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Preface: why projective ?

Metrical geometry is a part of descriptive geometry1, and de-
scriptive geometry is all geometry.

Arthur Cayley

On October 5-th 2001, the authors of this book typed in the word
“Schwarzian” in the MathSciNet database and the system returned 666 hits.
Every working mathematician has encountered the Schwarzian derivative at
some point of his education and, most likely, tried to forget this rather scary
expression right away. One of the goals of this book is to convince the reader
that the Schwarzian derivative is neither complicated nor exotic, in fact, this
is a beautiful and natural geometrical object.

The Schwarzian derivative was discovered by Lagrange: “According to
a communication for which I am indebted to Herr Schwarz, this expression
occurs in Lagrange’s researches on conformable representation ‘Sur la con-
struction des cartes géographiques’ ” [117]; the Schwarzian also appeared in
a paper by Kummer in 1836, and it was named after Schwarz by Cayley. The
main two sources of current publications involving this notion are classical
complex analysis and one-dimensional dynamics. In modern mathematical
physics, the Schwarzian derivative is mostly associated with conformal field
theory. It also remains a source of inspiration for geometers.

The Schwarzian derivative is the simplest projective differential invari-
ant, namely, an invariant of a real projective line diffeomorphism under the
natural SL(2,R)-action on RP1. The unavoidable complexity of the for-
mula for the Schwarzian is due to the fact that SL(2,R) is so large a group
(three-dimensional symmetry group of a one-dimensional space).

Projective geometry is simpler than affine or Euclidean ones: in pro-
jective geometry, there are no parallel lines or right angles, and all non-
degenerate conics are equivalent. This shortage of projective invariants is

1By descriptive geometry Cayley means projective geometry, this term was in use in
mid-XIX-th century.
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viii PREFACE: WHY PROJECTIVE ?

due to the fact that the group of symmetries of the projective space RPn is
large. This group, PGL(n+1,R), is equal to the quotient of GL(n+1,R) by
its center. The greater the symmetry group, the fewer invariants it has. For
instance, there exists no PGL(n+ 1,R)-invariant tensor field on RPn, such
as a metric or a differential form. Nevertheless, many projective invariants
have been found, from Ancient Greeks’ discovery of configuration theorems
to differential invariants. The group PGL(n + 1,R) is maximal among Lie
groups that can act effectively on n-dimensional manifolds. It is due to this
maximality that projective differential invariants, such as the Schwarzian
derivative, are uniquely determined by their invariance properties.

Once projective geometry used to be a core subject in university curricu-
lum and, as late as the first half of the XX-th century, projective differential
geometry was a cutting edge geometric research. Nowadays this subject
occupies a more modest position, and a rare mathematics major would be
familiar with the Pappus or Desargues theorems.

This book is not an exhaustive introduction to projective differential
geometry or a survey of its recent developments. It is addressed to the
reader who wishes to cover a greater distance in a short time and arrive
at the front line of contemporary research. This book can serve as a basis
for graduate topics courses. Exercises play a prominent role while historical
and cultural comments relate the subject to a broader mathematical context.
Parts of this book have been used for topic courses and expository lectures
for undergraduate and graduate students in France, Russia and the USA.

Ideas of projective geometry keep reappearing in seemingly unrelated
fields of mathematics. The authors of this book believe that projective
differential geometry is still very much alive and has a wealth of ideas to offer.
Our main goal is to describe connections of the classical projective geometry
with contemporary research and thus to emphasize unity of mathematics.

Acknowledgments. For many years we have been inspired by our
teachers V. I. Arnold, D. B. Fuchs and A. A. Kirillov who made a significant
contribution to the modern understanding of the material of this book. It
is a pleasure to thank our friends and collaborators C. Duval, B. Khesin, P.
Lecomte and C. Roger whose many results are included here. We are much
indebted to J. C. Alvarez, M. Ghomi, E. Ghys, J. Landsberg, S. Parmentier,
B. Solomon, G. Thorbergsson and M. Umehara for enlightening discussions
and help. It was equally pleasant and instructive to work with our younger
colleagues and students S. Bouarroudj, H. Gargoubi, L. Guieu and S. Morier-
Genoud. We are grateful to the Shapiro Fund at Penn State, the Research
in Pairs program at Oberwolfach and the National Science Foundation for
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Chapter 1

Introduction

...the field of projective differential geometry is so rich that it
seems well worth while to cultivate it with greater energy than
has been done heretofore.

E. J. Wilczynski

In this introductory chapter we present a panorama of the subject of this
book. The reader who decides to restrict himself to this chapter will get a
rather comprehensive impression of the area.

We start with the classical notions of curves in projective space and de-
fine projective duality. We then introduce first differential invariants such
as projective curvature and projective length of non-degenerate plane pro-
jective curves. Linear differential operators in one variable naturally appear
here to play a crucial role in the sequel.

Already in the one-dimensional case, projective differential geometry of-
fers a wealth of interesting structures and leads us directly to the celebrated
Virasoro algebra. The Schwarzian derivative is the main character here. We
tried to present classical and contemporary results in a unified synthetic
manner and reached the material discovered as late as the last decades of
the XX-th century.

1.1 Projective space and projective duality

Given a vector space V , the associated projective space, P(V ), consists of
one-dimensional subspaces of V . If V = Rn+1 then P(V ) is denoted by
RPn. The projectivization, P(U), of a subspace U ⊂ V is called a projective
subspace of P(V ).

1



2 CHAPTER 1. INTRODUCTION

The dual projective space P(V )∗ is the projectivization of the dual vec-
tor space V ∗. Projective duality is a correspondence between projective
subspaces of P(V ) and P(V )∗, the respective linear subspaces of V and V ∗

are annulators of each other. Note that projective duality reverses the inci-
dence relation.

Natural local coordinates on RPn come from the vector space Rn+1. If
x0, x1, . . . , xn are linear coordinates in Rn+1, then yi = xi/x0 are called
affine coordinates on RPn; these coordinates are defined in the chart x0 6= 0.
Likewise, one defines affine charts xi 6= 0. The transition functions between
two affine coordinate systems are fractional-linear.

Projectively dual curves in dimension 2

The projective duality extends to curves. A smooth curve γ in RP2 deter-
mines a 1-parameter family of its tangent lines. Each of these lines gives a
point in the dual plane RP2∗ and we obtain a new curve γ∗ in RP2∗, called
the dual curve.

In a generic point of γ, the dual curve is smooth. Points in which γ∗ has
singularities correspond to inflection of γ. In generic points, γ has order 1
contact with its tangent line; inflection points are those points where the
order of contact is higher.

γ γ∗

Figure 1.1: Duality between an inflection and a cusp

Exercise 1.1.1. a) Two parabolas, given in affine coordinates by y = xα

and y = xβ, are dual for 1/α+ 1/β = 1.
b) The curves in figure 1.2 are dual to each other.

A fundamental fact is that (γ∗)∗ = γ which justifies the terminology (a
proof given in the next subsection). As a consequence, one has an alternative
definition of the dual curve. Every point of γ determines a line in the dual
plane, and the envelope of these lines is γ∗.

Two remarks are in order. The definition of the dual curve extends to
curves with cusps, provided the tangent line is defined at every point and
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γ γ∗

Figure 1.2: Projectively dual curves

depends on the point continuously. Secondly, duality interchanges double
points with double tangent lines.

Exercise 1.1.2. Consider a generic smooth closed immersed plane curve γ.
Let T± be the number of double tangent lines to γ such that locally γ lies
on one side (respectively, opposite sides) of the double tangent, see figure
1.3, I the number of inflection points and N the number of double points of
γ. Prove that

T+ − T− −
1

2
I = N.

T+ T- I N

Figure 1.3: Invariants of plane curves

Hint. Orient γ and let `(x) be the positive tangent ray at x ∈ γ. Consider
the number of intersection points of `(x) with γ and investigate how this
number changes as x traverses γ. Do the same with the negative tangent
ray.

Projective curves in higher dimensions

Consider a generic smooth parameterized curve γ(t) in RPn and its generic
point γ(0). Construct a flag of subspaces as follows. Fix an affine coor-
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dinate system, and define the k-th osculating subspace Fk as the span of
γ′(0), γ′′(0), . . . , γ(k)(0). This projective space depends neither on the pa-
rameterization nor on the choice of affine coordinates. For instance, the
first osculating space is the tangent line; the n−1-th is called the osculating
hyperplane.

A curve γ is called non-degenerate if, in every point of γ, one has the
full osculating flag

F1 ⊂ · · · ⊂ Fn = RPn. (1.1.1)

A non-degenerate curve γ determines a 1-parameter family of its osculating
hyperplanes. Each of these hyperplanes gives a point in the dual space RPn∗,
and we obtain a new curve γ∗ called the dual curve.

As before, one has the next result.

Theorem 1.1.3. The curve, dual to a non-degenerate one, is smooth and
non-degenerate, and (γ∗)∗ = γ.

Proof. Let γ(t) be a non-degenerate parameterized curve in RPn, and Γ(t)
its arbitrary lift to Rn+1. The curve γ∗(t) lifts to a curve Γ∗(t) in the dual
vector space satisfying the equations

Γ · Γ∗ = 0, Γ′ · Γ∗ = 0, . . . , Γ(n−1) · Γ∗ = 0, (1.1.2)

where dot denotes the pairing between vectors and covectors. Any solution
Γ∗(t) of (1.1.2) projects to γ∗(t). Since γ is non-degenerate, the rank of
system (1.1.2) equals n. Therefore, γ∗(t) is uniquely defined and depends
smoothly on t.

Differentiating system (1.1.2), we see that Γ(i) ·Γ∗(j) = 0 for i+j ≤ n−1.
Hence the osculating flag of the curve γ∗ is dual to that of γ and the curve
γ∗ is non-degenerate. In particular, for i = 0, we obtain Γ · Γ∗(j) = 0 with
j = 0, . . . , n− 1. Thus, (γ∗)∗ = γ.

As in the 2-dimensional case, the dual curve γ∗ can be also obtained
as the envelope of a 1-parameter family of subspaces in RPn∗, namely, of
the dual k-th osculating spaces of γ. All this is illustrated by the following
celebrated example.

Example 1.1.4. Consider a curve γ(t) in RP3 given, in affine coordinates,
by the equations:

y1 = t, y2 = t2, y3 = t4.

This curve is non-degenerate at point γ(0). The plane, dual to point γ(t),
is given, in an appropriate affine coordinate system (a1, a2, a3) in RP3∗, by
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the equation

t4 + a1t
2 + a2t+ a3 = 0. (1.1.3)

This 1-parameter family of planes envelops a surface called the swallow tail
and shown in figure 1.4. This developable surface consists of the tangent
lines to the curve γ∗. Note the cusp of γ∗ at the origin.

Figure 1.4: Swallow tail

Comment

The study of polynomials (1.1.3) and figure 1.4 go back to the XIX-th cen-
tury [118]; the name “swallow tail” was invented by R. Thom in mid XX-th
century in the framework of the emerging singularity theory (see [16]). The
swallow tail is the set of polynomials (1.1.3) with multiple roots, and the
curve γ∗ corresponds to polynomials with triple roots. This surface is a
typical example of a developable surface, i.e., surface of zero Gauss curva-
ture. The classification of developable surfaces is due to L. Euler (cf.[193]):
generically, such a surface consists of the tangent lines of a curve, called the
edge of regression. The edge of regression itself has a singularity as in figure
1.4.

Unlike the Plücker formula of classic algebraic geometry, the result of
Exercise 1.1.2 is surprisingly recent; it was obtained by Fabricius-Bjerre in
1962 [61]. This result has numerous generalizations, see, e.g., [199, 66].

1.2 Discrete invariants and configurations

The oldest invariants in projective geometry are projective invariants of
configurations of point and lines. Our exposition is just a brief excursion to
the subject, for a thorough treatment see, e.g., [22].
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Cross-ratio

Consider the projective line RP1. Every triple of points can be taken to
any other triple by a projective transformation. This is not the case for
quadruples of points: four points in RP1 have a numeric invariant called the
cross-ratio. Choosing an affine parameter t to identify RP1 with R ∪ {∞},
the action of PGL(2,R) is given by fractional-linear transformations:

t 7→
at+ b

ct+ d
. (1.2.1)

The four points are represented by numbers t1, t2, t3, t4, and the cross-ratio
is defined as

[t1, t2, t3, t4] =
(t1 − t3)(t2 − t4)

(t1 − t2)(t3 − t4)
. (1.2.2)

A quadruple of points is called harmonic if its cross-ratio is equal to −1.

Exercise 1.2.1. a) Check that the cross-ratio does not change under trans-
formations (1.2.1).

b) Investigate how the cross-ratio changes under permutations of the four
points.

A B C D

A B C D

a b c
d

' ' ' '

Figure 1.5: Cross-ratio of lines: [A,B,C,D] = [A′, B′, C ′, D′] := [a, b, c, d]

One defines also the cross-ratio of four concurrent lines in RP2, that is,
four lines through one point. The pencil of lines through a point identifies
with RP1, four lines define a quadruple of points in RP1, and we take their
cross-ratio. Equivalently, intersect the four lines with an auxiliary line and
take the cross-ratio of the intersection points therein, see figure 1.5.
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Pappus and Desargues

Let us mention two configurations in the projective plane. Figures 1.6 depict
two classical theorems.

Figure 1.6: Pappus and Desargues theorems

The Pappus theorem describes the following construction which we rec-
ommend to the reader to perform using a ruler or his favorite drawing soft-
ware. Start with two lines, pick three points on each. Connect the points
pairwise as shown in figure 1.6 to obtain three new intersection points. These
three points are also collinear.

In the Desargues theorem, draw three lines through one point and pick
two points on each to obtain two perspective triangles. Intersect the pairs
of corresponding sides of the triangles. The three points of intersection are
again collinear.

Pascal and Brianchon

The next theorems, depicted in figure 1.7, involve conics. To obtain the
Pascal theorem, replace the two original lines in the Pappus configuration
by a conic. In the Brianchon theorem, circumscribe a hexagon about a conic
and connect the opposite vertices by diagonals. The three lines intersect at
one point.

Unlike the Pappus and Desargues configurations, the Pascal and Brian-
chon ones are projectively dual to each other.

Steiner

Steiner’s theorem provides a definition of the cross-ratio of four points on
a conic. Choose a point P on a conic. Given four points A,B,C,D, define
their cross-ratio as that of the lines (PA), (PB), (PC), (PD). The theorem
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Figure 1.7: Pascal and Brianchon theorems

A D
CB

P P1

Figure 1.8: Steiner theorem

asserts that this cross-ratio is independent of the choice of point P :

[(PA), (PB), (PC), (PD)] = [(P1A), (P1B), (P1C), (P1D)]

in figure 1.8.

Comment

In 1636 Girard Desargues published a pamphlet “A sample of one of the
general methods of using perspective” that laid the foundation of projective
geometry; the Desargues theorem appeared therein. The Pappus configura-
tion is considerably older; it was known as early as the III-rd century A.D.
The triple of lines in figure 1.6 is a particular case of a cubic curve, the
Pappus configuration holds true for 9 points on an arbitrary cubic curve –
see figure 1.9. This more general formulation contains the Pascal theorem
as well. Particular cases of Steiner’s theorem were already known to Apol-
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Figure 1.9: Generalized Pappus theorem

lonius 1. Surprisingly, even today, there appear new generalizations of the
Pappus and the Desargues theorems, see [182, 183].

1.3 Introducing Schwarzian derivative

Projective differential geometry studies projective invariants of functions,
diffeomorphisms, submanifolds, etc. One way to construct such invariants
is to investigate how discrete invariants vary in continuous families.

Schwarzian derivative and cross-ratio

The best known and most popular projective differential invariant is the
Schwarzian derivative. Consider a diffeomorphism f : RP1 → RP1. The
Schwarzian derivative measures how f changes the cross-ratio of infinitesi-
mally close points.

Let x be a point in RP1 and v be a tangent vector to RP1 at x. Extend
v to a vector field in a vicinity of x and denote by φt the corresponding local
one-parameter group of diffeomorphisms. Consider 4 points:

x, x1 = φε(x), x2 = φ2ε(x), x3 = φ3ε(x)

1We are indebted to B. A. Rosenfeld for enlightening discussions on Ancient Greek
mathematics
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(ε is small) and compare their cross-ratio with that of their images under f .
It turns out that the cross-ratio does not change in the first order in ε:

[f(x), f(x1), f(x2), f(x3)] = [x, x1, x2, x3]− 2ε2S(f)(x) +O(ε3). (1.3.1)

The ε2–coefficient depends on the diffeomorphism f , the point x and the
tangent vector v, but not on its extension to a vector field.

The term S(f) is called the Schwarzian derivative of a diffeomorphism
f . It is homogeneous of degree 2 in v and therefore S(f) is a quadratic
differential on RP1, that is, a quadratic form on TRP1.

Choose an affine coordinate x ∈ R ∪ {∞} = RP1. Then the projective
transformations are identified with fractional-linear functions and quadratic
differentials are written as φ = a(x) (dx)2. The change of variables is then
described by the formula

φ ◦ f =
(
f ′
)2
a(f(x)) (dx)2. (1.3.2)

The Schwarzian derivative is given by the formula

S(f) =

(
f ′′′

f ′
−

3

2

(
f ′′

f ′

)2
)

(dx)2. (1.3.3)

Exercise 1.3.1. a) Check that (1.3.1) contains no term, linear in ε.

b) Prove that S(f) does not depend on the extension of v to a vector field.

c) Verify formula (1.3.3).

The Schwarzian derivative enjoys remarkable properties.

• By the very construction, S(g) = 0 if g is a projective transformation,
and S(g ◦ f) = S(f) if g is a projective transformation. Conversely, if
S(g) = 0 then g is a projective transformation.

• For arbitrary diffeomorphisms f and g,

S(g ◦ f) = S(g) ◦ f + S(f) (1.3.4)

where S(g) ◦ f is defined as in (1.3.2). Homological meaning of this
equation will be explained in Section 1.5.

Exercise 1.3.2. Prove formula (1.3.4).



1.3. INTRODUCING SCHWARZIAN DERIVATIVE 11

Curves in the projective line

By a curve we mean a parameterized curve, that is, a smooth map from R to
RP1. In other words, we consider a moving one-dimensional subspace in R2.
Two curves γ1(t) and γ2(t) are called equivalent if there exists a projective
transformation g ∈ PGL(2,R) such that γ2(t) = g◦γ1(t). Recall furthermore
that a curve in RP1 is non-degenerate if its speed is never vanishing (cf.
Section 1.1).

One wants to describe the equivalence classes of non-degenerate curves in
RP1. In answering this question we encounter, for the first time, a powerful
tool of projective differential geometry, linear differential operators.

Theorem-construction 1.3.1. There is a one-to-one correspondence be-
tween equivalence classes of non-degenerate curves in RP1 and Sturm-Liou-
ville operators

L =
d2

dt2
+ u(t) (1.3.5)

where u(t) is a smooth function.

Proof. Consider the Sturm-Liouville equation ψ̈(t)+u(t)ψ(t) = 0 associated
with an operator (1.3.5). The space of solutions, V , of this equation is two-
dimensional. Associating to each value of t a one-dimensional subspace of
V consisting of solutions vanishing for this t, we obtain a family of one-
dimensional subspaces depending on t. Finally, identifying V with R2 by an
arbitrary choice of a basis, ψ1(t), ψ2(t), we obtain a curve in RP1, defined
up to a projective equivalence.

Γ(t)

γ(t)

0

Γ(t)

Figure 1.10: Canonical lift of γ to R2: the area |Γ(t), Γ̇(t)| = 1

Conversely, consider a non-degenerate curve γ(t) in RP1. It can be
uniquely lifted to R2 as a curve Γ(t) such that |Γ(t), Γ̇(t)| = 1, see figure
1.10. Differentiate to see that the vector Γ̈(t) is proportional to Γ(t):

Γ̈(t) + u(t)Γ(t) = 0.
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We have obtained a Sturm-Liouville operator. If γ(t) is replaced by a pro-
jectively equivalent curve then its lift Γ(t) is replaced by a curve A(Γ(t))
where A ∈ SL(2,R), and the respective Sturm-Liouville operator remains
intact.

Exercise 1.3.3. a) The curve corresponding to a Sturm-Liouville operator
is non-degenerate.
b) The two above constructions are inverse to each other.

To compute explicitly the correspondence between Sturm-Liouville op-
erators and non-degenerate curves, fix an affine coordinate on RP1. A curve
γ is then given by a function f(t).

Exercise 1.3.4. Check that u(t) = 1
2S(f(t)).

Thus the Schwarzian derivative enters the plot for the second time.

Projective structures on R and S1

The definition of projective structure resembles many familiar definitions
in differential topology or differential geometry (smooth manifold, vector
bundle, etc.). A projective structure on R is given by an atlas (Ui, ϕi)
where (Ui) is an open covering of R and the maps ϕi : Ui → RP1 are local
diffeomorphisms satisfying the following condition: the locally defined maps
ϕi◦ϕ

−1
j on RP1 are projective. Two such atlases are equivalent if their union

is again an atlas.
Informally speaking, a projective structure is a local identification of R

with RP1. For every quadruple of sufficiently close points one has the notion
of cross-ratio.

A projective atlas defines an immersion ϕ : R → RP1; a projective struc-
ture gives a projective equivalence class of such immersions. The immersion
ϕ, modulo projective equivalence, is called the developing map . According
to Theorem 1.3.1, the developing map ϕ gives rise to a Sturm-Liouville oper-
ator (1.3.5). Therefore, the space of projective structures on S1 is identified
with the space of Sturm-Liouville operators.

The definition of projective structure on S1 is analogous, but it has a new
feature. Identifying S1 with R/Z, the developing map satisfies the following
condition:

ϕ(t+ 1) = M(ϕ(t)) (1.3.6)

for some M ∈ PGL(2,R). The projective map M is called the monodromy
. Again, the developing map is defined up to the projective equivalence:
(ϕ(t),M) ∼ (gϕ(t), gMg−1) for g ∈ PGL(2,R).
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The monodromy condition (1.3.6) implies that, for the corresponding
Sturm-Liouville operator, one has u(t+ 1) = u(t), while the solutions have

the monodromy M̃ ∈ SL(2,R), which is a lift ofM . To summarize, the space
of projective structures on S1 is identified with the space of Sturm-Liouville
operators with 1-periodic potentials u(t).

Diff(S1)- and Vect(S1)-action on projective structures

The group of diffeomorphisms Diff(S1) naturally acts on projective atlases
and, therefore, on the space of projective structures. In terms of the Sturm-
Liouville operators, this action is given by the transformation rule for the
potential

Tf−1 : u 7→
(
f ′
)2
u(f) +

1

2
S(f), (1.3.7)

where f ∈ Diff(S1). This follows from Exercise 1.3.4 and formula (1.3.4).

The Lie algebra corresponding to Diff(S1) is the algebra of vector fields
Vect(S1). The vector fields are written as X = h(t)d/dt and their commu-
tator as

[X1, X2] =
(
h1h

′
2 − h′1h2

) d
dt
.

Whenever one has a differentiable action of Diff(S1), one also has an action
of Vect(S1) on the same space.

Exercise 1.3.5. Check that the action of a vector field X = h(t)d/dt on
the potential of a Sturm-Liouville operator is given by

tX : u 7→ hu′ + 2h′u+
1

2
h′′′. (1.3.8)

It is interesting to describe the kernel of this action.

Exercise 1.3.6. a) Let φ1 and φ2 be two solutions of the Sturm-Liouville
equation φ′′(t)+u(t)φ(t) = 0. Check that, for the vector fieldX = φ1φ2 d/dt,
one has tX = 0.

b) The kernel of the action t is a Lie algebra isomorphic to sl(2,R); this
is precisely the Lie algebra of symmetries of the projective structure corre-
sponding to the Sturm-Liouville operator.

Hint. The space of solutions of the equation tX = 0 is three-dimensional,
hence the products of two solutions of the Sturm-Liouville equation span
this space.
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Figure 1.11: Zeroes of solutions

Sturm theorem on zeroes

The classic Sturm theorem states that between two zeroes of a solution of a
Sturm-Liouville equation any other solution has a zero as well. The simplest
proof is an application of the above identification between Sturm-Liouville
equations and projective structures on S1. Consider the corresponding de-
veloping map γ : S1 → RP1 and its lift Γ to R2. Every solution φ of the
Sturm-Liouville equation is a pull-back of a linear function y on R2. Ze-
roes of φ are the intersection points of Γ with the line y = 0. Since γ is
non-degenerate, the intermediate value theorem implies that between two
intersections of Γ with any line there is an intersection with any other line,
see figure 1.11 and [163] for an elementary exposition.

Comment

The Schwarzian derivative is historically the first and most fundamental
projective differential invariant. The natural identification of the space of
projective structures with the space of Sturm-Liouville operators is an im-
portant conceptual result of one-dimensional projective differential geome-
try, see [222] for a survey. Exercise 1.3.6 is Kirillov’s observation [115].

1.4 Further example of differential invariants: pro-

jective curvature

The second oldest differential invariant of projective geometry is the pro-
jective curvature of a plane curve. The term “curvature” is somewhat mis-
leading: the projective curvature is, by no means, a function on the curve.
We will define the projective curvature as a projective structure on the curve.
In a nutshell, the curve is approximated by its osculating conic which, by
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Steiner’s theorem (cf. Section 1.2), has a projective structure induced from
RP2; this projective structure is transplanted from the osculating conic to
the curve. To realize this program, we will proceed in a traditional way and
represent projective curves by differential operators.

Plane curves and differential operators

Consider a parameterized non-degenerate curve γ(t) in RP2, that is, a curve
without inflection points (see Section 1.1 for a general definition). Repeating
the construction of Theorem 1.3.1 yields a third-order linear differential
operator

A =
d3

dt3
+ q(t)

d

dt
+ r(t). (1.4.1)

Example 1.4.1. Let γ(t) be the conic (recall that all non-degenerate conics
in RP2 are projectively equivalent). The corresponding differential operator
(1.4.1) has a special form:

A1 =
d3

dt3
+ q(t)

d

dt
+

1

2
q′(t). (1.4.2)

Indeed, consider the Veronese map V : RP1 → RP2 given by the formula

V (x0 : x1) = (x2
0 : x0x1 : x2

1). (1.4.3)

The image of RP1 is a conic, and γ(t) is the image of a parameterized curve
in RP1. A parameterized curve in RP1 corresponds to a Sturm-Liouville
operator (1.3.5) so that {x0(t), x1(t)} is a basis of solutions of the Sturm-
Liouville equation Lψ = 0. It remains to check that every product

y(t) = xi(t)xj(t), i, j = 1, 2

satisfies A1y = 0 with q(t) = 4u(t).

Exercise 1.4.2. We now have two projective structures on the conic in RP2:
the one given by Steiner’s theorem and the one induced by the Veronese map
from RP1. Prove that these structures coincide.

Projective curvature via differential operators

Associate the following Sturm-Liouville operator with the operator A:

L =
d2

dt2
+

1

4
q(t). (1.4.4)
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According to Section 1.3, we obtain a projective structure on R and thus on
the parameterized curve γ(t).

Theorem 1.4.3. This projective structure on γ(t) does not depend on the
choice of the parameter t.

Proof. Recall the notion of dual (or adjoint) operator: for a differential
monomial one has

(
a(t)

dk

dtk

)∗
= (−1)k

dk

dtk
◦ a(t). (1.4.5)

Consider the decomposition of the operator (1.4.1) into the sum

A = A1 +A0 (1.4.6)

of its skew-symmetric part A1 = −A∗1 given by (1.4.2) and the symmetric
part A0 = A∗0. Note, that the symmetric part is a scalar operator:

A0 = r(t)−
1

2
q′(t). (1.4.7)

The decomposition (1.4.6) is intrinsic, that is, independent of the choice of
the parameter t (cf. Section 2.2 below).

The correspondence A 7→ L is a composition of two operations: A 7→ A1

and A1 7→ L; the second one is also intrinsic, cf. Example 1.4.1.

Exercise 1.4.4. The operator (1.4.2) is skew-symmetric: A∗1 = −A1.

To wit, a non-degenerate curve in RP2 carries a canonical projective
structure which we call the projective curvature. In the next chapter we will
explain that the expression A0 in (1.4.7) is, in fact, a cubic differential; the
cube root (A0)

1/3 is called the projective length element . The projective
length element is identically zero for a conic and, moreover, vanishes in those
points of the curve in which the osculating conic is hyper-osculating.

Traditionally, the projective curvature is considered as a function q(t)
where t is a special parameter for which A0 ≡ 1, i.e., the projective length
element equals dt.

On the other hand, one can choose a different parameter x on the curve
in such a way that q(x) ≡ 0, namely, the affine coordinate of the defined
projective structure. This shows that the projective curvature is neither a
function nor a tensor.
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Exercise 1.4.5. a) Let A be the differential operator corresponding to a
non-degenerate parameterized curve γ(t) in RP2. Prove that the operator
corresponding to the dual curve γ∗(t) is −A∗.
b) Consider a non-degenerate parameterized curve γ(t) in RP2 and let γ∗(t)
be projectively equivalent to γ(t), i.e., there exists a projective isomorphism
ϕ : RP2 → RP2∗ such that γ∗(t) = ϕ(γ(t)). Prove that γ(t) is a conic.

l

l

l

l

0

1

2

3

Figure 1.12: Projective curvature as cross-ratio

Projective curvature and cross-ratio

Consider four points

γ(t), γ(t+ ε), γ(t+ 2ε), γ(t+ 3ε)

of a non-degenerate curve in RP2. These points determine four lines `0, `1, `2
and `3 as in figure 1.12.
Let us expand the cross-ratio of these lines in powers of ε.

Exercise 1.4.6. One has

[`0, `1, `2, `3] = 4− 2ε2 q(t) +O(ε3). (1.4.8)

This formula relates the projective curvature with the cross-ratio.

Comparison with affine curvature

Let us illustrate the preceding construction by comparison with geometri-
cally more transparent notion of the affine curvature and the affine param-
eter (see, e.g., [193]).
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x x+ε

v

Figure 1.13: Cubic form on an affine curve

Consider a non-degenerate curve γ in the affine plane with a fixed area
form. We define a cubic form on γ as follows. Let v be a tangent vector to γ
at point x. Extend v to a tangent vector field along γ and denote by φt the
corresponding local one-parameter group of diffeomorphisms of γ. Consider
the segment between x and φε(x), see figure 1.13, and denote by A(x, v, ε)
the area, bounded by it and the curve. This function behaves cubically in
ε, and we define a cubic form

σ(x, v) = lim
ε→0

A(x, v, ε)

ε3
. (1.4.9)

A parameter t on γ is called affine if σ = c(dt)3 with a positive constant c.
By the very construction, the notion of affine parameter is invariant with
respect to the group of affine transformations of the plane while σ is invariant
under the (smaller) equiaffine group.

Alternatively, an affine parameter is characterized by the condition

|γ′(t), γ′′(t)| = const.

Hence the vectors γ ′′′(t) and γ′(t) are proportional: γ ′′′(t) = −k(t)γ ′(t). The
function k(t) is called the affine curvature.

The affine parameter is not defined at inflection points. The affine cur-
vature is constant if and only if γ is a conic.

Comment

The notion of projective curvature appeared in the literature in the second
half of the XIX-th century. From the very beginning, curves were studied
in the framework of differential operators – see [231] for an account of this
early period of projective differential geometry.

In his book [37], E. Cartan also calculated the projective curvature as
a function of the projective length parameter. However, he gave an inter-
pretation of the projective curvature in terms of a projective structure on
the curve. Cartan invented a geometrical construction of developing a non-
degenerate curve on its osculating conic. This construction is a projective
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counterpart of the Huygens construction of the involute of a plane curve
using a non-stretchable string: the role of the tangent line is played by the
osculating conic and the role of the Euclidean length by the projective one.

Affine differential geometry and the corresponding differential invariants
appeared later than the projective ones. A systematic theory was developed
between 1910 and 1930, mostly by Blaschke’s school.

1.5 Schwarzian derivative as a cocycle of Diff(RP1)

The oldest differential invariant of projective geometry, the Schwarzian deri-
vative, remains the most interesting one. In this section we switch gears
and discuss the relation of the Schwarzian derivative with cohomology of
the group Diff(RP1). This contemporary viewpoint leads to promising ap-
plications that will be discussed later in the book. To better understand the
material of this and the next section, the reader is recommended to consult
Section 8.4.

Invariant and relative 1-cocycles

Let G be a group, V a G-module and T : G → End(V ) the G-action on
V . A map C : G→ V is called a 1-cocycle on G with coefficients in V if it
satisfies the condition

C(gh) = Tg C(h) + C(g). (1.5.1)

A 1-cocycle C is called a coboundary if

C(g) = Tg v − v (1.5.2)

for some fixed v ∈ V . The quotient group of 1-cocycles by coboundaries is
H1(G,V ), the first cohomology group; see Section 8.4 for more details.

Let H be a subgroup of G. A 1-cocycle C is H-invariant if

C(hgh−1) = ThC(g) (1.5.3)

for all h ∈ H and g ∈ G.
Another important class of 1-cocycles associated with a subgroup H

consists of the cocycles vanishing on H. Such cocycles are called H-relative
.

Exercise 1.5.1. Let H be a subgroup of G and let C be a 1-cocycle on G.
Prove that the following three conditions are equivalent:
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1) C(h) = 0 for all h ∈ H;
2) C(gh) = C(g) for all h ∈ H and g ∈ G;
3) C(hg) = Th (C(g)) for all h ∈ H and g ∈ G.

The property of a 1-cocycle to be H-relative is stronger than the condition
to be H-invariant.

Exercise 1.5.2. Check that the conditions 1) – 3) imply (1.5.3).

Tensor densities in dimension 1

All tensor fields on a one-dimensional manifold M are of the form:

φ = φ(x)(dx)λ, (1.5.4)

where λ ∈ R and x is a local coordinate; φ is called a tensor density of
degreeλ. The space of tensor densities is denoted by Fλ(M), or Fλ, for
short. Equivalently, a tensor density of degree λ is defined as a section of
the line bundle (T ∗M)⊗λ.

The group Diff(M) naturally acts on Fλ. To describe explicitly this
action, consider the space of functions C∞(M) and define a 1-parameter
family of Diff(M)-actions on this space:

Tλ
f−1 : φ(x) 7→

(
f ′
)λ

φ(f(x)) , f ∈ Diff(M) (1.5.5)

cf. formula (1.3.2) for quadratic differentials. The Diff(M)-module Fλ is
nothing else but the module (C∞(M),Tλ). Although all Fλ are isomorphic
to each other as vector spaces, Fλ and Fµ are not isomorphic as Diff(M)-
modules unless λ = µ (cf. [72]).

In the case M = S1, there is a Diff(M)-invariant pairing Fλ⊗F1−λ → R

given by the integral

〈φ(x)(dx)λ, ψ(x)(dx)1−λ〉 =

∫

S1

φ(x)ψ(x)dx

Example 1.5.3. In particular, F0 is the space of smooth functions, F1 is
the space of 1-forms, F2 is the space of quadratic differentials, familiar from
the definition of the Schwarzian derivative, while F−1 is the space of vector
fields. The whole family Fλ is of importance, especially for integer and
half-integer values of λ.

Exercise 1.5.4. a) Check that formula (1.5.5) indeed defines an action of
Diff(M), that is, for all diffeomorphisms f, g, one has Tλ

f ◦ Tλ
g = Tλ

f◦g.
b) Show that the Vect(M)-action on Fλ(M) is given by the formula

Lλ
h(x) d

dx

: φ(dx)λ 7→ (hφ′ + λh′φ)(dx)λ. (1.5.6)
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First cohomology with coefficients in tensor densities

Recall identity (1.3.4) for the Schwarzian derivative. This identity means
that the Schwarzian derivative defines a 1-cocycle f 7→ S(f−1) on Diff(RP1)
with coefficients in the space of quadratic differentials F2(RP1). This cocycle
is not a coboundary; indeed, unlike S(f), any coboundary (1.5.2) depends
only on the 1-jet of a diffeomorphism – see formula (1.5.5).

The Schwarzian derivative vanishes on the subgroup PGL(2,R), and thus
it is PGL(2,R)-invariant.

Let us describe the first cohomology of the group Diff(RP1) with coeffi-
cients in Fλ. These cohomologies can be interpreted as equivalence classes
of affine modules (or extensions) on Fλ. If G is a Lie group and V its
module then a structure of affine module on V is a structure of G-module
on the space V ⊕ R defined by

T̃g : (v, α) 7→ (Tg v + αC(g), α),

where C is a 1-cocycle on G with values in V . See Section 8.4 for more
information on affine modules and extensions.

Theorem 1.5.5. One has

H1(Diff(RP1);Fλ) =

{
R, λ = 0, 1, 2,

0, otherwise
(1.5.7)

We refer to [72] for details. The corresponding cohomology classes are
represented by the 1-cocycles

C0(f
−1) = ln f ′, C1(f

−1) =
f ′′

f ′
dx, C2(f

−1) =

(
f ′′′

f ′
−

3

2

(f ′′
f ′

)2
)

(dx)2.

The first cocycle makes sense in Euclidean geometry and the second one
in affine geometry. Their restrictions to the subgroup PGL(2,R) are non-
trivial, hence these cohomology classes cannot be represented by PGL(2,R)-
relative cocycles.

One is usually interested in cohomology classes, not in the represent-
ing cocycles which, as a rule, depend on arbitrary choices. However, the
Schwarzian derivative is canonical in the following sense.

Theorem 1.5.6. The Schwarzian derivative is a unique (up to a constant)
PGL(2,R)-relative 1-cocycle on Diff(RP1) with coefficients in F2.
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Proof. If there are two such cocycles, then, by Theorem 1.5.5, their linear
combination is a coboundary, and this coboundary vanishes on PGL(2,R).
Every coboundary is of the form

C(f) = Tf (φ)− φ

for some φ ∈ F2. Therefore one has a non-zero PGL(2,R)-invariant quadratic
differential. It remains to note that PGL(2,R) does not preserve any tensor
field on RP1.

Exercise 1.5.7. Prove that the infinitesimal version of the Schwarzian
derivative is the following 1-cocycle on the Lie algebra Vect(RP1):

h(x)
d

dx
7→ h′′′(x) (dx)2. (1.5.8)

1.6 Virasoro algebra: the coadjoint representation

The Virasoro algebra is one of the best known infinite-dimensional Lie al-
gebras, defined as a central extension of Vect(S1). A central extension of
a Lie algebra g is a Lie algebra structure on the space g ⊕ R given by the
commutator

[(X,α), (Y, β)] = ([X,Y ], c(X,Y )),

where X,Y ∈ g, α, β ∈ R and c : g → R is a 1-cocycle. The reader can find
more information on central extensions in Section 8.4.

Definition of the Virasoro algebra

The Lie algebra Vect(S1) has a central extension given by the so-called
Gelfand-Fuchs cocycle

c
(
h1(x)

d

dx
, h2(x)

d

dx

)
=

∫

S1

h′1(x)h
′′
2(x) dx. (1.6.1)

The corresponding Lie algebra is called the Virasoro algebra and will be
denoted by Vir. This is a unique (up to isomorphism) non-trivial central
extension of Vect(S1) (cf. Lemma 8.5.3).

Exercise 1.6.1. Check the Jacobi identity for Vir.

Note that the cocycle (1.6.1) is obtained by pairing the cocycle (1.5.8)
with a vector field.
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Computing the coadjoint representation

To explain the relation of the Virasoro algebra to projective geometry we
use the notion of coadjoint representation defined as follows. A Lie algebra
g acts on its dual space by

〈ad∗Xφ, Y 〉 := −〈φ, [X,Y ]〉,

for φ ∈ g∗ and X,Y ∈ g. This coadjoint representation carries much infor-
mation about the Lie algebra.

The dual space to the Virasoro algebra is Vir∗ = Vect(S1)∗ ⊕ R. It is
always natural to begin the study of the dual space to a functional space
with its subspace called the regular dual. This subspace is spanned by the
distributions given by smooth compactly supported functions.

Consider the regular dual space, Vir∗reg = C∞(S1)⊕R consisting of pairs
(u(x), c) where u(x) ∈ C∞(S1) and c ∈ R, so that

〈(u(x), c), (h(x)d/dx, α)〉 :=

∫

S1

u(x)h(x)dx + cα.

The regular dual space is invariant under the coadjoint action.

Exercise 1.6.2. The explicit formula for the coadjoint action of the Vira-
soro algebra on its regular dual space is

ad∗(hd/dx, α)(u, c) = (hu′ + 2h′u− c h′′′, 0). (1.6.2)

Note that the center of Vir acts trivially.

A remarkable coincidence

In the first two terms of the above formula (1.6.2) we recognize the Lie
derivative (1.5.6) of quadratic differentials, the third term is nothing else
but the cocycle (1.5.8), so that the action (1.6.2) is an affine module (see
Section 1.5). Moreover, this action coincides with the natural Vect(S1)-
action on the space of Sturm-Liouville operators (for c = −1/2), see formula
(1.3.8).

Thus one identifies, as Vect(S1)-modules, the regular dual space Vir∗reg
and the space of Sturm-Liouville operators

(u(x), c) ↔ −2c
d2

dx2
+ u(x) (1.6.3)

and obtains a nice geometrical interpretation for the coadjoint representation
of the Virasoro algebra.
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Remark 1.6.3. To simplify exposition, we omit the definition of the Vira-
soro group (the group analog of the Virasoro algebra) and the computation of
its coadjoint action which, indeed, coincides with the Diff(S1)-action (1.3.7).

Coadjoint orbits

The celebrated Kirillov’s orbit method concerns the study of the coadjoint
representation. Coadjoint orbits of a Lie algebra g are defined as integral
surfaces in g∗, tangent to the vector fields φ̇ = ad∗Xφ for all X ∈ g 2.
Classification of the coadjoint orbits of a Lie group or a Lie algebra is always
an interesting problem.

The identification (1.6.3) makes it possible to express invariants of the
coadjoint orbits of the Virasoro algebra in terms of invariants of Sturm-
Liouville operators (and projective structures on S1, see Theorem 1.3.1).

An invariant of a differential operator on S1 is the monodromy operator
mentioned in Section 1.3. In the case of Sturm-Liouville operators, this is

an element of the universal covering ˜PGL(2,R).

Theorem 1.6.4. The monodromy operator is the unique invariant of the
coadjoint orbits of the Virasoro algebra.

Proof. Two elements (u0(x), c) and (u1(x), c) of Vir∗reg belong to the same
coadjoint orbit if and only if there is a one-parameter family (ut(x), c) with
t ∈ [0, 1] such that, for every t, the element (u̇t(x), 0) is the result of the
coadjoint action of Vir; here dot denotes the derivative with respect to t. In
other words, there exists ht(x)

d
dx ∈ Vect(S1) such that

u̇t(x) = ht(x)u
′
t(x) + 2h′t(x)ut(x)− c h′′′t (x). (1.6.4)

According to (1.6.3), a family (ut(x), c) defines a family of Sturm-Liouville
operators: Lt = −2c(d/dx)2 + u(x)t. Consider the corresponding family of
Sturm-Liouville equations

Lt(φ) = −2c φ′′(x) + u(x)t φ(x) = 0.

For every t, one has a two-dimensional space of solutions, 〈φ1t(x), φ2t(x)〉.
Define a Vect(S1)-action on the space of solutions using the Leibnitz

rule:
(ad∗

h d
dx

L)(φ) + L(Th d
dx
φ) = 0

2This definition allows us to avoid using the notion of a Lie group, and sometimes this
simplifies the situation, for instance, in the infinite-dimensional case.
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where the Vect(S1)-action on the space of Sturm-Liouville operators is given
by formula (1.6.2). It turns out, that the solutions of Sturm-Liouville equa-
tions behave as tensor densities of degree − 1

2 .

Exercise 1.6.5. Check that, in the above formula, Th d
dx

= L
− 1

2

h d
dx

, where

Lλ
h d
dx

is the Lie derivative of a λ-density defined by (1.5.6).

To solve the (nonlinear) “homotopy” equation (1.6.4), it suffices now to
find a family of vector fields ht(x)

d
dx such that





L
− 1

2

ht
d
dx

φ1t = ht φ1
′
t −

1
2 h

′
t φ1t = φ̇1t

L
− 1

2

ht
d
dx

φ2t = ht φ2
′
t −

1
2 h

′
t φ2t = φ̇2t

This is just a system of linear equations in two variables, ht(x) and h′t(x),
with the solution

ht(x) =

∣∣∣∣
˙φ1t

˙φ2t

φ1t φ2t

∣∣∣∣ h′t(x) = 2

∣∣∣∣
˙φ1t

˙φ2t

φ1
′
t φ2

′
t

∣∣∣∣ . (1.6.5)

One can choose a basis of solutions 〈φ1t(x), φ2t(x)〉 so that the Wronski
determinant is independent of t:

∣∣∣∣
φ1t φ2t

φ1
′
t φ2

′
t

∣∣∣∣ ≡ 1.

Then one has ∣∣∣∣
˙φ1t

˙φ2t

φ1
′
t φ2

′
t

∣∣∣∣ =

∣∣∣∣
˙φ1t
′ ˙φ2t

′

φ1t φ2t

∣∣∣∣

It follows that the first formula in (1.6.5) implies the second.

Finally, if the monodromy operator of a family of Sturm-Liouville oper-
ators Lt does not depend on t, then one can choose a basis 〈φ1t(x), φ2t(x)〉
in such a way that the monodromy matrix, say M , in this basis does not
depend on t. Then one concludes from (1.6.5) that

ht(x+ 2π) = detM · ht(x) = ht(x),

since M ∈ ˜SL(2,R). Therefore, ht(x)d/dx is, indeed, a family of vector
fields on S1.
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Remark 1.6.6. One can understand, in a more traditional way, the mon-
odromy operator as an element of SL(2,R), instead of its universal covering.
Then there is another discrete invariant, representing a class in π1(SL(2,R)).
This invariant is nothing but the winding number of the corresponding curve
in RP1, see Section 1.3. For instance, there are infinitely many connected
components in the space of Sturm-Liouville operators with the same mon-
odromy.

Relation to infinite-dimensional symplectic geometry

A fundamental fact which makes the notion of coadjoint orbits so impor-
tant (in comparison with the adjoint orbits) is that every coadjoint orbit
has a canonical g-invariant symplectic structure (often called the Kirillov
symplectic form). Moreover, the space g∗ has a Poisson structure called
the Lie-Poisson(-Berezin-Kirillov-Kostant-Souriau) bracket, and the coad-
joint orbits are the corresponding symplectic leaves. See Section 8.2 for a
brief introduction to symplectic and Poisson geometry.

An immediate corollary of the above remarkable coincidence is that the
space of the Sturm-Liouville operators is endowed with a natural Diff(S1)-
invariant Poisson structure; furthermore, it follows from Theorem 1.6.4 that
the space of Sturm-Liouville operators with a fixed monodromy is an (infinite
dimensional) symplectic manifold.

Comment

The Virasoro algebra was discovered in 1967 by I. M. Gelfand and D. B.
Fuchs. It appeared in the physical literature around 1975 and became very
popular in conformal field theory (see [90] for a comprehensive reference).

The coadjoint representation of Lie groups and Lie algebras plays a spe-
cial role in symplectic geometry and representation theory, cf. [112]. The
observation relating the coadjoint representation to the natural Vect(S 1)-
action on the space of Sturm-Liouville operators and, therefore, on the space
of projective structures on S1, and the classification of the coadjoint orbits
was made in 1980 independently by A. A. Kirillov and G. Segal [116, 186].
The classification of the coadjoint orbits then follows from the classical work
by Kuiper [126] (see also [130]) on classification of projective structures. Our
proof, using the homotopy method, is probably new.

This and other remarkable properties of the Virasoro algebra, its relation
with the Korteweg-de Vries equation, moduli spaces of holomorphic curves,
etc., make this infinite-dimensional Lie algebra one of the most interesting
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objects of modern mathematics and mathematical physics.
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Chapter 2

Geometry of projective line

What are geometric objects? On the one hand, curves, surfaces, various
geometric structures; on the other, tensor fields, differential operators, Lie
group actions. The former objects originated in classical geometry while the
latter ones are associated with algebra. Both points of view are legitimate,
yet often separated.

This chapter illustrates unity of geometric and algebraic approaches. We
study geometry of a simple object, the projective line. Such notions as non-
degenerate immersions of a line in projective space and linear differential
operators on the line are intrinsically related, and this gives two comple-
mentary viewpoints on the same thing.

Following F. Klein, we understand geometry in terms of group actions.
In the case of the projective line, two groups play prominent roles: the group
PGL(2,R) of projective symmetries and the infinite-dimensional full group
of diffeomorphisms Diff(RP1). We will see how these two types of symmetry
interact.

2.1 Invariant differential operators on RP1

The language of invariant differential operators is an adequate language of
differential geometry. The best known invariant differential operators are
the de Rham differential of differential forms and the commutator of vector
fields. These operators are invariant with respect to the action of the group
of diffeomorphisms of the manifold. The expressions that describe these
operations are independent of the choice of local coordinates.

If a manifold M carries a geometric structure, the notion of the invariant
differential operator changes accordingly: the full group of diffeomorphisms

29
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is restricted to the groups preserving the geometric structure. For instance,
on a symplectic manifold M , one has the Poisson bracket, a binary invariant
operation on the space of smooth functions, as well as the unitary operation
assigning the Hamiltonian vector field to a smooth function. Another ex-
ample, known to every student of calculus, is the divergence: the operator
on a manifold with a fixed volume form assigning the function DivX to a
vector field X. This operator is invariant with respect to volume preserving
diffeomorphisms.

Space of differential operators Dλ,µ(S
1)

Consider the space of linear differential operators on S1 from the space of
λ-densities to the space of µ-densities

A : Fλ(S
1) → Fµ(S

1)

with arbitrary λ, µ ∈ R. This space will be denoted by Dλ,µ(S
1) and its

subspace of operators of order ≤ k by Dk
λ,µ(S

1).

The space Dλ,µ(S
1) is acted upon by Diff(S1); this action is as follows:

Tλ,µ
f (A) = Tµ

f ◦ A ◦ Tλ
f−1 , f ∈ Diff(S1) (2.1.1)

where Tλ is the Diff(S1)-action on tensor densities (1.5.5).

For any parameter x on S1, a k-th order differential operator is of the
form

A = ak(x)
dk

dxk
+ ak−1(x)

dk−1

dxk−1
+ · · ·+ a0(x),

where ai(x) are smooth functions on S1.

Exercise 2.1.1. Check that the expression

σ(A) = ak(x)(dx)
µ−λ−k

does not depend on the choice of the parameter.

The density σ(A) is called the principal symbol of A; it is a well-defined
tensor density of degree µ−λ−k. The principal symbol provides a Diff(S1)-
invariant projection

σ : Dk
λ,µ(S

1) → Fµ−λ−k(S
1). (2.1.2)
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Linear projectively invariant operators

Our goal is to describe differential operators on RP1, invariant under pro-
jective transformations. In the one-dimensional case, there is only one type
of tensors, namely tensor densities φ(x)(dx)λ. Recall that the space of such
tensor densities is denoted by Fλ(RP1).

A classical result of projective differential geometry is classification of
projectively invariant linear differential operators A : Fλ(RP1) → Fµ(RP1)
(see [28]).

Theorem 2.1.2. The space of PGL(2,R)-invariant linear differential oper-
ators on tensor densities is generated by the identity operator from Fλ(RP1)
to Fλ(RP1) and the operators of degree k given, in an affine coordinate, by
the formula

Dk : φ(x)(dx)
1−k

2 7→
dkφ(x)

dxk
(dx)

1+k
2 . (2.1.3)

Proof. The action of SL(2,R) is given, in an affine chart, by the formula

x 7→
ax+ b

cx+ d
. (2.1.4)

Exercise 2.1.3. Prove that the operators Dk are PGL(2,R)-invariant.

The infinitesimal version of formula 2.1.4 gives the action of the Lie
algebra sl(2,R).

Exercise 2.1.4. a) Prove that the sl(2,R)-action on RP1 is generated by
the three vector fields

d

dx
, x

d

dx
, x2 d

dx
. (2.1.5)

b) Prove that the corresponding action on Fλ(RP1) is given by the following
operators (the Lie derivatives):

Lλd
dx

=
d

dx
, Lλ

x d
dx

= x
d

dx
+ λ, Lλ

x2 d
dx

= x2 d

dx
+ 2λx . (2.1.6)

Consider now a differential operator

A = ak(x)
dk

dxk
+ · · ·+ a0(x)

from Fλ(RP1) to Fµ(RP1) and assume that A is SL(2,R)-invariant. This
means that

A ◦ LλX = LµX ◦ A
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for all X ∈ sl(2,R).
Take X = d/dx to conclude that all the coefficients ai(x) of A are con-

stants. Now take X = xd/dx:

Lµ
x d
dx

◦
(∑

ai
di

dxi

)
=
(∑

ai
di

dxi

)
◦ Lλ

x d
dx

.

Using (2.1.6), it follows that ai(i+ λ−µ) = 0 for all i. Hence all ai but one
vanish, and µ = λ+ k where k is the order of A.

Finally, take X = x2 d
dx . One has

Lλ+k
x2 d

dx

◦
dk

dxk
=

dk

dxk
◦ Lλ

x2 d
dx

.

If k ≥ 1 then, using (2.1.6) once again, one deduces that 2λ = 1 − k, as
claimed; if k = 0, then A is proportional to the identity.

The operator D1 is just the differential of a function. This is the only
operator invariant under the full group Diff(RP1). The operator D2 is a
Sturm-Liouville operator already introduced in Section 1.3. Such an oper-
ator determines a projective structure on RP1. Not surprisingly, the pro-
jective structure, corresponding to D2, is the standard projective structure
whose symmetry group is PGL(2,R). The geometric meaning of the opera-
tors Dk with k ≥ 3 will be discussed in the next section.

Comment

The classification problem of invariant differential operators was posed by
Veblen in his talk at ICM in 1928. Many important results have been ob-
tained since then. The only unitary invariant differential operator on tensor
fields (and tensor densities) is the de Rham differential, cf. [114, 179].

2.2 Curves in RPn and linear differential operators

In Sections 1.3 and 1.4 we discussed the relations between non-degenerate
curves and linear differential operators in dimensions 1 and 2. In this section
we will extend this construction to the multi-dimensional case.

Constructing differential operators from curves

We associate a linear differential operator

A =
dn+1

dxn+1
+ an−1(x)

dn−1

dxn−1
+ · · ·+ a1(x)

d

dx
+ a0(x) (2.2.1)
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with a non-degenerate parameterized curve γ(x) in RPn. Consider a lift
Γ(x) of the curve γ(x) to Rn+1. Since γ is non-degenerate, the Wronski
determinant

W (x) = |Γ(x),Γ′(x), . . . ,Γ(n)(x)|

does not vanish. Therefore the vector Γ(n+1) is a linear combination of
Γ,Γ′, . . . ,Γ(n), more precisely,

Γ(n+1)(x) +

n∑

i=0

ai(x)Γ
(i)(x) = 0.

This already gives us a differential operator depending, however, on the lift.

Let us find a new, canonical, lift for which the Wronski determinant
identically equals 1. Any lift of γ(x) is of the form α(x)Γ(x) for some non-
vanishing function α(x). The condition on this function is

|αΓ, (αΓ)′, . . . , (αΓ)(n)| = 1,

and hence

α(x) = W (x)−1/(n+1). (2.2.2)

For this lift the coefficient an(x) in the preceding formula vanishes and the
corresponding operator is of the form (2.2.1). This operator is uniquely
defined by the curve γ(x).

Exercise 2.2.1. Prove that two curves define the same operator (2.2.1) if
and only if they are projectively equivalent.

Hint. The “if” part follows from the uniqueness of the canonical lift of
the projective curve. The “only if” part is more involved and is discussed
throughout this section.

Tensor meaning of the operator A and Diff(S1)-action

Let us discuss how the operator A depends on the parameterization of the
curve γ(x). The group Diff(S1) acts on parameterized curves by reparam-
eterization. To a parameterized curve we assigned a differential operator
(2.2.1). Thus one has an action of Diff(S1) on the space of such operators.
We call it the geometric action.

