let t1, ey ‘k be
aen indecomposable component of maximasl rank. Then 8k+1, ey sr is &
maximal system with Jj - 1 1indecomposable components. If « 1s not de-

pendent on 31, ceey Sk, we can apply Lemma 7.1 to perform successive
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subtractions (in some order) of §,, ..., Sk from o and obtain a string
of roots leading to a root «a' such that «!', 81, ey ‘k form a simple
system. Since k was the maximal rank for an indecomposable component
of any simple system, a'(h‘ )=0, 1 <J<k. Itfollows that o' 1is

expressible purely in terms of ‘k+1’ ceey 81,, and consequently in
terms of a single Indecomposable component of this system. This is the
only case we need consider further, since if «o 1s dependent on

51' ceey ‘k alone, the conclusions of the theorem hold for o« by
Ths. 8.1-14.1.

Let o' be dependent on the indecomposable component 8k+1' ooy &
hence among the roots given for this system in Ths. 8.1-14.1. Now either
@ 1s dependent on sk+1’ ceey Sm alone, or a'! + 81 is a root for
some 1 < k. In the latter case, o' - 81 is also a root, contradicting
the construction of «a'. This completes the proof of the theorem.

m’

THEOREM 15.2. Iet L be a restricted Lie algebra over
an algebraically closed fileld of characteristic p > 7
such that 1L contains no abellan ideals and has a re-
stricted representation with non-degenerate trace form.
Let @y, .+., @, be a fundamental simple system of
roots with respect to a Cartan subalgebra H in 1L,
and assume that a;, ..., @, 18 maximal in the sense
of The 15.1. Then L is simple (in both the ordinary
and the restricted sense) if and only if the system

Gpy eeey O 1s indecomposable.

PROOF. ,Suppose a;, ««+, o, decomposes. ILet o, ..., & be an in-

decomposable component of maximal rank. Let J be the subspace of L
spanned by h"‘l’ cany h“m and by some e, # 0 in each L, such that

@ 1is a (non-zero) linear combination of @y ey . Then J 1s an
ideal in L. For if h € H,

[haih] =0, 1<1<m,

lesh) = a(hle, € T If o, € J.

Thus [JH] € J.
If B 1s a root, then by Th. 15.1 either B is a linear
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combination of ®yy eve, @ Or B is a linear combination of Apeqr <o
Cpe In the first case,

[eﬂhail = B(hai)eﬂ € J;

[eaeal eLOH_BS J if e, e J, B t -a;

lege o) = = (e e )b, € J If e, € J.
In the second case,
[h,6 e,] = - B(h, )e, = 0 ¢ J;
oy B oy P ’
[eaeB]=(‘eJ ifr edeJ,

since La+B = 0 by Th. 15.1.

Thus [J’LBISJ for all roots B, and [JL] € J. Since

hoz §J, 0% J # L. Therefore the direct decomposition of I 1involves
m+1

at least two (restricted) ideals, and L 1s not simple in either sense
of the word.

Conversely, if L 1s not simple, L =L, @ L,, where L,, L2 are
restricted ideals in L. If o 1s a root and O ¢ e, € Ly

€y = efz” + 80(‘2), eéi) € Li'

If held, [eo(;I 'l + [90(,2 ] - a(hley, = a(h)e(g’) + ot(h)ec(‘a), or
[e(;)h] - a(h)eé') = a(h)eéa) - [egf)h] € L, L, = (0). Thus each
eéi) € Lo:' Since La is one-dimensional, either eé') = 0 or

eéa) = 0, and each root-space is contained in one or the other of the
1deals Ll’ L2.

Suppose 9, ;, ecey © are all in the same ideal L, Then so are

(7 (&7
1 r
hy = [e_y, e, 1. Since for each root « there 1s an h;y such that
171
“(hi) =0, g, = a(hi)"'[eahi] €L,, and L; = L. Therefore we may

assume that ea1, ceey ec‘k €L, e“kn’ ceey e“r ¢ L,. As above,
hl, ceey hk and °-a1’ coay e"ak are in L,, while hk+1' cesy hr

and e ooy e'“r are in L2 Therefore

2
g+
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le, 6, ) = 0= le, e ]

e
oy aj 1 —aj

for all 1 <k < j. By Lemma 5.3, ai(hj) =0 = aj(hi), 1<k<}]j, and
Oyy ooy Q decomposes. This completes the proof.

