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ON LIE ALGEBRAS OF PRIME CHARACTERISTIC

George B. Sellgman
Princeton University

In no respect has the structure theory of Lie algebras of prime

characteristic achieved the degree of completeness of the theory for char-

acteristic zero. Almost as inadequate is our knowledge concerning those

Lie algebras which are restricted in the sense of Jacobson [13]
1

. la/ par-

ticular, the definition of semi-simplicity as the absence of non-trivial

solvable Ideals Is insufficient to assure a direct decomposition into

simple ideals. It is to be hoped that many of the unsolved problems would

be brought closer to solution by the determination of the simple Lie alge-

bras of prime characteristic. In any case, their determination is gen-

erally regarded as a problem of the highest interest in the field. The

purpose of the present memoir is to demonstrate the applicability, under

certain restrictions on the algebra and the base field, of the techniques

used In the determination of all simple Lie algebras of characteristic

zero. The more general problem remains unsolved, although It Is known

that the classification presented here Is Incomplete even for restricted

Lie algebras (I3l> [8], [9], M6]; the algebra of [8] is restricted, al-

though the author does not discuss it from this aspect ) .

It follows from the work of Killing [21] and Cartan [2] that a semi-

simple Lie algebra over an algebraically closed field of characteristic

zero is a direct sum of simple ideals, and that all simple algebras can be

determined. A seemingly indispensable tool in this theory is a symmetric

bilinear form* the KILLING FORM, which is non-degenerate on every seml-

simple algebra of characteristic zero.

When we pass to base fields of prime characteristic, we find that

the Killing form of a serai-simple algebra may be degenerate; in fact, this

is the case for an entire class of (restricted) simple Lie algebras, the

The research described here Is essentially that presented to the
faculty of the Graduate School of Yale University In partial fulfillment
of the requirements for the degree of Doctor of Philosophy.
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2 SELIGMAJ*

WITT ALGEBRAS [3], [9]. However, if we confine our attention to those

algebras with non-degenerate Killing forms, much of the effectiveness of

the classical techniques is restored. It is a generalization of this class

of algebras that the author has treated, namely those restricted Lie alge-

bras L possessing no abelian ideals and having a restricted representa-

tion x > U(x) such that the form (x, y) Tr(U(x)U(y)) is non-

degenerate on L. The base field is required to be algebraically closed

and of characteristic p > 7- Of these last restrictions, the former is

natural in order to make possible the root-system technique; the latter

could probably be replaced by "p > 3", in which case the work of 6-1^

would become even more cumbersome.

In i and 2, we show that it follows from work of Zassenhaus [33]

and Dieudonne [6] that this class of algebras is actually a generalization

of those with non-degenerate Killing form. In 3, the Cartan decomposition

is introduced and hitherto unpublished proofs by Zassenhaus and Jacobson

of some of its properties are presented. 4 is devoted to two Important

observations by Jacobson on representations of low-dimensional algebras,

and to their use in the reconstruction of essential portions of the

classical root-theory. The remaining portions are reproduced by ele-

mentary considerations in 5, up to the expression of all roots as linear

combinations, with coefficients in the prime field, of a linearly inde-

pendent subset of roots.

In 6, we introduce and classify SIMPLE systems of roots analogous

to those of Dynkin [?] Suitably chosen, these will eventually be the

invariants by means of which the simple algebras are classified. The ex-

istence of simple systems is shown in 7 by giving a procedure for en-

larging a given simple system. This procedure is also useful in 8-14,

where it is shown that if a simple system of roots is INDECOMPOSABLE in

the sense of Cynkln and is MAXIMAL in a certain sense, then it determines,

with a single exception, the complete set of roots which can be written

as linear combinations of its members. 15 gives a procedure for choosing
a maximal simple system of roots in any algebra subject to our conditions

and includes a proof that such a system for a simple algebra is necessarily

indecomposable. In 16 we show that the complete system of roots deter-

mines a simple algebra up to isomorphism, hence that the maximal simple

system also determines the algebra, with the exception mentioned above.

17 and 18 consist of discussions of examples of algebras in the iso-

morphism classes previously determined. The bibliography includes several
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references which may be regarded as superfluous vith regard to the content

of this paper, but which are listed for the sake of completeness.

It might be mentioned that while the internal structure of algebras

subject to our assumptions is fairly well determined, their behavior

relative to representations and extensions displays properties which

create special problems. For instance, each of them has a restricted rep-

resentation which is not completely reducible [10]. Recent unpublished

work of C. W. Curtis on the Irreducible restricted representations has re-

vealed further complications in that respect as well.

It is to be hoped that part of the author's debt to Professor Nathan

Jacobson will be indicated by acknowledging the key steps in the argument
for which he is responsible. Also very beneficial were several conversa-

tions with Professor Hans Zassenhaus. Finally, the author wishes to thank

C. W. Curtis, V. H. Mills and H. C. Wang for reading the manuscript and

for many helpful suggestions.

I . DEFINITIONS

A LIE ALGEBRA L over a field F Is a finite-dimensional vector

space over F in which there is defined a bilinear product [xy]:[xy] e L

for all x, y c L, and [xy] satisfies the following identities:

Anticommutativity : [xx] = for all x e L.

Jacobi Identity: [[xy]z] + [[yz]x] + [[zx]y] = for all

x, y, z e L.

From [xx] = o, we see that [xy] = - [yx] for all x, y e L. For

o = [x -i- y, x + y] = [xx] + [xy] + [yx] + [yy] = [xy] + [yx] .

Let V be a finite-dimensional vector space over F, and let E(V)

be the associative algebra of all endomorphisms of V. A linear mapping
U of L into E(V) is called a REPRESENTATION of L in V If

U([xy]) = [U(x)U(y)] = U(x)U(y) - U(y)U(x) for all x, y e L.

If x e L, the mapping ad(x): y > [yx] Is a linear mapping of

L into itself, and is in fact a representation of L, called the ADJOINT

REPRESENTATION of L. Moreover, ad(x) has the property of being a

DERIVATION of L, I.e., a mapping D satisfying [yz]D = [yD, z] +

[y, zD] for all y, z e L. For the powers of a derivation D we have

the identity

1=0 <i>
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Therefore if F has prime characteristic p, we have

+ [y,

or D? is a derivation. If D = ad(x) for some x e L, D is called

an INNER DERIVATION.

An IDEAL J in L is a subspace such that [JL] 3> where [JL]

denotes the set of all sums ZLtx^y^], x.^ J, y.^
e L. J is ABELIAN If

[JJ] = (o). L is called SEMI-SIMPLE if L contains no non-zero abelian

ideals. L is SIMPLE if L contains no ideals other than L and (o),

and if [LL] = L.

Dieudonne has recently published the following result: ([6])

THEOREM 1.1. (Dieudonne). Let L be a semi-simple

Lie algebra over a field F. Let there be defined

on L a non-degenerate symmetric bilinear form

(x, y) such thab ([xy], z) = (x, [yz] ) for all

x, y, z in L. Then L is a direct sum of simple

ideals L^:

L -
L^

+ L + ... +
Lj.

When F is of characteristic zero, L is semi-simple if and only

if the KILLING FORM Tr(ad(x)ad(y ) ) is non-degenerate on L. Since this

form is ASSOCIATIVE In the sense of Th. 1.1, L is a direct sum of simple

ideals. The classical structure theory for semi-simple Lie algebras is

thus reduced to the determination of all simple Lie algebras. In the case

where F is algebraically closed, the theory has been completed in this

sense (Killing [21]; Cartan [2]; van der Waerden [26]; Witt [28]; I)ynkin

[?] ) Nearly complete results in the general case have been obtained by

Landherr [22], [23]; Jacobson [11], [1U], [19], [20]; and Tomber [25]-

It is well known that the Killing form of an ideal J in L is

the restriction to J of the Killing form of L. If L has non-degener-
ate Killing form, the simple direct surmnands of Th. 1.1 are pairwise

orthogonal with respect to this form. It follows that each
m L^ has non-

degenerate Killing form. Another property of algebras with non-degenerate

Killing form is the following, proved by Zassenhaus [33]:
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THEOREM 1.2. (Zassenhaus). If L has non-degenerate

Killing form, then every derivation of L is inner.

The CENTER C of L is the set of all x e L such that [xy] = o

for all y L. C is evidently an abellan ideal in L. Since algebras
with non-degenerate Killing forms are semi-simple, C = (o) if L has

non-degenerate Killing form.

II . RESTRICTED LIE ALGEBRAS

Let us assume now that F is of prime characteristic p. The Lie

algebra L is called RESTRICTED if it Is closed under an operation

x > x p
, satisfying the following conditions:

(1) (ax) [p] = apx [p]
, a e F, x L;

(2) [x, y
[pl

]
= x(ad(y))

p
, x, y L;

(3) (x + y)
[p] = x [pl + y [pl +

) s^x, y), x, y e L,

where is^x, y) is the coefficient of X in x(ad(X* + y))
P" 1

-

In keeping with the motivation for its definition, we shall write

xp instead of x p
. The notions of restricted ideal, restricted homo-

morphism, etc., are now clear. We shall use the term ORDINARY to refer

to Ideals, homomorphlsms, etc., for which the properties of p-closure

and preservation of the p-th powers are not required. In particular, a

representation U of L is a RESTRICTED REPRESENTATION if U(xp )
=

(U(x))
p for all x L.

We shall be concerned in this paper with restricted Lie algebras L

which are semi-simple (in either the ordinary or the restricted sense)

and which possess a restricted representation U such that the form

(x, y) = Tr(U(x)U(y)) is non-degenerate on L. If L Is semi-simple

in the ordinary sense, it clearly contains no restricted abelian Ideals.

Conversely, let A be an ordinary abellan ideal In L. Then ap c C

for all a c A, and A + C Is a restricted abelian ideal. Thus the two

senses of semi-simplicity coincide. By Th. 1.1, if L satisfies our

conditions L is a direct sum of simple ordinary ideals L
I

+ L
2

+ ... +

Let x
1 Lj, and let

Xj
p = y 1

*-... +
y^, y^

c
L.^.

If y* / for

some j > l, then fx.y.] f for some
x^

L.. Thus

x .ad(x
]

)
p
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a contradiction. Consequently each L^ is restricted.

The restriction of U to each of the L^ defines a restricted rep-

resentation of L^ vlth non-degenerate trace form. Thus the problem of

the structure of semi-simple algebras subject to the above conditions is

reduced to the determination of all simple Lie algebras subject to these

conditions. We shall present a solution to the latter problem for alge-

braically closed fields of sufficiently high characteristic.

These results will have as corollary the structure of ordinary semi-

simple Lie algebras with non-degenerate Killing form. For if L is such

an algebra with x e L, then ad(x)p is a derivation of L. By Th. 1 -2,

there exists a (unique) y e L such that ad(x)p = ad(y). If we set

y = x^, L becomes a restricted Lie algebra, and the adjoint representa-

tion is restricted and has non-degenerate trace form. The simple ideals

in the direct decomposition of L again have non-degenerate Killing forms.

III. THE CARTAN DECOMPOSITION

The base field is now assumed to be algebraically closed. A Lie

algebra H is called NILPOTENT if the sequence

H, [HH], [[HH1HJ, [[[HHJHJH], ...

terminates in (o). A subalgebra H of a Lie algebra L is called a

CARTAN SUBALCrEBRA if

(1 ) H is nilpotent;

(?) x e L, [xH] C H implies x H.

The existence and properties of Cartan subalgebras are summarized in the

following theorem, one proof of which may be found in [33]:

THEOREM 3-1- Let L be a Lie algebra over P.

Then L contains a Cart&n subalgebra H. We can

write L = H + La + ... + L
j , a direct sum of

spaces L^ , where X is a function on H to P

and L^ is the set of all x L such that

x( X(h) - ad(h))
m = o for some m i o and all

h e H. For X = we have L
Q

= H, and

L ^ 4 o, X is called a root of L with respect to

H and L is called the root-space belonging to



ON LIE ALGEBRAS OP PRIME CHARACTERISTIC 7

the root X . If H is abelian, all roots > are

linear functions on H to P.

THEOREM 3.2 (Zassenhaus). Let L be a Lie algebra

over F, and let U be a representation of L such

that the form Tr(U(x)U(y)) is non-degenerate on L.

Then every Cartan subalgebra of L is abelian.

PROOF. Let H be a Cartan subalgebra. L = H + 5[ ff a root L^.
Write

{x, y) for Tr(U(x)U(y)). Let h e H, e^ L . a i 0. By Th. 3-1,
( 1 ) M }

ea
=
fc.t hi

e
a ]* h

i
H > e

a
e L

a*
Thsref01*

(h, ea )
= (h, 2-th^e^ ]) =

2*([hh^], e
ff

).

Similarly, ([hhi ], e^ )
=
5I^(

thh
i
]h.] , e^

' J
'), and one can eventual lv

express (h, e^)
as a sum of terms (z, fa ), f

L^,
z c rf

1

[[HH] ... H]

But H
131 - (o) for some m. Therefore (h, e

ff
)

* - Jt follows that the

restriction to H of the form (x, y) is non-degenerate on H.

If [HH] t (o), there is an element z 4 o in [HH] such that

[zH] = (o). Let
II,

be an irreducible representation of H of degree

f^. By Schur ! s lemma
U.j_(z)

= ^^f is a scalar. Zassenhaus [30] has

also shown that each U^(h),
h e H, has a single eigenvalue ^(h).

We can choose a basis for the representation space V relative to

which

,(h) o

U(h)

Up (h)

for all h H, where the U^ are irreducible representations of H-

Now (z, h) =
i Tr(U (zN (b)) =

ZliXi TrttJ^h))
- E^X^fh). Since

z c [HH], Tr(U (z)) - f^ o. Thus (z, H) * (o), contradicting the

non-degeneracy of the form on H. Consequently H is abelian.

THEOREM 3-3 (Jacobson). If L is a restricted Lie

algebra and U is a restricted representation with

non-degenerate trace form, the mapping h > hp

is a semi-linear automorphism of any Cartan subalgebra
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H, I.e., hp = only If h = (h e H).

PROOF. Choosing a basis for V as in the proof of Th. 3-2, we have

U,(h)
p

U(hp )
= U(h)p =

Thus If zP = 0, we have lL.(z)
p = o, and the single eigenvalue

^(z) = o. Since H Is commutative, by Th. 3-2, U^z) ^/A^z)!^
= o.

Thus Tr(Ui (z)Uj_(h))
= and (z, h) = for all h e H. Therefore

z=o, as in the proof of Th. 3-2.

THEOREM 3*k (Jacobson). Let L be a restricted

Lie algebra over P, and let U be a restricted

representation of L with non-degenerate trace

form. Then tx^h]
= <*(h)xa for all xa e LQ , h e H.

^
PROOF. For sufficiently large ':, we have x (a(h) - ad(h)) p = o for

k k a
k k-i

all h e H, or a(h)p x = [xhp ], where hp = (hp )
p

, k > 1 . It

follows from Th. 3.3 and recent work of Jacobson [1?] that H has a basis

n nk

h^ ..., hp such that h p = h , 1 ^ 1 i r. ITrms a(h )
p

x^
=
tx^],

1 1 r, and since ad(h^ )
p =

ad(h^),
the eigenvalue a(h^) of

ad(h.j_)
satisfies a(h1 )

p =
oc(h^).

Therefore tx^.^]
= cr(hi )xa ,

1 i r, and the theorem is proved.

COROLLARY 3.1. If a o Is a root, - a is also

a root. La and L_a have the same dimension.

PROOF. Let xa e
L^, ^ xx e Lv Now xa

=
[x^h] for some h e H,

and (xv xa )
= (xv tx^h] )

= (t xxxa' ; h) = unless \ = - a, since

L
+ (by the first step in the proof of Th. 3-2, (La , H) = (o)

if a f o). If L_a
= (o), we have (La , L) = (o), a contradiction.

For each non-zero xa e La , there is x-a
e L_a such that ,(xa , x_a ) /

Thus La and L_a are dual spaces and have the same dimension.

For each linear function X on H to F, the non-degeneracy of

(x, y) on H implies the existence of an element h, e H such that
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(hv h) = *X(h) for all h H*

root with respect to H.

In particular, this is true if A is a

We observe also that h ^ = - h-* , h,

hk ^
= kh x If k Is an element of F.

COROLLARY 3-2. If e^ e L . e e L then

PROOF. Ie_a
e
a ] e L

Q

a(h)(e_a , e
a )

= (h, (

the proof of Th. 3-2.

H. For all h e H, (h,

, e)h). frherefore

)
- (lhe _a

by

IV. LEMMAS ON REPRESENTATIONS AND THEIR APPLICATIONS

In this section we give two lemmas of Jacobson on the nature of

irreducible representations of Lie algebras of dimensions two and three.

These are then used to obtain useful information about Lie algebras of the

type under Investigation.

LEMMA ^.1 (Jacobson). Let L be a two-dimensional

Lie algebra (not necessarily restricted) over F with

basis elements e and h and multiplication [eh] = e.

Let U be an irreducible representation of L- Then

either U(e)^ = or U is equivalent to the

p-dimensional representation W:

o S o . . . oo
o o 4 o ... o

W(e) =

U o

o o

X o

o VH o

o .

000

X+p-2

. o o X+p-i
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where X and 5 are elements of P.

PROOF. Since [U(h), U(e)
p

]
* [[[U(h)U(e)]U(e>] ... U(e)] = - t[U(e)U(e)]

... U(e)] = o, we have U(e)
p = cl, a scalar. Similarly, U(h)p - U(h)

pi is a scalar. If 0" =
o, we are done. We may therefore assume

or* o.

In the Birkhoff-Witt algebra A = A(L), let B be the ideal gen-

erated by ep - <T and hp - h - p . Then A/B is an associative algebra

of dimension p over F. U can be extended to a representation of A

such that U(O = I. Since its kernel contains B, U induces a repre-

sentation of A/B. Since L can be embedded in A/B, this representation

is irreducible. Now take 8 e F such that $
p = <T > take X such that

Xp - X = p , and form W as above. W induces an irreducible repre-

sentation of A/B of degree p, which is therefore the only irreducible

representation of A/B. Therefore U is equivalent to W. To see that

the representation W is irreducible, observe that W(h) has p dis-

be a

(X+ i - 1 )x ,

be a

tinct eigenvalues X, X+l, , X + p -
1 Let x.,

basis for the representation space such that x
iW(h)

=

1 IS p, XjWCe)
* $ x

i+-i>
i i < p, x W(e) =

&x,
. Let

non-zero invariant subspace. Then >i contains an eigenvector v of

W(h), which must be of the form x
i

for some
x^,

1 i i i p, and

some scalar /3 4 o. Hence x^
e 4 , and by operating upon x

powers of W(e), we see that Jo contains the entire basis x

with

v 'V

LEMMA ii.2 (Jacobson). Let L be a three-dimensional

Lie algebra (not necessarily restricted) over F with

basis e, f, h, and [ef] = h, tfh] - o = [eh]. Let

U be a non-zero irreducible representation of L such

that U(e)
p = o = U(f )

p
. Then U is equivalent to W:

V(f)
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W(h)

W(e)

X F.

010.
0010

o\

1

PROOF. U(h) = XI is a scalar. If X = 0, then [U(e)U(f)l = o, and

U(e) =
/oi, U(f) - <TI. But U(e)p =

/
PI = o, or /O

= o. Also <T = o,

and U would have to be the zero representation. Thus X *= o. Lot B

be the ideal in A = A(L) generated by ep , fp , and h - \. A/B has

dimension p
2

, and U induces an Irreducible representation of A/B.

However, U defines an irreducible representation of A/B of degree p.