Let us define another, algebraic action of Diff(S1) on the space of oper-
ators (2.2.1)

A 7→ T
n+2

2
f ◦A ◦ T

−n
2

f−1 , f ∈ Diff(S1), (2.2.3)
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which is, of course, a particular case of the action of Diff(S1) on Dλ,µ(S
1)

as in (2.1.1). In other words, A ∈ Dn+1
−n

2
,n+2

2

(S1).

Exercise 2.2.2. The action of Diff(S1) on Dλ,µ(S
1) preserves the specific

form of the operators (2.2.1), namely, the highest-order coefficient equals 1
and the next highest equals zero, if and only if

λ = −
n

2
and µ =

n+ 2

2
.

Theorem 2.2.3. The two Diff(S1)-actions on the space of differential op-
erators (2.2.1) coincide.

Proof. Let us start with the geometric action. Consider a new parameter
y = f(x) on γ. Then

Γx = Γyf
′, Γxx = Γyy(f

′)2 + Γyf
′′,

etc., where Γ is a lifted curve and f ′ denotes df/dx. It follows that

|Γ,Γx, . . . ,Γx...x| = |Γ,Γy, . . . ,Γy...y|(f
′)n(n+1)/2,

and, therefore, the Wronski determinant W (x) is a tensor density of degree
n(n + 1)/2, that is, an element of Fn(n+1)/2. Hence the coordinates of the
canonical lift αΓ given by (2.2.2) are tensor densities of degree −n/2 (we
already encountered a particular case n = 2 in Exercise 1.6.5). Being the
coordinates of the canonical lift αΓ, the solutions of the equation

Aφ = 0 (2.2.4)

are −n/2-densities.
From the very definition of the algebraic action (2.2.3) it follows that

the kernel of the operator A consists of −n/2-densities. It remains to note
that the kernel uniquely defines the corresponding operator.

The brevity of the proof might be misleading. An adventurous reader
may try to prove Theorem 2.2.3 by a direct computation. Even for the
Sturm-Liouville (n = 2) case this is quite a challenge (see, e.g. [37]).

Example 2.2.4. The SL(2,R)-invariant linear differential operator (2.1.3)
fits into the present framework. This operator corresponds to a remarkable
parameterized projective curve in RPk−1, called the normal curve, uniquely
characterized by the following property. The parameter x belongs to S1 and
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corresponds to the canonical projective structure on S1. If one changes the
parameter by a fractional-linear transformation x 7→ (ax+ b)/(cx + d), the
resulting curve is projectively equivalent to the original one. In appropriate
affine coordinates, this curve is given by

γ = (1 : x : x2 : · · · : xk−1). (2.2.5)

Dual operators and dual curves

Given a linear differential operator A : Fλ → Fµ on S1, its dual operator
A∗ : F1−µ → F1−λ is defined by the equality

∫

S1

A(φ)ψ =

∫

S1

φA∗(ψ)

for any φ ∈ Fλ and ψ ∈ F1−µ. The operation A 7→ A∗ is Diff(S1)-invariant.
An explicit expression for the dual operator was already given (1.4.5).

If λ + µ = 1 then the operator A∗ has the same domain and the same
range as A. In this case, there is a decomposition

A =
(A+A∗

2

)
+
(A−A∗

2

)

into the symmetric and skew-symmetric parts.
Now let A ∈ Dn+1

−n
2
,n+2

2

(S1) be the differential operator (2.2.1) constructed

from a projective curve γ(x). The modules F−n/2 and F(n+2)/2 are dual to
each other. Therefore A can be decomposed into the symmetric and skew-
symmetric parts, and this decomposition is independent of the choice of the
parameter on the curve. This fact was substantially used in the proof of
Theorem 1.4.3.

Consider a projective curve γ(x) ⊂ RPn, its canonical lift Γ(x) ⊂ Rn+1

and the respective differential operator A. The coordinates of the curve Γ
satisfy equation (2.2.4). These coordinates are linear functions on Rn+1.
Thus the curve Γ lies in the space, dual to kerA, and so kerA is identified
with Rn+1∗.

Now let us define a smooth parameterized curve Γ̃(x) in Rn+1∗. Given
a value of the parameter x, consider the solution φx of equation (2.2.4)
satisfying the following n initial conditions:

φx(x) = φ′x(x) = . . . = φ(n−1)
x (x) = 0; (2.2.6)

such a solution is unique up to a multiplicative constant. The solution φx
is a vector in Rn+1∗, and we set: Γ̃(x) = φx. Define the projective curve
γ̃(x) ⊂ RPn∗ as the projection of Γ̃(x).
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Exercise 2.2.5. Prove that the curve γ̃ coincides with the projectively dual
curve γ∗.

Dual curves correspond to dual differential operators

We have two notions of duality, one for projective curves and one for differ-
ential operators. The next classical result shows that the two agree.

Theorem 2.2.6. Let A be the differential operator corresponding to a non-
degenerate projective curve γ(x) ⊂ RPn. Then the differential operator,
corresponding to the projectively dual curve γ∗(x), is (−1)n+1A∗.

Proof. Let U = Ker A, V = Ker A∗. We will construct a non-degenerate
pairing between these spaces.

Let φ and ψ be −n/2-densities. The expression

A(φ)ψ − φA∗(ψ) (2.2.7)

is a differential 1-form on S1. The integral of (2.2.7) vanishes, and hence
there exists a function B(φ, ψ)(x) such that

A(φ)ψ − φA∗(ψ) = B′(φ, ψ)dx. (2.2.8)

If A is given by (2.2.1) then

B(φ, ψ) = φ(n)ψ − φ(n−1)ψ′ + · · ·+ (−1)nφψ(n) + b(φ, ψ),

where b is a bidifferential operator of degree ≤ n− 1.
If φ ∈ U and ψ ∈ V then the left hand side of (2.2.8) vanishes, and

therefore B(φ, ψ) is a constant. It follows that B determines a bilinear
pairing of spaces U and V .

The pairing B is non-degenerate. Indeed, fix a parameter value x = x0,

and choose a special basis φ0, . . . , φn ∈ U such that φ
(j)
i (x0) = 0 for all

i 6= j; i, j = 0, . . . , n, and φ
(i)
i (x0) = 1 for all i. Let ψi ∈ V be the basis in

V defined similarly. In these bases, the matrix of B(φ, ψ)(x0) is triangular
with the diagonal elements equal to ±1.

The pairing B allows us to identify U ∗ with V . Consider the curve Γ̃(x)
associated with the operator A; this curve belongs to U and consists of
solutions (2.2.6). Let Γ̂(x) ⊂ V be a similar curve corresponding to A∗. We
want to show that these two curves are dual with respect to the pairing B,
that is,

B(Γ̃(i)(x0), Γ̂(x0)) = 0, i = 0, . . . , n− 1 (2.2.9)
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for all parameter values x0.
Indeed, the vector Γ̃(i)(x0) belongs to the space of solutions U and this

solution vanishes at x0. The function Γ̂(x0) ∈ V vanishes at x0 with the
first n− 1 derivatives, and (2.2.9) follows from the above expression for the
operator B. Therefore γ̃∗ = γ̂, that is, the curves corresponding to A and
A∗ are projectively dual.

Exercise 2.2.7. Prove the following explicit formula:

B(φ, ψ) =
∑

r+s+t≤n

(−1)r+t+1

(
r + t

r

)
a

(r)
r+s+t+1φ

(s)ψ(t).

Remark 2.2.8. If A is a symmetric operator, A∗ = A, then B is a non-
degenerate skew-symmetric bilinear form, i.e., a symplectic structure, on the
space Ker A – cf. [166].

Monodromy

If γ is a closed curve, then the operator A has periodic coefficients. The
converse is not at all true. Let A be an operator with periodic coefficients,
in other words, a differential operator on S1. The solutions of the equation
Aφ = 0 are not necessarily periodic; they are defined on R, viewed as the
universal covering of S1 = R/2πZ. One obtains a linear map on the space
of solutions:

T : φ(x) 7→ φ(x+ 2π)

called the monodromy. Monodromy was already mentioned in Sections 1.3
and 1.6.

Consider in more detail the case of operators (2.2.1). The Wronski de-
terminant of any (n+1)-tuple of solutions is constant. This defines a volume
form on the space of solutions. Since T preserves the Wronski determinant,
the monodromy belongs to SL(n + 1,R). Note however that this element
of SL(n+ 1,R) is defined up to a conjugation, for there is no natural basis
in kerA and there is no way to identify kerA with Rn+1; only a conjugacy
class of T has an invariant meaning.

Consider a projective curve γ(x) associated with a differential operator
A on S1. Let Γ(x) ⊂ Rn+1 be the canonical lift of γ(x). Both curves are
not necessarily closed, but satisfy the monodromy condition

γ(x+ 2π) = T(γ(x)), Γ(x+ 2π) = T(Γ(x)),

where T is a representative of a conjugacy class in SL(n+ 1,R).
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As a consequence of Theorem 2.2.3, asserting the coincidence of the
algebraic Diff(S1)-action (2.2.3) on the space of differential operators with
the geometric action by reparameterization, we have the following statement.

Corollary 2.2.9. The conjugacy class in SL(n + 1,R) of the monodromy
of a differential operator (2.2.1) is invariant with respect to the Diff+(S1)-
action, where Diff+(S1) is the connected component of Diff(S1).

Comment

Representation of parameterized non-degenerate curves in RPn (modulo
equivalence) by linear differential operators was a basic idea of projective
differential geometry of the second half of XIX-th century. We refer to
Wilczynski’s book [231] for a first systematic account of this approach. Our
proof of Theorem 2.2.6 follows that of [231] and [13]; a different proof can
be found in [106].

2.3 Homotopy classes of non-degenerate curves

Differential operators on RP1 of the special form (2.2.1) correspond to non-
degenerate curves in RPn. In this section we give a topological classi-
fication of such curves. We study homotopy equivalence classes of non-
degenerate immersed curves with respect to the homotopy, preserving the
non-degeneracy. This allows us to distinguish interesting classes of curves,
such as that of convex curves.

Curves in S2: a theorem of J. Little

Let us start with the simplest case, the classification problem for non-
degenerate curves on the 2-sphere.

Figure 2.1: Non-degenerate curves on S2

Theorem 2.3.1. There are 3 homotopy classes of non-degenerate immersed
non-oriented closed curves on S2 represented by the curves in figure 2.1.
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Proof. Recall the classical Whitney theorem on the regular homotopy clas-
sification of closed plane immersed curves. To such a curve one assigns the
winding number: a non-negative integer equal to the total number of turns
of the tangent line (see figure 2.2). The curves are regularly homotopic if
and only if their winding numbers are equal. The spherical version of the
Whitney theorem is simpler: there are only 2 regular homotopy classes of
closed immersed curves on S2, represented by the first and the second curves
in figure 2.1. The complete invariant is the parity of the number of double
points.

n

Figure 2.2: Winding number n

The Whitney theorem extends to non-degenerate plane curves and the
proof dramatically simplifies.

Lemma 2.3.2. The winding number is the complete invariant of non-dege-
nerate plane curves with respect to non-degenerate homotopy.

Proof. A non-degenerate plane curve can be parameterized by the angle
made by the tangent line with a fixed direction. In such a parameterization,
a linear homotopy connects two curves with the same winding number.

We are ready to proceed to the proof of Theorem 2.3.1.

Part I. Let us prove that the three curves in figure 2.1 are not ho-
motopic as non-degenerate curves. The second curve is not even regularly
homotopic to the other two. We need to prove that the curves 1 and 3 are
not homotopic.

The curve 1 is convex : it intersects any great circle at at most two
points. We understand intersections in the algebraic sense, that is, with
multiplicities. For example, the curve y = x2 has double intersection with
the x-axis.

Lemma 2.3.3. A convex curve remains convex under homotopies of non-
degenerate curves.
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Proof. Arguing by contradiction, assume that there is a homotopy destroy-
ing convexity. Convexity is an open condition. Consider the first moment
when the curve fails to be convex. At this moment, there exists a great cir-
cle intersecting the curve with total multiplicity four. The following 3 cases
are possible: a) four distinct transverse intersections, b) two transverse and
one tangency, c) two tangencies, see figure 2.3. Note that a non-degenerate
curve cannot have intersection multiplicity > 2 with a great circle at a point.

a)

b) c)

Figure 2.3: Total multiplicity 4

Case a) is impossible: since transverse intersection is an open condition,
this cannot be the first moment when the curve fails to be convex. In cases
b) and c) one can perturb the great circle so that the intersections become
transverse and we are back to case a). In case b) this is obvious, as well as
in case c) if the two points of tangency are not antipodal, see figure 2.3. For
antipodal points, one rotates the great circle about the axis connecting the
tangency points.

Part 2. Let us now prove that a non-degenerate curve on S2 is non-
degenerate homotopic to a curve in figure 2.1. Unlike the planar case, non-
degenerate curves with winding number n and n + 2, where n ≥ 2, are
non-degenerate homotopic, see figure 2.4. The apparent inflection points
are not really there; see [137] for a motion picture featuring front-and-back
view. The authors recommend the reader to repeat their experience and to
draw the picture on a well inflated ball.

Therefore, any curve in figure 2.2 is, indeed, homotopic to a curve in
figure 2.1 in the class of non-degenerate curves.

Lemma 2.3.4. A non-degenerate curve on the 2-sphere is homotopic, in
the class of non-degenerate curves, to a curve that lies in a hemisphere.

Proof. If the curve is convex, then it already lies in a hemisphere. The proof
of this fact is similar to that of Lemma 2.3.3. If the curve is not convex, then
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Figure 2.4: Homotopy 4 −→ 2

pick a point p off the curve and radially homotop (by homothety) the curve
to the hemisphere opposite to p. Of course, this procedure may violate non-
degeneracy. Our remedy is to use the trick from figure 2.4 backward. This
allows to replace the original curve by a homotopic C 0-close spiral curve,
as in figure 2.5. If the kinks are sufficiently dense, non-degeneracy persists
under the radial homothety.

Figure 2.5: Spiral curve

Given a non-degenerate curve, we may assume, by Lemma 2.3.4, that
it lies in a hemisphere. Identifying the hemisphere with the plane by the
central projection, the non-degeneracy is preserved. Thus, we have a non-
degenerate curve in the plane and, by Lemma 2.3.2, we may assume that
it is one of the curves in figure 2.2. And finally, the trick from figure 2.4
reduces the winding number to n = 1, 2, 3. This concludes the proof of the
theorem.
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Remark 2.3.5. Let us emphasize that Theorem 2.3.1 concerns non-oriented
curves. Taking orientation into consideration, the number of homotopy
classes is equal to 6.

Multi-dimensional case and quasi-periodic curves

We are essentially concerned with curves in RPn. Little’s theorem provides
a classification of non-degenerate closed curves in RP2 and the number of
homotopy classes of such curves is again 3.

Exercise 2.3.6. A non-degenerate closed curve in RP2 is contractible.

Therefore, a non-degenerate closed curve in RP2 lifts to S2 as a closed curve,
and one applies the Little theorem.

The most general result in the multi-dimensional case is contained in the
following theorem.

Theorem 2.3.7. (i) There are 3 homotopy classes of non-degenerate im-
mersed non-oriented closed curves on S2n and 2 such classes on S2n+1,
where n ≥ 1.

(ii) There are 3 homotopy classes of non-degenerate immersed non-oriented
closed curves in R2n−1 and 2 such classes in R2n, where n ≥ 2.

(iii) There are 3 homotopy classes of non-degenerate immersed non-oriented
closed curves in RP2n and 5 such classes in RP2n+1, where n ≥ 1.

We do not prove this theorem; let us however explain the origin of the
somewhat surprising number 5 in case (iii). Unlike the even dimensional
situation, a non-degenerate curve in RP2n+1 can be non-contractible. The
canonical lift of such a curve to R2n+2 has monodromy −1. The number of
homotopy classes splits as follows: 5 = 2+(2+1). The first 2 classes consist
of contractible non-degenerate curves with the unique invariant interpreted
as an element of π1(SO(2n + 2)) = Z2. The remaining 3 classes consist of
non-contractible curves with the same invariant in Z2 and a distinguished
class of convex (or disconjugate) curves in RPn, analogous to convex ones
in Little’s theorem.

The case of non-degenerate curves with monodromy was studied only in
the two-dimensional case. The answer here is either 2 or 3, depending on
the monodromy.
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Comment

Theorem 2.3.1 was proved in [137]. This work was not related to differential
operators and extended a previous work by W. Pohl. Our proof is new and
simpler then the original one. The idea of curling the curve in our proof
of Lemma 2.3.4 resembles Thurston’s proof of the Whitney theorem in the
movie “Outside in” [160]. However the core component of the proof, the
homotopy in figure 2.4, is due to Little.

Theorem 2.3.7 is due to M. Shapiro, see [189]. Part (ii) is a generalization
of [138]. For the case of non-trivial monodromy see [107].

2.4 Two differential invariants of curves: projec-

tive curvature and cubic form

In Section 1.4 we associated two differential invariants with a non-degenerate
curve γ in RP2. The first is called the projective curvature; it is defined as
a projective structure on γ. The second one is a cubic form on γ. In this
section we will generalize these two invariants to curves in RPn.

Projective curvature

Given a non-degenerate curve γ ⊂ RPn, we will define a projective structure
on γ, invariant with respect to projective transformations of RPn.

Choose an arbitrary parameter x on γ and associate a linear differential
operator (2.2.1) with the parameterized curve γ(x). The main ingredient of
the construction is the following observation: there is a natural projection
from the space of operators (2.2.1) to the space of Sturm-Liouville operators.

Theorem 2.4.1. The map A 7→ L associating the Sturm-Liouville operator

L = c
d2

dx2
+ an−1(x), where c =

(
n+ 2

3

)
, (2.4.1)

with a differential operator (2.2.1), is Diff(S1)-invariant.

Proof. The Diff(S1)-action on the space of Sturm-Liouville operators is
given by the formula (1.3.7). We need to check that the map A 7→ L
commutes with the Diff(S1)-action.

Exercise 2.4.2. Check by a direct computation that the result of the
Diff(S1)-action (2.2.3) is a linear differential operator with the (n−1)-order
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coefficient
(df−1

dt

)2

an−1(f
−1) +

c

2
S(f−1),

where c is as in (2.4.1).

We have already encountered a similar formula: this is the Diff(S1)-
action on the coefficient of a Sturm-Liouville operator L = c(d/dx)2 + an−1,
cf. formula (1.3.7) in which, however, c = 1.

Projective structures on S1 are identified with Sturm-Liouville operators,
see Section 1.3, so that the operator (2.4.1) defines a projective structure
on γ(x). Theorem 2.4.1 implies that this projective structure does not de-
pend on the parameterization.

Remark 2.4.3. a) A particular case, n = 2, of the above correspondence
was considered in detail in Section 1.4. Let us emphasize once again that
this notion cannot be understood as a function or a tensor field.

b) Theorem 2.4.1 implies that there exists a (local) parameter x such that
the coefficient an−1(x) of the operator (2.2.1) is identically zero. Indeed,
choose a local coordinate of the projective structure characterized by the
property that the potential of the corresponding Sturm-Liouville operator
vanishes in this coordinate. This special form of the operator (2.2.1) is
called the Forsyth-Laguerre canonical form. Note that such a parameter x
is defined up to a fractional-linear transformation.

Cubic form

Another important invariant of a non-degenerate projective curve γ is a
cubic form on γ.

As above, choose a parameter x on γ and consider the corresponding
differential operator A given by (2.2.1). Consider a (skew-) symmetric op-
erator

A0 =
1

2

(
A+ (−1)nA∗

)
(2.4.2)

from F−n/2 to F1+n/2.

The principal symbol σ(A0) is a cubic form on γ. Indeed, the principal
symbol of a differential operator from Dk

λ,µ(S
1) is a tensor density of degree

µ− λ− k, see Exercise 2.1.1. Since A0 ∈ D
n−2
−n/2,1+n/2(S

1), its highest-order

coefficient is a tensor density on S1 of degree 3; the parameter x pushes
forward this 3-density to γ.
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Exercise 2.4.4. Check that the operator (2.4.2) is of order n − 2 and its
highest-order coefficient is proportional to

τ(x) = an−2(x)−
n− 1

2
a′n−1(x). (2.4.3)

The formula τ(x)(dx)3, where τ(x) is as in (2.4.3), can be chosen as an
alternative definition of the cubic form on γ. One can check directly that it,
indeed, transforms with respect to the Diff(S1)-action as a cubic form.

Remark 2.4.5. Let us mention that one can construct another tensor in-
variant from the Sturm-Liouville operator (2.4.1) and the cubic form (2.4.3):

θ =
(
6ττ ′′ − 7(τ ′)2 −

18

c
an−1τ

2
)
(dx)8,

where, as before, c =
(
n+2

3

)
.

Comment

Projective curvature and the cubic form are the simplest invariants of a
curve in projective space (see Section 1.4 for historical comments). For the
plane curves they form a complete set of invariants.

2.5 Projectively equivariant symbol calculus

In this section we study the space Dλ,µ(S
1) of linear differential operators

on tensor densities on S1 as a PGL(2,R)-module. We define a canonical
PGL(2,R)-isomorphism between this space and the space of tensor densi-
ties on S1. We apply this isomorphism to construct projective differential
invariants of non-degenerate curves in RPn.

Space of symbols

There is a natural filtration

D0
λ,µ(S

1) ⊂ D1
λ,µ(S

1) ⊂ · · · ⊂ Dk
λ,µ(S

1) ⊂ · · ·

The corresponding graded Diff(S1)-module Sλ,µ(S
1) = gr (Dλ,µ(S

1)) is called
the module of symbols of differential operators.

The quotient-module Dk
λ,µ(S

1)/Dk−1
λ,µ (S1) is isomorphic to the module of

tensor densities Fµ−λ−k(S
1); the isomorphism is provided by the principal
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symbol. Therefore, as a Diff(S1)-module, the space of symbols depends only
on the difference

δ = µ− λ,

so that Sλ,µ(S
1) can be written as Sδ(S

1), and finally we have

Sδ(S
1) =

∞⊕

k=0

Fδ−k(S
1)

as Diff(S1)-modules.

PGL(2, R)-equivariant “total” symbol map

The principal symbol map is a Diff(S1)-equivariant projection σ : Dk
λ,µ(S

1) →

Fδ−k(S
1). We would like to identify the full space of differential operators

with the total space of symbols Sδ(S
1). That is, we are looking for a linear

bijection
σλ,µ : Dλ,µ(S

1)
'
−→ Sδ(S

1) (2.5.1)

such that the highest-order term of σλ,µ(A) coincides with the principal
symbol σ(A) for all A ∈ Dλ,µ(S

1). Such an isomorphism is usually called a
symbol map.

Ideally, this map should commute with the Diff(S1)-action, however,
this is not possible for cohomological reasons (see [133]). It turns out that
there is a unique map (2.5.1), equivariant with respect to the subgroup of
projective (fractional-linear) transformations PGL(2,R) ⊂ Diff(S1).

Theorem 2.5.1. There exists a unique PGL(2,R)-invariant symbol map
(2.5.1), provided

δ 6∈

{
1,

3

2
, 2,

3

2
, . . .

}
. (2.5.2)

It sends a differential operator A =
∑

j aj(x)(d/dx)
j to the tensor density

σλ,µ(A) =
∑

j≥0

j∑

`=0

Cj` a
(`)
j (x) (dx)δ−j+`, (2.5.3)

where a
(`)
j = d`aj(x)/dx

` and Cj
` are the following constants

Cj` = (−1)`
(
j
`

)(
j+2λ−1

`

)
(
2j−`−2δ+1

`

) . (2.5.4)
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Proof. The proof consists of two steps. First, one proves that any PGL(2,R)-
invariant linear map (2.5.1) is given by a differential operator, that is, is of
the form

σλ,µ(A) =
∑

j,`,m

Cj`,m(x) a
(`)
j (x)(dx)m,

where Cj
`,m(x) are smooth functions on S1. Second, one shows that such an

operator, commuting with the PGL(2,R)-action and preserving the principal
symbol, is defined by (2.5.3) and (2.5.4).

We omit here the first step (see [134]). The second part of the proof is
similar to those of Theorems 2.1.2 and 3.1.1. Consider the action of the Lie
algebra sl(2,R) generated by the vector fields d/dx, xd/dx and x2d/dx.

(a) Equivariance with respect to the vector field d/dx implies that all
the coefficients Cj

`,m(x) in σλ,µ are constants.

(b) Equivariance with respect to the vector field x d/dx implies the ho-
mogeneity condition: j − `−m = 0, so that σλ,µ is of the form (2.5.3).

(c) Consider the third vector field x2d/dx.

Exercise 2.5.2. Check by a straightforward computation that equivariance
with respect to the vector field x2d/dx leads to the recurrence relation

Cj+1
`+1 =

(j + 1)(j + 2λ)

(`+ 1)(`+ 2(δ − j − 1))
Cj` .

This relation, together with the normalization condition C j
0 = 1, equiv-

alent to the fact that the principal symbol is preserved, readily gives the
solution (2.5.4). The restriction (2.5.2) guarantees that the denominator in
the recurrence formula does not vanish.

Hypergeometric function

The symbol map defined by (2.5.3) and (2.5.4) can by written in a more
elegant way. Let us use the following standard notation: a differential op-
erator A =

∑
j aj(x)(d/dx)

j is denoted by
∑

j aj(x)ξ
j , where ξ is a formal

variable. Introduce two differential operators:

E = ξ
∂

∂ξ
, D =

∂

∂x

∂

∂ξ
,

the Euler field and the “divergence”. It turns out that the total symbol map
σλ,µ can be expressed in terms of E and D.
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A confluent hypergeometric function of one variable z and two parame-
ters a, b is defined by the series

F

(
a
b

∣∣∣∣ z
)

=

∞∑

m=0

(a)m
(b)m

zm

m!
(2.5.5)

where (a)m = a(a+ 1) · · · (a+m− 1).

Exercise 2.5.3. Check that the total symbol map, given by (2.5.3) and
(2.5.4), can be written as a hypergeometric function (2.5.5) with

a = E + 2λ, b = 2(E − δ + 1) and z = −D.

Projectively equivariant quantization map

It is also useful to consider the quantization map which is the inverse of the
symbol map:

Qλ,µ = σλ,µ
−1. (2.5.6)

Let us give here the explicit formula for Qλ,µ.

Theorem 2.5.4. The quantization map Qλ,µ is given by the hypergeometric
function

F

(
a1 a2

b1 b2

∣∣∣∣ z
)

=
∞∑

m=0

(a1)m (a2)m
(b1)m (b2)m

zm

m!

where
a1 = E + 2λ, a2 = 2 E − 2 (δ − 1)− 1,

b1 = E − δ + 1
2 , b2 = E − δ + 1

and

z =
D

4
.

The proof is similar to that of Theorem 2.5.1 and Exercise 2.5.3.

Higher differential invariants of non-degenerate curves

Restricting σλ,µ to the subspace Dk
λ,µ(S

1), there is a finite set of exceptional
values: δ ∈ {1, 3/2, . . . , k + 1}. Indeed, the denominator of the recurrence
formula vanishes for

δ = j −
`

2
+ 1 (2.5.7)

where j ≤ k and ` ≤ j. In particular, for the module Dn+1
−n/2,1+n/2(S

1),

the value of δ = n + 1 is exceptional. Equation (2.5.7) has two solutions:
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(j = n + 1, ` = 2) and (j = n, ` = 0). For these values formula (2.5.4) is
meaningless and, indeed, the symbol map σλ,µ does not exist.

We are, however, concerned with differential operators related to projec-
tive curves that have the special form (2.2.1). Theorem 2.5.1 still applies to
the subspace of such differential operators. Since an+1 = 1 and an = 0, the
coefficients Cn+1

` and Cn
` are irrelevant, except Cn+1

0 which equals 1. The

coefficients Cj
` with j ≤ n− 1 are given by (2.5.4).

As a consequence of the previous constructions, we obtain higher differ-
ential invariants of non-degenerate curves in RPn. First of all, such a curve
carries a canonical projective structure, see Section 2.4. The choice of a pro-
jective structure allows to reduce the infinite-dimensional group Diff(S 1) to
PGL(2,R). Choosing an adopted local parameter x, one obtains a differ-
ential operator A ∈ Dn+1

−n/2,1+n/2(S
1) of the special form (2.2.1). Now each

term of the total symbol (2.5.3)–(2.5.4) is a projective differential invariant
of the curve. One of these invariants, the cubic form from Section 2.4, is
actually invariant under the full group Diff(S1).

The constructed set of projective invariants is complete. Indeed, the
differential operator A characterizes the curve up to projective equivalence,
while the total symbol completely determines the operator.

Comment

The theory of projective differential invariants of non-degenerate curves is
a classical subject. It was thoroughly studied in XIX-th century and sum-
marized as early as in 1906 by Wilczynski [231]. Projectively equivariant
symbol map was defined only recently in [44] and [134]; its hypergeometric
interpretation was found in [57].
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Chapter 3

Algebra of projective line

and cohomology of Diff(S1)

Geometry and algebra can be hardly separated: “L’algèbre n’est qu’une
géométrie écrite; la géométrie n’est qu’une algèbre figurée”1. Geometric ob-
jects usually form algebras, such as Lie algebras of vector fields, associative
algebras of differential operators, etc.

In this chapter we consider the associative algebra of differential opera-
tors on the projective line. Projective geometry allows us to describe this
complicated and interesting object in terms of tensor densities. The group
Diff+(S1) and its cohomology play a prominent role, unifying different as-
pects of our study.

The group Diff+(S1) of orientation preserving diffeomorphisms of the
circle is one of the most popular infinite-dimensional Lie group connected
to numerous topics in contemporary mathematics. The corresponding Lie
algebra, Vect(S1), also became one of the main characters in various areas
of mathematical physics and differential geometry. Part of the interest in
the cohomology of Vect(S1) and Diff(S1) is due to the existence of their
non-trivial central extensions, the Virasoro algebra and the Virasoro group.

We consider the first and the second cohomology spaces of Diff(S1) and
Vect(S1) with some non-trivial coefficients and investigate their relations
to projective differential geometry. Cohomology of Diff(S1) and Vect(S1)
has been studied by many authors in many different settings, see [72] and
[90] for comprehensive references. Why should we consider this cohomology
here?

The group Diff(S1), the Lie algebra Vect(S1) and the Virasoro algebra

1Sophie Germain

51
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appear consistently throughout this book. Their relation to the Schwarzian
derivative was discussed in Sections 1.3, 1.5 and 1.6. The Schwarzian deriva-
tive is a projectively invariant 1-cocycle on Diff+(S1). Are there any other
1-cocycles with the same properties and what are the corresponding geomet-
rical problems? How about 2-cocycles? These questions will be discussed in
the present chapter.

As in the previous chapter, we consider here the one-dimensional case.
The “circle” should be understood as the “projective line”; however we use
a more traditional notation S1 instead of RP1.

3.1 Transvectants

An algebraic structure usually means a product, that is, a bilinear operation
on a vector space. In this section we study bilinear PGL(2,R)-invariant
differential operators on the space of tensor densities on S1. More precisely,
we classify PGL(2,R)-invariant differential operators from Fλ(S

1)⊗Fµ(S
1)

to Fν(S
1).

Main theorem

For the sake of brevity, let us formulate the result for generic λ and µ.

Theorem 3.1.1. (i) For every λ, µ and integer m ≥ 0, there exists a
PGL(2,R)-invariant bilinear differential operator of order m from Fλ ⊗Fµ
to Fλ+µ+m given by the formula

Jλ,µm (φ, ψ) =
∑

i+j=m

(−1)j
(

2λ+m− 1

j

)(
2µ+m− 1

i

)
φ(i)ψ(j) , (3.1.1)

where φ stands for φ(x)(dx)λ and φ(i) for (diφ(x)/dxi) (dx)λ+i and likewise
for ψ.

(ii) If either λ or µ do not belong to the set
{
0,−1

2 ,−1, . . . ,−m−1
2

}
then the

operator Jλ,µm is the unique (up to a constant) bilinear PGL(2,R)-invariant
differential operator from Fλ ⊗Fµ to Fλ+µ+m.

(iii) If ν 6= λ + µ + m, then there are no PGL(2,R)-invariant differential
operators from Fλ ⊗Fµ to Fν .

The proof is similar to that of Theorem 2.1.2 and we do not dwell on it.
The operators Jλ,µm are called transvectants.
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Examples of transvectants

The first-order transvectant Jλ,µ1 is invariant with respect to the full group
Diff(RP1). It is known as the (one-dimensional) Schouten bracket. Let us see
how the second-order transvectants behave under arbitrary diffeomorphisms.

Exercise 3.1.2. Apply a diffeomorphism f ∈ Diff(RP1) to Jλ,µ2 and prove
that

Tλ+µ+2
f ◦ Jλ,µ2

(
Tλ
f−1φ,T

µ
f−1ψ

)
= Jλ,µ2 (φ, ψ) + 4λµ(λ+ µ+ 1)S(f)φψ

where S(f) is the Schwarzian derivative.

It follows that Jλ,µ2 is Diff(RP1)-invariant if and only if λµ(λ+ µ+ 1) = 0.

Of transvectants of higher order we mention J
− 2

3
,− 2

3
3 . For two tensor

densities φ = φ(x) (dx)−2/3 and ψ = ψ(x) (dx)−2/3, this operator acts as
follows:

φ⊗ ψ 7→

(
2

∣∣∣∣∣
φ(x) ψ(x)

φ(x)′′′ ψ(x)′′′

∣∣∣∣∣+ 3

∣∣∣∣∣
φ(x)′ ψ(x)′

φ(x)′′ ψ(x)′′

∣∣∣∣∣

)
(dx)

5
2

Exercise 3.1.3. Check that this operator is Diff(RP1)-invariant.

This remarkable operator was discovered by P. Grozman.

Transvectants and symplectic geometry

Perhaps the best way to understand the operators (3.1.1) is to rewrite them
in terms of symplectic geometry; the reader is encouraged to consult Section
8.2.

Consider the plane R2 with linear coordinates (p, q) and the standard
symplectic form ω = dp ∧ dq. The symmetry group in this case is the
group Sp(2,R) of linear symplectic transformations. Note that this group is
isomorphic to SL(2,R). We will describe bilinear differential operators

B : C∞(R2)⊗ C∞(R2) → C∞(R2),

invariant with respect to the action of Sp(2,R). As usual, it is easier to
deal with the corresponding action of the Lie algebra sp(2,R). This action
is generated by the Hamiltonian functions

{
p2, pq, q2

}
.
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Example 3.1.4. The simplest Sp(2,R)-invariant operators are the product
of functions F ⊗G 7→ FG, and the Poisson bracket

{F,G} = FpGq − FqGp.

All bilinear Sp(2,R)-invariant differential operators are, in fact, “iter-
ations” of the Poisson bracket. In order to construct such iterations, let
us notice that the Poisson bracket is the composition of the operator P on
C∞(R2)⊗2

P (F,G) = Fp ⊗Gq − Fq ⊗Gp (3.1.2)

and the natural projection Tr : C∞(R2)⊗2 → C∞(R2). For every m, define
a bilinear differential operator of order 2m by

Bm :=
1

m!
Tr ◦ Pm. (3.1.3)

The explicit formula of the operator Bm is much simpler than that of the
transvectants. The operators Bm are written in terms of “differential bino-
mial”.

Exercise 3.1.5. Calculate two further examples

B2(F,G) = 1
2 (FppGqq − 2FpqGpq + FqqGpp)

B3(F,G) = 1
6 (FpppGqqq − 3FppqGpqq + 3FpqqGppq − FqqqGppp)

The following statement is an analog of Theorem 3.1.1. Its proof is
similar to that of Theorem 2.1.2 and will also be omitted.

Proposition 3.1.6. (i) The operator Bm is Sp(2,R)-invariant for every m.

(ii) There are no other bilinear Sp(2,R)-invariant differential operators on
C∞(R2).

The group Sp(2,R) is the double covering of PGL(2,R), and it is natural
to compare their invariants. It turns out that the transvectants (3.1.1)
coincide with the iterated Poisson brackets (3.1.3). Let us identify the space
of tensor densities Fλ(RP1) and the space of functions on R2 \ {0} (with
singularities at the origin) homogeneous of degree −2λ by the formula

φ = φ(x) (dx)λ 7−→ Fφ(p, q) = p−2λ φ

(
q

p

)
(3.1.4)

where the affine coordinate on RP1 is chosen as x = q/p.
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Theorem 3.1.7. One has

Bm(Fφ, Fψ) = F
Jλ,µm (φ,ψ)

(3.1.5)

Proof. Tensor densities of degree λ on RP1 can be viewed as homogeneous
functions on the cotangent bundle T ∗RP1 of degree −λ. In local coordinates
(x, ξ) on T ∗RP1, the correspondence between tensor densities and functions
is as follows:

φ = φ(x) (dx)λ 7−→ Φφ(x, ξ) = φ(x) ξ−λ.

The group PGL(2,R) and the Lie algebra sl(2,R) naturally act on T ∗RP1.
The action of sl(2,R) is generated by the Hamiltonian functions

{
x, xξ, xξ2

}
.

The cotangent bundle with the zero section removed T ∗RP1\RP1 consists
of two open cylinders. Denote by T ∗RP1

+ the upper cylinder and consider
the diffeomorphism R2 \ {0} → T ∗RP1

+ given by

(x, ξ) =

(
p2

2
,
q

p

)
. (3.1.6)

Obviously the diffeomorphism (3.1.6) intertwines the actions of sp(2,R)
and sl(2,R). By uniqueness, see Theorem 3.1.1 and Proposition 3.1.6, the
sp(2,R)-invariant operator Bm and the sl(2,R)-invariant operator Jm have
to be proportional after the identification (3.1.4).

To calculate precisely the coefficient of proportionality, it suffices to pick
two arbitrary densities, say φ = (dx)λ and ψ = xm (dx)µ.

Exercise 3.1.8. Check that Jλ,µm (φ, ψ) = (−1)m (2λ)m (dx)λ+µ+m where
(a)m = a(a+ 1) · · · (a+m− 1).

The corresponding functions on R2 are given by formula (3.1.4). One obtains
Fφ = p−2λ and Fψ = p−2µ−m qm.

Exercise 3.1.9. Check that Bm(Fφ, Fψ) = (−1)m (2λ)m p
−2(λ+µ+m).

Theorem 3.1.7 is proved.

This symplectic viewpoint will be useful for multi-dimensional general-
izations of transvectants.
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Comment

Surprisingly enough, bilinear PGL(2,R)-invariant differential operators were
discovered earlier than the linear ones. The operators (3.1.1) were found by
Gordan [86] in 1885 in the framework of invariant theory. Transvectants
have been rediscovered more than once: by R. Rankin [177] in 1956, H.
Cohen [43] in 1975 (“Rankin-Cohen brackets”) and by S. Janson and J.
Peetre in 1987 [103]; see also [157]. Theorem 3.1.7 was proved in [167].

Binary Diff(M)-invariant differential operators on an arbitrary manifold
M are classified by P. Grozman [87]. The list of these operators includes
well-known classical ones, such as Schouten brackets, Nijenhuis brackets,

etc. The most remarkable operator in the Grozman list is J
− 2

3
,− 2

3
3 , this

operator has no analogs in the multi-dimensional case.

3.2 First cohomology of Diff(S1) with coefficients

in differential operators

In this section we consider the first cohomology of Diff(S1) and Vect(S1)
with coefficients in the space of differential operators Dλ,µ(S

1) from Fλ(S
1)

to Fµ(S
1) (see Section 1.5). More specifically, we will be interested in the

PGL(2,R)-relative cohomology. Recall our assumption that all the cocycles
on Diff(S1) are given by differentiable maps.

We “rediscover” the classic Schwarzian derivative, as well as two other
non-trivial cocycles on Diff(S1) vanishing on PGL(2,R). These cocycles
are higher analogs of the Schwarzian derivative. These results allow us to
study the Diff(S1)-module Dλ,µ(S

1) as a deformation of the module of tensor
densities.

Schwarzian, as a cocycle on Diff(S1), revisited

Consider 1-cocycles on Diff(S1) with values in the space of differential op-
erators:

C : Diff(S1) → Dλ,µ(S
1). (3.2.1)

The cocycle relation reads

C(f ◦ g) = Tµ
f ◦ C(g) ◦ Tλ

f−1 + C(f) (3.2.2)

where Tλ is the Diff(S1)-action on λ-densities (1.5.5) and the first summand
on the right hand side is the Diff(S1)-action (2.1.1) on Dλ,µ(S

1). We will
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classify the cocycles (3.2.1) satisfying an additional condition: the restriction
to the subgroup PGL(2,R) is identically zero.

The classic Schwarzian derivative provides an example of such cocycle.

Example 3.2.1. Define a map Sλ : Diff(S1) → Dλ,λ+2(S
1) as the zero-

order operator of multiplication by the Schwarzian derivative, namely, for
f ∈ Diff(S1), set

Sλ(f
−1) : φ 7−→ S(f)φ (3.2.3)

where φ ∈ Fλ(S
1). Since S(f) is a quadratic differential, the right hand side

belongs to Fλ+2(S
1). The Schwarzian derivative is a 1-cocycle on Diff(S1)

with values in the space F2(S
1) of quadratic differentials, see Section 1.5.

This implies the cocycle relation for the map (3.2.3).

Three cocycles generalizing Schwarzian derivative

As in Section 2.5, let us use the notation δ = µ − λ. We will prove the
following classification theorem.

Theorem 3.2.2. For
δ ∈ {2, 3, 4} , (3.2.4)

with arbitrary λ 6= − 1
2 ,−1 and − 3

2 , respectively, and for

(λ, µ) ∈ {(−4, 1), (0, 5)} , (3.2.5)

there exists a unique (up to a constant) non-trivial 1-cocycle (3.2.1) van-
ishing on the subgroup PGL(2,R). Otherwise, there are no such non-trivial
cocycles.

In other words, there are three one-parameter families and two excep-
tional cocycles.

Let us give the explicit formulæ. If δ = 2 then the cocycle is (3.2.3). If
δ = 3, 4 then the cocycles are as follows:

Uλ(f
−1) = S(f)

d

dx
−
λ

2
S(f)′ ,

Vλ(f
−1) = S(f)

d2

dx2
−

2λ+ 1

2
S(f)′

d

dx
+

λ(2λ+ 1)

10
S(f)′′ −

λ(λ+ 3)

5
S(f)2,

(3.2.6)

respectively. We do not give here explicit expressions for the exceptional
cocycles corresponding to the values (3.2.5).
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Exercise 3.2.3. Check the cocycle relation for Uλ and Vλ.

Theorem 3.2.2 can be reformulated in terms of PGL(2,R)-relative coho-
mology of Diff(S1).

Corollary 3.2.4. There are three one-parameter families of (λ, µ):

(δ = 2, λ 6= −
1

2
), (δ = 3, λ 6= −1), (δ = 4, λ 6= −

3

2
),

and two isolated values: (λ, µ) = (−4, 1), (0, 5), for which

H1(Diff(S1),PGL(2,R); Dλ,µ(S
1)) = R.

Otherwise, this cohomology is trivial.

Recall that there exist two more cocycles on Diff(S1) with values in
tensor densities: f−1 7→ ln f ′(x) and f−1 7→ (f ′′(x)/f ′(x))dx with values in
F0(S

1) and F1(S
1), respectively, see Theorem 1.5.5. The following exercise

shows the exceptional role of the Schwarzian.

Exercise 3.2.5. Check that the 1-cocycles with values in Dλ,λ(S
1) and

Dλ,λ+1(S
1), defined via multiplication by these 1-cocycles, are trivial for all

λ, except λ = 0.

We now start the proof of Theorem 3.2.2.

Relation to PGL(2, R)-invariant differential operators

Recall that a 1-cocycle (3.2.1) is a coboundary if there exists B ∈ Dλ,µ such
that

C(f) = Tµ
f ◦ B ◦ Tλ

f−1 −B (3.2.7)

for every f ∈ Diff(S1), cf. Section 1.5. One then writes C = d(B).
If a coboundary (3.2.7) vanishes on PGL(2,R) then the operator B is

PGL(2,R)-invariant. We already classified such operators in Section 2.1, see
Theorem 2.1.2. It follows that every coboundary, vanishing on PGL(2,R),
is proportional to d (Dk) where Dk is the PGL(2,R)-invariant differential
operator (2.1.3).

Exercise 3.2.6. Check that the cocycles S− 1
2
, U−1 and V− 3

2
are cobound-

aries:
S− 1

2
= d (D2) , U−1 = d (D3) , V− 3

2
= d (D4) .

For other values of λ the cocycles Sλ, Uλ and Vλ are not trivial.
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Relation to transvectants: cohomology of Vect(S1)

We will now classify infinitesimal analogs of the cocycles (3.2.1).
Consider the Lie algebra cocycles:

c : Vect(S1) → Dλ,µ(S
1) (3.2.8)

vanishing on the subalgebra sl(2,R). The 1-cocycle relation reads:

c([X,Y ]) = LµX ◦ c(Y )− c(Y ) ◦ LλX − LµY ◦ c(X) + c(X) ◦ LλY (3.2.9)

for every X,Y ∈ Vect(S1). This is just the infinitesimal version of (3.2.2).
Let us use a convenient property of 1-cocycles: a 1-cocycle, vanishing on

a Lie subalgebra, is invariant with respect to this subalgebra. In our case
we have the following consequence.

Lemma 3.2.7. Given a 1-cocycle (3.2.8), vanishing on sl(2,R), the bilinear
differential operator  : Vect(S1)⊗Fλ → Fµ, defined by

(X,φ) = c(X)(φ), (3.2.10)

is sl(2,R)-invariant.

Proof. Consider Y ∈ sl(2,R). Since c(Y ) = 0, one rewrites the condition
(3.2.9) as

LµY ((X,φ)) − ([Y,X], φ) − (X,LλY (φ)) = 0,

and the left hand side is precisely LY (), applied to (X,φ).

One can now use Theorem 3.1.1 on classification of bilinear sl(2,R)-
invariant differential operators. It follows that the bilinear map (3.2.10),
associated with a 1-cocycle (3.2.8), is necessarily proportional to a transvec-
tant:

(X,φ) = c J−1,λ
m (X,φ)

where λ = m−1 and c is a constant. It remains to check, one by one, which
transvectants indeed define 1-cocycles on Vect(S1).

Exercise 3.2.8. Check that
a) J−1,λ

1 (X,φ) = LXφ and J−1,λ
2 (X,φ) = 0 for all X ∈ Vect(S1);

b) up to a multiple,

J−1,λ
3 (X,φ) = X ′′′φ,

J−1,λ
4 (X,φ) = X ′′′φ′ − λ

2 X
IV φ

J−1,λ
5 (X,φ) = X ′′′φ′′ − 2λ+1

2 XIV φ′ + λ(2λ+1)
10 XV φ,
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and these maps define 1-cocycles on Vect(S1), vanishing on sl(2,R);

c) the map J−1,λ
6 defines a 1-cocycle if and only if λ = −4, 0,−2, and in the

case λ = −2, it is a coboundary, namely, d(D5);

d) the map J−1,λ
m with m > 6 and λ 6= 1−m/2 never defines a 1-cocycle on

Vect(S1).

We obtain the following result:

H1(Vect(S1), sl(2,R);Dλ,µ(S
1)) =

{
R, (λ, µ) as in (3.2.4), (3.2.5)

0, otherwise,

which is an infinitesimal analog of Theorem 3.2.2.

Proof of Theorem 3.2.2

A differentiable 1-cocycle on a Lie group G determines a 1-cocycle on the
respective Lie algebra g:

c(X) =
d

dt
C(exp tX)

∣∣∣∣
t=0

, X ∈ g, (3.2.11)

see Section 8.4.
In our case, we have just classified non-trivial cocycles on Vect(S1),

vanishing on sl(2,R). We have also seen that these cocycles integrate to
cocycles on Diff(S1), cf. explicit formulæ (3.2.6). Since all the coboundaries
are of the form d(Dk), the obtained cocycles are non-trivial and linearly
independent except for the cases λ = −1/2,−1 and −3/2.

It remains to show that there are no other non-trivial cocycles on Diff(S1)
vanishing on sl(2,R) than those of Theorem 3.2.2.

Lemma 3.2.9. A non-zero differentiable 1-cocycle on G corresponds to a
non-zero 1-cocycle on g.

Proof. Assume C is a 1-cocycle on G such that the 1-cocycle on g given
by formula (3.2.11) vanishes, and let us show that C is identically zero.
We claim that if the differential of C vanishes at the unit element then it
vanishes at every other point of G. Indeed, given a curve gt ∈ G with g0 the
unit element, then dC(gt)/dt = 0 at t = 0. For every g ∈ G, one has, by
the cocycle property,

d

dt
C(g gt)

∣∣∣∣
t=0

=
d

dt
(g C(gt) + C(g))

∣∣∣∣
t=0

= 0.

The curve ggt is an arbitrary curve at point g ∈ G and we conclude that the
differential of C vanishes on TgG. Therefore C = 0.



3.3. APPLICATION: GEOMETRY OF DIFFERENTIAL OPERATORS ON RP161

It follows from the above lemma that to every non-trivial cocycle on Diff(S 1)
there corresponds a non-trivial cocycles on Vect(S1).

Theorem 3.2.2 is proved.

Comment

Feigin and Fuchs calculated the first cohomology space of the Lie algebra
of formal vector fields on R with coefficients in the module of differential
operators (see [65] and also [72]). They did not study a similar problem in
the case of diffeomorphism groups. Theorem 3.2.2 was proved in [33].

3.3 Application: geometry of differential opera-

tors on RP1

Geometry is the main subject of this book and the reappearance of this
term in the title of this section might look strange. Recall that geometry
is understood, in the sense of Klein, as a Lie group action on a manifold.
Two groups play a special role in this book, namely the group of projective
transformations and the full group of diffeomorphisms.

In this section we study the space of k-th order differential operators
Dkλ,µ(S

1) as a module over the group Diff(S1) and solve the problem of
their classification. Our main tool is the canonical isomorphism between
the space Dk

λ,µ(S
1) and the corresponding the space of symbols Sδ(S

1) as
PGL(2,R)-modules, introduced in Section 2.5.

Formulating the classification problem

The classification problem is formulated as follows: for which values (λ, µ)
and (λ′, µ′) is there an isomorphism of Diff(S1)-modules

Dkλ,µ(S
1) ∼= Dkλ′,µ′(S

1)? (3.3.1)

Example 3.3.1. We have already encountered such an isomorphism more
than once, namely the conjugation:

∗ : Dλ,µ(S
1) −→ D1−µ,1−λ(S

1).

The question is, therefore, whether there are other isomorphisms.
The “shift” of the degree

δ = µ− λ (3.3.2)
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is obviously an invariant, since the modules of symbols S kδ (S
1) with different

δ are not isomorphic to each other. Indeed, one has

Sδ(S
1) =

∞⊕

`=0

Fδ−`(S
1).

We are thus led to classifying the modules Dk
λ,µ(S

1) with fixed δ.

Results

It turns out that, for k ≤ 3, almost all modules Dk
λ,µ(S

1) with fixed δ are
isomorphic.

Theorem 3.3.2. If k ≤ 3 then all the modules Dk
λ,µ(S

1) with fixed δ are
isomorphic to each other, except for the values of (λ, µ) given by the table:

k 1 2 3
(λ, µ) (0, 1) (0, µ) (0, µ)

(− 1

2
, 3

2
) (λ, 1− λ)

(λ, 4λ+1

3λ+1
)

(λ, λ+ 2)

(3.3.3)

and their adjoint ones: Dk
1−µ,1−λ(S

1).

The values of (λ, µ), corresponding to the exceptional modules of third-
oder operators, are given in figure 3.1.

µ

λ
-2 2/3-

2

5/3

Figure 3.1: Exceptional modules of third-order operators

In the general case the result is different.



3.3. APPLICATION: GEOMETRY OF DIFFERENTIAL OPERATORS ON RP163

Theorem 3.3.3. If k ≥ 4 then, up to a constant, the only isomorphism
(3.3.1) is the conjugation.

We now begin the proof of these theorems. The main ingredient is
the isomorphism between the spaces of differential operators and symbols,
viewed as PGL(2,R)-modules.

Diff(S1)-action in the canonical form

Using the projectively equivariant symbol map (2.5.3), we can rewrite the
Diff(S1)-action (2.1.1) in terms of the symbols, namely,

Dλ,µ
Tλ,µf
−−−→ Dλ,µ

σλ,µ

y
yσλ,µ

Sδ
σλ,µ◦T

λ,µ
f
◦σ−1
λ,µ

−−−−−−−−−→ Sδ

(3.3.4)

Let us compare the action σλ,µ ◦Tλ,µ
f ◦ σ−1

λ,µ with the standard Diff(S1)-

action on Sδ(S
1). Every Φ ∈ Sδ(S

1) is of the form:

Φ =

k∑

`=0

Φ`(x)(dx)
δ−`

for some k. Let

f(Φ) = σλ,µ ◦ Tλ,µ
f ◦ σ−1

λ,µ(Φ).

It follows from Theorem 3.2.2 (the “uniqueness” part) that the higher-order
terms of f(Φ) are necessarily of the form

f(Φ)k = Tδ−k
f (Φk),

f(Φ)k−1 = Tδ−k+1
f (Φk−1),

f(Φ)k−2 = Tδ−k+2
f (Φk−2) + βk2 Sδ−k(f)(Φk),

f(Φ)k−3 = Tδ−k+3
f (Φk−3) + βk3 Uδ−k(f)(Φk)+

βk−1
2 Sδ−k+1(f)(Φk−1),

f(Φ)k−4 = Tδ−k+4
f (Φk−4) + βk4 Vδ−k(f)(Φk)+

βk−1
3 Uδ−k+1(f)(Φk−1) + βk−2

2 Sδ−k+2(f)(Φk−2)

(3.3.5)
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where Tλ is the standard Diff(S1)-action on the space of tensor densities,
S,U and V are the cocycles (3.2.3) and (3.2.6), and βkj are coefficients de-
pending on λ and µ.

An algebraic meaning of the above expression is that the moduleDλ,µ(S
1)

can be viewed as a deformation of the module Sδ(S
1). The cocycles S,U

and V describe its infinitesimal part while βkj are the parameters of the
deformation.

Computing the parameters βkj

In order to obtain the classification results, we need some information about
the coefficients in (3.3.5).

Exercise 3.3.4. Check that

β4
2(λ, µ) = −

(6λ+ 4)δ + 6λ2 − 6λ− 5

2δ − 7

β3
1(λ, µ) = −

(3λ+ 1)δ + 3λ2 − 3λ− 1

2δ − 5

β4
1(λ, µ) =

(δ + 2λ− 1) ((4λ+ 1)δ − 4λ(λ− 1))

(δ − 2)(δ − 3)(δ − 4)

β2
0(λ, µ) = −

λ(δ + λ− 1)

2δ − 3

β3
0(λ, µ) =

λ(δ + λ− 1)(δ + 2λ− 1)

(δ − 1)(δ − 2)(δ − 3)

β4
0(λ, µ) = −

λ(δ + λ− 1)(4δ2 + 12λδ − 12δ + 12λ2 − 12λ+ 11)

(δ − 1)(2δ − 3)(2δ − 5)(2δ − 7)(δ − 4)

Hint It is easier to compute the Vect(S1)-action; the formula (3.3.5) re-
mains the same but the cocycles Sλ, Uλ and Vλ should be replaced by the
corresponding 1-cocycles on Vect(S1), i.e., by the transvectants J3, J4 and
J5. It follows from the definition (3.3.4) that the general formula for the
coefficients is

βkj =
(−1)j(

j+2δ−2k−2
3

)
(

(δ − k)Ck
j −

j∑

i=1

(
λ

(
k

i

)
+

(
k

i+ 1

))
Ck−ij−i

)

where C`
m are as in (2.5.4). Specifying k and s, one then obtains the above

formulæ (computer-assisted symbolic computation is highly recommended).
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Proof of Theorem 3.3.2

Consider the linear map T : D3
λ,µ → D3

λ′,µ′ defined, in terms of the projec-
tively equivariant symbol, by

T (Φ3 ξ
3 + Φ2 ξ

2 + Φ1 ξ + Φ0) = Φ3 ξ
3 +

β′30β
2
0

β3
0β

′2
0

Φ2 ξ
2 +

β′31
β3

1

Φ1 ξ
1 +

β′30
β3

0

Φ0

This map intertwines the actions (3.3.5) with (λ, µ) and (λ′, µ′). This proves
Theorem 3.3.2 for non-resonant values of δ (i.e., for δ 6= −1,− 3

2 ,−2,−5
2 ,−3)

since we used the projectively equivariant symbol map in the construction
of the isomorphism.

