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Preface

Anyone maybe once heard the proverb of the six blind men with an elephant, in
which these blind men were asked to determine what an elephant looks like by touch
different parts of the elephant’s body. The man touched its leg, tail, trunk, ear, belly
or tusk claims that the elephant is like a pillar, a rope, a tree branch, a hand fan, a
wall or a solid pipe, respectively. Each of them insisted his view right. They entered
into an endless argument. All of you are right! A wise man explains to them: why
are you telling it differently is because each one of you touched the different part of
the elephant. So, actually the elephant has all those features what you all said.

After read this meaningful proverb, we should ask ourself two questions:

What is its implication in philosophy?
What is its meaning for understanding of the WORLD?

One interesting implication of this proverb is that an elephant is nothing but
a union of those claims of the siz blind men, i.e., a Smarandache multi-space un-
derlying a combinatorial structures. The situation for one realizing behaviors of the
WORLD is analogous to the blind men determining what an elephant looks like.
The multi-laterality of the WORLD implies that human beings can only determine
lateral feature of the WORLD by our technology, and the WORLD should be a
Smarandache multi-space underlying a combinatorial structure in theory.

In The 2nd Conference on Combinatorics and Graph Theory of China (Aug.
16-19, 2006, Tianjing), I formally presented a combinatorial conjecture (CC) on
mathematical sciences, i.e., a mathematical science can be reconstructed from or
made by combinatorialization. This conjecture is essentially a philosophic notion for

developing mathematical sciences. It is this notion that motivates me to research
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mathematics and physics by combinatorics, i.e., mathematical combinatorics begin-
ning in 2004 when I was a post-doctor of Chinese Academy of Mathematics and
System Science. Now, it finally bring about this self-contained book -Combinatorial
Geometry with Applications to Field Theory, includes combinatorics with graphs,
algebraic combinatorics, differential Smarandache manifolds, combinatorial differen-
tial geometry, quantum fields with dynamics, combinatorial fields with applications,
and so on.

Contents in this book are outlined following.

Chapters 1 and 2 are the fundamental of this book. In Chapter 1, we briefly
introduce combinatorics with graphs, such as those of Boolean algebra, multi-sets,
partially ordered or countable sets, graphs and combinatorial enumeration, which
are useful in following chapters.

Chapter 2 is the fundamental of mathematical combinatorics, also an applica-
tion of combinatorial notion to mathematical systems, i.e., combinatorial systems,
particularly algebraic systems. These groups, rings and modules were generalized to
a combinatorial one. We also consider actions of multi-groups on finite sets, which
extends a few well-known results in classical permutation groups.

Chapter 3 is a survey of Smarandache geometries. For introducing differen-
tial Smarandache manifolds, we first present topological spaces with fundamental
groups, covering space and simplicial homology group, Euclidean spaces, differen-
tial forms in R™ and the Stokes theorem on simplicial complexes. Then we discuss
Smarandache geometries, map geometries and pseudo-Euclidean spaces. By intro-
ducing differential structure on Smarandache manifolds, we discuss Smarandache
manifold, principal fiber bundles and geometrical inclusions in differential Smaran-
dache geometries.

Chapters 4 — 6 are on combinatorial manifolds motivated by the combinatorial
notion on topological or smooth manifolds. In Chapter 4, we discuss topological
behaviors of combinatorial manifolds with characteristics, such as Euclidean spaces
and their combinatorial characteristics, topology on combinatorial manifolds, vertex-
edge labeled graphs, Euler-Poincaré characteristic, fundamental groups, singular
homology groups on combinatorial manifolds and regular covering of combinatorial
manifold by voltage assignment. Some well-known results in topology, for exam-

ple, the Mayer-Vietoris theorem on singular homology groups can be found in this
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chapter.

Chapters 5 and 6 form the main parts of combinatorial differential geome-

try, which provides the fundamental for applying it to physics and other sciences.
Chapter 5 discuss tangent and cotangent vector space, tensor fields and exterior dif-
ferentiation on combinatorial manifolds, connections and curvatures on tensors or
combinatorial Riemannian manifolds, integrations and the generalization of Stokes’
and Gauss’ theorem, and so on. Chapter 6 contains three parts. The first concen-
trates on combinatorial submanifold of smooth combinatorial manifolds with fun-
damental equations. The second generalizes topological groups to multiple one, for
example Lie multi-groups. The third is a combinatorial generalization of principal
fiber bundled to combinatorial manifolds by voltage assignment technique, which
provides the mathematical fundamental for discussing combinatorial gauge fields in
Chapter 8.

Chapters 7 and 8 introduce the applications of combinatorial manifolds to fields.
For this objective, variational principle, Lagrange equations and Euler-Lagrange
equations in mechanical fields, Einstein’s general relativity with gravitational field,
Maxwell field and Abelian or Yang-Mills gauge fields are introduced in Chapter 7.
Applying combinatorial geometry discussed in Chapters 4 — 6, we then generalize
fields to combinatorial fields under the projective principle, i.e., a physics law in
a combinatorial field is invariant under a projection on its a field in Chapter 8.
Then, we show how to determine equations of combinatorial fields by Lagrange
density, to solve equations of combinatorial gravitational fields and how to construct

combinatorial gauge basis and fields, - - -.

This book was began to write in October, 2006. Many colleagues and friends of
mine have given me enthusiastic support and endless helps in preparing this book.
Without their help, this book will never appears today. Here I must mention some
of them. On the first, I would like to give my sincerely thanks to Dr.Perze for his
encourage and endless help. Without his encourage and suggestion, I would do some
else works, can not investigate mathematical combinatorics for years and finish this
book. Second, I would like to thank Professors Feng Tian, Yanpei Liu, Mingyao
Xu, Jiyi Yan, Wenpeng Zhang and Fuji Zhang for them interested in my research
works. Their encourage and warmhearted support advance this book. Thanks are

also given to Professors Xiaodong Hu, Yanxun Chang, Han Ren, Yanqiu Huang,
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Junliang Cai, Rongxia Hao, Wenguang Zai, Goudong Liu, Weili He and Erling
Wei for their kindly helps and often discussing problems in mathematics altogether.
Partially research results of mine were reported at Chinese Academy of Mathematics
& System Sciences, Beijing Jiaotong University, East-China Normal University and
Hunan Normal University in past years. Some of them were also reported at The 2nd
and 3rd Conference on Combinatorics and Graph Theory of Chinain 2006 and 2008,
The 3rd and 4th International Conference on Number Theory and Smarandache’s
Problems of Northwest of Chinain 2007 and 2008. My sincerely thanks are also give
to these audiences discussing mathematical topics with me in these periods.

Of course, I am responsible for the correctness all of these materials presented
here. Any suggestions for improving this book and solutions for open problems in

this book are welcome.

L.F.Mao
AMSS, Beijing
July, 2009
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No object is mysterious. The mystery is our eyes.

By Elizabeth, a British female writer.



CHAPTER 1.

Combinatorics with Graphs

For catering the need of computer science, combinatorics have mushroomed
with many important results produced in the past century. Then what is
the essence of combinatorics? In fact, it is in a combinatorial speculation,
namely, combining different fields into a unifying one without metrics. That
is why only abstract notations are considered in combinatorics. In this chap-
ter, we introduce main ideas and techniques in combinatorics motivating the
mathematical combinatorics in the follow-up chapters. Certainly, it can be

also viewed as a brief introduction to combinatorics and graphs.
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§1.1 SETS WITH OPERATIONS

1.1.1 Set. A set S is a collection of objects with properties P;, 1 < i < s, denoted
by

S = {x|z posses properties P;, 1 < i < s}.

For examples,

A = {natural numbers diviable by a prime p},

B = {cities with persons more than 10 million in the world}

are two sets by definition. In philosophy, a SET is a category consisting of parts.
That is why we use conceptions of SET or PROPERTY without distinction, or
distinguish them just by context in mathematics sometimes.

An element = possessing properties P;,1 < ¢ < s is said an element of the set
G, denoted by x € &. Conversely, an element y without all properties P;;1 <1 < s
is not an element of &, denoted y € &. Denoted by |S| the cardinality of a set &.
In the case of finite set, |&] is the number of elements in &.

Let &, and G, be two sets. If for Vo € &1, there must be z € &,, then we say
that &, is a subset of &5 or &1 is included in G4, denoted by &; C G,. A subset
&1 of Gy is proper, denoted by &1 C &, if there exists an element y € G5 with
y & &1 hold. Further, the void (empty) set @, i.e., |#| = 0 is a subset of all sets by
definition.

There sets 61, &, are said to be equal, denoted by &; = &, if x € &, implies
x € Gy, and vice versa. Applying subsets, we know a fundamental criterion on

isomorphic sets.
Theorem 1.1.1 Two sets &1 and &2 are equal if and only if &1 C G, and G, C &;.

This criterion can simplifies a presentation of a set sometimes. For example,

for a given prime p the set A can be presented by

A={pn|n>1}
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Notice that the relation of inclusion C is reflexive, also transitive, but not
symmetric. Otherwise, by Theorem 1.1, if &; C &5 and &3 C &y, then we must
find that &; = &,. In summary, the inclusion relation C for subsets shares with

following properties:
Reflexive: For any 6, 6 C G;
Antisymmetric: If &1 C &5 and G, C &1, then &, = Gy;
Transitive: If &, C 65 and 6, C 63, then 6, = G3.

A set of cardinality i is called an i-set. All subsets of a set & naturally form a
set P(6), called the power set of &. For a finite set &, we know the number of its

subsets.

Theorem 1.1.2 Let & be a finite set. Then
2()| =29

S
Proof Notice that for any integer ¢,1 < ¢ < |G|, there are | l > non-
i

isomorphic subsets of cardinality 7 in &. Therefore, we find that

i=1

S]
\2(6) _Z< 'C‘j‘ ) = olel, O

1.1.2 Operations. For subsets S,T in a power set &(&), binary operations on
them can be introduced as follows.

The union S UT and intersection S N'T of sets S and T are respective defined
by

SUT:{;U|;L'ESorm€T},

SﬂT:{x\xESandxeT}.

These operations U, N have analogy with ordinary operations - , + in a real

field R, such as those of described in the following laws.
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Idempotent: XX =X and X X = X;

Commutative: X JT =T YX and XNT =TNX;

Associative: X J(TUR)=(XUT)URand XN(TNR)=XNT)NR;

Distributive: X U(TNR) = XUT)NXUR) and

XATUR) = XNT)UXNR).

These idempotent, commutative and associative laws can be verified immedi-
ately by definition. For the distributive law, let z €¢ X J(TNR) = (XUT) (X
UR). Thenz € Xorz € T(\R,ie,z €T andz € R. Now if x € X, we know that
z € XUT and z € X UR. Whence, we get that z € (X JT) (X U R). Otherwise,
r€TR,ie,zeT and x € R. We also get that z € (XUT) (X UR).

Conversely, for Vo € (XUT)N(XUR), we know that z € X|JT and = €
XUR,ie,zeXorzxeTandz € R If z € X, we get that z € X (TN R).
If € T and z € R, we also get that z € X (J(T'( R). Therefore, X | J(T'NR) =
(XUT)N(X UR) by definition.

Similar discussion can also verifies the law X (T'UR) = (XN T)UXNR).

Theorem 1.1.3 Let G be a set and X, T € P(&). Then conditions following are

equivalent.

(i) XCT;

(i) XNT=X;

(i) XUT =T.

Proof The conditions (1) = (2) and (1) = (3) are obvious. Now if X N7 = X
or XUT =T, then for Vo € X, there must be x € T, namely, X C T. Whence,
these conditions (2) = (1) and (3) = (1). O

For the empty set # and & itself, we also have special properties following.

Universal bounds: ) C X C G for X € Z(6);

Union: PUX=Xand BUX = G;

Intersection: fNX=Pand 5NX = X.

Let & be a set and X € £(&). Define the complement X of X in & to be
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X={y|lyeSbuty¢gX}

Then we know three laws on complementation of a set following related to union

and intersection.
Complementarity. XNX =0and XUX = &;

Involution: X =X;

Dualization: XUT=XNTand XNT=XUT.

These complementarity and involution laws can be immediately found by def-
inition. For the dualization, let 2 € XUT. Then z € & but z € X UT, i.e.,
r¢ X andx € T. Whence, z € X and z € T. Therefore, z € X NT. Now for
Vo € XNT, there must bex € X and z € T, ie, r € Sbut x ¢ X and z ¢ T.
Hence, x ¢ X UT. This fact implies that + € X UT. By definition, we find that
XUT =XNT. Similarly, we can also get the law X N T = X UT.

For two sets S and T', the Cartesian product S x T of S and T is defined to be
all ordered pairs of elements (a,b) for Va € S and Vb € T, i.e.,

SxT={(a,b)|lac S,beT}.

A binary operation o on a set S is an injection mapping o : S x S — S. Generally,
a subset R of S x S is called a binary relation on S, and for V(a,b) € R, denoted by

aRb that a has relation R with bin S. A relation R on S is equivalent if it is
Reflexive:  aRa for Va € S;
Symmetric: aRb implies bRa for Va,b € S;
Transitive  aRb and bRc imply aRc for Va,b,c € S.

1.1.3 Boolean Algebra. A Boolean algebra is a set 9 with two operations vee
V and wedge A, such that for Va, b, ¢ € # properties following hold.

(7) The idempotent laws

aVa=alNa=a,

the commutative laws
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aVb=bVa, aAb=bAa,

and the associative laws

aV(Vve)=(aVb) Ve aN(bAc)=(aAb)Ac.

(72) The absorption laws

aV(anb)=aA(aVD)=a.

(774) The distributive laws, i.e.,

aV(Ac)=(anb)V(anc), an(bdVe)=(aAd)V(aAc).

(iv) There exist two universal bound elements O, I in £ such that

OVa=a, ONa=0, IVa=1, I Na=a.

(v) There is a 1 — 1 mapping ¢ : a — @ obeyed laws

ava=1, ana=0.

Now choose operations U = V, N = A and universal bounds [ = &, O = () in

Z(6). We know that

Theorem 1.1.4 Let & be a set. Then the power set (&) forms a Boolean algebra

under these union, intersection and complement operations. (]

For an abstractly Boolean algebra %, some basic laws can be immediately found

by its definition. For instance, we know each of laws following.

Law Bl FEach of these identities aV x = x and a A x = a for all x € B implies
that a = O, and dually, each of these identities aV x = a and a Az = x implies that
a=1.

For example, if a Vo = zx for all z € £, then a V O = O in particular. But
aV O = a by the axiom (iv). Hence a = O. Similarly, we can get a = O or a = I

from all other identities.
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Law B2 ForVa,be B, aVb=">if and only ifa ANb=a.

In fact, if a Vb = b, then a Ab = a A (aVb) = a by the absorption law (i7).
Conversely, if a Ab = a, then a Vb = (a Ab) Vb = b by the commutative and
absorption laws.

Law B3 These equations aVx = aVy and a ANx = a Ay together imply that x = y.

Certainly, by the absorption, distributive and commutative laws we have

x = zA(aVz)=zA(aVy)
(zAa)V(zVy)=(HAz)V(yVa)
yA(zVa)=yA(yVa)=y.

Law B4 ForVz,y € A,

sl

TVY)=TAT.

Sl
—

=z, (zAy)=TVY and

Notice that TAx = e AT = O and Va2 = VT = I. By Law B3, the
complement @ is unique for Va € %. We know that T = x. Now by distributive,

associative laws, we find that

(AYANETVY) = (@AYAT)V(AYAT)
((xAZ)AY)V (A (YyAY))
(OAY)V(zANO)=0VO=0

and

(xAy)V(@EVY) = @VIVYA(YVIVY)
= (zVZVY A(yvVyVvzT)
= (Ivy)An(IVvT)=IVI=1
Therefore, again by the uniqueness of complements, we get that (z A y) =T V7.

The identity (z V y) =T A Y can be found similarly.
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For variables zy, z9,- -+, x, in 9B, polynomials f(z1, 2, -, x,) built up from
operations V and A are called Boolean polynomials. Fach Boolean polynomial has

a canonical form ensured in the next result.

Theorem 1.1.5 Any Boolean polynomial in x1,xs, - -, x, can be reduced either to

O or to join of some canonical forms

DAy Ay,
where each p; = x; or T;.

Proof According to the definition of Boolean algebra and laws B1— B4, a canon-
ical form for a Boolean polynomial, for example, f(x1,22,23) =21V 23V T3 V23 V

(z9 V 1), can be gotten by programming following.
STEP 1. If any complement occurs outside any parenthesis in the polynomial,
moved it inside by Law B4.

After all these complements have been moved all the way inside, the polynomial

involving only vees and wedges action on complement and uncomplement letters.
Thus, in our example: f(z1, 22, x3) = [T1 ATz A (22 V 23)] V (22 A 21).

STEP 2. If any A stands outside a parenthesis which contains a V, then the N\ can
be moved inside by applying the distributive law.

There result a polynomial in which all meets A are formed before any join V,
i.e., a join of terms in which each term is a meet of complement and uncomplement

letters. In the above example, f (1, 22, 23) = (T1 AT3Axa) V (T1 ATsAx3)V (22 Axy).

STEP 3. If a letter y appears twice in one term, omit one occurrence by yAy =y. If
y appears both complement and uncomplement, omit the whole term since yAa ANy =
O and OVb=0 for all a,b € A.

Thus in our example, we know that f(z1, 22, 23) = (T1 ATz A x2) V (29 A 21).
STEP 4. If some term T fail to contain just a letter z by STEP 3, then replace it
by (T Az)V (T ANZ), in each of which z occurs exactly once.

By this step, our Boolean polynomial transfers to f(x1, za, x3) = (Ti AT3Axq)V
(IQ AN i) A 1'5) \ (1'2 A I N 55)

STEP 5. Rearrange letters appearing in each term in their natural order.
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Thus in our example, we finally get its canonical form f(z1, 22, x3) = (Ty Aza A
Efg) \% (.1'1 A T2 A Tg) vV (.I‘l A T2 AEQ)
This completes the proof. g

Corollary 1.1.1 There are 2" canonical forms and 22" Boolean polynomials in

variable x1, xa, - - -, z,, in a Boolean algebra % with |2| > n.

Defining a mapping n : & — {0,1} by n(x;) = 1 or 0 according to p; = z; or
p; = T; in Theorem 1.1.5, we get a bijection between these Boolean polynomials in
variable 1, zo, - - -, x,, and the set of all 2" n-digit binary numbers. For the example

in the proof of Theorem 1.5, we have

n(f(z1, 2, x3)) = 010,111,110

1.1.4 Multi-Set. Considering the importance of Smarandache multi-spaces for
modern sciences, we discuss multi-sets as a preparing step in this subsection.
For an integer n > 1, a multi-set X is a union of sets Xy, Xy, -+, X, distinct

two by two. Examples of multi-sets can be found in the following.

< =R,

where R = {integers}, T = {polyhedrons}.

9 =aJG:Jas
where Gy = {grvaitional field}, Gy = {electric field} and G5 = {magnetic field}. By

definition, a multi-set is also a set only with a union structure. The inverse of this

statement is also true shown in the next.

Theorem 1.1.6 Any set X with | X| > 2 is a multi-set.

Proof Let a,b € X be two different elements in X. Define X; = X \ {a},
X, = X \ {b}. Then we know that

X =X JXa,
i.e., X is a multi-set. O

According to Theorem 1.5, we find that an equality following.
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{sets with cardinality > 2} = {multi — sets}.

This equality can be characterized more accurately by introducing some important

parameters.

Theorem 1.1.7 For a set # with cardinality> 2 and integers k > 1,s > 0, there
exrist k sets Ry, Ry, - -+, Ry distinct two by two such that

k
%= JR:
i=1
with
k
I Ril =s
i=1
if and only if
|Z| > k + s.
Proof Assume there are sets k sets Ry, Ry, - - -, Ry distinct two by two such that

X = U R; and | ﬂ R;| = s. Notice that for any sets X and Y with X NY =0

XUV =X+ Y]
and there is a subset

k

UR\U&\RL}ﬂmgU&

i= i=1

with

k

V(U BN BRI R) =0,

i=

we find that

k k k k
|%| = URi > ‘U(Rz \ (U R\ Ry)) U(ﬂ R;)|

1=
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= UERN RN R+ N R

> k+s.

Now if |Z| > k + s, let

{a17a27“'7akablab2a“'7bs}gf%

with a; # a;, b; # b; if i # j. Construct sets

Rl:{a’27"'7ak7bl7b2>”'>bs}>

Ry = %\ {as},
Ry = %\ {as},
Then we get that
k

and

k
(R = {b1, b2, -, b}
i=1
This completes the proof. O

Corollary 1.1.2 For a set # with cardinality> 2 and an integer k > 1, there exist
k sets Ry, Ry, -+, Ry distinct two by two such that
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if and only if

|Z| > k.

§1.2 PARTTIALLY ORDERED SETS

1.2.1 Partially Ordered Set. A partially ordered set (X, P), or poset in short,
consists of a non-empty set X and a binary relation P on X which is reflexive, anti-
symmetric and transitive. For convenience, z < y are used to denote (z,y) € P. In
addition, let < y denote that x <y but z # y. If x < y and there are no elements
z € X such that < z < y, then y is said to cover z.

A common example of posets is the power set Z2(S) with the binary operation
U on a set S. Another is (X, P), where X and P is defined in the following:

X ={e,a,b,c, d},

P ={(a,a), (bb),(c,c),(d,d),(ee),(a,b),(a,c)(dc),(ea),(ed),(ec)(eb)}.

Partially ordered sets with a finite number of elements can be conveniently
represented by Hasse diagrams. A Hasse diagram of a poset (X, P) is drawing in
which the elements of X are placed on the Euclid plane R? so that if y covers z,
then y is placed at a higher lever than z and joined to z by a line segment. For the

second example above, its Hasse diagram is shown in Fig.1.2.1.

b C

Fig.1.2.1
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Two distinct elements @ any y in a poset (X, P) are called comparable if either
x <y ory < x, and incomparable otherwise. A poset in which any two elements
are comparable is called a chain or ordered set, and one in which no two elements
are comparable is called an antichain or unordered set.

A subposet of a poset (X, P) is a poset (Y,Q) in which Y C X and @Q is the
restriction of P to Y x Y. Two posets (X, P) and (X', P') are called isomorphic
if there is a one-to-one correspondence 7 : X — X’ such that x < y in P if and
only if 7(x) < 7(y) in P’. A poset (Y, Q) is said to be embedded in (X, P), denoted
by (Y,Q) C (X, P) if (Y, Q) is isomorphic to a subposet of (X, P). For two partial
orders P and @ on a set X, we call Q an extension of P if P C @ and a linear
extension of P if @ is a chain. It is obvious that any poset (X, P) has a linear
extension and the intersection of all linear extension of P is P itself. This fact can

be restated as follows:

for any two incomparable elements x and y in a poset (X, P), there is one linear

extension of P in which x <y, and another in which y < z.

Denote a linear order L : 2y < @9 < --- <z, by L : [21, 29, -+, x,]. For a given
poset (X, P), a realizer {Ly, Lo, -+, L} of P is a collection R of linear extension
whose intersection is P, i.e., x < y in P if and only if z < y in every L;;1 < i < t.
The it dimension dim(X, P) of a poset (X, P) is defined to be the minimum order
of realters R of P and the rank rank(X, P) of (X, P) to be the maximum order of
realizers R in which there are no proper subset of R is again a realizer of (X, P).
For example, dim(X, P) = 1 or rank(X, P) = 1 if and only if it is a chain and
dim(X, P) = 2 if it is an n-element antichain for n > 2. For n > 3, we construct a
infinite family, called the standard n-dimensional poset S2 with dimension and rank
n.

For n > 3, the poset S? consists of n maximal elements ay,as, -, a, and n
minimal elements by, bs, - - -, b, with b; < a; for any integers 1 < 4,7 < n with ¢ # j.

Then we know the next result.

Theorem 1.2.1 For any integer n > 3, dimS% = rankS? = n.

Proof Consider the set R = {Ly, Ly, -+, L,} of linear extensions of 8! with

Lk : [bb o '>bk717bk+17 o ’7bn7a’k7bk7al7 5 A1, Q415 '7(Jln}‘
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Notice that if @ # j, then b; < a; < b; < a; in L;, and b; < a; < b; < a; in
L; for any integers 7,j,1 < 14,7 < n. Whence, R is a realizer of S%. We know that
dimS? < n.

0

», then for each k = 1,2, .-+, n, by definition some

Now if R* is any realizer of S
elements of R* must have a, < by, and‘furthermore, we can easily find that there are
no linear extensions L of S such that a; < b; and a; < b; for two integers 4, j,7 # j.
This fact enables us to get that dimS? > n.

Therefore, we have dimS? = n.

For rankS? = n, notice that rankS? >dimS? > n. Now observe that a family
R of linear extension of S? is a realizer if and only if , for i = 1,2, - -+, n, there‘exists

a L; € R at least such that a; < b;. Hence, n is also an upper bound of rankS?%. O

1.2.2 Multi-Poset. A multi-poset ()?, 15) is a union of posets (X1, P1), (X2, Ps),
-+, (X, Py) distinct two by two for an integer s > 2, i.e.,

E]

(X, P) = Jx, P,

i=1
also call it an s-poset. If each (X;, P;) is a chain for any integers 1 < i < s, we call

it an s-chain. For a finite poset, we know the next result.

Theorem 1.2.2 Any finite poset (X, P) is a multi-chain.

Proof Applying the induction on the cardinality | X|. If | X| = 1, the assertion
is obvious. Now assume the assertion is true for any integer |X| < k. Consider the
case of | X| =k + 1.

Choose a maximal element a; € X. If there are no elements as in X such that
as < aq, then the element a, is incomparable with all other elements in X. Whence,
(X \ {a1}, P) is also a poset. We know that (X \ {a:}, P) is a multi-chain by the
induction assumption. Therefore, (X, P) = (X \ {a1}, P) U L; is also a multi-chain,
where Ly = [aq].

If there is an element ay in X covered by ay, consider the element as in X
again. Similarly, if there are no elements a3 in X covered by ag, then Ly = [ag, a;] is
itself a chain. By the induction assumption, X \ {a;, a2} is a multi-chain. Whence,
(X, P) = (X \{a1, a2}, P)U Ly is a multi-chain.

Otherwise, there are elements a3 in X covered by ay. Assume ay, a;_1,- -+, as, a1
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is a maximal sequence such that a;,; is covered by a; in (X, P), then L, = [a;, a;—1,- - -,

az,a1] is a chain. Consider (X \ {a1, a2, -+, a;—1,a,}, P). It is still a poset with
| X\ {a1, a9, ,a;_1,a;}| < k. By the induction assumption, it is a multi-chain.
Whence,

(X, P) = (X \{ar, a0, a1, 0.}, P)| L
is also a multi-chain. In conclusion, we get that (X, P) is a multi-chain in the case
of |X| =k + 1. By the induction principle, we get that (X, P) is a multi-chain for
any X with | X| > 1. O
Now consider the inverse problem, i.e., when is a multi-poset a poset? We find

conditions in the following result.

Ce

Theorem 1.2.3 An s-poset ()? ]5) = U(X;, P) is a poset if and only if for any

1
integeri,7,1 <i,j <s, (z,y) € P; and (y, z) € P; imply that (z,z) € P.

~.
I

o

Proof Let ()?, ﬁ) be a poset. For any integer ¢,7,1 <i,5 < s, since (x,y) €
and (y,z) € P; also imply (z,v), (y,2) € P. By the transitive laws in ()?]5)7 we
know that (z,z) € P.

On the other hand, for any integer ¢, j,1 <i,j < s, if (z,y) € P, and (y, 2) € P,
imply that (z,z2) € ﬁ, we prove ()~(, ﬁ) is a poset. Certainly, we only need to check
these reflexive laws, antisymmetric laws and transitive laws hold in ()? , ﬁ), which
is divided into three discussions.

(1) For Vz € X, there must exist an integer 7,1 < i < s such that z € X; by
definition. Whence, (z,z) € P;. Hence, (z,z) € P, i.e., the reflexive laws is hold in
(X, P).

(ii) Choose two elements z,y € X. If (z,y) € P and (y,z) € P, then there are
integers integers 7, j,1 < 4,7 < s such that (z,y) € P, and (y,z) € P; by definition.
According to the assumption, we know that (z,z) € ﬁ., which is the antisymmetric
laws in (X, P).

(274) The transitive laws are implied by the assumption. For if (z,y) € P
and (y,x) € P for two elements z,y € X, by definition there must exist integers
i,J,1 < 14,7 < s such that (z,y) € P, and (y,2) € P;. Whence, (z,2) € P by the
assumption.

Combining these discussions, we know that ()? , ﬁ) is a poset. O
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Certainly, we can also find more properties for multi-posets under particular
conditions. For example, construct different posets by introducing new partially
orders in a multi-poset. All these are referred to these readers interested on this

topics.

§1.3 COUNTABLE SETS

1.3.1 Mapping. A mapping f from a set X to Y is a subset of X x Y such that
for Ve € X, |f(N({z} xY)| =1, e, fN({z} xY) only has one element. Usually,
we denote a mapping f from X toY by f: X — Y and f(z) the second component
of the unique element of f N ({z} x Y), called the image of x under f. Usually, we
denote all mappings from X to Y by YX.

Let f: X — Y be a mapping. For any subsets U C X and V C Y, define the
image f(U) of U under f to be

fU) ={f()| for Vu € U}

and the inverse f~1(V) of V under f to be

J7HV)y={ue X|f(u) eV}

Generally, for U C X, we have

Uc ()

by definition. A mapping f : X — Y is called injection if for Vy € Y, |f N (X %
{y}| < 1 and surjection if | f N (X x {y})| > 1. If it is both injection and surjection,
ie, |fN(X x {y})| =1, then it is called a bijection or a 1 — 1 mapping.

A bijection f : X — X is called a permutation of X. In the case of finite, there

is a useful way for representing a permutation 7 on X, |X| = n by a 2 x n table

Ty XTo - Tn
T = ,
Yi Y2 o YUn,

following,
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where, z;,y; € X and x; # v, y; # y; if i # j for 1 < 4,5 < n. For instance, let
X ={1,2,3,4,5,6}. Then

12345678

23561487
is a permutation. All permutations of X form a set, denoted by [J(X). The identity
on X is a particular permutation 1x € [[(X) given by 1x(z) =z for all z € X.

For three sets X, Y and Z, let f: X — Y and h: Y — Z be mapping. Define
a mapping ho f: X — Z, called the composition of f and h by

ho f(x) = h(f(z))
for Vo € X. It can be verified immediately that
(ho f)' = foh!

by definition. We have a characteristic for bijections from X to Y by composition

operations.

Theorem 1.3.1 A mapping f : X — Y is a bijection if and only if there exists a
mapping h : Y — X such that foh =1y and ho f =1x.

Proof If f is a bijection, then for Vy € Y, there is a unique x € X such
that f(xz) = y. Define a mapping h : ¥ — X by h(y) = « for Vy € Y and its

correspondent x. Then it can be verified immediately that
foh=1y and ho f =1x.

Now if there exists a mapping i : Y — X such that foh =1y and ho f = 1y,
we claim that f is surjective and injective. Otherwise, if f is not surjective, then
there exists an element y € Y such that f~*(y) = §). Thereafter, for any mapping
h:Y — X, there must be

(feh)(y) = f(h(y)) #y.

Contradicts the assumption foh = 1y. If f is not injective, then there are elements
x1, Ty € X, 21 # x9 such that f(z1) = f(xg) = y. Then for any mapping h: Y — X,
we get that

(ho f)(w1) = h(y) = (ho f)(z2).
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Whence, ho f # 1x. Contradicts the assumption again.
This completes the proof. O

1.3.2 Countable Set. For two sets X and Y, the equality X| =|Y], i.e., X and
Y have the same cardinality means that there is a bijection f from X to Y. A set
X is said to be countable if it is bijective with the set Z of natural numbers. We

know properties of countable sets and infinite sets following.

Theorem 1.3.2(Paradox of Galileo) Any countable set X has a bijection onto a

proper subset of itself, i.e., the cardinal of a set maybe equal to its a subset.

Proof Since X is countable, we can represent the set X by
X = {1 <i<4o0}.

Now choose a proper subset X’ = X \ {x1} and define a bijection f : X —
X\ {1} by

f(%) = Tjt1

for any integer 4,1 <14 < +00. Whence, | X \ {z:}] = | X]. O
Theorem 1.3.3 Any infinite set X contains a countable subset.

Proof First, choose any element z; € X. From X \ {z;}, then choose a second
element x5 and from X \ {1, 22} a third element x3, and so on. Since X is infinite,
for any integer n, X \ {1, s, -+, x,} can never be empty. Whence, we can always
choose an new element x,.; in the set X \ {x1, s, -, 2,}. This process can be
never stop until we have constructed a subset X' = {x;]1 <1i < 400} C X, i.e,, a
countable subset X’ of X. d

Corollary 1.3.1(Dedekind-Peirce) A set X is infinite if and only if it has a bijection
with a proper subset of itself.

Proof If X is a finite set of cardinal number n, then there is a bijection f : X —
{1,2,---,n}. If there is a bijection h from X to its a proper subset Y with cardinal
number k, then by definition we deduce that k& = |Y| = | X| = n. By assumption, YV’
is a proper subset of a finite set X. Whence, there must be k& < n, a contradiction.
This means that there are no bijection from a finite set to its a proper subset.

Conversely, let X be an infinite set. According to Theorem 1.3.3, X contains a
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countable subset X’ = {1, 29, --}. Now define a bijection f from X to its a proper
subset X'\ {z1} by

Tig1, f x=x;€ X',
fy=9 7 ,
z, ifzreX\X.

Whence, X has a bijection with a proper subset X’ \ {x1} of itself. a

§1.4 GRAPHS

1.4.1 Graph. A graph G is an ordered 3-tuple (V, E; I), where V| E are finite sets,
V#QPand I : E — V x V. Call V the verter set and E the edge set of G, denoted
by V(G) and E(G), respectively. An elements v € V(G) is incident with an element
e € E(G) if I(e) = (v,) or (z,v) for an € V(G). Usually, if (u,v) = (v,u)
for Yu,v € V', G is called a graph, otherwise, a directed graph with an orientation
u — v on each edge (u,v).

The cardinal numbers of |V (G)| and |E(G)| are called its order and size of a
graph G, denoted by |G| and ¢(G), respectively.

Let G be a graph. It be can represented by locating each vertex u of G by a
point p(u), p(u) # p(v) if u # v and an edge (u,v) by a curve connecting points
p(u) and p(v) on a plane R?, where p : G — P is a mapping from the V(G) to R?.

For example, a graph G = (V, E; I) with V' = {v1, v2, v3, 04}, E = {e1, €a, €3, €4, €5,
€6, €7, €8, €9, ¢10} and I(e;) = (vi,v;),1 < i < 4;1(e5) = (v1,v2) = (v2,v1),I(es) =
(vs,v4) = (vg,v3),I(eg) = I(e7) = (vo,v3) = (v3,v2),I(es) = I(eg) = (vg,v1) =
(v1,v4) can be drawn on a plane as shown in Fig.1.4.1

€1 €2
U1 €5 U2
3 5 C6
€9l |€10 €7
Vg €s U3
€4 €3

Fig. 1.4.1
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Let G = (V, E;I) be a graph. For Ve € E, if I(e) = (u,u),u € V, then e is
called a loop. For non-loop edges e, es € E, if I(e;) = I(e2), then ey, ey are called
multiple edges of G. A graph is simple if it is loopless without multiple edges, i.e.,
I(e) = (u,v) implies that u # v, and I(e1) # I(ez) if €1 # eq for Vey,eo € E(G). In
the case of simple graphs, an edge (u,v) is commonly abbreviated to uv.

A walk of a graph G is an alternating sequence of vertices and edges uy, ey, us, e,
e eny Up, With e; = (uj,u;41) for 1 <4 < n. The number n is called the length of
the walk. A walk is closed if u; = u,y1, and opened, otherwise. For example, the
sequence v;e1v1e5V265VU33V367U26209 is a walk in Fig.1.3.1. A walk is a trail if all its
edges are distinct and a path if all the vertices are distinct also. A closed path is
called a circuit usually.

A graph G = (V, E; I) is connected if there is a path connecting any two vertices
in this graph. In a graph, a maximal connected subgraph is called a component.
A graph G is k-connected if removing vertices less than k from G still remains a
connected graph. Let G be a graph. For Yu € V(G), the neighborhood Ng(u) of
the vertex « in G is defined by Ng(u) = {v|V(u,v) € E(G)}. The cardinal number
| Ng(u)| is called the valency of vertez u in G and denoted by pg(u). A vertex v with
pc(v) = 0 is an isolated vertex and pg(v) = 1 a pendent verter. Now we arrange
all vertices valency of G as a sequence pg(u) > pg(v) > -+ > pg(w). Call this
sequence the valency sequence of G. By enumerating edges in E(G), the following

equality is obvious.

S pelu) = 2EG)].

ueV(G)
A graph G with a vertex set V(G) = {v1,vs,---,v,} and an edge set E(G) =
{e1,€2,--+,e,} can be also described by means of matrixes. One such matrix is a

pxq adjacency matriz A(G) = [ai;]pxq, where a;; = [I7'(v;,v5)|. Thus, the adjacency
matrix of a graph G is symmetric and is a 0, l-matrix having 0 entries on its main

diagonal if G is simple. For example, the matrix A(G) of the graph in Fig.4.1 is

A(G) =

N O R
S N ==
— = NN O
— = O N
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Let Gy = (Vi, Ev; Ih) and Gy = (Va, Ey; Is) be two graphs. They are identical,
denoted by G; = Go if Vi = V5, By = FEy and I} = I,. If there exists a 1 — 1
mapping ¢ : By — Ey and ¢ : V3 — Vs such that ¢I;(e) = Lo(e) for Ve € E; with
the convention that ¢(u,v) = (é(u),p(v)), then we say that Gy is isomorphic to
G5, denoted by G; = G, and ¢ an isomorphism between G; and G5. For simple
graphs Hy, H, this definition can be simplified by (u,v) € I1(E;) if and only if
(¢p(u), p(v)) € Iz(Es) for Yu,v € V).

For example, let Gy = (V4, Ey; ) and Gy = (Va, Ea; I3) be two graphs with

Vi = {v1, 09,03},
E; = {e1,e9,€3,€4},

11(61) = (?}171)2)7]1(62) = (U2,1)3)711(€3) = (’03,’01)711(64) = (?)1,’01)
and
Vo = {us, ug, us},
Ey ={f, fo: f3, fa},

L(f1) = (w1, u2), L(f2) = (ua, uz), Io(f3) = (us, u1), Io(f1) = (u2, ug),

i.e., those graphs shown in Fig.1.4.2.

€4 fa
€3 e1 fl 2
Vs 2 (%) Us f (%)
3
G1 GZ
Fig. 1.4.2

Define a mapping ¢ : E1 |JVi — E2|J Va2 by

dle1) = fo, dlea) = fs, p(es) = f1,d(ea) = fa

and @(v;) = u; for 1 <4 < 3. It can be verified immediately that ¢I;(e) = L¢(e)



22 Chap.1 Combinatorics with Graphs

for Ve € E;. Therefore, ¢ is an isomorphism between G; and Gs, i.e., G; and Go
are isomorphic.

If Gy = G5 = G, an isomorphism between G and G is called an automorphism
of G. All automorphisms of a graph G form a group under the composition opera-
tion, i.e., ¢0(x) = ¢(0(z)), where z € E(G)|JV (G). We denote this automorphism
group by AutG.

For a simple graph G of n vertices, it can be verified that AutG < S, the
symmetry group action on n vertices of G. But for non-simple graph, the situation is
more complex. For example, the automorphism groups of graphs K,,, and B,, shown
in Fig.1.4.3, respectively called complete graphs and bouquets, are AutK,, = S,, and
AutB, = S, where m = |V (K,,)| and n = |E(B,)|.

Kﬁ B4

Fig. 1.4.3

1.4.2 Subgraph. A graph H = (Vi, Eq; I1) is a subgraph of a graph G = (V, E; I)
ifVi CV, By CEFand [ : By — Vi3 x Vi, Weuse H C G to denote that H is
a subgraph of G. For example, graphs G, Gy, G3 are subgraphs of the graph G in
Fig.1.4.4.

Uy U9 U Uy Uy U2
Uy us uz Uy U3 Uy
G G G, Gs
Fig. 1.44

For a nonempty subset U of the vertex set V(G) of a graph G, the subgraph
(U) of G induced by U is a graph having vertex set U and whose edge set consists of
these edges of G incident with elements of U. A subgraph H of G is called vertex-
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induced if H = (U) for some subset U of V(G). Similarly, for a nonempty subset
F of E(G), the subgraph (F') induced by F in G is a graph having edge set F' and
whose vertex set consists of vertices of G incident with at least one edge of F. A
subgraph H of G is edge-induced if H = (F’) for some subset F' of E(G). In Fig.3.6,
subgraphs G; and G5 are both vertex-induced subgraphs ({us, us}), ({u2,u3}) and
edge-induced subgraphs ({(u1,u4)}), ({(uz,us)}).

For a subgraph H of G, if |V(H)| = |V(G)|, then H is called a spanning
subgraph of G. In Fig.4.6, the subgraph (G5 is a spanning subgraph of the graph G.

A complete subgraph of a graph is called a clique, and its a k-regular vertex-

spanning subgraph also called a k-factor.

1.4.3 Labeled Graph. A labeled graph on a graph G = (V, E; ) is a mapping
0, : VUE — L for a label set L, denoted by GL. If 6, : E — D or 6, : V — 0,
then G¥ is called a vertex labeled graph or an edge labeled graph, denoted by GV or
GE, respectively. Otherwise, it is called a vertez-edge labeled graph. For example,

two vertex-edge labeled graphs on K, are shown in Fig.1.4.5.

2 1
2 3
3 5 43 ] 4
Fig.1.4.5

Two labeled graphs GlLl7 G? are equivalent, denoted by GlL1 = GZL2 if there is
an isomorphism 7 : G; — G5 such that 76, (z) = 0.,7(2) for Vo € V(G1) U E(G1).

Whence, we usually consider non-equivalently labeled graphs on a given graph G.

1.4.4 Graph Families. Some important graph families are introduced in the

following.

C1 Forest. A graph without circuits is called a forest, and a tree if it is connected.
A vertex u in a forest F' is called a pendent vertex if pp(u) = 1. The following

characteristic for trees is well-known and can be checked by definition.

Theorem 1.4.1 A graph G is a tree if and only if G is connected and E(G) =
V(G| 1.
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C2. Hamiltonian graph. A graph G is hamiltonian if it has a circuit, called
a hamiltonian circuit containing all vertices of G. Similarly, a path containing all

vertices of a graph G is called a hamiltonian path.

C3. Bouquet and dipole. A graph B, = (V,, Ey; I,) with V, = { O }, E, =
{e1, €2, -+, e,} and Ly(e;) = (O, O) for any integer 7,1 < i < n is called a bouquet of
n edges. Similarly, a graph D, = (Vy, Eg; 14) is called a dipole if V; = {O1, 05},

E(l = {617627 C €y €1yt Cstly Cs i1y '7es+l+t} and

(01701)7 if 1 S”SS
Id(ei) = (01702)7 if S—FISZS S+l.,

For example, Bs and D, 32 are shown in Fig.1.4.6.

0 o=po

Fig. 1.4.6

The behavior of bouquets on surfaces fascinated many mathematicians atten-
tion. By a combinatorial view, these connected sums of tori, or these connected
sums of projective planes used in topology are just bouquets on surfaces with one

face.

C4. Complete graph. A complete graph K,, = (V,, E.; I.) is a simple graph with
Ve = {v1,v9, -, 0}, Ee = {eij,1 < 4,5 < n,i # j} and I.(e;) = (v;,v;). Since
K, is simple, it can be also defined by a pair (V, E) with V = {v1,ve,--+,v,} and
E ={vw;,1 <i,j <n,i# j}. The one edge graph K, and the triangle graph Kj

are both complete graphs. An example K is shown in Fig.4.3.

C5. Multi-partite graph. A simple graph G = (V, E;I) is r-partite for an
integer r > 1 if it is possible to partition V into r subsets Vi, V3, .-+, V. such that
for Ve € E, I(e) = (v;,v;) forv; € V;, v; € V;and i # j, 1 < 4,5 < r.

For n = 2, a 2-partite graph is also called a bipartite graph. It can be shown

that a graph is bipartite if and only if there are no odd circuits in this graph. As a
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consequence, a tree or a forest is a bipartite graph since both of them are circuit-free.
Let G = (V, E;I) be an r-partite graph and V;, V3, -+, V, its r-partite vertex

subsets. If there is an edge e;; € E for Vv; € V; and Vv; € Vj, where 1 <14,j <r,i #j

such that I(e) = (v;,v;), then G is called a complete r-partite graph, denoted by

G = K(|Vil,

complete 1-partite graph.

Val,-++,|Vz]). By this definition, a complete graph is nothing but a

C6. Regular graph. A graph G is regular of valency k if pg(u) = k for Vu € V(G).
These graphs are also called k-regular. A 3-regular graph is often referred to a cubic

graph.

C7. Planar graph. A graph is planar if it can be drawn on the plane in such a
way that edges are disjoint expect possibly for endpoints. When we remove vertices
and edges of a planar graph G from the plane, each remained connected region is
called a face of G. The length of the boundary of a face is called its valency. Two

planar graphs are shown in Fig.1.4.7.

tetrahedron cube

Fig. 1.4.7

C8. Embedded graph. A graph G is embeddable into a topological space R if
there is a one-to-one continuous mapping f : G — R in such a way that edges are
disjoint except possibly on endpoints. A embedded graph on a topological space R is
a graph embeddable on this space.

Many research works are concentred on graphs on surfaces, which brings about
two trends, i.e., topological graph theory and combinatorial map theory. Readers can
find more information in references [GrT1], [Liul]-[Liu3], [Maol], [MoT1], [Tutl]
and [Whil].

1.4.5 Operations on Graphs. A union G1|JG> of graphs G; with G is defined
by

V(G1 UGz) = Vluvz, E(GIUGZ) = EIUE% I(EIUE2) = [1(E1) UI2(E2)~
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A graph consists of k disjoint copies of a graph H, k > 1 is denoted by G = kH.

As an example, we find that

5
KG = U Sl.i
i=1

for graphs shown in Fig.1.4.8 following

2 3 S0y 4 6
4
5 =
%5 %5 % /o
. 6| 6 6 6
1 2 3 4 5
SLS 51.4 51.3 SLZ SLI

Fig. 1.4.8

and generally, K, = nol S1.i- Notice that kG is a multigraph with edge multiple &k
for any integer k, k Zlgland a simple graph G.

A complement G of a graph G is a graph with vertex set V(G such that vertices
are adjacent in G if and only if these are not adjacent in G. A join Gy + G5 of G4
with G5 is defined by

V(G1 4+ Go) = V(G1) UV (Ga),
E(G1 + G2) = E(G1) U E(G2) U{(u,v)[u € V(G1),v € V(Ga)}
and
I(Gy + Ga) = I(G1) U I(G2) U{I(u,v) = (u,v)|u € V(Gy),v € V(G2)}.

Applying the join operation, we know that

K(m,n) 2 K, + K,.

A cartesian product Gy x G of graphs Gy with G, is defined by V(G x G3) =
V(G1) x V(G2) and two vertices (u1,u2) and (v1,vs) of Gy X G are adjacent if and
only if either u; = vy and (ug, v2) € E(G3) or us = ve and (uq,v1) € E(G1).
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§1.5 ENUMERATION

1.5.1 Enumeration Principle. The enumeration problem on a finite set is to
count and find closed formula for elements in this set. A fundamental principle for

solving this problem in general is on account of the enumeration principle:

for finite sets X and Y, the equality |X| = |Y'| holds if and only if there is a
bijection f: X — Y.

Certainly, if the set Y can be easily countable, then we can find a closed formula for

elements in X.

1.5.2 Inclusion-exclusion principle. By definition, the following equalities on

sets X and Y are known.

X x Y| = [ X|[Y],

XY= X+ Y =X (Y]

Usually, the first equality is called the product principle and the second, inclusion-

exclusion principle can be generalized to n sets X, Xy, -+, X,,.

Theorem 1.5.1 Let Xy, X, -+, X, be finite sets. Then

n

|UXz'| => (=) > X ()X () ) X

s=1 {in, i }S{1,2,,m}

n
Proof To prove this equality, assume an element € |J Xj is exactly appearing

i=1
s s
in s sets X;,, Xj,, -+, X;,. Then it is counted s times in ) |Xj, |, and ) times
=1
in > | X, N XL, < -+, ete.. Generally, for any integers k < s, it is counted

l,la€{i1,+is}

s
times in
k

To sum up, it is counted

o M Xu )Xl

byl €{in,is}
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times in

Z(*l)SH Z |XilﬂXi20"‘ﬂX¢s|‘

s=1 {i1,+is}C{1,2,-,n}

[ORED S S AR A AR AR
i=1 s=1 {i1, s} C{1,2,--,n}
by the enumeration principle. |

The inclusion-exclusion principle is very useful in dealing with enumeration
problems. For example, an Euler function ¢ is an mapping ¢ : Z* — Z on the
integer set Z* given by

o(n) ={k € Z|0 < k <n and (k,n) =1},
for any integer n € Z", where (k,n) is the maximum common divisor of k and n.
Assume all prime divisors in n are py, p, - - -, p; and define
X, ={k€Z|0 <k <nand (k,n)=p},

for any integer i, 1 < ¢ < [. Then by the inclusion-exclusion principle, we find that

en) = H{ke€Z|0<k<nand (kn)=1}

= |{1327n}\(UX1)|

n

= -3 Y XN X)X

s=1 {i1,48s}C{1,2,-,0}
S S P
1<i<i Pi 1505<1 PiDj pip2- - pi

1 1 1

= - (11 )

P2 yzi
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= nH(1—i).

i=1 Di

1.5.3 Enumerating Mappings. This subsection concentrates on the enumera-
tion of bijections, injections and surjections from a given set X to Y. For conve-

nience, define three sets
Bij(YX) = {f € Y¥|f is an bijection},
Inj(YX) ={f € Y¥|f is an injection},
Sur(YX) ={f € YX|f is an surjection}.
Then, we immediately get

Theorem 1.5.2 Let X and Y be finite sets. Then

0 if [ X]# Y1,

Bij(YX)| =
RER {|Y! if |X]=|v]

and

0 if 1X[> Y],

[Inj(y™)| = { ‘
ik if X[ <Y

Proof 1f | X| # |Y|, there are no bijections from X to Y by definition. Whence,
we only need to consider the case of | X| = |Y]. Let X = {z1,29, -+, 2,} and Y =
{y1,92," -+, yn}. For any permutation p on yi, s, -, y,, the mapping determined

by
Z1 i) e T
plyr) ply2) - plyn)
is a bijection from X to Y, and vice versa. Whence,

0 if 1X]# Y1,

Bij(YX)| =
S {n!=Y|! if 1X] = Y]

Similarly, if |X| > |Y], there are no injections from X to Y by definition.
Whence, we only need to consider the case of | X| < |Y]|. For any subset Y' C Y
with |Y’| = | X, notice that there are |Y’|! = | X|! bijections from X to Y, i.e., | X|!
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Y
X1

Y. Therefore, the number |[Inj(Y™)| of surjections from X to Y is

Y| !
X' = em
< X (Y] =X

This completes the proof. g

surjections from X to Y. Now there are < ) ways choosing the subset Y’ in

The situation for |Sur(Y )| is more complicated than these cases of determining
|Bij(YX)| and |[Inj(Y )|, which need to apply the inclusion-exclusion principle with

techniques.

Theorem 1.5.3 Let X and Y be finite sets. Then

Y|
|Sur(YY)| = (- \y|z ( Y] )in.

Proof For any sets X = {@y, 22, -, 2, } and Y, by the product principle we
know that

M [y{zd o ylead oo ylend

[y e[y ey e =y |

Now let ® : YX — Z(Y) be a mapping defined by

o(f) =Y rX) - Y[ (X

Notice that f € Sur(Y™X) is a surjection if and only if ®(f) = @. For any subset
SCY, let

Xo={feY¥[SCa(f)}.
Then calculation shows that
| Xs] {f e Y¥[s Ca(f)}
{Fey¥fx)cylJs—-v sy
= [Js-vsI™ = (v|—Ispl.
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Applying the inclusion-exclusion principle, we find that

[Sur(Y )] = ¥\ |J Xl
0ASCY
1Y
= Y=Y DRIy - s
i=1
v
= D=y (v =i
i=0 |S|=i
1Y
i 1Y ,
= Z(—D( Sy =
=0 ¢
Y]
_ mz ( Y] >¢X|.
, . Yy _ [ Vi Lo
The last equality applies the fact ) = Vi on binomial coeffi-
i -1

cients.

1.5.4 Enumerating Labeled Graphs. For a given graph G and a labeled set L,
can how many non-equivalent labeled graphs G* be obtained? We know the result

following.

Theorem 1.5.4 Let G be a graph and L a finite labeled set. Then there are

|L|V@HEE)]
|AutG|?

non-equivalent labeled graphs by labeling 6, : V(G) U E(G) — L.

Proof A vertex-edge labeled graph on a graph can be obtained in two steps.
The first is labeling its vertices. The second is labeling its edges on its vertex
labeled graph. Notice there are | LIV vertex labelings 0y, : V(G) — L. If there
is an automorphism f € AutG such that (GY)f = GV, then it can show easily that
f = lawg, L6, |(AutG)qv| = 1. Applying a famous result in permutation groups,
ie., |I;[|z"] = |T| for any finite permutation group I' and = € T, we know that the
orbital length of GV under the action of AutG is |AutG|. Therefore, there are
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LV
|[AutG|

non-equivalent vertex labeled graphs by labeling 6, : V(G) — L on vertices in G.

Similarly, for a given vertex labeled graph GV, there are

LV
|AutG|

non-equivalent edge labeled graphs by labeling 6, : E(G) — L on edges in G.

Whence, applying the product principle for enumeration, we find there are

|L|IV(G)\+|E(G)|
|AutG|?
non-equivalent labeled graphs by labeling 6, : V(G) U E(G) — L. a

If each element in L appears one times at most, i.e. |0(z) N L| < 1 for
Vo € V(G)U E(G), then |L| > |V(G)| + |E(G)| if there exist such labeling. In this

case, (here are

labelings 07, : V(G) U E(G) — L with |f(z) N L| < 1. Particularly, choose |L| =
|[V(G)| + |E(G)| as usual, then there are (|V(G)| + |E(G)|)! such labelings. Similar

to Theorem 1.5.4, we know the result following.

Theorem 1.5.5 Let G be a graph and L a finite labeled set with |L| > |V (G)| +

|E(G)| Then there are
|L (G)| ‘E(G”

|AutG|?

non-equivalent labeled graphs by labeling 01, : V(G)UE(G) — L with |0(x)NL] <1,

and particularly

V(@) + |EG)D!
[AwtG]?
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non-equivalent labeled graphs if |L| = |V(G)| + |E(G)|. O

For vertex or edge labeled graphs,i.e., |L| = |V(G)] or |L| = |E(G)|, we can get
similar results on the numbers of non-equivalent such labeled graphs shown in the

following.

Corollary 1.5.1 Let G be a graph. Then there are

V@I, IEG)!
|AutG| |AutG|

non-equivalent vertex or edge labeled graphs.

There is a closed formula for the number of non-equivalent vertex-edge labeled

trees with a given order, shown in the following.

Theorem 1.5.6 Let T be a tree of order p. Then there are

(2p — 1P 2(p+ 1)!
non-equivalent vertez-edge labeled trees.

Proof Let T be a vertex-edge labeled tree with a label set L = {1,2,---,2p—1}.
Remove the pendent vertex having the smallest label a; and the incident edge with
label ¢;. Assume that b; was the vertex adjacent to a;. Among the remaining
p — 1 vertices let as be the pendent vertex with the smallest label and b, the vertex
adjacent to a;. Remove the edge (ag, by) with label ¢o. Repeated this programming
on the remaining p—2 vertices, and then on p—3 vertices, and so on. It is terminated
after p — 2 steps as only two vertices are left. Then the vertex-edge labeled tree

uniquely defines two sequences

(b17b27' "7b11—2)7 (51)

(617627“ '7cp727cp71)7 (52)

where ¢, is the label on the edge connecting the last two vertices. For example,
the sequences (5.1) and (5.2) are respective (1,1,4) and (6,7, 8,9) for the tree shown
in Fig.1.5.1.
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Fig.1.5.1

Conversely, given sequences (by, b, -+, b,—2) and (c1,¢2,- -+, ¢p—1) of 2p — 3 la-
bels, a vertex-edge labeled tree of order p can be uniquely constructed as follows.

First, determine the first number in 1,2,3,---,2p — 1 that does not appear
in (by,ba,---,by—2), say a; and define an edge (a1,b;) with a label ¢;. Removing
by, ¢1 from these sequences. Find a smallest number not appearing in the remaining
sequence (b, Ca, -+, by_2,¢p_2), say as and define an edge (aq,by) with a label c,.
This construction is continued until there are no element left. At the final, the last
two elements remaining in L are connected with the label ¢,_;.

For each of the p — 2 elements in the sequence (5 — 1), we can choose any one

of numbers in L, thus

(2p—1)P2

(p — 2)-tuples. For the remained two vertices and elements in the sequence (5 — 2),

we have

choices. Therefore, there are

2p— 1P *(p+1)!

such different pairs (5 — 1) and (5 — 2). Notice that each of them defines a district
vertex-edge labeled tree of p vertices. Since each vertex-edge labeled tree uniquely
defines a pair of there sequences and vice versa. We find the number of vertex-edge
labeled trees of order p asserted in this theorem. O

Similarly, for vertex labeled tress we can also get the number of such trees of

order p, which was firstly gotten by Cayley in 1889 shown in the next result.



Sec.1.6 Remarks 35

Theorem 1.5.6(Cayley, 1889) Let T be a tree of order p. Then there are pP~2

non-equivalent vertex labeled trees. O

These enumerating results in Theorems 1.5.5 — 1.5.6 can be rewritten in equal-

ities combining with Theorem 5.4 and Corollary 1.5.1.

Corollary 1.5.2 Let T(p— 1) be a set of trees of order p. Then

S =
|[AutT|  p!

TeT (p—1)

and

|[AutT|2 (2p —1)!

3 1 (20— 1P *(p +1)!

TeT (p—1)

These equalities are interesting, which present closed formulae for automor-
phism groups of trees with given size. The first equality in Corollary 1.5.2 was first
noted by Babai in 1974.

1.6 REMARKS

1.6.1. Combinatorics has made great progress in the 20th century with many
important results found. Essentially, it can be seen as an extending subject on
sets or a branch of algebra with some one’s intuition, such as these graphs. But
it is indeed come into being under the logic, namely, a subject of mathematics.
For materials in Sections 1.1 — 1.3, further information and results can be found in
references [BiM1], [Hual] and [NiD1]. The concept of multi-set and multi-poset are
introduced here by Smarandache’s notion in [Smal]. Sections 1.4 — 1.5 are a brief
introduction to graphs and enumerating techniques. More results and techniques
can be found in reference [BoM1], [CaM1], [ChL1], [GrW1] and [Tutl], etc. for

readers interesting in combinatorics with applications.

1.6.2 The research on multi-poset proposed in Section 3 is an application of the
combinatorial notion, i.e., combining different fields into a unifying one. It needs

both of the knowledge of posets and combinatorics, namely, posets with combina-
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torial structure. Further research on multi-poset will enrich one’s knowledge on

posets.

1.6.3 These graph families enumerated in Section 4 is not complete. It only presents
common families or frequently met in papers on graphs. But for C8, i.e., embed-
ded graphs, more words should be added in here. Generally, an embedded graph
on a topological space R is a one-to-one continuous mapping f : G — R in such a
way that edges are disjoint except possibly on endpoints, namely, a 1-CW complex
embedded in a topological space [Griil]. In last century, many researches are con-
centrated on the case of R being a surface, i.e., a closed 2-manifold. In fact, the
terminology embedded graph is usually means a graph embedded on a surface, not in
a general topological space. For this spacial case, more and more techniques beyond
combinatorics are applied, for example, [GrT1], [Whil] and [Maol] apply topology
with algebra, particularly, automorphism groups, [Liul]-[Liu3] use topology with
algebra, algorithm, mathematical analysis, particularly, functional equations and
[MoT1] adopts combinatorial topology. Certainly, there are many open problems
in this field. Beyond embedded graphs on surfaces, few results are observable on

publications for embedded graphs in a topological space, not these surfaces.

1.6.4 The identity of automorphism groups of trees

|AutT |2 (2p—1)!

3 1 (2p—1)P2(p+ 1)
TeT (p—1)
in Corollary 1.5.2 is a new identity. Generally, two different ways of enumeration
on a given configuration induce a combinatorial identity. In [MaL1], we also know
an identity of automorphism groups of trees different from these in Corollary 1.5.2,
ie.,
1T (@a—1)!

Z deD(T) _ (2n—-1)!
|[AutT|  nl(n+ 1)1

TeT (n)
where 7 (n), D(T') denote the set of trees of order n and the valency sequence of a

tree T, respectively.

1.6.5 It should be noted that all objects in combinatorics are without metrics,

which enables its results concise and formulae with mathematical beauty. But this
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is only beneficial for pure or classical combinatorics, not the entirety of mathematics
or sciences for its lack of metrics. The goal of combinatorics is to find combinatorial
counterpart in mathematics, not just these results only with purely combinatorial
importance. For its contribution to the entire science, a good idea is pull-back these
metrics ignored in classical combinatorics to construct the mathematical combina-
torics suggested by the author in [Maol]. The reference [Mao2] is such a monograph
with Smarandache multi-spaces. In fact, the material in the following chapters is
on mathematical combinatorics, particularly on combinatorial differential geometry

and its application, i.e., combinatorial fields in theoretical physics.



CHAPTER 2.

Fundamental of

Mathematical Combinatorics

One increasingly realizes that our world is not an individual but a multiple
or combinatorial one, which enables modern sciences overlap and hybrid,
i.e., with a combinatorial structure. To be consistency with the science
development, the mathematics should be also combinatorial, not just the
classical combinatorics without metrics, but the mathematical combinatorics
resulting in the combinatorial conjecture for mathematics, i.e., mathematical
science can be reconstructed from or made by combinatorialization presented
by the author in 2005. The importance of this conjecture is not in it being
an open problem, but in its role for advancing mathematics. For introducing
more readers known this heartening combinatorial notion for mathematical
sciences, this chapter introduces the combinatorial algebraic theory. Other
fields followed from this notion, such as those of Smarandache geometries

and combinatorial differential geometry are shown in the following chapters.
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§2.1 COMBINATORIAL SYSTEMS

2.1.1 Proposition in Logic. The multi-laterality of our WORLD implies multi-
systems to be its best candidate model for ones cognition on the WORLD. This is
also included in a well-known Chinese ancient book TAO TEH KING written by
LAO ZI. In this book we can find many sentences for cognition of our WORLD,
such as those of the following ([Luj1]-[Luj2],[Sim1]).

SENTENCE 1. All things that we can acknowledge is determined by our eyes, or
ears, or nose, or tongue, or body or passions, i.e., these six organs. Such as those

shown in Fig.2.1.1.

unknown

unknown

Fig.2.1.1
SENTENCE 2. The Tao gives birth to One. One gives birth to Two. Two
gives birth to Three. Three gives birth to all things. All things have their backs to
the female and stand facing the male. When male and female combine, all things

achieve harmony. Shown in Fig.2.1.2.

@
oH E
@

%—unknown+—€heoretically deduced;{

Fig.2.1.2
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SENTENCE 3. Mankind follows the earth. FEarth follows the universe. The

universe follows the Tao. The Tao follows only itself. Such as those shown in

Fig.2.1.3.

Fig.2.1.3

SENTENCE 4. Have and Not have exist jointly ahead of the birth of the earth
and the sky. This means that any thing have two sides. One is the positive. Another
is the negative. We can not say a thing existing or not just by our six organs because

its existence independent on our living.

What can we learn from these words? All these sentences mean that our world
is a multi-one. For characterizing its behavior, We should construct a multi-system
model for the WORLD, also called parallel universes ([Mao3], [Tegl]), such as those
shown in Fig.2.1.4.

Fig.2.1.4

How can we apply these sentences in mathematics of the 21st century? We

make some analysis on this question by mathematical logic following.

A proposition p on a set ¥ is a declarative sentence on elements in ¥ that is
either true or false but not both. The statements it is not the case that p and it is
the opposite case that p are still propositions, called the negation or anti-proposition
of p, denoted by non-p or anti-p, respectively. Generally, non — p # anti — p. The

structure of anti-p is very clear, but non-p is not. An oppositive or negation of a
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proposition are shown in Fig.2.1.5.
non-p
X
(e (0) = o Fom
4

non-p

Fig.2.1.5

For a given proposition, what can we say it is true or false? A proposition and
its non-proposition jointly exist in the world. Its truth or false can be only decided
by logic inference, independent on one knowing it or not.

A norm inference is called implication. An implication p — q, i.e., if p then q,
is a proposition that is false when p is true but ¢ false and true otherwise. There
are three propositions related with p — ¢, namely, ¢ — p, -¢ — —p and —p — —g,
called the converse, contrapositive and inverse of p — ¢. Two propositions are called
equivalent if they have the same truth value. It can be shown immediately that an
implication and its contrapositive are equivalent. This fact is commonly used in
mathematical proofs, i.e., we can either prove the proposition p — g or =¢ — —p in

the proof of p — ¢, not the both.

2.1.2 Mathematical System. A rule on a set ¥ is a mapping

DX XU — Y
—_————

n
for some integers n. A mathematical system is a pair (X;R), where ¥ is a set
consisting mathematical objects, infinite or finite and R is a collection of rules on
3 by logic providing all these resultants are still in ¥, i.e., elements in ¥ is closed
under rules in R.

Two mathematical systems (X1;R1) and (3a; R2) are isomorphic if there is a

1 — 1 mapping w : ¥; — ¥ such that for elements a,b,---,c € ¥,

W(R1(a,b,-+-,¢)) = Ro(w(a),w(d), -, w(c)) € L.

Generally, we do not distinguish isomorphic systems in mathematics. Examples
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for mathematical systems are shown in the following.

Example 2.1.1 A group (G; o) in classical algebra is a mathematical system (X¢; Reg),

where Yo = G and

R = {RY; RS, Ry},
with
RY: (zoy)oz=1xo0(yoz) for Vo,y,2 € G;
RS: there is an element 1 € G such that x o 1g = z for Vo € G

R§: for Va € G, there is an element y,y € G, such that x oy = 15.

Example 2.1.2 A ring (R; +, o) with two binary closed operations “+”, “o”is a
mathematical system (X;R), where ¥ = R and R = {Ry; Rs, R3, Ry} with

Ry: z+vy,xoy € R forVo,y € R,

Ry: (R;+) is a commutative group, i.e., x +y =y + z for Vz,y € R;

R3: (R;o0) is a semigroup;

Ry zo(y+z2)=zoy+zozand (t+y)oz=z0z+yozforVey 2z €R.

Example 2.1.3 a Euclidean geometry on the plane R? is a a mathematical system
(Xg; RE), where X = {points and lines on R?} and Ry = {Hilbert’s 21 axioms on

Euclidean geometry}.

A mathematical (3;R) can be constructed dependent on the set ¥ or on rules
R. The former requires each rule in R closed in . But the later requires that
R(a,b,---,c) in the final set i which means that & maybe an extended of the set
3. In this case, we say S is generated by 3 under rules R, denoted by (¥;R).

Combining mathematical systems with the view of LAO ZHI in Subsection
2.1.1, we should construct these mathematical systems (X; R) in which a proposition
with its non-proposition validated turn up in the set X, or invalidated but in multiple

ways in 2.

Definition 2.1.1 A rule in a mathematical system (3;R) is said to be Smaran-
dachely denied if it behaves in at least two different ways within the same set 3, i.e.,
validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache system (3; R) is a mathematical system which has at least one

Smarandachely denied rule in R.
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Definition 2.1.2 For an integer m > 2, let (X1;R1), (22;R2), -+, (Bm;Rm) be
m mathematical systems different two by two. A Smarandache multi-space is a pair
(3 R) with

5=

-

Il
—

i, and 7%:6731
i i=1

Certainly, we can construct Smarandache systems by applying Smarandache

multi-spaces, particularly, Smarandache geometries appeared in the next chapter.

2.1.3 Combinatorial System. These Smarandache systems (3;R) defined in
Definition 2.1.1 consider the behavior of a proposition and its non-proposition in
the same set ¥ without distinguishing the guises of these non-propositions. In fact,
there are many appearing ways for non-propositions of a proposition in . For

describing their behavior, we need combinatorial systems.

Definition 2.1.3 A combinatorial system 6¢ is a union of mathematical systems
(21;R1),(Z2; Ra), -+, (Zm; Rin) for an integer m, i.e.,

<5@‘ = (U Ei; URZ)
i=1 i=1
with an underlying connected graph structure G, where
V(G) = {213 227 Ty Em}a
EG) ={ (%) [ 5N% #0,1<4d,j <m}.
Unless its combinatorial structure G, these cardinalities |3, () %;], called the
coupling constants in a combinatorial system %y also determine its structure if

Y, NE; # 0 for integers 1 < i,j < m. For emphasizing its coupling constants,
we denote a combinatorial system 6 by Ga(li;,1 <i,7 <m)if {;; = |5, %;| #0.

Let %”él) and %C(f) be two combinatorial systems with

m m

@ = (U UrD), e = (Un: Ur?),
i=1 i=1 i=1 i=1

m n
A homomorphism w : ‘Kél) — ‘KC(;Q) is a mapping @ : |J 22(1) - U EZ(?) and w :
i=1 i=1
m
URM) = URY such that
i=1 i

K

TCs
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|y, (aR{"D) = w|s, (@)@ ls, (R )], (1)
for Va,b € 221)7 1 < i < m, where wls, denotes the constraint mapping of w on the
mathematical system (%;, R;). Further more, if w : %”g) — ‘fc(f) is a 1 — 1 mapping,
then we say these ‘5((;1) and %g) are isomorphic with an isomorphism w between
them.

A homomorphism w : %((71) — (fg) naturally induces a mappings w|g on the
graph G; and G5 by

wlg: V(G1) = w(V(G1)) C V(Gz) and

@l (X, 5)) € BE(Gr) = (@(35), w(X))) € B(G), 1 <d,j <m.

With these notations, a criterion for isomorphic combinatorial systems is presented

in the following.

Theorem 2.1.1 Two combinatorial systems %C(;l) and %”((;2) are isomorphic if and
only if there is a 1 — 1 mapping w : ‘Kél) — %g) such that

(1) wlgo is an isomorphism and w|m (r) = @|gm () forVe € EE”QE;U, 1<
i, J <my;

(it) w|q : G1 — Ga is an isomorphism.

Proof If w : %g) — (KG@) is an isomorphism, considering the constraint map-
pings of w on the mathematical system (¥;, R;) for an integer 7,1 < ¢ < m and the
graph G(ll)7 then we find isomorphisms @|yn) and @|g.

Conversely, if these isomorphism w@|.),1 < 4 < m and w|g exist, we can

construct a mapping w : %G(l) R %G@) by
w(a) = w|g,(a) if a€¥; and w(o) = wlg, (o) if o€ R;,1<i<m.
Then we know that

@5, (aR{D) = = 5 (R

Zi(b)
for Ya,b € EE”, 1 < i < m by definition. Whence, w : Cgél) — ‘fg) is a homomor-

phism. Similarly, we can know that w=! : %é” — ‘@”((;1) is also an homomorphism.

s, (a)w

Therefore, w is an isomorphism between ‘Ké]) and %G(z) . |
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For understanding well the multiple behavior of world, a combinatorial system
should be constructed. Then what is its relation with classical mathematical sci-
ences? What is its developing way for mathematical sciences? 1 presented an idea
of combinatorial notion in Chapter 5 of [Maol], then formally as the combinatorial
conjecture for mathematics in [Maod] and [Mao10], the later is reported at the 2nd

Conference on Combinatorics and Graph Theory of China in 2006.

Combinatorial Conjecture Any mathematical system (3;R) is a combinatorial

system Ga(li;,1 < 4,5 <m).

This conjecture is not just an open problem, but more likes a deeply thought,
which opens a entirely way for advancing the modern mathematics and theoretical
physics. In fact, it is an extending of TAO TEH KING, Smarandache’s notion by
combinatorics, but with more delicateness.

Here, we need further clarification for this conjecture. In fact, it indeed means

a combinatorial notion on mathematical objects following for researchers.

() There is a combinatorial structure and finite rules for a classical math-
ematical system, which means one can make combinatorialization for all classical

mathematical subjects.
(22) One can generalizes a classical mathematical system by this combinatorial
notion such that it is a particular case in this generalization.

(774) One can make one combination of different branches in mathematics and

find new results after then.

(tv) One can understand our WORLD by this combinatorial notion, establish

combinatorial models for it and then find its behavior, for example,
what is true colors of the Universe, for instance its dimension?

This combinatorial notion enables ones to establish a combinatorial model for
the WORLD, i.e., combinatorial Euclidean spaces (see Chapter 4 of this book) char-
acterizing the WORLD, not like the classical physics by applying an isolated sphere
model or a Euclidean space model.

Whence, researching on a mathematical system can not be ended if it has not
been combinatorialization and all mathematical systems can not be ended if its

combinatorialization has not completed yet.
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§2.2 ALGEBRAIC SYSTEMS

2.2.1 Algebraic System. Let &/ be a set and o an operation on «. If o :
o x of — of, ie., closed then we call & an algebraic system under the operation
o, denoted by (&;0). For example, let & = {1,2,3}. Define operations X1, X2 on
o/ by following tables.

xi|1 2 3 x| 1 2 3

1 2 3 111 2 3

212 3 1 3 1 2

313 1 2 312 3 1
table 2.2.1

Then we get two algebraic systems («7; x1) and («7; x5). Notice that in an algebraic
system (&7;0), we can get an unique element a o b € & for Va,b € «.

2.2.2 Associative and Commutative Law. We introduce the associative and

commutative laws in the following definition.

Definition 2.2.1 An algebraic system (7 0) is associative if

(aob)oc=ao(boc)
forVa,b,c € .

Definition 2.2.2 An algebraic system (<7;0) is commutative if

aob="boa

forVa,b e .

We know results for associative and commutative systems following.

Theorem 2.2.1 Let (o/;0) be an associative system. Then for ai,as, -, a, € &,
the product ayoaso- - -oay, is uniquely determined and independent on the calculating

order.

Proof The proof is by induction. For convenience, let a; o as o - -- 0 a,, denote

the calculating order
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(...((aloa2)oa3)o-«»)Oa,n.

If n = 3, the claim is true by definition. Assume the claim is true for any
integers n < k. We consider the case of n = k 4+ 1. By definition, the last step for

any calculating order ] must be a result of two elements, i.e.,

H:Hog.

Apply the inductive assumption, we can assume that

H:(-~-((aloa2)oa3)0~-')0al

1
and

II=C(umoas)oaus)o- ) 0ars.
2

Therefore, we get that

II

[-11

1 2
<(agoag)o---)oa o (- (a10a12) 0 )0k

~(ayoag)o--Joaro((- (a1 0as)o---0a)oar)

("'(al002)0"')Oalo("'(U«l+1°al+2)O"'Oak))oak+1

“((apoag)oaz)o---)oags

by the inductive assumption. Applying the inductive principle, the proof is com-

pleted. O
Theorem 2.2.2 Let (7 0) be an associative and commutative system, aq, ag, - -+, a, €
/. Then for any permutation © on indexes 1,2, n,

aﬂ(l)oaﬂ(g)o«'-oaﬂ(m:a10a20'-~oa".

Proof We prove this result by induction on n. The claim is obvious for cases

of n < 2. Now assume the claim is true for any integer [ < n — 1, i.e.,
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QAr(1) © Ar(2) O+ 0 lr() = A1 ©A20"--0a.

Not loss of generality, let 7(k) = n. Then we know that

A1) © Ur2) O O lr(n) = (Gr(1) O Gr(2) O O Ur(k-1))

oay o (aﬂ'(k+1) O Qr(k+2) OO aﬂ'(n))

= (ar(1) © n2) © -+ © Gr(k-1))
O((@r(k+1) © Ar(k42) O+ * O Ar()) © An)

= ((an() 0 an(z) © -+ 0 (1))
O(@r(kt1) © Gr(kt2) O ** O Ur(n))) © Gn

= @ 0a30---0ay,

by the inductive assumption. g

Let (47;0) be an algebraic system. If there exists an element 1! (or 17) such

that

lloa=a or aoll=a
for Va € o, then 1) (17) is called a left unit (or right unit) in (<7;0). If 1. and 17
exist simultaneously, then there must be

1L =101y =17 = L,

ie., a unit 1, in (&/;0). For example, the algebraic system (&/; x1) on {1,2,3} in
previous examples is a such algebraic system, but («7; x2) only posses a left unit
1y, =1.

For a € & in an algebraic system (&;0) with a unit 1., if there exists an

element b € & such that

aob=1, or boa=1,,

then we call b a right inverse element (or a left inverse element) of a. If aob =
boa = 1o, then b is called an inverse element of a in (&;0), denoted by b = a~ 1.
For example, 271 = 3 and 37! = 2 in (&; x).

2.2.3 Group. An algebraic system (&;0) is a group if it is associative with a

unit 1, and inverse element a~! for Ya € &/, denoted by </ usually. A group is
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called finite ( or infinite ) if |.<7| is finite ( or infinite). For examples, the sets o
permutations II(X) under operations xi, composition on a finite set X form finite

groups («7; x1) and Sym(X) respectively.

2.2.4 Isomorphism of Systems. Two algebraic systems (7;01) and (;02)
are called homomorphic if there exists a mapping ¢ : @4 — % such that ¢(ao; b) =
¢(a) og g(b) for Va,b € &4. If this mapping is a bijection, then these algebraic
systems are called isomorphic. In the case of @] = o5 = &/ and o] = 05 = o, an

isomorphism between (#;01) and (%; 05) is called an automorphism on (&7;0).

Theorem 2.2.3 Let (&;0) be an algebraic system. Then all automorphisms on

(;0) form a group under the composition operation, denoted by Aut(<7; o).

Proof For two automorphisms ¢; and ¢, on («7;0), It is obvious that

Gs(aob) = qala)oqan(b)
for Va,b € &/ by definition, i.e., Aut(/;0) is an algebraic system. Define an auto-
morphism 1f;, by 14,(a) = a and an automorphism ¢! by ¢71(b) = a if ¢(a) = b
for Va,b € o7. Then 1y, is the unit and ¢ 1is the inverse element of ¢ in Aut(/;o0).
By definition, Aut(4/;0) is a group under the composition operation. g

2.2.5 Homomorphism Theorem. Now let (&7;0) be an algebraic system and
B C A, if (PB;0) is still an algebraic system, then we call it an algebraic sub-
system of (7;0), denoted by B < &/. Similarly, an algebraic sub-system is called
a subgroup if it is group itself.

Let (#7;0) be an algebraic system and # < . For Va € 7, define a coset
ao B of Bin o by

aoPB ={aoblVbe B}
Define a quotient set & = o/ /98 consists of all cosets of # in &/ and let R be a
minimal set with & = {r o Z|r € R}, called a representation of &. Then
Theorem 2.2.4 If (%;0) is a subgroup of an associative system (o7;0), then

(i) forVa,be o, (aoB)N(boB) =0 oraoB =bo B, i.e., S is a partition
of o ;

(i) define an operation e on & by
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(a0 B)e(boB)=(aob)o B,

then (&;e) is an associative algebraic system, called a quotient system of < to A.
Particularly, if there is a representation R whose each element has an inverse in

(;0) with unit 1., then (&;e) is a group, called a quotient group of <7 to A.

Proof For (i), notice that if

(a0 B)N(bo AB)#0
for a,b € &/, then there are elements ci,co € % such that aoc; = bocy. By
assumption, (Z%;0) is a subgroup of (&7;0), we know that there exists an inverse

clement ¢! € 4B, ie., a =bocyocy!. Therefore, we get that

S|
N
I

(bocyoci')o B
{(bocyocy)oc|Ve € B}
{boc|Vc € #}

= bo A

by the associative law and (%;0) is a group gain, i.e., (a0 %) N (bo B) = ( or
ao%B =boA.

By definition of @ on & and (i), we know that (&;e) is an algebraic system.
For Va, b, c € o, by the associative laws in («7;0), we find that

(6o B)s(boB))e(coB) =

Now if there is a representation R whose each element has an inverse in (<7 o)
with unit 1./, then it is easy to know that 1, 02 is the unit and a~' 0 Z the inverse

element of a 0 Z in &. Whence, (S;e) is a group. d

Corollary 2.2.1 For a subgroup (%8;0) of a group (&;0), (S;e) is a group.
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Corollary 2.2.2(Lagrange theorem) For a subgroup (%;0) of a group (;0),

8| | |.

Proof Since a o ¢y = ao cy implies that ¢; = ¢, in this case, we know that

a0 B = |7
for Va € o/. Applying Theorem 2.2.4(i), we find that

|| = Iro % =|R||#,
TeR
for a representation R, i.e., |%| | |</|. d

Although the operation e in & is introduced by the operation o in &7, it may

be @ #£ o. Now if e = o, i.e.,

(a0 RB)o(boB)=(aob)oRB, (2.2.1)

the subgroup (4;o0) is called a normal subgroup of (%;0), denoted by £ < 7. In

this case, if there exist inverses of a, b, we know that

PBoboAB=boR

by product a~! from the left on both side of (2.2.1). Now since (%; o) is a subgroup,
we get that

bloBob=2AB,

which is the usually definition for a normal subgroup of a group. Certainly, we can

also get

boB=RBob

by this equality, which can be used to define a normal subgroup of a algebraic system
with or without inverse element for an element in this system.

Now let @ : @ — 9% be a homomorphism from an algebraic system (;01)
with unit 1, to (&%;o0y) with unit 1,,. Define the inverse set @w=1(ay) for an

element as € 95 by
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@ az) = {a1 € HA|w(a)) = ay}.

Particularly, if ay = 1, the inverse set @~ *(1,,) is important in algebra and called
the kernel of w and denoted by Ker(w), which is a normal subgroup of (&4;0;) if it
is associative and each element in Ker(w) has inverse element in (4;0;). In fact,
by definition, for Va, b, ¢ € @4, we know that

(1) (aob)oc=uao(boc) € Ker(w) for w((aob)oc) =w(ao (boc)) =1u;

(2) 1, € Ker(w) for w(ly,) = 1a,;

(3) a! € Ker(w) for Va € Ker(w) if a™! exists in (&;0;) since w(a™!) =
w7 (a) = 1y;

(4) aoKer(w) = Ker(w) o a for

w(a o Ker(w)) = w(Ker(w) o a) = w " (w(a))
by definition. Whence, Ker(w) is a normal subgroup of (&#;01).

Theorem 2.2.5 Let w : & — 5 be an onto homomorphism from associative
systems (#;01) to (ola; 09) with units 1., 1y,. Then
o [Ker(w) = (#h;0,)
if each element of Ker(w) has an inverse in (< ;01).
Proof We have known that Ker(w) is a subgroup of (&; 01). Whence % /Ker(w)
is a quotient system. Define a mapping ¢ : & /Ker(w) — % by
¢(a oy Ker(w)) = w(a).

We prove this mapping is an isomorphism. Notice that ¢ is onto by that w is
an onto homomorphism. Now if a o; Ker(w) # b o; Ker(w), then w(a) # w(b).
Otherwise, we find that a o; Ker(w) = b o; Ker(w), a contradiction. Whence,
¢(a oy Ker(w)) # ¢(b oy Ker(w)), i.e., ¢ is a bijection from 7 /Ker(w) to 4.

Since w is a homomorphism, we get that

§((a oy Ker(w)) o1 (b oy Ker(w)))
= ¢(a oy Ker(w)) oz (b oy Ker(w))



Sec.2.3 Multi-Operation Systems 53

= w(a) oy w(b),
i.e., ¢ is an isomorphism from 27 /Ker(w) to (o; o). a

Corollary 2.2.3 Let w : oy — 25 be an onto homomorphism from groups (#;01)
to (9;09). Then

4 [Ker(w) = (oh;0s).