Therefore U is equivalent to W. To see that W is irreducible, let

x^j
x
2 , ..., x be a basis for the representation space such that

Xl W(f)
= o, x W(f) = (i - Oxi-r i> i; x

tW(e)
= x

+1 , 1 < p; x
p
W(o) = o.

Let J& be an invariant subspace and let o $ v c & Let v =
^i

x
i

+

+ . . + Jf^x_. Let y . be the first non-zero component, and cori-

^ p
e A . Thus x

p
e & - Now x^W(f )

k - (p - 1 )

(p - k ) x^v eji,o*k*p-l, or /&

+ Jf x .

sider vW(e)p = V \. Now x
p
W(fr

contains the entire basis

n-l' 1
" Thus representation is irreducible.

THEOREM k.] (Jacobson). Let L be as in Th.

and let o a be a root. Then if e_ e L .

a 0.

PROOF. If h H, [hea
p

]

Then

Now

= 0; therefore ea
p e H.

and h form a two-dimensional algebra L

J
1

(eaP,h)

in the form

Let h c H, a(h) =

as in Lemma k . 1 .

Tr(U(ea )
pU(h)), and we can write the restriction of U to
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where the H, are irreducible representations of By Lemma

either IL(e )
p = o or IL is equivalent to the representation W of

that lemma for suitable \ , & In either case, Tr(U1 (ea )
pU

i (h))
= o,

so that (ea
p

, h) = 0. It follows that (ea
p

, h) = o whenever a(h) * 0.

If a(h) = 0, let h r e H, a(h T

) * o. Then a(h + h r

) * o, and

(e h)

o.

(ea
p

, h' )
- h 1

)
= o. Therefore (e, H) = (o), or

COROLLARY i* . 1 . If ea and xa are In La , then

PROOF. For X F, Xoa +
x^

e LQ . Therefore we have

... ea ]

where the coefficients ^(x^, ea ) e L- Since F is infinite, all co-

efficients are zero, in particular that of XP
~

(For details of the

expansion used, see [13]-)

THEOREM I*. 2 (Jacobson). If of f is a root, then

) I 0.

ea L
ff

, $

Let

e_a e L_a ,PROOF. Suppose <*(ha )
= 0. Let

(e_a * ea )
= 1 By Cor. 32, [^_a ^

al algebra spanned by e^,
e , h .

of the restriction to L
I

of the representation U of L, we have

o, since U(e)p = U(e p
)

= o. Also, (e)5 = o. Thus the

, such that

1
be the 3-dimension-

For each irreducible constituent IL

U (ea )
p

algebra L and the representation are as in Lemma 4.2. Either IL

is a zero representation or U^ is equivalent to a representation of the

type of W. In either case, Tr(Uj_(e_a )IL(e )) = 0. Therefore

o, a contradiction, and the theorem is(e_a ,

proved

= Tr(U(e_a )U(ea ))

V. WEIGHTS AND ROOTS

Let H be an abellan Lie algebra over F, U a representation of

in V. As in the case of the adjoint representation, we can decompose

into a direct sum

H

V
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v v +S.AvA ,

where A runs through a finite set of linear functions on H to P and

V^ Is the set of v e V such that v(A(h) - U(h))
m = o for all h e H

when m Is sufficiently large. The non-zero functions A with V* t (o)

are called the WEIGHTS of the representation U. We shall assume in the

following that F is algebraically closed and of characteristic p > 2.

LEMMA 5.1 (Weyl-Jacobson). Let L
1

= H

where H is an abelian restricted Lie algebra, and

where te^]
= a(h)ea , f 6.^^

- " a (h) e_a > a a

linear function on H. Assume also that [_aea ]
~

ha c H and that a(ha ) J 0. Let A be a weight of

a representation U of L
I

Then either all linear

forms A - kor (k = 0, ^ }
. . .

, p - 1 ) are weights,

or the set of weights of this form consists of dis-

joint arithmetic progressions with difference a,

each symmetric about A -
^/^ ? a> in the follow-

ing sense: If A - kor is a weight, then

AOxJ .

is also a weight, and either all the quantities

2

A -
kor, A - kcr + or, A - ka + 2a ^ / A + kor -

are weights, or all the quantities

A ttA -
kaf, A - kor -

or, A - ka -
2cr, . . . , A + ka -

g ^h ^

or

are weights. In either of these situations,
AfoJ

A -
/vfh )

a w111 ^e called the MIDPOINT of the corre-
ct

sponding string of weights.
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PROOF. Assume that not all A - ka are weights. Let M = A - ka be

a weight such that ^ - a is not a weight. Let o f x e V, the rep-

resentation space, such that xU(h) = M(h)x for all h e H. Then

xU(e_a )U(h) = x([U(e
-Qr

)U(h)] + U(h)U(e_a )) =

= - a(h)xU(e_a ) + M(h)xU(e_a )
=

=
( W -

c*)(h)xU(e_a ),

or xU(e_a ) V^^. Thus xU(e__a )
= 0.

Set X
Q

= x, x
1

= xU(ea ), . .., x^
= xU(ea ) f ... . Then x^U(h)

=

(M + ia)(h)xi for all h e H, and one also proves that

x
IU(e-a )

= - 1(M + -

Since not all M + ja are weights, there exists r *> p - 1 such that

xr ' ^ xr+l
= ' Then

)
= - (r + i

Since r < p - i , r = --
^^ j

a, and the following are weights :

M = A - ka, M + of, ..., M + ror = A - (k - r)a.

r A .
The midpoint is A-kof+^-a^A-kor --

g
v of = A --

a /^
v or.

Of Of

Similarly, if N = A + Ja is a weight such that M + a is not

a weight, and If yU(h) = N(h)y for all h, the weights include

N = A + jof, N - a* * M - sa = A + (j
- s)a,

2N(ha ) A(h )

where s =
a^ j

. The midpoint is again A -
^1^1 )

a ' If the two

strings of weights are not disjoint, then they must coincide; for other-

wise one of the following is the case: Either one of M + (r + 1 )a,

M - a Is a member of the second string, or one of M+a, 'M-(s + i)

is a member of the first string. But M - of and N + a are not

weights by assumption. If H + (r + 1 )or is in the second string, then
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so la M <

(M

2A(h)
(hg )

- * + ka + -StfT
- 2ka - a =

= A - kaf - a = M - a,

a contradiction. The remaining case is eliminated in similar fashion,

completing the proof of the lemma.

COROUARY 5-1- If L is as in Th. 3*b, a is a

root and kor is a weight for a representation of

L
1

- H + ^ea , e-aj (constructed to fulfill the

conditions of Lemma 5-1 ), then - kor is also a

weight.

PROOF. We may assume not all ka are weights. Then the string of weights

of this form is symmetric about o. Therefore it contains - ka.

LEMMA 5.2. Under the conditions of Th. 3.1*, either

all multiples kor(k = o, i ,
. . .

, p - 1 ) of a root

a are roots, or 2a is not a root.

PROOF. Suppose not all kor are roots, and that 2or is a root. Let L
1

be as above, and let 2or, 3or, . .., roe be roots, (r + 1 )<* not a root.

Let L
2

- L
1

--

sj,^^- Since [L
2
L

1
] & L

2 , L
2 may be regarded as a

representation space for L
I

2a is a weight for this representation,

but - 2a .is not. This contradicts Cor. 5-i

THEOREM 5-1 (Jacobson). If not all multiples ka

of a root or are roots, then La is one-dimensional.

PROOF. Choose ea c La , e^^ c L_a , such that (&_&> a )
~ ' If

dim.La > 1, there is a vector ua f in L^ such that (e_a , ^a )
= o.

3y Cor. 3-2, ti^e^]
* o. Now

tu^e^l
c L2a

- (o) by Lemma 5-2. Thus
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a contradiction. Thus the theorem is proved.

THEOREM 5-2 (Jacobson). If p> 3> not all multiples

of a are roots.

PROOF. Suppose all kor are roots, k = 1, 2, . .., p - i. Let

D-1

Since hi.... = kh- L. is a subalgebra of L, and the restriction of U
jKCJr C* I

to L
1

defines a non-degenerate trace form on L
1

L
7

has the Cartan

subalgebra K =

Now let o e e
L_^, f x, L,, 1 < k < p - 1 , and suppose

that [x
kQf

e ]
= 0. Let e e L be such that ( e ~> o )

= ! Let
XV. j

]
= - Kk + i^-;

In particular, x - K, and

or(ha )(ea , tx
p-k ^2

ea ]) = - of(ha )([eaea ], x
p_k _2

)
= o. Hence x

p ^k
= o.

Therefore x. ^ o implies j < p - k. Suppose x- # o, x.
1

= o. Then

as in the proof of Lemma 5.1,

Therefore either j
= p - 1 or j

^ - 2k (mod p ) . But j
= p - i is

impossible, since j < p - k. Therefore j
= - 2k (mod p).

Next suppose [x0/^e _] = for some xn^ # o in Ln^ Set
c.\JL ~C* tut d.\JL

S - - 2a. Then [ e
.^
x
2 -ij

]
= o, where

e_j
= x2a , *<z~\~

e.a
-

Letting k = 2L in the sequence above and replacing o? by & , we have

j
= - 2(~-) = -

i, or j
= p -

i, which is impossible. Thus the

mapping x2a > ' X2ae-a' ^s one -to "one f L
2Qr

into L
ff

. Therefore

dim.L^ i, dJjn.L
2Qf

. By repetition,
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or dim.La
= dim.L

2Q,. Therefore the mapping ad(e_a ) carries

onto La . In particular, ea
= ^a6

-^'
for 3ome ^2a

e L
2cr*

a contradiction. This completes the proof.

THEOREM 5.3. Only o and t a are roots among

the integral multiples of a root a.

PROOF. Suppose some ka is a root, k t o, i ,
-

i . Since 2a is not

a root, we may assume that ka - a is not a root. Now let ka,

(k + 1 )a, . .., ra be roots, (r + 1 )a not a root; then E
3
? ,JM is a
J K J c*

representation space for L^ as defined before. Moreover, j
^ o la

excluded from this sum; for if j
= o were in the sum, so would be

either all of j
=

i, 2, ..., k, or all of j
= k, k i, . . .,

- 2, -
i, o.

But neither of 2a is a root, so this is impossible. However, is

the midpoint of the string of roots ka, (k * i )a, . . .
, ra; in par-

ticular, this string contains with every root its negative. Assume

i a is not a member; then neither is - J~ a = ^~a. Wo observe

further that the string must contain some ja, 2 < j < i
, and we may

assume j is the largest integer with this property. Then (j + i )a

is not a member of the string. Therefore we must have j
= r, and the

string is ja, (j
- 1 )a, ..., ka. But now - ja is a member of the

string, and -
j i (mod p) for i j. Therefore the string con-

tains more than ( j + 1 ) entries; in particular, it contains (j
-

j )a = 0,

and this is a contradiction. Therefore ^~oc - 2~
1 a is a root, and

a 2(2~
1

a) is also a root, in contradiction to Lemma 5-2. This com-

pletes the proof.

LEMMA 5-3- Let p > 3 Let a,/3 be roots,

* ^a V * e
/3

L
/s

Let [eae /i
]

= =

^ ea
e
-4 '" Then (ha , h^ )

= 0.

PROOF. By Ths. 5-1 and 5-2, we may assume (e^, e
-/3

)
= 1. Then
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- [[ee]e] - - [[ee

Thus (ha , h^ )
- o.

THEOREM 5-^. If or and ft are roots, and if

p > 3, not all of the following are roots:

a - 2 fl , a - # , of, or+/9, a + 2/3. Therefore

no "connected" string of the form a + k/3 con-

tains more than four roots.

PROOF. If all the above are roots, then 2ft = (a +2/3) -a and

2(a+f3)=(ar + 2/3)+a are not roots. By Lemma 5-3, (ha+2/i > hc^
or (ha , ha )

= - 2(ha , h ). Also (of
- 2ft ) a are not roots, and

(ha , ha )
= 2(ha , h^ ). Therefore 4(ha , h^ )

= o, or (ha , h^ )
= 0.

But then a(h )
= (h , h )

= o, a contradiction. The second assertion

is an immediate consequence.

THEOREM 5.5. Let p > 3, and let a and ft be

roots, a * -/3 . Then ^! 1
=

PROOF. All root-spaces La are one-dimensional, and

Therefore if a + |i is not a root, tL ]
- (0) = L If or +/3

is a root, it suffices to show I^^A ] * for non-zero e^
c L ,

e
/|

L
/l

Since there are at most four consecutive roots of the form cc + k/| ,

we can apply Lemma 5*1 to assert that the connected string containing a

is an arithmetic progression with difference /3 . If a -
jf3 is a

member of this string, while ot -
(J + i )/& is not a root, let

f x e
I^.ju > and let

x.j_
x ad(e^ ) , 1 > o. As in the proof of

Lemma 5.1, xi ^a-M-iV! and x
i

= on^y ^hen a -
(j

- i)/3 is no

longer a root. (For suppose cc -
j/i , a -

( j
- 1 )/9 , , . ,, a -

( j
- i)/S

are roots, a -
( j

- i - 1 )/3 not a root; this string of roots has the
or(hn )

same midpoint a -
^

g
i as does the string a-jfl,a-(j-O/i,

> a -
( j

- t )ft of those roots a -
(j

- s)fl for which x o.

Hence the strings coincide.) In particular, xj o, x^+ . f o. Now

x. * Xea c La , X i 0, and x.
1

= M a ] * 0. Therefore
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] * o, and the theorem is proved.

THEOREM 5-6. Let or and /3 be roots, and let

the progression of roots of the form a + k/3

containing or be

a - r/i , ..., a-/3,or, or+/3 , . , or + q#
2(h ,h0 )

Then if p > 3, -TR
- r = r - q.

PROOF. Let f xc La_ , and let
x.j_

= x
Qad(eA ) , i > 0, where

* eA c L,,
. Let e_^ L_^ , (e^ , eA )

- 1 . Then x L
a-(r-

and as in the proof of Lemma 5 1 >

o.

Now r + q + 1 * 4, x
r+(1

#0 by Th. 5-5, and x
p+q+1

= 0, Thus

- (r + q + i)(a - r/J

- Q.

THEOREM 5*7- If a and /3 are roots and p > 5,

all roots of the form a + kft lie in the connected

string containing a.

PROOF. Let a + kA be a root not In this string. We may assume that

or + (k - 1 )fi is not a root. The string or + kfl, or + (k + 1 )fl , >

oKh* )

a + n^9 is symmetric about or -
-jrrr^ r(3. By Ths. 5-^ and 5-6,
'** /B /

is among o, i, 2, 3.

If a(h^ ) 0, then as in the proof of Th. 53> cr t 2"fl are

roots. However,
1

/a )(ha )

which means by Th. 5^6, and the fact that p > 5 that or + 2~
1

f* - a - 2")

is a root, a contradiction. A similar contradiction is reached by
2(h ,hft

)

assianing that
(h h 7

= * 2 ' ^ the case ^ "** 2 by replacing a by
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of -
/a , and In the case of - 2 by replacing a by of + /3 (which we

know to be roots In these cases by Th. 5-6) and then applying the reason-

Ing of the case a(h^ )
= o.

2(]:V h
/

>

Now when /, r
= i , any string of this type is symmetric about

^n m > n <* }

of -
-i-fi . As in the proof of Th. 5-3, either a - if* is a member of

such a string or the string contains (a -
-gfl

) +
^| A = <* In the

latter case, we have the connected string about of. Therefore or -
ft

is a member of the string a + k, . .., a + n/fc , and Is in fact the

midpoint. Now replace a? by a - --ft and apply the case a(h^ )
=

to obtain the same contradiction as before. One treats the cases
2(h ,h fl

)

/. . r = - 1, 3, - 3 In similar fashion.
vh^ ,h,3 )

Let
QT.J,

Qf
2 , ...^ orr be a maximal set of linearly independent roots.

Then every root can be expressed as a linear combination of these or.. .

Moreover, h^
=
h^ are linearly Independent elements of H, and every

ha (a a root) can be expressed as a linear combination of the h^. Let

H
Q

be the subsapce of H spanned by the h^, and let

Lo
= H

o
+ i-a a root V

LEMMA 5.1*. L = [LL] .

PROOF. Let h
T, ..., h c H be such that h

1
f , h. Is a basis for

H. Then every x L Is uniquely expressible In the form

where the X's are in F and te_a a ]
= ha . Now

[xh ]
=
2, \,r

a (hi>eQra
and

V (hl )e
cr

+ *-cAr /if-a
Xa N

/la
e
cr+

e LJ
o>

where N^^ e F, N^ a
= if and only If a + /S Is not a root. Thus

[LL] Ln . Since h< [e e_ ] e [LL], l * i 4 r, and since
.

i -Qr Qf

c [LL] for all or. L rtG [LL] = L^u ^^ u
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By Th. 1.1, L [LL] L O whenever L contains no abelian ideals

(and has non-degenerate trace form, of course). We shall assume that

this is the case in all that follows.

THEOREM 5-8. Let p > 3, and let a
}

, a^, , a
p

be a maximal set of linearly independent roots with

respect to H( = H ). Then any root a with respect

to H is a linear combination of the o^ with co-

efficients in the prime field contained in P.

PROOF. Let a = z\.or., A 1 F. By Th. 5.6, the quantities
2a(h ) 2a.(h

j
)

1 1 1

r* \ and "
. , i i, j i r, are integers modulo p, or are

in the prime field contained in P. Since the h^ span H, and since

(x, y) is non-degenerate on H, the matrix

20. (h ) 2(h^h.)
cr
1 (h1 ) (hi;

h )

is non-singular. Thus the system of equations

x Sof.fh,,)

i V J
* i 4 i i r,

a
i (hi )

has a unique solution in P, in fact, in the prime field Z. Thus the

theorem is proved.

VI. SIMPLE SYSTEMS OP ROOTS

Throughout the following it will be assumed that the characteristic

p of F is greater than 1, in order to avoid ambiguities in the appli

cation of Th. 5-6. Further distinguishing of cases will make the tech-

niques applicable at characteristics 5 and 7-

LEMMA 6.1. Let ct
]f a^ be roots, or

1
* i &

2
.

Let

2of, (h.)
A, - 1 J

, 1, J
- 1, 2,

.

j J

where h* = h^ as before. Then one of the
J ^
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following is the case:

A
12

= = A
21 ;

A i __ A A _ 1 AH
12

~
21* 12

~
21

A
12

""

12
=

A
12

=

A
12

*

PROOF. If A
12

= 0, then A
21

- 0, since cr
(hj)

= a . 0^ ) . Now if

A12 0, then A
lg

= i, 2, or 3- If A
12

= 2 or 3, then by

Th. 5.6, a
1

- a
2

and or
1

- 2a
2

are roots, and as in the proof of Th.

5 A, A
21

- 1. Likewise, if A
12

= - 2, or - 3, A
21

= - i. By

symmetry, we need only eliminate the possibility A
12

= 1
= - A

21
. But

then Qf
1

- a
2

is a root by Th. 5-6, as is -
(or

1

- o?
2

)
= a

2
- or

1

. But

A^ ^ ^ = - 3^ where the notation is an extension of that used above;
Qf
2
-Qf

1
,a

1

by Th. 5.6, ofg
- or

1
+

30^
= o?

2
4-

20^ is a root, and by the proof of Th.

5A, A
12

= -1, a contradiction. Thus the lemma is proved.