XVI. CLASSIFICATION OF THE SIMPLE AIGEBRAS

THEOREM 16.1. Let L be a simple restricted Lie alge-
bra of characteristic p > 7 possessing a restricted
representation with non-degenerate trace form. Let
Oqys woey O be a maximal fundamental simple system of
rcots with respect to a Cartan subalgebra H of L.
Then Qyy ooy 1s indecomposable, and the algebra
L 1s determined up to restricted isomorphisms by the
type A, B, Cr’ D, G,, Fy, Eg, ET’ EB of @y eees
L) except 1n the case where Cyy eeey O is of

type A, and pl(r + 2). In this case, I is deter-
mined 1f we know whether @y = &y + 20, + .o IO,

1s a root, where o,, ..., @, 1s labeled In the
customary manner.

PROOF. Qys ey O i1s an 1.8.8. by Th. 15.2. We agree to call a root

a positive 1f it 1s among the set of roots actually listed 1n Ths.
8.1-1k.1 for a system of the type of a,, ..., @,., as opposed to the
negatives of these roots. In the case of A, pl(r + 2), we define
ay<%+w%,.”,ao+ar+...+a]tmbep%ﬁﬁm. From Ths. 8.1-1k.1,
we observe that 1f the sum of two positive roots is a root, thls root is
positive. We also see that any positive root a except a;, «-.-, o,
(and Ay, if it is a root) can be written in the form B + a4 where B

15 a positive root and 1 <1 < r.

Now let L' be another simple algebra over the same (algebraically
closed) field with a non-degenerate trace form. Suppose that L' has a
maximal fundamental simple system of the same type (and rank) as that of
L, and that @, 1s a root for L' 1f and only if it i1s a root for L
(here we identify the systems of roots of L and L', as permitted by
Ths. 8.1- 14.1). Let H' be the corresponding Cartan subalgebra of L'.

If ha € H, h'a e H' are defined as before, then

" 2a(hg)  2a(hy)
BthyT = "B(RT)
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for all roots «, B. For these mmbers depend only on the systems of
roots, which we know to coilncide.

Let e, , «-+, &, (and possibly e, ) Dbe non-zero elements of
r o)

a
1

La1, vee, Lar (Lao), respectively, and choose e&1, ceny e(;r (e&o)

similarly in L'. Choose e__, e€L__, e! €L such that

di —di —C’li -ozi

[e e ]-= I W

—a, a
i71i 10::L

}
o3

Y

n
(=2

[e!' e!' ] = 2 h!
0y 0y °‘1(Hai’ S|

0 <1< r. Define a linear mapping W of the subspace LO of L spanned
by the e o, 0 <1< r, onto the subspace L(‘) of L' spanned by the
31.051’ 0< 115 r, by etaiv\ = eiai. This mapping 1s one-to-one, and if

we set hiv‘ = hj'_, 1<1<r, wecan extend Y| to a linear mapping of

L* = H + LO onto L'* = H' + Lc'). Moreover, we have

(1) [etolf\’ hjq] = [em J]Vq,
(2) [e_af‘, eaiv\] = [e_aieai]q, 1<j<r,051<r.
2ay (b} )
[eiaivl, hj'\] [e:'tai ' __mro , while
(1):
2<:zj_(h(z ) 2a, (b} )
iai J]'\ ajlﬁa_i to:i'\ ajlﬁd'J)
J

(2): Except when 1 = 0, this is a trivial consequence of the definition
of . When « i1s a root, we have
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(e e wn] = [e! e']’h"'—(h"_)'Q h!
"ao‘" c'o“ G5 % ° & @, %