Exercise 3.3.5. Prove that the isomorphism T makes sense for the resonant
values of δ as well.

Hint Rewrite the formula of the map T in terms of the coefficients of dif-
ferential operators.

This completes the proof of Theorem 3.3.2.

Proof of Theorem 3.3.3

For the sake of simplicity, we give here the proof for generic, non-resonant
values of δ.

Consider an isomorphism T : Dk
λ,µ(S

1) → Dk
λ′,µ′(S

1) with k ≥ 4. Since

T is an isomorphism of Diff(S1)-modules, it is also an isomorphism of
PGL(2,R)-modules. The uniqueness of the projectively equivariant sym-
bol map shows that the linear map σ ◦ T ◦ σ−1 on Skδ (S1) is multiplication
by a constant on each homogeneous component:

T (P4ξ
4 + · · ·+ P0) = P4ξ

4 + τ3P3ξ
3 + · · ·+ τ0P0,

with τi depending on λ, µ, λ′, µ′. This map intertwines two Diff(S1)-actions
(3.3.5) with (λ, µ) and (λ′, µ′) if and only if

τ4β
′4
2 = τ2β

4
2 , τ4β

′4
1 = τ1β

4
1

τ4β
′4
0 = τ0β

4
0 , τ3β

′3
1 = τ1β

3
1

τ3β
′3
0 = τ0β

3
0 , τ2β

′2
0 = τ0β

2
0 .

This system has a solution only for λ = λ′ or λ + µ′ = −1. The first
isomorphism is tautological, the second one is the conjugation. This proves
Theorem 3.3.3 for non-resonant δ.
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Comment

Examining the particular values of (λ, µ) from Theorem 3.3.2, one finds in-
teresting modules of differential operators, already encountered in this book.
For instance, the module D−1/2,3/2(S

1) is precisely that related to the projec-
tive structures on S1 and the Sturm-Liouville operators. Another interesting
module is D3

−2/3,5/3(S
1) (see figure 3.1), related to the Grozman operator,

see Exercise 3.1.2. The geometric meaning of this module is unclear yet.
Theorems 3.3.2 and 3.3.3 were proved in [75] for the particular case δ = 0

and in [74] for the general case, see also [76].

3.4 Algebra of tensor densities on S1

The space F(S1) of all tensor densities on S1 is a beautiful Poisson algebra.
This space also has an infinite number of higher-order bilinear PGL(2,R)-
invariant operations, the transvectants, see Section 3.1.

In this section we explain how all these operations are related to each
other. We will describe a rich family of algebraic structures on F(S1) that
can be viewed as deformation of the natural product of tensor densities.
These algebraic structures are based on the transvectants.

Poisson algebra of tensor densities

A Poisson!algebra is a vector space A equipped with a commutative associa-
tive product and a Lie algebra commutator denoted { , }; these two algebra
structures are related by the Leibnitz identity

{a, bc} = {a, b} c + b {a, c}

for all a, b, c ∈ A. This means that the operator ada is a derivation of the
commutative algebra.

The space F(S1) has a natural (that is, a Diff(S1)-invariant) structure of
a Poisson algebra with the commutative product given by the usual product
of tensor densities

φ(x)(dx)λ ⊗ ψ(x)(dx)µ 7→ φ(x)ψ(x)(dx)λ+µ

and the Lie algebra commutator given by the Schouten bracket

{φ(x)(dx)λ, ψ(x)(dx)µ} =
(
λφ(x)ψ′(x)− µψ′(x)φ(x)

)
(dx)λ+µ+1.

In our notation, the latter is the first transvectant J λ,µ1 , see formula (3.1.1).
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Exercise 3.4.1. Check the Leibnitz identity for the above operations.

We will also consider the space S(S1) of symbols of differential operators,
see Section 2.5. This space is a direct sum of the tensor density spaces:

S(S1) =
⊕

`≤0

F`(S
1).

The space S(S1) is a graded Poisson subalgebra of F(S1).

Remark 3.4.2. The Lie algebra Vect(S1) is a Lie subalgebra of F(S1).
Moreover, the Lie derivative of a tensor density is just the Poisson bracket:

LX(φ) = {φ,X}.

Deformation of Poisson algebras: star-products

We introduce the notion of a star-product on a Poisson algebra. This op-
eration is an associative (but not necessarily commutative) deformation of
the commutative product still satisfying the Leibnitz identity.

A star-product on a Poisson algebra A is given by a series

a ∗ b = a b+
t

2
{a, b} +

∞∑

k=2

tk

2k
Bk(a, b) (3.4.1)

where t is a (formal) parameter and Bk : A⊗2 → A are bilinear maps,
satisfying the following associativity property. If one extends (by linearity)
the product (3.4.1) to the space of formal series A[[t]] = A⊗ R[[t]], then

a ∗ (b ∗ c) = (a ∗ b) ∗ c. (3.4.2)

Exercise 3.4.3. Check that relation (3.4.2) is always satisfied up to the
first order.

Hint. This is equivalent to the Leibnitz identity.

Relation (3.4.2) is a strong restriction on the bilinear maps Bk. For a given
Poisson algebra A, the existence of a star-product is, a-priory, not guaran-
teed.

The associative algebra (A[[t]], ∗) naturally carries a Lie algebra struc-
ture, given by the star-commutator

[a, b]∗ =
a ∗ b− b ∗ a

t
(3.4.3)

which is a deformation of the Poisson bracket.
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Example 3.4.4. The simplest and most famous example of a star-product
is the so-called Moyal product on symplectic vector space R2n. In the case of
R2, this star-product is given by the bilinear operations (3.1.3). In the multi-
dimensional case, the definition is analogous. The associativity condition can
be easily checked.

Moyal star-product on tensor densities

The identification (3.1.4) maps the algebra of tensor densities F(S1) to
the algebra of homogeneous functions on R2 \ {0}; the Schouten bracket
corresponds to the standard Poisson bracket on R2. The pull-back of the
Moyal product on R2 then defines a star-product on tensor densities which
we will also call the Moyal product.

Proposition 3.4.5. The explicit formula for the star-product on F(S1) is
as follows:

φ ∗ ψ = φψ +
t

2
{φ, ψ} +

∞∑

k=2

tk

2k
Jλ,µk (φ, ψ) (3.4.4)

where φ ∈ Fλ(S
1), ψ ∈ Fµ(S

1) and Jλ,µk are the transvectants (3.1.1).

Proof. The transvectants Jλ,µk correspond, after the identification (3.1.4),
to the terms Bk of the Moyal product given by (3.1.3), see Theorem 3.1.7.
Formula (3.4.4) is therefore precisely formula (3.4.1), rewritten in terms of
tensor densities.

The star-product (3.4.4) is obviously PGL(2,R)-invariant.

Cohen-Manin-Zagier star-product

The algebra F(S1) has a natural family of star-products. Consider the
projectively invariant symbol map (see (2.5.3)–(2.5.4)) and the quantization
map (2.5.6) in the particular case λ = µ = ν:

σν : Dν(S
1) → S(S1), Qν : S(S1) → Dν(S

1)

with ν ∈ R. Of course, one has Qν = σ−1
ν .

Consider two tensor densities φ ∈ Fλ(S
1) and ψ ∈ Fµ(S

1) and assume
first that λ and µ are non-positive integers. In other words, we take φ, ψ ∈
S(S1). Define a new product by

φ ∗ν ψ = Q−1
ν (Qν(φ)Qν(ψ)) . (3.4.5)
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This operation is obviously associative since it comes from the associative
product in the algebra of differential operators.

Theorem 3.4.6. The explicit formula for the defined product on the space
of tensor densities is

φ ∗ν ψ = φψ +
1

2
{φ, ψ} +

∞∑

k=2

Bν
k (λ, µ) Jλ,µk (φ, ψ) (3.4.6)

where the coefficients Bν
k (λ, µ) are given by

Bν
k(λ, µ) =

(
1

2

)k ∑

j≥0

(
k

2j

) (− 1
2
j

) (2ν− 3
2

j

) ( 1
2
−2ν
j

)

(−2λ− 1
2

j

) (−2µ− 1
2

j

) (k+2λ+2µ− 3
2

j

) (3.4.7)

We will not give here a complete proof of this theorem, see [44]. By con-
struction, the product (3.4.5) is PGL(2,R)-invariant; it thus has to express
in terms of the transvectants, which makes formula (3.4.6) obvious. The ex-
plicit expression for the coefficients Bν

k (λ, µ) can be determined by choosing
particular tensor densities, cf. proof of Theorem 3.1.7.

Formulæ (3.4.6) and (3.4.7) make sense for arbitrary λ and µ (not nec-
essarily integer) and therefore define a 1-parameter family of star-products
on the whole Poisson algebra of tensor densities F(S1).

Remark 3.4.7. a) The product (3.4.5) is a composition of two differential
operators written in a PGL(2,R)-invariant way. The same is true for the
Moyal product (3.4.4) but the quantization map is different.

b) One can add the formal parameter t to the product (3.4.5) in the
usual way. For instance, one considers the linear map

I : S(S1) → S(S1)[[t]]

such that I|F−k(S1) = tk Id. Then one replaces the quantization and the

symbol maps by Q̄ν = Qν ◦ I and σ̄ν = Q̄ν
−1

, respectively.

Comment

The notion of star-product plays an important role in mathematical physics.
It is closely related to quantum mechanics and is the main ingredient of
deformation quantization. The first example of star-products is the Moyal
product; it appeared in the physics literature in the first half of XX-th
century.

Theorem 3.4.6 was proved in [44]. The star-product (3.4.4) was consid-
ered in [167].
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3.5 Extensions of Vect(S1) by the modules Fλ(S
1)

The Lie algebra Vect(S1) has a non-trivial central extension called the Vi-
rasoro algebra, see Section 1.6. Since the Virasoro algebra plays such an
important role in mathematics and theoretical physics, it is natural to look
for its analogs and generalizations.

In this section we consider a natural class of “non-central” extensions of
Vect(S1), namely extensions by the modules of tensor densities Fλ(S

1). We
will be interested in the projectively invariant extensions which are given by
projectively invariant 2-cocycles. The result is quite surprising: there exists
a unique extension if and only if λ = 5 or 7. As in the preceding section,
the transvectants constitute the main ingredient of our constructions.

We thus obtain two exceptional infinite-dimensional Lie algebras that
can be considered analogs of the Virasoro algebra. These Lie algebras are,
in fact, Lie subalgebras of the algebra F(S1) with respect to the product
(3.4.4). Their existence is due to remarkable properties of the transvectants
J7 and J9.

Statement of the problem

In this section we consider extensions of Vect(S1) by the modules Fλ(S
1)

0 → Fλ(S
1) → g → Vect(S1) → 0 (3.5.1)

In other words, we look for a Lie algebra structure on the vector space
g = Vect(S1)⊕Fλ(S

1) given by products of the form

[(X,φ), (Y, ψ)] =
(
[X, Y ], LλXψ − LλY φ+ c(X, Y )

)
,

where X = X(x) d/dx is a vector field and LλX is the Lie derivative (1.5.6).
The bilinear skew-symmetric map c : Vect(S1)⊕Vect(S1) → Fλ(S

1) has to
satisfy the condition:

c (X, [Y, Z]) + LλX c (Y, Z) + cycle(X,Y,Z) = 0 (3.5.2)

which guarantees that the above commutator satisfies the Jacobi identity.
In other words, c is a 2-cocycle, cf. Sections 1.6 and 8.4.

If c = 0 then the Lie algebra g is called a semi-direct product. The
extension (3.5.1) is non-trivial if the Lie algebra g is not isomorphic to
a semi-direct product. The cocycle c in this case represents a non-trivial
cohomology class of the second cohomology space H 2(Vect(S1);Fλ(S

1)). A
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trivial 2-cocycle is also called 2-coboundary. Such a cocycle can be written
as

c (X, Y ) = LλX ` (Y )− LλY ` (X)− ` ([X, Y ]) (3.5.3)

where ` : Vect(S1) → Fλ(S
1) is a linear map.

As in Section 3.2, we will be interested in sl(2,R)-relative cohomology,
that is, we assume

c(X, Y ) = 0 if X ∈ sl(2,R). (3.5.4)

We will, furthermore, consider only the cocycles given by differential oper-
ators. The relevant cohomology space is therefore

H2
diff(Vect(S1), sl(2,R);Fλ(S

1)).

Exercise 3.5.1. Check that a 2-cocycle c, satisfying property (3.5.4), is
sl(2,R)-invariant, that is

c ([X, Y ], Z) + c (Y, [X, Z]) = LλX c(Y, Z) (3.5.5)

for every X ∈ sl(2,R).

Hint. Use the cocycle condition (3.5.2) along with (3.5.4).

Two exceptional cocycles on Vect(S1)

For the sl(2,R)-relative cohomology space, one obtains the following result.

Theorem 3.5.2. One has

H2
diff(Vect(S1), sl(2,R);Fλ(S

1)) =

{
R, λ = 5, 7,
0, otherwise

Proof. We start with the construction of non-trivial 2-cocycles with values
in F5(S

1) and F7(S
1). These cocycles are just the transvectants J7 and J9,

respectively. Indeed, these transvectants, restricted to Vect(S1) ∼= F−1(S
1),

define skew-symmetric bilinear maps

J7 : Vect(S1)⊗ 2 → F5(S
1), J9 : Vect(S1)⊗ 2 → F7(S

1)

where, to simplify the notation, we omit the upper indices: Jk = J−1,−1
k .
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Exercise 3.5.3. Check that, up to a multiple, one has

J7(X, Y ) =

∣∣∣∣∣
X ′′′ Y ′′′

X(IV ) Y (IV )

∣∣∣∣∣ (dx)
5

and

J9(X, Y ) =

(
2

∣∣∣∣∣
X ′′′ Y ′′′

X(V I) Y (V I)

∣∣∣∣∣− 9

∣∣∣∣∣
X(IV ) Y (IV )

X(V ) Y (V )

∣∣∣∣∣

)
(dx)7

Hint. Use formula (3.1.1).

Lemma 3.5.4. The maps J7 and J9 define non-trivial 2-cocycles on Vect(S1).

Proof. Consider the (associative) product (3.4.4). The corresponding star-
commutator (see (3.4.3)) is as follows:

[φ, ψ]∗ = {φ, ψ}+

∞∑

k=1

(
t

2

)2k+1

J2k+1(φ, ψ)

since the even-order transvectants are symmetric. Let us substitute vector
fields X and Y to the above star-commutator.

Exercise 3.5.5. Check that the restrictions of the transvectants J3 and J5

to Vect(S1)⊗ 2 identically vanish.

It follows that the first non-zero terms in the series [X, Y ]∗ are the usual
commutator of vector fields [X, Y ] and the term proportional to J7(X,Y ).
The Jacobi identity for the star-commutator then implies that J7 is, indeed,
a 2-cocycle on Vect(S1). For J9, the Jacobi identity gives

J9(X, [Y, Z]) + LλX J9(Y, Z) + J3(X, J7(Y, Z)) + cycle(X,Y,Z) = 0.

Exercise 3.5.6. Check that

J3(X, J7(Y, Z)) + cycle(X,Y,Z) = 0.

Thus J9 is also a 2-cocycle.
These 2-cocycles are non-trivial, in other words, they cannot be written

in the form (3.5.3). Indeed, for any linear map `, the right hand side of
(3.5.3) contains 0-jets of X and Y . Lemma 3.5.4 is proved.

Theorem 3.5.2 now follows from the fact that transvectants are the
unique sl(2,R)-invariant bilinear maps from Vect(S1) to Fλ(S

1), see Theo-
rem 3.1.1.
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Comment

Extensions of Vect(S1) by the modules Fλ(S
1) were classified in [223], see

also [72]. The 2-cocycles J7 and J9 were introduced in [169].
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Chapter 4

Vertices of projective curves

The 4-vertex theorem is one of the first result of global differential geometry
and global singularity theory. Already Apollonius studied the caustic of an
ellipse and observed its 4 cusps. Huygens also studied evolutes of plane
curves and discovered their numerous geometric properties. Nevertheless
the 4-vertex theorem, asserting that the evolute of a plane oval has no fewer
than 4 cusps, was discovered as late as 1909 by S. Mukhopadhyaya.

We start with a number of beautiful geometric results around the classic
4-vertex theorem. We then prove a general theorem of projective differential
geometry, due to M. Barner, and deduce from it various geometrical conse-
quences, including the 4-vertex and 6-vertex theorems and the Ghys theorem
on 4 zeroes of the Schwarzian derivative. The chapter concludes with ap-
plications and ramifications including discretizations, topological problems
of wave propagation and connection with contact topology. A relates Sec-
tion 8.1 concerns the Sturm-Hurwitz-Kellogg theorem on the least number
of zeroes of periodic functions.

This chapter illustrates the title of the book: it spans approximately 200
years, and we see how old and new results interlace with each other. The
literature on the 4-vertex theorem is immense. Choosing material for this
chapter, we had to severely restrict ourselves, and many interesting results
are not discuss here.

4.1 Classic 4-vertex and 6-vertex theorems

In this section we formulate the classic 4-vertex and 6-vertex theorems, their
corollaries and refinements. The reader interested in their proofs should wait
until Section 4.3.

75
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4-vertex theorem

Consider a smooth curve γ in the Euclidean plane. The osculating circle
at a point x ∈ γ is the circle tangent to the curve with order 2. One can
say, the osculating circle passes through 3 infinitesimally close points of the
curve (that is, has a “3-point contact” with the curve). The radius of the
circle is reciprocal to the curvature of γ. The point x is called a vertex if
the osculating circle approximates the curve abnormally well, that is, with
order ≥ 3. Vertices are extrema of curvature.

The simplest version of the 4-vertex theorem concerns smooth closed
convex curves in the Euclidean plane with non-vanishing curvature, also
called ovals.

Theorem 4.1.1. An oval has at least 4 distinct vertices.

The existence of 2 vertices is obvious: curvature has a maximum and
a minimum. For self-intersecting curves, one can have only 2 vertices, see
figure 4.1.

Figure 4.1: Curves with 2,4 and 6 vertices

One can strengthen the result as follows.

Theorem 4.1.2. If an oval transversally intersects a circle in n points, then
it has at least n distinct vertices.

Of course, the number n in this theorem is even. Theorem 4.1.2 implies
Theorem 4.1.1 since for any oval there is a circle intersecting it in at least 4
points.

Remark 4.1.3. Theorem 4.1.1 holds true for simple closed (but not nec-
essarily convex) curves as well. We mention this stronger result in passing
since its proof uses “ad hoc” arguments and is not directly related to the
main ideas of this book.
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Figure 4.2: Möbius theorem: example and counterexample

We mention another result in the same spirit, the Möbius theorem [149]:
a non-contractible closed simple curve in RP2 has at least 3 distinct inflection
points, see figure 4.2. An inflection point is a point at which the curve has
the second-order contact with the tangent line.

Vertices and caustics

Given a smooth plane curve γ, consider the one-parameter family of its
normal lines. The envelope of the normals is called the caustic or the evolute.
This is a curve that can have singularities, generically, semicubical cusps.

The caustic can also be defined as a locus of the curvature centers.

Figure 4.3: Cusps of the caustic

Vertices of a smooth plane curve correspond to cusps of its caustic, and
the 4-vertex theorem can be formulated as a 4-cusps theorem for a caustic.

The caustics have been of great interest to physicists and mathematicians
since XVII-th century. Their numerous geometric properties are well known,
and we will list here a few. The following statements used to be part of the
calculus curriculum until the first half of XX-th century.

Exercise 4.1.4. a) A caustic has no inflection points.
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b) One can reconstruct a curve from its caustic and an initial point.
c) The number of cusps of the caustic of an oval is even and the alternating
sum of the lengths of its smooth pieces equals zero.
d) The osculating circles of an arc of a curve, free from vertices, are pairwise
disjoint and nested.

Hint. a) If a caustic had an inflection point, then there would be two
perpendiculars to the curve at one of its points. b) A curve is described
by the free end of a non-stretchable string developing from the caustic. c)
This follows from this string construction. d) This follows from the string
construction and the triangle inequality.

We discuss symplectic and contact aspects of caustics in Section 4.6.

Support function

It is convenient to define a convex curve by its support function. Let γ be a
convex curve and x a point of γ; choose an origin O and draw the tangent
line to γ at x. Drop the perpendicular Oy to the tangent line. The support
function is the function p(α) where α is the direction of the vector Oy and
p is its magnitude. If γ is (co)oriented, then p has a sign depending on
whether the direction of the vector Oy is the same as the coorientation.

O x

y

α

γ

p

Figure 4.4: Support function

Exercise 4.1.5. Prove that translating the origin O through a vector (a, b)
changes the support function by a cosα+ b sinα.

Let us describe vertices in terms of the support function. We parame-
terize the curve γ by the angle α ∈ S1.

Lemma 4.1.6. Vertices of γ correspond to the values of α for which

p′′′(α) + p′(α) = 0. (4.1.1)
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Proof. Support functions of circles are a cosα + b sinα + c, where a, b and
c are constants. Indeed, choosing O at the center of a circle, the support
function is constant (the radius), and the general case follows from the above
exercise.

Vertices are the points where the curve has a third-order contact with a
circle. In terms of the support functions, it means that p(α) coincides with
a cosα + b sinα + c up to the third derivative. It remains to notice that
linear harmonics a cosα+ b sinα+ c satisfy (4.1.1) identically.

Lemma 4.1.6 makes it possible to reformulate the 4-vertex theorem as
follows.

Theorem 4.1.7. Let p(α) be a smooth 2π-periodic function. Then the equa-
tion p′′′(α) + p′(α) = 0 has in at least 4 distinct roots.

See Section 8.1 for a discussion of more general Sturm theorems of this
kind. For a curious reader we mention more properties of support functions.

Exercise 4.1.8. Prove that:
a) |xy| = p′(α);
b) the radius of curvature at point x equals p′′(α) + p(α);
c) the length of γ equals

∫
p(α)dα;

d) the area bounded by γ equals 1
2

∫
(p2(α) − (p′(α))2)dα.

6-vertex theorem

Let γ be a convex curve in RP2, that is, a smooth closed non-degenerate
curve that intersects any projective line at most twice, cf. Section 2.3. An
osculating conic at a point x ∈ γ is a conic through x that has contact of
order 4 (i.e., 5-point contact) with γ.

Exercise 4.1.9. Show that 5 points in general position in RP2 determine a
unique conic. Deduce the uniqueness of the osculating conic at every point.

A point is called sextactic if the osculating conic has contact of order
≥ 5 with γ at this point. Clearly, this is a projectively invariant notion.

Theorem 4.1.10. A convex curve in RP2 has at least 6 distinct sextactic
points.

Similarly to the 4-vertex theorem, one also has its strengthening.

Theorem 4.1.11. If a convex curve in RP2 transversally intersects a conic
at n points then it has at least n distinct sextactic points.

As before, Theorem 4.1.10 follows from Theorem 4.1.11: it suffices to
construct the conic through 5 points of γ, and it will intersect γ once again.
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Sextactic points, cubic form and affine curvature

Sextactic point is a projective notion and one expects it to be related to
projective differential invariants of curves. We have two such invariants, the
projective curvature and the cubic form, see Section 1.4. As we already
mentioned there, the cubic form of the curve vanishes in those points of
the curve where the osculating conic is hyperosculating, that is, in sextactic
points.

Curiously, sextactic points are also affine vertices. As we proved in The-
orem 2.3.1, a convex spherical curve lies in a hemisphere, and therefore a
convex projective curve lies in an affine part of RP2. One then can consider
its affine vertices.

Lemma 4.1.12. Sextactic points are extremum points of the affine curva-
ture.

Proof. The affine curvature was defined in Section 1.4 as a function of the
affine parameter, so that the coordinates of the curve satisfied the equation
y′′′(t) + k(t)y′(t) = 0. According to formula (1.4.7), the cubic form is equal
to −(1/2)k′(t)(dt)3.

The following two statements are equivalent to the 6-vertex theorem.

Corollary 4.1.13. (i) The cubic form of a convex curve in RP2 has at least
6 distinct zeroes.

(ii) The affine curvature of an oval in R2 has at least 6 distinct extrema.

Affine caustics

In affine geometry, as in Euclidean, one can define the caustic of a non-
degenerate curve.

Let a parameterization γ(t) satisfy [γ ′(t), γ′′(t)] = 1 for all t (an affine
parameter, see Section 1.4). The lines l(t), generated by the vectors γ ′′(t),
are called affine normals of the curve. The envelope of the affine normals is
called the affine caustic.

Exercise 4.1.14. Show that the affine normal l(t) is tangent to the curve
that bisects the segments, bounded by the intersections of γ with the lines,
parallel to the tangent line to γ at point γ(t), see figure 4.5.

Sextactic points of γ correspond to cusps of its caustic and the 6-vertex
theorem can be formulated as a 6-cusps theorem for the affine caustic.
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Figure 4.5: Affine normal and affine caustic

Comment

The 4-vertex theorem was proved by Mukhopadhyaya in [154]. In almost
a hundred years since its publication this theorem has generated a thriving
area of research connected, among other things, with contemporary sym-
plectic topology and knot theory, see [11, 12].

Many interesting problems around the 4-vertex theorem remain open;
let us mention just one. In the posthumous “Lectures on Dynamics” by
Jacobi one finds the following conjecture. Consider a generic smooth closed
convex surface in R3, pick a generic point on it and consider the geodesic
lines emanating from this points. The loci of the first, second,... conjugate
points are called first, second,... caustics. Jacobi proved that each caustic
has an even number of cusps; conjecturally, this number is not less than 4
for each caustic, see [12].

Sextactic points of algebraic curves in CP2 were thoroughly studied by
Steiner, Plücker, Hesse and Cayley in the middle of XIX-th century. Cayley
proved that a generic curve of degree d has exactly 3d(4d − 9) sextactic
points. This resembles the better known Plücker formula for the number of
inflections, namely, 3d(d − 2).

Sextactic points of smooth curves in RP2 were considered, for the first
time, by Mukhopadhyaya, in the same paper [154]. Herglotz and Radon
found a different proof of the 6-vertex theorem, published in [26], see also
[88]. Recent results on the subject were obtained by Thorbergsson and Ume-
hara in [217]. In particular, they show that there exist convex degenerate
curves with just 2 sextactic points.
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4.2 Ghys’ theorem on zeroes of the Schwarzian

derivative and geometry of Lorentzian curves

Among numerous generalizations and analogs of the 4-vertex theorem, a
theorem discovered by E. Ghys stands out. This is one of the most recent
and most beautiful results in the area, and it concerns our favorite object,
the Schwarzian derivative.

4 zeroes of the Schwarzian

Consider a diffeomorphism f : RP1 → RP1. The Ghys theorem asserts the
following.

Theorem 4.2.1. The Schwarzian derivative S(f) vanishes in at least 4
distinct points.

As in Section 4.1, one also has its strengthening.

Theorem 4.2.2. If the diffeomorphism f has n non-degenerate fixed points,
then S(f) vanishes in at least n distinct points.

As before, the number n is even. A fixed point is non-degenerate if
f ′ 6= 1 at this point. Theorem 4.2.2 implies Theorem 4.2.1 since one can
find a projective transformation g such that g ◦ f has 3 (and therefore 4)
fixed points. One then concludes by formula (1.3.4).

The Schwarzian derivative of f was defined in Section 1.3 to measure the
failure of f to preserve the cross-ratio. On the other hand, the diffeomor-
phisms preserving the cross-ratio are precisely the elements of PGL(2,R).
At any point x of RP1, there exists a unique projective transformation
g ∈ PGL(2,R) that approximates f in x up to order 2 (has 3-point con-
tact with f). Let us call this projective transformation osculating f at x.
The points in which the Schwarzian S(f) vanishes are precisely the points
in which this approximation is at least of order 3.

Vertices in Lorentz geometry

Theorem 4.2.1 is clearly an analog of the 4-vertex theorem. In order to
better understand this viewpoint, let us assign a curve to a diffeomorphism
of RP1. The choice is natural: the graph of the diffeomorphism is a curve in
RP1×RP1. Furthermore, we would like to define a geometry on RP1×RP1

in which the graph of a projective transformation is a circle.
Consider the flat Lorentz metric g = dxdy on RP1 × RP1, where x and

y are affine coordinates on RP1 = R ∪ {∞}.
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Exercise 4.2.3. The circles in the flat Lorentz plane are the hyperbolas
(x− a)(y − b) = c, where a, b, c are constants and c 6= 0.

Note that the hyperbola (x−a)(y− b) = c is the graph of the fractional-
linear transformation

y =
bx+ c− ab

x− a
.

Thus, the flat Lorentz geometry is what we need.

The graph of an orientation-preserving diffeomorphism is a wordline (or
a space-like curve).

Lemma 4.2.4. Let t be the Lorentz arc-length1 of a wordline and κ(t) its
Lorentz curvature. Then one has

dκ dt =
1

2
S(f). (4.2.1)

Proof. Let J be the linear operator (x, y) 7→ (−x, y). Then J(v) is orthogo-
nal to v, and g(J(u), J(v)) = −g(u, v) for every vectors u and v. This is the
Lorentz right-angle rotation.

Let γ(t) be the curve y = f(x). Denote d/dt by dot and d/dx by prime.
One easily finds that

γ̇(t) =
1

f ′1/2
(1, f ′) and γ̈(t) =

1

2

f ′′

f ′3/2
J(γ̇(t)).

Similarly to the familiar Euclidean case, the above coefficient

κ =
1

2

f ′′

f ′3/2
(4.2.2)

is, by definition, the Lorentz curvature of γ. Recall that

S(f) =

(
f ′′′

f ′
−

3

2

(
f ′′

f ′

)2
)

(dx)2.

Differentiating (4.2.2), one obtains (4.2.1).

It follows that zeroes of the Schwarzian derivative are Lorentz vertices
and the Ghys theorem is the 4-vertex theorem in Lorentz geometry.

1also called proper time
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Exercise 4.2.5. Check that equation (4.2.1) holds for the Lorentz metrics

g =
dxdy

(axy + bx+ cy + d)2
(4.2.3)

where a, b, c and d are arbitrary real constants.

This is a metric of constant scalar curvature R = 8(ad − bc) defined
on RP1 × RP1 − RP1, the complement of the graph of the fractional-linear
transformation y = −(bx+ d)/(ax + c), see [52].

4-vertex theorem in the hyperbolic plane

The classic 4-vertex theorem holds for Riemannian metrics of constant cur-
vature (on the sphere and in the hyperbolic plane). In fact, one can deduce
the 4-vertex theorem in the hyperbolic plane from the Ghys theorem.

Consider the Klein-Beltrami (or projective) model of hyperbolic geome-
try. The hyperbolic plane H2 is represented by the interior of the unit circle
S1 (“circle at infinity”), straight lines – by chords of this circle, and the
distance between points x and y is given by the formula

d(x, y) =
1

2
ln[a, x, y, b] (4.2.4)

where a and b are the intersection points of the line xy with S1 and [a, x, y, b]
is the cross-ratio, see formula (1.2.2). Isometries of H 2 are the projective
transformations of the plane preserving the boundary circle.

The circle at infinity S1 has a natural projective structure of a conic in
the projective plane (discussed in Exercise 1.4.2). Isometries of H 2 preserve
this projective structure.

γ

x

f(x)

Figure 4.6: Circle diffeomorphism from a curve

Let γ be a convex oriented curve in H2. We define a diffeomorphism of
the circle at infinity as follows. Given x ∈ S1, consider the oriented tangent
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line to γ and set f(x) be the second intersection point of this line with S1,
see figure 4.6. This defines a diffeomorphism f of S1.

Proposition 4.2.6. Vertices of the curve γ correspond to zeroes of the
Schwarzian S(f).

Proof. A vertex is a 4-point tangency of γ with a curve of constant curvature
κ. Such a curve is a circle if κ > 1, a horocycle if κ = 1 and an equidistant
curve if κ < 1. For a reference on hyperbolic geometry, see, e.g., [21]

A zero of the Schwarzian S(f) occurs when f is abnormally well approx-
imated by a projective transformation of the circle at infinity, which is a
restriction of a projective transformation of the plane, preserving this circle.
Therefore, it suffices to show that if f is a projective transformation, that is,
an isometry of the hyperbolic plane, then γ is a curve of constant curvature.

Recall the classification of isometries: an elliptic isometry has a unique
fixed point and is a rotation of the hyperbolic plane, a parabolic isometry
has a unique fixed point at infinity, and a hyperbolic isometry has two fixed
points at infinity.

Consider the case when f an elliptic isometry. Without loss of generality,
it is a rotation about the center of the unit disc. Then γ is a circle, concentric
with the unit disc, and this settles the case κ > 1.

Now let f be a parabolic isometry. Let us consider the upper half-plane
model in which the isometries are represented by elements of SL(2,R), the
geodesics by half-circles, perpendicular to the absolute, the x-axis, and the
horocycles by horizontal lines. Without loss of generality, f is a horizontal
parallel translation (x, y) 7→ (x+ c, y). The family of geodesics, connecting
points of the absolute with their images, consists of Euclidean congruent
half-circles, translated along the x-axis. The envelope of these geodesics is
a horizontal line, that is, a horocycle. This settles the case κ = 1.

Finally, let f be a hyperbolic isometry. Working again in the upper half-
plane model, we may assume that f is a dilation (x, y) 7→ (cx, y). The family
of geodesics, connecting points of the absolute with their images, consists of
Euclidean homothetic half-circles, whose envelope is the line y = cx. This
line is an equidistant curve with constant curvature κ < 1. This completes
the proof.

The Ghys theorem provides 4 zeroes of a diffeomorphism of RP1. Ac-
cording to Exercise 1.4.2, the projective structure on the circle at infinity
coincides with the standard projective structure of RP1. This gives 4 zeroes
of S(f) and therefore 4 vertices of γ.
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Comment

E. Ghys presented his theorem in the talk [79], see also [171]. The result
of Exercise 4.2.5 is borrowed from [56]; condition (4.2.3) is also necessary
for equation (4.2.1) to hold. The 4-vertex theorem in Lorentz geometry was
found by A. Kneser [120].

Proposition 4.2.6 and the deduction of the 4-vertex theorem from the
Ghys theorem is due to D. Singer [192]; see also [211] for a relation between
circle diffeomorphisms and curves in the hyperbolic plane.

The group of conformal transformations of the metric (4.2.3) is isomor-
phic to Diff+(RP1), see [91]. In [53], the space of metrics, conformally
equivalent to (4.2.3), is related to coadjoint orbits of the Virasoro algebra.

4.3 Barner theorem on inflections of projective

curves

In this section we formulate and prove a general theorem on curves in RPn.
This result will be our powerful tool throughout this chapter. The section
starts with the definition of strictly convex projective curves after M. Barner.
We then give a detailed proof of the Barner theorem.

Strictly convex curves after Barner

Unlike the preceding sections, the curves considered here are not necessarily
non-degenerate.

A curve γ ⊂ RPn is called strictly convex if, for every (n − 1)-tuple of
points of γ, there exists a hyperplane through these points that does not
intersect γ anymore. In this definition, (n− 1)-tuple may contain the same
point k > 1 times. In this case, the curve should have contact of order k− 1
with the respective hyperplane.

Figure 4.7: Strictly convex curves in RP2 and RP3
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Remark 4.3.1. The term “strictly convex” should not be confused with the
term “convex” widely used in this book (cf. Section 2.3). We will discuss
the relation between convex curves and strictly convex in Section 4.4.

Let us list a couple of simple geometric properties of strictly convex
curves.

Exercise 4.3.2. a) The osculating flag F1 ⊂ · · · ⊂ Fn−1 (i.e., the first n− 1
spaces in the flag (1.1.1)) of a strictly convex curve is full.
b) A strictly convex curve is contractible if n is odd and non-contractible if
n is even.

Property a) guarantees that the osculating hyperplane is well defined at
every point of γ.

The notion of strict convexity is quite remarkable. Let us prove here
a useful property of strictly convex curves. Let C(x) be the osculating
codimension 2 space of γ at a point x. There exists a hyperplane, H(x),
containing C(x) and intersecting γ no more. Let us call H(x) a Barner
hyperplane.

Lemma 4.3.3. The set of Barner hyperplanes at x is contractible for every
x ∈ γ.

Proof. The space of all hyperplanes containing C(x) is a circle. Let H1

and H2 be two Barner hyperplanes. Together, they separate RPn into two
components. Since the curve γ \ {x} is connected, it belongs to one of the
components. We can rotate H1 to H2 in the other component. Therefore,
the space of Barner hyperplanes at x is a proper connected subset of a circle,
that is, an interval.

Barner theorem

We are ready to formulate and prove the Barner theorem, one of the strongest
results on global geometry of curves.

An inflection (or flattening) point of a space curve is a point in which
the curve fails to be non-degenerate. In other words, the osculating flag
(1.1.1) is not full. By Exercise 4.3.2 part a), inflection points of a strictly
convex curve are stationary points of the osculating hyperplane.

Theorem 4.3.4. (i) A strictly convex closed curve in RPn has at least n+1
distinct inflections.
(ii) If a strictly convex closed curve in RPn transversally intersects a hyper-
plane in k points then it has at least k distinct inflections.
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Proof. Similarly to Sections 4.1 and 4.2, part (i) easily follows from part
(ii). Pick n generic points on the curve γ and consider the hyperplane
through these points. Exercise 4.3.2 part b) implies that γ has to intersect
the hyperplane in at least n+ 1 points. Indeed, the number of intersections
is even if n is odd, and odd if n is even.

To prove (ii), let us use induction in n. The case of n = 1 is the following
statement: if γ is a curve in RP1 that does not pass through some point and
passes through another point k times then γ has k singularities. This follows
from the Rolle theorem.

Consider the induction step from n−1 to n. Let x be one of the intersec-
tion points with the hyperplane, and let π be the projection RPn → RPn−1

from x. We may assume that all intersection points are not inflection points
of γ, otherwise one may slightly perturb the hyperplane. Denote the curve
π(γ) by γ̄.

Lemma 4.3.5. γ̄ is a smooth strictly convex closed curve.

Proof. The points at which the projection of γ fails to be smooth are those
points p ∈ γ at which the tangent line to γ passes through x. The exis-
tence of such points contradicts strict convexity. Indeed, choose arbitrary
points y1, . . . , yn−3 on γ and consider the (n − 1)-tuple (x, p, y1, . . . , yn−3).
Any hyperplane through these points contains the tangent line px and thus
intersects γ with total multiplicity ≥ n.

It remains to investigate the image of γ in a neighborhood of x. We
define the projection π(x) as the tangent line to γ at x. This makes γ̄
closed. Moreover, x is not an inflection point. Introduce a local parameter
t near x. The curve γ(t) at x is given by

γ(t) = (t+O(t2), t2 +O(t3), . . . , tn +O(tn+1))

in some affine coordinate system. Hence the curve γ̄ at π(x) is given by

γ̄(t) = (t+O(t2), t2 +O(t3), . . . , tn−1 +O(tn)).

We have proved that γ̄ is smooth.
Given y1, ..., yn−2 ∈ γ̄, consider their preimages xi = π−1(yi). There

exists a hyperplane in RPn through points x, x1, ..., xn−2 that does not in-
tersect γ anymore, and its projection to RPn−1 is the desired hyperplane
therein.

By the induction assumption, since γ̄ intersects a hyperplane (k − 1)
times, it has (k − 1) inflections.
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Lemma 4.3.6. An inflection of γ̄ corresponds to an osculating hyperplane
of γ passing through x.

Proof. Lift the curves γ and γ̄ to Rn+1 and Rn, respectively, as Γ and Γ̄.
Choose a parameter t on our curves. Let X be the lift of point x. The
vectors Γ̄, Γ̄′, Γ̄′′, . . . , Γ̄(n−1) are the projections of Γ,Γ′,Γ′′, . . . ,Γ(n−1). By
Exercise 4.3.2 part a), the latter vectors are linearly independent. These
vectors span a hyperplane in Rn+1 whose projection to Rn is not bijective
only if it contains X.

Let π(y) be an inflection point of γ̄. We want to investigate the curve γ
in a neighborhood of point y. Let t be a local parameter with γ(0) = y and
let Z(t) = X − Γ(t), where X ∈ Γ is the lift of x. If y is not an inflection
point of γ then the vectors Γ(t), . . . ,Γ(n)(t) are linearly independent, and
one can write

Z(t) = α0(t) Γ(t) + · · ·+ αn(t) Γ(n)(t). (4.3.1)

Since t = 0 corresponds to inflection of γ̄, Lemma 4.3.6 ensures that αn(0) =
0, and one has:

Z(0) = α0(0) Γ(0) + · · ·+ αn−1(0) Γ(n−1)(0). (4.3.2)

We are interested in the orientations of two frames: (Γ(t), . . . ,Γ(n)(t)) and
(Γ(t), . . . ,Γ(n−1)(t), Z(t)).

Lemma 4.3.7. In a small neighborhood of y, one has
∣∣∣Γ(t) . . .Γ(n−1)(t)Z(t)

∣∣∣ = −t αn−1(0)
∣∣∣Γ(0) . . .Γ(n)(0)

∣∣∣ +O(t2). (4.3.3)

Proof. Let us write Z(t) = Z(0) − (Γ(t) − Γ(0)) and substitute to the left
hand side of (4.3.3). Then one has

∣∣∣Γ(t) . . .Γ(n−1)(t)Z(t)
∣∣∣ =

∣∣∣Γ(t) . . .Γ(n−1)(t)Z(0)
∣∣∣+O(t2)

since Γ(t)− Γ(0) = Γ′(0)t +O(t2).
Furthermore, substitute Γ(i)(t) = Γ(i)(0)+Γ(i+1)(0)t+O(t2) and expres-

sion (4.3.2) to the right hand side of the last formula and collect terms. The
result follows.

The point π(x) is not an inflection point of γ̄, see the proof of Lemma
4.3.5. Let 0 ≤ t ≤ 1 be a parameter on γ, such that x = γ(0) = γ(1) and
0 < t1 < . . . < tk−1 < 1 are the values of the parameter, corresponding to
the inflection points of γ̄.
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Lemma 4.3.8. Each interval (ti, ti+1) contains an inflection of γ.

Proof. Note first that the left hand side determinant in formula (4.3.3) does
not change sign on the interval since the curve γ̄ does not have inflections
on this interval, cf. Lemma 4.3.6.

Next, we claim that the constants αn−1(ti) and αn−1(ti+1) do not vanish.
Indeed, if αn−1(0) = 0 in (4.3.2), then every Barner hyperplane at y that
contains γ ′(0), . . . , γ(n−2)(0) passes through an additional point x ∈ γ. This
contradicts strict convexity.

Let us prove that αn−1(ti) and αn−1(ti+1) have the same sign. For
every t ∈ (ti, ti+1), choose a Barner hyperplane through γ(t) that contains
γ′(t), . . . , γ(n−2)(t) and lift it to Rn+1 as H(t). By Lemma 4.3.3, we may
assume that H(t) depends continuously on t.

Assume that αn−1(ti) and αn−1(ti+1) have opposite signs. Then the
vectors Z(t) and Γ(n−1)(t) lie on one side of H(t) for one of the boundary
values {ti, ti+1} and on the opposite sides of H(t) for the other. Therefore,
either Z(t) or Γ(n−1)(t) belong toH(t) at some t ∈ (ti, ti+1). This contradicts
strict convexity.

The parameter t in formula (4.3.3) is a local parameter in a vicinity on
an inflection point of γ̄. Applying this formula twice, on small intervals,
(ti, ti+ ε) and (ti− ε, ti), we conclude that the determinant

∣∣Γ(t) . . .Γ(n)(t)
∣∣

has opposite signs at the boundary values ti and ti+1, that is, vanishes at
some intermediate point.

To complete the proof of the Barner theorem, it remains to consider two
extreme intervals.

Lemma 4.3.9. Each of the intervals (0, t1) and (tk−1, 1) contains an inflec-
tion of γ.

Proof. Consider the interval (0, t1); the situation with the other interval,
(tk−1, 1) is exactly the same. The proof goes along the same lines as that of
the preceding lemma.

Formula (4.3.3) is valid in a neighborhood of t1 but not near 0. Instead,
one has:

∣∣∣Γ(t) . . .Γ(n−1)(t)Z(t)
∣∣∣ = (−1)n

tn

n!

∣∣∣Γ(0) . . . Γ(n)(0)
∣∣∣ +O(tn+1) (4.3.4)

as follows from the Taylor formula. Let us write explicit expression (4.3.1)
for t ≥ 0 sufficiently close to 0. The vector Z(t) is defined as Γ(0) − Γ(t).



4.4. APPLICATIONS OF STRICTLY CONVEX CURVES 91

Using the Taylor expansion

Γ(0) =

n∑

i=0

(−1)i
ti

i!
Γ(i)(t) +O(tn+1),

it follows that

αn−1(t) = (−1)n−1 tn−1

(n− 1)!
+O(tn+1).

Hence, the sign of αn−1(t) at a small interval (0, ε) is (−1)n−1.
The arguments in the proof of Lemma 4.3.8 still apply and therefore

αn−1(t) also has the sign (−1)n−1 left of t1. The sign of the determinant∣∣Γ(t) . . .Γ(n−1)(t)Z(t)
∣∣ remains the same on the whole interval (0, t1).

Finally, by formulæ (4.3.3) and (4.3.4), we conclude that the determinant∣∣Γ(t) . . .Γ(n)(t)
∣∣ changes sign on the interval (0, t1).

This completes the induction step, and Theorem 4.3.4 follows.

Comment

Theorem 4.3.4 was published in [18], and this paper is not sufficiently well
known. We believe that Barner’s theorem deserves more attention. Our
proof follows Barner’s idea but is more detailed.

4.4 Applications of strictly convex curves

In this section we deduce Theorems 4.1.2, 4.1.11 and 4.2.2 from the Barner
theorem. Using the Veronese map, we reformulate theorems on vertices of a
plane curve in terms of inflections of the corresponding curve in RPn. The
results then follow from the fact that the image of a convex curve is strictly
convex. Another significant application of the Barner theorem is related to
the notion of convex curves in RPn.

Deducing theorems on vertices

The scheme of the proof of Theorems 4.1.2, 4.1.11 and 4.2.2 is the same.
We will consider one of them, the theorem on sextactic points, in detail.

Consider the Veronese map V : RP2 → RP5 of degree 2:

V : (x : y : z) 7→ (x2 : y2 : z2 : xy : yz : zx). (4.4.1)

Let γ be a convex curve in RP2 (recall that “convex” means non-degenerate
and intersecting every line in at most 2 points, see Section 2.3).
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Lemma 4.4.1. The curve V(γ) is strictly convex.

Proof. The Veronese map establishes a one-to-one correspondence between
conics in RP2 and hyperplanes in RP5: the image of the conic is the inter-
section of a hyperplane with the quadratic surface V(RP2). Given 4 points
on V(γ), consider their preimages, 4 points on γ. Two straight lines in RP2

through these points have no other intersections with γ. A pair of lines is
a (degenerate) conic, and the corresponding hyperplane in RP5 intersects
V(γ) in exactly 4 given points.

In order to apply Barner’s theorem we need to interpret sextactic points
of γ in terms of V(γ).

Lemma 4.4.2. Sextactic points of γ correspond to inflection points of V(γ).

Proof. A sextactic point of γ is a point of 5-th order contact with a conic.
The corresponding point of V(γ) is a point of 5-th order contact with the
respective hyperplane in RP5, that is, an inflection point.

Combining the two lemmas, one deduces Theorem 4.1.11 from Barner’s
theorem.

To prove Theorems 4.1.2 and 4.2.2, one considers the Veronese map from
RP2 to RP3:

(x : y : z) 7→ (x2 + y2 : z2 : yz : zx) (4.4.2)

and the Segre map from RP1 × RP1 to RP3

((x1 : y1), (x2 : y2)) 7→ (x1x2 : x1y2 : y1x2 : y1y2), (4.4.3)

respectively.

Exercise 4.4.3. Formulate and prove analogs of Lemmas 4.4.1 and 4.4.2
for the maps (4.4.2) and (4.4.3).

Strict convexity and convexity

A curve γ in RPn is called convex if every hyperplane intersects γ in at most
n points, multiplicities counted. We already considered convex curves in
RP2 in Sections 2.3 and 4.1.

Exercise 4.4.4. a) A convex curve is non-degenerate.
b) A convex curve in RPn is contractible for n even and non-contractible for
n odd.
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Example 4.4.5. The curves

(1 : cos t : sin t : cos 2t : sin 2t : · · · : sinnt) ⊂ RP2n,

where 0 ≤ t < 2π, and

(cos t : sin t : cos 3t : sin 3t : · · · : sin (2n− 1)t) ⊂ RP2n−1,

where 0 ≤ t < π, are convex.
The reader will check that this curve is nothing else but the normal

curve (2.2.5) with the parameters related by x = tan t/2, in the first case,
and x = tan t, in the second.

The relation between convexity and strict convexity is as follows.

Lemma 4.4.6. If the projection of a curve γ in RPn to RPn−1 from a point
O outside of γ is convex then γ is strictly convex.

Proof. Consider n − 1 points on γ. Then the hyperplane through these
points and O does not intersect γ anymore. Otherwise, the projection of
this hyperplane would intersect the projection of γ in more than n − 1
points.

The Barner theorem now implies the following statement.

Corollary 4.4.7. If a curve in RPn has a convex projection to a hyperplane
then it has at least n+ 1 inflection points.

Convex curves and differential operators

Non-degenerate projective curves and linear differential operators are closely
related, see Section 2.2. Convex curves correspond to a special class of
differential operators.

A differential operator

A =
dn+1

dxn+1
+ an(x)

dn

dxn
+ · · · + a1(x)

d

dx
+ a0(x)

with 2π-periodic coefficients is called disconjugate if: (1) every solution of
the equation Af = 0 has at most n zeroes on [0, 2π), multiplicities counted;
(2) every solution satisfies the condition f(x+ 2π) = (−1)nf(x).

Exercise 4.4.8. The correspondence of Section 2.2 between closed curves
in RPn and differential operators of the form (2.2.1) associates disconjugate
operators with convex curves.
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For instance, the first curve from Example 4.4.5 corresponds to the dif-
ferential operator

An =
d

dt

(
d2

dt2
+ 1

)(
d2

dt2
+ 4

)
· · ·

(
d2

dt2
+ n2

)
(4.4.4)

which is just the Bol operator D2n+1 = d2n+1/dx2n+1 from Theorem 2.1.2
where x = tan t/2.

Theorem 4.4.9. If a differential operator A of order n+ 1 is disconjugate
and f is a smooth function such that f(x+2π) = (−1)nf(x) then the function
Af has at least n+ 2 distinct zeroes.

Proof. Consider the differential equation Aφ = 0 and choose a basis of
solutions φ1, . . . , φn+1. The curve γ = (φ1 : · · · : φn+1) ⊂ RPn is convex
since A is disconjugate. The curve γ̃ = (φ1 : · · · : φn+1 : f) ⊂ RPn+1 is
strictly convex by Lemma 4.4.6.

We claim that inflection points of γ correspond to zeroes of the function
Af . Indeed, inflection points of γ are the points at which the Wronski
determinant

W (γ̃) =

∣∣∣∣∣∣∣∣

φ1 · · · φn+1 f

· · ·

φ
(n+1)
1 · · · φ

(n+1)
n+1 f (n+1)

∣∣∣∣∣∣∣∣
vanishes. Using the equation Aφi = 0 and adding i-th row, multiplied by
ai, to the last row, one obtains

W (γ̃) = W (γ)Af.

It remains to notice that W (γ) 6= 0 since γ is a non-degenerate curve.
The result follows now from the Barner theorem.

We encountered a particular case of Theorem 4.4.9 in Theorem 4.1.7
where the differential operator was A1, see (4.4.4).

We cannot help mentioning the following classic result.

Theorem 4.4.10. If γ is a convex curve in RPn, then the projectively dual
curve γ∗ is also convex.

The proof is based on the fact that an operator on an interval is dis-
conjugate if and only if it can be decomposed into a product of first-order
differential operators (we do not give here a proof which involves substan-
tial amount of analysis). Then the dual operator is also decomposable. The
dual operator corresponds to the dual curve, see Theorem 2.2.6, which is
therefore convex.
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Extactic points of plane curves

We already studied approximations of curves in RP2 by conics and by
straight lines, cf. Theorem 4.1.10 on 6 sextactic points and the Möbius
theorem on inflection points. In these cases we were concerned with abnor-
mally fine approximations of the curve by algebraic curves of degree 2 and
1, respectively.

Consider the space of algebraic curves of degree n in RP2. It has the
dimension d(n) = n(n+3)/2. A plane curve γ has a unique osculating curve
of degree n at every point. This osculating algebraic curve has a d(n)-point
contact with γ at a generic point. A point of γ is called n-extactic if the
contact is of order higher than d(n).

It is an intriguing question to estimate below the number of n-extactic
points of plane curves (or of some special classes of plane curves).

Theorem 4.4.11. A plane curve, sufficiently close to the oval of an irre-
ducible cubic, has at least ten 3-extactic points.

Proof. Consider the Veronese map V : RP2 → RP9

V : (x : y : z) 7→ (x3 : x2y : x2z : xy2 : xyz : xz2 : y3 : y2z : yz2 : z3).

Let γ0 be the oval of a cubic and γ is its small perturbation. Then V(γ0)
lies in a hyperplane RP8.

We claim that V(γ0) is convex in this hyperplane. Indeed, the intersec-
tion of V(γ0) with a hyperplane corresponds to the intersection of γ0 with a
cubic. By the Bezout theorem, this intersection consists of at most 9 points.
But the number of intersections with an oval is even. Therefore, it is at
most 8.

The projection of V(γ) ⊂ RP9 to RP8 is a small perturbation of γ0,
Therefore this projection is convex and so V(γ) is strictly convex, see Lemma
4.4.6. It remains to use the Barner theorem and the fact that inflection
points of V(γ) correspond to 3-extactic points of γ.

Comment

The unified proof of Theorems 4.1.2 and 4.1.11 as consequences of Theorem
4.3.4 is due to Barner [18]. A similar proof of Theorem 4.2.2 was given in
[204].

The notion of convex curves in RPn is classical. Coordinates of a lift
of a convex curve to Rn+1 form a Chebyshev systems of functions on S1.
Chebyshev systems have been thoroughly studied, see e.g., [46, 104] for a
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detailed proof of Theorem 4.4.10 and many other results. Theorem 4.4.11
and the notion of “extactic” points are due to V. Arnold, see [14]; the term
was suggested by D. Eisenbud. Our proof of Theorem 4.4.9 follows [204].

The motivation for the study of strictly convex curves was their applica-
tions to the classic theorems on vertices. We have seen that this notion has
a wealth of other applications and deserves a further study.

4.5 Discretization: geometry of polygons, back to

configurations

In this section we discuss a discrete version of projective differential geometry
of curves. We consider closed polygonal lines in RPn and define a notion of
“inflection” in terms of n consecutive vertices. It turns out that polygons in
RPn satisfy an analog of the Barner theorem.

We prove discrete 4-vertex and 6-vertex theorems for convex plane poly-
gons and a discrete version of Ghys theorem. The latter concerns a pair
of n-tuples of points in RP1; the Schwarzian derivative is replaced by the
cross-ratio of 4 consecutive points.

Discrete 4-vertex and 6-vertex theorems

Let P be a plane convex n-gon with n ≥ 4. Denote the consecutive vertices
by V1, . . . , Vn, where we understand the indices cyclically, that is, Vn+i = Vi.

A triple of vertices (Vi, Vi+1, Vi+2) is called extremal 2 if Vi−1 and Vi+3 lie
on the same side of the circle through Vi, Vi+1, Vi+2 (this does not exclude
the case when Vi−1 or Vi+3 belongs to the circle), see figure 4.8.

a) b)

Figure 4.8: a) not extremal, b) extremal

The following result is an analog of the 4-vertex theorem.