Let a^t oc
2 , ..., ofk be a set of linearly independent roots with

respect to the Cartan subalgebra H. This system is called SIMPLE if

of^
- of. is not a root for any i j, 1 1, j k. A simple system

of roots is DECOMPOSABLE if it splits into two subsystems S^ S
2 , such

that or
1
(h2 )

= for all a
1

e S
]

, a^
e S

2
- Simple systems of roots

are represented by diagrams consisting of dots and lines, using dots to

indicate the roots of the system and lines their relationships, a^

follows :

If
ofj,

Qf
2

are roots (dots), we connect them by

a single line if A-
2
A

1

= 1
,

a double line if A
12
A
21

= 2,

a triple line if A
12
A
21

= 3.

or
1

and a
2

are not connected directly by a line (passing through no

intermediate dot) if and only if A
12

= 0. From the definition of a

simple system, it follows that A^
. is among o, -

1,
- 2, - 3 if
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i 4 J Thus Lemma 6.1 specializes to

LEMMA 6.2. There are three possible indecomposable

simple systems (i.s.s.) consisting of two roots,

namely :

LEMMA 6.3. The o$ly possible i.s.s. of three roots

are:

PROOF. Let a. , a
2 , a~ be an i.s.s. Suppose first that a. + cc* is

not a root. By Lemma 5.3, A-
2

= A
21

= 0. 3y indecomposability,

A
13 * ' A

23 * '

CASE 1: A
13

A~ = 1 = A
23
A
32*

Th^3 gives the diagram A^
.

CASE 2: A
13
A
31

= 2, A
23
A
32

= 1, or A
13
A
31

= i, A
23
A
32

= 2. These

give the diagram IL

CASE 3: ^3^ = 2 = A
23
A
32

- Assume first that A^ = - 2, A
23

= - 2.

Then A
31

= - 1 =
A^ 2

- Here and in the seuel we shall write

( X
1

- Xk ) for z^=1 X^or.^, X.j_
c P. By repeated applica-

tions of Th. 5-6, we see that the following are roots:

(1 1), (1 2), (1 1 2), (1 2 2), (0 1 2), (2 1 2),

(2 1 U), (2 2 U) = 2(1 1 2), a contradiction.

Now assume A
13

= - 2 = A
32

. Then A
31

= - i =
A^, and the

roots include

(1 1), (1 2), (0 1 1), (0 2 1 ), (1 1 1), (1 1 2), (l 2 2),

3 2), (1 3 3), (2 3 3), (2 3 M, (2 1* JO = 2(1 2 2), a

contradiction. The case A
31

= - 2 = A
23

is eliminated

by symmetry .

Finally let A
31

= - 2 =
A^, A

i3
= "

1 = A
23*

The roots

include
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(1 01), (i 1 1 ), (121), (01 1), (201), (21 1),

(2 2 1 ), (2 2 2 )
= 2(1 1 1 ), a contradiction.

Thus case 3 is impossible.

CASE ki A
13
A
31

= 3, A
23
A
32

= 1 " If
* A

1 3
= " 3 ' A

3 1

= " ^ and the

roots include

(i o i ), (i o 2), (i o 3), (2 o 3), (o i 1 ), i i ),

1 2), (2 1 3), (2 2 3), (2 2 *O = 2(1 1 2), a

contradiction.

If A
I 3

= - 1 , A
31

= - 3, the roots include

(i 01), (201), (301), (30 2), (o i i), (i i i),

(2 1 1 ), (2 1 2), (3 1 2), (1*. 1 2), (If 1 3), (^ 2 3),

(523 ), (52^), (6 2 ii), = 2(3 12), a contradiction.

Thus case ^ is impossible, as is

CASE 5: A
13
A
31

= 1, ^3A^2 = 3 *

The remaining cases: A
13A^ 1

= 3, A
2 3
A
32

= 2 > A
TH
A
^1

= 2 ^

A23^32
= ^* A

13
A
31

= ^ =
-^23^32 Sive rise to sets of roots which In-

clude those of at least one of the subcases of Case 3, therefore are

contradictory .

There remains only the case where all A-^y 0. Then each

A^-j
is among - 1, - 2, - 3, and the roots include

(1 1 o), (1 o 1), (o 1 1), (1 1 O, (1 1 2), (2 1 2),

(2 2 2 )
= 2(1 1 1 ), a contradiction.

This completes the proof of the lemma.

COROLLARY 6.1. The only i.s.s. whose diagram con-*

tains a triple line is
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LEMMA 6A. There Is no l.s.a. of the form:

25

II,: o o . . . o-

II. A .o ... Q (!)

PROOF. The proof will consist of showing that In each case we obtain two

roots, one of which Is twice the other. The techniques are those of the

proof of Lemma 6.3, Involving repeated use of Th. 5.6. We suppress

monotonous computations, writing only the final steps.

I
1

Label the diagram as shown:

or.,

There are four possible cases: a)

A
2i

- 2 =
Vi,r' d > A

21
= ' 2 =A

r,r-T
Cases b) and

d) are equivalent by symmetry.

a) The roots include (i 2 2 ... 2 1) and 2(1 22.. .21), a

contradiction
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b ) The roots include ( 1 2 ... 2 ) and 2(12.
diction.

c ) The roots include ( 1 i ... 1 ) and 2(1 1 .

diction. Thus I- is eliminated.

I
2

* Label the diagram as shown:

. 2 ) , a contra-

. 1 ) f a contra-

or, a
r- 3

There are two cases: a) A
12

= - 2; b) A
21

=-2.

a) The roots include (1 2 2 ... 2 1 i) and 2(1 2 2 . . . 2 i i ),

a contradiction.

b) The roots Include (2 2 . . . 2 1 1 ) and 2(2 2 ... 2 1 1 ), a

contradiction. Thus I
2

is eliminated.

I-. Since all quantities which are roots in the case of the diagreu

II
3

are roots in this case, we refer to II~ for the elimination of bo

cases I- and II..

V Label the diagram as shown:

a- <* Of- or.. Qfe

= - 2; b) A~
2

= - 2.

"1 "2 "3 ^ "5

There are two cases: a)

a) The roots include (12321) and 2(1 2 3 2 i), a contra-

diction.

b) The roots include (2 k 3 2 1) and 2(2 k 3 2 i ), a contra-

diction. Thus
Ij^

is eliminated.

I1
1

. Label the diagram as shown:

" a
r-3

The roots include (1122.. .211) and 2(1 i 2 2 . ,

contradiction. This eliminates II. .

.. 2 1 1 ), a

II
2

. Label the diagram as shown:
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o cr-

27

"

The roots Include (1232121) and 2(1232121), a contradiction

ates II
2

Label the diagram as shovm:

This eliminates II
2

a
i

a
2

The roots include (1 1 ... 1) and 2(1 1 ... 1 ), a contradiction. This

eliminates II- (and with It, I.,).

IK. Label the diagram as shown:

Qfc

The roots include (123^3212) and 2(123^32 12), a contra-

diction. This eliminates 11.

e- Label the diagram as shown:

a,.

The roots include (1231*56423) and 2(123^56^23), a

contradiction. This eliminates 11^
and completes the proof.

Prom I^eramas 6.2, 6.3 and 6.k the following theorem is an easy conse-

quence (IT], p 139)-

THEORM 6.1. Every i.s.s. must have one of the follow-

ing diagrams:
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Br , Cp
:

G
2

:

E
6

: o o

E~: o o o b o o

-rp . xv r*_____o o A r*i ^
Eg. o -o -o o ^ oo

VII. EXISTENCE OF SIMPLE SYSTEMS

We next demonstrate that L possesses a FUNDAMENTAL simple system

of roots, i.e., a simple system a.,, , a
p

such that hj, ..., h
p

form a basis for H. The existence of such a system will follow from the

following lemma, which we shall use again later.

LEMMA 7 1 Let of
1

, . . . , or, be a simple system of

roots in L, and let of be a root independent of

o?
1

, ..., or^.
Then we can form a string of roots

or, or - a
^ , or - or

^
- a* , . . . , /f , 1 < i

g k, such

that /3 -
o^ is not a root for 1 < 1 k .

PROOF. Assume first that o^, ..., or^
is indecomposable. If k = 1,

we form the string a, of - a. , or - 2QT- , or - 30?-, and let /9 be the last

entry which is a root.

Now let k = 2. Then o^, a
g

is of type A
2 , B

2 , or G
g

. In case

B
2 , we may assume A

12
= - 2, and in case G

2 , that A
1$

* - 3 We

may also assume that X is a root obtained by cc by subtracting a
2

a

sufficient number of times so that V - a
2

is no longer a root. Then

and ofp form a simple system, which by Lemma 6.2 is one of the following:
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0)oo 1 )

2)

A similar notation will be used throughout; e.g.,, A
2 o)

will refer

to the case

o o

and we shall put

2*01,) 2f(h1 )A_ -1- A - "*"
1 ^ 1 ^ V%. 4 , fij ^ , I ^ X ^ J\

Then all the quantities of the form
A.J.,

A
i > A

tf i
are determined

by the specification of the case (such as AgO)) except for A
I ^ and

AY 1 We must subdivide further to treat all possible values for these
** '

quantities as indicated in Lemma 6.1.

A
2 0)

If A^ 1

= - 2 or - 3, or if A
I ^

= - 2 or - 3, then

V - or
1

is not a root, and we can take fc = Tf . (Since V , a.,,
Qf
2

form

an 1.3. a.. A tfl = - 3 and A- ^ = - 3 are impossible; however, we shall
* ' i j

in general omit observations of this nature. ) Now suppose Ag 1

- - 1

A
I y If Y - a

1
is a root, so is IT - cc

1

- Qf
2 by Th. 56, and by an-

other application of Th. 5*6, Jf
-

2
is a root, a contradiction. A

similar contradiction results from assuming that V - or
1

is a root in

the case A- - = = A- * . In these cases, we take fl = V.
, i i ,

Next let Ay 1

= i . Then V - a
1

is a root, as is V - a
1

- c*
2

.

If Jf -
20^

-
atg

is a root, so is Jf
- o?

2 , a contradiction. If

$ - or
1

- 2a
2

is a root, so are tf
-

or.,
+ c*

2 , y +
2 , and V- 2 , a

contradiction. Thus we take A = V - or
1

- ac
2

-

Now let A^ 1

= 2. tf - 2a
1

is a root, as is V - 2of
1

- 2cr
2

. If

Tf - 3
1

- 2<*
2

is a root, so are If - or
1

- 2a
2 , >T - a

1
o
2 , )T - <*

2 ,

Y- a
2 , a contradiction. If f - 2or

1

- 3Qf2
= 4 is a root, then
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Ag 2
= - 4, a contradiction. Thus we take ft = V - 2a

1

- 2a
2

- Similar-

ly if A
y 1

- 3} we can take ft = * -
30?

1

- 3a
2

A
2O Here

If(h^)
= cr

2
(h2 )

=
o^O^). Thus A^ 1

= A
I y

=
1 , or

-
i, by Lemma 6.1. First let A^ 1

- -
i . If Y - cc

}
is a root, we

know by Th. 5.6 that X" - 2a
]

is not a root. If Jf
-

o^
-

2
is a

root, so is Tf -
2 , a contradiction. Thus we take fi = * if V - or

1

is not a root and /I = - a
1

if If - a
1

is a root.

When A_
,

= o. either - or. is a root or we take = V. in
, i i

the former case we can take ft = * -
c^,

as above. Now let A^ 1

= i .

Then )f
- a

1

is a root. If V -
20^ is a root, so are V - 2a

}

-
a^

and X - a
2 , a contradiction. Thus either If

- or
1

- a
2

is a root or we

can take ft = V - or
1

In the former case, one may show in similar

fashion that we can take /& = If -
o^

- c*
2

.

A
2 2) Here V

(h^)
= 2a

2
(h2 )

= 2
1
(h

1
). Therefore A^ 1

= - 2, o or

2. If A^ - = - 2, we can take ^i = V. If AY - = 0, we take
, i f, i

A = Y or /3 = If - o?
1

as in the corresponding subcase of A
2

i ) If

A- - =2, we show as above that we can take fa = If- 2a. or
;

i '

A
2 3)

Here 2^(h^)
= a

2
(h2 )

= Q?
1
(h

1
), and A^ 1

= -
1 ,

o or 1.

A can be taken by the procedure of case A2 1 ) . The same choice suffices

in the case A
2 5).

A
2
^) <(h^)

= 3a
2 (h2 )

= 3of
1
'(h

1
), and A^ 1

= - 3, or 3- The first

is impossible by Lemma 6.3. If A^ 1

=
o, we obtain either /i = X or

(I = V - cr
1

- When A^ 1

= 3> we take (* = V -
30^

. However, all these

contradict Lemma 6.3, so the case A^ ) cannot occur.

B
2 0) (As indicated before, this is the case A

12
= - 2, A

^ =0.)
As in the case A

2 o),
we can restrict our attention to the cases

Aw
1

= 1, 2, 3. When A^ 1

= i , Y - 2of
1

- 2o?
2

is a root, and we can

take A = - 2
1

- 2a
2

. This gives an i.s.s. not allowable under

Lemma 6.3. When Av = 2 or 3, V - 2a. is a root, and k* n =
, i i -20?- ,

a contradiction.

B
2 1)

(hy)
= a

2
(h2 )

= ^a^h^. Hence A^ 1

= - 1 , or i. In

the first two cases, we can take ft = If , and obtain a system in the

first case which is impossible by Lemma 6.3. In case A^
'

= i, we can

take ft = V - a
1

-
cc^.

B
2 2) <(hj)

= 2a
2 (h2 )

= o^h^. Therefore A^ 1

= -
1

,
o or i.
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By Lemma 6.3, we cannot have ft = >f Therefore V - Qf
1

Is a root. If

A rf .
- i or we can take fi = IT - or. . If A~, = + 1, then

*' ** ^ **

either we can take /3 - f -
o^, or V -

1

- a
2

Is a root and we can

take /3 = V -
oc^

-
2

.

B
2 3) 2tf(hy)

= a
2 (h2 )

- ^ ofgOij).
Thus either A

y 1

- 0, or p - n
and A^ 1

= t 3. If A^ 1

= o and \f - a
1

is a root, we can take

ft = 5f - a
1

, otherwise /3 = V . A^ 1

= - 3 is impossible by Lemma 6.3*

If A*- .
= 3. If -

30:. is a root, and A^ =
**, a contradiction.

j i ' i-jOf
j
jQ^j

B
2 fc) *(hy)

= 3 2 (h2 )
- |a2 (h 1

). Then A
ft 1

=0, and if * - a
1

is a root, we take fl = V - a
1

; otherwise /* = V .

B
2 5) 3*(hy)

= Gf
2 (h2 ) ^c^Chj). Then Ay 1

= o, or p = 11 and

Aw
1

= t 2 ^ or p = 17 and A^ 1

= t 3 . Ay 1

= - 2 and -
3 are im-

possible by Lemma 6.3. By the same lemma, JT
- of

]
is a root. When

Ay 1

= o, Jf
- of

2
is also a root, a contradiction. If Aw.

1

= 2, we

can take ^ = Y -
3of

1

-
3 2

- If A^ 1

= 3, V - 3a
1

is a root, and

a-

G2 o) As in A
2 o) and B

2 o),
we need only consider

A^, 1

= i, 2, 3.

Now A^_2a
= 6, so V - 2a

1

is not a root and A^ 1

= 1 . Then

(*="- i-or
1

- 6a
2

is a root, and ft -
or^

is not a root for i i, 2.

G
2 i) Jf(h^)

= Qf
2 (h2 )

=
-j

a
1
(h

1
). Thus A

y^ 1

= -
1 ,

o or i. By

Lemma 6.3, we may assume that V - cr
1

is a root. Also, tf
- 2of

1
is not

a root. It follows that Av - = 1, and we find /i
~ V - 2a, - 3a .

O, I I 1

G
2
2 ) Since ^(h^)

=
-j

o?
1
(h

1
), we must have Aw

1

= o. As before,

fl = Y is Impossible. Thus V - o?
1

, and therefore If - a
2 , is a

root, a contradiction.

G
2 3) 2V(h^)

= a
2 (h2 )

=
j<x^(h }

). Either A
y 1

= 0, or p = 1 1 and

A^ 1

= 2, or p = 17 and A^ 1

= 3. A^ 1
=-2 or -3 contra-

dicts Lemma 6.3. Ay 1

= 2 or 3 implies that - 2a
1

is a root. But

AV o~ ~
~

5> a contradiction. If Ay .
= 0, we may assume \f-ot-

f-^U<j ,U2 Q, I I

is a root. But then so is IT - a
g , a contradiction.

3Qf2 (h2 )
=
Qf^h^, or A^ 1

= - 1, o or 1. As be-

fore, we may assume that Ay 1

= i and that V - 20
1

is not a root.

Then we find ft - V - a
1

.

G
25) 3tf(hyO

= Qf
2 (h2 ) = a^h^. Either Ay 1

= 0, or p = 17 and

1

- 2, or p = 13 and Ay 1

= t 3. As in G
2 3)

we must have

, .
= 0. But then Y - a. cannot be a root, and we have an i.s.s. which

o> i '
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contradicts Lemma 6.3. This completes the proof for k = 2.

Now assume we have proved that It is possible to carry out the

process of the lemma for all i.s.s. of (k -
1 ) roots (k ^ 3 ) and let

,
. .., a be an i.s.s. which we shall label as shown:

o"

= - 2.

P
a

Let a be a root Independent of Qf
1

, ..., a-^.
Since

of^, ^ Qf^

is an i.s.s. of k - 1 roots, we can find a string of roots a - a. ,1
i

a - a . -Qf. , . . . , T& , 2 ^fe ia * k, such that y - a . is not a root for
1

1

1
2

3 1

2 ^ i ^k. Then V, 2 , -., a^ form a simple system, which is inde-

composable unless Ayi= o, 2i^k.
Suppose first that or

1
, . . . , or^

is of type A^. By Th. 6.1, the

system If , Qf
2 , . . . , a^ has one of the following diagrams :
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AO) o

*2 "3

33

A2) mJ U U U J rtp y
a
2

a
3

a
k-1

a
k

= - 2.

A3) = - 2.

,
a. of.

J JV I K

. . . o-

A5)

A6)

A7)

a
2

a
3

a
k-i

a
k

1Lo o

' A
k

- - 2 '

(kfc M

A8) o (k I
a
2

a
3

a
k-2

a
k-i

a
k

A9) o r

Aio)

All)

2 3 ^ "5
a
6

a
l
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A12)

A13)

5 6 "7 "8Qfr

If
1

,
. . . , <*k is of type

one of the following diagrams:

then .., or, must have

Bl ) o- ' A
k-i,k

- -

B3) , k = 3, A
2

= - 2.

If a^ ..., of^
la of type C^, If, a

2 , ...^
or-^

has one of the

following diagrams:

Co) o , A
k,k-i

Cl ) O A
k,k-i

= - 2

. k = k, A,., - - 2.

If a,, ..., otk Is of type D
fc

(k fe

3 one of the following:

), then V, c*
2 , ...
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a
k-l

DO) o
* "

k-2

'k-i

Di ) o

35

D2) o-

2 "3

D3)

a,-

D5) o-

?
a
6

D6) o.
a

DT)

"6
a
8

D8) oooo
D9) o

D10) ~ 2>



SELIGMAN

Of
i.

D15)

If a

fallowing :

is of type P, then Y> c*
2 , a, a^ is one of the

PI)
^ ^ 2" y

' Ag3
- 2.

If or^ ,

following :

is of type E, then V,

*6

E,l)

is one of the
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"69 *

E
62) oJ> o -o

a
2

a
3

a
b

a
5

E
6 3) o-

E
?
0) o

E
?
2) o-

2 ^3

* a- a^ or, aR a.

r

o o-

o a
8

o a

2
o
3

ar
4 5 g 7

In each case, we demonstrate a root /3 obtained from < through a

string of roots tf
-
o^ , 7f -

a^
-
a^ ,

. . .
, /3 , 1 i i

g
^ k, such that

/3, a^ a
2 , ..., of^

form a simple system.