§2.3 MULTI-OPERATION SYSTEMS

2.3.1 Multi-Operation System. A multi-operation system is a pair (I 5)

with a set ## and an operation set
O={o;|1<i<l}

on # such that each pair (#;0;) is an algebraic system. We also call (#;0) an
l-operation system on F.
A multi-operation system (J¢; 5) is associative if for Va, b, c € 4, Yoy,09 € 6,

there is

(aoy1b)ogc=ao; (boyc).

Such a system is called an associative multi-operation system.

Let (42, 6) be a multi-operation system and ¢ C J#, Q C O. If (%; @) is itself
a multi-operation system, we call (¥; @) a multi-operation subsystem of (€, 5))7
denoted by (¥; @) < (S, 5) In those of subsystems, the (¥; 5) is taking over an
important position in the following.

Assume (¢;0) < (,0). For Va € A and o; € O, where 1 < i < [, define a
coset a 0; 4 by

ao0;9 = {ao; b for Vb € ¥},

and let

aER,OEISCé
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Then the set

2={ao%ae RoecPcCO}

is called a quotient set of & in H with a representation pair (R, ]5)7 denoted by
§|( RP) Similar to Theorem 2.4, we get the following result.

2.3.2 Isomorphism of Multi-Systems. Two multi-operation systems (J4; 61)
and (J{é;éz) are called homomorphic if there is a mapping w : J4 — 45 with
w : 61 — 62 such that for a;,b; € 54 and o1 € 61, there exists an operation

oy =w(og) € O, enables that

w(ay o1 b1) = w(aq) og w(by).
Similarly, if w is a bijection, (%;51) and (J; 52) are called isomorphic, and if
IO = A = I, w is called an automorphism on .

Theorem 2.3.1 Let (2, 5) be an associative multi-operation system with a unit
1, for Vo € O and 9 C .

(1) If ¢ is closed for operations in O and for¥Ya € 4,0 € 5, there exists
an inverse element a;' in (4:0), then there is a representation pair (R, P) such
that the quotient set %|(R,I§) is a partition of H, i.e., for a,b € H ,Voy,09 € 5,
(a1 D)N(bog¥)=0 orao; ¥ =boy 9.

(ii) For Yo € O, define an operation o on gh&ﬁ) by

(a019)o(bos¥) = (aocb)o; 9.

Then (%‘(R,P); 5) s an aisocmtz've multi—opemtjon system. Particularly, if there is
a representation pair (R, P) such that for o' € P, any element in R has an inverse
in (A0, then (7 (r,P)»©') 18 @ group.

Proof For a,b € S, if there are operations o1, o5 € O with (a019)N(bo¥) # 0,
then there must exist g;, g2 € ¢ such that a oy g1 = b oy go. By assumption, there is

an inverse element c;! in the system (¢;0;). We find that

a$01 9 = (boggoicit) o ¥
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= boy(gorc;' 019) =boy ¥

by the associative law. This implies that 27’0\( R.P) is a partition of 7.
Notice that gk r,p) is closed under operations in P by definition. It is a multi-

2

operation system. For Va,b,c € R and operations o1, 0y, 03,0l 02 € P we know

that

((a019) 0! (b0 @) o (cos®) = ((ao'b)or¥) o (coy®)
= ((@o'b)o? )o@

and

(a019)o! (b @) o® (co39)) = (a1 ) o ((bo*c)or )
= (ac' (bo?c)) o1 9.

by definition. Since (2, 0) is associative, we have (ao'b)o?c = ao! (bo®c). Whence,

we get that

((a019) 0" (boy @) o (03 %) = (a 01 F) o (b0 @) 0 (c 03 7)),

ie., (§|( R.P) 5) is an associative multi-operation system.

If any element in R has an inverse in (4¢;0), then we know that ¢ is a unit
and a~! o' 4 is the inverse element of a o’ ¢ in the system (§|(R,15)7 o’), namely, it
is a group again. g

Let Z(O) be the set of all units 1,,0 € O in a multi-operation system (J; O).
Define a multi-kernel Kerw of a homomorphism w : (A4 01) — (H5:0,) by

Kerw ={ a € 4 | w(a) =1, € Z(0,) }.

Then we know the homomorphism theorem for multi-operation systems in the
following.

Theorem 2.3.2 Let w be an onto homomorphism from associative systems (73; O1)
to (%;62) with (1(52); 52) an algebraic system with unit 1,- for Yo~ € Oy and
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inverse =1 for Vo € (Z(Oy) in ((Z(Os):07). Then there are representation pairs
(Ry, ﬁl) and (Ry, E), where P, C 6, P, C Oy such that
(4 0,) ~ _(H5:00)

(Kerwi0) ™~ (02 0) "
if each element of Kerw has an inverse in (A;0) foro € 0.

Proof Notice that Kerw is an associative subsystem of (J4; 51) In fact, for

Vki, ko € Kerw and Vo € 61, there is an operation o~ € 52 such that

w(ky 0 ky) = w(ky) o~ w(ks) € Z(Oy)

since Z (52) is an algebraic system. Whence, Kerw is an associative subsystem of
(o4 61) By assumption, for any operation o € O; each element a € Kerw has an
inverse a1 in (J4;0). Let w : (#4;0) — (H#5;07). We know that

wl@oa™) =w(a) o™ w(a@™) = 1,-,

ie, wla™) = wla)™ in (JB;07). Because Z(Os) is an algebraic system with an
inverse z~! for Vo € Z(0,) in ((Z(Os);07), we find that w(a~!) € Z(0,), namely,
ale Kerw.

(#;02)

(#4;01) (0 )
: (Z(02);02) |(R2,P2) by

Define a mapping o : m‘(Rhﬁl) —

o(aoKerw) =o(a) o™ 1(52)

for Va € Ry,0 € Py, where w : (H;0) — (F#5;07). We prove o is an isomorphism.

Notice that o is onto by that w is an onto homomorphism. Now if a o4 Kerw #

b oy Ker(w) for a,b € Ry and oy,05 € Py, then w(a) o] Z(0y) # w(b) oy Z(O).

Otherwise, we find that a o; Kerw = b 09 Ir(\e/rw, a contradiction. Whence, o(a o;
(##;01) (5;02)

Kerw) # o(b oy Kerw), i.e., o is a bijection from o) |(ry, By tO ml(myfb)‘

Since w is a homomorphism, we get that

o((ao; I’{\e/rw) o (bogy I,{\e/rw)) = o(ao; @w) o o(boy I’(\e/rw)
(w(a) op Z(02)) o~ (w(b) o3 Z(0y))

o((a oy Ir(\e/rw) o™ a(boy Kerw),
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(4 01) (5 02)

(Kerw;O1) ‘(Rl By 0 (Z(02) 02)‘(R2 Py 0

i.e., o is an isomorphism from

Corollary 2.3.1 Let (%;51), (%;62) be multi-operation systems with groups
(Ho;01), (H;09) for Yo, € 61, Vo, € Oy and w : (%;51) — (%;(52) a ho-
momorphism. Then there are representation pairs (Rhﬁl) and (R27ﬁ2)7 where
131 C 51, 132 C 52 such that

(A;01) ! (5;0,) |
(Kerw: O0y) BP0~ (2(0,); ) B2

Particularly, if (.7%3; 52) is a group, we get an interesting result following.

Corollary 2.3.2 Let (#;0) be a multi-operation system and w : (#;0) — (& 0)
a onto homomorphism from (€, 5) to a group (/;0). Then there are representa-
tion pairs (R, 15), P C O such that

(#;0) ~
(Kerw; O)
2.3.3 Distribute Law. A multi-operation system (#;0) is distributive if O =
01 @] 01 with 01 N 02 = @ such that

aoy (bogc) = (aoyb)oy(aosc)and (boyc)oya=(boya)os(coya)

for Va,b,c € # and Yo; € Oy, op € Oy. Denoted such a system by (5;0; —
O,). In this case, the associative means that systems (;0) and (H; Oq) are
associative, respectively.

Similar to Theorems 2.2.1 and 2.2.2, we can also obtain the next result for

distributive laws in a multi-operation system.

Theorem 2.3.3 Let (; 01 — Os) be an associative system for operations in Oy,
a,by, by, b, € 7 and o € Oy, 0, € Oy for 1 <i<n—1. Then

o(byoybyog---0,_1b,) = (aoby)or(aoby)og-- 0,1 (aoh,),
(byoybyog -0, 1by)oa=(byoa)oy (baoa)oy -0, 1 (b, 0a).

Proof For the case of n = 2, these equalities are hold by definition. Now assume
that they are hold for any integer n < k. Then we find that
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ao(byoybyog---opbyy1) = (aobi)or(aoby)oy---0py(ao (byopysbryr))

= (aobi)oi(aoby)oy---op_y(aoby)opr(aobysr)
by the inductive assumption. Therefore,
ao(bl o1 byoy---0, bn) = (aobl) 01 (aobg) 02+ Op_1 (aObn)
is hold for any integer n > 2. Similarly, we can also prove that

(byorbgog---0,_1b,)0oa=(byoa)o; (bpoa)og 0,1 (b,0a).
O

2.3.4 Multi-Group and Multi-Ring. An associative multi-operation system
(501 — O,) is said to be a multi-group if (;0) is a group for Yo € Oy U Oy,
a multi-ring (or multi-field) if O1 = {+|1 < i <1}, Oy = {+|]1 < i <1} with rings
(or multi-field) (J7;+;, ;) for 1 < i < 1. We call them [-group, [-ring or [-field for
abbreviation. It is obvious that a multi-group is a group if |O; U O] = 1 and a ring
or field if |O;] = |Os| =1 in classical algebra. Likewise, We also denote these units
of a l-ring (J;01 — Os) by 1, and 0,4, in the ring (J; +;,+;). Notice that for
Va € F, by these distribute laws we find that

aib=a-(b+04,)=ab+;a0,,,
bia=b+;04)a=ba+,04, a
for Vb € 5. Whence,
a- 04, =04 and 04, ;a=04,.

Similarly, a multi-operation subsystem of (7;0; — O,) is said a multi-
subgroup, multi-subring or multi-subfield if it is a multi-group, multi-ring or multi-field
itself.

Now let (J;0; — O,) be an associative multi-operation system. We find
these criterions for multi-subgroups and multi-subrings of (J;0; — O,) in the

following.

Theorem 2.3.4 Let (7; 01 — Oy be a multi-group, H C 7. Then (H; 01 — O3)

s a
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(i) multi-subgroup if and only if for Va,b € H, o € O; U Oq, a0 bt € H;

(it) multi-subring if and only if for Va,b € H, -+ € O1 and V+; € O3), a -
b, a+; b;.l € 'H, particularly, a multi-field if a -; b:l, a+; b;} € 'H, where, O =
{41 <i <1}, O ={+i]1 <i <}

Proof The necessity of conditions (i) and (i7) is obvious. Now we consider their
sufficiency.

For (), we only need to prove that (H;o) is a group for Yo € O; U O,. In
fact, it is associative by the definition of multi-groups. For Va € H, we get that
lo=aoa;' € H and 1, 0a;' € H. Whence, (H;o0) is a group.

Similarly for (i¢), the conditions a-;b, a+i613 € H imply that (H;+;) is a group
and closed in operation -; € O;. These associative or distributive laws are hold by
(H;+i,-i) being a ring for any integer 4,1 <4 < [. Particularly, a -; b ' € H imply
that (H;-;) is also a group. Whence, (J; +;, +;) is a field for any integer 4,1 <7 <
in this case. g

A multi-ring (57501 — Oy) with Oy = {4]1 < i <1}, Oy = {+]1 <i <1}
is integral if for VYa,b €  and an integer i, 1 <i <, ao;b=bo;a, 1., # 04
and a o; b = 04, implies that a = 04, or b = 04,. If { = 1, an integral [-ring is
the integral ring by definition. For the case of multi-rings with finite elements, an

integral multi-ring is nothing but a multi-field. See the next result.
Theorem 2.3.5 A finitely integral multi-ring is a multi-field.
Proof Let (42; O; — O,) be a finitely integral multi-ring with 52 = {a;, a2 -, a,},

where O = {]1 <i <1}, Oy = {+;]1 < i <I}. For any integer ¢, 1 < i <, choose
an element a € J¢ and a # 0,. Then

@ 0; a1, @O;Az, "+, AO; Uy

are n elements. If ao;as = ao;ay, i.e., ao; (as+; a[l) = 04,. By definition, we know
that as +; a[l = 0+;, namely, a; = a;. That is, these a o; a;, ao;as, -+, ao;a, are

different two by two. Whence,

H ={ao;a, aojas,---, ao;ay, }.

1

Now assume ao;a, = 1., then a™" = a,, i.e., each element of J# has an inverse
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in (42;+;), which implies it is a commutative group. Therefore, (J7;+;, ;) is a field
for any integer 4,1 < i </I. g

Corollary 2.3.3 Any finitely integral domain is a field.

2.3.5 Multi-Ideal. Let (7,0 — O)), (5;0? — O2) be multi-rings with
OF = {F1<i<}, O ={+1 <i<l}fork=1,2and ¢: (57;0f — O)) —
(A, 02 — 02) a homomorphism. Define a zero kernel Kero of o by

Keroo = {a € #)o(a) = 0,2,1 <i < I}

Then, for Vh € # and a € Kerop, ola-th) =0.,0(-)h=0,,,1e.,ah € Kergo.
Similarly, h-; a € Egr/gg. These properties imply the conception of multi-ideals of a
multi-ring introduced following.

Choose a subset Z C . For Vh € 5, a € Z, if there are

hoja€Z and ao; h € H,

then 7 is said a multi-ideal. Previous discussion shows that the zero kernel I/(—gr/og of
a homomorphism o on a multi-ring is a multi-ideal. Now let Z be a multi-ideal of
(A;O1 — Os). According to Corollary 2.3.1, we know that there is a representation
pair (Ry, P2) such that

f:{a—hl\aeRg, +i€P2}

is a commutative multi-group. By the distributive laws, we find that

a]b+kI

Similar to the proof of Theorem 2.3.1, we also know these associative and
distributive laws follow in (i O; — 03). Whence, (f ;01 — Oy) is also a multi-
ring, called the quotient multi-ring of (7€; Oy — Os), denoted by (2 : I).

Define a mapping o : (;01 — Oy) — (J : I) by o(a) = a +; T for Va € #°

if a € a+; Z. Then it can be checked immediately that it is a homomorphism with

I/(_(;r/ogzl.
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Therefore, we conclude that any multi-ideal is a zero kernel of a homomorphism

on a multi-ring. The following result is a special case of Theorem 2.3.2.

Theorem 2.3.6 Let (4,0} — O1) and (54;0% — 032) be multi-rings and
w: (#4;0L) — (;03) be an onto homomorphism with (Z(O3); 03) be a multi-
operation system, where Z(O3) denotes all units in (3; O3). Then there exist rep-
resentation pairs (Ry, Py), (Ra, P») such that

(6; 0} — O03)

(A D) g, 5y = (Z(02); 02) (8o, )

Particularly, if (J%; O? — 03?) is a ring, we get an interesting result following.

Corollary 2.3.4 Let (;0, — Os) be a multi-ring, (R;+,-) a ring and w :
(2;05) — (R;+) be an onto homomorphism. Then there exists a representation
pair (R, P) such that

§2.4 MULTI-MODULES

2.4.1 Multi-Module. There multi-modules are generalization of linear spaces
in linear algebra by applying results in last section. Let O = { +; | 1 < i < m},
O; = {4]1 <i < m}and Oy = {+]1 < i < m} be operation sets, (.#;0O)
a commutative m-group with units 04, and (%Z;0; — O3) a multi-ring with a
unit 1. for V- € Oy. For any integer i, 1 < i < m, define a binary operation
Xi: B XM— MDbyax;x fora € X, v € # such that for Va,b € Z,Vx,y € M,

conditions following hold:
i) ax;(z+iy)=axir4ax;y;

(
(i1) (a+ib) x; T = a X; ¥ +; b x; x;
(#7) (a-;b) x;x = ax; (bx;x);

(

) 1, x;0 = .

Then (#;0O) is said an algebraic multi-module over (%#;O; — Os) abbreviated
to an m-module and denoted by Mod(.#Z(O) : Z(O1 — O3)). In the case of
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m = 1, It is obvious that Mod(.Z(O) : Z(O, — 03)) is a module, particularly,
it (#;0, — O,) is a field, then Mod(.#(O) : Z(01 — Oy)) is a linear space in
classical algebra.

For any integer k, a; € Z and x; € 4, where 1 < i, k < s, equalities following

are hold by induction on the definition of m-modules.
a X (T1 +5 X Fgp ) = @ X Ty g @ X g Ty g G X T,
(a1tnaatr - - Fras) Xp @ = a1 Xp @+ ag Xp @+ - g g X T,
(a1 )Gz gk s) Xp @ = ay X (ag Xp - X (a5 X 2) -+ )

and

1, x; (1 - X

i X

“ig 2 " is—1 (l'ia Xis .73) o ) =T
for integers iy, 42, -+, 1s € {1,2,--+,m}.

Notice that for Va,z € A, 1 <i <m,

ax;r=ax;(x+;04,)=ax;x+;ax;04,,

we find that a x; 04, = 04,. Similarly, 0;, x; @ = 04,. Applying this fact, we know
that

aX; T +ia] Xix= (a+ia;) o =05, x; o =0y,

and
axX;THiaxX; vy, =ax;(r+27,)=ax;04 =04,

We know that

(a X; z)jr =a;

X T =0 X;Ty .

Notice that a x; x = 04, does not always mean a = 0y, or z = Oy, in an m-
module Mod(.#(0) : Z(O; — Os)) unless ay s existing in (B;+i, ) if ©# 0y,

Now choose Mod (.#,(0y) : Z,(O} — 1)) an m-module with operation sets
Or={+,|1<i<m} O ={1<i<m} O = {41 <i<m}and
Mod(#o(Os) : Bo(O? — 032)) an n-module with operation sets Oy = { +7 | 1 <
i<n}, 02 ={2]1<i<n}, 0O} = {+]1 <i<n}. They are said homomorphic if
there is a mapping ¢ : 4 — M5 such that for any integer i, 1 < i < m,



Sec.2.4 Multi-Modules 63

(1) uz+iy) =u(z) +" (y) for Va,y € A, where t(+]) = +" € Oy;

(1) la x;x) = a x; (z) for Vo € M.

If ¢ is a bijection, these modules Mod(.#1(0,) : 2,(O} — 01)) and Mod(#5(0,) :
%o(0? — 03)) are said to be isomorphic, denoted by

Mod(.21(0,) : Z1(O} — O1)) = Mod(Ms(0) : Za(O? — OF)).

Let Mod(#(O) : Z(01 — O3)) be an m-module. For a multi-subgroup
(A50) of (A;0), if for any integer i, 1 < i < m, a x; 2 € A for Va € Z and
x € A, then by definition it is itself an m-module, called a multi-submodule of
Mod (4 (0) : Z(O; — Oy)).

Now if Mod(A4(O) : Z(O; — O,)) is a multi-submodule of Mod(.Z(O) :
Z#(O; — Os)), by Theorem 2.3.2, we can get a quotient multi-group ;Aﬁ/k&};) with

a representation pair (R, ﬁ) under operations

(a4+; )+ (b+; )= (a+b) +; N

for Va,b € R,+ € O. For convenience, we denote elements x +; .4 in %|<R 7 by

2@ For an integer 4,1 <7 < m and Ya € %, define

ax;z® = (ax;z)0.

Then it can be shown immediately that

Z) a X; (x(7) +z y(7)) =a X; 1(7) +z a X; y(7)7

i) (a+ib) x; 20 = a x; 2@ 4, b x; 20
iii) (a - b) x; 20 = a x; (b x; 2®);

(
(
(
(i) 1, x;20 = g0
i.e.,(%\w,p) : %) is also an m-module, called a quotient module of Mod(.#(O) :
(01 — O,)) to Mod (A (0) : Z(O; — Os)). Denoted by Mod (A [/ N).

The result on homomorphisms of m-modules following is an immediately con-

sequence of Theorem 2.3.6.
Theorem 2.4.1 Let Mod(.#,(0,) : Z,(0O — OF)), Mod(5(O3) : Zo(O? —

02)) be multi-modules with Oy = { +1 | 1 <i < m}, Oy = { +/ | 1 < i < n},
Ol={1<i<m}, Ob={H[1<i<m}, O2={21<i<n}, OI={+1<
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i <n} and ¢ : Mod(,(0,) : %,(0OF — O3)) — Mod(M(Os) : HBo(OF — 03))
be a onto homomorphism with (Z(0y); O2) a multi-group, where T(O3?) denotes all
units in the commutative multi-group (Ma; Oz). Then there exist representation
pairs (Ry, ]31), (Ra, ﬁg) such that

Mod(- /| A )|ia, ) = Mod(Ao(O2)/T(02)|(n, 1y

where A = Kerv is the kernel of v. Particularly, if (Z(Os); Os) is trivial, i.e.,
|Z(Os)| =1, then

Mod((///,/V)|(R1f,l) = Mod(#(0s) :'@2(0% - Og))|(32_§2)~

Proof Notice that (Z(0,); O2) is a commutative multi-group. We can certainly
construct a quotient module Mod(.#5(0)/Z(Os)). Applying Theorem 2.3.6, we
find that

Mod(A [N )| g, 5y = Mod(M(02)/L(O2))| g, 7,
Notice that Mod(.#2(02)/Z(Os)) = Mod(#2(Os) : Zo(0? — 032)) in the
case of |Z(0)| = 1. We get the isomorphism as desired. O

Corollary 2.4.1 Let Mod(#(O) : Z(O1 — Os)) be an m-module with O =
{+i|1<i<m}, O ={]1<i<m}, Oy ={+1 <i<m}, M amodule on a
ring (R;+,) and ¢ : Mod(.4,(0,) : %, (0 — O3)) — M a onto homomorphism
with Kerv = A . Then there exists a representation pair (R', P) such that

Mod(A /N )| 5y = M,

particularly, if Mod (A4 (O) : Z(Oy — O2)) is a module .# , then

MIN = M.

2.4.2 Finite Dimensional Multi-Module. For constructing multi-submodules
of an m-module Mod(.Z(0) : Z(O; — O)) with O = { +; | 1 < i < m},
O = {4]1 <i < m}, Oy = {H]1 < i < m}, a general way is described in the

following.
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Let S C .4 with |S| = n. Define its linearly spanning set <§\%> in Mod (. (O) :
Z(O7 — Oy)) to be

<§|<%> = {ééaij ><i.’L'ij| Q5 e%,l’i]‘ S § }.,

i=1 j=1
where
m n
@@aij Xij Xy = Q11 X1 T11 F1°°° F1 Q1 X1 T1p
i=1 j=1
+Wag; xg T 49 -+ - 42 Agn Xo Top
+(2) ........................... +(3)
Am1 Xm Tml +m tee +'m, Qmn Xm Tmn
with +@, +@ 1@ ¢ @ and particularly, if 41 = +5 = .-+ = +,,, it is denoted
by > x; as usual. It can be checked easily that <§ |92> is a multi-submodule of
i=1

Mod(#(0) : Z(O1 — Oy)), call it generated by S in Mod(#(0) : Z(0y —
0,)). If S is finite, we also say that <§|9Z> is finitely generated. Particularly, if
S = {z}, then <§\%> is called a cyclic multi-submodule of Mod(.#(O) : Z(0; —
0,)), denoted by Zx. Notice that

Rx ={@aixix\ai€%’}

i=1

by definition. For any finite set §, if for any integer s,1 < s < 'm,

m S;
DD o xiwy = 0.

=1 j=1
implies that a;; = 01 for 1 <4 < m,1 < j < n, then we say that {z;;]1 <4 <
m,1 < j < n} is independent and S a basis of the multi-module Mod(.#(O) :
(O, — Oy)), denoted by <§\<@> = Mod(.#(0) : Z(O, — O)).

For a multi-ring (#; O; — O,) with a unit 1. for V- € Oy, where Oy = {+;|1 <
i <m} and Oy = {+;|1 < i < m}, let

R = {(x1, 0, )| 2 € #,1 <i<n}.
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Define operations

(ZL‘171'27 o 7177) +i (y17 Y2, 7y’") - (‘/Lll_;_iyluwQ'i_inu Tty ln+zyw)

and

a X (21,2, +, %) = (@1 21,65 Ta, -+, 0 Tp)

for Va € % and integers 1 < i < m. Then it can be immediately known that %2
is a multi-module Mod(#™ : Z(0; — O,)). We construct a basis of this special
multi-module in the following.

For any integer k,1 < k < n, let

Notice that

(@1, 29, -, Tn) = Ty X € +p Ty Xp € +p -+ Tn Xj €.
We find that each element in 2™ is generated by eq, s, - - -, e,. Now since
(33171'27 e 71777,) = (04%7 0+k7 ) 0+A)
implies that ; = 0, for any integer 4,1 <4 < n. Whence, {e;,e,---,e,} is a

basis of Mod(2™ : Z(0, — O5)).
Theorem 2.4.2 Let Mod(.#(O) : Z(O — Oy)) = <§|<@> be a finitely generated
multi-module with S = {uy,ug, -+, u,}. Then

Mod(.#(0) : Z(O, — Oy)) = Mod(Z™ : Z(O; — O)).

Proof Define a mapping 9 : #(O0) — Z™ by 9(u;) = e;, Va x; u;) = a X, e;
and Y(u; 4+ u;) = €; +y e; for any integers 4, j, k, where 1 < ¢,j,k < n. Then we
know that

n

m n m
ﬁ(@@(l”‘ X ul) = @@(l” X; €;.
i=1 j=1

i=1 j=1
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Whence, 9 is a homomorphism. Notice that it is also 1 — 1 and onto. We know
that ¢ is an isomorphism between Mod(.Z (0) : Z(O; — O,)) and Mod (%™ :
Z(01 — Oy)). 0O

§2.5 ACTIONS OF MULTI-GROUPS

2.5.1 Construction of Permutation Multi-Group. Let X = {z1,2q,---}

be a finite set. As defined in Subsection 1.3.1, a composition operation on two
T To - T
T = ,
Y1 Y2 o Yn,
Y Y2 - Yn
S = )
( 21 RZ2 ottt Zn, >
are defined to be

o= X1 Ty o Ty Y1 Y2 Yn _ Ty Ty - Ty
yl y2 yn_/ Zl 22 Zru Zl Z2 va

As we have pointed out in Section 2.2.3, all permutations form a group II(X)

permutations

and

under the composition operation.
For Vp € TI(X), define an operation o, : II(X) x II(X) — II(X) by

oo,s=ops, forVo,¢ell(X).
Then we have
Theorem 2.5.1 (II(X);0,) is a group.

Proof We check these conditions for a group hold in (II(X);o,). In fact, for
vr,0,¢ € II(X),

(Topo)ops = (Tpo)o,s = Tpops

= Tp((TOp§):TOp (Uopg)'



68 Chap.2 Fundamental of Mathematical Combinatorics

The unit in (TII(X);0,) is 1,, = p~'. In fact, for V6 € II(X), we have that
plo,0=00,p7 ' =0.
For an element o € TI(X), o, = p~lo~1p~! = (pop)~t. In fact,

op

oo, (pop) t=opp o =p Tt =1,

(pop) oo =ptoTpTlpo =p Tt = 1,
By definition, we know that (II(X);0,) is a group. g
Notice that if p = 1x, the operation o, is just the composition operation and
(IL(X); 0p) is the symmetric group Sym(X) on X. Furthermore, Theorem 2.5.1
opens a general way for constructing multi-groups on permutations, which enables

us to find the next result.

Theorem 2.5.2 Let I’ be a permutation group on X, i.e., I' < Sim(X). For given
m permutations p1,pa,- -+, pm € L, (I;O0p) with Op = {op,p € P}, P = {p;,1 <

i <m} is a permutation multi-group, denoted by <.

Proof First, we check that (I';{o,,,1 < i < m}) is an associative system.

Actually, for Vo,¢,7 € 4 and p,q € {p1,pa, -+, Pm}, we know that

(Topa)ogs = (Tpo)o,s = Tpogs

(0 046) = T 0, (0 045).

Similar to the proof of Theorem 2.5.1, we know that (I'; 0,,) is a group for any

integer 4,1 <7 <m. In fact, 1., = p; ' and ao‘pl = (piop:)~" in (¥;0,,). g

The construction for permutation multi-groups shown in Theorems 2.5.1 —2.5.2
can be also transferred to permutations on vector as follows, which is useful in some

circumstances.

Choose m permutations pi,pa,- -+, Pm on X. An m-permutation on x € X is
defined by

(m)

p Tr = (pl(l')J)z(l'),"-7[)m,(.’L'))7

i.€e., an m-vector on x.



Sec.2.5 Actions of Multi-Graphs 69

Denoted by TI¢*)(X) all such s-vectors p™. Let o be an operation on X. Define
a bullet operation of two m-permutations
P("L) = (p17p27 e 7pm)7
Q(sm) = ((]17 g2, qm)

on o by

P(g) ° Q(g) = (1)1 ©q1,P204q2," ", Pm qu)

Whence, if there are l-operations o;, 1 < ¢ < [ on X, we obtain an s-permutation sys-
tem TI®)(X) under these I bullet operations e;, 1 < i <, denoted by (TI®)(X); ®}),
where O] = {o;|1 <i <}

Theorem 2.5.3 Any s-operation system (I, 5) on J€ with units 1o, for each op-
eration 0,1 < i < s in O is isomorphic to an s-permutation system (II)(); ®3).

Proof For a € #, define an s-permutation o, € II®)(#°) by

o4(z) = (aoyx,a09 T, -+, a0sx)

for Vo € 2.
Now let 7 : 5 — TI®)(J#) be determined by 7(a) = o) for Ya € . Since

O'a(]-om) = ((l 01 107,7 T, @01 10;7a7aoi+1 107,7 T, Q0 107,)7

we know that for a,b € F, 0, # oy, if a # b. Hence, 7 is a 1 — 1 and onto mapping.
For Vi, 1 <i < s and Va € 5, we find that

m(ao;b)(x) = Oaop(7)
= (ao;bojz,ao0;boyx, -, ,a0;bosx)
= (aoyx,aoyz,---,a0,z) e (boyx,bogx, - bosx)

= 0a(z) & 0p(x) = 7(a) &; 7() ().

Therefore, w(ao;b) = m(a)e; (b), which implies that 7 is an isomorphism from
(,0) to (1) (), @3). 0
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According to Theorem 2.5.3, these algebraic multi-systems are the same as

permutation multi-systems, particularly for multi-groups.

Corollary 2.5.1 Any s-group (', 0) with O = {o;|1 <i < s} is isomorphic to an
s-permutation multi-group (TI)(2); ©3).

Proof It can be shown easily that (II®)(.22); ®%) is a multi-group if (A, 0) is
a multi-group. O
For the special case of s = 1 in Corollary 2.5.1, we get the well-known Cayley

result on groups.

Corollary 2.5.2(Cayley) A group G is isomorphic to a permutation group.

As shown in Theorem 2.5.2, many operations can be defined on a permutation
group G, which enables it to be a permutation multi-group, and generally, these
operations o;,1 < i < s on permutations in Theorem 2.5.3 need not to be the
composition of permutations. If we choose all 0o;, 1 <7 < s to be just the composition
of permutation, then all bullet operations in ®f is the same, denoted by ®. We find
an interesting result following which also implies the Cayley’s result on groups, i.e.,

Corollary 2.5.2.

Theorem 2.5.4 (II®)(J#); ®) is a group of order AnDt_

(nl—s)!”

Proof By definition, we know that

PO (2) © Q¥(x) = (PQ:(x), PaQa(x), -+, PQs(x))
for VP®), QW) € TI®)(3#) and Vo € 5. Whence, (1,1,---,1) (I entries 1) is the
unit and (P~®) = (P! Pyt -+, P7Y) the inverse of P®) = (P, P,---, P,) in
(1) (#); ®). Therefore, (II®)(J#); ®) is a group.
Calculation shows that the order of TI®) () is

which completes the proof. O

2.5.2 Action of Multi-group. Let (,127, 5) be a multi-group, where o = U 44,

i=1

0= 0;, and X = |J X; a multi-set. An action ¢ of (JZZ(%) on X is defined to
=1 i=1

7 =
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be a homomorphism

o1 (a;0) — | o
i=1

for sets Py, Py, -, Py, > 1 of permutations, i.e., for Vh € 74, 1 < i < m, there is a

permutation (h) : * — 2 with conditions following hold,

o(hog)=wph)e(c)p(g), for h,g € s and o € ;.

Whence, we only need to consider the action of permutation multi-groups on
multi-sets. Let = (&Zﬁ) be a multi-group action on a multi-set )~(, denoted by ¥.
For a subset A € X ,x € A we define

2 ={29|Vge g} and 9, ={g |2 =2,9€ Y},
called the orbit and stabilizer of x under the action of ¢4 and sets
Grn={glad=2,9g€9 for Vo € A},
Yay={9g|A=Age¥ for Vz € A},

respectively. Then we know the result following.

Theorem 2.5.5 Let I' be a permutation group action on X and 9% a permutation
multi-group (I'; Op) with P = {p1,pa,- -+, pm} and p; € I' for integers 1 < i < m.
Then

(@) |98 = 1@D)alle"|, Vo € X:

(ii) for VA C X, ((9£)a,Op) is a permutation multi-group if and only if
pi € P for1 <i<m.

Proof By definition, we know that
(@F), =T,, and 2% = 2T

for v € X and A C X. Assume that 2¥ = {z, 7y, -+, 2} with 2% = z;. Then we

must have

l
r=Jal..
i=1
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In fact, for Vi € T, let 2 = 24,1 < k < m. Then 2" = 2% i.c., 2"% = . Whence,
we get that hgk_1 € I'y, namely, h € gil',.

For integers 4,4, # j, there are must be ¢;I'; N ¢;T; = 0. Otherwise, there
exist hi, hy € ['; such that g;hy = gjhe. We get that z; = 29 = pIahehTt = 295 = Tj,
a contradiction.

Therefore, we find that

(9%] = IT] = [Talle"| = [(#X)alla?%.

This is the assertion (i). For (), notice that (4£)a = T'a and T'p is itself a
permutation group. Applying Theorem 2.5.2, we find it. g
Particularly, for a permutation group I' action on €, ie.; all p; = 1x for 1 <

1 < m, we get a consequence of Theorem 2.5.5.

Corollary 2.5.3 Let I' be a permutation group action on §2. Then
(i) |0 =|Tall2"], Vo € &
(it) for VA C Q, T'a is a permutation group.

Theorem 2.5.6 Let I' be a permutation group action on X and 9% a permutation
multi-group (T'; Op) with P = {p1,p2,- -+, Dm}, pi € I' for integers 1 < i < m and
Orb(X) the orbital sets of 9 action on X. Then

|Orb(X Z |®(p)

pE%’P

where ®(p) is the fized set of p, i.e., ®(p) = {x € X|zP = x}.

Proof Consider a set E = {(p,x) € 9¥ x X|2? = x}. Then we know that
E(p,*) = ®(p) and E(x,x) = (4£),. Counting these elements in F, we find that

Y12l = (@)

pgg}? reX
Now let z;,1 < i < |Orb(X)| be representations of different orbits in Orb(X).
For an element y in a:(f’?, let y = z{ for an element g € ¥¥. Now if h € (47),,
ic, y" = y, then we find that (zf)" = 2?. Whence, 2" = z;. We obtain
that ghg™' € (9%).,, namely, h € g~ (4F),.9. Therefore, (4%), C g7 (4¥).9.
Similarly, we get that (9%)., C 9(9%)yg7", ie., (9%)y = g7 (9%)s9. We know
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that |(9%),] = [(4F).,] for any element in xfg,l < i < |Orb(X)|. This enables us
to obtain that

|Orb(X)
YR = Y (@)= D>, Y (@)
pgg)‘? zeX i=1 yEz?;
|Orb(X)| oP |Orb(X))|
= > 1@ = D 19
i=1 i=1
= |0rb(X)] 195
by applying Theorem 2.5.5. This completes the proof. O

For a permutation group I' action on €, i.e., all p; = 1y for 1 <i < m, we get

the famous Burnside’s Lemma by Theorem 2.5.6.

Corollary 2.5.4(Burnside’s Lemma) Let ' be a permutation group action on .
Then

1
Orb(Q)] = 1577 > 19(9)]-
ger
A permutation multi-group ¥ is transitive on X if |Orb(X)| = 1, i.e., for any
elements x,y € X, there is an element g € ¥£ such that 29 = y. In this case, we

know formulae following by Theorems 2.5.5 and 2.5.6.

| = IX[[(5).] and %] =" |@(p)]
pev¥
Similarly, a permutation multi-group ¥¥ is k-transitive on X if for any two
k-tuples (w1, T2, -, 7%) and (y1, Y2, - -, yx), there is an element g € ¥¥ such that
z =y, for any integer 7,1 < ¢ < k. It is well-known that Sym(X) is | X|-transitive

on a finite set X.

Theorem 2.5.7 Let T be a transitive group action on X and 9¥ a permutation
multi-group (I'; Op) with P = {p1,pa,- -+, pm} and p; € I for integers 1 < i < m.

Then for an integer k,

(i) (T X) is k-transitive if and only if (Ty; X \ {x}) is (k — 1)-transitive;
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(i) 9G¥ is k-transitive on X if and only if (9%), is (k—1)-transitive on X\ {x}.

Proof If T' is k-transitive on X, it is obvious that I' is (k — 1)-transitive on
X itself. Conversely, if I'; is (k — 1)-transitive on X \ {z}, then for two k-tuples
(x1, 29, -+, xx) and (y1,Y2, -, Yx), there are elements g1,g2 € I and h € T, such
that

g1 _ 92 __ gi\h _ , 92
af' =z, y{" =z and (2f")" =y;

for any integer i,2 < ¢ < k. Therefore,

—1
M — s 1<i<k

i 13}

We know that I' is ‘k-transitive on X. This is the assertion of (¢).

By definition, 4% is k-transitive on X if and only if I" is k-transitive, i.e., (4%),
is (k — 1)-transitive on X \ {z} by (i), which is the assertion of (i7). O

Applying Theorems 2.5.5 and 2.5.7 repeatedly, we get an interesting conse-

quence for k-transitive multi-groups.

Theorem 2.5.8 Let 9¥ be a k-transitive multi-group and A C X with |A| = k.
Then

91 = IX[(X] = 1) (1X] =k + 1](F)al
O

Particularly, a k-transitive multi-group ¥% with |4F] = | X|(|X|-1)--- (|X] =
k+1| is called a sharply k-transitive multi-group. For example, choose I' = Sym(X)
with | X| = n, ie., the symmetric group S, and permutations p; € S,, 1 < i < m,
we get an n-transitive multi-group (S,; Op) with P = {p1,pa, -+, pm}-

Let I be a transitive group action on X and ¢f a permutation multi-group
(T; Op) with P = {p1,pa, -+, pm},pi € I for integers 1 < i < m. An equivalent
relation R on X is 9F-admissible if for V(z,y) € R, there is (29,y9) € R for
Vg € 9L, For a given set X and permutation multi-group 4%, it can be shown

easily by definition that
R=XxX or R={(z,x)lz € X}

are ¥ -admissible, called trivially 4% -admissible relations. A transitive multi-group
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G is primitive if there are no ¥f-admissible relations R on X unless R = X x X or
R = {(z,z)|x € X}, i.e., the trivially relations. The next result shows the existence

of primitive multi-groups.
Theorem 2.5.9 Every k-transitive multi-group 9% is primitive if k > 2.

Proof Otherwise, there is a ¢F-admissible relations R on X such that R #
X x X and R # {(x,z)|r € X}. Whence, there must exists (z,y) € R, z,y € X
and ¥ # y. By assumption, ¥¥ is k-transitive on X, k > 2. For Vz € X, there is
an element g € ¥¥ such that 29 = z and y9 = 2. This fact implies that (z,2) € R
for Vz € X by definition. Notice that R is an equivalence relation on X. For
V21,20 € X, we get (21, 2), (x, 20) € R. Thereafter, (21, 22) € R, namely, R = X x X
a contradiction. |

There is a simple criterion for determining which permutation multi-group is

primitive by maximal stabilizers following.

Theorem 2.5.10 A transitive multi-group 4¥ is primitive if and only if there is an
element x € X such that p € (9%), for¥p € P and if there is a permutation multi-
group (H; Op) enabling (9% ).; Op) < (H; Op) < 9%, then (H; Op) = ((9¥); Op)

or 9L

Proof 1f (H; Op) be a multi-group with ((9%).; Op) < (H; Op) < 9E for an

element = € X, define a relation
R={ (a9,25) | g € 9, he M }.

for a chosen operation o € @p. Then R is a ¥ -admissible equivalent relation. In
fact, it is ¥F-admissible, reflexive and symmetric by definition. For its transitive-
ness, let (s,t) € R, (t,u) € R. Then there are elements g1, g, € 9¥ and hy, hy € H
such that

s=a9, t=g9oM t =0 o =g9h

Hence, 29 °91°h1 — z,ie, ggtogioh € H. Whence, g;' 0g1, g7  0gs € H. Let
g* = g1, h* = g7 0 gs 0 hy. We find that s = 297, u = 29", Therefore, (s,u) € R.
This concludes that R is an equivalent relation.

Now if 4¢ is primitive, then R = {(z,z)|z € X} or R = X x X by definition.
Assume R = {(z,z)|]z € X}. Then s = z9 and t = 29" implies that s = ¢ for
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Vg € 9f and h € H. Particularly, for g = 1,, we find that 2" = z for Vh € H, i.c.,
(H; Op) = (9%)s; Op).

If R =X x X, then (z,2/) € R for Vf € ¢4f. In this case, there must exist
g € 9% and h € H such that x = 29, 27 = 29°". Whence, g € (9%).; Op) < (H; Op)
and g7l oh ™l o f € ((9)e; Op) < (H;Op). Therefore, f € H and (H;Op) =
((9%): Op).

Conversely, assume R to be a ¥¥-admissible equivalent relation and there is
an element x € X such that p € (¢7), for Vp € P, (9%).; Op) < (H; Op) < 4%
implies that (H; Op) = (9F).; Op) or ((9%); Op). Define

H={he¥f| (z,2") eR}.

Then (H; Op) is multi-subgroup of 4§ which contains a multi-subgroup ((4¥).; Op)
by definition. Whence, (H; Op) = ((4%); Op) or 9x.

If (H;0p) = ((97).; Op), then z is only equivalent to itself. Since ¥7 is
transitive on X, we know that R = {(z,z)|z € X}.

If (H;0p) = 9£, by the transitiveness of 4 on X again, we find that R =
X x X. Combining these discussions, we conclude that ¢¥ is primitive. g

Choose p = 1x for each p € P in Theorem 2.5.10, we get a well-known result

in classical permutation groups following.

Corollary 2.5.5 A transitive group I is primitive if and only if there is an element

x € X such that a subgroup H with I'y, < H < T hold implies that H =T, or T.

Now let I' be a permutation group action on a set X and P C II(X). We have
shown in Theorem 2.5.2 that (I'; Op) is a multi-group if P C I'. Then what can we
say if not all p € P are in I'? For this case, we introduce a new multi-group (f, Op)

on X, the permutation multi-group generated by P in I' by
f:{glopngOpz'“oplgH»l ‘ !]zeF:p]GP 1SZSZ+171SJSZ}7

denoted by <F§>. This multi-group has good behavior like 47, also a kind way of
extending a group to a multi-group. For convenience, a group generated by a set S

with the operation in I is denoted by (S).

Theorem 2.5.11 Let I’ be a permutation group action on a set X and P C II(X).
Then
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) (TX) = (T UP)p, particularly, (TX) = 4% if and only if P C T';

(zz) for any subgroup A of T, there exists a subset P C I" such that

(Axiop) = (k).
Proof By definition, for Va,b € T" and p € P, we know that
ao,b = apb.
Choosing a = b = 1, we find that
ao,b = p,
ie, ' C I. Whence,
(TUP). C <F§> .
Now for Vg, e T'and p; € P, 1 <i <[1+41,1< 35 <[, we know that
91 ©py 92 Opy *** Op Ji+1 = G1P192P2 - " Pigi+1,
which means that
<FP> (TrUP)..
Therefore,
(%) =(CUP).

Now if (I}) = 47, ie., (TUP), = T, there must be P C I'. According to
Theorem 2.5.2, this concludes the assertion (¢).

For the assertion (i), notice that if P =T\ A, we get that
(M) =AUP)r=T
by (7). Whence, there always exists a subset P C I' such that

(A% 07) = (T%).
O

Theorem 2.5.12 Let I' be a permutation group action on a set X. For an integer
k> 1, there is a set P € II(X) with |P| < k such that (T'%) is k-transitive.

Proof Notice that the symmetric group Sym/(X) is | X |-transitive for any finite
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set X. If T is k-transitive on X, choose P = ) enabling the conclusion true. Other-
wise, assume these orbits of I action on X to be Oy, O, - - -, Oy, where s = |Orb(X)].

Construct a permutation p € II(X) by

P = (I17I27”'7I5‘)7

where z; € O;, 1 <1i < s and let P = {p} C Sym(X). Applying Theorem 2.5.11,
we know that (I'Y) = (I'U P)y. is transitive on X with |P| = 1.
Now for an integer k, if (I'! ) is k-transitive with | P| < k, let O], 0%, - -, O} be

these orbits of the stabilizer (I'}} action on X \ {y1,42,- -, yr}. Construct

>y1y2~'yk
a permutation

q = (217227"'721)7
where z; € O, 1 < i <1l and let P, = P, U{q}. Applying Theorem 2.5.11 again,
we find that <F§2>yly2“'yk is transitive on X \ {y1,%2, - -, yr}, where |Po| < |Py| + 1.

Therefore, (I'\?) is (k + 1)-transitive on X with |Ps| < k + 1 by Theorem 2.5.7.
Applying the induction principle, we get the conclusion. O

Notice that any k-transitive multi-group is primitive if ¥ > 2 by Theorem 2.5.9.
We have a corollary following by Theorem 2.5.12.

Corollary 2.5.6 Let I' be a permutation group action on a set X. There is a set
P € II(X) such that (UX) is primitive.

§2.6 COMBINATORIAL ALGEBRAIC SYSTEMS

2.6.1 Algebraic Multi-System. An algebraic multi-system is a pair (,szﬁ) with

J:U% and 5=U(9i
i=1 i=1

such that for any integer i,1 < i < m, (J%; O;) is a multi-operation system. For
an algebraic multi-operation system (4&7, 5) and an integer 7,1 < ¢ < m, a homo-
morphism p; : (@Z 5) — (J; 0;) is called a sectional projection, which is useful in
multi-systems.

Two multi-systems (JZZ, 51), (szf; 52), where o = ijjk and 0; = G Ok

i=1 i=1
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for k = 1, 2 are homomorphic if there is a mapping o : a/f\;% xz?g/such that op;
is a homomorphism for any integer 7,1 < ¢ < m. By this definition, we know the

existent conditions for homomorphisms on algebraic multi-systems following.

Theorem 2.6.1 There exists a homomorphzsm fmm an algebraic multi-system
(sz;; o)) to (szg 03), where Ay = U HF and Or = U OF for k =1, 2 if and only

i=1

if there are homomorphisms n1,1m2,+*, Nm on (G (’)1) (26Y0)), -, (65 0L)
such that

ua Aok = j |,yf;1myf711
for any integer 1 <1i,j < m.

Proof By definition, if there is a homomorphism o : (,Q;; 51) — (JZZ, 52), then
op; is a homomorphism on (J&'; O}) for any integer i,1 < i < m.

On the other hand, if there are homomorphisms 7,7, - -+, m on (JA5 OF),
(S5 03), -+, (#,3;0L), define a mapping o : (4; 1) — (4; 62) by ola) = ,(a)
if a € 51, Then it can be checked immediately that o is a homomorphism. g

Let o : (42?{\1/, 51) — (52/7; ﬁ~2) be a homomorphism with a unit 1, for each oper-

ation o € ﬁ~2. Similar to the case of multi-operation systems, we define the multi-
kernel I/(\c/r(o) by

Ir(\e/r(o)z{aeg/{ﬁv|o(a)=lo for Vo € 0, }.
Then we have the homomorphism theorem on algebraic multi-systems following.

Theorem 2.6. 2 Let (42:7; 51) (5372: 52) be algebraic multi-systems, where ZJk =

U HF = U OF fork = 1,2 and o : (szflv, o)) — (JZZ, 0>) a onto homomor-
=1

phzsm with a multi-group (Z2; OF) for any integer i,1 < i < m. Then there are

representation pairs (Ry, Pi) and (Ry, Py) such that

(h; 0))
(Ker(o); Oy)

(cty; O)
(Z(05); )

|(1§1,151) = ‘(15»2,132)

sz

where (Z(05); O5) = (12 0?).

s
I
—_
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Proof By definition, we know that of 1 : (' O}) — (H7,; 0%,) is also an
onto homomorphism for any integer i,1 < i < m. Applying Theorem 2.3.2 and
Corollary 2.3.1, we can find representation pairs (RY, P') and (R2, P2) such that

(50} ~ O
(Ker(o] 1); O}) (Z2,:0%,)

1 pl D
(B, (Row Pow)

Notice that

%:6%%@:0@
=1

i=1

for k =1,2 and

Kcr U Ker(o] 1)

i=1

We finally get that

<%&H~~=(@@N~~
(Ker(0): 0) ™™ (Z(02): 02) "
with
Ek = LJRit and ﬁk = Uﬁbk
i=1 i=1
for k=1 or 2. O

2.6.2 Diagram of Multi-System. Let (A;0) be an algebraic system with

@A

operation “o” . We associate a labeled graph G[A] with (A; o) by
V(GHA]) = A,
E(G*[A]) = {(a,c) with label ob | if aob= c for Va,b,c € A},

as shown in Fig.2.6.1.

°b

Fig.2.6.1
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The advantage of this diagram on systems is that we can find ach = ¢ for any
edge in GL[A], if its vertices are a,c with a label ob and vice versa immediately. For

example, the labeled graph G*[Z,] of an Abelian group Z, is shown in Fig.2.6.2.

+1

+0( 0 1 )40
13
S\ 2 2 +1
+1
+2
2
+ol 3 +1 2 140
Fig.2.6.2

Some structure properties on these diagrams GT[A] of systems are shown in the

following.

Property 1. The labeled graph GL[A] is connected if and only if there are no
partition A = A;|J Ag such that for Vay € Ay, Yay € As, there are no definition for

aj o ay in (A;o).

If GL[A] is disconnected, we choose one component C' and let A; = V(O).
Define Ay = V(GL[A]) \ V(C). Then we get a partition A = A;|J Ay and for

Va; € Ay, Yag € Ay, there are no definition for a; o ay in (A4;0), a contradiction.

Property 2. If there is a unit 14 in (A;0), then there exists a vertex 14 in GL[A]
such that the label on the edge (14, x) is ox.

For a multiple 2-edge (a, b) in a directed graph, if two orientations on edges are
both to a or both to b, then we say it a parallel multiple 2-edge. If one orientation

is to @ and another is to b, then we say it an opposite multiple 2-edge.

Property 3. For Ya € A, if aJ' exists, then there is an opposite multiple 2-edge

A,a) in G” with labels oa and oag ", respectively.
1 in GE[A] with label d ! el

Property 4. ForVa,b € A if aob = boa, then there are edges (a,z) and (b, z),
x € A in (A;0) with labels w(a,z) = ob and w(b,x) = oa in GL[A], respectively.
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Property 5. If the cancelation law holds in (A;0), i.e., forVa,b,c € A, if aob = aoc
then b = c, then there are no parallel multiple 2-edges in GT[A].

These properties 2 — 5 are gotten by definition. Each of these cases is shown in
(1),(2),(3) and (4) in Fig.2.6.3.

AT

(1) (2) (3) (4)

Fig.2.6.3

Now we consider the diagrams of algebraic multi-systems. Let (J;Z 5) be an
algebraic multi-system with
~:U=}f§ and 5=U0i
i=1 i=1
such that (J47; O;) is a multi-operation system for any integer 7,1 < ¢ < m, where
the operation set O; = {o;j|1 < j < n;}. Define a labeled graph GL[£7] associated
with (JA/N, 0) by
a11= 0 U 6416 00)
i=1j=
where GY[(#;0;;)] is the associated labeled graph of (J%;0;;) for 1 < i < m,
1 < j < ny;. The importance of GL[,Q}T is displayed in the next result.

Theorem 2.6.3 Let (szflv, o), (g?{, 03) be two algebraic multi-systems. Then

(;61) = (y; 0)

if and only if

GHah] = GHah).

Proof 1f (42%; 51) = (gﬂ{; 52), by definition, there is a 1 — 1 mapping w : o —
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Jz,{;/with w: 51 — 52 such that for Va, b € %and o1 € 51, there exists an operation
0y € 52 with the equality following hold,

w(a o1 b) = w(a) og w(b).

Not loss of generality, assume a 0, b = ¢ in (,QZ, ©01). Then for an edge (a,c) with a

label 01b in GL[JZZ], there is an edge (w(a),w(c)) with a label oow(b) in GL[JZQ;], ie,

w is an equivalence from GL[#] to GL[aA]. Therefore, GL[] = GE[a).
Conversely, if GL[a4] = GL[a], let @ be a such equivalence from GE[4] to

GE[a%), then for an edge (a,c) with a label o1b in G*[47], by definition we know
that (w(a),w(c)) with a label w(o;)w(b) is an edge in GE[a%)]. Whence,

w(a o1 b) =w(a)w(og)w(d),
ie., w: ,sz?l/ﬂ ,;a%;is an isomorphism from (;z%?, 51) to (,52?2/, ﬁ;) O

Generally, let (DQ,{;; 51), (ﬁ?;, ﬁNQ) be two algebraic multi-systems associated with
labeled graphs GL[JZZLGL[&?/}. A homomorphism ¢ : GL[JZZ/] — GL[DQ?;] is a map-
ping ¢ : V(GL[a4]) — V(GL[ah]) and ¢ : 61 — Oy such that i(a,c¢) = ((a),1(c))

with a label t(o)u(b) for ¥(a,c) € E(G*[«]) with a label ob. We get a result on

homomorphisms of labeled graphs following.

Theorem 2.6.4 Let (52?1/, 51), (52?2/, ﬁ~2) be algebraic multi-systems, where o, =
U s2F, O, = U OF fork = 1,2 and ¢ : (JZZ 51) — (&?2/, 52) a homomorphism.
i=1 i=1

Then there is a homomorphism v : GL[o/)] — GL[ah) from GLoA] to GF[ )] induced
TR

Proof By definition, we know that o : V(GL[#]) — V(GE|a]). Now if
(a,c) € B(G*[24]) with a label ob, then there must be a o b = ¢ in (42?1/, o).
Hence, t(a)i(o)e(b) = i(c) in (,52}; 05), where 1(c) € Oy by definition. Whence,
(t(a),(c)) € E(G*|e4]) with a label ¢(o)i(b) in GF[eA], i.e., ¢ is a homomorphism
between GL[e#] and G[a7)s). Therefore, ¢ induced a homomorphism from G*[e#]
to GLla)]. O

Notice that an algebraic multi-system (JZZ 7% ) is a combinatorial system %1 with

an underlying graph I, called a I'-multi-system, where

V(D) = {1 <i<m),
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E) = {(54, 5)|3a € 54,b € 5, with (a,b) € B(G*&/]) for 1 <i,j <m}.

We obtain conditions for an algebraic multi-system with a graphical structure

in the following.

Theorem 2.6.5 Let (52’17,0?) be an algebraic multi-system. Then it is

(i) a circuit multi-system if and only if there is arrangement 5,1 < i < m

for 54,56, -- -, 5, such that

A (7, #0, A (A, #0

for any integer i(mod m), 1 <i <m but

FARE

forintegers j # i —1,i,i+ 1(mod m);
(11) a star multi-system if and only if there is arrangement 4,1 <1i < m for

I, I, - - -, I, such that

A, (A, #0 but A (A, =0

for integers 1 < i,7 < m,i # j.
(1ii) a tree multi-system if and only if any subset of < is not a circuit multi-

system under operations in O.

Proof By definition, these conditions really ensure a circuit, star, or a tree
multi-system, and conversely, a circuit, star, or a tree multi-system constrains these

conditions, respectively. O

Now if an associative system (&/;0) has a unit and inverse element a, ! for any
element a € &, i.e., a group, then for any elements z,y € o, there is an edge
(z,y) € E(GL[#/]). In fact, by definition, there is an element z € & such that
r;loy = 2. Whence, z 0z = 5. By definition, there is an edge (z,y) with a label
oz in GF[<7], and an edge (y, z) with label 2;!. Thereafter, the diagram of a group
is a complete graph attached with a loop at each vertex, denoted by K|[</;0]. As
a by-product, the diagram G* [é} of a m-group G is a union of m complete graphs

with the same vertices, each attached with m loops.
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Summarizing previous discussion, we can sketch the diagram of a multi-group
as follows.
— — m . om
Theorem 2.6.6 Let («7; 0) be a multi-group with o = |J 74, 0 = |J O;, O; =
{0ij,1 < 7 < n;} and (J€;0,5) a group for integers i, j, Z?g i < Trull:lg i < n;.
Then its diagram GL[/] is

mo n;

GHe] = || K[ 04).

i=1j=1

O

Corollary 2.6.1 The diagram of a field (5;+,0) is a union of two complete graphs

attached with 2 loops at each vertex.

Corollary 2.6.2 Let (&7,5) be a multi-group. Then GT|/] is hamiltonian if and

only if 6r is hamiltonian.

ng
Proof Notice that 6t is an resultant graph in G*[.«] shrinking each |J K[54; 0;4]
j=1
to a vertex J# for 1 < i < m by definition. Whence, %t is hamiltonian if G[¢/] is
hamiltonian.
Conversely, if 4 is hamiltonian, we can easily find a hamiltonian circuit in

GL[«/] by applying Theorem 2.6.6. O

2.6.3 Cayley Diagram. Besides these diagrams of multi-systems described in
Theorem 2.4.5, these is another diagram for a multi-system of finitely generated,
called Cayley diagrams of multi-systems defined in the following.

A multi-system (52?7 5) is finitely generated if there are finite elements ay, as, - - -, as
in o such that for Vo € ,;ZZ

X = Qgq O1 Qg, O+ -+ Oy aw“

where a,, € {ay,as,---,as} and o; € 0. Denoted by of = <a1,a2, cee Qg ﬁ~>

Let (JZZ 5) be a finitely generated multi-system with a generating set S, & =
{0i]1 <i < m}. A Cayley diagram Cay(frz?: S) of (;ZUZ) is defined by

V(Cay(/ - 5)) = o,
E(Cay(«/ : 5)) = {(g,h) with a label g~ o; h | Ji,g~ o, h € S, 1 <i < m}.
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For the case of multi-groups (DQ;/ i ), some elementary properties are presented
in [Mao3], particularly, if (,fov, 7% ) is a group, these Cayley diagrams are nothing but
the Cayley graphs of finite groups introduced in graph theory, which have many good

behaviors. For multi-groups, the following structure result is obtained in [Mao3].
Theorem 2.6.7 Let Cay(T : S) be a Cayley diagram of a multi-group (F ﬁ) with
1“7U1"Z,ﬁ {oi]l <i<m}and S = US”F (Si;0i) for 1 <i<m. Then

Cay(T: ) = U Cay(T; : S;).

-

i=1

d

As we known, few results can be found for Cayley diagrams of multi-systems
on publications unless [Mao3]. So, to find out such behaviors for multi-systems is a

good topic for researchers.

§2.7 REMARKS

2.7.1 The original form of the combinatorial conjecture for mathematics is that
mathematical science can be reconstructed from or made by combinatorialization,
abbreviated to CCM Conjecture in [Maod] and [Maol0]. Its importance is in com-
binatorial notion for entirely developing mathematical sciences, which produces an

enormous creative power for modern mathematics and physics.

2.7.2 The relation of Smarandache’s notion with LAO ZHIs thought was first
pointed out by the author in [Mao19], reported at the Jth International Conference
on Number Theory and Smarandache Problems of Northwest of China in Xianyang,
2008. Here, combinatorial systems is a generalization of Smarandache systems, also
an application of LAO ZHTs thought to mathematics. Complete words in TAO
TEH KING written by LAO ZHI can be found in [Sim1]. Further analysis on LAO
ZHTs thought can consults references [Lujl]-[Luj2] and [WaW1], particularly [Lujl].

2.7.3 These conceptions of multi-group, multi-ring, multi-field and multi-vector
space are first presented in [Mao5]-[Mao8] by Smarandache multi-spaces. In Section
2.3, we consider their general case, i.e., multi-operation systems and extend the

homomorphism theorem to this multi-system. Section 2.4 is a generalization of
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works in [Mao7] to multi-modules. There are many trends or topics in multi-systems
should be researched, such as extending those of results in groups, rings or linear

spaces to multi-systems.

2.7.4 Considering the action of multi-systems on multi-sets is an interesting prob-
lem, which requires us to generalize permutation groups to permutation multi-
groups. This kind of action, i.e., multi-groups on finite multi-sets can be found
in [Mao20]. The construction in Theorems 2.5.1 and 2.5.2 can be also applied to
abstract multi-groups. But in fact, an action of a multi-group acting on a multi-set
dependent on their combinatorial structures. This means general research on the
action of multi-groups must consider their underlying labeled graphs, which is a

candidate topic for postgraduate students.

2.7.5 The topic discussed in Section 2.6 can be seen as an application of com-
binatorial notion to classical algebra. In fact, there are many research trends in
combinatorial algebraic systems, in algebra or combinatorics. For example, given an
underlying combinatorial structure G, what can we say about its algebraic behavior?
Similarly, what can we know on its graphical structure, such as in what condition it
has a hamiltonian circuit, or a 1-factor? When it is reqular?,- - -, etc.. Similarly, for
Cayley diagrams Cay(f;z? : §) of multi-systems (JZZ ﬁN), particularly, multi-groups,
what can we know on their structure? Determine those properties of Cayley diagrams

Cay(;szvz §) which Cayley graphs of finite groups have.



CHAPTER 3.

Smarandache manifolds

A Smarandache geometry is a geometrical Smarandache system, which
means that there is a Smarandachely denied axiom in this geometri-
cal system, i.e., both validated and invalidated, or just invalidated but
in multiple distinct ways, which is a generalization of classical geome-
tries. For example, these Fuclid, Lobachevshy-Bolyai-Gauss and Rie-
mannian geometries maybe united altogether in a same space by some
Smarandache geometries. A Smarandache geometry can be either par-
tially Euclidean and partially non-Fuclidean, or non-Euclidean connected
with the relativity theory because they include Riemannian geometry in
a subspace, also with the parallel universes in physics because they com-
bine separate spaces into one space too. A Smarandache manifold is a
topological or differential manifold which supports a Smarandache ge-
ometry. For an introduction on Smarandache manifolds, Sections 3.1
and 3.2 present the fundamental of algebraic topology and differential
on Euclidean spaces for the following discussion. In Section 3.3, we de-
fine Smarandache geometries, also with some well-known models, such as
Iseri’s s-manifolds on the plane and Mao’s map geometries on surfaces.
Then a more general way for constructing Smarandache manifolds, i.e.,
pseudo-manifolds is shown in Section.3.4. Finally, we also introduce dif-

ferential structure on pseudo-manifolds in this chapter.
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§3.1 TOPOLOGICAL SPACES

3.1.1 Topological Space. A topological space is a set S together with a collection

€ of subsets called open sets such that

(T1) € € and S € €;
(T2) if Uy,Us € €, then Uy NU; € €
(T3) the union of any collection of open sets is open.

Example 3.1.1 Let R be the set of real numbers. We have knows these open
intervals (a,b) for a < b,a,b € R in elementary mathematics. Define open sets in R
to be a union of finite open intervals. Then it can be shown conditions T1-T3 are

hold. Consequently, R is a topological space.

A set V is closed in a topological space S if S\ V' is opened. If A is a subset of
a topological space S, the relative topological on A in S is defined by

s={UNA|VU €% }.
Applied these identities

(i) PNA=0,SNA=A4;
(i) (LhNU)NA=UnNAN(UyNA);
(iid) U(Ua N A) = (g Ua) A

@

in Boolean algebra, we know that €4 is indeed a topology on A, which is called a
subspace with topology €4 of S.

For a point u in a topological space S, its an open neighborhood in S is an open
set U such that u € U and a neighborhood in S is a set containing some of its open
neighborhoods. Similarly, for a subset A of S, a set U is an open neighborhood or
neighborhood of A is U is open itself or a set containing some open neighborhoods
of that set in S. A basisin S is a collection £ of subsets of S such that S = Ugc»B
and By, B, € #,x € B, N By implies that 3B3; € & with x € By C By N By hold.

A topological space S is called Hausdorffif each two distinct points have disjoint
neighborhoods and first countable if for each p € S there is a sequence {U,} of
neighborhoods of p such that for any neighborhood U of p, there is an n such that
U, C U. The topology is called second countable if it has a countable basis.

For a point sequence {z,} in a topological space S, if there is a point x € S
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such that for every neighborhood U of u, there is an integer N such that n > N
implies z,, € U, then we say that {u,} converges to u or u is a limit point of {u,}.

Let S and T be topological spaces with ¢ : S — T a mapping. ¢ is continuous
at u € S if for every neighborhood V' of ¢(u), there is a neighborhood U of u such
that ¢(U) C V. Furthermore, if ¢ is continuous at any point « in S, ¢ is called a

continuous mapping.

Theorem 3.1.1 Let R, S and T be topological spaces. If f: R — S andg:S — T
are continuous at x € R and f(x) € S, then the composition mapping gf : R — T

is also continuous at x.

Proof Since f and g are respective continuous at z € R and f(z) € S, for
any open neighborhood W of point g(f(z)) € T, g~(W) is opened neighborhood of
f(x) in S. Whence, f~(g~*(W)) is an opened neighborhood of z in R by definition.

Therefore, g(f) is continuous at . O

The following result, usually called Gluing Lemma, is very useful in constructing

continuous mappings on a union of spaces.

Theorem 3.1.2 Assume that a space X is a finite union of closed subsets: X =
U Xi. If for some space Y, there are continuous maps f; : X; — Y that agree on
i=1

overlaps, i.e., filx.nx; = filx.nx, for alli,j, then there exists a unique continuous

f: X =Y with flx, = fi for alli.

Proof Obviously, the mapping f defined by

f(@) = fiz), z€X;

is the unique well defined mapping from X to Y with restrictions f|x, = f; hold for
all . So we only need to establish the continuity of f on X. In fact, if U is an open

set in Y, then

n

oy = X = UJxa i)

= Yx:O oy =Ny = o).

i=1 i=1 i=1



Sec.3.1 Topological Spaces 91

By assumption, each f; is continuous. We know that f7'(U) is open in X;.
Whence, f~1(U) is open in X, i.e., f is continuous on X. O
A collection C C 2% is called a cover of X if
Uc =x.
cec
If each set in C is open, C is called an opened cover and if |C| is finite, it is called a
finite coverof X. A topological space is compact if there exists a finite cover in its any
opened cover and locally compact if it is Hausdorff with a compact neighborhood for
its each point. As a consequence of Theorem 3.1.2, we can apply the gluing lemma

to ascertain continuous mappings shown in the next.

Corollary 3.1.1 Let {A;, Ay, -+, A} be a finite opened cover. If a mapping f :
X — Y is continuous constrained on each A;, 1 < i < n, then f is a continuous
mapping.

Two topological spaces S and T are homeomorphic if there is a 1 — 1 continuous
mapping ¢ : S — T such that its inverse ¢=* : T — S is also continuous. Such
mapping ¢ is called a homeomorphic or topological mapping. A invariant of topo-
logical spaces is said topological invariant if it is not variable under homeomorphic
mappings. In topology, a fundamental problem is to classify topological spaces, or
equivalently, to determine wether two given spaces are homeomorphic. Certainly, we
have known many homeomorphic spaces, particularly, spaces shown in the following

example.
Example 3.1.2 Each of the following topological space pairs are homeomorphic.
(1) a Euclidean space R"™ and an opened unit n-ball B" = {(z1,zq, " -+, ¥,) |23 +
wi4 a2l <1}
(2) a Euclidean plane R? and a unit sphere S? = {(z,y, )|z + y* + 22 = 1}
with one point (o, Yo, 29) on it removed,;
(3) A unit circle with an equilateral triangle.

In fact, for the case (1), a homeomorphic mapping f from B™ to R" is defined
by

($17$27 o '7xn)

f(l‘171‘27'“71‘ ):
Y-Vt gt
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for V(zy, xa, -+, x,) € B™ with an inverse

(x17x21"'7xn)
1+t +ad+- +a?

f_1($17-772: o "‘x") =

for V(z1, 29, -+, 2,) € R™

For the case (2), let (o, Yo, z0) be the north pole with coordinate (0,0,1) and
the Euclidean plane R? be a plane containing the circle { (z,y) | 2> +y? = 1}. Then
a homeomorphic mapping ¢ from S? to R? is defined by

1—2"1-2"

The readers are required to find a homeomorphic mapping in the case (3).

g(z,y,2) = (

3.1.2 Metric Space. A metric space (M;p) is a set M associated with a metric
function p: M x M — R* = {x | 2 € R,z > 0} with conditions following for p hold
for Va,y,z € M.

(1)(definiteness) p(x,y) = 0 if and only if = = y;

(i) (symmetry) p(z,y) = p(y, z);

(214)(triangle inequality) p(z,y) + ply, z) > p(z, 2).

For example, the standard metric function on a Euclidean space R™ is defined
by

n

Z(Tz - Z/i)

=1

,O(X, Y) =

for Vx = (21, @2, x,) and y = (y1, %2, -, yn) € R
Let (M ;p) be a metric space. For a given number € > 0 and Vp € M, the
€ — disk on p is defined by

Dc(p)={qeM]|plgp) <e}

A metric topology on (M;p) is a collection of unions of such disks. Indeed, it
is really a topology on M with conditions (T1)-(T3) hold.

In fact, the conditions (T1) and (T2) are clearly hold. For the condition (T3), let
x € D, (21) N De,(22) and 0 < €, = min{e; — p(x, 1), €2 — p(x, x2)}. ThenD,, (x) C
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D, (z1) N D, (x2) since for Vy € D, (z),

ply.1) < ply.a) + pla,a1) < € + plar,21) < er.

Similarly, we know that p(y,z) < es. Therefore, D, (x) C De, (x1) N De,(x2),
we find that

Dfl(xl)ﬂsz(xZ) = Df:l:(x)7

2€De; (€1)NDey (w2)
i.e., it enables the condition (T3) hold.

Let (M; p) be a metric space. For a point & € M and A C M, define p(z, A) =
inf{d(z,a)|a € A} if A # 0, otherwise, p(z, ) = co. The diameter of a set A C M
is defined by diam(A) = sup{p(z,y)|z,y € A}. Now let z1, 9, -, xp, - - be a point
sequence in a metric space (M; p). If there is a point € M such that for every € > 0
there is an integer N implies that p(z,,z) < € providing n > N, then we say the
sequence {z,} converges to x or x is a limit point of {x,}, denoted by 7}13)10 Ty = 2.

The following result, called Lebesgue lemma, is a useful result in metric spaces.

Theorem 3.1.3(Lebesgue Lemma) Let {V,|a € II} be an opened cover of a compact
metric space (M; p). Then there exists a positive number X\ such that each subset A
of diameter less than X is contained in one of member of {V,|a € I1}. The number

A is called the Lebesgue number.

Proof The proof is by contradiction. If there no such Lebesgue number A,
choosing numbers €1, €5, -+ with lim ¢, = 0, we con construct a sequence A; D
Ay D -+ with diameter diam(A,,) 7::1 but each A,, is not a subset of one member
in {V,|a € I} for n > 1. Whence, nlglolo diam(A,) = 0. Choose a point z,, in each

A, and z € () A4;. Then lim z, = z.

i>1 n—00
Now let z € V,,, and D(z) an e-disk of 2 in V,,. Since lim diam(A,) = 0, let
m be a sufficient large number such that diam(A,,) < €/2 and ,, € D./2(x). For
Yy € A, we find that

py,x) < p(y, Tm) + p(Tm, T)

< diam(A4,,) + ; <€,

which means that y € D (z) C V,,, i.e., Ay C V,, a contradiction. O
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3.1.3 Fundamental Group. A topological space S is connected if there are
no open subspaces A and B such that S = AU B with A, B # (. A useful way
for characterizing connectedness is by arcwise connectedness. Certainly, topological

spaces are arcwise connected in most cases considered in topology.

Definition 3.1.1 Let S be a topological space and I = [0,1] C R. An arc a in S
is a continuous mapping a : I — S with initial point a(0) and end point a(1), and
S is called arcwise connected if every two points in S can be joined by an arc in S.
An arc a : I — S is a loop based at p if a(0) = a(1) = p € S. A degenerated loop
e: [ —»x €S, e, mapping each element in I to a point x, usually called a point

loop.

For example, let G be a planar 2-connected graph on R? and S is a topological
space consisting of points on each e € F(G). Then S is a arcwise connected space
by definition. For a circuit C' in G, we choose any point p on C. Then C' is a loop
e, in S based at p.

Definition 3.1.2 Let a and b be two arcs in a topological space S with a(1) = b(0).
A product mapping a - b of a with b is defined by

o) a(2t), if 0<t<y,
a - =
b2t —1), if 1<t<

and an inverse mapping @ = a(l — t) by a.

Notice that a - b : I — S and @ : I — S are continuous by Corollary 3.1.1.
Whence, they are indeed arcs by definition, called the product arc of a with b and
the inverse arc of a. Sometimes it is needed to distinguish the orientation of an arc.
We say the arc a orientation preserving and its inverse a orientation reversing.

Now let a, b be arcs in a topological space S. Properties following are hold by

definition.

SI

(P1)
(P2)
(P3) & = e,, where x = ¢(0) = e(1).

<

-a = a - b providing ab existing;

Definition 3.1.3 Let S be a topological space and a,b : I — S two arcs with
a(0) = b(0) and a(1) = b(1). If there exists a continuous mapping
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H:IxI—S

such that H(t,0) = a(t), H(t,1) = b(t) for Vt € I, then a and b are said homotopic,
denoted by a ~ b and H a homotopic mapping from a to b.

Theorem 3.1.4 The homotopic =~ is an equivalent relation, i.e, all arcs homotopic

to an arc a is an equivalent arc class, denoted by [a].

Proof Let a, b, ¢ be arcs in a topological space S, a ~ b and b ~ ¢ with homotopic
mappings H; and Hs. Then

(1) a=~aifchoose H:IxI— Sby H(t,s)=a(t) for Vs € I.

(17) b ~ a if choose H(t,s) = Hy(t,1 — s) for Vs,t € I which is obviously
continuous;

(i17) a ~ c if choose H(t,s) = Hy(H,(t,s)) for Vs,t € I by applying Theorem

3.1.1 for the continuity of composition mappings. O

Theorem 3.1.5 Let a,b,c and d be arcs in a topological space S. Then

(i) @a~bifa~b

(i) a-b~c-difa~b, c~dwitha-c an arc.

proof Let Hy be a homotopic mapping from a to b. Define a continuous mapping
H :IxI — Sby H(t,s) = H(1 —t,s) for Vt,s € I. Then we find that
H'(t,0) = a(t) and H'(t,1) = b(t). Whence, we get that @ ~ b, i.e., the assertion
(@)

For (ii), let Hy be a homotopic mapping from ¢ to d. Define a mapping H :
IxI— Shy

H,y (2t if 0
Hitsy = { TR
Hy(2t —1,s), if 4
Notice that a(1) = ¢(0) and Hi(1,s) = a(l) = ¢(0) = H2(0,s). Applying
Corollary 3.1.1, we know that H is continuous. Therefore, a - b ~ ¢ - d. (|

Definition 3.1.4 For a topological space S and xo € S, let m(S,zg) be a set

consisting of equivalent classes of loops based at xo. Define an operation o in < by

[a]o[b] =[a-b] and [a]™* =[a7'].
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Then we know that (S, ) is a group shown in the next.

Theorem 3.1.6 71(S,zo) is a group.

Proof We check each condition of a group for (S, xg). First, it is closed under
the operation o since [a] o [b] = [a - b] is an equivalent class of loop a - b based at zg
for V[a], [b] € m1 (S, x0).

Now let a,b,c: I — S be three loops based at zy. By Definition 3.1.2, we know
that

a(4t), if 0<t<q,

(a-b)-c(t)=4q b4t—1), if <t<1

c(2t—1), if §<t<1

and

a(2t), if 0<t<j,

a-(b-c)(t)=1q b4t —2), if L<t<?

c(4t—3), if 2<t<1

Consider a function H : I x [ — S defined by

a(£), if 0<t<=t

H(t,s) =3 b4t —1—s), if = <t<st2

e(1 =2y if 2 <<

Then H is continuous by applying Corollary 3.1.1, H(¢,0) = ((a - b) - ¢)(t) and
H(t,1) = (a- (b-c))(t). Consequently, we know that ([a] o [b]) o [c] = [a] o ([0] o [c]).

Now let e, : I — z9 € S be the point loop at zy. Then it is easily to check
that

and

€ 0 =a, a-€ ~a.

We conclude that (S, zo) is a group with a unit [e,,] and an inverse element

[a™!] for any [a] € m1(S,zo) by definition. O
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Let S be a topological space, xg,x; € S and £ an arc from xy to x;. For
V[a] € m1(S, ), we know that £ o [a] o £7! € m(S,x1) (see Fig.3.1.1 below).
Whence, the mapping £4 = £o[a] o £71: m (S, 29) — m (S, z1).

-
T

/

o

Fig.3.1.1

Theorem 3.1.7 Let S be a topological space. If xo,x1 € .S and £ is an arc from xg
to xy in S, then m (S, zq) = m (S, x1).

Proof We have known that £ : m(S,z9) — m(S,21). Now for [a],[b] €
m (S, zo), [a] # [b], we find that

Ly(la)) = Lolalo £7# Lo b0 £7 = Ly (b)),

ie., £ is a1 —1 mapping. Let [¢] € (S, x0). Then

Ly([al)o £4(lc) = LofaoLT o Lobjo L™ =Lolaoe, ola]o L™
Lola]op)o £t = L£y([a] o[b]).

Therefore, £4 is a homomorphism.

Similarly, £; = £~ 1o[a]o £ is also a homomorphism from 7y (S, z1) to 71 (S, x)
and .,E;l oLy =ley], Luo £?;1 = [ey,] are the identity mappings between m; (S, zo)
and 71 (S, z1). Whence, £4 is an isomorphism. a

Theorem 3.1.7 says that all fundamental groups in an arcwise connected space
S are isomorphic, i.e., independent on the choice of base point xy. Whence, we can
denote its fundamental group by m(.S). Particularly, if 71 (S) = {[es,]}, S is called a
simply connected space. These Euclidean space R™ and n-ball are well-known simply
connected spaces.

For a non-simply connected space S, to determine its fundamental group is com-
plicated. For example, the fundamental group of n-sphere S™ = { (21,9, -, @,) | 23+
w24 +a22=1}is
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o) if 1227
R

seeing [Amrl] or [Masl] for details.

Theorem 3.1.8 Let G be an embedded graph on a topological space S and T a
spanning tree in G. Then m(G) = (T +e | ee E(G)\ {e} ).

Proof We prove this assertion by induction on the number of n = |E(T")|. If
n = 0, G is a bouquet, then each edge e is a loop itself. A closed walk on G is a
combination of edges e in E(G), i.e., m(G) = (e | e € E(G) ) in this case.

Assume the assertion is true for n = k, i.e., m(G) = (T +e | e € E(G) \ {e} ).
Consider the case of n = k + 1. For any edge ¢ € E(T'), we consider the embedded
graph G/e, which means continuously to contract € to a point v in S. A closed walk
on G passes or not through € in G is homotopic to a walk passes or not through v in
G/e for k(T) = 1. Therefore, we conclude that m(G) = (T +e | e € E(G)\ {e} )
by the induction assumption. O

For calculating fundamental groups of topological spaces, the following Seifert

and Van-Kampen theorem is useful.

Theorem 3.1.9(Seifert and Van-Kampen) Let Sy, Sy be two open sets of a topological
space S with S = Sy U Ss. If there S, 51,5, and S; N Sy are non-empty arcwise
connected, then for Vxy € S,
m(Sw) & ————nCunGn
( (ir)x([a]) (i2)z[a™"] | [a] € m1(So,x0) )

where i, : So < ) is the inclusion mapping and (i), : 7 (So, o) — 71(S), xg), an
homomorphism induced by 4; for | = 1,2 and ((i1)([a])(i2)<[a"!]|[a] € m1(So, o))"
the normal closure generated by (i1)x([a])(i2)-[a™"], [a] € m1(So, z0) in 71 (S, o). O

Complete proof of the Seifert and Van-Kampen theorem can be found in the

reference [Masl]. Corollaries following is appropriate in practical applications.

Corollary 3.1.2 Let Sy, S be two open sets of a topological space S with S = S1US,,
Sy simply connected and S, S, and S; N Sy non-empty arcwise connected, then for
V.T() € S,
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771(517%)
( (i)=([a])|[a] € m1(So, z0) )™

Corollary 3.1.3 Let Sy, Ss be two open sets of a topological space S with S = S1US,.

7T1(S~, 3?0) =

If there S, S1, Sy are non-empty arcwise connected and S1NSy simply connected, then
forVzy €S,

m (S, wg) = m(Sh, xo)m(S2, Zo)-

Corollary 3.1.3 can be applied to find the fundamental group of an embedded
graph, particularly, a bouquet B, consisting of n loops L;, 1 < i < n again following,
which is the same as in Theorem 3.1.8.

Let z¢ be the common point in B,. For n = 2, denote the two loop spaces by

B%l) and B?) respectively. Applying Corollary 3.1.2, we get that

7T1(Bz,-??0) = 7F1(B§1>7$0)7T1(B§2),1’0) = <L1> <L2> = <L1,L2>~

If n > 2, we can chose S; = B,,_1 and S; = B,, \ B,_1. By applying Corollary
3.1.3, we know that

US| (B'm zU) = US| (Bn—h IO)WI(Bn \ Bn—h IO) = ﬂ-l(Bn—lv 1’0) <Ln> .

Applying the induction principle, we finally find the fundamental group of B,
7T1(Bn,1'0) = < Li, 1 < 7 <n > .

3.1.4 Covering Space A covering space S of S consisting of a space S with
a continuous mapping p : S — S such that each point x € S has an arcwise
connected neighborhood U, and each arcwise connected component of p~*(U,) is
mapped topologically onto U, by p. An opened neighborhoods U, that satisfies the
condition just stated is called an elementary neighborhood and p is often called a
projection from StoS.

For example, let p: R — S be defined by

p(t) = (sin(t),cos(t))
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for any real number ¢ € R. Then the pair (R,p) is a covering space of the unit
circle S*. In this example, each opened subinterval on S' serves as an elementary

neighborhood.

Definition 3.1.5 Let S, T be topological spaces, xg € S,yo € T and f : (T,yy) —
(S,9) a continuous mapping. If (§ p) is a covering space of S, Ty € S,z = p(Zo

and there exists a mapping f': (T,yo) — (§7 Zg) such that
f=flop
then fl is a lifting of f, particularly, if f is an arc, f* is called a lifting arc.

Theorem 3.1.10 Let (g,p) be a covering space of S, T € X and p(Zg) = xo.
Then there exists a unique lifting arc f': I — S with initial point To for each arc

f 1 — S with initial point xg.

Proof If the arc f were contained in an arcwise connected neighborhood U,
let V be an arcwise connected component of p~*(U) which contains T, then there
would exist a unique f' in V since p topologically maps V onto U by definition.

Now let {U;} be a covering of S by elementary neighborhoods. Then {f~1(U;)}
is an opened cover of the unit interval I, a compact metric space. Choose an integer
n so large that 1/n is less than the Lebesgue number of this cover. We divide the
interval [ into these closed subintervals [0,1/n],[1/n,2/n], -, [(n — 1)/n,1].

According to Theorem 3.1.3, f maps each subinterval into an elementary neigh-
borhood in {U;}. Define f! a successive lifting over these subintervals. Its connect-
edness is confirmed by Corollary 3.1.1.

For the uniqueness, assume f} and f} be two liftings of an arc f : I — S with
Ffi(zo) = fi(wo) at the initial point zy. Denote A = {x € I|fl(z) = fi(x)}. We
prove that A = I. In fact, we only need to prove it is both closed and opened.