Theorem 4.5.1. Every plane convex polygon P with n ≥ 4 vertices has at
least 4 extremal triples of vertices.

2We have a terminological difficulty here: dealing with polygons, we cannot use the
term “vertex” in the same sense as in the smooth case; thus the term “extremal”.
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Assume now that n ≥ 6. Similarly to the notion of extremal triples of ver-
tices, we give the following definition. Five consecutive vertices Vi, . . . , Vi+4

are called extremal if Vi−1 and Vi+5 lie on the same side of the conic through
these 5 points (this does not exclude the case when Vi−1 or Vi+5 belongs to
the conic).

A discrete version of the smooth 6-vertex theorem is as follows.

Theorem 4.5.2. Every plane convex polygon P with n ≥ 6 vertices has at
least 6 extremal quintuples of vertices.

In spite of being elementary, the next example plays an important role
in the proofs.

Example 4.5.3. If P is a quadrilateral or a hexagon, then the respective
4- or 6-vertex theorem holds tautologically.

As it often happens, discretization is not unique. Let us mention here
an alternative approach to discretization.

Remark 4.5.4. Consider inscribed circles or conics in consecutive triples
or quintuples of sides of a polygon, respectively. Analogs of Theorems 4.5.1
and 4.5.2 hold providing “dual” theorems. In the case of 6 vertices, this
theorem is equivalent to Theorem 4.5.2 via projective duality. In the case of
4 vertices, both formulations, involving circumscribed and inscribed circles,
make sense on the sphere and are equivalent via projective duality therein
as well.

Discrete Ghys theorem

A discrete object of study here is a pair of cyclically ordered n-tuples X =
(x1, . . . , xn) and Y = (y1, . . . , yn), with n ≥ 4, of distinct points in RP1.
This is a discretization of a diffeomorphism of RP1 or, better said, of its
graph. Choosing an orientation of RP1, we assume that the cyclic order of
each of the two n-tuples is induced by the orientation.

A triple of consecutive indices (i, i + 1, i + 2) is called extremal if the
difference of cross-ratios

[yj , yj+1, yj+2, yj+3]− [xj , xj+1, xj+2, xj+3] (4.5.1)

changes sign as j changes from i − 1 to i (this does not exclude the case
when either of the differences vanishes).

Theorem 4.5.5. For every pair of n-tuples of points X,Y as above there
exist at least four extremal triples.
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Example 4.5.6. If n = 4 then the theorem holds for the following simple
reason. The cyclic permutation of four points induces the next transforma-
tion of the cross-ratio:

[x4, x1, x2, x3] =
[x1, x2, x3, x4]

[x1, x2, x3, x4]− 1
,

which is an involution. Furthermore, if a > b > 1 then a/(a−1) < b/(b−1).
Therefore, each triple of indices is extremal.

Let us interpret Theorem 4.5.5 in geometrical terms, similarly to Theo-
rems 4.5.1 and 4.5.2. There exists a unique projective transformation that
takes points xi, xi+1, xi+2 to yi, yi+1, yi+2, respectively. The graph γ of this
transformation as a hyperbola in RP1 × RP1 which is an analog of a circle
in the 4-vertex theorem. The three points (xi, yi), (xi+1, yi+1), (xi+2, yi+2)
lie on γ.

An ordered couple of points (xj , xj+1) in oriented RP1 defines the unique
segment. An ordered couple of points ((xj , yj), (xj+1, yj+1)) in RP1 × RP1

also defines the unique segment, the one whose projection on each factor is
the defined segment in RP1.

Exercise 4.5.7. The triple (i, i+1, i+2) is extremal if and only if the topo-
logical index of intersection of the broken line (xi−1, yi−1), . . . , (xi+3, yi+3)
with γ is zero, see figure 4.9.

Figure 4.9: Extremal triple in RP1 × RP1

Strictly convex polygons in RPn

Consider a closed polygon P in RPn, that is, a closed broken line with
vertices V1, . . . , Vm, m ≥ n + 1, in general position. This means that for
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every set of vertices Vi1 , . . . , Vik , where k ≤ n+ 1, the span of Vi1 , . . . , Vik is
(k − 1)-dimensional.

To deal with polygons in the same manner as with smooth curves, we
will need a few technical definitions.

a) A polygon P is said to be transverse to a hyperplane H at a point
X ∈ P ∩H if: (i) X is an interior point of an edge and this edge is transverse
to H, or (ii) X is a vertex, the two edges incident to X are transverse to H
and are locally separated by H. Clearly, transversality is an open condition.

b) A polygon P is said to intersect a hyperplane H with multiplicity k
if for every hyperplane H ′, sufficiently close to H and transverse to P , the
number of points P ∩H ′ does not exceed k and, moreover, k is attained for
some hyperplane H ′, see figure 4.10.

H

H’

Figure 4.10: Multiplicity 2

c) Let γ = (A, . . . , Z) be a broken line in RPn in general position and let
H be a hyperplane not containing A and Z. Denote by k the multiplicity
of the intersection of γ with H. We say that A and Z are separated by H if
k is odd and are on one side of H otherwise.

d) An n-tuple of consecutive vertices (Vi, . . . , Vi+n−1) of a polygon P in
RPn is called an inflection if the endpoints Vi−1 and Vi+n of the broken line
(Vi−1, . . . , Vi+n) are separated by the hyperplane through (Vi, . . . , Vi+n−1) if
n is even, and not separated if n is odd.

Figure 4.11: Inflections of polygons in RP2 and RP3

The next definition becomes, in the smooth limit, that of strict convexity
of smooth curves, see Section 4.3. It allows us to introduce a significant class
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of polygons which is our main object of study.

A polygon P in RPn is called strictly convex if through every n−1 vertices
there passes a hyperplane H such that the multiplicity of its intersection
with P equals n− 1.

Example 4.5.8. Define a simplex Sn ⊂ RPn with vertices V1, . . . , Vn+1 as
the projection from the punctured Rn+1 to RPn of the polygonal line:

Ṽ1 = (1, 0, . . . , 0), Ṽ2 = (0, 1, 0, . . . , 0), . . . , Ṽn+1 = (0, . . . , 0, 1)

and

Ṽn+2 = (−1)n+1 Ṽ1.

The last vertex has the same projection as the first one; Sn is contractible
for odd n and non-contractible for even n.

Figure 4.12: Simplexes in RP2 and RP3

We are ready to formulate a discrete version of part (i) of Theorem 4.3.4.

Theorem 4.5.9. A strictly convex polygon in RPn has at least n+1 inflec-
tions.

As in the smooth situation, Theorem 4.5.9 implies the three theorems on
vertices. The arguments remain intact: the Veronese maps (4.4.1), (4.4.2)
and the Segre map (4.4.3) are the same.

Proof. The proof in the discrete case is significantly simpler then its smooth
counterpart. Instead of induction in the dimension of the ambient space, we
use induction in the number of vertices m of a polygon.

The base of induction is m = n+ 1.

Exercise 4.5.10. a) Prove that the simplex Sn is strictly convex and has
n+ 1 inflections.

b) Up to projective transformations, the unique strictly convex (n+ 1)-gon
is the simplex.
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Let P be a strictly convex (m+1)-gon with vertices V1, . . . , Vm+1. Delete
Vm+1 and connect Vm with V1 in such a way that the new edge (Vm, V1),
together with the two deleted ones, (Vm, Vm+1) and (Vm+1, V1), forms a
contractible triangle. Denote the new polygon by P ′.

Exercise 4.5.11. Show that P ′ is strictly convex.

By the induction assumption, the polygon P ′ has at least n + 1 inflec-
tions. To complete the proof, it suffices to show that P ′ cannot have more
inflections than P .

A polygon in RPn with vertices V1, . . . , Vm, can be lifted to Rn+1 as a
polygon with vertices Ṽ1, . . . , Ṽm.

Exercise 4.5.12. Check that an n-tuple (Vi, . . . , Vi+n−1) is an inflection if
and only if the determinant

∆j =
∣∣∣Ṽj, . . . , Ṽj+n

∣∣∣

changes sign as j changes from i − 1 to i. This property is independent of
the lifting.

Consider the sequence of determinants ∆1,∆2, . . . ,∆m+1 for the polygon
P . Replacing P by P ′ we remove n+ 1 consecutive determinants

∆m−n+1,∆m−n+2, . . . ,∆m+1 (4.5.2)

and add in their stead n new determinants

∆′
m−n+1,∆

′
m−n+2, . . . ,∆

′
m (4.5.3)

where

∆′
m−n+i =

∣∣∣∣Ṽm−n+i . . .
̂̃
V m+1 . . . Ṽm+i+1

∣∣∣∣

with i = 1, . . . , n. The transition from (4.5.2) to (4.5.3) is done in two steps.
First, we add (4.5.3) to (4.5.2) so that the two sequences alternate, that is, we
insert ∆′

j between ∆j and ∆j+1. Second, we delete the “old” determinants
(4.5.2). In the next exercise we prove that the first step preserves the number
of sign changes while the second step obviously cannot increase this number.

Exercise 4.5.13. If ∆m−n+i and ∆m−n+i+1 are of the same sign, then
∆′
m−n+i is of the same sign too.

These exercises combined yield the proof of Theorem 4.5.9.

The discrete version of part (ii) is still a conjecture.
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Conjecture 4.5.14. A strictly convex polygon in RPn that intersects a hy-
perplane with multiplicity k has at least k flattenings.

Comment

This section is based on our work [172], the reader who is interested in the
details of the proofs is invited to consult this paper.

The discretization process itself is worth a discussion. A discrete theorem
is a-priori stronger; it becomes, in the limit, a smooth one, thus providing a
new proof of the latter. An important feature of the discrete approach is the
availability of mathematical induction which can considerably simplify the
proofs. Secondly, the very operation of discretization is non-trivial: a single
smooth theorem may lead to non-equivalent discrete ones. An example of
this phenomenon is provided by recent versions of the 4 vertex theorem for
convex plane polygons [184, 185, 210, 228].

The discretization approach to projective geometry of curves is not well
developed yet. For instance, part (ii) of Theorem 4.3.4 does not have a
discrete analog. Another example is a conjectural version of the Möbius
theorem: an embedded non-contractible closed polygon in RP2 has at least
3 inflections. The number of examples can be easily multiplied.

Interestingly, a certain discrete version of the 4-vertex theorem preceded
its smooth counterpart by almost hundred years. What we mean is the
celebrated Cauchy lemma (1813): given two convex plane (or spherical)
polygons whose respective sides are congruent, the cyclic sequence of the
differences of the respective angles of the polygons changes sign at least 4
times. This result plays a crucial role in the proof of convex polyhedra
rigidity (see [45] for a survey). The Cauchy lemma implies, in the limit, the
smooth 4 vertex theorem and can be considered as the first result in the
area.

4.6 Inflections of Legendrian curves and singular-

ities of wave fronts

In this section we relate global projective geometry of curves with symplectic
and contact geometry. The reader is referred to Section 8.2 for basic notions
of symplectic and contact geometry.

We start with the Ghys theorem on zeroes of the Schwarzian derivative
and reformulate it in terms of inflections of Legendrian curves in RP3. We
then consider propagation of wave fronts and formulate the Arnold conjec-
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ture on Legendrian isotopies. We also discuss here two results on spherical
curves: the Segre theorem and the Arnold tennis ball theorem. The sec-
tion closes with a brief presentation of the curve shortening method proving
many theorems discussed in this chapter.

Ghys Theorem and inflections of Legendrian curves

The space RP3 has a canonical contact structure, see Section 8.2. The Ghys
theorem 4.2.1 has an interesting interpretation in terms of contact geometry.

Consider the linear symplectic space R4 with the symplectic structure

ω = dx1 ∧ dy1 − dx2 ∧ dy2. (4.6.1)

Denote by RP1
1 and RP1

2 the projectivizations of the symplectic subspaces
R2

1 with coordinates (x1, y1) and R2
2 with coordinates (x2, y2), respectively.

γ

RP
1

RP
1

1

2

Figure 4.13: Legendrian graph in RP3

Theorem 4.6.1. Let γ ⊂ RP3 be a closed Legendrian curve such that its
projections on RP1

1 from RP1
2 and on RP1

2 from RP1
1 are diffeomorphisms.

Then γ has at least 4 distinct inflection points.

Proof. The curve γ defines a diffeomorphism from RP1
1 to RP1

2 as the com-
position of the two projections, see figure 4.13.

The converse holds as well. Given a diffeomorphism f : RP1
1 → RP1

2,
there exists a unique area preserving homogeneous (of degree 1) diffeomor-
phism F : R2

1 \ {0} → R2
2 \ {0} that projects to f .

Exercise 4.6.2. The diffeomorphism F is given in polar coordinates by

F (α, r) =

(
f(α), r

(
df

dα

)−1/2
)
. (4.6.2)
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The graph grF is a Lagrangian submanifold in R2
1⊕R2

2 with the symplectic
form (4.6.1) and the projectivization of grF is a Legendrian curve. If f is
projective, then F is linear and the projectivization γ of grF is a Legendrian
line in RP3.

To complete the proof, it suffices to show that the points in which f
is abnormally well approximated by a projective transformation correspond
to inflections of γ. Indeed, at such points, γ has a 3-point contact with a
Legendrian line.

The result now follows from the Ghys theorem.

Seemingly, we proved more that Theorem 4.6.1 asserts: not only we
found inflections of γ but 3-point tangencies of γ with its tangent line. In
fact, for Legendrian curves, the two coincide.

Lemma 4.6.3. The inflection points of a Legendrian curve in RP3 are the
points of second-order contact with a line.

Proof. Consider a parameterization Γ(t) of a lift of γ to R4. We need to

prove that if the vectors Γ, Γ̇, Γ̈,
...
Γ are linearly dependent then so are Γ, Γ̇, Γ̈.

Since Γ is Legendrian, one has ω(Γ, Γ̇) = 0. Differentiate to obtain:
ω(Γ, Γ̈) = 0. This means that the projection γ̈ belongs to the contact plane,
i.e., the contact plane osculates a Legendrian curve. Differentiate once again:

ω(Γ̇, Γ̈)+ω(Γ,
...
Γ) = 0. The inflection condition reads: (ω∧ω)(Γ, Γ̇, Γ̈,

...
Γ) = 0.

In view of the two previous formulæ

0 = (ω ∧ ω)(Γ, Γ̇, Γ̈,
...
Γ) = ω(Γ,

...
Γ)ω(Γ̇, Γ̈) = −ω(Γ̇, Γ̈)2.

Thus all three vectors Γ, Γ̇, Γ̈ are pairwise orthogonal with respect to ω.
Since ω is non-degenerate, they are linearly dependent.

Remark 4.6.4. A generic smooth curve in RP3 never has a 3-point contact
with a straight line. We have seen that for generic Legendrian curves this
happens in isolated points. Moreover, a 3-point contact of a Legendrian
curve with a Legendrian line is automatically a 4-point contact.

We believe that Theorem 4.6.1 can be significantly improved.

Conjecture 4.6.5. If a Legendrian curve γ ⊂ RP3 is isotopic to a Legen-
drian line in the class of Legendrian curves then γ has at least 4 distinct
inflection points.
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Singularities of wave fronts and Legendrian isotopies

The 4-vertex theorem can be interpreted in terms of singularities of wave
fronts.

Let γ be a plane oval. Consider a wave, propagating with the unit speed
from γ in the inward direction, that is, the one-parameter family of curves,
equidistant from γ. At the beginning, the equidistant curves remain smooth,
but eventually they develop singularities, generically, semi-cubic cusps, see
figure 4.14.

Figure 4.14: Singularities of equidistants

Exercise 4.6.6. The locus of singular points of all the equidistant curves
is the caustic of γ.

The topology of equidistant curves changes when the equidistant curve
passes through a singularity of the caustic: at such a point, the number of
cusps changes by 2. The 4-vertex theorem implies that some intermediate
equidistant curves have 4 cusps.

The equidistant curves are cooriented by the direction of evolution. An
important property of wave propagation is that at no time an equidistant
curve is tangent to itself with coinciding coorientation. This follows from
the Huygens principle of classical mechanics (see [10]).

More conceptually, let us lift all equidistant curves to the space of coori-
ented contact elements of the plane. We obtain a one-parameter family
of smooth Legendrian curves whose fronts are the equidistant curves. The
absence of self tangencies means that this family is a Legendrian isotopy.

The above discussion leads to the following conjecture.

Conjecture 4.6.7. Let γ0 and γ1 be plane ovals, cooriented inward and
outward, respectively, and let Γ0 and Γ1 be their Legendrian lifts to the space
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of cooriented contact elements. Then for every Legendrian isotopy, Γt, there
exists a value of t for which the front γt has at least 4 cusps.

Segre’s theorem and tennis ball theorem

Consider a smooth simple closed curve γ on S2. The convex hull of γ is a
convex body, equal to the intersection of all closed half-spaces containing γ.
Let O be a point inside the convex hull of γ. If O ∈ γ, assume that O is not
a vertex.

Theorem 4.6.8. There are at least 4 distinct points of γ at which the os-
culating plane passes through O.

The known proofs of this theorem are technically complicated and we do
not reproduce them here. The next special case is particularly attractive.

Theorem 4.6.9. If γ bisects the area of the sphere then it has at least 4
distinct points of contact of order 2 (a 3-point contact) with a great circle.

This theorem is called the “tennis ball theorem”, see figure 4.15. It
resembles the Möbius theorem, see Section 4.1. The points of order 2
contact with a great circle are the points where the geodesic curvature of
the curve vanishes, that is, the inflection points of the spherical curve.

Figure 4.15: Tennis ball

The tennis ball theorem is a particular case of Theorem 4.6.8. Indeed,
since γ bisects the area of S2, it intersects every great circle. This implies
that the center of S2 lies in the convex hull of γ.

Proofs by curve shortening

An interesting approach to the tennis ball theorem, along with Theorems
4.1.1, 4.1.10 and the Möbius theorem, consists in studying the curve short-
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ening flow. This flow is defined as

∂γs
∂s

= κν (4.6.3)

where γs(t) is a 1-parameter family of curves, parameterized by the arc-
length t, the function κ = κs(t) is the curvature of the curve and ν = νs(t)
is the unit normal vector. In the affine case, t is the affine arc-length, κ
the affine curvature and κν = ∂2γs/∂t

2 is the affine normal vector. The
equation (4.6.3) can be regarded as the heat equation.

The main idea of the proofs is as follows. One proves that the flow
is defined for all times, that is, γs remains smooth and simple. For the
tennis ball theorem, the area bisecting property persists as well. By an
appropriate version of the maximum principle, the number of the points
of γ under consideration (vertices, sextactic points or inflections) does not
increase with time. Next, one analyses the limit shape of the curve γs for
large s: the circle (after rescaling) in the Euclidean case, an ellipse (also
after rescaling) in the affine case, a straight line in the Möbius case, a great
circle in the tennis ball case. For sufficiently large s, one concludes by an
appropriate version of the Sturm theorem, see Section 8.1.

Comment

The symplectic and contact viewpoint on Sturm theory and global geometry
of curves was developed and popularized by V. Arnold, see [11]–[14] and
references therein. He discovered intimate relations between the 4-vertex
theorem and symplectic and contact topology, in particular, Legendrian knot
theory. Arnold’s work stimulated recent interest in the subject.

Theorem 4.6.1 and Conjecture 4.6.5 can be found in [171]. This con-
jecture is similar to Conjecture 4.6.7, due to Arnold, a positive solution of
which was recently announced by Yu. Chekanov and P. Pushkar’. Classic
Theorem 4.6.8 is due to Segre [188], see also [229] for a simpler proof, The-
orem 4.6.9 was proved in [11] in a different way. Curve shortening problems
has been thoroughly studied in the recent years, see [42]. Our exposition
follows [6].
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Chapter 5

Projective invariants of

submanifolds

This chapter concerns projective geometry and projective topology of sub-
manifolds of dimension greater than 1 in projective space. We start with
a panorama of classical results concerning surfaces in RP3. This is a thor-
oughly studied subject, and we discuss only selected topics connected with
the main themes of this book. Section 5.2 concerns relative, affine and pro-
jective differential geometry of non-degenerate hypersurfaces. In particular,
we construct a projective differential invariant of such a hypersurface, a
(1, 2)-tensor field on it. Section 5.3 is devoted to various geometrical and
topological properties of a class of transverse fields of directions along non-
degenerate hypersurfaces in affine and projective space, the exact transverse
line fields. In Section 5.4 we use these results to give a new proof to a classi-
cal theorem: the complete integrability of the geodesic flow on the ellipsoid
and of the billiard inside the ellipsoid. Section 5.5 concerns Hilbert’s 4-th
problem: to describe Finsler metrics in a convex domain in projective space
whose geodesics are straight lines. We describe integral-geometric and ana-
lytic solutions to this celebrated problem in dimension two and discuss the
multi-dimensional case as well. The last section is devoted to Carathéodory’s
conjecture on two umbilic points on an ovaloid and recent conjectures of
Arnold on global geometry and topology of non-degenerate closed hypersur-
faces in projective space.

Once again, our account is far from being comprehensive. The choice
of material reflects our interests and tastes, we also tried to combine older
classic results with newer and lesser known ones. Many things are not even
mentioned; a notable example is the theory of Cartan connections, in par-

109
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ticular, projective connections, and its applications in projective differential
geometry.

5.1 Surfaces in RP3: differential invariants and lo-

cal geometry

Geometry of surfaces in the projective space is a classical and thoroughly
studied subject; there is about a dozen of books devoted to it. In this section
we give a concise exposition including this material into our general frame-
work: differential operators on tensor densities, action of diffeomorphism
groups and the notion of projective structure on curves. When possible, we
emphasize similarities with the case of curves in the projective plane.

We will consider non-degenerate surfaces. This means that, in an affine
coordinate system, the second quadratic form of the surface is non-degenerate
at every point; this condition is independent of the choice of affine coordi-
nates. Moreover, following a well-established tradition, we will assume that
the second quadratic form has signature (1, 1), that is, the surface is saddle-
shaped. The standard torus x1 x2 = x0 x3 is an example of such a surface;
in affine coordinates this corresponds to a hyperbolic paraboloid.

Figure 5.1: Non-degenerate “hyperbolic” surface: asymptotic directions

The other, “elliptic” case will not be covered here. In the classic period
of projective differential geometry all objects were analytic and could be
continued to the complex domain, so that the sign assumptions did not
affect the formulæ. In the smooth case, the difference is substantial and
we are not aware of a natural geometric theory of locally convex projective
surfaces.
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Wilczynski parameterizations

Let M2 ⊂ RP3 be a non-degenerate saddle-shaped surfaces. At every point
x ∈M , one has two distinguished tangent lines, called the asymptotic direc-
tions; these lines are tangent to the intersection curves ofM with the tangent
plane TxM . This defines two transverse fields of directions on M and there-
fore two one-dimensional foliations. One can choose local coordinates (u, v)
such that the leaves of the foliations are given by (u = const, v = const).
These coordinates are called asymptotic, they are defined up to reparame-
terization (u, v) 7→ (U(u), V (v)). Thus the local action of the group Diff(R2)
is replaced by that of a much smaller group Diff(R)×Diff(R).

We consider a parameterized surface x(u, v) ⊂ RP3. Let X(u, v) ⊂ R4

be its arbitrary lift.

Exercise 5.1.1. The four vectors X,Xu, Xv, Xuv are linearly independent
for every (u, v).

By analogy with the canonical lift of projective curves, one can uniquely fix
the lift of the parameterized surface x(u, v) into R4 by the condition

|XXuXvXuv| = 1. (5.1.1)

Let us call this lift canonical.

Theorem 5.1.2. (i) The coordinates of the canonical lift satisfy the system
of linear differential equations

Xuu + bXv + f X = 0

Xvv + aXu + g X = 0
(5.1.2)

where a, b, f, g are functions in (u, v) satisfying the integrability conditions

fvv − 2bv g − b gv − guu + fu a+ 2au f = 0

b av + 2bv a+ auu + 2gu = 0

a bu + 2au b+ bvv + 2fv = 0.

(5.1.3)

(ii) Conversely, system (5.1.2) whose coefficients satisfy relations (5.1.3)
corresponds to a non-degenerate parameterized surface M ⊂ RP3.

Proof. Let X(u, v) be the canonical lift of a surface x(u, v) ⊂ RP3. Since
the vectors X,Xu, Xv , Xuv are linearly independent, Xuu and Xvv are their
linear combinations. Since (u, v) are asymptotic coordinates, these linear
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combinations do not contain Xuv . Indeed, the preimage of the tangent plane
TxM in R4 is the linear span of X,Xu, Xv . The second derivative measures
the deviation of the surface from its tangent plane, but the tangent line to
an asymptotic curve is tangent to the surface with order 2.

Therefore the linear combinations are of the form

Xuu + bXv + cXu + f X = 0

Xvv + aXu + dXv + g X = 0
(5.1.4)

Differentiating (5.1.1) with respect to u, one obtains

|X XuuXv Xuv|+ |X XuXv Xuuv| = 0.

Substitute the above equation for Xuu into the first determinant and the
derivative (Xuu)v into the second determinant. Each determinant turns out
to be equal to c. Hence c = 0 and likewise for d. This proves system (5.1.2).

Exercise 5.1.3. Assuming that X(u, v) satisfies (5.1.2), check that the
identity (Xuu)vv = (Xvv)uu is equivalent to system (5.1.3).

Let us prove part (ii). In a standard way, one replaces the system of
second-order equations (5.1.2) by a (matrix) system of first-order equations.
Namely, one introduces new variable: X = (X,Xu, Xv , Xuv), and then sys-
tem (5.1.2) rewrites as

(
∂

∂u
+A

)
X = 0,

(
∂

∂v
+B

)
X = 0

where the linear operators A and B are easily computed in terms of a, b, f, g.

Exercise 5.1.4. Check that system (5.1.3) is equivalent to the equation
[∂/∂u +A, ∂/∂v +B] = 0.

To summarize, systems (5.1.2) and (5.1.3) together define a flat connection in
the trivial bundle over the coordinate domain (u, v) with fiber X . Horizontal
sections of this connection are the desired solutions.

System (5.1.2) is called the canonical (or the Wilczynski) system of dif-
ferential equations associated with a surface in RP3. It plays the same role
as the Sturm-Liouville equation in the case of projective structures, or the
operator (2.2.1) in the case of non-degenerate curves in RPn.
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Affine and Fubini parameterizations

The general system (5.1.4) describes an arbitrary lift of M to R4.

Exercise 5.1.5. The compatibility condition (Xuu)vv = (Xvv)uu implies
that cv = du.

Hence (locally) one has c = hu and d = hv where h(u, v) is a function.

We will consider two more lifts of M . The first one is the affine lift. This
lift is characterized by the condition thatX(u, v) lies in an affine hyperplane.

Lemma 5.1.6. The affine lift of a surface M ⊂ RP3 satisfies the system of
equations

Xuu + bXv + huXu = 0

Xvv + aXu + hv Xv = 0.
(5.1.5)

Proof. For the affine lift, one of the components of X(u, v) is a constant,
and this component satisfies system (5.1.4). Hence f = g = 0.

The coefficients a, b and h satisfy a system of two non-linear equations
of compatibility; we do not dwell on this.

For historical reasons, we mention the Fubini lift characterized by the
equation eh = ab in system (5.1.4).

Tensor densities and solutions of the fundamental system

Our approach is similar to that of Section 2.4. To start with, we will ex-
plain the geometric, tensor meaning of the solutions of the canonical system
(5.1.2).

The group Diff(R) × Diff(R) locally acts on M ⊂ RP3, preserving the
asymptotic foliations. We will determine the transformation law for the
canonical system (5.1.2) with respect to this action.

Lemma 5.1.7. The solutions of system (5.1.2) are tensor densities of the
form

X = X(u, v) (du)−
1
2 (dv)−

1
2 . (5.1.6)

Proof. Let (u, v) 7→ (ϕ(u), ψ(v)) be a local diffeomorphism of M . This
diffeomorphism acts on the parameterized surface x(u, v) in the usual way
x(u, v) 7→ x(ϕ−1(u), ψ−1(v)). We wish to compute how this affects the
canonical lift.
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Let us find explicitly the canonical lift of M to R4. In affine coordinates
on RP3, one has

x(u, v) = (x1(u, v) : x2(u, v) : x3(u, v) : 1) .

Then the canonical lift to R4 is of the form

X(u, v) = (r x1, r x2, r x3, r)

where r(u, v) is a non-vanishing function. Condition (5.1.1) implies

r(u, v) =

∣∣∣∣∣∣∣

x1u x2u x3u

x1v x2v x3v

x1uv x2uv x3uv

∣∣∣∣∣∣∣

− 1
4

It remains to apply the Chain Rule to obtain the transformation law

(
ϕ−1 × ψ−1

)∗
: r(u, v) 7→

(
ϕ′(u)

)− 1
2
(
ψ′(v)

)− 1
2 r(ϕ(u), ψ(v)).

Hence the result.

Generalizing the last formula, let us introduce the space Fλ,µ(M) of
polarized tensor densities on the surface M ⊂ RP3. In fact, we need only
a transverse pair of foliations1 on M . The tangent bundle of M is split:
TM = L1 ⊕ L2 where L1 and L2 are the tangent bundles of the foliations.
The space Fλ,µ(M) is the space of sections of the line bundle (L∗1)

⊗λ⊗(L∗2)
⊗µ.

In local coordinates, a (λ, µ)-density is given by

ρ = r(u, v) (du)λ(dv)µ,

and the local action of the group Diff(R)×Diff(R) is written as

Tλ,µ
(ϕ−1×ψ−1)

: r(u, v) 7→
(
ϕ′(u)

)λ (
ψ′(v)

)µ
r(ϕ(u), ψ(v)). (5.1.7)

Differential invariants

We will now investigate how Diff(R)×Diff(R) acts on the coefficients of the
canonical system. In other words, we wish to see which equation is satisfied
by the transformed solutions.

1Called a 2-web; web geometry is a well-developed and rich subfield of differential
geometry.
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Proposition 5.1.8. (i) The coefficients a and b of the fundamental system
(5.1.2) have the meaning of tensor densities of degrees (−1, 2) and (2,−1)
respectively, i.e.,

α = a(u, v) (du)−1(dv)2, β = b(u, v) (du)2(dv)−1 (5.1.8)

are well-defined elements of F−1,2(M) and F2,−1(M).
(ii) The Sturm-Liouville operators

d2

du2
+
(
f +

1

2
bv

)
,

d2

dv2
+
(
g +

1

2
au

)
, (5.1.9)

the first depending on v and the second on u as a parameter, are well-defined.

Proof. Consider the transformed solution X̄ = T
−1/2,−1/2
(ϕ−1×ψ−1)

X.

Exercise 5.1.9. Check that X̄ satisfies system (5.1.2) with the new coeffi-
cients

ā =
(ψ′)2

ϕ′
a(ϕ,ψ), b̄ =

(ϕ′)2

ψ′
b(ϕ,ψ)

f̄ =
(
ϕ′
)2
f(ϕ,ψ) +

1

2
S(ϕ) +

ψ′′ (ϕ′)2

2 (ψ′)2
b(ϕ,ψ)

ḡ =
(
ψ′
)2
g(ϕ,ψ) +

1

2
S(ψ) +

ϕ′′ (ψ′)2

2 (ϕ′)2
a(ϕ,ψ)

The transformation law for the coefficients a and b proves (5.1.8). On the
other hand, it follows from the transformation law for the coefficients f and
g that the quantities f + bv/2 and g + au/2 transform as the potentials of
the Sturm-Liouville operator, see (1.3.7).

Proposition 5.1.8, part (i), provides two differential invariants (5.1.8) of
a surface M ⊂ RP3. Traditionally, one considers their sum α+β, called the
“linear projective element”, their product which is a quadratic form and a
cubic form, namely

αβ = ab du dv, αβ2 + α2β = ab2 du3 + a2b dv3. (5.1.10)

Part (ii) of Proposition 5.1.8 means that each asymptotic curve has a canon-
ical projective structure.

Although the quadratic form αβ is a weaker invariant than α and β
separately, it allows to develop local differential geometry on M . One can
associate with this form a Levi-Civita connection and an area form; the
geodesics of this connection are often called the projective geodesics.
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Remark 5.1.10. In the classic period of projective differential geometry,
the main problem was to describe a complete set of projective invariants
(of curves, surfaces, etc.). These invariants should be tensor fields. In our
situation, one can construct two invariants h ∈ F2,0(M) and k ∈ F0,2(M)
given by

h = f +
1

2
bv −

1

16

buu
b

+
5

64

b2u
b2
, k = g +

1

2
au −

1

16

avv
a

+
5

64

a2
u

a2

which, along with a and b, form the complete system of invariants of M , cf.
Remark 2.4.5.

Commuting differential operators

Another way to understand the canonical system of equations (5.1.2) and
the integrability conditions (5.1.3) is to construct two families of commuting
linear differential operators.

System (5.1.2) can be written in terms of two differential operators:

A : F− 1
2
,− 1

2
(M) → F− 1

2
, 3
2
(M), B : F− 1

2
,− 1

2
(M) → F 3

2
,− 1

2
(M)

where

A =
∂2

∂v2
+ a

∂

∂u
+ g, B =

∂2

∂u2
+ b

∂

∂v
+ f,

namely, A(X) = 0 and B(X) = 0. We have seen that the “modified”
coefficients

f̂ = f +
1

2
bv, ĝ = g +

1

2
au

play a geometric role as the potentials of the induced projective structures
on the asymptotic curves, see Proposition 5.1.8.

Let us introduce two families of differential operators

Aλ : Fλ,− 1
2
(M) → Fλ, 3

2
(M), Bµ : F− 1

2
,µ(M) → F 3

2
,µ(M)

generalizing the operators A and B. They are given by the formulæ

Aλ =
∂2

∂v2
+ a

∂

∂u
+ ĝ + λau, Bµ =

∂2

∂u2
+ b

∂

∂v
+ f̂ + µ bv. (5.1.11)

Obviously, A− 1
2

= A and B− 1
2

= B.

Exercise 5.1.11. Check that the coefficients of the operators Aλ and Bµ
transform under the action of Diff(R)×Diff(R) exactly in the same way as
those of A and B.
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The following result is verified by a direct computation.

Proposition 5.1.12. Conditions (5.1.3) are equivalent to the equation

A 3
2
◦ B− 1

2
−B 3

2
◦A− 1

2
= 0. (5.1.12)

Geometric construction for α and β (Bompiani)

Differential invariants α and β have geometric interpretation in terms of
cross-ratio.

Consider a plane curve γ and let η1, η2 be two smooth fields of directions
along γ. We will construct a differential 1-form λ on γ. Let x be a point of
γ and ξ a tangent vector to γ at x. Extend ξ to a tangent vector field in a
vicinity of x and denote by xε the time-ε image of x in the respective flow.
Let ν0 be the tangent line to γ at x and νε be the line (x, xε), see figure 5.2.

x xε

1

2

ν

ν

ε

0

η

η
γ

Figure 5.2: Bompiani construction

Exercise 5.1.13. a) Check that the cross-ratio satisfies

[ν0, η1(x), η2(x), νε] = 1 +
ε

2
λ(ξ) +O(ε2)

where λ(ξ) is a linear function of ξ.

b) Let γ(t) be a parameterization of the curve γ such that γ(0) = x, γ ′(0) =
ξ, and let ξ1, ξ2 be vectors along the lines η1(x) and η2(x), respectively.
Check that

λ(ξ) =
γ′′(0)× ξ1
γ′(0) × ξ1

−
γ′′(0)× ξ2
γ′(0) × ξ2

(5.1.13)

where × denotes the cross-product of vectors in the plane.
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We will use the 1-form λ to give a geometric interpretation of the differ-
ential invariants α and β.

Pick a point x ∈ M and consider the intersection of the tangent plane
TxM with M . Generically, this intersection is a curve that has a normal
double point at x. Let γ be the branch of the intersection curve, tangent to
the v-asymptotic direction. Choose η1 to be the u-asymptotic direction and
η2 arbitrarily. Fix a vector ξ tangent to γ and vectors ξ1, ξ2 along η1, η2.

The differential invariant α ∈ F−1,2(M) is a function with one argument
a tangent vector to the u-asymptotic direction and two arguments tangent
vectors to the v-asymptotic direction, that is, α(ξ1, ξ

v
2 , ξ) where ξv2 is the

v-component of ξ2.

Exercise 5.1.14. Check that λ(ξ) = 2
3 α(ξ1, ξ

v
2 , ξ).

Hint. It is convenient to work in the affine parameterization (5.1.5). Give
the curve a parameterization and use formula (5.1.13). To find the u-
component γ ′′(0)u, use the fact that γ ′′′(0) lies in the tangent plane.

A similar construction applies to the invariant β and, as a consequence,
we obtain geometric interpretations of the quadratic and cubic forms of the
surface.

Geometric construction for the quadratic form

We will describe a different geometric construction that allows to compute
the quadratic form αβ in terms of cross-ratio.

Pick a point x ∈M and vectors ξ1, ξ2, tangent to the u and v-asymptotic
directions, respectively. Our goal is to determine (αβ)(ξ1, ξ2). Choose co-
ordinates (u, v) in such a way that x is the origin and ξ1, ξ2 are the unit
coordinate tangent vectors. Consider the points (ε, 0) and (0, ε). Let η1 and
η2 be the u and v asymptotic tangent lines at the origin and ηε1 and ηε2 the
u and v asymptotic tangent lines at the point (ε, 0) and (0, ε) respectively,
see figure 5.3. In spite of the fact that these four lines are neither coplanar
nor concurrent, we will define their cross-ratio.

Consider an affine lift of M and choose a parallel projection of the am-
bient affine space onto the tangent plane at x. We obtain four lines in TxM .
Parallel translate ηε1 and ηε2 to the origin.

Exercise 5.1.15. Check that the cross-ratio of the four concurrent lines is

[η1, η2, η
ε
1, η

ε
2] = −ε2 ab+O(ε3).
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1 2η ηε ε

x

1η 2η

2ξ 1ξ

Figure 5.3: Construction of the quadratic form

The construction is independent of the choice of an affine lift and a
parallel projection since the result involves only α and β which are projective
invariants.

Geometric construction for the linear projective element

Fix a point x ∈ M and let ξ = (ξu, ξv) be a tangent vector at x. As
before, consider the point xε ∈M obtained from x moving distance ε in the
direction of ξ. Let η1 and η2 be the u and v asymptotic tangent lines at x
and ηε1 and ηε2 the respective asymptotic tangent lines at xε. Denote by ` the
intersection line of the (projective) tangent planes TxM and TxεM and by
y1, y2, y

ε
1, y

ε
2 the intersection points of ` with the respective four asymptotic

lines, see figure 5.4.

Exercise 5.1.16. Check that the cross-ratio of the four points satisfies

[y1, y
ε
1, y

ε
2, y2] = ε2

(
1

2
(α+ β)(ξ)

)2

+O(ε3)

where α(ξ) = a(u, v) (ξu)2/ξv and similarly for β.

Hint. It is convenient to make computations in the canonical lift.

Note that the construction makes sense for a non-degenerate surface
since the tangent planes at x and xε do not coincide. Note also that the
cross-ratio is identically zero for a quadratic surface. Indeed, in this case,
the four lines lie on M and the lines η1 and ηε1 intersect η2 and ηε2. Therefore
y2 = yε1 and y1 = yε2.
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x1η
2η

1ηε 2ηε

εx
y2y1

ε

y2
ε y1

Figure 5.4: Construction of the linear projective element

Quadrics

A non-degenerate quadric of signature (2, 2) is a prime example of a pro-
jective surface in RP3. We consider quadrics from the point of view of the
fundamental system (5.1.2).

Recall two classic theorems. First, a doubly ruled surface in R3 is a
quadric. Second, given three pairwise skew lines in RP3, the 1-parameter
family of lines that intersect all three lie on a non-degenerate quadric, see,
e.g., [22].

All quadrics of signature (2, 2) are projectively equivalent to the standard
torus. It can be parameterized as follows

x(u, v) = (1 : u : v : uv). (5.1.14)

Lemma 5.1.17. A surface described by system (5.1.2) is a quadric if and
only if a(u, v) = b(u, v) = 0 everywhere.

Proof. Let M be a quadric, then the asymptotic tangent lines lie entirely on
M . It follows from the Bompiani construction of the differential invariants
α and β that these invariants identically vanish.

Conversely, assume a(u, v) = b(u, v) = 0 everywhere. It follows from the
affine parameterization (5.1.5) that Xuu is proportional toXu. Therefore the
u-asymptotic tangent line lies entirely on M . Likewise for the v-direction.
Hence the affine lift of M is a doubly ruled surface in R3, and thus a quadric.
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Approximation by quadrics

Consider now an arbitrary non-degenerate surface M . Generically, M can
be approximated by a quadric at a point x up to order 2. This follows, for
example, from a similar fact in Euclidean geometry.

Proposition 5.1.18. The points at which M can be approximated by a
quadric up to order 3 are the points at which the invariants α and β vanish.

Proof. Choose asymptotic coordinates (u, v) on M and consider an affine lift
X(u, v). The linear coordinates (x, y, z) in the affine 3-space can be chosen
in such a way that X(0, 0) is the origin and the vectors Xu(0, 0), Xv(0, 0)
and Xuv(0, 0) are the unit coordinate vectors. Then the surface is locally
given by the equation z = xy +O(3) where O(3) stands for terms, cubic in
x, y.

Exercise 5.1.19. Check that the equation defining M is

z = xy +
1

3

(
bx3 + ay3

)
+O(4). (5.1.15)

Assume that a = b = 0, then the quadric z = xy approximates M up to
order 3. Conversely, assume that a quadric approximates M up to order 3.
All such quadrics are of the form

z = xy + λxz + µ yz + ν z2 (5.1.16)

where λ, µ, ν are arbitrary coefficients. Rewriting this as

z = xy + λx2y + µxy2 +O(4)

we conclude that the desired approximation implies a = b = 0 in (5.1.15)
and, in this case, λ = µ = 0 as well.

Similarly to the notion of an osculating conic for non-degenerate plane
curves, one can ask if there is an osculating quadric. The answer is that such
quadric is not unique. Formula (5.1.16) implies the following statement.

Corollary 5.1.20. At every point of M there is a 3-parameter family of
quadrics having contact of order 2 with M , and if approximation of order 3
is possible, then there is a 1-parameter family of approximating quadrics

z = xy + ν z2. (5.1.17)
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The quadric of Lie

A number of remarkable quadrics having contact of order 2 with a surface
is known. One distinguishes a 1-parameter family of the Darboux quadrics
given by formula (5.1.17). We will describe only one of the Darboux quadrics
called the quadric of Lie.

The geometric definition is as follows. Along with point x(0, 0) of M ,
consider two points x(−ε, 0) and x(ε, 0). Let η, η−ε, ηε be the v-asymptotic
tangent lines at these points. These lines determine a quadric Qε, made of
the lines, intersecting the three lines, and the quadric of Lie is the limiting
position of Qε as ε→ 0.

Exercise 5.1.21. Check that if one interchanges u and v in the above
construction, the result is the same quadric.

Hint. Check that the quadric of Lie is given by the equation (5.1.17) with
ν = −1

2 ab.

Comment

The first major contribution to the theory of surfaces in RP3 was made
by Wilczynski who introduced the fundamental system of equation and de-
scribed the differential invariants in five memoirs [232]. The geometric con-
structions for the differential invariants α and β are due to Bompiani, see
[187]; the constructions for the quadratic form and for the linear projective
element are found in [71]. We also recommend the books [129, 29] for the
state of the art of projective differential geometry of surfaces in the first half
of XX-th century.

A quadratic surface is one of the oldest objects of mathematics. Second-
order contact quadrics were considered already in XIX-th century. Proposi-
tion 5.1.18 is due to Hermite. The quadric of Lie was described in a letter
from Lie to Klein dated 1878.

Let us reiterate: our choice of material fits into the general theme of
this book. We left aside such aspects as Cartan’s méthode du repère mobile
(see [2, 101, 102] and references therein), projective normals and geodesics,
as well as the theory of ruled and developable surfaces, extensively studied
in the literature. We also mention an interesting recent relation between
system (5.1.2) and integrable systems, see [63, 64].
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5.2 Relative, affine and projective differential ge-

ometry of hypersurfaces

In this section we will outline a unified approach to affine and projective
differential geometry of hypersurfaces based on the formalism of connections.
It is interesting to compare this more recent approach with a more classic
material in the previous section. The reader is encouraged to look into
Section 8.3 for relevant basic definitions and results on connections and
related topics.

Induced connection on a hypersurface

Much of differential geometry of a smooth hypersurface M n−1 in Euclidean
space Rn can be formulated in terms of the unit normal field. For example,
a curve γ(t) ⊂ M is a geodesic if, for all t, the acceleration vector γ ′′(t)
belongs to the 2-plane, spanned by the velocity γ ′(t) and the normal vector
at point γ(t).

In relative differential geometry, one considers a smooth hypersurface
Mn−1 in n-dimensional affine space V , equipped with a transverse vector
field ν(x). We often consider ν as a vector-valued function on M , so that
dν is a vector-valued differential 1-form on M . Similarly to the preceding
section, we assume throughout this section that M is (quadratically) non-
degenerate. We also assume that the ambient affine space V has a fixed
volume form Ω, a differential n-form with constant coefficients.

Let ∇̃ be a flat affine connection in V : the covariant derivative ∇̃v is
just the directional derivative along the vector v. Let u and v be tangent
vector fields on M . Then ∇̃v(u) can be decomposed into the tangential and
transverse components:

∇̃v(u) = ∇v(u) + h(v, u)ν. (5.2.1)

Exercise 5.2.1. Check that ∇v(u) is an affine connection without torsion
on M and h(v, u) is a non-degenerate symmetric bilinear form.

The connection ∇v(u) is called the induced connection. In the classical
theory, ν is the unit Euclidean normal, then (5.2.1) is the Gauss equation
and h(v, u) is the second fundamental form. The geodesics of the induced
connection are those curves on M whose osculating 2-plane at every point
is generated by the velocity vector and the vector ν at this point.
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Let v be a tangent vector field on M . One can similarly decompose the
covariant derivative of ν:

∇̃v(ν) = −S(v) + θ(v)ν. (5.2.2)

Here S is a linear transformation of the tangent space TM , called the shape
operator (the minus sign is a convention) and θ is a 1-form onM . In the clas-
sical theory, when ν is the unit Euclidean normal, (5.2.2) is the Weingarten
equation.

Another induced structure onM is the volume form ω = iνΩ. Its relation
with the induced connection is as follows.

Exercise 5.2.2. Let v be a tangent vector field on M . Check that

∇v(ω) = θ(v)(ω)

where θ is as in (5.2.2).

Hint. Use the fact that ∇̃v(Ω) = 0 and the Weingarten equation (5.2.2).

It is straightforward to compute how a change in the transverse vector
field affects the induced connection, the bilinear form h and the 1-form θ.

Exercise 5.2.3. Let ν̄ = e−ψν + w be a new transverse vector field where
ψ is a function on M and w is a tangent vector field. Show that

∇v(u) = ∇v(u)− eψh(u, v)w, h̄(u, v) = eψh(u, v), θ̄ = θ + eψiwh− dψ.

Relative normalization

So far, the transverse field ν was arbitrary. Now we impose a restriction
that the 1-form θ in (5.2.2) vanishes. A motivation is that this is the case
for the Euclidean unit normal. If θ = 0 the transverse field ν is called a
relative normal. We also call the field of directions, generated by a relative
normal, an exact transverse line field; a justification for this term will be
provided shortly.

Given a smooth hypersurface M ⊂ V , a conormal at point x ∈ M is a
non-zero covector p ∈ T ∗xM whose kernel is the tangent hyperplane TxM . A
conormal is defined up to a multiplicative constant. If a transverse vector
field ν is fixed, we normalize the conormal by the condition 〈p(x), ν(x)〉 = 1
for all x ∈M . This defines a conormal covector field p(x) on M that will be
considered as a covector-valued function on M . Recall that dν is a vector-
valued 1-form on M , therefore 〈p, dν〉 is a differential 1-form on M .
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Lemma 5.2.4. The transverse vector field ν is a relative normal if and only
if 〈p, dν〉 = 0. The latter is also equivalent to 〈dp, ν〉 = 0.

Proof. Let v be a tangent vector field on M . Then

〈p, dν〉(v) = 〈p, dν(v)〉 = 〈p, ∇̃v(ν)〉 = 〈p, θ(v)ν〉 = θ(v)

by (5.2.2). Hence θ = 0 if and only if 〈p, dν〉 = 0.
Finally, 〈dp, ν〉 = d〈p, ν〉 − 〈p, dν〉, and the last statement follows.

The next exercise justifies the term “exact”.

Exercise 5.2.5. Let η be a transverse line field along a hypersurface M
and let ν be section of η, a transverse vector field. Let p be a conormal field
such that 〈p, ν〉 = 1. Prove that η is exact if and only if the 1-form 〈p, dν〉
on M is exact. The latter is also equivalent to the exactness of the 1-form
〈dp, ν〉.

It follows from Exercise 5.2.3 that relative normal fields along M are in
one-to-one correspondence with non-vanishing function on M .

Corollary 5.2.6. Let ν be a relative normal vector field and p the respective
conormal field. Then any other relative normal vector field is given by the
formula

ν̄ = e−ψ (ν + gradh(ψ))

where ψ is a smooth function and gradh is the gradient with respect to the
non-degenerate bilinear form h. The respective conormal field is p̄ = eψp.

Proof. It follows from the last formula in Exercise 5.2.3 that eψiwh = dψ.
Therefore w = e−ψgradh(ψ).

Relative differential geometry of hypersurfaces

Given a relative normalization of a hypersurface M in an affine space, one
can develop its differential geometry along the same lines as in the familiar
Euclidean case. Since M is non-degenerate, so is the bilinear form h. This
form gives M a pseudo-Riemannian metric, sometimes called relative metric.
Let ∇h be the respective Levi-Civita connection on M . The following two
tensor fields play an important role: the difference (1, 2)-tensor

K(u, v) = ∇v(u)−∇
h
v(u) (5.2.3)

and a (0, 3)-tensor, the cubic form C(u, v, w) = ∇v(h) (u,w).
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Exercise 5.2.7. Check that
a) K(u, v) = K(v, u);
b) C(u, v, w) is symmetric in all arguments and C(u, v, w) = −2h(K(u, v), w);
c) h(S(u), v) = h(u, S(v)).

The last identity means that the shape operator is self-adjoint with re-
spect to the relative metric. Since h is not necessarily positive-definite, the
eigenvalues of S do not have to be all real. However, elementary symmetric
functions of these eigenvalues are real, and they play the roles of relative
curvatures.

By analogy with the Euclidean case, one introduces the relative support
function. Fix a point x0 ∈ V (an origin) and let x vary on the hypersurface
M . The vector x − x0 can be decomposed into tangential and transverse
components:

x− x0 = ρ(x) ν(x) + u, u ∈ TxM. (5.2.4)

The function ρ : M → R is the relative support function. If p(x) is the
respective conormal then ρ(x) = 〈p, x − x0〉. The tangent vector field u in
(5.2.4) can be recovered from the support function.

Lemma 5.2.8. One has: u = −gradh(ρ).

Proof. Let v be a test tangent vector field on M . One has:

v = ∇̃v(x−x0) = v(ρ) ν+ρ∇̃v(ν)+∇̃v(u) = v(ρ) ν−ρS(v)+∇v(u)+h(u, v)ν.

Equating the transverse components yields: v(ρ) = −h(u, v), and it follows
that u = −gradh(ρ).

Corollary 5.2.9. Given a non-degenerate hypersurface M , the relative nor-
mal at point x ∈M passes through point x0 if and only if x is a critical point
of the respective relative support function.

Affine differential geometry of hypersurfaces

Let M ⊂ V be a smooth non-degenerate hypersurface in an affine space.
As before, Ω is a volume form in V . The equiaffine transverse vector field
ν is defined as a relative normalization such that the induced volume form
ω = iνΩ on M coincides with the volume form, associated with the pseudo-
Riemannian metric h. We leave it to the reader to check that this condition
defines ν uniquely. The vector ν(x) is called the affine normal to M at point
x. Once the affine normal is defined, affine differential geometry becomes a
particular case of relative one.
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The affine normal to a locally convex non-degenerate hypersurface M n−1

has the following geometrical interpretation. Let x be a point of M . Con-
sider the 1-parameter family of affine hyperplanes, parallel to the tangent
hyperplane TxM . Let H be such a hyperplane; its intersection with M
bounds an (n − 1)-dimensional convex domain in H. The locus of centers
of mass of these domains is a curve Γ through x. Then the tangent line to
Γ at x is the affine normal to M at x, cf. Section 4.1 for the case of curves.

It is not our intention to discuss affine differential geometry in any detail
here. Let us mention affine spheres, the hypersurfaces characterized by the
property that the affine normals either are all parallel or all pass through one
point. If an affine sphere is strictly convex and closed then it is an ellipsoid;
however, the situation is much more complicated in the general case. Let us
also mention the Pick-Berwald theorem that a non-degenerate hypersurface
has a vanishing cubic form if and only if it is a quadric.

Projective invariants of hypersurfaces

Let M ⊂ RPn be a smooth non-degenerate hypersurface. We will construct
a powerful projective invariant, a (1, 2)-tensor field on M . The reader is
referred to Section 8.3 for information on projective connections.

Choose an equiaffine connection ∇̃ and a volume element Ω, representing
the canonical (flat) projective connection on RPn. Consider the respective
affine normal vector field to M and let K be the corresponding difference
tensor field (5.2.3) on M .

Theorem 5.2.10. The (1, 2)-tensor field K does not depend on the choice
of the equiaffine connection (∇̃,Ω).

Proof. Let (∇̃′,Ω′) be a different choice. Then

Ω′ = eϕΩ, ∇̃′v(u) = ∇̃v(u) + α(u)v + α(v)u (5.2.5)

where ϕ is a function and α a 1-form.

Exercise 5.2.11. Prove that α = 1
n+1dϕ.

Let ν and ν ′ be the two respective affine normal vector fields, h and h′ the
corresponding bilinear forms. Then

ν ′ = eψν + w (5.2.6)

where ψ is a function and w is a tangent vector field. Combine Gauss
equations (5.2.1) for connections ∇̃ and ∇̃′ with the second equation (5.2.5)
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to obtain

∇v(u) + h(u, v)ν + α(u) v + α(v)u = ∇′
v(u) + h′(u, v)ν ′. (5.2.7)

Taking (5.2.6) into account, equate the transverse, ν-components, to obtain:

h′(u, v) = e−ψh(u, v) (5.2.8)

for every tangent vectors u and v.
Next we determine the function ψ. Consider the volume forms ω = iνΩ

and ω′ = iν′Ω
′ on M . Let u1, . . . , un−1 be local vector fields such that

ω(u1, . . . , un−1) = 1.

Since ν is an affine normal, ω coincides with the volume form associated
with h, hence deth(ui, uj) = 1. It follows from the first equation (5.2.5) and
from (5.2.6) that ω′ = eφ+ψω. Let

u′i = e−
φ+ψ
n−1 ui, i = 1, . . . , n− 1,

then
ω′(u′1, . . . , u

′
n−1) = 1.

Since ν ′ is an affine normal, det h′(u′i, u
′
j) = 1. It now follows from (5.2.8)

that

ψ = −
2φ

n+ 1
. (5.2.9)

Next we determine the tangent vector w in (5.2.6). Since ν ′ is an affine
normal, and in particular, a relative normal, the vector ∇̃′v(ν

′) is tangent to
M for every tangent vector field v. Using the second equation (5.2.5) and
(5.2.6), and equating the transverse, ν-components to zero, yields:

h(v, w) + eψv(ψ) + eψα(v) = 0.

Combining Exercise 5.2.11 and (5.2.9), one concludes that

w =
e−

2φ
n+1

n+ 1
gradh(φ).

Now one returns to equation (5.2.7) and equates the tangential components.
One obtains:

∇′v(u) = ∇v(u) +
1

n+ 1
(dϕ(u) v + dϕ(v)u − h(u, v) gradh(φ)) . (5.2.10)

On the other hand, by (5.2.8) and (5.2.9),

h′ = e−
2φ
n+1h. (5.2.11)
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Exercise 5.2.12. Show that if two pseudo-Riemannian metrics are confor-
mally equivalent as in (5.2.11) then the corresponding Levi-Civita connec-
tions are related as in (5.2.10).