AO) In case A^ 1

= - 2, we have /3 = K. If A^ 1

- 1 or o,

and < - a
1

is a root, < - a
1

- a
g

is also a root, as is If - a
2 , a

contradiction. Thus we have /3 = Y. There remain the cases A^ 1

= 1 ,

2 or 3. In each such case, JT- A Y .a. is a root, but V - (A Y , +1)0:,
t, I I O, > I

is not. This is clear if Ay - 2 or 3; when Av 1
-

1, 7T- 20;-
o, I

, 1 I

a root implies that V - 2a
1

- c*
2

is a root, as is V - a?
2 , a contradic-

tion. A string of the prescribed form can be formed using Th. 5*6,
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leading to the root Y -
Ay 1 (o^

+ ... +
or^).

Now suppose * -
(Ay 1

+ 1
)(*,,-

A
^ ,

(or2
+ + ak ) Is a root. Then

so are V -
(Ay 1

+ 1 )a
1

- A*
1
(or2

+ . . . + Qf
k-1 ),..., Y -

(A^ 1

+ 1 )of
1

-

Ay^a2 , Y- (Ay^
- 1 )a

1

-
Ay^a2 , *-

(A^ 1 -1)0^ +
ofg, Y + <*

2
and

y- ofg,
a contradiction. By similar reasoning, we see that we can take

($ = y . Ar , (a,
+ ... + ar

k ) (and thus that Ay^ f 3 ).

A1 ), A2) As in
Ag! ), A

2 3),
A
r,i

s " 1 > or IB If A
*, l

= " 1

or o, we can take /3 = unless Y - a
1

is a root. In the latter

case, if Y -
1

- or. is a root, j > 1, so is If - or., and we can

take ft = Y -
ofj

Now let Ay 1

= 1 . If V - 2c
1

is a root, so are

tf - 2of- - a
g

and If - a
2 , a contradiction. If If -

o^
-

2
is a root,

so are y - or
1

- a - a , Y - a
1

-
of-,, K -

or,,, a contradiction. It is

clearly impossible that )f - Qf
1

- a * be a root for j > 2. Thus we take

ft = Y - Qf
1

-

A3) Here A^ .
- - 2, o or 2. In case A rf . = - 2, we take

t> i > '

/S = tf . In case A^ ^

= o, we take ft = Y unless V - a
1

is a root,

in which case we have /3 = Y -
or^

. Next let Ay 1

= 2. As in A1 ), A2),

we see that we can take /3 = V - 2o?
1

.

Aif), A5) Here Ay 1

= -
1, or 1. If A^ 1

= -
1 or 0, the

assumption that Y -
1

is a root leads to the conclusion that Y - a
2

is a root, as in Ao). Thus /3 = V in these cases. When A^ .
= 1,

o, i

V 2a
1

cannot be a root, and we can form a string to arrive at

y - cc
1

- ... - ofk_ 1
, which can be taken as our fh unless Y - a

]

- . . . -

a
k-l

" ak i3 a root * ^ the latter case, we take ft Y - cr
1

- . . . -

A6) Here Ay 1

- 2, o or 2. A
y 1

- 2 is impossible. If

A^ = o, we have ft = Y as in A4), A5)- If Ay 1

= 2, we form a

string of roots of the desired type to arrive at S = JT - 2oc - ... -
20^

It is readily checked that S - a . is not a root for 1 J k - l . If

S - ak is not a root, then &, o^, ...,
o^,

form an impossible i.s.s.

Let ft = I - ak
= Y - 2a

1

- . . . -
2^.,

- ofk
- Then fl , <x

]9
. . ., <*k

form an i.s.s. of a type impossible by Lemma 6.1*.

A7 ) Here Ay 1

= - 1 , or 1 , and we can again take ft Y
unless Aj 1

l . In this case, Y - or
1

- a
2

is a root S, ; either we

can take # = * or 5 -
a^

is a root. If & -
o^

is a root, so are

S-
3

-
of^, S -

cr^
- Y -

1

- cr
2

-
cr^,

V -
1

-
of^

and Y - <V a

contradiction. Thus we take /3 = $ .
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A8) Again A
y 1

= -
1, or 1, and ft = \f unless A^ 1

* 1.

When A^ 1

- 1 , we form a string leading to V - or
1

- cr
2

- . . . - a
k-2 S

& - or. is not a root for j 4 k - 1 . If i - ak_ 1
is a root, so are

$ * a
k-i

" ^ ^^ therefore K - cr
k , in contradiction to the preceding

remark. Thus we take /S =
fc .

A9) A,
1

= - i, or 1; A
y 1

= - 1 is Impossible, and we have

ft = V if Ay 1

= 0. When A^ 1

*
1, we find (* <* f - a

}

- cr
2

- a .

A10) As in A9), either A
y 1

= 0, /* = V (which is impossible),

or Ay 1

= i, = >f -
ofj

-
2

- a .

An ) Here either A_ - = o, rt = V, or A- . =
1, = V - a, -

*, i
, i i

... -
a^, and the latter is impossible.

A12) Here either Av .
= o, =

if, or Ay . = i , f* = V - a. - an -

a> '

> i t d

a^;
both are impossible.

A1 3 ) Either A- -
=

0, /I =
, or A^ . 1 , fl - If - a ,

- . . . -
l, i o, i i

a^j
both are impossible.

BO) A^ 1

= - 2, -
3 are impossible. If A^ 1

= -
1 or o, we

have ^3 = if as in Ao). If A^ 1

is among i, 2, 3, the roots In-

clude )f -
A^ 1

(a
1

+ ... + of
k-1 )

= S , and
Aj k

= 2A
y ^ This Is Im-

possible unless A^ 1

= i . Then we have a string leading to If -
1

-

' -
"k-l' ^ 1

: ' - a
k-

- 2V ^ ^1
- ' - a

k-2
- 20f

k-1
- 2a

k>

..., f - 2a
1

- ... -
20^

= ^5, and ft -
a^ is not a root for i i& k.

Bi ) Here A^ 1

= -
1 , o or i . If A^ 1

= -
i or and V - ce

}

is a root, we can take /3 = V -
1

. This gives an impossible system in

either case. Hence either ft = V or A tf ,
=

i . In the latter case,
* '

V- a
1

Is a root, and V - Qf
1

- a. is a not a root for j * 2. If

If- cr
1

-
ofg

is a root, so are -
o^

- a
2

- or and 3f - a
()

- a , a

contradiction. Thus we have ft = T -
1

in this case.

B2) Again Ay 1

= -
i, or 1, and )f - ot

}

Is not a root If

A^ 1
f 1. But then V, o^, a

g ,
or^, or^

form an impossible i.s.s., so we

can assume A^ 1

= i . Then we form a string of the desired type leading
to Jf- a

1

- o?
2

- a -
a^

= /a , and are done.

B3) Again Ayi
- -

i, o or i. If
AJ. T

- i or o, we have

/a = If . If Aj, . =
i, the roots include If

- a. - a -
or,. We can take

, i 123
(i V - a

1

-
ofg

-
a^

unless - a
1

- c*
2

-*a is a root; but then so

are V - QT
I

- 2c*
2

-
2a^,

V- cx
1

- 2c*
2

- a
3

, y- o^
- a

3
> V-

3
^ a con-

tradiction.
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CO) As in BO), we eliminate Ay 1

= - 3, - 2, - i , (in the latter

two cases by taking fl = * ) When Ay 1

= 1, 2, 3, we find a string

of the desired type leading to /3 = V -
Ay 1

(2a
1

+ ... + 20:^ +
o^),

and /3 - a- is not a root for any j. This is only possible, by Lemma

6.4, when A y ^

=
1 .

C1 ) Ay = - 1, or 1 . As in B1 ), Y - a
1

is not a root unless

A* i
=

1, and we have ft = Y. A^ 1 is therefore impossible by
' '

*^-

Lerama 6.4. If Ay 1

= 1 and k > 3, we have /3 = Y-
1

as a suit-

able root. When k = 3 and $ -
Q^

- OC
Q

is a root, so is Y - or
1

- cr
2

-

a
3

, and we can take /3 = Y - o
1

- a
2

- a in this case.

C2 ) A- - = - 2, or 2. A^ - = - 2 is impossible. If A^ . = 0,
t, i ,

i t, i

Y - a. cannot be a root, and we again have an impossible system. Thus

Ay 1
2, and we can form a string of the desired type leading to

/I = Y - 2a
1

- 2o?
2

- 2of -
o^,

and /3 , QJ
I

, o?
2 , or, a^ form an l.s.s.

impossible by Th- 6.1. Therefore C2 ) is eliminated.

C3) A*. ,
= - 2, o or 2, and A^ 1

= - 2 is Impossible. If
o, i i, i

A* t
= o, we can take /3 = V . If Ay .

- 2, we can form a string to
a, i i, i

arrive at Y- 2a
1

- 2a
2

- a = * . If & -
a^

is not a root, we take

/3 = & . Otherwise, we can take ft =S-a
1

-a
2
=Y- 3Qf

1

- 3o?2
- cc .

Do) As in BO), Co), Ay 1

= - 2 or - 3 is impossible. If

Ay 1

= - i or 0, we have fc = Y . Otherwise, Ay 1

= 1, 2, 3, and

+ . . . +we can form a string of roots leading to Y -
Ay 1

(2a
1

ak-i + ak^ anc^ take this root as our ft . By Lemma 6.4, this implies

that Ay 1

<= 1 .

Di ) Ay 1

= -
1 , o or 1 . If Ay j

= - i or o and V - a
1

is

a root, V - o?
1

- c*
2

must be a root, by Lemma 6.U. Then Tf - a
1

- or
2

- or
,

Y -
o^

-
Qf^,

Y - of are roots, a contradiction. Thus /9 = V if

A^ - * - 1 or 0. Now let A^ = 1 . Then take /3 = \f - . if
O, I f , I I

Y - Qf
1

- a
2

is a root, so are Y -
o^

- o:
2

- or , Y -
o^

- a., Y - a., a

contradiction. Clearly, fr - a. is not a root for j # 2.

D2), D3) By symmetry, we need only treat D2). Ay 1

= - 1, or 1.

Now Ay 1

= -
i is impossible, and when Ay 1

= o ve have (5 - Y
Next let Ay 1

= i . Then we have a string leading to ft = Y -
(or

7
+

or
2

+ c*

3
+

a^
+ a

6 ), and fl - a- is not a root for any
'

j.

DO, D5) We treat D4). Ay 1

= - 1 , or 1. Ay 1

- - 1 is again

impossible, and ft = Y when Ay 1

= 0. When Ay 1

= 1, we find
'
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D6), D7) Here only A^ 1

*
i is possible, giving A Y - a

1

-

' ~ a
6

" a
8 ^n *X>)' But this system also violates Lemma 6.1*.

D8)-D11) A^,
- -

i, o or 1. If A^ = - 1 or o, we see that

)f - or
1

cannot be a root. Now let A^ 1

= 1 . In D8) and Dio), we ob-

tain = K - or
1

- o?
2

-
o^. D9) and D1 1 ) are symmetric with these cases.

D12), D13) A
1

= - 2, or 2. The first two are Impossible. In

D12), we arrive at 'fl = <" - 2
1

- 2or
2

-
20^, which is also impossible.

Di3) is treated symmetrically.

DU), D15) A
y 1

= - i, or i. Of the first two, only o is

possible, and there /3 = . For A^ 1

=
1, we obtain /i if - or -

'

a
2

- <*
3

-
or^

in DU) and A = V -
c^

- a
2

- a -
or^

in D15).

PO) A^ 1

= - 2, - 3 are Impossible. If A~
1

= -
1 or o, we can

take & = V ; by Lemma 6.4, this eliminates A-. . = - 1 . If Av ,
= 2

i, i 9 i

or 3, V - 2a
1

and J"
- 2a

1

- 2c*
2

= S are roots, and A*
3

= k, a

contradiction. Thus A^ 1

= 1 remains, and here we find /3 V -
kct^

6a
2

- 8a
3

- tav
Pi) A^. 1

= - 1, o or 1, the former two being impossible. When

A
, 1

= ^ we arrlve at ^ = V - 2a
1

- 3 2
- to

3

-
2a^. But this also

gives an impossible i.s.s.

P2 ) AK . = - 1 , o or 1 . If A- . = -
i or o, * - a, cannot

*f i> i i

be a root. But fl - i is likewise impossible. Therefore A^ 1

= 1,

and we can take /i = V -
1

. However, this i.s.s. is again impossible.

A^. 1

= - 2, - 3 are impossible. If A~.
1

= - 1 or o, take

If
Ay 1

1, 2, 3, we arrive at /^ = V - A
1
(2a

1

+ 3c*2
-

kos^
+

30:^
+ 2c*

5
+

2a^), and this implies that A
y 1

= i !

E/-1 ) A** ,
- 1, or 1. Av - = - 1 is impossible. In case

o 1, 1 o, i

A
tf

=
* we have ^ = * " a

i'
since /3 = Q gives an impossible i.s.s.

But /3 = }f
- a

1

also gives an impossible i.s.s. Thus only A^ t

= 1 is

possible, and in this case we have /3 = V - or
1

.

E
62) Only A^ 1

= o is possible, as in Egl ). Then we arrive at

/
- *-

,

- a
g

- i
3

-
or^

-
oy

E
63 ) A^ ,

= o is possible, with A = <". If this is not the case,

then A^ }

= 1, and we can take (* = X - 2o:
1

- 2
2

- 2
3

-
o^

-
6

.

E
?
o^ Either A^ 1

= - 1 or and /3 = >T, or A^ 1

= 1 , 2 or 3,

and we obtain /3 = Y -
Aj, 1

(3a
1

+ Ua
2

+
5^3

+
60^

+ to
5

+ 2o;
6

+ 3of
?
).

This is only possible if *A^ 1
1, by Lemma 6.1*.
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E~1 ) As in Egl ), A^ 1

= - 1 or is impossible. If Ay 1
1,

we have /I = V - a
1

E~2) Here
A^. 1

= - 1 or is impossible. If A^ 1

= 1, we

arrive at A - tf
- 2a

1

- 2a
2

- 2a -
20^

-
o^

-a-.

EgO) The only possible case is A^ 1

= 0, A = tf . For Ay 1

= -
1

-2, -3 are eliminated as above, and otherwise we find

/3 = V -
Ay i^cr- + 6a

2
+ 8of + lOa. + I2a

5
+

8a^
+ to- +

6ag). But this

gives an impossible i.s.s. for A^ 1

=
1, 2, 3.

Egl ) As in E~l ), the only tentative situation possible is

Ay 1

* 1, fl = IT-
Qfj.

But this contradicts Lemma 6.1*.

Thus the conclusions of the lemma hold by induction when a f ..., a,

is indecomposable. We observe also that in case )f , tf - a* , V - a*
x

l 1

cr
1 , . . . , IT - a

1
-... - of . =

/3 is the string of roots by which /*
X
2 1

x
s

was obtained from V, we can return from /3 to V in the sense that

the value of AA * assures us that ft + Q?J is a root, either that of
^s ^

AAJ./V M or that of AA -T
( the latter used only if a, =

a^ )
/l+aia S-i ^^s x

s-i
1
s

s

assures us that /^ + a* + a. is a root^ until finally we arrive at

^ by such reasoning. This observation is verified by examining the

process by which /3 is obtained from V in each of the above cases.

It follows that if 8 is a root such that J(h^)
= 0, i i i k, and if

/3 -i- i is a root, then V + S , and consequently a + $, is also a root.

Now assume that the simple system of
1

> . .., cr^ decomposes into j

"pairwise orthogonal" indecomposable components. If j
= 1, we have al-

ready proved the lemma. Suppose that we have proved the lemma for sys-

tems with ( j
-

1 ) indecomposable components, and let a
]f

. . ., &m be

an indecomposable component of or-, . .., av . Let a - as , cc - a. - a, ,IK 1
1

1
1

1
2

. . ., a - a. - ... - a
1

= V be a string of roots, m + 1 4 i_ k, such
1 s q

that If, Qf
m+1 , ..., a^ form a simple system. Since o^, ..., am is

indecomposable, we can form a string V, Y - a. , V - a. - a. ,

J
^

J
i J^

)f
- a- - ... - QE. = /3 of roots according to the procedures of the first

J
i

Jr
part of this proof, i j i i m, such that ft , o^, ..., c^m form a simple

system.
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Now suppose that /3 - a
t

Is a root, t > m. Since
t
(h

i )
= o

for 1 * i * m, we can apply the observation above to show that Y -
t

is a root, in contradiction to the construction of tf . Therefore,

/3 1 ofj,
. ..,

of^
Is a simple system, and Lemma 7i is proved. An immediate

consequence is the following theorem:

THEOREM 7-1. Let L be a restricted Lie algebra
over F having a restricted representation with

non-degenerate trace form. If [LL] = L, then L

possesses a fundamental simple system of roots with

respect to any given Cartan subalgebra H.

VIII. SYSTEMS OP TYPE A

THEOREM 8.1. Let a
1

,
. .., a

p be an I.s.s. of type

A^ , labeled as in the proof of Lemma 7 1 Suppose

there Is no I.s.s.
fl^, ..., /8 p of r roots, each

linearly dependent on
o^, ..., a

p , of type other

than Ap . Suppose also that the matrix (a^(h-)),
1 1, j r, is non-singular. Then p%(r + 1 ),

and every root expressible as a linear combination of

a.,,
. .., a

p is among the following and their nega-

tives, where we use the conventions of 6 in writing

( AT A2
Ap ) for A^ + X2

of
2

+ ... 4- Xrap :

(i o ... o), {o i o ... o), ..., (o ... o i );

(1 1 ... 0), (0110 ... 0), ..., (0 ... 1 1 );

(1 1 1 . . . 0), . . ., (0 . . . 1 1 1 );

(1 1 ... 1 0), (0 1 1 ... 1 );

(l 1 ... 1 );

except possibly when p|(r + 2), when the following

and their negatives may be roots:

aQ
* (i 2 3 ... r), (1 2 ... r-1 r+i ), (1 ? ... r-2 r r+i ),

, 3 ^ P+O/ (2 3 r r+1 ).

In the former case there are r(r + 1 ) such roots: in
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the latter, (r + 1 ) (r + 2).

PROOF. Let a * be a root, or = (^ ... / r ). If ^ * 0, let

be the first non-zero coefficient. Then A^ v
-

-ft*,.* 4 0. Hence
Of, i KT I

either or + a^ or a -
ar^

is a root. By replacing or by - a if nec-

essary, we may assume that a - Qfv is a root. Now Aw v - = 1, so
It Ct ~C^T,- > J&~ '

a - a
k

- ak_ 1

is a root. We repeat to arrive at a root /3 = a - ak
-

ak-l
" **" " a

i
such that the coefficient of

o^
in /3 Is - 1 . If

^ 1
4 0, we take /3 = a. Thus in any case f3 is linearly independent

of ofp , ..., a By Lemma 7.1, we can form a string of roots fZ - a .
,

v
(3 -

a^
-
a^ , . . . , /^ -

a^
- ... - orj = Y^ 2 ^ i * ^ r, such that

y, a
2 , ..., ar form a simple system. If this system is indecomposable,

it must be of type Ap by assumption, and therefore is one of the

following :

Ai ) o o o . . ,

A2)
a
r-i

The only other possibility is the decomposable system

Ao) o o o . . ,

* a
a
3

Now if pj(r + 1), let h
Q

= h
1

+ 2h
2

+ . . . rh . Then h # o,

but Qf
1 (h ) =0, i < 1 -w r. The matrix (^(h-)) is singular in this

case, contrary to assumption. Thus we see that
pj|^r

+ i ) . Let

>T= ( X
1

Xr )^ X
1

^ 0. Since - ct
1

- a
2

is a root, Y i -
a,

. If

Jf# a^ the pair (Ay ^ A
I y ) must be one of the following, as in the

proof of Lemma 7 i :

Ai ) (Av ., A. ^) = (- i, - 1 ), (o, o) or (i, i ).
9 ' I Jf

A2) (A
fcl

, A^^)
= (- 1, - 1 ), (0, 0) or (l, 1).