= 2 (h' +2n' + ... + rh' ).
o‘ouiaoj &4 % %
Now ao(h& ) = a, (h&1) = ce. = ar(h& ), so that
o r
h(') = h1' + 2h2' + oo + rhI".
Similarly, ho = hl + 2h2 + «+o + Thy, and hov\= h"), or
[e e.n]l =[le e In.
-ag\’ Q'o‘.\ G % N

If o 1s a positive root other than «, Qo + Tpy eesy Gg + Gy + eee
+ ay, define the level of a to be the sum of the natural numbers which
represent its coefficlents in the 1lists of Ths. 8.1-1k.1. If a, 1s a
root, let a, have level 1, coq + oy, have level 2, ..., Qg + G + e
+ have level r + 1. If o has level n > 1, we see that we can

find a positive root o - @y of level n - 1 for some 1, 1 <1< r.

Let
Ip=H +Z<z positive of level < n Ly -
Ly = H +Za positive of level < n Lyg °

Then L1 = L+, L1' = L'*, and for n sufficlently large, L, = L, Lr'x = L'.
We assert that the mapping W\ can be extended to a one-to-one linear
mapping of L, onto ', mapping LB onto Lé ir LB ¢ L, such that
s Ly,» LB’ La+s§Ln’ then [eaea]q = [eaq, eav‘] in L!', where

0¢ ey e Ly» o # eg € Lﬂ (we allow «a, B, or a + B to be zero,in which
case the corresponding root-vector can be replaced by arbitrary h e H).
Such an extenslon has already been obtained for n = 1. Assume there ex-
i1sts an extension to Ln—1 wilth these propertiles.

Let o be a posltive root of level n, and suppose that o =8 + oy
vhere B 1s a positive of level n - 1, 1 <1 <r. Let 0O ¢ eg € Lﬂ,
09 e“i € Lai- Then 0 ¢ [eaeail = 64 € L,+ Define )
e M = [eﬂv\, ea;‘] € L& < Lr'l Similerly, 1if ey = [e_ae_ail € L_y de-
fine e_M = [e_gM, e_aj\_v\] € Lj. Extend W to L, by linearity. Then



ON LIE ALGEBRAS OF PRIME CHARACTERISTIC 75

N 1is one-to-one from L, to L/, and meps H onto H!', Lg onto Lg
for Lﬁ s L, - It remsins only to prove the homomorphism property. It
will be evident from the proof that the definition of e, 1s independent
of the representation of o as B + Qy, and of that of e, &s [eae‘z 1.
That is, if we represent o 1in any way as a sum ¥ + a; of a root ¥

and a root aj of the fundamental simple system and if we represent the

same vector e, in any way as [e;ea 1, where ey and 8y, are in

the corresponding root-spaces, our definition of e, ¥will imply that
e = [egny eotj'l]'

Now
2a(hai)
[e:othi]'\z + d(hi)(era'\) = + mi—)- (e:a’l\),
while

2a(h&i)
lo,g D) = o,y il =+ gpr=y (0,0) = [o, i,
1

etaeLn,rgigr.

If o 1is positive of level n and ¥ 1is positive, then either
lege,] = 0 or [ege,l ¢L. If oy € L, and [e‘ea] =0, then ¥ + «
1s not a root, and [eyq, eMl = 0 = [ege 1N -

Next let ¥ Dbe positive of level less than n. Then

[e_'ea] = [e_'[eae

Q,1]] = - [eﬁ[eaie_ 11 - [eai[e_‘eB]],

¥

and
[e_‘ea]||= - [eB[eaie_‘]]i\ - [eui[e_‘ea]]'\
- [eaq[eaie_‘lﬂl - [eaiq[e_'ea]'(]
- [ea'l[eai'l’ e_,‘]] - [ea;![e_‘q, eB'|]]
le_legns eaivl]] + le o eMls

since all quantities to which %W 1s applied are root-vectors in Ln—1’
for which the homomorphism property holds by assumption.