If A is closed, let 21 € A and @ = pfl(x1) = pfi(x1). Then fl(x1) # fi(z1).
We show this will lead to a contradiction. For this object, let U be an elementary
neighborhood of x and Vi, V; the different components of p~*(U) containing f!(z;)
and fi(x1), respectively, i.e., V; NV, = (). For the connectedness of f!, fi we can
find a neighborhood W of z; such that f}(W) C V; and fi{(W) C Vi. Applying
the fact that any neighborhood W of z; must meet A, ie., f(WNA) CVoNVy,a

contradiction. Whence, A is closed.
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Similarly, if A is closed, a contradiction can be also find. Therefore, A is both
closed and opened. Since A # (), we find that A =1, i.e., fi = fl. O

Theorem 3.1.11 Let (5, p) be a covering space of S, Ty € S and p(Zo) = xo. Then

(i) the induced homomorphism p, : 7(S, 7o) — (S, o) is a monomorphism;
(it) for T € p~1(zo), the subgroups p*ﬂ'(§7 Zo) are exactly a conjugacy class of

subgroups of m(S, o).

Proof Applying Theorem 3.10, for 7o € S and p(Ty) = g, there is a unique
mapping on loops from S with base point Z, to S with base point zo. Now let
Li: 1 — §7 i =1, 2 be two arcs with the same initial point Z; in S. We prove that
if pL1 ~ pLoy, then L ~ L.

Notice that pL; ~ pLs implies the existence of a continuous mapping H :
I x I — S such that H(s,0) = pli(s) and H(s,1) = pLa(s). Similar to the proof
of Theorem 3.10, we can find numbers 0 = sg < 81 < -+ < 8, = 1l and 0 =ty <
t; < .-+ < t, = 1 such that each rectangle [s;_1,s;] X [tj_1,¢;] is mapped into an
elementary neighborhood in S by H.

Now we construct a mapping G : I x I — S with pG = H,G(0,0) = Ty hold
by the following procedure.

First, we can choose G to be a lifting of H over [0, s1] X [0, ¢;] since H maps this
rectangle into an elementary neighborhood of p(Zj). Then we extend the definition
of G successively over the rectangles [s;_1,s;] x [0,¢1] for ¢ = 2,3,--- m by taking
care that it is agree on the common edge of two successive rectangles, which enables
us to get G over the strip 7 x [0,1]. Similarly, we can extend it over these rectangles
I X [ty,ts], [t2,t3],- -+, etc.. Consequently, we get a lifting H' of H, i.e., L; = Ly by
this construction.

Particularly, If L; and Ly were two loops, we get the induced monomorphism
homomorphism p, : 7(S, o) — 7(S, x). This is the assertion of (i).

For (ii), suppose Z; and Iy are two points of S such that p(;) = p(Z,) = zo.
Choose a class L of arcs in S from Ty to To. Similar to the proof of Theorem 3.1.7,
we know that .2 = Lla]L ™, [a] € 7(S, %) defines an isomorphism .Z : (S, %) —
7(S, T,). Whence, p,(7(S, %)) = p.(L)7(S, F2)p. (L™1). Notice that p,(L) is a loop
with a base point . We know that p,(L) € 7(S, o), L.e., p.m(S, %) are exactly a

conjugacy class of subgroups of (5, xo). g
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Theorem 3.1.12 If (g, p) is a covering space of S, then the sets p~*(x) have the

same cardinal number for all x € S.

Proof For any points z; and x5 € S, choosing an arc f in S with initial point x;
and terminal point zo. Applying f, we can define a mapping ¥ : p~*(z1) — p~*(z2)
by the following procedure.

For Yy, € p~'(x1), we lift f to an arc f' in S with initial point y; such that
pft = f. Denoted by y, the terminal point of f. Define ¥(y;) = ya.

By applying the inverse arc f~1, we can define ¥~1(y,) = y; in an analogous
way. Therefore, ) is a 1 — 1 mapping form p~!(x1) to p~(z3). |

The common cardinal number of the sets p~!(x) for x € S is called the number
of sheets of the covering space (57 p) on S. If [p~Y(z)] = n for z € S, we also say it
is an n-sheeted covering.

We present an example for constructing covering spaces of graphs by voltage

assignment.

Example 3.1.3 Let G be a connected graph and (I';o) a group. For each edge
e € E(G), e = uv, an orientation on e is an orientation on e from u to v, denoted by
e = (u,v) , called plus orientation and its minus orientation, from v to u, denoted

! = (v,u). For a given graph G with plus and minus orientation on its edges,

by e~
a voltage assignment on G is a mapping « from the plus-edges of GG into a group
I satisfying a(e™) = a71(e),e € E(G). These elements a(e),e € E(G) are called
voltages, and (G, «) a wvoltage graph over the group (T';0).

For a voltage graph (G, @), its lifting G* = (V(G®), E(G*); I(G®)) is defined
by

V(G*) =V(G) xT, (u,a) € V(G) x I" abbreviated to u,;

E(Ga) = {(um ’Uaob)leJr = (U,U) e E(G)7 a(e+) — b}

and

I(G*) = {(ua, vaoh) |1 (€) = (tha, Vaot) i.f € = (ta, Vact) € E(G*)}.
This is a |I'|-sheet covering of the graph G. For example, let G = K3 and
I' = Z,. Then the voltage graph (K3, ) with o : K3 — Z5 and its lifting are shown
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in Fig.3.1.2.
Uq
U
Uy
0 1
w Vo
w 0 v wWe U1
(G, ) G
Fig.3.1.2

We can find easily that there is a unique lifting path in ' with an initial point
7 for each path with an initial point z in T, and for Vz € T, [p~!(x)| = 2.

Let (S1,p1) and (S, p2) be two covering spaces of S. We say them equivalent
if there is a continuous mapping ¢ : (gl,pl) — (gz,pQ) such that p; = poyp, par-
ticularly, if ¢ : (§, p) — (5, p), we say ¢ an automorphism of covering space (g, D)
onto itself. If so, according to Theorem 3.1.11, pl*ﬂ(gljl) and pg*ﬂ(g'l,fg) both

are conjugacy classes in 7(S, zo). Furthermore, we know the following result.

Theorem 3.1.13 Two covering spaces (S"l,pl) and (§2,p2) of S are equivalent if
and only if for any two points T, € §1, Ty € §2 with p1(Z1) = pa(Ta) = w0, these
subgroups pl*ﬁ(gl, Z1) and p2*7r(§1., Tg) belong to a same conjugacy class in w(S, zo).

O

3.1.5 Simplicial Homology Group. A n-simplex s = [ay,az, " *,a,] in a

Euclidean space is a set
n+1 n+1
s={> N[\ >0and Y} A =1},
=1 i=1

abbreviated to s sometimes, where each a;, 1 < i < n is called a verter of s and n
the dimensional of s. For two simplexes s; = [by, ba, - -, by] and s, = [a1, a9, - -, a,],
if {b1,b2, -+, by} C{a1, a9, -+, a,}, i.e., each vertex in s, is a vertex of s,, then s;
is called a face of s,, denoted by s; < 5.

Let K be a collection of simplices. It is called a simplicial complex if

(1) if s,t € K, then s Nt is either empty or a common face of s and of ¢;

(it) if t < sand s € K, then t € K.
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Usually, its underlying space is defined by |K| = | s, i.e., the union of all the
sEK
simplexes of K. See Fig.3.1.3 for examples. In other words, an underlying space is

a multi-simplex. The maximum dimensional number of simplex in K is called the
dimensional of K, denoted by dimK.

simplicial complex non-simplicial complex

Fig.3.1.3

A topological space P is a polyhedron if there exists a simplicial complex K
and a homomorphism & : |[K| — P. An orientation on a simplicial complex K is
a partial order on its vertices whose restriction on the vertices of any simplex in K
is a linear order. Notice that two orientations on a simplex are the same if their
vertex permutations are different on an even permutation. Whence, there are only
two orientations on a simplex determined by its all odd or even vertex permutations.
Usually, we denote one orientation of s by s denoted by s = agpay - - - a, if its vertices

are ag, ay, - -+, a, formally, and another by —s = —apa; - - - a,, in the context.

Definition 3.1.6 Let K be a simplicial complex with an orientation and T,(k) all
q-dimensional simplexes in K, where ¢ > 0, an integer. A q-dimensional chain on
K is a mapping ¢ : T,(K) — Z such that f(—s) = —f(s). The commutative group
generated by all g-chains of K under the addition operation is called a q-dimensional

chain group, denoted by Cy(K).

If there are o, oriented g-dimensional simplexes s, s,," -, Sg, N1 K, define a

standard chain co : T,(K) — {1, =1} by ¢o(s;) = 1 and ¢o(—s;) = =1 for 1 <i < a.

These standard g-dimensional chains co(s;), co(s3),+ co(8,,) are also denoted by
Qq
if there are no ambiguous in the context. Then a chain ¢ = Y ¢(s;)s;

81,82, S, i
i=1

Qq

for Ve € Cy(K) by definition.
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Definition 3.1.7 A boundary homomorphism 0, : Cy(K) — Cy_1(K) on a simplex

5 = apay, - - - aq is defined by

q
Ogs = Z(—l)iaoal Cee @y ag,
=0
where @; means delete the vertex a; and extending it to Ve € Cy(K) by linearity, i.e.,
Qq
fore=3" c(s;)s; € Cy(K),
=1

Qq

0,(c) = 3 cls)0(s)

and 9,(c) =0 if ¢ <0 or ¢ > dimK.

For example, we know that 0apa; = ay—ag and drapaias = ajay—agas+apa; =

agay + aras + asag for simplexes in Fig.3.1.4.

ag

Q a
0 1 ay as

Fig. 3.1.4

These boundary homomorphisms 9, have an important property shown in the

next result, which brings about the conception of chain complez.

Theorem 3.1.14 0,.10, =0 forVq € Z.

Proof We only need to prove that 9,_19, = 0 for Vs € T,(K) and 1 < ¢ < dimK.

Assume s = apa, - - - a4. Then by definition, we know that

Og-10,8 = 8{1—1(2(_1)1@0@1 C T -ag)
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q
+ Z (=1Ytagay - - QT ag

j=i+1
_ it s
- E: (—1)Magay -+ @+ a; - - a,

0<j<i<q

_ E: (=) agay @+, aq

0<i<j<q
= 0.

This completes the proof. O

A chain complex (€;0) is a sequence of Abelian groups and homomorphisms

Bgr1 B
0— - — 1 KA qu> q71~>~--~>0

such that 9,0,41 = 0 for Vg € Z. Whence, Im9,; C Kerd, in a chain complex
(¢;0).

By Theorem 3.1.14, we know that chain groups Cy(K) with homomorphisms
0, on a simplicial complex K is a chain complex

g1 9

0— - = Cpn(K) = Cy(K) = Cpa(K) — -+ — 0.
The simplicial homology group is defined in the next.

Definition 3.1.8 Let K be an oriented simplicial complex with a chain complex

0= = Cpa(K) ™5 CyK) 2 Cpa (K) = - =0,

Then Z,(K) = Kerd,, B,(K) = Imd,1 and Hy = Z,(K)/B,(K) are called the group
of simplicial q-cycles, the group of simplicial g-boundaries and the ¢ simplicial
homology group, respectively. An element in Z,(K) or By(K) is called g-cycles or
q-boundary.

Generally, we define the ¢'" homology group H, = Kerd,/Imd,;; in a chain
complex (€ 0).

By definition 3.1.8, two g-dimensional chains ¢ and ¢’ in Cy(K) are called ho-
mologic if they are in the same coset of By(K), i.e., ¢ — ¢ € By(K). Denoted by
¢ ~ . Notice that a planar triangulation is a simplicial complex K with dimK = 2.

See Fig.3.1.5 for an example.
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Fig.3.1.5

In this planar graph, abc, abd, acd and bed are 2-simplexes, called surfaces. Now
define their orientations tobea - b —c¢—a,a - b—d — a,a—c— d— a and

b— c—d—0b. Then ¢ = abc — abd + acd — bed is a 2-cycle since

62C

02(abc) — 0y(abd) + 02(acd) — Oa(bed)
bc —ac+ ab —bd + ad — ab + c¢d — ad + ac — cd + bd — be
= 0.

Definition 3.1.9 Let K be an oriented simplicial complex with a chain complex
with o g-dimensional simplexes, where ¢ = 0,1,---,dimK. The Euler-Poincaré
characteristic x(K) of K is defined by

dimK

X(E) =) (~1)%a,

q=0

For example, the Euler -Poincaré characteristic of 2-complex in Fig.3.1.5 is

XK)=a—a1+ay=4—6+4=2.

Theorem 3.1.15 Let K be an oriented simplicial complex. Then

dimK

V(E) = 3 (~1)rankH, (K),

q=0

where rankG denotes the cardinal number of a free Abelian group G.

Proof Consider the chain complex
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0=+ = Cya(K) ™ C(K) 2 Cpa(K) == = 0.

Notice that each Cy(K) is a free Abelian group of rank c,. By definition,
H, = Z,(K)/By(K) = Kerd,/Imd,+;. Then

rankH,(K) = rankZ,(K) — rank B, (K).

In fact, each basis {By, By, -+, Brankp,(x)} of By(K) can be extended to a basis
{Zh Z2> Y Zrauqu(K)} by adding a basis {H17 H27 Tty Hrauqu(K)} of Hq(K)
Applying Corollary 2.2.3, we get that B,_;(K) = Cy(K)/Z,(K). Whence,

rankB,_1(K) = o, — rankZ,(K)

Notice that rankB_;(K) = rankBygimx = 0 by definition, we find that

X(E) = dizrj(—l)qaq
- diijé{(—l)q(ranqu(K) + rankB,_(K))
— d;il:((—l)q(ranqu(K) — rankB,(K))
d%(—l)qranqu(K),

q=0

d

3.1.6 Topological Manifold. Manifolds are generalization of Euclidean spaces.

For an integer n > 1, an n-dimensional manifold is a second countable Hausdorff

space such that each point has an open neighborhood homomorphic to a Euclidean
space R" of dimension n, abbreviated to n-manifold.

For example, a Euclidean space R™ is itself an n-manifold by definition, and

the n-sphere

St= {(I171’27"'71’n+1) € Rn+]‘l‘%+l’§+ "'+$Z+1 = 1}

is also an n-manifold.
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Classifying n-manifolds for a given integer n is an important but more complex
object in topology. However, if n = 2, i.e., the classification is complete(see [Masl]
for details), particularly for surfaces, i.e., 2-connected manifolds without boundary.

For classifying surfaces, T.Radé presented a combinatorial approach, he proved
that there exists a triangulation {7;,i > 1} on any surface S. T.Radd’s work enables
one to define a surface combinatorially, i.e., a surface is topological equivalent to a
polygon with even number of edges by identifying each pairs of edges along a given
direction on it. If label each pair of edges by a letter e,e € £, a surface S is also
identifying with a cyclic permutation such that each edge e, e € £ just appears two
times in S, one is e and another is e!. Let a,b,c,--- denote the letters in £ and
A, B,C,--- the sections of successive letters in a linear order on a surface S (or a

string of letters on S). Then, a surface can be represented as follows:
S = ( ._7A7a,B7a71’C7_”)’

where, a € £,A, B, C denote a string of letters. Define three elementary transfor-

mations as follows:
(Ol) (A7a7a7173)®(A7B);
(02) (1) (Aya,b,B, b7 a™") & (A, B,c);
(Z/Z:) (A7 a? b7 B? a7 b) @ (A’ C7 B7 C);
(Os) (i) (A,a,B,C,a"',D) < (B,a,A,D,a™1,C);
(i) (A,a,B,C,a,D) & (B,a,A,C~t a,D71).

If a surface S can be obtained from Sj by these elementary transformations
01-03, we say that S is elementary equivalent with Sy, denoted by S ~g; Sy. Then

we can get the classification theorem surfaces.

Theorem 3.1.15 A surface is homeomorphic to one of the following standard sur-

faces:
(Py) the sphere: aa™*;

(P,) the connected sum of n,n > 1 tori:

—1;-1 —17-1 —1p-1.
a1bray by Tagbeay by - - anbyan, o

(Qn) the connected sum of n,n > 1 projective planes:
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101203 * - - Qp Q.
Proof By operations O; — O3, we can prove that
AaBbCa 'Db~'E ~p ADCBFEaba='b7 1,
AcBcC ~g AB cc,
Accaba™'b7! ~g; Accaabb.

Applying the inductive method on the cardinality of £, we get the conclusion. O

Now let S be a topological space with a collection € of open sets and ~g is an
equivalence on points in S. For convenience, denote Clu] = {v € S|v ~g u} and
S/ ~s= {C[u]|lu € S}. There is a natural mapping p form S to S/ ~g determined
by p(u) = [u], similar to these covering spaces.

We define a set U in S/ ~g to be open if p~}(U) € S is opened in S. With
these open sets in S/ ~g, S/ ~g become a topological space, called the quotient
space of S under ~g.

For example, the combinatorial definition of surface is just an application of the
quotient space, i.e., a polygon S with even number of edges under an equivalence
~g on pairs of edges along a given direction. Some well-known surfaces, such as the

sphere, the torus and Klein Bottle, are shown in Fig.3.1.6.

sphere torus projective plane  Klein bottle
Fig.3.1.6
Theorem 3.1.16([Mas1-2],[Youl]) These fundamental and homology groups of sur-

faces are respective

m(Fy) = (1), the trivial group;

71 (Pa) = {ans b, ambn>/<nab )

3

m1(Qn) = (c1, 2,7+, c <H Czcz>
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and
Z, q=0, 2
2n
g /_/%
Hq(P) VACYACEEREY A =1
0, q¢#0,1,2,
Z, q=0;
n—1
= —l
H(@) =\ Z5zZ0 0202 q=1
0, q#0,1,
for any integer n > 0. O

§3.2 EUCLIDEAN GEOMETRY
3.2.1 Euclidean Space. An Fuclidean space on a real vector space E over a field
% is a mapping

() : Ex E — R with (€1,8) — (€1,6) for Ve;,6, € E

such that for ,¢,,6, € E, a € F

(E1) (e,e1 + é) = (e,e1) + (€,¢e2)

(E2) (e,ae) = a (e, e1);

(E3) (e1,€2) = (€2, €1);

(E4) (e,2) > 0 and (e,) = 0 if and only if € = 0.

In a Euclidean space E, the number /(€, €) is called its norm, denoted by |||
for abbreviation.

It can be shown that

(i) (0,€) = (€,0) =0 for Ve € E;

(i) ( Yomiel, Yoyies ) = Yo > wy; (e}, &), for & € E, where 1 < i <

i=1 j=1 i=1i=1

max{m,n} and s =1 or 2.

In fact, let €, = e, = 0 in (E1), we find that (¢,0) = 0. Then applying (E3),
we get that (0,€) = 0. This is the formula in (3).
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For (27), applying (E1)-(E2), we know that

.
)
e

ziyi (€5,¢;)

M

n m
=1 =2
E Ti€;, E yiej
i=1 j=1

M: HM:TMS \\Mﬁ )

.
Il
NN
<.
Il
MR

Ms HMS

ziy; (€. €) -

Theorem 3.2.1 Let E be a Euclidean space. Then for Ve, e; € E,
(i) (e )| < [[elllell;
(i) ey + 2l < el + [[e2]-
Proof Notice that the inequality () is hold if ¢, or €; = 0. Assume ¢, # 0. Let

(e1,e2)

e Since

T =
(€y — 7€), € — 7€) = (€2,6) — 2 (€1, E) x + (€1,€1) 22 > 0.

Replacing = by > in it, we find that

(€1, e1) (€2,82) — (EhEz)Q > 0.

Therefore, we get that

| (&1, 22) | < [[enlllle]-

For the inequality (i7), applying the inequality (), we know that

| @,e) 7 = (81422 + %)
= (e, e1) + 2(ey,e) + (€2, €)
(€1,€1) + 2| (€1, 8) | + (€2, 82)
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IN

(er,e1) + 2| (e, &) 1]l (€2, €1) [| + (€2, €2)
(&l + llz2l)?.

Whence,

e+l < el + [l
|

Definition 3.2.1 Let E be a Euclidean space, @, b € E, @ # 0, b # 0. The angle

between @ and b are determined by

(a.h)

cosf = ——=~.
l[allllel

Notice that by Theorem 3.2.1(7), we always have that

-1< <_ab,> < -1
@]l

Whence, the angle between @ and b is well-defined.

Definition 3.2.2 Let E be a Fuclidean space, T, y € E. T and y are orthogonal
if (Z,y) = 0. If there is a basis €1,€s,-+,€y of E such that €,,€, -+, are
orthogonal two by two, then this basis is called an orthogonal basis. Furthermore, if
Ie:l]l =1 for 1 <i < m, an orthogonal basis €1,€y, -+, €y, is called a normal basis.

Theorem 3.2.2 Any n-dimensional Euclidean space E has an orthogonal basis.

Proof Let ay,as,---,a, be a basis of E. We construct an orthogonal basis
by, by, - -+, b, of this space. Notice that <51.,51> # 0, choose b; = @, and let

<E2751>B
— 1-
(b, b)

Then b, is a linear combination of @; and @, and

(@:b1)
(b1, 1)

(s, by) = (@, by) — (b, B) =0,

i.e., by is orthogonal with b;.



114 Chap.3 Smarandache manifolds

k<n-—1, and
k. Notice that

Assume we have constructed 51,52, cee ,Bk for an integer 1

ININA

each of which is a linear combination of ay,ag,---,a; 1 < i
<51751> ; <B2752> T <5k7175k—1> #0. Let

l_) —a <6k751>* <ak752>5 <ak75k71> 5

=y — —=2b) — —Lby— - — ~——L by
T ) (beby) T
Then by, is a linear combination of @y, @, - - -, dx_1 and

B <ak75k—1>
(b1, b—1)

<Bk75i> <6k,l_1,-> - <5k—175i>

— (@) -

fori =1,2,---,k — 1. Apply the induction principle, this proof is completes. g
Corollary 3.2.1 Any n-dimensional Euclidean space E has a normal basis.

Proof According to Theorem 3.2.2, any n-dimensional Euclidean space E has

an orthogonal basis @y, as, - -, a,. Now let e =

flax]l” am|
Then we find that
_ (@i, aj)
(€)= =7 =0
T Y[l )
and
_ a; 14l
el =izl = = =
' @l ™ llal
for 1 <4,j5 < m by definition. Whence, €, €, -- -, €,, is a normal basis. O

Definition 3.2.3 Two Euclidean spaces Eq1, Ey respectively over fields %y, %y are
isomorphic if there is a 1 — 1 mapping h : E; — Ea such that for Ve,,e; € E; and
o€ 371;

(i)  h(er + &) = h(er) + h(ez);

(17) h(ae) = ah(e);

(7”) <El7€2> = <h(€1)7 h(éz))
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Theorem 3.2.3 Two finite dimensional Fuclidean spaces Ey, Eq are isomorphic if
and only if dimE; = dimE,.

Proof By Definition 3.2.3, we get dimE; = dimE, if E;, E5 are isomorphic.

Now if dimE; = dimE,, we prove that they are isomorphic. Assume dimE; =
dimEs; = n. Applying Corollary 3.2.1, choose normal bases a1, as, - - -, a, of E; and
b1, by, - -+, b, of Ey, respectively. Define a 1 — 1 mapping h : E; — Eg by k(@) = b;

for 1 <i <n and extend it linearity on E;, we know that

n n
Let > z;a; and ) y;a; be two elements in E;. Then we find that
i=1 i=1

<Z TZaL,Zy,-Ei> = ifﬂz

i=1 i=1

and

< Zr a), Zybaz > = ixzyl
i=1

Therefore, we get that
n n
<zzy>< S zyiaz>.
i=1 i=1

Notice that R" is an n-dimensional space with a normal basis & = (1,0,---,0),
& =(0,1,---,0), -, & = (0,0, --,1) if define

<($17 T, In), (ylvy% co 7yn)> = szyz
for (z1, 22+, 2,), (Y1, Y2, -+, yn) € R™ Consequently, we know the next result.

Corollary 3.2.2 Any n-dimensional Euclidean space E is isomorphic to R".

3.2.2 Linear Mapping. For two vector space E1, Es over fields %, .%,, respec-
tively, a mapping T : E; — Ey is linear if
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T(a@+b) = oT(a) + T(D)

for Va,b € E, and Yo € 7.
If #, = %, = R, all such linear mappings T from E; to E; forms a linear space
over R, denoted by L(E;, Ey). Tt is obvious that L(E;, Ey) C EJ*.

Theorem 3.2.4 If dimE; = n, dimEy; = m, then dimL(E1, Ey) = nm.

Proof Let el,el,--- €. and €2,e2,---,€2 be basis of E; and E,, respectively.

»m

For each pair (4,5), 1 <i<mn, 1 <j <m, define an element l;; € L(E;, Ey) with

li(e) =22 and I;(el) =0 if k#i.
Then for 7 = Y z;e} € Ey, we have [;;(Z) = z;e3. We prove that [;, 1 <i < n,

i=1
1 < j < m consists of a basis of L(E;, Ey).

In fact, if there are numbers z;; € R, 1 <4 <n, 1 < j < m such that

Z Z xiﬂij = 6,

i=1 j=1
then
3N aylyE) =0@) =0
=1 j=1
for e!, 1 <i < n. Whence, we find that
=1
Since €2,€3,- - -,¢e2, are linearly independent, we get z;; = 0 for 1 < j < m.

Therefore, L;j, 1<i<n,1<j<m are linearly independent.

Now let f S L(E17 EQ) If

m
f(ézl) = Zuijé?'/
j=1

Then
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n m

F@) =D @ =D > misli(eh).
j=1

i=1 j=1

By the linearity of f, we get that

f= Z i€ = D 3 i,
j=1

i=1 j=1
i.e., f is linearly spanned by Zij, 1<i<n, 1<j7<m.
Consequently, dimL(E;, Eo) = nm. O
In L(E,E,), if E; = R, the linear space L(E, R) consists of linear functionals
f: E — R, is called the dual space of E, denoted by E*. According to Theorem

3.2.4, we get the next consequence.

Corollary 3.2.3 dimE* = dimE.

Now let E1,Es, -+, E; and F be linear spaces over fields %, %, - -, .%; and
Z , respectively, a mapping

T:E xEyx--xEy »F

is called k-multilinear if T is linear in each argument separately, i.e.,

CZ’\:‘(Ela o '7aEi +ﬁ?n . 7Ek) = af(éla o 'aEiv e 7Ek) +ﬁf(él . '7?%' . ,Ek)
for a, 8 € %#;, 1 <i < k. All such multilinear mappings also form a vector space,
denoted by L(Eq,E,, - -, Ey; F). Particularly, if E; = E for 1 <7 < k, this space is
denoted by L*(E,F).

Let E and F be vector spaces over R. For any integers p,q > 0, the space of
multilinear mappings

T:E*x---XxE'xEx---xE—>F
p q

is called a F-valued tensor. All such tensors are denoted by T7(E, F). For the case
F = R, we denote the T?¢(E,R) by T?4(E).

If wy, , - -+, up € E and 07,05, - -, 0, € B, then 4, ® -+ - Qu, Q01 ® - Q0 €
TP4(E) is defined by
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U ®-- .®ﬂp®ﬁ;®...®ﬁ;(§’{7 ce 7§;7y17 .. .7yq) = 7;(51) .. .f;(ﬂp)ﬁ*{@l) .. .5{’;@(])‘

Let €,---,€, be a basis of E and €j,---,€; of its dual E*. Then similar to

Theorem 3.2.4, we know that any 7' € TP (E) can be uniquely written as

T’ _ Z Til’.u,’ipéil ®--Q€,® g;fl R-® g;.q

J1sdq
W1y 5lpsJ 1,5 dg

for components T;: Z cR.
3.2.3 Differential Calculus on R". Let R", R™ be Euclidean spaces. For an
opened set U C R™, let f: U — R™ be a mapping from U into R™, i.e.,

f@n o, ) = (F @m0 ), (@@, @), (@00, 22,0 0, 20)),

also written it by f = (f!, f%,---, f™) for abbreviation. Then f is said to be
differentiable at a point T € U if there exists a linear mapping A € L(R™, R™) such
that

f@+h)=f@) + Ah+r(h)
with r: U — R™,

r(h)

lim —= =
=0 ]|
for all h € R"™ with T+ h € U hold. This linear mapping A is called the differential
of f at T € U, denoted by

A= [f'(z) = df(z).
Furthermore, if f is differentiable at each T € U, the mapping df = f' : U —
L(R™ R™) determined by T — df (T) is called the derivative of f in U.
For integers n,m > 1, it is easily to know that a linear mapping 7': R* — R™
is differentiable at any point € R™ and if f,g : U — R™ are differentiable at
Tz €U C R", then

d(f +9)(@) = df (T) + dg(T);
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d(f9)() = [(x)dg(x) + g(z)df (7);
d(AT) = Adf (7),
where A € R.
A map f:U C R” — R™ is said to have n partial derivatives
f@+te) — f(x)  df(T+te)

_ () = i - _ <i<
D, f(z) lgra ; 7 lizo, 1<i<m,

at T € U, if all these n mappings g;(t) = f(T + t¢;) are differentiable at ¢ = 0. We
usually denote the D, f(T) by g—i(f)

Theorem 3.2.5 Let f: U C R® — R™ be a differentiable mapping. The the matriz
of the differential df (T) with respect to the normal bases of R™ and R™ is given by

or@ @)
. Tl Tn a J
)= | : =@, 1<i<na<izm
@ @

which is referred to as the Jacobian matriz and its determinant det(%(f}) the
Jacobian of f at the point T € U, usually denoted by

ofi

O ™) _ det(axi (@)).

a(xh te '7xn)

Proof Let T = (w1, --,2,) €EUC R, T+h= (21 +hy, 2, + hy) € U.
Then for such ,

Fr+ b, +hy) — 2, w,) = ZA{hi+7'j(}L1,-~-,hn).

i=1

Particularly, the choice h = (0,---,0, h;, 0, - -

-,0) enables us to obtain

fj(zh'"7zi—17xi+hi7$i+l7"'7x7’1,) _fj(l‘lv"Wl‘n)
h;
:A3+TJ(0,h170)7

which yields that



120 Chap.3 Smarandache manifolds

of’
(9{@‘
for h; — 0. O

(21, -, 2,) = Al

Corollary 324 Let f : U C R* =V C R™ and g : V — RP be differentiable
mappings. Then the composite mapping h = gf : U — RP is also differentiable with

its differential, the chain rule.

dg(w) = dg(f(@))df (7).

Proof Not loss of generality, let f = (f%,---,f™) and g = (g%, ---,¢") be
differentiable at 7 € U, § = f(T) and h = (h',--- hP), respectively. Applying the
chain rule on h* = g*(f',---, f™),1 < k < p in one variable, we find that

m

ont 5 gk of
j=1

Choose the normal bases of R”, R™ and R?. Then by Theorem 3.2.5, we know
that

%@) ...%@)
dh(z) = | ;
@ 3@
@ gmm ) (@ - EE
=1 : S :
@ @ U@ Y @)
= dg(f (7)) df (7)

O
For an integer &k > 1, a mapping f : U C R™ — R™ is said to be differentiable
of order k if
d*f =d(d*VY): U C R" - Ly(R",R™) = L(R", L(R", - - -, L(R", R™)));

af =f
exists. If d* f is continuous, f is said to be of class C* and class C* if it is of class

C* for any integer k.
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A bijective mapping f : U — V, where U,V C R", is a C*-diffeomorphism if
f € C*(U,R") and f~' € C*(V,R"). Certainly, a C*-diffeomorphism mapping is
also a homeomorphism.

For determining a C*-diffeomorphism mapping, the following implicit function

theorem is usually applicable. Its proof can be found in, for example [AbM1].

Theorem 3.2.6 Let U be an open subset of R* x R™ and f: U — R™ a mapping
of class C*,1 < k < oo. If f(Zo,Yy) = 0 at the point (To,Yp) € U and the m x m

matriz 07 | 0y*(To, Yp) is non-singular, i.e.,

J
det( G @0, ) 0. where 1< 4§ <m.

Then there exist opened neighborhoods V' of Zy in R™ and W of §o in R™ and a C*
mapping g : V. — W such that V. x W C U and for each (T,y) €V x W,

f@,y) =0=y=g(@)

3.2.4 Differential Form. Let R™ be an Euclidean space with a normal basis
€,€,*, €. Then VT € R", there is a unique n-tuple (z1, 22, -, x,), z; € R, such
that

T = X1€] + Ta€a + -+ - + TpEy.

For needing in research tangent spaces of differential manifolds in the following

chapters, we consider a vector space

GA =N oA A’ - DA

generated by differentials dxy, dxs, - - -, dx, under an operation A. Each element in

A° is a real number, and elements in A' have a form

n
> ai(wy, e, wn)da,
=1

where a;(x1, 22, -+, x,) is a function on R". In the space A2, elements have a form

E Qg (1'1, T, -, ln)d.’Ln A dl12

i1<i2
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Notice that dx;, Adx;, = —dx;, Adx;, by the definition of A. Generally, elements
in A¥, 1 < k < n, have a form

Z ail’izmik ([l?h Lo, 7.’L'n)dl'i1 PN d(L’iz A A d%’lk

i1 <ig<-<ip
A differential k-form is an element in AF for 1 < k < n. It is said in class of
C if each function a;,...;, (T1, 2, - - -, @) is of class C*°. By definition, an element

in G(A) can be represented as

n

a(zl'/x?a o '7xn) + Zai(zl,IQ, o ,xn)dxl

=1

n
+ Z Ao (Il, Lo, zn)dl‘u A d$i2 +

i1<i2

+ Z ailiQ...ik (CE], Loy, xn)dxil A d‘riz JANCERWAN d.’l?l'k 4+ -
11 <tg<---<ig
+ar2,. (@1, T2,y Ty)dry Adze A - A dg,.

An eaterior differential operator d : A* — A*+1 is defined by

8all -,
do= > > 8z L2 gy Ndag, A - A dag,

11 <tp <<l i=1

for a differential k-form

w = Z ailiz.‘,ik(xl,xg,~--,xn)da:il /\dl’i2 /\/\d-L'7,k S Ak

11 <ta<---<ip
A differential form w is called to be closed if dw = 0 and exact if there exists a
differential form w such that dew = w. We know that each exact differential form is

closed in the next result.

Theorem 3.2.7 ddw = 0.

Proof Since d is a linear mapping, we only need to prove this claim on a

monomial. Let w = a(z1, 29, -+, xy)dx;, A -+ Adz;,. Then

dw—za dx; Ndxg, N\--- Ndx;,.

=1
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Therefore, we get that

ddw = Zd(g_a)dzmdznw-ﬂd%
T
i=1

= Z 3 o —dr; ANdxy Adrg A - AN dg,

— ziﬁx]
O (dxi Ndxj + dxj A dx;) A d Ad
= T; €T €T T; T; : L
v 81281'] J J 1 k
1<J
=0

|

3.2.5 Stokes’ Theorem on Simplicial Complex. A standard p-simplez s, in
R? is defined by

p
s :{(Il,---,xp)eRﬂZzigl., 0<z;<1for0<i<p}.

i=1

Now let w € AP be a differential p-form with
w = Z ailiQ.,.iP(l’h Loy, In)dl'“ A dziz VARERAN dl’ip.

11 <dp<-<ip

Its integral on s, is defined by

/W = § / /anm “ip l’l,fbg, 5 n)dzildziz "'dxi,ﬂ

s i <ig<-- <1PH/—’

where the summands of the right hand expression are ordinary multiple integrals,

and for a chain ¢, = Y \is, € C,(R?), the integral of w on ¢, is determined by
i>1

/UJ—Z)\/

i>1
Sp

Theorem 3.2.8 For any p-chain ¢, € C,(R?), p > 1 and a differentiable (p —1)-

form w,
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/w: /d,wA
dep cp

Proof By definition, it is suffices to check that

in the case of w being a monomial, i.e.,
w=a(@)dry A---ANdT; A+ Ndz,

with a fixed j, 1 < j < p on a p-simplex s, = aga, - - - a@,. Then we find that

[ e

p
da ~
/(Za—midaﬂi}/\dzl/\--~/\dxj/\~--/\dxp
i=1

- da
= (1) 1/0Iida:1 A« Ndx,
R /[a(B)—a(A)]da:l--~d§?]~-~dxp7
o)
),
where QI(QI is a (p — 1)-simplex determined by gﬁﬂxh By, xp), alA) =

a(zy, -, 2j-1,0,- -+, 2p) and a(B) = a(xy, -+, xj-1,1 — (&1 + -+ T + -+ +
xp), -, Tp), see Fig.3.2.1 for details.

)

Fig.3.2.1

Thus



Sec.3.2 Euclidean Geometry 125

/dw _ (—l)j/a(A)dx1-~-d55j-~~dxp+(—1)j’1 /a(B)dz1-~-d@~--dzp

s €2} (3)

s ap ap
= (=1) / w+ (1)1 / a(B)dxy - --dz; - - - dz,.
o) e
ay’y apy

Let 7 be a mapping 7 : ag — a; and a; — a; if 7 # j, which defines a mapping

on coordinates (z1, 22, -, xp) — (2,21, -+, T, -+, Tp). Whence,
D1, s, - -
/w = /a(B) (Il’xZ’,\ . 7p) dxy---dz;---dzx,
a($j7$17”'7‘rj7”'>mp)
) o)
a,’1 a;’y
= (=1 / a(B)dxy - --dZ; - - - duy.

@1(,],) 1

Notice that if 7 # 0 or j, then

a),
Whence, we find that
) p
1 o ey [o=Se o
@;],) f gﬁl = ap,
and
p
/wz / w = (-1) / w,
=0 h

i ~ \
where @, ; = agay - - - @; - - - ap. Therefore, we get that

/dw _ (—l)j/w+(—1)j*1/a(B)dx1~--dfj--~d9cp

“p al, al?,
= (=1) /w+(—1)j’1(—1)j’1/w:/w
ol ol s,
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This completes the proof. g

§3.3 SMARANDACHE N-MANIFOLDS

3.3.1 Smarandache Geometry. Let (M;p) be a metric space, i.e., a geometrical
system. An axiom is said to be Smarandachely denied in (M; p) if this axiom behaves
in at least two different ways within M, i.e., validated and invalided, or only invalided
but in multiple distinct ways. A Smarandache geometry is a geometry which has at
least one Smarandachely denied axiom, which was first introduced by Smarandache
in [Sma2] and then a formal definition in [KuAl].

As we known, an axiom system of an Fuclid geometry is consisted of five axioms

following;:

there is a straight line between any two points.
a finite straight line can produce a infinite straight line continuously.
any point and a distance can describe a circle.
all right angles are equal to one another.

E5) if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, then the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two right angles.
The last axiom (E5) is usually replaced by:

(E5’) given a line and a point exterior this line, there is one line parallel to

this line.

Notice that in a Lobachevshy-Bolyai-Gauss geometry, also called the hyperbolic
geometry, the axiom (E5) is replaced by

(L5) there are infinitely many lines parallel to a given line passing through an
exterior point,

and in a Riemannian geometry, also called the elliptic geometry, the axiom (E5) is

replaced by (R5):
there is no parallel to a given line passing through an exterior point.

There are many ways for constructing Smarandache geometries, particularly, by
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denying some axioms in Euclidean geometry done as in Lobachevshy-Bolyai-Gauss
geometry and Riemannian geometry.

For example, let R? be a Euclidean plane, points A, B € R? and [ a straight
line, where each straight line passes through A will turn 30° degree to the upper
and passes through B will turn 30° degree to the down such as those shown in Fig.
3.3.1. Then each line passing through A in F; will intersect with [, lines passing
through B in F;, will not intersect with [ and there is only one line passing through

other points does not intersect with [.

Fig.3.3.1

A nice model on Smarandache geometries, namely s-manifolds on the plane was

found by Iseri in [Isel], which is defined as follows:

An s-manifold is any collection C(T,n) of these equilateral triangular disks
T;,1 <i < n satisfying the following conditions:

(1) each edge e is the identification of at most two edges e;, e; in two distinct
triangular disks T;, T;,1 <i,j <n and i # j;

(11) each vertex v is the identification of one vertex in each of five, siz or seven

distinct triangular disks.

The vertices are classified by the number of the disks around them. A vertex
around five, six or seven triangular disks is called an elliptic vertex, an Fuclidean

vertex or a hyperbolic vertez, respectively.

L
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In a plane, an elliptic vertex O, a Euclidean vertex P and a hyperbolic ver-
tex @ and an s-line Ly, Ly or Lj passes through points O, P or @ are shown in
Fig.3.3.2(a), (b), (¢), respectively.

As shown in [Isel] and [Mao3], there are many ways for constructing a Smaran-
dache geometry, such as those of denial one or more axioms of a Euclidean geometry

by new axiom or its anti-axiom,..., etc.

3.3.2 Map Geometry. A map geometry is gotten by endowing an angular
function p : V(M) — [0,47) on a map M, which was first introduced in [Mao2] as
a generalization of Iseri’s model on surfaces. In fact, the essence in Iseri’s model
is not these numbers 5,6 or 7, but in these angles 300°, 360° and 420° on vertices,

which determines a vertex is elliptic, Euclidean or hyperbolic on the plane.

Definition 3.3.1 Let M be a combinatorial map on a surface S with each vertex

valency> 3 and p : V(M) — [0,4n), i.c., endow each vertex u,u € V(M) with

4
pm(u)”

without boundary, u(u) an angle factor on w and orientable or non-orientable if M

a real number p(u),0 < p(u) < The pair (M, u) is called a map geometry

is orientable or not.

Certainly, a vertex v € V(M) with pa(u)u(u) < 2w, = 27 or > 27 can be
realized in a Euclidean space R3, such as those shown in Fig.3.3.3.

u u

&

pu(uwp(u) <27 py(u)p(u) =27 par(w)p(u) > 2m

Fig.3.3.3

A point u in a map geometry (M, u) is said to be elliptic, Fuclidean or hyperbolic
if papr(u)p(u) < 27, py(u)p(u) = 27 or pyr(u)p(u) > 2m. If p(u) = 60°, we find
these elliptic, Euclidean or hyperbolic vertices are just the same in Iseri’s model,
which means that these s-manifolds are a special map geometry. If a line passes

through a point u, it must has an angle w with the entering ray and equal
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to 180° only when u is Euclidean. For convenience, we always assume that a line
passing through an elliptic point turn to the left and a hyperbolic point to the right

on the plane.

Theorem 3.3.1 Let M be a map on a locally orientable surface with |M| > 3 and
pr(w) > 3 for Yu € V(M). Then there exists an angle factor p : V(M) — [0, 4r)
such that (M, u) is a Smarandache geometry by denial the aziom (E5) with axioms
(E5),(L5) and (R5).

Proof By the assumption py(u) > 3, we can always choose an angle factor u
such that u(u)pp(u) < 2w, p(v)pa(u) = 27 or p(w)pa(u) > 27 for three vertices
u,v,w € V(M), i.e., there elliptic, or Euclidean, or hyperbolic points exist in (M, u)

simultaneously. The proof is divided into three cases.
Case 1. M is a planar map

Choose L being a line under the map M, not intersection with it, u € (M, p).
Then if u is Euclidean, there is one and only one line passing through u not inter-
secting with L, and if u is elliptic, there are infinite many lines passing through
not intersecting with L, but if u is hyperbolic, then each line passing through u will
intersect with L. See for example, Fig.3.3.4 in where the planar graph is a complete
graph K, on a sphere and points 1,2 are elliptic, 3 is Euclidean but the point 4
is hyperbolic. Then all lines in the field A do not intersect with L, but each line
passing through the point 4 will intersect with the line L. Therefore, (M, u) is a
Smarandache geometry by denial the axiom (E5) with these axioms (E5), (L5) and
(R5).

Case 2. M is an orientable map
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According to Theorem 3.1.15 of classifying surfaces, We only need to prove this
assertion on a torus. In this case, lines on a torus has the following property (see
[NiS1] for details):

if the slope < of a line L is a rational number, then L is a closed line on the
torus. Otherwise, L is infinite, and moreover L passes arbitrarily close to every

point on the torus.

Whence, if L; is a line on a torus with an irrational slope not passing through an
elliptic or a hyperbolic point, then for any point u exterior to Ly, if u is a Euclidean
point, then there is only one line passing through u not intersecting with L, and if
u is elliptic or hyperbolic, any m-line passing through u will intersect with L;.
Now let Ly be a line on the torus with a rational slope not passing through an
elliptic or a hyperbolic point, such as the the line L, shown in Fig.3.3.5, in where
v is a Euclidean point. If u is a Euclidean point, then each line L passing through
u with rational slope in the area A will not intersect with Lo, but each line passing

through u with irrational slope in the area A will intersect with Ls.

1

Ly

.

Fig.3.3.5

Therefore, (M, u) is a Smarandache geometry by denial the axiom (E5) with
axioms (E5), (L5) and (R5) in the orientable case.

Case 3. M is a non-orientable map

Similar to the Case 2, we only need to prove this result for the projective plane.
A line in a projective plane is shown in Fig.3.3.6(a), (b) or (c), in where case (a) is
a line passing through a Euclidean point, (b) passing through an elliptic point and
(c) passing through a hyperbolic point.
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1 2 1 )
2—1 o2
(2) (c)

Fig.3.3.6

Let L be a line passing through the center of the circle. Then if u is a Euclidean
point, there is only one line passing through u such as the case (a) in Fig.3.3.7. If v
is an elliptic point then there is an m-line passing through it and intersecting with
L such as the case (b) in Fig.3.3.7. We assume the point 1 is a point such that
there exists a line passing through 1 and 0, then any line in the shade of Fig.3.3.7(b)

passing through v will intersect with L.

Fig.3.3.7

If w is a Euclidean point and there is a line passing through it not intersecting
with L such as the case (¢) in Fig.3.3.7, then any line in the shade of Fig.3.3.7(c)
passing through w will not intersect with L. Since the position of the vertices of
a map M on a projective plane can be choose as our wish, we know (M, p) is a
Smarandache geometry by denial the axiom (E5) with axioms (E5),(L5) and (R5).

Combining discussions of Cases 1,2 and 3, the proof is complete. O

These map geometries determined in Theorem 3.3.1 are all without boundary,
which are a generalization of polyhedral geometry, i.e., Riemannian geometry. Gen-
erally, we can also introduce map geometries with deleting some faces, i.e., map

geometries with boundary.

Definition 3.3.2 Let (M, p1) be a map geometry without boundary, faces fi, fa, -+,
fie F(M),1 <1< d(M)=1. If S(M)\{f1, fa, -+, fi} is connected, then (M, u)~! =
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(S(M)\{f1, fas -+, fi}, 1) is called a map geometry with boundary f1, fa,- -, fi, and
orientable or not if (M, p) is orientable or not, where S(M) denotes the underlying
surface of M.

Similarly, map geometries with boundary can also provide Smarandache ge-

ometries, which is convinced in the following for [ = 1.

Theorem 3.3.2 Let M be a map on a locally orientable surface with order> 3, vertex
valency> 3 and a face f € F(M). Then there is an angle factor pn: V(M) — [0, 4m)
such that (M, 1)~" is a Smarandache geometry by denial the aziom (E5) with these
azioms (E5),(L5) and (R5).

Proof Divide the discussion into planar map, orientable map on a torus and
non-orientable map on a projective plane dependent on M, respectively. Similar

1'is a Smarandache geometry

to the proof of Theorem 3.3.1, We can prove (M, )~
by denial the axiom (E5) with these axioms (E5),(L5) and (R5) in each case. In
fact, the proof applies here, only need to note that a line in a map geometry with

boundary is terminated at its boundary. O

A Poincaré’s model for hyperbolic geometry is an upper half-plane in which lines
are upper half-circles with center on the z-axis or upper straight lines perpendicular

to the z-axis such as those shown in Fig.3.3.8.

Fig.3.3.8

Now let all infinite points be a same point. Then the Poincaré’s model for
hyperbolic geometry turns to a Klein model for hyperbolic geometry which uses a
boundary circle and lines are straight line segment in this circle, such as those shown
in Fig.3.3.9.
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Fig.3.3.9

Whence, a Klein’s model is nothing but a map geometry with boundary of 1
face determined by Theorem 3.3.2. This fact convinces us that map geometries with

boundary are a generalization of hyperbolic geometry.

3.3.3 Pseudo-Euclidean Space. Let R" be an n-dimensional Euclidean space
with a normal basis & = (1,0,---,0), & = (0,1,---,0), -+, &, = (0,0,---,1). An
orientation X is a vector OX with HOLXH = 1 in R", where O = (0,0,---,0).
Usually, an orientation X is denoted by its projections of OX on each € for 1 <

i <mn,ie.,
X = (003(07,51), COS(O—AX),EQ)., N (205(07767,,))7

where (07 ,€;) denotes the angle between vectors OX and €, 1 <1i<mn. All possible
orientations X in R” consist of a set &.

A pseudo-Fuclidean space is a pair (R“,w\a), where w\a :R" — O is a
continuous function, i.e., a straight line with an orientation O will has an orientation
6+w|8(ﬂ) after it passing through a point w € E. It is obvious that (E, w\a) =E,
namely the Euclidean space itself if and only if w|6>(ﬂ) =0 for Vu € E.

We have known that a straight line L passing through a point (29,29, ---,29)
with an orientation O = (X1, X, -+, X,) is defined to be a point set (z1,z2, - -, Zy)

determined by an equation system

T :1?+tX1
g =19 + X,
x, =20 +tX,

for Vt € R in analytic geometry on R", or equivalently, by the equation system
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r— 1) 1o —af Tp — a0

X, X, X,
Therefore, we can also determine its equation system for a straight line L in a
pseudo-Euclidean space (R™, w). By definition, a straight line L passing through a
Euclidean point 7° = (29, 29, - - -, 2%) € R" with an orientation 0= (X1, Xo, -+, Xy)

in (R",w) is a point set (x1, 2, -, 2,) determined by an equation system

for Vt € R, or equivalently,

ry—a)  wmp—ay r,—ab
Xl +w1(f0) - X2 Jr(,dQ(fo) - - Xn+wn(f0)7
where w\a(fo) = (Wi1(T%), wa (7%, -+, wn(z%). Notice that this equation system

dependent on w|5>7 it maybe not a linear equation system.

Similarly, let O be an orientation. A point w € R™ is said to be Fuclidean on
orientation O if w|5>(ﬂ) = 0. Otherwise, let w|5>(ﬂ) = (w1 (@), ws(7), - - -, wn(7)).
The point @ is elliptic or hyperbolic determined by the following inductive program-
ming.

STEP 1. If wi(w) < 0, then 7 is elliptic; otherwise, hyperbolic if wy (@) > 0;

STEP 2. If w1(@) = we(u) = -+ = wi(w = 0, but w;1(T < 0 then @ is elliptic;

otherwise, hyperbolic if w;;1 (@) > 0 for an integer ¢,0 < i <n — 1.
Denote these elliptic, Euclidean and hyperbolic point sets by
Ve = { @ e R" | u an Euclidean point },
V= {veR"|v an elliptic point }.
V;Ly ={ 7€ R" | W a hyperbolic point }.
Then we get a partition

R"=V.UVaUVh
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on points in R™ with Veu N Vel =0, Veu N Vhy = and Vel N Vhy = (). Points in
Van V’,Ly are called non-Euclidean points.

Now we introduce a linear order < on & by the dictionary arrangement in the

following.

For (x1,29, -+, x,) and (2, ah,---,2)) € O, if x; = @}, my = @), -+, 1) = 1
and x4 < xp,, for any integer 1,0 < 1 < n — 1, then define (x1,x2,- -, 2,) <
(xllv x,27 T 'L.;L)

By this definition, we know that
w5 (@) < w5 (@) < wlg @

for Vu € 761, T E Veu, w e 7hy and a given orientation 0. This fact enables us to

find an interesting result following.
Theorem 3.3.3 For any orientation Oebina pseudo-Euclidean space (R", w|5>),
if Va # 0 and Vhy # 0, then Ve £ ().

Proof By assumption, 761 # () and ‘_/')hy # (), we can choose points U € 761 and
w e 7hy. Notice that w\a :R" — 0 is a continuous and (&, <) a linear ordered
set. Applying the generalized intermediate value theorem on continuous mappings

in topology, i.e.,

Let f : X — Y be a continuous mapping with X a connected space and Y a
linear ordered set in the order topology. If a,b € X andy €Y lies between f(a) and
f(b), then there exists x € X such that f(z) =y.

we know that there is a point ¥ € R™ such that

wl5(® =1,
i.e., U is a Euclidean point by definition. O
Corollary 3.3.1 For any orientation Oeclina pseudo-FEuclidean space (R, w\ﬁ),
if ?eu =0, then either points in (R’Zw\a) is elliptic or hyperbolic.

Certainly, a pseudo-Euclidean space (R“Zw\ﬁ) is a Smarandache geometry

sometimes explained in the following.

Theorem 3.3.4 A pseudo-Euclidean space (R",w|-—=) is a Smarandache geometry

@)
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if ?eu,Vel #+ 0, or Veu,x_/hy # 0, or VEl,Vhy # 0 for an orientation O in
(Rn>w|6)-

Proof Notice that w|—=(u) = 0 is an axiom in R™, but a Smarandache denied
axiom if Veu,‘_/)el # (0, or 7eu,vhy # (), or 7517,Ly # () for an orientation [o]
in (R’Ew\ﬁ) for w\a(ﬂ) =0 or # 0 in the former two cases and w|6>(ﬂ) < 0or
> 0 both hold in the last one. Whence, we know that (R", w|6>) is a Smarandache
geometry by definition. g

Notice that there infinite points on a segment of a straight line in R". Whence,
a necessary for the existence of a straight line is there exist infinite Euclidean points
in (R™, w\a) We find a necessary and sufficient result for the existence of a curve

C in (R",w|5>) following.

Theorem 3.3.5 A curve C' = (fi(t), f2(t), -, fu(t)) exists in a pseudo-FEuclidean

space (R”,w|5>) for an orientation o} if and only if

dho, [
dt v w1 (ﬂ) ’
dt e = (wg(u) -1
df. (1) r

forYu € C, where w|5> = (w1, wa,**+,Wy)-

Proof Let the angle between w\ﬁ and ¢ be 6;, 1 <6, <n.
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Fig.3.3.10
Then we know that
costy =w;, 1<i<n.

According to the geometrical implication of differential at a point u € R",

seeing also Fig.3.3.10, we know that

dfst), _ |1
dt |ﬁ*tgez* (Wi(ﬂ) 2

-1

for 1 < i < n. Therefore, if a curve C' = (f1(¢), f2(t), - - -, fn(t)) exists in a pseudo-

Euclidean space (R", w|6) for an orientation O, then

df;(t) b= ) 1
dt v (UQ(E)
for Va € C. On the other hand, if

2—1, 1<i<n

dfi(t), 1 .
i |z = (wZ(m)Z—L 1<i<n

hold for points v for V¢ € R, then all points v, t € R consist of a curve C =
(F1(8), fot), -+ fult)) in (R, w|5) for the orientation 0.

O

Corollary 3.3.2 A straight line L exists in (R”7w|5) if and only if w|5>(ﬂ) =0
forvVue L andVO € 0.
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3.3.4 Smarandache manifold. For an integer n,n > 2, a Smarandache man-
ifold is a m-manifold that supports a Smarandache geometry. Certainly, there are
many ways for construction of Smarandache manifolds. For example, these pseudo-
Euclidean spaces (R", w|(-)>) for different homomorphisms w5 and orientations O .
We consider a general family of Smarandache manifolds, i.e., pseudo-manifolds
(M™, A“) in this section, which is a generalization of n-manifolds.

An n-dimensional pseudo-manifold (M", A¥) is a Hausdorff space such that
each points p has an open neighborhood U, homomorphic to a pseudo-Euclidean
space (R",w|5>)7 where A = {(U,,, ¥)|p € M"} is its atlas with a homomorphism
o Up — (R”,w|5>) and a chart (U, ¢%).

Theorem 3.3.6 For a point p € (M", A%) with a local chart (Uy, ¢3), ¢4 = wp if
and only wa|5>(p) =0.

Proof For Vp € (M", A%), if ¢ (p) = ¢p(p), then w(py(p)) = ¢p(p). By
the definition of pseudo-Euclidean space (R”,w|5>)7 this can only happens while
w(p) = 0. O

A point p € (M™, A¥) is elliptic, Euclidean or hyperbolicif w(p,(p)) € (R™, w\a)
is elliptic, Fuclidean or hyperbolic, respectively. These elliptic and hyperbolic points

also called non-FEuclidean points. We get a consequence by Theorem 3.3.6.

Corollary 3.3.3 Let (M™, A%) be a pseudo-manifold. Then 2 = o, if and only if

every point in M™ is Fuclidean.

Theorem 3.3.7 Let (M™, A“) be an n-dimensional pseudo-manifold, p € M".
If there are Fuclidean and non-Fuclidean points simultaneously or two elliptic or
hyperbolic points on an orientation 0O in (Up, @p), then (M™, A?) is a Smarandache

n-manifold.

Proof Notice that two lines Ly, Ly are said locally parallel in a neighborhood
(Up, ¢%) of a point p € (M", A¥) if ©(L1) and ¢y (Ly) are parallel in (R”,w\a). If
these conditions hold for (M™, A¥), the axiom that there is ezactly one line passing
through a point locally parallel a given line is Smarandachely denied since it behaves
in at least two different ways, i.e., one parallel, none parallel, or one parallel, infinite
parallels, or none parallel, infinite parallels, which are verified in the following.

If there are Euclidean and non-Euclidean points in (U, Lp;’) simultaneously, not
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loss of generality, we assume that u is Euclidean but v non-Euclidean, ¢ (v) =

(w1, wa, «++,wy) with wy < 0.

LQ ‘\
L L
(b)

(a)

Fig.3.3.11

Let L be a line parallel the axis & in (R”,w\a). There is only one line L,
locally parallel to (@;)‘1(L) passing through the point u since there is only one line
@i (L) parallel to L in (R", w\ﬁ) However, if wy > 0, then there are infinite many
lines passing through u locally parallel to ¢, (L) in (U, ¢,) since there are infinite
many lines parallel L in (R”.,w|5>), such as those shown in Fig.3.3.11(a) in where
each line passing through the point @ = ¢%(u) from the shade field is parallel to L.
But if wy > 0, then there are no lines locally parallel to (i)~ (L) in (U, ¢%) since
there are no lines passing through the point ¥ = ¥ (v) parallel to L in (R", w|5>),
such as those shown in Fig.3.3.11(b).

If there are two elliptic points u,v along a direction 5), consider the plane P
determined by ¢%(u), ¢4 (v) with O in (R™, w|5>) Let L be a line intersecting with
the line ap;’(u)gozj(v) in P. Then there are infinite lines passing through w locally
parallel to (o) ~'(L) but none line passing through v locally parallel to ¢, (L) in
(Up, ¢p) since there are infinite many lines or none lines passing through @ = % (u)

or U = @ (v) parallel to L in (R",cu|5>)7 such as those shown in Fig.3.3.12.
Ll\/.}/ = Z:i
u
7
Ly

v
Fig.3.3.12

Similarly, we can also get the conclusion on the case of hyperbolic points. Since
there exists a Smarandachely denied axiom in (M™, 4”) under these assumptions,

it is indeed a Smarandache manifold. O
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Particularly, we have consequences following by Theorem 3.3.7 for pseudo-

Euclidean spaces (R™, w|5>)

Corollary 3.3.4 For any integer n > 2, if there are Euclidean and non-FEuclidean
points simultaneously or two elliptic or hyperbolic points in an orientation O in

(R”7w|5>), then (R",w|6>) is an n-dimensional Smarandache geometry.

Corollary 3.3.4 partially answers an open problem in [Mao3] for establishing

Smarandache geometries in R3.

Corollary 3.3.5 If there are pointsp,q € (R?, w|5>) such thatw\a(ﬁ) #(0,0,0) but
w|5>(q) =(0,0,0) orp,q are simultancously elliptic or hyperbolic in an orientation
0 in (R37w|6), then (R3,w|5>) is a Smarandache geometry.

Notice that if there only finite non-Euclidean points in (M", A¥), a loop L,
based at a point p € M™ is still a loop of (M™, A%) based at a point p € (M", A¥)
and vice versa. Whence, we get the fundamental groups of pseudo-manifolds with

finite non-Euclidean points.

Theorem 3.3.8 Let (M™, A%) be a pseudo-manifold with finite non-Euclidean points.
Then

m(M", p) = m((M", A°), p)
forVp e (M™, A¥). O

$3.4 DIFFERENTIAL SMARANDACHE MANIFOLDS

3.4.1 Differential Manifold. A differential n-manifold (M", A) is an n-manifold
M", where M™ = |J U; endowed with a C" differential structure A = {(U,, ¢a)|a €
I} on M™ for an iiletleger r with following conditions hold.

(1) {U,; @ € I} is an open covering of M™;

(2) ForVa,j € I, atlases (U,, pa) and (Ug, pg) are equivalent, i.e., Uy (U = 0
or Uy (Us # 0 but the overlap maps

Pas' : 08(Uanuy) — 03(Up) and @s0." : 03(Uanu,) = ©alUs)
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are C;

(3) A is maximal, i.e., if (U, ¢) is an atlas of M™ equivalent with one atlas in
A, then (U, ) € A.

An n-manifold is smooth if it is endowed with a C* differential structure. It
has been known that the base of a tangent space T,M" of differential n-manifold
(M, A) consisting of ;2,1 < i < n for Vp € (M", A). More results on differential
manifolds can be found in [AbM1], [MAR1], [Pet1], [Wesl] or [ChL1] for details.
3.4.2 Differential Smarandache manifold. For an integer r > 1, a C" differen-
tial Smarandache manifold (M", A¥) is a Smarandache manifold (M", A“) endowed
with a C" differentiable structure A and w|5> for an orientation 0. A C° Smaran-
dache n-manifold (M™, A%) is also said to be a smooth Smarandache manifold. For

pseudo-manifolds, we know their differentiable conditions following.

Theorem 3.4.1 A pseudo-Manifold (M™, A¥) is a C" differential Smarandache

manifold with an orientation 0 for an integer r > 1 if conditions following hold.
(1) There is a C" differential structure A = {(Ua, a)|la € I} on M™;
(2) w|6 is C";
(3) There are Euclidean and non-Euclidean points simultaneously or two elliptic

or hyperbolic points on the orientation O in (Ups @p) for a point p € M™.

Proof The condition (1) implies that (M", A) is a C" differential n-manifold
and conditions (2), (3) ensure (M", A¥) is a differential Smarandache manifold by
definitions and Theorem 3.3.7. g

3.4.3 Tangent Space on Smarandache manifold. For a smooth differential
Smarandache manifold (M",A%), a function f : M™ — R is said smooth if for

Vp € M™ with a chart (U,, ),

fole)) ey (U,) — R”

is smooth. Denote all such C'*° functions at a point p € M™ by J,. A tangent vector

3, — R with conditions following hold.

o at p is a mapping U :
(1) Vg, h € 3, VA€ R, T(h+Ah) = T(g) + AT (h);

(2) Yg,h €Sy, T(gh) = T (g)h(p) + g(p)T (h).
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Denote all tangent vectors at a point p € (M", A%) still by T, M™ without am-
biguous and define addition “+”and scalar multiplication “-”for Yu,v € T,M", X €
R and f € &, by

(u+0)(f) =ulf) +o(f), Au)(f)=A-u(f).

Then it can be shown immediately that 7,AM™ is a vector space under these two
operations “+4”and “-”.

Let p € (M™, A¥) and 7y : (—&,¢) — R"™ be a smooth curve in R™ with v(0) = p.
In (M™, A%), there are four possible cases for tangent vectors on 7 at the point p,

such as those shown in Fig.3.4.1, in where these L-L represent tangent lines.

1
L 1
2 p
2 L L
12
1 (d)

Fig.3.4.1

By these positions of tangent lines at a point p on -, we conclude that there
is one tangent line at a point p on a smooth curve if and only if p is Euclidean in
(M™, A). This result enables us to get the dimensional number of a tangent vector

space T, M™ at a point p € (M", A¥).

Theorem 3.4.2 For a point p € (M™, A¥) with a local chart (U,, ¢,), if there are
exactly s Euclidean directions along€;,, €, - -, €. forp, then the dimension of T,M"
18

dimT,M"™ = 2n—s

with a basis

5} , o, o . )
{%M1§]§5}U{@|p,@|p\1§l§nandl;ézj,1 <j<s}

Proof We only need to prove that
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o , o ot . .
{%|p|1§]§s}U{@,%|p|lglgnandl#zj.,lgjgs} (3.4.1)

is a basis of T,M™. For Vf € G, since f is smooth, we know that

f@) = )+ Z 07 v)

811
aeL f aéj f
0 o
+ ]Z:jl(:c ey = 2) gy + o
for Vo = (@1, 29, -+ -, zn) € ©,(Up) by the Taylor formula in R", where each term in

R; ;..\, contains (z; — z9)(z; — 1’?) (zp—2), g €{+ —}for 1 <I<nbutl#i
for 1 < j < s and ¢ should be deleted for [ =i;,1 < j <.
Now let v € T,M"™. By the condition (1) of definition of tangent vector at a

point p € (M™, A%), we get that

o(f(z) = MﬂM)+W§]%’ >§Z<”

n aglf aejf
+ (D (i = o) = af) 555 5) + 0(Rip):
ij=1 Lt

Similarly, application of the condition (2) in definition of tangent vector at a
point p € (M", A*) shows that

n 851f
v(f(p)) =0, v(z7) 5 ~(p) =0,
i=1 arb
" fof,
U(”Z::](% - z?)(x] - ]) Bz; O
and
’U(Ri’j’ k) =0

Whence, we get that
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o(f@) = Y v(a) ?,;;Z Zml 1(f). (342)

i=1 Ti
The formula (3.4.2) shows that any tangent vector v in 7, M™ can be spanned
by elements in the set (3.4.1).

All elements in the set (3.4.1) are linearly independent. Otherwise, if there are

numbers a',a?,---,a* af,ay, a3, a5, -, a}_, a,_, such that

S

0 o
Zazj or. + Z (L? 8.131 |10 = 07

j=1 Tij ity insmie<i<n

where ¢; € {+, —}, then we get that

S e _
:(;%@+ > g ) =0

701,02, 0s,1<i<n,

for 1 <j <sand

E]

, 0 0
<Z%a Y g )@) =0

j=1 iin iz, yis, 1<I<n

for i # iy,49, -+, 15,1 < i < n. Therefore, vectors in the set (3.4.1) is a basis of the
tangent vector space T, M" at the point p € (M™, A¥). a
Notice that dimT,M™ = n in Theorem 3.4.2 if and only if all these directions

are Euclidean along €;,€,,---,€,. We get a consequence by Theorem 3.4.2.
Corollary 3.4.1 Let (M™, A) be a smooth manifold and p € M™. Then
dimT,M"™ =n

with a basis

0
= 1<i<n}
(bl 1<i<n)

For Vp € (M™, A¥), the dual space TyM™ is called a co-tangent vector space
at p. Now let f € S,d € TyM™ and v € T,M". The action of d on f, called a
differential operator d : 3, — R, is defined by

df = v(f).
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Then, we can immediately get the result on its basis of co-tangent vector space
at a point p € (M™, A¥) similar to Theorem 3.4.2.

Theorem 3.4.3 For any point p € (M", A*) with a local chart (Uy, p,), if there
are exactly s Euclidean directions along €,,€,,- -, €, for p, then the dimension of
Ty M™ s
dimTyM" = 2n—s
with a basis
{d.r,i]|p [1<j<s}Hdxmlpdzl, | 1<i<nandl#i;,1<j<s},
where
dzily(z-1p) = 0} and dil,(F:1p) = 0

fore e {+,-},1<i<n.

§3.5 PSEUDO-MANIFOLD GEOMETRY

Similar to the approach in Finsler geometry, we introduce Minkowskian norms on

these pseudo-manifolds (M™, A¥) following.

Definition 3.5.1 A Minkowskian norm on a vector space V is a function F : V — R
such that

(1) F is smooth on V\{0} and F(v) >0 for Vv e V;
(2) F is 1-homogenous, i.e., F(Av) = AF(v) for YA > 0;
(3) for ally € V\{0}, the symmetric bilinear form g, : V xV — R with

u 1) Z ayzayj

is positive definite for u,v € V.

Denote by TM™ = |J T,M™.
pE(M™,A%)

Definition 3.5.2 A pseudo-manifold geometry is a pseudo-manifold (M", A) en-
dowed with a Minkowskian norm F on T M™.
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Then we get the following result.

Theorem 3.5.1 There are pseudo-manifold geometries.

Proof Consider a Euclidean 2n-dimensional space R**. Then there exists a
Minkowskian norm F (%) = |Z| at least. According to Theorem 3.4.2, the dimension
of T, M™ is R*+2(n=s) ifw|6(p) exactly has s Euclidean directions along €, €, - - - , €,.
Whence there are Minkowskian norms on each chart of points in (M",.A%).

Since (M™, A) has a finite cover {(Uy, pa)|o € I}, where [ is a finite index set,
by the decomposition theorem for unit, we know that there are smooth functions
he,a € I such that

D ha=1with0<hy < 1.
a€cl
Choose a Minkowskian norm F* on each chart (Uy, ¢,). Define

o heFe if peU,,
: 0, if pgU,

for Vp € (M™, ¢*). Now let

F:ZFC,.

acl
Then F' is a Minkowskian norm on T'M" since it satisfies all of these conditions

(1) — (3) in Definition 3.5.1. d
Although the dimension of each tangent vector space maybe different, we can

also introduce principal fiber bundles and connections on pseudo-manifolds.

Definition 3.5.3 A principal fiber bundle (PFB) consists of a pseudo-manifold
(P, A?), a projection 7 : (P, A?) — (M, AT“)), a base pseudo-manifold (M, A;“)
and a Lie group G, which is a manifold with group operation G X G — given by
(g, h) — goh being C* mapping, denoted by (P, M,w™, G) such that (1), (2) and
(3) following hold.

(1) There is a right freely action of G on (P, AY), i.e., for Vg € G, there is a
diffeomorphism R, : (P, A{) — (P, AY) with Ry(p*) = p“g for ¥p € (P, AY) such
that p*(g192) = (p*91)g2 for Vp € (P, A7), Vg1,92 € G and p“e = p* for some
p € (P, AY), e € G if and only if e is the identity element of G.
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(2) The map 7 : (P, A?) — (M, AX“)) is onto with == ((p)) = {pglg € G},
Twi = wom, and reqular on spatial directions of p, i.e., if the spatial directions of p
are (wy,ws, -+, wy), then w; and 7(w;) are both elliptic, or Euclidean, or hyperbolic

and |71 (m(w;))| is a constant number independent of p for any integer i, 1 <i < n.

(3) ForVx € (M, Ag(“})) there is an open set U with x € U and a diffeomor-
phism T7®) (7)"HU™)) — U™ x G of the form T,(p) = (7(p*), s.(p*)), where
sy T HU™@)) — G has the property s,(p?g) = s.(p*)g for¥g € G,p € 7= *(U).

We know the following result for principal fiber bundles of pseudo-manifolds.

Theorem 3.5.2 Let (P, M,w™,G) be a PFB. Then
(P7 M7 w7r7 G) = (P7 j‘/[7 7T7 G)
if and only if all points in pseudo-manifolds (P, AY) are Fuclidean.

Proof For Vp € (P, AY), let (U,, ¢,) be a chart at p. Notice that w™ = 7 if and
only if ¥ = ¢, for Vp € (P, A?). According to Theorem 3.3.6, this is equivalent to
that all points in (P, Ay) are Euclidean. d

Definition 3.5.4 Let (P, M,w™ Q) be a PFB with dimG = r. A subspace fam-
ily H = {Hplp € (P, A}),dimH, = dimT4, M} of TP is called a connection if
conditions (1) and (2) following hold.

(1) ForVp € (P, AY), there is a decomposition
T,P=H, BV,

and the restriction |y, : Hy — TrpM is a linear isomorphism.

(2) H is invariant under the right action of G, i.e., for p € (P, Ay), Vg € G,

Similar to Theorem 3.5.2, the conception of connection introduced in Definition

3.5.4 is more general than the popular connection on principal fiber bundles.

Theorem 3.5.3 Let (P,M,w™,G) be a PFB with a connection H. For ¥p €
(P, AY), if the number of Euclidean directions of p is Ap(p), then
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(dimP — dimM)(2dimP — Ap(p))

dimV, = .
Y dimP
Proof Assume these Euclidean directions of the point p being €, €, - -+, €, (p)-
By definition 7 is regular, we know that 7(€;), 7(€2), - - -, m(€x,(p)) are also Euclidean
in (M, AYM). Now since
7Y (@) = 7 (7 (@)) = - = 7 (T(Enpip)) = = constant,

we get that Ap(p) = pAyr, where Ay, denotes the correspondent Euclidean directions
in (M, A’f<w>). Similarly, consider all directions of the point p, we also get that
dimP = pdimM. Thereafter

dimM
= diWAP(?")- (3.5.1)

Now by Definition 3.5.4, T,P = H, @V, i.e.,

A M

dimT, P = dimH, + dimV,,. (3.5.2)

Since m,|g, : Hy — TrpM is a linear isomorphism, we know that dimH, =

dimT5 M. According to Theorem 3.4.2, we get formulae
dimT,P = 2dimP — Ap(p)

and

dimM A\
dimP

Now replacing these two formulae into (3.5.2), we get that

dimTr M = 2dimM — Ay = 2dimM — p(p).

dimM

2dimP — Ap(p) = 2dimM — m)\p(p) + dimV,.

That is,

) _ (dimP — dimM)(2dimP — Ap(p))
dimb;, = dimP ‘

We immediately get the following consequence by Theorem 3.5.3.
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Corollary 3.5.1 Let (P,M,w™,G) be a PFB with a connection H. Then for
Vp € (P, AY),

dimV, = dimP — dimM
if and only if the point p is Euclidean.

Now we consider conclusions included in Smarandache geometries, particularly

in pseudo-manifold geometries.

Theorem 3.5.4 A pseudo-manifold geometry (M"™, p¥) with a Minkowskian norm
on TM™ is a Finsler geometry if and only if all points of (M™,¢*) are Euclidean.

Proof According to Theorem 3.3.6, g% = ¢, for Vp € (M™, ") if and only if
p is Euclidean. Whence, by definition (M™, ¢*) is a Finsler geometry if and only if
all points of (M™, ¢*) are Euclidean. O

Corollary 3.5.2 There are inclusions among Smarandache geometries, Finsler ge-

ometry, Riemann geometry and Weyl geometry:

{Smarandache geometries} O { pseudo-manifold geometries}

D {Finsler geometry} D { Riemann geometry} D { Weyl geometry}.

Proof The first and second inclusions are implied in Theorems 3.3.6 and 3.5.3.
Other inclusions are known in a textbook, such as [ChC1] and [ChL1]. O

Now let us to consider complex manifolds. Let z* = 2* 4+ /—1y". In fact, any
complex manifold M™ is equal to a smooth real manifold M?" with a natural base
%7 %} for T,M at each point p € M. Define a Hermite manifold M to be
a manifold M endowed with a Hermite inner product h(p) on the tangent space
(T,M>, J) for ¥p € M, where J is a mapping defined by

0 0 0 0
J(@m—a—yiby J(a_yi"’)__%‘p
at each point p € M for any integer 4,1 < ¢ <n. Now let

h(p) = g(p) + V—=1k(p), p€ M.

Then a Kdhler manifold is defined to be a Hermite manifold (M, h) with a closed

K satisfying
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K(X,Y)=g(X,JY), VXY € T,M? Vp € M.
Similar to Theorem 3.5.3 for real manifolds, we know the next result.

Theorem 3.5.5 A pseudo-manifold geometry (M, p¥) with a Minkowskian norm

on TM™ is a Kdhler geometry if and only if F is a Hermite inner product on M}
with all points of (M"™, ) being Euclidean.

Proof Notice that a complex manifold M" is equal to a real manifold M?".
Similar to the proof of Theorem 3.5.3, we get the claim. O
As a immediately consequence, we get the following inclusions in Smarandache

geometries.

Corollary 3.5.3 There are inclusions among Smarandache geometries, pseudo-manifold

geometry and Kahler geometry:

{Smarandache geometries } D {pseudo-manifold geometries}

D {Kahler geometry}.

§3.6 REMARKS

3.6.1 These Smarandache geometries were proposed by Smarandache in 1969 by
contradicts axioms (E1) — (E5) in a Euclid geometry, such as those of paradoxist
geometry, non-geometry, counter-projective geometry and anti-geometry, see his pa-
per [Sma2] for details. For example, he asked whether there exists a geometry with

axioms (F1) — (£4) and one of the axioms following:

(1) there are at least a straight line and a point exterior to it in this space for
which any line that passes through the point intersect the initial line.

(77) there are at least a straight line and a point exterior to it in this space for
which only one line passes through the point and does not intersect the initial line.

(734) there are at least a straight line and a point exterior to it in this space for
which only a finite number of lines Iy, s, - - -, I, k > 2 pass through the point and do
not intersect the initial line.

(iv) there are at least a straight line and a point exterior to it in this space for

which an infinite number of lines pass through the point (but not all of them) and
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do not intersect the initial line.

(v) there are at least a straight line and a point exterior to it in this space for

which any line that passes through the point and does not intersect the initial line.

A modern definition on Smarandache geometry is formed by Kuciuk and An-
tholy in [KuAl]. Iseri proved s-manifolds constructed by equilateral triangular
disks T;,1 < i < m on the plane can indeed produce the paradoxist geometry,
non-geometry, counter-projective geometry and anti-geometry in [Isel]. For gener-
alizing his idea to surfaces, Mao introduced map geometry on combinatorial maps in
his postdoctoral report [Mao2], shown that these map geometries also produce these
paradoxist geometry, non-geometry, counter-projective geometry and anti-geometry,
and then introduced the conception of pseudo-plane for general construction of

Smarandache geometries on a Euclidean plane in [Mao3].

3.6.2 There are many good monographs and textbooks on topology and differential
geometry, such as those of [AbM1], [AMR1], [Arm1], [ChL1], [Masl], [Mas2], [Pet1],
[Rot1], [Stil], [Wesl] [ChC1] and [ChL1], ..., etc. These materials presented in
Sections 1 and 2 are self-contained for this book. Many conceptions in here will be

used or generalized to combinatorial manifolds in following chapters.

3.6.3 For constructing Smarandache manifolds of dimensional n > 2, Mao first
constructs Smarandache 2-manifolds by applying combinatorial maps on surfaces,
i.e., map geometries in his post-doctoral research in [Maol-2] and a paper in [Mao4].
Then, he presented a general way for constructing Smarandache manifolds by apply-
ing topological or differential n-manifolds in [Mao11-12]. The material in Sections
3.3 — 3.5 is mainly extracted from his paper [Maol2], but with a different handling
way. Certainly, there are many open problems in Smarandache geometries arising
from an analogizing results in Sections 1 and 2. For example, Theorem 3.3.8 is a
such result. The readers are encouraged to find more such results and construct new

Smarandache manifolds different from pseudo-manifolds.

Problem 3.6.1 Define more Smarandache manifolds other than pseudo-manifolds

and find their topological and differential behaviors.

Problem 3.6.2 Define integrations and then generalize Stokes, Gauss,... theorems

on pseudo-manifolds.
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Corollaries 3.5.2 and 3.5.3 are interesting results established in [Mao12], which
convince us that Smarandache geometries are indeed a generalization of geometries
already existence. [SCF1] and other papers also mentioned these two results for
reviewing Mao’s work.

Now we consider some well-known results in Riemannian geometry. Let S be

an orientable compact surface. Then

//SKdJ = 2mx(S),

where K and x(S) are the Gauss curvature and Euler characteristic of S. This
formula is the well-known Gauss-Bonnet formula in differential geometry on surfaces.
Then what is its counterpart in pseudo-manifold geometries? This need us to solve

problems following.

(1) Find a suitable definition for curvatures in pseudo-manifold geometries.
(2) Find generalizations of the Gauss-Bonnet formula for pseudo-manifold ge-

ometries, particularly, for pseudo-surfaces.

For an oriently compact Riemannian manifold (M%, g), let

(=P iy
= m Z 511,"-,21?1797317?2 ARRERA Qizp—lizpv

11,82, ,12p

where €;; is the curvature form under the natural chart {e;} of M? and

1, if permutation 4, - - - igp is even,
01,000,192 . . . . .
01 5" =14 —1, if permutation i - - - iy, is odd,

0, otherwise.

Chern proved that (see [ChC1] for details)

/ Q = x(M?).
M2p

Certainly, these new kind of global formulae for pseudo-manifold geometries are
valuable to find.

3.6.4 These principal fiber bundles and connections considered in Section 3.5 are
very important in theoretical physics. Physicists have established a gauge theory

on principal fiber bundles of Riemannian manifolds, which can be used to unite



Sec.3.6 Remarks 153

gauge fields with gravitation. In section 3.5, we have introduced those on pseudo-
manifolds. For applying pseudo-manifolds to physics, similar consideration should

induces a new gauge theory, which needs us to solving problems following:

to establish a gauge theory on those of pseudo-manifold geometries with some

additional conditions.
In fact, this object requires us to solve problems following:

(1) find these conditions such that we can establish a gauge theory on pseudo-
manifolds;

(2) find the Yang-Mills equation in a gauge theory on pseudo-manifold;

(3) unify these gauge fields and gravitation.



CHAPTER 4.

Combinatorial Manifolds

A combinatorial manifold is a topological space consisting of manifolds un-
derlying a combinatorial structure, i.e., a combinatorial system of manifolds.
Certainly, it is a Smarandache system and a geometrical multi-space model of
our WORLD. For introducing this kind of geometrical spaces, we discuss its
topological behavior in this chapter, and then its differential behavior in the
following chapters. As a concrete introduction, Section 4.1 presents a calcula-
tion on the dimension of combinatorial Euclidean spaces and the decomposi-
tion of a Euclidean space with dimension> 4 to combinatorial Euclidean space
with lower dimensions. This model can be also used to describe spacetime of
dimension> 4 in physics. The combinatorial manifold is introduced in Section
4.2. In this section, these topological properties of combinatorial manifold,
such as those of combinatorial submanifold, vertex-edge labeled graphs, com-
binatorial equivalence, homotopy class and Euler-Poincaré characteristic,- - -,
etc. are discussed. Fundamental groups and singular homology groups of
combinatorial manifolds are discussed in Sections 4.3 and 4.4, in where these
groups are obtained for a few cases by applying some well-known theorems in
classical topology. In Section 4.5, the ordinary voltage graph is generalized
to voltage labeled graph. Applying voltage labeled graph with its lifting, this
section presents a combinatorial construction for regular covering of finitely
combinatorial manifolds, which essentially provides for the principal fibre bun-

dles in combinatorial differential geometry in chapters following.
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§4.1 COMBINATORIAL SPACES

A combinatorial space g is a combinatorial system % of geometrical spaces
(E1;R1), (B2;R2), -+ (Xm; Ry) for an integer m with an underlying graph G in
Definition 2.1.3. We concentrated our attention on each (¥;; R;) being a Euclidean

space for integers 7,1 < i < m in this section.

4.1.1 Combinatorial Euclidean Space. A combinatorial Euclidean space is a
combinatorial system % of Euclidean spaces R™, R"?, - - -, R" with an underlying
structure G, denoted by &g (ny, - - -, ny) and abbreviated to &g(r) ifny = -+ = ny, =
r. It is itself a Euclidean space R™. Whence, it is natural to give rise to a packing

problem on Euclidean spaces following.

Parking Problem Let R™, R"2, --- R™ be Fuclidean spaces. In what conditions

do they consist of a combinatorial Euclidean space &g(ny, -+, npm)?

By our intuition, this parking problem is related with the dimensions of R™,

R™, ..., R™, also with their combinatorial structure G. Notice that a Euclidean
space R™ is an n-dimensional vector space with a normal basis & = (1,0,---,0),
& =(0,1,0---,0), .-+, €& = (0,---,0,1), namely, it has n orthogonal orientations.

So if we think any Euclidean space R™ is a subspace of a Euclidean space R™> with
a finite but sufficiently large dimension n.,, then two Euclidean spaces R™ and
R™ have a non-empty intersection if and only if they have common orientations.
Whence, we only need to determine the number of different orthogonal orientations
in &g(ny, -+, nm).