AO) (Ar^, A^r )
= (-1, -1), (0, 0), (1, 1), (1, 2), (2, 1),

(-1, - 2), (-2, -1 ), (1, 3), '(3, 1 ),

(-1, -3), (-3, -1).

Ai ) A = 2 - \
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A
J,2

- * 1 - \ + 2 *2
- *

3

A
,r

- - Xr-1
+ 2 Xr -

Hence Xr_!
= 2 \r , Xr_2 = 3 Xr > -. X 2

= (r - 1 ) Xp ,

and A^ 1

= (r + i ) Xr + 2. Therefore Xp
=
r^y^v- 1

" 2 ^ A
y

^r. =
FfT' ^r-i

=
i^T' "' ^2 = "

"rTf ' \ =
rTT ' Now A

i ,

2 =
A^y

= z X^JL y
= -

2
=
rTT

* therefore r - 2 (mod p),

and T=-(i3 i*--..rr+l).

A
, i

= 0: V *
rTT ' ^r-l

=
rTT ' "' X 2

= - 2 ^y, ^1
= -

FJT

Aa before, 2 = A = - \
2

= 2
2zj. ,r-i=r-fi,2o, a contra-2

diction.

A
,1

= " 1 : r
=
r+T * '"' A2

= - 3

2 - - X
1

- X2
=

-2~=y ; 3r = 6, or p|(r - 2). If r - 2, we have

Y = - o?
1

-
ofg.

If r > 2 and V - Q?
I

is a root, we see as in the case

Ai ) of the proof of Lemma ?! that V - of
1

, Qf
1

, ..., or form an l.s.s.

or,

of a type impossible by Th. 6.1. Therefore Jf
-

cc^
is not a root, and

V, o^, ..., a
r_ 1

form the impossible l.s.s.

A2) As in Ai ), we find \ =
pff(A^ 1

- r), - r + 1

XI T % T 1 % -V' * 1 * '

f 2 = A = Z X A = A A
v 1

; r - i = r + 1, a contradiction.
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Ay j

= 0: Xr *
^~r

= A-y
= 2; p|(r + 2 ), and V = (1 2 . . . r) =

A^ 1

- - i: Tf = -0 i ... i )

AC) X^-J-A^, X
r^ 1 s^l-Ay^, -.., AT ^jqrf^r

Ay 1

= 0: Then K o, contrary to the choice of V

r

A, v = - 3: if
-

or, is not a root, A^, =| 0, and IT, or,, . .., or
t

i,i i r i r-i

form the system

V

This is impossible if r > 2 and contrary to assumption if r = 2.

AlV =-2: r=r+i, a contradiction.
1 99

A
I ^

= -
ij p|(r -i- 2), and )f = - (2 3 . f . r r + i).

_O-p O-rt

A
V)1

= -2: 2 = A
r>t -yn-A lf

.
- y^jr-r*!, a

Ay 1

= - 3: X r t > V- Qf

1
is not a root, and If, o:^

form the i.s.s.

f
or, ofg vr-1

which is impossible as in the case A, v = - 3.
1 ,9

For A^ 1

=
i, 2, 3, we obtain the negatives of these roots. Thus

among the possible values for V when a is not a root, we have only

0^ and - (1 1 ... i ).

If
ot^

i V + Qf
2

is a root, but T + a* is not a root for j > 2.

)f + a
2

+ a is a root, but IT + cr
2

+ a . is not a root for j >1 , j / 3*

(For j
= 2, IT + 2a

2
a root would imply Y - or

2
a root; for j > 3,

V + a
2

+ a . a root would imply V* + of - a root. ) By successive applica

tion of this type of reasoning, we obtain the string of roots

cr
g

in which each member after If is the only root obtainable from its

immediate predecessor by adding some
ctj,

1 < J * r. If .

+
erg

+ ... + ar + a.i is a root, 1 < j < r, so are If + or
2

+ ...

ar
"
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J

(1 0,.. 01 ... 1 ), ..., (1 o... Oi)=a
1

+ ap , a contradiction If

r > 2. (If r = 2, It is clear that If + 2a
2

is not a root. ) If

f + of
2

+ . . . + ap + orr is a root, so are (i . . . i -
i ), (1 . . . i o - i ),

. .., (10... 0-0*0^- ap , a contradiction. Therefore the root /$

is among the string [ 1 ] . In QUT construction of fl , the coefficient of

or
1

was - 1 except when & = a. Therefore /i = a is among the roots

(1 ... 0), (i 1 ... 0), (1110 ... 0), ..., (1 ... 1).

y = - (1 ...1): By the kind of reasoning applied above, we find

that ft is among the string

[2] -
(i ... i), - (1 ... i o), ..., -(10 ... o).

Now either or = /3 , or or = /3 +
o^

+ . . . +
a^,

k < r. If a = (I , we

are done. If or = A + cr
1

+ . . . +
or^,

then since the first non-zero co-

efficient of a was assumed to be among - 1,
- 2, - 3, we must have

k < m, where m is the number of non-zero coefficients of ft in the
k m

string [2]. Thus a = - (o ... o i . .. i o ... o), and a is among the

negatives of the roots listed.

Suitable application of Th. 5-6 shows that ail quantities listed in

the "non-exceptional" list actually are roots.

"When p|(r + 2), the following possible values for )f were also

encountered: - (i 3 ^ r + i ), of
c

= (i 2 . . . r), , (2 3 4 . . r + i ).

In each case, applications of Th. 5.6 show that a
Q

is a root*

1f=-(i3ii...r+i): As before, fa is among

[3] Y, Y + a
2 , K +

ofg
+ c*

3
, ..., Y+ a

2
+

3
+ ... + ar .

Now either a = A , or /3 + a. is a root. In the latter case, if
1

j
/i - + a

2
+ . . . + a

1
,j>3, /& + a

1
--(02...J-lj + i...r+l

Also roots are A-
1
=-(223...j-ij+i . .. r + i),

- (2 2 3 j
- 2 j j + 1 ... r + 1), ..., - (2 2 3 5 r + i),

-(2335 ...r+1), -(2355 ...r+1), -(i 355 ... r + 1 )
-

V- a-, a contradiction. If /3-V+ofg-(l2it...r+i), and

^ -i- a
1

is a root, so are /i-a
1
=-(22^5 r + i ),

- (2 2 3 5 ... r + 1 )>
- (2 3 3 5 - r + i ),

- (2 3 5 5 r + i ),

-(i355--r--i)=Tf-a
g

, again a contradiction. If /3 If and

A + a
1

is a root, so are /i + a
1

+ 2
2

= - (o 1 k . . . r + i ),
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-(lli*...r+O, -(ii4.^...r+i)-K-a2 , a contradiction. Thus

v = A , and all possible values for a are negatives of members of the

List.

= a
Q

: fe must be among

Tf , V + Qfr , Jf + QPr
+ Qfr _.,* > + Ofr

+ Qf
r^ 1

+ ... +
Qfg.

Since the coefficient of or
1

in /& is not - 1 , a = /3 , and has been

Included in our listing.

^ = + (2 3 ^ . . . r + 1 ): K + o . is not a root for any j > 1 , so

A = y . Since the first coefficient of A is not - 1 , or = fi = JT .

If or is a root, all the "exceptional" quantities are roots. This

completes the proof of the theorem. In succeeding theorems of this type,

;he observation that all listed quantities are roots will be omitted.

It follows in each case by Th. 5-6.

IX. SYSTMS OF TYPE D

THEORM 9-1. Let Qf
1
, ..., ofr be an i.s.s. of type

Dp (r fc, *O, and suppose there is no I.s.s. /3^ . ..,^1

of r roots, each linearly dependent on o^ , ..., a^,
of type B, C, E or F. Then every root which is a

linear combination of a
1

,
. .., ap is among the follow-

ing and their negatives, where
1

, . .., a
r is labeled

as in the proof of Lemma 7 1 :

(1 o ... o), (o 1 o ... o), ..., (o ... o i );

(l 1 ... 0), ..., (0 ... 1 1 0), (0 ... 1 1 );

(1110 ... 0), ..., (0 ... 1 1 1 0), (0 ... 1 1 1 ),

(0 ... 1 1 1 );

(11110... 0), ..., (0 ... 1 1 1 1 0), (0 ... 1 1 1 1 ),

(0 . . . 1 1 1 1 ), (0 . . . 1 2 1 1 )j

(1 ... 1 0), (l ... 1 1), (0 1 ... 1 ), (01 ... 1 2 1 1 ),

. . ., (0 1 2 . . . 2 1 1 )j

(1 ... 1 ), (1 ... 1 2 11 ), (1 ... 1 2 2 1 1 ),...,

(1 2 ... 2 1 1 ).

There are 2r(r - l) roots in all.
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PROOF. Let of be a root dependent on
1

, , orr
. If the coefficient

of
1

in or is not zero, take /3 = a. Otherwise, if a. has the

first non-zero coefficient, we proceed as in the proof of Th. 8.1 if

j < r - 2; i.e., replacing a by - a if necessary, we form a string

of roots a - a
i-i' *,<*- Qf.

j

- . . . - cr
1

= /3 . A similar procedure

is possible except when a =
^p.^p-i +f*rQfr ' with /*r

= -/*r-1 In this

case, replacing a by - a if necessary, we may assume that a - o:
r-1

is a root, and then form the string or, a -
^p.^ ,- a

r-1
- ... -

a,
= /3-

Now proceed according to Lemma 7 1 to obtain a root }f such that

<, a
2 , ,.., a^ form a simple system. By the hypotheses, this can only

be one of the following:

DO) o
Y ctn of of.

l:Di ) o o- - o . . . 60
2 r

a
r-2

a
i

D8) o -o o o

D9) o K>

or,
*

DU) o

D15) o-

3

f

a
^

2 <-*n =

DO) Solving the equations obtained from the relations, we find that

Y= ( \ Ap) is given by Ap-1
= A

p , ^^ = 2 fcp ^ 3
= . . .

X1 j XT
- Ar - , and \f=4-Airi (2 ... 2 1 1). Thus A^ t

^ .
I I V, I C_ Q, I Q, I

A^ 1

= - 1 : 2 ^rfy = " A
>1 ^ , or A

I ^
- 2. Then Jf-

1

is

not a root, and Yj Qf^ > Qf
r-1 form an i.s.s. of type Bp , contrary
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to assumption.

Ay 1

= -2: Here Y, a
]f , cr

r_ 1
form an i.s.s. of type Cp , a

contradiction.

v ,
t> '

- 3: 2 3, a contradiction.

For Ay 1

" 1, 2, 3, replace V by -
Jf. Then -

tf, 2 ,
. .,

form a simple system, with A ^
1

= - i,
- 2, - 3- But this has just

been proved impossible.

D1 ) Unless

We find Xp.,
-

A
,1

- 2Xr + 2.

A
1

i:

A^ 1

= 0;

A
*,1

' * 1:

5, a contradiction.

D8) (A^,, A,

> = 2 J + 1, A

I
(1, 1 ), (o, 0) or (- 1,

- 1).

p' r-2
* 2 r

= " " ' s
2* ^ " 2

= -
2**

X
1

= 0, a contradiction.

- (1 2 ... 2 1 1 ).

^ =
|v

^
2

= " 3 ' X
1

= - 2; 2 =
A^

)
= (1, O, (0, 0) or (- 1, - 1).

2 A- +
|-, A^'^

= 2 An +2.
1 * 1 1 *\

+ i,

AM ,
- 0:

f >

contradiction.

DU) (Aj 1

X
3

- 2 X
fc

+ 1,

Hi = 1:

contradiction.

AV 1

= 0:

a contradiction.

A
3 y

= l + ~=i, a contradiction.

-
1; 2 = - A

3
- =

1, a contradiction.

= - - =

i, i), (0, o) or (- i, - i ).

J, \ = 2 \ + 2, X^
= 1 A J .

"

"
' 2 ' a contradiction.

-
r A

i,v -l\v

D9) and D15) are Impossible by symmetry with D8) and D1^). Thus we

have either Va
1
or)T--(i2...2li).

V Qf
1

: In the following string of roots, a root immediately follow-

ing another is the only root which can be obtained from it by adding some

of 4i j > 1 If there are two or more such roots, all of them will be
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enclosed In a bracket, and the next entry in the string is a bracket

containing all roots obtainable from these by adding a single a., j > 1,

if more than one such root exists. The reasoning follows the lines of

the proof of Th. 8-1, and /3 is among these roots:

If = (l ... 0), (l 1 ... 0), ..., (l ... 1 0),

[ (l ... 1 1 0), 1 ... 1 1 }], (l ... 1 1 ),

(1 ... 1 2 1 1 ),..., (1 2 ... 2 1 1 ).

Since the first coefficient of is not -
1, we have a * /J .

Y*-(i2...2ii): As above, fl is a member of the string
V= - (l 2 ... 2 1 1 ),

- (1 1 2 ... 2 1 1), ...,

- (1 ... 1 2 11), - (1 ... 1), [- (1 ... 1 0), - (l ... 1 1)],

- (l ... 1 0), ..., -(10 ... 0) = - Of
1

.

If a = ft , of is among the negatives of the roots listed in the state-

ment of the theorem. Now let a = ft + a
1

+...,+ or, , k < r - 1 . If no

coefficient of /3 is - 2, then of is a root of the list if it is a

root, as in the proof of Th. 8.1. If some coefficient of /3 is -2,
then a is among the roots listed except when

k
-(i... 12...211). In this case, k r ^ 2, and

k k+i
as- (o... 02. ..211). Also roots are - (o . . . o 2 . . . 2 i i ),

...,-(o...oi i), (o ... o 1 1 )
= of

r-1
+ a

r , a contradiction. If

k = r -
i, the coefficient of of

r-1
in a is non-zero, and we must

have /S = -(1 ... ioi),of = a
r-i

~ a
r'

which is impossible. Thus

a is among the roots cited in the theorem, and the theorem is proved.

X. SYSTEMS OP TYPE B

THEOREM 10.1. Let cc
}

, ..., or
r be an l.s.s. of

type Bp and suppose there is no i.s.s. Ai^ ..., fi p
of r roots, each linearly dependent on o^, ..., ofr ,

of type C, G or P. Then if the system o^, ..., orr
is labeled as in the proof of Lemma 7 i , every root

dependent on
Qfj, , ap is among the following

and their negatives:

(1 ... 0), (0 1 ... 0), ..., (0 ... 1);

(1 1 ... 0), ..., (0 ... 1 1), (0 ... 1 2);

(1110 ... 0), *.., (0 ... 1 1 1), (0 ... 1 1 2),
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(0 ... 1 2 2);

(1 ... 1 0), (0 1 ... 1 ), (0 1 ... 1 2), ..., (0 1 2 ... 2);

(1 ... 1 ), (1 ... 1 2), ..., (1 2 ... 2).

There are 2r
2

roots In all.

PROOF. Ag In the proof of Th. 8.1, we find a root /3 : /% = or or

/3 = a - ak
- ... - a

1
j k < r, such that the coefficient of

o^ in /i

is non-zero. Then by Lemma 7.1 we find a string ft , ft - a. ,1
i

/5 - cr
1

- a, , . . ., /3 - a, - ... - a, = V, 2 i . r, such that
i

1

i
2 1 a J

V, Qf
2> , a

p
form a simple system. e shall assume for the present

that V i a
1

If r = 2, we can have:

B0) o o ) o

2 y CY

*
Ĵ ^

y ^ ^ Of
^ '*

* 2 * 2

B
2 o) If V ( X

1
X
2 ), we have X

1

= X
g

=
A^ 1

, from the equa-

tions obtained as in earlier cases. Since a
1

+ a
2

is a root, Ay 1

= +

X = + (1 1 ). But then Tf - or
2

is a root, contrary to choice of Y .

, A. Y )
= (i, 2), (o, o) or (- i,

- 2). X. - Xp + 1,

% \ 1 v 1W i
* i : A = o, A =

-5-, o = a-, a contradiction.
|^ I i I d. d \

Vy 1

= 0: \
2

= -
i, X

1

= -
-, U = -

--(0^
+ 2a

2 ), a contradiction.

- 2, XT
= -

\ 2 =
Ay^

= - A
lj

- 2A
2 ^y

= 5,

a contradiction.

B
2 2) ^A

, i' A^y)
= (1, 1 ), (o, 0) or (- i,

- i). X,
= X

2
+ i,

A - Av - - 2.
^

; '

Ay 1

= i : X2
= - 1 , X

1

= o, contrary to choice of V .

Ay 1

= 0: X2
= - 2, X-|

= -
1^ Y - -

(1 2).

a contradiction.

BP 3) Here V(h^) = i
! (h, }, or A . v - ^A^ .. Thus eitherc J 4 I 1 ,i f, 1
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A^ 1

=
Aj ^ or p = 1 1 and (A~

1
, A

I ^) (3, 1 ) or (- 3, - 1 )

In the former case we find X = -
g-(of 1

+ 2c*
2 ), a contradiction. In the

latter cases, either -If and a
t

or V and or
1

form an i.s.s. of

type G
2 , contrary to assumption.

Thus V = a
1

or V = -
( i 2 ) . If IT c^ , fl

- a
1

, or,
+ Qf

2
or

of
1

+ 2or
2 , and or = /3 is among the roots listed. If V - - (i 2),

then A = V, Y + Qf
2

or V + 2or
2

. If /i = V, then cr - /3 . If

/3 = Y + of
2 , then of=/3=-(ii) or Qf=/3+of

1
=-(oi). If

^ = Jf + 2o?
2 , then /3+a

1
=o, oror =

/

/i=-(io). In each case,

a is among the roots mentioned.

For r > 2 , T, <*
2 , . . . , Qf

p has one of the following diagrams :

BO ) o o- o . . ,

B1 ) O O . . . <l l> ,
A - - 2 .

y ^2 -3 r-i ^r
^

BO) \r
=

Xp.,-1
= ... = ^ -

Ay 1

. Since
a^

+ o?
2

+ . . . + a
p is

a root, A^ 1

= + 1, V = + (i 1 . . . i ) \ But then V - ap is a root, a

contradiction.

Bl) (A ^, A^r )
= (1, 1), (0, 0) or (- 1,

- 1). \^ - Ap
-

... =
\2/ A

1

= Xr + 1, Ap + 2 =
Ay r

Ay 1

= i : Xr = - 1 j X
1

= o, a contradiction.

A^ -
= 0: K = - (1 2 .. . 2).

^ '

A
Y,1

= " 1: A
2

= *
3 ' \ = - 2; 2 =

A^r
= - 2A

1/r
- 3Ag^

= 5,

a contradiction. Thus either V =
1
orV = -(i2...2).

If = a
1

: As in the proof of Th. 8.1, /i Is in the following string:

= (1 o ... o), (i i o ... o), ..., (i ... i), (i ... 1 2),

..., (1 2 ... 2).

Since the leading coefficient of A is not -
1 , or = /I .