If ¥ 1s positive of level n, we have e_g = [e_xe_ajl, where A
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1s positive of level n -1, and e_gq = [e_}‘\q, e Ml O <js<r) By
reasoning similar to the above, J

le_yoIm = - [ea[eaie_'] n - [eai[e_xeﬁ]]\]

]

- [eB[eai[e_xe_aj]]]q - [eai[[e_ae_aj]eB]]'Q

0 4

[eB[e_a[e_ajeai]]]\] + [eﬂ[e_ J[emie_A]I]'l

+

[eai[[e_a e ]e_A
[eB.’[e_)‘y\[e_ajv\, eaiv\]]] + [eﬁ“[e—aj'\[ea;_'\’ e-k'\]]]

+ [ea;\[[e_ajv‘, esvl]e_k'\]] + [eaz\[{eﬁq, e-k‘]e-a’j"]]

I + [eai[[ebe_x]e_aj]]'[

[e_¢n eMl-
A similar argument shows that [e_ae *‘]'1 = [e_a\\, e‘\]] whenever «
is positive of level n and ¥ 1s positive.

Finally, suppose that ¥ and & are positive, and that ¥ +§ 1s
a roote Then ¥ + § 1s positive; if it 1s of level less than n, then
both ¥ and 8§ are of level less than n, and by hypothesis,
[e‘vl, el = [e‘e‘]q . There remains only the case Ie‘e‘] = ke, k € F,
where o = p + oy 1s positive of level n, and [eB\, "l]
el

Since L) 1s one-dimensional, [e'\q, e"lll = k'(eaV(), and

(Teyey 1N, e_a,ivl\] = [[e‘e‘]e_a In
- [[e:e_a lexIn - [le_, e ]e‘]\\

- [legn

g1’ aq]e,.'l] - [[e \‘, ‘v‘]e“]
[[e‘,\q, e"lle_aiv‘] = k'len, e_ai\»‘].

]

Meanwhile, [[e‘e‘]q, e—ai'l] = klen, e_ai“]. Since le, W, e_aI\] {1 0,
k = k', and [e"l, o] = [egeylq. A repetition of the procedure shows

that [e p e ) = le_ye_gM- Thus M 1s extended to L, with the
desired homomorphlsm property.

In particular, when I‘n =L, I..r'1 = L', N can be extended to a one-
to-one linear mapping of L onto L' such that [xw, yq] = [xylw for
all X, yel, 1.e., to an (ordinary) isomorphism of I onto L' When
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X € L, the quantity (x")p - qu is in the center of L', therefore
1s zero. Consequently W 1s a restricted isomorphism of L onto L'.
This completes the proof.

Let us summarize the results so far obtained on the classification
problem:

THEOREM 16.2. ILet L be a simple restricted Lie alge-
bra over an algebraically closed fleld of prime char-
acteristic p > 7, and let 1L possess a restricted
representation with non-degenerate trace form. Then

L has a maximal fundamental simple system of roots
which 1s indecomposable, therefore 1s among the systems
of roots of Theorem 6.1, with distinction drawn between
systems of type B and those of type C. Moreover,
thils system determines the algebra up to restricted
isomorphism, except when the system 1s of type Ar and
plr + 2); 1in this case there may be two non-isomorphic
algebras with the same type of maximal fundamental
simple system.

XVII. THE CLASSICAL SIMPLE ALGEBRAS

The classical simple algebras, that 1s, those of types A - D, are
realized as matrices of trace zero (type A) or as matrices which are
skew with respect to a certain involution in a full matrix algebra (types
B, C, D). The proofs of simplicity for these realizations, as well as
the demonstration of the absence of isomorphisms among them, are to be
found in [15]. Although we shall not, in general, use their Killing
forms, remarks are added as to the conditions under which the Killing
form is non-degenerate. The source for these remarks is the work of
Dynkin (7], except for the special case of type A, which has been com-
puted by the author.