Denoted by X,,, X4, - -+, Xy, consist of these orthogonal orientations in R™1,
R™:2 ... R™m respectively. An intersection graph G[X,,, X,,, -, Xy, ] of Xo, Xo,,

-+, X,,, is defined by

V(G[Xoy, Xop, oo, X, ]) = o102, om},
E[Xo, Xugy o, X | = {(03,0))| X, N Xy, # 0,1 < i j <m}
By definition, we can easily find that
G = G Xy, Xy Xy -

So we can apply properties of the intersection graph G to the parking problem
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éc(ny, -+, ny) of R, R™, ... . R" which transfers the parking problem of Eu-

clidean spaces to a combinatorial problem following.

Intersection Problem For given integers k, m > 2 and ny,ng, - - -, ny, find finite
sets Y1,Ya, -+, Yy, with their intersection graph being G such that |Y;]| = n;, 1 < i <
m, and YUY, U---UY,,| = k.

This enables us to find solutions of the parking problem sometimes.

Theorem 4.1.1 Let &g(ny,- -+, nym) be a combinatorial Euclidean space of R™, R™2,
-, R™ with an underlying structure G. Then
dimég(ny, -+, ny) = > (=1 dim(R™ O R™> (- - R™),
(v €V (G)|1<i<s)€CLs(G)
where n,,, denotes the dimensional number of the FEuclidean space in v; € V(G) and

CL(G) consists of all complete graphs of order s in G.
Proof By definition, R™ N R"™ # 0 only if there is an edge (R™,R™) in G.

This condition can be generalized to a more general situation, i.e., R™1 N R™2 N
<-NR™ 2 0 only if (vy,v9, -+, v) o = K.

In fact, if R™ NR™2N---NR™: # (), then R™ NR™ # (), which implies that
(R™:i,R™i) € E(G) for any integers 7, j, 1 <4,7 < I. Therefore, (v1,vs,- -, v1)q is
a complete graph of order [ in the intersection graph G.

Now we are needed to count these orthogonal orientations in &g(ny,- -, ny).
In fact, the number of different orthogonal orientations is

dimég(ng, -+, ny) =dim( J R™)
veV(G)
by previous discussion. Applying Theorem 1.5.1 the inclusion-exclusion principle,
we find that

dimég(ny, -+, ny) = dim( U R™)
veV(G)

= Z (71)s+1dim(anl m R ﬂ L. ﬂ Rn“s)

{v1, s }CV(G)
(~1)* ' dim(R™ (YR™ () R™).

(]

(0, €V (G)|1<i<s)€CLA(G)

g
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Notice that dim(R"™1NR™2N- - -NR"™s) = n,, if s = 1 and dim(R™1NR™2) # 0
only if (R™1,R™2) € E(G). We get a more applicable formula for calculating
dimég(ny, -+, ny) on Ks-free graphs G by Theorem 4.1.1.

Corollary 4.1.1 If G is Ks-free, then
dimég(ng, -, nn) = >, n,— Y, dim(R™R™).
veV(G) (u,v)EE(GQ)
Particularly, if G = vivg - - vy, a circuit for an integer m > 4, then
dimée(ny, -+, m) = Y Ny, — »_ dim(R™i (YR™i+1),
i=1 i=1
where each index is modulo m.

Now we determine the maximum and minimum dimension of combinatorial

Euclidean spaces of R™, R™, ---  R™ with an underlying structure G.

Theorem 4.1.2 Let &g(ny,, -, n,,,) be a combinatorial Euclidean space of R™1,
R™2, -..  R™m with an underlying graph G, V(G) = {vi,ve, -+, vn}. Then the
mazimum dimension dimy., Ny« M, ) 0f G (Nwyy =+ 3 Ny, ) 08

dimna€a(Muy, = 3Ny, ) =1—m+ >, n,
veV(G)

with conditions dim(R™ NR™) =1 for Y(u,v) € E(G).

Proof Let X,,, Xy,, -, Xy, consist of these orthogonal orientations in R,

Rz, ... R™m respectively. Notice that

X0 Xy | = 10|+ 10, = X0, () X |

for 1 < i # j < m by Theorem 1.5.1 in the case of n = 2. We immediately know
that | X,, U X,,| attains its maximum value only if |X,, N X,,| is minimum. Since
X,, and X, are nonempty sets, we find that the minimum value of | X,, N X,,| =1
if (v;,v;) € E(G).

We finish our proof by the inductive principle. Not loss of generality, assume

(v1,v9) € E(G). Then we have known that | X,, | X,,| attains its maximum

|Xv1| + ‘XUQ‘ -1

only if | X, N X,,| = 1. Since G is connected, not loss of generality, let v3 be adjacent



158 Chap.4 Combinatorial Manifolds

with {vy,v2} in G. Then by

|XU1 Usz Usz‘ = ‘le UXU2| + |XU3| - |(Xv1 Usz) va3‘7

we know that | X,, UX,, UX,,| attains its maximum value only if | X,, UX,,| attains
its maximum and [(X,, U X,,) N X,,| = 1 for (X,, U X,,) N X,, # 0. Whence,
| Xy, N Xy = 1 or | X, N X,| = 1, or both. In the later case, there must be
| Xo, N Xy, N Xy| = 1. Therefore, the maximum value of | X,, U X,, U X,,| is

‘X171| + |XU2| + ‘sz‘ -2

Generally, we assume the maximum value of | X,, UX,, U---UX,,| to be

|Xv1|+‘Xv2‘ +...+|X'Uk‘ —k+1

for an integer k& < m with conditions |X,, N X,,| = 1 hold if (v;,v;) € E(G) for
1 < # j < k. By the connectedness of G, without loss of generality, we choose a
vertex vy1 adjacent with {vy,ve, -, ¢} in G and find out the maximum value of

| X, UX,, U UX,, UX,, ., |. In fact, since

e

| X UX,, U---U X, UX, | X UXy, U U X |+ | X, |

- |(Xv1 UX’U2 U UX’Ulc)ﬂX’Uk+l|7

k-+1| -

we know that |X,, UX,, U---UX, U X'Uk+1| attains its maximum value only if
| X, UX,, U- - - UX,, | attains its maximum and |(X,, UX,, U---UX,, ) N X,,,,| =1
for (X, UX,,U- - -UX,, )NX,, ., # 0. Whence, |X,,NX,, .| = 1if (v;, vs1) € E(G).

Consequently, we find that the maximum value of |X,, UX,, U---UX, UX,, | is

|le| =+ |XU2| +eeet ‘X'Uk‘ + ‘X'Uk+1| — k.

Notice that our process searching for the maximum value of | X,, U X,, U---U
Whence, by the

inductive principle we finally get the maximum dimension dim,,.,ég of &g, that is,

X, | does not alter the intersection graph G of X,,, X,,, -+, X,

m*

dimmaz@@G(nm:"'vnvm) = 1_m+nl +no 4+ Ny

with conditions dim(R™ NR™) =1 for V(u,v) € E(G). O
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Determining the minimum value dim,,;,8g(ny, -, ) of ég(ny, -+, ny) is a
difficult problem in general case. But we can still get it for some graph families.
Theorem 4.1.3 Let 8g(ny,, Nyy, -+, M, ) be a combinatorial Euclidean space of
R™1, R™2, -« R™m with an underlying graph G, V(G) = {v1,ve, -+, 0n} and
{v1,v2, -, u} an independent vertex set in G. Then

l
dimmingG(an Tty nvm) Z § Ty,
i=1

and with the equality hold if G is a complete bipartite graph K(Vy,Va) with partite

sets ‘/1 = {1)171}27 o '7”[}7 ‘/2 = {Ul+lyvl+27 o '7UWL} and

1 m
g Ny, Z E TNy, -
i=1

i=l+1
Proof Similarly, we use X,,, X,,, -, X,,, to denote these orthogonal orienta-
tions in R™1, Rz, --. R™m respectively. By definition, we know that

Xo ()Xo, =0, 1<i#j<i

for (v;,v;) & E(G). Whence, we get that

m l 1
Uxal = 1UJxul =Y n.
i=1 i=1 i=1

By the assumption,

! m
§ nv, Z § nv, )
i=1

i=l+1
we can partition X, , X,,, -+, X,,, to
m
Xy = (U Yi(e)UZ(v1),
i=l+1

Xop = (U ¥ile)UZ(),

m

Xy =(U Yiw)UZ(w)

i=l+1
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such that Z [Yi(vr)| = | X,,| for any integer 4, | + 1 < i < m, where Z(v;) maybe

an empty %et for integers i, 1 < i <[. Whence, we can choose

m U Y (Uk)

to replace each X,, for any integer 4, 1 < i < m. Notice that the intersection graph
of Xy, Xoy, -+, Xy X -+, X, s still the complete bipartite graph K(V;, V5),

Vi1’ Um
but

m l !
U Xo | =1U Xo| = 2.
i=1 i=1 i=1

Therefore, we get that

dilnmin(g)G' (nvl y T nvm) = E n'ul

in the case of complete bipartite graph K (V4, V) with partite sets Vi = {v1, va, -+, 0},

Vo= {vl+17 Ui2, 0 Um} and

Shz Y

=1 i=l+1

O

Although the lower bound of dimég(n,,, -, n,, ) in Theorem 4.1.3 is sharp,

but sometimes this bound is not better if G is given, for example, the complete
graph K, shown in the next results. Consider a complete system of r-subsets of a

set with less than 2r elements. We know the next conclusion.

Theorem 4.1.4 For any inleger r > 2, let &k, (r) be a combinatorial Fuclidean

space of R",--- R", and there exists an integer s, 0 < s < r — 1 such that
————
r+s—1 r+s
<m < .
r r

dim;, 8k, (r) =1 + s.

Then

Proof We denote by X, X, - - -, X,,, these sets consist of orthogonal orientations

in m Euclidean spaces R". Then each X;, 1 <7 <m, is an r-set. By assumption,
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r+s—1 r+s
<m<
r r

and 0 < s < r—1, we know that two r-subsets of an (r+s)-set must have a nonempty
intersection. So we can determine these m r-subsets X, X, -+, X}, by using the
complete system of r-subsets in an (r+ s)-set, and these m r-subsets X, Xo, -+, X,

can not be chosen in an (r + s — 1)-set. Therefore, we find that

m
|UX‘| =7r+s,
i=1

ie.,if 0 <s <r—1, then

dimy;, 8k, (r)=r+s
a
Because of our living world is the space R?, so the combinatorial space of R? is
particularly interesting in physics. We completely determine its minimum dimension

in the case of K, following.

Theorem 4.1.5 Let &%, (3) be a combinatorial Euclidean space of R3,--- R3. Then
—_————
3, if m=1,
4 if 2<m<4
dim,in i, (3) =4 Looemes
5, it 5<m<10,

2+ [v/m], if m>11

Proof Let Xy, X, -+, X,, be these sets consist of orthogonal orientations in
m Euclidean spaces R?, respectively and |X; U X, U --- U X,,,| = [. Then each
X, 1 <i<m,is a 3-set.

g
In the case of m < 10 = 5 )., any s-sets have a nonempty intersection. So

it is easily to check that

3, if m=1,
dhnmingKm (3) = 4, if 2<m <4,
5, if 5<m<10.
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We only consider the case of m > 11. Let X = {u,v,w} be a chosen 3-set.
Notice that any 3-set will intersect X with 1 or 2 elements. Our discussion is divided

into three cases.

Case 1 There exist 3-sets X1, X5, X} such that X]NX = {u,v}, XN X = {u,w}
and XN X = {v,w} such as those shown in Fig.4.1.1, where each triangle denotes

a 3-set.

Fig.4.1.1

Notice that there are no 3-sets X’ such that | X’NX| = 1 in this case. Otherwise,
we can easily find two 3-sets with an empty intersection, a contradiction. Counting
such 3-sets, we know that there are at most 3(v —3)+1 3-sets with their intersection

graph being K,,. Thereafter, we know that

m—1

m<30-3)+1, de, [>] 1+43.
Case 2 There are 3-sets X{, X} but no 3-set X} such that X; N X = {u,v},
XiNX = {u,w} and XiNX = {v,w} such as those shown in Fig.4.1.2, where each

triangle denotes a 3-set.

Fig.4.1.2

In this case, there are no 3-sets X’ such that X' N X = {u} or {w}. Oth-
erwise, we can easily find two 3-sets with an empty intersection, a contradiction.

Enumerating such 3-sets, we know that there are at most



Sec.4.1 Combinatorial Spaces 163

2(1-1)+(l;3>+1

3-sets with their intersection graph still being K,,,. Whence, we get that

-3 VemF1
m<2(l1)+( ) >+1, ie., zz[%m

Case 3 There are a 3-set X| but no 3-sets X5, X} such that X{ N X = {u,v},
XiNX = {u,w} and XiNX = {v,w} such as those shown in Fig.4.1.3, where each

triangle denotes a 3-set.

Fig.4.1.3

Enumerating 3-sets in this case, we know that there are at most

<1_2>
[—2+4+2
2

such 3-sets with their intersection graph still being K,,. Therefore, we find that

-2

m<l—2+2
2

)7 ie, 1>2+[vm].

Combining these Cases 1 — 3, we know that

m—1 +V/8m + 17
2

Conversely, there 3-sets constructed in Case 3 show that there indeed exist

3-sets X1, Xo, -+, X,, whose intersection graph is K,,, where

-2
ml—2+2< )
2
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Therefore, we get that

dimyinér,, (3) = 2+ [vVm]

if m > 11. This completes the proof. d
For general combinatorial spaces &x,, (ny,, -, Ny, ) of R™1 R™2 ... R"m,

we get their minimum dimension if n,,, is large enough.

Theorem 4.1.6 Let &, be a combinatorial Fuclidean space of R"1, Rz, ..
RiMvm my >y, > -0 >m,, > [log2(7m+1 ) +1 and V(Ky,) = {v1,v2,+, U}

- onuy —Mug 1

Then
. m+1
dlmmin‘g)Km(nvl P nvm) = Ny, + [IOgQ(Wﬂ'
Proof Let X,,, Xy,, -+, Xy, be sets consist of these orthogonal orientations in
R Rz, ...  R™m  respectively and
s—1 m s

for an integer s, where k = n,, — n,,. Then we find that

m+ 1
[ogs (5 =my1)1 = 5
We construct a family {Y,,, Ys,, -, Ys,, } with none being a subset of another,
|Yo,| = | Xy,| for 1 <4 < m and its intersection graph is still K, but with
Vo, Yl U Yol = no, + 5.
In faCtv let le = {1’1, L2y 3 Tngyy Ty +15 " 7 xnvl} and U = {uh U,y us}7

such as those shown in Fig.4.1.4 for s =1 and n,, = 9.
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Choose g elements @y, ;,, - -, 15, € Xy, and h > 1 elements uj,, ug,, - - -, uj, €

U. We construct a finite set

Xyﬁ = {xin*rizv ' "7xig7“j17“j27’">ujh}

with a cardinal g + h. Let g + h = | X, |, [ Xl -, [ Xo

sequently find such sets Y,,,Y,,, -,Y,,.. Notice that there are no one set being

respectively. We con-

by

a subset of another in the family {Y,,,Y.,, -, Ys,.}. So there must have two el-
ements in each Y,,, 1 < 7 < m at least such that one is in U and another in

{Tnys Tnyyt1s -+ s Ty, b Now since ny,, > [logQ(Wlm,iLﬂ + 1, there are

Sy () (5] ez

i=1 j=1 t J
different sets Y, Y,,, -+, Y, altogether with | X,,| = |Yy, ], -+ | Xu.,| = Y

of them is a subset of another and their intersection graph is still K,,. For example,

None

Xoys {U1,$1,"',$nu2—1}7
{ua, Ty —nog+2) """ xan}v
.................. ,

{71’17 xnvk_lfnvkﬁ»% Tty 'T7ka}

are such sets with only one element u; in U. See also in Fig.4.1.1 for details. It is

easily to know that

m+1
Yo Usz U "Uva\ =Ny, + 8 =Ny, + ﬂogz(mﬂ

in our construction.
Conversely, if there exists a family {Y,,, Y., -, Ys,. } such that | X, | = |Yy,],
o [ X, | = Yy, [ and

|Y;11U}/UQUUY;1m‘ < Ny, + 5,

then there at most

i=1 j=1 v



166 Chap.4 Combinatorial Manifolds

different sets in {Y,,, Ya,, - -, Yy, } with none being a subset of another. This implies
that there must exists integers i,5,1 < i # j <m with Y,, CY,,, a contradiction.

Therefore, we get the minimum dimension dim,,;,&x,, of &k, to be

. m+1
dimmin G, (Noys =+ 5 Ny ) = Mgy + |—10g2(mﬂ~
a
4.1.2 Combinatorial Fan-Space. A combinatorial fan-space f{(nl, Ce M) 18
the combinatorial Euclidean space &k, (n1,- -, n,) of R™ R" ... R™ such that

for any integers 7,7, 1 <i # j <m,

R™[R" = ﬁ R™,
k=1

which is applied for generalizing n-manifolds to combinatorial manifolds in next
section. The dimensional number of f{(nl, -+, Ny,) is determined immediately by

definition following.

Theorem 4.1.7 Let ﬁ(nl, <+ Ny) be a fan-space. Then

m
dimR(ny, -+, nyp) =M+ »_(n; — ),
i=1
where
m
m= dim(ﬂ R"™).
k=1
O
For Vp € f{(nl, -+-,n,,) we can present it by an m x n,, coordinate matrix [z
following with z; = 7 for 1 <i <m,1 <1 <m.
T o T Ti@@m)+1) 0 Limg T 0
_ Tor ot Tom T(m4l) 0 Long e 0
[z] =
Tml " Tmm zm(ﬁz«kl) e e Tmnm—1 LTmnm,
Now let (A) = (aij)mxn and (B) = (bij)mxn be two matrixes. Similar to

Euclidean space, we introduce the inner product ((A), (B)) of (A) and (B) by
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Then we know

Theorem 4.1.8 Let (A), (B), (C) be m x n matrizes and « a constant. Then
(1) <A7B> = <BrA>;

(2) (A+B,C)=(A,C)+(B,C);

(3) (aA,B) =a (B, A);

(4)

4) (A, A) > 0 with equality hold if and only if (A) = O,,xn.

Proof (1)-(3) can be gotten immediately by definition. Now calculation shows
that

(A,4) =) a; >0

)
and with equality hold if and only if a;; = 0 for any integers 4,j,1 <¢<m,1 <5 <
n, namely, (4) = Opxn. a
By Theorem 4.1.8, all matrixes of real entries under the inner product form a
Euclidean space. We also generalize some well-known results in Section 3.2 to this

space. The first, Theorem 3.2.1(z) is generalized to the next result.

Theorem 4.1.9 Let (A), (B) be m x n matrizes. Then

and with equality hold only if (A) = X\(B), where X is a real constant.
Proof Tf (A) = \(B), then (A, B)* = X\?(B, B)* = (A, A) (B, B). Now if there
are no constant A enabling (A) = A(B), then (A) — A(B) # Opxn for any real

number \. According to Theorem 2.1, we know that
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Therefore, we find that

namely,

Corollary 4.1.2 For given real numbers a;j,b;;, 1 <i<m,1 <j<n,

(Z az‘jbjj)Q < (Z a?])(z b22])

Now let O be the original point of ﬁ(nh - Ny). Then [O] = Oyxn,,. For
Vp,q € f{(nl, e Ny, we also call 6;) the vector correspondent to the point p simi-
lar to that of Euclidean spaces, Then pg = @)] - O_;;) Theorem 4.1.9 enables us to in-
troduce an angle between two vectors p¢ and @ for points p, q, u, v € f{(nl7 Ce M)

Let p,q,u,v € f{(nl, -+, nm). Then the angle 6 between vectors pg and wd is
determined by

([p] — gl [u] — [v])
VIl = ldl. [p] = laD) {[u] = [v], [u] — o))

under the condition that 0 < 6 < 7.

cosf =

Corollary 4.1.3 The conception of angle between two vectors is well defined.

Proof Notice that

(Ip) = lal, [u] = [])* < ([p) = [a), [p) — [g]) {[u] = [v], [w] = [o])
by Theorem 4.1.9. Thereby, we know that
. () = la), [u] — o) -
= VAl =l o] = D) (] = [, fu] = ])

Therefore there is a unique angle  with 0 < 6 < 7 enabling Definition 2.3 hold. [

For two points p, ¢ in f{(nl, -+, Ny,), the distance d(p, q) between points p and

q is defined to be v/{[p] — [¢], [p] — [g]). We get the following result.
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Theorem 4.1.10 For a given integer sequence ny, Mg, +, N, m > 1 with 0 < ny <

Ng < v+ < Ny, (f{(nl, <o Ny);d) is a metric space.

Proof We only need to verify that each condition for a metric space is hold in

(f{(m7 -+ Ny);d). For two point p, ¢ € ﬁ(nh “++,Ny,), by definition we know that

d(p.q) = V/{[p] — lal. [p] — [g]) = 0

with equality hold if and only if [p] = [g], namely, p = ¢ and

d(p,q) = v/[p] — a]. [Pl — [a) = V/{[a] = [p]. [a] — [p]) = d(q.p)-

Now let u € ﬁ(nl., -+, Ny). By Theorem 4.1.9, we then find that

(d(p, u) + d(u, p))?
[p] — [u], [p) — [u]) + 2+/([p] — [u], [p] — [u]) ([u] — [q], [u] — [q])

=
+([u] = [d]; [u] = [a])
> ([p) = [ul, [p] = [u]) +2([p] — [u], [u] = [a]) + {[u] = [a], [u] = [a])
= (pl = lal. [p] = la)) = &*(p. q).
Whence, d(p,u) + d(u,p) > d(p,q) and (R(nq, -, np,); d) is a metric space. O

4.1.3 Decomposition Space into Combinatorial One. As we have shown in
Subsection 4.1.2; a combinatorial fan-space é(nl, Ng, "+, Ny) can be turned into a
Euclidean space R™ with n = m+ Z(n, m). Now the inverse question is that for a
Euclidean space R", weather there is a combinatorial Buclidean space &g(ny, -+, M)
of Euclidean spaces R™, R™, --- R"™ such that dimR™ UR™ U---UR" =n?
For combinatorial fan-spaces, we immediately get the following decomposition result

of Euclidean spaces.

Theorem 4.1.11 Let R" be a Fuclidean space, ny,na, -« -, Ny, integers with m <

n; <n for 1 <i<m and the equation

m +Z(ni7ﬁ) =n
-1
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hold for an integer m,1 < m < n. Then there is a combinatorial fan-space f{(nl, Ng,y -+

such that
R" ﬁ(nl,ng, S M)

Proof Not loss of generality, assume the normal basis of R" is & = (1,0,---,0),
& = (0,1,0---,0), -+, & = (0,---,0,1). Then its coordinate system of R™ is
(z1, 22, -+, x,). Since

n—i="Y (n—m),
i=1

choose

Rl = <E17E27 e 7Eﬁl7gﬁl+l7 e 7En1> )

Ry = (61,62, &, Eny 15 €ny42, 1 Eng)
R3 = <El7g27 e 767?17€’n,2+17€n2+27 e 7En3> ;
........................... ;

Rm = <E17€27 e ag’r/fl7g71,n,1+17€n,n,1+27 e 7Enm> .

m

Calculation shows that dimR; = n; and dim( (] R;) = m. Whence ﬁ(nl, Ng, Ny

i=1
is a combinatorial fan-space. By Definition 2.1.3 and Theorems 2.1.1, 4.1.8 — 4.1.9,
we then get that

RTL = ﬁ(nl7n2> te '7nm)-

O
For an intersection graph G of sets X,,,v € V(G), there is a natural labeling
0p with Op(u,v) = | X, N X,| for Y(u,v) € E(G). This fact enables us to find an

intersecting result following, which generalizes a result of Erdés et al. in [EGP1].



Sec.4.2 Combinatorial Manifolds 171

Theorem 4.1.12 Let GF be an edge labeled graph on a connected graph G with label-
ing O : E(G) — [1,1]. If n,,v € V(G) are given integers withn, > > 0g(v,u),

uENG(v)

then there are sets X,,v € V(G) such that | X,| = n, and | X, N X,| = 0(v,u) for
v e V(G), u € Ng(v).

Proof For (v,u) € E(G), construct a finite set

—

(’U, u) = {(Uv u)lv (’U, u)27 ) (Uv u)f)E(%U)}'

Now we define

Xv:( U @)U{I17I27"'7Ic}7

uwENG(v)
for Vv € V(G), where ¢ = n, — >, 0g(v,u). Then we find that these sets
u€NG(v)
Xy, v € V(G) satisty | X,| = ny, | XoNX,| = 0g(v,u) for Vo € V(G) and Vu € Ng(v).
This completes the proof. O

As a special case, choosing the labeling 1 on each edge of G in Theorem 4.1.12,

we get the result of Erdds et al. again.

Corollary 4.1.4 For any graph G, there exist sets X,,v € V(G) with the intersection

graph G, i.e., the minimum number of elements in X,,v € V(Q) is less than or equal

to e(G).

Calculation shows that

JURIED SRS s

veV(G) veV(G) (v,u)€E(G)
in the construction of Theorem 4.1.12, we get a decomposition result for a Euclidean

space R" following.

Theorem 4.1.13 Let G be a connected graph and

n = Z Ny — % Z N (v,u)

veV(G) (v,u)€E(GQ)

for integers ny, ny > > Og(v,u),v € V(G) and npw > 1, (v,u) € E(G). Then
u€ENG(v)
there is a combinatorial Euclidean space &g(ny,,v € V(Q)) of R™, v € V(G) such

that R" = &g(n,, v € V(Q)). O
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§4.2 COMBINATORIAL MANIFOLDS

4.2.1 Combinatorial Manifold. For a given integer sequence ny, ng, -« -, iy, m >
1 with 0 < ny < ng < -+ < Ny, a combinatorial manifold M is a Hausdorft space
such that for any point p € M, there is a local chart (U, ¢,) of p, i.e., an open neigh-
borhood U, of p in M and a homoeomorphism wp Uy — R(n1(p), na(p),- -, M) (D)),

a combinatorial fan-space with

{nl(p),ng(p), o '7”5(p)(p)} - {n17n27 o '7nm}7

and

U~{nl(p)7n2(p)7 e 7ns(p)(p)} = {nhn?u B nm}7

denoted by M(nl, Ng, "+, Ny OF M on the context, and

A= {(UP7 (1‘912)|p € ]\/I(nlvn% T nm))}
an atlas on M| (n1,n2,-++,ny). The maximum value of s(p) and the dimension
s(p)
5(p) = dim( ) R™®) are called the dimension and the intersectional dimension of
i=1

M(nl, Ng, -+, Ny) at the point p, respectively.

A combinatorial manifold M is finite if it is just combined by finite manifolds
with an underlying combinatorial structure G without one manifold contained in
the union of others. Certainly, a finitely combinatorial manifold is indeed a combi-
natorial manifold.

Two examples of such combinatorial manifolds with different dimensions in R?
are shown in Fig.4.2.1, in where, (a) represents a combination of a 3-manifold, a

torus and 1-manifold, and (b) a torus with 4 bouquets of 1-manifolds.

(a) (b)

Fig.4.2.1
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By definition, combinatorial manifolds are a generalization of manifolds by a
combinatorial speculation. However, a compact n-manifold M"™ without boundary

is itself a combinatorial Euclidean space &g (n, - -, n) of Euclidean spaces R" with
——
m
an underlying structure G shown in the next result.

Theorem 4.2.1 A compact n-manifold M™ without boundary is homeomorphic to

a combinatorial Euclidean space &g(n,---,n) of spaces R", where G is dependent
——
m
on M™.
Proof Let

A = {(Up7(,ﬁp)| Pp - Up - R",Vp S M"}

be an atlas of M". By definition, M" is compact. Whence, there is an atlas of M"

with only finite charts, i.e., there is an integer 1 < m < 400 such that
A = {(Us, ) |1 <0 < m}

is a finite atlas on M™. Therefore, we can define an underlying combinatorial struc-

ture G by
V(G) ={U;, 1 <i<m},
E(G) ={(Us, UDIUiNU; # 0,1 < i # j < m}.

Then we get a combinatorial manifold M (n) underlying the graph G.
Now we can also define a combinatorial Euclidean space &g (n, - -+, n) of spaces
——
R" by /
V(G) ={¢i(U3),1 <i<m},
E(G) = {(@i(Ui), p;U))| if i(Ui) Np;(U;) # 0,1 < i # j < m}.
Notice that ¢;(U;) ) ¢;(U;) # 0 if and only if U; (N U; # 0. We know that

]AV[/(n) = &q(n,---,n).

This completes the proof. g

By definition, a finitely combinatorial manifold M (n1,ng, -+, Ny is provided
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with a combinatorial structure G. We characterize its structure by applying vertex-
edge labeled graphs on the conception of d-connectedness introduced for integers
d > 1 following.

Definition 4.2.1 For two points p,q in a finitely combinatorial manifold M(nh ng,
e Ny), if there is a sequence By, Ba, - -+, By of d-dimensional open balls with two
conditions following hold.

(1)B; C M(m,m, e Ny) for any integeri,1 <i < s and p € By, q € Bs;

(2) The dimensional number dim(B; () Biy1) > d for Vi,1 <i<s—1.
Then points p, q are called d-dimensional connected in ]\7(711, N, Ny) and the se-
quence By, By, - -+, B, a d-dimensional path connecting p and q, denoted by P%(p, q).

If each pair p, q of points in the finitely combinatorial manifold ]W(nl., N,y Ny
is d-dimensional connected, then M(nl, N, -+, Ny) s called d-pathwise connected

and say its connectivity> d.

Not loss of generality, we consider only finitely combinatorial manifolds with
a connectivity> 1 in this book. Let M(nl,ng, -+ ny) be a finitely combinato-
rial manifold and d,d > 1 an integer. We construct a vertex-edge labeled graph
Gd[ﬂ(nl,ng, -+ ny)] by

V(Gd[]f\/f(nhng7 ceng)]) =W U Va,

where Vi = {n; — manifolds M"™ in M(nl,n2,~--,nm)|1 < i< m}and Vy =
{isolated intersection points Oy, pmy of M™, M™ in M(n17n2,~--,nm) for 1 <

i,7 < m}. Label n; for each n;-manifold in V; and 0 for each vertex in V5 and

B(GM(ni,ny, - . n)]) = B | Ba,

where E; = {(M", M") labeled with dim(M"™ (| M™) | dim(M™ (\M™) > d,1 <
i,5 <m} and Ey = {(Oppri pmi s M™), (Oppri pgmi, M) labeled with 0[A™ tangent
M?"i at the point Opm; ymi for 1 <, < m}.

For example, these correspondent labeled graphs gotten from finitely combina-
torial manifolds in Fig.4.2.1 are shown in Fig.4.2.2, in where d = 1 for (a) and (b),
d = 2 for (¢) and (d). Notice if dim(M™ N M") < d — 1, then there are no such
edges (M™, M") in G4[M (ny,na, - -+, nm)).
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(©)
Fig.4.2.2

Theorem 4.2.2 Let Gd[]/t\f/(nl.,ng, <o ny)] be a labelled graph of a finitely combi-
natorial manifold M(nl, Ng, "+, Ny). Then

(1) Gd[M(nl,ng, <o )] is connected only if d < ny.

(2) there exists an integer d,d < ny such that Gd[ﬁ(nl,ng, ce )] is con-

nected.

Proof By definition, there is an edge (M", M") in G*[M(ny,ng, - - -, ny)] for
1 < 4,7 < m if and only if there is a d-dimensional path P%(p,q) connecting two
points p € M™ and ¢ € M™. Notice that

(P*(p,q) \ M™) C M"™ and (P(p,q) \ M") C M™.
Whence,

d < min{n;, n;}. (4.2.1)

Now if G[M (ny, ny, - - -, ny)] is connected, then there is a d-path P(M™, M™)
connecting vertices M™ and M"™ for VM™ M"™ € V(Gd[ﬁ (n1,n9,- -, nm)]). Not

loss of generality, assume

P(M™, M™) = M™ M M* - - M- M™.

Then we get that

d < min{n;, s1, 82, -+, $4_1, 1} (4.2.2)
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by (4.2.1). However, by definition we know that

U {nl(p)7n2(p)7 Tt ns(p)(p)} = {nh Ng, -, nm}' (423)

pEM

Therefore, we get that

d < min( U {n1(p), n2(p), -, Nery(P)}) = min{ny, no, - -+, Ny } =11
peM
by combining (4.2.2) with (4.2.3). Notice that points labeled with 0 and 1 are always
connected by a path. We get the conclusion (1).

For the conclusion (2), notice that any finitely combinatorial manifold is al-
ways pathwise 1-connected by definition. Accordingly, G* []T/f (n1,na, -+, ny,)] is con-
nected. Thereby, there at least one integer, for instance d = 1 enabling G [M (n1, na,

-, Nyy)] to be connected. This completes the proof. a

According to Theorem 4.2.2, we get immediately two corollaries following.

Corollary 4.2.1 For a given finitely combinatorial manifold M, all connected graphs

G M) are isomorphic if d < ny, denoted by G*[M].

Corollary 4.2.2 If there are k 1-manifolds intersect at one point p in a finitely

combinatorial manifold M, then, there is an induced subgraph K*+' in GL[M].

Now we define an edge set E4(M) in GE[M] by

EY(M) = B(G[M]) \ E(G*'[M)).

Then we get a graphical recursion equation for graphs of a finitely combinatorial

manifold M as a by-product.

Theorem 4.2.3 Let M be a finitely combinatorial manifold. Then for any integer

d,d > 1, there is a recursion equation

G M) = GUM] — E%(M)
for labeled graphs of M.

Proof It can be obtained immediately by definition. d
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Now let H(ny,ng, - - -, np) denote all finitely combinatorial manifolds M (nq, na,
o+ Np) and G[0, n,,] all vertex-edge labeled graphs G* with 6, : V(GF)U E(G*) —
{0,1,--+,n;} with conditions following hold.

(1)Each induced subgraph by vertices labeled with 1 in G is a union of complete
graphs and vertices labeled with 0 can only be adjacent to vertices labeled with 1.

(2)For each edge e = (u,v) € E(G), 12(e) < min{r (u), 71 (v)}.

Then we know a relation between sets H(ny, ng, - -+, ny,) and G([0, 1], [0, ny))
following.
Theorem 4.24 Let 1 < ny < ny < -+ < ny,m > 1 be a given integer se-
quence. Then every finitely combinatorial manifold M € H(ny,ng, -+, ny) de-

fines a vertez-edge labeled graph G([0,n.,]) € G[0,ny,]. Conversely, every vertex-
edge labeled graph G([0,n,]) € G[0,n,] defines a finitely combinatorial manifold
M e H(ny,ng, -+, nm) with a 1 — 1 mapping 6 : G([0,ny]) — M such that 0(u)
is a O(u)-manifold in M, m(u) = dimf(u) and n(v,w) = dim(0(v)(0(w)) for
Vu € V(G([0,n,,])) and Y(v,w) € E(G(]0,nm])).

Proof By definition, for VM € H(ny,ng, - -+, ny) there is a vertex-edge labeled
graph G([0,n,]) € G([0,n,,]) and a 1 — 1 mapping 6 : M — G([0,ny)) such that
O(u) is a O(u)-manifold in M. For completing the proof, we need to construct a
finitely combinatorial manifold M € H(ny,ny, -, ny) for YG([0,nm]) € G[0, ny)
with 7 (u) = dimf(u) and (v, w) = dim(f(v) () 6(w)) for Vu € V(G([0,n,,))) and
V(v,w) € E(G([0,ny])). The construction is carried out by programming following.

STEP 1. Choose |G([0, 7)) — |Vo| manifolds correspondent to each vertex u with
a dimensional n; if 71 (u) = n;, where Vo = {ulu € V(G([0,n,,])) and 71 (u) = 0}.
Denoted by V5 all these vertices in G([0,n,,]) with label> 1.

STEP 2. For Yu; € V5q with 7 (uq) = n;,, if its neighborhood set N ((o,n,.])(11)
N Va1 = {v}, 02, ,1)f(u1)} with 7, (v]) = nyy, 7 (V) = g, -+, TI(Uf(ul)) = Ns(ur)s
then let the manifold correspondent to the vertex u; with an intersection dimension
75(u1v}) with manifold correspondent to the vertex vi for 1 < i < s(u;) and define

a vertex set Ay = {u;}.

STEP 3. If the vertex set A, = {ug, ug, -+, } C V51 has been defined and V5 \
A # 0, let uyg € Vor \ A with a label Ny, Assume
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(Ne(omn () ([ Var) \ A = {vfy, 07, o)

: 1y 2 ) — s(uipa)y _
with 71 (vl ) = nugnn T(0) = nige, - om(uy™) = Nigtstu,,)- Then let the

manifold correspondent to the vertex u; 1 with an intersection dimension 73 (u;4 10} 1)
with the manifold correspondent to the vertex v, ;,1 < ¢ < s(wq1) and define a

vertex set Ay = Ay {41}

STEP 4. Repeat steps 2 and 3 until a vertex set A; = V5 has been constructed.
This construction is ended if there are no vertices w € V(G) with 7 (w) = 0, i.e.,

V51 = V(G). Otherwise, go to the next step.

STEP 5. For Vw € V(G([0,n,,))) \ Vo1, assume Neqon,))(w) = {wr, wa, -+, we}.
Let all these manifolds correspondent to vertices wi, ws, - -+, w, intersects at one

point simultaneously and define a vertex set A}, = A, | J{w}.

STEP 6. Repeat STEP 5 for vertices in V(G([0,n,,])) \ V51. This construction is

finally ended until a vertex set Ay, , = V(G[nq,ns, - - -, ny]) has been constructed.

A finitely combinatorial manifold M correspondent to G([0,n)) is gotten when
Ay, has been constructed. By this construction, it is easily verified that M e
H(ni,ng, -+, ny) with 71(u) = dimf(u) and (v, w) = dim(d(v) () 0(w)) for Vu €
V(G([0,n,,])) and V(v,w) € E(G([0,ny,])). This completes the proof. O

4.2.2 Combinatorial Submanifold. A subset S of a combinatorial manifold
M is called a combinatorial submanifold if it is itself a combinatorial manifold with
GY[S] < G*[M]. For finding some simple criterions of combinatorial submanifolds,
we only consider the case of F : M — N mapping each manifold of M to a man-
ifold of N, denoted by F' : Ml —1 N, which can be characterized by a purely
combinatorial manner. In this case, M is called a combinatorial in-submanifold of
N.

For a given vertex-edge labeled graph G = (V¥, E¥) on a graph G = (V, E), its
a subgraph is defined to be a connected subgraph I' < G with labels 7 |r(u) < 71|¢(u)
for Vu € V(I') and 72|r(u,v) < 7o|g(u,v) for V(u,v) € E(T), denoted by I't < GF.
For example, two vertex-edge labeled graphs with an underlying graph K, are shown
in Fig.4.2.3, in which the vertex-edge labeled graphs (b) and (c) are subgraphs of
that (a).
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4 9
2 3 1
4 4
3 5 4 3 5 4
(a) (b) (c)
Fig.4.2.3

For characterizing combinatorial in-submanifolds of a combinatorial manifold
M , we introduce the conceptions of feasible vertex-edge labeled subgraph and labeled

quotient graph in the following.

Definition 4.2.2 Let M be a finitely combinatorial manifold with an underly-
ing graph GL[M]. For VM € V(GL[M]) and UL C Newian (M) with new labels
(M, My) < Tl gy (M, M) for VM, € U, let J(M;) = {M|dim(M 0 M) =
T2(M, M;), M! C M;} and denotes all these distinct representatives of J(M;), M; €
UL by 7. Define the index o5;(M : U") of M relative to U™ by

oM+ U") = piytaim( [J (M)
M'eJ

A vertez-edge labeled subgraph T of GF[M] is feasible if for Yu € V(I'),

m1lr(u) > ogz(u : Nro(u)).
Denoted by I'* <, G* [M] a feasibly vertes-edge labeled subgraph 'V of GL[M],

Definition 4.2.3 Let M be a finitely combinatorial manifold, £ a finite set of
manifolds and F} : M — £ an injection such that for YM € V(GE[M)), there
are no two different Ny, Ny € £ with FL(M) N N, # 0, F{(M)N Ny # 0 and
for different My, My € V(GE[M)) with F}(My) C Ny, F (My) C Na, there exist
N{, N, € £ enabling that Ny N N # 0 and Ny N Ny # 0. A vertez-edge labeled

quotient graph GL[]f\?]/Fl1 is defined by
V(GF[M]/F}) = {N c Z|3M € V(G*[M]) such that F}(M) C N},
E(GEM]/FL) = {(Ny, Ny)|3(My, My) € E(GE[M]), Ny, Ny € Lsuch that
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FY(M;) C Ny, F}(My) C Ny and F}(My) N F(M,) # 0}

and labeling each vertex N with dimM if F{(M) C N and each edge (N1, No) with
dlm(ﬂﬂ n ]\/12) Zf Fl(M]) C N],Fll(Mg) C N2 and Fll(Ml) N Fll(]\lg) ?é @

Then, we know the following criterion on combinatorial submanifolds.

Theorem 4.2.5 Let M and N be finitely combinatorial manifolds. Then M is a
combinatorial in-submanifold of N if and only if there exists an injection F on M

such that
G*[M]/F} <, N.

Proof 1If M is a combinatorial in-submanifold of N , by definition, we know
that there is an injection F : M — N such that F(M) € V(G[N)) for YM €
V(GE[M]) and there are no two different Ny, Ny € £ with F}(M) N Ny # 0,
F}(M)N Ny # 0. Choose F}' = F. Since F is locally 1 — 1 we get that F(M; N
M) = F(M,) N F(M,), i.e., F(My, M) € E(G[N]) or V(G[N]) for ¥(M;, M,) €
E(GL[M}) Whence, GL[M}/Ff < GY[N]. Notice that GL[M] is correspondent with
M. Whence, it is a feasible vertex-edge labeled subgraph of GL[]V | by definition.
Therefore, GE[M]/F} <, G[N].

Now if there exists an injection F} on M, let T* <, GE[N]. Denote by T
the graph GL[N]\ I'Y, where GE[N]\ I'¥ denotes the vertex-edge labeled subgraph
induced by edges in GE[N]\ ' with non-zero labels in G[N]. We construct a subset
M* of N by

M =N\( U mUc U o)

M'eV(T) (M, M")eE(T)
and define M = F11_1(2\7 *). Notice that any open subset of an n-manifold is also

a manifold and F}""'(I'F) is connected by definition. It can be shown that M is a

finitely combinatorial submanifold of N with GL[M]/Ff ~ 7l O

An injection F} : M — & is monotonic if N; # Ny if F}(M;) C Ny and
F} (M) C Ny for VM, My € V(GL[M]),Ml # M,. In this case, we get a criterion

for combinatorial submanifolds of a finite combinatorial manifold.
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Corollary 4.2.3 For two finitely combinatorial manifolds ]AVZ, ]V, M s a combina-
torial monotonic submanifold of N if and only if GL[M] = GL[]V}.

Proof Notice that F! = 1! in the monotonic case. Whence, GL[M]/F} =
GE[M]/1} = GL[M]. Thereafter, by Theorem 4.2.9, we know that M is a combina-
torial monotonic submanifold of N if and only if GL[M} <, GL[N]. a

4.2.3 Combinatorial Equivalence. Two finitely combinatorial manifolds ]fVYl (nq,
Mo,y M), Mz(kh ko, «-+, k) are called equivalent if these correspondent labeled

graphs

GHMy(ny,ma, -+ )] = GE[My(ky, ko, - ).

Notice that if M, (n1,n9, N ), ]Wz(kl, ks, -+, k;) are equivalent, then we can
get that {ni,ng, -, nm}t = {k1,ka, -+, k} and GL[J\Z] =) GL[]\;[/Q]. Reversing this
idea enables us classifying finitely combinatorial manifolds in H%(ny, ng, - - -, M) by

the action of automorphism groups of these correspondent graphs without labels.

Definition 4.2.4 A labeled connected graph G* [M(TLl,n27 o Ny)] s combinatori-
ally unique if all of its correspondent finitely combinatorial manifolds M(nl, Ng,y "+ Ny

are equivalent.

Definition 4.2.5 A labeled graph Gny,na,- -,y is called class-transitive if the
automorphism group AwtG is transitive on {C(n;),1 < i < m}, where C(n;) denotes

all these vertices with label n;.

We find a characteristic for combinatorially unique graphs following.

Theorem 4.2.6 A labeled connected graph Glni,na, -+, ny,] is combinatorially

unique if and only if it is class-transitive.

Proof For two integers 4, 7,1 < i,j < m, relabel vertices in C(n;) by n; and
vertices in C(n;) by n; in G[ny,ng,---,ny). Then we get a new labeled graph
G'[n1,ng, -+ ] In Glng,ng, -+, nyl. According to Theorem 4.2.4, we can get
two finitely combinatorial manifolds ]AV[/l(nl, Ng, "+, Ny) and ]’\72(/{1., ko, -+, ki) cor-
respondent to G[ny, na, -+ -, ny] and G'ng, na, -+ -, Ny .

Now if G[ny, na, - - -, ny,) is combinatorially unique, we know Jvfl(nl, Mg,y Ny

is equivalent to ]%(kl, kg, -+, ki), i.e., there is an automorphism 6 € AutG such that
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C%n;) = C(ny) for Vi, j,1 <i,j <m.

On the other hand, if G[ny,ng,---,ny] is class-transitive, then for integers
i,J,1 < 4,5 < m, there is an automorphism 7 € AutG such that C7(n;) = C(n;).
Whence, for any re-labeled graph G'[ny, na, -+, npy], we find that

G[n17n27 o '7nm] = G,[nlan% o '7nm]7

which implies that these finitely combinatorial manifolds correspondent to G[n, ng,

o ) and G'[ng, na, - - -, Ny, are combinatorially equivalent, i.e., G[ny, na, -+, M)
is combinatorially unique. g
Now assume that for parameters ¢;1, ¢, - -, t;s;, We have known an enufunction

. — ti1 .t tis
Coyri[vir, Tig, - -] = g ni(tin, i, -+ o tis) 0 055 - oo g

L1tz tis
for n;-manifolds, where n;(t;1, t;2, - - -, t;s) denotes the number of non-homeomorphic
n;-manifolds with parameters t;1, %2, - -, t;s. For instance the enufunction for com-

pact 2-manifolds with parameter genera is
Cylz](2) =1+ 3 2a?.
p>1

Consider the action of AutGlny, na, -« -, ny) on G[ny, ng, - - -, ny). If the number
of orbits of the automorphism group AutG[ni,ng, - - -, ny) action on {C(n;),1 < i <
m} is my, then we can only get 7! non-equivalent combinatorial manifolds corre-
spondent to the labeled graph G[ni,ng,- -+, n,] similar to Theorem 2.4. Calcula-
tion shows that there are [! orbits action by its automorphism group for a complete
(s1+ s2 + -+ + s)-partite graph K (k*, k32, -+, k"), where k;* denotes that there
are s; partite sets of order k; in this graph for any integer 4,1 < i < [, particularly,
for K(n1,ng, -+, ny) with n; # n; for 4,5,1 < ,j < m, the number of orbits action
by its automorphism group is m!. Summarizing all these discussions, we get an enu-
function for these finitely combinatorial manifolds M (n1,ng, -+, ny,) correspondent

to a labeled graph G[ny,ng, -, ny] in G(ny, na, -+ -, ny,) with each label> 1.

Theorem 4.2.7 Let G[ny,ng, -+, 0y be a labelled graph in G(ny,na, - -+, ny) with
each label> 1. For an integeri, 1 <i < m, let the enufunction of non-homeomorphic
n;-manifolds with given parameters ty,ta,- -, be Cypmi [T, T2, - - *] and mo the num-

ber of orbits of the automorphism group AutG[ny, na, - -+, ny] action on {C(n;),1 <
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i < m}, then the enufunction of combinatorial manifolds ]V[/(nl,nz., Ce Ny COTTE-

spondent to a labeled graph G[ny,na, -, npy] is

C#(T) —Wo'HCMn [Ti1, Zia, - -],

=1
particularly, if Gny,na, - -+, np] = K(kJ* k32, -+ - ki) such that the number of par-
tite sets labeled with n; is s; for any integer i,1 < i < m, then the enufunction
correspondent to K (k' k32, -+ kim) is

C#(@) = m! H Cupmi i1, Tig, - -]

i=1

and the enufunction correspondent to a complete graph K,, is

Cy(@) = H Cumi[min, vz, - -]

i=1
Proof Notice that the number of non-equivalent finitely combinatorial manifolds

correspondent to Gny, na, -« -, Ny is

o Hni(tih tio, - tis)
i=1

for parameters t;1, t;2, -, 15, 1 < i < m by the product principle of enumeration.
Whence, the enufunction of combinatorial manifolds M (n1,n9,- -+, ny) correspon-

dent to a labeled graph Glny, na, -+, ny,] is

m
Cyu@) = Z (WOHni(tihtizw" is Hiﬂfflff”' e
i=1

ti1stio, - tis

m
= WO!HCM"z[xilymi27"']~ s

i=1

4.2.4 Homotopy Class. Denote by f ~ g two homotopic mappings f and g. Two
finitely combinatorial manifolds ]\7(1{1, ko, k), M(nl, Mg, -+, Ny) are said to be

homotopically equivalent if there exist continuous mappings

f : H(kjlak% o ’7k1) - ]f\/\[/(nhn%’ : '>nm)7
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Qiﬁ(nhn%"nnm)—’M(kl,k%"wkl)

such that gf ~identity: M(kl,k2,~~,kl) — M(kl,k2,~--,kl) and fg ~identity:
M(ny,ng, - ) = M(ny,na, - ).
For equivalent homotopically combinatorial manifolds, we know the following

result.

Theorem 4.2.8 Let M(nl, Ngy -y M) and M(lﬁ, ko, -+, k;) be finitely combinato-
rial manifolds with an equivalence w : GL[M(nl, Na, -y Ny)] — GL[M(kl, ko, k).
If for YMy, My € V(GL[M(n17n27-~-,nm)]), M; is homotopic to w(M;) with ho-
motopic mappings fu, + My — w(M;), gu, © w(M;) — M; such that far|a,n o, =
Jag ey 90| vy = 9o | 0 ay providing (Mg, M) € E(C?L[]Tj(nl7 No,y -+ Ny )])
for 1 <i,5 <m, then JT/f(nl, Na, -+, Nm) is homotopic to M(kl, ko, k).

Proof By the Gluing Lemma, there are continuous mappings
fiM@n,ng, - ) — Mk ke, k)
and
g M(ky, ky, - k) — M(ny,ng, -+ np)
such that
Sl = far and gloar) = goan)
for VM € V(GL[ZW(nl, Na, -, Ny)]). Thereby, we also get that
gf ~ identity : M(ky, ko, -, ki) — M(ky, ks, -+ k)
and
fg =~ identity : M(nl,ng, e Nyy) — M(nl,m, Ce Ngy)
as a result of
gy fu =~ ddentity : M — M,
and
fugn ~ identity : w(M) — w(M)
for VM € V(GL[]W(nl,nz, o)) a
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4.2.5 Euler-Poincaré Characteristic. It is well-known that the integer

[e%¢]

XO) =Y (~1)a

=0

with «; the number of i-dimensional cells in a C'W-complex 9 is defined to be the
Euler-Poincaré characteristic of this complex. In this subsection, we get the Euler-
Poincaré characteristic for finitely combinatorial manifolds. For this objective, define

a clique sequence {C1(i)};>1 in the graph GL[M | by the following programming.
STEP 1. Let Cl(GL[M]) = ly. Construct

Clly) = {K{°, K¥, - -,K;°|Kf° - GL[M} and K n KJZ-“ =0,
or a vertex € V(G¥M]) for i # 5,1 <4, < p}.

STEP 2. Let Gy = |J K'and CI(GF[M]\ G,) = l;. Construct
Klecu(l)
Cl(ly) = {Kil7Ké17 . ,.7[(21‘[(;1 - GL[m and Kfl ﬂKél =0
or a vertex € V(G¥[M]) for i # j, 1 <i,j < q}.

STEP 3. Assume we have constructed Cl(l;—;) for an integer k£ > 1. Let Gy =

U K% and CI(GE[M]\ (G1U---UGy)) = I,. We construct
K'-1¢Ci(1)
Cl(ly) = {K}¥ Ky, - KFK" = GF[M] and Ki* 0 K =0,
or a vertex € V(GF[M)]) for i # j,1 <i,j <r}.

STEP 4. Continue STEP 3 until we find an integer ¢ such that there are no edges
ot

By this clique sequence {C(i)};>1, we can calculate the Euler-Poincaré char-

acteristic of finitely combinatorial manifolds.

Theorem 4.2.9 Let M be a finitely combinatorial manifold. Then

XM= > > (=) (M, () Me)

KFeCU(k),k>2 My, €V (Kk)1<j<s<k
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Proof Denoted the numbers of all these i-dimensional cells in a combinatorial
manifold M or in a manifold M by & and a;(M). If GF []Tf ] is nothing but a

complete graph K* with V(GF[M]) = {My, My, ---, My}, k > 2, by applying the

inclusion-exclusion principe and the definition of Euler-Poincaré characteristic we

get that
XM = Y (-1
=0
= i(—l)i > (=1 oMy, () M)
=0 M;; eV(KF*),1<j<s<k
= > (D" (=Day(M;, () Mz
M; €V (KF)1<j<s<k i=0

= (=1 (M, () () M)

for instance, x (M) = x(M;)+x(My) —x(M; N My) if GE[M] = K? and V(GE[M]) =

{M,, M,}. By the definition of clique sequence of GX[M], we finally obtain that

X(M)= Y > (=)™ (M () () M)
KkeCl(k),k>2 MijEV(K"),lgjgsgk
O

If GL{M] is just one of some special graphs, we can get interesting consequences
g

by Theorem 4.2.14.

Corollary 4.2.4 Let M be a finitely combinatorial manifold. If GE[M) is K3-free,
then

XM= > (M) - > X(My () Ms).

MeV(GE[M]) (M1, M)eE(GL[M])
Particularly, if dim(M; () Ms) is a constant for any (M, M) € E(GL[]V[]),
then

XM = > (M) = x(My () My)|E(GH[M))].
MeV(GE[M])



Sec.4.3 Fundamental Groups of Combinatorial Manifolds 187

Proof Notice that GE[M] is K3-free, we get that

X(M) = ST (M) + x(My) — x(Mi () M)

(M1, M2)eE(GL[M])

> M) +x(M) - > x(Mi[) M)

(M1, My)€E(GL[M]) (M1,M)€E(GL[M])
= > (M- > x(My(My).
MeV/(GL[M)) (M1,Mz)€E(GE[M])

O
Since the Euler-Poincaré characteristic of a manifold M is 0 if dimM = 1(mod2),

we get the following consequence.

Corollary 4.2.5 Let M be a finitely combinatorial manifold with odd dimension

number for any intersection of k manifolds with k > 2. Then

X(M) = " x(M).

MeV(GL[M))

§4.3 FUNDAMENTAL GROUPS OF

COMBINATORIAL MANIFOLDS

4.3.1 Retraction. Let ¢ : X — Y be a continuous mapping from topological
spaces X to Y and a,b: I — X be paths in X. It is readily that if a ~ b in X, then
©([a]) = ¢([b]) in Y, thus ¢ induce a mapping ¢, from 7(X, zy) to 7(Y, ¢(x¢)) with
properties following hold.

() If [a] and [b] are path classes in X such that [a] - [b] is defined, then ¢, ([a] -
[6]) = @(la]) - u([b]);

(i0) @i(€x) = €4, () for Vo € X;

(i1i) ¢«([a]™) = (pu([a]))

(w) If ¢ : Y — Z is also a continuous mapping, then (¢¥¢). = ¥.p.;

(v) If  : X — X is the identity mapping, then @, ([a]) = [a] for V[a] € 7(X, o).
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Such a o, is called a homomorphism induced by ¢, particularly, a isomorphism

induced by ¢ if ¢ is an isomorphism.

Definition 4.3.1 A subset R of a topological space S is called a retract of S if there
exists a continuous mapping o : S — R, called a retraction such that o(a) = a for
Va € R.

Now let 0 : S — R be a retraction and ¢ : R < S a inclusion mapping. For any

point z € R, we consider the induced homomorphism

o, :7m(S,x) = (R, x), i.:7(R,z)— (S, z).
Notice that oi =identity mapping by definition, which implies that o,i, is an identity
mapping of the group 7(R, zo) by properties (iv) and (v) previously.

Definition 4.3.2 A subset R of a topological space S is called a deformation retract

of S if there exists a retraction o : S — R and a homotopy f : S x I — S such that

f(z,0) =2, f(z,1)=o0(z) for VzeS,

fla,t)=a for Ya€eR, tel.

Theorem 4.3.1 If R is a deformation retract of a topological space S, then the
inclusion mapping i : R — S induces an isomorphism of m(R, x¢) onto 7(S,zq) for
Vzy € R, i.e., m(R,x¢) = (S, xo)

Proof As we have just mentioned, o,i. is the identity mapping. By definition,
io : X — X is an identity mapping with io(zo) = zo. Whence, (i0). = i.0, is the
identity mapping of 7(S, zg), which implies that ¢, is an isomorphism from 7 (R, ()
to m(S, xp). O

Definition 4.3.3 A topological space S is contractible to a point if there exists a

point xg € S such that {xo} is a deformation retract of S.
Corollary 4.3.1 A topological space S is simply connected if if it is contractible.

Combining this conclusion with the Seifert and Van-Kampen theorem, we de-

termine the fundamental groups of combinatorial manifolds M in some cases related

with its combinatorial structure GE[M] in the following subsections.
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4.3.2 Fundamental d-Group. Let a finitely combinatorial manifold M(nl, no,
-+ ny,) be d-arcwise connected for some integers 1 < d < n. Similar to fundamen-
tal group, we consider fundamental d-groups of finitely combinatorial manifolds in

this subsection.

Definition 4.3.4 Let M(nl., N, "+, Ny) be a finitely combinatorial manifold of d-
arcwise connectedness for an integer d,1 < d < ny and Vzy € M(nh Ng,**,Mm), @
fundamental d-group at the point xy, denoted by Wd(ﬁ(nh N, N ), To) 15 defined

to be a group generated by all homotopic classes of closed d-pathes based at xq.

Ifd=1 and M(nl, Mg, -+, Ny) is just a manifold M, we get that

7{(M(ny,na, - -+ ), @) = m (M, ).
Whence, fundamental d-groups are a generalization of fundamental groups in clas-
sical topology.

. . . ,—M\ . .
A combinatorial Euclidean space &g(d, d, - -,d) of R? underlying a combina-

torial structure G, |G| = m is called a d-dimensional graph, denoted by ]de[G] if

(1) Md[G} \ V(Md[G}) is a disjoint union of a finite number of open subsets
€1,€2, -+, em, each of which is homeomorphic to an open ball B¢;
(2) the boundary €; — e; of e; consists of one or two vertices B?, and each pair

(€;, €;) is homeomorphic to the pair (Ed, Sa-1,
The next result is gotten by definition.
Theorem 4.3.2  74(M?[G), z0) = (G, 0), x € G. 0

For determining the d-fundamental group of combinatorial manifolds, an easily

case is the adjunctions of s-balls to a connected d-dimensional graph, i.e., there

exists an arcwise connected combinatorial submanifold Md[G] =< M(nl, N,y Ny
such that
- . ko
M(ny,m, -+, n) \ MY[G] = U U B;;,
=2 j=1

where B, is the i-ball B for integers 1 <4 < k, 1 < j < ;. We know the following

result.
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Theorem 4.3.3 Let M(nl,ng, e Nyy) be a finitely combinatorial manifold under-
lying a combinatorial structure G, Md[G] < M(nh N, -+, Ny) such that

. . koL

M(n1,ng, -+, n) \ MG) = | B,

i=2j=1

7 € M’i[G]. Then

7F1(G7 950)
1 . N
</32]C¥2j52j 1<j< l2>

where ay, is the closed path of By, and B; a path in X with an initial point xo and

7 (M(ni,ng, -, ), o) 2

terminal point on as; .

Proof For any s-ball B,;,1 < j < I, choose one point uso; € Bgj. De-
fine U = ZAV[/(nl,nz, ;) \ {uso; } and V' = By;. Then U, V are open sets and
M(nh Ng,- -+, ny) = UUV. Notice that U,V, VNV = Byj{us,} are arcwise con-
nected and V' simply connected. Applying Corollary 3.1.2 and Theorem 4.3.2, we
get that

d( T . ~ w(G,x0) _ 7(G,zo)
74 (M(n1,n2, -, M), To) @OV ™ i (Bog{ua; D))
Since
Z, if s=2
m1(Bsj{uso, }) = .
{1}, if s>3,
we find that

—~ . m@Gao) i o9
(M (n1,na, -+ ), To) = i1« (m1(Bzj{uz0; }))’ ]

7'(1(6717 .’l]())7 if s > 3.

N
Notice that <il*(7r1(sz{u20]}))>N = <[32]a2]6§jl> . Applying the induction
principle on integers 7,5, 2 < i < k, 1 < j < [;, we finally get the fundamental
d-group of M(nl, Ng, -+, Ny) With a base point x, following, i.e.,

o m1(G,z0)

a4
s ( (nh N2, 7nm)7 ‘TO) <ﬁ2]a2]5{]1|1§j§12>N

This completes the proof. O
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Corollary 4.3.2 Let M(nl,m, - ny) be a finitely combinatorial manifold under-

lying a combinatorial structure G, Md[G] =< ]T/f(nh N, "+, Ny) such that

M(nhm,-- M) \M/d[G UUB“

i>3 =1
7 € Md[G]. Then
ﬂ-d(ﬂ(n17n27 e 7nm)aI0) = ﬂ-l(G7IO)'

Corollary 4.3.3 Let M(nl, Ng, "+, Ny) be a finitely combinatorial manifold under-
lying a combinatorial structure G, Md[G] =< M(nl, N,y M) Such that

M(nlanb" , T \]Lfd UBQ,7
xg € Md[G]. Then

— n(G.o
7 (M(ny,ma, - 0 ), ) = 17(1 0)' -
<521O‘2,,B21 |1 <1< k>

where as, s the closed path of Ba, and (s, a path in X with an initial point xoy and

terminal point on ovo,.

A combinatorial map is a connected graph G cellularly embedded in a sur-
face S([Liu2] and [Maol]). For these fundamental groups of surfaces, we can also

represented them by graphs applying Corollary 4.3.3.

Corollary 4.3.4 Let M be a combinatorial map underlying a connected graph G on

a locally orientable surface S. Then for a point xy € G,
st (G7 :EU)
(Of|f € F(M))™
where F'(M) denotes the face set of M and Of the boundary of a face f € F(M).

7T1(S7 ‘TO) =

We obtain the following characteristics for fundamental d-groups of finitely
combinatorial manifolds if their intersection of two by two is either empty or simply

connected.
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Theorem 4.3.4 Let ]T/[/(nh Ng, -+, Ny) be a d-connected finitely combinatorial man-
ifold for an integer d, 1 < d < ny. IfV(My, M) € E(GL[M(n177L2,~--,nm)]),
My N My is simply connected, then

(1) forVzy € G4, M € V(GL[M(nl,ng, coonm)]) and xop € M,

wl(M(ni,na, ) o) 2 (@D 7 UM, 2ar0)) P (G o),
MeV(GY)
where G4 = Gd[ﬂ(nl,ng, o+ )] in which each edge (My, M) passing through a
given point xpn, € My 0 My, (M, zpp0), 7(G?, 30) denote the fundamental d-
groups of a manifold M and the graph G, respectively and
(2) forVz,y € ]T/f(nl, Mo,y M),

ﬂ-d(ﬁ(nhn?a o '77lm)7l') = ﬂ—d(M(nhn% e 7nm)7y)‘

Proof Applying Corollary 3.1.3, we firstly prove that the fundamental d-groups
of two arcwise connected spaces S; and Sy are equal if there exist arcwise connected
subspaces U,V C S1, U,V C S, such that U NV is simply connected in S; and
UNV ={z} in Sy, such as those shown in Fig.4.3.1.

U NV simply connected in S; UNV ={z}in S>

Fig.4.3.1

In fact, we know that

7T1(S1~, -770) = 7T1(U7 -To)ﬂ'l(V, -?70)
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for xtg e UNV and

m1(S2, 20) = m (U, z9)m(V, 20)

by Corollary 3.1.3. Whence, (51, z9) = m1(S2,20). Therefore, we only need to
determine equivalently the fundamental d-group of a new combinatorial manifold
M*(TL1,7L27---77Lm)7 which is obtained by replacing each pairs M; N My # () in
]T/f(nl, N, -+, Ny) by My N My = {xp, 0, }, such as those shown in Fig.4.3.2.

Txy
X
Y _
Z
Tyz
]V[(nhn%"%nm) ]\/{*(n17n27"'7nm)
Fig.4.3.2

For proving the conclusion (1), we only need to prove that for any cycle C in
M(nl, Na, -+, M), there are elements CM, CM, .. C(M) e (M), ar, az, -+, agGa
€ m(G?) and integers a},b; for VM € V(G?) and 1 < i < (M), 1 < j < ¢(G?) <
B(G9) such that

1(M) o(GY)
C= Z Z ,.,Mc}qujaj(modm
eV (G j=1

and it is unique. Let C1Y, G, -+, Cj ) be a base of (M) for VM € V(G?). Since
C is a closed trail, C' passes through a point )y, even times or it pass through
cycles in G¢. Whence there exist integers kM, 1;,1 <i < b(M),1 < j < 3(G9) and
hp for an open d-path on C such that

b(M) (G
c= Y ZkMCM+Zla]+ZhPP
MeV(GY) i=1 PeA

where hp = 0(mod2) and A denotes all of these open d-paths on C. Now let
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{aM1 <i <UM)} = {EM[EM £ 0 and 1 <i < b(M)},

{b;11 < j <e(GYY = {l]l; #0,1 < j < BGY)}.

Then we get that

M)
C= Z Z alcM ¢ Z bjoj(mod2). (3.4.1)
Mev(Gd) i=1

The formula (3.4.1) provides with us

[Cle( € (M, zm0) @ (G, o).

MeV(Gd)

If there is another decomposition

(M) (G

C= Z ZaMC’MJr Z ba;(mod2),

MeV(Gd) =1

not loss of generality, assume I'(M) < (M) and /(M) < ¢(M), then we know that

(M) (G
Y D @ =aMCM Y (b~ bay =0,
Mev(Gd) i=1 j=1

where o/ = 0if i > I'(M), vy = 0if j/ > ¢(M). Since CM,1 < i < b(M) and
aj,1 < j < B(G?) are bases of the fundamental group (M) and 7(G¢) respectively,
we must have

aM = a1 <i<IU(M)andb; =b;,1<j<c(G).

Whence, C can be decomposed uniquely into (3.4.1). Thereafter, we finally get that

T (M(na g, ), 20) 2 (@ (M, 2a10) @ (G, a0).

MeV(G4)
For proving the conclusion (2), notice that ]\N/[(nl, N, +,Ny) Is arcwise d-
connected. Let P(z,y) be a d-path connecting points z and y in M(nl, Moy« N )-

Define
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wi(C) = PU(z,y)C(P?) "} (,y)

for VC' € M(nl, N, ++,Ny,). Then it can be checked immediately that

Wy : 71-d(j\/\[/(nb7127 e ,’I’Lm)7 I) - ﬂ.d(ﬁ(nh g, -, nm):y)
is an isomorphism. O
A d-connected finitely combinatorial manifold M (ny,n9,-++,ny,) is said to be
simply d-connected if ﬂd(l/v\[/(nl,n}, <+ ny),x) is trivial. As a consequence, we get

the following result by Theorem 4.3.4.

Corollary 4.3.5 A d-connected finitely combinatorial manifold M(nl,ng, Ce M)
1s simply d-connected if and only if

(1) forVM € V(Gd[]v(nl, N, -+, Nm)]), M is simply d-connected and

(2) Gd[ﬁ(nl,ng, <o mm)] is a tree.

Proof According to the decomposition for ﬂd(ﬂ(nhnm “+ M), ) in Theo-
rem 4.3.4, it is trivial if and only if (M) and 7(G%) both are trivial for VM €
V(GU[M (ny,n, -, nm)]), i.e M is simply d-connected and G is a tree. O

Corollary 4.3.6 Let Z/G[/(nh Ng, -+, Ny) be a d-connected finitely combinatorial man-

ifold for an integer d,1 < d < mn;. ForVM € V(GL[M(m,ng, <o), (My, M) €

E(GL[ZfVY(nl7 Na, - M), if M and MyNMy are simply connected, then for xy € G2,
Wd(ﬁ(nl,n27-~~,nm),xo) ~ 7(G? xp).

4.3.3 Homotopy Equivalence. For equivalent homotopically combinatorial

manifolds, we can also find criterions following.

Theorem 4.3.5 If f: M(nl,nz, e ) — M(kl, ko, -+, ki) is a homotopic equiv-

alence, then for any integer d,1 < d <mn; and x € M(nhnb S M),
TU(M(na,ng, -+ n), @) = UMk, b, - k), f().

Proof Notice that f can natural induce a homomorphism

fr 7 (M (ny,na, -+ nm), @) — 7(M(ky, ks, -+ k), f(2))

defined by fr (g9) = (f(g)) for Vg € ﬂd(ﬂ(nl, Na, -+, Nm), ) since it can be easily

checked that fﬂ'(gh) = fﬂ(g)fﬂ(h) for ngh € ﬂd(M(TL17’rL2" ">nm)7-7))~ We OIﬂy
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need to prove that f, is an isomorphism.

By definition, there is also a homotopic equivalence g : M (k1 oy k) —
M(nl, Na, -+, Ny, ) such that g f ~ identity : ]AV[/(m, Na, vy Nyy) — M(nl, Mg,y ) My )
Thereby, g fx = (9f)r = p(identity), :

T (M(ny,ng, -+ ) @) — 7°(M(ni,na, -+, nya), @),

where p is an isomorphism induced by a certain d-path from z to gf(x) in M (n1, na,
-+ Ny,). Therefore, g, f, is an isomorphism. Whence, f, is a monomorphism and
g is an epimorphism.

Similarly, apply the same argument to the homotopy
fg ~ identity : M(kh ko, k) — M(kh ko, ki),
we get that frg. = (fg)r = v(identity),; :
T (M (ky, ko, -+ k), 1) — 75 (M(ky, ko, -+ k), @),

where v is an isomorphism induced by a d-path from fg(x) to = in M(kl, ko, -+ ky).
So g is a monomorphism and f, is an epimorphism. Combining these facts enables
us to conclude that fr : 7%(M(ny, na, - -+, ), @) — 7(M(ky, ka, -+ k), f(x)) is an

isomorphism. O

Corollary 4.3.7 If f : M(nl,ng, e Nyy) — M(k:l, kg, -, k;) is a homeomorphism,
then for any integer d,1 < d < n; and x € M(nl, N2y Nim),s

T (M (ny,ng, - ), @) = 74 M (ky, ko, - k), f(2)).

§4.4 HOMOLOGY GROUPS OF

COMBINATORIAL MANIFOLDS

4.4.1 Singular Homology Group. Let A, be a standard p-simplex [eg, €1, - - -, €],
where ey = 0, e; is the vector with a 1 in the ith place and 0 elsewhere, and S a
topological space. A singular p-simplez in S is a continuous mapping o : A, — S.
For example, a singular 0-simplex is just a mapping from the one-point space Ag

into S and a singular 1-simplex is a mapping from A; = [0,1] into S, i.e., an arc in
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Similar to the case of simplicial complexes, we consider Abelian groups gener-
ated by these singular simplices. Denote by C,(.S) the free Abelian group generated
by the set of all singular p-simplices in .S, in which each element can be written as
a formal of linear combination of singular simplices with integer coefficients, called
a singular p-chain in S.

For a p-simplex s = [ag, a1, -+, a,] in R™, let a(ag, a1, -+, a,) : A, — s be a
continuous mapping defined by «a(ag, a1,- -, a,)(e;) = a; for i = 0,1,---,p, called
an affine singular simplex. For i = 0,1,---,p, define the ith face mapping F;, :

A,_1 — A, to be an affine singular simplex by

F‘ivp = Q(eo,- o a/e\i: ce 'vep)v

where €; means that e; is to be omitted. The boundary do of a singular simplex

o:A,— Sisa (p—1)-chain determined by

p

do = Z(—l)ia oF,,

=0
and extended linearly to a boundary operator Op : Cp(S) — Cp_1(S).

A singular p-chain c is called a cycle if dc = 0 and is called a boundary if there
exists a (p + 1)-chain b such that ¢ = 9b. Similar to Theorem 3.1.14, we also know

the following result for the boundary operator on singular chains.

Theorem 4.4.1 Let ¢ be a singular chain. Then 9(0c) = 0.

Proof By definition, calculation shows that

FipoFjp1=FjpoFi1p

ifi > j. In fact, both sides are equal to the affine simplex a(eg, - - -, €, -+, €;,- -+, €,).

Whence, we know that

-1 p
6(06) = Z H»jO‘OF;’pOFj’p,l

=0

= (— 1)Z+JJOF”,0F”,1+ Z HJUOFZIUOFH,I

0<j<i<p 0<i<j<p—1

=

<.
Il
o
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_ 1yt ] _ _1yiti—1 ) ]
= E (=)o o FyoFjya+ E : (1) ogoFjp0Fi 15
0<j<i<p 0<j<i<p

= 0.

O

Denote by Z,(S5) all p-cycles and B,(S) all boundaries in C,(S). Each of them

is a subgroup of C,(S) by definition. According to Theorem 4.4.1, we find that
Imd,+1 < Kerd,. This enables us to get a chain complex (%’; 9)

Op+1 9
0= o= Cpa(8) 5 () 2 Cpa(8) =+ = 0.

Similarly, the pth singular homology group of S is defined to be a quotient group

H,(S) = Z,(S)/B,(S) = Kerd,/Im0, 1.

These singular homology groups of S are topological invariants shown in the

next.

Theorem 4.4.2 If S is homomorphic to T, then H,(S) is isomorphic to H,(T') for
any wnteger p > 0.

Proof Let f:S — T be a continuous mapping. It induces a homomorphism
fi  Cp(S) — Cp(T) by setting fyo = f oo for each singular p-simplex and then
extend it linearly on C,(S).

Notice that

p

f(00) =Y (1) f oo 0 F,

i=0
We know that fy : Z,(S) — Z,(T) and f; : Bp(S) — By(T). Thereafter, f also
induces a homomorphism f, : H,(S) — H,(T') with properties following, each of

them can be checked easily even for f;.

(z) The identity homomorphism identitys : S — S induces the identity of
HP(S);

() If f: S — T and g : T — U are continuous mapping, then (g o f).
g« o fu: Hy(S) — Hp(U).

Applying these properties, we get the conclusion. d
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Furthermore, singular homology groups are homotopy invariance shown in the
following result. For its proof, the reader is referred to [Mas2].
Theorem 4.4.3 If f: S — T is a homopoty equivalence, then f. : H,(S) — H,(T)
is an isomorphism for each integer p > 0. O
Now we calculate homology groups for some simple spaces.
Theorem 4.4.4 Let S be a disjoint union of arcwise connected spaces Sy, A € A

and i, : Sy — S an inclusion. Then for each p > 0, the induced mappings (1))«

H,(S\) — Hp(S) induce an isomorphism

(ex)=
@HP(S,\) = Hp(s)~
AEA
Proof Notice that the image of a singular simplex must entirely in an arcwise
1 Cu(Sy) = Gy(S)

connected component of S. It is easily to know that each (v));

introduced in the proof of Theorem 4.4.2 induces isomorphisms
(ex)

@CP(SA) = CP(S)7
AEA
(t2)s
@D Z,(5)) = Z,(9),
AEA
(LA,\/)u
@BP(SA) = BP(S)'
AeA
Therefore, we know that
(Lr)g*
@HP(S/\) = Hp(S)~
AEA
O

For p = 0 or 1, we have known the singular homology groups H,(S) in the

following.
Theorem 4.4.5 Let S be a topological space. Then
(1) Ho(S) is free Abelian group with basis consisting of an arbitrary point in

each arcwise component.
(1) Hy(S) = m1(S, 20)/[m1(S, xo), m1(S, 0)], where [m1(S, xo), m1(S, 20)] denotes

the commutator subgroup of (S, xo), i.e.,
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[71'1(5, .1'0), 7T1(S, .1'0)} = <a_1b_1ab\a, be T (S, 'L’Q)> .

Proof The (i) is an immediately consequence of Theorem 4.4.4. For (i7), its

proof can be found in references, for examples, [Mas2], [Youl], etc.. O

Theorem 4.4.6 Let O be a one point space. Then singular homology groups of O

are

H,(0) = Z, if p=0,
PP o, i p>o.

Proof The case of p = 0 is a consequence of Theorem 4.4.4. For each p > 0,
there is exactly one singular simplex o, : A, — O. Whence, each chain group C,(O)

is an infinite cyclic group generated by o,. By definition,

01, = 310 By = 31 =

=0 =0

P L 0, if pisodd,

op—1, if pis even.
Therefore, 0 : C,(O) — C,_1(0) is an isomorphism if p is even and zero mapping if
p is odd. We get that

-~ 5.050) 2 0y(0) S C0) % Cy(0) — 0.
By this chain complex, it follows that for each p > 0,

{ Cp(0), if pis odd,

Zy(0) =
W(0) 0, if p is even;

B,(0) = Cp(0), if pis odd,
! 0, if p is even.

Whence, we find that H,(O) = Z,(0)/B,(0) = 0. O

4.4.2 Relative Homology Group. For a subspace A of a topological space S
and an inclusion mapping i : A < S, it is readily verified that the induced homo-
morphism ¢ : Cp(A) — Cp(S) is a monomorphism. Whence, we can consider that
Cp(A) is a subgroup of C,(S). Let Cp(S, A) denote the quotient group Cp(S)/Cp(A),
called the p-chain group of the pair (S, A).



Sec.4.4 Homology Groups of Combinatorial Manifolds 201

It is easily to know also that the boundary operator 0 : C,(S) — Cp_1(5)
posses the property that 8,(C,(A4)) C Cp(A). Whence, it induces a homomorphism

0, on quotient groups

Op : Cp(5, 4) = Cpa (X, A).
Similarly, we define the p-cycle group and p-boundary group of (S, A) by
Zy(5,A) =Kerd, = { ue C,(S,A) | Op(u) =0},
By(8, A) = Imys1 = 0p11(Cpra (S, A)),

for any integer p > 0. Notice that 0,0,41 = 0. It follows that B,(S, A) C Z,(S, A)
and the pth relative homology group H,(S, A) is defined to be

HP(Sv A) = ZP(S7 A)/BP(S A)

Let (S, A) and (T, B) be pairs consisting of a topological space with a subspace.
A continuous mapping f : S — T is called a mapping (S, A) into (T, B) if f(A) C B,
denoted by f: (S, A) — (T, B) such a mapping.

The main property of relative homology groups is the excision property shown

in the following result. Its proof is refereed to the reference [Mas2].
Theorem 4.4.7 Let (S, A) be a pair and B a subset of A such that B is contained in
the interior of A. Then the inclusion mapping i : (S — B, A — B) — (S, A) induces
an isomorphism of relative homology groups

H,(S— B,A— B) = H,S,A)
for any integer p > 0. g

4.4.3 Exact Chain. A chain complex

Ipt1 O
00— - — 1 — Cp*) p71~>--~~>0

is said to be ezact if Im0, 1 = Kerd, for all p > 0, particularly, a 5-term exact chain

0*>C4%03%024>0
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is called a short exact chain. Notice that the exactness of a short exact chain means

that 05 is surjective, Kerds = Imd, and

02 = Cg/KeI‘83 = Cg/h’n64

by Theorem 2.2.5.

Now let i : A — S be an inclusion mapping for a pair (S, A) and j; : Cp(S) —
Cy(S, A) the natural epimorphism of C,(S) onto its quotient group C,(S, A) for
an integer p > 0. Then as shown in the proof of Theorem 4.4.2, ¢ and j; induce
homomorphisms i, : Hy(A) — H,(S), j. : Hy(S) — Hy(S, A) for p > 0.

We define a boundary operator 9, : H,(S,A) — H,_i(A) as follows. For
Yu € H,(S,A), choose a representative p-cycle u' € C,(S, A) for u. Notice that j;
is an epimorphism, there is a chain u” € C,(S) such that jy(v”) = u'. Consider the
chain 0(v”). We find that j;0(u”) = 0js(u”) = Ou’ = 0. Whence, 9(u”) belong to
the subgroup C,_1(A4) of C,_1(S). It is a cycle of C,(S, A). We define 0, to be the
homology class of the cycle d(u”). It can be easily verified that 9, does not depend
on the choice of v/, ” and it is a homomorphism, i.e., O, (u + v) = di(u) + 0, (v) for
Vu,v € Hy(S, A).

Therefore, we get a chain complex, called the homology sequence of (S, A) fol-

lowing.

s D Hy (S, A) 5 Hy(A) 55 Hy(S) 25 Hy(S, 4) 2 -

Theorem 4.4.8 The homology sequence of any pair (S, A) is exact.
Proof 1t is easily to verify the following six inclusions:
Imi, C Kerj,, Kerj, C Imi,,
Imj, C Kerd,, Kerd, C Imi,,
Imo, C Keri,, Keri, C Imo,.

Whence, the homology sequence of (S, A) is exact by definition. a
Similar to the consideration in Seifer-Van Kampen theorem on fundamental
groups, let S1, Sy C S with S = S;US; and four inclusion mappings i : S1NS; — Sy,
j:S81NSy — Sy k: S — Sandl : S — S, which induce four homology

homomorphisms. Then we know the next result.
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Theorem 4.4.9(Mayer-Vietoris) Let S be a topological space, Sy,S2 C S with
S1USy = S. Then for each integer p > 0, there is a homomorphism 0, : Hy(S) —
H,_1(S1 N Sy) such that the following chain

B (S 08,) " H(S1) & Hy($,) " H(S) S Hya(S108)
is exact, where i, & j.(u) = (i.(u), j«(w)), Yu € H,(S1 NSy) and (k. — 1) (u,v) =
ko(u) — L(v) forYu € H,(S1), v € Hp(Ss). d

This theorem and the exact chain in it are usually called the Mayer-Vietoris

theorem and Mayer-Vietoris chain, respectively. For its proof, the reader is refereed
to [Mas2] or [Leel].

4.4.4 Homology Group of d-Dimensional Graph. We have determined the
fundamental group of d-dimensional graphs in Section 4.3. The application of results

in previous subsections also enables us to find its singular homology groups.
Theorem 4.4.10 For an integer n > 1, the singular homology groups H,(S™) of S™
are

2 if p=0orn,
HP(S):{

0, otherwise.

Proof Let N and S denote the north and south poles of S™ and U = 5™\ {N},
V = 5"\ {S}. By the Mayer-Vietoris theorem, we know the following portion of

the Mayer-Vietoris chain

Hy(U) @ Hy(V) — Hy(5") % Hy (U0 V) = Hy i (U) @ Hyy(V) -

Notice that U and V are contractible. If p > 1, this chain reduces to
0 — Hy(S") % H, 1(UNV) =0,

which means that d, is an isomorphism. Now since U NV is homotopy equivalent

to S"~!, we get the following recurrence relation on H,(S™) with H,_1(S"™!),

HP(SH) = prl(UﬁV) = prl(Sn_l)



204 Chap.4 Combinatorial Manifolds

forp>1andn > 1.

Now if n = 1, Ho(S') = H,(S') = Z by Theorem 4.4.5. For p > 1, the
previous relation shows that H,(S') & H, 1(S°). Notice that S° is consisted of 2
isolated points. Applying Theorems 4.4.5 and 4.4.6, we know that H, 1(S°), and
consequently, H,(S") is a trivial group.

Suppose the result is true for S®~! for n > 1. The cases of p = 0 or 1 are
obtained by Theorem 4.4.5. For cases of p > 1, applying the recurrence relation

again, we find that

0, if p<mn,
Hy(5") = prl(sn_l) =4 Z ifp=n,
0, if p>n.
This completes the proof. g

Corollary 4.4.1 A sphere S™ is not contractible to a point.
Corollary 4.4.2 The relative homology groups of the pair (En7 S 1) are as follows

0, p#n,

H,(B",S§"") =
s

forp,n > 1.
Proof Applying Theorem 4.4.8, we know an exact chain following

N Hp(gn) ﬁ) Hp(Ern,Sn_l) E} Hp,l(S"_l) k} Hp71(§n) L

Notice that Hp(Fn) = 0 for any integer p > 1. We get that

07 p % TL7

Hy(B",8") 2 H, 1 (57) = {
Z, p=n.