It follows that K ′ = K, and we are done.

Surfaces in RP3 revisited

Let us return to the situation of Section 5.1 and compute the tensor K for a
saddle-like surface in RP3. Let X(u, v) be an affine lift satisfying equations
(5.1.5). The preceding constructions specialize as follows.

Exercise 5.2.13. Check that

a) the transverse vector field e−hXuv is a relative normalization;

b) ∇XuXu = huXu + bXv , ∇XuXv = ∇XvXu = 0, ∇XvXv = aXu + hvXv ;

c) K(Xu, Xu) = bXv, K(Xu, Xv) = 0, K(Xv , Xv) = aXu.

Comment

The “golden period” of affine differential geometry was 1916-1923. The sub-
ject was mostly developed by the Blaschke school (Blaschke, Berwald, Pick,
Radon, Reidemeister and others), see [26]. Affine differential geometry con-
tinued to be an active area of research; let us mention, among many others,
the contributions of Calabi and Nomizu that greatly influenced further inves-
tigations. Relative differential geometry goes back to work of Müller in the
early 1920s. The last 20 years witnessed a renaissance of affine differential
geometry and related topics – see [135, 156, 190, 191] for a comprehensive
account.

5.3 Geometry of relative normals and exact trans-

verse line fields

In this section we provide examples of relative normals and exact transverse
fields along non-degenerate hypersurfaces in affine and projective space and
discuss their geometrical properties. We consider relative normals and exact
transverse fields as generalizations of normals in Euclidean geometry. The
reader is recommended to consult Section 8.2 for basic notions of symplectic
geometry.
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Minkowski normals

Let Mn−1 ⊂ V n be a non-degenerate hypersurface in affine space. We
already mentioned that if V has a Euclidean structure then the unit normals
ν to M constitute a relative normalization. Indeed, let v be a tangent vector
field on M . Then 〈ν, ν〉 = 1 and 0 = v (〈ν, ν〉) = 2〈v(ν), ν〉. Hence v(ν) is
also tangent to M , and the 1-form θ in (5.2.2) vanishes.

Consider the following generalization. A Minkowski metric in vector
space V is given by a smooth quadratically convex closed hypersurface S
containing the origin. By definition, this hypersurface consists of Minkowski
unit vectors. Every vector v is uniquely written as tx where x ∈ S is unit
and t ≥ 0, and the Minkowski length of v is defined to be equal to t. In
other words, a Minkowski metric gives V the structure of a Banach space.
Note that we do not assume S to be centrally symmetric. By definition,
each vector x ∈ S is Minkowski orthogonal to the hyperplane TxS. If S is
not centrally symmetric then the Minkowski normal line may change if one
reverses the coorientation of the hyperplane.

Lemma 5.3.1. Let M ⊂ V be a smooth cooriented hypersurface and ν be
the field of unit Minkowski normal vectors along M . Then ν is a relative
normalization.

Proof. Given a point x ∈ S, let c be the conormal vector to S at x, nor-
malized by 〈c, x〉 = 1. Since c vanishes on TxS, the 1-form 〈c, dx〉 vanishes
on S. Consider the conormal field p along M , normalized by 〈p, ν〉 = 1. By
Lemma 5.2.4, we need to show that 〈p, dν〉 = 0 on M . Consider the Gauss
map f : M → S that sends y ∈ M to x ∈ S such that TyM is parallel to
TxS and has the same coorientation. Then 〈p, dν〉 = f ∗(〈c, dx〉) = 0, and
we are done.

Note the following consequence of the proof. If M ⊂ V is a smooth
hypersurface, star-shaped with respect to the origin, then the transverse
vector field ν(x) = x of position vectors on M is a relative normalization.

Huygens principle

Consider propagation of light in some medium V . Let Ft be the time-t wave
front. For every x ∈ Ft, consider the contact element of Ft at x, that is, the
hyperplane TxFt ⊂ TxV , and parallel translate it distance ε in the normal
direction to Ft at x. According to Huygens principle, see [10], one obtains
the family of contact elements to the wave front Ft+ε.
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A similar property holds for relative normals. Let M ⊂ V be a smooth
hypersurface and ν a relative normal vector field along M . For a fixed
positive real t, consider the map gt : M → V given by gt(x) = x+ tν(x).

Lemma 5.3.2. The tangent hyperplane to gt(M) at a smooth point gt(x) is
parallel to TxM .

Proof. Let p be a conormal covector to M at point x ∈M . Then the 1-form
〈p, dx〉 vanishes on M . Let y = gt(x). Then Ty (gt(M)) is parallel to TxM
if and only if the 1-form 〈p, dy〉 vanishes on gt(M). One has:

〈p, dy〉 = 〈p, dx〉 + t〈p, dν〉 = 0

since ν is a relative normal and 〈p, dν〉 = 0 by Lemma 5.2.4.

Note that, similarly to wave propagation, the “fronts” gt(M) usually
develop singularities, cf. Section 4.6.

Normals in geometries of constant curvature

Let M ⊂ V be a smooth hypersurface in affine space and assume that V
carries a Riemannian metric. In general, it is not true that the normal
lines to M constitute an exact line field along M . However this is true if
the geodesics of the Riemannian metric are straight lines. By a Beltrami
theorem, this implies that the metric has constant curvature.

More specifically, consider the standard models for geometries of con-
stant curvature ±1: the unit sphere or the unit pseudosphere. Recall the
construction of the latter.

Let H be the upper sheet of the hyperboloid x2 − y2 = −1 in Rn
x ×R1

y

with the Lorentz metric dx2 − dy2. The restriction of the Lorentz metric to
H is a metric of constant negative curvature. Project H from the origin to
the hyperplane y = 1. Let q be the Euclidean coordinate in this hyperplane.
The projection is given by the formula:

x =
q

(1− |q|2)1/2
, y =

1

(1− |q|2)1/2
,

and the image of H is the open unit ball q2 < 1. The hyperbolic metric g
in the unit ball is given by the formula:

g(u, v) =
〈u, v〉

1− |q|2
+
〈u, q〉〈v, q〉

(1− |q|2)2
(5.3.1)
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where u and v are tangent vectors at q. This is the Klein-Beltrami (or
projective) model of hyperbolic space, cf. Section 4.2.

The construction of the metric of constant positive curvature in Rn is
analogous: one replaces the hyperboloid by the unit sphere, and this results
in change of signs in formula (5.3.1).

Proposition 5.3.3. Let g be a Riemannian metric of constant curvature
in a domain U ⊂ Rn whose geodesics are straight lines. Then the field of
g-normals to any smooth hypersurface is an exact transverse line field.

Proof. We will consider the metric (5.3.1), the case of positive curvature
being completely analogous. Let H(q, p) : T ∗U → R be the Hamiltonian of
the metric g, where p denotes covectors. Lifting the indices in (5.3.1) yields:

H(q, p) = (1− |q|2)(|p|2 − 〈p, q〉2). (5.3.2)

Recall that the geodesic flow in T ∗U is the vector field Hp∂q − Hq∂p, the
symplectic gradient of H, and its projection to TqU is a g-normal to the
contact element p = 0, see Section 8.2.

Let M be a hypersurface, q be a point of M and p a conormal at q. We
take ν = Hp(q, p)/H(q, p) as a transverse vector at q. Since H is homoge-
neous of degree 2 in p, one has 〈p, ν〉 = 2 by Euler’s equation. By Exercise
5.2.5, we need to prove that

1

H
〈dp,Hp〉 = 〈dp, (lnH)p〉

is an exact 1-form on M . Indeed, it follows from (5.3.2) that

〈dp, (lnH)p〉 = 2
〈p, dp〉 − 〈p, q〉〈q, dp〉

|p|2 − 〈p, q〉2
= d ln (|p|2 − 〈p, q〉2)

which is exact; the last equality is due to the fact that 〈p, dq〉 vanishes on
M since p is a conormal.

The case of spheres

Let η be a smooth transverse line field along Sn−1, a round sphere in Rn.
Orient the lines from η in the outward direction. Let L be the space of
oriented lines intersecting the sphere. Then η defines an embedding Fη :
Sn−1 → L.

Consider the interior of the sphere as the projective model of hyperbolic
space Hn. Then the space of oriented lines L has a symplectic structure ω,
associated with the metric, see Section 8.2. One has the following charac-
terization of exact line fields. Assume that n ≥ 3.
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Theorem 5.3.4. The field η is exact if and only if Fη(S
n−1) ⊂ L is a

Lagrangian submanifold, that is, F ∗η (ω) = 0.

Proof. First, let us calculate the symplectic structure ω. We continue using
the notation from the preceding subsection.

To calculate the symplectic form on L one needs to consider the unit
cotangent bundle U ∗Hn, restrict the canonical symplectic form Ω from
T ∗Hn on U∗Hn and factorize by the characteristic foliation, see Section
8.2. We will construct a certain section L → U ∗Hn and find ω as the
pull-back of Ω.

An oriented line ` is characterized by its point q ∈ ` and its unit (in the
hyperbolic sense) tangent vector u at q. It is convenient to choose q to be
the midpoint (in the Euclidean sense) of the segment of ` inside the sphere.
Thus L is identified with the following submanifolds of the tangent bundle
THn:

V = {(q, u) | g(u, u) = 1, 〈u, q〉 = 0}

where g is the hyperbolic metric (5.3.1) and 〈 , 〉 is the Euclidean scalar
product.

Identify the tangent and cotangent bundles by the hyperbolic metric.
Then the Liouville 1-form pdq becomes the following form in the tangent
bundle

λ =
〈u, dq〉

1− |q|2
+
〈u, q〉〈q, dq〉

(1− |q|2)2

where u is a tangent vector at point q. Restrict the Liouville 1-form on
V . For hyperbolic unit vector u, let v be the proportional Euclidean unit
vector. Then u = (1− |q|2)1/2v and

λ|V =
〈v, dq〉

(1− |q|2)1/2
= −

〈dv, q〉

(1− |q|2)1/2
. (5.3.3)

In coordinates (v, q) on L, formula (5.3.3) describes the symplectic form on
L via ω = dλ.

Now consider the transverse line field η. For x ∈ Sn−1, let v(x) be the
unit vector along the line ` = η(x). The corresponding midpoint q is easily
found: q = x− 〈x, v〉v, and then (5.3.3) implies that

F ∗η (λ) = −
〈dv, x〉

〈v, x〉
. (5.3.4)

Finally, identify vectors and covectors by the Euclidean structure. Then
p = x/〈v, x〉 is the conormal to Sn−1 at x such that 〈p, v〉 = 1. Hence
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the right hand side of (5.3.4) is the 1-form −〈p, dv〉. According to Exercise
5.2.5, the line field η is exact if and only if the 1-form F ∗η (λ) is exact. Since
Sn−1 is simply connected, this is equivalent to F ∗η (ω) = 0, and the result
follows.

Remark 5.3.5. For n = 2, the formulation of Theorem 5.3.4 needs to be
adjusted: the curve Fη, which is automatically Lagrangian, should be exact
Lagrangian.

Applying Lemma 8.2.5, one obtains the next corollary.

Corollary 5.3.6. The field η is exact if and only if the lines from η are
the hyperbolic normals to a closed hypersurface in Hn, diffeomorphic to the
sphere. In fact, there is a 1-parameter family of equidistant hypersurfaces,
perpendicular to the lines from η.

The next characterization of exact transverse line fields along spheres
will be useful in the next section.

Exercise 5.3.7. Let f be a smooth function on the unit sphere. Using
Corollary 5.2.6, show that the transverse vector field ν(x) = x + grad f(x)
generates an exact line field, and every exact transverse line field is of this
form for a suitable function f .

Relative normals to plane curves

Consider a closed immersed parameterized plane curve γ(t) and let η(t) be a
transverse line field along γ. We denote by × the cross-product of vectors in
the plane. Let ν(t) be a section of η(t), a transverse vector field generating
the line field η.

Lemma 5.3.8. The line field η is exact if and only if
∫

γ

ν × γtt
γt × ν

dt = 0.

Proof. Let us use the cross-product to identify vectors and covectors. Then
p = γt is a conormal field along γ. Consider another transverse vector
field ν1 = ν/(γt × ν); then 〈p, ν1〉 = 1. According to Lemma 5.2.4, η is
exact if and only if the 1-form η1 dp is exact on γ. The latter 1-form equals
(ν × γtt)/(γt × ν)dt, and the result follows.

Exercise 5.3.9. Show that the integral in Lemma 5.3.8 does not depend
on the parameterization of the curve.
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Let γ be a non-degenerate curve so that γt and γtt are linearly indepen-
dent. It follows from Lemma 5.3.8 that the acceleration vectors γtt generate
an exact transverse line field. The converse holds as well.

Lemma 5.3.10. Given an exact transverse line field η along a non-degenerate
curve γ, there is a parameterization γ(τ) such that η is generated by the vec-
tor field γττ .

Proof. Let γ(t) be some parameterization, and let ν be a section of η. Ac-
cording to Lemma 5.3.8, the 1-form (ν × γtt)/(γt × ν) dt is exact, that is,

ν × γtt = ft (γt × ν) (5.3.5)

for some function f on the curve. We are looking for a new parameter,
τ(t), such that ν is collinear with γττ . By (5.3.5) and since the velocity and
acceleration vectors are everywhere linearly independent, this is equivalent
to

γττ × γtt = ft (γt × γττ ). (5.3.6)

By Chain Rule, one has:

γτ = γt tτ , γττ = γttt
2
τ + γttττ ,

and (5.3.6) rewrites as tττ = ftt
2
τ or tττ = fτ tτ . The latter equation is easily

solved: (ln tτ )τ = fτ and hence tτ = cef where c is a constant. This gives
the desired parameterization.

Recall that vertices of a convex plane curve correspond to singular points
of the envelop of the family of its normals, see Section 4.1. One has the
following version of the 4-vertex theorem for exact transverse line fields.

Theorem 5.3.11. Let γ be a convex closed plane curve, η a generic exact
transverse line field along γ and Γ the envelop of the family of lines from η.
Assume that the lines from η revolve in the same sense as one traverses γ.
Then Γ has at least 4 cusps.

Proof. Every function on a circle has a critical point. By Corollary 5.2.9,
for every point of the plane there is a line from η passing through this point.

The tangent lines to Γ are the lines from η. Since the lines from η
revolve in the same sense, infinitesimally close lines are not parallel. Hence
Γ is compact. Since the tangent direction to Γ revolves in the same sense
all the time, Γ is also locally convex, and its total turning angle is 2π. That
is, the Gauss map of Γ is one-to-one. If Γ has no cusps then it is a closed
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convex curve, and there are no tangent lines to Γ from points inside it. This
contradicts the previous paragraph. Since Γ has a coorientation induced by
an orientation of γ, the number of cusps of Γ is even. Thus Γ has at least
two cusps.

φ = n

φ = n+2
 


Figure 5.5: Number of tangent lines

Suppose Γ has only two cusps. Consider a locally constant function
φ(x) in the complement of Γ whose value at point x equals the number of
tangent lines to Γ through x. The value of this function increases by 2 as x
crosses Γ from locally concave to locally convex side, see figure 5.5. Let x be
sufficiently far away from Γ. Since the Gauss map is one-to-one, φ(x) = 2.

l

Γ

φ = 0

φ = 2

Figure 5.6: Case of two cusps

Consider the line through two cusps of Γ (which may coincide); assume
it is horizontal, see figure 5.6. Then the height function, restricted to Γ,
attains either minimum or maximum (or both) not in a cusp. Assume it is
maximum; draw the horizontal line l through it. Since Γ lies below this line,
φ = 2 above it. Therefore φ(x) = 0 immediately below l, and there are no
tangent lines to Γ from x. This again contradicts the first paragraph of the
proof.
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Projective invariance

The notion of exact transverse line field is defined in affine terms, however
exactness is projectively-invariant.

Let Mn−1 ⊂ RPn be a smooth hypersurface and η a transverse line field
along M . Consider the projection π : Rn+1−0 → RPn and denote by M̃ the
preimage of M . Then M̃ is a conical manifold, invariant under homotheties.
Lift the field η to a transverse line field η̃ along M̃ . We say that η is exact
in the projective sense if η̃ is an exact line field along M̃ .

Proposition 5.3.12. This definition of exactness does not depend on the
choice of the lift η̃. If M lies in an affine chart, this definition is equivalent
to the one given in Section 5.2.

Proof. Denote by E the Euler vector field in Rn+1. This field generates the
fibers of π. As a function Rn+1 → Rn+1, the field E is given by the formula
E(x) = x.

Assume that η̃ is exact. Let ν̃ be a section of η̃ and p̃ be a conormal
field along M̃ such that 〈p̃, ν̃〉 = 1 and 〈dp̃, ν̃〉 = 0. Let η̃1 be a different
lift of η, generated by the vector field ν̃1 = ν̃ + fE where f is a function.
Since E is tangent to M̃ , one has 〈p̃, E〉 = 0 and therefore 〈p̃, ν̃1〉 = 1. Also

〈dp̃, E〉+ 〈p̃, dE〉 = 0. But 〈p̃, dE〉 = 〈p̃, dx〉 = 0 on M̃ since p̃ is a conormal.
It follows that 〈dp̃, E〉 = 0, and hence 〈dp̃, ν̃1〉 = 0. Thus ν̃1 is exact.

To prove the second statement, chose coordinates (x0, x1, . . . , xn) in Rn+1

and identify the affine part of RPn with the hyperplane x0 = 1. Decompose
Rn+1 into R1

x0
⊕ Rn

x where x = (x1, . . . , xn); vectors and covectors are de-
composed accordingly.

Assume that M belongs to the hyperplane x0 = 1. Let ν be a relative
normalization and η the exact line field generated by ν. We want to show
that η is exact in the projective sense, that is, a lifted line field η̃ is exact.

Let p the conormal field such that 〈p, ν〉 = 1 and 〈dp, ν〉 = 0. Consider
the covector field

p̃(x0, x) =

(
−

〈
x

x0
, p
( x
x0

)〉
, p
( x
x0

))

along M̃ . Then 〈p̃, E〉 = 0, hence p̃ is a conormal field on M̃ . Lift ν to
the horizontal vector field ν̃(x0, x) = (0, ν(x/x0)). Then 〈p̃, ν̃〉 = 1 and
〈dp̃, ν̃〉 = 0. Hence η is exact in the projective sense.

Conversely, if ν̃(x0, x) = (0, ν(x/x0)) is a relative normalization of M̃
then ν is a relative normalization of M .
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As a consequence of Proposition 5.3.12, exactness of a transverse line field
is a projective property. More precisely, if M ⊂ V is a smooth hypersurface
in an affine space, η an exact transverse field along M and f : V → V is
a projective transformation whose domain contains M then the line field
df(η) along f(M) is exact as well.

Exercise 5.3.13. Let M ⊂ V be a smooth hypersurface in an affine space, ν
a relative normalization, p a conormal field satisfying 〈p, ν〉 = 1 and 〈dp, ν〉 =
0. Let `(x) be a linear function on V . Consider the projective map f : V →
V given by the formula f(x) = x/(1 + `(x)). This map takes M to a
hypersurface M , the vector field ν to a vector field ν̄ and the covector field
p to a conormal field p̄ along M . Show that

〈dp̄, ν̄〉 = d ln(1 + `(x)).

Number of relative normals through a point

Let M be a non-degenerate closed immersed hypersurface with a relative
normalization ν in an affine space V , and let x0 ∈ V be a fixed point.
According to Corollary 5.2.9, the number of relative normals passing through
x0 is not less than the number of critical points of a smooth function on M .
In particular, there are at least 2 relative normals passing through x0. This
Morse theory type result is a generalization of a similar fact for Euclidean
normals. Without the exactness assumption, this results does not hold, see
figure 5.7.

Figure 5.7: Non-exact transverse line field

Consider a more general situation: M is a non-degenerate closed im-
mersed hypersurface in RPn equipped with a transverse line field η, exact
in the projective sense. An example of a non-degenerate surface is a hyper-
boloid in RP3 or its sufficiently small perturbation.
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Theorem 5.3.14. The number of lines from η, passing through a fixed point
x0 ∈ RPn, is bounded below by the least number of critical points of a smooth
function on M .

For example, for the hyperboloid in RP3, this number is 3, and it equals
4 for a generic choice of x0.

Proof. We use the same notation as in the preceding subsection: M̃ ⊂
Rn+1 is a conical hypersurface, ν̃ and p̃ are its relative normalization and
a conormal field satisfying 〈p̃, ν̃〉 = 1 and 〈dp̃, ν̃〉 = 0. We choose ν̃ and p̃
to be homogeneous of degrees 1 and −1, respectively. Let y0 ∈ Rn+1 be a
point that projects to x0.

Consider the support function ρ̃(x) = 〈p̃, x − y0〉. Let h̃ be the bilinear

form on M̃ associated with its relative normalization. Since M̃ is a con-
ical manifold, the form h̃ is not non-degenerate anymore: it has a kernel,
generated by the Euler field E. Formula (5.2.4) still holds:

x− y0 = ρ̃(x) ν̃(x) + u, u ∈ TxM̃,

and the proof of Lemma 5.2.8 yields that v(ρ̃) = −h̃(u, v) for every vector

v, tangent to M̃ at point x. If x is a critical point of ρ̃ then u belongs to the
kernel of h̃, that is, u is proportional to E. Hence the vector x− y0 projects
to the line η(π(x)), which therefore passes through x0 = π(y0).

By our choice of homogeneity, the support function ρ̃ is homogeneous of
degree zero. Therefore this function descends to M , and we are done.

Comment

The results of this Section are contained in [203, 206, 207, 208]. Paper
[208] contains definition of exact line fields in terms of cross-ratio, similar
to the geometric constructions in Section 5.1. Another result of [208] is an
extension of the notion of exactness to line fields along convex polyhedral
hypersurfaces; in particular, one has an analog of Theorem 5.3.11 for poly-
gons, see [210]. One should not expect the analogy between exact line fields
and Euclidean normals to go too far. For example, a smooth convex closed
hypersurface M ⊂ Rn has at least n diameters (i.e., double normals) but
there exists an exact line field η along M such that, for all pairs of distinct
points x, y ∈M , one has: η(x) 6= η(y), see [208].
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5.4 Complete integrability of the geodesic flow on

the ellipsoid and of the billiard map inside the

ellipsoid

In this section we apply results on exact transverse line fields along spheres
from the preceding section to prove complete integrability of two closely re-
lated classical dynamical systems: the geodesic flow on the ellipsoid and the
billiard map inside an ellipsoid. This complete integrability is known since
the first half of 19-th century. Again we refer to Section 8.2 for necessary
notions of symplectic geometry.

Geodesic flow on the ellipsoid and billiard map inside it

The geodesic flow on a Riemannian manifold M n is a flow on the tan-
gent bundle TM : a tangent vector v moves with constant speed along the
geodesic, tangent to v. From the physical viewpoint, the geodesic flow de-
scribes the motion of a free particle onM . Identifying the tangent and cotan-
gent bundles by the metric, the geodesic flow becomes a Hamiltonian vector
field on the cotangent bundle T ∗M with its canonical symplectic structure
“dp ∧ dq”, the Hamiltonian function being the energy: H(q, p) = |p|2/2.
Complete integrability of the geodesic flow means that the flow has n in-
variant functions (integrals), independent on an open dense set and Poisson
commuting with respect to the canonical symplectic structure (cf. Section
8.2).

Let M be a compact convex domain with a smooth boundary in Rn+1.
The billiard system describes the motion of a free particle inside M with
elastic reflections off the boundary. One replaces the continuous time system
by its discrete time reduction, the billiard transformation. The billiard
transformation T is a transformation of the set of oriented lines in Rn+1

that intersect M ; the map T is defined by the familiar law of geometric
optics: the incoming ray `, the outgoing ray T (`) and the normal to the
boundary ∂M at the impact point lie in one 2-plane, and the angles made
by ` and T (`) with the normal are equal.

The space L of oriented lines in Euclidean space Rn+1 is a 2n-dimensional
symplectic manifold, and the billiard transformation is a symplectomor-
phism, see, e.g., [198]. Complete integrability of T means that there exist n
integrals, functionally independent on an open dense subset of L and Poisson
commuting with respect to this symplectic structure ω.
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Let an ellipsoid E ⊂ Rn+1 be given by the equation

n+1∑

i=1

x2
i

a2
i

= 1, (5.4.1)

and assume that all the semiaxes ai are distinct. The family of confocal
quadratic hypersurfaces Et is given by the equation

n+1∑

i=1

x2
i

a2
i + t

= 1, t ∈ R, t 6= −a2
i .

If E is an ellipse (i.e., n = 1) then Et consists of ellipses and hyperbolas
with the same foci as E.

The geometric meaning of complete integrability is as follows. Consider a
fixed geodesic γ on E. Then the straight lines, tangent to γ, are also tangent
to n − 1 fixed confocal hypersurfaces Et1 , . . . , Etn−1 , where the parameters
t1, . . . , tn−1 depend on γ. Thus one has n− 1 integrals of the geodesic flow,
and one more integral is the energy. Likewise, consider an oriented line
` intersecting E. Then ` is tangent to n confocal hypersurfaces, and all
the reflected lines T (`), T 2(`), . . . remain tangent to the same n confocal
hypersurfaces.

Exercise 5.4.1. Let E be an ellipse. If an oriented line ` does not pass
between the foci of E then ` and all the reflected lines are tangent to the
same confocal ellipse; if ` passes between the foci then ` and all the reflected
lines remain tangent to the same confocal hyperbola; and if ` passes through
a focus then the reflected line passes through another focus.

The billiard transformation inside the ellipsoid and the geodesic flow on
the ellipsoid are closely related. On the one hand, the domain inside the
ellipsoid (5.4.1) can be considered as a degenerate ellipsoid, the limit of the
ellipsoids

n+2∑

i=1

x2
i

a2
i

= 1

as an+2 → 0. Thus the billiard system is obtained from the geodesic flow;
in particular, the integrals of the latter are those of the former.

On the other hand, consider a free particle inside the ellipsoid E whose
trajectory meets E at a small angle α. In the limit α → 0, one obtains a
free particle on E, and the integrals of the billiard transformation inside E
provide integrals of the geodesic flow on E.
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Bisymplectic maps and projectively equivalent metrics

Consider the following simple mechanism providing integrals of the billiard
transformation. Let M 2n be a smooth manifold with two symplectic forms
ω,Ω and let T be a diffeomorphism that preserves both. We will call M a
bisymplectic manifold and T a bisymplectomorphism. Then the functions fi
defined by the relation

Ωi ∧ ωn−i = fi ω
n, i = 1, ..., n (5.4.2)

are T -invariant. If the forms ω and Ω are sufficiently generic then these
integrals are functionally independent almost everywhere. The same con-
struction works for a degenerate 2-form Ω.

Alternatively, a bisymplectic structure determines a field E of linear
automorphisms of tangent spaces:

Ω(u, v) = ω(Eu, v) for all u, v ∈ TxM. (5.4.3)

The eigenvalues of E all have multiplicity 2; they are invariant functions,
and these n integrals functionally depend on the integrals f1, . . . , fn.

Remark 5.4.2. In general, the integrals f1, . . . , fn are not in involution
with respect to either of the symplectic structures. If ω and Ω are Poisson
compatible (the sum of the respective Poisson structures is again a Poisson
structure) then the integrals f1, . . . , fn Poisson commute with respect to
both forms – see, e.g., [140] concerning bihamiltonian formalism. However
Poisson compatibility is not necessary for the functions f1, . . . , fn to be in
involution.

Now we modify the above integrability mechanism to provide integrals
of the geodesic flow. Consider a smooth manifold M n with two Riemannian
metrics g1, g2. We call the metrics projectively (or geodesically) equivalent if
their non-parameterized geodesics coincide.

Theorem 5.4.3. If a manifold Mn carries two projectively equivalent met-
rics then the geodesic flow of each has n integrals.

Proof. Consider a Riemannian manifold (M n, g1). The cotangent bundle
T ∗M has a canonical symplectic form, and this form is the differential of
the Liouville 1-form. Identifying T ∗M with TM by the metrics g1, one
obtains a symplectic form ω1 and 1-form λ1 on the tangent bundle such
that ω1 = dλ1. Let S1 ⊂ TM be the unit vector hypersurface. The form
λ1 is a contact form on S1, that is, λ1 ∧ ω

n−1
1 is a nondegenerate volume
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form. The restriction of ω1 to S1 has a 1-dimensional kernel ξ at every point,
and the curves, tangent to ξ, are the trajectories of the geodesic flow of the
metric g1, cf. Section 8.2. The same applies to the second metric g2.

Consider the map φ : TM → TM that rescales the tangent vectors,
sending S1 to S2. This map sends the trajectories of the geodesic flow of
g1 to those of g2. Consider the two forms ω = ω1 and Ω = φ∗(ω2). These
forms have the same characteristic foliation on the hypersurface S1 and both
are holonomy invariant along this foliation. It follows that the functions fi,
defined by the equality

λ1 ∧ ω
n−1−i ∧ Ωi = fi λ1 ∧ ω

n−1, i = 1, . . . , n− 1, (5.4.4)

are integrals of the geodesic flow of the metric g1, the n-th integral being
the energy. These integrals are analogs of the integrals (5.4.2).

Alternatively, the forms ω and Ω determine nondegenerate 2-forms on
the quotient 2(n−1)-dimensional spaces TS1/ξ. As before, one may consider
the field of automorphisms E, analogous to (5.4.3), given by the formula:

Ω(u, v) = ω(Eu, v) for all u, v ∈ TxM/ξ.

The eigenvalues of E have multiplicities 2, and they are invariant along the
characteristic foliation.

Projective billiards

The billiard dynamical system is defined in metric terms (equal angles).
Let us define a broader class of “billiards” with a projectively-invariant law
of reflection, called projective billiards. Let M be a smooth hypersurface
in projective space and η a smooth field of transverse directions along M .
The law of the projective billiard reflection reads: the incoming ray, the
outgoing ray and the line η(x) at the impact point x lie in one 2-plane π,
and these three lines, along with the line of intersection of π with the tangent
hyperplane TxM , constitute a harmonic quadruple of lines.

Recall that four coplanar and concurrent lines constitute a harmonic
quadruple if the cross-ratio of these lines equals −1. The cross-ratio of four
coplanar concurrent lines is the cross-ratio of their intersection points with
a fifth line (it does not depend on the choice of this auxiliary line).

If M lies in Euclidean space and η consists of Euclidean normals to M
then the projective billiard coincides with the usual one. More generally,
consider a metric g in a domain U in a vector space whose geodesics are
straight lines; this is a metric of constant curvature. Let M be a smooth
hypersurface and η the field its g-normals.
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Lemma 5.4.4. The billiard reflection in M , associated with the metric g,
is a projective billiard transformation.

Proof. Let x ∈ M be the impact point. The metric g gives the tangent
space TxU a Euclidean structure, and therefore the billiard reflection in
TxM ⊂ TxU is a projective one. The projective structures in U and TxU
coincide, and the result follows.

As a limit case of the above lemma, one obtains a similar result for the
geodesic flow.

Lemma 5.4.5. Let γ be a g-geodesic line on M . Then, for every x ∈ γ,
the osculating 2-plane to γ at x contains the line η(x). In other words, γ is
a geodesic of the connection ∇, associated with the field of g-normals η, see
Section 5.2.

Integrability

We are in a position to establish complete integrability of the geodesic flow
on the ellipsoid and the billiard map inside the ellipsoid. Let us start with
the latter.

Let η be an exact transverse line field along the sphere Sn ⊂ Rn+1.
Consider the interior of the sphere as the Klein-Beltrami model of hyperbolic
space Hn+1, and denote by Ω the corresponding symplectic structure on the
space of oriented lines in Hn+1, cf. Section 5.3. Let T be the projective
billiard map associated with the line field η.

Proposition 5.4.6. One has: T ∗(Ω) = Ω.

Proof. According to Corollary 5.3.6, there exists a 1-parameter family of
equidistant hypersurfaces that are perpendicular, in the hyperbolic sense,
to the lines from the family η. Choose one of these hypersurfaces, say, M0,
and denote the hypersurfaces in the family by Mt where t is the hyperbolic
distance from M0 to Mt along the normals. Consider the billiard transfor-
mation inside Mt; it preserves the symplectic structure Ω. According to
Lemma 5.4.4, this billiard map is the projective billiard transformation in-
side Mt, associated with the field η, which therefore preserves Ω. As t→∞,
the limit of the billiard transformations inside Mt is the projective billiard
map T inside Sn, and the result follows.

Proof of complete integrability of the billiard map inside the ellipsoid.
Let E ⊂ Rn+1 be an ellipsoid and η1 the field of Euclidean normals along
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E; this field is exact. Apply an affine transformation ψ that takes E to
the unit sphere Sn, and let η = ψ(η1). Then η is an exact field of lines.
The map ψ conjugates the original billiard transformation inside E and the
projective billiard transformation T inside Sn associated with η. According
to Proposition 5.4.6, Ω is a T -invariant 2-form on the space of lines L.

On the other hand, the original billiard transformation inside E preserves
the canonical symplectic structure on the space of oriented lines associated
with the Euclidean metric in Rn+1, and therefore T also preserves a sym-
plectic structure ω on L associated with the Euclidean metric induced by
the affine map ψ. Thus T is a bisymplectic map, and it remains to feed
ω and Ω to the integrability “mechanism” of Theorem 5.4.3. One needs to
check that the resulting integrals Poisson commute; the can be done by a
direct computation which we omit.

Let us now consider the geodesic flow on the ellipsoid. One has the
following analog of Proposition 5.4.6.

Proposition 5.4.7. Let η be an exact transverse line field along Sn and ∇
the corresponding connection on the sphere. Then there exists a Riemannian
metric g on the sphere whose non-parameterized geodesics coincide with the
geodesics of ∇.

Proof. As in the proof of Proposition 5.4.6, consider the family of equidistant
hypersurfaces Mt, orthogonal to the lines η. Let ht be the metric on Mt

induced from the ambient hyperbolic space. By Lemma 5.4.5, this metric has
the same geodesics as the connection associated with η. The intersections
with the lines from the family η determine an identification of each Mt

with Sn, and we consider ht as metrics on the sphere. The metrics ht
exponentially grow with t but they have a limit after a renormalization.
Namely, the desired metric on the sphere is given by the formula

g = lim
t→∞

e−tht, (5.4.5)

and this completes the proof.

Exercise 5.4.8. Let the field η be generated by the transverse vector field
x + grad f(x), see Exercise 5.3.7. Then the metric (5.4.5) is conformally
equivalent to the Euclidean metric on Sn with the conformal factor e−f .

Everything is prepared for the final touch.

Proof of complete integrability of the geodesic flow on the ellipsoid. Ar-
guing as before, let E ⊂ Rn+1 be an ellipsoid, η1 the field of Euclidean
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normals, ψ an affine transformation that takes E to Sn and η = ψ(η1). Let
g be the metric (5.4.5). Then the induced metric ψ∗(g) on E is projectively
equivalent to the Euclidean one, and it remains to apply Theorem 5.4.3.
Again it is a separate step to check that the integrals Poisson commute; we
do not dwell on this.

An explicit formula for the second metric is given in the following the-
orem that summarizes the argument; we leave it an exercise to deduce this
result from Exercise 5.4.8.

Theorem 5.4.9. The restrictions of the metrics

n+1∑

i=1

dx2
i and

∑n+1
i=1 ai dx

2
i∑n+1

i=1 a
2
i x

2
i

on the ellipsoid
∑n+1

i=1 ai x
2
i = 1 are projectively equivalent.

Remark 5.4.10. The standing assumption that the ellipsoid has distinct
semiaxes ai is essential for obtaining the right number of integrals for com-
plete integrability. For example, if all ai are equal then the statement of
Theorem 5.4.9 becomes tautological. However the integrals, provided by
the above construction, “survive” in the non-generic case and remain func-
tionally independent almost everywhere.

Comment

The complete integrability of the geodesic flow on the triaxial ellipsoid was
established by Jacobi in 1838. Jacobi integrated the geodesic flow by sep-
aration of variables. The appropriate coordinates are called the elliptic co-
ordinates, and this approach works in any dimension. Two other proofs of
the complete integrability of the geodesic flow on the ellipsoid, by confocal
quadrics and by isospectral deformations, are described in [150, 151, 152].

G. Birkhoff was the first to put forward the study of mathematical bil-
liards; the complete integrability of the billiard inside the ellipsoid is dis-
cussed in [23]. See [153, 198, 226] for contemporary proofs and [227] for
complete integrability of the billiard inside the ellipsoid in a space of con-
stant curvature.

The integrability of the billiard transformation inside an ellipse implies
the famous Poncelet porism. Given two nested ellipses A,B in the plane,
one plays the following game: choose a point x ∈ B, draw a tangent line to
A through it, find the intersection y with B, and iterate, taking y as a new
starting point. The statement is that if x returns back after a number of
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Figure 5.8: Poncelet configuration

iterations, then every point of B will return back after the same number of
iterations, see figure 5.8. See [22, 30] for the interesting history and various
proofs of this theorem.

The proof of integrability in this section follows the papers [203, 209,
212]; projective billiards were introduced in [205]. Our proof of complete in-
tegrability applies without change to the billiard map inside and the geodesic
flow on the ellipsoid in the spherical or the hyperbolic space. Theorems
5.4.3 and 5.4.9 were independently discovered by Matveev and Topalov
[144, 145, 146, 147]. In particular, they proved that, for projectively equiv-
alent Riemannian metrics, the integrals fi in (5.4.4) Poisson commute.

5.5 Hilbert’s 4-th problem

We saw in the previous section that the existence of sufficiently general Rie-
mannian metrics, projectively equivalent to a given one, implies the complete
integrability of its geodesic flow. In this section we discuss the simplest in-
tegrable case, the Euclidean metric in a convex domain in Rn. The problem
is to describe all Finsler metrics, projectively equivalent to the Euclidean
one.

Formulation of the problem and examples

In his 4-th problem, Hilbert asks to “construct and study the geometries
in which the straight line segment is the shortest connection between two
points”. Hilbert was motivated by two interesting examples, well understood
by the time he delivered his celebrated 1900 ICM lecture. The first of these
examples is Minkowski geometry which we briefly discussed in Section 5.3.
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The second example was discovered by Hilbert himself in 1894, and it
is called the Hilbert metric. Hilbert’s metric generalizes the Klein-Beltrami
model of hyperbolic geometry. Consider a convex closed hypersurface S ⊂
Rn and define the distance between points inside S by formula (4.2.4). If
S is a sphere or, more generally, an ellipsoid, one has the Klein-Beltrami
model of hyperbolic geometry.

Exercise 5.5.1. Prove that the Hilbert distance satisfies the triangle in-
equality.

As we mentioned above, a Riemannian metric, projectively equivalent to
a Euclidean one, is a metric of constant curvature (Beltrami’s theorem) and
therefore either a Euclidean, or a spherical, or a hyperbolic metric. Hence it
does not make sense to restrict Hilbert’s 4-th problem to Riemannian metrics
only. The adequate class consists of Finsler metrics, briefly introduced below
(see, e.g, [17, 180] for details).

Finsler metric

Finsler geometry describes the propagation of light in an inhomogeneous
anisotropic medium. This means that the velocity depends on the point
and the direction. There are two equivalent descriptions of this process
corresponding to the Lagrangian and the Hamiltonian approaches in classical
mechanics; we will mostly consider the former.

A Finsler metric on a smooth manifold M is described by a smooth field
of strictly convex smooth hypersurfaces containing the origin in the tangent
space at each point. We also assume that the hypersurfaces are centrally-
symmetric (this assumption is sometimes omitted). These hypersurfaces
are called indicatrices. The indicatrix consists of the Finsler unit vectors
and plays the role of the unit sphere in Riemannian geometry which is a
particular case of Finsler one.

Equivalently, a Finsler metric is determined by a nonnegative fiber-wise
convex Lagrangian function L(x, v) where x ∈M, v ∈ TxM , on the tangent
bundle TM whose unit level hypersurface S intersects each fiber of TM
along the indicatrix; the function L is smooth off the zero section v = 0. We
make a standing assumption that the Lagrangian is fiber-wise homogeneous
of degree 1:

L(x, tv) = |t|L(x, v), t ∈ R. (5.5.1)

Thus L gives each tangent space a Banach norm. For the usual Euclidean
metric, L(x, v) = |v|.
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Given a smooth curve γ : [a, b] →M , its length is given by

P(γ) =

∫ b

a
L(γ(t), γ ′(t))dt.

Due to (5.5.1), the integral does not depend on the parameterization. A
Finsler geodesic is an extremal of the functional P. The Finsler geodesic
flow is a flow in TM in which the foot point of a vector in TM moves along
the Finsler geodesic tangent to it, so that the vector remains tangent to this
geodesic and preserves its norm.

Let Ix ⊂ TxM be the indicatrix and u ∈ Ix. Let p ∈ T ∗xM be the
conormal to Ix, normalized by 〈p, u〉 = 1. The mapping u 7→ p is called
the Legendre transform, its image is a smooth strictly convex hypersurface
in the cotangent space. This hypersurface is called the figuratrix, and it
is the unit sphere of the dual normed space T ∗xM . In local coordinates,
p = Lu. If the Finsler metric is Riemannian then the Legendre transform is
the identification of the tangent and cotangent spaces by the metric. The
figuratrix is the unit level surface of a Hamiltonian function H : T ∗M → R,
homogeneous of degree 1 in the momentum p. The Hamiltonian flow of
this function on T ∗M is also called the Finsler geodesic flow. The Legendre
transform identifies the two flows, cf. Section 8.2.

Hamel’s theorem

We interpret Hilbert’s 4-th problem as asking to describe Finsler metrics
in convex domains in Rn whose geodesics are straight lines. Such Finsler
metrics are called projective. Hamel’s theorem of 1901 is the first general
result on projective metrics (it holds for non-reversible metrics as well for
which L(x,−v) 6= L(x, v)). The formulation makes use of a local coordinate
system.

Theorem 5.5.2. A Lagrangian L(x, v) defines a projective Finsler metric
if and only if the matrix of second partial derivatives Lxv(x, v) is symmetric
for all (x, v).

Proof. Assume that the extremals of L are straight lines. Let x(t) be an
extremal, u = x′. The Euler-Lagrange equation for extremals reads:

Luux
′′ + Luxx

′ − Lx = 0. (5.5.2)

Since the extremals are straight lines, x′′ is proportional to u. Since Lu
is homogeneous of degree 1, the Euler’s equation implies: Luu = L and,
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differentiating, Luuu = 0. Hence, by (5.5.2), Luxu = Lx. In coordinates,

∑

k

Luixkuk = Lxi

for all i. Differentiate with respect to uj to obtain:

∑

k

Luiujxkuk = Lxiuj − Lxjui

for all i, j. The left hand side is symmetric in i, j while the right hand side
is skew-symmetric. Therefore both vanish, and Lxiuj = Lxjui .

Conversely, let the matrix Lxiuj be symmetric. Then Luxu = Lxuu = Lx,
and Luxu − Lx = 0. The Euler-Lagrange equation (5.5.2) implies that
Luux

′′ = 0. The matrix Luu(x, u) is degenerate and its kernel is generated
by the vector u. Thus x′′ is proportional to x′, and the extremals are straight
lines.

Exercise 5.5.3. Check that the Lagrangian

L(x1, x2, v1, v2) =
1√

v2
1 + v2

2

(
(3 + x2

1 + x2
2)(v

2
1 + v2

2) + (x1v1 + x2v2)
2
)

defines a projective Finsler metric in the plane (this example is borrowed
from [3]).

In a certain sense, Hamel’s theorem solves Hilbert’s 4-th problem. How-
ever this theorem gives no clue how to obtain the Lagrangians satisfying
its conditions. For example, the Lagrangian of Exercise 5.5.3 looks rather
mysterious.

Solution in dimension 2

Let us describe the solution of Hilbert’s 4-th problem in dimension 2. Our
exposition follows [3].

A synthetic approach, due to Busemann, makes use of integral geometry,
namely, the Crofton formula, see, e.g., [181].

Consider the set L of oriented lines in the plane; topologically, L is the
cylinder. Let an oriented line ` ∈ L have the direction β. One characterizes
` by the angle α = β − π/2 and the signed distance p from ` to the origin.
The 2-form ω0 = dp ∧ dα is an area form on L; this symplectic form is a
particular case of a symplectic structure on the space of oriented geodesics,
see Section 8.2, especially, Exercise 8.2.4. The Crofton formula expresses the
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Euclidean length of a plane, not necessarily closed, curve γ in terms of ω0.
The curve determines a locally constant function Nγ(`) on L, the number
of intersections of a line ` with γ.

Theorem 5.5.4. One has:

length (γ) =
1

4

∫

L
Nγ(`) |ω0| (5.5.3)

where |ω0| is the measure associated with the symplectic form ω0.

Exercise 5.5.5. Prove the Crofton formula (5.5.3).

Hint. Assume that γ is a polygonal line. Since both sides of (5.5.3) are
additive, it suffices to consider the case when γ is a segment, which is done
by a direct computation.

Let f(p, α) be a positive continuous function on L, even with respect to
the orientation reversion of a line: f(−p, α+ π) = f(p, α). Then

ω = f(p, α) dp ∧ dα (5.5.4)

is also an area form on the space of oriented lines.

Lemma 5.5.6. Formula (5.5.3), with ω replacing ω0, defines a projective
Finsler metric.

Proof. To prove that the geodesics are straight lines one needs to check the
triangle inequality: the sum of lengths of two sides of a triangle is greater
than the length of the third side. This holds because every line, intersecting
the third side, also intersects the first or the second.

To prove that this integral-geometric construction provides all projective
Finsler metrics and to have an explicit formula for the Lagrangians, consider
an analytic approach to the problem, due to Pogorelov [176].

Theorem 5.5.7. The Lagrangians, satisfying Hamel’s condition of Theorem
5.5.2, have the following integral representation:

L(x1, x2, v1, v2) =

∫ 2π

0
|v1 cosφ+ v2 sinφ| g(x1 cosφ+ x2 sinφ, φ) dφ

where g is a smooth positive function, even in φ.

For example, the metric of Exercise 5.5.3 corresponds to g(p, α) = 1+p2.
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Proof. Fix x, then L becomes a function of the velocity only. In polar
coordinates in TxR

2, one has: L(r, α) = rp(α). Let I be the indicatrix at
point x, its equation is r = 1/p(α). Consider p(α) as the support function
of a curve J , cf. Section 4.1.

Exercise 5.5.8. The curve J is the figuratrix at point x.

Parameterize J by the angle φ, made by its tangent vector with the
horizontal axis, and let ρ(φ) be the radius of curvature at point J(φ). One
has:

J ′(φ) = ρ(x, φ)(cos φ, sinφ),

and hence

J(α+ π/2) = J(0) +

∫ α+π/2

0
ρ(φ)(cos φ, sinφ)dφ.

Write a similar equation for J(α+3π/2), subtract from J(α+π/2) and take
scalar product with the vector (cosα, sinα) to obtain

p(α) =
1

2

∫ α+π/2

α−π/2
cos(α− φ)ρ(φ)dφ,

and hence

L(x1, x2, r, α) =
r

2

∫ α+π/2

α−π/2
cos(α− φ)ρ(x1, x2, φ)dφ. (5.5.5)

Next, rewriting differential operators ∂2/∂xi∂vj in polar coordinates and
using (5.5.5), one expresses the Hamel condition of Theorem 5.5.2 as

∫ α+π/2

α−π/2

(
− sinφ

∂ρ

∂x1
+ cosφ

∂ρ

∂x2

)
dφ = 0

for all α. It follows that the integrand vanishes identically, and therefore

ρ(x1, x2, φ) = f(x1 cosφ+ x2 sinφ, φ) (5.5.6)

for some function f . Setting g = f/4 and rewriting (5.5.5) in Cartesian
coordinates, one obtains the desired result.

It remains to connect Lemma 5.5.6 and Theorem 5.5.7, the integral-
geometric and analytic constructions. In one direction, the connection is as
follows.
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Exercise 5.5.9. Show that f in (5.5.4) is the same as f in (5.5.6). More
precisely, the Lagrangian of the metric of Lemma 5.5.6, corresponding to a
function f(p, α), is given by Theorem 5.5.7 with g(p, α) = f(p, α)/4.

Hint. Apply the construction of Lemma 5.5.6 to an infinitesimally small
segment and repeat the computation from Exercise 5.5.5.

The converse relation between the two constructions is as follows. Con-
sider a Finsler metric of Theorem 5.5.7. This metric provides the space of
oriented lines with a symplectic structure, see Section 8.2.

Exercise 5.5.10. In the notation of the proof of Theorem 5.5.7, show that
this symplectic structure is given by formula (5.5.4).

Multidimensional case

Let us outline the solution of Hilbert’s 4-th problem in higher dimensions.
The integral-geometric approach of Busemann and Pogorelov is still ap-

plicable. Consider the space H = R×Sn−1 of oriented affine hyperplanes in
Rn and a signed measure ρ(h)dh on it. Given a curve γ, one defines a locally
constant function Nγ(h) on H, the number of intersections of a hyperplane
h with γ. Then one defines the ρ-length of γ by the Crofton formula

length (γ) =

∫

H
Nγ(h) ρ(h)dh. (5.5.7)

This length corresponds to a Lagrangian L(x, v), homogeneous of degree 1,
so that

length (γ) =

∫
L(γ(t), γ ′(t))dt.

The extremals of this Lagrangian are straight lines (analog of Lemma 5.5.6),
and every such Lagrangian is given by formula (5.5.7) with an appropriate
ρ. The latter statement if proved using the next integral representations,
generalizing that of Theorem 5.5.7.

Theorem 5.5.11. A Lagrangian L(x, v), homogeneous of degree 1, satisfies
Hamel’s condition of Theorem 5.5.2 if and only if there exists a smooth even
function ν(p, ξ) on R× Sn−1 such that

L(x, v) =

∫

ξ∈Sn−1

|〈v, ξ〉| ν(〈v, ξ〉, ξ)µ

where µ is the standard volume form on the unit sphere Sn−1 ⊂ Rn.
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To guarantee that formula (5.5.7) indeed gives Finsler metrics one needs
to impose the following positivity conditions on the measure ρ: given three
non-collinear points x, y, z, the measure of the set of hyperplanes, intersect-
ing twice the wedge xy and yz, is positive.

Another approach to multi-dimensional Hilbert’s 4-th problem is by way
of special symplectic structures on the space L of oriented lines in Rn; this
approach is due to Alvarez. Note that for n = 2 the two approaches merge
since a line is also a hyperplane.

Let ω be a symplectic form on L. Given two points x and y in Rn, choose
a 2-plane P containing both, and let L(P ) be the set of lines lying in P .
The restriction of ω on L(P ) is a closed 2-form therein, and one may define
the length of the segment xy by the Crofton formula, as in Lemma 5.5.6. It
is clear that one obtains a projective metric in P .

However, one wants to make sure that this length does not depend on
the choice of the plane P . A sufficient condition is that ω is admissible. A
symplectic form ω on L is called admissible if, for every point x ∈ Rn, the
submanifold of lines through x is Lagrangian in L, and if ω is odd under the
involution of L changing the orientation of a line.

One can prove that every projective Finsler metric in Rn corresponds to
an admissible symplectic structure on the space of oriented lines, see [5, 4].

Comment

Two classic references on Hilbert’s 4-th problem are [36, 176], see also [197].
The problem is an example of an inverse problem of the calculus of varia-
tions (see, e.g., [50]): one wants to describe all variational problems whose
(non-parameterized) extremals are given. A magnetic version Hilbert’s 4-th
problem in the plane is solved in [213], the problem is to describe the Finsler
metrics whose geodesics are circles of a given radius.

5.6 Global results on surfaces

In this section we survey, without proofs, some global results and conjectures
on surfaces in projective spaces, old and new.

Carathéodory’s conjecture on umbilic points

Let M be smooth surface in R3. Recall from classical differential geometry
that, at every point of M , two principal curvatures are defines. A point x ∈
M is called umbilic if the two principal curvatures are equal. In other words,
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a sphere (or a plane) is tangent to M at x with order 2. Also recall that if x
is not an umbilic point then one has two orthogonal principal directions at x:
the orthogonal sections of M in these directions have extremal curvatures.
The integral curves of the field of principal directions are called lines of
curvature; umbilic points are the singularities of this field.

In the early 1920s, in search of a version of the 4-vertex theorem in
dimension 3, Carathéodory conjectured that a sufficiently smooth convex
closed surface in R3 has at least 2 distinct umbilic points. This conjecture
has a long, interesting and somewhat controversial history.

Figure 5.9: Index of an umbilic point

The only known approach to Carathéodory’s conjecture is local. Let
x ∈ M be an isolated umbilic point. Each of the two fields of principal
directions has a singularity at x, and this singularity has an index. Since
a principal direction is a line without a preferred orientation, this index is
a half-integer, see figure 5.9 for the case of a general ovaloid. By Poincaré-
Hopf theorem, the sum of indices over all umbilic points is equal to the
Euler characteristic of M , that is, 2, and the conjecture would follow if one
could prove that the index of an isolated singularity of this foliation cannot
exceed 1. The last statement is what numerous mathematicians working
on the problem over the years aimed at. This statement is stronger than
Carathéodory’s conjecture and makes the convexity assumption irrelevant.

In special, Ribaucour, coordinates near an umbilic point, the field of
principal directions is given by the equation

fxy(dx
2 − dy2) + (fyy − fxx)dxdy = 0 (5.6.1)

where f(x, y) is a function, determined by the germ of the surface, analytic
for a real analytic surface.

Lines of curvature on surfaces in R3 is an old subject, Monge studied
them in the late XVIII-th century. Approximately 100 years later, Darboux
described local geometry of lines of curvature, see [47]. The first proof of
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Carathéodory’s conjecture for real analytic surfaces appeared in a series of
long and complicated papers by Hamburger [93, 94, 95], and it was soon
simplified by Bol [27]. These proofs did not totally satisfy the mathematical
community, and 15 years later Klotz published her proof [119], correcting
shortcomings in the previous works. This pattern continued over the years;
let us mention a paper by Titus [221] and, as far as we know, the most
recent attempt, by Ivanov [100]. To quote from this 72 page long paper:
“First, considering analytic surfaces, we assert with full responsibility that
Carathéodory was right. Second, we know how this can be proved rigorously.
Third, we intend to exhibit here a proof which, in our opinion, will convince
every reader who is really ready to undertake a long a tiring journey with
us.”

Let us mention that certain degree of smoothness is needed for Carathéodo-
ry’s conjecture to hold, see [19] for a counterexample.

Loewner’s conjecture

About 1950, Ch. Loewner formulated a conjecture whose particular case
implies that of Carathéodory. Let f be a real analytic function on the open
unit disc. Assume that the vector field ∂nf/∂z̄n has an isolated zero at the
origin. Then the index of this zero does not exceed n. The case of n = 2 is
relevant to umbilics, cf. (5.6.1).

The status of Loewner’s conjecture is approximately the same as that
of Carathéodory’s. The proof in [221] is not free of shortcomings, and a
complete understandable proof is not available yet.

Remark 5.6.1. The n = 1 case of Loewner’s conjecture is the statement
that the index of an isolated singularity of the gradient vector field of a func-
tion of 2 variables cannot exceed 1. This is a well known fact, proved by stan-
dard techniques of differential equations. Interestingly, this fact was used to
prove one of the first results of emerging symplectic topology: an orienta-
tion and area preserving diffeomorphism of S2 has at least 2 distinct fixed
points (see, e.g., [15, 148]). One cannot help thinking that Carathéodory’s
and Loewner’s conjectures are similarly related to yet unknown version of
multi-dimensional Sturm theory.

Two reformulations of Carathéodory’s conjecture

Let us discuss two reformulations of Carathéodory’s conjecture that may
shed new light on this fascinating problem.
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First, consider the support function p : S2 → R of the convex surface
M , cf. Section 4.1. Let x, y, z be Cartesian coordinates in R3. The sup-
port functions of spheres are the restrictions on the unit sphere S2 of affine
functions ax + by + cz + d. A version of Carathéodory’s conjecture reads
therefore as follows:

Given a smooth function p on S2, there are at least two distinct points at
which the 2-jet of p coincides with that of an affine function ax+by+cz+d.