Consider first the Lle algebra A, of ell (r + 1) by (r + 1)
matrices of trace zero over the fleld F. If pf(r + 1), K, is a re-
stricted Lie algebra containing no ordinary ideals. It has a basis

glven by

Hy = Byy = Eppq,pepr 15159
Eij;ifj:151:.1$r“1:
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where E:L j is the matrix with 1 at the intersection of the i-th row
and j-th column, and © 1in all other positions. Also,

p_ P _
Hy —Hi, Eij = 0.

By observing the effect on this basls, we see that Tr(XY) 1is a
non-degenerate form on Ir when pf{r + 1). The H; span a Cartan sub-
elgebra H with respect to which the E, j are root-vectors. H has
dimension r, and that of X, 1is r? + 2r. From this we see that any
maximal fundamental simple system of roots wilh respect to H must be of
type A,- Such a system is obtained 1f we let Er“,1 belong to the

root a,, B, to o, ..., Er-1,1 to a,. Then EI,r+1 belongs to
-ay By to -ay, .., Er,r-1 to - a,. By forming the commutators
of these elements, we see that Gy eoey Oy form a maximal fundamental

1.8.8. of type A,. By Th. 15.2 and the non-degeneracy of the form
Tr(XY), this would provide another proof of simplicity if we only knew
that Kr 1s semi-simple. But we get both a non-degenerate trace form
and the seml-simplicity from the fact that the Killing form of this alge-
bre 1s non-degenerate, and from these the simplicity 1s a consequence of
Th. 15.2. Any simple restricted Lie algebra of the class Ar with the
property that the quantity o, 1s not a root if pl(r + 2) 1s isomorphic
to the algebra K,, by Th. 16.1.

Next let pl(r + 2), and let L* be the restricted Lie algebra of
all (r +2) by (r + 2) matrices of trace zero over F. let C be
its (one-dimensional) center. Then L = LV C 1s a restricted Lie alge-
bra conta.ining no ordinary ideals and having the basis

B By ooes By
Eij,iﬂj,151,j5r+2,

vhere X —3> X 1is the natural homomorphism of L#* onto L, and the
H:L and Eij' have already been defined. H1 y seey ﬁr span a Cartan sub-
algebra, relative to which the f:i j are root-vectors. Let f:r 42,1 be-
- - 2
long to the root 2 E12 to Gps soey Ez--1 p to e Then we see &as
2
above that Apy voey A form a fundamental simple system of roots.

Moreover, if we define Ha1 = [E1,r+2Er+2,1]’ crey Har = [Er,rﬁlEr—l,r]’
then aj(ﬁa )#0, 1 < J<r. Bya similar definition of I'-'I(z for each

root «, wb can duplicate all the results of §5 in this case.
@y +sv, @, form an i.s.s. of type A, and the root to which ﬁr,rﬂ
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belongs is o, = o, + 2a, + ... + ra,. The complete system of roots 1is
exactly that displayed for the exceptional case in Th. 8.1. Thus the sys-
tem o, .0y Q@ i1s maximal for L.

Now L satisfies all the conditions used in the proof of Th. 16.1
to prove the uniqueness of an algebra of type Ar with @, as a root,
even though we have not shown that L has a non-degenerate trace form.
Therefore any algebra of this type 1s isomorphic to the algebra L. It
1s unknown to the author whether this algebra has a restricted repre-
sentation with non-degenerate trace form. It is known that the Killing
form fails in this respect.

Next let B, be the Lie algebra of all (2r + 1) by (2r + 1)
matrices M over F satisfying M = - ST'M'S, where M' denotes the
transpose of M, and

1 0 0
3 = 0 0 ‘TT .
0o IT 0

Then 'ﬁr 1s a restricted Lle algebra containing no ordinary ideals, and
has as a basis

Hy = Bypr,141 = Braper, daperd

E(i"j) ) EJ+1,1+1 - Ei+r+1,j+r+1' 14
E('is'J) - Ej+1,i+r+1 - E1+1,j+r+1' 1<
E(1,1) = Brarer, 341 7 Bjapar, 1400 1< 1

Ey = E1,1+1 - E1+r+1,1; Ey = E1+1,1 - E1,1+r+1 ;

1<1, Jsr.