O

The case discussed in Theorem 4.4.10 is correspondent to a n-dimensional graph

of order 1. Generally, we know the following result for relative homology groups of d-
dimensional graphs. Combining Corollary 4.4.2 with the definition of d-dimensional

graphs, we know that
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0, p#n,
Z, p=n,

HP(Eiv 61) = {

o

where ¢; = B" and ¢; = €; — e; = S"~! for integers 1 < i < m.

Theorem 4.4.11 Let M%(G) be a d-dimensional graph with E(Md(G)) ={er, ez, ,em}.
Then the inclusion (e, é;) — (M(G), V(M*G))) induces a monomorphism Hy(er, &) —

Hy(MYG),V(MYG))) for I = 1,2+ m and Hy(M*G),V(M*G))) is a direct

sum of the image subgroups, which follows that
- - Zd---Z, ifp=d,
H,(M(G),V(M*(G))) = m
0, if p#d.

Proof For a ball BY and the sphere S%! with center at the origin O, define
Di ={z e R/ || 7|[< 3} Let f; : B? — & be a continuous mapping for integers
2

1 <1< m in the space of M%(G) and

D, = fl(Dg% ar = fi(0), A={a|l <I<ml},
X' = MYG)\ A, 2 =)D,
=1

Notice that f; maps a pair (D¢, D¢—{0}) homeomorphically onto (D;, D;—{a;})
and those subsets D;,1 < [ < m are pairwise disjoint. We consider the following

diagram

Hy(2.9 — A) & H,(MU(G),X") & H,(MUG), MYG) — V(M4G))),

where each arrow denotes a homomorphism induced by the inclusion mapping. In
fact, these homomorphisms represented by arrows 1 and 2 are isomorphisms for
integers p > 1. This follows from the fact that M*(G) — V(M%(G)) is a deformation
retract of X’ and the excision property.

Notice that the arcwise connected components in & are just these sets D;, 1 <
I < m. Whence, H,(2, 2 — A) is the direct sum of the groups H,(D;, D; —{a;}) by
Theorem 4.4.4. Applying Corollary 4.4.2, we know that

0, p#d,

Hy(Dy, Dy — {ar}) = { Z. p—d
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Consequently, H,(M*(G),V(M*(G))) =0 if p # d and Hy(MG),V(M%@Q))) is a
free Abelian group with basis in 1—1 correspondent with the set M4(G)—V (M%(G).
Consider the following diagram:
1 . 2 . .
Hy(2,9 = A) —— H,(MYG),X') ~——— H,(M4G),V(MQ)))
! g
fl* f77 I fl*

4

3
H,(D*, D? — {0}) —H,(B", B" - {0}) H,(B* 501

The vertical arrows denote homomorphisms induced by f;. By definition, f;
maps (D¢, D? — {0}) homeomorphically onto (D;, D; — {a;}). It follows that f/,
maps H,(D? D¢—{0}) isomorphically onto the direct summand H,(D;, D;—{a;}) of
H,(2,2 — A). We have proved that arrows 1 and 2 are isomorphisms. Similarly, by
the same method we can also know that arrows 3 and 4 are isomorphisms. Combin-
ing all these facts suffices to know that fj. : H,,(Ed, S — HP(Md(G), V(Md(G)))
is a monomorphism. This completes the proof. O

Particularly, ifd = 1, i.e., Md(G) is a graph G embedded in a topological space,

we know its homology groups in the following.

Corollary 4.4.3 Let G be a graph embedded in a topological space S. Then
H,(G,V(G)) = €(G)
0, if p# L

Corollary 4.4.4 Let X = MYG),X, = V(MYG)). Then the homomorphism
iv © Hy(X,) — H,(X) is an isomorphism except possibly forp =d and p =d — 1,
and the only non-trivial part of homology sequence of the pair (X, X,) is

0 — Hy(X,) ™ Hy(X) — Hy(X, X,) — Hy1(X,) > Hyy(X) — 0,

particularly, if d =1, i.e., Md(G) is just a graph embedded in a space, then

0— Hi(G)) & Hi(G,V(G) L Hy(V(G) 5 Hy(G) — 0.
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4.4.5 Homology Group of Combinatorial Manifold. A easily case for
determining homology groups of combinatorial manifolds is the adjunctions of s-
balls to a d-dimensional graph, i.., there exists a d-dimensional graph M 1G] <

ﬂ(nl, Mg, -+, Ny) such that

M(ni,na, -« nm) \ MUG] = UUB”

1=2j=1
where B, is the 4-ball B for integers 1 <i < k, 1 < j <[;. We know the following

result for homology groups of combinatorial manifolds.

Theorem 4.4.12 Let M be a combinatorial manifold, Md(G) < M a d-dimensional
graph with E(]Tjd(G)) ={e1, €9, +,em} such that

M\ M9[G) = ij U B,

Then the inclusion (e, é) — (M, Md(G)) induces a monomorphism Hy(e;, é) —
Hy(M,M%G)) forl=1,2---.m and

H, M, MG) =~
0, if p#d

Proof Similar to the proof of Theorem 4.4.11, we can get this conclusion. [

Corollary 4.4.5 Let M be a combinatorial manifold, ]T]d(G) < M a d-dimensional
graph with E(Hd(G)) = {e1,e9, -, en} such that
—~ o~ koL
M\ MG =U U B,
=2 j=1
Then the homomorphism i, : H,(M4(G)) — H,(M) is an isomorphism except pos-

sibly for p=d and p = d — 1, and the only non-trivial part of homology sequence of
the pair (M, M%(G)) is

0 — Hy(MYG)) > Hy(M) — H,(M, M%(G)) — H,_;(M%(G)) > H,_,(M) — 0.

Notice that any manifold M in a combinatorial manifold M , it consists of a
pair (M ,M). We know the following result.
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Theorem 4.4.13 For any manifold in a combinatorial manifold M, the following

chain
e I H, (M, M) S Hy (M) &S Hy(M) 2 Hy(M, M) % - ..
18 ezact.
Proof 1t is an immediately conclusion of Theorem 4.4.8. |

For a finitely combinatorial manifold, if each manifold in this combinatorial
manifold is compact, we call it a compactly combinatorial manifold. We also know

homology groups of compactly combinatorial manifolds following.

Theorem 4.4.14 A compact combinatorial manifold M s finitely generated.

Proof 1t is easily to know that the homology groups HP(M ) of a finitely combi-
natorial manifold M can be generated by <[u] € H,(M)|M e V(GL[jtv})> Applying
a famous result, i.e., any compact manifold is finitely generated (see [Mas2] for de-

tails), we know that M is also finitely generated. (]

§4.5 REGULAR COVERING OF

COMBINATORIAL MANIFOLDS BY VOLTAGE ASSIGNMENT

4.5.1 Action of Fundamental Group on Covering Space. Let p: S — Sbe
a covering mapping of topological spaces. For Vo € S, the set p~!(xp) is called the
fibre over the vertex g, denoted by ﬁbz). Notice that we have introduced a 1 — 1
mapping ® : p~!(x1) — p~ () in the proof of Theorem 3.1.12, which is defined by
®(y;) = yo for y; € p~'(z1) with y, the terminal point of a lifting arc f! of an arc f
from x; to x9 in S. This enables us to introduce the action of fundamental group

on fibres fib,, for zy € S following.

Definition 4.5.1 Letp: S—Sbea covering projection of S. Define the left action
of m1(S) on fibres p~1(z) by

L@ =% L=7,

for T € p~Y(x), where L : p(T) — p(y) and § is the terminal point of the unique
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lifted arc L' over L starting at x.

Notice that L : fib, — fib, is a bijection by the proof of Theorem 3.1.12. For
VC € 7 (M), let L, = L~ 'CL. Then

(L, L) : (fibs, m (S, p())) — (fibs, m (S, p(y)))
is an isomorphism of actions.

4.5.2 Regular Covering of Labeled Graph. Generalizing voltage assignments
on graphs in topological graph theory ([GrT1]) to vertex-edge labeled graphs enables
us to find a combinatorial technique for getting regular covers of a combinatorial
manifold M , which is the essence in the construction of principal fiber bundles of
combinatorial manifolds in follow-up chapters.

Let G* be a connected vertex-edge labeled graph with 6y, : V(G) U E(G) — L
of a label set and I' a finite group. A wvoltage labeled graph on a vertex-edge labeled
graph GL is a 2-tuple (G%; o) with a voltage assignments o : F(G%) — T such that

alu,v) = a t(v,u), Y(u,v) € B(G").

Similar to voltage graphs such as those shown in Example 3.1.3, the importance

of voltage labeled graphs lies in their labeled lifting Gt~ defined by
V(GL) = V(GF) x T, (u,g) € V(GL) x " abbreviated to u;
E(GE) = { (ug,v40n) | for V(u,v) € E(GF) with a(u,v) =h }
with labels Oy, : G'* — L following:
Or(uy) = 0r(u), and Or(ugy, veon) = 0r(u,v)

for u,v € V(GF), (u,v) € E(GY) with a(u,v) = h and g, h € T.

For a voltage labeled graph (GE,a) with its lifting GL, a natural projection
p: Gte — G is defined by p(u,) = v and p(ug, vgon) = (u,v) for Yu,v € V(GF)
and (u,v) € E(GF) with a(u,v) = h. Whence, (G, p) is a covering space of the
labeled graph G%. In this covering, we can find

p~H(u) ={ug | Vg €T}

for a vertex u € V(GL) and
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P (u,0) = { (ug,vgon) | Vg €T }
for an edge (u,v) € E(GF) with a(u,v) = h. Such sets p~!(u), p~(u,v) are called
fibres over the vertex u € V(G*) or edge (u,v) € E(G*), denoted by fib, or fib(,,,),
respectively.
A voltage labeled graph with its labeled lifting are shown in Fig.4.5.1, in where,
GF=Cf and T’ = Z,.

Fig.4.5.1
A mapping g : G — G is acting on a labeled graph GT with a labeling
0, : G — L if g0(z) = 01,9(z) for Vo € V(GF) U E(GF), and a group T is acting
on a labeled graph G* if each g € I is acting on G*. Clearly, if I is acting on a
labeled graph G, then I' < AutG. In this case, we can define a quotient labeled
graph G*/T by
V(GET) = { o | Yu € V(GE) },

E(GH/T) = { (u,v) | V(u,v) € E(GF)}
and a labeling 0¥ : G/T' — L with

Op(u") =0 (u), Op((u,0)") = 0p(u,v)
for Vu € V(GF), (u,v) € E(GL). It can be easily shown that this definition is well

defined. According to Theorems 3.1.10 — 3.1.12, we get a conclusion on a voltage
labeled graph (G*, «) with its lifting G following.

Theorem 4.5.1 Let p: G« — G* be a covering projection of GE and f : I — M
an arc correspondent to a walk in G*. Then for u € V(GL) there is a unique arc
f which projects to f with the initial point u and homotopic arcs lift to homotopic

arcs. O
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A group T is freely acting on a labeled graph G if for Vg € T', g(z) = x for any
element in V(GT) U E(GF) implies that ¢ is the unit element of action, i.e., fixing
every element in G*.

For voltage labeled graphs, a natural question is which labeled graph GL is a
lifting of a woltage labeled graph (G*,a) with o : E(G*) — I'? For answer this

question, we introduce an action ®, of I' on G% for Vg € I as follows.

ForVg € T, the action ®, of g on G is defined by D (up) = ugyn and ©,0, =
©r®,, where O : Gl — L is the labeling on G induced by 0;, : G — L.

Then we know the following criterion.

Theorem 4.5.2 Let I be a group acting freely on a labeled graph GE and G* the
quotient graph éL/F. Then there is an assignment o : E(GY) — T and a labeling
of vertices in G¥ by elements of V(GE) x T such that G* = G, and furthermore,

the given action of I' on GE is the natural left action of I on G*e.

Proof By definition, we only need to assign voltages on edges in G and prove
the existence of a assignment such that GL = GTe, without noting on what labels
on these element in G and G already existence.

For this object, we choose positive directions on edges of GL and G~ so that the
quotient mapping qr : Gl — GFis direction-preserving and that the action of I" on
GL preserves directions first. Then, for for each vertex v in G, relabel one vertex
of the orbit ¢ '(v) in G by vy and for every group element g € I', g # 1r, relabel
the vertex ¢,4(vi,) as v,. Now if the edge e of G runs from u to w, we assigns the
label e, to the edge of orbit gq'(e) that originates at the vertex u,. Since I' acts
freely on GL, there are just |T'| edges in the orbit ¢r'(e), one originating at each of
the vertices in the vertex orbit gr'(v). Thus the choice of an edge to be labeled e,
is unique. Finally, if the terminal vertex of the edge e, is wy, one assigns a voltage
h to the edge e in G*. To show that this relabeling of edges in ¢r*(e) and the choice
of voltages h for the edge e really yields an isomorphism 9 : GX — G, one needs
to show that for Vg € I' that the edge e, terminates at the vertex wgo,. However,
since e = ¢g4(e1y.), the terminal vertex of the edge e; must be the terminal vertex
of the edge ¢,4(e1.), which is

¢9(wh) = ¢y¢h(wlr) = ¢90h(w1r) = Wgoh-
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Under this relabeling process, the isomorphism 9 : GE — GEo identifies orbits in
GE with fibers of GE=. Moreover, it is defined precisely so that the action of ' on

G is consistent with the natural left action of I on the lifting graph GFe. g
The construction of lifting from a voltage labeled graph implies the following

result, which means that GL= is a |['|-fold covering over (G, o) with a : E(G¥) — T.

Theorem 4.5.3 Let GL* be the lifting of the voltage labeled graph (GF, ) with
a: E(GF) —T. Then

|fib,| = |fibw| = [T| for Yu € V(GY) and (u,v) € E(G"),

and furthermore, denote by Cg. (1) and Cg.(I) the sets of vertices or edges for a
label 1 € L in a labeled graph G*. Then

|C62a (D = TN Ce (D] and |Coa (] = [TN|Cer (D]

Proof By definition, I is freely acting on G'=. Whence, we find that |fib,| =
|fib(y,)| = || for Yu € V(G*) and (u,v) € E(G"). Then it follows that |C¢., (1)] =
ITN|CE (D] and [CEL, (D] = [T[|CEL (D). 0

4.5.3 Lifting Automorphism of Voltage Labeled Graph. Applying the
action of the fundamental group of GL, we can find criterions for the lifting set
Lft(f) of a automorphism f € AutGE. First, we have two general results following

on the lifting automorphism of a labeled graph.

Theorem 4.5.4 Let p: GL = GE bea covering projection and f an automorphism
of GL'. Then f lifts to a f' € AutGE if and only if, for an arbitrarily chosen base

verter u € V(GL), there exists an isomorphism of actions

(. f) = (fiby, m(G*, w)) — (fibjw), 7(G*, f(u))

of the fundamental groups such that fllgn, = @, and moreover, there is a bijection
correspondence between Lit(f) and functions ¢ for which (p, f) is such an automor-

phism with

fi(@) = (- L)- f(L7),
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where L : p(u) — u is an arc.

Proof First, let f! be a lifting of f and L : p(u) — u an arc. Then fI(L!) :
fl@@) — fl(u- L) projects to f(L), which implies that f'(u - L) = f'(u) - f(L).
Particularly, this equality holds for Vu € fib, and L € 7 (G¥,u). Since ¢ = fap,,
the required isomorphism of action is obtained.

Conversely, let (¢, f) be such an isomorphism. We define f! as follows. Choose

an arbitrary vertex o in G* and v = p(?). Let L : v — u be an arbitrary arc and set

Then this mapping is well defined, i.e., it does not depend on the choice of L. In
fact, let Ly, Ly : v — u. Then ¥+ L, = (¥ - Ly) - Ly'Ly. Whence, o(¥ - Ly) =
0((T- L)) - f(Ly'Ly) = o((¥ - Ly)) - f(L3"') - f(Ly). Thereafter, we get that o(7 -
Ly) - f(LiY) = @@ La) - F(L1).

From the definition of f! it is easily seen that pf!(v) = fp(?). We verify it
is a bijection. First, we show it is onto. Now let w be an arbitrary vertex of Gre
and choose L : p(w) — f(u) arbitrarily. Then it is easily to check that the vertex
o Yw - L) - f~(L~") mapped to . For its one-to-one, let w(¥; - Ly) - f(L7}) =
FUDY) = fUD2) = @(Ty- Ly) - f(L3"). Whence, f(L;) and f(Ls) have the same initial
vertex. Consequently, so do L; and Ls. Therefore, v; and vy is in the same fibre.
Furthermore, we know that (¥ - Ly) - f(LT'Ly) = @(Ty - Ly), which implies that
@[Ty - Ly - LT'Ly) = (s - Ly). That is, () - Ly) = @(Ts - Ly). Thus 0} - Ly = Uy - Ly
and so U] = Uy.

Now we conclude that f! is really a lifting of f. This shows that Lft(f) —
Lft(f)|fib, defines a function onto the set of all such ¢ for which (¢, f) is an iso-
morphism of fundamental groups, and it is one-to-one. g

The next result presents how an arbitrary lifted automorphism acts on fibres

with stabilizer under the action of the fundamental group.

Theorem 4.5.5 Letp: GE -G bea covering projection and f an automorphism
of G*. Then,

(i) there exists an isomorphism of actions

(W: f) : (ﬁbu7 7T(GL> 71,)) - (ﬁbf(u)7 Tr(GLv f(?l)))
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if and only if f maps the stabilizer (m(éL))a of an arbitrarily chosen base point
u € fib, isomorphically onto some stabilizer (Wl(éL))g < m(GE, f(w)). In this case,
v = ¢(u) and there is a bijective correspondence between all choice of such a vertex
v and all such isomorphisms.

(i1) Choose a base point w € fiby(,) and Q € m (G, f(u)) such that

Q717Tl (éLv g)Q = fﬂ—l(éLv ),
all such bijections ¢ = pp are given by
@P(ﬂ S) =w- Pf(S)v fO’f‘ Se ﬂ—l(GLvu)v

where P belong to the coset N(my (G, @))Q of the normalizer of m(G=)g within
T (GE, f(u)). Moreover, ppr = p if and only if P’ € m (G, @)P.

Proof Tt is clear that (p, f) is an isomorphism of actions, then these conditions
holds. Conversely, let fm(GF,u)z = m1(GF, f(b))s. Each ¥ € fib, can be written as
T = -9 for some S € m (G, u) because GL is connected. Define ¢ by setting p(7) =
v - f(S). we can easily check that (¢, f) is the required isomorphism of actions.
The assertion bijective correspondence should also be clear since ¢ is completely
determined by the image of one point. This concludes ().

For (ii), let ¥ = @ - P be any point satisfying the condition of (¢). Then we
know that P~'m(GL,@)P = m(GE, @ - P) = Q 'm(GL, )Q, that is PQ™! €
N (71 (GE, @)). The last statement is obvious. O

Now we turn our attention to lifting automorphisms of voltage labeled graphs
by Applying Theorems 4.5.4 and 4.5.5. For this objective, We introduce some useful
conceptions following.

Let (G*, ) be a voltage labeled graph with a : E(GL) — I'. For u € V(GL),
the local voltage group I'* at u is defined by

I =( a(L) | for VL € m(G*,u) ).
Moreover, for v € V(GF), by the connectedness of GX, let W : u — v be an arc
connecting u with v in GL. Then the inner automorphism W#(g) = a=*(W)ga(W)
of I for g € I, takes I'* to I'".
Let A be a group of automorphisms of GL. A voltage labeled graph (GL, a) is
called locally A-invariant at a vertex u € V(GT) if for Vf € A and W € m(GF, u),

we have
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a(W) = identity = o(f(W)) = identity

and locally f-invariant for an automorphism f € AutG? if it is locally invariant
with respect to the group (f) in AutGL. Notice that for each f € A, f~! € A also
satisfying the required inference. Whence, the local A-invariance is equivalent to the
requirement that for Vf € A, there exists an induced isomorphism f#* : T — T'/(%)

of local voltage groups such that the following diagram

™ (G, u) ! m(G*, f(u))
a a
fH
1 (GE, u) m(G*, f(u))
Fig.4.5.2

is commutative, i.e., f#4(a(W)) = a(f(W)) for VW € m(G*,u). Then we know a

criterion for lifting automorphisms of voltage labeled graphs.

Theorem 4.5.6 Let (GE,a) be a voltage labeled graph with o : E(GY) — T and
f € AwtGL. Then f lifts to an automorphism of GE= if and only if (GF, ) is locally

[f-invariant.

Proof By definition, the mapping (l,,a) : (fib,, (G, u)) — (I,T%) with
l, : fib, — T is a bijection. Whence, if W € m(G¥,u) and [,(4@) = g, then
W e (m(G*, u))z if and only if a(W) € T, ie., ga(W) = g, which implies that
a(W) = identity.

According to Theorem 4.5.2, the action of I' on vertices of G« is free. Whence,
applying Theorems 4.5.4 and 4.5.4, we know that f lifts to an automorphism of G«
if and only if (G¥, @) is locally f-invariant. O

4.5.4 Regular Covering of Combinatorial manifold. Let M be a finitely
combinatorial manifold underlying a connected graph G. Applying Theorem 4.2.4,
we know that M determines a vertex-edge labeled graph GL[M} by labeling its
vertices and edges with dimensions of correspondent manifolds, and vice versa. Such

correspondence is combinatorially unique.
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The voltage assignment technique on the labeled graph GE[M] naturally induces
a combinatorial manifold M* by Theorem 4.2.4. Assume (GFe [M ],p) is a covering
of GE[M] with o : E(GE[M]) — T. For VM € V(GE[M)), let hy : M — M be a
self-homeomorphism of M, sy x — M for Vo € M, and define p* = hg o g&lng,

Then we know that p* : M*— Mis a covering projection.
Theorem 4.5.7 (M*,p*) is a |T|-sheeted covering, called natural covering of M.

Proof For M € V(GE[M)), let € M. By definition, for VM, € V(GE[M))
and Vh;!(z)* € M,, we know that

PH((hH(2))7) = hy 0 Gy paar, (07 (2))7) = ha(h () = € M.

By definitions of the voltage labeled graph and the mapping p*, we find eas-
ily that each arcwise component of (p*)~1(U,) is mapped topologically onto the
neighborhood U, for Vx € M. Whence, p* : M*— Misa covering mapping.

Notice that there are |I'| copies My, g € I' for YM € V(GL(M)). Whence,
(M*,p*) is a |['|-sheeted covering of M. O

Let p; : §1 — S and ps : 52 — S be two covering projections of topological
spaces. They are said to be equivalent if there exists a one-to-one mapping 7 : §1 —

Sy such that the following

~ T ~
Sl - S2
p1 D2
S
Fig.4.5.3

is commutative. Then, how many non-equivalent natural coverings M* are over
M under the covering projection p* : M — M? By definition, this question is
equivalent to a combinatorial problem: to enumerate non-equivalent voltage labeled
graphs (GL[M], a) with o« : B(G* [M]) — I' under the action ofAutGL[M]. Finding
such exact numbers is difficult in general. Applying Burnside Lemma, i.e., Corollary

2.5.4 for counting orbits, we can know the following result.
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Theorem 4.5.8 The number n°(M) of non-equivalent natural coverings of a finitely

combinatorial manifold M s

(i) =——— 3 ja(g)l,

= —
|Aut|GE[M] e
where ®(g) = {a : E(G") — I'lag = ga}.

Proof B definition, two voltage labeled graphs (GL[M], ay), (GE[M],as) are

equivalent if there is an one-to-one mapping f : V(G*[M]) — V(G¥[M]) such that

fa=af and f0, = 0, f. Whence, there must be that f € AutG*[M]. Then follows
Corollary 2.5.4, we get the conclusion. g

Particularly, if AutGL[M | is trivial or transitive, we get the following results

for the non-equivalent natural covering of a finite combinatorial manifold.

Corollary 4.5.1 Let M be a finitely combinatorial manifold. Then,

(i) if AutGE[M] is trivial, then

n(M) = e (G*[M)).

(i1) if AutG*[M] is transitive, then

ne(3) = (|F| + (GEIM)) — 1).

e(GHM])

Proof If AutGY[M] is trivial, then « : E(GL[]A\/I/]) — T" depends on edges
in GL[]T/f ] and such mappings induce non-equivalent natural coverings over M. A
simple counting shows that there are 5‘F|(GL[]T£7]) such voltage labeled graphs. This
is the conclusion (7).

Now for (i), if AutGF[M] is transitive, then o : E(GF[M]) — T does not
depend on edges in GL[]W}. Whence, it is equal to the number of choosing e(GL[M])

elements repeatedly from a |I'|-set, which in turn is

. (|r| + e(GL[M)) — 1>
(GHM]) '

n®(M) =
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As a part of enumerating non-equivalent natural coverings, many mathemati-
cians turn their attentions to non-equivalent surface coverings of a connected graph
with a trivial voltage group I'. Such as those of results in [Maol], [MLT1], [MLW1],
[Mull] and [MRW1]. For example, if G* [M] is the labeled complete graph KZ we

have the following result in [Maol] for surface coverings.

Theorem 4.5.9 The number nc(ﬁ) with GL[]V[] KL

», m > 5 on surfaces is

ﬂ
k

a(n,k) n— B(n,k) n— "T’l
ET) SN SR el (S LN SR TR

n n—1
kln  k|n,k=0(mod2) k k|(n—1),k#1
where,
n3)if k= 1(mod2);
o= S 0 =it
o, i k= 0(mod2),
and
=02 e = 1(mod2);
B(n, k) = (n=D)(n=3) _
=, if k= 0(mod2).
and n¢(M) = 11 if GE[M)] = KF. 0

For meeting the needs of combinatorial differential geometry in following chap-

ters, we introduce the conception of combinatorial fiber bundles following.

Definition 4.5.2 A combinatorial fiber bundle is a 4-tuple (M*, M,p, G) consisting
of a covering combinatorial manifold M*, a group G, a combinatorial manifold M

and a projection mapping p : M* — M with properties following:

(1) G acts freely on M* to the right.

(17) the mapping p : M* — M is onto, and for Vx € ]Tf, p~l(p(z)) = fib, =
{z4|Vg €T} and l, : fib, — T is a bijection.

(tii) for Vx € M with its a open neighborhood U,, there is an open set U
and a mapping T, : p 2 (Uy) — U, x T of the form Ty(y) = (p(y), s.(y)), where
$e 1 p HU,) — T has the property that s,(yg) = s.(y)g forVg € G andy € p~1(Uy,).

Summarizing the discussion in this section, we get the main result following of

this section.
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Theorem 4.5.10 Let M be a finite combinatorial manifold and (GE([M]), &) a volt-
age labeled graph with « : E(GL([M]) — T'. Then (M*, M, p*, I') is a combinatorial
fiber bundle, where M* is the combinatorial manifold correspondent to the lifting
GL"([J/VY}, P M* — M a natural projection determined by p* = hy o Gy psar with
hs : M — M a self-homeomorphism ()fﬁ and Sy - * — M a mapping defined by
() =M forVax e M. O

§4.6 REMARKS

4.6.1 How to visualize a Euclidean space of dimension> 4 is constantly making
one hard to understand. Certainly, we can describe a point of an n-dimensional Eu-
clidean space R™ by an n-tuple (a1, xa, - -+, ). But how to visualize it is still hard
since one can just see objects in R3. The combinatorial Euclidean space presents an
approach decomposing a higher dimensional space to a lower dimensional one with

a combinatorial structure. The discussion in Section 4.1 mainly on the following

packing problem, i.e., in what conditions do R™ , R --- R™ consist of a combi-
natorial Euclidean space 8g(ny,na, - -+, nm) ¢ Particularly, the following dimensional
problem.

Problem 4.6.1 Let R™ R™, ... R"™ be Euclidean spaces. Determine the dimen-
stonal number dimée(ny, ne, - -+, Ny ), particularly, the dimensional number dimég(r),

r > 2 for a given graph G.

Theorems 4.1.1—4.1.3 partially solved this problem, and Theorems 4.1.4—4.1.5
got the number dimék, (). But for any connected graph G, this problem is still
open.

Notice that the combinatorial fan-space is indeed a Euclidean space, which

consists of the local topological or differential structure of a combinatorial manifold.

4.6.2 The material in Sections 4.2 and 4.3 is extracted from [Mao1l4] and [Mao16]. In
fact, the intersection of two manifolds maybe very complex. That is why we can only
get the fundamental groups or singular homology groups of combinatorial manifolds
in some special cases. Although so, the reader is encouraged to find more such

fundamental groups or singular homology groups constraint on conditions. A more
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heartening thing in Section 4.2 is the correspondence of a combinatorial manifold
with a vertex-edge labeled graph, which enables one to get its regular covering in

Section 4.5 and combinatorial fields in Chapter 8.

4.6.3 The well-known Seifer and Von Kampen theorem on fundamental groups is
very useful in calculation of fundamental groups of topological spaces. Extending

its application to a wide range, the following problem is interesting.

Problem 4.6.2 Generalize the Seifer and Von-Kampen theorem to the case of that

U NV maybe not arcwise connected.

Corollary 4.3.4 is an interesting result in combinatorics, which shows that the
fundamental group of a surface can be completely determined by a graph embedded
on this surface. Applying this result to enumerate rooted or unrooted combinatorial
maps on surfaces (see [Maol], [Liu2] and [Liu3] for details) is worth to make a

through inquiry.

4.6.4 Each singular homology group is an Abelian group by definition. That is why
we always find singular groups of a space with the form of Z x --- x Z. Theorems
4.4.11 — 4.4.12 determined the singular homology groups of combinatorial manifolds
constraint on conditions. The reader is encourage to solve the general problem on

singular homology groups of combinatorial manifolds following.

Problem 4.6.3 Determine the singular homology groups of combinatorial manifolds.

Furthermore, the inverse problem following.

Problem 4.6.4 For an integer n > 1, determine what kind of topological spaces

S with singular homology groups H,(S) = Z x --- x Z for some special integers q,

particularly, these combinatorial manifolds.

4.6.5 The definition of various voltage graphs can be found in [GrT1]. Recently,
many mathematicians are interested to determine the lifting of an automorphism
of a graph or a combinatorial map on a surface. Results in references [MNS1] and
[NeS1] are such kind. It is essentially the application of Theorems 3.1.11 — 3.1.13.
The main material on the lifting of automorphisms in Section 4.5 is extracted from

[MNS1]. But in here, we apply it to the case of labeled graph.
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Many mathematicians also would like to classify covering of a graph G or a
combinatorial map under the action of AutG in recent years. Theorem 4.5.9 is such
a result for complete graphs. More results can be found in references, such as those
of [KwL1], [Lis1]-[Lis2], [LiW1], [Mao1], [MLT1], [MLW1], [Mull] and [MRW1], etc..

4.6.6 As we have seen in last chapter, the fiber bundle is indeed the application
of covering spaces with a space. Applying the relation of a combinatorial manifold
with the vertex-edge labeled graph, Section 4.5 presents a construction approach
for covering of finitely combinatorial manifold by the voltage labeled graph with
its lifting. In fact, this kind of construction enables one to get regular covering of
finitely combinatorial manifold, also the combinatorial fiber bundle by a combina-
torial technique. We will apply it in the Chapter 6 for finding differential behavior
of combinatorial manifolds with covering, i.e., the principal fiber bundle of finitely

combinatorial manifolds.



CHAPTER 5.

Combinatorial Differential Geometry

The combinatorial differential geometry is a geometry on the locally or globally
differential behavior of combinatorial manifolds. By introducing differentiable
combinatorial manifolds, we determine the basis of tangent or cotangent vector
space at a point on a combinatorial manifold in Section 5.1. As in the case of
differentiable manifolds, in Section 5.2 we define tensor, tensor field, k-forms at
a point on a combinatorial manifold and determine their basis. The existence
of exterior differentiation on k-forms is also discussed in this section. Section
5.3 introduces the conception of connection on tensors and presents its local
form on a combinatorial manifold. Particular results are also gotten for these
torsion-free tensors and combinatorial Riemannian manifolds. The curvature
tensors on combinatorial manifolds are discussed in Sections 5.4 and 5.5, where
we obtain the first and second Bianchi equalities, structural equations and local
form of curvature tensor for both combinatorial manifolds and combinatorial
Riemannian manifolds, which is the fundamental of applications of combina-
torial manifold to theoretical physics. Sections 5.6 and 5.7 concentrate on the
integration theory on combinatorial manifolds. It is different from the case of
differentiable manifolds. Here, we need to determine what dimensional numbers
k ensure the existence of integration on k-forms of a combinatorial manifold.
Then we generalize the classical Stokes’ and Gauss’ theorems to combinatorial
manifolds. The material in Section 5.8 is interesting, which shows that nearly
all existent differential geometries are special cases of Smarandache geometries.
Certainly, there are many open problems in this area, even if we consider the

counterpart in manifolds for differentiable combinatorial manifold.
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§5.1 DIFFERENTIABLE COMBINATORIAL MANIFOLDS

5.1.1 Smoothly Combinatorial Manifold. We introduce differential structures

on finitely combinatorial manifolds and characterize them in this section.

Definition 5.1.1 For a given integer sequence 1 < ny < ng < -++ < Ny, a com-

binatorial C"-differential manifold (M(nl,nz, . -~7nm);j) is a finitely combinato-

rial manifold M(nl,ng, e M), M(m, ng, -+, ) = J Ui, endowed with a atlas
il

A= {(Us; o)l € I} on M(nl, Ng, -+, Ny) for an integer h,h > 1 with conditions
following hold.
(1) {Ua;« € I} is an open covering of M(nl,n@, S M)

(2) For Ya,B € I, local charts (Uy; o) and (Us;pg) are equivalent, i.e.,
UsNUs =0 or U,NUs # 0 but the overlap maps

¢’ 0aUa[ \Us) = 95(Us) and 950" : @a(Ua( \Us) = ¢a(Ua)
are C"-mappings, such as those shown in Fig.5.1.1 following.

Pa

ULY
B ©s(UaNUs)
NU, PpPa
“ b @ﬁ(Ua m Uﬁ)
Us
Yp
Fig.5.1.1
(3) A is mazimal, i.e., if (U; ) is alocal chart of'M(nl, N, Ny equivalent

with one of local charts in ./2{, then (U;p) € A.

Denote by (M(nl., Na, -+ nm); A) a combinatorial differential manifold. A finitely
combinatorial manifold M(nl, N, -+, Ny 1S said to be smooth if it is endowed with

a C>-differential structure.
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Let A be an atlas on M(nl,ng, -+, nm). Choose a local chart (U;w) in A.

s(p)
N B™®), the following

i=1

s(p)
For Vp € (U;¢), if @, : U, — |J B™® and 5(p) = dim(
i=1

s(p) X ns() matrix [w(p)]

L e Zlm . 0
ipl) o 12511) x2(§(p)+1) . xan e 0
@)= | O "
Ts((;;I e % PEEFY) o s L s

with 2% = 2% for 1 < 4,5 < s(p),1 < s < 3(p) is called the coordinate matriz of
p. For emphasize w is a matrix, we often denote local charts in a combinatorial
differential manifold by (U; [e]). Using the coordinate matrix system of a combina-

torial differential manifold (M (ny,na, -, npy); .Z), we introduce the conception of

C" mappings and functions in the next.

Definition 5.1.2 Let M(nl, Mg,y Ny, Mg(kl, ko, -+, ki) be smoothly combinato-

rial manifolds and

f : ]/‘/\{/1(711777,27 e 7nm) - m(k’h k?? Tty kl)
be a mapping, p € Ml(nl,ng,---,nm). If there are local charts (Uy; [wy]) of p on
M, (ny,n9, -+, 1) and (Viw); wiw)]) of f(p) with f(U,) C Vi) such that the com-

position mapping

F= ol o folm]™ : ] (Uy) = lwro)(Vie)
is a C"-mapping, then f is called a C"-mapping at the point p. If f is C" at
any point p of ]E(nl,ng, “++ M), then f is called a C*-mapping. Particularly, if
MQ(kl,kQ, - k) = R, f ia called a C"-function on Ml(nl,nQ, <o+ My). In the
extreme h = oo, these terminologies are called smooth mappings and functions,

respectively. Denote by %, all these C'*°-functions at a point p € M (n1,na, -+, Ny ).

For the existence of combinatorial differential manifolds, we know the following

result.

Theorem 5.1.1 Let M(nl,ng, <o Ny be a finitely combinatorial manifold and
d,1 <d < n; an integer. If VM € V(Gd[ﬂ(nl,ng, <o nm)]) is Ch-differential and
V(My, Ms) € E(Gd’[]AVI/(nl, Na, -, Nm)]) there exist atlas
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Ar = {(Va; ) [V € My} Ay = {(Wy;9,)|Vy € My}

such that @.lv,nw, = Yylv.qw, for Yo € My,y € My, then there is a differential

structures

"2(: {(UP7 [wp]”vp € M(nh Ng, -+, nm)}
such that (]Tf/(m7 Ny, -, nm); A) is a combinatorial C"-differential manifold.

Proof By definition, We only need to show that we can always choose a neigh-
borhood U, and a homoeomorphism [w,] for each p € M(nl, Ng, -+, Ny satisfying
these conditions (1) — (3) in definition 3.1.

By assumption, each manifold VM & V(Gd[ﬂ (n1,n2, -+, npy)]) is C'-differential,
accordingly there is an index set Iy such that {U,;« € In} is an open covering
of M, local charts (Uys; pa) and (Ug; pg) of M are equivalent and A = {(U;¢)}
is maximal. Since for Vp € M(nhng, -+, M), there is a local chart (Uy; [w,]) of

s(p)
p such that [w,] : U, — | B™®, ie., p is an intersection point of manifolds
i=1
M™®) 1 < i < s(p). By assumption each manifold M™® is C"-differential, there
exists a local chart (V;f7 ¢!,) while the point p € M™®) such that gpé — B™®), Now

we define

s®)
vu=Uv.
i=1
Then applying the Gluing Lemma again, we know that there is a homoeomorphism

[cwp] on U, such that

[@pllarmiw = ¢}

for any integer i, < i < s(p). Thereafter,

A= {(Uy;[m))|p € M(n1,ma, -+, nn)}

is a C"-differential structure on M (n1,ng,- -, ny) satisfying conditions (1) — (3).

Thereby (M (ny,ng,--+,n,);A) is a combinatorial C*-differential manifold. O
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5.1.2 Tangent Vector Space. For a point in a smoothly combinatorial manifold,
we introduce the tangent vector at this point following.

Definition 5.1.3 Let (M(ny,ng,- -, ny), A) be a smoothly combinatorial manifold
and p € M(nl,ng, -+, ny). A tangent vector v at p is a mapping v : 2, — R with
conditions following hold.

(1) Vg,h € Z,,YA € R, ©(h+ Ah) =9(g) + Av(h);

(2) Vg, h € Z,,0(gh) = v(g)h(p) + g(p)v(h).

Let v : (—€,€) — M be a smooth curve on M and p=~(0). Then for Vf € Z,,
we usually define a mapping 7: %2, — R by
o df((1)
o= T2,
We can easily verify such mappings v are tangent vectors at p.

Denoted all tangent vectors at p € M(nl,ng, <+ Ny,) by T,,]V[(nl,ng, Ce Myy)

and define addition “+4”and scalar multiplication “-”for Vu, v € Tpﬁ(nl, Moy s M )s
AeRand f e Z, by

@+0)(f) =alf)+o(f), (\a)(f)=A-u(f).
Then it can be shown immediately that Tpﬂ(nl, Ng, -+, Ny) IS a vector space under

these two operations “+” and “-” . Let

%(M(nhn%'”ynm)) = U Tpﬂ(n17n27"'7nm)~
peM
A wector field on M(nl,m, -+, My) i a mapping X : M — %(H(nl,nz, Ce M),

i.e., chosen a vector at each point p € M(nh Mg, * Ny )-

Definition 5.1.4 For X,Y € %(M(nl,nz, o Ny)), the bracket operation [X,Y] :
%(M(nl,ng, e Ny)) — 55(]\7(111,712, <o ny,)) is defined by

[X,Y)(f) = X(Y(f)) = Y(X(f)) for ¥f € 2, and p € M.

The existence and uniqueness of the bracket operation on .2~ (JT/f (n1,n9, -+, nm))
can be found similar to the case of manifolds, for examples [AbM1] and [Wes1]. The

next result is immediately established by definition.

Theorem 5.1.2 Let ]Tl/(nl, Ng,++, Ny be a smoothly combinatorial manifold. Then,
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for XY, Z € %(],\/7(71177127"'-,nm)):

(it) the Jacobi identity

X Y 2]+ [Y. [, X]]+ [Z,[X, Y]] = 0
holds. Such systems are called Lie algebras.

For Vp € M(nl,nQ,--~,nm), We determine the dimension and basis of the

tangent space Tpﬁ(nl, Ng, -+, My) in the next result.

Theorem 5.1.3 For any point p € M(nh Mo, -+, M) with a local chart (Uy; [py]),

the dimension of T,M(ni,ng, -+, Ny) s
) — R s(p) R
dlmTp]w(nly Mg,y nm) = 9(p) + Z(nz - S(p))
i=1
with a basis matrizc
d
[%}S(P)an(m =
10 ... 1_o _0__ .. o .. 0
s(p) Ozl s(p) 9x15(P) oz1GP)+1) oxl™m
19 10 I 0
s(p) 021 5(p) 0225 922G FD Dz2nz
1 _o0 R ) 9 e o 0
s(p) Bzs(P1 s(p) dzs@EP)  Prs(P)EP)+1) HIS(p)(nS(p)*l) 015(17)%(,))

where % = 27! for 1 < 4,5 < s(p),1 < 1 < 5(p), namely there is a smoothly
functional matriz [vi;]sp) such that for any tangent vector v at a point p of

Z/\/\[/(nhTLZ: o '-,nm):

XTg(p)

S|

0
= [vij}S(P)X"s@)v[%]S(p)msm )

kol
where ([ailkxi, [bislkxt) = D 2 aijbij, the inner product on matrizes.
i=1j=1

Proof For Vf € 2, let f=f- lep] ™t € Zip,)p)- We only need to prove that

f can be spanned by elements in
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{%Wﬁ }UU U {5 U\p|1<g<s}) (5-1)

i=1 j=3(p)+1

for a given integer h,1 < h < s(p), namely (5—1) is a basis of Tp]/k\/[/(nl, N,y M )-
In fact, for VZ € [p,](U,), since [ is smooth, we know that

@) - fm) = / if(igﬂ(f—io))dt

in a spherical neighborhood of the point p in [,](U,) C R*®~
with [¢,](p) = To, where

2 1, otherwise.

Define

gl] /'a T .L0+t ))dt

and g;; = Gij - [¢p]. Then we find that

9i5(p) = 9ij(To) = 8(1{1 (To)

= AL 11y = 2 ).

Therefore, for Vg € U, there are g;;,1 <14 < s(p),1 < j < n,; such that

n;

p)+ Z > ) 0)9:i (p)-

i=1 j=1
Now let 7 € TPM (n1,n9, -+, ny). Application of the condition (2) in Definition
5.1.1 shows that
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v(f(p)) =0, and v(n% ”) =0.

Accordingly, we obtain that

s(p) n;

CED D IME

i=1 j=1

s(p) n;

DR B) DL

i=1 j=1

o(f) —2¢)gi;(p))
—2)gi;(p)))
s(p) n

Z Zz(né(p)gw (p)o(z" —

i=1 j=1

zf) + (2 (p) —

s(p) ny

Z Z Tlg(p) or (p)o

—(p)v
x
i=1 j=1 0

@)

s(p) n;

ZZU l] 7] P)@xu‘ (f)

i=1 j=1

<[UIJ]9(P)><TL«@) (=

Therefore, we get that

_ 0
v = [Uij]S(P)X"s(p)v [%JS(ID)XM(;;)

can be spanned by elements in (5.1).

0

229

%j)@(%(p)gm (p))

1s<p>xn5<m> (f).

>. (5-2)

The formula (5 — 2) shows that any tangent vector v in TpM(nl,ng, e

o)

Notice that all elements in (5 — 1) are also linearly independent. Otherwise, if

there are numbers a¥/,1 < < s(p), 1 < j < n; such that

s(p)
hj Y
Z th + Z Z 1'1]
=1 j=3(p
then we get that
5(p) s(p) ng
7] _ hj
2 SRS DD M
i=1 j=35(p)+1

2) =0

for 1 <i < s(p),1 <j <mny Therefore, (5—1) is a basis of the tangent vector space

Tp]ﬁ(nl, Na, -+, Ny) at the point p € (M(nl, Ng, -+

) nm); VZ{)

|
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By Theorem 5.1.3, if s(p) = 1 for any point p € (M(nl,ng, . -~,nm);.,éT)7 then
dimTp]AWJ(nl7 N, +,Nm) = ni. This can only happens while M(n17n27 Ce M) 1S
combined by one manifold. As a consequence, we get a well-known result in classical

differential geometry again.

Corollary 5.1.1 Let (M™; A) be a smooth manifold and p € M™. Then
dimT,M"™ =n

with a basis

0
I <1 <
{axi|p\1_2_n}.

5.1.3 Cotangent Vector Space. For a point on a smoothly combinatorial

manifold, the cotangent vector space is defined in the next definition.

Definition 5.1.5 ForVp € (M(nl, N,y N3 A), the dual space T;M(nl, Ng, M)

is called a co-tangent vector space at p.

Definition 5.1.6 For f € %Z,,d € T;‘M(nl, Ng,**,Ny) andT € Tpﬂ(nl,ng, Ce M),
the action of d on f, called a differential operator d : &, — R, is defined by

df = o(f).

Then we immediately obtain the result following.

Theorem 5.1.4 For Vp € (M(nl,ng, e )y A) with a local chart (Uy; [p,]), the

dimension of T;M(nh Mgy« Ny 18

s(p)

dimTy M (ny, ng, - -+, nm) = 8(p) + > (n: — 3(p))
i=1
with a basis matriz
[dﬂS(p)an@) =
de't 0 da!30) delG+Y) L gpim
s(p) s(p)
da? B0 0GR L g
s(p) s(p)
d @ @ DN sGEE) L L @l s @ne)

s(p) s(p)
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where 21 = 29 for 1 <i,j < s(p),1 <1 < 3(p), namely for any co-tangent vector d
at a point p of M(nl, Ng, -+, Ny), there is a smoothly functional matriz [ui]—]s(p)m(p)

such that,

d= <[uz‘j]s<p)xn.;<m7 [dﬂs@)xns(?)> : .

§5.2 TENSOR FIELDS ON COMBINATORIAL MANIFOLDS

5.2.1 Tensor on Combinatorial Manifold. For any integers r,s > 1, a tensor
of type (r,s) at a point in a smoothly combinatorial manifold M(nl, Mg, Nyy) 18

defined following.

Definition 5.2.1 Let ]V[/(m., N, "+, Nm) be a smoothly combinatorial manifold and
pE ]/Qf/(nhn% <o ny). A tensor of type (r,s) at the point p on M(TL17NQ, Ce Myy)

is an (r + s)-multilinear function T,

T:T;Mx-~~xT§MxT,,A7><~-~><T,,M—>R,

r s

where TpM = Tpﬁ(nl, N, Ny) and Tp*]v[ = T;M(m,ng, e Mgy).

Denoted by T7 (p, M) all tensors of type (r, s) at a point p of M(nl, Mg,y Ny )
Then we know its structure by Theorems 5.1.3 and 5.1.4.

Theorem 5.2.1 Let M(m,m, - ) be a smoothly combinatorial manifold and

pE M(n1,7lg, <o Ny). Then

TIpM)=T,M® - @T,MRT:M®-- @ T'M,

T S

where TJ\Z = Tpﬂ(nl, N,y Nm) and T;M = T;M(nh N, -+, Ny, particularly,

— s(p)
dim T (p. 31) = (5(p) + Y (ns = 5(0)))" "

Proof By definition and multilinear algebra, any tensor t of type (r,s) at the

point p can be uniquely written as
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. . 6 a i
t= Zle..m. |p®"'®m|p®dl‘klh ®"‘®dl’ksls

“j1ds aziljl

for components tzllzfs € R by Theorems 5.1.3 and 5.1.4, where 1 < 45, k, < s(p) and

1< jp<ip, 1 <Ilp <kpfor 1 <h<r. As a consequence, we obtain that

Ti(pM)=T,M® - @T,MRT:M®--- @ T;M.

s El

—~ —~ s(p)
Since dimT,M = dimTyM = 3(p) + > (n; —5(p)) by Theorems 5.1.3 and 5.1.4,
=1
we also know that

s(p)
dim77 (p, M) = (3(p) + ;(ni —3(p))r*e.
O

5.2.2 Tensor Field on Combinatorial Manifold. Similar to manifolds, we
can also introduce tensor field and k-forms at a point in a combinatorial manifold
following.

Definition 5.2.2 Let T:(T) = U T (p, M) for a smoothly combinatorial manifold
peM

M = M(ni,ng,--+,ny). A tensor filed of type (r,s) on M(ny,ng, -, ny) s a

mapping T : M(nl,ng,--~7nm) — TZ(M) such that T(p) € T (p, M) for ¥p €

M(nl7n27 o '7nm)'

A k-form on M(nl , M2y, My ) 18 a tensor field w € T,?(]/Vv) Denoted all k-form
of M(ny,na, -+, nm) by AF(M) and

A(M) = AF(M).

We have introduced the wedge A on differential forms in R™ in Section 3.2.4.

Certainly, for w € AF(M), w € AY(M) and integers k,I > 0, we can also define the

wedge operation w A\ w in A(M) following.

Definition 5.2.2 For any integer k > 0 and w € Ak(ﬁ), an alternation mapping
A AR(M) — A*(M) is defined by
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1 : - U
Aw(m, ) = 4 D signow(oq),  Uo(e)

" o€eS),
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for Yu, € M, and for integers k,1 > 0 and w € Ak(f), w € AZ(M), their wedge
wAw E Ak“(ﬂ) is defined by

(k+1)!

wANAw =

For example, if M = R?, ais a 1-form and b a 1-form, then

aAb(e, &) =a(e;)b(es) —a(er)b(e;)

and if a is a 2-form and b a 1-form, then

aAb(e,€,€;) = a(e, e)b(e;) — a(e;, €;)b(e;) + a(ey, €3)b(e,).

Example 5.2.1 The wedge product is operated in A(M) in the same way as in the

algebraic case. For example, let a = dx; — z1dxy € AI(M) and b = zodxy A dxg —

dzy A dry € A2(M), then

aAb = (dl’l — $1dl‘2) AN ($2dl‘1 A dl’g — dl’g A d:El)
= Ofl'lfgdtz/\dl'lAd.Zg*d’L‘l/\dig/\dl’g,‘FO
= (l'1$2 — 1) A d.Tg — dl‘l A dIQ N d{E3
Theorem 5.2.2 Let 01,7, --,U, be vectors in a vector space V. Then they are

linear dependent if and only if

Proof If v1,7y,---,v, are linear dependent, without loss of generality, let

Then

U3 ATy A - AT, = 0.

Up = @1V + AoV * * + + Ap—1Up—1.
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TIATIA - AT,

Uy A AUpot A (@101 + agUs - - - + Gpp10Up-1)

=0.
Now if ©y,7s,---,0, are linear independent, we can extend them to a basis
{01,D2,*,Tp,** +, Vaimy } Of ¥. Because of
UL AUg A -+ N Ugimy 7 0,
we finally get that
VLATy A AT, # 0.
d
Theorem 5.2.3 Let v1,0y,-+,0, and Wy, Wy, -+, W, be two vector families in a
vector space V' such that
n
Zm AWy, = 0.
k=1
If U1,0a, - - -, U, are linear independent, then for any integer k, 1 < k < n,
n
Wy = Z Ak
1=1
with QA = Q.
Proof Because Ty,7s, - - -, 7, are linear independent, we can extend them to a
basis {U1,T2,+,Tn, -+, Vaimy } of ¥. Therefore, there are scalars ag, 1 < k,1 <

dim?¥ such that

n dim¥
Wy, = g Q0 + E Qi V-
=1 I=k+1
Whence, we find that
n n n dim?

SWAW = Y anUe AT+ Y > apbk ATy

k=1 k=1 k=1 I=k+1
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n n dim?
= E (akl — alk)m AV + E E AU N0 =0
1<k<l<n k=1 t=k+1

by assumption. Since {T; AT;,1 < k <1 < dim?'} is a basis A%(¥), we know that

ap, — ai, = 0 and ay; = 0. Thereafter, we get that

n

Wy = E QU

=1
with QA = Q- O

5.2.3 Exterior Differentiation. It is the same as in the classical differential
geometry, the next result determines a unique exterior differentiation d: A(]AV ) —

A(M) for smoothly combinatorial manifolds.
Theorem 5.2.4 Let M be a smoothly combinatorial manifold. Then there is a
unique exterior differentiation d : A(fVY) — A(M) such that for any integer k > 1,
d(A%) C AMY(M) with conditions following hold.

(1) d is linear, i.e., for Ve, € A(j\v), A€ER,

d(p + M) = dp A + A
and for ¢ € Ak(M)71/) S A(M),

dle A) = dp+ (=)fp N dy.
(2) For [ € AO(M), df is the differentiation of f.
B)d2=d-d=0.
(4) d is a local operator, i.c., if U C'V C M are open sets and o € AR(V), then
d(aly) = (do)]v.

Proof Let (U;[yp]), where [¢] : p — st(j) [¢](p) = [¢(p)] be a local chart for
i=1

a point p € M and a = Qpyi)-(upipy) AT A - A dat s with 1 < vy < ny, for

i

1 < i < s(p), 1 <i <k We first establish the uniqueness. If k = 0, the

[o)e]
dzhv

1< p; < s(p), 1 <i<kshows that the differential of ¥ is 1-form dz*. From (3)

d(x*) = 0, which combining with (1) shows that d(dz*"1 A --- A d®**) = 0. This,
again by (1),

local formula da = dx"” applied to the coordinates z*” with 1 < v; < n,,, for



236 Chap.5 Combinatorial Differential Geometry

~ [0/ TIR
da = WC&W/ Adx' A AdatEE (5= 3)
v

and d is uniquely determined on U by properties (1) — (3) and by (4) on any open
subset of M.

For existence, define on every local chart (U; [¢]) the operator d by (5—3). Then
(2) is trivially verified as is R-linearity. If 5 = B(o,¢;) (o) A7 A+ - - Adx € AU,
then

daAB) = dOguu)uin Bora)-tmade™™ Ao Ad™ NN N da)

Oy 1)+ (e ton)
= (Wﬁ(dﬂl)"'(mﬂ) T Q) (ur)

06(010)'“(051)

X T)dlﬁll/l A /\dxﬂkvk Adz® A - A dzTS
i

004( v1)e(urtbr) JTIRTN . .
= 7#16;“”1 RO Attt A - AT A Blorcr)(or)dTT T A v A dxT
85(01<1)---(al<l)

A N .
+ (-1 a(l»‘llll)'“(ﬂkwk)dmul e AdTEE A oxH

)d./,EGICI RNY e

= danB+(=1)fandd

and (1) is verified. For (3), symmetry of the second partial derivatives shows that

2
0 a(mul)'“(ltmbk)dxmul A AdEEE A AT A A dl,o,q) -0
dzh Oz '

d(da) =
Thus, in every local chart (U;[¢]), (5 — 3) defines an operator d satisfying (1)-(3).
It remains to be shown that d really defines an operator d on any open set and (4)
holds. To do so, it suffices to show that this definition is chart independent. Let d
be the operator given by (5 —3) on a local chart (U’; [¢']), where U (U’ # ). Since
d' also satisfies (1) — (3) and the local uniqueness has already been proved, do = da
on U U'. Whence, (4) thus follows. O

Corollary 5.2.1 Let M= M(nh Ng, "+, Ny be a smoothly combinatorial manifold
and dpr : A¥(M) — A*Y(M) the unique exterior differentiation on M with condi-
tions following hold for M € V(Gl[ﬂ(nl,ng., <o mm)]) where, 1 < 1 < min{ny, na,
)

(1) das is linear, i.e., for Vo, € A(M), X € R,
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dy(0 + M) = dayp + Adagip.
(2) For p € A"(M), ¢ € A(M),

du(p AY) = dup + (=1) ¢ Aduip.
(3) For f € A°(M), dyf is the differentiation of f.
(4) d3y = dpr - dpyr = 0.
Then
dlar = dy.

Proof By Theorem 2.4.5 in [AbM1], d) exists uniquely for any smoothly man-
ifold M. Now since d is a local operator on ]\7, i.e., for any open subset U, C M,

E(O['U“) = (g@)\UH and there is an index set J such that M = |J U, we finally get
pedJ
that

= du
by the uniqueness of d and d M- a

Theorem 5.2.5 Let w € A'(M). Then for VX,Y € 2 (M),

dw(X,Y) = X(w(Y)) = YV(w(X)) —w([X,Y]).

Proof Denote by a(X,Y") the right hand side of the formula. We know that
a:MxM— C”(JV[) It can be checked immediately that « is bilinear and for
VX,Y € Z(M), f € C=(M),

a(fXY) = [X(w(Y)) = Y(w(fX)) —w(fX,Y])
fX(w(Y)) =Y (fu(X)) - w(f[X, Y] = Y(f)X)
fo(X,Y)

and
a(X, fY) = —a(fY,X) = —fa(Y,X) = fa(X,Y)

by definition. Accordingly, « is a differential 2-form. We only need to prove that
for a local chart (U, [¢]),
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oy = dw|y.

In fact, assume w|y = wydz"”. Then

T T aw v o na
(dw)ly = d(wly) = Wf;‘dx S A dxt

10w,  Owe:

2 ( or°s  Ozm

)dz A dat.

On the other hand, aly = Ya(3%, 5% )dz” A dz#”, where

7] 0 0 0 7] 7]
a(ax“”’ 61'”‘) 0o (w(ax/“’) )- oxHv (‘”(ax« )
— ([i — i})
oz~ Ggos
0wy - 0w,
0xos Oz’
Therefore, dw|y = a|y. O

§5.3 CONNECTIONS ON TENSORS

5.3.1 Connection on Tensor. We introduce connections on tensors of smoothly

combinatorial manifolds by the next definition.

Definition 5.3.1 Let M be a smoothly combinatorial manifold. A connection on
tensors of M is a mapping D : 2 (M) x T;M — T;M with DxT = D(X,7) such
that forVX,Y € M, 7,7 € T'(M),A € R and f € C=(M),

(1) 5X+fy7' = Dy7+ fﬁyT; and 5){(7‘ + Am) = Dyt + )\5)(71';

(2) Dx(r @ 7) = DxT @ ™+ 0 ® Dx;

(3) for any contraction C on T (M),

Dx(C(r)) = C(Dx).

We get results following for these connections on tensors of smoothly combina-

torial manifolds.
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Theorem 5.3.1 Let M be a smoothly combinatorial manifold. Then there exists a

connection D locally on M with a form

~ o (1) (uzva) - (pirvr) 9 9 K1 kode
(Dx7)|lo = X, :fxfx:;x;) s ) Vo © " ® G @dz"M @ - @ dz

for VY € 2 (M) and 7 € Tr(M), where

87'(”1 v1)(p2ve)-(prvr)

(mv1)(p2v2)--(prvr) _ (k1 21)(k2X2)+(KsAs)
(k1A1)(K2A2) (s As),(uv) Orhv
(1v1)+(Ha—1va—1)(05) (Bat1Va+1) (krvr) ava
D Tl mh L o))
a=1
S
_ Z (t1v1)(n2v2)-(prvr) ros
T (1AL (RKp—1 20— 1) (1) (@ 1541) (R As) - (ob5) (k1)
b=1
and F" V) 15 @ function determined by
N a _ TRA 8
s Opos (0 w) §roc

n (Up; [op]) = (Up; ) of a point p € M, also called the coefficient on a connection.

Proof We first prove that any connection D on smoothly combinatorial man-
ifolds M is local by definition, namely for X, X, € Z (M ) and 1,7 € TH(M ), if
Xi|ly = Xo|y and 71|y = 72|y, then (5)(17’1)[] = (5){27—2)[]. For this objective, we
need to prove that (ExlTl)U = (BXITQ)U and (EXlTl)U = (15)(27’1)[]. Since their
proofs are similar, we check the first only.

In fact, if 7 =0, then 7 = 7 — 7. By the definition of connection,

Dyx7 = Ex(T —7) = Dxt— Dx7 =0.

Now let p € U. Then there is a neighborhood V,, of p such that V is compact and
V C U. By aresult in topology, i.e., for two open sets V, U of RS —s)s@)+nit4ns)
with compact V,, and V, C U, there exists a function f € COO(RS(”) PSP tnattnap) )
such that 0 < f < 1 and fly, =1, f
f - (2 — 1) = 0. Whence, we know that

RIP S PEE) na ety = 0, we find that

0=Dx,((f (= — 7)) = Xi(f)(r2 = 71) + f(Dx,72 — Dx, 7).
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As a consequence, we get that (5)(1 )y = (5){17—2)‘/7 particularly, (5)(1 T)p =
(ﬁxng)p. For the arbitrary choice of p, we get that (5)(17'1)[] = (Bxl 7o)y finally.

The local property of D enables us to find an induced connection DV : 2~ (U) x
Tr(U) — T7(U) such that DglU(T‘U) = @XTHU for VX € & (M) and 7 € T" M.
Now for VX1, X, € 3&’(]%), V1,1 € Ty (M) with Xi|y, = Xa|v, and 7|y, = 7ly,,
define a mapping DV : 2 (U) x Tr(U) — T (U) by

(Dx,m)lv, = (Dx,72)ly,
for any point p € U. Then since D is a connection on M. , it can be checked easily that
DV satisfies all conditions in Definition 5.3.1. Whence, DV is indeed a connection
on U.

Now we calculate the local form on a chart (Up, [¢,]) of p. Since

~ 0
_ TRA
Doy = T60m) gpoe
it can find immediately that
D#dfb F(Uc)(uy)dlﬂg

by Definition 5.3.1. Therefore, we finally find that

= _ yeos () (uava) o) 9 9 k1A kods
(Dx7)lr = X703 mara) - mar () s © " ey @ 47 © - @ d
with
9 (p1v1)(pave)-(prvr)
(pav1)(p2v2)- (prvr) _ (k1A1)(K2A2)- (ks As)
(k1A1)(K2A2)- (s Xs), () Hxhv
(m1v1)-(pa—1va—1)(05) (Hat+1Vat1)--(frvr) P Hala
+ Z Tl ) (2 h2) (0 ho) o6 ()
e
_ (m1v1)(p2v2)-(prvr) ros
(k1 A1) (k-1 X0—1) (1) (T 15b41)(RsAs) ™ (TbSH) (1r)
b=1
This completes the proof. O

Theorem 5.3.2 Let M be a smoothly combinatorial manifold with a connection D.
Then for VXY € %(]\7),
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T(X,Y)=DxY — DyX — [X,Y]
is a tensor of type (1,2) on M.
Proof By definition, it is clear that T : 2 (M) x 2 (M) — 2 (M) is anti-

symmetrical and bilinear. We only need to check it is also linear on each element in
CD"(M) for variables X or Y. In fact, for Vf € C°"(]\7[/)7

T(fX,Y) = DyxY —Dy(fX)-[fX,Y]
= fBXY -Y(HX +ff)YX)
— (/IX.Y]-Y(f)X) = [T(X,Y).

and
T(X, fY) = -T(fY,X) = —fT(Y, X) = fT(X,Y).

5.3.2 Torsion-free Tensor. Notice that

0 0 ~ 0 ~ 0
T(axlw’ a’r‘“) - DB;E% Oxos - Daziac v
0

- (F(#V )(o<) F (o6)( .UV)) OrrA

under a local chart (Upy;[¢,]) of a point p € M. If T(dIW, (Mg) =0, we call T

torsion-free. This enables us getting the next useful result by definition.

Theorem 5.3.3 A connection D on tensors of a smoothly combinatorial manifold

M s torsion -free if and only if I a

(uv)(os) F(UC)(MV

5.3.3 Combinatorial Riemannian Manifold. A combinatorial Riemannian

geometry is defined in the next on the case of s =r = 1.

Definition 5.3.2 Let M be a smoothly combinatorial manifold and g € AQ(M) =

U T(p, M) If g is symmetrical and positive, then M is called a combinatorial
pEJAﬂ
Riemannian manifold, denoted by (M,g). In this case, if there is a connection D

on (M, g) with equality following hold
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Z(9(X.Y)) = 9(Dz,Y) + 9(X,DzY) (5~ 4)
then M is called a combinatorial Riemannian geometry, denoted by (J/V\f/,g7 E)
We get a result for connections on smoothly combinatorial manifolds similar to

that of the Riemannian geometry.

Theorem 5.3.4 Let (]/VI g) be a combinatorial Riemannian manifold. Then there
erists a unique connection D on (M, g) such that (]Abfjg7 f)) is a combinatorial Rie-

mannian geometry.

Proof By definition, we know that

Dzg(X,Y) = Z(9(X,Y)) — g(DzX,Y) — g(X,D,Y)

for a connection D on tensors of M and VZ € 2 (M). Thereby, the equality (5 — 4)
is equivalent to that of Dyg =0 for VZ € 2 (]W ), namely D is torsion-free.
Not loss of generality, assume g = g(u)(oq)dx"dz” in a local chart (Up; [py]) of

a point p, where g(u)os) = g((%b%7 %) Then we find that

= 99uw)(o9) ¢ o A
Dg = (W - g(Cn)(oc)F(Zu)(ag) - 9<w)(¢n>Ff§<xm>)d$”” ® dx’ ® dx™.

Therefore, we get that

99y (o9) ¢ ¢
DN v = 9(4n)(a<)F(Zy)(ag) + Q(MV)(Cn)F(l)(m) (5-5)

if Dyg=0forVZ e %(]T) The formula (5 — 5) enables us to get that

1 g 0 0
KA L N 990w () 9Jn)(os)  YY(uv)(o9)
F(I“’)(Ug) - 2g ( Oxos Oxhv Oxén )’

where g("V€™ is an element in the matrix inverse of [g()(ve)]-

Now if there exists another torsion-free connection D* on (]W ,g) with

~ 0
* _ TERA
Daﬁw =" Goum) DN’
then we must get that
per 1 (m)((n)(ag(w)(@) gicnmioe) agmu)(m))
(uv)(os) 2 9 O0x°s Oxhv Oxsn .
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Accordingly, D = D*. Whence, there are at most one torsion-free connection D on
a combinatorial Riemannian manifold (]W .9).
. . . ~ r A _ A
For the existence of ‘ff)rsmn:fvree connection D on (M, g), let It o =T7% )
and define a connection D on (M, g) such that

~ 0
_ TRA
Do, =Tl0um) gpm
then D is torsion-free by Theorem 5.3.3. This completes the proof. [

Corollary 5.3.1 For a Riemannian manifold (M, g), there exists only one torsion-

free connection D, i.e.,

Dzg(X,Y) =Z(g(X,Y)) —g(DzX,Y) - g(X, DY) =0
forVX,Y,Z € 2 (M).

§5.4 CURVATURES ON CONNECTION SPACES

5.4.1 Combinatorial Curvature Operator. A combinatorial connection space
is a 2-tuple (]W , l~)) consisting of a smoothly combinatorial manifold M with a con-
nection D on its tensors. We define combinatorial curvature operators on smoothly

combinatorial manifolds in the next.

Definition 5.4.1 Let (]T/i, 5) be a combinatorial connection space. For VX,Y €
%(?Vv), a combinatorial curvature operator R(X,Y) : %(]T) — %(M) is defined
by
R(X,Y)Z = DxDyZ — DyDxZ — Dixy)Z
forVZ € 2 (M).
For a given combinatorial connection space (M , l~))7 we know properties follow-
ing on combinatorial curvature operators, which is similar to those of the Riemannian

geometry.

Theorem 5.4.1 Let (M, 5) be a combinatorial connection space. Then forVX,Y,Z €

2 (M), Vf € C>=(M),



244 Chap.5 Combinatorial Differential Geometry

(1) R(X,Y)=—R(Y,X);
(2) R(fX,Y) =R(X,fY) = fR(X,Y);
(3) R(X,Y)(fZ) = fR(X,Y)Z.

Proof For VX,Y,Z € 2 (M), we know that R(X,Y)Z = —R(Y,X)Z by
definition. Whence, 7%()(7 Y)= fﬁ(Y, X).

Now since

R(fX,Y)Z = DyxDyZ — DyDyxZ — Diyx\Z
= fDxDyZ — Dy(fDxZ) — Dyixy1-v(p)xZ
= fDxDyZ —Y(f)DxZ — fDyDxZ
- fE[X,Y]Z +Y(f)DxZ
= [R(X,Y)Z,

we get that ﬁ(fX, Y)= fﬁ(X, Y). Applying the quality (1), we find that

R(X, fY) = =R(fY, X) = =fR(Y, X) = fR(X,Y).

This establishes (2). Now calculation shows that

R(X,Y)(f2)

DxDy(fZ) — DyDx(fZ) — Dixy|(fZ)

= Dx(Y(f)Z+ fDyZ) — Dy(X(f)Z + [DxZ2)

— (X.YI()Z - fDixyZ

= X(Y(f))Z+Y(f)DxZ+ X(f)DyZ

+ fDxDyZ — Y(X(f)Z - X(f)EYZ - Y(f)BXZ
— fDyDxZ — ([X,Y|(f)Z - [DixxZ

= fR(X,Y)Z.

Whence, we know that

R(X,Y)(fZ) = fR(X,Y)Z.
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As the cases in the Riemannian geometry, these curvature tensors on smoothly

combinatorial manifolds also satisfy the Bianchi equalities.

Theorem 5.4.2 Let (M B) be a combinatorial connection space. If the torsion

tensor T =0 on 5, then the first and second Bianchi equalities following hold.
R(X,Y)Z +R(Y,Z)X +R(Z,X)Y =0
and
(DxR)(Y, Z)W + (DyR)(Z, X)W + (DzR)(X,Y)W = 0.

Proof Notice that T = 0 is equal to DyY — Dy X = [X, Y] for VX,Y € %(]\N)

Thereafter, we know that

R(X.Y)Z+R(Y,2)X +R(Z, X)Y
= DxDyZ — DyDxZ — Dixy|Z + DyDzX — DyDy X
— DyzX + DzDxY — DxDzY — DizxY
= Dx(DyZ — DY) = Dy X + Dy(DzX — DxZ)
— Dyx)Y +Dz(DxY — DyX) — Dixy\Z
DxlY, Z) = Diyz X + Dy|Z, X] — Dizx)Y
+ Dy[X,Y] - DixyZ
(X[, 2] + Y [Z, X]| + [Z, [ X, Y]).

By the Jacobi equality [X, [V, Z]] + [Y, [Z, X]] + [Z, [ X, Y]] = 0, we get that

R(X,Y)Z+R(Y,2)X +R(Z, X)Y =0.

By definition, we know that

(DxR)(Y, Z)W

= DxR(Y, Z)W — R(DxY, Z)W — R(Y, DxZ)W — R(Y, Z)DxW
= DxDyDzW — DxDzDyW — DxDy,zW — Dj, Dz W
+DzDp W + Dy W — DyDp,_,W + Dp,_,DyW

+Dyyp, 7W = DyDzDxW + DDy DxW + Dyy.z DxW.
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Now let
AW(X,Y,Z) = DxDyDyW — DxDyDyW — Dy DyDxW + DDy DxW,
BY(X,Y,Z)=-DxDp_,W + DxDp W + DzDp W — DyDp _,W,

CW(X,Y,Z)=—Dp_yD;W + Dp_,DyW + Dp_,DxW — Dp_, DxW
and

DV(X,Y,Z) = D[EXY,Z]W - D[ﬁvaY]W

Applying the equality DyY — Dy X = [X,Y], we find that

(DxR)(Y, Z)W = AV(X,Y, Z) + BY(X,Y, Z) + CV(X,Y, Z) + DV (X,Y, Z).
We can check immediately that

AV(X,Y, Z)+ AV (Y, Z, X) + AW (Z,X,Y) = 0,
BY(X.,Y,Z)+BY(Y,Z,X)+ BY(Z,X,Y) =0,

CW(X,Y,Z)+CV(Y,Z,X)+CV(Z,X,Y) =0

and

DY(X,Y,Z)+ DV (Y,Z,X)+ D" (Z,X,Y)
= Dix v z)+vizx)+izixyy)W = DoW =0

by the Jacobi equality [X, [V, Z]] + Y, [Z, X]]+ [Z, [ X, Y]] = 0. Therefore, we finally
get that

(DxR)(Y, Z)W + (DyR)(Z, X)W + (DzR)(X, Y)W
=AV(X,Y,2)+BY(X,Y,Z2)+CY(X,Y,Z) + DY (X,Y, Z)
+AY(Y,Z,X)+BY(Y,Z,X)+ CV (Y, Z,X) + DV (Y, Z,X)
+AY(Z, X, Y)+ BY(Z,X,Y)+C"(Z,X,Y)+ D"(Z,X,Y) = 0.

This completes the proof.
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5.4.2 Curvature Tensor on Combinatorial Manifold. According to Theorem
5.4.1, the curvature operator R(X,Y) : ,%”(M) — %(M) is a tensor of type (1,1).

By applying this operator, we can define a curvature tensor in the next definition.

Definition 5.4.2 Let (]Ti l~)) be a combinatorial connection space. For VXY, Z €
.%”(M), a linear multi-mapping R - %(IVY) X %(M) X 35(];/) — %(]T/) determined
by

R(Z,X,)Y)=R(X,Y)Z
is said a curvature tensor of type (1,3) on (H, D).

Let (]AVf , l~)) be a combinatorial connection space and

{€;;]1 <i<s(p),1 <j<n; and &, =¢e;,; for 1 <iy,is <s(p)if 1 <j<3(p)}

a local frame with a dual

{wij|1 <i<s(p),1 <j<nand w;; =ws,; for 1 <ip,i <s(p)if 1 <j<3(p)},

abbreviated to {g;;} and {w} at a point p € M, where M = M(ny, ny, -+, ny).

Then there exist smooth functions I'y; )\ € C' oo(]T/IJ ) such that

() (kA

Dz, e =T (or) Coc
called connection coefficients in the local frame {&;;}.

Theorem 5.4.3 Let (]AV[/7 D) be a combinatorial connection space and {e;;} a local

frame with a dual {w"} at a point p € M. Then

dwh — WA W = ETV"”
K.

s
2 a0

where 7:(‘:;)( is a component of the torsion tensor T in the frame {&;}, te.,

o
Tixee)

o%)
= W (T(€xnr, €0c)) and

~ 1~
KA o KA KA o 0
dwjiy = win AWl = S R0 @™ AW
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with R () () (o) €A = R(€yc, €n0) € -

Proof By definition, for any given €, €, we know that

(dw” — W™ A Wix) (Coc, Enp) = Coc(W (€np)) — Enp (W (€oc)) — W™ ([€oc, Eno])

- wm(eas)w»‘:; (€np) + w (5779)“5: (Cos)
= —wh (eng) + W (eag) - wwj([éUUEUG])
= Toow T Tuwog =" ([Eos: Eml)
= WMV(DE(K@T]H - Déngéag - [Eamé'qﬁ})

= W#V(T(Eo'gvé’q9)) = T(/;':)(UQ)

by Theorem 5.2.3. Whence,

~ 1~ )
v 2 2N o
dw"” — W AWEY = éT(’;’;\ o™ AW
Now since
(dwm - “-’3;; A "Jgi\)(éﬁw €np)
= €q¢ (w,uz)/\ (€n0)) — €0 (WZ;/\ (€oc)) — le)/\([§0'§7 )
*wﬁf; (EU§)M§L)\ (€no) + w}fi (Evzﬁ)wgf\ (Cos)
= €o (F'(C,u)\u)(nQ)) - Eﬂg(rr(jf\u)(o'g)) — w”([Eo; Ene})rﬁfu)(m)
1'\1% v)(os) F(z% )(n0) + F (uv)(nd) F (V) (o%)
and
E(Eaivéﬂa)éﬁw = Deo'§ De GEHV - Béneﬁédgéwf - B[vaénﬁlél“’

= DE(r< (F?:\V)O]&)én)\) - DEWQ (Fﬁj\u)(gg)éﬁk) — OJﬂL([EO-g, Eng})r?:‘y)(m)ém
_ — KA — KA I KA
= (Coc(TGayme)) — @ne(waac )+ Ly o) oy o)
Ji KA
= Tu)eoltoyme — ([evs €))Ll W)(m))em

= (Jw;jé - WZ,L, A wm )(60§7 en9)eﬁ>\'

Therefore, we get that
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T RN KA\ (5 = _ DRA
(dwuu Wi A Wiy, )(eﬂv eﬁe) - R(uu)(dc)(m?)’

that is,

T REA __,,0¢ KA _ 1 DkA o no
dwpy — wip AWel = 3 R oo me @™ N

d

5.4.3 Structural Equation. First, we introduce torsion forms, curvature forms

and structural equations in a local frame {e;;} of (]TJ , D) in the next.

Definition 5.4.3 Let (M, D) be a combinatorial connection space. Differential
_ ;LI/?N,U,V_ n v n)\ffvn)\_ oS 2N -
2-forms QM = dw W Awiy, S5 = dwip — wis Awg and equations
7 wyo o KA MV v T KA _ 06 KA KA
dw" = W™ Awiy + QM dwyy = wip Awgl + Q00
are called torsion forms, curvature forms and structural equations in a local frame

{ei;} of (M, D), respectively.

By Theorem 5.4.3 and Definition 5.4.3, we get local forms for torsion tensor

and curvature tensor in a local frame following.

Corollary 5.4.1 Let (M, D) be a combinatorial connection space and {ei;} a local

frame with a dual {w"”} at a point p € M. Then

T = M ®e, and R=uwh ® e @0

o

ie., forVXY € %(M),
T(X,Y) = Q"(X,Y)en and R(X,Y)=Q0(X,Y)w" @ e

Theorem 5.4.4 Let (JAVI:, D) be a combinatorial connection space and {ei;} a local

frame with o dual {w"} at a point p € M. Then

AV = WA QY — QAW and AU = wis AR — Q5 AW

Proof Notice that @2 = 0. Differentiating the equality Q* = dw" — wh A why
on both sides, we get that
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(’]\,’Ql“j = 7(’[&}”” A w’w -+ w‘”’ A Jw”"
—(V + W™ AWED) AW 4w A (Y 4 w5 A wh)

A A
WA — A W

M3 ; iat] : KA _ 7 KA og KA = .
Similarly, differentiating the equality (2} = dw};) — wi; Awj? on both sides, we can

also find that

de\ = WS A QH)\ 0% A wfe)\

yn% %

g

Corollary 5.4.2 Let (M, D) be an affine connection space and {e;} a local frame
with a dual {w'} at a point p € M. Then

dQ = w AQL— I Aw! and dY = wEAQL — QF A

5.4.4 Local Form of Curvature Tensor. According to Theorems 5.4.1 —
5.4.4 there is a type (1,3) tensor ﬁp : TPJAV[/ X TPJAV[/ X TPJAV[/ — TPM determined by
ﬁ(w, u,v) = ﬁ(u, v)w for Yu, v, w € ijVY at each point p € M. Particularly, we get

its a concrete local form in the standard basis {ﬁ}

Theorem 5.4.5 Let (]Ti, 5) be a combinatorial connection space. Then for Vp € M
with a local chart (Uy; [wp)),

0
no o v KA
R = Rig o 7 @ 5 @ ot @ da
with
no no
7 Mmoo BTN S VN N S 0
) )0 = g DA e Lo = Leawn e g

where I'0;,,.y) € C(Uy) is determined by

., ¢ o Y
LRI YO (BN () Ggos

~ 0 I 0

Proof We only need to prove that for integers u, v, k, A, 0,¢,¢ and 6,
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(axw’ ax'i)‘)ax“ T o) () (A) §anb
at the local chart (Up; [¢p]). In fact, by definition we get that

000w 9

~ 0 0 0
R(— _—
(81"“’7 OxrA ) 0x°s
~ ~ 0 ~ ~ 0 ~ 0
= D@%D@% 0xos n DﬁDaz’% 0xos o [@%,@%] Oxos
~ 0 0
_ no _ no
=D o, Clogen ggm) ~ P2 ooy g
0 0
8F776<) wy 0 Fn0 D 46 _ aF”as)(zw) 9 _ N 9
T 9w Bx"" (@) =N 50 oo A Opnd (o6)(nv) Bﬁ-)\ oo
no
_ (8P )(KA) ar(ﬂﬂ)(w’) ) 0 + Fn9 Fm 0 no Fm 0
- Orhv oA oxn? os MO (1) o (09) ()~ (MO)(KA) 00
no 10
o (ar os (n)\) a (o¢)(pv) + F F né F F ) 8
- Oxtv oA (o) (KA) ™ (90)(uv) (@) () = (90)(5A)/ G 90
~no
772(0; )(pv) (kX)) 61’”9
This completes the proof. O

For the curvature tensor R("ag Y () WE €an also get these Bianchi identities

in the next result.

Theorem 5.4.6 Let (]AV[/ 5) be a combinatorial connection space. Then for Vp € M
with a local chart (U, [p,]), if T =0, then

Rt oo + Blaaanin + Blmienoe =0
and
N pEA N DEA N DR _
Do R o0)m0) T DosBiuymoywey T ProBiu)wios) = 05
where,

I DR
Do Ry oomey = D Riyiooye)-

229t

Proof By definition of the curvature tensor R we know that

(o) (uv)(KA)?
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DU UY UY
R om0 T Bogmomn T B eaos)
~ 0 0 0 ~ 0 0 0 ~ 0 0 0

- (B:E“’ 8&?"9)036“ R(&r”e’ ax”’\)aav“ R(ax"“\’ 83:“)83?"9 =0
with
0 0 0
X = e Y = pR and Z = p

in the first Bianchi equality and

N DR N DR N DREA
Dy Rio) o) m0) T Dos By moywny T Do By 0(os)
S~ 9 H o~ ~d 8O o~ ~ 8 B D

=Dy, R , —+ Dy R(=—, — DpyR(w—,— )=
7 (f)x”c' ﬁzﬂe)ﬁx“ + Dos (816"" 8xm)8x“ P (E)zm dxos )8x"/\
=0.
with
0 0 0 0
X = Y = Z = W= —
Oz’ Oz’ Oz’ OxrA
in the second Bianchi equality of Theorem 5.4.2. g

§5.5 CURVATURES ON RIEMANNIAN MANIFOLDS

5.5.1 Combinatorial Riemannian Curvature Tensor. In this section, we turn
our attention to combinatorial Riemannian manifolds and characterize curvature

tensors on combinatorial manifolds further.

Definition 5.5.1 Let (M,_(L 5) be a combinatorial Riemannian manifold. A com-

binatorial Riemannian curvature tensor
R: 2 (M)x 2 (M) x 2 (M)x 2 (M)— C>(M)
of type (0,4) is defined by

R(X,Y,Z,W) = g(R(Z,W)X,Y)



Sec.5.5 Curvatures on Riemannian Manifolds 253

forvX,Y, Z,W € 2 (M).
Then we find symmetrical relations of E(X Y, Z, W) following.

Theorem 5.5.1 Let R : 2 (M) x 2 (M) x 2 (M) x 2 (M) — C®(M) be a

combinatorial Riemannian curvature tensor. Then for VXY, Z, W € Z (M),
(1) R(X,Y,Z,W) + R(Z,Y,W,X) + R(W,Y, X, Z) = 0.
(2) R(X,Y,Z,W) = —R(Y, X, Z,W) and R(X,Y,Z,W) = —R(X,Y,W, Z).

(3) R(X,Y,Z,W) = R(Z,W, X,Y).

Proof For the equality (1), calculation shows that

R(X,Y,Z, W)+ R(Z,Y,W,X)+ R(W,Y, X, Z)

= g(R(Z,W)X,Y) + g(R(W, X)Z,Y) + g(R(X, Z)W,Y)
= g(R(Z,W)X + R(W,X)Z + R(X,Z)W,Y) =0

by definition and Theorem 5.4.1(4).
For (2), by definition and Theorem 5.4.1(1), we know that

RX,Y,Z,W) = g(R(ZW)X.Y)=g(—R(W.Z)X,Y)
~g(RW.Z)X,Y) = —R(X,Y,W, Z).