Y--02...2): /i is among the following roots:

Y= - (1 2 ... 2), - (1 i 2 ... 2), ..., - (1 ... 1),

- (i ... i 0), ..., - (i o ... o) - -
o^

.

If of =
fa , we are done. If a = /3 + a?

1

+ . . . +
a^, the first k co-

efficients of ft must be - i . If the (k+ 1 )st coefficient of /3 is
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k
- 2, then or - 2(0 ... o i . .. 1 ), a contradiction. Therefore cc is

k
either of the form - (o ... 1 . . . 1 2 2), of the form

k k
- (o ... o i ... i ) or of the form - (o . . . o 1 . . . 1 o . . . o ) . But all

roots of each of these forms are included in the statement of the theorem.

XI. SYSTEMS OF TYPE C

THEOREM 11.1. Let
<x^,

. .., c*r be an i.s.s. of

type Cp (r 3), and suppose there is no i.s.s.

ft
1

9 , /3 r or r roots, linearly dependent on

o^,
. .., o?

r , of type F. Then every root depend-

ent on
ofj,

. , c*r is among the following and

their negatives:

(i o ... o), (o 1 o ... o), ..., (o ... o i );

(1 1 o ... o), ..., (o ... o 1 1 ), (o ... o 2 1);

(1110 ... 0), ..., (0 ... 1 1 1), (0 ... 1 2 1),

(0 ... 022 1 );

(1 ... 1 0), (0 1 ... 1 ), (0 1 ... 1 2 1 ),...,

(02 ... 2 1 );

(l ... 1 ), (1 ... 1 2 1 ),..., (2 ... 2 1 ).

There are 2r
2

roots in all.

PROOF. Let a be such a root. As in the proofs of Ths. 8.1 and 10.1,

we find a root Y ( X
1

Xr ) such that If, a
2 , ..., a

r
form a

simple system. This must be one of the following:

Co) o o o ... G=D , A^
- - 2;

r
*2

*
3 "r-i "r

'

Ci) o o -o ... 0=D , A^ ,

= - 2;
r a

2 ^3
a
r-l

a
r

'

03)

Co) 'Xp-i
= 2 *r

=
^r-2

- X
1

-
A^,, ^ -

75-
A
r^(2 ...21).

Since (2 . . . 2 1 ) is a root, if - +(2 ... 2 1).

01 ) If V # or-, then (A- ., A- v )
- (i , 1 ), (o, o) or (- 1, -1 ).

1
; i i ;t
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We find Xr_ X
2 , + 1,

Xr X
1

2 = = - 2A-

03)
* 2

A
*,

2,

2:

o, contrary to assumption.

= - 1, = - (1 2 ... 2 1 ).

p
= -

|-,
A
2

= - 3, A
1

- - 2.

- 3A v = 5, a contradiction.
^>t

)
= (2, 1), (0, 0) or (. 2, - 1). A

,

= 2 X
3

3-

o, A -
1; 2 - A - A -

a contradiction.

Ay 1

= 0: ^3
=

~i"^

A
,1

- 2: *3
- '

contradiction.

Y is one of or

- -
3;

a contradiction.

A =--, a

f* must

.. i ), (i ... i 2 i),

V -t- of. is not a root for any j >

If is not -
i, Y /3 = a.

and

(i o . . . o), - (i 2 . . . 2 i ), + (2 . . . 2 i ).

1
As in the preceding proofs the intermediate root

be among

= (i o ... o), (i 1 o ... o), ..., (1

(i ... 1 2 2 1 ),..., (1 2 ... 2 1 ).

Since the first coefficient of fl is not ,- i, we have a /3 .

If = t (2 . . . 2 1 ): Since

since the first coefficient of

^=-(12.. .21): As in previous cases, /3 is among

tf= - (1 2 ... 2 1), - (1 1 2 ... 2 1), ..., - (1 ... 1 2 1),

-(1 ... 1), - (1 ... 1 0), ..., -(1 0... 0)=-^.
Either a=/i or or=/3+a

1
+ ...+

ct^,
where the first k co-

efficients of are - i and the (k+1 )st is non-zero. But all such

quantities or are among the roots mentioned in the statement of the

theorem. Thus all possible roots a are mentioned, and the theorem is

proved .

XII. SYSTEMS OP TYPE G

THEOREM 12.1. Let or
1

, a
2

be an i.s.s. of type G.

Then any root dependent on o^

following and their negatives:

and or
2

is among the
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(1 0), (0 1 ), (1 1 ), (l 2), (1 3), (2 3)-

There are 12 such roots In all.

PROOF. If or *
(/i/*2^ -*-s 3UCh a root* we ma7 assize /*1 ^ * since

otherwise or = or
g

. Then one of a, a -
cc^,

a - 2a
2 , a -

3<*2
^s a

root y such that \f and
2

form a simple system. This Is one of

the following:

Go) o o 01) oo

* a
2

'
*' 2 '

If a
2

' 2 'r

We assume for the present that V / Qf
1

. Let V =
( XT Xg)-

Go) Xj
=
yX2 ' ^2

= 3A
Y, i'

* = A
yji^

2 3 ^ Since (23) is a

root, ^ = t (2 3 )

Gl ) (A^ r A^y)
= (1,3), (o, o) or (- 1,

- 3). \
t

= i A 2
+
j ,

A^ 1

= 1 : X2
=1= X

1
,lf = (ll). Then IT -

oe^
is a root, a

contradiction .

Ay 1

= 0: V = - (i 2 ), and JT - a
2

Is a root, a contradiction.

Ay 1

* -
1 : V = - (3 5); V + or

1

= is a root, and A^ 2
= - 4,

a contradiction.

G2 ) Here 3A
1

= 2A
1 y , or Ay 1

= A. ^
= 0. Then = - 2(1 2),

a contradiction.

G3) The coefficients X^ X 2
are obtained from the same equations

as in G1 ), but now A
I ^

=
6A^ ^ Prom G1 ), A-

^

= is impossible.
Thus either p = 11 and

(A^ }f
A

1 ^)
= (2, 1 ) or (- 2, -1 ), or p 17

and (Ay^, A,^)
= (3, O or (-'3, - i).

A^ 1

= 2: K = (3 4); also a root is (2 4) = 2(1 2), a contra-

diction.

Ay 1

- 2: - - (5 8); also a root is - (k 8) = - 4(l 2 ), a

contradiction.
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Ay 1

= 3: Jf - {5 7); (5 8) is also a root, contradicting the last

step above.

Ay 1

= - 3: V = - (7 11 ); also a root is V +
1

= S , and

A
2

= - 4, a contradiction.

G4) Here
(A^ 1

, A^y)
= (1, 1 ), (o, o) or (- i,

- i).

A
V, 1

= 1: ** = -
< 1 3)-

Ay -j

=
: If = -(36) = -3d 2), a contradiction.

Ay 1

= - 1: V = - (5 9)j also a root is - (5 8), Impossible by
G3).

G5) The equations are those of G1 ) and G3), with A
I ^

=
9Ay -.

We must have either Ay 1

= o, or p = 17 and (A~
}

, A
I y)

= (2, 1 )

or (- 2, - 1), or p = 13 and (Ay 1
, A

I ^)
= (3, i) or (- 3, - i).

But all these possibilities have been eliminated in G3).

Thus V is among a
1

* (i o), - (l 3) and (2 3)-

V= (1 o): a is among (1 o), (1 1 ), (i 2), (1 3).

lf= - (1 3): a Is among - (1 3 ),
-

( 1 2 ),
- (1 1 ),

-
( 1 o).

JT= i (2 3): Qf=lf = + (23). Thus the theorem is proved.

XIII. SYSTEMS OP TYPE P

THEOREM 13-1- Let c^,
Qf
2 , a , a^ be an l.s.s. of

type P. Then every root dependent on or
1

, a , a ,

a^ is among the following their negatives:

(100 o), (o 100), (001 o), (ooo i),

(i 1 o o), (o i i o),

(0 1 1 ), (0 1 2 0), (1 1 1 0), (0 1 1 1 ),

(1 120), (122 0),

(0 1 2 1 ), (0 1 2 2), (1 1 1 1 ), (1 1 2 1 ),

(1 1 2 2), (1 2 2 1 ),

(1 2 2 2 ), (1 2 3 1 ), 2 3 2), (1 2 1* 2),

(134 2), (2 3 fc 2).

There are ij-8 such roots in all.
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PROOF. Let a be a root, and proceed from of to a root V as in the

proofs of Ths. 8.1-11.1. f , 2 , a~, oc^
form a simple system, one of

the following:

F2)

Let * =
( XT A 2 X

3 V> V 4 <V

PO) X
3

= 2 Xv A2
= Jx^ AT

- \, \ - 2\,r
>f* A^ j

(2 3 U 2). Since we know that (23^2) is a root,

V = (2 3 ^ 2).

Pi) (Af^, A^y )
- (1, 1), (0, 0) or (- 1, - 1). X

3
= 2 Xv

X2
=
trX^f X

1

-
X^ + 1, X

u
= 2(A

y^
- 2).

A
*,1

" l! * - "
f 1 3 ^ 2).

A = 0: X = -6; 2 = A.= - 6A = 6, a contradiction.

A
*,1

" - ls X2
s - 9 > X,

- - 55 2 Aw - -
5A^y

- 9A2^ = 14

a contradiction.

P2) (A^,,
A

1 y)
- (1, 2), (o, o) or (- 1,

- 2). >
3

= 2 X^ + l

X 2
-

-|
X4 + 1 , \ - \ * 1 , X

4
- 2

(Ay^ 1

-
1 ) .

Ay 1

= 1: If (1 1 1 0), and y - of,, is a root, a contradiction.

Ay 1

= 0: If = - (l 2 3 2); again V - or- is a root.

A
*, i

a " 1 : *" = "
^ 3 5 7 4 ' ; 2 s

\,r
= "

4Al*,v
" 3A

i,r
= 10j a

contradiction .

Thus V is among 1

= (l 000), -(1 31*2), t(23^2).
t = (1 ooo): Using the conventions of the proof of Th. 9-1* the

intermediate root /3 must be one of the following:

(100 o), (1 1 o o), (1 1 i o), [(1 1 2 o), (1 1 1 1)],
"

[(1 2 2 0), (1 1 2 1)], [(1 2 2 1), (1 1 2 2)],

[(1 222), (123 1)], (1 232), (124 2), (13^ 2).
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a =
/3 is among the roots listed.

Y = - (1 3 4 2); As above, ft is one of the following:

-
3 4 2), - (1 2 4 2), - (1 2 3 2), [- (1 2 2 2),-(l 2 3 l)],

[-(112 2), -
(1 2 2 1)], [-(112 1), -

(1 2 2 0)],

[-(112 0), -(111 i)], - (i 1 1 0), - (1 1 0), - (1 0),

Moreover, whenever /3 +
c^

+ . . . +
cc^

is a root, k * k, it is among

the roots expressible in terms of the system 2 , a , a^
of type CL.

By Th. 11.1, it is given in the statement of that theorem. But all such

quantities are Included in the statement of this theorem.

IT = (2 3 ^ 2): Here ft = V, and a = ft ,

This completes the proof of the theorem.

XIV. SYSTEMS OP TYPE E

THEOREM 14.1. Let a
1

,
. . .

,
a
r

be an i . s . s . of

type E, and let a be a root dependent on

^^t > a
r

- Then a is one of the roots listed

below for the corresponding value of r, or one

of their negatives:

E
g

: (1 o o o o o), (o 1 o o o o), (o o i o o o), (o o o i o o),

(000010), (000001), (110000), (01 1000),

(001 100), (0001 10), (001001), (1 1 1 0),

(0 1 1 1 0), (0 1 1 1 0), (0 1 1 1), (0 1 1 1),

(1 1 1 1 0), (0 1 1 1 1 ), (1 1 1 1), (0 1 1 1 1),

(0 1 1 1 1), (0 1 2 1 1), (1 1 1 1 1 0), (1 1 1 1 1),

(1 1 2 1 1), (1 2 2 1 1), (0 1 1 1 1 1), (0 1 2 1 1 1),

(0 1 2 2 1 1), (1 1 1 1 1 1), (1 1 2 1 1 1), (1 1 2 2 1 1),

(1 2 2 1 1 1), (1 2 2 2 1 1), (1 2 3 2 1 1), (1 2 3 2 1 2).

There are 72 roots in all.
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E
7

: (1 oooooo), (01 o o o o o), (001 o o o o), (0001 ooo),

(00001 00), (000001 0), (0000001), (1 10000 0),
/

(0 1 1 0), (0 1 1 0), (0001100), (000011 0),

(0 1 1 ), (1 1 1 0), (0 1 1 1 0), (0 1 1 1 0),

(0 1 1 1 0), (0 1 1 1 ), (0001101), (1111000),
(0 1 1 1 1 0), (0 1 1 1 1 0), (0 1 1 1 1 ), (0 1 1 1 1 ),

(0 1 1 1 1 ), (0 1 2 1 1 ), (1 1 1 1 1 0), (0 1 1 1 1 1 0),

(1 1 1 1 1 ), (0 1 1 1 1 1 ), (0 1 1 2 1 1 ), (0 1 2 2 1 1 ),

(0 1 1 1 1 1 ), (0 1 2 1 1 1 ), (0 1 2 2 1 1), (1 1 1 1 1 1 0),

(1111101), (1112101), (1122101), (1222101),
(0 1 1 1 1 1 1 ), (0 1 1 2 1 1 1), (0 1 2 2 1 1 1), (0 1 1 2 2 1 1),

(0 1 2 2 2 1 1 ), (0 1 2 3 2 1 1 ), (012321 2), (1 1 1 1 1 1 l),

(l 1 1 2 1 1 1 ), (l 1 2 2 1 1 1 ), (1 1 1 2 2 1 1 ), (1 2 2 2 1 1 1 ),

(1122211), (1123211), (1222211), (1223211),
(1 123212), (123321 l), (1 223212), (1233212),
(123^212), (123^312), (123^322).

There are 126 roots In all.

EQ : (1 ooooooo), (01 oooooo), (001 ooooo),
(0001 0000), (00001 000), (000001 00),

(o o o o o o i o), (00000001), (i i oooooo),
(01100000), (00110000), (00011000),
(00001100), (0 1 1 0), (00001001),
(11100000), (01110000), (00111000),
(0001 1 1 00), (00001 1 10), (0001 1 001),

(0 1 1 1 ), (l 1 1 1 0), (0 1 1 1 1 0),

(00111100), (00011110), (00111001),
(00001 1 1 1 ), (0001 1 1 01), (000121 01),.

(1 1 1 1 1 0), (0 1 1 1 1 1 0), (0 1 1 1 1 1 0),

(0 1 1 1 1 1 ), (0 D 1 1 1 1 1 ), (0 1 1 2 1 1 ),
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(001221 1 ), (0001 1 1 1 1 ), (000121 1 1 ),

(0 1 2 2 1 1 ), (1 1 1 1 1 1 0), (0 1 1 1 1 1 1 0),

(1 1 1 1 1 1 ), (0 1 1 1 1 1 1 ), (0 1 1 1 2 1 1 ),

(0 1 1 2 2 1 1 ), (0 1 2 2 2 1 1 ), (0 1 1 1 1 1 1 ),

(001 121 1 1 ), (001221 1 1 ), (001 1221 1 ),

(0012221 1), (0012321 1 ), (00123212),
(1 1 1 1 1 1 1 0), (l 1 1 1 1 1 1 ), (1 1 1 1 2 1 1 ),

1 122101), (11222101), (12222101),
(0 1 1 1 1 1 1 1 ), (0 1 1 1 2 1 1 1 ), (0 1 1 2 2 1 1 1 ),

(01 1 1221 1 ), (012221 1 1 ), (01 12221 1 ),

(01 12321 1 ), (01 123212), (0122221 1 ),

(0122321 l), (0123321 1 ), (0122321 2),

(01233212), (0123^212), (0123^312),
(0 1 2 3 * 3 2 2), (l 1 1 1 1 1 1 1 ), (l 1 1 1 2 1 1 1 ),

(1 1 1 2 2 1 1 1), (1 1 1 1 2 2 1 1 ), (l 1 2 2 2 1 1 1 ),

(1 1 1 2 2 2 1 1 ), (1 2 2 2 2 1 1 1 ), (1 1 2 2 2 2 1 1 ),

(1 1 1 2 3 2 1 1), (1 2 2 2 2 2 1 l), (1 1 2 2 3 2 1 1),

(1 1 1 2 3 2 1 2), (1 2 2 2 3 2 1 1 ), (l 1 2 2 3 2 1 2),

(11233211), (12223212), (1223321 1 ),

(1 1 2 3 3 2 1 2), (1 2 2 3 3 2 1 2), (1 2 3 3 3 2 1 1),

(1 123^212), (12333212), (1223^212),
(1 123^312), (1233^212), (1223^312),
(1 123^322), (123^^212), (1233^312),
(1223^322), (123^312), (1233^322),
(123^5312), (123^322), (123^5322),

(123^5313), (123^5^22), (123^5323),

(123^5^23), (123^6^23), 2 3 5 6 l* 2 3)

(1 2 k 5 6 1* 2 3), (1 3^56^23), (2 3 ^ 5 6 ^ 2 3),

There are 2^0 roots in all.
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PROOF. As in the proof of Th. 9-1, we can obtain from the given root a

(or its negative) a root A with non-zero first coefficient, and from /3

a root V such that , c*
2 , *, ofp form a simple system. This is one

of the following: ~
^6

E6 o) o o o-Q o
*

QPg
OP
3 Of,,

OP
5

3^1 ; o-
6

y

E
62)

a
6? <-O

Qf,-

E
6 3)

E
7
0) o

E7 1

E
?
2)

Ota

Bfto) o

Eol)
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Let y (
X-j

Xp ), and assume for the present that 4 a.

E
6 o) X

5
*
I X

6 , \ -
^j.

X
6 , X

3
2 X

6 , X
2

=
f X

6 , X
6

= A
r^.

A
r,i

" " ls *6
= - '* *i

e ~
y*

2 - A
,*

s "
I A

i,*
"
I' I

or 4 '

each of these Is impossible.

g ft fl

A^ j

- - 2: X
1

- -
y;

2 - -
-j
A

I y
=
y,

a contradiction.

Ay 1

- - 3: X
1

= - ^; 2 = - kA
} ^

= U, a contradiction.

A-
1

= 0: )f = o
; contrary to assumption.

Since A^ .j

=
1 1 2

f 3 give the negatives of the quantities shown

impossible above, they are also impossible.

E
6

1 ) (Ay^, A^y )
= (1, 1 ), (o, o) or (- i, -

i ). X
5

-
| X

6 ,

\ =
J ^6' ^3

= 2 X6' \ =
f V *1

=
I *6 + ^ ^6

a A
ftl

" 2<

A
r,i

= 1: \ = -
T>

X
2

- -
f 5 2 - A

V,y
- -

T A
!,

-
f A

2 ,*
-
y >

and this is impossible.

A
tf, 1

s
: ^2

* --
3"'

2=:Ay^'
s

"'"3'
A
2I'

=
"T > impossible.

A
*,1

s "
1 :

A!
a -

3, X
2

-
5; 2 = A

ftr
= -,

3A^r
-
5A^y

= 8,

impossible.

E
62) (A^^, A^r )

- (1, 1), (0, 0) or (- 1, -1). X
5 =fX6 +y

\ - 2
Xj, X

3
- 3 A5 , Xa

-
f X6

+
y, \ = X6

+
|,

X6
-
A^,

- 2.

A
r,i

- ls ^6
' - ^ A

i

- p 2 = A
y,ir

s
y A

i,r
' V* y '

impossible.