This formulation resembles the 4-vertex theorem which states that if
p : S1 → R is the support function of a closed plane curve then there exist
4 distinct points at which the 3-jet of p coincides with that of an affine
function ax+ by + c, see Section 4.1.

Next, consider a smooth cooriented surface M ⊂ R3. Assign to a point
x ∈M the oriented normal line to M at x. One obtains an immersion ψ of
M to the space L of oriented lines in R3. The image of this immersion is
Lagrangian with respect to the symplectic structure on L, see Section 8.2.

Consider an almost complex structure on L defined as follows. Given
a line ` ∈ L, consider the rotation of space about ` through π/2. The
differential of this rotation is a linear transformation J of the tangent space
T`L whose 4-th iteration is the identity, that is, an almost complex structure.

Exercise 5.6.2. Prove that J is a complex structure.

Hint. Use the diffeomorphism L = T ∗S2 and the complex structure on S2.

In terms of J , the umbilics are described as follows.

Lemma 5.6.3. A point x ∈ M is umbilic if and only if ψ(x) is a complex
point of ψ(M).

Proof. Consider the quadratic surface that is tangent to M at x with order
2. The point x is umbilic if and only if this quadric is invariant under
the rotation through π/2 about the normal line ` = ψ(x). The latter is
equivalent to the tangent space T`ψ(M) ⊂ T`L being invariant under the
linear transformation J .

Thus a version of Carathéodory’s conjecture can be stated as follows:

A Lagrangian immersion S2 → L has at least two distinct complex points.

It is interesting what the least number of umbilics is on a surface of genus
2 or higher; a torus can be embedded in space without umbilic points at all.
The fact that the index of a singularity of the field of principal directions
cannot exceed 1 does not help answering this question.



158 CHAPTER 5. PROJECTIVE INVARIANTS OF SUBMANIFOLDS

Arnold’s conjectures on non-degenerate hypersurfaces

A classic Hadamard theorem asserts that a closed positively curved hyper-
surface in Euclidean space bounds a convex domain, see e.g., [193]. Consider
a non-degenerate smooth cooriented hypersurface M n−1 ⊂ RPn, n ≥ 3.
The signature (k, l), k+ l = n− 1, of the second fundamental form of M is
projectively well defined and remains the same at every point of M . A gen-
eralization of the Hadamard theorem states that if M has signature (n−1, 0)
then M lies in an affine chart and bounds a convex domain therein, see [8].

In [8], V. Arnold proposed a number of conjectures generalizing this
result to non-degenerate hypersurfaces M of signature (k, l):

1). One of the components of the complement to M contains a space
RPk and the other a space RPl.

2). Every projective line, connecting a point of RPk with a point of RPl,
transversally intersects M at two points.

3). M is diffeomorphic to the quotient space of Sk × Sl by the antipodal
involution (x, y) 7→ (−x,−y).

4). The space of embeddings of a hypersurface of signature (k, l) is con-
nected.

The main example is a quadratic hypersurface, given in RPn by the
equations x2

1 + . . .+ x2
k+1 = y2

1 + . . . + y2
l+1, and its small perturbations.

Arnold’ conjectures remain mostly open, even for saddle-like surfaces in
RP3. In a recent remarkable series of papers [108, 109, 110], Khovanskii and
Novikov obtain a number of results around these conjectures, in particular,
they prove an affine version of Conjecture 1). This version requires an
assumption on the behavior of the hypersurface at infinity. One says that
a hypersurface M approaches a hypersurface N at infinity if M and N are
arbitrarily C2-close outside a sufficiently large ball. One of the results of
Khovanskii and Novikov is as follows.

Theorem 5.6.4. Let M ⊂ Rn be a non-degenerate hypersurface of signature
(k, l), k+ l = n− 1, which approaches the quadratic cone x2

1 + . . .+ x2
k+1 =

y2
1 + . . .+ y2

l at infinity. Then one of the components of the complement to
M contains a k-dimensional affine subspace and the other an l-dimensional
one.

A slightly different asymptotic behavior may change the situation drasti-
cally. For example, there exists a surface in R3 which approaches the surface
x2 + y2 = (|z| − 1)2 at infinity and whose complement contains no lines.



Chapter 6

Projective structures on

smooth manifolds

In this chapter we consider M , a smooth manifold of dimension n. How does
one develop projective differential geometry on M? If M is a PGL(n+1,R)-
homogeneous space, locally diffeomorphic to RPn, then the situation is clear,
but the supply of such manifolds is very limited. Informally speaking, a pro-
jective structure on M is a local identification of M with RPn (without the
requirement that the group PGL(n+1,R) acts on M). Projective structure
is an example of the classic notion of a G-structure widely discussed in the
literature. Our aim is to study specific properties of projective structures,
see [121, 220] for a more general theory of G-structures.

There are many interesting examples of manifolds that carry projective
structures, however the general problem of existence and classification of
projective structures on an n-dimensional manifold is wide open for n ≥ 3.
There is a conjecture that every 3-dimensional manifold can be equipped
with a projective structure, see [196]. This is a very hard problem and its
positive solution would imply, in particular, the Poincaré conjecture.

In this chapter we give a number of equivalent definitions of projective
structures and discuss some of their main properties. We introduce two
invariant differential operators acting on tensor densities on a manifold and
give a description of projective structures in terms of these operators. We
also discuss the relation between projective structures and contact geometry.
In the 2-dimensional case, we present a classification of projective structures.

159
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6.1 Definition, examples and main properties

In this section we define the notion of projective structure on a smooth
manifold and discuss its basic properties.

Definition

Let us start with three equivalent definitions of projective structure on an
n-dimensional manifold M .

a) An atlas (Ui, xi), where (Ui) is a countable covering of M by open sets
and xi = (x1

i , . . . , x
n
i ) : Ui → Rn are coordinate maps, is called a projective

atlas if the transition functions xj ◦ x
−1
i are fractional-linear, that is, in

Ui ∩ Uj , one has

xki =
ak0 + ak1 x

1
j + · · · + akn x

n
j

a0
0 + a0

1 x
1
j + · · ·+ a0

n x
n
j

(6.1.1)

where, for each (i, j), the (n+1)×(n+1)-matrix A = (ak` ) is non-degenerate
(and defined up to a multiplicative constant). Two projective atlases are
called equivalent if their union is again a projective atlas. A class of equiv-
alent projective atlases is called a projective structure.

A projective structure is called an affine structure if the transition func-
tions are given by affine transformations, more precisely, a0

1 = · · · = a0
n = 0

in (6.1.1).
b) Consider an atlas (Ui, ϕi) where the maps ϕi : Ui → RPn are such

that the maps ϕi ◦ϕ
−1
j are projective, that is, are given by the restriction of

an element of PGL(n+ 1,R) to ϕj(Uj) ⊂ RPn. Equivalence of such atlases
is defined in the same way as in a), and an equivalence class is called a
projective structure.

In the case of affine structures, the transition functions ϕi◦ϕ
−1
j are given

by the restriction of elements of Aff(n,R) ⊂ PGL(n+ 1,R) where Aff(n,R)
is the affine subgroup of PGL(n+ 1,R), that is, the subgroup preserving an
arbitrary fixed hyperplane RPn−1 ⊂ RPn.

c) Let M̃ be the universal covering of M . A smooth map

ϕ : M̃ → RPn (6.1.2)

is called a developing map if it is a local diffeomorphism and if there is a
homomorphism

T : π1(M) → PGL(n+ 1,R) (6.1.3)

such that for all γ ∈ π1(M) and x ∈ M̃ one has

ϕ(γ(x)) = Tγ ◦ ϕ(x); (6.1.4)
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here we consider the fundamental group as a group of deck transformations
of M̃ . A projective structure on M is given by a developing map modulo
equivalence: ϕ ∼ Aϕ for some A ∈ PGL(n + 1,R). The homomorphism
(6.1.3) is called the monodromy (or holonomy) of the projective structure.

A projective structure is affine if there is a hyperplane RPn−1 ⊂ RPn

which does not intersect the image ϕ(M̃ ) and the range of the homomor-
phism (6.1.3) is Aff(n,R).

Exercise 6.1.1. Prove that the definitions a) – c) are equivalent.

sl(n + 1, R), the symmetry algebra of projective structure

The Lie group PGL(n + 1,R) is the group of symmetries in projective ge-
ometry. The corresponding Lie algebra is sl(n+ 1,R).

Exercise 6.1.2. The standard sl(n + 1,R)-action on RPn is generated by
the vector fields

∂

∂xi
, xj

∂

∂xi
, xj

n∑

i=1

xi
∂

∂xi
(6.1.5)

where (x1, . . . , xn) are affine coordinates. The vector fields in (6.1.5) with
constant and with linear coefficients generate the standard affine subalgebra
aff(n,R) ⊂ sl(n+ 1,R).

It follows that the space of vector fields generated by (6.1.5) is stable with
respect to the fractional-linear coordinate transformations (6.1.1). One can
prove that, conversely, a projective atlas is such an atlas that the (n2 +2n)-
dimensional space of vector fields spanned by the fields (6.1.5) is stable with
respect to the transition functions.

Remark 6.1.3. Note that the sl(n + 1,R)-action on M is defined only
locally; once a developing map is fixed, one can define an action of sl(n+1,R)

globally on M̃ .

Examples of projective structures

Let us start with simple general constructions producing a substantial supply
of examples.

First, if M1 and M2 are two manifolds of the same dimension carry-
ing projective structures then their connected sum M1#M2 can be given a
projective structure. Namely, one removes a disc from each manifold and
identifies collars of the boundary spheres by a projective transformation.
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Second, if Γ is a discrete subgroup of SL(n + 1,R), acting properly on
Sn, then the quotient Sn/Γ has a natural projective structure. The most
famous of these examples, after RPn itself, is the Poincaré sphere, see, e.g.,
[111] for an account of various facets of this space.

Example 6.1.4. Every closed surface of genus g ≥ 2 has a projective struc-
ture. Indeed, the hyperbolic plane H2 has a projective structure since the
Klein-Beltrami model realizes H2 as the interior of a disc in RP2, see Section
4.2. The surface is the quotient space of H2 by a discrete group of isometries
which acts by projective transformations.

Example 6.1.5. Every projective structure on Sn with n ≥ 2 is diffeomor-
phic to the standard one. Indeed, consider a developing map ϕ : Sn → RPn.
Since Sn is simply connected, this map lifts to ϕ̃ : Sn → Sn. The immersion
ϕ̃ is a diffeomorphism. Therefore the initial projective structure on Sn is
the pull-back of the standard one.

Interesting explicit examples can be constructed in the two-dimensional
case.

Example 6.1.6. (Sullivan-Thurston). Consider a (generic) element A of
PGL(3,R), represented by a matrix

A =




ea 0 0
0 eb 0
0 0 ec




with a > b > c. The matrix A corresponds to the t = 1 map for the flow At

on RP2, given in homogeneous coordinates by

(x : y : z) 7→ (xeat : yebt : zect).

The flow At has three fixed points, see figure 6.1. Consider a closed curve
γ ∈ RP2, transverse to the flow lines. Such a curve is characterized by a
word in two symbols, see figure 6.1.

Two curves γ and Aγ bound an immersed annulus, and the projective
map A identifies the boundary components. Gluing these components ac-
cording to the identification, one obtains a torus T2 with projective structure
induced from RP2. The monodromy of this projective structure associates
the operator A to one of the generators of π1(T

2) = Z2 and the identity to
the second one.
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Figure 6.1: aabbbb

Example 6.1.7. Let M be a 2-dimensional open manifold, for instance, a
compact surface with n ≥ 1 discs removed; then M can be endowed with
an affine structure. According to the classical immersion theory, see, e.g.,
[194], an open parallelizable n-dimensional manifold can be immersed into
Rn. In our case, such an immersion is shown in figure 6.2.

b)a)

Figure 6.2: a) genus 1, b) genus g

Such an immersion can be viewed as the developing map (6.1.2) with
trivial monodromy.

Affine and projective structures naturally arise in the theory of com-
pletely integrable systems.

Example 6.1.8. Let (M 2n, ω) be a symplectic manifold with a Lagrangian
foliation Ln, cf. Section 8.2. The leaves of L carry a canonical affine struc-
ture. To define this structure, we realize each leaf as a homogeneous Rn-
space.

Locally, the space of leaves of a Lagrangian foliation is a smooth manifold
Nn = M/L. Consider a point x ∈ N and define an action of Rn = T ∗xN on
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the leaf Lx. Given a covector p ∈ T ∗xN , consider a smooth function f on
N such that dfx = p. Lift f to M and consider its Hamiltonian vector field
v. The field v is tangent to Lx and the restriction v|Lx does not depend on
the choice of f . Any two such vector fields on Lx commute. Hence we have
constructed a free action of Rn on Lx. This action is effective, and the leaf
Lx is a homogeneous Rn-space.

Consider the contact counterpart of this construction. Let M 2n−1 be a
contact manifold with a Legendrian foliation Ln−1. Then the leaves of L
carry a canonical projective structure. We define this structure in terms of
a developing map to RPn−1.

Consider a leaf Lx. At each point of the leaf, one has the contact hy-
perplane, tangent to the leaf. Project this hyperplane to TxN where, as
before, Nn = M/L. A hyperplane in the tangent space is a contact element,
that is, a point in P(T ∗xN) ∼= RPn. The constructed map Lx → RPn is
an immersion, as follows from the complete non-integrability of the contact
distribution.

Exercise 6.1.9. Prove the last assertion.

Monodromy as invariant

Let us discuss the problem of classification of projective structures. Under
which condition are two projective structures on M diffeomorphic? In other
words, what is the complete list of invariants of projective structures? This
general problem is intractable in dimensions 3 and higher. The monodromy
(6.1.3) is clearly a Diff(M)-invariant. The classification problem is then
reduced to classification of projective structures with a fixed monodromy.

A deformation, or homotopy, is a continuous family of projective struc-
tures depending on one parameter. Let us consider deformations with fixed
monodromy.

The following result can be considered an analog of Theorem 1.6.4.

Theorem 6.1.10. Two projective structures on a compact manifold M
which are homotopic with fixed monodromy are diffeomorphic.

This theorem means that the monodromy is the unique continuous (or
local) invariant of projective structures. We will prove Theorem 6.1.10 in
Section 6.4.

Remark 6.1.11. Discrete invariants of projective structures are more dif-
ficult to classify. For instance, in the case M = S1, one has a unique
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discrete invariant, namely the winding number, see Remark 1.6.6. The pro-
jective structures from Example 6.1.6 have the same monodromy but are
not diffeomorphic if the corresponding 2-symbol words are different. An-
other important problem is to determine the homomorphisms (6.1.3) that
correspond to projective structures.

Comment

The study of projective structures and, more generally, of G-structures on
smooth manifolds was initiated by J. M. C. Whitehead [233] who proved the
uniqueness of G-structures on simply connected manifolds, see also Ehres-
mann [59] for the case of a finite fundamental group. Ehresmann introduced
the notion of developing map for G-structures. Example 6.1.6 is borrowed
from [196]. Example 6.1.8, Lagrangian case, is part of the Arnold-Liouville
theorem in the theory of integrable systems, see [10, 15]. As to the Legen-
drian case, an adequate complete integrability theory is not yet available.
The complete answer to the classification problem is known only in dimen-
sions 1 and 2, see [39] and references therein for the two-dimensional case.
See also [83] for a variety of results on projective and affine structures.

6.2 Projective structures in terms of differential

forms

In this section we will reformulate the problem of existence of projective
structures in terms of volume forms of a special type. In the odd-dimensional
case, one relates projective structures to contact forms. The material of this
and the next two sections is based on [164].

Volume forms

Let us introduce a kind of global coordinates for a projective structure. The
definition is motivated by the notion of homogeneous coordinates on RPn.

Proposition 6.2.1. A manifold Mn carries a projective structure if and
only if there exist n+1 functions f1, . . . , fn+1 on M̃ satisfying the following
two properties:

(a) the space spanned by the functions f1, . . . , fn+1 is invariant with re-
spect to π1(M),
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(b) the n-form

Ω =
n+1∑

i=1

(−1)i+1fi df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ dfn+1 (6.2.1)

is a volume form on M̃ .

Proof. Suppose there is a volume form given by (6.2.1) on M̃ . Denote by
F the n + 1-dimensional space spanned by the functions f1, . . . , fn+1. To
a point x ∈ M̃ we assign the subspace Vx ⊂ F formed by the functions
vanishing at x. The dimension of the space Vx is n since the form Ω is
nowhere vanishing. Choosing an identification F ∼= Rn+1, we obtain a map
ϕ : M̃ → RPn, defined up to a projective transformation (depending on the
choice of the linear isomorphism F ∼= Rn+1). Let us show that the map ϕ
is a local diffeomorphism.

Since Ω 6= 0, for any point x there is a function in F that is non-zero at
x. Without loss of generality, we may assume that fn+1(x) 6= 0. Let us put
xi = fi/fn+1 for i = 1, . . . , n.

Exercise 6.2.2. Check that, in a neighborhood of x, the form Ω is propor-
tional to dx1 ∧ · · · ∧ dxn.

Thus the functions x1, . . . , xn form a system of local coordinates on M̃ in a
neighborhood of x, so that ϕ is indeed a local diffeomorphism.

A different choice of the basis of the space F corresponds to a fractional-
linear coordinate transformation so that one obtains a projective structure
on M̃ . Furthermore, condition (a) insures that this projective structure
descends to M .

Conversely, assume that M is equipped with a projective structure; let us
construct the functions f1, . . . , fn+1. Let ϕ : M̃ → RPn be a developing map;
it can be lifted to an immersion ϕ̃ : M̃ → Rn+1, defined up to homotheties.
In homogeneous coordinates, one can write ϕ(x) = (ϕ1(x) : · · · : ϕn(x) : 1),
and in linear coordinates on Rn+1, one has

ϕ̃(x) = (f(x)ϕ1(x), . . . , f(x)ϕn(x), f(x))

where f > 0 is a function on M̃ . Choose an arbitrary volume form Ω on
M , and thus on M̃ , and the standard volume form Ω0 on Rn+1. There is a
unique function f such that Ω = ieϕ(x)Ω0.
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Exercise 6.2.3. Check that

f =

∣∣∣∣∣∣

∂1ϕ1 . . . ∂1ϕn
. . .
∂nϕ1 . . . ∂nϕn

∣∣∣∣∣∣

− 1
n+1

(6.2.2)

where ∂i = ∂/∂xi.

The pull-back of linear coordinates on Rn+1 defines the functions f1, . . . , fn+1.
This completes the proof.

Remark 6.2.4. Proposition 6.2.1 provides a necessary and sufficient con-
dition for the existence of a projective structure on M . However, the
correspondence between projective structures and the space of functions
〈f1, . . . , fn+1〉 is not Diff(M)-invariant; to construct this space from a pro-
jective structure, we fixed a volume form on M .

Relation to contact geometry

Consider the case of an orientable odd-dimensional manifold, dimM = 2k−
1. In this case, the existence of projective structures can be reformulated in
terms of contact geometry, see Section 8.2.

Corollary 6.2.5. A manifold M 2k−1 carries a projective structure if and
only if there exist 2k functions f1, . . . , fk, g1, . . . , gk on M̃ satisfying the fol-
lowing two properties:

(a) the space spanned by the functions f1, . . . , fk, g1, . . . , gk is invariant
with respect to π1(M),

(b) the 1-form

α =

k∑

i=1

(fidgi − gidfi) (6.2.3)

is a contact form on M̃ .

Proof. Given a contact form (6.2.3), one has α∧ (dα)k−1 = Ω as in Proposi-
tion 6.2.1, and hence M has a projective structure. Conversely, the existence
of a projective structure onM implies the existence of a volume form (6.2.1).
Split the set of functions involved into two subsets f1, . . . , fk, g1, . . . , gk and
consider the 1-form (6.2.3). Again, the relation α ∧ (dα)k−1 = Ω implies
that α is a contact form.

Note that the choice of the contact structure is not unique: it depends
on the choice of a Darboux basis.
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6.3 Tensor densities and two invariant differential

operators

In this section Mn is an arbitrary smooth manifold. We will define the
notion of tensor densities on M which already played a prominent role in
the one-dimensional case. We construct two invariant differential operators
on the space of tensor densities. Although these operators are not directly
related to projective structures we will use them in the next section to prove
important results about projective structures.

Tensor densities on smooth manifolds

The space, Fλ(M), of tensor densities of degree λ ∈ R on M is the space of
sections of the line bundle (∧nT ∗M)λ. In local coordinates, a tensor density
of degree λ can be expressed in the form

φ = f(x1, . . . , xn) (dx1 ∧ · · · ∧ dxn)
λ.

The space Fλ(M) is a module over Diff(M) with the natural action. In local
coordinates, it is given by the formula

T λg−1(φ) = (Jg)
λ φ(g), g ∈ Diff(M)

where Jg is the Jacobian of g.
The Diff(M)-modules Fλ(M) and Fµ(M) are isomorphic only if λ = µ.

Indeed, any isomorphism between these modules would be a unitary invari-
ant differential operator on tensor densities. Such operators are classified,
and there is only one, the de Rham differential (cf. Comment in Section 2.1).
The de Rham differential acts between tensor densities only in dimension 1
and then it has a kernel consisting of constants.

If Mn is closed and orientable then there is a Diff(M)-invariant pairing

Fλ(M)⊗Fµ(M) → R (6.3.1)

with λ + µ = n, already considered in Section 1.5 in the one-dimensional
case.

Wronski operator

For every λ1, . . . , λn+1, there is an (n+1)-linear (skew-symmetric) invariant
differential operator

W : Fλ1(M)⊗ · · · ⊗ Fλn+1(M) → Fλ+1(M)
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where λ = λ1 + · · · + λn+1. In local coordinates, this operator is given by
the formula

W (φ1, . . . , φn+1) =

∣∣∣∣∣∣∣∣∣

λ1f1 . . . λn+1fn+1

∂1f1 . . . ∂1fn+1
...

. . .
...

∂nf1 . . . ∂nfn+1

∣∣∣∣∣∣∣∣∣
(dx1 ∧ · · · ∧ dxn)

λ+1 (6.3.2)

where φi = fi (dx1 ∧ · · · ∧ dxn)
λi for i = 1, . . . , n+ 1 and ∂if = ∂f/∂xi.

Exercise 6.3.1. Check that formula (6.3.2) does not depend on the choice
of local coordinates, so that the operator W is well-defined and commutes
with the Diff(M)-action.

Let us mention three particular cases.

Example 6.3.2. a) In the one-dimensional case, the operator (6.3.2) is
bilinear:

W (φ1, φ2) = (λ1f1f
′
2 − λ2f

′
1f2)(dx)

λ1+λ2+1.

This is the well-known Schouten bracket. The Wronski determinant of two
solutions of the Sturm-Liouville equation (see Section 1.6) is a very special
particular case with λ1 = λ2 = −1/2.
b) The volume form (6.2.1) provides a “regularized” version of the operator
(6.3.2) in the case λ1 = · · · = λn+1 = 0.
c) If λ1 = · · · = λn+1 = −1/(n + 1), then the operator W takes values in
C∞(M).

Invariant differential operators with values in Vect(M)

Let us define an n-linear (skew-symmetric) invariant differential operator

A : Fλ1(M)⊗ · · · ⊗ Fλn(M) → Vect(M)⊗C∞(M) Fλ+1(M)

where λ = λ1 + · · · + λn. In local coordinates this operator is given by the
formula

A(φ1, . . . , φn) =

n∑

i=1

(−1)i

∣∣∣∣∣∣∣∣∣∣∣∣

λ1f1 · · · λnfn
∂1f1 · · · ∂1fn
· · · · · · · · ·

∂̂if1 · · · ∂̂ifn
· · · · · · · · ·
∂nf1 · · · ∂nfn

∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂xi
⊗ (dx1 ∧ · · · ∧ dxn)

λ+1
(6.3.3)
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Exercise 6.3.3. Check that the operator A is a well-defined Diff(M)-inva-
riant differential operator, that is, formula (6.3.3) does not depend on the
choice of local coordinates.

Remark 6.3.4. In the particular case λ = −1, the operator (6.3.3) takes
values in Vect(M). In this case, it has a simple interpretation. Let ψ be a
tensor density of degree µ. Then one has, for the Lie derivative,

LA(φ1,...,φn)ψ = W (φ1, . . . , φn, ψ).

In this particular case, the above formula can be used for a definition of the
operator (6.3.3).

We will consider one more invariant differential operator

Ā : Fλ1(M)⊗ · · · ⊗ Fλn+1(M) → Vect(M)⊗C∞(M) Fλ+1(M)

with λ = λ1 + · · · + λn+1. This operator is defined as a composition of the
operator A with multiplication, namely,

Ā(φ1, . . . , φn;φn+1) = φn+1A(φ1, . . . , φn) (6.3.4)

Example 6.3.5. In the one-dimensional case, the operator Ā is nothing else
but the product of two tensor densities.

Relation between the operators Ā and W

Consider the special case

λ1 + · · · + λn+1 = −1.

The operator Ā then takes values in Vect(M). In this case, there is a nice
relation between the two invariant differential operators, Ā and W .

Exercise 6.3.6. For ψ ∈ Fµ(M), check the identity for the Lie derivative:

LĀ(φ1,...,φn;φn+1)ψ = φn+1W (φ1, . . . , φn, ψ) + µψW (φ1, . . . , φn+1). (6.3.5)

6.4 Projective structures and tensor densities

In this section we will give one more equivalent definition of projective struc-
ture. Our approach is similar to the classical theory in the one-dimensional
case, see Section 1.3. We associate with each projective structure P on M
an (n+1)-dimensional space FP of tensor densities of degree −1/(n+1) on

M̃ such that the operator W defines a volume form on this space. In the
one-dimensional case, FP is just the space of solutions of a Sturm-Liouville
equation.
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Projective structures and tensor densities

The operator (6.3.2) is closely related to the notion of projective structure.
Our idea (similar to the one-dimensional case) consists in assigning a tensor
weight to the functions f1, . . . , fn+1 from Proposition 6.2.1.

The following statement is a refined, Diff(M)-invariant version of Propo-
sition 6.2.1.

Theorem 6.4.1. There is a one-to-one Diff(M)-invariant correspondence
P 7→ FP between projective structures on M and (n + 1)-dimensional sub-

spaces of F−1/(n+1)(M̃) satisfying the following two properties:

(a) the space FP is invariant with respect to π1(M),

(b) for every basis φ1, . . . , φn+1 in FP, one has

W (φ1, . . . , φn+1) = const 6= 0. (6.4.1)

Proof. Given a space FP ⊂ F−1/(n+1)(M̃ ) satisfying conditions (a) and

(b), for every point x of M̃ we consider the subspace Vx ⊂ FP consisting
of tensor densities, vanishing at x. This defines a developing map of a
projective structure. The proof of this fact is similar to that of the first part
of Proposition 6.2.1.

Conversely, given a projective structure P on M , fix an arbitrary vol-
ume form Ω. One then obtains an n + 1-dimensional space of functions
〈f1, . . . , fn+1〉 on M̃ (see Proposition 6.2.1). For every function f from this
space, the tensor density f Ω−1/(n+1) is Diff(M)-invariant. This immediately
follows from formula (6.2.2).

Exercise 6.4.2. Check that the construction is independent of the choice
of the volume form Ω.

Hence the result.

Reconstructing the sl(n + 1, R)-action

Let us recall that, in the one-dimensional case, the action of sl(2,R), cor-
responding to a projective structure, was reconstructed from the respec-
tive Sturm-Liouville equation via products of pairs of its solutions, see Ex-
ercise 1.3.6. Similarly, in the multi-dimensional case, we wish to recover
the sl(n+ 1,R)-action, corresponding to a projective structure P, from the
(n + 1)-dimensional space FP of tensor densities constructed in Theorem
6.4.1.
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Proposition 6.4.3. Let P be a projective structure on a manifold M . To
reconstruct the sl(n+ 1,R)-action on M̃ it suffices to take the image of the
operator

Ā : ΛnFP ⊗FP → Vect(M̃).

This image is a Lie subalgebra of Vect(M̃), isomorphic to sl(n+ 1,R).

Proof. Let a be the image of Ā|ΛnFP⊗FP
. Identity (6.3.5) implies that a is

a Lie subalgebra of Vect(M̃ ). Indeed, the commutator of two vector fields
of the form Ā(φ1, . . . , φn;φn+1), where φi ∈ FP, can be computed by the
Leibnitz rule, using the fact that the operator W is constant on the elements
of FP.

Identity (6.3.5) also implies that the Lie algebra a acts on the space
FP. Furthermore, this action preserves the volume form on FP, defined
by the operator W , since this operator is invariant. One therefore has a
homomorphism

a → sl(n+ 1,R).

For a point x ∈ M , we may assume, without loss of generality, that
φn+1 6= 0. We then fix a coordinate system in a neighborhood of this point:
xi = φi/φn+1.

Exercise 6.4.4. Check that, in the chosen coordinate system, the Lie alge-
bra a is generated by the vector fields (6.1.5).

Hint. It is almost a tautology that, in the chosen coordinate system, the
elements of FP are written as φ = f (dx1 ∧ · · · ∧ dxn)

−1/(n+1) where f is a
polynomial of degree ≤ 1 in x.

Therefore the image of this homomorphism coincides with sl(n+ 1,R).

Finally, let us show that the above homomorphism of Lie algebras has
no kernel. The operator Ā is defined on the space ΛnFP⊗FP of dimension
(n+1)2. The following exercise shows that the operator Ā has a non-trivial
kernel.

Exercise 6.4.5. Check that if φ1, . . . , φn+1 ∈ FP then

Alt1,...,n+1 Ā(φ1, . . . , φn;φn+1) = 0

where Alt means complete anti-symmetrization.

It follows that dim a ≤ n2 + 2n.
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We proved that the vector fields of the form Ā(φ1, . . . , φn;φn+1) with

φi ∈ FP span a subalgebra of Vect(M̃) isomorphic to sl(n + 1,R) and act-
ing on the subspace FP. Hence this Lie algebra preserves the projective
structure P. Proposition 6.4.3 is proved.

Proof of Theorem 6.1.10

Our proof goes along the same lines as that of Theorem 1.6.4.

Let us use the homotopy method. Consider a family Pt of projective
structures on a compact manifold M . We think of a projective structure P

as a space of −1/(n+ 1)-densities FP. Fix a basis φ1t, . . . , φn+1t in FPt so
that W (φ1t, . . . , φn+1t) ≡ 1 and the monodromy representation expressed in
this basis is also independent of t. We will prove that for every t there exists
a diffeomorphism gt that takes the basis φ10, . . . , φn+10 to φ1t, . . . , φn+1t.

According to the homotopy method, it suffices to find a family of vector
fields Xt on M such that their lift X̃t to M̃ satisfies

φ̇it = L eXt
(φit) (6.4.2)

where dot is the derivative with respect to t and i = 1, . . . , n + 1. Let us
simplify the notation and suppress the subscript t everywhere.

Lemma 6.4.6. The solution of the homotopy equation (6.4.2) is the vector
field

X̃ = Alt1,...,n+1 Ā(φ1, . . . , φn; φ̇n+1). (6.4.3)

Proof. In local coordinates, X̃ =
∑

j h
j∂/∂xj , and the equation (6.4.2) is a

system of n+ 1 linear equations

φ̇i =
n∑

j=1

(
hj
∂φi
∂xj

−
1

n+ 1

∂hj

∂xj
φi

)

in the variables hj with j = 1, . . . , n and ζ =
∑

j ∂h
j/∂xj which we tem-

porarily consider as an independent variable.

Exercise 6.4.7. a) Using the fact that W (φ1, . . . , φn+1) ≡ 1, check that
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the solution of the above system of linear equations is

hi = (−1)i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ḟ1 . . . ḟn+1

f1 . . . fn+1

∂1f1 . . . ∂1fn+1

. . .

∂̂if1 . . . ∂̂ifn+1

. . .
∂nf1 . . . ∂nfn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ζ = −(n+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣

ḟ1 . . . ḟn+1

∂1f1 . . . ∂1fn+1

. . .
∂if1 . . . ∂ifn+1

. . .
∂nf1 . . . ∂nfn+1

∣∣∣∣∣∣∣∣∣∣∣∣

b) Using the fact that Ẇ (φ1, . . . , φn+1) ≡ 0, check that ζ, given by the last
formula, indeed equals

∑
j ∂h

j/∂xj .

Expanding the determinant in the above formula for hi in the first row,
we obtain formula (6.4.3). This completes the proof of the lemma.

To complete the proof of the theorem note that the vector field X̃ de-
scends to M . Indeed, let γ ∈ π1(M). It follows from the determinantal
formula for hi from Exercise 6.4.7 that γ∗hi = hi · det Tγ where γ is under-

stood as a diffeomorphism of M̃ . Finally, Tγ ∈ SL(n + 1,R) and therefore
γ∗hi = hi.

Theorem 6.1.10 is proved.

Remark 6.4.8. If the “infinitesimal variation” φ̇1, . . . , φ̇n+1 belongs to the
space FP, then the vector field (6.4.3) vanishes (cf. Exercise 6.4.5).

Multi-dimensional Sturm theorem on zeros

Let Mn be a simply connected manifold with a projective structure P and
ϕ a developing map. A geodesic on M is the preimage of a projective
line RP1 ⊂ RPn under ϕ. Note that geodesics can be disconnected. A
geodesic submanifold is characterized by the following property: if a geodesic
in M is tangent to the submanifold then this geodesic lies entirely in this
submanifold. Equivalently, a geodesic submanifold of dimension k is the
preimage of RPk ⊂ RPn.

The space FP is useful for description of geodesic submanifolds of M .
Let V ⊂ FP be a k-dimensional subspace. The condition φ = 0 for all φ ∈ V
determines a geodesic submanifold of M of codimension k and, conversely,
every geodesic submanifold corresponds to a subspace in V .

We have already mentioned the classic Sturm theorem on zeros in the
end of Section 1.3. Let us discuss its multi-dimensional analog. We consider
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here only the case dimM = 2 leaving higher dimensions to the reader’s
imagination.

γ

γ

1

2

γ3
γ3 γ3

Figure 6.3: Multi-dimensional Sturm theorem

Theorem 6.4.9. Let M 2 be a simply connected surface with a projective
structure and γ1, γ2, γ3 three geodesics. Then the intersection points of each
connected component of γ1 with γ2 and γ3 alternate (see figure 6.3).

Proof. The geodesics γ1, γ2 and γ3 are zeros of some densities φ1, φ2 and φ3.
Choosing an area form Ω on M , let us consider the functions fi, i = 1, 2, 3,
such that φi = fiΩ

−1/3. Consider the 1-form f2 df3 − f3 df2. We claim that
its restriction on γ1 does not vanish.

Indeed, let t be a parameter on a connected component of γ1. Consider
a small neighborhood U of γ1. One can use t and f1 as coordinates in U .
The Wronski determinant

W =

∣∣∣∣∣∣∣∣

f1 f2 f3

0 ∂f2
∂t

∂f3
∂t

1 ∂f2
∂f1

∂f3
∂f1

∣∣∣∣∣∣∣∣
6= 0.

On γ1 one has f1 = 0 and hence

W =

∣∣∣∣∣
f2 f3

∂f2
∂t

∂f3
∂t

∣∣∣∣∣ 6= 0.

It follows that f2 df3−f3 df2 = Wdt does not vanish and defines a projective
structure on γ1. Therefore zeros of the functions f2(t) and f3(t) alternate
by the classic Sturm theorem.
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6.5 Moduli space of projective structures in di-

mension 2, by V. Fock and A. Goncharov

The space of projective structures on Riemann surfaces was studied mainly
by S.Choi and W.Goldman [39, 40], F.Labourie [127], J.Loftin [139] and,
implicitly, N.Hitchin [97]. Given a projective structure on a Riemann surface
Σ, consider the developing map φ : Σ̃ → RP2 where Σ̃ is a universal cover of
Σ; the map φ is defined up to the right action of PGL(3,R). A projective
structure on Σ is called convex if φ is an embedding and its image is a convex
domain.

If the surface Σ has boundary, the space of projective structures on Σ is
obviously infinite dimensional even with convexity requirement. Indeed, any
projective invariant of the image of any subsegment of the boundary under
φ is an invariant of the projective structure. In order to make the space of
projective structures more similar to the one given by Theorem 6.1.10, let us
impose a certain requirement on the behavior of the projective structure at
the vicinity of the boundary. Namely we require that the projective structure
is extendable to the boundary and the image of the boundary under the
developing map φ belongs to a line. It follows from convexity that, in the
non-degenerate case, the image of a boundary component forms a segment,
connecting fixed points of the monodromy operator. The boundary is then
called linear. Or else, it is the limiting case of the previous one, when the
fixed points coincide. The latter case is called degenerate.

A framing of the projective structure is an orientation of all nondegener-
ate boundary components. The space of framed surfaces is a covering of the
space of nonframed ones, ramifived over surfaces with degenerate projective
structures. The degree of the covering is less or equal to 6s, where s is the
number of holes, since for every hole there are two framings and, in general,
three choices of pairs of eigenvectors of the monodromy operator.

The object of main interest for us in this section is the space of framed
convex real projective structures on an oriented surface Σ with linear bound-
ary and with oriented boundary components, considered up to the group
Diff0(Σ) of diffeomorphisms, homotopy equivalent to the identity. We de-
note this space by T H

3 (Σ) (the index 3 indicates that we are dealing with
the group PGL(3,R) and H stands for holes.)

There exist the following canonical maps:

• The map I of the ordinary Teichmüller space T H
2 (Σ) to T H3 (Σ). Recall

that T H
2 (Σ) is the space of complex structures on Σ, considered up to

the action of Diff0(Σ). Indeed, due to the Poincaré uniformization
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theorem, any complex surface can be represented as a quotient of the
upper half plane by a discrete group. Consider the upper half plane
as a model of the hyperbolic plane and replace it by the projective
model (interior of a conic in RP2): one obtains a canonical projective
structure on the quotient, cf. Example 6.1.4. The orientations of holes
are induced trivially.

• The map µ from T H
3 (Σ) to the space M3(Σ) of homomorphisms of

π1(Σ) to PGL(3,R) with discrete image, considered up to conjugation.
The results of F. Labourie [127], S. Choi and W. Goldman [40], based
on the work of N. Hitchin [97], show that the image of this map is a
connected component ofM3(Σ) and, moreover, given a complex struc-
ture on Σ, this space is isomorphic to the space of holomorphic cubic
differentials on Σ. The space M3(Σ) possesses a canonical Atiyah-
Hitchin Poisson structure. Since the map µ is a local diffeomorphism,
it induces a Poisson structure on T H

3 (Σ).

• The involution σ : T H
3 (Σ) → T H

3 (Σ), defined by the property that
φ(σx) is projectively dual to φ(x) for x ∈ T H

3 (Σ). The map σ is a
Poisson map.

• The action of the mapping class group:

T H3 (Σ)× (Diff(Σ)/Diff0(Σ)) → T H3 (Σ),

where Diff0(Σ) is the connected component of Diff(Σ). This action
preserves the Poisson structure.

Now we will give a set of global parameterizations of T H
3 (Σ), describe

its natural Poisson structure in terms of these parameterizations and give
explicit formulæ for the action of the mapping class group.

A model problem

Let us first study a simpler problem which, in a way, contains most of the
tools used.

Definition 6.5.1. Let Pn3 be the space of pairs of convex n-gons in RP2,
inscribed one into another, considered up to projective transformations.

This space is a discrete approximation to the space of parameterized closed
strictly convex curves in RP2. Fix a set R of n points on the standard
circle S1, then with a convex curve γ : S1 → RP2 one associates the convex
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polygon with vertices γ(R) and the polygon with edges, tangent to γ at
γ(R).

The space Pn3 is a Poisson manifold and there are analogs of the maps
µ,σ, I and the mapping class group action.

The natural map µ : Pn3 → F n3 /PGL(3,R) is an analog of the map µ
for T H

3 (Σ). The projective duality interchanges inscribed and circumscribed
polygons and acts as an involution σ of Pn3 . There exists a canonical map
I : Pn2 → Pn3 where Pn2 is the space of polygons, inscribed into a conic.
Indeed, to such a polygon one canonically assigns the circumscribed polygon,
formed by the tangents to the conic at the vertices of the original polygon.

Exercise 6.5.2. The image of I coincides with the set of fixed points of σ.

Hint. Compare with Exercise 1.4.5 b).

The role of the mapping class group is played by the cyclic group, per-
muting the vertices of the polygons.

Let us now proceed to the parameterization of the spaces Pn
3 . Cut the

inscribed polygons into triangles by diagonals and mark two distinct points
on every edge of the triangulation, except the edges of the polygon, and
mark also one point inside each triangle, see figures 6.4 and 6.5 below.

Theorem 6.5.3. There exists a canonical bijective correspondence between
the space Pn3 and assignments of positive real numbers to the marked points.

Proof. The proof is constructive: we will describe how to construct numbers
from a pair of polygons and vice versa.

Start with a remark about notations. We denote points, resp. lines, by
upper case, resp. lower case, letters. A triangle in RP2 is determined by
neither its vertices nor by its sides, since there exists four triangles for each
triple of vertices or sides. If a triangle is shown on a figure, it is clear which
one corresponds to the vertices, since only one of four fits entirely into the
figure. If we want to indicate a triangle which does not fit, we add to its
vertices, in parentheses, a point which belongs to the interior triangle. For
example, points A,B and C on figure 6.4 are vertices of the triangles ABC,
ABC(a ∩ c), ABC(a ∩ b) and ABC(b ∩ c).

We will also use a definition of the cross-ratio, different from the one in
Section 1.2. Namely, by the cross-ratio of points A,B,C,D we mean the
value at D of a projective coordinate which is equal to ∞ at A, −1 at B
and 0 at C, cf. Exercise 1.2.1 b).
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Figure 6.4: The moduli space P3
3

Exercise 6.5.4. Check that the defined cross-ratio is as follows:

[A,B,C,D] =
(A−B)(C −D)

(A−D)(B − C)
.

Let us start with the case of P3
3 . This is the space of pairs of triangles abc

and ABC, figure 6.4, where the latter is inscribed into the former, and con-
sidered up to projective transformations. Since projective transformations
act transitively on quadruples of non-collinear points, P 3

3 is 1-dimensional.
A unique invariant of a pair is called the triple ratio, namely, the ratio

X =
|A (a ∩ c)||B (b ∩ a)||C (c ∩ b)|

|A (a ∩ b)||B (b ∩ c)||C (c ∩ a)|

where the distances are measured in any Euclidean metric in R2.

Exercise 6.5.5. Show that the triple ratio is a projective invariant.

Hint. If the lines A(b ∩ c), B(c ∩ a) and C(a ∩ b) are concurrent then the
triple ratio equals 1: this is the Ceva theorem of elementary geometry. In
general, intersect the lines B(c ∩ a) and C(a∩ b), connect their intersection
to the point (b∩c), intersect this line with the line (c∩a)(a∩b), and consider
the cross-ratio of the four points on the latter line.

The fact that ABC is indeed inscribed into abc implies that X is positive.

Now consider the next case, P4
3 . Likewise, this is the space of pairs

of quadrilaterals abcd and ABCD, where the latter is inscribed into the
former, and considered up to projective transformations. The space of such
configurations has dimension 4. Two parameters of these configurations are
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Figure 6.5: The moduli space P4
3

given by the triple ratio X of the triangle ABC, inscribed into abc, and the
triple ratio Y of ACD, inscribed into acd.

Two other parameters are given by the cross-ratios of quadruples of
points (a∩ c)(a∩d)A(a∩ b) and (c∩a)(c∩d)C(c∩ b), denoted by Z and W ,
respectively. They are defined since the points of each of these quadruples
are collinear. Note that Z and W are positive (cf. Exercise 6.5.4). Assign
the coordinates X,Y,Z and W to the marked points, as shown in figure 6.5.

Finally let us consider the space Pn3 for an arbitrary n. A point of this
space is represented by a polygon A1 . . . An, inscribed into a1 . . . an. Cut
the polygon A1 . . . An into triangles by diagonals. Given a triangle AiAjAk
of the triangulation, inscribed into aiajak, assign to the point inside it the
respective triple ratio. Likewise, given a pair of adjacent triangles AiAjAk
and AjAkAl, forming a quadrilateral AiAjAkAl inscribed into the quadri-
lateral aiajakal, one finds the respective pair of cross-ratios and assigns it
to two points on the diagonal AjAk, the cross ratio of the points on the line
aj being assigned to the point closer to the point Aj. This completes the
construction.

Parameterization of projective structures

Now let us proceed to the analogous statements about projective structures
on surfaces. Let Σ be a Riemann surface of genus g with s boundary com-
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ponents. Assume, that s ≥ 1 and, moreover, if g = 0 then s ≥ 3. Shrink
all the boundary components to points. Then the surface Σ can be cut into
triangles with vertices at the contracted boundary components. Let us as-
sign two distinct marked points to each edge of the triangulation and one
marked point to the centre of every triangle.

Theorem 6.5.6. There exists a canonical bijective correspondence between
the space T H3 (Σ) of framed convex real projective structures on Σ and as-
signments of positive real numbers to the marked points.

Proof. The argument is analogous to the proof of Theorem 6.5.3.
Let us first construct a surface, starting from a collection of positive

real numbers, assigned to a triangulation. Consider the universal cover Σ̃
of the surface and lift the triangulation, along with the marked points and
numbers, from Σ to Σ̃. As described above, with any finite subpolygon of
the arising infinite triangulated polygon we can associate a pair of polygons
in RP2, one inscribed into another. Consider the union U of all inscribed
polygons, corresponding to such finite subpolygons. The group π1(Σ) acts
naturally on Σ̃ and thus acts on U by projective transformations. The
desired projective surface is U/π1(Σ).

Note that one can also consider the intersection of all circumscribed
polygons. Its quotient by the fundamental group, in general, gives another
projective structure on Σ.

Now let us describe the construction of numbers from a given framed
convex projective structure and a triangulation. Take a triangle and send it
to RP2 by a developing map. The vertices the triangle correspond to bound-
ary components. Let the map φ be chosen. Given a boundary component S,
the framing allows to define a canonical flag (A, a) on RP2, invariant under
the action of the monodromy operator around S. If the boundary compo-
nent is degenerate, such a flag is uniquely characterized by the requirement
that A belongs to the limit of the image under φ of a point, tending to S. If
the boundary component is nondegenerate, we take the line containing the
image of S for a, and one of the endpoints on the image of φ for A. The
choice between the two endpoints is given by the framing.

Associating flags to all three vertices of the triangle, one obtains a point
of P3

3 . The corresponding coordinate is assigned to the central marked point
of the original triangle. Similarly, considering two adjacent triangles of the
triangulation, one constructs the numbers for the marked points on the
edges.

Let us summarize the properties of the constructed coordinates both for
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Figure 6.6: Poisson structure tensor.

P3
3 and T H

3 (Σ):

1. Poisson bracket. It turns out, that the Poisson brackets between the
coordinates are very simple to describe, namely,

{Xi, Xj} = εij XiXj

where εij is a skew-symmetric matrix with integer entries. To define
the matrix εij , consider the graph with vertices in marked points and
oriented edges connecting them, as shown in figure 6.6 (we show edges
connecting marked points in one triangle only; points of other triangles
are connected by arrows in the same way). Then

εij = (number of arrows from i to j)−(number of arrows from j to j).

To prove this formula one needs to compare it with any other expres-
sion for the Atyah–Hitchin Poisson structure. The most appropriate,
from our point of view, is the expression using classical r-matrices in
[70], but still the verification is technically complicated. However, it
is an easy exercise to verify that this bracket does not depend on the
triangulation, and therefore it can be taken for a definition.

2. Once we have positive numbers assigned to marked points, the con-
struction of the corresponding projective surface is explicit. In par-
ticular, one can compute the monodromy group of the corresponding
projective structure or, in other words, the image of the map µ.

We describe the answer explicitly in the following graphical way. Start-
ing from the triangulation, construct a graph, embedded into the sur-
face, by drawing edges transversal to the sides of the triangles (the
dual graph), and inside each triangle connect the ends of edges pair-
wise by three more edges, as shown in figure 6.7. Orient these edges
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Figure 6.7: Construction of the monodromy group.

counter clockwise. Now assign to each edge an element of PGL(3,R),
constructed from the numbers as shown in figure 6.7. Here

I(X) =




0 0 1
0 −1 −1
X X + 1 1


 and A(Z,W ) =




0 0 Z−1

0 −1 0
W 0 0


 .

With a closed path in the graph one associates an element of PGL(3,R)
by taking the product of these group elements (or their inverses, if the
path goes against orientation), assigned to the consecutive edges. The
image of the fundamental group of the graph is the desired monodromy
group.

The proof of this statement is also constructive. Once we have a con-
figuration of flags from P3

3 with triple ratio X, one can fix a coordinate
system in RP2. Namely, take a coordinate system where the points
b ∩ c, A,B and C have the following coordinates

[0 : 1 : 0], [1 : −1 : 1], [0 : 0 : 1] and [1 : 0 : 0],
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respectively (see figure 6.4). The line a has coordinates [1 : 1+X : X].
The cyclic permutation of the flags changes the coordinate system by
the matrix I(X). Likewise, given a quadruple of flags (F1, F2, F3, F4)
with two cross-ratios Z and W , the coordinate system associated with
the triple (F2, F4, F1) is related to the coordinate system associated
with the triple (F4, F2, F3) by the matrix A(Z,W ).

1/X

1/Y

W’ Z’

X

Y

ZW

1/X

1/Y

W’ Z’

X

Y

ZW

Figure 6.8: Involution σ.

3. The involution σ acts in a very simple way shown in figure 6.8, where
Z ′ = W (1+Y )

Y (1+X) and W ′ = Z(1+X)
X(1+Y ) . In particular, a point of T H

3 (Σ) is
fixed by σ if the two coordinates on each edge coincide and the coordi-
nates in the centre of each triangle are equal to 1. Taking into account
that the set of σ-stable points is just the ordinary Teichmüller space,
one obtains its parameterization. This parameterization coincides with
the one described in [68].

4. Each triangulation of Σ provides its own coordinate system and, in
general, the transition from one such system to another is given by
complicated rational maps. However, any change of triangulation may
be decomposed into a sequence of elementary changes, the so called
flips. A flip removes an edge of the triangulation and inserts another
one into the arising quadrilateral, as shown on figure 6.9. This figure
also shows how the numbers at the marked points change under the
flip. Note that these formulæ, in particular, allow to pass from a
triangulation to itself, but transformed by a nontrivial element of the
mapping class group of Σ, and thus give explicit formulae for the
mapping class group action.
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Figure 6.9: Flip

Here one has

A′ = A Z
1+Z , B′ = B XW (1+Z)

1+W+WX+WXZ , C ′ = C 1+W+WX+WXZ
1+W ,

D′ = D(1 +W ), E ′ = E W
1+W , F ′ = F Y Z(1+W )

1+Z+ZY+ZYW ,

G′ = G 1+Z+ZY+ZYW
1+Z , H ′ = H(1 + Z), X ′ = 1+W

XW (1+Z) ,

Y ′ = 1+Z
Y Z(1+W ) , Z ′ = 1+W+WX+WXZ

XZW (1+Z+ZY+ZWY ) ,

W ′ = 1+Z+ZY+ZWY
Y ZW (1+W+WX+WXZ) .

These formulæ can be derived directly or, simpler, using the cluster algebras
technique, see [69]. Note that the arising rational functions have positive
integer coefficients. One can show that it remains true for any composition
of flips.

Let us conclude with remarks about generalizations. The described con-
struction can be generalized almost automatically to the spaces of projective
structures on surfaces whose boundary is not linear but polygonal. More
precisely, every point of the boundary is projectively isomorphic to a neigh-
borhood of the origin in the upper half plane or in the positive octant. On
each linear boundary segment a point is chosen. Obviously, T H

3 (Σ) and
Pn3 are both particular cases of this more general setting. We leave this
generalization as an exercise to the industrious reader.
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Another generalization may be obtained by replacing PGL(3,R) by any
other split simple Lie group [69]. Although one can define the corresponding
analogs of the space T H

3 (Σ), it is unknown whether it can be interpreted as
the moduli space of certain local geometric structures.



Chapter 7

Multi-dimensional

Schwarzian derivatives and

differential operators

Lie algebras of vector fields on a smooth manifold M became popular in
mathematics and physics after the discovery of the Virasoro algebra by
Gelfand and Fuchs in 1967. Gelfand and Fuchs, Bott, Segal, Haefliger and
many others studied cohomology of Lie algebras of vector fields and diffeo-
morphism groups with coefficients in spaces of tensor fields. This theory
attracted much attention in the last three decades, many important prob-
lems were solved and many beautiful applications, such as characteristic
classes of foliations, were found.

In this chapter we consider cohomology of Lie algebras of vector fields
and of diffeomorphism groups with coefficients in various spaces of differen-
tial operators; this is a generalization of Gelfand-Fuchs cohomology. Only a
few results are available so far, mostly for the first cohomology spaces. The
main motivation is to study the space of differential operators Dλ,µ(M),
viewed as a module over the group of diffeomorphisms.

This cohomology is closely related to projective differential geometry
and, in particular, to the Schwarzian derivative. The classic Schwarzian
derivative is a 1-cocycle on the group Diff(S1), related to the module of
Sturm-Liouville operators. Multi-dimensional analogs of the Schwarzian
derivative are defined as projectively invariant 1-cocycles on diffeomorphism
groups with values in spaces of differential operators.

187
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7.1 Multi-dimensional Schwarzian with coefficients

in (2, 1)-tensors

In this section we consider a manifold M n, n ≥ 2, with a projective connec-
tion (see Section 8.3) and describe the simplest version of multi-dimensional
Schwarzian derivative. This is a 1-cocycle of the group Diff(M) with values
in symmetric (2, 1)-tensor fields on M . If the projective connection is flat,
that is, M carries a projective structure, then this cocycle is projectively
invariant. We also specify the definition in the case of a symplectic manifold
M by restriction to the group of symplectomorphisms.

Space of (2, 1)-tensors

We start with some linear algebra. Let V = Rn be the standard GL(n,R)-
module. One has a natural projection

div : S2(V ∗)⊗ V → V ∗;

if one identifies S2(V ∗) ⊗ V with component-wise quadratic vector fields
then the projection indeed becomes the divergence operator. One also has
a natural injection

j : V ∗ → S2(V ∗)⊗ V,

defined by the formula

j(`) : (u, v) 7→ 〈`, u〉v + u〈`, v〉;

here ` ∈ V ∗ is a covector and S2(V ∗) ⊗ V is understood as the space of
linear maps S2(V ) → V .

Exercise 7.1.1. Check that div ◦ j = (n+ 1)Id.

Let T0 = ker div. It follows that the formula

S 7→ S −
1

n+ 1
(j ◦ div)(S) (7.1.1)

gives a projection S2(V ∗)⊗ V → T0. In fact,

S2(V ∗)⊗ V = T0 ⊕ im j (7.1.2)

is a decomposition on irreducible GL(n,R)-modules.
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Space of (2, 1)-tensor fields as a Vect(M)-module

Let T (M) be the space of symmetric 2-covariant 1-contravariant tensor fields
on M ; these fields are sections of the vector bundle S2(T ∗M) ⊗ TM over
M . This space is naturally acted upon by the group Diff(M). Consider also
the submodule T0(M) of divergence free tensor fields of type T0. The spaces
T (M) and T0(M) are also Vect(M)-modules.

Proposition 7.1.2. If M is a closed manifold then

H1(Vect(M); T0(M)) = R.

Proof. The cohomology of the Lie algebra Vect(M) with coefficients in ten-
sor fields was computed by Tsujishita, see [223] or [72]. The result of this
computation is as follows:

H∗(Vect(M);A) = H∗
top(Y (M))⊗ Invgl(n,R) (H∗(L1; R)⊗A) . (7.1.3)

Here A is a gl(n,R)-module, A is the space of respective tensor fields, Y (M)
is a certain connected topological space, constructed from M (we do not
need its description), and L1 is the Lie algebra of formal vector fields in Rn

with the trivial 1-jet.