Now since D is a combinatorial Riemannian connection, we know that

Z(9(X,Y)) = g(DzX,Y) + g(X,DzY).

by Theorem 5.3.4. Therefore, we find that

9(D;DwX.Y) = Z(g(DwX.,Y))— g(DwX,DzY)
Z(W(9(X,Y))) = Z(9(X, DwY))
- Wi(g(X, 5ZY)) +9(X, 5WEZY)~

Similarly, we have that
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g(DwDzX,Y) = W(Z(9(X,Y))) — W(g(X,DzY))
— Z(9(X,DwY)) + g(X, DzDwY).

Notice that

9(Dizw),Y) = [2,W]g(X,Y) — g(X, Dizw)Y).

By definition, we get that

R(X,Y,Z, W) 9(DzDwX — DwDzX — Dz X,Y)

9(DzDwX,Y) — g(DwDzX,Y) — g(Dizw) X, Y)

Z(W(g(X,Y))) = Z(g(X, DwY)) = W(g(X, DzY))
9(X, DwDzY) = W(Z(g(X,Y))) + W(g(X, DzY))

Z(g(X, DwY)) — g(X, DyDwY) — [Z,W]g(X,Y)

- 9(X, D[Z,W]Y)

Z(W(g(X,Y))) = W(Z(g(X,Y))) + g(X, DwDzY)

— 9(X,DzDwY) - [Z,W]g(X,Y) — g(X, 5[Z,W]Y)

= g(X,DwDzY — DzDwY + DizwY)

= —g(X,R(Z,W)Y)=—R(Y,X,ZW).

+ +

Applying the equality (1), we know that

R(X,Y,Z, W)+ R(ZY,W,X)+ R(W,Y,X,Z) =0, (5—6)

RY,ZW,X)+RW,Z, X,Y)+ R(X,Z,Y,W)=0. (5—7)

Then (5 — 6) + (5 — 7) shows that

R(X,Y,Z,W) + R(W.,Y,X,Z)
+ R(W,Z,X,Y)+ R(X,Z,Y,W) =
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by applying (2). We also know that

ROW,Y,X,Z) = R(X, Z,Y,W) = —(R(ZY,W,X)-R(W,X,ZY))
E(X7KZ7W)7]§(Z7VV7X7Y)

This enables us getting the equality (3)

R(X,Y,Z,W)=R(ZW,X,Y).
0

5.5.2 Structural Equation in Riemannian Manifold. Applying Theorems
5.4.2 —5.4.3 and 5.5.1, we also get the next result.

Theorem 5.5.2 Let (]\4 g, ) be a combinatorial Riemannian manifold andQ (w)(k>) =
QZ;g(“)( x- Then

(1) Qparon) = 3R @™ A

(2) Quyen) + Qsnym) = 0;

(3) W™ AQuuyry = 05
(4)

1) dQunen) = W55 A Loey(wn) — W5 A ooy -

Proof Notice that 7 = 0 in a combinatorial Riemannian manifold (]T/[J,g7 15)
We find that

KA os né
Q,ul/ R(uu )(o¢)( 7]6)"‘) ANw

by Theorem 5.4.2. By definition, we know that

Quuyen) = Yooy

S B e me W A

D 0 9 0
S Bl mown Ieayw™ Aw™ W™

Whence, we get the equality (1). For (2), applying Theorem 5.5.1(2), we find that

D 3 6
> (B () (06)00) + Bion) (a) (06) 0 )0 A w™ = 0.

Quen) + Lenyu) = 5

By Corollary 5.4.1, a connection D is torsion-free only if O* = 0. This fact
enables us to get these equalities (3) and (4) by Theorem 5.4.3. O
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5.5.3 Local form of Riemannian Curvature Tensor. For any point p € M

with a local chart (U, [¢,]), we can also find a local form of R in the next result.

Theorem 553 Let R : 2 (M) x 2 (M) x 2 (M) x Z (M) — C=(M) be a
combinatorial Riemannian curvature tensor. Then for Vp € M with a local chart

(Up; lw]),

R = Ry uinda™ ® da™ @ do” © da™

with

7 _ 1(529<w)<a<> Pgenm 0 guuywe) 529@»(“))
(@D = o\ kg " Jpmvdges  GrrAdros  Oxhv Oy

IV Eo
+ T oo Dm0 90 @) — Ty o) L sh) (w6 Gleo 1)

where gy = 9(gam s o)

Proof Notice that

~ ( d 0 d 0 ) = ~ ( 0 0 0 0 )
Oxos” Qxnd’ 9z’ 9z’ T N dam) Ot Hxos’ dxnd
N R R B B

IR oo ) g ) = Bl o o) 9001 s3)

Ro) (o) (u) (x3)

By definition and Theorem 5.5.1(3). Now we have know that (eqn.(5 — 5))

99 () 0 o
“oprs = Lo 9006 + Fony oo I o) -

Applying Theorem 5.4.4, we get that

R(o0) ) () ()
ar?: ar
_ (oo (09) () o
= (gow— = e+ Do Eom) = Lo Do) 9o
9 o oo 9wome 0
= g Lo gwmn) — Lioown =5 — o Clooy e 900 0m)
D9 (1) (o) o i ¢ 9
+T o W + Ll L)) 900063 = Ty ) L (Eo) ) 9001 0)

9 D 9 e
= gom Lioawng@mn) = 7.5 o 90 6m)
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13 139 13 )
F(ag )(pv) (F(’lgL)(K)\)g(su ) (1) + F (n9) (K)\)g(ﬂb)(gu)) + F(o’g)(n)\)r(go (,u,l/)gwb)(“/\)
—T % 00 Ty Icormn) + Loy un 900E0)) = ey Tty 00 (o)

10 39(a<>(n9) 9en w0 O9e) k) €o

29 . OxrA oz 9 )+ T loon) F(€0><W VICDICEY
1 0 996ome | O9uw)me) 9o u) 0

_5 OZ‘NA ( 83’}‘“‘” azo-g - axng ) F )F(&))(A)\))g(lﬁ)(n@

:l(agguwxas) gm0 59<~A>(a<>)
2" Qxrroxn® Oz dxos  Qxrrdzos  Qxrr Qxn?

1 o 0,
+F(17§ KA) F(ELO)(M/)g D) F (o6)(pv) F(go)(li/\))g(lh)(ﬁe)'
This completes the proof. g

Combining Theorems 5.4.6, 5.5.1 and 5.5.3, we have the following consequence.

Corollary 5.5.1 Let E(W)(m\)(oc)(ng) be a component of a combinatorial Riemannian

curvature tensor R in a local chart (U, [¢]) of a combinatorial Riemannian manifold

(1) Rw)eros o) = :ﬁ(m)(w)(as)(n@) = —R(u)(s))(n0)(0¢) 5

(2) Riw)enoomn = Bloo)mnmen;

(3) R W) (N @) + o) en)w(os) + Bloo)un)mo) ) = 05

(4) DocRiuysno0)m0) + Dos B enmonon) + Duo R snonios) = 0. 0

§5.6 INTEGRATION ON COMBINATORIAL MANIFOLDS

5.6.1 Determining J/;;(n, m). Let M (ny,- -+, ny,) be a smoothly combinatorial
manifold. Then there exists an atlas € = {(Ua, [¢a])| € I} on ]\I(nl, e M)

consisting of positively oriented charts such that for Ya € I, 3(p) + Z(nl —35(p)) is
=1

an constant ng_for Vp € U, ([Maol4]). The integer set H7(n, m) is then defined
by
Hp(n,m) = {ng |la € I}.
Notice that M(nl, -+, M, is smoothly. We know that #;(n, m) is finite. This set
is important to the definition of integral and the establishing of Stokes’ or Gauss’
theorems on smoothly combinatorial manifolds.
Applying the relation between the sets H(ny, na, -« -, ny) and G([0, 1y, [0, 7))

established in Theorem 4.2.4. We determine it under its vertex-edge labeled graph
G([O, nm]7 [U, nm])‘
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Theorem 5.6.1 Let M be a smoothly combinatorial manifold with a correspondent
vertez-edge labeled graph G([0,ny], [0, nm]). Then

d(p) N
Hgn,m) € Angng,nm} Y {67(p)+2(nrd(p))}

d(p)>3.peM
U{Tl(u) + 711(v) — 12(u, v)|V(u,v) € E(G([0, nm], [0, n]))}-

Particularly, if G([0,nm], [0, ny]) is Ks-free, then

Hii(n,m) = {n(u)lue V(G([QnmL [0, 72m])) }
U{Tl +7—1 - TZ(U7U)|V(U7U) S E(G([07nm]7 [Onm]))}

Proof Notice that the dimension of a point p € M is

-~ ~

d(p)
= dp) + 2 (mi = d(p)
by definition. If d(p) = 1, then n, = n;,1 < j < m. If d(p) = 2, namely,
pe M™ N M for 1 <i,j <m, we know that its dimension is
ni -y = d(p) = n(M™) + 1 (M) — d(p).

Whence, we get that

d(p
Hnm) € Anny o} {dle) + (-

d(p)>3,peM

U{Tl( + 71 (v) = 72w, v)|V(u,v) € E(G([0,7], [0, n])) }-

Now if G([0, ], [0, n,n]) is Ks-free, then there are no points with intersectional
dimension> 3. In this case, there are really existing points p € M™ for any integer
i,1 <i<mandqge M™N MY for 1 <i,j < m by definition. Therefore, we get
that

Hi(n,m) = {n(w)lu € V(G([0,nn], [0,n,]))}
U{Tl(u) + 711(v) — 72(u, v)|V(u,v) € E(G([0,nm], [0,nm]))}. O
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For some special graphs, we get the following interesting results for the integer
set J;(n, m).

Corollary 5.6.1 Let M be a smoothly combinatorial manifold with a correspondent
vertez-edge labeled graph G([0, ny], [0, ny]). If G([0, ny], [0, ny]) = P*, then
A (n,m) = {1 (u;), 1 <@ < py {7 (wi) + 71 (wigr) — 72(wi, uir)|1 <0 < p— 1}
and if G([0, 1], [0,n,,]) = CP with p > 4, then
Hgp(n,m) = {1 (ui), 1 <0 < pyU{m(ui) + m1(uigs) — 7w, viga)|1 < i < p,i = (modp)}.

5.6.2 Partition of Unity. A partition of unity on a combinatorial manifold M
is defined following.

Definition 5.6.1 Let M be a smoothly combinatorial manifold and w € A(fVY) A
support set Suppw of w is defined by

Suppw = {p € M;w(p) # 0}

and say w has compact support if Suppw is compact in M. A collection of subsets
{Cili € f} of]W is called locally finite if for each p € ]AV[/, there is a neighborhood U,
of p such that U, N C; = 0 except for finitely many indices i.

Definition 5.6.2 A partition of unity on a combinatorial manifold M is a collection
{(Ui, )i € IN}, where

(1) {Ui]i € I} is a locally finite open covering of M:;
(2) ¢; € %(1/\/7) g:(p) >0 for Vp € M and suppg; € U; for i € I
(3) forpe M, > 9i(p) = 1.

For a smoothly combinatorial manifold M. , denoted by G* [M ] the underlying
graph of its correspondent vertex-edge labeled graph. We get the next result for a

partition of unity on smoothly combinatorial manifolds.
Theorem 5.6.2 Let M be a smoothly combinatorial manifold. Then M admits
partitions of unity.

Proof For VM € V(GL[M 1), since M is smooth we know that M is a smoothly
submanifold of M. As a byproduct, there is a partition of unity {Ug, 95| € Ins}



260 Chap.5 Combinatorial Differential Geometry

on M with conditions following hold.
(1) {Ugy|a € Ipr} is a locally finite open covering of M;
(2) g%(p) > 0 for Vp € M and suppg$; € U, for a € Iy,
(3) Forp e M, 3 gu(p) =1

By definition, for Vp € M, there is a local chart (Up, [p]) enable ¢, : U, —
Bri|J B2 -+ -|J B™sw with B () B2 ()---[B"s® # (. Now let Ui, Uit

ey UJ(\IL,( ) be s(p) open sets on manifolds M, M € V(G* [ﬁ]) such that
s(p)
pelUy=JUs, . (-8
h=1
We define
S(p) = {U,'] all integers o enabling (5 — 8) hold}.
Then

A= Q§<p> = {Ug]a € I(p)}

1

is locally finite covering of the combinatorial manifold M by properties (1) = (3).
For YU € S(p), define

Oug = Z Z (Hf/th)

521 {inig, i }C{1,2,,5(p)} h=1

and

UU;

e
VeS(p)
Then it can be checked immediately that {(Uy', gus)|p € M,ac€ ]~(p)} is a partition
of unity on M by properties (1)-(3) on gf; and the definition of gye. O

Corollary 5.6.2 Let M be a smoothly combinatorial manifold with an atlas A=
{(Va. [pa])| € T} and to, be a C* tensor field, k > 1, of field type (r,s) defined

on Vy, for each o, and assume that there exists a partition of unity {(U;, g;)|i € J}
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subordinate to /T, i.e., for Vi € J, there exists a(i) such that U; C Vau). Then for
Vp € M ,

tp) = zgita(i)
i

is a C* tensor field of type (r,s) on M

Proof Since {U;]i € J} is locally finite, the sum at each point p is a finite sum
and t(p) is a type (r, s) for every p € M. Notice that ¢ is C* since the local form of
t in a local chart (Vag), [a@)]) 1s

Z Jila(j)
J

where the summation taken over all indices j such that Vo () Vagy) # (). Those

number j is finite by the local finiteness. O

5.6.3 Integration on Combinatorial Manifold. First, we introduce integration
on combinatorial Euclidean spaces. Let f{(nh -+, Ny,) be a combinatorial Euclidean

space and

7Ry, nm) — R(ng, -+, n)

a O differential mapping with

] [ym\]mxnm = [TN)\([‘TWManw
The Jacobi matriz of f is defined by
oly]
] [Agen) ()]

KA
where Ao () = 227'

Now let w € TP(R(n1, - -+, npm)), a pull-back 7*w € TP (R(ny, - - -, ny)) is defined
by

Twlay, az, - ) = w(f(ar), flaz), -+, flax))

for Yay, as, -+, ax € R.
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Denoted by n = m + > (n; —m). If 0 <1 < n, recall([4]) that the basis of
i=1
ARy, -+ ny)) is

{e"ne A Aelll <y <idy-- < i <}

for a basis e, e, - -, e, of ﬁ(nh -+, ny) and its dual basis e',e?, - - -, e". Thereby
the dimension of A (R(ny, - -+, ny)) is
( ) (M + 32 (ni —m))!
noy i=1
! N+ 3 (n — ) — 1)
i=1
Whence A”(f{(nl, -+« np)) is one-dimensional. Now if wy is a basis of A"(R), we

then know that its each element w can be represented by w = cwy for a number

ceR. Let 7: ﬁ(nl, e Nyy) — ﬁ(nl7 -+, Ny,) be a linear mapping. Then

ARy, nm)) — A R(ng, -+, nm)

is also a linear mapping with 7*w = ¢7*wy = bw for a unique constant b = detr,

called the determinant of 7. It has been known that ([AbM1])

oy
detT = det(==
et = de (am)
for a given basis e;, e,, - - -, e, of R(ny, - -+, ny) and its dual basis e!, €2, - - - e".
Definition 5.6.3 Let ﬁ(nl,ng, <o+ ) be a combinatorial Euclidean spacen =

m ~ ~
m+ Y. (n; —m), U C R(ny,ng,--+,ny) and w € A*(U) have compact support with
=1

w(T) = w ydah i A A dghin Vi

iy Viy) e (Bin Vi,
relative to the standard basis €1 < uy < m,1 < v < n, of ﬁ(nhng, Ce Myy)
with e = ¢e” for 1 < u < m. An integral of w on U is defined to be a mapping
fﬁ:fﬁfﬁfGRwith

/ﬁw /w(:p)f[ldx” H dz", (5-9)

p>mA+1,1<v<n;

where the right hand side of (5 —9) is the Riemannian integral of w on U.
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For example, consider the combinatorial Euclidean space f{(3, 5) with R3NR°® =
R. Then the integration of an w € A7(l7) for an open subset U € R(3,5) is

/w:/ w(z)de'de?dz 3 de®da® da* da®.
U UN(R3URS)

Theorem 5.6.3 Let U and V be open subsets of R(ny,---,ny) and 7: U — V is
an orientation-preserving diffeomorphism. If w € A™(V) has a compact support for

m

n=m+ Y (n; —m), then ™*w € A"(U) has compact support and
=1

frof

Proof Let w(r) = Wiy, vy, ) (i i) AT 70 A -+ A dxtin¥n € A™(V). Since 7 is
a diffeomorphism, the support of 7*w is 77!(suppw), which is compact by that of
suppw compact.

By the usual change of variables formula, since 7*w = (w o 7)(det7)wy by defi-
nition, where wy = da* A - - A dx™ A de™ ™D A dg DAL Adz™ A - A damrm

we then get that

/ T*w = / (WOT)(detT)ﬁdx" I

v=1 p>m+1,1<v<n,
/ w.

Definition 5.6.4 Let M be a smoothly combinatorial manifold. If there exists a

d

family {(Ua, [pa)la € 1)} of local charts such that
(1) U Ua = M;

ael

(2) forVa,B €I, either Uy(\Us = 0 or Uy(\Us # 0 but for ¥p € Uy N Up,

the Jacobi matrix

det(g{iﬂ) >0,

then M ‘is called an oriently combinatorial manifold and (Uy, [¢a]) an oriented chart
forVa e I.
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Now for any integer n € J¢5;(n,m), we can define an integral of n-forms on a

smoothly combinatorial manifold M (ny, -+, Ny

Definition 5.6.5 Let M be a smoothly combinatorial manifold with orientation €

and (U; [p]) a positively oriented chart with a constant ng; € ;(n,m). Suppose
we A (]Ti), U C M has compact support C cU. Then define

/éw:/go*(wb). (5 10)

Now if €5; is an atlas of positively oriented charts with an integer set 57 (n,m),
let P = {(Us, Pa,ga)|a € I} be a partition of unity subordinate to €s;. For Yw €
AY(M), 7i € Ji(n,m), an integral of w on P is defined by

/PoJ:Z/gaw. (5—11)

ael
The following result shows that the integral of n-forms for Vn € J65;(n,m) is
well-defined.

Theorem 5.6.4 Let M(nl, <+ ny,) be a smoothly combinatorial manifold. For
n € ;(n,m), the integral of n-forms on M(nl, ceo ) is well-defined, namely,
the sum on the right hand side of (4.4) contains only a finite number of nonzero

terms, not dependent on the choice of €53 and if P and Q are two partitions of

e

Proof By definition for any point p € M (1, -+, ny), there is a neighborhood

unity subordinate to €3;, then

ﬁp such that only a finite number of g, are nonzero on ﬁp. Now by the compactness
of suppw, only a finite number of such neighborhood cover suppw. Therefore, only
a finite number of g, are nonzero on the union of these ﬁp, namely, the sum on the
right hand side of (5 — 11) contains only a finite number of nonzero terms.

Notice that the integral of n-forms on a smoothly combinatorial manifold M (n1,
~ 5(p)

-+, N, is well-defined for a local chart U with a constant ng = 5(p) + > (n; —5(p))
i=1

for Vp € Uc M(nl, -+, nm) by (5 —10) and Definition 5.6.3. Whence each term
on the right hand side of (5 — 11) is well-defined. Thereby [5w is well-defined.
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Now let P = {(Uy, ¢a o)l € I} and Q = {(Vj, 03, hs)|3 € J} be partitions
of unity subordinate to atlas ¢7; and %”]% with respective integer sets ¢5;(n, m) and
jffj(n, m). Then these functions {g.hg} satisfy gohg(p) = 0 except only for a finite

number of index pairs («, 3) and

SN gahslp) =1, for ¥p € M(ny, - ny).
a B

Since Y =1, we then get that
B

/1‘5 N ;/gawzﬁ:;/hﬁga”z&:zﬁ:/gah@aJ/@w.

O

By the relation of smoothly combinatorial manifolds with these vertex-edge
labeled graphs established in Theorem 4.2.4, we can also get the integration on a
vertex-edge labeled graph G([0,n,,], [0, 7)) by viewing it that of the correspondent
smoothly combinatorial manifold M with A'(G) = AL(M), 4 (n,m) = H7(n,m),

namely define the integral of an n-form w on G([0,n,,], [0, ny]) for n € H5(n, m)

by
[
G([0,mm),[0,10m)) M

Then each integration result on a combinatorial manifold can be restated by com-
binatorial words, such as Theorem 5.7.1 and its corollaries in the next section.

Now let nq,ng, - -+, n, be a positive integer sequence. For any point p € M S if

there is a local chart (U, [¢,]) such that [¢,] : U, — B™|UB"J---| B™ with
dim(B™ N\ B™(---(B™) = m, then M is called a homogenously combinatorial

manifold with n(M) = m + > (n; —m). Particularly, if m = 1, a homogenously

=
combinatorial manifold is nothing but a manifold. We then get consequences for the

integral of n()-forms on homogenously combinatorial manifolds.

Corollary 5.6.3 The integral of (m + Y (n; — m))-forms on a homogenously com-
i=1
binatorial manifold M(ny,ng, -+, ny) is well-defined, particularly, the integral of

n-forms on an n-manifold is well-defined.
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Similar to Theorem 5.6.3 for the change of variables formula of integral in a
combinatorial Euclidean space, we get that of formula in smoothly combinatorial

manifolds.

Theorem 5.6.5 Let M(nl,ng, cee Ny) and N(l{?l,k27 -+ k) be oriently combina-
torial manifolds and T : M — N an orientation-preserving diffeomorphism. If

wE€ AE(]\?), ke (k1) has compact support, then T*w has compact support and

fom

Proof Notice that suppr*w = 77 !(suppw). Thereby 7*w has compact support
since w has so. Now let {(U;, ¢;)|i € I} be an atlas of positively oriented charts of M
and P = {gili € f} a subordinate partition of unity with an integer set 5;(n, m).
Then {(7(U;), ;0 7)]i € I} is an atlas of positively oriented charts of N and
Q = {gio7 '} is a partition of unity subordinate to the covering {7(U;)|i € I} with
an integer set 2 5 (k,1). Whence, we get that

/T*w ;/gir*w = ;/%*(gﬁ*w)
;/%*(7_1)*(% o Hw
zi: /(801' o N(gioT Hw

:/w,

§5.7 COMBINATORIAL STOKES’ AND GAUSS’ THEOREMS

5.7.1 Combinatorial Stokes’ Theorem. We establish the revised Stokes’ the-
orem for combinatorial manifolds, namely, the Stokes’ is still valid for n-forms on

smoothly combinatorial manifolds M if 7 € H;(n, m), where S5 (n, m).

Definition 5.7.1 Let M be a smoothly combinatorial manifold. A subset D of]q

1s with boundary if its points can be classified into two classes following.
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Class 1(interior point InthD) For ¥p € IntD, there is a neighborhood ‘N/p of p
enable ‘7,, c D.

Case 2(boundary 813) For Vp € 813, there is integers pu,v for a local chart
(Up; lp)) of p such that z**(p) = 0 but

ﬁp ND={qlqge Uy, ™ >0 for Y{r, \} # {1, v}}.
Then we generalize the famous Stokes’ theorem on manifolds to smoothly com-

binatorial manifolds in the next.

Theorem 5.7.1 Let M be a smoothly combinatorial manifold with an integer set
(., m) and D a boundary subset of M. For Vi € H(n,m) if w € A*(M) has

a compact support, then
fao=[ w
D aD

with the convention f@ﬁ w =0, while oD = §.

Proof By Definition 5.6.5, the integration on a smoothly combinatorial manifold
was constructed with partitions of unity subordinate to an atlas. Let €73; be an atlas
of positively oriented charts with an integer set 5;(n, m) and P = {(Ua; 0a ga)|x €

I } a partition of unity subordinate to €3;. Since suppw is compact, we know that
[ =3 [ diguw),
D ~JD
acl

/af)w N Z/aﬁg“w'

ael
and there are only finite nonzero terms on the right hand side of the above two

formulae. Thereby, we only need to prove

[ d(gaw) = /  Gaw
D oD
for Va € 1.

Not loss of generality we can assume that w is an 7n-forms on a local chart

(U, [g]) with a compact support for 7 € H;(n, m). Now write
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n
—
w = (—1)h71u} ) dxtivin A oo A datinVin A - - A dxMiaYin
Wiy, Vi, ,
h=1

_ )
where dx*n"» means that dz*"in is deleted, where

in € {17 RN (l(ﬁU + 1))7 B (lnl)t (Q(h\U + 1))7 B (2”2), B (mnM)}'
Then

n

~ Oy, v, -
dw = Whyhd i A A datiR Y (5 — 12)
o Hin Vi,
h=1

Consider the appearance of neighborhood U. There are two cases must be
considered.
Case 1 UNOD =0

In this case, [;;w = 0 and U is in M\ D or in IntD. The former is naturally
implies that [ d(gew) = 0. For the later, we find that

”l VH i1 Vi i~ Vi~

Notice that f ””‘ hdrtin¥in = 0 since W, vy has compact support. Thus

2Hin i

/5 dw =0 as d051rcd.

Case 2 U(NOD +#0

In this case we can do the same trick for each term except the last. Without

loss of generality, assume that

U D = {ala € U.a"="(q) > 0}

and

U()0D = {qlg € U, =" (q) = 0}.

Then we get that
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/~ “ - / D “
aD UnaD

h—1 Wiy Vi ﬂ i~ Vi
(-1) Wy, iy, AT N e N N N datE
UndD

|
—
|
_
=
s
L

/ Wy Azt A A dgtin1 T
_ Wy v
vreD " "

since dztn"w(q) = 0 for q € U NaD. Notice that R = OR’ but the usual
orientation on R™! is not the boundary orientation, whose outward unit normal is
—e; = (0,--+,0,—1). Hence

\/~ w= _/ Wy v (1-”11"%1 Lo, atiaeViaen ())dx“n"n oo drtin—1Vinaa
oD IR

On the other hand, by the fundamental theorem of calculus,

Mﬁ%" dzxFivin ... dx'uiﬁ—luii—l
R71 1 81:#171‘ l/7~

v, Wi Vi i Vs Wi Vi
= 7/~ wulﬁyl%(q'“n i gt 1,0)d$”’1 i1 .. dpPin-1Vino1 |
R

fi—1

Since Wi i has a compact support, thus

w=— Wy v, (xl‘il"il R N ())d;p“n Yip oL dpPin—1Yin—a
U rRi-1 "

Therefore, we get that

/@:/w
D oD

This completes the proof. g

Corollaries following are immediately obtained by Theorem 5.7.1.

Corollary 5.7.1 Let M be a homogenously combinatorial manifold with an integer
set A7 (n,m) and D a boundary subset of M. For7i € S5 (n,m) if w e Aﬁ(ﬂ)

has a compact support, then
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/@:/%
D 8D

particularly, ifﬁ is nothing but a manifold, the Stokes’ theorem holds.

Corollary 5.7.2 Let M be a smoothly combinatorial manifold with an integer set
-

M

(n,m). Forn € #;(n,m), if w € A"(M) has a compact support, then

/w:[).
M

By the definition of integration on vertex-edge labeled graphs G([0, n,,], [0, 1)),
let a boundary subset of G([0,n,,], [0, 7)) mean that of its correspondent combi-
natorial manifold M. Theorem 5.7.1 and Corollary 5.7.2 then can be restated by a

combinatorial manner as follows.

Theorem 5.7.2 Let G([0,n), [0, nm]) be a vertez-edge labeled graph with an integer
set #(n,m) and D a boundary subset of G([0, ny), [0, n]). ForVn € #g(n,m) if
w € A*G([0, n], [0, ,])) has a compact support, then

/@:/w
D 8D

with the convention faf) w =0, while oD = 0.

Corollary 5.7.3 Let G([0,np)], [0, n]) be a vertex-edge labeled graph with an integer
set Hy(n,m). For Vi € Ha(n,m) if w € AY(G([0,nm],[0,n,])) has a compact
support, then

/ w=0.
G([0,7m][0,nm])

Choose M = R" in Theorem 5.7.1 or Corollary 5.7.1. Then we get these well

known results in classical calculus shown in the following examples.

Example 5.7.1 Let D be a domain in R? with boundary. We have know the Green’s

formula
0A OB
— — 7 )dxidus = Adzy + Bdx
/D(axl 81'2) 21 dxy /8D 71 + Bdxsy
in calculus. Let w = Adz; + Bdzs € Aj(R?). Then we know that
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~ 0A OB
dw = (87131 - aﬁ@)dlj A dl’z

Whence, the Green’s formula is nothing but a special case of the Stokes’ formula
fao=[
D aD

Example 5.7.2 Let S be a surface in R? with boundary such that 9S a smoothly

with D = D.
simple curve with a direction. We have know the classical Stokes’s formula

/ Adzxi + Bdxs + Cduxs
as

oC 0B 0A oC oC  0A
S 8372 8$3)dT2dx3 (8.L'3 8 1)dl’%dl’1 (811 8 Lo

Now let w = Adxy + Bdxy + Cdxz € AY(R?). Then we know that

)dl’ld.L‘Q

oC 0B 0A 0C oC  0A
872 Org)dm A d + (8363 o, o, )4 N eyt (OTl 83:2)

Whence, the classical Stokes’ formula is a special case of the formula
fao=[ w
D aD

5.7.2 Combinatorial Gauss’ Theorem. Let D be a domain in R?® with bound-

ary and a positive direction determined by its normal vector n. The Gauss’ formula

dw = ( dxi N dxg.

in Theorem 5.7.1 with D = S.

claims that in calculus

/ Adxsdrs + Bdrsdr, + Cdxidxy = / (% + 8£ + — oc Ydxydzadrs.
aD p Oy Oza  Oxy

Wether can we generalize it to smoothly combinatorial manifolds? The answer

is YES. First, we need the following conceptions.

Definition 5.7.2 If X,Y € %k(ﬂ), k > 1, define the Lie derivative LxY of Y
with respect X by LxY = [X,Y].
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By definition, we know that the Lie derivative forms a Lie algebra following.

Theorem 5.7.3 The Lie derivative LxY = [X,Y] on 2 (M) forms a Lie algebra,
i.e.,

(@) [, ] is R-bilinear;

(i) [X,X] =0 for all X € 2 (M);

(i) [X, [V, Z)| + [V, [Z, X)) + |Z,[X, Y]] = 0 for all X,Y, Z € 2 (M).

Proof These brackets [X, Y] forms a Lie algebra can be immediately gotten by
Theorem 5.1.2 and its definition. g

Now we find the local expression for [X,Y]. Forp € M, let (Ups [¢]p) with [¢],
U, — f{(nl(p), -+, Ns(p)(p)) be alocal chart of p and X,Y the local representatives
of X, Y. According to Theorem 5.7.3, the local representative of [X,Y] is [X,Y].
Whence,

(XY@ = XY@ -YX[)@)
= DY[f))(@)- X(@) - DIX[])@) -V (@)
for f € 3&;(?\7 ). Now ?[]‘A] () = Df(f) .Y (%) and maybe calculated by the chain
ruler. Notice that the terms involving the second derivative of f cancel by the

~

symmetry of D?f(Z). We are left with

Df(z)- (DY (z)- X(z) — DX(T) - Y (7)),

which implies that the local representative of [X, Y] is DY -X — DX -Y. Applying

Theorem 5.1.3, if [¢], gives local coordinates [zij]s(y)xn,,,, then
aY;; 0X;
X, Y]y =Xt -V, 2.
[ ’ ] J H (9.71‘“, H 63)1’“,
Particularly, if M is a differentiable n-manifold, i.e., m = 1 in M(nl, “++ Ny), then
these can be simplified to
aY; 0X;
XY];=X -,
X, Y] # Oz, " oz,

just with one variable index and if Y = f € AO(]Tl/)7 then Lxf = [X, f] = df.
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Definition 5.7.3 For Xy, -+, X € 2 (M), w € A**Y (M), define ixw € A*(M) by
iXW(le R} Xk) = LU(X, Xla e 7Xk)
Then we have the following result.
Theorem 5.7.4 For integers k,1 > 0, if w € AF(M), @ € AY(M), then
(i) ix(wA®) = (ixw) Ao+ (—1)fw Aixw;
(’LZ) wa = ’ixdu} -+ dixu).
Proof By definition, we know that ixw € Akfl()ANi/. For w =y, g, + -+, Upyr,
ix(WA@) (U, Upt) = w Ao (U, U, - -+, Uk)

and

(k+1—1)!

(ixw) ANw + (—1)fwAixw = =il A(ixw ® w)
+(71)k%(+l I:T;A(w ® ixw)

by Definition 5.2.2. Let

2 3 - k+1 1 kE+2 .. k41
agg = .
0 12 ok k4l k42 - ktl

Then we know that each permutation in the summation of A(w ® ixw) can be

written as oo with signog = (—1)*. Whence,

E+1-—1)!
-1 k(i
(=1) kNl —1)!
We finally get that

(k+1—1)!

Alw®ixw) = m

A(ixw 04 w)

(k+1-1) k+1-1

(ixw)/\w+(_1)kw/\ixw = ( k— Dl +k!(l—1)!)A(in®w)
(k:]:!rl !l)!A('L’Xw Q@w) = ix(wA ).

This is the assertion (7). The proof for (i) is proceed by induction on k. If k = 0,

let f € A°(M). By definition, we know that
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Lxf=df =ixdf.

Now assume it holds for an integer [. Then a (I 4+ 1)-form may be written as
df A w. Notice that Lx(gf Aw) = Lxdf Aw+df A Lyw since we can check Ly is

a tensor derivation by definition. Applying (i), we know that

ixd(df Aw) 4+ dix(df Aw) = —ix(df Adw) + d(ixdf Aw — df Aixw)
fixcif/\cjw)Jrgf/\ngw

+ dixdf Aw+ixdf Aw+df Adixw

df A Lxw + dLx f Aw

by the induction assumption. Notice that dLy f=1L xd, f, we get the result. g

Definition 5.7.4 A volume form on a smoothly combinatorial manifold is an n-form
w in A" for some integers n € H;(n,m) such that w(p) # 0 for allp € M. If X
is a vector field on ]fVY, the unique function div,X determined by Lxw = (divX), is
called the divergence of X and incompressible if div,X = 0.

Then we know the generalized Gauss’ theorem on smoothly combinatorial man-

ifolds following.

Theorem 5.7.5 Let M be a smoothly combinatorial manifold with an integer set

H(n,m), Da boundary subset of M and X a vector field on M with a compact

/N(diVX)V = /~ ixv,
b oD

where v is a volume form on M, i.e., nonzero elements in A™(M) forn € H5;(n, m).

support. Then

Proof This result is also a consequence of Theorem 5.7.1. Notice that by

Theorem 5.7.4, we know that

(divX)v = c?in + ixgv = c?in.

Whence, we get that
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/f)(divX)V = /@f) ixv.

by Theorem 5.7.1. O

Then the Gauss’ theorem in R? is generalized on smoothly combinatorial man-

ifolds in the following.

Theorem 5.7.6 Let (]Tfj g) be a homogenously combinatorial Riemannian manifold
carrying a outward-pointing unit normal nyy; along OM and X a vector field on

(M, g) with a compact support. Then

/N (divX)chM = /m (X, n,5) Jvazﬁv
o

M
where v and v5; are volume form on M, i.e., nonzero elements in AP (M), and

<X7 naM> the inner product of matrizes X and .

Proof Let vy5; be the volume element on OM induced by the Riemannian vol-

ume il/cmcnt vy € A"(MK)(JTIJ)7 i.e., for any positively oriented basis vy, - - -, Uyit)-1 €
T,(0M), we have that
_ _ o _
Vaﬁ(x)(”h T Un(]\?)—l) = VM(_aI ~ YU, 2)n(1\71')71)'
n(M)
Now since
. _ _ a _
(ixvi) (@) 1, Tyiy) = Vi (Xi(@)vi — X, 7, (”%’ Tty Uity 1)
n
X @Vorr (@) (@1, -0, 7))
and Xn(ﬂ) = <X, na)ﬁr>v we get this result by Theorem 5.7.5. g
Particularly, if m = 1 in M (ny, -+, npm), i.e., a manifold, we know the following.

Corollary 5.7.4 Let (M,g) be a Riemannian n-manifold with a outward-pointing

unit normal ngy along OM and X a vector field on it with a compact support. Then

/(leX)dV]uZ/ <X,Il('9M> dVaAI’
M oM

where v and vay are volume form on M.
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§5.8 COMBINATORIAL FINSLER GEOMETRY

5.8.1 Combinatorial Minkowskian Norm. A Minkowskian norm on a vector
space V' is defined in the following definition, which can be also generalized to

smoothly combinatorial manifolds.

Definition 5.8.1 A Minkowskian norm on a vector space V' is a function F : V — R
such that

(1) F is smooth on V\{0} and F(v) >0 for Vv € V;

(2) F is 1-homogenous, i.e., F(Av) = AF(v) for VA > 0;

(3) for ally € V\{0}, the symmetric bilinear form g, : V xV — R with

U U Z ayzay]
1s positive definite for u,v € V.
Denoted by TM = | TZ,M.
peM

5.8.2 Combinatorial Finsler Geometry. A combinatorial Finsler geometries

on a Minkowskian norm is defined on 7'M following.

Definition 5.8.2 A combinatorial Finsler geometry is a smoothly combinatorial
manifold M endowed with a Minkowskian norm F on TM, denoted by (]W, ﬁ)

Then we get the following result.

Theorem 5.8.1 There are combinatorial Finsler geometries.

Proof Let M(nl, Ng, -+, Ny) be a smoothly combinatorial manifold. We con-
struct Minkowskian norms on TM (n1,ng, -+, Nyy). Let R™MAM24m he o Euclidean
space. Then there exists a Minkowskian norm F(Z) = |Z| in R™ T2t +m at Jeast,
in here |7| denotes the Euclidean norm on R™*"2t+nm = According to Theorem
5.1.3, T,M(ny,n, - -, ny,) is homeomorphic to R*®~*@SEFrat=4ni6)  \wWhence
there are Minkowskian norms on Tpﬂ(nl, Na, -+ -, Ny for p € U, where (Up; [¢,]) is
a local chart.

Notice that the number of manifolds are finite in a smoothly combinatorial
manifold M (n1,ng, -+, ny) and each manifold has a finite cover {(Uy; ¢a)la € T},

where [ is a finite index set. We know that there is a finite cover
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U {(Untas; o)l € Ing}.
MEV(GE[M(n1,n2,++nm)])
By the decomposition theorem for unit, we know that there are smooth functions
hata, @ € Iy such that
E Z h]\,{a =1 with 0 S h]\/[a S 1.
MEV(GH[M(ny nz, - mm)]) *€IM

Now we choose a Minkowskian norm FMe on T, M, for ¥p € Uyr,. Define

- pMapMa i p e Upa,
FMu = .
0, if p¢&Unma

for Vp € M. Now let

F= 3 3 Fufa.

MeV(GL[M(n1,na,nm)]) @1

Then F is a Minkowskian norm on Tﬂ(nl,ng, -+, Ny,) since it can be checked
immediately that all conditions (1) — (3) in Definition 5.8.1 hold. d

5.8.3 Geometrical Inclusion. For the relation of combinatorial Finsler geome-

tries with these Smarandache multi-spaces, we obtain the next consequence.

Theorem 5.8.2 A combinatorial Finsler geometry (M(nl, Ny, np); F) is a Smaran-

dache geometry if m > 2.

Proof Notice that if m > 2, then M(nl,ng, -+, Ny,) is combined by at least
two manifolds M™ and M™ with n; # ny. By definition, we know that

M™\ M™ %0 and M™ \ M™ # ().

Now the axiom there is an integer n such that there exists a neighborhood homeo-
morphic to a open ball B™ for any point in this space is Smarandachely denied, since
for points in M™ \ M™, each has a neighborhood homeomorphic to B™, but each
point in M™2 \ M™ has a neighborhood homeomorphic to B"2. |

Theorems 5.8.1 and 5.8.2 imply inclusions in Smarandache multi-spaces for

classical geometries in the following.
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Corollary 5.8.1 There are inclusions among Smarandache multi-spaces, Finsler

geometry, Riemannian geometry and Weyl geometry:

{Smarandache geometries} D {combinatorial Finsler geometries}
D {Finsler geometry} and {combinatorial Riemannian geometries}

D {Riemannian geometry} D {Weyl geometry}.

Proof Let m = 1. Then a combinatorial Finsler geometry (M (n1,n2, -+, np); F )
is nothing but just a Finsler geometry. Applying Theorems 5.8.1 and 5.8.2 to this

special case, we get these inclusions as expected. O

Corollary 5.8.2 There are inclusions among Smarandache geometries, combinato-

rial Riemannian geometries and Kdhler geometry:

{Smarandache geometries} O {combinatorial Riemannian geometries}
> {Riemannian geometry}

> {Kahler geometry}.

Proof Let m = 1 in a combinatorial manifold M(nl,nz, -+, ny,) and applies
Theorems 5.3.4 and 5.8.2, we get inclusions
{Smarandache geometries} D {combinatorial Riemannian geometries}
O { Riemannian geometry}.
For the Kéahler geometry, notice that any complex manifold M7 is equal to a
smoothly real manifold M?* with a natural base {%, d%} for T,M at each point

p € M. Whence, we get

{Riemannian geometry} O {K&hler geometry}.

$5.9 REMARKS

5.9.1 Combinatorial Speculation. This chapter is essentially an application

of the combinatorial notion in Section 2.1 of Chapter 2 to differential geometry.
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Materials in this chapter are mainly extract from references [Maoll]-[Maol5] and
[Mao18], also combined with fundamental results in classical differential geometry,

particularly, the Riemannian geometry.

5.9.2 D-dimensional holes For these closed 2-manifolds S, it is well-known that

(S) = 2 —2p(S), if S is orientable,
2 —¢q(S). if Sis non — orientable.

with p(S) or ¢(S) the orientable genus or non-orientable genus of S, namely 2-

dimensional holes adjacent to S. For general case of n-manifolds M, we know that

o0

X(M) =" (=1)*dimH, (M),

where dimHy (M) is the rank of these k-dimensional homolopy groups Hy(M) in
M, namely the number of k-dimensional holes adjacent to the manifold M. By
the definition of combinatorial manifolds, some k-dimensional holes adjacent to a
combinatorial manifold are increased. Then what is the relation between the Fuler-
Poincaré characteristic of a combinatorial manifold M and the i-dimensional holes
adjacent to M? Wether can we find a formula likewise the Euler-Poincaré formula?
Calculation shows that even for the case of n = 2, the situation is complex. For
example, choose n different orientable 2-manifolds S;, Ss, - - -, .S, and let them inter-
sects one after another at n different points in R3. We get a combinatorial manifold
M. Calculation shows that

by Theorem 4.2.9. But it only increases one 2-holes. What is the relation of 2-

dimensional holes adjacent to M?

5.9.3 Local properties Although a finitely combinatorial manifold M is not ho-
mogenous in general, namely the dimension of local charts of two points in M maybe
different, we have still constructed global operators such as those of exterior differ-
entiation d and connection D on T:M A operator O is said to be local on a subset
W C T;M if for any local chart (U, [¢,]) of a point p € W,

O, (W) = O(W)y,.
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Of course, nearly all existent operators with local properties on 77 M in Finsler
or Riemannian geometries can be reconstructed in these combinatorial Finsler or
Riemannian geometries and find the local forms similar to those in Finsler or Rie-

mannian geometries.

5.9.4 Global properties To find global properties on manifolds is a central task
in classical differential geometry. The same is true for combinatorial manifolds.
In classical geometry on manifolds, some global results, such as those of de Rham
theorem and Atiyah-Singer index theorem,..., etc. are well-known. Remember that
the pt" de Rham cohomology group on a manifold M and the inder IndD of a
Fredholm operator D : H*(M, E) — L*(M, F) are defined to be a quotient space

Ker(d: AP(M) — APTH(M))
Im(d: Ar=1(M) — A*(M))

HP(M) =
and an integer

L*(M, F)

IndD = dimKer(D) — dim( D
m

)

respectively. The de Rham theorem and the Atiyah-Singer index theorem respec-

tively conclude that

for any manifold M, a mapping ¢ : A*(M) — Hom(IL,(M),R) induces a
natural isomorphism ¢* : HP(M) — H™(M;R) of cohomology groups, where I1,(M)
is the free Abelian group generated by the set of all p-simplexes in M

and

IndD = Indy(o(D)),

where ¢(D)) : T*M — Hom(E,F) and Indr(o(D)) is the topological index of
o(D). Now the questions for these finitely combinatorial manifolds are given in the

following.

(1) Is the de Rham theorem and Atiyah-Singer index theorem still true for
finitely combinatorial manifolds? If not, what is its modified forms?

(2) Check other global results for manifolds whether true or get their new mod-

ified forms for finitely combinatorial manifolds.
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5.9.5 Combinatorial Gauss-Bonnet Theorem. We have know the Gauss-
Bonnet formula in the final section of Chapter 3. Then what is its counterpart
in combinatorial differential geometry? Particularly, wether can we generalize the

Gauss-Binnet-Chern result

/ Q = (M%)
M?2p

for an oriently compact Riemannian manifold (M?,g), where

(=P i
2= W Z 5117“.’2;1)92-”-2 AREERA Qi?:n*li?z)’

11,82, 02p

and Q; is the curvature form under the natural chart {e;} of M*" and

1, if permutation ¢, - - -4y, is even,
<02 . . . . .
01 5," = —1, if permutation ¢ - - - iy, is odd,

0, otherwise.

to combinatorial Riemannian manifolds (JAV[/,g7 IND) such that

/ Q= x(M™)
M2

with

(=1)7 .
Q= gyt D OR Qi) A A s jan 1) panimn):

11,82, 027

1, if permutation (i1j1) - - - (i2njor) is even,
65 = ¢ =1, if permutation (i1jy) - - - (fonjor) is odd,

0, otherwise.

for some integers n € H5;(n,m)?



CHAPTER 6.

Combinatorial Riemannian Submanifolds with

Principal Fibre Bundles

For the limitation of human beings, one can only observes parts of the
WORLD. Even so, the Whitney’s result asserted that one can recognizes the
whole WORLD in a Euclidean space. The same thing also happens to combi-
natorial manifolds, i.e., how do we realize multi-spaces or combinatorial man-
ifolds? how do we apply them to physics? This chapter presents elementary
answers for the two questions in mathematics. Analogous to the classical geom-
etry, these Gauss’s, Codazzi’s and Ricci’s formulae or fundamental equations
are established for combinatorial Riemannian submanifolds Sections 6.1 — 6.2.
Section 6.3 considers the embedded problem of combinatorial manifolds and
shows that any combinatorial Riemannian manifold can be isometrically em-
bedded into combinatorial Euclidean spaces. Section 6.4 generalizes classical
topological or Lie groups to topological or Lie multi-groups, which settles the
applications of combinatorial manifolds. This section also considers Lie alge-
bras of Lie multi-groups. Different from the classical case, we establish more
than 1 Lie algebra in the multiple case. Section 6.5 concentrates on generaliz-
ing classical principal fiber bundles to a multiple one. By applying the voltage
assignment technique in topological graph theory, this section presents a com-
binatorial construction for principal fiber bundles on combinatorial manifolds.
It is worth to note that on this kind of principal fiber bundles, local or global
connection, local or global curvature form can be introduced, and these struc-
tural equations or Bianchi identity can be also established on combinatorial
manifolds. This enables us to apply the combinatorial differential theory to

multi-spaces, particularly to theoretical physics.
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§6.1 COMBINATORIAL RIEMANNIAN SUBMANIFOLDS

6.1.1 Fundamental Formulae of Submanifold. We have introduced topolog-
ically combinatorial submanifolds in Section 4.2, i.e., a combinatorial submanifold
or combinatorial combinatorial Riemannian submanifold S is a subset combinatorial
manifold or a combinatorial Riemannian manifold M such that it is itself a combina-
torial manifold or a combinatorial Riemannian manifold. In this and the following
section, we generalize conditions on differentiable submanifolds, such as those of
the Gauss’s, the Codazzi’s and the Ricci’'s formulae or fundamental equations for
handling the behavior of submanifolds of a Riemannian manifold to combinatorial
Riemannian manifolds.

Let (4, M ) be a smoothly combinatorial submanifold of a Riemannian manifold
(N., 95 l~)) For Vp € M, we can directly decompose the tangent vector space sz\7

into

~ — L~
T,N=T,M&T, M
on the Riemannian metric g5 at the point p, i.e., choice the metric of Tp]v and

T;M to be QN‘TPM or gsily LD respectively. Then we get a tangent vector space
T,M and a orthogonal complement 7’ pL]VI of T,M in T,N, i.e.,

TPJ‘M ={ve sz\7| (v,u) =0 for Vu € Tpﬁ}.
We call Tpﬂ7 TpL]T/f the tangent space and normal space of (z M) at the point p in
(Kf NS l~))7 respectively. They both have the Riemannian structure, particularly, A

is a combinatorial Riemannian manifold under the induced metric g = i*g5.

Therefore, a vector v € T,,N can be directly decomposed into

U:quLvl,

where vT € T,,Zf\/j ot e T;M are the tangent component and the normal component
of v at the point p in (N, 95 5) All such vectors vt in TN are denoted by Tlﬁ,

ie.,

Lar L7
M= 1M

peM
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Whence, for VX, Y € 2 (M), we know that
DxY = DLY + Dtv,

called the Gauss formula on the combinatorial Riemannian submanifold (M . 9)s
where DLY = (DxY)T and DY = (DxY)*.
Theorem 6.1.1 Let (Z M) be a combinatorial Riemannian submanifold of(KC 95 5)
with an induced metric g = 7*91;[. Then for ¥X,Y,Z, DT : %(H) X %(],VV) —
%(M) determined by DT (Y, X) = DLY is a combinatorial Riemannian connection
on (M g) and D* : %(M) X %(M) — TL(JV) is a symmetrically coinvariant
tensor field of order 2, i.e.,

(1) DxiyZ =DxZ+ D¢ Z;

(2) DY = ADLY forVA € C=(M);

(3) DY = DEX.

Proof By definition, there exists an inclusion mapping 7: M — N such that
(1, M) is a combinatorial Riemannian submanifold of (]T/7 95 5) with a metric g =
i*gﬁ.

For VX,Y,Z € & (M), we know that

DxsyZ = DxZ+DyZ
= (DyZ+ DxZ)+ (D% Z + D% Z)

by properties of the combinatorial Riemannian connection D. Thereby, we find that

DYy Z =DYZ+ DyZ, D%.yZ=D%Z+ DiZ.
Similarly, we also find that
DY(Y +Z) = DYY + D%Z, D%(Y +Z) = DY + D% Z.
Now for VA € CO"(]TI)7 since
DyxY = ADxY, Dx(A\Y) = X()\)+ ADyY,
we find that

DY = ADLY, DL(A\Y)=X(\)+ADLY
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and
D:(\Y) = AD%Y.

Thereafter, the mapping D" : %(M) X &V(j\v) — 3&”(17) is a combinatorial con-
nection on (M, g) and D+ : 2 (M) x 2 (M) — T+(M) have properties (1) and
(2).

By the torsion-free of the Riemannian connection 15, ie.,

DxY — DyX =[X,Y] € 2 (M)

for VX,Y € 2 (M), we get that

DLY —DJX = (DxY — DyX)" = [X,Y]

and

DY — DX = (DxY — Dy X)* =0,

i.e., DLY = DEX. Whence, DT is also torsion-free on (M, g) and the property (3)
on D~ holds. Applying the compatibility of D with g5 in (N, 95 15) we finally get
that

Z(X,Y) = <BZX,Y>+<X, f)ZY>

<1~)}X, Y> + <X7 5;Y> ,
which implies that DT is also compatible with (M,g), namely DT : 2°(M) x
2 (M) — 2 (M) is a combinatorial Riemannian connection on (M, g). O

Now for VX € %‘(H) and Y+ € T M, we know that DyY* € TN. Whence,
we can directly decompose it into
DxY*=Dyy*+ Dyyt,

called the Weingarten formula on the combinatorial Riemannian submanifold (M, q),
where f)}w = (DxYH)T and Efﬁ/L = (DxY1)*.
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Theorem 6.1.2 Let (i, ]AVZ) be a combinatorial Riemannian submanifold of (N, 95 D)
with an induced metric g :Z*gﬁ. Then the mapping D* : TYM x %(]T) —T+M
determined by D(Y*, X) = DLY~ is a combinatorial Riemannian connection on
T M.

Proof By definition, we have known that there is an inclusion mapping?: M —
N such that (7, M ) is a combinatorial Riemannian submanifold of (N, 95 D) with
a metric g :}‘gﬁ. For VX,Y € %(M) and VZ+, 71, 73 € T+M, we know that

D,y 2t =D%Z* + DEZ*, Dy(Zi + Z+) = D Zi + D% Zf

similar to the proof of Theorem 6.1.4. For YA € C*(M), we know that

DyxZ* = ADxZ*, Dx(A\Z*) = X(\)Z* + ADx Z*.

Whence, we find that

DiZ+ = (ADxZ5)*t = N(Dx 24 = AD% Z*,

DE(AZY) = X(\)Z1 + A(DxZH)*t = X(\)Z+ + ADLZ*.
Therefore, the mapping D* : T+M x 2 (M) — T*M is a combinatorial connection

on THM. Applying the compatibility of D with gy in (ﬁ,gﬁ,ﬁ), we finally get
that

X(2t,24) = (Dx2it, 24 ) + (2, Dx 2t ) = (D2t 28 ) + (2, Dy 74 )

which implies that D+ : 2" (M) x 2" (M) — 27 (M) is a combinatorial Riemannian

connection on T+M. O

Definition 6.1.1 Let (Z, M) be a smoothly combinatorial submanifold of a Rie-
mannian manifold (]v,gﬁ, 15) The two mappings ET, D~ are called the induced
Riemannian connection on M and the normal Riemannian connection on Tl],ﬁ[/,

respectively.
Theorem 6.1.3 Let the (i, ]TJ/) be a combinatorial Riemannian submanifold of

(N, gﬁ,f)) with an induced metric g = ?*gﬁ. Then for any chosen Z+ € TLM,
the mapping D, : %(]AVI/) — %(M) determined by E-Zrl (X) = E;ZL forvX €
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%(AN) is a tensor field of type (1,1). Besides, if B; is treated as a smoothly
linear transformation on M, then 5gl : Tp]\7 — TPM at any point p € M is a

self-conjugate transformation on g, i.e., the equality following hold
<[);(X),Y> - <[)§((Y), ZL> . VYX,Y €T, M. 6-1)

Proof First, we establish the equality (6—1). By applying equalities X <Z + Y> =
<5XZL., Y> n <Zl7 BXY> and (Z4,Y) = 0 for ¥X,Y € 2 (M) and VZ* € T M,
we find that

<1~);(X),Y> <5XZ£Y>

X(z+Y) - <ZL,5XY> - <l~)§Y, Zl>.

Thereafter, the equality (6 — 1) holds.

Now according to Theorem 6.1.1, IND)L(Y posses tensor properties for X,Y €
TI,M. Combining this fact with the equality (6—1), lND;—l (X) is a tensor field of type
(1,1). Whence, 5; 1 determines a linear transformation 5} Lt Tp]/\\l/ — TPZ/\? at any
point p € M. Besides, we can also show that E-Zr L (X) posses the tensor properties
for VZ+ € T+M. For example, for any A € COO(M ) we know that

<5IZL (X), Y> <5§Y7 AZL> = <l~)§Y, Zl>

<A1~);(X),Y>, VX,Y € 2 (M)

by applying the equality (6 — 1) again. Therefore, we finally get that D, . (X) =
AD . (X).

Combining the symmetry of E)L(Y with the equality (6 — 1) enables us to know
that the linear transformation 5; : TPM — TPM at a point p € Mis self-conjugate.
In fact, for VXY € Tpﬂ, we get that

<5;(X).,Y> — <l~)§(Y,ZL> - <5¢X,ZL>

<5}L(Y),X> - <X, DL (Y)>.

Whence, E-Zr 1 is self-conjugate. This completes the proof. d
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6.1.2 Local Form of Fundamental Formula. Now we look for local forms
for DT and D*. Let (Z/\\I/ , g,BT) be a combinatorial Riemannian submanifold of

(ﬁ, gN,IN)). For Vp € ]AV[/7 let

{€aB|1 < A<dz(p),1 <B<na and s p=E€as,

for 1< Ay, Ay <dg(p)if 1 <B<dgp)}

be an orthogonal frame with a dual

{wAB|1 <A<dg(),1<B<ns and whB = 428,
for 1< A, 4, <dgz(p)if1<B< c@;,(p)}

at the point p in TN abbreviated to {£45} and w5, Choose indexes (AB), (CD), - -,
(ab), (cd),--- and (afB),(y9),--- satisfying 1 < A,C < dgy(p), 1 < B < ny,
1<D<ng,-+1<a,c<dy®), 1 <b<ng,1<d<n --and o,y > dyz(p) +1
or 3,0 >n; + 1 for 1 <i < dy(p). For getting local forms of DT and 5{ we can
even assume that {€ap}, {€s} and {€,s} are the orthogonal frame of the point in
the tangent vector space T’ N , TM and the normal vector space TM by Theorems

3.1 — 3.3. Then the Gauss’s and Weingarten’s formula can be expressed by

— T = ~1l =
Déabecd - Déabecd + Déabecda

De,,eas = D o+ D2 2up.
When p is varied in M, we know that w® = 7* (w®) and w*® = 0,w™ = 0. Whence,

{w} is the dual of {4} at the point p € TM. Notice that
dw™ = W AW Wb 4 el =

in (M,g,D7) and

J,AB _ CD, AB  CD _  AB _ aB | ab _ ~6 aB _
dw™ =W ANwip, wap +wep =0, wy twas =0, wigt+wy =0

in (]V IR 5) by the structural equations and
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~ CD—
Deap =wygecp

by definition. We finally get that

" af— s ., cd= Vo —
Deyy, = wapted + Wy o, Deap = wopted + Waprs-

Since dw® = wb A Wi =0, dwi® = w® A W =0, by the Cartan’s Lemma, i.c.,

Theorem 5.2.3, we know that

i i i3 __ 1B
Wap = hﬁf )(cd)WCdv Woy = hl(ab)(cd)wai

hl

with ho? (cd)(ab)"

h( ed)(ab) and h'? Thereafter, we get that

(ab)(cd) (ab)(ed) —

nL = _  aBis s  _ a8 =
Dz, €cq = wey (€ap)eap = by (cayCos>

D, Pas = Wi(Cab)Pea = Bip) oiy Cas-
Whence, we get local forms of DT and D* in the following.
Theorem 6.1.4 Let (M7Q,ET) be a combinatorial Riemannian submanifold of

(Kf., 95 5) Then for Vp € M with locally orthogonal frames {€ap}, {€w} and their
dual {w*B}, {w™®} in TN, TM,

T = d (= \= AL = -
D, ea= Wéﬂ(eab)ecm D, e = h?ﬁ;)(cd)eaﬁ

T = « — o Y6 (= \=
D;p,caﬁ - h(ai)(cd)@aﬂv D;bcaﬁ =W B(eab)e'yé-
O
Corollary 6.1.1 Let (M, g, D7) be a Riemannian submanifold of (N, gn, D). Then

for ¥p € M with locally orthogonal frames {€a}, {€.} and their dual {w?}, {w®} in
TN, TM,

T b= \= - o=
D, e, = w,(e.)er, Ds ey, = hgyeq

T Lo — N\
D! e, = h%ea, Die,=wi(e,)es.

€a
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§6.2 FUNDAMENTAL EQUATIONS ON

COMBINATORIAL SUBMANIFOLDS

6.2.1 Gauss Equation. Applications of these Gauss's and Weingarten's for-
mulae enable one to get fundamental equations such as the Gauss’s, Codazzi's and
Ricei’s equations on curvature tensors for characterizing combinatorial Riemannian

submanifolds.

Theorem 6.2.1(Gauss equation) Let (M,g,f)-r) be a combinatorial Riemannian
submanifold of (]v,gﬁ, 5) with the induced metric g = Z*gﬁ and ﬁ, ﬁﬁ curvature
tensors on M and N, respectively. Then for VXY, Z, W € %(H),

R(X.Y,Z,W) = Ry(X.,Y, Z,W) + <f)§z, 5¢W> - <B¢Z., 5§W> :
Proof By definition, we know that

Ry(X,Y)Z = DxDyZ — DyDxZ — Dixy|Z.

Applying the Gauss formula, we find that

R5(X,Y)Z = Dx(DyZ+ D\-Z) — Dy(DYZ + D7)

—(DixyZ + Dix .y, 2)

= DYDJZ+ DxDy{Z+ DxD:Z — DL D} Z
—D$D}Z — DyDxZ — D)y, Z — Dy Z

= R(X,Y)Z+ (DD} Z — DD} Z)
—~(Dfxy)Z — DxD$Z + DyDxZ). (6 -2)

By the Weingarten formula,

DxDyZ = DYDyZ + Dx D7, DyD%Z = D} D%Z + DD+ Z.

Therefore, we get that
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<15L(X, Y)Z, W> - <1§N(X, Y)Z, W> n <1~)§Z, 13¢W> - <5¢Z, l~)§W>
by applying the equality (6 — 1) in Theorem 6.1.3, i.e.,

R(X.Y,Z,W) = Ry(X.Y, Z,W) + <5§Z, Dt > - <B¢Z., l~)§(W> .

(|
6.2.2 Codazzi Equation. ForVX,Y,Z ¢ ,%”(]TIJ) define the covariant differential
Dx on 5§Z by

(DxDY)yZ = D%(DLZ) — D, Z — DH(DL2).

DLy

Then we get the Codazzi equation in the following.

Theorem 6.2.2 (Codazzi equation) Let (]T/i g, D7) be a combinatorial Riemannian
submanifold of (Kﬂ gﬂﬁlN)) with the induced metric g = 7*9];, and ﬁ, fiﬁ curvature
tensors on M and N, respectively. Then for VX.,Y,Z € ,%’(M),

(DxD*“)yZ — (DyDY)xZ = R~(X,Y)Z

Proof Decompose the curvature tensor ]?EN(X ,Y)Z into

Ry(X,Y)Z = RL(X,Y)Z + RL(X,Y)Z.

Notice that

DLY - DJZ =[X,Y].

By the formula (6 — 2), we know that

RL(X.Y)Z = DyDyZ - DyDyZ - Dixy 2 + DxD¢Z — DyDxZ
= DxD{Z - DysDY7Z — DpryZ + DiDxZ — DxDy Z — DpryZ
= (DxD*)yZ — (DyD*)xZ.
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6.2.3 Ricci Equation. For VX,Y € 2 (M), Z+ € T+(M), the curvature tensor
R* determined by D* in T+ is defined by
RY(X,Y)Z* = Dy Dy 7+ — DDy Z* — Dy Z*.
Similarly, we get the next result.

Theorem 6.2.3(Ricci equation) Let (M7g75T) be a combinatorial Riemannian
submanifold of (JV_% 5) with the induced metric g = Z*QK, and E, RVK, curvature
tensors on M and N, respectively. Then for VX,Y € %(M), Zt e TM,

RYX,Y)Z* = RE(X,Y)Z* + (Dx D)y Z* — (Dy DY) Z4).

Proof Similar to the proof of Theorem 6.2.1, we know that

Ry(X,Y)Z* DxDyZ* = DyDxZ" — Dixy1Z*

— RYX,Y)Z'+ DxDJ{z* - D\D}z*
+DxDyZ+ — Dy Dy Z*

= (RH(X.Y)Z" 4 (DxD4)yZ* — (DyDh)x Z*)
+DL D¢zt — DI Dx 7+,

Whence, we get that

RYX,Y)Z* = RE(X,Y)Z* + (Dx D)y 24 — (Dy DY) Z4).
O

6.2.4 Local Form of Fundamental Equation. We can also find local forms for
these Gauss's, Codazzi's and Ricci’s equations in a locally orthogonal frames {€45},
{ew} of TN and TM at a point p € M.

Theorem 6.2.4 Let (]V[ g, D 77) be a combinatorial combinatorial Riemannian sub-
manifold of (N7 95 ~) with g = 1* g5 and for p € M, let {€ean}, {€w} be locally
orthogonal frames of TN and TM at p with dual {wAP}, {w™}. Then

Riaby(edyenion) = (B @v)eaenon = Hiasyer Mot on —Pimyan o) (Gauss),
a,B



Sec.6.2 Fundamental Equations on Combinatorial Submanifolds 293

_poB

af _ .
h (@)e)ea) = Bx)@p)ancaes (Codazzi)

(ab)(cd)(ef)

and

Dl D Y6 ~¥é Lo
R0y avyety = (B @dyooanied = D iy er Plonyan = Piaer Pionyany) ( Ricci)
of

with R(a,@) (8)(ab)(cd) = <R(Eab,écd)éag,675> and

hos

ff aﬂ
(ab)(cd) (ef) h‘

a3 h'y§

_ gpapB f 3
= dh?ah)(cd) w, ha (ab)(cd)*

(ef)(ed) — b)(ef) +Cd

Proof Let € and € & be curvature forms in M and N. Then by the structural
equations in (]T/7 95 5), we know that

= ; 1 ~~ ;
(QN)AB = dw — wip A w%}? = 5(RN)(AB)(CD)(EF)(GH)WEF A wCH

and E(EABych)EEF = Qgg(EAB,ECD)EGH. Let ’ZV : M — j\? be an embedding

mapping. Applying ‘i* action on the above equations, we find that

O d B d
Qe = dwi — wef AW — f:b A wyg

_ cd f h
= ngJFZhab )ef) rd VoW AW

Whence, we get that

~ ~ 1

d __ \ed T ap af _ paB af f h

Qo = (7)) B § (h‘(ab)(ef)h’(cd)(gh) h(ab)(gh)h(cd)(ef))we AW,
o,

This is the Gauss’s equation

53 D af af af afl
Reay(earien(on = (R)@syiedenion = O Fimyer Ponan) = Foayom Poanien)-
a,B

Similarly, we also know that
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(§~2 )3,7@ = dwgbﬁ — WA wcd - wab AWl
_ B B g B
= d(haab )(ed)? w) — hieay(er)@ab p AW — h?ab)(ef)MEf A wis

aff af af
= (dh (ab)(ed) ~ Mabyen@ wil) - Pety(eay Wil + (ab)(cd)WaB) N W
of od
= h(ab)(cd)(ef)w Aw
_ B ) e cd
= (haab e — Manyeryen)w™ Aw

and

(ﬁﬁ)li = cflvuﬂ‘S - wef A w'ﬂs - wC" A aﬂf]
_ ~J_'y§ af v af ¥4 ab cd
= Oy Z M pyan™eyea) = Pepyiea Mepan)9™ N
These equalities enables us to get

aff « 53
h(ab)(rd)ef h(ah)(cf)(cd) (Rﬁ)(ammb)(cd)(ef)v

and

22l _ o] aBp 5
R(aﬂ)('yé)(ab)(cd) = (Rﬁ)(aﬁ)(v&(ab)(cd) - Z(h “(ab)(ef) h “(cd)(gh) —h (cd (ef)h?ab)(gh))-
e.f
These are just the Codazzi’s or Ricci's equations. O

86.3 EMBEDDED COMBINATORIAL SUBMANIFOLDS

6.3.1 Embedded Combinatorial Submanifold. Let ]Tl/, N be two combinato-
rial manifolds, F : M — N a smooth mapping and p € M. For Vv € Tpﬁ, define a
tangent vector F.(v) € TF(,,)N by

F*(’U) :U(fOF)7 vf € F(p

called the differentiation of F' at the point p. Its dual F* : T, I’;(mﬁ — T;]V[ deter-
mined by
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(F*w)(v) = w(F.(v)) for Vw € T}(p)]v and Yv € Tpﬂ
is called a pull-back mapping. We know that mappings F, and F™* are linear.

For a smooth mapping F' : M — N and pE M, if Fy, - TPM — TF(p)]V is one-
to-one, we call it an immersion mapping. Besides, if F}, is onto and F : M — F(]T)
is a homoeomorphism with the relative topology of N , then we call it an embedding
mapping and (F, M ) a combinatorial embedded submanifold. Usually, we replace the
inclusion mapping 7:M — N and denoted by (Z M ) a combinatorial submanifold
of N.

Now let M = M(nl,nz, Ce M), N = N(/ﬁ,kz, -+« k) be two finitely combi-
natorial manifolds and F : M — N a smooth mapping. For Vp € ]\N/[7 let (Uy, ¢p)
and (Vp(p), ¥r@p)) be local charts of p in M and F(p) in N, respectively. Denoted by

KA
I ()0 = (00

the Jacobi matriz of F' at p. Then we find that

]

Theorem 6.3.1 Let F': M — N be a smooth mapping from M to N. Then F is

an immersion mapping if and only if

rank(Jx;y (F)(p)) = dg;(p)
for¥p € M.

Proof Assume the coordinate matrixes of points p € M and F(p) € N are

[xij]s(p)xna(p) and [yij]s(p(p))xnamp)), respectively. Notice that

—~ 7] 0 . NN .
T,M = <W|p’ Gplr 1= 1=s(p),1 <51 <5(p)3(p) +1< 5 < nz>

and

s(F(p)) D)
lrpy, 1 <1 < 5(F(p)} U {
i=1

~ 0
TrpN = <{W Az

lF), 8(F(p)) +1< 72 < k1}>
for any integer ig, 1 < 4y < min{s(p),s(F(p))}. By definition, F, is a linear map-
ping. We only need to prove that F), : TPM — TPZV is an injection for Vp € M. For

Vf € %,, calculation shows that
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5} _ O(foF)
Falge)f) = “5
OF™ Of
>

Ozt Oymv’
v

Whence, we find that

OF v
8x” Z Oz (9yl“’ (6-3)

According to a fundamental result on linear equation systems, these exist solu-

tions in the equation system (6 — 3) if and only if

rank(Jxy (F)(p)) = rank(Jx.y (F)(p)),

where

Fup(5:37)
Ty (F)(p) = | Jxy(F)(p)

F*p(ﬁ)

el
L Bl |

We have known that

rank(Jx,y (F)(p)) = dg(p)-

Therefore, F' is an immersion mapping if and only if

rank(Jx;y (F)(p)) = dg;(p)
for Vp € M. =

Applying Theorem 5.6.2, namely the partition of unity for smoothly combinato-

rial manifold, we get criterions for embedded combinatorial submanifolds following.
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Theorem 6.3.2 Let M be a smoothly combinatorial manifold and N a manifold.
If for VM € V(G’L[]T//]), there exists an embedding Fyy : M — N, then M can be
embedded into N.

Proof By assumption, there exists an embedding Fy; : M — N for VM €
V(GL[]W). Forp € M, let V,, be the intersection of 5(p) manifolds My, My, - - -, My,

with functions fy,, 1 < i < 5(p) in Lemma 2.1 existed. Define a mapping F' : M —
N at p by

3(p)
F(p) =Y fu.Fur..
i—1

Then F is smooth at each point in M for the smooth of each Fy, and Rp : Tpﬁ —
T,N is one-to-one since each (Fyy, ) is one-to-one at the point p. Whence, M can
be embedded into the manifold N. a

Theorem 6.3.3 Let M and N be smoothly combinatorial manifolds. If for VM €
V(GE[M)), there exists an embedding Fyy : M — N, then M can be embedded into
N.

Proof Applying Theorem 5.6.2, we can get a mapping F: M — N defined by

s(p)

F(p) = Z Ju Fug
i=1

at Vp € M. Similar to the proof of Theorem 2.2, we know that F is smooth and
]F*p : T,,M — Tp]v is one-to-one. Whence, M can be embedded into N. O

6.3.2 Embedded in Combinatorial Euclidean Space. For a given integer

sequence ki, ng, -k, 0 > 1 with 0 < ky < ky < -+ < Kk, a combinatorial Eu-

- l
clidean space R(ky,- - -, k;) is a union of finitely Euclidean spaces |J R¥ such that
=1

- ! N !
for Vp € R(k1,- -+, ki), p € () R¥ with [ = dim([) R¥) a constant. For a given
i=1 i=1

combinatorial manifold M(nl, Ng, -+, N ), wether it can be realized in a combina-
torial Fuclidean space f{(kl,~--,kl)? We consider this problem with twofold in
this section, i.e., topological or isometry embedding of a combinatorial manifold in

combinatorial Euclidean spaces.
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Given two topological spaces €, and %5, a topological embedding of €, in € is

a one-to-one continuous map

[+ ¢ —%.

When f : M(nl,ng, e M) — f{(kl, -+, k;) maps each manifold of M to an Eu-
clidean space of f{(kh -+ k), we say that M is in-embedded into f{(kh s k).
Whitney had proved once that any n-manifold can be topological embedded as
a closed submanifold of R*"*' with a sharply minimum dimension 2n + 1 in 1936
([AbM1]) . Applying Whitney’s result enables us to find conditions of a finitely com-

binatorial manifold embedded into a combinatorial Euclidean space f{(k'h k).

Theorem 6.3.4 Any finitely combinatorial manifold ]Ti(nl, N, -+, Ny) can be em-
bedded into R +1,

Proof According to Whitney’s result, each manifold M™,1 < i < m, in
M (n1,n9,- -+, ny) can be topological embedded into a Euclidean space R for any
n > 2n; + 1. By assumption, n; < ny < -+ < n,,. Whence, any manifold in
M (n1,ma, -+, ny,) can be embedded into R?"*1. Applying Theorem 6.3.2, we know
that M(nh Ng, "+ *,Ny,) can be embedded into R2m+1, O
For in-embedding a finitely combinatorial manifold M (n1,n9, -+, ny,) into com-

binatorial Euclidean spaces R(ky, -, k;), we get the next result.

Theorem 6.3.5 Any finitely combinatorial manifold Jf\/Y(nth7 <o Ny can be in-

embedded into a combinatorial Fuclidean space f{(kl, -+, ky) if there is an injection
@ {ny,ng, N} — Lk, ke, oo ki)

such that

w(n;) > max{2¢ + 1| Ve € w(w(n;))}

and

dim(R=™) ﬂ R7M)) > odim(M™ ﬂ M) +1

for any integer i,5,1 < 4,5 < m with M™ N M" # (.
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Proof Notice that if

@(n;) > max{2¢ + 1| Ve € @ (ww(ny))}

for any integer i,1 < i < m, then each manifold M¢ Ve € w!(w(n;)) can be
embedded into R¥™) and for Ve, € w™!(n;), Ver € w™(n;), M N M can be
in-embedded into R®() N R=() if M N M # () by Whitney’s result. In this
case, a few manifolds in M (n1,n9,- -+, ny) may be in-embedded into one Euclidean
space R®™) for any integer 7,1 < i < m. Therefore, by applying Theorem 2.3 we
know that M (n1,na, -+, ny) can be in-embedded into a combinatorial Euclidean
space ﬁ(kl, k). a

If { = 1 in Theorem 6.3.5, then we obtain Theorem 6.3.4 once more since w(n;)
is a constant in this case. But on a classical viewpoint, Theorem 6.3.4 is more
accepted for it presents the appearances of a combinatorial manifold in a classical
space. Certainly, we can also get concrete conclusions for practical usefulness by

Theorem 6.3.5, such as the next result.

Corollary 6.3.1 Any finitely combinatorial manifold ]T/f(m,ng, e Ny, can be in-
embedded into a combinatorial Euclidean space ﬁ(k’l, k) af
(1) 1>m;

(it) there exists m different integers ki, kiy, - -+, ki,, € {k1, k2, -, ki} such that

k};j > 27’Lj+1

and

dim(R™ (YRFr) > 2dim(M™ (| M™) + 1
for any integer i, 5,1 < 1,7 < m with M™ N M"™ # {).

Proof Choose an injection

T {n17n2>”'7n7n} i {k17k27”'7kl}

by m(n;) = ks, for 1 < j < m. Then conditions (i) and (#) implies that 7 is an
injection satisfying conditions in Theorem 5.2. Whence, M (ny,ng, -+, ny) can be
in-embedded into R(ky, - - -, k). O
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For two given combinatorial Riemannian C"-manifolds (M g, 77) and (N 95 D)7

an isometry embedding

i:M— N
is an embedding with g = i*g 5- By those discussions in Sections 6.1 and 6.2, let the
local charts of M, N be (U, [z]), (V,[y]) and the metrics in M, N to be respective

Z gN(c )(m)dyw ® dym Z G(pv)(kX) dz" ® dx“’\
(s7),(9e) (1) \)

then an isometry embedding?form M to N need us to determine wether there are

functions

Y =)< p < s(p), 1 < v S gy
for Vp € M such that

Reaty(earienion = (Bg)@nyeaxenion — O PomyerPoaion) —
a,B

af af
hiaby(gm icayer):

af
h(ab>(cd Yef) h(ab)(ef)(cd) = (R§)(ap)(ab)(cd)(ef)

oL _ (D 3 bl B3 70
R(aﬁ)('yé)(ab)(cd) - (Rﬁ)(ﬂﬁ)("/é)(ab)(‘—'d) - Z(haab )(ef) h(cd )(gh) hacd )(ef) h (ab)(gh) )
e.f
with é(laﬁ)('yé)(ab)(cd) = <E(6ab7 ecd)eaﬁa 676>7
B Wl = B8 f1a8 3 5
h?ab cd)( ef) ! dh?ab cd) w, haef cd) w ha b)(ef) +UJ h’yab ) (ed)

and

~ azw azm
D I 1) 5 o5 = G [
(s7),(9e)

For embedding a combinatorial manifold into a combinatorial Euclidean space

ﬁ(kl, -+, ki), the last equation can be replaced by
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SOl
Sy Gyrr | J W)
o Y

since a combinatorial Euclidean space fi(kl, -+- k) is equivalent to a Euclidean
. -~ o~ L(p) ~ ~
space R* with a constant k = {(p) + > (ki — I(p)) for Vp € R¥ but not dependent
i=1

on p (see [9] for details) and the metric of a Euclidean space RF to be

gr =) Ay @ dy".
v
These combined with additional conditions enable us to find necessary and sufficient

conditions for existing particular combinatorial Riemannian submanifolds.
Similar to Theorems 6.3.4 and 6.3.5, we can also get sufficient conditions on
isometry embedding by applying Theorem 5.6.2, i.e., the partition of unity. Firstly,

we need two important lemmas following.

Lemma 6.3.1([ChL1]) For any integer n > 1, a Riemannian C"-manifold of di-

mensional n with 2 < r < oo can be isometrically embedded into the Fuclidean space
R +10n+3

Lemma 6.3.2 Let (M,g,ﬁﬁ) and (]V7 gﬁ,ﬁ) be combinatorial Riemannian man-
ifolds. If for VM € V(GL[]T/i]), there exists an isometry embedding Fy; : M — N,

then M can be isometrically embedded into N.

Proof Similar to the proof of Theorems 6.3.2 and 6.3.3, we only need to prove
that the mapping F: M — N defined by

3(p)

F(p) = Z Iy Fu,
i=1

is an isometry embedding. In fact, for p € M we have already known that

95 ((Far,)+(0), (Fiag, )« (w)) = g(v, w)
for Yo, w € T,,M and 7,1 < i < §(p). By definition we know that

5(p) (p)
95 (Fi(v), Fi(w)) = QN(Z Jor(Far) (0), Z fag, (Fagy) (w))
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)
=2

p) 3(p

= 9 (faz,(Far, ) (), far, (Fary) (w)))

) )

= 2. 9(far, (Fag) (v), far;(Fagy) (w)))
3(:) 3(p)

= 9O v, fayw)

i=1 j=1
= g(v,w

w) =
<)
w) .
=

=

Therefore, Fis an isometry embedding. (]
Applying Lemmas 6.3.1 and 6.3.2, we get results on isometry embedding of a

combinatorial manifolds into combinatorial Euclidean spaces following.

Theorem 6.3.6 Any combinatorial Riemannian manifold M(nl, N, , Ny can be

isometrically embedded into R 10mm+3

Proof According to Lemma 6.3.1, each manifold M™ 1 <i < m, in ],V\[/(nl., Ng,
-+, Ny) can be isometrically embedded into a Euclidean space R" for any n >
n? + 10n; + 3. By assumption, n; < ng < --- < n,,. Thereafter, each manifold in
M (n1,ng, -+, ny) can be embedded into R™»+19m+3  Applying Lemma 6.3.2, we

know that M (11,79, -+, Ny) can be isometrically embedded into R™nH10mm+3 ]

Theorem 6.3.7 A combinatorial Riemannian manifold ]Tf/(nl., N, +,Ny) can be
isometrically embedded into a combinatorial Fuclidean space f{(k‘l, - ky) if there

18 an injection

w {nl,n27-~~7nm} - {k17k27 ' ",kl}

such that
@(n;) > max{€® + 10¢ + 3| Ve € @ (w(n;))}

and

dim(R=0) (YR=C9)) > dim?(M™ () M") + 10dim(M™ () M") + 3

for any integer i,5,1 < 4,5 < m with M™ N M" # (.
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Proof If

w(ng) > max{e® + 10e + 3| Ve € w(w(n;))}

for any integer i,1 < i < m, then each manifold M¢ Ve € w!(w(n;)) can be
isometrically embedded into R¥™) and for Ve, € w™(n;), Vey € w1(n;), MINMe
can be isometrically embedded into R¥")ARZ™) if M NMe # () by Lemma 6.3.1.
Notice that in this case, serval manifolds in M (n1,n9, -+, ny) may be isometrically
embedded into one Euclidean space R®™) for any integer i,1 < i < m. Now
applying Lemma 5.2 we know that M (n1,na, -+, ny) can be isometrically embedded

into a combinatorial Euclidean space ﬁ(/ﬁ, k). a

Similar to the proof of Corollary 6.3.1, we can get a more clearly condition
for isometry embedding of combinatorial Riemannian manifolds into combinatorial

Euclidean spaces.

Corollary 6.3.2 A combinatorial Riemannian manifold M(nl, N, Ny can be
isometry embedded into a combinatorial Euclidean space f{(kl, s k) af

(i) 1=>m

(it) there exists m different integers ki, kiy, - -+, ki,, € {k1, k2, -+, ki} such that

ki, > nf +10n; +3
and
dim(R™s O\ RFr) > dim?(M™ (Y M™) + 10dim(M™ (Y M"™) + 3

for any integer i, 5,1 < 1,7 < m with M™ N M™ # {).

§6.4 TOPOLOGICAL MULTI-GROUPS

6 4 1 Topologlcal Multi-Group. An algebraic multi-system (@7 0) with o =
U 6 and O = U {0;} is called a topological multi-group if

(1) (A 0;) is a group for each integer i, 1 < i < m, namely, (J,0) is a

multi-group;

(i1) o is a combinatorial topological space .#;
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(iii) the mapping (a,b) — a o b~! is continuous for Va,b € %, Vo € O,
1< <m.

Denoted by (.4; €) a topological multi-group. Particularly, if m = 1in (mz 0),
ie., o = H , 0 = {o} with conditions following hold,

(i) (H#;0) is a group;

(17') A is a topological space;

(iii') the mapping (a,b) — a o b~! is continuous for Va,b € 7,
then 7 is nothing but a topological group in classical mathematics. The existence

of topological multi-groups is shown in the following examples.

Example 6.4.1 Let R" 1 < i < m be Euclidean spaces with an additive operation

+; and scalar multiplication - determined by

(AL, Ag - gy, Ay - ) A4 (G- w1, G2 -+, Gy~ Yna)
=\ m+ Gy A w2+ G Y2, A Ty Gy Yny)

for VA;, ; € R, where 1 < A, § < n;. Then each R™ is a continuous group under +;.
Whence, the algebraic multi-system (&5 (ny, -+, ny); €) is a topological multi-group
with a underlying structure G by definition, where &5 (ny, - - -, ) is a combinatorial

m

Euclidean space defined in Section 4.1, and & = U {+:}. Particularly, if m =1, i.e.,
an n-dimensional Euclidean space R™ with the Vector additive + and multiplication

- is a topological group.

Example 6.4.2 Notice that there is function k : M, x, — R™ from real n X n-

matrices M, x, to R determined by

aix - Qin

. Qg1 -+ Q2p
K - air o Qipytct,Gp1 ctt Opxn

Ap1 - Qpxn

Denoted all n x n-matrices by M(n, R). Then the general linear group of degree n
is defined by

GL(n,R) = { M € M(n,R) | detM #0 },
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where det M is the determinant of M. It can be shown that GL(n, R) is a topological
group. In fact, since the function det : M,,, — R is continuous, det™'R.\ {0} is
open in R”Z7 and hence an open subset of R™.