The form Tr(XY) is non-degenerate on Er' The quantities H, span
a Cartan subalgebra of B,, and the E(i,-j)’ E(-i,-j)' E(i,j)’ Ey, Ey
are root-vectors corresponding to distinct roots with respect to this
Cartan subalgebra. Let E(i,-i-l) belong to the root ay, 1 <1 <r -1,
and let Er belong to the root a,. Then E(1+1,1) belongs to - %y
1<1<r-1, end E_r belongs to - Qe From this we see that
®yy s+, o, form a simple system of roots which 1s indecomposable of type
B,. This system is in fact maximal; for the dimension of B, 1s 2r? + r,
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and there are 2r® distinct roots. The only systems which are greater in
our ordering and which could give this number of roots are those of type
C, and that of type Eg when r = 6. In the next paragraphs we show an
algebra with a maximal system of type C,, which Jacobson has proved is
not isomorphic to B,. It can be shown that B, has non-degenerate Kill-
ing form except when pl|(2r - 1) [7]. The possibility of a system of
roots of type E; in B, will be eliminated in §18.

Suppose next that Er is the algebra of all 2r by 2r matrices
M over F satisfying M = - s™'M'S, where

E} 1s a restricted Lie algebra containing no ordinary 1deals, and has

the basis

Hy = Eqq = Eqn q4p 3

B_1,5) " Bty Bjap,qep 1 H 35

El1,-3) " B, ger * By 1ep 1< 35

E(1,5) " Brap, 5 * Bjap, 10 1 <3

E(-ei) B Ei,1+r; E(21) = E1+r,1; 1<1, jgr.

The form Tr(XY) is non-degenerate on Er' The H; span a Cartan
subalgebra, and the E(-i,—j)' E(-i,j)’ E(i,j)’ E(-ai)’ E(21) are roat-
vectors corresponding to distinct roots. 8ince the dimension of Cﬁ is
or® + r, any maximal fundamental simple system must be of type B, C or
E, with the last only possible when r = 6. The possibility of a maximal
gystem of type E will be eliminated in the next section.

Let E(ar) belong to the root «,, and let E(—i-l,i) belong to
@y 1V <i<r-1. Then E(_pp) Dbelongs to - o, E(-i,i+1) to - ay,
t<igr-1, and a, ..., @,, form a simple system of type Cr' If
we assume the assertion to have been proved that this algebra cannot
possess a simple sxgtem Of type E when r = 6, the system ®yy veey Ay
is maximal. Thus Cr is a representative of the lsomorphism class
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defined by the system Cr' Jacobson has shown that Ur 1s not isomorphic
to the algebra ﬁr for r > 3. This shows that the simple system of type
B, found for that algebra was in fact maximal. Dynkin shows that Cr
has non-degenerate Killing form except when pi(r + 1).

Finally let ﬁ; be the algebra of all 2r by 2r matrices M over

F satisfying M = - S”'M'S, where

For r > L, f& 1s a restricted Lie algebra contalning no ordinary ideals,
and has the basis

Hy = Byy - Byop, 14pd
E(i,-j) = Eji - Ei+r,j+r’ i * J;
E(—1,-3) = Ej,1+r - Ei,j+r’ 1<3;

E(i,j) = Ei+r,j - Ej+r,i’ 1<j;1<1, j<r.

The form Tr(XY) is non-degenerate on 5r' The H; span a Carten
subalgebra, relative to which the E(i,-j)’ E(—i,-J)’ E(i,J) are root-
vectors. Let E(i -1-1) belong to the root oy, 1 <1 <r, andlet

b
E(r-l,r) belong to a,. Then E(1+1,-1) belongs to - oy, 1 <l <,
and E(-r+1,-r) belongs to - a@,. a;, ..., o, form a simple system of
roots, which 1s indecomposable of type Dr' Since f% has dimension
2r® - r, thls system is maximsl, and ﬁr 1s & representative of the
1somorphism class defined by the system D,. The Killing form of I&, is

non-degenerate except when pl(r - 1).