In our case, A = T0. Since we are interested in the first cohomology, we
only need to consider the spaces

Invgl(n,R)

(
H0(L1; R)⊗ T0

)
and Invgl(n,R)

(
H1(L1; R)⊗ T0

)
.

Since H0(L1; R) = 0, the first of these spaces is trivial. To describe the
second space, note that H1(g; R) = (g/[g, g])∗ for every Lie algebra g.

Exercise 7.1.3. Check that if n ≥ 2 then [L1, L1] = L2 where L2 is the Lie
algebra of formal vector fields in Rn, with trivial 2-jet.

Hence H1(L1; R) = (L1/L2)
∗, the space of component-wise quadratic

vector fields in Rn, that is,

H1(L1; R) = S2(V )⊗ V ∗.

It follows from (7.1.2) that

Invgl(n,R)

(
H1(L1; R)⊗ T0

)
= R,

and (7.1.3) implies that H1(Vect(M); T0(M)) is one-dimensional.
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Introducing the multi-dimensional Schwarzian

The space of affine connections is an affine space with the underlining vec-
tor space T (M). This suggests to use the “coboundaries of ghosts” trick
described in Section 8.5. Namely, given an arbitrary affine connection ∇ on
M , define a map C : Diff(M) → T (M) by

C(f) =
(
f−1

)∗
∇−∇. (7.1.4)

This map is clearly a 1-cocycle since it is written in a form of a “coboundary”.

Lemma 7.1.4. The cocycle C is non-trivial.

Proof. Any coboundary on Diff(M) with values in the space of tensor fields
depends on 1-jets of diffeomorphisms. However, the transformation of con-
nections involves second derivatives.

Note that the same argument has been used in Section 1.5 to prove non-
triviality of the Schwarzian derivative.

Define a 1-cocycle
L : Diff(M) → T0(M) (7.1.5)

by projecting the cocycle C from T (M) to T0(M), see formula (7.1.1). The
cocycle L is non-trivial for the same reason as C.

Lemma 7.1.5. The cocycle L depends only on the projective connection
induced by ∇.

Proof. Two affine connections define the same projective connection if the
their difference has the trivial projection to T0(M).

The cocycle L will be called the Schwarzian derivative with values in (2, 1)-
tensor fields. It is defined for an arbitrary manifold M of dimension ≥ 2
with a fixed projective connection. In the one-dimensional case, the cocycle
L is identically zero.

Multi-dimensional Schwarzian and projective structures

Consider now the case M = RPn and let L be the Schwarzian derivative as-
sociated with the canonical flat projective connection. As usual, we consider
only differentiable cocycles (cf. Section 8.4).

Theorem 7.1.6. The cocycle L is the unique (up to a constant) non-trivial
1-cocycle on Diff(RPn) with values in T0(RPn), vanishing on the subgroup
PGL(n+ 1,R).
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Proof. Let f be a diffeomorphism preserving the projective connection.
Then L(f) = 0 by Lemma 7.1.5.

Let us prove the uniqueness. Consider two non-trivial 1-cocycles, L1 and
L2, on Diff(RPn) with values in T0(RPn). Let `1 and `2 be the respective 1-
cocycles on Vect(RPn). They are cohomologous by Proposition 7.1.2: there
is a linear combination which is a coboundary, namely α`1 + β`2 = d(t)
where t ∈ T0(RPn). If `1 and `2 vanish on sl(n+ 1,R), then t is projectively
invariant.

Lemma 7.1.7. There are no projectively invariant elements in T0(RPn).

Proof. Let t ∈ T0(RPn) be PGL(n + 1,R)-invariant. In an affine chart, t
is invariant under the vector fields (6.1.5). The invariance with respect to
translations implies that the coefficients of t are constants. But the space
of tensors T0 is GL(n,R)-irreducible.

It follows that α`1 + β`2 = 0. Finally, αL1 + βL2 = 0 by Lemma 3.2.9.
Theorem 7.1.6 is proved.

If M is a manifold with a projective structure then a version of Theorem
7.1.6 holds: if f ∈ Diff(M) preserves the projective structure in an open
domain U , then the tensor field L(f) vanishes in U .

Expression in local coordinates

Fix a local coordinate system adapted to a projective structure on M .

Exercise 7.1.8. Check that, in local coordinates, the cocycle (7.1.5) is given
by the formula

L(f) =
∑

i,j,k

(∑

`

∂2f `

∂xi∂xj
∂xk

∂f `
−

1

n+ 1

(
δkj
∂ log Jf
∂xi

+ δki
∂ log Jf
∂xj

))
dxi ⊗ dxj ⊗

∂

∂xk

(7.1.6)

where f(x1, . . . , xn) = (f1, . . . , fn) and Jf = det
(
∂f i

∂xj

)
is the Jacobian.

The first summand on the right hand side is the cocycle C(f), one rec-
ognizes the standard expression of Diff(S1)-action on connections; the re-
maining terms come from the projection (7.1.2).
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Cocycle L in the symplectic case

Consider the case when M is the symplectic plane (R2, dx ∧ dy) and the
group is Diff0(R

2), the group of area preserving diffeomorphisms.

The next geometric construction resembles that of the Schwarzian deriva-
tive in Section 1.3; one also may want to compare it with the material in
Section 8.5.

Given a symplectic diffeomorphism f , how can one measure its failure to
be projective, that is, to send straight lines to straight lines? The following
“triangle area construction” provides a natural answer. Let x ∈ R2 be
a point and u a tangent vector at x. Consider the three collinear points
(x− εu, x, x+ εu), where ε is a small parameter, and apply f to this triple.
One obtains a triangle whose side lengths are of order ε and whose vertex
angle is ε-close to π. It follows that the oriented area of the triangle is of
order ε3. Divide by ε3, take limit ε → 0, and denote the resulting number
by Ā(x,u)(f).

For a fixed f and x, by construction, A(x,u)(f) is a cubic form on the
tangent space TxR

2. Hence A may be thought of as a map

A : Diff0(R
2) → C(R2)

where C(R2) denotes the space of sections of S3(T ∗R2), that is, the space of
cubic forms on R2. This map depends on the 2-jet of a diffeomorphism and
vanishes if the diffeomorphism is projective.

It is clear from the definition that

A(f ◦ g) = g∗A(f) +A(g).

It follows that the map f 7→ A(f−1) is a 1-cocycle on the group of symplec-
tomorphisms with coefficients in cubic differentials.

Exercise 7.1.9. Prove the explicit formula:

A(f) =

∣∣∣∣
φx ψx
φxx ψxx

∣∣∣∣ dx3 + 3

∣∣∣∣
φx ψx
φxy ψxy

∣∣∣∣ dx2dy+

3

∣∣∣∣
φy ψy
φxy ψxy

∣∣∣∣ dxdy2 +

∣∣∣∣
φy ψy
φyy ψyy

∣∣∣∣ dy3

where (φ(x, y), ψ(x, y)) are the components of the symplectomorphism f
and where φx stands for a partial derivative.
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The corresponding 1-cocycle of the Lie algebra of Hamiltonian vector
fields is:

a(XF ) = Fxxx dx
3 + 3Fxxy dx

2dy + 3Fxyy dxdy
2 + Fyyy dy

3

where XF is the symplectic gradient of a function F (x, y).
The triangle area construction extends verbatim to the case when f is a

symplectic diffeomorphism of R2n: one uses the symplectic form to measure
areas of triangles.

The relation between the cocycle A and the restriction of the cocycle
L to the group Diff0(R

2n) is as follows. The isomorphism V ∗ = V for
the linear symplectic space, V = R2n, along with the natural projection
S2V ∗ ⊗ V ∗ → S3V ∗, provides the map

π : S2V ∗ ⊗ V = S2V ∗ ⊗ V ∗ → S3V ∗.

Denote by the same symbol the map of the spaces of sections.

Exercise 7.1.10. Check that A = π ◦ L.

Comment

The usefulness of connections in constructing non-trivial cocycles on Diff(M)
(and Vect(M)) was emphasized by Koszul [125]. A different proof of Proposi-
tion 7.1.2 can be found in [96]. Another result of this paper isH 1(Vect(M); T (M)) =
R2.

The multi-dimensional Schwarzian derivative introduced in this section
has been around for quite a while, see, e.g., [73, 124, 234, 155]; most of these
references deal with the complex analytic case. Theorem 7.1.6 is new.

The case of symplectic manifolds was considered in [202], the triangle
area construction was suggested by E. Ghys. The symplectic version of
the multi-dimensional Schwarzian derivative gives rise to a 2-cocycle on
Diff0(M) with coefficients in functions on a symplectic manifold M , the
so-called group Vey cocycle, see [202].

7.2 Projectively equivariant symbol calculus in any

dimension

In this section we consider the space, Dλ,µ(M), of differential operators on
a manifold M

A : Fλ(M) → Fµ(M)
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where Fλ(M) and Fµ(M) are the spaces of tensor densities of degree λ and
µ. In the one-dimensional case, this space was thoroughly studied in this
book, see Chapter 3, and played an important role in the theory of projective
curves.

As in the one-dimensional case, we study Dλ,µ(M) as a module over
the group of diffeomorphisms Diff(M) and the Lie algebra of vector fields
Vect(M). We will be particularly interested in the case when M is equipped
with a projective structure. We then construct a canonical sl(n + 1,R)-
isomorphism between the space Dλ,µ(M) and the corresponding space of
symbols.

Space of differential operators and space of symbols

The space of differential operators Dλ,µ(M) is a filtered Diff(M)-module:

D0
λ,µ(M) ⊂ D1

λ,µ(M) ⊂ · · · ⊂ Dk
λ,µ(M) ⊂ · · ·

where Dk
λ,µ(M) is the space of operators of order k. The associated graded

module gr (Dλ,µ(M)) is called the space of symbols.

Example 7.2.1. If λ = µ, then the space of symbols has a simple geometric
interpretation. It is naturally isomorphic (i.e., isomorphic as a Diff(M)-
module) to the space of symmetric contravariant tensor fields on M . This
space will be denoted by S(M), it also can be viewed as the space of fiberwise
polynomial functions on T ∗M .

More generally, there is an isomorphism of Diff(M)-modules

gr (Dλ,µ(M)) ∼= S(M)⊗C∞(M) Fδ(M)

where δ = µ − λ. We will use the notation Sδ(M) for the above module of
symbols. This is a graded Diff(M)-module:

Sδ(M) =

∞⊕

k=0

Sk,δ(M)

where Sk,δ(M) corresponds to the space of polynomials of degree k.

Formulæ in local coordinates

In local coordinates, a tensor density of degree λ is written as follows:

ϕ = f(x1, . . . , xn)
(
dx1 ∧ · · · ∧ dxn

)λ
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where f is a smooth function. A differential operator A ∈ Dλ,µ(M) of order
k is of the form

A(ϕ) =
( ∑

i1,...,ik

Ai1,...,ikk

∂kf

∂xi1 · · · ∂xik
+ · · · +A0 f

) (
dx1 ∧ · · · ∧ dxn

)µ
.

A symbol of degree k can be written as

P =
∑

i1,...,ik

P i1,...,ikk ξi1 · · · ξik + · · ·+ P0

where ξ1, . . . , ξn are the Darboux coordinates on the fibers of T ∗M .

Statement of the problem

Assume now that manifold M is equipped with a projective structure. This
means that there is a (locally defined) action of the Lie group PGL(n+1,R)
and the Lie algebra sl(n+ 1,R) on M , see Section 6.1.

We are looking for a “total” symbol map:

σλ,µ : Dλ,µ(M) −→ Sδ(M)

that commutes with the PGL(n+ 1,R)-action. In other words, we want to
identify these two spaces canonically with respect to the projective structure
on M . The inverse of the symbol map:

Qλ,µ = (σλ,µ)
−1

is called the quantization map. A symbol map and a quantization map,
commuting with the PGL(n+1,R)-action, are called projectively equivariant.
We want to give a complete classification of such maps.

In the one-dimensional case, this problem was solved in Section 2.5.

Commutant of the affine Lie algebra

Fix a system of local coordinates on M adopted to the projective structure.
The action of the Lie algebra sl(n+ 1,R) is given by formula (6.1.5).

Consider the action of the affine subalgebra aff(n,R) on the space of
differential operators.

Exercise 7.2.2. The actions of aff(n,R) on Dλ,µ(M) and on Sδ(M), written
in the coordinates of the projective structure, are identically the same.
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Therefore one locally identifies these two spaces as aff(n,R)-modules.
Consider the differential operators

E =

n∑

i=1

ξi
∂

∂ξi
, D =

n∑

i=1

∂

∂xi
∂

∂ξi
, (7.2.1)

defined (locally) on T ∗M . The first one is called the Euler operator and the
second the divergence operator.

To simplify the notation, consider the action of the operators E and D
on the space of polynomials C[x1, . . . , xn, ξ1, . . . , ξn]. The next statement is
the classic Weyl-Brauer theorem, well-known in invariant theory, see [85]:
The commutant of the aff(n,R)-action on C[x1, . . . , xn, ξ1, . . . , ξn] is the as-
sociative algebra with generators E and D.

A projectively equivariant symbol map σλ,µ has to commute with the
aff(n,R)-action as well. It follows that a projectively equivariant symbol
and quantization maps, in coordinates adapted to the projective structure,
have to be expressions in the operators E and D.

The main result

As in the one-dimensional case, cf. Section 2.5, the PGL(n+1,R)-invariant
symbol map is given by a confluent hypergeometric function (2.5.5) with
parameters, depending on E , and the argument D.

Theorem 7.2.3. The PGL(n+1,R)-modules Dλ,µ(M) and Sδ(M) are iso-
morphic, provided

δ 6= 1 +
`

n+ 1
. (7.2.2)

The projectively equivariant symbol map is unique (up to a constant) and
given by

σλ,µ = F

(
a
b

∣∣∣∣ z
)
. (7.2.3)

where

a = E + (n+ 1)λ, b = 2E + (n+ 1)(1 − δ), z = −D. (7.2.4)

Proof. Consider the (locally defined) map (7.2.3) in a coordinate system
adopted to the projective structure onM . Let us rewrite this map, restricted
to each component Sk,δ(M) of a fixed order k. We will then reformulate the
theorem in this special case. The most important simplification is

E|Sk,δ(M) = k Id,



7.2. PROJECTIVELY EQUIVARIANT SYMBOL CALCULUS IN ANY DIMENSION197

so that the expression for the map σλ,µ in homogeneous k-th order polyno-
mials will contain only the operator D.

Exercise 7.2.4. Check that the map (7.2.3), restricted to the k-th order
component, is given by

σλ,µ

∣∣∣
Sk,δ(M)

=

k∑

`=O

Ck`
D`

`!
, (7.2.5)

where

Ck` = (−1)`
((n+1)λ+k−1

`

)
(2k−`+(n+1)(1−δ)−1

`

) ; (7.2.6)

here
(a
b

)
is the binomial coefficient.

Formula (7.2.5)-(7.2.6) is equivalent to (7.2.3)-(7.2.4), and it makes sense
if δ satisfies (7.2.2). It then suffices to prove that a PGL(n+1,R)-invariant
symbol map is given by this expression.

Exercise 7.2.5. Consider a map on Sk,δ(M) given by formula (7.2.5) with
undetermined coefficients Ck

` . Imposing the equivariance condition with
respect to the quadratic vector fields Xi = xi

∑
j x

j∂/∂xj , prove that these
coefficients are as in (7.2.6).

We proved that the symbol map σλ,µ, defined (locally on M) by (7.2.5)-
(7.2.6), is PGL(n + 1,R)-invariant. Therefore, this map does not change
under the linear-fractional coordinate transformations (6.1.1) and is globally
defined. This completes the proof.

Example of second-order differential operators

Consider the space D2
λ(M) = D2

λ,λ(M) of second-order differential operators
in the particular case µ = λ. In local coordinates, a second-order differential
operator is given by

A =

n∑

i,j=1

Aij2
∂

∂xi
∂

∂xj
+

n∑

i=1

Ai1
∂

∂xi
+A0 (7.2.7)

where the coefficients Aij2 , A
i
1 and A0 are smooth functions in x. The explicit

formula for the projectively equivariant symbol map

σλ : D2
λ(M) → S2(M)⊕ S1(M)⊕ S0(M)

is, of course, a particular case of (7.2.3)-(7.2.4).
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Exercise 7.2.6. Check that the map σλ associates with a differential oper-
ator (7.2.7) the second-order polynomial

P =
n∑

i,j=1

P ij2 ξiξj +
n∑

i=1

P i1 ξi + P0 (7.2.8)

given, in a coordinate system adopted to the projective structure, by

P ij2 = Aij2

P i1 = Ai1 − 2
(n+ 1)λ+ 1

n+ 3

n∑

j=1

∂Aij2
∂xj

P0 = A0 − λ

n∑

i=1

∂Ai1
∂xi

+ λ
(n+ 1)λ+ 1

n+ 2

n∑

i,j=1

∂2Aij2
∂xi∂xj

.

(7.2.9)

The quantization map

One can also write an explicit formula for the quantization map. Let us
give it in the most interesting particular case λ = µ = 1/2 when this map is
simpler. We will use the notation E = E + 1

2 n. One has

Q 1
2
, 1
2

= F

(
2E
E

∣∣∣∣
D

4

)
(7.2.10)

The quantization map (7.2.10) has nice properties. The following state-
ment is a consequence of the uniqueness of the symbol map (and thus of the
quantization map).

Corollary 7.2.7. Substitute iD instead of D to operator (7.2.10). Then,
for every real P ∈ Sδ(M), the “complexified” differential operator Q 1

2
, 1
2
(P )

is symmetric.

Proof. The symmetrized map

P 7→
1

2

(
Q 1

2
, 1
2
(P ) +Q 1

2
, 1
2
(P )∗

)

is also PGL(n + 1,R)-invariant. It has the same principal symbol. The
uniqueness part of Theorem 7.2.3 implies that this map coincides with Q 1

2
, 1
2
,

and the result follows.
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Comment

The subject of this section belongs to a research program equivariant quan-
tization based on the general equivariance principle: the symbol and quanti-
zation maps should commute with the action of a Lie group on M . There are
few examples for which the equivariance condition uniquely determines the
symbol map. Projective differential geometry is the first example, another
is conformal differential geometry.

The projectively equivariant symbol and quantization maps in the multi-
dimensional case were introduced in [134]. The expression in terms of hy-
pergeometric functions was suggested in [57]. In the one-dimensional case,
the projectively equivariant symbol and quantization maps were found in
[44] (the results of [44] and [134] are independent). The conformal case was
treated in [54].

The special values δ from (7.2.2) are called the resonant values. For
every such δ, there are particular values of λ for which the isomorphism σλ,µ
still exists. The resonant PGL(n + 1,R)-modules of differential operators
were classified in [131], see also [132].

7.3 Multi-dimensional Schwarzian as a differential

operator

Let M be a manifold equipped with a projective structure. We study the
space D2

λ(M) of second-order differential operators on the space of tensor
densities Fλ(M). As a PGL(n + 1,R)-module, this space is canonically
isomorphic to the corresponding space of symbols. The multi-dimensional
analog of the Schwarzian derivative we introduce in this section measures
the failure of the two modules to be isomorphic as Diff(M)-modules. This
is a 1-cocycle on Diff(M) vanishing on PGL(n + 1,R). Unlike the multi-
dimensional Schwarzian derivative of Section 7.1, it depends on the 3-jet of
a diffeomorphism. Moreover, this 1-cocycle on Diff(M) coincides with the
classic Schwarzian derivative in the case dimM = 1.

The ideas are similar to those of Sections 3.2 and 3.3.

Formulating the problem

The space D2
λ(M) is a Diff(M)-module with respect to the action T λ,λ,

defined by formula (2.1.1) with µ = λ. Our goal is to compare this space
and the corresponding space of symbols as modules over Diff(M).
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The space of symbols is the space of fiberwise polynomial functions on
T ∗M of order ≤ 2. As a module over Diff(M), it splits into a direct sum

S2(M) = S2(M)⊕Vect(M)⊕ C∞(M)

where S2(M) is the space of homogeneous second-order polynomials on
T ∗M , or, equivalently, of symmetric contravariant tensor fields onM , namely,
S2(M) = Γ(S2TM). An element P of S2(M) is of the form (7.2.8).

The spaces D2
λ(M) and S2(M) are isomorphic as PGL(n+1,R)-modules,

see Theorem 7.2.3, the isomorphism is defined by formula (7.2.9). As in
Section 3.3, let us rewrite the Diff(M)-action on D2

λ(M) in a projectively
invariant way. More precisely, we consider the Diff(M)-action

f(P ) = σλ ◦ Tλ,λ
f ◦ σ−1

λ (P ) (7.3.1)

which is the usual action on D2
λ(M), written in terms of S2(M).

Appearance of 1-cocycles

Let us compute the above defined action explicitly.

Exercise 7.3.1. Check that the action (7.3.1) is as follows:

f(P )2 = f∗P2

f(P )1 = f∗P1 +
n+ 1

n+ 3
(2λ− 1)L(f) (f∗P2)

f(P )0 = f∗P0 −
2

n+ 2
λ(λ− 1)S(f) (f∗P2)

(7.3.2)

where f∗ is the natural action of f on the tensor fields, while L(f) and S(f)
are linear differential operators

L(f) : S2(M) → Vect(M), S(f) : S2(M) → C∞(M).

The fact that formula (7.3.2) indeed defines an action of Diff(M) already
implies that the maps L and S are 1-cocycles on Diff(M):

L ∈ Z1(Diff(M);D(S2(M),Vect(M))),

S ∈ Z1(Diff(M);D(S2(M), C∞(M))).

By construction, these cocycles are projectively invariant. Our next task is
to compute the above 1-cocycles explicitly.
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Computing the 1-cocycles

The cocycle L is nothing else but the multi-dimensional Schwarzian deriva-
tive introduced in Section 7.1, viewed as a zero-order differential operator.

Exercise 7.3.2. The 1-cocycle L is given by the contraction with the cocycle
(7.1.5), namely L(f)(P ) := 〈L(f), P 〉.

In local coordinates of the projective structure, one has

L(f)(P )i =
n∑

j,k=1

L(f)ijk P
jk

where the coordinate expression for L is given by formula (7.1.6).

The 1-cocycle S is more complicated. It is given by a first-order differen-
tial operator from S2(M) to C∞(M). Let us compute its explicit coordinate
formula.

Exercise 7.3.3. Check that in local coordinates, adapted to the projective
structure, one has

S(f)(P ) =
∑

ij

S(f)ij(P
ij)

where

S(f)ij =

n∑

k=1

L(f)kij
∂

∂xk
−

2

n− 1

n∑

k=1

∂

∂xk

(
L(f)kij

)
+
n+ 1

n− 1

n∑

k,`=1

L(f)ki` L(f)`kj.

(7.3.3)

The map S, defined by formula (7.3.3), clearly does not depend on the
choice of a coordinate system, adapted to the projective structure.

Uniqueness

As in Section 7.1, we will prove the uniqueness of the multi-dimensional
Schwarzian derivatives L and S. The main result of this section is as follows.

Theorem 7.3.4. The cocycles L and S are the unique, up to a multiplicative
constant, projectively invariant non-trivial 1-cocycles on Diff(M) with values
in D(S2(M),Vect(M)) and D(S2(M), C∞(M)), respectively.
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Proof. Let us first prove that the 1-cocycles L and S are non-trivial. The
cocycle S depends on the third jet of f . However every coboundary is of the
form f∗(B) − B where B ∈ D(S2(M), C∞(M)). Since S(f) is a first-order
differential operator for all f , the coboundary condition S = d(B) would
imply that B is also a first-order differential operator and thus d(B)(f)
depends on at most the second jet of f . The proof of non-triviality of L is
similar.

Let us prove the uniqueness. The main ingredient of the proof is again
a cohomological statement.

Proposition 7.3.5. The following two cohomology spaces are one-dimen-
sional for every closed manifold M :

H1(Diff(M);D(S2(M),Vect(M))) = R,

H1(Diff(M);D(S2(M), C∞(M))) = R.

The proof of this statement will be omitted, see [133].

Given two projectively invariant cocycles C1 and C2, there is a linear
combination αC1 +βC2 which is a coboundary, d(B). The differential oper-
ator B is then projectively invariant. It follows that the principal symbol of
B is also projectively invariant. However there are no non-zero tensor fields
on M which are projectively invariant. Therefore B = 0, and so C1 and C2

are proportional. Theorem 7.3.4 is proved.

Comment

The projectively invariant cocycle (7.3.3) was introduced in [34] in the pro-
jectively flat case and generalized for arbitrary projective connections in [32].
Cohomology of Diff(M) with coefficients in the spaces of differential oper-
ators D(S2(M),Vect(M)) and D(S2(M), C∞(M)) were computed in [133].
Theorem 7.3.4 on the uniqueness of the cocycles L and S is new.

7.4 Application: classification of modules D2
λ(M)

for an arbitrary manifold

Let M be an arbitrary smooth manifold with dimM ≥ 2. We will classify
the modules D2

λ(M). In other words, we determine all values of λ and λ′ for
which there is an isomorphism

D2
λ(M) ∼= D2

λ′(M).
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Surprisingly enough, the results on projectively invariant symbol calculus
and multi-dimensional analogs of the Schwarzian derivative, see Sections 7.2
and 7.3, can be applied even in the case when M is not equipped with a
projective structure.

Classification theorem

The main result of this section is the following theorem.

Theorem 7.4.1. The modules D2
λ(M) are isomorphic to each other, pro-

vided λ 6= 0, 1
2 , 1. The two modules D2

1
2

(M) and D2
0(M) ∼= D2

1(M) are ex-

ceptional and not isomorphic to each other or to D2
λ(M) with a generic λ.

Proof. Fix an arbitrary system of local coordinates (x1, . . . , xn) in an open
domain U ⊂ M and consider the locally defined symbol (7.2.9) in these
coordinates. Consider the linear map Iλ,λ′ : D2

λ(U) → D2
λ′(U) defined, in

terms of the projectively equivariant symbol, by

Iλ,λ′ : P2 + P1 + P0 7−→ P2 +
2λ− 1

2λ′ − 1
P1 +

λ(λ− 1)

λ′(λ′ − 1)
P0 (7.4.1)

This map intertwines two actions (7.3.2) with λ and λ′, provided λ and λ′

are different from 0, 1
2 and 1.

The crucial point of the proof is that the map Iλ,λ′ is globally defined
on M . In other words, formula (7.4.1) does not depend on the choice of
coordinates. This is equivalent to the fact that Iλ,λ′ commutes with the
Diff(M)-action (7.3.2).

Exercise 7.4.2. Check this.

This map is an isomorphism between D2
λ(M) and D2

λ′(M).

The modules, corresponding to the values 0, 1
2 and 1 of the parameter λ,

are not isomorphic to the generic ones. This follows from the fact that the
1-cocycles L and S are non-trivial. Finally, the modules D2

0(M) and D2
1(M)

are isomorphic (by conjugation) but not isomorphic to D2
1
2

(M) since these

modules correspond to different cohomology classes.

The isomorphism Iλ,λ′

The isomorphism from Theorem 7.4.1 enjoys quite remarkable properties.
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Proposition 7.4.3. (i) Isomorphism between the Diff(M)-modules D2
λ(M)

and D2
λ′(M) is unique up to a constant and is given by (7.4.1).

(ii) If λ = λ′, then the map (7.4.1) is the identity; if λ+ λ′ = 1, then it
coincides with the conjugation of differential operators.

Proof. Locally, over the domain U , one can restrict the Diff(M)-module
structure to PGL(n+1,R). Then the isomorphism Iλ,λ′ has to commute with
the PGL(n+1,R)-action. The uniqueness then follows from the uniqueness
of the projectively equivariant symbol map, see Theorem 7.2.3.

Part (ii) is easily seen from formula (7.4.1).

Let us now give the formula for the isomorphism Iλ,λ′ directly in terms
of the coefficients of differential operators.

Exercise 7.4.4. Check that the map (7.4.1) associates with a differential
operator (7.2.7) a differential operator Ã = Iλ,λ′(A) with the coefficients

Ãij2 = Aij2

Ãi1 =
2λ′ − 1

2λ− 1
Ai1 + 2

λ′ − λ

2λ− 1

n∑

j=1

∂Aij2
∂xj

Ã0 =
λ′(λ′ − 1)

λ(λ− 1)
A0 −

λ′(λ′ − λ)

(2λ− 1)(λ− 1)




n∑

i=1

∂Ai1
∂xi

−

n∑

i,j=1

∂2Aij2
∂xi∂xj




It is hard to believe that the above expression is, actually, invariantly
defined. This follows, nevertheless, from the fact that the map Iλ,λ′ com-
mutes with the Diff(M)-action. The isomorphism Iλ,λ′ is an example of an
invariant (or natural) differential operator (see Comment in Section 2.1).

Exercise 7.4.5. Express the map Iλ,λ′ in terms of the Lie derivative:

Iλ,λ′
(
LλX ◦ L

λ
Y

)
= Lλ

′

X ◦ L
λ′

Y +
1

λ+ λ′

[
Lλ

′

X , L
λ′

Y

]

Iλ,λ′
(
LλX
)

=
2λ− 1

2λ′ − 1
Lλ

′

X

Iλ,λ′ (F ) =
λ(λ− 1)

λ′(λ′ − 1)
F

where X,Y are vector fields and F is a function.

Written in this form, the map Iλ,λ′ is obviously coordinate free.
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Comment

Theorem 7.4.1 was proved in [55]. The isomorphism Iλ,λ′ was also introduced
in this paper and called there the “second-order Lie derivative” since it
defines an action of a differential operator on tensor densities of different
degrees. The modules Dk

λ,µ(M) were recently classified for arbitrary k and
any values of λ and µ, see [143] and references therein.

7.5 Poisson algebra of tensor densities on a con-

tact manifold

Projective differential geometry of RP1 was thoroughly studied in the first
chapters of this book. We saw that the one-dimensional case is particularly
rich: in addition to various geometric notions, complicated algebraic struc-
tures, such as the algebra of differential operators, the Poisson algebra of
tensor densities and the Virasoro algebra, naturally appeared in the con-
text. One would expect the situation to become even more intriguing in the
multi-dimensional case. However, this expectation is not fulfilled: the Lie
algebra of all vector fields on a smooth manifold of dimension > 1 has no
central extensions. There is no multi-dimensional analog of the Virasoro al-
gebra in this sense, and the space of tensor densities has no natural Poisson
structure.

Recent developments in symplectic and contact topology suggest another
viewpoint that can be expressed by the following “proportion”:

affine

projective
'

symplectic

contact
.

One is then led to consider the odd-dimensional projective space RP2n−1,
equipped with the canonical contact structure, as a multi-dimensional analog
of RP1. Of course, the symmetry group becomes smaller, namely, Sp(2n,R)
instead of PGL(2n,R), while the set of invariants gets richer.

The space of tensor densities on a contact manifold is a Poisson algebra.
We consider the Poisson algebra of tensor densities, F(M), where M is
a contact manifolds equipped with a compatible projective structure. For
example, M = RP2n−1 or S2n−1 with the canonical contact and projective
structures. There are natural analogs of transvectants and a star-product
on F(M) and a series of extensions of the Lie algebra of contact vector fields
on M . The situation is quite similar to that in the one-dimensional case,
see Sections 3.4 and 3.5.
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A particularly interesting case is that of dimM = 4k + 1 when one
obtains Lie algebras that have non-trivial central extensions. These algebras
are considered as multi-dimensional analogs of the Virasoro algebra.

Symplectization

LetM2n−1 be a contact manifold, see Section 8.2. Consider the 2n-dimensional
submanifold S of the cotangent bundle T ∗M that consists of all covectors
vanishing on the contact distribution ξ. The following statement is classic,
see [15].

Proposition 7.5.1. The restriction to S of the canonical symplectic struc-
ture on T ∗M defines a symplectic structure on S.

The manifold S is called the symplectization of M . Clearly S is a line bundle
over M , its sections are the 1-forms on M vanishing on ξ.

Let Diffc(M) be the group of contact diffeomorphisms of M , that is, of
the diffeomorphisms of M that preserve the contact structure. This group
naturally acts on the bundle S and therefore on the space of sections Sec(S).
Let us prove that sections of the bundle S can be viewed as tensor densities
of degree 1/n on M .

Proposition 7.5.2. There is a natural isomorphism of Diff c(M)-modules

Sec(S) = F 1
n
(M). (7.5.1)

Proof. Let α be a contact form. Then Ω = α ∧ (dα)n−1 is a volume form.
If f is a contact diffeomorphism, then f ∗α is proportional to α:

f∗α = mf α

where mf is a nonvanishing function. One then has f ∗Ω = (mf )
nΩ so that

the contact form α, indeed, transforms as a tensor density of degree 1/n.

Poisson algebra of tensor densities

Let us define a structure of Poisson algebra on the space F(M) of tensor
densities onM . The definition is quite similar to that in the one-dimensional
case, see Section 3.4. We identify tensor densities on M with homogeneous
functions on S \M , the symplectization with the zero section removed, and
then use the Poisson bracket on S.

The following statement immediately follows from Proposition 7.5.2.
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Corollary 7.5.3. The space Fλ(M) is isomorphic, as a module over the
group Diffc(M), to the space of homogeneous functions on S \M of degree
−λn.

The Poisson bracket on S is homogeneous of degree −1, so that the
bracket of two homogeneous functions of degree −λn and −µn is a ho-
mogeneous function of degree −λn − µn − 1. One then obtains a bilinear
differential operator on tensor densities on M :

{ , } : Fλ(M)⊗Fµ(M) → Fλ+µ+ 1
n
(M), (7.5.2)

so that the space F(M) is equipped with a natural structure of a Poisson
algebra.

Let us fix Darboux coordinates (x1, . . . , xn−1, y1, . . . , yn−1, z) on M such
that the contact structure is given by the 1-form

α =

n−1∑

i=1

xi dyi − yi dxi
2

+ dz

and compute the explicit formula of the Poisson bracket.

Exercise 7.5.4. Check that, in the above coordinate system, the bracket
(7.5.2) is given by

{φ, ψ} =
n−1∑

i=1

(φxi ψyi − ψxi φyi) + φz (µψ + E ψ)− ψz (λφ+ E φ)

where

E =
n−1∑

i=1

(
xi

∂

∂xi
+ yi

∂

∂yi

)

is the Euler field.

The Poisson bracket (7.5.2) obviously satisfies the Jacobi and Leibnitz
identities.

Contact Hamiltonians as tensor densities

The space F− 1
n
(M) is a Lie subalgebra of Fλ(M). Let us show that this

algebra is isomorphic to the Lie algebra, Vectc(M), of contact vector fields
on M .
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The isomorphism can be defined as follows. Fix a contact form α, and
associate with every contact vector field X a function FX = α(X). The
function FX depends on the choice of the contact form α but the tensor
density

φX = α(X)α−1 (7.5.3)

does not. Note that, to make sense to α−1 in the above formula, we un-
derstand α as a tensor density of degree 1/n, cf. Proposition 7.5.2. Thus,
φX is a tensor density of degree −1/n. We call this tensor density a contact
Hamiltonian of X.

Proposition 7.5.5. The map Vectc(M) → F− 1
n
(M) sending X to φX is

an isomorphism of Lie algebras.

Proof. A tensor density of degree −1/n is identified with a homogeneous
function on S of degree 1, see Corollary 7.5.3. An arbitrary vector field onM
is identified with a fiberwise linear function on T ∗M , this is an isomorphism
of Lie algebras. The tensor density (7.5.3) is just the restriction of this
function to S.

Remark 7.5.6. A contact Hamiltonian is a tensor density of degree −1/n
on M , and not a function (cf. [10, 15]). This viewpoint of course resolves the
unfortunate difficulty that “the Poisson bracket of two contact Hamiltonians
does not satisfy the Leibnitz identity”.

Contact manifolds with projective structure

The standard contact structure on RP2n−1 is obtained as the projectivization
of the standard symplectic structure on R2n. The “projectivized” symplectic
group is

PSp(2n,R) = Sp(2n,R)/Z2.

This is a subgroup of the group of projective transformations PGL(2n,R)
that preserves the contact structure.

Let M be a (2n − 1)-dimensional manifold equipped with a projective
structure. The projective structure is said to be compatible with the contact
structure if it is given by a projective atlas with the transition functions
ϕi ◦ ϕ

−1
j preserving the contact structure on RP2n−1, that is, belonging to

the subgroup PSp(2n,R). In this case, M is a contact manifold with the
contact structure induced from RP2n−1.

In the same way, if X is a 2n-dimensional manifold with an affine struc-
ture, one can ask if this affine structure is compatible with the symplectic
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structure. This means that the transition functions of the affine structure
belong to the affine symplectic group Sp(2n,R) n R2n ⊂ Aff(2n,R).

Let us describe a different version of symplectization of a contact man-
ifold with a compatible projective structure. We seek a symplectization
which can be naturally equipped with an affine structure.

Example 7.5.7. The model example is the (tautological) line bundle

R2n \ {0} → RP2n−1. (7.5.4)

The group PSp(2n,R) can be lifted (in two different ways) as a group
Sp(2n,R) of linear symplectic transformations of R2n.

Moreover, one has a stronger statement.

Exercise 7.5.8. a) The quotient of the group of all homogeneous symplec-
tomorphisms of R2n \ {0} by its center Z2 is isomorphic to Diff c(RP2n−1).

b) The space Fλ(RP2n−1) is isomorphic, as a Diff c(RP2n−1)-module, to the
space of homogeneous functions on R2n \ {0} of degree −2λn.

Let us describe an analogous construction for an arbitrary orientable
contact manifold M with a compatible projective structure. Locally M is
identified with RP2n−1. One then constructs a line bundle S̃ →M such that
S̃ is a symplectic manifold with a compatible affine structure. Locally S̃ is
as (7.5.4) and the projective transition functions ϕi ◦ ϕ

−1
j can be lifted as

elements of Sp(2n,R).

Let us now relate the two version of symplectization, S and S̃. The
idea comes from the description of a projective structure in terms of tensor
densities, see Section 6.4. In the case of manifolds of dimension 2n− 1, one
should consider tensor densities of degree −1/(2n). It is then natural to
consider the line bundle S⊗2 over M .

Proposition 7.5.9. The bundle S̃ over an orientable contact manifold M
with a compatible projective structure is isomorphic to S⊗2.

Proof. By construction, the space of homogeneous functions on S̃ of degree
1 is isomorphic to the space of tensor densities on M of degree −1/(2n).
The space of sections of S̃ is then isomorphic to the space of tensor densities
of degree 1/(2n).
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Multi-dimensional transvectants and star-products

Let M be again an orientable contact manifold with a compatible projective
structure.

Definition 7.5.10. For every m we define a bilinear PSp(2n,R)-invariant
differential operator of order 2m

Jm : Fλ(M)⊗Fµ(M) → Fλ+µ+m
n

(M). (7.5.5)

The definition is similar to that of Section 3.1. We identify Fλ(M) with
the space of homogeneous functions on S̃ of degree −2λn and consider the
iterated Poisson bracket: Bm := 1

m! Tr ◦ Pm. The operators (7.5.5) are then
given by the restrictions

Jm = Bm
∣∣
Fλ(M)⊗Fµ(M) .

Consider the space of all smooth functions on R2n \ {0}. As in the
one-dimensional case, formula (3.4.1) defines an PSp(2n,R)-invariant star-
product on this space, called the Moyal product. The restriction of this
product to the space of homogeneous functions defines a star-product on
the Poisson algebra F(M). We denote by F(M) [[t]] the (associative/Lie)
algebra equipped with this star-product.

Extensions of Vectc(M)

Let us use the following general fact. Given a formal deformation of a Lie
algebra, for every subalgebra, one obtains a series of extensions.

We consider the Lie subalgebra of contact vector fields

F−1/n(M) ∼= Vectc(M)

of F(M), viewed as a Lie algebra. The star-commutator, see formula (3.4.3),
defines a series of extensions of this Lie algebra.

The first extension is as follows:

0 −−−→ F 1
n
(M) −−−→ g1 −−−→ Vectc(M) −−−→ 0, (7.5.6)

it is given by the 2-cocycle

J3 : F−1/n(M)⊗F−1/n(M) → F1/n(M)

which is the first non-trivial term of the star-commutator. This is a non-
trivial extension of Vectc(M) by the module of contact 1-forms.
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More generally, one obtains a series of Lie algebras

0 −−−→ F 2k−1
n

(M) −−−→ gk −−−→ gk−1 −−−→ 0. (7.5.7)

which are consecutive non-trivial extensions.

Example 7.5.11. As a vector space, the Lie algebra g2 is as follows

g2 = Vectc(M)⊕F1/n(M)⊕F3/n(M).

The commutator in g2 is given by







X

α

φ


 ,




Y

β

ψ





 =




[X,Y ]

LXβ − LY α+ J3(X,Y )

LXψ − LY φ+ {α, β} + J3(X,β) − J3(Y, α) + J5(X,Y )




Central extensions: contact Virasoro algebra

The main feature of the Virasoro algebra is that it is defined as a central
extension. It turns out that the above defined Lie algebras of tensor densities
F(M) [[t]] and gk can also have non-trivial central extensions.

Theorem 7.5.12. (i) The Lie algebra F(M) [[t]] has a non-trivial central
extension with coefficients in R[t].
(ii) If dimM = 4k + 1, then the Lie algebra gk has a non-trivial central
extension.

Proof. Let us construct a non-trivial 2-cocycle on F(M) [[t]] and on gk.
Choose an arbitrary homogeneous function ρ on S̃, of any degree λ 6= 0,

such that ρ = 1 on M . Then ρ 6= 1 on S̃ \M . Define first a linear map

γ : F(M) [[t]] → F(M) [[t]],

where F(M) [[t]] is the algebra of tensor densities with the star-commutator,
as follows:

γ(φ) = [φ, ln ρ] (7.5.8)

where the commutator on the right hand side is the star-commutator (3.4.3).
Note that ln ρ is a function on S̃ which is not homogeneous and therefore is
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not a tensor density on M . However, the commutator (7.5.8) is an element
of F(M) [[t]]. Clearly γ is a 1-cocycle since it is written in the form of
“coboundary”, cf. Section 8.5.

There is an invariant linear functional

∫
: F1(M) → R.

Define the residue on F(M) as the integral of the projection F(M) →
F1(M), written as φ 7→ φ1:

res(φ) =

∫
φ1.

For two elements φ, ψ ∈ F(M) [[t]], we set

c(φ, ψ) = res (φγ(ψ)) . (7.5.9)

Exercise 7.5.13. Check that the bilinear form c is skew-symmetric.

Hint. Use the Jacobi identity and the fact that for every φ ∈ Fλ(M) and
ψ ∈ Fµ(M) with λ+ µ = 1− 1/n, one has

∫
{φ, ψ} = 0.

Exercise 7.5.14. Check that c is a 2-cocycle on F(M) [[t]] with coefficients
in the space of polynomials R[t].

Hint. This is an infinitesimal version of Exercise 8.5.6.

We thus defined a central extension

0 −−−→ R[t] −−−→ F̂(M) −−−→ F(M) −−−→ 0.

We will now restrict the above construction to the Lie algebra gk and
put t = 1. As a vector space,

gk =

k⊕

i=0

F 2i−1
n
,

and it can be viewed as a subspace of F(M).
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Exercise 7.5.15. Check that the restriction of the cocycle (7.5.9) to this
subspace is given explicitly by

c(φi, φj) =

∫ (
φi Jn−2(i+j−1)(φj , ρ)

)
(7.5.10)

where φi ∈ F 2i−1
n

.

The cocycle (7.5.9) is non-trivial since it depends on the n−2(i+j−1)-jets
of φi and φj , while any coboundary is a linear function of the commutator
[φi, φj ] and depends only on the n− 2(i+ j)-jet.

In the one-dimensional case, M = S1, the Lie algebra g1 is Vect(S1)
itself.

Exercise 7.5.16. Check that, in the one-dimensional case, the defined cen-
tral extension of the Lie algebra g1 is precisely the Virasoro algebra.

In the general case, the central extension of the Lie algebra g1 can there-
fore be considered a multi-dimensional (contact) analog of the Virasoro al-
gebra.

Comment

Unlike the Lie algebra of Hamiltonian vector fields in symplectic geometry,
the Lie algebra of contact vector fields Vectc(M) is rigid, see [67]. This Lie
algebra is traditionally identified with the space C∞(M) and then C∞(M)
is not a Poisson algebra, see [113] for an excellent discussion. It is therefore
very important to consider the full space of tensor densities F(M); this was
done in [162].

The first of the series of extensions of Vectc(M), namely, the exten-
sion (7.5.6) by the module of contact 1-forms, goes back to Lichnerowicz,
see [136]. The series of extensions (7.5.7) was defined in [162], the idea of
central extensions was also suggested in [162] but with a wrong 2-cocycle.
This mistake was corrected and the central extensions were defined in [170].
The star-product on the space of tensor densities on an arbitrary contact
manifold was also constructed in [170].

7.6 Lagrange Schwarzian derivative

Relations between projective and symplectic geometries remain somewhat
mysterious. However, it is not just by accident that symplectic and contact
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geometry is extensively used in this book. In this section the symplectic
viewpoint occupies a key position. We describe a multi-dimensional sym-
plectic analog of the classic cross-ratio and the Schwarzian derivative.

The main idea is very simple: a point of the projective line RP1, that is,
a one-dimensional subspace of R2, can be viewed as a Lagrangian subspace.
We replace R2 by the standard symplectic space (R2n, ω) and RP1 by Λn, the
manifold of Lagrangian subspaces in (R2n, ω). This manifold is called the
Lagrange Grassmannian. The group, naturally acting on Λn, is the group
Sp(2n,R) of linear symplectic transformations; it coincides with SL(2,R) for
n = 1.

Arnold-Maslov index

Consider three Lagrangian subspaces (`1, `2, `3) in (R2n, ω) such that `2 and
`3 are transversal. They define a quadratic form on `1. Namely, every vector
v1 ∈ `1 has a unique decomposition v1 = v2 + v3 with v2 ∈ `2 and v3 ∈ `3.
Define a quadratic form on `1 by

Φ[`1, `2, `3](v1) = ω(v2, v3). (7.6.1)

Clearly, the quadratic form (7.6.1) is Sp(2n,R)-invariant.

Exercise 7.6.1. The index of the quadratic form Φ[`1, `2, `3] is the unique
linear symplectic invariant of the triple (`1, `2, `3).

The Arnold-Maslov index of the triple (`1, `2, `3) is the index of the
quadratic form Φ[`1, `2, `3].

Local coordinates on Λn

The Lagrange Grassmannian can be locally identified with the space of sym-
metric n×n-matrices. Let us fix transversal Lagrangian spaces `1 and `2 and
choose Darboux coordinates , see Appendix 8.2, in such a way that `1 and
`2 become x-plane and y-plane, respectively. One then associates with every
Lagrangian space `, transversal to `2, a symmetric matrix, representing the
quadratic form Φ[`1, `2, `] in x-coordinates on `1. This defines a local chart
on Λn analogous to an affine parameterization of RP1.

Exercise 7.6.2. The action of Sp(2n,R) is given by

X 7→ (aX + b) (cX + d)−1 (7.6.2)
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where X is a symmetric n× n-matrix and

(
a b
c d

)
∈ Sp(2n,R),

that is, b∗ a and c∗ d are symmetric and a∗ d − b∗ c = Id; here ∗ denotes
transposition of matrices and Id the unit n× n-matrix.

Useful formula

Consider a triple of Lagrangian subspaces (`1, `2, `3). Choosing a local chart
on Λn as above, one represents these subspaces by three symmetric matrices
A,B,C. The quadratic form Φ[`1, `2, `3] then can be expressed in terms of
these matrices. For the sake of simplicity, let us assume that `1 coincides
with the x-plane in the Darboux basis; this means that A ≡ 0.

Exercise 7.6.3. Check that the quadratic form Φ[`1, `2, `3] on `1, in the
chosen Darboux basis, is of the form 〈v, Fv〉 where F is the following n×n-
symmetric matrix:

F =
(
B−1 + C−1

)−1
(7.6.3)

One can generalize this formula for an arbitrary A.

Symplectic cross-ratio

Consider now a quadruple (`, `1, `2, `3) of Lagrangian subspaces in (R2nω).
The pair of quadratic forms on `

(Φ[`, `1, `3], Φ[`, `2, `3]) (7.6.4)

is the unique linear symplectic invariant of the quadruple. We denote this
pair of quadratic forms by [`, `1, `2, `3] and call it the symplectic cross-ratio.

Exercise 7.6.4. Check that, in the one-dimensional case, the cross-ratio
(1.2.2) of four lines in R2 is the quotient of the above defined forms:

[`, `1, `2, `3] =
Φ[`, `2, `3]

Φ[`, `1, `3]
. (7.6.5)

Remark 7.6.5. In the one-dimensional case, expression (7.6.5) is always
well-defined for four distinct lines. In the multi-dimensional case, the form
Φ[`, `1, `2] is degenerate if ` is not transversal to `1 or `2. This is why it is
natural to deal with the couple (7.6.4), rather than with, say, their ratio.
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Assume that Φ[`, `1, `3] is non-degenerate and choose a basis of ` such
that Φ[`, `1, `3] = diag(1, . . . , 1,−1, . . . ,−1). Then one can think of the
quadratic form Φ[`, `2, `3] as a symmetric n × n-matrix, defined up to or-
thogonal transformations: Φ ∼ OΦO−1.

Non-degenerate curves in Λn

Consider a smooth map

f : RP1 → Λn. (7.6.6)

We will construct a differential invariant of maps (7.6.6) with respect to the
Sp(2n,R)-action on the Lagrange Grassmannian. For n = 1, one has Λn =
RP1, and this invariant coincides with the classic Schwarzian derivative.

a) b)

++

+ -

Figure 7.1: Non-degenerate curves in Λn

We will assume that the matrix f ′(x) is non-degenerate for every x.
This condition has a geometrical meaning. With every point ` of Λn we
associate a codimension one variety (with singularity in `), called the train.
The train consists of Lagrangian spaces which are not transversal to `. The
corresponding curve in Λn is everywhere transversal to the train, see figure
7.1. We call a map (7.6.6) satisfying this condition non-degenerate. The
image of RP1 under a non-degenerate map is called a non-degenerate curve
in Λn. In the one-dimensional case, the non-degeneracy condition means
that f is a (local) diffeomorphism.

Infinitesimal symplectic cross-ratio

The main idea is similar to the one-dimensional case, see Section 1.3. Let
x be a point in RP1 and v a tangent vector to RP1 at x. We extend v to
a vector field in a vicinity of x and denote by φt the corresponding local
one-parameter group of diffeomorphisms. We then consider 4 points:

x, x1 = φε(x), x2 = φ2ε(x), x3 = φ3ε(x)
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(ε is small) and compute the symplectic cross-ratio of their images under f .
More precisely, we compute the pair of quadratic forms:

Φ1 = Φ[f(x), f(x1), f(x3)], Φ2 = Φ[f(x), f(x2), f(x3)].

Choosing, as above, an atlas on Λn, one represents the family of La-
grangian subspaces f(x) as a family of symmetric n× n-matrices. Each of
the above quadratic forms will also be represented by a family of symmetric
matrices.

Exercise 7.6.6. Let f(x) be a non-degenerate curve in Λn. Then, for every
local chart on Λn, the symplectic cross-ratio is given by two symmetric
matrices

Φ1 =
3

2
ε f ′ −

3

4
ε3
(
f ′′′ −

3

2
f ′′
(
f ′
)−1

f ′′
)

+O(ε4)

Φ2 = 6 εf ′ + 6 ε3
(
f ′′′ −

3

2
f ′′
(
f ′
)−1

f ′′
)

+O(ε4)

(7.6.7)

Hint. Use the Taylor expansion for f(x1), f(x2) and f(x3); for instance,

f(x1) = f(x) + ε f ′(x) +
ε2

2
f ′′(x) +

ε3

6
f ′′′(x) +O(ε4).

One then can assume, without loss of generality, that f(x) = 0 and apply
formula (7.6.3).

Remark 7.6.7. The reader has already noticed similarity between expres-
sion (7.6.7) and the classic Schwarzian derivative (1.3.3). In the one-dimensi-
onal case, it suffices to take the quotient Φ2/Φ1 to obtain formula (1.3.1).

Introducing Lagrange Schwarzian derivative

Assume that the non-degenerate map f is positive, that is, the matrix f ′(x)
is positive definite. An example is given by figure 7.1, case a). The families
of matrices Φ1(x) and Φ2(x) are then positive definite for ε small enough.
There is a family of matrices C(x), not necessarily symmetric, satisfying the
condition Φ1(x) = C∗(x)C(x). Any such family C(x) will be called a square
root of Φ1(x) and denoted by

√
Φ1(x). The square root is defined modulo

orthogonal matrices: √
Φ1(x) ∼ O(x)

√
Φ1(x).
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Choosing a basis in the Lagrangian space f(x) which is orthonormal for
the form Φ1, one obtains for the symplectic cross-ratio

Φ1 = Id, Φ2 = 4 Id−
1

2
ε2 LS(f) +O(ε4)

where

LS(f) =

√
(f ′)−1

(
f ′′′ −

3

2
f ′′
(
f ′
)−1

f ′′
)√

(f ′)−1
∗

. (7.6.8)

This expression will be called the Lagrange Schwarzian derivative.
Note that expression (7.6.8) is defined up to conjugation by families of

orthogonal matrices:

LS(f(x)) ∼ O(x)LS(f(x))O(x)−1.

We will define, in the next subsection, the notion of canonical square root
and the Lagrange Schwarzian will be defined up to conjugation by orthogonal
matrices which do not depend on the parameter.

Proposition 7.6.8. One has LS(f(x)) = LS(g(x)) if and only if g(x) =

(af(x) + b) (cf(x) + d)−1 where

(
a b
c d

)
is a symplectic matrix.

Proof. This follows from the symplectic invariance of the quadratic forms
Φ1 and Φ2.

Square root of symmetric matrices and loop group action

With an arbitrary family G(x) of non-degenerate n × n-matrices we will
associate another family:

c(G) = G′(x)G(x)−1 (7.6.9)

The algebraic meaning of the map c is as follows. Let G = C∞(S1,GL(n,R))
be the group of smooth functions with pointwise multiplication, usually
called the loop group. Let g be the corresponding Lie algebra, that is, g =
C∞(S1, gl(n,R)). The (co)adjoint action of G on g is given by

adG(x)M(x) = G(x)M(x)G(x)−1 .

The map (7.6.9) is a 1-cocycle on G with coefficients in g so that

ãdG = adG + c(G)

is an affine action, see Appendix 8.4.
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Proposition 7.6.9. Let X(x) be a family of symmetric positively definite
n× n-matrices.
(i) There is a family of matrices B(x) such that:

1) B∗B = X, 2) c(B) is symmetric for all x

(ii) The family B(x) is uniquely defined up to multiplication by a constant
orthogonal matrix: B(x) ∼ OB(x).

Proof. Let B(x) be an arbitrary family of matrices satisfying condition 1).
Consider the equation O′(x) = O(x) (c(B)∗ − c(B)). This equation has a
unique solution O(x) ∈ SO(n), defined up to multiplication: O(x) ∼ Õ O(x).
The corresponding family O(x)B(x) satisfies condition 2).

We call the family B(x), defined in Proposition 7.6.9, the canonical
square root of a family of symmetric matrices.

We will understand the square roots in (7.6.8) as the canonical ones. The
Lagrange Schwarzian derivative is then uniquely defined up to conjugation
by constant orthogonal matrices: LS(f(x)) ∼ OLS(f(x))O−1.

Lagrange Schwarzian derivative and Newton systems

The classic Schwarzian derivative is closely related to the Sturm-Liouville
operators, see Section 1.3. In the multi-dimensional case, analogs of the
Sturm-Liouville operators are second-order matrix differential operators:

L =
d2

dx2
+A(x) (7.6.10)

where A(x) is a family of symmetric n × n-matrices. We call operators
(7.6.10) Newton operators.

Consider the Newton system of n linear differential equations

y′′(x) +A(x) y(x) = 0 (7.6.11)

where y ∈ Rn. The 2n-dimensional space of its solutions has a natural
symplectic structure given by an analog of the Wronski determinant:

W (y, ỹ) =

n∑

i=1

(
yi(x) ỹ

′
i(x)− y′i(x) ỹi(x)

)
.