We show the mappings ¢ : GL(n, RxGL(n,R)) — GL(n,R) and ¢ : GL(n,R) —
GL(n,R) determined by ¢(a,b) = ab and (a) = a~! are both continuous for
a,b € GL(n,R). Let a = (aij)nxn and b = (b;j)nxn € M(n,R). By definition, we
know that

n

ab = ((ab)iy) = (3 awbiy)-

k=1
Whence, ¢(a,b) = ab is continuous. Similarly, let ¥(a) = (¢ij)nxn. Then we know
that
a

R
Viy deta

is continuous, where a;‘j is the cofactor of a;; in the determinant deta. Therefore,
GL(n,R) is a topological group.

Now for integers nq,ng, -+, n,m > 1, let &(GLy,, - +,GLy,) be a multi-group
consisting of GL(ny,R), GL(n2,R), -+, GL(nm,R) underlying a combinatorial
structure G. Then it is itself a combinatorial space. Whence, é6(GLy,,-+,GLy,,)
is a topological multi-group.

A topological space S is homogenous if for Va,b € S, there exists a continuous

mapping f : S — S such that f(b) = a. We have the next result.
Theorem 6.4.1 If a topological multi-group (-La; O) is arcwise connected and as-
sociative, then it is homogenous.

Proof Notice that .7 is arcwise connected if and only if its underlying graph
G is connected. For Va,b € 5, without loss of generality, assume a € 4 and
b € J, and

P(a7b):%%”'%7 3207

a path from 4 to  in the graph G. Choose ¢; € 54 N A, co € 4 N o, -,
cs € H4_1 NI, Then

a 9q €1 01 (31_1 09 Cp 03304+ 051 C5t0gb7!
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is well-defined and

a oy 1 01 cl_1 09 C9 O3 C3 Oy ++ Og_1 cs_1 osb tosb=a.

Let L = aogcioycyoycyo3cgoq -0, ¢, o,b o, Then L is continuous
by the definition of topological multi-group. We finally get a continuous mapping
L : S — ¢ such that L(b) = Lb = a. Whence, (#;; €) is homogenous. O

Corollary 6.4.1 A topological group is homogenous if it is arcwise connected.

A multi-subsystem (Zy; O) of (Sg; 0) is called a topological multi-subgroup
if it itself is a topological multi-group. Denoted by £y < .%5. A criterion on

topological multi-subgroups is shown in the following.

Theorem 6.4.2 A multi-subsystem (ZLy;O1) is a topological multi-subgroup of
(F6; O), where Oy C O if and only if it is a multi-subgroup of (g; €) in alge-

bra.

Proof The necessity is obvious. For the sufficiency, we only need to prove that
for any operation o € Oy, a o b™! is continuous in .%%. Notice that the condition

(¢4¢) in the definition of topological multi-group can be replaced by:

for any neighborhood Ny (aob™) of aob™ in S5, there always exist neighbor-
hoods Ny (a) and Ng,(b7') of a and b~ such that Ng_(a) o Ny, (b7') C Ng,(ao
b1, where Ny (a) o Ny (b71) = {zoy|Vz € Ny (a),y € Ng (b))}
by the definition of mapping continuity. Whence, we only need to show that for
any neighborhood Ng, (z o y™!) in Ly, where z,y € £y and o € O, there exist
neighborhoods N, (z) and Ng, (y~"') such that Ny, (z)o Ny, (y™) C Ng,(zoy™)

in %;. In fact, each neighborhood Ng, (x 0y~ !) of zoy™!

can be represented by
a form Ny, (zoy~!) N Zy. By assumption, (g; &) is a topological multi-group,
we know that there are neighborhoods Ny (z), Ny (y~!) of z and y~! in % such
that Ny, () o Ng,(y™') C Ny, (zoy™t). Notice that Ny, ()N Ly, No,(y )N L
are neighborhoods of z and y~! in Zgy. Now let Ng, () = Ng.(z) N Ly and
Ng, (y™1) = N, (y)N L. Then we get that Ny, (2)oNg, (y™!) C Ny, (zoy™)

in %y, ie., the mapping (z,y) — zoy™*

is continuous. Whence, (Zy;0,) is a
topological multi-subgroup. d

Particularly, for the topological groups, we know the following consequence.
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Corollary 6.4.2 A subset of a topological group (I';0) is a topological subgroup if
and only if it is a subgroup of (I';0) in algebra.

For two topological multi-groups (“g,;01) and (Sg,; Os), a mapping w :
(Fay; O1) — (Fay; Os) is a homomorphism if it satisfies the following conditions:

(1) w is a homomorphism from multi-groups (g, ; €1) to (Fa,; O»), namely,
for Ya,b € S5, and o € Oy, w(aob) = w(a)w(o)w(b);

(2) w is a continuous mapping from topological spaces ., to %, i.e., for
Vi € S, and a neighborhood U of w(x), w™(U) is a neighborhood of .

Furthermore, if w : (Sg,; O1) — (Fa,; O2) is an isomorphism in algebra and
a homeomorphism in topology, then it is called an isomorphism, particularly, an
automorphism if (La,; O1) = (Fa,; O2) between topological multi-groups (-Sg,; 1)
and (Sg,; Os).

Let (Z&; O) be an associatively topological multi-subgroup and (Zy; (9) one of
its topological multi-subgroups with % = U M, Ly =% and O = U {o:}.
According to Theorem 2.3.1 in Chapter 2, for any integer 7, 1 < i < m, We get
a quotient group /%, i.e., a multi-subgroup (S¢/Lwu; O) = G(%/%;oi) on
algebraic multi-groups. =

Notice that for a topological space S with an equivalent relation ~ and a pro-
jection m : S — S/ ~= {[z]|Vy € [z],y ~ z}, we can introduce a topology on S/ ~
by defining its opened sets to be subsets V in S/ ~ such that 7=1(V) is opened in
S. Such topological space S/ ~ is called a quotient space. Now define a relation in
(F6;0) by a ~ b for a,b € S5 providing b = h o a for an element h € £y and an
operation o € . It is easily to know that such relation is an equivalence. Whence,

we also get an induced quotient space .75/ %y

Theorem 6.4.3 Let w : (5,3 01) — (Fay; Oa2) be an opened onto homomor-
phism from associatively topological multi-groups (Fa,; O1) to (Foy; Os), i.c., it
maps an opened set to an opened set. Then there are representation pairs (Ry,Py)
and (Ry, Ps) such that

(ycl;ﬁl) (ycwﬁﬂ |
(Kerw; 6,) (Z(0y); Oy) T2
where Py C 01, Py C Oy, I(03) = {15,0 € Oz} and

|(R1,ﬁ1) -



308 Chap.6 combinatorial Riemannian Submanifolds with Principal Fibre Bundles

Kerw ={ a € S, |wla) =1, e I(6,) }.

Proof According to Theorem 2.3.2 or Corollary 2.3.1, we know that there are
representation pairs (Ry,Py) and (R, P2) such that

(ycl; ﬁl) _ (yGQ; 02) ‘ _
(Kerw; 61) ™™ (Z(0n); Oy) ™
in algebra, where o(a o Kerw) = o(a) o=* Z(0,) in the proof of Theorem 2.3.2. We

only need to prove that ¢ and o~! are continuous.

'S

On the First, for z = o(a) 071 Z(0,) € %| (Ra,Py) L6t U be a neighborhood
2 2
of o7!(x) in the space ((éci)il : |(Ry,yy» Where U is a union of a o Kerw for a in an
Tw; 01

opened set U and o € P;. Since w is opened, there is a neighborhood V of x such
that w(U) D V, which enables us to find that o~ (V) C U. In fact, let § € V. Then

A~

there exists y € U such that w(y) = 7. Whence, 071(7) = y o Kerw € U. Therefore,

o~ ! is continuous.

On the other hand, let V be a neighborhood of (z) 0! Z(&,) in the space
(SG4:02)
(Z(02);02) R N
neighborhood U of x such that w(U) C V. Denoted by U the union of all sets
z o Kerw for z € U. Then 0(17) C V because of w(U) C V. Whence, o is also

continuous. Combining the continuity of ¢ and its inverse ¢~!, we know that o is
(/G1 O1) | N (/G2 [2)) ‘ D
(Kem) Oy) (R1,P1) (T (02 02 (Rz, PZ)

\(Rz # for z o Kerw. By the continuity of w, we know that there is a

also a homeomorphism from topological spaces

Corollary 6.4.3 Letw : (Fg; O) — (&;0) be a onto homomorphism from a topolog-
ical multi-group (F; O) to a topological group (o 0). Then there are representation
pairs (R, ﬁ), P C O such that

(6 0) ~
— lrpy = (&50).
(Kerw; 0)
Particularly, if © = {e}, i.c., (Fg;®) is a topological group, then

Fo/Kerw = (f;0).
A distributive multi-system (ﬂffv;ﬁ’] — 0,) with o = U4, 01 = J{} and
=1 i=1

Oy = U {+:} is called a topological multi-ring if
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(1) (H;+,;) is a ring for each integer 4, 1 <i <m, iLe., (J€, 0, — Ob) is a
multi-ring;

(i7) o/ is a combinatorial topological space /g;

(iii) the mappings (a,b) — a - b~!, (a,b) — a +; (—;b) are continuous for
Ya,be A, 1 <1< m.

Denoted by (Sg; 01 — 0,) a topological multi-ring. A topological multi-ring
(Fg; O1 — 0)) is called a topological divisible multi-ring or multi-field if the previous
condition (7) is replaced by (4 +i, ) is a divisible ring or field for each integer
1 < i < m. Particularly, if m = 1, then a topological multi-ring, divisible multi-ring
or multi-field is nothing but a topological ring, divisible ring or field. Some examples

of topological fields are presented in the following.

Example 6.4.3 A 1-dimensional Euclidean space R is a topological field since R is

itself a field under operations additive 4+ and multiplication X.

Example 6.4.4 A 2-dimensional Euclidean space R? is isomorphic to a topological
field since for V(z,y) € R2, it can be endowed with a unique complex number x -+ iy,

where 72 = —1. Tt is well-known that all complex numbers form a field.

Example 6.4.5 A 4-dimensional Euclidean space R* is isomorphic to a topolog-
ical field since for each point (z,y,2,w) € R* it can be endowed with a unique

quaternion number x + iy + jz + kw, where
ij=—ji =k, jk=—kj=i, ki=—ik=7,
and
P=2=k =1
We know all such quaternion numbers form a field.

For topological fields, we have known a classification theorem following.

Theorem 6.4.4 A locally compacted topological field is isomorphic to one of the
following:

(1) Buclidean real line R, the real number field;
(i1) Euclidean plane R?, the complex number field;

(iii) Buclidean space R*, the quaternion number field.
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Proof The proof on this classification theorem is needed a careful analysis for
the topological structure and finished by Pontrjagin in 1934. A complete proof on

this theorem can be found in references [Ponl] or [Pon2]. O

Applying Theorem 6.4.4 enables one to determine these topological multi-fields.

Theorem 6.4.5 For any connected graph G, a locally compacted topological multi-
field (Fg; O — Oy) is isomorphic to one of the following:

(i) Euclidean space R, R? or R* endowed respectively with the real, complex
or quaternion number for each point if |G| = 1;

(11) combinatorial Fuclidean space &g(2,--+,2,4,---,4) with coupling number,
i.e., the dimensional number l;; = 1,2 or 3 of an edge (R, R7) € E(G) only if
i=j =4, otherwise l;; =1 if |G| > 2.

Proof By the definition of topological multi-field (#g; &7 — 05), for an integer
i, 1 < < m, (H;+, ) is itself a locally compacted topological field. Whence,
(Fe; 01 — 03) is a topologically combinatorial multi-field consisting of locally

compacted topological fields. According to Theorem 6.4.4, we know there must be

(J; 44, +) = R, R? or R?

for each integer i, 1 <i < m. Let the coordinate system of R, R% R* be z, (y1, y2)
and (z1, 29, 23, z4). If |G| = 1, then it is just the classifying in Theorem 6.4.4. Now
let |G| > 2. For V(R!,R?) € F(G), we know that R*\ R’ # ) and R/ \ R’ # ) by
the definition of combinatorial space. Whence, i,j =2 or 4. If i =2 or j = 2, then
l;; = 1 because of 1 < l;; < 2, which means l;; > 2 only if ¢ = j = 4. This completes
the proof. d

6.4.2 Lie Multi-Group. A Lie multi-group £ is a smoothly combmatorlal
manifold M endowed with a multi-group (% (%), 0(%Ls)), where o (fg) U g4
i=1
and 0(%s) = U {o;} such that
i=1

(1) (5;0;) is a group for each integer ¢, 1 <1 < m;

(ii) GH[M] =

(44) the mapping (a b) — a o; b1 is C>®-differentiable for any integer i, 1 <
<m and Va,b € JZ.
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Notice that if m = 1, then a Lie multi-group %% is nothing but just the Lie
group in classical differential geometry. For example, the topological multi-groups
shown in Examples 6.4.1 and 6.4.2 are Lie multi-groups since it is easily to know the
mapping (a,b) — a o b1 is C*°-differentiable for a,b € o providing the existence

of a o b~!. Furthermore, we give an important example following.

Example 6.4.6 An n-dimensional special linear group
SL(n,R) ={M € GL(n,R) | detM = 1}

is a Lie group. In fact, let detM : R™ — R be the determinant function. We need
to show that for M € det™'(1), d(detM) # 0. If so, then applying the implicit
function theorem, i.e., Theorem 3.2.6, SL(n, R) is a smoothly manifold.

Let M = (a;j)nxn- Then

detM = Z SIgNT Qr(1) - Cnr(n)-
TESn

whence, we get that

det]\l Z Z SIgNT A1r(1) "+ Qj—1n(j—1)Ajt1n(+1) * 'anﬂ(n)dajﬂ(j)~
j=1 meSyp

Notice that the coefficient in da;; of the (4, j) entry in this sum is the determi-
nant of the cofactor of a;; in M. Therefore, they can not vanish all at any point
of det™'(1). Now since {da,;} is linearly independent, there must be d(detM) # 0.
So applying the implicit function theorem, we know that SL(n,R) is a smoothly
submanifold of GL(n,R). Now let Mg be a combinatorial manifold consisting of
GL(ny,R), GL(n2, R), + -+, GL(ny,, R) underlying a structure G. Then it is a Lie
multi-group.
Definition 6.4.1 Let Z¢ be a Lie multi-group with JZ?ZXG) = U L and O0( L) =

o€l

U {o;}. Forge sz(fg) and o € O(%s), a left or right translation Zg or ég of Zo

is a mapping Lq7 . O(%e) x d(,f ) — M(fp) determined by
Ly(o.h) =goh, or Ry(h,0)=hog
forVh € JZ%YXG) and a o € O(%g) provided g o h exists.
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Definition 6.4.2 A wvector field X on a Lie multi-group ZLg is called locally left-
invariant for o € O(%g) if

dL,X (0,2) = X (Ly(o0,x))

holds for NYg,x € 5 and globally left-invariant if it is locally left-invariant for

Yo € O(Ls) and Vg € o (Ls).

Theorem 6.4.6 A wvector field X on a Lie multi-group £g is locally left-invariant
for o € O(£s) (or globally left-invariant) if and only if

dL,X(0,1,) = X(9g)
holds for¥g € ¢ (or hold for ¥g € 537(.,2”@) and Vo € O0(%%)).

Proof In fact, let o € 0(%g) and g € H, (or g € /(L)) If X is locally
left-invariant for o € &(%), then we know that

dLyX (0, 10) = X (Ly(0, 1)) = X (g0 1) = X(9)
by definition. Conversely, if
dL,X (0,1,) = X (g)
holds for Vg € % and o € 0( %), let x € 7. We get hat

X(Ly(o,z)) = X(goz)=dLy,X(o,1,)
= dLyo Ly(X(0,1,)) = dLy(dL,(X(o,1.)))
= dng(o.,x).

Whence, X is locally left-invariant for o € 0(%).

Similarly, we know the conditions for .Z; being globally left-invariant. d

Corollary 6.4.4 A vector field X on a Lie group 4 is left-invariant if and only if

dLyX(1y) = X(g)

forvge 9.
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Recall that a Lie algebra over a real field R is a pair (%[, |), where .# is a
vector space and [, | : . F x # — .F with (X,Y) — [X,Y] a bilinear mapping such
that

[a1 X1 + a2Ys, Y] = a1 [ X1, Y] + ao[ X5, Y],

(X, a1Y1 + a2Ya] = a1[ X1, V1] + a2 X2, Y2
for Vai,as € R and XY, X1, X5, Y1,Y, € .%#. By Theorem 5.1.2, we know that
[X7Y:| :07
(X Y], Z]+[[Y, 2], X] + [[Z,X],Y] = 0

for X,Y,Z € Z'(Z). Notice that all vector fields in 2 (%) forms a Lie algebra
over R, where, for X,Y € 27 (%), p € Lo, f € Zp and A\, u € R, these X + Y, \X
and [X,Y] € (%) are defined by (X +Y)f = Xf+Yf, (AX)f = MXf) and
X, Y]o = X(Yf) = Y(X]).

Now for a o € 0(%), define
V(o, Za) ={ X € Z(L) | dLgu(o,x) = X (Ly(o, 1)), Yz € )}
and
V(Le) = {X € 2 (Le)|dLyX (0,x) = X(Ly(o,2)),Yo € O(Zy) and ¥z € A},

i.e., the sets of all locally left-invariant vector fields for an operation o on %5 and of
all globally left-invariant fields. We can easily check that (o, %) is a Lie algebra.
In fact,

ALyAX + YY) = MLy X + pdL,Y = AX + 1Y,

and

dL,[X,Y](0,2) = dX(Y(gox))—dY(X(gox))

dX(dY(gox)) —dY(d(X(gox)))

dX odY(gox)—dY odX(gouw)

[dLyX (0,x),dL,Y (0, )] = [dL,X,dL,Y](o, z).
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Therefore, Y (o, .%;) is a Lie algebra. By definition, we know that

D(Ls) = [ Do, Za).

ol

Whence, @(fg) is also a Lie algebra by definition.

Theorem 6.4.7 Let £ be a Lie multi-group. Then the mapping

¢: PV, L) — P (L)

o€l o€l
determined by ®(X) = X(1,) if dng(o,.r) = X(Zg(o,x)) for Yo € I is an
isomorphism of @ Y (o, L) with direct sum of Th,(Zs) to Le at identities 1, for
o€l
o€ 0(Ls).

Proof For an operation o € (%), we show that @], : (o, Ze) — T1, (%)
is an isomorphism. In fact, ®| 4 is linear by definition. If ®| 4 (X) = @], (Y), then
for Vg € A, we get that X(g) = dzy(X(o7 1)) = dzg(Y(o,lo)) = Y (g). Hence,
X =Y. We know ®| 4, is injective.

Let W € Ty,(54). We can define a vector field X on % by X : g —
zg(o,W) = X(g) for every g € . Thus, X(1,) = Ly,W = W. Such vector

field is left invariant. In fact, for g, go € 94, we have

X(Ly, (92)) = X (g192) = ALy (W) = dLy, 0 dLy, (W) = dLy, X (g2).

Therefore, for W € Ty, (74), there exists a vector field X € 9(o,.%s) such that
Q| (X) =W, ie., ®|y is surjective. Whence, | : D(o, Zn) — T1,(ZLs) is an
isomorphism.

Now extend @| 4 linearly to @@ (o, %s). We know that

ocl

¢: PV, L) — P (L)
% o€l

is an isomorphism. O

Corollary 6.4.5 Let ¢4 be a Lie group with an operation o. Then the mapping

®:9(,¥9) - T1,(9)
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determined by ®(X) = X(1g) if dL o X(o,x) = X(zg(O,x)) for Yz € 4 is an iso-
morphism of Y(o,9) with T1,(¥) to 9 at identity 1y.

For finding local form of a vector field X € 2 (%) of a Lie multi-group %5
at a point p € %, we have known that

9 5(p) "s(p)
X = <[aij (p)]s(p)an(p)7 [a_ ><n,<m> Z Z Qij 81”’

=1 j=1
by Theorem 5.1.3, where 2 = 27! for 1 < 4,7 < s(p),1 <1 < 3(p). Generally, we

have the following result.

Theorem 6.4.8 Let L5 be a Lie multi-group. If a vector field X € Z (%g) is

locally left-invariant for an operation o € O( %), then,

s(p) Ms(p)

Xo=2. 2 aP) g

i=1 j=1

with
= AL, (0,y)4
os(Lyfor) = X as(n L,
J

for g,p € L5. Furthermore, X is globally left-invariant only if it is locally left-
invariant for Vo € 0(Zz).

Proof According to Theorem 5.1.3, we know that

X(g0 ) 0) = X (00 5) 0 ey

and

X,(FLy) (o)
3, W Lo)(e0)

8y1‘7 |y:p

(dLyX)y(0, /(1)

J
' Y))
= Zau ay” ly=p

by definition. Notice that
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WO, -~ 0fgon)dgon)”
ayij y=p a(q ° y)is 6yiﬂ' Yy=p

_ Z | dgo Z/)“‘ -
8y“ Yy=gop 0yij Yy=p*

s

By assumption, X is locally left-invariant for o. We know that X (gop)f(y) =
(dLgX)P(O7 f(y))7 naInClY?

dgoy) af(y)
Zam go p i ‘y gop = Z Zazs Dy |y—p) ay's ly=gop-

Whence, we finally get that

ILy(0,y)"
az] Z aij(p 33/’ > — ol
a
Example 6.4.7 Let é(nl, -++,n,,) be a combinatorial Euclidean space consisting
of R™ ... R™. It is a Lie multi-group by verifying each operation +;,1 <i < m

in Example 6.4.1 is C*°-differentiable. For this combinatorial space, its locally left-

invariant L, for +; is

Zg(—h;,p) =g+ip.
Whence, a locally left-invariant vector field X must has a form

mo n;

X= ZZC” 01:”

=1 j=1

In fact, by applying Theorem 6.4.8, we know that

cijlg+ip) =Y cis(p)% =Y clp)

for Vg,p € E(nl, -++,Ny,). Then, each ¢;;(p) is a constant. Otherwise, by Theorem
3.2.6, the implicit theorem we know that there must be a C*°-mapping h such that

g = h(p), a contradiction.
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6.4.3 Homomorphism on Lie Multi-Group. Let %5, and Z;, be Lie
multi-groups. A topological homomorphism w : %5, — Z, is called a homo-
morphism on Lie multi-group if w is C™ differentiable. Particularly, if %, =
&(GL(n1,R),GL(n2,R),- -+, GL(ny, R)), then a homomorphism w : %5, — Z,
is called a multi-representation of L.

Now let g; be one Lie algebra of %, for i=1 or 2. A mapping w : 91 — P2

is a Lie algebra homomorphism if it is linear with
@[X,Y] = [@(X),=(Y)] for VX,Y € ¥,.

Particularly, if 92 = YP(GL(n,R)) in case, then a Lie algebra homomorphism w is
called a representation of the Lie algebra );. Furthermore, if @w : )1 — P is an
isomorphism, then it is said that %), and ), are isomorphic, denoted by 2); = 2.

Notice that ifw : L5, — %, is @ homomorphism on Lie multi-group, then since
w maps an identity 1, of £, to an identity 1, of £, for an operation o € 0(Z,).
Whence, the differential dw of w at 1, € L, is a linear transformation of T3,.%¢,

into le(o)ng- By Theorem 6.4.7, dw naturally induces a linear transformation
dw : )1 — D
between Lie algebras on them. We know the following result.

Theorem 6.4.9 The induced linear transformation dw : )1 — Yo is a Lie algebra

homomorphism.

Proof For VXY € 2 (%) and f € Z,, we know that

(dwX, Y]flw = [X,Y](fw) = X(YV(fw)) = Y (X(fw))
= X(dY(fw)) = Y(d(X(fw)))
= (dwX(dwY f) — dwY (dwX f))(w)
= [dwX, dwY](f).
Whence, we know that dw[X,Y] = [dwX, dwY]. O

Let Z, be Lie multi-groups for ¢ = 1 or 2. We say %, is locally C>-
isomorphic to Za, if for Yo € 0(%g,), there are open neighborhoods U} and Uz(o)

of the respective identity 1, and 1, with an isomorphism w : U} — U3(0> of -
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diffeomorphism, i.e., if a,b € UL, then aob € Ul if and only if w(a)w(o)w(b) € Uf(o))
with w(aob) = w(a)w(o)w(b), denoted by L& = ZZ& . Similarly, if a Lie algebra ho-
momorphism w : Y, — s is an isomorphism, then it is said that ), is isomorphic
to s, denoted by ) = s. For Lie groups, we know the following result gotten
by Sophus Lie himself.

Theorem 6.4.10(Lie) Let Q); be a Lie algebra of a Lie group ¥; for i = 1,2. Then
w dw
@Gl >~ gL if and only if D1 = Y.

This theorem is usually called the fundamental theorem of Lie, which enables
us knowing that a Lie algebra of a Lie group is a complete invariant of the local
structure of this group. For its a proof, the reader is refereed to references, such as
[Ponl] or [Varl] for examples. Then what is its revised form of Lie’s fundamental
theorem on Lie multi-groups? We know its an extended form on Lie multi-groups
following.

Theorem 6.4.11 Let Y(o, Zs,) be a Lie algebra of a Lie multi-group £g, for a
o€ 0(L,), i =1,2. Then L%, = L& if and only if Yo, La,) S D(w(o), L)
forVo € O(Zs,).

Proof By definition, if £ = ZE |, then for o € 0(%,), the mapping

dw : 2)(07$G1) - Q.)(w(o)7g02)

is an isomorphism by Theorem 6.4.9. Whence, 9 (o, %, ) é‘zu’) D (w(o), ZLs,) for Yo €
0(ZLc,).

Conversely, if Y (o, Zz,) LZ‘:U’J D(w(o), ZLg,) for Yo € 0(%z,), by Theorem 6.4.10,
there is an isomorphism w : UJ — U2, of C*-diffeomorphism, where U; and U3,
are the open neighborhoods of identities 1, and 1,,), respectively. By definition, we
know that £k = Lk O

6.4.4 Adjoint Representation. For any operation o € 0(%;), an adjoint
representation on of a Lie multi-group % is the representation ad®(a) = dif :
Lo — L(Y(o, %), Y(0, %)) with an inner automorphism ¢ : Lo — L of Ze
defined by i : Lo — ZLo; v — aoxoa;! for a € L. If Xy, Xy, -+, X, is a basis

of Y(o, Zz), then the matrix representation of ad®(a) = (a;;j)sxs is given by
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ad°(a)Xi = dZZX,L = Z a]-i(a) o X]
j=1

By Theorem 6.4.9, the differential of the mapping ad®(a) : £5 — Aut(Y(o, %)) is
an adjoint representation of 9)(o, %), denoted by Ad° : (o, L&) — D(GL(n,R)).

Then we know that

A(X)oY =X oY —YoX =[X,Y]|
in the references, for example [AbM1] or [Wesl].

6.4.5 Lie Multi-Subgroup. A Lie multi-group Z is called a Lie multi-subgroup
Of gg if

(1) Zy is a smoothly combinatorial submanifold of %, and

(1) Ly is a multi-subgroup of % in algebra.

Particularly, if %} is a Lie group, then we say it to be a Lie subgroup. The next

well-known result is due to E.Cartan.

Theorem 6.4.12(Cartan) A closed subgroup of a Lie group ia a lie group.

The proof of this theorem can be found in references, for example, [Ponl] or
[Varl]. Based on this Cartan’s theorem, we know the following result for Lie multi-
subgroups.

Theorem 6.4.13 Let £5 be a Lie multi-group with conditions in Theorem 5.1.1
hold, where J%Eg) = G A and O(%g) = G {0i}. Then a multi-subgroup (; O)
of £¢ is a Lie multi—g;’zhp if -

(i) (A;0)|, is a closed subgroup of (.527,@)

(it) H is an induced subgraph of G.

o; Jor any integer i, 1 <i < m.

Proof By the condition (i7), we know that (5; O) is still a smoothly combina-

torial manifold by Theorem 5.1.1. According to Cartan’s theorem, each (J¢; O)

o

is a Lie group. Whence, (J#; O) is a Lie multi-group by definition. g

6.4.6 Exponential Mapping. Notice that (R;+) is a Lie group by Example
6.4.1. Now let R be a Lie multi-groups with

#(R) = Ry and 6(R) = {+,1 < < m},

7
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where R; = R and +; = +. A homomorphism ¢ : R — Z¢ on Lie multi-groups,
ie., for aninteger ¢, 1 <i < mand Vs, t € R, p(s+;t) = p(s)0;p(t), is called a one-
parameter multi-group. Particularly, a homomorphism ¢ : R — % is called a one-
parameter subgroup, as usual. For example, if we chosen a o € 0(%;) firstly, then
the one-parameter multi-subgroup of % is nothing but a one parameter subgroup

of (#%;0). In this special case, for VX,Y € 2 (M) we can define the Lie derivative
LxY of Y with respect to X introduced in Definition 5.7.2 by

Ly (2) = lim 67V (p1(a)) — Y (2)]

for v € M. , where {¢,} is the 1-parameter group generated by X. It can be shown
that this definition is equivalent to Definition 5.7.2, i.e., LyY = XY -Y X = [X,Y].

Notice that (R;+) is commutative. For any integer ¢, 1 < i < m, we know that
p(t)o;o(s) = (s+it) = p(s)o; ¢(t), ie., {p(t),t € R} is a commutative subgroup
of (J£,; 0;). Furthermore, since p(0)o;¢(t) = p(0+;t) = ¢(t), multiplying by ¢ (),
on the right, we get that ¢(0) = 1,,. Also, by ¢(t) 0; p(—it) = p(—4t) o; ©(t) =
ot = 171 = ¢(04,) = 1o, we have that ¢ '(t) = o(—t).

Notice that we can not conclude that 1,, = 1,, = -+ = 1, by ¢(04,) =
©(04,) =+ =(04,,) in the real field R. In fact, we should have the inequalities
0(04,) # ©(04,) # -+ # ©(04,) in the multi-space R by definition. Hence, it
should be 1,, # 1o, # -+ # 1,,.

The existence of one-parameter multi-subgroups and one-parameter subgroup
of Lie multi-groups is obvious because of the existent one-parameter subgroups of
Lie groups. In such case, each one-parameter subgroup ¢ : R — ¢ is associated

with a unique left-invariant vector field X € 9(¥) on a Lie group ¢ by

df (¢(t)) |
da ="

Therefore, we characterize the combinatorial behavior on one-parameter multi-

X(y): f—= X1, f =

subgroups and one-parameter subgroups of Lie multi-groups.

Theorem 6.4.15 Let % be a Lie multi-groups with esaffv(fg) = 74 and O( L) =
i=1

U{oi}. Then,

i=1

(i) if ¢ : R — Z is a one-parameter multi-subgroup, then G[ap(ﬁ)] is a
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subgraph of G, and G[cp(f{)] = G if and only if for any integers i, j, 1 <i,j < m,
6N G # O implies that there exist integers s,t such that ¢(s), p(t) € p(R;+;) N
P(R; +5) with o(t) o5 p(s) = @(t) oj p(s) holds;

(i) if ¢ : R — ZLc is a one-parameter subgroup, i.e., R = R, then there is an
integer i, 1 <ig < m such that o(R) < (J4,;04,).

Proof By definition, each (R, +;) is a commutative subgroup of (J%;o;) for
any integer 1 < ¢ < m. Consequently, cp(f{) is a commutative multi-subgroup of
Za. Whence, G[p(R)] is a subgraph of G by Theorem 2.1.1.

Now if G[p(R)] = @, then for integers i, j, HN G # 0 implies that p(R; +;) N
e(R;+;) # 0. Let o(s), ¢(t) € p(R;+;) N p(R;+;). Then there must be ¢(s) o;
pt) =p(s+it) =p(s+1t) = (s +;t) = ¢(s) o; p(t). That is the conclusion (7).

The conclusion (i) is obvious by definition. In fact, o, = @(+). O

Let ¢ : R — %; be a one-parameter multi-subgroup of %;. According to

Theorem 6.4.15, we can introduce an exponential mapping exp following:

exp: @B Vlo, L) x 0(La) — Lo

0€0(ZLc)

determined by

exp(X,0) = px(1,).
We have the following result on the exponential mapping.

Theorem 6.4.16 Let ¢ : R — % bea one-parameter multi-subgroup. Then for
o € O(%s) with o(+) = o,
(1) @x(t) = exp(tX,o);
(i1) (exp(t1X,0)) o (exp(taX,0)) = exp((t1 + t2) X, 0) and
exp(t;' X, 0) = exp~!(tX,0).

Proof Notice that s — ¢x(st), s,t € R is a one-parameter subgroup of %.
Whence, there is a vector field Y € (o, %;) such that

. d
oy (s) = px(st) with Y = dgpy(%).
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Furthermore, we know that dep; X(%) = tX. Therefore, p1x = @x(st). Particularly,
let s =1, we finally get that

exp(tX, o) = ¢ix(Lo) = px(t),

which is the equality (7).

For (i%), by the definition of one-parameter subgroup, we know that

(exp(t1X,0)) o (exp(t2 X, o)) wx(t1) o wx(t2) = ox(t1 +t2)

exp((tl + l’z))(7 O)

and

exp(t7X, 0) = px(17) = (px (1) = exp™(£X ).

O
For an n-dimensional R-vector space V', % is just a Lie group GL(n,R). In

this case, we can show that

exp(tX, o) = X = E (¢ ') ,
n!
i=0

i
where X' = m for X € P(GL(n,R)). To see it make sense, namely the
righthand side converges, we show it converges uniformly for X in a bounded region
of GL(n,R). In fact, for a given bounded region A, by definition there is a number
N > 0 such that for any matrix A = (2;;(A))nxn in this region, there are must be
|z:;(A)] < N. Whence, |2;;(A*)| < n*~1N*. Thus, by the Weierstrass M-test, each

of the series

i @i (A¥)
k!
k=0
is converges uniformly to e®7. Whence,
oo
A k
eA = (exi](A))an = %

k=0
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Example 6.4.8 Let the matrix X to be

0 -1 0

X=1 0 0

0 0 O

A direct calculation shows that
?X?2  $X3
X = Iy +tX ot et
0 -1 0 -1 0 0 0
12 3
= I3+t 1 0 0 +§ 0 —-10 +§ -1 +

0 0 O 0 0 0 0 00

( ,%+) ,(,%!4,...) 0
= | (t-L+-) (1-L--9 0
0 0

—_

cost —sint 0
= sint cost 0
0 0 1

For a Lie multi-group homomorphism w : %5, — Zg,, there is a relation

between w, dw and exp on a o € Ly, following.

Theorem 6.4.17 Let w : L5 — Zg, be a Lie multi-group homomorphism with
w(o) = e € O(Ls,) foro€ O(%La,). Then the following diagram

Ze, w K7
exp exp
d
@(Owgal) u @(.7302)

1s commutative.

Proof Let X € Y(o, Zz,). Then t — w(exp(tX, o)) is a differentiable curve in
Z, whose tangent vector at 0 € R is dwX (1,). Notice it is also a one-parameter

subgroup of %%, because of w a Lie multi-group homomorphism. Notice that ¢ —
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exp(tdw(X), o) is the unique one-parameter subgroup of %, with a tangent vector
dw(X)(1,). Consequently, w(exp(tX,o)) = exp(tdw(X),o) for Vt € R. Whence,
w(exp(X, 0)) = exp(dw(X), ). O

6.4.7 Action of Lie Multi-Group. We have discussed the action of permutation
multi-groups on finite multi-sets in Section 2.5. The same idea can be also applied
to infinite multi-sets.

Let M be a smoothly combinatorial manifold consisting of manifolds of Mlnk Mo,

+++, My, and £ a Lie multi-group with (& (Z5); 0(Zc)), where o/ (£c) = U A

i=1

and 0(%;) = J{o;}. The Lie multi-group .% is called an action on M if there is a
i=1

differentiable mapping ¢ : Zg X M x O0(%s) — M determined by &(g,z,0;) = go;x
for g € 2, v € M;, 1 <i < m such that

(1) forVa,y € M; and g € I, go; x,g0;y € g o; M; a manifold,;

(i) (g10i g2) 0i © = g1 0; (g2 0; ) for g1, g2 € H;

(1) 1o, 0y x = .

In this case, the mapping © — g oz for o € (%) is a differentiable mapping
on M. By definition, we know that g;'o(gox) = go(gs'oz) = l,ox = 2. Whence,
x — goux is a diffeomorphism on M. We say Zq is a faithful acting on M if goxr =x
for Vo € 5 implies that g = 1,. It is an easy exercise for the reader that there are
no fized elements in the intersection of manifolds in M for a faithful action of Lo
on M. We say Zg is a freely acting on M it gox = x only hold for g = 1.

Define (Zz);, = {9 € ZLalg o xg = 20}. Then (Z);, forms a subgroup of
(Zg). In fact, if g o xy = xp, we find that g;! o (goxg) = g5 o zy. Because of
g5to(goxy) = (g5tog)omy = 1,0x9 = T, one obtains that g5 oxy = z9. Whence,
9" € (Zg)3,- Now if g, h € (£z);,, then (goh)oxy = go (howx) = x0, ie.,

z0?

goh e (ZLg);,- Whence, (Z£);, is a subgroup of Z.

Theorem 6.4.18 For Yo € O(%g), (ZLa)oe =90 (Za)20g5".

gox

Proof Let h € (%5)°. Then we know that gohog;logox = gohox =
go(hoz) = gox, which implies that go (Zz)20g;' C (Z5)%,,- Similarly, the same

gox*

argument enables us to find g; ' o(Z5)5.,09 C (Za)3, i-e., (Z6)gor C g0 (La)3095 "

gox

Therefore, (£5)5., = g© (L))o 095" =
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Corollary 6.4.6 Let 4 be a Lie group, x € 4. Then 9y, = ¢%.97"

Analogous to the finite case, we say that Zg acts transitively on M if for
Va,y € M, there exist elements g € % and o € 0(%;) such that y = goxz. A
smoothly combinatorial manifold M is called a homogeneous combinatorial manifold
if there is a Lie multi-group .4 acting transitively on M. If M is just a manifold, a
homogeneous combinatorial manifold is also called a homogeneous manifold. Then

we have a structural result on homogeneous combinatorial manifolds following.

Theorem 6.4.19 Let M be a smoothly combinatorial manifold on which a Lie
multi-group Lo acts. Then M is homogeneous if and only if each manifold in M is

homogeneous.

Proof 1If M is homogeneous, by definition we know that %, acts transitively
on ]\A/[/7 i.e., for Vz,y € M, there exist g € % and an integer i,1 < i < m such
that y = ¢ o; x. Particularly, let x,y € M;. Then we know that g € . Whence,
Lol = (A, 0;) is transitive on M;, i.e., M; is a homogeneous manifold.

Conversely, if each manifold M in M is homogeneous, i.e. a Lie group ¢, acts
transitively M, let z,y € M. If z and y are in one manifold M;, by assumption
there exists g € 9, with g : © — g o;  differentiable such that g o, z = y. Now if
x € M; but y € M; with ¢ # j, 1 <4,j < m, remember that GL[]T]] is connected,
there is a path

P(M;, Mj) = My, My, My, - - - My, My,

connecting M; and M; in GE[M], where My, = M;, My,,, = M;. Choose z; €
My, N My, 0 < i < I. By assumption, there are elements g; € ngi such that
Gi Ok, Ti = Tiy1. Now let g € 9y, and h € 9, such that goo; 7 = x9 and ho;x; = y.
Then we find that

(ho; Gi Ok, gi—1 Ok, =+~ 92 Oky G1 Ok, Jo) O3 T = Y.

Choose g = h 0; g1 %, gi—1 k_; " * G2 Oky G1 Ok, Jo € L. 1t is differentiable by

definition. Therefore, M is homogeneous. g

If 4 acts transitively on a differentiable M. , then M can be obtained if knowing
Z and stabilizers (£5)2, 0 € O0(%s) of Lo at x € M in advance. In fact, we have

the following result.
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Theorem 6.4.20 Let M be a differentiable combinatorial manifold consisting of
manifolds M,,,1 < i < m, %, a Lie group acting differentiably and transitively
on M,,. Chosen x; € M,,, a projection m; : 4, — %./(%,,)z, then the mapping

Gi 19, — M., determined by s;(g) = g o; x for g € 9,, induces a diffeomorphism
¢ é%/(%)z > é@l M.,
with T = (31,S2,+ + +,Sm) and $;m; = ;. Furthermore, < is a diffeomorphism
<1 Lo/ (Le)a — M,
where A = {x;,1 <i<m} and x; GAL-\(M\AL),I <i<m.

Proof For a given integer i,1 <i < m, let g € ¥4,,. Then for V¢’ € (4,,),, we
have that go; ¢’ € go; (%) and ¢(go; ¢') = ¢(g). See the following diagram on the

relation among these mappings ¢;, 7; and ;.

g, M,

T

Goi/ (Gor)x

Thus the mapping m;(¢) = go;(%,). — <i(g) determines a mappings; : 4., /(%,). —
M., with $;m;(g) = <;(g). Notice that m; : 4, — 4,./(%,). induces the identification
topology on 4., /(%,,). by

UC%, /(%) is open if and only if 77 (U) is open in %,,.

Then we know that $; and S L are differentiably bijections. Whence, g; is a diffeo-

morphism
S D)), — M.,

Extending such diffeomorphisms linearly on @ 9., /(%-,)., we know that
i=1

m

S:

(E
&
i)
®
5

Il
—
~.
I
R

i

is a diffeomorphism. Let z; € A. Notice that £ = J Y., (%c)e = U(9))zs
1

5 =1
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M = |J M; and

i=1
Za/(Ze)a = U %, /(%o,)a-
=1
Therefore, we get a diffeomorphism
< La)(La)a — M. 0

Corollary 6.4.7 Let M be a differentiable manifold on which a Lie group 4 acts
differentiably and transitively. Then for x € M, a projection © : 4 — 4G /9,, the
mapping < : 4 — M determined by <(g) = gz for g € 4 induces a diffeomorphism

$:9/9, — M
with ST = <.

We present some examples for the action of linear mappings on the complex

plane C, which is isomorphic to R2.

Example 6.4.9 Let C be a complex plane and the group 2 of C consisting of
f:C—Chby f(z) =az+b, a,be€ Cand a#0 for z € C. Calculation shows that

Qo={az]a#0},
where O = (0,0).

Example 6.4.10 Consider that action of the linear group SL(2,R) on the upper
half plane

Ct={z+iyeC|y>0}.

Notice that an element f € SL(n,R) has a form

b
f:{a } abc,d€R, ad—be =1
c d

with a transitive action
_az+b

1) = cz+d
on a point z € C*. Let z =1 € C*. We determine the stabilizer SL(2,R);. In fact,

az+b
cz+d

=1 implies that ai + b= —c + di.
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Whence, a = d and b = —c. Consequently, we know that ad — bc == a® + b* = 1,

a b | | cosf —sind
c d sinf cosf |’
i.e., a rigid rotation on R2. Therefore, SL(2,R); = SO(2,R), the rigid rotation

group consisting of all 2 x 2 real orthogonal matrices of determinant 1.

which means that

§6.5 PRINCIPAL FIBRE BUNDLES

6.5.1 Principal Fiber Bundle. Let ﬁ., M be a differentiably combinatorial
manifolds and % a Lie multi-group (,Q?EXG), O(%s)) with

UR, MfUM“f;z%,ZG U%ﬁgg O{Oi}.

i=1 i=1

A differentiable principal fiber bundle over M with group £ consists of a dif-
ferentiably combinatorial manifold 15, an action of Z; on P satisfying following
conditions PFB1-PFB3:

PFB1. For any integer i, 1 < i < m, J&, acts differentiably on P; to the
right without fized point, i.e.,

(x,9) € Pix #,, — x 0,9 € P,and = o; g = = implies that g = 1,,;

PFB2. For any integer i, 1 <i <m, M,, is the quotient space of a covering
manifold P € II7Y(M.,,) by the equivalence relation R induced by 6,

Ry ={(v,y) € P, x P,,|3g € K, = w0, g =y},

written by M,, = P,, /7, i.e., an orbit space of P,, under the action of £, .
These is a canonical projection 11 : P — M such that T1; = Olp, : P, — M,
is differentiable and each fiber TI;Y(z) = {po; glg € 4., T;(p) = x} is a closed

submanifold of P,, and coincides with an equivalence class of R;;
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PFB3. For any integer i, 1 < i < m, P € II"Y(M,,) is locally trivial over
M,,, i.e., any x € M,, has a neighborhood U, and a diffeomorphism T : II71(U,) —
Um X gg with

7 7

T,y =T 0 (U2) = Us x Aoy x— T (2) = (Wi(x), €(2)),

called a local trivialization (abbreviated to LT) such that e(xz o; g) = €(x) o; g for
Vg € A, e(x) € I,

We denote such a principal fibre bundle by ﬁ(ﬁ, Zc). Iftm =1, then 15(]177 Za) =
P(M, 5¢), the common principal fiber bundle on a manifold M. Whence, the exis-
tence of ﬁ(ﬂ , %) is obvious at least for m = 1.

For an integer i,1 < i < m, let T* : II; Y (U,) — U, x 56, TY : UI;Y(U,) —
U, x 7, be two LTs of a principal fiber bundle ﬁ(ﬂ, %) The transition function
from T to TY is a mapping g, : U,NU, — 5%, defined by {g,,(z) = €,(p)o; €, 1(p)
for Vo = 1L;(p) € U, NU,.

Notice that gy, () is independent of the choice p € TI;*(x) because of

cu(poig)oie, (poig) = eu(p)o;go;(en(p)o;g)"

€u(p) 01 goi g5t o€, () = €u(p) 0 €, (p).

Whence, these equalities following are obvious.
(1) guu(z) = 1,, for Vz € Uy;
(i1) ‘gu(2) = g }(2) for Vz € U, N U,;
(181) “Guv(2) 05 ‘G (2) 0i ‘guu(2) = 1o, for Vz € U, N U, N U,,.

A mapping A : U — P for any opened set U € M is called a local section of a
principal fiber bundle ﬁ(]AW/ L) if

IA(z) = TI(A(z)) = z for Vo € U,

i.e., the composition mapping ITA fixes every point in U. Particularly, if U = M, a
local section A : U — P is called a global section. Similarly, if U = M for a local
trivialization T : II7Y(U) — U x %5, then T is called a global trivialization. A

relation between local sections and local trivializations is shown in the following.
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Theorem 6.5.1 There is a natural correspondence between local sections and local

trivializations.

Proof If A : U — P is a local section, then we define T : I-YU) - U x %
for integers 1 < ¢ < m by T*(A(x) o; g) = (2, g) for x € U, C M;.

Conversely, if T : II"Y{(U) — U x %5 is a local trivialization, define a local
section A : U — P by A(z) = (T*) " (x, 1,,) for 2 € U, C M,. O

6.5.2 Combinatorial Principal Fiber Bundle. A general way for constructing
principal fiber bundles ﬁ(]AV[/ ,Zc) over a differently combinatorial manifold M is
by a combinatorial technique, i.e., the voltage assignment « : GL[]W ] — & over a
finite group &. In Section 4.5.4, we have introduced combinatorial fiber bundles
(M*, M,p, &) consisting of a covering combinatorial manifold M", a finite group &,
a combinatorial manifold M and a projection p : M — M by the voltage assignment
a: Gt [M ] — &. Consider the actions of Lie multi-groups on combinatorial mani-
folds, we find a natural construction way for principal fiber bundles on a smoothly

combinatorial manifold AL following.

Construction 6.5.1 For a family of principal fiber bundles over manifolds My, Ms, - - -,
M, such as those shown in Fig.6.5.1,

S, gy, - K
| | |
HM{ HM{ I \HMZ
Fig.6.5.1

where 5, is a Lie group acting on Py, for 1 < i < satisfying conditions PFBI1-
PFBS3, let M be a differentiably combinatorial manifold consisting of M;, 1 < i <1

and (G*[M], @) a voltage graph with a voltage assignment a : G*[M] — & over
a finite group ®, which naturally induced a projection 7 : GL[P] — GL[]/VV]. For

VM € V(GE[M]), if w(Py) = M, place Py on each lifting vertex MY« in the fiber

7 (M) of GE=[M], such as those shown in Fig.6.5.2.
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Fig.6.5.2
Let I1 = rllya~! for VM € V(GF[M]). Then P = U Py is a smoothly
MeV/(GLM))
combinatorial manifold and Lo = U Fu a Lie multi-group by definition.

MeV/(GE[M))
Such a constructed combinatorial fiber bundle is denoted by Pt=(M, %z).

For example, let & = Z, and GE[M] = C3. A voltage assignment o : GE[M] —

Zy and its induced combinatorial fiber bundle are shown in Fig.6.5.3.

Uy Ug

Fig.6.5.3

We search for and research on principal fiber bundles in such constructed com-
binatorial fiber bundles ﬁL“(M ,Z¢) in this book only. For this objective, a simple
criterion for principal fiber bundle is found following.

Theorem 6.5.2 A combinatorial fiber bundle ISQ(JW, L&) is a principal fiber bun-
dle if and only if for Y(M', M") € E(GF[M]) and (Pyy, Py») = (M, M")te €
E(GH[P)), Tar|pyney = Tarm | pypripy -

Proof By Construction 6.5.1, if Iy : Py — M’ and Ty : Py — M, then
HMI(PMIOPAJH) = A{lﬁj\/[” and HA]II(P]\I!QPA/[//) = Af’ﬁﬂf”. But HM/ = H|pM, and
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Oy = lp,,,. We must have that Iy |Pyy 0 Py = | p,ap,,, = e | Pag N Pager.

Conversely, if for Y(M',M") € E(GL[M}) and (Pyy, Pyn) = (M, M")t €
E(G™[P)), Tap|p, ey = Uan|pyepy,, in PA(M, %), then Il = allym : P —
M is a well-defined mapping. Other conditions of a principal fiber bundle can be
verified immediately by Construction 6.5.1. g

6.5.3 Automorphism of Principal Fiber Bundle. In the following part of
this book, we always assume ﬁ“(ﬂ ,Zc) satisfying conditions in Theorem 6.5.1,
i.e., it is a principal fiber bundle over M. An automorphism of ﬁ'a(ﬁ, Ze) is a
diffeomorphism w : P — P such that w(po; g) =w(p)o; g for g € I, and
pE U P, wherel<i<lI.
Per—1(M;)

Particularly, if [ = 1, an automorphism of ﬁ“(ﬁ , %) with an voltage assignment
a: Gr [M | — Zy degenerates to an automorphism of a principal fiber bundle over
a manifold. Certainly, all automorphisms of }3“(/]\/7 ,Z¢) forms a group, denoted by
Autﬁ“’(]g, Za).

An automorphism of a general principal fiber bundle ]S(M , %) can be intro-
duced similarly. For example, if w; : Py, — Py, is an automorphisms over the
manifold M; for 1 <4 <1 with wi|p,, NPy, = = wjlpy, npy, for 1 <i,j <1, then by the
Gluing Lemma, there is a differentiable mapping w : P — P such that wlpy, = wi
for 1 <4 < [. Such w is an automorphism of P(M,.,iﬂg) by definition. But we
concentrate our attention on the automorphism of ﬁ“(ﬁ ,-Zc) because it can be

combinatorially characterized.

Theorem 6.5.3 Let ﬁo‘(]AV[/, Z) be a principal fiber bundle. Then

AwtP* (M, Z5) > (L),

where £ = {Ewl \ h: P, — Py, is 1py, determined by h((M;)g) = (M;)go,n for h €
& and gi € AutPMi(JV[i,Jfél)’ 1< < l}

Proof It is only needed to prove that each element w in & is an automorphism
of 15"(1\77 Z). We verify w = Ewi is an automorphism of ﬁ“(ﬂ, Ze) for w; €
AutPy, (M;, 56,) and h € & with h((M;),) = (M;) g0 In fact, we get that
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w(po; g) = hwi(p o; g) = h(wi(p) 01 g) = hwi(p) 0 9)
forpe |J Pandge ., Whence, w is an automorphism of ﬁa(ﬁ, Z). O
Pern—1(M;)

A principal fiber bundle ﬁ(]T/f , Zc) is called to be normal if for Vu,v € ﬁ, there
exists an w € Autﬁ(]AV[/7 %) such that w(u) = v. We get the necessary and sufficient
conditions of normally principal fiber bundles ﬁa(ﬁ , Ze) following.

Theorem 6.5.4 P*(M,.%;) is normal if and only if Py, (M;, 56,) is normal,
(,50;) = (H;0) for 1 < i < 1 and Gl [M} is transitive by diffeomorphic au-
tomorphisms in AutGEe[M].

Proof If ﬁa(ﬂ, %) is normal, then for Yu,v € ﬁ, there exists an w €
Autﬁa(ﬁi %) such that w(u) = v. Particularly, let u,v € M, for an integer
i,1 <i<lor GL“[M]. Consider the actions of Autﬁa(fij £6)| Py, (M, ,) and
Autﬁ”(ﬂ, Ze)|grapn, we know that Py, (M;, ) for 1 < i < [ and GLe []\A/[/] are
normal, and particularly, G**[M] is a transitive graph by diffeomorphic automor-
phisms in AutGZe[M].

Now choose u € M; and v € M; \ M;, 1 < i,j < l. By definition, there is
an automorphism w € Autlga(ﬂ7 %) such that w(u) = v. Whence, w(uo; g) =
w(u) o; g = v o; g by definition. But this equality is well-defined only if (J%,;0;) =
(H;505). Applying the normality of ﬁ“(ﬂ, %), we find that (J4,;0;) = (I;0)
for any integer 1 <i <.

Conversely, if Py, (M;, 56,) is normal, (J,;0;) = (H;0) for 1 < i < [ and
GLe [M] is transitive by diffeomorphic automorphisms in AutGre [M], let u, ug € M,
v,v9 € M; and g(ug) = v for a diffeomorphic automorphism g € AutGLe [M ]. Then
we know that there exist w; € AutPyy, (M;, 52,) and w; € AutPy, (M;, #5,) such

that w;(u) = wo, wj(vg) = v. Therefore, we know that

wjgw;(u) = w;i(g(uo)) = wi(vo) = v.

Notice that w;,w; and g are diffeomorphisms. We know that w;gw; is also a

diffeomorphism. O

Application of Theorem 4.5.6 enables us to get the following consequence.
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Corollary 6.5.1 Let GE[M] be a transitive labeled graph by diffeomorphic automor-
phisms in AutGL[JAVf], a: GF[M] — & a locally f-invariant voltage assignment and
P(M, ) a normal principal fiber bundle. Then the constructed ISQ(M, %) replac-

ing each Py, (M;, 76,), 1 <i <1 by P(M, ) in Construction 6.5.1 is normal.

Proof By Theorem 4.5.6, a diffeomorphic automorphism of G¥[M] is lifted to
G [va] According to Theorems 6.5.3 and 6.5.4, we know that JBCY(]A\/[/7 L) is a
normally principal fiber bundle. O

6.5.4 Gauge Transformation. An automorphism w of JBQ(M ,Zc) naturally
induces a diffeomorphism @ : M — M determined by w(I(p)) = (w(p)). Applica-
tion of @ motivates us to raise the conception of gauge transformation important in
theoretical physics. A gauge transformation of a principal fiber bundle }3“(]17, %)
is such an automorphism w : P — P with@ =identity transformation on M , ie.,
II(p) = I(w(p)) for p € P. Similarly, all gauge transformations also forms a group,
denoted by GA(P).

There are many gauge transformations on principal fiber bundles. For example,
the identity transformations 1p,, induced by the right action of & on vertices in
GE[M], ie., h((M;)g) = (M;)goun, for Vh € &, 1 <4 <[ are all such transformations.

Let ]SQ(M, %) be a principal fiber bundle and (J2;
F; to the left, ie., for each g € J%,, there is a C*-mapping ‘L, : /4, x F; —
F; such that ‘Ly, (u,0;) = uw and *Lg,o,4,(u,0;) =" Lgy 0; 'Ly, (u,0;) for Yu € F;.

Particularly, let F; be a vector space R™ and ‘L, a linear mapping on R™. In this

o;) act on a manifold

case, a homomorphism 5%, — GL(n;,R) determined by ¢ — L, for g € 4, is a
representation of J%,. Two such representations g — L, and g — L; are called
to be equivalent if there is a linear mapping 7' : GL(n;, R) — GL(n;, R) such that
L’g:ToiLgoiTo:1 forVge 56,1 <i<I.

For an integer i, 1 <1 <, define a mapping space
Ci(Pu, Fy) ={ w: Py, = F; | w(uo; g) 19;1 o; w(u), Yu € Py, g € H, }.
Particularly, if [ = 1 with a trivial voltage group, i.e., IBO‘(M., %) is a principal

fiber bundle over a manifold M, C;(Pyy;,, F;) is abbreviated to C(Py, F). We have

a result on gauge transformations of ﬁ”(ﬁ , Za) following.
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Theorem 6.5.5 Let ﬁ“(i,ﬁ[i Zc) be a principal fiber bundle with a voltage assignment
a GL[M] — & and Cy(Pu,, H2,) with an action g(g') = g o g' i g.' of 5, on
itself, 1 <i <. Then

l

GA(P) = R(®) @) Ci( P, A2.),
i=1
where R(®) denotes all identity transformations 1py, 1 <4 <1 induced by the right

action of ® on vertices in GF[M].

Proof For any w € Ci(Pu,, 76,), define w : Py, — Py, by w(u) = u o; w(u)
for u € Py,. Notice that w(u o; g) = wo; g o; w(uo; g) = uo; go; g5 'w(u) o; g =
wo; w(u) o; g =w(u)o; g. It follows that w € GA(Pyy,).

Conversely, if w € GA(Pyy,), define @ : Py, — 5, by the relation w(u) =
uo; w(u). Then wo; gow(uo; g) =w(uo; g) =w(u)o; g =uo; w(u)o; g. Whence,
w(uo; g) = g5 o w(u) o; g and it follows that w € C;(Pyy,, #,). Furthermore,
if w,w' € GA(Py;) with w(u) = uo; w(u) and '(u) = wo; w'(u), then ww'(u) =
wo; (T(u)7'(u)). We know that GA(Pyy,) = Ci(Py,, H4,).

Extend such isomorphisms ¢; : GA(Pyy,) — Ci( Py, 76,) linearly to ﬁo‘(ﬁ . ZG)-
Notice that all identity transformations 1p,, induced by the right action of & on
vertices in GFe []\7] induce gauge transformations of Iga(ﬁ, %) by definition, we
get that

l

GA(P) 2 R(®) Q) CiPu,, 2,)).

i=1
Besides, each gauge transformation w of f’a(]T/[/ , Ze) with TI(p) = H(w(p))
can be decomposed into a form w = 1y 0; w; 0; 1, by Construction 6.5.1, where

wi € Ci(Pyy,, 76,) for an integer i, 1 < i <. We finally get that

i

GA(P) = R(&) ®(® Ci(Puy,, ;)

g

Corollary 6.5.2 Let P(M, ) be a principal fiber bundle over a manifold M. Then

GA(P) = C(Py, ).
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For any integer ¢, 1 < i <, let Y(ZLs, 0;) be a Lie algebra of ﬁa(ﬁ, L) with
an adjoint representation ad® : 5, — GL(Y(ZLs, 0:)) given by g — ad®(g) for Vg €
;. Then the space C;(Pyy,, D (Le,04)) is called a gauge algebra of Py, (M;, 72,).
If Ci(Pu,, D(ZLe, 0i)) has be defined for all integers 1 <4 <, then the union

l

U Ci(Py,, D (L, 04))

i=1
is called a gauge multi-algebra of f’o‘(M,Q)(.iﬂg)), denoted by C(P,.%).
Theorem 6.5.6 For an integer i, 1 < i < I, if H;, H € Ci(Pu,, D(ZLc,0i)),
let [H;, H]] : Py, — 26, be a mapping defined by [H;, H{](u) = [H;(u), H{(u)] for
Vu € Py,. Then [H;, H]] € Ci(Py,, D(Za,04)), i.e., Ci(Pun,, D(ZLs,0:)) has a Lie
algebra structure. Consequently, C(ﬁ,fg) has a Lie multi-algebra structure.

Proof By definition, we know that

[H;, Hj)(uo; g) [Hi(uo; g), Hi(uo; g)]
[ad®*(g5," ) Hi(u), ad* (g5, ) Hi(u)]

= ad”(g;")[H (v), H'(u)] = ad” (g5, ) [H, H'](u)

for Vu € Py,. Whence, C;(Py,,YD(Za, 0:)) inherits a Lie algebra structure, and
C(P, %) has a Lie multi-algebra structure. O

6.5.5 Connection on Principal Fiber Bundle. A [ocal connection on a princi-
pal fiber bundle ﬁa(ﬂ, %c) is a linear mapping ‘T, : TZ(M) — Tu(ﬁ) for an integer
i, 1<i<landu eIl (z) =F,, 2 € M;, enjoys the following properties:

(i) (dIL)‘T, = identity mapping on Tx(ﬂ);

(i1) Tig,o = d 'Ry o; Ty, where ‘R, denotes the right translation on Pyy;

(i47) the mapping u — T, is C*.

Similarly, a global connection on a principal fiber bundle ISQ(M, %) is a linear
mapping T, : TI(M) — Tu(lg) forau e O z) = F, z € M with conditions
following hold:

(i) (dII)T', = identity mapping on T,(M):;
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(it) Iryou = dRgoI'y for Vg € £ and Yo € 0(Zg), where R, denotes the
right translation on ﬁ;

(i77) the mapping u — T, is C™.

Certainly, there exist closed relations between the local and global connections
on principal fiber bundles. A local or global connection on a principal fiber bundle
ﬁ“(ﬁ , %) are distinguished by or not by indexes ¢ for 1 <4 < [ in this subsec-
tion. We consider the local connections first, and then the global connections in the
following.

Let ‘H, = ZFu(TI(M)) and ‘V, = T,(*F,) the space of vectors tangent to the
fiber ‘F,, * € M; at u € Py, with I;(u) = x. Notice that dIl; : T,(*F,) —
T.({x}) = {0}. For VX € V,, there must be dII;(X) = 0. These spaces ' H,, and *V,,

are called horizontal or vertical space of the connection ‘T, at u € ﬁ, respectively.

Theorem 6.5.7 For an integer i, 1 < i < I, a local connection ‘T in P is an
assignment "H : v — 'H, C Tu(.ﬁ), of a subspace "H, ofTu(ﬁ) to each u € 'F, with

(i) Tu(P)= "H,&'V,, uec'F,;

(#3) (d'Ry) "Hy = "Hyoyy for Yu € 'F, and Vg € H,;

(iii) "H is a C*°-distribution on P.

Proof By the linearity of the mapping T, u € *F, for x € M;, 'H, is a linear
subspace of the tangent space Tu(ﬁ) Since (dI1;)'T,, = identity mapping on 7, L(Z\N ),
we know that dII; is one-to-one. Whence, dIl; : *H,, — Tn(u)(ﬁ ) is an isomorphism,
which alludes that ¢H, NV, = {0}. In fact, if ‘H, NV, # {0}, let X € ‘H, NV,
X # 0. Then dI;X = 0 and dIL,X € TI(M) Because dIl; : *H, — Tu(]\/\]) is an
isomorphism, we know that KerdIl; = {0}, which contradicts that 0 # X € KerdII;.

Therefore, for VX € Tu(ﬁ), there is an unique decomposition X = X + X,
Xy € 'Hy, X, €'V, ie.,

T, (P)= "H,&V,.

Notice that

Huoig = Tipyoru(To(M)) = (d 'Ry) To(To(M)) = (d 'Ry) 'H,.
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So the property (i) holds. Finally, the C*-differentiable of ‘H is implied by the
C>-differentiable of the mapping v — T,.

Conversely, if ‘H : u — "H, is a such C™ distribution on P, we can define a
local connection to be a linear mapping ‘T, : To(M) — T,(P) for u € II; }(z) = i F,,
x € M; by ZFU(TH(Z’VV)) = "H,, which is a connection on ﬁa(ﬂ7 Za). d

Theorem 6.5.7(i) gives a projection of T,(P) onto the tangent space T, (*F}) of
'F, with x € M; and II;(u) = x by

Wi T (P) = Tu(F); X =X, 4+ Xp — X = X,

Moreover, there is an isomorphism from 9)(54,,0;) to T,(*F,) by the next result,
which enables us to know that a local connection on a principal fiber bundle can be

also in terms of a 9)-valued 1-forms.

Theorem 6.5.8 Let ﬁa(ﬁ, Za) be a principal fiber bundle. Then for any integer
i, 1<i<l,

(i) there exists an isomorphism v; : D(H,,0;) — T, ('F,) for Yu € Py, with
H'I’,(u) =5
(i) if 1i(X) = X, € D(Ha,,01), then 1i((d 'Ry)X) = ad™ (g7) X, € D(H,, 7).

Proof First, any left-invariant vector field X € 2° (A2,) gives rise to a vector
field X € 27(Pyy,) such that the mapping (5, 0;) — Py, determined by X—X
is a homomorphism, which is injective. If X,, = 0 € Py, for some u € Pyy,, then
X =0,, € Y(H,, 0;). Notice that uwo;g = ‘Ryu = uosexp(tX), g € #,, lies on the
same fiber as w by definition of the principal fiber bundle and Construction 6.5.1.
Whence, the mapping «; : (4., 0;) — T,(‘F,) is an injection into the tangent
space at u to the fiber °F, with the same dimension as 9)(J%,,0;). Therefore, for
VY € T,(*F,), there exists a unique X, € (5, 0;) such that L(X) =Y, ie., an
isomorphism. That is the assertion of (i).

Notice that if X, generates a 1-parameter subgroup ‘¢;, then (d ‘R,;)X, gen-
erates the 1-parameter group ‘R, ‘o ‘R;'. Let 7i(t) : R — J#, the 1-parameter

subgroup of J%, generated by Xe (I, 0;) and ‘¢(t) = ‘R.,4). Then

iRy iRW(T/)iRg_1 = iRgfloﬂ(t)ozy
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Whence, the element of 9)(%,,0;) corresponding to (d "R,)X, generates the 1-
parameter subgroup g~' o; v;(t) o; g of 4., i.e., g7 0; vi(t) o; g is the 1-parameter
subgroup generated by (ad® (gfl)))?q, such as those shown in Fig.6.5.4,

g oiy(t) oi g T, (A,)
X, %, 7i(t)
1
Fig.6.5.4

1

where 7;(t) = expt)?m g lojy(t)oig=ygto expt)A(v 0,9 = expt(ado'gfl)?v) and

X! = (ad’ig M) X,), X, X! € (A, 0)). O

Application of Theorem 6.5.8 enables us to get a linear mapping T,,(P) — 4,
which defines a (5%, , o;)-valued 1-form ‘w, = 1;'v on 13, where ¢; and ‘v are shown

in the following diagram.

~_ i, L

Tu(P) = Tu('F.) = Y(H,, )

Theorem 6.5.9 For any integer i, 1 < i < I, let 'T' be a local connection on
ﬁa(ﬂ, Za). Then there exists a Y (3, 0;)-valued 1-form ‘w on Py, i.e., the con-
nection form satisfying conditions following:

~ ~

(i) ‘w(X) is vertical, i.e., 'w(X) = ‘w(X,) = X,, where X, € 'V, C T,(P)
and ‘w(X) =0 if and only if X € ‘H,;

(i1) ‘w((d 'Ry)X) = ad® g~ "w(X) for Vg € 5, and VX € Z (Py,).

Proof Let ‘w = t;iv. Then ‘w(X) = viv(X) = u(X,) = X, € D(H,,0;).
Moreover, X € “H, if and only if ‘v(X) = 0, i.e., ‘w(X) = 0, which is equivalent to
‘w(X)=0.

By Theorem 6.5.8(it), we know that
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‘w((d'Ry)X) = "w([(d"Ry)X],) = "w((d "Ry)X,) = ad*(g7")'w(X).

For showing that ‘w depends differentiably on wu, it suffices to show that for
any C*-vector field X € P, iw(X) is a differentiable ) (5%, , o;)-valued mapping. In
fact, X is C* implies that ‘v(X) : v — ("vX), and ‘h(X) : u — (*hX), are of class
C* and since ‘X is differentiable at u, so is X, = iw(X).

Conversely, given a differentiable 9)(2,, o;)-valued 1-form ‘w on P with con-
ditions (¢)-(i7) hold, define the distribution

"H,={ X eT,(P)|w(X)=0}.

Then the assignment u — ‘H, defines a local connection with its connection form
‘w. In fact, for VX € 'V, ‘w(X) # 0 implies X ¢ ‘H,. Therefore, ‘H, N V, = {0}
and Tu(IS) = 'H,+ V,. In fact, let ‘w(X) = )A(v. But we know that ‘w(X,) = )A(v,
Let Z = X — X,,. We find that ‘w(Z) = ‘w(X) — ‘w(X,) =0. Hence, Z € ‘H,,
which implies that T, (P) = ‘H, &' V,. That is the condition (i) in Theorem 6.5.7.

Now for any X € ‘H,, we have that ‘w((d ‘R,)X) = (ad®g~!) 'w(X) = 0.
Whence, (d ‘R,)X is horizontal, i.e., (d "Ry) "H, C "Hyo,q-

Let Xyo,g € "Hyorg with X0, = (d 'R,)X, for some X, € T,(P). We show
that X, € ‘H,. Notice that X,0,, = (d ‘Ry)X, is equivalent to X,, = (d "Ry-1) Xyoyq-

We get that

iw(Xu) = w((d iRgfl)Xuoig) = (adOigil) iw(Xuoig) = 67

which implies that X, is horizontal. Furthermore, since u — ‘w(u) is of class C*,

and X is a O°-vector field, so is ‘vX and therefore v — *H, is of class C*°. g

Now we turn our attention to the global connections on principal fiber bundles.
Notice the proofs of Theorems 6.5.7 and 6.5.9 are directly by the definition of local
connection. Whence, the same arguments can also establishes the following results

on global connections.

Theorem 6.5.10 A global connectionT" in P isan assignment H : v — H, C Tu(ﬁ),

of a subspace H, of T,(P) to each u € F, with

(i) TuP)= H, &V, ucF,;
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(i1) (dRy)Hy, = Hyoy forYu € Fy,, Vg € L and o € O(Ls);
(iii) H is a C®-distribution on P.

Theorem 6.5.11 Let I' be a global connection on }BQ(M, %c). Then there exists
a P (ZLe)-valued 1-form w on 13, i.e., the connection form satisfying conditions fol-

lowing:

(i) w(X) is vertical, i.e., w(X) = w(X,) = X,, where X, € V,, C T,(P) and
w(X) =0 if and only if X € Hy;
(i) w((dR,) X) = ad®g~'w(X) for Vg € ZLa, VX € 2 (P) and o € 0(Z).

Certainly, all local connections on a principal fiber bundle exist if a global
connection on this principal fiber bundle exist first. But the converse is not obvious.
So it is interesting to find conditions under which a global connection exists. We

know the following result on this question.

Theorem 6.5.12 Let ‘T be a local connections on ISQ(M, %a) for 1 <i <. Then
a global connection on ﬁa(]’\z %) exists if and only if (5 0;) = (H;0), i.e., Lo
is a group and ‘T|y,ang, = Tl for (Mg, M;) € E(GL[]’VVM 1<id,5<1.

Proof If there exists a global connection I' on a principal fiber bundle ﬁ"‘(ﬁ . 26),
then I'|py,, 1 <4 <[ are local connections on ﬁ”‘(]/\/Y, %) with "'F\Mlm\@ = Ir

for (M;, M;) € E(G*[M]), 1 <i,j <.

Furthermore, by the condition (¢) in the definition of global connection, Rjou =

M;NM;

u o g is well-defined for Vg € %, Vo € 0( %), i.e., g acts on all u € P. Whence,
(H2,;0) = (H;0) if g € ., 1 <4 <, which means that £ = (J;0) is a group.

Conversely, if % is a group and ‘T|a,nnr, = T a,n, for (M;, M;) € E(GL[ZVD,
1 <14,j <1, we can define a linear mapping T, : TT(M) — Tu(.ﬁ) by I', = T, for
au €7 (x) = F,, x € M;. Then it is easily to know that the mapping I' satisfies

conditions of a global connection. In fact, by definition, we know that

(1) (dIT, = (dI;) ‘T" = identity mapping on T, (M;) for 1 < i < I. Hence,
(dIT,, = identity mapping on Tx(M);

(2) Pryou = Tryou = dRgo Ty if 2 € M;, 1 <i <. That is I e, = dRyo T,
for Vg € Z;

(3) the mapping u — ‘T, is C*® if z € M;, 1 <1i <I. Whence, u — I, is C*.
This completes the proof. O
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We have known there exists a connection on a common principal fiber bun-
dle P(M, ) in classical differential geometry. For example, the references [Bell]
or [Wesl]. Combining this fact with Theorems 6.5.4 and 6.5.12, we get the next

consequence.

Corollary 6.5.3 There are always exist global connections on a normally principal

fiber bundle Igo‘(ﬁ, Z5).

6.5.6 Curvature Form on Principal Fiber Bundle. Let ﬁ"‘(ﬁ, Za) be a
principal fiber bundle associated with local connection form ‘w, 1 < i < [ or a

global connection form w. A curvature form of a local or global connection form is
a Y(I,,0;) or P(Le)-valued 2-form

Q= (d'w)h, or Q= (dw)h,

where

(d'Wh(X,Y) =d 'whX,hY), (dw)h(X,Y) = dw(hX,hY)

for X,Y € 2 (Py,) or X,Y € 2 (P). Notice that a 1-form wh(X1, X,) = 0 if and
only if h(X;) = 0 or h(X;2) = 0. We have the following structural equation on
principal fiber bundles.

Theorem 6.5.13(E.Cartan) Let ‘w, 1 <4 <1 and w be local or global connection
forms on a principal fiber bundle 13&(1177 %c). Then
(d'w)(X,Y) = —["w(X), w(Y)] + "QX,Y)

and

dw(X,Y) = —[w(X),w(Y)] + Q(X,Y)
for vector fields X, Y € X (Pu,) or 2 (P).

Proof We only prove the structural equation for local connections, i.e., the

equation

(dw)(X,Y) = —['wX), w¥)]+ QX,Y).
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The proof for the structural equation of global connections is similar. We

consider three cases following.
Case 1. XY ¢ 'H,

In this case, X,Y are horizontal. Whence, ‘w(X) = ‘w(Y) = 0. By definition,
we know that (d w)(X,Y) = Q(X,Y) = —[ ‘w(X),!w(¥)] + QX,Y).
Case 2. X,Y € 'V,

Applying the equation in Theorem 5.2.5, we know that

(d'w)(X,Y) =X ‘wl) =Y 'w(X) - w(X,Y]).
Notice that ‘w(X) = ‘w(X,) = X is a constant function. We get that X w(Y) =
Y ‘w(X) = 0. Hence,
(@ w)(X,,Y,) = = WX, Vi) = = (X, Y]) = (X, Y], = ~[&,7),

which means that the structural equation holds.

Case3. X € V,andY € 'H,

Notice that ‘w(Y) = 0 and Y ‘w(X) = 0 with the same reason as in Case 2.
One can shows that [X,Y] € "H, in this case. In fact, let X is induced by "R,,,
where ¢, is the 1-parameter subgroup of 7%, generated by )/(\'U. Then

1
[X,Y] = LY = lim +(d 'R, Y = Y)

implies that [X,Y] € 'H, since Y and (d ‘R,,)Y are horizontal by Theorem

6.5.10(ii). Whence, ‘w([X,Y]) = 0. Therefore, (d ‘w)(X,Y) = 0, which consis-

tent with the right hand side of the structure equation. g

Notice that the structural equation can be also written as

) ) 1. . 1
ZQ:d’w—l—i[’w, ‘w], and Q:dw+§[w,w]

since [w,w](X,Y) = 2[w(X),w(Y)] for any 1-form w. Using the structural equation,
we can also establish the Bianchi’s identity for principal fiber bundles ﬁ“(ﬂ L)

following.

Theorem 6.5.14(Bianchi) Let ‘w, 1 < i < [ and w be local or global connection
forms on a principal fiber bundle ﬁ“(ﬁ, %c). Then
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(d'Q)h =0, and (dAQ)h = 0.

Proof We only check that (d ‘Q)h = 0 since the proof for (dQ2)h = 0 is similar.
applying Theorem 6.5.13, by definition, we now that

(d*DWX,Y,Z) = dd ‘wh(X,Y,Z) + %d[ v, Wh(X,Y,Z) =0
because of
dd 'wh(X,Y,Z) =0, and d[‘w, Wwh(X,Y,Z) =0

by applying Theorem 5.2.4 and ‘w vanishes on horizontal vectors. d

86.6 REMARKS

6.6.1 Combinatorial Riemannian Submanifold. A combinatorial manifold
is a combination of manifolds underlying a connected graph G. So it is natural
to characterize its combinatorial submanifolds by properties of its graph and sub-
manifolds. In fact, a special kind of combinatorial submanifolds, i.e., combinato-
rial in-submanifolds are characterized by such way, for example, the Theorem 4.2.5
etc. in Section 4.2.2. Similarly, not like these Gauss’s, Codazzi’s or Ricci’s formu-
lae in Section 6.1, we can also describe combinatorial Riemannian submanifolds in
such way by formulae on submanifolds of Riemannian manifolds and subgraphs of
a connected graph. This will enables us to find new characters on combinatorial

Riemannian submanifolds.

6.6.2 Fundamental Equations. The discussion in Section 6.2 shows that we
can also establish these fundamental equations, such as the Gauss’s, the Codazzi’s
or the Ricci’s for combinatorial Riemannian submanifold in global or local forms.
But in fact, to solve these partially differential equations, even for Riemannian sub-
manifolds of the Euclidean space R", is very difficult. In references, we can only
find a few solutions for special cases, i.e., additional conditions added. So the classi-
cal techniques for solving these partially differential equations is not effective. New

solving techniques for functional equations, particularly, the partially differential
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equations should be produced. Even through, these Gauss’s, Codazzi’s or Ricci’s
equations can be also seen as a kind of geometrical equations of fields. So they are

important in physics.

6.6.3 Embedding. By the Whitney’s result on embedding a smooth manifold in a
Euclidean space, any manifold is a submanifold of a Euclidean space. Theorem 6.3.6
generalizes this result to combinatorial Riemannian submanifolds, which definitely
answers a question in [Maol2]. Certainly, a combinatorial Riemannian submani-
fold can be embedded into some combinatorial Euclidean spaces, i.e., the result in
Theorem 6.3.7 with its corollary. Even through, there are many research problems
on embedding a combinatorial Riemannian manifold or generally, a combinatorial
manifold into a combinatorial Riemannian manifold or a smoothly combinatorial
manifold. But the fundamental is to embed a smoothly combinatorial manifold
into a combinatorial Euclidean space. For this objective, Theorem 6.3.7 is only an

elementary such result.

6.6.4 Topological Multi-Group. In modern view point, a topological group is
a union of a topological space and a group, i.e., a Smarandache multi-space with
multiple 2. That is the motivation introducing topological multi-groups, topolog-
ical multi-rings or topological multi-fields. The classification of locally compacted
topological fields, i.e., Theorem 6.4.4 is a wonderful result obtained by a Russian
mathematician Pontrjagin in 1930s. This result can be generalized to topological
multi-spaces, i.e., Theorem 6.4.5.

In topological groups, a topological subgroup of a topological group is a sub-
group of this topological group in algebra. The same is hold for topological multi-
group. Besides, the most fancy thing on topological multi-groups is the appearance
of homomorphism theorem, i.e., the Theorem 6.4.3 which is as the same as Theorem

2.3.2 for homomorphism theorems in multi-groups.

6.6.5 Lie Multi-Group. Topological groups were gotten attention after S.Lie
introducing the conception of Lie group, which is a union of a manifold and a group
with group operation differentiable. Today, Lie group has become a fundamental
tool in theoretical physics, particularly, in mechanics and gauge theory. Analogy, for
dealing with combinatorial fields in the following chapters, we therefore introduce Lie

multi-groups, which is a union of a combinatorial manifold and a multi-group with
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group operations differentiable. Certainly, it has similar properties as the Lie group,
also combinatorial behaviors. Elementary results on Lie groups and Lie algebra are
generalized to Lie multi-groups in Section 6.4. But there are still many valuable
works on Lie multi-groups should be done, for example, the representation theory

for Lie multi-groups, the classification of Lie algebras on Lie multi-groups, - - -, etc..

6.6.6 Principal Fiber Bundle. A classical principal fiber bundle is essentially a
combining of a manifold, its covering manifold associated with a Lie group. Today,
it has been a fundamental conception in modern differential geometry and physics.
The principal fiber bundle discussed in Section 6.5 is an extended one of the clas-
sical, which is a Smarandachely principal fiber bundle underlying a combinatorial
structure G, i.e., a combinatorial principal fiber bundle.

The voltage assignment technique a : G¥ — & is widely used in the topological
graph theory for find a regular covering of a graph G, particularly, to get the genus
of a graph in [GrT1]. Certainly, this kind of regular covering G*« of G* posses many
automorphisms, particularly, the right action R(&) on vertices of GX=. More results
can be found in references, such as those of [GrT1], [MNS1], [Maol] and [Whil].

Combining the voltage assignment technique o : G* — & with [ classical prin-
cipal fiber bundles Py, (M, 75,), Pu,(Ms, 76,), -+, Pu, (M, 56,) produces the
combinatorial principal fiber bundles IBQ(JVN[ , %) in Construction 6.5.1 in Section
6.5 analogous to classical principal fiber bundles. For example, their gauge transfor-
mations are completely determined in Theorem 6.5.5. The behavior of ]SQ(M . Zc)
likewise to classical principal fiber bundles enables us to introduce those of local
or global Fhresmann connections, to determine those of local or global curvature
forms, and to find structure equations or Bianchi identity on such principal fiber

bundles. All of these are important in combinatorial fields of Chapter 8.



CHAPTER 7.

Fields with Dynamics

All known matters are made of atoms and sub-atomic particles, held together
by four fundamental forces: gravity, electro-magnetism, strong nuclear force
and weak force, partially explained by the Relativity Theory and Quantum
Field Theory. The former is characterized by actions in external fields, the
later by actions in internal fields under the dynamics. Both of these fields
can be established by the Least Action Principle. For this objective, we in-
troduce variational principle, Lagrangian equations, Euler-Lagrange equations
and Hamiltonian equations in Section 7.1. In section 7.2, the gravitational field
and Einstein gravitational field equations are presented, also show the Newto-
nian field to be that of a limitation of Einstein’s. Applying the Schwarzschild
metric, spherical symmetric solutions of Einstein gravitational field equations
can be found in this section. This section also discussed the singularity of
Schwarzschild geometry. For a preparation of the interaction, we discuss elec-
tromagnetism, such as those of electrostatic, magnetostatic and electromag-
netic fields in Section 7.3. The Maxwell equations can be found in this section.
Section 7.4 is devoted to the interaction, i.e., the gauge fields including Abelian
and non-Abelian gauge fields (Yang-Mills fields) with Higgs mechanisms and
C, P, T transformations in details. This section also presents the differential
geometry of gauge fields and its mathematical meaning of spontaneous sym-
metry broken in gauge fields. It should be noted that an Greek index p usually
denote the scope 0, 1,2, - - -, but an arabic i only the scope 1,2, - - -, i.e., without

0 in the context.
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§7.1 MECHANICAL FIELDS

7.1.1 Particle Dynamic. The phase of a physical particle A of quality m is
determined by a pair {x,v} of its position x and directed velocity v at x in its

geometrical space P, such as those shown in Fig.7.1.1.