XVIII. THE FIVE EXCEPTIONAL AILGEBRAS

In the discussion of these algebras we borrow extensively from
Cartan's thesls ([2], pp. 87-93). He demonstrates representatives of the
corresponding classes over the complex field, but chooses bases for the
algebras in such a fashion that the structural constants are rational
numbers whose denominators are 1, 2, or 3. The determinant of the
Killing form with respect to this basis 1s a non-zero rational number,
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whose residue class (mod p) 1s well-defined for p > 3, and which is
congruent to zero (mod p) for only a finite number of p. For the alge-
bra @,, the determinant of the Killing form is not congruent to zero
(mod p) if p > 3. The other cases await calculation.

Cartan constructs a 1L4-dimensional simple complex Lie algebra L
with a two-dimenslonal Cartan subalgebra and a simple system of roots of
type G,- Reducing its (ratlonal) structural constants to their residue
classes (mod p), we obtain a 14-dimensional Lie algebra over the field

of integers modulo p. We can consider Zp as embedded in our field
F and extend Zp to F to obtain a 1i-dimensional Lile algebra 62 over
F. If the characteristic p of F 1s greater than 3, Gz has non-
degenerate Killling form, hence 1ls a restrlcted Lie algebra. 52 agaln has
a two-dimensional Cartan subalgebra. If a maximal fundamental simple sys-
tem for §2 were of type A,, of type B,, or decomposable, then Ga
would have dimension 8, 10 or 6, respectively. Therefore any maximal
fundamental simple system of roots for §2 is of type Ga (such a sys-
tem 1s easily found), and Gz is a representative of the isomorphism
class Ga'

Similarly, we can use Cartan's work to construct a Lle algebra Fh
of dimension 52 over F with a Cartan subalgebra of dimension 4. For
suitable values of p (almost all), the Killing form is non-degenerate,
and one can display a simpli system of roots of type F),. This system
is therefore maximal, and F), 1s a representative of the lsomorphism
class determined by the system F,‘-

The same procedure can be used to display representatives of the iso-
morphism classes determined by Eg, E7, EB' at least for sufficlently
large values of p. It remalns to show that the algebra of type E6 so
obtained 1s not isomorphic to either of those algebras 56 and 56 which
wve have clalmed as representatives of \the types Bg and Cg. But if we
observe the system of all roots for an algebra of type E, as listed in
§14, we see that there are no two roots a, B, ¢ # - B, such that o + B
and o + 28 are roots. In each of the cases By and T there are
such roots (for By, take o = a5, B = ag; for T, take a = o,

B = a5), and this property willl be preserved under isomorphism. Thus the
algebras cannot be isomorphic.

For p > 7, we may argue as in the exceptional case of type A (see
§17) to show that if the class Fy» Eg, E; or Eg dis non-vacuous, the
algebrs formed by the above process must be representative. Therefore a
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class 1s non-vacuous 1f and only if the algebra so obtailned for that class
has a restricted representation with non-degenerate trace form. It seems
1likely that this remark 1s unnecessary, 1l.e., that the Killing forms are
already non-degenerate for p > T.

As a corollary, we can state the following classification theorem
for simple algebras with non-degenerate Killing f'orm.

THEOREM 18.1. ILet L be a Lie algebra over an alge-
bralcally closed fileld of characteristic p > 7. Suppose
that 1 1s simple and has non-degerierate Killing form.
Then L 1s isomorphic to one of the algebras

E, pflr + 1), » 315

B., pfer - 1), r > 2;
Coo Pz + 1), v 2 3
D, odlr - 1), r >4

or to one of the algebras formed from the Killing-
Cartan complex algebras of types E, F, G 1n the manner
indicated. For the types E and F, there is an
algebra of the respective type with non-degenerate
Killing form 1f and only if the corresponding complex
algebra has a Killing form whose determinant is not
congruent to zero modulo p.
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