Exercise 7.6.10. Check that this expression does not depend on x and
defines a non-degenerate skew-symmetric form on the space of solutions.
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The space of solutions is therefore isomorphic to the standard symplectic
space (R2n, ω).

Every Newton operator defines a positive non-degenerate curve in Λn.
Indeed, let `(x) be the n-dimensional subspace of solutions vanishing at
point x; this space is clearly Lagrangian.

Proposition 7.6.11. The curve `(x) is positive.

Proof. Let y1(x), . . . , yn(x) ∈ Rn be linearly independent solutions of (7.6.11).
Denote by Y (x) the n × n-matrix whose i-th column is the vector yi. For
every two matrices of solutions Y (x) and Z(x) we define their Wronskian

W (Y,Z) = Y (x)∗ Z ′(x)− Y ′(x)
∗
Z(x)

which is a constant matrix. It is clear that Wij = W (yi, zj). The space
of solutions is a 2n-dimensional symplectic space. Consider a Darboux ba-
sis {y1, . . . , yn, z1, . . . , zn} in this space and the corresponding matrices of
solutions Y (x) and Z(x). Then one has

W (Y,Z) = Id, W (Y, Y ) = 0, W (Z,Z) = 0. (7.6.12)

Denote by α and β the Lagrange subspaces in the space of solutions corre-
sponding to the matrices Y (x) and Z(x).

Consider the Lagrange subspace `(s) in the space of solutions. Let Ls(x)
be a fundamental matrix of solutions corresponding to `(s) (i.e., we choose
a basis in `(s)). Then, up to a conjugation,

Ls(x) = Y (x)Y (s)−1 − Z(x)Z(s)−1.

The quadratic form Φ[α, β, `(s)] is thus given, in the chosen basis, by the
family of symmetric n × n-matrices f(s) = Y (s)−1 Z(s), that is, Z(s) =
Y (s) f(s). Substituting this expression to (7.6.12), one obtains Y (s)∗ Y (s) =
f ′(s)−1. It follows that f ′(s) is positively definite for every s.

Note, furthermore, that the matrix Y (x) is the canonical square root:

Y (x) =
√
f ′(x)−1.

Indeed, we already proved that it satisfies condition 1) in Proposition 7.6.9.

Exercise 7.6.12. Check that the matrix Y ′(x)Y (x)−1 is symmetric if and
only if W (Y, Y ) = 0.
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That is, condition 2) of the canonical square root is equivalent to the fact
that α is a Lagrangian plane.

Let us now consider the inverse problem. Given a positive non-degenerate
curve in Λn, is it possible to find an operator (7.6.10) corresponding to this
curve? It turns out the the answer in provided by the Lagrange Schwarzian
derivative. The following statement is an analog of Exercise 1.3.4.

Theorem 7.6.13. Every positive non-degenerate curve f(x) in Λn corre-
sponds to a Newton operator with

A =
1

2
LS(f(x)).

Proof. Assume that a curve f(x) ⊂ Λn corresponds to some Newton system
(7.6.11) in the same sense as above. We would like to calculate explicitly
the potential A(x). Fix a Darboux basis in the space of solutions, as in
the proof of Proposition 7.6.11. This defines a local chart on Λn, and one
associates a family of symmetric n×n-matrices to f(x). We already proved
that Y (x) =

√
f ′(x)−1 is a fundamental matrix of solutions of (7.6.11). But

the potential can then be easily computed as A(x) = Y ′′(x)Y (x)−1.

Exercise 7.6.14. Check that LS(f(x)) = 2Y ′′(x)Y (x)−1.

The computation does not depend on the choice of the Darboux basis
since, for a fixed n× n-matrix C, one has LS(C∗ f(x)C) = LS(f(x)); and
this computation can be made for any positive non-degenerate curve f(x).
This completes the proof.

Comment

The idea to associate an evolution of a Lagrangian subspace to a Newton
system is due to V. Arnold [7]. In particular, he proved that the corre-
sponding curve in Λn is positive. The exposition in this section is based on
[165].

As we mentioned in Preface, the classic Schwarzian derivative was, most
likely, invented by Lagrange. It appears very appropriate that Lagrange’s
name gets again connected to (a version of) the Schwarzian derivative at
the very end of this book!
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Chapter 8

Appendices

8.1 Five proofs of the Sturm theorem

The classic Sturm theorem states that the number of zeroes of a periodic
function is not less than that of its first non-trivial harmonic. This theorem
is intimately related to inflections of projective curves, theorems on vertices
of plane curves and other results discussed in Chapter 3.

Believing in the maxim that it is better to prove the same result in many
different ways than to prove different results in the same way, we devote this
section to a number of different proofs of the Sturm theorem.

Formulation of the Sturm theorem

The Sturm theorem provides a lower bound for the number of zeroes of a
smooth 2π-periodic function g(x) whose Fourier expansion

g(x) =
∑

k≥n

(ak cos kx+ bk sin kx) (8.1.1)

starts with harmonics of order n.

Theorem 8.1.1. The function g(x) has at least 2n distinct zeroes on the
circle [0, 2π).

In the first two proofs, we assume that g(x) is a trigonometric polynomial
(of degree N); the last three proofs apply to all smooth functions.

One can replace the trigonometric polynomials of degree ≤ n− 1 by an
arbitrary Chebyshev system.

223
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Theorem 8.1.2. Let A be a disconjugate differential operator on S1 of
order 2n − 1, and let g(x) be a function, orthogonal to all solutions of the
differential equation Af = 0. Then g(x) has at least 2n distinct zeroes.

The last of our proofs covers this more general result. One can also
consider disconjugate differential operators of order 2n. In this case, the
function g has to be anti-periodic (as well as the solutions of Af = 0), that
is, g(x+ 2π) = −g(x).

Proof by Barner’s theorem

A consequence of the Barner theorem, Theorem 4.4.9, implies that if A is
a disconjugate differential operator of order 2n − 1 on the circle and f is
a smooth periodic function then the function Af has at least 2n distinct
zeroes.

Let A be the differential operator An−1 in (4.4.4). This operator “kills”
the harmonics of orders ≤ n − 1. Applied to trigonometric polynomials of
degree N , the image of An−1 consists precisely of such polynomials that
start with harmonics of order n. In particular, g ∈ ImAn−1, and therefore
g has at least 2n distict zeroes.

Proof by the argument principle

Consider the complex polynomial

G(z) =
N∑

k=n

(ak − ibk) z
k.

Then g(x) = ReG(eix). Let γ be the image of the unit circle under G.

Assume first that γ does not pass though the origin. According to the
argument principle, the rotation number of γ with respect to the origin
equals the number of zeroes of G inside the unit disc (multiplicities counted).
Since G has a zero of order n at the origin, this rotation number is ≥ n. It
follows that γ intersects the vertical axis at least 2n times, that is, g(x) has
at least 2n zeroes.

If γ passes though the origin, then we choose sufficiently small ε > 0
and consider the circle of radius 1 − ε that does not contain zeroes of G.
The image of this circle, γε, still has the rotation number ≥ n. Thus γε
intersects the vertical axis at least 2n times and the number of intersections
of γ cannot be smaller.
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Proof by Rolle theorem

Denote by Z(f) the number of sign changes of f ∈ C∞(S1). The Rolle
theorem asserts that Z(f ′) ≥ Z(f). Introduce the operator D−1 on the
subspace of functions with zero average:

(D−1f)(x) =

∫ x

0
f(t) dt.

The Rolle theorem then reads: Z(f) ≥ Z(D−1f).
Consider the sequence of functions

gm = (−1)m
(
nD−1

)2m
g

where g is as in (8.1.1), explicitly,

gm(x) = (an cosnx+ bn sinnx)+
∑

k>n

(n
k

)2m
(ak cos kx+ bk sin kx) . (8.1.2)

By the Rolle theorem, for every m, one has: Z(g) ≥ Z(gm).
Since the Fourier series (8.1.1) converges,

∑
k(a

2
k + b2k) < C for some

constant C. This implies that the second summand in (8.1.2) is arbitrary
small for sufficiently large m. It follows that gm has at least 2n sign changes
for large m, and we are done.

Proof by heat equation

Consider the function g(x) as the initial condition for the heat equation

∂G(x, t)

∂t
=
∂2G(x, t)

∂x2
, G(x, 0) = g(x).

The number of sign changes of the function G(x, t), considered as a function
of x, does not increase with t. This follows from the maximum principle in
PDE, but it is also intuitively clear: an iceberg can melt down in a warm
sea but cannot appear out of nowhere. On the other hand, one can solve
the heat equation explicitly:

G(x, t) =
∑

k≥n

e−k
2t (ak cos kx+ bk sinkx) .

The rest of the argument repeats the preceding proof by the Rolle theorem:
the higher harmonics tend to zero faster than the n-th ones. Thus, G(x, t)
has at least 2n zeroes for t large enough.
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Proof by orthogonality to trigonometric polynomials

Let us argue by contradiction. Assume that g has less than 2n sign changes
on the circle. The number of sign changes being even, g has at most 2(n−1)
of them. One can find a trigonometric polynomial f of degree ≤ n− 1 that
changes signs precisely in the same points as g. Then the function fg has
a constant sign on the circle and

∫
fg dx 6= 0. But, on the other hand, f is

L2-orthogonal to g; this is a contradiction.

Exercise 8.1.3. Let 0 ≤ α1 < β1 < α2 < . . . < βn−1 < 2π be the points
of sign change of the function g(x). Prove that one can set, in the above
argument:

f(x) = sin
x− α1

2
sin

x− β1

2
· · · sin

x− αn−1

2
sin

x− βn−1

2
.

Comment

The Sturm theorem appeared in [195] for trigonometric polynomials, the
general case is due to Hurwitz. This theorem has been a source of inspiration
for many generations of mathematicians. Over the years, the result has been
rediscovered many times, see [12] for the history.

The proofs by the argument principle and by orthogonality can be found
in [174], Problems III, 184 and II, 141. The proof by the Rolle theorem
appears to be the most recent one [142, 105], the argument resembles that
in [175]. The proof by the heat equation resembles that of the 4-vertex
theorem by the curve shortening argument in Section 4.6.

Of recent results, we would like to mention [60] in which the Sturm
theorem is extended from Fourier series to Fourier integrals and [218] where
analogs of extactic points for trigonometric polynomials are studied.

8.2 Language of symplectic and contact geometry

This section provides a very brief tour of symplectic and contact geometry.
Our goal here is to give the reader a general impression of the subject and
collect various notions and formulæ which are used many times throughout
the book.

Symplectic structure

A symplectic manifold (M,ω) is a smooth manifold M with a closed non-
degenerate differential 2-form ω, called a symplectic structure.
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Since the 2-form is non-degenerate, the dimension of a symplectic mani-
fold is even. A symplectic manifold has a canonical volume form ωn, where
2n = dimM .

Example 8.2.1. A 2n-dimensional vector space with linear coordinates
(x1, ..., xn, y1, ..., yn) has a linear symplectic structure

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn. (8.2.1)

Symplectic manifolds of dimension n are all locally equivalent (Darboux’s
theorem): in a neighborhood of any point there exist local coordinates on
M in which the symplectic form is given by (8.2.1). These coordinates are
called Darboux coordinates.

The following example is of importance.

Example 8.2.2. The cotangent bundle T ∗N of a smooth manifold N has a
symplectic structure. Let λ be the tautological differential 1-form on T ∗N ,
called the Liouville form, whose value on a vector v, tangent to T ∗N at a
point (x, ξ) with x ∈ N and ξ ∈ T ∗xN , is equal to the value of the covector
ξ on the projection of v to the tangent space TxN . The natural symplectic
structure on T ∗N is the 2-form ω = dλ.

Choose local coordinates (x1, ..., xn) on N and the dual coordinates
(ξ1, ..., ξn) on T ∗xN . In these coordinates

λ = ξ1 dx1 + · · ·+ ξn dxn (8.2.2)

and ω is as in (8.2.1).

An n-dimensional submanifold L of a symplectic manifold (M 2n, ω) is
called Lagrangian if the restriction of ω to L vanishes. Since ω is a non-
degenerate 2-form, n is the greatest such dimension.

A diffeomorphism of symplectic manifolds that carries one symplectic
structure to another is called a symplectomorphism. Symplectomorphisms
take Lagrangian manifolds to Lagrangian manifolds.

Exercise 8.2.3. If f : (M1, ω1) → (M2, ω2) is a symplectomorphism then
its graph is a Lagrangian submanifold of the product manifold M1 ×M2

with the symplectic structure ω1 	 ω2.

Poisson structures and symplectic leaves

A Poisson structure on a smooth manifold M is a Lie algebra structure {., .}
on C∞(M) satisfying the Leibnitz identity:

{F,GH} = {F,G}H +G{F,H}. (8.2.3)
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It follows that the operator of Poisson bracket with a function {F, .} is a
derivation of the algebra C∞(M), that is, a vector field on M . This vector
field is called Hamiltonian and denoted byXF . The correspondence F 7→ XF

is given by the Hamiltonian operator H : T ∗M → TM via the formula

XF = H(dF ).

This is a homomorphism of Lie algebras: [XF , XG] = X{F,G}.

The basic example of a Poisson manifold is a symplectic manifold, the
Poisson bracket being given by {F,G} = ω(XF , XG). Moreover, a Poisson
structure defines a foliation on M with symplectic leaves. The tangent space
to a leaf is spanned by Hamiltonian vector fields.

Another way to define a Poisson structure is to consider a bivector field
Λ on M and to define the Poisson bracket by

{F,G} = Λ(dF, dG).

The Leibnitz identity (8.2.3) is satisfied automatically, but the Jacobi iden-
tity imposes a serious restriction on Λ that we do not specify here.

Given a (finite-dimensional) Lie algebra g, the dual space g∗ is endowed
with a natural Poisson structure, called the Lie-Poisson bracket, given by
the formula

{F,G}(ϕ) = 〈ϕ, [dFϕ, dGϕ]〉 (8.2.4)

where ϕ ∈ g∗ and the differentials dFϕ and dGϕ are understood as elements
of (g∗)∗ ∼= g. The symplectic leaves of the Lie-Poisson bracket are precisely
the coadjoint orbits of g, endowed with the famous Kirillov symplectic form.
Strictly speaking, the above discussion applies to finite-dimensional Lie al-
gebras, however, formula (8.2.4) often works in the infinite-dimensional case
as well.

Symplectic structure on the space of geodesics

Let Mn be a Riemannian manifold. Consider a Hamiltonian function H :
T ∗M → R given by the formula H(q, p) = |p|2/2. The Hamiltonian flow
XH is called the geodesic flow on the cotangent bundle. The relation with
geodesic lines is as follows: the projection of a trajectory of the geodesic
flow in T ∗M to M is a geodesic line therein.

Let N ⊂M be a smooth hypersurface and q a point of N . Let p ∈ T ∗qM
be a conormal, a covector vanishing on TqN . Then the projection of the
vector XH(q, p) to TqM is orthogonal to the hypersurface N .
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Let S ⊂ T ∗M be the unit covector hypersurface given by H = 1/2. The
trajectories of the geodesic flow are tangent to S. Assume that the space
of these trajectories is a smooth manifold L2n−2 (locally, this is always the
case). Points of L are non-parameterized oriented geodesics on M . The
following symplectic reduction construction provides the space of geodesics
with a symplectic structure.

Let ω be the canonical symplectic form on T ∗M . The restriction of ω on
S has a 1-dimensional kernel, called the characteristic direction, generated
by the vector field XH . Therefore the quotient space L has a symplectic
structure ω̄.

Exercise 8.2.4. Consider the case of M = Rn. Prove that the space of
oriented lines is symplectomorphic to T ∗Sn−1. In particular, if n = 2 then
ω̄ = dp∧ dα where α is the direction of the line and p is the signed distance
from the origin to the line.

Hint An oriented line ` is characterized by its unit vector q ∈ Sn−1 and the
perpendicular vector p, dropped to ` from the origin.

Assume that the space of oriented geodesics L2n−2 is a smooth manifold,
considered with is its symplectic structure ω̄. Let N ⊂ M be (a germ
of) a smooth cooriented hypersurface and Ln−1 ⊂ L the set of geodesics,
orthogonal to N .

Lemma 8.2.5. L is a Lagrangian submanifold in L. Conversely, a La-
grangian submanifold in L locally consists of the geodesics, orthogonal to a
hypersurface in M .

Proof. Identify tangent vectors and covectors on M by the Riemannian met-
ric. Let p(x), x ∈ N , be the field of unit normal vectors along N . Then
the 1-form 〈p, dx〉 vanishes on N . To prove that L is Lagrangian we need to
show that so is the preimage of L in T ∗M . Let q(x, t) be the point on the
orthogonal geodesic through x ∈ N at distance t from x; if M = Rn then
q(x, t) = x+ tp(x). One parallel translates p to q(x, t). Then

〈p, dq〉 = 〈p, dx〉+ dt, (8.2.5)

and therefore dp ∧ dq = 0. Hence L is Lagrangian.

Conversely, let Ln−1 ⊂ L be a Lagrangian submanifold. Let N ⊂M be
a local hypersurface, transverse to the geodesics from L, and p(x), x ∈ N ,
be the unit vector field along N , tangent to these geodesics. We want to
show that there exists a function t(x) such that the locus of points q(x, t)
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is a hypersurface, orthogonal to the lines from L. This is equivalent to
vanishing of the 1-form 〈p, dq〉. Since L is Lagrangian, dp ∧ dq = 0. By
(8.2.5), dp ∧ dx = 0, and therefore, locally, 〈p, dx〉 = df for some function
on N . Set t(x) = −f(x) and, by (8.2.5), one has 〈p, dq〉 = 0.

Complete integrability

One can discuss complete integrability of a continuous or discrete time dy-
namical system; to fix ideas, we choose the latter. Let T be a symplectomor-
phism of a symplectic manifold (M 2n, ω). The map T is called completely
integrable if there exist T -invariant smooth functions f1, ..., fn (integrals)
whose pairwise Poisson brackets vanish and which are functionally indepen-
dent almost everywhere on M ; this means that their differentials are linearly
independent in an open dense set.

Non-degenerate level sets of the functions f1, ..., fn are Lagrangian man-
ifolds. These manifolds are the leaves of a Lagrangian foliation, leaf-wise
preserved by T . The existence of such a foliation can be taken as the defini-
tion of complete integrability. By Example 6.1.8, the leaves of a Lagrangian
foliation carry a canonical affine structure. The map T , restricted to a leaf,
is an affine map. If a leaf is compact then it is a torus, and the restriction
of T to this torus is a translation: x 7→ x+ a. This statement is (part of) a
discrete version of the Arnold–Liouville theorem, see [10, 226].

Contact structures and space of contact elements

Contact geometry is an odd-dimensional counterpart of symplectic geometry.
Let M be a (2n − 1)-dimensional manifold. A contact structure on M is
a codimension 1 distribution ξ which is completely non-integrable. The
distribution ξ can be locally defined as the kernel of a differential 1-form η.
Complete non-integrability means that

η ∧ dη ∧ · · · ∧ dη︸ ︷︷ ︸
(n− 1) times

6= 0 (8.2.6)

everywhere on M .

Example 8.2.6. The space RP2n−1 has a canonical contact structure de-
fined as the projectivization of the linear symplectic structure (8.2.1) in
R2n. A point x ∈ RP2n−1 is a 1-dimensional subspace X in R2n. Its or-
thogonal complement with respect to the symplectic structure is a (2n− 1)-
dimensional subspace containing X. Define the contact hyperplane ξ(x) at
x as the projectivization of this hyperplane.
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Choose affine coordinates on RP2n−1:

ui =
xi
yn
, vi =

yi
yn
, w =

xn
yn
, i = 1, . . . , n− 1.

Exercise 8.2.7. The canonical contact structure in RP2n−1 is the kernel of
the 1-form

η =

n−1∑

i=1

(uidvi − vidui)− dw. (8.2.7)

Similarly to symplectic manifolds, all contact manifolds of the same di-
mension are locally diffeomorphic. Locally, any contact form can be written
as (8.2.7).

Example 8.2.8. Let Nn be a smooth manifold. A contact element in
N is a pair (x,H) where x is a point of N and H a hyperplane in TxN .
The space of contact elements is (2n − 1)-dimensional manifold which can
be identified with the projectivization of the cotangent bundle T ∗N . This
manifold carries a codimension 1 distribution ξ, defined by the following
“skating” condition: the velocity vector of the foot point x is tangent to H,
see figure 8.1 for n = 2.

a) b) c)

Figure 8.1: Motions a) and b) are tangent to the contact plane, motion c)
is transverse to it

Exercise 8.2.9. Prove that RP3 is contactomorphic to the space of coori-
ented contact elements of S2.

An (n− 1)-dimensional submanifold L of a contact manifold (M 2n−1, ξ)
is called Legendrian if L is everywhere tangent to ξ. Since ξ is a completely
non-integrable, n− 1 is the greatest such dimension.

If L is a Legendrian submanifold in the space of contact elements inN , its
projection to N is called the front of L. The front may have singularities.
Conversely, any hypersurface in N lifts to a Legendrian submanifold by
assigning the tangent hyperplane to its every point.
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Example 8.2.10. The notion of projective duality of curves in RP2 was
discussed in the very beginning of this book. Let M be the space of contact
elements in RP2, that is, of pairs (x, `) where x is a point and ` is a line in
RP2 such that x ∈ `. There are two natural projections p1 : M → RP2 and
p2 : M → RP2∗ given by the formulæ p1(x, `) = x and p2(x, `) = `. Let γ
be a curve in RP2, possibly with cusps, and Γ its Legendrian lift. Then the
dual curve is the second projection of Γ, namely γ∗ = p2(Γ).

Comment

Symplectic and contact geometry is a vast research area, closely related to
various branches of contemporary mathematics. The reader unfamiliar with
the subject is invited to consult [15, 98, 148]. Symplectic geometry has
grown from classical mechanics of XVIII-XIX centuries, see [10]. One of the
most striking applications of symplectic geometry in representation theory
is the orbit method, see [112].

8.3 Language of connections

The language of connections is indispensable in differential geometry and
related areas. Here we provide a few essential formulæ and results, necessary
for understanding the main body of the book. The reader is encouraged to
consult the vast literature on the subject, e.g., [123, 193].

Basic definitions

An affine connection on a smooth manifold M n can be defined in terms of
covariant differentiation, a bilinear operation on the space of vector fields
on M , denoted by ∇XY and satisfying the identities:

∇fXY = f∇XY, ∇X(fY ) = X(f)Y + f∇XY

for any smooth function f . If M is an affine space, one may take ∇ to be
the directional derivative; this is a flat affine connection.

A curve γ(t) is a geodesic if its velocity vector is parallel along the curve:

∇γ′(t)γ
′(t) = 0 (8.3.1)

for all t. For a different parameterization γ(τ) of the same curve, one has:

∇γ′(τ)γ
′(τ) = φ(τ)γ ′(τ) (8.3.2)
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where φ is a function. Conversely, if (8.3.2) holds then one can change the
parameterization so that (8.3.1) is satisfied.

The following tensors are of particular importance: the torsion

T (X,Y ) = ∇XY −∇YX − [X,Y ],

the curvature

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

and the Ricci tensor

Ric(Y,Z) = Tr (X 7→ R(X,Y )Z).

We assume that the connections under consideration have zero torsion. A
connection is called flat if R = 0.

Using the Leibnitz rule, one extends covariant differentiation to other
tensor fields. For example, if g is a (pseudo)Riemannian metric then one
defines ∇X(g) by the equality:

(∇Xg)(Y,Z) = X(g(Y,Z)) − g(∇XY,Z)− g(Y,∇XZ).

The Levi-Civita connection for a (pseudo)Riemannian metric g is a torsion-
free connection preserving g, this connection is uniquely defined by g.

A connection ∇ is called equiaffine if it admits a parallel volume form
Ω, namely, ∇XΩ = 0 for all vector fields X.

Exercise 8.3.1. A connection is equiaffine if and only if its Ricci tensor is
symmetric: Ric(Y,Z) = Ric(Z, Y ).

Projective equivalence

Two torsion-free affine connections are called projectively equivalent if they
have the same non-parameterized geodesics. The respective analytic condi-
tion is as follows.

Proposition 8.3.2. Two torsion-free connections ∇̃ and ∇ are projectively
equivalent if and only if there exists a 1-form λ such that

∇̃XY = ∇XY + λ(X)Y + λ(Y )X (8.3.3)

for all vector fields X,Y .
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Proof. We only give an outline; see, e.g., [156] for more detail.

Assume that (8.3.3) holds and γ(t) is a geodesic of ∇. Then one has:
∇̃γ′(t)γ

′(t) = φ(t)γ ′(t) with φ(t) = 2λ(γ ′(t)). It follows that γ is a geodesic

of the connection ∇̃.

Conversely, let ∇̃ and ∇ be projectively equivalent. Let K(X,Y ) =
∇̃XY −∇XY . Then K is a symmetric tensor. We claim that there exists
a 1-form λ such that K(X,X) = 2λ(X)X for any tangent vector X; the
result will then follow by polarization.

Given X, let γ(t) be the geodesic of ∇ such that γ ′(0) = X. Then γ is
also a geodesic of ∇̃, therefore, by (8.3.2), K(X,X) = ∇̃XX = φX where φ
depends on X. It is a matter of linear algebra to prove that if K(X,X) =
φ(X)X then φ is a linear function, and it remains to set λ = φ/2.

Exercise 8.3.3. Let ∇̃ and ∇ be projectively equivalent equiaffine connec-
tions. Show that the 1-form λ in Proposition 8.3.2 is closed.

Now we define a projective connection on a smooth manifold M . Sim-
ilarly to many notions of differential geometry, this one is defined as an
equivalence class of a special type of atlases on M . Namely, consider an
open covering Ui such that each Ui carries an affine connection ∇i, and the
connections ∇i and ∇j are projectively equivalent on Ui ∩ Uj . A projective
connection is called flat if the connections ∇i are projectively equivalent
to flat affine connections. A flat projective connection is the same as a
projective structure, see Section 6.1.

Example 8.3.4. Projective space RPn has a flat projective connection whose
geodesics are projective lines.

One can prove that if M has a projective connection then there exists an
affine connection ∇ on M such that, for all i, ∇ is projectively equivalent to
∇i. If M has a volume form Ω then ∇ is uniquely defined by the condition
that Ω is parallel.

Given an affine connection on Mn, the following tensor is called the Weyl
projective curvature:

W (X,Y )Z = R(X,Y )Z −
1

n− 1
(Ric(Y,Z)X −Ric(X,Z)Y ) .

Exercise 8.3.5. Prove that the Weyl projective curvature tensor is invariant
under projective equivalences of Ricci-symmetric affine connections.
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8.4 Language of homological algebra

This section provides a very brief introduction to cohomology of Lie groups
and Lie algebras; see, e.g., [35, 72] for a comprehensive account.

Lie group and Lie algebra cohomology

Since Lie algebras are simpler than Lie groups, let us start with the former.
Let g be a Lie algebra and T : g → End(V ) its action on a space V . The
space of q-dimensional cochains C q(g;V ) of g with coefficients in V consists
of continuous skew-symmetric q-linear function on g with values in V . The
differential dq : Cq(g;V ) → Cq+1(g;V ) is given by the formula:

dq c(X1, . . . , Xq+1) =
∑

1≤i<j≤q+1

(−1)i+j−1 c([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xq+1)+

∑

1≤i≤q+1

(−1)i T (Xi) c(X1, . . . , X̂i, . . . , Xq+1).

One has dq ◦ dq−1 = 0, and one defines the cohomology in the usual way:
Hq(g, V ) = Ker dq/Im dq−1.

The reader who has not previously encountered the above formula for
the differential may find it quite formidable. The origin of this formula is
in homological algebra. Note a remarkable similarity of this formula to the
familiar formula for the exterior differential of a differential q-form on a
smooth manifold.

Let G be a Lie group and T : G→ End(V ) its action on a space V . The
space of q-dimensional cochains C q(G,V ) consists of smooth functions of q
variables G× · · · ×G→ V , and the differential is given by the formula:

dq C(g1, . . . , gq+1) =

T (g1)C(g2, . . . , gq+1) +
∑

1≤i≤q

(−1)i C(g1, . . . , gigi+1, . . . , gq+1)+

(−1)q+1 C(g1, . . . , gq).

As before, one defines the cohomology H q(G,V ) = Ker dq/Im dq−1.
Of course, one may relax the differentiability assumption on cochains

and define continuous, measurable, discrete, etc., cohomology (such a change
may dramatically affect the result). We assumed throughout the book that
the group cocycles are given by differentiable functions.
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Cohomology of Lie algebras and Lie groups have relative versions which
are defined via cochains that vanish once at least one argument belongs to
the respective subalgebra or a subgroup.

One has a natural homomorphism Hq(G;V ) → Hq(g;V ), given, on the
cocycle level, by the formula

c(X1, . . . , Xq) =

d

dt
C (exp tX1, exp (−tX1) exp tX2, . . . , exp (−tXq−1) exp tXq)

∣∣∣∣
t=0

.

The inverse problem is to determine whether a cocycle on a Lie algebra g

corresponds to some cocycle on the respective Lie group G. This is the
problem of integration of algebra cocycles to group cocycles.

Exercise 8.4.1. Check that
a) dq ◦ dq−1 = 0, both for Lie groups and Lie algebras;
b) the above homomorphism Cq(G;V ) → Cq(g;V ) commutes with the dif-
ferentials.

Cohomology of Lie algebras and Lie groups, especially, the first and
second cohomology, have numerous applications and interpretations. We
discuss two such interpretations, most pertinent to this book, in the next
two subsections.

Affine modules and first cohomology

Let G be a group, V a G-module and T : G→ End(V ) the G-action on V .
A structure of affine module on V is a structure of G-module on the space
V ⊕ R defined by

T̃g : (v, α) 7→ (Tg v + αC(g), α), (8.4.1)

where C is a map from G to V . The condition T̃g ◦ T̃h = T̃gh is equivalent
to

C(gh) = Tg C(h) + C(g).

Therefore C is a 1-cocycle on G with coefficients in V . The module (8.4.1)
is also called an extension of V .

The equivalence relation is defined by the following commutative diagram
in which B is an isomorphism of G-modules:

0 −−−→ V −−−→ V ⊕ R −−−→ R −−−→ 0
yId

yB
yId

0 −−−→ V −−−→ V ⊕ R −−−→ R −−−→ 0
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The simplest extension corresponds to C = 0; the extension (8.4.1) is called
trivial if it is equivalent to this simplest one. This corresponds to the fact
that the cocycle c is of a special form:

C(g) = Tg v − v (8.4.2)

with some fixed v ∈ V , that is, C is a coboundary.

Thus the spaceH1(G;V ) is isomorphic to the space of equivalence classes
of extensions of module V .

Central extensions

Let g be a Lie algebra. A central extension of g is a Lie algebra structure
on the space g⊕ R defined by the commutator

[(X,α), (Y, β)] = ([X,Y ], c(X,Y ))

where X,Y ∈ g, α, β ∈ R and c is a skew-symmetric bilinear map from g

to R. The Jacobi identity for the above commutator is equivalent to the
following relation:

c(X, [Y,Z]) + c(Y, [Z,X]) + c(Z, [X,Y ]) = 0. (8.4.3)

Therefore c is a 2-cocycle. In other words, a central extension is defined by
an exact sequence of Lie algebras

0 −−−→ R −−−→ g⊕ R −−−→ g −−−→ 0. (8.4.4)

The simplest extension corresponds to c = 0; the extension (8.4.4) is called
trivial (or a direct sum) if it is isomorphic to this simplest one. This corre-
sponds to the fact that the cocycle c is a coboundary:

c(X,Y ) = φ([X,Y ])

where φ is a linear function.

Therefore the space H2(g; R) is isomorphic to the space of equivalence
classes of central extensions of the Lie algebra g. Let us mention that the
space H2(g;V ), where V is a g-module, has a similar interpretation.
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8.5 Remarkable cocycles on groups of diffeomor-

phisms

This section presents a number of cocycles on groups of diffeomorphisms
given by explicit geometrical constructions. There are but a few known
constructions which have a tendency to reappear in various areas. Some
of these constructions were used in this book, starting with the Schwarzian
derivative. As we mentioned earlier, the problem of integration of Lie algebra
cocycles to Lie group ones is highly non-trivial, and this section will provide
examples of such integration.

A 2-cocycle on SL(2, R)

The cohomology of finite-dimensional classical Lie groups with trivial coef-
ficients are described by the following isomorphism:

Hq(G; R) = Hq
top(Ḡ/K)

where Htop means the cohomology of a topological space, Ḡ is a compact
form of the group G and K is the maximal compact subgroup of G. The
compact form is a compact Lie group such that the complexification of ḡ

coincides with that of g (see, e.g., [72]).

If G = SL(2,R) then Ḡ = SU(2) and K = SO(2), hence Ḡ/K = S2.
Therefore Hq(SL(2,R); R) = Hq(S2) so that the only non-trivial cohomol-
ogy of SL(2,R) is the second one. Let us construct a corresponding 2-cocycle.

Recall that PGL(2,R) can be identified with the group of orientation
preserving isometries of the hyperbolic plane, considered in the upper half-
plane model. Thus one has an action of SL(2,R) in the hyperbolic plane by
isometries. Pick a point x and define

C(f, g) = Area (x, f(x), fg(x)), (8.5.1)

the signed area of a triangle in the hyperbolic plane.

Exercise 8.5.1. Check that C(f, g) is a 2-cocycle.

It well could be that the constructed cocycle was trivial, however this is
not the case.

Lemma 8.5.2. The cocycle C(f, g) is non-trivial.



8.5. REMARKABLE COCYCLES ON GROUPS OF DIFFEOMORPHISMS239

Proof. If C is trivial then there exists a function B : SL(2,R) → R such
that

B(fg)−B(f)−B(g) = C(f, g). (8.5.2)

It is clear from (8.5.1) that C(f, g) = 0 if f is identity or if g = f−1. It
follows from (8.5.2) that B(Id) = 0 and B(f−1) = −B(f).

Consider the group H, the stabilizer of point x. For f ∈ H one has,
by (8.5.1), that C(f, g) = 0. It follows from (8.5.2) that B : H → R is a
homomorphism. Since H = S1, this homomorphism is trivial.

Assume now that f(x) = g(x). Then f−1g ∈ H and hence B(f−1g) = 0.
It also follows from (8.5.1) that C(f, g) = 0, and then (8.5.2) implies that
B(f) = B(g). Therefore the value of B(f) depends only on the point f(x),
that is, B(f) = F (f(x)) for some function F .

Finally assume that F (y) 6= 0 for some point y. Let f be the reflection in
the middle of the segment xy. Then f−1 = f and f(x) = y. It follows that
F (y) = B(f−1) = −B(f) = −F (y). Hence F (y) = 0, a contradiction.

Bott-Thurston cocycle

Recall the Gelfand-Fuchs cocycle (1.6.1) of the Lie algebra Vect(S1), “re-
sponsible” for the Virasoro algebra, which we rewrite here as

c
(
h1(x)

d

dx
, h2(x)

d

dx

)
=

∫

S1

∣∣∣∣∣
h′1(x) h′2(x)

h′′1(x) h′′2(x)

∣∣∣∣∣ dx. (8.5.3)

The computation of the ring H∗(Vect(S1); R) was one of the first results
on cohomology of infinite-dimensional Lie algebras, obtained by Gelfand and
Fuchs in 1968. The result of this computation is as follows: H ∗(Vect(S1); R)
is the tensor product of the polynomial ring with one 2-dimensional gen-
erator and the exterior algebra with one 3-dimensional generator. The
2-dimensional generator is represented by the cocycle (8.5.3) and the 3-
dimensional generator by the cocycle

c̄
(
h1(x)

d

dx
, h2(x)

d

dx
, h3(x)

d

dx

)
=

∫

S1

∣∣∣∣∣∣∣

h1(x) h2(x) h3(x)

h′1(x) h′2(x) h′3(x)

h′′1(x) h′′2(x) h′′3(x)

∣∣∣∣∣∣∣
dx. (8.5.4)

We prove here that the Gelfand-Fuchs 2-cocycle is non-trivial. The same
fact for the above 3-cocycle will become clear in Section 8.6.

Lemma 8.5.3. The Gelfand-Fuchs cocycle (8.5.3) is non-trivial.
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Proof. The following identity holds in the Lie algebra Vect(S1) but fails in
the Virasoro algebra (see Section 1.6):

Alt1,2,3,4 [X1, [X2, [X3, [X4, Y ]]]] = 0. (8.5.5)

Exercise 8.5.4. a) Prove the identity (8.5.5) in Vect(S1);
b) Prove that the R-component of the expression (8.5.5) in the Virasoro
algebra equals

∫

S1

∣∣∣∣∣∣∣∣∣∣

h1(x) h2(x) h3(x) h4(x)

h′1(x) h′2(x) h′3(x) h′4(x)

h′′1(x) h′′2(x) h′′3(x) h′′4(x)

h′′′1 (x) h′′′2 (x) h′′′3 (x) h′′′4 (x)

∣∣∣∣∣∣∣∣∣∣

g(x) dx.

where Xi = hi(x) d/dx and Y = g(x) d/dx.

Thus the Virasoro algebra is not isomorphic to Vect(S1)⊕R and the cocycle
(8.5.3) is non-trivial.

The cohomology ring of the respective Lie group Diff+(S1) has the fol-
lowing description (see [72]): it has two generators, α, β ∈ H 2(Diff+(S1); R)
with the only relation β2 = 0. The cohomology class α is taken by the
natural homomorphism H2(Diff+(S1)) → H2(Vect(S1)) to the generator of
H2(Vect(S1)), represented by the cocycle c given by (8.5.3). The problem
of integrating this Lie algebra cocycle to the group Diff+(S1) was solved by
Thurston and Bott, see [31].

Let us start with a simple general construction. Let M be a smooth
manifold with a volume form µ. Assign to an orientation preserving dif-
feomorphism f : M → M a smooth function C̄(f) on M defined by the
formula:

f∗µ = eC̄(f)µ.

Set C(f) = C̄(f−1). One obtains a map C : Diff+(M) → C∞(M).

Exercise 8.5.5. Check that C is a 1-cocycle.

Another piece of “general nonsense” contributing to the Bott-Thurston
construction is the next recipe of making 2-cocycles from 1-cocycles. Let G
be a Lie group acting on spaces U and V , φ : ∧2U → V a G-homomorphism
and C ∈ C1(G;U) a 1-cocycle.

Exercise 8.5.6. Check that the formula D(g1, g2) = φ(C(g1), C(g1g2)) de-
fines a 2-cocycle of G with coefficients in V .
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Back to the group Diff+(S1). For M = S1, one takes µ = dx and obtains
a 1-cocycle C(f) as in Exercise 8.5.5. For a Diff+(S1)-invariant pairing, take

φ : ∧2C∞(S1) → R, φ(f, g) =

∫

S1

f dg.

Then the cocycle of Exercise 8.5.6 becomes the Bott-Thurston cocycle in
C2(Diff+(S1); R) given by the formula

D(f, g) =

∫

S1

C(f) dC(fg).

A projectively invariant cocycle representing the same cohomology class was
given in [53].

Cocycles as coboundaries of “ghosts”

The relation between affine modules and first cohomology discussed in Sec-
tion 8.4 can serve a source of 1-cocycles of a Lie group or a Lie algebra. Let
A be an affine space with the underlining vector space V , acted upon by a
Lie group G; this means that G acts on A by affine transformations. Fix
a ∈ A and consider a map G→ V given by the formula

C(g) = g(a)− a. (8.5.6)

This formula is identical to that for a coboundary (8.4.2), in particular,
C(g) is a 1-cocycle of G with coefficients in V . However this cocycle does
not have to be trivial, since a is not an element of V . In this sense, C(g) is
the coboundary of a “ghost”.

Exercise 8.5.7. Show that replacing the point a ∈ A in (8.5.6) by another
point changes C(g) by a coboundary.

An example of this construction is the multi-dimensional Schwarzian in
Section 7.1: the affine space is that of projective connections, the respective
vector space is the space of tensor-valued 1-forms, and the group consists of
diffeomorphisms of the manifold.

Another example is the space of projective structures on S1, see Section
1.3: the affine space consists of Sturm-Liouville operators, the respective
vector space is the space of quadratic differentials and the group is Diff(S 1),
see (1.3.7) for the action on the potential of a Sturm-Liouville operator. The
resulting cocycle is the Schwarzian derivative.
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8.6 Godbillon-Vey class

We feel that it would be an unforgivable omission not to mention the beau-
tiful Godbillon-Vey construction of characteristic classes of codimension 1
foliations.

Construction

A smooth k-dimensional foliation on a smooth manifold M n is a partition of
M into connected subsets (the leaves), locally diffeomorphic to the partition
of Rn into parallel k-dimensional planes. A codimension 1 foliation F is an
integrable codimension 1 distribution, locally given by a 1-form α, satisfying
the Frobenius integrability condition α ∧ dα = 0. Assume that the foliation
is coorientable, so that the form α is globally defined.

The Frobenius integrability condition is equivalent to the existence of a
1-form η such that dα = η ∧ α. Consider the 3-form η ∧ dη.

Exercise 8.6.1. Check that dη = ν∧α for some 1-form ν, the 3-form η∧dη
is closed, and that its de Rham cohomology class in H 3(M,R) does not
depend on the choices involved.

Hint What happens when α is replaced by fα with f a non-vanishing
function or η by η + gα with g a function?

The cohomology class of η∧dη is the Godbillon-Vey class of the foliation
F , denoted by gv(F). On an orientable closed 3-dimensional manifold M ,
one also defines the Godbillon-Vey number

∫
M gv(F).

Non-triviality

To construct a foliation with non-trivial Godbillon-Vey class, consider the
group G = SL(2,R). Let H ⊂ G be the 2-dimensional subgroup, consisting
of the matrices with zero in the left lower corner. Let Γ ⊂ G be a discrete
subgroup with compact quotient space G/Γ. The right cosets of H foliate
G, and this foliation is invariant under the left action by Γ. Therefore
one obtains a codimension 1 foliation F(F,H,Γ) on the manifold G/Γ. This
foliation is an example of a homogeneous foliation (another familiar example
being a linear foliation on the torus).

Let ω−1, ω0, ω1 be the right-invariant 1-forms on G given by the formulas

ω−1

(
x y
z −x

)
= z, ω0

(
x y
z −x

)
= x, ω1

(
x y
z −x

)
= y.
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Then

dω−1 = 2ω−1 ∧ ω0, dω0 = ω−1 ∧ ω1, dω1 = 2ω0 ∧ ω1 (8.6.1)

and ω−1 ∧ ω0 ∧ ω1 is a bi-invariant volume form. The forms ωi are pull-
backs of 1-forms ω̄i on G/Γ satisfying the same relations (8.6.1)therein. The
foliation F(F,H,Γ) is given by the 1-form ω̄−1, and a calculation using
(8.6.1) yields: gv(F(F,H,Γ)) = −4ω̄−1 ∧ ω̄0 ∧ ω̄1.

Remark 8.6.2. Using the fact that SL(2,R) transitively acts on the hyper-
bolic plane by isometries, one can choose Γ in such a way that G/Γ identifies
with the unit tangent bundle of a surface of genus ≥ 2. Then F(F,H,Γ) is
the horocycle foliation.

Relation to cohomology of infinite-dimensional Lie alge-
bras

What is the relation, if any, between this construction and Lie algebra coho-
mology? To understand this relation, introduce another infinite-dimensional
Lie algebra W1, the algebra of formal vector fields on the line. Its elements
are h(x) d/dx where h(x) is a formal power series. The only non-trivial coho-
mologies of W1 (with trivial coefficients) are H0(W1; R) = H3(W1; R) = R.
A non-trivial 3-cocycle is given by the formula

c̃
(
h1(x)

d

dx
, h2(x)

d

dx
, h3(x)

d

dx

)
=

∣∣∣∣∣∣

h1(0) h2(0) h3(0)
h′1(0) h′2(0) h′3(0)
h′′1(0) h′′2(0) h′′3(0)

∣∣∣∣∣∣
. (8.6.2)

One has a homomorphism Vect(S1) → W1, given by taking the infinite jet
of a vector field at an arbitrarily chosen point of S1. The pull back of the
cocycle (8.6.2) is cohomologous to the cocycle (8.5.4).

Let F be a coorientable codimension 1 foliation on M . We will construct
a 1-form ω on M with values in the algebra W1. This form will satisfy the
Maurer-Cartan equation

dω = −
1

2
[ω, ω]. (8.6.3)

Fix a smooth map M × R →M that, for each x ∈M , sends x× R to a
small curve, transverse to F at point x, sending (x, 0) to x and compatible
with the coorientation. Let x ∈ M be a point and v ∈ TxM a tangent
vector. Include v into a vector field in a vicinity of x and let φt be the
respective local one-parameter group of diffeomorphisms. Let y = φε(x).
The intersections of the transverse curves with the leaves of the foliation
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define the (germ of the) holonomy diffeomorphism ψε : R → R. Note that
ψ0 is the identity. Taking the derivative yields a linear map

ω : v 7→
dψε
dε

|ε=0.

This is the desired 1-form ω : TxM →W1.

Exercise 8.6.3. Let the foliation be given by a 1-form α such that dα = α∧η
and dη = ν ∧ α. Check that

ω(v) = α(v)
d

dx
+ η(v)x

d

dx
+ ν(v)x2 d

dx
+ . . . .

The 1-form ω induces a homomorphismH∗(W1; R) → H∗(M,R). Namely,
let c be a q-cocycle on W1; define a q-form on M by the formula:

ωc(v1, . . . , vq) = c(ω(v1), . . . , ω(vq)).

Exercise 8.6.4. Using the Maurer-Cartan formula (8.6.3), check that the
map c 7→ ωc commutes with differentials and deduce that ωc is a closed
differential form.

Taking the 3-cocycle (8.6.2) in this construction yields the Godbillon-Vey
class gv(F).

Remark 8.6.5. The 1-form ω is an example W1-structure on M . Let g be
a Lie algebra. A g-structure on a smooth manifold M is a g-valued differ-
ential 1-form satisfying the Maurer-Cartan equation (8.6.3). A codimension
q foliation on M with trivialized normal bundle determines a Wq-structure
where Wq is the Lie algebra of formal vector fields in Rq. Characteristic
classes of codimension q foliations correspond to H ∗(Wq; R).

Comment

Godbillon and Vey discovered the invariant gv(F) in 1971. In spite of
the simplicity of the definition, the geometric meaning of this class re-
mains somewhat mysterious1, see [80, 178] for detailed accounts. Unlike
the usual characteristic classes (such as Chern or Stifel-Whitney classes),
the Godbillon-Vey number can vary in one-parameter families; this phe-
nomenon was discovered by Thurston. The theory of characteristic classes
of foliations is one of the most impressive applications of Gelfand-Fuchs
cohomology, see [72] and [81, 214] for the theory of foliations.

1The reader might want to muse on Thurston’s description of the Godbillon-Vey in-
variant as the “helical wobble”, see [219]
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8.7 Adler-Gelfand-Dickey bracket and infinite-di-

mensional Poisson geometry

In Section 1.6 we encountered the Virasoro algebra and its connection with
Sturm-Liouville operators was revealed. What about higher-order differen-
tial operators? In this section we define a remarkable infinite-dimensional
Poisson structure on the space of differential operators (2.2.1), called the
Adler-Gelfand-Dickey bracket. This algebraic structure generalizes the Vi-
rasoro algebra and plays a similar role in the theory of integrable systems
and conformal fields theory.

We classify symplectic leaves of the Adler-Gelfand-Dickey bracket and
show that this classification problem is equivalent to the classification of
non-degenerate projective curves discussed in Section 2.3. This provides
a geometric interpretation of this complicated infinite-dimensional Poisson
structure.

Introducing Adler-Gelfand-Dickey bracket

The Adler-Gelfand-Dickey bracket is defined on the space of linear differen-
tial operators on S1

A =
dn+1

dxn+1
+ an−1(x)

dn−1

dxn−1
+ · · ·+ a1(x)

d

dx
+ a0(x), (8.7.1)

already familiar to the reader. This is an affine space and we identify all
cotangent spaces by parallel translation. Similarly to Section 1.6, we con-
sider the space of regular functionals of the form

ϕ(A) =

n−1∑

i=0

∫

S1

bi(x)ai(x)dx (8.7.2)

where bi ∈ C
∞(S1).

It is convenient to represent such functionals by (formal) pseudo-differential
operators

P =

∞∑

k=1

ck(x)

(
d

dx

)−k
. (8.7.3)

For such operators the Adler trace is defined by

Tr(P ) =

∫

S1

c−1(x)dx.
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The pairing between an operator and a pseudo-differential operator is de-
fined by the formula

〈P,A〉 = Tr(P ◦ A).

We denote this functional by ϕP .

Remark 8.7.1. One deals with pseudo-differential operators similarly to
differential operators, in particular, composes them using the following rule:

(
d

dx

)−1

◦ a(x) = a(x)

(
d

dx

)−1

+
∞∑

i=1

(−1)i a(i)(x)

(
d

dx

)−i−1

which amounts to integration by parts. In this way, one rewrites the com-
position P ◦A in the form (8.7.3).

Exercise 8.7.2. The functional (8.7.2) can be written in the form 〈P,A〉
where

P =

(
d

dx

)−n
bn−1(x) + · · ·+

(
d

dx

)−1

b0(x).

Hint. Integral of the derivative of a function over S1 equals zero.

To define the Adler-Gelfand-Dickey bracket, it suffices to define it for
linear functionals:

{ϕP , ϕQ}(A) = Tr ((A ◦Q)+ ◦ A ◦ P − P ◦ A ◦ (Q ◦ A)+) (8.7.4)

where the subscript + stands for cutting off the negative powers of d/dx. Ac-
cording to a Gelfand and Dickey theorem, formula (8.7.4) defines a Poisson
structure.

Model example: third-order operators

Let us consider in more detail an instructive particular case n = 2. The
differential operators under consideration are

A =
d3

dx3
+ a1(x)

d

dx
+ a0(x). (8.7.5)

In the space of functionals (8.7.2), it is natural to choose the basis:

ϕh(A) =

∫

S1

h(x)a1(x)dx, ψf (A) =

∫

S1

f(x)

(
a0(x)−

a′1(x)

2

)
dx.

Note that a1 has the meaning of a quadratic differential while a0 − a′1/2 of
a cubic form on a projective curve, see Section 1.4. It follows that h has the
meaning of a vector field while f of a tensor density of degree −2.
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Exercise 8.7.3. a) Functionals ϕh form the Virasoro algebra:

{ϕh1 , ϕh2} = ϕh1h′2−h
′

1h2
+ 4

∫

S1

h1h
′′′
2 dx.

b) The Poisson bracket between the functionals ϕh and ψf corresponds to
the action of the vector field h(x)d/dx on the density f(x)(dx)−2:

{ϕh, ψf} = ψhf ′−2h′f .

c)∗ Compute the Poisson bracket between ψf1 and ψf2 , a complicated quadratic
functional.

Our next goal is to compute the Hamiltonian vector fields Xϕh and Xψf

corresponding to the functionals ϕh and ψf .

Exercise 8.7.4. The Hamiltonian vector field Xϕh is precisely the action
of the vector field h(x)d/dx on the space of differential operators:

Xϕh = L2
h(x) d

dx

◦ A−A ◦ L−1
h(x) d

dx

where

Lλ
h(x) d

dx

= h(x)
d

dx
+ λh′(x)

is the Lie derivative (1.5.6) on the space of λ-densities. This formula is the
infinitesimal version of the Diff(S1)-action (2.2.3).

The explicit formula for the Hamiltonian vector field Xψf is complicated.
We compute Xψf in terms of solutions of the equation Ay = 0. The action
on operators and solutions are related by

Xψf (A) y +AXψf (y) = 0.

Exercise 8.7.5. a) The Hamiltonian vector field Xψf is defined by the
formula

Xψf (y) =
1

6
J−2,−1

2 (f, y) +
2

3
fy a1 (8.7.6)

where J−2,−1
2 is the second-order transvectant (3.1.1), namely,

J−2,−1
2 (f, y) = 6fy′′ − 3f ′y′ + f ′′y.

b) The action of Xϕh on solutions becomes the Lie bracket of vector fields:

Xϕh(y) = hy′ − h′y. (8.7.7)
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Remark 8.7.6. The appearance of the transvectants in the context of the
Adler-Gelfand-Dickey bracket is remarkable. We see how projective differ-
ential geometry intervenes, sometimes unexpectedly, into various geometric
issues. Whenever it happens, it clearly indicates the right way of thinking
about a problem.

Symplectic leaves

Recall the correspondence between the differential operators (8.7.1) and non-
degenerate curves in RPn, see Section 2.2. Although the coefficients of an
operator are periodic functions, the corresponding curve is not necessarily
closed. Instead it satisfies the monodromy condition

γ(x+ 2π) = T(γ(x)), Γ(x+ 2π) = T(Γ(x)),

where T is a representative of a conjugacy class in SL(n+ 1,R).

Theorem 8.7.7. Symplectic leaves of the Adler-Gelfand-Dickey bracket are
in one-to-one correspondence with the homotopy classes of non-degenerate
curves with fixed monodromy.

Proof. We prove this theorem in the particular case n = 2 discussed above.
The proof in the general case is similar.

To start with, the action (8.7.6)–(8.7.7) preserves the monodromy simply
because it is linear in y. Let us show that monodromy is the unique local
invariant of symplectic leaves.

As in Section 1.6, let us use the homotopy method. Consider a family
At of differential operators (8.7.5) with fixed monodromy. We want to prove
that there exist ht and ft such that, for every t,

Ȧt = Xϕht
(A) +Xψft

(A). (8.7.8)

To solve this homotopy equation, fix a basis (y1t(x), y2t(x), y3t(x)) of solu-
tions to the equation Atyt = 0 such that the two conditions hold: a) the
monodromy matrix does not depend on t, b) the Wronski determinant

∣∣∣∣∣∣

y1t y2t y3t

y1
′
t y2

′
t y3

′
t

y1
′′
t y2

′′
t y3

′′
t

∣∣∣∣∣∣
≡ 1.

Exercise 8.7.8. Prove that the formula

h = −
1

2

∣∣∣∣∣∣

y1t y2t y3t

y1
′
t y2

′
t y3

′
t

ẏ1
′
t ẏ2

′
t ẏ3

′
t

∣∣∣∣∣∣
+

1

2

∣∣∣∣∣∣

y1t y2t y3t

y1
′′
t y2

′′
t y3

′′
t

ẏ1t ẏ2t ẏ3t

∣∣∣∣∣∣
, f =

∣∣∣∣∣∣

y1t y2t y3t

y1
′
t y2

′
t y3

′
t

ẏ1t ẏ2t ẏ3t

∣∣∣∣∣∣
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solves the homotopy equation (8.7.8)

Hint. Use the same idea as in the proof of Theorem 1.6.4.

We proved that for any smooth family At there exists a couple (ht, ft)
such that the tangent vector Ȧt is given by the Hamiltonian vector field
Xϕht

+Xψft
. By definition of symplectic leaves, this means that the family

At belongs to the same symplectic leaf.

Comment

The Adler-Gelfand-Dickey bracket appeared in [77, 78] and in [1]. The main
interest in this structure is in the theory of completely integrable systems.
Although the Adler-Gelfand-Dickey bracket is quadratic, it generalizes the
commutator of the Virasoro algebra, cf. Exercise 8.7.3. The Adler-Gelfand-
Dickey structure is also known as the second Poisson structure for the gener-
alized KdV equations; there is another related Poisson structure, known as
the first one. Together these two structures form a Poisson pair, see [51, 49].

These structures play an important role in conformal field theory. In
the physics literature, one usually chooses the Fourier basis in the space of
functionals (8.7.2) and obtains a set of generators of an infinite-dimensional
Lie algebra with quadratic relations. These algebras are called the classical
W -algebras.

The relation between symplectic leaves of the Adler-Gelfand-Dickey bra-
cket with non-degenerate curves in RPn was established in [161, 106]. Our
proof of Theorem 8.7.7 in the case n = 2 is borrowed from [161], the general
case was settled in [124]. Relations to transvectants are discussed in [168].
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