Fig.7.1.1

If A is moving in a conservative field R™ with potential energy U(x), then x =

(@1(t), 22(t), - -+ 2a(t)) = 7(t) and

dx
v = (vg,U2, ", 0y) = —

at ¢. In other words, v is a tangent vector at v.€ R", i.e., v.€ T(R™). In this field,

the force acting on A is

_ou . ou o ou U
By the second law of Newton, we know the force F acting on A is

d2
F:md—;(:mi'( (7-13)

that is

—%,—%7-~~,—§7U): (mdy, miq, -+, miy). (7—4)



Sec.7.1 Mechanical Fields 349

By definition, its momentum and moving energy are respective
P=mv=mx

and

1 1 1
T = mvl + 2mv§+--~+§mvi = imVQ7

where v = |v|. Furthermore, if the particle A moves from times ¢; to ¢y, then

t2
/ F-dt =pl, — ply, =mvy —mv,
t1

by the momentum theorem in undergraduate physics.
We deduce the Lagrange equations for the particle A. First, inner multiply both
sides of (7 — 4) by dx = (dz1,dxs, - - -, dx,) on, we find that

Z azl = ;miidmi. (7-5)

Let 9 = (q1, 42, - -, ¢n) be its generalized coordinates of A at t. Then we know
that

iﬂi:xi(CI17(I27"'7Qn)7 i:1727"'7n- (776)

Differentiating (7 — 6), we get that

Z 01:Z 77

for  =1,2,---,n. Therefore, we know that

i mi;dr; = Z mez qu = Z Z mrz dq. (7-18)
i=1

i=1 k=1 k=1 i=1

Notice that

" oU " oU
dU = lr: = —— dag... _
U ;:1 axid% 2 3qkqu (7-9)
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Substitute (7 —8) and (7 —9) into (7 — 5), we get that

n n
Z Z mxl qu Z ko
k=1 i=1

Since dqi, k=1,2,---,n are independent, there must be

}:m@@ﬁzgég, k=1,2,---,n. (7 - 10)
p Oy, Oy,
Calculation shows that
" ox; d & ox; “ d Ox;
Substitute (7 — 11) into (7 — 10), we know that
d & Ox; = d Ox; "\ oU
—_ /'i — 7* = — l 7 —12
dt(; mi 3qk) iz:;mx it Ou ; aqk( qk ( )

for k =1,2,---,n. For simplifying (7 — 12), we need the differentiations of z; and

0w;/0qy, with respect to ¢ following.

dzl

Zaxz.

(7T—13)

dt 8qk

" 82$i . al‘z .
- lz:; Jqr0q; = g Z Jqy "= og

Notice that dx;/dq is independent on ¢. Differentiating (7 — 13) with respect to
Gk, we get that

(7 - 14)

Ogr  Oqr’

(7—15)

Substitute (7 — 14) and (7 — 15) into (7 — 12), we have that
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d & 0x; = ot;

— T L= d 7-16

PRSP ISR L (T
for k =1,2,---,n. Because of the moving energy of A

1 ~ 1
T= Emv2 = ; ima':f,

partially differentiating it with respect to ¢ and ¢, we find that

ar & o; 0T & O
O Z Oqe” O Z ( )

Comparing (7 — 16) with (7 — 17), we can rewrite (7 — 16) as follows.

dor oT ou
a9 Y ko2, 718
dt0¢,  Oq gy, ( )

Since A is moving in a conservative field, U(x) is independent on ¢;. We have that
OU/d¢, =0 for k =1,2,---,n. By moving the right side to the left in (7 — 18), we

consequently get the Lagrange equations for the particle A following.

d oL oL
— =0 k=12 --. 7—19
dtaqk an ) ) 7n7 ( )

where £ =T — U is called the Lagrangian of A and

oL oL

fk‘ =5 Pr= 7
Oqy, Adp,

k=1,2--,n (7 —20)

the respective generalized force and generalized momentum in this conservative field.

7.1.2 Variational Principle. Let % be a closed set of a normed space 4 with
anorm | - || and C(%") the family of functions on J#. A functional J on X is a
mapping J : C(#) — R, denoted by J[F] for F € C(J ). For a chosen function
Fo() € C(X),the difference F(£) — Fo(#') is called the variation of F(J£) at
Fy (%), denoted by
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OF () = F (X)) — Fy(X).
For example, let JZ = [xg, x1], then we know that §f = f(z) — fo(z) for f €
Clzo, z1], ¢ € [xo, 1] and df(xg) = f(zg) = 0, particularly, 6z = 0. By definition,
we furthermore know that
df _df dfo _d

O Tz~ d’

ie., [4, dT} = 0. In mechanical fields, the following linear functionals

ﬂmm}=/mzwLyuxyu»m: (7 21)

xo
are fundamental, where y' = dy/dxz. So we concentrate our attention on such func-
tionals and their variations. Assuming F' € Cl[zg, 21] is 2-differentiable and applying

Taylor’s formula, then

AJ = Jly(x)+ oyl — Jly(z))]
- / F@w@ﬂw%yuwwyMz—/ Pz, y(z),y/(x))dz

zo

= /I] (F(x,y(z) + 0y, 9 (x) + 6y )dx — F(z,y(x),y'(x)))dx

/(?‘TFJ +%5y)dz+ o(Dily(x) + oy, y(x))). (7—22)

xo
The first term in (7—22) is called the first order variation or just variation of J{y(x)],
denoted by

wz/(%a +%5 . (7—23)

xo

By calculus, if F(z,y(x),y'(z)) is C*-differentiable, then

AF = F(z,y(z)+0y(z),y'(z) + 0y'(x)) — Fz,y(z),y'(x))
oF OF
= 6—5 +?5 e
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Whence,

b OF OF,
OF = 5,00+ 5500

We can rewrite (7 — 23) as follows.
T xr1
57 =6 [ Fla(o).y@)is = [ 6 yla). /@)
xo xo
Similarly, if the functional

J[yhy?:"'?yn}:/ F(xvylay%"‘7yn7y§7yév"'7y;)dl‘ (7_24)

xo

and F,y;, . for 1 < i < n are differentiable, then

OF
5J=/m (5Fdx=/z ( en 5y2+26, ! (7—25)

The following properties of variation are immediately gotten by definition.

Z) 6(F1+F2) 76F1+5F2
it) 6(F1Fy) = Fi6F, + FR0Fy, particularly, §(F") = nF" 16 F,

(

(

@) (1) M

(ZU) (5F)(k where f(k _dkF/Dx
(

v) 6 [0 Fdr = [t 6Fda.

For example, let F = F(x,y(z),y (x)). Then

5’F1F25 OFF,

(P Fy) = o Y ay 5y
= (R 0;;2 + FZ%FI)éy + (R gF? + FQ(??Ff)(Sy’
- Fl(%—};zé +%§f§y)+F2(%Fl %5153/)
= F0F + Fy0F;.
Let Fo(J#) € C(). I for VE() € C(H), JIF(H )] = J[Fo(#)] > 0 or < 0,

then Fy(¢) is called the global maximum or minimum value of J[F ()] in . If
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JE()]— J[Fo(£)] > 0 or <0 hold in a e-neighborhood of Fy(#'), then Fy(¥) is
called the maximal or minimal value of J[F(J)] in % . For such functional values,

we have a simple criterion following.

Theorem 7.1.1 The functional J{y(z)] in (7-21) has mazimal or minimal value at
y(x) only if 6J =0.

Proof Let e be a small parameter. We define a function

O(e) = J[y(z) + edy] = /%1 F(x,y(x) + edy,y' (z) + edy)dx.

xo

Then Jy(z)] = (0) and

() = 8y )dz.

Pz y(x) + edy, y'(x) +edy’) o Flx,y(x) + edy, y'(z) + e0y')
( 9y dy + oy

CO

Whence,

For a given y(z) and dy, ®(e) is a function on the variable e. By the assumption,
Jly(z)] attains its maximal or minimal value at y(z), i.e., ¢ = 0. By Fermat theorem
in calculus, there must be ®'(0) = 0. Therefore, §J = 0. O

7.1.3 Hamiltonian principle. A mechanical fieldis defined to be a particle family
3 constraint on a physical law £, i.e., each particle in ¥ is abided by a mechanical
law ., where ¥ maybe discrete or continuous. Usually, £ can be represented by
a system of functional equations in a properly chosen reference system. So we can
also describe a mechanical field to be all solving particles of a system of functional
equations, particularly, partially differential equations. Whence, a geometrical way
for representing a mechanical field ¥ is by a manifold M consisting of elements

following;:

(1) A configuration space M of n-differentiable manifold, where n is the free-
dom of the mechanical field;

(17) A chosen geometrical structure Q on the vector field TM and a differ-
entiable energy function T : M x TM — R, i.e., the Riemannian metric on TM

determined by
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1
T:i@,ﬁ), veTM,

(774) A force field given by a 1-form

n

w= E widx; = widx;.

i=1
Denoted by T(M,w) a mechanical field. For determining states of mechani-
cal fields, there is a universal principle in physics, i.e., the Hamiltonian principle

presented in the following.

Hamiltonian Principle Let T(M,w) be a mechanical field. Then there exists a
variational S : T(M,w) — R action on T(M,w) whose true colors appears at the
manimum value of S[(T(M,w)], i.e., 68 =0 by Theorem 7.1.1.

In philosophy, the Hamiltonian principle reflects a harmonizing ruler for all
things developing in the universe, i.e., a minimum consuming for the developing of
universe. In fact, all mechanical systems known by human beings are abided this
principle. Applying this principle, we can establish classical mechanical fields, such

as those of Lagrange’s, Hamiltonian, the gravitational fields, - -, etc. in this chapter.

7.1.4 Lagrange Field. Let q(t) = (q1(¢), ¢2(t), - -, ¢a(t)) be a generalized coor-
dinate system for a mechanical field T(M,w). A Lagrange field is a mechanical field
with a differentiable Lagrangian L : TM — R, £ = L(t,q(t),q(t)), i.e., T = L.
Notice the least action is independent on evolving time of a mechanical field. In a

Lagrange field, the variational action is usually determined by

AS:‘/ZLXuq@Lq@Ddt (7—26)

1

In fact, this variational action is as the same as (7 — 24).

Theorem 7.1.2 Let T(M,w) be a Lagrange field with a Lagrangian L(t,q(t), q(t)).
Then

oL doL

fori=1,2,--- n.
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Proof By (7 — 25), we know that

to
5S:/
t

Notice that §¢; = %éqi and

Za—ﬁ (7—27)

i=1

290 oL 2 d oL
—06¢;)dt = —dg; — —dgdt
. 0, a)dt =5, / dt 9,
Because of dq(t1) = dq(ta) = 0, we get that
2oL 2 d oL
—0¢;)dt = ———0q;dt -2
[ S = [ 550 (1-2)

for i = 1,2, -, n. Substituting (7 — 28) into (7 — 27), we find that

to n
58 = / = — = 2 )dgdt. (7—29)

Applying the Hamiltonian principle, there must be 65 = 0 for arbitrary d¢;,
i =1,2,--+,n. But this can be only happens if each coefficient of d¢; is 0 in (7—29),

that is,

oL doL
— ————=0, i=1,2,---,n.
a
These Lagrange equations can be used to determine the motion equations of
mechanical fields, particularly, a particle system in practice. In such cases, a La-
grangian is determined by £ = T — U, where T and U are respective the moving

energy and potential energy.

Example 7.1.1 A simple pendulum with arm length ! (neglect its mass) and a
mass m of vibrating ram. Such as those shown in Fig.7.1.2, where 6 is the angle

between its plumb and arm. Then we know that

1 .
T= im(l@)r", U = —mglcosb
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and

1 .
L=T-U-= §m(l¢9)2 + mgl cos§.

Fig.7.1.2

Applying Theorem 7.1.2, we know that

a1 ., do.1 ., B
%[im(le) + mgl cos ] — a£[§7n(19) + mgl cos 6] = 0.
That is,
6+ I sin 6 = 0.

l

7.1.5 Hamiltonian Field. A Hamiltonian field is a mechanical field with a
differentiable Hamiltonian H : TM — R determined by

H(t),q(t), p(t)) = Zpiqi — L(t,q(t), q(t)), (7—-30)

where p; = 0L/0¢; is the generalized momentum of field. A Hamiltonian is usually

denoted by H(t,q(t), p(t)). In a Hamiltonian field, the variational action is

S = /ttZ(Zpﬂ]'i — L(t,q(t),q(t)))dt. (7—31)

1

Applying the Hamiltonian principle, we can find equations of a Hamiltonian

field following.
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Theorem 7.1.3 Let T(M,w) be a Hamiltonian field with a Hamiltonian H(t, q(t), p(t)).
Then

dgg OH  dpi  OH

fori=1,2,---.n

Proof Consider the variation of S in (7-31). Notice that ¢;dt = dg; and p;dt =
dp;. Applying (7-25), we know that

_OH

n to H

Since

to t2
/ piddq; = pidgi|i? — 0gdpi

t1 t1

by integration of parts and d¢;(¢1) = 0¢;(t2) = 0, we find that

/ piddg; = — / 0qidp;. (7-33)

Substituting (7 — 33) into (7 — 32), we finally get that

55 = Z | S i —an+ S aysa), (7-34)

7

According to the Hamiltonian principle, there must be 5 = 0 for arbitrary

0q;,0p;, 1 = 1,2,- -+, n. This can be only happens when each coefficient of dg;, dp; is

0fori=1,2,---,n,ie.,
dgi  OH
d __0H

This completes the proof. d
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n
By definition, the Lagrangian and Hamiltonian are related by H + £ = Y pig;.
i=1
We can also directly deduce these Hamiltonian equations as follows.

For a fixed time t, we know that

L = Z dql+z

Notice that

oL oL
—p; and = f =
ag, "M g, fi=p
by (7 — 20). Therefore,
AL =" pidg + Y pidgi. (7 — 35)
i=1 i=1

Calculation shows that

d(z pidi) = Z Gidp; + Zpid%‘- (7—36)
i=1 =1 i=1
Subtracting the equation (7 — 35) from (7 — 36), we get that

d(;m% —L)=73 ¢idp; — ;Pz‘d%

i=1

dH =" Gidpi = > pidg;. (7-37)
=1 =1

By definition, we also know that

dH = d + Z dpl (7 —38)

Comparing (7 — 37) with (7 — 38), we then get these Hamiltonian equations

in aH dpi E)H .
- = , —— ==, 1=1,2- n.
dt  Op; dt 0q;
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7.1.6 Conservation Law. A functional F(¢,q(t),p(t)) on a mechanical field

T(M,w) is conservative if it is invariable at all times, i.e., dF'/dt = 0. Calculation

shows that

AP _OF | §~OFds | OF dy
dt ot Og; dt ~ Op; dt

). (7 —39)

i=1

Substitute Hamiltonian equations into (7 — 39). We find that

dF _9F i(c’)Fﬁ)H OF 0H

ELlLL ) 740
Define the Poisson bracket {H, F} of H, F to be
"\ OF OH OF 0H
H F = — - . 7T—41
. Eyps ;(a%’ Opi  Opi Og; ( )
Then we have
dF  OF
§7§+{H7F}PB. (7—42)
Theorem 7.1.4 Let T(M,w) be a Hamiltonian mechanical field. Then
dg; - dp; .
E - {H7 %}PB, dt = {H:Pz}PB
fori=1,2,--- n.
Proof Let F = ¢; in (7 — 41). Then we have that
H. g = o - =)
. ates ;(3% Op. Opy, Oy,
Notice that ¢; and p;, i = 1,2,---,n are independent. There are must be
Jq; —0 0q; s
o Ogp "

for k =1,2,--+,n. Whence, {H,¢;}rp = 0H/0p;. Similarly, {H,p;}rp = 0H/0q;.
According to Theorem 7.1.3, we finally get that
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dg; dp;
= ={H,q}rs, = {H,p;
i {7Q}PB i { p}PB

fort=1,2,--- n. (]

If F is not self-evidently dependent on t, i.e., F' = F(q(t), p(t)), the formula
(7 — 42) comes to be

dF
T ={H, F}pp. (7 —43)

Therefore, F' is conservative if and only if {H, F}pp = 0 in this case. Furthermore,
if H is not self-evidently dependent on ¢, because of p; = dL/d¢; and p; = OL/q;,
we find that

dH d <~ . .
= - %[;piqr.c(q(t),q(t))]
o ac. oc.
= ;(Pi%: + pidii) — ;(3_%92 + 3_4%')

= Z(psz + pidis) — Z(Pi% + pidi)
i=1 i=1

)

i.e., H is conservative. Usually, H is called the mechanical energy of such fields
T(M,w), denoted by E. Whence, we have

Theorem 7.1.5 If the Hamiltonian H of a mechanical field T(M,w) is not self-

evidently dependent on t, then T(M,w) is conservative of mechanical energy.

7.1.7 Euler-Lagrange Equation. All of the above are finite freedom systems
with Lagrangian. For infinite freedom systems such as those of gauge fields in
Section 7.4 characterized by a field variable ¢(Z) with infinite freedoms, we need to
generalize Lagrange equations in Section 7.1.4 with Lagrange density. In this case,

the Lagrangian is chosen to be an integration over the space as follows:

L= /d3m$(¢, 0u9), (7 — 44)
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where Z(¢,0,¢) is called the Lagrange density of field. Applying the Lagrange
density, the Lagrange equations are generalized to the FEuler-Lagrange equations

following.
Theorem 7.1.6 Let ¢(t,T) be a field with a Lagrangian L defined by (7—44). Then

0 0L

h00,6 05

Proof Now the action I is an integration of £ over time z°, i.e.,

L
I= C/dzf(qﬁvapd))

Whence, we know that

51 = / d*z (%&H aféi)(s(aﬂqs))

0L 0% 0%
= [ ak - I 56)| =
/ T[(% a“aam)d“a“(amm)wﬂ 0

by the Hamiltonian principle. The last term can be turned into a surface integral

over the boundary of region of this integration in which ¢ = 0. Whence, the surface

integral vanishes. We get that
0L 02
1= e —=— -9, —— =
’ /”(8«5 %am) 00 =0

for arbitrary d¢. Therefore, we must have

0 0L

"0, 06 0-

§7.2 GRAVITATIONAL FIELD

7.2.1 Newtonian Gravitational Field. Newton’s gravitational theory is a R?
field theory, independent on the time ¢ € R, or an absolute time ¢. In Newton’s

mechanics, he assumed that the action between particles is action at a distance,
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which means the interaction take place instantly. Certainly, this assumption is
contradicted to the notion of modern physics, in which one assumes the interactions
are carrying through intermediate particles. Even so, we would like to begin the
discussion at it since it is the fundamental of modern gravitational theory.

The universal gravitational law of Newton determines the gravitation F' between

masses M and n of distance r to be

GMm

F=—"3

with G = 6.673x 10~8cm?/gs?, which is the fundamental of Newtonian gravitational
field. Let p(Z) be the mass density of the Newtonian gravitational field at a point
T = (z,9,2) € R3. Then its potential energy ®(T) at T is defined to be

P\
dS/
/“x*fﬂ

Then
_ Gp(@') _
aﬂ@_/ﬁhzﬂﬁf_/cmw@—fu%_F
oz Ox Iz — 7|2 a
Similarly,

0b(z) _ 7/wd3f’ __F,

Ay [z —='|]*

0e(r) _ 7/%&5’ = —F..

0: o~ P
Whence, the force acting on a particle with mass m is

0P(z) 0P(T) 8@Cﬂ)
Ox; = Oxy = Oxg

These gravitational forces are very weak compared with other forces. For example,

F=-m(

the ratio of the gravitational force to the electric force between two electrons are
Fyravitation/ Felectricity = 0.24 x 107*2. Calculation also shows that ®(z) satisfies the

Poisson equation following:

2o(T) 0?0(T) 9*0(T)
0x+8y+8z

= 4nGp(),
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i.e., the potential energy ®(T) is a solution of the Poisson equation at Z.
7.2.2 Einstein’s Spacetime. A Minkowskian spacetime is a flat-space with the
square of line element

d*s = N drtdr” = —Adt? + da? + dy* + d2?

where c is the speed of light and 7, is the Minkowskian metrics following,

~100 0
o100
=0 001 0

0 00 1

For a particle moving in a gravitational field, there are two kinds of forces
acting on it. One is the inertial force. Another is the gravitational force. Besides,
any reference frame for the gravitational field is selected by the observer, as we have
shown in Section 7.1. Wether there are relation among them? The answer is YES
by principles of equivalence and covariance following presented by Einstein in 1915

after a ten years speculation.

[Principle of Equivalence] These gravitational forces and inertial forces acting
on a particle in a gravitational field are equivalent and indistinguishable from each

other.

[Principle of Covariance] A equation describing the law of physics should have

the same form in all reference frame.

The Einstein’s spacetime is in fact a curved R* spacetime (g, 1, 2o, 73), i.e., a

Riemannian space with the square of line element

ds? = G (T)dz, d,

for p,v = 0,1,2,3, where g,,(Z) are ten functions of the space and time coordi-
nates, called Riemannian metrics. According to the principle of equivalence, one
can introduce inertial coordinate system in Einstein’s spacetime which enables it flat
locally, i.e., transfer these Riemannian metrics to Minkowskian ones and eliminate
the gravitational forces locally. That is, one entry is positive and other three are

negative in the diagonal of the matrix [g,,]. Whence,
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Goo
g1o0
920
930

|g;w| =

go1
g11
g21
931

Go2
g12
Go22
932

365

o3
913
g23
933

For a given spacetime, let (20, 2, 2% 23) be its coordinate system and

T

o f"(zo,xl, 1,27 1,3)

another coordinate transformation, where = 0, 1,2 and 3. If the Jacobian

o
or

o
o0

#07

then we can invert the coordinate transformation by

ot = gh(

/0

T 7x/171,/27x

/3)
)

and the differential of the two coordinate system are related by

ox'™ of+
e 7 vo— v
dx BT dx B dz”,
Ozt , _ Og" .
dx“*awdx 8’d/

The principle of covariance means that g, are tensors, which means we should
apply the materials in Chapters 5 — 6 to characterize laws of physics. For example,
the transformation ruler for an ordinary covariant tensor T,z of order 2 can be seen
as a matrix equation
out or
Ozt g8’

Applying the rule for the determinants of a product of matrices, we know that

!

af —

| aﬁ|

2l = [22]
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particularly, let T,,3 be the metric tensor g,,, we get that

2

Ox
g = e g (7—45)
Besides, by calculus we have
2
&'’ = % d'z. (7 — 46)
i

Combining the equation (7—45) with (7—46), we get a relation following for volume

elements:

V—gd's' = /=gd'z, (7—47)
which means that the expression \/—gd*z is an invariant volume element.

7.2.3 Einstein Gravitational Field. By the discussion of Section 7.2.2, these
gravitational field equations should be constrained on principles of equivalence and

covariance, which will go over into the Poisson equation

V20(z) = 4nGp(Z),
i.e., Newtonian field equation in a certain limit, where

0t 9 02
27_ —_ —_
v Oz 8y+82'

In fact, Einstein gave his gravitation field equations as follows:

1
R,U.V - ig;ulR = K;T}un (7 - 48)
where R, = Rfjw = g“ﬁRauﬁu, R = g" R, are the respective Ricci tensor, Ricci
scalar curvature and
871G
K= T 2.08 x 107 8em™" . g7! - &2

ct
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The Einstein gravitational equations (7—48) can be also deduced by the Hamil-

tonian principle. Choose the variational action of gravitational field to be

I= / V—=g(L¢ — 2kLp)d'z, (7 — 49)

where Lg = R is the Lagrangian for the gravitational filed and Lp = Lr(g", ¢')
the Lagrangian for all other fields with f, = 0/dx* for a function f. Define the

energy-momentum tensor 7, to be

2 0\/*9[/17 0 0\/*9[/[7
T, = —_— = 5" .

IR W

Then we have

Theorem 7.2.1 01 =0 is equivalent to equations (7 — 48).

Proof We prove that

ol = /\/—g(R,W — %g,u,R — KY}LV)(Sg“"d‘lw. (7 —50)

Varying the first part of the integral (7 — 49), we find that

5/\/—ng4x 6/\/—gg“”RWd4z

/v*gg”"(SRWd“er/Ruyé(\/—gg“”)d“x (7-51)

Notice that

aFZV BFZP
6RMV 0 P - v + FZVFZU - FZPIVV)U
are, are ) i
3] - (G2 + o) - o)
8(5Ffw) 3(6TZP)
Oxr oxv

Consequently, the integrand of the first integral on the right-hand side of (7—51)

can be written to
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a(Te,)  a(sT? )
— Nz — — yng | A Hp
V=99" Ry V=99 { p D }
JQ{“W“WJ,dWWm»}

oxr oxv
[T, otgary,)
o™ ore
= V 7gvava7

where V¢ = gh*oI'f | — gH*0I'f | is a contravariant vector and

_ove
© Oze

V. Ve + T2, VH

where

T 2901v =g O

o av 1 ag 1 8\/ -9
Fga =g Fu,ua =

Applying the Gauss theorem, we know that

/\/—_gg“"5R,wd4w = /78( O_xzv )d4éL‘ =0

for the first integral on the right-hand side of (7 — 51).
Now the second integral on the right-hand side of (7 — 51) gives

/ Rud(V=gg"™)d'z = / V=GRw6(g" ) de + / Rog™5(v/=g)d"s
/ V=gRu (" )d"x + / Ré(y/—g)d'z. (T —52)

Notice that

1 1 1
0y/—g = _5\/—*795!] = —§v—gguu5.q’w~

Whence, we get that

1
/ Ry, 0(v/—gg™ )d e = / V=9(R., — igWR)ang‘*m (7 —53)

Now summing up results above, we consequently get the following
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(5/\/—ng41' = /\/—g(RW - %gu,,R)ég“"d‘lx (7—54)

for the variation of the gravitational part of the action (7 — 51). Notice that Ly =

Lgr(g*, gfjl") by assumption. For its second part, we obtain

6./\/—_gLFd4x:/ {3(HLF)5!}W+8(HLF)6QW _

dgH gl “

The second term on the right-hand-side of the above equation can be written as a
surface integral which contributes nothing for its vanishing of the variation at the

integration boundaries, minus another term following,

" [0(V—9LF) 9 [9(/—gLr)
— 4 — NV J7rJe pw _ _~ |Z\V JTF) pv g4
5/\/ gLpd*x / { g dg B 7 ogtd x

1
- 3 / V=9T,., 09" d*z. (7 — 55)

Summing up equations (7 — 49), (7 — 51), (7 — 54) and (7 — 55), we finally get
that

1
ol = /\/—g(RW — ég,“,R — HTW)(Fg“"d‘lz,

namely, the equation (7 — 49). Since this equation is assumed to be valid for an
arbitrary variation dg"”, we therefore conclude that the integrand in (7 —49) should

be zero, i.e.,

1
R;w - ingR = HTpu-

This completes the proof. g

7.2.4 Limitation of Einstein’s Equation. In the limiting case of cdt > da®,
k =1,2,3, we obtain the Newtonian field equation from Einstein’s equation (7—47)
by approximation methods as follows.

Notice that

T =T,9" ~T,n" =~ Too7700 = Too-
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Whence,

1
Roy = KTy + QQOOR

12

1 1 1
kTho + §nOOR = ERTOO = 5/102/)(5),

where p(ZT) is the mass density of the matter distribution.

Now by Theorem 5.3.4, we know that

1 Ogx 9900
ko kA [ .
Yoo = 29 (2 90 dx>

1 429900 B 15;61 9900 . 1 9goo

27 fxr T 20 Gl T 292k

Therefore,

ory, org, ”
Ry = 0,75(;0 - axop + 5l — 10,10,

OFSO - OFSO N 1 82900 - 1
dxr — Ors ~ 20x°0rs 2

12

1
Vzgoo ~ (‘—2V2¢'(E)

Equating the two expressions on Ry, we finally get that

V20 () = 4nGp(7),
where xk = B’CT—F.
7.2.5 Schwarzschild Metric. A Schwarzschild metric is a spherically symmetric

Riemannian metric

d*s = g, dz" (7 —56)

used to describe the solution of Einstein gravitational field equations in vacuum
due to a spherically symmetric distribution of matter. Usually, the coordinates for
such space can be chosen to be the spherical coordinates (r, 8, ¢), and consequently
(t,7,0,¢) the coordinates of a spherically symmetric spacetime. Then a standard

such metric can be written as follows:
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d?s = B(r)dt* — A(r)dr? — r*d6? — r* sin® d¢?, (7—57)

Le., goo = g = B(r),gn = gor = —A(r), g22 = gop = =17, gs3 = gpo = —r*sin’ 0
and all other metric tensors equal to 0. Therefore, g" = 1/B(r), g"" = —1/A(r),
g% = —1/r? and ¢%* = —1/r2sin?0.

For solving Einstein gravitational field equations, we need to calculate all non-

zero connections I . By definition, we know that

m 2 oxV Oxt 0x°

Notice that all non-diagonal metric tensors equal to 0. Calculation shows that

v 9”09¢¢7 1,-1.0 2.2, I .o
F¢¢——7w——5(7)5( S 9)——Zsm 6.
Similarly,
A/ B/ B/
o= Il=— T =— T/ =1% =C
rr 2147 tt 237 rr 2147 76 ro ’I“7
Tpp = —%’ [y = 7%sm2 0, Fg’¢ = cot 6, F?wﬁ = —sinfcos#, (7—58)

where A’ = %, B = ’3—? and all other connections are equal to 0.

Now we calculate non-zero Ricci tensors. By definition,

ors, orr, P P
Ry = drP  Oxv +FNVFP”_FMPFVU'
Whence,
Rop = Ry = ~2Lit 4 opt pr — (I + 1% + 1%, +T1)
00 — fut  — ox" rtt ot tt\ Lt rr 6 ré Tt

B’ / B/2 B A 2 B
- ‘(ﬂ) +2A3_ﬂ<ﬂ+?+ﬁ>
B// B/ (A/ B/) B/

“aTma\atE)
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9 arr

Ru=R, = —— (" +T% +T¢ 4T¢)— ="
11 alT( e ré + T‘i) oxr

(T, Ty, + D00y + T2, 10, + T4, TL)

(2 B\ (2 B* A (2 B
- es) T \Etae) T2a "B
BB// _ B/2 B/Z A/B/ A/

9Br T 4B?  1AB 1A’

Similar calculations show that all Ricci tensors are as follows:

B// B/ A/ B/ Bl
fe="94"1a (Z*E) TrA
B/l B/ A/ Bl A/
Rﬂ*ﬁ‘@(z+§>‘m
r A B 1
Ree_ﬂ(_j+§)+z_l7
Ryp = sin? @Ry and R, =0if p#wv. (7—59)

Our object is to solve Einstein gravitational field equations in vacuum space,

ie., R, = 0. Notice that

Bu B L(L,B)__BAeAD
B A rA\A B rA2B '
that is, BA"+ AB" = (AB)’ = 0. Whence, AB =constant.
Now at the infinite point oo, the line element (7 — 56) should turn to the

Minkowskian metric

ds? = dt? — dz? — dy? — d2® = dt* — dr? — r2d6? — 1% sin® 0d¢?.

Therefore, lim A(r) = lim B(r) = 1. So

r—00

Ar) = %, A= 7% (7 60)

Substitute (7 — 60) into Rgy = 0, we find that
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d
R@gZTBI+B*1=£(TB)*1=O.

Therefore, rB(r) = r —ry, ie., B(r) = 1 —r,/r. When r — oo, the spacetime
should turn to flat. In this case, Einstein gravitational field equations will turn to

Newtonian gravitational equation, i.e., 7y = 2Gm. Thereafter,

B(r)=1- QGTm. (7 - 61)

Substituting (7 — 61) into (7 — 57), we get the Schwarzschild metric as follows:
2mG dr?
ds? = (1 - mT) e — ﬁ — 1246 — 12 sin? 0d¢?,

or

dr?
1—"e

r

ds® — (1 _ 7"_9) di® — — r2d6* — 1? sin? Od¢>. (7—62)
"

We therefore obtain the covariant metric tensor for the spherically symmetric grav-

itational filed following:

1-T 0 0 0
0 —(1-=)"" o0 0
. z : 7-63
o 0 0 —r2 0 (7=69
0 0 0 —r2sin’0

By (7—63), we also know that the infinitesimal distance of two points in time or in

space is

d 2
(1 _ T—g) A, dit = L+ 2d6% + 1 sin? 0dg?,
" 7

respectively.
The above solution is assumed that A and B are independent on time ¢ in the
spherically symmetric coordinates. Generally, let A = A(r,t) and B = B(r,t), i.e.,

the line element is

ds® = B(r, t)dt* — A(r,t)dr® — r?(d6? + sin® 0d¢?).
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Then there are 3 non-zero connections I'7, more than (7-58) in this case following:

R -
Ftr_ﬂf Ftt_ﬁ7 Frr_ﬁ'/

where A = % and B = %—L:. These formulae (7 — 59) are turned to the followings:

B" B? AB A A AB A2
TOB 4B 4AB  Ar 2B 4B 4AB’
R9€:_1+li rA’ N rB’
A 242 " 24B’
R¢¢, = Rga Sin2 (9,

B" AB B B? A A* AB

R“:_ﬂ+ 142 Ar TIAB T24 1Az 1AB
A

R, = —

¢ Ar

and all other Ricci tensors R,y = R,y = Rgg = Ry = Ryt = 0. Now the equation
R, = 0 implies that A = 0. Whence, A is independent on t. We find that

B// B/2 A/ B/ A/
and

BH A/B/ B/ B/Z
“oa Taar T a Taap
They are the same as in (7 — 59). Similarly,

Rtt =

A B rA\A B
We get that (AB) =0 and (r/A)’ = 1. Whence,

/ /
R’!‘T &: 1 <A _‘_E):O7 al’ldRGOZO-

A =g B0 =10 (1-7),

i.e., the line element

1
1—"e

T

ds? = f(1) (1 - T—g) dt? —

dr® — r?(d6? + sin” 0d¢?).
.
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There is another way for solving Einstein gravitational field equations due to
a spherically symmetric distribution of matter, i.e., expresses the coefficients of dt?

and dr? in exponential forms following

ds* = e’dt* — eMdr? — r2(df? + sin? 0d¢?).

In this case, the metric tensors are as follows:

. ! N

¢ Vot v t A v,
Ftt: 57 Ftr:§7 Frrzge U7
Ir = i’ A—v r = & I = i’

tt*2€ ’ tr727 r'r*21

, . . 1
I}, = —re?, 6o = —r?sin?fe ™, TY, ==,

r

1

0 _ : ¢ _ ¢ _
[ys = —sinfcosb, Fm—;, F9¢—00t0.

Then we can determine all nonzero Ricci tensors R, and find the solution (7 — 62)

of equations R, = 0.

7.2.6 Schwarzschild Singularity. In the solution (7 — 62), the number r, is
important to the structure of Schwarzschild spacetime (ct, r, 8, ¢). The Schwarzschild
radius r, is defined to be

1y 2Gm

ry= 2 =
c? c?

At its surface r = r,, these metric tensors g,, diverge and gy vanishes, which giving
the existence of a singularity in Schwarzschild spacetime.

One can show that each line with constants ¢, 0 and ¢ are geodesic lines. These
geodesic lines are spacelike if r > ry and timelike if r < r,. But the tangent vector

of a geodesic line undergoes a parallel transport along this line and can not change
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from timelike to spacelike. Whence, the two regions r > r, and r < r, can not join
smoothly at the surface r = r,.
We can also find this fact if we examine the radical null directions along df =

¢ = 0. In such a case, we have

ds? = (1 - TT) 2 — (1 - %)qdﬂ —0.

Therefore, the radical null directions must satisfy the following equation

(-

in units in which the speed of light is unity. Notice that the timelike directions are
contained within the light cone, we know that in the region r > r; the opening of
light cone decreases with r and tends to 0 at » = r, such as those shown in Fig.7.2.1

following.

MXX

Ts

Fig. 7.2.1

In the region r < ry the parametric lines of the time ¢ become spacelike. Con-
sequently, the light cones rotate 90°, such as those shown in Fig.4.2.1, and their
openings increase when moving from r = 0 to r = r,. Comparing the light cones
on both sides of r = r,, we can easy find that these regions on the two sides of the

surface r = r, do not join smoothly at r = r,.

7.2.7 Kruskal Coordinate. For removing the singularity appeared in Schwarzschild
spacetime, Kruskal introduced a new spherically symmetric coordinate system, in
which radical light rays have the slope dr/dt = +1 everywhere. Then the metric

will have a form
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Juw = . (7 — 64)
0 0 0 —r?sin®0
Identifying (7 — 63) with (7 — 64), and requiring the function f to depend only on r

and to remain finite and nonzero for u = v = 0, we find a transformation between

the exterior of the spherically singularity r > r5 and the quadrant u > |v| with new

! 1) e ! sink !
v=|—— xp [ — | sinh [ — |,
T P 27 2rg )’
r r t
= —-1 — 1§ .
U (Ts > exp (2”) cosh (2Ts>

The inverse transformations are given by

<L — 1> exp <L> =u? — 02,
T 27,

t
— = arctanh (E)
2 U

Ts

and the function f is defined by

3
2o 32Gm exp (71)

r Ts

variables following:

n=

ol

= a transcendental function of u? — v?.

This new coordinates present an analytic extension E of the limited region S
of the Schwarzschild spacetime without singularity for r > rs. The metric in the
extended region joins on smoothly and without singularity to the metric at the
boundary of S at r = r,. This fact may be seen by a direction examination of the
geodesics, i.e., every geodesic followed in which ever direction, either runs into the

2

barrier of intrinsic singularity at r = 0, i.e., v — u? = 1, or is continuable infinitely.
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Notice that this transformation also presents a bridge between two otherwise Eu-
clidean spaces in topology, which can be interpreted as the throat of a wormhole

connecting two distant regions in a Euclidean space.

§7.3 ELECTROMAGNETIC FIELD

An electromagnetic field is a physical field produced by electrically charged objects.
It affects the behavior of charged objects in the vicinity of the field and extends
indefinitely throughout space and describes the electromagnetic interaction.

This field can be viewed as a combination of an electric field and a magnetic
field. The electric field is produced by stationary charges, and the magnetic field by
moving charges, i.e., currents, which are often described as the sources of the electro-
magnetic field. Usually, the charges and currents interact with the electromagnetic

field is described by Maxwell’s equations and the Lorentz force law.

7.3.1 Electrostatic Field. An electrostatic field is a region of space characterized
by the existence of a force generated by electric charge. Denote by F the force acting
on an electrically charged particle with charge ¢ located at T, due to the presence
of a charge ¢ located at 7. Let V = (32,2, 5%). According to Coulomb’ s law

91’ daa’ D3

this force in vacuum is given by the expression

o= ’ 1
Fz) =4 7% _ 4 v<7/|)7 (7 — 65)

T dmeg T 7P Ame, \|T-=

A wectorial electrostatic field E* is defined by a limiting process

F
E* = lim —,
q—0 ¢q

where F is the force defined in equation (7 — 65), from a net electric charge ¢’ on
the test particle with a small electric net electric charge ¢. Since the purpose of the
limiting process is to assure that the test charge ¢ does not distort the field set up
by ¢, the expression for E5*% does not depend explicitly on ¢ but only on the charge
¢ and the relative radius vector T — T'. Applying (7 — 65), the electric field Es
at the observation point T due to a field-producing electric charge ¢’ at the source

point T’ is determined by
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_ q/ T—7 q/ 1
Ez)=— =V | —— | . 7—66
@) dmeg |T — 7|3 dmeg |z — 7| ( )
If there are m discrete electric charges ¢, located at the points T, for i =
1,2,3,---,m, the assumption of linearity of vacuum allows us to superimpose their

individual electric fields into a total electric field

Esmt(f) _ 1 iq/ T — E; (7 _ 67)
dreo =" [T — T

Denote the electric charge density located at T within a volume V by p(T),
which is measured in C'/m? in ST units. Then the summation in (7 — 67) is replaced

by an integration following:

1 . r—7T
Estat — — 3 (= —
(7) e ), P

_ 1 Ry 1

- 47_‘_50 Vd(x)p(l)v(ﬁ—i’\)
1 s p(T)

_ d3 / _

Y e (7~ 68)

where we use the fact that p(Z') does not depend on the unprimed coordinates on
which V operates. Notice that under the assumption of linear superposition, the
equation (7-68) is valid for an arbitrary distribution of electric charges including
discrete charges, in which case p can be expressed in the Dirac delta distributions

following;:

o@) = 3 (- 7).

Inserting this expression into (7 — 68), we have (7 —67) again. By (7 —68), we know
that

V-E¥T) = V-— | E@)p@)—
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1 3=\ (=2 1
= g ), T EREV (ﬁ)
= L[ et - =", (7-69)
0Jvr o

Notice that V x (Va(z)) = 0 for any scalar field «(Z), 7 € R®. We immediately
get that

— 1 .\ p(E) _
V x E(T) = ——V v/ @ =0 7—10
B = LV (v [ e@ ) -0 -
which means that E* is an irrotational field. Whence, a electrostatic filed can be

characterized in terms of two equations following:

V- E"(z) = —@7 (771

V x Estet(T) = 0. (7-172)

7.3.2 Magnetostatic Field. A magnetostatic field is generated when electric
charge carriers such as electrons move through space or within an electrical conduc-
tor, and the interaction between these currents. Let F denote such a force acting on
a small loop C, with tangential line element dl located at T and carrying a current
I in the direction of dI, due to the presence of a small loop C” with tangential line
element dl’ located at T and carrying a current I’ in the direction of dl’, such as

those shown in Fig.7.3.1.

Fig.7.3.1

According to Ampere’s law, this force in vacuum is given by
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_ ,uI] T—7
F(7) 0 ]{dl]{ldl’ 7:,|5
H
“0 j{dle dl’xV(l,_ﬂ)

where 1o = 47 x 1077 ~ 1.2566 x 1075H/m. Since a x (b x ¢) =b(a-c) —c(a-b)

=ba-c—ca-b, we know that

_ ol I’ 7{ , ?{ 1 /1011' ?{ ?{ ,
Fz)=-""" ¢ ar¢ a - didr’.
@) e A , |1—i’|3

Notice that the integrand in the first integral is an exact differential and it vanishes.

We get that

r
F(7) = “0 ?{f/<|x_x,‘d>dldl’ (7—73)

A static vectorial magnetic field B**% is defined by

sta [L[ Tﬁf,
dB™(7) = Tl X T,

which means that dB*% at Z is set up by the line element dl’ at @', called the
magnetic flur density. Let dI' = j(T')d*z’. Then

= =
Bstat(z) — Ho Bi(T) x r—z

e ()

— d3 ! J( ) — 74
47rV v |z — 7| (7=74)

where we use the fact that j(z') does not depend on the unprimed coordinates on

which V operates. By his definition, we also know that

F() =1 fc dl x B (7). (7 - 75)
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Since V - (V x a) = 0 for any a, we get that

VBM%W:%V<VX/@WJ()):Q (7 — 76)

T -7

Applying V x (V xa)=V(V-a)— V?a=VV-a— V- Va, we then know that

V x BY(z) = /LOVX<V></ld“ @) )

[z -7

- s () 5 s 99 (525)

Notice that V - (ea) = a- Va + aV - a. Integrating the second one by parts, we

know that

[ #0919 (=)
o B R ey
1

0 . 1
_ < 3 N_~ _ 307! . 3 (A !
,xk//dzn']( )ax;c (\E—E’| //dx[v j@)v <—\x—x\>

where 1 is the normal unit vector of S’ directed along the outward pointing,

Z1 = sin 0 cos ¢F + cos 6 cos qb?)\Jr sin qbgg,
Ty = sin 0sin ¢7 + cos 0 sin ¢0 + cos ¢,
T3 = cos 07 — sin 00

and
7 = sin 0 cos ¢, + sin 6 sin ¢ + cos 073,
8 = cos 0 cos @T1 + cos B cos PpTy — sin 073,
qg = —sin ¢T + cos PT.

So dS = d?’zn. Applying Gauss’s theorem, also note that V - j = 0, we know this

integral vanishes. Therefore,

VxB*(7) = g /V d2'§(7)6(T—7") = poj(x). (7-77)
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Whence, a magnetostatic filed can be characterized in terms of two equations fol-

lowing:
V- Bst(g) =0, (7—18)
V x Bs(T) = poj(T). (7—19)

7.3.3 Electromagnetic Field. A electromagnetic filed characterized by E, B
are dependent on both position T and time ¢. In this case, let j(¢, T) denote the time-
dependent electric current density, particularly, it can be defined as j(¢,T) = vp(t, T)
where v is the velocity of the electric charge density p for simplicity. Then the electric

charge conservation law can be formulated in the equation of continuity

Ip(t,T)
ot

i.e., the time rate of change of electric charge p(t,z) is balanced by a divergence
in the electric current density j(¢, ). Set V - j(t,T) = —dp(t,T)/0t. Similar to the
derivation of equation (7 — 77), we get that

+Vj(t7j) :Ov

Vx B(L7) — /d3xJ(tx)5(z—f’)+ﬂ3/ &2l p(t, )V (#)

4m Ot T —T

L, 0 _
poi(t,T) + pho asoE(t, ),

where

o PET)

i

E(t,7) = ——V

4meg V, |f — T

and it is assumed that

1 _ 1) 0 1 p(t,@)) 0
— | &pt, 7T — == |- d3a’ = _—E(
dmey Sy Tp(’T)v<|x—x|) 3t[ 47T60v// |z — 7| ot ().

Notice that eopig = 725 x 47 x 1077 (H/m) = 1/c?(s?/m?). We finally get that
V x B(t,T) = poj(t, @) + lgE(t 7) (7 —80)
y L) = HoJ\t, T 2ot y L)

If the current is caused by an applied electric field E(t, Z)applied to a conducting

medium, this electric field will exert work on the charges in the medium and there
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would be some energy loss unless the medium is superconducting. The rate at which
this energy is expended is j - E per unit volume. If E is irrotational (conservative),
j will decay away with time. Stationary currents therefore require that an electric
field which corresponds to an electromotive force (EMF), denoted by EFMF . In the

presence of such a field EFMF | the Ohm’ s law takes the form following

j(af) _ O,(Estat 4 ]_EEZWF)7

where o is the electric conductivity (S/m). Then the electromotive force is defined
by

g:fdl'(EStat+EEMF)7
C

where dl is a tangential line element of the closed loop C. By (7—70), V x Es* (%) =
0,which means that E* is a conservative field. This implies that the closed line

integral of E** in above vanishes. Whence,

E= 7{ dl - EFME, (7—81)
C

Experimentally, a nonconservative EMF field can be produced in a closed circuit
C' if the magnetic flux through C' varies with time. In Fig.7.3.2, it is shown that a
varying magnetic flux induced by a loop C' which moves with velocity v in a spatially

varying magnetic field B(T).

B(T) B(7)

Fig.7.3.2

Whence,
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. d

]idl-E(t,x)f —dtCD,n(t)
——d/de-ﬁ-B(t*‘)*_/cF‘ﬁ~—aB(tf) (7 —82)
at J " A e T

where ®,, is the magnetic flur and S the surface encircled by C. Applying Stokes’

theorem
%a-dl:/dS(VXa)
c s

in R? to (7 — 82), we find the differential equation following

V x E(t,7) = —%B(t,f). (7 - 83)

Similarly, we can also get the following likewise that of equation (7 — 76).

V.B(t,7) =0 and V-E(t,7) = Eip(f) (7 84)

7.3.4 Maxwell Equation. All of (7—80), (7—83) and (7—84) consist of Mazwell

equations, i.e.,

V- E(t,7) = —p(2),

€o
V x E(t,z) = —2B(t,7),
V-B(t,T) =0,
V x B(t,T) = poj(t,7') + 5 2 E(t, T)
on electromagnetic field, where p(t,T), j(t,T) are respective the electric charge and
electric current.

According to Einstein’s general relativity, we need to express the electromag-
netic fields in a tensor form where the components are functions of the covariant
form of the four-potential A* = (¢/c, A). Define the four tensor

0AY  OAH

Fo=20 % _par g
W ok O o g
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of rank 2 called the electromagnetic field tensor, where 0, = (0, V). In matrix

representation, the contravariant field tensor can be written as follows:

0 E,/c EyjJc E./c
E./ec 0 B. B,
E,Je B. 0 B,
E.Je B, B, 0

=

Similarly, the covariant field tensor is obtained from the contravariant field

tensor in the usual manner by index lowering

Fpu = g;mgu)\FNA = 8;/.AV - ayAu

with a matrix representation

0 E,/c E,Jc E,/c
~E,Jc 0 -B. B,
~E,Jc B. 0 -B,
~BE.Je -B, B, 0

yn%

Then the two Maxwell source equations can be written

0, " = pgj”. (7—85)

In fact, let v = 0 corresponding to the first/leftmost column in the matrix
representation of the covariant component form of the electromagnetic field tensor
F* we find that

OF®  QF0  QF®  QF0 1<8E1 OE, 8EZ>
+ + + :

0x° Ox! Ox? oxd 0+ c\ oz Oy 0z

1 .
= “V-E=puoj’ = pocp = p/o,

ie.,

vE="
€o

For v = 1, the equation (7 — 85) yields that
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8F01+8F11+6F21+8F31__18Ew+0+832_%_ 4
920 Ox! Ox2 o3 2 Ot Ay 9z HoJ ™ = HoJzs

which can be rewritten as

0B. 0B, _ 0. .
Ay 02 oMo ot = HoJz>

0F,
V x B)y = tojs —
( )e = Hojz + Eoto o

and similarly for v = 2,3. Consequently, we get the result in three-vector form

L, OE
V x B = poj(t,7) + S0t

Choose the Lagrange density ZFM of a electromagnetic field to be
EM 2 1 v
L5 =YA, + —F"E,.
4po

Then the equation (7 — 85) is implied by the lagrange equations shown in the next

result.

Theorem 7.3.1 The equation (7—85) is equivalent to the Euler-Lagrange equations

6$EM B 6$EM _
DA, “o0,A)]

Proof By definition of F** and F),,, we know that

FWE,, = —2E/¢—2E}/c—2E?/+ 2B} + 2B, + 2B’
—2E%/ 4+ 2B* = 2(B* — E?/c?).

Whence,

agEM

Notice that
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O {MEM | = {awaA )
(9

[(aﬁAA PA®) (0, AN — @An)}}

6
= ) P AN Ay — 0" ANDA, ] :
e Coe >( oA
But
0 KA _ K AN a 8 K AN
8(8HA,,)(8 AN AN) = O°A 8(8#A1,)8“AA+8“AA8(8 1 )8 A
_ HA)\ A A na N A,@A
0 O(OMA)E) A+ O *8(814) g B
. 0 0
— hA)\i A K,a)\ﬂKAiaA,
A G, ) O + 9797 0 5 Oy
0 0
— rcA)\ ). A aAB A,
T o0, T a0,
= 20"AV.
Similarly,
0 (0" AN\ A,) = 20" A*
0(0,A,) " '
Whence,
0L EM 1 1
|| = — 0, (0" AY — OV AF) = —0, FM.
o) = ot )
Thereafter, we get that
P EM EM 1
0 _a, oL — = Lo —o
0A, 0(0,4,) 1o
by Euler-Lagrange equations, which means that
OuF*™ = o,
which is the equation (7 — 86). d

Similarly, let
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1 if prk is an even permutation of 0, 1,2, 3,
A = 0 if at least two of u, v, k, \ are equal,

—1 if prkA is an odd permutation of 0,1,2, 3.

Then the dual electromagnetic tensor * F* is defined by

*pHr — }éwn)\F N
2 KA
or in a matrix form of the dual field tensor following

0 —cBy —cB, —cB,

Then the covariant form of the two Maxwell field equations

V x E(t,7) = —2B(t,7),

V- -B(t,7) =0
can then be written
0*F* =0,
or equivalently,
anF;w + a,uFun + aVFn,u = 07 (7 — 87)

which is just the Jacobi identity.

7.3.5 Electromagnetic Field with Gravitation. We determine the gravita-
tional field with a nonvanishing energy-momentum tensor 7}, i.e., the solution of
Einstein gravitational field equations in vacuum due to a spherically symmetric dis-
tribution of a body with mass m and charged ¢. In this case, such a metric can be

also written as

d*s = B(r)dt* — A(r)dr? — r?d6? — r?sin® dg*.
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By (7 — 66), we know that E(r) = ¢/r? and

0 -1 00 0 100
E 1 00 E -1 00 0
v = E0) and F, = 20 7
c 0 00 ¢ 0 000
0 0 0O 0 00O
ie., Fyy = F1° = E/c%, Fip = F* = —F/c? and all other entries vanish in such a

case, where indexes 0 =t, 1 =r,2 =6 and 3 = ¢. Calculations show that
Fo F" = FigF"* = —E? /&,

F\,F’ = FoF% + F,  F'* = —2F2.

In an electromagnetic filed, we know that T), = —(go FnFo + E;gm,) by
definition. Whence,

E? E?
Too = —(goo FoxF°* + —goo) = — B,
00 (9o Fox + 5 goo) 5
E? E?
T, = — FoF10 4 2y
11 g11(Fio + 2) ed
2 2

2

E* 5 .
T22=2—C4r, T33=2—C47’ sin“ @

and all of others T, = 0, i.e.,

B 0 0 0
Ery| 0 =A 0 0
TLU/ = ) Y
c 0o 0 r 0
0 0 0 r%sin®#

These Ricci’s tensors are the same as (7—58). Now we need to solve the Einstein

gravitational field equations

R, = =8nGT,,,

ie.,
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4Grq? 4Grq?
Rtt = 047"4 Rrr = 047’4 )
4Grq? 4Grg® .,
Rog = ———-, 00 =~z s 0.
Similarly, we also know that
Rtt Rr'r
— =0
+ 1 s
which implies that A =1/B and
d 4Grq?
Ropp=—(rB)—1=————.
0 ar (rB) cAr?
Integrating this equation, we find that
4GTq?
rB—r= qu + k.
cr
Whence,
4Grqg®  k
B(r)=1 —.
(r) + ctr? + r
Notice that if r — oo, then
_172Gm_ 4G7rq2+ﬁ
= cr ctr? r
Whence k = —2Gm/c? and
4Grg®?  2Gm
B(r)=1 Arz ey
Consequently, We get that
4Grg®  2Gm dr?
2 _ 2 2 192 2 2 2
ds —(1+W— 027" )dt —m—7 df* — r*sin 9(1@5 .
cAr2 c2r

Denote by ry = 2Gm/c* and r; = 4Gng*/c*, then we have the metric of a

charged ¢ body with mass m following:

7,2 d 2
ds? = (142 — Doygpe — D %d6% — r2sin? Ado. (7—88)
r r T ]

4 Ts
1+7‘2 r
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§7.4 GAUGE FIELD

These symmetry transformations lies in the Einstein’s principle of covariance, i.e.,
laws of physics should take the same form independently of any coordinate frame
are referred to as external symmetries. For knowing the behavior of the world,
one also needs internal parameters, such as those of charge, baryonic number,- - -,
etc., called gauge basis which uniquely determine the behavior of the physical object
under consideration. The correspondent symmetry transformations on these internal
parameters, usually called gauge transformation, leaving invariant of physical laws
which are functional relations in internal parameters are termed internal symmetries.

A gauge field is such a mathematical model with local or global symmetries
under a group, a finite-dimensional Lie group in most cases action on its gauge
basis at an individual point in space and time, together with a set of techniques for
making physical predictions consistent with the symmetries of the model, which is a
generalization of Einstein’s principle of covariance to that of internal field. Whence,
the gauge theory can be applied to describe interaction of elementary particles, and
perhaps, it maybe unifies the existent four forces in physics. Usually, this gauge

invariance is adopted in a mathematical form following.
Gauge Invariant Principle A gauge field equation, particularly, the Lagrange
density of a gauge field is invariant under gauge transformations on this field.
7.4.1 Gauge Scalar Field. Let ¢(Z) be a complex scalar field with a mass m.
Then its Lagrange density can be written as

L= au(ﬁauﬁf) - m2¢T¢7

where ¢' is the Hermitian conjugate of ¢, 0* = (0, —V) and ¢, ¢! are independent.

In this case, the Euler-Lagrange equations are respective

0L 0L

Ougia g~ gt = ot = (0 g =0,
0.¢ _ % - + 2 4t 2 2\t
O 50.) g OO =0 m)or=0

Consider its gauge transformation ¢ — ¢’ = e”¢ for a real number . By

the gauge principle of invariance, the Lagrange density .Z is invariant under this
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transformation. In this case, d¢p = ivg, 6! = —ivel, 60,0 = V0,0, 600" =
—iv0,¢". Whence, we get that

0L 0L 0L 0%
N It d SRS bt I _ ==
0Z 0L
= iy0 — ¢ > 7-89
Y H (88/L(Z)¢ ¢ 8(9,L<Z>T ( )
by applying

0% 0s _ 0% ot
“o(0u0) 09 T TMO(0uet)  Ogt

Let 6. =0 in (7 — 89), we get the continuous equation

Ot =0,
where
4 oL 0L
5T (aa,ﬂsqb 58, )
i? = —1 and ¢ is a real number. Therefore,

= ig(¢'0" e — (9"0")0).

If v is a function of T, i.e., v(T), we need to find the Lagrange density .£ in

this case. Notice that

au(em‘b) = em(@ﬂ + i8u7)¢~

For ensuring the invariance of .2, we need to replace the operator d, acting on ¢

by D, =0, +irA,, where A, = A,(Z) is a field and 7 a constant. We choose
D, — D, =0, +irA,,
, 1
A, — A=A, — ;’m

and
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Z = (Do) (D"¢) — m*¢' .

Then we have

Du(b - (D;@)/ = D;ﬁf)l = emDuqbv

i.e., & is invariant under the transformation ¢ — ¢' = €.
Now consider a set of n non-interacting complex scalar fields with equal masses
m. Then an action is the sum of the usual action for each scalar field ¢;, 1 <i <n

following

~ (1 1

Let @ = (¢1, P, -+, ¢n)". In this case, the Lagrange density can be compactly

written as

1 1
L= 5(@@)[8"@ - imszté.
Then it is clear that the Lagrangian is invariant under the transformation ® — G®

whenever G is a n X n matrix in orthogonal group O(n).

7.4.2 Maxwell Field. If a field ¢ is gauge invariant in the transformation
3(@) — ¢'(T) = 7@ ¢(T), then there must exists a coupling field A,(Z) of ¢(7)
such that A,(7) is invariant under the gauge transformation

Au(T) = AL (@) = Au(@) + 9ux(T),
where x(T) « ¥(T) is a real function. In this case, the gauge field F*” and the

Lagrange density . can be respective chosen as

1
Fr=09rAY —0vA*, £ = _ZF’WFW'

We call .Z the Mazwell-Lagrange density and A, the Mazwell filed. Applying the
Euler-Lagrange equations, the Maxwell field should be determined by equations

L 5 2
0A, ~ 00,4,

=0+ 0,0" A — 0,0" AP = 9, F™ = 0.
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By the definition of F* and Jacobian identity established in Theorem 5.1.2,
the following identity

OAFw + 0 Fop 4+ 0,F\, =0
holds. Whence, a Maxwell field is determined by
O F* =0,

OpFpuy + 0,F s + 0, Fyy = 0.

By the definition of F***, the 4 coordinates used to describe the field A, are not

complete independent. So we can choose additional gauge conditions as follows.

Lorentz Gauge: 0,A* = 0.

Lorentz gauge condition is coinvariant, but it can not removes all non-physical
freedoms appeared in a Maxwell filed. In fact, the number of freedom of a Maxwell

filed is 3 after the Lorentz gauge added.

Coulomb Gauge: VA =0 and V2A® = —p, where p is the charge density of
field.

Radiation Gauge: V- A =0 and A° = 0.

The Coulomb gauge and radiation gauge conditions remove all these non-
physical freedoms in a Maxwell field, but it will lose the invariance of filed. In
fact, the number of freedom of a Maxwell filed is 2 after the Coulomb gauge or

radiation gauge added.

7.4.3 Weyl Field. A Weyl field 1(T) is determined by an equation following

oo = b0 + C,

where b' and C are undetermined coefficients and (%) characterizes the spinor of
field. Acting by Jy on both sides of this equation, we find that

bRt (b'0; + CYOyy = (b'0; + C)*ep

%ww+ww@@+xwa+ozw (7 —90)
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Let C =0 and {b, '} = b'b + b'b* = —2¢%. Then we obtain the d’Almbert equation

8,0"p =0

from the equation (7 — 90). Notice b* must be a matrix if b'b/ + Hb! = —2¢% and ¢

in a vector space with dimensional> 2. For dimensional 2 space, we have

b = +o°

where

s foa]l L o], [t

1 o]’ i 0|’ 0 -1
are Pauli matrizes and {o?, 07} = —2¢%. In this case, the Weyl equation comes to
be
) = £0'O). (7-91)

Let

) , o
' — b = a;xj

be a rotation transformation of the external field of dimensional 3. Whence, [a]

is a 3 x 3 real orthogonal matrix with aja} = ¢%. Correspondent to this rotation

transformation, let
Y= =Ny

be a rotation transformation of the internal field. Substitute this transformation
and 0; = afa;- into (7 —91), we find that

Oot)' = Ao A al . (7—92)
If the form of equation (7 — 92) is as the same as (7 — 91), we should have
a?AU"A*1 =0,
or equivalently,

A'o'A = alo’. (7—93)
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We show the equation (7 — 93) indeed has solutions. Consider an infinitesimal

rotation
i i i pk
a; = g; +€;,,0%.

of the external field. Then its correspondent infinitesimal rotation of the internal

can be written as
A =1+ig0'.

Substituting these two formulae into (7 — 93) and neglecting the terms with power

more than 2 of ¢;, we find that
o' +igj(o'o! —ola') = o' + €, 070"

Solving this equation, we get that &; = 6;/2. Whence,

A:1—%9.a, (7 — 94)

where 6 = (01, 60% 63). Consequently, the Weyl equation is gauge invariant under the
rotation of external field if the internal field rotates with ¢» — A in (7 — 94).
The reflection P and time-reversal transformation 7T on a field are respective

ot — abxl, 2’ — b’ with (a}), (b)) following

1 0 0 O -1 000
0 -1 0 100
at) = and (b)) =
() 0 0 -1 (&) 010
00 0 -1 0 001

Similarly, we can show the Weyl equation is not invariant under the reflection P
and time-reversal transformation 7', but invariant under a reflection following a
time-reversal transformations PT and T'P.

A particle-antiparticle transformation C is a substitution a particle p by its

antiparticle Ant — p. For Weyl field, since 0%(c%)* = —o'0?, we get

dotbe = Fo'dipe

for a field transformation ¢ — ¥ = Cy¥ = nco?*, where ¢ is a constant with

nene = 1. Comparing this equation with the Weyl equation, this equation char-
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acterizes a particle ¥ with a reverse spiral of . Whence, the Weyl field is not

invariant under particle-antiparticle transformations C', but is invariant under C'P.

7.4.4 Dirac Field. The Dirac field () is determined by an equation following:

(17" 0, —m)y = 0, (7 —95)

where v* is a 4 X 4 matrix, called Dirac matriz and ¢ a 4-component spinor. Cal-

culation shows that

iz

("} =AM A =29
0 Iryo  Oaxa ; Oy O
7= 7 =1 :
O2x2  —Iaxo =o' Ogx2

_ Y
w(’(l}]{)’

where 91, YR are left-handed and right-handed Weyl spinors. Then the Dirac equa-

and

Now let

tion can be rewritten as

B9\ — -m i(0y+0-V) Py _
e A [ G RO

If we set m = 0, then the Dirac equation are decoupled to two Weyl equations
1(80 — O - V)wL = 07 z(80 +o0- V)wR =0.

Let X* — o = atz” be a Lorentz transformation of external field with ¢ —
At the correspondent transformation of the internal. Substituting ¢/ = Ay and

,, = a0, into the equation (7 — 95), we know that
(iAyAra ), — m)y' = 0.
If its form is the same as (7 — 95), we must have

AyA ay =,
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or equivalently,
AyPATL = gty (7—96)

Now let

1 1
A= I+ ZEWW’W” =1+ gaﬂu(v”v” -7, (7-97)

where ¢,, = —¢,,. It can be verified that the identify (7 — 96) holds, i.e., the Dirac
equation (7 — 95) is covariant under the Lorentz transformation.
Similar to the discussion of Weyl equation, we consider the invariance of Dirac

equation under rotation, reflection and time-reversal transformations.

(1)Rotation. For an infinitesimal rotation, e;; = €,,0* and £o; = 0. Substitute
them into (7 — 97), we find that

)
A=1--60-%
2 b
where 0 = (0,6, 62, 6%) and
i T g o Oaxo
S ’7] k _ ‘ .
27" ! |:02><2 o' :|

(2)Reflection. Let 2 — a”z” be a reflection. Substituting it into (7 — 96), we

have
Afl,}/OA — ,\/07 Aflfyi/\ — ,.Y'L.
Solving these equations, we get that A = 7p7°, where np is a constant with nhnp = 1.

(3)Time-Reverse. Let 2# — a"z” be a time-reversal transformation. Consider

the complex conjugate of the Dirac equation (7 — 95), we know

(=170, — m)y* =0,

[i(=7°0y — ¥101 + 7202 — v303) — my* = 0.
Substituting it with J, = a},d,,, we find that

[i(Y°0% = ~'0% + 7?05 = +°0%) — my* = 0. (7—98)



400 Chap.7 Fields with Dynamics

Acting by A on the left side of (7 — 98), we get that
[((AYPATI0) — AyPAT0) + Ay2AT10, — Av3AT10L) — m]Ay* = 0. (7—99)
Comparing (7 —99) with (7 — 95), we know that

APAT =190 AT = o,
A2AL =2, APAL = 3.
Solving these equations, we get that A = npy2y3, where nr is a constant with

nynr = 1. Whence, the time-reversal transformation of Dirac spinor is ¢ — ¢ =
T = nry*y v

(4)Particle-Antiparticle. A particle-antiparticle transformation C' on Dirac field
is ¢ — Yo = Oy = iy*p*. Assume spinor fields is gauge invariant. By introducing

a gauge field A, the equation (7 — 95) turns out
[y (10, — qAu) — mlyp =0, (7 —100)

where the coupled number ¢ is called charge. The complex conjugate of the equation
(7 —100) is

[y (=10, — qAu) —my™ = 0. (7-101)

Notice that A, is real and v** = —42. Acting by #y* on the equation (7 — 101), we
finally get that

[V(i0u + qAy) — mlhe = 0, (7—102)

Comparing the equation (7 — 102) with (7 — 100), we know that equation (7 —
102) characterizes a Dirac field of charge —g. Whence, Dirac field is C' invariant.

Consequently, Dirac field is symmetric with respect to C, P and T transformations.

7.4.5 Yang-Mills Field. These gauge fields in Sections 7.4.1-7.4.4 are all Abelian,
ie., ¢(T) — ¢ (T) = @ ¢(T) with a commutative y(T), but the Yang-Mills field is
non-Abelian characterizing of interactions. First, we explain the Yang-Mills SU(2)-
field following.

(G

Let a field ¢ be an isospin doublet ¥ = (
2

). Under a local SU(2) trans-

formation, we get that
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—i0-0(%)

b(@) = v(@) = e F (@),
where o = (0!, 0%, 03) are the Pauli matrices satisfying
ol ol k
272 2
and 6 = (64, 62, 603). For constructing a gauge-invariant Lagrange density, we intro-

| =iciji 1<4, 7, k<3

duce the vector gauge fields A, = (A;lu AZ, Az) to form covariant derivative

-A
D;ﬂ/}: <a,u77‘go' 9 #) ¥,

where g is the coupling constant. By gauge invariant principle, D, must have the

same transformation property as 1, i.e.,

—i0-0(%)

D, — (D) =e” 2 Dy.

This implies that

0 AL\ ieem o o) L oA
O I BT (RS I

—ig-0(%) oA Lisem . —ice® 0 - A
(8#6 2 —jg——Fte 2 ) = —ige” =  ——*.
Whence, we get that

o- A’M g 0(X) O - AM io-0() i —io-0(%)
Pl e 2z — e 2

=e

2 2 g
which determines the transformation law for gauge fields. Foe an infinitesimal vari-
ation 0(T) < 1, we know that

i B(E . 0(x%
L (X)

and

o-Al oA . ot ol 1/0
M #_-]Ak R R S
2 7 0 ”{2’2] g(2 8“'9)
o-A,

1 . . 1 /0
_ e gk ipi Ak 2 (2.
4 el AL 9(2 aue),
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ie.,

) . o 1
1o At ijkpi Ak _ T i
Aqu#—I—E QAH ga,ﬂ.

Similarly, consider the combination

)

(D,D, — D,D,) = ig (%FJ "

with
o-F, oA, oA, . |o-A, 0-A
T B el e
ie.,
Fi, = 0,Al — 0,A! + geF Al AL (7 —103)

By the gauge invariant principle, we have

—i0-0(%)

(DD, = D, D)) =e = (DD, — D,D,)y. (7—104)

Substitute F;, in (7 —103) into (7 — 104), we know that

;o0 —io0()
o-Fe 7 p=e 2 o -Fui,

ie.,

—i0-0(%) i0-0(%)

/ e .
o-F,=e 2 o Fye

For an infinitesimal transformation §; < 1, this translates into
Fli = Fi + giikgipk
% p pve

i L 1S ni uge invariant in this case. 1ence, 5 F, isn U,
Notice F), ot gauge invariant in this case. Whe ce7}1FHF‘“’s ot a gauge

invariant again. But

1 nz 1 i an
itr(FMVFI ) = 71FVIWFl

is a gauge invariant. We can choose
1 v 1 i n
£ = §tr(F;wF )= leFWF

to be its Lagrange density and find its equations of motion by Euler-Lagrange equa-

tions, where
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Fi, = 8,4, — 8,4 + ge* Al A,

v

A
Dyt = (afig" > “).

Generally, the Lagrange density of Yang-Mills SU(n)-field is determined by

7 - —lTr(FWFa )

v

Applying the Euler-Lagrange equations, we can also get the equations of motion of
Yang-Mills SU(n) fields foe n > 2.

7.4.6 Higgs Mechanism. The gauge invariance is in the central place of quantum
field theory. But it can be broken in adding certain non-invariant terms to its
Lagrangian by a spontaneous symmetry broken mechanism.

For example, let ¢? be a complex scalar field with Lagrange density

L =0,0'0"0 = V(9,9") = 0,0'0"6 — m*¢'p — N*(¢79)?,

where m and A are two parameters of ¢. We have know that this field is invariant

under the transformation

60— =0

for a real number ~. Its ground state, i.e., the vacuum state ¢y appearing in points

with minimal potential, namely,

ov

agr =Pt 2\6(¢'0) = (7—105)

If m? > 0, the minimal point appears at ¢ = ¢' = 0. The solution of equation
(7 — 105) is unique. Whence, its vacuum state is unique.

If m? < 0, the potential surface is a U-shape shown in Fig.7.4.1 and the minimal
points appears at

2

|¢* = ~o% =d’, A>0,
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ie., |¢| = a. The equation (7 — 105) has infinite many solutions. But the exact
vacuum state is only one of them, i.e., the gauge symmetry is broken, there are
no gauge symmetry in this case. Such field is called Higgs field. Its correspondent

particle is called Higgs particle.
%
\ }_(1 a \

Fig.7.4.1

Ime¢
Reo

One can only observes the excitation on its average value a of a filed by exper-

iment. So we can write

T) = at (@) +ip(a -
¢(T) = a+ \/i(h( ) +ip(T)), (7 - 106)

where, by using the Dirac’s vector notation

(v = (v1,02,- ), [v) = (v1, vz, --)"
and
Uy
(v] - |u) = (v, v2,++) - | w2 | =viug +vous + -+ = (vju),

there is (0|h|0) = (0|p|0) = 0, i.e., A(T), p(T) can be observed by experiment.
Substitute this into the formula of .Z, we ge that

1
2
with v = v/2a. By this formula, we know that the field h has mass v/2\v, a direct

ratio of a, also a field p without mass, called Goldstone particle.

1 A
L = SO+ 5(Ou0)? = APE = Moh(B 4 ) = (1 + )

Now we consider the symmetry broken of local gauge fields following.



Sec.7.4 Gauge Field 405

Abelian Gauge Field. Consider a complex scalar field ¢?. Its Lagrange density

is

L = (0, —igAu)e! (0" +igA)o —mPeTp — A(oT¢)? — iF’“’FW
N 5 L 1 v
= 0u010"0 = m*¢'6 — N(9'9)” — ige! 0, 9A + g GAA" — L FL F",
where A, is an Abelian gauge field, F,, = 0,4, — 0, A, and (9: is determined by

Ah, a8 _0A

ozt Ozt
with formulae following hold

A, (B+C)=Ad, B+Ad,C,
(A+B)9,C)=Ad,C+Ba,C,
A8, B=—-Ba, A,

A8, A=0.

Choose the vacuum state ¢ in (7 — 106) and neglect the constant term. We
have that

1 1 1
¥ = (aﬂh) (3“/)) — M?h? — ZFWFW + 39 %A, AF

A
= Moh(h? + %) = T (B + %) + gudup A
bt 1
+ gh 0, pA* + g*vhA,A" + EQQ(hQ + p*) A AN

Here, the first row arises in the fields h, p and the gauge field A,, and the last two
rows arise in the self-interactions in h, p and their interaction with A,. In this case,
the gauge field acquired a mass gv.

In the case of unitary gauge, i.e., p = 0 in the gauge transformation ¢ — €7@,

Then the Lagrange density turns into

1 1
L = —hwl g gﬁAA”+(6m - W?h’

1
- Mﬁflﬂﬁ+gwmwv+§fﬁ&ﬂﬂ
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Whence, there are only gauge A* and Higgs, but without Goldstone’s particles in a

unitary gauge field.

Non-Abelian Gauge Field. Consider an isospin doublet ¢ = ( jl ) gauge
P2

field under local SU(2) transformations. Its Lagrange density is

Uy
L = (Dyd)' D'p — m*¢To — A(67¢)* — 1Lt
For m? < 0, the vacuum state is in

2
m
0|¢'[0) = —— = a’.
(0l61610) =~ = a
Now ¢ = x1 + ix2 and ¢ = x3 + ix4. Therefore,
¢lo =X+ x5 +x3 +xi,
a sphere of radius a in he space of dimensional 4. Now we can choose the vacuum

state

L
V2

0

oz) = v+ h(T)

Calculations show that
V =m?plo+ A¢'9)? = Mole) (676 — v?) = %((h? +20R)? —vt),

(Dud)' Do = 9,0'0"¢ +igd, ' A'p — igdTA,0"6 + g*dT A, A"

1 1
= 5(8uh)2 + 5g?(v + h)*A, A",

Whence, we get its Lagrange density to be

1 . 1 1
Z = *ZFZWF“W + 5921)2AMA’* + E(ch)2 — M?h?

1 1 1
Mvh® — Z/\h“ + g*vhA, A" + §g2h2ANA” + Z)\U47
where the first row arises in the coupling of the gauge and Higgs particles and in

the second row, the first two terms arise in the coupling of Higgs particle, the third

and fourth terms in their coupling with gauge particle.
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7.4.7 Geometry of Gauge Field. Geometrically, a gauge basis is nothing but
a choice of a local sections of principal bundle P(M, G) and a gauge transformation
is a mapping between such sections. We establish such a model for gauge fields in
this subsection.

Let P(M,¥) be a principal fibre bundle over a manifold M, a spacetime. Then
by definition, there is a projection 7 : P — M and a Lie-group ¢ acting on P with
conditions following hold:

(1) 4 acts differentiably on P to the right without fixed point, ie., (z,g9) €
Px% — xogée P and xog =z implies that g = lg;

(2) The projection 7 : P — M is differentiably onto and each fiber 7=!(x) =
{poyglg € 9,n(p) =z} is a closed submanifold of P for x € M,

(3) For x € M, there is a local trivialization, also called a choice of gauge
T, of P over M, ie., any z € M has a neighborhood U, and a diffeomorphism
T, : 7Y U,) — Uy x 4 with T,(p) = (7(p), su(p)) such that

su:m N Us) =9, sulpg) = sulp)g
for Vg e 4, p e n=1(U,).

By definition, a principal fibre bundle P(M,¥) is ¥-invariant. So we can view
it to be a gauge field and find its potential and strength in mathematics. Let w be
the connection 1-form, 2 = dw the curvature 2-form of a connection on P(M,9)

and s: M — P, mos =1idy be a local cross section of P(M,¥). Consider
A=s'w=Y A, ds" e F'(M*), (7—107)
m

F=sQ=Y F,de"Ndz’ € F}(M*),  dF =0. (7—108)

Then we identify forms in (7 — 107) and (7 — 108) with the gauge potential and field
strength, respectively.
Let A: M —Rand s : M — P, §(z) =@ s(7). If A = s"w, then we have

W(X)=g'w(X)g+g7'dg, g€ Y, dge T,(¥), X =dR,X', (7 —109)

which yields that

A =A+dA,  dF =dF.
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We explain the gauge fields discussed in this section are special forms of this
model, particularly, the Maxwell and Yang-Mills SU(2) gauge fields and the essen-

tially mathematical meaning of spontaneous symmetry broken following.

Maxwell Gauge Field ¢. dimM =4 and G = SO(2)

Notice that SO(2) is the group of rotations in the plane which leaves a plane
vector v> = ¥ - ¥' invariant. Any irreducible representation of SO(2) = S! and
equivalent to one of the unitary representation ¢, : S* — S by @,(z) = 2" for
Vz € SL. In this case, any section of P(M, SO(2)) can be represented by a mapping
slez)=z"foree P, z€ S

Consider the 1-form A as the local principal gauge potential of an invariant
connection on a principal U(1)-bundle and the electromagnetic 2-form F' as its
curvature. We have shown in Subsection 7.3.4 that Maxwell field is determined by
equations 9, F* = ;¥ with the Jacobi identity. Let ¥ : M — C? be the pull-back

of ¥ by a section s : ¥ = 1s = s*). Then it is a gauge transformation of ).

Yang-Mills Field. The Yang-Mills potentials A* = Ajdz# give rise to the Yang-
Mills field

o _ 0Ay  OAY N 1
T Qe Qxv 2

where ¢, is determined in [X,, X,| = ¢5, X,. Then

oo (ALAT — ADAD),

1
A = A A = A, Aldatda”.

Now the gauge transformation in (7 — 109) is

A— A =UAU" + UdUt = UAUY + UBU dz.

Whence,

dA — dA' = dUAUT + U(dA)UT — UAdU" + (dU)dU",

A — A? = UAUY +UAdUT + U(aUNYU AU + U(dUT)UdU?
UAUT + UAdU" — (dU)AUT — (dU)du'.
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We finally find that

dA+ A* — dA' + A? = U(dA + AU,

ie., FF =dA+ A? is gauge invariant with local forms

F.=0,A,—0,A,+[A, A,
which is just the F),, of the Yang-Mills fields by a proper chosen constant ig in A,,.

Spontaneous Symmetry Broken. Let ®j be the vacuum state in a field ¢ with
the Lagrangian £ = 2 + V(®), where V(@) stands for the interaction potential, 4
a gauge group and g — (g) a representation of 4. Define

My = o(9)Po = {(9)Polg € ¥} (7-107)

and Yy, = % = {9 € 9|¢(g)Pg = Do} is the isotropy subgroup of ¥ at ®y. Then

My is a homogenous space of 4 i.e.,
My =9 /% = {9%lg € 9} (7-108)

Definition 7.4.1 A gauge symmetry & associated with a Lagrangian field theoretical
model L is said to be spontaneously broken if and only if there is a vacuum manifold
My defined in (7—108) obtained from a given vacuum state ®g defined in (7—107).

If we require that V(®g) = 0 and V(p(g)®) = V(®), then V(p(g)Py) = 0.

Consequently, we can rewrite My as
My = {®|V(®) = 0}.

Generally, one classifies the following cases:
Case 1. ¥ =%,

In this case, the gauge symmetry is exact and the vacuum @, is unique.
Case 2. lyec9 C¥9

In this case, the gauge symmetry is partly spontaneously broken.
Case 3. ¢ = {1y}

In this case, the gauge symmetry is completely broken.
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Physically, ¥, is important since it is the exact symmetry group of the field,
i.e., the original gauge symmetry ¢ is broken down to ¢, by ®,.
For example, let £ = £ + V(®) be an SO(3)-invariant Lagrange density and
1

V(®) = 14202 — IN(@?)%, A > 0. Then the necessary conditions for the minimum

value of V(®) which characterizes spontaneous symmetry broken requires

ov 2
G lomer = 0= 207 —aB2E = @ = 1T
Whence, the vacuum manifold My of field that minimize the potential V' ()® is given

by

Q2 ] 27&
My= 5% = 4 @i|9F = ¢

which corresponds to a spontaneous symmetry broken ¢4 = SO(3) — SO(2) = %,.
By Definition 7.4.1, we know that

My = SO(3)/S0(2) = S

on account of

0
(g)®5 =5 & wlg) = A 0|, AeSO(),
00 1

where ®§ = (0,0, ®g), Po = 1/1?/A. Consequently, the natural C*®-action

2
SO(3) x §* = 8% (9.0) = ¢(9)®:  [plg)l = l|2] = /5

is a transitive transformation.

§7.5 REMARKS

7.5.1 Operator Equation. Let S, P be two metric spaces and T:S—Pa
continuous mapping. For f € M C P, the equation

Tu = f
with some boundary conditions is called an operator equation. Applying the inverse

mapping theorem, its solution is generally a manifold constraints on conditions if
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M is a manifold. Certainly, those of Weyl’s, Dirac’s, Maxwell’s and Yang-Mills’s
partially differential equations discussed in this chapter are such equations. In fact, a
behavior of fields usually reflects geometrical properties with invariants, particularly,
the dynamics behavior of fields. This fact enables us to determine the behavior of a
field not dependent on the exact solutions of equations since it is usually difficult to
obtain, but on their differentially geometrical properties of manifolds. That is why
we survey the gauge fields by principal fibre bundles in Section 7.4.7. Certainly,

there are many such works should be carried out on this trend.

7.5.2 Equation of Motion. The combination of the least action principle with
the Lagrangian can be used both to the external and internal fields, particularly for
determining the equations of motion of a field. More techniques for such ideas can
be found in references [Blel], [Carl], [ChL1], [Wanl], [Svel], etc. on fields. In fact,
the quantum field theory is essentially a theory established on Lagrangian by the
least action principle. Certainly, there are many works in this field should be done,

both in theoretical and practise, and find the inner motivation in matters.

7.5.3 Gravitational Field. In Newtonian’s gravitational theory, the gravitation
is transferred by eith and the action is at a distance, i.e., the action is takes place
instantly. FEinstein explained the gravitation to be concretely in spacetime, i.e.,
a character of spacetime, not an external action. This means the central role of
Riemannian geometry in Einstein’s gravitational theory. Certainly, different metric
ds deduces different structure of spacetime, such as those solutions in [Carl] for
different metric we can find. Which is proper for our WORLD? Usually, one chose
the simplest metric, i.e., the Schwarzschild metric and its solutions to explain the

nature. Is it really happens so?

7.5.4 Electromagnetic Field. The electromagnetic theory is a unified theory
of electric and magnetic theory, which turns out the Maxwell equations of electro-
magnetic field. More materials can be found in [Thil] and [Wanl]. For establishing
a covariant theory for electromagnetic fields, one applies the differential forms and
proved that these Maxwell equations can be also included in Euler-Lagrange equa-
tions of motion. However, the essence of electromagnetism is still an open problem
for human beings, for example, we do not even know its dimension. Certainly,

the existent electromagnetic field is attached with a Minkowskian spacetime, i.e.,
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4-dimensional. But if we distinct the observed matter in a dimensional 4-space from
electromagnetism, we do not even know weather the rest is still a dimensional 4. So
the dimension 4 in electromagnetic theory is added by human beings. Then what is

its true color?

7.5.5 Gauge Field with Interaction. Einstein’s principle of covariance means
that a physical of external field is independent on the artificially reference frame
chosen by human beings. This is essentially a kind of symmetry of external fields.
A gauge symmetry is such a generalization for interaction. More results can be found
in references [Blel], [ChL1], [Wanl] and [Svel]. For its geometry counterpart, the
reader is refereed to [Blel]. Certainly, a gauge symmetry is dependent on its gauge
basis. Then how to choose its basis is a fundamental question. Weather can we find
a concise ruler for all gauge fields? The theory of principal fibre bundles presents
such a tool. That is why we can generalize gauge symmetry to combinatorial fields

in next chapter.

7.5.6 Unified Field. Many physicists, such as those of Einstein, Weyl, Klein,
Veblen, Pauli, Schouten and Thirty, - - - etc. had attempted to constructing a unified
field theory, i.e., the gravitational field with quantum field since 1919. Today, we
have know an effective theory to unify the gravitational with electromagnetic field,
for example, in references [Blel], [Carl] and [Wesl]. By allowing the increasing of
dimensional from 4 to 11, the String theory also presents a mathematical technique
to unify the gravitational field with quantum field. In next chapter, we will analyze
their space structure by combinatorial differential geometry established in Chapters
4—6 and show that we can establish infinite many