A^ 1

- 0: '-(123212).
A
*,1

- - 1* >6
= - 3, ^ - -1; 2 - A

r>r
- -lA

1>y
- 3A

6>r -4
which is impossible.

E
63) (A

fcl/ A,^)
- (1, 1), (0, 0} or (- 1,

- i). X 5
-
y X6

-
f,

X *
=
I *6

-
y* >

3
= 2 *6' ^2

=
f ^6 + T *1

s
I ^6 *

f' *6
' A

r,1
"

^5
= "

f' ^1
s
fj 2 =

f A
i,y

"
f A

5,tf
= y impossible.

X 5
-
j;

2 -
y A^ y

=
y, impossible.

A
fcl

- - 1: A 5
- 2 = ^ 2 = -

2A.J ^
- 2A

5 ^
= U, Impossible.

Thus either *=a
1

orlT = -(i232l2).
)f

= or
1

: With the convention of Th. 9.1, /3 is among:

(i o o o o o), (i i o o o o), (i i i o o o) [(i 1 1 i o o>,
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(11100 1)], [(1 1 1 1 1 0), (1 1 1 1 1)], [(11111 1),

(11210 1)], [ (1 1 2 1 1 1 ), (1 2 2 1 1)], [(12211 1 ),

(11221 1)], (1 2 2 2 1 1 ), (1 2 3 2 1 1 ), (1 2 3 2 1 2).

As before, a = ft .

--(123212): ft ls among the following:

-(12321 2), -(12321 1 ), -(12221 1 ), [-(1 22111),
-0 1221 1)], [-(l 1 2 1 1 1 ), -0 2 2 1 l)], [-(1 11111),

-(11210 1)], [-(1 1 1 1 1 0), -(1 1 1 1 1)], [-(1 11100),

-(11100 1)], -(11100 0), -(11000 0), -(1 0000 0).

If a = ft , the theorem holds for a. Otherwise, fl +
a^

is a

root; this is only the case when ft = -0 1 2 2 1 1 ), -(1 1 2 1 1 1 ),

-(11111 1 ), -(11210 1 ), -(11111 o), -(11110 1),

-0 1 1 l o o), -(1 1 i o o i ), -0 1 1 o o o), -(11000 o). In each

case, the theorem holds if a = fl +
1

. Otherwise /3 + or
1

+ a
2

is a

root, and we continue to apply this reasoning to show that the theorem

holds for a in any case.

Assume If i Qf
1

. ^5 =
f \j>

X
5

=
j >

7
> \k

= 2 \
7

,

X2
-
y \, ^ = X

?
=
| A^^

.

0: V = o, impossible.

Ay^
= - l:

1

= -
; 2 = - - A

I ^
=

, 3 or -, impossible.

A
1

= - 2: XT
= - 3; 2 - - 3A

1 ^
- 3, impossible.

A
1

= - 3: X = -
i 2 = - - A =

, impossible.

As in previous cases, the above implies that A^ 1

= 1, 2, 3 are

impossible.

E
?

1 ) (A
/1

, A^y )
= (1, 1 ), (o, o) or (- 1, -

1 ). X6
=
| X

7
,

^5
*

3" 7* k
= 2

^7' ^3
=
T 7* 2

=
"3" *7' ^1

*
^7

+ 1 '

V = l<Ar,i
- 2) -

A
<il

- l: A
1

- -
-, X2

- - 2; 2 - 1 A
t^ - 2A

2^ -
|-, impossible.

A^^
= 0: A2

" - ^j 2 -
^Ag ^

* U, impossible.

Vi = -
1 ! *1

= -
J' Xa = * 6 ' 2 a - } A

i,r
impossible.

E
?
2) (A^^, A^y )

= (1, 1 ), (o, o) or (- i, -
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A = 2 A X = - A + -* X - X + *

2 A
i,r

~ A
6,fr

=
' impossible.

Av - = 0; Y = - (l 2 3 U 3 2 2).
o ^ l

A
,1

- -
1 : X

6
- - 3, A,

= -
|i

2 = - | A
1<y

- 3A
6>y

= 1
,

impossible .

Thus either Jf = or
1

or V=-(1 23^322).
V= or

1
: /3 is among the following roots:

(i o o o o o o), (i i o o o o o), (1 i 1 o o o o), (1 1 i 1 o o o),

[(1 1 1 1 1 0), (1 1 1 1 1)], [(1 1 1 1 1 1 0), (1 1 1 1 1 1)],

[(1 1 1 1 1 1 1 ), 1 1 2 1 l)], [(1 1 1 2 1 1 1 ), (1 1 2 2 1 l)],

[(l 1 1 2 2 1 1 ), (1 1 2 2 1 1 1 ), (1 2 2 2 1 1)],

[ (1 1 2 2 2 1 1 ), (l 2 2 2 1 1 1)], [ (l 2 2 2 2 1 1 ), (l 1 2 3 2 1 l)],

[(1 2 2 3 2 1 1 ), (l 1 2 3 2 1 2)], [(123321 1), (122321 2)],

(1233212), (1 2 3 ** 2 1 2), (123^312), (123^322).
The grouping in brackets follows the established rule, and or = fl .

^=-(123^322): /* is among the following roots:

-(l 2 3 ^ 3 2 2), -(l 2 3 ^ 3 1 2), -(l 2 3 ^ 2 1 2),

-(123321 2), [-(! 2 2 3 2 1 2), -(1 2 3 3 2 1 1)],

[(1 1 2 3 2 1 2), -d 2 2 3 2 1 1)], [-(1 12321 1),

-(122221 1)], [-(1 1 2 2 2 1 1 ), -(1 2 2 2 1 1 l)],

[-(l 1 1 2 2 1 1 ), -(1 1 2 2 1 1 1 ), -d 2 2 2 1 l)],

[-(1 1 1 2 1 1 1 ), -(1 1 2 2 1 1)], [-(1 111111),
-(111210 1)], [-(l 1 1 1 1 1 0), -(l 1 1 1 1 1)],

[-(l 1 1 1 1 0), -(1 1 1 1 1)], -(111100 0),

-d i i o o o o), -d 1 ooooo), -d ooooo o).

If or = ft , of is among the roots given in the statement of the

theorem. If a = fi +
1

+ + ak , a Is a linear combination of

2 , . .., a_, a system of type E^, and therefore is among the roots

given in the statement of the theorem for systems of type Eg. All such

roots are also given under the heading E. Thus the theorem is true for
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systems of type E~.

E80) *7
"
f *8' *6

s
T V *5

" 2 *8' K "
f *8> *3

=
T *

X2 A 8 , A
1

-
f A8 , A

8
= 3Ay^. tf = A

ft1
(2 3 ^ 5 6 * 2 3). Since

(23^56423) Is readily shown to be a root, A
rf 1

= + 1

EQ 1) If Tf 4 <V (A^1'
A
M' >

= (1 ' 1) ' f ' 0) 03? (
" 1 '

"
1 '*

^7
*
T ^8' *6

=
T ^8' ^5

= 2 ^3* X^ -
j > 8 , ^3=3- X 8 ^

y X8
+ - 6.

Ay 1

= 1: V = - (l 3 4 5 6 4 2 3)-

Av ,
- 0: X * - 6; 2 = - 6A ^ 6, Impossible.

> I c f9

Ay 1

= - 1 : A 2
s - 9, A-!

= - 5; 2 = -
5A,! y,

- 9A2 ~ 14, impossible

Thus If is among (23^56423); - d 3^56423) and a
1

-

t (2 3456423): = /&= is among the roots listed.

-(13^56423): /I is among the following roots:

-(l 3 ^ 5 6 4 2 3), -d 2 4 5 6 4 2 3), -d 2 3 5 6 4 2 3),

-(1 2 3 fc 6 4 2 3), -d 2 3 * 5 4 2 3), [-d 2345323),
-d 2 3 fc 3 * 2 2)], [-d 2 3 fc 5 3 1 3)* -d 2 3 ^ 3 3 2 2)],

[-(1 2 3 ^ 5 3 1 2), -(1 2 3 ^ * 3 2 2)],

[-(l 2 3 4 4 3 1 2), -(1 2 3 3 4 3 2 2)],

[-(l 2 3 3 ^ 3 1 2), -(l 2 3 4 4 2 1 2), -(l 2 2 3 4 3 2 2)],

[-(1 2 2 3 4 3 1 2), -(l 2 3 3 4 2 1 2), -(1 123432 2)],

[-(1 1 2 3 ** 3 1 2), -d 2 2 3 fc 2 1 2), -(1 2 3 3 3 2 1 2)],

[-(1,1 2 3 4 2 1 2), -(1 2 2 3 3 2 1 2), -(1 2 3 3 3 2 1 l)],

[-(l 1233212), -(12 2 2 3 2 1 2), -(1 2 2 3 3 2 1 1)],

[-(1 1 2 2 3 2 1 2), -(1 123321 1), -(l 2 2 2 3 2 1 l)],

[-(1 1 1 2 3 2 1 2), -(l 122321 1 ), -(1 2 2 2 2 2 1 l)],

[-(1 1 12321 1 ), -(1 122221 1 ), -(1 2 2 2 2 1 1 l)],

[-(1 1 12221 1), -(1 12221 1 1 ), -(1 2 2 2 2 1 l)],

[-(1 1 1 1 2 2 1 1 ), -d 1 1 2 2 1 1 1 ), -(1 1 2 2 2 1 1)],

[-(1 1 1 1 2 1 1 1 ), -(1 1 l" 2 2 1 1)], [-(1 111111),
-(1111210 l)], [-(l 1 1 1 1 1 1 0), -(1 1 1 1 1 1 1)],
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[-0 1 1 1 1 1 0), -(1 1 1 i 1 1}], -(11111000),
-(1 1 1 1 0), -(1 1 1 0), -0 1 000000),
-(1 0) m - a. .

Either a = p or of ia expressible in terms of the system a
2 , . ..,

QfQ
of type Ecp

In either case, a is among the roots of the statement

of the theorem.

V =
o^: a = p is among the following roots:

(i o o o o o o o), (11000000), (i 1100000),
(1 i i i o o o o), (i 1 1 1 1 o o o), [(1 i 1 1 i 1 o o),

(1111100 i)], [(1 i i i 1 1 i o), (1 i 1 i 1 i o i)],

[(1 1 1 1 1 1 1 1 ), (1 1 1 1 2 1 1 )],

[ (i 1 1 1 2 1 1 1 ), (i 1 1 2 2 1 1 )],

[(i 1 1 2 2 1 1 1 ), (1 1 1 1 2 2 1 1), (1 1 2 2 2 1 i)],

[ (1 1 2 2 2 1 1 1 ), (1 1 1 2 2 2 1 1 ), (1 2 2 2 2 1 i)],

[(1 2 2 2 2 1 1 1), (1 1 2 2 2 2 1 1), (1 1 1 3 3 2 1 i)],

[(1 2 2 2 2 2 1 1), (1 1 2 2 3 2 1 1), (1 1 1 2 3 2 1 2)],

[(1222321 1), (1 123321 1), (1 122321 2)],

[(1223321 1 ), (1 1233212), (1222321 2)],

[(1 2 3 3 3 2 1 1 ), (1 2 2 3 3 2 1 2), (1 1 2 3 ** 2 1 2)],

[(12333212), (1223^212), (1 123^31 2)],

[(1233^212), (1223*312), (1123*32 2)],

[(123^^212), (1233^312), (1223^32 2)],

[(123^^312), (1233^32 2)], [(123^5312),
(123^^32 2)], [(123^5322), (123^531 3)1,

[(123^5^22), (123^532 3)], (123^5^23),
(123^6^23), (1 2 3 5 6 k 2 3), 2 k 5 6 if 2 3 ),

(1 3 ^ 5 6 l* 2 3)-

Then a = 3, and a is listed in the statement of the theorem.

Thus the proof of Th. 1^.1 is complete.
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XV. MAXIMAL SIMPLE SYSTEMS

THEOREM 15-1- Let a
1

, , ofp be a simple system
of roots such that the matrix ((^(h.)) is non-

singular. Then there exists a simple system of roots

i
1
, . . , i p , each dependent on

a., , , a , such

that every root expressible as a linear combination

of roots
ofj, ..., a

p is expressible as a linear

combination of roots in an indecomposable subsystem
of

S.,, , ip . Since each Indecomposable

component of
5.,, ..., ip has the property that the

matrix ( ^(h^)), formed for J^, S - in the given

component, is non-singular, we can even choose

i
!
t I r In such a fashion that any root is

among the roots of Ths. 8.1-1^.1, corresponding to the

type A-G of the indecomposable component involved in

its expression.

PROOF. Among all simple systems of r roots linearly dependent on

of-j,
. .., a , consider only those which have an indecomposable component

of maximal rank, i.e., consisting of a maximal number of roots. Among
such systems, consider only those in which the subsystem of all roots

orthogonal to such a maximal component contains in its turn an inde-

composable component of maximal rank, and repeat the procedure until it

terminates. Denote any final system by p^ ..., Pp .

Now suppose .,,
...,

*

s
isani.s.s. Among the i . s . s .

* s con-

siting of s roots each dependent on
If.,, ..., Vg

we introduce a

partial ordering according to the type of the system, as follows:

s = 2: A < B < G.

s = 3: A<B<C.
s=U: A<D<B<C<P.
s=5, B > 8: A<D<B<C.
3 = 6, T, 8: A < D < B < C < E.

If p^ ..., Pk is any indecomposable component of p^ ..., pp ,

and P,, .*., Pk is maximal in the above ordering among i.s.s. f s de-

pendent on p n , . , PJ., take ( S , * -, S v )
= (Pi> > PI,)- Other-

I ** I K. \ K.

wise replace (p^ ..., P^) by an i.s.s. ( 5^ ..., S k ) which is

maximal among such systems. We must show that &,, -., $ k ,
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Pk+T * Pp ^s a simple system. This is trivial when ( $1* * ^k^
=

(PI * $ Pk'
"

In any other case, the choice of
I.,, , i^ and Ths. 8.1-iU.i

assure that any root dependent on ^, ..., i^ is a member of the set

of roots given in the theorem corresponding to the type of
t,,* , 1^.

If %,,
. .., Sk is of type A, then ( S,,

. , $ k )
*

(p,, , P^);
thus the exceptional case where pl(k + 2) is not encountered.

Now suppose that p^
- S * . is a root for some i > k. Since

S-j(hp
)

= o for all j, l <: j ^ k, PI
+

^-j
i3 also a root, as are

-
PjL

&? 3y repeated use of the formula of Th. 5-6, we see that

S -
p.j_

is a root for each i in the roots of Ths. 8.1-1 4.1 for a sys-

tem of the type of S,, , 8 k
- For Instance, if 8 is a positive

root, we observe from the statements of those theorems that we can arrive

at S from $. by a sequence of additions and subtractions of roots

S 3 > 1 < s < k > vith each addition or subtraction being justified by
Th. 5-6 in the sense that the value 5 (h. ) tells us how many times

s

S
g may be added to a given term S of the sequence. Since

( S -
Pj_)(h^

)
- S

(h^ ), we may add 5 g
to S - ^ as many times

e> * S S

as to o . Thus we can arrive at -
p^ from &* -

3^ by the same

sequence of additions and subtractions used to arrive at $ from &.
A similar procedure may be used if ( is negative. In particular,

P -
P.j_

is a root for some j, 1 < j < k. This is a contradiction, and

so S,; > *irf ^k+1' **' Pp are a sifflpl system.

If we carry out this replacement procedure for each indecomposable

component of the simple system P^ ., Pr , we obtain a new simple sys-

tem 8^ ..., | p satisfying the requirements by which the system

PI' ""' ^r as cllosen * ^e s^8^! call any simple system obtained by
this process a maximal simple system.

Let a be a root dependent on o^, ..., ap , therefore also on

S.,, ..-, S p
. If $1* > Sr is indecomposable, the first part of

the theorem is trivial; the second part follows from Ths. 8.1-1^.1. Now

suppose the theorem has been proved for maximal systems which decompose

into j
- 1 indecomposable components, and suppose that ^, ..., S r

decomposes into j indecomposable components. Let ti> * 5^ be

an indecomposable component of maximal rank. Then 8^+1' S r is a

maximal system with j
- 1 indecomposable con^ponents. If a is not de-

pendent on ( .., S, we can apply Lemma 7-1 to perform successive



TO 3ELIGMAN

subtractions (in some order) of S,, , 4 V from or and obtain a string
I A.

of roots leading to a root of 1 such that or
1

, (^ ..., 4 k form a simple

system. Since k was the maximal rank for an indecomposable component

of any simple system, Qf
f (h. ) o, i < j < k. It follows that a 1 is

expressible purely in terms of ^v+i> > ^p* anc^ consequently In

terms of a single Indecomposable component of this system. This is the

only case we need consider further, since if a is dependent on

Si f * 5k alone, the conclusions of the theorem hold for a by

Ths. 8.1-1U.1.

Let a 1 be dependent on the indecomposable component S^+1' * 4 m*

hence among the roots given for this system in Ths. 8.1-1^.1. Now either

a is dependent on S^+1 ^ > 4m alone, or or
1 + |^ is a root for

some i < k. In the latter case, a?
1 -

4^ is also a root, contradicting

the construction of o 1
. This completes the proof of the theorem.

THEOREM 152. Let L be a restricted Lie algebra over

an algebraically closed field of characteristic p > 7

such that L contains no abelian ideals and has a re-

stricted representation with non-degenerate trace form.

Let
ofj

, , ar be a fundamental simple system of

roots with respect to a Cartan subalgebra H in L,

and assume that o^,
. .., ap is maximal in the sense

of Th. 15- 1. Then L is simple (In both the ordinary
and the restricted sense) if and only if the system

<*1* * ap ig indecomposable.

PROOF.
^ Suppose o^, ..., a

p decomposes. Let c^, ..., am be an in-

decomposable component of maximal rank. Let J be the subspace of L

spanned by ha , , h
tf

and by some ea J in each La such that

of is a (non-zero) linear combination of o^, ..., o^. Then J is an

ideal in L. For if h e H,

[ha h] 0, 1 < i < m,

and

a(h)ea c J if ea J.

Thus [JH] J.

If p is a root, then by Th. 15.1 either p is a linear
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combination of a^, , ofm or p is a linear combination of

or-. In the first case,

e
-c*

)ha e J

In the second case,

[e e] o e J if e^
c J,

since La+o = o by Th. 15-1.

Thus [JLp] S J for all roots P, and [JL] S J. Since

fyv f J, o f J ^ L. Therefore the direct decomposition of L involves
m+1

at least two (restricted) ideals, and L is not simple in either sense

of the word.

Conversely, if L is not simple, L =
L^ L

2 , where Lj, L
2

are

restricted ideals in L. If a is a root and o # ea e La ,

If h e H, [e^"h] + te^'h] a(h)ea
=
a(h)e^'

' +
or(h)e^

x
, or

[e^h]
-

orChJe^
1 ^ -

of(h)e^
2 ^ -

[e^
2
Ti]

L,,
A L

2
- (o). Thus each

e^ e L Since L is one-dimensional, either e^
- o or

e^
2 ^ - 0, and each root-space is contained in one or the other of the

ideals Lj, L
2

-

Suppose ea , . . . , e^ are all in the same ideal L
I

Then so are

h.,
- [e e_. ] . Since for each root <x there is an h1 such that1 -Qf Of 1

cr^)
= o, e -

aCh^y lejA}]
e L

t
, and L

1

- L. Therefore we may

assume that e^ , * e~ L i* e > > e
nr

Lp- As above,
1 ^jf lf+ 1 I*

h,, .... hv and e_^ , , e are in L-, while
i 1C -or

1
-ak 1

* e- are -^
-^2

' Therefore
-czp
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for all i < k < j. By Lemma 5.3, of^thj)
= =

a.Ch^), 1 < k < j, and

*, df decomposes. This completes the proof.r

XVI. CLASSIFICATION OF THE SIMPLE ALGEBRAS

THEOREM 16.1. Let L be a simple restricted Lie alge-
bra of characteristic p > 7 possessing a restricted

representation with non-degenerate trace form. Let

or-,, , orr be a maximal fundamental simple system of

roots with respect to a Cartan subalgebra H of L.

Then a^ 9 *, oc is indecomposable, and the algebra
L is determined up to restricted isomorphisms by the

type Ay,
Bp , Cp, D

p , G
2 , F^, E

6 , E
? , Eg of

c^,
. ..,

a , except in the case where
ct^

9 . .., or is of

type Ap and p|(r + 2). In this case, L is deter-

mined if we know whether a
o

=
1

+ 2c*
2

+ . . . + ra
r

is a root, where o^, , ar is labeled in the

customary manner.

PROOF, o^, ..., cr
r is an i.s.s. by Th. 15-2. We agree to call a root

a positive if it is among the set of roots actually listed in Ths.

8.1-1^.1 for a system of the type of o^, ..., o?
p , as opposed to the

negatives of these roots. In the case of Ap , p|(r + 2), we deflna

a , a -i- a , . ., a * a + . . . +
a^

to be positive* From Ths. 8.1-1^.1

we observe that if the sum of two positive roots is a root, this root is

positive. We also see that any positive root a except a^,
. .., a

(and a , if it is a root ) can be written in the form p + a.,, where

is a positive root and 1 < i < r.

Now let L 1 be another simple algebra over the same (algebraically
closed) field with a non-degenerate trace form. Suppose that L 1 has a

maximal fundamental simple system of the same type (and rank) as that of

L, and that a
Q is a root for L f if and only if it is a root for L

(here we identify the systems of roots of L and L r

, as permitted by
Ths. 8.1- U.1). Let H r be the corresponding Cartan subalgebra of L f

.

If ha H, h r

a e H f are defined as before, then
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for all roots a, p. For these numbers depend only on the systems of

roots, which we know to coincide.

Let e^ , . .., ea (and possibly ea ) be non-zero elements of
1 r o

L
nr 9 > Ivy (L ), respectively, and choose e' , ..., e' (e )

1 r o a
i

a
r o

similarly in L 1
. Choose e c L

_, , e' e L' such that
~UrJ ~"

1
"*

"1

~"
-t

< i < r. Define a linear mapping \ of the subspace LQ of L spanned

by the e , < i < r, onto the subspace L^ of L 1

spanned by the

e
ior > < i < r, by e

t\
- e! . This mapping is one-to-one, and iftv

r^
\

we set
h^vj

= hj, l < i < r, we can extend *\ to a linear mapping of

L* = H + LQ onto L ! * = H ! + L'. Moreover, we have

(D (e, h.n ]

(2) [e_a yj,
e ^]

=
le_a^*(,

1 < j < r, < i < r.

=
i

~ ek ' whlle

J

(1):

aa (h ) 2ai (h' )

-

J

(2): Except when i = o, this is a trivial consequence of the definition

of v^ . When ofQ is a root, we have
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- [e: ei ]
- h

i onlnO O O C

2
r ^a + 2^i + +

rh^ ]

Now a (h' )
=
Qf^h^ )=...= ar (h

(Jf
), so that

o 1 r

h{

Similarly, ho
= h

1

* 2h
2

+ ' ' ' + rh
r'

and or

If a Is a positive root other than a
o , Qf

Q
+ ar ,

. . ., or
o

+
r

+ . . .

+ a^ define the level of a to be the sum of the natural numbers which

represent its coefficients in the lists of Ths. 8.1-lU.i. If a
Q

is a

root, let or have level 1, ao + orr have level 2, . . ., CC
Q

+ a
r

+ . . .

+
of^

have level r + 1 . If or has level n > 1 , we see that we can

find a positive root or -
or^

of level n - 1 for some 1, 1 < 1 < r.

Let

^n
" H +ia positive of level < n L

c*
'

^n
= H! +

!EIa positive of level < n^
Then L

I

- L*, L{
= L 1

*, and for n sufficiently large, 1^
= L, L^

= L 1
.

We assert that the mapping v\ can be extended to a one-to-one linear

mapping of 1^ onto
L^, mapping L onto LI if LQ S L^, such that

if
%

La , L
p , I^^CV then teo

e
p ]t|

. [ea^, e^l in 1^, where

o # ea c La ,
o / e LO (we allow a, p, or a + p to be zero, in which

case the corresponding root-vector can be replaced by arbitrary h e H).

Such an extension has already been obtained for n 1 . Assume there ex-

ists an extension to Ln-1 with these properties.

Let a be a positive root of level n, and suppose that a = p +
a^

where p is a positive of level n -
1, 1 < i < r. Let o f e^

c L
p ,

f ea La . Then ^ tp a ^
= ea L

a"
J06^1116

ean
= t*

PV e
a^

] LiS^ Similarly, if e^a
=

[e.p^
1 L

-a'
de"

fine e-av^
=

te.pH*
e-a

v
V^

e ^^ Extend v^ to 1^ by linearity. Then
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Vj is one-to-one from 1^ to L^, and maps H onto H', L
p

onto L
for LO S 1^- It remains only to prove the homomorphism property. It

will be evident from the proof that the definition of e vj is independent
of the representation of a as p + a, f and of that of e^ as te^e^ ].

J- up Of.

That is, if we represent or in any way as a sum *& + a. of a root If

and a root a . of the fundamental simple system and if we represent the

same vector e^ in any way as [e v e^ ], where e and e^ are in
tt Q U j 9 Qf

the corresponding root-spaces, our definition of e
v^

will imply that

a.

Now

while

e
+a ^ 1 * * - r *

If a is positive of level n and f is positive, then either

is not a root, and [e^, e^vj]
= o = [eyea ]<\

Next let Jf be positive of level less than n. Then

and

since all quantities to which vj
is applied are root-vectors in L

R-1 ,

for which the homomorphism property holds by assumption.

If V is positive of level n, we have
e_^

- 1.%^ J* where
J



76 SELIGMAN

Is positive of level n - 1, and e J\
s

[ e-%V e-a V
reasoning similar to the above, ^

-g|

A similar argument shows that [ e_ae *tf-'
v
t

=
^-orV ef( ^ whenever a

is positive of level n and If is positive.

Finally, suppose that If and & are positive, and that Y + & is

a root. Then \f + 6 is positive; if it is of level less than n, then

both tf and & are of level less than n, and by hypothesis,

[e^, e
4 *|]

=
[e^e^]*|

. There remains only the case te^e^]
=

ke^, k c F,

where a = p + a^ is positive of level n, and te^, Qj^J
= ea \

i
Since L^ is one-dimensional, [e~*|, e^v^]

= k^e^), and

Meanwhile, [[e^e^]^, ^^^^ = k ^ e
Cr V'

e-a Y^-'* Since t a^ ^a^ * 0>

k = k f

, and [e-*|, e^] =
[e^e^]i|. A repetition of the procedure shows

that Ie^ e^lT
s

te_ e^]i|.
Thus ^| is extended to 1^ with the

desired homomorphism property.

In particular, when 1^
= L, L^

= L 1

, tj can be extended to a one-

to-one linear mapping of L onto L T such that [x^, y^]
= txyJn for

all x, y L, i.e., to an (ordinary) isomorphism of L onto L
1
. When
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x e L, the quantity (xl\)
p - xp

tj
is in the center of L r

, therefore

is zero. Consequently >i is a restricted isomorphism of L onto L f
.

This completes the proof.

Let us summarize the results so far obtained on the classification

problem:

THEOREM 16.2. Let L be a simple restricted Lie alge-
bra over an algebraically closed field of prime char-

acteristic p > 7, and let L possess a restricted

representation with non-degenerate trace form. Then

L has a maximal fundamental simple system of roots

which is indecomposable, therefore is among the systems
of roots of Theorem 6.1, with distinction drawn between

systems of type B and those of type C. Moreover,

this system determines the algebra up to restricted

isomorphism, except when the system is of type A_ and

p|(r + 2); in this case there may be two non-isomorphic

algebras with the same type of maximal fundamental

simple system.

XVII. THE CLASSICAL SIMPLE ALGEBRAS

The classical simple algebras, that is, those of types A - D, are

realized as matrices of trace zero (type A) or as matrices which are

skew with respect to a certain involution in a full matrix algebra (types

B, C, D). The proofs of simplicity for these realizations, as well as

the demonstration of the absence of isomorphisms among them, are to be

found in [15]. Although we shall not, in general, use their Killing

forms, remarks are added as to the conditions under which the Killing

form is non-degenerate. The source for these remarks is the work of

Dynkin [71, except for the special case of type A, which has been com-

puted by the author.

Consider first the Lie algebra ^ of all (r + 1 ) by (r + 1 )

matrices of trace zero over the field P. If pjf(r + i ), 5^ is a re-

stricted Lie algebra containing no ordinary ideals. It has a basis

given by

H
l

- =u -
*r+i,r+i'

' * 1 $ r'

E
iJ'

i#J* 1 SiJ<'+ 1
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where E.. * is the matrix with 1 at the intersection of the i-th row

and J-th column, and o in all other positions. Also,

H p - H
i

3y observing the effect on this basis, we see that Tr(XY) is a

non-degenerate form on Ip when p^(r + 1 ) . The H^ span a Cartan sub-

algebra H with respect to which the E^J are root-vectors. H has

dimension r, and that of S^ is r + 2r. Prom this we see that any

maximal fundamental simple system of roots with respect to H must be of

type Ap. Such a system is obtained if we let Ep+1 1
belong to the

root
a.,,

E
12

to a
2 , . .., ET..I 1

to or . Then E
1 1

belongs to

-
crj,

E
21

to - or
2 , . .., Ep p-1

to - ap
. By forming the commutators

of these elements, we see that o^, ..., Qfr form a maximal fundamental

i.s.s. of type Ap. By Th. 15-2 and the non-degeneracy of the form

Tr(XY), this would provide another proof of simplicity if we only knew

that Ap is semi-simple. But we get both a non-degenerate trace form

and the semi-simplicity from the fact that the Killing form of this alge-
bra is non-degenerate, and from these the simplicity is a consequence of

Th. 15.2. Any simple restricted Lie algebra of the class Ap with the

property that the quantity a is not a root if p|(r + 2) is Isomorphic

to the algebra p, by Th. 16.1.

Next let p|(r + 2), and let L* be the restricted Lie algebra of

all (r + 2) by (r + 2) matrices of trace zero over P. Let C be

its (one-dimensional) center. Then L = L*/C is a restricted Lie alge-
bra containing no ordinary Ideals and having the basis

1
*

<>*
* " " * r

where X -> X is the natural homomorphism of L* onto L, and the

H^ and E^/ have already been defined. S^, ..., Sp span a Cartan sub-

algebra, relative to which the E. . are root-vectors. Let iL+p i
^e~

long to the root o^, E
12

to
2 , ..., E

r-1 p to ar . Then we see as

above that o^, ..., a
r form a fundamental simple system of roots.

Moreover, if we define
H^

-
[E,^S^^ 1, ,

then
afj(fl

) / o, 1 < J < 3ya similar definition of Ha for each

root a, we can duplicate all the results of 5 in this case.

o^, ..., Qfp form an i.s.s. of type Ap, and the root to which Ep p+1
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belongs is a
Q

- a
1

+ 2
2

+ . . . + rap
. The complete system of roots Is

exactly that displayed for the exceptional case in Th. 8.1. Thus the sys-

tem
ofj,

. .., ap is maximal for L.

Now L satisfies all the conditions used in the proof of Th. 16.1

to prove the uniqueness of an algebra of type P^ with o as a root,

even though we have not shown that L has a non-degenerate trace form.

Therefore any algebra of this type is isomorphic to the algebra L. It

is unknown to the author whether this algebra has a restricted repre-

sentation with non-degenerate trace form. It is known that the Killing
form fails in this respect.

Next let IL be the Lie algebra of all (2r + 1 ) by (2r + 1 )
* .1

matrices M over F satisfying M - - S M'S, where M 1 denotes the

transpose of M, and

Then T p is a restricted Lie algebra containing no ordinary ideals, and

has as a basis

Hi
= E

i+l

Ei

j

The form Tr(XY) is non-degenerate on Br
* The quantities H^ span

a Cartan subalgebra of Bp , and the E^ ^j, E^ _jj, E^ i^,
E
i , E_^

are root-vectors corresponding to distinct roots with respect to this

Cartan subalgebra. Let E/* 4 , \ belong to the root
a^,

1 < i < r - 1,

and let E^ belong to the root ap
. Then

B^ 1+1 .^
belongs to - o,

1 < i < r - i> and E_p belongs to - crr
. Prom this we see that

ofj, ..., ap form a simple system of roots which is indecomposable of type
Bp . This system is in fact maximal; for the dimension of Sp is ar2 + r,
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and there are 2r
2 distinct roots. The only systems which are greater in

our ordering and which could give this number of roots are those of type

Cr and that of type Eg when r = 6. In the next paragraphs we show an

algebra with a maximal system of type Cp , which Jacobson has proved is

not isomorphic to B It can be shown that B has non-degenerate Kill-

ing form except when p|(2r
- 1 ) [?] The possibility of a system of

roots of type E
6

in E
6

will be eliminated in 18.

Suppose next that C is the algebra of all 2r by 2r matrices

M over P satisfying M * - S
-1M f

S, where

s =

Wr
is a restricted Lie algebra containing no ordinary ideals, and has

the basis

% =

E
(2i)

' E
i^r,i'

l < 1. J S P.

The form Tr(X) is non-degenerate on p
. The H^ span a Cartan

subalgebra, and the
E(- f -*)>

E
(-i,j)'

E
(i,j)

J E
(-2i)'

E
(2i)

are root-

vectors corresponding to distinct roots. Since the dimension of Sp is

2r + r, any maximal fundamental simple system must be of type B, C or

E, with the last only possible when r * 6. The possibility of a maximal

system of type E will be eliminated in the next section.

Let
E(2r j

belong to the root c*
r , and let E/ i-1 ^j belong to

ct, l < 1 < r -
1 . Then

E^_2r j
belongs to - ap , E( -:L ^+1 j

to - a ,

1 < i < r -
1, and a^ ...., crp form a simple system of type C

p
. If

we assume the assertion to have been proved that this algebra cannot

possess a simple system 6f type E when r = 6, the system o^, ..., a

is maximal. Thus C
r is a representative of the isomorphism class
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defined by the system Cp . Jacobson has shown that 5 is not isomorphlc
to the algebra 5p for r > 3- This shows that the simple system of type
Bp found for that algebra was in fact maximal. Dynkln shows that Cp
has non-degenerate Killing form except when p|(r + 1 ).

Finally let ^ be the algebra of all 2r by 2r matrices M over

F satisfying M = - S""
1M !

S, where

For r > k, f)r is a restricted Lie algebra containing no ordinary Ideals,

and has the basis

Hi
= Eil

" E
lH-r,i+r'

The form Tr(X) is non-degenerate on Dr The IL span a Cartan

subalgebra, relative to which the E/^ ,%, E/
1 _.y E/^ -j

are root-

vectors. Let E/
_i_.| j

belong to the root a^,
1 < 1 < r, and let

E
(r-l r)

^elonS to a
r'

Then E
(i+i -i)

^elon8s to - a
i>

] < i < r ^

and E/ r+1 -r \ belongs to - ap . a^ . .., crp form a simple system of

roots, which is indecomposable of type Dp . Since 5 has dimension

2r - r, this system is maximal, and D is a representative of the

isomorphism class defined by the system Dp . The Killing form of C^ is

non-degenerate except when p|(r - i).

XVIII. THE FIVE EXCEPTIONAL ALGEBRAS

In the discussion of these algebras we borrow extensively from

Cartan 1 s thesis ([2], pp. 8?-93). He demonstrates representatives of the

corresponding classes over the complex field, but chooses bases for the

algebras in such a fashion that the structural constants are rational

numbers whose denominators are 1,2, or 3- The determinant of the

Killing form with respect to this basis is a non-zero rational number,
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whose residue class (mod p) Is well-defined for p > 3* and which is

congruent to zero (mod p) for only a finite number of p. For the alge-
bra G2 , the determinant of the Killing form is not congruent to zero

(mod p) if p > 3- The other cases await calculation.

Cartan constructs a 11*-dimensional simple complex Lie algebra L

with a two-dimensional Cartan subalgebra and a simple system of roots of

type G
g

. Reducing its (rational) structural constants to their residue

classes (mod p), we obtain a 14-dimensional Lie algebra over the field

Z^ of Integers modulo p. We can consider Z^ as embedded in our field

P and extend 2L to P to obtain a 1 4 -dimensional Lie algebra 3T
g

over

P. If the characteristic p of P Is greater than 3, S
2

has non-

degenerate Killing form, hence is a restricted Lie algebra. L again has

a two-dimensional Cartan subalgebra. If a maximal fundamental simple sys-

tem for 5
2

were of type A
2 , of type B

2 , or decomposable, then 5
2

would have dimension 8, 10 or 6, respectively. Therefore any maximal

fundamental simple system of roots for G
g

Is of type G
2 (such a sys-

tem is easily found), and 5
2

Is a representative of the isomorphism
class G

2
-

Similarly, we can use Cartan f s work to construct a Lie algebra F^
of dimension 52 over P with a Cartan subalgebra of dimension 4. For

suitable values of p (almost all), the Killing form Is non-degenerate,
and one can display a simple system of roots of type F^. This system
is therefore maximal, and

Fj^
Is a representative of the isomorphism

class determined by the system F^.

The same procedure can be used to display representatives of the iso-

morphism classes determined by Eg, E, Eg, at least for sufficiently

large values of p. It remains to show that the algebra of type Eg so

obtained Is not Isomorphic to either of those algebras Bg and
g

which

we have claimed as representatives of the types Bg and Cg. But if we

observe the system of all roots for an algebra of type Eg as listed in

U, we see that there are no two roots or, p, a - p, such that oc + p

and or + 2p are roots. In each of the cases Sg and
g

there are

such roots (for Bg, take a , p
of^;

for C
6 , take a =

c*g,

P
Qf^),

and this property will be preserved under isomorphism. Thus the

algebras cannot be isomorphic.

For p > 7, we may argue as in the exceptional case of type A (see

17) to show that if the class F^, Eg, E or Eg is non-vacuous, the

algebra formed by the above process must be representative. Therefore a
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class is non-vacuous If and only if the algebra so obtained for that class

has a restricted representation with non-degenerate trace form. It seems

likely that this remark is unnecessary, i.e., that the Killing forms are

already non-degenerate for p > 7-

As a corollary, we can state the following classification theorem

for simple algebras with non-degenerate Killing form.

THEORM 18.1 . Let L be a Lie algebra over an alge-

braically closed field of characteristic p > T Suppose

that L is simple and has non-degenerate Killing form.

Then L is isomorphic to one of the algebras

+ 1), r > l;

B
r , p^ar - 1 ), r > 2;

+ 1 ), r > 3;

- 1 ), r > k;

or to one of the algebras formed from the Killing-

Cartan complex algebras of types E, P, G in the manner

indicated. Por the types E and P, there is an

algebra of the respective type with non-degenerate

Killing form if and only if the corresponding complex

algebra has a Killing form whose determinant is not

congruent to zero modulo p.
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